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Bayesian inference for hedge funds with stable
distribution of returns

Biliana Güner∗, Svetlozar T. Rachev†,
Daniel Edelman‡, and Frank J. Fabozzi§

Abstract

Recently, a body of academic literature has focused on the area of stable dis-
tributions and their application potential for improving our understanding of the
risk of hedge funds. At the same time, research has sprung up that applies stan-
dard Bayesian methods to hedge fund evaluation. Little or no academic attention
has been paid to the combination of these two topics. In this paper, we consider
Bayesian inference for alpha-stable distributions with particular regard to hedge
fund performance and risk assessment. After constructing Bayesian estimators for
alpha-stable distributions in the context of an ARMA-GARCH time series model
with stable innovations, we compare our risk evaluation and prediction results to
the predictions of several competing conditional and unconditional models that are
estimated in both the frequentist and Bayesian setting. We find that the conditional
Bayesian model with stable innovations has superior risk prediction capabilities
compared with other approaches and, in particular, produced better risk forecasts
of the abnormally large losses that some hedge funds sustained in the months of
September and October 2008.

Introduction
The financial crisis of 2008 had a devastating effect on the hedge fund industry and
reshaped the way investors, risk personnel, and portfolio managers think about risk.
According to Hedge Fund Research, total industry assets contracted by $461 billion
in 2008 and nearly 1,000 hedge funds were liquidated. Hundreds of otherwise attrac-
tive, ”safe” hedge funds found themselves unable to pay panicked investors in a timely
fashion. Many were compelled to throw up gates, suspend redemptions, discontinue net
asset value calculations, reorganize into illiquid side-pocket tranches, make payments-
in-kind rather than cash or otherwise tamper with their ordinary terms and liquidity. For
the investor, whether individual high net-worth, institution, or fund-of-funds, 2008 led
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to a sober reassessment of the tools and techniques for evaluating hedge fund risk. The
entire spectrum of risk forecasting—from market and credit risk to liquidity analysis,
operational due diligence and fraud mitigation to diversification—saw major upheavals
and rethinking over the past year.

This chapter offers a new approach to forecasting the tail risk of hedge funds. While
some researchers have studied the topic of Bayesian inference for stable distributions,
no researchers to our knowledge have applied this analysis to the hedge fund industry.
Furthermore, although numerous authors have applied Bayesian techniques to hedge
fund performance, all have assumed normally distributed returns, ignoring the fat-tailed
behavior described by the family of stable distributions. Finally, while researchers have
touched on the topic of stable distributions and hedge funds, to our knowledge nobody
has considered the analysis within a Bayesian framework.

One of the problems in evaluating the true tail risk of hedge funds is the lack of
accurate performance data. Hedge funds often drop out of commercially available
databases prior to revealing large losses. Many large, institutional-quality hedge funds
choose not to report to public vendors whatsoever. To mitigate such concerns, we ob-
tained proprietary data from a leading hedge fund-of-funds, whose database is several
times larger than that of the public vendors. As such, we are able to investigate the
complete and accurate performance histories of many active and dead hedge funds that
are unavailable to any other researchers. We analyze the returns of a large collection of
funds through the tumultuous market meltdown surrounding the Lehman bankruptcy
in 2008, as well as the dramatic rebound of many survivors through December, 2009.
Consequently, our conclusions regarding the fat-tailed behavior of hedge funds may be
considerably more telling than the findings of most studies written prior to 2008-09.

The goal of the chapter is threefold. The first is illustrative: we discuss the stable
density that, thanks to its heavy-tailedness and skewness, lends itself well to modeling
hedge fund performance. Beginning with a frequentist overview, we proceed to de-
scribe a means of estimation of the parameters of the distribution in a Bayesian setting,
in both unconditional and ARMA-GARCH contexts. This is followed by an example
using simulated data. The second goal is to contrast the results of our risk evaluation
methods with others in a broad, general context. We focus on the performance of the
overall hedge fund industry as represented by a popular index, as well as the track
record of an actual hedge fund with a long performance history. This comparison is
more qualitative, and is meant to guide the typical hedge fund practitioner. The third
goal also involves evaluating our models against alternatives, but in a more specific,
rigorous vein. We assess how each model performs in forecasting value-at-risk (VaR)
and conditional value-at-risk (CVaR) during the extreme market turmoil of 2008, with
particular emphasis on the months of September and October of that year. We perform
a battery of tests to determine whether the various approaches are properly specified,
and also the degree of accuracy of each measure. Knowing now that 2008 was for most
hedge funds the worst year ever experienced, we seek to determine whether our meth-
ods would have given superior forecasts well enough in advance for a risk or portfolio
manager to have made meaningful preparation for the worst.
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Literature Review
Until the mid 1990s, there was a dearth of research on Bayesian inference on sta-
ble distribution parameter estimation. Buckle (1995) is one of the earliest to imple-
ment a Markov Chain Monte Carlo (MCMC) algorithm (specifically, the Gibbs sam-
pler), to make parametric and predictive Bayesian inference for stable distributions,
and to generate Bayesian posterior samples from the parameters of a stable distribu-
tion with any prior distribution. The work by Buckle was followed by a slew of ar-
ticles across disparate fields—computational statistics, finance/economics, signal pro-
cessing, acoustics/speech, astronomy/astrophysics, pattern recognition, pharmacology,
and genetics/biostatistics (gene expression profiling), among others. Qiou (1996) and
Qiou and Ravishanker (1997, 1999) develop a sampling-based conditional Bayesian
approach that simultaneously estimates the stable-law parameters and the parameters
of a linear ARMA model, thus extending Buckle’s approach to time series and mul-
tivariate sub-Gaussian ARMA problems. Ravishanker and Qiou (1998) further refine
this research using Monte Carlo Expectation Maximization (MCEM). Godsill and Ku-
ruoglu (1999) employ a hybrid rejection sampling and importance sampling scheme
to implement MCMC and MCEM using a general framework involving scale mixtures
of normals (SMiN). They claim their approach improves upon straightforward rejec-
tion sampling and Metropolis-Hastings approaches for symmetric stable models, and
find use for this technique in the field of audio signal noise reduction. Tsionas (1999)
likewise uses a SMiN representation limited to symmetric stable distributions with ap-
plications to econometric time series. Casarin (2004) generalized existing techniques
to include Bayesian inference for mixtures of stable distributions, arguing that in some
cases financial data exhibit not only heavy tails and skewness but also multimodality.
Salas-Gonzalez, Kuruoglu, and Ruiz (2006a,b) employ a reversible-jump MCMC algo-
rithm for parameter estimation of stable distributions involving impulsive, asymmetric,
and multimodal data from the field of digital signal processing. Lombardi (2007) devel-
ops a random walk Metropolis sampler using a Fast Fourier Transform of the stable-law
characteristic function to approximate the likelihood function, as explained in Rachev
and Mittnik (2000).

Little has been written on stable distribution modeling of hedge fund returns. Ol-
szewski (2005) fits a stable distribution to Hedge Fund Research (HFR) indices and
runs simulations to generate returns; he then optimizes a fund-of-funds portfolio of
these assets using a mean-CVaR objective function. The result is shown to be more ef-
ficient than other naive combinations. Literature on Bayesian inference for hedge fund
returns is also scarce, and generally limited to the normal distribution case. Avramov,
Kosowski, Naik and Teo (2007) and Kosowski, Naik, and Teo (2007) both use Bayesian
approaches to determine that hedge funds do indeed produce alphas and exhibit return
persistence. These studies, however, offer limited insight into the dynamics of hedge
fund return distributions, and are merely extensions of research done on mutual funds.
Agarwal, Bakshi, and Huij (2008) use a Bayesian approach to estimate alphas and
factor sensitivities of hedge funds. Gibson and Wang (2009) improve upon Avramov
et.al.’s Bayesian research by incorporating liquidity risk into the assessment of hedge
fund returns.
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Data Description
Hedge fund performance data was taken from a proprietary database of Alternative
Investment Solutions (AIS), a large fund-of-funds group that is part of UBS’s Alterna-
tive and Quantitative Investments platform. This database is several times larger than
any commercial vendor platform and in fact is a superset of most all publicly available
systems. As of this writing, the AIS database stores qualitative and quantitative infor-
mation on over 20,000 programs and 45,000 share classes of these funds; the typical
vendor lists only about 10,000 classes of 5,000 funds.1 Moreover, the database con-
tains the histories of thousands of funds long since liquidated; among these are entities
dating back over four decades. Having access to a database used by the world’s largest
investor in hedge funds2 allows for industry analysis that heretofore has been unattain-
able by academic researchers. For example, over 30% of the collection of funds in the
AIS database are unknown to any vendor. This includes a substantial collection of the
most desirable, successful, institutional-quality managers who typically do not report
their results publicly. Such data have been obtained directly from primary sources in-
cluding the hedge fund managers themselves, fund administrators, and prime brokers.
A second benefit is that the data are thoroughly cleaned. By contrast, public providers
often include numerous errors in their performance histories. Quite often, reports by
different vendors on the performance of the same fund share class are inconsistent. A
third benefit is that the track records of funds are far more complete than those pro-
vided to commercial vendors. AIS captures the complete track record of many funds
that have ceased reporting to public databases. This includes both successful funds as
well as those that suffered dramatic losses. As commercially available databases paint
only a partial, and potentially inaccurate, picture of the hedge fund landscape, it be-
comes evident that quite possibly much academic research heretofore has biases more
serious than previously thought.

The analysis is performed on a range of hedge fund strategies. Here too, we believe
we make valuable improvements over previously published studies. Quite a number
of hedge funds are misclassified into incorrect strategies by the hedge fund vendors,
who in turn rely on the self-description coming from a manager or marketing agent.
Extensive work by a team of practitioners has helped reclassify funds into more mean-
ingful categories. The purpose of this classification is to determine whether any of the
techniques we employ in this chapter prove more valuable for certain strategies over
others.

To conduct the analysis, we initially draw a random sample of a bit over a hun-

1The convention used by many hedge fund vendors is to label each entity in their database collection
a “fund.” This is misleading as many of the vehicles reported by such suppliers are actually pari-passu
tranches of larger programs; such tranches differ only by currency, fees, terms, leverage, hot issue eligibility,
or domicile. The practice of AIS’s database is to consider these items “share classes,” of a common “fund”
program. A “fund” is thus a unique trading approach or strategy taken by a manager; funds differ based on
investment criteria, not accounting, financial or legal criteria. In this chapter, we select one share class per
each fund as the representative class for statistical purposes. Typically this class is the one with the longest
record, and whose fees and terms are most indicative of a USD-based day-one continuing investor.

