Localizing Defects in Multithreaded Programs
by Mining Dynamic Call Graphs

Frank Eichinger', Victor Pankratius', Philipp W. L. Grofie?, and
Klemens Bohm!

! Karlsruhe Institute of Technology (KIT), Germany,
{eichinger, victor.pankratius, klemens.boehm}@kit.edu
2 SAP AG, Walldorf, Germany, philipp.grosse@sap.com

Abstract. Writing multithreaded software for multicore computers con-
fronts many developers with the difficulty of finding parallel program-
ming errors. In the past, most parallel debugging techniques have concen-
trated on finding race conditions due to wrong usage of synchronization
constructs. A widely unexplored issue, however, is that a wrong usage of
non-parallel programming constructs may also cause wrong parallel ap-
plication behavior. This paper presents a novel defect-localization tech-
nique for multithreaded shared-memory programs that is based on ana-
lyzing execution anomalies. Compared to race detectors that report just
on wrong synchronization, this method can detect a wider range of de-
fects affecting parallel execution. It works on a condensed representation
of the call graphs of multithreaded applications and employs data-mining
techniques to locate a method containing a defect. Our results from con-
trolled application experiments show that we found race conditions, but
also other programming errors leading to incorrect parallel program be-
havior. On average, our approach reduced in our benchmark the amount
of code to be inspected to just 7.1% of all methods.

1 Introduction

Present-day computers with several cores on a single chip require developers to
write multithreaded applications in order to exploit the full performance poten-
tial. Compared to sequential software development, programmers are now ad-
ditionally confronted with nondeterminism and parallel-programming failures,
such as race conditions or deadlocks [15,19].

Today, static and dynamic debugging aids for parallel shared-memory pro-
grams are widely available [10, 13,20, 22, 23,25, 26]. They focus on identifying
atomicity violations, race conditions or deadlocks due to wrong or inconsistent
locking. However, these tools are usually heavily specialized on a particular class
of parallel programming errors. Little attention has been paid so far to other
causes (e.g., originating from non-parallel constructs) that might be incorrectly
used to produce wrong parallel program behavior. For example, suppose that
a programmer forgets or incorrectly specifies a condition when creating threads
in a thread pool. This might lead to an unbounded creation of threads, uncon-
trolled program behavior and wrong program outputs. Clearly, there is a need



for more general defect localization techniques to fill such gaps. Advances in this
area are of great importance for industrial practice.

This paper addresses this problem and proposes a novel defect localization
technique for multithreaded shared-memory programs. It is designed to detect
a wider range of defects that affect parallel execution rather than just race con-
ditions. Our approach is based on analyzing anomalies in program behavior. To
this end, we employ a data-mining technique building on call graphs of mul-
tithreaded applications. This extends our previous work addressing sequential
programs [12]. In particular, we compare the structure of the call graphs and
the call frequencies from correct and incorrect program executions to isolate the
methods containing defects. We also discuss different call-graph representations
for multithreaded programs and develop a solution with edge annotations that
is more robust with respect to varying thread schedules and more compact in
situations in which different threads execute replicated tasks. Contrary to race
detectors that produce many warnings (most of which are false positives) in
some arbitrary order, our technique produces a ranking of methods ordered by
the likelihood of containing a defect. Our controlled experiments with typical
applications show that an upper bound of several hundred program executions
is enough to pinpoint the actual defects. In addition, our approach was able
to localize a previously unknown (and undocumented) error in an open-source
download tool.

Paper organization: Section 2 explains the principles of call-graph-based de-
fect localization. Section 3 discusses appropriate extensions for representations of
call graphs for multithreaded programs. Section 4 introduces our novel approach
to mine these graphs and use the results for defect localization. Section 5 evalu-
ates the approach, and Section 6 gives a detailed illustrative example. Section 7
contrasts our approach to related work, while Section 8 compares our technique
to selected alternative approaches. Section 9 provides a conclusion.

