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Outline

This thesis is concerned with the study of methods in high-performance computing (HPC) for
simulation and optimisation of flow problems that typically occur in the framework of microflows.
We consider the adequate use of techniques in parallel computing by means of finite element
based solvers for partial differential equations (PDEs) and by means of sensitivity- and adjoint-
based optimisation methods. The main focus is on low Reynolds number flow described by the
Navier-Stokes equations (NSE) with an additional convection-diffusion equation describing the
distribution of species concentration within the fluid. Conclusively, we aim to optimise such a
microfluidic system by applying an electric potential difference to influence the mixing of species
using electrokinetic properties of the fluid (see Barz et al. [10, 11]).

The topic of optimisation and optimal control under constraints of partial differential equations
is a very active area of research. Many authors have contributed their results, starting from the
very early work of Lions [105]. For an overview of methods and perspectives of optimal control
problems especially in the framework of fluid flows, we refer to the work of Gunzburger [73].
This thesis follows the classical attempts by means of sensitivity- and adjoint-based optimisation
methods while the focus is set on the numerical requirements and implementation of these well-
known approaches on high-performance computers. We show that the requirements with regard
to computational power are quite strong when 3D instationary problems are to be solved.

In Chapter 1 we introduce the flow problems and the resulting complexity for an instationary
3D setting. The second chapter is devoted to the physical derivation and mathematical framework
of weak formulation for the PDEs describing the considered setting of microflows. Furthermore, the
background of optimisation with PDEs is presented. Chapters 3 and 4 show the actual capability
of numerical solvers based on finite element discretisation combined with multilevel preconditioners
and HPC-technologies in the framework of Domain Decomposition. Dedicated methods for opti-
misation of instationary problems using parallel computing techniques are presented afterwards
in Chapter 5. The thesis is completed by numerical results on simulation and optimisation of
microflows in Chapter 6. These results show the different requirements of presented optimisation
approaches when solving PDE constrained optimisation problems and prove the effective usage of
HPC-technologies in order to solve even complex 3D instationary problems.

Zusammenfassung

In dieser Arbeit werden Methoden des Hochleistungsrechnens fiir die Simulation und Optimierung
laminarer Stromungen untersucht, wie sie typischerweise im Bereich der Mikrofluidik auftreten.
Wir betrachten dabei den addquaten Gebrauch von Methoden des parallelen Rechnens im Rahmen
von Finiten Elemente basierten Lésern fiir partielle Differentialgleichungen sowie fiir sensitivitats-
und adjungierten-basierte Optimierungsverfahren. Der Schwerpunkt liegt hierbei auf Strémungs-
problemen bei niedriger Reynolds Zahl, welche durch die Navier-Stokes Gleichungen beschrieben
werden. Zusédtzlich wird eine Konvektions-Diffusion Gleichung betrachtet um die Verteilung einer
Spezienkonzentration innerhalb des Fluids erfassen zu konnen. Zur Optimierung solcher Systeme
der Mikrofluidik wird schlieflich eine Potentialdifferenz zwischen Ein- und Ausgang der Geometrie
genutzt, so dass durch elektrokinetische Vorginge die Vermischung zweier Spezien beglinstigt wird
(siehe Barz et al. [10, 11]).

Die Thematik der Optimierung und optimalen Kontrolle unter der Nebenbedingung partieller
Differentialgleichungen ist ein sehr aktives Forschungsgebiet. Beitréige hierzu reichen von einer
ersten ausfiihrlichen Analyse von Lions [105] bis zu zahlreichen aktuellen Arbeiten. Fiir einen
Uberblick der aktuellen Methoden und Ergebnisse sowie einen Ausblick im Bereich der optimalen
Kontrolle fiir Stromungsprobleme sei auf das Buch von Gunzburger [73] verwiesen. In dieser Arbeit
verfolgen wir den klassischen Ansatz der sensitivitdts- und adjungierten-basierten Optimierung,
wobei das Hauptaugenmerk auf die numerischen Voraussetzungen und die Implementierung auf
Parallelrechnern gelegt ist. Insbesondere werden instationédre dreidimensionale Probleme gelost fiir
welche der Rechenbedarf entsprechend hoch ist.

In Kapitel 1 werden die stromungsmechanischen Beispiele der Arbeit prasentiert und die resul-
tierende Komplexitit fiir die numerische Behandlung abgeschitzt. Das zweite Kapitel beinhaltet



die Herleitung der physikalischen und mathematischen Beschreibung - besonders die schwache For-
mulierung der Zustandsgleichungen sowie die Formulierung passender Randbedingungen. Weiter-
hin wird die Optimierung bei partiellen Differentialgleichungen eingefiihrt. Kapitel 3 und 4 sind
der numerischen Losung durch die Finite Elemente Methode gewidmet. Hierbei werden multilevel
Vorkonditionierer prisentiert und deren Einsatzmoglichkeit unter Verwendung vom Gebietszer-
legungsmethoden auf Parallelrechner erweitert. Dedizierte Methoden paralleler Hardware fiir die
Optimierung instationidrer Probleme werden in Kapitel 5 untersucht. Die Arbeit umfasst ab-
schlieffend in Kapitel 6 numerische Resultate fiir die Simulation und Optimierung innerhalb der
Mikrofluidik, welche die unterschiedlichen Anforderungen und Moglichkeiten der Numerik auf Par-
allelrechnern zusammenfassen.
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Chapter 1

Introduction

In many applications of research and development projects concerned with computational fluid dy-
namics (CFD), the ultimate goal nowadays is related to the optimisation and optimal control of the
considered system or process. In this context, the solution process is usually much more involved
than a purely forward simulation leading to a descriptive or predictive view of the treated system.
Optimisation and optimal control require an iterative process involving the setting and manipula-
tion of control variables such that the system or process gets improved. Such an improvement has
finally to be measured and verified to judge the success of optimisation.

In this thesis, the focus is on applications as they typically appear in microfluidic systems, i.e. in
devices with a typical scale of 100 um. The placement of different microcomponents with several
laboratory functions like pumps, valves, or detectors in combination with microchannels forms the
concept of the lab on a chip (LOC) that deals with handling of extremely small fluid volumes and
fast analysis times due to short diffusion distances. Microfluidic processes that may take place
within an LOC are transport, separation or mixing of (bio)chemical species within a fluid [93]. A
crucial fact for these tasks is the usually purely laminar nature of the flow fields in such devices.
The absence of turbulences is beneficial with regard to numerical simulation but disadvantageous
for engineering problems if a mixing of species is aimed for (e.g. to enable a chemical reaction).
As a typical scenario, we investigate within a twice-folded microchannel the homogeneous and fast
mixing of pure water with water in which Rhodamine B as fluorescent dye is dissolved - according
to the setting of Barz et al. [10, 11]. From the engineering point of view the measurement of dye
concentration by means of a micro laser-induced fluorescence method (uLIF) and of velocity field
by microparticle image velocimetry (uPIV) requires a suitable experimental setup which may limit
the intended experiments. Numerical simulation, on the other hand, allows to explore the system
in advance and gives helpful hints for e.g. the design of microdevices. Obviously, the abstraction
of physical process to numerical simulation necessitates the deployment of a mathematical model,
a discretisation approach to the derived equations, as well as the entire solution process on the
computer. All these steps are error-prone such that the results at the very end have to be compared
to experiments in order to validate the quality of the simulation. However, an essential benefit
of numerical simulation is the possibility to manipulate parameter and/or geometry in nearly
arbitrary way (once a model and the according software is at hand) which then can be used to
optimise the system or process under investigation.

For the considered setting of mass transport and mixing in microchannels, we have to describe
the physical process in more details. The mixing of two (or more) liquids can generally be separated
into two main steps (cf. [12]):

1. increasing of the contact area between liquids,
2. essential mixing by molecular diffusion across the contact area.

In flows through geometries with macroscopic dimensions, turbulence is often employed to enhance
the mixing process. In microscopic geometries, the generation of a turbulent flow regime is rather
difficult and, therefore, other concepts are used for mixing. Two approaches to increase the mixing
are commonly used, namely active methods by employing external forces to the system (e.g. elec-
trical forces) and passive methods that are based on a variation of the geometry. The approach
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Figure 1.1: Glass layer of the microfluidic chip and the experimental setup. Pictures are kindly provided
by Dominik P. J. Barz [10, 11].

for an electrically excited micromixer given by Meisel and Ehrhard [116] is based on a twice-folded
channel segment in combination with an induced electroosmotic secondary flow. For the detailed
experimental setting, see the description in [10, 11] and the Appendix - the main components
(structure of microfluidic chip and basic setup) are depicted in Figure 1.1. The fundamental phys-
iochemical process used within this setting is the electroosmotic excitation of the fluid related
to the presence of a so-called electrical double layer (EDL). This layer is present adjacent to the
channel walls that usually possess an electrically charged surface and therefore a certain electrical
potential which induces a higher ion concentration of the - apart from that - electrically neutral
fluid [12, 94]. If now electrodes are positioned within the reservoirs of the two liquids to be mixed
and a specific voltage is applied to a third electrode within the outlet reservoir, the time-dependent
potential difference A¢(t) induces an instationary fluid flow within the EDL. This secondary flow
can be used to modify the pressure-driven base flow and thus increases the contact area between
the liquids.

Since the width of the EDL is usually in the order of 10~9-10~8 m, denoted by the so-called
Debye length £p, numerical simulation of these systems in a full three-dimensional instationary
setting requires a very fine discretisation to resolve the various physical effects. The ratio of EDL
size to size of the microchannel is usually 1 : 10000 indicating that the resulting algebraic systems
to be solved will be at least of order 10° in each space dimension. If a uniform mesh is assumed the
3D discretisation will then easily lead to 10'® unknowns. To reduce the numerical complexity of
these systems a possible way might be the usage of locally refined discretisation and non-uniform
meshes. A different approach is proposed by Barz et al. who neglect the electrical double layer near
channel walls and simulate only the bulk flow within the channel using slip boundary conditions to
model the influence of the EDL. Nevertheless, the resulting algebraic systems to be solved within
a timestepping algorithm are still on the order of 10° — 10° unknowns such that it is sensible to use
iterative linear solvers like Krylov subspace methods on parallel computers to tackle the problem
in reasonable time. A critical point for the convergence behaviour of iterative Krylov subspace
methods is the presence of suitable preconditioners. To this end, we introduce Multilevel ILU
preconditioners based on the ILU++ package by Jan Mayer [112] and extend these to be used in
parallel by means of Block Jacobian and Schur complement data structures.

Besides the above introduced simulation and optimisation of an electrically excited fluid flow in
a microchannel, the topic of optimisation and optimal control for flow problems is also regarded for
the more academical example of the well-known backward facing step flow. For these studies on
parallel solver/preconditioner and optimisation routines, we treat the Navier-Stokes equations with
the control objective of reduction of the recirculation/vortex area behind the step of a microchannel
- see Figure 1.2 for the uncontrolled case. A common setting is given by boundary control near
the edge of the step where blowing and suction of fluid is assumed. By this additional stream the
re-attachment length of main fluid flow is aimed to be minimised. The choice of cost functional



Figure 1.2: Fluid flow behind a backward facing step with streamlines indicating the recirculation.

to realise this aim is variously addressed in the literature and in this thesis only a tracking-type
formulation is chosen, i.e. the difference to Stokes flow, possessing a minimal recirculation tendency,
is observed.

In general the optimisation problems in this thesis base on an abstract problem: let y denote
a set of state variables and u be a control variable of any kind. The system of partial differential
equations describing the fluid flow is given by the equation E(y,u) = 0. Furthermore, a cost or
objective functional J(y,w) is assumed that has to be minimised under the constraint E(y,u) = 0.
Hence, beside pure simulation tasks, we also treat problems of the form

min J(y,u) such that E(y,u) = 0.

Two approaches to tackle this problem are studied, namely

1. adjoint-based boundary control in conjunction with Navier-Stokes equations optimising the
flow field of backward facing step problem,

2. sensitivity-based optimisation of the micromixer in Figure 1.1 by control of the potential
difference A¢(t).

These optimisation methods can principally be distinguished by the determination of the gradient
of the objective functional. Assuming a time dependent setting, methods that rely on the solution
of the adjoint equation require forward-in-time solution of the state equations and backward-in-
time solution of the adjoint equations, whereas sensitivity-based methods only march forward in
time. For nonlinear problems, a challenging task is related to the fact that the state variables have
to be available to the adjoint equation solver. Since the adjoint equation solver marches backward
in time, this means that one must store the state variables for every timestep. For large scale
problems, this step, which amounts to store very large data set, may be intractable in practice or
become a real bottleneck for the overall solution process. An approach combining checkpointing
techniques to reduce the needed storage resources with parallel I/O is presented in this context. A
main emphasis is put on the adequate use of recent technologies related to large high-performance
computing (HPC) platforms like for the parallel preconditioner used for simulation tasks.
Summarising, to tackle the simulation and optimisation of an electrically excited micromixer,
we first abstracted from this to a pure fluid flow setting described by the instationary Navier-Stokes
equations. For this the sequential multilevel preconditioner ILU++ was extended by parallel data
structures which were implemented and tested on actual high performance computers to form an
appropriate parallel preconditioner for iterative Krylov subspace methods. Afterwards also the
two mentioned optimisation approaches were incorporated into the developed software. Herein, we
explored a suitable combination of checkpointing schemes and parallel I/O techniques that were
especially fruitful for explicit timestepping schemes with lumped mass-matrix. Extensive numerical
tests were performed to validate the proposed approaches and to give an estimate on the benefits
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of adjoint-based optimisation in contrast to the sensitivity-based approach. While the latter one
obviously possesses a much easier implementation, the first one enables a wider treatment of the
system to be optimised — we comment on the ratio of effort to profit in Chapter 6. As a result
of these steps, we are able to improve the three-dimensional simulation results for the electrically
excited micromixer and to give useful hints in optimising the applied potential difference to increase
the mixing quality.



Chapter 2

Simulation and Optimisation of Fluid
Flow

As presented in the introduction, we are faced with simulation and optimisation/optimal control
of problems arising in the field of fluid dynamics. In this chapter, a derivation of the govern-
ing equations of fluid dynamics and modelling results for the electrokinetic effects will be given.
Afterwards, the mathematical setting is prepared that is needed for the finite element based dis-
cretisation, namely the weak formulation of underlying partial differential equations. Besides the
pure simulation based framework, we also show the common approaches in optimisation with par-
tial differential equations and apply these to get the configuration for the considered flow problems.

Consequently, this chapter is neither devoted to a rigours derivation of governing equations
nor to a complete analysis of them. We only aim at providing the reader with the basics in both
physics and functional analysis as they are needed for any further discussion. For a more detailed
overview on the topics of this chapter, we give particular bibliographical references.

2.1 Modelling Fluid Flow

The mathematical description of fluid flow, the fluid dynamics, is a sub-discipline of continuum
mechanics. In contrast to particle mechanics dealing with the equilibrium and motion of systems of
point masses, continuum mechanics is a means of studying the deformation and flow of a continuous
medium by ignoring its microscopic/molecular nature, i.e. it deals with mass-continua that are
located in the Euclidean space R3. It is a simplification that makes it possible to investigate
the movement of matter on scales larger compared to typical distances between molecules. Thus,
in studying the movement of a fluid the fact that it is made up of molecules is ignored — but
fortunately, in general one is not interested in the individual behaviour of a single molecule, but
in the average motion of a large number of molecules.

A key difference between classical dynamics and fluid dynamics is the continuum hypothesis
or continuum approximation. Within this the fluid velocity, density and stress tensor, that are
introduced later on, are to be interpreted as appropriate averages of mechanical properties of
the molecules. Furthermore, these quantities are assumed to be interpreted at each position in a
volume and to be continuously spread.

Assumption 2.1.1 (Continuum hypothesis)

We assume that in the region governed by a fluid a continuous and differentiable mass-density
is given by function p(x,t) > 0 such that the mass M(t) of an arbitrary subvolume V (t) can be
calculated by the integral

M(t) = / p(x,t) dV.
V(t)

This means that any small volume element in the fluid is always supposed to be as large as needed
to define a molecular average by containing a reasonable big number of molecules.
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2.1.1 Basic Equations of Fluid Dynamics
The following derivation of equations is based on some fundamental assumptions on the fluid:
e relativity and quantum mechanics are ignored,

e the length scale of the flow is always taken to be large compared to the molecular mean-free
path, so that the fluid can be treated as a continuum (continuum hypothesis),

e in the sense of the continuum hypothesis we label the smallest entity in the fluid as fluid-
particle and assume that the position of a particle can be described by its coordinates in the
Euclidean space R3,

e the fluid is assumed to be of uniform, homogeneous composition, i.e. diffusion and chemical
reactions are not considered.

Based on the continuum hypothesis the equations of motion for fluid flow can be derived in a general
format by applying the principles of mechanics, i.e. conservation of mass (continuity), balance of
linear momentum (Newton’s second law) and angular momentum.

Let Q C R? be a fluid volume that moves in space under action of internal and external forces.
Consider a testvolume V(t) C Q that is open and bounded — this volume is filled with particles
of the fluid. Furthermore, we define the movement of a particle n € V(¢) by a function ®(n,t)
such that at time ¢ > 0 the particle 7 is located at the point x = ®(n,t). We assume that ® is as
smooth as needed, i.e. ® is invertible and ®, ! € C'(Q).

Generally two different descriptions of the motion of fluids can be considered

1. Lagrangian description: for fixed particle n (the Lagrangian coordinate) one follows the
trajectory t — ®(n,t). Thus, the Lagrangian coordinate system moves with the fluid — this
description of motion is very useful in solid mechanics.

2. Eulerian description: for fixed point x € V(¢) (the Eulerian coordinate) one observes the
trajectory t — ®(-,¢)~!(x). The Eulerian coordinate system is fixed and one studies the flow
(velocity field) at a fixed point x as a function of time.

In the sense of the Eulerian description we define the wvelocity of a fluid particle at point x =
®(n,t) € R3 by

v(x,t) := %Q)(n, t).

This vector field can be expressed in the cartesian form
v(x,t) = ervi (21, T2, 23, 1) + eava(21, T2, 23, 1) + e3v3(x1, T2, 3,1)

with orthonormal basis vectors e; and usually one seeks for knowledge of the scalar variables v; in
the observed fluid domain €.

Let f(x1,22,x3,t) represent any property of the fluid and we ask for the temporal change for
this quantity. An observation located at a fixed point in a chosen coordinate system naturally
gives the local temporal derivative %(xl, Z9,x3,t). On the other hand the temporal change of a
particle of fixed identity (Lagrangian view) in the flow field v(z,t) is given by

d . 1
d_];:AI%IBOE flaxr +v1 - At,xg + v - Aty zg 4 vs - At + At) — f(21,22,23,1)].

This gives the proper expression for the total time derivative of f of a particular particle

df_of  of of . of

dt ot o0z ox 0x3
2.1
o (v-v)s Y
ot

The quantity % is variously termed the substantial derivative, particle derivative, material deriva-

tive or Lagrangian derivative giving the relation between local temporal derivative and so called
convective derivative (v - V).
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As shown in the introductory part of this chapter the continuum hypothesis allows the formu-
lation of results not for single molecules (or particles) but for an arbitrary chosen domain of the
fluid. To express the temporal change of a given quantity in such a testvolume V(¢), which of
course itself is influenced by the motion of the fluid, we state the following fundamental theorem
(cf. [50, ch. 1.4] or [154, ch. 1.5] for proof).

Theorem 2.1.1 (Reynold’s transport theorem)

Let f:QxI — R be a differentiable function for x € Q and t € I C R (time interval). For
every open and bounded volume V (t) C Q there holds

G [ ren = [ Ghmn+ v (reovixn) ax

V(1) V(t)

_ /(%(x,t) dx + / £, )v(x,¢) - ds

V(#) v (¢)

with n the unit outward normal vector on OV (t).

Conservation of Mass

Assuming a continuous and differentiable mass-density given by function p(x,t) € R, the mass
m(V (t)) of an arbitrary testvolume V' (t) with surface OV (¢) is given by

m(V(e) = [ plat) dx

40

that is constant in time (conservation of mass), i.e. di

zm(V(t)) = 0. By equation (2.2) we deduce
that

% p(x,t) dx = / (%p(x, t) + V- (p(x,t)v(x, t))) dx = 0.
40 V(t)

Since the volume V (t) was chosen arbitrarily the integrand must vanish. This usage of the Dubois-
Reymond lemma for sufficiently smooth functions is used throughout in the sequel to transform
an integral equation to a partial differential equation (see e.g. [104] for proof). Therefore, we end
up with the continuity equation

%p +V-(pv)=0. (2.3)

Balance of Linear and Angular Momentum

Consider an arbitrary testvolume V'(¢) inside the fluid with surface S and outward normal n.
Two kinds of external forces acting on this volume can be distinguished. First volume-forces, like
gravity, that are of the form

FulV0) = [ ox 0fx.) dx

V(t)

with an exterior volume-force f per unit mass — these forces apply to the entire mass of the fluid
element, i.e. act on each point x € V(¢). Second surface- or contact-forces that are given by the
material outside of the volume V() on the material interior to the fluid element V' (¢). These forces
are described by a vector force s(x, t) acting on a unit area of S, which is called the stress vector.
By Cauchy’s principle s(x,t) only depends on the normal n and by the action-reaction principle
must fulfil s, (x,t) = —s_,(x,t), where we denote the dependency on the normal by an index.
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Total surface forces are therefore given by

Foury(V(t)) = / s(x,t) ds.
AV ()
As we show later on the surface-forces are given by a stress tensor o and can be written as

3
sp(z,t)=m-oc=0"-n, [s,(z,t)];= Zaji(x,t)nj, i=1,2,3.
j=1

By the principles of conservation of linear and angular momentum we have the relation of these
external forces to the temporal change of momentum, i.e.

d
7 / p(x, t)v(x,t) dx = / p(x, O)f(x,t) dx + / s(x,t) ds (2.4)
V(t) V(t) av (t)
% / x X (p(x,t)v(x,t)) dx = / x X (p(x,H)f(x,1)) dx + / x X s(x,t) ds (2.5)

V(t) V(t) ov (t)

with arbitrary reference point x and the cross product denoted by x.
As in the derivation of (2.3) application of Reynold’s transport theorem and the Gaussian
theorem to equation (2.4) yields (for i = 1,2, 3)

%(p(x, t)Ui (Xa t)) +V- (p(X, t)vi(xa t)V(X, t)) = p(X, t)fi(xa t) + [V : U(X’ t)]l

Written in vector notation, one gets the so called conservative form of the momentum equation

S (V) + V(o) = pf Vo 26)

Here we used the notation vv = v ® v = [v;v;]; ; for short to express the outer vector product.
Using the chain rule for 2 (pv) and V- (pvv) = vV - (pv) + p(v - V)v, the equation of momentum
can be written as

0 0
V<ap+v<pv>> +pg V(v VIV =pf + V0,

where the first term vanishes due to the continuity equation (2.3). The resulting equation is called
non-conservative form of the momentum equation

p%v—l—p(v-V)v:pf—i—V-o. (2.7)

For the balance of angular momentum (2.5) a similar but tedious calculation using again Reynold’s
transport theorem and the Gaussian theorem yields the final result (using the Einstein summation
convention)

/ €ijkOjk dx =0
V(#)

showing that o is a symmetric tensor, i.e. o = o . For a detailed derivation of this tensor notation
in the field of continuum mechanics we refer to [17]. All in all the basic equations of fluid mechanics
for a single-phase continuous medium that does not exhibit electric, magnetic or chemical effects
are given by the unknowns

e density p = p(x,t) € R,
e velocity vector v = v(x,t) € R3,

e stress-tensor o = o(x,t) € R33.
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The derived conservation equations are (with given body force per unit mass f)
e conservation of mass (continuity equation): dyp+ V - (pv) = 0,

e balance of linear momentum (momentum equation): pdyv + p(v-V)v=pf + V-0,

e balance of angular momentum: o = o7
The next section is devoted to close the given system of unknowns and equations by formulating
constitutive equations for particular types of materials.

2.1.2 Constitutive Equations

The derived equations are very generic and in principle valid for all fluids — up to now no restriction
or assumption on the underlying material has been taken. By this generality we are faced with the
problem that the number of unknowns and equations do not match. Nevertheless, it is sensible
that all equations are given by the fluid one wants to describe, so that in addition to the general
governing equations only material specific equations should appear. Such a relation between stress
tensor o, velocity v and density p usually depends on the fluid and is given by a suitable choice
according to experimental results.

Stress Tensor

Throughout derivation of the conservation equations we have tacitly assumed that the surface
forces on a volume element are given by the stress vector

s(x,t) = sp(x,t) =n-o(x,t) = UT(x, t)-n
with a stress tensor o!. We now briefly want to describe the meaning of this tensor without a
detailed derivation — for this purpose we refer to [6], [104], [130] or [154].

Surface stress s(x,¢) in general is a measure of the intensity of total internal forces acting
within the fluid across imaginary internal surfaces, describing the influence of material outside a
considered volume V' (t) to the material interior V(t). Let dF denote an infinitesimal part of this
force and let dA be an infinitesimal surface element on OV (¢) which covers x, then by

dF
s(x,t) =sp(x,t) = lim —
(x,1) =sn(x,t) = lim —
the stress vector acting on x is defined. This force not only depends on the point x and time ¢,
but also on the orientation of the surface element dA, i.e. on the outward normal n. By Cauchy’s
stress principle the components of the stress vector s acting on a surface dA are fully described by
the stress tensor ¢ and the outward normal n on dA

[sn(x,t)]; = Z oji(x,t)n;.

This linear relation for the stress vector s at all positions x to all directions n, as stated by the
Cauchy stress law, can be used to show descriptively an interpretation of the Cauchy stress tensor
o at a point x in an orthonormal system e;. If we take a surface element dA perpendicular to the
unit-vector ey, (see Figure 2.1 for the case es) then the i-component of the stress vector acting on
this element in a point x is given by

[Se ]z Z sz5jk Oki
J

where we wrote s., to emphasise the stress vector on an element with outward normal e;. So we
have the following interpretation: o;; is the magnitude of the j-component of stress vector s (force

11t should be mentioned that the notation for the stress vector is not unique in literature. There are two possible
ways to define the stress tensor o, which base on transposed meaning of the components ¢;;. Fortunately, the stress
tensor was previously shown to be symmetric so that also the definition s, (x,t) = o(x,t) - n matches.
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To

1

Figure 2.1: Components of the stress tensor: o;; stress in j direction on a face normal to the 7 axis.

per unit arca) exerted across a plane surface element normal to the i-direction, at position x in
the fluid and at time {. By this clarification we sec that the diagonal elements of o represent the
normal stresses, 1.e. normal component of surface force acting on a plane parallel to the coordinate
planes, while the offdiagonal elements of o are tangential/shearing stresses.

Fluids at Rest

A first observation is given for so called Stokes’ fluids: when the fluid is in rest, only normal stresses
are exerted. Furthermore, the stress-tensor is observed to be spherically symmetrical and depends
directly on the thermodynamic pressure p = p(x,t) (for a derivation sece [13]), thercfore

Olv=0 = —pl.

This means that the shear stresses vanish and only normal stresses appear that are equal to the
pressure. For a fluid in motion there is obviously no reason to expect this result being valid.

Stress-strain Law for Newtonian Fluids

If the fluid is in motion additional shear stresses must be considered altogether with the normal
stresses. For the description of these friction-forces, which model the transport of momentum by
molecular motion, the symmetric tensor 7 (viscous or deviatoric stress tensor) is added

Olvzo = —pIl +T.

The question now is how this viscous stress is related to other observable propertics of common
fluid motions. As a primary source of information experiments for which one could propose many
such relations (called constitutive equations) can be made. But also from the theoretical point
of view some approach can be done: friction in fluids generally manifests itself through shearing
forces which retard the relative motion of fluid particles. A measure of the relative motion of fluid
particles is given by the deformation rate tensor.

Definition 2.1.1

The tensor D = (Vv + (Vv)") is called the deformation rate tensor. The tensor W = 3(Vv —
(V)1 is called the rotation rate tensor. They build the symmetric and antisymmetric decompo-
sition of the velocity gradient: Vv =D+ W. A fluid is a medivm whose stress-strain law is of the

form o = f(D).
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The concrete identification of the material-function f is the subject of rheology. Here for the
sake of simplicity we deal only with so-called Newtonian fluids, for which the hypothesis of a linear
dependence of the stress tensor on the deformation rate tensor is made. The particular form of the
linear function f for a Newtonian fluid is given by so-called Stokes’ Postulates which are made on
the basis of experiments and require that:

1. ¢ = —pI + f(D) with a linear continuous function f.

2. The fluid is an isotropic medium, i.e. its properties are the same in all space directions.
This means that the function f is invariant to orthogonal transformations, i.e. f(SDST) =
Sf(D)ST for all transformations S with SST = I, det(S) = 1.

3. If the fluid is at rest, there are no viscous stresses, i.e. f(0) = 0.

These conditions lead to a stress-strain law of Newtonian fluid termed the Cauchy-Poisson law —
for proof see [6] or [50, ch. 1.8]

o= (—p+ AV -v)I+2uD

with A (volume viscosity) and p (shear or dynamic viscosity) being constants or scalar functions
of thermodynamical quantities. Hence, we have the general equations of motion for a Newtonian
fluid

atp + v . (PV) = Oa

pov +p(v-V)v+Vp—V(AV-v)— V- (2uD) = pf.

Incompressibility
The condition of incompressibility can be stated at least in twofold manner:

e an incompressible fluid has constant volume: using Reynolds transport theorem (2.2) with
f=1lresultsin V-v =0,

e an incompressible fluid has constant density: we directly get V - v = 0 from the continuity
equation.

Nevertheless, these definitions aim at the same result and the stress-tensor of an incompressible
Newtonian fluid simplifies to
o =—pl+2uD

which gives the momentum equation
p(8v + (v-V)V) + Vp—V - (2uD) = pf.

Using the notation v = u/p for the kinematic viscosity and assuming that the shear viscosity p is
constant within the fluid, we simplify V-(2uD) = u(Av+V(V-v)) = pAv, due to incompressibility.
Therefore we end up with the incompressible Navier-Stokes equations

1
v — VAV + (v-V)v+ -Vp =T,
p (2.8)

V-v=0.

Next, the general body force f and also suitable boundary conditions need to be derived in detail
such that the system (2.8) can be defined in a strict mathematical setting.

2.1.3 Electrical Excitation of the Fluid and Mass-Transport

Besides the generation of fluid flow by the classical application of a pressure difference, e.g. by
mechanical pumps or gravity force, there are also several other opportunities. One possibility in
the setting of microflows is electroosmose. The fundamental effect for such an electrical excitation
is related to the presence of a considerable charge density near channel walls, where ions of opposite
sign are attracted to the electrical charged surface — an effect called electric double layer (EDL).
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The thickness of EDL is defined by the region where the electric neutrality of the fluid is violated
and is usually on the order of 107° m. For a detailed description of electrical excitation within
microflows we refer to [12] and references therein. To generate an electroosmotic flow, a tangential
electric field is applied to the EDL which causes an ion drag that induces a fluid flow. If now the
ratio of surface to volume is as large as in microchannels, the flow within the EDL effects also the
entire flow field within the channel by viscous forces.

The influence of such an electric field on the momentum equation of an incompressible fluid
can be considered as an external force in equation (2.8) (cf. [11])

f. = ¢E. (2.9)

This Coulomb force f. describes the force exerted by the electric field E upon the total electric
charge density ¢ within the fluid. It was shown in [11] that under certain conditions, namely a
homogeneous ion concentration and electrodes located far away from the point of interest (cf. Figure
1.1), the electrical field can be assumed as independent of flow and concentration fields, at least
for a certain time. Hence, an electrostatic formulation by Gauss’ law relating the distribution of
electric charge to the resulting electric field seems justified, i.e. with the permittivity of the fluid ¢
and the electric potential ¢ we have

V- (eE)=V-(-eV9¢) =q. (2.10)

It remains to describe the charge density of the fluid ¢ to get a governing equation for the electrical
situation within the fluid. Within the EDL, the charge density is ¢ # 0 due to a excess of ions and
can be expressed by

g=FY_ zc (2.11)
J

with ¢; denoting the concentration of the ion species j, z; denoting the valency number of the ion
species and F' the Faraday constant. Outside of the EDL, within the so-called bulk region, the
liquid can be approximated to be in electrical neutrality and we have

E 2;Cj putk = 0.
J

In this case, i.e. the charge density ¢ is zero like in electrical neutral fluids, equation (2.10) reduces
to the Laplace equation A¢ = 0 assuming a spatial constant permittivity ¢ of the fluid. Moreover,
it is obvious that electrical forces can only be induced within a small region near the channel walls,
namely the EDL.

For the ion concentration within the EDL ¢; gpr a Boltzmann distribution is used (cf. [12])
such that the electric potential ¢ within the fluid (using (2.10), (2.11) and a spatial constant
permittivity) is described by the so-called Poisson-Boltzmann equation

F 2 F'pi
A¢ = s ;chj,buzk €xp <—JRT > : (2.12)

Here, ¢; puik is the (constant) concentration of the ion species j within the bulk flow and ¢; is the
potential induced by the wall surface charge. R and T denote the gas constant and temperature.
Suitable boundary conditions for the potential ¢ are given by Dirichlet values at the electrodes
and no-flux condition at the channel walls.

Equation (2.12) has now to be added to the Navier-Stokes equations (2.8) to determine the
electrical force for the momentum equation

£, = —qVo.

Since the electric double layer is usually very small even compared to a microchannel width,
numerical computations have to be performed on very fine meshes to resolve the effects near the
channel walls resulting in very high or even prohibitive computational costs. The work of Barz et
al. [11] shows that the influence of the EDL can be captured by suitable slip boundary condition
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for the velocity-field within the bulk region vp, namely
Vouik = —CV¢,  Vpur -n=0

on the interface of bulk flow and EDL. The second condition is automatically fulfilled since a no-
flux condition for the potential ¢ is used, i.e. vy -1 = —CV¢p -n = —Cd,¢ = 0. In detail, the
outcome of the method of matched asymptotic expansions reveals the following set of equations

1
v —vAV+ (v-V)v+ =Vp =0,
p

V.ov—o. (2.13)

A¢:05

which has to be employed to simulate the flow and electric potential in the liquid bulk outside the
EDL. Comparing (2.13) to (2.8) we see that the electrical force f, vanishes which is due to the
electrical neutrality within the liquid bulk. The electrical double layer, in which an electroosmotic
flow is induced by the electrical field, is excluded of the numerical treatment — the influence on the
liquid bulk is captured by the boundary conditions.

Finally, we extend the system (2.13) by the transport of some species of concentration ¢ within
the fluid described by the convection-diffusion equation

0ic — DAc+ v -Ve=0. (2.14)

Assuming that there are no sources or sinks within the volume V', the rate of change for a scalar
quantity in an arbitrary volume is given by total flux into and out of V| i.e.

d

7= Oc+ V- (ev) = DAc.

Herein the right hand side DAc describes the diffusive flux and since we assume an incompressible
Newtonian fluid it holds V - (¢v) = v - Ve.

Remark 2.1.1

In the derived governing equations (2.13) the bulk flow field [v, p] is only coupled to the potential ¢
by boundary conditions on the interface to the electric double layer. The Laplace equation describing
the potential is fully decoupled from the bulk flow field. Hence, one might first solve for the potential
¢ and then solve the Navier-Stokes equations to get the flow field. In the same manner, we assume
that the convection-diffusion equation (2.14) is only coupled to the bulk velocity v and there is no
feedback to neither the flow field nor the potential (which holds only when liquids containing almost
no charges are mized). Therefore, also the convection-diffusion equation might be solved decoupled,
i.e. after the flow field v is computed.

2.1.4 Non-dimensionalisation and Initial-/Boundary-Conditions

We previously derived the governing equations for the experimental setting in Chapter 1, namely
the incompressible Navier-Stokes equations describing the flow field of a Newtonian fluid in combi-
nation with the potential equation to cover electroosmotic effects (2.13) and the convection-diffusion
equation to describe the concentration field of some species/dye (2.14). The variables within this
system are the physical quantities

e velocity v in 2,
S

e pressure p in Pa = n’igz,
2

e clectric potential ¢ in V' = 5 Zg )
kg

e concentration of the dye c in ~%.
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Again, we emphasise that these equations describe only the bulk flow whenever electroosmotic
effects are taken into account.

In order to compare fluid flow, one usually scales the equations by characteristic quantities to
eliminate the physical dimensions. Common behaviour of fluid flow can hence be characterised by
parameters like kinematic viscosity v, density p, characteristic velocity scale vy and characteristic
length scale dy. Furthermore, a convective time scale tg = dg/vg, pressure scale py = (vou)/do,
concentration scale ¢y and applied potential scale ¢y are defined, such that

X t’UO \% pdo ¢

C
X=X =0 v_Y p_PU 5_2 o_%
do do Ug pvo’ o Co

Substitution of these quantities in equations (2.13) and (2.14) results in

2
Z—OaTV - Vd?;OAV +2 bV vV + ””"VP —0,

0 0 o
— V =0,

dov

¥o
=ADP=0
d? ’

VoCo DCO VoCo

—8,50 d2 ——AC + d—OV vC =0.

Introducing the dimensionless Reynolds number

Re — pvodo _ vodo
U v

and Schmidt number y
Sc= D
we can therefore write for short
Re[Oyv + (v - V)V] — Av + Vp = 0,
V-v=0,
Ab=0, (215)

Oic — 1 Ac+v Ve =0,
e-

which is used for any further consideration?. The Reynolds number describes the relation between
inertia and viscous forces, while the Schmidt number describes the ratio of momentum diffusivity
(viscosity) and mass diffusivity. The derivation of governing equations now has to be completed
with additional boundary conditions on 02 and initial conditions at ¢ = 0 in order to describe the
physical problem entirely.

