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1

Introduction

Neutron scattering is an extremely powerful and versatile tool for exploring crystal and
magnetic structures as well as their excitations in solids. Consequently, it allows to
study a plethora of phenomena in condensed matter physics. In this work, neutron
scattering is used to investigate strongly correlated electron systems. Owing to the
strong interaction between their electrons, it is not evident whether the Fermi liquid
(FL) theory while successfully describing ordinary metals [1, 2] is applicable to these
systems, too. In the following, three different classes of materials will be investigated
each of which reveals a variety of intriguing properties that cannot be explained by the
FL theory.

In the first chapter, the basic concepts of neutron scattering with a triple-axis spec-
trometer are briefly introduced. Further, all formulas required for the data analysis in
the following chapters are provided. Special emphasis is laid on discussing the experi-
mental resolution and how it is to be taken into account in the data evaluation.

The second and largest chapter is devoted to the weak itinerant magnet MnSi. Below
the Curie-temperature TC = 29.5 K magnetic moments order in a helical arrangement
with a very long wavelength of about 180 Å and the axis locked along a favored di-
rection. The electrical resistivity reveals a T 2 dependence below TC as expected for a
Fermi liquid. Hydrostatic pressure continuously reduces TC, resulting in a ’quantum
critical point’ (QCP) at pc = 14.6 kbar, i.e., a magnetic instability where TC = 0. For
pressures p � pc a hitherto unique magnetic state, so-called ’partial magnetic order’,
has been found with long-range helical correlations but disordered propagation direc-
tions [3]. Significant deviations from FL behavior, nicknamed non-FL (NFL) behavior,
appear nearby in the phase diagram. Previous measurements [4] pointed towards a
similar magnetic state present at ambient pressure just above TC. We investigated the
temperature dependent dynamics of the magnetic correlations by means of quasielas-
tic scattering of ultra-high resolution. In order to explain not only our experimental
findings but other unusual properties as well, we performed calculations on finite-size
spin clusters modeling MnSi. In fact, our results elucidate many anomalous features
on a qualitative basis.

The third chapter addresses the pressure dependence of magnetic order in the heavy
fermion (HF) system CeCu6−xAux. The undoped (x = 0) parent compound CeCu6
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does not order magnetically and is rather well described by FL theory. Doping with
Au introduces long-range antiferromagnetism (AF) for x > xc ≈ 0.1 with a Néel
temperature TN(x) increasing linearly with x up to x = 1. In the vicinity of the
quantum critical point at x = xc (where TN(x) vanishes) NFL behavior has been
observed in macroscopic quantities such as thermodynamic and transport properties [5,
6]. The magnetic ground state can be tuned not only by Au concentration x but also
by applying hydrostatic pressure p or a magnetic field B. Pressure reverses the effect
of Au doping and hence reduces TN of magnetically ordered CeCu6−xAux with x > 0.1.
Adjusting the pressure appropriately even drives TN to zero resulting in a ’p-tuned’
QCP at x > xc. Remarkably, the NFL behavior at the respective ’p-tuned’ QCP has
been found to be identical to the ’x-tuned’ QCP at x = xc and ambient pressure,
indicating a striking equivalence of the tuning behavior with x or p. In this work
we tested whether this equivalence holds on a microscopic level, i.e., by virtue of the
magnetic ordering wave vector qm. Previous experiments with neutrons [7] revealed an
abrupt variation of qm between x = 0.4 and x = 0.5 at ambient pressure. Therefore,
we investigated the pressure dependence of qm in CeCu5.5Au0.5 with elastic neutron
scattering to see whether qm corresponding to x = 0.4 can be recovered by applying
pressure which would corroborate the x - p equivalence even far away from the QCP.

The fourth chapter deals with phonon anomalies in cuprate high-Tc superconductors
(HTSC). Conventional superconductivity is mediated by phonons as described by the
Bardeen-Cooper-Schrieffer (BCS) theory from 1957 [8]. Therefore, the role of phonons
in the mechanism of HTSC has been considered very early. As one could not think of
electron-phonon coupling with a strength leading to transition temperatures near 100 K,
phonons were discarded and the main focus of research was on magnetic mechanisms.
The discovery of anomalous behavior of certain lattice vibrations, somehow related to
superconductivity, led to a renewed interest in phonon-mediated coupling and triggered
a systematic study of phonons in many cuprate compounds [9, 10]. One of the most
extensively studied systems is La2−xSrxCuO4 (LSCO) where superconductivity is found
for 0.06 ≤ x < 0.3. In the optimally doped system with x = 0.15 a very pronounced
phonon anomaly was observed which is absent in overdoped non-superconducting LSCO
with x = 0.3, indicating a close link to superconductivity. However, it remains to be
shown that the phonon anomaly vanishes in underdoped non-superconducting systems
(x < 0.06), too. This was done in this work by means of inelastic neutron scattering.
We further performed a study of another cuprate superconductor, i.e., HgBa2CuO4+δ

(Hg1201), for which a similar phonon anomaly had been reported in the literature [11]
but only data of marginal quality had been presented. Due to the small size of available
samples, we had to use inelastic X-ray scattering instead of neutron scattering.
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Chapter 1

Experimental method

Neutron scattering is an extremely powerful and versatile technique for exploring con-
densed matter. This was generally recognized by the awarding of the Nobel Prize in
Physics in 1994 to C. G. Shull (MIT, USA) and B. N. Brockhouse (McMaster Uni-
versity, Canada) ”for their pioneering contributions to the development of elastic and
inelastic neutron scattering” [12]. Among a variety of scattering instruments which are
widely discussed in literature [13, 14, 15], the most important turned out to be the
triple-axis spectrometer (TAS): It allows for a well defined measurement of the scatter-
ing function S(Q, ω) in momentum (�Q) and energy (�ω) space and thereby enables
one to study nuclear and magnetic structures as well as their excitations.

Several physical properties of the neutron make it an ideal probe with which to
investigate solids and liquids (see Tab. 1.1). Since its mass mn is close to that of
the proton, high energy neutrons from the reactor core can be moderated by multiple
scattering from atoms of comparable mass. The temperature T of the moderating
medium in turn defines the Maxwellian velocity distribution of the thermalized neutron
beam

Φ(v) ∝ v3 exp

(
− mv2

2kBT

)
, (1.1)

where Φ(v)dv is the neutron flux, i.e., the number of neutrons per unit area per second
with velocities between v and v + dv. It assumes its maximum at

v =

√
3kBT

m
, (1.2)

corresponding to a kinetic energy of

E =
1

2
mnv

2 =
�

2k2

2mn

=
h2

2mnλ2
=

(
3

2

)
kBT . (1.3)

Following usual conventions, the factor 3/2 is omitted in the following such that a
neutron with energy E corresponds to a temperature T = E/kB. Thus, the temperature
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Quantity Value at E = 10 meV

Mass mn 1.675 · 10−27 kg
Spin 1/2
Magnetic moment μn −1.913 nuclear magnetons, μn

Charge 0

Wavelength λ 2.86 Å

Wave vector k 2.20 Å−1

Velocity v 1.38 km s−1

Temperature T 116.05K

Table 1.1: Properties of neutrons with E = 10meV. Note that the wavelength is of the
order of typical interatomic distances in solids. Values have been adopted from Table 1.5
in [13].

of the moderator can be chosen appropriately to match the wavelength and energy scale
of interest, e.g., for studying phonons or spin waves in solids. Generally, three types
of sources are to be mentioned: Cold, thermal and hot sources use moderators at
typical temperatures of about 20K, 300 K or 2000 K to produce neutrons the energy
distribution of which is peaked around 5meV, 25 meV or 100 meV, respectively. Typical
materials utilized as moderator are liquid H2 (cold), liquid D2O (thermal) or a block
of graphite (hot).

Despite the charge of the three valence quarks that build the neutron, its net charge
is zero. As an important consequence, the neutron interacts only very weakly with
electrons and atomic nuclei and thus penetrates deeply into the sample. Essentially, it
interacts with the nuclei of the atoms on a length-scale of 1 fm, which can be consid-
ered point-like for the purpose of most experiments. The description of this isotropic
neutron-nucleus interaction is provided by a single parameter, the so called scattering
length b, that characterizes the scattering cross section for a single nucleus to be 4πb2.
Typical values of the scattering length for most atoms are of order 10−14 m.

On the other hand, the neutron’s internal substructure of quarks results in a net
spin 1/2 that couples to magnetic moments of unpaired electrons or magnetic atoms.
Hence, in addition to nuclear phenomena, magnetic structures can be investigated as
well. The effective magnetic scattering length p for a magnetic atom with a moment
of 1 μB is of the same order of magnitude as b, i.e., magnetic scattering is typically
comparable in intensity with nuclear scattering. By controlling and analyzing the
neutron’s polarisation it is even possible to distinguish between nuclear and magnetic
contributions to the scattering intensity.
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ki
kf

m

2 s

a

monochromator analyzer

detector
sample

Figure 1.1: General beam path of the neutrons at a triple-axis spectrometer as adopted
from [16]. The three axes are called monochromator-axis (variation of ki), sample-axis (vari-
ation of the scattering angle 2θs, i.e., the direction of kf ) and analyzer-axis (variation of the
final energy Ef , i.e., kf := ||kf ||).

In this chapter, the basic concepts of neutron scattering with a TAS are briefly
introduced following closely the more general discussion of [13, 14]. Giving detailed
derivations is beyond the scope of this work, instead emphasis is laid on quickly pro-
viding all formulas required for the analysis of the data hereinafter.

1.1 Conventions

Fig. 1.1 shows the schematic setup of a triple-axis spectrometer (TAS). Thermalized
neutrons from the reactor core are monochromatized by Bragg scattering from the
monochromator crystal. The resulting beam is characterized by wave vector ki (inci-
dent) and hits the sample. After interaction with its structure, the outgoing beam is
Bragg scattered one more time at the analyzer crystal before the neutron intensity is
measured in the detector. Appropriate setting of 2θs and a with respect to the crystal-
lographic orientation of the sample allows to control kf (final) and thereby define the
momentum and energy transfer to the sample:

Q := kf − ki (momentum transfer)

�ω :=
�

2

2mn

(
k2

i − k2
f

)
(energy transfer) .

(1.4)

Elastic scattering (diffraction) implies ||ki|| = ||kf || =: k and �ω = 0. In this case,
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Figure 1.2: Vector diagram of inelastic scattering for neutron en-
ergy loss (ki > kf , compare Eq. (1.11)) as adopted from [13]. Zero
defines the arbitrary origin of reciprocal space. Wave vectors shown
in black are chosen such that the momentum Q = G + q is trans-
ferred to the sample. G denotes a reciprocal lattice vector and q
represents the momentum transfer within a Brillouin zone such as
mediated by a phonon or magnon. Red wave vectors k∗

i and k∗
f

illustrate how another energy transfer �ω can be measured while
keeping Q const.: k∗

f is of the same exact length as kf but k∗
i is

much longer than ki resulting in a higher energy transfer to the
sample.

kf
*

ki
*

kf

ki
q

G

Q

0

2 s

neutrons are scattered from the sample when satisfying the Bragg condition

Q = G , (1.5)

with G being a reciprocal lattice vector. This can be beautifully illustrated in the
concept of the Ewald circle. On the other hand, for geometrical reasons

||Q|| = 2k sin θs (1.6)

generally holds, such that
||G|| = 2k sin θs (1.7)

is another formulation of Eq. (1.5). It can be transformed to

λ = 2dhkl sin θs , (1.8)

when noting that

Ghkl =
2π

dhkl

, (1.9)

where dhkl is the spacing of corresponding planes in real space that are defined by Miller
indices h, k and l.

In the case of inelastic scattering (spectroscopy), momentum conservation requires

Q = G + q . (1.10)

For reasons that will be explained in Section 1.2.1.1 (Bose factor), the spectrometer is
usually operated in the ’neutron energy loss mode’ (Fig. 1.2). Following the conventions
of Eq. (1.4), this means that the energy transfered to the sample is positive:

�ω =
�

2

2mn

(
k2

i − k2
f

)
> 0 (neutron energy loss) . (1.11)
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kfki

q
G

Q

2 s

Figure 1.3: from [13]

Regarding a two-axis diffractometer where no analyzer crystal
is used, final neutrons resulting from elastic as well as inelas-
tic processes are detected together: all kf that point into the
same direction (i.e., into the detector) will contribute to the
measured intensity, regardless of their length kf (i.e., energy).
This scenario is illustrated in Fig. 1.3, where kf of the inelastic
scattering process shown points into the same direction that the
corresponding elastic kf would with q = 0 and Q = G. The
two axis diffractometer corresponds to a TAS operated with
a = 0◦ (compare Fig. 1.1). However, the great advantage of a
TAS is the opportunity of selecting the final energy of all neu-
trons reaching the detector. Therefore the inelastic process shown in Fig. 1.3 can be
measured exclusively without elastic contribution. Since an inelastic signal is usually
several orders of magnitude weaker in intensity than a nuclear Bragg peak, the energy
discrimination provided by the analyzer axis has turned out to be key to investigating
inelastic phenomena in condensed matter.

1.2 Scattering formulas

In triple-axis spectroscopy, the quantity measured always is the rate of neutrons that
are scattered into a certain solid angle dΩf (in the direction kf ) with energies between
between Ef and Ef + dEf . This rate is the product of the flux Φ(ki) incident on the
sample and the double-differential cross section d2σ/dΩfdEf , which can be separated
into the coherent and incoherent part:

d2σ

dΩfdEf

=

(
d2σ

dΩfdEf

)
coh

+

(
d2σ

dΩfdEf

)
incoh

. (1.12)

Collective phenomena among different atoms contribute to the coherent part, regard-
less of whether they are elastic or inelastic. Examples of such collective effects are
nuclear and magnetic Bragg scattering as well as inelastic scattering from phonons and
magnons. For simplicity of describing the incoherent part, a scattering system con-
sisting of a single element is considered. The incoherent scattering then results from
a random distribution of different scattering lengths br, occurring in the sample with
probability pr. For instance, br can vary among different isotopes r or different nuclear
spin states r of the the same element. The coherent part of the double-differential cross
section depends on the average scattering length:

σcoh = 4π

(∑
r

prbr

)2

= 4π
(
b
)2

. (1.13)
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However, the total scattering cross section is given by

σtot = 4π
∑

r

prb
2
r = 4πb2 . (1.14)

Therefore, the incoherent contribution σincoh = σtot−σcoh can be understood as resulting
from a non-zero variance ς of the distribution of the br:

σincoh = 4π
(
b2 − b

2
)

︸ ︷︷ ︸
ς

. (1.15)

Samples with strong incoherent scattering can be used to check the alignment of the
spectrometer: For small Q and low temperatures, incoherent scattering from vanadium
metal is roughly isotropic in space (i.e., Q-independent) and fully elastic (i.e., E = 0).
For this reason, an energy-scan on vanadium at any Q has to reveal a maximum of
the scattering intensity at E = 0.1 If this is not the case, the spectrometer is not well
aligned.

In the rest of this chapter, the incoherent part of the double-differential cross section
in Eq. (1.12) is neglected unless explicitly mentioned otherwise, and b denotes the mean
value b. Also, all formulas are derived assuming that the neutron scatters from the
sample perturbing the system very weakly. This means that it changes the occupation
of eigenstates |λ〉 but not the eigenstates themselves. Consequently, Fermi’s Golden
Rule can be used as a starting point:

d2σ

dΩfdEf

=
kf

ki

( mn

2π�2

)2

|〈kfλfσf |V |kiλiσi〉|2 δ(�ω + Ei − Ef ) . (1.16)

Generally, the neutron is specified not only by its wavevector k but also by its spin
state σ. The potential V describes the nature of the scattering process, particularly
whether it is nuclear or magnetic. Because of the assumed weakness of the interaction,
the interaction matrix element can usually be evaluated using the Born approximation,
where incident and outgoing neutrons are treated as plane waves.

1.2.1 Nuclear scattering

Assuming that the nuclear scattering potential V (r) is a delta function (Fermi pseu-
dopotential), its Fourier transform V (Q) in Eq. (1.16) is proportional to the scattering
length b and one can finally show [13] that

d2σ

dΩfdEf

= N
kf

ki

b2S(Q, ω) , (1.17)

1See Fig. 1.5 (b) that is explained in the corresponding section.
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where N is the number of nuclei and S is the scattering function mentioned at the
beginning of this chapter. Eq. (1.17) applies to samples consisting of a single element.
Generally, site-dependent scattering lengths have to be included in the scattering func-
tion S (as will be the case from Section 1.2.1.1 on). Let rl be the position vector of the
lth nucleus and let 〈A〉 denote the thermal average of the operator A at a temperature
T , i.e.,

〈A〉 =
∑
λi

p(λi)〈λi|A|λi〉 , (1.18)

with |λi〉 being the initial eigenstate of the sample occurring with probability p(λi).
Then the coherent scattering function reads:

S(Q, ω) =
1

2π�N

∑
ll′

∫ ∞

−∞
dt

〈
e−iQ·rl′ (0)eiQ·rl(t)

〉
e−iωt . (1.19)

Hence, coherent scattering describes interference effects by depending on the time-
correlation of the positions of the same (l = l′) and different (l �= l′) nuclei2.

1.2.1.1 Elastic scattering

In case of elastic coherent scattering from a crystal that is characterized by a Bravais
lattice and a polyatomic basis, the differential cross section is then given by(

dσ

dΩ

)
el

∝
∑
G

δ(Q − G)|Fn(G)|2 , where (1.20)

Fn(G) =
∑

j

bje
iG·dje−Wj . (1.21)

The delta function is associated with the Bragg condition (Eq. (1.5)). The static
nuclear structure factor Fn(G) describes interference effects resulting from scattering off
different atoms j at positions dj within the unit cell. Furthermore, thermal fluctuations
of the nuclei about respective equilibrium positions reduce the measured intensity. This
effect is accommodated by the Debye-Waller factor exp (−2W ), where

W =
1

2

〈
(Q · u)2

〉
(1.22)

and u denotes the instantaneous displacement of the nuclei from their equilibrium
positions.

2On the contrary, incoherent scattering is described by the same Eq. (1.19) but summing exclusively
over the temporal correlation of the positions of the same nuclei, thus neglecting interference effects.
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1.2.1.2 Inelastic scattering

If during the scattering process the neutron loses the energy �ω, this energy is trans-
ferred to the sample causing a transition between any pairs of energy levels that are
separated by �ω. The reverse process where the neutron gains energy is also possible,
causing a transition between the same pairs of levels, but now the energy of the initial
state is higher than the energy of the final state. The probability of the system being
initially in the higher energy state is lower than its probability of being in the lower
energy state, i.e., excitation creation is more likely that excitation annihilation. This
fact is taken into account by the principle of detailed balance:

S(−Q,−ω) = e
− �ω

kBT S(Q, ω) . (1.23)

Furthermore, the scattering amplitude S is related to the imaginary part of the dy-
namical susceptibility χ′′(Q, ω) via the fluctuation-dissipation theorem:

S(Q, ω) =
1

1 − e
− �ω

kBT

χ′′(Q, ω) . (1.24)

Phonons

Phonons are quantized excitations of the crystal lattice. Their bosonic nature forces
them to obey the Bose statistics, where the Bose factor gives the average occupation
of a state with energy �ω at a temperature T :

n(ω, T ) =
1

e
�ω

kBT − 1
. (1.25)

A crystal containing N unit cells with p atoms per unit cell has 3p phonon branches
each of which consists of N modes. The relation between the momentum �q and the 3p
possible energies �ωqs is provided by the dispersion of respective branches, labeled with
the number s. At a particular q, each phonon mode is characterized by its polarization
vectors (eigenvectors) ξjs . Modes with ξ||q are called longitudinal and those with ξ⊥q
are called transverse. In case of neutron scattering from phonons, the imaginary part
of the dynamical susceptibility reads

χ′′(Q, ω) ∝
∑
G,q

δ(Q − q − G)
∑

s

1

ωqs

|F(Q)|2 · [ δ(ω − ωqs)︸ ︷︷ ︸
neutron

energy loss

− δ(ω + ωqs)︸ ︷︷ ︸
neutron

energy gain

]
, (1.26)

where the dynamic structure factor F(Q) is given by

F(Q) =
∑

j

bj√
mj

(Q · ξjs)e
iQ·dje−Wj . (1.27)
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The first delta function accommodates the conservation of momentum (Eq. (1.10)),
the second and third one distinguish between creation and annihilation of phonons.
Note that χ′′ is inversely proportional to the phonon frequencies ωqs. In comparison
to the static structure factor Fn (Eq. (1.38)), the dynamic structure factor F contains
some additional elements, namely the mass of the jth atom mj and the scalar product
Q · ξjs. Due to this product, an appropriate choice of scans in different Brillouin zones
often allows to determine phonon eigenvectors: Only the component of the eigenvector
that is parallel to Q contributes to the scattering intensity. In the simple case of long-
wavelength acoustic modes, where all atoms are moving in phase, Q||q would detect the
longitudinal mode (ξL) only, because q||ξL and Q · ξL �= 0 as opposed to the transverse
mode (ξT ) where q⊥ξT and therefore Q · ξT = 0.

The minus sign between the delta functions in Eq. (1.26) results from the principle
of detailed balance requiring that χ′′(Q, ω) be odd in ω in cases where S(−Q, ω) =
S(Q, ω). A priori, χ′′ is neither temperature dependent, nor does it implicate different
probabilities for processes where the neutron gains or loses energy. Inserting Eq. (1.26)
into Eq. (1.24) and noting that

1 + n(ω, T ) = −n(−ω, T ) (1.28)

holds for all ω reveals

S(Q, ω) ∝
∑
G,q

δ(Q − q − G)
∑

s

1

ωqs

|F(Q)|2 ·

·
[ (

1 + n(ωqs, T )
) · δ(ω − ωqs)︸ ︷︷ ︸

neutron energy loss

+
(
n(ωqs, T )

) · δ(ω + ωqs)︸ ︷︷ ︸
neutron energy gain

]
. (1.29)

Here, the different statistical weight of neutron energy gain and loss becomes obvious:
At low temperatures (i.e., �qsω 
 kBT ), nqs ≈ 0 and neutron energy gain processes are
very unlikely because there are only very few excitations to be annihilated. On the other
hand, at high temperatures (i.e., �qsω � kBT ), nqs ≈ 1 + nqs ≈ kBT/�ωqs resulting in
an equal probability for excitation creation and annihilation. Since neutron experiments
investigating condensed matter usually have to be performed at low temperatures to
scatter from ordered phases, the spectrometer is mostly operated in the ’neutron energy
loss mode’.

