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Chapter 1

Introduction

Simox is a lightweight platform independent C++ toolbox, containing three libraries for
3D simulation of robot systems, sampling based motion planning and grasp planning. The
library Virtual Robot is used to define complex robot systems, which may cover multiple
robots with many degrees of freedom. The robot structure and it’s visualization can be
easily defined via XML files and environments with obstacles and objects to manipulate are
supported. Basic robot simulation components, as Jacobian computations and generic K-
solvers, are offered by the library. The two libraries Saba and Grasp Studio host algorithms
related to motion and grasp planning. State-of-the-art implementations of sampling-based
motion planning algorithms (e.g. Rapidly-exploring Random Trees) are served by the Saba
library, which was designed for efficient planning in high-dimensional configuration spaces.
The possibility to exchange the underlying collision detection library allows to customize the
planning framework and due to the multi-threading support efficient planning concepts can
be realized. Grasp Studio offers possibilities to compute the grasp quality for generic end-
effector definitions, e.g. a humanoid hand. The implemented 6D wrench-space computations
can be used to easily (and quickly) determine the quality of an applied grasp to an object.
Furthermore, the implemented planners are able to generate grasp maps for given objects
automatically.



Chapter 2

Virtual Robot

In this chapter, an introduction to the simulation library Virtual Robot is given. It is shown
how to create a simple robot system by defining an XML structure and how to visualize the
results. Convenient methods for accessing the robot are presented and several features of the
library, as Jacobian calculations or IK-solving, are discussed.

2.1 Robots

2.1.1 Defining a robot

Simox uses a custom XML format for defining robot systems which is easy to understand
and mostly self-explanatory. A robot consists of multiple so-called Robot Nodes which are
linked together and which may contain visualizations or not. In case a Robot Node does not
contain any visualization it is used as a virtual joint (i.e. such a node can be used as a virtual
coordinate system). The Robot Nodes hold information about children, Denavit-Hartenberg
(DH) Parameters (or simple translation + rotation parameters), name, visualization and
collision models. The 3D models are defined via Openlnventor files (see [1]). An simple
example of a robot with three degrees of freedom is given below.

Listing 2.1: SimpleRobot.xml

<?xml version="1.07"7>
<Robot>
<Type value="SimpleRobot” />
<RootJoint>
<Name value="DemoRobol” />
<ChildNode name="Jointl " />

</RootJoint>

<ChildJoint>
<Name value="Jointl " />
<DH>
<alpha value="90"/>
<thetaJoint value="1"/>
<a value="300"/>
</DH>
<Visualisation>
<IVModel file="joint_rot_sphere.iv”’/>
</Visualisation>
<CollisionChecking>
<IVModel file="joint_rot_sphere.iv’”/>
</CollisionChecking>
<ChildNode name="Joint2" />
</ChildJoint>
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<ChildJoint>
<Name value="Joint2”/>
<DH>
<thetaJoint value="1"/>
<a value="300"/>
</DH>
<Limits min="-90" max ="/5"/>
<Visualisation>
<IVModel file="joint_rot_sphere.iv”’/>
</Visualisation>
<CollisionChecking>
<IVModel file="joint_rot_sphere.iv”/>
</CollisionChecking>
<ChildNode name="TCP”/>
</ChildJoint>

<ChildJoint>
<Name value="T7TCP"/>
</ChildJoint>
</Robot>

Since multiple instances of the robot type are allowed, the robot definition does not include
a name, but a type (DemoRobot) and the name of the instance is defined when loading (or
cloning) the robot. The kinematic structure of a robot can be seen as a tree of connected
joints, for that a specific root node defines the start. In the given example, the robot definition
consists of four nodes, but only two of them define a movable joint (Joint! and Joint2). These
node definitions include DH parameters (a, d, theta, alpha) where non given arguments are
set to zero. The parameter thetaJoint indicates that the joint is movable and the theta value
describes the flexible part of the joint (other DH parameters can also be flexible, e.g. a joint
with the DH-definition < dJointvalue ="1"/ > would result in a translational joint). The
allowed movement of node Joint2 is limited from —90 to 45 degrees. Examples of several
robot definitions are given in Fig. 2.1.

Figure 2.1: Full and reduced model of the humanoid robot ARMAR-III. The robot consists
of 94 RobotNodes with 43 degrees of freedom. Furthermore humanoid legs and a Kuka®©
KR60-3 are depicted.

2.1.2 Accessing a robot

Once a robot is defined and the definition is stored in an XML file, it can be read by the
XML parser and in case, the robot definition is valid, an instance of the robot is created as
shown in Listing 2.2.

Listing 2.2: Loading a robot

std ::string sFilename (7demoRobot.zml”);
std::string sInstanceName ("MyRobot”);
CRobot x*pRobot = CRobot:: Load (sFilename ,sInstanceName );
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In Listing 2.3, pRobot, an instance of C'Robot, which is the main class of the Virtual Robot
library, is constructed (this implies loading of all 3D models). The code snippet shows how
to get a visualization of the robot and several ways of setting and retrieving configurations
are shown.

Listing 2.3: Accessing a robot

// get visualization
SoSeparator xpVisuFullModel = pRobot—>GetFulllVModel ();
SoSeparator xpVisuColModel = pRobot—>GetCollisionIVModel ();

// set joint values

std::string sJointl ("7 Jointl”);
std::string sJoint2 (7 Joint2”);
pRobot—>SetJoint (sJointl, M_PI / 2.0);
pRobot—>SetJoint (sJoint2 , —0.1f);
pRobot—>ApplyJointValues ();

// get joint values

float fJointValuel = pRobot—>GetJointValue(sJointl );
CRobotNode *pNode2 = pRobot—>GetNode(sJoint2);

float fJointValue2 = pNode2—>GetJointValue ();

float fLimitLo = pNode2—>GetJointLimitLo (); // —PI/2
float fLimitHi = pNode2—>GetJointLimitHi(); // PI/4

You can find an example on how to load, access and display a robot at Simoz/Virtual-
Robot/examples/Robot Viewer.

2.1.3 Kinematic Chains

A kinematic chain is a collection of names of previously defined RobotNodes which can be
used to access multiple joints at once. The definition of the StartNode and T'CP are optional.
The start node defines the node in the kinematic structure from which an update of the joint
poses has to be done in case the joint values of the kinematic chain change. This can be
useful when large robot systems are built, and only a small sub-part of the robot needs to be
updated when joint values change. You may think of a humanoid robot and when updating
the joint values of the right arm, the first joint, from where the re-calculation of joint poses
has to be done is the right shoulder joint. Hence, a complete re-calculation of all joint poses
can be avoided when accessing the kinematic chain. The TCP node can be used in case
Jacobian-based movements are applied (see section 2.4). Note, that a kinematic chain is just
a collection of nodes, which means you can also define sets of nodes which do not form a valid
kinematic chain.

