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Introduction

Clearly, the main function of the human respiratory system is to enable the
exchange of gas with the blood circuit. Oxygenated air is inhaled through the nose
or mouth and transported to the lungs. There, the oxygen is passed to the blood
circuit in which the oxygen is exchanged for carbon dioxide. Then, the carbon
dioxide-enriched air is exhaled. The permanent supply of oxygen is vitally impor-
tant. A rule of thumb states that a human can survive about three weeks without
food, three days without water but just three minutes without air.

Few details are presently known about this roughly described breathing process
which also comprises other functionality like the humidifying, cleaning or warming
of inhaled air. An extensive research of the highly complex system is required in
order to explain the many occurring disorders of the human respiratory system. A
vast field of applications would benefit from a deeper understanding of this system.
For example, being able to predict the possible implications on the respiratory tract
due to surgery or environmental impact has the potential to greatly improve health
care in this domain.

The full description of the human respiratory system is an enormous challenge.
The difficulties are not only related to the complex geometry but also to the highly
complex multi-physics phenomenology involving multi-scale features. Considering
the transport and exchange of gas as significant factor in order to obtain a full de-
scription, the research field of fluid dynamics is adequate to provide some answers.
Driven by the rapid increase of available computing power in recent years especially
in the context of high performance computing (HPC), the relevance of computational
fluid dynamics (CFD) for medical research and development in this area has grown
steadily. Nowadays, numerical simulations help accelerate the research progress.
For example, numerical simulation is used to extend experimental-based studies or
provide new insights where experiments are not feasible. Notwithstanding the great
achievements in recent years, the numerical simulation of the full human respira-
tory system corresponds to one of the grand challenges in scientific computing.

Some aspects of this grand challenge are taken on in this thesis. They are for-
mulated by means of two main aims. The first one is dedicated to invent numerical
strategies to simulate human respiratory flows efficiently and accurately. Thereby,
the proposed approaches are meant to enable other scientists to get a better fun-
damental understanding of the full respiratory functionality but also to accelerate
the progress towards patient-specific treatment strategies. The latter issue is also
related to the second main aim of this thesis, namely the integration of mathemat-
ical optimisation strategies in order to control or optimise respiratory flows.

In the last two decades, lattice Boltzmann methods (LBM) have become a ma-
tured technique in the context of CFD. The simplicity of the core algorithms as
well as the locality properties resulting from the underlying kinetic approach lead
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2 INTRODUCTION

to methods which have already shown to be very attractive in at least two respects.
One of them is the simulation of flows with underlying complex computational do-
mains and the other is related to parallelism. Hence, they seem well suited to reach
the posed goals. However, aspects related to fluid flow control and optimisation
taking advantage of LBM are barely discussed in the literature and have by no
means been deeply analysed. Therefore, this thesis strongly focuses on the devel-
opment of a general framework in this context.

The overall strategy to realistically solve the mentioned problems relies on an
integrative approach consisting of three pillars, namely numerical simulation, high
performance computing and mathematical optimisation which are all based on a
mesoscopic model governed by the Boltzmann equation or its simplification, the
BGK-Boltzmann equation (cf. Figure 0.1). It is taken advantage of LBM which
provide the necessary discretisation strategies for the numerical solutions of these
equations.

Figure 0.1. Integrative strategy and a selection of its applications
considered within this work. Challenges concerning the simulation
of flows in the human respiratory system are met by the combined
application of numerical simulation, high performance computing
and mathematical optimisation techniques based on a mesoscopic
model, which is governed by the BGK-Boltzmann equation.

The integrative strategy and its applications are reflected in the organisation
of this thesis. The main part of the thesis is organised as follows:

In the first chapter, two physical models both dedicated to describe the dy-
namics of incompressible Newtonian fluids are introduced and compared to each
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other. The first is a macroscopic model governed by the incompressible Navier-
Stokes equation and the second is a mesoscopic model governed by the Boltzmann
equation or its simplification, the BGK-Boltzmann equation. Emphasis is placed
on accenting the connection between and the incompressible Navier-Stokes equa-
tion a family of BGK-Boltzmann equations in a regime of small Knudsen and Mach
numbers.

In Chapter 2, lattice Boltzmann methods are introduced in the light of discreti-
sation techniques for families of BGK-Boltzmann equations. This is in contrast to
many other approaches where they are considered in connection with the incom-
pressible Navier-Stokes equation. Afterwards, topics related to an efficient imple-
mentation strategy of LB algorithms are addressed. Two numerical experiments
complete the chapter. The first example to show the connection of LBM to the
incompressible Navier-Stokes equation. For this purpose, an analytical stationary
solution of a particular incompressible Navier-Stokes equation is given which is to
be reached by applying certain LB schemes. The second numerical experiment is
dedicated to solve the famous benchmark problem lid-driven cavity (LDC). This
is realised by modelling the problem both macroscopically and mesoscopically and
solving the resulting governing equation by a finite element method (FEM) and an
LBM, respectively. Both solutions are finally compared with experimental data.

A hybrid parallelisation concept especially developed for LBM and its real-
isation is the subject of Chapter 3. The proposed strategy allows coping with
platforms sharing the properties of both shared and distributed architectures. The
approach relies on spatial domain decomposition where each domain represents a
basic block entity which is solved on a symmetric multiprocessing (SMP) system.
Its realisation is finally evaluated by means of performance results obtained for two
three-dimensional test cases. The first one is a problem with an underlying simple
geometry, namely the benchmark problem LDC. The second example is charac-
terised by the comparatively complex computational domain of an upper part of
the human lungs.

Chapter 4 and Chapter 5 are both dedicated to developing general solution
strategies to numerically solve fluid flow control and optimisation problems where
the side conditions are governed by a BGK-Boltzmann equation. Both approaches
are gradient-based and hence require the computation of certain derivatives. How-
ever, they differ fundamentally in the way that the derivatives are obtained.

In the first of the two chapters, the application of a first-discretise-then-optimise
strategy based on automatic differentiation AD techniques is proposed. Details re-
garding the implementation of this approach for parallel use are discussed before
the realisation is tested for a parameter identification, respectively distributed con-
trol problem. The numerical results are verified and the parallel performance is
analysed.

The approach presented in Chapter 5 relies on the first-optimise-then-discretise
ansatz and is based on obtaining the required derivatives by means of solutions of
adjoint problems. In this chapter, a necessary condition for an optimum of the con-
tinuous optimisation problem is derived by applying Lagrange’s formalism. Fur-
ther, the adjoint BGK-Boltzmann equation is derived as the governing equation
of a prototypical adjoint problem. Then, methods similar to LBM are proposed
to discretise the adjoint BGK-Boltzmann equation equation. Afterwards, aspects
concerning its parallel realisation are addressed. At the end of the chapter, the
distributed control problem formulated in Chapter 4 is considered as a test case to
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numerically verify the realisation and to test its parallel performance. Furthermore,
both the numerical and the performance results are compared to those obtained by
applying the AD-based strategy.

In Chapter 6, the focus is placed on the numerical simulation of the respiration
in two parts of the respiratory tract, namely the upper human lungs and the nose.
The underlying geometry data are obtained by computer tomography (CT) scans
of a patient with a diagnosed ventilation disorder. Hence, secondary objective is,
to discover a pathology which might be responsible for this disorder by the un-
dertaken numerical simulations. At first, a concept for a complete preprocessing
dedicated to simulate fluid flows in complex geometries applying LBM is presented.
Its realisation is illustrated by means of extracting the computational domains of
the lungs and nose from the mentioned CT data. The flow of air in the human nose
is simulated for two test configurations. The first one aims to establish numerical
evidence for pseudo steady states and, furthermore, to validate the results by means
of a comparison with numerical results obtained by others as well as experimentally
obtained data for other similar geometries. The second test suite is formulated in a
way which enables a comparison with measurements obtained for the actual consid-
ered patient. Finally, a feasibility study is presented. The considered problem is an
exhalation at a fixed flow rate in the upper part of the human lungs. The discussed
approach is meant to establishing the basis for a two-scale model describing the
respiration in the complete human lungs.

The last chapter of this work is dedicated to summarise the obtained results and
address open questions both stimulating further research. Finally, the bibliography
provides references for all sources relevant to this thesis. An appendix provides in-
formation related to two associated projects, namely OpenLB and United Airways.
At the very end of this work, one finds important frequently used abbreviations,
fluid constants, parameters and variables, norms and spaces as well as differential
operators collected in a nomenclature.



CHAPTER 1

Modelling Fluid Flows: A Mesoscopic and

Macroscopic View

The motion of liquids and gases is observed, investigated and modelled in the
research field of fluid dynamics. Experiments build an empirical basis for the mod-
els, i.e. measurements are taken to discover correlations of various quantities of
the fluids. These observations manifest basic model assumptions which finally lead
to equations governing the model itself. Depending on the scale where the obser-
vations take place and, consequently, the level where the model assumptions are
formulated, one can distinguish macroscopic, mesoscopic and microscopic models
for the description of fluid flows.1 In Table 1.1 this classification of fluid flow mod-
els is characterised and examples for models, observed properties and numerical
methods used to solve corresponding equations are given.

model type macroscopic mesoscopic microscopic

characteristic interaction of distribution of interaction of
model molecules in the molecules in the single molecules
assumption fluid neglected fluid considered in the fluid

considered
examples: Navier-Stokes, Liouville, Boltzmann, molecular
models Euler, Stokes, Heat BGK-Boltzmann dynamics

equation, ... equation, ... (Newton’s laws)
examples: fluid velocity, mean free path, molecular mass,
observed pressure, density, mean molecular velocity, extent
quantities temperature, ... velocity, density, ... and form, ...

examples: spectral, finite Monte Carlo, lattice molecular
numerical differences, volumes Boltzmann, finite dynamics
methods and elements, ... differences, volumes

and elements, ...

Table 1.1. A Classification of models to describe fluid flows. Ex-
amples for models, considered fluid quantities are given for each
class.

Assuming that models of different classes are consistent, the classification can
be seen in a hierarchical manner in the sense that models based on small scales
are more general than those based on large scales. That means in particular that
the correlation of macroscopic flow quantities can be explained by mesoscopic or
microscopic models but not vice versa. However, in practice this idealised picture
of consistent models is often not given or not obvious. Furthermore, if relations of

1The here presented classification for fluid flow models is not complete. Models based on

observations in even smaller scales exist, e.g. quantum mechanical models.

5



6 1. MODELLING FLUID FLOWS: A MESOSCOPIC AND MACROSCOPIC VIEW

models exist it can be hard to prove them with mathematical rigour. An example
in that context is the relation of the mesoscopic model for rarefied gases to macro-
scopic models for viscous flows - in particular, the correlation of the Boltzmann
equation or its simplifications to the incompressible Navier-Stokes equation. These
two models are in the focus of the explanations to come in this chapter.

The first two sections of this chapter are of introductory character. In par-
ticular, a notation is established and elementary equations are recorded to which
the explanation in all other chapters refer. In Section 1.1 model assumptions are
presented for both macroscopic models in general and an incompressible Newtonian
fluid flow model in particular. Based on them, conservation equations are derived.
This finally leads to the incompressible Navier-Stokes equation. In Section 1.2 a
mesoscopic model for rarefied gases is introduced. As for the macroscopic model, at
first, the model assumptions are formulated. Afterwards, as governing equation for
this model the Boltzmann equation is derived. A bridge between the “mesoscopic”
and “macroscopic world” is built in the last part of this chapter within Section 1.3.
Thereto, at first some fundamental properties of the Boltzmann equation are stated.
Then, the BGK-Boltzmann equation is considered. This equation is a simplifica-
tion of the Boltzmann equation which preserves its substantial properties. Finally,
a family of BGK-Boltzmann equations is considered in a regime of small Knudsen
and Mach numbers. It turns out that in a limiting process solutions of such families
are connected with the incompressible Navier-Stokes equation.

1.1. Macroscopic Approach: A Model for Incompressible Newtonian
Fluids

In the context of continuum mechanics the underlying micro-structure of a
fluid, i.e. the whereabouts and interactions of atoms or molecules, respectively,
is not considered and therefore not modelled. Instead, macroscopic quantities are
related to each other. The relations are established phenomenologically by means
of observation found to hold for certain fluids. This finally leads to a system of the
model governing equations.

In the following, exclusively such viscous fluids are considered which are said
to be incompressible Newtonian fluids. For that class of fluids a macroscopic model
can be derived which is governed by the incompressible Navier-Stokes equation.
To build the model, at first in Subsection 1.1.1 the required terminology and as-
sumptions are stated. Afterwards, in the following subsections the incompressible
Navier-Stokes equation is derived. The presented derivation aims to emphasise the
assumptions needed to establish the model, whereas questions regarding the exis-
tence and uniqueness of a solution are not discussed. The books of Feistauer [36]
and Batchelor [13] and the derivations Baumann presented in [14] serve as guideline
for the contents of this section.

1.1.1. Terminology and Model Assumptions. The dynamics of a fluid is
considered in a domain Ω ⊆ R

d (d = 2, 3) over a time I = [t0, t1] ⊆ R, 0 ≤ t0 <
t1 < ∞. In the here presented model, the motion is described by the two following
macroscopic quantities:

• velocity

u :

{
I × Ω → R

d

(t, r) 7→ u(t, r) ,
(1.1)
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• pressure

p :

{
I × Ω → R

(t, r) 7→ p(t, r) .
(1.2)

A fundamental assumption postulated for continuum mechanical models is the
continuum hypothesis. Under this premise, a fluid is seen as a substance that fills a
considered domain with an arbitrary small volume completely. This premise implies
the negligence of the interaction of single atoms or molecules. From a mesoscopic
point of view, the macroscopic quantities can be interpreted as averages obtained
from the distribution of n particles (cf. Subsection 1.2.2). With the continuum
hypothesis the averages are considered in the limit n → ∞. Thus, this picture sug-
gests the consequence that in the limit all macroscopic quantities can be assumed to
be smooth in Ω and I. This is in accordance to observations as long as the consid-
ered volumes where the averages are measured are large enough (cf. Batchelor [13,
p. 5, Figure 1.2.1]). The term “large enough” can be quantified by the Knudsen
number Kn which is defined as the quotient of a typical mesoscopic and a typical
macroscopic length scale (cf. Definition (1.69)). In this context, the continuum
hypothesis can be seen as the limit case Kn = 0.

A characterising property of incompressible fluids is that the mass density
ρ ∈ R>0 is constant in Ω and I. As well as the continuum hypothesis the as-
sumption of incompressibility is an idealisation and phenomenologically founded.
It is observed (cf. Batchelor [13, p. 168]) that steady fluid flows with solely small
measured macroscopic flow velocities show only little variations of their mass den-
sity. Here, the term “small” can be quantified by comparing a typical macroscopic
to a typical mesoscopic speed. The quotient defines the Mach number Ma (cf. Def-
inition (1.70)). In this framework, the incompressibility hypothesis corresponds to
the limit case Ma = 0.

Another postulate is that the dynamic viscosity µ ∈ R>0 is a constant in Ω
and I as well. Further, a restriction is made to fluids for which it is observed that
their strain rate tensor

D :





I × Ω → R
d×d

(t, r) 7→ D(t, r) :=
1

2

(
∇r ⊗ u + (∇r ⊗ u)

T
)

(t, r)
(1.3)

is linear to the stress tensor P ∈ R
d×d. This property characterises so-called

Newtonian fluids. Newton’s hypothesis is broadened and finally formulated in the
Stokes’ postulates, which are:

(1) P = −pId + L(D) with a linear continuous function L ,

(2) the fluid is isotropic, i.e. especially that L(SDST ) = SL(D)ST for all

transformations S ∈ R
d×d with SST = Id and det(S) = 1 ,

where Id ∈ R
d×d denotes the identity matrix.

The two parameters ρ and µ characterise the material properties of the consid-
ered fluid. They are both assumed to be given in advance. With them and with
the three principles of mechanics, namely

(1) conservation of mass,
(2) conservation of linear momentum,
(3) conservation of angular momentum,

the governing equation of the model for incompressible Newtonian fluids can be
derived. To be mentioned is that the latter principles basically rely on Newton’s
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observations manifested in his famous first and second law.

In the following three subsections, namely Subsection 1.1.2 to Subsection 1.1.4,
the three mentioned principles of mechanics are derived. In Subsection 1.1.5 Stokes’
postulates are motivated. Finally, the section is completed by Subsection 1.1.6
where the incompressible Navier-Stokes equation is stated.

1.1.2. Conservation of Mass. The law of conservation of mass states that
the mass of a considered fluid in a closed system will remain constant. For a general
derivation of the equation which describes the conservation law, the mass density ρ
is understood as a function of time and space, i.e. the restriction to incompressible
fluids is dropped momentarily. Then, for B ⊆ Ω and t ∈ I the mass m(B, t) is
given by

m(B, t) :=

∫

B

ρ(t, r) dr . (1.4)

In the here considered context, B does not represent a closed system in the sense
that through the boundary ∂B mass can be gained or lost during a considered time
interval [t′0, t

′
1] ⊆ I. The total win minus loss of mass in B during [t′0, t

′
1] is

m(B, t′1) − m(B, t′0) =

∫

B

ρ(t′1, r) dr −
∫

B

ρ(t′0, r) dr

=

∫ t′1

t′
0

∫

B

∂

∂t
ρ(t, r) drdt .

(1.5)

The mass flux through ∂B that enters and leaves B during [t′0, t
′
1] is obtained as

the following difference

∫ t′1

t′
0

∫

∂B

−n(r) · u(t, r) ρ(t, r) dSdt , (1.6)

where n(r) denotes the outward pointing normal on the boundary at r ∈ ∂B. It
is assumed that mass is neither created nor destroyed. Therefore, with (1.5) and
(1.6) the describing equation is

∫ t′1

t′
0

∫

B

∂

∂t
ρ(t, r) drdt =

∫ t′1

t′
0

∫

∂B

−n(r) · u(t, r) ρ(t, r) dSdt

= −
∫ t′1

t′
0

∫

B

∇r · (u(t, r) ρ(t, r)) drdt ,

(1.7)

whereby for the transformation Gauss’ theorem is applied. Since (1.7) is derived
for arbitrary [t′0, t

′
1] ⊆ I and B ⊆ Ω and providing u, ρ and their derivatives are

assumed to be continuous, the integrals can be omitted and the equation unfolds
as

∂

∂t
ρ + ∇r · (u ρ) = 0 in I × Ω . (1.8)

In case of considering an incompressible fluid ρ is constant so that (1.8) simplifies
to

∇r · u = 0 in I × Ω . (1.9)
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1.1.3. Conservation of Linear Momentum. The law of conservation of
linear momentum states that the total linear momentum of a fluid in a closed
system will remain constant if no interactions with any forces exist. In the following,
a general derivation of the equation that describes the conservation law is given.
Therefore, the mass density ρ is understood as a function of time and space, i.e.
the restriction to incompressible fluids is dropped for the moment. For B ⊆ Ω and
t ∈ I the momentum M(B, t) is given by

M(B, t) :=

∫

B

ρ(t, r)u(t, r) dr . (1.10)

In the here presented derivation external forces are considered. According to New-
ton’s second law, the rate of change of momentum is equal to the forces applied.
One can distinguish two kinds of forces, namely volume and surface forces. Fur-
thermore, the considered domain B cannot be assumed to represent a closed system
since the flux of momentum through the boundary ∂B needs to be considered, too.

The total change of momentum in B during [t′0, t
′
1] ⊆ I is given as

M(B, t′1) − M(B, t′0) =

∫

B

ρ(t′1, r)u(t′1, r) dr −
∫

B

ρ(t′0, r)u(t′0, r) dr

=

∫ t′1

t′
0

∫

B

∂

∂t
(ρ(t, r)u(t, r)) drdt .

(1.11)

A volume force like gravity, inertial, electrostatic or electromagnetic force is
expressed by a function called the density of volume force

F :

{
I × Ω → R

d

(t, r) 7→ F (t, r) .
(1.12)

Then, the corresponding volume force acting in B at time t is
∫

B

ρ(t, r)F (t, r) dr . (1.13)

Due to Newton’s second law the change of momentum in B during [t′0, t
′
1] as result

of applied volume forces obeys
∫ t′1

t′
0

∫

B

ρ(t, r)F (t, r) drdt . (1.14)

A surface force is given in the form of the stress tensor

P :

{
I × Ω → R

d×d

(t, r) 7→ P (t, r) .
(1.15)

Let n(r) ∈ R
d denote the unit outer normal at r ∈ ∂Ω. Then, a surface force

acting on ∂B at time t is
∫

∂B

P (t, r) · n(r) dS . (1.16)

With (1.16) and again with Newton’s second law one gets the change of momentum
in B during [t′0, t

′
1] caused by surface forces as

∫ t′1

t′
0

∫

∂B

P (t, r) · n(r) dSdt =

∫ t′1

t′
0

∫

B

∇r · P (t, r) drdt , (1.17)
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which is transformed applying Gauss’ theorem.

Gauss’ theorem is employed again for the next transformation. There, it is
applied for each space dimension i, (i = 1, 2, ..., d). The left hand side displays the
momentum which enters and leaves B through the boundary ∂B during [t′0, t

′
1]:

∫ t′1

t′
0

∫

∂B

− n(r) · u(t, r)ρ(t, s)ui(t, r) dSdt

= −
∫ t′1

t′
0

∫

B

∇r · (u(t, r)ρ(t, r)ui(t, r)) drdt . (1.18)

With (1.11) the total gained minus lost momentum in B during [t′0, t
′
1] is given.

This change is caused by volume forces (1.14), surface forces (1.17) and flux through
the boundary of B (1.18). All derivations are valid for arbitrary [t′0, t

′
1] ⊆ I and B ⊆

Ω and u, ρ, F , P and their derivatives are assumed to be continuous. Therefore,
the integrals can be omitted and the conservative form of the momentum equation
unfolds as

∂

∂t
(ρ u) = ρ F + ∇r · P − ∇r · (ρ u ⊗ u) in I × Ω . (1.19)

Applying the chain rule, the equation can be further transformed. The governing
equation of the conservation of mass law (1.8) serves as a substitute. Further, terms
are added such that the negative terms on both sides vanish. Thus, the following
equivalences for (1.19) hold in I × Ω

∂

∂t
(ρ u) = ρ F + ∇r · P − u ∇r · (ρ u) − (ρ u · ∇r) u

∂

∂t
ρ u + ρ

∂

∂t
u = ρ F + ∇r · P − u ∇r · (ρ u) − (ρ u · ∇r) u

−∇r · (ρ u) u + ρ
∂

∂t
u = ρ F + ∇r · P − u ∇r · (ρ u) − (ρ u · ∇r) u

ρ
∂

∂t
u + (ρ u · ∇r) u = ρ F + ∇r · P . (1.20)

The finally obtained equation is said to be the non-conservative form of the mo-
mentum equation.

1.1.4. Conservation of Angular Momentum. The law of conservation of
angular momentum states that the total angular momentum of a fluid in a closed
system will be constant in the case of absent forces. In the derivation to come, the
mass density ρ is understood as function of time and space, i.e. the restriction to
incompressible fluids is dropped momentarily. Further, in the following exclusively
the case d = 3 is considered. For B ⊆ Ω and t ∈ I the angular momentum L(B, t)
is defined by

L(B, t) :=

∫

B

r × (ρ(t, r)u(t, r)) dr . (1.21)

The cross product for vectors a, b ∈ R
3 is given by

(a × b)i :=
3∑

j,k=1

ǫijkajbk (i = 1, 2, 3) , (1.22)
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where ǫijk is the Levi-Civita symbol, which is defined as

ǫijk :=





1 : if (i, j, k) is (1, 2, 3), (3, 1, 2) or (2, 3, 1)

−1 : if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3)

0 : otherwise .

Similarly to the derivations presented in the previous subsection, the flux of
momentum through the boundary, volume and surface forces need to be considered
to derive another condition as a result of the law of conservation of angular mo-
mentum. The total change of angular momentum in B during [t′0, t

′
1] ⊆ I is given

as

L(B, t′1) − L(L, t′0) =

∫

B

r × (ρ(t′1, r)u(t′1, r)) dr −
∫

B

r × (ρ(t′0, r)u(t′0, r)) dr

=

∫ t′1

t′
0

∫

B

r × ∂

∂t
(ρ(t, r)u(t, r)) drdt . (1.23)

According to Newton’s second law one gets the change of angular momentum in B
during [t′0, t

′
1] caused by a volume force F as

∫ t′1

t′
0

∫

B

r × (ρ(t, r)F (t, r)) drdt . (1.24)

In a similar way, the change of the angular momentum as a result of a surface force
P is obtained. For each space dimension i = 1, 2, 3 the term is rewritten as a sum
and Gauss’ theorem is applied:

∫ t′1

t′
0

∫

∂B

(r × (n(r) · P (t, r)))i dSdt

=

∫ t′1

t′
0

∫

∂B

3∑

j,k,l=1

ǫijkrjnl(r)Plk(t, r) dSdt

=

∫ t′1

t′
0

∫

B

3∑

j,k,l=1

ǫijk
∂

∂rl
(rjPlk(t, r)) drdt

=

∫ t′1

t′
0

∫

B

3∑

j,k,l=1

ǫijk

(
∂rj

∂rl
Plk(t, r) + rj

∂

∂rl
Plk(t, r)

)
drdt

=

∫ t′1

t′
0

∫

B

3∑

j,k=1

ǫijkPjk(t, r) + (r × (∇r · P (t, r)))i drdt .

(1.25)

The last source of change of the angular momentum to consider is the flux through
the boundary ∂B during [t′0, t

′
1]. With the definition of the cross product, Gauss’

theorem and the chain rule, one obtains the following equalities for each of the
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three space dimension i = 1, 2, 3:

∫ t′1

t′
0

∫

∂B

− n(r) · u(t, r) (r × ρ(t, r)u(t, r))i dSdt

= −
∫ t′1

t′
0

∫

B

∇r ·


u(t, r)

3∑

j,k=1

ǫijkrjuk(t, r)ρ(t, r)


 drdt

= −
∫ t′1

t′
0

∫

B

3∑

j,k,l=1

ǫijk
∂

∂rl
(ul(t, r)rjuk(t, r)ρ(t, r)) drdt

= −
∫ t′1

t′
0

∫

B

3∑

j,k,l=1

ǫijk

(
∂

∂rl
rj (ul(t, r)uk(t, r)ρ(t, r))

+
∂

∂rl
(ul(t, r)uk(t, r)ρ(t, r)) rj

)
drdt

= −
∫ t′1

t′
0

∫

B

(r × (∇r · (u(t, r)ui(t, r)ρ(t, r))))i drdt .

(1.26)

The total gained minus lost angular momentum in B during [t′0, t
′
1] is given in

(1.23). This change is caused by volume forces (1.24), surface forces (1.25) and
flux through the boundaries of B (1.26). All derivations are valid for arbitrary
[t′0, t

′
1] ⊆ I and B ⊆ Ω and r, u, ρ, F , P and their derivatives are assumed to be

continuous, so that the integrals can be omitted. The resulting balance equation is

(
r × ∂

∂t
(ρ v)

)

i

= (r × ρ F )i +

3∑

j,k=1

ǫijkPjk + (r × (∇r · P ))i

− (r × (∇r · (uuiρ)))i (i = 1, 2, 3) .

(1.27)

Subtracting the cross product of r and the conservative form of the momentum
equation (1.19) from the latter equation yields

0 =

3∑

j,k=1

ǫijkPjk (i = 1, 2, 3) (1.28)

which is, according to the definition of the cross product, equivalent to

P23 = P32, P31 = P13, P12 = P21 . (1.29)

That is in turn the symmetry of the stress tensor P .

1.1.5. A Viscosity Model for Newtonian Fluids. In the three-dimensional
case (d = 3), the three conservation laws (mass, linear and angular momentum)
set up seven conditions for twelve unknown scalars, that are three for the velocity
u and nine for the stress tensor P . For d = 2 four conditions are obtained for
seven unknowns. The gap of the underdetermined system of equations is closed
within the framework of rheology for fluids. In this field the functional dependence
of the stress tensor P on the deformation velocity tensor D is studied. At this, the
material properties of the considered fluid are described phenomenologically, i.e.
macroscopic quantities are measured and related. The ansatz for Newtonian fluids
finds a motivation in a simple experiment of a flow between two parallel planes
where one of them is fixed and the other one moves slowly parallel to the fixed
plane in direction of the ri-axis of the Cartesian coordinate system (i ∈ {1, 2, 3}).
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A steady flow develops with a linear increasing velocity on a fictitious line connect-
ing the two planes in an orthogonal manner. Without loss of generality, the line
can be assumed as parallel to the rj-axis of the coordinate system with j ∈ {1, 2, 3}
and j 6= i. Then, the linearity can be expressed by

P ji = µ
∂ui

∂rj
, (1.30)

which implicitly defines the dynamic viscosity µ. That justifies relating the stress
tensor P and the Jacobian matrix of u in a similar way. From the conservation law
for angular momentum it is known that the stress tensor P is symmetric. Therefore,
the skew-symmetric part of ∇r ⊗u can be neglected. The symmetric part, which is
the strain rate tensor D, remains to be related to P . The restriction to Newtonian
fluids finds its characterising formulation in Stokes’ postulates which are stated in
Subsection 1.1.1. Under this conditions it can be proved [36] that the stress tensor
has the form

P = (−p + λ∇r · u) Id + 2µD , (1.31)

where λ ∈ R, λ ≥ 0 is called the volume viscosity and µ ∈ R, µ ≥ 0 is the
dynamic viscosity. For the restriction of considering only incompressible fluids
(1.31) simplifies to

P = −pId + 2µD . (1.32)

The stress tensor P can now be substituted using relation (1.32). Thereby, it is
to note that the dynamic viscosity µ is given in advance as a material property.
Thus, considering the case d = 3 four unknown scalars remain, namely three for the
velocity u and one for the pressure p. The conservation laws for mass and linear
momentum provide four independent conditions so that the system of equations is
no longer underdetermined. The same holds in the case where d = 2. Here, three
conditions are obtained for three unknown scalars. In both cases, the system is
consolidated to the governing equation for incompressible Newtonian fluids, which
is called the incompressible Navier-Stokes equation.

1.1.6. The Incompressible Navier-Stokes Equation. As a result of the
viscosity model for Newtonian fluids, the stress tensor P can now be related to
the pressure p, the dynamic viscosity µ and the deformation velocity tensor D as
formulated in (1.32). To obtain the Navier-Stokes equation P needs to be substi-
tuted in the non-conservative form of the momentum equation (1.20). Thereunto,
the following transformations are required, whereas for the last transformation the
mass conservation law formulated in (1.9) is employed:

∇r · P = ∇r · (−pId + 2µD)

= −∇rp + µ(∆ru + ∇r(∇r · u︸ ︷︷ ︸
=0

))

= −∇rp + µ∆ru .

(1.33)

Then, the latter term is substituted into (1.20). This leads together with the
conservation law for mass (1.9) to the incompressible Navier-Stokes equation:

ρ
∂

∂t
u + (ρ u · ∇r) u = ρ F − ∇rp + µ∆ru in I × Ω

∇r · u(t, r) = 0 in I × Ω . (1.34)
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1.2. Mesoscopic Approach: A Model for the Dynamics of Rarefied
Gases

Models of statistical mechanics are of mesoscopic character. A state of a phys-
ical system is described by probabilities for possible states of an underlying micro-
scopic system. In particular, such models provide a framework to explain macro-
scopic thermodynamic quantities like velocity, heat, free energy or entropy as a re-
sult of averages of states of atoms or molecules. In 1872 Boltzmann established the
basic governing equation for the kinetic theory of dilute gases, namely the famous
Boltzmann equation. Later, the equation, its generalisations and simplifications
proved to be valuable to describe other physical phenomena, for example radioac-
tive transfer, electronic transport in solids or plasmas [25] and viscous flows. The
problems of rigorous derivation of the equation starting from a microscopic model
with assumptions on this level and finally the existence and uniqueness of a solu-
tion has attracted many physicists as well as mathematicians (see e.g. [8, 25] and
references therein). The objective of this section is to introduce the basic termi-
nology, assumptions and concepts building the theory of the dynamics of rarefied
gases. Further, it is intended to establish the nomenclatures and notations which
are of great importance for all other sections and chapters to come. The presented
approach is mainly inspired by the work of Cercignani [25] and Hänel [59].

1.2.1. Terminology and Model Assumptions. The mathematical descrip-
tion of the mesoscopic model for the dynamics of rarefied gases is based on a micro-
scopic picture of the fluid. A volume of a rarefied gas is represented by a domain
Ω ⊆ R

d wherein a huge number N ∈ N of ball-shaped and indivisible particles
interact. The gas particles can be atoms or molecules. Simplifying, it is assumed
that all particles have the same particle diameter σ ∈ R>0 and the same particle
mass (or molecule mass) m ∈ R>0.

It is observed that the particles interact permanently and accidentally. This
phenomenon is known as Brownian motion. It is modelled by assuming free flows
of particles, respecting Newton’s laws without considering any forces except exter-
nal given volume forces like gravity. The path between two collisions is called free
path and the average of free paths of a volume over a given time is called the mean
free path lf ∈ R>0. Then, if an atom or a molecule collides with another one, it
abruptly changes its speed and direction. Simplifying, collisions are assumed to be
elastic, i.e. the total momentum and kinetic energy is conserved. Another assump-
tion is that the particles interact weakly, i.e. they collide relatively seldom. This is
justified heuristically, since a volume of a rarefied gas is seen to consist of a large
number of particles with a relatively small diameter σ. Idealising, this is formu-
lated mathematically by postulating the existence of the limes Nσ2 for N → ∞
and σ → 0. And furthermore it is determined that only two particles can collide at
the same time (binary collision assumption). In Figure 1.1 a possible motion of a
particle as a consequence of free flows and collisions is illustrated.

In this microscopic model the state of one gas particle is fully characterised by
its current centre position r ∈ Ω and its current centre velocity v ∈ Ξ = R

d. The
following terms for the spaces are common:

• position space Ω ⊆ R
d ,

• velocity space Ξ = R
d ,

• phase space µ = Ω × Ξ ⊆ R
2d .

Both r and v are functions of a considered time interval I = [t0, t1] ⊆ R into
Ω and Ξ, respectively. The state of the whole system at a time t ∈ I is given by
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Figure 1.1. Brownian motion: Trajectory of a molecule (black
ball) as a result of free flight and collision with other molecules
(white balls).

the state of all N particles. It is represented by the phase space µN = Ω×Ξ ⊆ R
2dN .

The so far introduced model is of microscopic character. The dynamics of a
rarefied gas can be reconstructed and also predicted if the states, i.e. the positions
in the phase space, of all its particles at a time t ∈ I are known. If this is the case
the process will be reversible in time. However, due to Heisenberg’s uncertainty
principle it is not possible to know both the position and the velocity of a particle
with arbitrary precision. And even if one would knew an exact start distribution
it would be impossible to simulate the dynamics of a quantum gas of a macro-
scopic scale with a computer of today. For instance, the simulation of one cm3 of
air at 20 ◦C and 1000 hPa requires considering the interaction of about 2, 69 · 1019

molecules. To save only one state of such a quantity of particles would cost more
than 108 tera bytes. Yet, it is possible to obtain macroscopic quantities without
knowing the exact states of the molecules - averages of possible states are sufficient.
And that is the basic idea of mesoscopic models. The reversible character of the
microscopic process of particle interaction is waived. It is abstained knowing the
exact states of all particles, instead probabilities for the states are introduced and
build the fundamental object of investigation.

For every particle i = 1, ..., N the position (r(t),v(t))i in its corresponding
phase space µi with µi 6= ∅ is in the mesoscopic model considered as a realisation
of a random variable. The phase space µi generates a σ-algebra σ (µi). P t

i (Ai) is
defined as the probability to find (r(t),v(t))i in Ai ∈ σ (µi). All together, they
define a probability space (µi, σ (µi) , P t

i ) where P t
i is a probability measure.

Based on the family of probability spaces (µi, σ (µi) , P t
i ), for a given A ∈ σ (µ)

a finite discrete probability space (Θ, P t
A) is introduced. The variable k ∈ Θ =

{1, 2, ..., N} represents the number of particles found in A with probability P t
A(k).
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The probability measure is given by

P t
A :





Θ → [0, 1]

k 7→ P t
A(k) =

∑

B⊆Θ,|B|=k


∏

i∈B

P t
i (A)

∏

j∈Θ/B

(
1 − P t

j (A)
)

 ,

With it, the expected value of the number of particles found in A is

Et
A =

N∑

k=1

k P t
A(k) .

Et
A/N =: P t

N (A) as function of A ⊆ µ defines a probability measure itself. The un-
derlying probability space is the phase space µ and a sigma-algebra is σ (µ). Both
the expected value Et

A and the probability measure P t
N (A) are the fundamental

objects of the derivation to come.

