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OutlineThis thesis is 
on
erned with the study of methods in high-performan
e 
omputing (HPC) forsimulation and optimisation of �ow problems that typi
ally o

ur in the framework of mi
ro�ows.We 
onsider the adequate use of te
hniques in parallel 
omputing by means of �nite elementbased solvers for partial di�erential equations (PDEs) and by means of sensitivity- and adjoint-based optimisation methods. The main fo
us is on low Reynolds number �ow des
ribed by theNavier-Stokes equations (NSE) with an additional 
onve
tion-di�usion equation des
ribing thedistribution of spe
ies 
on
entration within the �uid. Con
lusively, we aim to optimise su
h ami
ro�uidi
 system by applying an ele
tri
 potential di�eren
e to in�uen
e the mixing of spe
iesusing ele
trokineti
 properties of the �uid (see Barz et al. [10, 11℄).The topi
 of optimisation and optimal 
ontrol under 
onstraints of partial di�erential equationsis a very a
tive area of resear
h. Many authors have 
ontributed their results, starting from thevery early work of Lions [105℄. For an overview of methods and perspe
tives of optimal 
ontrolproblems espe
ially in the framework of �uid �ows, we refer to the work of Gunzburger [73℄.This thesis follows the 
lassi
al attempts by means of sensitivity- and adjoint-based optimisationmethods while the fo
us is set on the numeri
al requirements and implementation of these well-known approa
hes on high-performan
e 
omputers. We show that the requirements with regardto 
omputational power are quite strong when 3D instationary problems are to be solved.In Chapter 1 we introdu
e the �ow problems and the resulting 
omplexity for an instationary3D setting. The se
ond 
hapter is devoted to the physi
al derivation and mathemati
al frameworkof weak formulation for the PDEs des
ribing the 
onsidered setting of mi
ro�ows. Furthermore, theba
kground of optimisation with PDEs is presented. Chapters 3 and 4 show the a
tual 
apabilityof numeri
al solvers based on �nite element dis
retisation 
ombined with multilevel pre
onditionersand HPC-te
hnologies in the framework of Domain De
omposition. Dedi
ated methods for opti-misation of instationary problems using parallel 
omputing te
hniques are presented afterwardsin Chapter 5. The thesis is 
ompleted by numeri
al results on simulation and optimisation ofmi
ro�ows in Chapter 6. These results show the di�erent requirements of presented optimisationapproa
hes when solving PDE 
onstrained optimisation problems and prove the e�e
tive usage ofHPC-te
hnologies in order to solve even 
omplex 3D instationary problems.ZusammenfassungIn dieser Arbeit werden Methoden des Ho
hleistungsre
hnens für die Simulation und Optimierunglaminarer Strömungen untersu
ht, wie sie typis
herweise im Berei
h der Mikro�uidik auftreten.Wir betra
hten dabei den adäquaten Gebrau
h von Methoden des parallelen Re
hnens im Rahmenvon Finiten Elemente basierten Lösern für partielle Di�erentialglei
hungen sowie für sensitivitäts-und adjungierten-basierte Optimierungsverfahren. Der S
hwerpunkt liegt hierbei auf Strömungs-problemen bei niedriger Reynolds Zahl, wel
he dur
h die Navier-Stokes Glei
hungen bes
hriebenwerden. Zusätzli
h wird eine Konvektions-Di�usion Glei
hung betra
htet um die Verteilung einerSpezienkonzentration innerhalb des Fluids erfassen zu können. Zur Optimierung sol
her Systemeder Mikro�uidik wird s
hlieÿli
h eine Potentialdi�erenz zwis
hen Ein- und Ausgang der Geometriegenutzt, so dass dur
h elektrokinetis
he Vorgänge die Vermis
hung zweier Spezien begünstigt wird(siehe Barz et al. [10, 11℄).Die Thematik der Optimierung und optimalen Kontrolle unter der Nebenbedingung partiellerDi�erentialglei
hungen ist ein sehr aktives Fors
hungsgebiet. Beiträge hierzu rei
hen von einerersten ausführli
hen Analyse von Lions [105℄ bis zu zahlrei
hen aktuellen Arbeiten. Für einenÜberbli
k der aktuellen Methoden und Ergebnisse sowie einen Ausbli
k im Berei
h der optimalenKontrolle für Strömungsprobleme sei auf das Bu
h von Gunzburger [73℄ verwiesen. In dieser Arbeitverfolgen wir den klassis
hen Ansatz der sensitivitäts- und adjungierten-basierten Optimierung,wobei das Hauptaugenmerk auf die numeris
hen Voraussetzungen und die Implementierung aufParallelre
hnern gelegt ist. Insbesondere werden instationäre dreidimensionale Probleme gelöst fürwel
he der Re
henbedarf entspre
hend ho
h ist.In Kapitel 1 werden die strömungsme
hanis
hen Beispiele der Arbeit präsentiert und die resul-tierende Komplexität für die numeris
he Behandlung abges
hätzt. Das zweite Kapitel beinhaltet



die Herleitung der physikalis
hen und mathematis
hen Bes
hreibung - besonders die s
hwa
he For-mulierung der Zustandsglei
hungen sowie die Formulierung passender Randbedingungen. Weiter-hin wird die Optimierung bei partiellen Di�erentialglei
hungen eingeführt. Kapitel 3 und 4 sindder numeris
hen Lösung dur
h die Finite Elemente Methode gewidmet. Hierbei werden multilevelVorkonditionierer präsentiert und deren Einsatzmögli
hkeit unter Verwendung vom Gebietszer-legungsmethoden auf Parallelre
hner erweitert. Dedizierte Methoden paralleler Hardware für dieOptimierung instationärer Probleme werden in Kapitel 5 untersu
ht. Die Arbeit umfasst ab-s
hlieÿend in Kapitel 6 numeris
he Resultate für die Simulation und Optimierung innerhalb derMikro�uidik, wel
he die unters
hiedli
hen Anforderungen und Mögli
hkeiten der Numerik auf Par-allelre
hnern zusammenfassen.A
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Chapter 1Introdu
tionIn many appli
ations of resear
h and development proje
ts 
on
erned with 
omputational �uid dy-nami
s (CFD), the ultimate goal nowadays is related to the optimisation and optimal 
ontrol of the
onsidered system or pro
ess. In this 
ontext, the solution pro
ess is usually mu
h more involvedthan a purely forward simulation leading to a des
riptive or predi
tive view of the treated system.Optimisation and optimal 
ontrol require an iterative pro
ess involving the setting and manipula-tion of 
ontrol variables su
h that the system or pro
ess gets improved. Su
h an improvement has�nally to be measured and veri�ed to judge the su

ess of optimisation.In this thesis, the fo
us is on appli
ations as they typi
ally appear in mi
ro�uidi
 systems, i.e. indevi
es with a typi
al s
ale of 100 µm. The pla
ement of di�erent mi
ro
omponents with severallaboratory fun
tions like pumps, valves, or dete
tors in 
ombination with mi
ro
hannels forms the
on
ept of the lab on a 
hip (LOC) that deals with handling of extremely small �uid volumes andfast analysis times due to short di�usion distan
es. Mi
ro�uidi
 pro
esses that may take pla
ewithin an LOC are transport, separation or mixing of (bio)
hemi
al spe
ies within a �uid [93℄. A
ru
ial fa
t for these tasks is the usually purely laminar nature of the �ow �elds in su
h devi
es.The absen
e of turbulen
es is bene�
ial with regard to numeri
al simulation but disadvantageousfor engineering problems if a mixing of spe
ies is aimed for (e.g. to enable a 
hemi
al rea
tion).As a typi
al s
enario, we investigate within a twi
e-folded mi
ro
hannel the homogeneous and fastmixing of pure water with water in whi
h Rhodamine B as �uores
ent dye is dissolved - a

ordingto the setting of Barz et al. [10, 11℄. From the engineering point of view the measurement of dye
on
entration by means of a mi
ro laser-indu
ed �uores
en
e method (µLIF) and of velo
ity �eldby mi
roparti
le image velo
imetry (µPIV) requires a suitable experimental setup whi
h may limitthe intended experiments. Numeri
al simulation, on the other hand, allows to explore the systemin advan
e and gives helpful hints for e.g. the design of mi
rodevi
es. Obviously, the abstra
tionof physi
al pro
ess to numeri
al simulation ne
essitates the deployment of a mathemati
al model,a dis
retisation approa
h to the derived equations, as well as the entire solution pro
ess on the
omputer. All these steps are error-prone su
h that the results at the very end have to be 
omparedto experiments in order to validate the quality of the simulation. However, an essential bene�tof numeri
al simulation is the possibility to manipulate parameter and/or geometry in nearlyarbitrary way (on
e a model and the a

ording software is at hand) whi
h then 
an be used tooptimise the system or pro
ess under investigation.For the 
onsidered setting of mass transport and mixing in mi
ro
hannels, we have to des
ribethe physi
al pro
ess in more details. The mixing of two (or more) liquids 
an generally be separatedinto two main steps (
f. [12℄):1. in
reasing of the 
onta
t area between liquids,2. essential mixing by mole
ular di�usion a
ross the 
onta
t area.In �ows through geometries with ma
ros
opi
 dimensions, turbulen
e is often employed to enhan
ethe mixing pro
ess. In mi
ros
opi
 geometries, the generation of a turbulent �ow regime is ratherdi�
ult and, therefore, other 
on
epts are used for mixing. Two approa
hes to in
rease the mixingare 
ommonly used, namely a
tive methods by employing external for
es to the system (e.g. ele
-tri
al for
es) and passive methods that are based on a variation of the geometry. The approa
h



4 INTRODUCTION

Figure 1.1: Glass layer of the mi
ro�uidi
 
hip and the experimental setup. Pi
tures are kindly providedby Dominik P. J. Barz [10, 11℄.for an ele
tri
ally ex
ited mi
romixer given by Meisel and Ehrhard [116℄ is based on a twi
e-folded
hannel segment in 
ombination with an indu
ed ele
troosmoti
 se
ondary �ow. For the detailedexperimental setting, see the des
ription in [10, 11℄ and the Appendix - the main 
omponents(stru
ture of mi
ro�uidi
 
hip and basi
 setup) are depi
ted in Figure 1.1. The fundamental phys-io
hemi
al pro
ess used within this setting is the ele
troosmoti
 ex
itation of the �uid relatedto the presen
e of a so-
alled ele
tri
al double layer (EDL). This layer is present adja
ent to the
hannel walls that usually possess an ele
tri
ally 
harged surfa
e and therefore a 
ertain ele
tri
alpotential whi
h indu
es a higher ion 
on
entration of the - apart from that - ele
tri
ally neutral�uid [12, 94℄. If now ele
trodes are positioned within the reservoirs of the two liquids to be mixedand a spe
i�
 voltage is applied to a third ele
trode within the outlet reservoir, the time-dependentpotential di�eren
e ∆φ(t) indu
es an instationary �uid �ow within the EDL. This se
ondary �ow
an be used to modify the pressure-driven base �ow and thus in
reases the 
onta
t area betweenthe liquids.Sin
e the width of the EDL is usually in the order of 10−9�10−8 m, denoted by the so-
alledDebye length ℓD, numeri
al simulation of these systems in a full three-dimensional instationarysetting requires a very �ne dis
retisation to resolve the various physi
al e�e
ts. The ratio of EDLsize to size of the mi
ro
hannel is usually 1 : 10000 indi
ating that the resulting algebrai
 systemsto be solved will be at least of order 105 in ea
h spa
e dimension. If a uniform mesh is assumed the3D dis
retisation will then easily lead to 1015 unknowns. To redu
e the numeri
al 
omplexity ofthese systems a possible way might be the usage of lo
ally re�ned dis
retisation and non-uniformmeshes. A di�erent approa
h is proposed by Barz et al. who negle
t the ele
tri
al double layer near
hannel walls and simulate only the bulk �ow within the 
hannel using slip boundary 
onditions tomodel the in�uen
e of the EDL. Nevertheless, the resulting algebrai
 systems to be solved withina timestepping algorithm are still on the order of 105−106 unknowns su
h that it is sensible to useiterative linear solvers like Krylov subspa
e methods on parallel 
omputers to ta
kle the problemin reasonable time. A 
riti
al point for the 
onvergen
e behaviour of iterative Krylov subspa
emethods is the presen
e of suitable pre
onditioners. To this end, we introdu
e Multilevel ILUpre
onditioners based on the ILU++ pa
kage by Jan Mayer [112℄ and extend these to be used inparallel by means of Blo
k Ja
obian and S
hur 
omplement data stru
tures.Besides the above introdu
ed simulation and optimisation of an ele
tri
ally ex
ited �uid �ow ina mi
ro
hannel, the topi
 of optimisation and optimal 
ontrol for �ow problems is also regarded forthe more a
ademi
al example of the well-known ba
kward fa
ing step �ow. For these studies onparallel solver/pre
onditioner and optimisation routines, we treat the Navier-Stokes equations withthe 
ontrol obje
tive of redu
tion of the re
ir
ulation/vortex area behind the step of a mi
ro
hannel- see Figure 1.2 for the un
ontrolled 
ase. A 
ommon setting is given by boundary 
ontrol nearthe edge of the step where blowing and su
tion of �uid is assumed. By this additional stream there-atta
hment length of main �uid �ow is aimed to be minimised. The 
hoi
e of 
ost fun
tional
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Figure 1.2: Fluid �ow behind a ba
kward fa
ing step with streamlines indi
ating the re
ir
ulation.to realise this aim is variously addressed in the literature and in this thesis only a tra
king-typeformulation is 
hosen, i.e. the di�eren
e to Stokes �ow, possessing a minimal re
ir
ulation tenden
y,is observed.In general the optimisation problems in this thesis base on an abstra
t problem: let y denotea set of state variables and u be a 
ontrol variable of any kind. The system of partial di�erentialequations des
ribing the �uid �ow is given by the equation E(y, u) = 0. Furthermore, a 
ost orobje
tive fun
tional J(y, u) is assumed that has to be minimised under the 
onstraint E(y, u) = 0.Hen
e, beside pure simulation tasks, we also treat problems of the form
min J(y, u) su
h that E(y, u) = 0.Two approa
hes to ta
kle this problem are studied, namely1. adjoint-based boundary 
ontrol in 
onjun
tion with Navier-Stokes equations optimising the�ow �eld of ba
kward fa
ing step problem,2. sensitivity-based optimisation of the mi
romixer in Figure 1.1 by 
ontrol of the potentialdi�eren
e ∆φ(t).These optimisation methods 
an prin
ipally be distinguished by the determination of the gradientof the obje
tive fun
tional. Assuming a time dependent setting, methods that rely on the solutionof the adjoint equation require forward-in-time solution of the state equations and ba
kward-in-time solution of the adjoint equations, whereas sensitivity-based methods only mar
h forward intime. For nonlinear problems, a 
hallenging task is related to the fa
t that the state variables haveto be available to the adjoint equation solver. Sin
e the adjoint equation solver mar
hes ba
kwardin time, this means that one must store the state variables for every timestep. For large s
aleproblems, this step, whi
h amounts to store very large data set, may be intra
table in pra
ti
e orbe
ome a real bottlene
k for the overall solution pro
ess. An approa
h 
ombining 
he
kpointingte
hniques to redu
e the needed storage resour
es with parallel I/O is presented in this 
ontext. Amain emphasis is put on the adequate use of re
ent te
hnologies related to large high-performan
e
omputing (HPC) platforms like for the parallel pre
onditioner used for simulation tasks.Summarising, to ta
kle the simulation and optimisation of an ele
tri
ally ex
ited mi
romixer,we �rst abstra
ted from this to a pure �uid �ow setting des
ribed by the instationary Navier-Stokesequations. For this the sequential multilevel pre
onditioner ILU++ was extended by parallel datastru
tures whi
h were implemented and tested on a
tual high performan
e 
omputers to form anappropriate parallel pre
onditioner for iterative Krylov subspa
e methods. Afterwards also thetwo mentioned optimisation approa
hes were in
orporated into the developed software. Herein, weexplored a suitable 
ombination of 
he
kpointing s
hemes and parallel I/O te
hniques that wereespe
ially fruitful for expli
it timestepping s
hemes with lumped mass-matrix. Extensive numeri
altests were performed to validate the proposed approa
hes and to give an estimate on the bene�ts



6 INTRODUCTIONof adjoint-based optimisation in 
ontrast to the sensitivity-based approa
h. While the latter oneobviously possesses a mu
h easier implementation, the �rst one enables a wider treatment of thesystem to be optimised � we 
omment on the ratio of e�ort to pro�t in Chapter 6. As a resultof these steps, we are able to improve the three-dimensional simulation results for the ele
tri
allyex
ited mi
romixer and to give useful hints in optimising the applied potential di�eren
e to in
reasethe mixing quality.



Chapter 2Simulation and Optimisation of FluidFlowAs presented in the introdu
tion, we are fa
ed with simulation and optimisation/optimal 
ontrolof problems arising in the �eld of �uid dynami
s. In this 
hapter, a derivation of the govern-ing equations of �uid dynami
s and modelling results for the ele
trokineti
 e�e
ts will be given.Afterwards, the mathemati
al setting is prepared that is needed for the �nite element based dis-
retisation, namely the weak formulation of underlying partial di�erential equations. Besides thepure simulation based framework, we also show the 
ommon approa
hes in optimisation with par-tial di�erential equations and apply these to get the 
on�guration for the 
onsidered �ow problems.Consequently, this 
hapter is neither devoted to a rigours derivation of governing equationsnor to a 
omplete analysis of them. We only aim at providing the reader with the basi
s in bothphysi
s and fun
tional analysis as they are needed for any further dis
ussion. For a more detailedoverview on the topi
s of this 
hapter, we give parti
ular bibliographi
al referen
es.2.1 Modelling Fluid FlowThe mathemati
al des
ription of �uid �ow, the �uid dynami
s, is a sub-dis
ipline of 
ontinuumme
hani
s. In 
ontrast to parti
le me
hani
s dealing with the equilibrium and motion of systems ofpoint masses, 
ontinuum me
hani
s is a means of studying the deformation and �ow of a 
ontinuousmedium by ignoring its mi
ros
opi
/mole
ular nature, i.e. it deals with mass-
ontinua that arelo
ated in the Eu
lidean spa
e R3. It is a simpli�
ation that makes it possible to investigatethe movement of matter on s
ales larger 
ompared to typi
al distan
es between mole
ules. Thus,in studying the movement of a �uid the fa
t that it is made up of mole
ules is ignored � butfortunately, in general one is not interested in the individual behaviour of a single mole
ule, butin the average motion of a large number of mole
ules.A key di�eren
e between 
lassi
al dynami
s and �uid dynami
s is the 
ontinuum hypothesisor 
ontinuum approximation. Within this the �uid velo
ity, density and stress tensor, that areintrodu
ed later on, are to be interpreted as appropriate averages of me
hani
al properties ofthe mole
ules. Furthermore, these quantities are assumed to be interpreted at ea
h position in avolume and to be 
ontinuously spread.Assumption 2.1.1 (Continuum hypothesis)We assume that in the region governed by a �uid a 
ontinuous and di�erentiable mass-densityis given by fun
tion ρ(x, t) > 0 su
h that the mass M(t) of an arbitrary subvolume V (t) 
an be
al
ulated by the integral
M(t) =

∫

V (t)

ρ(x, t) dV.This means that any small volume element in the �uid is always supposed to be as large as neededto de�ne a mole
ular average by 
ontaining a reasonable big number of mole
ules.



8 SIMULATION AND OPTIMISATION OF FLUID FLOW2.1.1 Basi
 Equations of Fluid Dynami
sThe following derivation of equations is based on some fundamental assumptions on the �uid:
• relativity and quantum me
hani
s are ignored,
• the length s
ale of the �ow is always taken to be large 
ompared to the mole
ular mean-freepath, so that the �uid 
an be treated as a 
ontinuum (
ontinuum hypothesis),
• in the sense of the 
ontinuum hypothesis we label the smallest entity in the �uid as �uid-parti
le and assume that the position of a parti
le 
an be des
ribed by its 
oordinates in theEu
lidean spa
e R3,
• the �uid is assumed to be of uniform, homogeneous 
omposition, i.e. di�usion and 
hemi
alrea
tions are not 
onsidered.Based on the 
ontinuum hypothesis the equations of motion for �uid �ow 
an be derived in a generalformat by applying the prin
iples of me
hani
s, i.e. 
onservation of mass (
ontinuity), balan
e oflinear momentum (Newton's se
ond law) and angular momentum.Let Ω ⊂ R3 be a �uid volume that moves in spa
e under a
tion of internal and external for
es.Consider a testvolume V (t) ⊂ Ω that is open and bounded � this volume is �lled with parti
lesof the �uid. Furthermore, we de�ne the movement of a parti
le η ∈ V (t) by a fun
tion Φ(η, t)su
h that at time t > 0 the parti
le η is lo
ated at the point x = Φ(η, t). We assume that Φ is assmooth as needed, i.e. Φ is invertible and Φ,Φ−1 ∈ C1(Ω).Generally two di�erent des
riptions of the motion of �uids 
an be 
onsidered1. Lagrangian des
ription: for �xed parti
le η (the Lagrangian 
oordinate) one follows thetraje
tory t → Φ(η, t). Thus, the Lagrangian 
oordinate system moves with the �uid � thisdes
ription of motion is very useful in solid me
hani
s.2. Eulerian des
ription: for �xed point x ∈ V (t) (the Eulerian 
oordinate) one observes thetraje
tory t→ Φ(·, t)−1(x). The Eulerian 
oordinate system is �xed and one studies the �ow(velo
ity �eld) at a �xed point x as a fun
tion of time.In the sense of the Eulerian des
ription we de�ne the velo
ity of a �uid parti
le at point x =

Φ(η, t) ∈ R3 by
v(x, t) :=

∂

∂t
Φ(η, t).This ve
tor �eld 
an be expressed in the 
artesian form

v(x, t) = e1v1(x1, x2, x3, t) + e2v2(x1, x2, x3, t) + e3v3(x1, x2, x3, t)with orthonormal basis ve
tors ei and usually one seeks for knowledge of the s
alar variables vi inthe observed �uid domain Ω.Let f(x1, x2, x3, t) represent any property of the �uid and we ask for the temporal 
hange forthis quantity. An observation lo
ated at a �xed point in a 
hosen 
oordinate system naturallygives the lo
al temporal derivative ∂f
∂t (x1, x2, x3, t). On the other hand the temporal 
hange of aparti
le of �xed identity (Lagrangian view) in the �ow �eld v(x, t) is given by

df

dt
= lim

∆t→0

1

∆t

[

f(x1 + v1 ·∆t, x2 + v2 ·∆t, x3 + v3 ·∆t, t+∆t)− f(x1, x2, x3, t)
]

.This gives the proper expression for the total time derivative of f of a parti
ular parti
le
df

dt
=
∂f

∂t
+ v1

∂f

∂x1
+ v2

∂f

∂x2
+ v3

∂f

∂x3

=
∂f

∂t
+ (v · ∇)f.

(2.1)The quantity df
dt is variously termed the substantial derivative, parti
le derivative, material deriva-tive or Lagrangian derivative giving the relation between lo
al temporal derivative and so 
alled
onve
tive derivative (v · ∇).



2.1 Basi
 Equations of Fluid Dynami
s 9As shown in the introdu
tory part of this 
hapter the 
ontinuum hypothesis allows the formu-lation of results not for single mole
ules (or parti
les) but for an arbitrary 
hosen domain of the�uid. To express the temporal 
hange of a given quantity in su
h a testvolume V (t), whi
h of
ourse itself is in�uen
ed by the motion of the �uid, we state the following fundamental theorem(
f. [50, 
h. 1.4℄ or [154, 
h. 1.5℄ for proof).Theorem 2.1.1 (Reynold's transport theorem)Let f : Ω× I → R be a di�erentiable fun
tion for x ∈ Ω and t ∈ I ⊂ R (time interval). Forevery open and bounded volume V (t) ⊂ Ω there holds
d

dt

∫

V (t)

f(x, t) dx =

∫

V (t)

(
∂f

∂t
(x, t) +∇ · (f(x, t)v(x, t))) dx

=

∫

V (t)

(
∂f

∂t
(x, t) dx+

∫

∂V (t)

f(x, t)v(x, t) · n ds

(2.2)with n the unit outward normal ve
tor on ∂V (t).Conservation of MassAssuming a 
ontinuous and di�erentiable mass-density given by fun
tion ρ(x, t) ∈ R, the mass
m(V (t)) of an arbitrary testvolume V (t) with surfa
e ∂V (t) is given by

m(V (t)) =

∫

V (t)

ρ(x, t) dxthat is 
onstant in time (
onservation of mass), i.e. d
dtm(V (t)) = 0. By equation (2.2) we dedu
ethat

d

dt

∫

V (t)

ρ(x, t) dx =

∫

V (t)

(
∂

∂t
ρ(x, t) +∇ · (ρ(x, t)v(x, t))

)

dx = 0.Sin
e the volume V (t) was 
hosen arbitrarily the integrand must vanish. This usage of the Dubois-Reymond lemma for su�
iently smooth fun
tions is used throughout in the sequel to transforman integral equation to a partial di�erential equation (see e.g. [104℄ for proof). Therefore, we endup with the 
ontinuity equation
∂

∂t
ρ+∇ · (ρv) = 0. (2.3)Balan
e of Linear and Angular MomentumConsider an arbitrary testvolume V (t) inside the �uid with surfa
e S and outward normal n.Two kinds of external for
es a
ting on this volume 
an be distinguished. First volume-for
es, likegravity, that are of the form

Fvol(V (t)) =

∫

V (t)

ρ(x, t)f(x, t) dxwith an exterior volume-for
e f per unit mass � these for
es apply to the entire mass of the �uidelement, i.e. a
t on ea
h point x ∈ V (t). Se
ond surfa
e- or 
onta
t-for
es that are given by thematerial outside of the volume V (t) on the material interior to the �uid element V (t). These for
esare des
ribed by a ve
tor for
e s(x, t) a
ting on a unit area of S, whi
h is 
alled the stress ve
tor.By Cau
hy's prin
iple s(x, t) only depends on the normal n and by the a
tion-rea
tion prin
iplemust ful�l sn(x, t) = −s−n(x, t), where we denote the dependen
y on the normal by an index.
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e for
es are therefore given by
Fsurf (V (t)) =

∫

∂V (t)

s(x, t) ds.As we show later on the surfa
e-for
es are given by a stress tensor σ and 
an be written as
sn(x, t) = n · σ = σT · n, [sn(x, t)]i =

3∑

j=1

σji(x, t)nj , i = 1, 2, 3.By the prin
iples of 
onservation of linear and angular momentum we have the relation of theseexternal for
es to the temporal 
hange of momentum, i.e.
d

dt

∫

V (t)

ρ(x, t)v(x, t) dx =

∫

V (t)

ρ(x, t)f(x, t) dx+

∫

∂V (t)

s(x, t) ds (2.4)
d

dt

∫

V (t)

x× (ρ(x, t)v(x, t)) dx =

∫

V (t)

x× (ρ(x, t)f(x, t)) dx+

∫

∂V (t)

x× s(x, t) ds (2.5)with arbitrary referen
e point x and the 
ross produ
t denoted by ×.As in the derivation of (2.3) appli
ation of Reynold's transport theorem and the Gaussiantheorem to equation (2.4) yields (for i = 1, 2, 3)
∂

∂t
(ρ(x, t)vi(x, t)) +∇ · (ρ(x, t)vi(x, t)v(x, t)) = ρ(x, t)fi(x, t) + [∇ · σ(x, t)]i.Written in ve
tor notation, one gets the so 
alled 
onservative form of the momentum equation

∂

∂t
(ρv) +∇ · (ρvv) = ρf +∇ · σ. (2.6)Here we used the notation vv = v ⊗ v = [vivj ]i,j for short to express the outer ve
tor produ
t.Using the 
hain rule for ∂

∂t (ρv) and ∇ · (ρvv) = v∇ · (ρv) + ρ(v · ∇)v, the equation of momentum
an be written as
v

(
∂

∂t
ρ+∇ · (ρv)

)

+ ρ
∂

∂t
v + ρ(v · ∇)v = ρf +∇ · σ,where the �rst term vanishes due to the 
ontinuity equation (2.3). The resulting equation is 
allednon-
onservative form of the momentum equation

ρ
∂

∂t
v + ρ (v · ∇)v = ρf +∇ · σ. (2.7)For the balan
e of angular momentum (2.5) a similar but tedious 
al
ulation using again Reynold'stransport theorem and the Gaussian theorem yields the �nal result (using the Einstein summation
onvention)
∫

V (t)

εijkσjk dx = 0showing that σ is a symmetri
 tensor, i.e. σ = σT . For a detailed derivation of this tensor notationin the �eld of 
ontinuum me
hani
s we refer to [17℄. All in all the basi
 equations of �uid me
hani
sfor a single-phase 
ontinuous medium that does not exhibit ele
tri
, magneti
 or 
hemi
al e�e
tsare given by the unknowns
• density ρ = ρ(x, t) ∈ R,
• velo
ity ve
tor v = v(x, t) ∈ R3,
• stress-tensor σ = σ(x, t) ∈ R3,3.



2.1 Constitutive Equations 11The derived 
onservation equations are (with given body for
e per unit mass f)
• 
onservation of mass (
ontinuity equation): ∂tρ+∇ · (ρv) = 0,
• balan
e of linear momentum (momentum equation): ρ∂tv + ρ(v · ∇)v = ρf +∇ · σ,
• balan
e of angular momentum: σ = σT .The next se
tion is devoted to 
lose the given system of unknowns and equations by formulating
onstitutive equations for parti
ular types of materials.2.1.2 Constitutive EquationsThe derived equations are very generi
 and in prin
iple valid for all �uids � up to now no restri
tionor assumption on the underlying material has been taken. By this generality we are fa
ed with theproblem that the number of unknowns and equations do not mat
h. Nevertheless, it is sensiblethat all equations are given by the �uid one wants to des
ribe, so that in addition to the generalgoverning equations only material spe
i�
 equations should appear. Su
h a relation between stresstensor σ, velo
ity v and density ρ usually depends on the �uid and is given by a suitable 
hoi
ea

ording to experimental results.Stress TensorThroughout derivation of the 
onservation equations we have ta
itly assumed that the surfa
efor
es on a volume element are given by the stress ve
tor

s(x, t) = sn(x, t) = n · σ(x, t) = σT (x, t) · nwith a stress tensor σ1. We now brie�y want to des
ribe the meaning of this tensor without adetailed derivation � for this purpose we refer to [6℄, [104℄, [130℄ or [154℄.Surfa
e stress s(x, t) in general is a measure of the intensity of total internal for
es a
tingwithin the �uid a
ross imaginary internal surfa
es, des
ribing the in�uen
e of material outside a
onsidered volume V (t) to the material interior V (t). Let dF denote an in�nitesimal part of thisfor
e and let dA be an in�nitesimal surfa
e element on ∂V (t) whi
h 
overs x, then by
s(x, t) = sn(x, t) = lim

dA→0

dF

dAthe stress ve
tor a
ting on x is de�ned. This for
e not only depends on the point x and time t,but also on the orientation of the surfa
e element dA, i.e. on the outward normal n. By Cau
hy'sstress prin
iple the 
omponents of the stress ve
tor s a
ting on a surfa
e dA are fully des
ribed bythe stress tensor σ and the outward normal n on dA
[sn(x, t)]i =

∑

j

σji(x, t)nj .This linear relation for the stress ve
tor s at all positions x to all dire
tions n, as stated by theCau
hy stress law, 
an be used to show des
riptively an interpretation of the Cau
hy stress tensor
σ at a point x in an orthonormal system ei. If we take a surfa
e element dA perpendi
ular to theunit-ve
tor ek (see Figure 2.1 for the 
ase e3) then the i-
omponent of the stress ve
tor a
ting onthis element in a point x is given by

[sek ]i =
∑

j

σjiδjk = σkiwhere we wrote sek to emphasise the stress ve
tor on an element with outward normal ek. So wehave the following interpretation: σij is the magnitude of the j-
omponent of stress ve
tor s (for
e1It should be mentioned that the notation for the stress ve
tor is not unique in literature. There are two possibleways to de�ne the stress tensor σ, whi
h base on transposed meaning of the 
omponents σij . Fortunately, the stresstensor was previously shown to be symmetri
 so that also the de�nition sn(x, t) = σ(x, t) · n mat
hes.
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x2

x3

x1

x

se3(x)

σ31

σ32

σ33

dA

Figure 2.1: Components of the stress tensor: σij stress in j dire
tion on a fa
e normal to the i axis.per unit area) exerted a
ross a plane surfa
e element normal to the i-dire
tion, at position x inthe �uid and at time t. By this 
lari�
ation we see that the diagonal elements of σ represent thenormal stresses, i.e. normal 
omponent of surfa
e for
e a
ting on a plane parallel to the 
oordinateplanes, while the o�diagonal elements of σ are tangential/shearing stresses.Fluids at RestA �rst observation is given for so 
alled Stokes' �uids : when the �uid is in rest, only normal stressesare exerted. Furthermore, the stress-tensor is observed to be spheri
ally symmetri
al and dependsdire
tly on the thermodynami
 pressure p = p(x, t) (for a derivation see [13℄), therefore
σ|v≡0 = −pI.This means that the shear stresses vanish and only normal stresses appear that are equal to thepressure. For a �uid in motion there is obviously no reason to expe
t this result being valid.Stress-strain Law for Newtonian FluidsIf the �uid is in motion additional shear stresses must be 
onsidered altogether with the normalstresses. For the des
ription of these fri
tion-for
es, whi
h model the transport of momentum bymole
ular motion, the symmetri
 tensor τ (vis
ous or deviatori
 stress tensor) is added

σ|v 6=0 = −pI + τ.The question now is how this vis
ous stress is related to other observable properties of 
ommon�uid motions. As a primary sour
e of information experiments for whi
h one 
ould propose manysu
h relations (
alled 
onstitutive equations) 
an be made. But also from the theoreti
al pointof view some approa
h 
an be done: fri
tion in �uids generally manifests itself through shearingfor
es whi
h retard the relative motion of �uid parti
les. A measure of the relative motion of �uidparti
les is given by the deformation rate tensor.De�nition 2.1.1The tensor D = 1
2 (∇v + (∇v)T ) is 
alled the deformation rate tensor. The tensor W = 1

2 (∇v −
(∇v)T ) is 
alled the rotation rate tensor. They build the symmetri
 and antisymmetri
 de
ompo-sition of the velo
ity gradient: ∇v = D+W . A �uid is a medium whose stress-strain law is of theform σ = f(D).



2.1 Ele
tri
al Ex
itation of the Fluid and Mass-Transport 13The 
on
rete identi�
ation of the material-fun
tion f is the subje
t of rheology. Here for thesake of simpli
ity we deal only with so-
alled Newtonian �uids, for whi
h the hypothesis of a lineardependen
e of the stress tensor on the deformation rate tensor is made. The parti
ular form of thelinear fun
tion f for a Newtonian �uid is given by so-
alled Stokes' Postulates whi
h are made onthe basis of experiments and require that:1. σ = −pI + f(D) with a linear 
ontinuous fun
tion f .2. The �uid is an isotropi
 medium, i.e. its properties are the same in all spa
e dire
tions.This means that the fun
tion f is invariant to orthogonal transformations, i.e. f(SDST ) =
Sf(D)ST for all transformations S with SST = I, det(S) = 1.3. If the �uid is at rest, there are no vis
ous stresses, i.e. f(0) = 0.These 
onditions lead to a stress-strain law of Newtonian �uid termed the Cau
hy-Poisson law �for proof see [6℄ or [50, 
h. 1.8℄

σ = (−p+ λ∇ · v)I + 2µDwith λ (volume vis
osity) and µ (shear or dynami
 vis
osity) being 
onstants or s
alar fun
tionsof thermodynami
al quantities. Hen
e, we have the general equations of motion for a Newtonian�uid
∂tρ+∇ · (ρv) = 0,

ρ∂tv + ρ(v · ∇)v +∇p−∇(λ∇ · v) −∇ · (2µD) = ρf .In
ompressibilityThe 
ondition of in
ompressibility 
an be stated at least in twofold manner:
• an in
ompressible �uid has 
onstant volume: using Reynolds transport theorem (2.2) with
f ≡ 1 results in ∇ · v = 0,
• an in
ompressible �uid has 
onstant density: we dire
tly get ∇ · v = 0 from the 
ontinuityequation.Nevertheless, these de�nitions aim at the same result and the stress-tensor of an in
ompressibleNewtonian �uid simpli�es to

σ = −pI + 2µDwhi
h gives the momentum equation
ρ(∂tv + (v · ∇)v) +∇p−∇ · (2µD) = ρf .Using the notation ν = µ/ρ for the kinemati
 vis
osity and assuming that the shear vis
osity µ is
onstant within the �uid, we simplify∇·(2µD) = µ(∆v+∇(∇·v)) = µ∆v, due to in
ompressibility.Therefore we end up with the in
ompressible Navier-Stokes equations

∂tv − ν∆v + (v · ∇)v +
1

ρ
∇p = f ,

∇ · v = 0.

(2.8)Next, the general body for
e f and also suitable boundary 
onditions need to be derived in detailsu
h that the system (2.8) 
an be de�ned in a stri
t mathemati
al setting.2.1.3 Ele
tri
al Ex
itation of the Fluid and Mass-TransportBesides the generation of �uid �ow by the 
lassi
al appli
ation of a pressure di�eren
e, e.g. byme
hani
al pumps or gravity for
e, there are also several other opportunities. One possibility inthe setting of mi
ro�ows is ele
troosmose. The fundamental e�e
t for su
h an ele
tri
al ex
itationis related to the presen
e of a 
onsiderable 
harge density near 
hannel walls, where ions of oppositesign are attra
ted to the ele
tri
al 
harged surfa
e � an e�e
t 
alled ele
tri
 double layer (EDL).
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kness of EDL is de�ned by the region where the ele
tri
 neutrality of the �uid is violatedand is usually on the order of 10−9 m. For a detailed des
ription of ele
tri
al ex
itation withinmi
ro�ows we refer to [12℄ and referen
es therein. To generate an ele
troosmoti
 �ow, a tangentialele
tri
 �eld is applied to the EDL whi
h 
auses an ion drag that indu
es a �uid �ow. If now theratio of surfa
e to volume is as large as in mi
ro
hannels, the �ow within the EDL e�e
ts also theentire �ow �eld within the 
hannel by vis
ous for
es.The in�uen
e of su
h an ele
tri
 �eld on the momentum equation of an in
ompressible �uid
an be 
onsidered as an external for
e in equation (2.8) (
f. [11℄)
fe = qE. (2.9)This Coulomb for
e fe des
ribes the for
e exerted by the ele
tri
 �eld E upon the total ele
tri

harge density q within the �uid. It was shown in [11℄ that under 
ertain 
onditions, namely ahomogeneous ion 
on
entration and ele
trodes lo
ated far away from the point of interest (
f. Figure1.1), the ele
tri
al �eld 
an be assumed as independent of �ow and 
on
entration �elds, at leastfor a 
ertain time. Hen
e, an ele
trostati
 formulation by Gauss' law relating the distribution ofele
tri
 
harge to the resulting ele
tri
 �eld seems justi�ed, i.e. with the permittivity of the �uid εand the ele
tri
 potential φ we have

∇ · (εE) = ∇ · (−ε∇φ) = q. (2.10)It remains to des
ribe the 
harge density of the �uid q to get a governing equation for the ele
tri
alsituation within the �uid. Within the EDL, the 
harge density is q 6= 0 due to a ex
ess of ions and
an be expressed by
q = F

∑

j

zjcj (2.11)with cj denoting the 
on
entration of the ion spe
ies j, zj denoting the valen
y number of the ionspe
ies and F the Faraday 
onstant. Outside of the EDL, within the so-
alled bulk region, theliquid 
an be approximated to be in ele
tri
al neutrality and we have
∑

j

zjcj,bulk ≈ 0.In this 
ase, i.e. the 
harge density q is zero like in ele
tri
al neutral �uids, equation (2.10) redu
esto the Lapla
e equation ∆φ = 0 assuming a spatial 
onstant permittivity ε of the �uid. Moreover,it is obvious that ele
tri
al for
es 
an only be indu
ed within a small region near the 
hannel walls,namely the EDL.For the ion 
on
entration within the EDL cj,EDL a Boltzmann distribution is used (
f. [12℄)su
h that the ele
tri
 potential φ within the �uid (using (2.10), (2.11) and a spatial 
onstantpermittivity) is des
ribed by the so-
alled Poisson-Boltzmann equation
∆φ = −F

ε

∑

j

zjcj,bulk exp

(

−zjFφi
RT

)

. (2.12)Here, cj,bulk is the (
onstant) 
on
entration of the ion spe
ies j within the bulk �ow and φi is thepotential indu
ed by the wall surfa
e 
harge. R and T denote the gas 
onstant and temperature.Suitable boundary 
onditions for the potential φ are given by Diri
hlet values at the ele
trodesand no-�ux 
ondition at the 
hannel walls.Equation (2.12) has now to be added to the Navier-Stokes equations (2.8) to determine theele
tri
al for
e for the momentum equation
fe = −q∇φ.Sin
e the ele
tri
 double layer is usually very small even 
ompared to a mi
ro
hannel width,numeri
al 
omputations have to be performed on very �ne meshes to resolve the e�e
ts near the
hannel walls resulting in very high or even prohibitive 
omputational 
osts. The work of Barz etal. [11℄ shows that the in�uen
e of the EDL 
an be 
aptured by suitable slip boundary 
ondition



2.1 Non-dimensionalisation and Initial-/Boundary-Conditions 15for the velo
ity-�eld within the bulk region vbulk, namely
vbulk

∼= −C∇φ, vbulk · n = 0on the interfa
e of bulk �ow and EDL. The se
ond 
ondition is automati
ally ful�lled sin
e a no-�ux 
ondition for the potential φ is used, i.e. vbulk · n = −C∇φ · n = −C∂nφ = 0. In detail, theout
ome of the method of mat
hed asymptoti
 expansions reveals the following set of equations
∂tv − ν∆v + (v · ∇)v +

1

ρ
∇p = 0,

∇ · v = 0,

∆φ = 0,

(2.13)whi
h has to be employed to simulate the �ow and ele
tri
 potential in the liquid bulk outside theEDL. Comparing (2.13) to (2.8) we see that the ele
tri
al for
e fe vanishes whi
h is due to theele
tri
al neutrality within the liquid bulk. The ele
tri
al double layer, in whi
h an ele
troosmoti
�ow is indu
ed by the ele
tri
al �eld, is ex
luded of the numeri
al treatment � the in�uen
e on theliquid bulk is 
aptured by the boundary 
onditions.Finally, we extend the system (2.13) by the transport of some spe
ies of 
on
entration c withinthe �uid des
ribed by the 
onve
tion-di�usion equation
∂tc−D∆c+ v · ∇c = 0. (2.14)Assuming that there are no sour
es or sinks within the volume V , the rate of 
hange for a s
alarquantity in an arbitrary volume is given by total �ux into and out of V , i.e.

d

dt
c = ∂tc+∇ · (cv) = D∆c.Herein the right hand side D∆c des
ribes the di�usive �ux and sin
e we assume an in
ompressibleNewtonian �uid it holds ∇ · (cv) = v · ∇c.Remark 2.1.1In the derived governing equations (2.13) the bulk �ow �eld [v, p] is only 
oupled to the potential φby boundary 
onditions on the interfa
e to the ele
tri
 double layer. The Lapla
e equation des
ribingthe potential is fully de
oupled from the bulk �ow �eld. Hen
e, one might �rst solve for the potential

φ and then solve the Navier-Stokes equations to get the �ow �eld. In the same manner, we assumethat the 
onve
tion-di�usion equation (2.14) is only 
oupled to the bulk velo
ity v and there is nofeedba
k to neither the �ow �eld nor the potential (whi
h holds only when liquids 
ontaining almostno 
harges are mixed). Therefore, also the 
onve
tion-di�usion equation might be solved de
oupled,i.e. after the �ow �eld v is 
omputed.2.1.4 Non-dimensionalisation and Initial-/Boundary-ConditionsWe previously derived the governing equations for the experimental setting in Chapter 1, namelythe in
ompressible Navier-Stokes equations des
ribing the �ow �eld of a Newtonian �uid in 
ombi-nation with the potential equation to 
over ele
troosmoti
 e�e
ts (2.13) and the 
onve
tion-di�usionequation to des
ribe the 
on
entration �eld of some spe
ies/dye (2.14). The variables within thissystem are the physi
al quantities
• velo
ity v in m

s ,
• pressure p in Pa = kg

ms2 ,
• ele
tri
 potential φ in V = m2kg

s3A ,
• 
on
entration of the dye c in kg

m3 .



16 SIMULATION AND OPTIMISATION OF FLUID FLOWAgain, we emphasise that these equations des
ribe only the bulk �ow whenever ele
troosmoti
e�e
ts are taken into a

ount.In order to 
ompare �uid �ow, one usually s
ales the equations by 
hara
teristi
 quantities toeliminate the physi
al dimensions. Common behaviour of �uid �ow 
an hen
e be 
hara
terised byparameters like kinemati
 vis
osity ν, density ρ, 
hara
teristi
 velo
ity s
ale v0 and 
hara
teristi
length s
ale d0. Furthermore, a 
onve
tive time s
ale t0 = d0/v0, pressure s
ale p0 = (v0µ)/d0,
on
entration s
ale c0 and applied potential s
ale φ0 are de�ned, su
h that
X =

x

d0
, T =

tv0
d0
, V =

v

v0
, P =

pd0
µv0

, Φ =
φ

φ0
, C =

c

c0
.Substitution of these quantities in equations (2.13) and (2.14) results in

v20
d0
∂TV− νv0

d20
∆V+

v20
d0

(V · ∇)V+
νv0
d20
∇P = 0,

v0
d0
∇ ·V = 0,

ϕ0

d20
∆Φ = 0,

v0c0
d0

∂tC −
Dc0
d20

∆C +
v0c0
d0

V · ∇C = 0.Introdu
ing the dimensionless Reynolds number
Re =

ρv0d0
µ

=
v0d0
νand S
hmidt number

Sc =
ν

Dwe 
an therefore write for short
Re[∂tv + (v · ∇)v] −∆v +∇p = 0,

∇ · v = 0,

∆φ = 0,

∂tc−
1

Re · Sc∆c+ v · ∇c = 0,

(2.15)whi
h is used for any further 
onsideration2. The Reynolds number des
ribes the relation betweeninertia and vis
ous for
es, while the S
hmidt number des
ribes the ratio of momentum di�usivity(vis
osity) and mass di�usivity. The derivation of governing equations now has to be 
ompletedwith additional boundary 
onditions on ∂Ω and initial 
onditions at t = 0 in order to des
ribe thephysi
al problem entirely.Initial ConditionsThe velo
ity �eld v0 at t = 0 obviously has to be solenoidal, i.e. ∇ · v0 = 0, and for simpli
ity oneoften 
hooses v0 ≡ 0, assuming that there is no initial �ow. An initial 
ondition for the pressure
p and the potential φ is not needed, whereas the 
on
entration c at t = 0 needs to be 
hosenwith 
are. We assume that c(x, t) ∈ [0, 1] for all x ∈ Ω and t ≥ 0. As initial distribution of the
on
entration �eld two major possibilities are given1. c(x, 0) = 0 in Ω � means that the starting/in�ow phase has to be simulated in whi
h onlyone spe
ies 
on
entration is initially present,2. c(x, 0) = c0(x) ∈ [0, 1] in Ω � means that a given distribution is assumed and only thedevelopment of 
on
entration has to be simulated.2For sake of simpli
ity we skipped the upper-
ase notation. The reader will obviously identify the dimensionlesssystem by appearan
e of Reynolds and/or S
hmidt number.