Listing 2.4: Definition of a kinematic chain

<Robot>

<KinematicChain>
<Name value="Rightarm”’/>
<StartNode name="Shoulderl R”/>
<Node name="Shoulderl R”/>
<Node name="Shoulder?2 R”/>
<Node name="Upperarm R”/>
<Node name="Flbow R”/>
<Node name="Underarm R”/>
<Node name="Wristl R”/>
<Node name="Wrist2 R”/>
<TCP name="T7TCFP R”/>

</KinematicChain>

</Robot>
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The kinematic chain can be accessed as shown in Listing 2.5.

Listing 2.5: Accessing a kinematic chain

std::string sKinName( " Rightarm”);
CKinematicChainx pKinChain = pRobot—>GetKinematicChain (sKinName);

// set values given as std::vector
pRobot—>SetJointValues (vValues ,sKinChain);

Figure 2.2: Two kinematic chains defined for the humanoid robot ARMAR-III [2].

2.1.4 Collision Models

A convenient way of defining a set of collision models is offered by the tag CollsionModel. The
collections of collision models can be used for easily testing parts of the robot for collisions
with obstacles or other parts of the robot (see section 2.3).

Listing 2.6: Collection of collision model definitions

<Robot>

<CollisionModel>
<Name value="Left Arm” />
<Node »Upperarm L7 [>
<Node Underarm L7 />
<Node Wrist2 L7 />
<Node "Hand Palmi1 L”/>
<Node "Hand Palm2 L” />
<Node ?Pinky L JO7 />
<Node Pinky L J17/>
<Node "Ring L JO” />
<Node Ring L J17/>
<Node Middle L JO” />
<Node Middle L J17/>
<Node Index L JO”/>
<Node 7Indezx L J17/>
<Node ?Thumb L JO7 />
<Node name="Thumb L J17/>

</CollisionModel>

</Robot>
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2.1.5 End-Effectors

By defining end-effectors (EEF), more complex robots or manipulators can be realized, al-
lowing to simulate manipulation or grasping actions.

To use an end-effector, at first it has to be specified in the XML file of the robot. Here
the EEF definition uses previously defined RobotNodes of the robot, so that an end-effector
definition is a logical collection of robot joints. The EEF definition includes a name, a base
node (which can be seen as the TCP node of the end-effector), a static part (e.g. the palm
of a hand) and several fingers. Fingers could also define two ends of a parallel gripper.

Listing 2.7: End-effector definition of a humanoid hand

<Robot>

<EndEffector>
<Name value="Left Hand’ />
<BaseNode name="7CP L7 />

<StaticPart>
<Node name="Hand Palml L7/>
<Node name="Hand Palm?2 L”/>
</StaticPart>

<Finger>
<Name value="Thumb Left” />
<Node name="Thumb L0" ColChecking="0"/>
<Node name="7Thumb L1” ColChecking="1"/>
</Finger>
<Finger>
<Name value="Index Left”/>
<Node name="Index L0O”" ColChecking="0"/>
<Node name="/ndex L1”° ColChecking="1"/>
</Finger>
<Finger>
<Name value="Middle Left”/>
<Node name="M:iddle L0” ColChecking="0"/>
<Node name="Middle L1” ColChecking="1"/>
</Finger>
<Finger>
<Name value="Ring Left”’/>
<Node name="Ring L0” ColChecking="0"/>
<Node name="Ring L17 ColChecking="1"/>
</Finger>
<Finger>
<Name value="FPinky Left”/>
<Node name="PFPinky L0O” ColChecking="0"/>
<Node name="PFinky L1” ColChecking="1"/>
</Finger>
</EndEffector>
</Robot>

This end-effector can then be accessed in your code as shown below. The EEF can be
closed and opened, with and without considering obstacles (see section 2.2). The contact
information can be collected, e.g. for measuring the grasp quality (see chapter 4). Fig. 2.3
shows an anthropomorphic hand (see [3]) grasping several objects.

Listing 2.8: Accessing an end-effector

std :: string sEEFName(” Left Hand”);
CEndEffector* pEEF = pRobot—>GetEndEffector (sEEFName);

pEEF—CloseHand () ;

pEEF—OpenHand () ;

pEEF—>CloseHand (pObstacle );

pEEF—Highlight ();

pEEF—CloseHandContactInfo (vContactInformation, pObstacle);
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Figure 2.3: The humanoid hand of ARMAR-III [3].

2.1.6 Coordinate Transformations

A robot holds information about poses of all registered joints. This information can be used
to transform coordinates between the different coordinate systems of the robot and the world.

Listing 2.9: Coordinate transformations

std::string sCoordl (" Jointl”);
std::string sCoord2( 7 Joint2”);
SbMatrix mMat;

mMat. makeldentity ();

// transform pose from local coord system of
// Jointl to local coord system of Joint2
pRobot—>TransformPose (sCoordl ,sCoord2 ,mMat ) ;

// transform pose from world coord system
// to local coord system of Jointl
pRobot—>TransformGlobalPose (sCoordl ,mMat);

// transform pose from local coord system to
// world coord system
pRobot—>TransformToGlobalPose (sCoord2 ,mJointPose);

// get pose of joint in world coord sytem
CRobotNode #pNode = pRobot—>GetNode(sCoord2 );
SbMatrix mJointPose = *(pNode—>GetPose ());

In Listing 2.10 the visualization of a coordinate system is enabled and several coordinate
systems are shown in Fig. 2.4 .

Listing 2.10: Visualization of coordinate axis

<Robot>

<ChildJoint>

<Visualisation>
<CoordinateAxis enable="1" scaling="1"/>
</Visualisation>
</ChildJoint>
</Robot>
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Figure 2.4: Several coordinate systems of the left arm of ARMAR-III.

2.2 Environment, Objects and Scenes

In the previous section it was showed how to define and load a robot and now the surrounding
of the robot is discussed. Environments and obstacles are defined as OpenInventor [1] models
and it is possible to define two models, one for visualization and the other for collision
checking. Together with scene definitions, a complete setup can be realized containing robots,
configurations, obstacles and environments.

Listing 2.11: Defining an environment and obstacles

std::string sFullFile (" EnviornmentHighDef. iv");

std::string sCollisionModelFile (7" EnvironmentReduced. iv7);
CEnvironment *pEnv = CEnvironment :: LoadEnvironment (sFullFile );
CEnvironment *pEnv2 = CEnvironment :: LoadEnvironment (sFullFile ,

sCollisionModelFile );

// create a standard box
CManipulationObject #*pObjBox =
CManipulationObject :: CreateObstacleBox (100,100,100);

// load an object form file
CManipulationObject *pObjl = new CManipulationObject ();
pObjl—LoadIVModel ( "object.iv’”);

// move object around

SbMatrix mPosel;

mPosel . setTranslate (SbVec3f(1000,0,0));
pObjl—>SetGlobalPose (mPosel );

// add object to environment
pEnv—>AddManipulationObject (pObjl);
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Figure 2.5: Loading environments: Full and a reduced model of a kitchen. This kitchen
model was created within the German Collaborative Research Center Humanoid Robots -
Learning and Cooperating Multimodal Robots (CRC 588) [4].