It is to be noted that generally the realisations (r(t),v(t))i are not identically-

distributed and independent of each other. The reason is that P t
i depends on all P t′

j

where j = 1, ..., N and t′ ∈ I with t′ < t. This is due to the correlation property of
the collision process. If only one particle at time t′ has a different state distribution,
for example due to an applied external force, other particle states P t

i will depend
on it. However, the random variables (r(t),v(t))i are assumed to be identically-
distributed and independent of each other. This is justified by the assumption of
weak interaction of rarefied gas molecules which is also known as molecular chaos
assumption (see e.g. [8]). In the case of identically-distributed (r(t),v(t))i, P t

A

is the binomial distribution B(N,P t
1(A)). Its expectation is Et

A = N P t
1(A) and

therefore one gets that P t
N (A) = P t

1(A) for all t ∈ I and A ∈ σ (µ). That means
in turn that the distribution of the expectation of N particles is the same as the
distribution of one particle.

1.2.2. Particle Density Function and Macroscopic Moments. With the
probability measure P t

N as it is introduced in the previous subsection it is possible to
derive macroscopic quantities. Thereto, the density function pt

N of P t
N is multiplied

with the number of particles N in Ω. The resulting function is called the (expected)
particle density function2 and is given by

f :

{
I × Ω × R

d → R≥0

(t, r,v) 7→ f(t, r,v) .
(1.35)

Due to the definition of P t
N and that f(t, ·, ·)/N is the density function of P t

N one
gets for any B × C ∈ σ(µ) and t ∈ I

Et
B×C = N P t

N (A) = N

∫

B

∫

C

pt
N (r,v) drdv =

∫

B

∫

C

f(t, r,v) drdv . (1.36)

That is the expected number of particles found in B×C at time t. Thus, f describes
the distribution of the expected number of particles over the phase space µ. Based
on that interpretation, various macroscopic quantities are obtained as moments of
f by integrating over the velocity space R

d. An extract is stated in the following:

2By definition, f is not a density in a statistical sense. However, in the literature it is often
called density or distribution function (see e.g. [8, 59].). In [25] f is called a (expected) mass

density which is given by f := m N pt

N
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• particle density

n :





I × Ω → R>0

(t, r) 7→ n(t, r) :=

∫

Rd

f(t, r,v) dv ,
(1.37)

• mass density

ρ :

{
I × Ω → R>0

(t, r) 7→ ρ(t, r) := m n(t, r) ,
(1.38)

• velocity

u :





I × Ω → R
d

(t, r) 7→ u(t, r) :=
1

n(t, r)

∫

Rd

v f(t, r,v) dv ,
(1.39)

• stress tensor

P :





I × Ω → R
d×d

(t, r) 7→ P (t, r) := m

∫

Rd

(
v − u(t, r)

)
⊗
(
v − u(t, r)

)
f(t, r,v) dv ,

(1.40)

• pressure

p :





I × Ω → R>0

(t, r) 7→ p(t, r) :=
1

d

(
d∑

i=1

Pii(t, r)

)
.

(1.41)

In Theorem 1.2 it is remarked that the here proposed definitions of macro-
scopic quantities are consistent with the definitions established for the macroscopic
model introduced in Section 1.1 in the sense that for an assumed solution f of
the Boltzmann equation the corresponding macroscopic quantities fulfil the macro-
scopic conservation law of mass and momentum.

1.2.3. A Molecular Collision Model for Rigid Spheres. The subject of
this subsection is to derive the expected number of particles that enter or leave,
respectively, B × C ∈ σ(µ) during [t′0, t

′
1] ⊆ I due to the collision process. With

this quantity, the Boltzmann equation can be derived in the next subsection. Fur-
thermore, if one knows the particle density function f and with it the number of
collisions in a volume during a time, the mean free path lf and other characteristic
mesoscopic quantities of a fluid can be calculated.

As mentioned before, particles are considered as hard spheres with equal di-
ameter σ and mass m. To model the collision process, it is assumed that only two
particles i, j ∈ {1, ..., N} , i 6= j can collide at a time t ∈ I. Then, one finds that
the function vi is not continuous in t and therefore the following notation for the
function is introduced:

• velocity before the collision vi(t) := limt̃րt vi(t̃) and

• velocity after the collision v′

i(t) := limt̃ցt vi(t̃) .

Analogously, for particle j its velocities before and after the collision vj and v′

j

are redefined. It is assumed that the encounter is elastic, i.e. the following two
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equations hold:

vi + vj = v′

i + v′

j , (1.42)

vi
2 + vj

2 = v′

i

2
+ v′

j

2
. (1.43)

Relation (1.42) ensures the conservation of the momentum and (1.43) the conser-
vation of the energy. To simplify the derivations to come the following variables
are defined:

• relative velocity before collision g := vj = −vi and
• relative velocity after collision g′ := v′

j − v′

i .

The two particles i and j will collide at time t if

rj(t) ∈ Si := {r ∈ Ω : ||ri − r|| = σ} ,

g(t) ∈ R
d
n+

ij

:=
{
g(t) ∈ R

d : nij · g(t) > 0
}

holds whereas nij := (ri − rj)/σ denotes the unit normal vector pointing into the
sphere Si at rj ∈ Si. Similarly, one gets the following conditions that two particles
have collided at time t:

rj(t) ∈ Si := {r ∈ Ω : ||ri − r|| = σ} ,

g′(t) ∈ R
d
n−

ij

:=
{
g′(t) ∈ R

d : nij · g′(t) < 0
}

.

Further, with (1.42) and (1.43) the following equations hold [25]:

v′

i = vi − nij (nij · g) ,

v′

j = vj + nij (nij · g) ,

nij · g′ = −nij · g .

(1.44)

Providing that particle i is in A = B×C, one gets the probability for a collision
of particle i with particle j during [t′0, t

′
1] through

P
[t′0,t′1]
ij (A) :=

∫ t′1

t′
0

∫

B

∫

C

pt
i(ri,vi)

∫

Si

∫

Rd

n
+
ij

nij · g pt
j(s,vj) dvjdsdvidridt .

The expected number of particles which collide with another particle during [t′0, t
′
1]

and which are in A before the collision has taken place is then

M+
coll :=

N∑

i=1

N∑

j=1,i 6=j

P
[t′0,t′1]
ij (A) .

The assumption of molecular chaos (cf. Subsection 1.2.1) leads to Boltzmann’s
famous Stoßzahlansatz. Due to the assumed identical one-particle distributions P t

i

and the definition of f , see (1.36), one finds

M+
coll = N(N − 1)

∫ t′1

t′
0

∫

B

∫

C

pt
N (r,v)

∫

S

∫

Rd

n
+
∗

n∗ · g pt
N (s,v∗) dv∗dsdvdrdt

≈ N2

∫ t′1

t′
0

∫

B

∫

C

pt
N (r,v)

∫

S

∫

Rd

n
+
∗

n∗ · g pt
N (s,v∗) dv∗dsdvdrdt

=

∫ t′1

t′
0

∫

B

∫

C

f(t, r,v)

∫

S

∫

Rd

n
+
∗

n∗ · g f(t, s,v∗) dv∗dsdvdrdt

(1.45)
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at which terms of O(N) are neglected because the leading order term is of O(N2)
and N is assumed to be large.

In a similar manner, the expected number of particles which collide with an-
other particle during [t′0, t

′
1] and which are in A after the collision has taken place

can be derived:

M−
coll ≈

∫ t′1

t′
0

∫

B

∫

C

f(t, r,v′)

∫

S

∫

Rd

n
−

∗

−n∗ · g′ f(t, s,v′

∗
) dv′

∗
dsdv′drdt .

Substituting v′, v′

∗
and g′ as stated in (1.44) one finds

M−
coll ≈

∫ t′1

t′
0

∫

B

∫

C

f ′(t, r,v)

∫

S

∫

Rd

n
+
∗

n∗ · g f ′(t, s,v∗) dv∗dsdvdrdt , (1.46)

whereas f ′ := f(t, r,v − n∗ (n∗ · g) and f ′
∗ := f(t, r,v∗ − n∗ (n∗ · g) n∗).

Finally, the expected difference of particles between those that enter and those
that leave A = B × C ∈ σ(µ) during [t′0, t

′
1], which is represented by ∂Mcoll, can be

derived. A particle that is in A before a collision has taken place can either be still
in or outside A after the encounter. In either case it is counted in M+

coll. However,

if it is still in A it is also counted in M−
coll. The other particles expected counted

in M−
coll have not been in A and therefore represent the expected gain. Thus, with

(1.45) and (1.46) Mcoll is given approximately, neglecting terms of O(1/N), by

∂Mcoll = M−
coll − M+

coll

≈
∫ t′1

t′
0

∫

B

∫

C

∫

S

∫

Rd

n
+
∗

n∗ · g (f ′f ′
∗ − ff∗) dv∗dsdvdrdt .

(1.47)

1.2.4. The Boltzmann Equation. The expected number of particles at a
time t ∈ I in B × C ∈ σ(µ) is given by Et

B×C . All Et
B×C/N = P t

N (B × C) are
probability measures as indicated in Subsection 1.2.1 and related to f by (1.36).
Based on the model assumptions stated in Subsection 1.2.1 the Boltzmann equation
sets up a condition for f . It can be seen as a conservation equation for the expected
number of particles in a volume µ over a time I.

Let ∂M denote the expected difference of particles entering to those leaving
B × C during [t′0, t

′
1]. According to the model assumptions, there are only three

reasons why particles can enter or leave the volume. The first one is that they cross
∂B in their free flight during [t′0, t

′
1] respecting Newton’s laws. The number of such

particles is captured by the variable ∂M∂B in form of the difference of expected
entering to leaving ones. Analogously, ∂M∂C represents the expectation of particles
crossing ∂C as the result of an external force F , which is the second reason. Finally,
the third one is the collision of particles in and outside B×C, whereas they change
their velocity abruptly and hence enter or leave C. ∂Mcoll represents the expected
difference of gained to lost particles due to the collision process. Consequently, the
following conservation equation is obtained

∂M = ∂M∂B + ∂M∂C + ∂Mcoll . (1.48)
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The expected total change of the number of particles during [t′0, t
′
1] is

∂M =

∫

B

∫

C

f(t′1, r,v) dvdr −
∫

B

∫

C

f(t′0, r,v) dvdr

=

∫ t′1

t′
0

∂

∂t

∫

B

∫

C

f(t, r,v) dvdrdt

=

∫ t′1

t′
0

∫

B

∫

C

∂

∂t
f(t, r,v) dvdrdt .

(1.49)

The expected difference of incoming to outgoing particles in µ crossing ∂B is given
by the flux through the boundary. Applying Gauss’ theorem one gets

∂M∂B = −
∫ t′1

t′
0

∫

C

∫

∂B

n(s) · v f(t, s,v) dsdvdt

= −
∫ t′1

t′
0

∫

B

∫

C

v · ∇rf(t, r,v) drdvdt ,

(1.50)

where n denotes the unit vector normal to ∂B in the outward direction. Simi-
larly, the balance of expected gained and lost particles due to an external force is
calculated:

∂M∂C = −
∫ t′1

t′
0

∫

B

∫

∂C

n(s) · F

m
f(t, r, s) dsdrdt

= −
∫ t′1

t′
0

∫

B

∫

C

F

m
· ∇vf(t, r,v) drdvdt .

(1.51)

Finally, the expected number of gained minus lost particles due to the process of
collision ∂Mcoll is stated. According to the derivation presented in the previous
subsection, for hard spheres and for the limiting case N → ∞ ∂Mcoll is given by

∂Mcoll =

∫ t′1

t′
0

∫

B

∫

C

∫

S

∫

Rd

n
+
∗

n∗ · g (f ′f ′
∗ − ff∗) dv∗dsdvdrdt . (1.52)

With (1.49), (1.50), (1.51) and (1.52) all terms of the balance equation (1.48)
are derived for arbitrary [t′0, t

′
1] ⊆ I and B × C ∈ σ(µ). Then, assuming f and

its derivatives are continuous, the integrals can be omitted and the Boltzmann
equation for the rigid spheres collision model unfolds as

(
∂

∂t
+ v · ∇r +

F

m
· ∇v

)
f =

∫

S

∫

Rd

n
+
∗

n∗ · g (f ′f ′
∗ − ff∗) dv∗ds

︸ ︷︷ ︸
=:J(f)

. (1.53)

The right hand side of the Boltzmann equation defines the so-called collision oper-
ator J . With it (1.53) shortens to

(
∂

∂t
+ v · ∇r +

F

m
· ∇v

)
f = J(f) . (1.54)

1.3. Model Interpretation: From the Mesoscopic to the Macroscopic
Model

The aim of this section is to study the relation of the mesoscopic model for rar-
efied gases to the macroscopic model for incompressible viscous flows. Thereunto,
at first some fundamental properties of the Boltzmann equation are stated. Then,
a simplification of the Boltzmann equation is considered. This equation in known
as BGK-Boltzmann equation. It is shown that it preserves substantial properties
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of the Boltzmann equation. For example, it is illustrated that the macroscopic
quantities which are obtained as moments of a particle density function fulfilling a
BGK-Boltzmann equation also fulfil the conservation laws of mass and momentum.
Finally, a family of BGK-Boltzmann equations with their corresponding macro-
scopic moments is considered. In particular, the behaviour of the stress tensor is
analysed in a dedicated regime of small Knudsen and Mach numbers. It turns out
that in this particular regime Newton’s hypothesis can be affirmed.

1.3.1. About Collision Invariants and Conservation Laws. Of great im-
portance for the derivations to come are so-called collision invariants. Firstly, with
their characterising property it is possible to derive a solution for an equilibrium
state of the Boltzmann equation (cf. Subsection 1.3.2). And secondly, a relationship
of solutions of Boltzmann equations to the conservation laws can be established.

Definition 1.1. A local integrable function χ : R
d → R is called collision

invariant if for all f ∈ L1(I × Ω × R
d) with integrable χf , it holds:

∫

Rd

χ(v) J(f)(v) dv = 0 ,

whereby χ is called basis collision invariant if additionally holds

χ(vi) + χ(vj) = χ(v′

i) + χ(v′

j)

for arbitrary vi,vj ∈ R
d where v′

i,v
′

j ∈ R
d satisfying (1.44).

A characterising property of basis collision invariants is subject of the following
theorem. It is stated according to Babovsky’s record in [8].

Theorem 1.2. A continous function χ is a basis collision invariant if and only
if it can be written in the form

χ(v) = a + b · v + c v · v ,

with a, c ∈ R and b ∈ R
d.

Proof. See for example [8, p. 48]. �

In Subsection 1.2.2 the density ρ, the velocity v and the stress tensor P are
defined as moments of the particle density function f . Providing that these integrals
exist for an f which satisfies the Boltzmann equation, it can be shown that ρ, v

and P satisfy the conservation law for mass (1.8) and momentum (1.19). It directly
follows from Theorem 1.2 that χ0(v) := m and χi(v) := vi for i = 1, 2, ..., d are
basis collision invariants. Multiplying the Boltzmann equation (1.54) with χi(v)
for every v ∈ R

3 and integrating over the whole velocity space Ξ = R
d results in

∫

Rd

χi(v)

(
∂

∂t
+ v · ∇r +

F

m
· ∇v

)
f(t, r,v) dv = 0 ((t, r) ∈ I × Ω) (1.55)

for i = 0, 1, ..., d.

For χ0 (1.55) is

∂

∂t
ρ + ∇r · (ρu) +

∫

Rd

F · ∇vf dv

︸ ︷︷ ︸
=0

= 0 in I × Ω , (1.56)

at which the force term vanishes because Corollary 5.2 with g ≡ 1 and a = F can
be applied. What remains is the governing equation of the conservation law for
mass.
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Now, (1.55) is transformed for the cases i = 1, 2, ..., d. Again Corollary 5.2 is
applied setting g(v) = vi and a = F /m. Then, the following holds for i = 1, 2, ..., d
in I × Ω:

∂

∂t
(ρui) + ∇r ·

∫

Rd

vivf dv +

∫

Rd

vi
F

m
· ∇vf dv = 0

∂

∂t
(ρui) + ∇r ·

∫

Rd

(v − u)(vi − ui)f + uvif − vuif − uuif dv +

∫

Rd

Fi

m
f dv = 0

∂

∂t
(ρui) + ∇r · Pi∗ + ∇r · (uuiρ) − ∇r · (uuiρ) − ∇r · (uuiρ) + Fiρ = 0

∂

∂t
(ρui) + ∇r · Pi∗ − ∇r · (uuiρ) + Fiρ = 0 ,

where Pi∗ denotes row i of the tensor P . It is nothing else but the governing
equation of the law of momentum (1.19) in the conservative form.

1.3.2. Equilibrium State: Maxwellian Distribution. In this subsection
the existence of solutions f with f > 0 in I × Ω × R

d of

J(f) = 0 in I × Ω , (1.57)

which is the right hand side of the Boltzmann equation, is studied. Such solutions
exist and are commonly called equilibrium states. Based on the definitions of the
macroscopic variables (1.37) to (1.40) the equilibrium states can be rewritten in
forms known as Maxwellian distributions.

As a preliminary result, the following lemma holds

Lemma 1.3. If ln(f)J(f) ∈ L1(Rd) for any t ∈ I and r ∈ Ω the so-called
Boltzmann’s inequality holds for all f with f > 0 in I × Ω × R

d:
∫

Rd

ln(f)J(f) dv ≤ 0 in I × Ω , (1.58)

where the equality sign applies if and only if

f ′f ′
∗ = ff∗ almost everywhere in I × Ω × R

d .

Proof. In [25, p. 78] a proof is stated for a more general collision operator J
which includes the here chosen one. �

Since ln(f) is always strictly less than 0, the equivalence sign in (1.58) is valid
if and only if (1.57) holds almost everywhere. Therefore, a direct consequence of
Boltzmann’s inequality is that (1.57) holds almost everywhere if and only if ln(f)
is a collision invariant. If f is given by

f(t, r,v) = exp (a(t, r) + b(t, r) · v + c(t, r) v · v) in I × Ω × R
d

with functions a, c : I×Ω → R and b : I×Ω → R
d, then ln(f) is a collision invariant

due to Theorem 1.2. Thus, f fulfils (1.57), i.e. f is an equilibrium state.

On the other hand, if f is a solution of (1.57) with f > 0 in I × Ω × R
d, then

also ∫

Rd

ln(f)J(f) dv = 0 in I × Ω (1.59)

holds and f ′f ′
∗ = ff∗ almost everywhere in I × Ω × R

d. If f is further assumed
to be continuous, condition (1.56) is fulfilled for χ = ln(f), i.e. ln(f) is a basis
collision invariant. From Theorem 1.2 it follows that f must be given as in (1.59).
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The functions a,c and b can be replaced by meaningful macroscopic quantities.
By setting

a = ln

(
n

(2πRT )d/2

)
− u2

2RT
, b =

u

RT
, c =

1

2RT
in I × Ω ,

where R ∈ R>0 is the universal gas constant and T ∈ R>0 the absolute temperature,
a continuous function for the equilibrium state is given. It is called the Maxwellian
distribution and can be transformed to

feq(n,u, T ) :





I × Ω × R
d → R

(t, r,v) 7→ n(t, r)

(2πRT )
d/2

exp

(
− (v − u(t, r))

2

2RT

)
.

It is important to note that with respect to v ∈ R
d feq(n,u, T )/n is a d-

dimensional normal distribution with expectation u and covariance matrix RTId.
Therefore, the following three equivalences hold. On the one hand, they show the
consistency of the choices of a, b and c. On the other hand, they reveal important
properties of feq on those is referred to later on.

The first one uses the fact that feq/n is a density function:

ρ
(1.38)
= m

∫

Rd

feq dv = mn = ρ in I × Ω . (1.60)

The second equivalence is based on the expectation of feq/n. It is

u
(1.39)
=

1

n

∫

Rd

vfeq dv = u in I × Ω . (1.61)

Finally, the third one relies on the covariance matrix of feq/n and the ideal gas
law3 which is

p = nRT in I × Ω . (1.62)

Hence, in the case of considering perfect gases one gets

p
(1.41)
=

1

d

∫

Rd

(v − u) (v − u) feq dv =
n

d

d∑

i=1

RT = p in I × Ω .

1.3.3. About the H-Theorem. In the following, the so called homogeneous
Boltzmann equation is considered:

∂

∂t
f = J(f) in I × Ω . (1.63)

It is a simplification of the Boltzmann equation (1.54) where the derivatives of f
with respect to r vanish and no external forces act. Hence, f simplifies to a function
of t and v which shall shorten the notation within this subsection. As it is shown
in the last subsection a stationary solution f of (1.57) with f > 0 in I ×R

d is given
by a Maxwellian distribution feq. The H-theorem states that these equilibrium
states are the only continuous stationary solutions of (1.57) with f > 0 and that
the so-called H-functional, which is defined by

H :





I → R

t 7→
∫

Rd

ln (f(t,v)) f(t,v) dv

never increases in time for any solution f with f > 0 of the homogeneous Boltzmann
equation (1.63). This statement is rendered precisely in the following theorem:

3The ideal gas law is sometimes called Boyle’s law (cf. for example [25]).
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Theorem 1.4. Providing f satisfies (1.63) and ln(f)J(f) ∈ L1(Rd), then the
following holds

(1) H is monotonically decreasing in t.
(2) H is only constant in t if f is given as in (1.59), particularly if f is a

Maxwellian distribution.

Proof. Multiplying (1.63) with 1+ln(f), integrating over v ∈ R
d, taking into

account that 1 is a collision invariant and that (1+ ln(f)) ∂
∂tf = ∂

∂t (ln(f) f) results
in ∫

Rd

(1 + ln(f))
∂

∂t
f dv =

∫

Rd

(1 + ln(f))J(f) dv in I

∫

Rd

∂

∂t
(ln(f) f) dv =

∫

Rd

ln(f)J(f) dv in I

∂

∂t
H(t) =

∫

Rd

ln(f)J(f) dv in I .

Then, according to Boltzmann’s inequality (cf. Lemma 1.3) the right hand side is
always less than 0 and, as presented in the previous subsection, only equal to 0 if
and only if f is given as in (1.59). �

It is to be mentioned that this fundamental property for solutions of the homo-
geneous Boltzmann equation is also given for solutions of the Boltzmann equation in
the case that no external force is applied to the gas and further no heat is transfered
at the boundary of the gas (cf. generalised H-theorem e.g. in [25]).

1.3.4. BGK Approximation of the Collision Operator. When dealing
with the Boltzmann equation one of the main shortcomings is the complex structure
of the collision operator J . Bhatnagar, Gross and Krook proposed in 1954 an
elegant simplification [19]. The so-called BGK collision operator is defined by

Q(f) := − 1

ω
(f − Meq

f ) in I × Ω × R
d , (1.64)

where Meq
f := feq(nf ,uf , Tf ) is a particular Maxwellian distribution with the mo-

ments of f serving as suitable choices. To clarify the notation, the moments of f are
endued with the selfsame index and the absolute temperature Tf is given implicitly
by the ideal gas law (1.62), i.e. pf = nfRTf . ω denotes the (expected) mean free
time between two collisions which is qualified in the following in (1.66).

Recapitulating the last two subsections, the Maxwellian distribution feq quan-
tifies a stationary state by means of the expected distribution of atoms of an ideal
gas in a closed volume where no external forces are applied and no heat is trans-
fered at the boundary. For that configuration the (expected) mean absolute thermal
velocity c is defined and transformed by

c :=
1

n

∫

R3

||v − u||feq 3v

=

∫

R3

||ṽ||
(2πRT )

3/2
exp

(
−
(
||ṽ||2

)

2RT

)
3ṽ

= 4π

∫ ∞

0

||ṽ||3

(2πRT )
3/2

exp

(
−
(
||ṽ||2

)

2RT

)
3||ṽ||

= 4π
1

(2πRT )
3/2

(2RT )2

2
=

√
8

π
RT .

(1.65)
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The (expected) root mean square thermal velocity c0 is defined and transformed
similarly to the derivation presented above:

c0 :=

√
1

n

∫

R3

(v − u)2feq 3v = ... =
√

3RT .

With the mean free path lf and mean absolute thermal velocity c one obtains the
(expected) mean free time between two collisions as

ω :=
lf
c

. (1.66)

The particular choice for Q is motivated by the idea to retain three essential
features of the collision operator J . These properties of Q are the subject of the
following theorem:

Theorem 1.5. Let Q be defined as in (1.64), χ(v) := a+b ·v + c v ·v for any
a, c ∈ R and b ∈ R

d and f, χf ∈ L1(I ×Ω×R
d) with f > 0 in ×Ω×R

d. Then, the
following holds:

(1) χ is a collision invariant ,
(2)

∫
Rd ln(f)Q(f) dv ≤ 0 ,

(3)
∫

Rd ln(f)Q(f) dv = 0 if and only if f is a Maxwellian distribution .

Proof. Let χ and f be as demanded. Taking advantage of the properties of
Meq

f (1.60), (1.61) and (1.62) yields
∫

Rd

χQ(f) dv = −ω

∫

Rd

(a + b · v + c v2)(f − Meq
f ) dv

= −ω

∫

Rd

(a − 2cuf
2 + (b + 2cuf ) · v + c (v − uf )2)(f − Meq

f ) dv

= 0 ,

in I ×Ω which proves the first statement. The second proposition is proved by the
following manipulations which hold in I × Ω:∫

Rd

ln(f)Q(f) dv =

∫

Rd

ln(f/Meq
f )Q(f) dv +

∫

Rd

ln(Meq
f )Q(f) dv

︸ ︷︷ ︸
=0

= − 1

ω

∫

Rd

Meq
f︸︷︷︸

≥0

(1 − f/Meq
f ) ln(f/Meq

f )
︸ ︷︷ ︸

≥0

dv ≤ 0 ,

whereby the second sum is zero because ln(Meq
f ) is a collision invariant of Q. This

transformation also reveals that the equality sign applies if and only if f = Meq
f

which proves the third statement. �

Replacing the collision operator J of the Boltzmann equation by Q leads to the
BGK-Boltzmann equation:

(
∂

∂t
+ v · ∇r +

F

m
· ∇r

)
f = Q(f) in I × Ω × R

d . (1.67)

The common properties of the collision operator for rigid spheres and the BGK
collision operator lead to two common characteristics of the Boltzmann and BGK-
Boltzmann equation. The first one is the relation of solutions of the Boltzmann
equation to the conservation laws of mass and momentum. This is the subject of
Subsection 1.3.1. There, it is established that the moments of a particle density
function f which solves the Boltzmann equation respect the two conservation laws.
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Due to the form of the collision invariants of Q, the consistency of the moments
of a solution of the BGK-equation with the corresponding macroscopic quantities
can be established as well, i.e. the moments also fulfil the governing equations
of the conservations. The second common characteristic of the Boltzmann and
BGK-Boltzmann equation is the relaxation towards an equilibrium state which is
a Maxwellian distribution. This is established by the H-Theorem which also holds
for the homogeneous form of the BGK-Boltzmann equation due the properties of
the BGK collision operator.

1.3.5. About a Hydrodynamic Limit for the BGK-Boltzmann equa-
tion. This subsection aims to establish a connection of the moments obtained from
a solution of a BGK-Boltzmann equation with the incompressible Navier-Stokes
equation. In the previous subsection it is shown that these moments, namely mass
density, velocity and stress tensor, fulfil the conservation laws of mass and mo-
mentum. Newton’s characterising hypothesis for incompressible Newtonian fluids
is still left to be established for the mesoscopic model. It postulates that the stress
tensor is of the form

P = −pId + 2µD , (1.68)

where the dynamic viscosity µ is a material describing constant and D is the strain
rate tensor. For this purpose, in the following the BGK-Boltzmann equation is stud-
ied in a particular regime of small Knudsen numbers Kn and small Mach numbers
Ma. Thereunto, the equation is rewritten as a sequence of higher-order equations
leading to a power series. Neglecting the terms of order higher than one, an equa-
tion is obtained for which the stress tensor corresponding to a solution satisfies
Newton’s hypothesis.

To begin with, a characteristic length L ∈ R>0 is introduced which characterises
the magnitude of the domain Ω. Further, a characteristic speed U ∈ R>0 is fixed
which stands for a typical magnitude of a macroscopic flow velocity. With the
mean free path lf and the mean absolute thermal velocity c two typical microscopic

magnitudes are given. According to (1.65), the latter is c =
√

8
π RT and therefore,

the speed of sound cs =
√

γRT with the adiabatic exponent γ (e.g. γ = 5
3 for a

monatonic gas) is of the same order of magnitude as c. Alltogether, the following
two dimensionless quantities are defined:

• Knudsen number

Kn := lf/L , (1.69)

• Mach number

Ma := U/c . (1.70)

With these two parameters Kn and Ma the terminology of small in the above
mentioned context can be quantified. A limiting process where Kn and Ma tend to
zero implies that lf will also tends to zero while cs or c, respectively, will tend to
infinity since L and U are constants.

Now, the kinematic viscosity ν and dynamic viscosity µ are defined by

ν :=
π

8
clf (1.71)

µ := νρ (1.72)

Considering viscous fluid flows in a macroscopic framework as presented in Sec-
tion 1.1 µ is assumed to be a constant which describes the fluid. Hence, in a
limiting process lf and 1/c must tend to zero with the some order of magnitude.
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A third dimensionless parameter which is of interest later on is the Reynolds
number

Re :=
ρ U L

µ
=

π γ

2
ρ
Ma

Kn
. (1.73)

In case of considering incompressible fluids ρ is a constant. With (1.73) it becomes
clear that the Reynolds number Re is proportional to the ratio of the Mach to the
Knudsen number.

Using the Lagrange description, the BGK-Boltzmann equation (1.67) can be
transformed to

f = Meq
f − lf

c

d

dt
f in I × Ω × R

d . (1.74)

Differentiating (1.74) with respect to t yields

d

dt
f =

d

dt
Meq

f − lf
c

d2

dt2
f in I × Ω × R

d . (1.75)

Now, (1.75) serves to substitute d
dtf in (1.74):

f = Meq
f − lf

c

d

dt
Meq

f +
l2f

c2

d2

dt2
f in I × Ω × R

d .

This process can be repeated again and again leading to higher order equations. If
h := lf/c tends to zero terms of the equation become singular and the question arises
how does a solution fh behave in such a limiting process. The physical meaning
of the limit admits that at least the moments of fh converge. The sequence of
higher order equations leads to a power series in h around t which is known as
Chapman-Enskog expansion:

f =
∞∑

i=0

(
− lf

c

)i
di

dti
Meq

f in I × Ω × R
d . (1.76)

Note that also Meq
f depends on h which makes a rigorous analysis difficult. For

example, questions regarding convergence are controversially discussed in the liter-
ature (cf. [25, 140]).

To motivate the definition of the viscosity (1.71) which is conform with Stokes’
postulates (cf. Section 1.1) an ansatz of the form

f = Meq
f − lf

c

d

dt
Meq

f in I × Ω × R
d (1.77)

is chosen. Hereby, it is assumed that higher order terms vanish for h → 0. What
follows is similar to the derivation in [140] where the absolute temperature T is
assumed to be constant. Applying the conservation law of mass (1.8) the first
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derivative of Meq
f,h is given and simplifies as follows:

d

dt
Meq

f =

(
1

ρ

d

dt
ρ +

c

RT
· d

dt
u − c

RT
· F

m

)
Meq

f

d

dt
Meq

f =

(
1

ρ

(
∂

∂t
+ v · ∇r

)
ρ +

c

RT
·
(

∂

∂t
+ v · ∇r

)
u − c

RT
· F

m

)
Meq

f

d

dt
Meq

f =

(
1

ρ
(−u · ∇rρ − ρ∇r · u + v · ∇rρ) )

+ (
c

RT
·
(

∂

∂t
+ v · ∇r

)
u − c

RT
· F

m

)
Meq

f

d

dt
Meq

f =


−∇r · u︸ ︷︷ ︸

:=af

+
c

ρ
· ∇rρ

︸ ︷︷ ︸
:=bf

+
c

RT
· ∂

∂t
u

︸ ︷︷ ︸
:=cf

+
c

RT
· (v · ∇r) u

︸ ︷︷ ︸
:=df

− c

RT
· F

m︸ ︷︷ ︸
:=ef


Meq

f

whereas c := v − u and all transformations hold in I × Ω × R
d. Inserting the

derivative in (1.77) yields

f = Meq
f

(
1 − lf

c
(−af + bf + cf + df − ef )

)
in I × Ω × R

d .

To obtain the to this f corresponding stress tensor, designated integrals need to be
evaluated. Thereunto, it can be taken advantage of the symmetric properties of the
the function Meq

f and further of the fact that Meq
f /n is a normal distribution with

covariance matrix RTId. In I × Ω and for any i, j, k, l ∈ {1, 2, ..., d} the following
transformations hold:∫

Rd

cicjM
eq
f dv = δij n RT ,

∫

Rd

cicjafMeq
f dv =

∂

∂rk
uk

∫

Rd

cicjM
eq
f dv = δij nRT

∂

∂rk
uk ,

∫

Rd

cicjbfMeq
f dv =

1

ρ

∂

∂rk
ρ

∫

Rd

cicjckMeq
f dv = 0 ,

∫

Rd

cicjcfMeq
f dv =

1

RT

∂

∂t
uk

∫

Rd

cicjckMeq
f dv = 0 ,

∫

Rd

cicjdfMeq
f dv =

1

RT

∂

∂rk
ul

∫

Rd

cicjvkclM
eq
f dv ,

= (δijδkl + δikδjl + δilδjk)nRT
∂

∂rk
ul ,

∫

Rd

cicjefMeq
f dv =

Fk

mRT

∫

Rd

cicjckMeq
f dv = 0 .

Based on the preparative work, each component pij (i, j = 1, 2, ..., d) of the
stress tensor P can be stated and further simplified according to

pij =

∫

Rd

(
1 − lf

c
(−af + bf + cf + df − ef )

)
Meq

f dv in I × Ω × R
d

= δijnRT +
nRTlf

c

(
∂

∂ri
uj +

∂

∂rj
ui

)
in I × Ω × R

d

= δijp + µ

(
∂

∂ri
uj +

∂

∂rj
ui

)
in I × Ω × R

d .

This is exactly Newton’s hypothesis (1.68).
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The assumption of vanishing higher order terms for the limit h → 0 is justified
in [12, 117] for the special case Ω = R

3 and initial conditions which are close
to an absolute equilibrium Meq

abs := feq(1,0, 1). In [12] Bardos et al. consider
fluid dynamic limits of kinetic equations like the Boltzmann and BGK-Boltzmann
equation. Among them, one finds the limit towards the incompressible Navier-
Stokes equation. Saint-Raymond concentrates especially on the BGK-Boltzmann
equation [117]. Here, some integrability assumption for f needed for the more
general proofs in [12] are dropped. In both works, the underlying kinetic equations
are considered in a particular scaled form. The force term is neglected and an
appropriate choice of Galilean frame and dimensionless units is used such that the
BGK-Boltzmann equation reads

(
h

∂

∂t
+ v · ∇r

)
f = − 1

hν

(
f − Meq

f

)
in I × Ω × R

d . (1.78)

Solutions of (1.78) are sought in the form

f = Meq
abs(1 + hgh) in I × Ω × R

d ,

where gh is a perturbation function depending on h. Under appropriate conditions
a limiting g can be derived. Then, the explicit form of g comprises a weak solution
of the incompressible Navier-Stokes equation.

Many questions concerning the relation of macroscopic and mesoscopic models,
which are not addressed in this work, have sill not been answered yet. In this context
to be noted is the work of Bardos, Golse and Levermore [12] Freireisl [34], Freireisl
and Novotný [35] and Lions [94] which dedicate their work inter alia into this
direction.





CHAPTER 2

Numerical Simulation of Incompressible

Newtonian Fluid Flows with Lattice Boltzmann

Methods

Historically, lattice Boltzmann methods (LBM) have their seeds in lattice gas
cellular automata (LGCA) methods, which were mainly developed in the seventies
and eighties of the 20th century to simulate fluid flows, predominantly to solve the
Navier-Stokes equation. To be mentioned are the HPP and FHP models, named
after the innovators Hardy, Pomeau and Pazzis [61] and, respectively, Frisch, Hass-
lacher and Pomeau [42]. LGCA schemes allow to retrace the movement (free flow
and collision) of a given finite number of moving particles. Macroscopic quantities
like the velocity, the pressure or the stress tensor are obtained from the distribution
of the particles. Characteristical for the schemes is the choice of the considered uni-
form grids, commonly denoted as lattices. For example, a two-dimensional position
space is approximated by a uniform triangular grid. Each considered particle is
equipped with a certain direction, chosen so that it reaches exactly a node of the
lattice after a so-called propagation step (or streaming step). In physical quantities,
the direction represents a velocity and the streaming step a constant time interval
during which a particle flies freely without colliding with another one. If more
than one particle arrive at a node, they collide, i.e. they change their current flight
directions according to rules that conserve mass and momentum. This procedure
is called the collision step. Then, another propagation step follows and so on. The
scheme ensures that any of the considered particles is always at one of the lattice
nodes moving in one of the dedicated directions. Thus, only a finite number of
states of the whole system is possible so that it can be described by means of a
vector of Booleans. However, the Boolean nature of LGCA results in a statisti-
cal noise. This motivated the transition towards lattice Boltzmann (LB) schemes
where the number of moving particles with a dedicated velocity is replaced by an
average. This was invented by McNamara and Zanetti [99] in 1988. Since the
conservation of mass is ensured, these averages form a probability density function
which is related to Boltzmann distributions. On account of this found relation,
the development accelerates. The explicit collision rules of LGCA were replaced by
the BGK collision operator (cf. e.g. Koelman in [82]) and later by more complex
approximations of the Boltzmann collision operator.