2Institutional Investor lists UBS Alternative and Quantitative Investments’s multi-manager platform as
the world’s largest hedge fund-of-funds with $32.286 billion in assets under management, as of January 1,
2010.
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dred hedge funds with eight years of monthly in-sample performance data spanning
January 2000 to December 2007. Using these 96 observations, we compute the ex-
pected VaR and CVaR for the following out-of-sample month, and compare it with
actual performance. We repeat this process by rolling forward a month for a total of 24
out-of-sample months through December 2009. (Not all funds survived to the end.)

Unlike individual equities, equity indices, mutual funds, and other traded assets
where researchers can take comfort in long histories of daily observations, hedge funds
prove to be highly difficult vehicles to study due to the infrequency of their perfor-
mance reporting (monthly) and lack of history (many funds live short lives, and many
of today’s managers started only recently). While our approach afforded us a relatively
thorough sample size of numerous funds with nearly 100 observations, we note several
data issues. First, funds chosen for this analysis have lengthy histories and are thus not
indicative of the totality of all funds (alive and defunct). Second, the object of our anal-
ysis is to test critically different risk methodologies over one of the most tumultuous
years in hedge fund history, namely 2008, and the dramatic recovery experienced by
many managers who survived into 2009. However, the efficacy of VaR and CVaR mod-
els is better tested over longer business cycles. Third, we are limited in our assessment
of the various risk models by the lack of out-of-sample observations. For a given fund,
24 data points are rather restrictive (compared with 250 daily observations in a year for
a mutual fund or stock). Tests used in VaR backtesting may thus be lacking in power.

Methodology
A desirable characteristic of the return distribution is that it is flexible enough to ac-
commodate varying degrees of tail thickness and asymmetry. Stable distributions are
distributions with very flexible features, which nests as a special case the normal (Gaus-
sian) distribution.3 The criticism of stable distributions that has prevented them from
becoming a mainstream distributional choice is the lack of a closed-form density func-
tion (with the exception of the three special cases mentioned below). While this crit-
icism was valid at one time, the advances in computer power make their application
increasingly accessible today. Rachev and Mittnik (2000) is a comprehensive source
of information on alpha-stable distributions, their estimation, and numerous applica-
tions in finance. See also Stoyanov and Racheva-Iotova (2004) for a comparison of the
efficiency of various numerical stable density approximation algorithms.

In this chapter, we employ two risk models based on the stable distribution in
the Bayesian setting—an unconditional one and a conditional one—to model hedge
fund returns. The conditional stable model has an ARMA(1,1)-GARCH(1,1) formu-
lation and we propose its estimation as a two-stage process. First, we estimate an
ARMA(1,1)-GARCH(1,1) process with Student’s t-distributed innovations and then
we fit an alpha-stable distribution to the standardized residuals, before computing the

3Stable distributions (both Gaussian and non-Gaussian) possess the property of stability (sums of stable
random variables are themselves stable), which is clearly a desirable property for modeling returns. More-
over, a version of the Central Limit Theorem governs the asymptotic behavior of sums of stable random
variables. Therefore, the financial modeling framework built around the normal distribution can be extended
to the more general class of stable distributions.
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expected risk measures. As part of our MCMC computational algorithm for estimation
of the stable distribution, we employ the Fast Fourier Transform approach to stable
density approximation of Rachev and Mittnik (2000).

Bayesian Estimation of the Parameters of the Alpha-Stable Distri-
bution in the Unconditional Setting
Stable distributions are characterized by four parameters: tail parameter, α, skew-
ness parameter, β, scale parameter, σ, and location parameter, µ, and are denoted by
Sα(β, σ, µ). We make the following prior assumptions for the parameters of the stable
distribution in the unconditional setting: α and β have uniform distributions on the
intervals (1, 2) and [−1, 1], respectively4; σ is modeled with a gamma distribution, and
µ with a stable distribution.5

Since (the stable likelihood function and, therefore,) the log-posterior density is not
available in closed form, we employ MCMC methods to simulate it. In particular, a
modification of the Gibbs sampler, called the griddy Gibbs sampler, is used.6 Devel-
oped by Ritter and Tanner (1992), the griddy Gibbs sampler is a combination of an
ordinary Gibbs sampler and a numerical routine. Each parameter’s conditional poste-
rior density is evaluated numerically, on a grid of equally-spaced nodes spanning the
effective support of the respective parameter. The supports of the stable parameters,
α and β, are determined by the theoretical and empirical considerations that led to the
choice of priors. The situation is less straightforward in the cases of σ and µ, as the
definition of “effective support” changes, together with the sampler exploring the pa-
rameters’ sampling space.7 Since the number of grid nodes is fixed a priori, the larger
the range of the grid selected, the more sparsely the grid spans that range. Then, it
is possible that at a certain iteration of the sampler the value of the posterior density
computed at the grid nodes is virtually zero, since most of the probability mass falls
between two grid points (or outside of the grid range altogether). On the other hand,
constructing a grid with a large number of grid nodes can make the numerical compu-
tations prohibitively expensive from a computational standpoint. The reason is that in
a given iteration of the griddy Gibbs sampler, to compute the full conditional posterior
density of a single parameter, the relatively computationally intensive FFT has to be
performed (for each data point and each grid node) for a total of nm times, where n is
the number of data points (hedge fund returns) and m is the number of grid nodes. We
used 26-node grids for each of the four stable distribution parameters, while the length

4For the purposes of modeling returns, it is reasonable to assume that the tail parameter, α, takes values
between 1 and 2. The characteristic function of the stable distribution is discontinuous for α = 1. In order
to avoid this problematic case and disregarding the trivial case of α = 2 (corresponding to the normal
distribution), the support of α is the open interval (1, 2). The support of β is its theoretical support.

5The stable parameters are assumed to be independently distributed, although the independence assump-
tion may be contended in the case of α and β. The skewness and the tail parameters are not independent:
β becomes unidentified for α = 2. The evidence in Rachev, Stoyanov, Biglova, and Fabozzi (2005) cor-
roborates this. Specifying an appropriate joint distribution, though, is indeed a challenge. Lombardi (2004)
provides a possible approach to the joint modeling of α and β.

6More information about computational Bayesian methods and MCMC can be found in the chapter by
Robert and Marin in this volume.

7The only obvious constraint is that σ’s support is the positive part of the real line.
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of the sample used for calibration is 96 months.
If no prior intuition exists about what the likely parameter values are, a solution

is to employ a variable instead of a fixed grid. Then, at each iteration of the sampling
algorithm, one analyzes the distribution of the posterior mass of a parameter and adjusts
spacing (equivalently, range) of the grid, so that the majority of the grid nodes falls into
the interval of the greatest posterior mass (that is, into the effective parameter support).
Extensive fine-tuning and sometimes multiple evaluations of the posterior density are
required in the process.

Once the posterior density has been evaluated numerically, one needs to obtain
the empirical cumulative distribution function (CDF) and draw from the parameter’s
posterior distribution using the CDF inversion method.

Bayesian Estimation of ARMA-GARCH Processes with Stable Dis-
turbances
Our conditional modeling of hedge fund returns is based on the assumption that returns
are linear functions of two components: a time-varying mean, µt, and an error term
with a time-varying scale parameter, σt. Our model formulation is an ARMA(1,1)-
GARCH(1,1) process, which specifies the conditional mean and variance equations
as8

µt = ϕ0 + ϕ1rt−1 + ϕ2ϵt−1 (1)
σ2
t = ω + ασ2

t−1 + βϵ2t−1,

respectively, where ϵt = σtut is a zero-mean random noise and ut are zero-mean,
unit-scale independently and identically distributed (i.i.d.) random variables.

We develop our ARMA-GARCH process with stable innovations in a two-stage
modeling procedure. In the first stage, we assume that the innovations, ϵt, are dis-
tributed with the Student’s t distribution with ν degrees of freedom and scale σt and
we estimate the ARMA-GARCH process in (1). This stage accounts for the volatility-
clustering feature of hedge-fund returns and, to some degree, for their heavy-tailedness.
Nevertheless, the standardized residuals of the ARMA-GARCH process still exhibit
leptokurtosis and, moreover, are skewed. Therefore, in the second stage, we fit a stable
distribution to the standardized residuals from stage 1, where the residuals are com-
puted using the posterior means of the ARMA-GARCH process parameters.

In our empirical investigation, we consider the risk prediction capabilities of three
conditional models, based on (1). The first one is an ARMA(1,1)-GARCH(1,1) model
with Student’s t innovations, estimated with the method of maximum likelihood. The
second one is an ARMA(1,1)-GARCH(1,1) model with Student’s t innovations, esti-
mated in the Bayesian setting, using only step 1 of the procedure above. The third
one is an ARMA(1,1)-GARCH(1,1) model with stable innovations, estimated in the
Bayesian setting, using the complete two-stage procedure. In other words, the latter
two models have a common Bayesian ARMA-GARCH estimation procedure. In the
section on empirical results, we will label these models as Model 6, Model 7, and

8See any standard textbook on time series analysis for detailed definitions of conditional mean and volatil-
ity models, as well as their properties and stationarity, invertibility, and other constraints.
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Model 8, respectively. Below, we outline in some more detail the two estimation stages
of the ARMA-GARCH stable process (i.e., Model 8).

Stage 1: Bayesian Estimation of the ARMA(1,1)-GARCH(1,1) process with Stu-
dent’s t-distributed innovations

Uninformative prior distributions are asserted for the ARMA and GARCH parame-
ters in (1). For the degrees-of-freedom parameter, ν, we assert an exponential prior
distribution.9 During the sampling process, we impose the stationarity, invertibility,
and positivity constraints of the ARMA-GARCH process. The (covariance) stationar-
ity constraint which, in a GARCH(1,1) model with Student’s t-distributed innovations,
takes the form α+βν/(ν−2) < 1,10 is not enforced. Instead, one can observe whether
that constraint is violated by examining the posterior distribution of the left-hand-side
quantity.