2.2.1 Grasping Information

The class CManipulationObject can be used for defining obstacles (see above), or additional
information can be stored as feasible grasps related to an end-effector. Therefore the classes
CFeasibleGrasp and CFeasibleGraspCollection are used. The grasping information can be

generated using the tools offered by GraspStudio, see chapter 4 for details. The grasping
information can be read from and stored to XML files:

Listing 2.12: Definition of a ManipulationObject

<ManipulationObject>
<Name value="cup”’/>
<InventorFilename value="cup.iv”’/>

<FeasibleGraspCollection>
<Name value="GraspCollectionRight” />
<ManipulationObject value="cup”’/>
<Robot value="Armars” />
<EndEffector value="Right Hand” />
<FeasibleGrasp>
<Name value="Grasp Right 07/>

<Pose>
<Rowl ml="7.0" m2="0" m3="0" md="0"/>
<Row2 ml="0" m2="0" m3="1.0" md="0"/>
<Row3 7 m2="—1.0" m3="0" md="0"/>

<Row4 ml="—-7" m2="35" m3="-2" m4="1"/>
</Pose>
</FeasibleGrasp>
</FeasibleGraspCollection>
</ManipulationObject>

The grasp information can be accessed via the appropriate methods of CManipulationObject.
Furthermore, the grasping poses can be used to put an object in the hand of the robot.

Listing 2.13: Accessing the grasping information

std::string sObjectFile (" CupObject.aml”);
CManipulationObject *pObj = CManipulationObject :: Load (sObjectFile);

// get grasp information
std::string sEEF(”Right Hand”);
CFeasibleGraspCollectionx pGraspCollection = pObj—>GetFeasibleGrasps (sEEF);

std::string sEEF(”7Grasp Right 07);
CFeasibleGrasp *pGrasp = pGraspCollection —>GetGraspConfig(sGraspname );
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// get grasping pose of EEF in world coord system when applying the grasp
SbMatrix mPose = pObj—>GetGlobalGraspingPose (pGrasp);

// get visualization of grasping pose
SoSeparatorx pGraspVisu = pObj—>GetGraspVisu(pRobot, pGrasp);

// set object to grasping position

std::string sLeftHand ("7 Left Hand”);

CEndEffector *pEEF = pRobot—>GetEndEffector (sLeftHand );

CRobotNodex pBaseNode = pEEF—>GetBaseNode ();

SbMatrix mEefPose = #(pBaseNode—>GetPose ());

SbMatrix mObjectPose = *(pGrasp—>GetObjectPoseInHandFrame ());

mObjectPose. multRight (mEefPose );

// now, mObjectPose is the global pose of the object when pGrasp is applied
pObj—>SetGlobalPose (mEefPose ) ;

// close the hand to grasp the object
pEEF—>CloseHand (pObj—>GetCollisionModel ());

// attach object to robot’s end—effector (at current pose)

// and add object to collision model of left arm

std::string sLeft(”Left Arm”);

CRobotCollisionModelCollection *pColModel = pRobot—>GetCollisionModel (sLeft );
std:: string sNodeName = pBaseNode—>GetName ();

pRobot—>AttachObject (sNodeName, pObj, pColModel);

Figure 2.6: Grasping definitions for two objects and the right hand of the humanoid robot
ARMAR-III.

2.2.2 Scenes

Scenes offer a convenient way of defining and storing a situation.

Listing 2.14: A scene definition in XML

<Scene>
<Robot filename = "armar3.zml” name="Armarlll” configuration="init ">

<Configuration name="init ">
<item name="X_Flatform” value="1700.0"/>
<item name="Y_Platform” value="—1500.0"/>
<item name="Yaw_FPlatform” value="0.0"/>
<item name="Flbow L7 value="0.0"/>
<item name="Shoulderl L’ value="0.0"/>
<item name="Underarm L7 value="0.0"/>
<item name="Flbow R’ value="0.0"/>
<item name="Shoulderl R’ value="0.0"/>
<item name="Shoulder?2 R’ value="0.0"/>
<item name="Underarm R’ value="0.0"/>

</Configuration>

<Configuration name="PFPosecl ">
<item name="Flbow L7 value="1.57"/>

<item name="Shoulderl L7 value="—0.27/>
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<item name="Underarm L7 value="0./5"/>
<item name="Flbow R’ value="0.1"/>
</Configuration>
</Robot>
<ManipulationObject filename="1/.iv” newName="lamp” configuration="StartPose >
<Configuration name="StartPose ">
<item name="z" value="/850.0"/>
<item y 7 value="390.0"/>
<item 7 value="0.0"/>
<item roll” value="0.0"/>
<item name="pitch”’ value="0.0"/>
<item name="yaw’ value="0.0"/>
</Configuration>
</ManipulationObject>
<ManipulationObject filename = " 7Table.zml” configuration="init ">
<Configuration name="init ">
<item name="z" value="3000.0"/>
<item name= © value="1800.0"/>
<item name=":" value="8/0.0"/>
<item name="roll” value="0.0"/>
<item name="pitch’ value="0.0"/>
<item name="yaw”’ value="0.7"/>
</Configuration>
</ManipulationObject>
<Environment filename = "kitchen.iv’>
</Environment>
</Scene>

Listing 2.15: Accessing the scene information

std::string sFile(7scene.azml”);
CScene *pScene = CScenelO :: Read(sFile);

// get visualisation
SoSeparatorx pSep = pScene—>GetSceneSep ();

// get robot
std::string sRobot (7 Armarlll”);
CRobot* pRobot = pScene—>getRobot (sRobot );

// get environment
CEnvironment* pRobot = pScene—>GetEnvironment ();

// get manipulation objects
std :: vector<CManipulationObjectx> vObjects;
pScene—>GetAllManipulationObjects (vObjects);

2.3 Collision Detection

Simox offers an interface for performing collision checks and distance calculations on 3D mod-
els. Three classes directly interfere with the underlying collision checker (CCollisionChecker,
CCollisionModel and CCollisionModelCollection), which offers the possibility to exchange the
used collision detection library in case another implementation is preferred. Currently colli-
sion detection and distance calculations are done by the PQP library which uses OOBB and
swept sphere volumes for efficient and accurate collision detection and distance computation
(see [5]).

There is a global instance of the collision checker (accessible with CColli-
sionChecker::GetGlobalCollisionChecker()) and in case you are not doing concurrent
collision detection in separate threads, this instance is all you need. In multi-threading
applications you have to create an instance of CCollisionChecker for each thread (see next
section for details).
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Collisions and distances between 3D models can be determined by calling the methods Check-
Collision() and CalculateDistance(). The arguments for calling these methods can be of type
CCollisionModel or CCollisionModelCollection. By defining collections of collision models,
logical sets of collision models can be addressed in a convenient way (e.g. an arm of a robot)
and collisions are only reported between the collections (i.e. collisions of models which belong
to the same collection are ignored).