2.1 Non-dimensionalisation and Initial-/Boundary-Conditions 17Boundary ConditionsLet the boundary ∂Ω by subdivided into disjoint parts
• Γin des
ribing the in�ow part of the 
hannel,
• Γout des
ribing the out�ow part of the 
hannel,
• Γ0 des
ribing the rigid walls of the 
hannel or (in 
ase of additional ele
troosmoti
 �ow) theinterfa
e between bulk �ow and ele
tri
 double layer.Obvious 
onditions 
an be posed for the 
on
entration �eld c. On the in�ow se
tion Γin, we assumeDiri
hlet-values by a given fun
tion cin des
ribing a separation in 1 and 0 to model the 
onta
tarea of two in�ow-
hannels that are �lled only by one of the 
on
entrations (
f. Figure 1.1). For

Γout ∪ Γ0 a vanishing �ux is used, i.e. ∂nc = 0.The ele
tri
 potential φ on Γ0 is also determined by a no �ux 
ondition ∂nφ = 0. On thein�ow and out�ow parts of ∂Ω, pres
ribed inlet and outlet potentials φin and φout are given whi
hare s
aled by the applied potential di�eren
e φ0 between the reservoirs. Sin
e only the potentialdi�eren
e ∆φ between Γin and Γout is of interest, we assume for the sake of simpli
ity φin = 0 and
φout = ∆φ.For the Navier-Stokes equations within the 
hannel, the setting of boundary 
onditions is avery sophisti
ated topi
. While the 
ondition at rigid walls is usually determined by a so-
alledno-slip 
ondition for vis
ous �uid

v|Γ0
= 0,the 
onditions set on in�ow and out�ow boundaries are manifold like:

• Diri
hlet 
onditions for the velo
ity whi
h are based on the observation of paraboli
 Poiseuille�ow pro�le (the Poiseuille �ow is given by an analyti
al solution of the Navier-Stokes equa-tions driven by a 
onstant pressure gradient within 
ylindri
al in�nite long straight 
hannels[139℄),
• so 
alled do-nothing 
ondition ∂nv − pn = 0 whi
h is naturally given in the framework ofweak formulation and is most often used to des
ribe a free out�ow boundary,
• given pressure di�eren
e, i.e. given mean pressure 1

|Si|

∫

Si

p ds = Pi on ea
h outlet Si.We depi
t these possibilities in detail when the weak formulation of the Navier-Stokes equationsis introdu
ed and refer to [18, 67℄ for the �rst two approa
hes and to [84℄ for the third.When a pure pressure-driven �ow will be simulated/optimised, the no-slip 
ondition on rigidwalls is used in 
ombination with a given in�ow velo
ity pro�le plus do-nothing 
ondition for theout�ow � alternatively also the pressure di�eren
e formulation might be used. Alternatively, whenadditional ele
troosmoti
 e�e
ts are taken into a

ount, the 
omputational domain is restri
tedto the bulk �uid �ow region only, i.e. the very thin ele
tri
al double layer near 
hannel walls isomitted. Hen
e, the no-slip 
ondition for the velo
ity �eld 
annot be used. Barz et al. [11℄ showedthat a separation of the bulk �ow and the �ow within the EDL need obviously to treat the ele
tri
alfor
e f = fe in (2.8) in di�erent manner sin
e a 
onsiderable 
harge density q is only given withinthe EDL. The asymptoti
 approximations and leading-order analysis 
arried out in [11℄ reveals asolution of the velo
ity �eld within the EDL that dire
tly depends on the gradient of the appliedpotential φ. Consistently the numeri
al bulk solution should mat
h the EDL solution su
h that aslip boundary 
ondition for the bulk solution
v|Γ0

= −Π2∇φ = Π2E.is given showing that any wall-tangential 
omponent of the applied ele
tri
al �eld drives the bulk�ow. Indeed, sin
e for the potential φ a no-�ux 
ondition ∂nφ = 0 is given at the virtual boundarybetween bulk �ow and EDL, the wall-normal 
omponents of the applied ele
tri
al �eld do notin�uen
e the bulk �ow. The dimensionless parameter (see the Appendix for used quantities)
Π2 =

ℓDϕ0qζ
v0d0µ



18 SIMULATION AND OPTIMISATION OF FLUID FLOWwas derived in [11℄ by non-dimensionalisation of the Navier-Stokes equations within the EDL and
an be interpreted as the ratio of ele
tri
al to vis
ous for
es � it strongly depends on the ele
tri
properties of the �uid and the 
hannel walls.2.2 Analyti
al FrameworkBefore 
onsidering optimisation problems for �uid �ow, one obviously �rst has to answer thequestion whether there is at all a solution to the underlying equations and whether this solutionis unique. For this, we want to point out the weak formulation of Navier-Stokes equations and for
omplete ele
trokineti
 problem, i.e. with additional potential and 
onve
tion-di�usion equation.Furthermore, some existen
e and uniqueness results for weak Navier-Stokes equations are 
itedbut are not presented in detail, sin
e we only utilise the weak formulation of partial di�erentialequations to have a starting point for the �nite element based dis
retisation in the next 
hapter.Remark 2.2.1In the following we will almost always restri
t formulations to the Navier-Stokes equations, forsome reasons
• the governing equations (2.15) of the ele
troosmoti
 driven bulk �ow �eld, i.e. the Navier-Stokes equations, might be solved de
oupled from the Lapla
e and 
onve
tion-di�usion equa-tion,
• we will also 
onsider optimisation problems without any ele
trokineti
 e�e
ts,
• the Navier-Stokes equations require a more sophisti
ated analysis than Lapla
e and 
onve
tion-di�usion equation.For analysis of Lapla
e and 
onve
tion di�usion equation we refer to e.g. [34, 68℄.As we will show in the next se
tion, the solvability of optimisation problems generally relies onthe possibility to de�ne an operator, 
alled 
ontrol-state operator, that assigns a unique solution ofthe partial di�erential equation to ea
h 
ontrol given. This means, e.g. for boundary 
ontrol, thatwe have to show whether there exists a unique solution of the Navier-Stokes equations to givenboundary data g on Γc ⊂ ∂Ω. We therefore 
onsider in this se
tion the dimensionless Navier-Stokesequations with general Diri
hlet boundary values

Re[∂tv + (v · ∇)v]−∆v +∇p = f in Ω× (0, T )

∇ · v = 0 in Ω× (0, T )

v = g on ∂Ω× (0, T )

v = v0 in Ω for t = 0

(2.16)and give an overview of the present existen
e and uniqueness results. An extension to di�erentboundary 
onditions will also be presented, as far as it is needed in the framework of 
onsideredmi
ro�ows.2.2.1 Fun
tion Spa
es and NotationWe introdu
e the following notation for a bounded, 
onne
ted, open set Ω ⊂ Rd, d ∈ N (usually
d = 2, 3) with a Lips
hitz-
ontinuous boundary ∂Ω. These de�nitions are standard and for moredetailed a

ounts 
on
erning these spa
es we refer to [2, 62℄.A real valued fun
tion f : Ω → R is de�ned in the Lebesgue-spa
e Lp(Ω), 1 ≤ p ≤ ∞ if it isLebesgue-measurable und its norm

‖f‖Lp(Ω) =







(
∫

Ω

|f(x)|p dx
)1/p

, 1 ≤ p <∞

esssup
x∈Ω

|f(x)| = inf
µ(N)=0

sup
x∈Ω\N

|f(x)|, p =∞



2.2 Fun
tion Spa
es and Notation 19is �nite. Let (X, ‖ · ‖) be a Bana
h spa
e of fun
tions on Ω and let a time-interval be given as
I = (a, b) ⊂ R. Any so-
alled abstra
t fun
tion f(t) : (a, b) → X is de�ned in Lp(a, b;X), 1 ≤
p ≤ ∞ if f is Lebesgue-measurable and its norm

‖f‖Lp(a,b;X) =







(
b∫

a

‖f(t)‖pX dt

)1/p

, 1 ≤ p <∞

esssup
a<t<b

‖f(t)‖X , p =∞is �nite. The de�nition of abstra
t fun
tions f ∈ Lp(a, b;X) also allows a more general de�nitionof an integral, namely the Bo
hner integral whi
h redu
es to the Lebesgue integral for X = R(
f. [163℄).Next we re
all the de�nition of Sobolev spa
es Hm(Ω) or more general Wm,p(Ω). For a multi-index α = (α1, ..., αd) and |α| = α1 + ...+ αd ∈ N0 we have the partial derivative of f by
Dαf(x) =

∂|α|f

∂xα1

1 · · · ∂xαd

d

(x), x = [x1, . . . , xd] ∈ Ωwith
Deif(x) =

∂f

∂xi
(x).Let f ∈ Lp(Ω), α a multiindex, then f (α) ∈ Lp(Ω) is 
alled the weak derivative of f (or derivativein distributional sense) if for all ϕ ∈ C∞

0 (Ω) the following identity holds
∫

Ω

fDαϕ dx = (−1)|α|
∫

Ω

f (α)ϕ dxthen we identify: Dαf = f (α). The Sobolev spa
e Wm,p(Ω) is de�ned as
Wm,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), ∀α : |α| ≤ m}.

Wm,p(Ω) is a ve
torspa
e and with the norm
‖f‖Wm,p(Ω) =




∑

|α|≤m

‖Dαf‖pLp(Ω)





1/pit is a Bana
h-spa
e for all m ∈ N0. Furthermore, we de�ne Wm,p
0 (Ω) as the 
losure of C∞

0 (Ω) inthe Wm,p norm. For p = 2, Wm,2(Ω) =: Hm(Ω) is a Hilbert-spa
e with s
alar-produ
t
(f, g)Hm(Ω) :=

∑

|α|≤m

(Dαf,Dαg)L2(Ω) =
∑

|α|≤m

∫

Ω

DαfDαg dx, f, g ∈ Hm(Ω).Obviously, for the 
ase m = 0 we have that H0(Ω) = L2(Ω) and we will denote the s
alar-produ
tand norm by (·, ·) resp. ‖ · ‖, i.e. we omit the index. Any further investigation on the weak form ofNavier-Stokes equations relies mainly on the spa
e H1(Ω) for the velo
ity �eld v in whi
h it holds3
(f, g)1 = (f, g)H1(Ω) =

∫

Ω

fg dx+

∫

Ω

∇f · ∇g dx,

‖f‖1 = ‖f‖H1(Ω) = (‖f‖2 + ‖∇f‖2) 1
2 .3One should keep in mind that all derivatives are given in the sense of distributions, i.e. ∇f = [ ∂f

∂x1
, . . . ,

∂f
∂xd

]with 〈 ∂f
∂xi

, ϕ〉 = −
∫
Ω
f

∂ϕ
∂xi

dx,∀ϕ ∈ C∞

0 (Ω).



20 SIMULATION AND OPTIMISATION OF FLUID FLOWThe treatment of the pressure within (2.16) is usually handled by the spa
e
L2
0(Ω) = {f ∈ L2(Ω) :

∫

Ω

f dx = 0}sin
e the formulation ∇p allows to determine the pressure only up to an additive 
onstant.We 
lose the de�nitions by introdu
ing dual and tra
e spa
es (
f. [144℄). A fun
tional F de�nedon H1(Ω) is in the dual spa
e H−1(Ω) if and only if
‖F‖−1 = sup

‖u‖1=1

|F (u)| <∞.Evaluation of a fun
tional F ∈ H−1(Ω) at u ∈ H1(Ω) is often also denoted by the duality pairing
〈F, u〉. Let the boundary of Ω be a C2-boundary Γ = ∂Ω, then a 
ontinuous linear operator
γ : H1(Ω) → L2(Γ) is given su
h that γ(u) is the restri
tion of u onto Γ for all u ∈ H1(Ω)∩C2(Ω̄).
H1

0 (Ω) is equal to the kernel of γ and the image γ(H1(Ω)) is a dense subset of L2(Γ) whi
h is denotedby H1/2(Γ).It remains to de�ne the notation for ve
tor valued fun
tion spa
es: we suppress the dimensionindex and instead use a bold fa
e notation, i.e.
Hk(Ω) = [Hk(Ω)]d = {vi ∈ L2(Ω) : Dαvi ∈ L2(Ω), ∀α : |α| ≤ k, i = 1, . . . , d},
Hk

g(Ω) = {v ∈ Hk(Ω) : v = g on ∂Ω} ⊂ Hk(Ω),

H−1(Ω) = [H−1(Ω)]d = {F : H1
0(Ω) → R : ‖F‖−1 <∞ ∀v ∈ H1

0(Ω)},
H1/2(Γ) = {v : vi ∈ H1/2(Γ), i = 1, . . . , d}.These spa
es are equipped with the norms (denoted by ‖ · ‖) or semi-norm (denoted by | · |)
‖v‖2k =

d∑

i=1

‖vi‖2k, ‖vi‖2k = ‖vi‖2 +
k∑

|α|=1

‖Dαvi‖2, v ∈ Hk(Ω),

|v|21 =

d∑

i=1

( d∑

j=1

‖ ∂vi
∂xj
‖2
)

, v ∈ H1(Ω),

‖F‖−1 = sup
06=v∈H1

0
(Ω)

〈F,v〉
|v|1

, F ∈ H−1(Ω),where in H1
0(Ω) the seminorm | · |1 is equivalent to ‖ · ‖1.2.2.2 Weak FormulationThe Navier-Stokes equations were derived in Chapter 2.1 on the basis of physi
al laws and obser-vations. So a solution should also be kind of physi
ally reasonable � within the o�
ial problemdes
ription of the Millennium Problem [49℄ this is

v, p ∈ C∞(Rd × [0,∞)) and ∫
Rd

|v(x, t)|2 dx < C for all t ≥ 0.This formulation appears very restri
tive in the setting of regularity properties for the solution
[v, p]. A less restri
tive 
on
ept for determining solutions to the Navier-Stokes equations (thatis by the way also very useful for �nite element based dis
retisation) is to weaken the spa
es inwhi
h a solution is sear
hed for. To this, the formulation (2.16) is modi�ed to an integral meanrepresentation, i.e. after multipli
ation with suitable test fun
tions one integrates over the domain
Ω. Furthermore, integration by parts based on Green's formula is used to loosen the regularityproperties for solutions of the Navier-Stokes equations by redu
ing the order of di�erential opera-tors. These steps a
hieve that an existen
e and uniqueness theory within more 
onvenient spa
es



2.2 Weak Formulation 21
an be established whi
h afterwards might be restored to the original problem. As long as the pair
[v, p] in its so-
alled weak formulation is su�
iently smooth to allow for the used integration byparts, it is obviously also a strong solution of (2.16).We state the fundamental theorem of partial integration in its general form using Sobolev spa
esof fra
tional order � for the 
ase p = q = 2 the tra
e spa
e H1/2 was already de�ned, for other
ases refer to [144℄.Theorem 2.2.1Let Ω ⊆ Rd, d ≥ 2, be a bounded Lips
hitz-domain with boundary Γ. Further let 1 < p < ∞ and
1/p+ 1/q = 1, then for all u ∈W 1,p(Ω) and v ∈W1,q(Ω) holds the tra
e-
ondition

u|Γ ∈W 1−1/p,p(Γ), v · n|Γ ∈W 1−1/q,q(Γ)and ∫

Ω

u∇ · v dx =

∫

Γ

u v · n dS −
∫

Ω

∇uv dxwith n being the outer normal on Γ.Based on Theorem 2.2.1 we de�ne the bilinear forms used in the sequel for the weak formulationof the Navier-Stokes equations.
a(u,v) =

∫

Ω

∇u : ∇v dx =

∫

Ω

d∑

i,j=1

∂ui
∂xj

∂vi
∂xj

dx ∀u,v ∈ H1(Ω), (2.17)whi
h is 
ontinuous on H1(Ω)×H1(Ω), i.e. there exists a 
onstant C > 0 su
h that
|a(u,v)| ≤ C‖u‖1‖v‖1 ∀u,v ∈ H1(Ω)and 
oer
ive (or ellipti
) on H1
0(Ω)×H1

0(Ω), i.e. there exists a 
onstant α > 0 su
h that
|a(v,v)| ≥ α‖v‖21 ∀v ∈ H1(Ω).Furthermore, we de�ne the bilinear form

b(v, q) = −
∫

Ω

q∇ · v dx ∀v ∈ H1(Ω) and q ∈ L2(Ω), (2.18)whi
h is 
ontinuous on H1(Ω)× L2(Ω) and the trilinear form
c(w,u,v) =

∫

Ω

(w · ∇)u · v dx =

d∑

i=1

∫

Ω

(w · ∇ui)vi dx ∀u,v,w ∈ H1(Ω), (2.19)that is 
ontinuous on H1(Ω)×H1(Ω)×H1(Ω) for d ≤ 4 and Ω bounded with Lips
hitz-boundary.Proofs for 
ontinuity and 
oer
ivity are standard and 
an be found for example in [61℄.De�nition 2.2.1 (Weak solution of Navier-Stokes equations)A pair [v, p] is 
alled weak solution of (2.16), if v(·, 0) = v0 and for almost all t ∈ (0, T ) it holds:
[v(·, t), p(·, t)] ∈ H1

g(Ω)× L2
0(Ω) is a solution of

Re[〈∂tv, ϕ〉+ c(v,v, ϕ)] + a(v, ϕ) + b(ϕ, p) = 〈f , ϕ〉 ∀ϕ ∈ H1
0(Ω),

b(v, ξ) = 0 ∀ξ ∈ L2
0(Ω),

(2.20)for given f ∈ H−1(Ω) and v0 ∈ {u ∈ H1(Ω) : b(u, q) = 0, ∀q ∈ L2(Ω)}.



22 SIMULATION AND OPTIMISATION OF FLUID FLOWFor the weak formulation (2.20) the pres
ribed Diri
hlet boundary 
ondition v = g on Γ×(0, T )is an essential one and has to be ful�lled by the 
hosen fun
tion spa
eH1
g(Ω), i.e. we seek a fun
tion

v ∈ vg +H1
0(Ω) where the tra
e of vg yields the boundary 
ondition g = γ(vg). We will also showsome natural boundary 
onditions that appear within the weak formulation in the next se
tion. Forany details on existen
e and uniqueness of solutions to the weak form of Navier-Stokes equations,we refer to the literature like [62, 101, 144, 153℄. However, we present some main results for the
ase of stationary and instationary Navier-Stokes equations and also for the 
onve
tion-di�usionequation. The Lapla
e equation des
ribing the potential �eld is the standard ellipti
 problem inpartial di�erential equation � a quite 
omplete introdu
tion 
an be found in [34℄.Solution of the Navier-Stokes Equations Within Solenoidal Spa
esThe dimensionless stationary Navier-Stokes equations with homogeneous Diri
hlet boundary 
on-ditions

Re(v · ∇)v −∆v +∇p = f in Ω

∇ · v = 0 in Ω

v = 0 on ∂Ω
an (alternatively to (2.20)) be written in the weak formulation: for given f ∈ V ∗ seek v ∈ V su
hthat
1

Re
a(v, ϕ) + c(v,v, ϕ) = 〈f , ϕ〉 ∀ϕ ∈ V. (2.21)This notation uses the fun
tion spa
e

V = {v ∈ H1
0(Ω) : b(v, q) = 0, ∀q ∈ L2

0(Ω)}of solenoidal ve
tor �elds and its dual spa
e V ∗ with the duality pairing 〈f ,u〉 = ∫
Ω
f ·u dx. Thus,neither the pressure p appears in the formulation nor the 
ontinuity equation � both are expressedby the 
hoi
e of fun
tion spa
e V . The used formulation (2.21) in the solenoidal spa
e V 
andire
tly be dedu
ed from the above de�nition, i.e. if [v, p] ∈ H1

0(Ω) × L2
0(Ω) ful�ls (2.20) then valso solves (2.21). By this reformulation elegant statements on existen
e and uniqueness 
an bemade (see [35℄ or [126℄ for proof), but it remains to answer the question whether also the oppositedire
tion holds true.Theorem 2.2.2For every f ∈ V ∗ and d ≤ 3 there exists a solution v ∈ V of the stationary Navier-Stokes problem(2.21). If Re2β‖f‖V ∗ < 1 this solution v ∈ V is unique � here β > 0 is given by the 
ontinuity ofthe trilinear form (2.19), i.e. it is the smallest 
onstant in

c(w,u,v) ≤ β‖w‖1‖u‖1‖v‖1, ∀w,u,v ∈ V.For the instationary problem one usually de�nes the additional fun
tion spa
e
H = {v ∈ L2(Ω) : ∇ · v = 0, v · n|∂Ω = 0}whi
h together with the solenoidal spa
e V forms the Gelfand triple with 
ompa
t embeddings(see [152℄ for details)

V →֒ H ∼= H∗ →֒ V ∗.The time-derivative has to be interpreted in a weak sense ∂tv(t) ∈ V ∗ su
h that the problem reads:for given v0 ∈ H and f ∈ L2(0, T ;V ∗) seek v ∈ L2(0, T ;V ) su
h that a.e. in (0, T )

〈∂tv(t), ϕ〉 +
1

Re
a(v(t), ϕ) + c(v(t),v(t), ϕ) = 〈f , ϕ〉 ∀ϕ ∈ V (2.22)and v(0) = v0. Existen
e for the instationary equations 
an be shown for v ∈ L2(0, T ;V ) ∩

L∞(0, T ;H) but uniqueness is only given for d = 2 (see [61℄ or [153℄ for proof).



2.2 Weak Formulation 23General Weak Solution of the Navier-Stokes EquationsBy restating the entire saddle point stru
ture of (2.20) as a single equation (2.21) or (2.22), wefound existen
e and uniqueness results for the velo
ity �eld v in solenoidal spa
es. The way ba
kshould then ideally yield a solution to the weak formulation (2.20) that 
ontains also the pressure
p. To answer the question whether there exists a unique p ∈ L2

0(Ω) satisfying in the stationary
ase
(p,∇ · ϕ) = 〈f , ϕ〉 − a(v, ϕ) −Re · c(v,v, ϕ) ∀ϕ ∈ H1

0(Ω)we introdu
e a general framework for abstra
t variational problems (taken from [62℄), that will alsobe used later on for the �nite element dis
retisation. Let X, M be Hilbert spa
es and X∗, M∗their dual spa
es. With the 
ontinuous bilinear forms
a(·, ·) : X ×X → R , b(·, ·) : X ×M → Rwe de�ne the abstra
t saddle point problem: for given l ∈ X∗ seek [u, λ] ∈ X ×M su
h that

a(u, v) + b(v, λ) = 〈l, v〉 ∀v ∈ X,
b(u, µ) = 0 ∀µ ∈M.

(2.23)Furthermore, let V = {v ∈ X : b(v, µ) = 0, ∀µ ∈M} so that the above problem 
an also be statedas: seek u ∈ V su
h that
a(u, v) = 〈l, v〉 ∀v ∈ V.Theorem 2.2.3Assume that the bilinear form a(·, ·) is V -ellipti
, i.e. there exists a 
onstant α > 0 su
h that
a(v, v) ≥ α‖v‖2X ∀v ∈ V.Then the abstra
t problem (2.23) possess a unique solution if and only if the bilinear form b(·, ·)satis�es the inf-sup 
ondition
inf
µ∈M

sup
v∈X

b(v, µ)

‖v‖X‖µ‖M
≥ β > 0. (2.24)In the framework of weak Navier-Stokes equations the spa
es X = H1

0(Ω), M = L2
0(Ω) �tinto this abstra
t setting. The ellipti
ity or more general the solvability of v ∈ V is given by theresults above, so that it remains to prove the existen
e of pressure p and the inf-sup 
ondition toensure that a solution to (2.21) resp. (2.22) also indu
es a solution to (2.20). Both are given bythe following lemma taken from [50℄ and we 
an 
on
lude that the formulations within solenoidalspa
es and originally 
hosen Sobolev spa
es are equivalent.Lemma 2.2.1Let l ∈ H−1(Ω) su
h that 〈l,v〉 = 0 ∀v ∈ {u ∈ C∞

0 (Ω) : ∇ · u = 0}. Then there exists a fun
tion
p ∈ L2(Ω) su
h that

〈l,v〉 = (p,∇ · v), ∀v ∈ H1
0(Ω).For ea
h p ∈ L2

0(Ω) there exists a unique fun
tion v ∈ {u ∈ H1
0(Ω) : a(u,v) = 0 ∀v ∈ V } su
hthat

∇ · v = p, |v|1 ≤ c‖p‖with a 
onstant c > 0 independent of p. Therefore
inf

p∈L2
0
(Ω)

sup
v∈H1

0
(Ω)

(p,∇ · v)
|v|1‖p‖

= inf
p∈L2

0
(Ω)

sup
v∈H1

0
(Ω)

‖p‖
|v|1

≥ 1

c
> 0.



24 SIMULATION AND OPTIMISATION OF FLUID FLOWConve
tion-Di�usion EquationThe 
onve
tion-di�usion equation des
ribing the transport of 
on
entration within the mi
ro
han-nel was given by
∂tc−D∆c+ v · ∇c = 0.We 
an express this equation in weak form as: for given c0 ∈ H1(Ω) seek c ∈ cin + H1(Ω) su
hthat a.e. in (0, T )

〈∂tc(t), ψ〉+D a(c, ψ) + (v · ∇c, ψ) = 0 ∀ψ ∈ {u ∈ H1(Ω) : u|Γin = 0}and c(0) = c0. Existen
e and uniqueness results are assured by Lax-Milgram lemma using the
ontinuity and 
oer
ivity of the bilinear form asso
iated with the spatial operator (see 
hapter 12in [126℄). The 
ru
ial point within this equation is hen
e not the solution itself but the numeri
albehaviour. It is a well-known fa
t that solutions on 
oarse meshes tend to os
illatory behaviour.This property is usually des
ribed by the (mesh) Pe
let number
Pe =

v0h

Dwhi
h indi
ates 
onve
tion dominated �ows whenever Pe > 1. To suppress numeri
al os
illationsone might 
ertainly use �ne meshes (adjust mesh size h) or use stabilisation methods (
f. [126, 131℄)like upwind methods or Streamline-Upwind Petrov-Galerkin �nite element method (SUPG).2.2.3 Boundary ConditionsThe 
ommon analysis of Navier-Stokes equations is given only for homogeneous Diri
hlet boundary
onditions as shown before. An extension to nonhomogeneous boundary 
onditions 
an be foundfor example in [50℄ or [62℄, showing that for some 
ompatability 
onditions on the boundary data
g a solution [v, p] exists.For our purpose it will be of major importan
e to have additional boundary 
onditions thatare kind of physi
ally motivated. Re
all that we subdivided the boundary of the �uid domain Ωinto disjoint parts ∂Ω = Γ0 ∪ Γin ∪ Γout. First we present the used boundary 
onditions for purepressure-driven �ow, i.e. without external applied potential �eld. Afterwards, we will take theadditional boundary 
ondition v|Γ0

= −Π2∇φ into a

ount to 
he
k whether this 
ondition, thatarises from the physi
al model, �ts into the weak formulation of Navier-Stokes equations.Suppose we �rst have only a no-slip boundary 
ondition to model the solid walls of a 
hannel,furthermore we might pres
ribe an in�ow velo
ity pro�le. These Diri
hlet boundary 
onditions�t into the framework of variational formulation with test fun
tions ϕ ∈ H1
0(Ω) and the solution

v ∈ H1
g(Ω). To impose a boundary 
ondition on the out�ow region Γout, we 
hoose

ϕ ∈ H1
Γin∪Γ0

(Ω) = {u ∈ H1(Ω) : u|Γin∪Γ0
= 0}so that the weak formulation of stationary Navier-Stokes equations is: seek v ∈ vg +H1

Γin∪Γ0
(Ω),

p ∈ L2(Ω) su
h that
a(v, ϕ) +Re · c(v,v, ϕ) + b(ϕ, p)−

∫

Γout

(∂nv − pn)ϕ ds = 0 ∀ϕ ∈ H1
Γin∪Γ0

(Ω),

b(v, ξ) = 0 ∀ξ ∈ L2(Ω).Sin
e the test fun
tions ϕ do not vanish on Γout we get the additional term
∫

Γout

(∂nv − pn)ϕ ds = 0 ∀ϕ ∈ H1
Γin∪Γ0

(Ω)whi
h relates the pressure to the velo
ity �eld. For 
hannels with unknown out�ow 
ondition one



2.2 Boundary Conditions 25often uses the additional boundary 
onditions (do-nothing 
ondition)
∂nv = pn on Γout. (2.25)This Neumann type boundary 
ondition is an unavoidable 
onsequen
e of the fa
t that we workwith weak formulation of the Navier-Stokes equations and also determines the pressure within theNavier-Stokes equations (initially the pressure only appears as gradient and is therefore only givenup to a 
onstant). The physi
al meaning of this boundary 
ondition is yet not 
lear (see [18℄ and[67℄) and gives 
orre
t numeri
al results only for simple Poiseuille �ows in straight 
hannels. Inthe following we will refer to the 
ombination of pres
ribed Diri
hlet values on Γin in 
ombinationwith do-nothing 
ondition in Γout as the do-nothing formulation.A more physi
al approa
h to boundary 
onditions is given in [84℄ where a pres
ribed pressuredi�eren
e between in�ow and out�ow boundary is required, i.e.

Re(v · ∇)v −∆v +∇p = f in Ω

∇ · v = 0 in Ω

v = 0 on Γ0

p = Pin(t) on Γin

p = Pout(t) on ΓoutThe experimental setup as presented in Chapter 1 also 
laims the pressure-driven �ow within themi
ro
hannel by a height di�eren
e between in�ow and out�ow region. We therefore 
on
lude theweak formulation: seek v ∈ H1
Γ0
(Ω), p ∈ L2(Ω) su
h that (i = in, out)

a(v, ϕ) +Re · c(v,v, ϕ) + b(ϕ, p)−
∑

i

∫

Γi

(∂nv − Pin)ϕ ds = 0 ∀ϕ ∈ H1
Γ0
(Ω),

b(v, ξ) = 0 ∀ξ ∈ L2(Ω).If additionally the in�ow and out�ow regions are perpendi
ular to the 
hannel, it 
an be shown[84℄ that the normal derivative of v vanishes. This means that the remaining term
∑

i

∫

Γi

Pinϕ ds
an be interpreted as an external for
e within the momentum equation driving the 
hannel �ow.In the following we will refer to this se
ond setting of boundary 
onditions as the pressure-dropformulation. For simpli
ity we use Pout(t) = 0 and for
e the �uid �ow by setting Pin(t) = ∆p.Even if spe
i�
ation of pressure di�eren
e ∆p seems more physi
al, the problem of determiningthe 
orre
t value remains. To ensure the 
orre
t Reynolds number, we pro
eed as follows: sin
ethe mean in�ow velo
ity
v0 =

1

|Γin|

∫

Γin

v dswas used for non-dimensionalisation of the Navier-Stokes equations, we 
ompute this value numer-i
ally and �t the pressure-drop boundary su
h that the mean in�ow velo
ity within the numeri
alsimulation equals one. A rough estimation of this value might be given by fundamental laws oflaminar �ows within 
ylindri
al pipes [55℄ of length L
∆p = λlam

Lρv20
2d0where the parameter λlam depends on the Reynolds number and is given by experiments in formof so 
alled Nikuradse graph (
f. [141℄). For laminar �ows one uses λlam = 64/Re.We end the se
tion on weak formulation with some remarks on the treatment of boundary
onditions for the bulk velo
ity within ele
trokineti
 �uid �ow setting. The physi
al model requires
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ondition on the interfa
e between bulk �ow and �ow in the ele
tri
 double layer, i.e.
v|Γ0

= −Π2∇φ.First, we mentioned that this 
ondition naturally implies the usage of pressure drop formulationfor Γin and Γout, sin
e a pres
ribed velo
ity pro�le vg would also depend on ∇φ and hen
e 
annotbe stated by arguments of Poiseuille like �ows. Se
ond we have to �nd an interpretation of this slipboundary 
ondition in the framework of weak formulation. For a general treatment the 
onstant
−Π2 is of minor importan
e so that we only 
onsider the 
ondition v|Γ0

= ∇φ. A weak formulationfor the potential �eld φ a

ording to the previous de�nitions is: seek φ ∈ φout+H1
Γin∪Γout

(Ω) su
hthat
(∇φ,∇χ) = 0 ∀χ ∈ H1

Γin∪Γout
(Ω).Therefore ∇φ is only de�ned in the sense of distributions, whereas in the physi
al model we wouldhave to require that φ ∈ C1(Ω). So the boundary 
ondition for bulk velo
ity v|Γ0

= ∇φ has to berede�ned for the weak formulation. Sin
e ∇φ is a distribution, we propose to de�ne the boundary
ondition as the limit of a 
onvolution (Faltung) with a Dira
-sequen
e ηε
∇φ(x) = lim

ε→0
(ηε ∗ ∇φ)(x) = lim

ε→0

∫

Ω

ηε(x − y)∇φ(y) dy.The fun
tions ηε ∈ L1
loc(Ω) have to ful�li/ ηε ≥ 0, ∀ε > 0,ii/ ∫

Rd

ηε(y) dy = 1, ∀ε > 0,iii/ ∀r > 0 :
∫

Rd\Br(0)

ηε(y) dy→ 0 for ε→ 0.For fun
tional analyti
al aspe
ts we refer to [163℄ and only want to present a way to 
onstru
t thefun
tions ηε that takes the �nite element based dis
retisation into a

ount. In so doing we have toforestall some notations of �nite element dis
retisation that will be introdu
ed in the next 
hapter.To evaluate the Diri
hlet boundary value v(x) = ∇φ(x), x ∈ Γ0, de�ne the Dira
-sequen
e ηεas the Lagrangian basis fun
tion at x on the a
tual mesh, i.e. ηx,h ∈ C∞
0 (Ω). Identifying ε withthe mesh size h we have to show for ηx,h the three 
onditions above. Obviously, ηx,h ≥ 0 and sin
ethe support of ηx,h is only given by neighbouring 
ells of x, 
onditions i/ and iii/ are ful�lled. Itremains to s
ale ηx,h by a fa
tor c su
h that

∫

supp(ηx,h)

cηx,h(y) dy = 1.Let Ki denote the 
ells su
h that supp(ηε) = ⋃
i

Ki. Then we 
an determine the fa
tor
c =




∑

i

∫

Ki

ηx,h(y) dy





−1

=






∑

i

∫

K̂

ηx,h(Fi(ξ)) det(DFi) dξ






−1

=






∑

i

|Ki|
∫

K̂

ηx,h(Fi(ξ)) dξ






−1where we used the transformation Fi : K̂ → Ki from referen
e 
ell to 
ellKi and det(DFi) = |Ki|(
f. [34, 120℄).We 
on
lude that evaluation of Diri
hlet boundary value ∇φ(x) on a
tual mesh with mesh size
h is given by

∇φ(x) =






∑

i

|Ki|
∫

K̂

ηx,h(Fi(ξ)) dξ






−1

∑

i

∫

Ki

ηx,h(y)∇φ(y) dy.



2.3 Optimisation of Fluid Flow 27Finally, the integrals over Ki, K̂ will be evaluated numeri
ally by virtue of the �nite elementapproximation φh. For the spe
ial quadrature rule taking only the 2d verti
es of 
ells Ki, K̂ asquadrature-points, we have ηx,h vanishing at all verti
es ex
ept x, so that
∫

Ki

ηx,h(y)∇φ(y) dy ≈
|Ki|
2d
∇φh|Ki(x),

∫

K̂

ηx,h(Fi(ξ)) dξ ≈
|K̂|
2d

=
1

2d
.All in all we get the approximation of ∇φ(x) to be

∇φ(x) =

∑

i

|Ki| ∇φh|Ki(x)

∑

i

|Ki|showing that for φh ∈ C1(Ω) we have ∇φ(x) = ∇φh(x) and for φh ∈ C0(Ω) that the lo
al gradientshave to be weighted by size of the 
ells.2.3 Optimisation of Fluid FlowThe �eld of optimisation or optimal 
ontrol of �uid �ow problems (or more general of systemsgoverned by partial di�erential equations) is re
ently a very a
tive one. Contributions to the �eldof optimisation and optimal 
ontrol of Navier-Stokes equations are manifold, whereas most 
onsiderthe two dimensional 
ase, see e.g. [85, 100, 145℄. A fairly 
omplete overview and introdu
tion isgiven in the book of Gunzburger [73℄. We will take a look on di�erent approa
hes to optimise asystem governed by partial di�erential equation, give a brief summary on theory of existen
e anduniqueness of solutions to the optimisation problem and in the end formulate the entire optimisationproblems and approa
hes used within this thesis.2.3.1 Optimisation with Partial Di�erential EquationsOne of the earliest referen
es for the analyti
al framework of optimal 
ontrol problems for partialdi�erential equations is the work of Lions [105℄. Some general 
onditions for optimal solutions 
analso be derived from programming prin
iples in Bana
h spa
es whi
h were under investigation in[111, 156℄ and referen
es therein.Our intention is now to introdu
e the reader to a general setting of optimisation with partialdi�erential equation and to elaborate the 
on
rete approa
h in the next subse
tion. A startingpoint is to identify the 
ommon ingredients of su
h optimisation problems, namely
• an obje
tive that has to be optimised � this is almost always formulated as a 
ost fun
tional,
• one or more 
ontrol or design parameter that 
an be modi�ed to a
hieve an optimisation,
• 
onstraints whi
h have to be ful�lled within the optimisation problem.Let us denote the set of partial di�erential equations that have to be ful�lled by

A(y, u) = 0 in Ω (2.26)where we assume the state variable y ∈ Y and the 
ontrol variable u ∈ U within suitable Bana
hspa
es Y and U . For optimal 
ontrol problems, the operator A(y, u) is typi
ally given by
A(y, u) = A(y, u) + C(u)with a (nonlinear) operator A and a 
ontrol operator C. Furthermore, the partial di�erential



28 SIMULATION AND OPTIMISATION OF FLUID FLOWequation might be instationary, i.e.
∂ty +A(y, u) = 0 in Ω× (0, T ),

y(·, 0) = y0 in Ω.
(2.27)Hen
e, we already have de�ned the 
ontrol parameter and some 
onstraints in form of the un-derlying partial di�erential equation whi
h limits the admissible state spa
e Y . Additional side
onstraints might be given for the 
ontrol variable u ex
lusively, like bounds

‖u‖U ≤ κ.In the following let us assume that the admissible spa
es for state and 
ontrol variables are givenby Yad resp. Uad. What remains is to de�ne an obje
tive or 
ost fun
tional J(y, u). Usually su
ha fun
tional 
an be split into parts involving only the state and only the 
ontrol variables
J(y, u) = J1(y) + J2(u).For instationary problems a temporal averaging is 
ommon, i.e. if state and 
ontrol are timedependent

J(y, u) =

T∫

0

J1(y) dt+ J3(y(T )) +

T∫

0

J2(u) dt.All in all the entire optimisation problem reads:
min

(y,u)∈Yad×Uad

J(y, u) su
h that equation (2.26) (resp. (2.27)) is ful�lled. (2.28)A 
ru
ial point within the solution pro
ess is the de�nition of so-
alled 
ontrol-to-state mapping.De�nition 2.3.1Consider the system of partial di�erential equations (2.26) resp. (2.27). The mapping u 7→ y where
y ∈ Yad is a solution of (2.26) resp. (2.27) with the 
ontrol parameter u ∈ Uad, is denoted by S,i.e. y = S(u).Any further statements on existen
e and uniqueness of a solution to the optimisation problemwill strongly depend on this mapping S � we refer e.g. to [105, 59, 157℄ for a more detailed analysis.For sake of simpli
ity we assume that this mapping is well-posed, although this is not a trivial taskfor all problems stated before (if at all possible).De�nition 2.3.2A 
ontrol ū ∈ Uad is 
alled optimal 
ontrol and ȳ = S(ū) ∈ Yad is 
alled 
orresponding optimalstate if

J(ȳ, ū) ≤ J(y, u) ∀u ∈ Uad and y = S(u) ∈ Y.The existen
e result for the general optimisation problem in Bana
h spa
es 
an be found in [88℄� here we only 
ite the prin
ipal assumptions on whi
h the proof bases. Let J : Y × U → R and
A : Y × U → Z be 
ontinuous, Y, U and Z Bana
h spa
es where Y and U are re�exive. Thenproblem (2.28) has an optimal solution ū with optimal state ȳ under the assumptions:
• Uad is 
onvex, bounded and 
losed,
• Yad is 
onvex, 
losed and (2.28) has a feasible point, i.e.

{(y, u) ∈ Yad × Uad : equation (2.26) (resp. (2.27)) is ful�lled} 6= ∅,
• the 
ontrol-to-state operator S : Uad → Y is 
ontinuous and bounded,
• (y, u) ∈ Y × U 7→ A(y, u) ∈ Z is 
ontinuous under weak 
onvergen
e,
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• J is weakly lower semi
ontinuous.For our purpose, we re
all the main setting of optimisation problems under instationary partialdi�erential equations, that is based on [115℄. To this we use the weak formulation of Navier-Stokesequations or more general instationary problems, i.e. for given 
ontrol u ∈ U seek y ∈ Y su
h thatfor almost all t ∈ (0, T ) it holds

〈∂ty, ϕ〉Y ∗,Y + 〈A(y, u), ϕ〉Y ∗,Y = 0 ∀ϕ ∈ Yand y(·, 0) = y0. The operator A : Y × U → Z = Y ∗ is in general de�ned for suitable Hilbertspa
es Y for the state and U for the 
ontrol. For the spe
ial 
ase of Navier-Stokes equationsthis operator is given by the spatial di�erential operators de�ning the linear forms (2.17), (2.18)and (2.19). Moreover, let H be a Hilbert spa
e whi
h builds together with Y a Gelfand triple
Y →֒ H ∼= H∗ →֒ Y ∗. A typi
al 
hoi
e for these spa
es is as before

Y = {v ∈ H1(Ω) : v|ΓD = 0} and H = L2(Ω)where ΓD denotes the part of the boundary of Ω with pres
ribed Diri
hlet boundary 
onditions.For a time interval (0, T ) we introdu
e the Hilbert spa
e W (0, T ) de�ned as
W (0, T ) = {v : v ∈ L2(0, T ;Y ) and ∂tv ∈ L2(0, T ;Y ∗)}.Furthermore, we use the inner produ
t of L2(0, T ;H) given by

(u, v) = (u, v)L2(0,T ;H) =

T∫

0

(u(t), v(t))H dt,su
h that the weak formulation of state equation 
an be expressed as: for given 
ontrol u ∈ L2(0, T ;U)seek y ∈ W (0, T ) su
h that
(∂ty, ϕ) +

T∫

0

〈A(y(t), u(t)), ϕ(t)〉Y ∗,Y dt = 0 ∀ϕ ∈ W (0, T ) (2.29)and y(0) = y0. By these de�nition the setting of weak instationary Navier-Stokes equation �tsinto the general optimisation problem above, i.e. y ∈ W (0, t), u ∈ L2(0, T ;U). The 
on
reteformulation of 
ost fun
tional will be introdu
ed later.Coming ba
k to the general setting, we assume that via the 
ontrol-to-state operator S : U → Ywe have a unique solution y to ea
h 
ontrol u, so that we 
an de�ne the redu
ed 
ost fun
tional
j : U → R by j(u) = J(S(u), u). Hen
e, problem (2.28) 
an be stated as an un
onstrained (atleast only 
onstrained by u ∈ Uad) optimisation problem

min
u∈Uad

j(u). (2.30)Let Uad ⊂ U be non-empty and 
onvex, J : Y × U → R and A : Y × U → Z be 
ontinu-ously di�erentiable. If additionally for all u ∈ Uad the state equation possesses a unique solution
y = S(u) ∈ Y and ∂A

∂y (S(u), u) has a bounded inverse, then ū being a solution of redu
ed optimi-sation problem (2.30) satis�es the �rst order ne
essary optimality 
ondition (see [88℄)
〈Dj
Du

(ū), u− ū〉U∗,U ≥ 0 ∀u ∈ Uad. (2.31)For the spe
ial 
ase U = L2(Ω) or U = L2(Γ), Γ ⊂ ∂Ω, and Uad = {u ∈ U : a ≤ u ≤ b},i.e. so-
alled box 
onstraints, we 
an identify the gradient ∇j(u) = Dj
Du (u) by means of the Rieszrepresentation. Then one gets the well-known equivalent representations of (2.31)i/ ū ∈ Uad, (∇j(ū), u − ū)0 ≥ 0, ∀u ∈ Uad,



30 SIMULATION AND OPTIMISATION OF FLUID FLOWii/ ū ∈ Uad, ∇j(ū)(x)







= 0 if a(x) < ū(x) < b(x),

≥ 0 if a(x) = ū(x) < b(x),

≤ 0 if a(x) < ū(x) = b(x),iii/ for any ε > 0 : ū = PUad
(ū− ε∇j(ū)) with PUad

(u) = min(max(a, u), b).A further simpli�
ation 
an be derived whenever the bounds equal a = b =∞ su
h that Uad = Uand the �rst order optimality 
ondition is hen
e given by
∇j(u) = 0, ∀u ∈ U.In order to solve the optimisation problem (2.30) we thus need a representation to evaluate at leastthe �rst derivative Dj

Du . We will present (following [88℄) two approa
hes that are used in the sequel,namely the adjoint-based and sensitivity-based approa
h. The se
ond derivative of j(u) might alsobe used for higher order methods (see [28℄ or [86℄), but we will not 
on
ern this point and use onlyQuasi-Newton methods like LBFGS method � a detailed overview on used optimisation algorithmsis given in 
hapter 5.1. For the 
ase of J being 
onvex on Uad the �rst order ne
essary 
ondition(2.31) is also su�
ient for global optimality.The Adjoint Approa
hWe state the abstra
t optimisation problem (2.28) for the stationary 
ase as4:
min

(y,u)∈Yad×Uad

J(y, u) su
h that A(y, u) = 0 in Ω.Assume that the 
ost fun
tional J : Y × U → R and the state equation operator A : Y × U → Zare 
ontinuously di�erentiable. Let
L(y, u, z) = J(y, u) + 〈z, A(y, u)〉Z∗,Z (2.32)de�ne the Lagrangian fun
tional L : Y × U × Z∗ → R involving a Lagrange multiplier z ∈ Z∗.Then one gets the optimality system by the stationary points of L whi
h are 
andidates for optimalsolutions (for proof see e.g. [73, 157℄).Theorem 2.3.1Assume that for given 
ontrol u ∈ Uad the state y ∈ Yad satis�es the state equation

∂L

∂z
(y, u, z)ϕ = 〈ϕ,A(y, u)〉Z∗,Z = 0 ∀ϕ ∈ Z∗ (2.33)and that the adjoint state z ∈ Z∗ satis�es the adjoint equation

∂L

∂y
(y, u, z)ϕ = 〈∂J

∂y
(y, u), ϕ〉Y ∗,Y + 〈z, ∂A

∂y
(y, u)ϕ〉Z∗,Z = 0 ∀ϕ ∈ Y (2.34)then the expression for the �rst derivative of (2.30) holds (gradient equation or optimality 
ondi-tion):

〈Dj
Du

(u), ϕ− u〉U∗,U = 〈∂L
∂u

(y, u, z), ϕ− u〉U∗,U

= 〈∂J
∂u

(y, u), ϕ− u〉U∗,U + 〈z, ∂A
∂u

(y, u)ϕ− u〉Z∗,Z ≥ 0 ∀ϕ ∈ Uad.