All delta functions in the second line of Eq. (1.29) model the hypothetical case of
infinite lifetimes of the phonons. However, in real systems, the lifetime of phonons
becomes finite due to phonon-phonon interaction (anharmonicity effects), electron-
phonon interaction as well as crystal imperfections. In the first approximation, the
time dependent decay of phonons is described by an exponential function of which the
Fourier transform is Lorentzian. Hence, Lorentzian energy distributions are used in
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Eq. (1.29) instead of delta functions to model the intrinsic lineshape of phonons:

δ(ω ± ωqs) → L(ω; ωqs, Γqs) = A · 2

πΓqs︸ ︷︷ ︸
amplitude

·
(

Γqs

2

)2

(ω − ωqs)2 +
(

Γqs

2

)2 . (1.30)

A denotes the area of the Lorentzian and its full-width at half-maximum (FWHM) is
given by Γqs. In the damped harmonic-oscillator model [17], the phonon frequencies
ωqs are simultaneously substituted by renormalized frequencies ω′

qs:

ωqs → ω′
qs =

√
ω2

qs −
(

Γqs

2

)2

. (1.31)

In this work, frequencies of investigated phonons are usually much bigger than their
FWHM rendering a discrimination between ω′

qs and ωqs unnecessary. In addition, the
most interesting parameter that is to be extracted from the data with high precision is
the phonon’s intrinsic linewidth which is not dependent on ω.

1.2.2 Magnetic scattering

In order to derive the double differential cross section for magnetic scattering, the
interaction matrix element in Eq. (1.16) has to be evaluated regarding the appropriate
magnetic potential V = Vm. It is assumed that the neutron scatters from the localized
magnetic moments of atoms. Furthermore, a weak dipole-dipole interaction of the
neutron with the magnetic atom is considered. A discussion of the general case where
the magnetic atoms carry spin and orbital momentum can be found in [14]. Regarding
this work, the restriction to spin only is sufficient to describe investigated phenomena.
Analogous to Eqs. (1.17) and (1.19), the scattering of unpolarized neutrons from a
system consisting of a single element is considered in the following, until mentioned
otherwise. In this case, the magnetic scattering length p has to be not included in the
scattering function S but appears as factor in the double differential cross section, just
as b does in Eq. (1.17). It is defined by the magnetic form factor f(Q),

p = γr0

∫
ρs(r)e

iQ·rdr︸ ︷︷ ︸
f(Q)

, (1.32)

where ρs(r) is the spin density, r0 is the classical electron radius and γ = 1.913 denotes
the gyromagnetic ratio. Furthermore, only the component of the spin s perpendicular
to Q contributes to the measured intensity:

s⊥ = s − Q̂(Q̂ · s) , with Q̂ :=
Q

||Q|| . (1.33)



1.2: Scattering formulas 13

Noting that

||s⊥||2 =
∑
α,β

(
δαβ − Q̂αQ̂β

)
s∗αsβ , (1.34)

where α and β label x, y, z components, the double differential cross section reads:

d2σ

dΩfdEf

=
N

�

kf

ki

p2e−2W
∑
α,β

(
δαβ − Q̂αQ̂β

)
sαβ(Q, ω) , with

sαβ(Q, ω) =
1

2π

∫ ∞

−∞
dt e−iωt

∑
l

eiQ·rl

〈
sα
0 (0)sβ

l (t)
〉

. (1.35)

Angle brackets 〈· · · 〉 are defined in Eq. (1.18), e−2W is the Debye-Waller factor and l
labels lattice sites. In the case of static spins, Eq. (1.35) can be reduced to

d2σ

dΩfdEf

∝ kf

ki

∑
α,β

(
δαβ − Q̂αQ̂β

) ∑
l,l′

∑
λi,λf

p(λi)〈λi|e−iQ·rl′sα
l′ |λf〉 ·

·〈λf |eiQ·rlsβ
l |λi〉 · δ(Eλi

− Eλf
+ �ω) . (1.36)

Since a weak interaction of the neutron with the magnetic atom is considered, initial
and final states |λi,f〉 differ only in the orientations of the spins and the positions of
the nuclei. However, the spin quantum number is conserved.

1.2.2.1 Elastic scattering

In case of elastic magnetic scattering from a magnetically ordered crystal that is char-
acterized by a Bravais lattice and a polyatomic basis, the differential cross section is
given by (

dσ

dΩ

)
el

∝
∑
Gm

δ(Q − Gm)|Fm(Gm)|2 , where (1.37)

Fm(Gm) =
∑

j

pjs⊥je
iGm·dje−Wj . (1.38)

The delta function is associated with the Bragg condition (Eq. (1.5)) involving the
magnetic reciprocal lattice vector Gm. Due to the magnetic unit cell usually being
larger than the chemical unit cell, typically Gm is smaller than G. The static mag-
netic structure factor Fm(Gm) describes interference effects resulting from scattering
off different atoms j at positions dj within the magnetic unit cell.
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1.2.2.2 Inelastic scattering

Let Tc denote the temperature of the magnetic phase transition. At temperatures
T < Tc, magnetic moments fluctuate in collective manner that is due to their coupling
in the ordered phase. The quanta of these collective excitations are referred to as
magnons. Analogous to the case of collective nuclear excitations (phonons), a double
differential cross section can be derived describing the scattering of neutrons from
magnons [14]. On the other hand, at temperatures above the critical temperature Tc,
thermal energy causes magnetic fluctuations as well. Neutron scattering from these
’critical’ fluctuations is regarded in the following.

Critical scattering

The generalized susceptibility χ(Q, ω) consists of a real and imaginary part:

χ(Q, ω) = χ′(Q, ω)′ + iχ′′(Q, ω) , (1.39)

where the imaginary part χ′′ can be measured with neutron scattering. The Kramers-
Kronig relation provides a connection between χ′ and χ′′:

χ′(Q, ω) =
1

π

∫ ∞

−∞
dω′χ

′′(Q, ω′)
ω − ω′ , (1.40)

which in turn allows a comparison of neutron results with bulk measurements: χ′(Q, 0)
denotes the static susceptibility which in the limit Q → 0 becomes the bulk suscepti-
bility χb := χ′(0, 0) such as measured with a dc-magnetometer. It can be shown that
Eqs. (1.39) and (1.40) hold if

χ′′(Q, ω) = χ′(Q, 0)ωF (Q, ω) , (1.41)

with the general spectral weight function F (Q, ω) being an even function of ω and
satisfying ∫ ∞

−∞
F (Q, ω)dω = 1 . (1.42)

In case of critical scattering at small q, where

q = Q − Gm and q :=
q

||q|| , (1.43)

mean-field theory yields the q-dependent static susceptibility

χ′(Q, 0) =
c0

κ(T )2 + q2
, (1.44)

with
κ(T )2 = κ2

0(T − Tc) (1.45)
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and respective constants c0 and κ0. Concerning the spectral weight function F (Q, ω),
it turns out that a Lorentzian with a q-dependent linewidth Γ(q) models the physics
appropriately:

F (Q, ω) =
1

π

Γ(q)
2

ω2 +
(

Γ(q)
2

)2 . (1.46)

Inserting Eqs. (1.46) and (1.44) in Eq. (1.41) and noting the fluctuation-dissipation
theorem (Eq. (1.24)), the scattering function finally reads:

S(Q, ω) ∝ 1

π
· ω

1 − e
−�ω
kBT︸ ︷︷ ︸

(∗)

· c0

κ(T )2 + q2
·

Γ(q)
2

ω2 +
(

Γ(q)
2

)2 . (1.47)

At the limits of low or high energies, the factor (∗) reveals the following behavior:

(∗) =
ω

1 − e
−�ω
kBT

→
{

kBT for kBT 
 �ω
ω for kBT � �ω

. (1.48)

Thus, energy scans (q = const.) just above Tc covering a very narrow range around
zero (i.e., kBT 
 �ω) exhibit a truly Lorentzian line shape. On the other hand, when
scanning a wider range in energy the factor (∗) becomes ω-dependent and changes the
Lorentzian line shape. Finally, for kBT � �ω, the Lorentzian is multiplied with a
simple factor ω that causes the maximum in intensity to shift to ωmax = Γ/2.

1.3 Resolution effects and special elements of a TAS

So far, only the intrinsic signal from different systems has been taken into account,
neglecting experimental resolution effects. These are briefly described in this section.

In a real neutron scattering experiment, the intrinsic signal S(Q, ω) has to be con-
voluted with the resolution function of the instrument R(Q − Q0, ω − ω0) to describe
the measured neutron intensity I(Q0, ω0):

I(Q0, ω0) =

∫
dωdQ R(Q − Q0, ω − ω0) · S(Q, ω) . (1.49)

The measured intensity in turn is defined as the flux ΦD reaching the detector nor-
malized to the flux ΦM measured by the monitor that is placed directly in front of the
sample:

I(Q0, ω0) =
ΦD(Q0, ω0)

ΦM(Q0, ω0)
. (1.50)
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Usually, the detector signal is accumulated until a fixed number of monitor counts is
detected. Note that the resolution function depends exclusively on the configuration
of the spectrometer and the mosaic spread of the sample. It is peaked at Q0, ω0 and
decreases for deviations from these values such that contours of constant amplitude
describe a 4D ellipsoid in (Q, ω) space. However, for a given spectrometer configuration,
the volume, shape and orientation of that ellipsoid can change with Q and ω.

In order to obtain higher neutron intensity, the monochromator and analyzer usually
consist of several small single crystals with sufficiently broad mosaic spread3, which
are mounted with adjustable curvature to focus the beam horizontally and vertically.
Resulting finite beam divergences in turn can be controlled by appropriate collimation:
Soller collimators consist of parallel steel blades coated with a material that absorbs
neutrons (e.g., cadmium). The spacing of the blades and their length sets the maximal
divergence of the neutrons passing through. Typically, up to four collimators are used
to control horizontal (in plane) beam divergence, that is to say in front of and behind
both the monochromator and analyzer crystal. For the benefit of beam intensity, one
usually refrains from vertical (out of plane) collimation. Assuming that collimator
transmission functions and mosaic distributions are Gaussian, the resolution function
can be modeled with a Gaussian, too:

R(Q − Q0, ω − ω0;G) = R0 e−
1
2
(Q−Q0,ω−ω0)T G (Q−Q0,ω−ω0) , (1.51)

where R0 and the 4 × 4 matrix G are functions of Q0 and ω0. Generally, G contains
off-diagonal elements, and hence the principal axes of the resolution ellipsoid do not
coincide with the axes defined by Q and ω. On the other hand, assuming that the
in plane collimation in sufficiently small, the vertical direction is uncoupled from the
other three coordinates. Collimation predominantly affects the FWHM of the resolution
ellipsoid in Q space, whereas its energy width can be controlled with the appropriate
choice of the incident neutron energy. A proper description of how the resolution
ellipsoid can be calculated from a given spectrometer configuration is beyond the scope
of this work. The basic relation of the incident energy with the experimental energy
resolution is explained in the following. For the general case of Bragg scattering from
a crystal, the Bragg condition yields the absolute energy resolution ΔE:

ΔE ∝ E cot θ , with 0 < θ <
π

2
. (1.52)

Neutrons are Bragg scattered twice at the monochromator and analyzer crystal, re-
spectively. To minimize the energy width ΔE it is thus advantageous to choose lower
energies (i.e., longer wavelengths λ) that are Bragg reflected at higher angles θ. Even

3Crystals with perfect lattice would produce infinitely sharp Bragg peaks. Since spectrometers can
never be perfectly aligned, a finite width of Bragg peaks is necessary to obtain neutron flux. This
finite width is achieved by small imperfections of the crystal lattice.
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ellipsoid

E

qIntensity Intensity

Figure 1.4: Schematic projection of the four-dimensional resolution ellipsoid onto the plane
defined by E and q. A linear dispersion relation such as that of acoustic phonons is shown
in blue. The peaks shown in red reveal the measured neutron intensity resulting from a scan
along E at different q (dashed coordinate systems). At positive q, the two longer axes of
the resolution ellipsoid are parallel to dispersion, and hence a narrow peak will be measured.
This scenario corresponds to the ’focused’ condition. In the opposite case, at negative q with
the longest axis orthogonal, the peak may be so broad as to be undetectable.

if a certain energy E is needed to perform the experiment, energy resolution can still
be improved by maximizing θ by the use of another scattering plane providing smaller
inter planar spacing.

Performing an E or Q scan means sweeping the resolution ellipsoid through the four-
dimensional (Q, ω) space picking up intensity from structures defined by the scattering
function. Thereby, the form of obtained spectra depends very much on the orientation
of the resolution ellipsoid relative to these structures. As an example, Fig. 1.4 shows
how a longitudinal phonon dispersion is measured in the ’focused’ condition.

Special problems

In general, one has to carefully interpret experimental measurements keeping in mind
that the non-ideal behavior of the elements of the spectrometer and the sample environ-
ment might cause scattering artifacts that can easily be mistaken as intrinsic features.
These artifacts are often referred to as ’spurious peaks’ or ’spurions’. Their proper
identification can be crucial to extract the physically relevant information from the
scattering results.

Some spurious effects being directly related to the instrumental resolution are pre-
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Figure 1.5: Typical resolution effects that can easily be mistaken as originating from intrin-
sic features. (a) Scanning in close vicinity to a Bragg peak might reveal a sharp peak at finite
q and E such as expected when investigating acoustic phonons. In fact, this peak results
from elastic Bragg peak intensity that is picked up with the tail of the resolution ellipsoid. (b)
Magnetic critical scattering around E = 0 at some magnetic reciprocal lattice vector has to
be carefully distinguished from the signal that is due to nuclear incoherent scattering present
at all q. The latter is temperature independent as opposed to critical scattering that usually
broadens substantially with increasing temperature.

sented in Fig. 1.5, where panel (a) shows how a peak can be easily misinterpreted as
resulting from a phonon but in fact is due to elastic Bragg scattering (so-called ’Bragg
tail’). Fig. 1.5 (b) reveals the signature of incoherent scattering from the sample that
has to be subtracted from the data when investigating features with energy around
zero (e.g., magnetic critical scattering).

Furthermore, artifacts that are not related to the experimental resolution can mimic
intrinsic effects. As one example, ’accidental Bragg scattering’ due to incoherent or
diffuse scattering at the monochromator or analyzer crystal is explained in Fig. 1.6.
As a second example, higher-order neutrons (harmonics) in the incident beam can give
rise to spurious effects. In the Bragg condition (Eq. (1.8)) only first-order neutrons with
energy E are considered, whereas for a given angular setting θs of the monochromator
crystal, higher energy neutrons with energy n2E and wavelength λn are diffracted as
well, where

λn =
λmax

n
and λmax = 2dhkl sin θs (n ∈ N) . (1.53)

Although the flux of higher-order neutrons with n ≥ 2 is usually much weaker than
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Figure 1.6: Schematic diagrams from [13] illustrating two conditions for accidental Bragg
scattering. (a) The elastic process corresponding to Q = G produces neutrons travelling
parallel to kf but with magnitude ki. If there is some incoherent or diffuse scattering at
the analyzer, these neutrons will reach the detector in addition to those due to the desired
inelastic process where Q = G+q. (b) Incoherent scattering at the monochromator provides
neutrons travelling parallel to ki but with magnitude kf . Having scattered elastically from
the sample, these neutrons travel to the detector with the same kf as those participating in
the inelastic process.

that of first-order neutrons, they can still mimic weak intrinsic features of the scattering
function. In order to suppress such artifacts, several filters can be installed along
the neutron beam path depending on the incident neutron energy. In the thermal
regime pyrolytic graphite (PG) is by far the most commonly used filter of higher-order
neutrons. In most experiments, the final neutron wave vector is fixed and the PG
filter is placed between the sample and the analyzer. According to Fig. 1.7, higher
order contaminations can be most effectively eliminated when fixing the final energy
at 14.7 meV or 30.5 meV (corresponding to kf = 2.662 Å−1 or 3.834 Å−1) where the
transmission of first-order neutrons is strongly favored. In the cold energy regime,
working with fixed ki is advantageous if extremely high energy resolution is needed.
In this case a Beryllium filter cooled to liquid nitrogen (LN2) temperature (∼ 77 K)
can be installed in the incident neutron beam blocking all neutron with E > 5.2 meV
(corresponding to ki > 1.583 Å−1).
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Figure 1.7: Transmission of a 5-cm-thick PG filter vs. energy of higher order harmonics as
adopted from [13]. (Note the logarithmic scale of the ordinate.) The crystallographic c-axis
has to be oriented along the neutron wave vector k.
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Chapter 2

Spin dynamics in MnSi

2.1 Introduction

MnSi is one of the most extensively studied itinerant-electron magnets. Its crystallizes
in the cubic B20 structure that is depicted in Fig. 2.1 (a). Three well-defined energy
scales can be distinguished at all temperatures, pressures and magnetic fields at which
this system has been investigated [18, 3]:

(1) The strongest energy scale is the tendency to itinerant ferromagnetism that can
be described with

HFM =
∑
i,j

Ji,j si · sj , (2.1)

where Ji,j is the exchange integral with respect to spins i and j.

(2) As the B20 structure lacks inversion symmetry, weak spin-orbit coupling results
in a Dzyaloshinsky-Moriya (DM) interaction

HDM =
∑
i,j

Di,j · (si × sj) , with Di,j = −Dj,i . (2.2)

The DM vector Di,j is determined by bond symmetry and its magnitude by
the strength of the spin-orbit coupling which is intermediate between (1) and
(3) [19, 20].

(3) The weakest energy scale is provided by the crystal potential.

This hierarchy of energy scales results in a magnetic phase transition at TC = 29.5 K
below which magnetic moments of 0.4 μB per formula unit order in a helical arrange-
ment such as shown schematically in Fig. 2.1 (b) [24, 25]. Due to (1) and (2), spins align
ferromagnetically in horizontal planes and turn from one plane to the next exhibiting
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Figure 2.1: (a) Cubic B20 structure of MnSi with the lattice constant a = 4.558 Å. The unit
cell contains four Mn (blue) and Si (red) atoms, respectively, that are placed at the positions
(u, u, u), (0.5 + u, 0.5− u,−u), (0.5− u,−u, 0.5 + u), (−u, 0.5 + u, 0.5− u), with uMn = 0.138
and uSi = 0.845 [21]. (b) Schematic alignment of magnetic moments as ferromagnetic spiral,
from [22].

well-defined chirality given by the sign of Di,j. The relative weakness of the DM inter-

action results in the long wavelength of the helix of about 180 Å. The crystal potential
in turn locks the helical propagation vector kh along equivalent 〈1 1 1〉 directions [24].
A qualitative illustration of the scattering intensity in Q space characteristic of this
magnetic state is given in Fig. 2.2 (a) (left inset), where sharp magnetic Bragg peaks
(denoted as black dots) are found in 〈1 1 1〉 directions on the surface of a tiny sphere
the radius of which corresponds to the helix pitch (q = 0.037 Å−1). Furthermore, hy-
drostatic pressure p reduces the magnetic transition temperature TC, driving it to zero
at pc = 14.6 kbar. In close vicinity to that quantum critical point (QCP), so-called
’partial magnetic order’ (PO) has been found below a crossover temperature T0 [3].
PO is characterized by long-range helical correlations but with disordered propagation
directions, resulting in scattering intensity on a slightly bigger sphere (q = 0.043 Å−1)
being resolution limited in longitudinal (radial) direction but very broad in transverse
(tangential) direction as roughly depicted by the shading in Fig. 2.2 (a) (right inset).
Note that the intensity is highest around the 〈1 1 0〉 directions indicative of a change
in the crystal potential now weakly favouring 〈1 1 0〉. Measurements of the resistivity
(Fig. 2.2 (b)) revealed a T 2 dependence below TC as expected from a Fermi liquid (FL).
On the other hand, an abrupt change to a T 3/2 dependence occurs at p > pc persisting
over three decades in temperature [23, 26].

However, the ambient-pressure phase reveals anomalous features as well. The simple
band theory was found inappropriate for describing the magnetic properties above the
Curie temperature, where the effective magnetic moment of 1.4 μB is much higher than
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(a) (b)

Figure 2.2: Schematic T − p phase diagram of MnSi with qualitative illustration of the
scattering intensity characteristic of the magnetic state at p = 0 (left inset) and p � pc (right
inset) as shown in [3]. The Curie temperature TC corresponds to shoulders in the resistivity
ρ(T ) as shown in (b) and decreases linearly up to p∗ = 12 kbar before it vanishes completely at
the critical pressure pc = 14.6 kbar. T0 marks a crossover temperature below which ’partial
magnetic order’ (right inset) was found, possibly related to an extended non-Fermi-liquid
(NFL) phase (shaded). (b) Specific resistivity ρ as function of temperature T at different
pressures as depicted in [23] (5.55, 8.35, 10.40, 11.40, 12.90, 13.55, 14.30 and 15.50 kbar
going down, starting from the top curve at the right). The shoulder in ρ vs T marks TC that
decreases towards absolute zero at pc. The inset reveals the NFL-form of ρ ∝ T 3/2 at pressure
above pc. Note that this behavior extends over several orders of magnitude in temperature.

the saturation moment of 0.4 μB at the lowest T [27]. In fact, Ishikawa et al. found
in 1982 that the spectrum of spin fluctuations above TC fits the Moriya-Kawabata
(MK) renormalization theory for weak itinerant ferromagnets and hence is responsible
for the Curie-Weiss dependence of the static susceptibility [28]. But in contrast to a
Heisenberg system where Eq. (1.47) applies with Γ(q) ∝ q2/χ(q), the MK theory yields
Γ(q) ∝ q/χ(q). Twenty years later, in 2002, experiments with polarized neutrons
demonstrated that these paramagnetic fluctuations are chiral and are centered not at
the incommensurate positions of the magnetic Bragg peaks in the ordered phase but
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on the same sphere in Q space as described above [21, 4]. Recently, neutron scattering
experiments of Pappas et al. [29] proved that the helical phase undergoes a phase
transition to an exotic spin liquid with a substantial chiral component consistent with
skyrmion formation [30]. Another puzzling property of MnSi is the mosaic spread of the
helical propagation vector (3.35◦ from [31]) that is orders of magnitude larger than the
mosaic of the crystal lattice (0.2◦) [32]. In addition, the specific heat [33] and ultrasound
attenuation [34] exhibit a two-component lineshape at the Curie temperature TC that
is indicative of the phase transition being weakly first order with a strong second order
component. This behavior is in pronounced contrast to conventional theory.