Listing 2.16: Collision detection and distance calculation

// get global collision checker instance
CCollisionChecker #*pColChecker = CCollisionChecker :: GetGlobalCollisionChecker ();

// get collision model of one joint

std::string sNode( 7 Jointl”);

CRobotNode *pNode = pRobot—>GetNode (sNode);

CCollisionModel *pColModelJoint = pNode—>GetCollisionModel ();

// get collision model of a manipulation object
CCollisionModel *pColModelObject = pManipulationObject—>GetCollisionModel ();

bool bCollision = pColChecker—>CheckCollision (pColModelJoint , pColModelObject);
float fD = pColChecker—>CalculateDistance (pColModelJoint, pColModelObject );

// get a set of collision models
std::string sLeft (7 Left Arm”);
CRobotCollisionModelCollection *pColRob = pRobot—>GetCollisionModel (sLeft );

CCollisionModelCollection* pColModelEnv = pEnvironment—>GetCollisionModel ();
bool bCollision2 = pColChecker—>CheckCollision (pColRob, pColModelEnv);

Figure 2.7: Collision detection performed on several configurations of a simple three DoF
robot (left). The distance calculation methods offer the possibility to retrieve the points with
shortest distance between two models (right).
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2.3.1 Multi-Threading

When you plan to implement a multi-threaded application where the routines of the collision
checker are called in parallel, you will need multiple instances of the collision checker and
multiple instances of the robot(s) and object(s) you operate on. Each robot or object is
linked to an instance of the collision checker which can be specified on construction (when no
instance is set on construction, the global collision checker is used automatically). An easy
way of creating multiple instances of objects and robot is offered by the Clone() methods
which takes a pointer to a new collision checker as parameter and creates a complete copy of
the robot or object that is linked to the given instance of the collision checker.

Listing 2.17: Using multiple collision checkers

// create two instances of collision checker
CCollisionChecker *pColCheckerA = new CCollisionChecker ();
CCollisionChecker xpColCheckerB = new CCollisionChecker ();

// clone robot

std ::string sNewNameA (" Robot A”);

std::string sNewNameB(”Robot B”);

CRobot *pRobotA = pRobot—>Clone (pColCheckerA , sNewNameA );
CRobot *pRobotB = pRobot—>Clone (pColCheckerB, sNewNameB);

// clone object

std::string sObjA (7 Object A”);

std::string sObjB(”Object B”);

CManipulationObject* pObjA = pManipulationObject—>Clone (pColCheckerA, sObjA);
CManipulationObject* pObjB = pManipulationObject—>Clone (pColCheckerB, sObjB);

// thread A
CRobotCollisionModelCollection *pColA = pRobotA—>GetCollisionModel (sLeft );
bool bColA = pColCheckerA—>CheckCollision (pColA ,pObjA);

// thread B
CRobotCollisionModelCollection xpColB = pRobotB—>GetCollisionModel (sLeft );
bool bColB = pColCheckerB—>CheckCollision (pColB,pObjB);

2.4 Jacobian and it’s Pseudoniverse

The Jacobain calculations are using Newmat’s datatypes as Matriz and Column Vector. The
library newmat is provided in the EzternalDependencies directory of Simox. Please note
that newmat starts counting with 1, which could be confusing for C+-+ programmers. In
the following example you can see how the Jacobians and the Pseudoinverse Jacobians are
calculated and how a Cartesian Delta is used to compute joint deltas via the Pseudoinverse
Jacobian.




CHAPTER 2. VIRTUAL ROBOT 14

Listing 2.18: Jacobians

// calculate the Jacobuian for the given kinematic chain
Matrix mJacl = pRobot—>GetJacobian (pKinematicChain);

// calculate the jacobian in a given coordinate system
std::string sCoordSystem (7 Right Shoulder”);
Matrix mJac2 = pRobot—>GetJacobian (pKinematicChain ,sCoordSystem );

Matrix mInvJac = pRobot—>GetInverseJacobian (pKinematicChain);

// do a inverse jacobain calculation
ColumnVector cvStoreJointDelta (m_nDimension);

// the Cartesian Delta (x,y,z followed by Roll Pitch Yaw angles)
ColumnVector cvDeltalnGlobalCoordSystem (6);

cvDeltaInGlobalCoordSystem << 10.0f << 0 << 0 << 0 << 0 << 0; // 10mm in x
cvStoreJointDelta = mInvJacxcvDeltalnGlobalCoordSystem;

for (unsigned int i=0;i<m_nDimension;i++)

{
}

// apply values
pRobot—>SetJointValues (pJointValues , pKinematicChain );

pJointValue[i] 4= cvStoreJointDelta(i+1); // ! note the +1

2.5 IK-Solver

The probabilistic IK solver uses the Pseudoinverse Jacobian to iteratively reduce the error
from the current pose of the TCP to the target pose. If that fails, a randomly chosen pose
is used as starting point for further iterations. After a specified amount of unsuccessful tries
the IK solver returns a failure.

Listing 2.19: An example how to use the probabilistic IK solver

std ::string sKinChainHipArm (" TorsoLeftArm”);
CKinematicChain #pKinChainTorsoArm = pRobot—>GetKinematicChain (sKinChainHipArm );
std::string sTCP("7TCP L7);
CRobotNode *pTCP = pRobot—>GetNode (sTCP);
CProbabilisticlKSolver xpIKSolver =
new CProbabilisticlKSolver (pRobot, pKinChainTorsoArm, pTCP);

float pTargetPose[6];
float pStoreResultConfiguration[10];

// transform target values
SbMatrix pGraspPose;
pGraspPose = pObj—>GetGlobalGraspingPose ();
MathTools : : SbMatrix2PosRPY (pGraspPose, pTargetPose);
bool bRes = pIKSolver—>solve (pTargetPose, pStoreResultConfiguration);
if (bRes)
pRobot—>SetConfiguration (pStoreResultConfiguration , sKinChainHipArm );

An example for using the probabilistic IK solver can be found in the directory
Simox/ VirtualRobot/examples/IK-Demo. Here the generic Jacobian calculations and TK
solvers are used to move around several kinematic chains of the robot.
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Figure 2.8: The example IK-Demo shows how to access the Jacobians and the generic IK
solver.

2.5.1 Reachability Distribution

The reachability distributions (called ReachabilitySpaces) approximate the reachability of 6D
poses (position and orientation) for a given kinematic chain, e.g. a manipulator or an arm.
This data can be used to quickly decide whether a 6D pose is reachable or not which can
be useful when searching a reachable position for an object. Instead of calling the IK-solver
for lots of samples with low chance for finding an IK-solution, the reachability spaces can be
used for fast checking and discarding lots of configurations.

The reachability spaces are generated in an offline step by randomly sampling a large number
of configurations for the given kinematic chain and the corresponding poses of the TCP are
determined by calculating the forward kinematics. These poses are used to fill the reach-
ability distribution and finally the data can be stored to binary files for using it later on.
The examples depicted in Fig. 2.9 have been generated by sampling more than 400 million
configurations which took three days on a standard Linux PC. The reachability spaces can
be used to speed up the probabilistic IK solver as shown in Listing 2.20.