2 Dynamic-Call-Graph-Based Defect Localization in
Sequential Programs

We distinguish between defects, infections and failures, according to [28]: Defects
are the positions in the source code which cause a problem, an infection is
an incorrect program state (usually triggered by a defect), and failures are an
observable incorrect program behavior (e.g., a user obtains wrong results).

For sequential software, Liu et al. [18] and Di Fatta et al. [9] have proposed
graph-mining techniques for defect localization, working on call graphs that rep-
resent program execution traces. The techniques assume that a collection of test
cases is available and that it is possible to decide if a program is executed cor-
rectly or not. Both approaches deal with occasional bugs, i.e., defects that lead
to both correct and failing executions. In these works, this behavior depends
on the input data, but it could be caused by varying thread interleavings, too.
Furthermore, they focus on non-crashing bugs.



A detailed survey of call-graph-mining-based defect localization is presented
in [11]. The basic idea of most approaches is to mine for patterns in the call
graph that are characteristic for incorrect executions. Thereafter, they calculate
for each method its likelihood of being defective. The call graphs may become
huge, so it is necessary to work on a compact representation. In [12] we observe
that the representations in [6,9, 18] lose the information how many method calls
an edge reprsents in the call-graph. We therefore extend the graphs with edge
weights representing call frequencies in [12]. We also demonstrate that data-
mining analyses based on such graphs increase the defect-localization precision
and detect defects that other approaches cannot deal with.

Other recent approaches introduce call graphs with several granularity levels,
instead of one at the level of methods, such as the the basic-block level in [6]. It
facilitates more detailed defect localizations.

The mentioned sequential techniques cannot be applied to multithreaded
software right away, as they do not define call graphs of multithreaded programs.
Thus, two extensions are necessary: (1) Find an appropriate graph representation
for multithreaded programs, and (2) adapt the mining scheme. We address both
issues in the following sections.

3 Dynamic Call Graphs for Multithreaded Programs

We now present the call-graph representation we employ for our technique and
contrast it with other possible choices. We also sketch how to generate the call
graphs for a multithreaded application.

3.1 Representation of Call Graphs in our Approach

Unreduced call graphs. Call graphs are based on program executions and
therefore need to be derived at runtime. Our approach uses call graphs at the
granularity level of methods, i.e., nodes refer to methods and edges to method
calls. Furthermore, in the multithreaded case, every method can be executed
several times in more than one thread. Therefore, in unreduced call graphs, we
initially label the nodes with the thread ID as a prefix and with the method
name. Figure 1(a) contains an example call graph. This example represents the
method calls of a program execution, without any reductions.

Reduced call graphs. In our approach, we use a more concise “totally reduced”
graph representation without thread IDs. Each method is uniquely represented
by exactly one node that does not depend on a thread. We introduce edge weights
as in [12] for call frequencies: Every edge weight captures the total number of
calls between the methods, represented by two connected nodes. Figure 1(b)
shows an example for this representation; it is the reduced version of the call
graph in Figure 1(a).
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Fig. 1. Example graphs illustrating alternative choices for call-graph representations.

3.2 Discussion and Comparison of Alternative Representations

Including temporal relationships may cause too much overhead. For the localiza-
tion of defects in multithreaded software, it seems to be natural to encode tem-
poral information in call graphs, e.g., to tackle race conditions. The call graphs
as the one in Figure 1(a) do not encode any order of execution of the different
threads and methods. One straight-forward approach to include such informa-
tion could use temporal edges as in [18]. The problem with this idea, however, is
that the overhead to obtain such information is large and requires sophisticated
tracing techniques. Furthermore, it may significantly influence program behavior
— possibly making a failure disappear. We therefore employ a more lightweight
approach without temporal information encoded in the graphs.

Uncompressed graphs become too large. Call graphs directly derived from
program execution — such as the one in Figure 1(a) — become very large in
practice. Even for a small program, the number of method calls can become
so large that mining algorithms would not scale. Therefore, a compression is
necessary. Figure 1(c) represents the “total reduction” of Figure 1(a), merging
all nodes having the same node label. This reduction encodes in the edge weights
a part of the information that was previously contained in the graph structure.