Initial Conditions

The velocity field vy at t = 0 obviously has to be solenoidal, i.e. V- vy = 0, and for simplicity one
often chooses vy = 0, assuming that there is no initial low. An initial condition for the pressure
p and the potential ¢ is not needed, whereas the concentration ¢ at ¢ = 0 needs to be chosen
with care. We assume that c(x,t) € [0,1] for all x € Q and ¢ > 0. As initial distribution of the
concentration field two major possibilities are given

1. ¢(x,0) = 0 in © — means that the starting/inflow phase has to be simulated in which only
one species concentration is initially present,

2. ¢(x,0) = co(x) € [0,1] in © — means that a given distribution is assumed and only the
development of concentration has to be simulated.

2For sake of simplicity we skipped the upper-case notation. The reader will obviously identify the dimensionless
system by appearance of Reynolds and/or Schmidt number.
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Boundary Conditions

Let the boundary 92 by subdivided into disjoint parts
e [';, describing the inflow part of the channel,
e [',,: describing the outflow part of the channel,

e Iy describing the rigid walls of the channel or (in case of additional electroosmotic flow) the
interface between bulk flow and electric double layer.

Obvious conditions can be posed for the concentration field ¢. On the inflow section I';,,, we assume
Dirichlet-values by a given function ¢;,, describing a separation in 1 and 0 to model the contact
area of two inflow-channels that are filled only by one of the concentrations (cf. Figure 1.1). For
Iout UTg a vanishing flux is used, i.e. d,¢c = 0.

The electric potential ¢ on I’y is also determined by a no flux condition 9,¢ = 0. On the
inflow and outflow parts of 0f2, prescribed inlet and outlet potentials ¢;, and ¢,,: are given which
are scaled by the applied potential difference ¢g between the reservoirs. Since only the potential
difference A¢ between I';, and I',,; is of interest, we assume for the sake of simplicity ¢;, = 0 and
d)out = Ad)

For the Navier-Stokes equations within the channel, the setting of boundary conditions is a
very sophisticated topic. While the condition at rigid walls is usually determined by a so-called
no-slip condition for viscous fluid

V|F0 =0,

the conditions set on inflow and outflow boundaries are manifold like:

e Dirichlet conditions for the velocity which are based on the observation of parabolic Poiseuille
flow profile (the Poiseuille flow is given by an analytical solution of the Navier-Stokes equa-
tions driven by a constant pressure gradient within cylindrical infinite long straight channels
[139]),

e so called do-nothing condition 9,v — pn = 0 which is naturally given in the framework of
weak formulation and is most often used to describe a free outflow boundary,

e given pressure difference, i.e. given mean pressure ﬁ f p ds = P; on each outlet .S;.

We depict these possibilities in detail when the weak formulation of the Navier-Stokes equations
is introduced and refer to [18, 67| for the first two approaches and to [84] for the third.

When a pure pressure-driven flow will be simulated/optimised, the no-slip condition on rigid
walls is used in combination with a given inflow velocity profile plus do-nothing condition for the
outflow — alternatively also the pressure difference formulation might be used. Alternatively, when
additional electroosmotic effects are taken into account, the computational domain is restricted
to the bulk fluid flow region only, i.e. the very thin electrical double layer near channel walls is
omitted. Hence, the no-slip condition for the velocity field cannot be used. Barz et al. [11] showed
that a separation of the bulk flow and the flow within the EDL need obviously to treat the electrical
force f = £, in (2.8) in different manner since a considerable charge density ¢ is only given within
the EDL. The asymptotic approximations and leading-order analysis carried out in [11] reveals a
solution of the velocity field within the EDL that directly depends on the gradient of the applied
potential ¢. Consistently the numerical bulk solution should match the EDL solution such that a
slip boundary condition for the bulk solution

V|F0 = 7H2v¢ = HQE

is given showing that any wall-tangential component of the applied electrical field drives the bulk
flow. Indeed, since for the potential ¢ a no-flux condition 9,,¢ = 0 is given at the virtual boundary
between bulk flow and EDL, the wall-normal components of the applied electrical field do not
influence the bulk flow. The dimensionless parameter (see the Appendix for used quantities)

/
I, — D¥Y0q¢
vodop
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was derived in [11] by non-dimensionalisation of the Navier-Stokes equations within the EDL and
can be interpreted as the ratio of electrical to viscous forces — it strongly depends on the electric
properties of the fluid and the channel walls.

2.2 Analytical Framework

Before considering optimisation problems for fluid flow, one obviously first has to answer the
question whether there is at all a solution to the underlying equations and whether this solution
is unique. For this, we want to point out the weak formulation of Navier-Stokes equations and for
complete electrokinetic problem, i.e. with additional potential and convection-diffusion equation.
Furthermore, some existence and uniqueness results for weak Navier-Stokes equations are cited
but are not presented in detail, since we only utilise the weak formulation of partial differential
equations to have a starting point for the finite element based discretisation in the next chapter.

Remark 2.2.1
In the following we will almost always restrict formulations to the Navier-Stokes equations, for
some reasons

e the governing equations (2.15) of the electroosmotic driven bulk flow field, i.e. the Navier-
Stokes equations, might be solved decoupled from the Laplace and convection-diffusion equa-
tion,

e we will also consider optimisation problems without any electrokinetic effects,

o the Navier-Stokes equations require a more sophisticated analysis than Laplace and convection-
diffusion equation.

For analysis of Laplace and convection diffusion equation we refer to e.g. [34, 68].

As we will show in the next section, the solvability of optimisation problems generally relies on
the possibility to define an operator, called control-state operator, that assigns a unique solution of
the partial differential equation to each control given. This means, e.g. for boundary control, that
we have to show whether there exists a unique solution of the Navier-Stokes equations to given
boundary data g on I'. C 992. We therefore consider in this section the dimensionless Navier-Stokes
equations with general Dirichlet boundary values

Re[Oyv + (v- V)V —Av+Vp=f in Q x (0,7)
V-v=0 in Q2 x (0, T
v in &> (0,7) (2.16)
v=g on 9Q x (0,T)
v =vp inQfort=0

and give an overview of the present existence and uniqueness results. An extension to different
boundary conditions will also be presented, as far as it is needed in the framework of considered
microflows.

2.2.1 Function Spaces and Notation

We introduce the following notation for a bounded, connected, open set Q C R?, d € N (usually
d = 2,3) with a Lipschitz-continuous boundary 9. These definitions are standard and for more
detailed accounts concerning these spaces we refer to [2, 62].

A real valued function f:Q — R is defined in the Lebesgue-space LP(2), 1 < p < oo if it is
Lebesgue-measurable und its norm

1/p
(flf(w)lp dx) , | <p<o
||f||LP(Q) = Q ) 2

esssup | f(z inf sup |f(z)], p=o0
€N w(N)=0 z€Q\N
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is finite. Let (X, || - ||) be a Banach space of functions on 2 and let a time-interval be given as
I = (a,b) C R. Any so-called abstract function f(t): (a,b) — X is defined in LP(a,b; X), 1 <
p < oo if f is Lebesgue-measurable and its norm

b 1/p
(fllf(t)lli dt) 1<p<oo

esssup || f(t)]| x ,p =00
a<t<b

”f”LP(a,b;X) =

is finite. The definition of abstract functions f € LP(a,b; X) also allows a more general definition
of an integral, namely the Bochner integral which reduces to the Lebesgue integral for X = R
(cf. [163]).

Next we recall the definition of Sobolev spaces H™(Q2) or more general W™P(Q). For a multi-
index o = (a1, ..., ) and |a| = a1 + ... + ag € Ny we have the partial derivative of f by

||
D f(x) = wla%gﬁi(x), X=[21,...,24] €Q
with of
D) = 2L ),

Let f € LP(Q), a a multiindex, then f(®) € LP(Q) is called the weak derivative of f (or derivative
in distributional sense) if for all p € C§°(Q) the following identity holds

[ 07 dx = (-0l [ 5 ax
Q Q
then we identify: D*f = f(®). The Sobolev space W"?(Q) is defined as
WmP(Q)={feLP(Q): Df € LP(Q), Va: |a| < m}.
W™P(Q) is a vectorspace and with the norm

1/p

I llwmay = | D IDFIIf0q)

lal<m

it is a Banach-space for all m € Ny. Furthermore, we define W;"*(Q) as the closure of C§°(Q) in
the W™ norm. For p = 2, W™2(Q) =: H™(Q) is a Hilbert-space with scalar-product

(f,9) am @) = Z (DYf,D%g)12() = Z /DafDag dx, f,ge H™(Q).

[a]<m la|<m g
Obviously, for the case m = 0 we have that H°(Q2) = L?(2) and we will denote the scalar-product

and norm by (-,-) resp. ||-||, i.e. we omit the index. Any further investigation on the weak form of
Navier-Stokes equations relies mainly on the space H!(Q) for the velocity field v in which it holds®

(fr9)1=(f,9)m () =/fg dX+/Vf-Vg dx,
Q Q

If Il = 1/l = (LF17 + IV F12)z.

30ne should keep in mind that all derivatives are given in the sense of distributions, i.e. Vf = [(%%, RN (%%]
. ) 3
with <3—fi7<ﬂ> =—Jo f5E dx, Ve € C5° ().
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The treatment of the pressure within (2.16) is usually handled by the space
3@ = (fe 2@ [ ix=0)
Q

since the formulation Vp allows to determine the pressure only up to an additive constant.
We close the definitions by introducing dual and trace spaces (cf. [144]). A functional F' defined
on H'(Q) is in the dual space H () if and only if

Il -1 = Sup [F(u)] < oo
u 1:1

Evaluation of a functional F € H~1(Q) at u € H(f) is often also denoted by the duality pairing
(F,u). Let the boundary of Q be a C?-boundary I' = 99, then a continuous linear operator
v : HY(Q) — L2(T) is given such that (u) is the restriction of u onto I for all u € H*(Q)NC?(Q).
H}(Q) is equal to the kernel of y and the image v(H*(£2)) is a dense subset of L?(T") which is denoted
by HY?(T).

It remains to define the notation for vector valued function spaces: we suppress the dimension
index and instead use a bold face notation, i.e.

H"(Q) = [H*(Q)]? = {v; € L*(Q) : D*v; € L*(Q), Va: |a| <k, i=1,...,d},
k k . _ k
H;(Q) = {ve H*(Q): v=gondQ} C H*(Q),
HY(Q) = [HTH Q) = {F: Hj(Q) — R: |[F|l-1 < ocoVveHi(Q)}
HY2(T) ={v: v;e HYXD), i=1,...,d}.
These spaces are equipped with the norms (denoted by || - ||) or semi-norm (denoted by |- |)
d k
IvIE =Dtz loillE = llodl® + > I1Dl?, v e HY(Q),
=1 la|=1
d d o
viE =3 (X 15 12), veH(9),
P j=1 7
(F,v) 1
|F|l-1 = sup FeHY(Q),
0#£vEHL(Q) v’
where in H{(Q) the seminorm | - |; is equivalent to | - ||1.

2.2.2 Weak Formulation

The Navier-Stokes equations were derived in Chapter 2.1 on the basis of physical laws and obser-
vations. So a solution should also be kind of physically reasonable — within the official problem
description of the Millennium Problem [49] this is

v, p€ C®(R? x [0,00)) and /|V(x,t)|2 dx <C forallt>0.

Rd

This formulation appears very restrictive in the setting of regularity properties for the solution
[v,p]. A less restrictive concept for determining solutions to the Navier-Stokes equations (that
is by the way also very useful for finite element based discretisation) is to weaken the spaces in
which a solution is searched for. To this, the formulation (2.16) is modified to an integral mean
representation, i.e. after multiplication with suitable test functions one integrates over the domain
Q. Furthermore, integration by parts based on Green’s formula is used to loosen the regularity
properties for solutions of the Navier-Stokes equations by reducing the order of differential opera-
tors. These steps achieve that an existence and uniqueness theory within more convenient spaces
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can be established which afterwards might be restored to the original problem. As long as the pair
[v,p] in its so-called weak formulation is sufficiently smooth to allow for the used integration by
parts, it is obviously also a strong solution of (2.16).

We state the fundamental theorem of partial integration in its general form using Sobolev spaces
of fractional order — for the case p = ¢ = 2 the trace space H'/2 was already defined, for other
cases refer to [144].

Theorem 2.2.1
Let Q CR?, d > 2, be a bounded Lipschitz-domain with boundary T'. Further let 1 < p < co and
1/p+1/q=1, then for all u € W*P(Q) and v € WH4(Q) holds the trace-condition

ulr € WITVPP(D), v.n|r € WITVeUD)

/uV-vdx:/uv-ndS—/Vuvdx
Q

Q r

and

with n being the outer normal on T'.

Based on Theorem 2.2.1 we define the bilinear forms used in the sequel for the weak formulation
of the Navier-Stokes equations.

a(u,v) /Vu Vv dx-/ Z gzl g;)z dx  Yu,veH(Q), (2.17)
i 0%;

which is continuous on H!(Q) x H!(Q), i.e. there exists a constant C' > 0 such that
la(u,v)| < Cllulliflv]y Vu,v e HY(Q)
and coercive (or elliptic) on H}(Q) x H}(€2), i.e. there exists a constant v > 0 such that
la(v,v)| > allv]} W e H'(Q).
Furthermore, we define the bilinear form
b(v,q) = —/qV -vdx Vv eHYQ)and g € L*(Q), (2.18)
Q

which is continuous on H'(Q) x L?(f2) and the trilinear form

d
c(w,u,v) = /(w Vu-vdx = Z/(W - Vui)v; dx Vu,v,w € H'(Q), (2.19)
Q

that is continuous on H(Q) x HY(Q2) x HY(2) for d < 4 and Q2 bounded with Lipschitz-boundary.
Proofs for continuity and coercivity are standard and can be found for example in [61].

Definition 2.2.1 (Weak solution of Navier-Stokes equations)
A pair [v,p] is called weak solution of (2.16), if v(-,0) = vy and for almost all t € (0,T) it holds:
V(- 1), p(-, 1)] € HL(Q) x L§(Q) is a solution of

Re[(0v, ) + c(v,v,0)] + a(v, ) + b(p,p) = (£, ¥) Vo € Hy(Q),

) (2.20)
b(v,§) =0 V¢ € Lg(€),

for given £ € H™1(Q) and vo € {ue H(Q) : b(u,q) =0, Vg € L*(Q)}.
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For the weak formulation (2.20) the prescribed Dirichlet boundary condition v =g on I'x (0,T)
is an essential one and has to be fulfilled by the chosen function space H}(£2), i.e. we seek a function
v € v, +H{ () where the trace of v, yields the boundary condition g = y(v,). We will also show
some natural boundary conditions that appear within the weak formulation in the next section. For
any details on existence and uniqueness of solutions to the weak form of Navier-Stokes equations,
we refer to the literature like [62, 101, 144, 153]. However, we present some main results for the
case of stationary and instationary Navier-Stokes equations and also for the convection-diffusion
equation. The Laplace equation describing the potential field is the standard elliptic problem in
partial differential equation — a quite complete introduction can be found in [34].

Solution of the Navier-Stokes Equations Within Solenoidal Spaces

The dimensionless stationary Navier-Stokes equations with homogeneous Dirichlet boundary con-
ditions

Re(v-V)v—Av+Vp=f in Q
V-v=0 in Q
v=20 on 0f}

can (alternatively to (2.20)) be written in the weak formulation: for given f € V* seek v € V such
that

1
Ea(v, @) te(v,v,p) =(f,p) VopeV. (2.21)

This notation uses the function space
V={veH(®Q): bv,q) =0, Yg € Lj(Q)}

of solenoidal vector fields and its dual space V* with the duality pairing (f, u) = fﬂ f-u dx. Thus,
neither the pressure p appears in the formulation nor the continuity equation — both are expressed
by the choice of function space V. The used formulation (2.21) in the solenoidal space V' can
directly be deduced from the above definition, i.e. if [v,p] € H}(Q) x LZ(Q) fulfils (2.20) then v
also solves (2.21). By this reformulation elegant statements on existence and uniqueness can be
made (see [35] or [126] for proof), but it remains to answer the question whether also the opposite
direction holds true.

Theorem 2.2.2

For every f € V* and d < 3 there exists a solution v € V' of the stationary Navier-Stokes problem
(2.21). If Re*B||f||v+~ < 1 this solution v € V is unique — here 3 > 0 is given by the continuity of
the trilinear form (2.19), i.e. it is the smallest constant in

c(w,u,v) < lwlifluflilvls,  Yw,uveV.

For the instationary problem one usually defines the additional function space
H={vel?*Q): V-v=0, v-n|pqg = 0}

which together with the solenoidal space V' forms the Gelfand triple with compact embeddings
(see [152] for details)
Vs HXH V"

The time-derivative has to be interpreted in a weak sense 9;v(t) € V* such that the problem reads:
for given vo € H and f € L?(0,T;V*) seek v € L?(0,T;V) such that a.e. in (0,7)

(Orv (), ) + éa(V(t)v p) +e(v(t),v(t),p) = (f,0)  VpeV (2.22)

and v(0) = vo. Existence for the instationary equations can be shown for v € L%(0,7;V) N
L°°(0,T; H) but uniqueness is only given for d = 2 (see [61] or [153] for proof).
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General Weak Solution of the Navier-Stokes Equations

By restating the entire saddle point structure of (2.20) as a single equation (2.21) or (2.22), we
found existence and uniqueness results for the velocity field v in solenoidal spaces. The way back
should then ideally yield a solution to the weak formulation (2.20) that contains also the pressure
p. To answer the question whether there exists a unique p € L3(f) satisfying in the stationary
case

(pa V- (P) = <fa (P> - G(V, 90) — Re - C(V’Va (P) V(P € Hil)(Q)

we introduce a general framework for abstract variational problems (taken from [62]), that will also
be used later on for the finite element discretisation. Let X, M be Hilbert spaces and X*, M*
their dual spaces. With the continuous bilinear forms

a(,): XxX R, b(): XxM = R
we define the abstract saddle point problem: for given [ € X* seek [u, \] € X x M such that

a(u,v) +b(v,\) = (I,v) Yo e X,

2.23
blu,pu) =0 Yu e M. (223)

Furthermore, let V= {v € X : b(v,u) =0, Yu € M} so that the above problem can also be stated
as: seek u € V such that
a(u,v) = (I,v) YveV.

Theorem 2.2.3
Assume that the bilinear form a(-,-) is V-elliptic, i.e. there exists a constant o > 0 such that

a(v,v) > al|v||% YveV.

Then the abstract problem (2.23) possess a unique solution if and only if the bilinear form b(-,-)
satisfies the inf-sup condition

b
inf sup 2B S 5o (2.24)
neM pex [lvllx[lpllar

In the framework of weak Navier-Stokes equations the spaces X = H{(Q), M = L%(Q) fit
into this abstract setting. The ellipticity or more general the solvability of v € V is given by the
results above, so that it remains to prove the existence of pressure p and the inf-sup condition to
ensure that a solution to (2.21) resp. (2.22) also induces a solution to (2.20). Both are given by
the following lemma taken from [50] and we can conclude that the formulations within solenoidal
spaces and originally chosen Sobolev spaces are equivalent.

Lemma 2.2.1
Let 1 € H1(Q) such that (I,v) =0 Vv € {uc CP(Q): V-u=0}. Then there exists a function
p € L?(Q) such that

(I,v) = (p,V-v), Vv € Hy(Q).

For each p € L%(Q) there exists a unique function v € {u € H}(Q) : a(u,v) =0 Vv € V} such
that
Vv =p, [vli <¢|pl

with a constant ¢ > 0 independent of p. Therefore

. 1
inf sup M = inf sup M >->0.

PELF(Q) veHL(Q) Vi1 llpll 7P€L3(Q)VEH},(Q) Ivli ~ ¢
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Convection-Diffusion Equation

The convection-diffusion equation describing the transport of concentration within the microchan-
nel was given by
0ic — DAc+ v -Ve=0.

We can express this equation in weak form as: for given cg € H*() seek ¢ € ¢;, + H(2) such
that a.e. in (0,7)

(Oe(t), ) + D ale, ) + (v - Ve,p) =0 v e {ue HY(Q) :u

Tin — 0}

and ¢(0) = ¢o. Existence and uniqueness results are assured by Lax-Milgram lemma using the
continuity and coercivity of the bilinear form associated with the spatial operator (see chapter 12
in [126]). The crucial point within this equation is hence not the solution itself but the numerical
behaviour. It is a well-known fact that solutions on coarse meshes tend to oscillatory behaviour.
This property is usually described by the (mesh) Peclet number

’Uoh

Pe=—

D
which indicates convection dominated flows whenever Pe > 1. To suppress numerical oscillations
one might certainly use fine meshes (adjust mesh size h) or use stabilisation methods (cf. [126, 131])
like upwind methods or Streamline-Upwind Petrov-Galerkin finite element method (SUPG).

2.2.3 Boundary Conditions

The common analysis of Navier-Stokes equations is given only for homogeneous Dirichlet boundary
conditions as shown before. An extension to nonhomogeneous boundary conditions can be found
for example in [50] or [62], showing that for some compatability conditions on the boundary data
g a solution [v,p| exists.

For our purpose it will be of major importance to have additional boundary conditions that
are kind of physically motivated. Recall that we subdivided the boundary of the fluid domain 2
into disjoint parts 92 = I'g U 'y, U Tpye. First we present the used boundary conditions for pure
pressure-driven flow, i.e. without external applied potential field. Afterwards, we will take the
additional boundary condition v|r, = —II2V¢ into account to check whether this condition, that
arises from the physical model, fits into the weak formulation of Navier-Stokes equations.

Suppose we first have only a no-slip boundary condition to model the solid walls of a channel,
furthermore we might prescribe an inflow velocity profile. These Dirichlet boundary conditions
fit into the framework of variational formulation with test functions ¢ € H}(€2) and the solution
v E H;(Q) To impose a boundary condition on the outflow region 'y, we choose

p €Hp, r, (@) ={uecH'(Q): ulr,,ur, =0}

so that the weak formulation of stationary Navier-Stokes equations is: seek v € vy + Hf. | (€),
p € L?(Q) such that

a(v,@) + Re - c(v,v,¢) + b(p,p) — / (Onv —pn)p ds =0 Vo € Hy, . (9),
Tout
b(v,€) =0 VE € L(Q).

Since the test functions ¢ do not vanish on I',,; we get the additional term

/ (@uv —pn)pds =0 Ve H: 1 (Q)
Tout

which relates the pressure to the velocity field. For channels with unknown outflow condition one
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often uses the additional boundary conditions (do-nothing condition)
Opv = pn on Tpyt. (2.25)

This Neumann type boundary condition is an unavoidable consequence of the fact that we work
with weak formulation of the Navier-Stokes equations and also determines the pressure within the
Navier-Stokes equations (initially the pressure only appears as gradient and is therefore only given
up to a constant). The physical meaning of this boundary condition is yet not clear (see [18] and
[67]) and gives correct numerical results only for simple Poiseuille flows in straight channels. In
the following we will refer to the combination of prescribed Dirichlet values on I';;,, in combination
with do-nothing condition in I',,: as the do-nothing formulation.

A more physical approach to boundary conditions is given in [84] where a prescribed pressure
difference between inflow and outflow boundary is required, i.e.

Re(v-V)v—Av+Vp=f in
V.-v=0 in Q
v=_0 on I'y
p = Pi(t) on I';,
P = Pout(t) on I'gyy

The experimental setup as presented in Chapter 1 also claims the pressure-driven flow within the
microchannel by a height difference between inflow and outflow region. We therefore conclude the
weak formulation: seek v € Hy, (©2), p € L*(Q) such that (i = in, out)

a(v,p) + Re - c(v,v,p) +b(p,p) — Z /((’)nv —Pn)pds=0 Ve eHf (Q),
i f

b(v,§) =0 V&€ L*(Q).

If additionally the inflow and outflow regions are perpendicular to the channel, it can be shown
[84] that the normal derivative of v vanishes. This means that the remaining term

Z/Pimp ds
i p

can be interpreted as an external force within the momentum equation driving the channel flow.
In the following we will refer to this second setting of boundary conditions as the pressure-drop
formulation. For simplicity we use P,,+(t) = 0 and force the fluid flow by setting P, (t) = Ap.

Even if specification of pressure difference Ap seems more physical, the problem of determining
the correct value remains. To ensure the correct Reynolds number, we proceed as follows: since

the mean inflow velocity
o/
Vo = v ds
|Fin|
Tin

was used for non-dimensionalisation of the Navier-Stokes equations, we compute this value numer-
ically and fit the pressure-drop boundary such that the mean inflow velocity within the numerical
simulation equals one. A rough estimation of this value might be given by fundamental laws of
laminar flows within cylindrical pipes [55] of length L

where the parameter \;,,, depends on the Reynolds number and is given by experiments in form
of so called Nikuradse graph (cf. [141]). For laminar flows one uses ;g = 64/ Re.

We end the section on weak formulation with some remarks on the treatment of boundary
conditions for the bulk velocity within electrokinetic fluid flow setting. The physical model requires
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a slip condition on the interface between bulk flow and flow in the electric double layer, i.e.
V|p0 = 7H2V¢.

First, we mentioned that this condition naturally implies the usage of pressure drop formulation
for I';;, and I'yy¢, since a prescribed velocity profile v, would also depend on V¢ and hence cannot
be stated by arguments of Poiseuille like flows. Second we have to find an interpretation of this slip
boundary condition in the framework of weak formulation. For a general treatment the constant
—T15 is of minor importance so that we only consider the condition v|r, = V¢. A weak formulation
for the potential field ¢ according to the previous definitions is: seek ¢ € ¢our + HE () such
that
(Vo,Vx) =0 vx € HE, p,.,(Q).

Therefore V¢ is only defined in the sense of distributions, whereas in the physical model we would
have to require that ¢ € C1(2). So the boundary condition for bulk velocity v|r, = V¢ has to be
redefined for the weak formulation. Since V¢ is a distribution, we propose to define the boundary
condition as the limit of a convolution (Faltung) with a Dirac-sequence 7.

Vo) = lim(n. + Vo)) = lim [ 0.0x - y)Vo(y) d
Q

The functions 7. € L},.(2) have to fulfil
i/ 9. >0, Ve >0,

11/f77€ )dy =1, Ve >0,

iii/ Vr>0: [ n(y)dy —0fore—0.
R4\ B,(0)

For functional analytical aspects we refer to [163] and only want to present a way to construct the
functions 7. that takes the finite element based discretisation into account. In so doing we have to
forestall some notations of finite element discretisation that will be introduced in the next chapter.

To evaluate the Dirichlet boundary value v(x) = Vé(x), x € T'g, define the Dirac-sequence 7.
as the Lagrangian basis function at x on the actual mesh, i.e. 7, € C5°(2). Identifying e with
the mesh size h we have to show for 7, ; the three conditions above. Obviously, 7, », > 0 and since
the support of 1, 5 is only given by neighbouring cells of x, conditions i/ and iii/ are fulfilled. It
remains to scale 7, ; by a factor ¢ such that

/ Nz n(y) dy = 1.
supp(Nae,n)
Let K; denote the cells such that supp(n.) = |J K;. Then we can determine the factor

-1 -1

S [ eaty) dy - (= / nen(F () det(DF) de| = | SIEH [ nen(F
ik, i %

where we used the transformation F; : K — K; from reference cell to cell K; and det(DF;) = | K|
(cf. [34, 120]).

We conclude that evaluation of Dirichlet boundary value Vé(x) on actual mesh with mesh size
h is given by

ZlKl/nzh (6)) de Z/nzh )Voly
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Finally, the integrals over Kj, K will be evaluated numerically by virtue of the finite element
approximation ¢;. For the special quadrature rule taking only the 2¢ vertices of cells K;, K as
quadrature-points, we have 7, vanishing at all vertices except x, so that

[ eatnioty) dy = 5 Vol 0.
K;
K| 1
/Ux,h(Fi(f)) d§ ~ % =5
i

All in all we get the approximation of V¢ (x) to be

S 1K Vonl i, ()

showing that for ¢;, € C*(Q) we have V(x) = Vay, (x) and for ¢, € C°(Q) that the local gradients
have to be weighted by size of the cells.

2.3 Optimisation of Fluid Flow

The field of optimisation or optimal control of fluid flow problems (or more general of systems
governed by partial differential equations) is recently a very active one. Contributions to the field
of optimisation and optimal control of Navier-Stokes equations are manifold, whereas most consider
the two dimensional case, see e.g. [85, 100, 145]. A fairly complete overview and introduction is
given in the book of Gunzburger [73]. We will take a look on different approaches to optimise a
system governed by partial differential equation, give a brief summary on theory of existence and
uniqueness of solutions to the optimisation problem and in the end formulate the entire optimisation
problems and approaches used within this thesis.

2.3.1 Optimisation with Partial Differential Equations

One of the earliest references for the analytical framework of optimal control problems for partial
differential equations is the work of Lions [105]. Some general conditions for optimal solutions can
also be derived from programming principles in Banach spaces which were under investigation in
[111, 156] and references therein.

Our intention is now to introduce the reader to a general setting of optimisation with partial
differential equation and to elaborate the concrete approach in the next subsection. A starting
point is to identify the common ingredients of such optimisation problems, namely

e an objective that has to be optimised — this is almost always formulated as a cost functional,
e one or more control or design parameter that can be modified to achieve an optimisation,
e constraints which have to be fulfilled within the optimisation problem.
Let us denote the set of partial differential equations that have to be fulfilled by
Aly,u) =0 in Q (2.26)

where we assume the state variable y € Y and the control variable v € U within suitable Banach
spaces Y and U. For optimal control problems, the operator A(y,u) is typically given by

A(y,u) = Ay, u) + C(u)

with a (nonlinear) operator A and a control operator C. Furthermore, the partial differential
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equation might be instationary, i.e.

oy + A(y,u) =0 in Q@ x (0,7),

W)= o (227)

Hence, we already have defined the control parameter and some constraints in form of the un-
derlying partial differential equation which limits the admissible state space Y. Additional side
constraints might be given for the control variable u exclusively, like bounds

lullo < &

In the following let us assume that the admissible spaces for state and control variables are given
by Y4 resp. Uyq. What remains is to define an objective or cost functional J(y,u). Usually such
a functional can be split into parts involving only the state and only the control variables

J(y,u) = Ji(y) + Ja(u).

For instationary problems a temporal averaging is common, i.e. if state and control are time
dependent

J(yu) = / Ii(y) dt + J5(y(T)) + / Jo(u) dt.
0 0

All in all the entire optimisation problem reads:

min J(y,u) such that equation (2.26) (resp. (2.27)) is fulfilled. (2.28)

(y,u)€YaaxXUqq

A crucial point within the solution process is the definition of so-called control-to-state mapping.

Definition 2.3.1

Consider the system of partial differential equations (2.26) resp. (2.27). The mapping u — y where
y € Yaq is a solution of (2.26) resp. (2.27) with the control parameter u € U,q, is denoted by S,
i.e.y=.8u).

Any further statements on existence and uniqueness of a solution to the optimisation problem
will strongly depend on this mapping S — we refer e.g. to [105, 59, 157] for a more detailed analysis.
For sake of simplicity we assume that this mapping is well-posed, although this is not a trivial task
for all problems stated before (if at all possible).

Definition 2.3.2
A control @ € Uyq is called optimal control and § = S(4) € Yaq is called corresponding optimal
state if

J(g,u) < J(y,u) Vu € Ugg and y = S(u) €Y.

The existence result for the general optimisation problem in Banach spaces can be found in [88]
— here we only cite the principal assumptions on which the proof bases. Let J : Y x U — R and
A:Y xU — Z be continuous, Y, U and Z Banach spaces where Y and U are reflexive. Then
problem (2.28) has an optimal solution % with optimal state 7 under the assumptions:

e U,q is convex, bounded and closed,

e Y,  is convex, closed and (2.28) has a feasible point, i.e.

{(y,u) € Yaq X Ugq : equation (2.26) (resp. (2.27)) is fulfilled} # 0,

e the control-to-state operator S : U,q — Y is continuous and bounded,

e (y,u) €Y xU — A(y,u) € Z is continuous under weak convergence,
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e J is weakly lower semicontinuous.

For our purpose, we recall the main setting of optimisation problems under instationary partial
differential equations, that is based on [115]. To this we use the weak formulation of Navier-Stokes
equations or more general instationary problems, i.e. for given control v € U seek y € Y such that
for almost all ¢ € (0,T") it holds

Oy, 0)v=y + (A(y,u), p)y-y =0  VpeVY

and y(-,0) = yo. The operator A:Y xU — Z =YY" is in general defined for suitable Hilbert
spaces Y for the state and U for the control. For the special case of Navier-Stokes equations
this operator is given by the spatial differential operators defining the linear forms (2.17), (2.18)
and (2.19). Moreover, let H be a Hilbert space which builds together with Y a Gelfand triple
Y — H= H*— Y*. A typical choice for these spaces is as before

Y ={ve HY(Q): v|r, =0} and H = L*(Q)

where I'p denotes the part of the boundary of Q with prescribed Dirichlet boundary conditions.
For a time interval (0,7") we introduce the Hilbert space W (0,T) defined as

W(0,T)={v: ve L*0,T;Y) and dyv € L*(0,T;Y™*)}.
Furthermore, we use the inner product of L?(0,T; H) given by

T

(w,0) = (u, 0) 2 (07201) = / (ult), v(t))n dt.

0

such that the weak formulation of state equation can be expressed as: for given control u € L2(0,T;U)
seek y € W(0,T) such that

T
@)+ [(AGOO) pl)y-y di =0 Vo€ W(O,T) (2.29)
0

and y(0) = yo. By these definition the setting of weak instationary Navier-Stokes equation fits
into the general optimisation problem above, i.e. y € W(0,t), u € L?(0,T;U). The concrete
formulation of cost functional will be introduced later.

Coming back to the general setting, we assume that via the control-to-state operator S : U — Y
we have a unique solution y to each control u, so that we can define the reduced cost functional
j:U — R by j(u) = J(S(u),u). Hence, problem (2.28) can be stated as an unconstrained (at
least, only constrained by u € Ugyq) optimisation problem

in j(u). 2.30

Juin j(u) (2.30)

Let Uyg C U be non-empty and convex, J:Y xU — R and A:Y xU — Z be continu-

ously differentiable. If additionally for all v € U,4 the state equation possesses a unique solution

y=S(u) €Y and %(S(u), u) has a bounded inverse, then @ being a solution of reduced optimi-
sation problem (2.30) satisfies the first order necessary optimality condition (see [88])

=
Du
For the special case U = L?(Q) or U = L*(T), T C 99, and Upg = {u € U : a < u < b},

i.e. so-called box constraints, we can identify the gradient Vj(u) = %(u) by means of the Riesz

representation. Then one gets the well-known equivalent representations of (2.31)

(a),u — ’UJ>U*7U >0 Vu € Uygq. (2.31)

i/ @€ Ugg, (Vj(a),u—1a)y >0, Yu € Ugq,
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=0 ifa(x) <a(x) < b(x),
i/ @€ Ugg, Vi(u)(x)< >0 if a(x) (x) < b(x),
<0 if a(x) < a(x) = b(x),

]

|
]

iii/ for any e >0: @ = Py, ,(a —eVj(a)) with Py,,(u) = min(max(a,u), b).

A further simplification can be derived whenever the bounds equal a = b = oo such that Uy,q = U
and the first order optimality condition is hence given by

Vi(u) =0, Vu e U.

In order to solve the optimisation problem (2.30) we thus need a representation to evaluate at least
the first derivative %. We will present (following [88]) two approaches that are used in the sequel,
namely the adjoint-based and sensitivity-based approach. The second derivative of j(u) might also
be used for higher order methods (see [28] or [86]), but we will not concern this point and use only
Quasi-Newton methods like LBFGS method — a detailed overview on used optimisation algorithms
is given in chapter 5.1. For the case of J being convex on U, the first order necessary condition
(2.31) is also sufficient for global optimality.

The Adjoint Approach

We state the abstract optimisation problem (2.28) for the stationary case as*:

min J(y,u) such that A(y,u) =0 in Q.
(y,u)€YadXUqa (y ) (y )

Agsume that the cost functional J : Y x U — R and the state equation operator A : Y xU — Z
are continuously differentiable. Let

L(yau’z) = J(yau)+ <Z,A(y,u)>z*,z (2'32)

define the Lagrangian functional L : Y x U x Z* — R involving a Lagrange multiplier z € Z*.
Then one gets the optimality system by the stationary points of L which are candidates for optimal
solutions (for proof see e.g. [73, 157]).