Listing 2.20: Accessing the reachability distributions

// load rachability distribution
CReachabilitySpace xpReachSpace = new CReachabilitySpace ();
pReachSpace—>Load (sFilename ,pRobot );

// visualize
SoSeparator *pSep =
pReachSpace—>CreateVisualisation (CReachabilitySpace :: eRed);

// get entry of reachability distribution
float pPose PosRPY[6] = {100.0f, 0, 0, M_PI, 0, 0};
int nValue = pReachSpace—>GetEntry (pPose_.PosRPY );
if (nValue==0)
cout << "This pose seems not to be reachable...” << endl;

// create an instance of the IK solver, with reachability information
CProbabilisticIKSolver xplIKSolver =
new CProbabilisticIKSolver (pRobot, pKinChainTorsoArm, pTCP, pReachSpace);
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Figure 2.9: Approximated reachability distributions for two kinematic chains of ARMAR-IIIL.
The left image shows the reachability of the arms where the size of the balls is proportional
to the reachability value in the corresponding cell. The right image shows the reachability
distribution of the 13 DoF kinematic chain covering platform rotation, hip and left arm. Note
that the visualizations are three-dimensional projections of the six-dimensional reachability
distributions.

2.6 Helper Methods

Virtual Robot provides some helper methods for convenience. The functions provided by
MathTools can be used to convert representations of orientations including Quaternions, Roll-
Pitch-Yaw angles and homogeneous 4x4 matrices. The class CIV7Tools offer possibilities for
converting Openlnventor models to triangulate data which can be easily accesed for further
use.

Listing 2.21: Helper methods for converting coordinates

float pPosEulerZXZ[6];
float pPosQuat[7];
float pPosRPY [6];
SbMatrix mMat;

float pQuatl[4];

float pQuat2[4];

float pQuat3[4];

float fAngle;

// a selection of available convertion methods
MathTools :: SbMatrix2PosEulerZXZ (mMat, pPosEulerZXZ);
MathTools : : PosQuat2SbMatrix (pPosQuat, mMat);
MathTools : : PosRPY2PosQuat (pPosRPY, pPosQuat);

// quaternion calculations

MathTools : : QuatMulQuat (pQuatl, pQuat2, pQuat3);
MathTools :: DeltaQuat (pQuatl, pQuat2, pQuat3);
MathTools :: QuatAngle (pQuatl, fAngle);
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Listing 2.22: Helper methods for Openlnventor

CIVTools:: Model3d StoreModel;

// the high res model where the distance between all points

is <= 10

SoSeparatorx pHighResIVModel = CIVTools:: RefineModel (pIVModel, 10.0f);

// convert IV model to internal data structure
CIVTools:: ConvertModel (pIVModel, StoreModel);

// convert internal data structure to IV model
SoSeparator *pIVModel2 = CIVTools:: ConvertModel (StoreModel );

// print out vertices

std::vector<CIVTools:: Vec3dd >::iterator itVertices =
StoreModel . m_Vertices. begin ();

while (itVertices!=StoreModel. m_Vertices.end())

{

cout <<
(xitVertices).x << 7,7 <<
(xitVertices ).y << 7,7 <<
(xitVertices ).z << endl;
itVertices++;

}

// print out facets
std::vector<CIVTools:: Face3dd >::iterator itFaces =
StoreModel . mFaces. begin ();
while (itFaces!=StoreModel.mFaces.end())
{
cout << "Vertice [Ds: 7 <<
(xitFaces ). m_nldl << 7,7 <<
(xitFaces ). m_nld2 << 7,7 <<
(xitFaces).m-nld3 << endl;
cout << "Normal: 7 <<
(*itFaces ). m_Normal.x << 7,7 <<
(xitFaces ). m_Normal.y << 7,7 <<
(*itFaces).m_Normal.z << endl;
itFaces++;
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Saba

The Sampling-Based Motion Planning Library (Saba) can be used for planning collision-free
motions for robots that are defined by the Virtual Robot library. The library provides several
generic algorithms for efficient planning, most of them are based on techniques related to
Rapidly-exploring Random Trees (RRT) (see [6]).

3.1 Configuration Spaces

The configuration space (C-Space) covers all configurations of the system, which can be a
complete robot or a part of it, defined by a kinematic chain. The main class, used by most
planning approaches, is CSpaceSampled providing functionality for sampling, validating and
collision checking in C-Spaces.

3.1.1 Managing Collision Detection of Multiple Objects

Since a C-Space must provide functionality to determine whether a configuration is valid
or not, methods for collision detection have to be realized. To conveniently define different
setups for collision detection (e.g. multiple obstacles, self-collisions or parts of robots), the
class CCollisionCheckingManagement is used. The collision checking management (CCM)
holds information about which CCollisionModels or CCollisionModelCollections should be
tested against collisions. In Listing 3.1 a CCM is defined and several collision models are
added. After defining all components, a situation with a collision can easily be checked by
calling the method CheckCollision() . In this example any mutual collision between the
environment, the manipulation object, the left arm and the right arm of the robot will be
reported (note that no collisions within the left or right arm are considered).

3.1.2 Defining a C-Space

By using the CCM definition, a CSpace can be constructed easily (see Listing 3.2). The
robot for which the C-Space is used, the CCM, and the string defining the kinematic chain
of all joints that span the C-Space have to be specified on construction. The kinematic chain
implicitly defines the dimensionality of the C-Space (which equal to the number of joints of

18



CHAPTER 3. SABA 19

the kinematic chain) and the extends of the dimensions (which are retrieved from the limits
of the joints). In Listing 3.2 an instance of CSpaceSampled is generated and the collision
status of a single configuration and of a path segment is computed. Checking the collision
status of path segments is realized by an efficient divide and conquer algorithm.

Listing 3.1: Defining a CCM

CColCheckManagement *pCCM = new CColCheckManagement () ;
pCCM—>SetEnvironment (pEnv ) ;

CCollisionModel *pColModel = pManipulationObject—>GetCollisionModel ();
pCCM—>AddCollisionModel (pColModel );

std::string sLeft (7 Left Arm”);

CRobotCollisionModelCollection xpColModelR1 = pRobot—>GetCollisionModel (sLeft );
pCCM—>AddCollisionModel (pColModelR1);

std::string sRight (7 Right Arm”);

CRobotCollisionModelCollection xpColModelR2 = pRobot—>GetCollisionModel (sRight );
pCCM—>AddCollisionModel (pColModelR2 ) ;

// check if there is a colliding situation
bool bCollision = pCCM—>CheckCollision ();

// in case multi—threaded setups are used, all objects accessed by one thread
// have to be registered to the same instance of the collision checker
CColCheckManagement +xpCCMMT = new CColCheckManagement (pColChecker);

Listing 3.2: Defining a C-Space

CSpaceSampled xpCSpace = new CSpaceSampled (pRobot, pCCM, sKinematicChain);

// the sampling size is used when new paths are added
pCSpace—>SetSamplingSize (0.11);

// the collision checking sampling size is used
// to determine whether a path is collision free or not

pCSpace—>SetColCheckSamplingSize (0.05f);