To gain more insight into the origin of these features we investigated the spin dy-
namics in the paramagnetic phase of MnSi at ambient pressure with neutron scattering
experiments of ultra-high resolution. This study is presented in the next section. In
order to explain not only our experimental findings but other unusual properties as
well, we performed calculations on finite-size spin clusters modeling MnSi. In fact, our
results elucidate many anomalous features mentioned above on a qualitative basis, as
will be shown in section 2.3.

2.2 Experimental results

We performed our experiment on the cold triple-axis neutron spectrometer 4F op-
erated at the ’Laboratoire Léon Brillouin’ of the CEA, Saclay (France). Extremely
high wavevector resolution was required to scan at reduced wave vectors as small as
q = 0.037 Å−1 without significant contamination by the nuclear Bragg peak. The 4F
spectrometer is the same instrument on which partial order at high pressure was dis-
covered. Without being confined to the small sample space provided by pressure cells
we measured two big samples1 with respective volumes of 1 and 4 cm3, both nearly
perfect single crystals with resolution-limited mosaic spread.

One set of measurements had ki fixed at 1.15 Å−1 with the collimations of open-
20’(between double monochromator)-20’-20’, resulting in 30μeV energy resolution (high
resolution condition). In order to obtain much higher scattering intensity, a second set
was taken with ki = 1.5 Å−1 and collimation of open-open-40’-20’, yielding a relaxed
energy resolution of 145μeV. A third and fourth set of measurements was performed
on a thermal triple-axis neutron spectrometer, 1T again at the Saclay reactor. These
scans had kf fixed at 1.97 Å−1 (2.662 Å−1) with 25’-20’-20’-20’ collimation resulting in
an energy resolution of 290μeV (600 μeV).

All data presented in the following were collected near the (1 1 0) nuclear Bragg
peak. The scattering plane was spanned by reciprocal [1 1 0] and [0 0 1] axes. In case

1The samples were grown by Th. Wolf (Institut für Festkörperphysik, Karlsruhe Institute of Tech-
nology (KIT), Germany).
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Figure 2.3: Elastic Q scans in the [1 1 1] direction. Schematic inset shows the trajectory of
the scans in the [1 1 0]/[0 0 1] scattering plane around the nuclear (1 1 0) Bragg peak in the
center. Black dots depict the positions of the magnetic Bragg peaks below TC. Lines are a
guide to the eye. At 17 K, i.e., well below TC = 29.5 K, sharp magnetic satellite peaks appear
on both sides around the nuclear peak. Their position corresponds to the spiral pitch. The
nuclear Bragg peak is temperature independent, thus equally present at 70 K.

of energy scans with fixed ki, Eq. (4.22) in [13] was taken into account to compensate
for the changing resolution volume associated with the analyzer arm. Scans on the
thermal TAS were corrected for the λ/2 contribution at the monitor.

2.2.1 Q scans indicating partial order at ambient pressure

Fig. 2.3 shows scans performed in the [1 1 1] direction at temperatures well below
and above TC = 29.5 K. At 70 K, scattering from the nuclear Bragg peak causes huge
intensity at (1 1 0). As the nuclear structure of MnSi is temperature independent2,
the nuclear Bragg peak is equally present below TC but, in addition, the signature
of scattering from magnetic order shows up as sharp satellite peaks on both sides
around the nuclear peak. Note that magnetic Bragg intensity is about one order of
magnitude lower than nuclear Bragg intensity. Previous experiments with small-angle
neutron scattering3 (SANS) [4] revealed that sharp Bragg spots originating from the

2Thermal expansion causing Bragg peak positions to shift is taken into account by adjusting lattice
parameters at different temperatures, respectively.

3Small-angle neutron scattering allows to measure the energy-integrated neutron intensity in close
vicinity to the nuclear (0 0 0) Bragg peak (the direct beam).



26 Chapter 2: Spin dynamics in MnSi

(a) T < TC (b) T � TC

Figure 2.4: Scattering intensity in the reciprocal [1 1 0]/[0 0 1] scattering plane as obtained
with SANS using polarized neutrons, from [4]. The direct beam at Q = (0 0 0) in the
center of the map was masked. (a) Below TC, scattering from the locked helix results in
sharp magnetic Bragg spots corresponding to the periodicity of 180 Å and appearing along
〈1 1 1〉. Four spots are visible due to their broad magnetic mosaic spread (3.35◦). (In the
hypothetical case of perfect magnetic mosaic spread, only one spot would be visible.) (b) Only
0.3 K above TC, diffuse scattering intensity looks like half-moons (left, right with opposite
neutron polarization). Their sum would correspond to unpolarized spectra and forms a circle
matching the same periodicity. (Weak spots on the half-moons are reminiscent of former
Bragg peaks below TC.)

helical structure below TC transform into a circle of scattering intensity as the sample
is heated above TC (Fig. 2.4). This circle resembles the signature of partial order such
as shown in Fig. 2.2 (a) but with more or less uniform intensity on the surface of
the sphere. With our high-resolution TAS, we were able to investigate in detail the
temperature dependence of this feature.

Longitudinal scans through the surface of the sphere comparable to those shown in
Fig. 2.3 but along [1 1 0] and above TC are depicted in Fig. 2.5 (a). The inset shows
that just above TC at 30 K, critical scattering appearing as sharp satellite peaks can be
clearly distinguished from the nuclear Bragg peak that is about three orders of mag-
nitude higher in intensity. This scan was performed in the high-resolution condition
resulting in a small resolution ellipsoid providing very good resolution but low scatter-
ing intensity. In order to trace the satellites towards higher temperatures, where we
expected a quick broadening, we increased ki and loosened the collimation to enlarge
the resolution ellipsoid picking up more intensity. In fact, the main panel of Fig. 2.5
(a) reveals that upon raising T , the magnetic satellites broaden significantly and move
very slightly away from the nuclear Bragg peak. This signature persists to at least
100 K, i.e., about three times TC.

Fig. 2.5 (b) shows elastic Q scans in transverse direction along circumference of
the satellite ring measured with very small temperature steps. Data obtained above
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Figure 2.5: (a) Elastic Q scans in the longitudinal [1 1 0] direction at T > TC. Lines
are guides to the eye. Inset: High-resolution scan (ki = 1.15 Å−1) revealing sharp magnetic
satellite peaks on both sides around the nuclear (1 1 0) Bragg peak. Their position corre-
sponds to the spiral pitch. Main panel: Relaxed E resolution (ki = 1.5 Å−1) allows tracing
the satellites towards 200 K over a wider range in Q. Note that the small peaks around 0.94
and 1.06 are nuclear artifacts equally present at all T and therefore without influence on the
magnetic signal. (b) Elastic Q scans in transverse direction on the magnetic sphere covering
the range from [1 1 1] to [1 1 − 1] measured with high E-resolution. Just below TC (data
shown in blue) magnetic Bragg peaks show up at 〈1 1 1〉. (c) Temperature dependence of
neutron intensity at [1 1 1] and [1 1 0] positions on the sphere. The inset shows the range
around TC on a larger scale.
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TC show that magnetic intensity is uniformly distributed and there is no trace of the
〈1 1 1〉 peaks that appear below TC.4

These scans reproduce the circle of intensity observed in SANS measurements (com-
pare Fig. 2.4 and [4]) and can be related to the signature of partial order: Although
the signal in the longitudinal direction is sharper at high pressure (Fig. 2 (a, c) in [3])
than at ambient pressure, the latter it is still very narrow corresponding to very long
correlation lengths. Since thermal fluctuations are much stronger above 29.5 K one
might expect an intrinsically broader magnetic signal than below 6 K where the high
pressure phase was investigated. On the other hand, transverse scans at ambient pres-
sure reveal no maximum along [1 1 0] that is observed in corresponding scans at high
pressure (Fig. 2 (b, d) in [3]). This issue will be addressed in Sec. 2.4 on page 49.

Fig. 2.5 (c) illustrates the abrupt phase transition at TC, which is well known yet
poorly understood. It shows the temperature dependence of respective neutron inten-
sity at [1 1 1] and [1 1 0] positions on the sphere. Cooling down towards TC induces
a gradual increase of intensity which is equally present at both positions. TC is char-
acterized by an extremely abrupt increase of intensity at the [1 1 1] satellite position:
[1 1 1] satellites appear at 29.3 K and reach 25% of their low-temperature intensity
at 29.2 K whereas the scattering intensity at [1 1 0] indicating partial order decreases
rapidly to a much lower value. This behavior is similar to that reported in [29].

2.2.2 E scans revealing dynamics above TC

Initially, partial order appeared to be static, i.e., resolution-limited in neutron energy
scans with 50 μeV resolution [3], but in fact it is dynamic according to muon spin
relaxation (μSR) measurements: Its dynamic character at a timescale of 10−10 to 10−11 s
was revealed in [35]. However, the temperature-dependent energy width of partial
order has not been investigated so far. Having found its signature in the Q scans at
ambient pressure as well presented some advantages to actually measure the energy
width: Without being confined to the small sample space provided by pressure cells,
samples with volumes of 1 and 4 cm3 could be used, resulting in a much better signal-
to-background ratio. A detailed study of the spin dynamics above TC and at ambient
pressure is presented in the following.

Fig. 2.6 shows energy scans through one of the maxima of magnetic intensity ob-
tained in longitudinal scans such as shown in Fig. 2.5 (a). A temperature-dependent
spectrum is revealed consisting of up to three components: incoherent nuclear scatter-
ing, magnetic scattering of interest in our study and the resolution dependent tail of
the (1 1 0) Bragg peak due to imperfect wavevector resolution5. Nuclear incoherent

4Here, TC ≈ 29.3 K deviates about 0.2 degrees from the generally approved value of 29.5 K. This
offset in temperature is probably due to a different calibration of the thermometers or a temperature
gradient between the sample and temperature sensor in the neutron measurement.

5See Fig. 1.5 (a) for explanation.
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Figure 2.6: Energy scans at Q = (1.018 1.018 0), the maximum of the magnetic intensity
in Fig. 2.5 (a) above TC (see red arrow in insets for clarity). (a) Raw data measured with
low energy resolution (ki = 1.5 Å−1), which include both nuclear and magnetic scattering.
The sharp peak near 0.13 meV is the tail of the nuclear Bragg peak and is temperature
independent. Since there is no difference between 200 K and 300 K we assume that the
magnetic component at 200K is very small and the scan at 200 K can be used as background.
Thus, the magnetic signal at lower temperatures can be obtained by subtracting the 200 K
spectra. (b) Raw data measured with high energy resolution (ki = 1.15 Å−1). Note that due
to the smaller size of the resolution ellipsoid, the contamination by the nuclear Bragg peak
vanishes completely. (c, d) Magnetic signal obtained by subtracting 200 K data measured
with low (high) energy resolution Γexp that is shown as red bar, respectively. Note that
points contaminated by the Bragg tail are omitted. Solid lines are fits to the data according
to Eq. (2.4).
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Figure 2.7: 2D cut through the resolution ellipsoid G(h−h0, l−l0, E−E0;G) corresponding
to the high resolution condition (ki = 1.15 Å−1). Contours of constant amplitude are shown
in the plane spanned by Q = (h h 0) and E at l = l0.

scattering should be nearly temperature-independent but the magnetic signal is sup-
posed to decrease with increasing temperature as magnetic correlations are suppressed.
In fact, the scattering intensity decreases with increasing temperature up to 200 K with
no observable change between 200 K and 300 K. Hence, we assign the 200 K and 300 K
spectra to nuclear scattering. Subtracting 200 K spectra from the data at lower T ,
respectively, yields magnetic intensity. It appears as a narrow peak centered at zero
energy, which gradually broadens with increasing temperature (Fig. 2.6 (c, d)).

In order to quantitatively extract the temperature dependence of the intrinsic line-
width, spectra are fitted with the convolution of the measured resolution and the ap-
propriate scattering function describing critical scattering according to Eqs. (1.47) and
(1.49). Regarding the narrow energy range around zero (i.e., kBT 
 �ω), the scattering
function S(E) at respective temperature is expected to exhibit a Lorentzian lineshape
as described in Sec. 1.2.2.2. As to the determination of the instrumental resolution,
it is important to note that data were obtained in close vicinity to the (1 1 0) Bragg
peak. Since the resolution ellipsoid does not change significantly between Q = (1 1 0)
and Q = (1.018 1.018 0) (where E scans were performed) we could actually measure
it by scanning the Bragg tail (compare Fig. 1.5 (a)) closely around (1 1 0) on a dense
grid in the 3D space spanned by the (h h 0)/(0 0 l) scattering plane and E. Resulting
2530 data points are fitted with a 3D Gaussian G(h−h0, l− l0, E−E0;G)6 which is de-
picted in Fig. 2.7. After integration in Q space, the energy-dependent and normalized

6G is 3 × 3 matrix according to Eq. (1.51).
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Figure 2.8: (a) Extracted intrinsic linewidth (FWHM) Γint of the magnetic signal such
as shown in Fig. 2.6 (c, d) at different temperatures with a linear fit. (b) Temperature
dependence of the integrated intensity of the magnetic signal. The line is a guide to the eye.
The integrated intensity was obtained by ’the back of the envelope’ method of adding up all
the points with nonzero intensity in the background-subtracted E and Q scans such as shown
in Figs. 2.5 (a) and 2.6 (c), and then multiplying respective sums.

Gaussian

G0(E − E0; Γexp) :=
1

N

∫
dh dl G(h − h0, l − l0, E − E0;G) (2.3)

is convoluted with a Lorentzian L(E; Γint) accounting for the intrinsic linewidth (FWHM)
Γint to fit the measured intensity I(E0):

I(E0)
!
=

∫
dE G0(E − E0; Γexp) · L(E; Γint) . (2.4)

Γexp denotes the instrumental resolution (FWHM) and is shown as red bar in Fig. 2.6.

Finally, the temperature dependence of Γint is depicted in Fig. 2.8 (a). The high-
resolution condition (shown as hatched area) enabled us to observe line widths as small
as 17 μeV at 35 K. The low-resolution condition resulted in an order of magnitude higher
scattering intensity, which allowed picking up the magnetic signal at temperatures up
to 100 K, where the linewidth was larger, but the signal was weak. Aside from much
higher sensitivity of the presented measurements, they are entirely consistent with the
phenomenology of the high pressure partial order phase: Because of the lower resolution
(50 μeV) of the high-pressure experiments, extremely small linewidths close to TC could
not have been detected. At higher T where the magnetic signal becomes significantly
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broader, lower intensity and corresponding higher statistical error have hampered a
reliable analysis.

Furthermore, the transition from partial order at high pressure to the purely para-
magnetic phase is neither second nor first order, but is rather a crossover with the
intensity of the partial order decreasing asymptotically to zero upon increasing T .
Analogously, the reduction of the magnetic intensity at ambient pressure follows a
1/(T − TC) relation with increasing temperature as depicted in Fig. 2.8 (b). The satu-
ration of the signal one degree above the phase transition to the helically ordered phase
is discussed in [29].

The observation of partial order above 14 kbar as well as at ambient pressure indi-
cates that it also should exist at intermediate pressures. In fact, the magnetic signal
along [1 1 0] in the unpublished measurements at < 14 kbar [32] performed as a part
of the high pressure investigation [3] revealed an energy-resolution-limited signal grad-
ually decaying with increasing temperature. Thus, we have proved that partial order
is present not just at pressures above 14.6 kbar, but persists down to ambient pressure
where it extends at least up to 100 K.

In order to compare our results with previous measurements at ambient pressure,
we reproduced the temperature dependence of the energy linewidth off the magnetic
sphere at Q = (0.95 0.95 0) as reported in [28]. This study was performed on a ther-
mal TAS. Again, two different resolution conditions (corresponding to kf = 2.662 Å−1

and kf = 1.97 Å−1) were used to cover the temperature range from 45 K to 200 K.
Fig. 2.9 (a, b) shows the magnetic signal obtained after subtraction of a Gaussian fit
to the nuclear incoherent background. With the bigger resolution ellipsoid picking up
magnetic intensity even at 300 K, the nuclear background could not be measured at
Q = (0.95 0.95 0) but further away from the partial order sphere at Q = (0.6 0.6 0).
This is the same position where nuclear incoherent background was determined in [28]
and found to be temperature independent. We checked that, indeed, the FWHM of
energy scans at Q = (0.6 0.6 0) equals the FWHM of energy scans on vanadium mea-
sured with the same spectrometer setting. In the following, this linewidth is referred
to as the instrumental resolution Γexp. Measured intensity at E0 was fitted according
to

I(E0)
!
=

∫
dE G0(E − E0; Γexp) · S(E; Γint) , (2.5)

were G0 is the normalized Gaussian spectrometer resolution and S(E) corresponds to
Eq. (1.47). Extracted intrinsic linewidths Γint at several temperatures are depicted
in Fig. 2.9 (c). They are in agreement with previous data. Obviously, at a given
temperature above TC critical fluctuations slow down substantially (i.e., the linewidth
decreases) upon approaching the partial order sphere at q = (0.018 0.018 0). This
behavior is discussed in detail in Sec. 2.4 on page 45.
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Figure 2.9: Energy scans off the magnetic sphere at Q = (0.95 0.95 0) (see red arrow in
insets for clarity). To obtain reasonable neutron intensity, these scans were performed on
a thermal TAS with higher neutron energies (kf = 2.662 Å−1 (a) and kf = 1.97 Å−1 (b)),
resulting in a relaxed E-resolution Γexp (shown as red bar or hatched area, respectively). Solid
lines show fits to the data according to Eq. (2.5). Data points affected by the temperature-
independent tail of the nuclear Bragg peak are omitted. (c) Extracted intrinsic linewidth
Γint as function of temperature (black, blue) is in qualitative agreement with previous results
of Ishikawa et. al. (red). The dashed line depicts the extracted FWHM measured at Q =
(1.018 1.018 0) as shown in Fig. 2.8 (a).
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Figure 2.10: Pattern of helical ground state of Eq. 2.6 for spins in a 1D chain. The color
code indicates the spin direction: spins pointing into the same direction are colored the same.

2.3 Spin cluster calculations

In order to interpret the unusual properties of MnSi, especially the temperature depen-
dent signature of partial order, we performed calculations on finite-size spin clusters
modeling MnSi. We considered the simplest case where each spin interacts with only
its nearest neighbors by the ferromagnetic exchange (Eq. (2.1)) and the DM interaction
(Eq. (2.2)). Since the crystal potential provides the weakest energy scale, it is initially
neglected but later taken into account. The Hamiltonian finally reads:

H = − 1

2N

N∑
i=1

⎛
⎝∑

j(i)

(
Jsi · sj + Di,j · (si × sj)

)⎞⎠ ,

with J = 1, |Di,j| = D and Di,j = −Dj,i . (2.6)

N is the total number of sites and j(i) indexes nearest neighbors of site i. The vector
Di,j points from site i to site j. In our model, Si atoms are henceforth neglected and
spins of the same size are placed either on a simple cubic lattice or at Mn sites in the
B20 MnSi structure. In both cases, each spin has six nearest neighbors at a distance
of 2.796 Å. Orientation optimization was performed for individual spins one-by-one in
random order keeping their magnitudes constant. The calculation terminated when
the total energy defined by Eq. (2.6) converged. (A more detailed description of the
algorithm developed to optimize the spin clusters is given in Appendix A.1.) Limited by
the available computer power, the biggest clusters consist of about 9000 sites. In order
to ensure that the size of these clusters comfortably exceeds the period of the helix,
the relative strength of the two interactions (given by the ratio D/J) was chosen larger
than in real MnSi. Thus, all results presented in the following are to be interpreted on
a qualitative basis. However, we checked our model for consistency by performing the
same calculations with different ratios D/J and obtained the same results.

2.3.1 The triple-helix structure

The ground state of our Hamiltonian (Eq. 2.6) in one dimension (1D) is helical order
with the pitch determined by D/J as illustrated in Fig. 2.10. In 3D, helical order
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is highly degenerate because the propagation vector kh could point in any direction
(remember that the crystal potential lifting the degeneracy by locking the helix along
〈1 1 1〉 is neglected here). Furthermore, magnetic moments along kh have optimized
spin orientations with respect to Eq. (2.6), whereas moments in the layers perpendicular
to kh align ferromagnetically (see Fig. 2.11 (b)), i.e., their relative orientations are far
from optimized. Thus, a helix is an unlikely ground state of Eq. (2.6) in 3D.

In fact, our calculations predict optimized spin arrangements that are distinct from
the helix structure and characterized by complex topologies (Fig. 2.11 (c)): In the vicin-
ity of most sites the optimized configuration reveals helical correlations, but with the
propagation vector gradually changing its direction. Topological defects appear where
different propagation vectors collide. We checked the final structures for a possible de-
pendence on the initial configuration: Regardless of whether optimizations are started
with ferromagnetic, helical or random configurations, the final spin arrangements are
similar, although not identical. Thus they represent not a unique ground state but
local minima whose energies are close to each other for each cluster size and shape
but significantly lower relative to ferromagnetic and helical order. The comparison of
respective energies turned out to be most significant when normalizing to the number
of bonds Nb (i.e., the number of nearest neighbor pairs) according to

H = − 1

2Nb

N∑
i=1

⎛
⎝∑

j(i)

(
Jsi · sj + Di,j · (si × sj)

)⎞⎠
︸ ︷︷ ︸

H0

−E1D(J,D) . (2.7)

E1D(J,D) denotes the (negative) energy calculated via H0 for a pair of spins (one bond)
in a fully optimized and unfrustrated 1D chain as shown in Fig. 2.10. Corresponding
cluster size dependent energies for ferromagnetic, helical and optimized structures are
depicted in Fig. 2.11 (d). (The energy spread of the majority of the optimized config-
urations for a given number of sites is of the order of the size of the data points.)