Motivated by the intrinsic relation to the Boltzmann equation, the seemingly
rather artificial and unphysical LGCA methods turned to methods (LBM) with a
physical meaning. From a mathematical point of view, the interpretation of LBM
was and still is an object of many investigations. Here, mainly two questions con-
cerning consistency, stability and consequently convergence arise: The first one
concerns the relation of LBM to the Boltzmann equation or its approximations
and the second one its relation to certain macroscopic equations like the Euler or
Navier-Stokes equation.

31
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Some lattice Boltzmann schemes can be interpreted as explicit finite difference
approximations of specially scaled Boltzmann or Boltzmann-like equations, such as
the multi relaxation time (MRT) (cf. d’Humieres et al. [31] and references therein)
or the BGK approximation of the Boltzmann equation. For example, in [63] He
and Lou present a mostly general procedure to derive certain LBM. In a limit-
ing process, the moments of assumed discrete solutions are related to solutions
of macroscopic continuous equations such as the Euler or incompressible Navier-
Stokes equation. For the incompressible Newtonian fluid flows, He and Lou [62]
apply a Chapman-Enskog expansion to an assumed solution of a discrete version
of the BGK-Boltzmann equation and show that it approximates a solution of the
compressible Navier-Stokes equation for small Mach numbers. In a second limiting
process, they relate the solution to that of the incompressible Navier-Stokes equa-
tion. However, this multi-scale analysis is often criticised with regard to mathemat-
ical rigour (cf. e.g. Wolf-Gladrow [140]) and references therein). Using a diffusive
scaling (cf. [125]) and Taylor expansion, in [76] Junk et al. link an assumed ex-
panded solution of certain LB schemes directly to the incompressible Navier-Stokes
equation and analyse the asymptotic behaviour. In this procedure only one variable
is required for the limiting process. The work of Junk and Klar [75] is also inter-
esting to note. They succeed in interpreting a particular LB scheme as Chorin-type
projection method for the incompressible Navier-Stokes equation.

Yet, only in a few articles the issues of numerical stability and finally conver-
gence of LB schemes are addressed. Despite publications examining accuracy and
stability by numerical tests, only very special LBM are considered in a mathemati-
cally rigorous manner. Most of them consider one-dimensional cases, e.g. the works
of Weiß [138] and Rheinländer [115]. Weiß proves the consistency and stability of
a particular LB model for the heat equation on bounded intervals. Rheinländer
dedicates his work in particular to the analysis of numerical phenomena like initial
layers, multiple time scales and boundary layers. He studies e.g. the consistency and
stability of several LBM to the advection-diffusion equation in one space dimension.

The first section of this chapter is dedicated to derive selected LBM which are
consistent to a family of BGK-Boltzmann equations. A framework and a formal
procedure to establish the consistency is given in detail. It is stressed that this
approach is in contrast to many others, since the derivation does not depend on
any argument or assumption related to a macroscopic target equation. The section
concludes with a short discussion about the formulation of boundary and initial
conditions for LBM. In the second section topics related to the implementation of
LB algorithms are addressed. Thereto, dedicated concepts are studied following
the realisations in the open source software OpenLB as an example. Two numer-
ical experiments complete this chapter. The first example aims for showing the
connection of LBM to the incompressible Navier-Stokes equation. Thereto, an ana-
lytical stationary solution of the macroscopic governing equation is given, which is
to be reached by applying certain LB schemes. The second numerical experiment
is done to solve the famous benchmark problem lid-driven cavity. This is realised
by modelling the problem both macroscopically and mesoscopically and solving
the resulting governing equation by a finite element method (FEM) and an LBM,
respectively. Both solutions are finally compared with experimental data.
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2.1. From BGK-Boltzmann Equations to Lattice Boltzmann Equations

The basic and common idea of all LBM is the coupling of a discretisation
parameter h ∈ R>0 with one or more scaling parameters of the Boltzmann or a
Boltzmann-like equation. Hereby, the modality of the connection depends on the
regime in which a macroscopic target equation is reached by the mesoscopic equa-
tions. The subclass of the here considered LBM leads to a discrete representation G
of that family of BGK-Boltzmann equations F which is related to the incompress-
ible Navier-Stokes equation. The obtained family G consists of equations referred
to as lattice Boltzmann equations which are defined by (2.11).

The particular regime arises from the hydrodynamic relation addressed in Sub-
section 1.3.5. As it is shown there, the mean free path lf , the mean absolute
thermal velocity c and the kinematic viscosity ν are related by (1.71). Therefore,
by assuming ν is given as a constant characterising a fluid and by setting the speed
of sound

cs =
√

3RT :=
1

h
(2.1)

one finds

c =

√
8

3π

1

h
, lf =

√
24

π
νh, ω = 3νh2 . (2.2)

With it and after multiplying the BGK-Boltzmann equation (1.67) with h2 on both
sides it becomes

h2 d

dt
f = − 1

3ν

(
f − Meq

f

)
in I × Ω × R

d , (2.3)

where the Maxwellian distribution is

Meq
f =

nf hd

(
2
3π
)d/2

exp

(
−3

2
(v h − uf h)

2

)
in I × Ω × R

d .

With it, one obtains the considered family of BGK-Boltzmann equations F accord-
ing to

F :=

(
h2 d

dt
f +

1

3ν

(
f − Meq

f

)
= 0 , f ∈ V (I × Ω × R

d)

)

h>0

. (2.4)

To cope with the coupling of the parameter h, the frequently used term of
consistency which connects a family of discrete equations to one single continuous
equation needs to be extended. Thereto, the following definition is stated:

Definition 2.1. Let F := (Fh(f) = 0, f ∈ V (X))h>0 and G := (Gh(g) = 0, g ∈
Uh(Xh) ⊆ V )h>0 be families of equations. Then, G is called consistent of order d
to F in Uh(Xh), if for the solutions fh of Fh(fh) = 0 in X there holds

Gh(fh|Uh
) ∈ O(hd) in Xh , i.e. lim

hց0
sup

x∈Xh

||Gh(fh|Uh
)(x)

hd
|| < ∞ .

The terms Gh(fh|Uh
) in Xh are understood as functions of h and called the trun-

cation errors.

In the following, the family of lattice Boltzmann equations G is consistently
derived from the family of BGK-Boltzmann equations F by basically applying
chosen LBM, namely the so-called D2Q9 and D3Q19 model. The derivation is
established in three main steps. In the first one, all discrete spaces are defined.
Based on this, in the next step the family of velocity discrete BGK-Boltzmann
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equations FG is derived by replacing the velocity space by a discrete space. The
position and time space remain to be replaced by their discrete counterparts. This
is done in the last step by means of finite difference approximations which finally
lead to the wanted family of lattice Boltzmann equations G.

2.1.1. Discrete Time and Phase Space. Let h ∈ R>0 denote the discreti-
sation parameter. It represents the shortest distance between any two nodes of
a uniform grid which approximates the position space Ω. The grid is commonly
called the lattice. The set containing all inner nodes is denoted by Ωh, while Γh

denotes the set that contains all other nodes. In Figure 2.1 an example is given to
illustrate the approximation.

Ωh

Γh

h

Figure 2.1. The considered domain Ω with boundary Γ is ap-
proximated by a uniform grid with spacing h which is is commonly
called the lattice. The set containing all inner nodes is denoted by
Ωh while Γh denotes the set that contains all other nodes.

The velocity space is discretised by a small number q ∈ N of chosen ve-
locities vi, i = 0, 1, ..., q − 1. The finite space of all velocities is denoted by
Q := {vi : i = 0, 1, ..., q − 1}. They are chosen such that a fictitious particle which
is at a knot of the lattice at a fixed time t = t0 will still be at its position or at one
of a close neighbouring knot of the lattice at t = t0 + h2. The discrete time space
is then given by Ih :=

{
t ∈ I : t = t0 + h2k, k ∈ N

}
.

If d denotes the space dimension, DdQq commonly denotes the name of the
particular LB model. Often used models are the D1Q3, D2Q9, D3Q15, D3Q19 and
D3Q27 model (cf. [28, 67, 129, 140]). In the following, two models are considered
exemplarily, namely the D2Q9 model for which the 9 discrete velocities are given
by
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0

)
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1

h
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h

(
1
−1

)



2.1. FROM BGK-BOLTZMANN EQUATIONS TO LATTICE BOLTZMANN EQUATIONS 35

and the D3Q19 model where the 19 discrete velocities are

v0 =



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0
0


 , v1 =

1

h
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An extract of 27 knots of a lattice and the discrete velocities of the middle knot
is depicted in Figure 2.2. It illustrates the discretised phase space.

Figure 2.2. In the D3Q19 model the phase space Ω × R
3 is dis-

cretised by a uniform grid and 19 velocities vi, i = 0, 1, ..., 18. The
27 red and blue dots symbolise knots of the lattice, while the ar-
rows stand for the discrete velocities. Those are chosen such that
a fictive particle which is at the red dot at a fixed time t = t0 will
still be at its position or at one of the other knots at t = t0 + h2.

2.1.2. Velocity Discrete BGK-Boltzmann Equations. Starting point for
the derivation to come is the family of BGK-Boltzmann equations F which is de-
fined according to (2.4). The aim of this subsection is to derive the family of velocity
discrete BGK-Boltzmann equations FG consistently from F . Thereby, the velocity
space R

d is replaced by Q.

In the following, let h ∈ R>0 be fixed. Due to the definition of vi, ṽi := vih
does not depend on h. Further, it is assumed that there exists a solution fh of
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(2.3) with moments nfh and ufh . Since fh depends on h, nfh and ufh will also
depend on h. Under the condition that nfh , ufh ∈ O(1), a factor of Meq

fh can be

expanded as a Taylor series in h such that the following holds in I × Ω × Q:

Meq
fh =

nfh hd

(
2
3π
)d/2

exp

(
−3

2
ṽi

2

)
exp

(
3h ṽi · ufh − 3

2
h2u2

fh

)

=
nfh hd

(
2
3π
)d/2

exp

(
−3

2
ṽi

2

)(
1 + 3h ṽi · ufh − 3

2
h2u2

fh +
9

2
h2
(
ṽi · ufh

)2
)

+ R1,t,r,v(h)

=: M̃eq
fh + R1,t,r,v(h) ,

where R1,t,r,v ∈ O(h3+d) is the remainder term for each (t, r,vi) ∈ I × Ω × Q.

Some properties of the Maxwellian distribution Meq
f are to be preserved also

for the approximated Maxwellian distribution M̃eq
f . Therefore, weights wi ∈ R>0

(i = 0, 1, ..., q − 1) are sought such that the following holds

nf =

q−1∑

i=0

wiM̃
eq
f in I × Ω ,

nfuf =

q−1∑

i=0

wiviM̃
eq
f in I × Ω .

By means of Gauss-Hermite quadrature, He and Luo [63] find the weights wi and
the particular set of discrete velocities vi e.g. for the D2Q9 and D3Q27 model.
For the D2Q9 model the weights are

w0 =
4

9
w ,

w1 = w3 = w5 = w7 =
1

9
w ,

w2 = w4 = w6 = w8 =
1

36
w ,

where w := 2
3π

d/2
h−d exp

(
3
2 ṽi

2
)
. As Wolf-Gladrow in [140] shows for the D3Q19

model, the conditions demanded above are fulfilled if the weights are given as
follows:

w0 =
1

3
w ,

w3 = w7 = w9 = w12 = w16 = w18 =
1

18
w ,

w1 = w2 = w4 = w5 = w6 = w8 = w10 = w11 = w13 = w14 = w15 = w17 =
1

36
w .
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With the weights, the moments of fh can be approximated in I × Ω by

∫

Rd

fhdv = nfh =

q−1∑

i=0

wiM̃
eq
fh =

q−1∑

i=0

wiM
eq
fh + R2,t,r

=

q−1∑

i=0

wi(f
h + 3νh2 d

dt
fh) + R2,t,r

=

q−1∑

i=0

wif
h + R3,t,r ,

∫

Rd

vfhdv = nfhufh =

q−1∑

i=0

wiviM̃
eq
fh =

q−1∑

i=0

wiviM
eq
fh + R4,t,r

=

q−1∑

i=0

wivi(f
h + 3νh2 d

dt
fh) + R4,t,r

=

q−1∑

i=0

(wivif
h) + R5,t,r .

For all i = 0, 1, ..., q − 1, wi is understood as a function of h and it holds that

wi ∈ O(h−d). Further, as it is shown before, Meq
fh is approximated by M̃eq

fh with

an error in O(h3+d) for all (t, r,vi) ∈ I × Ω × Q. Therefore, R2,t,r ∈ O(h3) and

R4,t,r ∈ O(h2) for all (t, r) ∈ I × Ω. Suppose wi
d
dtf

h(t, r,vi) understood as a

function of h is in O(1) for all (t, r,vi) ∈ I ×Ω×Q. Then, one gets R3,t,r ∈ O(h2)
and R5,t,r ∈ O(h) for all (t, r,vi) ∈ I × Ω × Q and finally

nfh −
q−1∑

i=0

wif
h ∈ O(h2) in I × Ω , (2.5)

ufh −
∑q−1

i=0 wivif
h

∑q−1
i=0 wifh

∈ O(h1) in I × Ω . (2.6)

In order to shorten the notation, the following terms are defined for i = 0, 1, ..., q−1
in I × Ω:

fi(t, r) := wif(t, r,vi) ,

nfi
(t, r) :=

q−1∑

i=0

fi(t, r) ,

ufi
(t, r) :=

1

n
(t, r)

q−1∑

i=0

vifi(t, r) ,

Meq
fi

(t, r) :=
wi

w
nfi

(
1 + 3h2 vi · ufi

− 3

2
h2u2

fi
+

9

2
h4 (vi · ufi

)
2

)
.

Multiplying the BGK-Boltzmann equation (2.3) with all weights wi and using the
definitions above, one gets the velocity discrete BGK-Boltzmann equation. Depend-
ing on the model type, DdQp it is given as a set of q equations where i = 0, 1, ..., q−1:

d

dt
fi = − 1

3νh2

(
fi − Meq

fi

)
in I × Ω . (2.7)
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With it, one obtains the family of velocity discrete BGK-Boltzmann equations FG
according to

FG :=

(
d

dt
fi +

1

3νh2

(
fi − Meq

fi

)
= 0 , fi ∈ V (I × Ω × Q)

)

h>0

.

The following theorem summarises the results of this subsection:

Theorem 2.2. Suppose for any h ∈ R>0 fh is a solution of the BGK-Boltzmann
equation (2.3) with moments nfh and ufh and that for nfh ,ufh , wi

d
dtf

h(t, r,vi)
understood as functions of h the following holds:

nfh ∈ O(1) in I × Ω , (2.8)

ufh ∈ O(1) in I × Ω , (2.9)

wi
d

dt
fh ∈ O(1) in I × Ω × Q . (2.10)

Then, the family of velocity discrete BGK-Boltzmann equations FG is consistent of
order 2 to the family of BGK-Boltzmann equations F , i.e. the truncation error is

h2 d

dt
fh

i +
1

3ν

(
fh

i − Meq

fh
i

)
∈ O(h2) in I × Ω × Q . (2.11)

Proof. The statement follows directly from the derivation presented in this
subsection. �

2.1.3. Lattice Boltzmann Equations. The aim of this subsection is to de-
rive the family of lattice Boltzmann equations G which is consistent to the family
of BGK-Boltzmann equations F . In the previous subsection, the velocity space R

d

is replaced by a finite set Q of q velocities vi. This led to the family of velocity
discrete BGK-Boltzmann equations FG which is found consistent to the family of
BGK-Boltzmann equations F with a truncation error of order h2. Tying up to this
derivation, the time I and position space Ω are replaced by the discrete spaces Ih

and Ωh according to the definitions established in Subsection 2.1.1. The differential
operator d

dt is approximated by a finite difference which finally leads to a second
order truncation error.

In the following, the BGK-Boltzmann equation is considered with vanishing
external forces, i.e. F = 0 in I × Ω. A possible treatment of the force term in
LBM is introduced and discussed in detail by Guo et al. in [57]. Additionally, the
Lagrange description is used to shorten the notation.

Let fh be a solution of the BGK-Boltzmann equation (2.3) which is three

times differentiable. Suppose that for d3

dt3 fh
i , understood as a function of h, it holds

d3

dt3 fh
i ∈ O(1) for i = 0, 1, ..., q − 1. Then, Taylor’s theorem can be applied leading

to a central difference approximation of d
dtf

h
i :

h2 d

dt
fh

i (t + h2/2) = fh
i (t + h2) − fh

i (t) + R6,t(h) in Ih , (2.12)

with a remainder term R6,t ∈ O(h6) for t ∈ Ih. Further, fh
i is expanded in a

Taylor’s series and d
dtf

h
i is approximated by a forward difference:

fh
i (t + h2/2) = fh

i (t) +
d

dt
fh

i (t)h2/2 + R7,t(h) in Ih

= fh
i (t) +

1

2

(
fh

i (t + h2) − fh
i (t)

)
+ R8,t(h) in Ih . (2.13)

Providing d2

dt2 fh
i understood as a function of h is in O(1), then, for the remainder

terms it holds R7,t, R8,t ∈ O(h4) in Ih.
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Applying Taylor’s expansion technique to the velocity discrete Maxwellian Meq
fi

leads to the following approximation:

Meq

fh
i

(t + h2/2) = Meq

fh
i

(t) + R9,t(h) in Ih . (2.14)

Assuming fh
i , d2

dt2 fh
i ∈ O(1), then, it follows that the derivative of Meq

fh
i

understood

as a function of h is in O(1) as well and with Taylor’s theorem the remainder term
R9,t is in O(h2) in Ih.

Based on the derivations presented in this and the previous subsection the
lattice Boltzmann equation is formulated as follows

fi(t + h2) − fi(t) = − 1

3ν + 1/2

(
fi(t) − Meq

fi
(t)
)

for t ∈ Ih, i = 0, 1, ...q − 1 .

(2.15)

The family of lattice Boltzmann equations G reads

G :=

(
fi(t + h2) − fi(t) +

1

3ν + 1/2

(
fi(t) − Meq

fi
(t)
)

= 0 , fi ∈ V (Ih × Q)

)

h>0

.

Summing up the results of this subsection and of Theorem 2.2, its consistency
to the family of BGK-Boltzmann equations is proved in the following theorem:

Theorem 2.3. Suppose for every h ∈ R>0 fh is a solution of the BGK-
Boltzmann equation (2.3) with moments nfh and ufh and that for nfh , ufh , fh

i ,
d
dtf

h
i , d2

dt2 fh
i , d3

dt3 fh
i understood as functions of h the following holds:

nfh ∈ O(1) in Ih × Ωh , (2.16)

ufh ∈ O(1) in Ih × Ωh , (2.17)

fh
i ,

d

dt
fh

i ,
d2

dt2
fh

i ,
d3

dt3
fh

i ∈ O(1) in Ih × Ωh for i = 0, 1, ...q − 1 . (2.18)

Then, the family of LB equations G is consistent of order 2 to the family of BGK-
Boltzmann equations F in Ih × Ωh × Q.

Proof. Let fh be a solution of the BGK-Boltzmann equation (2.3) satisfying
all conditions requested for this theorem. Then, Theorem 2.2 holds which leads to
a truncation error of

6ν

6ν + 1

(
h2 d

dt
fh

i +
1

3ν

(
fh

i − Meq

fh
i

))
∈ O(h2) in I × Ω × Q .

Considering this truncation error at t+h2/2 and substitution according to the finite
difference approximations (2.12), (2.13) and (2.14), one finds the error still of the
same order:

6ν

6ν + 1

(
h2 d

dt
fh

i (t + h2/2) +
1

3ν

(
fh

i (t + h2/2) − Meq

fh
i

(t + h2/2)
))

≈ 6ν

6ν + 1

(
fh

i (t + h2) − fh
i (t) +

1

3ν

(
fh

i (t) +
1

2

(
fh

i (t + h2) − fh
i (t)

)
− Meq

fh
i

(t)

))

= fh
i (t + h2) − fh

i (t) +
1

3ν + 1/2

(
fh

i (t) − Meq

fh
i

(t)
)
∈ O(h2)

for i = 0, 1, ..., q − 1 and for all t ∈ Ih. �



40 2. NUMERICAL FLUID FLOW SIMULATION WITH LBM

2.1.4. Formulation of Boundary and Initial Conditions. The specifica-
tion of boundary conditions for LBM is a difficult task. In [64] He et al. remark:
”[...] the real hydrodynamic boundary conditions have not been fully understood.”
Especially if one wants to simulate a fluid flow for which the problem configuration
is given in macroscopic scales, i.e. conditions at the boundaries or initial conditions
are only given for the pressure q and the velocity u. Then, one has to provide con-
versation formulas between the macroscopic quantities and the discrete distribution
function fi ∈ Q. Problems can arise if the number of unknowns for the distribution
function exceeds the number of given macroscopic variables. In this case, there is
no closed system given to derive conversation formulas. To overcome this difficulty
several approaches have been proposed. In many of them the smoothness of higher
order moments of fi is assumed. Then, intra- and extrapolation schemes are em-
ployed to close the gap. In many cases however, their physical meaning is not clear.
In [128] a survey of various boundary conditions for LBM is given. A short extract
of frequently used boundary and initial conditions is given in the following.

An exception regarding the difficulties is the treatment of periodic and sym-
metry boundary conditions since setting the discrete distribution function fi such
that the periodicity and symmetry, respectively, is ensured automatically leads to
periodic and symmetric macroscopic quantities at the boundaries.

For solid walls three kinds of boundary conditions can be distinguished: no-
slip, free-slip and frictional-slip. A common macroscopic property is that ∂

∂n
u = 0.

This is realised by different kinds of reflection rules whereby the values of fi with
outward pointing vi ∈ Qout are used to determine the values of fj for inward
pointing velocities vj ∈ Qin.

• The no-slip variant approximates a wall which is sufficiently rough to
prevent any macroscopic fluid motion, i.e. u = 0. It is often called
bounce-back boundary condition. For LBM it is realised by the setting
fj = fi for vi = −vj for all vj ∈ Qin.

• The free-slip boundary conditions ensures fj = fi for vi · vj = 0 for all
vj ∈ Qin which applies to the case of a smooth surface of the wall with
negligible friction exerted upon the fluid.

• The frictional-slip boundary condition is a blend of the former mentioned
two extremes. It can be realised e.g. by constituting a rule which deter-
mines all fj ∈ Qin as linear combinations of fi ∈ Qout.

Initial conditions and more general boundary conditions such as inflow and out-
flow conditions are more involved as mentioned at the beginning of this subsection
and are still an active topic of research. A systematic discussion of using finite dif-
ference schemes to formulate boundary and initial conditions for LBM is recorded
by Skordos in 1993 [124]. A distribution fi ∈ Q which is to be set is split into an
equilibrium and an off-equilibrium part. With the help of a Chapman-Enskog ex-
pansion, the off-equilibrium parts are associated with the velocity gradients. They
are kept smooth by considering the gradients of neighbouring nodes. Later, similar
approaches are proposed by Inamuro et al. [73], He and Zou [64] and Latt [88, 89].
All four approaches are often used in practice. In [90] Latt et al. compare the five
approaches of the before mentioned authors intending to adopt Dirichlet bound-
ary conditions at a macroscopic level. All five methods are analysed analytically
using the Chapman-Enskop expansion. Various numerical tests are done through
benchmarks of two-dimensional and three-dimensional flows revealing non of the
methods as superior regarding accuracy and stability.
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2.2. Implementation of Lattice Boltzmann Algorithms

This section is devoted to present a generic and efficient implementation strat-
egy dedicated for LBM. Aiming to obtain a straightforward, intuitive and easily
extensible implementation with almost no loss of efficiency, it is proposed to take
advantage of both the dynamic and static genericity offered by an object-oriented
programming language like C++. This allows furthermore to develop a single code
that can serve for many purposes. The author have already published parts of the
presented work in [66].

However, implementation details and performance issues related to LBM have
been discussed before in the literature, e.g. in [45, 84, 87, 128]; and it has also
previously been suggested to use object-oriented techniques for the implementation
of LB algorithms [32]. In [68] Heuveline and Latt propose a strategy for a generic
implementation in the framework of the OpenLB project (Appendix A). The there
presented ideas are taken up and enhanced towards an advanced realisation of LBM
allowing in particular efficient parallelism especially for fluid flow problems with un-
derlying complex geometries.

In the first part of this section, a concept for a data structure design dedicated
for LBM is presented. Based on it, the second part addresses the realsation of
typical LB algorithms emerging from LB equations like (2.15). The realisation of
the proposed concepts are illustrated by means of an example, namely the extension
of the open source software OpenLB.

2.2.1. Data Structure Design. An LBM, in its most widely accepted for-
mulation, is executed on a regular, homogeneous lattice Ωh with equal grid spacing
h ∈ R>0 in all directions. When numerical constraints require that a given problem
is solved on an inhomogeneous grid, it is common to adopt a so-called multi-block
approach: the computational domain is partitioned into sub-grids with different
levels of resolution, and the interface between those sub-grids is handled appro-
priately. This approach appears to respect the spirit of LBM well and leads to
implementations that are both elegant and efficient since the execution on a set
of regular blocks is relatively fast compared to an unstructured grid representa-
tion of the whole geometry. For complex domains a multi-block approach provides
another advantage. A given domain can be represented by a certain number of reg-
ular blocks which leads to cheap executions times on the one hand and to a sparse
memory consumption on the other hand. Furthermore, it encourages a particularly
efficient form of data parallelism, in which an array is cut into regular pieces and
distributed over the nodes of a parallel machine. As a result, LB applications can
be run even on large parallel machines with a particularly satisfying gain of speed.

The same spirit is adopted in the OpenLB package, in which the basic data-
structure is a BlockLattice which represents a regular array of Cells. In each
Cell the q variables for the storage of the discrete velocity distribution functions fi

(i = 0, 1, ..., q − 1) are contiguous in memory (cf. collision optimised data layout in
[139]). As remarked in the next subsection, required memory is allocated only once
since no temporary memory is needed in the applied algorithm. This data structure
is encapsulated by a higher level, object-oriented layer. The purpose of this layer
is to handle groups of BlockLattice, and to build higher level software constructs
in a relatively transparent way. Those constructs are called SuperLattices and
include multi-block, grid refined lattices as well as parallel lattices.
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Figure 2.3. Data structure in OpenLB: A number of
BlockLattices build a SuperLattice to adopt higher level soft-
ware constructs like multi-block, grid refined lattices and paral-
lelised lattices

2.2.2. Organisation of the Code. The core of OpenLB consists of a simple
and efficient array-like construct called a BlockLattice. This object executes an
LB algorithm in a very traditional sense as indicated in Algorithm 1, i.e. the lattice
Boltzmann equation (2.15) is split in two equation, namely the collision step

f̃h
i (t, r) = fh

i (t, r) − 1

3ν + 1/2

(
fh

i (t, r) − Meq

fh
i

(t, r)
)

in Ih × Ωh × Q (2.19)

and the streaming step (propagation step)

fh
i (t + h2, r + h2vi) = f̃h

i (t, r) in Ih × Ωh × Q . (2.20)

All Cells of the BlockLattice are iteratively parsed, and a local collision step
is executed, followed by a non-local streaming step. The streaming step is inde-
pendent of the choice of lattice Boltzmann dynamics and remains invariant. On
the other hand, the collision step determines the physics of the model and can be
configured by the user, by attributing a fully configurable dynamics object to each
Cell. In this way, it is easy to implement inhomogeneous fluids which use a dif-
ferent type of physics from one Cell to another. For each time step the collision
and streaming step can be executed separately in two loops over all Cells or only
in one. Both versions are implemented in OpenLB. Yet, for many applications the
method fusing the two loops is preferable. With a dedicated swapping technique
[85, 97, 98] the locality of the stored data is preserved and a costly reloading of
data into the cache in a second loop can be avoided.

Algorithm 1 A basic lattice Boltzmann algorithm.

1. Reading input
2. Simulation setup
3. Time loop
for t = t0 to t = tmax do

a) Collision
b) Streaming
c) Post-processing
d) Writing output

Although this concept of a BlockLattice is neat and should please the pro-
grammer by being conceptually close to the theory of LBM, it is not sufficiently
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general to address all possible issues arising in real life. As a case in point, some
boundary conditions are non-local and need to access neighbouring nodes. There-
fore, their implementation does not fit into the framework of a BlockLattice ex-
plained previously. The philosophy of OpenLB takes for granted that such situa-
tions, although they arise, take place in spatially confined areas only, as for example
the domain boundaries. They may therefore be implemented by slightly less effi-
cient means, without spoiling the overall efficiency of the code. Their execution is
taken care of by a post-processing step (see Algorithm 1), which, instead of step-
ping over the whole lattice a second time, parses selected Cells only.

Another task that falls under the responsibility of the post-processing step is the
interconnection of various BlockLattice structures during the implementation of
higher level constructs which are described in the previous subsection. In this way,
the efficiency of a basic LBM is combined with an access to advanced constructs,
including parallel and grid refined codes.

2.3. Numerical Experiment: A 3D Stationary Fluid Flow Problem

In Chapter 1 the connection between a macroscopic and a mesoscopic model
both describing incompressible Newtonian fluids is studied. In particular in Sub-
section 1.3.5 it turned out that a family of BGK-Boltzmann equations is related to
the incompressible Navier-Stokes equation in a certain regime of small Mach and
Knudsen numbers. As illustrated in this chapter, the discretisation strategy for
BGK-Boltzmann equations which leads to LB equations is based on coupling the
discretisation parameter with the a term which characterises this regime. The aim
of this section is to provide numerical evidence for both, the discretisation approach
and the relation of the marcoscopic and mesoscopic model. Beside, the study con-
tributes to validate the realisation of the presented implementation strategy.

Figure 2.4. Velocity distribution u∗ in Ω of the analytical so-
lution of the 3D benchmark problem with a Reynolds number of
Re = 10. The left picture shows isosurfaces of ||u∗||2 in Ω and the
right one the distribution of ||u∗||2 on the surface of Ω

.

Therefore, in the following the asymptotic behaviour of discrete solutions of LB
equations of a particular family is examined. As starting point serves the analytic
solution of a stationary 3D fluid flow problem which is formulated by means of the
macroscopic model which is governed by the corresponding Navier-Stokes equation.
Based on that, here the same fluid flow problem is formulated by means of the
respective family of BGK-Boltzmann equations. Then, in Subsection 2.3.2 the LBM



44 2. NUMERICAL FLUID FLOW SIMULATION WITH LBM

of choice is presented and further details e.g. regarding a suitable stop criteria, are
addressed. Finally, the obtained results are presented and discussed.

2.3.1. Test Case Description. The subject of interest is the stationary flow
of an incompressible Newtonian fluid in a cube. The fluid is characterised by its
density ρ = 1 and kinetic viscosity ν = 0.1 . Defining the characteristic velocity
U = 1 and the characteristic length L = 1 leads to a Reynolds number Re = 10.
The domain is represented by the unit cube Ω = (0, 1)3 ⊆ R

3. In the whole domain
an external force F is applied to the fluid according to

F1(r) = −1

8
π (16πν (cos(2πr2) cos(2πr1) − sin(2πr1) cos(2πr3))

− cos(2πr2) cos(2πr3) + 2 cos(2πr2) cos(2πr1)
2 cos(2πr3)

+ cos(2πr2)
2 cos(2πr1) sin(2πr1) − cos(2πr1) sin(2πr3)

+ cos(2πr1) sin(2πr3) cos(2πr2)
2 − sin(2πr2) cos(2πr1)

2

− sin(2πr1) cos(2πr1) − 2πr3 sin(2πr3) cos(2πr2)

+2πr3 sin(2πr3) cos(2πr2) cos(2πr1)
2

+sin(2πr1) sin(2πr3) cos(2πr2) cos(2πr3) + 16r3 sin(2πr1) sin(2πr2))

F2(r) = −1

8
π (−8πν (cos(2πr1) + 2 sin(2πr2) sin(2πr3)) + cos(2πr3)

− cos(2πr3) cos(2πr1)
2 − sin(2πr1) cos(2πr2) cos(2πr1)

− cos(2πr2) sin(2πr2) − cos(2πr2) sin(2πr3) cos(2πr1)

+ sin(2πr2) cos(2πr3) cos(2πr1) sin(2πr3)

+2πr3 sin(2πr2) cos(2πr3) cos(2πr2) sin(2πr1)

−16r3 cos(2πr2) cos(2πr1))

F3(r) = −1

8

(
16π2ν (cos(2πr1) sin(2πr3) + 2πr3 cos(2πr2) sin(2πr1)

− cos(2πr2) cos(2πr3)) − 2π2r3 sin(2πr3) sin(2πr1)

−2π2r3 sin(2πr2) cos(2πr1) sin(2πr1)

+π sin(2πr2) cos(2πr1) cos(2πr3) − π cos(2πr2) cos(2πr1)

+2π cos(2πr2)(cos(2πr3))
2 cos(2πr1) − 2π2r3(cos(2πr2))

2

+π(cos(2πr2))
2 cos(2πr3) sin(2πr1) − 8 cos(2πr1) sin(2πr2)

)

(2.21)

Further, the velocity distribution is given at the boundary of Ω:

u1(r) =
1

4
(sin (2πr1) cos (2πr3) − cos (2πr1) cos (2πr2))

u2(r) =
1

4
(sin (2πr2) sin (2πr3) + cos (2πr1))

u3(r) = −1

4
(cos (2πr1) sin (2πr3) + 2πr3 sin (2πr1) cos (2πr2)

− cos (2πr2) cos (2πr3))

(2.22)

As pointed out in Chapter 1 for such configurations the Navier-Stokes equa-
tion (1.34) is the governing equation for the macroscopic model. For this problem
∂
∂tu = 0 in Ω since u does not depend on t which leads to the so-called stationary
Navier-Stokes equation.
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By defining u∗ and p∗ in Ω as

u∗
1(r) =

1

4
(sin (2πr1) cos (2πr3) − cos (2πr1) cos (2πr2))

u∗
2(r) =

1

4
(sin (2πr2) sin (2πr3) + cos (2πr1))

u∗
3(r) = −1

4
(cos (2πr1) sin (2πr3) + 2πr3 sin (2πr1) cos (2πr2)

− cos (2πr2) cos (2πr3))

p∗(r) = cos (2πr1) sin (2πr2) r3

(2.23)

and inserting them into (1.34) one can easily verify that (u∗, p∗) is a solution of the
above described problem. The problem setup and the distribution of its solution
u∗ is illustrated in Figure 2.4.

2.3.2. Discretisation Issues. The stationary problem is solved by consid-
ering a suitable instationary problem and solving it numerically by means of an
LBM. Therefore, it must be provided that the solution of the instationary problem
converges in time towards the solution of the original stationary problem.

Let h denote the discretisation parameter. With it, the considered BGK-
Boltzmann equation (2.3) is also specified. Then, the unit cube Ω is disretised
by a lattice Ωh of size (N + 1) × (N + 1) × (N + 1) where N := 1/h. The D3Q19
model is chosen for the numerical experiments. The force term is treated as pro-
posed by Guo et al. [57].

Due to the fact that the considered configuration is a closed vessel, the pressure
distribution is defined up to a constant. Therefore, subtracting a constant offset
from the pressure does not modify the results of the incompressible Navier-Stokes
equation. It is observed however, that the LBM experiences numerical instabilities
when the pressure, and thus the particle density, is too high. For this reason, the
average density in the system is computed at every iteration step of the simulation.
At the next iteration, a constant offset is subtracted from the distribution function
fi on every grid node, in order to keep the average density close to a value of 1.

The boundary condition is based on the technique suggested by Skordos in
[124]. With this type of boundary conditions, velocity gradients on boundary
nodes are evaluated using a second-order accurate finite difference scheme. This
information is then used to compute the off-equilibrium terms of the particle dis-
tribution functions. It is also worth to note that on corner and edge nodes, the
value of the pressure is extrapolated from bulk nodes, as the data locally available
on the nodes is insufficient to evaluate the exact value of the pressure. The initial
condition is set using the Maxwellian distribution with u = 0 and ρ = 1.

The convergence is checked by monitoring the evolution of the average kinetic
energy Ekin which is defined as

Ekin(t) :=
1

(N + 1)3

∑

r∈Ωh

Ekin(t, r) in Ih

where the kinetic energy is

Ekin(t, r) :=
1

2
ufi

(t, r) · ufi
(t, r) in Ih × Ωh .