Thread IDs differ between program runs. Figure 1(c) illustrates a call-graph
representation that contains the thread IDs in the node labels. This is awkward,
as threads are allocated dynamically by the runtime environment or the operat-
ing system; various correct executions could lead to threads with different IDs for



the same method call, even for a program using the same parameters and input
data. We therefore would not be able to compare several program executions
based on the node labels. Omitting this information would result in the graph
shown in Figure 1(e), which is directly derived from the one in Figure 1(c).

The effects of replicated tasks and varying thread interleavings must be ad-
dressed. Graphs such as the ones in Figure 1(e), (c), and (d) can lead to two
problems: (1) They might contain a high degree of redundancy that does not
help finding defects. For example, a program using thread pools could have a
large number of threads with similar calls due to the execution of replicated tasks
(and therefore similar method calls). This typically produces a call graph with
several identical and large subtrees, which contain no meaningful information
for defect localization. (2) The call frequencies (i.e., the edge weights) might not
be useful for defect localization, too. Different execution schedules of the same
program can lead to graphs with widely differing edge weights. This can disturb
data-mining analyses, as such differences are not related to infections. As an
example, think of method a in Figure 1(c) as the run() method, calling the
worker task method b, which takes work from a task pool. Sometimes, thread 1
and thread 2 would both call method b twice, as in Figure 1(c). In other cases as
in Figure 1(d), depending on the scheduling, thread 1 could call method b three
times, while thread 2 would only call it once or vice versa.

Based on the observations discussed so far, we decided to use a graph repre-
sentation that avoids repeated substructures. Furthermore, our representation is
robust with respect to thread scheduling. In addition, for graphs such as the one
in Figure 1(e), we merge all nodes referring to the same method to a single node.
This leads to the representation introduced in Figure 1(b). This representation
is robust in the sense that different schedules do not influence the graph struc-
ture. The downside of this representation is that graph structures from different
executions rarely differ. This makes a structural analysis of the call graphs as in
other approaches (e.g., [12]) less promising. To compensate this effect, we encode
additional information in the edge weights, which has turned out to be helpful
for discovering defective behavior.

3.3 Obtaining the Call Graphs

To generate call graphs for multithreaded applications, we employ Aspect] [17]
and use it to weave in tracing functionality into a program. Aspect] has been
shown in earlier work to be well-suited for program-trace generation and in-
fection detection in multithreaded programs [7]. Aspect] introduces additional
overhead and execution slowdowns; we observed a typical increase in execution
time between 50% and 100% for the programs used in our evaluation (see Sec-
tion 5).

4 Defect Localization in Multithreaded Programs

We first present an overview of the defect-localization procedure and then more
details on our data-mining-based technique.



4.1 Overview

Algorithm 1 works with a set T' of traces obtained from program executions.
A trace is an unreduced call graph where every individual method invocation
leads to a new edge and a new node (see Figure 1(a)). Using a test oracle, our
algorithm assigns a class (correct or failing) to every trace t; € T. Then, the
algorithm reduces every t; to obtain a new call graph, which is assigned to a
class of either correct or failing executions. Based on these graphs, the last step
calculates for every method m; its likelihood of being defective. The likelihood
is used to rank the order of potentially defective methods shown to the software
developer.

Algorithm 1 Overview of call-graph-based defect localization.

Input: a set of program traces t; € T

Output: a method ranking based on each method’s likelihood of being defective P(m;)
1: G =10 // initialize a set of reduced graphs

2: for all traces t; € T do

3 check if ¢; was a correct execution and assign a class € {correct, failing} to t;

4: G =GU {reduce(t)}

5

6

: end for
: calculate P(m;) for all methods m; in G

We employ a test oracle to decide whether a program execution is correct or
not (Line 3 in Algorithm 1). Such oracles are specific for the examined program,
and their purpose is to decide if a certain execution manifests any observable
problems (i.e., a failure). An observable problem can be a wrong output or other
erroneous behavior such as a race condition. In this paper, we assume that some
kind of test oracle is available.