Note that the energy per bond of the ferromagnetic order is independent of the
number of sites. In the case of a single cubic unit cell with N = 4 sites (smallest N
shown) the energy of the helix equals the energy of the ferromagnetic cluster. The
reason for this is simply structural: If only a single unit cell is considered, the Mn
atom (blue) in the lower left corner of Fig. 2.1 (a) does not have any nearest neighbor.
Consequently it does not contribute to the total energy and can never be optimized.
(For that reason the corresponding spin is not shown in the real space pictures of any
cluster.) The other three Mn atoms are in the same plane perpendicular to [1 1 1]
and therefore parallel to each other in the ferromagnetic arrangement as well as in the
helical structure. Accordingly, the cross product in Eq. (2.7) cancels resulting in the
same energy for both configurations. As the number of sites is increased, Ehelix decreases
considerably below EFM but is larger than Eopt for all cluster sizes that we investigated.
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Figure 2.11: Results of model calculations for cubic clusters of spins with nearest neighbors
interacting via Eq. (2.6) with D/J = 0.7, corresponding to a helix period of about 27.3 Å.
The spins are localized at Mn sites in the B20 MnSi structure, neglecting Si atoms. (a, b, c)
Real-space pictures of 6 × 6 × 6 cubic unit cells: ferromagnetic order (a), helical order along
[1 1 1] (b) and the optimized structure (c). The spin orientation is visualized by a color code,
same color indicates parallel moments. (d) Average energies (in arbitrary units) per pair
of nearest neighbor spins calculated according to Eq. (2.7) for ferromagnetic order (green),
helical order along [1 1 1] (red) and optimized spin configurations (blue) as a function of the
number of sites N . (Note that EFM does not depend on the arbitrary direction that the spins
point into.)



2.3: Spin cluster calculations 37

The smaller the number of sites, the closer does the energy of the optimized structure
approach zero but, interestingly, it never actually reaches zero. In line with the above
argument, the fact that Eopt(N = 4) ≈ 0.63 > 0 reveals that only three spins on an
equilaterally triangular lattice interacting via Eq. (2.7) are still frustrated: It is not
possible to minimize all three pairs of nearest neighbor spins simultaneously.

The biggest clusters that could yet be optimized in a reasonable amount of time
(about ten weeks each) are shown in Fig. 2.12 (B20 structure) and Fig. 2.13 (a) (sim-
ple cubic structure). Analogous to Fig. 2.11 (d), cluster size dependent energies of
respective spin arrangements implemented in the simple cubic lattice are exhibited in
Fig. 2.13 (b). As opposed to the B20 structure, the energy per bond of the helix is
now independent of the cluster size. Again, the optimized configuration minimizes H
for all N . Since the smallest simple cubic cluster consists of eight spins and is truly
3D, its degree of frustration exceeds the smallest B20 cluster (three interacting spins,
effectively 2D) resulting in an energy that is farther from zero.

In order to analyze the pattern of spin arrangements obtained in optimized clusters,
a single layer cut from a large cluster is shown in Fig. 2.14 (c). Its structure resembles
the packed double helices observed in the blue phases of chiral liquid crystals [36] as
well as the skyrmion lattices recently proposed [30] and indeed observed in the so-called
’A-phase’ of MnSi appearing in magnetic field [37]. As illustrated in Fig. 2.14 (a), the
’double-helix’ terminology refers to the fact that near the center (singularity), spins
rotate along all directions in the plane perpendicular to z, i.e., in particular they rotate
along both of a pair of orthogonal directions spanning this plane. This is in contrast to
the helical structure where spins rotate exclusively along a single direction, the pitch
axis, and are uniform along directions perpendicular to the pitch axis. In comparison
to double helices, our spin arrangements often have an additional twist away from
the singularity. Thus, we propose to call this order a ’triple-helix’, denoting the three
independent twist directions. It allows to pack 1D singularities propagating in different
directions in 3D. Its topology is indicative of the signature of partial order: local helical
correlations are expected to produce a sharp neutron scattering signal in longitudinal
scans whereas the meandering propagation vectors should make the signal broad in the
transverse direction.

Simulation of SANS spectra from the model clusters

To actually relate our triple-helix structures to neutron measurements like the circle
of scattering intensity observed with SANS (Fig. 2.4), we calculated the corresponding
magnetic neutron intensity following Eq. (1.36). Assuming elastic scattering from only
a single state |λi〉 = |λf〉, this formula can be simplified to

d2σ

dΩfdEf

∝
3∑

α=1

3∑
β=1

(
δαβ − Q̂αQ̂β

) N∑
l=1

N∑
l′=1

(
eiQ·(rl−rl′ )sα

l′ · sβ
l

)
, (2.8)



38 Chapter 2: Spin dynamics in MnSi

Figure 2.12: Real space pictures of biggest optimized cluster in the B20 structure with
D/J = 0.7 (helix period ∼ 27.3 Å) consisting of 12 × 12 × 12 cubic unit cells corresponding
to about 7000 sites.
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Figure 2.13: Results of model calculations
for cubic clusters where spins are placed on a
simple cubic lattice (D/J = 0.5). (a) Real-
space picture of the biggest optimized cluster
containing 20×20×20 unit cells correspond-
ing to a little more than 9000 sites. (b) Av-
erage energies (in arbitrary units) per pair of
nearest neighbor spins calculated according
to Eq. (2.7) for ferromagnetic order (green),
helical order (red) and optimized spin config-
urations (blue) as a function of the number
of sites N .
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(a)

(b) (c)

Figure 2.14: (a) 2D structure of the double-helix as illustrated in [30]. The helical spin
modulation has propagation axes in all directions ρ in the plane perpendicular to z and is
centered around a singularity (spin pointing along z in the middle). A double-helix can be
uniformly extended in z direction forming a cylinder with a line singularity in its center (along
z) and perfect double-twisting in all planes perpendicular to z. To fill 3D space, these ’double-
twist cylinders’ can be packed. In so-called blue phases I and II [36], the packing reveals an
ordered structure that is related to the symmetry of the crystal to minimize the energy of
domain boundaries (e.g., in the O2 symmetry as shown in (b), picture is adopted from [36]).
The blue phase III in turn is indicative of double-twist cylinders arranged in a disordered
fashion [36]. (c) 2D layer cut from the simple cubic cluster shown in Fig. 2.13 (a) (layer
no. 11 in vertical direction). Red circles mark line singularities propagating in out-of-plane
direction with double-helix-like arrangements in the plane. Blue rectangles highlight line
singularities running in-plane. Since these 1D singularities propagate into different directions,
the optimized structure is most similar to blue phase III. Furthermore, in comparison to the
double helix, our spin arrangements are often characterized by an additional twist away from
the singularity around the third direction defined by the line singularity itself (along arrows).
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Figure 2.15: Simulation of SANS spectra from model clusters in the MnSi B20 struc-
ture with D/J = 0.7: Calculated neutron intensity in plane that is spanned by reciprocal
[1 1 0]/[0 0 1] axes around (0 0 0). (Left panel) Helix along cubic 〈1 1 1〉 directions (topol-
ogy of low-T phase) such as shown in Fig. 2.11 (b). (Right panel) Triple-helix structure
corresponding to Fig. 2.11 (c).

where α and β label x, y, z components of the normalized transfer of momentum Q̂
and of the spin s at sites l and l′. Basically, this formula corresponds to the Fourier
transform (FT) of a spin arrangement in real space into reciprocal space. To mimic
scattering from an infinite number of clusters, with a distribution of sizes, we summed
the signal of several clusters of different sizes7 in all 〈1 1 0〉/〈0 0 1〉 scattering planes
around (0 0 0) and averaged crystallographic equivalent Q points. The resulting inten-
sity distributions for clusters consisting of around 6 × 6 × 6 unit cells are depicted in
Fig. 2.15. Our calculations are in perfect qualitative agreement with SANS (compare
Fig. 2.4): The triple-helix structure produces the circle of magnetic intensity (right
panel) that is observed just above TC. The same calculation performed on the locked-
helix structure of the low temperature phase results in sharp spots of high scattering
intensity appearing in all 〈1 1 1〉 directions (left panel).

2.3.2 Qualitative energy considerations

In addition to the two energy scales given by J and D in Eq. (2.7), the crystal anisotropy
is the third (weakest) energy scale that is taken into account in the following discussion.
If it is moderately large, then helical order with the wavevector aligned along the favored

7In the case of clusters with sizes ’around’ n × n × n B20 unit cells, 10 clusters are calculated in
addition to n × n × n with the following distribution of sizes (two clusters per size, optimized after
initialization with different random configuration): (n−1)×(n−1)×n, (n−1)×n×n, (n+1)×n×n,
(n + 1) × (n + 1) × n and (n − 1) × n × (n + 1).
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Figure 2.16: Energy scales related to magnetic field values as applied in SANS experi-
ments [38] to MnSi well below TC where the helix locked along 〈1 1 1〉 is the ground state
(lowest energy level in the plot). As described in the main text, a field of 0.1 T is sufficient
to overcome the crystal potential (i.e., E〈111〉) and align the helix along the arbitrary field
direction B. Ferromagnetic alignment of the spins along B is achieved for a much higher field
of 0.55 T. Thus, E〈111〉 = 0.1/0.55 · (Eh + E〈111〉), i.e., E〈111〉 ≈ 0.22 · Eh.

〈1 1 1〉 directions will always have a lower energy than the triple-helices, which lack
a well defined direction of the propagation vector. On the other hand, in case of a
weak crystal potential, a competition between the helical and the triple-helix-based
phase with a transition possible between the two can be discussed on a qualitative
basis within the framework of our spin clusters.

We define E〈111〉 as the energy gained by aligning the helices along 〈1 1 1〉 with
respect to an arbitrary orientation of helical propagation directions (’unlocked heli-
cal order’ with energy Ehelix). Furthermore, Eh denotes the difference between EFM

(corresponding to ferromagnetic order) and Ehelix. Regarding the Hamiltonian given
in Eq. (2.7), Ehelix, EFM and Eh can be expressed in terms of D and J as is derived
analytically in Appendix A.2.

More importantly, one can relate the relative strength of respective energy scales
to the crystal potential by looking at previous SANS experiments in magnetic field
B [38]. At ambient pressure and below TC a small magnetic field of 0.1 T is sufficient
to unpin the helical propagation vector from 〈1 1 1〉 and align it along B. In addition,
a small net ferromagnetic moment is induced in the helix resulting in the so-called
’conical’ phase [39]. A much larger field of 0.55 T is necessary to also overcome D and
completely (ferromagnetically) align the moments parallel to the field [38]. Based on
these field values, an order-of-magnitude estimate (Fig. 2.16) yields

E〈111〉 ≈ 0.22 · Eh . (2.9)

Now, let Eth denote the energy gained by forming the triple-helix clusters from the
uniform helix as illustrated in the inset of Fig. 2.17. (Note that in this Figure, results
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of calculations with D/J = 0.35 producing a helix period of about 52.1 Å, closer to real
MnSi are shown.) Corresponding to Figs. 2.11 (d) and 2.17, respective largest clusters
consisting of N ∼ 7000 sites reveal

Eth = x · Eh , (2.10)

where x = 0.16 (x = 0.33) for D/J = 0.7 (D/J = 0.35). The comparison of Eqs. (2.9)
and (2.10) indicates that in our model, Eth at largest N and E〈111〉 can be considered
the same order of magnitude.8 Consequently, transitions between competing locked
helical order and the triple-helix phase may indeed be induced by small changes of
external parameters, notably temperature, hydrostatic pressure, and doping, as will be
discussed below.

We now discuss qualitatively the effect of the temperature that is not explicitly
considered in our model but governs the stability of triple-helix clusters vs. helical
order. The cluster size N in our calculations naturally corresponds to the maximal
size of correlated magnetic domains and, therefore, is related to the temperature via
the temperature dependence of the correlation length ξ. This relationship between N
and T provides the basis for the following discussion: Decreasing N , i.e., decreasing
the correlation length can be interpreted as increasing the temperature in our model
clusters. (Indeed, the average domain size decreases on heating both below and above
TC, reaching about half the helix period right below TC at ambient pressure [29].)

|Eth| is a measure of the stability of the triple-helix phase against forming the low-
T helix. It decreases significantly with the increasing cluster size as depicted in the
main frame of Fig. 2.17. Correspondingly, the triple-helix structure becomes less fa-
vorable towards lower temperature. The temperature independent crystal potential
is arbitrarily taken into account by the dashed line denoting E〈111〉. Upon lowering
the cluster size, the impact of the crystal potential weakens relative to |Eth| which
results in a competition of the two ground states around the cluster size N = Nc where
E〈111〉 = Eth(Nc). This cluster size (and related correlation length) can be associated
with TC: Above TC, i.e., below the corresponding correlation length, the triple-helix
structure is the ground state whereas below TC, the helical phase pinned by the crystal
potential becomes more favorable. The transition should be of first order because the
triple-helix arrangement is topologically distinct from the helical structure, meaning
that both states are separated by a potential well which has to be overcome by the
energy of thermal fluctuations at TC and impedes a continuous crossover.

8For a smaller ratio D/J that would produce the ’real’ helix period of 180 Å, a bigger cluster
consisting of N0 sites could be found where again Eth(N0) ≈ 0.22 · Eh(N0). Due to the limited
computing power, corresponding calculations were not possible. Our model is thus to be interpreted
on a qualitative basis, where Eth ≈ E〈111〉 holds at some smaller cluster size.
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Figure 2.17: Energy considerations for clusters in the B20 structure with D/J = 0.35,
corresponding to a helix period of about 52.1 Å. The inset shows energy per bond calculated
according to Eq. (2.7) (where the crystal potential is neglected!) for ferromagnetic order
(green), helical order along [1 1 1] (red) and the triple-helix structure (blue) as a function of
the number of sites N . Eh(N) is defined as the difference of Ehelix(N) and EFM(N). Eth(N)
denotes Eopt(N) − Ehelix(N) and is shown in the main panel in comparison to E〈111〉, the
energy gained by locking the helix along 〈1 1 1〉 as favored by the crystal potential. The
magnitude of E〈111〉 was chosen somewhat larger than estimated from experimental data
(Eq. (2.9)) to qualitatively illustrate the competition of the two ground states as discussed
in the main text.

2.4 Interpretation

The above mechanism elucidates the nature of partial order which can now be explained
by finite-size triple-helix clusters that form islands inside the paramagnetic phase above
TC. They are clearly favored whenever thermal fluctuations appropriately reduce the
magnetic correlation length. The average cluster size decreases towards higher temper-
ature. This ’melting’ of the clusters is not characterized by a specific temperature, but
rather occurs in a gradual fashion with the bigger clusters melting first. That is the key
mechanism behind the glassy crossover to the high-temperature paramagnetic phase
instead of a well-defined phase transition. On lowering T , as clusters become larger,
their diffusion slows down and when their boundaries start to touch, the helical phase
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pinned by the crystal potential becomes more favorable. At that point a first-order
phase transition to the topologically distinct helical phase occurs.

Comparison with experimental results

Indeed, neutron data depicted in Fig. 2.5 (c) point towards a first-order phase transi-
tion: Cooling below TC induces a very sharp increase of intensity at the [1 1 1] satellite
position which is accompanied by an abrupt drop of intensity at the [1 1 0] position
indicating partial order. Fig. 2.18 shows the comparison of these data with the specific
heat from [33] revealing a two-component lineshape that can now be explained: Coming
from low T , we interpret the sharp peak as marking the reorientation of helical order
below TC into triple-helix-based clusters above TC. The observed small thermodynamic
weight of this first-order transition results from the small difference in the free energy
between the helical phase and the triple-helix-based phase. Most of the weight appears
at higher temperatures due to the gradual melting of the triple-helix clusters. In fact,
it appears as if the sharp specific-heat anomaly ”resides” on a broad background due
to this gradual melting.

The decreasing size of the triple-helix clusters explains the broadening of the mag-
netic satellite peaks in the Q scans (Fig. 2.5 (a)) as this is consistent with a reduction
of the correlation length. Furthermore, the smaller the number and size of the clusters
towards increasing T , the faster should their diffusive motion become leading to the
gradual increase of the energy linewidth and to the reduction of the magnetic intensity
(Figs. 2.8 (a) and (b)). Due to their finite size, dynamics at q = (0.018 0.018 0) re-
main considerably slower at any temperature than paramagnetic (chiral) fluctuations
at q = (0.05 0.05 0) (see Fig. 2.9 (c)).

Calculations on Fe-doped MnSi

Analogous to the temperature scale determining the magnetic correlation length ξ
via thermal fluctuations, doping MnSi with impurities should have an impact on the
the correlation length as well: At a given temperature, the substitution of a certain
percentage x of Mn atoms with non-magnetic Fe atoms in Mn1−xFexSi should reduce ξ
and thereby stabilize the triple-helix structure. Thus TC should decrease as previously
reported [40]. Indeed, the SANS spectrum of Mn0.85Fe0.15Si at ambient pressure is a
ring characteristic of triple-helix order even at the lowest temperature of 1.5 K (see
Fig. 2.19 (left panel)).

In corresponding calculations, non-magnetic impurities were modeled as zero mo-
ment sites that were randomly chosen among all N sites. Fig. 2.19 (right panel) reveals
that, in fact, for a given cluster size N = const. (i.e., T = const.) the energy of re-
spective optimized triple-helix configurations is reduced upon increasing the number of
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Figure 2.18: Specific heat data from [33] in comparison to the neutron intensity at [1 1 1]
and [1 1 0] positions on the sphere (see Fig. 2.5 (c)). The offset in temperature of 0.3 degrees
between the neutron and specific heat data is probably due to a different calibration of the
thermometers or a temperature gradient between the sample and temperature sensor in the
neutron measurement.
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Figure 2.19: Effect of Fe doping in MnSi. (Left panel) SANS image of neutron scattering
from Mn0.85Fe0.15Si measured at 1.5 K. The ring of scattering is characteristic of partial order.
The small asymmetry of the intensity from left to right results from a sloping background
coming from the cryostat. The direct beam in the center was masked. (Right panel) Energy
considerations for 10×10×10 unit cell B20 clusters with D/J = 0.7 corresponding to a helix
period of about 27.3 Å. Fe doping is modeled by randomly choosing a certain percentage of
the N = 4000 sites to be empty. The energy per bond calculated according to Eq. (2.7) for
ferromagnetic order (green), helical order along [1 1 1] (red) and the triple-helix structure
(blue) is shown as a function of doping. (Note that at a given doping level, all three structures
have the same (random) zero moment sites, respectively.). Data at zero doping correspond
to N = 4000 in Fig. 2.11 (d).

impurities.9 Regarding the competition of the crystal potential (i.e., E〈111〉) with the
tendency to form triple-helix-based structures (i.e., Eth) as illustrated in Fig. 2.17, these
results are indicative of increased triple-helix stability at a given temperature (i.e., N).
As a consequence, the triple-helix-based phase persists to lower temperatures.

Exploring the T − p phase diagram

According to the T − p phase diagram (Fig. 2.2 (a)), hydrostatic pressure p lowers TC

and partial order seems to become the ground state beyond pc = 14.6 kbar. There,
it reveals a magnetic correlation length of several helix periods (inferred from the
resolution limited FWHM in longitudinal direction [3]) as opposed to about half the
helix period (∼ 100 Å) just above TC at ambient pressure [29]. Our calculations were

9Note that calculations were performed on clusters consisting of 8 × 8 × 8 and 10 × 10 × 10 B20
unit cells considering both cases D/J = 0.35 and D/J = 0.7. All gave the same result on a qualitative
basis, therefore only the most significant case of N = 4000 and D/J = 0.7 is shown.
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limited to clusters smaller than four helix periods, nevertheless, our investigation still
offers a number of insights relevant to the high-pressure phase.

As illustrated in Fig. 2.17, reducing |E〈111〉| (e.g., by applying pressure) shifts the
point of intersection with Eth towards bigger cluster sizes Nc(p), corresponding to
lower TC(p). This explains the continuous decrease of TC(p) with pressure – at least
as long as the thermal energy of fluctuations at Nc(p) is sufficient to overcome the
potential well separating the two competing states. However, close to the critical
pressure pc = 14.6 kbar where the crystal potential is small but still finite, thermal
fluctuations at the temperature T ′ corresponding to Nc(p � pc) are too weak to actually
drive the first-order transition to the locked helix being the ground state below T ′.
Consequently, finite-size triple-helix clusters continuously freeze into a glass-like meta-
stable state that persists to lowest temperatures. This mechanism explains why the
locked-helix phase is never found above pc = 14.6 kbar (without the presence of a
magnetic field B) although previous experiments revealed that the crystal potential
disappears not below 20 kbar10 [31].

On the other hand, at p ≈ 21 kbar, where the crystal anisotropy vanishes completely,
applying a field of 0.4 T to zero-field-cooled MnSi at T = 0.35 K induces helical order
with the helical propagation vector aligned along the field (regardless of its direction
with respect to the crystal axes) [31]. Interestingly, even if the field is switched off
again, helical order aligned with the former field direction remains although no crystal
potential is present. (Corresponding satellite peaks observed with SANS [31] broaden
in transverse direction and weaken but still reveal intensity considerably above the
background.) In line with the above argumentation, two scenarios might explain why
there is no transition to the triple-helix phase: (1) Assuming the triple-helix-based
arrangement is the ground state (without crystal potential), thermal fluctuations might
be too weak to drive the first-order transition to this ground state and hence the
system remains in the meta-stable locked-helix state. (2) Alternatively, at very low
temperatures (where the correlation length is large) the single-helix state might be the
ground state even without the presence of a crystal potential. This could be due to
the fact that, as opposed to the single-helix, the triple-helix-based clusters can never
assume infinitely long correlation lengths because topological defects occur above a
certain cluster size.

Of course, large clusters as well as the infinite systems will have to be theoretically
investigated to corroborate the above interpretation.

The tendency to form topological defects

As mentioned in Sec. 2.1, below TC the helical propagation vector kh is locked along
〈1 1 1〉 within about 3.35◦ (magnetic mosaic spread as observed in [31]). This is in

10Also, the somewhat abrupt drop of TC(p) above p∗ = 12 kbar as reported in [3] might be related
to this scenario.
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pronounced contrast to the crystal mosaic spread being an order of magnitude smaller
(0.2◦). The magnetic mosaic spread can be significantly reduced at all pressures upon
applying a field along kh but is fully recovered once the field is switched off again [31].
Seemingly, some mechanism actively drives the system away from helical order.

