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Chapter 1

Introduction

A basic task in mathematical �nance lies in comparison of cash �ows occurring at di�erent

points in times. In many cases, the current term structure might be su�cient for such a

comparison. However, reliable current term structure data is typically limited to less than

ten years of maturity due to liquidity constraints. Furthermore, the current term structure

can not re�ect dependencies between discounting functions and future payo�s subject to

interest rate risk. A stochastic term structure model is therefore required, which allows

to derive the joint distribution of stochastic discounting functions with arbitrary time to

maturity and future payo�s.

So far, most term structure models presented in the literature were developed for bank-

ing applications. Regulatory requirements considering mathematical �nance models also

emerged earlier in the banking sector than for insurance companies. Two main frameworks

to term structure modeling dominate in banking, namely so called shortrate models, in par-

ticular the a�ne model class, and so called market models, in particular the well known

Libor market model. An overview of current term structure models and their applications

in banking may be found in the books of Filipovic [Fil09], Brigo and Mercurio [BM01] or

Musiela and Rutkowski [MR05].

For insurance companies, discounting future payo�s dependent on term structure dynamics

play a central role. What is special in insurance applications is that, �rst, the duration of

life or pension insurance contracts typically exceed the available maturities of the currently

observable term structure. On the other side, the insurer requires a term structure model

to discount his contractual liabilities, which typically requires Monte Carlo simulation due

to complexity and dependence on other factors of risk such as biometrical risk or cancella-

tion. Finally, life and pension insurers at least in continental Europe mainly invest in �xed

income securities. Future payo�s of insurance contracts therefore depend on intermediate

returns achieved in �xed income markets and intermediate portfolio allocation, which im-

plements path-dependence for most insurance applications. This path-dependence in turn

requires that simulated yield curves are among those historically observed. To conclude we

have to consider the joint dynamics of stochastic discounting and payo� functions. This

1



2 1 Introduction

shows the importance of long-term interest rate models for insurance applications, but also

points to general problems in implementation.

In this work, we repeat estimation and implementation of the Cairns [Cai04a] model us-

ing the Extended Kalman �lter already known in the literature. Additionally, we present

the cosh model proposed by Rogers [Rog97] in its �rst estimation and implementation,

again using the Extended Kalman �lter. By its theoretical properties and also by the

measures of historical �t which we derived, the Cairns model is superior. On the other

side, we �nd that the cosh model, albeit not guaranteeing positive interest rates, is vastly

superior computationally to the Cairns model. As the cosh model and the Cairns model

show several basic similarities in implementation and stochastic dynamics, we �nd that the

cosh model can be used as a fast approximation of the otherwise superior Cairns model.

In a second step, we show how to expand the pure bond market cosh model to a full

investment model covering equity, government bond and in�ation-indexed bond markets.

In general, the techniques provided for expansion of the cosh model would work with the

Cairns model as well, yet are typically computationally unfeasible. The cosh model allows

for e�cient implementation of such expanded models, which are another contribution of

this work. As we show how to include macroeconomic variables as well as monetary pol-

icy rules, the cosh model may also be used as a macro-�nance model in monetary policy

applications as well as to examine the impact of macroeconomic variables on insurance

products.

Another contribution of this work is the explicit insurance focus we take in our examina-

tions. Both the Cairns and cosh models were evaluated with respect to their applicability

in insurance, the model extensions presented re�ect actual demand of insurance companies.

A further example would be the recent discussion of regulatory speci�cation of the asymp-

totic long rate, because of which we discuss the ability of the two models considered to

estimate the asymptotic long rate and to implement sensitivity analysis of the asymptotic

long rate.

The thesis is organized as follows. We present in section 2.1 a selection of criteria

on term structure models and discuss their importance both for insurance and banking

applications. Considering examples for insurance applications, we generally think of long-

term life or pension insurance contracts, whereas considering banking applications, we

think of plain vanilla interest rate derivatives such as caps, �oors or swaptions. The main

di�erence hence lies in contractual time to maturity, risk factors included and availability

of market prices for comparison.

In section 2.2.1, we introduce the Rogers framework for de�nition of term structure

models based upon the state price density. The state price density approach provides an

alternative pricing approach to the better known risk-neutral approach, which requires
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discounting by the integrated shortrate under the risk-neutral measure. We �nd that

the state price density approach is computationally superior to the risk-neutral pricing

approach once path dependent payo�s with infrequent and irregular payment dates are

considered. The Rogers framework de�nes the state price density by the speci�cation of

a state vector process and the choice of a function f with rather general properties. We

discuss how the choices of f and the dynamics of X may be restricted by the criteria in

2.1.

In sections 2.2.5 and 2.2.6, we present the Cairns [Cai04a] and cosh [Rog97] models, re-

spectively. Both are state price density models based upon multi-dimensional Ornstein-

Uhlenbeck processes. Cairns proposed his model explicitly for long-term interest rate mod-

eling, as it provides sustained periods of both high and low interest rates. Furthermore,

the Cairns model guarantees positive interest rates. However, it is computationally slow.

We found that the cosh model does not guarantee positive interest rates, yet it provides

sustained periods of both high and low interest rates as the Cairns model, and in fact with

similar underlying dynamics driving the model. The cosh model however o�ers improved

computational e�ciency.

In section 2.2.7, both models are proved to be free of arbitrage. Both models allow to choose

freely the market price of risk, the drift correction term from the risk-neutral measure to

the physical measure.

In section 2.3, we shortly discuss standard approaches to estimate term structure mod-

els. Both models can be interpreted as factor models. A measurement equation links the

factor process to the observable term structure. This state space model provides the de�n-

ing framework of the Kalman �lter or, as the measurement equation is nonlinear in both

models, its extended form.

In section 2.3.3 we estimation data for term structure models. Riskless interest rates from

government bonds provide the underlying dynamics, macroeconomic data may be used to

improve long-term dynamical properties, interest rate derivative data may improve volatil-

ity �t.

We present estimation results for both models. Sections 2.3.4 and 2.3.5 provide the imple-

mentation of the Extended Kalman �lter and its estimation results for the two-dimensional

Cairns and cosh models, respectively. Section 2.3.7 provides results for the respective three-

factor models. Simulation exercises for the two-factor cases demonstrate the ability of the

Extended Kalman �lter to provide the �true� parameters. Historical �t is examined by

calculating mean absolute errors as well as cross-correlation and autocorrelation of the

time series of residuals.

Generally, we found that the underlying state vector components coincide with the princi-

pal components of the term structure. This result was used in section 2.3.8 to specify the

long-term mean of the Ornstein-Uhlenbeck state process, which the Kalman �lter under-

estimated in the sense that the term structure implied by the long-term mean of the state
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vector was too low in comparison to those historically observed.

Another important aspect of both models discussed in section 2.3.9 is that one model pa-

rameter equals the asymptotic long rate, the limit of the yield curve for in�nite maturity.

The asymptotic long rate in both models is thus constant � as in many other currently

used term structure models.

Section 2.4 concludes with a comparison of the Cairns and cosh model.

Pure term structure models are insu�cient to simulate investment success of an in-

surance company's investment portfolio. A major task therefore is to extend the �nancial

market consistently. The �rst, and most important, extension in section 3.1 considers equi-

ty, since it is generally assumed that on the long run stocks provide higher returns than

bonds and mixed bond and stock portfolios provide lower volatilities thanks to diversi�-

cation e�ects. We �rst consider in general stock pricing within the state price approach,

particularly considering dividend payments. We then derive and implement two approaches

to include stock price data. Both are estimated on bond and stock market data using the

Extended Kalman �lter. Both approaches, dividend discount and Black-Scholes based,

guarantee no-arbitrage if used with the cosh model. For both models, estimation results

are provided and historical �t of both the bond and stock market model is examined.

First, in section 3.1.3, we use a dividend discount approach which interprets the stock

price at time t as the value of all future dividends discounted at time t. Such an approach

easily �ts into the state price density framework, which is used to discount the dividends.

We �nd that the dividend discount model is unfeasible to be implemented in the Cairns

framework due to computational limitations. For the cosh model, on the other side, it

provides an arbitrage-free, implementable stock pricing framework.

The second stock market approach, presented in section 3.1.4, is based on the Black-Scholes

stock market model. Here, stock price dynamics are de�ned under the risk-neutral measure

using the shortrate as provided by the bond market model. Using the market price of risk,

stock price dynamics under the physical measure can be derived.

In section 3.2, we expand the cosh model to macroeconomic variables. It is well known

that macroeconomic variables improve forecasting ability of term structure models. Par-

ticularly long-term dynamics of the term structure should improve with the inclusion of

macroeconomic data. We present a rate-based and an index-based approach to the in-

clusion. Furthermore, we present how monetary policy rules should be included into the

model framework to ensure that these rules hold on average for simulated yields as well.

We also provide ideas how macroeconomic variables might be used in insurance applica-

tions besides improved dynamics of the term structure model.

Section 4 concludes.



Chapter 2

The basic bond market model

2.1 Criteria of term structure models

Term structure models are a major tool in the �nance industry. First, term structure

models are the basic pricing tools for �xed income markets. Second, yet more important,

term structure models are required to implement stochastic discounting functions. In many

pricing applications, interest rates are assumed as constant, an example being the Black-

Scholes framework. As soon as �nancial instruments are considered with long maturities

for which no interest rate is observed, or with path-dependent payo�s conditional on terms

structures observed during maturity, stochastic interest rates have to be considered.

Life insurance companies are particularly dependent on reliable term structure models.

Insurance companies invest large parts of their reserves in the �xed income markets, par-

ticularly in government bonds or other investment grade �xed income securities. For these

assets, the term structure of domestic government bonds is a benchmark describing market

dynamics. On the other side, life insurance products may provide cash �ows so far into

the future that the currently observed term structure can not be used for discounting. In

these cases, term structure models are used to provide the discounting functions required.

The second major group of �nancial actors are banks. In case of banks, term structure

models are predominantly required to price interest rate derivatives. Furthermore, as

discussed earlier, exotic derivatives with path dependent intermediate cash �ows might

require term structure models as well. Banks do typically not face the very long times to

maturity life insurance companies are forced to handle. This implies that the currently

observed term structure is su�cient to discount the cash �ows encountered in banking

applications.

All in all, we can conclude that requirements on interest rates vary substantially with

the implied application. In particular, life insurance applications have special requirements

considering the stochastics of the model and the maturities involved. During the last

decades, various term structure models were developed and presented in the literature.

One goal of this work is to derive criteria which allow to evaluate the applicability of a

5



6 2.1 Criteria of term structure models

term structure model for di�erent tasks, in particular life insurance applications. In the

following, we will present a number of characteristics for term structure models and their

respective importance for insurance and banking applications.

2.1.1 No-Arbitrage

An arbitrage strategy exploits price di�erentials between markets or assets which allow

to gain a riskless pro�t. Although such price di�erentials might exist in reality, their ex-

ploitation by arbitrageurs closes the price di�erential quickly, see for example [Hul00]. In

highly liquid markets such as government bond markets or swap markets, we can reason-

ably assume that no arbitrage holds in reality as well. In pricing models, the no-arbitrage

condition becomes a basic consistency assumption which links all �xed income submar-

kets. Requiring no-arbitrage therefore means that within the pricing model, no systematic

inconsistencies between �xed income securities exist. Namely, the no arbitrage condition

guarantees that if the model is �tted to a certain set of market data at a certain point in

time, all prices of contingent claims derived using the model are consistent with observed

prices and therefore, in a sense �fair�.

In banking applications, the primary goal is pricing of contingent claims and their

hedging. In case of pricing, the no-arbitrage condition is required to guarantee consistency

of the derived prices with observed prices. Typically, pricing is based on �tting the model

to a collection of observed prices of certain liquid contingent claims and then it is assumed

that model-derived arbitrage-free prices of assets of the same type are consistent and

hence �fair�. This approach is called calibration and is discussed in [Reb02] or [RSM04] for

interest rate derivatives. In case of hedging, the basic assumption of using some assets to

hedge against price changes of other assets is valid only if the prices move consistently, as

guaranteed by no-arbitrage.

Note that term structure models typically have problems in �tting several types of �xed

income assets at once, see again [Reb02] or [RSM04]. The most important example would

be di�erences between swaption and cap markets, see [LSCS01]. Even if a term structure

model is arbitrage-free, this does not imply that cross-asset hedging is possible within the

model. As a consequence, to price contingent claims the model should be �tted to observed

prices of related assets, and to hedge assets of one type by assets of another type the model

must be �tted to observed prices of both types. Typically, we encounter no problems if we

consider only an underlying and one type of derivative. Problems might be substantial if

we consider cross-asset hedging for two types of derivatives. This is of particular interest

for insurance applications and we will discuss this further in section 2.3.3.

In pricing of contingent claims in the insurance world, the same arguments hold as in

pricing and hedging of contingent claims of the banking sector. Although insurance prod-

ucts are typically too complex and too illiquid to exploit possible arbitrage opportunities,

consistency between insurance contingent claims and other �nancial data is still required.
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Of further importance is the aspect of investment, which is a major determinant of the

insurance contract. If the model allows for arbitrage, an investment policy may exploit

these arbitrage possibilities. Given a speci�ed allocation rule, the simulated investment

success may therefore be due to arbitrage rather than realistic investment policies.

2.1.2 Boundedness

Boundedness of interest rates considers two aspects. For once, we have a lower bound at

zero exists. Second, we take as granted that interest rates cannot be arbitrarily high. Con-

sidering the lower bound, there is a simple economical explanation. As the lender of money

has to abstain from consumption now until being repaid, even in case of no credit risk the

lender will demand a compensation for this abstain. This re�ects the basic assumption of

time preferences that consumption of a certain value today is preferred over consumption

of the same value at some later date. This general idea of borrowing and lending implies

that interest rates are compensations for time transfer of consumption for which the lender

requires a compensation in the form of interest.

Such a simplistic argumentation however not necessarily holds with interest rates as ob-

served in �nancial markets. An interest rate swap, for example, exchanges the cash �ow

from time varying interest rates on a nominal amount against a stream of �xed interest rate

payments on the same nominal amount, neither direct lending nor borrowing occur. The

�xed rate is called the swap rate, LIBOR is typically used as the �oating rate. As LIBOR

is the interest rate for inter-bank lending, by the above described framework LIBOR is

positive. A fair swap contract therefore requires a positive �xed swap rate as well.

Bonds are traded assets which can be interpreted as securitized accounts receivable. As

traded assets, their current price is subject to supply and demand. The implicit interest

rate can be calculated from the current value and the (expected) cash �ows. Therefore,

implicit interest rates are subject to supply and demand of the underlying bond. Now

if demand is high enough so that the current price of the bond is higher than the sum

of its future payments, the interest rate implied by this speci�c bond is negative. Such

a situation occurred for US treasury bills on December 9, 2008, in the aftermath of the

collapse of Lehman brothers. In this case investors were willing to pay a premium to hold

highly liquid treasury bills. As this was a short episode only and happened due to a special

year's end e�ect1 we can reasonably assume positivity for bond yields.

Negative interest rates are of major concern in applications with guaranteed returns,

as in many insurance contracts. If interest rates within a term structure model are guar-

anteed to be positive, losses due to failure of achieving the guaranteed return are bounded,

whereas with negative interest rates the gap between guaranteed and achieved returns is

unbounded. Furthermore, discounting with negative interest rates increases the impact of

1All information from Bloomberg,

http://www.bloomberg.com/apps/news?pid=20601087&sid=aOGXsWKEI6F4
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negative interest rate scenarios on current prices.

In most applications, conditional probabilities of negative interest rates are low given that

current term structures are su�ciently away from zero. This justi�es pricing of short- or

intermediate term contingent claims using term structure models which allow for nega-

tive interest rates, see for example Brigo and Mercurio [BM01] on the Hull-White model

[HW90]. If, however, current interest rates are low, the conditional probabilities of nega-

tive interest rates might be high and therefore should be considered in pricing. In these

cases, term structure models which guarantee positivity are recommended. Furthermore,

if we simulate interest rates over long time periods, the conditional probability of negative

interest rates occurring once during the simulated paths may be substantial even if current

interest rates seem su�ciently high. As this is typically the case in insurance applications,

we can conclude that positivity of yields is of particular concern for insurance companies.

For an overview to positive interest rate models, see [Cai04b].

Considering a possible upper bound, note that competition among lenders implies that

compensation for the abstain in consumption will not get arbitrarily high. To derive an

upper bound, another economic argument comes into play, based predominantly on mon-

etary policy with respect to in�ation. Rational investors should always demand interest

rates above (expected) in�ation rates to preserve the real value of the money lend out.

Considering developed countries, we can assume that the respective central bank will keep

in�ation in check so that competition among lenders guarantees that interest rates will not

explode.

Whereas this does not allow for a �xed upper bound of interest rates, we can derive that

interest rates are �bounded in probability�, which means that the probability P (Y ≥ M)

decreases with M . Given the experience of the stag�ation era and the subsequent mon-

etary experiment, in�ation rates in western countries may well reach double digit values

and interest rates may likewise reach more than 20%2, albeit with small probability.

To conclude, we see that negative interest rates are of minor concern if the term struc-

ture model is used for short-term and intermediate-term pricing and the conditional prob-

abilities of negative interest rates are small. In case current interest rates are low or long

maturities are to be simulated, we recommend interest rate models which guarantee the

zero lower bound by de�nition.

Considering high interest rates, we can not impose a �xed upper bound for all interest

rates. We therefore recommend an upper bound by probability, whereby the probability of

interest rates beyond the record ones observed during the monetary experiment should be

essentially zero. In particular, this implies that the question of possible extremal scenarios

2The maximal 3-month rate observed at month end for the US was 16% on july 1981, the maximal

10-year rate was 15.18% on august 1981.
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for risk management is closely related to the question of boundedness of the yield curve

within the model. Note also that viability of an implicit upper bound crucially depends on

prior beliefs considering in�ation and the central bank's ability to keep in�ation in check.

2.1.3 Positivity

Positivity not only considers the �xed zero lower bound of interest rates, but may also

be of major importance considering the behavior of very low interest rates. Due to the

recent Japanese zero interest rate policy as well as low short-term interest rates worldwide

in the aftermath of the 2007 �nancial crisis, the behavior of interest rates in the vicinity

of the zero lower bound became more important. In fact, due to generally lower in�ation

rates in recent years and subsequently low interest rates, hitting the zero lower bound may

be a recurring problem of the future3. Periods of prolonged low interest rates over the

whole term structure � the so called Japan scenario4 � are of major concern to insurance

companies, since during a Japan scenario bond market returns are below the guaranteed

returns of many contracts.

Historically, low interest rates were a matter of the short end of the yield curve, only.

Short-term rates were low, yet at the same time the term structure was very steep. For

example, in the US, the 3-month rate from November 2001 to October 2004 was below

2%, whereas the 10-year rate during that period was at least 221 basis points higher.

A similar example for Germany would be 2003 to 2004 with an average 1-year rate of

2.25% and an average slope of 169 basis points. The conduct of monetary policy typically

implies that the central bank sets its target rate, yet long-term rates react to a smaller

extent. Interest rate cuts therefore increase the slope, whereas if the central bank increases

the target rate, the slope decreases. Any term structure model estimated from historical

data therefore implies that decreasing short-term rates tend to coincide with an increasing

slope and increasing short-term rates tend to coincide with a decreasing slope. The Japan

scenario is the main exception to this normal functioning of monetary policy. Under normal

conditions, the central bank determines short-term interest rates according to the overall

macroeconomic situation. If the policy instrument reaches the zero lower bound, yet the

macroeconomic situation would require further interest rate cuts, the central bank has

to rely on alternative instruments. Bernanke, Reinhart and Sack [BRS04] discuss two

alternative monetary policies to be employed:

1. The central bank pledges to keep the policy rate close to zero for a sustained period of

time. Particularly, the central bank makes clear to the market what macroeconomic

situation may lead to the end of the zero interest rate policy.

3Note that the possibility of hitting the zero lower bound more frequently in the future was the basis

for an IMF paper advocating an increased in�ation target of 4%. See [BMD10].
4In Japan, the 10 year yield was below 2% from february 1999 at least to 2007
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2. The central bank uses quantitative easing, thus the central bank buys long-term

government bonds or MBS to inject liquidity in the economy which decreases long-

term interest rates.

Both alternative approaches to monetary policy imply a Japan scenario. Committing itself

to a policy rate close to zero over the time period [0, T ] implies forward rates close to zero

and a term structure close to zero for maturities up to T by an arbitrage argument, hence

the slope decreases. Buying zerobonds increases bond prices and therefore decreases the

implied long-term interest rates, hence the central bank directly decreases the slope.

The zero lower bound is not only a challenge for monetary policy, but for interest rate

models as well. A Japan scenario is caused by alternative instruments of monetary policy

in case short-term interest rates reach the zero lower bound, yet conventional monetary

policy would require the policy instrument to be cut further.

A steep slope of the term structure does not necessarily imply problems for insurance

companies as increasing duration of the bond portfolio should be su�cient to achieve the

guaranteed return. Furthermore, the slope can be used to forecast interest rate movements,

see [Fam84], whereby a steep yield curve implies that short-end yields will rise. During

a Japan scenario, increasing the duration of the bond portfolio may not be su�cient to

exceed guaranteed returns. Furthermore, the �at yield curve of a Japan scenario implies

that short-end yields will remain low. This implies that the insurance company might fail

to achieve the guaranteed return in bond markets for a prolonged period of time.

To make matters worse, we saw that a Japan scenario is a result of alternative monetary

policy instruments if the zero lower bound is reached yet further interest rate cuts were

needed. Such a monetary situation can only occur due to a steep recession. Therefore,

domestic equity, real estate and commodity investments might fail to produce su�cient

returns as well.

We can conclude that Japan scenarios are e�ectively worst case scenarios for insurance

companies which should be considered in risk management and pricing. We saw that

Japan scenarios are a result of alternative monetary policy instruments in case the zero

lower bound is reached, which highlights the special role of an explicit bound at zero

for interest rates. Therefore, interest rates are required to be positive to implement the

singularity in monetary policy which constitutes the Japan scenario.

2.1.4 Time steps and Jumps

Following Black and Scholes [BS73], Brownian motion and hence continuous time models

became a standard in mathematical applications in �nance and therefore in term structure

modeling as well. Only a few discrete-time models exist, for example Black and Karasinski

[BK91] � although for these models typically continuous-time speci�cations were derived.
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In practice, we will encounter discrete time observations only so that for all practical

purposes estimation and simulation are based on discrete time steps. The time steps

required can be derived from the application intended. Overnight-hedging of interest rate

derivatives implies daily or sub-daily observations, in general trading applications most

likely require high-frequency data. Considering insurance applications, on the other side,

monthly or quarterly time steps should be su�cient.

The choice of the time steps is particularly important with respect to jumps within the

data. An important example for jumps in term structure data would be the arrival of new

data within the market and immediate reaction of prices, see for example in [BEG97]. It

is therefore frequently assumed that jump processes are required to model high-frequency

term structure data. Considering monthly or quarterly data, stochastic volatility might

still be a problem. First, we can assume that jumps in monthly data are rare and typically

coincide with historical events such as the monetary experiment, German uni�cation or the

2007 �nancial crisis. Second, we can assume that the jump distribution are asymmetric,

as most jumps in term structure data re�ect quick reactions of the central bank to an

economic downturn, whereas �ghting in�ation by increasing rates follows a more gradual

approach. Third, long-term rates are known to be highly persistent, which implies that

jumps in term structure data are predominantly associated with short-term rates. We

expect that estimation of rare, asymmetric jumps which only occur on the short end of the

yield curve is extremely di�cult. We therefore recommend di�usion models for insurance

applications with low frequency requirements, whereas for high-frequency data we generally

recommend using jump-di�usion models.

2.1.5 Computational e�ciency

The question of computational e�ciency of a term structure model is essentially a ques-

tion of either analytically tractable formulae or numerical algorithms to derive prices of

term structure contingent claims. Most term structure models in usage right now can be

described as factor models, that is the dynamics of the whole �xed income market are

described by a factor process X, typically Markovian. The prices of contingent claims

at time t are therefore functions of the factor process Xt and parameters describing the

payo� function of the claim. These functions are not only required for pricing, but also for

estimation and calibration of the model to current or historical data. If these functions are

analytical, derivation of prices is deterministic and computationally fast. In some cases,

prices can be derived numerically, which may require substantial computational resources.

Finally, pricing function could be approximated by Monte Carlo methods: the payo�s of

the contingent claim are simulated and discounted, using simulated yields. The empirical

mean of these simulations then approximates the true price. Monte Carlo methods are

indeterministic and can approximate the price only for su�ciently high numbers of trials.

A trade-o� exists between the quality of the approximation and computational e�ciency.
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We can conclude that term structure models should avoid Monte Carlo methods in

pricing plain-vanilla products as far as possible. Furthermore, as term structure data is

likely an input for any estimation or calibration approach, we would require analytical

bond pricing formulas. Other restrictions considering computational e�ciency then stem

from applications, obviously term structure models used for pricing of certain interest rate

derivatives should allow for these derivatives to be priced as e�ciently as possible.

In insurance applications, the payo� is often path-dependent, for example to re�ect

portfolio allocation rules. Path-dependent contingent claims typically require higher num-

bers of trials than contingent claims dependent on a single payo� at time T . It is often

di�cult or even impossible to derive closed formula or numerical approaches for these

contingent claims, thus term structure models in insurance applications should allow for

e�cient Monte Carlo simulation of path-dependent contingent claims. State price density

models are well suited for Monte Carlo approaches, whereas a�ne models are well suited

to derive closed formula or numerical approximations to derivative prices, see for example

[Fil09] or [BM01] for an overview.

2.1.6 Number of factors

In 1991, Litterman and Scheinkman [LS91] used principal component analysis to prove

that the dynamics of the term structure are determined by three principal factors:

� Level : the overall niveau of the term structure

� Slope: the steepness of the term structure

� Curvature: the bend of the term structure

These three factors describe 94% of the dynamics of the term structure, whereby the level is

the most important factor followed by the slope. We repeated Litterman and Scheinkman's

derivation for �gure 2.1. The left column shows the time series of the three principal

components level, slope and curvature, the right column provides empirical proxies of

these principal components5. As these three factors are by construction uncorrelated,

term structure models based on a one-dimensional state vector are not able to describe

the dynamics of the whole term structure realistically. We recommend at least a two-

factor term structure model to catch the majority of cross-sectional dynamics, hence the

model covers level and slope. If curvature is likely to have an important impact in the

application, which might be the case if duration of bond portfolios prominently features

within the claim to be priced, a three-factor model should be used, otherwise, an additional

curvature factor might be dispensable.

5As the empirical proxy of the level we propose the 10-year rate. As empirical proxy of the slope we

propose the 10-year rate minus the 3-month rate. The empirical proxy of curvature is taken as the 10-year

rate plus the 3-month rate minus two times the 2-year rate.
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Figure 2.1: The �rst three factors derived by principal component analysis for US data

from 1947 to 2008 (left column) with their respective empirical proxy (right column) and

the mean factor (red line), from the top to the bottom level, slope and curvature. As the

empirical proxy of the level we propose the 10-year rate. As empirical proxy of the slope

we propose the 10-year rate minus the 3-month rate. The empirical proxy of curvature is

taken as the 10-year rate plus the 3-month rate minus two times the 2-year rate.
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Litterman and Scheinkman derived their three principal components from term struc-

ture data. The impact of these three factors on interest rate derivatives may di�er from

their impact on the term structure. Collin-Dufresne and Goldstein [CDG02] �nd that

swap rates have only limited explanatory power for the returns of at-the-money straddle-

portfolios, for which volatility in the swap rates is an important factor. This implies that

the three principal factors of Litterman and Scheinkman which determine most of the

dynamics of swap rates do not describe su�ciently the price dynamics of these portfo-

lios. Collin-Dufresne and Goldstein call this unspanned stochastic volatility. A possible

explanation would be that the unspanned factor is a principal component with minor ef-

fect on the term structure, yet deep impact for certain derivatives. We can conclude that

in certain pricing applications, notably in interest rate derivatives dependent on stochas-

tic volatility, factors unspanned by level, slope and curvature are needed. This, in turn,

implies that models to price interest rate derivatives might well deviate from the above

recommendation.

Note that a frequent question in term structure models is the ability to �t the di�erent

shapes of the term structure historically observed. In particular, inverted, normal, �at and

hump-shaped curves were observed. Typically, even one factor models are able to produce

normal, �at and inverted yield curves. However, they are obviously unable to vary level

and slope at the same time, which implies that at a given point in time, any given level

implies a unique slope and vice versa. In particular, one factor models typically can not

produce high and normal or low and inverted yield curves. A good example for this would

be the Hull-White Model [HW90], see also [Fil09] or [BM01] for a general overview, in

which every shortrate r(t) implies a �xed shape of the term structure, re�ecting the fact

that only one stochastic factor is available. In particular, such a model can neither produce

very high normal yield curves nor very low inverted yield curves. Consequently, the ability

to produce a wide variety of yield curves is closely related to the number of stochastic

factors. To produce normal and inverted yield curves at varying height, a level and a slope

factor are required. The varying Hump-shapes observed depend on curvature and maybe

even on an additional factor describing the very short end.

In insurance applications, correct bond market dynamics and correct discounting func-

tions are of primary concern. For the necessity of multi-factor models in actuarial appli-

cations see also Fischer, May and Walther [FMW03] and [FMW04]. The term structure

enters pricing of insurance products in two ways: as discounting function of all payo�s

and to describe bond market investments. Now considering the discounting function, if

the level factor is matched realistically, this should be su�cient to discount future cash

�ows. Considering the investment return, however, the model must be able to realistically

simulate returns on bond portfolios with varying duration, hence again at least level and

slope are required. The more important the bond market is for investment success, the

more realistically should cross-sectional behavior be implemented, which sooner or later
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includes curvature as well, and hence the more factors should be used.

In banking applications, our primary focus lies on �xed income derivatives. For these,

as discussed above, the question of unspanned factors is of major importance. Nevertheless,

�tting the underlying should already require a level and possibly a slope factor. We can

conclude that multi-factor models are important for banking applications as well, yet the

numbers of factors and their respective interpretation depends on the derivative to be

priced. In particular, we expect that slope and curvature are of lesser importance to

banking applications, whereas stochastic volatility should be a prominent driving factor

for many derivatives.

2.1.7 Mean Reversion

As we can see in �gure 2.1, the principal components of Litterman and Scheinkman showed

mean reverting behavior, again under the physical measure. Mean reversion is a major in-

gredient in term structure models as it implicitly guarantees upper and lower boundedness

by probability as well as correct long- and medium term dynamics. If we take, for example,

10-year yields as proxy for the level factor and the di�erence between 10-year and 1-year

rates as proxy for the slope, then in case of a high slope, the slope mean reverts faster

than the level factor, thus the slope decreases predominantly due to short-end movement,

as found in reality.

It can be regarded a stylized fact that in multi-factor models the state process com-

ponents coincide with empirical approximations to level, slope and curvature. This points

to the question which observed yield best approximates the level factor. If the level factor

coincides with a short-end yield, highly persistent long-end yields are functions of highly

volatile level and slope factors. As long-end yields are persistent, in many term struc-

ture models long-end yields are a result of high-volatility factors downscaled in volatility.

In such models, long-end volatility is frequently scaled down excessively, which implies

that real data shows excess volatility in comparison to model-implied long-term yields, see

Gürkaynak, Sack and Swanson [GSS03].

A second problem arises due to mean reversion of the level factor in case of long-term sim-

ulations. Historically, US long-term rates increased from around 3% following world war

II up to almost 20% during the monetary experiment 1979 to 1982. Subsequently, a falling

trend can be observed in long-term yields which may continue even today. Consequently,

interest rates reverted both from very low and very high observations, yet mean reversion

is very slow. As short-term interest rates varied around these long-term rates historically,

short-term rates show strong mean reversion to long-end yields, yet only very weak mean

reversion over long data sets. Only in short- or medium-term applications, persistency

of long-end yields implies that short-end yields show considerable mean reversion. As a

consequence, we recommend less volatile long-end yields as an empirical proxy for the level

factor and we recommend term structure models which implement the principal compo-
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nents of Litterman and Scheinkman by a low mean reversion (long-term) level factor and

high mean-reversion slope and curvature factors. This might, however, imply considerable

problems in estimating the long-term mean of the level factor, something we will indeed

encounter in section 2.3.8.

2.1.8 The macroeconomic role of interest rates

It is well known that the term structure is the major link between macroeconomy and

�nance. The question is whether macroeconomic information should be used in estimation

and whether macroeconomic information could be used to determine cross-sectional and

dynamical behavior of the term structure.

Several stylized facts emerged in the literature:

� The slope is related to monetary policy, as the central bank sets its target rate and

intervenes in the overnight interbank market to enforce the target rate on the very

short end of the riskless interbank term structure. By no-arbitrage the short end of

the government bond implied yield curve and the target rate are highly correlated.

� The slope is related to the business cycle, as the monetary authority sets its pol-

icy rate according to in�ation expectations and economic growth, as for example

explained in the Taylor rule, see 3.2.

� Long-term yields are determined by in�ation expectations, based on the previously

discussed behavior of investors demanding a real compensation for their abstain in

consumption. Rational investors therefore demand interest rates higher than ex-

pected in�ation for the respective time to maturity.

A �rst bene�t of incorporating macroeconomic data stems from the improved fore-

casting ability, hence overall improved dynamical properties of the model to be examined.

This is particularly true for factor models driven by a Markovian state process X. In these

cases, macroeconomic information provides additional information about the current and

future conduct of monetary policy and hence about current and future term structures.

To give a simple example, assume two points in time t1, t2 at which we observe approx-

imately the same yield curves Yt1 ≈ Yt2 . In a standard factor model, this should imply

Xt1 ≈ Xt2 . Yet now we assume that for the in�ation rate I(t1) ≥ Ī ≥ I(t2) and for output

growth we have O(t1) ≤ Ō ≤ O(t2). Now since at time t1 in�ation is higher than its

long-term average Ī and output is lower than its long-term average Ō, the central bank

will cut interest rates, thus the slope will increase. At time t2, the opposite will occur.

We see that current in�ation rate and output growth reasonably forecast term structure

dynamics, assuming certain policy rules by the central bank. This is due to the fact that

macroeconomic indicators contain information about past and future term structures so

that the information contained in the current state is increased whereby at the same time
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the Markovian framework is kept.

Second, if several assets are to be priced, macroeconomic indicators contain information

about inter-market dependencies. To give an example, a recession typically implies falling

stock prices, yet also decreasing interest rates so that bond prices rise. As long-term mod-

eling and multi-asset frameworks are typical for insurance applications, macroeconomic

indicators should be particularly helpful in these cases.

Additionally, insurance applications typically have to consider model parameters consid-

ering customer behavior, particularly cancellation. Obviously, cancellation should be neg-

atively correlated with overall economic growth. Third, many pension and life insur-

ance contracts o�er guaranteed returns. Inclusion of macroeconomic variables might o�er

new product speci�cations for insurance companies, for example guaranteeing real returns

rather than nominal returns or indexation of invalidity insurance payments on in�ation.

2.1.9 Volatility

Litterman and Scheinkman [LS91] found three factors dominating term structure dynam-

ics. Notably, volatility was not among them. Christiansen and Lund [CL02] show that

term structure volatility can explain curvature changes, which in turn points toward a

more general link between stochastic volatility and curvature. Given the results of Collin-

Dufresne and Goldstein [CDG02] however, there seems to exists an additional, unspanned

factor describing volatility which therefore is not linked to curvature. It is well known that

derivatives depend on the volatility of the underlying, see for example [BM01] or [Sad09].

We therefore recommend stochastic volatility for term structure models used in pricing of

standard term structure derivatives. In insurance applications, however, the main focus

lies on the term structure and its dynamics, so that by de�nition the unspanned factor of

�xed income volatility should be of minor interest.

Besides an additional factor driving volatility, note that stochastic volatility might also

be implemented endogenously. If a factor model is used, Ornstein-Uhlenbeck processes

imply a constant spot volatility of the factors. Cox-Ingersoll-Ross processes as factors on

the other side imply stochastic spot volatilities. Now if level, slope and curvature are

described by CIR processes, this should imply some sort of stochastic volatility for model-

implied yields as well. We therefore recommend at least the possibility to implement a

given factor model with CIR processes to test on the impact of stochastic volatility.

In either case, an important aspect for practitioners is the possibility to consider volatility

shocks. To implement these in factor models, note that both OU and CIR processes include

constant parameters scaling spot volatilities which can be used to implement volatility

shocks.

In insurance applications, as already discussed previously, using monthly or quarterly

time steps decreases the impact of volatility to the ability of the model to produce overall

variability of yields and shapes of the yield curve comparable to what is observed histor-
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ically. Speci�cally, the question of stochastic volatility becomes a question of the range

of level, slope and curvature. The overall dynamics of the principal components are more

important than their respective stochastic volatility.

2.1.10 Summary

To summarize, we �nd only a handful of properties which are likewise required in both

insurance and banking applications. These are no-arbitrage and multiple, mean reverting

factors driving the model. On the other side, we found plenty of di�erences between bank-

ing and insurance applications. In particular, these two di�er in their required times to

maturity. As insurance applications have longer time horizons, they imply di�erent require-

ments considering long-term variability, cross-sectional behavior, positivity and extremal

scenarios during lifetime. Furthermore, path-dependence is typical for insurance contingent

claims, which �rst implies that in most cases closed-form solutions are not available and

second has special requirements in simulation-based approaches. Banking applications, on

the other side, are subject to short-term and high-frequency aspects, which implies that

jumps and more generally stochastic volatility has to be considered. Finally, we �nd that

cross-asset requirements show signi�cant di�erences: insurance applications typically re-

quire additional �nancial markets to be included consistently to re�ect investment policy

of the insurance company. Banking applications are typically restricted to the �xed in-

come market, but contain various �xed income derivatives, which may di�er substantially.

Therefore, insurance applications have to cover several �nancial markets, but within these

markets typically only basic assets such as bonds and stock. Banking applications on the

other side have to consider multiple assets within the same market, in particular (multiple)

interest rate derivatives. Of special interest in these cases are unspanned factors driving

only certain derivative markets but not or only to a minor extent the underlying. As

insurance applications are predominantly interested in these underlyings, such unspanned

factors are of minor concern. Table 2.1.10 will provide a general overview.
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Properties Insurance Banking

No-Arbitrage important important

Boundedness important important

Positivity important Depends on current situation

Japan-Scenario important Depends on current situation

Long times to maturity important unimportant

Mean Reversion important important

Path dependence important depends on application

Closed bond pricing formula crucial important

Closed derivative pricing formula less important crucial

Number of factors important important

Unspanned factors unimportant crucial

Stochastic volatility less important important

Jumps unimportant important

High-frequency data unimportant important

Calibration important crucial

Macroeconomy important unimportant

Table 2.1: Comparison of various properties and their importance for

2.2 Two term structure models

2.2.1 The general framework of Rogers

Typically, de�nition of a term structure model is based on the speci�cation of an underlying

stochastic driver X and a mapping g which links the state Xt at time t to the respective

term structure Yt. In standard shortrate models, this is done in two steps: �rst, the state

process X is mapped into a one-dimensional process r : X → R, which is interpreted as the

shortrate under the risk-neutral measure Q. Interest rates of higher maturities are then

calculated by the standard formula of risk-neutral pricing

P (t, T ) = EQ
[
e−

∫ T
t r(Xs)ds

∣∣∣Ft] , (2.1)

where the expectation is conditional on a �ltration {Ft}t≥0 with Ft := σ(Xs, s ≤ t) and

taken under the risk-neutral measure Q. We face the dual problem that for once r(Xt)

has to ful�ll the empirical properties of the shortrate, for example mean reversion and

boundedness, but at the same time we require (2.1) to provide a closed solution. Then, in

a second step, these closed solutions to bond prices must ful�ll certain empirical properties

as well. It is di�cult to specify a shortrate which solves both initial problems, not to speak

about catching all empirical properties of the bond market.

Rogers [Rog97] presents an alternative framework for the construction of term structure

models. This framework is based on the choice of a positive function f : X → (0,∞), which,
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together with a parameter α and a stochastic state process X = (Xt), a continuous-time

Markov process, is su�cient to de�ne a complete term structure model. Rogers does not

impose any restrictions on the state process. However, as we will see in 2.2.3, the empirical

dynamics of the term structure imply certain properties that we have to acknowledge in our

choice. Unlike typical shortrate models, the Rogers framework is not based on risk-neutral

pricing. Instead, the so-called state price density is de�ned by

ςt = e−αtf(Xt), (2.2)

and the dynamics of the state vector (Xt) are given under the so called reference measure

P̃. With the state price density de�ned, the current price C(t) of a contingent claim at

time t which pays C(T ) at time T > t is given by

C(t) =
EP̃ [ςTC(T )|Xt]

ςt
= e−α(T−t)E

P̃ [f(XT )C(T )|Xt]

f(Xt)
. (2.3)

where the expectations are conditional on the state Xt and evaluated under the reference

measure, which therefore is the measure used in pricing based on state price densities. In

section 2.2.7, we will see that the reference measure P̃ must be equivalent to the risk-

neutral measure Q to guarantee no-arbitrage of the bond market as well as the physical

measure P to allow for estimation and forecasting. A major assumption frequently used

later is that expectations EP̃ [ςT |Xt] under the reference measure exist for all 0 ≤ t ≤ T .

Interpreting zerobonds as contingent claims with payo� C(T ) := 1 at the time of maturity

T yields the following theorem.

Theorem 2.2.1. Within the Rogers framework, the price of a zerobond at time t which

pays 1 at maturity T is given by

P (t, T ) =
EP̃ [ςT |Xt]

ςt
= e−α(T−t)E

P̃ [f(XT )|Xt]

f(Xt)

Proof. A zerobond is a derivative with payo� C(T ) = 1 at time T . The de�nition of the

state price density in (2.3) provides the formula.

We see now that existence of expectations EP̃ [ςT |Xt] is a necessary requirement for closed

form bond prices.

In the literature, the Rogers framework is often called the potential approach. If we assume

that EP̃ [ςt|X0] = P (0, t)→ 0 for t→∞, a natural assumption in bond pricing, then (ςt)

is a potential, which coined the name.

Corollary 2.2.2. Within the Rogers framework, interest rates y(t, T ) at time t with time

to maturity T − t are given by

y(t, T ) := α− 1

T − t
log

(
EP̃ [f(XT )|Xt]

f(Xt)

)
. (2.4)
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Proof. By de�nition of zerobond yields

y(t, T ) = − log (P (t, T ))

T − t
.

We can also derive general formulae for instantaneous forward rates and the shortrate.

Theorem 2.2.3. Within the Rogers framework, instantaneous forward rates are given by

f(t, T ) := α−
∂
∂tE

P̃ [f(XT )|Xt]

EP̃ [f(XT )|Xt]
(2.5)

and the shortrate is given by

rt =
(α−G)f

f
(Xt)

where G is the in�nitesimal generator6 of the state process X.

Note that the de�nition of shortrates and instantaneous forward rates therefore requires

the function f to be twice continuously di�erentiable to guarantee that the in�nitesimal

generator is de�ned.

Proof. Obviously, the state vector process Xt does not depend on the payment date T ,

hence by de�nition,

f(t, T ) = − ∂

∂T
log (P (t, T ))

= − ∂

∂T

(
−α(T − t) + log

(
EP̃ [f(XT )|Xt]

)
− log (f(Xt))

)
= α−

∂
∂TE

P̃ [f(XT )|Xt]

EP̃ [f(XT )|Xt]
.

The shortrate can be derived as

rt = f(t, t) = α− EP̃ [Gf(Xt)|Xt]

EP̃ [f(Xt)|Xt]

= α− Gf(Xt)

f(Xt)

=
(α−G)f

f
(Xt).

Corollary 2.2.4. If f is twice continuously di�erentiable and has compact support, in-

stantaneous forward rates of the Rogers model are given by

f(t, T ) = α− EP̃ [Gf(XT )|Xt]

EP̃ [f(XT )|Xt]
.

6See appendix A.
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Proof. With Dynkin's formula7, we get

α−
∂
∂TE

P̃ [f(XT )|Xt]

EP̃ [f(XT )|Xt]
= α− EP̃ [Gf(XT )|Xt]

EP̃ [f(XT )|Xt]
. (2.6)

We see that the Rogers framework allows for de�nition of nominal interest rates and

forward rates of arbitrary maturities once the function f and the state vector process X is

speci�ed. The only restrictions so far are that f must be positive and twice continuously

di�erentiable on the state space X of X and α must be positive as well. Nevertheless,

to specify a model within the general framework, any additional information which might

restrict the choice of f may be helpful. Section 2.2.3 will try to present such restrictions.

The next section will discuss advantages of state price density models over the standard

risk-neutral pricing.

2.2.2 Risk-neutral pricing and the state price density

In this subsection, we will motivate the usage of state price density models rather than

the shortrate models predominantly used in banking. The standard approach in �nance to

price a random future payo� Y at time T under stochastic interest rates is based on the

expected value under the risk neutral measure of the discounted value of Y . Therefore,

the price Pt at time t of a contingent claim paying Y at time T is given by

Pt = EQ
[
e−

∫ T
t rsdsY |Ft

]
. (2.7)

where Y is FT -measurable. Obviously, with a stochastic shortrate process (rt) it is often

di�cult to derive a closed form solution to this expression, particularly if the payo� Y

depends on the shortrate process, as is for example the case in life insurance. In many

cases, the so called T -forward measure QT may be applied. The expectation with respect

to the T -forward measure of a bounded FT -measurable random payo� Y is given by

EQ
T

[Y |FT ] =
EP̃ [Y ςT |Ft]
EP̃ [ςT |Ft]

.

For the payo� Y at time T and the price under the reference measure we therefore have

Pt =
EP̃ [Y ςT | Ft]

ςt

=
EQ

T
[Y |FT ]EP̃ [ςT |Ft]

ςt

= P (t, T )EQ
T

[Y |FT ]

In many applications, the T -forward measure signi�cantly simpli�es pricing. Particularly,

if simulation-based approaches are required and the payo� depends on the interest rates

7See A.
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and hence the shortrate path over [t, T ], as is typically the case with insurance applications,

the T -forward measure simpli�es simulation considerably as path dependence in simulation

may vanish. The same is implicitly the case with the state price density. Using the state

price density, the price at time t of our random payo� Y is given by

Pt =
EP̃ [Y ςT |Ft]

ςt
.

The main advantage over risk-neutral pricing obviously is that we do not have to consider

path-dependence over [t, T ] if the payo� Y depends on the term structure at time T .

If path-dependent payo�s occur, as is typically the case in insurance applications due

to portfolio allocation decisions or premia payed, the state price density allows for simple

implementation as well. To discount a cash �ow payed at various payment dates T1, . . . , Tn,

we simply require intermediate state price densities which can be constructed from the

states XT1 , . . . , XTn . Note that we are not restricted to equidistant payment dates, nor

do we have to approximate the discounting functions. In contrast to that, simulation-

based risk-neutral pricing always has to rely on approximated shortrate paths, and we are

generally forced to simulate the shortrate at additional points in time besides T1, . . . , Tn.

To give an example: for an insurance contract which provides the �rst payo� in 30 years not

a single intermediate state between today and the �rst payo� date in 30 years is required

in the state price density approach. For the risk-neutral approach, however, monthly time

steps require simulation of 359 intermediate states, yet provide only an approximation to

the true discounting function.

Comparing the state price density approach to the T -forward measure, note that P (t, T )

must be taken from market data. Typically, however, for times to maturity T−t larger than
10 years market data does not exist or is rather unreliable due to liquidity constraints. For

long time horizons, as we encounter in life and pension insurance, the state price density

approach is therefore superior to the pricing approach using the T -forward measure as well.

2.2.3 Restricting the choices in the general framework

The general framework of Rogers is extremely �exible considering the choices of the state

vector X or the function f . Nevertheless, in section 2.1 we found several criteria term

structure models must ful�ll. These criteria might in turn restrict the choices of f and

X in Rogers' generic approach. In this section, we try to identify such restrictions. Of

particular importance are the following points from section 2.1:

1. Mean reversion and

2. Boundedness of interest rates

3. Availability of analytical bond pricing formulae

4. No-arbitrage



24 2.2.1 The general framework of Rogers

5. Positivity of interest rates

6. The behavior of the long end of the term structure.

Note that the empirical properties we use to derive restrictions of the Rogers model a

priori only apply to the dynamics under the physical measure, not necessarily under the

reference measure. However, as we will see in section 2.2.7, the reference measure must be

equivalent to the risk-neutral measure to guarantee no-arbitrage. By choosing a market

price of risk we then construct the physical measure as a further equivalent measure to both

the reference and the risk-neutral measure. As all three measures are equivalent, they have

the same null sets. If we can describe certain empirical properties of term structures by

null sets under the physical measure, the same properties hold under the other equivalent

measures as well.

The state process X

Rogers does not restrict the state process X. However, empirical research as well as imple-

mentation practice with various interest rate models allow several assumptions about the

state process. First, according to Litterman and Scheinkman [LS91], principal component

analysis showed that the �rst three components, level, slope and curvature, explain about

97% of the dynamics of the term structure. As a change of measures does not change the

dimensionality of the underlying process, Litterman and Scheinkman's work implies that

a multifactor model is required to catch the dynamics of the whole term structure.

A major requirement for interest rate dynamics under the physical measure was mean

reversion. The main idea behind mean reversion is that we expect any historically observed

term structure to reemerge with positive probability, hence the probability of a certain term

structure to emerge only once is a null set. Therefore, mean reversion of interest rates must

hold under all equivalent measures.

Analytical pricing formulae

A major criterion on term structure models from a practitioners point of view is the

availability of closed form solutions to zero bond and interest rate derivative prices, as

stated in 2.1. Given the bond pricing formula

P (t, T ) = e−α(T−t)E
P̃ [f(XT )|Xt]

f(Xt)

the critical question is whether the conditional expectation EP̃ [f(XT )|Xt] can be calcu-

lated analytically. Given a state process X and its conditional distribution of XT |Xt, it is

often straightforward to decide whether closed-form bond prices are available or not8.
8Note that the conditional distribution of XT |Xt is available for most choices of state vector processes,

such as Brownian motion, �nite state space Markov chains in discrete time, Ornstein-Uhlenbeck and Cox-

Ingersoll-Ross processes.
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We can demonstrate this using the examples presented by Rogers [Rog97]. If we require

X to be an Ornstein-Uhlenbeck process, we know the conditional distribution of XT |Xt to

be normal. The �rst example of Rogers de�nes f(x) := exp(aTx). As aTXT |Xt follows a

normal distribution, the closed form solution of bond prices is based on the �rst moment

of a lognormal distribution. Example 2 sets f(x) := exp(1
2(x− c)TQ(x− c)) and the bond

pricing function uses results of [LW99] about expected values of functions of normally

distributed random variables. Example 3 de�nes f(x) := γ + 1
2(x − c)TQ(x − c) and the

bond pricing formula is based on the second moment of the normal distribution. The

fourth example, which we will examine below, de�nes

f(x) := cosh(γTx+ c) =
exp(γTx+ c) + exp(−γTx− c)

2
,

which also uses the �rst moment of a lognormal distribution.

Whether additional closed formulae of contingent claim prices are required is a question

of the purpose the model is developed for. Due to asymmetry in payo� functions, deriving

closed form solutions to derivative prices requires more elaborate examinations and may

not provide a simple criterion on a given choice of f and X.