4.2 Data-Mining-Based Defectiveness-Likelihood Calculation

We now focus on the calculation of the likelihoods of a method being defective
(Line 6 in Algorithm 1). The goal is to find out which methods in program’s call
graph discriminate best between correct and failing executions. We analyze the
edge weights of the call graphs to derive such probabilities and create a feature
table containing all edges as columns and all program executions (represented
by their reduced call graphs) as rows (see Table 1).

For illustration, the first column in Table 1 corresponds to the edge from
method a to method b, the second column to the edge from b to ¢, and the
third column represents an edge from a to d. The last column contains the class
(correct or failing). The rows correspond to reduced call graphs ¢1,...,g9, € G,
which are derived from program executions. If a certain edge is not contained
in a call graph, the respective cell is 0. For example, graph g2 does not possess
edge a — d.



‘a — b‘b — c‘a — d‘~ . ‘ Class
445 | 445 7 failing
128 | 256 0 correct

g1
g2

Table 1. Example of a feature table.

Using this table, we analyze the edge weights. We employ a standard feature-
selection algorithm to calculate the discriminativeness of the columns of the table
and thus of the different edges. In particular, we use the information-gain-ratio
measure (GainRatio, see Definition 1) from the Weka machine-learning suite [27].
This measure is frequently used in data analysis, in particular in decision-tree
induction [24,27]. GainRatio reaches 1, its highest value, when an attribute
discriminates perfectly between classes; at 0, its lowest value, an attribute does
not contribute at all to the discrimination of classes.

Definition 1. The information-gain ratio (GainRatio) [24] is a measure based
on information gain (InfoGain) [24] and ultimately on entropy (Info):

Dc|
| D] | D
Info(D) := — logy (—+
Dal D,
InfoGain(A, D) := Info(D) — Z ﬁ - Info(D;)
j=1
Dal
: |D;| |D;|
Splitinfo(A, D) := — = . log

InfoGain(A, D)

GuainRatio(A, D) := SplitInfo(A, D)

where D is a dataset, C' is the class of tuples in D, A is an attribute in D, and
D¢ and D4 denote the sets of values reached by C and A, respectively.

Besides GainRatio, we could choose from a number of different feature-
selection algorithms, but we know from our previous work (see Section 2) that
those based on entropy are well suited for defect localization. Compared to
InfoGain, which could be used as well, GainRatio is robust regarding imbalanced
class distributions because it normalizes the InfoGain by its SplitInfo [24].

So far, we have derived defect likelihoods for every column in the table, i.e.,
for edges. However, we are interested in likelihoods for methods m;. As a method
can call several other methods, we assign every column to the calling method. We
then calculate the method likelihood P(m;) as the maximum of the gain-ratio
values of the columns assigned to method m;. We use the maximum because
it refers to a method’s most suspicious invocation. Other invocations are less



important, as they might not be related to a defect. However, the information
which specific invocation within method m; is most suspicious (the column with
the highest likelihood) can be important for a software developer to find and fix
the defect. We therefore report this additional information to the user.

5 Experimental Evaluation

We now present the experimental results to validate our approach. At first, we
describe the benchmark programs and their defects, the experimental setting,
and the metrics used to interpret the results. Section 8 presents some compar-
isons to related techniques.

5.1 Benchmark Programs and Defects

Our benchmark contains a range of different multithreaded programs. The bench-
mark covers a broad range of tasks, from basic sorting algorithms and various
client-server settings to memory allocators, which are fundamental constructs in
many programs [5]. As our prototype is implemented in AspectJ, all benchmark
programs are in Java. Most of these programs have been used in previous studies
and were developed in student assignments [14]. We slightly modified some of the
programs; for example, in the GarageManager application, we replaced different
println() statements with methods containing code simulating the assignment
of work to different tasks. Furthermore, we included two typical client-server
open-source applications in our benchmark. These programs are larger and rep-
resent an important class of real applications. Table 2 lists all programs along
with their size in terms of methods and normalized lines of code (LOC)3.