The likelihood function for the ARMA(1,1)-GARCH(1,1) model with Student’s t
innovations is

L
(
θ | r,ℑ0

)
∝

T∏
t=1

(σ2
t|t−1)

−1

(
1 +

1

ν

(
rt − (ϕ0 + ϕ1rt−1 + ϕ2ϵt−1)

)2
σ2
t|t−1

)− ν+1
2

 ,

(2)
where ℑ0 is the information set at the start of the process (t = 0). For simplicity, all
information at t = 0 is assumed known; that is, ϵ0 and σ2

0 are known.11

The posterior density of the parameter vector, θ = (ν, ϕ0, ϕ1, ϕ2, ω, α, β), is then

p(θ | r,ℑ0) ∝ L
(
θ | r,ℑ0

)
π(ν)IARMAIGARCH, (3)

where IARMA and IGARCH are the constraints on the ARMA and GARCH parameters,
respectively.

When an estimation problem involving the Student’s t distribution is cast in the
Bayesian setting, it is convenient, from a computational point of view, to employ the
scale-mixture of normals representation of the Student’s t distribution, and we adopt
that approach too. The conditional distribution of the additional T parameters, with
which the parameter space is augmented, is simulated in the MCMC procedure, to-
gether with the posterior densities of the remaining parameters. For details on the
forms of the likelihood function of the Student’s t distribution, the scale-mixture rep-
resentation of the Student’s t distribution, and the forms of the posterior densities of

9Bauwens and Lubrano (1998) contend that if a diffuse prior on the interval [0,∞] is chosen for ν, then
the posterior distribution is not proper (its right tail does not decay fast enough). One prior distribution option
is a uniform distribution on the interval [0,K], where K is some finite number. Our choice of prior follows
Geweke (1993) who advocates the use of the exponential distribution, π(ν) = λ exp(−νλ). Prior intuition
can be used to determine exponential mean, 1/λ.

10See, for example, Bauwens, Lubrano, and Richard (2000).
11It is also possible to treat ϵ0 (and, therefore, σ2

0) as an unknown parameter in the ARMA-GARCH
process and simulate it together with the remaining parameters in the MCMC algorithm. See, for example,
Chib and Greenberg (1994), among others.
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the model parameters, see Chapters 10 and 11 of Rachev, Hsu, Bagasheva, and Fabozzi
(2008).12

Two general approaches are available for the simulation of the posterior densities of
ARMA and GARCH parameters: simulation parameter-by-parameter and simulation
en bloc. We found that the parameter-by-parameter simulation results in a posterior
sample of the ARMA parameters characterized by very high degree of autocorrelation
and cross-correlation. Therefore, for both groups of parameters, we adopt the second
approach and generate multivariate samples from the posterior distributions of the 3×1
vectors of ARMA and GARCH parameters. As proposal distributions, we use multi-
variate normal distributions with means given by the modes of the posterior kernels
and covariance matrices given by the negative inverse Hessian matrices evaluated at
the posterior modes.13

Stage 2: Fitting Stable Distribution to the Standardized ARMA(1,1)-GARCH(1,1)
Residuals from Stage 1

Stage 2 is the step “upgrading” Model 7 (the conditional Student’s t Bayesian model)
to Model 8 (the conditional stable Bayesian model). Since we assume that the innova-
tions, ϵt, of the ARMA(1,1)-GARCH(1,1) process are distributed with the Student’s t
distribution, the standardized residuals are given by

ϵ̂t =
rt − µ̂t√
ν̂

ν̂−2 σ̂t|t−1

, (4)

where µ̂t is the vector of conditional means computed at the posterior means of the
ARMA parameters, σ̂t|t−1 is the vector of conditional scales, computed at the poste-
rior means of the GARCH parameters, and ν̂ is the posterior mean of the degrees-of-
freedom parameter of the Student’s t distribution. The term ν̂/(ν̂ − 2) in the denom-
inator is due to the variance of the Student’s t distribution. We fit a stable distribution
to the standardized residuals above, using the maximum-likelihood FFT approach of
Rachev and Mittnik (2000).

Illustration with Simulated Data
We illustrate our Bayesian approaches to unconditional and conditional estimation by
simulating samples of observations from an i.i.d. variable with the stable distribution
and from the ARMA(1,1)-GARCH(1,1) with Student’s t innovations (given in (1)) and
then comparing the true parameters to their estimated counterparts.

Unconditional Stable Case

We generate a sample of 500 observations from a stable distribution and estimate its
parameters using our MCMC procedure. The Markov chain is run for 10,000 itera-

12See also the contribution of Ardia and Hoogerheid in the current volume.
13The parameters of the proposal density are due to an asymptotic result from maximum-likelihood theory

concerning the distribution of the maximum-likelihood estimator of the mean of the normal distribution. See
Rachev, Hsu, Bagasheva, and Fabozzi (2008) for additional details.
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tions. The first 2,000 of the simulations are discarded as burn-in. Table 1 presents
the comparison among the Bayesian and frequentist estimates and the true parameters.
The sample autocorrelations of the stable parameter simulations decay at a comfortable
rate. Therefore, a procedure whereby the posterior parameter simulations are sampled
periodically from the generated Markov chain is deemed unnecessary.

Conditional Student’s t Case

We consider the ARMA(1,1)-GARCH(1,1) model in (1) with Student’s t-distributed
innovations. The generated sample consists of 3,000 observations. We estimate the
conditional model using our MCMC approach, running the Markov chain for 10,000
iterations, and discarding as burn-in the first 2,000 of them. The comparison among
the true and estimated parameters, together with the maximum-likelihood estimates,
is shown in Table 2. The true parameter values fall into the 95% Bayesian credible
intervals for all parameters, save for the degrees of freedom. Figure 1 presents the
sample autocorrelations estimated using the after-burn-in posterior simulations of the
AR, MA, GARCH, and ARCH parameters; all sample autocorrelation functions exhibit
a fast decay.

Finally, we observe whether the GARCH(1,1) model stationarity constraint is vio-
lated by estimating the posterior probability of the persistence quantity, α+βν/(ν−2),
in the GARCH (covariance) stationarity constraint. The posterior mean of this persis-
tence quantity is 0.8334 which is below 1 and signifies a conditional process with finite
variance (for comparison, the true value of the quantity is 0.95). The histogram of its
posterior draws is seen in Figure 2. The greater part of the posterior mass is indeed
below 1, as expected.

Value-at-Risk and Conditional Value-at-Risk Prediction
In our empirical investigation, we estimate VaR and CVaR for a number of risk-

model formulations, the first two of which are very basic standard methodologies, still
used by many banks; we include them for benchmarking purposes. We label these
formulations as Model 1 through Model 8, as follows:14

Model 1: Unconditional (i.i.d.) normal model, estimated in a frequentist (maximum-
likelihood) setting

Model 2: Historical VaR/CVaR methodology

Model 3: Unconditional (i.i.d.) stable model, estimated in a frequentist setting

Model 4: Unconditional (i.i.d.) stable model, estimated in a Bayesian setting

Model 5: Unconditional (i.i.d.) Student’s t model, estimated in a frequentist
setting

14For the definitions and properties of various risk measures, in particular VaR and CVaR, as well as their
applications in risk and portfolio management, see, for example, Rachev, Stoyanov, and Fabozzi (2008).
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Model 6: Conditional (ARMA(1,1)-GARCH(1,1)) Student’s t model, estimated
in a frequentist setting

Model 7: Conditional (ARMA(1,1)-GARCH(1,1)) Student’s t model, estimated
in a Bayesian setting

Model 8: Conditional (ARMA(1,1)-GARCH(1,1)) stable model, estimated in a
Bayesian setting.

Recall that Models 7 and 8 have a common Bayesian ARMA-GARCH estimation step
(described as Stage 1 in the section on methodology), while Model 8 is obtained via an
additional step of fitting the stable distribution to the standardized residuals from the
common step (described as Stage 2 in the section on methodology).

In all models, VaR and CVaR estimation is based on the linear-form decomposition
of returns, Rt = µt + σtut, where ut is a noise term with the respective distribution
(normal—in Model 1, stable—in Models 3, 4, and 8, and Student’s t—in Models 6 and
7). Based on the available information up to time t, and using their translation invari-
ance and positive homogeneity properties, the VaR and CVaR estimates are expressed,
respectively, as

V̂ aRκ,t = σ̂tV aRκ(u)− µ̂t (5)

ĈV aRκ,t = σ̂tCκ(u)− µ̂t, (6)

where V aRκ(u) is the value-at-risk (the κ quantile) of the innovation’s (ut’s) distri-
bution, and Cκ(u) is a constant which depends only on the tail probability, κ.15 (In
our discussion below, we omit the “hats” on VaR and CVaR for notational simplicity.)
In the unconditional model approaches (Models 1 through 5), µ̂t and σ̂t are constants
represented by the sample estimates and hedge fund returns are assumed independent
and identically distributed with the respective distributions. In the conditional model-
ing approaches (Models 6 through 8), µ̂t and σ̂t are the forecasts of the conditional
mean and conditional scale from the ARMA(1,1)-GARCH(1,1) model in (1).16

We now outline the explicit and semi-explicit expressions used to compute CVaR
for the normal, Student’s t, and stable distributions.

The Normal Distribution

For a normal distribution with standard deviation σ and expected value µ, the CVaR is
expressed as

CV aRκ(R) =
σ

κ
√
2π

exp

(
− (V aRκ(Z))2

2

)
− µ, (7)

where Z is a standard normal random variable.
15The VaR and CVaR estimates above are computed at a time horizon of one month in our empirical

investigation.
16For more details on VaR/CVaR prediction using a time-series model, see, for example, Tsay (2005).
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The location-scale Student’s t Distribution

In the case of a location-scale Student’s t distribution with degrees of freedom ν, scale
σ, and location µ, CVaR is computed from the following explicit expression:17

CV aRκ(R) =


σΓ( ν+1

2 )

κΓ( ν
2 )

√
ν−2

(ν−1)
√
π

(
1 +

(t−1
ν (κ))2

ν−2

)− ν−1
2

− µ , ν > 1

∞ , ν = 1,

(8)

where Γ(x) is the gamma function and tν(κ) is the κ-quantile of a standardized (zero
mean and variance equal to 1) Student’s t-distributed random variable with ν degrees
of freedom.18

The Stable Distribution

Stoyanov et.al. (2006) derived the semi-analytical expression for the CVaR for stable
distributions. The CV aRκ is represented as

CV aRκ(R) = σAκ,α,β − µ. (9)

The term Aκ,α,β is given by

Aκ,α,β =
α

1− α

|V aRκ(R)|
πκ

∫ π/2

−θ̄0

g(θ) exp
(
−|V aRκ(R)|

α
α−1 υ(θ)

)
dθ,

where

g(θ) =
sin (α(θ̄0 + θ)− 2θ)

sin (α(θ̄0 + θ))
− α cos2 θ

sin2(α(θ̄0 + θ))
,

υ(θ) = (cosαθ̄0)
1

α−1

(
cos θ

sin(α(θ̄0 + θ))

) α
α−1 cos(αθ̄0 + (α− 1)θ)

cos θ
,

and θ̄0 = 1
α arctan(β̄ tan πα

2 ), β̄ = −sign(V aRκ(R))β, V aRκ(R) is the VaR of
the stable distribution at tail probability κ, and β is the stable skewness parameter.
The parameters of the stable distribution are estimated either in the frequentist or the
Bayesian setting.