No-arbitrage

In section 2.1, we discussed why no-arbitrage as a basic consistency criterion is important in

term structure modeling. In his derivation of the state price density framework, Rogers as-

sumes existence of a risk-neutral measure and hence no-arbitrage. In his generic approach,

however, Rogers speci�es the state price density given a function f and the dynamics of the

state vector under the reference measure P̃. Existence of the risk-neutral measure is thus

not guaranteed and therefore no-arbitrage has to be proved for any speci�ed model. In

case the state price density is a supermartingale, Rutkowski [Rut97] provides the following

theorem.

Theorem 2.2.5. If the state price density (ςt) is a strictly positive supermartingale, the

bond market de�ned by ςt is arbitrage free.

Proof. See Rutkowski [Rut97], proposition 1, page 154.

If the state-price density is no supermartingale, no-arbitrage has to be proved. We will

demonstrate the standard approach in section 2.2.7. The idea is to take bond price dy-

namics under the reference measure, and then to construct a drift correction term which

provides an equivalent measure under which discounted asset prices are martingales. The

resulting measure is therefore a risk-neutral measure. This may be a di�cult and time

consuming task. Note furthermore that the derivation of bond price dynamics under the

reference measure might be impossible if closed form solutions to bond prices are not

available.
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Positivity

Besides analytical bond pricing formulas, another important requirement of interest rate

models is positivity of the resulting yields. Empirically, negative interest rates should

not occur, as derived in 2.1. Because the probability of negative interest rates under the

physical measure is zero, interest rates are positive under the other equivalent measures

as well. The following theorem links positivity of interest rates to the supermartingale

property of the state price density.

Theorem 2.2.6. Suppose (ςt) is a positive state price density process. In the Rogers

framework, interest rates for arbitrary maturities are always non-negative if and only if the

state-price density is a positive supermartingale under the reference measure P̃.

Proof. (ςt) is a positive supermartingale, if and only if for all t, T ∈ R+, t ≤ T

EP̃ [ςT |Xt] ≤ ςt
ςt>0⇔ EP̃ [ςT |Xt]

ςt
≤ 1

⇔ P (t, T ) ≤ 1

⇔ − 1
T−t log (P (t, T )) ≥ 0

⇔ y(t, T ) ≥ 0

hence interest rates are non-negative.

A simple corollary can be derived based on Rutkowski's theorem 2.2.5 regarding no-

arbitrage.

Corollary 2.2.7. Suppose (ςt) is a positive state price density process. If interest rates of

a Rogers framework are always positive, the model is free of arbitrage.

Proof. By theorem 2.2.6, positivity of all interest rates implies the state price density to

be a positive supermartingale. By theorem 2.2.5, the model is free of arbitrage if the state

price density is a positive supermartingale.

A rather simple approach to guarantee that ςt is a positive supermartingale would be to

require (f(Xt)) to be a martingale or a positive supermartingale. In this case, the state

price density is a supermartingale as

EP̃ [ςT |Xt] = e−αTEP̃ [f(XT )|Xt] ≤ e−αtf(Xt) = ςt

holds in either case. However, if (f(Xt)) is a martingale, then

y(t, T ) = α− 1

T − t
log

(
EP̃ [f(XT )|Xt]

f(Xt)

)
= α− log(1)

T − t
= α,

and hence all interest rates are equal to α. We can conclude the following lemma.
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Lemma 2.2.8. In a Rogers model, (f(Xt)) must not be a martingale.

In the next section, we will �nd a simple condition under which (f(Xt)) might be a super-

martingale.

The long end of the term structure

Given the yield formula of the Rogers model in 2.2.2, we know that the parameter α is

in�uential for the asymptotic long rate of the yield curve limT→∞ y(t, T ). In particular,

section 2.3.9 will show that the asymptotic long rate for all practical purposes is constant

and equal to α. By now, we can derive the following general lemma.

Lemma 2.2.9. In a Rogers model with (f(Xt)) being a supermartingale, α = 0 and α is

a lower bound for the asymptotic long rate.

Proof. Choosing f so that (f(Xt)) is a supermartingale implies that for all 0 ≤ t ≤ T

f(Xt) ≥ EP̃ [f(XT )|Xt]

1 ≥ EP̃ [f(XT )|Xt]

f(Xt)

0 ≥ 1

T − t
log

(
EP̃ [f(XT )|Xt]

f(Xt)

)

0 ≤ − 1

T − t
log

(
EP̃ [f(XT )|Xt]

f(Xt)

)

α ≤ α− 1

T − t
log

(
EP̃ [f(XT )|Xt]

f(Xt)

)
= y(t, T ).

As we require that interest rates may get arbitrarily close to 0, this e�ectively implies

α = 0. In section 2.3.9, we will �nd that α, dependent on the current state Xt, either

equals the asymptotic long rate, is an upper bound of it or a lower bound. From economic

reasons, we require that yield curves are continuous functions of the time to maturity.

Therefore, α is either a lower bound of the asymptotic long rate as well or α equals the

asymptotic long rate. Because α = 0 if (f(Xt)) is a supermartingale, α cannot be equal

to the asymptotic long rate as this would imply investors to require no compensation for

lending money on the very long term, a contradiction to economic rationality. Therefore,

α is a lower bound for the asymptotic long rate.

A similar lemma based on economic reasoning can be found for convex functions f .

Lemma 2.2.10. If the function f : X → R+ is convex, and the state vector process (X)

is mean reverting to µ so that EP̃ [XT |Xt]→ µ for T →∞, then α is the upper bound of

the asymptotic long rate.

If the function f is concave, α is the lower bound of the asymptotic long rate.
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Proof. Let f : X → R+ be a convex function. By Jensen's inequality,

EP̃ [f(XT )|Xt] ≥ f
(
EP̃ [XT |Xt]

)
→ f(µ)

since f is continuous by de�nition. Thus

lim
T→∞

y(t, T ) = α− lim
T→∞

1

T − t
log

(
EP̃ [f(XT )|Xt]

f(Xt)

)

≤ α− lim
T→∞

1

T − t
log

f
(
EP̃ [XT |Xt]

)
f(Xt)

→ α

The proof for concave f is analogously.

These lemmata may imply a con�ict for many term structure models if Rogers generic

approach is used and g(Xt) := α−Gf(Xt) is not guaranteed to be positive. In this case,

higher α decreases the probability of negative short rates. If f is convex, this also increases

the upper bound of the asymptotic long rate. If f is concave, this increases the lower bound

of the asymptotic long rate. In section 2.3.9, we will see that according to theorem 2.3.3

α implies a bound for the asymptotic long rate limT→∞ y(t, T ) depending on the limiting

behavior of EP̃ [f(XT )|Xt = x] for arbitrary x ∈ X .

2.2.4 The Rogers framework and the Flesaker-Hughston framework

Within the general framework of Rogers, we will compare two special cases: the cosh model

proposed by Rogers himself and the Cairns model [Cai04a], which is a special case of the

framework of Flesaker and Hughston [FH96], but which can be de�ned in terms of the

Rogers framework as well.

Flesaker and Hughston [FH96] proposed a general framework to de�ne term structure

model which guarantees positivity of all yields. They start with de�ning the bond price by

P (t, T ) :=

∫∞
T M(t, s)φ(s)ds∫∞
t M(t, s)φ(s)ds

(2.8)

where φ is a deterministic function. M(t, s) for 0 ≤ t ≤ s < ∞ is a family of strictly

positive di�usion processes over the index s which are martingales with respect to t under

the reference measure P̃. Rutkowski [Rut97] de�ned At :=
∫∞
t φ(s)M(t, s)ds, which leads

to the bond pricing formula

P (t, T ) =

∫∞
T M(t, s)φ(s)ds∫∞
t M(t, s)φ(s)ds

,

Fubini
=

EP̃
[∫∞
T φ(s)M(T, s)ds

∣∣Ft]∫∞
t φ(s)M(t, s)ds

=
EP̃ [AT |Xt]

At
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demonstrating the relation between Rogers state price density approach and the bond price

model of Flesaker and Hughston. In particular, At is a strictly positive state price density.

By de�nition of the bond price in (2.8),

1 ≥ P (t, T ) =
EP̃ [AT |Xt]

At

and hence (At) is also a supermartingale. Rutkowski proves absence of arbitrage given

that the state-price density At is a strictly positive supermartingale, see 2.2.5. Therefore,

no-arbitrage in a Flesaker-Hughston model implicitly holds.

Whereas in Rogers generic approach we had to choose f and X so that ςt is a super-

martingale, the Flesaker-Hughston framework requires de�nition of a martingaleM(t, s) :=

M(Xt, t, s). In both cases the state vector process must be multidimensional and mean

reverting by section 2.1. The main di�erence between the Rogers framework and the

Flesaker-Hughston framework lies in closed bond price formulae. Such closed formulae in

the Flesaker-Hughston framework require that the integrals are analytically solvable. In

the Rogers framework, closed formulae require that EP̃ [f(XT )|Xt] is available in closed

form. This criterion is generally easier to handle than the solvability of the integral in

Flesaker-Hughston.

2.2.5 The Cairns model

The Cairns model can be introduced in two ways: Using the framework of Flesaker and

Hughston, as Cairns did originally, or using the Rogers framework, which we will do later.

Flesaker and Hughston de�ne their model as a bondpricing model which guarantees posi-

tivity of all interest rates. Namely, Flesaker and Hughston de�ne zero-coupon bond prices

by

P (t, T ) =

∫∞
T M(t, s)φ(s)ds∫∞
t M(t, s)φ(s)ds

where (M(t, s))0≤t≤s<∞ is a family of strictly positive di�usion processes under a reference

measure P̃. (M(t, s))t≥0 is also a martingale for all s ≥ t and φ(·) is a deterministic

function. Cairns chooses the family of martingales M by

M(0, T ) = 1 ∀T

dM(t, T ) = M(t, T )σ(t, T )′dW P̃(t) (2.9)

where9

dW P̃(t) = CdZP̃(t)

9We will denote correlated Brownian motion by Wt and independent Brownian motion by Zt, respec-

tively.



30 2.2.5 The Cairns model

and ZP̃1 (t), . . . , ZP̃d (t) are d independent Brownian motions under the reference measure P̃
and the matrix C is chosen such that CC ′ = ((ρij))

d
i,j=1 is an instantaneous correlation

matrix with d
〈
W P̃i (t),W P̃j (t)

〉
= ρij . Now using the Ito-Doeblin formula on (2.9) implies

d log (M(t, T )) = σ(t, T )TdW P̃(t)− 1

2

d∑
i=1

n∑
j=1

σi(t, T )σj(t, T )ρijdt

and by de�ning σi(t, T ) := σi exp [−κi(T − t)]

logM(t, T )

=
n∑
i=1

σi

∫ t

0
e−κi(T−s)dW P̃i (s)− 1

2

d∑
i=1

d∑
j=1

ρijσiσj

∫ t

0
e−(κi+κj)(T−s)ds

=
d∑
i=1

σie
−κi(T−t)X̂i(t)−

1

2

d∑
i=1

d∑
j=1

ρijσiσj
κi + κj

e−(κi+κj)(T−t)
(

1− e−(κi+κj)t
)

with

dX̂i(t) = −κiX̂i(t)dt+ dW P̃i (t)

and X̂i(0) = 0. X̂1, . . . , X̂d are therefore correlated Ornstein-Uhlenbeck processes with

mean reversion factor κi. Cairns de�nes the deterministic function φ(·) using some param-

eters η, α, x̂1, . . . , x̂d as

φ(s) = η exp

−αs+
d∑
i=1

σix̂ie
−κis − 1

2

d∑
i,j=1

ρijσiσj
κi + κj

e−(κi+κj)s

 .
This speci�cation is chosen to simplify the combined integrand

M(t, s)φ(s) = η exp

−αs+

d∑
i=1

σix̂ie
−κis − 1

2

d∑
i,j=1

ρijσiσj
κi + κj

e−(κi+κj)s

+
d∑
i=1

σie
−κi(T−t)X̂i(t)−

1

2

d∑
i,j=1

ρijσiσj
κi + κj

e−(κi+κj)(T−t)
(

1− e−(κi+κj)t
)

= η exp

−αs+
d∑
i=1

σie
−κi(s−t)Xi(t)−

1

2

d∑
i,j=1

ρijσiσj
κi + κj

e−(κi+κj)(s−t)


with Xi(t) = x̂i exp(−κit) + X̂i(t). X1, . . . , Xd are Ornstein-Uhlenbeck processes under P̃
with Xi(0) = x̂i and dXi(t) = −κiXi(t)dt + dW P̃i (t) for i = 1, . . . , d. Alternatively, one

could follow the Flesaker-Hughston approach and de�ne φ(s) := ∂
∂sP (0, s), which guar-

antees that the model �ts perfectly the current term structure. This approach resembles

the calibration of the Hull-White model [HW90] to the current term structure. Both ap-

proaches share the problem that reliable data of the yield curve is only available up to

maturities of 10 years, which implies an upper integration bound of the calibrated Cairns
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model of only 10 years which is insu�cient.

Integrating overM(t, s)φ(s), we can de�ne a simplifying function H : [0,∞)×X → (0,∞),∫ ∞
T

M(t, s)φ(s)ds

= η

∫ ∞
T

exp

−αs+
d∑
i=1

σie
−κi(s−t)Xi(t)−

1

2

n∑
i,j=1

ρijσiσj
κi + κj

e−(κi+κj)(s−t)

 ds
with substitution u := s− t this equals

ηe−αt
∫ ∞
T−t

exp

−αu+

d∑
i=1

σie
−κiuXi(t)−

1

2

d∑
i,j=1

ρijσiσj
κi + κj

e−(κi+κj)u

 du
:= ηe−αt

∫ ∞
T−t

H(s,X(t))ds (2.10)

and hence ∫ ∞
t

M(t, s)φ(s)ds = ηe−αt
∫ ∞

0
H(s,X(t))ds,

whereby

H(u, x) = exp

−αu+
d∑
i=1

σixie
−κiu − 1

2

d∑
i,j=1

ρijσiσj
κi + κj

e−(κi+κj)u

 .
This provides the following theorems describing bond prices and nominal yields.

Theorem 2.2.11. Within the Cairns model, the price of a zerobond at time t which pays

1 at maturity T is given by

P (t, T ) =

∫∞
T−tH(s,X(t))ds∫∞
0 H(s,X(t))ds

.

Corollary 2.2.12. Within the Cairns model, zerobond rates y(t, T ) at time t with time to

maturity T − t are given by

y(t, T ) := − 1

T − t

(
log

(∫ ∞
T−t

H(s,X(t))ds

)
− log

(∫ ∞
0

H(s,X(t))ds

))
.

Using these theorems, we can derive instantaneous forward rates and shortrates using

standard formulae.

Theorem 2.2.13. Within the Cairns model, instantaneous forward rates are given by

f(t, T ) =
H(T − t,X(t))∫∞
T−tH(s,X(t))ds

,

the shortrate is is given by

r(t) =
H(0, X(t))∫∞

0 H(s,X(t))ds
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Proof. The instantaneous forward rates in Cairns can be derived by

f(t, T ) = − ∂

∂T
log(P (t, T )) =

H(T − t,X(t))∫∞
T−tH(s,X(t))ds

.

The shortrate is then given as

r(t) = f(t, t) =
H(0, X(t))∫∞

0 H(s,X(t))ds

If we want to introduce the Cairns model within the Rogers framework, the starting

point is the speci�cation of the state-price density.

Theorem 2.2.14. Within the Cairns model, the state price density process (ςt) is given

by

ςt : = ηe−αt
∫ ∞

0
H(s,X(t))ds

for all t ≥ 0. (ςt) is a positive supermartingale.

Note that the value of η is actually irrelevant for pricing and hence omitted.

Proof. By (2.10), for 0 ≤ t ≤ T

ηe−αt
∫ ∞
T−t

H(s,X(t))ds =

∫ ∞
T

M(t, s)φ(s)ds

and hence

ηe−αT
∫ ∞

0
H(s,X(T ))ds =

∫ ∞
T

M(T, s)φ(s)ds

and

ηe−αt
∫ ∞

0
H(s,X(t))ds =

∫ ∞
t

M(t, s)φ(s)ds,

hence for T ≥ t

ηEP̃
[
e−αT

∫ ∞
0

H(s,X(T ))ds

∣∣∣∣Ft]
= EP̃

[∫ ∞
T

M(T, s)φ(s)ds

∣∣∣∣Ft]
Fubini

=

∫ ∞
T

EP̃ [M(T, s)| Ft]φ(s)ds

=

∫ ∞
T

M(t, s)φ(s)ds.

Therefore

EP̃
[
e−αT

∫∞
0 H(s,X(T ))ds

∣∣Ft]
e−αt

∫∞
0 H(s,X(t))ds

=

∫∞
T M(t, s)φ(s)ds∫∞
t M(t, s)φ(s)ds

= P (t, T ),
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by de�nition of the Cairns model. This is the de�ning equation for the state price density.

Since exp and H are positive functions, e−αT
∫∞

0 H(s,X(T ))ds is positive as well. Finally,

ηEP̃
[
e−αT

∫ ∞
0

H(s,X(T ))ds

∣∣∣∣Ft] =

∫ ∞
T

M(t, s)φ(s)ds

≤
∫ ∞
t

M(t, s)φ(s)ds

= ηe−αt
∫ ∞

0
H(s,X(t))ds,

whereby we used that M(t, s)φ(s) is positive for all T ≥ t and all s.

2.2.6 The cosh model

As an alternative to the Cairns model, we present the fourth example of Rogers, the so

called cosh model. The cosh model is introduced by Rogers as an example for his generic

approach. The term structure model is speci�ed by f(x) := cosh(x) and the state vector

being an Ornstein-Uhlenbeck process. This de�nes the state price density of the cosh model

by

ςt := e−αt cosh(γTXt + c). (2.11)

The standard example for the Rogers framework is the exponential a�ne model f(Xt) :=

exp
(
γTXt + c

)
with X being an Ornstein-Uhlenbeck process. This is Rogers' �rst example

for the generic approach, it was later examined further by Leippold and Wu [LW99]. Al-

though the cosh models seems by far more complicated, it is in fact simply a combination of

a�ne exponential models, since cosh(x) = 1
2 [exp(x) + exp(−x)]. In both models the state

price density is not a supermartingale, re�ecting the di�culties to de�ne a model with this

property. Consequently, both models allow for negative interest rates. Nevertheless, the

subset of states which imply negative interest rates is obviously a halfspace in case of the

exponential a�ne model, whereas the set of states which imply negative interest rates in

the cosh model is only a subset of a halfspace. This rather geometrical argument indicates

that the probability of negative interest rates should be smaller with the cosh model than

with the exponential a�ne model. This is the main reason we preferred the cosh model to

the exponential a�ne model.

The cosh model as well as the exponential a�ne model o�er simple closed-form solutions

of bond prices, based on moments of lognormal distributions. These closed bond prices

guarantee computational e�ciency for both models.

We choose the state process X to follow Ornstein-Uhlenbeck dynamics under the ref-

erence measure P̃. Speci�cally, we assume

dXt = κ(µ̃−Xt)dt+ CdZP̃t (2.12)
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where ZP̃t = (ZP̃,1t , . . . , ZP̃nt ) is an n-dimensional Brownian motion under the reference

measure P̃ with ZP̃,it and ZP̃,jt mutually uncorrelated for i 6= j. The state vector compo-

nents are correlated by the instantaneous correlation matrix

CCT = ρ = ((ρij)),

hence

d 〈Xi(t), Xj(t)〉 = ρijdt.

This dependence structure is chosen following the previous de�nition of the (correlated)

state vector in Cairns. The matrix κ is a n× n diagonal matrix, again as in Cairns. The

long-term mean µ̃ of the state process under the reference measure P̃ is an n-dimensional

vector, which in the Cairns model was implicitly taken to be zero. For the individual state

vector component X(i) we have

dX
(i)
t = κi(µ̃i −X(i)

t )dt+

d∑
j=1

CijdZ
P̃,j
t . (2.13)

Using the Ito-Doeblin formula, we can easily derive a solution to this stochastic di�erential

equation.

Theorem 2.2.15. A process with dynamics (2.13) has solution10

X
(i)
t = X

(i)
0 e−κit + µ̃i(1− e−κit) +

d∑
j=1

∫ t

0
eκi(s−t)CijdZ

P̃,j
s . (2.14)

Proof. We take f(t,X
(i)
t ) := X

(i)
t eκit. Then by the Ito-Doeblin-formula

df(t,Xt) =
[
κiX

(i)
t eκit + κi(µ̃i −X(i)

t )eκit
]
dt+ eκit

d∑
j=1

CijdZ
P̃,j
t

= κiµ̃ie
κitdt+ eκi

d∑
j=1

CijdZ
P̃,j
t .

10We write for readability

e−κ(T−t) := diag(e−κii(T−t))

and

1− e−κ(T−t) := diag
(

1− e−κii(T−t)
)
.

Note that for κ being a diagonal matrix we encounter here this notation coincides with the de�nition of

an exponential of a matrix exp(A) :=
∑∞
k=0

1
k!
Ak. In the following sections, diagonality of κ and e−κ(T−t)

is frequently used.
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Next we integrate this stochastic di�erential equation from 0 to t and get

f(t,Xt)− f(0, X0) =

∫ t

0
κiµ̃ie

κisds+
d∑
j=1

∫ t

0
eκisCijdZ

P̃,j
s .

X
(i)
t eκit −X(i)

0 = µ̃i(e
κit − 1) +

d∑
j=1

∫ t

0
eκisCijdZ

P̃,j
s .

X
(i)
t = X

(i)
0 e−κit + µ̃i(1− e−κit) +

d∑
j=1

∫ t

0
eκi(s−t)CijdZ

P̃,j
s .

Using the solution of the stochastic di�erential equation, the following theorem provides

the distribution ofXT conditional onXt, which can directly be used to derive the transition

equation for the Kalman �lter.

Theorem 2.2.16. The conditional distribution of XT given Xt whereby (Xt) is an Ornstein-

Uhlenbeck process with dynamics as described in (2.12) and (2.13) is normal with condi-

tional mean

E [XT |Xt] = e−κ(T−t)Xt + (1− e−κ(T−t))µ̃ (2.15)

and conditional covariance matrix

CovP̃
[
X

(i)
T , X

(j)
T

∣∣∣Xt

]
=

ρij
κi + κj

(
1− e−(κi+κj)(T−t)

)
. (2.16)

Proof. As the Ornstein-Uhlenbeck processes are driven by a d-dimensional Brownian mo-

tion, we have that the distribution ofXT givenXt is (multivariate) normal. For i = 1, . . . , d

we have, using (2.14),

EP̃
[
X

(i)
T

∣∣∣Xt

]
= EP̃

X(i)
t e−κi(T−t) + µ̃i(1− e−κi(T−t)) +

d∑
j=1

∫ T

t
eκi(s−T )CijdZ

P̃,j
s

∣∣∣∣∣∣Xt


= X

(i)
t e−κi(T−t) + µ̃i(1− e−κi(T−t)) +

d∑
j=1

EP̃
[∫ T

t
eκi(s−T )CijdZ

P̃,j
s

∣∣∣∣Xt

]
= X

(i)
t e−κi(T−t) + µ̃i(1− e−κi(T−t))

and hence

E [XT |Xt] = e−κ(T−t)Xt +
(

1− e−κ(T−t)
)
µ̃.
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Let k, l ∈ {1, . . . , d}. Then

CovP̃
[
X

(k)
T , X

(l)
T |Xt

]
= EP̃

[(
X

(k)
T − E

P̃
[
X

(k)
T |Xt

])(
X

(l)
T − E

P̃
[
X

(l)
T |Xt

])∣∣∣Xt

]
= EP̃

( d∑
i=1

∫ T

t
eκk(s−T )CkidZ

P̃ (i)
s

) d∑
j=1

∫ T

t
eκl(s−T )CljdZ

P̃ (j)
s

∣∣∣∣∣∣Xt


=

d∑
i=1

d∑
j=1

EP̃
[(∫ T

t
eκk(s−T )CkidZ

P̃ (i)
s

)(∫ T

t
eκl(s−T )CljdZ

P̃ (j)
s

)∣∣∣∣Xt

]

= e−(κk+κl)TEP̃
[(∫ T

t
eκksdW P̃ (k)

s

)(∫ T

t
eκlsdW P̃ (l)

s

)∣∣∣∣Xt

]
= e−(κk+κl)TEP̃

[∫ T

t
e(κk+κl)sρlkds|Xt

]
= e−(κk+κl)T

[
ρlk

κk + κl
e(κk+κl)T − ρlk

κk + κl
e(κk+κl)t

]
=

ρlk
κk + κl

(
1− e−(κk+κl)(T−t)

)

For notational simplicity, we set

CovP̃ [XT |Xt] := Σ(t, T ) =

(
ρlk

κk + κl

(
1− e−(κk+κl)(T−t)

))
l,k=1,...,d

.

We can now derive bond prices and yields.

Theorem 2.2.17. For the cosh model with state price density process (ςt) with

ςt = e−αt cosh(γTXt + c)

for all t ≥ 0 and (Xt) an Ornstein-Uhlenbeck process with dynamics (2.12) and (2.13), the

price of a zerobond at time t with maturity T is

P (t, T ) =
EP̃ [ςT |Xt]

ςt

=
cosh

(∑d
i=1

(
γie
−κi(T−t)X

(i)
t + (1− e−κi)µi

)
+ c
)

cosh(γTXt + c)

exp

−α(T − t) +
1

2

d∑
i,j=1

γiρijγj
κi + κj

(
1− e−(κi+κj)(T−t)

) .

We will frequently use vector notation, hence

P (t, T ) = e−α(T−t)
cosh

(
γTEP̃ [XT |Xt] + c

)
cosh(γTXt + c)

e
1
2
γTΣ(t,T )γ .
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Proof. Since XT |Xt follows a multivariate normal distribution, γTXT + c conditional on

Xt follows a normal distribution as well with mean

EP̃
[
γTXT + c

∣∣Xt] = γT
(
e−κ(T−t)Xt +

(
1− e−κ(T−t)

)
µ̃
)

+ c

and variance

V arP̃
[
γTXT + c|Xt

]
= γTΣ(t, T )γ.

Now exp(γTXT + c) is, conditionally on Xt, lognormally distributed. Therefore

EP̃
[
exp(γTXT + c)

∣∣Xt]

= exp

(
EP̃

[
γTXT + c

∣∣Xt] +
Cov

[
γTXT + c|Xt

]
2

)

= exp

(
γT
(
e−κ(T−t)Xt +

(
1− e−κ(T−t)

)
µ̃
)

+ c+
γTΣ(t, T )γ

2

)
.

We arrive at

EP̃
[
cosh(γTXT + c)

∣∣Xt]

=
1

2
EP̃

[
exp(γTXT + c) + exp(−γTXT − c)

∣∣Xt

]
=

1

2

(
exp

(
γT
(
e−κ(T−t)Xt +

(
1− e−κ(T−t)

)
µ̃
)

+ c
)

+ exp
(
−γT

(
e−κ(T−t)Xt +

(
1− e−κ(T−t)

)
µ̃
)
− c
))

exp

(
γTΣ(t, T )γ

2

)
= cosh

(
γTEP̃ [XT |Xt] + c

)
exp

(
γTΣ(t, T )γ

2

)
which yields the result required.

Now the bond pricing formula allows to derive yields of higher maturities.

Corollary 2.2.18. For the cosh model with state price density process (ςt) with

ςt = e−αt cosh(γTXt + c)

for all t ≥ 0 and (Xt) an Ornstein-Uhlenbeck process with dynamics (2.12) and (2.13),

nominal zerobond rates y(t, T ) at time t with time to maturity T − t are given by

y(t, T ) = α−
log cosh

(
γTE [XT |Xt] + c

)
T − t

−
log cosh

(
γTx+ c

)
T − t

− γTΣ(t, T )γ

2(T − t)
.

Proof.

y(t, T ) = − lnP (t, T )

T − t

= α−
log cosh

(
γTE [XT |Xt] + c

)
T − t

−
log cosh

(
γTx+ c

)
T − t

− γTΣ(t, T )γ

2(T − t)
.
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Shortrates and instantaneous forward rates can be derived from Rogers general formulae.

Theorem 2.2.19. For the cosh model with state price density process (ςt) and

ςt = e−αt cosh(γTXt + c)

for all t ≥ 0 and (Xt) an Ornstein-Uhlenbeck process with dynamics (2.12) and (2.13), the

shortrate is given by

rt = α− γTκ(µ̃−Xt) tanh(γTXt + c)− 1

2
γTργ

and instantaneous forward rates f(t, T ) are given by

f(t, T ) = α− tanh(γTEP̃ [XT |Xt] + c)γTκe−κ(T−t)(µ̃−Xt)−
1

2
γT e−κ(T−t)ρe−κ(T−t)γ

Proof. The shortrate within the Rogers framework is given by

rt =
(α−G)f(Xt)

f(Xt)
.

With f(Xt) = cosh(γTXt + c) and the state vector dynamics given by (2.12),

(α−G)f(Xt)

= αf(Xt)−
n∑
i=1

κi(µ̃i −Xt)
∂f

∂xi
(Xt)−

1

2

n∑
i=1

n∑
j=1

(CCT )ij
∂2f

∂xi∂xj
(Xt)

= α cosh(γTXt + c)−
n∑
i=1

κi(µ̃i −Xt) sinh(γtXt + c)γi

−1

2

n∑
i=1

n∑
j=1

(CCT )ij cosh(γTXt + c)γiγj

= α cosh(γTXt + c)− γTκ(µ̃−Xt) sinh(γtXt + c)− 1

2
γTργ cosh(γTXt + c).

Hence

rt =
α cosh(γTXt + c)− γTκ(µ̃−Xt) sinh(γtXt + c)− 1

2γ
Tργ cosh(γTXt + c)

cosh(γTXt + c)

= α− γTκ(µ̃−Xt) tanh(γtXt + c)− 1

2
γTργ.

Instantaneous forward rates are given by

f(t, T ) = − ∂

∂T
log (P (t, T ))

= − ∂

∂T
log

(
e−α(T−t) cosh(γTEP̃ [XT |Xt] + c)

cosh(γTXt + c)
e

1
2
γTΣ(t,T )γ

)

= − ∂

∂T

(
−α(T − t) + log

(
cosh(γTEP̃ [XT |Xt] + c)

)
+

1

2
γTΣ(t, T )γ

)
= α− sinh(γTEP̃ [XT |Xt] + c)

cosh(γTEP̃ [XT |Xt] + c)

∂

∂T
γTEP̃ [XT |Xt]−

1

2

d∑
i,j=1

∂

∂T

γiρijγj
κi + κj

e−(κi+κj)(T−t)

= α− tanh(γTEP̃ [XT |Xt] + c)γTκe−κ(T−t)(µ̃−Xt)−
1

2
γT e−κ(T−t)ρe−κ(T−t)γ

which yields the result.
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2.2.7 Change of measures

Equivalent martingale measures

In section 2.2.6 we introduced the cosh and the Cairns model. Both models were intro-

duced using a so called reference measure which is used for the pricing formula based on the

state price density. The reference measure is a theoretical measure introduced to facilitate

pricing formulae based on the state price density. Analogously, the risk-neutral measure is

a theoretical measure introduced to facilitate pricing based on the martingale property of

discounted asset prices under this measure. Historical data, however, is available under the

physical or historical measure. The state price density approach requires the physical and

reference measure to be equivalent in the same way as the risk-neutral approach requires

the risk-neutral measure and the physical measure to be equivalent: to allow for estima-

tion. Furthermore, the reference measure and the risk-neutral measure must be equivalent

as a prerequisite for the no-arbitrage condition.

Given an asset price process (St)t≥0, the existence of an equivalent measure under which

the discounted asset price process
(
e−

∫ t
0 rsdsSt

)
is a martingale implies no-arbitrage. This

equivalent martingale measure is the risk-neutral measure, see for example [KS91] or

[MR05]. The mentioned market consists of the risky asset S, the bank account paying

the shortrate rt and any derivative on the underlying S. To guarantee no-arbitrage in

state price density models de�ned under the reference measure, we have to prove existence

of an equivalent risk-neutral measure.

A main di�erence between no arbitrage in bond markets and no-arbitrage in a Black-

Scholes market lies in the number of risky assets. In a Black-Scholes market, a single stock

St is typically the only risky asset. In a bond market with stochastic term structure dy-

namics, in�nitely many risky assets (P (t, T ))T≥t exist. To prove no-arbitrage of the whole

bond market a single equivalent measure is required under which all discounted zerobond

prices regardless of time to maturity are martingales. We will demonstrate the standard

approach to derive no-arbitrage for bond market models for the cosh model.

In standard shortrate models, the dynamics of the shortrate are typically de�ned under

the risk-neutral measure, which therefore implicitly exists and hence no-arbitrage holds.

Rogers generic approach de�nes term structure models under a reference measure, exis-

tence of an equivalent risk-neutral measure is not guaranteed. The standard approach

to prove no-arbitrage is based on the construction of a risk-neutral measure. We know

that discounted asset price processes
(
e−

∫ t
0 rsdsSt

)
are martingales under the risk-neutral

measure. Hence given dynamics of a risky asset under the risk-neutral measure

dSt = µ(t, St)dt+ σ(t, St)dW
Q
t ,
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we can apply the Ito-Doeblin formula11 for the discounted asset price process
(
e−

∫ t
0 rsdsSt

)
de−

∫ t
0 rsdsSt =

[
−rte−

∫ t
0 rsdsSt + µ(t, St)e

−
∫ t
0 rsds + 0

]
dt+ σ(t, St)e

−
∫ t
0 rsdsStdW

Q
t

which simpli�es to

de−
∫ t
0 rsdsSt

e−
∫ t
0 rsdsSt

=

[
−rt +

µ(t, St)

St

]
dt+ σ(t, St)dW

Q
t .

By assumption, the discounted asset price under the risk neutral measure must be a mar-

tingale, hence µ(t, St) = rtSt. Therefore, in a stochastic term structure model, the drift

of any zerobond under the risk-neutral measure must equal the stochastic model-implied

shortrate. This allows to construct a measure by specifying a drift correction term which,

see also [KS91] or [MR05],

1. ensures that under the newly constructed measure the drift of the zerobond dynamics

equals the shortrate and

2. ensures that the constructed measure is equivalent to the initial measure.

If these conditions hold, the constructed measure is a risk-neutral measure and hence the

underlying market is free of arbitrage. As the underlying market so far consists merely

of the bank account and the single bond P (t, T ) whose dynamics were used to derive the

risk-neutral measure, the bond market as a whole is free of arbitrage if and only if the

derived drift correction term is independent of the time to maturity T − t. In this case,

the above described algorithm constructs the same risk-neutral measure for all zerobonds

and hence the whole bond market consisting of the bank account, zerobonds of arbitrary

times to maturity (P (t, T ))T≥t and their derivatives is arbitrage-free.

Since historical data was observed under the physical measure, one has to specify the

dynamics under the physical measure as well, both for shortrate models de�ned under the

risk-neutral measure and state price density models de�ned under the reference measure.

In shortrate models de�ned under the risk-neutral measure, the market price of risk de�nes

the physical measure. We will see that in state price density models the speci�cation of

the physical dynamics is also equivalent to the choice of a market price of risk.

Best practice in term structure models is to specify the market price of risk in such a

way that dynamics under the original measure and under the physical measure imply

similar state factor dynamics and distributions. To give an example, Dai and Singleton

[DS00] choose12 a market price of risk in the a�ne framework which guarantees that the

state factor follows the same mean reverting dynamics under both the risk-neutral and the

physical measure, yet with distinct constant long-term means. We will see that Cairns

11See the appendix A
12As a�ne term structure models are de�ned under the risk-neutral measure, one is indeed free to choose

a market price of risk as long as it implies that risk-neutral measure and physical measure are equivalent.
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followed best practice in his model as well.

In subsequent papers, however, Du�e [Duf00] and Duarte [Dua04] found that alternative,

more complicated market prices of risk may improve historical �t, forecasting and risk

premia. We can therefore expect that di�erent choices of a market price of risk can improve

certain model aspects of the cosh or Cairns model as well. The price we have to pay for

this improvement are more complicated conditional distributions of the state vector under

the physical measure.

In the following, we will derive the dynamics under the risk-neutral and physical mea-

sures and thus the no-arbitrage condition for both the Cairns and the cosh model and the

respective market prices of risk.

The risk-neutral measure within the Cairns model

Cairns followed the standard approach to prove no-arbitrage. Speci�cally, he derived the

dynamics of the bond price under the reference measure, calculated the required drift-

correction term and proved the Novikov condition. The drift correction term from the

risk-neutral to the reference measure is given by Cairns as

dZQj = dZP̃j − Vj(t, t)dt. (2.17)

with

Vi(t, t) =

∫∞
0

∑d
j=1 σje

−κjuCjiH(u,Xt)du∫∞
0 H(u,Xt)du

. (2.18)

We summarize by the following theorem.

Theorem 2.2.20. The Cairns model is free of arbitrage.

Proof. By theorem 2.2.14, the Cairns model can be interpreted as a state price density

model whereby the state price density is a strictly positive supermartingale. By theorem

2.2.5, no-arbitrage holds.

The physical measure within the Cairns model

Cairns again follows the standard approach and speci�es the market price of risk Λ(t,Xt)

in such a way that the state vector X remains an Ornstein-Uhlenbeck process under the

physical measure.

We are essentially free to choose a market price of risk once no-arbitrage holds by existence

of the risk-neutral measure. Note, however, that by construction the market price of risk is

a drift correction term from a single risk-neutral measure for all bonds to a single physical

measure, therefore it must be independent of a time to maturity T − t. If the market price

of risk ful�lls the Novikov condition, risk-neutral and physical measure are equivalent.
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Theorem 2.2.21. In the Cairns model, the market price of risk

Λ(t,Xt)
Q,P := V (t, t)− C−1κµ

de�nes a physical measure equivalent to both the risk-neutral and the reference measure.

Proof. As in the Cairns model, we prove the Novikov condition to derive equivalence of

the physical and the risk-neutral measure

EP̃

[
exp

(
1

2

∫ t

0

d∑
i=1

(Vi(s, s)− (C−1κµ)i)

)]
< ∞.

We know by de�nition that σi(t, T ) are bounded for all T > t and i = 1, . . . , d.

Since H(u, x) > 0 for all u > 0 and −∞ < x <∞, we get

|Vj(t, t)| =

∣∣∣∣∣
d∑
i=1

σiCij

∫∞
0 H(u,Xt)e

−κiudu∫∞
0 H(u,Xt)du

∣∣∣∣∣
≤

∣∣∣∣∣
d∑
i=1

σiCij

∣∣∣∣∣
∫∞

0 H(u,Xt)e
−κiudu∫∞

0 H(u,Xt)du
.

Now since e−κiu ≤ 1 for u ≥ 0 we have∫ ∞
0

H(u,Xt)e
−κiudu ≤

∫ ∞
0

H(u,Xt)du

and hence

|Vj(t, t)| ≤

∣∣∣∣∣
d∑
i=1

σiCij

∣∣∣∣∣
∫∞

0 H(u,Xt)e
−κiudu∫∞

0 H(u,Xt)du
≤

d∑
i=1

|σiCij | ,

which guarantees that Vj(t, t) is bounded for all j = 1, . . . , d and t ≥ 0. Therefore the

integrand of the Novikov condition
∑d

i=1(Vi(s, s) − (C−1κµ)i) is bounded since θ is con-

stant. As the expected value of a bounded random variable is itself bounded, the Novikov

condition is ful�lled.

In shortrate models, state vector dynamics are de�ned under the risk-neutral measure,

and best practice implies that the market price of risk ensures similar dynamics under the

physical measure as well. In the state price density approach, pricing is implemented using

the reference measure. Consequently, best practice would imply to choose the market price

of risk so that dynamics under the physical measure resemble dynamics under the reference

measure. The following theorem will show that this is equivalent to specifying directly a

drift correction term from the reference measure P̃ to the physical measure P.

Corollary 2.2.22. In the Cairns model with market price of risk

ΛQ,P(t,Xt) = V (t, t)− C−1κµ,

the dynamics of the state vector under the physical measure are given by

dXt = κ (µ−Xt) dt+ CdZPt
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Proof. We have

dZP = dZQ + Λ(t,Xt)
Q,Pdt

= dZP̃ − V (t, t)dt+ Λ(t,Xt)
Q,Pdt (2.19)

with (2.17). By (2.2.21), Λ(t,Xt)
Q,P := V (t, t) + θ. Now considering the resulting state

vector dynamics of component i ∈ {1, . . . , d} we get

dX
(i)
t = −κiX(i)

t dt+
d∑
j=1

CijdZ
P̃,j

= −κiX(i)
t dt+

d∑
j=1

Cij
(
dZP,j − θdt

)
= −

d∑
j=1

Cijθjdt− κiX(i)
t dt+

d∑
j=1

dZP,jt

= [−(Cθ)i − κiX(i)
t ]dt+

d∑
j=1

dZP,jt .

which implies θ = −C−1κµ. The drift correction term between the reference and the

physical measure is given by θ following (2.19). As θ is constant, the Novikov condition

holds and therefore the reference measure and the physical measure are equivalent.

The risk-neutral measure within the cosh model

To derive the dynamics under the risk-neutral measure, we follow the standard approach.

First, we derive the dynamics of the bond price P (t, T ) de�ned by the cosh model under

the reference measure using the Ito-Doeblin formula, then we examine the drift correction

term which guarantees that the drift under the risk-neutral measure equals the shortrate.

We begin with the dynamics of the bond price under the reference measure.

dP (t, T ) =

 ∂
∂t
P (t, T ) +

d∑
i=1

∂

∂xi
P (t, T )µi(t,Xt) +

1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
P (t, T )ρij

 dt
+

d∑
i=1

∂

∂xi
P (t, T )

d∑
j=1

CijdZ
P̃
j (t).
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The derivative in t is

∂

∂t
P (t, T ) =

∂

∂t
e−α(T−t)E

P̃ [cosh(γTXT + c)|Xt

]
cosh(γTXt + c)

=
∂

∂t
e−α(T−t) cosh(γTEP̃ [XT |Xt] + c)

cosh(γTXt + c)
e
γTΣ(t,T )γ

2

= αe−α(T−t) cosh(γTEP̃ [XT |Xt] + c)

cosh(γTXt + c)
e
γTΣ(t,T )γ

2

+e−α(T−t) sinh(γTEP̃ [XT |Xt] + c) ∂∂tγ
TEP̃ [XT |Xt]

cosh(γTXt + c)
e
γTΣ(t,T )γ

2

e−α(T−t) cosh(γTEP̃ [XT |Xt] + c)

cosh(γTXt + c)
e
γTΣ(t,T )γ

2
1

2

∂

∂t
γTΣ(t, T )γ

= P (t, T )
[
α+ tanh

(
γTEP̃ [XT |Xt] + c

)
γTκe−κ(T−t)(Xt − µ̃)

−1

2
γT e−κ(T−t)ρe−κ(T−t)γ

]

For the derivative in xi, note that the (conditional) covariance Σ(t, T ) does not depend on

the current state Xt = x, see theorem 2.2.16. Therefore

∂

∂xi
P (t, T ) = e−α(T−t)+ γTΣ(t,T )γ

2

(
∂
∂xi

cosh(γTEP̃ [XT |Xt] + c) cosh(γTXt + c)

cosh2(γTXt + c)

−
cosh(γTEP̃ [XT |Xt] + c) ∂

∂xi
cosh(γTXt + c)

cosh2(γTXt + c)

)

= e−α(T−t)+ γTΣ(t,T )γ
2

(
sinh(γTEP̃ [XT |Xt] + c)e−κi(T−t)γi

cosh(γTXt + c)

−cosh(γTEP̃ [XT |Xt] + c) sinh(γTXt + c)γi

cosh2(γTXt + c)

)
= P (t, T )

(
tanh(γTEP̃ [XT |Xt] + c)e−κi(T−t)γi − tanh(γTXt + c)γi

)
= γiP (t, T )

[
tanh(γTEP̃ [XT |Xt] + c)e−κi(T−t) − tanh(γTXt + c)

]

and

d∑
i=1

µi(t,Xt)
∂

∂xi
P (t, T )

=
d∑
i=1

κi

(
µ̃i −X(i)

t

)
γiP (t, T )

[
tanh

(
γTE[XT |Xt] + c

)
e−κi(T−t) − tanh

(
γTXt + c

)]
= P (t, T )

[
tanh

(
γTE[XT |Xt] + c

)
γTκe−κ(T−t)(µ̃−Xt)

− tanh
(
γTXt + c

)
γTκ(µ̃−Xt)

]
.
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Finally, we get

∂2

∂xi∂xj
P (t, T )

= γiγjP (t, T )
[
− tanh

(
γTXt + c

)
tanh

(
γTE[XT |Xt] + c

) [
e−κi(T−t) + e−κj(T−t)

]
+2 tanh2

(
γTXt + c

)
+ e−(κi+κj)(T−t) − 1

]
and thus

1

2

d∑
i=1

d∑
j=1

ρij
∂2

∂xi∂xj
P (t, T )

=
1

2

d∑
i=1

d∑
j=1

ρijγiγjP (t, T )
[
− tanh

(
γTXt + c

)
tanh

(
γTE[XT |Xt] + c

)
·
(
e−κi(T−t) + e−κj(T−t)

)
+ 2 tanh2

(
γTXt + c

)
+ e−(κi+κj)(T−t) − 1

]
= P (t, T )

[
−γT e−κ(T−t)ργ tanh

(
γTXt + c

)
tanh

(
γTE[XT |Xt] + c

)
+γTργ tanh2

(
γTXt + c

)
− 1

2
γTργ +

1

2
γT e−κ(T−t)ρe−κ(T−t)γ

]
.

So the dynamics of the bond price under the reference measure are given by

dP (t, T ) =

 ∂
∂t
P (t, T ) +

d∑
i=1

µ̃i
∂

∂xi
P (t, T ) +

1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
P (t, T )ρij

 dt
+

d∑
i=1

∂

∂xi
P (t, T )

d∑
j=1

CijdZ
P̃
j (t)

= P (t, T )
[
α− tanh

(
γTE [XT |Xt] + c

)
γTκe−κ(T−t)(µ̃−Xt)

−1

2
γT e−κ(T−t)ρe−κ(T−t)γ + tanh

(
γTE[XT |Xt] + c

)
γTκe−κ(T−t)(µ̃−Xt)

− tanh
(
γTXt + c

)
γTκ(µ̃−Xt)

−γT e−κ(T−t)ργ tanh
(
γTXt + c

)
tanh

(
γTE[XT |Xt] + c

)
+γTργ tanh2

(
γTXt + c

)
− 1

2
γTργ +

1

2
γT e−κ(T−t)ρe−κ(T−t)γ

]
dt

+P (t, T )
[
tanh

(
γTE[XT |Xt] + c

)
γT e−κ(T−t)C

− tanh
(
γTXt + c

)
γTC

]
dZP̃t (t)

= P (t, T )
[
rt − γT e−κ(T−t)ργ tanh

(
γTXt + c

)
tanh

(
γTE[XT |Xt] + c

)
+γTργ tanh2

(
γTXt + c

)]
dt+ P (t, T )

[
tanh

(
γTE[XT |Xt] + c

)
γT e−κ(T−t)C

− tanh
(
γTXt + c

)
γTC

]
dZP̃t (t)

whereby we used the formula of the shortrate from theorem 2.2.19. Now we need a drift

correction term Λ(Xt, t) with

dZP̃t = dZQt + Λ(Xt, t)dt,
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such that the drift of the bond price under the constructed measure equals the shortrate

rt. Assuming a drift correction term Λ(Xt, t), the bond price dynamics become

dP (t, T )

P (t, T )
=

[
rt − γT e−κ(T−t)ργ tanh

(
γTXt + c

)
tanh

(
γTE[XT |Xt] + c

)
+γTργ tanh2

(
γTXt + c

)]
dt

+
[
tanh

(
γTE[XT |Xt] + c

)
γT e−κ(T−t)C

− tanh
(
γTXt + c

)
γTC

] (
dZQt + Λ(Xt, t)dt

)
.

First, we de�ne Λ(Xt, t) := CTΛ′(Xt, t) for simplicity, then

P (t, T )
[
tanh

(
γTE[XT |Xt] + c

)
γT e−κ(T−t)C − tanh

(
γTXt + c

)
γTC

]
CTΛ′(Xt, t)dt

= P (t, T )
[
tanh

(
γTE[XT |Xt] + c

)
γT e−κ(T−t)ρΛ′(Xt, t)

− tanh
(
γTXt + c

)
γTρΛ′(Xt, t)t

]
dt.

The combined drift term now must equal the shortrate, hence

rt = rt − γT e−κ(T−t)ργ tanh
(
γTXt + c

)
tanh

(
γTE[XT |Xt] + c

)
+ γTργ tanh2

(
γTXt + c

)
+ tanh

(
γTE[XT |Xt] + c

)
γT e−κ(T−t)ρΛ′(Xt, t)− tanh

(
γTXt + c

)
γTρΛ′(Xt, t),

for which

CTΛ′(Xt) = CTγ tanh (γXt + c)

is the obvious choice. As the last step, we examine the Novikov condition to prove equiv-

alence of the reference measure and the constructed measure. Thus we require

EP̃

[
exp

(
1

2

∫ t

0

d∑
i=1

(Cγ)2
i tanh2(γTXs + c)ds

)]
<∞.

As tanh is bounded so is the integrand and therefore the integral. As the expected value

of a bounded random variable is again bounded the Novikov condition holds for our drift

correction term. According to the Cameron-Martin-Girsanov theorem the measures P̃ and

the constructed measure Q are equivalent. As therefore Q is an equivalent measure under

which discounted bond prices are martingales, Q is a risk-neutral measure.

Note that the drift correction term Λ(Xt) does not depend on the current time t nor on

the time to maturity T − t of the bond P (t, T ) used to derive the term. Therefore, the

same drift correction term Λ(Xt) applies for all zerobond (P (t, T ))T≥t, which is required

to derive no-arbitrage of the whole bond market. We summarize this in the following

theorem.

Theorem 2.2.23. For the cosh model with state price density process (ςt) with

ςt = e−αt cosh(γTXt + c)
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and (Xt) an Ornstein-Uhlenbeck process with dynamics (2.12) and (2.13) under the refer-

ence measure, there exists an equivalent martingale measure Q with

dZP̃t = dZQt + CTγ tanh
(
γTXt + c

)
dt,

and

dP (t, T )

P (t, T )
= rtdt+ CdZQt .

The measure Q is the usual risk-neutral measure.

By the fundamental theorem of asset pricing, the existence of a risk-neutral measure implies

no-arbitrage of the market considered. So far, this market consists of the banking account,

the single risky asset P (t, T ) and its derivative securities. As the drift correction term

Λ(Xt) does not depend on the time to maturity T − t, we can construct the same risk-

neutral measure for arbitrary bonds (P (t, T ))T≥t, hence the following corollary holds.

Corollary 2.2.24. For the cosh model with state price density process (ςt) with

ςt = e−αt cosh(γTXt + c)

and (Xt) an Ornstein-Uhlenbeck process with dynamics (2.12) and (2.13), the market con-

sisting of bank account, zerobonds P (t, T ) of arbitrary maturities T ≥ t and their derivative
securities is free of arbitrage.

The physical measure within the cosh model

As the cosh model is de�ned using the reference measure, best practice implies that we

choose the dynamics of the physical measure similar to those of the reference measure

and not the risk-neutral measure. This yields a drift correction term ΛP̃,P(t,Xt) from the

reference to the physical measure, hence

dZP = dZP̃ + ΛP̃,P(Xt)dt

and

dX
(i)
t = κi

(
µ̃i −X(i)

t

)
dt+

d∑
j=1

CijdZ
P̃,j
t

dX
(i)
t = κi

(
µ̃i −X(i)

t

)
dt+

d∑
j=1

Cij

(
dZP,jt − ΛP̃,Pj (Xt)dt

)

dX
(i)
t =

− d∑
j=1

CijΛ
P̃,P
j (Xt) + κiµ̃i − κiX(i)

t

 dt+
d∑
j=1

CijdZ
P,j
t .