Program #M|LOC|#T|Source|Description

AllocationVector (Test)| 6| 133| 2| [14]|Allocation of memory
GarageManager 30| 475| 4| [14]|Simulation of a garage

Liveness (BugGen) 8| 120[100| [14]|Client-server simulation

MergeSort 11| 201| 4| [14]|Recursive sorting implementation
ThreadTest 12| 101| 50| [14]|CPU benchmark (random divisions)
Tornado 122| 632|100 [1]|[HTTP Server

Weblech 88| 802| 10 [2]|Website download /mirror tool

Table 2. Programs considered (#M/#T is the number of methods/threads).

The benchmark programs are seeded with known defects to provide exam-
ples for different defect patterns. In the two open-source programs, we manually
inserted typical synchronization defects. All defects are representative for com-
mon multithreaded programming errors (e.g., forgotten synchronization for some

3 We always use the sum of non-blank and non-comment LOC inside method bodies.



variable) and are occasional. The defects cover a broad range of error patterns,
such as atomicity violations/race conditions (on one or several correlated vari-
ables), deadlocks, but also other kinds of programming errors (e.g., originating
from non-parallel constructs) that can influence parallel program behavior.

We categorize the defect patterns in the programs of our evaluation as follows

(according to the classification in [15]):

1.

Allocation Vector; defect pattern: “two-stage access”. Two steps of find-
ing and allocating blocks for memory access are not executed atomically,
even though the individual steps are synchronized. Thus, two threads might
allocate the same memory and cause incorrect interference.

. GarageManager; defect pattern: “blocking critical section”. The defect

itself is a combination of an incorrectly calculated value in some rare cases
due to a forgotten switch case. When this situation occurs, no task is assigned
to a particular thread, while a global variable is treated as if work had been
assigned. Thus, fewer than the maximum number of threads are active. This
makes the program deadlock. We illustrate this program in more detail in
Section 6.

. Liveness; defect pattern: similar to the “orphaned thread” pattern. When

the maximum number of clients is reached, the next requesting client is
added to a stack. Although this data structure and a global counter are
synchronized, it can happen that the server becomes available while the
client is added to the stack. In this case, the client will never resume and
will not finish its task.

. MergeSort; defect pattern: “two-stage access”. Although methods working

on global thread counters are synchronized, the variables themselves are not,
which might lead to atomicity violations. In particular, threads ask how
many subthreads they are allowed to generate. When two threads apply at
the same time, more threads than allowed are generated. This can lead to
situations in which parts of the data are not sorted.

. ThreadTest; defect pattern: “blocking critical section”. The generation

of new threads and checking a global variable for the maximum number of
currently available threads is not done correctly in case of exceptions, which
occur randomly due to divisions by zero. This leads to a deadlock when all
threads encounter this situation. We consider an execution as failing when
at least one thread encounters this problem, due to lowered performance.

. Tornado; defect pattern: “no lock”. Synchronization statements are re-

moved in one method. This leads to a race condition and ultimately to
unanswered HTTP requests.

. Weblech; defect pattern: “no lock”. Removed synchronization statements

as in Tornado, resulting in Web pages that are not downloaded.

For the Weblech program, we have two versions: Weblech.orig and We-

blech.inj. In Weblech.inj, we introduced a defect in method run () by removing all
synchronized statements (Listing 1 shows an excerpt of this method with one
such statement), aiming to simulate a typical programming error. During our



experiments, we realized that the original non-injected version (Weblech.orig)
led to failures in very rare cases, too (the failure occurred in only 5 out of 5,000
executions; we used a sample of the correct executions in the experiments). Thus,
Weblech.inj contains the original defect besides the injected defects. With our
tool, we were able to localize the real defect by investigating two methods only.
The result is that two global unsynchronized variables (downloadsInProgress
and running) are modified in run(), occasionally causing race conditions. To
fix the defect in order to produce a defect-free reference, we added the volatile
keyword to the variable declaration in the class header.

while (queueSize() > 0 || downloadsInProgress > 0) {
synchronized (queue) {
nextURL = queue. getNextInQueue ();
downloadsInProgress++; }
} .
running ——;

Listing 1. Method void weblech.spider.run() (shortened to a minimum).