Theorem 2.3.1
Assume that for given control u € Uyq the state y € Yyq satisfies the state equation

oL
o, W 2)e = (0 Alyu))ze 2 =0 VpeZ (2.33)

and that the adjoint state z € Z* satisfies the adjoint equation

oL oJ 0A
-~ - (= . - v 7 = Y 2.34
oy (y,u, z)p <8y (y,u), o)v=y + (2, oy (y,u)p)z+z =0 Vo € (2.34)

then the expression for the first derivative of (2.30) holds (gradient equation or optimality condi-
tion):

Dj oL

), o —wye v = (5= (youn2), 0 — woe v

Du Ou 2.35
a7 94 (2.35)

= <%(yau)) o —wu- v+ (z, %(yau)@ —u)z+z =0 Vo € Uaa-

{

Since j(u) = L(S(u),u, z) for arbitrary z € Z*, a more convenient way to express the gradient

4for sake of simplicity we restrict ourselves to stationary problems and ask the reader to transfer all statements
to the instationary case whenever needed
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representation can be given by direct differentiation

Dj oL DS oL

<m(“)a5U>U*,U = (a—y(S(U),u,Z), m(U)M)Y*,Y + <%(S(u)auaz)a6U>U*,U-

Choosing z = z(u) such that the adjoint equation (2.34)

0J 0A 0J 0A *
<a_y(ya u)a @)Y*,Y + <Z, a_y(ya 'U/)SD>Z*,Z = <a_y(ya u)a (P>Y*,Y + < |:a_y(ya U):| Z, (10>Y*,Y = 0? VSD ey
is fulfilled (where [-]" denotes the adjoint operator), we get

Dj oL
(B (W), ) v = (S, u,2(w), Su)p-u Vou € U

Thus, by virtue of (2.35)

%(u) 25(5( )u,z(u)):%(S(u),u)-i- {%(S(u),u)} 2(u). (2:36)

The Sensitivity Approach

Instead of using the adjoint approach to describe the gradient of reduced cost functional j(u) one
might also use the chain rule to get the sensitivity

Dj oJ DS oJ
d=—(S —(uw)d+ —(S d.
g 8y( (), w) 35 (w)d + == (S (u), u)
The partial derivatives gJ , g] are usually not that hard to derive analytically, whereas the sensi-

tivity /directional derivative 22 (u)d is. An easy (but costly) approach would be a finite difference

quotient
DS S(u) — S(u)
u u—1u
Alternatively we can also differentiate the state equation A(S(u),u) = 0 in direction d to get the
sensitivity equation

0A DS 0A

a_y(S(u)v w) g (W= —5-(5(w), u)d (2.37)

such that the directional derivative g—i (u)d requires the solution of system (2.37) for each direction.

Adjoint Approach vs. Sensitivity Approach

Beside the two approaches (adjoint and sensitivity), which both aim at computation of derivative
operator %(u), one might also solve the optimality system consisting of the coupled equations
(2.33), (2.34) and (2.35) at once. This so called one-shot approach is usually not feasible due to the
close coupling of equations and (after discretisation) due to the resulting huge nonlinear systems.
Furthermore, for instationary problems the adjoint equation is stated backward-in-time leading to
additional complications when standard timestepping discretisation will be used. So we restrict to

the two presented approaches.
For the adjoint approach computation of %(u) is given in three steps

1. solve state equation® to get state y = S(u):

<A(yau)a 90>Y*,Y =0, V(p cyY

Swe used Z = Y* and assumed that the operator A defines a symmetric linear form



32 SIMULATION AND OPTIMISATION OF FLUID FLOW

2. solve adjoint equation to get adjoint state z(u):

([%(S(u),u)] Z(“)a‘P)Y*,Y = _<g_j(s(u)au)a@>Y*7Y’ Vpey

*

3. determine g—i(u) = 2L(S(u),u) + [Z2(S(u),u)] " z(u)

to get the whole derivative g—i(u) independently of the dimension of U. On the other side the
sensitivity approach only yields directional derivatives g—i (u)d in direction d such that for B being

a basis of U we need to compute %(u)b, b € B. Each computation requires the steps

1. solve state equation to get state y = S(u): A(y,u) =0

2. solve sensitivity equation to get sensitivity y, = g—i(u)b:
0A 0A

3. determine %(u)b = g—;(S(u),u)yb + %(S(u), u)b.

This summary shows that at a first glance one should obviously use the adjoint approach to get
the gradient of the reduced cost functional. Independently of the number of design parameters
there is always only one (linear) adjoint system to be solved to get the gradient of the reduced
cost functional, whereas the number of (linear) sensitivity systems grow linearly with the number
of design parameter. But there are still some drawbacks: while the sensitivities can simply be
determined by solving the linearised state equation (a step that is common within each nonlinear
partial differential equation solver), the adjoint equations have to be derived analytically first.
Moreover, for instationary problems the adjoint equation needs to be solved backward in time,
whereas the sensitivities can be computed within each timestep of the state equation solver. A
last remark on the sensitivity approach might be given by the physics of the system. In many
applications the possible control u within control space U,q can be expressed in the form

K
u(z,t) = Z o fi(,t)
k=1

with K being a small number. Thus the variation of control is per se limited so that sensitivity

g—i(u)ak might directly be computed. In the end if the number of parameters «y grows or if
the control is even given as an infinite dimensional function, e.g. u € L2?(9Q), the adjoint based

approach seems to be favourable.

2.3.2 Flow Control and Optimisation

The field of optimal control in fluid mechanics within computational science has become a large-
scale research discipline starting in the 1990s with pioneering works like [1]. For an overview on
functional analytic background on optimal control of the instationary Navier-Stokes equations by
distributed control, we refer to [159] and references therein. A review and plenty references of the
adjoint equation-based approach for flow control can be found in [71]. The use of second order
methods and instantaneous control is shown in [87]. Both works give a complete background from
the analytical point of view but the solved problems are related to two dimensions and no particular
interest was put on the numerical requirements. The special case of Dirichlet boundary control for
optimisation problems based on (stationary) Navier-Stokes equations can be found in [75].

As we presented previously we aim at using the adjoint approach as well as the sensitivity
approach for optimisation. A comparison of the capabilities of both approaches will only be done by
means of an academical example using the instationary Navier-Stokes equations — this should then
also give hints how to tackle the considered optimisation problem of the electroosmotic micromixer.
To this end let us fix the considered problem of optimising the fluid flow of backward facing step
geometry first.



2.3 Flow Control and Optimisation 33

Pressure Driven Flow

We seek an optimal control to the instationary Navier-Stokes equations which minimises a cost
functional of tracking type. For a prescribed solution v4 € H!(Q), which might be given on the
whole domain Q or on parts of it, we want to minimise the distance between the solution v of
Navier-Stokes equations and v, — for instationary problems in the mean over time interval (0, 7).
The observation volume 2, C Q might be restricted to the area of recirculation behind the step,

Ba

v,c

T T
el A
man V C ? VdH%Z(Qs) dt + — ||V( VdH%Z(Qs) + § ||C||%2(FC) dt (238)
0 0

Instead of explicit box constraints for admissible control ¢, we penalise the cost functional by an
additional term involving the control c¢. Such an enhancement of stability of the optimisation
problem by augmenting through regularisation term is commonly used within the literature. The
velocity field vy is given by the stationary solution of Stokes equations leaving all other data
(Reynolds number and boundary values) within the state equation untouched. For other types of
cost functionals in the framework of flow control we refer to [85, 100] and for results on existence
of solutions see [75, 79, 77, 58].
For convenience of the reader we resume the setting of the problem:

e state equations are given with do-nothing boundary formulation as introduced before

Re[Owv+ (v-V)V]—Av+Vp=0 in Q x (0,7),
V-v=0 in Q@ x (0,7,
v=0 onI'g x (0,7),
v=c on T, x (0,7), (2.39)
V=V, on I';, x (0,7T),
Opv—pn =0 on Ly x (0,T),
v(-,0) = vo in

e initial condition vy is a given function in H'(Q) that matches the boundary conditions,
e desired state v4 is in H'(Q),

e the regularisation parameter X\ is a positive constant and the coefficients 51, (B2 are non-
negative constants of which at least one is positive.

The Dirichlet boundary conditions for v are extended by a boundary I'. on which the control ¢
acts — a concrete definition of the space used for ¢ will be given later. Up to now we only think of
the control as an additional inflow /outflow where suction or injection of fluid through orifices can
be applied.

To solve the optimisation problem (2.38) under constrains (2.39) by means of adjoint approach,
we need to derive the adjoint equation and the gradient equation (first order optimality condition)
to form the optimality system. First order necessary optimality conditions can be found in many
references — the first proof of necessary conditions for the distributed optimal control problem
related to the Navier-Stokes equations was given in the early work [1]. Other proofs can be found
in [76, 77], [87] (where also some regularity problems are addressed) and [100]. Necessary optimality
conditions for three-dimensional flow are established in [27]. A rigorous framework for boundary
control of the Navier-Stokes equations can be found in [60, 86]. Thus, we skip the derivation and
just present the optimality system in weak form. Define the space (with arbitrary I' C 99)

HL(Q) ={ucH(Q): u=00nT}

and let 'y = T'o UT;, UT'.. To obtain a solution of the optimal control problem, we have to solve
(using (2.17), (2.18), (2.19)):
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o for v € vi, + L?(0, T H (), p € L*(0,T; L*(Q)) the Navier-Stokes equations with initial
condition v(-,0) = vq:

Re[(0rv, @) + c(v,v,9)] + a(v,9) + b(e,p) =0 Ve € H p, (Q)
b(v,&) =0 Ve L*(Q) (2.40)

vlp, =c¢

e for z € L*(0,T;Ht (), ¢ € L*(0,T; L*(Q)) the adjoint equations with initial condition
z(-,T) = Ba(va — v(-,T)):

Re[—(iz, 0) + c(@,v,2) + c(v,0,2)] + a(z,0) + b(p,q) = (b1(va —Vv),0)0 Ve € Hp (Q)

b(2,£) =0 Ve € L*(9Q)
(2.41)
e for c € L?(0,T;L?(T'.)) the gradient equation:
T
//()\c + Oz —qn)y ds dt =0 Vy € L*(T,). (2.42)

0 T.

Just for completeness we denote the strong formulation of the adjoint equations (see [87] for a
detailed derivation):

Re [0z — (v-V)z+ (VVv)" - 2] — Az + Vg = Bi(vqg — V) in Q x (0,7,
V-z=0 in Q x (0,7,
z=20 on 'y x (0,7, (2.43)
Opz—qn+ (v-n)z=0 on I'pyr x (0,7,

z('vT) = ﬂ?(vd - V(vT)) in €.
The optimality condition can thus be stated as
Ac—gn+0,z=0 onT. x (0,T). (2.44)

We see the strongly coupled variables {v,p,z,q,c} within the system (2.40), (2.41) and (2.42)
which is due to the nonlinear character of the Navier-Stokes equations and of the cost functional.
Having the problem stated, we should state some remarks on the type of control. The Dirichlet
boundary control ¢ is formally defined as the trace of a function in H'(2) and thus ¢ € H'/2(T",.).
Definition of the cost functional (2.38) should therefore incorporate this fact and use the H'/2-
norm instead of L2-norm on I'. which means that additional space derivatives of ¢ must be used.
A more generic approach instead would be given by the cost functional

T
~ A
min J(v,c) = J(v) + B //(|c|2 + M]0zc|® + Xa|Orc|?) ds dt
0T,

leading to an optimality condition that is a boundary value problem in space-time for a partial dif-
ferential equation along the control boundary I';. (cf. [58]). Nevertheless, also the weaker approach
using the L?(T'.)-norm leads at least numerically to reasonable results, if possibly the regularisa-
tion parameter A is chosen large enough — see [87, 100]. In addition we remark that the optimality
condition (2.42) and therefore the reduced gradient Vj(c) = Ac — gn+ 9,z can only be interpreted
in the sense of distributions. The optimisation algorithm will obviously be based on evaluation
of Vj(c) to get new boundary control cpew, so that we have to evaluate Vj(c) to be able to set
Dirichlet values — a task that was already under consideration in the last section where we showed
a way to interpret the boundary condition v|r, = V.

Alternatively the problem of using the correct norm for control within the cost functional can
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be avoided, when we use the sensitivity approach. Since we will compare the two optimisation
approaches later in the numerical results, we only briefly define the backflow optimisation problem
also in terms of sensitivities. Let the setting be given as before except the control ¢ on I'. which
is now defined as

K
v=c= Zakfk(x, t) on T, x (0,7) (2.45)
k=1

with constant functions fj : e x (0,7) — R® modelling the inflow on control boundary T..
This simplification using a linear combination of ansatz functions is very handy for notations,
nevertheless the control ¢ might also be given as a nonlinear function. Only the appearance of
(design-)parameter «ay is crucial in this formulation. The cost functional will then be given as

B2 v(r 2 A o2 2.4
B (T) Vil + 2Dk (246)

Vv,
k=1

T
min J(v, o) = % / v — Vd||2L2(QS) dt +
0

Determination of the gradient by direct (formal) differentiation yields for k =1,..., K

DJ

T
Dar = Aag + 51 //(v — Vi)Vq, dx dt + B2 /(V(T) — Vi)V, lt=T ds, (2.47)
k
0 Q,

QS

where v, = 2% denotes the sensitivities that are given by the sensitivity equations
k Doy, g y Yy eq

Re[0wva, + (Va, - V)VH (V- V)V, ] — Avae, + VDo, =0 in Q x (0,7,
V Ve, =0 in Q x (0,7),
Vo, =0 on (ToUTy,) x (0,7,
Vo, = % onT'; x (0,7), (2.48)
OnVa, — Do, =0 on 'yt x (0,7T),
Vo, (40) =0 in Q.

We see that the sensitivity equations are nothing more than the linearised state equations (2.39).

Electrically Excited Flow

To end the section on flow control we also want to denote the sensitivity based optimisation
approach for the electrically excited fluid flow. Recall the governing equations for the bulk flow
within the microchannel

Re[Opv 4+ (v-V)V|—Av+Vp=0 in Q x (0,7),
V-v=0 in Q x (0,7,
Ap=0  inQx(0,7), (2.49)
1 .
Gtc—Re.ScAc—i—v-Vc:O in Q x (0,7),

with suitable boundary and initial conditions as introduced before. The reader should be aware
that ¢ now denotes the concentration field ¢ : 2 — R and no longer the control. It was already
addressed that the potential ¢ was motivated in order to manipulate the flow field v to get a better
(we will have to define what this means) distribution of concentration c. Hence, the control should
be applied to the potential field ¢. Since a physical meaningful influence on ¢ can only be given by
the potential difference A¢ between I';, and Ty, we seek to control the boundary values ¢|r
and tacitly assume that ¢|p,, = 0.

The applied potential on I',,; can be supposed to be spatially constant as we only simulate
the small meander part of the whole microchannel and expect a linear behaviour of ¢ within the
straight parts starting from the reservoirs. Thus the modification of ¢|r,, will only be temporally

out

out
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with respect to the amplitude and a possible frequency. If for any reason a periodic alternating
potential difference seems justified, a Fourier series can be used to describe the temporal change,
i.e. we get the control boundary condition

n 2n
B(t) = olt,on) = % + ; ay, cos(kwt) + k:ZH agsin((k —n)wt)  on Tou x (0,T)  (2.50)

with the frequency w = 27 /T. This approach ends up with 2n + 1 parameters to be controlled,
which for small n seems reasonable, since sensitivity equations are stated also forward-in-time in
contrast to the adjoint equations (cf. (2.43)) — we will go into detail about this fact in Chapter
5.1. Obviously there are a lot of other attempts to describe the boundary condition (2.50) like
a e.g. polynomial series. Which way is the best has to be based on physical observations and
numerical simulations as we will do in Chapter 6.

The sensitivity equations can in any case be derived also independently of the choice of cost
functional (we again use -, = 6% for the sensitivities):

Re[0:va, + (Va, - V)V+ (v-V)vy,] — Avy, + Vp,, =0 in Q% (0,7),
VovVa, =0  inQx(0,7),
Apa, =0  in Qx (0,7), (2.51)
1
O0tCoy, — = Aoy + Vo, - Ve+v-Veg, =0 in Qx (0,T)

Re - Sc

Boundary conditions were also linearised and using the pressure-drop formulation are:

Vay, |1"0 = _HQV(I)aka anvak |Fin,UFout = Oa
Pay|TinUTour = 0,
0¢. (2.52)
Day, |Fm =0, Doy, |Fout = . ) an¢ak |Fo =0
80&k
Cay, |Fm =0, ancozk |F0UFout =0.

For the actual used setting of the problem and especially the formulation of cost functional we
refer to Chapter 6.
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Chapter 3

Discretisation and Sequential Solver

As shown in the previous chapter, adjoint-based optimisation as well as sensitivity-based opti-
misation for fluid flow problems yield systems of similar type. First there is obviously the state
equation given by Navier-Stokes equations (with additional equations for potential and concentra-
tion), but also the adjoint equations and sensitivity equations are of linearised Navier-Stokes type.
We pointed out that tackling the optimisation problem using an optimisation algorithm based on
the reduced cost functional, necessitates the solution of both state and adjoint/sensitivity equations
to derive the gradient.

The following chapter will therefore concentrate on numerical solution of these equations,
i.e. discretisation of the underlying partial differential equations by means of finite element method
and solution of algebraic system by suitable linear solvers. Since major issues arise from the saddle
point structure of Navier-Stokes equations, we will stick to the abstract equations

v —Av+ N(v)+Vp=0, (3.1)
V-v=0,

from which state equations itself and also sensitivity /adjoint equations can be recovered. Convection-
diffusion and Laplace equation in the complete system might be decoupled from the Navier-Stokes
equations so that this strategy seems justified. Principally we will work out numerical methods for
solving the discrete system using iterative solvers and Multilevel ILU-based preconditioners - this
sequential solver/preconditioner will be the basis for parallel solver/preconditioner introduced in
Chapter 4.

3.1 Finite Element Method for Navier-Stokes Equations

A further simplification of the general problem (3.1) allows to treat also the Stokes problem by
neglecting the nonlinear term N(v). We will thus first show the discretisation for Stokes equa-
tions only and then mention aspects, how these results can be transferred to the equations under
consideration - namely the nonlinear state equations and the linear adjoint/sensitivity equations.
These steps obviously comprise the discretisation itself in space-variables but also linearisation of
the nonlinear system and aspects of discretisation in time. Beside the here used discretisation by
finite element method there are other approaches for the discretisation of Navier-Stokes equations
or more general for fluid flow problems - these comprise finite difference or finite volume methods
(cf. [125]) as well as lattice Boltzmann methods (cf. [98]).

The spatial discretisation of Navier-Stokes equations by means of finite element approximation
bases on discrete representation of the weak formulation for the underlying continuous equations.
For the sake of simplicity we restrict ourselves to systems with homogeneous Dirichlet boundary
conditions for the velocity, i.e. v|sn = 0 and refer to Section 2.2 for used notation.

Remark 3.1.1 (Treatment of general boundary conditions)
The weak formulation (2.20) is equipped with inhomogeneous Dirichlet boundary conditions, which
are essential for this formulation, i.e. they are imposed by the function space H;(Q) For the more
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general case of channel flows, we also have to treat the outflow condition 0,v — pn on T'yy; or the
previously presented weak formulation of pressure-drop. In the case of inhomogeneous boundary
conditions on T'q C 09, we assume a function g € H/2(T'y) given as trace of a function in H'(Q)

which have to fulfil
/g ‘nds=0

Ta

whenever 'y = 09 due to continuity equation. The test functions ¢ will always be given in H%d (Q),
i.e. have homogeneous boundary conditions on T'y.

Within finite element discretisation the inhomogeneous boundary conditions are usually treated
by a boundary interpolant g, cf. [138]. One first chooses a function gy that is in Vyr,, the
restriction of the finite element space Vi, C HY(Q) to the boundary Ty, and approzvimates g. Then
the approximate problem is stated for vy, € Vy, such that vp|r, = gn-

Using Lagrangian finite element spaces the interpolant g can simply be chosen as the function
values of g at degrees of freedom on I'y. The theoretical aspects like div-stability and error-estimates
carry over to the case of inhomogeneous boundary condition except for the constants - we refer to
[61, 62, 718, 74] for details.

The boundary conditions for Ty, on the other hand are not that complicated. As already
mentioned the do-nothing condition

/(anv—pn)-tpds Vo € V.CHY(Q)

Tout

naturally appears when deriving the weak formulation of Navier-Stokes equations (2.20). The only
change that has to be made is about the function space V for test functions ¢. Instead of imposing
zero boundary condition on the whole boundary 0%, i.e. using H{(Q), we now use

V={veH (Q): v=00n0\Tou}

For the pressure-drop formulation we only have to impose zero boundary condition on the chan-
nel walls, for trial and test functions, since the boundary condition is incorporated into the weak
formulation.

For the homogeneous weak form of (2.20) we now introduce the Galerkin formulation of finite
element approximation. In the usual manner first one chooses approximating finite dimensional
spaces V, and S} for the velocity and pressure, where the index h shows dependence on an
associated mesh with characteristic size h. Then one replaces the infinite dimensional spaces in
(2.20) by the finite ones, i.e. seek v, (t) € V), C H}(Q) and py(t) € S, C LZ(Q) such that
v (0) = I5(vo) and for almost all ¢ € (0,T) it holds!

Re [(0vvh, on) + c(Vh, Vi, on)] + a(Vh, on) + b(on, pn) = (£, ¢n) Yon € Vi

b(vh,&n) =0 V& € Sh (5.2)

where I, (vo)(z) is a suitable approximation to the initial data. In this work we only consider
the conforming Galerkin formulation, i.e. the finite dimensional spaces Vj, and S} are subsets of
H}(Q) resp. LE(2). The last step to get an algebraic system for the finite element approximation
to Navier-Stokes equations is to identify bases for V; and Sp, and to express the trial and test
functions as linear combinations of the basis-functions. Additionally a linearisation method must
be applied since the resulting system is nonlinear - we will discuss this aspect in the following.
Furthermore for the instationary case a time-discretisation has to be performed. We will use a
semi-discrete approach, resulting in a nonlinear system for each timestep that is obviously sim-
ilar to the stationary system. Concrete numerical methods for the linear system arising in each
timestep/linearisation-step will be the subject of the next section.

The presented results concerning the finite element method are of summarising character since

Lfor sake of simplicity and readability we will use Re = 1 in the following



3.1 The Stationary Case: Space Discretisation 41

the emphasis of this work is put on implementation issues. For a more detailed overview on the
finite element method for Navier-Stokes equations there exists a whole bunch of literature - for
the more theoretical aspects we refer to [61, 62, 152], while the books [37, 47, 72, 126] also cover
aspects of implementation and applications. The books of Gresho and Sani [68, 67] provide an
extensive coverage of the finite element method related to incompressible flows, the reader will also
find detailed reference tables within.

Finite Element Mesh

Since the finite element approximation spaces Vj, Sy rely on the definition of underlying meshes,
we have to view the domain  (bounded, open and connected) as discretised into €25 where €y,
does not need to be equal to Q. Let 7,(2) be a partition (also called mesh) of the domain €,
into M convex elements/cells K, # () such that

M
Q= UKm, Io(mﬂf(n:(l)form#n
m=1

OK,, is Lipschitz-continuous for all K,, € Ty

where ID(m is the interior of cell K,,. The condition Io(m N Kn = () means that two cells at most
share edge/vertices in 2D or face/edges/vertices in 3D. We define the characteristical mesh size h
to be the maximum diameter of all cells, i.e.

hpy = diam(K,,) < h VK., € Th.
Together with the definition
pm = sup{diam(B) : B is a ball contained in K,,}

we define the regularity of a cell K, to be
ha

Om = —
Pm
and say that the mesh 7y is regular if there exists a constant ¢ > 1 independent of h and K,,,
such that
om < o VK, € Th.

In this work we only consider polygonal domains Q C R? or polyhedral domains in R3 which gives
Q = Q) and denote the finite element mesh by 7. If not stated differently the boundary of € is
denoted by I'. Furthermore we only use finite elements that are defined on quadrilaterals in 2D
or hexahedrons in 3D. The use of isoparametric elements would also allow curved boundaries, if
these boundaries are smooth enough. For an overview on general construction of finite elements
we refer e.g. to chapter 4 in [37] or chapter 6 in [120].

3.1.1 The Stationary Case: Space Discretisation

We will first show the discretisation with respect to the spatial variables, i.e. we restrict ourselves
to the homogeneous stationary Navier-Stokes equations. Hence, after the definition of subspaces
V), C HY(Q) and Sy, C L3(Q2) we seek for v, € V), pp € Sp, such that

a(Vh, on) + c(Vi, Vi, on) + b(en, pn) = (£, on) Von € Vi,

3.3
b(vh,&n) =0 VEn € Sh. (3:3)

To be even more restrictive we first neglect the nonlinear term c¢(vy, vi, ¢r) and show aspects of
suitable finite element approximation for the homogeneous Stokes equations

a(Vh, on) + b(on,pn) = (£, on) Yo € Vi,

3.4
b(vh, &) =0 Vén € Sh. (34
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In comparison to coercive partial differential equations, we already showed in Section 2.2 that
the inf-sup condition connecting the spaces Vj and S, is of major importance for saddle point
problems. While the inclusions V;, C H}(Q), S, C L3(Q) preserve continuity of a(-,-), b(-,")
and coercivity of a(-,-) when using a conformal Galerkin method, there is in general no reason for
the inf-sup condition to be valid in the discrete spaces. Hence for the discrete spaces Vy,, Sy the
essential conditions are:

1. Continuity for the linear forms (2.17)-(2.19): a € L(Vy x V,,R), b € L(V}, x Sp,R) and
c € L(V}, x Vi x Vi, R), i.e. there exist positive constant k., k, and k. (independent of h)

such that
la(up, vi)| < Kallunllil|val1 Yup, v € Vp,
1b(Vh,qn)| < kollvallillanllo Vvn € Vi, qn € Sh,
le(Wh, wn, vi)| < Kellan|lillvalll[wall1 Yuy, vy, Wi € V.

These conditions are valid for the entire spaces H!(Q2), L?(2) and therefore carry over to
the spaces Vy,, Sp,. For the first two conditions cf. [34] and the third condition is proven in
Chapter 2.1 [62].

2. Coercivity condition for the linear form a(:,-): there exists a positive constant 7, (indepen-
dent of h) such that

a(zp, v
sup (Zn, Va) > vallzalli,  Van € Zn. (3.5)

o£viezy, Vel

This condition incorporates the incompressibility constraint of Navier-Stokes equations by
means of the space Zy, := {vy, € Vy, : b(vp,qn) = 0 Vg, € S} of discretely divergence free
functions, to the well known coercivity condition. Its validity follows from the coercivity of
the linear form a(-, ), i.e. a(v,v) > v,||v||} for all v .€ H}(2) and the inclusion Z;, C H{ ().

3. Ladyzhenskaya-Babuska-Brezzi (LBB) or inf-sup condition: there exists a positive constant
v (independent of h) such that

b
inf sup bvhian) > Y. (3.6)

0£an€Sn 0£vyevy, [|Vrll1llgnllo —

Since even the conform Galerkin approach V;, € H{(Q) and S, C LE(Q) does not guarantee
that the inf-sup condition is fulfilled, this condition has to be proven for each choice of finite
element spaces separately.

Under these conditions, similar to Section 2.2, we have the central theorem for the approximate
solution vy, pp of the Stokes problem (3.4) (cf. [47, 62] for proof).

Theorem 3.1.1
Assume that Vy, and Sy, are finite-dimensional subspaces of Hy(Q) resp. L3()). The discrete
problem (3.4) is well-posed in the sense of Hadamard:

o there exists a unique solution vy, pn

o the solution continuously depends on the data f, i.e.

1 1 Ka
[valli < —[fll=1 and [[ppllo < — (1 + =) fll-1
Ya b Ya

if and only if the discrete spaces fulfil the inf-sup condition (3.6).
In this case the solution vy, ppn satisfies the estimates

_ <e¢ inf - inf ||p—
v Vh||1_01u;gvhllv “"||1+C2q§25h”p qnllo

“pnllo < cs inf ||v — inf |jp—
llp thO—C?’u,fgvhHV uh||1+04q:gshllp qnllo
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where the constants c; just depend on Kq, Kp, Ve and v, and are independent of h whenever ~y, is
independent of h.

This theorem shows that once the inf-sup condition is satisfied, the error in the finite element
approximation depends only on the ability to approximate in the chosen finite element subspaces.
A detailed introduction to finite element interpolation theory can be found in [34, 120, 148] - in
the following we only show approximation properties for the used Lagrange finite elements.

We have seen that for well-posedness and convergence of the discrete solution of the homoge-
neous Stokes equations (3.4) it is primarily the discrete inf-sup condition that has to be proved,
since the continuity and coercivity conditions are given by the choice of a conform Galerkin ap-
proach. For this task we want to mention an often used criterion by Fortin [53]

Lemma 3.1.1 (Fortin criterion)

Assume that the inf-sup condition for the continuous spaces X = H§(Q), M = L3(Q) is satisfied
with constant 8* > 0. Furthermore assume that there exists an operator 7, : X — Vj C X such
that

b(u —7(a), qn) =0 Vvue X, goeS,Cc M
[7n(w)[[; < C*|lully Vue X

where C* > 0 does not depend on h. Then, the inf-sup condition (3.6) is satisfied with v, = g*
Also the opposite direction is valid.

Now we come back to the inhomogeneous Navier-Stokes equations (3.3) and ask for the same
approximation results as in Theorem 3.1.1. Since a detailed derivation of such error-estimates is
beyond the scope of this work, we just state the main results and refer to [36, 91, 61, 62, 152] for all
details. First we assume that there exists a unique solution to the stationary weak Navier-Stokes
equations v e V= {ue H}(Q) : V-u=0}, pe L(Q), so that for some § > 0

Re*i||f||v- <1 -0, F= sup le(w, u, v)|

— T 3.8
u,v,wev |W|1|11|1|V|1 ( )

Additionally we need two approximation properties of the spaces V; and Sj,:
H1/ there exists a mapping 7, € L(H?(Q) N H{(Q), V},) such that
(gn,V-(u—1(u)) =0 Yan € Sp, u € H2(Q) NHL(Q)
74 (u) —ully < Chllul vu € H*(Q2) N Hg(Q)
H2/ the orthogonal projection operator p;, on S}, satisfies

lg—pu(@)lo < Ch™|lgllm Vg€ H™(Q)N L), m=0,1.

Theorem 3.1.2
Under the approzimation properties H1, H2 and (3.8), the problem (3.3) for h sufficiently small
has a unique solution vy, pn and

lim |[v —vi|1 = 0.
h—0

If in addition the solution v,p belongs to H?(Q) x (H* ()N L3(Q)), we have the following estimate

v =Vl < Ch(][vll2 + lIp[l1)-

For the proof we refer to [61] and just remark that besides the condition for uniqueness this theorem
relies on the inf-sup condition and the interpolation property of finite element spaces. Indeed, using
Fortin criterion together with an interpolation error result like it is shown next, we see that the
properties H1 and H2 are fulfilled.
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Figure 3.1: Mapping Fx from reference to arbitrary cell in 3D using 8 basis functions at the vertices.

3.1.2 Taylor-Hood Element

The inf-sup condition (3.6) was shown to be crucial for the approximation in the finite dimensional
spaces Vj, Sh, so that we need to introduce a pair satisfying this condition. In the following we
solely use Lagrange finite elements, in which all degrees of freedom are point values at specific nodal
points. Beside the Lagrange elements there are also so called Hermite finite elements, involving
directional derivatives as degrees of freedom. We refer to [120] or [34] for a detailed introduction to
the theory of finite elements. Following the definition of [34] a Lagrange finite element is a triplet
{K, P,¥} where

i/ K is a compact, connected, Lipschitz subset of R with non-empty interior. Furthermore one
defines a set of points {ay,...,an,_ } in K called nodes or Lagrange nodes and the subset K
itself is denoted as a cell.

ii/ P is a vector space of functions p : K — R called the local interpolation space.

iii/ ¥ is a set of njec linear forms {®q,...,®,, .} acting on the elements of P such that ®;(p) =
p(a;), i=1,...,n1pc. Furthermore the linear mapping

pEP — (P1(p),..., Ppy,.(p) € R™Mee

is bijective - so called P-unisolvence of the set 3. The linear forms ®; are called local degrees
of freedom and due to the evaluating character at the nodes a;, one often identifies the nodes
with the degrees of freedom.

A direct consequence of the P-unisolvence is the existence of a basis {p1,...,pn,.} in P such that
®,(pj) =pjla;) = dij, 4,5 =1,...,n0c. This basis is called local shape functions or nodal basis.
Let now 7, be a mesh of the domain 2. Instead of specifying a Lagrange finite element for each
cell K € 7T;, we define a reference cell K and transform the reference finite element (K, P, ). For
the two-dimensional case we define the element [0, 1]? as reference cell K - in three dimensions we
use [0,1]%. On the reference cell basis/shape functions p; and reference nodes a; are assumed to
be given by the chosen Lagrange finite element approach. In order to determine basis functions p;
on an arbitrary mesh cell K with nodal points a;, we define a mapping Fi : & € K—rek by

x = Fg(d) = Zaiﬁi(i), (3.9)

where the number n < nj, of basis functions depends on the local interpolation space and the
intended character of the transformation. Obviously one gets K = Fx (K) and a; = Fx(a;). Since
in general the mapping Fk is nonlinear, the cells K are arbitrary straight or curved-sided elements
according to the number of basis functions defining F in (3.9). See Figure 3.1 for the mapping

in 3D using 8 basis functions at the vertices of the unit-hexahedron. Now the basis functions on a
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cell K are given by
pi(x) = pi(F'(z)) with © = Fi ().

This definition only holds for Fx being invertible, which is equivalent to a non-vanishing Jacobian
and hence to a cell K being convex. Summing up, a generic Lagrange finite element (K, Px, X k)
in the mesh 7}, is such that

K = Fg(K)
Px={p:K — R, p=poFg', pe P}
Yg = {p(FK(a:i))a 1= 1;---anloc}-

Before defining the here used Lagrange finite elements in depth, we need to introduce the local and
global interpolation operator. Let (K, P,¥) be a generic finite element as shown above. Assume
that there exists a normed vector space V(K) such that P C V(K) and such that the degrees of
freedom ®;(v), i = 1,...,n0c are well defined for all v € V(K). We define the local interpolation
operator I unambiguously (because of P-unisolvence) by

Nloc Nloc

Ix: veV(K)— Igv = Z@i(v)pi = Zv(ai)pi e P. (3.10)

i=1

For the Lagrange finite elements the spaces V(K) = C°(K) or V(K) = H*(K) with s > d/2 are
suitable. The global interpolant Ipv on the mesh 7 is then specified elementwise using the local
interpolation operator (3.10)

(Ih’U)|K = IK(’U|K), VK € T,

and hence we have the global interpolation operator Iy

Nloc

I : ve D(Ih) — Ihv = Z Z’U(a}(,i)p}(,i € W, (3.11)
KeTy i=1

where the domain D(I},) is C°(Qy) or H*(2},) with s > d/2. The codomain of Ij, is called the global
finite element approximation space Vi and since we are working with conformal finite elements it
has to fulfil Vj, € H'(Q). To ensure this conformity we need an additional condition for the mesh
Trn: any face of a cell K, is either also a face of another cell K, or part of the boundary 0f). If
now two neighbouring cells K,,, and K, with sets of degrees of freedom {aKm/mi}, t=1,...,Noc
fulfil

fm,n - {a'Km717 cees a’Kmynloc} nK, = {G‘Kn,lﬂ cee ;aKn,nloc} NKy = ‘Fn,m
we have the set of global Lagrange nodes/degrees of freedom of Ty,

Ny = {ala"-aa’N} = U {aK71""’aK7nloc}'

KeTy

Then it is sufficient for V}, to be H!-conform (cf. [47]) that functions in V}, are continuous at the
nodes in Ny, ie. v(ak,, ;) = v(ak, i), Vi € Fmn. Furthermore the set N}, of global degrees of
freedom allows for the definition of global basis functions in V}, via

(Y23 € Vh and @i(aj) = 5ij7 ’L,] = 1,...,N
and hence the description of the global interpolation operator I, (3.11) as

N
In: v € D(Ip) = Iw=">_v(a)pi € Vi. (3.12)

i=1
Obviously the global basis functions ¢; are compositions of the local functions pg ;.

Now we are able to introduce the Taylor-Hood Element and more general Qr/Qr—1 elements
with £ > 1. A major reason for this choice should be mentioned beforehand: as opposed to the class



46 DISCRETISATION AND SEQUENTIAL SOLVER

2
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Figure 3.2: Taylor-Hood element on quadrilateral and hexahedron: bi-/tri-quadratic velocity and bi-/tri-
linear pressure. Only visible degrees of freedom are shown - x velocity nodes and o pressure
nodes.

of piecewise linear or bilinear velocity fields combined with piecewise constant or linear pressure,
this element is defined on the same mesh for both finite element spaces V; and Sp. All other
combinations of linear/constant or linear/linear elements are only inf-sup stable if the velocity
field is defined on the finer mesh 7} /,. For other stable elements or stabilisation techniques to
circumvent the inf-sup condition, we refer to [37, 126] and references therein.

Due to the above definition of Lagrange finite elements, it is enough to specify the local inter-
polation space P and the set of Lagrange nodes a;. Let Qy (IA( ) denote the space of polynomials
on K of degree less than or equal to k in each of the coordinate directions

k
Qr(K) ={¢= Z o' %7, gy € R} in 2D,
3,7=0
k
Qk(f() = {(i = Z Ozijl:flzfgjfgl, Qijl € R} in 3D.
i,4,1=0

The interpolation space on an arbitrary mesh cell K is then according to the previous defined
mapping Fx .
Pg =Qu(K)={qg=qoFg': §€Qu(K)}

and the local shape functions are given by the Lagrange polynomials in the variables z;. The set
of nodes a;, which we identified with the degrees of freedom, depends on the polynomial order &
and is shown for the case k = 1,2 in Figure 3.2. Finally the global H!-conform Lagrange finite
element space of order k is

Qr(Th) ={u € C°(Q) : ulx € Qu(K), VK € Tp} (3.13)
and the Taylor-Hood element pair is defined by (cf. Figure 3.2)

Vi = {w, € [Qu(Th)]?: uplr = 0} C HY(Q) with k = 2,

) L ) ] (3.14)

Sh={qn € QU(Tn) N L)} C H (Q) N LG(Q) with [ = 1.