We think that this mechanism originates from the inherently frustrated nature of the
Hamiltonian (Eq. (2.6)): In 3D, it is energetically favorable to form topological defects
to partially overcome frustration. This results in a tendency towards distributed helical
propagation directions that competes with the crystal potential tending to align kh

along a favored direction. At low pressure and below TC, this tendency is masked by
the strong crystal potential but still enhances the magnetic mosaic spread. At high
pressure (or above TC), where the crystal anisotropy is negligible, it accounts for the
disordered helix directions characteristic of the triple-helix-based arrangement.

Weak locking of partial order at high pressure

The fact the PO is weakly locked in 〈1 1 0〉 directions at high pressure only (see Fig. 2.2
(a)) remains a puzzling issue. It could be related to pressure-induced changes of the
crystal potential weakly favoring 〈1 1 0〉 above p∗. On the other hand, at a given
pressure p between p∗ and pc the single-helix below TC is still locked along 〈1 1 1〉. In
this pressure range, the crystal anisotropy would also have to be temperature dependent
to account for this behavior.

Another possible explanation is suggested by our calculations: The weak locking of
PO might have nothing to do with the crystal potential but instead could be related
to the B20 structure itself. At low pressure, where the correlation length in the PO
phase above TC = 29.5 K is relatively small, neutron intensity is found to be uniform
on the sphere. At high pressure above p∗, where the correlation length in the PO
phase is substantially increased because TC is low, intensity is weakly peaked in 〈1 1 0〉
directions. Hence, the magnetic correlation length ξ might be the crucial parameter
deciding about whether or not 〈1 1 0〉 is structurally favored in the PO phase.

In order to test this hypothesis by virtue of our cluster calculations, an examination
of large cluster sizes would be needed to properly model the high-pressure PO phase
where the correlation length is long. Unfortunately, simulations of SANS spectra from
B20 clusters bigger than around 8 × 8 × 8 unit cells were not possible (limited by
the computer power11). Nevertheless, preliminary results could be obtained owing to
the following assumption: We model the magnetic correlation length ξ by means of
a dimensionless ’effective’ magnetic correlation length ξeff representing the number of
helix periods accommodated in a cluster. More specifically,

ξeff =
āN

λh

, (2.11)

11Note that the signal of 11 clusters of different shapes is used to calculate only one of the spectra
such as shown in Fig. 2.20 (a-c) (see footnote on page 41).
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(a) ξeff ∼ 0.70 (N ∼ 2048, D/J = 0.35) (b) ξeff ∼ 1.00 (N ∼ 864, D/J = 0.7)

(c) ξeff ∼ 1.34 (N ∼ 2048, D/J = 0.7) (d) ξeff ∼ 1.34 (N ∼ 2048, D/J = 0.7)

Figure 2.20: Neutron intensity calculated from model clusters in the MnSi B20 structure in
plane that is spanned by reciprocal [1 1 0]/[0 0 1] axes around (0 0 0). Different cluster sizes
and ratios D/J were considered to simulate PO with various effective magnetic correlation
lengths ξeff as defined in Eq. (2.11). Panels (a-c) show the triple-helix structure for cluster
sizes of around 6× 6× 6 unit cells (N ∼ 864 sites) and around 8× 8× 8 unit cells (N ∼ 2048
sites) with D/J = 0.7 (helix period of ∼ 27.3 Å) and D/J = 0.35 (helix period of ∼ 52.1 Å).
(d) Locked-helix structure for N = 2048 sites and D/J = 0.7 corresponding to (c).
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where λh is the wavelength of the helix and āN denotes the average edge length of
clusters consisting of about N sites. Thereby, clusters of different sizes optimized for
different ratios D/J (producing different helix periods) can be compared at least on a
qualitative basis.

Simulated SANS spectra corresponding to ξeff between 0.70 and 1.34 are depicted
in Fig. 2.20. A relatively short correlation length ξeff ∼ 0.70 (a) results in uniform
intensity on the sphere, notably no difference between 〈1 1 1〉 and 〈1 1 0〉. This
resembles the signature of PO at ambient pressure12. On the other hand, increasing
the simulated ξeff to 1.00 (b) and 1.34 (c) reveals a pronounced tendency towards
enhanced intensity at 〈1 1 0〉 mimicking the signature of PO at elevated pressure
where ξ is longer because Tc is low.

In order to check that this preference for 〈1 1 0〉 is intrinsic, various possibilities
for artifacts causing the same signature would have to be ruled out. For instance,
the rectangular cluster shape combined with the finite size of the clusters might be
responsible for a preferred direction of the helix propagation vectors. Due to time
reasons however, calculations on much larger clusters of different shapes have not yet
been possible but should certainly be considered for the future.

The extended NFL phase

Our experiments may also shed light upon the long-standing issue of the NFL resistivity
ρ ∼ T 3/2 observed in a significantly larger part of the T −p phase diagram than partial
order [26]. The neutron scattering measurements at high pressure [3] were two orders
of magnitude less sensitive than at ambient pressure because of much smaller samples
and a large background caused by the pressure cell. Since in the present work we
found the disappearance of PO with increasing temperatures to be gradual, the triple-
helix clusters likely persist to much higher T and p than detectable with the sample
in the pressure cell. Thus, the gradual change of the scattering rate of conduction
electrons due to the breaking of the triple-helix clusters with increasing temperature
may be responsible for the NFL behavior at high pressures. It is interesting to note
that scattering by ’helimagnons’, i.e., spin waves of a helically ordered magnet, yields
a T 5/2 dependence of ρ [41], although the effect of dynamical disorder in the PO phase
has not been investigated theoretically.

On the other hand, the resistivity of Mn1−xFexSi assumes a NFL form as well [42],
providing evidence that triple-helix order induces NFL behavior. However, the func-
tional form of ρ(T ) in Mn1−xFexSi is different from the T 3/2 dependence in pure MnSi
at high pressures, possibly related to the pinning of the triple-helices by the impurities.

12Relating āN to the correlation length of ∼ 100 Å measured just above Tc at ambient pressure [29]
and taking into account the real helix period of about 180 Å yields ξeff ∼ 0.55. This value is indeed
very close to ξeff ∼ 0.70 corresponding to the simulation.
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Boundary conditions

Regarding the spin cluster calculations, we chose to impose open boundary conditions
because we think that this models the physics appropriately: Whenever the magnetic
correlation length has been considerably reduced by temperature or doping with Fe-
impurities, the triple-helix clusters form isolated islands separated by domain bound-
aries with the domain boundary density increasing with T . Open boundary conditions
are equivalent to the clusters being surrounded by randomly oriented moments for the
purposes of calculating Eth, whereas periodic boundary conditions would correspond to
an attempt to understand the infinite system, which is outside the scope of this work.

2.5 Conclusion

To summarize, our measurements and calculations showed that partial magnetic order
in MnSi is most likely a collection of slowly diffusing topologically complex chiral-
ordered spin clusters that form spontaneously in the paramagnetic phase up to fairly
high temperatures. Their presence can naturally explain most of the unusual bulk
properties of MnSi in a qualitative manner. With the physics of chiral systems being an
extremely interesting present subject in condensed matter, more detailed calculations
including transport properties would be highly desirable in order to establish a closer
link between the existence of topological chiral excitations, which we suggest to be
triple-helix clusters, and non-Fermi-liquid behavior.
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Chapter 3

Pressure dependence of magnetic
order in CeCu5.5Au0.5

3.1 Introduction

CeCu6 is a prototype heavy-fermion (HF) system. It crystallizes in the orthorhombic
Pnma structure (lattice constants a = 8.112 Å, b = 5.102 Å and c = 10.162 Å) with a
small monoclinic distortion of about 1.5◦ below 230 K. In order to avoid confusion, the
orthorhombic notation is used in the following. The unit cell contains four Ce atoms
each of which is surrounded by 19 Cu atoms with a Ce-Ce distance of 4.83 Å (Fig. 3.1
(a)).

Ce 4f moments in CeCu6 form a regular sublattice within the metallic Cu matrix.
Due to their strong localization, they interact only weakly with conduction electrons
at high temperature1. However, a crossover of the magnetic behavior occurs towards
decreasing temperature where the 4f moments are screened by conduction electrons
owing to the Kondo effect. The associated energy gain sets the (Kondo) temperature
scale TK that strongly depends on the hybridization strength of the 4f electrons with
the conduction band2. Experimentally, TK is usually related to the pronounced increase
of the electrical resistivity ρ(T ) towards lower T resulting from strong fluctuations of
the Fermi surface in the crossover temperature region. (The high-field specific heat of
CeCu6−xAux is properly described within a single-ion Kondo model, i.e., the resonance-
level model, yielding an estimate of TK ≈ 6.2 K for CeCu6 [46].) A maximum of
ρ(T ) at even lower temperature Tcoh signals the onset of a coherent state leading to
a behavior at very low T that is rather well described by Fermi-liquid (FL) theory:

1Effects due to the crystal field and spin-orbit interaction are not considered here.
2Frequently, the symbol T ∗ is used for the characteristic temperature of a Kondo lattice, instead

of TK denoting the energy gain associated with the formation of a collective spin singlet state by
virtue of the single-ion Kondo effect (see [45] for a detailed discussion). Within the scope of this brief
introduction, this discrimination is neglected in the following.
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Figure 3.1: (a) Orthorhombic unit cell of CeCu6−xAux containing four Ce atoms (blue).
For x ≤ 1, Au atoms exclusively occupy the Cu(2) positions (yellow) in the CeCu6 structure.
Other Cu atoms are shown in red. (b) Upper panel: The volume of the unit cell increases as
V (x) = (419.9 + 14.29 x) Å3 up to x = 1 above which Cu(4) positions are occupied changing
the slope of V (x). Lower panels: Interestingly, not all lattice parameters increase with growing
Au content: b decreases until all Cu(2) positions are occupied (x = 1) and increases upon
further doping. Figures are adopted from [43], data correspond to those presented in [44].

One such hallmark is the T 2 dependence of the resistivity of CeCu6 between 40 and
200 mK [47] that is characteristic of dominant quasiparticle-quasiparticle scattering.
The huge linear specific heat coefficient γ = 1.6 J/mol K2 and the strongly enhanced
magnetic susceptibility χ [47, 48, 49], both only weakly temperature dependent, point
to a very large effective mass m∗ of the quasiparticles. CeCu6 exhibits a pronounced
magnetic anisotropy at temperatures below 1.1 K with the magnetization ratios along
the three axes Mc : Ma : Mb ≈ 10 : 2 : 1 [47]. Usually, magnetic fields are therefore
applied along the easy c direction. Long-range antiferromagnetic order with preferred
spin-alignment along the crystallographic a direction is only observed for temperatures
T < 2 − 3 mK [50] whereas short-range antiferromagnetic fluctuations also appear at
higher temperatures [51].
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(a)

QCP(b)
QCP

(c)

Figure 3.2: CeCu6−xAux can be tuned into quantum criticality by Au concentration x (a),
by applying hydrostatic pressure p (b) or by applying a magnetic field B (c). (a) The Néel
temperature TN of CeCu6−xAux vs. Au concentration x as determined from specific heat
(triangles) and magnetic susceptibility (circles) [44]. For 0.1 ≤ x ≤ 1 where Au exclusively
occupies the Cu(2) positions in the CeCu6 structure (see Fig. 3.1), TN varies linearly with
x. The sharp kink at x = 1 is associated with the occupancy of all Cu(2) positions. (b)
Pressure dependence of TN of magnetically ordering CeCu5.7Au0.3 with a linear fit [52]. The
sample is tuned quantum critical at p ≈ 8.2 kbar. (c) Neutron scattering results obtained
on CeCu5.8Au0.2 at temperatures below TN ≈ 250 mK as adopted from [53]. Inset: Elastic
Q scan at l = 0.275 along (h 0 0) at T = 50 mK through the positions of three equivalent
magnetic Bragg peaks around nuclear (0 0 0) and (2 0 0) Bragg peaks (corresponding to
a magnetic ordering wave vector qm = (0.625 0 0.275)). Main frame: Integrated neutron
intensity of the magnetic Bragg peak at Q = (2.625 0 0.275) as a function of the magnetic
field B applied along the crystallographic c direction at T = 50 mK and 180 mK. Magnetic
order is suppressed by a field Bc ∼ 0.42 T as estimated from the linear extrapolation to zero.
As explained in the main text, experiments are indicative of equivalent microscopic mecha-
nisms driving respective x- or p-tuned quantum phase transitions (red) that are in marked
contrast to field-tuned quantum criticality (blue).
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3.1.1 Tuning to quantum criticality

Substituting Cu with isoelectric Au leads to a lattice expansion that is due to the
larger Au radius (see Fig. 3.1 (b)). Thus, the hybridization of the Ce 4f electrons
with the conduction electrons and hence the exchange integral J decreases leading to
a stabilization of the local 4f moments that can now order via the indirect Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction. As a result, long-range incommensurate
antiferromagnetism (AF) is introduced in the alloy series CeCu6−xAux for x > xc ≈ 0.1
below the respective Néel temperature TN (Fig. 3.2 (a)). In the vicinity of the quantum
critical point (QCP) at x = xc, i.e., at the magnetic instability where TN = 0, significant
deviations from FL behavior have been observed in thermodynamic and transport data,
nicknamed non-FL (NFL) behavior [5, 6]. As an example, the specific heat and the
electrical resistivity are found to follow unusual temperature dependencies:

Specific heat
C(T )

T
= a ln

T

T0

,

Electrical resistivity �(T ) = �0 + A′T .

(3.1)

The Néel temperature of magnetically ordering CeCu6−xAux with x > 0.1 can be
continuously reduced by applying hydrostatic pressure p as shown for the case of x = 0.3
in Fig. 3.2 (b). Since the volume of the unit cell and with it the hybridization of the
Ce 4f electrons with the conduction band is decreased, pressure reverses the effect
of doping with Au. But it is important to note that pressure contracts all lattice
parameters simultaneously as opposed to the substitution of Cu with Au which affects
the lattice parameters in an anisotropic fashion (see Fig. 3.1 (b)). Consequently, the
variation of TN with the relative volume change3 ΔV is more pronounced if ΔV is
due to x instead of p as described in detail in [44]. Nevertheless, the same quantum
critical behavior of CeCu5.9Au0.1 as given in Eq. (3.1) with the same constants a and
T0 is recovered by applying appropriate pressure to magnetically ordering CeCu6−xAux

with x > 0.1. This fact is particularly interesting, since it suggests that disorder
(introduced by a certain amount of Au 0 < x < 1) does not have decisive influence on
the NFL behavior at the respective QCP.

The QCP can be tuned continuously not only by x or p but also by magnetic field B
as demonstrated in Fig. 3.2 (c). The temperature dependence of the specific heat and
the electrical resistivity at the field-tuned QCP is in pronounced contrast to Eq. (3.1):

Specific heat
C(T )

T
= γ0 − a′√T for T → 0 ,

Electrical resistivity �(T ) = �0 + A′′T 3/2 .

(3.2)

The different behavior is illustrated in Fig. 3.3, where data of the specific heat obtained

3ΔV := (V − V0)/V0 where for any concentration x, V0 is the respective volume of the unit cell at
ambient pressure.
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Figure 3.3: Specific heat C of CeCu6−xAux plotted as C/T vs. T on a logarithmic scale (a)
and vs. T 0.5 (b) for various hydrostatic pressures p at magnetic field B = 0 (triangles) and
different B at p = 0 (diamonds). Data at p = 0 and B = 0 are shown as circles (x > 0) and
squares (x = 0). Data shown in red (blue) correspond to respective x- or p-tuned (B-tuned)
quantum critical systems (compare color-coding in Fig. 3.2). All data are adopted from [5, 54].
(a) The slight increase of C/T for CeCu6 (squares), instead of C/T ∼ const. as expected for
a FL, might be a precursor of magnetic order below 2 − 3 mK. For x = 0.2 (black circles),
the kink at ∼ 250 mK signals the onset of AF order that is shifted towards lower T upon
applying p = 1.7 kbar (black open triangles). Data at the critical pressure pc,x=0.2 = 4.1 kbar
(red open triangles) coincide with data obtained on CeCu5.7Au0.3 at pc,x=0.3 = 8.2 kbar (red
filled triangles) and CeCu5.9Au0.1 at p = 0 (red filled circles). All three data sets follow
the same T → 0 NFL behavior that is expected in the 2D-HMM scenario (see Eq. (3.1) as
indicated by the straight line). The system with x = 0.2 can even be tuned towards the
FL-like behavior of CeCu6 upon applying p > pc (black dotted triangles). The appreciable
curvature of data shown in blue marks the different NFL behavior at the field-tuned QCP
that in turn can be described within the 3D-HMM scenario (straight line in (b) illustrating
Eq. (3.2)).
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from samples with various Au concentrations x at several pressures p and magnetic
fields B are shown.

The field-tuned NFL behavior (Eq. (3.2)) is in agreement with the standard Hertz-
Millis-Moriya (HMM) model of three-dimensional (3D) itinerant quantum criticality for
antiferromagnets [55, 56, 57, 58]. In this picture, heavy quasiparticles with 3D dynam-
ics undergo singular scattering by incipient 3D spin fluctuations. On the other hand,
the NFL behavior that is observed when approaching x- or p-tuned QCP (Eq. (3.1))
can be explained invoking a quasi-2D fluctuation spectrum coupled to quasiparticles
with 3D dynamics. This was demonstrated by Rosch et al. [59] in an analysis similar
in spirit to that of HMM. At the critical concentration xc = 0.1, dynamic correla-
tions appear revealing a rod-like structure in q space (see Fig. 3.4 (a)) that can be
related to 2D correlations between Ce atoms in real space [7]. Quantum critical fluctu-
ations exhibiting quasi-2D correlations corroborate the 2D-HMM scenario. However,
Schröder et al. [60, 61] discovered an unusual form of the dynamical susceptibility at
the concentration-tuned QCP (x = 0.1):

χ−1(q, E, T ) = c−1 [(θ(q))α + (T − iE)α] (3.3)

with an anomalous exponent α = 0.75 (α = 1 would be expected in a Lorentzian
response). Here, the q dependence of the fluctuations is exclusively governed by an
energy-independent generalized Curie-Weiss temperature θ(q) and, surprisingly, the
critical slowing down of the fluctuations is independent of q, suggesting local quantum
criticality and prompting alternative scenarios [62, 63]. The dimensionality of the
microscopic mechanisms driving the quantum phase transition is thus of key interest.

3.1.2 Magnetic ordering

Previous neutron scattering experiments on CeCu6−xAux at ambient pressure revealed
the positions of the magnetic Bragg peaks for x > 0.1 in the reciprocal (h 0 l) plane [7]:
Fig. 3.4 (a) shows several symmetry-equivalent magnetic peaks corresponding to nuclear
(0 0 0) and (2 0 0) Bragg peaks. (The (1 0 0) nuclear peak has zero structure factor
because of the selection rule (h + k + l even) in the Pnma crystal structure.) The 2D
fluctuations for x = 0.1 (associated with shaded rods) can be regarded as a precursor
of the 3D AF ordering at higher Au concentration as the magnetic Bragg peaks for
samples not too far from the magnetic instability, i.e., x ≤ 0.3, are located on these
rods at qm ≈ (0.62 0 0.27). For x = 0.2, peaks indicating short-range order appear at
qm,sr = (0.79 0 0) in addition to the Bragg peaks at qm. A substantial modification of
the magnetic order occurs above a certain doping ratio (Fig. 3.4 (b)): Upon increasing
x, the l component of qm(x) first decreases slowly and then abruptly drops to zero
between x = 0.4 and x = 0.5, resulting in qm(x = 0.5) ≈ (0.59 0 0) [64], while TN(x)
varies linearly (Fig. 3.2 (a)). This apparent contrasting behavior needs clarification.
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Figure 3.4: Neutron scattering results revealing the position of the magnetic ordering wave
vector qm of CeCu6−xAux at ambient pressure. (a) Doping dependence of several magnetic
peaks in reciprocal (h 0 l) plane as adopted from [65]. Note that Q = qm +G is shown where
G = (0 0 0) and (2 0 0). Filled symbols correspond to Bragg peaks indicating long-range
order, open symbols represent short-range ordering peaks. Shaded rods indicate dynamic
correlations observed at the critical concentration x = 0.1. These rods are related by the
orthorhombic Pnma lattice symmetry and their width in h or l corresponds to the FWHM
extracted from Q scans along (h 0 0) or (0 0 l) at T < 100 mK and �ω = 0.1 meV [7]. (b)
Doping dependence of the l component of qm. The dashed line is a guide to the eye.

We therefore investigated the pressure dependence of the magnetic ordering of
CeCu5.5Au0.5 using elastic neutron scattering. We primarily focused on the question of
whether the same finite l component of qm(x ≤ 0.4) could be recovered upon applying
pressure to a sample that orders along h at ambient pressure. Regarding macroscopic
quantities such as thermodynamic and transport properties, the equivalence of the tun-
ing behavior with x or p has been striking. However, it remains to be shown that this
equivalence holds on a microscopic level, e.g., by virtue of the magnetic ordering wave
vector qm. Probing its pressure dependence in comparison to the known variation with
x also elucidates the microscopic role of disorder in CeCu6−xAux.
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3.2 Experimental results

Our experiment was performed on the cold triple-axis spectrometer PANDA operated
at the FRM II reactor in Munich. Our single-crystalline sample4 of CeCu5.5Au0.5 with a
mass of 1.7 g was mounted in a Cu:Be clamped pressure cell together with a Pb sample
as pressure gauge, using fluorinert FC 72 as pressure medium. In order to reduce the
background generated by scattering from the pressure cell, a Cd shielding was wrapped
around it leaving open the sample space. The use of a dilution refrigerator enabled
cooling the sample to below 100 mK (with beam on). The scattering plane was spanned
by reciprocal [1 0 0] and [0 0 1] axes. We focused on elastic scans over the magnetic
Bragg peak in the (2 0 0) Brillouin zone due to the large structure factor there5. The
instrument was operated in the elastic condition with ki = kf = 1.5 Å−1 with a Be-filter
in the incident beam and open collimation.