5.2 Experimental Setting

Number of executions. Our defect-localization technique requires that we ex-
ecute every program several times and that we ensure that there is a sufficiently
high number of examples for correct and failing executions. This is necessary
since we focus on occasional bugs (see Section 2), i.e., failures whose occurrence
depends on input data, random components or non-deterministic thread inter-
leavings. Furthermore, we tried to achieve stable results, i.e., analyzing more
executions would not lead to significant changes. We used this criterion to deter-
mine the number of required executions, in addition to obtaining enough correct
and failing cases. Table 3 lists the number of correct and failing executions for
each benchmark program.

Varying execution traces. In order to obtain different execution traces from
the same program, we rely on the original test cases that are provided in the
benchmark suite (e.g., MergeSort comes with a generator creating random ar-
rays as input data). Some programs have an internal random component as
part of the program logic, i.e., they automatically lead to varying executions
(e.g., GarageManager simulates varying processes in a garage). Other programs
produce different executions due to different thread interleavings that can oc-
casionally lead to observable failures. For the two open-source programs, we
constructed typical test cases ourselves; for the Tornado web server, we start a
number of scripts simultaneously downloading files from the server. For Weblech,
we download a number of files from a (defect-free) web server.

Test oracles. We use individual test oracles that come with every benchmark
program. For the two open-source programs, we compose test oracles that au-
tomatically compare the actual output of a program with the expected one. For
example, we compare the files downloaded with Weblech with the original ones
in the pre-configured list.



Testing environment. We run all experiments on a standard HP workstation
with an AMD Athlon 64 X2 dual-core processor 4800+. We employed a standard
Sun Java 6 virtual machine on Microsoft Windows XP.

5.3 Accuracy Measures for Defect-Localization Results

First of all, the locations of the actual defects are known, so the report of a
method containing a defect can be directly compared to see if this is true or
not. If there is more than one location which can be altered to fix a defect, we
refer to the position of the first of such methods in the ranking. For cases as
in Weblech.orig where the defect can be fixed outside a method body (e.g., in
the class header), one can still identify methods that can be altered to fix the
erroneous behavior.

Our experiments produce ordered lists of methods. In order to evaluate the
accuracy of the results, we report the position of the defective method in such
a list. This ranking position corresponds to the number of methods a software
developer has to review in order to find the defect. If two or more methods
have the same likelihood, we use a second static ranking criterion: We sort the
methods with the same likelihood by decreasing LOC size. Previous research has
shown that the LOC size frequently positively correlates with the likelihood of a
method being defective [21]. In order to estimate the effort to find a defect, we
compare the ranking position with the total number of methods in a program.
In addition to the ranking, we also provide more fine-grained information, such
as the suspected call within a method.

Another quality criterion is the comparison of our method with the expected
value for manual defect localization; in the manual approach, one would expect
to find the defect after reviewing about half of the program methods.

As method sizes can vary significantly, it is sometimes more appropriate
to consider the LOC rather than only the number of involved methods. We
therefore provide the percentage of LOC to review as an addition to the ranking
position. This is calculated as the ratio of methods that has to be considered
in the program, i.e., the sum of LOC of all methods having a ranking position
smaller than or equal to the position reported in the table, divided by the total
LOC (see Table 2).

5.4 Results

Table 3 shows encouraging results: In all five benchmark programs, the defec-
tive method is ranked first. The ranking position is lower only in the two large
programs. However, taking the size of these programs into account, the quality
of defect localizations is within the same range (see column “LOC to Review”).