Having defined the global approximation space (3.13) and the global interpolation operator I

(3.12), we now have the following error-estimate to judge the quality of @y elements - for a proof
we refer to [47] or [62] and remark that an analogue result holds for the 3D case.



3.1 Linearisation of Navier-Stokes Equations 47

Theorem 3.1.3 (Lagrange finite element interpolation error)

Let the Lagrange finite element space Qi (Tr) be as in (3.13) and assume that Ty, is a regular mesh
of the polygonal domain Q C R2. Let the global interpolation operator to the space Qi(Tr) be
denoted by I,’f. Then, there exists a constant ¢ such that for all h > 0 and v € H*1 ()

k+1

1
Jo— Iollo+ S A (S o= Iv)2)F < e ulpg.
m=1 KeTy

In particular, since Qi (Tr) is H'-conform

v — I,fv|1 < chk|v|k+1.

To state the final error-estimate for the Taylor-Hood element it is now enough to prove the
inf-sup condition and use Theorem 3.1.1 in combination with the interpolation Theorem 3.1.3
above. The validity of inf-sup condition for the Taylor-Hood element can be proven in different
way, e.g. by Verfiirth’s proof [47, 158] or usage of macro elements [62] - we just give the resulting
error-estimate for the finite element interpolation of Stokes-equation.

Theorem 3.1.4 (Taylor-Hood error-estimate)
Let Q be a bounded, plane polygon and let the solution (v,p) of the homogeneous Stokes problem
satisfy

v e H" " (Q)nH(Q), pe H* Q)N Li(Q), k=1,2.

If the mesh Ty, is regular, the solution (vi,.pp) of the weak problem (3.4) with spaces Vy,, Sy, defined
in (3.14) satisfies the estimate:

IV = Vil +[lp = pallo < eh*([v]isr + [plr), k =1,2. (3.15)
When Q) is convex, the additional estimate holds:

Iv = villo < ch* (V]esr + Ipli), k= 1,2, (3.16)

This inf-sup stable element was originally stated by Taylor and Hood [151] for triangles but
Stenberg showed the same results also for the case of quadrilaterals [146] and hexahedrons [147].
Especially for the case of k = 2 the estimates (3.15) and (3.16) show one order higher accuracy
than can be achieved by any element involving linear velocity, which is a further reason to prefer
the Taylor-Hood element versus any combinations of linear/constant or linear/linear elements.

3.1.3 Linearisation of Navier-Stokes Equations

The finite element approximation of Navier-Stokes equations (3.3) leads to a nonlinear system
of algebraic equations. These equations might be written down explicitly after identification of
bases for Vj,, Sp in terms of the discrete versions of linear forms (2.17) - (2.19). For sake of
simplicity we will show the linearisation by Newton’s method in terms of equation (3.3) and only
afterwards identify the linear algebraic system. Other linearisation methods like fixed Jacobian
method, Broyden’s method or Oseen linearisation were not under investigation due to the (at least
locally) quadratic convergence of Newton’s methods [62, 78]. The main disadvantage of Newton’s
method, namely the fact that at each step a new Jacobian has to be computed, can be shown to
be of minor concern since this step can be parallelised perfectly on high-performance computers.
Let V},, Sp, be a stable pair of finite element spaces and let [vF, pF] € V, x S), be the current
iterate, then the next iterate of Newton’s method might be computed by solving the linearised
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system
a(vi on) + (vt v o) + eV, Vi on) + b(en, i)
= (£, n) + (v}, Vi, n) Von € Vi, (3.17)
b(vit, &) =0 VEn € Sh,
where VZ+1 fulfils the same boundary conditions as vF. A more convenient way to perform Newton

iteration is given by the defect-correction notation: for a general nonlinear problem F(zx) = 0 a
formal Taylor-expansion around Z yields

F(z) = F(z) + DF(Z) - 6z + %DQF(?U) 0%+ = DUF() - 6" + R (o)
. n.:

with dz = © — Z and the remainder term R, (z) = (nil)!D"HF(&) - 6z™ 1 ¢ lying on the line
segment between x and z. After dropping terms of order higher or equal to 2, the Newton iteration
reads

DF(z*) -6z = —F(2*), 2" = 2% + 6z (3.18)

Using this notation allows a formulation in terms of the residual —F(z*), which will also be
used in the sequel for timestepping methods. Furthermore this form prevents numerical errors for
Dirichlet boundary values as we can set these values directly in the discrete vectors z* and just
set the corresponding rows in DF(x*) to identity. A special version of Newton’s method (within
globalisation and inexact linear solver) in terms of algorithmic procedure is given in Algorithm 2.

To end this subsection we want to present the resulting algebraic system for Newton’s method.
Let [v¥, pf] be the solution of the last Newton step and [y, ] be the test functions, then lineari-
sation of the weak momentum and continuity equation is given by

Dy vk o0) ek, vh 1) + b, )] v, o

=a(0v, pn) + C(5v,v’ﬁ, ©n) + c(v’;” v, on) + b(en, p),
Divp}l [b(v, &n)] [0V, 6p]

= b(0V, &n)-

Hence, Newton iteration (3.18) for stationary Navier-Stokes equations is given by

(5 ) @) (i) Gea) =G+ (5) e

Here we already used the algebraic notation that can be derived after identification of bases in the
finite element spaces Vj,, Sy. Let {¢}} be a basis of V), and let {¢!} be a basis of S, then we
are able to formulate the approximative solution in terms of finite element coefficients [v, p], i.e.

dn
v = Z ngai with n trial functions per velocity component and v; € R

j=1

m (3.20)
Py = Z plgﬁl with m trial functions for the pressure and p; € R

=1

and v = [v;]j=1.....dn, P = [Pi]i=1....m- We use the notation [v, p] to indicate the vector representing
the finite element coefficients, which should not be mixed up with the continuous functions v, p
for velocity and pressure. Furthermore, one gets the finite element matrices

[(Mij = (o5, ¢h), [Ali; = a(e], ¢h) i,j=1,...,dn

l .
, l=1,....m, 5=1,...,dn
©n&n) J (3.21)

2 ,Vh,QD}.L)-‘rC(VZ,QD']];‘,QD,}LL) ’LaJ:laadn
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the external force vector '

and the residual vector fori =1,...,dnandl=1,...,m
VY ({60~ alvh ) (v vl ~ blohnd)
res(| 4 ]) = _b(vE €L
p (Vi &) (3.22)

_[(F — Av® — C(vF )k — BTpk
o —Buk '

The system (3.19) shows the typical structure of a discrete saddle point problem having a stiff-
ness matrix with a zero block in the lower right part, which again underlines the need of stable
discretisation.

3.1.4 The Instationary Case: Time Discretisation

Consider now the semi-discrete weak instationary Navier-Stokes problem (3.2), for which the anal-
ysis has been provided in [83] and following papers by Heywood and Rannacher - we just remark
the main result on convergence.

Remark 3.1.2 (Convergence of approximate solutions)

Assume that V, and Sy, is a pair of finite element spaces satisfying the inf-sup condition (3.6).
Furthermore assume that for all u € H(Q) and q € L3(Q) the finite element approxvimation
satisfies

inf |lu—uyl||1 + inf — = O(h).
Lt =i+ g = aulo = O()
Notice that especially the above defined Taylor-Hood element pair is suitable for this condition.
Then one can prove the error-estimate for the solution of the semi-discrete scheme, assuming that
the solution v,p has suitable reqularity.

Iv(t) = va(®)llo < C1(OR?, [lp(t) — pr(t)llo < Ca(t)h

where the constants C;(t) might exponentially grow if the data is not small enough.

For the numerical solution of (3.2) we follow the #-family methods as discretisation in time
followed by a Newton iteration in space using inf-sup stable finite element pair as described in the
preceding subsection. This way is often called method of lines meaning that first a discretisation
of space variables is done, which formally results in a system of ordinary differential equations.
Afterwards a common time discretisation scheme is used to solve the system of the form

(Oevi,on) = F(£,vi,pnson)  Yon € Vi (3.23)

To be as general as needed we do not state the ODE-system, but use the discrete weak formulation
(3.2) to define the timestepping methods used here.

Given a fixed number N > 0, the time interval [0, T'] is partitioned into subintervals [¢;, t;11], i =
0,...,N —1 with At; = t;11 — t; and ty = T. For the sake of simplicity we chose equidistant
At; = At = T/N and use the notation t;, = kAt, vk = v, (z,t;) and p§ = py(z,t;) for the discrete
approximation in the k-th timestep. Accordingly, we define f* = f(x,#;) to be the external force
evaluated at discrete steps. The #-family of methods now determines the new solution at time
tp+1 = tr + At by a weighted average of 9;vy, (t) and 9;vy, (tg+1) with a parameter 6 in the interval
[0, 1]:

Vi (try1) — vi(te) 1

AL = Gatvh(tk.H) + (1 — H)Gtvh(ﬁk) + O((§ — Q)Aﬁ, AtQ).

The terms 0yvy(-) will be replaced using (3.23). This discretisation is conditionally stable for § <
1/2 and unconditionally stable for > 1/2. Furthermore, the truncation error O((1/2 —6)At, At?)
shows that second order accuracy is only given for the choice § = 1/2 which is the well known
Crank-Nicolson scheme. For these classical results we refer to [26] or the more involved books
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scheme step a1 Qs o3 Qu o At
forward Euler th—1 — tk 0 At, At, At, 0 At,
backward Euler th—1 — tk At, At, 0 0 At, At,

Crank-Nicolson th_1 — tg At, /2  At, At,/2 At,/2 At,/2  At,
FS (substep 0) the—1 — t% BOAt, O0At, ~OAt, OAtL, 0 0AtL,
FS (substep 1) 19—t} Y0At, 0At, BOAL, 0 OAt, 0AtL,
FS (substep 2) |t} —t7 =tx BOAL, OAt, ~OAL, OAL, 0 0AL,

Table 3.1: Timestepping parameter for several one-step schemes.

[81, 162]. Other time-discretisation methods like leap-frog scheme or Adams-Bashforth method
that are also second order accurate, or even higher-order Runge-Kutta methods are not treated
here, since we concentrate on single step method, i.e. those that only need the last state v, (tx) to
determine the new solution v (t41).

Hence, our timestepping scheme relies on the problem: for given initial state V% € Vy, find
(vE,pk) € Vi, x S), for k=1,2,..., N by solving the nonlinear system

(Vhson) + a1 n(vE, on) + az b(en, pk) = (Vi ', on)
—az n(viT on) Faa(FF on) + as (F5, on) Yo € Vi, (3.24)
b(vh,&n) = 0 VEn € Sh

with n(vF, on) = a(vE, ¢n) + c(vE,vF, on). The upper index now indicates the discrete timestep
and no longer the index of Newton iteration. We will clarify this notation whenever confusion
might arise. The chosen formulation (3.24) - see also [92] - easily allows to describe common used
one-step fully implicit or explicit timestepping schemes by setting the parameters «; appropriately
- for implicit/explicit Euler, Crank-Nicolson and fractional-step #-scheme (FS) consider Table 3.1.
Since the discrete system of the Navier-Stokes-equations is usually highly stiff, often only implicit
or semi-implicit schemes are chosen. Nevertheless we also want to comment on the explicit Euler,

since no nonlinear system needs to be solved in each timestep. Only a kind of mass-matrix has to be
factorised once and can be used throughout all timesteps by means of matrix-vector multiplication.

Crank-Nicolson Scheme

The discrete system for timestepping based on Crank-Nicolson scheme is

_ At _ At _
(Vi = Vi~ hen) + 5 [V en) = n(vi T on)] + Atb(on, pi) = - (B + £ 7 on), Ven € Vi,
b(vi, &) =0 VEh € Sh.

After identification of basis functions (3.20) the resulting nonlinear algebraic will be solved by
Newton’s method similar to the stationary case. We therefore introduce the residual at the k-th
timestep and i-th Newton step as (compare to (3.22) for notation)

VPN (T =it en) = B [n(vEL en) = n(vi Tt en)] — Atb(on, pi) + SEH(EF + £ o)
reS( ki ) = ki
p” 7b(vh,’ 7£h)

and solve the system via Newton’s method

M + %[AﬁLL(vk’i)] AtBTY\ (v _ (vk*i ) ALY ki . v
B 0 Sp =Tres pk,i ) pk,i—i-l = pk,i op) -

After say imax Newton steps, the approximate solution at timestep k is given as

ok yFstmax
pk = pk,imax .
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For the initial iterate in timestep k one should use the solution of the last timestep, i.e. [v*0, p*0] =

[vF~1, p*~1] since for small timesteps At and/or little change in the velocity- and pressure-field the
change between two successive timesteps is small.

While the implicit Euler scheme is perhaps the most classical timestepping scheme and obviously
easy to implement, the Crank-Nicolson scheme attains better accuracy at the same complexity for
nonlinear systems to be solved at each timestep. Both methods are moreover unconditional stable,
such that the advantage of implicit Euler scheme might only be given by its numerical damping
property.

Explicit /Forward Euler

For the explicit time-discretisation of Navier-Stokes equations one encounters the system

(Vi on) + At b, pf) = (Vi o) + AL [EF T on) —n(viT on)] Ven €V

k (3.25)
b(vy,&n) =0 Vén € Sh
or equivalently the algebraic system
T k k—1 k=1 _ A, k—1 _ k—1Y,k—1
M AtB ’Uk _ (MvTT At[F Av C(vF=1)vk=1] . (3.26)
B 0 p 0

We see that the saddle point structure is still present, but that the system matrix is linear and
constant for all timesteps. Hence it can be factorised once and only update steps have to be
performed afterwards.

Conclusively we show that this explicit scheme can be interpreted in the sense of the well
known Chorin-Temam projection method. The principle of the projection method is a separation
of velocity and pressure field operators which leads to an intermediate state for the velocity that has
to be projected onto the space of solenoidal functions. It was originally stated as a fractional-step
scheme in the work of Chorin [33] and Temam [152] - for details we refer there. The first step in
this method only treats the continuity equation in (3.2) and aims at determining an intermediate
velocity field vF+! by solving

int

k k—1
- v,

At

V!
(= son) +a(vh on) + e(v v on) = (£ on) Yo € Vi (3.27)

The velocities v*, v** can be chosen according to the desired timestepping method, i.e.

v =v* = fol results in explicit Euler method,
v =vi ! and v** = vl results in a semi-implicit method,
vt = vk results in implicit Euler method.

The second step determines the solution [vﬁ,pﬁ] by projection of the intermediate velocity v,
solving

(Vi on) + At b(on, pf) = (Vi en) Von € Vi,
b(vE, &) =0 VEn € Sh.

We see that the resulting problem for the second step has the structure of the Stokes problem and
that the arising matrix equals the one in (3.25). If we now take the explicit version of first step,
i.e. v¥ = v** = vi~! we can directly insert the term for the intermediate velocity (vE,, @) from
(3.27) into (3.28) and find the proposed explicit timestepping scheme (3.26).

In contrast to the classical two step Chorin-Temam scheme, we avoid replacing the second step
by a reformulation as pressure Poisson-equation. This can be done by using the incompressibility-
condition V- vF*t1 = 0 and applying the divergence operator to the conservation of mass equation,
yielding the Poisson problem for the pressure

(3.28)

1
Sl v A in Q.

Apk+1 = At int
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This equation now needs to be equipped with boundary conditions for the pressure variable, which
are not stated in the original setting and therefore lead to controversy about the right choice.
For an extensive discussion to the pressure Poisson equation especially concerning the boundary
conditions, we refer to [66]. The controversy about non-physical boundary conditions for the
pressure is a potential drawback of the Chorin-Temam projection method, which can be prevented
by using the proposed scheme (3.25).

Nevertheless the advantage of explicit schemes is the fact that a kind of constant iteration matriz
can be stated for each timestep tx — tx11. In the case of parabolic differential equations without
constraints (like the continuity equation) this matrix simply turns out to be the mass matrix. An
effective way to approximate the mass matrix by a diagonal matrix is known as lumping. The mass-

. n
matrix M = m;; = (47, ¢! ) is replaced by the diagonal matrix M with W, = > m;j. It can be
i=1

shown that this approximation can be interpreted as a quadrature rule only usiilg function values
on Lagrangian nodes - see [32, 118] for details and error approximations. Using the lumped mass-
matrix obviously results in an explicit timestepping scheme, which is completely free of the need
to invert any matrix. Hence, the scheme will possess ideal characteristics for parallel computation
as we show in Chapter 5.2 for the optimisation of an instationary scalar-valued problem. A final
remark on explicit timestepping is inevitable: compared to the implicit schemes, one will always
be faced with a stepsize restriction of the form At < C'h? to ensure stability.

Fractional Step 6§ Scheme

Besides these classical one-step time discretisation schemes, the formulation (3.24) allows also for
the fractional step 0-scheme, which bases on three substeps with suitable chosen parameter «; -
cf. Table 3.1. In contrast to the Euler schemes above, the fractional step 6-scheme uses three steps

(with n(VZ, on) = G(Vﬁa ‘Ph) + C(VZa VZ) ©n)):

stepl
(Vi o) + BOAE n(viT 0 o) + 0AE b(n, pf 1) =
(Vi on) —Y0AE n(vy "t pn) + OAL(EF T o) Yon € Vi,
b(vi 0 6) =0 Vé) € Sh.
step2 B
(VZ ea@h)‘i"Y‘QAt n("z 9’(ph)+9At b((pha - 9)
(Vi on) — BOAL n(vi ' on) + OAL(ER, o) Yon € Vi,
b(vi? &) =0 VE), € Sh.
step3
(Vi on) + BOAL n(Vh, on) + OAL b(on, pfy) =
(Vi~% on) — vOAE n(vi~? on) + OALEF, o) Yon € Vi,
b(vE, &) =0 Vén € Sh.

Originally, the scheme was proposed as an operator splitting method [25, 64, 63] separating the
nonlinear convective term and the incompressibility condition. One full timestep At in the frac-
tional step #-scheme consists of a cycle of three substeps tx_1 — tx_119 — tk—9 — tr and each
substep is approximately of the same computational complexity as one step of the standard Crank-
Nicolson-scheme. To see this we can write all three steps as nonlinear algebraic system

(M + a1 [A + C(vk)] agBT) (vk) . (kafl — a3 [A + C(kal)}kal +asFF 4 a5Fk>
B 0 p* ) 0 :

As indicated by the choice of parameter «;, both Crank-Nicolson-scheme and fractional step 6-
scheme have a; # 0 and @y # 0 resulting in the same complexity for solving a nonlinear system.
We want to end this section by a brief overview on analytical results concerning the fractional step
f-scheme. Following the standard approach [26] of stability analysis for numerical methods for
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ODEs, we use the scalar-valued model for ¢ € (0,7T)

du(t)
dt

= Au(t) and u(0) = ug

with solution u(t) = e*ugy. Now the iteration u* = Rg(AtA\)u*~1, x = At\ yields for the fractional
step #-scheme a rational approximation to the exponential function, i.e. the stability function

Ro(x) = (1 + B0z)(1 +~02)> _ o 1 0",

(1 — B02)%(1 — H0z)

The parameters are to be chosen such that § € [1/2,1), § =1 —20, 8 € [0,1] and v = 1 — S.
For § = 1 — 1//2 the scheme has second order accuracy and for 3 > 1/2 it is strongly A-stable -
cf. [97, 117] for a proof. If one additionally chooses 8 = (1 —26)/(1 — ) we have that 36 = v and
hence «; identically for each substep, which means that the diffusion and convection operators can
be treated in the same way in each substep. Compared to the previous mentioned schemes, the
fractional step 6-scheme combines the advantages of implicit Euler and Crank-Nicolson-scheme,
namely the second order accuracy and (by strong A-stability) the full smoothing property, which
is essential in the context of rough initial or boundary data. Supplementary to these theoretical
results, the fractional step 6-scheme also showed very good numerical properties [90].

3.2 Iterative Solver and Preconditioner

As shown in the previous section we use Newton’s method to solve the nonlinear system arising from
finite element based discretisation of the Navier-Stokes equations. In recent years especially for
linear systems arising from the field of partial differential equations preconditioned Krylov subspace
methods have made good progress to be competitive with sparse direct solvers. As the size of the
linear system is becoming larger (due to refinement of the mesh 7,) and its nonzero structure is
becoming denser (due to more couplings in 3D discretisations and unstructured meshes) iterative
methods are even superior to direct solvers in the sense of computational time and memory costs.
Another advantage of iterative solvers compared with direct solvers is the possibility to control
the error and therefore the effort of the solver. Since the discretisation of the underlying partial
differential equation is given with an inherent discretisation error it is of minor importance to solve
the arising linear system with higher accuracy than this error. Furthermore, the linear systems have
to be solved in an outer/Newton loop which also allows for an inexact inner solver with possible
adaptive convergence criteria. Nevertheless, it is well known that the convergence behaviour of an
iterative Krylov solver strongly depends on an adequate use of preconditioners. For these reasons
in the sequel we will present a multilevel ILU-based preconditioner for the iterative linear solver
and also study some adaptive convergence criteria for the linear solver within Newton’s method.

3.2.1 Multilevel ILU Preconditioner

Discretisation and linearisation of the Navier-Stokes equations lead to a linear saddle point problem
of the abstract form - see (3.19)

(5 ) G) =) 329
" - T

which has to be solved in each step of an iterative nonlinear solver, e.g. Newton’s method (see
Algorithm 2). A similar system also arises for the instationary equations, where only the terms
A+ L(v*) and BT have to be modified. In this subsection we present an ILU-based preconditioner
for iterative solvers of linear systems of the form (3.29). If not stated differently the preconditioner
is incorporated into a right preconditioned restarted GMRES solver for the solution of the linear
system Az = b to generalise notation® (see [65, 95, 134] for the algorithmic description and [46] for

2we will use the notation A for the entire system matrix throughout this section
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a theoretical analysis). For the preconditioning step v;11 = AMwv; within Arnoldi-process and for
the update/restart x = xo+ M Vyk, we choose the matrix M to be a multilevel incomplete LDU-
factorisation of the linearised system-matrix A as described in the sequel. Hence, the preconditioner
M can be applied efficiently by using back substitution to solve linear systems having triangular
coefficient matrices. Before going into the specifics, we summarise the approach.

First, we apply preprocessing to make the coefficient matrix A more suitable for incomplete
factorisation. To this end, several approaches were considered. The first possibility is to normalise
A, i.e. to simply scale columns and subsequently the rows of A to norm 1, which is very cheap to
calculate and results in some cases in a better balanced matrix. The second possibility considered
was to first normalise A and then to apply the standard PQ-reordering [135] to aim at making an
initial block of A more suitable for incomplete LDU-factorisation by improving diagonal dominance
and sparsity. A third possibility under consideration was to permute the rows of A and to scale
both the rows and columns so that A is transformed into an I-matrix, i.e. a matrix having elements
of absolute value of 1 on the diagonal and elements of at most absolute value of one elsewhere.
Heuristically, it is clear that I-matrices should be more suitable for (incomplete) LDU-factorisations
than general matrices and this has also been confirmed experimentally, see [15]. Note furthermore
that I-matrices are preserved if rows and columns are permuted using the same permutation.
Hence, also a permutation can be determined next such that an initial block of the coefficient
matrix has better diagonal dominance and sparsity properties as described in [114].

One result should be mentioned in advance: normalisation of A appeared to perform better for
matrices arising from the discretisation of 3D problems, while for the 2D case PQ-reordering got
better performance - preprocessing to an I-matrix was not suitable at all. Especially generation
of I-matrix with additional permutation, took relatively long computational time or needed large
fill-in not to drop entire rows, which often led to arithmetic over- and/or underflows. For these
reason we will concentrate on normalisation and PQ-reordering of A for the Navier-Stokes solver
in further research and therefore only PQ-reordering will be explained in detail.

After applying the permutation, we compute an incomplete LD U-factorisation based on Crout’s
implementation of Gaussian elimination and threshold based dropping to preserve sparsity. If a
pivot having an absolute value of less than min_pivot (usually 0.01) encounters while the elimi-
nation process, we terminate the regular factorisation phase aimed at obtaining triangular factors
L and U and proceed instead in calculating an approximate Schur complement S. This completes
the first level of the multilevel factorisation.

Setting A = S, we proceed recursively and obtain further levels until the coefficient matrix
has been factored entirely. The whole preconditioning process is summarised in the flowchart 3.3.
We need to emphasise that at the beginning of each level, we preprocess the new matrix just
as the original coefficient matrix and that the possibility of using preprocessing between levels
distinguishes this approach from single-level factorisations.

Preprocessing by PQ-Reordering
For each index k = 1,...,n, n being the dimension of A, we determined a weight wy by

g max A
wE = .

nnz(Ay..) [l Ak.: |1

Here, Ay . refers to the kth row of A. Furthermore, nnz denotes the number of non-zero elements of
a vector and ||-||; the 1-norm. Clearly, large values for wy, indicate that the kth row is fairly sparse
and/or has an element which is fairly large in absolute value when compared to the remaining
elements of that row. Hence, we select the row for which wy is largest to be the first row of the
permuted matrix and we permute the column of A containing largest element by absolute value
of the row selected onto the diagonal. We proceed with the remaining rows analogously. In other
words, we choose the row for which wy is second largest to be the second row of the permuted
matrix and permute columns so that the largest element by absolute values is again moved onto
the diagonal provided that this is possible. It certainly is possible that the largest element by
absolute value of a particular row is in a column which has already been selected and permuted in
a previous step. In this case, we cannot move the largest element by absolute value of this row onto
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Figure 3.3: Multilevel preconditioning process.

the diagonal. Hence, we reject this row and move it to a high index arbitrarily. In this manner,
we obtain a new matrix which has better properties for a large initial block and a final block of
rejected rows. For details and other approaches see [135].

Multilevel Factorisations

For simplicity, we begin by describing a complete multilevel LDU factorisation as developed in [23]
and [135]. We split the preprocessed square coefficient matrix A into a block matrix

- (28)

such that the diagonal blocks B and C' are square matrices. Next, we calculate an LDU factorisation
B = LBDBUB of B and obtain

B F\ (L O Dp 0 Up Fp
(2e)=(m ) s)(T7)
Thus, Lp is a unit lower triangular, Up is a unit upper triangular and Dpg is a diagonal matrix.
The matrices Ep and Fp are formally given by Ep = EUnggl and Fg = DgnglF and
S = C — EgDpFp denotes the Schur complement. However, in practice, these matrices are
calculated by Gaussian elimination and not by the formulas above. Next, we proceed recursively
by setting A = S, preprocess to obtain a new A and factoring once more. After a certain number
of levels, we finish by completely factoring the final Schur complement.

Note that in practice, the block structure of A does not need to be determined in advance. It is
possible to begin factorisation, to terminate whenever this seems to be a good idea and to proceed
in calculating the Schur complement. Hence, the block structure is determined during the course
of factorisation. For the results in this work, we terminated the level whenever the absolute value
of the pivot was less than 0.01.

The actual factorisation used is based on Crout’s implementation of Gaussian elimination in
the form presented in [103]. To use this factorisation, the matrix A needs to be available in either
compressed sparse row or column format, see [133]. In a Crout factorisation, L is calculated by
columns and U by rows, so that the former is stored naturally in compressed sparse column format
and the latter in compressed sparse row format. However, during the kth step of elimination, we
need to access both the kth row and column of A, L and U as shown in Algorithm 1. Obviously,
as each matrix is only available in one format, accessing them by both by rows and columns is
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row z

column w

A

Figure 3.4: Computational pattern for Crout factorisation at k-th step where k-th row of U (denoted by
z) and k-th column of L (denoted by w) are computed by means of the entries in blue area.

not possible in this form. However, rows and columns are accessed in their natural order, so it is
possible to implement some additional, rather intricate, data structures of dimension 3n for each
matrix to solve this problem, see [103] for details.

Algorithm 1 ILUC - Crout version of ILU.
for k=1,...,n do
initialise row z : z1:5-1 = 0, 2k = Ak kin
fori=1,...k—1and ly; #0do
Zkin = Rfkn — lkiui,k:n
end for
initialise column w : wi.x = 0, Wkt1:n = Glt1:n,k
fori=1,...k—1and u;; # 0 do
Wk+1:n = Wk+1:n — uiklk-l-l:n,i

end for
apply dropping rule to row z and column w
Uk, = 2%
l;,k = w/ukk, e, =1
end for

The Dropping Rule

Although a larger number of different dropping rules are available to ensure sparsity such as the
standard dual threshold strategy, see [133], or the inverse-based approach, see [22] and [103], we
chose to use a technique which attempts to minimise the propagation of errors during the course
of factorisation, see [113]. This technique is somewhat better than the standard strategy and as
good as the inverse-based strategy for most problems. However, the inverse-based strategy requires
more computational time, so we used the error-based approach. Let w denote the kth column of L,
2T the kth row of U and d the pivot being calculated in the kth step of elimination (see Figure 3.4
for the computational pattern). In subsequent elimination steps, the Schur complement would be
modified by the matrix wdz” if no dropping were performed. Hence, the error made in dropping
element w; in w can be estimated by |w;]| - |d| - ||z||1. The error-based strategy drops w; if

wil - [lz[ly <7

holds for a given (fixed) threshold 7 > 0. Actually, it would seem more natural to drop w; if
|w;|-1d| - ||z]|1 < 7, however this would result in many elements being dropped whenever |d| is very
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Parameter description recommend /used value
Threshold dropping tolerance 7 = 10~°¢ tel,3]
min_pivot tolerance for termination of one | 0.01
level
Preprocessing_Type different orderings of initial ma- | 0 = normalisation of A,
trix 1 = PQ-reordering,

several other I-matrix based
reorderings and permutations
are available
Preconditioner_Number type of incomplete factorisation | 1010 for multilevel ILUC fac-
torisation

max_levels maximum number of levels 10

Table 3.2: Parameters for the multilevel ILU preconditioner by ILU++-.

small. Experimentally, this appears to be harmful. Similarly, an element z; is dropped only if

lwlly - 2] < 7.

Implementation Details

The whole framework of multilevel preconditioner described above is given by the object-oriented
C++ software package ILU++ [112]. The interface is very simple and the user can compute a solution
of a linear system in a single step. The call

solve_with_multilevel_preconditioner (ROW,val,ja,ia,...,param)

computes the preconditioner, applies a linear solver and returns the solution. It is assumed that
the coefficient matrix A is stored in compressed sparse row format. val, ja and ia are standard
template library vectors containing the adjacency structure and values of A. A similar call can be
used if the data are stored in traditional C-style arrays or for matrices in compressed sparse column
format. param is an object containing the actual parameters used for setting up the preconditioner.

However, for our tests, we used an alternative which allowed us to incorporate the ILU++
multilevel preconditioner in several iterative solvers. This approach required two steps to setup
the preconditioner and single call to apply the preconditioner to a vector. First, we need to declare
the preconditioner with the call

iluplusplus::multilevel_preconditioner Pr.
Next, we setup the preconditioner for a matrix A stored in compressed sparse row format by calling
Pr.setup(val, ja, ia, ROW, param).

The parameters of ILU++ preconditioner, as indicated in the Table 3.2, can be set in the param
field. After setting up the preconditioner, it may be applied to a standard template library vector
v by calling

Pr.apply_preconditioner (v).

Again, a similar call exists if v is a C-style array.

3.2.2 Numerical Results for the Multilevel ILU Preconditioner

All calculations were done by the finite element software HiFlow? with an interface to the precon-
ditioner ILU++, compiled with the GNU gcc compiler in version 4.4.3. We used a compute-server
with Intel Xeon X5540 CPU at 2.53 GHz and 6 GB of main memory for all 2D calculations,
whereas for the 3D calculations a main memory of 12 GB was used. Here we show the influence of
different thresholds on the solution time and memory costs (fill-in ratio) for different problems of
channel flows in 2D and 3D as presented in Chapter 1. Instead of solving Navier-Stokes equations,
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Figure 3.5: Results for the multilevel preconditioner with normalisation and PQ-reordering in the 2D
case of backflow geometry using different threshold.

we first choose to solve only Stokes equations at Reynolds number 42.0 to get rid of influences
of the nonlinear Newton-solver on the linear solver. Furthermore, we compared the behaviour of
the solver when different preprocessing routines, i.e. normalisation and PQ-reordering, were per-
formed on the initial matrix A. For all tests (except for the direct solver) we terminated the linear
solver after 5000 GMRES-steps (with restart each 30 steps) or when the residual in k-th steps,
ie. rp, =b— Axy, fulfils

7k]l2 < max(1072 - ||rol2, 10712).

The 2D Case

In the 2D case suitable preconditioners (with respect to fast computational times) were achieved
with normalisation and PQ-reordering - but it should be mentioned that the PQ-reordering pro-
duces more stable solvers in the sense of arithmetic overflows. As shown in Figure 3.5 for the
backflow geometry a mesh dependent threshold ¢ € [2.0,2.5] results in best solution time. While
the number of GMRES-steps decreases the bigger the threshold is chosen, the fill-in obviously in-
creases, where we observe a slightly higher fill-in for the normalisation compared to PQ-reordering,.
Dependence on the mesh, i.e. on the size of the system matrix, can be explained heuristically: at
small sizes the matrix-vector multiplication is obviously fast, so that additional costs for setup of
the preconditioner and additional elements within the preconditioner weight at lot. The bigger
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Geometry system matrix GMRES/ILU++ GMRES/ILU(0) UMFPACK
size nnz steps time steps time time
2Dbackflow | 32243 1290969 148 | 3.47 sec | >5000 >83 sec 0.88 sec
2Dbackflow | 127843 | 5151529 357 40 sec | >5000 | >351sec | 6.34 sec
2Dbackflow | 509123 | 20581449 | 328 331 sec | >5000 | >1366 sec 53 sec
2Dmeander | 15443 595449 51 0.72 sec | >5000 >37 sec 0.23 sec
2Dmeander | 59683 2358889 200 | 8.24 sec | >5000 | >158 sec 1.24 sec
2Dmeander | 234563 | 9389769 158 | 93.6 sec | >5000 | >711 sec 7.5 sec

Table 3.3: Comparison of iterative and direct solver for the 2D case. For the GMRES results the
best /fastest version of ILU++ preconditioner is used.

the matrix size the more time is spend on a simple matrix-vector multiplication and therefore a
denser preconditioner is of smaller consequence for the total solver time. This observations holds
true until the threshold is such high that the setup of preconditioner dominates the whole solution
process. For the multilevel approach while setting up the preconditioner almost always just two or
three levels are used and in the case of normalisation of A we even restrict to only one level, since
after a small pivot occurs the Schur complement matrix at next level would not be permuted (just
normalised) and therefore the matrix would not be in a better shape.

Finally for matrices arising from 2D-discretisations a comparison to a direct solver like UMFPACK
[38] shows disadvantage for preconditioned iterative solvers if the absolute computational time for
the linear solver is of importance - see Table 3.3 for details. Only if in addition the storage has
strict limitations an iterative solver will be superior to a direct solver. Nevertheless, compared to
one of the most often used preconditioners, namely ILU(0) decomposition of the system matrix,
we achieve much better results since the GMRES solver with ILU(0) preconditioner throughout
needed more than 5000 steps and a dedicated pivoting method due to the lower right zero-block
in the stiffness matrix.

Remark 3.2.1

Besides the pure algebraic observations on solver time and fill-in, a noticeable difference for the
solver can be observed, when boundary conditions are changed. In Figure 3.6 we compared the
pressure-drop boundary condition to the do-nothing condition (as introduced in Chapter 2), and
noticed a better behaviour for the pressure-drop condition. Thus, also the algebraic solver seems to
be influenced by a more physical choice.

The 3D Case

In the 3D case we achieve quite the same results. For system matrices A as shown in Table 3.5,
we found that normalisation of A results in a faster preconditioner than PQ-reordering, which is
obvious since no permutation is done. Compared to the 2D case, where normalisation of A often
led to arithmetic under- or overflow, the structure of 3D matrices seems to be more robust in that
sense. Furthermore, the fill-in is much lower, since the entries of the matrix A are of order O(h?3)
instead of O(h?), with h being the size of a mesh-cell. However, a threshold about 2.0 is also
enough to achieve good, i.e. fast, preconditioners. Comparisons with a direct solver in the 3D case,
as shown in Table 3.5, shows the advantage of preconditioned iterative solvers over direct methods.
The latter takes much more computational time or even ran out of memory, which is given due to
more couplings of degrees of freedom in the 3D case and therefore a denser discretisation matrix,
for which the factorisation is harder to compute and results in more fill-in. We compared the fill-in
for L, U matrices of the UMFPACK solver and L, D, U matrices of the ILU++ preconditioner in
both 2D and 3D case of backflow geometry (cf. Table 3.4) to underline the difference of 2D and
3D discretisation matrices.

Main conclusions one can draw for the proposed multilevel preconditioner in the 3D case (we
only report the results of the backflow geometry - see Figure 3.7 - these coincide with the ones for
meander geometry):
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Figure 3.6: Results for the multilevel preconditioner with PQ-reordering in the 2D case of meander
geometry using different threshold. Comparison of different boundary-conditions used for

discretisation.