3.2.1 Position of magnetic ordering peaks at different pres-
sures

Fig. 3.5 shows the pressure dependence of the neutron intensity of CeCu5.5Au0.5 on a
grid in the reciprocal (h 0 l) plane. Note that in comparison to Fig. 3.4 (a), only a small
range covering the positions of the two upper right magnetic Bragg peaks is displayed in
this figure. Fig. 3.5 (a) reveals that at ambient pressure6 a strong magnetic Bragg peak
is found at the incommensurate position Q = (1.420 0 − 0.005) in excellent agreement
with previous results [64]. The small deviation of the l component from zero can be
attributed to slight misalignments of the spectrometer and the sample orientation. The
comparatively small background (< 6% of peak intensity) varies quadratically along
(h 0 0) and linearly along (0 0 l) and is taken into account in any fit presented in
the following. The weak feature around Q = (1.48 0 l) can be clearly attributed to
an Al-powder line7 that exhibits no temperature dependence and is without effect on
the magnetic signal. Upon applying p = 3.6 kbar (Fig. 3.5 (b)), the position of the
Bragg peak significantly changes to Q = (1.402 0 0.194) assuming almost the same l
component that has been found for CeCu5.6Au0.4 at ambient pressure (Fig. 3.4 (b)).
This indicates that by pressure tuning the sample towards the QCP, not only the
thermodynamic and transport data (as described in Sec. 3.1.1) but also the magnetic

4The sample was grown by V. Fritsch (Physikalisches Institut, Karlsruhe Institute of Technology
(KIT), Germany).

5The Ce spins point along the crystal c axis [64]. Since only the component of the spin perpendicular
to Q contributes to the measured intensity (Eq. (1.33) in Seq. 1.2.2), the magnetic signal would be very
weak, e.g., in the (0 0 2) Brillouin zone although structurally allowed by the selection rule (h + k + l
even).

6Investigations at ambient pressure were performed with the sample in the pressure cell, too.
7Large parts of the dilution refrigerator that are partly in the beam are made of Aluminum.
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(a) p = 0 (b) p = 3.6 kbar

(c) p = 4.1 kbar (d) p = 8kbar

Figure 3.5: Pressure dependence of the neutron intensity (counts/500 mon., see color bar)
revealing the position of the magnetic Bragg peak of CeCu5.5Au0.5 in the reciprocal (h 0 l)
plane. Note that the correct aspect ratio 2π

a : 2π
c has been taken into account. All scans

were taken at the respective constant base temperature between 73 and 107 mK covering a
pressure-range from zero (a) up to 8 kbar (d). The color scale was adapted to reveal weak
features such as the Al-powder line in (a) and the remnant peak around l ≈ 0 in (b, c, d)
(explained in main text): Dark red color corresponds to intensity I > Imax/2.1 and dark blue
color corresponds to Imin where Imax/min refer to the maximal /minimal neutron intensities
in the hl range shown. Therefore, strong peaks look less well defined than they actually are
(compare Fig. 3.6).
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Figure 3.6: 3D plot of Fig. 3.5 (d) (neutron intensity in reciprocal (h 0 l) plane at p = 8kbar)
revealing a well defined Gaussian shape of the strong Bragg peak at Q = (1.405 0 0.195).

ordering wave vector of lower doping x are recovered. On the other hand, increasing
the pressure to 4.1 kbar (c) and even 8 kbar (d) does not significantly change the Bragg
position (Q = (1.405 0 0.195) at p = 8 kbar). Judging from Fig. 3.2 (b), a pressure of
∼ 8 kbar should have the same effect as decreasing the Au content by about Δx = 0.2.
Consequently, a small but significant increase of the l component upon increasing the
pressure from p = 3.6 to 8 kbar would be expected, in analogy to corresponding data
towards lower doping, as depicted in Fig. 3.4 (b). Moreover, a small remnant peak at
the position corresponding to ambient pressure (l ≈ 0) is present at all p > 0 shown.
We checked the magnetic origin of this feature by heating the sample above TN(p) where
it disappears completely just as the strong magnetic Bragg peak does (see Fig. 3.7).
This behavior is indicative of a first-order phase transition and a separation of the
sample into different domains most of which reveal magnetic order within the (h 0 l)
plane (l �= 0) but some along (h 0 0), too. This issue is discussed in more detail in the
following.
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Figure 3.7: Pressure dependence of neutron intensity along (0 0 l) at temperatures well
below (black) and considerably above (red) the respective Néel temperature TN(p). Each data
point corresponds to the intensity (Fig. 3.5) summed along (h 0 0) for 1.34 ≤ h ≤ 1.47. The
solid lines are a fit to the data obtained above TN(p). Insets show the range −0.05 ≤ l ≤ 0.05
on a larger scale. Note that data presented in panels (a) and (d) reveal a lower background
than those shown in (b) and (c). This is most likely due to a slightly different positioning
of the Cd shielding in (a, d) and (b, c), respectively: After the first experiment (p = 0 and
8 kbar) the Cd shielding was dismantled and mounted again at the beginning of the next run
(p = 3.6 and 4.1 kbar).
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Figure 3.8: Temperature dependence of the magnetic Bragg peak intensity normalized to
the nuclear (2 0 0) Bragg peak. Data shown in black were measured at the peak position
extracted from a 2D Gaussian fit to data shown in Fig. 3.5. Red symbols reveal the amplitude
extracted from 2D fitting several scans over the Bragg peak in (h 0 0) and (0 0 l) direction,
performed at each T , and are in agreement with black symbols. Lines depict fits of the mean-
field behavior given in Eq. (3.4) to the data. The parameters I0, TN and ν obtained from the
fits are listed on the right and are colored according to the curve they refer to.

3.2.2 Temperature dependence of magnetic order at different
pressures

The detailed temperature dependence of the intensity of the strong magnetic Bragg
peak at all pressures is depicted in Fig. 3.8. Surprisingly, data at p = 3.6 kbar and
4.1 kbar coincide at low temperatures whereas zero intensity is reached at significantly
different Néel temperatures, proving the actual difference in p. This effect may be due
to an intensity shift from the weak remnant peak at l ≈ 0 to the strong peak at l ≈ 0.2
towards increasing pressure. As a result, the intensity for T → 0 happens to be the
same at both pressures. In fact, Fig. 3.7 is indicative of such behavior. Additional data
at even higher pressures, eventually showing that the small remnant peak disappears
before the strong one does, would be needed to support this scenario. However, fitting
the T dependence of the normalized magnetic intensity Imagn./I(200) with the mean-field
behavior

I(T ) = I0 ·
(

1 −
(

T

TN

)ν)
(3.4)
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CeCu5.5Au0.5 CeCu6−xAux at p = 0
p (kbar) TN (mK) qm (r.l.u.) x TN (mK) qm (r.l.u.)

0 962 (0.588 0 − 0.003) 0.5 1022 (0.59 0 0)
3.6 851 (0.607 0 0.201) — — —
4.1 794 (0.607 0 0.207) 0.4 767 (0.605 0 0.22)
8 519 (0.609 0 0.202) 0.3 511 (0.62 0 0.25)

Table 3.1: Comparison of the magnetic ordering wavevector qm of CeCu5.5Au0.5 at dif-
ferent p (left half, values averaged over several Brillouin zones) with corresponding systems
CeCu6−xAux at ambient p (right half, previous work [7, 64, 67]). Values of TN given in the
left half were extracted from fits such as described in Fig. 3.8 whereas values extracted from
the linear fit in Fig. 3.2 (a) at respective x are presented in the right half. To our best
knowledge, no data measured at ambient p are available matching TN ≈ 851 mK. Note that
the uncertainty of TN is < 0.35 % (given exactly in Fig. 3.8) and the uncertainty of qm is
negligible.

yields the respective Néel temperatures TN(p) and intensities I0(p) extrapolated to
T = 0 (uncertainties of the fit are given in Fig. 3.8). Data obtained at ambient
pressure are properly described with an exponent ν = 3.08 which is slightly bigger
than previously found (ν = 2.5) in [64]. The extraction of TN = 962 mK at p = 0
indicates that the actual Au content of our sample is indeed very close to x = 0.5,
where TN = 1.022 K is expected according to the linear fit shown in Fig. 3.2 (a).

Furthermore, the reduction of TN(p) to 794 mK and 519 mK at pressures of 4.1 kbar
and 8 kbar corroborates that the sample was tuned very close to x = 0.4 and x = 0.3
behavior, where the linear fit gives TN = 767 mK and TN = 511 mK. In fact, the
exponent ν = 2.20 for p = 8 bar is in good agreement with ν = 2 as found for x = 0.3
in [16]. A comparison of TN(p) measured in this work with previous results is shown
in Fig. 3.9. While previous data clearly point to a linear variation of TN with p at
all Au concentrations shown, the small number of data points obtained in this work
impedes a reliable interpretation in terms of a functional form. However, assuming a
linear pressure dependence extrapolating to TN = 0 yields an estimate of the critical
pressure pc ≈ 20.5 kbar that might drive CeCu5.5Au0.5 to quantum criticality (see inset
of Fig. 3.9).

3.3 Discussion

In order to determine the magnetic ordering wave vector qm of CeCu5.5Au0.5 most
reliably, we pinpointed the positions of related Bragg peaks not only in the vicinity
of the nuclear (2 0 0) Bragg peak (Fig. 3.5) but in several other Brillouin zones, too
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Figure 3.9: Pressure dependence of TN for several Au concentrations x. Outer frame: Data
obtained on single crystals of CeCu6−xAux with x = 0.2, 0.3 and polycrystalline CeCu5.5Au0.5

are adopted from [66, 52, 44]. Lines show a linear fit to the data. Note the pronounced offset
between polycrystalline (black) and single crystalline (red) CeCu5.5Au0.5 that may be due to
slightly higher doping of the polycrystal (its TN(p = 0) ≈ 1.15 K is shown in Fig. 3.2 (a) as
black triangle to considerably exceed the linear fit). A comparison of both x = 0.5 systems is
achieved by normalizing to the respective Néel temperature at p = 0 as depicted in the inset
with a linear fit.

(some of which are depicted in Fig. 3.10 (a)). Resulting average values of qm at dif-
ferent pressures are given in Tab. 3.1 in comparison to corresponding CeCu6−xAux

alloys with comparable TN at ambient pressure. Here, the accordance of our exper-
iment at ambient pressure with previous results obtained on another single crystal
of CeCu5.5Au0.5 without the pressure cell becomes even more convincing. Moreover,
Fig. 3.10 (b) demonstrates that, indeed, applying p = 3.6 and 4.1 kbar recovers the
same l component of corresponding x at p = 0, corroborating the assumed x - p equiv-
alence. However, no significant difference in qm is revealed between p = 3.6 and 8 kbar
as opposed to a significant increase in h and l towards smaller x (see Tab. 3.1), where
at x = 0.2 qm = (0.625 0 0.275) was found in [7]. Despite the lack of data towards even
higher pressures, this behavior is indicative of an intrinsic discrepancy between tuning
with x and p at least on a quantitative basis. On the other hand, subtle differences
are somewhat expected from the different impact of the respective tuning parameter x
or p on the shape of the unit cell [44] (as explained in Sec. 3.1.1). Therefore, instead
of the volume of the unit cell, the Néel-temperature being the most direct measure
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Figure 3.10: (a) Magnetic ordering peaks of CeCu5.5Au0.5 at different p in reciprocal (h 0 l)
plane covering the same range as shown in Fig. 3.4 (a). Filled symbols refer to the strong
Bragg peak, open symbols represent the weak remnant peak appearing at p > 0 in addition
to the strong peak such as shown in Figs. 3.5 and 3.7. Note that Q = qm +G is shown where
G = (0 0 0) and (2 0 0). (b) The l component of qm vs. the Néel-temperature of several
systems CeCu6−xAux. The pressure dependence at x = 0.5 (red, values from Tab. 3.1) is
shown in comparison to the concentration dependence at p = 0 (black, previous work). The
latter were originally plotted vs. x (compare Fig. 3.4 (b)) which is mapped onto TN(x) by
virtue of the linear fit shown in Fig. 3.2 (a). The dashed line is a guide to the eye.

of competing energy scales was chosen as the parameter allowing the most reasonable
comparison between systems with different x at different p (Fig. 3.10 (b)).

The abrupt change of qm around TN ≈ 1 K being universal in respective x- or p-tuned
systems CeCu6−xAux points towards a phase transition of first order. This scenario is
supported by the double-peak structure that is revealed in CeCu5.5Au0.5 at p ≥ 3.6 kbar
(i.e., TN ≤ 851 mK) as indicated by filled and open symbols in Fig. 3.10 (a). It might
be due to a Fermi surface providing two nesting vectors at p ≥ 3.6 kbar of which the
corresponding energy levels are populated very differently with a clear preference of
l ≈ 0.2. Another feature depicted in Fig. 3.4 (a) hints at the first-order fashion of
the transition, as well: The dynamical correlations for x = xc = 0.1 (as illustrated
by rod-like structures) can be regarded as a precursor of incipient ordering at higher
x ≤ 0.5 because corresponding Bragg peaks are located on these rods. In contrast,
magnetic ordering peaks for x ≥ 0.5 are located next to them, ruling out any relation
of the quantum critical fluctuations with magnetic order above x = 0.5. Finally, the
behavior of the order parameter itself, i.e., the staggered moment M per Ce ion, is
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Figure 3.11: The staggered moment M
per Ce ion for various systems CeCu6−xAux

as a function of the respective Néel tempera-
ture TN. Previous data (black) were adopted
from [65, 6, 68], mapping x �→ TN(x) by
virtue of the linear fit shown in Fig. 3.2 (a).
Lines are a fit to data below and above TN,
respectively. Note that data shown in red
reveal the relative variation of M scaled ac-
cordingly to match previous data.
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indicative of a first-order transition around TN ≈ 1 K. The relative variation of M with
TN can be inferred from Fig. 3.8, as M2 ∝ I0. In fact, Fig. 3.11 reveals that the relative
variation of M can be scaled accordingly to match absolute values found for x = 0.3
and x = 0.5 [65, 6, 68]: the staggered moment M per Ce ion increases linearly from
0.03 μB at TN = 128 mK to 0.57 μB at TN = 851 mK and abruptly jumps to 1μB at
TN = 962 mK. Clearly, the anticipated linear variation above 1 K is very preliminary
and needs validation by interim data points.

3.4 Conclusion

To conclude, by applying hydrostatic pressure to CeCu6−xAux not only macroscopic
properties such as the specific heat, magnetic susceptibility or electrical resistivity of
correspondingly lower doping x are recovered. We succeeded in showing that a micro-
scopic quantity, i.e., the magnetic ordering wave vector qm, can be tuned accordingly.
Hence, the equivalence of the tuning behavior with x and p is confirmed on a micro-
scopic level and holds even far away from the QCP at x = 0.5. The transition from
systems ordering along (h 0 0) to those where qm assumes a finite l component seems
to happen in a first order fashion. However, subtle differences on a quantitative ba-
sis between both tuning behaviors need further attention and should be addressed in
future investigations. Ultimately, the goal must be to tune CeCu5.5Au0.5 into quan-
tum criticality to investigate the fluctuations there. Comparing with previous neutron
scattering results on CeCu5.9Au0.1 could help to gain more insight into the mechanisms
that drive the quantum phase transition.
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Chapter 4

Phonon anomalies in the cuprate
superconductors La2−xSrxCuO4 and
HgBa2CuO4+δ

4.1 Introduction

In 1986, Bednorz and Müller discovered that La1.85Ba0.15CuO4 becomes superconduct-
ing below the critical temperature Tc = 38 K. Only a few months later, the related
compound YBa2Cu3O7−δ was found to have an even higher Tc of 93 K, ushering in the
era of ’high temperature superconductivity’ (HTSC). Since these cuprate superconduc-
tors operate at temperatures easily reachable by cooling with liquid nitrogen (LN2,
boiling point 77 K), emerging consequences for technological applications were quickly
recognized and led to the awarding of the Nobel Prize in 1987 to Bednorz and Müller.
In 2008, another class of HTSC, so-called Fe-based pnictides, was discovered. However,
the highest Tc ≈ 135 K (at ambient pressure) known to date has been demonstrated for
the members of the Hg-based family of the cuprates (HgBa2Ca2Cu3O8+δ). Therefore,
further investigation of the cuprates is of key interest since it might help to elucidate
the still unknown mechanism leading to superconductivity at elevated temperatures. A
proper understanding of this mechanism might possibly enable one to influence specific
parameters leading to even higher Tc values.

Cuprate HTSC crystallize in the perovskite structure revealing weakly coupled
copper-oxide (CuO2) layers. Neighboring layers typically containing ions such as La, Ba
or Sr stabilize the structure and act as a charge reservoir doping electrons or holes into
the copper-oxide planes. In the following, only hole-doped cuprates are considered of
which the generic phase diagram is shown in Fig. 4.1. Undoped parent compounds are
Mott-Hubbard insulators with half-filled (one electron per state) Cu orbitals resulting
in long-range antiferromagnetism below the Néel temperature TN. Low doping quickly
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Figure 4.1: Generic phase diagram of hole-doped cuprate superconductors as adopted
from [69].

decreases TN and leads to a metallic state with very unusual properties, in particular
a pseudogap in the electronic density of states persisting up to T ∗ and mimicking the
true gap in the superconducting state at higher doping [69]. Finally, a metallic phase
is found in the overdoped regime. Since conventional superconductivity is mediated
by phonons, their role in the mechanism of HTSC has been considered very early on.
However, one could not think of electron-phonon coupling with a strength leading to
transition temperatures near 100 K. Therefore, phonons were discarded and the main
focus of research was on magnetic mechanisms. The discovery of anomalous behavior
of certain Cu-O bond-stretching vibrations, somehow related to superconductivity, led
to a renewed interest in phonon-mediated coupling and triggered a systematic study of
phonons in many cuprate compounds such as La2−xSrxCuO4 (LSCO), YBa2Cu3O7−δ

(YBCO), HgBa2CuO4+δ (Hg1201) and electron-doped Nd2−xCexCuO4 (NCCO) [9, 10].
In this chapter, measurements on LSCO and Hg1201 focusing on this phonon anomaly
are presented.

4.2 La2−xSrxCuO4

The unit cell of LSCO in the high-temperature tetragonal (HTT) phase is depicted in
Fig. 4.2 (a). It contains two CuO2 layers that are stacked in a body-centered fashion.
Below the structural phase transition temperature Ts = 550 K each CuO6 octahedron



4.2: La2−xSrxCuO4 71

Cu
O
La/Sr

c

a a

(a)

<110>

<100>

LTO

LTT

(b)

Figure 4.2: (a) Unit cell of LSCO in the HTT phase with the lattice constants a = 3.8 Å and
c = 13.1 Å containing 14 atoms (two Cu, eight O and four La/Sr). (b) Upper panel: Tilt
of the CuO6-octahedra around the crystallographic 〈1 1 0〉 axis leading to the LTO phase.
Lower panel: A tilt around 〈1 0 0〉 results in the LTT phase that is discussed later in this
section.

rotates about a 〈1 1 0〉 axis (see upper panel of Fig. 4.2 (b)), where neighboring
octahedra within a plane rotate in opposite directions. This results in a doubling of
the unit-cell volume and a change of the crystal symmetry to the low-temperature
orthorhombic (LTO) phase. In order to avoid confusion, the notation of the HTT
phase is used in the following. In the undoped system La2CuO4 (LCO), Cu spins
order antiferromagnically below TN ≈ 325 K [70] by virtue of superexchange mediated
by O atoms. Upon hole-doping with Sr, TN is quickly suppressed and vanishes at
x = 0.02 [71]. Superconductivity is found for 0.06 ≤ x < 0.3, where optimal doping of
x = 0.15 results in Tc = 35 K [72].

Anomalous phonon behavior

Previous experiments revealed an anomalous behavior of the longitudinal plane-polarized
Cu-O bond-stretching vibration in the 〈1 0 0〉 direction. Among all phonon branches
of Δ1-symmetry in LSCO, it is the one with the highest energy. Since only high energy
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branches are considered in the following discussion, this special vibration will sim-
ply be referred to as the ’Δ1-branch’. The displacement pattern of its corresponding
zone boundary1 mode is shown in Fig. 4.3 (b). It is usually called the ’half-breathing’
mode in comparison to the ’breathing’ mode that is illustrated in (c). The latter is
associated with another high energy longitudinal vibration propagating along 〈1 1 0〉
(Σ1-symmetry).

The dispersion and linewidth (FWHM) of the Δ1-branch as extracted from E scans
around (5 0 0) at different Sr-doping levels x [73] are exhibited in Fig. 4.3 (a), that is
indicative of four features:

(1) The softening towards the zone boundary that is enhanced with increasing doping
and results is a cosine-like downward dispersion.

(2) The gradual broadening of the phonon linewidth towards the zone boundary.

(3) The deviation from a simple cosine dispersion in the optimally doped system.

(4) The pronounced maximum of the phonon linewidth around q = (0.3 0 0) in the
optimally doped system.

Phenomenological models developed for ionic insulators, in particular the shell model2,
give a decent description of nearly all phonon branches in LCO [74]. Implementing
a special term accounting for the screening by free charge carriers (holes) even yields
a proper description of most of the phonon branches in underdoped LSCO. However,
these models predict a rather flat dispersion of the Δ1-branch that is in contrast to the
pronounced frequency renormalization (1) observed in the measurements. Fig. 4.3 (d)
demonstrates that the softening at the zone center cannot be related to superconduc-
tivity since it continuously increases with doping through the superconducting regime
and becomes most pronounced for overdoped, non-superconducting La1.7Sr0.3CuO4.
(The same behavior is found for the breathing mode as indicated by open symbols.)
Consequently, the cosine dispersion (1) is considered the ’normal’ behavior of that
phonon branch accompanied by a gradual broadening of the linewidth towards the
zone boundary (2) that is equally present for x = 0.15 and x = 0.3.

On the other hand, (3) and (4) are only present for optimally doped LSCO but
here also above Tc [72]. This is what makes (3) and (4) the true ’anomalous’ behavior
strongly suggesting a relation to superconductivity.