Backtesting VaR and CVaR
We backtest the risk models using the Kupiec (1995) frequency of failures test and
the Christoffersen (1998) test of independence of the VaR violations. For backtest-
ing CVaR, we use a loss function-based procedure.19 Our general backtesting process

17See, for example, Alexander and Sheedy (2008).
18For ν = 1, CVaR explodes because the Student’s t distribution with one degree of freedom—known

as the Cauchy distribution—has an infinite expectation. In this case, one can use the median of the loss
distribution, when the loss exceeds V aRκ(R), as a robust alternative to CVaR. See Rachev, Stoyanov, and
Fabozzi (2008) for more details.

19Backtesting CVaR is a challenging task. See Rachev, Stoyanov, and Fabozzi (2008) for a discussion.
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consists of repeatedly estimating VaR and CVaR based on a moving estimation win-
dow and comparing the predicted risk values to the out-of-sample realization of returns
one-step-ahead. That is, the sequences of VaR and CVaR estimates are based on the up-
dated (revised) parameter estimates using the latest estimation window. An exceedance
of the VaR occurs when the realized loss is greater than the predicted VaR for the one-
step-ahead horizon. Next, we describe the CVaR backtesting procedure.

CVaR Backtesting Procedure

Our CVaR backtesting procedure relies on a loss function, developed in the spirit of
Blanco and Ihle (1999)’s loss function for ranking models based on their VaR predictive
capacity.20 Denote the loss at time t by Lt. The loss function is defined as

LFt =

{
Lt−CV aRκ,t

Lt
, if Lt > V aRκ,t

0, if Lt ≤ V aRκ,t

. (10)

Then, the statistic

S =

√√√√ 1

T

T∑
t=1

LF 2
t , (11)

where T is the sampling horizon, provides a summary metric for the average distance
of the forecast CVaR from the realized loss, in the case of VaR exceedance. In our
empirical analysis, we compute this statistic for each model and each hedge fund in
our sample universe.

Empirical Analysis
Our empirical analysis consists of four parts. First, we analyze and compare the mod-
els’ risk forecasts using hedge fund index data. Second, we focus on the performance of
a particular convertible arbitrage hedge fund that experienced a large loss in 2008 and
staged a strong recovery in the following year. Third, we perform a general compari-
son among models’ VaR and CVaR predictions across six hedge fund strategies most
deeply impacted by the recent financial crisis: merger arbitrage, convertible bond (CB)
arbitrage, directional credit (distressed debt and high-yield), long/short (LS) credit,
fixed income (FI) arbitrage, and mortgage-backed security (MBS) arbitrage. Finally,
we focus our attention on the momentous months of September and October 2008, with
the aim of comparative evaluation of models across the hedge fund strategies. In all
four investigations, we use eight years of monthly data in-sample (starting in January
1990 for the hedge fund index data and in January 2000 for the individual hedge fund
data) and compare methodologies on a rolling month-by-month out-of-sample basis
(spanning 12 years for the hedge fund index and two years for the remaining data).
Our sample universe consists of 27 funds in the merger arbitrage strategy, 17 funds in

20Dowd (2008) provides an overview of backtesting market risk models. For a suggestion on a more
rigorous approach to CVaR backtesting, see Rachev, Stoyanov, and Fabozzi (2008).
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the CB arbitrage strategy, 40 funds in the directional credit strategy, 17 funds in the LS
credit strategy, 16 funds in the FI arbitrage strategy, and 10 funds in the MBS arbitrage
strategy.

Comparisons of Risk Forecasts on Hedge Fund Index Data
The HFRI Fund Weighted Composite Index is widely used as an indicator of the per-
formance of the overall hedge fund industry. Comprised of over 2,000 funds listed in
the internal HFR database, the index is an equally weighted average of monthly returns
net of fees starting in January 1990. As such, the index records hedge fund trends over
a lengthy business cycle of busts and booms. This evaluation includes a number of ma-
jor crisis periods ranging from the Long Term Capital/Russian default of August 1998,
the terrorist attack of September 2001, the credit crunch of Summer 2002, the credit
correlation crisis of Spring 2005, the market meltdown of May 2006, the quant deba-
cle of August 2007, the subprime jitters of November 2007, the market corrections of
January and March 2008, and, ultimately, the Lehman bankruptcy/market collapse of
September-October 2008. In all, there were 14 monthly events in 12 years (just about
one in 10 times) where performance, as measured by total return, was less than -2%,
yet the overall average return during this period was a positive 0.66%.

As seen in Figure 3, the -8.7% drop in August 1998 and the back-to-back losses
of 6.13% and 6.84% in September and October 2008 sent hedge fund investors into a
state of panic. We observe that traditional risk models—naive, historical, and Student’s
t—did poor jobs not only in forecasting the severity of these downturns but also in ad-
justing properly afterwards. For example, after the massive LTCM shock, simple and
historical models did not adjust their risk prediction much at all, and continued to fore-
cast inadequately a VaR at the 95% level of around -2%. Worse, CVaR forecasts for
August, 1998 were in the -2% range for the non-Bayesian approaches at the 95% level
and only -3% at the 99% level. These results are very difficult to accept for risk man-
agers, portfolio decision-makers, and investors, all of whom demand models that make
meaningful forecasts when crises hit, not merely during normal market conditions!

Our first observation is that the stable models tended to do a much better job antic-
ipating these large tail events than the non-stable approaches and that the Bayesian
methodologies proved superior to the frequentist forecasts. The conditional stable
Bayesian model anticipated the losses of August 1998 and September 1998 with pre-
dictions of -6.50% and -5.77% of the 99% VaR, while the CVaR forecasts were quite
close at -12.04% and -6.58%, respectively. However, our second observation is that
the conditional models—and the conditional stable Bayesian solution, in particular—
substantially overshot (in terms of both VaR and CVaR) the actual performance in
months subsequent to the large market dislocations and the CVaR forecasts of these
models took considerable time to re-adjust to more rational levels. While the Bayesian
and stable methods were suggesting the potential for worsening conditions, markets
rebounded and hedge funds shook off these isolated losses.21 Of all the CVaR risk esti-

21That the conditional stable Bayesian model suggested considerable losses subsequent to the major mar-
ket events of August 1998 and September/October 2008 was not lost on many individual hedge funds which
did in fact lose almost all their value and liquidate. The analysis herein involves an industry index which has
some biases in that it often fails to include the performance of funds that are terminating. Since the index will
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mates, the i.i.d. stable Bayesian, the conditional Student’s t frequentist, and conditional
Student’s t Bayesian models seemingly did best over the two-month consecutive melt-
down of September-October 2008, neither dramatically under-, nor over-forecasting
losses.

How well did the different risk methods perform in the overall timeframe? The
Kupiec test at the 95% level suggests a non-rejection range of between 3 and 12 ex-
ceedances inclusive; the i.i.d. stable Bayesian and conditional stable Bayesian ap-
proaches both had only two exceedances and could be considered to be misspecified
over the long-term period (though the null hypothesis could not be rejected at the 99%
level for any test). The Christoffersen test was inconclusive for all of the models. As
for the comparison based on deviation size, the conditional stable Bayesian approach
did the best job of explaining performance conditional upon there being an exceedance
of the VaR level.

Comparison of Risk Forecasts on An Individual Hedge Fund
Rather than looking at hedge fund index data, which can in many ways be artificial and
misleading, we contrast the different risk models using actual hedge fund performance.
We examine an interesting (CB) arbitrage fund that has been around for over 20 years,
experiencing not only the market shocks described in the previous section but also the
idiosyncratic busts that affected the convertibles market and the CB arbitrage strategy,
especially in the period 2004-2005. At its peak, this fund commanded nearly $400
million in assets. Since its inception, the fund has produced a solid average monthly
return of 0.65% with low volatility and a Sharpe ratio exceeding 1. It suffered a draw-
down of 15% from May 2008 to July 2009 (in itself a remarkable feat as many other
funds lost twice that) including a single worst monthly loss of around 9% in October
2008. The fund got caught in the Mandalay Bay dividend crunch of 2003 and suffered
losses in 2004 due to rising yields, lackluster primary market issuance, and low implied
volatility. In 2005, the fund like many others was caught by surprise at General Mo-
tors’ profit warning; the result was a loss of over 3% in April, 2005. Amidst massive
investor redemptions, the fund recovered and turned strong profits in 2006 and 2009.

Over the period 2008-2009, the Kupiec and Christoffersen tests could not be re-
jected as the two exceedances of 2008 were not unexpected. As with the HFRI analy-
sis in the previous section, we find that the conditional stable Bayesian model was the
only model that recognized the severity of the large September/October 2008 losses.
The 95% VaR forecasts were -1.5% and -8.2%, and the 95% CVaR forecasts were -
3.9% and -18.4% for the months of September and October 2008, respectively, while
realized losses were 3.7% and 9.4%, respectively. As also reported above, the non-
Bayesian VaR models failed to budge much after the 2008 meltdown, though the
Bayesian methodologies (and the conditional ones, in particular) greatly overestimated
the losses in later months, when in fact the CB aribtrage manager was staging a recov-
ery. The conditional models’ VaR forecasts returned to reasonable levels as the hedge
fund showed only positive gains in 2009; however, these models continued to exhibit

continue indefinitely as an average of surviving and existing funds, it is no surprise that some risk estimators
will tend to overshoot after a major market event.



16

uncharacteristically high CVaR estimates after the markets calmed.
The lesson for risk managers from the findings reported in this and the previous

sections may be that the conditional Bayesian models seem to give the best advance
warning of the tail risk in hedge funds, but should be treated carefully after a large
market dislocation—hedge funds tend to either liquidate or bounce back strongly.