Geometry | solver/precond | size of A | nnz(A) nnz(LU) | fill-in
2Dbackflow UMFPACK 32243 1290969 7494013 5.81
2Dbackflow | ILU++ (¢t = 2.0) 32243 1290969 3179869 2.46
3Dbackflow UMFPACK 62344 | 12408076 | 111783808 | 9.01
3Dbackflow | ILU++ (t =2.0) | 62344 | 12408076 | 6908249 0.56

Table 3.4: Fill-in for direct solver UMFPACK and ILU-++ preconditioner.
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Geometry system matrix GMRES/ILU++ UMFPACK
size nnz storage | steps time time
3Dbackflow | 8666 1595386 | 18.4 MB 20 0.37 sec 0.92 sec
3Dbackflow | 62344 | 12408076 | 143 MB 32 5.49 sec 41.6 sec
3Dbackflow | 472748 | 97872616 | 1130 MB 93 116 sec | out of memory
3Dmeander 8034 1232626 | 14.2 MB 13 0.22 sec 0.31 sec
3Dmeander | 51368 9227116 106 MB 27 3.32 sec 5.44 sec
3Dmeander | 363948 | 71349736 | 821 MB 95 84.3 sec 274 sec

Table 3.5: Numerical settings of the preconditioner tests on 3D discretisations. Additionally the results
of the iterative solver is given compared to a direct solver.

e allowing slightly more fill-in (by increasing the threshold) results in a major decrease of
GMRES-iterations,

e fill-in for the preconditioner is nearly negligible for thresholds beneath 2.5,

e time for solving the linear system depends directly on the threshold - more threshold results
in lower solver-times but more time is spent for setup of the preconditioner, which gives
higher overall solution-time,

e optimal threshold in the sense of overall solution-time is in the range of [1.5,2.25] depending
on the size of the matrix, i.e. the level of mesh refinement, which is less than in the 2D case,

e while using approximately the same computational time, PQ-reordering allows less fill-in but
uses more GMRES-steps compared to normalisation of A,

e for the PQ-reordering of A in most cases 2 or 3 levels of the multilevel approach are enough,
while for normalisation of A restriction to one level is chosen as mentioned above.

So we conclude that a multilevel preconditioner based on preprocessing and ILU-decomposition
with variable threshold dropping rule is superior to a direct solver for the discretisation of 3D Stokes
and Navier-Stokes equations. For almost all testcases a threshold of 7 = 10~ with ¢ € [1.5,2.25]
achieved the best performance in the sense of overall computational time for the linear solver and
simultaneously uses a reasonable fill-in.

Remark 3.2.2

All results were given on the basis of discretisation of Stokes equations, such that Newton’s method
only needs one single step. However, the results were the same for the full Navier-Stokes equations,
when the average of all Newton-steps is taken - see Figure 3.8. We almost always needed 6 Newton
steps to get the desired relative residual of 10™° for the nonlinear equation, where the stopping
criteria for the linear solver in each step are chosen as before - this turns out to be not that good
idea, as we will see below.

Outlook on Parallel Solver Using Multilevel ILU Preconditioner

The presented results are just based on sequential solver. For finer meshes and especially for 3D
discretisations the number of degrees of freedom easily grows up to an order of 106, which prohibits
the use of sequential solver for reasons of computational time and memory costs. A possible way
to use multilevel ILU preconditioners in the framework of parallel solvers will be given in Chapter
4 where we present two approaches:

1. parallel block Jacobi preconditioner with local multilevel ILU decomposition as shown in this
section,

2. inexact parallel Schur complement solver based on multilevel ILU decomposition as precon-
ditioner for global iterative method.
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Figure 3.7: Results for the multilevel preconditioner with normalisation and PQ-reordering in the 3D
case of backflow geometry using different threshold.
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Figure 3.8: Results for the multilevel preconditioner with normalisation of A in the 3D case of backflow
geometry using different threshold. Comparison of mean value for all Newton-steps of Navier-
Stokes solver to Stokes solver.

3.2.3 Inexact Newton Method with Adaptive Forcing Terms

Algorithm 2 Inexact damped Newton method.
let 2o, Nmaz €10,1), ¢t € (0,1) be given; set k =0
while ||F(z)|| > max(atol, rtol - ||[F(xo)||) and k < mazits do
choose forcing term ny, € [0, Nmaz] and dxy such that

1 (k) + F' (z)oxe || < nell ()|

while ||F(xg + dxg)|| > [1 — t(1 — n)]||F (zk)|| do
choose damping parameter A € [0, 1] e.g by Armijo Backtracking rule
dxy, = Noxy and n =1 —¢(1 — n)
end while
update solution zp1 = xp + 0xk; k=k+1
end while

In the previous subsection we worked out results for linear solver only using Stokes equations as
model problem. The results for Navier-Stokes equations are the same if the average of all Newton-
steps is taken. Nevertheless, there remains some doubt if we solve nonlinear systems with Newton’s
method and do not use a direct solver in each step. The common convergence theory of Newton’s
method depends on the fact, that the resulting linear systems are solved exactly, i.e. we have the
classical Newton iteration for the nonlinear equation F(z) = 0:

Tpy1 = Tk + Az, where F'(zy)Azy = —F(z1). (3.30)

If we now replace this iteration by:

Thy1 = xp + 6z, where F'(xy)0xy = —F(x,) + 1, TT| <k, (3.31)

which means that we solve the linear system only up to a relative residual of 7, the question arises
which tolerance 7 must be reached by the linear solver not to destroy the convergence properties
of Newton’s method.

In standard literature this second type of Newton iteration is called inexact Newton method
since the arising linear systems are no longer solved exactly. By using iterative methods like
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GMRES we now have to distinguish between an outer iteration (the Newton step) and an inner
iteration (the GMRES step) and have to answer the questions how the inner iteration can influence
the convergence of outer iteration and how the outer iteration might lead to adaptive convergence
criteria for the inner iteration. In what follows we will present two ways to tackle this problem -
first we briefly recall the main results of convergence theory for inexact Newton methods (based
on [39] and [45]), which give an insight on the influence of inner iteration to the outer one. Second
we will present results on affine invariance studies of Newton’s method (following the work of
Deuflhard [42]) which allow to create adaptive convergence criteria for the inner iteration based
on the actual status of outer iteration. Such an adaptive way to set the tolerances 7y, also called
forcing terms, was already presented in earlier works, e.g. [5, 40, 44, 124], but these are more
heuristically motivated.

Analysis of inexact Newton method used for numerical solution of finite dimensional nonlinear
systems as shown in Algorithm 2 can be found in [95, 121]. If a sufficiently good initial guess x is
at hand, we can skip the globalisation and get the following local convergence result (see [39] for
proof), if the forcing sequence {7} is uniformly less than one.

Theorem 3.2.1 (Local convergence of inexact Newton method)

Let F: D CR™ — R™ be a nonlinear function with and let x* € R™ such that F(z*) =0. If F
is continuously differentiable in a neighbourhood of x*, F'(x*) is reqular and ni < Nmax <t < 1,
then there exists an € > 0 such that, for ||xo — z*|| < &, the sequence of inexact Newton iterates
{xk} converges to x*. Moreover the convergence is linear in the sense that

IF (") (@ — 27| < EF (27) (@x — 27)]].

The proof, like the classical convergence of Newton’s method (Newton-Kantorovich or Newton-
Mysovskii theorem), bases on two main assumptions, namely

F'(x)~! exists and is bounded ||F'(z)™!|| < B < oo for z € D,

3.32
F'(z) complies a Lipschitz condition ||F'(z) — F'(y)|| < 7|z — y|| for x,y € D. (8:32)

Furthermore, the condition of xy being sufficiently close to x* can be characterised by means of
the so-called Kantorovich quantity

ho == ||A$0||ﬂ% Axy = 1 — o,

which is assumed to be sufficiently small. In general this quantity cannot be computed for practical
implementations, such that one cannot guarantee an initial guess to be sufficiently good. Hence,
globalisation techniques are introduced to assure convergence even for bad initial guess, like the
proposed Armijo damping in Algorithm 2. For this we have the following convergence theorem
given by Eisenstat and Walker [45]

Theorem 3.2.2 (Global convergence of inexact Newton method)

Assume that Algorithm 2 does not break down. If x* is a limit point of {xy} such that F'(z*) is
invertible, then F(z*) = 0 and xx — x*. Furthermore, initial dxy, and X = 1 will pass damping
step for all sufficiently large k.

The preceding theorems guarantee at least linear convergence of the global inexact Newton
method with damping but do not point out a strategy for choosing the forcing terms 7. This task
is addressed in many papers, e.g. [5, 40, 44, 124], and some choices were already under investigation
in the context of solving Navier-Stokes equations, see [140]. For any further studies we will use the
following somewhat heuristic proposals by Eisenstat and Walker [44]

e choice 1: given 1y € [0,1), choose

_ IF @) = Fleg) = Fl(zp1)ozp |
[F(zr—1)

- for k=1,2, ... (3.33)



3.2 Inexact Newton Method with Adaptive Forcing Terms 65

e choice 2: given a € (1,2], v € [0, 1] and g € [0, 1), choose

(@
nki,y(HF(mk—l)H) for k=1,2, ... (3.34)

and by Dembo and Steihaug [40]
e choice 3: n = min{ 2, | F ()|} for k=1,2,...
e constant: 7, = 107!,1073,107° for all k.

These strategies were not based on convergence analysis rather on efficiency and accuracy matching
properties of inner and outer iteration, but the convergence of the inexact Newton method can be
proven. A different way is proposed by the affine invariance approach in [42]. Herein the classical
Newton-Kantorovich or Newton-Mysovskii theorems are replaced by affine invariant versions and
construction of adaptive Newton algorithms is done by the paradigm to "realise affine invariant
computational estimates of affine invariant Lipschitz constants that are cheaply available in the
course of the algorithms".

Since we use GMRES algorithm, we restrict the affine invariance theory to the special case of
affine contravariance, which leads to results formulated in terms of residuals F'(xj) preferable in
the context of GMRES. Let therefore B € R™" be an arbitrary regular matrix and consider the
class of problems

G(y) = F(By) =0, = = By.

Observe that the assumptions (3.32) can also be stated as
I(F'(z) = F'(2))(@ — 2)|| <77 - 2| = || F'(2) " F'(2)(z — 2)||* < 8% F'(2)(z — 2)]%,
where the Lipschitz constant w = 32 is affine contravariant since both sides are independent of B
G'W)(H—y) = F'(2)B(y —y) = F'(z)(z — 2).
The way to derive practical Newton methods with adaptive choice of forcing terms is now:
1. identify theoretical local Lipschitz constant w such that w = sup g¢g(z,y, 2) with g(z,vy, 2)

z,y,2€D
containing only affine invariant terms,

2. define computational local estimates [w] = g(&,, 2) for specific &, 7, 2 and [w] < w.

We use the notation [h] as introduced in [42] to describe an estimate of the theoretical value h.
Without going into details we only present the main theorem for inexact Newton method with
inner GMRES solver in the sense of affine invariance theory as proven in [42].

Theorem 3.2.3 (Convergence of inexact Newton method with inner GMRES)

Let F: DCR® — R", F € CYD), D conver. Denote by xo € D the initial guess for inexact
Newton iteration (3.31). Assume the affine contravariant Lipschitz condition

I(F"(y) = F'(2))(y — 2)l| < w|[F'(2)(y — 2)|* for 0 <w < o0, z,y € D.

Let the level set Ly := {x € R™ : ||F(z)|| < [|[F(x0)||} € D be compact. For each iterate x), € D
define hy, := w|F(xy)||. Then the residual norm of inexact Newton iteration can be bounded as

1
1 (2rs)l| < O+ 5 (1= o)) [F () (3.35)
The convergence rate can be estimated as follows:

1. Assume that the initial guess xo gives rise to hg < 2. Then some 0 in the range % <fh<1
can be chosen. Let the inner GMRES iteration be controlled such that n, < 6 — %hk. Then
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the inexact Newton iterates {xi} converge at least linearly to some solution x* € Ly at an
estimated rate

17 (zesa)]l < 01 F (i)

2. If, for some p > 0, the initial guess xg guarantees that hy < %p and the inner iteration is
controlled such that
e Lo (3.36)
1—ni — 207
then the convergence is quadratic at an estimated rate
1
1E ()] < Sw(l+ p) (1= n)I1F () (3.37)

As for the classical convergence theorem we get convergence as long as n, < 77 < 1, but
additionally we are now able to use this theoretical convergence result for practical implementation
of adaptive Newton method. If a user prescribed initial forcing term 7y is given, an a-posteriori
estimate of the unknown Kantorovich quantity hj for the quadratic convergence estimate (3.37)

can be done by
LF (ki)

[[F ()l
hals = — @I p
hel2 = G @ -

and also an a-priori estimate is at hand

(hesr] o= 1@ P (@sn)ll
T E@ TF G|

Since the above theorem claims the inner iteration to be controlled via (3.36) we obtain the adaptive
convergence criteria

[hi]2 < hi = hjpt1. (3.38)

Mk
L—n
based on computational available estimates. For convergence of Newton’s method, i.e. ||[F(z)| — 0
as k — oo and therefore hy — 0, this requirement is simply 1, — 0 which reflects the fact that

the inner iteration has to be more accurate when Newton’s method reaches the solution. A second
estimation can be done by the inequality

1
< —
< 2p[hk]

1
| F(wg41) — rell = |1F (wx + k) — ricl| = || F'(2x) + /F'(wk + téwg )dxy, dt — 7|
0

1 1

1
< [11F o+t — o)l dt < [ ol Fonjton|? de
0

0

/ 1 1
/lﬁwIIF’(fEk)&Ek||2 dt = Sw|| F(ze) = ril|* = 5w = n) | F(ze)|?
0

(L= n)he | F ()],

N | —

where we used the affine contravariant Lipschitz condition of theorem above and the well-known
property of GMRES that

llro = r&ll* = (L = n@)Iroll*  with ro = F(z).
Hence we get a second a-posteriori estimate

iy o 2E ) il

=D IFa) =™
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and the according a-priori estimate

1@l

o] = g

[hi)1 < hgga-

We now want to show that both estimates can also be interpreted as the choices by Eisenstat and
Walker. Therefore take the convergence condition of inner iteration (3.36) first with p = 1 fixed
and with the a-posteriori estimate [hy]; which gives

M [hk] | F(zg+1) — 7k < I hi
1—n} =3 (T =) E ()]
| F(zrt1) — 7l

=Mk <
[ ()l

Obviously this condition results in what was already proposed in (3.33) when we shift the index of
Mk t0 Ni+1. Let now p > 0 be arbitrary and evaluate (3.36) with the a-priori estimate (3.38) which
gives

ME@ll
||F(zkf )l

B ) IF@Ol \? _ ph
el = = (TFme)) <3

and therefore

p(1—1n?) ( | F (x) | )2.
1+ p)(1—nf_)) \|F(zp_1]]

By an adequate choice of the parameter v and « in (3.34) we can recover this specific estimation.
Hence, the more heuristic choices of Eisenstat and Walker (3.33) and (3.34) turn out to be given
as computational estimates of Kantorovich quantity if the convergence results of inexact Newton
method are based on affine invariant Lipschitz condition.

e <
(

Numerical Results

In order to judge the above adaptive choices of forcing terms in the framework of Navier-Stokes
solver, we compared the following criteria for n:

|HF o) |=I1F(@r—1)+F' (z—1)dzs-1 ]

e choice 1: 7y [[F(zr—1)l

e choice 2: n; = (%)a with « =2 and v =0.1,0.5,0.9

e choice 3: n, = min{ﬁﬂ, |1F(xk)||}
e constant: n, = 1071,1073,107°

12’;@ < 3plhy] = g%[hk_l]g with p = 0.9 and a-priori estimate for

e affine invariance:

Kantorovich-quantity [hi] < hy.

For the first 4 choices we used damped inexact Newton method as shown in Algorithm 2 with
Armijo backtracking update. In the affine invariant case, we implemented the adaptive choice of
damping factor as reported in [42]. The model-problem was given by sequential Navier-Stokes
solver at Reynolds number 42.0 with multilevel incomplete LDU preconditioner and 3D backflow
geometry, mesh-level 4 resulting in 472748 degrees of freedom (see Table 3.5 for details).

Forcing term 7, proposed as in choice 2 gave the best (in terms of overall computational
time) results for the parameter v = 0.5 so that we will compare this to all other choices. If we
first compare to constant forcing values as done in Figure 3.9, we see the effects of under- and
oversolving. For the very weak choice of 7y = 107! Newton’s method does not lead to local
quadratic convergence and therefore requires too many steps. On the other side a strict choice
of n, = 1072 ensures local quadratic convergence but at the costs of too many GMRES steps in
the first outer iterations leading to high overall solution time. Somehow a lucky and competitive
choice is 7, = 1072 but this was just the case for this single example.
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Figure 3.9: Convergence histories for inexact Newton method using constant choices of the forcing terms.

A second comparison is done among all adaptive proposals for the forcing terms 7. As shown
in Figure 3.10 the main conclusions are:

e all adaptive choices, except choice 1, behave quite the same,

e especially the affine invariance choice by Deuflhard achieves the same numerical results as
the choice 2 of Eisenstat and Walker - a fact that was already mentioned above theoretically,

e the best overall results in term of fast convergence and less GMRES steps was achieved by
choice 2.
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Figure 3.10: Convergence histories for inexact Newton method using adaptive choices of the forcing
terms.
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Chapter 4

Domain Decomposition and Parallel
Solver

The algebraic systems arising from discretisation of 3D problems under investigation (cf. Section
3.2) are typically of order 10° — 10° and already hit the wall for pure simulation using sequen-
tial algorithms. Since the introduced optimisation based on the adjoint or sensitivity equations
necessitates the repeated solving of such equivalent systems, the nonlinear resp. linear algebraic
solver will be the critical part of the overall solution process. A possible way out might be a model-
reduction approach leading to smaller systems or an extension of the previously presented solver to
parallel architectures. In this work the latter approach is chosen and we will show in this chapter
how the finite element based discretisation can be used to derive parallel solver frameworks. The
challenge of parallel solvers for large-scale problems is the irreducibility of the system, i.e. each
degree of freedom depends upon all others - no degree of freedom may be removed and be solved
for in isolation, except for the decomposition of potential, Navier-Stokes and convection diffusion
equation.

First we will in general present the idea of domain decomposition techniques aimed to create
smaller and/or less difficult problems that can be solved in parallel. Afterwards we will show two
ways how the multilevel ILU based preconditioner introduced in the previous chapter can also be
used in a parallel setting, namely within a row block data structure and within Schur complement
approach in domain decomposition.

4.1 Introduction to DDM

Domain decomposition methods (DDM) sound like a relatively straightforward paradigm to par-
allelise the underlying problems, namely the domain, say 2; from Section 3.1, is decomposed
into several other domains. However, the meaning of the term domain decomposition depends
strongly on the underlying context, so that a first distinction seems necessary. In general domain
decomposition might be referred to:

e coupling of different, physical models in different regions of the underlying problem with the
interface between the domains handled by various conditions,

e optimal discretisation techniques for the underlying equations that might vary in different
regions,

e efficient iterative solvers and preconditioning methods for the arising system of equations
that base on data distribution over several processes,

e special parallelisation techniques on modern supercomputers describing the process of dis-
tributing data from a computational model among the processes in a distributed memory
system.
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A clever combination of these steps in simulation and optimisation for partial differential equations
is the key for fast and reliable numerical solvers. For a comprehensive introduction to the study
of domain decomposition methods we refer to [110], while an overview of current work in this field
of research can be found in the series Domain Decomposition Methods in Science and Engineering
[16].

In this work we concentrate on the last two points assuming a given discretisation of the under-
lying equations based on conforming finite element method on regular meshes as defined in Section
3.1. Hence we claim that the discretisation and decomposition itself is somewhat optimal, but one
might also use separate finite element discretisation on nonoverlapping subdomains with meshes
on the subdomains that do not match on the interface. Such discretisation methods for partial
differential equations are known as mortar methods [161] and represent a domain decomposition
technique in the sense of the first two points. The challenging task for this approach is obviously
the conformity of the solution over subdomain interfaces which is enforced by Lagrange multipli-
ers. Mortar discretisation are then naturally solved by iterative domain decomposition methods
such as FETT (see [48, 155] and references therein). A comprehensive presentation of domain
decomposition methods for the solution of algebraic systems arising from the approximation of
partial differential equations can be found in the monographs and surveys of Chan and Mathew
[30], Toselli and Widlund [155], Quarteroni and Valli [127] and Smith, Bjgrstad and Gropp [143].

Even if we refer to domain decomposition in the proper meaning of the word, i.e. partitioning
of the computational domain, a further differentiation for the resulting solution approaches is
meaningful. The variety of possible methods might be classified by the moment of decomposition
in the overall solution process:

continuous: decomposition is applied to the partial differential equations,
discrete: decomposition is applied to the system of equations after discretisation.
Alternatively, one might distinguish the methods by the kind of decomposition:

overlapping: neighbouring subdomains overlap each other - leading to the class of Schwarz
methods,

non-overlapping: neighbouring subdomains only share boundaries (points, lines, surfaces)
- leading to the class of substructuring methods.

Finally a third classification can be derived:

direct methods: these methods involve the construction by explicit condensation of lower-
dimensional systems for degrees of freedom that act as separators - for differential equations,
this is the Steklov-Poincaré operator, in linear algebra, it is the Schur complement,

iterative methods: in its simplest version this involves an iteration over the subdomains,
where the unknown boundary data is repeatedly updated by neighbouring domains - again
this is the class of Schwarz methods.

Common to all these methods is a decomposition of the original domain into smaller subdomains.
This splitting leads to overlap regions or new boundaries between two or more subdomains, called
artificial boundary or sceleton. Such parts of any subdomain boundary have to be distinguished
from the original boundary 912, since there might be subdomains with only artificial boundaries.

Definition 4.1.1
Let Q C R? by an open, connected, bounded set and define a decomposition into M subdomains by

M
o=Jo
i=1

where Q; C Q2 are open, connected and bounded sets. If ;NQ; =0 fori#j andi,j=1,....M
the decomposition is non-overlapping, otherwise it is overlapping. In the non-overlapping case,
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.

vertex based element based

Figure 4.1: Types of domain decomposition for the mesh 7.

define I'y; =T'y; = Q; ﬂﬁj, i # J as the interface between two subdomains and

r=Jr;

i#]

as the sceleton' . For the overlapping case, define T';; = 0Q; NQ; # Tj; as the boundary of Q; that
lies in Q;.

This definition holds true for any domain 2 independent of a possible associated finite element
mesh 7. For the case that a set of cells is given, a further differentiation can be done (cf. Figure
4.1):

vertex-based decomposition: edges and cells may straddle between subdomains, only
vertices are unambiguously assigned to subdomains,

edge-based decomposition: edges are not allowed to split between different subdomains,

element-based decomposition: each cell/element is unambiguously assigned to a subdo-
mains.

When solving problems that arise from discretisation of partial differential equations by means of
finite element method, the element based decomposition offers best properties as we will show later.
In the sequel the main ideas of direct and/or iterative solvers as well as preconditioners based on
different kinds of domain decomposition are pointed out using a generic partial differential equation.
Therefore let L be a differential operator defined on the domain € and we consider for simplicity
only the Dirichlet boundary-value problem

Lu=f in Q,

4.1
u=g on 0f). (4.1)

Remark 4.1.1

We only for short denote the main concept of parallel architectures used in the sequel - for a
detailed overview we refer to [128, 129]. Nowadays a clear separation of types of systems by either
the memory access pattern or the instruction and data set processing seems more and more tricky
due to upcoming multicore and coprocessor technologies. To our use we stick to the SIMD design
meaning that a single instruction is performed in parallel by multiple processing units using multiple
data. This scheme directly reflects the idea of domain decomposition as presented before and we will
therefore almost always identify a subdomain Q; with a processing unit P;. For the sake of generality

ISince in this chapter the focus is not on the boundary of 92, there should be no confusion about the notation
of I' even if we used this notation previously also for 9f2.
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we do not specify any concrete meaning of a processing unit (this might e.g. be a CPU or GPU) but
instead refer to general processes which work in parallel on different data. Whether each process
owns its own memory or shares it with several others (like on any actual used multi-core processor)
is of minor concern within this thesis. We only expect that the processing units are interconnected
by a specific topology which might be a bus or any network allowing a message passing between each
processing unit. As one of the standard specifications of a language-independent communication
protocol used to program parallel computers we use the Message Passing Interface (MPI) [54].

4.1.1 Overlapping Methods

If the domain decomposition is applied on the continuous level of the partial differential equations
and additionally a particular overlap of subdomains is assumed, the class of alternating Schwarz
methods can be derived [137]. Let us denote by w;; the values of solution u lying on I';;, i.e. in ;.
We restrict the global problem (4.1) to the subdomains §2; and seek for a local solution u; in €;,
such that

Lui == f in Qi;
Uq = Uiy on Fz]

Obviously, if solutions u; and u; of subdomains €;, 2; with i # j coincide in the overlapping area
Q;; = Q; N Q;, the global solution to problem (4.1) can be composed as

M
i=1

However, it is not clear how to set the boundary-values u;; in (4.2) unless the solution is known. The
class of Schwarz methods hence solves the local problems (4.2) alternately on different subdomains
Q; - giving the original name alternating Schwarz method. Starting with an initial guess for the
global solution, the problem on a subdomain is solved using the guess as part of the required
boundary conditions. Two schemes can be distinguished depending on the update of values u;; for
next subdomain.

Multiplicative Schwarz method: Given an initial guess for the global solution u, the
algorithm iterates over all subdomains ; and solves the local problems (4.2) leading to
a new global solution. Hence the algorithm is pure sequential and would only allow for
parallelisation, if the subdomains are grouped to sets without overlap by a colouring such
that no two subdomains which share common points have the same colour. Each process
owning a set of non-overlapping subdomains can then solve the local problems in parallel and
afterwards an exchange of local solutions will be performed building the new global iterate.

Additive Schwarz method: Here the subdomains are distributed to processes without
regarding the overlap. Each process solves the local problem (4.2) using the last available
solution u;; from the global iterate. Only after all subdomain solutions u; are computed an
exchange between all processes is done, representing the new iterate global solution. This
improvement have been introduced in [43].

The Schwarz methods are one of the first domain decomposition techniques used (cf. [106, 107])
and so a wealth of theory is available especially for the case of elliptic partial differential equations,
ranging from the conditions required for convergence to estimates of the rate of convergence as
a function of the amount of overlap (cf. [155]). At least the convergence of Schwarz alternating
methods for the stationary Navier-Stokes equations has been proven in [109] if the Reynold number
is sufficiently small. Nevertheless, nowadays the Schwarz method is more often used as a precondi-
tioner for an iterative solver such as a Krylov subspace method. An extensive introduction to the
Schwarz method used as a preconditioner in the framework of elliptic partial differential equations
can be found in [143]. Beside more theoretical aspects also implementation issues are faced and
an extension of Schwarz methods as multilevel preconditioners is presented. We will not prove
convergence results for the Schwarz preconditioner (cf. [80] for this) but note that for many elliptic
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differential equations using overlapping Schwarz methods in conjunction with a Krylov subspace
method the following convergence behaviour can be shown:

e number of iterations (to reduce the initial residual norm by a fixed factor) grows with the
inverse of the subdomain size,

e number of iterations is independent of the mesh size, provided that the overlap region is kept
proportional to the size of the subdomains,

e poor convergence is given for overlap near zero but improves rapidly as the overlap increases,

e number of iterations for the multiplicative variant is about half that for the additive algo-
rithm.

To sum up, domain decomposition by Schwarz methods (used as solver or preconditioner) falls in
the class of overlapping/iterative schemes and might be judged by the following points:

advantages: original problem can be retained, one only needs a restriction to subdomains,
especially the additive version allows for straightforward parallelisation,

disadvantages: sophisticated mesh handling for overlap and management for exchange
of local solutions, rate of convergence usually decreases exponentially when the amount of
overlap is reduced, indicating an unavoidable computational overhead by repeated solves on
the overlap regions.

To end the section on overlapping methods, we want to mention that besides the continuous point
of view also the discrete way of the overlapping Schwarz methods might be used. Instead of defining
explicit overlapping subdomains §2;, one starts from the global linear system

Az =b, Ae R,

where [ is the index set of all degrees of freedom in the finite element mesh, and defines an
overlapping partition of this index set

I; :={j € I: degree of freedom j € ;}, i=1,..., M.

We note that the index sets I; might also be defined without explicit knowledge of the subdomains
;. Furthermore let z € R’ be the global solution vector and denote by R; : Rl — R’ the
restriction to the i-th index set I;, i.e.

[Riz]; = [x];, Vj € L.
Accordingly RT : R — R is the projection defined by

il Jel;
(RFa) = Qb T
0, else

and
Ai = RlAR;T = A]h]i

the local system matrix on the index set I;. Now we are able to define the iterative Schwarz method
on the algebraic level:

Multiplicative Schwarz method: let e, = x — x; be the global error in k-th step and
Aep, = b — Axy, the residual. For the i-th index set I; C I, assume that the global error is
given by means of

ep = RZ-T V;

with a vector v; € RT: that has to be defined. The restricted residual in I; is hence

RiAek = RIARZT’Ul = Ai’Ui = Rl(b — A.Tk)



76 DOMAIN DECOMPOSITION AND PARALLEL SOLVER

with the local system matrix A; and the new iterate for the global solution is
_ _ T, _ T 4—1
Tpr1 =T+ e =x, + R v; =x + R} A "R;(b— Axy).

We see that the new iterate corresponds to an update by solving the system once on the
index set I; (resp. on the subdomain €);) using the old iterate x for boundary values. If
this procedure is repeated over all index sets, one ends up with the multiplicative Schwarz
method as shown before, i.e.

T 41 .
Tppd = Tppizt +R; A; Ri(bfA:ck_,’_%), 1=1,...,p

for the step from index set ¢ — 1 to index set 7 (assuming p index sets at all). The error
propagation for this scheme is therefore

Cppi = (I—RiTAflRiA)ek+g, i=1,...,p
and for a whole iteration step xx — xgy1
exs1 =T —P))--- (I — P)(I — Pi)eg, P;=RIA7'R;A

explaining the name multiplicative Schwarz method. One special form is given for the case
that I;UI; =), Vi # j - at this the multiplicative Schwarz methods turns out to be equivalent
to the block Gauss-Seidel scheme.

Additive Schwarz method: as mentioned for the continuous case, all correction might be
computed in parallel using the last global iterate xx, i.e.

P
Tyt = zp+ Y RUATIRi(b— Awy).
i=1
Now the error propagation is given by

p

€Ck+1 = (I — ZPZ)ek

i=1

Again the case I; UI; = 0, Vi # j for the additive Schwarz method gives a well-known
scheme, namely the block Jacobi method.

Convergence results for the algebraic form of Schwarz method can be found in Chapter 11 of [80].

4.1.2 Non-overlapping Methods

Consider the continuous global problem (4.1) and a non-overlapping decomposition of €, i.e. ; N
Q; =0 for all ¢ # j. We formulate the local problem on subdomain ;

Lui = f in Qi,
Ui =g on 9N 99, (4.3)
Ui = U on Fij.

The treatment of coupling between subdomains (interface coupling) is now more sophisticated.
Since no overlap to the neighbouring domains is given, the definition of Dirichlet boundary-values
U on the sceleton as before is no longer meaningful. These values would be preserved throughout
all Schwarz type iterations and hence no gain for the global solution is given. Instead a different
approach is used that can be viewed twofold:

e beside a pure Dirichlet condition, additional coupling/transmission conditions are imposed
on each subdomain to ensure global interface transition,



4.1 Non-overlapping Methods 77

e the original global problem is reduced to an equivalent one posed only on the interface of
subdomains, i.e. an interface operator is introduced.

For the first point of view the method pursued by P.L. Lions [108] (in the case that L is the
Laplace operator) is very natural and simple, namely that one reformulates the constraints on I';;
and requires a Robin type boundary condition (with relaxation parameter 8 > 0)

On,;ui + Bu; = _anjuj + BUJ‘ on I';;.

Hence, not only the absolute values on the sceleton I';; should match between two neighbouring
subdomains, additionally the normal derivatives should coincide - n; meaning the outward normal
on I';; for €; towards §2; and so n; = —n;.

A generalisation of this transmission condition on I';; for arbitrary partial differential operator
L obviously necessitates more generic conditions to represent the relationship. We follow the
notation in [127] and introduce the transmission conditions

(I)(uz) = (I)(’LLJ) on Fij;
\P(uz) = \IJ(UJ) on Fij;

where the functions ®, ¥ depend upon the nature of the underlying operator L. Having a problem
specific definition of these functions at hand, one can state an iteration-by-subdomain scheme
similar to the additive Schwarz method in the overlapping case. Assume that the local solution at
step k is given by uf for each subdomain ¢ = 1,..., M. First average at the interface among the
values of ® using a parameter «, i.e.

v o k k
Q7 = a®(u;) + (1 — a)®(uj) on I';;.

Then on each subdomain a problem of ®-type is solved

1
Luf—i_2 =f in Q;,
1
uerz =g on 9 N IOQ;,
1
‘I)(Uerz) = 0% on I';;.

Second also the values of ¥ need to be averaged (again weighted by a parameter f3), i.e.
v k+1 k+3
W =B (u; )+ (1—B)¥(y; ?) on I';;

and finally M independent problems of W-type are to be solved

Luftt = f in Q,,
uf“ =g on 90 N O,
T(ufth) = v on T;.

For the Poisson problem with ®(v) = v and ¥(v) = 9, v this scheme means a separation of Dirichlet
and Neumann subproblems. Generally, several other combinations of the transmission conditions
for the local subproblems are used like Dirichlet-Neumann, Neumann-Neumann or Robin conditions
- one should notice that for each partial differential operator L the transmission conditions need to
be adopted appropriately. We refer to [127] for an overview on transmission conditions for different
boundary value problems including the Stokes problem. In the framework of flow problem there
exist plenty of works proposing different conditions, showing that a kind of standard formulation
even for one specific partial differential equation is not present.

The presented subdomain iteration approach using transmission conditions can also be inter-
preted as an interface equation in terms of the Steklov-Poincaré operator (cf. [3] and references
therein). Common to each iterative method cycling over subdomains is an update of the values
on the sceleton I' for the transmission conditions ® and ¥. Without loss of generality we assume
that ® is given by ®(v) = v, i.e. a matching of pointvalues on the sceleton, and that ¥ is a linear
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function. If the values on I" are known, say A = ®(u|r) = u|r, the independent problems on each
subdomain would be

Lu; = f in €,
U =g on 90 N 0y, (4.4)
U; = A on I';;,
U(u;) = U(uy) onI';;.

We can furthermore split the solution u; = uf +u/ into two parts u? and u/ being the solution of
the Dirichlet problems

Lu? =0 in Q;,
ud =g on 092 N 9,
u) = A on I';;,
and
Lul = f in Q,
Zf =g on 92 N 9,
ul =0 on [y

Define the solution operators by u? = H;\ and uf = G, f. Now the global problem (4.1) is formally
equivalent to (4.4) if and only if ¥(u;) = U(u;) on I';; for all 4,5 = 1,..., M. The latter condition
can be reformulated using the splitting u; = u{ + uf into

M
> W)+ U(ul) - W) - U(ul) =0.

i,j=1
Finally we can state the Steklov-Poincaré interface equation
SA=x onT (4.5)
with
M
Z V(G f) + V(G f)

and the Steklov-Poincaré operator defined as

SA= )" —U(H)) + U(H;\).

ij=1

Hence, the interface equation (4.5) correspond to an equation for the unknown values on I' using
the second transmission condition posed by ¥ as defining operator. If equation (4.5) is solved by
an iterative scheme one gets the correspondence to the above shown subdomain iterations, since
an application of the Steklov-Poincaré operator is given by a local solution on each subdomain.

Summing up, we have the results for the non-overlapping domain decomposition based on the
continuous problem (4.1):

advantages: easier mesh handling and no computational overhead due to absence of overlap,

disadvantages: transmission conditions and/or interface operators need to be established
for different partial differential equations separately.

As for the overlapping case, there is obviously also a non-overlapping decomposition scheme based
on the discrete equations. We will present this approach, the discrete counterpart to the Steklov-
Poincaré interface equation, namely the Schur complement equation, in detail in the next section.
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4.2 Parallel Data Structures and Preconditioners

Having introduced some domain decomposition approaches in the last section, we now investigate
on two schemes based on non-overlapping decomposition and on finite element discretisation in
detail. In contrast to the methods based on the continuous equations, the decomposition on the
discrete equations (resp. the algebraic system) has the advantage that it can be used for any
problem without imposing special transmission/boundary conditions. First we will work out the
idea and data structures of Schur complement solver/preconditioner which is more involved than
the row block decomposition that is used for comparison. In the next section the performance
gained by these methods will be considered.

Let the computational domain 2 be equipped with a finite element mesh 7,. We have just
mentioned that a partition of 7; into subdomains can be done vertex-, edge- or element-based and
have not explained which version should be preferred. In terms of a finite element discretisation
the resulting linear algebraic structures - mainly residual vector and Jacobian matrix - are given
by the weak form of the underlying partial differential equation, i.e. will be computed by means of
numerical integration (cf. finite element matrices (3.21)). For sake of simplicity, in the following
we assume a general bilinear form

a(u,v) = /f(u(x),v(x)) dx

Q

without specifying the function f in detail. Standard routines of numerical integration can then
be decomposed as

(Al = alel, o) = / o) dx= 30 / Fehgh) dx, ij=1,...,N
Qp,

KeTh ¢

suggesting a decomposition of 75 elementwise to compute the cell-integrals in parallel. Since also
the support of a trial-/test-function ¢y, is locally in 2, the summation over all K € T; can be
restricted to those cells that are in the support of ¢} .