48 2.2.7 Change of measures

If we want the state factor under the physical measure to be an Ornstein-Uhlenbeck process

with long-term mean µ, this implies

κiµi
!

= −
d∑
j=1

CijΛ
P̃,P
j (Xt) + κiµ̃i

κi(µ̃i − µi) =
d∑
j=1

CijΛ
P̃,P
j (Xt).

Therefore ΛP̃,P(Xt) := C−1κ(µ̃− µ), which results in

dXt = κ (µ−Xt) dt+ dZPt . (2.20)

As the drift correction term is constant, the Novikov condition is ful�lled and both measures

are equivalent. As with the Cairns model, we will see that this speci�cation of the physical

measure also de�nes our market price of risk.

Theorem 2.2.25. In the cosh model with state price density process (ςt) with

ςt = e−αt cosh(γTXt + c)

and (Xt) an Ornstein-Uhlenbeck process with dynamics (2.12) under the reference measure

and (2.20) under the physical measure, the market price of risk is given by

ΛQ,P(Xt) = Cγ tanh(γTXt + c)− C−1κ(µ− µ̃).

Proof. The dynamics under the reference measure (2.12) are given by de�nition, the dy-

namics under the physical measure (2.20) are given by choice. The drift correction term

between these measures is given by

dZP = dZP̃ + ΛP̃,P(Xt)dt.

With the drift correction term from the reference measure to the risk-neutral measure

dZQ = dZP̃ + ΛP̃,Q(Xt)dt

we get

dZP = dZQ +
[
ΛP̃,P(Xt)− ΛP̃,Q(Xt)

]
dt,

which de�nes the market price of risk

ΛQ,P(Xt) =
[
ΛP̃,P(t,Xt)− ΛP̃,Q(Xt)

]
= C−1κ(µ− µ̃)− Cγ tanh(γTXt + c).



2.3 Estimation 49

2.3 Estimation

2.3.1 Overview

In the literature, several approaches to estimating term structure models exist. Du�ee and

Stanton [DS04] provide an overview of the most in�uential ones: Maximum Likelihood

estimation, the e�cient method of moments (EMM) and the Kalman �lter.

Maximum Likelihood estimation maximizes a so called (Log-)Likelihood function, which

is a conditional probability function. Many term structure models follow a so called state

space formulation, where a vector of observations yt ∈ Rn is determined as the mapping

under some function g of a certain state xt ∈ Rd, thus g(xt) = yt, whereby the state follows

some stochastic process. The state xt is typically unobservable. Now a frequently used ap-

proach to maximum likelihood estimation is to derive the state vector path {xt : 0 ≤ t ≤ T}
by inversion, thus xt := g−1(yt). With the inverted state vector path given, the Likelihood

function can be expressed as the solution to a partial di�erential equation of the mean and

volatility parameters of the di�usion process X. Then model parameters can be estimated

using Maximum Likelihood. The solution to this partial di�erential equation however is

not necessarily available in closed form so that numerical algorithms or approximations are

required. Furthermore, the initially used inversion approach does typically not provide a

state vector path xt if d < n, which is typically the case. Many authors therefore assume

rather arbitrarily that a subset of d yields are observed without error, whereas all other

observations are subject to measurement error. Other problems of classical ML estimation

stem from its �nite-sample properties.

The second important estimation technique in term structure modeling is the e�cient

method of moments developed by Gallant and Tauchen in [GT96], which is essentially a

generalized method of moments as known in the econometrics literature. In this framework,

simulations produced with the dynamic model are used to derive indirect inferences about

the conditional (log-)density function of the observations. The following introduction is

taken from [ACS99]. Let f be some auxiliary function which approximates the log density

of yt conditional on all previous information YT−1 and an auxiliary parameter vector θ to

be estimated. The auxiliary function provides a (Pseudo-)Loglikelihood function, which

one has to maximize with respect to the parameter vector θ as a �rst step, hence θ̂T satis�es

1

T

T∑
t=1

∂

∂θ
f(yt|Yt−1, θ)

∣∣∣∣∣
θ=θ̂T

= 0. (2.21)

Even if the auxiliary model is misspeci�ed, standard QML theory implies under suitable

regularity that θ̂T → θ0. A simulated series ŷn(ρ), n = 1, . . . , N , is generated from the

structural model for a given parameter set ρ and used op evaluate the sample moments at
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the QML estimate of the auxiliary model θ̂T

mT (ρ, θ0) =
1

T

T∑
t=1

∂

∂θ
f(ŷ(ρ)|Ŷt−1(ρ), θ)

∣∣∣∣∣
θ=θ0

.

As N →∞, mN (ρ, θ̂T )→ m(ρ, θ̂T ) almost surely. For the simulated sample large enough,

the Monte Carlo error becomes negligible and can be ignored. For computational reasons,

the GMM criterion in the moment vector is minimized to obtain the EMM estimator of ρ

ρ̂T := arg min
ρ

[
mT (ρ, θ̂T )T Î−1

T mT (ρ, θ̂T )
]

(2.22)

where Î−1
T denotes a consistent estimator of the asymptotic covariance matrix. Dependent

on the choice of the auxiliary function, EMM reaches asymptotically the e�ciency of ML

estimation. However, �nite-sample properties are poor as term structure data consists of

highly persistent and highly correlated time series. Du�ee and Stanton [DS04] show that

these problems cannot be solved by reducing the number of moments to be matched, nor by

choosing di�erent moments. The problem lies in the weighting matrix Î−1
T of the moments

in case of highly persistent data.

The Kalman �lter allows to derive Maximum Likelihood estimates by �ltering in case

that �rst the state vector dynamics are Gaussian and second there exists a linear link

between the state vector and the observation. The Kalman �lter estimates the unobserv-

able state vector of a state space model conditional on some parameter vector θ. The

measurements depend on the state vector by an a�ne function and all measurements are

assumed to be observed with an error. As the Kalman �lter allows to derive the Loglikeli-

hood function based on conditional one-step densities, maximizing the Loglikelihood value

with respect to the parameter vector θ provides us both with the parameter set and the

�ltered state vector which �t the speci�ed state vector dynamics and the measurement

equation best. If the state vector dynamics or the measurement equation cannot be ex-

pressed in an a�ne form dependent on Gaussian innovations, �rst order Taylor expansion

could be used to approximate the nonlinear case by a Gaussian, linear model which yields

a Quasi-Loglikelihood function for estimation. This e�ectively allows to include a variety

of measurements which depend on the state vector, which, together with the assumption

of measurement with error allows for panel data to be used. As the Kalman �lter produces

an estimate of the historical state process path, historical yields or security prices that

were not observed or not included in measurement in the �rst place can easily be derived.

These implied measurements can also be used to examine the historical �t of the model.

For the choice of estimation methods, Du�ee and Stanton provide three conclusions:

1. ML estimation yields highly biased estimates for most term structure models consid-

ered by these authors, especially if �exibility in the market price of risk is allowed.
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2. the E�cient Method of Moments is an �unacceptable alternative� to ML estimation

in �nite samples. In fact, it seems that EMM requires substantially larger samples

than ML estimation to reach its asymptotic behavior.

3. the Kalman �lter is a reasonable alternative to ML estimation even in case of non-

Gaussian settings. However, if feasible, the ML estimator is still superior.

In general, Du�ee and Stanton recommend using Monte Carlo simulations to test the

ability of the estimation technique to derive the parameter sets required, especially con-

sidering small-sample behavior.

2.3.2 The Kalman �lter

The basis of the Kalman �lter is the so called state space formulation. This formulation

is based on the two parts of the Kalman �lter: the transition equation which describes

the dynamical evolution of the state process and the measurement equation, which relates

the state variable at time t with the observations at the same time. The Kalman �lter is

therefore a natural choice for models in which an unobservable stochastic state process X

describes the dynamics of observable measurements Y . The measurements must depend

on the state process X by some function g : X → Y. All observations are assumed to be

measured with error, whereby the standard deviation of the error can be estimated as well.

For a general introduction of the Kalman �lter see [Har91], here, we follow [Kel01].

In the original Kalman �lter, measurement and transition equations are linear in the

state process at time t. Let θ denote the vector of all model parameters, then the mea-

surement equation in its most general form is given by

Yt = at(θ) +Bt(θ)Xt + εt(θ)

whereby Yt ∈ Y and dim(Y) = n, εt(θ), at(θ) ∈ Rn, the state vector Xt ∈ X with

dim(X ) := d ≤ Y and thus Bt(θ) ∈ Rn×d. For the measurement error εt(θ), we assume a

(multivariate) normal distribution with

E [εt(θ)] = 0

and

E
[
εs(θ)εt(θ)

T
]

= Ht(θ)

for t = s and

E
[
εs(θ)εt(θ)

T
]

= 0

otherwise, whereby the covariance matrix Ht(θ) ∈ Rn×n has to be estimated under the

assumption that the vectors of error terms for di�erent observations in time t1, t2, . . ., say
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a sequence of term structures, are uncorrelated in t. This re�ects the basic assumption

that time-dependence of two measurements yt and ys is fully described by the transition

equation

Xt = ct(θ) + Φt(θ)Xt−1 + ηt(θ).

In this case, ηt(θ), ct(θ) ∈ Rd and Φt(θ) ∈ Rd×d. The error term ηt(θ) is again assumed to

be multivariate normal with

E [ηt(θ)] = 0

and

E
[
ηs(θ)ηt(θ)

T
]

:= Qt(θ)

for s = t and

E
[
ηs(θ)ηt(θ)

T
]

:= 0

otherwise. The matrix Qt(θ) must be estimated as well as the matrix Ht(θ).

In most cases, the Euler-Maruyama scheme could be used to derive the discretization

of the state vector dynamics, whereby the distribution of the state Xt conditional on Xt−1

is normal. In the models we consider here, the underlying state process is an Ornstein-

Uhlenbeck process, for which the conditional distribution is known. This can be used to

derive the transition equation directly without approximation as in Euler-Maruyama.

Many term structure models however do not provide measurements which are linear in

the state vector. For these cases, the Extended Kalman �lter has to be used. In its most

general form, both the transition equation and the measurement equation are non-linear

in the state Xt−1. In the Cairns and cosh models, we only have to consider a non-linear

measurement equation

Yt = gt(Xt, εt(θ), θ).

The Extended Kalman �lter approximates the non-linear function gt(Xt, εt(θ), θ) around

the conditional mean of the stochastic inputs

E[(Xt, εt)|Ft−1] = (E[Xt|Ft−1], E[εt|Ft−1])

= (Xt|t−1, 0), (2.23)

whereby Xt|t−1 := E[Xt|Xt−1] and Fs := {Ys, Ys−1, . . . , Y1}. This requires that error terms

are uncorrelated over time as well as uncorrelated with the state vector, which re�ects our

assumption that the state space formulation covers all systematic movements. The �rst-

order Taylor series expansion around (Xt|t−1, 0) then yields

Yt ≈ gt(Xt|t−1, 0, θ) +Bt|t−1(Xt −Xt|t−1) +Rt|t−1εt(θ)
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with

Bt|t−1 =
∂gt(x, ε, θ)

∂x

∣∣∣∣
(x,ε)=(Xt|t−1,0)

Rt|t−1 =
∂gt(x, ε, θ)

∂ε

∣∣∣∣
(x,ε)=(Xt|t−1,0).

Note that both Bt|t−1 and Rt|t−1 do not depend on the current state Xt, but only on Xt|t−1,

the optimal forecast of the current state given the previous state Xt−1|t−1. The approxi-

mated measurement equation is linear in Xt and we can employ the �ltering technique of

the Kalman �lter. The (Extended) Kalman �lter now works as a linear �ltering technique

to derive the (unobservable) state vector by two steps:

1. Prediction Step: First, we form an optimal prediction of the next measurement

yt+1, given all current information Ft, whereby for all practical reasons Ft := σ(Xs, s ≤
t). The optimal prediction is the conditional expectation

Xt|t−1 = E[Xt|Ft−1] = ct(θ) + Φt(θ)Xt−1|t−1

whereby we used the transition equation. For each t we denote by Xt|t the best

estimate of the state at time t based on both the observation yt of the current time

t and the best estimation of the current state Xt conditional on the previous state

Xt|t−1. The second prediction equation is the conditional covariance matrix of the

prediction error Xt −Xt|t−1, given by

Σt|t−1 := E
[
(Xt −Xt|t−1)(Xt −Xt|t−1)T

∣∣Ft−1

]
= E

[
(ct(θ) + Φt(θ)Xt−1 + ηt(θ)− ct(θ)− Φt(θ)Xt−1|t−1)

(ct(θ)
T +XT

t−1Φt(θ)
T + ηt(θ)

T − ct(θ)T −XT
t−1|t−1Φt(θ)

T )
∣∣∣Ft−1

]
= Φt(θ)E[(Xt−1 −Xt−1|t−1)(Xt−1 −Xt−1|t−1)T |Ft−1]Φt(θ)

T

+E[ηt(θ)ηt(θ)
T |Ft−1]

= Φt(θ)Σt−1|t−1Φt(θ)
T +Qt(θ).

Where we de�ned Σt|t := E[(Xt − Xt|t−1)(Xt − Xt|t−1)T |Ft], that is the optimal

estimate of the error covariance matrix at time t− 1 using all information available

at time t − 1. The prediction step therefore yields a-priori estimates of the state

vector and the covariance matrix of the state vector.

2. Updating Step: The a-priori estimate is then �updated�, hence the a-priori estimate

Xt|t−1 based on the available information at time t − 1 is combined with the new

measurement yt at time t to the a-posteriori estimate.

The update step is based on the prediction error vt = yt −E[yt|Ft−1] = yt − yt|t−1 and its
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covariance matrix. Namely

vt := yt − yt|t−1

≈ yt − E[gt(Xt|t−1, 0, θ) +Bt|t−1(θ)(Xt −Xt|t−1) +Rt|t−1(θ)εt(θ)|Ft−1]

= yt − gt(Xt|t−1, 0, θ)−Bt|t−1(θ)E[Xt −Xt|t−1|Ft−1]−Rt|t−1(θ)E[εt(θ)|Ft−1]

= yt − gt(Xt|t−1, 0, θ).

The covariance matrix of the prediction error is given by

Ft|t−1 := Cov[vt|Ft−1]

= E[(yt − gt(Xt|t−1, 0, θ))(yt − gt(Xt|t−1, 0, θ))
T |Ft−1]

≈ E
[
(gt(Xt|t−1, 0, θ) +Bt|t−1(Xt −Xt|t−1) +Rt|tεt(θ)− gt(Xt|t−1, 0, θ))

(gt(Xt|t−1, 0, θ) +Bt|t−1(Xt −Xt|t−1) +Rt|tεt(θ)− gt(Xt|t−1, 0, θ))
T |Ft−1

]
= E

[
(Bt|t−1(Xt −Xt|t−1) +Rt|tεt(θ))(Bt|t−1(Xt −Xt|t−1) +Rt|tεt(θ))

T |Ft−1

]
.

Since the state vector and the measurement error are uncorrelated and the expected mea-

surement error is zero,

E[(Bt|t−1(Xt −Xt|t−1) +Rt|t−1εt(θ))(Bt|t−1(Xt −Xt|t−1) +Rt|t−1εt(θ))
T |Ft−1]

= E[Bt|t−1(Xt −Xt|t−1)(Bt|t−1(Xt −Xt|t−1))T |Ft−1]

+E[Rt|t−1εt(θ)(Rt|t−1εt(θ))
T |Ft−1].

= Bt|t−1E[(Xt −Xt|t−1)(Xt −Xt|t−1)T |Ft−1]BT
t|t−1 +Rt|t−1E[εt(θ)εt(θ)

T |Ft−1]RTt|t−1.

= Bt|t−1Σt|t−1B
T
t|t−1 +Rt|t−1Ht(θ)R

T
t|t−1.

Now we want to update the prediction Xt|t−1 due to the information yt at time t. With

E[(yt − yt|t−1)(Xt −Xt|t−1)T |Ft−1]

= E[(Bt|t−1(Xt −Xt|t−1) +Rt|t−1εt)(Xt −Xt|t−1)T |Ft−1]

= Bt|t−1E[(Xt −Xt|t−1)(Xt −Xt|t−1)T |Ft−1]

= Bt|t−1Σt|t−1

and analogously

E[(Xt −Xt|t−1)(yt − yt|t−1)T |Ft−1]

= Σt|t−1B
T
t|t−1

we get that the vector

(
Xt

yt

)
conditional on the information Ft−1 is distributed according

to (
Xt

yt

)
∼ N

((
Xt|t−1

yt|t−1

)
,

(
Σt|t−1 Σt|t−1B

T
t|t−1

Bt|t−1Σt|t−1 Ft|t−1

))
.

Using the following lemma, we can derive the updating step.
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Lemma 2.3.1. Let Z1 and Z2 be vectors of random variables with joined normal distribu-

tion (
Z1

Z2

)
∼ N

((
µ1

µ2

)
,

(
Ω11 Ω12

ΩT
12 Ω22

))
.

Then the distribution of Z1 conditional on Z2 is N (m,Σ) where

m = µ1 + Ω12Ω−1
22 (Z2 − µ2)

Σ = Ω11 − Ω12Ω−1
22 ΩT

12.

Proof. See Kellerhals, [Kel01], Lemma 4.2.1, page 19.

This implies that

E[Z1|Z2] = m,

hence the optimal forecast of Z1 conditional on Z2 is given by m as derived above. Fur-

thermore, the covariance matrix of the state vector conditional on Z2 is given by

E[(Z1 −m)(Z1 −m)T ] = Σ.

In our case, Z1 = Xt and Z2 = yt. With the above derived joint distribution of (XT
t , y

T
t )T

this implies the updates

Xt|t := E[Xt|yt] = Xt|t−1 + Σt|t−1B
T
t|t−1F

−1
t|t−1(yt − yt|t−1)

= Xt|t−1 + Σt|t−1B
T
t|t−1F

−1
t|t−1vt

= Xt|t−1 +Ktvt

where Kt is called the Kalman gain matrix. By the lemma, Xt|t is the optimal forecast of

Xt given the new observation yt. Analogously, the covariance matrix of the state vector

conditional on information yt is given by

Σt|t := E[(Xt −Xt|t−1)(Xt −Xt|t−1)T |yt]

= Σt|t−1 − Σt|t−1B
T
t|t−1Ft|t−1Bt|t−1Σt|t−1.

= Σt|t−1 −KtBt|t−1Σt|t−1

To summarize, we can describe the Kalman �ltering algorithm given starting points X0|0

and Σ0|0 by the following de�nition:

1. Prediction Step: estimate Xt based upon information Ft−1, particularly Xt−1|t−1

Xt|t−1 = ct(θ) + Φt(θ)Xt−1|t−1

Σt|t−1 = Φt(θ)Σt−1|t−1Φt(θ)
T +Qt(θ)
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2. Updating step: correct the previous estimates Xt|t−1 and Σt|t−1 using the Kalman

gain matrix Kt. First, derive the measurement error

vt = yt − gt(Xt|t−1, 0, ψ)

then derive the Jacobi matrix Bt|t−1 of the measurement equation for the error co-

variance matrix

Ft|t−1 = Bt|t−1Σt|t−1B
T
t|t−1 +Rt|t−1Ht(θ)R

T
t|t−1.

The Kalman gain matrix Kt = Σt|t−1B
T
t|t−1F

−1
t|t−1 is then required for the updating

steps

Xt|t = Xt|t−1 +Ktvt

Σt|t = Σt|t−1 −KtFt|t−1K
T
t .

The choice of the starting points X0|0 and Σ0|0 has a signi�cant impact on the performance

of the �lter. By de�nition, the �lter approaches the �true� state process over time. The

choice of starting values now can speed up or slow down the approximation of the true

state vector. An often recommended choice for the starting points is X0|0 := E[X] and

Σ0|0 := E[XXT ], if available. The basic assumption here is that the state vector shows

some form of mean reversion, varies around its long-term mean E[X] and therefore E[X]

is a sensible choice of starting point.

In term structure modeling, we have however additional information available. As our state

vectors are assumed to be mean reverting, we can improve our choices of starting values by

explicitly taking into account the deviations of the state vector from its long-term mean as

re�ected in the deviation of the term structure observed yt from its long-term mean E[Y ].

If the measurement function yt = g(Xt) is injective, one can invert it by

min
x∈X
|yt − g(x)|

whereby |·| is a reasonable norm. Although we cannot assume the function g to be injective

in general, because we assume a d dimensional factor driving the dynamics of n observations

with n > d and because state vector components are frequently found to coincide with the

three principal components of the term structure, we conclude that the assumption of an

injective measurement function g is indeed valid. In case the time steps (t, t+1) are small,

note that g(Xt+1|t) is a reasonable forecast of yt+1 given the current observation yt and

the estimate of the current state Xt. We can use this measurement forecast to improve the

starting point by minimizing the deviation of the current state-implied measurement g(Xt)

and the forecasted measurement g(Xt+1|t) from both respective empirical observations

min
x∈X

(w1 |yt − g(x)|+ w2 |yt+1 − g(E[Xt+1|Xt = x])|)



2.3.2 The Kalman �lter 57

whereby wi ≥ 0 are reasonable weights, typically w1 ≥ w2. The mapping g not being

injective implies that there exist two states x1 and x2 with yt = g(x1) and x1 = g(x2).

Then by mean reversion E[Xt+1|Xt = x1] 6= E[Xt+1|Xt = x2] and hence for the weighted

sum

w1|yt − g(x1)|+ w2|yt+1 − g(E[Xt+1|Xt = x1])|

6= w1|yt − g(x2)|+ w2|yt+1 − g(E[Xt+1|Xt = x2])|.

We used both approaches in our estimations. If the parameter set θ is close to the true

parameter sets, or at least close to a local maximum of the Loglikelihood function which

describes well term structure dynamics, both approaches were essentially equivalent. If,

however, the parameter set θ does not describe well the term structure dynamics, the

second approach is vastly superior in �tting reasonable starting points of the Kalman

�lter. Therefore, estimation approaches should start using the second approach to calibrate

X0|0. If estimation allows for an iterative approach, sooner or later the second calibration

approach can be replaced by the �rst approach, thereby increasing speed of the estimation

algorithm. If estimated parameter sets θ are already available, as is the case for example

in derivative pricing, the �rst calibration approach is su�cient for all purposes.

For the initial matrix Σ0|0 we used Σ0|0 = Cov[Xt+∆|Xt], which in case of X being an

Ornstein-Uhlenbeck process does not depend on the initial state X0|0 but only on θ. This

should guarantee a high stability of the estimate of the covariance of the state vector and

in turn the proposed choice of a starting vector should be reasonable. Note however that

Σ0|0 := Idd was only slightly worse if the parameter set θ did not describe term structure

dynamics well. In initial estimation steps the measurement error ν de�ning the matrix

Qt(θ) is typically huge and therefore dominates Σt|t = Φt(θ)Σt−1|t−1Φt(θ)
T + Qt(θ). All

in all the impact of the initial value Σ0|0 was considerably smaller than the impact of our

choice of X[0|0.

Parameter Estimation

The Kalman �lter can be used to derive a (Quasi-)Maximum Likelihood estimation ap-

proach. The likelihood function dependent on the parameter vector θ of the state space

model is given by the joint density of the observations (yT , yT−1, . . . , y1)

l(y; θ) = p(yT , yT1 , . . . , y1)

= p(yT |yT−1, . . . , y1; θ) · p(yT−1|yT−2, . . . , y1; θ) · . . . · p(y1|F0; θ).

Whereby F0 contains all prior information, for example from an implementation point of

view the starting values X0|0 and Σ0|0. If the state process is Markovian, as in all our

applications,

p(yT |yT−1, . . . , y1; θ) · p(yT−1|yT−2, . . . , y1; θ) · . . . · p(y1|F0; θ)

= p(yT |yT−1; θ) · p(yT−1|yT−2; θ) · . . . · p(y1|F0; θ).
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Now by de�nition of the measurement equation, the distribution of yt given yt−1 is Gaus-

sian. Speci�cally, yt conditional on Ft−1 is Gaussian with mean E[yt|Ft−1] and covariance

matrix

Cov[yt|Ft−1] = E[(yt − E[yt|Ft−1])(yt − E[yt|Ft−1])T |Ft]

= E[vtv
T
t |Ft−1]

= Ft|t−1.

The conditional density p(yt|yt−1; θ) is thus given as

p(yt|yt−1; θ) =
1

(2π)
n
2 |Ft|t−1|

1
2

e
− 1

2
(yt−E[yt|Ft−1])TF−1

t|t−1
(yt−E[yt|Ft−1])

=
1

(2π)
n
2 |Ft|t−1|

1
2

e
− 1

2
vTt F

−1
t|t−1

vt ,

a function of the prediction error vt and its covariance matrix. The parameter n is the

measurement dimension. The resulting Likelihood function is only an approximation, hence

a Quasi-ML function, which can be expressed in terms of prediction errors vt and their

covariance Ft|t−1. If we consider the Quasi-Loglikelihood function, we get

ln(l(y; θ)) =
T∑
t=1

ln (p(yt|yt−1; θ))

= −1

2

T∑
t=1

(
n ln(2π) + ln |Ft|t−1|+ vTt F

−1
t|t−1vt

)
.

As we calculate vt and Ft|t−1 in each step for the �ltering algorithm, each �ltering step

provides us with an iterative update of the Loglikelihood function due to the current pre-

diction error vt and its covariance matrix Ft|t−1. The Loglikelihood function is therefore a

side result of the �ltering algorithm.

In order to estimate the parameter vector θ, an optimization algorithm is required. Note

that as single function evaluation ln(l(y; θ)) requires the whole Kalman �lter to be applied,

estimation by Kalman �ltering might be computationally slow.

Estimation was conducted using MATLAB, which provides two optimization algo-

rithms: fminunc and fminsearch. The fminunc algorithm attempts to �nd a minimum

of a scalar function of several variables, starting at a speci�ed starting point. It does

not guarantee to �nd the global minimum. The function computes a �nite-di�erence ap-

proximation to the Hessian matrix of the scalar function to be optimized. The BFGS

Quasi-Newton method with a cubic line search procedure is used. The function to be

minimized must be continuous.

Likewise, fminsearch also attempts to �nd a minimum of a scalar function of several vari-

ables, starting at a speci�ed starting point. To do so, fminsearch uses a simplex search
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method, a method which does not use gradients as in fminunc. The fminsearch algorithm

is generally less e�cient than fminunc for problems of order greater than two. However,

when the problem is highly discontinuous, fminsearch might be more robust as it can often

handle discontinuity, particularly if it does not occur near the solution. As we can not

guarantee continuity of our models for all model parameters, this is an important aspect.

Namely, for expanded models as the stock model in chapter 3.1, the fminsearch algorithm

proved to be superior. Again, fminsearch gives only local solutions.

In practice, optimization by the fminunc algorithm was faster, yet less stable then opti-

mization with the fminsearch algorithm. On the other side, fminsearch was able to further

increase Loglikelihood values given fminunc results. Therefore, the fminunc algorithm was

applied in a �rst step, the fminsearch algorithm in a second step.

Another practical problem is �nding reasonable starting values θ0 for the optimization

algorithms. Most parameters do not have an economical interpretation we can use to derive

a-priori speci�cations.

Obviously, the correlation parameters −1 ≤ ρij ≤ 1. By de�nition, the parameter α is

positive and we will later see that it equals the asymptotic long rate within the model,

so we can impose an upper bound as well. The mean reversion factors κi are positive.

To guarantee su�cient variation in the state vector components we can assume an upper

bound as well. In both models, however, the scaling factors σ and γ remain. Note that if

dX
(i)
t = κi(µi −X(i)

t )dt+ dW
(i)
t

then by the Ito-Doeblin lemma for Y (i)
t := γiX

(i)
t

dY
(i)
t = [γiκi(µi −X(i)

t )]dt+ γidW
(i)
t

= κi(γiµi − Y (i)
t )dt+ γidW

(i)
t

So γ and σ scale volatility of the state vector, which we standardized with σ := Idd. As γ

and σ can therefore considered as volatility parameters, we can assume these parameters

to be bounded as well.

As the bounds we can impose on the model parameters are typically the only prior infor-

mation available, a simple approach would be to choose starting parameters θ0 arbitrarily

by a uniform distribution on the bounded intervals for each parameter. Generally, impos-

ing sharp bounds increases the chance of reasonable starting points. Nevertheless, sharp

bounds might exclude viable parameter choices, which implies again a trade-o� between

e�ciency and estimation quality. In general, if the bounds were chosen too restrictive, the

optimization approach implied parameter sets in which the initial bounds were reached,

so that in further estimation steps the bounds were widened. Particularly considering the

long-term mean µ sharper bounds were crucial to �nd reasonable initial values, whereas
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the estimated parameters µ then frequently laid outside the initial bounds13.

Both Matlab optimization algorithms use unconstrained data. To implement the limits

within the unconstrained fminsearch and fminunc algorithms, we used a simple model to

map the constrained parameters θci to unconstrained parameters θui , namely transformation

works according to

θui = log((θci − bli)/(bui − θci ))

θci = (bui − bli)
exp(θui )

1 + exp(θui )
+ bli.

Starting points can now be derived by choosing every model parameter θci according to a

uniform distribution U
(
lli, l

u
i

)
. In a second step, we run the Kalman �lter for each starting

set θc0. Then we can sort the starting vectors θc0 according to their respective Loglikeli-

hood values. Only parameter sets with su�ciently high Loglikelihood values are then used

for further optimization. As initial parameter sets θc0 were chosen by a uniform distribu-

tion, a su�ciently large set of initial parameter sets θ0 covers the whole parameter space

and choosing those starting values with higher Loglikelihood values should be equivalent

to restricting the sets of starting points to a reasonable subset of the parameter space.

Furthermore, as optimization algorithms typically provide local extrema only, launching

optimization from various starting points is a reasonable approach to check on whether

resulting extrema are local or not.

Due to this local maximum problem and the di�erent properties of fminunc and fmin-

search algorithms, it has proved to be e�ective to follow an iterative approach. After each

optimization step, results have to be examined. If the improvement of the Loglikelihood

function is small, several possible explanations exist:

1. a local maximum is reached

2. the limits of the fminunc algorithm is reached

3. the bounds of the parameter space are reached for at least one parameter θi.

In the third case, another optimization step should be started using widened bounds. In

the second step, we should continue with fminunc, which is typically able to increase

Loglikelihood values even more. In the �rst case, we have to compare the current Log-

likelihood value to other Loglikelihood values derived in the recent optimization step. If

the respective Loglikelihood value is signi�cantly smaller than other Loglikelihood values,

the optimization algorithm is stuck in a local maximum, yet we know that (local) maxima

with higher Loglikelihood values exist, so that the current parameter set can be sorted out.

This implies that a large set of initial values is required, as many initial values have low

13For a discussion of the di�culties in estimating the parameter µ, see also 2.3.8.
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Loglikelihood values and therefore do not even enter the �rst optimization step, and after

each step additional parameter sets may be sorted out. Such an approach saves computa-

tion time on the long run as it is possible to avoid being stuck in early local maxima of the

Loglikelihood function. On the other side, this points to the general problem that we can

only derive local maxima, not global maxima. Generally, we believe that if the starting

points of the optimization algorithm are su�ciently scattered across the parameter space,

the global maximum should be accessible.

Another problem is that due to using a Quasi-ML estimator only, we can not reasonably

choose between two distinct local maxima if their respective Loglikelihood values are close

as the Loglikelihood value derived is only an approximation to the true Loglikelihood value.

Further examinations are required, some of which we will discuss later.

To summarize, the estimation algorithm used can be described as such:

1. Choose N starting sets θj0, j = 1, . . . , N uniformly distributed within the implicit

bounds for each parameter value bli ≤ θi ≤ bui .

2. Calculate ln(l(y; θj0)) for all starting values θj0 ∈ Θ0 := {θj0 : j = 1, . . . , N}. Specify a

subset of starting values Θ1 := {θj0 : j ∈ J1}, J1 ⊂ {1, . . . , N} with high Loglikelihood
values for further examination.

3. Start optimization function fminunc with a limited number of steps to get θji+1 for

all j ∈ Ji. Specify a subset of starting values Θi+1 := {θji+1 : j ∈ Ji+1}, Ji+1 ⊂ Ji

for which the Loglikelihood value is high ln(l(y; θji+1) ≈ maxk∈Ji ln(y; θki+1) or has

improved su�ciently ln(l(y; θji+1) > ln(y; θji ) to exclude local maxima. Repeat.

4. Repeat the previous step with the fminsearch algorithm.

We found that, as a rule of thumbs, for the cosh model around 75% of the initial

parameter sets resulted in reasonable estimates, whereas in the Cairns model it was only

around 50%. To estimate extended models as the stock market or exchange rate expansions,

which have signi�cantly more parameters, the fraction of reasonable starting values θ0 was

considerably smaller, yet the above described algorithm proved particularly e�ective in

excluding inferior parameter sets as well as increasing computational e�ciency.

2.3.3 Data

In specifying the data set to be used in estimating a term structure model we �rst encounter

some basic questions. First, we have to decide on the time horizon of the underlying data.

Second we have to decide on the type of market data to be chosen. We will discuss these

questions with respect to both banking and insurance applications.
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Time horizon

Most term structure models currently in use were developed to consistently price interest

rate derivatives. The primary focus therefore lies in consistently �tting the current market

situation. The model is calibrated to current data on some observable assets, then model-

implied �fair� prices of other assets can be derived. Relative to the cross-sectional �t, the

time series behavior of the theoretical price is of minor interest. Some term structure mod-

els allow to extract most or even all model parameters from a set of market prices observed

at a single point in time. An important example would be the Hull-White model [HW90],

which is an extension of Vasicek [Vas77] where the model parameters are speci�ed as de-

terministic functions in time, which can be calibrated to current market data, for example

the current term structure, the current term structure of (implied) volatility and cap data.

Whereas this allows to �t parts of �xed income markets exactly, the time series properties

as de�ned by the time-dependent Vasicek parameters depend on the current cross-sectional

information only. This approach therefore can not �t any time series properties of interest

rates whatsoever.

Now, if we want to price contingent claims with long maturities, path dependent pay-

o�s or if we use simulations in pricing, time series properties of the stochastic factors driving

the prices become important as well. The most important aspect of time series properties

of interest rates is mean reversion. If we assume interest rates to be mean reverting,

the speed of mean reversion and particularly the long-term mean are time series aspects

which typically can not be derived from the current term structure alone. The longer the

maturity of the asset to be priced, the more important mean reversion and other time series

properties become. For example, it is well known that the slope of the term structure is

mean reverting and closely related to the business cycle as well as monetary policy. If the

slope is an important input for a long-term asset, we should require the model parameters

to be estimated from data covering a full business cycle to cover the full variability of

the slope and furthermore su�cient examples of the implementation of monetary policy.

As this implies su�cient in�ation-growth samples, data covering multiple business cycles

might be necessary.

Life and pension insurance contracts incorporate path-dependent portfolio allocation

decisions as well as path dependent distribution of returns. Pricing typically requires

simulation and many insurance contracts have very long times to maturity. These aspects

of insurance contracts require realistic time series properties of the model. If we consider,

for example, a life insurance contract started by a 35 year old in 1980 to end at the age

of 65, the lifetime of the contract covers several recessions, interest rates varied by more

than 1000 basis points and stock market indices multiplied. Consequently, for the pricing

of insurance products we recommend models which are able to cover such variations and
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to �t time series properties of interest rates and possibly additional assets, which requires

estimation on historical data. As a rule of thumb, the data set used for estimation should

span time horizons equivalent to the time horizons required for pricing. In case of insurance

applications, this may imply several decades of market data. In general, we can conclude

that pricing of contingent claims with very long time horizons and path-dependence require

a reasonable �t of time series properties of the underlying variables.

Another aspect to be reckoned with therefore lies in the availability and quality of the

data itself, particularly early historical data. For many interest rate derivatives, trading

started in the 1980s. Considering government bond data, auctioned maturities may have

changed over time14. Quality is yet another aspect. In case of interest rate swaps, increasing

liquidity, collateralization and other credit enhancements have signi�cantly changed the

swap market since its beginning, see for example [Ape03]. US Long-term bond data of the

�fties heavily relies upon callable bonds, see [MK93]. Changes in taxation regimes might

have substantially altered the after-tax returns of �xed income assets which resulted in

changes in portfolio allocation of private investors, see [GO97]. To summarize, one should

choose market data which is su�ciently liquid over the whole time period of the dataset

and which either did not undergo signi�cant regime changes or whose regime changes might

be covered by the model. A typical example in term structure modeling using US data is

to either exclude the monetary experiment 1979 to 1982 from estimation data or to choose

estimation data which starts signi�cantly earlier to cover a su�cient initial subsample of

�normal� term structure behavior.

Market data

We showed that long-term historical market data should be used if time series properties

are of importance, which is the case for most insurance applications. The second question

considers the type of market data to use. Available historical data for estimation can be

partitioned into three groups:

1. interest rates,

2. derivative data and

3. macroeconomic data.

To price interest rate derivatives in the risk-neutral approach, but also in the state price

density approach, dynamics of riskless interest rates are required. In general, however,

riskless interest rates are not observable. As proxies either the term structure as implied

by domestic government bonds or the term structure as given by swap rates is used. In the

following, we will discuss these two proxies to the term structure of riskless interest rates.
14To give an example, treasury departments have an incentive to end issuance of government bonds with

very long times to maturity in case current yields are high, whereas on the other side there is an incentive

to increase duration of debt outstanding in case current yields are low.
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Government bonds Bonds are traded debt securities in which the borrower owes the

owner of the securitized debt the payment of a speci�ed notional amount at maturity as

well as coupon payments at speci�ed intermediate dates. The �fair� current value of the

bond as observed in the market can then be used to derive the implied term structure. A

zerobond is a bond for which all coupons equal zero. In this special case, a simple relation

between the price at time t of a bond P which matures at time T , P (t, T ), and the spot

interest rate, y(t, T ), exists by

y(t, T ) = − 1

T − t
log (P (t, T )) .

This implies that the annualized return up to maturity of a zerobond P equals the re-

spective spot rate y(t, T ). As coupon bonds can be interpreted as portfolios of zerobonds,

interpolation algorithms can be used to derive the term structure of interest rates from

prices of traded coupon bonds, although this typically implies measurement errors. Pub-

lished government yield curves therefore necessarily are only approximations to the true

yield curve.

Note that the �fair� bond prices depend on liquidity of the bond issue, credit risk asso-

ciated with the issuer, tax regulations and other factors. For developed nations, bonds

denominated in domestic currency and issued by the domestic national government are

generally considered free of default risk, although this may be reconsidered due to the

aftermath of the 2007 �nancial crisis, which saw soaring state de�cits and a general fear

of rating changes even for some of the largest developed economies in the world. Domes-

tic government bonds are typically the most liquid �nancial assets available in domestic

currency, thus liquidity premia are small15. For all practical reasons, one can assume that

government bond implied spot rates are essentially domestic risk-free interest rates. The

usage of government bond implied yield curves as a benchmark is so well established that,

according to [(Ch02], Singapore and Hong Kong began issuing government debt without

�nancing needs for the economical bene�ts of introducing a government bond yield curve

benchmark.

Note however that even before the �nancial crisis positive yield spreads between member

states of Eurozone existed. For many Eurozone members the German government-bond

implied yield curve was below the domestic government bond implied curve. For some coun-

tries, particularly Portugal, Italy and Greece, this should be attributed predominantly to

default premiums, whereas for others such as France, Austria or the Netherlands liquidity

should be the predominant driver of these yield spreads. Consequently, we can assume

the German government bond-implied curve to provide the riskless term structure for the

whole of Eurozone. This shows that using government-bond implied yields as a proxy for

the riskless term structure is not beyond doubt.

15For the impact of liquidity premia, see for example Longsta� [Lon02]
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An important aspect of bonds is that new bonds are only issued at speci�ed dates ac-

cording to the auction cycle. The most recently issued (so called �on-the-run�) treasuries of

a speci�ed maturity are typically �on special� in the repo market16, which means that their

respective repo rates are lower than the repo rates on other treasuries due to supply con-

straints of the treasury securities �on-special�, see Fisher [Fis02] or [Duf96]. Consequently,

two treasury securities which are identical besides specialness have a di�erent price and

therefore imply di�erent yields, hence treasury data should be adjusted for repo specials

prior to usage. Furthermore, considering the approximation of the riskless yield curve,

it remains an open question whether treasuries �on special� imply true riskless interest

rates or just re�ect supply constraints which allow some market participants arbitrage

possibilities. Unfortunately, as data considering specialness is not readily available, such

adjustments are rarely made17.

In banking applications, the term structure is predominantly required to discount cash

�ows of certain assets. In insurance applications we require term structures for two pur-

poses: discounting and bond portfolio modeling. Given their benchmark character for �xed

income markets, government bond implied yields can reasonably be used for discounting.

On the other side, domestic government bonds are a major part of investment portfolios

of most insurance companies, particularly those of continental Europe. Therefore, term

structure models used in insurance applications should be estimated and calibrated with

government bond implied yield curves.

Swap rates Plain vanilla interest rate swaps are over-the-counter agreements to exchange

a cash �ow of constant interest payments against a cash �ow of �oating interest payments,

based on a �xed notional amount which is not exchanged. LIBOR is usually used to

index the �oating payment, whereas the �xed payment is based on the swap rate, which

is quoted for varying maturities of the respective swap and hence forms a term structure,

see also [Sad09] or [RSM04]. The question arises whether swap rates are a reasonable

approximation of the riskless interest rate required in pricing.

Government bond implied interest rates and swap rates are typically highly correlated,

yet not equal. The di�erence between the swap rates and government bond implied rates

is the swap spread. These spreads vary stochastically, particular in times of economic

16A �repo� involves one investor selling treasuries today and agreeing to a buy back of these treasuries

at a speci�c price on a speci�c future date. A repo can therefore be interpreted as a collateralized loan,

whereby the seller of the treasuries provides these treasuries as collateral for a loan whose interest rate

is speci�ed by the price di�erence between the sell and buy-back price of the collateral treasuries. This

interest rate is called the repo rate. Those treasuries not on special can be interpreted as �general collateral�

or interchangeable for repo loans, hence their implied interest rate is independent of the respective general

collateral used for the repo. This rate is called the general collateral rate. For a general introduction to

repos, see [RSM04].
17We use the datasets of the Federal Reserve and the Bundesbank, respectively, for which such adjust-

ments were not made either.
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Figure 2.2: Daily swap spreads during the 2007 to 2010 �nancial crisis. Dark gray are

�rst the �black swan in the money market�, see [TW08] and the jumps associated with

the collapse of Lehman brothers and the rescue of AIG and the reverse jump due to the

recapitalization of the US banking system by 250 billion dollars.

crisis, see �gure 2.2. Sun, Sundaresan and Wang [SSW93] show that there exists a default

premium in the swap spread, albeit smaller than the default premium in the bond mar-

ket. The collapse of the inter-banking market following the Lehman Brothers bankruptcy

resulted in a sudden change in swap rates in the same way as LIBOR rates grew. As a

consequence, credit risk in swap contracts may have been underestimated during previous

years. Liu, Longsta� and Mandell [LLM02] support liquidity risk as a primary determi-

nant of the swap spread. As the swap spread is typically positive and may be explained by

positive risk premia, treasury yields are a superior approximation of riskless interest rates.

This is of particular importance through �nancial crisis, as can again be seen by �gure 2.2.

The higher the swap spread, the higher the deviation of swap yields from riskless interest

rates.

In times of �nancial crisis, swap rates should not be used as an approximation for riskless

interest rates. In normal times, identi�ed by low and persistent swap spreads, such an

approximation might be valid. Nevertheless, modeling investment results in �xed income

markets should use the benchmark of government bonds. It might be of interest whether

swap spreads comove with certain investment grade �xed income securities such as asset-

backed securities like Pfandbriefe, MBS or corporate bonds. If this is the case, the swap

spread might be used as an approximation to returns until maturity of these risky assets.

Note, however, that Sun, Sundaresan and Wang [SSW93] showed that the default premium

in the swap market is smaller than in bond markets. Considering the long time horizons

of insurance contracts and therefore the higher probability of a �nancial crisis during life-



2.3.3 Data 67

time of the contract, we recommend using government bond-implied yields for insurance

applications. Note also that swap spreads are typically positive, thus discounting future

payo�s with government bonds is more conservative than discounting with swap rates.

Another important factor which prohibits usage of swap yields for insurance applica-

tions is availability of data. Whereas treasury securities are traded since before world war

II, swap trading began only in the eighties with OTC swap contracts. In particular, avail-

able swap yields do not include the periods of the oil price shocks of the early 1970s or the

monetary experiment in the early 1980s.

On the other side, swaps are by construction predominantly used for interest rate risk

hedging, and thus became very popular and highly liquid instruments. As swap rates for

constant maturities are e�ectively quoted continuously, swap markets provide true con-

stant maturity yield data, whereas in government bond markets the available maturities

depend on the auction cycle18.

The usage for hedging already shows the importance of swap rates in the banking sector.

For banking applications, a major criteria for the choice of the appropriate term structure

is the underlying of the contingent claim to be priced. For government bond futures, gov-

ernment bond term structures should be used to capture the dynamics of the underlying.

Caps, Floors and Swaptions work on inter-bank o�ered rates and swap rates, hence these

underlyings should be used. Note, however, that this does not necessarily exclude the

usage of government bond implied term structures. The question whether interest rates

which contain sizable credit spreads should be used for discounting remains. In case of

sizable swap spreads, we recommend using both government bond-implied yields and swap

yields, the �rst for discounting, the second as underlying. Therefore the importance of

government bond implied yield curves for banking applications rises with the swap spread.

Derivative data Collin-Dufresne and Goldstein [CDG02] �nd that swap rates have only

limited explanatory power for the returns of at-the-money straddle-portfolios, that is port-

folios of at-the-money caps and �oors highly dependent on swap rate volatility. The authors

call this �nding unspanned stochastic volatility. Now as the three principal components of

Litterman and Scheinkman determine term structure dynamics of swap rates, this �nd-

ing implies that straddle portfolios are subject to factors unspanned by level, slope and

curvature. In a related paper, Heidari and Wu [HW01] �nd that the three factors of Litter-

man and Scheinkman are su�cient to match bond market movements, pricing derivatives

however requires three additional factors19. For a general overview to calibration and in-

consistent interest rate derivative markets see for example [RSM04] and [Reb02]. Two

explanations for these �ndings come into mind:

18See Dai and Singleton [DS00]
19Note that contrary to that Fan, Gupta and Ritchken [FGR03] �nd that the e�ect of unspanned factors

on swaptions is minor.
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� The unspanned factors principal components, yet not among level, slope and curva-

ture,

� The unspanned factors are indeed unspanned by the term structure.

In either case, it is obvious that interest rate derivatives depend on the driving factors in

an utterly di�erent way than the term structure20. Inclusion of derivative data into estima-

tion would therefore give a better insight in dynamics of factors besides the three factors

of Litterman an Scheinkman. If unspanned factors exist, the dynamics of these unspanned

factors can only be derived using derivatives of the same type. If the derivatives depend

crucially on spanned factors beside level, slope and curvature, then again using derivative

data in estimation is recommended as the factor to be derived is clearly dominated by level,

slope and curvature, and possibly additional principal components with higher impact then

the factor in question. Particularly, if unspanned factors exist for certain derivatives, even

a perfect �t of the initial term structure is not su�cient to price these derivatives. On the

other side, if we are interested in term structure data only, a 3-factor term structure model

estimated with swap or bond yields is su�cient.

As a consequence, we can fully recommend the practitioners' approach of �tting the term

structure model to derivatives of the same type as those to be priced. To give an ex-

ample, to price an option on government bonds, the model should be estimated on term

structure data as well as options on government bonds with varying maturities both of the

options themselves and of the underlying government bonds. Term structure data then

covers dynamics of the underlying, in particular level, slope and curvature, whereas option

data covers dynamics unspanned by level, slope and curvature. Such an approach guar-

antees that potential unspanned factors as well as higher principal components enter into

estimation. This approach is especially recommended for pricing in the banking sector.

In insurance applications, our main interest lies in the correct speci�cation of term

structure dynamics for discounting payo�s and simulation of investment returns, thus

dynamics of the term structure are su�cient and therefore level, slope and curvature. Fur-

thermore, observable market prices of �similar� insurance derivatives typically do not exist.

Floors provide minimum rates, in a sense similar to guaranteed returns within insurance

applications. However, the underlying for traded �oors is LIBOR, whereas for insurance

applications a single underlying does not exist but rather insurance returns depend on

bond and stock returns at least. If the LIBOR-treasury spread is small, the di�erences are

of minor interest. Recent experience however implies that Japan scenarios, hence worst

case scenarios for insurance companies for which hedging would be crucial, coincide with

increasing LIBOR-treasury spreads, hence in the moment the �oor is required for protec-

tion the LIBOR rate might be signi�cantly higher than the treasury rate and maybe also

20Note that this has important consequences on the question whether the bond market is complete or

not.



2.3.3 Data 69

higher than the return achieved by the insurance company so that only an imperfect hedge

results. We can conclude that insurance instruments di�er from most interest rate deriva-

tives in terms of underlying, maturity, path-dependence and extremal situations so that

typically no interest rate derivatives of a type su�ciently close to the insurance contract

are available.

For the usage of interest rate derivatives for estimation more practical points regarding

implementation exist as well. Such practical considerations exist mainly due to availability

of data on one side and the ability of the respective model to derive prices on the other

side.

Whereas term structure data is available for decades, interest rate derivatives are rather

new �nancial innovations. Time series of interest rate derivative prices typically start in

the 80s or even later. For �nancial innovations, regime changes are frequently found in

the early years, see [Ape03] for the swap markets. Second, liquidity may have been low

during the early years. Furthermore, many interest rate derivatives were initially traded

over-the-counter. Extraction of quotes in OTC markets may be di�cult.

Considering implementation, note that the model used not necessarily allows for closed

formulae of interest rate derivatives. Therefore, Monte Carlo approaches have to be used

for pricing. These approaches are not deterministic, the resulting prices approximate the

true prices only for high numbers of trials. There exists a trade-o� between computational

speed in estimation on one side and deterministic input data on the other side which makes

estimation based on Monte Carlo methods di�cult.

Finally, model restrictions might determine the usage of derivative data. Of particular

interest in this case is the volatility smile, which interest rate derivatives show as well,

see [JLZ07]. Analogously to the Black-Scholes framework, certain term structure models

might be unable to �t a collection of "`smiling"' interest rate derivatives at the same time.

Macroeconomic data The dependence of interest rates on macroeconomic data is well

known. Whereas long-term interest rates predominantly re�ect in�ation expectations,

short-term interest rates and particularly the slope re�ect monetary policy, enacted by the

central bank according to the current outlook on in�ation and economic activity. It is

therefore natural to assume that macroeconomic variables contain information about the

term structure. Indeed, according to Ang and Piazzesi [AP03], macroeconomic variables

explain up to 85% of the dynamics of short- and intermediate-term yields, but explain only

around 40% of the dynamics of the long end of the yield curve. These authors also derive

that Litterman and Scheinkman's level factor remains almost intact if macroeconomic

variables are incorporated, but macroeconomic variables, particularly in�ation, explain a

signi�cant part of the variation of the slope. Moreover, they �nd macroeconomic variables

in a term structure model to improve forecasts. The problem arises which macroeconomic
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Figure 2.3: Time series of the 3-month Treasury bill rate (light gray) and the (positive)

spread of the federal funds rate in US data from 1984 to 2008.

data could add signi�cant information.