During the execution of the explicit LB scheme the average kinetic energy Ekin

is recorded over a certain macroscopic time scale Jh ⊆ Ih which represents the
latest calculated but not more than k := 2h2 time steps. The recorded average
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kinetic energies Ekin(t), t ∈ Jh are considered as a series of samples. Convergence
is claimed if the sample standard deviation of the series is smaller than ǫ := 10−10

times the average of the sample, that is
√√√√ 1

|Jh| − 1

∑

t∈Jh

(
Ekin(t) −

∑

t∈Jh

Ekin(t)

)2

< ǫ
1

|Jh|
∑

t∈Jh

Ekin(t) .

2.3.3. Presentation and Discussion of the Numerical Results. Varying
the discretisation parameter h, a series of experiments has been performed. The
smallest choice of the parameter is h = 1/400 which results in a number of unknown
variables of approximately 1.22 · 109. With the usage of IEEE double precision
floating point arithmetic this results in a storage space of about 9.76 GB in main
memory. To keep the execution times short, a hybrid parallel approach, which
is presented in Chapter 3, is applied. All experiments have been performed on
the HP XC4000 supercomputer at the Steinbuch Center for Computing at the
Universität Karlsruhe (TH) (cf. Section 3.3 for a detailed description).

Figure 2.5. The development of the relative error for the
velocity ||ufi

− u∗||L2(Ωh)/||u∗||L2(Ωh) and pressure ||pfi
−

p∗||L2(Ωh)/||p∗||L2(Ωh) is given as a function of the discretisation

parameter h. The experimental order of convergence (EOC) for
the relative error for the velocity is found to be approximately 2
and that for the pressure 1.5.

For the obtained discrete solution fi the velocity distribution ufi
and the pres-

sure distribution pfi
are calculated. Then, for several chosen h the relative errors

between ufi
, pfi

and their counterparts, the analytical solution u∗, p∗, are provided
according to

eu,h :=
||ufi

− u∗||L2(Ωh)

||u∗||L2(Ωh)

, ep,h :=
||pfi

− p∗||L2(Ωh)

||p∗||L2(Ωh)

.

Both errors are found to be small even for greater discretisation parameters. For
h = 1/40 e.g. eu,1/40 ≈ 4.93 · 10−3 and ep,1/40 ≈ 7.57 · 10−2. Higher accuracy

eu,1/400 ≈ 5.47 · 10−5 and ep,1/400 ≈ 2.22 · 10−3 is observed for the configuration
with h = 1/400. Generally it is observed that both errors tend to zero when h
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tends to zero. The experimental order of convergence (EOC) for h1, h2 ∈ R>0 with
h1 < h2, is defined by

EOCp(h1, h2) :=
ln(ep,h1

/ep,h2
)

ln(h1/h2)
, EOCu(h1, h2) :=

ln(eu,h1
/eu,h2

)

ln(h1/h2)
.

To give an example, in the experiment two typical EOC are EOCp(1/200, 1/140) ≈
1.53 and EOCu(1/200, 1/140) ≈ 1.97. As Figure 2.5 illustrates, the EOC for the
pressure tends to 1.5 and that for the velocity to 2 if h2 tends to zero.

2.4. Numerical Experiment: A 3D Instationary Fluid Flow Problem

The subject of this section is to study the time evolution of a flow in a cavity
driven by a moving lid. Thereby, the main aims are to provide further numerical
evidence for the presented mesoscopic approach and to validate its realisation.

In contrast to the problem which is subject of the previous section now the in-
vestigated configuration is a more realistic one in the sense that the starting-point
is a real observable problem and not one which arises by a given smooth analytical
solution. Thus, an additionally error emerging from the choice of the model may
be taken into account.

In the beginning of this section, the fluid flow problem configuration is formu-
lated. Afterwards, two approaches to solve the problem numerically are suggested:
an FEM and an LBM. Then, the obtained results are benchmarked by comparing
them to an experimentally gained solution.

2.4.1. 3D Lid-Driven Cavity Benchmark Problem. The lid-driven cav-
ity (LDC) benchmark problem has attracted considerable attention for many years.
The reasons are manifold. On the one hand, the geometry of a LDC problem is
simple which facilitates experiment set-ups as well as numerical implementations.
On the other hand, the flow structure is not simple at all. Especially in the 3D
case physical phenomena like boundary layers, eddies of different sizes and various
instabilities can appear. An overview of the work done in the last three decades is
given in [27].

Figure 2.6. Lid-driven cavity (cavity ratio 1:1:2): velocity distri-
bution at t = 12 for Re = 1000. With the help of streamline and
isosurfaces the main vortex is accented. The right picture displays
a closer look to it and thus reveals its complex structure.
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In particular to be mentioned is the work of Ghia et al. [49] from 1982 where
various configurations of 2D cases are studied. It further provides detailed numer-
ical results. Hence, it serves as benchmark for many other investigations. For the
3D case not many quantitative benchmark results are available. In [55] Guermond
et al. present experimentally gained results. To compare the numerical results
obtained by means of an LBM and an FEM with the experimental data, exactly
this simulation set-up is chosen.

An incompressible Newtonian fluid in a rectangular cavity of ratio 1:1:2 is
brought into motion by a constantly moving lid. The problem is characterised by
the length and speed of the lid, each of them is assumed to be equal to one. In
this system of units, the considered duration of the simulation is ∆t = 12 and
the Reynolds number is Re = 1000. At the beginning the fluid is at rest, i.e. the
velocity distribution is given as u = 0 in the cavity. Then, the lid abruptly starts
to move with the constant unit speed and as a result the fluid starts developing
several vortices with one dominant right in the center of the cuboid. The pictures
in Figure 2.6 illustrate the described set-up.

Based on this problem specification the fluid flow problem can be described by
a macroscopic and a mesoscopic model. Following the explanation and statements
of Chapter 1 the governing equations are the incompressible Navier-Stokes equation
and the Boltzmann or BGK-Boltzmann equation, respectively. For the macroscopic
approach the problem is solved numerically by means of an FEM while for the
mesoscopic case an LBM is applied.

2.4.2. Macroscopic Approach with a Finite Element Method. The
incompressible Navier-Stokes equation (1.34) is the considered macroscopic gov-
erning equation for the LDC problem. The computation domain is defined as
Ω =

{
r ∈ R

3 : −0.5 < r1, r2, 2r3 < 0.5
}

as illustrated in Figure 2.7 and the consid-
ered time interval is I = [0, 12] ⊆ R.
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Figure 2.7. Simulation setup of the considered 3D lid-driven cav-
ity problem. The upper r1-r3-plane (r2 = 0.5) is moving with a
constant velocity u while at all other boundary planes of Ω the
velocity is set to u = 0. Three r1-r2-planes at r3 = −0.75, r3 = 0.5
and r3 = 0 are chosen to compare the results.
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The external force is set to F = 0, the density to ρ = 1, the viscosity to
ν = 10−3. The initial and boundary conditions are given according to

u(0, r) = 0 in Ω ,

u(t, r) = 0 in I × Γ ∩
{
r ∈ R

3 : r2 6= 0.5
}

,

u(t, r) = (1, 0, 0)T in I × Γ ∩
{
r ∈ R

3 : r2 = 0.5
}

.

The time interval I is discretised by Id :=
{
t ∈ I : t = 1

10k, k ∈ Z
}

and an
implicit Euler scheme is applied that leads for each k, k = 1, 2, ..., 120, to a system
of nonlinear equations:

10
(
uk − uk−1

)
+
(
uk · ∇r

)
uk = −∇rpk + 10−3∆ruk in Ω

∇r · uk = 0 in Ω ,

where uk(r) := u(k/10, r) and pk(r) := p(k/10, r) for r ∈ Ω.

The position space is discretised by a uniform grid Ωd which consists of 64 ×
64 × 128 cubes of size (1/64)3. Then, a Galerkin FEM is applied with Taylor-
Hood elements Q2Q1. This leads to a nonlinear system with n, (n ≈ 13.4 million),
degrees of freedom for each of the 120 time steps:

Gk(

(
uk

d

pk
d

)
) = 0 for k = 1, 2, ..., 120 ,

where (uk
d,pk

d)T ∈ R
n is the discrete solution vector and

Gk :





R
n → R

n
(

uk
d

pk
d

)
7→
(

Auk
d + N(uk

d) + BT pk
d

Buk
d

)

with a nonlinear discrete operator N and matrices A,B.

Newton’s method is applied in order to linearise these systems. This leads to
linear systems which are to be solved until a given tolerance tol := 10−12 is reached.
Providing start solutions according to

(u1
d,0,p

1
d,0) := (0,0) , (uk

d,0,p
k
d,0) := (uk−1

d ,pk−1
d ) for k = 2, ..., 120 ,

one gets for each time step k, k = 1, ..., 12, and each Newton step l, l = 1, 2, ..., a
linear system which is to be solved:

∇ ⊗ Gk(

(
uk

d,l−1

pk
d,l−1

)
)(

(
uk

d,l

pk
d,l

)
−
(

uk
d,l−1

pk
d,l−1

)
) = −Gk(

(
uk

d,l−1

pk
d,l−1

)
) .

Each system is solved with a generalised minimal residual method (GMRES) which
is an iterative scheme to solve linear systems by means of minimising the norm of
the residuum in a specified Krylov subspaces (cf. e.g. [116]). The tolerance is given
similarly to that of the Newton scheme, tol = 10−12.

A detailed overview of the methods and techniques applied to solve the incom-
pressible Navier-Stokes equation numerically which has been mentioned within this
subsection can be found e.g. in [107].
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2.4.3. Mesoscopic Approach with a Lattice Boltzmann Method. The
LDC problem is now formulated mathematically within the mesoscopic model by
means of the BGK-Boltzmann equation (2.3) with h := 1/200 serving as the gov-
erning equation. With it δt = h2 = 1/40, 000 which yields 480, 000 iteration steps
since in the system of units where the LDC problem is formulated the considered
time interval is I = [0, 3]. To reduce the number of time steps needed, in the
following the LDC problem is considered after a certain scaling. The results are
finally rescaled to the original system of units.

The speed of the moving lid is set to be 4 while the length remains to be 1.
With this characteristic quantities the viscosity must be ν̃ = 4 · 10−3 and the time

Ĩ = [0, 3] to achieve the same Reynolds number Re = 1000 and so describe the same
problem. The computation domain is Ω =

{
r ∈ R

3 : −0.5 < r1, r2, 2r3 < 0.5
}
. It

is illustrated in Figure 2.7. The D3Q19 model is chosen which amounts to a total
of about 308 million unknown variables for the lattice of size 201 × 201 × 401.

The boundary conditions are given by

u(t, r) = 0 in Ĩ × Γ\
{
r ∈ R

3 : r2 = 0.5,−0.5 < r1, 2r3 < 0.5
}

,

u(t, r) = (4, 0, 0)T in Ĩ × Γ ∩
{
r ∈ R

3 : r2 = 0.5,−0.5 < r1, 2r3 < 0.5
}

and realised by a technique Skordos [124] proposed. The initial condition is set in
Ω using the Maxwellian distribution with u = 0 and ρ = 1.

The same technique which is presented in Section 2.3 is applied to ensure the
average density to be close to ρ = 1. Following the presented reasoning, as well,
this can be done since the cavity in the considered configuration is a closed vessel.

2.4.4. Comparison of the Numerical Results with Experimental Data.
In the following, the obtained numerical results are compared with experimental
data. Hereby, the main goal is to show that the macroscopic and mesoscopic ap-
proach lead to numerical results which solve the given problem accurately in the
sense that the numerical results are found within the relative measuring accuracy.

The experiments are done by Migeon and published in [55]. The purpose of
this work is to compare the data with numerical results obtained by an FEM to
exhibit high sensitivity to geometrical perturbations. The equipment as well as the
visualisation techniques employed for the experiments are described in detail in the
mentioned work. Important to note is that the relative accuracy of all measure-
ments is found to be about 3 per cent.

In the following, three planes are selected to compare the results: r3 = − 3
4 ,− 1

2 , 0
whereby to shorten the notation

r3 = a denotes Ωa := Ω ∩
{
r ∈ R

3 : r3 = a
}

for a = −3

4
,−1

2
, 0 .

The time evolution of two velocity profiles is compared along the middle lines
in the three planes:

u1(t, 0, r2, a) for a = −3

4
,−1

2
, 0 , −0.5 < r2 < 0.5, t = 4, 6, 8, 10, 12

u2(t, r1, 0, a) for a = −3

4
,−1

2
, 0 , −0.5 < r1 < 0.5, t = 4, 6, 8, 10, 12 .

The results are found to be very close to each other, especially if one compares
the data of the two numerical experiments. For the plane r3 = − 3

4 the results are
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Experiment LBM FEM
t r1 r2 r1 r2 r1 r2

1 0.400000 0.383000 0.387450 0.380843 0.396071 0.379961
2 0.326160 0.320330 0.303963 0.311787 0.307422 0.317039
4 0.216110 0.215280 0.209968 0.211285 0.203598 0.213085
6 0.167590 0.145130 0.163893 0.141055 0.157443 0.143390
8 0.121010 0.089960 0.127640 0.090303 0.124441 0.091127

10 0.080540 0.063900 0.095015 0.064580 0.097394 0.066498
12 0.055000 0.059000 0.076950 0.055980 0.080615 0.054204

6 -0.137747 0.474499 -0.148148 0.469225 -0.177126 0.467614
8 -0.243013 0.439364 -0.257359 0.431507 -0.260520 0.433429

10 -0.317772 0.408334 -0.328105 0.400498 -0.327913 0.406255
12 -0.356548 0.395196 -0.360327 0.390835 -0.357300 0.396686

Table 2.1. Position of the centres of the primary eddy for t =
1, 2, 4, 6, 8, 10, 12 and of the secondary downstream eddy for t =
6, 8, 10, 12 in the symmetry plane r3 = 0.

plotted in Figure 2.8.

In the same three planes the movement of the centres of two major eddies are
studied. One is called primary eddy and the other downstream secondary eddy. In
Figure 2.9 their trajectories can be retraced on the basis of the experimentally and
numerically gained data. The centres of the eddies are determined by detecting the
local minima of u1(t, r)2 + u2(t, r)2 in the planes r3 = 0, r3 = − 1

2 and r3 = − 3
4 for

several times t. This is done in two steps. At first, the local minima in the discrete
space Ωd ∩ Ωa are determined. Then, using the neighbouring nodes of the grid a
quadratical interpolation scheme is applied to improve the results. In Tab. 2.1 the
positions of the two examined vorticies in the symmetry plane r3 = 0 are stated.
This enables a direct comparison of the two applied methods to each other as well
as to the experimental data.

The results obtained by the three different approaches are compared with the
help of the relative deviation between each two series of positions of the centre of
the eddies in an Euklidean norm. Each series consists of the coordinates of the
centre of the primary eddy for t = 1, 2, 4, 6, 8, 10, 12 and those of the downstream
secondary eddy for t = 6, 8, 10, 12. The relative deviations are calculated separately
for each of the three planes. The results are stated in Tab. 2.2. Comparing the
results obtained by means of the LBM with those of the experiments, the relative
deviation is found to be less then 4.21 per cent in each plane which is slightly higher
than the relative accuracy of measurements of 3 per cent. A similar observation
is made comparing the results of the FEM approach with the experimental data.
Here, the worst relative deviation of 4.49 per cent is found for the considered plane
close to the wall r3 = −0.75. For both numerical approaches holds that the found
deviation is the better the closer the considered plane is to the symmetry plane.
Further, comparing the results gained by the LBM and the FEM to each other one
observes that the relative deviations are smaller than 1.66 per cent.
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Figure 2.8. Velocity profiles in the plane r3 = − 3
4 at times t =

4, 6, 8, 10, 12 (from left to right and from top to bottom) with 1
2u1

as a function of r2 (abscissa) and 1
2u2 as a function of r1 (ordinate).

The symbols � and N stand for the measurements while the lines
represent the numerical results obtained by the LBM and the FEM
(dashed).
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Figure 2.9. Position of the centre of the primary eddy and of
the downstream secondary eddy at times t = 1, 2, 4, 6, 8, 10, 12 in
the planes r3 = 0, r3 = − 1

2 and r3 = − 3
4 (from left to right and

from top to bottom). Symbol � stands for the numerical results
obtained by the an LBM, N for the results obtained by the an
FEM while � stands for measurements. In the considered planes,
the centre of the primary eddy moves towards the centre of the
vessel and the centre of the secondary downstream eddy along the
right wall towards the lower right corner.

plane LBM/Experiment FEM/Experiment LBM/FEM

r3 = 0 2.27e-2 3.07e-2 1.66e-2
r3 = −0.5 3.76e-2 4.18e-2 1.03e-2
r3 = −0.75 4.21e-2 4.49e-2 1.44e-2

Table 2.2. Averaged relative deviation of the positions of the
centres of the primary eddy at times t = 1, 2, 4, 6, 8, 10, 12 and the
secondary downstream eddy at times t = 6, 8, 10, 12 in different
planes measured in an Euklidean norm.





CHAPTER 3

Hybrid Parallelisation for Lattice Boltzmann

Methods

In the last decade LBM have evolved to a mature tool in computational fluid dy-
namics (CFD) and related topics in the landscape of both commercial and academic
software. The simplicity of the core algorithms as well as the locality properties
resulting from the underlying kinetic approach lead to methods which are very at-
tractive in the context of parallel and high performance computing (HPC). In that
framework it is however a common pitfall to underestimate the complexity of the
associated schemes needed to obtain the high performance provided by contempo-
rary computing architectures. New trends in computer architectures such as the
multi-core CPUs and coprocessor technologies require specific changes with respect
to the mathematical model, algorithm set-up, software design and implementation
strategies.

Currently intensive research efforts are undertaken to analyse, develop and
adapt adequate LB approaches for dedicated hardware architectures as, e.g., to
IBM Cell processors, Graphic Processing Units, Clearspeed accelerator board and
multi-core processors from AMD, Intel and others. These new technologies blur
the line of separation between architectures with shared and distributed memory.
In that context the development of efficient hybrid parallelisation schemes for LBM
does not only represent a major challenge in the near future but may become a sine
qua non condition to take advantage of the performance both on HPC hardware
and on commodity off the shelf hardware.

The goal of this chapter is to present a generic hybrid parallelisation concept
for LBM allowing coping with platforms sharing both the properties of shared and
distributed architecture platforms. The proposed approach relies on a spatial do-
main decomposition where each sub-domain is represented by a basic block entity
which is assigned to a symmetric multiprocessing (SMP) system. For the exchange
of data between different block entities a communication-based parallelisation par-
adigm is employed. The realisation of the proposed concept is illustrated in the
framework of the open source software project OpenLB (cf. Appendix A). Besides
the model and conceptional aspects, emphasis is placed on the software design and
the reworking needed to achieve good performance using OpenMP in that context.
It is important to note that currently no standard for an adequate software design
exists on multi-core and coprocessor based platforms. This chapter also aims to
address peculiarities of the implementation of LBM for such platforms. Parts of
the presented work have already been published [66] and accepted to be published
[65]. They are here presented partly in a different context and after a complete
revision.

The remainder of this chapter is organised as follows. In Section 3.1 a hybrid
parallelisation concept dedicated for LBM is presented. The concept is described

55
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by means of presenting its realisation in the OpenLB code. In the following section,
issues related to the parallelisation strategies for shared and distributed memory
platforms and finally its realisation with OpenMP and MPI, respectively, are ad-
dressed. After introducing the chosen high performance computers in Section 3.3,
in the last section performance results are discussed by means of considering two
three-dimensional test cases. The first one is a problem with an underlying simple
geometry, namely the benchmark problem LDC whose corresponding numerical re-
sults are presented and discussed in Subsection 2.4.1. The second test case is the
fluid flow problem which is subject of Section 6.3, which is roughly spoken ded-
icated to simulate the respiration in the upper human lungs. In contrast to the
simple geometry of the first example, here, the computational domain is complex
which poses an additional challenge.

3.1. A Hybrid Parallelisation Concept

The most time demanding steps in LB simulations (cf. Algorithm 1) are the col-
lision and the streaming. Since the collision step is purely local and the streaming
step only requires data of the neighbouring nodes, parallelising by domain parti-
tioning leads to low communication costs and is therefore efficient. This has been
discussed by many researchers, e.g. in [69, 96, 103, 112, 143].

Figure 3.1. The partitioning of the lattice Ωh which represents
the geometry of a human lungs. The bounding box pictures the

extended lattice Ω̃h and the coloured cuboids the extended sub-
lattices Ω̃lk

h .

The proposed hybrid parallelisation concept also follows the classical approach
of partitioning the data according to their geometrical origin. In Subsection 2.2.1
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a data structure layout for typical LB implementations is introduced. This con-
cept is now taken up. The strategy relies on partitioning the considered discrete
position space Ωh into n ∈ N disjoint, preferably cube-shaped sub-lattices Ωk

h,
k = 0, 1, ..., n − 1, of as similar sizes as possible.

This becomes feasible by extending Ωh to a cuboid-shaped lattice Ω̃h through

the introduction of ghost cells. Then, Ω̃h is split into m ∈ N disjoint, always

cuboid-shaped extended sub-lattices Ω̃l
h (l = 0, 1, ...,m − 1) of as similar sizes as

possible and preferable cube-shaped. Afterwards, all those extended sub-lattices

Ω̃l
h which consist solely of ghost cells are neglected. The number of the remaining

extended sub-lattices Ω̃l
h (l0, l1, ..., ln−1) defines n. Finally, one gets for each k ∈

{0, 1, ..., n − 1} the wanted Ωk
h as a subspace of Ω̃lk

h by neglecting the possibly
existing ghost cells.

An example is given in Figure 3.1. There, the extended lattice Ω̃h, which is
of size 427 × 213 × 787, is split into m = 1, 000 extended sub-lattices consisting
of between 68, 796 and 73, 960 lattice cells. All extended sub-lattices are almost
cube-shaped. The worst ratio of highest to lowest number of cells in a arbitrary
Cartesian direction of any of the sub-lattices is found to be ≈ 1, 103. Neglecting all
those sub-lattices consisting only of ghost cells, 138 sub-lattices remain.

Based on the concept for a data structure for LB scheme, which is presented in

Subsection 2.2.1, each extended sub-lattice Ω̃lk
h is represented by the construct of a

BlockLattice and the whole set by a SuperLattice. Then, each BlockLattice is
assigned to one SMP unit. There, the parallelisation is based on a paradigm ded-
icated to shared memory platform which takes advantage of the regular structure
of the construct BlockLattice. For the exchange of data between the SMP units,
i.e. between the BlockLattices, a communication-based paradigm is employed. In
Figure 3.2 the organisation of the data in the proposed hybrid concept is illustrated.
In order to assure an even load balance for in particular complex geometries, the

Figure 3.2. The underlying data structure layout for LB schemes
as proposed in the hybrid parallelisation concept and adapted in
OpenLB.

domain is partitioned in a sufficiently large number of disjoint cube-shaped sub-
lattices. Then, several BlockLattices are assigned to each of the SMP units. This
can be done by a sophisticated graph-based partitioning algorithm to find a dis-
tribution where the communication costs between the processing units are kept low.

In Section 2.2 the implementation of typical LB algorithms (cf. Algorithm 1) is
studied. For the parallel case, it is not categorically necessary to change the basic
structure of the sequential algorithm. The usage of pre-processor programming
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enables to write one single code for the sequential and several parallel modes. The
few parts of the program that require a special treatment for the parallel case
can be handled by pre-processor directives. An advantage is that one single code
simplifies the development of new code. Moreover, there is no loss in efficiency since
always either the sequential or a parallel code is compiled. In combination with
the usage of a modern object oriented and template based programming language,
the adoption of several parallelisation paradigms like OpenMP and MPI and finally
their combination is enabled.

3.2. Realisation of the Hybrid Parallelisation Concept

To realise the proposed hybrid parallelisation in OpenLB, MPI is used for
communication between the BlockLattices within a SuperLattice and OpenMP
is used for the parallelisation within each single BlockLattice. In the frame-
work of OpenLB, pre-processor programming is introduced by setting a variable
PARALLEL MODE in the makefile to either OFF, MPI, OMP or HYBRID. Then, variables
are passed to the compiler so that the pre-processor can prepare the corresponding
code. Then, an MPI and/or a OpenMP manager are/is provided to keep the further
implementation both, simple and generic. In the code, the managers are realised
by means of classes which define a template-generic interface to the corresponding
libraries. Thus, necessary methods are provided for common data-types as well as
for abstract ones. Further, static settings are fixed through the managers. In paral-
lel mode, instances of the corresponding managers are always provided globally to
enable access to the static setting and to the subroutines. In the following section
the realisation of the concept is illustrated. Firstly, details regarding the implemen-
tation dedicated for shared memory platforms are discussed; and secondly, those
dedicated for distributed memory platforms are stated.

3.2.1. Implementation for Shared Memory Platforms with OpenMP.
OpenMP (Open Multi-Processing) is an application programming interface for
portable shared memory multi-processing programming (see e.g. [26] and refer-
ences therein). The main design goal is to keep the sequential functionality and
the source code structure of the program while providing flexible but simple ways
to annotate the program that specific parts can be run in parallel. This meets the
requirements for the proposed hybrid parallelisation concept as it is introduced in
the previous section.

OpenMP is characterised by a rather simple semantic which makes it difficult to
capture the complexity of the underlying hardware leading to the following possibly
critical issues which need to be considered:

• Synchronisation overhead: Frequent change of control flow between
one sequential main task and parallel parts can reduce the speedup. Even
though there is a huge number of time steps and the execution time for
one time step is rather small this is not a severe problem. The EPCC
OpenMP Microbenchmarks [24] show an overhead per loop construct of
about 5 microseconds, with up to 25 microseconds when using a reduction
operation. This is only tolerable considering applications of adequate
lattice size where the execution of one time step takes many times over
these overhead times. For a realistic problem with a lattice size of 1003,
for example, the execution takes 0.53 seconds (1.9 MLUP/s1) on an AMD
Opteron with clock speed of 2.6 GHz on HP XC4000 (see Section 3.3 for
specifications).

1Million fluid-lattice-site updates per second (MLUP/s), here for a D3Q19 BGK model, is a

frequently used measuring unit, e.g. in [139].
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• Shared access to common data: In principle, this is not an issue due
to the very regular data structures of the BlockLattices whose data are
distributed by decomposing the position space. However, excessive shared
access to common variables e.g. through statistic methods which collect
and reduce data of the whole domain can result in a considerable loss in
efficiency.

• Shared memory bandwidth: In LB simulations, especially in the
three-dimensional case where the number q of discrete velocities vi (i =
0, 1, ..., q − 1) is relatively high, the memory bandwidth can be the limit-
ing restriction (cf. e.g. [138]). The possible bottleneck can be reduced
or even completely avoided by fusing the two loops for the collision and
streaming step together.

• Consideration of the memory system hierarchy: The OpenMP pro-
gramming paradigm supports shared memory parallel programming on
many architectures. However, it does not consider the hierarchy of the
memory system i.e. it assumes uniform memory access (UMA) where the
times to access specific parts of the memory are assumed to be equal.
This is in contrast to the considered hardware of non-uniform memory
access (NUMA) platforms (cf. Section 3.3). The memory of such NUMA
platforms are partitioned into different parts which are local to a specific
processor. Unfortunately, these different partitions are not considered in
current programming environments, where one cannot specify to which
processor the result of a memory allocation should be local. Even worse,
because of the shared memory paradigm, one usually has only one memory
allocation command per data structure, whose different parts are later ac-
cessed by different processors. It is important to note that an allocation
command on an operating system like Linux does not actually allocate
virtual or even physical memory but address space. The allocation to vir-
tual memory pages takes place when the memory is accessed the first time
causing a page fault. Therefore, it is crucial that the first memory access
on the data happens in the same pattern the processors will have during
the rest of the calculations. The worst case occurs when the initialisation
is left sequentially and all the allocated memory is the root processor’s
local memory.

According to the hybrid parallelisation concept presented in Section 3.1, each of

the extended sub-lattices Ω̃lk
h (k = 0, 1, ..., n− 1) is represented by a BlockLattice

which is assigned to a SMP unit. The parallelisation strategy for shared memory
platforms also relies on domain partitioning. This is realised by OpenMP pragmas
which split the loops over all Cells of the BlockLattice in every collision and
streaming step. In the following, two different approaches are presented. In con-
trast to the first one, the second one does respect the memory system hierarchy. In
Section 3.4 the performance of the two approaches are compared.

If the collision and streaming step are executed separately in two loops over
all Cells, the data access is exclusive and the order of access is arbitrary. It is
stressed that this also holds for the streaming step due to a swapping technique
[97, 98, 85] which is implemented in OpenLB. In the first approach the collision (c)
and streaming (s) step are parallelised straightforwardly using OpenMP directives
for loops. Using an Intel compiler, it turns out that at both testing platforms (cf.
Section 3.3) for the collision step a dynamic scheduling with block size one is the
best choice, while for the streaming step the default scheduling is to be preferred.
The OpenLB source code of the parallelised collision step is shown exemplarily for
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template<typename T, template<typename U> class Latt i ce>

void BlockLattice2D<T, Latt i ce > : :
c o l l i d e ( int x0 , int x1 , int y0 , int y1 )

{
OLB PRECONDITION(x0>=0 && x1<nx ) ;
OLB PRECONDITION(x1>=x0 ) ;
OLB PRECONDITION(y0>=0 && y1<ny ) ;
OLB PRECONDITION(y1>=y0 ) ;

int iX , iY ;
#i f d e f PARALLEL MODE OMP
#pragma omp p a r a l l e l for private ( iY ) schedu le ( dynamic , 1 )
#end i f
for ( iX=x0 ; iX<=x1 ; ++iX ) {

for ( iY=y0 ; iY<=y1 ; ++iY ) {
g r id [ iX ] [ iY ] . c o l l i d e ( g e t S t a t i s t i c s ( ) ) ;
g r id [ iX ] [ iY ] . r e v e r t ( ) ;

}
}

}

Listing 3.1. The OpenLB source code for a parallelised colli-
sion step (c). In the parallel modes OMP and HYBRID the variable
PARALLEL MODE OMP is defined. Thus, the compiler can parallelise
the loop over all Cells of each BlockLattice.

the presented straightforward approach in Listing 3.1.

It is also possible to process both steps in one single loop (bulk c/s), even if the

data of the distribution function fi(r) (i = 1, 2, ..., q − 1 and r ∈ Ω̃lk
h ) are stored

only once in one array [85, 97, 98]. Unlike the previously described procedure,
the access order is not arbitrary. The execution of a Cell now depends on its own
data and that of some particular Cells in the neighbourhood. However, there is
no data dependency to Cells that are located somewhere in positive r1-direction
[85]. Making use of this specificity, the domain of a BlockLattice is split along
that direction into layers of as equal size as possible and each layer is assigned to a
thread. To handle the correlation of the data the parallel bulk c/s is done in three
steps. Firstly, the lower boundary Cells of each layer perform a collision step.
Secondly, the layers without the lower boundary as new formed blocks execute a
bulk c/s. Finally, after synchronising all threads, the lower boundary Cells process
a streaming step.

In order to improve the efficiency on multi-processor platforms with non-uniform
memory access, it is essential to ensure a static memory access. As pointed out
before, data should be split into parts whereas each part is assigned to a specific
thread and preferably accessed by this particular thread. In the second approach,
the domain which is represented by a BlockLattice is split into blocks of as equal
size as possible exactly as it is done for the bulk c/s described before. The OpenMP
directive for loops with a static scheduling with the associated block size is used
for the initialisation of the data, the collision (c* ) and streaming (s* ) step. The
approach where the collision and streaming is done in one single loop remains un-
changed and is now referred to as bulk c/s*. Threads are bound to specified cores
by calling the Linux system function sched setaffinity() to avoid the operating
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system moving the threads. As mentioned previously in Section 3.1 an OpenMP
manager is provided to simplify the implementation. To enable a static assignment
of a sub-domain to a specific thread the instance is given for each thread and ini-
tialised with the number of dynamic threads set to zero.

In OpenLB a class provides statistic data of a dedicated BlockLattice e.g. the
average density, average energy and maximum velocity. A method of this class is
called while a Cell performs a collision, whereby it collects the statistic data and
saves them in variables provided by an instance of the class. Since an exclusive
access of one thread to an instance of the statistic class blocks the other threads,
an approach using the corresponding OpenMP directive is inefficient. Additionally
provided instances of this class for each thread followed by a reduction solve that
shortcoming satisfyingly. Thereby one has to take care to avoid that any two
instances can be loaded into the same cache-line, for this would also prevent access
to the data for one thread as long as the other has loaded the line into its cache. This
problem is solved by encapsulating each instance through allocating and assigning
memory straight before and after an instance is constructed.

3.2.2. Implementation for Distributed Memory Platforms with MPI.
The hybrid parallelisation concept presented in Section 3.1 postulates that the data
belonging to a SuperLattice are distributed in memory of several SMP units.
Moreover, it is supposed that to each of the employed SMP units belongs the data
of one or more BlockLattices. To perform a streaming step, the data of all neigh-
bouring Cells are needed. Since generally SMP units do not have direct access to
the memory associated to other SMP units, the demanded data needs to be com-
municated. The realisation in OpenLB used the MPI (message passing interface)
standard which was established in 1994 by the MPI forum [101].

Algorithm 2 Basic parallel lattice Boltzmann algorithm for the adoption of
communication-based parallelisation paradigms like MPI.

1. Reading input
2. Simulation setup
3. Time loop
for t = t0 to t = tmax do

a) Collision
> Blocking
> Communicating
> Writing to ghost cells
b) Streaming
c) Post-processing
d) Writing output

A common and efficient strategy [83] is to introduce a layer of additional Cells

(ghost cell layer) around each extended sub-lattice Ω̃lk
h (k = 0, 1, ..., n−1). The size

of the layer depends on the applied LB model. For the D2Q9 and D3Q19 model
e.g. only the data of direct neighbouring Cells is needed. Thus a ghost cell layer
of size 1 in each space direction is sufficient. In OpenLB these extended sub-lattices
are also treated as BlockLattices.
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If the collision and streaming step are executed in two loops (c/s), each of
the BlockLattices performs the collision step only on the sub-lattice without the
envelope of ghost cells. Afterwards the data required by other processing units are
consolidated into blocks and sent to those units where they are finally written to
the ghost layer of the sub-lattice. Finally, a generic streaming step over all Cells
of the sub-lattice without the layer is performed. Thus, the basic structure of the
classical sequential LB algorithm (cf. Algorithm 1) is preserved. Due to three ad-
ditionally introduced steps, namely blocking, communicating and writing to ghost
cells the collision and streaming step remain unchanged. A prototypical parallel
LB algorithm is given with Algorithm 2.

In case of executing the collision and streaming step in one single loop (bulk
c/s), all Cells at the boundary of the BlockLattice without the ghost cell layer
perform a collision step, followed by a bulk c/s of the other Cells of this sub-
lattice. It is to be noted that so far all data of the Cells from the ghost cell layer
are not touched. Then, a blocking, communicating and writing to ghost cells step is
performed exactly to those described before. Finally, a streaming step of all Cells,
belonging to the boundary of the BlockLattice without the envelope, concludes
the procedure.

3.3. Computer Architecture Based Issues

Three high performance computers are considered to be appropriate platforms
to test the hybrid parallelisation approach. All three architectures consist of a
number of nodes with one or more multi-core processors which are connected by a
network. Hence, they all belong to the class of computers which blur the line of
separation between architectures with shared and distributed memory.

Two high performance computers at the Steinbuch Center for Computing at the
University of Karlsruhe are considered. The first of them provides shared memory
nodes with uniform memory access. There, solely the OpenMP implementation is
tested, whereas, on the second computer both the OpenMP-based and MPI-based
implementation are tested. The third environment chosen for testing is a super-
computer at the Forschungszentrum in Jülich. Here, the focus is placed on testing
the MPI-based implementation for a highly computing-time demanding problem.

The first test environment is an HP Integrity RX8620 16-way node which is par-
titioned into two 8-way (logical) nodes. Each Itanium-2 processor runs at a speed
of 1.6 GHz and has 6 MB of level 3 cache. This (logical) node has 64 GB of main
memory and one Quadrics QsNet II adapter and is part of a larger HP XC6000 in-
stallation with another 100 2-way Itanium-2 nodes. Though eight processors share
two memory banks, an interleaving mechanism provides uniform memory access
where the aggregate memory bandwidth is 12.8 GB/s.

The second high performance computer at the Steinbuch Center for Computing
considered to test the approach is the HP XC4000. It is equipped with 750 two-way
nodes (HP ProLiant DL145 G2), which reach a peak performance of 15.6 TFLOP/s,
12 TB total main memory and an InfiniBand 4X DDR Interconnect. One node pro-
vides two AMD Opteron sockets, running at a clock speed of 2.6 GHz, and 16 GB
of main memory. Each socket hosts one dual-core processor with 1 MB of level 2
cache. The two cores of one processor share a memory bandwidth of 6.4 GB/s. The
memory access is non-uniform, i.e. each socket has faster access to its own memory.
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Jülich Research on Petaflop Architectures (JUROPA) is the name of the high
performance computer at the Forschungszentrum in Jülich. This supercomputer
reaches a peak performance of 207 TFLOP/s. It hosts in total 2, 208 nodes. Each
one is equipped with two Intel Xeon X5570 (Nehalem-EP) quad-core processors
running at a clock speed of 2.93 GHz and 24 GB of main memory. The nodes are
connected by Infiniband QDR with non-blocking fat tree topology and a Sun Data
Center Switch 648.