Overall, the average ranking position for methods containing the defects
is 3.3. Nevertheless, as Table 2 shows, a developer only has to review just 7.1%
of all methods to find the defects or 23.6% of the normalized source code, which
is low. In other words, a developer has to consider in the worst case less than
a quarter of the source code of our programs in order to find a defect. This



Program Executions Defect Localization
#correct |#failing||Ranking Pos.|%LOC to Review
Allocation Vector 383 117 1 17.3%
GarageManager 74 26 1 14.2%
Liveness 149 53 1 44.2%
MergeSort 668 332 1 25.9%
ThreadTest 207 193 1 18.8%
Tornado 362 8 14 23.3%
Weblech.orig 494 5 2 23.3%
Weblech.inj 985 15 5 21.8%

Table 3. Defect-localization results.

reduces the percentage of methods (code) to review by a factor of seven (code:
more than by half) when compared to an average expected amount of 50% of
methods (code) to review. Note that these are maximum values: (1) The meth-
ods ranked highest are frequently good hints for the defect, even if the defective
method itself is ranked lower; (2) usually not all lines of a method need to be
reviewed, in particular due to our report which call within a method is most
suspicious.

6 A Detailed Example

We now illustrate a typical defect and the process of its localization with our
approach using excerpts form the GarageManager program [14]:

The defect. In our example, the calculation of the taskNumber variable can
produce a negative value, which is read in method GoToWork () (see Listing 2) to
calculate its modulo-8 value, which is then fed into a switch-case block. This
block, however, expects values between 0 and 7. Negative values can result when
Java calculates the modulo operation on a negative number. There are two alter-
native positions where a developer can modify the code to fix the bug: (1) The
switch-case block, by adding negative cases or a default case; (2) The parts of
the source code where taskNumber is calculated (method SetTaskToWorker()).

switch (taskNumber % 8) {
case 0: WorkingOn(” fix gears”, 2000); break;
case 1: WorkingOn(”change tires”, 1400); break;
// similar for case 2 to 6...
case 7: WorkingOn(”work on breaks”, 2200); break; }

Listing 2. Method void GoToWork() (shortened).

From the defect to an infection. We now look at the call graph from
a failing execution in more detail, shown in Figure 2. The call of run() gen-
erates five threads: Four “worker” threads calling methods WaitForManager (),
GoToWork() and PrintCard() and one “manager” thread calling the remain-
ing methods. In WorkingOn() (a defective method), the program state becomes



GetParametersFromUser GiveTasksToWorkers TakeWorkersFromAgency
AdjustBugProbability OpenOutputFile 5 SetTaskToWorker GetWorkersNames
1
@ PrintWorkersNames

3574 3574

WaitForManager @ @ @ AllWorkersFinished
IsManagerArrived ‘WorkingOn
@ changingTires workOnBreaks WorkerFinishedTask

Fig. 2. Call graph from a failing GarageManager execution.

infected: Three threads evaluate their switch statement to 0, 1 and 7, but the
fourth thread has a negative value, thus causing the thread not to call any further
methods.

From an infection to a failure. The aforementioned infection causes
the fourth thread not to call WorkerFinishedTask(). This method decreases
a variable of the global status object. This object is queried by AllWorkers-—
Finished () in method run() (see Listing 3). Al1WorkersFinished () will never
be true, as status will always indicate that only three out of four “worker”
threads have finished their tasks. This causes an infinite loop in run() (we man-
ually stopped the loop after 3,574 iterations). In other words, the infection has
caused a deadlock, an observable program behavior, which we consider a failure.

status . ManagerArrived ();
boolean tasksNotFinished = true, printedOutput = false;
while (tasksNotFinished) {
printedOutput = PrintOutput (printedOutput );
synchronized (status) {
if (status.AllWorkersFinished ())
tasksNotFinished = false;
else

yield (); }

Listing 3. Method void run() (shortened cutout).

Localizing the defect. In our experiments, our approach found the three
methods GoToWork(), WorkingOn() and run() (ordered by increasing ranking
position) to be most likely defective. Thus, the defect was pinpointed directly.