Monetary policy sets the current target rate according to lagged, coincident and lead-

ing macroeconomic variables. In turn, the monetary transition mechanism determines the

yield curve according to the macroeconomic information. Finally, the changes in the yield

curve a�ect economic activity and in�ation through investment decisions of the private

actors in the market. Therefore, macroeconomic variables together with the yield curve

describe the current state in the macroeconomic continuum, whereby each variable holds

information about current, past and future states. We therefore can include macroeco-

nomic data to overcome the restrictions of a Markovian context in term structure data.

Although macroeconomic variables can easily be described by Markov processes, they con-

tain information about past yield curves, which determined current in�ation and economic

activity, and future yield curves as implied by the reaction of the monetary authority to the

current and expected macroeconomic situation. This essentially explains the stylized fact

in term structure modeling that inclusion of macroeconomic variables improves forecasting

ability of term structure models.

Considering the macroeconomic indicators to be included, the domestic in�ation rate

comes into mind. Note, however, that there is typically not a unique published in�ation

rate. In case of the US, for example, di�erent in�ation rates are published with emphasis

on urban versus rural communities and inclusion of energy, food and tobacco costs. An-

other stylized fact is that long-term interest rates are determined by in�ation expectations,
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so rather than including current in�ation rates one could include in�ation expectations di-

rectly taken from survey data or extracted from prices of in�ation-indexed government

bonds.

Even more choices exist for measures of macroeconomic activity. A standard choice would

be to use aggregate economic activity, hence GDP or GNP growth, either in nominal or

real terms respectively. Again, market forecasts could be included directly to mirror the

fact that the central bank incorporates expectations in the same way as lagged values. On

the other side, note that purchasing manager indices as well as stock market indices are

important leading variables closely related to economic activity.

In the literature, the third macroeconomic factor included is typically the central bank's

policy instrument, for example the federal funds rate in the US. From an arbitrage argu-

ment, however, it is clear that an overnight government bond yield should be extremely

close to the overnight federal funds rate. It is close and not equal since the federal funds

rate as an inter-bank reference rate is subject to counterparty risk, seasonal and regula-

tory e�ects, notably year-end e�ects, due to sudden liquidity changes in banks. Figure

2.3 shows the 3-month treasury bill rate and the federal funds rate over time. Obviously,

including federal funds rate data will not include genuinely new information, but only a

highly volatile additional proxy of the shortrate subject to externalities such as inter-bank

market liquidity, particularly at month and year's end.

If we include more than one macroeconomic time series, we have to explicitly consider

dependencies of these time series. An important example would be the famous Taylor rule

[Tay93], which links current in�ation, economic growth and short-term interest rates with

their respective long-term means. As the Taylor rule describes very well historical behavior

of many central banks, we can assume that the joined development of in�ation, economic

growth and short-term interest rates persists into the future, which must be considered in

simulations. By assuming that the deviation of the joint indicators from the Taylor rule is

observed with mean zero, we can easily implement the rule into Kalman �lter and EMM

estimation. This does not, however, imply that simulated data follows the rule as well.

Whereas using derivative data in estimation is expected to improve the model �t, par-

ticularly considering so called �unspanned� factors like stochastic volatility, implementation

of estimation approaches which employ derivative data is often di�cult. Augmenting the

estimation data set with macroeconomic data, however, is rather simple. Most term struc-

ture models are factor models, that is an underlying state process X drives the dynamics

of the term structure through time. The factor process components typically coincide with

Litterman and Scheinkman's principal components. Many macroeconomic indicators can

be expressed as mean reverting rate processes. We can de�ne a component process to

coincide with the observable macroeconomic rate21. For a discussion of implementation

21For example, we can de�ne the in�ation rate it to be measured by component k of the state vector
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possibilities see also 3.2. To summarize, we can expect the inclusion of macroeconomic

data to be signi�cantly easier than the inclusion of derivative data. The question is which

macroeconomic indicators to choose. Following the literature, we would recommend using

current annualized in�ation and GDP growth rates. An interesting approach to the prob-

lem of choice can be found again in Dai and Singleton [DS00], who derive the �rst principal

component of a group of in�ation measures and a group of measures for economic activity,

respectively, as their macroeconomic variables to be included.

Considering the impact of macroeconomic variables on banking applications, the main

focus lies on derivatives which have the respective macroeconomic variable as an underlying,

for example in�ation caps or derivatives on output. A term structure model which explicitly

takes into consideration the dependencies between the macroeconomic variable and the

term structure allows to derive at least Monte Carlo simulated prices of derivatives on

the macroeconomic variable with stochastic interest rates22. Another application stems

from improved forecasting ability, as essentially such a term structure model can forecast

arbitrage-free term structure changes contrary to classical statistical forecasting approaches

which can not guarantee no-arbitrage. Besides these special cases, however, the bene�t of

including macroeconomic variables into term structure models for banking applications is

limited.

Considering insurance applications, however, macroeconomic variables would be im-

portant in long-term simulations, as they help to derive realistic long-term dynamics of

the term structure model, particularly with respect to business cycles. Furthermore, long-

term interest rates should be more realistic due to in�ation expectations. Finally, we

can expect that any additional asset included into the framework, particularly the stock

market, should depend on the very same macroeconomic variables as the term structure.

As a consequence, inclusion of macroeconomic variables into both a term structure and a

stock market model implies a more realistic handling of interdependencies of these �nancial

markets.

The dataset

The dataset used consists of end-of-month US term structures implied by treasury secu-

rities from january 1984 to january 2008 with maturities of 3 and 6 months and 1, 2, 3,

5, 7, 10, 20 and 30 years. The dataset is obtained from the Federal Reserve download portal.

process Xt within a state space approach by

it = eTkXt + ε
(k)
t ,

where ek is the k-th unit vector. This also de�nes the required measurement equation for a Kalman �lter.
22Note that in such models we have to derive the no-arbitrage condition for each of these derivatives

respectively.
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Although for many maturities substantially longer time series are available, rates for

treasury bills with maturities of less than a year are only available from january 1982

on. We excluded the years 1983 and 1984 due to the monetary experiment23, since the

starting point of the Kalman Filter approach is crucial for estimation and yields as observed

during the monetary experiment are not valid as starting points. The data ends in january

2008 to avoid problems due to the excessive rate cutting and non-traditional instruments of

monetary policy in the aftermath of the subprime crisis. During the 23 years of observations

the US treasury department ceased to issue and restarted issuance of both the 20 and 30

year treasuries, thus only for about half of the data sample all rates are available. However,

for all observation points at least one rate with a maturity over 10 years is available.

Unlike the US, Germany does not issue government bonds with maturities of less than

one year � at least the Bundesbank does not provide them. We estimated model parameters

using German end-of-month term structure data with maturities of 1 to 10 years from

the Bundesbank statistical download portal. The dataset starts september 1972 up to

July 2008, again due to availability questions considering the di�erent maturities and to

guarantee a reasonable starting point for the Kalman �lter before the monetary experiment

and the equivalent period in Germany.

2.3.4 Estimation of the Cairns model

Implementation of the Kalman �lter

To implement the Extended Kalman �lter in case of the Cairns model, we provide the

respective equations following 2.3. Implementation of an Extended Kalman �lter for the

Cairns model may also be found in [Lut07]. First, we have to specify the starting points

X0|0 and Σ0|0. To do so, we follow the previously described approach and �t X0|0 to the

�rst two yield curves Y0 and Y1 in initial estimation iterations and to Y0 for later iteration

steps. For the initial covariance matrix Σ0|0, we took the conditional covariance matrix of

the state vector X over a time period of length 1.

For the Cairns model, the state vector dynamics follow an Ornstein-Uhlenbeck process

dXt = κ(µ−Xt)dt+ CdZP̃t .

Following theorem 2.2.16, the vector Xt+1 conditional on Xt is distributed according to

Xt+1|Xt ∼ E[Xt+1|Ft] + ηt

=


(1− e−κ11)µ1

...

(1− e−κd1)µd

+


e−κ11 . . . 0
...

. . .
...

0 . . . e−κd1



X

(1)
t
...

X
(d)
t

+ ηt(θ)

23In january 1982, the lowest rate was the 3-month treasury bill rate of 12.92%.
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whereby ηt is normally distributed with mean zero and covariance matrix Qt(θ) given by

Qt(θ) = Cov [Xt+1|Xt]

=

 d∑
i=1

d∑
j=1

ρij
κi + κj

(
1− e−(κi+κj)

)
i,j=1,...,d

. (2.24)

and θ denotes the vector of model parameters to be estimated. Since Xt|t−1 = E[Xt|Xt−1]

and ηt(θ) is normally distributed, this de�nes the transition equation of the state vector

by

Xt|t−1 = ct(θ) + Φt(θ)Xt−1|t−1

= (1− e−κ)µ+ e−κXt−1|t−1.

For transition of the conditional state covariance matrix Σ, we have

Σt|t−1 = Φt(θ)Σt−1|t−1Φt(θ)
T +Qt(θ)

= e−κΣt−1|t−1(e−κ)T +Qt(θ).

This completes the transition step. Next, we derive the updating step of the �lter, which

requires de�nition of the measurement equation, measurement errors and their covariance

matrix Ft|t−1 and �nally the Kalman gain matrix. In the Cairns model, a bond price with

time to maturity τi, i = 1, . . . , n, is given by

P (t, t+ τi) =

∫∞
τi
H(u,X(t))du∫∞

0 H(u,X(t))du

hence the spot rate for the same maturity is given by24

y(t, t+ τi) = − 1

τi
log (P (t, t+ τi))

=
1

τi
log

(∫∞
τi
H(u,X(t))du∫∞

0 H(u,X(t))du

)
︸ ︷︷ ︸

gi(Xt;θ)

for i = 1, . . . , n. Assuming all observations are subject to a measurement error εt, this

de�nes the measurement equation by
yM (t, t+ τ1)

...

yM (t, t+ τn)

 =


g1(Xt; θ)

...

gn(Xt; θ)


︸ ︷︷ ︸

:=g(Xt;θ)

+εt(θ)

24In order to emphasize the role of the time to maturity τi := Ti − t for each yield, we write the time of

maturity by Ti = t+ τi.
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with yM (t, t + τi), i = 1, . . . , n being the interest rates as observed in the market and εt

being a multivariate normal error term with covariance matrix

Cov (εt) = Ht(θ) = diag (ν, . . . , ν) ∈ Rn×n.

This is a simplifying choice to derive a single model parameter for measurement errors.

In reality, model misspeci�cations will likely lead to both cross- and autocorrelated errors,

hence possibly Cov(εi(t), εj(t)) 6= 0 and Cov(εi(t), εi(t+h)) 6= 0. However, correlated mea-

surement errors νij imply up to n(n−1)
2 − 1 additional model parameters. These additional

parameters do not contribute to explain model dynamics, but are merely an analytical

instrument for the errors.

Next we require the �rst order Taylor expansion of the measurement equation at Xt|t−1,

g(Xt; θ) ≈ g(Xt|t−1; θ) +Bt|t−1(Xt −Xt|t−1)

for i = 1, . . . , n with

Bt|t−1 =


∂
∂x1

g1(x; θ) . . . ∂
∂xd

g1(x; θ)
...

...
∂
∂x1

gn(x; θ) . . . ∂
∂xd

gn(x; θ)


∣∣∣∣∣∣∣∣
x=Xt|t−1

∈ Rn×d.

The derivatives are given by

∂

∂xj
gi(x; θ) =

1

τi

∂

∂xj
log

(∫∞
τi
H(u, x)du∫∞

0 H(u, x)du

)

=
1

τi

∫∞
0 H(u, x)du∫∞
τi
H(u, x)du

(
∂

∂xj

∫∞
τi
H(u, x)du∫∞

0 H(u, x)du

)

=
1

τi

∫∞
0 H(u, x)du∫∞
τi
H(u, x)du

(∫∞
τi

∂
∂xj

H(u, x)du
∫∞

0 H(u, x)du(∫∞
0 H(u,X(t))du

)2
−

∫∞
τi
H(u, x)du

∫∞
0

∂
∂xj

H(u, x)du(∫∞
0 H(u, x)du

)2
)

=
1

τi

(∫∞
τi

∂
∂xj

H(u, x)du∫∞
τi
H(u, x)du

−

∫∞
0

∂
∂xj

H(u, x)du∫∞
0 H(u, x)du

)
.

With

∂

∂xj
H(u, x) = σje

−κjuH(u, x)

we get

∂

∂xj
gi(x; θ)

=
1

τi

(∫∞
0 σje

−κjuH(u, x)du∫∞
0 H(u, x)du

−
∫∞
τi
σje
−κjuH(u, x)du∫∞

τi
H(u, x)du

)
.
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The covariance of the prediction error Ft|t−1 is given by

Ft|t−1 = Cov [vt|Ft−1]

= Bt|t−1Σt|t−1B
T
t|t−1 +Ht,

for which all components are known by now. Therefore the Kalman gain matrix

Kt = Bt|t−1Σt|t−1F
−1
t|t−1

is fully speci�ed and completes the updating steps according to the Extended Kalman �lter

algorithm given in page 61.

Two preliminary observations can be made from this derivation of the Extended Kalman

�lter for the Cairns model:

1. Each Kalman �lter step requires evaluation of the integrals∫ ∞
τj

H(u, x)du

and ∫ ∞
τj

e−κiuH(u, x)du

for j = 0, 1, . . . , n with τ0 = 0 and i = 1, . . . , d and x ∈ X . As these integrals

can not be solved in closed form, numerical integration has to be used. This is

computationally demanding.

2. For practicability, a �nite upper integration bound has to be assumed for numerical

integration. This is an additional approximation within the �lter, although by de�-

nition H(u, x)→ 0 and e−κiuH(u, x)→ 0 for u→∞, respectively. The impact of a

�nite integration bound should therefore be minimal if it is chosen large enough.

3. We can not guarantee that the prediction error covariance Ft|t−1 is invertible. In

practice, MATLAB provides by pinv(A) a pseudo-inverse matrix B to the matrix

A, for which ABA = A, BAB = B holds and both AB and BA are symmetric.

This implies yet another approximation in the �lter. This �nal approximation is,

however, a typical problem of the Kalman �lter. Since the matrix Ft|t−1 depends

on the current state Xt, we can not guarantee a priori that Ft|t−1 is invertible for

all t ≥ 0. In fact, we found this to be the main reason the Kalman �lter algorithm

stopped from an error.

Testing the Kalman �lter

To test the ability of the Kalman �lter to estimate the model parameters, we specify ex-

ogenously a set of model parameters. Using these parameters, we simulate a sample of
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κ1 κ2 α γ1 γ2 ρ12 µ1 µ2 ν LogL

0.6 0.06 0.04 0.6 0.4 -0.5 0.0 0.0 0.0

0.5998 0.0600 0.0400 0.5717 0.3993 -0.5178 -0.66 6.30 0.00003 26168

0.5993 0.0601 0.0400 0.5679 0.4010 -0.4013 0.47 9.34 0.00002 26302

0.5993 0.0601 0.0400 0.5694 0.4007 -0.4220 0.54 3.78 0.00002 26304

0.6007 0.0600 0.0400 0.5774 0.3991 -0.4868 0.41 -4.37 0.00002 27180

0.0600 0.6006 0.0400 0.3993 0.5783 -0.4912 -6.39 -0.22 0.00001 28210

Table 2.2: Estimates of the Kalman �lter for data simulated by the Cairns model using

the parameters of the �rst line.

289 yield curves, the same number of observations as in the empirical data used later.

The Kalman �lter can thus be used to estimate the model parameters from the simulated

dataset, for which the true model parameters are known. If the Kalman �lter is correctly

speci�ed, the estimated model parameters should coincide with the �true� model param-

eters. We propose to use the exemplary parameters used by Cairns himself in his paper,

κ = (0.6, 0.06)′, α = 0.04, σ = (0.6, 0.4)′, ρ = −0.5 and µ = (0, 0).

We followed the iterative approach discussed earlier, starting with the fminunc algo-

rithm and continuing with fminsearch. However, we limited the amount of fminsearch

steps for computational e�ciency, whereas with real data iteration was stopped only if

Loglikelihood values did not improve any further. We derived 20 estimates of the Cairns

model. Many estimates had to be excluded during the iterative estimation approach be-

cause the implicit parameter bounds were reached or the algorithm reached local minima.

Furthermore, in many cases the �lter stopped since Ft|t−1 was singular.

According to table 2.2, the Kalman �lter estimates most parameters remarkably well,

including correlation. The last estimate shows that the state vector components are ex-

changeable, which means that the �lter detects state vector dynamics, yet the order of state

vector components is not speci�ed uniquely. Note, however, that one could determine the

order by imposing the limits of the parameters accordingly in estimation, particularly the

limits of the mean reversion parameters κi.

The �lter has signi�cant problems in estimating the long-term mean µi of the low mean-

reversion factor. We will discuss this further in section 2.3.8. Considering correlation, the

parameter ρ is estimated very well, although it varied considerable during the iteration

steps and typically only the last fminsearch steps produced a reasonable estimate of ρ. All

in all, these results justify the usage of the Kalman �lter for the Cairns model.

Results

As our �rst estimation step for the Cairns model, several starting values were chosen ran-

domly from a uniform distribution between speci�ed upper and lower bounds of the model
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α σ1 σ2 κ1 κ2 ρ12 µ1 µ2 ν LogL

0.0053 0.695 0.690 0.575 0.023 -0.031 -0.677 4.752 0.0014 16609

0.0052 0.693 0.695 0.580 0.023 0.013 -0.595 5.204 0.0014 16609

0.0179 0.330 0.561 0.623 0.020 -0.171 -1.723 -2.36 0.0015 16562

Table 2.3: QML parameter estimates of the Cairns model using the Extended Kalman

�lter.

parameters. Of these starting values, those who provided the highest Loglikelihood values

were taken for further iterative estimation steps using both fminunc and fminsearch

until the Loglikelihood did not change anymore.

All in all, 3 viable parameter sets were estimated given in table 2.3. We see that the

mean reversion factors κi are rather close for all estimates. There exists a high-mean

reversion factor and a low-mean reversion factor, as proposed by Cairns. The correlation

parameter ρ and the weighting parameters γi are relatively stable as well, with only the

last estimate deviating a bit more. The long-term means µi of the state vector components

vary substantially, particularly for the low mean reversion state vector component, as we

expected from our previous test. As ν is the estimated measurement error, lower values

of ν indicate superior historical �t. Therefore, the �rst two estimates seem to be slightly

superior.

As a second step, we recommend analyzing historical �t of the model. To do that, we

analyze the residuals de�ned as the di�erence between the model implied yields

y(X̂t; t, t+ τi) := gi(X̂t; θ)

and the observed yields y(t, T ). Table 2.4 shows mean absolute pricing errors in basis

points for the parameter estimates introduced above, de�ned by

MAE(τ) :=
∣∣∣y(t, t+ τ)− y(X̂t; t, t+ τ)

∣∣∣ .
Mean absolute errors are a suitable criterion to derive overall time series �t of the term

structure model in an economically interpretable way if provided in basis points. The

MAEs vary around 10 basis points, which implies that the model �ts historical data rather

well. As one can clearly see in table 2.4, the mean absolute error of the 7-year yield is the

global minimum and at a maturity of 1 or 0.5 years respectively there is a local minimum.

The short and long ends show the highest pricing errors. This is a pattern which we would

also expect from curvature mismatch, that is the model covers level and slope, but fails to

describe curvature dynamics.

Note that as a stylized fact in multi-factor term structure modeling, the estimated his-

torical factors coincide with some of the principal components of Litterman and Scheinkman.

Consequently, we compared the �ltered state processes to empirical proxies of the principal
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Mean Absolute Pricing Errors in Basis Points

0.25 0.5 1 2 3 5 7 10 20 30

15.12 7.25 7.14 12.34 11.45 8.15 6.43 8.98 10.13 11.34

15.12 7.26 7.18 12.36 11.49 8.19 6.50 9.01 10.20 11.32

15.28 6.73 7.63 14.02 12.19 8.24 6.54 9.41 11.32 12.37

Table 2.4: Mean absolute pricing errors (MAEs) in basis points for the US term structure

1984 to 2008 for three parameter sets from QML-estimation using the Extended Kalman

�lter on the Cairns model.

components. The results are given in �gure 2.4. We �nd a clear correlation between the

low-mean reversion factor and the level measured as the long-term yield. In section 2.1 we

recommended such a speci�cation to solve the excess volatility problem in long-end yields.

Since the high mean reversion factor is related to the slope, although less clear. The factor

deviates from the slope if the level is low, we assume the zero lower bound of the Cairns

model to be responsible. In a three-factor model, we can expect that the additional factor

covers curvature.

Besides measurement error and historical �t by MAEs we also recommend examination

of cross-correlations of the residuals gi(X̂t; θ) − y(t, t + τi) for each i = 1, . . . , n. We

assumed mutually independent measurement errors ε(i)t , i = 1, . . . , n. Consequently, if

residuals merely re�ect measurement errors, cross-correlations of residuals should be close

to zero. On the other side, if cross-correlations are signi�cantly away from zero, this points

to systematic deviations of residuals which might be explained by a more parsimonious

model. If the model does not catch curvature dynamics correctly, which we assume to

be the case for a two-factor model, then cross-correlation should show a certain pattern

of positive and negative correlations of the time series of residuals. If the model fails to

explain curvature dynamics, then model-implied short and long rates will tend to deviate

in the same direction from the true observed yields. On the other side, model-implied

medium rates will tend to deviate from the true observed yields in the opposite direction.

We would expect a correlation matrix with a pattern given in �gure 2.5. Table 2.6 shows

the calculated cross-correlations of the residuals of the �rst estimate, the cross-correlation

matrix of errors25 indeed shows the predicted pattern.

Another important criterion in model analysis is residual autocorrelation. High auto-

correlation may imply a systematic, transitionary factor in the residuals. On the other

side, any misspeci�cation of the state Xt−1|t−1 may only be corrected over time by the

updating step. If Xt−1|t−1 is misspeci�ed, Xt|t tends to be misspeci�ed as well, albeit to a

25Note that 20- and 30-year rate data is censored and in particular not su�cient to estimate correlation

between the 20- and 30-year rates.
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Figure 2.4: Filtered state vector components (left) and empirical proxies of the �rst two

principal components of term structure dynamics.

+ - +

- + -

+ - +

Table 2.5: Expected pattern in residual cross-correlation matrices in case of curvature

mismatch.
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maturities 0.25 0.5 1 2 3 5 7 10 20 30

0.25 1.00 0.68 -0.60 -0.90 -0.89 -0.63 -0.32 0.13 0.52 0.30

0.5 0.68 1.00 -0.09 -0.77 -0.87 -0.81 -0.61 0.00 0.42 0.36

1 -0.60 -0.09 1.00 0.43 0.30 -0.06 -0.37 -0.26 -0.20 -0.04

2 -0.90 -0.77 0.43 1.00 0.94 0.63 0.32 -0.32 -0.60 -0.31

3 -0.89 -0.87 0.30 0.94 1.00 0.79 0.52 -0.15 -0.57 -0.39

5 -0.63 -0.81 -0.06 0.63 0.79 1.00 0.73 0.18 -0.47 -0.45

7 -0.32 -0.61 -0.37 0.32 0.52 0.73 1.00 0.42 -0.05 -0.44

10 0.13 0.00 -0.26 -0.32 -0.15 0.18 0.42 1.00 0.18 0.14

20 0.52 0.42 -0.20 -0.60 -0.57 -0.47 -0.05 0.18 1.00 -

30 0.30 0.36 -0.04 -0.31 -0.39 -0.45 -0.44 0.14 - 1.00

Table 2.6: Cross-Correlation matrix of the residuals of the �rst estimate of the two-factor

Cairns model with US data from 1984 to 2008.

Maturities 0.25 0.5 1 2 3 5 7 10

1 month 0.85 0.80 0.86 0.88 0.85 0.78 0.74 0.73

2 months 0.65 0.57 0.74 0.72 0.63 0.48 0.47 0.48

3 months 0.51 0.38 0.66 0.56 0.44 0.26 0.36 0.42

4 months 0.42 0.22 0.59 0.43 0.28 0.08 0.30 0.37

5 months 0.34 0.08 0.55 0.34 0.15 -0.06 0.23 0.35

Table 2.7: Residual Autocorrelations for the �rst estimate of the Cairns model on US data

from 1984 to 2008.

lesser degree. This in turn implies residual autocorrelation. Particularly due to misspec-

i�cations in the calibrated initial state X0|0, we can expect historical autocorrelation to

be overestimated. Generally, low autocorrelations will indicate that the model does not

systemically deviate from the true measurements. For our monthly observations, table 2.7

shows the autocorrelations of the residuals to be substantial26.

2.3.5 Estimation of the cosh model

Implementation of the Kalman �lter

In our model de�nition, we assumed the state process to follow the same Ornstein-Uhlenbeck

dynamics under the physical measure as in the Cairns model. For the initial values X0|0

and Σ0|0 we followed the Cairns model and calibrated X0|0 to the �rst two measurements,

whereas for the state covariance matrix Σ0|0 we chose the covariance matrix Cov[Xt+1|Ft].
The prediction step of the Cairns model can also be applied for the cosh model since both

26Again, due to censored data, we do not examine the autocorrelations of the residual errors for 20 and

30 years of maturity.
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frameworks assume the same state vector dynamics. Therefore we have

Xt|t−1 = e−κXt−1|t−1 + (1− e−κ)µ,

and

Σt|t−1 = e−κΣt−1|t−1(e−κ)T +Qt(θ).

The covariance matrix Qt(θ) is given in (2.24). The measurement equation is de�ned

analogously to the Cairns model by


yM (t, t+ τ1)

...

yM (t, t+ τn)

 =


g1(Xt; θ)

...

gn(Xt; θ)


︸ ︷︷ ︸

:=g(Xt;θ)

+εt(θ)

with yM (t, t+ τi), i = 1, . . . , n the interest rates as observed in the market and

gi(Xt; θ) = α−
cosh

(
γTE[XT |Xt]

)
T − t

and εt(θ) ∈ Rn×n being a multivariate normal error term with covariance matrix

Cov (εt) := Ht(θ) = diag (ν, . . . , ν) ∈ Rn×n.

For the updating step, we require the Kalman gain matrix

Kt = Σt|t−1B
T
t|t−1F

−1
t|t−1

where Bt|t−1 is the Jacobi matrix of the non-linear yield function of the cosh model given

by

Bt|t−1 =


∂
∂x1

g1(x, θ) . . . ∂
∂xd

g1(x; θ)
...

...
∂
∂x1

gn(x; θ) . . . ∂
∂xd

gn(x; θ)


∣∣∣∣∣∣∣∣
x=Xt|t−1

∈ Rn×d.
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The derivatives are given by

∂

∂xj
gi(x; θ)

= − ∂

∂xj
log

e−α(Ti−t)
cosh

(
γTEP̃ [XTi |Xt = x] + c

)
cosh (γTx+ c)


=

cosh
(
γTx+ c

)
cosh

(
γTEP̃ [XTi |Xt = x] + c

)
 ∂

∂xj
cosh

(
γTEP̃ [XTi |Xt = x] + c

)
cosh

(
γTx+ c

)
cosh2 (γTx+ c)

−
∂
∂xj

cosh
(
γTx+ c

)
cosh

(
γTEP̃ [XTi |Xt = x] + c

)
cosh2 (γTx+ c)


=

sinh
(
γTEP̃ [XTi |Xt = x] + c

)
γje
−κj(Tj−t)

cosh
(
γTEP̃ [XTi |Xt = x] + c

)
−

sinh
(
γTXt + c

)
γj cosh

(
γTEP̃ [XTi |Xt = x] + c

)
cosh

(
γTEP̃ [XTi |Xt = x] + c

)
cosh (γTx+ c)


=

(
γj tanh

(
γTEP̃ [XTi |Xt = x] + c

)
e−κj(Ti−t) − γj tanh

(
γTx+ c

))
(2.25)

where i = 1, . . . , n and j = 1, . . . , d. The prediction error vt can be calculated from the

new information yt and the measurement implied by the prediction Xt|t−1, hence

vt = yt − gt(Xt|t−1, θ)

=


y(t, T1)− 1

T1−t log

(
e−α(T1−t) cosh(γTE[XT1

|Xt=Xt|t−1]+c)
cosh(γTXt|t−1+c)

)
...

y(t, Tn)− 1
Tn−t log

(
e−α(Tn−t) cosh(γTE[XTn |Xt=Xt|t−1]+c)

cosh(γTXt|t−1+c)

)
 .

The error covariance matrix Ft|t−1 is given by

Ft|t−1 = Bt|t−1Σt|t−1B
T
t|t−1 +Ht

whereby we assume as in the Cairns model Ht(θ) = diag (ν, . . . , ν) ∈ Rn×n, that is mea-

surement errors are mutually uncorrelated. This yields the Kalman gain matrix Kt and

hence the updating steps

Xt|t = Xt|t−1 +Ktvt

and

Σt|t = Σt|t−1 −KtBt|t−1Σt|t−1.

Unlike the Cairns model, the cosh model allows for derivation of all formulae without

numerical integration. We can thus expect the cosh model to be signi�cantly faster than



84 2.3.5 Estimation of the cosh model

the Cairns model computationally. Considering the inverse of the matrix Ft|t−1, we face the

same problem as in the Cairns model in that we can not guarantee Ft|t−1 to be invertible

for all t and all Xt|t−1. Indeed, singular Ft|t−1 was again the main reason for the Kalman

�lter to fail.

Testing the Kalman �lter

We follow the same approach as with the Cairns model to test the ability of the Kalman

�lter to estimate the required parameters. We choose a set of parameters, then simulate

times series of yields. As mentioned previously, we recommend using simulated datasets

of the same size as the real datasets to be used later. Finally, the Kalman �lter is used

to estimate the model parameters from these simulated datasets. If the Kalman �lter

is correctly speci�ed, the estimated model parameters should coincide with the �true�,

previously speci�ed model parameters.

We derived 20 estimates of the cosh model. The fraction of estimates which had to

be excluded because the implicit parameter bounds were reached was considerably higher

than in case of the Cairns model. Likewise, we had to exclude more estimates as local

minima. As in the Cairns model, we limited the number of iteration steps in estimation,

hence the estimates given above are not �nal. We can conclude that the Cairns model

is less dependent on the initial parameter set for maximization of the Loglikelihood value

and therefore less estimates have to be excluded for the Cairns model than for the cosh

model. Nonetheless, due to computational e�ciency the cosh model is still faster than the

Cairns model.

To summarize, the Kalman �lter provides in most cases very stable estimates of the true

model parameters. Notable exceptions are the parameters c, µ and µ̃. The reason for the

considerable instability of these parameters is shown in (2.26). As with the Cairns model,

we �nd that the high- and low-mean reversion factors are exchangeable in the sense that

the order of the factors is not �xed. Furthermore, the sign of the factors is not �xed, either.

In particular, we �nd that for the estimated values γei we have {|γe1|, |γe2|} = {|γ1|, |γ2|}
and also |ρe12| = |ρ12|. To summarize, the Kalman �lter is able to estimate the model

parameters properly.

Results

We start estimation in the same way as in the Cairns model. The �rst model presented

assumes µ̃ = 0, hence the state vector under the reference measure follows the same

dynamics as proposed by Cairns. The remaining parameters were chosen from a uniform

distribution between upper and lower bounds for each model parameter. Of these initial

parameter sets, those with the highest Loglikelihood values are used in further estimation,

as described in the algorithm on page 61. As seen in the previous section, the cosh model
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α γ1 γ2 c µ1 µ2 κ1 κ2 ρ ν LogL

0.006 0.022 -0.473 -30.87 1.97 -0.76 0.488 0.021 0.54 0.00163 16424

0.004 0.479 -0.022 -2.70 -0.85 -1.99 0.02 0.488 0.54 0.00163 16424

0.006 0.022 0.473 -19.68 1.97 0.75 0.488 0.021 -0.54 0.00163 16424

0.006 0.022 -0.474 0.03 1.99 0.72 0.488 0.021 0.54 0.00163 16424

0.067 0.024 0.315 -0.45 -0.01 0.86 0.485 0.026 -0.39 0.00160 16435

Table 2.8: QML parameter estimates of the cosh model using the Extended Kalman �lter

on US data from 1984 to 2008.

tends to end in local minima, break due to singular Ft|t−1 and reach the parameter bounds

more often than the Cairns model. We therefore required a higher number of estimates

than for the Cairns model, a subsample of these results is presented in table 2.8.

We �nd two subgroups of estimates which di�er prominently in the parameter α. For

each subgroup, we �nd one state vector component to show high mean reversion and the

other state vector component to show low mean reversion as in the Cairns model. Estimates

of the mean reversion parameters are highly stable. The correlation coe�cient ρ is highly

stable as well with its sign depending on γ1 and γ2, respectively. These scaling factors γ

showed considerable stability within the subgroups.

The parameters µ and c showed varied signi�cantly even within the subgroups. Note that

this is likely due to instability of the long-term means µ which transforms into instability

of c. Assuming c = γT b for some b ∈ Rn we have for Yt := Xt + b by the Ito-Doeblin

formula

dY
(i)
t =

[
0 + κi(µi −X(i)

t ) + 0
]
dt+

d∑
j=1

CijdZ
(j)
t

= κi

(
(µi − bi)− Y (i)

t

)
dt+

d∑
j=1

CijdZ
(j)
t . (2.26)
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0.25 0.5 1 2 3 5 7 10 20 30

16.7 6.8 8.9 16.3 13.8 8.1 6.6 10.4 12.0 13.9

16.7 6.8 8.9 16.3 13.8 8.1 6.6 10.4 12.0 13.8

16.7 6.8 8.9 16.3 13.8 8.1 6.6 10.4 12.0 13.9

16.7 6.8 8.9 16.3 13.8 8.1 6.6 10.4 12.0 13.9

16.4 6.3 9.0 16.0 13.5 7.7 6.4 10.0 12.8 14.2

Table 2.10: MAEs of the cosh model using the Extended Kalman �lter on US data from

1984 to 2008.

Obviously, as the linear equation system γT b = c does not necessarily provide a unique

solution, in�nitely many �true� estimates of the model parameters with varying µ and c

are possible. The model presented so far is hence overparameterized. A �rst idea would

set c = 0. However, assuming γT b = 0 may still allow for in�nitely many b, hence insta-

bility of µ prevails. This is a direct consequence of Xt entering the bond pricing formula

through a�ne transformation. We found that �exible c improved stability of the Kalman

�lter, particularly in later expansions of the model. We therefore recommend to keep the

overparameterized model including c.

Examining MAEs in table 2.10, the high- and low-α estimates di�er in their ability to

�t the long and short ends of the term structure, respectively. High-α estimates imply a

better historical �t of the short end, yet decreased �t of the long end. In section 2.3.9, we

will see that this is likely a result of censored data on the very long end of the yield curve.

Considering the interpretation of the state vector components, as can be seen in �gure

2.5 for the �rst parameter set, we again �nd one state vector component to coincide with a

long-term rate and the other to capture slope dynamics. As the state vector describing the

level is highly correlated to the 10-year yield and mean reversion is weak, we must expect

the same problems in estimating µL as encountered in Cairns. As we assume that the state

vector components follow Ornstein-Uhlenbeck dynamics and our dataset covers 25 years,

we would assume that all state vector components crossed their respective long-term mean

at least once from 1984 to 2008. We therefore calculate for each state process component

the distance between the empirical mean of the �ltered path and the estimated mean µi. To

account for di�erences in the scaling factor γi, we standardize this di�erence by the range

of the �ltered state process. We measure this range as the distance between the upper-

0.1-quantile Q0.9((X̂L
t )t=1,...,T ) and the lower-0.1-quantile Q0.1((X̂L

t )t=1,...,T ), whereby X̂L

denotes the level component of the �ltered state process. A ratio higher than 1 implies

that the distance between the estimated long-term mean and the empirical long-term

mean is higher than the range of the �ltered path. In particular, this usually implies

that µL /∈ conv
{
X̂L
t , t = 1, . . . , T

}
. µL /∈ conv

{
X̂L
t , t = 1, . . . , T

}
therefore is a clear
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Figure 2.5: Filtered state vector components (left) and empirical proxies of the �rst two

principal components of term structure dynamics.
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Slope Level

3.08 0.06

3.08 0.06

2.90 0.05

3.08 0.06

1.02 0.45

Table 2.11: The ratios of the (absolute) di�erence between the estimated and empirical

long-term mean µ and the overall range of the respective �ltered state vector component,

for both the high- and low-mean reversion components.

indication that the Kalman �lter failed to estimate µL properly. As a measure of this

failure we calculate ∣∣∣ 1
n

∑n
t=1 X̂

L
t − µi

∣∣∣
Q0.9((X̂L

t )t=1,...,T )−Q0.1((X̂L
t )t=1,...,n)

. (2.27)

In table 2.11, we �nd that estimates of µL are generally poor. The last estimate of µL

seems to be superior to the previous estimates, although the ratio of µS is worse. How-

ever, if we examine the �ltered state paths, we �nd again that the estimated value µL still

underestimates the long-term mean.

As in the Cairns model, we examined auto- and cross-correlation of the time series of

residuals. As we implemented a 2-factor model, the cross-correlation matrix of the 2-factor

cosh model is expected to show the same pattern of positive and negative correlations

implied by curvature mismatch we presented in �gure 2.5. Indeed in tables 2.12 and 2.13

we �nd the predicted pattern in the cross-correlation matrix of errors27 for both high- and

low-α estimates. Interestingly, cross-correlation matrices are in both cases pretty much

the same for maturities lower than 7 years, yet di�er in higher maturities. This hints to

a connection between α and long-end curvature mis�t we will examine further in section

2.3.9.

Considering autocorrelation, we expect the same pattern we found in the Cairns model.

We already found proof for the failure of the cosh model to cover curvature dynamics in

cross-correlation matrices. For our monthly observations, tables 2.14 and 2.15 show the

autocorrelations of the residuals to be substantial. Di�erences between the high- and low-α

estimates can only be found in the higher maturities, indicating again a special role of α for

the long end of the yield curve. The general pattern of autocorrelations is the same as in

the Cairns model, indicating that both models fail to cover the dynamics of a transitionary

27Note that due to censored data, correlation between the 20- and 30-year rates are not reliable and

therefore omitted.
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maturities 0.25 0.5 1 2 3 5 7 10 20 30

0.25 1.00 0.61 -0.73 -0.93 -0.91 -0.58 -0.07 0.45 0.62 0.20

0.5 0.61 1.00 -0.12 -0.67 -0.76 -0.72 -0.43 0.19 0.36 0.23

1 -0.73 -0.12 1.00 0.65 0.56 0.10 -0.35 -0.44 -0.41 -0.11

2 -0.93 -0.67 0.65 1.00 0.96 0.56 0.03 -0.59 -0.68 -0.17

3 -0.91 -0.76 0.56 0.96 1.00 0.72 0.23 -0.45 -0.66 -0.28

5 -0.58 -0.72 0.10 0.56 0.72 1.00 0.66 0.08 -0.43 -0.39

7 -0.07 -0.43 -0.35 0.03 0.23 0.66 1.00 0.52 0.17 -0.45

10 0.45 0.19 -0.44 -0.59 -0.45 0.08 0.52 1.00 0.47 0.03

20 0.62 0.36 -0.41 -0.68 -0.66 -0.43 0.17 0.47 1.00 -

3ÿ 0.20 0.23 -0.11 -0.17 -0.28 -0.39 -0.45 0.03 - 1.00

Table 2.12: Cross-Correlation matrix of the residuals of the �rst estimate of the cosh model

of the low-α subgroup.

maturities 0.25 0.5 1 2 3 5 7 10 20 30

0.25 1.00 0.61 -0.74 -0.93 -0.91 -0.58 -0.14 0.36 0.49 0.26

0.5 0.61 1.00 -0.14 -0.69 -0.78 -0.76 -0.53 0.02 0.13 0.44

1 -0.74 -0.14 1.00 0.63 0.53 0.06 -0.34 -0.47 -0.46 0.02

2 -0.93 -0.69 0.63 1.00 0.95 0.56 0.11 -0.49 -0.49 -0.30

3 -0.91 -0.78 0.53 0.95 1.00 0.73 0.32 -0.31 -0.48 -0.40

5 -0.58 -0.76 0.06 0.56 0.73 1.00 0.72 0.21 -0.30 -0.47

7 -0.14 -0.53 -0.34 0.11 0.32 0.72 1.00 0.59 0.19 -0.52

10 0.36 0.02 -0.47 -0.49 -0.31 0.21 0.59 1.00 0.38 0.02

20 0.49 0.13 -0.46 -0.49 -0.48 -0.30 0.19 0.38 1.00 -

30 0.26 0.44 0.02 -0.30 -0.40 -0.47 -0.52 0.02 - 1.00

Table 2.13: Cross-Correlation matrix of the residuals of the �rst estimate of the cosh model

of the high-α subgroup.
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Maturities 0.25 0.5 1 2 3 5 7 10

1-month 0.87 0.80 0.91 0.92 0.88 0.77 0.08 0.79

2-month 0.72 0.60 0.81 0.80 0.72 0.48 0.59 0.58

3-month 0.62 0.43 0.74 0.70 0.60 0.29 0.51 0.49

4-month 0.55 0.29 0.67 0.61 0.49 0.14 0.46 0.43

5-month 0.50 0.18 0.63 0.54 0.40 0.02 0.40 0.38

Table 2.14: Residual autocorrelations for the �rst estimate of the high-α subgroup of the

cosh model.

Maturities 0.25 0.5 1 2 3 5 7 10

1-month 0.87 0.82 0.91 0.92 0.88 0.79 0.77 0.83

2-month 0.72 0.62 0.82 0.80 0.73 0.53 0.53 0.66

3-month 0.62 0.46 0.75 0.70 0.61 0.35 0.44 0.59

4-month 0.55 0.32 0.68 0.61 0.50 0.21 0.39 0.54

5-month 0.50 0.22 0.64 0.55 0.42 0.11 0.33 0.50

Table 2.15: Residual autocorrelations for the �rst estimate of the low-α subgroup of the

cosh model.

factor in residuals, quite likely curvature. Note however that error autocorrelations in the

Cairns model were generally smaller than error autocorrelations in the cosh model.

We can conclude that the Kalman �lter provides reasonable estimates. However, the

Kalman �lter fails to produce reasonable estimates of the long-term mean of the level factor

under the physical measure µ. Overall, historical �t measured in MAEs is 1 to 1.5 basis

points worse than in the Cairns model, yet estimation and implementation is vastly more

e�cient. Implied state vector dynamics show that the cosh model resembles the dynamics

of the Cairns model. Aside from the zero lower bound implemented in the Cairns approach,

the cosh model seems to be a viable alternative, particularly if computational e�ciency is

required.

Cairns essentially assumed that the state vector under the reference measure is mean

reverting to a zero long-term mean. Due to computational e�ciency of the cosh model,

we can generalize this assumption by allowing for µ̃ 6= 0, which increases the number of

model parameters by d. As this introduces additional model parameters to be estimated,

a minimum requirement is an improved historical �t.

The parameter estimates in table 2.18 show the well-known pattern of high- and low-α

estimates. Mean reversion parameters κi and scaling parameters γi are highly stable within

each subgroup, as are estimates of the correlation parameter ρ. Parameters c and µ are

highly unstable, due to (2.26). Obviously, the same problem should hold for µ̃ and c under
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0.25y 0.5y 1y 2y 3y 5y 7y 10y 20y 30y

17.3 6.5 8.0 15.8 13.3 7.5 5.6 9.7 11.6 13.8

17.3 6.5 8.0 15.8 13.4 7.5 5.6 9.7 11.7 13.7

16.7 6.3 8.2 15.8 13.1 7.1 5.4 9.4 12.1 14.3

16.7 6.3 8.2 15.8 13.1 7.1 5.4 9.4 12.1 14.3

Table 2.16: MAEs in basis points for the US term structure 1984 to 2008 estimated for the

cosh model with separated long-term means µ and µ̃ under the respective measures.

High Low

0.05 2.91

0.06 3.08

0.00 0.89

0.00 0.90

Table 2.17: Ratios of deviation of the empirical mean of the �ltered state process compo-

nent from the estimated long-term mean of the same process for the US term structure

1984 to 2008 estimated for the cosh model with separated long-term means µ and µ̃ under

the respective measures.

the reference measure as well.

Table 2.16 shows MAEs of the generalized model. Historical �t slightly improved by

an average of 0.4 basis points in comparison to the restricted case µ̃ = 0. Clearly, such a

small improvement in historical �t does not justify the introduction of d additional model

parameters.

According to table 2.17, deviation-to-range ratios for estimated long-term means under

the physical measure are comparable to the previous implementations or slightly better.

In particular, the ratios for the high-α estimates seem promising. However, a ratio smaller

than 1 does not necessarily imply that the long-term mean µL is indeed reached. Indeed

this is the case only for the �rst high-α estimate, but even in this case the long-term mean

is close to the edge of conv(X̂t = 1, . . . , T ). Overall, the slight improvement in these ratios

does not justify the introduction of d additional model parameters either.

Although µ̃ is a long-term mean of the state vector as well, we do not examine the deviation-

to-range ratios of µ̃. To derive a comparable ratio for µ̃ we would require �ltered state

vectors under the measure P̃ , which is unfeasible as term structure dynamics under the

reference measure are not observed.

Finally, we examine auto- and cross-correlation of the time series of residuals of the cosh

model with generalized µ̃. We �nd the predicted pattern in the cross-correlation matrix of

errors for both high- and low-α estimates. Changes in cross-correlation to the model with

µ̃ = 0 were generally less than 0.05 with both high- and low-α subgroups. In the same
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way, we encounter only minor improvements in residual autocorrelations of maximal 0.05

in comparison to the model with µ̃ = 0. The tables are thus omitted.

To summarize, introducing µ̃ 6= 0 slightly improved MAEs. We can expect µ̃ to be

rather stable since it is a pure cross-sectional parameter. Nevertheless, cross-correlation

and autocorrelation resemble those of the simpler case µ̃ = 0. Obviously, a third stochastic

factor would be superior to �exible µ̃. Due to computational e�ciency of the cosh model,

we were able to derive the estimates rather quick, yet overall improvement of model �t and

model dynamics does not justify the introduction of d additional model parameters.

2.3.6 Result Summary

We found that the Kalman �lter was able to estimate both the Cairns and the cosh model

rather well. In particular mean reversion parameters κ, scaling parameters γ and σ and

correlation parameters ρ were estimated properly. In the cosh model, (2.26) implies a prob-

lem due to the a�ne transformation of the state vector, which makes unique identi�cation

of c impossible. Nevertheless, we found that the parameter c stabilizes the Kalman �lter

and hence we recommend using c.

In both models, one state vector component coincided with the slope, whereas the other

component coincided with the level factor, measured as the 10-year rate28. Both models

failed in estimation of the long-term mean µL of the level factor. A possible explanation

might be low mean reversion of the state vector. We require additional examinations con-

sidering the factor µL, presented in section 2.3.8.

For the cosh model we found two distinct subgroups of model estimates according to the

parameter α. Comparing MAEs, cross-correlation matrices and autocorrelation, we found

that the parameter α has a speci�c long-end e�ect, which we already showed in 2.2.1. Sec-

tion 2.3.9 will examine further this role of α and the question how more stable estimates

can be derived.

Both models described historical term structures rather well, with average MAEs of 7 ba-

sis points for the Cairns model and 10 basis points for the cosh model. On the other side

we found signi�cant autocorrelation in the time series of residuals of all maturities. One

major contribution to this autocorrelation could be the lack of a curvature factor. Cross-

correlation matrices and MAEs hinted to a systematic failure to catch curvature dynamics.

We expect that MAEs of both models could be reduced further by inclusion of a third state

vector component, which will likely coincide with curvature.

The cosh model is more e�cient computationally than the Cairns model. As both models

showed many similarities, in particular considering the state vector behavior, we can con-

clude that the cosh model is a viable approximation to the Cairns model if computational

speed is crucial and the zero lower bound is of minor importance.

28We will see in section 2.3.9, that the level factor in both models coincides with the observed yield with

the highest maturity.
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2.3.7 Three factor models

In the previous section, we demonstrated how to estimate both the Cairns and the cosh

model and presented estimates of two-factor models. Generally, as discussed in 2.1, in-

surance applications require at least two stochastic factors to govern the level of the yield

curve and its slope. This should be su�cient to provide stochastic discount factors as well

as realistic cross-sectional behavior. However, in both models we saw that error autocorre-

lations were substantial, indicating that the two-factor model misses a systematical factor

driving the term structure. According to Litterman and Scheinkman, the third principal

component driving the yield curve is curvature. MAEs as well as error cross-correlation

matrices of both models indeed showed a pattern indicating curvature mismatch. In this

section, we will present estimation results for the respective three-factor models. In par-

ticular, we are interested in improving curvature �t. Of general interest however is the

question whether the Kalman �lter is able to identify a third distinct state vector com-

ponent at all, particularly in case of the cosh model where we already found problems in

identifying the parameters c and µ.

Cairns three-factor model

We estimated the Cairns three-factor model using the US dataset beginning in 1984. We

employed both the original Kalman �lter augmented by a third state factor which also

estimated µL and the alternative approach discussed in 2.3.8 to derive µL exogenously,

given in the third row of table 2.22. The main change between a two-factor model and a

three-factor models is the increase in the number of correlation parameters.

In table 2.22, we get a low-mean reversion factor with κ ≈ 0.02, which is the level factor,

a medium-mean reversion factor with κi ≈ 0.7 which is highly correlated to curvature and

a high-mean reversion factor with κi ≈ 1 which is also highly correlated to curvature. The

sum of the later two state factors, though, is closely related to the slope. This indicates

that for higher-dimensional models, the interpretational simplicity considering the state

vector components vanishes, although the state vector as a whole clearly contains informa-

tion about the three main principal components of the yield curve. It might be possible

to restrict model parameters for higher-dimensional models to preserve the coincidence of

each state vector component with a a single principal component, for example by limiting

mean reversion and correlation accordingly. Scaling factors σi are highly stable as well.

Correlation estimates, however, di�er signi�cantly with the exception of the high correla-

tion between the two curvature factors. It may well be that high correlation between the

two curvature factors leads to spurious correlation between the remaining factors. Another

possible explanation might be a more general problem of estimating correlation matrices

for higher-dimensional Ornstein-Uhlenbeck processes.

As expected, the original Kalman �lter underestimates µL systematically in the sense that
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0.25 0.5 1 2 3 5 7 10 20 30

4.73 4.83 6.66 3.57 2.96 4.28 5.68 6.43 6.16 7.59

4.73 4.83 6.66 3.57 2.96 4.28 5.68 6.43 6.16 7.59

4.91 4.71 6.56 3.72 2.82 4.34 5.39 6.94 6.21 7.43

Table 2.19: Mean Absolute Errors for the Three-factor Cairns model.

maturities 0.25 0.5 1 2 3 5 7 10

1-month 0.70 0.76 0.87 0.76 0.68 0.81 0.80 0.74

2-months 0.46 0.61 0.75 0.56 0.47 0.64 0.63 0.53

3-months 0.35 0.49 0.66 0.44 0.40 0.53 0.55 0.48

4-months 0.29 0.43 0.58 0.36 0.31 0.41 0.51 0.43

5-months 0.31 0.40 0.54 0.34 0.23 0.34 0.46 0.40

Table 2.20: Error autocorrelations for the �rst estimate of the three-factor Cairns model.

gi(µ, θ) implies a Japan scenario. Contrary to that, the alternative approach provides

an estimate of µL which shows extremely low deviation-to-range ratios and guarantees a

reasonable implied curve g(µ) and µL ∈ conv
{
X̂t=1,...,nT

}
.