3.4. Presentation and Discussion of the Performance Results

In order to test the performance of the proposed parallel approach, two test
cases are considered. The examples fundamentally differ by their underlying ge-
ometries. The first computational domain is a hexahedron and thence simple. In
contrast, the second fluid domain is the upper part of a particular human lungs.
The implementation of the proposed hybrid parallelisation strategy is employed to
solve, in particular, the two problems which are considered in the previous chapter
in Section 2.3 and Section 2.4. Since the numerical results of both tests cases are
validated by comparing them with an analytical solution and, respectively, with
experimentally gained data as well as with results gained by applying another nu-
merical method, the implementation can be seen as validated. Therefore, this issue
is not considered in the following.

3.4.1. Test Case with a Simple Geometry: 3D Lid-Driven Cavity. In
the following, the performance results of the hybrid parallel approach are studied
in detail for an example with a simple underlying geometry. Thereto, a 3D LDC
problem similar to that formulated in Subsection 2.4.1 is considered. The applied
LBM is chosen exactly like the one specified in Subsection 2.4.3 except for the
considered discretisation parameter h ∈ R>0 and the number of time steps. The
discretisation parameter h ∈ R>0 and with it the lattice size is kept variable to test
the scalability of the parallelisation. In order to keep the total execution times low,
the number of time steps is always set to 100. Since the computation and copying
operations are identical for every single time step an examination of this number
of time steps is sufficient to get scalable results.

All source code is compiled with the Intel compiler using optimisation level
3. The compiler uses two different optimisation settings for performance tun-
ing, namely one for the sequential mode and another for all parallel modes where
OpenMP is involved. It is important to note that this optimisation setting involves
specific heuristics especially to control the use of memory bandwidth among pro-
cessors. It turns out that this setting leads to an increase of the overall computing
times on a single thread. Each configuration is executed at least three times to
resolve random, possibly hardware caused artefacts polluting the presented results,
whereby the best one of them is presented in the following. The underlying measure
for the performance analysis is the efficiency Eff which is defined according to

Eff :=
t1

p tp
, (3.1)

where tp is the absolute time in seconds needed to perform 100 time steps with p
processing units employed.

In order to enable a clear and meaningful analysis of the hybrid parallelisation
approach, the performance tests are put in execution separately for the OpenMP-
based and MPI-based codes. For the OpenMP-based tests the domain of the whole
cavity is represented by one single BlockLattice which is assigned to one SMP
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Figure 3.3. Efficiency as a function of the number of threads for
the 3D LDC problem considered in Section 2.4 on a lattice of size
201 × 201 × 401 obtained on the HP XC6000. The abbreviations
in the legend are defined in Subsection 3.2.1.

mode threads bulk c/s c/s c s compiler flags

sequential 1 2, 405 s 3, 006 s 1, 359 s 1, 628 s -O3
OpenMP 1 2, 642 s 3, 132 s 1, 459 s 1, 635 s -O3 -openmp

2 1, 377 s 1, 619 s 737 s 863 s
3 960 s 1, 122 s 493 s 608 s
4 747 s 867 s 375 s 474 s
5 617 s 709 s 303 s 399 s
6 540 s 611 s 253 s 352 s
7 476 s 537 s 216 s 316 s
8 429 s 488 s 194 s 289 s

Table 3.1. Computing times for 100 time steps of the 3D LDC
problem considered in Section 2.4 on a lattice of size 201×201×401
measured on the HP XC6000. The abbreviations in the legend are
defined in Subsection 3.2.1.

unit of the two considered test platforms, namely the HP XC4000 and HP XC6000
(cf. Section 3.3). For the analysis of the parallelisation dedicated for distributed
memory platforms the domain is represented by a SuperLattice which is split
into an a priori given number of BlockLattices. Each of the BlockLattices is
assigned to one of the employed processing SMP units, whereby for the tests only
one core per SMP unit is employed. Thus, the MPI-based approach can be directly
compared to the OpenMP-based approach.

The performances related to the first of the OpenMP-based approaches de-
scribed in Subsection 3.2.1, namely c/s and bulk c/s, are presented in Table 3.1
and Figure 3.3 for the computations on the platform HP XC6000 and in Table 3.2
and Figure 3.4, respectively, for the computations on the platform HP XC4000. The
results obtained on the platform which provides uniform memory access, namely a
part of the HP XC6000, show a smooth and almost linear decrease of the efficiency
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Figure 3.4. Efficiency as a function of the number of threads for
the 3D LDC problem considered in Section 2.4 on a lattice of size
201 × 201 × 401 obtained on the HP XC4000 in comparison with
the results of an MPI-based parallelisation. The abbreviations in
the legend are defined in Subsection 3.2.1.

mode threads bulk c/s c/s c s compiler flags

sequential 1 902 s 947 s 589 s 330 s -O3
OpenMP 1 1, 123 s 1, 008 s 614 s 390 s -O3 -openmp
OpenMP 2 687 s 645 s 332 s 311 s

3 479 s 501 s 227 s 275 s
4 384 s 458 s 178 s 281 s

OpenMP 2 589 s 530 s 314 s 213 s
(local 3 418 s 417 s 211 s 201 s
memory) 4 324 s 323 s 161 s 158 s
MPI 1 935 s 960 s 597 s 347 s -O3
MPI 2 481 s 498 s 293 s 195 s
(within 3 347 s 402 s 200 s 204 s
one node) 4 267 s 310 s 150 s 156 s
MPI 2 479 s 493 s 293 s 192 s
(one core 3 333 s 340 s 195 s 141 s
per node) 4 251 s 256 s 145 s 105 s

Table 3.2. Computing times for 100 time steps for the 3D LDC
problem considered in Section 2.4 on a lattice of size 201×201×401
measured on the HP XC4000. The abbreviations in the legend are
defined in Subsection 3.2.1.

as a function of threads, leading to an efficiency of approximately Eff ≈ 0.80 for
eight threads. While the performance results of the three tests on this platform
are found with small variations, the results of the first approach obtained on the
platform without uniform memory access (HP XC4000 ) show variations of up to
20 per cent. Moreover, the reached efficiency is much smaller. These results are in
accordance with numerical tests obtained on other hardware platforms by means
of OpenMP for LBM [143, 144].
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A comparison of the efficiencies obtained on the platform HP XC4000 for the
approaches taking into account a local memory allocation and a local first touch
of data (c/s*, bulk c/s* ) is depicted in Figure 3.4. The efficiency can be improved
significantly and the variation of the test results is found to be less than 5 per
cent. The best result for that approach is achieved for the bulk c/s* using two
threads, reaching an efficiency of Eff = 0.95, while the first approach only leads to
Eff = 0.82.

Apart from a few exceptions on both considered platforms it is observed that
performing the collision and streaming step in one single loop over all Cells (bulk
c/s) is more efficient, considering the absolute execution times, than in two sep-
arated loops (c/s). This is pointed out as well for other platforms in [97, 98].
It is interesting to note that this holds for both the sequential and the parallel
implementation for the presented benchmark problem.

In Figure 3.4 the efficiency of the purely MPI-based approach is presented and
compared to the corresponding results of the OpenMP versions. It is stressed that
the considered implementation tested on one node uses a direct access to the local
shared memory. It is important to notice that in the case of three and four pro-
cesses the version executed on three respectively four different nodes i.e. involving
extranodal communication is more efficient than the version involving intranodal
communication. In the case of two processes there is no significant difference to
observe. Employing only one core per socket, then, each core can almost saturate
the memory-to-socket bandwidth in contrast to the case of three and four cores per
node and thus the limitation of the bandwidth becomes visible. Comparing the
efficiency based on the overall execution time using the same code executed on one
core, the OpenMP version with the local memory assignment and the MPI version
are found to be of high conformance. Though, considering the absolute execution
times as they are presented in Table 3.2, it is observed that the MPI version is more
efficient than both OpenMP based approaches. Moreover, the MPI results clearly
show the intricate dependency between the efficiency and job partitioning at the
core and nodal level. The motivation of the proposed hybrid parallelisation concept
relies on the idea that this kind of local partition at the nodal level should auto-
matically be treated by the considered parallelisation paradigm. Since OpenMP is
actually intended to offer such an interface, the results clearly reveal the potential
of optimising the considered implementation of OpenMP.

As last part of the performance tests, the MPI-based approach is tested on up
to 256 nodes on the HP XC4000. In contrast to the other tests, the cavity of the
underlying 3D LDC problem is chosen to be cube-shaped. However, the consid-
ered LB method as well as the testing strategy and environment remain the same.
The results are presented in form of the reached efficiency for various grid sizes
in Figure 3.5. It is observed that the efficiency increases if the grid size increases
and the number of employed cores is fixed. For a grid size of 4013 an efficiency of
approximately Eff ≈ 0.77 is reached when 256 cores are employed while for a grid
of size 3013 the corresponding efficiency is about Eff ≈ 0.68.

Summing up the presented benchmark results, the shared memory approach
with OpenMP cannot compete against the MPI version on SMP nodes. This some-
what disappointing result is partly due to heuristics used by the compiler when
using OpenMP leading to a loss in efficiency even in the case of sequential execu-
tion. To achieve better performance results the memory hierarchy and moreover
on platforms with NUMA a binding of threads to specific processors have to be
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Figure 3.5. Efficiency as a function of the number of processes for
100 time steps for the 3D LDC problem considered in Section 2.4
yet on a cube-shaped lattice of various sizes obtained on the HP
XC4000 of the MPI-based parallelisation. The abbreviations in
the legend are defined in Subsection 3.2.1.

taken into account. Since OpenMP does not provide any support for memory hi-
erarchies and to control affinity, the programmer is left to use utilities provided by
the operating environment.

Multi-core platforms are however a reality which cannot be circumvented, and
whose importance is expected to increase strongly in the near future. It can also
be expected that the needs of high performance computing are better taken into
account in future hardware platforms, as the communication between cores is im-
proved. Hybrid implementations as the one presented in this chapter are therefore
of crucial importance. It is believed that the approach described here takes into
account the fundamental philosophy of LBM. It combines efficiency with ease of
use and could serve as a programming paradigm for LB implementations on current
and on future computation platforms.

3.4.2. Test Case with a Complex Geometry: Flow in the Upper Hu-
man Lungs. In this subsection the pure MPI-based implementation, which is part
of the hybrid parallelisation approach, is tested for a problem with an underlying
complex geometry. Thereby, the main aim is to present and discuss the obtained
performance. The upper human lungs are considered to be a suitable example for
a fluid flow problem with a complex geometry. The same problem is in focus of
Section 6.3. There, the problem is formulated, the applied discretisation methods
are stated and the obtained numerical results are presented and discussed. The
computational domain is extracted from computer tomography (CT) data of a pa-
tient. Then, the data is prepared as described in Section 6.1 which leads to discrete
lattices Ωh with h = 0.23 mm. This and two finer lattices Ωh with h = 0.23 mm/N
(N = 2, 3) are considered to illustrate the parallelisation strategy and in particular
test its scalability. Thereby, the quasi-refinement is based on the approach men-
tioned in Subsection 6.1.3.

According to the concept presented in Section 3.1, the considered lattices Ωh

with h = 0.23 mm/N (N = 1, 2, 3) need to be partitioned. Thereto, at first all
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refinement dimension fluid non-boundary / boundary/

level N of Ω̃h cells fluid cells fluid cells

1 452 × 234 × 859 2, 327, 357 87.8% 12.2%
2 900 × 464 × 1714 17, 465, 152 93.6% 6.4%
3 1350 × 696 × 2571 57, 675, 848 95.7% 4.3%

Table 3.3. The considered extended discrete lattices Ω̃h repre-
senting the geometry of human lungs for different discretisation
parameters h = 0.23 mm/N whereby N = 1, 2, 3 is the corre-
sponding refinement level (cf. Subsection 6.1.3).

case refinement initial remaining min. cell max. cell
name level N cuboids m cuboids n cuboid cuboid

N1m1200 1 1, 200 152 73,710 77,142
N1m12000 1 12, 000 744 6,859 8,000
N1m24000 1 24, 000 1, 347 3,375 4,096
N1m48000 1 48, 000 2, 258 1,728 2,028

N2m1200 2 1, 200 161 581,256 602,454
N2m12000 2 12, 000 741 57,798 62,400
N2m24000 2 24, 000 1, 310 28,830 30,752
N2m48000 2 48, 000 2, 254 14,440 15,625

N3m1200 3 1, 200 158 2,000,349 2,026,056
N3m12000 3 12, 000 734 198,476 205,320
N3m24000 3 24, 000 1, 296 97,336 103,776
N3m48000 3 48, 000 2, 210 47,952 52,022

Table 3.4. The table shows all considered test cases and provides
for each of the cases (h = 0.23 mm/N with N = 1, 2, 3) the initial

number m of sub-lattices Ω̃l
h (l = 0, 1, ...,m − 1), the remaining

number n of sub-lattices Ω̃lk
h (k = 0, 1, ..., n − 1) as well as the

minimal and maximal number of cells in the respective remaining

lattices Ω̃lk
h .

Ωh (h = 0.23 mm/N with N = 1, 2, 3) are extended to cuboid-shaped lattices Ω̃h

through the introduction of ghost cells. An overview concerning the dimensions of

the different considered extended lattices Ω̃h as well as its corresponding numbers
of fluid, non-boundary and boundary cells is given in Table 3.3. In Figure 3.1 the
obtained remaining extended sub-lattices obtained for m = 1, 000 but also for the
geometry of the upper human lungs are visualised.

Then, the three considered extended lattices Ω̃h (h = 0.23 mm/N with N =
1, 2, 3) are split into m = 1, 200, 12, 000, 24, 000, 48, 000 disjoint extended sub-

lattices Ω̃l
h (l = 0, 1, ...,m − 1). Afterwards, all sub-lattices which just consist of

ghost cells are neglected, leaving a certain number n ≤ m of extended sub-lattices

Ω̃lk
h (k = 0, 1, ..., n − 1). This leads to twelve different test cases which are listed

in Table 3.4. There, for each of the test cases (h = 0.23 mm/N with N = 1, 2, 3)

the obtained number n of remaining lattices Ω̃lk
h (k = 0, 1, ..., n − 1) as well as the

minimal and maximal number of cells in the respective remaining lattices Ω̃lk
h are

specified.
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According to the presented strategy, each of the remaining extended sub-lattices

Ω̃lk
h (k = 0, 1, ..., n−1) is represented by one single BlockLattice, which all together

constitute a SuperLattice. Then, the BlockLattices are distributed among the
available SMP nodes by building blocks with respect to the numbering. The under-
lying LB algorithm is based on a D3Q19 model whereby the collision and streaming
step in every time step is done in one single loop (bulk c/s). Further details con-
cerning the chosen discretisation, in particular about the boundary conditions, can
be found in Subsection 6.3.3.

The twelve test cases are executed on the JUROPA. Thereby, in every case a
different number of cores p, but always with just one core per node, is employed.
The C++ source code is compiled with the Intel compiler using optimisation level
3. As for the first in the previous subsection considered example, each configuration
is tested three times to resolve random, possibly hardware artefacts. Then, the best
measured time of the three is presented in the following. In order to keep the total
execution times low, the number of to be performed time steps is always set to 100.
The time in seconds measured for these 100 steps obtained employing p processes,
respectively nodes, is captured by the variable tp. For some test cases, more than
the available memory on one node of 16 GB is required. Thus, t1 is not available
in those cases. Therefore, a comparison of the performance results based on the
efficiency Eff as defined in (3.1) is not feasible. In order to compare performances
of LB implementations obtained on different computers or obtained for different
implementation techniques, the measuring unit million fluid-lattice-site updates per
second MLUP/s is frequently introduced, e.g. in [139]. In the following, this
terminus is extended to also enable comparisons of in parallel executed LB code by
introducing the measuring unit MLUP/ps, which stands for million fluid-lattice-
site updates per process and second. The performance results obtained for the test
cases are measured in this unit and captured by the variable PLB which is defined
according to

PLB := 10−4 Nc

tpp

whereby Nc denotes the number of fluid cells.

In Figure 3.6 the measured performances PLB are plotted as a function of the
employed number of MPI-processes p = 20, 21, ..., 28. Considering the obtained
graphs of all test cases, a general observation made is a slight decline of PLB for
increasing p. This is in accordance with the obtained performance results for the
problem with an underlying simple geometry which is considered in the previous
subsection.

For all considered test cases (m = 1, 200, 12, 000, 24, 000, 48, 000 and p =
20, 21, ..., 28) it is observed than the greater the refinement level N is chosen the
better are the obtained performances PLB. The best value PLB ≈ 2.14 MLUP/ps is
measured for m = 12, 000 and N = 3 on p = 8 nodes. This characteristics can be
explained by the fact that the computational costs for a boundary cell is usually
higher that for a non-boundary cell and that the ratio of boundary cells to fluid
cells increases for smaller problem sizes as stated in Table 3.3).

Further, it is observed that for the cases where the number of initial cuboids m
is the smallest, i.e. m = 1, 200, in general the obtained performances PLB are the
smallest. In this cases the number of obtained BlockLattices ranges from n = 152
to n = 161 while for the other cases it is much greater (n ≥ 734). This leads to
a relative bad load balance especially for the cases where p ≥ 64. However, for a
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Figure 3.6. The graph shows the obtained values for PLB in ML-
SUP/ps (million fluid-lattice-site updates per process and second)
as a function of the number of employed MPI-processes p for 100
times steps of an D3Q19 LB algorithm obtained on the JUROPA.
The underlying computational domain is obtained by CT scans of
the upper human lungs. The problem is subject of Section 6.3.

fixed problem size, which is here characterised by N , the overhead due to commu-
nication costs will be greater if m and with it n increases. Thus, then increasing
m, it is expected that the positive effect of a better load balance is compensated by
additional costs due to increasing effort for the three steps in Algorithm 2: blocking,
communicating and writing to ghost cells. This is indeed observed then considering
the test results. By trend, in the case where N = 1 the best result is obtained
for m = 12, 000 and for the cases N = 2, 3 for m = 24, 000. Yet, it is to be
noted that the measured performances PLB are relatively close to each other in the
majority of the considered cases with m ≥ 12, 000. In particular, comparing the
results obtained for m = 24, 000 to those for m = 48, 000, no significant drop of the
performances PLB is observed.

Summing up, the parallel performance results for the considered complex ge-
ometry of a human lungs are found to confirm the efficiency of the underlying
approach in terms of that the computing time can almost be halved if the number
of employed nodes is doubled. Thereunto, it is important to ensure a good load bal-
ance, which is reached by providing a sufficient large number m of BlockLattices.
The overhead for large values of m is observed to be rather small for the considered
cases. It is expected that applying a sophisticated graph-based partitioning algo-
rithm would lead to a reduction of this overhead since relative expensive network
communication could be replaced by memory operations.



CHAPTER 4

Fluid Flow Control and Optimisation with Lattice

Boltzmann Methods and Automatic

Differentiation

In the three previous chapters mesoscopic models to describe fluid flow problems
and numerical methods to solve them are presented, discussed and applied. In this
framework the considered fluids are always restricted to be incompressible and
Newtonian. Now in this and later in the following chapter, the complexity of
the problems to be considered is increased. The focus is brought to optimal flow
control and flow optimisation problems whereas the underlying models describing
the fluid flows are of mesoscopic nature. In the following, such problems are to
be considered which can be formulated as constrained optimisation problems in an
abstract manner according to

find control α and state f which
minimise J(f,α) and fulfill G(f,α) = 0 .

}
(4.1)

Herby, the function f is said to be the state, the function α the control, the func-
tional J the objective or cost functional and G(f,α) = 0 the constraint or side
condition. The side condition couples the control α with the state f . It comprises
the governing equation of a mesoscopic model. This is in the following always
a BGK-Boltzmann equation (2.3). Thus, with the BGK-Boltzmann equation the
function G which establishes the side condition is generally also non-linear in f .

The considered approach of formulating an optimal control or optimisation
problem with a mesoscopic model describing the underlying fluid flow is in con-
trast to the classical approach where the fluid flow is modelled macroscopically.
There, the incompressible Navier-Stokes equation serves as governing equation for
the fluid flow as part of the side conditions (cf. Gunzburger [56], Hinze [70] and
references therein). Both approaches share the complexity of the side condition
which makes an analytical and numerical investigation challenging. However, com-
paring the efforts made to investigate optimisation problems of the two different
formulation approaches, little has been done to investigate the here considered
mesoscopic approach. To the knowledge of the author, questions regarding exis-
tence and uniqueness of solutions have not been addressed at all.

Generally, if one wants to solve fluid flow optimisation problems numerically
two main strategies can be distinguished. They are known as first-discretise-then-
optimise (approach) and first-optimise-then-discretise (approach) hence they vary
in the order of deriving the necessary condition for an optimum, called the opti-
mality system, before or after the problem is discretised.1 The focus of this chapter

1The two strategies first-discretise-then-optimise and first-optimise-then-discretise are also
known as first-discretise-then-differentiate and first-differentiate-then-discretise, cf. e.g. Gun-
zburger [56]. This nomenclature is rooted in whether the derivatives needed to formulate an

optimality system is derived based on a discrete or continuous optimisation problem formulation.

71
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is brought on the adoption, investigation and application of methods to the first-
discretise-then-optimise approach while the next chapter, Chapter 5, follows the
strategy of first-optimise-then-discretise.

The first-discretise-then-optimise approach leads to optimal control and op-
timisation problems each with an LB equation being the part and parcel of the
constraints. Such problems were investigated before. Pingen et al. consider topol-
ogy and design optimisation problems in [108, 109, 110, 111] and Tekitek et al.
dedicate their work [131] to parameter identification problems. The main aim of
this chapter is to propose, investigate and finally apply strategies to solve optimal
flow control and optimisation problems of the type given in (4.1). Whereby, the
proposed framework should allow an implementation which is highly generic in the
sense that a wide range of fluid flow optimisation and control problems can be solved
without changing the source code. The key to reach that goal is the adoption of
automatic differentiation techniques which consequently become the primary part
of the proposed overall concept. Mostly, the proposed approach relies on several
methods which have been proposed before for similar flow control up to general
optimisation problems as they are classified and discussed in the literature, e.g. in
Lions [93], Tröltzsch [133] and Gunzburger [56].

The remainder of this chapter is organised as follows. At first, in Section 4.1 the
proposed overall strategy to solve the here considered flow optimisation problems
numerically is stated. It is substantiated in detail in the following sections whereas
the main emphasis is placed on the adoption of automatic differentiation techniques.
Thereunto, in Section 4.2 two different strategies are introduced. Afterwards, in
Section 4.3 details regarding the implementation of the approach for parallel use are
discussed. Then, in the following section the approach is tested. For the purpose
of validation the results of two fluid flow optimisation problems are discussed. The
first one is a family of parameter identification problems and the second one is a
distributed control problem. Finally, the last section of this chapter is dedicated to
discuss the obtained performance results for both the sequential and the parallel
implementation by means of considering again the two examples.

4.1. From the Optimisation Problem Formulation to the Numerical
Solution: A Sensitivity-based Strategy

In the following, an overall strategy to numerically solve a given constraint
optimisation problem which is formulated as in (4.1) is proposed. The approach
consists of four main steps:

(1) Discretisation to obtain a discrete formulation of the considered con-
strained optimisation problem,

(2) Reformulation of the discrete problem as unconstrained optimisation
problem,

(3) Deriving an optimality condition for an optimum of the reformulated
problem,

(4) Solving the optimisation problem by means of an iterative gradient-
based method using automatic differentiation (AD) to obtain the gradi-
ents.

All steps of the strategy are presented in detail within the remainder of this section
except for one aspect of the fourth step, namely the application of AD methods to
obtain the needed derivatives. Since the application of AD techniques play a major
role in its actual realisation, a separate subsection is dedicated to discuss them
in more detail. Furthermore, using AD in this context makes the main difference
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to other, already proposed approaches to solve certain optimisation problems with
an underlying mesoscopic-type equation as part of the constraints. In the work of
Pingen et al. [108, 109, 110, 111] and Tekitek et al. [131] the gradients needed
to solve the optimality condition are determined by means of an adjoint-based ap-
proach. All these proposed approaches have in common that a certain dual problem
needs to be determined. Hereby, usually the structure of the problem differs with
respect to the considered optimisation problem class. This is in contrast to the
here proposed strategy where the usage of AD techniques provides a framework to
obtain the derivatives generically.

4.1.1. First Step: Discretisation. Starting with the continuous problem
formulation (4.1) in this step the problem is to be rewritten as a discrete con-
straint flow control or optimisation problem. In Chapter 2 it is shown that BGK-
Boltzmann equations can be substituted consistently by LB equations. Thereby,
the underlying space I × Ω × R

d is discretised for a given discretisation parameter
h ∈ R>0 by Ih × Ωh × Q. Since a BGK-Boltzmann equation is part and parcel of
the side condition G(f,α) = 0 and the state f acts on I × Ω × R

d a discretisation
strategy which is an extension of the previous one is advisable and therefore pro-
posed. Thus, an LB equation like (2.15) becomes the discrete governing equation
of the underlying fluid flow problem of the considered optimisation problem. The
state f is replayed by its discrete pendant fi. For the control α which is a function
in a Hilbert space U a second discretisation parameter n ∈ N is introduced. If the
control space U =: Un is already a finite dimensional space n is given by the space
dimension of U . Otherwise the control space U is replaced by a n-dimensional
Hilbert space Un. The objective J and the rest of the constraint G are substituted
by functions Jh,n and Gh,n which are chosen appropriately with respect to the dis-
crete space Ih × Ωh × Q and Un. This leads to the following abstract formulation
of the derived discrete flow control or optimisation problem:

find control αn and state fi which
minimise Jh,n(fi,αn) and fulfill Gh,n(fi,αn) = 0 .

}
(4.2)

4.1.2. Second Step: Reformulation. In this step the discrete problem (4.2)
is to be rewritten as an unconstrained optimisation problem. Therefore, in the fol-
lowing the state fi is understood as a function of αn which is implicitly defined
by the side condition Gh,n(fi,αn) = 0. Provided that such a function fi exists
the constrained optimisation problem (4.2) is rewritten equivalently as an uncon-
strained optimisation problem:

find control αn which
minimise Jh,n(fi(αn),αn) .

}
(4.3)

In the next step a necessary condition for a minimum of this problem will be derived.

4.1.3. Third Step: Deriving an Optimality Condition. Assuming that
Jh,n is totally differentiable for all αn ∈ Un, a necessary condition for a control
α∗

n) which minimises Jh,n(fi(α
∗

n),α∗

n) is

d

dα
Jh,n(fi(α

∗

n),α∗

n) = 0 . (4.4)

This condition for a minimum of the optimisation problem (4.3) is called a (discrete)
optimality system. Usually, a closed expression of the system cannot be directly
determined. This is due to the high complexity of the LB equation and with it of
the constraints so that in general solving the inverse problem to determine fi an-
alytically becomes an impossible task. Yet, starting with the constrained problem
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formulation (4.2) and applying the Lagrange formalism leads to an optimality con-
dition in a closed form. This was illustrated by Pingen et al. [108, 109, 110, 111]
and Tekitek et al. [131] for several particular problems, namely for topology and
design optimisation and parameter identification problems.

4.1.4. Fourth Step: Solving the Optimisation Problem. As pointed out
in the last step the here followed path does not directly lead to an optimality system
which is given analytically in a closed form. Thus, methods solving the optimality
system directly, known as one-shot methods, cannot be applied to solve a consid-
ered optimisation problem numerically. Instead, iterative optimisation algorithms
which numerically solve the actual optimisation problem (4.2) or just the derived
optimality condition (4.4) can be applied. An overview about the variety of op-
timisation methods can be found in the literature, e.g. in [104] or dedicated for
unconstrains problems in [44]. Among the methods which can be applied to solve
non-linear optimisation problems one finds the sub-class of line search methods. A
prototypical structure of a line search algorithm is given with Algorithm 3.

Algorithm 3 Line search

Set α0
n = αn,0 //Initial guess for control variable

Set k = 0
while Stop condition not fulfilled do

1. Compute the descent direction dk

2. Compute step length δk

3. Set αk+1
n = αk

n + δkdk

4. Set k = k + 1

Methods of this class can in turn be classified with respect to two main aspects.
The first one is how for every single optimisation step k = 1, 2, ... the descent di-
rection dk is computed. And the second distinguishing aspect is the way the step
length δk is determined. Beside these two main aspects the freedom of the choice for
an initial guess for the control variable α0

n = αn,0 and an adequate stop criterion
are to be considered.

In the following, solely such line search methods are considered which require
the evaluation of the goal functional Jh,n and its total derivative d

dα
Jh,n to deter-

mine the descent direction dk and the step length δk (k = 1, 2, ...). This restriction
is rather due to practical reasons because the evaluation of higher order derivatives
incorporates higher computational costs. However, in principle the proposed ap-
proach offers strategies to obtain higher derivatives.

The sub-class of line search methods which demand the evaluation of the deriva-
tives is known under the term gradient-based optimisation methods. Among them,
one finds e.g. the steepest descent method where dk := − d

dα
Jh,n(fi(α

k
n),αk

n) and

the BFGS method with dk := −H−1
k

d
dα

Jh,n(fi(α
k
n),αk

n). The later one is named
after its inventors Broyden, Fletcher, Goldfarb and Shanno and is a quasi-Newton
method. The idea is to approximate the inverse of the Hessian of Jh,n in every sin-

gle optimisation step k (k = 1, 2, ...) by H−1
k which is obtained iteratively requiring

H−1
k−1, αk

n, αk−1
n , d

dα
Jh,n(fi(α

k
n),αk

n) and d
dα

Jh,n(fi(α
k−1
n ),αk−1

n ). As examples
for suitable step length strategies, the Armijo rule and the Wolfe-Powell rule are
to be mentioned (cf. e.g. [44]).
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The evaluation of the goal functional Jh,n for given αk
n requires at first solving

the constraints Gh,n(fi,αn) = 0 to obtain fi(α
k
n)) which is substantially solving an

LB equation in every optimisation step k = 1, 2, .... This can be done as illustrated
in Chapter 1. Then, it is an easy task to compute Jh,n(fi(α

k
n),αk

n).
The last question which remains to be answered is how can the total evaluated

derivatives d
dα

Jh,n(fi(α
k
n),αk

n) be obtained. Regarding this question the proposed
approach differs to that of Pingen et al. [108, 109, 110, 111] and Tekitek et
al. [131]. They derive the adjoint equation dedicated for each of their considered
problems and solve the obtained linear systems by e.g. in [109] a Schur-complement
method. Here however, the application of techniques provided in the framework of
AD is proposed. The following section is dedicated to consider in detail selected
AD methods which can be applied to obtain the needed evaluated gradients.

4.2. The Gradient of the Goal Functional by Automatic Differentiation

Automatic differentiation (AD), also referred to as alogrithmic differentiation
(cf. [53]), is a family of techniques to obtain numerically evaluated derivatives of
a given function which is specified in form of a computer program. The under-
lying basic idea is to consider the evaluation process of a function as a sequence
of elementary operations. An AD tool provides, e.g. in a table, for each different
elementary operation its corresponding analytical derivative. The wanted evalu-
ated derivative of the considered function is elementary operation by elementary
operation composed by combining the intermediate data of the function evaluation
process in accordance with the differentiation rule for the actual elementary oper-
ation provided by AD and also in accordance with the chain rule.

AD techniques are conceptually different to those of the fields symbolic differen-
tiation and finite differences. The different scope of AD and symbolic differentiation
techniques results in the adoption of different concepts. The main objective of AD
is to obtain evaluated derivatives. This is in contrast to symbolic differentiation
which aims to derive an as simple as possible closed analytical expression for a
derivative of a target function. With finite differences approaches the derivative is
approximated and evaluated while with AD techniques always the exact analytical
derivative is evaluated. Considering the total numerical error, for both, AD and
finite differences techniques, rounding errors for the evaluation of the function must
be considered. However, an additional approximation error has to be taken into
account only for finite differences approaches. The naturally arising question which
of the three methods is preferable for the here considered optimisation problems
is not directly in the focus of this work. Yet, later in this chapter numerical and
performance results which are obtained by applying an AD technique are presented.
With it a first step is done for a practical comparison.

The remainder of this section is dedicated to give a formal description of the
problem of automatically obtaining an evaluated Jacobian of a function which is
given by a computer program. Based on that, two strategies are derived which will
lead to the AD techniques called the forward and backward mode. Finally, the
two strategies are discussed with particular regard to their application to fluid flow
control and optimisation problems with LBM. The presented framework solely con-
siders first-order derivatives. Yet, the strategies can be applied in turn to derivatives
to obtain higher-order derivatives.

4.2.1. From a Formal Description of Automatic Differentiation Prob-
lems to Solution Strategies. The following formal derivation is an extension of
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the one stated by Bendtsen et al. in [18] in terms of genericity and detailedness.
The function which is to be differentiated is defined by

g :

{
A ⊆ R

n → R
m

x 7→ y = g(x) .

It is assumed that g is given as a composition of l+m+n ∈ N elementary operations
τi ∈ T (i = 1, ..., l + m + n) which are differentiable. For any fixed x ∈ A the
decomposition reads as follows:

z1 := τ1 :≡ x1

z2 := τ2 :≡ x2

z3 := τ3 :≡ x3

...
zn := τn :≡ xn





zn+1 := τn+1(z1, z2, ..., zn)
zn+2 := τn+2(z1, z2, ..., zn+1)

...
zn+l := τn+l(z1, z2, ..., zn+l−1)





y1 = g1(x) = zn+l+1 := τn+l+1(z1, z2, ..., zn+l)
y2 = g2(x) = zn+l+2 := τn+l+2(z1, z2, ..., zn+l+1)

...
ym = gm(x) = zn+l+m := τn+l+m(z1, z2, ..., zn+1+m−1)





The first n elementary operations are assignments. They are introduced fictitiously
to simplify the derivation to come. The other next m + l operations are given in
a fixed order by e.g. a computer program. The vector z ∈ R

l+m+n aggregates the
input data x at the first n positions, afterwards the intermediate results and at the
last m position the output data y. The elementary operations τi (i = 1, ..., l+m+n)
are stated with a different number of arguments. Although, usually only one or two
arguments are active, i.e. τi(z1, z2, ..., zi−1) = τi(a, b) or τi(z1, z2, ..., zi−1) = τi(a)
holds for i = n+1, n+2, ..., l+m+n where a, b ∈ {z1, z2, ..., zi−1}. If one argument
is active the elementary operation is said to be a unary and if two are active a
binary elementary operation. Depending on the programming language which is
used the available set of elementary operations T = Tbinary ∪ Tunary differs. An
incomplete example for typical operations is given as follows

• Set of binary elementary operations:
Tbinary = {τ(a, b) = a + b, a ∗ b, a − b, a/b, ...}

• Set of unary elementary operations:
Tunary = {τ(a) = a,−a, 1/a, a + c, a ∗ c, sin(a), cos(a), exp(a), ... : c ∈ R}

The chain rule applied to the composition of elementary operations yields

dτi

dzj
(z1, z2, ..., zi−1) =





0 : if i < j

1 : if i = j
i−1∑

k=j

∂τi

∂zk
(z1, z2, ..., zi−1)

dτk

dzj
(z1, z2, ..., zk−1) : if i > j .

(4.5)
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Then, with the definitions

A = (aij)1≤i,j≤l+m+n , aij :=





0 : if i < j

1 : if i = j
dτi

dzj
(z1, z2, ..., zi−1) : if i > j ,

B = (bij)1≤i,j≤l+m+n , bij :=





0 : if i < j

0 : if i = j
∂τi

∂zj
(z1, z2, ..., zi−1) : if i > j

the relation (4.5) is rewritten equivalently in matrix notation

A = I l+m+n + BA . (4.6)

The intermediate results z can be obtained easily by evaluating the function g.
Just as facile one gets the partial derivatives of the elementary operations τi (i =
1, 2, ..., l + m + n) by e.g. looking them up in a table. Finally, gathering both
information, the evaluated derivatives ∂τi

∂zj
(z1, z2, ..., zi−1) can be obtained. Thus,

isolating the matrix A in the linear system (4.6) and solving the transformed system
leads to numerically feasible strategies to obtain the wanted derivatives. Therefore,
at first the following equivalent transformations are performed to isolate A:

A = I l+m+n + BA ⇔
(I l+m+n − B) A = I l+m+n ⇔ (4.7)

A = (I l+m+n − B)
−1 ⇔

A (I l+m+n − B) = I l+m+n ⇔
(I l+m+n − B)

T
AT = I l+m+n (4.8)

Two linear systems (4.7) and (4.8) are obtained where the later one is the adjoint
equation of the prior one. The system (4.7) can be solved by forward substitution
as stated in Algorithm 4. With backward substitution the dual system (4.8) can

Algorithm 4 Automatic differentiation: Simple forward mode

for i = 1 to i = l + m + n do
Compute zi = τi(z1, z2, ..., zi−1) = τi(zk1

, zk2
)

Compute t1 = ∂τi

∂zk1

(zk1
, zk2

) by e.g. look up table

Compute t2 = ∂τi

∂zk2

(zk1
, zk2

) by e.g. look up table

Set dτi

dzi
≡ 1

for j = 1 to j = i − 1 do

Set dτi

dzj
(z1, z2, ..., zi−1) = t1

dτk1

dzj
(z1, z2, ..., zk1−1) + t2

dτk2

dzj
(z1, z2, ..., zk2−1)

be solved. This leads to a scheme alike the one presented in Algorithm 5.