(2.35)Sin
e j(u) = L(S(u), u, z) for arbitrary z ∈ Z∗, a more 
onvenient way to express the gradient4for sake of simpli
ity we restri
t ourselves to stationary problems and ask the reader to transfer all statementsto the instationary 
ase whenever needed
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an be given by dire
t di�erentiation
〈Dj
Du

(u), δu〉U∗,U = 〈∂L
∂y

(S(u), u, z),
DS

Du
(u)δu〉Y ∗,Y + 〈∂L

∂u
(S(u), u, z), δu〉U∗,U .Choosing z = z(u) su
h that the adjoint equation (2.34)

〈∂J
∂y

(y, u), ϕ〉Y ∗,Y + 〈z, ∂A
∂y

(y, u)ϕ〉Z∗,Z = 〈∂J
∂y

(y, u), ϕ〉Y ∗,Y + 〈
[
∂A

∂y
(y, u)

]∗

z, ϕ〉Y ∗,Y = 0, ∀ϕ ∈ Yis ful�lled (where [·]∗ denotes the adjoint operator), we get
〈Dj
Du

(u), δu〉U∗,U = 〈∂L
∂u

(S(u), u, z(u)), δu〉U∗,U ∀δu ∈ Uad.Thus, by virtue of (2.35)
Dj

Du
(u) =

∂L

∂u
(S(u), u, z(u)) =

∂J

∂u
(S(u), u) +

[
∂A

∂u
(S(u), u)

]∗

z(u). (2.36)The Sensitivity Approa
hInstead of using the adjoint approa
h to des
ribe the gradient of redu
ed 
ost fun
tional j(u) onemight also use the 
hain rule to get the sensitivity
Dj

Du
(u)d =

∂J

∂y
(S(u), u)

DS

Du
(u)d+

∂J

∂u
(S(u), u)d.The partial derivatives ∂J

∂y ,
∂J
∂u are usually not that hard to derive analyti
ally, whereas the sensi-tivity/dire
tional derivative DS
Du (u)d is. An easy (but 
ostly) approa
h would be a �nite di�eren
equotient

DS

Du
(u) ≈ S(u)− S(ũ)

u− ũ .Alternatively we 
an also di�erentiate the state equation A(S(u), u) = 0 in dire
tion d to get thesensitivity equation
∂A

∂y
(S(u), u)

DS

Du
(u)d = −∂A

∂u
(S(u), u)d (2.37)su
h that the dire
tional derivative Dj

Du (u)d requires the solution of system (2.37) for ea
h dire
tion.Adjoint Approa
h vs. Sensitivity Approa
hBeside the two approa
hes (adjoint and sensitivity), whi
h both aim at 
omputation of derivativeoperator Dj
Du (u), one might also solve the optimality system 
onsisting of the 
oupled equations(2.33), (2.34) and (2.35) at on
e. This so 
alled one-shot approa
h is usually not feasible due to the
lose 
oupling of equations and (after dis
retisation) due to the resulting huge nonlinear systems.Furthermore, for instationary problems the adjoint equation is stated ba
kward-in-time leading toadditional 
ompli
ations when standard timestepping dis
retisation will be used. So we restri
t tothe two presented approa
hes.For the adjoint approa
h 
omputation of Dj

Du (u) is given in three steps1. solve state equation5 to get state y = S(u):
〈A(y, u), ϕ〉Y ∗,Y = 0, ∀ϕ ∈ Y5we used Z = Y ∗ and assumed that the operator A de�nes a symmetri
 linear form



32 SIMULATION AND OPTIMISATION OF FLUID FLOW2. solve adjoint equation to get adjoint state z(u):
〈
[
∂A

∂y
(S(u), u)

]∗

z(u), ϕ〉Y ∗,Y = −〈∂J
∂y

(S(u), u), ϕ〉Y ∗,Y , ∀ϕ ∈ Y3. determine Dj
Du (u) =

∂J
∂u (S(u), u) +

[
∂A
∂u (S(u), u)

]∗
z(u)to get the whole derivative Dj

Du (u) independently of the dimension of U . On the other side thesensitivity approa
h only yields dire
tional derivatives Dj
Du (u)d in dire
tion d su
h that for B beinga basis of U we need to 
ompute Dj

Du (u)b, b ∈ B. Ea
h 
omputation requires the steps1. solve state equation to get state y = S(u): A(y, u) = 02. solve sensitivity equation to get sensitivity yb = DS
Du (u)b:

∂A

∂y
(S(u), u)yb = −

∂A

∂u
(S(u), u)b3. determine Dj

Du (u)b =
∂J
∂y (S(u), u)yb +

∂J
∂u (S(u), u)b.This summary shows that at a �rst glan
e one should obviously use the adjoint approa
h to getthe gradient of the redu
ed 
ost fun
tional. Independently of the number of design parametersthere is always only one (linear) adjoint system to be solved to get the gradient of the redu
ed
ost fun
tional, whereas the number of (linear) sensitivity systems grow linearly with the numberof design parameter. But there are still some drawba
ks: while the sensitivities 
an simply bedetermined by solving the linearised state equation (a step that is 
ommon within ea
h nonlinearpartial di�erential equation solver), the adjoint equations have to be derived analyti
ally �rst.Moreover, for instationary problems the adjoint equation needs to be solved ba
kward in time,whereas the sensitivities 
an be 
omputed within ea
h timestep of the state equation solver. Alast remark on the sensitivity approa
h might be given by the physi
s of the system. In manyappli
ations the possible 
ontrol u within 
ontrol spa
e Uad 
an be expressed in the form

u(x, t) =

K∑

k=1

αkfk(x, t)with K being a small number. Thus the variation of 
ontrol is per se limited so that sensitivity
Dj
Du (u)αk might dire
tly be 
omputed. In the end if the number of parameters αk grows or ifthe 
ontrol is even given as an in�nite dimensional fun
tion, e.g. u ∈ L2(∂Ω), the adjoint basedapproa
h seems to be favourable.2.3.2 Flow Control and OptimisationThe �eld of optimal 
ontrol in �uid me
hani
s within 
omputational s
ien
e has be
ome a large-s
ale resear
h dis
ipline starting in the 1990s with pioneering works like [1℄. For an overview onfun
tional analyti
 ba
kground on optimal 
ontrol of the instationary Navier-Stokes equations bydistributed 
ontrol, we refer to [159℄ and referen
es therein. A review and plenty referen
es of theadjoint equation-based approa
h for �ow 
ontrol 
an be found in [71℄. The use of se
ond ordermethods and instantaneous 
ontrol is shown in [87℄. Both works give a 
omplete ba
kground fromthe analyti
al point of view but the solved problems are related to two dimensions and no parti
ularinterest was put on the numeri
al requirements. The spe
ial 
ase of Diri
hlet boundary 
ontrol foroptimisation problems based on (stationary) Navier-Stokes equations 
an be found in [75℄.As we presented previously we aim at using the adjoint approa
h as well as the sensitivityapproa
h for optimisation. A 
omparison of the 
apabilities of both approa
hes will only be done bymeans of an a
ademi
al example using the instationary Navier-Stokes equations � this should thenalso give hints how to ta
kle the 
onsidered optimisation problem of the ele
troosmoti
 mi
romixer.To this end let us �x the 
onsidered problem of optimising the �uid �ow of ba
kward fa
ing stepgeometry �rst.



2.3 Flow Control and Optimisation 33Pressure Driven FlowWe seek an optimal 
ontrol to the instationary Navier-Stokes equations whi
h minimises a 
ostfun
tional of tra
king type. For a pres
ribed solution vd ∈ H1(Ω), whi
h might be given on thewhole domain Ω or on parts of it, we want to minimise the distan
e between the solution v ofNavier-Stokes equations and vd � for instationary problems in the mean over time interval (0, T ).The observation volume Ωs ⊂ Ω might be restri
ted to the area of re
ir
ulation behind the step,
min
v,c

J(v, c) =
β1
2

T∫

0

‖v − vd‖2L2(Ωs)
dt+

β2
2
‖v(T )− vd‖2L2(Ωs)

+
λ

2

T∫

0

‖c‖2L2(Γc)
dt. (2.38)Instead of expli
it box 
onstraints for admissible 
ontrol c, we penalise the 
ost fun
tional by anadditional term involving the 
ontrol c. Su
h an enhan
ement of stability of the optimisationproblem by augmenting through regularisation term is 
ommonly used within the literature. Thevelo
ity �eld vd is given by the stationary solution of Stokes equations leaving all other data(Reynolds number and boundary values) within the state equation untou
hed. For other types of
ost fun
tionals in the framework of �ow 
ontrol we refer to [85, 100℄ and for results on existen
eof solutions see [75, 79, 77, 58℄.For 
onvenien
e of the reader we resume the setting of the problem:

• state equations are given with do-nothing boundary formulation as introdu
ed before
Re [∂tv + (v · ∇)v] −∆v +∇p = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),

v = 0 on Γ0 × (0, T ),

v = c on Γc × (0, T ),

v = vin on Γin × (0, T ),

∂nv − pn = 0 on Γout × (0, T ),

v(·, 0) = v0 in Ω,

(2.39)
• initial 
ondition v0 is a given fun
tion in H1(Ω) that mat
hes the boundary 
onditions,
• desired state vd is in H1(Ω),
• the regularisation parameter λ is a positive 
onstant and the 
oe�
ients β1, β2 are non-negative 
onstants of whi
h at least one is positive.The Diri
hlet boundary 
onditions for v are extended by a boundary Γc on whi
h the 
ontrol ca
ts � a 
on
rete de�nition of the spa
e used for c will be given later. Up to now we only think ofthe 
ontrol as an additional in�ow/out�ow where su
tion or inje
tion of �uid through ori�
es 
anbe applied.To solve the optimisation problem (2.38) under 
onstrains (2.39) by means of adjoint approa
h,we need to derive the adjoint equation and the gradient equation (�rst order optimality 
ondition)to form the optimality system. First order ne
essary optimality 
onditions 
an be found in manyreferen
es � the �rst proof of ne
essary 
onditions for the distributed optimal 
ontrol problemrelated to the Navier-Stokes equations was given in the early work [1℄. Other proofs 
an be foundin [76, 77℄, [87℄ (where also some regularity problems are addressed) and [100℄. Ne
essary optimality
onditions for three-dimensional �ow are established in [27℄. A rigorous framework for boundary
ontrol of the Navier-Stokes equations 
an be found in [60, 86℄. Thus, we skip the derivation andjust present the optimality system in weak form. De�ne the spa
e (with arbitrary Γ ⊂ ∂Ω)

H1
Γ(Ω) = {u ∈ H1(Ω) : u = 0 on Γ}and let Γd = Γ0 ∪ Γin ∪ Γc. To obtain a solution of the optimal 
ontrol problem, we have to solve(using (2.17), (2.18), (2.19)):
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• for v ∈ vin + L2(0, T ;H1

Γ0
(Ω)), p ∈ L2(0, T ;L2(Ω)) the Navier-Stokes equations with initial
ondition v(·, 0) = v0:

Re [〈∂tv, ϕ〉 + c(v,v, ϕ)] + a(v, ϕ) + b(ϕ, p) = 0 ∀ϕ ∈ H1
Γ0∪Γin

(Ω)

b(v, ξ) = 0 ∀ξ ∈ L2(Ω)

v|Γc = c

(2.40)
• for z ∈ L2(0, T ;H1

Γd
(Ω)), q ∈ L2(0, T ;L2(Ω)) the adjoint equations with initial 
ondition

z(·, T ) = β2(vd − v(·, T )):
Re [−〈∂tz, ϕ〉 + c(ϕ,v, z) + c(v, ϕ, z)] + a(z, ϕ) + b(ϕ, q) = (β1(vd − v), ϕ)0 ∀ϕ ∈ H1

Γd
(Ω)

b(z, ξ) = 0 ∀ξ ∈ L2(Ω)(2.41)
• for c ∈ L2(0, T ;L2(Γc)) the gradient equation:

T∫

0

∫

Γc

(λc + ∂nz− qn)χ ds dt = 0 ∀χ ∈ L2(Γc). (2.42)Just for 
ompleteness we denote the strong formulation of the adjoint equations (see [87℄ for adetailed derivation):
Re
[
−∂tz− (v · ∇)z + (∇v)T · z

]
−∆z+∇q = β1(vd − v) in Ω× (0, T ),

∇ · z = 0 in Ω× (0, T ),

z = 0 on Γd × (0, T ),

∂nz− qn+ (v · n)z = 0 on Γout × (0, T ),

z(·, T ) = β2(vd − v(·, T )) in Ω.

(2.43)The optimality 
ondition 
an thus be stated as
λc− qn+ ∂nz = 0 on Γc × (0, T ). (2.44)We see the strongly 
oupled variables {v, p, z, q, c} within the system (2.40), (2.41) and (2.42)whi
h is due to the nonlinear 
hara
ter of the Navier-Stokes equations and of the 
ost fun
tional.Having the problem stated, we should state some remarks on the type of 
ontrol. The Diri
hletboundary 
ontrol c is formally de�ned as the tra
e of a fun
tion in H1(Ω) and thus c ∈ H1/2(Γc).De�nition of the 
ost fun
tional (2.38) should therefore in
orporate this fa
t and use the H1/2-norm instead of L2-norm on Γc whi
h means that additional spa
e derivatives of c must be used.A more generi
 approa
h instead would be given by the 
ost fun
tional

min
v,c

J(v, c) = J̃(v) +
λ

2

T∫

0

∫

Γc

(|c|2 + λ1|∂xc|2 + λ2|∂tc|2) ds dtleading to an optimality 
ondition that is a boundary value problem in spa
e-time for a partial dif-ferential equation along the 
ontrol boundary Γc (
f. [58℄). Nevertheless, also the weaker approa
husing the L2(Γc)-norm leads at least numeri
ally to reasonable results, if possibly the regularisa-tion parameter λ is 
hosen large enough � see [87, 100℄. In addition we remark that the optimality
ondition (2.42) and therefore the redu
ed gradient ∇j(c) = λc− qn+∂nz 
an only be interpretedin the sense of distributions. The optimisation algorithm will obviously be based on evaluationof ∇j(c) to get new boundary 
ontrol cnew , so that we have to evaluate ∇j(c) to be able to setDiri
hlet values � a task that was already under 
onsideration in the last se
tion where we showeda way to interpret the boundary 
ondition v|Γ0
= ∇φ.Alternatively the problem of using the 
orre
t norm for 
ontrol within the 
ost fun
tional 
an



2.3 Flow Control and Optimisation 35be avoided, when we use the sensitivity approa
h. Sin
e we will 
ompare the two optimisationapproa
hes later in the numeri
al results, we only brie�y de�ne the ba
k�ow optimisation problemalso in terms of sensitivities. Let the setting be given as before ex
ept the 
ontrol c on Γc whi
his now de�ned as
v = c =

K∑

k=1

αkfk(x, t) on Γc × (0, T ) (2.45)with 
onstant fun
tions fk : Γc × (0, T ) → R3 modelling the in�ow on 
ontrol boundary Γc.This simpli�
ation using a linear 
ombination of ansatz fun
tions is very handy for notations,nevertheless the 
ontrol c might also be given as a nonlinear fun
tion. Only the appearan
e of(design-)parameter αk is 
ru
ial in this formulation. The 
ost fun
tional will then be given as
min
v,αk

J(v, αk) =
β1
2

T∫

0

‖v − vd‖2L2(Ωs)
dt+

β2
2
‖v(T )− vd‖2L2(Ωs)

+
λ

2

K∑

k=1

|αk|2. (2.46)Determination of the gradient by dire
t (formal) di�erentiation yields for k = 1, . . . ,K

DJ

Dαk
= λαk + β1

T∫

0

∫

Ωs

(v − vd)vαi dx dt+ β2

∫

Ωs

(v(T )− vd)vαk
|t=T ds, (2.47)where vαk

= Dv

Dαk
denotes the sensitivities that are given by the sensitivity equations

Re [∂tvαk
+ (vαk

· ∇)v + (v · ∇)vαk
]−∆vαk

+∇pαk
= 0 in Ω× (0, T ),

∇ · vαk
= 0 in Ω× (0, T ),

vαk
= 0 on (Γ0 ∪ Γin)× (0, T ),

vαk
=

∂c

∂αk
on Γc × (0, T ),

∂nvαk
− pαk

n = 0 on Γout × (0, T ),

vαk
(·, 0) = 0 in Ω.

(2.48)
We see that the sensitivity equations are nothing more than the linearised state equations (2.39).Ele
tri
ally Ex
ited FlowTo end the se
tion on �ow 
ontrol we also want to denote the sensitivity based optimisationapproa
h for the ele
tri
ally ex
ited �uid �ow. Re
all the governing equations for the bulk �owwithin the mi
ro
hannel

Re[∂tv + (v · ∇)v]−∆v +∇p = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),

∆φ = 0 in Ω× (0, T ),

∂tc−
1

Re · Sc∆c+ v · ∇c = 0 in Ω× (0, T ),

(2.49)with suitable boundary and initial 
onditions as introdu
ed before. The reader should be awarethat c now denotes the 
on
entration �eld c : Ω → R and no longer the 
ontrol. It was alreadyaddressed that the potential φ was motivated in order to manipulate the �ow �eld v to get a better(we will have to de�ne what this means) distribution of 
on
entration c. Hen
e, the 
ontrol shouldbe applied to the potential �eld φ. Sin
e a physi
al meaningful in�uen
e on φ 
an only be given bythe potential di�eren
e ∆φ between Γin and Γout, we seek to 
ontrol the boundary values φ|Γoutand ta
itly assume that φ|Γin = 0.The applied potential on Γout 
an be supposed to be spatially 
onstant as we only simulatethe small meander part of the whole mi
ro
hannel and expe
t a linear behaviour of φ within thestraight parts starting from the reservoirs. Thus the modi�
ation of φ|Γout will only be temporally
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t to the amplitude and a possible frequen
y. If for any reason a periodi
 alternatingpotential di�eren
e seems justi�ed, a Fourier series 
an be used to des
ribe the temporal 
hange,i.e. we get the 
ontrol boundary 
ondition
φ(t) = φc(t, αk) =

α0

2
+

n∑

k=1

αk cos(kωt) +

2n∑

k=n+1

αk sin((k − n)ωt) on Γout × (0, T ) (2.50)with the frequen
y ω = 2π/T . This approa
h ends up with 2n + 1 parameters to be 
ontrolled,whi
h for small n seems reasonable, sin
e sensitivity equations are stated also forward-in-time in
ontrast to the adjoint equations (
f. (2.43)) � we will go into detail about this fa
t in Chapter5.1. Obviously there are a lot of other attempts to des
ribe the boundary 
ondition (2.50) likea e.g. polynomial series. Whi
h way is the best has to be based on physi
al observations andnumeri
al simulations as we will do in Chapter 6.The sensitivity equations 
an in any 
ase be derived also independently of the 
hoi
e of 
ostfun
tional (we again use ·αk
= ∂·

∂αk
for the sensitivities):

Re [∂tvαk
+ (vαk

· ∇)v + (v · ∇)vαk
]−∆vαk

+∇pαk
= 0 in Ω× (0, T ),

∇ · vαk
= 0 in Ω× (0, T ),

∆φαk
= 0 in Ω× (0, T ),

∂tcαk
− 1

Re · Sc∆cαk
+ vαk

· ∇c+ v · ∇cαk
= 0 in Ω× (0, T ).

(2.51)Boundary 
onditions were also linearised and using the pressure-drop formulation are:
vαk
|Γ0

= −Π2∇Φαk
, ∂nvαk

|Γin∪Γout = 0,

pαk
|Γin∪Γout = 0,

φαk
|Γin = 0, φαk

|Γout =
∂φc
∂αk

, ∂nφαk
|Γ0

= 0

cαk
|Γin = 0, ∂ncαk

|Γ0∪Γout = 0.

(2.52)For the a
tual used setting of the problem and espe
ially the formulation of 
ost fun
tional werefer to Chapter 6.2.4 Bibliographi
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sOptimisation with partial di�erential equations and in generalBesides the already 
ited [73, 105, 145, 157℄ we mention:
• Barbu, V. [1993℄ Analysis and 
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• Fattorini, H. O. [1999℄ In�nite dimensional optimisation and 
ontrol theory, Cambridge Uni-versity Press
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Chapter 3Dis
retisation and Sequential SolverAs shown in the previous 
hapter, adjoint-based optimisation as well as sensitivity-based opti-misation for �uid �ow problems yield systems of similar type. First there is obviously the stateequation given by Navier-Stokes equations (with additional equations for potential and 
on
entra-tion), but also the adjoint equations and sensitivity equations are of linearised Navier-Stokes type.We pointed out that ta
kling the optimisation problem using an optimisation algorithm based onthe redu
ed 
ost fun
tional, ne
essitates the solution of both state and adjoint/sensitivity equationsto derive the gradient.The following 
hapter will therefore 
on
entrate on numeri
al solution of these equations,i.e. dis
retisation of the underlying partial di�erential equations by means of �nite element methodand solution of algebrai
 system by suitable linear solvers. Sin
e major issues arise from the saddlepoint stru
ture of Navier-Stokes equations, we will sti
k to the abstra
t equations
∂tv −∆v +N(v) +∇p = 0,

∇ · v = 0,
(3.1)from whi
h state equations itself and also sensitivity/adjoint equations 
an be re
overed. Conve
tion-di�usion and Lapla
e equation in the 
omplete system might be de
oupled from the Navier-Stokesequations so that this strategy seems justi�ed. Prin
ipally we will work out numeri
al methods forsolving the dis
rete system using iterative solvers and Multilevel ILU-based pre
onditioners - thissequential solver/pre
onditioner will be the basis for parallel solver/pre
onditioner introdu
ed inChapter 4.3.1 Finite Element Method for Navier-Stokes EquationsA further simpli�
ation of the general problem (3.1) allows to treat also the Stokes problem bynegle
ting the nonlinear term N(v). We will thus �rst show the dis
retisation for Stokes equa-tions only and then mention aspe
ts, how these results 
an be transferred to the equations under
onsideration - namely the nonlinear state equations and the linear adjoint/sensitivity equations.These steps obviously 
omprise the dis
retisation itself in spa
e-variables but also linearisation ofthe nonlinear system and aspe
ts of dis
retisation in time. Beside the here used dis
retisation by�nite element method there are other approa
hes for the dis
retisation of Navier-Stokes equationsor more general for �uid �ow problems - these 
omprise �nite di�eren
e or �nite volume methods(
f. [125℄) as well as latti
e Boltzmann methods (
f. [98℄).The spatial dis
retisation of Navier-Stokes equations by means of �nite element approximationbases on dis
rete representation of the weak formulation for the underlying 
ontinuous equations.For the sake of simpli
ity we restri
t ourselves to systems with homogeneous Diri
hlet boundary
onditions for the velo
ity, i.e. v|∂Ω = 0 and refer to Se
tion 2.2 for used notation.Remark 3.1.1 (Treatment of general boundary 
onditions)The weak formulation (2.20) is equipped with inhomogeneous Diri
hlet boundary 
onditions, whi
hare essential for this formulation, i.e. they are imposed by the fun
tion spa
e H1

g(Ω). For the more
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ase of 
hannel �ows, we also have to treat the out�ow 
ondition ∂nv− pn on Γout or thepreviously presented weak formulation of pressure-drop. In the 
ase of inhomogeneous boundary
onditions on Γd ⊆ ∂Ω, we assume a fun
tion g ∈ H1/2(Γd) given as tra
e of a fun
tion in H1(Ω)whi
h have to ful�l ∫

Γd

g · n ds = 0whenever Γd = ∂Ω due to 
ontinuity equation. The test fun
tions ϕ will always be given in H1
Γd
(Ω),i.e. have homogeneous boundary 
onditions on Γd.Within �nite element dis
retisation the inhomogeneous boundary 
onditions are usually treatedby a boundary interpolant gh, 
f. [138℄. One �rst 
hooses a fun
tion gh that is in Vh,Γd
, therestri
tion of the �nite element spa
e Vh ⊂ H1(Ω) to the boundary Γd, and approximates g. Thenthe approximate problem is stated for vh ∈ Vh su
h that vh|Γd

= gh.Using Lagrangian �nite element spa
es the interpolant gh 
an simply be 
hosen as the fun
tionvalues of g at degrees of freedom on Γd. The theoreti
al aspe
ts like div-stability and error-estimates
arry over to the 
ase of inhomogeneous boundary 
ondition ex
ept for the 
onstants - we refer to[51, 62, 78, 74℄ for details.The boundary 
onditions for Γout on the other hand are not that 
ompli
ated. As alreadymentioned the do-nothing 
ondition
∫

Γout

(∂nv − pn) · ϕ ds ∀ϕ ∈ V ⊂ H1(Ω)naturally appears when deriving the weak formulation of Navier-Stokes equations (2.20). The only
hange that has to be made is about the fun
tion spa
e V for test fun
tions ϕ. Instead of imposingzero boundary 
ondition on the whole boundary ∂Ω, i.e. using H1
0(Ω), we now use

V = {v ∈ H1(Ω) : v = 0 on ∂Ω\Γout}.For the pressure-drop formulation we only have to impose zero boundary 
ondition on the 
han-nel walls, for trial and test fun
tions, sin
e the boundary 
ondition is in
orporated into the weakformulation.For the homogeneous weak form of (2.20) we now introdu
e the Galerkin formulation of �niteelement approximation. In the usual manner �rst one 
hooses approximating �nite dimensionalspa
es Vh and Sh for the velo
ity and pressure, where the index h shows dependen
e on anasso
iated mesh with 
hara
teristi
 size h. Then one repla
es the in�nite dimensional spa
es in(2.20) by the �nite ones, i.e. seek vh(t) ∈ Vh ⊂ H1
0(Ω) and ph(t) ∈ Sh ⊂ L2

0(Ω) su
h that
vh(0) = Ih(v0) and for almost all t ∈ (0, T ) it holds1

Re [(∂tvh, ϕh) + c(vh,vh, ϕh)] + a(vh, ϕh) + b(ϕh, ph) = 〈f , ϕh〉 ∀ϕh ∈ Vh

b(vh, ξh) = 0 ∀ξh ∈ Sh

(3.2)where Ih(v0)(x) is a suitable approximation to the initial data. In this work we only 
onsiderthe 
onforming Galerkin formulation, i.e. the �nite dimensional spa
es Vh and Sh are subsets of
H1

0(Ω) resp. L2
0(Ω). The last step to get an algebrai
 system for the �nite element approximationto Navier-Stokes equations is to identify bases for Vh and Sh and to express the trial and testfun
tions as linear 
ombinations of the basis-fun
tions. Additionally a linearisation method mustbe applied sin
e the resulting system is nonlinear - we will dis
uss this aspe
t in the following.Furthermore for the instationary 
ase a time-dis
retisation has to be performed. We will use asemi-dis
rete approa
h, resulting in a nonlinear system for ea
h timestep that is obviously sim-ilar to the stationary system. Con
rete numeri
al methods for the linear system arising in ea
htimestep/linearisation-step will be the subje
t of the next se
tion.The presented results 
on
erning the �nite element method are of summarising 
hara
ter sin
e1for sake of simpli
ity and readability we will use Re = 1 in the following



3.1 The Stationary Case: Spa
e Dis
retisation 41the emphasis of this work is put on implementation issues. For a more detailed overview on the�nite element method for Navier-Stokes equations there exists a whole bun
h of literature - forthe more theoreti
al aspe
ts we refer to [61, 62, 152℄, while the books [37, 47, 72, 126℄ also 
overaspe
ts of implementation and appli
ations. The books of Gresho and Sani [68, 67℄ provide anextensive 
overage of the �nite element method related to in
ompressible �ows, the reader will also�nd detailed referen
e tables within.Finite Element MeshSin
e the �nite element approximation spa
es Vh, Sh rely on the de�nition of underlying meshes,we have to view the domain Ω (bounded, open and 
onne
ted) as dis
retised into Ωh where Ωhdoes not need to be equal to Ω. Let Th(Ωh) be a partition (also 
alled mesh) of the domain Ωhinto M 
onvex elements/
ells Km 6= ∅ su
h that
Ωh =

M⋃

m=1

Km, K̊m ∩ K̊n = ∅ for m 6= n

∂Km is Lips
hitz-
ontinuous for all Km ∈ Thwhere K̊m is the interior of 
ell Km. The 
ondition K̊m ∩ K̊n = ∅ means that two 
ells at mostshare edge/verti
es in 2D or fa
e/edges/verti
es in 3D. We de�ne the 
hara
teristi
al mesh size hto be the maximum diameter of all 
ells, i.e.
hm = diam(Km) ≤ h ∀Km ∈ Th.Together with the de�nition

ρm = sup{diam(B) : B is a ball 
ontained in Km}we de�ne the regularity of a 
ell Km to be
σm =

hm
ρmand say that the mesh Th is regular if there exists a 
onstant σ ≥ 1 independent of h and Km,su
h that

σm ≤ σ ∀Km ∈ Th.In this work we only 
onsider polygonal domains Ω ⊂ R2 or polyhedral domains in R3 whi
h gives
Ω = Ωh and denote the �nite element mesh by Th. If not stated di�erently the boundary of Ω isdenoted by Γ. Furthermore we only use �nite elements that are de�ned on quadrilaterals in 2Dor hexahedrons in 3D. The use of isoparametri
 elements would also allow 
urved boundaries, ifthese boundaries are smooth enough. For an overview on general 
onstru
tion of �nite elementswe refer e.g. to 
hapter 4 in [37℄ or 
hapter 6 in [120℄.3.1.1 The Stationary Case: Spa
e Dis
retisationWe will �rst show the dis
retisation with respe
t to the spatial variables, i.e. we restri
t ourselvesto the homogeneous stationary Navier-Stokes equations. Hen
e, after the de�nition of subspa
es
Vh ⊂ H1

0 (Ω) and Sh ⊂ L2
0(Ω) we seek for vh ∈ Vh, ph ∈ Sh su
h that

a(vh, ϕh) + c(vh,vh, ϕh) + b(ϕh, ph) = 〈f , ϕh〉 ∀ϕh ∈ Vh,

b(vh, ξh) = 0 ∀ξh ∈ Sh.
(3.3)To be even more restri
tive we �rst negle
t the nonlinear term c(vh,vh, ϕh) and show aspe
ts ofsuitable �nite element approximation for the homogeneous Stokes equations

a(vh, ϕh) + b(ϕh, ph) = 〈f , ϕh〉 ∀ϕh ∈ Vh,

b(vh, ξh) = 0 ∀ξh ∈ Sh.
(3.4)



42 DISCRETISATION AND SEQUENTIAL SOLVERIn 
omparison to 
oer
ive partial di�erential equations, we already showed in Se
tion 2.2 thatthe inf-sup 
ondition 
onne
ting the spa
es Vh and Sh is of major importan
e for saddle pointproblems. While the in
lusions Vh ⊂ H1
0 (Ω), Sh ⊂ L2

0(Ω) preserve 
ontinuity of a(·, ·), b(·, ·)and 
oer
ivity of a(·, ·) when using a 
onformal Galerkin method, there is in general no reason forthe inf-sup 
ondition to be valid in the dis
rete spa
es. Hen
e for the dis
rete spa
es Vh, Sh theessential 
onditions are:1. Continuity for the linear forms (2.17)-(2.19): a ∈ L(Vh ×Vh,R), b ∈ L(Vh × Sh,R) and
c ∈ L(Vh ×Vh ×Vh,R), i.e. there exist positive 
onstant κa, κb and κc (independent of h)su
h that

|a(uh,vh)| ≤ κa‖uh‖1‖vh‖1 ∀uh,vh ∈ Vh,

|b(vh, qh)| ≤ κb‖vh‖1‖qh‖0 ∀vh ∈ Vh, qh ∈ Sh,

|c(wh,uh,vh)| ≤ κc‖uh‖1‖vh‖1‖wh‖1 ∀uh,vh,wh ∈ Vh.These 
onditions are valid for the entire spa
es H1(Ω), L2(Ω) and therefore 
arry over tothe spa
es Vh, Sh. For the �rst two 
onditions 
f. [34℄ and the third 
ondition is proven inChapter 2.1 [62℄.2. Coer
ivity 
ondition for the linear form a(·, ·): there exists a positive 
onstant γa (indepen-dent of h) su
h that
sup

06=vh∈Zh

a(zh,vh)

‖vh‖1
≥ γa‖zh‖1, ∀zh ∈ Zh. (3.5)This 
ondition in
orporates the in
ompressibility 
onstraint of Navier-Stokes equations bymeans of the spa
e Zh := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Sh} of dis
retely divergen
e freefun
tions, to the well known 
oer
ivity 
ondition. Its validity follows from the 
oer
ivity ofthe linear form a(·, ·), i.e. a(v,v) ≥ γa‖v‖21 for all v ∈ H1

0(Ω) and the in
lusion Zh ⊂ H1
0(Ω).3. Ladyzhenskaya-Babuska-Brezzi (LBB) or inf-sup 
ondition: there exists a positive 
onstant

γb (independent of h) su
h that
inf

06=qh∈Sh

sup
06=vh∈Vh

b(vh, qh)

‖vh‖1‖qh‖0
≥ γb. (3.6)Sin
e even the 
onform Galerkin approa
h Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω) does not guaranteethat the inf-sup 
ondition is ful�lled, this 
ondition has to be proven for ea
h 
hoi
e of �niteelement spa
es separately.Under these 
onditions, similar to Se
tion 2.2, we have the 
entral theorem for the approximatesolution vh, ph of the Stokes problem (3.4) (
f. [47, 62℄ for proof).Theorem 3.1.1Assume that Vh and Sh are �nite-dimensional subspa
es of H1

0(Ω) resp. L2
0(Ω). The dis
reteproblem (3.4) is well-posed in the sense of Hadamard:

• there exists a unique solution vh, ph

• the solution 
ontinuously depends on the data f , i.e.
‖vh‖1 ≤

1

γa
‖f‖−1 and ‖ph‖0 ≤ 1

γb
(1 +

κa
γa

)‖f‖−1if and only if the dis
rete spa
es ful�l the inf-sup 
ondition (3.6).In this 
ase the solution vh, ph satis�es the estimates
‖v − vh‖1 ≤ c1 inf

uh∈Vh

‖v − uh‖1 + c2 inf
qh∈Sh

‖p− qh‖0

‖p− ph‖0 ≤ c3 inf
uh∈Vh

‖v − uh‖1 + c4 inf
qh∈Sh

‖p− qh‖0
(3.7)



3.1 The Stationary Case: Spa
e Dis
retisation 43where the 
onstants ci just depend on κa, κb, γa and γb and are independent of h whenever γb isindependent of h.This theorem shows that on
e the inf-sup 
ondition is satis�ed, the error in the �nite elementapproximation depends only on the ability to approximate in the 
hosen �nite element subspa
es.A detailed introdu
tion to �nite element interpolation theory 
an be found in [34, 120, 148℄ - inthe following we only show approximation properties for the used Lagrange �nite elements.We have seen that for well-posedness and 
onvergen
e of the dis
rete solution of the homoge-neous Stokes equations (3.4) it is primarily the dis
rete inf-sup 
ondition that has to be proved,sin
e the 
ontinuity and 
oer
ivity 
onditions are given by the 
hoi
e of a 
onform Galerkin ap-proa
h. For this task we want to mention an often used 
riterion by Fortin [53℄Lemma 3.1.1 (Fortin 
riterion)Assume that the inf-sup 
ondition for the 
ontinuous spa
es X = H1
0(Ω), M = L2

0(Ω) is satis�edwith 
onstant β∗ > 0. Furthermore assume that there exists an operator τh : X → Vh ⊂ X su
hthat
b(u− τh(u), qh) = 0 ∀u ∈ X, qh ∈ Sh ⊂M

‖τh(u)‖1 ≤ C∗‖u‖1 ∀u ∈ Xwhere C∗ > 0 does not depend on h. Then, the inf-sup 
ondition (3.6) is satis�ed with γb = β∗

C∗
.Also the opposite dire
tion is valid.Now we 
ome ba
k to the inhomogeneous Navier-Stokes equations (3.3) and ask for the sameapproximation results as in Theorem 3.1.1. Sin
e a detailed derivation of su
h error-estimates isbeyond the s
ope of this work, we just state the main results and refer to [36, 91, 61, 62, 152℄ for alldetails. First we assume that there exists a unique solution to the stationary weak Navier-Stokesequations v ∈ V = {u ∈ H1

0(Ω) : ∇ · u = 0}, p ∈ L2
0(Ω), so that for some δ > 0

Re2κ̃‖f‖V∗ < 1− δ, κ̃ = sup
u,v,w∈V

|c(w,u,v)|
|w|1|u|1|v|1

. (3.8)Additionally we need two approximation properties of the spa
es Vh and Sh:H1/ there exists a mapping τh ∈ L(H2(Ω) ∩H1
0(Ω),Vh) su
h that

(qh,∇ · (u− τh(u)) = 0 ∀qh ∈ Sh, u ∈ H2(Ω) ∩H1
0(Ω)

‖τh(u)− u‖1 ≤ Ch‖u‖2 ∀u ∈ H2(Ω) ∩H1
0(Ω)H2/ the orthogonal proje
tion operator ρh on Sh satis�es

‖q − ρh(q)‖0 ≤ Chm‖q‖m ∀q ∈ Hm(Ω) ∩ L2
0(Ω), m = 0, 1.Theorem 3.1.2Under the approximation properties H1, H2 and (3.8), the problem (3.3) for h su�
iently smallhas a unique solution vh, ph and

lim
h→0
|v − vh|1 = 0.If in addition the solution v, p belongs to H2(Ω)× (H1(Ω)∩L2

0(Ω)), we have the following estimate
|v − vh|1 ≤ Ch(‖v‖2 + ‖p‖1).For the proof we refer to [61℄ and just remark that besides the 
ondition for uniqueness this theoremrelies on the inf-sup 
ondition and the interpolation property of �nite element spa
es. Indeed, usingFortin 
riterion together with an interpolation error result like it is shown next, we see that theproperties H1 and H2 are ful�lled.
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â2

FK

a4

a3

a7
a8

a1

a2

a6

a5

Figure 3.1: Mapping FK from referen
e to arbitrary 
ell in 3D using 8 basis fun
tions at the verti
es.3.1.2 Taylor-Hood ElementThe inf-sup 
ondition (3.6) was shown to be 
ru
ial for the approximation in the �nite dimensionalspa
es Vh, Sh, so that we need to introdu
e a pair satisfying this 
ondition. In the following wesolely use Lagrange �nite elements, in whi
h all degrees of freedom are point values at spe
i�
 nodalpoints. Beside the Lagrange elements there are also so 
alled Hermite �nite elements, involvingdire
tional derivatives as degrees of freedom. We refer to [120℄ or [34℄ for a detailed introdu
tion tothe theory of �nite elements. Following the de�nition of [34℄ a Lagrange �nite element is a triplet
{K,P,Σ} wherei/ K is a 
ompa
t, 
onne
ted, Lips
hitz subset of Rd with non-empty interior. Furthermore onede�nes a set of points {a1, . . . , anlo
} in K 
alled nodes or Lagrange nodes and the subset Kitself is denoted as a 
ell.ii/ P is a ve
tor spa
e of fun
tions p : K → R 
alled the lo
al interpolation spa
e.iii/ Σ is a set of nlo
 linear forms {Φ1, . . . ,Φnlo
} a
ting on the elements of P su
h that Φi(p) =

p(ai), i = 1, . . . , nlo
. Furthermore the linear mapping
p ∈ P 7→ (Φ1(p), . . . ,Φnlo
(p)) ∈ Rnlo
is bije
tive - so 
alled P -unisolven
e of the set Σ. The linear forms Φi are 
alled lo
al degreesof freedom and due to the evaluating 
hara
ter at the nodes ai, one often identi�es the nodeswith the degrees of freedom.A dire
t 
onsequen
e of the P -unisolven
e is the existen
e of a basis {p1, . . . , pnlo
} in P su
h that

Φi(pj) = pj(ai) = δij , i, j = 1, . . . , nlo
. This basis is 
alled lo
al shape fun
tions or nodal basis.Let now Th be a mesh of the domain Ω. Instead of spe
ifying a Lagrange �nite element for ea
h
ell K ∈ Th we de�ne a referen
e 
ell K̂ and transform the referen
e �nite element (K̂, P̂ , Σ̂). Forthe two-dimensional 
ase we de�ne the element [0, 1]2 as referen
e 
ell K̂ - in three dimensions weuse [0, 1]3. On the referen
e 
ell basis/shape fun
tions p̂i and referen
e nodes âi are assumed tobe given by the 
hosen Lagrange �nite element approa
h. In order to determine basis fun
tions pion an arbitrary mesh 
ell K with nodal points ai, we de�ne a mapping FK : x̂ ∈ K̂ 7→ x ∈ K by
x = FK(x̂) =

n∑

i=1

aip̂i(x̂), (3.9)where the number n ≤ nlo
 of basis fun
tions depends on the lo
al interpolation spa
e and theintended 
hara
ter of the transformation. Obviously one gets K = FK(K̂) and aj = FK(âj). Sin
ein general the mapping FK is nonlinear, the 
ells K are arbitrary straight or 
urved-sided elementsa

ording to the number of basis fun
tions de�ning FK in (3.9). See Figure 3.1 for the mappingin 3D using 8 basis fun
tions at the verti
es of the unit-hexahedron. Now the basis fun
tions on a



3.1 Taylor-Hood Element 45
ell K are given by
pi(x) = p̂i(F

−1
K (x)) with x = FK(x̂).This de�nition only holds for FK being invertible, whi
h is equivalent to a non-vanishing Ja
obianand hen
e to a 
ell K being 
onvex. Summing up, a generi
 Lagrange �nite element (K,PK ,ΣK)in the mesh Th is su
h that

K = FK(K̂)

PK = { p : K → R , p = p̂ ◦ F−1
K , p̂ ∈ P̂}

ΣK = {p(FK(âi)), i = 1, . . . , nlo
}.Before de�ning the here used Lagrange �nite elements in depth, we need to introdu
e the lo
al andglobal interpolation operator. Let (K,P,Σ) be a generi
 �nite element as shown above. Assumethat there exists a normed ve
tor spa
e V (K) su
h that P ⊂ V (K) and su
h that the degrees offreedom Φi(v), i = 1, . . . , nlo
 are well de�ned for all v ∈ V (K). We de�ne the lo
al interpolationoperator IK unambiguously (be
ause of P -unisolven
e) by
IK : v ∈ V (K) 7→ IKv =

nlo
∑
i=1

Φi(v)pi =

nlo
∑
i=1

v(ai)pi ∈ P. (3.10)For the Lagrange �nite elements the spa
es V (K) = C0(K) or V (K) = Hs(K) with s > d/2 aresuitable. The global interpolant Ihv on the mesh Th is then spe
i�ed elementwise using the lo
alinterpolation operator (3.10)
(Ihv)|K = IK(v|K), ∀K ∈ Thand hen
e we have the global interpolation operator Ih

Ih : v ∈ D(Ih) 7→ Ihv =
∑

K∈Th

nlo
∑
i=1

v(aK,i)pK,i ∈ Vh, (3.11)where the domain D(Ih) is C0(Ωh) orHs(Ωh) with s > d/2. The 
odomain of Ih is 
alled the global�nite element approximation spa
e Vh and sin
e we are working with 
onformal �nite elements ithas to ful�l Vh ⊂ H1(Ω). To ensure this 
onformity we need an additional 
ondition for the mesh
Th: any fa
e of a 
ell Km is either also a fa
e of another 
ell Kn or part of the boundary ∂Ω. Ifnow two neighbouring 
ells Km and Kn with sets of degrees of freedom {aKm/n,i}, i = 1, . . . , nlo
ful�l

Fm,n = {aKm,1, . . . , aKm,nlo
} ∩Kn = {aKn,1, . . . , aKn,nlo
} ∩Km = Fn,mwe have the set of global Lagrange nodes/degrees of freedom of Th
Nh = {a1, . . . , aN} =

⋃

K∈Th

{aK,1, . . . , aK,nlo
}.Then it is su�
ient for Vh to be H1-
onform (
f. [47℄) that fun
tions in Vh are 
ontinuous at thenodes in Nh, i.e. v(aKm,i) = v(aKn,i), ∀i ∈ Fm,n. Furthermore the set Nh of global degrees offreedom allows for the de�nition of global basis fun
tions in Vh via
ϕi ∈ Vh and ϕi(aj) = δij , i, j = 1, . . . , Nand hen
e the des
ription of the global interpolation operator Ih (3.11) as
Ih : v ∈ D(Ih) 7→ Ihv =

N∑

i=1

v(ai)ϕi ∈ Vh. (3.12)Obviously the global basis fun
tions ϕi are 
ompositions of the lo
al fun
tions pK,i.Now we are able to introdu
e the Taylor-Hood Element and more general Qk/Qk−1 elementswith k > 1. A major reason for this 
hoi
e should be mentioned beforehand: as opposed to the 
lass
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Figure 3.2: Taylor-Hood element on quadrilateral and hexahedron: bi-/tri-quadrati
 velo
ity and bi-/tri-linear pressure. Only visible degrees of freedom are shown - × velo
ity nodes and ◦ pressurenodes.of pie
ewise linear or bilinear velo
ity �elds 
ombined with pie
ewise 
onstant or linear pressure,this element is de�ned on the same mesh for both �nite element spa
es Vh and Sh. All other
ombinations of linear/
onstant or linear/linear elements are only inf-sup stable if the velo
ity�eld is de�ned on the �ner mesh Th/2. For other stable elements or stabilisation te
hniques to
ir
umvent the inf-sup 
ondition, we refer to [37, 126℄ and referen
es therein.Due to the above de�nition of Lagrange �nite elements, it is enough to spe
ify the lo
al inter-polation spa
e P̂ and the set of Lagrange nodes âi. Let Qk(K̂) denote the spa
e of polynomialson K̂ of degree less than or equal to k in ea
h of the 
oordinate dire
tions
Qk(K̂) = {q̂ =

k∑

i,j=0

αij x̂1
ix̂2

j , αij ∈ R} in 2D,
Qk(K̂) = {q̂ =

k∑

i,j,l=0

αijlx̂1
ix̂2

j x̂3
l, αijl ∈ R} in 3D.The interpolation spa
e on an arbitrary mesh 
ell K is then a

ording to the previous de�nedmapping FK

PK = Qk(K) = {q = q̂ ◦ F−1
K : q̂ ∈ Qk(K̂)}and the lo
al shape fun
tions are given by the Lagrange polynomials in the variables xi. The setof nodes âi, whi
h we identi�ed with the degrees of freedom, depends on the polynomial order kand is shown for the 
ase k = 1, 2 in Figure 3.2. Finally the global H1-
onform Lagrange �niteelement spa
e of order k is

Qk(Th) = {u ∈ C0(Ω) : u|K ∈ Qk(K), ∀K ∈ Th} (3.13)and the Taylor-Hood element pair is de�ned by (
f. Figure 3.2)
Vh = {uh ∈ [Qk(Th)]d : uh|Γ = 0} ⊂ H1

0(Ω) with k = 2,

Sh = {qh ∈ Ql(Th) ∩ L2
0(Ω)} ⊂ H1(Ω) ∩ L2

0(Ω) with l = 1.
(3.14)Having de�ned the global approximation spa
e (3.13) and the global interpolation operator Ih(3.12), we now have the following error-estimate to judge the quality of Qk elements - for a proofwe refer to [47℄ or [62℄ and remark that an analogue result holds for the 3D 
ase.