Comparison of Risk Forecasts on a Panel of Many Funds Across
Different Strategies
Performance According to Kupiec and Christoffersen Tests

The Kupiec test for unconditional coverage and the Christoffersen joint test for un-
conditional and independence are performed for each hedge fund within our sample
universe, on the basis of the 24 out-of-sample forecasts of VaR at the 95% and 99%
levels. We report our results summarized along the hedge fund strategy dimension
and the model dimension. The conditional stable Bayesian model seemingly performs
best among the eight models in terms of overall quality of its VaR prediction—the
Kupiec and Christoffersen tests are rejected for only one hedge fund in each of the
directional credit, LS credit for the VaR0.05 forecasts; while in the FI arbitrage strategy
case, they are rejected for one and two hedge funds, respectively. Overall, the three con-
ditional models—stable Bayesian, Student’s t Bayesian, and Student’s t frequentist—
demonstrate superior performance, with the Student’s t Bayesian having an upper edge
over the frequentist one. The percentages of hedge funds for which the Kupiec and
Christoffersen tests are rejected, summarized by model and strategy, are given in Table
3.

CVaR Performance According to the Loss Function Metric

As expected, based on the results from the Kupiec and Christoffersen tests, the condi-
tional stable Bayesian model outperforms the rest in terms of accuracy of its VaR fore-
casts, as seen in Tables 4 through 6. It has the lowest incidence of VaR exceedances
among the eight models for the overall out-of-sample period January 2008-December
2009. It is interesting to note that in the case of the CB arbitrage strategy, violations
of the predicted VaR at 95% and 99% are much more numerous across all models,
compared with other strategies (Table 4). CB arbitrage suffered more than other ap-
proaches not only from market losses but also as a result of larger-than-expected in-
vestor redemptions that forced funds to sell at the most inopportune times to raise cash.
By contrast, most models do an adequate job in predicting VaR at 95% level in the case
of the merger arbitrage strategy, while the conditional stable Bayesian approach fared
best overall.

When the predicted VaR levels are violated, analysis of the distance between the
realized loss and the predicted CVaR could give an indication of whether a risk man-
ager would have had an adequate warning signal as to the potential average loss. The
eight models are ranked across strategies on the basis of the achieved distance, with
higher rank signifying smaller difference between realized loss and predicted CVaR,
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conditional on a VaR violation. Comparison across the strategies and models unsurpris-
ingly again singles out the three conditional models. The conditional stable Bayesian
model, however, is invariably ranked first for the greatest proportion of hedge funds;
for example, for 33.3%, 76.5%, 40%, 47.1%, 37.5%, and 40% of the funds at the
95% VaR/CVaR level for the merger arbitrage, CB arbitrage, directional credit, LS
credit strategies, FI arbitrage, and MBS arbitrage, respectively, when its predicted 95%
VaR is exceeded. The conditional Student’s t Bayesian model demonstrates an over-
all marginal performance advantage over the frequentist one, based on this distance
metric.

Risk Performance During the Months of September and October 2008

As mentioned in previous sections, risk forecast comparison for the months of Septem-
ber and October 2008 is informative in view of the unusually large losses sustained by
many hedge funds during this period. In order to gain more insight into the perfor-
mance of the models, in this section we analyze two metrics: (1) the distance between
realized loss and CVaR, conditional on VaR exceedance (as above) and (2) the dis-
tance between realized loss and VaR, conditional on VaR exceedance. We perform
this analysis because it is important to distinguish among models whose VaR forecast
undershoots the realized loss by a large amount and those whose VaR predictions are
violated only marginally.

Again, one can notice that the conditional stable Bayesian model comes closer
than the other models in terms of accuracy of VaR predictions with up to 44% and
96% of hedge funds having accurate VaR predictions at the 95% level in September
and October 2008, respectively (for the merger arbitrage strategy).22 When the 95%
VaR is exceeded, the conditional stable Bayesian models’ risk forecasts are closest to
the realized losses.23 The performance of the conditional Student’s t Bayesian and
frequentist models is comparable, as can be seen in Tables 7, 8, 10, and 11.

The difference in models’ risk performance for the CB arbitrage strategy in Septem-
ber 2008 compared to October 2008 is worth noting. For hedge funds in this strategy,
October was by far the worse of the two months, with 15 out of the 17 funds experienc-
ing sometimes more than twice as severe loss in October compared to September. This
unprecedented tail event was not seen in other strategies. The severity of the Septem-
ber loss, however, led to a large forecasted risk for October by the three conditional
models, with the stable Bayesian model predicting accurate VaR at the 95% level for
more than 60% of the hedge funds.

22Due to space considerations, we discuss and present only the results concerning the 95% VaR and CVaR
forecasts. The 99% VaR/CVaR results for the months of September and October 2008 per model and strategy
are available from the authors upon request.

23Notice that in certain instances, for example, the CB arbitrage October 2008 results in Table 10, the
directional credit October 2008 results in Table 11, or the FI arbitrage October 2008 results in Table 12,
Model 7 (conditional Student’s t Bayesian model) has been ranked first for a greater proportion of hedge
funds in the respective strategy than Model 8 (conditional stable Bayesian model). These results are produced
by virtue of the fact that there are more funds for which Model 7’s VaR is exceeded than Model 8’s and should
not mislead into interpreting Model 7 as superior to Model 8. When rankings are viewed in conjunction with
the results on VaR exceedances at the bottom of each table, it is evident that Model 8’s risk performance is
better.
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Conclusion
In this chapter, we apply the Bayesian methodology to analyzing hedge fund risk with
a conditional time series model with stable innovations. We compare that model’s out-
of-sample risk forecasting performance to that of seven competing models estimated
in the frequentist and Bayesian setting. Our analysis shows an advantage of the con-
ditional stable Bayesian model in predicting both VaR and CVaR in general, and in
particular, as far as the crisis months of September and October, 2008, are concerned.
The conditional Student’s t models (estimated in the Bayesian and frequentist setting)
perform better among the remaining models, with the Bayesian variety seemingly hav-
ing a slight edge. Among the six hedge fund strategies we investigate, the convertible
bond arbitrage strategy seems to pose the biggest challenge for our models, with fewest
instances where the models’ risk forecasts “caught” losses in September 2008. Even
then, though, the conditional stable Bayesian model’s forecasts are closest to the real-
ized losses. Risk forecasts for October 2008, however, adjust and are adequate for a
greater proportion of hedge funds in that strategy (with the conditional stable Bayesian
model predicting risk best).

Given that in periods of market rebound the three conditional models are slow to
“catch on” suggests that there may be no “one model fits all” solution and risk managers
may wish to employ different models in different market regimes. Additionally, even
though our empirical analysis suggests that in periods of market distress the conditional
stable Bayesian model offers the most adequate risk predictions across all hedge fund
strategies, a longer backtesting period may reveal additional insights in terms of across-
strategy and across-model comparisons.
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Figure 1: Sample autocorrelations of posterior draws from the distributions of the AR,
MA, GARCH, and ARCH parameters
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Figure 2: Histogram of draws from the posterior distribution of the GARCH(1,1) sta-
tionarity quantity

Simulated Parameter Bayesian Posterior Maximum LikelihoodParameter
Value Mean Estimate

1.2464
α 1.7

(1.1300, 1.3662)
1.7471

0.2733
β 0.2

(0.1219, 0.4183)
-0.1626

0.1653
σ 0.3

(0.1497, 0.1813)
0.2786

-0.0210
µ 0.05

(−0.0530, 0.0110)
0.0429

Table 1: Simulation Results: Stable i.i.d. Bayesian Model Case. The numbers in brack-
ets are the 95% Bayesian coverage intervals based on 8,000 simulations (after-burn-in) of the
MCMC Stable i.i.d. model estimation procedure.
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Figure 3: 95% VaR Predictions and Out-of-Sample HFRI Returns
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Simulated Parameter Bayesian Posterior Maximum LikelihoodParameter
Value Mean Estimate

0.0109
ϕ0 0.01

(0.0087, 0.0133)
0.0105

0.5987
ϕ1 0.65

(0.5175, 0.6716)
0.6112

-0.3248
ϕ2 -0.35

(−0.4174,−0.2286)
-0.3405

0.0010
ω 0.001

(0.0008, 0.0013)
0.0011

0.4477
α 0.55

(0.3336, 0.5593)
0.4685

0.2389
β 0.2

(0.1758, 0.3089)
0.2518

5.2546
ν 4

(4.45, 6.15)
4.1797

Table 2: Simulation Results: ARMA-GARCH Bayesian Model Case. The numbers in
brackets are the 95% Bayesian coverage intervals based on 8,000 simulations (after-burn-in) of
the MCMC conditional model estimation procedure.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

25.9% 29.6% 29.6% 25.9% 29.6% 11.1% 7.4% 0.0%

11.1% 0.0% 0.0% 11.1% 0.0% 0.0% 0.0% 0.0%

41.2% 52.9% 52.9% 41.2% 52.9% 23.5% 17.6% 0.0%

5.9% 0.0% 5.9% 0.0% 0.0% 0.0% 0.0% 0.0%

45.0% 50.0% 55.0% 50.0% 52.5% 15.0% 12.5% 0.0%

12.5% 0.0% 2.5% 15.0% 0.0% 0.0% 0.0% 0.0%

47.1% 41.2% 52.9% 58.8% 58.8% 11.8% 5.9% 0.0%

11.8% 11.8% 5.9% 17.6% 5.9% 0.0% 0.0% 0.0%

18.8% 37.5% 37.5% 25.0% 25.0% 0.0% 6.3% 6.3%

6.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

20.0% 30.0% 30.0% 40.0% 30.0% 20.0% 10.0% 0.0%

10.0% 0.0% 10.0% 20.0% 0.0% 0.0% 0.0% 0.0%

63.0% 48.1% 55.6% 63.0% 66.7% 29.6% 11.1% 0.0%

37.0% 7.4% 3.7% 33.3% 0.0% 0.0% 0.0% 0.0%

41.2% 70.6% 64.7% 41.2% 64.7% 29.4% 23.5% 0.0%

17.6% 0.0% 11.8% 5.9% 11.8% 0.0% 0.0% 0.0%

75.0% 80.0% 87.5% 77.5% 87.5% 47.5% 47.5% 2.5%

60.0% 12.5% 30.0% 52.5% 12.5% 15.0% 5.0% 0.0%

58.8% 64.7% 64.7% 64.7% 70.6% 41.2% 29.4% 5.9%

47.1% 17.6% 29.4% 47.1% 23.5% 11.8% 5.9% 0.0%

31.3% 50.0% 43.8% 31.3% 37.5% 31.3% 25.0% 12.5%

18.8% 6.3% 18.8% 18.8% 6.3% 6.3% 6.3% 0.0%

20.0% 30.0% 30.0% 40.0% 30.0% 20.0% 10.0% 0.0%

10.0% 0.0% 10.0% 20.0% 10.0% 0.0% 0.0% 0.0%

MBS Arbitrage

Convertible Bond Arbitrage

Directional Credit

Long/Short Credit

K
u

p
ie

c
 T

e
st

C
h

r
is

to
ff

e
r
se

n
 T

e
st

Merger Arbitrage

Convertible Bond Arbitrage

Directional Credit

Long/Short Credit

Merger Arbitrage

Fixed Income Arbitrage

MBS Arbitrage

Fixed Income Arbitrage

Table 3: Kupiec Test for Unconditional Coverage and Christoffersen Joint Test. The
numbers in the first (second) row for each strategy refer to the 95% (99%) VaR prediction and
represent the percentage of hedge funds for which the respective test is rejected at 5% signifi-
cance level.
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VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 0.0% 18.5% 3.7% 0.0% 3.7% 14.8% 22.2% 33.3%