In the sequel we throughout assume a non-overlapping decomposition of 7, into as many sub-
domains €); as processes are available and let each subdomain be assigned to a process P;. Such
a decomposition naturally induces sets of submeshes 7}, ; for each subdomain that are compatible
on I', i.e. that they share the same edges/faces on I'. Using Lagrange finite elements, the global
degrees of freedom, whose support is entirely in §2; are obviously assigned to P;. Those degrees
of freedom whose support is cut by the interface between two subdomains, say ; and ;, are
assigned either to P; or P;. We will comment on this choice later on when concrete data-structures
are presented.

4.2.1 The Schur Complement System

As in Definition 4.1.1 we assume that M non-overlapping subdomains Q; C €, are given where
each subdomain is built up by a submesh 7, ;. For the global degrees of freedom in the mesh
two groups are distinguished, namely internal and sceleton nodes (cf. Figure 4.2). The boundary
nodes are treated as internal nodes, since they can clearly be assigned to a particular subdomain
;. Sceleton nodes are those nodes belonging to the artificial boundaries created by the domain
decomposition, i.e. those nodes that lie on the interface I'. Let furthermore I'; = 99;\0€2 denote
the part of the sceleton I" belonging to subdomain €2; and assume that the global system consists
of N degrees of freedom. By Np we denote the number of degrees of freedom on I" and by N; the
number of internal degrees of freedom in €2; such that

M
N:Np—i-ZNi.

i=1

The following introduced Schur complement method consist of eliminating internal degrees of free-
dom to define schemes which focus on solving a reduced system associated with only the sceleton
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o

31

r

Figure 4.2: Differentiation between internal (o in Q;, O in Q2) and sceleton (denoted by x) nodes in
finite element mesh 7.

degrees of freedom. Often also the terms static condensation method or method of substructuring
are used to describe the Schur complement method. These denotations come from the engineering
view of the method (cf. [99]), while the name Schur complement method bases on the mathematical
definition (cf. [30, 143, 155]).

As mentioned before the elementwise non-overlapping decomposition of 7, allows the definition
of subdomain stiffness matrices

Ay A,

Ai — i1 il 4.6
(Arii AF-;F-L) ( )

with -

[A”]kl :a(@h,sﬁh), k,lil,...,Ni
[Ail‘i]lm:a@’l?,%ﬁ%), 1:15-'-7]\]1'5 m:L-"vNFi
[AFiFi]mn :a(QEZﬂSZZn)ﬂ m,n = 17~--;NF1--

Here we denote by %, i = 1,..., N; the finite element basis functions for the internal degrees
of freedom on €; and by @), i = 1,...,Nr, those for the sceleton degrees of freedom on I';.

The stiffness matrix (4.6) refers to the finite element discretisation on €2; using natural boundary
conditions on T'; and the essential boundary conditions of the global problem on 9Q; N 9. Let
now the global degrees of freedom be numbered according to:

e first number all internal degrees of freedom in subdomain 1,
e proceed with all internal degrees of freedom of all other subdomains Q;, i =2,..., M,
e number the degrees of freedom on I last.

We remark, that this numbering is just used for easier notation and can be generalised as shown
later. Using this specific numbering the linear system arising from finite element discretisation
Ax = b has the abstract form

A 0 e 0 Aqr T by
0 Asy ... 0 Aor T2 bo
: s : : =1 | (4.7)
0 0 . AMM AMF T M bM

Ari Ar2 ... Arm Arr xr br

As long as the numbering of degrees of freedom is as defined above, this structure is also given
for the specific linear forms stated in Section 2.2. Especially the upper left consisting of a block
diagonal matrix is typical for finite element discretisation since the ordering of degrees of freedom
is chosen such that there is no direct coupling between internal nodes of different subdomains. To
relate the global system in (4.7) to the local matrices in (4.6), let R; be the restriction matrix for
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a vector x in  to a local vector z; in Q; U T'; and R;-T be the prolongation by 0 for the degrees
of freedom external to 2; UI';. Furthermore let Rr, be the restriction matrix for a vector xr of
the values on the sceleton to only those values on I'; and RT be the matrix which prolongates the
local vector xr; by 0 to the global vector on I'. Hence the global matrix in (4.7) is given by

M
A=Y RIAR;

i=1
with blocks according to sceleton degrees of freedom
M
AFF - Z R?Z AFiFi RF-;? AiF = AiFi RF.;-
i=1

The structure of (4.7) is suitable for a block Gaussian elimination ending up with the Schur
complement equation for the unknowns on I

Srar = Xr. (4.8)

Herein the global Schur complement matrix Sr is composed by local Schur complement matrices
S; of subdomain €;

Sr = Arr — ZAFZ A = ZRF (Ar,r, — Ar,i A Air,) R (4.9)

=1 =1

Si
and the right hand side is given by

M
Xr=br — Y R ArA;'b;. (4.10)

i=1

The Schur complement equation (4.8) is the algebraic counterpart of the Steklov-Poincaré interface
equation (4.5). Once zr is known, a simple back substitution in (4.7) yields the internal degrees
of freedom z;.

The coefficient matrix (4.9) is obviously smaller than the global matrix in (4.7) but in general
dense and very expensive to form due to the factorisation of A;;, ¢ = 1,..., M. If nevertheless
the matrix is assembled and factorised, one ends up with a direct Schur complement solver also
called substructuring method. On the other side the matrix vector multiplication with the global
Schur complement matrix Sp can be performed by a few sparse matrix vector multiplications and
subdomains solves for A ; ! which can be handled in parallel. Hence an iterative method might be
applied to (4.8), forming the idea of iterative Schur complement solver. To obtain a convergence
rate that is independent of, or only weakly dependent on, the mesh size h and the diameter of the
subdomains H, a good preconditioner will be needed, since it is shown that at least for elliptic
partial differential equations (cf. [24]) the condition number of the Schur complement matrix Sp
satisfies

k(Sr) = O(h™t*H™).

Due to the fact that the matrix (4.9) is actually not formed, the standard Jacobi, Gauss-Seidel,
SOR and incomplete Cholesky-type preconditioners cannot be used. For a discussion of several
interface preconditioners in the case of elliptic problems we refer to [30, 143] and references therein.
These preconditioners are shown to be optimal for elliptic problems but need strong knowledge
about the wire-basket of the underlying mesh, i.e. the possibility to restrict and extend algebraic
vectors to only those degrees of freedom lying on the interface edges and vertices (cf. [142] and
references therein).
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4.2.2 Schur Complement Preconditioner

For our purpose of a generic parallel preconditioner to fluid flow problems, we want to adopt the
idea of multilevel ILU-based preconditioners for the sequential case as shown in Section 3.2. In
contrast to the special preconditioners for equation (4.8) that are available for elliptic problem, we
state an abstract version just based on the algebraic form of the Schur complement equation. To
this recall that the global Schur complement Sr is given by

M
Sv =Y RLSiRr,.

=1

Furthermore we perform a formal LU factorisation of the subdomain stiffness matrix A; defined in

(4.6)
A — Ay Air, )\ Ly, 0 Ua,, LZiIiAiFi
L AFii AFiFi N AFIzUXi LSi 0 Us.

i

yielding the LU factorisation of the local Schur complement S; = Lg,Us,. Hence an (approximate)
factorisation of A; naturally implies an (approximate) factorisation of S; and so we are able to use
the incomplete factorisation from Section 3.2 on each subdomain to get a parallel preconditioner
for the problem (4.8), namely

M
Spt &~ Pri=Y_ REILU(S:)Rr,. (4.11)

i=1

Up to now we tacitly assumed that the local matrices A;; are factorised for both the direct Schur
complement solver and the iterative one. If this condition is losen, it can no longer be guaranteed
that a solver for the Schur complement equation (4.8) also solves the entire problem Az = b.
Nevertheless this case (Schur complement equation with inexact local solver for A;;) is still suitable
as preconditioner for the global system Ax = b. To see this, we define Arr as before and

Ay = blockdiag(A;;),
Air
Arr = blockmat(A;r) = ,
Anr
Arr = blockmat(Ar;) = (Apl e AFM) ,

<ﬁ§ iéi) (ié) - (2§> : (4.12)

A formal factorisation gives (Id being the identity matrix in appropriate dimension)

a_( 1d 0\ (Arr 0\ [(Id A7 Amr
“\ArrA; 1d)\ 0 Sp)\0 Id

allowing to write (4.7) as

and the inverse

1 (Id —A7MAr (A0 Id 0
A _(0 Id o s:t) \capart 1a) (4.13)

Assume that an interface preconditioner for Sr, say Pr, and also for A;; (in form of M independent
preconditioners for A;;) is at hand, say Pj; ~ A;}. Then replacing the corresponding block
matrices in (4.13) forms a preconditioner (also called induced preconditioner [136]) for the global
system matrix A, say Pa

-1 B Id —PrfAmr Prr 0 Id 0
A7~ Pa= <o Id 0 p)\-ArpPy Id) (4.14)
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This preconditioner needs three applications of P;; - parallel performed on each subdomain €; -
and one application of Pr. Such an approach to use interface preconditioners incorporated into a
preconditioner for the global system has already successfully been used in the framework of fluid
flow problems, see [29, 70].

Algorithm 3 Schur complement preconditioner Pg¢ for global system Az = b.

1. given actual global iterate

z Zy, 2

2. assemble right hand side
xr = af — ArrPrraf

3. iterative solver with mgc steps for #& using Schur complement matrix
Sr = Arr — Ar1PrrAr

4. solve for internal degrees of freedom
i = Pry(af — Araf)

5. end with preconditioned vector

We now want to present a slightly different preconditioner for the global system (4.12), namely
an inexact solver for the Schur complement equation (4.8) itself. As it will turn out this proposal
is a generalisation of P4 in (4.14). The idea is straightforward: since a direct Schur complement
solver acts like A~!, an inexact version obviously inherits this behaviour. With inexact we mean
two points. First equation (4.8) is solved by a Krylov subspace iteration, say GMRES, second the
factorisation of internal matrices A;; is replaced by an incomplete multilevel ILU decomposition
as proposed in Section 3.2. Hence the parallel preconditioner contains two main parameters

e number of iterations for the Schur complement solver,
e all options for the local ILU decomposition of A;;, in principal the threshold/fill-in.

In the following we denote by Schur complement preconditioner the proposed preconditioner for the
global system Az = b, which should not be mixed up with the preconditioner for the Schur com-
plement equation (4.8) denoted by Pr. To highlight the connection to (4.14) we sum up the steps
needed for the Schur complement preconditioner. Assume that =¥ = [z%, 2] is the global iterate
for equation (4.12) in the k-th step, then z* is preconditioned by the inexact Schur complement,
preconditioner to % = [#¥, 7X] performing Algorithm 3. Main aspects are the replacement of ex-
act factorisation Afll by incomplete multilevel ILU decomposition which we denote by P;; ~ AI’}
as in (4.14) and the possibility to perform an arbitrary number of iteration steps for the Schur
complement equation within step 3. Additionally one might use the preconditioner (4.11) in step

3.

k k= 3k, k) =

Comparing Algorithm 3 to an application of preconditioner P4 (4.14) on z ¥, T

PP, gives
jllc _ Id 7P]]A]F P]] 0 Id 0 SCIIc
.i']fw 0 Id 0 Pp 7AFIP[[ Id .T]fw

o Id 7P]]A]F P]]:L']IC
- 0 Id Pp(:{:’f — AF[P[[.’L'];)

_ Prra% — PrrApr Pr(ah — AppPrpah)
Pp(mlli—AF[P[[.T];) ’
Since Py ~ Afll and Pr =~ Slfl we have that the global preconditioner P4 equals the proposed

inexact Schur complement preconditioner Pg¢ if in step 3 only one iteration step on the sceleton
unknowns is used.

,l.e. T
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Summing up, the proposed preconditioner allows to recover well known global preconditioners
but also offers the possibility to enhance them by substitution of Pr through an iterative solver.
Additionally, if there is no special preconditioner for St at hand, the global preconditioner can
still be used. One might say, that the preconditioner for the Schur complement equation (4.8) has
been replaced by a Schur complement preconditioner for the global equation (4.12).

4.2.3 Data Structures for Non-overlapping Domain Decomposition

Py P Ty 43 Ty T3
% X
‘L T
T *
1 4o)
b 1 )

Figure 4.3: Non-overlapping elementwise mesh decomposition (left) and according partition of degrees
of freedom (middle and left) - denoted by x for Q1 elements.

Given a non-overlapping domain decomposition allows to define solvers (both direct and it-
erative) for the Schur complement equation as well as to use the Schur complement equation as
preconditioner for the global system. We now address the question of underlying data structures
which will lead to a second class of preconditioners, namely the block Jacobian preconditioner.
Afterwards in the next section we will show numerical results for the presented preconditioners
using multilevel ILU decomposition and compare these to other standard implementations.

Important components for a parallel iterative solver based on domain decomposition methods
within a finite element package are:

e parallel vector assemblies and basic algebraic operations on parallel vector,
e parallel matrix assemblies (also setup of nonzero/sparsity pattern),

e parallel matrix-vector product,

e parallel preconditioners for Krylov subspace methods.

Agsume that we have a non-overlapping elementwise mesh decomposition as shown in the left part of
Figure 4.3. If one uses Lagrange finite elements (or any other type of finite elements that possesses
degrees of freedom on the intersection of subdomains) the definition of a parallel data structure
brings up the question, which process should own the nodes on the sceleton. An elementwise
decomposition only induces the belonging of global degrees of freedom whose support is entirely in
a subdomain €2;. One might disregard the underlying mesh decomposition and distribute matrices
and/or vectors by rows among the processes, resulting in a row block storage scheme

A Aia Az o A Z1
Aoy Ago Aoz - Aoy X2
A= ) - - . : , = : (4.15)
Av1 Am2 Ams - Amwu T M
with ¢ =1,..., M row block submatrices consisting of

e A, local sequential matrix, called diagonal-block,

e A;\A;; local sequential matrix, called offdiagonal-block.
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Such a distribution of parallel data assigns each degree of freedom uniquely to a process and there-
fore to a subdomain. The underlying domain decomposition is hence no longer elementwise but
vertex-oriented, see middle part of Figure 4.3. Since the matrix A is the finite element stiffness ma-
trix, the offdiagonal-blocks A;;, i # j represent the coupling between subdomains and are usually
sparse or even empty, when two subdomains do not share a common interface. Standard alge-
braic operations with this data structure are straightforward. Vector addition and multiplication
with a scalar can be performed in parallel without any communication, only the scalar-product
involves a global reduce communication. For the matrix-vector product Az = b using (4.15) each
process P; needs to receive from P; the vector entries z; whenever A;; # 0. Hence a sophisticated
message-passing between processes is needed. For the row block partitioning of parallel matrix
and vector storage, we use the well established PETSc library [9], which delivers "a suite of data
structures and routines for the scalable (parallel) solution of scientific applications modelled by
partial differential equations".

In contrast to the row block partitioning, we also present parallel data structures suitable for
the elementwise domain decomposition in combination with Schur complement approaches. Recall
that the global stiffness matrix and global algebraic system can be written as (cf. (4.12))

Arr A Ty _ br
Arr Arr) \zr br /)’

where the block matrices are composed by independent local matrices

Ay Air,
A = 1% 1 )
’ (AFii Ar,r,
Furthermore we define a generic algorithm to assemble vector and matrix structures within an
elementwise domain decomposition in a finite element code. Algorithm 4 shows a basic loop to
compute entries of the residual vector and/or Jacobian matrix, needed in Newton’s method as

shown in Section 3.1.3. This algorithm is performed by each process on its local subdomain €2; in
parallel. A closer look on Algorithm 4 shows that step iv/ requires communication only when the

Algorithm 4 Generic assembly loop for residual vector or Jacobian matrix entries.

given a set of cells {K;} in local subdomain ;
clear global data structure for residual vector or Jacobian matrix
for all cells K in local subdomain ©2; do
i/ get degrees of freedom of actual cell: dof_ind
ii/get values of solution vector x according to dof__ind: local_sol
iii/ compute local integral corresponding to dof_ind, e.g. for Jacobian matrix using solution
of last Newton step local_sol

A= /f(local_sol; (pi,(p};) dx
K,

iv/ add local integral value to global data structure
end for

row block matrix/vector (4.15) is used, namely whenever one degree of freedom in dof_ind is not
owned by the calculating process, this value has to be communicated. In contrast the pure local
representation of global stiffness matrix A in form (4.6) allows to hold every data computed in step
iii/ on the specific process.

Now we are able to define the Schur complement storage scheme: parallel matrix storage is
organised by local subdomain block matrices corresponding to internal and sceleton dofs as in
(4.6). For the parallel vector storage the internal degrees of freedom are obviously stored by the
process that owns the related subdomain. In addition each process stores all sceleton degrees of
freedom, that lie on 9€; N T, which means that all sceleton degrees of freedom are stored at least
two times. This vector storage necessitates a further data structure to manage the storage of
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Geometry | degrees of freedom
2Dbackflow 2032003
2Dmeander 929923
3Dbackflow 3681748
3Dmeander 2732756

Table 4.1: Setting of testcases for the comparison of parallel data structures in 2D and 3D.

sceleton degrees of freedom - e.g. an assignment which process stores the original sceleton degree
of freedom and which processes hold copies. Compare the right with the middle part of Figure 4.3
for the difference to the row block storage scheme.

Coming back to Algorithm 4. For Jacobian assembly we saw that the Schur complement storage
scheme does not require any communication compared to the row block storage scheme. To com-
pute the residual vector, step ii/ and iv/ involve communication for the row block storage scheme
whenever an entry of dof_ind is not local. Since the Schur complement storage scheme stores all
locally needed data (at least as a copy), step ii/ again does not need any communication. Only
step iv/ is of interest in this case. After all local computations where performed, a single routine to
update the sceleton degrees of freedom is inevitable - we will call this routine sceleton_refresh.

Remark 4.2.1

To use the introduced Schur complement storage scheme, it is not necessary to number the degrees
of freedom as in (4.7), on the contrary any numbering might be used. One only needs data structures
to identify the sceleton degrees of freedom and mappings from global numbering to local numbering
of matrices (4.6). These can cheaply be organised as local tables, while the global numbering is
done.

Summing up, the row block storage scheme needs communication whenever a degree of freedom
on a cell is used that is not hosted by the process that holds this cell - this is the case for assembling
routines as well as for algebraic routines, such as matrix-vector product. The Schur complement,
storage scheme on the other side only relies on one single synchronisation routine for the sceleton
degrees of freedom. Especially the algebraic operations on a vector are of the same complexity
for both schemes, i.e. only the scalar product requires communication between processes. At
last we mention that also the matrix-vector product for Schur complement storage scheme can
be performed in parallel and no a-priori communication is needed (in contrast to those for the
offdiagonal-blocks in row block storage scheme). However the communication is postponed to the
sceleton_refresh routine.

Numerical Results

We end this subsection with some numerical results indicating the capabilities of the presented
parallel data structures. To judge the scalability in parallel algorithms one usually defines the
speedup of an operation or an entire algorithm by the ratio of running time on one process (the
sequential version) T3 to the running time on n parallel processes T),, i.e.

STn

Ideally the speedup S should be equal to the number of used processes n indicating perfect scala-
bility. Since the presented parallel data structures (at least the Schur complement structure) are
not meaningful in the sequential case, we adapt the definition of speedup by scaling with a factor
of 2. By this we adjust the result to a pure comparison of parallel case and skip the sequential
case while the usual notation can still be used.

In detail we compared the typical operations needed within Algorithm 4, namely

e parallel Jacobian matrix assemble - divided into InitJac for the initialisation of nonzero
structure and ComputeJac for filling the matrix by integration of local parts,
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e parallel residual vector assemble ComputeRes - local integration and communication of non-
local entries resp. sceleton_refresh,

e parallel matrix-vector multiplication MVmult.

The row block storage scheme was implemented by means of the PETSc library [7, 8], while
the Schur complement storage was implemented autonomous within the software HiFlow?. Results
presented in Figures 4.4 and 4.5 are based on the geometries and according discretisation as for the
sequential solver, except for the level of refinement - here we used finer meshes as depicted in Table
4.1. Partitioning of data is based on the entire decomposition of the finite element mesh, which
was generated by a graph partition of the cell-neighbourhood graph provided by Scotch library
[122, 123]. The block partition of data is realised by first-come-first-serve approach (cf. Figure 4.3):
we assign the degrees of freedom on the sceleton to the process with lowest rank, which obviously
produces a small imbalance of data distribution on the processes but allows for easier handling of
degrees of freedom.

Remark 4.2.2 (Hardware configuration for numerical tests)

All numerical tests ran on the distributed memory parallel computer HP XC3000 at Steinbuch
Centre for Computing (Karlsruhe Institute of Technology) using the GNU gcc compiler in version
4.4.83. On the HP XC3000 we used a varying number of the 288 compute nodes to test for scalability.
Each node contains two Quad-core Intel Xeon X5540 CPU (Nehalem) which run at a clock speed
of 2.58 GHz and has 2/ GB of main memory. Setup of scalability tests was such that each CPU
was equipped with 8 GB of main memory. The interconnect is an Infiniband 4X QDR with latency
of about 2 microseconds and point to point bandwidth between nodes of more than 3100 MB/s.

As one can see in Figure 4.4 initialisation and computation of Jacobian matrix scale perfectly
for the Schur complement approach due to the pure sequential setup of this data type. For the row
block version we lose scalability within the initialisation of nonzero structure of Jacobian matrix,
since communication is needed to detect the couplings for the offdiagonal block. These effects are
even worse in the 3D case: having the number of global degrees of freedom of the same order
of magnitude as in the 2D case, the ratio of interior to sceleton degrees of freedom is smaller
resulting in more communication. An improvement of routines for determining the neighbours of
one subdomain by using ghost layers of the mesh would allow for better scalability of the InitJac
part, but there will always be communication needed when offblock entries are assembled.

For the assembling of the residual vector, i.e. ComputeRes, we again have a slight benefit for the
Schur complement, structure. All local integrals can be computed in parallel and only afterwards
an exchange within the sceleton_refresh routine is needed, for which the communication can be
tuned using subcommunicators of neighbouring subdomains. The row block structure on the other
side necessitates communication before local integrals can be computed (to get all needed degrees
of freedom) and afterwards (to sum up the local parts) - nevertheless the difference due to overhead
of communication is not that noticeable in Figures 4.4 and 4.5. It should be mentioned that the two
communication steps for the row block structure might also be condensed into one, if additional
ghost layers of degrees of freedom are used such that each process knows about all needed local
degrees of freedom (cf. [7] for an idea on this). By this approach one would get the analogue to
the fact that in the Schur complement structure we store the local sceleton for each subdomain -
hence the speedup of ComputeRes should be of the same order for both data structures.

Last point within the comparison of data structures is given by the matrix-vector multiplication.
Here, the tuned PETSc routines are superior to the Schur complement approach. But, as we will
present in the next section, the latter one enables more efficient preconditioners such that the total
number of needed matrix-vector multiplications can drastically be reduced. In summary it can be
said, therefore, that both data structures allow for scalable results of basic linear algebra routines
within an finite element framework - with a slightly advantage in matrix assembling for the Schur
complement, approach.

Remark 4.2.3
From an algebraic point of view the block partitioning of parallel matriz and vector is a common
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choice. Assuming no geometrical information linked to the sparse global matriz A, the data dis-
tribution to processes is usually done by means of the adjacency graph. Each process will hold
a set of rows, which has been determined e.g. by minimising the intersection of adjacency edges
[57] - such a partition is equivalent to a vertex-based decomposition of the underlying mesh. Its
main drawback for finite element discretisation is obvious: couplings of degrees of freedom within
a cell will be disrupted and the distinction between interior and sceleton nodes is no longer given.
Nevertheless a preconditioning by inexact Schur complement solver can still be used at the costs of
additional data structure management for the offdiagonal blocks in (4.15) - see [136].

4.3 Performance of Parallel Solvers/Preconditioners

In this section the performance of row block and Schur complement based preconditioners is inves-
tigated in conjunctions with the presented sequential Multilevel ILU preconditioner. Furthermore,
we compare the possibility to use the ILU preconditioner within both data structures to some basic
preconditioners provided by the PETSc library and also to parallel direct solver. All numerical
test are based on the discretisation of two- and three-dimensional Stokes equations on the backflow
geometry since this example turned out to be representative as it was also before. Additionally,
we used the hardware configuration as depicted in Remark 4.2.2.

4.3.1 Usage of Multilevel ILU Preconditioner in Parallel

For the presented Schur complement data structures we already specified how the sequential mul-
tilevel ILU decomposition can be used to form a parallel preconditioner (and even a solver). In
addition also the row block partition of data allows to use the results of Chapter 3.2, namely by
means of a parallel block Jacobian preconditioner. We summarise the three major cases:

Global Block Jacobi Preconditioner

The preconditioner Pg; can be used upon the parallel data structure (4.15) by skipping the cou-
plings A;;, i # j and using the ILU decomposition of A;;. Doing so the preconditioner operation
y < Ppjx is purely sequential and will therefore scale perfectly, but by skipping the offdiagonal
coupling one will loose information the more processes are used. Threshold and used preprocessing
for the local matrices A;; are the parameters to be set like in the sequential case of Chapter 3.2.
Application of the block Jacobian ILU preconditioner Pg; necessitates a modification in standard
PETSc routines since the diagonal block cannot be accessed directly — fortunately these steps turned
out to be not that expensive. Nevertheless, an implementation using own data structures for the
global matrix might allow for even better results.

Global Schur Complement Preconditioner

Solving the Schur complement equation (4.8) with an inexact local solver for A;;", namely an ILU

decomposition, gives a preconditioner Psc for the global system Az = b — see Algorithm 3. This
preconditioner provides a variety of parameter to tune the performance, i.e.

e threshold and preprocessing for the ILU decomposition of A;;,
e convergence criteria for the iterative solver of Schur complement equation Srzr = xr,
e additional preconditioner for Sr (this would be a preconditioner for the preconditioner).

Compared to the block Jacobian preconditioner Pp; this preconditioner preserves the couplings
between subdomains by approximatively solving the Schur complement equation, such that the
application y < Pscx will be costlier due to needed communication routines. A comparable
approach was already used in [52] for the compressible Euler equations. Therein the local system
matrices A;; were only approximated by means of ILU(0) decomposition for which we already
showed the inferior behaviour compared to Multilevel ILU preconditioner.
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Preconditioner for Schur Complement Solver

In (4.11) we defined a preconditioner Pr for the Schur complement equation
Srar = Xr.

Again one can use all results on basis of the sequential preconditioner for local matrices A;;. We will
combine this preconditioner with an exact solver for A ; ! to get a preconditioned Schur-complement
solver.

The last preconditioner is, in contrast to the first two preconditioners, not applied to the global
system (4.7) resp. (4.15). Since especially the global Schur complement preconditioner might
differ in each utilisation, we cannot use standard GMRES (m) implementation any more. Instead we
throughout use the Flexiblee-GMRES FGMRES (m) with restart in the parallel case, which allows to
vary the preconditioner — described in detail in [56, 132].

4.3.2 Numerical Results

Results obtained for the Schur complement approach and Multilevel ILU preconditioner (in the
following denoted by ILU++ due to the used software) were compared to some established solvers
and preconditioners. We judge the results in two ways: first the absolute time for solving the linear
system, second the scalability. The results for standard preconditioners were directly obtained using
the PETSc library [7, 8] together with the block matrix storage scheme presented before. Based
on the literature and extensive numerical tests we compared against Block Jacobi and Additive
Schwarz (with overlap of 4) preconditioner — both with local ILU(0) factorisation in the 3D case
and local ILU(1) factorisation in the 2D case. These preconditioners were reported to be standard
in the PETSc library and already showed good performance for hp finite element discretisation of
incompressible flows [14].

Global Block Jacobi Preconditioner

As one can see in Figure 4.6 for the 2D case and in upper row of Figure 4.7 for the 3D case,
the results for preconditioner Pg; with local ILU++ factorisation are superior to the ones with
local ILU (k) factorisation — this fact was already observed for the sequential case in Chapter 3.2.
Also the choice of threshold for best, i.e. fastest, performance is quite similar to the sequential
case (lower row in Figure 4.7) where a threshold of 7 ~ 2.0 gave good overall results. But the
outstanding result is given by the fact that Block Jacobian preconditioner nearly throughout fails
(and therefore we skip the graphical evaluation) for problems of size of order larger than 5 - 105,
i.e. needed FGMRES-steps are beyond 10° and overall solution is not worth discussing. Especially
comparison to the Distributed Multifrontal Solver MUMPS [4] shows the poor performance of
iterative solvers in the 2D case (Figure 4.6) — only scalability of iterative solver is somewhat better
but still not optimal. In terms of absolute time to solve the linear system, the direct solver, as in
the sequential case, is superior for two dimensional problems but worse in three dimensions (Figure
4.7). Nevertheless, the direct solver suffers from its large memory requirement (that might not be
present when the number of processes is small) and bad scalability.

In terms of scalability the Additive Schwarz preconditioner was chosen to establish some ex-
change of couplings which is not present for the Block Jacobian preconditioners. This advantage
can be seen in the left part of Figure 4.6 and 4.7 where the number of FGMRES steps does not
increase that much when the number of processes increases (compared to Block Jacobian precon-
ditioners). Summing up, we found that for the global Block Jacobian preconditioner the same
results regarding local ILU decomposition are given as for the sequential case. But the entire
approach by block preconditioning suffer from the skipping of couplings in offdiagonal block which
then has to be compensated by additional global FGMRES steps.

Preconditioner for Schur Complement Solver

Motivated by the absolute solver time of the direct solver MUMPS, we investigated on the per-
formance of the iterative Schur complement solver. Equation (4.8) is solved via a GMRES iteration
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on the sceleton zr. To this end, the local problems (i.e. A;—1 for the local Schur complement S;)
within equations (4.9) and (4.10) are treated by the direct solver UMFPACK [38]. Furthermore,
we use the preconditioner Pr as in (4.11) with PQ-reordering for 2D problems, normalisation for
3D problems and different size of threshold for the incomplete multilevel factorisation ILU(S;).
The results for 2D and 3D problems are shown in Figure 4.8: one can see that the more processes
are used, the bigger the threshold should be. Whereas in the 3D case the influence of threshold
for the preconditioner Pr is not that notable for different numbers of processes, we have in the
2D case a clear turning point when one uses more than 16 processes. All in all the iterative Schur
complement solver with local exact solver for A;il was not competitive to the presented solver so
far, neither in terms of absolute time to solve the system nor in terms of scalability (see overall
comparison in Figure 4.12). Especially for the scalability the imbalance of sceleton degrees of
freedom to interior degrees of freedom is important the more processes are used.

Global Schur Complement Preconditioner

At last we study the global Schur complement preconditioner Ps¢o as given in Algorithm 3 — again
we use a global FGMRES iteration as accelerator. This preconditioner allows to modify a variety
of parameters and we only inspected the behaviour when the number of iterations mgc within
the inexact Schur complement solver and also the threshold for incomplete factorisation of A;; are
changed. The preconditioner for the Schur complement operator Sr was not under investigation
(see Figure 4.8 for this). Instead we chose a fixed setting that allows cheaply usage, namely a
threshold of 7 = 1.75 throughout.
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Testing the wide range of suitable parameters would go beyond the scope of this thesis and we
only present the possibilities for setting on 4, 16 and 64 processes both for the 2D and 3D case
as before. To get a feeling for the behaviour of the solver for different parameter we show the
results for global FGMRES steps and needed time to solve the system in contour plots. Results for
global FGMRES steps are similar for every number of used processes (see Figure 4.9 for the case of 16
processes): the more precise the Schur complement equation is solved, the less global FGMRES steps
are needed. This can be achieved either by increasing the threshold for incomplete factorisation of
A;; or by increasing the number of iterations mg¢ for the iterative Schur complement solver.

For the results in terms of absolute solver time, we did not get such clear statements. As
depicted in Figures 4.10 and 4.11 the best setting of parameters threshold 7 and steps mg¢ strongly
depends on the number of used processes. A rule of thumb might be given by: the more processes
are used, the more threshold 7 and the more iterative steps mgc should be used. Nevertheless, the
performance of preconditioner Ps¢ is very sensitive to choice of parameters — already a modification
of e.g. threshold by 0.5 might cause a doubling of solver time. Heuristical observations were given
by the fact that the ratio of iterative steps mgc to number of sceleton degrees of freedom Nt should
remain constant for each number of processes. It will be a future work to adjust the parameters
of Psc automatically using the information given by partition of finite element mesh.

4.3.3 Comparison of all Solvers

Finally we gather the results achieved for the presented parallel solver/preconditioner, i.e. we
compare the direct solver MUMPS, Schur Complement solver, global FGMRES solver with Additive
Schwarz preconditioner, with Block Jacobian preconditioner Pg; and with Schur complement
preconditioner Psc. The outcomes for absolute solver times differ a lot for the 2D and 3D case —
see Figure 4.12. In the 2D case the best performance is given by direct solver based methods, i.e.
the MUMPS and Schur complement solver. Results for iterative solvers can be separated into two
classes: whereas the solver with preconditioners Psc and ASM at least solved the problem, the
usage of Block Jacobian preconditioner Pp; took throughout more than 1.e5 iterations and did
not reach the solution in reasonable time. But it has to be mentioned that the Psc preconditioner
showed a fatal performance for more than 64 processes — number of FGMRES steps and solution
time are worth discussing. A possible explanation is given by the worse ratio of interior to sceleton
degrees of freedom. The costs for inexact Schur complement solver are then dominated by the
restriction and prolongation operations that need increasing communication.

In the 3D case it is the other way around. Here the iterative FGMRES solver with block ILU++
preconditioner gave the best results. This discrepancy to the two dimensional case was already
observed in Chapter 3.2 for the sequential solver where the bigger fill-in in three dimensions was
found to be crucial for direct solvers. Iterative solvers obtain a slightly better scalability and need
definitely less memory compared to direct solvers which fit to actual supercomputer architectures.
It should be mentioned that the Block Jacobian preconditioner Pp; yields better results than both
preconditioners Psc and ASM although only the latter ones take the couplings of subdomains
into account. These couplings also come into play by global matrix-vector multiplications as can
be seen in left of Figure 4.12. For the pure sequential preconditioner Pg; one obviously needs
a higher number of FGMRES steps, whereas especially the Schur complement preconditioner Psc
allows for a nearly constant number of FGMRES steps independent of the number of processes.

Summing up, we conclude that for considered three dimensional problems iterative solvers are
more suitable than direct solvers. Both approaches, row block partition and Schur complement,
approach, yield suitable parallel data structures and the possibility to use preconditioners based on
Multilevel ILU decomposition, which showed a better performance than standard preconditioners.
However, the scalability is only weak and the setting of appropriate parameters, especially for the
Psc preconditioner, is tricky. But the presented results cause to consider in a future work an
optimised implementation of data structures and related preconditioners to obtain better results.

4.3.4 Comparison of Complete Parallel Approach

As a very last result on parallel data structure and parallel preconditioner we show the capabilities
of preconditioners Pg; and Psc in combination with according data structures for large scale
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Figure 4.10: Contour map of absolute solver time for different parameter settings of Schur complement
preconditioner Psc on 2Dbackflow problem with 509123 degrees of freedom — 4 processes

(top), 16 processes (middle) and 64 processes (bottom).
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Figure 4.13: Comparison of absolute time to solve Stokes equations using Psc and Pg; for 3Dbackflow
problem with 3681748 degrees of freedom. Missing values are due to reached maximum
number of iterations.

problems. We aim at comparing the overall solution time for Navier-Stokes equations on the three
dimensional backflow geometry, including assembly of Jacobian matrix as well as the linear solver.
Furthermore, we make use of the adaptive forcing strategy shown in Chapter 3.2. For these tests on
scalability the high-performance computer JUROPA-JSC at Forschungszentrum Jiilich equipped
with 2208 nodes was used. Each node contains two Quad-core Intel Xeon X5570 CPU (Nehalem-
EP) which run at a clock speed of 2.93 GHz and has 24 GB of main memory. Setup of scalability
tests was such that each CPU was equipped with 3 GB of main memory. The interconnect is
an Infiniband QDR with non-blocking Fat Tree topology. In contrast to the previous test on HP
XC3000 we no longer used GNU gcc compiler but the Intel C+-+ compiler in version 11.1.059 as
recommended by the JUROPA user guide.

Discretisation of the 3D problem on a finite element mesh with 143360 cells results in a total
number of 3681748 degrees of freedom. Therefore the parallel solver needed at least 32 processes
— a lower number of processes resulted in memory allocation errors, showing that problems of
this complexity necessitate the use of modern parallel systems. First we tested the parameter
setting of preconditioner Pg; and Psc solving Stokes equations. The threshold for block Jacobian
ILU decomposition was 1.75 and 2.00, while for the inexact Schur complement solver we used a
local threshold of 3.0. Instead of specifying an upper bound mg¢c on the iterative steps for Schur
complement equation solver (as done before), we used a relative tolerance of 1e—1 and le—2 for the
residual norm on the sceleton as termination criterion. Figure 4.13 shows that the Block Jacobian
preconditioner possesses better scalability properties than the Schur complement preconditioner.
Especially the sensitivity of Schur complement preconditioner to parameter setting is visible. In
contrast to Ppy preconditioner, a good setting of parameter for Psc preconditioner is essential
and might even result in best absolute time.