3.1 Linearisation of Navier-Stokes Equations 47Theorem 3.1.3 (Lagrange �nite element interpolation error)Let the Lagrange �nite element spa
e Qk(Th) be as in (3.13) and assume that Th is a regular meshof the polygonal domain Ω ⊂ R2. Let the global interpolation operator to the spa
e Qk(Th) bedenoted by Ikh . Then, there exists a 
onstant c su
h that for all h > 0 and v ∈ Hk+1(Ω)

‖v − Ikhv‖0 +
k+1∑

m=1

hm
( ∑

K∈Th

‖v − Ikhv‖2m
) 1

2 ≤ chk+1|v|k+1.In parti
ular, sin
e Qk(Th) is H1-
onform
|v − Ikhv|1 ≤ chk|v|k+1.To state the �nal error-estimate for the Taylor-Hood element it is now enough to prove theinf-sup 
ondition and use Theorem 3.1.1 in 
ombination with the interpolation Theorem 3.1.3above. The validity of inf-sup 
ondition for the Taylor-Hood element 
an be proven in di�erentway, e.g. by Verfürth's proof [47, 158℄ or usage of ma
ro elements [62℄ - we just give the resultingerror-estimate for the �nite element interpolation of Stokes-equation.Theorem 3.1.4 (Taylor-Hood error-estimate)Let Ω be a bounded, plane polygon and let the solution (v, p) of the homogeneous Stokes problemsatisfy

v ∈ Hk+1(Ω) ∩H1
0(Ω), p ∈ Hk(Ω) ∩ L2

0(Ω), k = 1, 2.If the mesh Th is regular, the solution (vh.ph) of the weak problem (3.4) with spa
es Vh, Sh de�nedin (3.14) satis�es the estimate:
|v − vh|1 + ‖p− ph‖0 ≤ chk(|v|k+1 + |p|k), k = 1, 2. (3.15)When Ω is 
onvex, the additional estimate holds:
‖v − vh‖0 ≤ chk+1(|v|k+1 + |p|k), k = 1, 2. (3.16)This inf-sup stable element was originally stated by Taylor and Hood [151℄ for triangles butStenberg showed the same results also for the 
ase of quadrilaterals [146℄ and hexahedrons [147℄.Espe
ially for the 
ase of k = 2 the estimates (3.15) and (3.16) show one order higher a

ura
ythan 
an be a
hieved by any element involving linear velo
ity, whi
h is a further reason to preferthe Taylor-Hood element versus any 
ombinations of linear/
onstant or linear/linear elements.3.1.3 Linearisation of Navier-Stokes EquationsThe �nite element approximation of Navier-Stokes equations (3.3) leads to a nonlinear systemof algebrai
 equations. These equations might be written down expli
itly after identi�
ation ofbases for Vh, Sh in terms of the dis
rete versions of linear forms (2.17) - (2.19). For sake ofsimpli
ity we will show the linearisation by Newton's method in terms of equation (3.3) and onlyafterwards identify the linear algebrai
 system. Other linearisation methods like �xed Ja
obianmethod, Broyden's method or Oseen linearisation were not under investigation due to the (at leastlo
ally) quadrati
 
onvergen
e of Newton's methods [62, 78℄. The main disadvantage of Newton'smethod, namely the fa
t that at ea
h step a new Ja
obian has to be 
omputed, 
an be shown tobe of minor 
on
ern sin
e this step 
an be parallelised perfe
tly on high-performan
e 
omputers.Let Vh, Sh be a stable pair of �nite element spa
es and let [vk

h, p
k
h] ∈ Vh × Sh be the 
urrentiterate, then the next iterate of Newton's method might be 
omputed by solving the linearised
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a(vk+1

h , ϕh) + c(vk+1
h ,vk

h, ϕh) + c(vk
h,v

k+1
h , ϕh) + b(ϕh, p

k+1
h )

= 〈f , ϕh〉+ c(vk
h,v

k
h, ϕh) ∀ϕh ∈ Vh,

b(vk+1
h , ξh) = 0 ∀ξh ∈ Sh,

(3.17)where vk+1
h ful�ls the same boundary 
onditions as vk

h. A more 
onvenient way to perform Newtoniteration is given by the defe
t-
orre
tion notation: for a general nonlinear problem F (x) = 0 aformal Taylor-expansion around x̄ yields
F (x) = F (x̄) +DF (x̄) · δx+ 1

2!
D2F (x̄) · δx2 + . . .+

1

n!
DnF (x̄) · δxn +Rn(x)with δx = x − x̄ and the remainder term Rn(x) = 1

(n+1)!D
n+1F (ξ) · δxn+1, ξ lying on the linesegment between x and x̄. After dropping terms of order higher or equal to 2, the Newton iterationreads

DF (xk) · δx = −F (xk), xk+1 = xk + δx. (3.18)Using this notation allows a formulation in terms of the residual −F (xk), whi
h will also beused in the sequel for timestepping methods. Furthermore this form prevents numeri
al errors forDiri
hlet boundary values as we 
an set these values dire
tly in the dis
rete ve
tors xk and justset the 
orresponding rows in DF (xk) to identity. A spe
ial version of Newton's method (withinglobalisation and inexa
t linear solver) in terms of algorithmi
 pro
edure is given in Algorithm 2.To end this subse
tion we want to present the resulting algebrai
 system for Newton's method.Let [vk
h, p

k
h] be the solution of the last Newton step and [ϕh, ξh] be the test fun
tions, then lineari-sation of the weak momentum and 
ontinuity equation is given by

D[vk
h,p

k
h]

[
a(vk

h, ϕh) + c(vk
h,v

k
h, ϕh) + b(ϕh, p

k
h)
]
[δv, δp]

= a(δv, ϕh) + c(δv,vk
h, ϕh) + c(vk

h, δv, ϕh) + b(ϕh, δp),

D[vk
h,p

k
h]

[
b(vk

h, ξh)
]
[δv, δp]

= b(δv, ξh).Hen
e, Newton iteration (3.18) for stationary Navier-Stokes equations is given by
(
A+ L(vk) BT

B 0

)(
δv
δp

)

= res((vk
pk

)

),

(
vk+1

pk+1

)

=

(
vk

pk

)

+

(
δv
δp

)

. (3.19)Here we already used the algebrai
 notation that 
an be derived after identi�
ation of bases in the�nite element spa
es Vh, Sh. Let {ϕj
h} be a basis of Vh and let {ξlh} be a basis of Sh, then weare able to formulate the approximative solution in terms of �nite element 
oe�
ients [v, p], i.e.

vh =

dn∑

j=1

vjϕ
j
h with n trial fun
tions per velo
ity 
omponent and vj ∈ R

ph =
m∑

l=1

plξ
l
h with m trial fun
tions for the pressure and pl ∈ R

(3.20)and v = [vj ]j=1,...,dn, p = [pl]l=1,...,m. We use the notation [v, p] to indi
ate the ve
tor representingthe �nite element 
oe�
ients, whi
h should not be mixed up with the 
ontinuous fun
tions v, pfor velo
ity and pressure. Furthermore, one gets the �nite element matri
es
[M ]ij = (ϕj

h, ϕ
i
h), [A]ij = a(ϕj

h, ϕ
i
h) i, j = 1, . . . , dn

[B]lj = b(ϕj
h, ξ

l
h) l = 1, . . . ,m, j = 1, . . . , dn

[C(vk)]ij = c(ϕj
h,v

k
h, ϕ

i
h) i, j = 1, . . . , dn

[L(vk)]ij = c(ϕj
h,v

k
h, ϕ

i
h) + c(vk

h, ϕ
j
h, ϕ

i
h) i, j = 1, . . . , dn

(3.21)



3.1 The Instationary Case: Time Dis
retisation 49the external for
e ve
tor
[F ]i = 〈f , ϕi

h〉 i = 1, . . . , dnand the residual ve
tor for i = 1, . . . , dn and l = 1, . . . ,mres((vk
pk

)

) =

(
〈f , ϕi

h〉 − a(vk
h, ϕ

i
h)− c(vk

h,v
k
h, ϕ

i
h)− b(ϕi

h, p
k
h)

−b(vk
h, ξ

l
h)

)

=

(
F −Avk − C(vk)vk −BT pk

−Bvk
)

.

(3.22)The system (3.19) shows the typi
al stru
ture of a dis
rete saddle point problem having a sti�-ness matrix with a zero blo
k in the lower right part, whi
h again underlines the need of stabledis
retisation.3.1.4 The Instationary Case: Time Dis
retisationConsider now the semi-dis
rete weak instationary Navier-Stokes problem (3.2), for whi
h the anal-ysis has been provided in [83℄ and following papers by Heywood and Ranna
her - we just remarkthe main result on 
onvergen
e.Remark 3.1.2 (Convergen
e of approximate solutions)Assume that Vh and Sh is a pair of �nite element spa
es satisfying the inf-sup 
ondition (3.6).Furthermore assume that for all u ∈ H1
0(Ω) and q ∈ L2

0(Ω) the �nite element approximationsatis�es
inf

uh∈Vh

‖u− uh‖1 + inf
qh∈Sh

‖q − qh‖0 = O(h).Noti
e that espe
ially the above de�ned Taylor-Hood element pair is suitable for this 
ondition.Then one 
an prove the error-estimate for the solution of the semi-dis
rete s
heme, assuming thatthe solution v, p has suitable regularity.
‖v(t)− vh(t)‖0 ≤ C1(t)h

2, ‖p(t)− ph(t)‖0 ≤ C2(t)hwhere the 
onstants Ci(t) might exponentially grow if the data is not small enough.For the numeri
al solution of (3.2) we follow the θ-family methods as dis
retisation in timefollowed by a Newton iteration in spa
e using inf-sup stable �nite element pair as des
ribed in thepre
eding subse
tion. This way is often 
alled method of lines meaning that �rst a dis
retisationof spa
e variables is done, whi
h formally results in a system of ordinary di�erential equations.Afterwards a 
ommon time dis
retisation s
heme is used to solve the system of the form
(∂tvh, ϕh) = F (f ,vh, ph;ϕh) ∀ϕh ∈ Vh. (3.23)To be as general as needed we do not state the ODE-system, but use the dis
rete weak formulation(3.2) to de�ne the timestepping methods used here.Given a �xed numberN > 0, the time interval [0, T ] is partitioned into subintervals [ti, ti+1], i =

0, . . . , N − 1 with ∆ti = ti+1 − ti and tN = T . For the sake of simpli
ity we 
hose equidistant
∆ti = ∆t = T/N and use the notation tk = k∆t, vk

h = vh(x, tk) and pkh = ph(x, tk) for the dis
reteapproximation in the k-th timestep. A

ordingly, we de�ne fk = f(x, tk) to be the external for
eevaluated at dis
rete steps. The θ-family of methods now determines the new solution at time
tk+1 = tk+∆t by a weighted average of ∂tvh(tk) and ∂tvh(tk+1) with a parameter θ in the interval
[0, 1]:

vh(tk+1)− vh(tk)

∆t
= θ∂tvh(tk+1) + (1− θ)∂tvh(tk) +O((

1

2
− θ)∆t,∆t2).The terms ∂tvh(·) will be repla
ed using (3.23). This dis
retisation is 
onditionally stable for θ <

1/2 and un
onditionally stable for θ ≥ 1/2. Furthermore, the trun
ation error O((1/2−θ)∆t,∆t2)shows that se
ond order a

ura
y is only given for the 
hoi
e θ = 1/2 whi
h is the well knownCrank-Ni
olson s
heme. For these 
lassi
al results we refer to [26℄ or the more involved books
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heme step α1 α2 α3 α4 α5 ∆tforward Euler tk−1 → tk 0 ∆tn ∆tn ∆tn 0 ∆tnba
kward Euler tk−1 → tk ∆tn ∆tn 0 0 ∆tn ∆tnCrank-Ni
olson tk−1 → tk ∆tn/2 ∆tn ∆tn/2 ∆tn/2 ∆tn/2 ∆tnFS (substep 0) tk−1 → t0k βθ∆tn θ∆tn γθ∆tn θ∆tn 0 θ∆tnFS (substep 1) t0k → t1k γθ̃∆tn θ̃∆tn βθ̃∆tn 0 θ̃∆tn θ̃∆tnFS (substep 2) t1k → t2k = tk βθ∆tn θ∆tn γθ∆tn θ∆tn 0 θ∆tnTable 3.1: Timestepping parameter for several one-step s
hemes.[81, 162℄. Other time-dis
retisation methods like leap-frog s
heme or Adams-Bashforth methodthat are also se
ond order a

urate, or even higher-order Runge-Kutta methods are not treatedhere, sin
e we 
on
entrate on single step method, i.e. those that only need the last state vh(tk) todetermine the new solution vh(tk+1).Hen
e, our timestepping s
heme relies on the problem: for given initial state v0
h ∈ Vh �nd

(vk
h, p

k
h) ∈ Vh × Sh for k = 1, 2, . . . , N by solving the nonlinear system
(vk

h, ϕh) + α1 n(v
k
h, ϕh) + α2 b(ϕh, p

k
h) = (vk−1

h , ϕh)

−α3 n(v
k−1
h , ϕh) + α4(f

k−1, ϕh) + α5(f
k, ϕh) ∀ϕh ∈ Vh

b(vk
h, ξh) = 0 ∀ξh ∈ Sh

(3.24)with n(vk
h, ϕh) = a(vk

h, ϕh) + c(vk
h,v

k
h, ϕh). The upper index now indi
ates the dis
rete timestepand no longer the index of Newton iteration. We will 
larify this notation whenever 
onfusionmight arise. The 
hosen formulation (3.24) - see also [92℄ - easily allows to des
ribe 
ommon usedone-step fully impli
it or expli
it timestepping s
hemes by setting the parameters αi appropriately- for impli
it/expli
it Euler, Crank-Ni
olson and fra
tional-step θ-s
heme (FS) 
onsider Table 3.1.Sin
e the dis
rete system of the Navier-Stokes-equations is usually highly sti�, often only impli
itor semi-impli
it s
hemes are 
hosen. Nevertheless we also want to 
omment on the expli
it Euler,sin
e no nonlinear system needs to be solved in ea
h timestep. Only a kind of mass-matrix has to befa
torised on
e and 
an be used throughout all timesteps by means of matrix-ve
tor multipli
ation.Crank-Ni
olson S
hemeThe dis
rete system for timestepping based on Crank-Ni
olson s
heme is

(vk
h − vk−1

h , ϕh) +
∆t

2

[
n(vk

h, ϕh)− n(vk−1
h , ϕh)

]
+∆tb(ϕh, p

k
h) =

∆t

2
〈fk + fk−1ϕh〉, ∀ϕh ∈ Vh,

b(vk
h, ξh) = 0 ∀ξh ∈ Sh.After identi�
ation of basis fun
tions (3.20) the resulting nonlinear algebrai
 will be solved byNewton's method similar to the stationary 
ase. We therefore introdu
e the residual at the k-thtimestep and i-th Newton step as (
ompare to (3.22) for notation)res((vk,i

pk,i

)

) =

(

(vk−1

h − v
k,i
h , ϕh)−

∆t
2

[

n(vk
h, ϕh)− n(vk−1

h , ϕh)
]

−∆tb(ϕh, p
k
h) +

∆t
2
〈fk + f

k−1ϕh〉

−b(vk,i
h , ξh)

)and solve the system via Newton's method
(
M + ∆t

2 [A+ L(vk,i)] ∆tBT

B 0

)(
δv
δp

)

= res((vk,i
pk,i

)

),

(
vk,i+1

pk,i+1

)

=

(
vk,i

pk,i

)

+

(
δv
δp

)

.After say imax Newton steps, the approximate solution at timestep k is given as
(
vk

pk

)

=

(
vk,imax
pk,imax) .



3.1 The Instationary Case: Time Dis
retisation 51For the initial iterate in timestep k one should use the solution of the last timestep, i.e. [vk,0, pk,0] =
[vk−1, pk−1] sin
e for small timesteps ∆t and/or little 
hange in the velo
ity- and pressure-�eld the
hange between two su

essive timesteps is small.While the impli
it Euler s
heme is perhaps the most 
lassi
al timestepping s
heme and obviouslyeasy to implement, the Crank-Ni
olson s
heme attains better a

ura
y at the same 
omplexity fornonlinear systems to be solved at ea
h timestep. Both methods are moreover un
onditional stable,su
h that the advantage of impli
it Euler s
heme might only be given by its numeri
al dampingproperty.Expli
it/Forward EulerFor the expli
it time-dis
retisation of Navier-Stokes equations one en
ounters the system

(vk
h, ϕh) + ∆t b(ϕh, p

k
h) = (vk−1

h , ϕh) + ∆t
[
〈fk−1, ϕh〉 − n(vk−1

h , ϕh)
]

∀ϕh ∈ Vh
b(vk

h, ξh) = 0 ∀ξh ∈ Sh

(3.25)or equivalently the algebrai
 system
(
M ∆tBT

B 0

)(
vk

pk

)

=

(
Mvk−1 +∆t

[
F k−1 −Avk−1 − C(vk−1)vk−1

]

0

)

. (3.26)We see that the saddle point stru
ture is still present, but that the system matrix is linear and
onstant for all timesteps. Hen
e it 
an be fa
torised on
e and only update steps have to beperformed afterwards.Con
lusively we show that this expli
it s
heme 
an be interpreted in the sense of the wellknown Chorin-Temam proje
tion method. The prin
iple of the proje
tion method is a separationof velo
ity and pressure �eld operators whi
h leads to an intermediate state for the velo
ity that hasto be proje
ted onto the spa
e of solenoidal fun
tions. It was originally stated as a fra
tional-steps
heme in the work of Chorin [33℄ and Temam [152℄ - for details we refer there. The �rst step inthis method only treats the 
ontinuity equation in (3.2) and aims at determining an intermediatevelo
ity �eld vk+1int by solving
(
vkint − vk−1

h

∆t
, ϕh) + a(v∗, ϕh) + c(v∗,v∗∗, ϕh) = 〈fk−1, ϕh〉 ∀ϕh ∈ Vh. (3.27)The velo
ities v∗,v∗∗ 
an be 
hosen a

ording to the desired timestepping method, i.e.

v∗ = v∗∗ = vk−1
h results in expli
it Euler method,

v∗ = vk−1
h and v∗∗ = vkint results in a semi-impli
it method,

v∗ = v∗∗ = vkint results in impli
it Euler method.The se
ond step determines the solution [vk
h, p

k
h] by proje
tion of the intermediate velo
ity vkintsolving

(vk
h, ϕh) + ∆t b(ϕh, p

k
h) = (vkint, ϕh) ∀ϕh ∈ Vh,

b(vk
h, ξh) = 0 ∀ξh ∈ Sh.

(3.28)We see that the resulting problem for the se
ond step has the stru
ture of the Stokes problem andthat the arising matrix equals the one in (3.25). If we now take the expli
it version of �rst step,i.e. v∗ = v∗∗ = vk−1
h , we 
an dire
tly insert the term for the intermediate velo
ity (vkint, ϕh) from(3.27) into (3.28) and �nd the proposed expli
it timestepping s
heme (3.26).In 
ontrast to the 
lassi
al two step Chorin-Temam s
heme, we avoid repla
ing the se
ond stepby a reformulation as pressure Poisson-equation. This 
an be done by using the in
ompressibility-
ondition ∇·vk+1 = 0 and applying the divergen
e operator to the 
onservation of mass equation,yielding the Poisson problem for the pressure

∆pk+1 =
1

∆t
∇ · vk+1int in Ω.



52 DISCRETISATION AND SEQUENTIAL SOLVERThis equation now needs to be equipped with boundary 
onditions for the pressure variable, whi
hare not stated in the original setting and therefore lead to 
ontroversy about the right 
hoi
e.For an extensive dis
ussion to the pressure Poisson equation espe
ially 
on
erning the boundary
onditions, we refer to [66℄. The 
ontroversy about non-physi
al boundary 
onditions for thepressure is a potential drawba
k of the Chorin-Temam proje
tion method, whi
h 
an be preventedby using the proposed s
heme (3.25).Nevertheless the advantage of expli
it s
hemes is the fa
t that a kind of 
onstant iteration matrix
an be stated for ea
h timestep tk → tk+1. In the 
ase of paraboli
 di�erential equations without
onstraints (like the 
ontinuity equation) this matrix simply turns out to be the mass matrix. Ane�e
tive way to approximate the mass matrix by a diagonal matrix is known as lumping. The mass-matrix M = mij = (ϕj
h, ϕ

i
h) is repla
ed by the diagonal matrix M with mii =

n∑

j=1

mij . It 
an beshown that this approximation 
an be interpreted as a quadrature rule only using fun
tion valueson Lagrangian nodes - see [32, 118℄ for details and error approximations. Using the lumped mass-matrix obviously results in an expli
it timestepping s
heme, whi
h is 
ompletely free of the needto invert any matrix. Hen
e, the s
heme will possess ideal 
hara
teristi
s for parallel 
omputationas we show in Chapter 5.2 for the optimisation of an instationary s
alar-valued problem. A �nalremark on expli
it timestepping is inevitable: 
ompared to the impli
it s
hemes, one will alwaysbe fa
ed with a stepsize restri
tion of the form ∆t ≤ Ch2 to ensure stability.Fra
tional Step θ S
hemeBesides these 
lassi
al one-step time dis
retisation s
hemes, the formulation (3.24) allows also forthe fra
tional step θ-s
heme, whi
h bases on three substeps with suitable 
hosen parameter αi -
f. Table 3.1. In 
ontrast to the Euler s
hemes above, the fra
tional step θ-s
heme uses three steps(with n(vk
h, ϕh) = a(vk

h, ϕh) + c(vk
h,v

k
h, ϕh)):step1

(vk−1+θ
h , ϕh) + βθ∆t n(vk−1+θ

h , ϕh) + θ∆t b(ϕh, p
k−1+θ
h ) =

(vk
h, ϕh)− γθ∆t n(vk−1

h , ϕh) + θ∆t(fk−1, ϕh) ∀ϕh ∈ Vh,

b(vk−1+θ
h , ξh) = 0 ∀ξh ∈ Sh.step2

(vk−θ
h , ϕh) + γθ̃∆t n(vk−θ

h , ϕh) + θ̃∆t b(ϕh, p
k−θ
h ) =

(vk−1+θ
h , ϕh)− βθ̃∆t n(vk−1+θ

h , ϕh) + θ̃∆t(fk, ϕh) ∀ϕh ∈ Vh,

b(vk−θ
h , ξh) = 0 ∀ξh ∈ Sh.step3

(vk
h, ϕh) + βθ∆t n(vk

h, ϕh) + θ∆t b(ϕh, p
k
h) =

(vk−θ
h , ϕh)− γθ∆t n(vk−θ

h , ϕh) + θ∆t(fk−1, ϕh) ∀ϕh ∈ Vh,

b(vk
h, ξh) = 0 ∀ξh ∈ Sh.Originally, the s
heme was proposed as an operator splitting method [25, 64, 63℄ separating thenonlinear 
onve
tive term and the in
ompressibility 
ondition. One full timestep ∆t in the fra
-tional step θ-s
heme 
onsists of a 
y
le of three substeps tk−1 → tk−1+θ → tk−θ → tk and ea
hsubstep is approximately of the same 
omputational 
omplexity as one step of the standard Crank-Ni
olson-s
heme. To see this we 
an write all three steps as nonlinear algebrai
 system

(

M + α1

[

A+ C(vk)
]

α2B
T

B 0

)(

vk

pk

)

=

(

Mvk−1 − α3

[

A+ C(vk−1)
]

vk−1 + α4F
k−1 + α5F

k

0

)

.As indi
ated by the 
hoi
e of parameter αi, both Crank-Ni
olson-s
heme and fra
tional step θ-s
heme have α1 6= 0 and α2 6= 0 resulting in the same 
omplexity for solving a nonlinear system.We want to end this se
tion by a brief overview on analyti
al results 
on
erning the fra
tional step
θ-s
heme. Following the standard approa
h [26℄ of stability analysis for numeri
al methods for
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onditioner 53ODEs, we use the s
alar-valued model for t ∈ (0, T )

du(t)

dt
= λu(t) and u(0) = u0with solution u(t) = eλtu0. Now the iteration uk = Rθ(∆tλ)u

k−1, x = ∆tλ yields for the fra
tionalstep θ-s
heme a rational approximation to the exponential fun
tion, i.e. the stability fun
tion
Rθ(x) =

(1 + βθ̃x)(1 + γθx)2

(1 − βθx)2(1− γθ̃x)
= ex +O(x3).The parameters are to be 
hosen su
h that θ ∈ [1/2, 1), θ̃ = 1 − 2θ, β ∈ [0, 1] and γ = 1 − β.For θ = 1 − 1/

√
2 the s
heme has se
ond order a

ura
y and for β > 1/2 it is strongly A-stable -
f. [97, 117℄ for a proof. If one additionally 
hooses β = (1− 2θ)/(1− θ) we have that βθ = γθ̃ andhen
e α1 identi
ally for ea
h substep, whi
h means that the di�usion and 
onve
tion operators 
anbe treated in the same way in ea
h substep. Compared to the previous mentioned s
hemes, thefra
tional step θ-s
heme 
ombines the advantages of impli
it Euler and Crank-Ni
olson-s
heme,namely the se
ond order a

ura
y and (by strong A-stability) the full smoothing property, whi
his essential in the 
ontext of rough initial or boundary data. Supplementary to these theoreti
alresults, the fra
tional step θ-s
heme also showed very good numeri
al properties [90℄.3.2 Iterative Solver and Pre
onditionerAs shown in the previous se
tion we use Newton's method to solve the nonlinear system arising from�nite element based dis
retisation of the Navier-Stokes equations. In re
ent years espe
ially forlinear systems arising from the �eld of partial di�erential equations pre
onditioned Krylov subspa
emethods have made good progress to be 
ompetitive with sparse dire
t solvers. As the size of thelinear system is be
oming larger (due to re�nement of the mesh Th) and its nonzero stru
ture isbe
oming denser (due to more 
ouplings in 3D dis
retisations and unstru
tured meshes) iterativemethods are even superior to dire
t solvers in the sense of 
omputational time and memory 
osts.Another advantage of iterative solvers 
ompared with dire
t solvers is the possibility to 
ontrolthe error and therefore the e�ort of the solver. Sin
e the dis
retisation of the underlying partialdi�erential equation is given with an inherent dis
retisation error it is of minor importan
e to solvethe arising linear system with higher a

ura
y than this error. Furthermore, the linear systems haveto be solved in an outer/Newton loop whi
h also allows for an inexa
t inner solver with possibleadaptive 
onvergen
e 
riteria. Nevertheless, it is well known that the 
onvergen
e behaviour of aniterative Krylov solver strongly depends on an adequate use of pre
onditioners. For these reasonsin the sequel we will present a multilevel ILU-based pre
onditioner for the iterative linear solverand also study some adaptive 
onvergen
e 
riteria for the linear solver within Newton's method.3.2.1 Multilevel ILU Pre
onditionerDis
retisation and linearisation of the Navier-Stokes equations lead to a linear saddle point problemof the abstra
t form - see (3.19)

(
A+ L(vk) BT

B 0

)

︸ ︷︷ ︸

A

(
δv
δp

)

︸ ︷︷ ︸

x

= res((vk
pk

)

)

︸ ︷︷ ︸

b

, (3.29)whi
h has to be solved in ea
h step of an iterative nonlinear solver, e.g. Newton's method (seeAlgorithm 2). A similar system also arises for the instationary equations, where only the terms
A+L(vk) and BT have to be modi�ed. In this subse
tion we present an ILU-based pre
onditionerfor iterative solvers of linear systems of the form (3.29). If not stated di�erently the pre
onditioneris in
orporated into a right pre
onditioned restarted GMRES solver for the solution of the linearsystem Ax = b to generalise notation2 (see [65, 95, 134℄ for the algorithmi
 des
ription and [46℄ for2we will use the notation A for the entire system matrix throughout this se
tion
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al analysis). For the pre
onditioning step vi+1 = AMvi within Arnoldi-pro
ess and forthe update/restart xk = x0+MkV yk, we 
hoose the matrixM to be a multilevel in
omplete LDU-fa
torisation of the linearised system-matrixA as des
ribed in the sequel. Hen
e, the pre
onditioner
M 
an be applied e�
iently by using ba
k substitution to solve linear systems having triangular
oe�
ient matri
es. Before going into the spe
i�
s, we summarise the approa
h.First, we apply prepro
essing to make the 
oe�
ient matrix A more suitable for in
ompletefa
torisation. To this end, several approa
hes were 
onsidered. The �rst possibility is to normalise
A, i.e. to simply s
ale 
olumns and subsequently the rows of A to norm 1, whi
h is very 
heap to
al
ulate and results in some 
ases in a better balan
ed matrix. The se
ond possibility 
onsideredwas to �rst normalise A and then to apply the standard PQ-reordering [135℄ to aim at making aninitial blo
k of A more suitable for in
omplete LDU-fa
torisation by improving diagonal dominan
eand sparsity. A third possibility under 
onsideration was to permute the rows of A and to s
aleboth the rows and 
olumns so that A is transformed into an I-matrix, i.e. a matrix having elementsof absolute value of 1 on the diagonal and elements of at most absolute value of one elsewhere.Heuristi
ally, it is 
lear that I-matri
es should be more suitable for (in
omplete) LDU-fa
torisationsthan general matri
es and this has also been 
on�rmed experimentally, see [15℄. Note furthermorethat I-matri
es are preserved if rows and 
olumns are permuted using the same permutation.Hen
e, also a permutation 
an be determined next su
h that an initial blo
k of the 
oe�
ientmatrix has better diagonal dominan
e and sparsity properties as des
ribed in [114℄.One result should be mentioned in advan
e: normalisation of A appeared to perform better formatri
es arising from the dis
retisation of 3D problems, while for the 2D 
ase PQ-reordering gotbetter performan
e - prepro
essing to an I-matrix was not suitable at all. Espe
ially generationof I-matrix with additional permutation, took relatively long 
omputational time or needed large�ll-in not to drop entire rows, whi
h often led to arithmeti
 over- and/or under�ows. For thesereason we will 
on
entrate on normalisation and PQ-reordering of A for the Navier-Stokes solverin further resear
h and therefore only PQ-reordering will be explained in detail.After applying the permutation, we 
ompute an in
omplete LDU-fa
torisation based on Crout'simplementation of Gaussian elimination and threshold based dropping to preserve sparsity. If apivot having an absolute value of less than min_pivot (usually 0.01) en
ounters while the elimi-nation pro
ess, we terminate the regular fa
torisation phase aimed at obtaining triangular fa
tors
L and U and pro
eed instead in 
al
ulating an approximate S
hur 
omplement S. This 
ompletesthe �rst level of the multilevel fa
torisation.Setting A = S, we pro
eed re
ursively and obtain further levels until the 
oe�
ient matrixhas been fa
tored entirely. The whole pre
onditioning pro
ess is summarised in the �ow
hart 3.3.We need to emphasise that at the beginning of ea
h level, we prepro
ess the new matrix justas the original 
oe�
ient matrix and that the possibility of using prepro
essing between levelsdistinguishes this approa
h from single-level fa
torisations.Prepro
essing by PQ-ReorderingFor ea
h index k = 1, . . . , n, n being the dimension of A, we determined a weight wk by

wk =
1

nnz(Ak,:)
·

max
j=1,...,n

|Ak,j |

||Ak,:||1
.Here, Ak,: refers to the kth row of A. Furthermore, nnz denotes the number of non-zero elements ofa ve
tor and || · ||1 the 1-norm. Clearly, large values for wk indi
ate that the kth row is fairly sparseand/or has an element whi
h is fairly large in absolute value when 
ompared to the remainingelements of that row. Hen
e, we sele
t the row for whi
h wk is largest to be the �rst row of thepermuted matrix and we permute the 
olumn of A 
ontaining largest element by absolute valueof the row sele
ted onto the diagonal. We pro
eed with the remaining rows analogously. In otherwords, we 
hoose the row for whi
h wk is se
ond largest to be the se
ond row of the permutedmatrix and permute 
olumns so that the largest element by absolute values is again moved ontothe diagonal provided that this is possible. It 
ertainly is possible that the largest element byabsolute value of a parti
ular row is in a 
olumn whi
h has already been sele
ted and permuted ina previous step. In this 
ase, we 
annot move the largest element by absolute value of this row onto
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onditioner 55begin:matrix Aprepro
essmatrix
A → Ã

fa
torisation:eliminaterow and
olumn wholematrixfa
-torised?
omputeS
hur 
om-plement S pivotless thanmin_pivot? end:
M ≈ A−1

yesnonoyesA = S, next level
Figure 3.3: Multilevel pre
onditioning pro
ess.the diagonal. Hen
e, we reje
t this row and move it to a high index arbitrarily. In this manner,we obtain a new matrix whi
h has better properties for a large initial blo
k and a �nal blo
k ofreje
ted rows. For details and other approa
hes see [135℄.Multilevel Fa
torisationsFor simpli
ity, we begin by des
ribing a 
omplete multilevel LDU fa
torisation as developed in [23℄and [135℄. We split the prepro
essed square 
oe�
ient matrix Ã into a blo
k matrix

Ã =

(
B F
E C

)su
h that the diagonal blo
ksB and C are square matri
es. Next, we 
al
ulate an LDU fa
torisation
B = LBDBUB of B and obtain

(
B F
E C

)

=

(
LB 0
EB I

)(
DB 0
0 S

)(
UB FB

0 I

)

.Thus, LB is a unit lower triangular, UB is a unit upper triangular and DB is a diagonal matrix.The matri
es EB and FB are formally given by EB = EU−1
B D−1

B and FB = D−1
B L−1

B F and
S = C − EBDBFB denotes the S
hur 
omplement. However, in pra
ti
e, these matri
es are
al
ulated by Gaussian elimination and not by the formulas above. Next, we pro
eed re
ursivelyby setting A = S, prepro
ess to obtain a new Ã and fa
toring on
e more. After a 
ertain numberof levels, we �nish by 
ompletely fa
toring the �nal S
hur 
omplement.Note that in pra
ti
e, the blo
k stru
ture of Ã does not need to be determined in advan
e. It ispossible to begin fa
torisation, to terminate whenever this seems to be a good idea and to pro
eedin 
al
ulating the S
hur 
omplement. Hen
e, the blo
k stru
ture is determined during the 
ourseof fa
torisation. For the results in this work, we terminated the level whenever the absolute valueof the pivot was less than 0.01.The a
tual fa
torisation used is based on Crout's implementation of Gaussian elimination inthe form presented in [103℄. To use this fa
torisation, the matrix A needs to be available in either
ompressed sparse row or 
olumn format, see [133℄. In a Crout fa
torisation, L is 
al
ulated by
olumns and U by rows, so that the former is stored naturally in 
ompressed sparse 
olumn formatand the latter in 
ompressed sparse row format. However, during the kth step of elimination, weneed to a

ess both the kth row and 
olumn of A, L and U as shown in Algorithm 1. Obviously,as ea
h matrix is only available in one format, a

essing them by both by rows and 
olumns is
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row z


olumn wFigure 3.4: Computational pattern for Crout fa
torisation at k-th step where k-th row of U (denoted by
z) and k-th 
olumn of L (denoted by w) are 
omputed by means of the entries in blue area.not possible in this form. However, rows and 
olumns are a

essed in their natural order, so it ispossible to implement some additional, rather intri
ate, data stru
tures of dimension 3n for ea
hmatrix to solve this problem, see [103℄ for details.Algorithm 1 ILUC - Crout version of ILU.for k = 1, ..., n doinitialise row z : z1:k−1 = 0, zk:n = ak,k:nfor i = 1, ..., k − 1 and lki 6= 0 do

zk:n = zk:n − lkiui,k:nend forinitialise 
olumn w : w1:k = 0, wk+1:n = ak+1:n,kfor i = 1, ..., k − 1 and uik 6= 0 do
wk+1:n = wk+1:n − uiklk+1:n,iend forapply dropping rule to row z and 
olumn w

uk,: = z
l:,k = w/ukk, lkk = 1end forThe Dropping RuleAlthough a larger number of di�erent dropping rules are available to ensure sparsity su
h as thestandard dual threshold strategy, see [133℄, or the inverse-based approa
h, see [22℄ and [103℄, we
hose to use a te
hnique whi
h attempts to minimise the propagation of errors during the 
ourseof fa
torisation, see [113℄. This te
hnique is somewhat better than the standard strategy and asgood as the inverse-based strategy for most problems. However, the inverse-based strategy requiresmore 
omputational time, so we used the error-based approa
h. Let w denote the kth 
olumn of L,

zT the kth row of U and d the pivot being 
al
ulated in the kth step of elimination (see Figure 3.4for the 
omputational pattern). In subsequent elimination steps, the S
hur 
omplement would bemodi�ed by the matrix wdzT if no dropping were performed. Hen
e, the error made in droppingelement wi in w 
an be estimated by |wi| · |d| · ||z||1. The error-based strategy drops wi if
|wi| · ||z||1 < τholds for a given (�xed) threshold τ ≥ 0. A
tually, it would seem more natural to drop wi if

|wi| · |d| · ||z||1 < τ , however this would result in many elements being dropped whenever |d| is very
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al Results for the Multilevel ILU Pre
onditioner 57Parameter des
ription re
ommend/used valueThreshold dropping toleran
e τ = 10−t t ∈ [1, 3]min_pivot toleran
e for termination of onelevel 0.01Prepro
essing_Type di�erent orderings of initial ma-trix 0 = normalisation of A,1 = PQ-reordering,several other I-matrix basedreorderings and permutationsare availablePre
onditioner_Number type of in
omplete fa
torisation 1010 for multilevel ILUC fa
-torisationmax_levels maximum number of levels 10Table 3.2: Parameters for the multilevel ILU pre
onditioner by ILU++.small. Experimentally, this appears to be harmful. Similarly, an element zi is dropped only if
||w||1 · |zi| < τ.Implementation DetailsThe whole framework of multilevel pre
onditioner des
ribed above is given by the obje
t-orientedC++ software pa
kage ILU++ [112℄. The interfa
e is very simple and the user 
an 
ompute a solutionof a linear system in a single step. The 
allsolve_with_multilevel_pre
onditioner(ROW,val,ja,ia,...,param)
omputes the pre
onditioner, applies a linear solver and returns the solution. It is assumed thatthe 
oe�
ient matrix A is stored in 
ompressed sparse row format. val, ja and ia are standardtemplate library ve
tors 
ontaining the adja
en
y stru
ture and values of A. A similar 
all 
an beused if the data are stored in traditional C-style arrays or for matri
es in 
ompressed sparse 
olumnformat. param is an obje
t 
ontaining the a
tual parameters used for setting up the pre
onditioner.However, for our tests, we used an alternative whi
h allowed us to in
orporate the ILU++multilevel pre
onditioner in several iterative solvers. This approa
h required two steps to setupthe pre
onditioner and single 
all to apply the pre
onditioner to a ve
tor. First, we need to de
larethe pre
onditioner with the 
alliluplusplus::multilevel_pre
onditioner Pr.Next, we setup the pre
onditioner for a matrix A stored in 
ompressed sparse row format by 
allingPr.setup(val, ja, ia, ROW, param).The parameters of ILU++ pre
onditioner, as indi
ated in the Table 3.2, 
an be set in the param�eld. After setting up the pre
onditioner, it may be applied to a standard template library ve
torv by 
allingPr.apply_pre
onditioner(v).Again, a similar 
all exists if v is a C-style array.3.2.2 Numeri
al Results for the Multilevel ILU Pre
onditionerAll 
al
ulations were done by the �nite element software HiFlow2 with an interfa
e to the pre
on-ditioner ILU++, 
ompiled with the GNU g

 
ompiler in version 4.4.3. We used a 
ompute-serverwith Intel Xeon X5540 CPU at 2.53 GHz and 6 GB of main memory for all 2D 
al
ulations,whereas for the 3D 
al
ulations a main memory of 12 GB was used. Here we show the in�uen
e ofdi�erent thresholds on the solution time and memory 
osts (�ll-in ratio) for di�erent problems of
hannel �ows in 2D and 3D as presented in Chapter 1. Instead of solving Navier-Stokes equations,
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Figure 3.5: Results for the multilevel pre
onditioner with normalisation and PQ-reordering in the 2D
ase of ba
k�ow geometry using di�erent threshold.we �rst 
hoose to solve only Stokes equations at Reynolds number 42.0 to get rid of in�uen
esof the nonlinear Newton-solver on the linear solver. Furthermore, we 
ompared the behaviour ofthe solver when di�erent prepro
essing routines, i.e. normalisation and PQ-reordering, were per-formed on the initial matrix A. For all tests (ex
ept for the dire
t solver) we terminated the linearsolver after 5000 GMRES-steps (with restart ea
h 30 steps) or when the residual in k-th steps,i.e. rk = b−Axk, ful�ls
‖rk‖2 < max(10−9 · ‖r0‖2, 10−12).The 2D CaseIn the 2D 
ase suitable pre
onditioners (with respe
t to fast 
omputational times) were a
hievedwith normalisation and PQ-reordering - but it should be mentioned that the PQ-reordering pro-du
es more stable solvers in the sense of arithmeti
 over�ows. As shown in Figure 3.5 for theba
k�ow geometry a mesh dependent threshold t ∈ [2.0, 2.5] results in best solution time. Whilethe number of GMRES-steps de
reases the bigger the threshold is 
hosen, the �ll-in obviously in-
reases, where we observe a slightly higher �ll-in for the normalisation 
ompared to PQ-reordering.Dependen
e on the mesh, i.e. on the size of the system matrix, 
an be explained heuristi
ally: atsmall sizes the matrix-ve
tor multipli
ation is obviously fast, so that additional 
osts for setup ofthe pre
onditioner and additional elements within the pre
onditioner weight at lot. The bigger



3.2 Numeri
al Results for the Multilevel ILU Pre
onditioner 59Geometry system matrix GMRES/ILU++ GMRES/ILU(0) UMFPACKsize nnz steps time steps time time2Dba
k�ow 32243 1290969 148 3.47 se
 >5000 >83 se
 0.88 se
2Dba
k�ow 127843 5151529 357 40 se
 >5000 >351 se
 6.34 se
2Dba
k�ow 509123 20581449 328 331 se
 >5000 >1366 se
 53 se
2Dmeander 15443 595449 51 0.72 se
 >5000 >37 se
 0.23 se
2Dmeander 59683 2358889 200 8.24 se
 >5000 >158 se
 1.24 se
2Dmeander 234563 9389769 158 93.6 se
 >5000 >711 se
 7.5 se
Table 3.3: Comparison of iterative and dire
t solver for the 2D 
ase. For the GMRES results thebest/fastest version of ILU++ pre
onditioner is used.the matrix size the more time is spend on a simple matrix-ve
tor multipli
ation and therefore adenser pre
onditioner is of smaller 
onsequen
e for the total solver time. This observations holdstrue until the threshold is su
h high that the setup of pre
onditioner dominates the whole solutionpro
ess. For the multilevel approa
h while setting up the pre
onditioner almost always just two orthree levels are used and in the 
ase of normalisation of A we even restri
t to only one level, sin
eafter a small pivot o

urs the S
hur 
omplement matrix at next level would not be permuted (justnormalised) and therefore the matrix would not be in a better shape.Finally for matri
es arising from 2D-dis
retisations a 
omparison to a dire
t solver like UMFPACK[38℄ shows disadvantage for pre
onditioned iterative solvers if the absolute 
omputational time forthe linear solver is of importan
e - see Table 3.3 for details. Only if in addition the storage hasstri
t limitations an iterative solver will be superior to a dire
t solver. Nevertheless, 
ompared toone of the most often used pre
onditioners, namely ILU(0) de
omposition of the system matrix,we a
hieve mu
h better results sin
e the GMRES solver with ILU(0) pre
onditioner throughoutneeded more than 5000 steps and a dedi
ated pivoting method due to the lower right zero-blo
kin the sti�ness matrix.Remark 3.2.1Besides the pure algebrai
 observations on solver time and �ll-in, a noti
eable di�eren
e for thesolver 
an be observed, when boundary 
onditions are 
hanged. In Figure 3.6 we 
ompared thepressure-drop boundary 
ondition to the do-nothing 
ondition (as introdu
ed in Chapter 2), andnoti
ed a better behaviour for the pressure-drop 
ondition. Thus, also the algebrai
 solver seems tobe in�uen
ed by a more physi
al 
hoi
e.The 3D CaseIn the 3D 
ase we a
hieve quite the same results. For system matri
es A as shown in Table 3.5,we found that normalisation of A results in a faster pre
onditioner than PQ-reordering, whi
h isobvious sin
e no permutation is done. Compared to the 2D 
ase, where normalisation of A oftenled to arithmeti
 under- or over�ow, the stru
ture of 3D matri
es seems to be more robust in thatsense. Furthermore, the �ll-in is mu
h lower, sin
e the entries of the matrix A are of order O(h3)instead of O(h2), with h being the size of a mesh-
ell. However, a threshold about 2.0 is alsoenough to a
hieve good, i.e. fast, pre
onditioners. Comparisons with a dire
t solver in the 3D 
ase,as shown in Table 3.5, shows the advantage of pre
onditioned iterative solvers over dire
t methods.The latter takes mu
h more 
omputational time or even ran out of memory, whi
h is given due tomore 
ouplings of degrees of freedom in the 3D 
ase and therefore a denser dis
retisation matrix,for whi
h the fa
torisation is harder to 
ompute and results in more �ll-in. We 
ompared the �ll-infor L, U matri
es of the UMFPACK solver and L, D, U matri
es of the ILU++ pre
onditioner inboth 2D and 3D 
ase of ba
k�ow geometry (
f. Table 3.4) to underline the di�eren
e of 2D and3D dis
retisation matri
es.Main 
on
lusions one 
an draw for the proposed multilevel pre
onditioner in the 3D 
ase (weonly report the results of the ba
k�ow geometry - see Figure 3.7 - these 
oin
ide with the ones formeander geometry):
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Figure 3.6: Results for the multilevel pre
onditioner with PQ-reordering in the 2D 
ase of meandergeometry using di�erent threshold. Comparison of di�erent boundary-
onditions used fordis
retisation.
Geometry solver/pre
ond size of A nnz(A) nnz(LU) �ll-in2Dba
k�ow UMFPACK 32243 1290969 7494013 5.812Dba
k�ow ILU++ (t = 2.0) 32243 1290969 3179869 2.463Dba
k�ow UMFPACK 62344 12408076 111783808 9.013Dba
k�ow ILU++ (t = 2.0) 62344 12408076 6908249 0.56Table 3.4: Fill-in for dire
t solver UMFPACK and ILU++ pre
onditioner.