2 14.8% 22.2% 3.7% 11.1% 0.0% 33.3% 29.6% 7.4%

3 14.8% 14.8% 7.4% 37.0% 7.4% 18.5% 25.9% 3.7%

4 33.3% 7.4% 7.4% 33.3% 3.7% 14.8% 11.1% 0.0%

95% 5 18.5% 11.1% 18.5% 3.7% 7.4% 11.1% 3.7% 14.8%

6 3.7% 7.4% 22.2% 3.7% 48.1% 3.7% 3.7% 7.4%

7 3.7% 14.8% 22.2% 3.7% 18.5% 0.0% 0.0% 0.0%

8 3.7% 0.0% 11.1% 0.0% 3.7% 0.0% 0.0% 0.0%

Accurate 

VaR
7.4% 0.0% 0.0% 7.4% 3.7% 0.0% 0.0% 33.3%

99% There are two many instances of accurate predictions across models.

Accurate 

VaR
59.3% 74.1% 81.5% 59.3% 85.2% 85.2% 88.9% 100.0%

1 0.0% 0.0% 0.0% 0.0% 5.9% 11.8% 11.8% 76.5%

2 0.0% 0.0% 5.9% 0.0% 0.0% 35.3% 58.8% 11.8%

3 23.5% 5.9% 5.9% 11.8% 17.6% 23.5% 23.5% 11.8%

4 29.4% 23.5% 23.5% 47.1% 17.6% 17.6% 5.9% 0.0%

95% 5 41.2% 23.5% 11.8% 29.4% 5.9% 11.8% 0.0% 0.0%

6 5.9% 23.5% 29.4% 11.8% 23.5% 0.0% 0.0% 0.0%

7 0.0% 23.5% 11.8% 0.0% 23.5% 0.0% 0.0% 0.0%

8 0.0% 0.0% 11.8% 0.0% 5.9% 0.0% 0.0% 0.0%

Accurate 

VaR
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1 0.0% 11.8% 11.8% 0.0% 17.6% 17.6% 5.9% 47.1%

2 11.8% 29.4% 23.5% 11.8% 17.6% 11.8% 0.0% 5.9%

3 0.0% 23.5% 29.4% 0.0% 17.6% 5.9% 17.6% 23.5%

4 58.8% 17.6% 5.9% 11.8% 5.9% 0.0% 0.0% 5.9%

99% 5 5.9% 11.8% 5.9% 23.5% 23.5% 11.8% 17.6% 0.0%

6 5.9% 5.9% 17.6% 23.5% 11.8% 23.5% 17.6% 0.0%

7 17.6% 0.0% 0.0% 11.8% 0.0% 23.5% 29.4% 0.0%

8 0.0% 0.0% 5.9% 17.6% 5.9% 5.9% 11.8% 0.0%

Accurate 

VaR
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 17.6%

Merger Aribtrage

Therefore, meaningful comparison of deviation sizes across models cannot be made.

Convertible Bond Arbirage

Table 4: Loss Function Metric for the Distance between Realized Losses and CVaR
Forecasts, Conditional on VaR Exceedance, for the Merger Arbitrage and Convertible
Bond Arbitrage Strategies. The numbers are percentages of hedge funds for which the respec-
tive model is assigned a given rank. Higher rank, coupled with a greater percentage of hedge
funds for which that rank is achieved, indicates superior model performance. Ranking should be
analyzed in conjunction with the accuracy of VaR prediction. The percentage of hedge funds for
which VaR is predicted accurately is given in the last rows of the four panels.
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VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 5.0% 7.5% 2.5% 5.0% 0.0% 20.0% 17.5% 40.0%

2 7.5% 10.0% 0.0% 15.0% 0.0% 17.5% 42.5% 2.5%

3 15.0% 10.0% 0.0% 5.0% 0.0% 27.5% 27.5% 10.0%

4 15.0% 20.0% 5.0% 32.5% 7.5% 12.5% 2.5% 0.0%

95% 5 30.0% 10.0% 2.5% 25.0% 5.0% 12.5% 5.0% 7.5%

6 20.0% 27.5% 5.0% 7.5% 10.0% 5.0% 0.0% 22.5%

7 2.5% 5.0% 65.0% 2.5% 17.5% 2.5% 0.0% 2.5%

8 2.5% 5.0% 15.0% 2.5% 57.5% 0.0% 2.5% 2.5%

Accurate 

VaR
2.5% 5.0% 5.0% 5.0% 2.5% 2.5% 2.5% 12.5%

1 5.0% 50.0% 2.5% 2.5% 2.5% 7.5% 0.0% 22.5%

2 40.0% 22.5% 10.0% 0.0% 5.0% 2.5% 5.0% 5.0%

3 27.5% 7.5% 2.5% 2.5% 12.5% 2.5% 17.5% 7.5%

4 10.0% 5.0% 25.0% 5.0% 15.0% 22.5% 5.0% 2.5%

99% 5 2.5% 0.0% 10.0% 27.5% 15.0% 10.0% 10.0% 0.0%

6 0.0% 0.0% 10.0% 7.5% 5.0% 30.0% 22.5% 0.0%

7 0.0% 0.0% 7.5% 17.5% 10.0% 12.5% 25.0% 0.0%

8 0.0% 0.0% 2.5% 20.0% 2.5% 7.5% 5.0% 0.0%

Accurate 

VaR
15.0% 15.0% 30.0% 17.5% 32.5% 5.0% 10.0% 62.5%

1 0.0% 5.9% 5.9% 0.0% 5.9% 11.8% 23.5% 47.1%

2 5.9% 11.8% 11.8% 0.0% 0.0% 41.2% 17.6% 5.9%

3 11.8% 5.9% 0.0% 11.8% 0.0% 23.5% 23.5% 17.6%

4 11.8% 29.4% 5.9% 23.5% 11.8% 5.9% 5.9% 0.0%

95% 5 29.4% 17.6% 0.0% 29.4% 0.0% 0.0% 5.9% 5.9%

6 17.6% 11.8% 23.5% 11.8% 17.6% 11.8% 0.0% 5.9%

7 5.9% 5.9% 23.5% 11.8% 29.4% 0.0% 11.8% 0.0%

8 11.8% 5.9% 23.5% 0.0% 29.4% 5.9% 0.0% 0.0%

Accurate 

VaR
5.9% 5.9% 5.9% 11.8% 5.9% 0.0% 11.8% 17.6%

1 5.9% 58.8% 5.9% 0.0% 0.0% 0.0% 0.0% 23.5%

2 35.3% 5.9% 23.5% 0.0% 5.9% 5.9% 5.9% 5.9%

3 23.5% 0.0% 23.5% 0.0% 29.4% 5.9% 5.9% 0.0%

4 5.9% 11.8% 17.6% 11.8% 23.5% 5.9% 11.8% 0.0%

99% 5 11.8% 5.9% 5.9% 23.5% 11.8% 11.8% 5.9% 5.9%

6 5.9% 0.0% 0.0% 5.9% 5.9% 41.2% 11.8% 0.0%

7 0.0% 5.9% 5.9% 17.6% 0.0% 5.9% 35.3% 0.0%

8 0.0% 0.0% 0.0% 23.5% 0.0% 5.9% 5.9% 0.0%

Accurate 

VaR
11.8% 11.8% 17.6% 17.6% 23.5% 17.6% 17.6% 64.7%

Directional Credit

Long/Short Credit

Table 5: Loss Function Metric for the Distance between Realized Losses and CVaR
Forecasts, Conditional on VaR Exceedance, for the Directional Credit and Long/Short
Credit Strategies. The numbers are percentages of hedge funds for which the respective model
is assigned a given rank. Higher rank, coupled with a greater percentage of hedge funds for
which that rank is achieved, indicates superior model performance. Ranking should be analyzed
in conjunction with the accuracy of VaR prediction. The percentage of hedge funds for which
VaR is predicted accurately is given in the last rows of the four panels.
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VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 18.8% 6.3% 0.0% 0.0% 0.0% 25.0% 12.5% 37.5%