Examining MAEs in table 2.19, we clearly see a substantial improvement in historical

�t as MAEs were reduced to an average of 5.3 basis points. This is remarkable given

that the yield curve data used for estimation is the result of an interpolation approach

to observable coupon bond prices and hence holds a �tting error of a few basis points by

itself. Improvement in historical �t will likely result in over�tting to yield data, which is

itself merely an approximation to real bond data.

Table 2.20 presents error autocorrelations for the three-factor model. We �nd again

some evidence for a further systematic factor, the model does not catch all systematic

variation in the term structure. Autocorrelations have, however, substantially reduced

for lags of 1 and 2 months. For higher lags autocorrelations seem to converge around

0.35. One reason might be that the Kalman �lter tends to produce autocorrelated errors,

as discussed previously. If this is the case, remaining autocorrelation of 0.35 is due to

the estimation procedure and can not be reduced any further. Another reason would be

the fourth principal component of Litterman and Scheinkman with extremely high mean

reversion implying autocorrelation for lags of 4 or 5 months.

The cosh three-factor model

The three-factor cosh model was implemented with the recommended alternative approach

to estimate µL from section 2.3.8. This was done in order to reduce the number of model

parameters to be estimated by the Kalman �lter. On the other side, we assumed the gen-

eral approach with �exible µ̃. Results are given in table 2.23.
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0.25 0.5 1 2 3 5 7 10 20 30

4.84 4.29 6.67 4.24 2.62 4.54 5.55 7.16 5.01 6.37

4.91 4.28 6.81 3.88 2.52 4.44 5.53 7.38 5.31 7.76

4.82 4.32 6.58 4.37 2.60 4.57 5.33 7.80 5.24 8.00

5.00 4.31 6.49 4.78 2.73 4.63 5.07 8.91 5.22 8.41

Table 2.21: Mean absolute errors for the three-factor cosh model.

We see that a low-mean reversion parameter exists with κ ≈ 0.02 and γ ≈ 0.4, a medium-

mean reversion parameters with κ ≈ 0.53 and γ ≈ 0.04 and a high-mean reversion pa-

rameter with κ ≈ 1.2 and γ ≈ 0.02. Therefore mean reversion of the state factor of the

cosh model resembles mean reversion as found for the Cairns model in table 2.22. The

asymptotic long rate α again shows the two subgroups already encountered in the two-

factor case. As can be found in section 2.3.9, this should vanish in case 20- and 30-year

rates are omitted. Furthermore, mean reversion of the level factor should increase in this

case. Note also that κ and γ show no dependence on the respective estimate of α. As we

will see later, the third factor is indeed a curvature factor.

In the two-factor model, we already found a possible link between α and curvature in

the di�erences between cross-correlation and autocorrelation of high- and low-α estimates.

With a third factor describing curvature dynamics, this pattern vanishes, indicating that

the link between α and curvature is a two-factor problem only. As on the other side high-

and low-α subgroups persist, we can conclude that curvature mismatch can not explain

these subgroups. As we will see in section 2.3.9, censored data is the most likely reason

for the two subgroups encountered.

Correlation estimates are very stable. Depending on the sign of γi we have that the

medium and high mean-reversion components are highly correlated, the high and low

mean-reversion components are e�ectively independent, and for the medium and low mean-

reversion components the absolute value of correlation is 0.5.

As in the two-factor case, parameters µ, µ̃ and c vary substantially. This was expected

as the fundamental problem of (2.26) remains, which shows that Xt enters through an

a�ne transformation which and therefore not allow to identify c and µ uniquely in the

cosh model.

Examining MAEs in table 2.21 shows that historical �t improved considerably, again

to an average of 5.3 basis points. We also see that the higher α, the better the historical

�t of the high end of the yield curve. As discussed previously, it is questionable whether a

further improvement of historical �t is worth a fourth state vector component.
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maturities 0.25 0.5 1 2 3 5 7 10

1-month 0.75 0.73 0.87 0.80 0.67 0.82 0.80 0.77

2-months 0.54 0.59 0.74 0.62 0.45 0.65 0.61 0.56

3-months 0.44 0.45 0.64 0.53 0.41 0.55 0.53 0.51

4-months 0.41 0.36 0.55 0.42 0.25 0.44 0.49 0.46

5-months 0.41 0.32 0.51 0.37 0.17 0.36 0.42 0.43

Table 2.24: Error autocorrelations of the three-factor cosh model with high-α.

Considering cross-correlation, the curvature pattern vanished. There seems, however,

to exist a new pattern we already encountered with the three-factor Cairns model. We be-

lieve this to be connected to the fourth principal component of Litterman and Scheinkman.

Considering autocorrelation, the results were very stable and mirror our previous results

for the Cairns model. As the results were very stable independent of α we only show

autocorrelations for high α in table 2.24. Autocorrelation is still signi�cant, yet dimin-

ished considerably for shorter horizons in comparison to the two-factor approach. On the

other side, note that the decrease of autocorrelation is weaker. As discussed previously,

the Kalman �lter tending to autocorrelated residuals by de�nition or failure to catch an

additional state factor with very high mean reversion may explain the remaining autocor-

relation for higher lags.

Examining the �ltered state processes, we �nd that one vector component is highly

correlated to the level and shows clearly the pattern already known from the two-factor

case. One state vector component is highly correlated to the slope, the third vector is

highly correlated to a curvature proxy. Note, however, that the slope and the curvature

components are highly correlated among themselves, although the slope and curvature

proxies based on empirical data are e�ectively independent over the dataset used. This

may indicate that it becomes increasingly complicated to di�er between the state vector

components in higher-dimensional cosh models. In fact, a short examination of the four

factor model provided four highly correlated components which all were highly correlated

to the slope, yet principal component analysis of the �ltered state processes showed that

they still contained level, slope and curvature information. This is similar to the �nding

of two highly correlated curvature factors in the three-factor Cairns model which never-

theless contained both slope and curvature information. We expect that using models

with d ≥ 3 may still provide state vectors which contain the �rst d principal components

of Litterman and Scheinkman, yet the simple interpretation for the state vector compo-

nents vanishes. Furthermore, we must examine closely whether the estimated state vector

provides reasonable simulations in case of several highly correlated Ornstein-Uhlenbeck

processes describing term structure dynamics.
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Summary

We estimated both three-factor Cairns and three-factor cosh models. In both cases, we

found that the additional factor describes stochastic curvature as a high mean reversion

process. This decreased MAEs of both models to an average of clearly less than 6 basis

points. The patterns in MAEs and cross-correlations which hinted to a curvature mismatch

vanished as well. In both cases, the parameter estimates were very stable, particularly those

describing model dynamics, indicating that a four-factor model could be estimated as well.

Interestingly, both models provided state vector components with high, medium and low

mean reversion. The low mean reversion state vector component, which described the level,

had κ ≈ 0.02 in both models, the intermediate mean reversion component had κ ≈ 0.5 in

the Cairns and 0.7 in the cosh model. The high mean-reversion component had κ ≈ 1 in

the Cairns and 1.2 in the cosh model.

Error autocorrelations decreased, yet still indicated that the models fail to include all

systematic factors driving the term structure. Whereas all this implies that historical �t

could be increased by introducing a fourth state vector component, note that the dataset

used for estimation is the result of an interpolation algorithm based on coupon bond

prices to derive a continuous yield curve. As this interpolation algorithm commands a

measurement error of a few basis points by itself, it is questionable whether historical �t to

erroneous data should be improved further. A four-factor model should be �tted to bond

data directly rather than interpolated yields.

Considering estimation speed, we found again the cosh model to be vastly superior

computationally. Whereas estimation of a three-factor Cairns model is a question of several

days if not weeks, estimates of the cosh model can be derived in a couple of hours. Similarity

of state vector behavior again shows that the cosh model is closely related to the Cairns

model and may be a viable proxy to the Cairns model if the zero lower bound is of minor

interest.

2.3.8 The parameter µ

In section 2.3.5, we found that both in the Cairns and the cosh model we had problems to

identify the long-term mean µL of the level factor XL
t . These problems in estimating stem

from di�erent sources - the role of µ in the Kalman �lter estimation approach, the nature

of the factor processes, and underlying data.

If mean reversion is low, the impact of the long-term mean on the one-step-ahead

distributions Xt+1|Xt used in the transition equation of the Kalman Filter

X
(i)
t|t−1 = e−κiX

(i)
t−1|t−1 + (1− e−κi)µi (2.28)

for i = 1, . . . , n is small, since 1− exp(−κi∆) ≈ 0 for small κi. Indeed, the long-end factor

µL in all models considered was characterized by very low mean reversion, and rightly so
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given the dynamics of the empirical proxy in �gure 2.5.

One reason for low mean reversion of the long end factor is trend behavior. The 10-year

rate shows an increasing trend from the �fties up to the monetary experiment 1979-1982

and a decreasing trend ever since, see �gure 2.6. Throughout the whole dataset used for

estimation, the long end yield therefore shows a falling trend. In an Ornstein-Uhlenbeck

process, one way to �t a trend in a low mean reversion factor is to underestimate the

long-term mean. The fact that estimates of µL generally imply a Japan scenario in case of

the Cairns model and very low or negative interest rates in case of the cosh model supports

the assumption that the Kalman �lter underestimates µL in order to �t the falling trend.

Higher frequency of the data does not change the low mean reversion of historical long-

end data. We can only hope to improve estimation of low mean reversion processes by

increasing the length of the time series. The McCulloch, Kwon dataset starts in December

1946, thus increasing the available data by 38 years. Note however that the early years of

this dataset relied heavily on callable bonds and that in the meantime many fundamental

changes in the Treasury markets took place29. Nevertheless, even if we used the full post-

war dataset despite quality considerations, the above mentioned trend behavior of the long

end of the term structure implies that the mean reversion process XL was close to its

constant long-term mean µL only during two short time periods.

Given these problems, it becomes clear that the Kalman �lter has problems in es-

timating µL properly. Whereas mean reversion of the 10-year rate is still a reasonable

assumption to guarantee both variability and boundedness, the mean reversion we �nd in

historical data is too low for estimation of the long-term mean µL. Nevertheless, based

upon �gure 2.6 we could easily specify the long-term mean of the 10-year rate exogenously

at around 5%. Several questions arise:

1. What impact does an exogenous speci�cation of µL have on the remaining factors?

2. How can we reasonably specify the long-term mean µ10 of the 10-year rate?

3. How can we derive a long-term mean µL from a speci�ed long-term mean µ10 of the

10-year rate?

The following sections try to solve these problems.

29Events to consider for example were the purchase program of the Fed to guarantee a maximal interest

rate on 10 year treasury bonds thus �xing the long end of the term structure until the 1951 Treasury-Federal

Reserve Accord, �operation twist� where treasury department and Federal Reserve tried to actively change

the slope of the term structure, changes in transaction costs and taxation with implied impact on demand,

ineligibility for commercial bank purchase (an important factor prior to the 1951 Treasury-Federal Reserve

Accord), the ability to be surrendered at par in payment of estate taxes, the end of the gold standard, the

oil crises and the infamous monetary experiment.
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Figure 2.6: The historical US 10-year yield with linear trends estimated for the subsamples

before and after the monetary experiment, here set as July 1979 to December 1983. The

later, light-gray subsample is used for estimation.
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Figure 2.7: Loglikelihood values according to the Kalman Filter for the �rst Parameter

estimate of the Cairns model with varying values for µ.

Loglikelihood sensitivities

A �rst analysis must consider the sensitivity of the Loglikelihood values on changes in µL.

If sensitivities are low, we can specify µL exogenously with only minor changes in Loglikeli-

hood values, hence reestimation of the other model parameters is not necessarily required.

These sensitivities can also be used as a measure for the ability of the Kalman �lter to es-

timate µ. We thus calculated Loglikelihood values for a set of possible µ estimates for both

examples of the Cairns model and the cosh model. Figure 2.7 shows the Loglikelihoods

dependent on µ for the Cairns model, �gures 2.8 and 2.9 show Loglikelihood sensitivities

for the �rst low-α and the �rst high-α estimate of the cosh model, respectively.

For the Cairns model, sensitivities of the Loglikelihood function on changes in µL are

very low, resulting in the problems encountered to identify the true value of µL. In case

of the cosh model, for the low-α estimate we clearly see that the Loglikelihood value is

sensitive with respect to µS , yet hardly reacts to changes in µL, repeating our di�culties

with the Cairns model. In case of the high α estimates, we �nd that Loglikelihood values

are non-continuous and sensitivities considering both µS and µL are low. Consequently, we

reject the high-α estimates altogether. In case of the low α-estimates we need to reconsider

the estimate of µL in the same way as in the Cairns model.
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Figure 2.8: Loglikelihood values according to the Kalman Filter for the �rst Parameter

estimate of the low-α subgroup of the cosh model with varying values for µ, assuming

�exible µ̃.
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Figure 2.9: Loglikelihood values according to the Kalman Filter for the �rst Parameter

estimate of the high-α subgroup of the cosh model with varying values for µ, assuming

�exible µ̃.
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α γ1 γ2 c κ1 κ2 ρ ν LogL

0.0054 0.0226 -0.4758 36.95 0.48 0.0205 0.4967 0.0016 16409

0.0023 -0.4847 -0.0225 -10.08 0.02 0.4843 -0.4909 0.0016 16409

0.0615 -0.0237 0.2943 0.00 0.47 0.0275 0.3943 0.0016 16413

0.0612 -0.2964 0.0245 0.00 0.03 0.4658 0.4057 0.0016 16414

Table 2.25: Estimates of the cosh model assuming µ = µ̃ = 0.

Slope Level

0.38 2.97

0.63 2.98

0.55 0.99

0.35 1.00

Table 2.26: Ratios of the distances between empirical and estimated mean of the state

process components and the empirical range of the state process components in case µ =

µ̃ = 0.

Restricting µ

In both the Cairns and the cosh model, we are free to choose the dynamics of the physical

measure. Following the Cairns model, we speci�ed the market price of risk so that the

state factor processes in both models follow Ornstein-Uhlenbeck dynamics with long-term

mean µ. Thanks to the computational e�ciency of the cosh model, we are able to examine

how restricting µ can avoid the instability of the estimates encountered. To measure

improvements of the restricted models we employ again the ratio criterion introduced in

2.27.

First, we assume µ̃ = µ = 0. This is the simplest implementation, which requires

only 8 model parameters to be estimated for the two-factor case. Implicitly, this model

identi�es the reference measure P̃ and the physical measure P. Estimation results are

given in table 2.25. We �nd again the low-mean reversion factor to coincide with long-end

yields whereas the high mean reversion factor coincides with the slope. In table 2.26 we

examine the ratio of deviations between empirical and estimated long-term mean µ to the

range of the �ltered state process component paths. Again, the ratio of the level factor

is generally close to or above 1, indicating that the estimated long-term mean µL might

never be reached by the �ltered state process. In all cases µ = 0 implies a very low term

structure g(µ). Consequently, the restriction led to misspeci�cation of the long-term mean

in the same way as encountered in the unrestricted case.

In a second approach, we again identify the measures P̃ and P, yet assume �exible µ =

µ̃. The parameter estimates are given in table 2.27. Again, the estimates are separated into
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α γ1 γ2 c µ1 µ2 κ1 κ2 ρ ν LogL

0.006 0.023 0.475 2.15 -47.80 -4.24 0.485 0.021 -0.494 0.0016 16409

0.006 -0.023 0.475 -7.05 29.71 14.59 0.485 0.021 0.495 0.0016 16409

0.061 -0.024 0.297 -1.46 -25.28 2.88 0.467 0.028 0.406 0.0016 16414

0.061 -0.024 -0.299 -2.20 39.31 -10.55 0.471 0.028 -0.411 0.0016 16414

Table 2.27: Estimates of the cosh model assuming µ = µ̃.

Slope Level

0.50 2.96

0.50 2.97

0.45 1.01

0.45 1.02

Table 2.28: Ratios of the distances between empirical and estimated mean of the high- and

low mean-reversion state process components and the empirical range of the state process

components in case µ = µ̃.

two groups according to the parameter α. The ratios in table 2.28 imply that the estimated

long-term mean µL = µ̃L might never be reached by the �ltered state process. A closer

examination again showed that for all estimates, the long-term mean µL systematically

underestimated the level in the sense that the long-term mean term structure g(µ; θ) implies

a very low term structure.

Finally, we separate the physical and the reference measure, allow for �exible µ̃ yet

restrict µ = 0. This is a straightforward restriction of the general framework discussed

before, for which we found instabilities in estimation of µ. Results are given in table 2.29,

deviation-to-range ratios are given in table 2.30. In all cases the assumed value µ = 0 does

not lie within the range of the path processes, and µ = 0 implied very low interest rates.

We can conclude that restricting µ = 0 does not solve our problem. In general, the

parameters µ, whether they are restricted or not, re�ect very low term structures. This is

most likely a result of the falling trend in long-term interest rates. As model restrictions do

not improve the estimates, alternative speci�cations of the long-term mean µ are required.

α γ1 γ2 c µ̃1 µ̃2 κ1 κ2 ρ ν LogL

0.006 0.022 0.473 55.00 1.97 0.77 0.488 0.020 -0.543 0.0016 16424

0.006 -0.473 -0.022 42.58 -0.73 -1.97 0.021 0.488 -0.543 0.0016 16424

0.065 0.305 -0.024 0.08 -1.46 -2.15 0.027 0.480 0.427 0.0016 16446

0.066 0.314 0.024 -0.03 1.56 -2.06 0.026 0.489 -0.422 0.0016 16448

Table 2.29: Estimates of the cosh model assuming µ = 0 but �exible µ̃.
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Slope Level

3.08 0.06

3.08 0.06

0.86 0.01

0.89 0.01

Table 2.30: Ratios of the distances between empirical and estimated mean of the state

process components to the empirical range of the state process components in case µ = 0

yet �exible µ̃.

We will discuss these alternative approaches in the next section.

Using historical data directly

We found that the Kalman �lter can not estimate the long-term mean µL of the level factor

properly. On the other side, we know that the �ltered path of the level factor is highly

correlated to the 10-year rate. Particularly, there seems to exist an a�ne link between the

state vector XL
t and the 10-year rate Y 10

t . Consequently, we can perform a linear regression

XL
t = a+ bY 10

t + εt (2.29)

which we expect to have high explanatory power. Now instead of estimating µL through

the Kalman �lter, we can use this prior information for both the cosh and the Cairns model

to specify µL. As Loglikelihood sensitivities of µL are extremely small, we can estimate

the full model using the Kalman �lter and then rede�ne µL to arrive at a model equivalent

in Loglikelihood values yet superior in �tting the long-term mean of the level process. Our

primary condition of a superior �t of µL is µL ∈ conv
{
X̂L
t , t = 1, . . . , T

}
. To achieve this,

we have several choices:

1. Taking the empirical mean of a mean-reverting process as approximation of its long-

term mean, we get

µL ≈ 1

T

T∑
t=1

X̂L
t ,

thus the long-term mean of the state vector component XL can be calculated approx-

imately estimating the regression coe�cients in (2.29) and calculating the empirical

mean 10-year rate, hence

µL ≈ a+ b
1

T

T∑
t=1

Y 10
t .

2. Instead of using an approximation, we estimate the long-term mean µ10 of the ob-

served 10 year yields, which we assume to follow an Ornstein-Uhlenbeck process. We
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get

µL = a+ bµ10

by the Ito-Doeblin formula applied on f(Y 10) := a + bY 10. Such an estimation

approach is based on a single directly observable time series. We therefore expect

the estimate of the long-term mean µ10 to be more stable in comparison to the

indirect Kalman �lter-based estimation.

3. The previous approaches �inverted� �rst in the sense that the Kalman �lter derived

the implied state vector process X̂ from term structure data observed. In a second

step, we then took the average. Another idea would be to change this in the sense

that we �rst calculate the average yield curve, and then �invert� in the sense that we

calculate the state X̂ which best �ts the average historical yield curve. Namely, we

can use g−1 to calculate the (approximate) state for any given yield curve, hence we

de�ne µ := g−1
(

1
N

∑N
i=1 Yti

)
. As µS is estimated properly, another approach would

be to minimize ||g(µS , ·) − 1
N

∑N
i=1 Yti ||, thus we estimate µS by the Kalman �lter

but calibrate µL to the long-term mean curve and hence the long-term mean level.

For the �rst approach, µL ∈ conv
{
X̂L
t , t = 1, . . . , T

}
is guaranteed since 1

T

∑T
t=1 X̂

L
t

is a convex combination of historical states X̂L
t . The remaining alternative speci�cations

of µL at least provide a signi�cantly higher probability that the long-term mean of the

level factor lies in the range of the �ltered level factor. Considering the second approach,

we assume that direct observability of Y 10 should facilitate estimation of µ10 within the

range of observations. Considering the last approach, �tting µ to the mean curve should

be equivalent to �tting µL to the mean observed level and µS to the mean observed slope,

which should correspond to a state within the range of �ltered states X̂.

Based on our original estimates of the Kalman �lter, we tested the above described

approaches. In all cases, the linear regression in (2.29) implied R2 of at least 97.4%, thus

comovement between the level factor and the 10-year yield is considerable30. This justi�es

the usage of the regression in the subsequent approaches.

� The �rst approach generally implied alternative estimates of µL which provided ratios

of the level factor around 0.05 for the low-α estimates and 0.005 for the high-α

estimates, hence a considerable improvement is found. Loglikelihood values decreased

by 5 for all low-α estimates and 2 for all high-α estimates.

30Note that in section 2.3.9, we found that the level factor coincides with the highest observable yield.

This would be the 30-year rate. As this is not available for the full sample, we used the 10-year rate, which

is fully available. Note, however, that the small deviation between the level factor and the 10-year rate

could be attributed to di�erences between the 10-year rate and the 30-year rate. Therefore, if we estimated

the model using only maturities up to ten years, we can expect R2 to be even higher.



110 2.3.8 The parameter µ

� The second approach provides ratios of 0.05 for the slope and 0.4 for the level factor in

case of the low-α estimates, for the high-α estimates the ratios for the slope decrease

to 0.002. Loglikelihoods decreased by 4 in the low-α estimates and by 1 in the high-α

estimates.

� the third approach examined estimated only µL by an inversion approach, that is

µL = arg min
x∈R+

∣∣∣∣∣g(x, µS)− 1

T

T∑
t=1

Yt

∣∣∣∣∣ .
Ratios for the level factor estimates were 0.015 for the high-α estimates and 0.013

for the low-α estimates. Loglikelihoods decreased by 4 for the low and by 1 for the

high-α estimates.

� Finally, we estimated both µL and µS by inversion, resulting in ratios of µL of 0.055

and 0.015 for the low- and high-α estimates, respectively. For µS , the ratios were

0.02 for the low- and 0.002 for the high-α estimates. Loglikelihoods decreased by 5

and 1, respectively.

In �gure 2.10, we provide the Kalman �lter estimates of µL, the red line, and the

range of alternative estimates, the shaded area. In �gure 2.11, we provide the same for

estimates of µS . We see that Kalman �lter estimates and alternative estimates of µL di�er

considerably. On the other side, the estimates of µS coincide for all approaches including

the Kalman �lter. Deviation-to-range ratios were superior for all alternative approaches in

comparison to the Kalman �lter estimates. The second approach provides the highest ratios

of the alternative approaches. It also still underestimates µL in the sense that the yield

curve g(µ) implied by the Kalman �lter estimate implies very low interest rates, albeit it

underestimates µL to a lesser extent than the original Kalman �lter. The estimates of µ by

the other alternative approaches imply term structures well within the range of observable

yield curves and in fact typically rather close to the empirical mean yield curve.

All alternative approaches imply a decrease in Loglikelihood values, which is, however,

negligible. Neither from Loglikelihood values nor from an economic or implementational

viewpoint can we reject the �rst, third or fourth alternative approach. We can conclude

that these approaches are equivalent in identifying more reasonable estimates of µL given

a parameter estimate. Note also that the exogenous speci�cation of µS by the fourth

approach was equivalent to estimates using the Kalman �lter.

A major di�erence remaining within the �rst, third and fourth approach lies in the

prior information they require. For the �rst and third approach, prior estimation using the

original Kalman �lter is still required and µ is only corrected in a second step. The �rst

approach requires the �ltered state space X̂ of a Kalman �lter estimate for the regression,

the third approach requires that we can identify level factor, which according to estimation

results is not clear a priori. Contrary to that, all prior information we have in the fourth
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Figure 2.10: Kalman �lter estimates of µL (red line) and range of alternative estimates of

µL (shaded area) for several estimates of the cosh model.
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Figure 2.11: Kalman �lter estimates of µS (red line) and range of alternative estimates of

µS (shaded area, fully covered) for several estimates of the cosh model.
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approach is the model de�nition. We do not assume that one particular state vector

component coincides with a certain measurement. We therefore can employ the fourth

approach directly in estimation: the Kalman �lter starts with a parameter set θ which does

not include µ. As the remaining model parameters are su�cient to de�ne the measurement

function g in both the Cairns and the cosh models, we can de�ne µ := g−1
(

1
T

∑T
t=1 Yt

)
as an initial step in the Kalman �lter as our calibration of X0|0, and in fact based on the

very same calibration algorithm. The Kalman �lter then starts with a parameter set which

implies a reasonable µ at the beginning of the �ltering algorithm. As the fourth approach

provides estimates of µS as well which were equivalent to Kalman �lter estimates, this

reduces the number of model parameters by d and at the same time avoids the trend-

�tting problem of the original Kalman �lter. We therefore strongly recommend to use the

fourth approach for estimation.

Summary

In section 2.3, we found that both the Cairns and the cosh model had signi�cant problems

in identifying the long-term mean of the level factor. In particular, estimated long-term

means µL implied Japan scenarios for the Cairns model and very low or even negative

yields in the cosh model. In a sense, the Kalman �lter therefore underestimated µL in

both models. Examining this further we found that low mean reversion of the level factor

together with a falling trend in historically observed long-end yields are the most likely

explanation for this underestimation. Alternative approaches in specifying more realistic

µL were required.

We provided several approaches to specify µL exogenously. In general, these approaches

are based on the idea that within both models, the term structure is a function of a mean

reverting process, which are closely related to the principal components of the yield curve.

Therefore, the long-term mean of the underlying state process and the long-term mean of

the observed yields should be related. As the long-end factor coincides with the 10-year

rate, we were able to develop estimation approaches of µL which make use of this close

relation. In particular, we were able to derive a regression equation which could be used

to derive µL from the long-term mean µ10 of the 10-year yield.

Alternatively, we used the yield formula to invert the long-term mean term structure. This

last approach proved to be superior as it required no prior information on state vector

behavior and hence can be used already in the �ltering algorithm itself. This expansion of

the Kalman �lter allows to estimate all parameters jointly, reduces the parameters in the

optimization algorithm by d, and at the same time guarantees reasonable estimates of µL.

It is therefore strongly recommended.
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2.3.9 The parameter α

In section 2.3, we saw that in both models, yet particularly in the cosh model, high- and

low-α estimates were derived. Among all model parameters of the Rogers framework, the

parameter α has a special role, as α exists independent from the choice of the function f

and the state vector dynamics X. Given the de�nition of the state price density

ςt := e−αtf(Xt),

it is clear that the parameter α shapes discounting functions for long time horizons. Namely

insurance applications should therefore depend on realistic estimates of the parameter

α. The question arises why the di�erences encountered in the estimation of α exist and

whether we can improve the stability of our estimates of α.

Cairns showed that the parameter α in his model equals the asymptotic long (instanta-

neous) forward rate α = limT→∞ f(t, T ). We will �nd that the parameter α is closely

related to the asymptotic long rate limT→∞ y(t, T ) in all Rogers frameworks.

Note that in any term structure model,

lim
T→∞

P (t, T ) = 0

holds. If we consider the general bond pricing formula of the Rogers framework, we get

0 = lim
T→∞

P (t, T ) = lim
T→∞

e−α(T−t)E
P̃ [f(XT )|Ft]
f(Xt)

.

Such a limiting behavior can only be observed if either

1. The limit of the expected value is �nite

c(x, t) := lim
T→∞

EP̃ [f(XT )|Xt = x] <∞

for all t ≥ 0 and all x ∈ X . Or

2. the limit does not exist, hence c(t, x) =∞, but the term eαT goes faster to in�nity,

thus for T high enough EP̃ [f(XT )|Xt = x] < eαT and ∂
∂TE

P̃ [f(XT )|Xt = x] < αeαT .

Finally,

3. the limit does not exist due to

lim inf
T→∞

EP̃ [f(XT )|Xt = x] < lim sup
T→∞

EP̃ [f(XT )|Xt = x] .

We start with the third possibility. Considering the instantaneous forward rate

f(t, T ) = α−
∂
∂TE

P̃ [f(XT )|Xt = x]

EP̃ [f(XT )|Xt = x]
,
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we see that EP̃ [f(XT )|Xt = x] must be di�erentiable and hence continuous in T for the

instantaneous forward rate to exist. This implies that EP̃ [f(XT )|Xt = x] is a contin-

uous function varying between the lim inf and the lim sup of EP̃ [f(XT )|Xt = x] for T

large enough. Therefore ∂
∂TE

P̃ [f(XT )|Xt = x] repeatedly changes its sign, so the instan-

taneous forward rate repeatedly varies between f(t, T ) > α and f(t, T ) < α, something

we should exclude from economic reasons31. Now if lim infT→∞E
P̃ [f(XT )|Xt = x] = 0 or

lim supT→∞E
P̃ [f(XT )|Xt = x] =∞, we can easily de�ne a sequence of times Tn for which

the instantaneous forward rate explodes, which we must exclude from economic reasons,

see also section 2.1. Nevertheless, we will already exclude ∂
∂TE

P̃ [f(XT )|Xt = x] changing

its sign repeatedly, the reason being the variation in instantaneous forward rates.

We now consider the asymptotic long rate within a Rogers framework,

lim
T→∞

y(t, T ) = − lim
T→∞

log (P (t, T ))

T − t

= lim
T→∞

log

(
e−α(T−t)EP̃ [f(XT )|Xt=x]

f(Xt)

)
T − t

= α− lim
T→∞

log
(
EP̃ [f(XT )|Xt = x]

)
T − t

+ lim
T→∞

f(Xt)

T − t

= α− lim
T→∞

log
(
EP̃ [f(XT )|Xt = x]

)
T − t

For

0 < lim inf
T→∞

EP̃ [f(XT )|Xt = x] ≤ lim sup
T→∞

EP̃ [f(XT )|Xt = x] <∞

we see that the asymptotic long rate equals α. This naturally holds for 0 < c(t, x) <∞ as

well32. In case c(x, t) = 0, the general yield formula implies that α is a lower bound for the

asymptotic long rate conditional on Xt = x, as for T large enough EP̃ [f(XT )|Xt = x] < 1

and hence the logarithm is negative. If c(x, t) = ∞, the assumed �niteness of y(t, T ) and

the long-term limit of P (t, T ) imply that the expected value goes to in�nity, yet slower

than exp(α(T − t)). We �nd that in this case the parameter α is an upper bound for

long-term nominal interest rates conditional on Xt = x.

Given this, we can partition the state space X according to the role of the parameter α

conditional on Xt = x as

M1 := {x ∈ X : lim
T→∞

y(x; t, T ) < α},

M2 := {x ∈ X : lim
T→∞

y(x; t, T ) = α},

M3 := {x ∈ X : lim
T→∞

y(x; t, T ) > α}.

31We may also exclude this due to the Dybvig-Ingersoll-Ross theorem 2.3.2.
32In the following, we will only consider the cases c(t, x) ∈ R+

0 ∪ {∞} as, from an economic viewpoint,

variation between f(t, T ) > α and f(t, T ) < α for T → ∞ should be excluded as well. Furthermore, if

the Rogers framework is implemented with a su�ciently smooth twice di�erentiable function f and mean

reverting state vector X we can reasonably expect to only �nd models with c(t, x) ∈ R+
0 ∪ {∞}.
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Mean reversion of the state vector now implies that if P (Xt ∈ Mi, Xt+h ∈ Mj) > 0 then

also P (Xt ∈ Mj , Xt+h ∈ Mi) > 0 for h > 0. The following theorem of Dybvig, Ingersoll

and Ross [DIR96] helps to generalize the role of α to all x ∈ X .

Theorem 2.3.2 (Dybvig, Ingersoll, Ross (1996)). The asymptotic long rate limT→∞ y(t, T )

and the asymptotic long forward rate limT→∞ f(t, τ, T ) can never fall in t in the absence

of arbitrage.

Proof. McCulloch (2000) [McC00] shows that there is a crucial error in the proof of Dybvig,

Ingersoll and Ross for their theorem, but that the error can be corrected and the conclusion

remains valid, however, the long-end limit of the yield curve is indeterminate. According to

Hubalek, Klein, Teichmann (2002) [HKT02] the strategy in the proof of McCulloch (2000)

is anticipative, so not admissible for a no-arbitrage argument. These authors provide a

proof of the Dybvig-Ingersoll-Ross theorem without any additional assumptions. Schulze

(2008) [Sch08] also provides an alternative proof of the Dybvig-Ingersoll-Ross theorem

without anticipation by providing an explicit arbitrage strategy.

Given the partition of X according to the role of α as introduced above, the fact that

the asymptotic long rate is non-decreasing implies P (Xt ∈ Mi, Xt+h ∈ Mj) = 0 for i < j

and h > 0. If the state vector is mean reverting, two out of the three sets M1,M2 and

M3 must be null sets under the reference measure P̃ and by equivalence of the measures

also under the physical measure P and the risk-neutral measure Q. Consequently, the

parameter α uniformly bounds asymptotic long rates limT→∞ y(x; t, T ) for all x ∈ X . This
is expressed in the following theorem.

Theorem 2.3.3. Given a Rogers model with mean reverting state vector and function f ,

with

lim inf
T→∞

EP̃ [f(XT )|Xt = x] = lim sup
T→∞

EP̃ [f(XT )|Xt = x]

for all x ∈ X and t ≥ 0 and

c(t, x) := lim
T→∞

EP̃ [f(XT )|Xt = x]

for c(t, x) ∈ R+
0 ∪ {∞}, we have that

1. if c(t, x) = 0 for one x ∈ X , then P̃ (x ∈ X : c(t, x) = 0) = 1 and α < limT→∞ y(t, T )

P̃ -almost surely,

2. if 0 < c(t, x) < ∞ for one x ∈ X , then P̃ (x ∈ X : 0 < c(t, x) <∞) = 1 and α =

limT→∞ y(t, T ) P̃ -almost surely,

3. if c(t, x) =∞ for one x ∈ X , then P̃ (x ∈ X : c(t, x) =∞) = 1 and α > limT→∞ y(t, T )

P̃ -almost surely.
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The theorem allows to derive the role of α directly from the choice of the function f

and a single calculation of c(t, x). As we required closed-form bond price formulae, the

expected value EP̃ [f(XT )|Xt = x] must be available in closed form and so derivation of

c(t, x) should be simple.

We will use the theorem to derive the role of α in the cosh model. For the Cairns model,

we follow an alternative approach based on Cairns �nding that α is the asymptotic long

forward rate.

Theorem 2.3.4. Within a Rogers model speci�ed by the dynamics of the state process X

under the reference measure P̃ and a function f : X → R+ and under the conditions

lim inf
T→∞

EP̃ [f(XT )|Xt = x] = lim sup
T→∞

EP̃ [f(XT )|Xt = x]

and

lim
T→∞

∂

∂T
EP̃ [f(XT )|Xt = x] = 0

for all x ∈ X the asymptotic long forward rate equals the asymptotic long rate

lim
T→∞

y(t, T ) = lim
T→∞

f(t, T ).

Proof. We have to distinct again the three cases c(t, x) = 0, 0 < c(t, x) <∞ and c(t, x) =

∞. First, we assume c(t, x) = 0. Consider the general formula for the asymptotic long

rate

lim
T→∞

y(t, T ) = lim
T→∞

α− log
(
EP̃ [f(XT )|Ft]

)
T − t

+
log(f(Xt))

T − t


= α− lim

T→∞

log
(
EP̃ [f(XT )|Ft]

)
T − t

.

As c(t, x) = 0 we have limT→∞ log
(
EP̃ [f(XT )|Ft]

)
= −∞, furthermore limT→∞ T − t =

∞, so we can use the rule of L'Hospital. We get

α− lim
T→∞

log
(
EP̃ [f(XT )|Ft]

)
T − t

= lim
T→∞

(
α−

∂
∂TE

P̃ [f(XT )|Ft]
EP̃ [f(XT )|Ft]

)
= lim

T→∞
f(t, T ).

Second, we assume a constant limit 0 < c(t, x) <∞. By the second condition,

lim
T→∞

∂

∂T
EP̃ [f(XT )|Ft] = 0

which implies

lim
T→∞

(
α−

∂
∂TE

P̃ [f(XT )|Ft]
EP̃ [f(XT )|Ft]

)
= α.
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Note that without the second condition, the asymptotic long forward rate still converges to

α, yet it may regularly switch its sign, contrary to what the Dybvig-Ingersoll-Ross theorem

states.

Third, we assume c(t, x) =∞. In this case, we can again use L'Hospitals rule and get

lim
T→∞

y(t, T ) = α− lim
T→∞

EP̃ [f(XT )|Ft]
T − t

= α− lim
T→∞

∂
∂TE

P̃ [f(XT )|Ft]
EP̃ [f(XT )|Ft]

,

which concludes the proof.

Note that theorem 2.3.4 not necessarily holds for general term structure models. Given

y(t, T ) = − log (P (t, T ))

T − t

we have

f(t, T ) = − ∂

∂T
log (P (t, T ))

=
∂

∂T
[y(t, T )(T − t)]

= (T − t) ∂
∂T

y(t, T ) + y(t, T ).

Now for T →∞,

lim
T→∞

f(t, T ) = lim
T→∞

(T − t) ∂
∂T

y(t, T ) + lim
T→∞

y(t, T )

where the second term equals the asymptotic long rate, whereas in the �rst term the �rst

half (T − t) converges to in�nity and the second half ∂
∂T y(t, T ) converges to zero, so we

can not derive a general result.

We can, however, use theorem 2.3.4 to derive the asymptotic long rate in the Cairns model

in the following corollary.

Corollary 2.3.5. The asymptotic long rate and the asymptotic long forward rate of the

Cairns model equal the parameter α.

Proof. Cairns already proved that the parameter α equals the asymptotic long forward

rate. By Theorem 2.3.4

lim
T→∞

y(t, T ) = lim
T→∞

f(t, T ) = α.

To derive the role of α in the cosh model, we can use theorem 2.3.3.

Theorem 2.3.6. The asymptotic long rate and the asymptotic long forward rate of the

cosh model equal the parameter α.
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Proof. Since the limit

lim
T→∞

E [cosh(γXT + c)|Xt = x] = lim
T→∞

cosh(γE [XT |Xt = x] + c) exp

(
γTΣγ

2

)
= cosh(γTµ+ c) exp

(
γTΣγ

2

)

is �nite and positive for all x ∈ X , α is the constant asymptotic long rate in the cosh model

by theorem 2.3.3. By theorem 2.3.4, the asymptotic long instantaneous rate equals α.

As f is a positive function and X is mean reverting we can assume that for all practical

purposes choices of f and X result in 0 < c(t, x) <∞, so that the asymptotic long rate is

constant and equals the parameter α. The question arises what impact the unobservable

asymptotic long rate has on observable yields, which in turn shows whether α can be

estimated properly.

Figure 2.12 shows the di�erence between a yield curve implied by a high-α estimate and

a low-α estimate of the cosh model, each of these two extrapolated to 50 years of maturity.

In �gure 2.13, we examine the same for the Cairns model. We see that the parameter α

shapes long-term interest rates and thus long-term state price densities, as expected. The

parameter α is therefore crucial to discount payo�s with maturities beyond 20 years and

hence to the pricing of life and pension insurance contracts. On the other side, the impact

of α on observable yields is rather small, which may explain the instability of our estimates.

We will have to examine further whether the parameter α can be estimated properly and,

if not, how we can determine α alternatively.

The asymptotic long rate within other term structure models

Before examining our ability to estimate the asymptotic long rate, we compare our results

to other standard models which are often used in insurance applications, namely the Hull-

White model, the Black-Karasinski model and the a�ne model framework, see for example

the books of Filipovic [Fil09] or Brigo and Mercurio [BM01] for an overview of all these

models. Our primary concern is to show that most term structure models su�er from

problems in determining the asymptotic long rate.

For the Hull-White model [HW90], (simulated) yields at all maturities depend on the

initial term structure of nominal interest rates and forward rates. We expect the asymptotic

long rate to depend on the initial term structure as well. The Hull-White model is based

on shortrate dynamics

drt = (ϑt − art)dt+ σdWt (2.30)
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Figure 2.12: Di�erence in Basis points for the model-implied yield curves of a high-α

estimate minus a low-α estimate within the Cosh model.
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Figure 2.13: Di�erence in Basis points for the model-implied yield curves of a higher-α

estimate minus a lower-α estimate within the Cairns model.
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The asymptotic long rate is hence given by

lim
T→∞

y(t, T ) = lim
T→∞

− 1

T − t
log (P (t, T ))

= lim
T→∞

− 1

T − t
log
(
A(t, T )e−B(t,T )rt

)
= − lim

T→∞

1

T − t

(
log

(
PM (0, T )

PM (0, t)

)
+B(t, T )fM (0, t)

−σ
2

4a
(1− e−2at)B(t, T )2 −B(t, T )rt

)
whereby PM (0, t) denotes the observed market price at time t = 0 of a zerobond which

matures at time t and B(t, T ) = 1
a

(
1− e−a(T−t)). Note that by simple no-arbitrage

relations33

log

(
PM (0, T )

PM (0, t)

)
= −fM (0, t, T )(T − t).

We get

lim
T→∞

y(t, T ) = − lim
T→∞

1

T − t

(
− fM (0, t, T )(T − t) +B(t, T )fM (0, t)

−σ
2

4a
(1− e−2at)B(t, T )2 −B(t, T )rt

)
= − lim

T→∞

(
−fM (0, t, T ) +

B(t, T )fM (0, t)

T − t

− σ2

4a(T − t)
(1− e−2at)B(t, T )2 − B(t, T )rt

T − t

)
= lim

T→∞
fM (0, t, T )

since B(t, T ) is bounded for all T ≥ 0. This implies that the asymptotic long rate in the

Hull-White model is deterministic, yet unobservable.

This points to a major problem in using the Hull-White model for long-term pricing, as

market instantaneous forward rates fM (0, t) are only available for t up to the highest ob-

servable bond maturity in the market. For the US, this is not more than 30 years. If

simulations are required for higher times to maturity, forward rates must be extrapolated

from market data. This typically implies the speci�cation of the asymptotic long rate

as well, an approach we will discuss later. Generally speaking, implementing a constant

asymptotic long forward rate to extrapolate the observed instantaneous forward rate curve

33Investing until T at the current interest rate y(0, T ) is equivalent to investing until t < T at rate

y(0, T ) and then securing the instantaneous forward rate f(0, t, T ) for the time [t, T ]. This implies

exp (y(0, T )T ) = exp (y(0, t)t) exp (f(0, t, T )(T − t))
exp (y(0, T )T )

exp (y(0, t)t)
= exp (f(0, t, T )(T − t))

P (0, t)

P (0, T )
= exp (f(0, t, T )(T − t)) .
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consistently for varying applications is recommended.

The Black-Karasinski model [BK91] does not provide closed form bond prices, so that

we can not calculate the limit of the yield curve directly. Nevertheless, Yao [Yao98] provides

a criterion which helps to identify model parameters which ensure a �nite upper bound for

the asymptotic long rate. Using Jensen's inequality, we get that

0 ≤ lim
T→∞

y(t, T ) = − lim
T→∞

1

T − t
log (P (t, T ))

= − lim
T→∞

1

T − t
log
(
EQ

[
e−

∫ T
t rsds|Ft

])
≤ − lim

T→∞

1

T − t
log exp

(
−EQ

[∫ T

t
rsds|Ft

])
= lim

T→∞

1

T − t

∫ T

t
EQ [rs|Ft] ds, (2.31)

thus boundedness of the expected shortrate implies boundedness of the asymptotic long

rate. Based on the stochastic di�erential equation de�ning the log-shortrate dynamics in

the Black, Derman and Toy (1990) [BDT90] model, Yao �nds a closed formula for the

expected shortrate which may be used to derive those model parameters which ensure

boundedness of the shortrate and hence the asymptotic long rate. As interest rate explo-

sion is a frequently found problem of Black-Karasinski models, it is not clear whether there

exists a practical approach to derive model estimates which ensure bounded interest rates

including the asymptotic long rate.

Considering the a�ne model, we refer again to Yao [Yao98], who already proved for

the framework of Du�e and Kan [DK96] that the asymptotic long rate is constant. For

the one-factor Vasicek [Vas77] model with shortrate dynamics

drt = κ(µ− rt)dt+ σdWQt

and the Cox-Ingersoll-Ross [CIR85] model with shortrate dynamics

drt = κ(µ− rt)dt+ σ
√
rtdW

Q
t (2.32)

Yao calculates the asymptotic long rates l(t) = limT→∞ y(t, T ) as

lV asicek(t) = θ − σ2

2κ2

lCIR(t) =
2κθ

κ+
√
σ2 + κ2

whereby for the Vasicek model κ > 0 is required and for the CIR model σ 6= 0.

We will furthermore present the asymptotic long rate for the Chen-Scott framework [CS92],

which is essentially a multi-factor a�ne model whose state vector components all follow

CIR dynamics as given in (2.32). Because a�ne term structure models guarantee positive
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interest rates only if all state vector components follow CIR dynamics, these models were

recommended by Fischer, May and Walther [FMW04] for insurance applications. The

bond pricing formula for the Chen-Scott framework is given by

P (t, T ) =
n∏
i=1

Ai(T − t)e−Bi(T−t)X
(i)
t

where

Ai(T − t) :=

[
2hie

(κi+λi+hi)
T−t

2

2hi + (κi + λi + hi)(e(T−t)hi − 1)

]2κiµi/σ
2
i

and

Bi(T − t) =
2(e(T−t)hi − 1)

2hi + (κi + λi + hi)
(
e(T−t)hi − 1

)
with hi =

√
(κi + λi)2 + 2σ2

i . The parameters λi de�ne the components of the market

price of risk Λ(Xt) ∈ Rd by Λi(Xt) = λi

√
X

(i)
t . The asymptotic long rate is given by

lim
T→∞

y(t, T ) = − lim
T→∞

1

T − t

n∑
i=1

(
log(Ai(T − t))−Bi(T − t)X(i)

t

)
,

we have to calculate the limits of log(Ai(T − t)) and Bi(T − t) for T →∞. Thus

lim
T→∞

log(Ai(T − t))
T − t

= lim
T→∞

2κiµi
σ2
i

(
log (2hi) + (κi + λi + hi)

T−t
2 − log

(
2hi + (κi + λi + hi)

(
ehi(T−t) − 1

)))
T − t

= 2
κiµi
σ2
i

κi + λi + hi
2

+ lim
T→∞

− log
(
2hi + (κi + λi + hi)

(
ehi(T−t) − 1

))
T − t

L′H
= 2

κiµi
σ2
i

κi + λi + hi
2

− lim
T→∞

hi(κi + λi + hi)
(
ehi(T−t) − 1

)
2hi + (κi + λi + hi)

(
ehi(T−t) − 1

)
=

(κi + λi + hi)κiµi
σ2
i

− hi

and

lim
T→∞

Bi(T − t)
T − t

= lim
T→∞

2(ehi(T−t) − 1)

(T − t)
(
2hi + (κi + λi + hi)(ehi(T−t) − 1)

)
= lim

T→∞

1

T − t︸ ︷︷ ︸
→0

2(1− e−hi(T−t))(
2hie−hi(T−t) + (κi + λi + hi)(1− e−hi(T−t))

)︸ ︷︷ ︸
→ 2
κi+λi+hi

= 0.

Thus, the asymptotic long rate is given by

lim
T→∞

y(t, T ) = lim
T→∞

n∑
i=1

(
log(Ai(T − t))−Bi(T − t)X(i)

t

)
=

n∑
i=1

(
(κi + λi + hi)κiµi

σ2
i

− hi
)
.
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To summarize, a constant asymptotic long rate is frequently found within term struc-

ture models, notably the a�ne model framework. In case of the Black-Karasinski and

Black, Derman and Toy models, the asymptotic long rate can not be calculated due to

lack of closed form bond prices. However, Yao [Yao98] shows that if we require the short-

rate to be bounded, the asymptotic long rate is bounded as well. It is not clear, however,

whether we are able to derive parameter estimates which ensure boundedness for all inter-

est rates in the Black-Karasinski framework.

A constant asymptotic long rate within any term structure model is a function of the model

parameters to be estimated. Consequently, the implicit assumption of an asymptotic long

rate introduces mutual dependencies between the model parameters. In particular, note

that within shortrate models, all parameters have a direct interpretation as to how they

in�uence the short rate and in estimation, short-end in�uences typically dominate. This

implies that the asymptotic long rate in most models is a function of short-end model

parameters.

Estimation problems

The question arises whether a constant asymptotic long rate can be estimated properly

from available data. In the following we will discuss stylized facts regarding the observable

long end of the term structure and the implied di�culties in estimating the asymptotic

long rate, be it constant or stochastic.

� The �rst problem lies in availability of long-term interest rate data. For the US,

the highest maturity observable for government bonds is 30 years. In Germany, the

highest maturity is only 15 years. The question arises whether 15 years of maturity

or even 30 years provide su�cient data with respect to estimation of the asymptotic

long rate.

� A second problem lies in censored long-term data. In the US, 20- and 30-year treasury

bonds were not auctioned continuously. Only for a subsample of the dataset used for

estimation a full term structure was available, weakening the database for estimation

of the asymptotic long rate even more.

Note that the U.S. Treasury likely managed its debt duration according to expected

interest rates. If long-term yields are considered low, the treasury increases duration

of the debt outstanding, thus continues or reintroduces 20- and 30-year bonds. If long-

term yields are considered high, the treasury likely decreases duration and cancels

or diminishes the issue of long-end bonds. The overall goal is to preserve favorable

interest rates. The available dataset of long-term yields may therefore be biased

toward low long-end yields due to debt management.
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� It is a stylized fact that interest rate volatility decreases with maturity. As a conse-

quence, volatility of asymptotic long forward rates decreases with maturity as well.

Nevertheless, Gürkaynak, Sack and Swanson [GSS03] show that observable forward

rates at long horizons do react signi�cantly to macroeconomic and monetary policy

surprises, especially regarding expected in�ation. They �nd that the observable long

end of the term structure still shows signi�cant volatility, which increases our doubts

regarding the usability of observable long-term yields to estimate the asymptotic long

rate.

� Brown and Schaefer [SB00] and Christiansen [Chr01] found34 that observable long-

term forward as well as discount bond rates35 almost always are downward sloping

based on daily treasury STRIPS data from 1985 to 1994. Figure 2.14 plots the

30-year rate against the 20- and 30-year slope, showing that indeed the slope was

negative most of the time. Examining treasury yield data from 1947 to 2008, we �nd

that the slope between the 10-year and 20-year rate was negative in 170 out of 580

available month-end observation pairs, but the slope between the 20- and 30-year

rates was negative in 163 out of 208 observation pairs, providing anecdotal evidence

for a twist in the slope between 20 and 30 years of maturity. The full data set, on the

other side, consists of 734 observation dates. Again, censored data might introduce

a bias in observations.