// Now a single configuration or a path between

// two configurations (straight line) can be checked

// for collisions (pConfig has to be a float array of valid size)
bool bValidl = pCSpace—>IsConfigValid (pConfig);

bool bValid2 = pCSpace—>CheckPath(pConfigl ,pConfig2);

3.1.3 Exact Collision Detection

In the class CSpaceSampled the collision status of a path segment is determined by generating
intermediate samples and performing discrete collision checks. If none of the samples is in
collision, it is assumed that the path is collision-free. By setting the sampling parameter to
an adequate value, most situations can be handled by this discrete collision detection (DCD)
algorithm. In case, the exact collision status of a path is requested, continuous collision
detection (CDC) routines can be used. Therefore, the free bubble concept of [7] is integrated
in Saba. A free bubble of a configuration is a sphere in C-Space, for which a guarantee can
be given, that all covered configurations are collision-free. The radius of the sphere can be
calculated from the obstacle distance in workspace. By sampling a path segment, so that the
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free bubbles of the samples overlap, a guarantee can be given, that the path is completely
collision-free. The class CSpaceFreeBubbles implements an optimized version of this free
bubble check and since CSpaceFreeBubbles is derived from CSpaceSampled it can be used
alternatively with all planners that rely on CSpaceSampled. In Listing 3.3 an example is
given.

Listing 3.3: Exact collision detection

CSpaceFreeBubbles xpCSpace =
new CSpaceFreeBubbles(pRobot, pCCM, sKinematicChain);

bool bValid_Guaranteed = pCSpace—>CheckPath (pConfigl ,pConfig2);

3.2 RRT-based Planning of Collision-Free Motions

For planning collision-free motions several RRT-based planners are provided by Saba. The
use of uni-directional planners as CRrtExtend and CRrtConnect are shown in Listing 3.4.
The bi-directional planner CRrtBiPlanner needs two instances of CSpaceSampled, one for
each search tree. In Listing 3.5 it is showed how to use a bi-directional planner and how to
access the results. It is shown, how a solution path can be interpolated and how the search
trees, that were generated during planning, can be accessed.

Listing 3.4: A uni-directional planner

// using the EXTEND method for planning
CRrtExtendPlanner sxpPlanner = new CRrtExtendPlanner (pCSpace);

pPlanner—>setStart (pStartConfig);
pPlanner—>setGoal (pGoalConfig );
bool bRes = pPlanner—>Plan ();

// using the CONNECT method for planning
CRrtConnectPlanner spPlanner2 = new CRrtConnectPlanner (pCSpace);

// setup the probability of connecting the target to the tree

// —> with this probability the planning goal is used as new target
// for connecting instead of using a random configuration
pPlanner2—>SetProbabilityGoalDirection (0.05f);

pPlanner2—>SetStart (pStartConfig);

pPlanner2—>SetGoal (pGoalConfig);

// perform the motion planning
bool bRes2 = pPlanner2—>Plan ();
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Listing 3.5: Bi-directional planning

CSpaceSampled xpCSpacel = new CSpaceSampled (pRobot, pCCM, sKinematicChain);

CSpaceSampled xpCSpace2 = new CSpaceSampled (pRobot, pCCM, sKinematicChain);

CRrtBiPlanner xpPlanner = new CRrtBiPlanner (pCSpacel, pCSpace2,
CRrtBiPlanner : : RRT.CONNECT, CRrtBiPlanner :: RRT.CONNECT);

pPlanner—>SetStart (pStartConfig );
pPlanner—>SetGoal (pGoalConfig);
bool bRes = pPlanner—>Plan ();

if (bRes)

// access the solution

CRrtSolution spSolution = pPlanner—>GetSolution ();
// get intermediate configuration

float pConfig[nDimensions |;
pSolution—>Interpolate (0.5f, pConfig);

// and set robot to this config
pRobot—>SetConfiguration (pConfig, sKinematicChain);
// access the planning trees

CSpaceTree *pRrtl = pPlanner—>GetPlanningTree ();
CSpaceTree *pRrt2 = pPlanner—>GetPlanningTree2 ();

3.2.1 Optimizing Planned Trajectories

The results of RRT-based planners usually define a collision-free motion that brings the
robot from the start to the goal configuration, but in general the results are not optimal. To
optimize planned motions the class CShortcutOptimizer can be used as shown in Listing 3.6.

Listing 3.6: Optimizing a trajectory in C-Space

CShortcutOptimizer Optimizer(pSolution, pCSpacel);

int nSizel = pSolution—>GetPathSize ();

CRrtSolution *pSolutionOpti;

pSolutionOpti = new CRrtSolution (Optimizer.Optimize (500));
int nSize2 = nSizel — pSolutionOpti—>GetPathSize ();

std ::cout << "Kicked 7 << nSize2 << 7 nodes” << std::endl;

Figure 3.1: A planned path and it’s optimized version in work- and C-Space.
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3.2.2 Visualizing the Results

The results of a planner can be visualized as workspace movements of a joint or as a direct
visualization of the C-Space (in the latter case the C-Space has to be three-dimensional).

Listing 3.7: Visualizing the results as workspace movements

std ::string sTCP(”EndPoint”);
CRrtWSpaceVisualizationx pWSpaceVisu =

new CRrtWSpaceVisualization (m_pRobot, sTCP);
// enabling high quality rendering slows down the visualization
// in case large search trees should be visualized
pWSpaceVisu—>SetHighQualityRendering (true);
// add two search trees and two solutions to display
pWSpaceVisu—>AddTree (sKinematicChain, pRrtl, pSolution, pSolutionOpti);
pWSpaceVisu—>AddTree (sKinematicChain, pRrt2);
// create visualization
pWSpaceVisu—>BuildVisualizations (bShowTree, bShowSolution);
// get the visu
SoSeparator #*pSep = pWSpaceVisu—>GetTreeVisualisation ();

Listing 3.8: Visualizing a three-dimensional C-Space

CRrtVisualization RrtVisu;

RrtVisu.setRrt (pRrtl,pRrt2, pStartConfig , pGoalConfig, pSolution);

// first try to load the sampled C-Space (much faster than sampling)
if (!RrtVisu.LoadSampledCSpace(sFilenameCSpaceSampling.c_str ()))

// if loading fails , create samplings and save them
std :: cout << “Could not load data, sampling cspace...” << std ::endl;
RrtVisu. CreateCollisionSamplingPoints (0.1f, pRobot, sKinChain);
RrtVisu.SaveSampledCSpace (sFilenameCSpaceSampling . c_str ());
}
SoSeparator *xpCSpaceVisuSep = new SoSeparator ();
RrtVisu. CreateCSpaceVis (pCSpaceVisuSep );

Figure 3.2: Visualization of a planning result in work- and C-Space.
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3.2.3 Multi-Threading

It is possible to start a planner or an optimizer in a thread, e.g. for decoupling the planning
from the main loop of a graphical user interface. Therefore the two classes CPlanningThread
and CPostprocessingThread are provided by Saba (see Listing 3.9).