3.2 Numeri
al Results for the Multilevel ILU Pre
onditioner 61Geometry system matrix GMRES/ILU++ UMFPACKsize nnz storage steps time time3Dba
k�ow 8666 1595386 18.4 MB 20 0.37 se
 0.92 se
3Dba
k�ow 62344 12408076 143 MB 32 5.49 se
 41.6 se
3Dba
k�ow 472748 97872616 1130 MB 93 116 se
 out of memory3Dmeander 8034 1232626 14.2 MB 13 0.22 se
 0.31 se
3Dmeander 51368 9227116 106 MB 27 3.32 se
 5.44 se
3Dmeander 363948 71349736 821 MB 95 84.3 se
 274 se
Table 3.5: Numeri
al settings of the pre
onditioner tests on 3D dis
retisations. Additionally the resultsof the iterative solver is given 
ompared to a dire
t solver.
• allowing slightly more �ll-in (by in
reasing the threshold) results in a major de
rease ofGMRES-iterations,
• �ll-in for the pre
onditioner is nearly negligible for thresholds beneath 2.5,
• time for solving the linear system depends dire
tly on the threshold - more threshold resultsin lower solver-times but more time is spent for setup of the pre
onditioner, whi
h giveshigher overall solution-time,
• optimal threshold in the sense of overall solution-time is in the range of [1.5, 2.25] dependingon the size of the matrix, i.e. the level of mesh re�nement, whi
h is less than in the 2D 
ase,
• while using approximately the same 
omputational time, PQ-reordering allows less �ll-in butuses more GMRES-steps 
ompared to normalisation of A,
• for the PQ-reordering of A in most 
ases 2 or 3 levels of the multilevel approa
h are enough,while for normalisation of A restri
tion to one level is 
hosen as mentioned above.So we 
on
lude that a multilevel pre
onditioner based on prepro
essing and ILU-de
ompositionwith variable threshold dropping rule is superior to a dire
t solver for the dis
retisation of 3D Stokesand Navier-Stokes equations. For almost all test
ases a threshold of τ = 10−t with t ∈ [1.5, 2.25]a
hieved the best performan
e in the sense of overall 
omputational time for the linear solver andsimultaneously uses a reasonable �ll-in.Remark 3.2.2All results were given on the basis of dis
retisation of Stokes equations, su
h that Newton's methodonly needs one single step. However, the results were the same for the full Navier-Stokes equations,when the average of all Newton-steps is taken - see Figure 3.8. We almost always needed 6 Newtonsteps to get the desired relative residual of 10−9 for the nonlinear equation, where the stopping
riteria for the linear solver in ea
h step are 
hosen as before - this turns out to be not that goodidea, as we will see below.Outlook on Parallel Solver Using Multilevel ILU Pre
onditionerThe presented results are just based on sequential solver. For �ner meshes and espe
ially for 3Ddis
retisations the number of degrees of freedom easily grows up to an order of 106, whi
h prohibitsthe use of sequential solver for reasons of 
omputational time and memory 
osts. A possible wayto use multilevel ILU pre
onditioners in the framework of parallel solvers will be given in Chapter4 where we present two approa
hes:1. parallel blo
k Ja
obi pre
onditioner with lo
al multilevel ILU de
omposition as shown in thisse
tion,2. inexa
t parallel S
hur 
omplement solver based on multilevel ILU de
omposition as pre
on-ditioner for global iterative method.
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Figure 3.7: Results for the multilevel pre
onditioner with normalisation and PQ-reordering in the 3D
ase of ba
k�ow geometry using di�erent threshold.



3.2 Inexa
t Newton Method with Adaptive For
ing Terms 63

1e0

1e1

1e2

1e3

1.50 1.75 2.00 2.25 2.50 2.75 3.00

ti
m

e 
[s

ec
]

threshold

Stokes solver, mesh 2
Stokes solver, mesh 3

Navier-Stokes solver, mesh 2
Navier-Stokes solver, mesh 3

Figure 3.8: Results for the multilevel pre
onditioner with normalisation of A in the 3D 
ase of ba
k�owgeometry using di�erent threshold. Comparison of mean value for all Newton-steps of Navier-Stokes solver to Stokes solver.3.2.3 Inexa
t Newton Method with Adaptive For
ing TermsAlgorithm 2 Inexa
t damped Newton method.let x0, ηmax ∈ [0, 1), t ∈ (0, 1) be given; set k = 0while ‖F (xk)‖ > max(atol, rtol · ‖F (x0)‖) and k < maxits do
hoose for
ing term ηk ∈ [0, ηmax] and δxk su
h that
‖F (xk) + F ′(xk)δxk‖ ≤ ηk‖F (xk)‖while ‖F (xk + δxk)‖ > [1− t(1 − ηk)]‖F (xk)‖ do
hoose damping parameter λ ∈ [0, 1] e.g by Armijo Ba
ktra
king rule

δxk = λδxk and ηk = 1− t(1 − ηk)end whileupdate solution xk+1 = xk + δxk; k = k + 1end whileIn the previous subse
tion we worked out results for linear solver only using Stokes equations asmodel problem. The results for Navier-Stokes equations are the same if the average of all Newton-steps is taken. Nevertheless, there remains some doubt if we solve nonlinear systems with Newton'smethod and do not use a dire
t solver in ea
h step. The 
ommon 
onvergen
e theory of Newton'smethod depends on the fa
t, that the resulting linear systems are solved exa
tly, i.e. we have the
lassi
al Newton iteration for the nonlinear equation F (x) = 0:
xk+1 = xk +∆xk, where F ′(xk)∆xk = −F (xk). (3.30)If we now repla
e this iteration by:

xk+1 = xk + δxk, where F ′(xk)δxk = −F (xk) + rk,
‖rk‖
‖F (xk)‖

≤ ηk, (3.31)whi
h means that we solve the linear system only up to a relative residual of ηk, the question ariseswhi
h toleran
e ηk must be rea
hed by the linear solver not to destroy the 
onvergen
e propertiesof Newton's method.In standard literature this se
ond type of Newton iteration is 
alled inexa
t Newton methodsin
e the arising linear systems are no longer solved exa
tly. By using iterative methods like



64 DISCRETISATION AND SEQUENTIAL SOLVERGMRES we now have to distinguish between an outer iteration (the Newton step) and an inneriteration (the GMRES step) and have to answer the questions how the inner iteration 
an in�uen
ethe 
onvergen
e of outer iteration and how the outer iteration might lead to adaptive 
onvergen
e
riteria for the inner iteration. In what follows we will present two ways to ta
kle this problem -�rst we brie�y re
all the main results of 
onvergen
e theory for inexa
t Newton methods (basedon [39℄ and [45℄), whi
h give an insight on the in�uen
e of inner iteration to the outer one. Se
ondwe will present results on a�ne invarian
e studies of Newton's method (following the work ofDeu�hard [42℄) whi
h allow to 
reate adaptive 
onvergen
e 
riteria for the inner iteration basedon the a
tual status of outer iteration. Su
h an adaptive way to set the toleran
es ηk, also 
alledfor
ing terms, was already presented in earlier works, e.g. [5, 40, 44, 124℄, but these are moreheuristi
ally motivated.Analysis of inexa
t Newton method used for numeri
al solution of �nite dimensional nonlinearsystems as shown in Algorithm 2 
an be found in [95, 121℄. If a su�
iently good initial guess x0 isat hand, we 
an skip the globalisation and get the following lo
al 
onvergen
e result (see [39℄ forproof), if the for
ing sequen
e {ηk} is uniformly less than one.Theorem 3.2.1 (Lo
al 
onvergen
e of inexa
t Newton method)Let F : D ⊂ Rn → Rn be a nonlinear fun
tion with and let x∗ ∈ Rn su
h that F (x∗) = 0. If Fis 
ontinuously di�erentiable in a neighbourhood of x∗, F ′(x∗) is regular and ηk ≤ ηmax < t < 1,then there exists an ε > 0 su
h that, for ‖x0 − x∗‖ ≤ ε, the sequen
e of inexa
t Newton iterates
{xk} 
onverges to x∗. Moreover the 
onvergen
e is linear in the sense that

‖F ′(x∗)(xk+1 − x∗)‖ ≤ t‖F ′(x∗)(xk − x∗)‖.The proof, like the 
lassi
al 
onvergen
e of Newton's method (Newton-Kantorovi
h or Newton-Mysovskii theorem), bases on two main assumptions, namely
F ′(x)−1 exists and is bounded ‖F ′(x)−1‖ ≤ β <∞ for x ∈ D,
F ′(x) 
omplies a Lips
hitz 
ondition ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖ for x, y ∈ D. (3.32)Furthermore, the 
ondition of x0 being su�
iently 
lose to x∗ 
an be 
hara
terised by means ofthe so-
alled Kantorovi
h quantity

h0 := ‖∆x0‖βγ, ∆x0 = x1 − x0,whi
h is assumed to be su�
iently small. In general this quantity 
annot be 
omputed for pra
ti
alimplementations, su
h that one 
annot guarantee an initial guess to be su�
iently good. Hen
e,globalisation te
hniques are introdu
ed to assure 
onvergen
e even for bad initial guess, like theproposed Armijo damping in Algorithm 2. For this we have the following 
onvergen
e theoremgiven by Eisenstat and Walker [45℄Theorem 3.2.2 (Global 
onvergen
e of inexa
t Newton method)Assume that Algorithm 2 does not break down. If x∗ is a limit point of {xk} su
h that F ′(x∗) isinvertible, then F (x∗) = 0 and xk → x∗. Furthermore, initial δxk and λ = 1 will pass dampingstep for all su�
iently large k.The pre
eding theorems guarantee at least linear 
onvergen
e of the global inexa
t Newtonmethod with damping but do not point out a strategy for 
hoosing the for
ing terms ηk. This taskis addressed in many papers, e.g. [5, 40, 44, 124℄, and some 
hoi
es were already under investigationin the 
ontext of solving Navier-Stokes equations, see [140℄. For any further studies we will use thefollowing somewhat heuristi
 proposals by Eisenstat and Walker [44℄
• 
hoi
e 1: given η0 ∈ [0, 1), 
hoose

ηk =
‖F (xk)− F (xk−1)− F ′(xk−1)δxk−1‖

‖F (xk−1)‖
for k = 1, 2, ... (3.33)
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• 
hoi
e 2: given α ∈ (1, 2], γ ∈ [0, 1] and η0 ∈ [0, 1), 
hoose

ηk = γ
( ‖F (xk)‖
‖F (xk−1)‖

)α for k = 1, 2, ... (3.34)and by Dembo and Steihaug [40℄
• 
hoi
e 3: ηk = min{ 1

k+2 , ‖F (xk)‖} for k = 1, 2, ...

• 
onstant: ηk = 10−1, 10−3, 10−5 for all k.These strategies were not based on 
onvergen
e analysis rather on e�
ien
y and a

ura
y mat
hingproperties of inner and outer iteration, but the 
onvergen
e of the inexa
t Newton method 
an beproven. A di�erent way is proposed by the a�ne invarian
e approa
h in [42℄. Herein the 
lassi
alNewton-Kantorovi
h or Newton-Mysovskii theorems are repla
ed by a�ne invariant versions and
onstru
tion of adaptive Newton algorithms is done by the paradigm to "realise a�ne invariant
omputational estimates of a�ne invariant Lips
hitz 
onstants that are 
heaply available in the
ourse of the algorithms".Sin
e we use GMRES algorithm, we restri
t the a�ne invarian
e theory to the spe
ial 
ase ofa�ne 
ontravarian
e, whi
h leads to results formulated in terms of residuals F (xk) preferable inthe 
ontext of GMRES. Let therefore B ∈ Rn,n be an arbitrary regular matrix and 
onsider the
lass of problems
G(y) = F (By) = 0, x = By.Observe that the assumptions (3.32) 
an also be stated as

‖(F ′(x̄)− F ′(x))(x̄ − x)‖ ≤ γ‖x̄− x‖2 = γ‖F ′(x)−1F ′(x)(x̄ − x)‖2 ≤ γβ2‖F ′(x)(x̄ − x)‖2,where the Lips
hitz 
onstant ω = γβ2 is a�ne 
ontravariant sin
e both sides are independent of B
G′(y)(ȳ − y) = F ′(x)B(ȳ − y) = F ′(x)(x̄ − x).The way to derive pra
ti
al Newton methods with adaptive 
hoi
e of for
ing terms is now:1. identify theoreti
al lo
al Lips
hitz 
onstant ω su
h that ω = sup

x,y,z∈D
g(x, y, z) with g(x, y, z)
ontaining only a�ne invariant terms,2. de�ne 
omputational lo
al estimates [ω] = g(x̂, ŷ, ẑ) for spe
i�
 x̂, ŷ, ẑ and [ω] ≤ ω.We use the notation [h] as introdu
ed in [42℄ to des
ribe an estimate of the theoreti
al value h.Without going into details we only present the main theorem for inexa
t Newton method withinner GMRES solver in the sense of a�ne invarian
e theory as proven in [42℄.Theorem 3.2.3 (Convergen
e of inexa
t Newton method with inner GMRES)Let F : D ⊂ Rn → Rn , F ∈ C1(D), D 
onvex. Denote by x0 ∈ D the initial guess for inexa
tNewton iteration (3.31). Assume the a�ne 
ontravariant Lips
hitz 
ondition

‖(F ′(y)− F ′(x))(y − x)‖ ≤ ω‖F ′(x)(y − x)‖2 for 0 ≤ ω <∞, x, y ∈ D.Let the level set L0 := {x ∈ Rn : ‖F (x)‖ ≤ ‖F (x0)‖} ⊆ D be 
ompa
t. For ea
h iterate xk ∈ Dde�ne hk := ω‖F (xk)‖. Then the residual norm of inexa
t Newton iteration 
an be bounded as
‖F (xk+1)‖ ≤ (ηk +

1

2
(1 − η2k)hk)‖F (xk)‖. (3.35)The 
onvergen
e rate 
an be estimated as follows:1. Assume that the initial guess x0 gives rise to h0 < 2. Then some θ̄ in the range h0

2 < θ̄ < 1
an be 
hosen. Let the inner GMRES iteration be 
ontrolled su
h that ηk ≤ θ̄ − 1
2hk. Then
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t Newton iterates {xk} 
onverge at least linearly to some solution x∗ ∈ L0 at anestimated rate
‖F (xk+1)‖ ≤ θ̄‖F (xk)‖.2. If, for some ρ > 0, the initial guess x0 guarantees that h0 < 2

1+ρ and the inner iteration is
ontrolled su
h that
ηk

1− η2k
≤ 1

2
ρhk, (3.36)then the 
onvergen
e is quadrati
 at an estimated rate

‖F (xk+1)‖ ≤
1

2
ω(1 + ρ)(1− η2k)‖F (xk)‖2. (3.37)As for the 
lassi
al 
onvergen
e theorem we get 
onvergen
e as long as ηk ≤ η̄ < 1, butadditionally we are now able to use this theoreti
al 
onvergen
e result for pra
ti
al implementationof adaptive Newton method. If a user pres
ribed initial for
ing term η0 is given, an a-posterioriestimate of the unknown Kantorovi
h quantity hk for the quadrati
 
onvergen
e estimate (3.37)
an be done by

[hk]2 :=
2 ‖F (xk+1)‖

‖F (xk)‖

(1 + ρ)(1− η2k)
≤ hkand also an a-priori estimate is at hand

[hk+1] :=
‖F (xk+1)‖
‖F (xk)‖

[hk]2 ≤
‖F (xk+1)‖
‖F (xk)‖

hk = hk+1. (3.38)Sin
e the above theorem 
laims the inner iteration to be 
ontrolled via (3.36) we obtain the adaptive
onvergen
e 
riteria
ηk

1− η2k
≤ 1

2
ρ[hk]based on 
omputational available estimates. For 
onvergen
e of Newton's method, i.e. ‖F (xk)‖ → 0as k → ∞ and therefore hk → 0, this requirement is simply ηk → 0 whi
h re�e
ts the fa
t thatthe inner iteration has to be more a

urate when Newton's method rea
hes the solution. A se
ondestimation 
an be done by the inequality

‖F (xk+1)− rk‖ = ‖F (xk + δxk)− rk‖ = ‖F (xk) +
1∫

0

F ′(xk + tδxk)δxk dt− rk‖

≤
1∫

0

‖[F ′(xk + tδxk)− F ′(xk)]δxk‖ dt ≤
1∫

0

1

t
ω‖F ′(xk)tδxk‖2 dt

=

1∫

0

tω‖F ′(xk)δxk‖2 dt =
1

2
ω‖F (xk)− rk‖2 =

1

2
ω(1− η2k)‖F (xk)‖2

=
1

2
(1− η2k)hk‖F (xk)‖,where we used the a�ne 
ontravariant Lips
hitz 
ondition of theorem above and the well-knownproperty of GMRES that
‖r0 − rk‖2 = (1− η2k)‖r0‖2 with r0 = F (xk).Hen
e we get a se
ond a-posteriori estimate

[hk]1 :=
2‖F (xk+1)− rk‖
(1 − η2k)‖F (xk)‖

≤ hk
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ording a-priori estimate
[hk+1] :=

‖F (xk+1)‖
‖F (xk)‖

[hk]1 ≤ hk+1.We now want to show that both estimates 
an also be interpreted as the 
hoi
es by Eisenstat andWalker. Therefore take the 
onvergen
e 
ondition of inner iteration (3.36) �rst with ρ = 1 �xedand with the a-posteriori estimate [hk]1 whi
h gives
ηk

1− η2k
≤ 1

2
[hk]1 =

‖F (xk+1)− rk‖
(1 − η2k)‖F (xk)‖

≤ hk
2

⇒ ηk ≤
‖F (xk+1)− rk‖
‖F (xk)‖

.Obviously this 
ondition results in what was already proposed in (3.33) when we shift the index of
ηk to ηk+1. Let now ρ > 0 be arbitrary and evaluate (3.36) with the a-priori estimate (3.38) whi
hgives

ηk
1− η2k

≤ 1

2
ρ[hk] =

1

2
ρ
‖F (xk)‖
‖F (xk−1)‖

[hk−1]2 =
ρ

(1 + ρ)(1− η2k−1)

( ‖F (xk)‖
‖F (xk−1‖

)2

≤ ρhk
2and therefore

ηk ≤
ρ(1− η2k)

(1 + ρ)(1− η2k−1)

( ‖F (xk)‖
‖F (xk−1‖

)2

.By an adequate 
hoi
e of the parameter γ and α in (3.34) we 
an re
over this spe
i�
 estimation.Hen
e, the more heuristi
 
hoi
es of Eisenstat and Walker (3.33) and (3.34) turn out to be givenas 
omputational estimates of Kantorovi
h quantity if the 
onvergen
e results of inexa
t Newtonmethod are based on a�ne invariant Lips
hitz 
ondition.Numeri
al ResultsIn order to judge the above adaptive 
hoi
es of for
ing terms in the framework of Navier-Stokessolver, we 
ompared the following 
riteria for ηk:
• 
hoi
e 1: ηk =

|‖F (xk)‖−‖F (xk−1)+F ′(xk−1)δxk−1‖|
‖F (xk−1)‖

• 
hoi
e 2: ηk = γ( ‖F (xk)‖
‖F (xk−1)‖

)α with α = 2 and γ = 0.1, 0.5, 0.9

• 
hoi
e 3: ηk = min{ 1
k+2 , ‖F (xk)‖}

• 
onstant: ηk = 10−1, 10−3, 10−5

• a�ne invarian
e: ηk

1−η2
k
≤ 1

2ρ[hk] =
ρ
2

‖F (xk)‖
‖F (xk−1)‖

[hk−1]2 with ρ = 0.9 and a-priori estimate forKantorovi
h-quantity [hk] ≤ hk.For the �rst 4 
hoi
es we used damped inexa
t Newton method as shown in Algorithm 2 withArmijo ba
ktra
king update. In the a�ne invariant 
ase, we implemented the adaptive 
hoi
e ofdamping fa
tor as reported in [42℄. The model-problem was given by sequential Navier-Stokessolver at Reynolds number 42.0 with multilevel in
omplete LDU pre
onditioner and 3D ba
k�owgeometry, mesh-level 4 resulting in 472748 degrees of freedom (see Table 3.5 for details).For
ing term ηk proposed as in 
hoi
e 2 gave the best (in terms of overall 
omputationaltime) results for the parameter γ = 0.5 so that we will 
ompare this to all other 
hoi
es. If we�rst 
ompare to 
onstant for
ing values as done in Figure 3.9, we see the e�e
ts of under- andoversolving. For the very weak 
hoi
e of ηk = 10−1 Newton's method does not lead to lo
alquadrati
 
onvergen
e and therefore requires too many steps. On the other side a stri
t 
hoi
eof ηk = 10−5 ensures lo
al quadrati
 
onvergen
e but at the 
osts of too many GMRES steps inthe �rst outer iterations leading to high overall solution time. Somehow a lu
ky and 
ompetitive
hoi
e is ηk = 10−3 but this was just the 
ase for this single example.
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choice 2bFigure 3.9: Convergen
e histories for inexa
t Newton method using 
onstant 
hoi
es of the for
ing terms.A se
ond 
omparison is done among all adaptive proposals for the for
ing terms ηk. As shownin Figure 3.10 the main 
on
lusions are:
• all adaptive 
hoi
es, ex
ept 
hoi
e 1, behave quite the same,
• espe
ially the a�ne invarian
e 
hoi
e by Deu�hard a
hieves the same numeri
al results asthe 
hoi
e 2 of Eisenstat and Walker - a fa
t that was already mentioned above theoreti
ally,
• the best overall results in term of fast 
onvergen
e and less GMRES steps was a
hieved by
hoi
e 2.
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Chapter 4Domain De
omposition and ParallelSolverThe algebrai
 systems arising from dis
retisation of 3D problems under investigation (
f. Se
tion3.2) are typi
ally of order 105 − 106 and already hit the wall for pure simulation using sequen-tial algorithms. Sin
e the introdu
ed optimisation based on the adjoint or sensitivity equationsne
essitates the repeated solving of su
h equivalent systems, the nonlinear resp. linear algebrai
solver will be the 
riti
al part of the overall solution pro
ess. A possible way out might be a model-redu
tion approa
h leading to smaller systems or an extension of the previously presented solver toparallel ar
hite
tures. In this work the latter approa
h is 
hosen and we will show in this 
hapterhow the �nite element based dis
retisation 
an be used to derive parallel solver frameworks. The
hallenge of parallel solvers for large-s
ale problems is the irredu
ibility of the system, i.e. ea
hdegree of freedom depends upon all others - no degree of freedom may be removed and be solvedfor in isolation, ex
ept for the de
omposition of potential, Navier-Stokes and 
onve
tion di�usionequation.First we will in general present the idea of domain de
omposition te
hniques aimed to 
reatesmaller and/or less di�
ult problems that 
an be solved in parallel. Afterwards we will show twoways how the multilevel ILU based pre
onditioner introdu
ed in the previous 
hapter 
an also beused in a parallel setting, namely within a row blo
k data stru
ture and within S
hur 
omplementapproa
h in domain de
omposition.4.1 Introdu
tion to DDMDomain de
omposition methods (DDM) sound like a relatively straightforward paradigm to par-allelise the underlying problems, namely the domain, say Ωh from Se
tion 3.1, is de
omposedinto several other domains. However, the meaning of the term domain de
omposition dependsstrongly on the underlying 
ontext, so that a �rst distin
tion seems ne
essary. In general domainde
omposition might be referred to:
• 
oupling of di�erent physi
al models in di�erent regions of the underlying problem with theinterfa
e between the domains handled by various 
onditions,
• optimal dis
retisation te
hniques for the underlying equations that might vary in di�erentregions,
• e�
ient iterative solvers and pre
onditioning methods for the arising system of equationsthat base on data distribution over several pro
esses,
• spe
ial parallelisation te
hniques on modern super
omputers des
ribing the pro
ess of dis-tributing data from a 
omputational model among the pro
esses in a distributed memorysystem.
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lever 
ombination of these steps in simulation and optimisation for partial di�erential equationsis the key for fast and reliable numeri
al solvers. For a 
omprehensive introdu
tion to the studyof domain de
omposition methods we refer to [110℄, while an overview of 
urrent work in this �eldof resear
h 
an be found in the series Domain De
omposition Methods in S
ien
e and Engineering[16℄.In this work we 
on
entrate on the last two points assuming a given dis
retisation of the under-lying equations based on 
onforming �nite element method on regular meshes as de�ned in Se
tion3.1. Hen
e we 
laim that the dis
retisation and de
omposition itself is somewhat optimal, but onemight also use separate �nite element dis
retisation on nonoverlapping subdomains with mesheson the subdomains that do not mat
h on the interfa
e. Su
h dis
retisation methods for partialdi�erential equations are known as mortar methods [161℄ and represent a domain de
ompositionte
hnique in the sense of the �rst two points. The 
hallenging task for this approa
h is obviouslythe 
onformity of the solution over subdomain interfa
es whi
h is enfor
ed by Lagrange multipli-ers. Mortar dis
retisation are then naturally solved by iterative domain de
omposition methodssu
h as FETI (see [48, 155℄ and referen
es therein). A 
omprehensive presentation of domainde
omposition methods for the solution of algebrai
 systems arising from the approximation ofpartial di�erential equations 
an be found in the monographs and surveys of Chan and Mathew[30℄, Toselli and Widlund [155℄, Quarteroni and Valli [127℄ and Smith, Bjørstad and Gropp [143℄.Even if we refer to domain de
omposition in the proper meaning of the word, i.e. partitioningof the 
omputational domain, a further di�erentiation for the resulting solution approa
hes ismeaningful. The variety of possible methods might be 
lassi�ed by the moment of de
ompositionin the overall solution pro
ess:
ontinuous: de
omposition is applied to the partial di�erential equations,dis
rete: de
omposition is applied to the system of equations after dis
retisation.Alternatively, one might distinguish the methods by the kind of de
omposition:overlapping: neighbouring subdomains overlap ea
h other - leading to the 
lass of S
hwarzmethods,non-overlapping: neighbouring subdomains only share boundaries (points, lines, surfa
es)- leading to the 
lass of substru
turing methods.Finally a third 
lassi�
ation 
an be derived:dire
t methods: these methods involve the 
onstru
tion by expli
it 
ondensation of lower-dimensional systems for degrees of freedom that a
t as separators - for di�erential equations,this is the Steklov-Poin
aré operator, in linear algebra, it is the S
hur 
omplement,iterative methods: in its simplest version this involves an iteration over the subdomains,where the unknown boundary data is repeatedly updated by neighbouring domains - againthis is the 
lass of S
hwarz methods.Common to all these methods is a de
omposition of the original domain into smaller subdomains.This splitting leads to overlap regions or new boundaries between two or more subdomains, 
alledarti�
ial boundary or s
eleton. Su
h parts of any subdomain boundary have to be distinguishedfrom the original boundary ∂Ω, sin
e there might be subdomains with only arti�
ial boundaries.De�nition 4.1.1Let Ω ⊂ Rd by an open, 
onne
ted, bounded set and de�ne a de
omposition into M subdomains by
Ω =

M⋃

i=1

Ωiwhere Ωi ⊂ Ω are open, 
onne
ted and bounded sets. If Ωi ∩ Ωj = ∅ for i 6= j and i, j = 1, . . . ,Mthe de
omposition is non-overlapping, otherwise it is overlapping. In the non-overlapping 
ase,
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vertex based
edge based

element basedFigure 4.1: Types of domain de
omposition for the mesh Th.de�ne Γij = Γji = Ωi ∩Ωj , i 6= j as the interfa
e between two subdomains and
Γ =

⋃

i6=j

Γijas the s
eleton1. For the overlapping 
ase, de�ne Γij = ∂Ωi ∩Ωj 6= Γji as the boundary of Ωi thatlies in Ωj .This de�nition holds true for any domain Ω independent of a possible asso
iated �nite elementmesh Th. For the 
ase that a set of 
ells is given, a further di�erentiation 
an be done (
f. Figure4.1): vertex-based de
omposition: edges and 
ells may straddle between subdomains, onlyverti
es are unambiguously assigned to subdomains,edge-based de
omposition: edges are not allowed to split between di�erent subdomains,element-based de
omposition: ea
h 
ell/element is unambiguously assigned to a subdo-mains.When solving problems that arise from dis
retisation of partial di�erential equations by means of�nite element method, the element based de
omposition o�ers best properties as we will show later.In the sequel the main ideas of dire
t and/or iterative solvers as well as pre
onditioners based ondi�erent kinds of domain de
omposition are pointed out using a generi
 partial di�erential equation.Therefore let L be a di�erential operator de�ned on the domain Ω and we 
onsider for simpli
ityonly the Diri
hlet boundary-value problem
Lu = f in Ω,

u = g on ∂Ω. (4.1)Remark 4.1.1We only for short denote the main 
on
ept of parallel ar
hite
tures used in the sequel - for adetailed overview we refer to [128, 129℄. Nowadays a 
lear separation of types of systems by eitherthe memory a

ess pattern or the instru
tion and data set pro
essing seems more and more tri
kydue to up
oming multi
ore and 
opro
essor te
hnologies. To our use we sti
k to the SIMD designmeaning that a single instru
tion is performed in parallel by multiple pro
essing units using multipledata. This s
heme dire
tly re�e
ts the idea of domain de
omposition as presented before and we willtherefore almost always identify a subdomain Ωi with a pro
essing unit Pi. For the sake of generality1Sin
e in this 
hapter the fo
us is not on the boundary of ∂Ω, there should be no 
onfusion about the notationof Γ even if we used this notation previously also for ∂Ω.
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ify any 
on
rete meaning of a pro
essing unit (this might e.g. be a CPU or GPU) butinstead refer to general pro
esses whi
h work in parallel on di�erent data. Whether ea
h pro
essowns its own memory or shares it with several others (like on any a
tual used multi-
ore pro
essor)is of minor 
on
ern within this thesis. We only expe
t that the pro
essing units are inter
onne
tedby a spe
i�
 topology whi
h might be a bus or any network allowing a message passing between ea
hpro
essing unit. As one of the standard spe
i�
ations of a language-independent 
ommuni
ationproto
ol used to program parallel 
omputers we use the Message Passing Interfa
e (MPI) [54℄.4.1.1 Overlapping MethodsIf the domain de
omposition is applied on the 
ontinuous level of the partial di�erential equationsand additionally a parti
ular overlap of subdomains is assumed, the 
lass of alternating S
hwarzmethods 
an be derived [137℄. Let us denote by uij the values of solution u lying on Γij , i.e. in Ωj .We restri
t the global problem (4.1) to the subdomains Ωi and seek for a lo
al solution ui in Ωi,su
h that
Lui = f in Ωi,

ui = g on ∂Ω ∩ ∂Ωi,

ui = uij on Γij .

(4.2)Obviously, if solutions ui and uj of subdomains Ωi, Ωj with i 6= j 
oin
ide in the overlapping area
Ωij = Ωi ∩ Ωj , the global solution to problem (4.1) 
an be 
omposed as

u =
M⋃

i=1

ui.However, it is not 
lear how to set the boundary-values uij in (4.2) unless the solution is known. The
lass of S
hwarz methods hen
e solves the lo
al problems (4.2) alternately on di�erent subdomains
Ωi - giving the original name alternating S
hwarz method. Starting with an initial guess for theglobal solution, the problem on a subdomain is solved using the guess as part of the requiredboundary 
onditions. Two s
hemes 
an be distinguished depending on the update of values uij fornext subdomain.Multipli
ative S
hwarz method: Given an initial guess for the global solution u, thealgorithm iterates over all subdomains Ωi and solves the lo
al problems (4.2) leading toa new global solution. Hen
e the algorithm is pure sequential and would only allow forparallelisation, if the subdomains are grouped to sets without overlap by a 
olouring su
hthat no two subdomains whi
h share 
ommon points have the same 
olour. Ea
h pro
essowning a set of non-overlapping subdomains 
an then solve the lo
al problems in parallel andafterwards an ex
hange of lo
al solutions will be performed building the new global iterate.Additive S
hwarz method: Here the subdomains are distributed to pro
esses withoutregarding the overlap. Ea
h pro
ess solves the lo
al problem (4.2) using the last availablesolution uij from the global iterate. Only after all subdomain solutions ui are 
omputed anex
hange between all pro
esses is done, representing the new iterate global solution. Thisimprovement have been introdu
ed in [43℄.The S
hwarz methods are one of the �rst domain de
omposition te
hniques used (
f. [106, 107℄)and so a wealth of theory is available espe
ially for the 
ase of ellipti
 partial di�erential equations,ranging from the 
onditions required for 
onvergen
e to estimates of the rate of 
onvergen
e asa fun
tion of the amount of overlap (
f. [155℄). At least the 
onvergen
e of S
hwarz alternatingmethods for the stationary Navier-Stokes equations has been proven in [109℄ if the Reynold numberis su�
iently small. Nevertheless, nowadays the S
hwarz method is more often used as a pre
ondi-tioner for an iterative solver su
h as a Krylov subspa
e method. An extensive introdu
tion to theS
hwarz method used as a pre
onditioner in the framework of ellipti
 partial di�erential equations
an be found in [143℄. Beside more theoreti
al aspe
ts also implementation issues are fa
ed andan extension of S
hwarz methods as multilevel pre
onditioners is presented. We will not prove
onvergen
e results for the S
hwarz pre
onditioner (
f. [80℄ for this) but note that for many ellipti
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hwarz methods in 
onjun
tion with a Krylov subspa
emethod the following 
onvergen
e behaviour 
an be shown:
• number of iterations (to redu
e the initial residual norm by a �xed fa
tor) grows with theinverse of the subdomain size,
• number of iterations is independent of the mesh size, provided that the overlap region is keptproportional to the size of the subdomains,
• poor 
onvergen
e is given for overlap near zero but improves rapidly as the overlap in
reases,
• number of iterations for the multipli
ative variant is about half that for the additive algo-rithm.To sum up, domain de
omposition by S
hwarz methods (used as solver or pre
onditioner) falls inthe 
lass of overlapping/iterative s
hemes and might be judged by the following points:advantages: original problem 
an be retained, one only needs a restri
tion to subdomains,espe
ially the additive version allows for straightforward parallelisation,disadvantages: sophisti
ated mesh handling for overlap and management for ex
hangeof lo
al solutions, rate of 
onvergen
e usually de
reases exponentially when the amount ofoverlap is redu
ed, indi
ating an unavoidable 
omputational overhead by repeated solves onthe overlap regions.To end the se
tion on overlapping methods, we want to mention that besides the 
ontinuous pointof view also the dis
rete way of the overlapping S
hwarz methods might be used. Instead of de�ningexpli
it overlapping subdomains Ωi, one starts from the global linear system

Ax = b, A ∈ RI×I ,where I is the index set of all degrees of freedom in the �nite element mesh, and de�nes anoverlapping partition of this index set
Ii := {j ∈ I : degree of freedom j ∈ Ωi}, i = 1, . . . ,M.We note that the index sets Ii might also be de�ned without expli
it knowledge of the subdomains

Ωi. Furthermore let x ∈ RI be the global solution ve
tor and denote by Ri : R
I → RIi therestri
tion to the i-th index set Ii, i.e.

[Rix]j = [x]j , ∀j ∈ Ii.A

ordingly RT
i : RIi → RI is the proje
tion de�ned by

[RT
i xi] =

{

[xi]j , j ∈ Ii
0, elseand

Ai := RiAR
T
i = AIi,Iithe lo
al system matrix on the index set Ii. Now we are able to de�ne the iterative S
hwarz methodon the algebrai
 level:Multipli
ative S
hwarz method: let ek = x − xk be the global error in k-th step and

Aek = b − Axk the residual. For the i-th index set Ii ⊂ I, assume that the global error isgiven by means of
ek = RT

i viwith a ve
tor vi ∈ RIi that has to be de�ned. The restri
ted residual in Ii is hen
e
RiAek = RiAR

T
i vi = Aivi = Ri(b−Axk)
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al system matrix Ai and the new iterate for the global solution is
xk+1 = xk + ek = xk +RT

i vi = xk +RT
i A

−1
i Ri(b−Axk).We see that the new iterate 
orresponds to an update by solving the system on
e on theindex set Ii (resp. on the subdomain Ωi) using the old iterate xk for boundary values. Ifthis pro
edure is repeated over all index sets, one ends up with the multipli
ative S
hwarzmethod as shown before, i.e.

xk+ i
p
= xk+ i−1

p
+RT

i A
−1
i Ri(b −Axk+ i−1

p
), i = 1, . . . , pfor the step from index set i − 1 to index set i (assuming p index sets at all). The errorpropagation for this s
heme is therefore

ek+ i
p
= (I −RT

i A
−1
i RiA)ek+ i−1

p
, i = 1, . . . , pand for a whole iteration step xk → xk+1

ek+1 = (I − Pp) · · · (I − P2)(I − P1)ek, Pi = RT
i A

−1
i RiAexplaining the name multipli
ative S
hwarz method. One spe
ial form is given for the 
asethat Ii∪Ij = ∅, ∀i 6= j - at this the multipli
ative S
hwarz methods turns out to be equivalentto the blo
k Gauss-Seidel s
heme.Additive S
hwarz method: as mentioned for the 
ontinuous 
ase, all 
orre
tion might be
omputed in parallel using the last global iterate xk, i.e.

xk+1 = xk +

p
∑

i=1

RT
i A

−1
i Ri(b−Axk).Now the error propagation is given by

ek+1 = (I −
p
∑

i=1

Pi)ek.Again the 
ase Ii ∪ Ij = ∅, ∀i 6= j for the additive S
hwarz method gives a well-knowns
heme, namely the blo
k Ja
obi method.Convergen
e results for the algebrai
 form of S
hwarz method 
an be found in Chapter 11 of [80℄.4.1.2 Non-overlapping MethodsConsider the 
ontinuous global problem (4.1) and a non-overlapping de
omposition of Ω, i.e. Ωi ∩
Ωj = ∅ for all i 6= j. We formulate the lo
al problem on subdomain Ωi

Lui = f in Ωi,

ui = g on ∂Ω ∩ ∂Ωi,

ui = U on Γij .

(4.3)The treatment of 
oupling between subdomains (interfa
e 
oupling) is now more sophisti
ated.Sin
e no overlap to the neighbouring domains is given, the de�nition of Diri
hlet boundary-values
U on the s
eleton as before is no longer meaningful. These values would be preserved throughoutall S
hwarz type iterations and hen
e no gain for the global solution is given. Instead a di�erentapproa
h is used that 
an be viewed twofold:
• beside a pure Diri
hlet 
ondition, additional 
oupling/transmission 
onditions are imposedon ea
h subdomain to ensure global interfa
e transition,



4.1 Non-overlapping Methods 77
• the original global problem is redu
ed to an equivalent one posed only on the interfa
e ofsubdomains, i.e. an interfa
e operator is introdu
ed.For the �rst point of view the method pursued by P.L. Lions [108℄ (in the 
ase that L is theLapla
e operator) is very natural and simple, namely that one reformulates the 
onstraints on Γijand requires a Robin type boundary 
ondition (with relaxation parameter β > 0)

∂niui + βui = −∂njuj + βuj on Γij .Hen
e, not only the absolute values on the s
eleton Γij should mat
h between two neighbouringsubdomains, additionally the normal derivatives should 
oin
ide - ni meaning the outward normalon Γij for Ωi towards Ωj and so ni = −nj.A generalisation of this transmission 
ondition on Γij for arbitrary partial di�erential operator
L obviously ne
essitates more generi
 
onditions to represent the relationship. We follow thenotation in [127℄ and introdu
e the transmission 
onditions

Φ(ui) = Φ(uj) on Γij ,

Ψ(ui) = Ψ(uj) on Γij ,where the fun
tions Φ, Ψ depend upon the nature of the underlying operator L. Having a problemspe
i�
 de�nition of these fun
tions at hand, one 
an state an iteration-by-subdomain s
hemesimilar to the additive S
hwarz method in the overlapping 
ase. Assume that the lo
al solution atstep k is given by uki for ea
h subdomain i = 1, . . . ,M . First average at the interfa
e among thevalues of Φ using a parameter α, i.e.
Φav

ij = αΦ(uki ) + (1 − α)Φ(ukj ) on Γij .Then on ea
h subdomain a problem of Φ-type is solved
Lu

k+ 1
2

i = f in Ωi,

u
k+ 1

2

i = g on ∂Ω ∩ ∂Ωi,

Φ(u
k+ 1

2

i ) = Φav
ij on Γij .Se
ond also the values of Ψ need to be averaged (again weighted by a parameter β), i.e.

Ψav
ij = βΨ(u

k+ 1
2

i ) + (1− β)Ψ(u
k+ 1

2

j ) on Γijand �nally M independent problems of Ψ-type are to be solved
Luk+1

i = f in Ωi,

uk+1
i = g on ∂Ω ∩ ∂Ωi,

Ψ(uk+1
i ) = Ψav

ij on Γij .For the Poisson problem with Φ(v) = v and Ψ(v) = ∂nv this s
heme means a separation of Diri
hletand Neumann subproblems. Generally, several other 
ombinations of the transmission 
onditionsfor the lo
al subproblems are used like Diri
hlet-Neumann, Neumann-Neumann or Robin 
onditions- one should noti
e that for ea
h partial di�erential operator L the transmission 
onditions need tobe adopted appropriately. We refer to [127℄ for an overview on transmission 
onditions for di�erentboundary value problems in
luding the Stokes problem. In the framework of �ow problem thereexist plenty of works proposing di�erent 
onditions, showing that a kind of standard formulationeven for one spe
i�
 partial di�erential equation is not present.The presented subdomain iteration approa
h using transmission 
onditions 
an also be inter-preted as an interfa
e equation in terms of the Steklov-Poin
aré operator (
f. [3℄ and referen
estherein). Common to ea
h iterative method 
y
ling over subdomains is an update of the valueson the s
eleton Γ for the transmission 
onditions Φ and Ψ. Without loss of generality we assumethat Φ is given by Φ(v) = v, i.e. a mat
hing of pointvalues on the s
eleton, and that Ψ is a linear
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tion. If the values on Γ are known, say λ = Φ(u|Γ) = u|Γ, the independent problems on ea
hsubdomain would be
Lui = f in Ωi,

ui = g on ∂Ω ∩ ∂Ωi,

ui = λ on Γij ,

Ψ(ui) = Ψ(uj) on Γij .