2 0.0% 12.5% 0.0% 25.0% 6.3% 12.5% 37.5% 0.0%

3 6.3% 12.5% 6.3% 0.0% 0.0% 31.3% 25.0% 6.3%

4 18.8% 6.3% 0.0% 31.3% 18.8% 6.3% 6.3% 0.0%

95% 5 37.5% 12.5% 0.0% 18.8% 6.3% 6.3% 6.3% 0.0%

6 0.0% 12.5% 25.0% 12.5% 18.8% 12.5% 0.0% 6.3%

7 6.3% 18.8% 37.5% 0.0% 12.5% 6.3% 0.0% 6.3%

8 0.0% 12.5% 18.8% 0.0% 25.0% 0.0% 0.0% 6.3%

Accurate 

VaR
12.5% 6.3% 12.5% 12.5% 12.5% 0.0% 12.5% 37.5%

1 12.5% 25.0% 6.3% 6.3% 0.0% 0.0% 12.5% 25.0%

2 18.8% 12.5% 18.8% 6.3% 12.5% 12.5% 0.0% 6.3%

3 12.5% 18.8% 12.5% 0.0% 6.3% 0.0% 6.3% 12.5%

4 12.5% 18.8% 12.5% 0.0% 12.5% 6.3% 0.0% 0.0%

99% 5 12.5% 0.0% 12.5% 12.5% 25.0% 0.0% 6.3% 0.0%

6 6.3% 0.0% 0.0% 25.0% 0.0% 18.8% 6.3% 6.3%

7 0.0% 0.0% 0.0% 12.5% 12.5% 12.5% 25.0% 6.3%

8 0.0% 0.0% 6.3% 12.5% 0.0% 18.8% 12.5% 0.0%

Accurate 

VaR
25.0% 25.0% 31.3% 25.0% 31.3% 31.3% 31.3% 43.8%

1 0.0% 0.0% 10.0% 0.0% 0.0% 10.0% 20.0% 40.0%

2 0.0% 10.0% 0.0% 0.0% 30.0% 10.0% 40.0% 0.0%

3 10.0% 10.0% 0.0% 0.0% 0.0% 30.0% 10.0% 20.0%

4 20.0% 10.0% 10.0% 0.0% 10.0% 10.0% 10.0% 0.0%

95% 5 20.0% 20.0% 10.0% 20.0% 0.0% 0.0% 10.0% 0.0%

6 10.0% 0.0% 10.0% 10.0% 20.0% 30.0% 0.0% 0.0%

7 0.0% 10.0% 30.0% 30.0% 0.0% 0.0% 0.0% 10.0%

8 10.0% 20.0% 10.0% 0.0% 20.0% 0.0% 0.0% 0.0%

Accurate 

VaR
30.0% 20.0% 20.0% 40.0% 20.0% 10.0% 10.0% 30.0%

1 10.0% 10.0% 10.0% 20.0% 10.0% 0.0% 0.0% 10.0%

2 10.0% 20.0% 0.0% 0.0% 10.0% 10.0% 0.0% 20.0%

3 20.0% 10.0% 20.0% 0.0% 0.0% 10.0% 10.0% 0.0%

4 10.0% 10.0% 10.0% 0.0% 10.0% 10.0% 10.0% 0.0%

99% 5 0.0% 10.0% 0.0% 10.0% 10.0% 0.0% 10.0% 20.0%

6 20.0% 0.0% 0.0% 0.0% 10.0% 10.0% 20.0% 0.0%

7 0.0% 0.0% 10.0% 10.0% 10.0% 10.0% 20.0% 0.0%

8 0.0% 0.0% 10.0% 20.0% 0.0% 20.0% 0.0% 0.0%

Accurate 

VaR
30.0% 40.0% 40.0% 40.0% 40.0% 30.0% 30.0% 50.0%

Fixed Income Arbitrage

MBS Arbitrage

Table 6: Loss Function Metric for the Distance between Realized Losses and CVaR
Forecasts, Conditional on VaR Exceedance, for the Fixed Income Arbitrage and
Mortgage-Backed Securities (MBS) Arbitrage Strategies. The numbers are percentages
of hedge funds for which the respective model is assigned a given rank. Higher rank, coupled
with a greater percentage of hedge funds for which that rank is achieved, indicates superior model
performance. Ranking should be analyzed in conjunction with the accuracy of VaR prediction.
The percentage of hedge funds for which VaR is predicted accurately is given in the last rows of
the four panels.
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VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 0.0% 3.7% 0.0% 0.0% 0.0% 0.0% 0.0% 51.9%

95% 2 7.4% 29.6% 7.4% 0.0% 14.8% 33.3% 7.4% 0.0%

3 29.6% 7.4% 11.1% 14.8% 3.7% 25.9% 18.5% 3.7%

4 22.2% 7.4% 14.8% 25.9% 14.8% 3.7% 11.1% 0.0%

Accurate 

VaR
7.4% 18.5% 11.1% 7.4% 7.4% 7.4% 22.2% 44.4%

1 11.1% 11.1% 11.1% 0.0% 25.9% 14.8% 7.4% 14.8%

95% 2 7.4% 11.1% 18.5% 14.8% 22.2% 11.1% 3.7% 3.7%

3 3.7% 3.7% 18.5% 11.1% 7.4% 33.3% 7.4% 14.8%

4 0.0% 18.5% 14.8% 11.1% 11.1% 22.2% 18.5% 0.0%

Accurate 

VaR
7.4% 18.5% 11.1% 7.4% 7.4% 7.4% 22.2% 44.4%

1 5.9% 0.0% 0.0% 0.0% 5.9% 0.0% 0.0% 88.2%

95% 2 0.0% 29.4% 0.0% 5.9% 0.0% 35.3% 35.3% 5.9%

3 11.8% 11.8% 29.4% 11.8% 23.5% 23.5% 29.4% 0.0%

4 35.3% 23.5% 23.5% 29.4% 23.5% 11.8% 11.8% 0.0%

Accurate 

VaR
5.9% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9%

1 0.0% 0.0% 0.0% 0.0% 17.6% 0.0% 0.0% 76.5%

95% 2 0.0% 0.0% 23.5% 0.0% 52.9% 17.6% 11.8% 11.8%

3 0.0% 17.6% 23.5% 5.9% 11.8% 23.5% 23.5% 0.0%

4 17.6% 5.9% 17.6% 17.6% 11.8% 23.5% 23.5% 0.0%

Accurate 

VaR
5.9% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9% 5.9%

Merger Arbitrage

Convertible Bond Arbitrage

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

Table 7: Loss Function Metric for the Distance between Realized Losses and VaR
Forecasts, Conditional on VaR Exceedance, for the Merger Arbitrage and Convertible
Bond Arbitrage Strategies During the Month of September 2008. The numbers are per-
centages of hedge funds for which the respective model is assigned a given rank. Higher rank,
coupled with a greater percentage of hedge funds for which that rank is achieved, indicates su-
perior model performance. Ranking should be analyzed in conjunction with the accuracy of VaR
prediction. The percentage of hedge funds for which VaR is predicted accurately is given in the
last rows of the two panels. With space considerations in mind, results are provided only for
the first four ranks and the 95% VaR. The complete results are available from the authors upon
request.
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VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 2.5% 5.0% 0.0% 0.0% 5.0% 2.5% 5.0% 65.0%

95% 2 7.5% 25.0% 15.0% 0.0% 2.5% 10.0% 22.5% 0.0%

3 30.0% 2.5% 7.5% 7.5% 7.5% 12.5% 15.0% 0.0%

4 17.5% 10.0% 7.5% 20.0% 15.0% 10.0% 2.5% 0.0%

Accurate 

VaR
20.0% 20.0% 17.5% 20.0% 17.5% 20.0% 17.5% 32.5%

1 2.5% 12.5% 2.5% 10.0% 22.5% 2.5% 5.0% 27.5%

95% 2 5.0% 7.5% 15.0% 12.5% 22.5% 5.0% 7.5% 7.5%

3 12.5% 10.0% 15.0% 5.0% 10.0% 17.5% 12.5% 0.0%

4 7.5% 15.0% 7.5% 5.0% 0.0% 25.0% 17.5% 2.5%

Accurate 

VaR
20.0% 20.0% 17.5% 22.5% 17.5% 20.0% 17.5% 32.5%

1 0.0% 5.9% 0.0% 5.9% 5.9% 5.9% 0.0% 64.7%

95% 2 5.9% 17.6% 0.0% 5.9% 0.0% 23.5% 23.5% 0.0%

3 5.9% 11.8% 17.6% 5.9% 0.0% 17.6% 23.5% 0.0%

4 17.6% 17.6% 11.8% 11.8% 11.8% 5.9% 5.9% 0.0%

Accurate 

VaR
23.5% 17.6% 17.6% 11.8% 17.6% 23.5% 23.5% 35.3%

1 0.0% 11.8% 17.6% 5.9% 17.6% 5.9% 0.0% 23.5%

95% 2 0.0% 5.9% 17.6% 17.6% 23.5% 5.9% 5.9% 5.9%

3 11.8% 5.9% 17.6% 0.0% 11.8% 5.9% 17.6% 11.8%

4 5.9% 11.8% 5.9% 0.0% 0.0% 23.5% 23.5% 11.8%

Accurate 

VaR
23.5% 17.6% 17.6% 17.6% 17.6% 23.5% 23.5% 35.3%

Directional Credit

Long/Short Credit

Metric: Distance between predicted CVaR and realized 

loss, conditional on VaR exceedance

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted VaR and realized 

loss, conditional on VaR exceedance

Table 8: Loss Function Metric for the Distance between Realized Losses and VaR
Forecasts, Conditional on VaR Exceedance, for the Directional Credit and Long/Short
Credit Strategies During the Month of September 2008. The numbers are percentages of
hedge funds for which the respective model is assigned a given rank. Higher rank, coupled with
a greater percentage of hedge funds for which that rank is achieved, indicates superior model
performance. Ranking should be analyzed in conjunction with the accuracy of VaR prediction.
The percentage of hedge funds for which VaR is predicted accurately is given in the last rows
of the two panels. With space considerations in mind, results are provided only for the first four
ranks and the 95% VaR. The complete results are available from the authors upon request.
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�

VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 0.0% 0.0% 0.0% 0.0% 6.3% 6.3% 12.5% 43.8%

95% 2 6.3% 0.0% 6.3% 6.3% 12.5% 31.3% 12.5% 0.0%

3 12.5% 18.8% 0.0% 6.3% 6.3% 0.0% 31.3% 0.0%

4 31.3% 12.5% 6.3% 6.3% 12.5% 0.0% 0.0% 0.0%

Accurate 

VaR
31.3% 25.0% 25.0% 31.3% 25.0% 31.3% 25.0% 56.3%

1 12.5% 0.0% 0.0% 0.0% 18.8% 0.0% 18.8% 25.0%

95% 2 6.3% 0.0% 6.3% 12.5% 18.8% 25.0% 0.0% 6.3%

3 0.0% 12.5% 18.8% 6.3% 12.5% 6.3% 18.8% 0.0%

4 0.0% 12.5% 18.8% 12.5% 6.3% 6.3% 12.5% 6.3%

Accurate 

VaR
31.3% 25.0% 25.0% 31.3% 25.0% 31.3% 25.0% 56.3%

1 0.0% 0.0% 10.0% 0.0% 0.0% 0.0% 0.0% 40.0%

95% 2 10.0% 10.0% 0.0% 10.0% 0.0% 10.0% 10.0% 0.0%

3 10.0% 0.0% 0.0% 10.0% 0.0% 10.0% 10.0% 0.0%

4 20.0% 0.0% 0.0% 10.0% 10.0% 0.0% 0.0% 0.0%

Accurate 

VaR
60.0% 60.0% 50.0% 50.0% 60.0% 60.0% 60.0% 60.0%

1 0.0% 0.0% 20.0% 0.0% 0.0% 0.0% 0.0% 30.0%

95% 2 0.0% 10.0% 0.0% 0.0% 20.0% 0.0% 10.0% 0.0%

3 0.0% 0.0% 10.0% 0.0% 20.0% 10.0% 0.0% 0.0%

4 0.0% 10.0% 0.0% 10.0% 0.0% 10.0% 10.0% 0.0%

Accurate 

VaR
60.0% 60.0% 50.0% 60.0% 60.0% 60.0% 60.0% 60.0%

Metric: Distance between predicted CVaR and realized 

loss, conditional on VaR exceedance

Fixed Income Aribtrage

MBS Arbitrage

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted VaR and realized 

loss, conditional on VaR exceedance

Table 9: Loss Function Metric for the Distance between Realized Losses and VaR Fore-
casts, Conditional on VaR Exceedance, for the Fixed Income Arbitrage and Mortgage-
Backed Securities (MBS) Arbitrage During the Month of September 2008. The numbers
are percentages of hedge funds for which the respective model is assigned a given rank. Higher
rank, coupled with a greater percentage of hedge funds for which that rank is achieved, indicates
superior model performance. Ranking should be analyzed in conjunction with the accuracy of
VaR prediction. The percentage of hedge funds for which VaR is predicted accurately is given in
the last rows of the two panels. With space considerations in mind, results are provided only for
the first four ranks and the 95% VaR. The complete results are available from the authors upon
request.
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VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 18.5% 11.1% 3.7% 0.0% 11.1% 7.4% 11.1% 3.7%