We then used this setting for the linear solver to solve the Navier-Stokes equations. Results
are presented in Table 4.2 and Figure 4.14 indicating that the linear solver is the crucial point of
scalability for the entire nonlinear solver. While the assembling of Jacobian matrix shows good
scalability properties, the linear solver avoids a good overall result. Nevertheless, the adaptive
forcing allows to reduce the time spent for linear solver to a minimum at costs of extra Jacobian
matrix assembling, which facilitates scalability of overall solution process.
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number of processes
32 | 64 | 128 | 256 512 1024
Block Jacobian preconditioner Pg
final residual norm 8.35e-12 | 1.66e-11 | 1.0e-12 | 9.98e-13 | 1.0e-12 | 9.96e-13
overall solution time 999 532 306 189 131 211
mean Jacobian assemble time 92.9 47.8 24.4 12.5 6.5 4.0
mean FGMRES steps 269 332 455 653 822 1649
mean linear solver time 68 37 23 17 13 28
Schur Complement preconditioner Psc

final residual norm 8.66e-13 | 2.35e-12 | 5.79e-13 | 6.83e-13 | 7.41e-13
overall solution time 1752 981 776 730 1303 >1800
mean Jacobian assemble time 93.4 46.7 23.5 11.8 6.5 3.0
mean FGMRES steps 16 13 9 9 15
mean linear solver time 194 114 105 109 210

Table 4.2: Results of row block and Schur complement approach for Navier-Stokes solver within 3Dback-
flow geometry — obtained on supercomputer JUROPA.
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Figure 4.14: Comparison of mean absolute time to assemble and solve Jacobian of Navier-Stokes equa-
tions using Psc, Pgrs and according parallel data structures.
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Chapter 5

Optimisation Approach on HPC
Systems

After detailed derivation of generic sequential and parallel solver for the primal and adjoint/sen-
sitivity equation, we now come back to the entire optimisation problem. Since both optimisation
approaches described in Chapter 2.3 are based on determining the gradient of the reduced cost
functional, i.e. %(u) = Vj(u), at this stage we can work out a framework on the routines for
evaluation of cost functional j(u) = J(S(u),u) and gradient Vj(u) = 8Z(S(u), u).

In the following we emphasise consequences for the special case of instationary PDE-constrained
optimisation implemented on HPC-systems. This work bases on the contribution [21] of the author
for the PARA2008 workshop. For the adjoint based optimisation approach we are faced with the
discrepancy that implicit solvers allow for less timesteps but are costly (see Chapter 4.3). On the
other hand explicit solvers need lots of timesteps that are very cheap but require the overall backup
of state solution, which motivates the usage of checkpointing schemes and parallel I/O. For the
sensitivity based optimisation approach there is no need to compute the adjoint solution backward
in time. Instead the partial derivative for each control parameter can be computed within the
forward sweep.

5.1 Gradient-based Optimisation Algorithm

We already showed in Chapter 2.3 that a gradient-based optimisation algorithm for PDE-constrained
problems requires the solution of state- and adjoint-/sensitivity-equations to determine the gra-
dient (first order optimality condition). This procedure is shown in Figure 5.1 for the case of
instationary flow optimisation by boundary control - the reader might refer to Chapter 2.3.2 for a
detailed notation. The main difference within the adjoint and sensitivity approach for determina-
tion of gradient Vj is the number of linear/nonlinear systems to be solved as well as the storage
requirements to be fulfiled. Before we report on the used optimisation algorithm to determine the
update for control variables, we compare the needs to compute the gradient for stationary and
instationary problems. Let’s assume that the sensitivity-based representation of control u is given
by design parameter ag, k=1,...,n.

For a stationary problem one iteration step of the schematic procedure 5.1 requires for an
adjoint and also for a sensitivity-based method:

i/ one nonlinear system of the state equations to be solved,
ii/ backup of state solution,

iii/ for adjoint method: one linear system of the adjoint equations to be solved using backup of
state solution,

iii/ for sensitivity method: n linear systems of sensitivity equations to be solved using backup of
state solution,



104 OPTIMISATION APPROACH ON HPC SYSTEMS

set ¢ = 0 and initialise
control variables wj,
resp. ap, k=1,...,n

>

initialise state variables [v%,p}]

pd

forward timestepping solver
with nonlinear solves for
state variables [v},, pj]

forward timestepping solver

- o with nonlinear solves for
. state variables [v},, p] and

% ~ multiple linear solves for
reverse timestepping solver with sensitivities [V}, o, , Ph o, ]

linear solves for adjoint variables
(2}, 1] using backup of [v}, pj,]

v ,

gradient of reduced cost func- ]
tional by adjoint variables gradient of reduced cost
Vi(uh) = 2L (S(un), un) + ) f;}gl:;i)onal gy;eniitig}tijf

* . o = = k YJ o

(22 (S(un), un)] "2 W) T By ST B Ve

| \ J /
optimisation step by Algorithm

6 to determine new values of
control variables u)"" = uj, + \is;

!

convergence test
— of optimisation
set ¢ =i +1 algorithm

finished

optimal state solu-
tion [v},ps] and op-
timal control u}, resp.

al, k=1,...,nfound

Figure 5.1: Schematic prodecure of adjoint- and sensitivity-based optimisation algorithm for discretised
instationary flow problems.
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iv/ evaluation of gradient by standard algebraic operations.

We see that the adjoint-based method in case of stationary problems always requires 1 nonlinear
system and 1 linear system to be solved, while the sensitivity-based method requires the more linear
system solves the more design parameter oy, are used. This fact obviously advocates for the adjoint-
based approach, but for instationary problem the position turns over. For an instationary problem
using a temporal discretisation of m timesteps, one iteration step of the schematic procedure 5.1
requires for an adjoint-based method:

i/ m nonlinear systems of the state equations to be solved forward in time,
ii/ backup of m state solutions at all timesteps,

iii/ m linear systems of the adjoint equations to be solved backward in time using backup of
state solutions,

iv/ evaluation of gradient by standard algebraic operations.
Whereas for the sensitivity-based method we need:

i/ one nonlinear system of the state equations to be solved per timestep (totally m for all
timesteps),

ii/ backup of actual state solutions at actual timestep,

ili/ n linear systems of sensitivity equations to be solved at actual timestep using backup of
actual state solutions,

iv/ evaluation of gradient by standard algebraic operations.

Hence, the sensitivity-based method does not require the separation in forward and backward
solver and does not need to backup all m state solutions - instead only the actual state solution
is needed in every timestep. For the solver we count for both methods m nonlinear system solves
and for the adjoint based method m linear system solves compared to m - n linear system solves for
the sensitivity based method. To overcome the problem of full backup of state solution for adjoint
based method, we will introduce checkpointing schemes in the sequel which lead to additional
nonlinear system solves for the state equations. Since this problem is not given for the sensitivity
based method, we can treat this approach like a pure simulation task having more than one system
to be solved in each timestep - so in the sequel we concentrate on techniques for the adjoint-based
method only.

Parallelism within the Scheme 5.1 can be implied for all solver steps by means of parallel solvers
as presented in Chapter 4. Furthermore the optimisation algorithm, which will be figured out next,
possesses opportunities for parallelism since mainly basic algebraic operations are to be peformed
like matrix-vector product or dot-product. The optimisation algorithm might use the parallel data
structures of Chapter 4.2, but for most cases the data distribution of the control variable is already
given by the domain decomposition approach. A reordering of control data is often not gainful
and for the sensitivity-based optimisation the number of control variables is such small that even
a sequential optimisation algorithm can be used.

Quasi-Newton Methods

The rough estimation on storage requirements done before for instationary PDE-constrained op-
timisation problems needs to be extended by an estimation of the size of the entire optimisation
problem. In case of sensitivity-based optimisation, the size of optimisation problem, i.e. the size
of discretised control u and also of gradient Vj(u), equals m - n. When explicit timestepping is
used such that m = 10°, these problems are of size 10° and have to be regarded as large scale
optimisation problems. In case of adjoint-based optimisation, the optimisation problem will also
be of size m - n, but now n denotes the spatial discretisation of control u. For the finite element
based discretisation of boundary control problems under consideration this equals the number of
degrees of freedom of control u;, on boundary I'. - on 3D meshes one easily ends up with n ~ 103.
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Even when implicit timestepping is used to keep down the number of timesteps, say m =~ 102, the
optimisation problem is of size 10° and therefore again a large scale optimisation problem.

The first order optimality condition for the reduced cost functional was given by (cf. (2.31))
<vj(u)aU_H>U*,U ZO VueUad

and can by rewritten as
Vij(u)=0 YuelU

whenever Uyy = U, i.e. no additional side constrains are given for the admissible controls. How to
compute the gradient Vj(u) was addressed by adjoint and sensitivity equations such that we now
need to concentrate on large scale optimisation algorithm. Since by the reduced cost functional
we can view the problem as an unconstrained optimisation problem, we use a general approach
by means of Newton’s method in several variables for unconstrained optimisation. Furthermore
the problem is treated as already discretised, i.e. we identify the control u, by the values of
degrees of freedom. Find the control up = [u1,..., Um.n] € R™™ such that the cost functional
Jlup) = J(S(un),up) is a minimum. Standard approximation of j(up) by the first three terms in
a Taylor series expansion at actual iterate u}, yields (see e.g. [96]):

() = (uh) + V)@ — ) + 5 B i — i, T —
with the symmetric Hessian matrix
B(uy,) = V2j(u},).
Define the search-direction s = uy, — u}, and rewrite the expansion as
@) = 03 + Vi(uh)s + 3Bl o 6.1
where the term Vj(u!)s is the directional derivative along s and the term H(u})[s, s] is called

curvature or second directional derivative in the direction s. For the minimum uj one has the
following observations (see [41])

J(@n) > j(up) Vu, € R™™,
Vi(uy)s=0 Vs e R™™,
B(uy)[s,s] >0 Vs € R™™.

For Newton’s method one choses the search direction
si = —B(uy) " Vj(up),
which is the minimiser of the quadratic model (5.1) to get the new approximation

u?‘l = uﬁl + S;.
This method is based on finding a zero of the gradient vector (first order neccessary optimality
condition) and there is no guarantee that the step will move towards a local minimum rather
than a stationary point or maximum. To preclude this, we must insist that the step be downhill,
iLe. Vj(ul)s; < 0, which is the positive definiteness of Hessian matrix when the Newton step is
chosen.

For the considered large scale problems the computation and storage of the Hessian matrix is
often beyond reach. Furthermore the factorisation of the Hessian matrix, i.e. computation of

H(uj,) = B~ (up)

might be very costly. The most simple way would be to estimate the inverse Hessian matrix H (u,)
by the identity, resulting in search direction s; = —Vj(u},) and the wellknown steepest descent
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method. A further improvement of inverse Hessian approximation is given by recursive update
formulae like SR1, BFGS or DFP. These Quasi-Newton methods base on the update of the inverse
Hessian approximation

Hiq ~ H(uit)

in each iteration step of the optimisation algorithm using the former derived iterates s; = v — ul
and y; = Vj(uj™) = Vij(ul) - see [41, 119] for a complete discussion. All update formulae avoid the
possibly costly computation and factorisation of the Hessian matrix, but still need lots of storage
- to overcome this problem limited memory updates are usually used.

We will concentrate on the usage of LBFGS method in combination with a line-search ap-
proach for globalisation of Quasi-Newton method. The main idea of limited memory BFGS is the

replacement of full update formula for the inverse Hessian matrix!

Hipt = (Id—si@gi)Hi (Idyi@si) AL

by a version that only uses a specific number of vectors. Using say m vectors to store the history
of s; and y;, the fundamental operation

s; = —H;Vj(u})

within a Quasi-Newton optimisation algorithm can be expressed by a two loop recursion 5 - refer
to Chapter 7 in [119]. For the entire optimisation Algorithm 6 within the optimisation procedure

Algorithm 5 LBFGS two loop recursion to determine search direction s;.

q = Vij(uj)
for j=i—1,...;i—mdo
L Sid
= Yy
q=4q—a;y;
end for
r=Hla = 5n
for j=i—m,...,i—1do
p= YT
Yjsj
r=r+s;(a; —b)
end for

8= —T1= —HiVj(u}'I)

depicted in Figure 5.1 we have to add some globalisation strategy to the Algorithm 5 - here we use
a simple line-search approach based on the Armijo update rule. It has to be mentioned that the
1D line-search step to determine the step length \; neccesitates the evaluation of cost functional
j(u). This step requires for a nonlinear cost functional and nonlinear state equations the solution
of the full instationary partial differential equations such that the determination of step length
might become the most costly part of Algorithm 6. To avoid the step length computation one
might use trust-region methods instead of line-search methods - see [119] for details.

Algorithm 6 Line-search optimisation step with limited Quasi-Newton update - LBFGS method.

given control v and gradient Vj(ui)
compute s; = —H;Vj(u}) by Algorithm 5
update control uﬁfl = u} + \;s;, step length \; fulfilling sufficient decrease condition for cost
functional j(up)
if i > m then
discard [8;—m, ¥i—m] from storage
end if
store s; = uitt —ul and y; = Vj(uitt) — Vj(ub)

la®b = [a;b;];,; denotes the outer product of two vectors a,b € R™
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Figure 5.2: Typical forward-reverse scheme for optimisation of instationary problems.

5.2 Parallel I/O and Checkpointing Strategies

For the presentation of parallel hardware and software techniques used for PDE-constrained opti-
misation in combination with an adjoint based optimisation approach, we consider an instationary
problem of the general form (cf. Chapter 2.3)

min J(y,u) (5.2)

(y,u)€Y xUaa

subject to
Oy + Ay, u), p)y=y =0 VpeY (5.3)

where y (resp. u) describes the state (resp. control) variable. Further Y (resp. U,q) describes
the state (resp. control) space and we assume J : Y x U,q — R for the objective functional and
A:Y xU,gq — Z =Y for the state equation to be nonlinear. As model problem the user might
refer to the setting of fluid flow optimisation in Chapter 2.3 where the adjoint problem associated
to (2.33) was found to be

o.J 9A *
(a—y(yw), O)y=y — (Opz + {a_y(y’“)} 2,0 y<y =0 VoeVY (5.4)

and the optimality condition was given by

*

aJ 0A
G+ |G )| s = w20 Yuc U (5.5)

Considering finite element discretisation of the continuous problems (5.3) and (5.4) as depicted
in Chapter 3.1, we derive the short forms

yit = Fyt vt i=0,1,....m—1 56)
2 = Rz yh,ub) i=m-—1,...,0

where we assume y}L and Z;L to be the discrete solution of the primal resp. adjoint equation at
timestep i. The discrete solution operators associated to the operators in (5.3) and (5.4) are
denoted by F(-,-,-) and R(:,-,) showing the forward and reverse character in time. Beside these
operators often a combined advance and reverse step, called init-step, can be figured out that also
comprises the initialisation of adjoint solution z;*. It is important to note that the adjoint problem
is always linear, i.e. 2} only depends on z;fl, but has to be solved backward-in-time. Furthermore
assuming a nonlinear primal problem (or a nonlinear cost functional) each step of the adjoint
solution is directly coupled to the corresponding step of the primal one (see Figure 5.2).

This means that the solution of the adjoint equation relies on the knowledge of the complete
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Figure 5.3: Benchmarking results of collective MPI-routines on HP XC3000 (Steinbuch Centre for Com-
puting).

forward solution y}, ¢ = 0,...,m — 1. In order to reduce the needed storage resources, different
checkpointing strategies have been introduced:

e uniform checkpoint distribution (see [31] and references therein),
e binomial checkpoint distribution (see [160] and references therein),
e adaptive (online) checkpointing (see [82] and references therein).

Typically for complex instationary problems a full backup of states easily grows up to some TByte
and cannot be stored directly in memory. Further on many large HPC platforms one has to face
the problem that data I/O is being handled on a unique master node. The needed gather and
scatter routines are very expensive on typical clusters due to the fact that performance of the
network decreases dramatically the more processes are used in a collective operation.

Benchmarking for gather and scatter routines on the HP XC3000 cluster at Steinbuch Centre for
Computing (Karlsruhe Institute of Technology) with an Infiniband 4X QDR interconnect showed
that the related performance of such collective operations decrease dramatically for increasing the
number of processes. While the standard point-to-point communication shows a performance of
more than 3100 MB/s the bandwidth reduces by more than 90% for collective communication (see
Figure 5.3).

Hence, one has to look for a solution that on the one hand reduces the amount of data to
be stored, i.e. does not store complete backup, and on the other hand uses sophisticated HPC-
techniques to enable scalable data I/O.

5.2.1 Solution Process on HPC-platform

For practical problems under consideration we mainly encounter large scale discretisation and it
turns out that the time needed to store one forward solution step may exceed the computational
time needed to obtain this step. This is especially the case when explicit timestepping schemes are
used. We will show this effect by an academical example of adjoint based optimisation, namely:
given an instationary partial differential equation for the state-solution y and a stationary/desired
solution y* = y*(x). Formulate a tracking type cost functional to control the PDE (here by means
of boundary control) such that the stationary solution is achieved within a fixed time interval
(0,T). This principle can be found in the following parabolic example of boundary control but
also in the examples of Chapter 2.3.
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The entire problem reads

T T

1 A

i J = — Y72y dt+ 5 Toqr, dt 5.7

i I = [y v e+ 5 [Tl 6.7
0 0

under state equation: y(-,0) = yo # O and for t € (0,T) it holds y(-,¢) € {v € H(Q): v=won I}
such that
Oy, ) + (Vy,V)o +aly,plo =0 Vo € Hy(Q). (5.8)

We use the parameter o to modify the behaviour of the system. Choosing o < —pimin, Where
Umin is the smallest eigenvalue of the Laplace operator (e.g. fimin = 272 in two dimensions), the
system becomes unstable and the solution blows up, i.e. the norm ||yp|| tends to infinity. Hence,
the boundary control u on I'. can be viewed as a stabilisation of the system, see [19].

The adjoint equation to (5.8) can directly be stated as: z(-,7) = 0 and for ¢ € (0,T) it holds
2(+,t) € H}(Q2) such that

—(0iz,0) + (V2,Vo)o + alz,0)0 = (¥ —y,0)0 Vo € H)(Q) (5.9)

whereas the optimality condition (having no additional bounds on control u) is given by: for
€ (0,T) it holds
(Au+ 0z, X)r2ry =0 Vx € L*(I.). (5.10)

We refer to [157] for a derivation and detailed analysis of such parabolic problems. Next the
discretisation of state and adjoint equation is done by conform spatial finite element method (using
finite element space V), C Hg(Q)) in combination with explicit timestepping (cf. Chapter 3.1) and
one gets the discrete system for (5.8)

1

(Wr en)o + At [(Vyy ' Ven)o +ay )] = W oo Yon €V, k=1,....m

With standard notation of stiffness- and mass-matrix

A = [aij] =At[(Veon,j, Veon,i)o + a@n,j, h,i)o] hj=1...,n
M = [ms;] =(pn,j, n,i)o i,j=1,...,n
this can be written as the algebraic system, where we use y¥ = Y V¥, ; and Y* = [V}, ..., VF|T,
i=1
MY* + AYF1 = my*+-! k=1,...,m
or equivalently
Yk =y* ! - MtAYy R =1,...,m. (5.11)

If finally the mass-matrix M = m;; = (¢n,j, ¢hn,i)o is replaced by the lumped diagonal matrix
n

M=mm; =5 m;j, equation (5.11) can be used as explicit update scheme for the discrete solution
j=1
y,’i Since this scheme mainly uses matrix-vector multiplication (plus additional componentwise
vector operations), it is a prominent candidate for parallelisation as we will shown later.
With respect to the previously described problems of storage space/time and in order to solve
the general adjoint problem (2.34) resp. the concrete problem (5.9), we consider an hybrid approach
combining two steps:

e checkpointing-strategy: store few dedicated timesteps instead of a complete state variable
backup and recompute missing states for the backward problem if needed,

e parallel I/O: allows every node in a cluster to write/read data simultaneously.

These two approaches result in different benefits. In our framework checkpointing strategies rely
on a reduced storage by means of a dedicated choice of the state solution forward-in-time. Each
of the stored timesteps correspond to a checkpoint. This kind of technique aims on the one hand
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Figure 5.4: Binomial checkpoint distribution in case of 16 timesteps and 3 checkpoints. R; means read
i-th checkpoint, W; means write i-th checkpoint and D stands for derive adjoint state.

at strongly reducing the needed storage resources. On the other hand the checkpoints are chosen
such that the needed recomputing efforts for the missing timesteps are kept minimal. A typical
situation is depicted in Figure 5.4 assuming binomial checkpoint distribution (cf. [69, 160]).

Parallel I/O techniques lead to additional benefits. These technologies allow data to be trans-
mitted in a fully parallel way between clients, on which they are produced and used, and central
dedicated storage server, on which they should be stored. In practice a significant speedup for
data-access can be gained as compared to typical cluster with serial file systems.

Hardware Configuration

Development of supercomputers nowadays more and more tends to systems which are well-resourced
with processors but with less main memory per core. In the November 2009 list of top500 super-
computers no system in top 30 is equipped with less than 10000 cores and the ratio of main memory
to total number of cores shows a clear tendency, e.g.

e top 1: Jaguar (Cray XT5-HE Opteron Six Core) at Oak Ridge National Laboratory (United
States) with 224162 cores. Each of compute node contains two hex-core AMD Opteron
processors and 16 GB main memory, resulting in 1.33 GB/core,

e top 4: JUGENE (Blue Gene/P Solution) at Forschungszentrum Jilich (Germany) with
294912 cores. The 72 racks with 1024 compute nodes host 4-way SMP processor and 2
GB main memory per compute node, resulting in 0.5 GB/core,

e top 13: JUROPA (Sun Constellation, NovaScale R422-E2, Intel Xeon X5570) at Forschungszen-
trum Jiilich (Germany) with 26304 cores. 2208 compute nodes with 2 Intel Xeon X5570
quad-core processors and 24 GB main memory, resulting in 3 GB/core.

Furthermore in the last years the memory and interconnect bandwidth did not increase that much
compared to the computational power of modern CPUs. These hardware facts underline the
necessity to develop solutions that rely on less memory access but more computations to be done
with the data. Explicit timestepping schemes might therefore become more and more popular
especially in combination with parallel data I/0.

For the investigation presented subsequently we have considered the HPC platform HP XC3000
cluster at Steinbuch Centre for Computing (the system layout is similar to the JUROPA, see
Remark 4.2.2) for which the parallel file system bases on the Lustre file system developed by Sun
Microsystems [150]. A main concept underlying this system is the separation between metadata
(directories or file attributes like name and user rights) and real data (the information/content of
a file). Another important point is a sophisticated system for management of locks that prevents
simultaneous write from different clients on the same dataset by which consistence of the file system
is guaranteed. Figure 5.5 shows the main components and protocols in a Lustre system.
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Figure 5.5: Components and protocols in a Lustre system.
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Figure 5.6: System architecture of parallel file system Lustre on HP XC3000 (Steinbuch Centre for Com-
puting).

The overall architecture and performance of the Lustre system on the HP XC3000 platform
differs for the directories $HOME and $WORK due to a different number of servers and different
interconnect. All servers are configured as failover pairs, i.e. if the metadata server (MDS) fails the
admin server adopts his part, while the object storage server (OSS) actually hold the data that
are distributed by striping (see Figure 5.6). In order to store a distributed vector (for example the
i-th timestep of forward solution) these parallel I/O techniques does not rely any more a gather
instruction on a master-processor.

Usage of Checkpointing Schemes

The topic of checkpointing in the context of PDE constrained optimisation has been the object
of intensive research efforts (see e.g. [89] and references therein). In our context we consider the
approach based on the algorithm REVOLVE described in [69]. This procedure aims at minimising
the number of needed additional forward-step computations assuming restriction associated to the
limited storage capacity.

It is important to note that such checkpointing strategies assume the number of available
checkpoints to be given and do not prescribe this parameter on their own. In order to define
the optimal number of checkpoints for a given problem a trade-off taking into account the I/0
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Figure 5.7: Lower bound for number of checkpoints by desired costs for optimisation algorithm and local
minimum of number of storage accesses (takeshots) — assuming 10° timesteps to be reversed.

bandwidth, latency as well as the CPU-costs needed for the solution of a forward step has to be
considered (see e.g. [149]). A standard approach usually bases on minimising the number of storage
access, while at the same time the additional forward-step computations should be bounded. It
consists of three steps:

1. Determine the upper bound ngj e, the limited storage capacity leads to a maximal
number of checkpoints for a given problem size.

2. Determine the lower bound ngp min: a lower bound is obtained from the condition that
the ratio between the computational effort for the optimisation and the CPU costs associated
to the forward simulation should be bounded and independent of the discretisation level of
the considered PDEs.

3. Minimise number of storage access in [nch min, Neh,maz): I the previous determined
interval one determines the number of checkpoints leading to a minimal number of storage
access (takeshots). This minimum can easily be determined on the basis of the function
describing the dependency between the number of checkpoints and takeshots which is known
a priori (see Figure 5.7).

This approach bases on the observation that forward-step computation is faster than storage access.
In the context of parallel solvers combined with parallel data I/O this kind of argumentation may be
wrong from the sense that the costs for I/O are not a constant any more but show similar scalability
properties as compared to the costs related to the forward simulation. Our observation on the
considered HPC platform is that minimising the number of takeshots may be contraproductive.
In contrast one should consider the maximal number of possible checkpoints leading to an optimal
overall computational time as depicted in the following numerical results.

For a typical example of instationary problem optimisation (10 timesteps, 106 degrees of
freedom (dof) in each timestep assuming double precision, resulting in ~ 7.3 TByte for complete
backup) the proposed standard strategy results in — see Figure 5.7:

e upper bound ncp maes = 13744 due to prescribed capacity of ~ 0.1 TByte,

e lower bound n¢p,min = 180 due to maximal extra costs of factor 3, i.e. maximum 3 - 106
forward-steps (advances),

e optimal ncpepe = 1000 (local minimum of takeshots) resulting in 500500 takeshots and
2497497 forward-steps (overhead factor of ~ 2.5).
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Figure 5.8: Absolute times for update scheme (5.11) operation Y*~! — Y* on different discretisation
levels.

Using parallel I/O techniques enables to push the number of used checkpoints to upper bound
Neh,maz Tesulting in 986254 takeshots and 1986253 forward-steps. The overhead factor reduces to
~ 1.98 while the number of takeshots is nearly doubled which is completely buffered by the parallel
I/O improvement of factor 10 compared to standard storage approach as shown in the sequel.

5.2.2 Numerical Results

To show the capabilities of parallel hardware, we again consider the academical optimisation exam-
ple (5.7) under constraint (5.8). The explicit update scheme (5.11) is first being tested for scalability
properties, while afterwards the parallel I/O performance is presented. Conclusively the proposed
approach of combining checkpointing schemes with parallel I/O techniques is evaluated.

Scalability of Explicit Timestepping

The update scheme (5.11) was implemented by means of the parallel row block data structure
that provided a very good scalability of matrix-vector product (see Chapter 4.2). We tested the
pure forward simulation of state equation (5.8) for different number of degrees of freedom and
for the fixed time interval (0,1). The number of timesteps m, i.e. the temporal discretisation At,
was chosen to a fixed value such that the solution at ¢ = 1 remains suitable with respect to the
CFL-condition — a comparison to solution gained by implicit timestepping has been passed.

Figure 5.8 shows that the update scheme (5.11) possesses a good weak scalability, i.e. the
bigger the problem is (finer discretisation) the more processes can efficiently be used. But in
contrast to the optimal scalability of pure matrix-vector multiplication (see Figure 4.4 and 4.5),
we encounter for one timestep Y*~1 — Y* additional parallel vector operation (including global
reduction operations to compute norms) such that the scalability is slightly worse.

Parallel I/O Performance

We now consider the performance of parallel I/O for the $WORK partition of HP XC3000 cluster
assuming the configuration described before. The underlying optimisation problem is at this stage
of minor concern, since the results hold true for general data storage. For the implementation we
consider the following three different setups:

1. PETSc-binary and -ASCII format using functions PetscViewerBinaryOpen and VecView
resp. PetscViewerASCIIOpen and VecView (see [7]),
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2. gather parallel row block vector into sequential vector and save in binary resp. ASCII format
using STL data structures and collective MPI-routines,

3. parallel I/O saving binary resp. ASCII format using STL data structures and parallel file
system based on Lustre.

The first two approaches represent the gather /scatter approach. Furthermore we used both ASCII
and binary format to get more illustrative results and to be able to check files easier — for the actual
production modus obviously only binary format should be used. Time for saving the vector grows
proportionally to the number of components the vector has using both standard gather/scatter
technique and parallel I/O. Quantitatively however the results obtained by parallel I/O give an
improvement by ca. 90% (see Figure 5.9 for the case of 32 processes).

As depicted in Figure 5.10 the performance for gather/scatter storage operations is almost
independent of the number of processes. Only if more than 32 processes are used there is a
noticeable increase in storage time — this is due to the fast decaying MPI-performance for collective
routines (see Figure 5.3). The gained efficiency and scalability for parallel I/O depend obviously
directly on the number of available OSS (see Figure 5.6 and [102] for more details). For ASCII
file storage one encounters almost a speedup in storage access that can be explained by the bigger
amount of data to be transmitted at once. For much smaller binary files instead the latency of
network becomes recognisable using more than 16 processes.

Combining Parallel I/0O and Checkpointing Strategy

The efficiency of combination of parallel I/O and checkpointing schemes as described before is
evaluated in the sequel using the academical example above. We considered computation of one
gradient (5.10) by means of adjoint approach using Algorithm 6 and the adjoint equation (5.9).
That is, we aim at one complete reversal as shown in Figure 5.2. For the spatial discretisation
with 1.1e6 degrees of freedom and At = 1.0e — 7, T' = 0.1, a full backup of state solution gained
by (5.8) results in 7.64 TByte to be stored, which is obviously not to be handled.

In order to find the optimal number of checkpoints n.x op: used for this problem, we compared
the standard approach by minimising the number of takeshots (as described before) to the possible
storage of nch,opt = Nch,mae checkpoints. For the reversal scheme 5.2 in combination with RE-
VOLVE algorithm [69] one encounters the general observations (see Figure 5.4 for example) which
are independent of the number of checkpoints used:

e number of reverse timesteps (i.e. adjoint solution solver) is m — 1,
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e number of restores of checkpoints is m — 1.

Hence, these two steps can be neglected within the comparison. The difference in runtime to
compute the gradient (5.10) will only be given by number of storage access (takeshots) and number
of forward-steps (advance). Benchmarking of these basic operations showed the scalability of
forward-steps and also the lack of scalability for storage operations (see Figure 5.11). As already
mentioned the storage time by parallel I/O would also scale or at least stay constant if more OSS
are used, whereas the gather-operation per se cannot scale.

The comparison of used storage approach and number of used checkpoints in Figure 5.12 clearly
indicates two points. First, the usage of gather/scatter operations to store a checkpoint prevents
any scalability of the entire computation. Second, optimal number of checkpoints in the sense of
minimal time to compute gradient by reversal scheme 5.2 depends on the ratio of time for one
forward-step to one storage operation. If storing of a checkpoint can be performed faster than one
forward-step, one should use maximal number of checkpoints available by memory limitation. If on
the other side a forward-step is computed faster, choice of n.p opt checkpoints as described before
results in optimal time — this turning point can clearly be seen in Figure 5.12. One also notices
that once the storage operation is the to costly compared to one forward-step (in this example at
128 processes with a ratio of ~ 65) no benefit of additional processes is given.

Conclusively we showed that parallel I/O enables a much faster gradient computation as stan-
dard gather /scatter operations and that the often used checkpointing schemes need to be reconsid-
ered. For future work one also have to take into account a possible distinction of different memory
stages, i.e.

e main memory for each core,
e local disk space on each node accessible for some cores,
e global disk space on cluster accessible for all cores,

to get scalability even for storage operation. These stages give additional opportunities for memory
access and layout of checkpoints — e.g. the most often restored/used checkpoints should be stored
within the fastest accessible memory. We refer to [149] for investigations on this active field of
research.
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Chapter 6

Numerical Results

Within this chapter, we investigate the capabilities of the adjoint- and sensitivity-based control
methods developed in Chapter 2 in combination with the high performance computing techniques
described in Chapter 4 and 5. We apply the proposed methods to the Navier-Stokes equations with
control of the velocity boundary values as well as to the electroosmotic micromixer with control of
the applied potential. In the first section, a comparison of the adjoint- and sensitivity-based control
method is adapted to the Navier-Stokes equations using the well-known optimisation problem of
vortex reduction behind a backward facing step. This model problem serves as feasibility study
for the presented techniques and provides the way to more physical related problems. Section 6.2
contains an extension to the simulation of the basis electroosmotic micromixer as presented in
[10, 11], while at last in Section 6.3 this setting is additionally aimed to be optimised.

6.1 Vortex Reduction Behind a Backward Facing Step

We consider the control of a backward facing step flow as model problem for the adjoint- and
sensitivity-based approach in optimisation — the used computational domain (2 is presented in the
Appendix, for results of the two-dimensional case see [87]. The flow field within Q is described
by the instationary three-dimensional Navier-Stokes equations with suitable boundary conditions,

Figure 6.1: Startsolution vo at ¢ = 1 (left) and uncontrolled solution at ¢ = 4.5 (right) for optimisation of
backward facing step example showing the absolute velocity and streamlines within cutplane
z = 0.5.
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Figure 6.2: Schematic illustration of boundary control c on upper part of the back wall — allowed variation
of angle 6(¢t) and amplitude A(¢) for parabolic inflow profile are shown.
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Opv—pn =10 on Ty x (0,7,
v(-,0) = vo in Q.

The boundary 012 is separated into disjoint parts: the channel walls I'g where a no slip condition
is assumed, the inflow and outflow boundary I';,, I',,: and the boundary where a control is
possible. Inflow and outflow boundary conditions are discussed in Section 2.2.3, here we use a
steady parabolic inflow profile v;, in combination with the do-nothing outflow condition. As
control boundary, the upper part of the back wall ', = [2,2] x [2,1] x [0, 1] is chosen. Furthermore,
the startsolution vy of the velocity field is determined by simulation of the system without control
for ¢t € [0,1] — see left plot in Figure 6.1. Hence, the control appears delayed but affects the flow
field right before the vortex behind the step develops, i.e. we investigate the optimisation within
the time interval ¢ € [1,5] which, for the sake of simplicity, is shifted and denoted by [0, T].

Specific kind of control depends on the optimisation approach. For the adjoint-based optimi-
sation we assume that ¢ € L?(0,T;L?*(T.)) and the first-order optimality conditions based on the
adjoint equations are already stated in Chapter 2.3.2. We only recall the cost functional used in

the sequel as
T

1
min J, (v, c) = 5/ /|V*Vd|2 dx+)\/c2 ds| dt, (6.1)
0 s

FC

i.e. we aim at a reduction of the recirculation behind the step by minimising the L2-difference of
velocity field to a given v4 € L2(Q). Here Q4 C € denotes the observation area which is located to
measure the recirculation behind step, in particular Qs = [2,5] x [0, 1] x [0, 1]. The desired flow field
vq is chosen to be the solution of the stationary Stokes equations at Reynolds number Re = 200.

We compare the adjoint-based approach as given by the system (2.40), (2.41) and (2.42) to the
sensitivity-based optimisation. To this, we define the control acting on I'. by an inflow stream
modelled via a parabolic profile to imitate a flow similar to the Poiseuille flow. Using the spatial
constant function (y; = %, y2 =1, 21 =0, 20 = 1) defined on T,

F:2) = (92 = 9y —y)(B52) 2z — )z — 2) (B4 2

we set the orientation 6(¢) and amplitude A(t) of the stream by (see Figure 6.2 for a schematic
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illustration)
volr. = A(t) cos(6(¢)) f(y, 2),
'Ulch = _A( )51n(9(t))f(y, Z)a (62)
’Uglrc =0.

The time dependent angle 6(¢) and amplitude A(t) are described by a polynomial ansatz

= zn: apt®,  0(t) = iﬁktk,
k=0 k=0

with design parameters «y, and fj such that the sensitivity-based optimisation relies on 2(n + 1)
variables. This choice is motivated by the results of the two-dimensional problem presented in
[87] and the fact that at least a constant co-inflow should reduce the recirculation area. The cost
functional in this case is given as before but with a modified part for the control

min Js(v, o, fr) = //|V — Vd|2 dx dt + = Z (|ak|2 + |ﬁk|2) . (6.3)

v,ak, Bk
0 Qg

Computation of the gradient and sensitivity equations are in general presented in (2.47), (2.48)

and read in the concrete case for ay, B, k=0,...,n
T
DDaJZ = \ay, +//(v — Vi)Ve, dx dt,
T
JLD)ZZ = ABk +//(v —vq)vg, dx dt,

with the sensitivities v, = % and vg, = % given by (2.48). Only the boundary conditions

for v, and vg, on I'. need to be adapted to the partial derivatives of (6.2), i.e

Vay 0|1, = t* cos(0(t)) f (y, 2)

—t* sin(0(t)) f (y, 2)
Vay,2|r, =0

g 0lr. = —t"A(t) sin(0(t)) f (. 2)
Vg alr, = —t"A(t) cos(0(t)) f (y, 2)

Vg 2|0, = 0.