The negative slope implies that observable long-end yields form an upper bound for

the asymptotic long rate whenever the negative slope was observed. Given again

�gure 2.14, this implies that the asymptotic long rate is below 5%. In particular,

this implies that observable long-end yields provide very little information about the

height of the constant asymptotic long rate.

� In some countries, regulators require insurance companies and pension funds to follow

a strict approach to match assets and liabilities, which requires these investors to hold

a certain amount of very long-term bonds according to their long-term liabilities.

Typically, this imposes a regulatory requirement to buy and hold domestic long-

term government bonds. Although such a regime might have some bene�ts in risk

management, the primary bene�ciary would be the government since excess demand

34Brown and Schaefer [SB00] relied in their analysis on an a�ne term structure model. Christiansen,

on the other side, came to the same results as the previous authors by using time series models in her

analysis, thus her results are based solely on empirical data and therefore are free of model risk.
35To see this

f(t, T, T + 2) < f(t, T, T + 1)

(T + 2− t)y(t, T + 2)− (T − t)y(t, T ) < (T + 1− t)y(t, T + 1)− (T − t)y(t, T )

y(t, T + 2) + (T + 1− t)(y(t, T + 2)− y(t, T + 1)) < 0

Now given positive interest rates, this implies a negative slope in nominal yields as well.
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Figure 2.14: Plot of the Slope between the 20 and 30 year rates in basis points - if observed

- against the 30-year rate

decreases long-term bond yields. If regulatory requirements determine long-term

bond prices rather than demand and supply by rational investors, long-term rates do

not re�ect equilibrium riskless interest rates.

� Market liquidity for government bonds with maturities above 10 years is generally

lower than for shorter maturity government bonds36. This implies a liquidity pre-

mium on treasury bonds with maturities beyond 10 years. If there exists a positive

liquidity premium in long-term yields, observable yields overestimate riskless interest

rates and the twist in the term structure is likely underestimated.

We see that the data on the very long end of the yield curve implies some problems in

estimation. First, the observed maturities might not be su�cient to cover the very long

end of the term structure. Second, long-end data might be censored and we expect that

censored data implies a signi�cant bias toward lower long-term yields in observable data.

Third, available long-end data shows considerable variation whereas the asymptotic long

rate is either constant or moves only rarely. Finally, the twist in the term structure and

liquidity premia imply that long-term yields may systematically deviate from long-term

riskless interest rates.
36One reason might be again that institutional investors are forced to buy and hold long-term bonds by

asset-liability regulatory rules.
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To summarize, we have to expect signi�cant di�culties in estimating the asymptotic long

rate. We have to examine the estimates of α closely and should examine sensitivities of

term structure models to changes in the asymptotic long rate. At the end, we might have

to specify the asymptotic long rate exogenously if estimation does not work properly.

Estimation by the cosh and Cairns models

In the previous examination of various term structure models, we found that most models

imply a constant asymptotic long rate, which in turn is a function of the model parameters.

This introduces an unwelcome restriction on model parameters, in particular dependencies

between the model parameters which we typically do not account for in estimation. In

the Rogers models we considered so far, only the parameter α describes the asymptotic

long rate, whereas the other model parameters are una�ected. This makes the Cairns and

cosh models particularly interesting for examinations of the asymptotic long rate. For

once, the models will estimate the asymptotic long rate without restricting the remaining

model parameters, as would, for example, be the case in a�ne models. Second, the models

can be used to derive sensitivities of term structures or derivative prices to the asymp-

totic long rate, which in a�ne models requires non-identi�able changes in several model

parameters37. Finally, if we are not able to estimate the asymptotic long rate properly,

the models can be used to compare exogenous speci�cations of the asymptotic long rate

without these speci�cations determining short-end dynamics, as would, again, be the case

in a�ne models.

A �rst analysis of our ability to estimate the parameter α is based on the sensitivity of

the Loglikelihood values and historical errors on said parameter. Note again that such an

analysis would be infeasible in term structure models in which the asymptotic long rate

depends on multiple model parameters. Figures 2.15 and 2.16 show a clear distinction

between the high- and low-α estimates for both models. Sensitivities to changes of the

asymptotic long rate is greater for the Cairns model than for the cosh model. Given unob-

servability of the asymptotic long rate, we can conclude that stability of the Loglikelihood

value with respect to α is su�cient within both models.

In both models, we �nd the extent of the curvature pattern within cross-sectional errors

to depend on α. Now obviously α governs the long-end of the yield curve. It might be that

α takes over the role of the stochastic curvature factor on the very long end of the yield

37Speci�cally, if the asymptotic long rate is a function f(θ) of model parameters θ ∈ Θ, then each

asymptotic long rate α implies a subset M(α) of the parameter space Θ such that f(θ) = α for all

θ ∈M(α). Considering sensitivities of changes from α1 to α2 then implies two parameter sets M(α1) ⊂ Θ

and M(α2) ⊂ Θ such that in�nitely many pairs of parameter sets (θ1, θ2) lead to the desired change in the

asymptotic long rate f(θ1)− f(θ2) = α1 − α2.
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Figure 2.15: Loglikelihood values for varying α in percentage points for the three estimates

available of the Cairns model.

Figure 2.16: Loglikelihood values for varying α in percentage points for the three estimates

available of the cosh model.
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curve. As a third state vector component increases curvature �t in both models, we would

expect to get more reasonable estimates of α in a three factor model. As seen in section

2.3.7, however, a three factor cosh model still provides the high- and low-α subgroups in

estimation. Considering curvature, the typical �curvature pattern� in error correlations

vanishes as well as the curvature pattern in MAEs and mean errors. Curvature can not

explain why the the asymptotic long rate is estimated either high or low.

Another cause of this variability of α might be censored data. To exclude the impact

of censored data, we extended the dataset to provide us with a full time series of 20- and

30-year interest rates. Extension uses the mean slope between the 20 and 30-year rates, as

far as observed. Missing 20 year rates were de�ned by the 30 year rate minus the (negative)

mean slope, missing 30 year rates were de�ned as the 20 year rate plus the (negative) mean

slope. The idea now is that if censored data is to blame for the variability of our estimates

of α, then estimation using the extended data set should result in stable estimates of α.

Re-estimation of the model using the extended dataset indeed resulted in uniformly low

estimates of α ≈ 0. We can conclude that the high-α estimates are likely a result of �tting

curvature in censored data. Second, note that model-implied yields failed to produce the

twist in the slope, particularly if long-end yields are low. Third, whereas the state vector

components still coincide with level and slope proxies as used earlier, in this case the 30

year-rate was the best proxy for the level factor.

To examine this further, we re-estimated the cosh model twice, once excluding 30-year

rates from the extended dataset, once excluding both 20- and 30-year rates. Note that

both datasets do not contain empirical evidence for the twist in the term structure. In the

�rst case, we get α ≈ 5%, in the second case α ≈ 4.5%. We also found that in both cases

the high end of the observable term structure provided the level proxy. Interestingly, mean

reversion increased substantially for the shorter datasets.

We repeated these exercises for the Cairns model as well, with equivalent results: estimated

α increases to around 4.5% if the 30-year rates are omitted, indicating that low α is a result

of the twist in observable data. The level factor always coincides with the long-end of the

observable yield curve. Finally, shortening the dataset increases mean reversion. We can

conclude several stylized facts for both models:

� The long end of the observable term structure is the best level proxy. This implies

that censored long-end data should be avoided.

� The higher the maturity of the interest rate the level proxy coincides with, the lower

mean reversion of the level factor.

� The estimate of the asymptotic long rate is highly dependent on the highest maturity

observable. Inclusion of the twist in the estimation dataset implies α ≈ 0.
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� Even α ≈ 0 is not su�cient to reproduce the twist observed in real data in model-

implied yield curves.

� Without the twist in the estimation dataset, α ≈ 4% in both models, which is still

rather low given historically observed long-term yields.

We found signi�cant estimation problems considering estimation of the asymptotic long

rate with our proposed dataset. The question arises how to increase the dataset. Rogers

models allow for joint international bond market models. This e�ectively increases the

dataset by multiple term structures and exchange rates:

� Real rates can be extracted from in�ation-indexed bonds. If we use the Rogers

model on in�ation-indexed bonds and achieve a stable estimate of αreal, the nominal

asymptotic long rate is given by

αnominal = ī+ αreal.

The asymptotic in�ation rate ī can be determined "`forward looking"' as the in�ation

target of the central bank, or ī can be speci�ed "`backward looking"' as a long-term

mean of past in�ation rates. Basically, however, the problem of estimating α for

nominal rates is exchanged for the problem of estimating α in real rates.

� Di�erences in local asymptotic long rates for two bond markets imply that long-

term forward exchange rates explode38. The conclusion is that there exists a unique,

38The exchange rate Y ij between countries i and j is given by the fraction of the respective state price

densities

Y ij :=
ςjt
ςit
. (2.33)

Using covered interest arbitrage, we can derive that in an international bond market model based on the

Rogers framework, the forward exchange rate is either exploding for one currency and going to zero for

the other, or a unique international asymptotic long rate exists.

Without loss of generality we assume αi > αj . Then there exists a time of maturity T ∗ such that

yi(t, T ) > yj(t, T ) for all T > T ∗. According to covered interest arbitrage, investing an amount of currency

i over a time to maturity τ in the bond market of country i is equivalent to changing the amount of

currency i into currency j at the current exchange rate Y ijt , investing it in the bond market of country j

at yj(t, T ) and taking a forward exchange rate contract which guarantees an F ji(t, T ) to change back the

amount of j plus compounded interest at time T . In formula

ey
i(t,T )(T−t) = Y ijt e

yj(t,T )(T−t)/F ji(t, T )

exp
(

(yi(t, T )− yj(t, T ))(T − t)
)

= exp
(

(yi(t, T )− yj(t, T ))(T − t)
)

=
Y ijt

F ji(t, T )

F ji(t, T ) = Y ijt exp
(
−(yi(t, T )− yj(t, T ))(T − t)

)
.

As there exists a T ∗ for which this inequality holds, all forward exchange rate curves are exponentially

increasing. Obviously, this should not be the case assuming a long-term equilibrium in global trade. If

αi = αj , for T large enough yi(t, T ) ≈ yj(t, T ) and hence the forward exchange rate is approximately the

current exchange rate Y ijt .
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world-wide asymptotic long rate. This allows to estimate multiple international term

structures jointly with a single parameter α, thereby increasing the dataset substan-

tially.

To conclude, we found both models to have signi�cant problems in estimating the

asymptotic long rate. Using multiple term structures adds additional data, yet even aug-

mented datasets seem to be insu�cient to estimate α.

Estimation using the original dataset produced estimates of the asymptotic long rate which

di�ered by 600 basis points. Estimation using the extended dataset produced stable esti-

mates, indicating that the previous results were due to censored data. However, whether

or not 30 year rates and hence a small negative slope of −14.5 basis points were included

in the extended dataset made the asymptotic long rate vary by 500 basis points. We

have to acknowledge that empirical data seems to be insu�cient to estimate a constant

asymptotic long rate properly. Note that the same problem implicitly holds for other term

structure models with a constant asymptotic long rate as well. As discussed previously, for

most models a constant asymptotic long rate implies a restricting equation of the model

parameters. Di�culties in specifying the asymptotic long rate imply that this restricting

equation is not well de�ned. In the next section, we will discuss alternative approaches.

Furthermore, our examinations showed dependencies of the level factor on the highest ob-

servable maturity. We recommend estimation both the Cairns and the cosh model with

yield data up to 10 years of maturity only. This guarantees higher mean reversion of the

level factor and avoids any impact of censored data on this factor.

Fit α to exogenous data

As with the long-term mean µ of the level component of the state process, we are not

able to estimate α thoroughly from empirical data. Again as with µ, the parameter α has

an economic interpretation as the asymptotic long rate which might be used to specify

it exogenously. Note that in most models, such an exogenous speci�cation is equivalent

to introducing a restricting equation on model parameters. Consequently, changes in the

asymptotic long rate for example in sensitivity analysis requires reestimation of the whole

model. The asymptotic long rate being a distinct model parameter in the Cairns and cosh

model provides a unique opportunity to examine the asymptotic long rate and its impact

on prices of long-term assets.

Figure 2.17 shows that for �xed α, estimating the remaining parameters with historical

data results in parameter sets which di�er only slightly in Loglikelihood values and MAEs.

Minimal and maximal Loglikelihood values di�er by only 50, and minimal and maximal

MAEs di�er by less than 0.3 basis points. Due to approximations in the Kalman �lter, such

di�erences are not necessarily signi�cant. For these results, we used the standard dataset

including censored data, which is again re�ected in both Loglikelihood values and MAEs.
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Given our results in the previous section, this pattern should vanish using the extended

dataset. In particular, we can assume that exogenous speci�cations of α and subsequent

estimation of the remaining model parameters should provide good Loglikelihood values

and MAEs. We can conclude that any exogenous speci�cation of α provides a model with

high historical �t measured in MAEs and Loglikelihood values.

A simple rule of thumb equates the asymptotic long rate with an average long rate.

Within the underlying dataset, the average 10 year rate was 6.68%, re�ecting both a

good MAE and Loglikelihood value in our estimates with �xed α above. Such a high

speci�cation, however, implies that the model is unable to reproduce the twist for most

historically observed levels of the term structure. Furthermore, the asymptotic long rate

in this case is crucially dependent on the underlying dataset over which the average of the

long-end yield is taken.

Using the expectations hypothesis (EH), we can derive an asymptotic long rate based on

the same idea yet using short-end data. Namely, if we equate the asymptotic long rate

with a long-term yield, we get

1

n

n∑
i=1

y(ti, ti + τ)
EH
=

1

n

n∑
i=1

(
1

τ

τ−1∑
k=0

Et [rti+k] + φ(ti, ti + τ)

)

=
1

τ

τ−1∑
k=0

(
1

n

n∑
i=1

Et [rti+k]

)
+

1

n

n∑
i=1

φ(ti, ti + τ)

where φ(ti, τ) denotes the term premium39 at time ti. For n → ∞, this formula approxi-

mates the asymptotic long rate as an average over average conditional shortrate forecasts

Et[rti+k] for varying forecasting horizons. Of particular interest here is that shortrate fore-

casts depend crucially on the slope, whereas averaging over a single long-term interest rate

depends predominantly on the level. The EH-based approach might therefore make better

use of the information contained in historical yields. There remains, however, a signi�cant

problem in specifying the term premium, see for example [KO07].

As a second approach, we propose to use macroeconomic data to specify the asymptotic

long rate. Obviously, a rational investor demands interest rates which at least compensate

losses in real value of the notional. Assuming a successful monetary policy of the central

bank with regards to in�ation, we can therefore expect the in�ation target ī of the central

bank to be a lower bound of the asymptotic long rate. It is a stylized fact that real

interest rates are very persistent. In fact, as we will see in 3.2, the equilibrium real rate

is often set as 2% or around 2%. This implies an asymptotic long rate of around 4%.

An asymptotic long rate of 4.2% is currently discussed in regulatory boards as a possible

regulatory speci�cation40.

39The yield premium in the notation of Kim and Orphanides [KO07].
40As we saw previously for the Rogers frameworks, the asymptotic long rate has a major impact on dis-
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Figure 2.17: Implied Mean absolute errors and Loglikelihood values for reestimates of the

cosh model with exogenously speci�ed asymptotic long rate α.
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Using the Taylor rule [Tay93] and the Expectations Hypothesis41, we are able to derive a

sound economic foundation for this approach. Particularly,

y(t, t+ n)− φn(t)
EH
=

1

n

n−1∑
i=0

Et[rt+i]

Taylor
=

1

n

n−1∑
i=0

Et[it + rRt + ai(it − ī) + au(ut)]

where it denotes the in�ation rate process with long-term mean ī, rRt is the real short

rate and ut denotes the deviation of output from its equilibrium trend growth. For n

large enough, particularly n > 30 years, this approximates the asymptotic long rate. For

n→∞, assuming successful monetary policy, the average deviation of in�ation and output

from their respective equilibrium values can be taken as zero, thus

0 = lim
n→∞

1

n

n−1∑
i=0

Et [it+i − ī]

= lim
n→∞

1

n

n−1∑
i=0

Et[it+i]− ī (2.34)

counting long-term cash �ows, for example in pension insurance. Higher α reduces the liabilities insurance

companies face, hence fomr a regulatory point of view an upper bound for α might have to be imposed for

internal models of insurance companies.
41The Expectations Hypothesis states that long-term interest rates y(t, t+ n∆) for ∆ being a speci�ed

time period equal average expected shortrates over periods of length ∆ plus a constant risk premium φn

which only depends on the tenor n.

y(t, t+ n∆) =
1

n

n−1∑
i=0

Et[y(t+ i∆, t+ (i+ 1)∆)] + φn

The Expectations Hypothesis therefore assumes that the shape of the term structure depends on market

participants' expectations of future interest rates. Simple algebra shows that the Expectations Hypothesis

implies that the current slope of the term structure forecasts future interest yields in a simple regression

approach. However, repeating this regression with empirical data does not provide regression coe�cients

as implied by the Expectations Hypothesis. The fact that the Expectations Hypothesis does not hold with

empirical data became a stylized fact in term structure models, hence term structure models are require

to fail the Expectations Hypothesis in the same way as empirical data. According to Fama [Fam84] and

Hardouvelis [Har88], the failure of the slope to forecast future interest rates is due to the omission from

the regression of a time-varying risk premium, hence

y(t, t+ n∆) =
1

n

n−1∑
i=0

Et[y(t+ i∆, t+ (i+ 1)∆)] + φn(t).

The Taylor rule implies that the central bank sets current shortrates according to current in�ation and

output variables, hence

rt = it + rRt + ai(it − ī) + auut

where it is the current in�ation rate, rRt is the real shortrate, ī is the in�ation target of the central bank

and ut describes deviation of output growth from its equilibrium trend.
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and

0 = lim
n→∞

1

n

n−1∑
i=0

Et[ut+i].

This implies

lim
n→∞

(y(t, t+ n)− φn(t)) = lim
n→∞

(
1
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n−1∑
i=0

Et[it+i] +
1
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Et[r
R
t+i]

)

for n large enough. By (2.34), limn→∞
1
n

∑n−1
i=0 Et[it+i] = ī. Historical real rates were more

persistent than historical nominal rates. Given an in�ation target of the ECB of ī = 2%,

an average historical real rate of about 2% and a positive term premium this approach

implies α ≥ 4%, which coincides with the suggestion of 4.2% in regulatory boards.

To conclude, we �nd equilibrium macro-based approaches to be most promising, as they

provide a sound economic basis for speci�cations of the asymptotic long rate. Using the

Expectations Hypothesis with time-varying risk premia and the Taylor rule, and assuming

successful monetary policy by the central bank, we were able to derive an economically

sound explanation for the regulatory suggestion of α = 4.2%. Using average long-term

rates provides a simpler approach, which however crucially depends on the underlying

data.

Note that all speci�cations of the asymptotic long rate proposed here were rather high. In

particular, neither of these approaches will reproduce the twist of the term structure in

the Rogers models we proposed.

Summary

Since the asymptotic long rate determines the discounting function for long time horizons,

it is of major importance for long-term investors and in particular insurance companies.

This may also be seen in the fact that a regulatory approach to specify a constant asymp-

totic long rate for insurance companies is considered.

We found that in the cosh and Cairns models, the parameter α equals the asymptotic long

rate, whereas in many other term structure models the asymptotic long rate is a function

of the model parameters and therefore constant in time as well. This implies a restricting

equation in estimation of most term structure models if the asymptotic long rate is exoge-

nously speci�ed. Furthermore, this close relation between model parameters and long-term

behavior of term structure models is frequently ignored in estimation. As such restricting

equations do not exist for the cosh and Cairns models, these models are of particular in-

terest for estimation of the asymptotic long rate and examination of sensitivities.

Testing the ability of the Kalman �lter to estimate α, we found signi�cant problems due

to censored data and various empirical properties of the long-end of the yield curve, for ex-

ample excess volatility, liquidity premia and the twist in the term structure. In general, we
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have to acknowledge that observable long-term yields do not provide su�cient data to de-

termine the asymptotic long rate, let alone riskless long-term interest rates. Consequently,

the asymptotic long rate should be speci�ed exogenously. As both the cosh and Cairns

model allow for exogenous speci�cation of the asymptotic long rate α without restricting

the remaining model parameters, these models are of particular interest in analyzing such

exogenous choices of the asymptotic long rate empirically.

We presented two approaches, one based on taking average long-term rates as a proxy for

the asymptotic long rate, and a second one which derives the asymptotic long rate from

the in�ation target and average real rates. Using the second approach, we present a sound

economic derivation of the recently discussed regulatory suggestion of α = 4.2% based on

the Expectations Hypothesis with time-varying term premia and the Taylor rule describing

monetary policy.

2.4 Model Comparison

In the previous sections, we presented two realizations of the Rogers framework, the cosh

and the Cairns model. Both models are state price density models. We found that the

state price density approach is superior to standard risk-neutral pricing of long-term cash

�ows with infrequent and irregular payments are to be priced by simulation. In particular,

the state price density approach does not require to approximate the shortrate by path-

wise simulation, all that is required are the states of the underlying state vector at the

respective payment dates. In both models dynamics are provided by a d-dimensional

Ornstein-Uhlenbeck process. Implementation and estimation of the cosh model is a new

contribution to the literature. We found two main di�erences between these models:

1. The choice of f in the Cairns model guarantees the state price density to be a

supermartingale. This, in turn, guarantees no-arbitrage of the bond market model

and positivity of all interest rates. However, it is di�cult to specify a function f such

that e−αtf(Xt) is a supermartingale for a mean reverting state vector (Xt). The

Rogers framework also allows for de�nition of models where the state price density

is not a supermartingale, an example of which is the cosh model. Whereas we can

prove that no-arbitrage holds for the cosh model, interest rates are not guaranteed

to be positive.

2. The choice of f in the Cairns model requires numerical integration to derive bond

prices. This makes the Cairns model computationally slow. On the other side, the

choice of f in the cosh model guarantees analytic solutions to bond prices, making

the cosh model much more e�cient computationally.

The question of positivity in interest rates is of major interest for risk management

in insurance companies. The worst case scenario for insurance companies is a Japan sce-
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nario, a persistent low and �at term structure, as we already discussed in section 2.1. We

showed that Japan scenarios are a result of alternative monetary policy instruments in

case the zero lower bound of the policy rate is reached. Similar dynamics may only apply

in term structure models guaranteeing positivity. If negative interest rates are possible,

the monetary transition mechanism of monetary policy implies that falling interest rates

coincide with an increasing slope, hence very low long-end rates coincide with very steep

yield curves and therefore a high probability of negative short-term rates. Higher mean

reversion as implied if the model is estimated from the shortened dataset omitting censored

20- and 30-year rates should reduce the probability of negative interest rates in the cosh

model if the long-term mean of the level process is su�ciently high.

Besides these di�erences, both models still share several important properties. First,

we considered historical �t of both term structure models and found that both �t his-

torical term structure data remarkably well, yet the Cairns model is superior considering

historical �t. We also found that the state vector contains information about the prin-

cipal components of the term structure in both models. In two-factor models, one state

vector component coincides with the long-end of the yield curve, in particular the interest

rate of the highest maturity in the estimation dataset. A second state vector component

coincides with the slope. In a three-factor model, the level component remains, whereas

the other two components describe slope and curvature. Furthermore, in both models the

asymptotic long rate limT→∞ y(t, T ) equals the model parameter α. Together with our

�ndings considering the level factor this implies similar dynamics of the long-end of the

term structure in both models. In further examinations omitted here, we found that both

models provide highly correlated term premia. This, in turn, implies that the LPY term

structure criteria of Dai and Singleton [DS01] should hold in a similar way for both mod-

els. Finally, we also found that forecasting power of both term structure models is more or

less equivalent. Forecasting errors of both models are highly correlated, an out-of-sample

forecast conditional on the state at January 2008 provided very similar forecasts s well.

To summarize, we see that the Cairns and cosh models behave remarkably similar aside

from computational speed and negative interest rates. The Cairns model is superior from its

theoretical properties as well as considering historical �t. We also found improved slightly

forecasting ability of the Cairns model. Nevertheless, the Cairns model is computationally

slow. Since the cosh model shares several basic properties with the Cairns model, it can

be used as a fast approximation of the Cairns model due to its computational simplicity

and speed.

A sample for an application of the cosh model as an approximation of the Cairns model

would be the analysis of the asymptotic long rate, as discussed in section 2.3.9. Both

models allow for examination of various exogenous speci�cations of α using historical data

or sensitivity analysis of long-term asset prices with respect to α. In this case, the Cairns

model can not be recommended due to computational ine�ciency, yet the results derived
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using the cosh model may be used to calibrate the Cairns model as well.

In the next sections, we will present another major advantage of the cosh model. Due

to simplicity of the state price density in the cosh model, it allows to expand the underlying

�nancial market to equity as well as macroeconomic data rather easily. It is important

that the occurrence of Japan scenarios or low interest rates in general is closely linked

to macroeconomic data and therefore realistic implementation of macroeconomic variables

should help to govern the probability of negative interest rates in the cosh model. We

will �nd that the methods proposed for expansion of the model apply to the Cairns model

as well, yet typically are unfeasible computationally. On the other side, the cosh model

allows for e�cient implementation of these expanded models. Additional asset classes such

as equity are required for insurance applications, and macroeconomic variables improve

long-term interest rate dynamics and cross-asset correlations. The possibility of simple

expansion implies that for many tasks in insurance applications, the cosh model should

actually be recommended over the Cairns model.
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Chapter 3

Additional Asset classes

In the framework presented so far we considered a �nancial market which only consisted

of default-free bonds, interpreted as domestic government bonds. To model long-term

insurance contracts over their lifetime, we must be able to simulate the investment policy

of an insurance company. Now, obviously, insurance companies are not restricted in their

investment choices to domestic government bonds, even though these bonds indeed form

a large part of insurance companies' portfolios. To diversify their holdings, insurance

companies will buy additional assets besides government bonds. For an example of such

assets, Wilkie [Wil84], [Wil86] presents the consol yield, the stock price, the dividend yield

and in�ation as

what seems to [. . .] be the minimum model that might be used to describe the

total investments of a life o�ce or pension fund.

In a related paper, Wilkie [Wil95] expanded his investment model by an earnings index,

short-term interest rates, property rentals and prices and yields on index-linked stock. In

particular, income or earnings indices may be used to describe changes in cancellation and

underwriting, short-term interest rates are included to provide a full term structure and

real estate variables provide yet another asset class.

The stock market as a �rst expansion to the government bond market is an obvious choice.

Campbell and Ammer [CA93] show that correlation between stock and bond returns are

low. They �nd that only real interest rate changes in�uence both stock and bond returns,

but these are very persistent. Low correlation is important for diversi�cation according

to modern portfolio theory. Dividends are of major interest to insurance companies, as

dividends provide a steady stream of cash �ows which increase liquidity and may be used

to match intermediate liabilities.

The consol rate is included as a measure of long-end interest rates. In Wilkie's actuarial

model the consol yield is therefore used to describe the bond market with a speci�c long-

end focus. Since insurance companies hold large bond portfolios of varying duration, a

single interest rate is not su�cient to cover the insurance company's exposure to the bond

141
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market. As we recommended previously, level and slope are a minimum requirement of

term structure models.

Wilkie proposed his actuarial model in 1984 and 1986, respectively. The then recent expe-

rience of stag�ation in the late 70s and record in�ation during the monetary experiment

1979 to 1982 made in�ation a major factor driving bond and stock markets. Since then

central banks around the world kept in�ation rates in check so that the importance of in-

�ation for investment decisions of insurance companies and policy holders decreased. Due

to the recent �nancial crisis, the surge in state de�cits worldwide and speci�cally excess

liquidity provided by central banks for the banking system may indicate rising in�ation

rates in the future, hence in�ation may become a serious concern for insurance companies

again.

A more theoretical reason to include additional assets in our model stems from the un-

derlying assumption of a state price density. The assumed states depend on all investment

choices possible within the economy. Therefore, state price densities naturally depend on

all investment opportunities and hence pricing kernels should not be estimated using nom-

inal bond data alone. An example for estimation of a pricing kernel from various �nancial

assets may be found in Chernov [Che03].

In the following, we will present how to expand both the cosh and the Cairns term

structure models to a joint actuarial model which describes the default-free bond market,

stocks and their dividends.

3.1 Consistent stock market models

In this section, we try to establish a combined state factor model for term structure as well

as stock price dynamics. We will �rst discuss two basic approaches to model stock market

dynamics - the return-based and the price-based approach - as well as their respective

properties. In a second step, we will examine restrictions on a joint bond and stock market

model due to usage of the state price density approach. Finally, we will present several

ways to de�ne stock price dynamics under the cosh and Cairns models, respectively.

3.1.1 Stock prices or stock returns?

A major di�erence between bond and stock markets are the key �gures used in daily prac-

tice to describe the current market situation. Bond markets are generally described by

interest rates, whereas stock markets are described by current stock prices and historical

returns. One major di�erences therefore lies in bond markets providing data about deter-

ministic future returns and stock markets providing data about historical returns. In bond

market modeling, we followed the standard approach and used interest rates for estimation

and simulation. Given a series of historical returns and an initial stock price, the current

price can be calculated. Given on the other side historical prices, historical returns may



3.1 Consistent stock market models 143

be calculated with similar ease. We will now discuss empirical properties of the respective

approaches and then derive their relative advantages.

� Explosion: Unlike bond prices or interest rates, stock prices can �explode� in the

sense that they may follow an exponential growth trend.

� Positivity: Stock prices are generally assumed to be positive. An exception might

be default of the underlying �rm, which implies the stock price being zero thereafter.

� Dividend jump: In case of discrete dividend payments, the stock price decreases

at the payment date, since at time T− the stock price ST− contains a claim on the

dividend to be payed in T .

� Leverage: The absolute value of stock price changes depends on the underlying

stock price. The higher the stock price, the higher on average absolute daily or

monthly stock price changes.

� Positive long-term equity risk premium: It is a standard assumption that the

equity risk premium, the excess expected return of stocks over bonds, is positive over

the long term. This implies that there exists a positive drift term in stock prices.

Obviously, this assumption should be employed on stock funds and not on individual

stocks which may well be subject to default.

� Default: A single �rm may default after some time, which implies that the stock

price reaches zero and remains zero. If a fund of stocks with regular asset reallocation

is considered, default should not occur and hence the value of the fund is always

positive.

On the other side, stock returns share several properties of returns on bonds not held until

maturity, for example:

� Heavy Tails: the distribution of stock returns is heavy-tailed1 in the sense that

stock returns are not normally distributed since they put more probability weight on

extremal events.

� Mean reversion: Stock returns may be described as mean reverting, albeit with

very high mean reversion factor and high volatility.

� Negativity: Stock returns can be negative.

� Positive long-term equity risk premium: A positive equity risk premium implies

that stock returns are on average positive and higher than bond market returns, for

example interest rates.

1The tails of heavy-tailed distributions are not exponentially bounded.
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� Volatility: As mentioned previously, stock returns are highly volatile and indeed

show stochastic volatility. Events of high volatility often coincide with signi�cantly

negative stock returns.

The main di�erences between these two approaches lies in applications. Whereas most

interest rate derivatives depend on yields and hence bond returns, stock derivatives depend

on stock prices, not returns. A price-based model which provides the distribution of ST |St
is therefore vastly superior to a return-based approach for evaluation of stock derivatives.

A major obstacle for price-based models are dividend payments. In case dividend

payments are assumed, the so called total return of a stock consists of the price return

and the dividend return of the stock. We will now see that once dividend payments are

considered, the return-based approach might be superior.

Implementation of total return models typically take a basic reinvestment assumption of

dividend payments. It is typically assumed that the dividend is reinvested into the stock.

Given a discrete-time dividend payment process (DT ) at time T , this implies that DT
ST

stocks are bought2 at time T . Thus, assuming at time 0 one stock is held and dividends

are payed in τi for i = 1, . . ., the value process (Wt)t≥0, which describes the complete

wealth of an investor, is given by

W0 = S0

Wτ1 = Sτ1 +Dτ1 =

(
1 +

Dτ1

Sτ1

)
Sτ1

Wτ1+∆ =

(
1 +

Dτ1

Sτ1

)
Sτ1+∆

Wτ2 =

(
1 +

Dτ1

Sτ1

)
(Sτ2 +Dτ2) =

(
1 +

Dτ1

Sτ1

)(
1 +

Dτ2

Sτ2

)
Sτ2

... .

where 0 < τ1 < τi + ∆ < τ2. Assuming dividend payment dates τ1, . . . , τn ∈ [0, T ], and

W0 = S0 we can generalize this to

WT = ST

n∏
i=1

(
1 +

Dτi

Sτi

)
. (3.1)

2We hereby assume that no taxes are payed on dividend income. Note that there exist total return

indices with reinvestment assumptions which consider taxes of private investors. As institutional investors

such like insurance companies are often tax-exempt on assets under management, this is a reasonable

assumption.
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The total return over [0, T ] with dividend payment dates τ1, . . . , τn ∈ [0, T ], is therefore,

again assuming W0 = S0, de�ned by

log

(
WT

W0

)
= log

ST ∏n
i=1

(
1 +

Dτi
Sτi

)
St


= log

(
ST
St

)
+

n∑
i=1

log
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Dτi

Sτi

)

= log

(
ST
St

)
+

n∑
i=1

log

(
Sτi +Dτi

Sτi

)
for T ≥ 0, which can be interpreted as the sum of the dividend returns over [0, T ] and the

price return over [0, T ]. Without reinvestment, the total return over [0, T ] with dividend

payments Dτ1 , . . . , Dτn and τ1, . . . , τn ∈ [0, T ] is given by

log

(
WT

W0

)
= log

(
ST +

∑n
i=1Dτi

S0

)
.

We see that for short time spans T , total returns without considering reinvestment as-

sumptions are a possible alternative. Over long horizons, however, total returns with-

out reinvestment assumption lead to underestimation of investment success. Total return

with reinvestment assumption requires path dependent simulation with intermediate points

{τi : 0 ≤ τi ≤ T}. The main advantage of the price-based approach therefore vanishes

in case total return and the wealth process are of interest, such as in simulation of the

portfolio success of a life insurance company.

Note that a simple solution to the dividend problem may be in transforming the data

and reinterpreting the model. So called total return indices describe development of an

investment into a stock market index whereby it is assumed that all dividends payed are

instantly reinvested into the index3. Now if we consider a stock price model estimated on

a total return index, then dynamics and in particular trend behavior estimated are those

of total returns and hence implicitly incorporate dividend payments.

3.1.2 General considerations

Both the Cairns and the cosh model were speci�ed in terms of a state price density model.

The question arises how the stock price relates to the state price density framework. To im-

plement a joint bond and stock market model dependent on a state process (Xt), we require

�rst, following Rogers generic approach, a function f : X → R+ such that (e−αtf(Xt))

is a positive supermartingale4. The function f together with the dynamics of (X) under

3Note that there exist with- and without tax total return indices.
4Note, however, that the cosh model does not provide a positive supermartingale. We will discuss in

this section the fundamental case of the potential approach of Rogers, which assumes the supermartingale

property of the state price density.
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the reference measure de�ne the bond market model. Second, we require a stock price

process (St) with g : X → R+ such that St = g(Xt) for all t ≥ 0. The following theorems

provide further criteria on (g(Xt)) within the state price density framework conditional on

dividend payments.

Theorem 3.1.1. Given a state price density model with positive state price density process

(ςt)t≥0 under the reference measure P̃ and a positive stock price process (St)t≥0, then (ςtSt)

is a positive supermartingale in an arbitrage-free market.

Proof. By assumption, both the stock (St) and the state price density (ςt) are positive

processes. For any �xed future time T , we can de�ne a contingent claim Πt(ST ) which

pays the stock price ST at time T . Using the general pricing formula under the reference

measure, we get for the price of the contingent claim at time t

Πt(ST ) =
EP̃ [ST ςT |Ft]

ςt

where the expectation is conditional on the �ltration Ft = σ{Xs, 0 ≤ s ≤ t}, the natural
�ltration of the state vector process (Xt). Now assume that at time t Πt(ST ) > St.

Then shorting the derivative and buying the stock provides a positive cash �ow in t since

Πt(ST )− St > 0. At time T , we can sell the stock so that both positions cancel out, since

ΠT (ST ) = ST . This o�ers an arbitrage strategy, hence

Πt(ST ) ≤ St (3.2)

holds. As we are long in the stock, dividend payments do not change our conclusion as

St ≤ St +Dτ with non-negative dividend payments for all τ ∈ [t, T ].

Now if we additionally require the stock to pay no dividends, we can prove the following

theorem.

Theorem 3.1.2. Given a state price density model with positive state price density process

(ςt)t≥0 under the reference measure P̃, and a stock with price process (St)t≥0 which pays

no dividend, then (ςtSt) is a martingale under the reference measure P̃ in an arbitrage-free

market.

Proof. We assume Πt(ST ) < St and consider the following strategy:

� at time t, we short a stock St and buy the derivative Πt(ST ). By assumption,

St −Πt(ST ) > 0.

� at time T , the derivative pays ST and we end our short position in the stock, hence

ST − ST = 0.

Obviously, this is an arbitrage strategy, hence we can conclude that Πt(ST ) ≥ St and hence

Stςt ≤ EP̃ [ST ςT |Ft]. By theorem 3.1.1, (ςtSt) is a supermartingale whether dividends are

payed or not, which implies that (ςtSt) is a martingale if the stock pays no dividends.
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The price of a stock which pays dividends can not be a martingale due to the dividend

jump. Before the dividend payment date T , the fair stock price contains a discounted

dividend similarly to the dirty price of a coupon bond containing �accrued interest� be-

fore coupon payment. Economically speaking, the �rm value prior to dividend payment

includes the dividend to be payed. In T , the stock price jumps due to the dividend payed

out, hence discounted dividend value for the dividend jumps to zero or, economically, the

�rm value decreases by the dividend payed. Obviously, the dividend jump does not con-

tradict the supermartingale property of (Stςt).

Theorems 3.1.2 and 3.1.1 show that the stock price function g should guarantee that

(Stςt) = (e−αtf(Xt)g(Xt)) is a positive supermartingale under the reference measure. If

we additionally assume that no dividends are payed, (Stςt) = (e−αtf(Xt)g(Xt)) must be a

martingale. Considering the problems we encountered in choosing a positive supermartin-

gale (e−αtf(Xt)), we can expect the additional task of �nding a simple function g such

that (e−αtf(Xt)g(Xt)) is a positive supermartingale or a positive martingale to be even

more challenging.

The question arises whether we can derive a viable stock market model without (Stςt) being

a supermartingale similar to (e−αt cosh(γTXt + c)) de�ning a viable bond market model

without being a supermartingale. There are at least two further restrictions on the stock

market model which are required to hold. These are no-arbitrage and positivity of the

stock price. Now since the state price density ςt de�nes the arbitrage-free bond market,

the market price of risk is already speci�ed. This allows to derive a partial di�erential

equation which any de�nition of the stock price has to ful�ll.

Let St := g(Xt, t) for all t ≥ 0. Then, by the Ito-Doeblin formula, the dynamics of the

stock under the reference measure are given by

dg(Xt, t) =

 ∂
∂t
g(Xt, t) +

d∑
i=1

κi(µ̃i −X(i)
t )

∂

∂xi
g(Xt, t) +

1

2

d∑
i=1

d∑
j=1

ρij
∂2

∂xi∂xj
g(Xt, t)

 dt
+

d∑
i=1

∂

∂xi
g(Xt, t)

d∑
j=1

CijdZ
P̃
j (t).

Assuming a drift correction term ΛP̃,Q(Xt) derived from the bond market with

dZQi (t) = dZP̃i (t) + ΛP̃,Qi (Xt)dt
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implies

dg(Xt, t) =

 ∂
∂t
g(Xt, t) +

d∑
i=1

κi(µ̃i −X(i)
t )

∂

∂xi
g(Xt, t) +

1

2

d∑
i=1

d∑
j=1

ρij
∂2

∂xi∂xj
g(Xt, t)

 dt
+

d∑
i=1

∂

∂xi
g(Xt, t)

d∑
j=1

Cij

(
dZQj (t)− ΛP̃,Qj (Xt)dt

)
.

=

 ∂
∂t
g(Xt, t) +

d∑
i=1

κi(µ̃i −X(i)
t )

∂

∂xi
g(Xt, t) +

1

2

d∑
i=1

d∑
j=1

ρij
∂2

∂xi∂xj
g(Xt, t)

−
d∑
i=1

∂

∂xi
g(Xt, t)

d∑
j=1

CijΛ
P̃,Q
j (Xt)

 dt+

d∑
i=1

∂

∂xi
g(Xt, t)dZ

Q
i (t).

Now assuming ΛP̃,Q(Xt, t) = CT Λ̃P̃,Q(Xt, t) we get

d∑
j=1

CijΛ
P̃,Q
j (Xt) = CΛP̃,Q(Xt) = CCT Λ̃P̃,Q(Xt) = ρΛ̃P̃,Q(Xt)

and hence under the risk-neutral measure,

rt
!

=
∂

∂t
g(Xt, t) +

d∑
i=1

κi(µ̃i −X(i)
t )

∂

∂xi
g(Xt, t) +

1

2

d∑
i=1

d∑
j=1

ρij
∂2

∂xi∂xj
g(Xt, t)

−
d∑
i=1

∂

∂xi
g(Xt, t)Λ̃

P̃,Q
i (Xt).

Which provides a partial di�erential equation the stock price function g has to ful�ll

given an arbitrage-free bond market model with shortrate rt driven by a state vector Xt.

g(0, X0) = s0 becomes a boundary condition, positivity of g(Xt) is a further condition

to be ful�lled. Given a certain bond price model within Rogers' framework, this partial

di�erential equation provides a consistent stock price.

Nevertheless, simpler approaches to de�ne a joint bond and stock market model may be

derived. First, note that the previous assumption of stock prices de�ning martingales or

supermartingales, the two theorems above yield the following corollaries.

Corollary 3.1.3. Given a state price density model with state price density process (ςt)

under the reference measure P̃, and a stock with positive price process (St)t≥0 which pays

no dividends, then, if no arbitrage is possible,

St =
EP̃ [ST ςT |Ft]

ςt
.

Corollary 3.1.4. Given a state price density model with state price density process (ςt)

under the reference measure P̃, and a stock with positive price process (St)t≥0 which pays

stochastic dividends at discrete times, then, if no arbitrage is possible,

St ≤
EP̃ [ST ςT |Ft]

ςt
.
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Proof. Both corollaries are easily proved using theorems 3.1.2 and 3.1.1.

Note that by construction, the derivative Πt(ST ) resembles a forward contract. The

di�erence lies in the payment date. For the derivative, we have to pay its price Πt(ST ) at

time t to earn ST at time T , whereas we pay the current forward price Ft at time T to

receive ST in the forward contract. The following theorems relate the forward price to the

price of the derivative Πt(ST ).

Theorem 3.1.5. By no-arbitrage and with Πt(ST ) de�ned as in the proof of theorem 3.1.1,

Πt(ST ) = P (t, T )Ft,

where Ft is the forward price at time t to buy a single unit of the stock S at time T .

Proof. First, we assume an investor shorting the derivative Πt(ST ) and concluding a for-

ward contract in t on the stock S with forward price Ft. Then we get the following payo�s

Time t T

Derivative +Πt(ST ) −ST
Forward Contract 0 ST − Ft

Payo� +Πt(ST ) −Ft

The price of the derivative in t must therefore be equal to the discounted forward price Ft

which is Ft measurable, hence

Πt(ST ) =
EP̃ [FtςT |Ft]

ςt
= Ft

EP̃ [ςT |Ft]
ςt

= FtP (t, T ).

We did not consider dividend payments explicitly in the proof as neither the forward

contract nor the derivative pays dividends. Note, however, that both the fair derivative

price and the fair forward price incorporate market expectations about future dividend

payments. For a stock which pays no dividends,

Ft =
St

P (t, T )
(3.3)

holds, see for example [Shr04] or [MR05]. This leads back to corollary 3.1.3 by

Πt(ST )
3.1.5
= P (t, T )Ft

(3.3)
= St.

Now assuming on the other side dividends are payed at discrete time, then the forward

price is given by

Ft =
St − I(t, T )

P (t, T )
(3.4)
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where I(t, T ) is the discounted value of all dividend payments in [t, T ], see for example

[Hul00]. Consequently,

Πt(ST )
3.1.5
= P (t, T )Ft

(3.4)
= St − I(t, T ) (3.5)

and hence

Πt(ST ) ≤ St

which leads back to corollary 3.1.4 as I(t, T ) ≥ 0. Writing (3.5) in terms of the state price

density, we get

St = Πt(ST ) + I(t, T )

=
EP̃[ST ςT |Ft]

ςt
+
∞∑
i=1

EP̃[Dτi ςτi |Ft]

ςt
(3.6)

where (τi)i=1,...,n is the series of dividend payment dates in [t, T ]. Now for T → ∞ dis-

counted dividends I(t, T ) must be monotonically increasing, since dividend payments Dτi

are assumed to be non-negative. If we reasonably assume limT→∞Πt(ST ) = 0, (3.6) mo-

tivates the dividend discount model discussed in the following section.

3.1.3 Dividend discount models

The dividend discount model5 de�nes the stock price as the discounted sum of all future

dividend payments. Equivalently, the current stock price equals the net present value of

the future cash �ows it promises. Note that the dividend discount model does not assume

reinvestment of the dividends. As the stock price merely re�ects the right to receive future

dividends, the model does not specify what happens with dividends already payed. In the

notation of the previous section, SDDMt = I(t,∞) for all t ≥ 0.

Continuous dividend yield

In many models, assuming a continuous dividend yield allows for simple calculations, see

for example [Shr04]. If we assume that a stock is an asset which pays a continuous dividend

(δs), then following Di Graziano and Rogers [GR06], the stock price at time t in the state

price framework is given by

St =
EP̃

[∫ τ
t ςsδsds|Ft

]
ςt

where Di Graziano and Rogers assumed the (stochastic) upper integration bound τ to

be the random time of default of the stock. To provide closed formula, this requires

�rst a solution to the stochastic integral over the discounted dividend process (ςsδs) and

5Name and idea are taken from Gordon [Gor59].
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second a closed formula for its expected value. Furthermore, this model does not allow

to easily include historical dividend yields directly. In most cases, the model assuming

discrete dividend payments described in the next section is easier to be implemented with

historical data and easier to be interpreted.

Discrete dividend payments

Using the standard pricing formula of the reference measure for the discounted discrete

dividend payment process (Dτi)i∈I we get

St :=
∑

τi≥t,i∈I

EP̃ [ςτiDτi |Ft]
ςt

(3.7)

where τ1, τ2, . . ., i ∈ I, are the known dividend payment dates of the stock. With the stock

price de�ned in this way we can easily check that (Stςt) is a supermartingale under the

reference measure.

Theorem 3.1.6. With the stock price process (St)t≥0 de�ned as in (3.7), (ςtSt) is a su-

permartingale under the reference measure P̃.

Proof. Let T > t and {τi : i ∈ I} be the set of all dividend payment dates, then

EP̃ [ST ςT |Ft] = EP̃

 ∑
τi≥T,i∈I

EP̃ [ςτiDτi |FT ]

ςT
ςT

∣∣∣∣∣∣Ft


(∗)
=

∑
Ti≥T,i∈I

EP̃
[
EP̃ [ςτiDτi |FT ]

∣∣∣Ft]

=

∑
Ti≥T,i∈I E

P̃ [ςτiDτi |Ft]
ςt

ςt

≤
∑

Ti∈I E
P̃ [ςτiDτi |Ft]
ςt

ςt

= Stςt

where (∗) uses the dominated convergence theorem, whereby the sequence of positive div-

idend payments is dominated by the stock price almost everywhere.

This is in line with theorem 3.1.1, which requires the stock price to be a supermartingale

in a state price density model. Theorem 3.1.2 implies that if no dividends are payed,

(ςtSt) must be a martingale. Although so far the model did not require any reinvestment

assumption, the dividends payed in [t, T ] make (ςtSt) a supermartingale.

Theorem 3.1.7. With the stock price St de�ned as in (3.7) and (Wt)t≥0 the wealth process

with reinvestment of dividends into the money market account, (ςtWt) is a martingale under

the reference measure P̃.
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Proof. The wealth at time T consists of the stock hold at T plus dividend payments in

τ1, . . . , τn, whereby we assume that {τi : i ∈ I} ∩ [t, T ] = {τ1, . . . , τn}. Furthermore, we

assume all dividends payed to be reinvested in the money market account. At time T , the

dividend payed at τi then values
ςτi
ςT
D(Xτi) for i = 1, . . . , n. Hence,

EP̃ [ςTWT |Ft] = EP̃

[
ςT

(
ST +

n∑
i=1

ςτi
ςT
Dτi

)∣∣∣∣∣Ft
]

= EP̃

[
ςT

(∑
τi>T

EP̃ [ςτiDτi |FT ]

ςT
+

n∑
i=1

ςτi
ςT
Dτi

)∣∣∣∣∣Ft
]

= EP̃

∑
τi>T

EP̃ [ςτiDτi |FT ] +

n∑
i=1

ςτiDτi

∣∣∣∣∣∣Ft


=
EP̃

[∑
i∈I ςτiDτi

∣∣Ft]
ςt

ςt

(∗)
= Stςt = Wtςt.

where (∗) again uses the dominated convergence theorem.

Note that the discrete dividend discount model provides price returns only. The pricing

formula is based on the discounted value of the future cash �ow received by the stockholder.

To derive total returns based on the dividend discount model, dividends payed have to be

reinvested according to the respective reinvestment assumption.

Implementation

For implementation, we have to specify the dividend payment process (Dt). We can rely

on several stylized facts considering dividend payments as well as the criteria on the stock

price of section 3.1.1.

� The dividend payments must be non-negative.

� Considering a single stock, the probability of dividend payments to become zero

must be positive. Considering a well diversi�ed stock portfolio, the probability of

the whole portfolio paying no dividend or defaulting can be assumed as zero.

� The dividend payments must be a function of the underlying state vector Dt :=

D(Xt) for all t ≥ 0. This generalizes the Markovian state vector approach used in

the bond market model for the joint bond and stock market model.

� We require closed form solutions of the expected values in (3.7). Note also that

calculating stock prices based on the dividend discount model will be computationally

more costly, as for zerobonds and hence interest rates only a single expected value

must be calculated, whereas for the stock a series of expected values for each dividend

payment date has to be calculated.
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� We expect nominal dividend payments to increase in time. A simple economic expla-

nation for this property of dividend payments is in�ation. Dividend payments can

be interpreted as a share in the issuing company's income. Assuming that nominal

income rises with in�ation, so do dividends.

� At the dividend payment date τ , the stock price should �jump�, since at time τ−,

the stock price encompasses the future dividend payment Dτ , whereas this is not the

case at time τ .

If we require that a single state process drives both the term structure and dividend

payments, X must be mean reverting. Assuming a constant drift in dividends exists,

Dt = D(t,Xt) := exp(µ̄t+ γDXt),

provides a reasonable model. In this framework, dividend payments follow a deterministic

drift, whereas the state vector describes deviations from the drift over time. The expo-

nential function guarantees positive dividend payments, the (positive) trend µ̄ guarantees

growing dividend payments in nominal terms and the a�ne transformation (γD)TXt im-

plements dependency on the state vector process. The parameter µ̄ also governs the equity

risk premium. If µ̄ is su�ciently high, stock investments are expected to produce higher

returns over the long term than bond investments.