4.2.2. Forward and Reverse Accumulation. Both schemes, Algorithm 4
and Algorithm 5, are not efficient in terms of memory consumption. And further,
not all dτi

dzj
(z1, z2, ..., zi−1) (1 ≤ j < i ≤ l + m + n) are needed to determine the

derivatives of the actually considered function g. Taking these issues into account
both schemes can be improved. For the forward substitution strategy this optimi-
sation leads to the AD techniques which are known as forward modes. Respectively,
for the backward substitution strategy the AD techniques called reverse or backward
modes are obtained. For both alternatives an example is given, one in Algorithm 6
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Algorithm 5 Automatic differentiation: Simple reverse mode

for i = 1 to i = l + m + n do
Compute zi = τi(z1, z2, ..., zi−1)
for j = 1 to j = i − 1 do

Compute and store ∂τi

∂zj
(z1, z2, ..., zi−1) by e.g. look up table

for j = l + m + n to j = 1 do

Set
dτj

dzj
≡ 1

for i = l + m + n to i = j + 1 do

Set dτi

dzj
(z1, z2, ..., zi−1) =

∑i
k=j+1

∂τk

∂zj
(z1, z2, ..., zk−1)

dτi

dzk
(z1, z2, ..., zi−1)

for a forward mode scheme and another in Algorithm 7 for a reverse mode scheme.

Algorithm 6 Automatic differentiation: Forward mode

for i = 1 to i = n do
Set zi = xi

for j = 1 to j = n do
if i = j then

Set dτi

dzi
≡ 1

else
Set dτi

dzj
≡ 0

for i = n + 1 to i = l + n + m do
Compute zi = τi(z1, z2, ..., zi−1) = τi(zk1

, zk2
)

Compute t1 = ∂τi

∂zk1

(zk1
, zk2

) by e.g. look up table

Compute t2 = ∂τi

∂zk2

(zk1
, zk2

) by e.g. look up table

for j = 1 to j = n do

Set dτi

dzj
(z1, z2, ..., zi−1) = t1

dτk1

dzj
(z1, z2, ..., zk1−1) + t2

dτk2

dzj
(z1, z2, ..., zk2−1)

if i > n + l then
Set dgi−l−n

dxj
(x1, x2, ..., xn) = dτi

dzj
(z1, z2, ..., zi−1)

if i > n + l then
Set yi−n−l = zi

The here presented forward mode algorithm, namely Algorithm 6, is rooted
in the forward substitution scheme which is stated in Algorithm 4. An essential
difference is that the loop variable j runs to n instead of i − 1. With it, not all
dτi

dzj
(z1, z2, ..., zi−1) (1 ≤ j < i ≤ l + m + n) are determined but only the ones

which are needed to obtain the Jacobian of g. Further, interfaces are added to
initialise the dependent variables x at the beginning and to obtain the Jacobian
of g at the end. It is to be noted that the partial derivatives dτi

dzj
(z1, z2, ..., zi−1)

(n < i ≤ l + m + n, 1 ≤ j ≤ n) do not all have to be stored. Instead, for every
i = n + 1, n + 2, ..., l + m + n only two, namely ∂τi

∂zk1

(zk1
, zk2

) and ∂τi

∂zk1

(zk1
, zk2

)

(1 ≤ k1, k2 ≤ n), are determined and stored just temporarily for the actual step
i. In a considered program storage space is provided in form of various variables
where the intermediate results zi (i = 1, 2, ..., l + m + n) can be stored. Usually,
most of the intermediate results are just stored temporarily because they are only
needed for a few of the following elementary operations. Thus, many variables are
reused or destructed, i.e. the dedicated memory is used to store other results. This
fact can be exploited to save memory. Any time the memory which is dedicated for

an intermediate result zi is freed, the memory dedicated for dfi−l−n

dxj
(x1, x2, ..., xn)
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for all j = 1, 2, ..., n can be freed as well.

In Algorithm 7 an example for a reverse mode scheme is given. The presented
algorithm is similar to that which is labelled in [53] as non-incremental adjoint
recursion approach. Beside this approach, others exist (cf. e.g. [53]) which share
many of the characteristics of the one presented here. In the given example it
is illustrated that for each elementary operation τi(z1, z2, ..., zi−1) = τi(zki,1

, zki,2
)

i = n + 1, n + 2, ..., l + n + m the up to two indices ki,1, ki,2 of the active vari-

ables as well as the corresponding evaluated partial derivatives ∂τi

∂zki,1

(zki,1
, zki,2

)

and ∂τi

∂zki,1

(zki,1
, zki,1

) needed to be stored. This is due to the reverse order of the

loop in which the total derivatives are computed afterwards. As in the forward
mode scheme not all dτi

dzj
(z1, z2, ..., zi−1) (1 ≤ j < i ≤ l + m + n) are needed to be

determined. Here the loop variable i can run from l + m + n down to l + n + 1
instead to j + 1 to get the Jacobian of g.

Algorithm 7 Automatic differentiation: Reverse mode

for i = 1 to i = n do
Set zi = xi

for i = n + 1 to i = l + n + m do
Compute zi = τi(z1, z2, ..., zi−1) = τi(zki,1

, zki,2
)

Store ki,1, ki,2

Compute and store ∂τi

∂zki,1

(zki,1
, zki,2

) by e.g. look up table

Compute and store ∂τi

∂zki,1

(zki,1
, zki,1

) by e.g. look up table

if i > n + l then
Set yi−n−l = zi

for j = l + m + n to j = 1 do

Set
dτj

dzj
≡ 1

for i = l + m + n to i = l + n + 1 do
Set dτi

dzj
(z1, z2, ..., zi−1) = 0

for k = j + 1 to k = i do
if j = kk,1 or j = kk,2 then

Set dτi

dzj
(z1, z2, ..., zi−1)+ = ∂τk

∂zj
(z1, z2, ..., zk−1)

dτi

dzk
(z1, z2, ..., zi−1)

if i > n + l and j ≤ n then

Set dgi−l−n

dxj
(x1, x2, ..., xn) = dτi

dzj
(z1, z2, ..., zi−1)

4.2.3. Forward or Reverse Mode for Lattice Boltzmann Fluid Flow
Optimisation Problems: A Discussion. Which of the two modes are prefer-
able depends on the considered function g itself. If n is much greater than m the
computational costs to obtain the Jacobian with a forward scheme will be greater
than those of a backward scheme and vice versa. This is due to the fact that one of
the two loops in a backward mode has m iterations and in a forward mode n. A sec-
ond aspect which is important to consider is the number of elementary operations
l+m+n of the function g. Considering backward mode schemes, the massive need
of memory is a critical issue for problems with a high number of elementary oper-
ations l + m + n because many intermediate results are needed to be stored. This
is in contrast to forward mode schemes where most of the intermediate results are
stored temporarily and memory is reused. Checkpointing strategies are proposed in
e.g. [52] to reduce the required storage space on cost of additional computational
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costs.

For optimisation problems in general, the considered function g which is to be
differentiated is the goal functional and hence, m is always equal to 1. And n is given
as the dimension of the finite-dimensional control space. Depending on the problem,
n can but does not need to be much greater than 1. Considering fluid flow control
and optimisation problems, usually and especially for three dimensional problems,
the number of elementary operations l + m + n needed to evaluate g is high. With
LB schemes being the part and parcel of the constraints this is even more true.
The explicit character of LB schemes imply an iteration over several thousand time
steps and therefore billions elementary operations. To give an example, an efficient
implemented D3Q19 model requires roughly 200 operations at each cell of the
lattice in every single time step (cf. [139]). Considering a fluid flow problem with
1003 cells and 100, 000 time steps one gets about 2 ·1013 elementary operations just
to solve the side condition. Neglecting all other computational costs and assuming
that 24 bytes of memory are needed for any operation one gets in total roughly half
a petabyte of required storage space then applying a reverse mode scheme. Even
if the demanded memory is available the time required to access the data becomes
significantly high so that backward mode schemes seem not to be attractive in
this framework. Yet, Parallel I/O in combination with checkpointing strategies,
as they are investigated by Bockelmann et al. in [21] to overcome similar mass
storage problems, might be a possible realistic solution also for AD backward mode
schemes. Research is required to give a clear answer to the question which of the
two AD strategies is preferable for LB-based fluid flow optimisation problems. As
a start in the following, forward mode schemes are investigated in detail.

4.3. Implementation of a Generic Parallel Lattice Boltzmann Fluid
Flow Optimisation Problem Solver

This section is devoted to consider the realisation of strategies to numerically
solve fluid flow control and optimisation problems as given as in (4.1) both in gen-
eral and specifically for the strategy which is proposed in the previous two sections.
Thus, this section is split into two parts. In the first part, an implementation con-
cept is introduced which is general enough to cope with a wide range of approaches
to solve optimisation problems. Among them, one finds the two approaches which
are presented in the current and in the following chapter. The realisation of the
proposed concept is illustrated by means of an example, namely the extension of
the LB-based fluid flow simulation software OpenLB (cf. Appendix A) towards a
tool to solve also fluid flow control and optimisation problems. The second part
of this section is directly connected to the first one. It considers as a specialisa-
tion the realisation of the strategy which is presented in this chapter. Whereby,
the main emphasis is placed on details concerning the realisation of the AD for-
ward mode approach. Thereby, special care is taken to obtain an efficient parallel
implementation.

4.3.1. A General Optimisation Software Framework. In Appendix A
the open source package OpenLB is introduced. It is indicated that the C++
code OpenLB is programed in an object-oriented and template-based style. Taking
advantage of both the dynamic and static genericity a parallel solver for various
fluid flow control and optimisation problems can be obtained. In Figure 4.1 the
proposed software design is pictured as it is realised in OpenLB.

The linchpin of the concept proposed in the previous two sections and also of
many other strategies is an iterative optimisation scheme such as the line search
optimisation algorithm stated in Algorithm 3. With it, the outermost loop of the
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OptiActor
OptiStructure
Optimiser

optimiseOptiStructure

evalFunctional(α)
evalDerivatives(α)

Optimiser
OptiStructure*

optimise

OptiCaseDual
Controller<T>
Solver<T>
Function<T>
DualSolver<T>
Function<T>

evalFunctional(α)
evalDerivatives(α)

OptiCaseAD
Controller<T>
Solver<T>
Function<T>
Controller<ADf<T,DIM>>
Solver<ADf<T,DIM>>
Function<ADf<T,DIM>>

evalFunctional(α)
evalDerivatives(α)

OptimiserLineSearch

optimise
computeDirection
cumputeStepLength

OptimiserExternal

optimise

OptimiserSteepestDescent

computeDirection

OptimiserLBFGS

computeDirection

Figure 4.1. Software design for a generic fluid flow optimisation
problem solver illustrated by the class hierarchy in OpenLB. The
arrow −−−⊲ indicates a connection of two classes by inheritance
with the head pointing to the base class. −−−> points towards a
class which holds an instant of the connected class and likewise −
−−−> which points towards one class holding a pointer of another.

overall solution process is given. Which data are needed in every optimisation
step k = 1, 2, ... depends on the applied optimisation method. For line search al-
gorithms usually the evaluated goal functional Jh,n(fi,α

k
n) and its total derivative

d
dα

Jh,n(fi,α
k
n) are required. In general also higher-order derivatives of Jh,n may be

required. In OpenLB the abstract class called OptiStructures provides this func-
tionality. It serves as an interface to subclasses where different strategies are realised
to obtain the required data. For instance, in the subclass OptiCaseDual the strat-
egy which is described in the following chapter is realised. Further, in the subclass
OptiCaseAD the approach proposed in the previous two sections is implemented.
Also by inheritance the implementation of various optimisation algorithms is en-
abled. The base class Optimiser serves as well as an interface. It offers to make use
of external software package for that the wrapper subclass OptimiserExternal is
provided. Further, in another subclass of Optimiser called OptimiserLineSearch

the outermost loop of Algorithm 3 is implemented including a stop criterion and
the Wolfe-Powell rule to determine the step length. Two specialisations, namely
the class OptimiserLBFGS for an LBFGS scheme and OptimiserSteepestDescent

for an steepest descent scheme complete the hierarchy of inheritance. On top of
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all other classes the class OptiActor organises the composition of two compatible
specialisation that is one of OptiStructures and the other of Optimiser.

4.3.2. Realisation of a Forward Mode Scheme for Parallel Use. In
the first part of this section a general framework to realise various strategies to
numerically solve optimisation problems is introduced. Now, a particular strategy,
namely the one proposed within this chapter, is considered. The aim of this part is
to address details regarding its implementation which enables an efficient parallel
execution. Hereby, the key issue is the realisation of the forward mode scheme
presented in Algorithm 6 which enables to obtain the needed evaluated derivatives.
As well as before the realisation is illustrated by an example that is the implemen-
tation in the open source library OpenLB.

In the terminology introduced in the first part of this section the considered
strategy is realised in form of a derived class called OptiCaseAD as specialisation of
OptiStructure. The functionalities which must be provided by OptiCaseDual are
the evaluation of the functional Jh,n and of its total derivative d

dα
Jh,n for a given

αk
n which is determined in every optimisation step k = 1, 2, ... by a line search

optimisation scheme.

The first task, evaluating Jh,n for a given αk
n, is split into two main steps. At

first the side condition Gh,n(fi,α
k
n) = 0 is solved numerically for αk

n to obtain the

state fi. Then, with the result fi and the given control αk
n the goal functional is

evaluated. For many applications solving the side condition means basically solving
a problem with an LB equation as governing equation where αk

n just enters as a pa-
rameter. In OpenLB this is realised by introducing a class called Controller<T>
in which the controlled variables (αk

n)j (j = 1, 2, ..., n) are specifies and their current
values are saved. Hereby, it is important to note that Controller<T> is a template
class with template T which is now set to a floating-point data type like double or
float. Then, depending on the control variables αk

n an LB problem is set-up and
solved. This is done by a template class as well which is called Solver<T> which
depends on Controller<T>. Finally, the goal functional Jh,n is to be evaluated.
It is specified in form of a member function of another template class with the name
Function<T> which again depends on Controller<T>.

The second functionality which needs to be provided by the class OptiCaseDual
is the computation of the evaluated total derivative of Jh,n for a given control αk

n.
As discussed in Section 4.2 AD provides forward mode schemes to realise this task.
In principle two main strategies can be distinguished to implement forward mode
schemes like the one stated in Algorithm 6. In the literature, e.g. in [53], they
are referred to as program transformation and (operator) overloading approach.
The basic idea of the first one is to use pre-processor directives to generate an ex-
tended code which evaluates the wanted derivatives. Alternatively, the overloading
approach makes use of polymorphism which is available in many object-oriented
programming languages such as C++. A newly created data type substitutes the
basic floating-point data type of a considered program which evaluates a functional
while the actual program itself remains unchanged. However, all elementary opera-
tions for the new data type are defined just that beside the evaluated functional also
the wanted evaluated derivatives are obtained. In OpenLB the basic floating-point
data type is templatised, i.e. it can be substituted easily. Thus, the overloading
approach seems very attractive concerning ease of realisation especially in the con-
text of parallelism. It has been carried out in various libraries for example in FAD
by Aubert et al. [6]), FADBAD by Bendtsen et al. [18] or ADOL-C by Griewank
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template<typename T, unsigned DIM>

class ADf {

private :
// / v a l u e

T v ;
// / d e r i v a t i v e s

T d [DIM ] ;

public :
// / c o n s t r u c t o r s

ADf ( ) ;
ADf( const T& v ) ;
ADf( const ADf& a ) ;
// / o p e r a t o r s

ADf& operator ∗= ( const ADf& a ) ;
ADf& operator ∗= ( const T& v ) ;

.

.
// / i n i t i a l i s e s t h e iD−th dependen t v a r i a b l e

void s e tD i f fVa r i a b l e (unsigned iD ) ;
// / r e t u r n s th e v a l u e v

T& v ( ) ;
// / r e t u r n s th e d e r i v a t i v e d [ i ]

T& d(unsigned i ) ;
} ;

Listing 4.1. The class ADf<T,DIM> in OpenLB enables to obtain
DIM evaluated derivatives by operator overloading. With it, the AD
forward mode scheme presented in Algorithm 6 is realised.

et al. [54]. Inspired by the mentioned three implementations in OpenLB a lean
template-based overloading approach which enables parallelism is realised. It will
be explained in detail in the following.

In Listing 4.1 the declaration of the class ADf<T,DIM> is stated in excerpts. It
defines a new data type to realise the AD forward mode from Algorithm 6. Whereby,
DIM represents the dimension n of the control space Un and T the template for the
basic floating-point data type. The variable v corresponds to an intermediate
result zi, and in d the total derivatives dτi

dzj
(z1, z2, ..., zi−1) (j = 1, 2, ..., n) are

stored. With the member function setDiffVariable the control variables (αk
n)j

j = 1, 2, ..., n can be initialised according to the first loop of Algorithm 6. Every
differentiable elementary operation which is defined for T also needs to be defined
for ADf<T,DIM> to realise the scheme presented in Algorithm 6. As an example
the source code of the implementation of the multiplication operators are stated
is Listing 4.2. Due to the implicit type conversion in C++ [127] it is sufficient to
implement the multiplication of ADf<T,DIM> with ADf<T,DIM>, ADf<T,DIM> with
T and T with ADf<T,DIM>. With it, also the multiplication of ADf<T,DIM> with
integral or other floating-point data types is well defined. The member functions
v and d of the class ADf<T,DIM> allow the access to all intermediate and the final
results. Now, with this newly defined data type ADf<T,DIM> the wanted evaluated
derivative can be computed. Essentially, this is done as the evaluated functional
itself is computed which is described above. Yet, ADf<T,DIM> instead of T is set
as template parameter for the involved classes Controller, Solver and Function.



84 4. FLUID FLOW CONTROL AND OPTIMISATION WITH LBM AND AD

template <typename T, unsigned DIM>

ADf<T,DIM>& ADf<T,DIM> : : operator ∗= ( const ADf<T,DIM>& a )
{

for (unsigned i =0; i<DIM;++ i ) {
d [ i ]∗=a . v ;
d [ i ]+= v ∗a . d [ i ] ;

}
v∗=a . v ;

return ∗ this ;
}

template <typename T, unsigned DIM>

ADf<T,DIM>& ADf<T,DIM> : : operator ∗= ( const T& v)
{

v∗=v ;
for (unsigned i =0; i<DIM;++ i )

d [ i ]∗=v ;
return ∗ this ;

}

template <typename T, unsigned DIM>

ADf<T,DIM> operator∗ ( const T& a , const ADf<T,DIM>& b)
{

return ADf<T,DIM>(b)∗=a ;
}

template <typename T, unsigned DIM>

ADf<T,DIM> operator∗ ( const ADf<T,DIM>& a , const T& b)
{

return ADf<T,DIM>(a)∗=b ;
}

template <typename T, unsigned DIM>

ADf<T,DIM> operator∗ ( const ADf<T,DIM>& a , const ADf<T,DIM>& b)
{

return ADf<T,DIM>(a)∗=b ;
}

Listing 4.2. The implementation of the multiplication operators
for the data type ADf<T,DIM> in OpenLB.

Further, an additional tagging of the control variables (αk
n)j (j = 1, 2, ..., n) is nec-

essary before the derivative is evaluated. This is realised by the Controller<T>
which calls the member function setDiffVariable of the class ADf<T,DIM> every
time the values of the controls are changed.

In template-based C++ programs it is commonplace to use the default con-
structor to initialise a templatised variable of fundamental data type with the
value zero (cf. Stroustrup [127]). When implementing the default constructor
of ADf<T,DIM> it is crucial to ensure that the default constructor of T is called to
initialise v correctly. This is necessary because the compiler-generated default con-
structor does not initialise member variables of fundamental types (cf. Stroustrup
[127]). This issue is stressed because it is not taken care of in all above mentioned
AD libraries.
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Another important difference of the here proposed AD implementation to many
others is that the memory for v is allocated statically. The drawback of this ap-
proach is that the size DIM of v must be known at compile time can be alleviated by
providing the code for certain different DIM by e.g. a factory function. On the other
hand, the approach promises to have also considerable advantages. Then allocating
a vector of the type ADf<T,DIM> data locality in terms of v to its corresponding
d is ensured. Depending on the underlying data structure of the considered prob-
lem this can result in higher performances because less data needs to be reloaded.
Further, copying a vector of the type ADf<T,DIM> is facilitated. This is especially
true when it comes to implement an AD scheme which enables parallel execution.
In the next paragraph this issue is addressed in detail.

Basically, an efficient parallel computation of an evaluated derivative takes
place as an efficient parallel computation of the evaluated function itself. This
holds in general due to the structure of AD forward mode schemes because the
data dependencies of the derivatives dτi

dzj
(z1, z2, ..., zi−1) (j = 1, 2, ..., n) are similar

to those of the intermediate results zi (cf. Algorithm 6 and Griewank [53]). In
the above proposed realisation this fact is taken care of in form of integrating the
corresponding data within one variable of the created data type ADf<T,DIM>. For
both tasks, the computation of the evaluated functional Jh,n(fi,α

k
n) and its total

derivative d
dα

Jh,n(fi,α
k
n), usually it holds that solving the side condition is the

most time demanding part of the whole process. Therefore, solely the paralleli-
sation of this program part is considered in the following. In the here considered
framework the first task consists of basically solving an LB problem. For such
problems in Chapter 3 an efficient hybrid parallelisation strategy and its realisa-
tion are proposed, tested and discussed. Hence, solely the second task remains to
be considered. Yet, it differs form the first one just in the underlying data type.
However, the data dependencies remain the same. Thus, the same parallelisation
concept which is presented in Chapter 3 can be applied. Solely the implementation
needs to be extended because the involved parallelisation paradigm MPI in gen-
eral and some implementations of OpenMP do not support the use of class data
types like ADf<T,DIM>. The latter problem and possible solutions are discussed by
Terboven et al. in [132]. Therefore, in OpenLB critical compiler directives like
#pragma omp threadprivate for variables of class data types are avoided. For the
MPI-based implementation templatised wrapper functions are introduced. They
allow a specialised implementation for each employed data type and hence also for
ADf<T,DIM>. Due to the static memory allocation of v in ADf<T,DIM> a variable
as well as a vector of variables of this type can be communicated in one single con-
tiguous row of bytes. If the memory for v would have been allocated dynamically
a blocking of the data or several communication operations would be necessary.
The blocking requires copying all data of all variables which are to be communi-
cated to a contiguous space in the memory. Both loopholes would complicate the
implementation and, even worse, would result in a loss of efficiency.

4.4. Numerical Experiments: A Parameter Identification and a
Distributed Control Problem

In the following, two fluid flow optimisation problems are studied. In both
examples the applied force F is to be controlled. The first one is a parameter iden-
tification problem, i.e. the control space is a finite dimensional space. This is in
contrast to the second test case where the control space is not finite dimensional.
However, after discretisation the control α becomes discrete and hence the discrete
problem formulations are akin each other. Both considered optimisation problems
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are related to the 3D stationary fluid flow problem discussed in Section 2.3. There,
the distribution of the macroscopic velocity u is to be determined in Ω for a given
force F . Thereto, in Subsection 2.3.1 the fluid flow problem is formulated by means
of a Navier-Stokes equation as governing equation. Hereby, the force F is given
analytically according to (2.21). Then, as stated in Subsection 2.3.2, the problem
is solved numerically by applying an LBM. This leads to a series of solutions fh

i

for different discretisation parameters h ∈ R>0 and, with it, to macroscopic veloci-
ties ufh

i
which approximate u. Now, with the formulation of the two optimisation

problems the questioning of this fluid flow problem is considered inversely, i.e. u

or ufh
i
, respectively, is assumed to be known and a suitable force F is to be deter-

mined.

The numerical experiments aim to, firstly, illustrate the before introduced con-
cept and, secondly, test its realisation especially with respect to its performance.
With it, a comparison of the proposed approach with other approaches is enabled.
Interesting to note is that in Section 5.6 the approach which is studied in the follow-
ing chapter is tested for exactly the same configuration. Further, a comparison of a
similar approach, yet, with the Navier-Stokes equation instead the BGK-Boltzmann
equation as governing equation becomes feasible.

4.4.1. Test Case Formulations. In the following, a set of four optimisation
problems is considered, namely three parameter identification problems and one
distributed control problem. All problems are formulated as restricted optimisation
problems like (4.1). The three parameter identification problems consist of one with
one control variable α ∈ U1 := R, another with three parameters α ∈ U3 := R

3

and finally a third one with eleven parameters α ∈ U11 := R
11. For the considered

distributed control problem the control α ∈ U∞ :=
(
L2(Ω)

)3
is a function. The

corresponding four goal functionals Jn (n = 1, 3, 11,∞) are defined as

Jn :





H1(Ω × R
3) × Un → R

(f,α) 7→ 1

2

∫

Ω

(uf − u∗)
2
dr +

αreg

2

∫

Ω

(Bnα)
2
dr .

(4.9)

Hereby, u∗ is the target velocity distribution which is defined as in (2.23) and
αreg ∈ R≥0 is a regularisation parameter. The linear continuous operators Bn ∈
L(Un, L2(Ω)3) (n = 1, 3, 11,∞) denote control extension operators which will be
defined explicitly later on. Applying these operators to the controls α ∈ Un one
get the terms Bnα (n = 1, 3, 11,∞). They constitute the force term F in the
BGK-Boltzmann equations which are parts of the side conditions:

Gh
n :





H1(Ω × R
3) × Un → H1(Ω × R

3) ×
(
L2(Γ)

)3

(f,α) 7→
(

h2
(
v · ∇r + Bnα

m · ∇v

)
f − 1

3ν

(
f − Meq

f

)

uf − b

)
,

(4.10)

where b is given by the velocity distribution function stated in (2.22).

Lets suppose that F ∗ is defined as in (2.21) and α∗ ∈ Un satisfies Bnα∗ for
one of the cases n ∈ {1, 3, 11,∞}. Then, the corresponding side conditions (4.10)
are nothing else than the fluid flow problem formulated and solved in Section 2.3.
Thus, choosing the regularisation parameter αreg = 0, Jn(f,α∗) is half the squared
L2(Ω)-norm of the residuum uf − u∗. Interesting to note is that uf is the so-
lution of the fluid flow problem from Section 2.3 formulated mesoscopically by a
BGK-Boltzmann equation and u∗ the solution of the same problem, yet, formulated



4.4. NUMERICAL EXPERIMENTS 87

macroscopically by the Navier-Stokes equation. In Subsection 2.3.3 it is observed
that the residuum tends to zero if the discretisation parameter h tends to zero.
From this property advantage will be taken later on when it comes to analysis the
problems.

Left to be specified are the control extension operators. For the distributed
control problem B∞ is the identity map. For the parameter identification problems
they constitute ansatz functions which are defined as

B1α := αF , B3α :=




α1F1

α2F2

α3F3




for any α ∈ U1 and α ∈ U3, respectively. Further for any α ∈ U11 and any r ∈ Ω
the ansatz function reads

(B11α)1 (r) := −1

8
π (α116πν (cos(2πr2) cos(2πr1) − sin(2πr1) cos(2πr3))

−α1 cos(2πr2) cos(2πr3) + 2α2 cos(2πr2) cos(2πr1)
2 cos(2πr3)

+α2 cos(2πr2)
2 cos(2πr1) sin(2πr1) − α2 cos(2πr1) sin(2πr3)

+α3 cos(2πr1) sin(2πr3) cos(2πr2)
2 − α3 sin(2πr2) cos(2πr1)

2

−α3 sin(2πr1) cos(2πr1) − α42πr3 sin(2πr3) cos(2πr2)

+α42πr3 sin(2πr3) cos(2πr2) cos(2πr1)
2

+α4 sin(2πr1) sin(2πr3) cos(2πr2) cos(2πr3)

+α516r3 sin(2πr1) sin(2πr2))

(B11α)2 (r) := −1

8
π (−α58πν (cos(2πr1) + 2 sin(2πr2) sin(2πr3)) + α6 cos(2πr3)

−α6 cos(2πr3) cos(2πr1)
2 − α6 sin(2πr1) cos(2πr2) cos(2πr1)

−α7 cos(2πr2) sin(2πr2) − α7 cos(2πr2) sin(2πr3) cos(2πr1)

+α7 sin(2πr2) cos(2πr3) cos(2πr1) sin(2πr3)

+α82πr3 sin(2πr2) cos(2πr3) cos(2πr2) sin(2πr1)

−α816r3 cos(2πr2) cos(2πr1))

(B11α)3 (r) := −1

8

(
16π2ν (α8 cos(2πr1) sin(2πr3) + α92πr3 cos(2πr2) sin(2πr1)

−α9 cos(2πr2) cos(2πr3)) − α92π2r3 sin(2πr3) sin(2πr1)

−α102π2r3 sin(2πr2) cos(2πr1) sin(2πr1)

+α10π sin(2πr2) cos(2πr1) cos(2πr3) − α10π cos(2πr2) cos(2πr1)

+α112π cos(2πr2)(cos(2πr3))
2 cos(2πr1) − α112π2r3(cos(2πr2))

2

+α11π(cos(2πr2))
2 cos(2πr3) sin(2πr1) − α118 cos(2πr1) sin(2πr2)

)
.

4.4.2. Numerical Realisation: Discretisation Issues and Optimisation
Method of Choice. As it is illustrated within this chapter the key to solve the
considered optimisation problems numerically is to evaluate a series of objective
functionals and its derivatives. Using AD in a way how it is described in the
previous section the desired evaluated derivatives can be computed by means of
an algorithm which has the same basic structure as the one needed to obtain the
evaluated functionals itself. Further, as it has been remarked before, the most
challenging and computationally costly tasks are solving the side conditions. This
in turn is, in the here considered cases, equipollent to solving fluid flow problems
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which are very similar to that presented in Subsection 2.3.1. To be precise, they
only differ in the choices of the force terms. This suggests to base the discretisation
strategy for the optimisation problems on that of the fluid flow problem which is
stated in detail in Subsection 2.3.2. Following the same strategy the stationary
problems are solved numerically by considering them as instationary problems and
applying an LB scheme with a stop criterion. Thereto, the choices of the LB model,
the boundary conditions and the stop criterion remain as proposed there. The ob-
tained discrete spaces are Ωh for the underlying position space Ω and Q for the
velocity space R

3 for arbitrary discretisation parameters h ∈ R>0.

The space left to be replaced by a discrete one is the control space U∞ of the
distributed control problem. The control spaces U1, U3 and U11 for the parameter
identification problems are by definition finite dimensional. To discretise U∞ real
trigonometric polynomials of several degrees, namely N = 1, 2, 3, are chosen. The
underlying Fourier ansatz reads for r ∈ Ωh, for each space dimension i = 1, 2, 3 and
for each considered polynomial degree N = 1, 2, 3

(Bh,n(αn))i (r) :=
3∏

j=1

(
ai,j,1 +

N∑

k=1

(ai,j,2k sin (2kπrj) + ai,j,2k+1 cos (2kπrj))

)

where (αn)i,k1,k2,k3
:= ai,1,k1

ai,2,k2
ai,3,k3

∈ R for any combination of i ∈ {1, 2, 3}
and k1, k2, k3 ∈ {1, 2, ..., 2N + 1}. The dimension of the obtained control spaces Un

are n = 3(2N + 1)3 which can be identified with R
3(2N+1)3 . This leads to three

different considered discrete optimisation problems with space dimensions 81, 375
and 1029.

For the three parameter identification problems (n = 1, 3, 11) the finite con-
trol extension operators are given by their restriction to Ωh, namely by setting
Bh,n := Bn|Ωh

. With the choice of the corresponding LB model, consequently,
six side conditions Gh,n (n = 1, 3, 11, 81, 375, 1029) are defined for an arbitrary
discretisation parameter h ∈ R>0.

Finally, the goal functionals Jn (n = 1, 3, 11, 81, 375, 1029) need to be replaced
by suitable functionals Jh,n for h ∈ R>0. Numerical integration by midpoint rule
is used to replace the integrals by sums which leads to

Jh,n(fh
i ,αn) :=

1

2
h3
∑

r∈Ωh

(
ufh

i
(r) − u∗(r)

)2

+
αreg

2
h3
∑

r∈Ωh

((Bh,nαn) (r))
2

.

(4.11)

The discrete optimisation problems are solved iteratively by a line search algo-
rithm. The optimisation method of choice is a BFGS scheme combined with the
Wolfe-Powell rule to determine the step lengths. As initial value for the optimisa-
tion scheme α0

n := 0 for all considered n. The regularisation parameter is set to
αreg = 0.

4.4.3. Presentation and Discussion of the Numerical Results. In the
following, the numerical results of the considered test cases are presented and dis-
cussed in detail. Hereby, one main aim is to validate the realised approach. An-
other one is to obtain results which can be compared with ones gained by other
approaches as those presented in the next chapter. Thereto, at first the three
parameter identification problems are considered. Here, the goal functionals are
slightly modified such that their discrete solutions α∗

n are known in advance. For
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that configuration numerical results are presented for several discretisation param-
eters h. Then, the evolution of the iteratively obtained controls αk

n (k = 1, 2, ...)
towards their corresponding discrete solutions α∗

n is monitored. Furthermore, es-
timates are stated that link the modified to the original problem formulations.
Afterwards, for the distributed control problems the evolutions of both the ob-
tained evaluated goal functionals Jh,n(fi(α

k
n),αk

n) and the norm of the evaluated

gradients d
dα

Jh,n(fi(α
k
n),αk

n) are studied for k = 1, 2, ... as well as before for dif-
ferently chosen h.

The analysis aiming to validate the approach can take advantage of the re-
lation between the considered optimisation problems to the fluid flow problem
which is discussed in Section 2.3. As it has been remarked in Subsection 4.4.1, for
the continuous problem formulations (n = 1, 3, 11,∞) it holds 2Jn(f(α∗),α∗) =
||uf(α∗) − u∗||2L2(Ω) if αreg = 0 and if α∗ is chosen such that Bnα∗ = F ∗. Tying

up on this relation, a similar statement can be derived for the considered parame-
ter identification problems on a discrete base. Again, the regularisation parameter
αreg is set to zero. The controls are set to α∗

n := (1 1 · · · 1)T for n = 1, 3, 11 .
Then, from the definitions of Bh,n directly follows F ∗|Ωh

= Bh,nα∗

n and therefore
2Jh,n(fi(α

∗

n),α∗

n) = ||ufi(α
∗

n) − u∗||2L2(Ωh). This norm in turn is nothing else but

the discretisation and model error which is analysed in Subsection 2.3.3. There,
it is observed that ||ufi(α

∗

n) − u∗||2L2(Ωh) decreases with an order of EOC ≈ 2.

Consequently, these choices of α∗

n (n = 1, 3, 11) are not necessarily solutions of the
parameter identification problems. With the triangle inequality an upper bound
for the goal functionals is given by

Jh,n(fi(αn),αn) =
1

2
||ufi(αn) − u∗||2L2(Ωh) +

αreg

2
||Bh,nαn||2L2(Ωh)

≤ 1

2
||ufi(αn) − ufi(α

∗

n)||2L2(Ωh) +
αreg

2
||Bh,nαn||2L2(Ωh)

︸ ︷︷ ︸
=:J̃h,n(fi(αn),αn)

+
1

2
||ufi(α

∗

n) − u∗||2L2(Ωh)

which holds for all h ∈ R>0 and all considered αn ∈ Un (n = 1, 3, 11). If h

tends to zero J̃h,n will tend to Jh,n for n = 1, 3, 11 as a consequence of the be-
fore observed property of ||ufi(α

∗

n) − u∗||2L2(Ωh). On the other hand for a given

h ∈ R>0 and αreg = 0, J̃h,n(fi(αn),αn) will tend, of course, to zero if αn tends to
α∗

n. This can indeed be observed in all the numerical experiments. In Figure 4.2

the normed errors ||αk
n − α∗

n||2/||α1
n − α∗

n||2 are plotted as a function of iteration
steps k = 1, 2, ... . The results clearly affirm the theoretically expected asymptotic
behaviour. In Figure 4.3 the corresponding evolutions of the normed goal function-

als J̃h,n(fi(α
k
n),αk

n)/J̃h,n(fi(α
1
n),α1

n) and in Figure 4.4 of their normed gradients

|| d
dα

J̃h,n(fi(α
k
n),αk

n)||2/|| d
dα

J̃h,n(fi(α
1
n),α1

n)||2 are depicted.