Figure 6.3 shows the results of optimisation where we denote by costs the evolution of cost
functional J,(v,c) resp. Js(v, ak, Bk). Since the cost functional (6.3) does not contain an explicit
time dependent part for the control, we uniformly distribute the costs related to the control by

T
1 )\ —
Js(V,Oék,ﬂk):§/ /|vad|2 dx+?z (lag* + |8x|?) | dt (6.4)

O s

to get an evolution of the costfunctional that can directly be compared to (6.1). For the adjoint-
based approach we use the regularisation A = 10~! while for the sensitivity-based approach A\ =
1072 is sufficient. The Reynolds number is in all cases Re = 200. The iteration of optimisation
Algorithm 6 in combination with the Scheme 5.1 is stopped if the ¢2 difference of two successive
iterates is less than 1072 or if the step length within line-search step is less than 10~°. In comparison
to the uncontrolled case, we see that both optimisation approaches result in nearly constant values
for the cost functional indicating that the development of the vortex behind the step is reduced.
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Figure 6.3: Evolution of cost functional J,(v,c) resp. Js(v,ay, Bx) for the three-dimensional backward
facing step problem compared to uncontrolled case.

Only for ¢t > 4.0 we have an increasing cost functional, which especially for the sensitivity-based
approach can be explained by the fact that no special term at ¢ = T" has been used within the cost
functionals (6.1) and (6.4). For both controlled solutions, one furthermore observes a straight jump
of costs in the beginning which is not present for the uncontrolled solution. This jump is related
to the fact that the initial flow field v¢ is not controlled and therefore a discontinuous boundary
control appears within the first timestep yielding a noticeable change of the flow field. At a first
glance, Figure 6.3 suggests that the gain which can be achieved by the adjoint-based approach
compared to the sensitivity-based approach seems to be of minor importance since both result in
a comparable evolution of the cost functional. Additionally, it remains to interpret the resulting
boundary control by the adjoint-based method in terms of a physical feasibility.

To obtain an insight in the physical relevance of the adjoint-based solution, we plot in Figure
6.4 the flow field of the controlled, the uncontrolled and the desired case within the channel mid-
height z = 0.5 at ¢t = 4.5. For the uncontrolled Navier-Stokes flow, a re-attachment point of x ~ 5
can be found while this point is shifted to x ~ 2.8 for the adjoint-based optimisation. Also, the
sensitivity-based solution shows a smaller recirculation area behind the step and the desired even
flow field appears from x =~ 3.5 on. Although the adjoint-based optimisation approach allows
much more degrees of freedom to control the flow field, the resulting solution is not significantly
improved compared to the more physically motivated sensitivity-based approach. The vortex
behind the step induced by the main flow stream is in both cases minimised by an additional
inflow that is directed in negative y-direction. Figure 6.5 shows the boundary control at ¢t = 4.5
for both optimisation approaches. On the one hand, one can clearly see the parabolic profile of
x- and y-velocity components in the sensitivity-based case. The optimal design parameter oy, Bk
are given as o9 = 1.58, g = —0.16, By = 0.29, S; = 0.13, i.e. the amplitude A(t) slightly
decreases from 1.58 in the beginning to 0.94 at ¢ = 5 while the angle (t) increases from 17° to 47°.
On the other hand, the boundary control given by the adjoint-based optimisation shows a much
more complex appearance. First the control of z-velocity component v, on I'. turns out to be of
minor importance. The main characteristics of optimal control are given by a sharp inflow right
below the step that reduces with decreasing y-direction — a profile that seems questionable to be
realised within a concrete physical setting. At least the tendency of positive x-velocity indicating
an injection and negative y-velocity to suppress the development of the recirculation area can be
found in accordance to the sensitivity-based solution.

To summarise, it appears that both optimisation approaches result in a reduction of recircula-
tion area behind the step. Although the adjoint-based solution performs slightly better in terms
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Figure 6.4: Desired flow field (top), uncontrolled Navier-Stokes flow (second), flow controlled by adjoint
approach (third) and flow controlled by sensitivity approach (bottom) showing the absolute
velocity and streamlines within cutplane z = 0.5 at time ¢ = 4.5.
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-0.69925

Figure 6.5: Control boundary values on I'c at time ¢ = 4.5 given by adjoint-based optimisation (top)
and sensitivity-based optimisation (bottom) — x-, y- and z-velocity components and resulting
vector field are plotted.
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Figure 6.6: Simulation of concentration distribution within the channel during the inflow phase with a
pure pressure-driven flow — top at ¢ = 10 and ¢ = 20, bottom at ¢t = 30 and ¢ = 37.

of cost functional evolution, the sensitivity-based solution seems physically more relevant. From
the computational point of view both approaches have quite different requirements. While for
the adjoint-based approach, we only need to solve one linear equation to get the gradient of the
cost functional (see Chapter 5.1), the sensitivity-based approach in this example requires to solve
4 linear equations for the design parameters oy, Br. Since the optimisation algorithm in both
cases nearly uses the same number of iterations (step-length searches and LBFGS updates), one
roughly gets on the one hand a slowdown factor of four when the sensitivity-based optimisation
is used. On the other hand, the requirements of code restructuring is much more involved for
the adjoint-based approach than for the sensitivity-based approach. The very tight coupling of
primal and adjoint equations, especially in the case of instationary problems, is already addressed
in Chapter 5.2 where a solution for the backup of the primal equation is presented. In the case
of sensitivity-based optimisation, this difficulty completely vanishes since the computation of all
sensitivities can be done while the primal solver proceeds forward in time. Finally, the choice of
suitable optimisation approach should rely on the available computational resources (both software
and hardware) but even more on a physically meaningful formulation of the optimisation problem.
The adjoint-based optimisation obviously results in a boundary control that is difficult to realise in
a physical setting but illustrates the main idea how the control should be applied. Afterwards this
information can be used to formulate the more physically motivated sensitivity-based optimisation
having a good guess for the design parameter at hand.

6.2 Simulation of Fluid Flow in a Twice-Folded Microchannel

Before we address the optimisation of the electrokinetic micromixer that was introduced in Chapter
1, we first compare our simulation results to the ones of Barz et al. in [10, 11]. We extend the
pressure-driven laminar flow with mass transport as reported in [10] and with the electrically
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concentration

Figure 6.7: Idealised initial condition for the concentration distribution within the channel.

excited flow as in [11]. Furthermore, the geometry is slightly different. Barz et al. used sharp
corners, simplifying the generation of the numerical mesh considerably, instead of the rounded
corners resulting from the manufacturing process, as used here (see Appendix). Also a remark on
the initial condition for the concentration has to be made beforehand. In a strict physical setting
one should assume the channel to be filled in the beginning, i.e. at ¢ = 0, with only one of the
two liquids. A simulation of the inflow phase within the interval ¢ € [0,37] is shown in Figure
6.6 by some snapshots indicating the concentration front that propagates through the channel.
While the pressure-driven flow field is fully developed within only a few timesteps, the propagation
of the concentration of the species/dye takes longer. Using the supercomputer JUROPA hosted
at the Forschungszentrum Jiilich (cf. Chapter 4.3.4) with 512 processes, the simulation of this
inflow phase takes about 12 hours (at a spatial discretisation of 2.8 - 10° degrees of freedom) and
therewith reaches the batch job limit of maximal wallclocktime. As one can see in Figure 6.6 even
at t = 37 the concentration is not fully developed within the channel. To overcome this physically
correct but time consuming simulation, we use an idealised initial condition for the concentration
as shown in Figure 6.7, namely an idealised distribution of both liquids without any mixture along
the channel. This simplification allows a faster computation and is at least for the steady state
solution (¢ — oo) of minor concern. But for the results in a certain window ¢ € [0, ¢.-;:] one has to
be aware of the influence of the physically idealised initial condition.

The setting remains as introduced in Chapter 2, i.e. we solve the Navier-Stokes equations
combined with the convection-diffusion equation (2.15) and an applied constant potential difference
A¢ # 0 if an electrical excitation is under investigation. The boundary conditions for the Navier-
Stokes equations are given by a no slip condition v = 0 on the channel walls I'y whenever the
potential difference vanishes — this corresponds to the setting in [10]. For a non-vanishing potential
difference, i.e. if an electrical field is applied, the transition condition of velocity field between bulk
solution and EDL on I'y is implemented by the slip condition as presented in Chapter 2.2.3. Inflow
and outflow conditions are implemented by the pressure drop formulation (see Chapter 2.2.3) such
that the mean inflow velocity is vo = 9.1 - 10_4% corresponding to a Reynolds number Re = 0.1 —
this correlates to the setting in [11].

At the inflow section of the boundary, the concentration has given Dirichlet values ¢ = 1 for
y < 0 and ¢ = 0 for y > 0 to mimic the upstream Y-junction of the microfluidic chip (see Figure
1.1). At the outflow section and at the channel walls resp. at the interface to EDL T'g a vanishing
flux is used, i.e. 9,¢ = 0. The diffusion coefficient of the concentration field is reported in [10] to
be D = 4.27 - 10’10’"?2 resulting in a Schmidt number of Sc¢ = 2340. Furthermore, the potential
difference across the computational domain is estimated in [11] to be Ay = 47V which correlates to
an approximate electrical field of E, ~ i14.68%. Here, we only use the situation of a negatively
directed electrical field resulting in an electroosmotic flow directed against the pressure-driven flow.

In a first simulation, we use the stationary Navier-Stokes equations in combination with the
convection-diffusion equation to evaluate the steady state of possible mixing. Figure 6.8 shows the
concentration field at different height levels of the channel when no potential difference is applied.
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Figure 6.8: Concentration field at different height levels (top z = —0.43, middle z = —0.32, bottom
z = 0.00) showing steady state solution of mixing for a three-dimensional Navier-Stokes flow
at Re = 0.1 and Sc = 2340 without electrical field. Isolines indicate a concentration of 0.4
and 0.6.



128 NUMERICAL RESULTS

Figure 6.9: Streamlines of the electrically excited fluid flow at the height level z = —0.43, top: left
measured and right simulated by Barz et al. [11], bottom: results by HiFlow” using the
parallel solver as presented in Chapter 4.

One can see that even for very low flow rates at Re = 0.1, i.e. a relative large residence time of
the species enhancing mixing by diffusion, the outcome is not optimal. A slightly better mixing is
given near the channel walls (upper two plots in Figure 6.8) compared to mid-height of the channel
at z = 0.0 due to the much slower flow field within this region yielding a higher residence time.
Typical Reynolds numbers in microfluidic applications are rather of the order of 1, though. Hence,
the residence time is even shorter underlining the need to improve mixing by other means, e.g. due
to the superimposition of an electroosmotic flow.

As a second step, we compare the resulting steady state flow fields (with non-vanishing constant
potential difference A¢) within the lower U-bend of the microchannel, i.e. z > 8 in Figure 1 of the
Appendix, to the measured and simulated results from Barz et al. [11]. Figures 6.9, 6.10 and 6.11
show the flow field at specific constant height levels z by means of streamlines. In each Figure the
two top plots are kindly provided by Dominik P. J. Barz showing the a) measured and b) simulated
results as they are given in [11]. The lower pictures are computed by HiFlow? using the presented
parallel solver of this thesis.

The flow fields in Figure 6.9 at a height level of z = —0.43 show a more or less even streamline
configuration indicating a quasi steady flow. Due to the closeness to the bottom of the channel
at z = —0.5 the flow within this region is dominated by the electroosmotic flow directed from the
right to the left and there is no noticeable influence of the pressure-driven flow. Both simulated
solutions are in very good agreement to the experimental results. At a slightly higher level of
z = —0.32, as shown in Figure 6.10, the mutual influence of pressure-driven flow and opposite
directed electroosmotic flow is considerably present. The flow topology appears to be very complex
containing several saddle points (S) and vortices (V). While the simulation using sharp corners
(top right in Figure 6.10) shows two vortices separated by a saddle point located at each inner
bend, the modified geometry with rounded corners shows only one vortex point as it is also present
in the experimental results. All other characteristics of the streamlines appear similar for the three
illustrations. In the mid-height of the channel at z = 0.0, the pressure-driven flow appears as the
main flow from the left to the right (Figure 6.11). Again a noticeable difference in the simulated
results is given at the inner bends — usage of rounded corners clearly improves the agreement
to the measured flow field. To summarise, the simulation of electroosmotic flow provides a very
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Figure 6.10: Streamlines of the electrically excited fluid flow at the height level z = —0.32, top: left
measured and right simulated by Barz et al. [11], bottom: results by HiFlow® using the

parallel solver as presented in Chapter 4.
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Figure 6.11: Streamlines of the electrically excited fluid flow at the height level z = 0.00, top: left
measured and right simulated by Barz et al. [11], bottom: results by HiFlow® using the

parallel solver as presented in Chapter 4.
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good agreement to the results presented in [11] and is even better due to the modification of the
geometry. The presence of both, pressure-driven flow and electroosmotic flow, features a very
complex flow topology that should be appropriate for the task of mixing by increasing the contact
area of the two liquids. It remains to judge the quality of mixing and if necessary to improve the
mixing by temporal alteration of the potential difference Ag.

We finally aim at solving the full three-dimensional system with a pressure-driven base flow
and an additional electroosmotic flow in combination with the convection-diffusion equation for
the species concentration to evaluate the influence on mixing quality according to Figure 6.8. It
turns out that the simulation of the steady state, i.e. using a stationary solver, at Schmidt number
Sc = 2340 leads to numerical instabilities due to the complicated flow field and limited mesh
refinement capabilities. Even the attempt to solve the instationary system was not successful —
especially within the top and bottom region of the channel, we encounter numerical instabilities
due to the interference of pressure-driven and electroosmotic flow (see inflow area of the channel
in Figure 6.12). A limitation to Schmidt number Sc = 450 and corresponding diffusion coefficient
D = 2-107%m?/s gives more stable results but the concentration also obviously shows a better
mixing such that any optimisation is not worth discussing.

Based on the dimensionless parameter Re = 0.1 and Sc = 2340, we get the dimensionless
diffusion coefficient D = 1/(Re - Sc) = 1/234 such that a suitable mesh size can roughly be
estimated by the (mesh) Peclet number. Requiring that Pe = voh/D < 1 and assuming at least
a mean velocity of 1, we have that h < 1/234 = 0.004 for the maximal size of a cell in the mesh.
Realisation of such a fine mesh in 3D is beyond the actual computational capabilities accessible
for this work. Hence, we concentrate in a first step on the 2D implementation of the optimisation
for electrokinetic micromixer and have to face the very challenging problem in three dimensions
in a future work. This work will be continued using modified algebraic solvers for very large HPC
platforms (see also conclusion of Chapter 4) as well as discretisation schemes using stabilisation
methods for the convection dominated flow and possibly adaptive refined finite element meshes.

6.3 Optimisation of an Electrokinetic Micromixer

As mentioned in the last section, the optimisation of a full three-dimensional electrokinetic mi-
cromixer is beyond the computational capabilities of available hardware. Therefore, we investigate
the fundamental procedure for the two-dimensional case and address the question whether the
results can be transfered to the three-dimensional case. Figure 6.13 shows the streamlines of the
electrically excited flow fields in both two- and three-dimensional case as presented in the previ-
ous section for different Reynolds numbers. It is obvious that the two-dimensional approximation
reveals a qualitatively good approximation for the channel mid-height. Hence, at least for the mid-
height of the channel at z = 0.0, where the influence of the electrical double layer located at the
top and bottom of the channel is not dominating, we can interpret the results of two-dimensional
simulation/optimisation also for the three-dimensional case.

In addition to the previous section, we also use a Reynolds number of Re = 1.0 for the opti-
misation since such a flow regime is more realistic in terms of microfluidic applications. Whereas
the flow field situation for Re = 0.1 and Re = 1.0 shows no significant difference (cf. Figure 6.13),
the latter setting results in a lower residence time of a species within the channel such that a pure
pressure-driven flow will not result in sufficient mixing (cf. Figure 6.14). Like in the comparison
of the streamlines, we see that the resulting concentration at Re = 0.1 for the two-dimensional
case (upper plot in Figure 6.14) is in a good agreement to the mid-height cutplane of the three-
dimensional case (lower plot in Figure 6.8). An additional benefit of higher Reynolds numbers and
shorter residence times is the better justification of the idealised initial condition of concentration
given in Figure 6.7 which is similar to the steady state solution of pressure-driven flow in lower
plot of Figure 6.14.

To judge the mixing of concentration, we need to define a measure that also will be used as cost
functional for optimisation. Since a satisfying mixing is obviously obtained when the concentration
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Figure 6.12: Concentration field at different height levels (top z = —0.43, middle z = —0.32, bottom
z = 0.00) and at ¢t = 10.6 for a three-dimensional Navier-Stokes flow at Re = 0.1 and
Sc = 2340 within an electrically excited fluid flow. Isolines indicate a concentration of 0.4
and 0.6.
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Figure 6.13: Left column: streamlines of the electrically excited fluid flow at the height level z = 0.00
using 3D simulation at Reynolds number Re = 0.1 (top) and Re = 1.0 (bottom). Right
column: streamlines of the electrically excited fluid flow using 2D simulation at Reynolds
number Re = 0.1 (top) and Re = 1.0 (bottom).
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Figure 6.14: Steady state solution of the concentration field for a two-dimensional Navier-Stokes flow at
Re = 0.1 (top), Re = 1.0 (bottom) and Sc = 2340 without electrical field. Isolines indicate
a concentration of 0.4 and 0.6.

is ~ 0.5, a possible measures is given by the L? difference in Q,, i.e.

Ji(c) = /|c—0.5|2 dx (6.5)
Qs

or by the fraction of unacceptable concentration
1 0 ife(x)€[0.5—¢05+c¢
B0 = [x@ dx xe =17 T | (6.5

€25 | 1 else
Qs

where Q5 C €2 denotes the observation area of interest and ¢ determines an acceptable variance for
which 0.1 is used in the following. s is chosen to be the outflow section of the channel, namely

the straight part at @ > 11.65 (cf. Appendix). For an ideal mixing both J;(¢) and Ja(c) should be
7€T0.

The dimensionless system of partial differential equations describing the bulk flow within the
electrokinetic micromixer is given by (2.49). Boundary conditions are already discussed in detail
in Chapter 2.2. As in the simulation before, we use the pressure drop formulation for the velocity
field, where the pressure difference between inflow and outflow boundary is adjusted such that the
dimensionless mean velocity vy equals 1 to ensure the correct Reynolds number. In particular we
use the following set of boundary conditions for the optimisation of the electrokinetic micromixer
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at Re =1.0:
V|F0 = —1I2Vg, a”lvlrinurout =0, p|Fm = 304.2,
plrout = Pout =0, ¢|Fm =0, ¢|Fout = ¢C(ta O‘k)a (6 7)
0 ify>0 '
On, =0, = -, On, , = 0.
ér, clr,, {1 iy <0 clrour,,

The control of applied potential at I',,; is given by an analytical function involving the de-
sign/optimisation parameter «ay, to describe the temporal modifications.

Before any definite function for the applied potential ¢.(t, ) is set, one should observe the
mixing for the pure pressure-driven flow as well as for the case of a constant and an alternating po-
tential as reported in [11]. Hence, we first evaluate the evolution of the cost functionals (6.5), (6.6)
using four fixed cases:

1. only pressure-driven flow, i.e. ¢(¢)|r,,, =0,

2. constant applied potential, i.e. ¢(¢)|r,,, = 1,

3. rectangular alternating potential with period ¢ = 10 and ¢(¢t)|r,,, = -1V 1,
4. rectangular alternating potential with period ¢ = 10 and ¢(¢)|r,,, =0V 1.

The results are shown in Figures 6.15 and 6.16 for Re = 0.1 and Re = 1.0. A first observation
can be made for the pure pressure-driven flow: after a certain time t4;r¢ a steady state for the
concentration field is given (cf. also Figure 6.14). The time tq;¢s can be interpreted as diffusion
time of the underlying system. Depending on the Reynolds number and therefore on the residence
time of a species within the microchannel, we have t4;75 ~ 40 for Re = 0.1 and tg4;7f ~ 25 for
Re = 1.0 which obviously results in an increasing value for the costfunctionals as the Reynolds
number increases. For the cases of a non-vanishing applied potential one has to distinguish the
constant potential and the alternating potential. The first one induces a steady flow field (cf. Figure
6.13) which for ¢ — oo gives a steady state of concentration field. Using a stationary solver, we
determine the limits of cost functionals to be Ji(c) = 1.3-107%, Ja(c) = 0.0 for Re = 0.1 and
Ji(e) = 0.11, Ja(e) = 0.82 for Re = 1.0. Thus, for low Reynolds number a complete mixing can
be achieved at least for ¢ — oo while for increasing Reynolds number the mixing gets worse due to
a lower residence time of the species within the microchannel.

Both cases of an alternating applied potential result in a periodic solution. The limit of the
costfunctionals can only be given by a mean value for the case of applied potential ¢(¢)|r,,, = —1V1
while for the fourth case, i.e. ¢(t)|r,,, = 0V 1, the costfunctional seems to tend to the same limit
as for the constant applied potential. This behaviour can be explained by the fact that whenever
@(t)|r,.. < 0 the electroosmotic flow is directed aligned to the pressure-driven flow. Therefore, the
residence time of a species is even smaller than for the pure pressure-driven flow which degrades
the mixing induced by the previously opposite directed electroosmotic flow. For the alternating
potential that is non-negative one does not obtain this effect. Here, the phase of ¢(t)|r,,, = 0 only
delays the mixing since within this phase the actual distribution of concentration field is transported
like for the pure pressure-driven flow. Figure 6.17 shows a snapshot of the concentration field at
t = 96 and at Re = 1.0 using a constant and an alternating applied potential. One can see the
homogenous mixing in the constant case due to the steady flow field. The alternating potentials
induce a much more complex flow field that is not necessarily well suited for a better mixing — at
least within a long term observation.

Finally, a comparison of the two used cost functionals in Figures 6.15 and 6.16 indicates that
both are equally suitable to evaluate the mixing of species concentration. While the L? difference
used for Ji(c) weights the variance of concentration field to desired value of 0.5 in a smooth
manner, the cost functional J>(c¢) is more restrictive in this sense. Hence, if for any reason a
mixing of species within the interval ¢ € [0.4,0.6] is crucial for the entire microfluidic setting on
the chip (e.g. to start a chemical reaction), one should better use the cost functional Jo(c). If
the general possibility of mixing should be observed it is however also warrantable to use the cost
functional Ji(¢). To summarise, three major results are given by the simulations: for ¢t — oo
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Figure 6.15: Evolution of cost functional Ji(c) (6.5) with constant and alternating applied potential
@(t)|ryu, for Re = 0.1 (top) and Re = 1.0 (bottom).
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Figure 6.16: Evolution of the cost functional J2(c) (6.6) with constant and alternating applied potential
@(t)|ryu, for Re = 0.1 (top) and Re = 1.0 (bottom).
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Figure 6.17: Concentration distribution for a two-dimensional electrically excited flow at Re = 1.0 and
Sc = 2340. Solution at ¢ = 96 for constant applied potential (top), alternating applied
potential ¢(t)|r,,, = —1V 1 (middle) and ¢(¢)|r,.,, =0V 1 (bottom).
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Figure 6.18: Concentration distribution for a two-dimensional flow at Re = 1.0 and Sc = 2340. Solution
at t = 30 for the pure pressure-driven flow (top) and for the optimal electrically excited
flow using ¢2(t,w, h) (bottom).

a constant applied potential gives the best mixing, for short time observations the alternating
potential attains a more favourable mixing and finally the mixing at small temporal horizon is
much more involved the bigger the Reynolds number is.

We conclusively aim at optimisation of the electroosmotic micromixer by means of minimising
the cost functional Ji(c, ). Since a fast and homogeneous mixing of species is aimed for, we
furthermore restrict the observed time interval to ¢ € [0,30]. Within this interval, the overall
decrease of the cost functional for all four simulated cases is comparable (see Figures 6.15 and 6.16)
such that a demand for an optimisation is given. The optimisation problem of the electrokinetic
micromixer involving the design parameters oy, is stated as

C, Qg

T
1 A —
min J (¢, ax) = 5 // le — 0.5 dx dt + o) > Jal? (6.8)
0 Q. k=0

such that the system (2.49) with boundary conditions (6.7) is fulfilled. We compare the optimal
parameter settings to the results obtained by the alternating applied potential ¢(¢)|r,,, = 0V1 with
a period of ¢t = 10 — see Figure 6.19. Motivated by the simulation results, we chose two different
possibilities for the applied potential ¢.(t, ax) to check the influence of time dependent alteration.
First a smooth applied potential described by the sinus function is used that also incorporates a
constant term, namely

d1(t, ar)lr,.,, = ao + aq sin(ast).

The optimal design parameter for Re = 0.1 are given by ag = 0.0366, «; = 1.4518, ay = 1.3256
showing an alternating potential with a period of ¢ = 4.74 and a nearly negligible constant offset.
For the optimisation at Re = 1.0 the optimal parameter are comparable: the constant offset is
even less (g = 0.0184) while the amplitude is slightly higher («; = 1.4761) at a similar frequency
of as = 1.3183 respectively a period of ¢ = 4.76. Compared to the simulation results (see Figure
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Figure 6.19: Evolution of the cost functional Ji(c) for the alternating applied potential ¢(t)|r,,, =0V 1

and for the optimal controlled cases at Re = 0.1 (top) and Re = 1.0 (bottom).
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6.19), the halved period results especially for Re = 1.0 in a visible benefit. With the frequency of
the alternating potential that optimises the mixing (w = 1.33), we secondly chose a Fourier series

Qo

¢(t’ak)|rout = D)

+ Z ay, cos(kwt) + Z ay sin((k — n)wt)

k=1 k=n+1

with n = 2 as control function to get a deeper insight on the weights of alternating and constant
terms. However, this does not give any additional benefit, i.e. the optimisation algorithm does
not result in a remarkable update due to very short step-length and small gradients showing that
the frequency is optimal. Finally, the rectangular applied potential is optimised for the frequency
ap := w and amplitude a; := h which can formally be written as

I

h o sin((2k — 1wt
3 (( Jwt)

¢2(t’w’ h)lrout = ? 2]{: _ 1

k=1

The partial derivatives with respect to w and h have to be evaluated for the sensitivity-based
optimisation. For the frequency w this gives a possibly non-convergent series

W _ At cos((2k — 1)wt).
W Y

k=1

In order to still treat this ansatz, we restrict to the first ten terms of the series approximating the
rectangular shape by a smooth function. Again for both Reynolds numbers we find very similar
results. An optimal amplitude of h ~ 1.49 and a frequency of w ~ 1.309 are in nearly perfect
accordance to the previous results of ¢1 (¢, ). Nevertheless, the change from smooth function to
clear switching of the applied potential results in a distinct gain in the evolution of cost functional
(cf. Figure 6.19) and a noticeable better mixing compared to the pure pressure-driven flow within
the microchannel (cf. Figure 6.19).

A last remark has to be made on the convergence of the optimisation algorithm. For one thing,
smooth functions (as ¢1(t, i) and also tested polynomial ansatz) give a steady reduction for the
cost functional within 4 — 6 LBFGS iterations while for the case ¢2(t, ax) only 1 or 2 iterations
were successful. For another thing, optimisation at Reynolds number Re = 0.1 turns out to be
somewhat more sensitive than at Re = 1.0, i.e. the line-search within the optimisation algorithm
more often gets suitable step-lengths. Especially the optimisation of the frequency w in this case
is very difficult and a good initial guess is crucial. Such a behaviour illustrates the difficulty in
choosing suitable design parameters combined with an analytical function to describe the control
whenever the sensitivity-based optimisation is used. Therefore, an optimisation based on the
adjoint equations will be an obvious future work, being aware of the fact that the results might
not directly be physically meaningful as for the previous optimisation of vortex reduction behind
a backward facing step, but should give a more precisely knowledge of the control capabilities for
the electroosmotic micromixer.



Chapter 7

Summary and Outlook

In this thesis, we investigate the simulation and optimisation of several fluid flow problems within
microchannels with focus on the homogeneous and fast mixing of two liquids. This process is crucial
to fulfill the lab-on-a-chip concept and serves as a prototype for several (bio)chemical mechanisms
involving different species. For pure pressure-driven flows of an incompressible Newtonian fluid,
we derive the Navier-Stokes equations describing the velocity and pressure field in the channel. A
convection-diffusion equation is used to determine the distribution of species concentration. Since
the optimisation of mixing is addressed by an induced secondary flow using the electrokinetic
properties of a fluid in contact with an electrically charged surface, we need to further extend the
governing equations by a model for the electrical double layer (EDL) near the channel walls. The
outcome of the method of matched asymptotic expansions by Barz et al. [11] reveals a separation
of the bulk flow from that within the EDL and enables to capture the influence of the EDL by
suitable slip boundary conditions. Otherwise one would have to resolve the very thin boundary
layer leading to impracticable fine meshes and very large discrete systems. This approach was
already used within several works that do not resolve the EDL. Nevertheless, for a future work a
direct comparison of the simulated flow field with the resolved EDL to experimental data should
be conducted in order to validate the asymptotic approach.

Since the Laplace equation describing the potential within the fluid only couples to the Navier-
Stokes equations by the slip boundary condition of velocity field and since the convection-diffusion
equation can be treated totally self-contained once the velocity field is computed, we reduce the
investigation on numerical solver and preconditioner to the discretised Navier-Stokes equations
only. The presented finite element framework and the algebraic preconditioners however also cover
the remaining partial differential equations (PDE) and the complete system. To obtain suitable
preconditioners that mind the saddle-point structure of the Navier-Stokes equations, we incorporate
the Multilevel ILU preconditioner provided by ILU++ [112] to the finite element solver package
HiFlow? [20] and check its capabilities for the considered microflow problems. By appropriate
preprocessing of the system matrix and especially by adjustment of the threshold used within the
dropping rule of incomplete LU-decomposition, the ILU++ preconditioner appears to be by far
superior to any ILU(p) version. These convincing results for the sequential preconditioner need
then to be transfered to a parallel framework to be able to solve three-dimensional problems in
reasonable time. To this, we use a domain decomposition method based on a non-overlapping
partition of the finite element mesh. The question arises which parallel data structure is well-
suited to form a scalable extension to the sequential Multilevel ILU preconditioner. We implement,
and compare two possible parallel data structures, namely a row block distribution of data along
the processes and a distribution motivated by the Schur complement formulation. Both data
structures allow the usage of the sequential Multilevel ILU preconditioner locally on each process
to get a parallel preconditioner for iterative Krylov subspace methods. While for the row block
distribution a Block Jacobian approach simply skips all entries in the system matrix that couple
several subdomains/processes, the Schur complement approach reduces the entire problem to a
smaller one that is stated on the sceleton degrees of freedom between the subdomains. For the
standard linear algebraic operations we find a similar scalability for both versions with a slight
advantage for the purely local defined Schur complement data structure. The resulting parallel
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preconditioners allow for a variety of parameter to be set and show, on the one hand, that the Schur
complement approach possesses some gainful properties to significantly reduce the number of global
Krylov subspace iterations. On the other hand, we also see that there is a high sensitivity on chosen
parameters and that the preconditioner is not unconditionally robust to arithmetic over- and/or
underflows. In contrast to the linear algebraic operations, the absolute time to solve a linear system
does not show a very good scalability. The essential drawbacks of both parallel preconditioners
are obvious. For the Block Jacobian approach, too many couplings within the system matrix are
skipped when the number of processes increases and therefore the preconditioner comes closer to
the identity. For the Schur complement approach, an increasing number of processes leads to a
bad ratio of interior to sceleton degrees of freedom such that the benefit of much smaller reduced
problem vanishes. A future work within this direction should investigate the principal limits of
scalability which are given by the fact that the system matrix is strongly coupled and cannot be
reduced.

Once the parallel solver and preconditioner is established, the simulation of fluid flow within
microchannels can be handled but the optimisation task still remains. The adjoint based optimi-
sation of instationary problems owns some special features that have to be regarded within the
software design. It is important to note that the adjoint problem is indeed always linear but has
to be solved backward-in-time. Furthermore, if the primal problem or the cost functional is non-
linear each step of the adjoint solution is directly coupled to the corresponding step of the primal
one. This requires special backup techniques of the primal solution which might be very costly
on high-performance computing (HPC) systems due to increasing importance of data I/0O. The
proposed new approach which combines parallel I/0 techniques with checkpointing schemes allows
a considerable reduction of storage amount and the related time for storage access assuming an
adequate trade off in the combination of both components. One should note that this approach
does not take into account the case of an HPC platform with local storage resources. An exten-
sion of the derived scheme towards an hybrid method is an obvious next step and should allow to
simultaneously tackle the issue of local and global parallel I/O in the context of PDE-constrained
optimisation.

All parallel tools developed in this work are finally successfully tested for the example of a
backward facing step flow using a more academic setting of tracking type optimisation governed
by the instationary three-dimensional Navier-Stokes equations. We find that the sensitivity-based
optimisation approach yields slightly worse results than the adjoint-based approach that has much
more degrees of freedom to be controlled. Especially the physically more reasonable character of
the sensitivity-based approach motivates of using this one for the optimisation of electrically ex-
cited micromizer as well. For the simulation of electrically excited fluid flow, we are able to expand
former simulation results by Barz et al. [11]. Meshes closer to the real geometry which lead to
discrete systems of nearly three million degrees of freedom per timestep requiring the usage of de-
veloped parallel solver/preconditioner with at least 512 processes on the supercomputer JUROPA.
Nevertheless, an extension of the electrically excited fluid flow by a convection-diffusion equation
to describe the mixing of species fails for the three-dimensional case due to numerical instabilities
caused by a mesh that is still not fine enough. A possible reduction of the Schmidt number and
therefore higher diffusion avoids this problem but also changes the physical situation. Alterna-
tively, a further research might address adaptively refined meshes and stabilisation techniques for
the convection dominated transport process. Also, the replacement of the convection-diffusion
equation for the simulation of concentration field of the species might be a solution. If a numerical
simulation of diffusion-free mass transport by means of particle tracking is in accordance with the
physical problem, i.e. no diffusion of species can take place, the distribution of species can also
simply be obtained by integration of the particle trajectory.

However, two-dimensional simulations can be done on the actual computational capabilities
of available hardware showing that the velocity field of pure pressure-driven flow and electrically
excited flow is in good agreement to the mid-height level of a three-dimensional simulation. Hence,
the optimisation of the electrokinetic micromixer is carried out for the two-dimensional problem to
get a first hint of the influence of the time-dependent applied potential on the quality of mixing.
It turns out that the interpretation of mixing in terms of cost functionals is difficult and that
the results differ significantly for long term simulations. Additionally, a careful choice of design
parameters in combination with an analytical function for the applied potential is not straight
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forward and needs already some experience e.g. by previous simulations. For the case of fixed
time interval in which an optimal mixing is aimed for, the best results are given by an alternating
applied potential. In contrast to a constant applied potential inducing a steady electroosmotic flow
that is directed oppositely to the pressure-driven flow, this approach induces a much more complex
flow field resulting in a larger contact area of the species and a bigger residence time to increase
the mixing. With respect to a future research, the extension to a fully three-dimensional setting
used for the electrically excited micromixer would be desireful. The presented approaches show
the fundamental capability for both simulation and optimisation of three-dimensional instationary
problems. Nevertheless, a further improvement of the overall solution process with respect to the
very high computational requirements is essential. This encompasses, on the one hand, a more
elaborate discretisation by an adaptive mesh refinement and the stabilisation of the convection-
diffusion equation and, on the other hand, a further revision of parallel solver and preconditioner in
terms of scalability. Finally, it remains interesting to study whether an adjoint-based optimisation
approach for the electrically excited micromixer is physically meaningful and yields new attractive
results.
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Appendix

Here, we show the parameter settings for both examples of this thesis as they are used in the
numerical simulation and optimisation.

Electrokinetic Micromixer

The discretised geometry of the meander part of the microfluidic chip is given in Figure 1 showing
a coarse mesh to indicate the used hexahedral cell type. Missings parts of the microfluidic chip
are modelled by suitable inflow and outflow boundary conditions as presented in Chapter 2. The
width of the square channel is dg = 1.1-10~% m which is also used for scaling of the geometry.
For the corners, we have to distinguish two types — in the direction of the fluid flow, we have
concave corners possessing a radius of ryg = 4.5-107° m while for the convex corners we have
r1 = 3.2-107° m. Since the entire microchannel is made up of three glass layers (see Figure 1.1),
the junction of top and bottom walls to side walls can certainly be modelled by idealised right
angles. Any further parameters are taken from the experimental setting presented in [10, 11]:

e mean axial inflow velocity: vy = 9.1-107% o

o fluid density: p = 1000 %
e dynamic viscosity: y=1-10"3 X2

ms

diffusion coefficient of the species concentration: D = 4.27- 10710 mTZ

Debye-length (approximate width of electrical double layer): /p = 9.7-10"7 m

potential difference across simulated channel-segment: pg =47 V

e charge density at microchannel wall: ¢; =5-107° %

Hence, we have for the dimensionless computations the characteristical quantities

Furthermore, the electroosmotic effects within the microchannel are simulated by a slip condition
from bulk flow to EDL involving the dimensionless parameter

I
Iy = EDPOIC 99
vodop

as derived in [11].

Backward Facing Step Flow

In addition to the simulation and optimisation of an electically exited fluid flow, we also deal with
the optimisation of a fluid flow described solely by the Navier-Stokes equations. The used backward
facing step example is shown in Figure 2. For the sake of these academic tests, the realistic width
of the channel dj is of minor interest. Assume the fluid is water at ~ 20° C, i.e. p and u as above,
and think of the Reynolds number of values greater than 100 by higher mean inflow velocity vy or
larger diameter of the channel dj.



=
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—

The channel walls are 'y except the control part I'. which is indicated by red

outflow boundary I',,: and channel walls resp. transition layer to EDL T'g.

Figure 1: Scaled geometry of the meander part within the microfluidic chip with inflow boundary I';,,
resp. [out.

Figure 2: Scaled geometry of the backward facing step. Inflow and outflow boundary are given by I'i,

colour.
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