Listing 3.9: Threaded planning

CPlanningThread xpPlanningThread = new CPlanningThread ();
pPlanningThread—>SetPlanner (pPlanner);
pPlanningThread—>start ();

while (pPlanningThread—>IsRunning())

// do whatever you want
}
// now the planner has finished
CRrtSolution *pSol = pPlanner—>GetSolution ();
if (pSol)

cout << " Planning was successful...” << endl;

Furthermore, Simox offers an multi-threaded implementation of the RRT-Planner. This
planner starts n threads doing collision checks of paths. Therefore multiple clones of the
scene are generated and managed by the planner. An example of an application can be found
at Simoz/SaBa/examples/Kuka or Simox/SaBa/examples/MultiThreaded Planning.

Listing 3.10: Multi-threaded planning

std :: vector<std ::string> vColModels;
vColModels . push_back (sColModel );
// setup planner with 4 threads
CRrtBiMTPlanner xpPlannerMT =
new CRrtBiMTPlanner (pCSpacel, pCSpace2, vColModels, 4);
pPlannerMT—>SetStart (pStartConfig);
pPlannerMT—>SetGoal (pGoalConfig );
pPlannerMT—>Plan () ;
CRrtSolution *pSolution = pPlannerMT—>GetSolution ();

Figure 3.3: Multiple threads are used for checking the collision status of paths.
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3.2.4 Planning Grasping Motions

Planning grasping motions can be done with the following two approaches: GraspJacobian-
Planner and IK-RRT. The first one is a general planning algorithm which can be used without
the need of any robot-specific implementations, whereas the second approach is based on an
efficient probabilistic IK-solver which might be robot-specific (see e.g. [8] for details). Since
the IK-RRT approach realizes a bi-directional RRT-based search it is faster than the Grasp-
JacobianPlanner for most setups, but the performance strongly depends on the efficiency of
the used IK-solver. An example on how to use the IK-RRT approach for planning grasp-
ing motions with the humanoid robot ARMAR-III [4] is given in Simoz/Saba/examples/IK-
RRTDemo.

In Listing 3.11 a planner setup is presented. The planner is initialized with instances of
CSpaceSampled (implicitly defining the kinematic chain used for planning), CRobot (the robot
we want to use), CManipulationObject (the target object to grasp), CEndEffector (the end-
effector used for grasping and CFeasible GraspCollection (the potential grasping configurations
defining how to grasp the object). When the planner succeeds, it implicitly selects a feasible
grasp, an IK-solution together with a collision-free trajectory that moves the EEF to the
grasping pose.

Listing 3.11: The GraspJacobainPlanner

CGraspJacobianPlannerx pPlanner =
new CGraspJacobianPlanner (pCSpace, pRobot, pGraspObject, pEEF, pGrasps);

pPlanner—>SetStart (pConfig);
pPlanner—>Plan ();

// retrieve results
CFeasibleGrasp* pGrasp = pPlanner—>GetSolutionGrasp ();
CRrtSolution *pSolution = pPlanner—>GetSolution ();

Figure 3.4: Two exemplary results of the GraspJacobianPlanner. The red lines are generated
by Jacobian-based approach movements during planning
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3.3 Robot-Specific Libraries

Since several implementations depend on the robot’s kinematic structure (e.g. a bimanual
planner needs a robot with at least two arms, or analytic IK-solvers operate on a specific
kinematic setup), Simoz provides a way of defining robot specific code. E.g. the RobotLibAr-
marlll holds implementations as IK-solvers for arms and head, which are related to the
humanoid robot ARMAR-IIT (see [2, 4]).
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Grasp Studio

The Grasp Studio library contains methods and tools used for measuring grasp qualities.
Therefore an interface to the ghull library is provided to build convex hulls in 3D or 6D.
The methods for measuring grasp qualities rely on 3D force space or 6D grasp wrench space
computations. Grasping setups of simple end-effectors, multi-finger hands, multi-hand and
multi-robot grasps can be evaluated by the Grasp Studio library. Grasp planners are imple-
mented for building object specific grasp maps for a given end-effector.

4.1 Measuring the Quality of a Grasp

Grasp Studio can be used to measure the quality of a grasping configuration. Therefore, the
class CGraspQualityMeasure and its derived implementations can be used. To evaluate a
grasping configuration, contact information between object and end-effector is needed, which
can be acquired as shown in section 2.1.5.

4.1.1 Friction Cones

A common approach in grasp scoring is to approximate the exerted forces by friction cones
which can be derived from a contact point in 3D and a contact normal. Therefore the class
CContactConeGenerator can be used. Some visualizations of resulting friction cones are
given in Fig. 4.1.

Figure 4.1: The friction cones are used to visualize the applied forces at the contacts.
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4.1.2 Convex Hulls

Since for state-of-the-art algorithms for computing grasp qualities rely on convex hull com-
putations, Grasp Studio offers an interface to ghull [9], an efficient and robust library for
computing convex hulls. The open-source implementation of ghull is provided with the
source-code of Simozr. An example on how to use the interface to qhull for 3D and 6D
points is given in Listing 4.1 and in Listing 4.2.

Figure 4.2: A 3D model and it’s convex hull.

Listing 4.1: Creating a convex hull from 3D points

// create random points
std :: vector<GraspStudio :: Vec3D> vPoints;
for (int 1=0;i<100;i++4) {
GraspStudio :: Vec3D point;
point.x = rand()%1000; point.y = rand()%1000; point.z = rand()%1000;
vPoints . push_back (point );
}
GraspStudio :: ConvexHull3D convexHull, convexHull2;
// create convex hull of a point set
CConvexHullGenerator :: CreateConvexHull (vPoints, convexHull);
// create a convex hull from a 3D model
CConvexHullGenerator :: CreateConvexHull (pIVModel, convexHull2);
// create a visualization
SoSeparator xpSep = new SoSeparator ();
CConvexHullGenerator : : CreateIVModel (convexHull2 , pSep);

Listing 4.2: Creating a convex hull from 6D contact data

// create random points
std :: vector<GraspStudio :: ContactPoint> vPoints;
for (int 1=0;i<100;i4++) {
GraspStudio :: ContactPoint point;
point.x = rand()%1000; point.y = rand()%1000; point.z = rand()%1000;
point.nx = rand()%1000; point.ny = rand()%1000; point.nz = rand()%1000;
vPoints . push_back (point );
}
// create convex hull of a point set
GraspStudio :: ConvexHull6D convexHull6D ;
CConvexHullGenerator :: CreateConvexHull (vPoints, convexHull6D );
// create a visualization (force/torque space)
SoSeparator xpSep = new SoSeparator ();
CConvexHullGenerator :: CreateIVModel (convexHull6D , pSep, true /* false x/);
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4.1.3 Grasp Force Space

The class CGraspQualityMeasureForceSpace can be used for quick and efficient computations
of grasp qualities. Therefore the ObjectForceSpace (OFS) is calculated once per object and
for a given grasp setup the GraspForceSpace (GFS) is set in relation to it.