For the parameter identification problem with n = 3 the approach is tested
for four different discretisation parameters, namely h = 1/10, 1/20, 1/40, 1/80. The
numerically observed convergence characteristics are found to be similar. However,
if one compares the convergence characteristics between the three parameter iden-
tification problems n = 1, 3, 11 one clearly finds that the higher the dimension n of
the control space Un the more optimisation steps are necessary to reach a certain
value of improvement. For example for an improvement of 10−10 of the normed

goal functional J̃h,n(fi(α
k
n),αk

n)/J̃h,n(fi(α
1
n),α1

n) for n = 1 one step, for n = 3
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Figure 4.2. The evolution of the normalised normed errors ||αk
n−

α∗

n||2/||α1
n−α∗

n||2 for the three considered modified parameter iden-
tification problems (n = 1, 3, 11) are plotted as functions of opti-
misation steps k = 1, 2, ... for different discretisation parameters
h.

Figure 4.3. The evolution of the normalised goal functionals

J̃h,n(fi(α
k
n),αk

n)/J̃h,n(fi(α
1
n),α1

n) for the three considered mod-
ified parameter identification problems (n = 1, 3, 11) is given as a
function of the number of optimisation steps k for different dis-
cretisation parameters h.

nine steps and for n = 11 fifty-two steps are needed.

A different strategy is followed to analyse the approach tested on the distributed
control problem. In contrast to the parameter identification problem the goal func-
tional remains unchanged. One reason is that the emerging discretisation error
cannot be clearly separated. With the chosen ansätze Bh,nαn (n = 81, 375, 1029)
the force F ∗|Ωh

is only approximated, i.e. F ∗|Ωh
cannot be constructed by any

αn ∈ R
n. Therefore, in the case where αreg = 0 it cannot be guaranteed that

there exists an αn ∈ R
n such that Jh,n(fi(αn),αn) = 0 or J̃h,n(fi(αn),αn) = 0.
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Figure 4.4. The evolution of the normalised normed gradient

|| d
dα

J̃h,n(fi(α
k
n),αk

n)||2/|| d
dα

J̃h,n(fi(α
1
n),α1

n)||2 for the three con-
sidered modified parameter identification problems (n = 1, 3, 11)
is given as a function of the number of optimisation steps k for
different discretisation parameters h.

Figure 4.5. The evolution of the normalised goal functionals
Jh,n(fi(α

k
n),αk

n)/Jh,n(fi(α
1
n),α1

n) is given as a function of the
number of optimisation steps k for the distributed control problem
for n = 81, 375, 1029 and different discretisation parameters h.

Another reason is that the results are comparable to that presented in Section 5.6.

In Figure 4.5 the evolution of the normalised goal functional Jh,n(fk(αk
h),αk

h)/Jh,n(f1(α1
h),α1

h)
is stated as a function of optimisation steps k = 1, 2, ... for chosen n = 81, 375, 1039
and h = 1/10, 1/20, 1/40, 1/80. Thereunto in Figure 4.6 the evolutions of the corre-
sponding normalised normed gradients || d

dα
Jh,n(fk(αk

h),αk
h)||2/|| d

dα
Jh,n(f1(α1

h),α1
h)||2

are plotted.
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Figure 4.6. The evolution of the normalised normed gradients

|| d
dα

J̃h,n(fi(α
k
n),αk

n)||2/|| d
dα

J̃h,n(fi(α
1
n),α1

n)||2 is given as a func-
tion of the number of optimisation steps k for the distributed con-
trol problem for n = 81, 375, 1029 and different discretisation pa-
rameters h.

In contrast to the results of the parameter identification problems it is not
observed that all goal functionals Jh,n(fi(α

k
n),αk

n) (n = 81, 375, 1029) of the dis-
tributed control problem tend to zero if k increases. For the first order Fourier
approximation (n = 81) Jh,81(fi(α

k
81),αk

81)/Jh,81(fi(α
1
81),α1

81) tends to approxi-
mately 8 · 10−3 for all four considered discretisation parameters h. For the first 100
optimisation steps a similar convergence is not observed for the second (n = 375)
and third order Fourier approximation (n = 1029). The found independence of the
results from h in the case n = 81 together with the observed improvement for a
fixed h = 1/20 affirm the conclusion that the choice of h cannot be assumed to
be the dominant restriction. Thence, it seems plausible that this observed conver-
gence behaviour reflects the approximation error of F ∗|Ωh

. The best improvement
of Jh,1029(fi(α

k
1029),αk

1029)/Jh,1029(fi(α
1
1029),α1

81) ≈ 1.49 · 10−04 is obtained in
the case n = 1029 after 100 optimisation steps which is just slightly better than
the corresponding result, namely about 2.22 · 10−04, in the case n = 1029.

For all considered n and h the trends of the normalised normed gradients

|| d
dα

J̃h,n(fi(α
k
n),αk

n)||2/|| d
dα

J̃h,n(fi(α
1
n),α1

n)||2 are found to be to decreasing while
the number of optimisation steps increase. Yet, non of the evolutions is observed
to decrease steadily. Instead, oscillations are monitored. The amplitudes of the os-
cillations are found to be the smaller the higher the dimension n of the considered
control space Un is. Interesting to note is that as raw trend lines could serve a
linear (EOC = 1) and a quadratical (EOC = 2) decreasing function in k. Similar
results are obtained by testing another approach which is presented in the next
chapter. Thereunto, in Section 5.6 the observed analogy is discussed.

4.4.4. Presentation and Discussion of the Performance Results. The
last part of this subsection is dedicated to present and discuss the performance
results which are obtained by both sequential and parallel execution. As test en-
vironment serves in either case the HP XC4000 supercomputer at the Steinbuch
Centre for Computing at the Universität Karlsruhe (TH). A detailed description
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Figure 4.7. The averages of the measured number of additional
operations Cgrad(p, h, n) are depicted as functions of the dimension
n of the gradient of the goal functional for various discretisation
parameters h executed on p processors.

can be found in Section 3.3. The source code is compiled with the Intel’ compiler
(version 10.1.022) using the optimisation option option −O3 and linking Hewlett
Packard’s MPI library (version 2.3.1). To avoid random hardware-caused outliers
all tests are performed three times. In the following, all referred quantities are
averages of the corresponding three test results.

The parameter identification problems and the distributed control problem
specified in the beginning of this section are considered as test cases. In their
discrete formulations they can be distinguished by their respective dimension n
(n = 1, 3, 11, 81, 375, 1029) of the control space Un which is in turn the number of
derivatives needed to be evaluated. For all tests always only one core and, with it,
only one processor per node is employed. The number of processors involved in a
particular test is denoted by p.

For all considered test configurations tp(h, n) denotes the observed time in
seconds needed to obtain the corresponding n evaluated derivatives employing p
processors. Due to the affinity of the explored test cases (n=1,3,11,81,375,1029) it
is expected that all measured elapsed times needed for the evaluation of the cor-
responding goal functionals Jh,n are found to differ only slightly as long h is kept
fixed. In fact, the measured quantities affirm the expectation. For example, in the
case where h = 30 the maximum relative deviation is observed to be approximately
1.5 per cent. Therefore, a comparison of tp(h, n) based on the average tp(h, 0) of
all six observed elapsed times seems to be promising and justifies the definition of
tp(h, 0).

An interesting question arises concerning the extent of computational costs
needed to obtain the evaluated derivatives of the goal functionals Jh,n with respect
to the dimension n of the gradient and the discretisation parameter h. Thereto,
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Figure 4.8. The evolution of the efficiencies Eff (p, h, n) are de-
picted as functions of the number of processors p for the fixed
discretisation parameter h = 1/20 and all considered optimisation
problems which are charaterised by their control space dimension
n.

the following ansatz is found to be useful

tp(h, n) = tp(h, 0) + n Cgrad(p, h, n) tp(h, 0) (4.12)

where Cgrad is a function which is implicitly defined by the observations tp. This
ansatz reflects the structure of the AD forward algorithm because of two reasons.
Firstly, the computation of an evaluated derivative always requires to perform all
the steps which are needed to evaluate the actual function. This is taken into
account by the first summand tp(h, 0). Secondly, the chain rule implies for each
elementary operation j and every singe derivative i = 1, 2, ..., n a certain number
of additional operations Cj

grad(p, h, n). The costs for all elementary operation are

represented by tp(h, 0). Thus, the second summand of (4.12) is meaningful with
Cgrad(p, h, n) presenting the average of the measured number of additional opera-

tions Cj
grad(p, h, n). In Figure 4.7 Cgrad is plotted as a functions of n for different

fixed discretisation parameters h executed on various numbers of processors p.

At first, the results of the sequentially executed program are discussed. It is
observed that in the cases where the dimension of the gradient is rather small, that
is n = 1, 3, 11, Cgrad(1, h, n) is found to be small as well, namely always less than
0.75 for all considered h = 1/10, 1/20, 1/30, 1/40. Further, the coefficients mea-
sured increase if n increases. This also holds for the problems with relatively large
gradient dimensions n = 81, 375, 1029. However, the growth rate is considerably
smaller, e.g Cgrad(1, 1/20, 81) ≈ 1.84 grows to Cgrad(1, 1/20, 81) ≈ 2.12 . Varying the
discretisation parameter h the observed differences are not found to be considerable
except in the case h = 1/10. This can be explained by the fact that the computa-
tions for all inner nodes of Ωh do not differ from each other but differ from those of
for the boundary nodes. Due to the problem configuration the computational costs
for the boundaries grow less fast than those for the inner nodes if h increases. With
it, the uniform costs related to inner nodes dominate and therefore the problem
scales almost linearly in h as long as h is small.
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Before the quantity Cgrad is studied for the parallel case the efficiency Eff of the
parallel approach is examined. The coefficient Eff is defined similarly to (3.1) by

Eff (p, h, n) :=
t1(h, n)

p tp(h, n)
.

The discretisation parameter is chosen to be fixed to h = 1/20. In Figure 4.8 the
obtained efficiencies Eff are depicted as functions of employed processors p. Any of
the functions represents one of the six considered problems which is characterised
by the dimension n = 1, 3, 11, 81, 375, 1029 of the corresponding control space. In
the cases with relatively high dimensions, namely n = 81, 375, 1029, it turns out
that for all considered p the observed efficiencies Eff (p, 1/20, n) are found greater
than the efficiencies Eff (p, 1/20, 0) which represents the cases where solely the the
goal functions are evaluated. This result is not surprising since, as noted before, the
total computational costs grow almost linearly in n with a growth rate of about 2.
However, the communication costs grow linearly in n with a growth rate of about 1.

The observed improvement of the efficiencies Eff (p, 1/20, n) for large control
space dimension n = 75, 375, 1029 is reflected in terms of a smaller measured coef-
ficient Cgrad(p, 1/20, n) for an increasing number of employed processors p. This is
visualised in Figure 4.7.

In summary, the tests show that the needed time to perform one optimisation
step roughly grows linearly with the dimension of the control space for both se-
quential and parallel execution. However, for the parallel case the growth rate can
be reduced. Further, the observations also clearly show that the proposed paral-
lelisation strategy for the AD forward mode approach is well suited in terms of
scalability.





CHAPTER 5

Adjoint-based Fluid Flow Control and

Optimisation based on the

BGK-Boltzmann Equation

Like the previous chapter, the actual chapter considers fluid flow control and
optimisation problems whose underlying fluid flow models are of mesoscopic na-
ture. In the following, such problems are of interest which can be formulated as
constrained optimisation problems in an abstract manner according to

find control α and state f which
minimise J(f,α) and fulfil G(f,α) = 0

}
(5.1)

with the same terminology as it is introduced in Chapter 4. It is to be stressed that
the governing equation of the side condition is again always a BGK-Boltzmann-like
equation similar to (1.67). Consequently, the class of problems, which is considered
in the following, is exactly the same as in Chapter 4.

However, the proposed strategy to numerically solve problems of this class
fundamentally differs to the one discussed in Chapter 4. In the following, the
first-optimise-then-discretise strategy is applied (cf. Gunzburger [56]). Thus, at
first a necessary condition for an optimum of the continuous problem (5.1) is de-
rived by applying Lagrange’s formalism. Then, in order to solve the system, a
gradient-based optimisation algorithm is applied. This leads to a series of continu-
ous problems. Each problem comprises the underlying fluid flow problem itself and
a second so-called adjoint problem. It turns out that the governing equation of the
adjoint problem is similarly structured as the BGK-Boltzmann equation. There-
fore, dedicated discretisation methods akin LBM can be applied. This leads to
discrete equations which have similar properties to those of LB equations. Thus, it
is possible to carry over efficient implementation strategies and other concepts such
as the hybrid parallelism concept introduced in Chapter 3. With it, the adjoint
system and, finally, the whole optimisation problem can be solved highly efficiently
in parallel.

The presented solution strategy is also in contrast to the other proposed ap-
proaches suggested by Pingen et al. [108, 109, 110, 111] and Tekitek et al. [131].
Though they also use optimisation algorithms to solve the optimality system, they
all derive the adjoint equations for dedicated LB equations. Since this equations are
of discrete nature their approaches follow the first-discretise-then-optimise strategy.
Further, the approaches differ because the discrete adjoint equations are solved by
e.g. a Schur-complement method [109]. Thus, there is not taken advantage of the
structure of the adjoint problems as it is done in the here presented approach.

This chapter aims to introduce, discuss and apply the mentioned solution strat-
egy. Thereby, emphasis is placed in presenting the framework in a widely general

97
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manner. However, in order to illustrate the feasibility and efficiency of the ap-
proach, one example is chosen to be considered, namely a 3D distributed control
problem. This example also serves as a prototype every time it is required to leave
the general-presentation principle. The remainder of this chapter is organised as
follows. It starts with the presentation of the overall strategy in Section 5.1. Then,
in the following three sections, the proposed approach is substantiated in detail
with respect to three main aspects. The first one, presented in Section 5.2, con-
cerns the derivation of a first-order necessary optimality system on the basis of
the mentioned prototypical example. Section 5.3 is dedicated to derive a general
form of an adjoint BGK-Boltzmann equation. Then, in Section 5.4 a discretisation
strategy for this equation is proposed which is inspired by LBM as they are studied
in Chapter 2. A numerical experiments is considered in the last section which is
Section 5.6. There, a discussion is held about the numerical results but also about
performance issues. Further, both the numerical and the performance results are
compared to those results presented in Chapter 4.

5.1. From the Optimisation Problem Formulation to the Numerical
Solution: An Adjoint-based Strategy

Likewise to the overall strategy presented in the previous chapter in Section 4.1
in the following, a strategy is proposed which enables solving numerically fluid flow
control and optimisation problems which are formulated as in (5.1). Yet, the intro-
duced approach differs form the previous one in two aspects. The first one is that
the actual approach follows the first-optimise-then-discretise strategy while the for-
mer one follows the first-discretise-then-optimise-strategy. The second difference is
the way the evaluated derivatives are obtained. The actual discussed strategy uses
an adjoint equation to determine them, while the previous one uses AD techniques.
The aim of this section is to introduce the overall approach step by step, stressing
similarities and differences to the formerly discussed approach and, moreover, to
ones proposed by others.

The following four steps are to be taken before an optimisation problem which
is formulated as in (5.1) can be solved numerically:

(1) Deriving an optimality system with Lagrange’s formalism which sets
up a condition for an optimum,

(2) Applying an iterative gradient-based optimisation algorithm lead-
ing to a series of problems which are to be solved in every optimisation
step k = 1, 2, ... for a particular explicitly given control variable αk,

(3) Deriving the prototypical adjoint equation to obtain the needed
evaluated gradients,

(4) Discretising, in particular, the primal and the adjoint equation.

5.1.1. First Step: Deriving an Optimality System. In the first step a
necessary condition for an optimum (f∗,α∗) of an optimisation problem which is
given according to (5.1) is to be derived. This is done on a continuous base us-
ing Lagrange’s formalism. As it is illustrated in the following section, a non-linear
coupled system called optimality system is obtained. In (5.27) a prototypical op-
timality system is stated. It is derived for an example which is a 3D distributed
control problem. In general, such systems usually consist of three equations. The
first one is given by the side condition G(f∗,α∗) = 0 itself. In this context it is
said to be the primal problem. The second and third equation set up conditions
for the optimum (f∗,α∗) and an optimal value λ∗ for another variable λ which is
referred to as Lagrange multiplier. The second condition is an affine-linear equation
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which is known as adjoint problem. As the second equation, the third one usually
couples all three variables f∗,α∗ and λ∗. It is called the optimality condition.

5.1.2. Second Step: Applying an Iterative Gradient-based Optimi-
sation Algorithm. Due to the in general complex structure of the obtained op-
timality system, which is in particular non-linear, an iterative method is applied
to obtain a solution. Similarly to the sensitivity-based strategy discussed in Sec-
tion 4.1 the application of a gradient-based optimisation algorithm is proposed.
Here, however, it is applied to a continuous problem. Yet, the procedure remains
the same. At first, the problem (5.1) is rewritten in form of an unconstrained opti-
misation problem. Providing that f can be understood as a function of α, i.e. that
f(α) exists as a function which is implicitly defined by the side condition for any
considered α, then, the optimisation problem (5.1) equivalently reads

find control α which
minimises J(f(α),α)

}
. (5.2)

Assuming that J is totally differentiable a necessary condition for a minimum
(f(α∗),α∗) of the reformulated, unconstrained problem (5.2), and with it also
of (5.1), is given by

d

dα
J(f(α∗),α∗) = 0 . (5.3)

In order to solve the continuous unconstrained optimisation problem (5.2) a
line search algorithm just like the one presented in Algorithm 3 is now applied.
This leads to a series of descent directions dk and step lengths δk which are to
be determined in every optimisation step k = 1, 2, ... for an explicit given αk.
The sub-class of gradient-based optimisation methods provides techniques which
allow to compute dk and δk from merely evaluated goal functionals J and its total
derivatives d

dα
J . In the literature, e.g. in [44, 104], one finds as representative of

this class among others the steepest descent method or quasi-Newton methods like
the BFGS method in combination with the Armijo rule or the Wolfe-Powell rule.

5.1.3. Third Step: Deriving the Prototypical Adjoint Equation. In
this step a strategy to obtain evaluated derivatives d

dα
J(f(α),α) for given arbi-

trary α is illustrated. The approach relies on defining an adjoint equation whose
solution yields an explicit expression for the wanted evaluated derivative.

For the derivation to come U denotes the control space. It is assumed to be a
Hilbert space. For any given α ∈ U the equation, defined in the following, is said
to be the adjoint equation (for the optimisation problem (5.1)):

∂

∂f(α)
J(f(α),α) = −λ · ∂

∂f(α)
G(f(α),α)) . (5.4)

Thereby, its solution λ = λ(α) is known under the terms dual solution, adjoint
solution or shorter the adjoint.

Differentiation of the state equation G(f(α),α) = 0 (α ∈ U) on both sides
with respect to α by applying the chain rule on the right hand side leads to the
so-called sensitivity equation:

∂

∂f(α)
G(f(α),α) ⊗ ∇αf(α) = −∇α ⊗ G(f(α),α) (α ∈ U) . (5.5)
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With (5.4) and (5.5) for an arbitrary, but fixed α ∈ U the gradient of J can be
transformed according to

d

dα
J(f(α),α) =

∂

∂f(α)
J(f(α),α) ∇αf(α) + ∇αJ(f(α),α)

= −λ · ∂

∂f(α)
G(f(α),α) ∇αf(α) + ∇αJ(f(α),α) (5.6)

= λ · (∇α ⊗ G(f(α),α)) + ∇αJ(f(α),α) .

It is to be noted that the explicit expression for the adjoint equation (5.4)
depends on the definition of the goal functional J and side condition function G

and therefore on the actual considered problem. Consequently, if one wants to
solve an optimisation problem by applying this adjoint-based strategy, one needs
to derive an analytic expression for the adjoint equation (5.4) separately for every
single problem considered which differs with respect to the structure of J or G.
However, as indicated in the introduction of this chapter, in the here considered
framework the part and parcel of a side condition G is always a BGK-Boltzmann-
like equation. Therefore, it is to be expected that the emerging adjoint equation is
similarly structured. This issue is addressed in more detail in Section 5.3. There, a
governing equation of a prototypical adjoint equation is derived. In the following,
this obtained equation is said to be the adjoint BGK-Boltzmann equation.

5.1.4. Forth Step: Discretising. The class of the considered fluid flow con-
trol and optimisation problems is characterised by the governing equation of the
side condition which is a BGK-Boltzmann-like equation similar to (1.67). In Chap-
ter 2 consistent discretisation strategies are discussed which lead to LB equations.
There, for a given h ∈ R>0 the underlying continuous space I × Ω × R

d, where
the particle distribution function f is acting on, is replaced by Ih × Ωh × Q. It is
proposed to rely the discretisation procedure for the optimisation problem on this
strategy as well. Thus, the state f is replaced by its discrete pendant fi acting on
Ih × Ωh × Q.

For the control α, which is a function in a Hilbert space U , a second discreti-
sation parameter n ∈ N is introduced. In the case where the control space U =: Un

is already a finite dimensional space, n can simply be set to be the space dimension
of U . Otherwise, the control space U is replaced by an n-dimensional space Un.
The objective J and its derivative d

dα
J are substituted by functions Jh,n and gJh,n

which are chosen appropriately with respect to the discrete space Ih×Ωh×Q and Un.

With the so far introduced procedure the functional Jh,n can be evaluated
numerically for any given αn ∈ Un. To solve a considered optimisation problem
it remains to provide a discretisation strategy for the adjoint equation with re-
spect to (5.1) so that the needed evaluated derivatives can be obtained according
to (5.6). Since an adjoint BGK-Boltzmann equation is the primary part of the
adjoint equation (5.4) (cf. Subsection 5.2.4) and since it is similarly structured as
a BGK-Boltzmann equation, it is suggested to apply methods akin LBM for the
discretisation. In the following, these methods are referred to as adjoint lattice
Boltzmann methods (ALBM). They are introduced in Section 5.4. The underlying
unknown function of an adjoint BGK-Boltzmann equation is the adjoint particle
distribution function ϕ which acts, as the state f , on I × Ω × R

d. ALBM lead
to adjoint lattice Boltzmann equations which set up conditions for discrete adjoint
particle distribution functions ϕj . As for LBM, the resulting discrete space also is
Ih × Ωh × Q with the same discretisation parameter h.
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5.2. First-order Necessary Optimality System

In this section a first-order necessary optimality condition for problems of a
prototypical class of optimisation problems with the BGK-Boltzmann equation be-
ing part and parcel of the side conditions is derived. The chosen class consists
of distributed control problems whereby the force F is to be controlled in the
whole domain Ω during I. The presented approach relies on Lagrange’s formalism,
which leads to a system of three coupled equations. The first equation is governed
by the BGK-Boltzmann equation (1.67) and the second one by the adjoint BGK-
Boltzmann equation. In general, it is to be noted that as long as the side condition
does not differ structurally, the structure of these two equations will not differ as
well. Hence, their form is essentially independent of the actual considered class of
optimisation problems. This is in contrast to the structure of the third equation.
It strongly depends on the variable which is to be controlled and thus on the actual
considered problem. However, for many problems the presented approach can eas-
ily be adapted. Since the basic structure of the first two equations does not change,
the in the following obtained first-order necessary optimality condition can be seen
as a prototypical condition for (5.1) - the greater class of constraint optimisation
problems at which a BGK-Boltzmann equation constitutes the main part of the
side conditions.

In the following, at first the considered class of distributed control problems is
formulated. Then, Lagrange’s formalism is applied. This sets up several conditions
which are finally transformed and condensed to a system of three equations which
govern the first-order necessary optimality system.

The considered class consists of such distributed control problems which can
be formulated as constrained optimisation problems akin (5.1). Thereby, a BGK-
Boltzmann equation together with appropriate initial and boundary conditions
serve as subsidiary condition. The force F is to be controlled and hence is replaced
by Bα. Like in the previous section, the Hilbert space U denotes the control space
and B ∈ L(U,L2(I ×Ω)d) a control extension operator, so that the controlled force
F constitutes to

F :

{
I × Ω → R

d

(t, r) 7→ (Bα) (t, r) .

The side condition G(f,α) = 0 is defined according to

G :





H1(I × Ω × R
d) × U → L2(I × Ω × R

d) × L2(I × ∂Ω × R
d
n−) × L2(Ω × R

d)

(f,α) 7→




(
∂
∂t + v · ∇r + Bα

m · ∇v

)
f − Q(f)

f(v) − f(−v)

f |t=t0 − ft0


 ,

(5.7)

whereby R
d
n+ :=

{
v ∈ R

d : v · n > 0
}

and R
d
n− :=

{
v ∈ R

d : v · n < 0
}

denote the
half spaces which are given for the outward pointing normal vector n(r) at any
r ∈ ∂Ω. The goal functional J reads

J :





H1(I × Ω × R
d) × U → R≥0

(f,α) 7→ 1

2

∫

I

∫

Ω

(uf − u∗)
2

drdt +
αreg

2

∫

I

∫

Ω

(Bα)2drdt

(5.8)
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where u∗ : I ×Ω → R
d is a desired velocity distribution and αreg ∈ R≥0 a regular-

isation parameter.

Lagrange’s formalism as stated in [142, p. 270] is to be applied to derive a
necessary condition for an optimal solution of (5.1). In the here established notation
it reads:

Theorem 5.1. Let (f∗,α∗) be a solution of the problem formulated in (5.1),
J : H1(I ×Ω×R

d)×U → R and G : H1(I ×Ω×R
d)×U → Y with Banach spaces

U, Y . If there exists an open neighborhood K(f∗,α∗) ⊆ H1(I ×Ω×R
d)×U where

G|K(f∗,α∗) ∈ C1 and ∇⊗G(f∗,α∗) : H1(I ×Ω×R
d)×U → Y is surjective, then

there exists λ∗ ∈ Y ′ such that the following holds:

∇J(f∗,α∗;hf ,hα) + λ∗∇ ⊗ G(f∗,α∗;hf ,hα) = 0 (5.9)

for all directions (hf ,hα) ∈ H1(I × Ω × R
d) × U .

Proof. cf. Zeidler [142, p. 270] �

One of the premises of the theorem itself sets up the first condition of the
necessary optimality system. It is required that the side condition must hold for
an optimum (f∗,α∗), i.e.

G(f∗,α∗) = 0 in I × Ω × R
d . (5.10)

This condition is nothing but the equations which characterise the underlying fluid
flow problem of the considered optimisation problem. In this context, (5.10) is
commonly said to be the primal problem or state equation.

If one assumes that all other requirements of Theorem 5.1 are fulfilled, two
more necessary conditions for an optimum can be obtained as a consequence of
the theorem. Thereunto, (5.9) is split into two equations by choosing in one case
hα ≡ 0 and in the other hf ≡ 0. Then, one gets the adjoint equation according to

∂

∂f
J(f∗,α∗;hf ,hα) + λ∗

∂

∂f
G(f∗,α∗;hf ,0) = 0 (hf ∈ H1(I × Ω × R

d))

(5.11)

and the optimality equation according to

∇αJ(f∗,α∗;α) + λ∗∇α ⊗ G(f∗,α∗; 0,hα) = 0 (hα ∈ U) . (5.12)

In the following three subsections, the three conditions constituting the whole
optimality system are derived for the special choice of G and J which are defined
according to (5.7) and (5.8). Finally, in Subsection 5.2.4 the optimality system is
stated for the considered class of distributed control problems.

5.2.1. Derivation of the Primal Problem. For an optimum (f∗,α∗) of
(5.1) the side condition needs to be fulfilled. In the case of considering a distributed
control problem for which the corresponding side condition is defined as in (5.7),
one obtains the primal problem according to

(
∂

∂t
+ v · ∇r +

Bα∗

m
· ∇v

)
f∗ = Q(f∗) in I × Ω × R

d

f∗(v) = f∗(−v) on I × ∂Ω × R
d
n− (5.13)

f∗|t=t0 = ft0 in Ω × R
d .
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5.2.2. Derivation of the Adjoint Problem. Inserting the special choices
for J and G, namely (5.8) and (5.7), into (5.11) yields

0 =
∂

∂f

(
1

2

∫

I

∫

Ω

(uf − u∗)
2

drdt +
αreg

2

∫

I

∫

Ω

(Bα)2drdt

)
(f∗,α∗;hf ) (5.14)

+
〈
ϕ∗,

∂

∂f

(
∂

∂t
+ v · ∇r +

Bα

m
· ∇v − Q

)
(f∗,α∗;hf )

〉
L2(I×Ω×Rd)

(5.15)

+
〈
γ∗,

∂

∂f
(f(v) − f(−v)) (f∗,α∗;hf )

〉
L2(I×∂Ω×Rd

n−
)

(5.16)

+
〈
η∗,

∂

∂f
(f |t=t0 − ft0) (f∗,α∗;hf )

〉
L2(Ω×Rd)

(5.17)

for (hf ,0) ∈ H1(I × Ω × R
d) × U . Y ′ can be identified with L2(I × Ω × R

d) ×
L2(I × ∂Ω × R

d
n−) × L2(I × ∂Ω). Applying Riesz’s representation theorem the

Lagrange multiplier λ∗ ∈ Y ′ can be represented by a certain (ϕ∗, γ∗, η∗)
T ∈

L2(I × Ω × R
d) × L2(I × ∂Ω × R

d
n−) × L2(I × ∂Ω).

The remainder of this subsection is dedicated to transform the terms with the
derivatives (5.14), (5.15), (5.16) and (5.17) step by step and finally determine an-
other system of equations which can be discretised and numerically solved. There-
unto, the following corollary is found to be useful:

Corollary 5.2. For functionals f, g ∈ H1(Rd) and a ∈ R
d the following equal-

ity holds: ∫

Rd

a∇f(v) g(v)dv = −
∫

Rd

f(v) a∇g(v)dv .

Proof. Let f, g ∈ H1(Rd). Since C∞
0 (Rd) ∩ H1(Rd) is dense in H1(Rd),

there exists a sequence (fn)n∈N ∈ C∞
0 (Rd) ∩ H1(Rd) such that in the H1(Rd)-

norm fn
n→∞−→ f . The definition of the H1(Rd)-norm implies that fn

n→∞−→ f and

∇fn
n→∞−→ ∇f in the L2(Rd)-norm. Furthermore, taking once more the definition

of the H1(Rd)-norm into account, the following equivalences hold:
∫

Rd

a∇f(v) g(v) dv = lim
n→∞

∫

Rd

a∇fn(v) g(v) dv

= lim
n→∞

−
∫

Rd

fn(v) a∇g(v) dv

= −
∫

Rd

f(v) a∇g(v) dv .

�

The derivative (5.14) of the goal functional at (f∗,α∗) in an arbitrary direction
hf ∈ H1(I × Ω × R

d) can be simplified according to

∂

∂f

(
1

2

∫

I

∫

Ω

(uf − u∗)
2

drdt +
αreg

2

∫

I

∫

Ω

(Bα)2drdt

)
(f∗,α∗;hf )

= −
∫

I

∫

Ω

nhf

(u∗ − uf∗)
(
uhf

− uf∗

)

nf∗

drdt

= −
∫

I

∫

Ω

∫

Rd

(u∗ − uf∗) (vhf (v) − uf∗hf (v))

nf∗

dvdrdt

= −
〈 (u∗ − uf∗) (v − uf∗)

nf∗

, hf

〉
L2(I×Ω×Rd)

.

(5.18)
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The second summand (5.15) of the adjoint equation is split into two summands
which represent the propagation and the collision part. The computation of the
directional derivative of the propagation operator ∂

∂t +v ·∇r + Bα
m ·∇v is an easy task

since it is linear. The result is further transformed using partial integration for the
first two summands and applying Corollary 5.2 for the last summand. Altogether,
this leads to
〈
ϕ∗,

∂

∂f

(
∂

∂t
+ v · ∇r +

Bα

m
· ∇v

)
(f∗,α∗;hf )

〉
L2(I×Ω×Rd)

=
〈
ϕ∗,

(
∂

∂t
+ v · ∇r +

Bα∗

m
· ∇v

)
hf

〉
L2(I×Ω×Rd)

=
〈
v · nϕ∗, hf

〉
L2(I×∂Ω×Rd)

−
〈( ∂

∂t
+ v · ∇r +

Bα∗

m
· ∇v

)
ϕ∗, hf

〉
L2(I×Ω×Rd)

+
〈
ϕ∗|t=t1 , hf |t=t1

〉
L2(Ω×Rd)

−
〈
ϕ∗|t=t0 , hf |t=t0

〉
L2(Ω×Rd)

which holds for every direction hf ∈ H1(I × Ω × R
d).

The differentiation of the non-linear collision operator Q with respect to f at
(f∗,α∗) in an arbitrary direction hf ∈ H1(I ×Ω×R

d) and afterwards the isolation
of hf requires several transformation steps. At first, the non-linear term of Q,
namely Meq

f , is considered. For hf ∈ H1(I ×Ω×R
d) the following transformations

hold true:
〈
ϕ∗,

∂

∂f
Meq

f (f∗,α∗;hf )
〉

L2(I×Ω×Rd)

=
〈
ϕ∗,

nhf

((
uf∗ − uhf

)
(uf∗ − v) + RT

)

nf∗RT
Meq

f∗

〉
L2(I×Ω×Rd)

=

∫ t1

t0

∫

Ω

∫

Rd

∫

Rd

ϕ∗(v)
((uf∗ − v̂) (uf∗ − v) + RT )

nf∗RT
Meq

f∗(v)hf (v̂) dvdv̂drdt

=
〈 ∫

Rd

ϕ∗(v)
((uf∗ − v̂) (uf∗ − v) + RT )

nf∗RT
Meq

f∗(v) dv

︸ ︷︷ ︸
=:dMeq

f∗

, hf

〉
L2(I×Ω×Rd)

.

With it, one obtains the differentiated operator Q according to

〈
ϕ∗,

∂

∂f
Q(f∗,α∗;hf )

〉
L2(I×Ω×Rd)

=
〈
− 1

ω

(
ϕ∗ − dMeq

f∗

)

︸ ︷︷ ︸
=:dQ(ϕ∗)

, hf

〉
L2(I×Ω×Rd)

for every direction hf ∈ H1(I × Ω × R
d).

The derivative at (f∗,α∗) in the third summand (5.16) of the adjoint equation
in an arbitrary direction hf ∈ H1(I × Ω × R

d) is now computed. One obtains for
any hf ∈ H1(I × Ω × R

d

〈
γ∗,

∂

∂f
(f(v) − f(−v)) (f∗,α∗;hf )

〉
L2(I×∂Ω×Rd

n−
)

=
〈
γ∗, hf (v) − hf (−v)

〉
L2(I×∂Ω×Rd

n−
)

.

Finally, the last summand (5.17) of the adjoint equation is transformed and
computed. Due to the linearity of f

〈
η∗,

∂

∂f
(f |t=t0 − ft0) (f∗,α∗;hf )

〉
L2(Ω×Rd)

=
〈
η∗, hf |t=t0

〉
L2(Ω×Rd)
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holds for all hf ∈ H1(I × Ω × R
d).

Now, all summands of the adjoint equation are computed for the special choice
of G and J . It reads

−
〈( ∂

∂t
+ v · ∇r +

Bα∗

m
· ∇v +

(u∗ − uf∗) (v − uf∗)

nf∗

+ dQ

)
ϕ∗, hf

〉
L2(I×Ω×Rd)

+
〈
v · nϕ∗, hf

〉
L2(I×∂Ω×Rd)

+
〈
γ∗, hf (v) − hf (−v)

〉
L2(I×∂Ω×Rd

n−
)

+
〈
ϕ∗|t=t1 , hf |t=t1

〉
L2(Ω×Rd)

+
〈
η∗ − ϕ∗|t=t0 , hf |t=t0

〉
L2(Ω×Rd)

= 0

(5.19)

and must hold for every hf ∈ H1(I × Ω × R
d).

The latter expression (5.19) for the adjoint equation can be simplified further.
If hf ∈ C∞

0 (I × Ω × R
d), all boundary integrals vanish and one gets the necessary

condition

0 =
〈( ∂

∂t
+ v · ∇r +

Bα∗

m
· ∇v +

(u∗ − uf∗) (v − uf∗)

nf∗

+ dQ

)
ϕ∗, hf

〉
L2(I×Ω×Rd)

which must hold for any hf ∈ C∞
0 (I × Ω × R

d). In particular, this is true if for
(f∗,α∗) holds

(
∂

∂t
+ v · ∇r +

Bα∗

m
· ∇v +

(u∗ − uf∗) (v − uf∗)

nf∗

+ dQ

)
ϕ∗ = 0 (5.20)

in I × Ω × R
d.