1Due to the body-centered symmetry of the unit cell, group theoretical Γ-points in reciprocal space
are characterized by G = (h k l) where h + k + l be even. As an example, (5 0 1) is a Γ-point
as opposed to (5 0 0) being a Z-point. However, when measuring the dispersion of high-energy
Cu-O plane-polarized vibrations any G = (h k l) (with h, k, l ∈ Z) can be considered a true ’zone
center’ in the sense that all atoms move in phase. Correspondingly, the ’zone boundary’ is found
at ±〈0.5 0 0〉 away from the respective zone center. This is a consequence of the weak interaction
between neighboring CuO2 layers and cannot be generalized.

2A detailed description of such a model is given in Sec. 4.2.1.1.
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(a) Dispersion / FWHM of Δ1-branch.

(b) half-breathing (c) breathing

half-breathing

breathing

(d) Softening at zone boundary.

Figure 4.3: Anomalous behavior of longitudinal phonon branches at a tempera-
ture of 10 K as adopted from [73]. (a) Upper panel: Measured dispersion of the
Δ1-branch for various doping levels x in La2−xSrxCuO4. Lines are a guide to the
eye. Lower panel: Data points depict the linewidth (FWHM) of phonon peaks, the
line shows the experimental resolution. Open and closed symbols shown in blue
correspond to two different data sets obtained on La1.85Sr0.15CuO4. (b, c) Displace-
ment patterns of zone-boundary bond-stretching modes in [1 0 0] (b) and [1 1 0] (c)
direction. Circles and solid points represent oxygen and copper atoms, respectively.
Only the displacements in the Cu-O layers are shown, other displacements are small
for these modes. (d) Relative frequency renormalization of the breathing and half-
breathing mode towards increasing Sr-doping in LSCO. The superconducting regime
is marked by the red area.
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Figure 4.4: (Left panel) Schematic plot of two magnetic unit cells illustrating spin-charge
segregation in the form of stripes within the CuO2 planes for the case of 1

8 doping. Only Cu
sites are represented. Magnetic moments are indicated by arrows, different shading distin-
guishes antiphase domains. Blue filled circles correspond to holes. Note that the charge order
indicated within the charged stripes has never been observed and simply illustrates the hole
per Cu ratio of 1

2 . The plot was adopted from [75]. (Right panel) Variation of the magnetic
incommensurability ε with x in La2−x−yNdySrxCuO4 as adopted from [76]. Data shown as
open red circles correspond to y = 0 and are extracted from measurements at E ≈ 3 meV
and T ≈ Tc [77]. Filled blue squares correspond to y = 0.4 from [78].

Relation of phonon anomaly to ’stripes’

A similar effect was found in related compounds with doping levels about 1
8

such as
La1.6−xNd0.4SrxCuO4 (LNSCO) with x = 0.12 [79] and La2−xBaxCuO4 (LBCO) with
x = 0.125 [80] where superconductivity is destroyed by emerging static stripe order
that is illustrated in Fig. 4.4 (left panel): Within the Cu-O planes, antiferromagnetic
’stripes’ of copper spins are separated by periodically spaced domain walls to which
the holes segregate3. In these compounds, the structural phase transition to the low-

3It has been argued that charge segregation may result from a competition between the kinetic
energy of charge carriers and the antiferromagnetic superexchange between magnetic moments on
neighboring Cu atoms [81, 82, 83].
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temperature tetragonal (LTT) phase (see Fig. 4.2) provides a corrugation potential
pinning the stripes and thereby destroying superconductivity. Neutron scattering from
static stripe order results in four incommensurate elastic magnetic peaks at the spin
ordering wave vector qso = GAF + 〈ε 0 0〉 where GAF = (1

2
1
2

0) characterizes the
commensurate long-range antiferromagnetic order [75]. ε increases with increasing
doping x and seems to saturate around ε ≈ 0.145 as shown for LNSCO by filled blue
squares in Fig. 4.4 (right panel). Charge inhomogeneity with a periodic modulation is
expected to affect interatomic Coulomb forces which in turn can have decisive influence
on the behavior of particular lattice vibrations: The polarization pattern of the Δ1-
branch matches the lattice deformation induced by the charge inhomogeneity and,
consequently, a softening and strong broadening in close vicinity to the corresponding
charge ordering wave vector qco = 〈2ε 0 0〉 is expected according to [84]. Indeed, a
pronounced dip in the dispersion and a concurrent maximum of the phonon linewidth
are observed in La1.48Nd0.4Sr0.12CuO4 at around q = (0.275 0 0) [9, 85]. This is clear
evidence of a strong coupling of this phonon mode to charge carriers substantially
reducing the phonon lifetime.

In LSCO, incommensurate spin-density-wave order along 〈1 1 0〉 is found in the
spin-glass phase for 0.02 < x < 0.06 [86]. However, corresponding charge-density-wave
order has not been observed [87]. In the superconducting regime above x = 0.06,
peaks indicating dynamic magnetic correlations are found along 〈1 0 0〉 at qso with ε
increasing towards increasing doping and saturating around ε ≈ 1

8
as shown by open

red circles in Fig. 4.4 (right panel). These dynamic correlations are interpreted as a
precursor effect of static stripe order where the remaining dynamic (fluctuating) stripes
possibly compete with superconductivity. The comparison of both systems with y = 0
and y = 0.4 in Fig. 4.4 reveals differences in ε for any given x that may be associated
with a changing hole density of the charge stripes as they are pinned by the anisotropic
lattice potential of the LTT phase in LNSCO [76].

Finally, the phonon anomalies (3) and (4) observed in optimally doped LSCO may
be regarded as the signature of dynamic stripes manifesting themselves in the charge
channel. However, a systematic study of this effect towards lower doping x is needed to
truly establish a correspondence between the magnetic and the charge channel. In this
chapter, neutron scattering results obtained on non-superconducting La1.95Sr0.05CuO4

are presented along with an improved analysis of previous data revealing the role of
resolution-based contributions.

4.2.1 Experimental results

The experiments were performed on the triple-axis spectrometer 1T operated at the
’Laboratoire Léon Brillouin’ of the CEA, Saclay (France), using doubly focusing mono-
chromator (Cu220) and analyzer (PG002) crystals. Cu220 was used to achieve high
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resolution4. A closed cycle 4He refrigerator provided access to temperatures between
3.5 K and 600 K. Single crystals5 of La1.95Sr0.05CuO4 with a volume of about 1 cm3 and
a respective mosaic spread of 1◦ and 2◦ were measured with the experimental scattering
plane spanned by reciprocal [1 0 0] and [0 1 0] axes. In addition, a finite l component
could be accessed by tilting the goniometer at the sample table for a few degrees. We
focused on scans around (5 0 l) with l = 0,−1,−2,−3 to maximize the inelastic struc-
ture factor (Eq. (1.27)) of the Δ1-branch and to avoid spurious contamination. The
instrument was operated with fixed kf = 2.662 Å−1 and a PG filter6 placed between
the sample and the analyzer to suppress higher order contamination.

4.2.1.1 Simulating lattice dynamics using a shell model

The derivation of atomic force constants from first principles is not yet possible for
weakly doped cuprate superconductors such as La1.95Sr0.05CuO4.

7 Instead, phenomeno-
logical models like the shell model [88] can be used to describe the lattice dynamical
properties of these complex systems.

The shell model originates from the rigid-ion model for ionic insulators in which
short-range repulsive forces and the Coulomb interaction between the ions are taken
into account. In the shell model, atomic polarizability is introduced by isotropically
coupling a spherical electronic shell to its rigid ion core by a spring (intra-atomic
coupling). Neighboring electronic shells are coupled to each other by another spring
(inter-atomic coupling). Metallicity arising by doping the parent compound with holes
is implemented by ’screening-parameters’ that account for the reduced range of the
Coulomb force due to the screening effect of conduction electrons. Finally, the resulting
set of parameters is adapted to properly describe experimentally determined phonon
dispersions in all major crystallographic directions.

However, at finite doping the model predicts a rather flat dispersion of the Δ1-
branch that is not in agreement with the experimental observation. An additional
term has to be accommodated in the model in order to describe the ’normal’ cosine-
like dispersion of that phonon branch (’normal’ in the sense of not being related to
superconductivity). It should be noted that this term has not been derived in a proper
way and hence is entirely phenomenological. Yet, its influence on other branches is
extremely small. Furthermore, it is important to note the harmonic limit of the shell
model where higher-order effects such as phonon-phonon or electron-phonon coupling

4The actual calculated resolution is included in the shell model predictions as presented in the
following.

5Samples were provided by the ’Institute for Material Research’ of the Tohoku University, Sendai
(Japan).

6See Fig. 1.7 in chapter 1.3 for explanation.
7To some extent, the density-functional theory (DFT) is appropriate for describing stoichiometric

and metallic cuprates such as YBa2Cu3O7. However, calculations for weakly doped LSCO yield results
expected for optimally or overdoped LSCO.



4.2: La2−xSrxCuO4 77

are neglected. Consequently, it does not account for the finite lifetime of phonons that
would result in a non-vanishing intrinsic linewidth of phonon peaks.

In this work, the program package ’genax’ as developed by W. Reichardt and
S. L. Chaplot [74] is used to simulate E scans tracing the Δ1-branch through the
Brillouin zone. A special advantage of genax is its capability of considering the exper-
imental resolution: Parameters such as the final neutron energy, the monochromator
and analyzer setting, horizontal and vertical collimation and the mosaic spread of the
sample, the monochromator and the analyzer crystal are taken into account to calculate
the resolution-based line shape of phonon peaks. More specifically, genax calculates
the 4D convolution of the modeled scattering function S and the resolution function R
as shown in Eq. (1.49) where S(Q, ω) is given by Eq. (1.29).

As described in Sec. 1.2.1.2, the scalar product (Q · ξ) in the dynamic structure
factor F(Q) (Eq. (1.27)) in principal allows to distinguish between longitudinal and
transverse phonon modes which is often referred to as the ’selection rule’. Due to the
high symmetry of the plane-polarized Cu-O vibrations one can focus on the Δ1-branch
by choosing Q along [1 0 0]: All oxygen atoms vibrate along [1 0 0] (compare Fig. 4.3
(b)) and hence Q · ξΔ1 �= 0 as opposed to the corresponding transverse branch in the
[1 0 0] direction (Δ3-symmetry) where Q · ξΔ3 ≈ 0. Assuming the hypothetical case
of perfect instrumental resolution (i.e., a vanishingly small resolution ellipsoid), solely
the Δ1-branch would contribute to E scans at q = (h 0 0) where the signal from the
Δ3-branch would be negligible.

However, the situation becomes more complicated in a real experiment. The final
resolution of the instrument does not only affect the line shape of the phonon under
investigation but gives rise to sometimes unexpected features like additional peaks, too.
As it turned out, it is crucial to consider the evolution of phonon branches away from
the high-symmetry [1 0 0] direction as illustrated in Fig. 4.5. The branch shown in red
is purely transverse along (h 0 0), i.e., for k = 0, only. In the off-symmetry direction at
(h k 0) with |k| > 0 it assumes a small but significant longitudinal component, hence
a non-negligible dynamic structure factor and the selection rule does not strictly apply
any more. Scanning the energy, the resolution ellipsoid sweeps through the dispersion
of both branches: Centered at (h 0 0) the ellipsoid picks up intensity not only from the
interesting Δ1-branch (blue) but also from the non-negligible longitudinal component
of the red branch in the transverse direction at finite k. As a result, the shell model
calculations predict a two-peak structure around the energy range of the Δ1-branch
that is depicted in Fig. 4.6 (note the color code: peaks are colored according to the
respective phonon branch (Fig. 4.5) they are related to). All peaks reveal a Gaussian
line shape.
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Resolution
ellipsoid

Figure 4.5: Schematic illustration of two phonon branches in lightly-doped LSCO in the
energy range of interest, connecting the high-symmetry [1 0 0] direction at finite h along an
off-symmetry direction with another high-symmetry [1 1 0] direction. (Note that only plane
polarized Cu-O bond-stretching vibrations are considered.)
Along (h 0 0) (out of paper plane) the longitudinal (L) Δ1-branch disperses downwards as
shown in Fig. 4.3 (a). Since the Lyddane-Sachs-Teller splitting can be neglected already at
small doping, the Δ1-branch coincides with the corresponding transverse (T) branch (Δ3-
symmetry) towards h → 0. The latter reveals a flat dispersion along (h 0 0) as demonstrated
in Fig. 6 of [9]. Here, the situation at some finite h is shown where the Δ1-branch lies
considerably below the Δ3-branch. Their connection to other phonon branches along (0 k 0)
is illustrated by the red and blue line: The Δ3-branch connects to a longitudinal vibration
in the [1 1 0] direction (Σ1-symmetry) of which the corresponding zone boundary mode is
referred to as ’breathing mode’ (compare Fig. 4.3 (c)). The Δ1-branch in turn connects to
a transverse vibration in the [1 1 0] direction (Σ3-symmetry) the zone boundary mode of
which is called ’quadrupolar mode’ (see Fig. 4 of [73]). The slight upturn (downturn) of the
red (blue) dispersion away from (h 0 0) illustrates the relative behavior of the connecting
branches, respectively, that are discussed in detail in [73]. At a given h, the branches are
purely transverse or longitudinal for k = 0 and k = h, i.e., (h 0 0) or (h h 0), only. At (h k 0)
with 0 < |k| < h the modes mix.
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Figure 4.6: Calculations using genax on non-superconducting La1.95Sr0.05CuO4 with a
mosaic spread of 2◦ at T = 12 K. Simulated E scans are depicted covering the range from
65 to 95 meV at several Q = (5−q 0 0) from close to the zone center (upper left panel)
towards the zone boundary (lower right panel). Lines show Gaussian fits to the data: The
resolution-based transverse contribution appears as subtle high-energy peak (red) in addition
to the peak that is related to the bond-stretching Δ1-branch (blue). Another phonon of Δ1-
symmetry (the longitudinal bond-bending mode) shows up in some panels at considerably
lower energies and is therefore without influence on the bond-stretching Δ1-branch. The sum
of all contributions is depicted as black line.



80 Chapter 4: Phonon anomalies in cuprate superconductors

4.2.1.2 Fit of data obtained on La1.95Sr0.05CuO4

The E scans measured at (q 0 0) corresponding to the simulations are exhibited in
Fig. 4.7. A finite l component of Q was chosen to maximize the inelastic structure factor
and to avoid spurious contamination. The vertical (out of scattering plane) resolution
of a TAS is usually much worse than the horizontal (in plane) resolution. Consequently,
we chose the reciprocal [1 0 0] and [0 1 0] axes to span the experimental scattering
plane to minimize the effect of the resolution-based transverse contribution. Having
[0 1 0] in the vertical direction instead would enlarge the resolution ellipsoid along
[0 1 0] and thereby enhance the transverse contribution (see Fig. 4.5). Unfortunately,
genax does not allow calculations out of the scattering plane at some finite l (which we
achieved experimentally by tilting the goniometer angle). Hence, the simulation had
to be performed in the ”wrong” Brillouin zone with l = 0 which has minor influence
on the dynamic structure factor: Although the ratio between the areas of the blue
and the red peak in Fig. 4.6 is correct, the Q dependence of the sum of both areas is
not quite correct. In order to allow for a quantitative comparison of the simulations
with the experiment, we calculated the dynamic structure factor corresponding to the
experimental Brillouin zone and scaled the Gaussian fits accordingly8.

Let GΔ1(E−Emax; A, Γexp) denote the simulated Gaussian peak associated with the
bond-stretching Δ1-branch (blue) that is centered around Emax with the area A and the
resolution-based calculated linewidth (FWHM) Γexp. Gtr denotes the simulated Gaus-
sian peak related to the transverse contribution (red). Both Gaussians are convoluted
with normalized Lorentzians LΔ1(E; Γint) and Ltr(E; Γint,tr), respectively, accounting
for the intrinsic linewidths Γint and Γint,tr to fit the measured intensity I(E0):

I(E0)
!
= f ·

∫
dE GΔ1(E − Emax; A, Γexp) · LΔ1(E − E0; Γint) +

+ f ·
∫

dE Gtr(E − Emax,tr; Atr, Γexp,tr) · Ltr(E − E0; Γint,tr) +

+ s · E0 + o , (4.1)

where the slope (s) and the offset (o) characterize the linear background due to multi-
phonon and incoherent scattering. An overall factor f scales the simulated spectra
to match the measured intensity. This factor as well as the linear slope and Γint,tr

are fitted across all Q simultaneously (note that they are the same at every Q). The
offset, Γint and Emax are varied at every Q, respectively, while fixing Emax,tr to the
initial (calculated) value. The area A of the Δ1-peak is allowed to deviate about 25 %
from the calculated value (given as devA in each panel) in order to compensate for
imperfections of the model, Atr is fixed.

The analysis clearly reveals the role of the transverse contribution, most prominently

8The Q dependence of the Debeye-Waller factor was taken into account.
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Figure 4.7: E scans on La1.95Sr0.05CuO4 with a mosaic spread of 2◦ at T = 12K tracing
the Δ1-branch from close to the zone center (upper left panel) towards close to the zone
boundary (lower right panel). Solid lines show fits to data according to Eq. (4.1).

as the small high-energy shoulder of the Δ1-peak. This contribution could have eas-
ily been misinterpreted as an exotic but intrinsic effect or as originating from some
misoriented domain or pure statistics, thus corrupting the analysis.

The same analysis was performed on other sets of scans obtained on another sample
of La1.95Sr0.05CuO4 at T = 3 K and 500 K. Also, previous data taken on La1.93Sr0.07CuO4

at about 12 K [89] were analyzed in the same fashion. These samples had a smaller mo-
saic spread of only 1◦ which somewhat improves the resolution and hence reduces the
resolution-based transverse contribution (not shown). Respective extracted dispersions
and intrinsic linewidths are presented in the following.

4.2.2 Discussion

The dispersion and concurrent intrinsic linewidth of the Δ1-branch in LSCO for several
Sr-doping ratios x are depicted in Fig. 4.8 in comparison to La1.48Nd0.4Sr0.12CuO4. The
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Figure 4.8: Dispersion and concurrent intrinsic linewidth of the Δ1-branch in LSCO for
several Sr-doping ratios x in comparison to La1.48Nd0.4Sr0.12CuO4. Data corresponding to
x = 0.05 and 0.07 were extracted from an analysis such as discussed in Sec. 4.2.1.2. Other
data were adopted from [89]. Black lines illustrate the ’normal’ downward dispersion follow-
ing a cosine function. Other lines are a guide to the eye. Data shown in blue correspond
to a temperature about 12K. Compounds revealing superconductivity below the respective
critical temperature Tc are marked by the red frame. Note that the phonon anomaly is most
pronounced in La1.48Nd0.4Sr0.12CuO4 revealing a static stripe phase that is detrimental to
superconductivity.



4.2: La2−xSrxCuO4 83

new data on underdoped non-superconducting LSCO confirm the general point of view:

• In non-superconducting LSCO (x = 0.05 and x = 0.3) the Δ1-branch is char-
acteristic of a cosine-like downward dispersion and a concurrent gradual (almost
linear) broadening of the phonon linewidth towards the zone boundary. For
x = 0.05, the dispersion and the broadening are nearly T -independent between
3 K and 500 K. The softening at the zone boundary (compare Fig. 4.3) is least
pronounced for LCO. It increases continuously with increasing doping through
the superconducting regime and is most pronounced for non-superconducting but
metallic La1.7Sr0.3CuO4.

• On the other hand, data obtained on superconducting LSCO reveal a distinct
maximum of the FWHM at around half-way to the zone boundary that is ac-
companied by a dip in the dispersion, strongly deviating from a simple cosine
function and most pronounced in the optimally doped system (here also above
Tc [72]).

• Non-superconducting LNSCO with x = 0.12 reveals static stripe order. This com-
pound is indicative of the same anomalous behavior, yet even more pronounced.

To conclude, the above scenario strongly suggests a relation of the phonon anomaly in
LSCO to superconductivity. The anomalous behavior has the same signature that is
observed in the charge channel of LNSCO (x = 0.12) and there attributed to emerging
static stripe order that is detrimental to superconductivity. In LNSCO (x = 0.12), the
effect is most pronounced in close vicinity to q = (0.275 0 0) (note the dashed line in
Fig. 4.8). On the other hand, a little smaller qco = (2ε 0 0) would be expected from
ε ≈ 0.12 in qso where the corresponding signature was found in the magnetic channel
(compare Fig. 4.4). This indicates that the simple picture of spin charge segregation
as presented in that Figure might be somewhat oversimplifying because the charge
ordering wave vector is not just double the magnetic ordering wave vector.

In superconducting samples of LSCO, the phonon anomaly is strongest around h =
0.3 (x = 0.07) and h = 0.28 (x = 0.15). Again, smaller values are expected according to
the magnetic channel (Fig. 4.4) and, most surprisingly, almost no doping dependence
is revealed in the charge channel. If the phonon anomaly is interpreted in terms of
dynamic stripes, then the corresponding fluctuating charge order seems to favor the
same wave vector qfco for both x as opposed to fluctuating magnetic order appearing
at qso with increasing ε towards increasing doping. Assuming a superposition of a
’normal’ linear broadening and some anomalous peak-like broadening, the maximum of
the latter is shifted towards the zone boundary, i.e., to slightly bigger h. Consequently,
the anomalous behavior would be found most pronounced at somewhat smaller h when
isolated from the linear ’background’. This might partly compensate for qfco being too
large.
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However, the fact that there is no doping dependence of qfco in the charge channel in
contrast to the pronounced doping dependence of qso in the magnetic channel remains
a puzzling issue and renders further investigation necessary.

4.3 HgBa2CuO4+δ

Phonon anomalies such as observed in the LSCO family are also found in other cuprate
superconductors [9, 10]. In YBa2Cu3O7−δ (YBCO) at optimal doping, certain bond-
stretching phonons reveal an anomaly that is in many respects similar to the one in
LSCO [90]. The orthorhombic unit cell contains two inequivalent CuO2 layers introduc-
ing two bond-stretching branches of Δ1- and Δ4-symmetry, respectively, complicating
the analysis [10]. Moreover, even the electron-doped cuprate Nd2−xCexCuO4 (NCCO)
shows a similar anomaly which is further discussed in [9].