(4.4)We 
an furthermore split the solution ui = u0i + ufi into two parts u0i and ufi being the solution ofthe Diri
hlet problems
Lu0i = 0 in Ωi,

u0i = g on ∂Ω ∩ ∂Ωi,

u0i = λ on Γij ,and
Lufi = f in Ωi,

ufi = g on ∂Ω ∩ ∂Ωi,

ufi = 0 on Γij .De�ne the solution operators by u0i = Hiλ and ufi = Gif . Now the global problem (4.1) is formallyequivalent to (4.4) if and only if Ψ(ui) = Ψ(uj) on Γij for all i, j = 1, . . . ,M . The latter 
ondition
an be reformulated using the splitting ui = u0i + ufi into
M∑

i,j=1

Ψ(u0i ) + Ψ(ufi )−Ψ(u0j)−Ψ(ufj ) = 0.Finally we 
an state the Steklov-Poin
aré interfa
e equation
Sλ = χ on Γ (4.5)with

χ =

M∑

i,j=1

−Ψ(Gif) + Ψ(Gjf)and the Steklov-Poin
aré operator de�ned as
Sλ =

M∑

i,j=1

−Ψ(Hiλ) + Ψ(Hjλ).Hen
e, the interfa
e equation (4.5) 
orrespond to an equation for the unknown values on Γ usingthe se
ond transmission 
ondition posed by Ψ as de�ning operator. If equation (4.5) is solved byan iterative s
heme one gets the 
orresponden
e to the above shown subdomain iterations, sin
ean appli
ation of the Steklov-Poin
aré operator is given by a lo
al solution on ea
h subdomain.Summing up, we have the results for the non-overlapping domain de
omposition based on the
ontinuous problem (4.1):advantages: easier mesh handling and no 
omputational overhead due to absen
e of overlap,disadvantages: transmission 
onditions and/or interfa
e operators need to be establishedfor di�erent partial di�erential equations separately.As for the overlapping 
ase, there is obviously also a non-overlapping de
omposition s
heme basedon the dis
rete equations. We will present this approa
h, the dis
rete 
ounterpart to the Steklov-Poin
aré interfa
e equation, namely the S
hur 
omplement equation, in detail in the next se
tion.
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tures and Pre
onditioners 794.2 Parallel Data Stru
tures and Pre
onditionersHaving introdu
ed some domain de
omposition approa
hes in the last se
tion, we now investigateon two s
hemes based on non-overlapping de
omposition and on �nite element dis
retisation indetail. In 
ontrast to the methods based on the 
ontinuous equations, the de
omposition on thedis
rete equations (resp. the algebrai
 system) has the advantage that it 
an be used for anyproblem without imposing spe
ial transmission/boundary 
onditions. First we will work out theidea and data stru
tures of S
hur 
omplement solver/pre
onditioner whi
h is more involved thanthe row blo
k de
omposition that is used for 
omparison. In the next se
tion the performan
egained by these methods will be 
onsidered.Let the 
omputational domain Ωh be equipped with a �nite element mesh Th. We have justmentioned that a partition of Th into subdomains 
an be done vertex-, edge- or element-based andhave not explained whi
h version should be preferred. In terms of a �nite element dis
retisationthe resulting linear algebrai
 stru
tures - mainly residual ve
tor and Ja
obian matrix - are givenby the weak form of the underlying partial di�erential equation, i.e. will be 
omputed by means ofnumeri
al integration (
f. �nite element matri
es (3.21)). For sake of simpli
ity, in the followingwe assume a general bilinear form
a(u, v) =

∫

Ω

f(u(x), v(x)) dxwithout spe
ifying the fun
tion f in detail. Standard routines of numeri
al integration 
an thenbe de
omposed as
[A]ij = a(ϕj

h, ϕ
i
h) =

∫

Ωh

f(ϕj
h, ϕ

i
h) dx =

∑

K∈Th

∫

K

f(ϕj
h, ϕ

i
h) dx, i, j = 1, . . . , Nsuggesting a de
omposition of Th elementwise to 
ompute the 
ell-integrals in parallel. Sin
e alsothe support of a trial-/test-fun
tion ϕh is lo
ally in Ωh the summation over all K ∈ Th 
an berestri
ted to those 
ells that are in the support of ϕi

h.In the sequel we throughout assume a non-overlapping de
omposition of Th into as many sub-domains Ωi as pro
esses are available and let ea
h subdomain be assigned to a pro
ess Pi. Su
ha de
omposition naturally indu
es sets of submeshes Th,i for ea
h subdomain that are 
ompatibleon Γ, i.e. that they share the same edges/fa
es on Γ. Using Lagrange �nite elements, the globaldegrees of freedom, whose support is entirely in Ωi are obviously assigned to Pi. Those degreesof freedom whose support is 
ut by the interfa
e between two subdomains, say Ωi and Ωj , areassigned either to Pi or Pj . We will 
omment on this 
hoi
e later on when 
on
rete data-stru
turesare presented.4.2.1 The S
hur Complement SystemAs in De�nition 4.1.1 we assume that M non-overlapping subdomains Ωi ⊂ Ωh are given whereea
h subdomain is built up by a submesh Th,i. For the global degrees of freedom in the meshtwo groups are distinguished, namely internal and s
eleton nodes (
f. Figure 4.2). The boundarynodes are treated as internal nodes, sin
e they 
an 
learly be assigned to a parti
ular subdomain
Ωi. S
eleton nodes are those nodes belonging to the arti�
ial boundaries 
reated by the domainde
omposition, i.e. those nodes that lie on the interfa
e Γ. Let furthermore Γi = ∂Ωi\∂Ω denotethe part of the s
eleton Γ belonging to subdomain Ωi and assume that the global system 
onsistsof N degrees of freedom. By NΓ we denote the number of degrees of freedom on Γ and by Ni thenumber of internal degrees of freedom in Ωi su
h that

N = NΓ +

M∑

i=1

Ni.The following introdu
ed S
hur 
omplement method 
onsist of eliminating internal degrees of free-dom to de�ne s
hemes whi
h fo
us on solving a redu
ed system asso
iated with only the s
eleton
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Figure 4.2: Di�erentiation between internal (◦ in Ω1, � in Ω2) and s
eleton (denoted by ×) nodes in�nite element mesh Th.degrees of freedom. Often also the terms stati
 
ondensation method or method of substru
turingare used to des
ribe the S
hur 
omplement method. These denotations 
ome from the engineeringview of the method (
f. [99℄), while the name S
hur 
omplement method bases on the mathemati
alde�nition (
f. [30, 143, 155℄).As mentioned before the elementwise non-overlapping de
omposition of Th allows the de�nitionof subdomain sti�ness matri
es
Ai =

(
Aii AiΓi

AΓii AΓiΓi

) (4.6)with
[Aii]kl = a(ϕl

h, ϕ
k
h), k, l = 1, . . . , Ni

[AiΓi ]lm = a(ϕ̃m
h , ϕ

l
h), l = 1, . . . , Ni, m = 1, . . . , NΓi

[AΓiΓi ]mn = a(ϕ̃n
h , ϕ̃

m
h ), m, n = 1, . . . , NΓi .Here we denote by ϕi

h, i = 1, . . . , Ni the �nite element basis fun
tions for the internal degreesof freedom on Ωi and by ϕ̃i
h, i = 1, . . . , NΓi those for the s
eleton degrees of freedom on Γi.The sti�ness matrix (4.6) refers to the �nite element dis
retisation on Ωi using natural boundary
onditions on Γi and the essential boundary 
onditions of the global problem on ∂Ωi ∩ ∂Ω. Letnow the global degrees of freedom be numbered a

ording to:

• �rst number all internal degrees of freedom in subdomain Ω1,
• pro
eed with all internal degrees of freedom of all other subdomains Ωi, i = 2, . . . ,M,

• number the degrees of freedom on Γ last.We remark, that this numbering is just used for easier notation and 
an be generalised as shownlater. Using this spe
i�
 numbering the linear system arising from �nite element dis
retisation
Ax = b has the abstra
t form










A11 0 . . . 0 A1Γ

0 A22 . . . 0 A2Γ... ... . . . ... ...
0 0 . . . AMM AMΓ

AΓ1 AΓ2 . . . AΓM AΓΓ



















x1
x2...
xM
xΓ










=










b1
b2...
bM
bΓ










. (4.7)As long as the numbering of degrees of freedom is as de�ned above, this stru
ture is also givenfor the spe
i�
 linear forms stated in Se
tion 2.2. Espe
ially the upper left 
onsisting of a blo
kdiagonal matrix is typi
al for �nite element dis
retisation sin
e the ordering of degrees of freedomis 
hosen su
h that there is no dire
t 
oupling between internal nodes of di�erent subdomains. Torelate the global system in (4.7) to the lo
al matri
es in (4.6), let Ri be the restri
tion matrix for
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hur Complement System 81a ve
tor x in Ω to a lo
al ve
tor xi in Ωi ∪ Γi and RT
i be the prolongation by 0 for the degreesof freedom external to Ωi ∪ Γi. Furthermore let RΓi be the restri
tion matrix for a ve
tor xΓ ofthe values on the s
eleton to only those values on Γi and RT

Γi
be the matrix whi
h prolongates thelo
al ve
tor xΓi by 0 to the global ve
tor on Γ. Hen
e the global matrix in (4.7) is given by

A =
M∑

i=1

RT
i AiRiwith blo
ks a

ording to s
eleton degrees of freedom

AΓΓ =
M∑

i=1

RT
Γi
AΓiΓiRΓi , AiΓ = AiΓiRΓi .The stru
ture of (4.7) is suitable for a blo
k Gaussian elimination ending up with the S
hur
omplement equation for the unknowns on Γ

SΓxΓ = χΓ. (4.8)Herein the global S
hur 
omplement matrix SΓ is 
omposed by lo
al S
hur 
omplement matri
es
Si of subdomain Ωi

SΓ = AΓΓ −
M∑

i=1

AΓiA
−1
ii AiΓ =

M∑

i=1

RT
Γi

(AΓiΓi −AΓiiA
−1
ii AiΓi )

︸ ︷︷ ︸

Si

RΓi (4.9)and the right hand side is given by
χΓ = bΓ −

M∑

i=1

RT
Γi
AΓiiA

−1
ii bi. (4.10)The S
hur 
omplement equation (4.8) is the algebrai
 
ounterpart of the Steklov-Poin
aré interfa
eequation (4.5). On
e xΓ is known, a simple ba
k substitution in (4.7) yields the internal degreesof freedom xi.The 
oe�
ient matrix (4.9) is obviously smaller than the global matrix in (4.7) but in generaldense and very expensive to form due to the fa
torisation of Aii, i = 1, . . . ,M . If neverthelessthe matrix is assembled and fa
torised, one ends up with a dire
t S
hur 
omplement solver also
alled substru
turing method. On the other side the matrix ve
tor multipli
ation with the globalS
hur 
omplement matrix SΓ 
an be performed by a few sparse matrix ve
tor multipli
ations andsubdomains solves for A−1

ii , whi
h 
an be handled in parallel. Hen
e an iterative method might beapplied to (4.8), forming the idea of iterative S
hur 
omplement solver. To obtain a 
onvergen
erate that is independent of, or only weakly dependent on, the mesh size h and the diameter of thesubdomains H , a good pre
onditioner will be needed, sin
e it is shown that at least for ellipti
partial di�erential equations (
f. [24℄) the 
ondition number of the S
hur 
omplement matrix SΓsatis�es
κ(SΓ) = O(h−1H−1).Due to the fa
t that the matrix (4.9) is a
tually not formed, the standard Ja
obi, Gauss-Seidel,SOR and in
omplete Cholesky-type pre
onditioners 
annot be used. For a dis
ussion of severalinterfa
e pre
onditioners in the 
ase of ellipti
 problems we refer to [30, 143℄ and referen
es therein.These pre
onditioners are shown to be optimal for ellipti
 problems but need strong knowledgeabout the wire-basket of the underlying mesh, i.e. the possibility to restri
t and extend algebrai
ve
tors to only those degrees of freedom lying on the interfa
e edges and verti
es (
f. [142℄ andreferen
es therein).
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hur Complement Pre
onditionerFor our purpose of a generi
 parallel pre
onditioner to �uid �ow problems, we want to adopt theidea of multilevel ILU-based pre
onditioners for the sequential 
ase as shown in Se
tion 3.2. In
ontrast to the spe
ial pre
onditioners for equation (4.8) that are available for ellipti
 problem, westate an abstra
t version just based on the algebrai
 form of the S
hur 
omplement equation. Tothis re
all that the global S
hur 
omplement SΓ is given by
SΓ =

M∑

i=1

RT
Γi
SiRΓi .Furthermore we perform a formal LU fa
torisation of the subdomain sti�ness matrix Ai de�ned in(4.6)

Ai =

(
Aii AiΓi

AΓii AΓiΓi

)

=

(
LAii 0

AΓiiU
−1
Aii

LSi

)(
UAii L−1

Aii
AiΓi

0 USi

)yielding the LU fa
torisation of the lo
al S
hur 
omplement Si = LSiUSi . Hen
e an (approximate)fa
torisation of Ai naturally implies an (approximate) fa
torisation of Si and so we are able to usethe in
omplete fa
torisation from Se
tion 3.2 on ea
h subdomain to get a parallel pre
onditionerfor the problem (4.8), namely
S−1
Γ ≈ PΓ :=

M∑

i=1

RT
Γi
ILU(Si)RΓi . (4.11)Up to now we ta
itly assumed that the lo
al matri
es Aii are fa
torised for both the dire
t S
hur
omplement solver and the iterative one. If this 
ondition is losen, it 
an no longer be guaranteedthat a solver for the S
hur 
omplement equation (4.8) also solves the entire problem Ax = b.Nevertheless this 
ase (S
hur 
omplement equation with inexa
t lo
al solver for Aii) is still suitableas pre
onditioner for the global system Ax = b. To see this, we de�ne AΓΓ as before and

AII = blo
kdiag(Aii),

AIΓ = blo
kmat(AiΓ) =






A1Γ...
AMΓ




 ,

AΓI = blo
kmat(AΓi) =
(
AΓ1 . . . AΓM

)
,allowing to write (4.7) as

(
AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)

=

(
bI
bΓ

)

. (4.12)A formal fa
torisation gives (Id being the identity matrix in appropriate dimension)
A =

(
Id 0

AΓIA
−1
II Id

)(
AII 0
0 SΓ

)(
Id A−1

II AIΓ

0 Id

)and the inverse
A−1 =

(
Id −A−1

II AIΓ

0 Id

)(
A−1

II 0
0 S−1

Γ

)(
Id 0

−AΓIA
−1
II Id

)

. (4.13)Assume that an interfa
e pre
onditioner for SΓ, say PΓ, and also for AII (in form ofM independentpre
onditioners for Aii) is at hand, say PII ≈ A−1
II . Then repla
ing the 
orresponding blo
kmatri
es in (4.13) forms a pre
onditioner (also 
alled indu
ed pre
onditioner [136℄) for the globalsystem matrix A, say PA

A−1 ≈ PA =

(
Id −PIIAIΓ

0 Id

)(
PII 0
0 PΓ

)(
Id 0

−AΓIPII Id

)

. (4.14)
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hur Complement Pre
onditioner 83This pre
onditioner needs three appli
ations of PII - parallel performed on ea
h subdomain Ωi -and one appli
ation of PΓ. Su
h an approa
h to use interfa
e pre
onditioners in
orporated into apre
onditioner for the global system has already su

essfully been used in the framework of �uid�ow problems, see [29, 70℄.Algorithm 3 S
hur 
omplement pre
onditioner PSC for global system Ax = b.1. given a
tual global iterate
xk = [xkI , x

k
Γ]2. assemble right hand side

χΓ = xkΓ −AΓIPIIx
k
I3. iterative solver with mSC steps for x̃kΓ using S
hur 
omplement matrix

SΓ = AΓΓ −AΓIPIIAIΓ4. solve for internal degrees of freedom̃
xkI = PII(x

k
I −AIΓx̃

k
Γ)5. end with pre
onditioned ve
tor

x̃k = [x̃kI , x̃
k
Γ] = PSCx

kWe now want to present a slightly di�erent pre
onditioner for the global system (4.12), namelyan inexa
t solver for the S
hur 
omplement equation (4.8) itself. As it will turn out this proposalis a generalisation of PA in (4.14). The idea is straightforward: sin
e a dire
t S
hur 
omplementsolver a
ts like A−1, an inexa
t version obviously inherits this behaviour. With inexa
t we meantwo points. First equation (4.8) is solved by a Krylov subspa
e iteration, say GMRES, se
ond thefa
torisation of internal matri
es Aii is repla
ed by an in
omplete multilevel ILU de
ompositionas proposed in Se
tion 3.2. Hen
e the parallel pre
onditioner 
ontains two main parameters
• number of iterations for the S
hur 
omplement solver,
• all options for the lo
al ILU de
omposition of Aii, in prin
ipal the threshold/�ll-in.In the following we denote by S
hur 
omplement pre
onditioner the proposed pre
onditioner for theglobal system Ax = b, whi
h should not be mixed up with the pre
onditioner for the S
hur 
om-plement equation (4.8) denoted by PΓ. To highlight the 
onne
tion to (4.14) we sum up the stepsneeded for the S
hur 
omplement pre
onditioner. Assume that xk = [xkI , x

k
Γ] is the global iteratefor equation (4.12) in the k-th step, then xk is pre
onditioned by the inexa
t S
hur 
omplementpre
onditioner to x̃k = [x̃kI , x̃

k
Γ] performing Algorithm 3. Main aspe
ts are the repla
ement of ex-a
t fa
torisation A−1

II by in
omplete multilevel ILU de
omposition whi
h we denote by PII ≈ A−1
IIas in (4.14) and the possibility to perform an arbitrary number of iteration steps for the S
hur
omplement equation within step 3. Additionally one might use the pre
onditioner (4.11) in step3. Comparing Algorithm 3 to an appli
ation of pre
onditioner PA (4.14) on xk, i.e. x̃k = [x̃kI , x̃

k
Γ] =

PAx
k, gives

(
x̃kI
x̃kΓ

)

=

(
Id −PIIAIΓ

0 Id

)(
PII 0
0 PΓ

)(
Id 0

−AΓIPII Id

)(
xkI
xkΓ

)

=

(
Id −PIIAIΓ

0 Id

)(
PIIx

k
I

PΓ(x
k
Γ −AΓIPIIx

k
I )

)

=

(
PIIx

k
I − PIIAIΓPΓ(x

k
Γ −AΓIPIIx

k
I )

PΓ(x
k
Γ −AΓIPIIx

k
I )

)

.Sin
e PII ≈ A−1
II and PΓ ≈ S−1

Γ we have that the global pre
onditioner PA equals the proposedinexa
t S
hur 
omplement pre
onditioner PSC if in step 3 only one iteration step on the s
eletonunknowns is used.



84 DOMAIN DECOMPOSITION AND PARALLEL SOLVERSumming up, the proposed pre
onditioner allows to re
over well known global pre
onditionersbut also o�ers the possibility to enhan
e them by substitution of PΓ through an iterative solver.Additionally, if there is no spe
ial pre
onditioner for SΓ at hand, the global pre
onditioner 
anstill be used. One might say, that the pre
onditioner for the S
hur 
omplement equation (4.8) hasbeen repla
ed by a S
hur 
omplement pre
onditioner for the global equation (4.12).4.2.3 Data Stru
tures for Non-overlapping Domain De
omposition
P1 P2

P3P4

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

x1 x2

x3x4

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

x1 x2

x3x4

xΓxΓ1

Figure 4.3: Non-overlapping elementwise mesh de
omposition (left) and a

ording partition of degreesof freedom (middle and left) - denoted by × for Q1 elements.Given a non-overlapping domain de
omposition allows to de�ne solvers (both dire
t and it-erative) for the S
hur 
omplement equation as well as to use the S
hur 
omplement equation aspre
onditioner for the global system. We now address the question of underlying data stru
tureswhi
h will lead to a se
ond 
lass of pre
onditioners, namely the blo
k Ja
obian pre
onditioner.Afterwards in the next se
tion we will show numeri
al results for the presented pre
onditionersusing multilevel ILU de
omposition and 
ompare these to other standard implementations.Important 
omponents for a parallel iterative solver based on domain de
omposition methodswithin a �nite element pa
kage are:
• parallel ve
tor assemblies and basi
 algebrai
 operations on parallel ve
tor,
• parallel matrix assemblies (also setup of nonzero/sparsity pattern),
• parallel matrix-ve
tor produ
t,
• parallel pre
onditioners for Krylov subspa
e methods.Assume that we have a non-overlapping elementwise mesh de
omposition as shown in the left part ofFigure 4.3. If one uses Lagrange �nite elements (or any other type of �nite elements that possessesdegrees of freedom on the interse
tion of subdomains) the de�nition of a parallel data stru
turebrings up the question, whi
h pro
ess should own the nodes on the s
eleton. An elementwisede
omposition only indu
es the belonging of global degrees of freedom whose support is entirely ina subdomain Ωi. One might disregard the underlying mesh de
omposition and distribute matri
esand/or ve
tors by rows among the pro
esses, resulting in a row blo
k storage s
heme

A =








A11 A12 A13 · · · A1M

A21 A22 A23 · · · A2M... ... ... . . . ...
AM1 AM2 AM3 · · · AMM







, x =








x1
x2...
xM








(4.15)with i = 1, . . . ,M row blo
k submatri
es 
onsisting of
• Aii lo
al sequential matrix, 
alled diagonal-blo
k,
• Ai∗\Aii lo
al sequential matrix, 
alled o�diagonal-blo
k.
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tures for Non-overlapping Domain De
omposition 85Su
h a distribution of parallel data assigns ea
h degree of freedom uniquely to a pro
ess and there-fore to a subdomain. The underlying domain de
omposition is hen
e no longer elementwise butvertex-oriented, see middle part of Figure 4.3. Sin
e the matrix A is the �nite element sti�ness ma-trix, the o�diagonal-blo
ks Aij , i 6= j represent the 
oupling between subdomains and are usuallysparse or even empty, when two subdomains do not share a 
ommon interfa
e. Standard alge-brai
 operations with this data stru
ture are straightforward. Ve
tor addition and multipli
ationwith a s
alar 
an be performed in parallel without any 
ommuni
ation, only the s
alar-produ
tinvolves a global redu
e 
ommuni
ation. For the matrix-ve
tor produ
t Ax = b using (4.15) ea
hpro
ess Pi needs to re
eive from Pj the ve
tor entries xj whenever Aij 6= 0. Hen
e a sophisti
atedmessage-passing between pro
esses is needed. For the row blo
k partitioning of parallel matrixand ve
tor storage, we use the well established PETS
 library [9℄, whi
h delivers "a suite of datastru
tures and routines for the s
alable (parallel) solution of s
ienti�
 appli
ations modelled bypartial di�erential equations".In 
ontrast to the row blo
k partitioning, we also present parallel data stru
tures suitable forthe elementwise domain de
omposition in 
ombination with S
hur 
omplement approa
hes. Re
allthat the global sti�ness matrix and global algebrai
 system 
an be written as (
f. (4.12))
(
AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)

=

(
bI
bΓ

)

,where the blo
k matri
es are 
omposed by independent lo
al matri
es
Ai =

(
Aii AiΓi

AΓii AΓiΓi

)

.Furthermore we de�ne a generi
 algorithm to assemble ve
tor and matrix stru
tures within anelementwise domain de
omposition in a �nite element 
ode. Algorithm 4 shows a basi
 loop to
ompute entries of the residual ve
tor and/or Ja
obian matrix, needed in Newton's method asshown in Se
tion 3.1.3. This algorithm is performed by ea
h pro
ess on its lo
al subdomain Ωi inparallel. A 
loser look on Algorithm 4 shows that step iv/ requires 
ommuni
ation only when theAlgorithm 4 Generi
 assembly loop for residual ve
tor or Ja
obian matrix entries.given a set of 
ells {Kl} in lo
al subdomain Ωi
lear global data stru
ture for residual ve
tor or Ja
obian matrixfor all 
ells Kl in lo
al subdomain Ωi doi/ get degrees of freedom of a
tual 
ell: dof_indii/get values of solution ve
tor x a

ording to dof_ind: lo
al_soliii/ 
ompute lo
al integral 
orresponding to dof_ind, e.g. for Ja
obian matrix using solutionof last Newton step lo
al_sol
Ai,j =

∫

Kl

f(lo
al_sol;ϕj
h, ϕ

i
h) dxiv/ add lo
al integral value to global data stru
tureend forrow blo
k matrix/ve
tor (4.15) is used, namely whenever one degree of freedom in dof_ind is notowned by the 
al
ulating pro
ess, this value has to be 
ommuni
ated. In 
ontrast the pure lo
alrepresentation of global sti�ness matrix A in form (4.6) allows to hold every data 
omputed in stepiii/ on the spe
i�
 pro
ess.Now we are able to de�ne the S
hur 
omplement storage s
heme: parallel matrix storage isorganised by lo
al subdomain blo
k matri
es 
orresponding to internal and s
eleton dofs as in(4.6). For the parallel ve
tor storage the internal degrees of freedom are obviously stored by thepro
ess that owns the related subdomain. In addition ea
h pro
ess stores all s
eleton degrees offreedom, that lie on ∂Ωi ∩ Γ, whi
h means that all s
eleton degrees of freedom are stored at leasttwo times. This ve
tor storage ne
essitates a further data stru
ture to manage the storage of
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k�ow 20320032Dmeander 9299233Dba
k�ow 36817483Dmeander 2732756Table 4.1: Setting of test
ases for the 
omparison of parallel data stru
tures in 2D and 3D.s
eleton degrees of freedom - e.g. an assignment whi
h pro
ess stores the original s
eleton degreeof freedom and whi
h pro
esses hold 
opies. Compare the right with the middle part of Figure 4.3for the di�eren
e to the row blo
k storage s
heme.Coming ba
k to Algorithm 4. For Ja
obian assembly we saw that the S
hur 
omplement storages
heme does not require any 
ommuni
ation 
ompared to the row blo
k storage s
heme. To 
om-pute the residual ve
tor, step ii/ and iv/ involve 
ommuni
ation for the row blo
k storage s
hemewhenever an entry of dof_ind is not lo
al. Sin
e the S
hur 
omplement storage s
heme stores alllo
ally needed data (at least as a 
opy), step ii/ again does not need any 
ommuni
ation. Onlystep iv/ is of interest in this 
ase. After all lo
al 
omputations where performed, a single routine toupdate the s
eleton degrees of freedom is inevitable - we will 
all this routine s
eleton_refresh.Remark 4.2.1To use the introdu
ed S
hur 
omplement storage s
heme, it is not ne
essary to number the degreesof freedom as in (4.7), on the 
ontrary any numbering might be used. One only needs data stru
turesto identify the s
eleton degrees of freedom and mappings from global numbering to lo
al numberingof matri
es (4.6). These 
an 
heaply be organised as lo
al tables, while the global numbering isdone.Summing up, the row blo
k storage s
heme needs 
ommuni
ation whenever a degree of freedomon a 
ell is used that is not hosted by the pro
ess that holds this 
ell - this is the 
ase for assemblingroutines as well as for algebrai
 routines, su
h as matrix-ve
tor produ
t. The S
hur 
omplementstorage s
heme on the other side only relies on one single syn
hronisation routine for the s
eletondegrees of freedom. Espe
ially the algebrai
 operations on a ve
tor are of the same 
omplexityfor both s
hemes, i.e. only the s
alar produ
t requires 
ommuni
ation between pro
esses. Atlast we mention that also the matrix-ve
tor produ
t for S
hur 
omplement storage s
heme 
anbe performed in parallel and no a-priori 
ommuni
ation is needed (in 
ontrast to those for theo�diagonal-blo
ks in row blo
k storage s
heme). However the 
ommuni
ation is postponed to thes
eleton_refresh routine.Numeri
al ResultsWe end this subse
tion with some numeri
al results indi
ating the 
apabilities of the presentedparallel data stru
tures. To judge the s
alability in parallel algorithms one usually de�nes thespeedup of an operation or an entire algorithm by the ratio of running time on one pro
ess (thesequential version) T1 to the running time on n parallel pro
esses Tn, i.e.
S =

T1
Tn
.Ideally the speedup S should be equal to the number of used pro
esses n indi
ating perfe
t s
ala-bility. Sin
e the presented parallel data stru
tures (at least the S
hur 
omplement stru
ture) arenot meaningful in the sequential 
ase, we adapt the de�nition of speedup by s
aling with a fa
torof 2. By this we adjust the result to a pure 
omparison of parallel 
ase and skip the sequential
ase while the usual notation 
an still be used.In detail we 
ompared the typi
al operations needed within Algorithm 4, namely

• parallel Ja
obian matrix assemble - divided into InitJa
 for the initialisation of nonzerostru
ture and ComputeJa
 for �lling the matrix by integration of lo
al parts,
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• parallel residual ve
tor assemble ComputeRes - lo
al integration and 
ommuni
ation of non-lo
al entries resp. s
eleton_refresh,
• parallel matrix-ve
tor multipli
ation MVmult.The row blo
k storage s
heme was implemented by means of the PETS
 library [7, 8℄, whilethe S
hur 
omplement storage was implemented autonomous within the software HiFlow2. Resultspresented in Figures 4.4 and 4.5 are based on the geometries and a

ording dis
retisation as for thesequential solver, ex
ept for the level of re�nement - here we used �ner meshes as depi
ted in Table4.1. Partitioning of data is based on the entire de
omposition of the �nite element mesh, whi
hwas generated by a graph partition of the 
ell-neighbourhood graph provided by S
ot
h library[122, 123℄. The blo
k partition of data is realised by �rst-
ome-�rst-serve approa
h (
f. Figure 4.3):we assign the degrees of freedom on the s
eleton to the pro
ess with lowest rank, whi
h obviouslyprodu
es a small imbalan
e of data distribution on the pro
esses but allows for easier handling ofdegrees of freedom.Remark 4.2.2 (Hardware 
on�guration for numeri
al tests)All numeri
al tests ran on the distributed memory parallel 
omputer HP XC3000 at Steinbu
hCentre for Computing (Karlsruhe Institute of Te
hnology) using the GNU g

 
ompiler in version4.4.3. On the HP XC3000 we used a varying number of the 288 
ompute nodes to test for s
alability.Ea
h node 
ontains two Quad-
ore Intel Xeon X5540 CPU (Nehalem) whi
h run at a 
lo
k speedof 2.53 GHz and has 24 GB of main memory. Setup of s
alability tests was su
h that ea
h CPUwas equipped with 3 GB of main memory. The inter
onne
t is an In�niband 4X QDR with laten
yof about 2 mi
rose
onds and point to point bandwidth between nodes of more than 3100 MB/s.As one 
an see in Figure 4.4 initialisation and 
omputation of Ja
obian matrix s
ale perfe
tlyfor the S
hur 
omplement approa
h due to the pure sequential setup of this data type. For the rowblo
k version we lose s
alability within the initialisation of nonzero stru
ture of Ja
obian matrix,sin
e 
ommuni
ation is needed to dete
t the 
ouplings for the o�diagonal blo
k. These e�e
ts areeven worse in the 3D 
ase: having the number of global degrees of freedom of the same orderof magnitude as in the 2D 
ase, the ratio of interior to s
eleton degrees of freedom is smallerresulting in more 
ommuni
ation. An improvement of routines for determining the neighbours ofone subdomain by using ghost layers of the mesh would allow for better s
alability of the InitJa
part, but there will always be 
ommuni
ation needed when o�blo
k entries are assembled.For the assembling of the residual ve
tor, i.e. ComputeRes, we again have a slight bene�t for theS
hur 
omplement stru
ture. All lo
al integrals 
an be 
omputed in parallel and only afterwardsan ex
hange within the s
eleton_refresh routine is needed, for whi
h the 
ommuni
ation 
an betuned using sub
ommuni
ators of neighbouring subdomains. The row blo
k stru
ture on the otherside ne
essitates 
ommuni
ation before lo
al integrals 
an be 
omputed (to get all needed degreesof freedom) and afterwards (to sum up the lo
al parts) - nevertheless the di�eren
e due to overheadof 
ommuni
ation is not that noti
eable in Figures 4.4 and 4.5. It should be mentioned that the two
ommuni
ation steps for the row blo
k stru
ture might also be 
ondensed into one, if additionalghost layers of degrees of freedom are used su
h that ea
h pro
ess knows about all needed lo
aldegrees of freedom (
f. [7℄ for an idea on this). By this approa
h one would get the analogue tothe fa
t that in the S
hur 
omplement stru
ture we store the lo
al s
eleton for ea
h subdomain -hen
e the speedup of ComputeRes should be of the same order for both data stru
tures.Last point within the 
omparison of data stru
tures is given by the matrix-ve
tor multipli
ation.Here, the tuned PETS
 routines are superior to the S
hur 
omplement approa
h. But, as we willpresent in the next se
tion, the latter one enables more e�
ient pre
onditioners su
h that the totalnumber of needed matrix-ve
tor multipli
ations 
an drasti
ally be redu
ed. In summary it 
an besaid, therefore, that both data stru
tures allow for s
alable results of basi
 linear algebra routineswithin an �nite element framework - with a slightly advantage in matrix assembling for the S
hur
omplement approa
h.Remark 4.2.3From an algebrai
 point of view the blo
k partitioning of parallel matrix and ve
tor is a 
ommon
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hoi
e. Assuming no geometri
al information linked to the sparse global matrix A, the data dis-tribution to pro
esses is usually done by means of the adja
en
y graph. Ea
h pro
ess will holda set of rows, whi
h has been determined e.g. by minimising the interse
tion of adja
en
y edges[57℄ - su
h a partition is equivalent to a vertex-based de
omposition of the underlying mesh. Itsmain drawba
k for �nite element dis
retisation is obvious: 
ouplings of degrees of freedom withina 
ell will be disrupted and the distin
tion between interior and s
eleton nodes is no longer given.Nevertheless a pre
onditioning by inexa
t S
hur 
omplement solver 
an still be used at the 
osts ofadditional data stru
ture management for the o�diagonal blo
ks in (4.15) - see [136℄.4.3 Performan
e of Parallel Solvers/Pre
onditionersIn this se
tion the performan
e of row blo
k and S
hur 
omplement based pre
onditioners is inves-tigated in 
onjun
tions with the presented sequential Multilevel ILU pre
onditioner. Furthermore,we 
ompare the possibility to use the ILU pre
onditioner within both data stru
tures to some basi
pre
onditioners provided by the PETS
 library and also to parallel dire
t solver. All numeri
altest are based on the dis
retisation of two- and three-dimensional Stokes equations on the ba
k�owgeometry sin
e this example turned out to be representative as it was also before. Additionally,we used the hardware 
on�guration as depi
ted in Remark 4.2.2.4.3.1 Usage of Multilevel ILU Pre
onditioner in ParallelFor the presented S
hur 
omplement data stru
tures we already spe
i�ed how the sequential mul-tilevel ILU de
omposition 
an be used to form a parallel pre
onditioner (and even a solver). Inaddition also the row blo
k partition of data allows to use the results of Chapter 3.2, namely bymeans of a parallel blo
k Ja
obian pre
onditioner. We summarise the three major 
ases:Global Blo
k Ja
obi Pre
onditionerThe pre
onditioner PBJ 
an be used upon the parallel data stru
ture (4.15) by skipping the 
ou-plings Aij , i 6= j and using the ILU de
omposition of Aii. Doing so the pre
onditioner operation
y ← PBJx is purely sequential and will therefore s
ale perfe
tly, but by skipping the o�diagonal
oupling one will loose information the more pro
esses are used. Threshold and used prepro
essingfor the lo
al matri
es Aii are the parameters to be set like in the sequential 
ase of Chapter 3.2.Appli
ation of the blo
k Ja
obian ILU pre
onditioner PBJ ne
essitates a modi�
ation in standardPETS
 routines sin
e the diagonal blo
k 
annot be a

essed dire
tly � fortunately these steps turnedout to be not that expensive. Nevertheless, an implementation using own data stru
tures for theglobal matrix might allow for even better results.Global S
hur Complement Pre
onditionerSolving the S
hur 
omplement equation (4.8) with an inexa
t lo
al solver for A−1

ii , namely an ILUde
omposition, gives a pre
onditioner PSC for the global system Ax = b � see Algorithm 3. Thispre
onditioner provides a variety of parameter to tune the performan
e, i.e.
• threshold and prepro
essing for the ILU de
omposition of Aii,
• 
onvergen
e 
riteria for the iterative solver of S
hur 
omplement equation SΓxΓ = χΓ,
• additional pre
onditioner for SΓ (this would be a pre
onditioner for the pre
onditioner).Compared to the blo
k Ja
obian pre
onditioner PBJ this pre
onditioner preserves the 
ouplingsbetween subdomains by approximatively solving the S
hur 
omplement equation, su
h that theappli
ation y ← PSCx will be 
ostlier due to needed 
ommuni
ation routines. A 
omparableapproa
h was already used in [52℄ for the 
ompressible Euler equations. Therein the lo
al systemmatri
es Aii were only approximated by means of ILU(0) de
omposition for whi
h we alreadyshowed the inferior behaviour 
ompared to Multilevel ILU pre
onditioner.
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al Results 91Pre
onditioner for S
hur Complement SolverIn (4.11) we de�ned a pre
onditioner PΓ for the S
hur 
omplement equation
SΓxΓ = χΓ.Again one 
an use all results on basis of the sequential pre
onditioner for lo
al matri
es Aii. We will
ombine this pre
onditioner with an exa
t solver for A−1

ii to get a pre
onditioned S
hur-
omplementsolver.The last pre
onditioner is, in 
ontrast to the �rst two pre
onditioners, not applied to the globalsystem (4.7) resp. (4.15). Sin
e espe
ially the global S
hur 
omplement pre
onditioner mightdi�er in ea
h utilisation, we 
annot use standard GMRES(m) implementation any more. Instead wethroughout use the Flexible-GMRES FGMRES(m) with restart in the parallel 
ase, whi
h allows tovary the pre
onditioner � des
ribed in detail in [56, 132℄.4.3.2 Numeri
al ResultsResults obtained for the S
hur 
omplement approa
h and Multilevel ILU pre
onditioner (in thefollowing denoted by ILU++ due to the used software) were 
ompared to some established solversand pre
onditioners. We judge the results in two ways: �rst the absolute time for solving the linearsystem, se
ond the s
alability. The results for standard pre
onditioners were dire
tly obtained usingthe PETS
 library [7, 8℄ together with the blo
k matrix storage s
heme presented before. Basedon the literature and extensive numeri
al tests we 
ompared against Blo
k Ja
obi and AdditiveS
hwarz (with overlap of 4) pre
onditioner � both with lo
al ILU(0) fa
torisation in the 3D 
aseand lo
al ILU(1) fa
torisation in the 2D 
ase. These pre
onditioners were reported to be standardin the PETS
 library and already showed good performan
e for hp �nite element dis
retisation ofin
ompressible �ows [14℄.Global Blo
k Ja
obi Pre
onditionerAs one 
an see in Figure 4.6 for the 2D 
ase and in upper row of Figure 4.7 for the 3D 
ase,the results for pre
onditioner PBJ with lo
al ILU++ fa
torisation are superior to the ones withlo
al ILU(k) fa
torisation � this fa
t was already observed for the sequential 
ase in Chapter 3.2.Also the 
hoi
e of threshold for best, i.e. fastest, performan
e is quite similar to the sequential
ase (lower row in Figure 4.7) where a threshold of τ ≈ 2.0 gave good overall results. But theoutstanding result is given by the fa
t that Blo
k Ja
obian pre
onditioner nearly throughout fails(and therefore we skip the graphi
al evaluation) for problems of size of order larger than 5 · 105,i.e. needed FGMRES-steps are beyond 105 and overall solution is not worth dis
ussing. Espe
ially
omparison to the Distributed Multifrontal Solver MUMPS [4℄ shows the poor performan
e ofiterative solvers in the 2D 
ase (Figure 4.6) � only s
alability of iterative solver is somewhat betterbut still not optimal. In terms of absolute time to solve the linear system, the dire
t solver, as inthe sequential 
ase, is superior for two dimensional problems but worse in three dimensions (Figure4.7). Nevertheless, the dire
t solver su�ers from its large memory requirement (that might not bepresent when the number of pro
esses is small) and bad s
alability.In terms of s
alability the Additive S
hwarz pre
onditioner was 
hosen to establish some ex-
hange of 
ouplings whi
h is not present for the Blo
k Ja
obian pre
onditioners. This advantage
an be seen in the left part of Figure 4.6 and 4.7 where the number of FGMRES steps does notin
rease that mu
h when the number of pro
esses in
reases (
ompared to Blo
k Ja
obian pre
on-ditioners). Summing up, we found that for the global Blo
k Ja
obian pre
onditioner the sameresults regarding lo
al ILU de
omposition are given as for the sequential 
ase. But the entireapproa
h by blo
k pre
onditioning su�er from the skipping of 
ouplings in o�diagonal blo
k whi
hthen has to be 
ompensated by additional global FGMRES steps.Pre
onditioner for S
hur Complement SolverMotivated by the absolute solver time of the dire
t solver MUMPS, we investigated on the per-forman
e of the iterative S
hur 
omplement solver. Equation (4.8) is solved via a GMRES iteration
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Figure 4.9: Contour map of global FGMRES steps for di�erent parameter settings of S
hur 
omplementpre
onditioner PSC on 16 pro
esses. 2Dba
k�ow problem with 509123 degrees of freedom(top) and 3Dba
k�ow problem with 472748 degrees of freedom (bottom).on the s
eleton xΓ. To this end, the lo
al problems (i.e. A−1
ii for the lo
al S
hur 
omplement Si)within equations (4.9) and (4.10) are treated by the dire
t solver UMFPACK [38℄. Furthermore,we use the pre
onditioner PΓ as in (4.11) with PQ-reordering for 2D problems, normalisation for3D problems and di�erent size of threshold for the in
omplete multilevel fa
torisation ILU(Si).The results for 2D and 3D problems are shown in Figure 4.8: one 
an see that the more pro
essesare used, the bigger the threshold should be. Whereas in the 3D 
ase the in�uen
e of thresholdfor the pre
onditioner PΓ is not that notable for di�erent numbers of pro
esses, we have in the2D 
ase a 
lear turning point when one uses more than 16 pro
esses. All in all the iterative S
hur
omplement solver with lo
al exa
t solver for A−1

ii was not 
ompetitive to the presented solver sofar, neither in terms of absolute time to solve the system nor in terms of s
alability (see overall
omparison in Figure 4.12). Espe
ially for the s
alability the imbalan
e of s
eleton degrees offreedom to interior degrees of freedom is important the more pro
esses are used.Global S
hur Complement Pre
onditionerAt last we study the global S
hur 
omplement pre
onditioner PSC as given in Algorithm 3 � againwe use a global FGMRES iteration as a

elerator. This pre
onditioner allows to modify a varietyof parameters and we only inspe
ted the behaviour when the number of iterations mSC withinthe inexa
t S
hur 
omplement solver and also the threshold for in
omplete fa
torisation of Aii are
hanged. The pre
onditioner for the S
hur 
omplement operator SΓ was not under investigation(see Figure 4.8 for this). Instead we 
hose a �xed setting that allows 
heaply usage, namely athreshold of τ = 1.75 throughout.