To build the OFS, the object’s surface is sampled and a grasping contact is assumed at each
surface point. Then the convex hull of the approximated friction cones on all these contact
points defines the OFS. To score a setup of contacts, the GraspForceSpace (GFS) is built by
approximating friction cones at all contact positions and computing the convex hull of them.
By determining the largest scaling factor, that encloses the GFS in the OFS, a grasp quality
is computed.

A single handed and a bimanual grasping setup together with a visualization of the force
spaces is shown in Fig. 4.3. In [10] an integrated grasp and motion planning approach is
described that utilizes the grasp force space for quick online grasp quality computations.

Figure 4.3: From left to right: (a) The grasp setup, (b) A visualization of the GFS, (c¢) The
precomputed OFS, (d) The GFS of a bimanual grasping configuration.

Listing 4.3: Computing a grasp quality score

// setup the grasp quality measurement with an object
CGraspQualityMeasureForceSpacex pGQMForce =

new CGraspQualityMeasureForceSpace ();
pGQMForce—>SetObjectProperties ((SoNodex)pObjSep );
pGQMForce—>CalculateOWS ();

// compute the grasp score
pGQMForce—>SetContactPoints (vContactPoints);
float fScore = pGQMForce—>GetGraspQuality ();

// retrieve visualizations
SoSeparator xpSepl = pGQMForce—>GetVisualizationGWS ();
SoSeparatorx pSep2 = pGQMForce—>GetVisualizationOWS ();

4.1.4 Grasp Wrench Space

The 6D Wrench Space of a grasping setup can be computed with CGraspQualityMea-
sure WrenchSpace. Therefore the wrenches of the contacts are generated and the convex
hull of this 6D data is computed (see [11, 12, 13] for further information about Grasp Wrench
Spaces). By determining the maximal size of an enclosing sphere, the quality of the grasp is
computed. To retrieve an absolute quality value, the object specific Object Wrench Space is
approximated by sampling the objects surface and assuming contacts at these points.
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Listing 4.4: Computing the grasp wrench space

// setup the grasp quality measurement with an object
CGraspQualityMeasureWrenchSpace xpGQMWrench =

new CGraspQualityMeasureWrenchSpace ();
m_pGraspQualityMeasureWrench—>SetObjectProperties ((SoNodex)pObjSep);

// this is optional

// if the OWS was already computed, you can set the results directly

// in order to avoid it’s computation

pGQMWrench—>PreCalculatedOWS (fPreCalculatedMinDist , fPreCalculatedVolume);

// score the grasping configuration
pGQMWrench—>Set ContactPoints (contactPoints );
float fScore = pGQMWrench—>GetGraspQuality ();

// retrieve visualization
SoSeparator xpSepl = pGQMWrench—>GetVisualizationGWS ();
SoSeparatorx pSep2 = pGQMWrench—>GetVisualizationOWS ();

4.2 Generating Grasp Hypotheses

In case graps maps should be generated by grasp planning algorithms, a component is needed
to compute approach movements resulting in grasp hypotheses. Grasp Studio offers an in-
terface class (CAproachMovementGenerator) that can be used to implement own approach
movement generators. One approach strategy is implemented by the class CApproachMove-
mentSurfaceNormal, which samples positions on the object’s surface and by aligning the
Approach Direction of the end-effector with the surface normal, an approach direction is
constructed. There is still one free DoF (the rotation around the normal) which is set to a
random value. This approach movement is used to move the EEF toward the object until a
collision is detected. Then, the EEF is moved back until a collision-free pose is reached and
the hand can be closed to retrieve the contact information.

The class CApproachMovementSurfaceNormal creates an internal instance of CRobot that
consists of the joints Move X, Move Y, Move Z, Rotate FulerZXZ 1, Rotate EulerZXZ 2 and
Rotate FulerZXZ 3 followed by the EEF definition. This robot can be used to move the EEF
(it’s cloned version) around in order to generate approach movements.

In Listing 4.5 an end-effector together with the name of the joint defining the Grasp Center
Point (GCP) and the start joint from where the cloning should begin are passed to the
constructor of CApproachMovementSurfaceNormal. The GCP is used as the basis coordinate
system for moving the robot around. Then, the internally created robot and end-effector
can be accessed and set to potential grasp hypothesis which are generated randomly. By
closing the hand, all contact information for the specific grasp can be retrieved for further
calculations.

Listing 4.5: Creating grasping hypotheses

// create approach movement generator

CEndEffector *pEEF = pRobot—>GetEndEffector (sNameEEF );
std::string sStartName("Hand L7);

std:: string sGCPName( "GCP Left Hand”);
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CApproachMovementSurfaceNormal spApproachGeneration =
new CApproachMovementSurfaceNormal (pManipObj, pEEF, sGCP, sStart);

// retrieve internal clones of EEF-robot and EEF
CRobot *pEEFRobot = pApproachGeneration—>GetEEFRobotClone () ;
CEndEffector *pEEFClone = pEEFRobot—>GetEndEffector (sNameEEF );

// set EEF to a potential grasping position
pApproachGeneration—>SetEEFToRandomApproachPose ();

// close hand and store contact information

pEEFClone—>CloseHandContactInfo (vContacts , pManipObj—>GetCollisionModel ());
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Figure 4.4: The Grasp Center Point (GCP) of a humanoid hand. The GCP is defined as a
regular joint of the robot’s XML definition. The x-axis (red) of the joint’s coordinate system

defines the approach direction of the end-effector.

4.3 Grasp Planner: Building Grasp Maps

The interface C'GraspPlanner is used as a base class for all grasp planners which are used to
generate feasible grasps for a specific EEF and object combination. The class CGraspPlanner-
General can be used to build grasp maps using an instance of CApprachMovementGenerator
for generating grasp hypothesis and an instance of C'GraspQualityMeasure to score them.
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Figure 4.5: The tool Grasp Planner can be used to build grasp maps.
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4.4 Grasp Studio: The Grasp Editor

The tool Grasp Studio, located at Simoxz/GraspStudio/examples/GraspStudio, can be used to
create, visualize and edit grasping configurations for ManipulationObjects. Therefore robots
and manipulation objects can be loaded and several options allow to create and manipulate
the grasping information that is stored with the object.

[ Armmar GraspStudio | Grasp Evaluation

Robot: |armar3 3l
Object | squaretableGraspobject 3]
options

[ collision model

[ allow collisions
show grasps

show robot controls

show object controls

Kinematic chain [ HipLeftarm 3
TcP TR L
Endeffector: Left Hand [ Close |
e E=ptos)

store grasp | | remove grasp | | save object |

- click 's', then pick with the |eft mousebutton to seek

- right mousebutton cpens the popup menu

- click 'ESC' key to switch to between viewing and interaction mode
+++++++++++++ Shorteut Information ++-+++++++++++++ m
IK SUCCESS.... =
30.341: distance from object squaretable to kinematic chain's HipLeftArm collision model =

Figure 4.6: The tool Grasp Studio is used to manipulate object-related grasping information.
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