In this section, new results obtained on HgBa2CuO4+δ (Hg1201) are presented in
comparison to previous data. The crystal structure is tetragonal and the unit cell
contains one completely flat CuO2 plane, as depicted in Fig. 4.9 (left panel). In contrast
to the complex structure in YBCO and the tetragonal to orthorhombic phase transition
in LSCO, the comparatively simple structure of Hg1201 makes it an ideal candidate
for phonon studies. Despite its simple structure, the transition temperature Tc of the
optimally doped system of about 98 K is even higher than in YBCO (93 K [90]). In
fact, members of the Hg-based family even have the highest Tc ≈ 135 K demonstrated
to date.

In LSCO, the interesting longitudinal Cu-O bond-stretching vibration is the one
with the highest energy among all phonon branches of Δ1-symmetry. The next closest
mode of this symmetry (the bond-bending mode) appears at considerably lower energy
(at least in the case of low Sr-doping that was considered in the last Section) and is
therefore without influence on the longitudinal bond-stretching mode. Consequently,
Δ1-modes other than the bond-stretching vibration did not have to be taken into
account and the latter was simply referred to as the ’Δ1-branch’. On the contrary,
three phonon modes of Δ1-symmetry have to be distinguished in Hg1201 in the energy
range of interest: the bond-stretching branch is closely surrounded by the c-polarized
apical oxygen mode (towards higher energy) and by the bond-bending mode (towards
lower energy). This scenario is illustrated by solid lines in the right panel of Fig. 4.9
indicating the respective dispersions around (3 0 0) as calculated with a shell model.
In addition, the measured dispersion of the bond-stretching branch as obtained with
inelastic X-ray scattering (IXS) is shown as black dots [11]. (Note that the vertical
bars indicate the FWHM of corresponding peaks and are not to be mistaken as error
bars.) These results are indicative of an anomalous softening (dip in the dispersion)
similar to LSCO and YBCO.

Group theory tells us that phonon branches of the same symmetry class (e.g., Δ1)
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Figure 4.9: (Left panel) Tetragonal unit cell of Hg1201 with the lattice constants of a =
3.875 Å and c = 9.513 Å revealing a completely flat CuO2 plane. The Figure was adopted
from [91]. (Right panel) Previous results obtained with IXS on Hg1201 at T = 55 K well
below Tc = 94K as presented in [11]. The measured dispersion of the bond-stretching branch
is shown as black dots with the vertical bars indicating the FWHM of corresponding peaks.
Solid lines indicate shell model calculations of (top to bottom) the c-polarized apical oxygen
mode, the bond-stretching mode and the bond-bending mode.

are not allowed to cross each other. If, due the special nature of the interatomic
interactions, two such branches tend to cross each other in a particular part of the
Brillouin zone, a mixing of their polarization patterns and a mutual repulsion of the
eigenfrequencies will be the result [92] (analogous to the problem of coupled harmonic
oscillators). As this is the case for the bond-stretching and the bond-bending branch
in the vicinity of the zone boundary, a clear assignment of a measured peak to either
of the branches is difficult. Uchiyama et al. argue in [11] that the calculated structure
factor of the bond-bending mode is much weaker than the structure factor of the bond-
stretching mode. (The intensity predicted for the apical oxygen mode is so weak as to
be unobservable.) And even if one cannot completely exclude the possibility of mixing
above q ≈ 0.3, the bond-bending mode should give a signal that is close to resolution
limited (as reported for YBCO and LSCO). The observed FWHM of ≥ 12 meV at
q ≥ 0.3 is much larger than the resolution (6.0 − 6.3 meV) and is thus indicative of
a dominant contribution from the bond-stretching mode. However, data presented
in [11] are somewhat marginal especially in the vicinity of the zone-boundary where
the influence of the bond-bending branch should be addressed in further investigations.
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Figure 4.10: E scans on Hg1201 at T = 250K tracing the Δ1-branch from close to the zone
center (upper left panel) towards close to the zone boundary (lower right panel). Contribu-
tions from low-energy phonons and the elastic line are subtracted. Solid lines show fits to
data where the measured resolution function is convoluted with a Lorentzian accounting for
the intrinsic linewidth.

4.3.1 Experimental results

Anomalous phonon behavior might be a consequence of superconductivity, thus emerg-
ing below Tc only. To actually confirm a possible relation of the anomaly to the
mechanism causing superconductivity, its presence in the non-superconducting phase
above Tc is crucial (as it is the case in LSCO and YBCO). Therefore, we investigated
the bond-stretching phonon branch in Hg1201 at a temperature of 250 K well above
Tc = 94 K. Single crystals of a size amenable to neutron scattering have recently become
available [91]. Unfortunately, our first experiments on a single-crystalline sample9 per-
formed on the 1T spectrometer suffered from a huge background hampering a reliable

9The sample of about 1.2 g with a mosaic of less than half a degree was provided by the ’Department
of Applied Physics’ of the Stanford University, Stanford (USA).
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analysis. Alternatively, we used inelastic X-ray scattering (IXS) at ESRF in Grenoble
(France) to investigate the anomalous phonon behavior. Scans were performed in the
vicinity of the nuclear (3 0 0) Bragg peak to maximize the dynamic structure factor
and to facilitate a comparison with previous data at 55 K such as presented in Fig. 4.9.

It is important to note some crucial differences between IXS and INS: IXS allows
to measure much smaller samples because the typical diameter of the beam is in the
order of 100 μm as opposed to centimeters in the case of neutrons. Due to the strong
interaction of photons with electrons, the penetration depth into the sample is much
smaller for X-rays than for neutrons and decreases considerably with the increasing
atomic number. In particular, heavy elements such as Hg and Ba reduce the illumi-
nated sample volume, e.g., by a factor of three compared to previous IXS studies of
NCCO [11]. Compared to neutron scattering IXS provides superior wavevector and
energy resolution at large energy transfers but lower resolution at low energies. A ma-
jor drawback of IXS is the Lorentzian-like resolution function (vs. Gaussian for INS).
Resulting tails of the elastic line and intense low-energy excitations contribute signifi-
cantly to the background at high energies. In addition, the dynamic structure factor of
the bond-stretching branch in Hg1202 decreases much more quickly towards the zone
boundary for IXS than for INS complicating a reliable measurement of the intrinsic
FWHM.

The ID-28 beamline at ESRF provides nine analyzer crystals (each with an indepen-
dent detector) allowing to measure nine different Q, simultaneously. In order to get a
proper estimate of the experimental resolution function in each of the nine channels,
we measured a sample of polymethyl methacrylate under exactly the same conditions
used to investigate Hg1201: A Pseudo-Voigt function Vi(E) (i enumerates respective
channels) consisting of a Gaussian and up to six Lorentzians properly describes the
measured spectra and hence is used in the following to model the elastic line (scaled
accordingly). Furthermore, phonon peaks are modeled by convoluting the normalized
Pseudo-Voigt function V0,i(E) with a Lorentzian Li(E − Emax; A, Γint) to account for
finite intrinsic linewidths (FWHM) Γint. We used density functional theory (DFT) in
the local density approximation (LDA) to calculate expected energy positions (Emax)
and dynamic structure factors (related to area A) [93], considering the Bose-factor and
1/ω such as shown in Eq. (1.29). The measured scattering intensity in the energy range
of the bond-stretching branch is depicted in Fig. 4.10. Contributions from lower energy
phonons and the elastic line are already subtracted. The small structure factor at the
zone boundary hampered a reliable detection of the phonon peak there. Consequently,
this analyzer channel is omitted in the Figure. At all Q, the area A is fixed to the
calculated value and the background resulting from multi-phonon and incoherent scat-
tering is assumed to vary linearly with energy. Corresponding offset (o) and slope (s)
are fitted at each Q, respectively, to compensate for slight changes in the background
among the nine detectors. The peak position Emax and the intrinsic linewidth Γint are
adapted at every Q as well.
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Figure 4.11: Dispersion and concurrent intrinsic line-
width (FWHM) of the bond-stretching branch at temper-
atures well below (blue) and above (red) Tc in comparison
to the calculated dispersion according to DFT (black line).
Red and blue lines are a guide to the eye. Data at 55 K cor-
respond to those exhibited in the right panel of Fig. 4.9 as
adopted from [11]. Note that the resolution-based FWHM
of about 6 meV was subtracted in order to facilitate a com-
parison with data at 250K revealing the intrinsic linewidth
Γint as extracted from fits shown in Fig. 4.10.
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4.3.2 Discussion

The measured dispersion and concurrent intrinsic linewidth as extracted from the above
analysis is depicted in Fig. 4.11. It reveals a dip in the dispersion of the bond-stretching
phonon branch that is in pronounced contrast to the monotonic behavior expected from
DFT. The latter obviously underestimates the phonon energies throughout the Brillouin
zone but yet predicts a cosine-like behavior similar the shell model. The comparison
with previous data obtained at T = 55 K from [11] demonstrates that the dispersion
does not change significantly upon heating to 250 K. Moreover, anomalous broadening
most pronounced around half-way to the zone boundary is found at both temperatures.
Judging from the tiny phonon intensity at the zone boundary, the value of about
11 meV at h = 0.48 and T = 55 K might be somewhat overestimated. Fixing the area
of respective phonon peaks to the DFT-calculated value seems to have improved our
analysis at 250 K. However, neither previous data nor our results allow for a reliable
extraction of the intrinsic FWHM at the zone boundary.

To summarize, the anomalous phonon behavior observed in the bond-stretching
phonon branch is present not only in the superconducting phase but also well above
Tc. Although extending this study to different dopings, temperatures and nonzero
wavevectors is important, it strongly suggests already at this stage a relation of the
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phonon anomaly to the mechanism responsible for superconductivity.

4.4 Conclusion

Previous experiments revealed anomalous phonon behavior of the longitudinal plane-
polarized Cu-O bond-stretching vibration in LSCO: Around q = (0.3 0 0), this phonon
mode is softer and broader than expected from conventional theory such as DFT or
shell models. The effect may be related to incipient instability with regard to the
formation of dynamic (fluctuating) stripes or another charge-order or inhomogeneous
state. The phonon anomaly reveals a distinct doping dependence as it is absent in
overdoped non-superconducting LSCO and is very pronounced in the optimally doped
system with Tc = 35 K. Here, it is present also above Tc.

In this work, measurements on underdoped LSCO were performed to complete the
systematic study of this compound. Special emphasis was laid on considering the 4D
resolution function of the spectrometer in Q and ω in order to extract the intrinsic
linewidth of the phonons. We found that the anomalous phonon behavior is present in
superconducting La1.93Sr0.07CuO4 (Tc = 20 K), albeit less pronounced than in optimally
doped LSCO. Furthermore, it is absent in non-superconducting La1.95Sr0.05CuO4.

Similar phonon anomalies have been found in other cuprate superconductors with a
higher Tc as well, such as YBCO and Hg1201. However, the data for Hg1201 reported
in the literature are of marginal quality. Moreover, measurements were done only for
a temperature well below Tc. This motivated us to perform another study on the
same compound. Unfortunately, we could not substantially improve the data quality.
Nevertheless, we achieved some progress by basing our analysis on DFT-results rather
than on a simple phenomenological model as was done previously. Further, we were
able to show that the phonon anomaly persists above Tc.

The results presented in this work together with the results reported in the litera-
ture strongly suggest that the phonon anomaly in the Cu-O bond-stretching branch is
intimately connected to superconductivity. However, there is as yet no theory available
to unravel the role of the anomalous phonons for the mechanism of high-Tc supercon-
ductivity.
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Summary

Thanks to the high versatility of neutron scattering, a variety of phenomena in differ-
ent classes of strongly correlated electron systems could be studied by this technique:
Quasielastic scattering from spin fluctuations in MnSi above TC = 29.5 K revealed the
detailed temperature dependence of their dynamics and signature in Q space. Elastic
scattering from magnetic order in CeCu5.5Au0.5 was performed at temperatures below
100 mK to investigate the pressure dependence of the magnetic ordering wave vector
qm up to p = 8 kbar. Finally, neutrons were scattered inelastically from nuclear exci-
tations (phonons) in cuprate superconductors at temperatures between 3 K and 500 K
to study their anomalous behavior. In the following, the main results obtained on each
system are briefly summarized.

Dynamic spin clusters in the paramagnetic phase of MnSi

A unique magnetic state referred to as ’partial order’ (PO) had been found previously
in MnSi at high pressures above p ∼ 14 kbar and below some crossover temperature
T0. PO is characterized by long-range helical correlations but disordered propagation
directions. At ambient pressure and above TC, small-angle neutron measurements were
indicative of a structure very similar to PO that quickly disappears upon heating.

We were able to show by measurements with a triple-axis spectrometer that there
are indeed magnetic correlations at ambient pressure which resemble the PO at high
pressures. Their dynamics is extremely slow, even at temperatures far above TC, i.e.,
at 100 K. For a better understanding of this state, we performed calculations on finite-
size spin clusters with the structure of MnSi. The results of these calculations allow
us to interpret the experimental results of this work and those of previous studies in a
qualitative manner:

PO is most likely a collection of chiral-ordered spin clusters that form above TC

at all pressures and slowly diffuse in the paramagnetic background. The calculated
structure is similar to packed double-helices known from the blue phases of chiral
liquid crystals but features a third independent twist direction that leads us to the
terminology of ’triple-helices’. Their Fourier transform resembles the experimentally
observed scattering function. On increasing the temperature, the number and size
of magnetically ordered clusters is gradually reduced but small clusters survive up to
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fairly high temperatures. The phase transition to the locked helix, that is favored
once the correlation length exceeds a certain value at TC, happens in a first order
fashion because both phases are topologically distinct. This is why the specific heat
C(T ) shows a clear first-order-like spike at the phase transition. Our model further
explains the reduction of TC by replacing a part of the Mn atoms by Fe, because the
correlation length is reduced by Fe impurities, thus stabilizing the PO phase at a given
temperature. The non - Fermi liquid (NFL) behavior in MnSi in certain parts of the
phase diagram might originate from the scattering of conduction electrons by the triple-
helix clusters. Calculations of the transport properties are necessary to test these ideas
further.

Tuning behavior of magnetic order in CeCu6−xAux

CeCu6−xAux is one of most extensively studied heavy-fermion systems that offers
unique possibilities to investigate NFL behavior related to a quantum critical point
(QCP) which can be tuned by different parameters such as Au concentration x, hy-
drostatic pressure p or magnetic field B. A striking equivalence of the tuning behavior
with x or p had been found with respect to macroscopic properties such as the specific
heat, the magnetic susceptibility and the electrical resistivity.

We succeeded to confirm this x - p equivalence on a microscopic level by showing
that a microscopic quantity, i.e., the magnetic ordering wave vector qm, can be tuned
accordingly. At ambient pressure CeCu5.5Au0.5 orders at qm ≈ (0.59 0 0). Upon
applying p = 4.1 kbar, qm ≈ (0.61 0 0.21) is found corresponding to CeCu5.6Au0.4 at
ambient pressure. The transition seems to happen in a first order fashion. However,
increasing the pressure further qm of CeCu5.5Au0.5 saturates at a value that is somewhat
smaller than expected from a comparison with corresponding systems at ambient p.
This issue needs further attention and should be addressed in future investigations. A
higher pressure than achievable in this study would allow one to tune CeCu5.5Au0.5

into quantum criticality and to investigate the fluctuations there. This might help to
gain more insight into the mechanisms that drive the quantum phase transition.

Anomalous phonon behavior in cuprate high-Tc superconductors

It was known for a long time that the longitudinal plane-polarized Cu-O bond-stretching
vibrations in La2−xSrxCuO4 (LSCO) show a strong doping dependence: whereas the
zone center frequency remains essentially unchanged, the zone boundary frequencies
decrease substantially with increasing x, in particular along the 〈1 0 0〉 direction. Later,
it became clear that the softening of the zone boundary modes is not related to super-
conductivity because it continues into the overdoped regime where superconductivity
vanishes. On the other hand, a very pronounced softening and broadening (pointing
towards a strong electron-phonon coupling) around q = (0.3 0 0) observed in the op-
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timally doped system with x = 0.15 did seem to be correlated with superconductivity
because it was absent in overdoped, non-superconducting LSCO with x = 0.3. We note
that this effect is not expected from conventional theories such as density functional
theory (DFT) or shell models. It is thought to be related to an incipient instability
with regard to the formation of charge stripes (spin charge segregation). In order to
confirm the conjecture that this anomaly is linked to superconductivity, it was crucial
to extend the measurements to the underdoped side of the phase diagram. We found
that the anomalous phonon behavior is present in superconducting La1.93Sr0.07CuO4

(Tc = 20 K), albeit less pronounced than in optimally doped LSCO, but is absent in
non-superconducting La1.95Sr0.05CuO4. Thus, our results corroborate the hypothesis
that this particular type of phonon anomaly is associated with superconductivity.

Similar phonon anomalies have been found in other cuprate superconductors with a
higher Tc as well, such as YBa2Cu3O7−δ (YBCO) or HgBa2CuO4+δ (Hg1201). However,
the data for the latter compound reported in the literature were of marginal quality.
This motivated us to perform another study on the same compound. Unfortunately, we
could not substantially improve the data quality because of the high absorption cross-
section of mercury. Nevertheless, we achieved some progress by basing our analysis on
DFT results rather than on a simple phenomenological model as was done previously.
Further, we were able to show that the phonon anomaly persists at a temperature of
250 K, i.e., well above Tc.

The results presented in this work together with the results reported in the litera-
ture strongly suggest that the phonon anomaly in the Cu-O bond-stretching branch is
intimately connected to superconductivity. However, there is as yet no theory available
to unravel the role of the anomalous phonons for the mechanism of high-Tc supercon-
ductivity.
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Appendix A

MnSi

A.1 Optimization of spin clusters

The spin cluster calculations where performed using the program package MatlabR©

in the version R2008b. 8 to 16 CPUs provided by the ’Institut für Wissenschaftliches
Rechnen und Mathematische Modellbildung’ (IWRMM) and the ’Steinbuch Centre
for Computing’ (SCC) of the ’Karlsruhe Institute of Technology’ (KIT) calculated for
about four months to achieve the results presented in Sec. 2.3. The algorithm developed
to optimize the spin clusters is very briefly introduced in the following.

First, a cluster of a certain rectangular shape is initialized with ferromagnetic, helical
or random spin configurations on a simple cubic lattice or Mn sites in the B20 MnSi
structure. Thereby, the lattice sites are enumerated and mapped injectively onto a
one-dimensional list (a so-called ’field array’) that is to contain all information about
the cluster and can be handled much more efficiently than a true 3D object. Let N
be the number of lattice sites, i.e., the number of spins1, then each of the N ’fields’
contains the orientation of the normalized spin (in spherical coordinates) and pointers
to other fields corresponding to the respective nearest neighbors.

Orientation optimization with regard to Eq. (2.6) is performed for individual spins
one-by-one in random order keeping their magnitudes constant. In initialized clusters
none of the spins is optimized and hence all spins are selectable. After optimization
of the spin at site i, this spin remains non-selectable until one of its nearest neighbors
at sites j(i) has been optimized. In comparison to selecting the next spin among all
spins, this method significantly accelerates the convergence of the total energy.

After each 10N spin optimizations the total energy Enew of the cluster Cnew is
calculated and is compared with the old value Eold of the corresponding cluster Cold.

1Sec. 2.4 addresses Fe-doped clusters on page 45. There, the number of spins is smaller than the
number of lattice sites because Fe impurities are modeled by empty sites. This special case is not
considered here.
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If Enew < Eold, i.e., if the optimization of the spin configuration has been effective,
the new cluster is taken to be further optimized. If the configuration could not be
improved, i.e., if Enew ≥ Eold, Cnew is discarded and the old cluster is tried to be
optimized once again (using a different random seed). This process is repeated until
|Enew −Eold| falls below a certain threshold value. On the other hand, it is interrupted
triggering an error message if Enew ≥ Eold three times in a row.

The actual optimization of a spin at site i with respect to its nearest neighbors is
achieved by a standard MatlabR© routine called ’fmincon’ of which we limited the
maximum number of iterations not to exceed 30 to further accelerate the convergence
of the total energy.

A.2 Quantitative energy considerations

In the following, the Hamiltonian H0 as presented in Eq. (2.7) is considered. For given
D and J , the energy for just one pair of spins (one bond) is given by

E = −Jsi · sj − D · (si × sj) . (A.1)

Assuming that D = (D, 0, 0), si = (0, 0, 1) and sj = (0, s,
√

1 − s2) (spins are normal-
ized), it is easy to show that Eq. (A.1) is minimized for

s = s0 = −
√

D2

J2

1 + D2

J2

(A.2)

and correspondingly,

E1D := E(s0) = −J

√
1 −

D2

J2

1 + D2

J2

− D

√
D2

J2

1 + D2

J2

. (A.3)

E1D corresponds to case of a fully optimized and unfrustrated 1D chain as shown in
Fig. 2.10. A cluster of random spins yields an average of zero energy per bond:

Erand = 0 . (A.4)

Ferromagnetically aligned spins optimize the first term in Eq. (A.1) but cancel the
second resulting in

EFM = −J . (A.5)

In our model each spin has six nearest neighbors. The perfect helix structure with
Energy Ehelix (crystal potential neglected) can be considered as a 3D extension of a
1D helix because spins are parallel to each other in 2D planes perpendicular to the
helix propagation vector kh. Thus, in the B20 structure with kh along 〈1 1 1〉, in
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average four neighboring spins are parallel (in the same plane perpendicular to the
helix propagation vector) and two spins are perfectly optimized such that

Ehelix =
2

3
EFM +

1

3
E1D , (A.6)

and consequently

Eh := Ehelix − EFM =
1

3
J +

1

3
E1D (A.7)

=
J

3

(
1 −

√
1 −

D2

J2

1 + D2

J2

)
− D

3

√
D2

J2

1 + D2

J2

. (A.8)
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[62] P. Coleman, C. Pépin, Q. Si, R. Ramazashvili, How do Fermi Liquids get heavy
and die ?, J. Phys.: Condens. Matter, 13, R 723 (2001).

[63] Q. Si, S. Rabello, K. Ingersent, J. L. Smith, Locally critical quantum phase tran-
sitions in strongly correlated metals, Nature, 413, 804 (2001).



106 BIBLIOGRAPHY
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