96 DOMAIN DECOMPOSITION AND PARALLEL SOLVERTesting the wide range of suitable parameters would go beyond the s
ope of this thesis and weonly present the possibilities for setting on 4, 16 and 64 pro
esses both for the 2D and 3D 
aseas before. To get a feeling for the behaviour of the solver for di�erent parameter we show theresults for global FGMRES steps and needed time to solve the system in 
ontour plots. Results forglobal FGMRES steps are similar for every number of used pro
esses (see Figure 4.9 for the 
ase of 16pro
esses): the more pre
ise the S
hur 
omplement equation is solved, the less global FGMRES stepsare needed. This 
an be a
hieved either by in
reasing the threshold for in
omplete fa
torisation of
Aii or by in
reasing the number of iterations mSC for the iterative S
hur 
omplement solver.For the results in terms of absolute solver time, we did not get su
h 
lear statements. Asdepi
ted in Figures 4.10 and 4.11 the best setting of parameters threshold τ and stepsmSC stronglydepends on the number of used pro
esses. A rule of thumb might be given by: the more pro
essesare used, the more threshold τ and the more iterative steps mSC should be used. Nevertheless, theperforman
e of pre
onditioner PSC is very sensitive to 
hoi
e of parameters � already a modi�
ationof e.g. threshold by 0.5 might 
ause a doubling of solver time. Heuristi
al observations were givenby the fa
t that the ratio of iterative stepsmSC to number of s
eleton degrees of freedomNΓ shouldremain 
onstant for ea
h number of pro
esses. It will be a future work to adjust the parametersof PSC automati
ally using the information given by partition of �nite element mesh.4.3.3 Comparison of all SolversFinally we gather the results a
hieved for the presented parallel solver/pre
onditioner, i.e. we
ompare the dire
t solver MUMPS, S
hur Complement solver, global FGMRES solver with AdditiveS
hwarz pre
onditioner, with Blo
k Ja
obian pre
onditioner PBJ and with S
hur 
omplementpre
onditioner PSC . The out
omes for absolute solver times di�er a lot for the 2D and 3D 
ase �see Figure 4.12. In the 2D 
ase the best performan
e is given by dire
t solver based methods, i.e.the MUMPS and S
hur 
omplement solver. Results for iterative solvers 
an be separated into two
lasses: whereas the solver with pre
onditioners PSC and ASM at least solved the problem, theusage of Blo
k Ja
obian pre
onditioner PBJ took throughout more than 1.e5 iterations and didnot rea
h the solution in reasonable time. But it has to be mentioned that the PSC pre
onditionershowed a fatal performan
e for more than 64 pro
esses � number of FGMRES steps and solutiontime are worth dis
ussing. A possible explanation is given by the worse ratio of interior to s
eletondegrees of freedom. The 
osts for inexa
t S
hur 
omplement solver are then dominated by therestri
tion and prolongation operations that need in
reasing 
ommuni
ation.In the 3D 
ase it is the other way around. Here the iterative FGMRES solver with blo
k ILU++pre
onditioner gave the best results. This dis
repan
y to the two dimensional 
ase was alreadyobserved in Chapter 3.2 for the sequential solver where the bigger �ll-in in three dimensions wasfound to be 
ru
ial for dire
t solvers. Iterative solvers obtain a slightly better s
alability and needde�nitely less memory 
ompared to dire
t solvers whi
h �t to a
tual super
omputer ar
hite
tures.It should be mentioned that the Blo
k Ja
obian pre
onditioner PBJ yields better results than bothpre
onditioners PSC and ASM although only the latter ones take the 
ouplings of subdomainsinto a

ount. These 
ouplings also 
ome into play by global matrix-ve
tor multipli
ations as 
anbe seen in left of Figure 4.12. For the pure sequential pre
onditioner PBJ one obviously needsa higher number of FGMRES steps, whereas espe
ially the S
hur 
omplement pre
onditioner PSCallows for a nearly 
onstant number of FGMRES steps independent of the number of pro
esses.Summing up, we 
on
lude that for 
onsidered three dimensional problems iterative solvers aremore suitable than dire
t solvers. Both approa
hes, row blo
k partition and S
hur 
omplementapproa
h, yield suitable parallel data stru
tures and the possibility to use pre
onditioners based onMultilevel ILU de
omposition, whi
h showed a better performan
e than standard pre
onditioners.However, the s
alability is only weak and the setting of appropriate parameters, espe
ially for the
PSC pre
onditioner, is tri
ky. But the presented results 
ause to 
onsider in a future work anoptimised implementation of data stru
tures and related pre
onditioners to obtain better results.4.3.4 Comparison of Complete Parallel Approa
hAs a very last result on parallel data stru
ture and parallel pre
onditioner we show the 
apabilitiesof pre
onditioners PBJ and PSC in 
ombination with a

ording data stru
tures for large s
ale
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Figure 4.10: Contour map of absolute solver time for di�erent parameter settings of S
hur 
omplementpre
onditioner PSC on 2Dba
k�ow problem with 509123 degrees of freedom � 4 pro
esses(top), 16 pro
esses (middle) and 64 pro
esses (bottom).
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PSC, rtol 1e-2Figure 4.13: Comparison of absolute time to solve Stokes equations using PSC and PBJ for 3Dba
k�owproblem with 3681748 degrees of freedom. Missing values are due to rea
hed maximumnumber of iterations.problems. We aim at 
omparing the overall solution time for Navier-Stokes equations on the threedimensional ba
k�ow geometry, in
luding assembly of Ja
obian matrix as well as the linear solver.Furthermore, we make use of the adaptive for
ing strategy shown in Chapter 3.2. For these tests ons
alability the high-performan
e 
omputer JUROPA-JSC at Fors
hungszentrum Jüli
h equippedwith 2208 nodes was used. Ea
h node 
ontains two Quad-
ore Intel Xeon X5570 CPU (Nehalem-EP) whi
h run at a 
lo
k speed of 2.93 GHz and has 24 GB of main memory. Setup of s
alabilitytests was su
h that ea
h CPU was equipped with 3 GB of main memory. The inter
onne
t isan In�niband QDR with non-blo
king Fat Tree topology. In 
ontrast to the previous test on HPXC3000 we no longer used GNU g

 
ompiler but the Intel C++ 
ompiler in version 11.1.059 asre
ommended by the JUROPA user guide.Dis
retisation of the 3D problem on a �nite element mesh with 143360 
ells results in a totalnumber of 3681748 degrees of freedom. Therefore the parallel solver needed at least 32 pro
esses� a lower number of pro
esses resulted in memory allo
ation errors, showing that problems ofthis 
omplexity ne
essitate the use of modern parallel systems. First we tested the parametersetting of pre
onditioner PBJ and PSC solving Stokes equations. The threshold for blo
k Ja
obianILU de
omposition was 1.75 and 2.00, while for the inexa
t S
hur 
omplement solver we used alo
al threshold of 3.0. Instead of spe
ifying an upper bound mSC on the iterative steps for S
hur
omplement equation solver (as done before), we used a relative toleran
e of 1e−1 and 1e−2 for theresidual norm on the s
eleton as termination 
riterion. Figure 4.13 shows that the Blo
k Ja
obianpre
onditioner possesses better s
alability properties than the S
hur 
omplement pre
onditioner.Espe
ially the sensitivity of S
hur 
omplement pre
onditioner to parameter setting is visible. In
ontrast to PBJ pre
onditioner, a good setting of parameter for PSC pre
onditioner is essentialand might even result in best absolute time.We then used this setting for the linear solver to solve the Navier-Stokes equations. Resultsare presented in Table 4.2 and Figure 4.14 indi
ating that the linear solver is the 
ru
ial point ofs
alability for the entire nonlinear solver. While the assembling of Ja
obian matrix shows goods
alability properties, the linear solver avoids a good overall result. Nevertheless, the adaptivefor
ing allows to redu
e the time spent for linear solver to a minimum at 
osts of extra Ja
obianmatrix assembling, whi
h fa
ilitates s
alability of overall solution pro
ess.
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number of pro
esses32 64 128 256 512 1024Blo
k Ja
obian pre
onditioner PBJ�nal residual norm 8.35e-12 1.66e-11 1.0e-12 9.98e-13 1.0e-12 9.96e-13overall solution time 999 532 306 189 131 211mean Ja
obian assemble time 92.9 47.8 24.4 12.5 6.5 4.0mean FGMRES steps 269 332 455 653 822 1649mean linear solver time 68 37 23 17 13 28S
hur Complement pre
onditioner PSC�nal residual norm 8.66e-13 2.35e-12 5.79e-13 6.83e-13 7.41e-13overall solution time 1752 981 776 730 1303 >1800mean Ja
obian assemble time 93.4 46.7 23.5 11.8 6.5 3.0mean FGMRES steps 16 13 9 9 15mean linear solver time 194 114 105 109 210Table 4.2: Results of row blo
k and S
hur 
omplement approa
h for Navier-Stokes solver within 3Dba
k-�ow geometry � obtained on super
omputer JUROPA.
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Chapter 5Optimisation Approa
h on HPCSystemsAfter detailed derivation of generi
 sequential and parallel solver for the primal and adjoint/sen-sitivity equation, we now 
ome ba
k to the entire optimisation problem. Sin
e both optimisationapproa
hes des
ribed in Chapter 2.3 are based on determining the gradient of the redu
ed 
ostfun
tional, i.e. Dj
Du (u) = ∇j(u), at this stage we 
an work out a framework on the routines forevaluation of 
ost fun
tional j(u) = J(S(u), u) and gradient ∇j(u) = DJ

Du (S(u), u).In the following we emphasise 
onsequen
es for the spe
ial 
ase of instationary PDE-
onstrainedoptimisation implemented on HPC-systems. This work bases on the 
ontribution [21℄ of the authorfor the PARA2008 workshop. For the adjoint based optimisation approa
h we are fa
ed with thedis
repan
y that impli
it solvers allow for less timesteps but are 
ostly (see Chapter 4.3). On theother hand expli
it solvers need lots of timesteps that are very 
heap but require the overall ba
kupof state solution, whi
h motivates the usage of 
he
kpointing s
hemes and parallel I/O. For thesensitivity based optimisation approa
h there is no need to 
ompute the adjoint solution ba
kwardin time. Instead the partial derivative for ea
h 
ontrol parameter 
an be 
omputed within theforward sweep.5.1 Gradient-based Optimisation AlgorithmWe already showed in Chapter 2.3 that a gradient-based optimisation algorithm for PDE-
onstrainedproblems requires the solution of state- and adjoint-/sensitivity-equations to determine the gra-dient (�rst order optimality 
ondition). This pro
edure is shown in Figure 5.1 for the 
ase ofinstationary �ow optimisation by boundary 
ontrol - the reader might refer to Chapter 2.3.2 for adetailed notation. The main di�eren
e within the adjoint and sensitivity approa
h for determina-tion of gradient ∇j is the number of linear/nonlinear systems to be solved as well as the storagerequirements to be ful�led. Before we report on the used optimisation algorithm to determine theupdate for 
ontrol variables, we 
ompare the needs to 
ompute the gradient for stationary andinstationary problems. Let's assume that the sensitivity-based representation of 
ontrol u is givenby design parameter αk, k = 1, . . . , n.For a stationary problem one iteration step of the s
hemati
 pro
edure 5.1 requires for anadjoint and also for a sensitivity-based method:i/ one nonlinear system of the state equations to be solved,ii/ ba
kup of state solution,iii/ for adjoint method: one linear system of the adjoint equations to be solved using ba
kup ofstate solution,iii/ for sensitivity method: n linear systems of sensitivity equations to be solved using ba
kup ofstate solution,
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5.1 Gradient-based Optimisation Algorithm 105iv/ evaluation of gradient by standard algebrai
 operations.We see that the adjoint-based method in 
ase of stationary problems always requires 1 nonlinearsystem and 1 linear system to be solved, while the sensitivity-based method requires the more linearsystem solves the more design parameter αk are used. This fa
t obviously advo
ates for the adjoint-based approa
h, but for instationary problem the position turns over. For an instationary problemusing a temporal dis
retisation of m timesteps, one iteration step of the s
hemati
 pro
edure 5.1requires for an adjoint-based method:i/ m nonlinear systems of the state equations to be solved forward in time,ii/ ba
kup of m state solutions at all timesteps,iii/ m linear systems of the adjoint equations to be solved ba
kward in time using ba
kup ofstate solutions,iv/ evaluation of gradient by standard algebrai
 operations.Whereas for the sensitivity-based method we need:i/ one nonlinear system of the state equations to be solved per timestep (totally m for alltimesteps),ii/ ba
kup of a
tual state solutions at a
tual timestep,iii/ n linear systems of sensitivity equations to be solved at a
tual timestep using ba
kup ofa
tual state solutions,iv/ evaluation of gradient by standard algebrai
 operations.Hen
e, the sensitivity-based method does not require the separation in forward and ba
kwardsolver and does not need to ba
kup all m state solutions - instead only the a
tual state solutionis needed in every timestep. For the solver we 
ount for both methods m nonlinear system solvesand for the adjoint based method m linear system solves 
ompared to m ·n linear system solves forthe sensitivity based method. To over
ome the problem of full ba
kup of state solution for adjointbased method, we will introdu
e 
he
kpointing s
hemes in the sequel whi
h lead to additionalnonlinear system solves for the state equations. Sin
e this problem is not given for the sensitivitybased method, we 
an treat this approa
h like a pure simulation task having more than one systemto be solved in ea
h timestep - so in the sequel we 
on
entrate on te
hniques for the adjoint-basedmethod only.Parallelism within the S
heme 5.1 
an be implied for all solver steps by means of parallel solversas presented in Chapter 4. Furthermore the optimisation algorithm, whi
h will be �gured out next,possesses opportunities for parallelism sin
e mainly basi
 algebrai
 operations are to be peformedlike matrix-ve
tor produ
t or dot-produ
t. The optimisation algorithm might use the parallel datastru
tures of Chapter 4.2, but for most 
ases the data distribution of the 
ontrol variable is alreadygiven by the domain de
omposition approa
h. A reordering of 
ontrol data is often not gainfuland for the sensitivity-based optimisation the number of 
ontrol variables is su
h small that evena sequential optimisation algorithm 
an be used.Quasi-Newton MethodsThe rough estimation on storage requirements done before for instationary PDE-
onstrained op-timisation problems needs to be extended by an estimation of the size of the entire optimisationproblem. In 
ase of sensitivity-based optimisation, the size of optimisation problem, i.e. the sizeof dis
retised 
ontrol u and also of gradient ∇j(u), equals m · n. When expli
it timestepping isused su
h that m ≈ 105, these problems are of size 106 and have to be regarded as large s
aleoptimisation problems. In 
ase of adjoint-based optimisation, the optimisation problem will alsobe of size m · n, but now n denotes the spatial dis
retisation of 
ontrol u. For the �nite elementbased dis
retisation of boundary 
ontrol problems under 
onsideration this equals the number ofdegrees of freedom of 
ontrol uh on boundary Γc - on 3D meshes one easily ends up with n ≈ 103.
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it timestepping is used to keep down the number of timesteps, say m ≈ 102, theoptimisation problem is of size 105 and therefore again a large s
ale optimisation problem.The �rst order optimality 
ondition for the redu
ed 
ost fun
tional was given by (
f. (2.31))
〈∇j(u), u− u〉U∗,U ≥ 0 ∀u ∈ Uadand 
an by rewritten as

∇j(u) = 0 ∀u ∈ Uwhenever Uad = U , i.e. no additional side 
onstrains are given for the admissible 
ontrols. How to
ompute the gradient ∇j(u) was addressed by adjoint and sensitivity equations su
h that we nowneed to 
on
entrate on large s
ale optimisation algorithm. Sin
e by the redu
ed 
ost fun
tionalwe 
an view the problem as an un
onstrained optimisation problem, we use a general approa
hby means of Newton's method in several variables for un
onstrained optimisation. Furthermorethe problem is treated as already dis
retised, i.e. we identify the 
ontrol uh by the values ofdegrees of freedom. Find the 
ontrol uh = [u1, ..., um·n] ∈ Rm·n su
h that the 
ost fun
tional
j(uh) = J(S(uh), uh) is a minimum. Standard approximation of j(uh) by the �rst three terms ina Taylor series expansion at a
tual iterate uih yields (see e.g. [96℄):

j(uh) = j(uih) +∇j(uih)(uh − uih) +
1

2
B(uih)[uh − uih, uh − uih]with the symmetri
 Hessian matrix

B(uih) = ∇2j(uih).De�ne the sear
h-dire
tion s = uh − uih and rewrite the expansion as
j(uh) = j(uih) +∇j(uih)s+

1

2
B(uih)[s, s] (5.1)where the term ∇j(uih)s is the dire
tional derivative along s and the term H(uih)[s, s] is 
alled
urvature or se
ond dire
tional derivative in the dire
tion s. For the minimum u∗h one has thefollowing observations (see [41℄)

j(uh) > j(u∗h) ∀uh ∈ Rm·n,

∇j(u∗h)s = 0 ∀s ∈ Rm·n,

B(u∗h)[s, s] > 0 ∀s ∈ Rm·n.For Newton's method one 
hoses the sear
h dire
tion
si = −B(uih)

−1∇j(uih),whi
h is the minimiser of the quadrati
 model (5.1) to get the new approximation
ui+1
h = uih + si.This method is based on �nding a zero of the gradient ve
tor (�rst order ne

essary optimality
ondition) and there is no guarantee that the step will move towards a lo
al minimum ratherthan a stationary point or maximum. To pre
lude this, we must insist that the step be downhill,i.e. ∇j(uih)si < 0, whi
h is the positive de�niteness of Hessian matrix when the Newton step is
hosen.For the 
onsidered large s
ale problems the 
omputation and storage of the Hessian matrix isoften beyond rea
h. Furthermore the fa
torisation of the Hessian matrix, i.e. 
omputation of

H(uih) = B−1(uih)might be very 
ostly. The most simple way would be to estimate the inverse Hessian matrix H(uih)by the identity, resulting in sear
h dire
tion si = −∇j(uih) and the wellknown steepest des
ent



5.1 Gradient-based Optimisation Algorithm 107method. A further improvement of inverse Hessian approximation is given by re
ursive updateformulae like SR1, BFGS or DFP. These Quasi-Newton methods base on the update of the inverseHessian approximation
Hi+1 ≈ H(ui+1

h )in ea
h iteration step of the optimisation algorithm using the former derived iterates si = ui+1
h −uihand yi = ∇j(ui+1

h )−∇j(uih) - see [41, 119℄ for a 
omplete dis
ussion. All update formulae avoid thepossibly 
ostly 
omputation and fa
torisation of the Hessian matrix, but still need lots of storage- to over
ome this problem limited memory updates are usually used.We will 
on
entrate on the usage of LBFGS method in 
ombination with a line-sear
h ap-proa
h for globalisation of Quasi-Newton method. The main idea of limited memory BFGS is therepla
ement of full update formula for the inverse Hessian matrix1
Hi+1 =

(

Id− si ⊗ yi
yi · si

)

Hi

(

Id− yi ⊗ si
yi · si

)

+
si ⊗ si
yi · siby a version that only uses a spe
i�
 number of ve
tors. Using say m ve
tors to store the historyof si and yi, the fundamental operation

si = −Hi∇j(uih)within a Quasi-Newton optimisation algorithm 
an be expressed by a two loop re
ursion 5 - referto Chapter 7 in [119℄. For the entire optimisation Algorithm 6 within the optimisation pro
edureAlgorithm 5 LBFGS two loop re
ursion to determine sear
h dire
tion si.
q = ∇j(uih)for j = i− 1, . . . , i−m do
aj =

sj ·q
yj ·sj

q = q − ajyjend for
r = H0

i q =
si−1·yi−1

yi−1·yi−1
qfor j = i−m, . . . , i− 1 do

b =
yj ·r
yj ·sj

r = r + sj(aj − b)end for
si = −r = −Hi∇j(uih)depi
ted in Figure 5.1 we have to add some globalisation strategy to the Algorithm 5 - here we usea simple line-sear
h approa
h based on the Armijo update rule. It has to be mentioned that the1D line-sear
h step to determine the step length λi ne

esitates the evaluation of 
ost fun
tional

j(u). This step requires for a nonlinear 
ost fun
tional and nonlinear state equations the solutionof the full instationary partial di�erential equations su
h that the determination of step lengthmight be
ome the most 
ostly part of Algorithm 6. To avoid the step length 
omputation onemight use trust-region methods instead of line-sear
h methods - see [119℄ for details.Algorithm 6 Line-sear
h optimisation step with limited Quasi-Newton update - LBFGS method.given 
ontrol uih and gradient ∇j(uih)
ompute si = −Hi∇j(uih) by Algorithm 5update 
ontrol ui+1
h = uih + λisi, step length λi ful�lling su�
ient de
rease 
ondition for 
ostfun
tional j(uh)if i > m thendis
ard [si−m, yi−m] from storageend ifstore si = ui+1

h − uih and yi = ∇j(ui+1
h )−∇j(uih)1a⊗ b = [aibj ]i,j denotes the outer produ
t of two ve
tors a, b ∈ Rn
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Figure 5.2: Typi
al forward-reverse s
heme for optimisation of instationary problems.5.2 Parallel I/O and Che
kpointing StrategiesFor the presentation of parallel hardware and software te
hniques used for PDE-
onstrained opti-misation in 
ombination with an adjoint based optimisation approa
h, we 
onsider an instationaryproblem of the general form (
f. Chapter 2.3)

min
(y,u)∈Y×Uad

J(y, u) (5.2)subje
t to
〈∂ty +A(y, u), ϕ〉Y ∗,Y = 0 ∀ϕ ∈ Y (5.3)where y (resp. u) des
ribes the state (resp. 
ontrol) variable. Further Y (resp. Uad) des
ribesthe state (resp. 
ontrol) spa
e and we assume J : Y × Uad → R for the obje
tive fun
tional and

A : Y × Uad → Z = Y ∗ for the state equation to be nonlinear. As model problem the user mightrefer to the setting of �uid �ow optimisation in Chapter 2.3 where the adjoint problem asso
iatedto (2.33) was found to be
〈∂J
∂y

(y, u), ϕ〉Y ∗,Y − 〈∂tz +
[
∂A

∂y
(y, u)

]∗

z, ϕ〉Y ∗,Y = 0 ∀ϕ ∈ Y (5.4)and the optimality 
ondition was given by
〈∂J
∂u

(y, u) +

[
∂A

∂u
(y, u)

]∗

z, ϕ− u〉U∗,U ≥ 0 ∀ u ∈ Uad. (5.5)Considering �nite element dis
retisation of the 
ontinuous problems (5.3) and (5.4) as depi
tedin Chapter 3.1, we derive the short forms
yi+1
h = F (yi+1

h , yih, u
i+1
h ) i = 0, 1, . . . ,m− 1

zih = R(zi+1
h , yih, u

i
h) i = m− 1, . . . , 0

(5.6)where we assume yih and zih to be the dis
rete solution of the primal resp. adjoint equation attimestep i. The dis
rete solution operators asso
iated to the operators in (5.3) and (5.4) aredenoted by F (·, ·, ·) and R(·, ·, ·) showing the forward and reverse 
hara
ter in time. Beside theseoperators often a 
ombined advan
e and reverse step, 
alled init-step, 
an be �gured out that also
omprises the initialisation of adjoint solution zmh . It is important to note that the adjoint problemis always linear, i.e. zih only depends on zi+1
h , but has to be solved ba
kward-in-time. Furthermoreassuming a nonlinear primal problem (or a nonlinear 
ost fun
tional) ea
h step of the adjointsolution is dire
tly 
oupled to the 
orresponding step of the primal one (see Figure 5.2).This means that the solution of the adjoint equation relies on the knowledge of the 
omplete
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Figure 5.3: Ben
hmarking results of 
olle
tive MPI-routines on HP XC3000 (Steinbu
h Centre for Com-puting).forward solution yih, i = 0, . . . ,m − 1. In order to redu
e the needed storage resour
es, di�erent
he
kpointing strategies have been introdu
ed:
• uniform 
he
kpoint distribution (see [31℄ and referen
es therein),
• binomial 
he
kpoint distribution (see [160℄ and referen
es therein),
• adaptive (online) 
he
kpointing (see [82℄ and referen
es therein).Typi
ally for 
omplex instationary problems a full ba
kup of states easily grows up to some TByteand 
annot be stored dire
tly in memory. Further on many large HPC platforms one has to fa
ethe problem that data I/O is being handled on a unique master node. The needed gather ands
atter routines are very expensive on typi
al 
lusters due to the fa
t that performan
e of thenetwork de
reases dramati
ally the more pro
esses are used in a 
olle
tive operation.Ben
hmarking for gather and s
atter routines on the HP XC3000 
luster at Steinbu
h Centre forComputing (Karlsruhe Institute of Te
hnology) with an In�niband 4X QDR inter
onne
t showedthat the related performan
e of su
h 
olle
tive operations de
rease dramati
ally for in
reasing thenumber of pro
esses. While the standard point-to-point 
ommuni
ation shows a performan
e ofmore than 3100 MB/s the bandwidth redu
es by more than 90% for 
olle
tive 
ommuni
ation (seeFigure 5.3).Hen
e, one has to look for a solution that on the one hand redu
es the amount of data tobe stored, i.e. does not store 
omplete ba
kup, and on the other hand uses sophisti
ated HPC-te
hniques to enable s
alable data I/O.5.2.1 Solution Pro
ess on HPC-platformFor pra
ti
al problems under 
onsideration we mainly en
ounter large s
ale dis
retisation and itturns out that the time needed to store one forward solution step may ex
eed the 
omputationaltime needed to obtain this step. This is espe
ially the 
ase when expli
it timestepping s
hemes areused. We will show this e�e
t by an a
ademi
al example of adjoint based optimisation, namely:given an instationary partial di�erential equation for the state-solution y and a stationary/desiredsolution y∗ = y∗(x). Formulate a tra
king type 
ost fun
tional to 
ontrol the PDE (here by meansof boundary 
ontrol) su
h that the stationary solution is a
hieved within a �xed time interval

(0, T ). This prin
iple 
an be found in the following paraboli
 example of boundary 
ontrol butalso in the examples of Chapter 2.3.
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min

(y,u)∈H1(Ω)×L2(Γc)
J(y, u) =

1

2

T∫

0

‖y − y∗‖2L2(Ω) dt+
λ

2

T∫

0

‖u‖2L2(Γc)
dt (5.7)under state equation: y(·, 0) = y0 6= 0 and for t ∈ (0, T ) it holds y(·, t) ∈ {v ∈ H1(Ω) : v = u on Γc}su
h that

〈∂ty, ϕ〉+ (∇y,∇ϕ)0 + α(y, ϕ)0 = 0 ∀ϕ ∈ H1
0 (Ω). (5.8)We use the parameter α to modify the behaviour of the system. Choosing α < −µmin, where

µmin is the smallest eigenvalue of the Lapla
e operator (e.g. µmin = 2π2 in two dimensions), thesystem be
omes unstable and the solution blows up, i.e. the norm ‖yh‖ tends to in�nity. Hen
e,the boundary 
ontrol u on Γc 
an be viewed as a stabilisation of the system, see [19℄.The adjoint equation to (5.8) 
an dire
tly be stated as: z(·, T ) = 0 and for t ∈ (0, T ) it holds
z(·, t) ∈ H1

0 (Ω) su
h that
−〈∂tz, ϕ〉+ (∇z,∇ϕ)0 + α(z, ϕ)0 = (y∗ − y, ϕ)0 ∀ϕ ∈ H1

0 (Ω) (5.9)whereas the optimality 
ondition (having no additional bounds on 
ontrol u) is given by: for
t ∈ (0, T ) it holds

(λu+ ∂nz, χ)L2(Γc) = 0 ∀χ ∈ L2(Γc). (5.10)We refer to [157℄ for a derivation and detailed analysis of su
h paraboli
 problems. Next thedis
retisation of state and adjoint equation is done by 
onform spatial �nite element method (using�nite element spa
e Vh ⊂ H1
0 (Ω)) in 
ombination with expli
it timestepping (
f. Chapter 3.1) andone gets the dis
rete system for (5.8)

(ykh, ϕh)0 +∆t
[
(∇yk−1

h ,∇ϕh)0 + α(yk−1
h , ϕ)0

]
= (yk−1

h , ϕh)0 ∀ϕh ∈ Vh, k = 1, . . . ,mWith standard notation of sti�ness- and mass-matrix
A = [aij ] =∆t [(∇ϕh,j ,∇ϕh,i)0 + α(ϕh,j , ϕh,i)0] i, j = 1, . . . , n

M = [mij ] =(ϕh,j , ϕh,i)0 i, j = 1, . . . , nthis 
an be written as the algebrai
 system, where we use ykh =
n∑

i=1

Y k
i ϕh,i and Y k = [Y k

1 , . . . , Y
k
n ]T ,

MY k +AY k−1 =MY k−1 k = 1, . . . ,mor equivalently
Y k = Y k−1 −M−1AY k−1 k = 1, . . . ,m. (5.11)If �nally the mass-matrix M = mij = (ϕh,j , ϕh,i)0 is repla
ed by the lumped diagonal matrix

M = mii =
n∑

j=1

mij , equation (5.11) 
an be used as expli
it update s
heme for the dis
rete solution
ykh. Sin
e this s
heme mainly uses matrix-ve
tor multipli
ation (plus additional 
omponentwiseve
tor operations), it is a prominent 
andidate for parallelisation as we will shown later.With respe
t to the previously des
ribed problems of storage spa
e/time and in order to solvethe general adjoint problem (2.34) resp. the 
on
rete problem (5.9), we 
onsider an hybrid approa
h
ombining two steps:
• 
he
kpointing-strategy: store few dedi
ated timesteps instead of a 
omplete state variableba
kup and re
ompute missing states for the ba
kward problem if needed,
• parallel I/O: allows every node in a 
luster to write/read data simultaneously.These two approa
hes result in di�erent bene�ts. In our framework 
he
kpointing strategies relyon a redu
ed storage by means of a dedi
ated 
hoi
e of the state solution forward-in-time. Ea
hof the stored timesteps 
orrespond to a 
he
kpoint. This kind of te
hnique aims on the one hand
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Figure 5.4: Binomial 
he
kpoint distribution in 
ase of 16 timesteps and 3 
he
kpoints. Ri means readi-th 
he
kpoint, Wi means write i-th 
he
kpoint and D stands for derive adjoint state.at strongly redu
ing the needed storage resour
es. On the other hand the 
he
kpoints are 
hosensu
h that the needed re
omputing e�orts for the missing timesteps are kept minimal. A typi
alsituation is depi
ted in Figure 5.4 assuming binomial 
he
kpoint distribution (
f. [69, 160℄).Parallel I/O te
hniques lead to additional bene�ts. These te
hnologies allow data to be trans-mitted in a fully parallel way between 
lients, on whi
h they are produ
ed and used, and 
entraldedi
ated storage server, on whi
h they should be stored. In pra
ti
e a signi�
ant speedup fordata-a

ess 
an be gained as 
ompared to typi
al 
luster with serial �le systems.Hardware Con�gurationDevelopment of super
omputers nowadaysmore and more tends to systems whi
h are well-resour
edwith pro
essors but with less main memory per 
ore. In the November 2009 list of top500 super-
omputers no system in top 30 is equipped with less than 10000 
ores and the ratio of main memoryto total number of 
ores shows a 
lear tenden
y, e.g.
• top 1: Jaguar (Cray XT5-HE Opteron Six Core) at Oak Ridge National Laboratory (UnitedStates) with 224162 
ores. Ea
h of 
ompute node 
ontains two hex-
ore AMD Opteronpro
essors and 16 GB main memory, resulting in 1.33 GB/
ore,
• top 4: JUGENE (Blue Gene/P Solution) at Fors
hungszentrum Jüli
h (Germany) with294912 
ores. The 72 ra
ks with 1024 
ompute nodes host 4-way SMP pro
essor and 2GB main memory per 
ompute node, resulting in 0.5 GB/
ore,
• top 13: JUROPA (Sun Constellation, NovaS
ale R422-E2, Intel Xeon X5570) at Fors
hungszen-trum Jüli
h (Germany) with 26304 
ores. 2208 
ompute nodes with 2 Intel Xeon X5570quad-
ore pro
essors and 24 GB main memory, resulting in 3 GB/
ore.Furthermore in the last years the memory and inter
onne
t bandwidth did not in
rease that mu
h
ompared to the 
omputational power of modern CPUs. These hardware fa
ts underline thene
essity to develop solutions that rely on less memory a

ess but more 
omputations to be donewith the data. Expli
it timestepping s
hemes might therefore be
ome more and more popularespe
ially in 
ombination with parallel data I/O.For the investigation presented subsequently we have 
onsidered the HPC platform HP XC3000
luster at Steinbu
h Centre for Computing (the system layout is similar to the JUROPA, seeRemark 4.2.2) for whi
h the parallel �le system bases on the Lustre �le system developed by SunMi
rosystems [150℄. A main 
on
ept underlying this system is the separation between metadata(dire
tories or �le attributes like name and user rights) and real data (the information/
ontent ofa �le). Another important point is a sophisti
ated system for management of lo
ks that preventssimultaneous write from di�erent 
lients on the same dataset by whi
h 
onsisten
e of the �le systemis guaranteed. Figure 5.5 shows the main 
omponents and proto
ols in a Lustre system.
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tory informa-tions, metadata& 
on
urren
y File I/O & �le lo
king
Metadata Server Re
overy, �le sta-tus, �le 
reation Obje
t Storage ServerFigure 5.5: Components and proto
ols in a Lustre system.

Property $HOME $WORKDisk spa
e 76 TByte 203 TByteRead perf./node 600 MB/s 1800 MB/sWrite perf./node 700 MB/s 1800 MB/sTotal read perf. 1700 MB/s 4800 MB/sTotal write perf. 1500 MB/s 4800 MB/sFigure 5.6: System ar
hite
ture of parallel �le system Lustre on HP XC3000 (Steinbu
h Centre for Com-puting).The overall ar
hite
ture and performan
e of the Lustre system on the HP XC3000 platformdi�ers for the dire
tories $HOME and $WORK due to a di�erent number of servers and di�erentinter
onne
t. All servers are 
on�gured as failover pairs, i.e. if the metadata server (MDS) fails theadmin server adopts his part, while the obje
t storage server (OSS) a
tually hold the data thatare distributed by striping (see Figure 5.6). In order to store a distributed ve
tor (for example thei-th timestep of forward solution) these parallel I/O te
hniques does not rely any more a gatherinstru
tion on a master-pro
essor.Usage of Che
kpointing S
hemesThe topi
 of 
he
kpointing in the 
ontext of PDE 
onstrained optimisation has been the obje
tof intensive resear
h e�orts (see e.g. [89℄ and referen
es therein). In our 
ontext we 
onsider theapproa
h based on the algorithm REVOLVE des
ribed in [69℄. This pro
edure aims at minimisingthe number of needed additional forward-step 
omputations assuming restri
tion asso
iated to thelimited storage 
apa
ity.It is important to note that su
h 
he
kpointing strategies assume the number of available
he
kpoints to be given and do not pres
ribe this parameter on their own. In order to de�nethe optimal number of 
he
kpoints for a given problem a trade-o� taking into a

ount the I/O
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Figure 5.7: Lower bound for number of 
he
kpoints by desired 
osts for optimisation algorithm and lo
alminimum of number of storage a

esses (takeshots) � assuming 106 timesteps to be reversed.bandwidth, laten
y as well as the CPU-
osts needed for the solution of a forward step has to be
onsidered (see e.g. [149℄). A standard approa
h usually bases on minimising the number of storagea

ess, while at the same time the additional forward-step 
omputations should be bounded. It
onsists of three steps:1. Determine the upper bound nch,max: the limited storage 
apa
ity leads to a maximalnumber of 
he
kpoints for a given problem size.2. Determine the lower bound nch,min: a lower bound is obtained from the 
ondition thatthe ratio between the 
omputational e�ort for the optimisation and the CPU 
osts asso
iatedto the forward simulation should be bounded and independent of the dis
retisation level ofthe 
onsidered PDEs.3. Minimise number of storage a

ess in [nch,min, nch,max]: in the previous determinedinterval one determines the number of 
he
kpoints leading to a minimal number of storagea

ess (takeshots). This minimum 
an easily be determined on the basis of the fun
tiondes
ribing the dependen
y between the number of 
he
kpoints and takeshots whi
h is knowna priori (see Figure 5.7).This approa
h bases on the observation that forward-step 
omputation is faster than storage a

ess.In the 
ontext of parallel solvers 
ombined with parallel data I/O this kind of argumentation may bewrong from the sense that the 
osts for I/O are not a 
onstant any more but show similar s
alabilityproperties as 
ompared to the 
osts related to the forward simulation. Our observation on the
onsidered HPC platform is that minimising the number of takeshots may be 
ontraprodu
tive.In 
ontrast one should 
onsider the maximal number of possible 
he
kpoints leading to an optimaloverall 
omputational time as depi
ted in the following numeri
al results.For a typi
al example of instationary problem optimisation (106 timesteps, 106 degrees offreedom (dof) in ea
h timestep assuming double pre
ision, resulting in ≈ 7.3 TByte for 
ompleteba
kup) the proposed standard strategy results in � see Figure 5.7:
• upper bound nch,max = 13744 due to pres
ribed 
apa
ity of ∼ 0.1 TByte,
• lower bound nch,min = 180 due to maximal extra 
osts of fa
tor 3, i.e. maximum 3 · 106forward-steps (advan
es),
• optimal nch,opt = 1000 (lo
al minimum of takeshots) resulting in 500500 takeshots and
2497497 forward-steps (overhead fa
tor of ∼ 2.5).
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Figure 5.8: Absolute times for update s
heme (5.11) operation Y k−1 → Y k on di�erent dis
retisationlevels.Using parallel I/O te
hniques enables to push the number of used 
he
kpoints to upper bound
nch,max resulting in 986254 takeshots and 1986253 forward-steps. The overhead fa
tor redu
es to
∼ 1.98 while the number of takeshots is nearly doubled whi
h is 
ompletely bu�ered by the parallelI/O improvement of fa
tor 10 
ompared to standard storage approa
h as shown in the sequel.5.2.2 Numeri
al ResultsTo show the 
apabilities of parallel hardware, we again 
onsider the a
ademi
al optimisation exam-ple (5.7) under 
onstraint (5.8). The expli
it update s
heme (5.11) is �rst being tested for s
alabilityproperties, while afterwards the parallel I/O performan
e is presented. Con
lusively the proposedapproa
h of 
ombining 
he
kpointing s
hemes with parallel I/O te
hniques is evaluated.S
alability of Expli
it TimesteppingThe update s
heme (5.11) was implemented by means of the parallel row blo
k data stru
turethat provided a very good s
alability of matrix-ve
tor produ
t (see Chapter 4.2). We tested thepure forward simulation of state equation (5.8) for di�erent number of degrees of freedom andfor the �xed time interval (0, 1). The number of timesteps m, i.e. the temporal dis
retisation ∆t,was 
hosen to a �xed value su
h that the solution at t = 1 remains suitable with respe
t to theCFL-
ondition � a 
omparison to solution gained by impli
it timestepping has been passed.Figure 5.8 shows that the update s
heme (5.11) possesses a good weak s
alability, i.e. thebigger the problem is (�ner dis
retisation) the more pro
esses 
an e�
iently be used. But in
ontrast to the optimal s
alability of pure matrix-ve
tor multipli
ation (see Figure 4.4 and 4.5),we en
ounter for one timestep Y k−1 → Y k additional parallel ve
tor operation (in
luding globalredu
tion operations to 
ompute norms) su
h that the s
alability is slightly worse.Parallel I/O Performan
eWe now 
onsider the performan
e of parallel I/O for the $WORK partition of HP XC3000 
lusterassuming the 
on�guration des
ribed before. The underlying optimisation problem is at this stageof minor 
on
ern, sin
e the results hold true for general data storage. For the implementation we
onsider the following three di�erent setups:1. PETS
-binary and -ASCII format using fun
tions Pets
ViewerBinaryOpen and Ve
Viewresp. Pets
ViewerASCIIOpen and Ve
View (see [7℄),
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parallel I/OFigure 5.11: Time needed for fwd-step and storage operations using 1050625 degrees of freedom dis-tributed over di�erent number of pro
esses.2. gather parallel row blo
k ve
tor into sequential ve
tor and save in binary resp. ASCII formatusing STL data stru
tures and 
olle
tive MPI-routines,3. parallel I/O saving binary resp. ASCII format using STL data stru
tures and parallel �lesystem based on Lustre.The �rst two approa
hes represent the gather/s
atter approa
h. Furthermore we used both ASCIIand binary format to get more illustrative results and to be able to 
he
k �les easier � for the a
tualprodu
tion modus obviously only binary format should be used. Time for saving the ve
tor growsproportionally to the number of 
omponents the ve
tor has using both standard gather/s
atterte
hnique and parallel I/O. Quantitatively however the results obtained by parallel I/O give animprovement by 
a. 90% (see Figure 5.9 for the 
ase of 32 pro
esses).As depi
ted in Figure 5.10 the performan
e for gather/s
atter storage operations is almostindependent of the number of pro
esses. Only if more than 32 pro
esses are used there is anoti
eable in
rease in storage time � this is due to the fast de
aying MPI-performan
e for 
olle
tiveroutines (see Figure 5.3). The gained e�
ien
y and s
alability for parallel I/O depend obviouslydire
tly on the number of available OSS (see Figure 5.6 and [102℄ for more details). For ASCII�le storage one en
ounters almost a speedup in storage a

ess that 
an be explained by the biggeramount of data to be transmitted at on
e. For mu
h smaller binary �les instead the laten
y ofnetwork be
omes re
ognisable using more than 16 pro
esses.Combining Parallel I/O and Che
kpointing StrategyThe e�
ien
y of 
ombination of parallel I/O and 
he
kpointing s
hemes as des
ribed before isevaluated in the sequel using the a
ademi
al example above. We 
onsidered 
omputation of onegradient (5.10) by means of adjoint approa
h using Algorithm 6 and the adjoint equation (5.9).That is, we aim at one 
omplete reversal as shown in Figure 5.2. For the spatial dis
retisationwith 1.1e6 degrees of freedom and ∆t = 1.0e− 7, T = 0.1, a full ba
kup of state solution gainedby (5.8) results in 7.64 TByte to be stored, whi
h is obviously not to be handled.In order to �nd the optimal number of 
he
kpoints nch,opt used for this problem, we 
omparedthe standard approa
h by minimising the number of takeshots (as des
ribed before) to the possiblestorage of nch,opt = nch,max 
he
kpoints. For the reversal s
heme 5.2 in 
ombination with RE-VOLVE algorithm [69℄ one en
ounters the general observations (see Figure 5.4 for example) whi
hare independent of the number of 
he
kpoints used:
• number of reverse timesteps (i.e. adjoint solution solver) is m− 1,
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hes.

• number of restores of 
he
kpoints is m− 1.Hen
e, these two steps 
an be negle
ted within the 
omparison. The di�eren
e in runtime to
ompute the gradient (5.10) will only be given by number of storage a

ess (takeshots) and numberof forward-steps (advan
e). Ben
hmarking of these basi
 operations showed the s
alability offorward-steps and also the la
k of s
alability for storage operations (see Figure 5.11). As alreadymentioned the storage time by parallel I/O would also s
ale or at least stay 
onstant if more OSSare used, whereas the gather-operation per se 
annot s
ale.The 
omparison of used storage approa
h and number of used 
he
kpoints in Figure 5.12 
learlyindi
ates two points. First, the usage of gather/s
atter operations to store a 
he
kpoint preventsany s
alability of the entire 
omputation. Se
ond, optimal number of 
he
kpoints in the sense ofminimal time to 
ompute gradient by reversal s
heme 5.2 depends on the ratio of time for oneforward-step to one storage operation. If storing of a 
he
kpoint 
an be performed faster than oneforward-step, one should use maximal number of 
he
kpoints available by memory limitation. If onthe other side a forward-step is 
omputed faster, 
hoi
e of nch,opt 
he
kpoints as des
ribed beforeresults in optimal time � this turning point 
an 
learly be seen in Figure 5.12. One also noti
esthat on
e the storage operation is the to 
ostly 
ompared to one forward-step (in this example at128 pro
esses with a ratio of ∼ 65) no bene�t of additional pro
esses is given.Con
lusively we showed that parallel I/O enables a mu
h faster gradient 
omputation as stan-dard gather/s
atter operations and that the often used 
he
kpointing s
hemes need to be re
onsid-ered. For future work one also have to take into a

ount a possible distin
tion of di�erent memorystages, i.e.
• main memory for ea
h 
ore,
• lo
al disk spa
e on ea
h node a

essible for some 
ores,
• global disk spa
e on 
luster a

essible for all 
ores,to get s
alability even for storage operation. These stages give additional opportunities for memorya

ess and layout of 
he
kpoints � e.g. the most often restored/used 
he
kpoints should be storedwithin the fastest a

essible memory. We refer to [149℄ for investigations on this a
tive �eld ofresear
h.
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Chapter 6Numeri
al ResultsWithin this 
hapter, we investigate the 
apabilities of the adjoint- and sensitivity-based 
ontrolmethods developed in Chapter 2 in 
ombination with the high performan
e 
omputing te
hniquesdes
ribed in Chapter 4 and 5. We apply the proposed methods to the Navier-Stokes equations with
ontrol of the velo
ity boundary values as well as to the ele
troosmoti
 mi
romixer with 
ontrol ofthe applied potential. In the �rst se
tion, a 
omparison of the adjoint- and sensitivity-based 
ontrolmethod is adapted to the Navier-Stokes equations using the well-known optimisation problem ofvortex redu
tion behind a ba
kward fa
ing step. This model problem serves as feasibility studyfor the presented te
hniques and provides the way to more physi
al related problems. Se
tion 6.2
ontains an extension to the simulation of the basis ele
troosmoti
 mi
romixer as presented in[10, 11℄, while at last in Se
tion 6.3 this setting is additionally aimed to be optimised.
6.1 Vortex Redu
tion Behind a Ba
kward Fa
ing StepWe 
onsider the 
ontrol of a ba
kward fa
ing step �ow as model problem for the adjoint- andsensitivity-based approa
h in optimisation � the used 
omputational domain Ω is presented in theAppendix, for results of the two-dimensional 
ase see [87℄. The �ow �eld within Ω is des
ribedby the instationary three-dimensional Navier-Stokes equations with suitable boundary 
onditions,

Figure 6.1: Startsolution v0 at t = 1 (left) and un
ontrolled solution at t = 4.5 (right) for optimisation ofba
kward fa
ing step example showing the absolute velo
ity and streamlines within 
utplane
z = 0.5.
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zFigure 6.2: S
hemati
 illustration of boundary 
ontrol c on upper part of the ba
k wall � allowed variationof angle θ(t) and amplitude A(t) for paraboli
 in�ow pro�le are shown.namely

Re [∂tv + (v · ∇)v] −∆v +∇p = 0 in Ω× (0, T ),

∇ · v = 0 in Ω× (0, T ),

v = 0 on Γ0 × (0, T ),

v = c on Γc × (0, T ),

v = vin on Γin × (0, T ),

∂nv − pn = 0 on Γout × (0, T ),

v(·, 0) = v0 in Ω.The boundary ∂Ω is separated into disjoint parts: the 
hannel walls Γ0 where a no slip 
onditionis assumed, the in�ow and out�ow boundary Γin, Γout and the boundary where a 
ontrol ispossible. In�ow and out�ow boundary 
onditions are dis
ussed in Se
tion 2.2.3, here we use asteady paraboli
 in�ow pro�le vin in 
ombination with the do-nothing out�ow 
ondition. As
ontrol boundary, the upper part of the ba
k wall Γc = [2, 2]× [ 23 , 1]× [0, 1] is 
hosen. Furthermore,the startsolution v0 of the velo
ity �eld is determined by simulation of the system without 
ontrolfor t ∈ [0, 1] � see left plot in Figure 6.1. Hen
e, the 
ontrol appears delayed but a�e
ts the �ow�eld right before the vortex behind the step develops, i.e. we investigate the optimisation withinthe time interval t ∈ [1, 5] whi
h, for the sake of simpli
ity, is shifted and denoted by [0, T ].Spe
i�
 kind of 
ontrol depends on the optimisation approa
h. For the adjoint-based optimi-sation we assume that c ∈ L2(0, T ;L2(Γc)) and the �rst-order optimality 
onditions based on theadjoint equations are already stated in Chapter 2.3.2. We only re
all the 
ost fun
tional used inthe sequel as
min
v,c

Ja(v, c) =
1

2

T∫

0





∫

Ωs

|v − vd|2 dx+ λ

∫

Γc

c2 ds



 dt, (6.1)i.e. we aim at a redu
tion of the re
ir
ulation behind the step by minimising the L2-di�eren
e ofvelo
ity �eld to a given vd ∈ L2(Ω). Here Ωs ⊂ Ω denotes the observation area whi
h is lo
ated tomeasure the re
ir
ulation behind step, in parti
ular Ωs = [2, 5]× [0, 1]× [0, 1]. The desired �ow �eld
vd is 
hosen to be the solution of the stationary Stokes equations at Reynolds number Re = 200.We 
ompare the adjoint-based approa
h as given by the system (2.40), (2.41) and (2.42) to thesensitivity-based optimisation. To this, we de�ne the 
ontrol a
ting on Γc by an in�ow streammodelled via a paraboli
 pro�le to imitate a �ow similar to the Poiseuille �ow. Using the spatial
onstant fun
tion (y1 = 2

3 , y2 = 1, z1 = 0, z2 = 1) de�ned on Γc

f(y, z) = (y2 − y)(y − y1)(
y2 − y1

2
)−2(z2 − z)(z − z1)(

z2 − z1
2

)−2,we set the orientation θ(t) and amplitude A(t) of the stream by (see Figure 6.2 for a s
hemati
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v0|Γc = A(t) cos(θ(t))f(y, z),

v1|Γc = −A(t) sin(θ(t))f(y, z),
v2|Γc = 0.