95% 2 11.1% 7.4% 3.7% 14.8% 3.7% 7.4% 11.1% 0.0%

3 7.4% 18.5% 3.7% 11.1% 11.1% 7.4% 0.0% 0.0%

4 7.4% 3.7% 33.3% 11.1% 0.0% 3.7% 0.0% 0.0%

Accurate 

VaR
40.7% 48.1% 40.7% 40.7% 37.0% 74.1% 77.8% 96.3%

1 11.1% 11.1% 14.8% 3.7% 7.4% 7.4% 11.1% 0.0%

95% 2 7.4% 0.0% 3.7% 25.9% 14.8% 3.7% 0.0% 3.7%

3 14.8% 14.8% 3.7% 3.7% 11.1% 7.4% 3.7% 0.0%

4 0.0% 3.7% 22.2% 3.7% 14.8% 7.4% 7.4% 0.0%

Accurate 

VaR
40.7% 48.1% 40.7% 40.7% 37.0% 74.1% 77.8% 96.3%

1 5.9% 0.0% 0.0% 0.0% 0.0% 5.9% 47.1% 35.3%

95% 2 0.0% 0.0% 5.9% 0.0% 0.0% 52.9% 35.3% 0.0%

3 41.2% 5.9% 0.0% 29.4% 0.0% 29.4% 5.9% 0.0%

4 35.3% 35.3% 11.8% 41.2% 0.0% 0.0% 0.0% 0.0%

Accurate 

VaR
5.9% 5.9% 5.9% 5.9% 5.9% 11.8% 11.8% 64.7%

1 0.0% 0.0% 5.9% 0.0% 0.0% 47.1% 35.3% 11.8%

95% 2 0.0% 11.8% 0.0% 0.0% 11.8% 17.6% 47.1% 11.8%

3 0.0% 23.5% 11.8% 0.0% 35.3% 17.6% 5.9% 0.0%

4 0.0% 17.6% 29.4% 17.6% 29.4% 5.9% 0.0% 0.0%

Accurate 

VaR
5.9% 5.9% 5.9% 5.9% 5.9% 11.8% 11.8% 64.7%

Convertible Bond Arbitrage

Merger Arbitrage

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Table 10: Loss Function Metric for the Distance between Realized Losses and VaR
Forecasts, Conditional on VaR Exceedance, for the Merger Arbitrage and Convertible
Bond Arbitrage Strategies During the Month of October 2008. The numbers are per-
centages of hedge funds for which the respective model is assigned a given rank. Higher rank,
coupled with a greater percentage of hedge funds for which that rank is achieved, indicates su-
perior model performance. Ranking should be analyzed in conjunction with the accuracy of VaR
prediction. The percentage of hedge funds for which VaR is predicted accurately is given in the
last rows of the two panels. With space considerations in mind, results are provided only for
the first four ranks and the 95% VaR. The complete results are available from the authors upon
request.
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VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 10.0% 7.5% 2.5% 0.0% 2.5% 10.0% 27.5% 20.0%

95% 2 7.5% 2.5% 5.0% 7.5% 0.0% 30.0% 22.5% 0.0%

3 20.0% 15.0% 10.0% 10.0% 0.0% 12.5% 10.0% 0.0%

4 12.5% 25.0% 7.5% 20.0% 12.5% 0.0% 0.0% 0.0%

Accurate 

VaR
22.5% 25.0% 22.5% 22.5% 20.0% 42.5% 40.0% 80.0%

1 7.5% 5.0% 12.5% 0.0% 12.5% 12.5% 22.5% 7.5%

95% 2 0.0% 0.0% 15.0% 10.0% 15.0% 20.0% 17.5% 0.0%

3 2.5% 17.5% 7.5% 0.0% 20.0% 17.5% 10.0% 2.5%

4 0.0% 2.5% 20.0% 17.5% 22.5% 7.5% 7.5% 0.0%

Accurate 

VaR
22.5% 25.0% 22.5% 22.5% 20.0% 42.5% 40.0% 80.0%

1 11.8% 0.0% 0.0% 5.9% 5.9% 23.5% 0.0% 35.3%

95% 2 11.8% 17.6% 0.0% 17.6% 0.0% 5.9% 23.5% 0.0%

3 0.0% 5.9% 23.5% 11.8% 11.8% 17.6% 5.9% 0.0%

4 23.5% 41.2% 5.9% 0.0% 5.9% 0.0% 0.0% 0.0%

Accurate 

VaR
29.4% 23.5% 23.5% 17.6% 23.5% 41.2% 58.8% 64.7%

1 5.9% 11.8% 11.8% 5.9% 11.8% 5.9% 5.9% 17.6%

95% 2 5.9% 11.8% 5.9% 0.0% 23.5% 17.6% 11.8% 0.0%

3 0.0% 11.8% 17.6% 17.6% 5.9% 17.6% 5.9% 0.0%

4 5.9% 11.8% 17.6% 5.9% 17.6% 5.9% 11.8% 0.0%

Accurate 

VaR
29.4% 23.5% 23.5% 23.5% 23.5% 41.2% 58.8% 64.7%

Long/Short Credit

Directional Credit

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

Table 11: Loss Function Metric for the Distance between Realized Losses and VaR
Forecasts, Conditional on VaR Exceedance, for the Directional Credit and Long/Short
Credit Strategies During the Month of October 2008. The numbers are percentages of
hedge funds for which the respective model is assigned a given rank. Higher rank, coupled with
a greater percentage of hedge funds for which that rank is achieved, indicates superior model
performance. Ranking should be analyzed in conjunction with the accuracy of VaR prediction.
The percentage of hedge funds for which VaR is predicted accurately is given in the last rows
of the two panels. With space considerations in mind, results are provided only for the first four
ranks and the 95% VaR. The complete results are available from the authors upon request.
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VaR/CVaR 

Level

Model 

Rank
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

1 6.3% 0.0% 0.0% 0.0% 0.0% 6.3% 25.0% 18.8%

95% 2 6.3% 0.0% 6.3% 0.0% 0.0% 18.8% 18.8% 6.3%

3 18.8% 0.0% 0.0% 6.3% 6.3% 18.8% 6.3% 0.0%

4 18.8% 6.3% 6.3% 18.8% 6.3% 0.0% 0.0% 0.0%

Accurate 

VaR
43.8% 43.8% 43.8% 43.8% 43.8% 56.3% 50.0% 75.0%

1 6.3% 6.3% 0.0% 0.0% 0.0% 12.5% 6.3% 25.0%

95% 2 0.0% 0.0% 6.3% 6.3% 12.5% 12.5% 18.8% 0.0%

3 6.3% 6.3% 6.3% 0.0% 12.5% 12.5% 12.5% 0.0%

4 0.0% 6.3% 12.5% 6.3% 18.8% 0.0% 12.5% 0.0%

Accurate 

VaR
43.8% 43.8% 43.8% 43.8% 43.8% 56.3% 50.0% 75.0%

1 0.0% 0.0% 0.0% 0.0% 0.0% 10.0% 20.0% 20.0%

95% 2 10.0% 10.0% 0.0% 0.0% 0.0% 10.0% 20.0% 0.0%

3 10.0% 0.0% 0.0% 10.0% 10.0% 20.0% 0.0% 0.0%

4 10.0% 10.0% 20.0% 10.0% 0.0% 0.0% 0.0% 0.0%

Accurate 

VaR
60.0% 50.0% 50.0% 60.0% 50.0% 50.0% 50.0% 80.0%

1 0.0% 0.0% 0.0% 0.0% 10.0% 0.0% 20.0% 20.0%

95% 2 0.0% 0.0% 20.0% 0.0% 0.0% 20.0% 10.0% 0.0%

3 0.0% 10.0% 0.0% 0.0% 20.0% 20.0% 0.0% 0.0%

4 0.0% 10.0% 20.0% 0.0% 10.0% 0.0% 10.0% 0.0%

Accurate 

VaR
60.0% 50.0% 50.0% 60.0% 50.0% 50.0% 50.0% 80.0%

Metric: Distance between predicted CVaR and realized 

loss, conditional on VaR exceedance

Fixed Income Aribtrage

Metric: Distance between predicted VaR and realized loss, conditional on 

VaR exceedance

Metric: Distance between predicted CVaR and realized loss, conditional on 

VaR exceedance

MBS Arbitrage

Metric: Distance between predicted VaR and realized 

loss, conditional on VaR exceedance

Table 12: Loss Function Metric for the Distance between Realized Losses and VaR
Forecasts, Conditional on VaR Exceedance, for the Fixed Income Arbitrage and
Mortgage-Backed Securities (MBS) Arbitrage Strategies During the Month of October
2008. The numbers are percentages of hedge funds for which the respective model is assigned
a given rank. Higher rank, coupled with a greater percentage of hedge funds for which that rank
is achieved, indicates superior model performance. Ranking should be analyzed in conjunction
with the accuracy of VaR prediction. The percentage of hedge funds for which VaR is predicted
accurately is given in the last rows of the two panels. With space considerations in mind, results
are provided only for the first four ranks and the 95% VaR. The complete results are available
from the authors upon request.
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