The Cairns model

It is su�cient to evaluate one expected value of formula (3.7)

EP̃ [ςTDT |Xt]

= EP̃
[
eµ̄T+

∑d
i=1 γ

D
i X

(i)
T

∫ ∞
T

φe
−αs+

∑d
i=1 σie

−κi(s−T )X
(i)
T −

1
2

∑d
i,j=1

ρijσiσj
κi+κj

e−(κi+κj)(s−T )

ds

∣∣∣∣Xt

]
= φEP̃

[∫ ∞
T

e
µ̄T+

∑d
i=1 γ

D
i X

(i)
T −αs+

∑d
i=1 σie

−κi(s−T )X
(i)
T −

1
2

∑d
i,j=1

ρijσiσj
κi+κj

e−(κi+κj)(s−T )

ds

∣∣∣∣Xt

]
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As in the original Cairns model, we can interchange expected value and integration, getting

φ

∫ ∞
T

EP̃

[
exp

(
µ̄T +

d∑
i=1

γDi X
(i)
T − αs+

d∑
i=1

σie
−κi(s−T )X

(i)
T

−1

2

d∑
i,j=1

σiρijσj
κi + κj

e−(κi+κj)(s−T )

∣∣∣∣∣∣Xt

 ds
= φ

∫ ∞
T

exp
(
−αs+ µ̄T + (γD + σe−κ(s−T ))TEP̃ [XT |Xt]

+
(
γD + σe−κ(s−T )

)T
Σ(t, T )

(
γD + σe−κ(s−T )

)
− 1

2
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ρijσiσj
κi + κj

e−(κi+κj)(s−T )

 ds

= φ
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T
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(
γD + σe−κ(s−T )

)T (
e−κ(T−t)Xt + (1− e−κ(T−t))µ̃

)
+

1

2

d∑
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(
γDi + σie

−κi(s−T )
)
ρij

(
γDj + σje

−κj(s−T )
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e−(κi+κj)(T−t)

−1

2
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ρijσiσj
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e−(κi+κj)(s−T )

 ds

= φ exp(µ̄T )
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T
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−αs+

d∑
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(
γDi e

−κi(T−t) + σie
−κi(s−t)

)
X

(i)
t

+
1

2

d∑
i,j=1

(
γDi + σie

−κi(s−T )
)
ρij

(
γDj + σje

−κj(s−T )
)

κi + κj
e−(κi+κj)(T−t)

−1

2
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i,j=1

ρijσiσj
κi + κj

e−(κi+κj)(s−T )
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= φ exp

µ̄T +

d∑
i=1

γDi e
−κi(T−t)X

(i)
t +

d∑
i,j=1

γDi ρijγ
D
j

κi + κj
e−(κi+κj)(T−t)

∫ ∞
T

exp (−αs

+
d∑
i=1

σie
−κi(s−t)X

(i)
t +

1

2

d∑
i,j=1

σiρijσj
κi + κj

e−(κi+κj)(s−t) − 1

2

d∑
i,j=1

ρijσiσj
κi + κj

e−(κi+κj)(s−T )

+
1

2

d∑
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σiρijγ
D
j

κi + κj
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2

d∑
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γDi ρijσj
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 ds

where we used that in the Cairns model µ̃ = 0. The stock price can then be derived by

numerical integration similar to the evaluation of bond prices. A single evaluation of the

stock price requires numerical integration for each dividend payment date Ti because of

the last two sums in the integrand. Therefore, computational e�ort to derive the current

price of a single dividend paying security is equivalent to deriving a single interest rate.

As a large sum of dividend paying securities is required, this leaves the dividend discount

model inapplicable for the Cairns model from computational reasons.
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The cosh model

For the cosh model, our choice of DT allows for closed form solutions, as the product of

the two lognormally distributed variables DT and ςT is again lognormally distributed.

EP̃ [ςTDT |Xt]

= EP̃
[
e−αT cosh(c+ γTXT ) exp(µ̄T + (γD)TXT )|Xt

]
=

1

2
e−αT

[
exp(c+ µ̄T )EP̃

[
exp((γD + γ)TXT )|Xt

]
+ exp(−c+ µ̄T )EP̃

[
exp((γD − γ)TXT )|Xt

]]
=

1

2
exp(−αT + µ̄T )

[
exp

(
c+ (γD + γ)TEP̃ [XT |Xt] +

1

2
(γD + γ)TΣ(t, T )(γD + γ)

)
+ exp

(
−c+ (γD − γ)TEP̃ [XT |Xt] +

1

2
(γD − γ)TΣ(t, T )(γD − γ)

)]
= exp

(
−αT + µ̄T + (γD)TEP̃ [XT |Xt] +

1

2

(
γTΣ(t, T )γ + (γD)TΣ(t, T )γD

))
cosh

(
c+ γTEP̃ [XT |Xt] + γTΣ(t, T )γD

)
(3.8)

As the sum of discounted dividend payments in the cosh model is again a deterministic

function of the current state factor Xt, calculation of current stock prices may be com-

putationally easy. For implementation, we have to cut o� the in�nite sums of discounted

dividend payments. Due to µ̄ > 0, discounted values of long-term dividends may still

provide signi�cant value. A likely outcome is that the model overestimates dividend pay-

ments in the near future to make up for omitted dividend payments in the far future. If

this is he case, joint estimation using stock price and dividend yield data will require a

su�cient number of dividend payment dates considered, which likely requires considerable

computational e�ort.

Change of measures

In the dividend discount model with discrete dividend payments at time Ti, the stock can

be interpreted as a portfolio of in�nitely many derivatives which, conditional on the future

state XT , pay DT (T,XT ) at time T . Thus, if the price ΠDT (t) at time t of such a �single

dividend security� can be priced arbitrage-free within the cosh model, the stock can be

priced arbitrage-free as well. We follow the standard approach used in proving no-arbitrage

for the pure bond market model: �rst, we derive the dynamics of the dividend security

under the reference measure, then we derive the required market price of risk to arrive at

the risk-neutral measure, which has to ful�ll the Novikov condition. Due to computational

infeasibility of the Cairns model, we only consider the cosh model.

We �rst have to derive the dynamics of the single dividend security under the reference
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measure P̃ by

dΠDT (t) =

 ∂
∂t

ΠDT (t) +
d∑
i=1

κj

(
µ̃i −X(i)

t

) ∂

∂xi
ΠDT (t) +

1

2

d∑
i=1

d∑
j=1

ρij
∂2

∂xi∂xj
ΠDT (t)

 dt
+

d∑
i=1

∂

∂xi
ΠDT (t)

d∑
j=1

CijdZ
P̃
j (t).

We begin with the derivative in t.

∂

∂t
ΠDT (t) =

∂

∂t

EP̃ [ςTDT |Xt]

ςt

=
∂
∂tE

P̃ [ςTDT |Xt]

ςt
−

∂
∂t ςt

ς2
t

EP̃ [ςTDT |Xt] .

Now as a �rst step

∂

∂t
EP̃ [ςTDT |Xt]

=
∂

∂t
exp((µ̄− α)T ) exp

(
(γD)TEP̃ [XT |Xt] +

1

2
γTΣ(t, T )γ +

1

2
(γD)TΣ(t, T )γD

)
cosh

(
γTEP̃ [XT |Xt] + γTΣ(t, T )γD + c

)
= exp((µ̄− α)T )

[
∂f(t, T,Xt)

∂t
exp(f(t, T,Xt)) cosh(g(t, T,Xt))

+
∂g(t, T,Xt)

∂t
exp(f(t, T,Xt)) sinh(g(t, T,Xt))

]
= EP̃ [ςTiDTi |Xt]

(
∂f(t, T,Xt)

∂t
+
∂g(t, T,Xt)

∂t
tanh(g(t, T,Xt))

)
and

f(t, T,Xt) := (γD)TEP̃ [XT |Xt] +
1

2
γTΣ(t, T )γ +

1

2
(γD)TΣ(t, T )γD

g(t, T,Xt) := γTEP̃ [XT |Xt] + γTΣ(t, T )γD + c

with

∂

∂t
f(t, T,Xt) := (γD)Tκe−κ(T−t)(Xt − µ̃)− 1

2
γT e−κ(T−t)ρe−κ(T−t)γ

−1

2
(γD)T e−κ(T−t)ρe−κ(T−t)γD

∂

∂t
g(t, T,Xt) := γTκe−κ(T−t)(Xt − µ̃)− γT e−κ(T−t)ρe−κ(T−t)γD.

Second, note that

∂

∂t
ςt =

∂

∂t
e−αt cosh

(
γTXt + c

)
= −αςt,
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hence

∂

∂t
ΠDT (t) =

∂
∂tE

P̃ [ςTDT |Xt]

ςt
−

∂
∂t ςt

ς2
t

EP̃ [ςTDT |Xt]

=
EP̃ [ςTDT |Xt]

(
∂f(t,T,Xt)

∂t + ∂g(t,T,Xt)
∂t tanh(g(t, T,Xt))

)
ςt

+ α
EP̃ [ςTDT |Xt]

ςt

= ΠDT (t)

[
α+

∂f(t, T,Xt)

∂t
+
∂g(t, T,Xt)

∂t
tanh(g(t, T,Xt))

]
= ΠDT (t)

[
α+ (γD)Tκe−κ(T−t)(Xt − µ̃)− 1

2
γT e−κ(T−t)ρe−κ(T−t)γ

−1

2
(γD)T e−κ(T−t)ρe−κ(T−t)γD +

(
γTκe−κ(T−t)(Xt − µ̃)

−γT e−κ(T−t)ρe−κ(T−t)γD
)

tanh(g(t, T,Xt))
]
.

Next we derive the derivative with respect to xi by

∂

∂xi
ΠDT (t) =

∂

∂xi

EP̃ [ςTD(XT )|Xt]

ςt

=
∂
∂xi
EP̃

[
ςTDTj |Xt

]
ςt

−
EP̃

[
ςTDTj |Xt

]
ςt

∂
∂xi
ςt

ςt

=
∂
∂xi
EP̃ [ςTDT |Xt]

ςt
−ΠDT (t)

∂
∂xi
ςt

ςt
.

Again, we calculate �rst

∂

∂xi
EP̃ [ςTDT |Xt]

= exp((µ̄− α)T )
∂

∂xi
exp(f(t, T,Xt)) cosh(g(t, T,Xt))

= exp((µ̄− α)T )

[(
∂

∂xi
f(t, T,Xt)

)
exp(f(t, T,Xt)) cosh(g(t, T,Xt))

+ exp(f(t, T,Xt)) sinh(g(t, T,Xt))
∂

∂xi
g(t, T,Xt)

]
= EP̃ [ςTDT |Xt]

(
∂

∂xi
f(t, T,Xt) + tanh(g(t, T,Xt))

∂

∂xi
g(t, T,Xt)

)
where

∂

∂xi
f(t, T,Xt) = γDi e

−κi(T−t)

∂

∂xi
g(t, T,Xt) = γie

−κi(T−t).

Furthermore

∂
∂xi
ςt

ςt
=

e−αt ∂
∂xi

cosh(γTXt + c)

e−αt cosh(γTXt + c)

= ςtγi tanh(γTXt + c)
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thus

∂

∂xi
ΠDT (t) =

∂
∂xi
Et [ςTkDTk ]

ςt
−ΠDT (t)

∂
∂xi
ςt

ςt

= ΠDT (t)

(
∂

∂xi
f(t, T,Xt) + tanh(g(t, T,Xt))

∂

∂xi
g(t, T,Xt)

− γi tanh(γTXt + c)
)

= ΠDT (t)
(
γDi e

−κi(T−t) + tanh(g(t, T,Xt))γie
−κi(T−t)

− γi tanh(γTXt + c)
)
. (3.9)

For the Ito-Doeblin formula, we need

d∑
i=1

∂

∂xi
ΠDT (t)µi(t,Xt) =

d∑
i=1

∂

∂xi
ΠDT (t)κi(µ̃i −X(i)

t )

= ΠDT (t)
(

(γD)T e−κ(T−t)κ(µ̃−Xt)

+ tanh(g(t, Tk, Xt))γ
T e−κ(T−t)κ(µ̃−Xt)

− tanh(f(t, T,Xt))γ
Tκ(µ̃−Xt)

)
.

This makes, using the shortrate formula,

∂

∂t
ΠDT (t) +

d∑
i=1

∂

∂xi
ΠDT (t)µi(t,Xt)

= ΠDT (t)

[
α+ (γD)Tκe−κ(T−t)(Xt − µ̃)− 1

2
γT e−κ(T−t)ρe−κ(T−t)γ

−1

2
(γD)T e−κ(T−t)ρe−κ(T−t)γD + γTκe−κ(T−t)(Xt − µ̃) tanh(g(t, T,Xt))

−γT e−κ(T−t)ρe−κ(T−t)γD tanh(g(t, T,Xt))

+ (γD)Tκe−κ(T−t)(µ̃−Xt) + γTκe−κ(T−t)(µ̃−Xt) tanh(g(t, Tk, Xt))

−γTκ(µ̃−Xt) tanh(f(t, T,Xt))
]

= ΠDT (t)

[
α− 1

2
γT e−κ(T−t)ρe−κ(T−t)γ

−1

2
(γD)T e−κ(T−t)ρe−κ(T−t)γD − γT e−κ(T−t)ρe−κ(T−t)γD tanh(g(t, T,Xt))

−γTκ(µ̃−Xt) tanh(f(t, T,Xt))
]

= ΠDT (t)

[
rt +

1

2
γTργ − 1

2
γT e−κ(T−t)ρe−κ(T−t)γ

−1

2
(γD)T e−κ(T−t)ρe−κ(T−t)γD − γT e−κ(T−t)ρe−κ(T−t)γD tanh(g(t, T,Xt))

]
.
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Next we derive the second derivative

∂2

∂xi∂xj
ΠDT (t) =

∂

∂xi
ΠDT (t)

(
γDj e

−κj(T−t) + tanh(g(t, T,Xt))γje
−κj(T−t)

− γj tanh(γTXt + c)
)

= ΠDT (t)
(
γDi e

−κi(T−t) + tanh(g(t, T,Xt))γie
−κi(T−t) − γi tanh(γTXt + c)

)
(
γDj e

−κj(T−t) + tanh(g(t, T,Xt))γje
−κj(T−t) − γj tanh(γTXt + c)

)
+ΠDT (t)

(
γiγje

−(κi+κj)(T−t)(1− tanh2(g(t, T,Xt)))

−γiγj(1− tanh2(γTXt + c))
)

= ΠDT (t)
(
γDi γ

D
j e
−(κi+κj)(T−t) + γDi γje

−(κi+κj)(T−t) tanh(g(t, T,Xt))

−γDi γje−κi(T−t) tanh(γTXt + c) + γiγ
D
j e
−(κi+κj)(T−t) tanh(g(t, T,Xt))

+γiγje
−(κi+κj)(T−t) tanh2(g(t, T,Xt))

−γiγje−κi(T−t) tanh(γTXt + c) tanh(g(t, T,Xt))

−γiγDj e−κj(T−t) tanh(γTXt + c)

−γiγje−κj(T−t) tanh(γTXt + c) tanh(g(t, T,Xt))

+γiγj tanh2(γTXt + c) + γiγje
−(κi+κj)(T−t)

−γiγje−(κi+κj)(T−t) tanh2(g(t, T,Xt))− γiγj + γiγj tanh2(γTXt + c)
)

= ΠDT (t)
(
γDi γ

D
j e
−(κi+κj)(T−t) + γDi γje

−(κi+κj)(T−t) tanh(g(t, T,Xt))

−γDi γje−κi(T−t) tanh(γTXt + c) + γiγ
D
j e
−(κi+κj)(T−t) tanh(g(t, T,Xt))

−γiγDj e−κj(T−t) tanh(γTXt + c)

−γiγj
(
e−κi(T−t) + e−κj(T−t)

)
tanh(γTXt + c) tanh(g(t, T,Xt))

+γiγje
−(κi+κj)(T−t)

−γiγj + 2γiγj tanh2(γTXt + c)
)
.

Which using the Ito-Doeblin formula is required in the form

1

2

d∑
i=1

d∑
j=1

ρij
∂2St
∂xi∂xj

=
1

2
ΠDT (t)

(
(γD)T e−κ(T−t)ρe−κ(T−t)γD + (γD)T e−κ(T−t)ρe−κ(T−t)γ tanh(g(t, T,Xt))

−(γD)T e−κ(T−t)ργ tanh(γTXt + c) + γT e−κ(T−t)ρe−κ(T−t)γD tanh(g(t, T,Xt))

−γTρe−κ(T−t)γD tanh(γTXt + c)

−2γTρe−κ(T−t)γ tanh(γTXt + c) tanh(g(t, T,Xt)) + γT e−κ(T−t)ρe−κ(T−t)γ

− γTργ + 2γTργ tanh2(γTXt + c)
)
,

whereby we used that due to symmetry of ρ and the diagonal matrix e−κ(T−t) we have

(e−κ(T−t)ρ)T = ρT (e−κ(T−t))T = ρe−κ(T−t)
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and

γT e−κ(T−t)ργ = (γT e−κ(T−t)ργ)T = (e−κ(T−t)ργ)Tγ

= γT (e−κ(T−t)ρ)Tγ = γTρe−κ(T−t)γ,

hence

1

2

d∑
i=1

d∑
j=1

ρij
∂2ΠDT (t)

∂xi∂xj

=
1

2
ΠDT (t)

(
(γD)T e−κ(T−t)ρe−κ(T−t)γD

+2γDe−κ(T−t)ρe−κ(T−t)γT tanh(g(t, T,Xt))

−2(γD)T e−κ(T−t)ργ tanh(γTXt + c)

−2γTρe−κ(T−t)γ tanh(γTXt + c) tanh(g(t, T,Xt)) + γT e−κ(T−t)ρe−κ(T−t)γ

− γTργ + 2γTργ tanh2(γTXt + c)
)
.

Now for the drift term of the Ito-Doeblin formula we get

ΠDT (t)

[
rt +

1

2
γTργ − 1

2
γT e−κ(T−t)ρe−κ(T−t)γ

−1

2
(γD)T e−κ(T−t)ρe−κ(T−t)γD − γT e−κ(T−t)ρe−κ(T−t)γD tanh(g(t, T,Xt))

+
1

2
γDe−κ(T−t)ρe−κ(T−t)γD + γDe−κ(T−t)ρe−κ(T−t)γ tanh(g(t, T,Xt))

−γDe−κ(T−t)ργ tanh(γTXt + c)

−γρe−κ(T−t)γ tanh(γTXt + c) tanh(g(t, T,Xt)) +
1

2
γe−κ(T−t)ρe−κ(T−t)γ

−1

2
γTργ + γργ tanh2(γTXt + c)

]
= ΠDT (t)

[
rt − γDe−κ(T−t)ργ tanh(γTXt + c)

−γTρe−κ(T−t)γ tanh(γTXt + c) tanh(g(t, T,Xt))

+γργ tanh2(γTXt + c)
]
. (3.10)

To derive the drift correction term ΛΠ(t,Xt), we follow the same approach as in the bond

market. Again, for simplicity, we de�ne ΛΠ(t, T,Xt) := CTΛ′Π(t, T,Xt) thus we require

dZP̃t = dZQt + ΛΠ(t, T,Xt)dt.

and hence with CCT = ρ

CdZQt = CdZP̃t − ρΛ′Π(t, T,Xt)dt.
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Which leads us to

ΠDT (t)
(

(γD)T e−κ(T−t)ργ tanh(γTXt + c)

+γTρe−κ(T−t)γ tanh(γTXt + c) tanh(g(t, T,Xt))

−γργ tanh2(γTXt + c)
)

=
d∑
i=1

∂

∂xi
ΠDT (t)

d∑
j=1

ρijΛ
(i)
Π (t, T,Xt)

= ΠDT (t)
(

(γD)T e−κ(T−t)ρΛ′Π(t, T,Xt) + tanh(g(t, T,Xt))γ
T e−κ(T−t)ρΛ′Π(t, T,Xt)

− tanh(γTXt + c)γTρΛ′Π(t, T,Xt)
)
.

This implies

ΛΠ(t, T,Xt) = Λ(Xt) = CTγ tanh(γTXt + c),

which in turn yields the following theorem.

Theorem 3.1.8. For the cosh model with state price density process (ςt) with

ςt = e−αt cosh(γTXt + c),

for all t ≥ 0 and (Xt) an Ornstein-Uhlenbeck process with dynamics (2.12) and (2.13) and

the stock price process (St) de�ned as the in�nite sum of discounted dividends with payo�

at time T

D(T,XT ) = exp
(
µ̄T + (γD)TXT

)
, (3.11)

the joined bond and stock market is arbitrage-free.

Proof. We constructed a measure, under which the price dynamics of a security which

pays a stochastic dividend D(T,XT ) at time T have a drift which equals the shortrate.

The resulting drift correction term is the same as in case of the bond market. Therefore,

�rst, the Novikov condition holds, making the measure an equivalent measure. Second, as

the drift equals the shortrate, it is a risk-neutral measure. As it is the same risk-neutral

measure we derived for the bond market, the market consisting of all dividend paying

securities ΠD(T ), T ≥ 0, bonds and the bank account is arbitrage-free. As a consequence,

the stock as a portfolio of dividend paying securities is priced arbitrage-free as well.

The market price of risk is already given by the bond market, see theorem 2.2.25.

Estimation

We want to estimate the joint bond and stock market model using the Extended Kalman

�lter. We implement the second dividend approach Dτ = exp
(
µ̄τ + γTXτ

)
whereby (Xt)

is a multi-dimensional Ornstein-Uhlenbeck process. The transition equations of the Cairns
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and cosh models hold in the expanded model as well. What is left is to specify the

measurement equation. For the cosh model, the stock price is given as a portfolio of

securities which pay a dividend at time τi, i ∈ I, hence

St =

∑
τi>t,i∈I E

P̃ [ςτiDτi |Xt]

ςt

=
∑

τi>t,i∈I

1

2ςt
exp(−ατi + µ̄τi)

[
exp

(
c+ (γD + γ)TEP̃ [Xτi |Xt]

+
1

2
(γD + γ)TΣ(t, τi)(γ

D + γ)

)
+ exp

(
−c+ (γD − γ)TEP̃ [Xτi |Xt] +

1

2
(γD − γ)TΣ(t, τi)(γ

D − γ)

)]
this can be used directly to derive the measurement equation.

yM (t, t+ τ1)
...

yM (t, t+ τn)

SMt

 =


g1(Xt; θ)

...

gn(Xt; θ)

gn+1(Xt; θ)

+ εt(θ)

whereby εt(θ) ∈ Rn+1 is a multivariate normal error term with Cov (εt(θ)) := Ht(θ) ∈
R(n+1)×(n+1) and yM (t, t + τi), i = 1, . . . , n and SMt are market observations. Unlike the

pure term structure model, however, we recommend to distinguish between the measure-

ment errors of interest rates on one side and the measurement errors of the stock market

on the other side. This implies

Ht(θ) := diag
(
ν, . . . , ν, νS

)
.

Next, we require the matrix Bt|t−1 to derive the Kalman gain matrix

Kt = Σt|t−1B
T
t|t−1F

−1
t|t−1.

The derivatives of g1(Xt; θ), . . . , gn(Xt; θ) may be taken from equation (2.25) in section

2.3.5. With (3.9),

∂

∂xi
St

=
∂

∂xi

∑
τi>t,i∈I ΠDτi (t)

ςt

=

∞∑
i=1

ΠDτi (t)
(
γDi e

−κi(τi−t) + tanh(g(t, τi, Xt))γie
−κi(τi−t) − γi tanh(γTXt + c)

)
This yields the matrix Bt|t−1. With Ft|t−1 = Bt|t−1Σt|t−1B

T
t|t−1 + Ht, the Kalman gain

matrix can be calculated and hence the Kalman �lter is completely speci�ed. We face,

however, several implementational problems.
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� We have to cut o� the in�nite sum of dividend paying securities. As the stock price

is a sum of discounted dividend payments, even for lower interest rates an additional

n+1-th dividend payment increases the stock price, yet only marginally in comparison

to the �rst n discounted dividends, hence cutting o� additional dividend payments

should be valid.

Note that this may change if we additionally use actual dividend data. In this case,

historically observed dividend payments have to be considered both in height and

frequency. As dividend payments are rather low, yet increasing in nominal terms, a

high number of dividend payment dates will have to be included.

In general, as mentioned before, we expect that cutting o� dividend payments of

later dates imply that expected dividends payed early will be overestimated to make

up for the later dividends.

� Whereas calibrating X0|0 to �t the initial yield curve was fairly easy and computa-

tionally fast, calibration to S0 is computationally slow and often inaccurate. Another

frequent �nding using the Kalman �lter was that the derivative of the stock price

dominated the derivative of the yields, therefore correction was due to stock market

mis�t only. We therefore propose to introduce a scaling factor d to the dividends

DT = exp
(
d+ µ̄T + (γD)TXT

)
.

This implies that exp(d) is a multiplicative factor to the stock price, but also to

the derivatives of the stock price with respect to xi. Therefore, d might allow to

downscale the impact of the stock price derivatives in the updating step. We either

can specify exp(d) = S0 directly, or we estimate d to incorporate the impact of

X0|0 �tted to term structure data. Furthermore, d may scale down stock price data.

Indeed, stability of the Kalman �lter increased once d was estimated alongside the

remaining model parameters.

� For simplicity in estimation and due to data availability, we only used price data.

One could additionally use dividend data, including dividend forecasts. We can

expect that such an approach would determine our cut-o� level of dividends as well

as improve our estimate of µ̄.

For estimation, we use S&P500 price index data. This re�ects well the assumption

that the insurance company invests in a well diversi�ed stock fund rather than a single

stock. Furthermore, S&P500 data shows a growing trend over the dataset from 1984 to

2009, with deviations from the trend which grow in absolute terms as the index increases,

re�ecting leverage. As we assumed a constant long-term trend µ̄, S&P500 data should

�t well into our approach and furthermore might allow to derive empirical proxies for µ̄.

Finally, note that anglo-saxon stock markets typically imply semiannual or even quarterly

dividend payments, which reduces the dividend jump in the data.
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Maturity 0.25 0.5 1 2 3 5 7 10

MAEs DDM 15.5 7.1 11.1 13.8 11.4 6.7 9.8 16.2

MAEs two-factor pure bond cosh 16.7 6.8 8.9 16.3 13.8 8.1 6.6 10.4

Table 3.1: Mean Absolute Errors in basis points of the term structure in the cosh model

augmented by a dividend discount stock market model, and MAEs of the two-factor pure-

bond cosh model for comparison.

Results

The model was implemented using only stock price data, omitting historical dividend

payment date. Therefore, we had to make assumptions regarding the dividend payment

dates. In a �rst implementation, we assumed that all dividends are payed in December.

Under this assumption, model-implied stock prices showed vastly overestimated dividend

jumps in December. Assuming more frequent dividend payments naturally reduced the

dividend jumps. Nevertheless, without using dividend data directly and specifying a cut-

o� level describing the maximal maturities of discounted dividends included, the easiest

way to implement a dividend discount model was assuming monthly dividend payments.

Note that for stock market indices or stock funds, the assumption of monthly dividend

payments might actually be realistic.

Due to implementational di�culties described above and computational limits, we were

only able to derive a single reasonable estimate of the dividend discount model. Whereas

we found it fairly easy to derive a model which �ts well the term structure and provides

model-implied stock prices highly correlated to the true stock price, it is fairly di�cult to

derive a model which �ts stock prices in absolute terms. The main problem seems to be

initial �t. In most cases, the initial stock price was overestimated and as a consequence,

the dividend drift µ̄ was rather low.

The model is given by α = 0.051, γ = (−0.47,−0.18, 0.01)T and γD = (−1.28, 1.94, 0.69)T ,

µ = (1.9,−12.5,−10.8)T , µ̃ = (−4.9, 5.7,−12.9)T , µ̄ = −0.0023, κ = (0.05, 0.062, 0.7)T ,

ρ12 = 0.34, ρ13 = −0.04, ρ23 = 0.1 and the scaling factor c = −14.3. Measurement errors

for the term structure were ν = 0.0014 and for the stock price data νS = 0.0082, which

already indicates a decent historical �t. Note that generally the estimates provided very

low measurement errors for the term structure data, yet substantially higher measurement

errors for stock data ranging up to 0.05.

Table 3.1 provides mean absolute errors in basis points for the term structure. On average,

historical term structure �t of the three-factor joint bond and stock market model is half

a basis point worse than historical �t of the two-factor pure bond market model.

Considering the stock market, the mean absolute error of the S&P500 index is at

merely 20 ticks. Figure 3.1 shows both the model implied and the observed stock prices.

We see that the calibration algorithm provided a starting point X0|0 which signi�cantly
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Figure 3.1: Filtered state vector components (left) and empirical proxies of the �rst two

principal components of term structure dynamics.

overestimated the stock price. However, the Kalman �lter corrected this initial overesti-

mation over the �rst 4 steps. Excluding these, the mean absolute error reduces to 12 ticks.

This is an extremely close historical �t over 28 years of stock price data. Note in particular

that the model �ts well the 1987 stock market crash, the 1998 turmoil, the bust of the

dot-com-bubble and at least the starting of the recent �nancial crisis. As the Kalman �lter

calculates a term added to the Loglikelihood function at each time step, excluding the

contribution of the �rst four steps might improve estimation.

We examine the �ltered underlying state vector in �gure 3.2. We �nd clear correlation

between one of the state factor components and the slope and a second state factor com-

ponent and the stock price. The third state factor is correlated to the 10-year rate, yet it

does not cover the trend behavior so far encountered in the level factor. One possibility is

that trend behavior is covered by the stock price factor. Both the dynamics of the level and

the stock price factor provide very small mean reversion, as could be seen in our estimates

of κ2 and κ3.

Note that the long-term trend in dividend payments µ̄ is slightly negative. This does not

necessarily imply that stock prices show a slightly negative trend as well. Furthermore,

estimates of µ̄ were highly unstable in general. As the long-end yield shows a falling trend

throughout the dataset, causing di�culties in deriving stable estimates of µL as seen in

section 2.3.8, even without a positive trend in dividend payments falling long-end yields

imply decreased discounting of later dividends and therefore a rising trend in stock prices

due to the dividend discount model.

Note also that estimates of α were very unstable, even though we excluded long-end term

structure data and therefore expected stable estimates of α ≈ 4.5%. Given how α enters
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Figure 3.2: Filtered state vector components (left) and empirical proxies of the �rst two

principal components of term structure dynamics.

the stock price model in (3.8) it is reasonable to assume that the problems of unstable α

and µ̄ are closely related. We expect that exogenous speci�cation of both α and µ̄ should

provide more stable results. Note that the di�erence of α and µ̄ should be closely related

to a long-term equity risk premium.

To summarize, we found that estimation of the dividend discount approach still requires

further work, particularly considering the inclusion of historical dividend data and the

implementation of historical dividend payment dates including the examination of dividend

jumps. Note also that historically observed dividends and dividend forecasts are crucial

in specifying a cut-o� level for the dividend payment dates considered. In particular, we

recommend using historical dividend data for estimation, and we recommend exogenous

speci�cation of both the asymptotic long rate α and the long-term dividend growth trend µ̄.

Furthermore, parallelized computation is recommendable. Nevertheless, these preliminary

results already show that the dividend discount model can provide joint bond and stock
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market models which �t historical data extremely well.

Note also that the dividend discount model provides a stock price formula which only

depends on the current stateXt. This simpli�es Monte Carlo-based pricing of stock options

under interest rate risk substantially. In this case, the current price of a call on the stock

St is given by

EP̃ [ςT (ST −K)+|Xt]

ςt

It may easily be simulated as only the conditional distribution of XT |Xt is required. As

stock options with very long times to maturity therefore depend jointly on the stock model

and the state price density, it might be interesting to include these options into estimation

of the joint model.

3.1.4 The Black-Scholes stock market model

In a basic Black-Scholes model, stock price dynamics under the risk-neutral measure are

given by

dSt = rStdt+ σStdW
Q
t

where the shortrate r is assumed as constant, see for example [MR05] or [Shr04]. Now for

the joint bond and stock market model, we have to use the stochastic shortrate process (rt)

provided by the arbitrage-free bond market model, hence under the the riskless measure

dSt = rtStdt+ σStdW
Q
t ,

see for example [Shr04]. Using the market price of risk as de�ned by the bond market

model, we can derive stock market dynamics under the reference or the physical measure.

As the stock price is de�ned under the risk-neutral measure, no-arbitrage holds for the

stock market. Closed form solutions to the stock price can be derived as solutions to the

stochastic di�erential equation of the stock price above. Alternatively, using the Euler-

Maruyama scheme [KP99], an iterative approximation may be used.

An example for this approach may be found in Albrecht [Alb07], where a one-factor Vasicek

[Vas77] model is used for the shortrate and a Black-Scholes model for the stock dynamics.

The Vasicek model provides the shortrate, which is used as the drift in a Black-Scholes

model of the stock price. A two-dimensional correlated Brownian motion provides the

stochastic driver of the model, whereby the shortrate depends on one component and

the stock depends on both, although this correlation assumption could be generalized.

Contingent claims dependent on both bond and stock market instruments can then be

priced using the standard formula under the risk-neutral measure.

We will demonstrate this approach using the cosh model, for which the shortrate is given

by

rt = α− γTκ(µ̃−Xt) tanh(γtXt + c)− 1

2
γTργ.



168 3.1.4 The Black-Scholes-based model

Therefore, the Black-Scholes model implies a stock price

dSt = rtStdt+ Stσ
TCdZQt

=

(
α− γTκ(µ̃−Xt) tanh(γtXt + c)− 1

2
γTργ

)
Stdt+ Stσ

TCdZQt (3.12)

where we used that dWQt = CdZQt with CCT = ρ as de�ned previously. Solving this

equation for St provides us with a closed-form solution for the stock price. To do so, we

use the following theorem.

Theorem 3.1.9. Let Z =
(
Z(1), . . . , Z(d)

)
be a d-dimensional Brownian motion. Fur-

thermore, let s0 ∈ R and µ, ν, λj, σj, j = 1, . . . , .d be progressive measurable real-valued

processes with ∫ t

0
(|µs|+ |νs|)ds < ∞ (3.13)

P-almost surely for all t ≥ 0 and∫ t

0
(λ2
j (s) + v2

j (s))ds <∞ (3.14)

P-almost surely for all t ≥ 0 and j = 1, . . . , d. Then the stochastic di�erential equation

dSt = (µtSt + νt) dt+
d∑
j=1

(λj(t)Xt + vj(t)) dWj(t) (3.15)

with S0 = s0 has the (almost surely) unique solution

St = Kt

s0 +

∫ t

0

1

Zs

νs − d∑
j=1

λj(s)vj(s)

 ds+
d∑
j=1

∫ t

0

vj(s)

Ks
dWj(s)


with

Kt = exp

∫ t

0

(
µs −

1

2
||λs||2

)
ds+

d∑
j=1

∫ t

0
λj(s)dWj(s)


where (W1, . . . ,Wd) is a Brownian motion.

Proof. See Korn [KK01], page 63.

Theorem 3.1.10. The price of a stock which pays no dividend under the Black-Scholes

framework with cosh shortrate dynamics is given by

St = s0 exp

(∫ t

0
rsds−

1

2
σTρσt+ σTCZQ(t)

)
for all t ≥ 0 whereby ZQ =

(
ZQ1 , . . . , Z

Q
d

)
is a Brownian motion under the risk-neutral

measure.
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Proof. By (3.12), we have µt := rt, vt = 0, νt = 0 and

Stσ
TCdZQt = St

d∑
i=1

σi

d∑
j=1

CijdZ
Q
j (t)

=
d∑
j=1

St

(
d∑
i=1

σiCij

)
dZQj (t),

hence

λj(t) :=
d∑
i=1

σiCij .

With λt := σTC

||λ(t)|| :=
√
σTC(σTC)T =

√
σTρσ.

Hence by theorem 3.1.9

St = s0Kt

with

Kt = exp

∫ t

0

(
rs −

1

2
σTρσ

)
ds+

d∑
j=1

∫ t

0

d∑
i=1

σiCijdZ
Q
j (t)


= exp

(∫ t

0
rsds−

1

2
σTρσt+ σTCZQ(t)

)
which provides the desired result.

We employ the drift correction terms derived using the bond market model to implement

the change of measure to the reference or the physical measure. Hence, in general, we have

dSt = rtStdt+ σTStC
(
dZPt + ΛP (Xt)

)
= St

(
rt + σTCΛP (Xt)

)
dt+ σTStCdZ

P
t

for some equivalent measure P ∈ {P̃,P}. Following the proof of theorem 3.1.10, we have

µt = rt + σTCΛP (Xt)

whereas νt, vt and λ(t) are given as in theorem 3.1.10. This provides the stock price under

an equivalent measure as follows.

Theorem 3.1.11. The price process of a stock which pays no dividend under the Black-

Scholes framework with cosh shortrate dynamics under a measure P equivalent to the risk-

neutral measure with a drift correction term Λ(Xt) between the risk-neutral measure and

the measure P is given by

St = s0 exp

(∫ t

0

(
rs + σTCΛP (Xt)

)
ds− 1

2
σTρσt+ σTCZP (t)

)
.

for all t ≥ 0 whereby ZP = (ZP1 , . . . , Z
P
d ) a Brownian motion under the measure P .
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Corollary 3.1.12. The price process of a stock which pays no dividend under the Black-

Scholes framework with cosh shortrate dynamics under the physical measure P is given

by

St = s0 exp

(∫ t

0

(
rs + σTργ tanh(γTXs + c)

)
ds− σTκ(µ− µ̃)t

−1

2
σTρσt+ σTCZ(t)

)
for all t ≥ 0 where Z = (Z1, . . . , Zd) is a Brownian motion under P with uncorrelated

components.

Proof. In the cosh model, the market price of risk is given by

ΛQ,P(Xt) = Cγ tanh(γTXt + c)− C−1κ(µ− µ̃),

see theorem 2.2.25. Since the Novikov condition holds for ΛQ,P(Xt), we can apply theorem

3.1.9. Hence, using theorem 3.1.11, we get

St = s0 exp

(∫ t

0

(
rs + σTCΛQ,P(Xs)−

1

2
σTρσ

)
ds+ σTCZ(t)

)
= s0 exp

(∫ t

0

(
rs + σTC

(
Cγ tanh(γTXs + c)− C−1κ(µ− µ̃)

))
ds− 1

2
σTρσds

+σTCZ(t)
)

= s0 exp

(∫ t

0

(
rs + σTργ tanh(γTXs + c)

)
ds

−σTκ(µ− µ̃)t− 1

2
σTρσt+ σTCZ(t)

)
.

Dividend payments

To implement dividend payments, we can follow Björk [Bjö98] and assume a continuous

dividend yield process

dDt = Stδ(St)dt. (3.16)

Then the dynamics of the stock under the risk-neutral measure become

dSt = (rt − δ(St))Stdt+ Stσ
TCdZQt .

Using theorem 3.1.9, we can again derive a closed form solution to the stock price, this

time dependent on δ(·).

Theorem 3.1.13. Let (St) be the price process of a stock which pays a continuous dividend

yield as given in (3.16) with (δ(St)) bounded, non-negative and progressively measurable.
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Under a Black-Scholes framework with stochastic shortrate taken from the cosh model the

stock price is given by

St = s0 exp

∫ t

0
(rs − δs)ds−

1

2
σTρσt+

d∑
i=1

d∑
j=12

σiCijZ
Q
j (t)


for t ≥ 0.

Proof. In this case,

µt := rt − δt = α− γTκ(µ̃−Xt) tanh
(
γTXt + c

)
− 1

2
γTργ − δt.

µt is progressive measurable. Furthermore, νt = 0. For rt, exp
(∫ t

0 rsds
)
< ∞ < is easily

ful�lled from the same reasons as in the previous case without dividends. As we assumed

dividend returns to be bounded, (3.13) holds. On the other side, vt = 0 and λt is de�ned

as previously, in particular (3.14) holds. Now if we apply again theorem 3.1.9, then

St = s0Kt

with

Kt = exp

∫ t

0
(rs − δs)ds−

1

2
σTρσt+

d∑
i=1

d∑
j=1

∫ t

0
σiCijdZ

Q
j (t)


= exp

∫ t

0
(rs − δs)ds−

1

2
σTρσt+

d∑
i=1

d∑
j=1

σiCijZ
Q
j (t)

 .

This may be used to specify δs in such a way that the integral
∫ t

0 rs − δsds has a closed

form solution. Note, however, that δs must still be mean reverting and positive.

Implementation

The main implementational problem here is the identi�cation of a state vector process

under the physical measure for the state space model required in the Extended Kalman

�lter. First, we have an Ornstein-Uhlenbeck process

dXOU
t = κ

(
µ−XOU

t

)
dt+ CdZt

driving the bond market where Z = (Z1, . . . , Zd) is a Brownian motion under the physical

measure with uncorrelated components. Second, the stock price formula depends on the

previous Ornstein-Uhlenbeck process through both the shortrate and the market price of

risk. Nevertheless, the stock price process also depends on a Brownian motion

dXBM
t = dZt.
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As both processes (XOU ) and
(
XBM

)
are driven by Z = (Z1, . . . , Zd), they are clearly

correlated. Whereas this joint dependence on (Z) is mathematically simple, we will see

that this requires special attention in implementing a Kalman �lter. Neither
(
XBM

)
nor(

XOU
)
can be de�ned as the state vector since we cannot derive one process from the other

for t > 0. If we consider the respective discretized transition equations of both
(
XOU

)
and(

XBM
)
, we get

XOU
t = e−κXOU

t−1 + ηt (3.17)

and

XBM
t = XBM

t−1 + ηt (3.18)

whereby ηt is multivariate normal with zero mean and covariance matrix Q(θ) given by

Q(θ) = Cov [Xt+1|Xt+∆] = Cov[Xt+∆]

=

 d∑
i=1

d∑
j=1

ρij
κi + κj

(
1− e−(κi+κj)∆

)
i,j=1,...,d

(3.19)

where θ denotes again the vector of model parameters. The idea now is to use the white

noise process (ηt) as the new state process. Then, using the Kalman �lter as de�ned in

section 2.3, the transition equation of the new state vector is given by

Xt = ηt(θ).

This implies

Xt|t−∆ = 0

and

Σt|t−∆ = Q(θ).

For the measurement equations of the stock price and interest rates, however, we still

require both
(
XOU

)
and

(
XBM

)
. We can use the discretizations (3.17) and (3.18) to

derive the current state of XOU
t and XBM

t , respectively, as a function of XOU
t−∆ and XBM

t−∆

and the current state Xt. This implies

E[XOU
t+n∆|XOU

t ] = e−κn∆XOU
t = e−κ(n+1)∆XOU

t−∆ + e−κn∆Xt.
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Hence, the measurement equations for observed interest rates yM (t, t+ τi) become

yM (t, t+ τi) = gi(Xt; θ) + ε
(i)
t (θ)

= α−
log cosh

(
γTE

[
XOU
t+n∆|XOU

t

]
+ c
)

n∆
+

log cosh
(
γTXOU

t−∆ + γTXt + c
)

n∆

+
γTΣ(t, t+ n∆)

2n∆
+ εit(θ)

= α−
log cosh

(
γT e−κn∆XOU

t + c
)

n∆
+

log cosh
(
γTXOU

t−∆ + γTXt + c
)

n∆

+
γTΣ(t, t+ n∆)

2n∆
+ εit(θ)

= α−
log cosh

(
γT
(
e−κn∆e−κ∆XOU

t−∆ + e−κn∆Xt

)
+ c
)

n∆

+
log cosh

(
γT
(
e−κ∆XOU

t−∆ +Xt

)
+ c
)

n∆
+
γTΣ(t, t+ n∆)

2n∆
+ εit(θ)

= α−
log cosh

(
γT
(
e−κ(n+1)∆XOU

t−∆ + e−κn∆Xt

)
+ c
)

n∆

+
log cosh

(
γT
(
e−κ∆XOU

t−∆ +Xt

)
+ c
)

n∆
+
γTΣ(t, t+ n∆)

2n∆
+ εit(θ).

As e−κ(n+1)∆XOU
t−∆ can be regarded a constant, we get for i = 1, . . . , d

∂

∂xj
gi(Xt; θ) =

∂

∂xj

(
α−

log cosh
(
γT
(
e−κ(n+1)∆XOU

t−∆ + e−κn∆Xt

)
+ c
)

n∆

+
log cosh

(
γT
(
e−κ∆XOU

t−∆ +Xt

)
+ c
)

n∆
+
γTΣ(t, t+ n∆)

2n∆

)

=
1

n∆

(
−

sinh
(
γT
(
e−κ(n+1)∆XOU

t−∆ + e−κn∆Xt

)
+ c
)

cosh
(
γT
(
e−κ(n+1)∆XOU

t−∆ + e−κn∆Xt

)
+ c
)γje−κjn∆

+
sinh

(
γT
(
e−κ∆XOU

t−∆ +Xt

)
+ c
)

cosh
(
γT
(
e−κ∆XOU

t−∆ +Xt

)
+ c
)γj)

=
1

n∆

(
− tanh

(
γT
(
e−κ(n+1)∆XOU

t−∆ + e−κn∆Xt

)
+ c
)
γje
−κjn∆

+ tanh
(
γT
(
e−κ∆XOU

t−∆ +Xt

)
+ c
)
γj
)
.

For the second measurement equation describing the stock market, we recommend return

data. Given the de�nition of the stock price under the physical measure in corollary 3.1.12,

we require the integral ∫ t

0
rs + σTCΛ(Xs)ds,

which has to be approximated. On the other side, stock returns are given by

log

(
St
St−∆

)
=

∫ t

t−∆

(
rs + σTργ tanh(γTXs + c)

)
ds− σTκ(µ− µ̃)∆

−1

2
σTρσ∆ + σTC (Z(t)− Z(t−∆)) .
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In this case, we only have to approximate the integral∫ t

t−∆

(
rs + σTργ tanh(γTXs + c)

)
ds,

which is preferable. As approximations we propose∫ t

t−∆
rsds = y(t−∆, t)∆

which is a reasonable assumption for ∆ short enough. Furthermore∫ t

t−∆
σTργ tanh (γXs + c) ds =

1

2
(tanh (γXt−∆ + c) + tanh (γXt + c))σTργ.

Therefore, discretizing the stock return we get the (n + 1)-th measurement equation, the

stock returns RM (t−∆, t) observed in the stock market, by

RM (t−∆, t)

= gn+1(Xt; θ) + εn+1
t (θ)

=
1

∆
log

(
St
St−∆

)
+ εn+1

t (θ)

=
1

∆

(
y(t−∆, t)∆ +

1

2

(
tanh

(
γTXOU

t−∆ + c
)

+ tanh
(
γTXOU

t + c
))
σTργ∆ + σTκ(µ− µ̃)∆

−1

2
σTρσ∆ + σT

(
XBM
t −XBM

t−∆

))
+ εn+1

t (θ)

=
1

∆

(
y(t−∆, t)∆ +

1

2

(
tanh

(
γTXOU

t−∆ + c
)

+ tanh
(
γTXOU

t + c
))
σTργ∆ + σTκ(µ− µ̃)∆

−1

2
σTρσ∆ + σT

(
XBM
t−∆ +Xt −XBM

t−∆

))
+ εn+1

t (θ)

=
1

∆

(
y(t−∆, t)∆ +

1

2

(
tanh

(
γTXOU

t−∆ + c
)

+ tanh
(
γT
(
e−κ∆XOU

t−∆ +Xt

)
+ c
))
σTργ∆

+σTκ(µ− µ̃)∆− 1

2
σTρσ∆ + σTXt

)
+ εn+1

t (θ).

With this, we can calculate the derivatives by

∂

∂xj

(
gn+1(Xt; θ) + ε

(d+1)
t (θ)

)
=

∂

∂xj

1

∆

(
y(t−∆, t)∆ +

1

2

(
tanh

(
γTXOU

t−∆ + c
)

+ tanh
(
γT
(
e−κXOU

t−∆ +Xt

)
+ c
))
σTργ∆

+σTκ(µ− µ̃)∆− 1

2
σTρσ∆ + σTXt

)
=

1

∆

(
1

2

∂

∂xj
tanh

(
γT
(
e−κXOU

t−∆ +Xt

)
+ c
)
σTργ∆ + σj

)
=

1

∆

(
1

2

(
1− tanh2

(
γT
(
e−κXOU

t−∆ +Xt

)
+ c
))
σTργ∆γj + σj

)
.

Now the measurement error vt can be derived as

Ft|t−1 = Bt|t−∆Σt|t−∆B
T
t|t−∆ +Ht
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whereby Ht = diag
(
ν, . . . , ν, νS

)
∈ R(n+1)×(n+1). The Kalman gain matrix is de�ned by

Kt =
(
Bt|t−∆Σt|t−∆

)T
F−1
t|t−∆

and �nishes the updating steps

Xt|t = Xt|t−∆ +Ktvt = Ktvt

and

Σt|t = Σt|t−∆ −KtFt|t−∆K
T
t = Q(θ)−KtFt|t−∆K

T
t .

Note that these updates merely provide Xt|t and Σt|t, which will, however, not contribute

to the conditional expectations Xt|t−∆ and Σt|t−∆ by de�nition of the state vector as white

noise. On the other side, we require additional updating steps of the Ornstein-Uhlenbeck

process
(
XOU

)
and the Brownian motion

(
XBM

)
XOU
t|t = e−κ∆XOU

t|t−∆ +Xt|t

and

XBM
t|t = XBM

t|t−∆ +Xt|t.

Whereas this implements an Extended Kalman �lter, note that we must expect that the

model provides a poorer �t than the previous implementations of the Extended Kalman

�lter. For once, we had to approximate the integral in the stock return. Furthermore,

the Extended Kalman �lter as implemented does not provide a useful transition equation.

Every estimate of the state vector Xt e�ectively is based solemnly on the updating step.

Only through
(
XOU

)
and

(
XBM

)
do we have a correction.

Results

We implement a three-factor model. One main di�erence between the Black-Scholes based

approach and the dividend discount model is computational speed. Whereas the dividend

discount model is computationally slow, the Black-Scholes based approach is very fast in

estimation and simulation alike, since calculation of the current stock return is compu-

tationally equivalent to computation of an interest rate with given maturity. We were

therefore able to derive several estimation results.

First note that stock returns di�er substantially from interest rates in autocorrelation and

variance. Whereas interest rates are highly autocorrelated, autocorrelation of monthly

stock returns is less than 0.01 for the dataset used. Standard deviation of interest rate

time series used for estimation varies between 0.021 and 0.024, whereas standard deviation

of monthly stock returns is at 0.5. To account for these di�erences, we implemented two

approaches, based on restrictions of the parameter vector γ. The framework presented by
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Assuming γi 6= 0, i = 1, . . . , 3

5.3 4.4 5.8 5.3 4.0 3.5 4.5 5.9

5.4 4.4 5.8 5.4 4.1 3.6 4.5 5.9

5.4 4.4 5.8 5.4 4.0 3.5 4.5 5.9

Assuming γ3 = 0

12.7 5.2 8.8 12.5 8.8 6.1 5.4 9.9

12.7 5.2 8.7 12.5 8.8 6.0 5.4 9.9

12.7 5.2 8.8 12.5 8.8 6.0 5.4 9.8

Table 3.2: Mean Absolute Errors of the term structure by joint bond market and Black-

Scholes-based stock market model based on the cosh model.

Albrecht [Alb07] implies a pure stock market factor, which in our model would be equiv-

alent to γ3 = 0. We will consider two model frameworks, one without restrictions on γ,

which implies that the state vector drives both stock and bond markets, and one with

γ3 = 0, which implies two state vector components driving bond and stock markets, and

one state vector component driving only the stock market. Note that implementation of

these restrictions is very easy, and pricing formulae still hold in contrast to Albrecht, which

had signi�cant problems in implementing correlated stochastic factors. In this section, all

state vector components are assumed to be correlated and correlations are estimated due

to historical data.