(6.2)The time dependent angle θ(t) and amplitude A(t) are des
ribed by a polynomial ansatz
A(t) =

n∑

k=0

αkt
k, θ(t) =

n∑

k=0

βkt
k,with design parameters αk and βk su
h that the sensitivity-based optimisation relies on 2(n + 1)variables. This 
hoi
e is motivated by the results of the two-dimensional problem presented in[87℄ and the fa
t that at least a 
onstant 
o-in�ow should redu
e the re
ir
ulation area. The 
ostfun
tional in this 
ase is given as before but with a modi�ed part for the 
ontrol

min
v,αk,βk

Js(v, αk, βk) =
1

2

T∫

0

∫

Ωs

|v − vd|2 dx dt+
λ

2

n∑

k=0

(
|αk|2 + |βk|2

)
. (6.3)Computation of the gradient and sensitivity equations are in general presented in (2.47), (2.48)and read in the 
on
rete 
ase for αk, βk, k = 0, . . . , n

DJs
Dαk

= λαk +

T∫

0

∫

Ωs

(v − vd)vαk
dx dt,

DJs
Dβk

= λβk +

T∫

0

∫

Ωs

(v − vd)vβk
dx dt,with the sensitivities vαk

= Dv

Dαk
and vβk

= Dv

Dβk
given by (2.48). Only the boundary 
onditionsfor vαk

and vβk
on Γc need to be adapted to the partial derivatives of (6.2), i.e.

vαk,0|Γc = tk cos(θ(t))f(y, z)

vαk,1|Γc = −tk sin(θ(t))f(y, z)
vαk,2|Γc = 0

vβk,0|Γc = −tkA(t) sin(θ(t))f(y, z)
vβk,1|Γc = −tkA(t) cos(θ(t))f(y, z)
vβk,2|Γc = 0.Figure 6.3 shows the results of optimisation where we denote by 
osts the evolution of 
ostfun
tional Ja(v, c) resp. Js(v, αk, βk). Sin
e the 
ost fun
tional (6.3) does not 
ontain an expli
ittime dependent part for the 
ontrol, we uniformly distribute the 
osts related to the 
ontrol by

Js(v, αk, βk) =
1

2

T∫

0





∫

Ωs

|v − vd|2 dx+
λ

T

n∑

k=0

(
|αk|2 + |βk|2

)



 dt (6.4)to get an evolution of the 
ostfun
tional that 
an dire
tly be 
ompared to (6.1). For the adjoint-based approa
h we use the regularisation λ = 10−1 while for the sensitivity-based approa
h λ =
10−2 is su�
ient. The Reynolds number is in all 
ases Re = 200. The iteration of optimisationAlgorithm 6 in 
ombination with the S
heme 5.1 is stopped if the ℓ2 di�eren
e of two su

essiveiterates is less than 10−3 or if the step length within line-sear
h step is less than 10−6. In 
omparisonto the un
ontrolled 
ase, we see that both optimisation approa
hes result in nearly 
onstant valuesfor the 
ost fun
tional indi
ating that the development of the vortex behind the step is redu
ed.



122 NUMERICAL RESULTS

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

co
st

s

time

uncontrolled solution
adjoint-based solution

sensitivity-based solution

Figure 6.3: Evolution of 
ost fun
tional Ja(v, c) resp. Js(v, αk, βk) for the three-dimensional ba
kwardfa
ing step problem 
ompared to un
ontrolled 
ase.Only for t > 4.0 we have an in
reasing 
ost fun
tional, whi
h espe
ially for the sensitivity-basedapproa
h 
an be explained by the fa
t that no spe
ial term at t = T has been used within the 
ostfun
tionals (6.1) and (6.4). For both 
ontrolled solutions, one furthermore observes a straight jumpof 
osts in the beginning whi
h is not present for the un
ontrolled solution. This jump is relatedto the fa
t that the initial �ow �eld v0 is not 
ontrolled and therefore a dis
ontinuous boundary
ontrol appears within the �rst timestep yielding a noti
eable 
hange of the �ow �eld. At a �rstglan
e, Figure 6.3 suggests that the gain whi
h 
an be a
hieved by the adjoint-based approa
h
ompared to the sensitivity-based approa
h seems to be of minor importan
e sin
e both result ina 
omparable evolution of the 
ost fun
tional. Additionally, it remains to interpret the resultingboundary 
ontrol by the adjoint-based method in terms of a physi
al feasibility.To obtain an insight in the physi
al relevan
e of the adjoint-based solution, we plot in Figure6.4 the �ow �eld of the 
ontrolled, the un
ontrolled and the desired 
ase within the 
hannel mid-height z = 0.5 at t = 4.5. For the un
ontrolled Navier-Stokes �ow, a re-atta
hment point of x ≈ 5
an be found while this point is shifted to x ≈ 2.8 for the adjoint-based optimisation. Also, thesensitivity-based solution shows a smaller re
ir
ulation area behind the step and the desired even�ow �eld appears from x ≈ 3.5 on. Although the adjoint-based optimisation approa
h allowsmu
h more degrees of freedom to 
ontrol the �ow �eld, the resulting solution is not signi�
antlyimproved 
ompared to the more physi
ally motivated sensitivity-based approa
h. The vortexbehind the step indu
ed by the main �ow stream is in both 
ases minimised by an additionalin�ow that is dire
ted in negative y-dire
tion. Figure 6.5 shows the boundary 
ontrol at t = 4.5for both optimisation approa
hes. On the one hand, one 
an 
learly see the paraboli
 pro�le ofx- and y-velo
ity 
omponents in the sensitivity-based 
ase. The optimal design parameter αk, βkare given as α0 = 1.58, α1 = −0.16, β0 = 0.29, β1 = 0.13, i.e. the amplitude A(t) slightlyde
reases from 1.58 in the beginning to 0.94 at t = 5 while the angle θ(t) in
reases from 17◦ to 47◦.On the other hand, the boundary 
ontrol given by the adjoint-based optimisation shows a mu
hmore 
omplex appearan
e. First the 
ontrol of z-velo
ity 
omponent v2 on Γc turns out to be ofminor importan
e. The main 
hara
teristi
s of optimal 
ontrol are given by a sharp in�ow rightbelow the step that redu
es with de
reasing y-dire
tion � a pro�le that seems questionable to berealised within a 
on
rete physi
al setting. At least the tenden
y of positive x-velo
ity indi
atingan inje
tion and negative y-velo
ity to suppress the development of the re
ir
ulation area 
an befound in a

ordan
e to the sensitivity-based solution.To summarise, it appears that both optimisation approa
hes result in a redu
tion of re
ir
ula-tion area behind the step. Although the adjoint-based solution performs slightly better in terms
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Figure 6.4: Desired �ow �eld (top), un
ontrolled Navier-Stokes �ow (se
ond), �ow 
ontrolled by adjointapproa
h (third) and �ow 
ontrolled by sensitivity approa
h (bottom) showing the absolutevelo
ity and streamlines within 
utplane z = 0.5 at time t = 4.5.
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Figure 6.5: Control boundary values on Γc at time t = 4.5 given by adjoint-based optimisation (top)and sensitivity-based optimisation (bottom) � x-, y- and z-velo
ity 
omponents and resultingve
tor �eld are plotted.
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Figure 6.6: Simulation of 
on
entration distribution within the 
hannel during the in�ow phase with apure pressure-driven �ow � top at t = 10 and t = 20, bottom at t = 30 and t = 37.of 
ost fun
tional evolution, the sensitivity-based solution seems physi
ally more relevant. Fromthe 
omputational point of view both approa
hes have quite di�erent requirements. While forthe adjoint-based approa
h, we only need to solve one linear equation to get the gradient of the
ost fun
tional (see Chapter 5.1), the sensitivity-based approa
h in this example requires to solve4 linear equations for the design parameters αk, βk. Sin
e the optimisation algorithm in both
ases nearly uses the same number of iterations (step-length sear
hes and LBFGS updates), oneroughly gets on the one hand a slowdown fa
tor of four when the sensitivity-based optimisationis used. On the other hand, the requirements of 
ode restru
turing is mu
h more involved forthe adjoint-based approa
h than for the sensitivity-based approa
h. The very tight 
oupling ofprimal and adjoint equations, espe
ially in the 
ase of instationary problems, is already addressedin Chapter 5.2 where a solution for the ba
kup of the primal equation is presented. In the 
aseof sensitivity-based optimisation, this di�
ulty 
ompletely vanishes sin
e the 
omputation of allsensitivities 
an be done while the primal solver pro
eeds forward in time. Finally, the 
hoi
e ofsuitable optimisation approa
h should rely on the available 
omputational resour
es (both softwareand hardware) but even more on a physi
ally meaningful formulation of the optimisation problem.The adjoint-based optimisation obviously results in a boundary 
ontrol that is di�
ult to realise ina physi
al setting but illustrates the main idea how the 
ontrol should be applied. Afterwards thisinformation 
an be used to formulate the more physi
ally motivated sensitivity-based optimisationhaving a good guess for the design parameter at hand.6.2 Simulation of Fluid Flow in a Twi
e-Folded Mi
ro
hannelBefore we address the optimisation of the ele
trokineti
 mi
romixer that was introdu
ed in Chapter1, we �rst 
ompare our simulation results to the ones of Barz et al. in [10, 11℄. We extend thepressure-driven laminar �ow with mass transport as reported in [10℄ and with the ele
tri
ally



126 NUMERICAL RESULTS

Figure 6.7: Idealised initial 
ondition for the 
on
entration distribution within the 
hannel.ex
ited �ow as in [11℄. Furthermore, the geometry is slightly di�erent. Barz et al. used sharp
orners, simplifying the generation of the numeri
al mesh 
onsiderably, instead of the rounded
orners resulting from the manufa
turing pro
ess, as used here (see Appendix). Also a remark onthe initial 
ondition for the 
on
entration has to be made beforehand. In a stri
t physi
al settingone should assume the 
hannel to be �lled in the beginning, i.e. at t = 0, with only one of thetwo liquids. A simulation of the in�ow phase within the interval t ∈ [0, 37] is shown in Figure6.6 by some snapshots indi
ating the 
on
entration front that propagates through the 
hannel.While the pressure-driven �ow �eld is fully developed within only a few timesteps, the propagationof the 
on
entration of the spe
ies/dye takes longer. Using the super
omputer JUROPA hostedat the Fors
hungszentrum Jüli
h (
f. Chapter 4.3.4) with 512 pro
esses, the simulation of thisin�ow phase takes about 12 hours (at a spatial dis
retisation of 2.8 · 106 degrees of freedom) andtherewith rea
hes the bat
h job limit of maximal wall
lo
ktime. As one 
an see in Figure 6.6 evenat t = 37 the 
on
entration is not fully developed within the 
hannel. To over
ome this physi
ally
orre
t but time 
onsuming simulation, we use an idealised initial 
ondition for the 
on
entrationas shown in Figure 6.7, namely an idealised distribution of both liquids without any mixture alongthe 
hannel. This simpli�
ation allows a faster 
omputation and is at least for the steady statesolution (t→∞) of minor 
on
ern. But for the results in a 
ertain window t ∈ [0, tcrit] one has tobe aware of the in�uen
e of the physi
ally idealised initial 
ondition.The setting remains as introdu
ed in Chapter 2, i.e. we solve the Navier-Stokes equations
ombined with the 
onve
tion-di�usion equation (2.15) and an applied 
onstant potential di�eren
e
∆φ 6= 0 if an ele
tri
al ex
itation is under investigation. The boundary 
onditions for the Navier-Stokes equations are given by a no slip 
ondition v = 0 on the 
hannel walls Γ0 whenever thepotential di�eren
e vanishes � this 
orresponds to the setting in [10℄. For a non-vanishing potentialdi�eren
e, i.e. if an ele
tri
al �eld is applied, the transition 
ondition of velo
ity �eld between bulksolution and EDL on Γ0 is implemented by the slip 
ondition as presented in Chapter 2.2.3. In�owand out�ow 
onditions are implemented by the pressure drop formulation (see Chapter 2.2.3) su
hthat the mean in�ow velo
ity is v0 = 9.1 · 10−4m

s 
orresponding to a Reynolds number Re = 0.1 �this 
orrelates to the setting in [11℄.At the in�ow se
tion of the boundary, the 
on
entration has given Diri
hlet values c = 1 for
y < 0 and c = 0 for y ≥ 0 to mimi
 the upstream Y-jun
tion of the mi
ro�uidi
 
hip (see Figure1.1). At the out�ow se
tion and at the 
hannel walls resp. at the interfa
e to EDL Γ0 a vanishing�ux is used, i.e. ∂nc = 0. The di�usion 
oe�
ient of the 
on
entration �eld is reported in [10℄ tobe D = 4.27 · 10−10m2

s resulting in a S
hmidt number of Sc = 2340. Furthermore, the potentialdi�eren
e a
ross the 
omputational domain is estimated in [11℄ to be ∆ϕ = 47V whi
h 
orrelates toan approximate ele
tri
al �eld of Ex ≈ ±14.68 V
mm . Here, we only use the situation of a negativelydire
ted ele
tri
al �eld resulting in an ele
troosmoti
 �ow dire
ted against the pressure-driven �ow.In a �rst simulation, we use the stationary Navier-Stokes equations in 
ombination with the
onve
tion-di�usion equation to evaluate the steady state of possible mixing. Figure 6.8 shows the
on
entration �eld at di�erent height levels of the 
hannel when no potential di�eren
e is applied.
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Figure 6.8: Con
entration �eld at di�erent height levels (top z = −0.43, middle z = −0.32, bottom
z = 0.00) showing steady state solution of mixing for a three-dimensional Navier-Stokes �owat Re = 0.1 and Sc = 2340 without ele
tri
al �eld. Isolines indi
ate a 
on
entration of 0.4and 0.6.
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Figure 6.9: Streamlines of the ele
tri
ally ex
ited �uid �ow at the height level z = −0.43, top: leftmeasured and right simulated by Barz et al. [11℄, bottom: results by HiFlow2 using theparallel solver as presented in Chapter 4.One 
an see that even for very low �ow rates at Re = 0.1, i.e. a relative large residen
e time ofthe spe
ies enhan
ing mixing by di�usion, the out
ome is not optimal. A slightly better mixing isgiven near the 
hannel walls (upper two plots in Figure 6.8) 
ompared to mid-height of the 
hannelat z = 0.0 due to the mu
h slower �ow �eld within this region yielding a higher residen
e time.Typi
al Reynolds numbers in mi
ro�uidi
 appli
ations are rather of the order of 1, though. Hen
e,the residen
e time is even shorter underlining the need to improve mixing by other means, e.g. dueto the superimposition of an ele
troosmoti
 �ow.As a se
ond step, we 
ompare the resulting steady state �ow �elds (with non-vanishing 
onstantpotential di�eren
e ∆φ) within the lower U-bend of the mi
ro
hannel, i.e. x ≥ 8 in Figure 1 of theAppendix, to the measured and simulated results from Barz et al. [11℄. Figures 6.9, 6.10 and 6.11show the �ow �eld at spe
i�
 
onstant height levels z by means of streamlines. In ea
h Figure thetwo top plots are kindly provided by Dominik P. J. Barz showing the a) measured and b) simulatedresults as they are given in [11℄. The lower pi
tures are 
omputed by HiFlow2 using the presentedparallel solver of this thesis.The �ow �elds in Figure 6.9 at a height level of z = −0.43 show a more or less even streamline
on�guration indi
ating a quasi steady �ow. Due to the 
loseness to the bottom of the 
hannelat z = −0.5 the �ow within this region is dominated by the ele
troosmoti
 �ow dire
ted from theright to the left and there is no noti
eable in�uen
e of the pressure-driven �ow. Both simulatedsolutions are in very good agreement to the experimental results. At a slightly higher level of
z = −0.32, as shown in Figure 6.10, the mutual in�uen
e of pressure-driven �ow and oppositedire
ted ele
troosmoti
 �ow is 
onsiderably present. The �ow topology appears to be very 
omplex
ontaining several saddle points (S) and vorti
es (V). While the simulation using sharp 
orners(top right in Figure 6.10) shows two vorti
es separated by a saddle point lo
ated at ea
h innerbend, the modi�ed geometry with rounded 
orners shows only one vortex point as it is also presentin the experimental results. All other 
hara
teristi
s of the streamlines appear similar for the threeillustrations. In the mid-height of the 
hannel at z = 0.0, the pressure-driven �ow appears as themain �ow from the left to the right (Figure 6.11). Again a noti
eable di�eren
e in the simulatedresults is given at the inner bends � usage of rounded 
orners 
learly improves the agreementto the measured �ow �eld. To summarise, the simulation of ele
troosmoti
 �ow provides a very
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Figure 6.10: Streamlines of the ele
tri
ally ex
ited �uid �ow at the height level z = −0.32, top: leftmeasured and right simulated by Barz et al. [11℄, bottom: results by HiFlow2 using theparallel solver as presented in Chapter 4.

Figure 6.11: Streamlines of the ele
tri
ally ex
ited �uid �ow at the height level z = 0.00, top: leftmeasured and right simulated by Barz et al. [11℄, bottom: results by HiFlow2 using theparallel solver as presented in Chapter 4.
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ation of thegeometry. The presen
e of both, pressure-driven �ow and ele
troosmoti
 �ow, features a very
omplex �ow topology that should be appropriate for the task of mixing by in
reasing the 
onta
tarea of the two liquids. It remains to judge the quality of mixing and if ne
essary to improve themixing by temporal alteration of the potential di�eren
e ∆φ.We �nally aim at solving the full three-dimensional system with a pressure-driven base �owand an additional ele
troosmoti
 �ow in 
ombination with the 
onve
tion-di�usion equation forthe spe
ies 
on
entration to evaluate the in�uen
e on mixing quality a

ording to Figure 6.8. Itturns out that the simulation of the steady state, i.e. using a stationary solver, at S
hmidt number
Sc = 2340 leads to numeri
al instabilities due to the 
ompli
ated �ow �eld and limited meshre�nement 
apabilities. Even the attempt to solve the instationary system was not su

essful �espe
ially within the top and bottom region of the 
hannel, we en
ounter numeri
al instabilitiesdue to the interferen
e of pressure-driven and ele
troosmoti
 �ow (see in�ow area of the 
hannelin Figure 6.12). A limitation to S
hmidt number Sc = 450 and 
orresponding di�usion 
oe�
ient
D = 2 · 10−9m2/s gives more stable results but the 
on
entration also obviously shows a bettermixing su
h that any optimisation is not worth dis
ussing.Based on the dimensionless parameter Re = 0.1 and Sc = 2340, we get the dimensionlessdi�usion 
oe�
ient D = 1/(Re · Sc) = 1/234 su
h that a suitable mesh size 
an roughly beestimated by the (mesh) Pe
let number. Requiring that Pe = v0h/D < 1 and assuming at leasta mean velo
ity of 1, we have that h < 1/234 ≈ 0.004 for the maximal size of a 
ell in the mesh.Realisation of su
h a �ne mesh in 3D is beyond the a
tual 
omputational 
apabilities a

essiblefor this work. Hen
e, we 
on
entrate in a �rst step on the 2D implementation of the optimisationfor ele
trokineti
 mi
romixer and have to fa
e the very 
hallenging problem in three dimensionsin a future work. This work will be 
ontinued using modi�ed algebrai
 solvers for very large HPCplatforms (see also 
on
lusion of Chapter 4) as well as dis
retisation s
hemes using stabilisationmethods for the 
onve
tion dominated �ow and possibly adaptive re�ned �nite element meshes.6.3 Optimisation of an Ele
trokineti
 Mi
romixerAs mentioned in the last se
tion, the optimisation of a full three-dimensional ele
trokineti
 mi-
romixer is beyond the 
omputational 
apabilities of available hardware. Therefore, we investigatethe fundamental pro
edure for the two-dimensional 
ase and address the question whether theresults 
an be transfered to the three-dimensional 
ase. Figure 6.13 shows the streamlines of theele
tri
ally ex
ited �ow �elds in both two- and three-dimensional 
ase as presented in the previ-ous se
tion for di�erent Reynolds numbers. It is obvious that the two-dimensional approximationreveals a qualitatively good approximation for the 
hannel mid-height. Hen
e, at least for the mid-height of the 
hannel at z = 0.0, where the in�uen
e of the ele
tri
al double layer lo
ated at thetop and bottom of the 
hannel is not dominating, we 
an interpret the results of two-dimensionalsimulation/optimisation also for the three-dimensional 
ase.In addition to the previous se
tion, we also use a Reynolds number of Re = 1.0 for the opti-misation sin
e su
h a �ow regime is more realisti
 in terms of mi
ro�uidi
 appli
ations. Whereasthe �ow �eld situation for Re = 0.1 and Re = 1.0 shows no signi�
ant di�eren
e (
f. Figure 6.13),the latter setting results in a lower residen
e time of a spe
ies within the 
hannel su
h that a purepressure-driven �ow will not result in su�
ient mixing (
f. Figure 6.14). Like in the 
omparisonof the streamlines, we see that the resulting 
on
entration at Re = 0.1 for the two-dimensional
ase (upper plot in Figure 6.14) is in a good agreement to the mid-height 
utplane of the three-dimensional 
ase (lower plot in Figure 6.8). An additional bene�t of higher Reynolds numbers andshorter residen
e times is the better justi�
ation of the idealised initial 
ondition of 
on
entrationgiven in Figure 6.7 whi
h is similar to the steady state solution of pressure-driven �ow in lowerplot of Figure 6.14.To judge the mixing of 
on
entration, we need to de�ne a measure that also will be used as 
ostfun
tional for optimisation. Sin
e a satisfying mixing is obviously obtained when the 
on
entration
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Figure 6.12: Con
entration �eld at di�erent height levels (top z = −0.43, middle z = −0.32, bottom
z = 0.00) and at t = 10.6 for a three-dimensional Navier-Stokes �ow at Re = 0.1 and
Sc = 2340 within an ele
tri
ally ex
ited �uid �ow. Isolines indi
ate a 
on
entration of 0.4and 0.6.
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Figure 6.13: Left 
olumn: streamlines of the ele
tri
ally ex
ited �uid �ow at the height level z = 0.00using 3D simulation at Reynolds number Re = 0.1 (top) and Re = 1.0 (bottom). Right
olumn: streamlines of the ele
tri
ally ex
ited �uid �ow using 2D simulation at Reynoldsnumber Re = 0.1 (top) and Re = 1.0 (bottom).
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Figure 6.14: Steady state solution of the 
on
entration �eld for a two-dimensional Navier-Stokes �ow at
Re = 0.1 (top), Re = 1.0 (bottom) and Sc = 2340 without ele
tri
al �eld. Isolines indi
atea 
on
entration of 0.4 and 0.6.

is ∼ 0.5, a possible measures is given by the L2 di�eren
e in Ωs, i.e.
J1(c) =

∫

Ωs

|c− 0.5|2 dx (6.5)or by the fra
tion of una

eptable 
on
entration
J2(c) =

1

|Ωs|

∫

Ωs

χ(c) dx, χ(c) =

{

0 if c(x) ∈ [0.5− ǫ, 0.5 + ǫ]

1 else (6.6)where Ωs ⊂ Ω denotes the observation area of interest and ǫ determines an a

eptable varian
e forwhi
h 0.1 is used in the following. Ωs is 
hosen to be the out�ow se
tion of the 
hannel, namelythe straight part at x ≥ 11.65 (
f. Appendix). For an ideal mixing both J1(c) and J2(c) should bezero.The dimensionless system of partial di�erential equations des
ribing the bulk �ow within theele
trokineti
 mi
romixer is given by (2.49). Boundary 
onditions are already dis
ussed in detailin Chapter 2.2. As in the simulation before, we use the pressure drop formulation for the velo
ity�eld, where the pressure di�eren
e between in�ow and out�ow boundary is adjusted su
h that thedimensionless mean velo
ity v0 equals 1 to ensure the 
orre
t Reynolds number. In parti
ular weuse the following set of boundary 
onditions for the optimisation of the ele
trokineti
 mi
romixer
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v|Γ0

= −Π2∇φ, ∂nv|Γin∪Γout = 0, p|Γin = 304.2,

p|Γout = Pout = 0, φ|Γin = 0, φ|Γout = φc(t, αk),

∂nφΓ0
= 0, c|Γin =

{

0 if y ≥ 0

1 if y < 0
, ∂nc|Γ0∪Γout = 0.

(6.7)The 
ontrol of applied potential at Γout is given by an analyti
al fun
tion involving the de-sign/optimisation parameter αk to des
ribe the temporal modi�
ations.Before any de�nite fun
tion for the applied potential φc(t, αk) is set, one should observe themixing for the pure pressure-driven �ow as well as for the 
ase of a 
onstant and an alternating po-tential as reported in [11℄. Hen
e, we �rst evaluate the evolution of the 
ost fun
tionals (6.5), (6.6)using four �xed 
ases:1. only pressure-driven �ow, i.e. φ(t)|Γout = 0,2. 
onstant applied potential, i.e. φ(t)|Γout = 1,3. re
tangular alternating potential with period t = 10 and φ(t)|Γout = −1 ∨ 1,4. re
tangular alternating potential with period t = 10 and φ(t)|Γout = 0 ∨ 1.The results are shown in Figures 6.15 and 6.16 for Re = 0.1 and Re = 1.0. A �rst observation
an be made for the pure pressure-driven �ow: after a 
ertain time tdiff a steady state for the
on
entration �eld is given (
f. also Figure 6.14). The time tdiff 
an be interpreted as di�usiontime of the underlying system. Depending on the Reynolds number and therefore on the residen
etime of a spe
ies within the mi
ro
hannel, we have tdiff ∼ 40 for Re = 0.1 and tdiff ∼ 25 for
Re = 1.0 whi
h obviously results in an in
reasing value for the 
ostfun
tionals as the Reynoldsnumber in
reases. For the 
ases of a non-vanishing applied potential one has to distinguish the
onstant potential and the alternating potential. The �rst one indu
es a steady �ow �eld (
f. Figure6.13) whi
h for t → ∞ gives a steady state of 
on
entration �eld. Using a stationary solver, wedetermine the limits of 
ost fun
tionals to be J1(c) = 1.3 · 10−4, J2(c) = 0.0 for Re = 0.1 and
J1(c) = 0.11, J2(c) = 0.82 for Re = 1.0. Thus, for low Reynolds number a 
omplete mixing 
anbe a
hieved at least for t→∞ while for in
reasing Reynolds number the mixing gets worse due toa lower residen
e time of the spe
ies within the mi
ro
hannel.Both 
ases of an alternating applied potential result in a periodi
 solution. The limit of the
ostfun
tionals 
an only be given by a mean value for the 
ase of applied potential φ(t)|Γout = −1∨1while for the fourth 
ase, i.e. φ(t)|Γout = 0 ∨ 1, the 
ostfun
tional seems to tend to the same limitas for the 
onstant applied potential. This behaviour 
an be explained by the fa
t that whenever
φ(t)|Γout < 0 the ele
troosmoti
 �ow is dire
ted aligned to the pressure-driven �ow. Therefore, theresiden
e time of a spe
ies is even smaller than for the pure pressure-driven �ow whi
h degradesthe mixing indu
ed by the previously opposite dire
ted ele
troosmoti
 �ow. For the alternatingpotential that is non-negative one does not obtain this e�e
t. Here, the phase of φ(t)|Γout = 0 onlydelays the mixing sin
e within this phase the a
tual distribution of 
on
entration �eld is transportedlike for the pure pressure-driven �ow. Figure 6.17 shows a snapshot of the 
on
entration �eld at
t = 96 and at Re = 1.0 using a 
onstant and an alternating applied potential. One 
an see thehomogenous mixing in the 
onstant 
ase due to the steady �ow �eld. The alternating potentialsindu
e a mu
h more 
omplex �ow �eld that is not ne
essarily well suited for a better mixing � atleast within a long term observation.Finally, a 
omparison of the two used 
ost fun
tionals in Figures 6.15 and 6.16 indi
ates thatboth are equally suitable to evaluate the mixing of spe
ies 
on
entration. While the L2 di�eren
eused for J1(c) weights the varian
e of 
on
entration �eld to desired value of 0.5 in a smoothmanner, the 
ost fun
tional J2(c) is more restri
tive in this sense. Hen
e, if for any reason amixing of spe
ies within the interval c ∈ [0.4, 0.6] is 
ru
ial for the entire mi
ro�uidi
 setting onthe 
hip (e.g. to start a 
hemi
al rea
tion), one should better use the 
ost fun
tional J2(c). Ifthe general possibility of mixing should be observed it is however also warrantable to use the 
ostfun
tional J1(c). To summarise, three major results are given by the simulations: for t → ∞
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Figure 6.17: Con
entration distribution for a two-dimensional ele
tri
ally ex
ited �ow at Re = 1.0 and
Sc = 2340. Solution at t = 96 for 
onstant applied potential (top), alternating appliedpotential φ(t)|Γout = −1 ∨ 1 (middle) and φ(t)|Γout = 0 ∨ 1 (bottom).
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Figure 6.18: Con
entration distribution for a two-dimensional �ow at Re = 1.0 and Sc = 2340. Solutionat t = 30 for the pure pressure-driven �ow (top) and for the optimal ele
tri
ally ex
ited�ow using φ2(t, ω, h) (bottom).a 
onstant applied potential gives the best mixing, for short time observations the alternatingpotential attains a more favourable mixing and �nally the mixing at small temporal horizon ismu
h more involved the bigger the Reynolds number is.We 
on
lusively aim at optimisation of the ele
troosmoti
 mi
romixer by means of minimisingthe 
ost fun
tional J1(c, αk). Sin
e a fast and homogeneous mixing of spe
ies is aimed for, wefurthermore restri
t the observed time interval to t ∈ [0, 30]. Within this interval, the overallde
rease of the 
ost fun
tional for all four simulated 
ases is 
omparable (see Figures 6.15 and 6.16)su
h that a demand for an optimisation is given. The optimisation problem of the ele
trokineti
mi
romixer involving the design parameters αk is stated as
min
c,αk

J(c, αk) =
1

2

T∫

0

∫

Ωs

|c− 0.5|2 dx dt+
λ

2

n∑

k=0

|αk|2 (6.8)su
h that the system (2.49) with boundary 
onditions (6.7) is ful�lled. We 
ompare the optimalparameter settings to the results obtained by the alternating applied potential φ(t)|Γout = 0∨1 witha period of t = 10 � see Figure 6.19. Motivated by the simulation results, we 
hose two di�erentpossibilities for the applied potential φc(t, αk) to 
he
k the in�uen
e of time dependent alteration.First a smooth applied potential des
ribed by the sinus fun
tion is used that also in
orporates a
onstant term, namely
φ1(t, αk)|Γout = α0 + α1 sin(α2t).The optimal design parameter for Re = 0.1 are given by α0 = 0.0366, α1 = 1.4518, α2 = 1.3256showing an alternating potential with a period of t = 4.74 and a nearly negligible 
onstant o�set.For the optimisation at Re = 1.0 the optimal parameter are 
omparable: the 
onstant o�set iseven less (α0 = 0.0184) while the amplitude is slightly higher (α1 = 1.4761) at a similar frequen
yof α2 = 1.3183 respe
tively a period of t = 4.76. Compared to the simulation results (see Figure
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140 NUMERICAL RESULTS6.19), the halved period results espe
ially for Re = 1.0 in a visible bene�t. With the frequen
y ofthe alternating potential that optimises the mixing (ω = 1.33), we se
ondly 
hose a Fourier series
φ(t, αk)|Γout =

α0

2
+

n∑

k=1

αk cos(kωt) +

2n∑

k=n+1

αk sin((k − n)ωt)with n = 2 as 
ontrol fun
tion to get a deeper insight on the weights of alternating and 
onstantterms. However, this does not give any additional bene�t, i.e. the optimisation algorithm doesnot result in a remarkable update due to very short step-length and small gradients showing thatthe frequen
y is optimal. Finally, the re
tangular applied potential is optimised for the frequen
y
α0 := ω and amplitude α1 := h whi
h 
an formally be written as

φ2(t, ω, h)|Γout =
4h

π

∞∑

k=1

sin((2k − 1)ωt)

2k − 1The partial derivatives with respe
t to ω and h have to be evaluated for the sensitivity-basedoptimisation. For the frequen
y ω this gives a possibly non-
onvergent series
∂φ2(t, ω, h)

∂ω
=

4ht

π

∞∑

k=1

cos((2k − 1)ωt).In order to still treat this ansatz, we restri
t to the �rst ten terms of the series approximating there
tangular shape by a smooth fun
tion. Again for both Reynolds numbers we �nd very similarresults. An optimal amplitude of h ∼ 1.49 and a frequen
y of ω ∼ 1.309 are in nearly perfe
ta

ordan
e to the previous results of φ1(t, αk). Nevertheless, the 
hange from smooth fun
tion to
lear swit
hing of the applied potential results in a distin
t gain in the evolution of 
ost fun
tional(
f. Figure 6.19) and a noti
eable better mixing 
ompared to the pure pressure-driven �ow withinthe mi
ro
hannel (
f. Figure 6.19).A last remark has to be made on the 
onvergen
e of the optimisation algorithm. For one thing,smooth fun
tions (as φ1(t, αk) and also tested polynomial ansatz) give a steady redu
tion for the
ost fun
tional within 4 − 6 LBFGS iterations while for the 
ase φ2(t, αk) only 1 or 2 iterationswere su

essful. For another thing, optimisation at Reynolds number Re = 0.1 turns out to besomewhat more sensitive than at Re = 1.0, i.e. the line-sear
h within the optimisation algorithmmore often gets suitable step-lengths. Espe
ially the optimisation of the frequen
y ω in this 
aseis very di�
ult and a good initial guess is 
ru
ial. Su
h a behaviour illustrates the di�
ulty in
hoosing suitable design parameters 
ombined with an analyti
al fun
tion to des
ribe the 
ontrolwhenever the sensitivity-based optimisation is used. Therefore, an optimisation based on theadjoint equations will be an obvious future work, being aware of the fa
t that the results mightnot dire
tly be physi
ally meaningful as for the previous optimisation of vortex redu
tion behinda ba
kward fa
ing step, but should give a more pre
isely knowledge of the 
ontrol 
apabilities forthe ele
troosmoti
 mi
romixer.



Chapter 7Summary and OutlookIn this thesis, we investigate the simulation and optimisation of several �uid �ow problems withinmi
ro
hannels with fo
us on the homogeneous and fast mixing of two liquids. This pro
ess is 
ru
ialto ful�ll the lab-on-a-
hip 
on
ept and serves as a prototype for several (bio)
hemi
al me
hanismsinvolving di�erent spe
ies. For pure pressure-driven �ows of an in
ompressible Newtonian �uid,we derive the Navier-Stokes equations des
ribing the velo
ity and pressure �eld in the 
hannel. A
onve
tion-di�usion equation is used to determine the distribution of spe
ies 
on
entration. Sin
ethe optimisation of mixing is addressed by an indu
ed se
ondary �ow using the ele
trokineti
properties of a �uid in 
onta
t with an ele
tri
ally 
harged surfa
e, we need to further extend thegoverning equations by a model for the ele
tri
al double layer (EDL) near the 
hannel walls. Theout
ome of the method of mat
hed asymptoti
 expansions by Barz et al. [11℄ reveals a separationof the bulk �ow from that within the EDL and enables to 
apture the in�uen
e of the EDL bysuitable slip boundary 
onditions. Otherwise one would have to resolve the very thin boundarylayer leading to impra
ti
able �ne meshes and very large dis
rete systems. This approa
h wasalready used within several works that do not resolve the EDL. Nevertheless, for a future work adire
t 
omparison of the simulated �ow �eld with the resolved EDL to experimental data shouldbe 
ondu
ted in order to validate the asymptoti
 approa
h.Sin
e the Lapla
e equation des
ribing the potential within the �uid only 
ouples to the Navier-Stokes equations by the slip boundary 
ondition of velo
ity �eld and sin
e the 
onve
tion-di�usionequation 
an be treated totally self-
ontained on
e the velo
ity �eld is 
omputed, we redu
e theinvestigation on numeri
al solver and pre
onditioner to the dis
retised Navier-Stokes equationsonly. The presented �nite element framework and the algebrai
 pre
onditioners however also 
overthe remaining partial di�erential equations (PDE) and the 
omplete system. To obtain suitablepre
onditioners that mind the saddle-point stru
ture of the Navier-Stokes equations, we in
orporatethe Multilevel ILU pre
onditioner provided by ILU++ [112℄ to the �nite element solver pa
kageHiFlow2 [20℄ and 
he
k its 
apabilities for the 
onsidered mi
ro�ow problems. By appropriateprepro
essing of the system matrix and espe
ially by adjustment of the threshold used within thedropping rule of in
omplete LU-de
omposition, the ILU++ pre
onditioner appears to be by farsuperior to any ILU(p) version. These 
onvin
ing results for the sequential pre
onditioner needthen to be transfered to a parallel framework to be able to solve three-dimensional problems inreasonable time. To this, we use a domain de
omposition method based on a non-overlappingpartition of the �nite element mesh. The question arises whi
h parallel data stru
ture is well-suited to form a s
alable extension to the sequential Multilevel ILU pre
onditioner. We implementand 
ompare two possible parallel data stru
tures, namely a row blo
k distribution of data alongthe pro
esses and a distribution motivated by the S
hur 
omplement formulation. Both datastru
tures allow the usage of the sequential Multilevel ILU pre
onditioner lo
ally on ea
h pro
essto get a parallel pre
onditioner for iterative Krylov subspa
e methods. While for the row blo
kdistribution a Blo
k Ja
obian approa
h simply skips all entries in the system matrix that 
oupleseveral subdomains/pro
esses, the S
hur 
omplement approa
h redu
es the entire problem to asmaller one that is stated on the s
eleton degrees of freedom between the subdomains. For thestandard linear algebrai
 operations we �nd a similar s
alability for both versions with a slightadvantage for the purely lo
al de�ned S
hur 
omplement data stru
ture. The resulting parallel
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onditioners allow for a variety of parameter to be set and show, on the one hand, that the S
hur
omplement approa
h possesses some gainful properties to signi�
antly redu
e the number of globalKrylov subspa
e iterations. On the other hand, we also see that there is a high sensitivity on 
hosenparameters and that the pre
onditioner is not un
onditionally robust to arithmeti
 over- and/orunder�ows. In 
ontrast to the linear algebrai
 operations, the absolute time to solve a linear systemdoes not show a very good s
alability. The essential drawba
ks of both parallel pre
onditionersare obvious. For the Blo
k Ja
obian approa
h, too many 
ouplings within the system matrix areskipped when the number of pro
esses in
reases and therefore the pre
onditioner 
omes 
loser tothe identity. For the S
hur 
omplement approa
h, an in
reasing number of pro
esses leads to abad ratio of interior to s
eleton degrees of freedom su
h that the bene�t of mu
h smaller redu
edproblem vanishes. A future work within this dire
tion should investigate the prin
ipal limits ofs
alability whi
h are given by the fa
t that the system matrix is strongly 
oupled and 
annot beredu
ed.On
e the parallel solver and pre
onditioner is established, the simulation of �uid �ow withinmi
ro
hannels 
an be handled but the optimisation task still remains. The adjoint based optimi-sation of instationary problems owns some spe
ial features that have to be regarded within thesoftware design. It is important to note that the adjoint problem is indeed always linear but hasto be solved ba
kward-in-time. Furthermore, if the primal problem or the 
ost fun
tional is non-linear ea
h step of the adjoint solution is dire
tly 
oupled to the 
orresponding step of the primalone. This requires spe
ial ba
kup te
hniques of the primal solution whi
h might be very 
ostlyon high-performan
e 
omputing (HPC) systems due to in
reasing importan
e of data I/O. Theproposed new approa
h whi
h 
ombines parallel I/O te
hniques with 
he
kpointing s
hemes allowsa 
onsiderable redu
tion of storage amount and the related time for storage a

ess assuming anadequate trade o� in the 
ombination of both 
omponents. One should note that this approa
hdoes not take into a

ount the 
ase of an HPC platform with lo
al storage resour
es. An exten-sion of the derived s
heme towards an hybrid method is an obvious next step and should allow tosimultaneously ta
kle the issue of lo
al and global parallel I/O in the 
ontext of PDE-
onstrainedoptimisation.All parallel tools developed in this work are �nally su

essfully tested for the example of aba
kward fa
ing step �ow using a more a
ademi
 setting of tra
king type optimisation governedby the instationary three-dimensional Navier-Stokes equations. We �nd that the sensitivity-basedoptimisation approa
h yields slightly worse results than the adjoint-based approa
h that has mu
hmore degrees of freedom to be 
ontrolled. Espe
ially the physi
ally more reasonable 
hara
ter ofthe sensitivity-based approa
h motivates of using this one for the optimisation of ele
tri
ally ex-
ited mi
romixer as well. For the simulation of ele
tri
ally ex
ited �uid �ow, we are able to expandformer simulation results by Barz et al. [11℄. Meshes 
loser to the real geometry whi
h lead todis
rete systems of nearly three million degrees of freedom per timestep requiring the usage of de-veloped parallel solver/pre
onditioner with at least 512 pro
esses on the super
omputer JUROPA.Nevertheless, an extension of the ele
tri
ally ex
ited �uid �ow by a 
onve
tion-di�usion equationto des
ribe the mixing of spe
ies fails for the three-dimensional 
ase due to numeri
al instabilities
aused by a mesh that is still not �ne enough. A possible redu
tion of the S
hmidt number andtherefore higher di�usion avoids this problem but also 
hanges the physi
al situation. Alterna-tively, a further resear
h might address adaptively re�ned meshes and stabilisation te
hniques forthe 
onve
tion dominated transport pro
ess. Also, the repla
ement of the 
onve
tion-di�usionequation for the simulation of 
on
entration �eld of the spe
ies might be a solution. If a numeri
alsimulation of di�usion-free mass transport by means of parti
le tra
king is in a

ordan
e with thephysi
al problem, i.e. no di�usion of spe
ies 
an take pla
e, the distribution of spe
ies 
an alsosimply be obtained by integration of the parti
le traje
tory.However, two-dimensional simulations 
an be done on the a
tual 
omputational 
apabilitiesof available hardware showing that the velo
ity �eld of pure pressure-driven �ow and ele
tri
allyex
ited �ow is in good agreement to the mid-height level of a three-dimensional simulation. Hen
e,the optimisation of the ele
trokineti
 mi
romixer is 
arried out for the two-dimensional problem toget a �rst hint of the in�uen
e of the time-dependent applied potential on the quality of mixing.It turns out that the interpretation of mixing in terms of 
ost fun
tionals is di�
ult and thatthe results di�er signi�
antly for long term simulations. Additionally, a 
areful 
hoi
e of designparameters in 
ombination with an analyti
al fun
tion for the applied potential is not straight



143forward and needs already some experien
e e.g. by previous simulations. For the 
ase of �xedtime interval in whi
h an optimal mixing is aimed for, the best results are given by an alternatingapplied potential. In 
ontrast to a 
onstant applied potential indu
ing a steady ele
troosmoti
 �owthat is dire
ted oppositely to the pressure-driven �ow, this approa
h indu
es a mu
h more 
omplex�ow �eld resulting in a larger 
onta
t area of the spe
ies and a bigger residen
e time to in
reasethe mixing. With respe
t to a future resear
h, the extension to a fully three-dimensional settingused for the ele
tri
ally ex
ited mi
romixer would be desireful. The presented approa
hes showthe fundamental 
apability for both simulation and optimisation of three-dimensional instationaryproblems. Nevertheless, a further improvement of the overall solution pro
ess with respe
t to thevery high 
omputational requirements is essential. This en
ompasses, on the one hand, a moreelaborate dis
retisation by an adaptive mesh re�nement and the stabilisation of the 
onve
tion-di�usion equation and, on the other hand, a further revision of parallel solver and pre
onditioner interms of s
alability. Finally, it remains interesting to study whether an adjoint-based optimisationapproa
h for the ele
tri
ally ex
ited mi
romixer is physi
ally meaningful and yields new attra
tiveresults.
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AppendixHere, we show the parameter settings for both examples of this thesis as they are used in thenumeri
al simulation and optimisation.Ele
trokineti
 Mi
romixerThe dis
retised geometry of the meander part of the mi
ro�uidi
 
hip is given in Figure 1 showinga 
oarse mesh to indi
ate the used hexahedral 
ell type. Missings parts of the mi
ro�uidi
 
hipare modelled by suitable in�ow and out�ow boundary 
onditions as presented in Chapter 2. Thewidth of the square 
hannel is d0 = 1.1 · 10−4 m whi
h is also used for s
aling of the geometry.For the 
orners, we have to distinguish two types � in the dire
tion of the �uid �ow, we have
on
ave 
orners possessing a radius of r0 = 4.5 · 10−5 m while for the 
onvex 
orners we have
r1 = 3.2 · 10−5 m. Sin
e the entire mi
ro
hannel is made up of three glass layers (see Figure 1.1),the jun
tion of top and bottom walls to side walls 
an 
ertainly be modelled by idealised rightangles. Any further parameters are taken from the experimental setting presented in [10, 11℄:
• mean axial in�ow velo
ity: v0 = 9.1 · 10−4 m

s

• �uid density: ρ = 1000 kg
m3

• dynami
 vis
osity: µ = 1 · 10−3 kg
ms

• di�usion 
oe�
ient of the spe
ies 
on
entration: D = 4.27 · 10−10 m2

s

• Debye-length (approximate width of ele
tri
al double layer): ℓD = 9.7 · 10−7 m

• potential di�eren
e a
ross simulated 
hannel-segment: ϕ0 = 47 V

• 
harge density at mi
ro
hannel wall: qζ = 5 · 10−5 C
m2Hen
e, we have for the dimensionless 
omputations the 
hara
teristi
al quantities

Re =
ρv0d0
µ
≈ 0.1, Sc =

µ

ρD
≈ 2340.Furthermore, the ele
troosmoti
 e�e
ts within the mi
ro
hannel are simulated by a slip 
onditionfrom bulk �ow to EDL involving the dimensionless parameter

Π2 =
ℓDϕ0qζ
v0d0µ

≈ 22as derived in [11℄.Ba
kward Fa
ing Step FlowIn addition to the simulation and optimisation of an ele
ti
ally exited �uid �ow, we also deal withthe optimisation of a �uid �ow des
ribed solely by the Navier-Stokes equations. The used ba
kwardfa
ing step example is shown in Figure 2. For the sake of these a
ademi
 tests, the realisti
 widthof the 
hannel d0 is of minor interest. Assume the �uid is water at ∼ 20◦ C, i.e. ρ and µ as above,and think of the Reynolds number of values greater than 100 by higher mean in�ow velo
ity v0 orlarger diameter of the 
hannel d0.



Figure 1: S
aled geometry of the meander part within the mi
ro�uidi
 
hip with in�ow boundary Γin,out�ow boundary Γout and 
hannel walls resp. transition layer to EDL Γ0.

Figure 2: S
aled geometry of the ba
kward fa
ing step. In�ow and out�ow boundary are given by Γinresp. Γout. The 
hannel walls are Γ0 ex
ept the 
ontrol part Γc whi
h is indi
ated by red
olour.
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