The high likelihood for WorkingOn() is due to a follow-up infection, as it is
always called from GoToWork(). The run() method has a high likelihood as
well, caused by the huge number of method calls in the infinite loop (compared
to correct executions). Both methods are inherently connected to the defect.

7 Related Work

Defect localization techniques and race detectors are typically classified into
static and dynamic techniques. Dynamic race detectors instrument programs
and analyze run-time behavior of every thread access to memory. They intro-
duce significant overhead, possibly influencing the program under test in a way
that a race condition disappears. Static race detectors investigate the source
code only but produce typically large numbers of false-positive warnings. Hy-
brid approaches [22] and implementations such as the IBM MulticoreSDK [23]
try to combine the best of both worlds.

FindBugs [4] is a static code-analysis tool. It statically checks Java code for
certain patterns of defect-prone artifacts. Although it supports a limited number
of defect-prone multithreading-related behaviors, it was not designed for detect-
ing multithreading defects. However, FindBugs complements our approach.

Tarantula [16] is a dynamic technique using tracing and visualization. To
localize defects, it utilizes a ranking of basic blocks which are executed more
often in failing program executions. Though this technique is rather simple, it
produces good defect-localization results in the single-threaded case. However,
it was not designed for multithreaded programs and causes significant overhead
due to its fine-grained tracing. Spectrum-based fault localization techniques as
employed in this tool are presented more generally in [3], though with a focus
on sequential programs.

The approach of [8] is similar to ours, but instead compares method sequence
sets (not call graphs) to avoid the thread interleaving problem, however, it pro-
duces a more coarse-grain class ranking instead of a method ranking.

ConTest [15] executes a multithreaded Java program several times and influ-
ences thread schedules by inserting different statements (e.g., sleep()) into a
program. Chess [20] works for C# and has a modified scheduler to exhaustively
try out different thread interleavings. Given such a technique, a delta-debugging
strategy [28] might be used to automatically localize a defect. However, [26] has
shown that approaches building on varying thread interleavings and delta de-
bugging do not scale for large software projects. Instead, [26] proposes a feature-
selection strategy which builds on an approach such as ConTest or Chess and
identifies problematic program locations, to avoid scalability problems. In con-
trast to our approach, the aforementioned tools focus on finding synchronization
errors due to wrong usage of parallel constructs, which is a subset of the errors
that are detectable by our approach.



8 Result Comparisons with Related Work

Our experiments with the MulticoreSDK applied to all program versions from
our evaluation (see Section 5.1) reveal that it is not able find any of the defects.
From the eight versions, the MulticoreSDK incorrectly classified seven versions
as defect-free, while producing a false-positive warning for the eighth version.
We also applied FindBugs to all program versions. The result is that it does
not directly pinpoint any of the defects. At the same time, FindBugs produces a
number of false-positive warnings: On average, there are 5.4 warnings per pro-
gram version, distributed over 4.3 different methods. Although the warnings do
not pinpoint the defective lines and might therefore be misleading, the defective
methods from six out of eight versions are included in the warnings. To find these
six defects, a developer would have to consider the source code of all methods
that are affected by warnings, which in our case amounts to 35.3% of the code.

9 Conclusions

Debugging multithreaded software is difficult and time-consuming, so any pro-
gress in tool support will help reduce costs. Most of the existing parallel debug-
ging tools have concentrated on parallel programming errors such race condi-
tions, but there are several defect patterns that are not in the focus of these
tools. In this paper, we have presented a novel defect-localization technique for
multithreaded programs to address this problem. We have shown that mining
call graphs is an effective approach to detect a wider range of errors with the
same tool, including race conditions, deadlocks and errors originating from the
wrong usage of non-parallel language constructs. Our case study with differ-
ent multithreaded programs shows that the defective method can be pinpointed
straight away in five of the eight cases, and that on average only 7.1% of all pro-
gram methods have to be investigated to find a defect. This promises significant
reductions in the time developers need for debugging.
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