Table 3.3 provides the parameter estimates. Note also that the parameter estimates are

fairly stable. We see that Loglikelihood values of the restricted model are signi�cantly

lower than in the unrestricted model.

Table 3.2 provides MAEs of implied yield curves. We see that restricting γ implies a

poorer term structure �t. The reason, con�rmed later by examining the �ltered vectors

(XBM ) and (XOU ), is that all three vector components contain term structure data for

general γ, whereas γ3 = 0 guarantees that the third state vector component drives stock

returns only and therefore improves stock return �t.

Considering historical �t of the stock price, we have MAEs in basis points of more

than 1700 for general γ and 18 basis points for γ3 = 0. The reason is that for γ3 = 0,

the Extended Kalman �lter �ts Z3 to the observed stock price, whereas with general γ a

trade-o� exists between �tting the stock price and the term structure. Given the lower

Loglikelihood values of the restricted approach, we can expect that the distribution of Z3

according to the �ltering in the restricted case deviates from the theoretical model-implied

distribution of Z3. By de�nition of the model, stock returns are normally distributed,

whereas it is well known that this is not the case in reality. Therefore the good historical

�t of the model assuming γ3 = 0 does not re�ect the basic problems this approach takes
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from the Black-Scholes model. We expect that non-normality of stock returns is responsible

for the lower Loglikelihood values of the restricted model. A straightforward improvement

of the joint model would allow for stochastic volatility of the state vectors, thereby intro-

ducing stochastic volatility in the stock market as well as the bond market.

Figure 3.3 shows historical and model-implied stock returns for general γ. We see

that, although model-implied returns deviate substantially, they are nevertheless highly

correlated.

We next examine the �ltered factors XBM and XOU . For γd = 0, we �nd a level and

a slope factor, as usually. The remaining factor drives the stock returns. For general γ,

however, the third factor and curvature are correlated by −0.78. This implies that the

third factor describes curvature rather than stock returns. It also explains the signi�cantly

better bond market �t found in table 3.2 for the model assuming general γ. It seems that

term structure dynamics dominate the stock market observations. It is thus surprising

that model-implied stock returns nevertheless show such a correlation with observed stock

market returns.

3.1.5 Summary

In this section we presented two approaches to expand state price density models of the

bond market to joint bond and stock market models. In general, stock market models may

be implemented using return-based or price-based approaches. Both approaches have their

merits: banking applications typically consider stock derivatives, which are based on stock

prices rather than returns. Therefore, price-based approaches are superior for banking

applications. Once dividend payments are introduced, however, the situation changes. To

realistically implement discrete dividend payments, we require path-dependent approaches

and consider reinvestment of dividends payed. In insurance applications, reinvestment of

dividends is an important task since, over the long run, dividend returns make up a sizeable

part of overall stock returns and furthermore intermediate dividend payments provide free

cash �ows without the need to liquidate assets under management.

We then considered in general implementation of stock models within the state price

density approach. We found that simple restrictions imply that assuming dividend pay-

ments, the product of the state price density and the stock price (ςtSt) must be a super-

martingale, whereas without dividend payments this product must be a martingale. The

wealth process including reinvested dividends is a martingale. Considering Rogers generic

approach to de�ne term structure models, these �ndings imply that a joint arbitrage-free

bond and stock market model requires de�nition of two functions f and g which guarantee

that the state price density (e−αtf(Xt))t≥0 is a supermartingale and (e−αtf(Xt)g(Xt))t≥0

is either a martingale or a supermartingale dependent on whether dividend payments occur

or not. Given the problems in �nding a function f such that e−αtf(Xt) is a supermartin-
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gale, it became obvious that Rogers generic approach does not allow for a simple de�nition

of a joint bond and stock market model.

We de�ned two alternative approaches. Both are based on simple ideas independent

from the bond market model and its de�nition. First, we use the so-called dividend dis-

count model, which assumes that the stock price at time t equals the discounted value

of all future dividends the stockholder will receive. Using the state price density to dis-

count the dividends links the bond market model and the stock market model. All that is

yet required is a model which describes dividend payments as a function of the underlying

state vector. Based upon straightforward economic considerations, we de�ned dividends as

functions of the state vector in such a way that the current price of any dividend payed can

be expressed in closed form for the cosh model. For the Cairns model, the same approach

is mathematically possible, yet computationally infeasible. For the cosh model, we derive

no-arbitrage of the joint bond and stock market. Furthermore, we present an Extended

Kalman �lter which allows to jointly estimate stock and bond market dynamics. Whereas

implementation requires further work, preliminary results show that the joint model is

able to jointly �t historical bond and stock market data remarkably well. Furthermore, as

the stock price at time T in this model is a function of the current state XT only, Monte

Carlo-based pricing of stock options under stochastic interest rates is remarkably easy as

well.

The second approach presented is based on the Black-Scholes stock market model un-

der the risk-neutral measure. Using the drift correction terms as derived for the bond

market model, we can derive a formula for the stock price under the physical measure.

Again, we present how to estimate the joint model using the Extended Kalman �lter. The

resulting model is computationally superior to the dividend discount model, yet it does

not �t historical data to the same extent as the dividend discount model.

The basic ideas of the two approaches presented may be applied to both the cosh and the

Cairns model. Nevertheless, the dividend discount approach is computationally unfeasible

for the Cairns model. The Black-Scholes approach, on the other side, proved to be fairly

easy in implementation and estimation and therefore should allow for expansion of the

Cairns model as well.

Additional work is yet required to improve estimation speed and stability in both ap-

proaches. To test the joint model, long-term stock options may provide a reasonable test

of both stochastic discounting and stock price dynamics. It is important to note, however,

that both models do not incorporate stochastic volatility, which is likely required to price

stock market derivatives.
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3.2 Macroeconomic variables

It is well known that the term structure is the major link between macroeconomy and

�nance. Some stylized facts were already mentioned in 2.1, namely the connection of the

slope with monetary policy and the business cycle on one hand and the connection of

long-term yields with in�ation expectations on the other. We also saw how inclusion of

macroeconomic data improves forecasting. In this section, we will describe possibilities to

de�ne joint macro-�nance models and how to implement these approaches in case of the

Cairns and cosh models.

3.2.1 Literature overview

As an introduction, we present a literature overview �rst covering the mutual dependencies

between the term structure and macroeconomic information, and second considering the

approaches how macroeconomic information is implemented within term structure models.

In particular, three questions are of major interest:

� How does macroeconomic information a�ect the term structure and vice versa?

� Should dependencies between macroeconomic variables and the term structure be

implemented uni-directional or bi-directional?

� which macroeconomic variables are used?

Evans and Marshall [EM01] examine macroeconomic shocks on the nominal yield curve.

They present empirical evidence that macroeconomic variables explain most of the variation

of interest rates with maturities ranging from 1 month through 5 years. This implies a

clear uni-directional link from macroeconomic information to term structure dynamics.

Another important part of the literature describes monetary policy as an uni-directional

link from macroeconomic variables to the term structure. Taylor [Tay93] presents a simple

rule which describes how the central bank sets its policy rate based on in�ation and output

and their respective long-term trends. Now whereas such a policy rule implements an

uni-directional link from macroeconomic variables to the term structure, note that the

underlying goal of monetary policy is to control in�ation and promote economic growth.

If the current term structure re�ects monetary policy, we should be able to forecast future

macroeconomic variables based on the current term structure or, more precisely, based on

the stand of current monetary policy as re�ected in the current term structure. Bernanke

and Blinder [BB92] indeed prove that the slope re�ects the conduct of monetary policy

and therefore predicts the true goal of the monetary authority: limiting in�ation and

promoting economic growth on the very long run. Estrella and Mishkin [EM97] also show

that monetary policy is an important determinant of the slope, but not exclusively. They

also �nd a signi�cant predictive power of the term structure for both real activity and
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in�ation. Estrella and Hardouvelis [EH91] showed that term structure-based forecasts

even outperform survey forecasts of macroeconomic variables, which proves the existence

of an important link from the term structure to macroeconomic variables.

We can conclude that monetary policy implies a bi-directional approach to implement

macroeconomic variables within a term structure model: monetary policy sets the current

term structure in response to the current macroeconomic outlook with the explicit goal to

in�uence future dynamics of macroeconomic variables. Macroeconomic variables and the

term structure should therefore be implemented as a joint model of mutually dependent

factors. Monetary policy rules can be used to implement this in a joint macro-�nance

model.

Dewachter and Lyrio [DL03] present such a bi-directional approach. They de�ne an

essentially a�ne term structure model6 which includes macroeconomic factors. They imple-

ment output gap, in�ation, stochastic central tendency of in�ation and the instantaneous

real interest rate as (partly) observable factors driving the term structure. In particular,

this implies that at least some state factors are observable in the Kalman �lter approach

used. Dewachter and Lyrio �nd that the level of the term structure is related to in�a-

tion expectations, whereas the slope captures the business cycle and curvature is related

to monetary policy. Diebold, Rudebusch and Aruoba [DRA04] also �nd that level and

in�ation on one side and slope and real activity on the other side are highly correlated.

The curvature factor, however, is unrelated to any of the main macroeconomic variables.

Rudebusch and Wu [WR04] �rst consider a yields-only model and �nd that the latent

term structure factors are closely related to macroeconomic and monetary policy factors,

namely in the same way as Dewachter and Lyrio [DL03]. Then they provide an a�ne

term structure model as a joint macro-�nance model with two latent factors and two state

factors linked to output and in�ation, respectively. This assumes again some state factors

to be observable.

Dewachter and Lyrio's approach seems to the the simplest approach to include macroeco-

nomic variables into factor models. In particular, it provides a bi-directional framework

with a set of latent factors driving term structure dynamics and additional macroeconomic

factors augmenting the set of latent variables. Bi-directionality is guaranteed since the

joint dynamic of the factor is derived. The framework allows to determine a unique factor

process component for each macroeconomic variable included, which simpli�es subsequent

analysis. On the other side, this overview shows that macroeconomic variables already

contain parts of the information in level, slope and curvature. In particular, it seems that

the level of the term structure is related to in�ation or in�ation expectations and the slope

of the term structure is related to the business cycle and monetary policy, respectively.

In some examples, the authors completely renounced latent factors. With level and slope

information already contained in output and in�ation factors, a single additional latent

6See [Duf00].
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factor might be su�cient.

The �rst two questions posed above are therefore answered: monetary policy works

as a link between the economy and the term structure. Based upon the current macroe-

conomic situation, the term structure is set with the explicit goal to shape the future

dynamics of the economy. The connection between term structures and macroeconomic

variables is therefore necessarily bi-directional. Furthermore, we found that in�ation data

and economic activity are the major ingredients in a joint model. Additionally, as in the

McCallum rule7, monetary variables such as borrowed or unborrowed reserves or monetary

aggregates may be used8, particularly if we hold a monetarist point of view.

Another important factor for some countries is considered by Clarida, Gali and Gertler

[CGG97]. These authors examine monetary policy for Germany, Japan, the U.S., the UK,

France, and Italy. They �nd a set of leading central banks (US, Germany and Japan)

which conducted monetary policy independently of other central banks based upon do-

mestic considerations alone. The remaining central banks typically conducted monetary

policy in response to Germany, something often called German leadership hypothesis. The

hypothesis implies that the Taylor rule only works for leading central banks, whereas

following central banks set their monetary policy according to leading banks rather than

domestic macroeconomic variables as implied by the Taylor rule. In particular, this implies

that the Taylor rule can not be applied for following central banks.

3.2.2 Indices or rates?

We will now discuss two approaches to include macroeconomic data into term structure

models. They di�er in that they are either index-based or rate-based. Many macroeco-

nomic variables are available in both forms, an example would be GDP data, where the

actual value of GDP can be seen as an index, whereas the GDP growth rate describes the

7The McCallum rule explains in�ation with the growth of the money supply.
8Monetary aggregates are measures of the amount of currency outstanding. Currency in circulation

and the vaults of depository institutions form the base aggregate. Broader aggregates contain additional

money analogies with decreasing liquidity, for example demand deposits, savings deposits, time deposits

and money market funds. Bank reserves are deposits of commercial banks at the central bank plus currency

held in bank vaults. Given minimum reserve requirements, the amount of bank reserves determine the

amount of credit the banking system has issued. On the other side, excess reserves, that is additional

reserves beyond what is required by law, are a sign of distress in the banking sector. Excess reserves imply

that instead of giving out new credit, the banking system hoards liquidity, as has been the case in the

recent �nancial crisis.

These variables are of interest as they cover certain aspects of monetary policy uncovered by in�ation

and output growth as included in the Taylor rule. Note also that targeting monetary aggregates was a

widespread approach to monetary policy until recently. To give an example, the monetary experiment

1979 to 1982 is typically assumed to be a result of the Fed targeting monetary aggregates. At least the

ECB continued calling monetary aggregates an important aspect in monetary policy, whereas the Fed did

not consider monetary aggregates explicitly and in fact ceased to issue data considering one of the broader

measures.
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(typically annualized) index change.

The �rst approach follows what is already proposed in the literature: we directly im-

plement a macroeconomic rate as an observable state vector component9. Macroeconomic

rates are reasonably described as mean reverting processes. To give an example, we want to

implement the macroeconomic rate it as the d+ 1-th state vector component. Then, using

the notation introduced in the Kalman �lter, we simply follow the approach of Dewachter

and Lyrio [DL03]

it := gn+1(Xt; θ) = Xd+1
t + εn+1

t (θ)

where gd+1 is the (d+ 1)-th measurement equation. The state vector therefore is assumed

to consist of the observable component Xd+1
t and unobservable, latent factors. The joint

dynamics of the state vector provides the bi-directional approach required. Estimation

using the Kalman �lter is fairly easy as the additional measurement equation is linear.

Note that although the macroeconomic rate it can be simulated continuously, it may

not be interpreted as a �macro-shortrate�. It does not describe the development of some

macroeconomic variable over in�nitesimally short time horizons, but the current growth

rate of some macroeconomic variable over a given time period [t1, t2]. In particular, we

may not integrate it over [t1, t2] to derive index changes. Note also that typically only

annualized rates are available, often published with a lag. Therefore, what we implement

as it must be interpreted as a possibly lagged measurement of changes in some macroe-

conomic index over a given, past time span, typically one year. Annualization is due to

smoothing the data. Note also that macroeconomic data may only be available at monthly

frequencies, so that macroeconomic variables would enter high-frequency applications as

piecewise-constant stochastic processes.

The second approach to include macroeconomic data uses the index rather than in-

dex changes. We can reasonably assume that for all macroeconomic indices a long-term

�equilibrium� drift exists, which leads us to implement the index by

It = exp
(
µ̄t+ b+ aTXt

)
,

where aTXt describes the deviation of the index from its long-term growth trend µ̄. The

parameter b is required to standardize aTXt in such a way that

E
[
b+ aTXT |Xt

]
→ 0

for T → ∞. This is necessary to ensure that the long-term drift of the index is solely

described by µ̄. Analogously to the rate-based approach, we can de�ne a to be the d+ 1-

th unit vector a := ed+1, hence only the d + 1-th state vector component describes the

9See [DL03], and [WR04].
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stochastic deviations of the index from its equilibrium trend growth. In this case, we can

de�ne b := 0 and µd+1 = 0 to ensure that the drift is only described by µ̄. In most cases,

the index is directly observable, hence

gn+1(Xt; θ) := It = exp
(
µ̄t+Xd+1

t

)
which can be estimated using the Extended Kalman �lter. Equivalently, we can use log-

indices for estimation, hence

gn+1(Xt; θ) := log It = µ̄t+Xd+1
t ,

which implements a linear measurement equation for the Kalman �lter. Alternatively, we

could also use rates for estimation. From a given index, the expected rate of index growth

over a time period [t, T ] can be derived as follows

it = E

[
1

T − t
log

(
IT
It

)∣∣∣∣Ft]
=

1

T − t
E
[
log
(
exp

(
µ̄T + aTXT − µ̄t− aTXt

))
|Ft
]

= µ̄+ aT
E [XT −Xt|Ft]

T − t
.

= µ̄+ aT
e−κ(T−t)Xt + (1− e−κ(T−t))µ−Xt

T − t

= µ̄+ aT (e−κ(T−t) − 1)
Xt − µ
T − t

. (3.20)

Such a measurement equation may be used with in�ation and output forecasts. Historical

rates can be derived analogously to de�ne measurement equations using observed rates

based on

it =
1

τ
log

(
It
It−τ

)
.

whereby It−τ depends on a previous state Xt−τ . The time horizon τ can be chosen accord-

ing to underlying data, for example τ is one year for annualized rates.

In general, this approach does not o�er simple interpretations of state vectors and

model parameters as in the rate-based approach. The stochastic factors driving the indices

only describe deviations from the long-term equilibrium trend and not index dynamics as

a whole. The rate-based approach requires long-term means µ of the rates, whereas the

index-based approach requires equilibrium trends µ̄. The remaining parameters describing

factor dynamics, correlation and bond prices are the same. The number of parameters

required is the same for both approaches.

A major di�erence between the two approaches exists considering applications. Namely,

we are able to derive easily prices of index-paying securities. We reinterpret the single

dividend securities of section 3.1 with payo� functions

exp
(
µ̄T +

(
γD
)T
XT

)
,
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as derivatives which pay the index at time T . As these prices were found to be arbitrage-

free, estimation of the joint macro-�nance model including index data allows to derive

no-arbitrage prices for tradeable derivatives based on these indices. To give an example,

an in�ation-indexed coupon bond is a portfolio of index-paying derivatives ΠI(t, T ) for

each coupon C at time ti as well as the notional N at time tn, hence

PR(t, T ) =
n∑
i=1

CΠI(t, ti) +NΠ(t, tn).

In many cases, in�ation-indexed bonds also provide de�ation protection of the notional,

hence a put option with payo� N(I0 − IT )+ at time T . As demonstrated in 3.1 in the

cosh closed-form solutions for index-paying derivatives can be derived, whereas the Cairns

model requires numerical integration. Only the put option might require a Monte Carlo

approach.

In the same way, due to no-arbitrage of dividend paying securities, we are able to derive

prices for derivatives whose payo� functions depend on these securities and hence on the

indices. By the above derived formula for the rate, it is possible to derive caps and �oors

on in�ation or economic growth rates, which we will later see may have applications in

hedging extremal scenarios in life insurance.

In case of the Cairns and cosh model, both approaches presented can be implemented.

The rate-based approach o�ers simple interpretations of the macro factors and the model

parameters driving them. Both models allow for linear measurement equations and both

models require equivalent numbers of model parameters. Considering term structure ap-

plications alone, the �rst approach is more intuitive. If we are interested in exotic macro-

derivatives or in�ation-indexed bonds, we would recommend using the second approach as

it allows for closed-form solutions of index-paying derivatives in case of the cosh model and

fast numerical solutions to index-paying derivatives in case of the Cairns model.

3.2.3 Stylized facts

In section 3.2.1, we already encountered some properties and hypotheses connecting the

term structure and macroeconomic variables. In this section, we will examine what im-

pact these properties have on the implementation of a joint model. As can be seen in the

literature overview, in most cases term structure models are augmented with macroeco-

nomic variables by assuming that some state vector components coincide with observable

macroeconomic rates. We will now consider these approaches in light of certain stylized

facts, namely

� time-homogeneity of the joint model

� the Fisher equation
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� interest rate smoothing.

In the term structure models estimated so far, we implicitly assumed time-homogeneity

of the dynamics. This is also assumed in most models presented in 3.2.1. However, ac-

cording to Rudebusch and Wu [WR04], empirical evidence suggests that this relationship

between the term structure and macroeconomic variables has changed. Their primary ar-

gument is that the transmission mechanism of monetary policy has changed. However, each

regime switch in monetary policy should also imply a regime switch in the term structure.

In particular, note that the infamous monetary experiment, which is widely attributed to

a new approach of targeting monetary aggregates, is the standard example for a distinct

regime in term structure data. To conclude, we can assume that a time-homogeneous mon-

etary transition mechanism imposes the same problems as a pure term structure model

with �xed long-term dynamics, hence time-inhomogeneity is no particular problem of joint

macro-�nance models but of long-term interest rate modeling in general.

The so called Fisher equation, developed in [Fis30], is one of the earliest hypothesis

which link nominal interest rates and macroeconomic variables, in this case in�ation. The

Fisher equation states that there exists a long-range equilibrium between the nominal

interest rate, real interest rates and expected in�ation, namely

y(t, T ) = yR(t, T ) + Et [π(t, T )] ,

hence nominal interest rates equal the sum of the real interest rate and expected in�ation.

It is a stylized fact that real interest rates are highly persistent. If Fisher equation holds,

the movements in interest rates will therefore predominantly re�ect �uctuations in expected

in�ation, see[Mis93]. This �ts very well the assumption that the level of the yield curve

is closely related to expected in�ation and generally high interest rates coincide with high

in�ation rates. The Fisher equation can be used to derive real interest rates in a framework

which incorporates the in�ation index. In case of the cosh model, we get, using the index-

based approach,

yR(t, T ) = y(t, T )− Et [π(t, T )]

= − log (P (t, T ))

T − t
− µ̄I(T − t)− aT

(
e−κ(T−t) − 1

) XI
t − µI

T − t
.

According to Rudebusch [Rud95], the federal reserve not only sets the target rate ac-

cording to macroeconomic in�ation, but also tries to smooth interest rate dynamics. Thus,

monetary policy is implemented over the course of several meetings with gradual increases

or decreases (but not both) in the target rate. Roberds and Whiteman [RW96] argue that

interest rate smoothing is the main reason that the term spread can be used to forecast

interest rate movements. The basic assumption is that interest rate smoothing prohibits

surprises in the conduct of monetary policy.
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Interest rate smoothing may be di�cult to implement in a typical Markovian no-arbitrage

factor model if lagged state factors are to be used. Furthermore, note that smoothing

introduces asymmetric mean reversion behavior. In case of high or rising in�ation and

economic growth, the Fed tends to follow a gradual approach, slowly increasing the target

rate. Interest rate cuts, however, tend to be considerably faster, the recent �nancial crisis

being an example. Inclusion of macroeconomic variables might provide this asymmetric

behavior, as the asymmetry coincides with di�erent economic regimes. In particular, fast

interest rate cuts coincide with a fast decrease in economic activity, whereas slow increases

of the target rate coincide with increasing in�ation.

3.2.4 Monetary policy rules

As discussed in 2.1, monetary policy is the de�ning link between macroeconomic variables

and the term structure of interest rates. Monetary policy rules describe in a simplistic way

how the central bank sets the target rate, hence how central bank behavior determines

the term structure. This approach is based on current macroeconomic data and aims

at in�uencing the future course of the economy as a whole. If monetary policy can be

reasonably described by a simple rule, the implementation of the rule guarantees a realistic

model of the mutual dependencies between macroeconomic variables and interest rates

according to historical data. We will now present the Taylor rule.

The Taylor rule is a monetary policy rule proposed by [Tay93] which determines the

target rate the monetary authority sets in reaction to the state of the economy. The

current macroeconomic situation is described by real interest rates, current in�ation and

the deviations of both in�ation and economic growth rates from their respective equilibrium

growth trend. In formula,

rt = πt + r∗t + a∗π(πt − π̄) + auut

where rt is the target rate, for example the federal funds rate in [Tay93]. πt is the in�ation

rate, in Taylor's paper taken as the in�ation rate over the previous four quarters as a proxy

for expected in�ation. This annualization smooths in�ation rates. r∗t is the equilibrium

real interest rate. As real interest rates are very persistent, r∗t is typically assumed as

constant and in many implementations of the Taylor rule set to 2%. π̄ is the desired rate

of in�ation, typically a long-term in�ation target, which, assuming successful monetary

policy, coincides with the long-term equilibrium trend in in�ation. ut is, according to

Taylor's original paper, the percent deviation of real GDP growth from its target, measured

by

ut = 100
Ut − U∗t
U∗t

where Ut is current real GDP and U∗t is trend real GDP.
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The rule implies a relatively high interest rate when in�ation is above its target π̄ or

when the economy is overheating, with economic growth beyond the sustainable long-term

trend ut > 0. If these goals are in con�ict, the rule provides guidance to policy makers

on how to balance these competing considerations in setting an appropriate level for the

interest rate. Although central banks typically do not explicitly follow the rule, analysis

showed that the rule does a fairly accurate job of describing the conduct of monetary policy

in the past, particularly in case of the Federal Reserve under the Greenspan chairmanship.

If we assume a term structure model which incorporates both (real) GDP and in�ation

in the rate-based approach, we can implement the Taylor rule as follows:

� The target rate can be interpreted as the (unobservable) shortrate rt provided by the

term structure model.

� πt describes the in�ation rate, implemented by the rate-based or index-based ap-

proaches, respectively. Following Taylor's original paper, πt should be estimated

from historical annual in�ation rates.

� the real rate r∗t can be derived using the Fisher equation, which however implies

r∗t = rt − πt. A widespread assumption determines r∗t := 2.

� given successful monetary policy, the in�ation target π̄ equals the long-term mean

µI of XI
t .

� Xu
t describes current output growth. The long-term mean µu of output growth

equals equilibrium output growth, hence ut := Xu
t − µu determines deviation from

equilibrium trend growth.

To summarize, the Taylor rule for the rate-based approach is given by

rt = Xi
t + 0.02 + a∗π(Xi

t − µi) + au(Xu
t − µu).

Alternatively, if we use the index-based approach, we can implement the Taylor rule as

follows.

� The target rate can again be interpreted as the (unobservable) shortrate rt as pro-

vided by the term structure model.

� The in�ation rate πt can be derived from historical data or, using forecasts, directly

as expected in�ation rate avoiding the approximation proposed by Taylor. Following

(3.20), we get

πt = µ̄I + aT
e−κτ − 1

τ
XI
t .

where τ equals one year if annualized data is to be used. Obviously, µ̄I is the

equilibrium in�ation rate as the long-term mean of XI
t is set to zero by assumption.
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� For the equilibrium real interest rate r∗t , we again recommend following the standard

approach and setting r∗t := 2%.

� The output variable is de�ned by the index Ut = exp (µ̄ut+Xu
t ). Obviously, µ̄u

provides the equilibrium growth trend, hence

ut := 100
Ut − U∗t
Ut

= 100
exp (µ̄ut+Xu

t )− exp (µ̄ut)

exp(µ̄ut+Xu
t )

= 100 (1− exp(−Xu
t )) .

To summarize, the Taylor rule is given by

rt = µ̄I + 0.02 + a∗π(γI)T
(
e−κ

Iτ − 1
)
XI
t + a∗u100 (1− exp (−Xu

t )) .

In both approaches, the Taylor rule could be included into estimation by assuming that

gn+1(Xt; θ) := rt(Xt; θ)− (πt(Xt; θ) + r∗t (Xt; θ) + a∗π(θ)(πt(Xt; θ)− π̄(θ))

+au(θ)ut(Xt; θ)) + εn+1
t (θ)

is observed as zero. Deviations of the rule are then interpreted as measurement error

εn+1
t (θ) with mean zero and zero cross- or autocorrelation, by assumption. As the Kalman

�lter minimizes the measurement error, the state vector is estimated implicitly in such a

way that the Taylor rule holds on average. As Taylor already showed that this is the case

based upon historical data, estimation only using term structure and relevant macroeco-

nomic data implicitly contains the rule. Implementing the above described measurement

equation however emphasizes the role of the Taylor rule within estimation, provides Kalman

�lter estimates of a∗π and a∗u as well as a time series of deviations from the Taylor rule.

Now if monetary policy determines the mutual dependencies between macroeconomic

variables and the term structure, and policy rules are a simple yet e�cient way to describe

the conduct of monetary policy, we must assume that the policy rule holds into the future

as well. In particular, we have to ensure that the monetary policy rule holds for simulated

data. We will present a simple approach to this task.

The basic idea is to implement the deviations of the policy rule as an observable state

vector component. As an example, we will take the Taylor rule and implement deviations

of the Taylor rule as a mean reverting process with long-term mean zero. Output is im-

plemented as depending on this rule-deviation variable and the remaining state variables.

The Taylor rule describes how to set the target rate according to current in�ation and eco-

nomic activity. If the central bank keeps the target rate deliberately above the rule-implied

rate, both economic activity and the in�ation rate are below their respective equilibrium

trends. On the other side, if the central bank sets the target rate below the rule-implied

rate, both economic growth and in�ation surpass their equilibrium trends. According to

Taylor [Tay], the main reason for the 2007-2010 �nancial crisis was that the Fed kept the
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target rate below the level advocated by the Taylor rule. This promoted economic growth

- but also the development of the house-price bubble. During the crisis following the burst

of the house-price bubble, the target rate hit the zero lower bound. For the US, to give an

example, the Taylor rule implied a necessary policy rate of −6%, hence keeping the target

rate close to zero discouraged economic growth. Seemingly, deviations from the Taylor rule

are costly no matter in which direction and therefore should be avoided. Furthermore, we

see that deviations from the Taylor rule mean revert to zero, which justi�es implementation

of deviations from the rule as Ornstein-Uhlenbeck processes with zero long-term mean. We

reinterpret the deviation of the Taylor rule as a state vector component

XD
t := rt(Xt; θ)− [πt(Xt; θ) + r∗t (Xt; θ) + a∗π(θ)(πt(Xt; θ)− π̄(θ)) + au(θ)ut(Xt; θ)] .

Now we have to restrict the degrees of freedom of the remaining variables to guarantee

that the Taylor rule holds. Namely, we de�ne a new measurement equation for economic

growth based on the Taylor rule, hence

ut(Xt; θ) =
1

au(θ)

(
XD
t − rt(Xt; θ) + πt(Xt; θ) + r∗t (Xt; θ)

+a∗π(θ)(πt(Xt; θ)− π̄(θ))) .

This de�nes real GDP as a function of the state vector Xt including the in�ation

component XI
t and the deviation factor XD

t . By de�nition, interest rates and in�ation

rates are not restricted in their dynamics. GDP growth is stochastic and due to XD
t not

determined by interest rates and in�ation alone. Furthermore, by de�nition, if XD
t is

strongly mean reverting with long-term mean zero, the Taylor rule holds on average for

simulated data. Assuming that the central bank successfully follows the Taylor rule in the

future, economic growth should develop as determined by the rule conditional on certain

latent term structure factors and in�ation.

3.2.5 Insurance Applications

We will now discuss possible bene�ts of including macroeconomic variables into term struc-

ture models from an insurance viewpoint. First, note that macroeconomic data should

allow for more realistic models of term structure dynamics as central bank behavior and

in�ation expectations are major driving forces of the term structure. Particularly consider-

ing long-term dynamics, in�ation and in�ation expectations seem to be responsible for the

variation in the long-end of the yield curve. We can also take as granted that forecasting

power of the term structure model should increase and therefore time series properties as

a whole are implemented more realistically due to macroeconomic data.

A second important contribution of macroeconomic variables lies in mutual dependen-

cies of di�erent �nancial markets. It is well known that return correlations of di�erent

�nancial markets are not constant in time. In particular, during times of economic dis-

tress re�ected in macroeconomic variables, correlation between di�erent �nancial markets
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tends to increase with adverse e�ects on diversi�cation. As insurance products typically

invest in multiple assets, all of which are subject to macroeconomic data, the inclusion

of macroeconomic data provides a common stochastic factor to various �nancial markets.

Macroeconomic data may therefore help implementing time varying return correlations.

Another point worth considering is simulation and hedging of extremal scenarios. Japan

scenarios are most critical for life insurance companies. These scenarios are crucially de-

pendent on macroeconomic variables, as a Japan scenario can only occur if both in�ation

and economic growth are substantially below their long-term trend and are expected to

remain low. In such cases, monetary policy reaches the zero lower bound and the central

bank has to apply alternative monetary instruments. These alternative instruments cause

the very low and �at term structures of a Japan scenario. Consequently, the probability

of a Japan scenario depends on the distribution of macroeconomic variables.

Hedging of insurance products by macroeconomic derivatives may be an interesting strat-

egy. In case of a Japan-scenario, an in�ation �oor should provide a better protection than

a �oor on LIBOR rates. The recent experience showed that credit spreads between bond-

implied rates and LIBOR rates may rise signi�cantly in a Japan scenario caused by �nancial

crisis. Consequently, during a Japan scenario, the payo� of a �oor on bond-implied rates

is signi�cantly higher than the payo� of the available �oor on LIBOR. Furthermore, note

that in most cases, low short-term interest rates coincide with a high slope. In this case,

hedging against a Japan scenario requires no payo�, as increasing duration of invested

funds increases bond market returns. Since Japan scenarios are only possible if current

in�ation is extremely low, in�ation �oors would therefore provide a hedging instrument

against Japan scenarios which does not su�er from the LIBOR-bond-yield spread. On the

other side, a frequently encountered problem is that in times of crisis, correlation between

�nancial markets increases and hence diversi�cation e�ects decrease. Such times of crises

typically coincide with recessions, in particular steep recessions and hence a steep decline

in economic growth. This connection may be used to develop path-dependent derivatives

based on economic growth which could be used to hedge against such crises, particularly

the sudden loss of diversi�cation.

Considering diversi�cation again, Kothari and Shanken [KS04] examine asset alloca-

tion among stocks, in�ation-indexed and nominal government bonds and a bank account.

They �nd that substantial weight should be given to in�ation-indexed bonds in an e�-

cient portfolio. Consequently, in�ation-indexed bonds provide diversi�cation to bond and

stock portfolios and may therefore be included into the investment policy of the insurance

company. This requires the model to provide prices of in�ation-indexed bonds.

Finally, there exist direct applications of macroeconomic variables for insurance prod-

ucts. First, macroeconomic variables may be of interest in product development, in par-

ticular indexed contracts. For once, instead of a guaranteed nominal return, life insurance

companies and pension funds could guarantee real returns. On the other side, invalidity



3.2 Macroeconomic variables 193

coverage may provide indexed payments in case of invalidity to cover in�ation risk. In such

cases, a joint model is necessary for risk management and pricing of indexed payments.

Another direct application considers rational behavior based on the overall macroeconomic

situation. In many insurance products, behavior of the insured is an important aspect of

pricing, in particular cancellation is implemented in pricing. We can expect that changes in

cancellation behavior should be related to macroeconomic variables. To give an example,

we can assume that rising in�ation leads to rising cancellation of older insurance contracts

whose guaranteed return is below current in�ation rates. On the other side, economic

growth is positively correlated to disposable income and hence saving, which implies a

positive correlation between economic growth and underwriting.

3.2.6 Summary

There is clear evidence in the literature that macroeconomic variables increase forecast-

ing power of term structure models, hence macroeconomic variables improve time series

properties of term structure models. We found that there exist clear bi-directional rela-

tion between macroeconomic variables and the term structure. In the literature, the joint

model is implemented by assuming that the state factor driving the term structure model

consists of unobservable, so-called latent factors and observable factors, which are linked

to macroeconomic variables. We found two possibilities to implement observable state

factors: either we assume the macroeconomic rates to be observable, and the underlying

state vector to coincide with the rate directly, or alternatively we assume the state factor

to describe deviations of index dynamics from long-term equilibrium trends. Both models

imply similar measurement equations for estimation using the Kalman �lter as well as equal

numbers of model parameters. The index-based approach however allows for simple pricing

of indexed-based derivatives, which could for example be used to price in�ation-indexed

bonds.

Another major �nding considers monetary policy rules, in particular the Taylor rule.

Monetary policy rules provide a simple implementation of the bi-directional link between

term structure and macroeconomic variable. Historically, many (leading) central banks fol-

lowed the Taylor rule in their conduct of monetary policy, hence historical macroeconomic

variables and short-term interest rates follow dynamics as determined by the Taylor rule.

Obviously, the Taylor rule should hold for simulated data by a joint macro-�nance model

as well, re�ecting the assumption that the rule describes future monetary policy as well.

We provide an easy idea how to implement the Taylor rule or more generally monetary

policy rules into a joint macro-�nance model which is to be estimated using the Kalman

�lter.

Finally, we discuss bene�ts of joint macro-�nance models for insurance applications.

Besides the general improvement of time series properties, macroeconomic variables might

be useful in hedging extremal scenarios, since these typically coincide with certain macroe-
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conomic situations. Macroeconomic variables might also be used to describe time varying

correlation between bond and stock market returns. Finally, macroeconomic variables may

be used to describe behavior of customers of insurance companies, for example regarding

cancellation, which is often required in pricing.
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Conclusion

A basic task in mathematical �nance lies in comparison of cash �ows occurring at di�erent

points in time. Assuming stochastic interest rates, such a task requires an arbitrage-free

�nancial model of term structure dynamics. Most term structure models presented in the

literature so far were developed for banking applications. The major goal of this work

is to examine so called state price density models on their applicability in insurance. A

�rst contribution of this work is therefore the explicit insurance focus we take. We repeat

estimation and implementation of the Cairns [Cai04a] model using the Extended Kalman

�lter already known in the literature. Additionally, we present the cosh model proposed

by Rogers [Rog97] in its �rst estimation and implementation, again using the Extended

Kalman �lter. Comparing these models, our main result is that the cosh model may be

used as a computationally e�cient approximation to the otherwise superior Cairns model.

A second contribution of this work is to provide ideas how to expand the pure bond market

models to full investment models covering equity, government bond and in�ation-indexed

bond markets. As we show how to include macroeconomic variables as well as monetary

policy rules, the cosh model may also be used as a macro-�nance model in monetary pol-

icy applications as well as to examine the impact of macroeconomic variables on insurance

products.

In section 2.1, we introduced a selection of criteria on term structure models and dis-

cussed their importance both for insurance and banking applications. The main di�erence

hence lies in contractual time to maturity, risk factors included, particularly non-interest

rate risk factors such as stock market risk or biometrical risks, and availability of market

prices for comparison.

In section 2.2.1, we introduced the Rogers framework, which de�nes the state price

density, and therefore a term structure model, by the speci�cation of a state vector process

and the choice of a function f with rather general properties. We discuss restrictions to

the choice of f and the dynamics of X due to criteria on term structure models found in

2.1. In particular, we found that X should be a mean reverting process, f(Xt) can not

195
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be a martingale and f(Xt) may only be a supermartingale by itself if certain additional

conditions hold. Overall, we found that de�nition of s supermartingale based upon a mean

reverting process is di�cult. This motivated our examination of the cosh model, under

which the state price density is not a supermartingale, since models with the state price

density not being a supermartingale will likely dominate in applications of the Rogers

model. Finally, we presented that the state price density approach is computationally

superior to standard risk-neutral pricing in insurance applications due to often infrequent

and irregular payments over very long time horizons.

In sections 2.2.5 and 2.2.6, we present the Cairns [Cai04a] and cosh [Rog97] models, re-

spectively. Whereas both may be de�ned under the Rogers framework, the Cairns model

originally was de�ned under the framework of Flesaker and Hughston [FH96]. A short

comparison of these two approaches showed that the framework of Flesaker and Hughston

requires de�nition of a martingale in dependence of a mean reverting state process, whereas

Rogers requires de�nition of a supermartingale. Once the model is speci�ed, the Rogers

model requires a closed-form solution to the expectation of the state price density, whereas

Flesaker and Hughston require closed-form solutions to the integral over the product of

the chosen martingale and an additional function φ. As the later is typically more di�cult

to see, an implementation of the Rogers model is easier to be de�ned.

In section 2.2.7, we prove no-arbitrage for both models. Furthermore, we derive the physical

measure in such a way that dynamics under the historical measure required for estimation

are particularly simple.

In section 2.3, we introduce the extended Kalman �lter. As the Rogers approach

requires the choice of a state vector X, all Rogers models are factor models and hence the

Kalman �lter, or its extended form to cover for nonlinearities in the de�nition of yields, is a

natural choice for estimation. In Section 2.3.3 we discuss estimation data for term structure

models. For insurance applications, we recommend government bond-implied yields as a

proxy to riskless interest rates. Macroeconomic data may improve long-term dynamics,

interest rate derivative data may improve volatility �t. Whereas we �nd in section 3.2

that inclusion of macroeconomic data might indeed be easy, inclusion of derivative data

�rst requires closed form solutions to interest rate derivatives and second most interest

rate derivatives are based on Libor rates rather than government bond yields and therefore

contain hitherto unconsidered risk factors.

Sections 2.3.4 and 2.3.5 present the implementations of the Extended Kalman �lter for

both models. Simulation exercises demonstrate the ability of the Extended Kalman �lter

to estimate the model parameters. We examine historical �t of the estimated model param-

eters by calculating mean absolute errors as well as cross-correlation and autocorrelation

of the time series of residuals. We �nd that both models �t historical data remarkably

well. Furthermore, in both cases residuals are highly autocorrelated and linked to curva-

ture. Consequently, we estimated and examined three-factor models in section 2.3.7, which
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signi�cantly improved historical �t, particularly with respect to curvature. In all cases,

we found that the underlying state vector components are closely linked to the principal

components of the term structure. In the two factor models one state vector component

was highly correlated to long-end yields, whereas the other state vector component was

highly correlated to an empirical proxy of the slope. In the three factor models, we found

the same level factor. The other two state vector components described slope and cur-

vature, yet in this case slope and curvature components were not clearly distinguishable.

We concluded that for higher dimensions, the state vector still catches the higher princi-

pal components of term structure data, yet not with a single state vector component each.

Consequently, models with dimension higher than 3 might have problems in simulating the

data realistically, as the non-level components of the state vector were highly correlated.

Because long-end yields showed a falling trend and very low mean reversion throughout

the data set used, the Extended Kalman �lter underestimated the long-term mean of the

level component of the state vector. Nevertheless, the high correlation of long-end yields

and the level component allowed to specify the long-term mean of the level component. As

described in section 2.3.8, we found a simple algorithm able to provide realistic estimates of

the long-term mean of the state vector, thereby reducing the parameters to be estimated.

As discussed in section 2.1, the coincidence of principal components and state vectors is

often found in term structure models. Typically, however, short-end yields describe the

level in interest rate models. Nevertheless, the high-end level factor should provide supe-

rior results in �tting the dynamics of long-end yields, since in most models long-end yields

are a function of high-volatility and high-mean reversion short end factors and the model

more or less deterministically reduces long-end volatility.

What is unique about the two models considered and likely for the whole Rogers framework

under some rather mild conditions discussed in section 2.3.9 is that a single, distinguish-

able model parameter describes the asymptotic long rate, which is therefore constant, as in

many other term structure models. In most models, the asymptotic long rate is a function

of other model parameters, therefore introducing a long-end restriction into estimation

that is largely ignored in the literature. The parameter α in the cosh and Cairns models

allows for sensitivity analysis of the asymptotic long rate and exogenous speci�cation, for

example due to regulatory de�nition of an asymptotic long rate to be used in insurance

as currently discussed in Germany. Two examples for exogenous speci�cations of α are

provided.

Finally, section 2.4 concludes with a comparison of the Cairns and cosh model. The Cairns

model provides a superior historical �t as well as superior forecasting power. Furthermore,

it guarantees positive interest rates, which the cosh model can not. Nevertheless, the cosh

model is by far superior computationally due to the integral in the de�nition of the state

price density in the Cairns model requiring numerical integration. Since basic properties

such as state vector dynamics, the long-end level, the constant asymptotic long rate, but
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also risk premia and forecasting power are very similar in both models, we can conclude

that the cosh model provides a simple and fast approximation of the otherwise superior

Cairns model.

In section 2.1, it was already discussed that insurance companies require term structure

models not only for discounting liabilities, but also to simulate asset returns. Nevertheless,

the term structure models presented may only provide returns of domestic government

bonds. A major task therefore was to consistently extend the �nancial markets covered

by the state price density models. The �rst, and most important, extension in section 3.1

considers equity. We �rst examined general stock pricing within the state price density

approach. A main problem in implementation are dividend payments. Since dividends

contribute a sizeable part to overall long-term stock returns, dividend payments should

not be omitted. We found that the product of the stock price and the state price density

(Stςt) must be a supermartingale in all cases. If no dividends are payed, (Stςt) is even a

martingale.

We derived and implemented two approaches to include stock price data. First, in section

3.1.3, we use a dividend discount approach which interprets the stock price at time t as

the value of all future dividends discounted to time t. Based upon economic considerations

we presented a simple model for a discrete dividend process. The state price density was

then used to discount the dividends, providing a stock market model which links the bond

market as de�ned by the state price density and the stock market.

We found that the dividend discount model is unfeasible to be implemented in the Cairns

framework due to computational limitations. For the cosh model, on the other side, it

provides an arbitrage-free, implementable stock pricing framework. We showed how to

implement an Extended Kalman �lter for joint estimation of both interest rates and the

stock price. Whereas the estimation approach still requires additional work, particularly

considering the inclusion of dividend data into estimation, we were able to derive a param-

eter set of a three-factor model which provides a historical �t of the bond market similar

to two-factor cosh models, but also �ts the S&P500 price index from 1985 to 2008 by a

mean absolute error of merely 12 ticks.

The second stock market approach, presented in section 3.1.4, is based on the Black-Scholes

stock market model with stochastic shortrate. Taking the shortrate as provided by the cosh

model under the risk-neutral measure, we derived a closed form solution to the stochastic

di�erential equation under the risk-neutral measure and under the physical measure. As

this closed-form solution requires an integral of the shortrate from the initial time point

until the current time, we recommended using return data rather than price data, decreas-

ing the approximation problem. Again, we provided an Extended Kalman �lter to jointly

estimate bond and stock market dynamics. The Black-Scholes based approach was vastly

superior computationally to the dividend discount approach, yet provided inferior histori-

cal �t. The approach allows for simple speci�cation of correlations among the state vectors



4 Conclusion 199

driving the market, which can also be partitioned into pure bond market, pure stock mar-

ket and joint state vector components according to restrictions upon the parameter vectors

σ and γ. We estimated an approach assuming general γ and a second approach restrict-

ing γ to get a pure stock market state vector component. Whereas a pure stock market

component provides a near perfect �t of historical stock returns, Loglikelihood values are

substantially lower than in the unrestricted case due to stock returns not being normal.

The Black-Scholes approach therefore su�ers from the same problems as the original Black-

Scholes model. An important task for future research therefore is to examine the impact of

stochastic volatility in insurance applications and implementing stochastic volatility in the

joint model, which would enable us to examine dependencies between stochastic volatility

in bond and stock markets.

Finally, we discussed the role of macroeconomic variables for term structure model-

ing. Again, the cosh model allows for a simple implementation of a macro-�nance model.

We also discuss the implementation of monetary policy rules as required for simulation

purposes. Based upon results from the literature, we can conclude that introduction of

macroeconomic data should improve long-term dynamics of the term structure, and in

particular should improve term structure dynamics around the zero lower bound. The

index-based approach presented allows for simple pricing formulae for in�ation-indexed

bonds. We also discuss possible applications of macroeconomic variables in insurance be-

sides the improvement of term structure dynamics.

The work presented opens several directions for future research. For once, we argued

that stochastic volatility should be of minor importance to insurance applications if the

term structure model catches overall variability in the principal components. Nevertheless,

this assumption should be tested empirically. Furthermore, the joint bond and stock mar-

ket model provide interesting opportunities to examine the e�ect of interest rate risk on

stock derivatives and the mutual dependencies of stochastic volatility in bond and stock

market models.

Another line of future research should examine macroeconomic variables in insurance appli-

cations. Ideas already mentioned are guaranteed real returns, hedging by macroeconomic

derivatives, investment into in�ation-indexed bonds, examination of cross-asset correla-

tion due to macroeconomic variables and modeling of customer behavior based upon these

macroeconomic variables. Finally, note that a joint model which provides term structure

dynamics, macroeconomic variables and stock market data should �nd interesting appli-

cations in monetary policy as well.

Finally, as already discussed in section 2.3.9, recent discussion of a regulatory approach

considering the asymptotic long rate requires term structure models which allow for an

analysis of the regulatory speci�cations as well as sensitivity analysis of insurance prod-

ucts on the asymptotic long rates. Both the Cairns and the cosh models are particularly

applicable in these cases.
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Appendix

A.1 The Ito-Doeblin formula

The Ito-Doeblin formula used throughout this work is taken from Oksendal [Oks06].

Theorem A.1.1. Let (X) be a d-dimensional stochastic process with dynamics

dX
(i)
t = ui(t,Xt)dt+

d∑
j=1

vij(t,Xt)dZ
(j)
t

for all i = 1, . . . , d and Z = (Z1, . . . , Zd) a d-dimensional Brownian motion under some

measure P and

P

[∫ t

0
|ui(s,Xs)|ds <∞ ∀t ≥ 0

]
= 1,

for all i = 1, . . . , d and ui is Ft = σ(Bs, s ≤ t) adapted. Furthermore

P

[∫ t

0
|vij(s,Xs)

2|ds <∞ ∀t ≥ 0

]
= 1,

for all i = 1, . . . , d. If f is a twice continuously di�erentiable function from [0.∞)×Rd to
Rn, then the process f(t,Xt) is again a stochastic integral whose component dynamics are

given by

dfk(Xt) =

[
∂

∂t
fk(t,Xt) +

d∑
i=1

ui(t,Xt)
∂

∂xi
fk(t,Xt)

+
1

2

d∑
i=1

d∑
j=1

(
σ(t,Xt)σ(t,Xt)

T
)
ij

∂2

∂xi∂xj
fk(t,Xt)

 dt+

d∑
i=1

∂

∂xi
fk(t,Xt)dZ

(i)
t .

Proof. See Oksendal [Oks06], page 96.

Note that for

dX
(i)
t = κi(µi −X(i)

t )dt+
d∑
j=1

CijdZ
(j)
t
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we have

P

[∫ t

0
|κi(µi −Xs)|ds <∞ ∀t ≥ 0

]
= 1

due to mean reversion of (X) and for all i = 1, . . . , d and ui is Ft = σ(Bs, s ≤ t) adapted.
Furthermore

P

[∫ t

0
|C2
ij |ds <∞ ∀t ≥ 0

]
= 1,

since Cij is a constant for all i, j = 1, . . . , d so that the Ito-Doeblin formula holds for all

cases considered in this work.

A.2 The Dynkin formula

The Dynkin formula may be used to derive instantaneous forward rates of the Rogers

model in section 2.2.1.

Theorem A.2.1. Let f be twice continuously di�erentiable. Suppose τ is a stopping time

with E[τ |F0] <∞. Then

E[f(Xτ )|X0 = x] = f(x) + E

[∫ τ

0
Gf(Xs)ds

∣∣∣∣X0 = x

]
where the generator G of an Ito-di�usion

dXt = µ(Xt)dt+ σ(Xt)dZt

is given by

Gf(x) =
d∑
i=1

µi(x)
∂

∂xi
f(x) +

1

2

d∑
i=1

d∑
j=1

(
σ(x)σ(x)T

)
ij

∂2

∂xi∂xj
f(x).

Proof. See again Oksendal [Oks06], page 105.

Corollary A.2.2. Let f be twice continuously di�erentiable and G be the generator of an

Ito-di�usion X. Then E[f(Xt)|Xt = x] is di�erentiable with respect to t and

∂

∂t
E[f(Xt)|X0 = x] = E [Gf(Xt)|X0 = x] .

Proof. Choosing τ = t in Dynkin's formula we see that E[f(Xt)|Xt = x] is di�erentiable

with respect to t and

∂

∂t
E[f(Xt)|Xt = x] = lim

h→0

E
[∫ t+h

0 Gf(Xs)ds
∣∣∣X0 = x

]
− E

[∫ t
0 Gf(Xs)ds

∣∣∣X0 = x
]

h
= E [Gf(Xs)ds|X0 = x] .
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