Then, if one assumes that (f∗,α∗) and ϕ∗ satisfy condition (5.20), equation
(5.19) reduces to

〈
v · nϕ∗, hf

〉
L2(I×∂Ω×Rd)

+
〈
γ∗, hf (v) − hf (−v)

〉
L2(I×∂Ω×Rd

n−
)
= 0 (5.21)

as long as hf ∈ H1(I × Ω × R
d) with hf |t=t0 = hf |t=t1 = 0. Choosing hf such

that it is symmetric, i.e. that it satisfies hf (v) = hf (−v) on I × ∂Ω × R
d
n− , (5.19)

further reduces to

0 =
〈
v · nϕ∗, hf

〉
L2(I×∂Ω×Rd)

=
〈
v · nϕ∗, hf

〉
L2(I×∂Ω×Rd

n+
)
+
〈
v · nϕ∗, hf

〉
L2(I×∂Ω×Rd

n−
)

=
〈
− v · nϕ∗(−v), hf (−v)

〉
L2(I×∂Ω×Rd

n−
)
+
〈
v · nϕ∗, hf

〉
L2(I×∂Ω×Rd

n−
)

=
〈
v · n (ϕ∗(v) − ϕ∗(−v)) , hf

〉
L2(I×∂Ω×Rd

n−
)

,

whereby for the last transformation advantage is taken of the symmetry property
of hf . Since hf , considered as function which operates on I×Ω×R

d
n− , is arbitrary,

ϕ∗ must be symmetric as well, i.e. it must satisfy

ϕ∗(t, r,v) = ϕ∗(t, r,−v) (t, r,v) ∈ I × Ω × R
d
n− . (5.22)

Provided that ϕ∗ is symmetric, condition (5.21) can be transformed as follows:

0 =
〈
v · nϕ∗, hf

〉
L2(I×∂Ω×Rd)

+
〈
γ∗, hf (v) − hf (−v)

〉
L2(I×∂Ω×Rd

n−
)

=
〈
v · nϕ∗, hf (v) − hf (−v)

〉
L2(I×∂Ω×Rd

n−
)
+
〈
γ∗, hf (v) − hf (−v)

〉
L2(I×∂Ω×Rd

n−
)

=
〈
v · nϕ∗ + γ∗, hf (v) − hf (−v)

〉
L2(I×∂Ω×Rd

n−
)

.
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Since this condition must hold for all hf ∈ H1(I × Ω × R
d) one obtains that

γ∗ = −v · nϕ∗ on I × Ω × R
d
n− .

Yet, since γ∗ does not have to fulfil any further conditions, the latter condition can
be dropped.

Provided (f∗,α∗) satisfies condition (5.20) and choosing hf ∈ H1(I ×Ω×R
d)

such that hf |t=t0 ≡ 0 and hf |∂Ω ≡ 0 condition (5.19) reduces to
〈
ϕ∗|t=t1 , hf |t=t1

〉
L2(Ω×Rd)

= 0 .

Since hf |t=t1 ∈ L2(Ω × R
d) is an arbitrary function one obtains the necessary

condition

ϕ∗|t=t1 = 0 in Ω × R
d . (5.23)

On the other hand, if this condition is fulfilled and again (f∗,α∗) satisfies condition
(5.20) and hf ∈ H1(I × Ω × R

d) such that hf |∂Ω ≡ 0, condition (5.19) reduces to
〈
η∗ − ϕ∗|t=t0 , hf |t=t0

〉
L2(Ω×Rd)

= 0

which leads to

η∗ = ϕ∗|t=t0 in Ω × R
d .

However, since no further condition must be fulfilled by η∗ the latter condition can
be dropped.

Combining the three obtained conditions, namely (5.20), (5.22) and (5.23), one
obtains the following system of equations:

−
(

∂

∂t
+ v · ∇r

Bα∗

m
· ∇v

)
ϕ∗ = dQ(ϕ∗) (5.24)

+
(u∗ − uf∗) (v − uf∗)

nf∗

in I × Ω × R
d

ϕ∗(v) = ϕ∗(−v) on I × ∂Ω × R
d
n−

ϕ∗|t=t1 = 0 in Ω × R
d .

Summarising the results obtained in this subsection, it has been shown that if (5.24)
holds for a particular choice of (f∗,α∗) and ϕ∗, the adjoint equation (5.11) of the
considered distributed control problems, whereby J and G are defined according to
(5.8) and (5.7), will also hold true. Therefore, (5.24) sets up a necessary condition
for the adjoint equation and with Theorem 5.1 also a necessary condition for an
optimum of the underlying optimisation problem. In the following, (5.24) is referred
to as adjoint problem.

5.2.3. Derivation of the Optimality Condition. Supposing all premises
of Theorem 5.1 are fulfilled, then, beside the adjoint equation another necessary
condition for an optimum (f∗,α∗) of the fluid flow control problem (5.1) is set up
by the optimality equation (5.12). For the considered distributed control problem
with the special choice for G and J it is required that

0 = ∇α

(
αreg

2

∫

I

∫

Ω

(Bα)2 drdt

)
(f∗,α∗;hα)

+
〈
ϕ∗,∇α

(
Bα

m
· ∇v

)
(f∗,α∗;hα)

〉
L2(I×Ω×Rd)

(5.25)

holds for all directions (0,hα) ∈ H1(I×Ω×R
d)×U . As in the previous section the

dual space Y ′ is identified with L2(I ×Ω× R
d)× L2(I × ∂Ω× R

d
n−)× L2(I × ∂Ω)
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and λ∗ ∈ Y ′ is represented by a certain (ϕ∗, γ∗, η∗)
T ∈ L2(I × Ω × R

d) × L2(I ×
∂Ω × R

d
n−) × L2(I × ∂Ω).

Condition (5.25) is simplified according to

0 = αreg

〈
Bα∗, Bhα

〉
L2(I×Ω)d +

〈
ϕ∗,

Bhα

m
· ∇vf∗

〉
L2(I×Ω×Rd)

= αreg

〈
Bα∗ +

∫

Rd

ϕ∗

m
∇vf∗ dv, Bhα

〉
L2(I×Ω)d

= αreg

〈
α∗ + B′

∫

Rd

ϕ∗

m
∇vf∗ dv,hα

〉
U

which holds for any hα ∈ U whereby B′ denotes the adjoint operator of B. Since
hα ∈ U is arbitrary the latter condition further simplifies to

α∗ = − 1

αreg
B′

∫

Rd

ϕ∗

m
∇vf∗ dv in I × Ω . (5.26)

This is another necessary condition for an optimum (f∗,α∗) of the considered dis-
tributed control problems. It is referred to as optimality condition.

With this last condition all three conditions that build the first-order necessary
optimality system for the considered distributed control problems are given. In
order to summarise the results of the whole section, in the following subsection the
corresponding optimality system is stated.

5.2.4. A First-order Necessary Optimality System for Distributed
Control Problems. The following system of equations constitute a necessary
condition for an optimum (f∗,α∗) of a distributed control problem which is given
according to (5.1) whereby J and G are defined by (5.8) and (5.7), respectively. It
is established by the results presented in the previous three subsections, namely by
the primal problem (5.13), the adjoint problem (5.24) and the optimality condition
(5.26). It reads

(
∂

∂t
+ v · ∇r +

Bα∗

m
· ∇v

)
f∗ = Q(f∗) in I × Ω × R

d

f∗(v) = f∗(−v) on I × ∂Ω × R
d
n−

f∗|t=t0 = ft0 in Ω × R
d

−
(

∂

∂t
+ v · ∇r +

Bα∗

m
· ∇v

)
ϕ∗ = dQ(ϕ∗)

+
(u∗ − uf∗) (v − uf∗)

nf∗

in I × Ω × R
d

(5.27)

ϕ∗(v) = ϕ∗(−v) on I × ∂Ω × R
d
n−

ϕ∗|t=t1 = 0 in Ω × R
d

− 1

αreg
B′

∫

Rd

ϕ∗

m
∇vf∗ dv = α∗ in I × Ω .

5.3. The Adjoint BGK-Boltzmann Equation

This section is devoted to derive the prototypical primary equation of the ad-
joint equation (5.4) which belongs to an optimisation problem whose side condition
is governed by a BGK-Boltzmann equation akin (1.67). This resulting equation is
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in the following referred to as adjoint BGK-Boltzmann equation.

In order to derive the adjoint BGK-Boltzmann equation, only that part of the
side condition G(f(α),α) = 0 (α ∈ U) is considered at which a BGK-Boltzmann
equation in the form of (1.67) enters. Let the particular part be fixed to be G1.
All further conditions are assumed to be fulfilled. Without loss of generality, it is
assumed that the control α enters the BGK-Boltzmann equation in form of sub-
stituting the force term F by Bα whereby B is an appropriate control extension
operator. Hence, G1 is defined as in (5.7), which is the governing part of the side
condition of the distributed control problem studied in Section 5.2. The correspond-
ing adjoint variable is λ1 =: ϕ. Thus, the adjoint equation (5.4), which belongs to
a particular α ∈ U and with it also to a particular f := f(α), reduces to

∂

∂f
J(f,α) = −ϕ

∂

∂f

((
∂

∂t
+ v · ∇r +

Bα

m
· ∇v

)
− Q

)
(f) (5.28)

which must hold in I×Ω×R
d. Assuming ϕ ∈ H1(I×Ω×R

d), with the help of a du-
ality argument a necessary condition for (5.28) can be derived as in Subsection 5.2.2
which yields

dJf =

(
∂

∂t
+ v · ∇r +

Bα

m
· ∇v + dQ

)
ϕ in I × Ω × R

d (5.29)

whereby dJf := ∂
∂f J(f,α). The term dQ is defined according to

dQ(ϕ) :





I × Ω × R
d → R

(t, r,v) 7→ − 1

ω

(
ϕ(t, r,v) − dMeq

f (t, r,v)
) (5.30)

with

dMeq
f :





I × Ω × R
d → R

(t, r,v) 7→
∫

Rd

ϕ(v̂)
((uf − v) (uf − v̂) + RT )

nfRT
Meq

f (v̂) dv̂
(5.31)

and with ω, R, T and Meq
f defined as in the corresponding side condition function

G1 which is a BGK-Boltzmann equation similar to (1.67).

5.4. Adjoint Lattice Boltzmann Methods

An adjoint BGK-Boltzmann equation like (5.29) is an affine-linear integro par-
tial differential equation. It is structured similarly to BGK-Boltzmann equations
like (1.67). Therefore, applying discretisation strategies which are similar to LBM
as they are studied in Section 2.1 of Chapter 2 seems to be promising. Thus, the
subject of this section is to derive such discretisation methods for adjoint BGK-
Boltzmann equations. The obtained strategies are referred to as adjoint lattice
Boltzmann methods (ALBM) in the following.

The basic and common idea of all LBM and consequently also of all ALBM
is the coupling of a discretisation parameter h ∈ R>0 with one or more scaling
parameters of a Boltzmann or a Boltzmann-like equation. The modality of the
connection depends on the regime in which an underlying macroscopic target equa-
tion is reached by the considered family of mesoscopic governing equations. In
Chapter 2 the subclass of such LBM is considered which leads to LB equations
whereas the target equation of choice is the incompressible Navier-Stokes equation
(1.34). Continuing on this path, in the following only those ALBM are studied
which are associated with this subclass of LBM.
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The here presented discretisation approach is structured as the one for LBM
which is presented in Section 2.1. As well, it consists of three main steps. At first,
the underlying discrete time and phase space are defined. Then, the adjoint Lat-
tice BGK-Boltzmann equation is considered in a finite velocity space which leads
to an equation which is said to be the velocity discrete adjoint BGK-Boltzmann
equation in the following. Finally, the transient position space is replaced by a
discrete space. This leads to an equation which is referred to as the adjoint Lattice
Boltzmann equation (ALB equation).

In this context, it is to be noted that the procedure of considering a family of
BGK-Boltzmann equations in a regime which leads to an incompressible Navier-
Stokes equation (cf. Chapter 1) might also be applied to link a family of adjoint
BGK-Boltzmann equations to a particular adjoint incompressible Navier-Stokes
equation. The results of the investigated example which are presented in Sec-
tion 5.6 point in this direction. Providing that this relation can be confirmed, the
question will arise if a family of ALB equations can be directly linked to this adjoint
incompressible Navier-Stokes equation. This, however, is not subject of the follow-
ing investigations. In fact, the discretisation methods presented in this section aim
to derive discrete equations which are consistent to their continuous counterpart.
The way the discretisation parameter h is coupled to a particular adjoint BGK-
Boltzmann equation asks for a definition of the term consistency. It can be defined
as for the derivation of LBM which is stated in Definition 2.1. However, in contrast
to the established consistency of LB equations it turns out that the consistency
of ALB equations cannot be proved without any further assumptions concerning
the smoothness of the solution of the corresponding adjoint BGK-Boltzmann equa-
tion. Nevertheless, the results of the numerical experiments, which are presented
in Section 5.6, clearly encourage further investigations of the proposed approaches.

5.4.1. Discrete Time and Phase Space. The transient phase space I ×
Ω × R

d is discretised by Ih × Ωh × Q exactly as described in Subsection (2.1.1).
Thereby, h ∈ R>0 denotes the discretisation parameter. As for the LBM the
particular choice of Ih × Ωh × Q sets up an ALBM model which is denoted by
DdQq with d representing the dimension and q the cardinal number of Q ⊆ R

d.
Two commonly applied models are the D2Q9 and the D3Q19 model. They are
both explicitly listed in Subsection (2.1.1). The D3Q27 model is another important
model for the derivation to come. Its definition can be found in the literature, e.g.
in [28, 129, 140].

5.4.2. Velocity Discrete Adjoint BGK-Boltzmann Equations. Starting
point for the derivation is an adjoint BGK-Boltzmann equation which is defined
as (5.29). Thereby, α ∈ U is assumed to be fixed. With the definition of the
side condition G1(f

h(α),α) also h ∈ R>0, ν ∈ R>0 and its solution fh := fh(α)
are given. The coupling between the discretisation parameter h and the consid-
ered adjoint BGK-Boltzmann equation is realised such as the coupling between h
and a BGK-Boltzmann equation, namely by the settings (2.1) and (2.2). Then,
substituting RT and ω, multiplying (5.29) with h2, subtracting dQ on both sides
and shortening the notation by taking advantage of Lagrange’s description (5.29)
becomes

h2 d

dt
ϕ =

1

3ν

(
ϕ − dMeq

fh

)
+

∂

∂f
J(fh,α) in I × Ω × R

d (5.32)



110 5. ADJOINT-BASED FLUID FLOW CONTROL AND OPTIMISATION

with

dMeq
fh =

∫

Rd

ϕ(v̂)

(
3h2

(
ufh − v

) (
ufh − v̂

)
+ 1
)

nfh

Meq
fh(v̂) dv̂ . (5.33)

Since (5.32) comprises an h a corresponding solution will generally also depend on
h. For the remainder of this subsection it is assumed that such a solution exists
and that it is unique. To indicate the dependence on h, it is denoted by ϕh.

Let ϕh be the solution of (5.32) and defining in I × Ω for v, v̂ ∈ R
d

a(v, v̂) := ϕh(v̂)
(
3h2

(
ufh − v

) (
ufh − v̂

)
+ 1
)

to shorten the notation. Then, dMeq
fh can be transformed according to

dMeq
fh =

∫

Rd

a(v, v̂)
hd

(
2
3π
)d/2

exp

(
−3

2

(
v̂ h − ufh h

)2
)

dv̂

=

∫

Rd

a(v, v̂)
hd

(
2
3π
)d/2

exp

(
−3

2
h2v̂2

)
exp

(
3h2 v̂ · ufh − 3

2
h2ufh

2

)
dv̂

(5.34)

=

∫

Rd

a(v,

√
2

h
√

3
v)

1

(π)
d/2

exp
(
−v2

)
exp

(√
6h v · ufh − 3

2
h2ufh

2

)
dv ,

in I × Ω and for all v ∈ R
d with the substitution v :=

√
3
2hv̂. Applying a Gauss-

Hermite quadrature of order three (cf. for example Hämmerlin [58]) one obtains in
I × Ω × R

d

dMeq
fh =

q−1∑

i=0

a(v,vi)
wi

w
exp

(
3h2 vi · ufh − 3

2
h2ufh

2

)
+ R10,t,r,v (5.35)

whereby for d = 2 the terms vi, wi and w are defined as for the D2Q9 model which
is stated in Subsection 2.1.1 and Subsection 2.1.2. Similarly, for d = 3 one can de-
rive vi, wi and w which leads to the D3Q27 model. The quadrature error R10,t,r,v

incorporates the derivatives of ϕh with respect to v up to order six. Without any
further assumption concerning the asymptotic behaviour of ϕh and its derivatives,
an analytical estimate of the quadrature error seems to be hard to find. However,
the numerical experiments discussed in Section 5.6 suggest that this error vanishes
as h → 0.

Taking advantage of the approximations and definitions stated in Subsection 2.1.2,
the summands of (5.35) can be transformed according to

a(vj ,vi)
wi

w
exp

(
3h ṽi · ufh − 3

2
h2ufh

2

)

= a(vj ,vi)
wi

w

((
1 + 3h ṽi · ufh

i
− 3

2
h2ufh

i

2 +
9

2
h2
(
ṽi · ufh

i

)2
)

+ R11,t,r,vi

)

= ϕh(vi)

(
3
(
hufh − ṽj

) (
hufh − ṽi

)
+ 1
)

nfh
i

Meq

fh
i

+ ϕh(vi)R12,t,r,vi

= ϕh(vi)

(
3
(
hufh

i
− ṽj

)(
hufh

i
− ṽi

)
+ 1
)

nfh
i

Meq

fh
i

+ R13,t,r,vi
.

(5.36)

The equalities will hold true in I × Ω for all vi,vj ∈ Q if the conditions of The-
orem 2.2 are fulfilled. The first equality holds because the exponential term is at
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first expanded in a Taylor series in h which leaves a truncation error of order O(h3).
Then, the integral term ufh is replaced by the sum ufh

i
. In accordance with (2.6)

this leaves the truncation error to be R11,t,r,vi
∈ O(h2). The next equality is ob-

tained by inserting nfh
i
/nfh

i
so that a term turns out to be identical with Meq

fh
i

.

Further, a(vj ,vi) is re-substituted and the truncation error is separated. Since(
3
(
hufh − ṽj

) (
hufh − ṽi

)
+ 1
)
∈ O(1) the truncation error R12,t,r,vi

∈ O(h2).

If ϕh(vi) ∈ O(1) for all vi ∈ Q R13,t,r,vi
will be a function of O(h2) because the

replacement of ufh by ufh
i

just leaves another truncation error of order two which

can be included in R13,t,r,vi
. To be stressed is that the latter condition sets up

another assumption on the solution ϕh.

The velocity discrete operator dMeq

fh
i

which belongs to dMeq
fh is defined in I ×

Ω × Q. By setting ϕh
i (t, r) := ϕh(t, r,vi) for all t ∈ I, r ∈ Ω and vi ∈ Q it reads

dMeq

fh
i

(vj) :=

q−1∑

i=0

ϕh
i (vi)

(
3
(
hufh

i
− ṽj

)(
hufh

i
− ṽi

)
+ 1
)

nfh
i

Meq

fh
i

(5.37)

for all vi ∈ Q in I × Ω. With (5.35) and (5.36) the truncation error yields

dMeq
fh − dMeq

fh
i

= R10,t,r,vj
+

q−1∑

i=0

R13,t,r,vi
∈ O(h2) in I × Ω × Q (5.38)

providing that ϕh
i ∈ O(1) and that R11,t,r,vj

∈ O(h2) for i, j = 0, 1, ..., q−1 in I×Ω.

Since the derivative dJfh of the goal functional J does not depend on ϕ the
term dJfh generates in principle no further truncation errors. However, it depends

on a certain fh which is the solution of a BGK-Boltzmann equation. If an LBM
is to be applied to solve it, just certain fh, namely fh

i (i = 0, 1, ..., q − 1), will be
known. Thus, also dJfh needs to be replaced by a function which just depends on

fh
i . Consequently, this function is denoted by dJfh

i
. The form of J and with it of

dJfh strongly depends on the actual considered optimisation problem. It is to be
noted that in general the truncation error dJfh − dJfh

i
=: R14,t,r,vj

should be of a

particular order which preserves the total consistency.
Considering the distributed control problem introduced in Section 5.2 at which

the goal function is defined as in (5.8), according to (5.18) its derivative is given by

dJfh = −
(
u∗ − ufh

) (
v − ufh

)

nfh

in I × Ω × R
d .

Then, replacing nfh and ufh by nfh
i

and ufh
i

leads to

dJfh
i

= −

(
u∗ − ufh

i

)(
vj − ufh

i

)

nfh
i

in I × Ω × Q . (5.39)

Under the condition of Theorem 2.2 the truncation error is

R14,t,r,vj
= dJfh − dJfh

i
∈ O(1) in I × Ω × Q

which is founded on (2.5), (2.6) and the fact that vj ∈ O(h−1) for j = 0, 1, ..., q−1.

Finally, one obtains the velocity discrete adjoint BGK-Boltzmann equation as
a set of q coupled equations according to

h2 d

dt
ϕj =

1

3ν

(
ϕj − dMeq

fh
i

)
+ h2dJfh

i
in I × Ω × Q . (5.40)
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The total truncation error of its family with respect to the family of adjoint BGK-
Boltzmann equation in the form of (5.32) is given by

1

3ν
R10,t,r,vj

+
1

3ν

q−1∑

i=0

R13,t,r,vi
+ h2R14,t,r,vj

in I × Ω × Q . (5.41)

Assuming that R10,t,r,vj
∈ O(h2) and ϕh

i , R14,t,r,vj
∈ O(1) hold in I × Ω × Q

and providing further that the conditions of Theorem 2.2 are fulfilled, then, this
truncation error will be of second order for the D2Q9 and D3Q27 model. It is to
be noted that the condition R14,t,r,vj

∈ O(1) in I × Ω × Q especially holds true if
the goal functional is defined as in (5.8).

5.4.3. Adjoint Lattice Boltzmann Equations. After deriving the family
of velocity discrete adjoint BGK-Boltzmann equations (5.40), now, the time and
position space I × Ω is to be replaced by a discrete space Ih × Ωh. This will lead
to equations which are referred to as adjoint Lattice Boltzmann equations. It is
stressed that this approach is similar to that presented in Subsection (2.1.3) where
consistent LB equations are derived from velocity discrete BGK-Boltzmann equa-
tions. As there, first of all, the force term is assumed to vanish, i.e. F = 0 in I×Ω.
However, in the following subsection a possible treatment is proposed.

To continue the discretisation process, let the definitions which are introduced
in the previous subsection also apply here. Recall, ϕh denotes the assumed so-
lution of (5.32) and fh denotes the assumed solution of the corresponding BGK-
Boltzmann equation.

If one assumes that ϕh satisfies d3

dt3 ϕh
j ∈ O(1) for j = 0, 1, ..., q−1, with Taylor’s

theorem one gets a central difference approximation of d
dtϕ

h
j according to

h2 d

dt
ϕh

j (t − h2/2) = ϕh
j (t) − ϕh

j (t − h2) + R15,t(h) in Ih , (5.42)

whereby for the remainder term holds R15,t(h) ∈ O(h6) for all t ∈ Ih.

Providing d2

dt2 ϕh
j ∈ O(1) for j = 0, 1, ..., q − 1, similarly to (2.13) one obtains

ϕh
j (t − h2/2) = ϕh

j (t) +
1

2

(
ϕh

j (t − h2) − ϕh
j (t)

)
+ R16,t(h) in Ih (5.43)

whereby R16,t(h) ∈ O(h4) for all t ∈ Ih.
Then, as in (2.14) for Meq

fh
i

, dMeq

fh
i

needs to be shifted by h2/2. Applying

Taylor’s expansion technique,

dMeq

fh
i

(t − h2/2) = dMeq

fh
i

(t) + R17,t(h) in Ih (5.44)

holds with R17,t(h) ∈ O(h2) for t ∈ Ih if d
dtdMeq

fh
i

(t) ∈ O(1) for t ∈ Ih. This is in

particular the case if ϕh
j , d

dtϕ
h
j , fh

i , d
dtf

h
i ∈ O(1) for all t ∈ Ih.

Similarly to dMeq

fh
i

, the term h2dJfh
i

is to be shifted by h2/2. Again with

Taylor’s expansion technique it holds

h2dJfh
i
(t − h2/2) = h2dJfh

i
(t) + R18,t(h) in Ih (5.45)

with R18,t(h) ∈ O(h2) if h2 d
dtdJfh

i
(t) ∈ O(1) for t ∈ Ih. In general J and with it

dJfh
i

depend on the actually considered fluid flow optimisation problem. A partic-

ular goal functional is defined in (5.8). As stated in (5.39), a possible consistent
approximation of dJfh is dJfh

i
. If one furthermore assumes that fh

i , d
dtf

h
i ∈ O(1)

for all t ∈ Ih and u∗ is differentiable, one will obtain that the truncation error
R18,t(h) is a function of O(h2).
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To obtain the ALB equation, at first, the velocity discrete adjoint BGK-Boltzmann
equation (5.40) is multiplied with 6ν

6ν+1 . Then, all terms are substituted according

to (5.42), (5.43), (5.44) and (5.45). This yields

6ν

6ν + 1

(
h2 d

dt
v̂ϕj(t − h2/2) − 1

3ν

(
ϕh

j (t − h2/2) − dMeq

fh
i

(t − h2/2)
)

−h2dJfh
i
(t − h2/2)

)

=
6ν

6ν + 1

(
fh

i (t) − ϕh
j (t − h2) − 1

3ν

(
ϕh

j (t) +
1

2

(
ϕh

j (t − h2) − ϕh
j (t)

)

−dMeq

fh
i

(t)
)
− h2dJfh

i
(t)
)

+ R19,t(h)

= fh
i (t) − ϕh

j (t − h2) − 1

3ν + 1/2

(
ϕh

j (t) − dMeq

fh
i

(t)
)

+
6ν

6ν + 1
h2dJfh

i
(t) + R19,t(h)

which holds for j = 0, 1, ..., q − 1 in Ih.

R19,t(h) =
6ν

6ν + 1

(
R15,t(h) − 1

3ν
(R16,t(h) − R17,t(h)) + R18,t(h)

)
in Ih

which is under the before mentioned conditions of second order.

Based on this derivation, the adjoint lattice Boltzmann equation (ALB equa-
tion) can be stated. It reads

ϕj(t) − ϕj(t − h2) =
1

3ν + 1/2

(
ϕj(t) − dMeq

fh
i

(t)
)

− 6ν

6ν + 1
h2dJfh

i
(t) for t ∈ Ih, j = 0, 1, ..., q − 1 .

(5.46)

The latter truncation error R19,t is as well the truncation error which occurs then
considering the consistency of the family of ALB equations (5.46) to the family of
the velocity discrete adjoint BGK-Boltzmann equations (5.40). Summarising the

results, the order of consistency will be two if h2 d
dtdJfh

i
(t), fh

i , d
dtf

h
i , dk

dtk ϕh
j ∈ O(1)

for k = 0, 1, 2, 3 and i, j = 0, 1, ..., q − 1 in Ih. In particular, if the goal functional
is defined as in (5.8) and fh

i fulfils the conditions of Theorem 2.2, it will hold that
h2 d

dtdJfh
i
(t) ∈ O(1).

5.4.4. Treatment of External Forces. In the previous two subsections the
velocity discrete adjoint BGK-Boltzmann equation and the ALB equation are de-
rived. Thereby, the force term is assumed to vanish, i.e. F = 0 in I × Ω. Yet, in
many applications it needs to be considered. In the following, a way is sketched
how a force term can be integrated, firstly in the LB equation and secondly in the
ALB equation.

In the framework of LBM, there exist various approaches to take an exter-
nal force into consideration. It is common practice to add another term Ti (i =
0, 1, ..., q− 1) to the right hand side of the lattice BGK-Boltzmann equation (2.15).
The Ti (i = 0, 1, ..., q − 1) represent a source which is chosen such that their mo-
ments represent dedicated macroscopic quantities. An overview is given by Guo et
al. in [57] and Buick et al. in [23]. The basic idea of one of these approaches is
stated in [59]. It relies on replacing F

m · ∇vfh by F
m · ∇vMeq

fh . Then, ∇vMeq
fh can

be computed and with it also its moments. With Gauss-Hermite quadrature one
gets q supporting points vi and weights wi (i = 0, 1, ..., q − 1) for the D2Q9 and
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D3Q27 model. For the D3Q19 model vi and wi i = 0, 1, ..., q − 1 are chosen such
that the same macroscopic quantities are obtained. The supporting points vi and
weights wi (i = 0, 1, ..., q − 1) and also the term w are just the same as the one
obtained then deriving the velocity discrete adjoint BGK-Boltzmann equation (cf.
Subsection 2.1.2). With these definitions, Ti reads

Ti := 3h
wi

w
nfh

i

F

m
· ṽi for i = 0, 1, ..., q − 1 . (5.47)

It is to be noted that in contrast to most other approaches (cf. [23, 57, 59]) the
macroscopic quantities are not scaled. Therefore, an additional factor h appears as
part of all terms Ti (i = 0, 1, ..., q − 1).

To incorporate an external force in the ALB equation (5.46) the adjoint oper-
ator dT to Ti (i = 0, 1, ..., q − 1) is computed on a discrete base. Therefore, all Ti

(i = 0, 1, ..., q − 1) are differentiated with respect to fh
i into an arbitrary direction

hfi
:

〈
ϕi,

d

df
Ti(f

h
i ;hfi

)
〉

L2(Ih×Ωh×Q)
=
〈
ϕi, 3h

wi

w
nhfi

F

m
· ṽi

〉
L2(Ih×Ωh×Q)

=
〈
3h

F

m
·

q−1∑

i=0

wi

w
ϕiṽi

︸ ︷︷ ︸
=:dT

, ĥfi

〉
L2(Ih×Ωh×Q̂)

.

These terms are added on the right hand side of the ALB equation (5.46).

5.5. Implementation of Adjoint Lattice Boltzmann Algorithms

It is important to note that the structure of an ALB equation like (5.46) is very
similar to that of an LB equation like (2.15). Main differences are its time inverse
character and the additional term 6ν

6ν+1h2dJfh
i
. However, its locality properties

remain basically the same. This encourages to implement ALBM similarly to that
strategy for LBM which is presented and discussed in Section 2.2. Moreover, also
the adoption of the hybrid parallelisation strategy, which is presented and tested
in Chapter 3, also seems possible.

In the following, at first an ALB algorithm is derived. Then, differences and
similarities with respect to an LB algorithms are studied. In particular, it is checked
if both the sequential and hybrid parallel implementation strategy dedicated for LB
algorithms can also be applied for ALB algorithms.

Starting with (5.46), an iterative algorithm can be derived. It is executed step
by step for decreasing t ∈ Ih. In each single time step two steps are to be performed
for all r ∈ Ωh and every j = 0, 1, ..., q − 1, namely the adjoint collision step

ϕ̃j(t, r) = ϕj(t, r) − 1

3ν + 1/2

(
ϕj(t, r) − dMeq

fi
(t, r)

)
+

6ν

6ν + 1
h2dJfi

(t) (5.48)

and the adjoint streaming step

ϕj(t − h2, r − h2vj) = ϕ̃j(t, r) (5.49)

which is alternatively referred to as adjoint propagation step.

As the collision step (2.19) in an LB algorithm the adjoint collision step (5.48)
has a local character with respect to the position space. For this step the solution
of the corresponding primal problem fi (i = 0, 1, ..., q − 1) needs to be provided.
It is important to note that for the computation of ϕ̃j(t, r) (j = 0, 1, ..., q − 1) at
a particular t ∈ Ih and r ∈ Ωh only all fi(t, r) (i = 0, 1, ..., q − 1) at the same t
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and r are required. In order to obtain an efficient implementation, it is therefore
recommendable to take advantage of this property. This can be realised by, for
example, a local storage of the solution fi (i = 0, 1, ..., q − 1) with respect to ϕj

(j = 0, 1, ..., q−1). When it comes to realise a parallel approach, it is expected that
the proposed treatment leads to a scalable implementation concerning the memory
consumption.

While an adjoint streaming step (5.49) at a certain (t, r) ∈ Ih × Ωh is per-
formed, ϕj is manipulated only at direct neighbouring nodes. This also holds true
for a streaming step (2.20) of an LB algorithm. However, the propagation takes
place reversely.

Due to the structure of (5.48) and (5.49) combined with its mentioned locality
properties an ALB algorithm can be implemented similarly to an LB algorithm
akin Algorithm 1. Furthermore, because of the same reasons a data structure de-
sign as discussed in Subsection 2.2.1 is well-suited for an efficient implementation
of ALB algorithms as well. With it, also the hybrid parallelisation strategy pro-
posed and discussed in Chapter 3 can be applied. Executing an ALB scheme, it is
expected that qualitatively it performs as efficiently as an LB scheme. Thereunto,
a comparison of their respective performance results for an example, obtained both
sequentially and in parallel, is presented and discussed in Subsection 5.6.4.

5.6. Numerical Experiments: A Distributed Control Problem

This section is devoted to study a stationary distributed control problem.
Thereby, the external applied force F is to be manipulated within the whole domain
Ω. The problem is formulated on a macroscopic base exactly as the distributed
control problem considered in the previous chapter in Section 4.4. As already
mentioned there, the problem is related to the 3D stationary fluid flow problem
discussed in Section 2.3 where for a given force F the velocity distribution u is to
be determined. Now, the problem is reversed, i.e. u is given in advance and F is
to be computed.

The main goal of this section is to illustrate the adjoint-based fluid flow control
and optimisation approach presented within this chapter. Furthermore, the section
aims to validate the realisation and test its performance.

In the following, at first the test case in formulated. Then, in Subsection 5.6.2
the iterative optimisation algorithm of choice is stated. Afterwards, details re-
garding the chosen discrete models for the primal, the adjoint and the optimality
equation are presented. Since an ALBM is applied to solve the stationary problem
numerically, issues concerning an appropriate stop criteria need to be addressed.
This is also subject of Subsection 5.6.2. In Subsection 5.6.3 the numerical results
are presented and analysed. Finally, in the last part of this section the measured
performance results for the realisation are studied. In both the ultimate and the
penultimate subsection the obtained results are compared to those obtained for
the AD-based first-discretise-then-optimise approach which are presented in Sub-
section 4.4.2 and Subsection 4.4.3.

5.6.1. Test Case Formulation with Corresponding Optimality Sys-
tem. The considered test case is a stationary distributed control problem which
is formulated on a macroscopic base whereby a family of BGK-Boltzmann equa-
tions, differing in the choice of h ∈ R>0, serve as governing equation. The problem
reads exactly as the distributed control problem formulated in Section 4.4. Taking
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advantage of the notations and definitions introduced there, the here considered
optimisation problem is formulated. The goal functional J∞ is defined according to
(4.9). For a given h ∈ R>0 the function which defines the side condition is specific
according to (4.10) and referred to as Gh

∞
. Further, B∞ is the control extension

operator which is the identity map and αreg ∈ R≥0 is a regularisation parameter.

In Section 5.2 an optimality system for an abstract instationary distributed
control problem is derived. It is very similar to the here considered test case,
except for the vanishing time derivative and the boundary condition, which is here
formulated as a macroscopic Dirichlet condition instead of a bounce back condition.

The first issue poses no difficulties. The stationary fluid flow problem that
constitutes the side conditions can be considered naturally as quasi-instationary
problem which converges in time towards the solution of the stationary problem.
This procedure is illustrated just for the underlying fluid flow problem in Section 2.3.
Then, the disappearance of the time derivative can be ensured by introducing an
additional condition which is nothing but a stop criteria for the discrete algorithm.
This condition can be easily transfered to the adjoint problem where it, as well,
sets up the condition that the time derivative, though by now of ϕ, vanishes.

The second difference concerning the optimality system for the considered case,
namely the macroscopic boundary condition formulation, cannot put down directly
to the system derived in Section 5.2. A reason is that the handling of macroscop-
ically formulated boundary conditions in a mesoscopic framework is in general a
difficult task. Furthermore, most of the approaches are formulated on a discrete
base (cf. Subsection 2.1.4). Therefore, in the following an indirect treatment via
the macroscopic target equation of the BGK-Boltzmann equation which is an in-
compressible Navier-Stokes equation and its adjoint equation is proposed. The
procedure in founded in the assumption that the series of adjoint BGK-Boltzmann
equations is related to the particular adjoint incopressible Navier-Stokes equation
in a limiting process whereby h tends to zero. Under this premise, one gets that
the first moments of a solution ϕh are related to the adjoint variable w of u by

uϕh
h→0−→ w in I × Ω . (5.50)

Consider the corresponding incompressible Navier-Stokes equation with Dirichlet
boundary conditions according to the ones defined as part of the side condition in
(4.10), then, the corresponding boundary condition for the adjoint incompressible
Navier-Stokes equation is a Dirichlet-zero condition, i.e. w|∂Ω = 0 in I (cf. Fursikov
et al. [43]). This, in turn, motivates the appropriateness of the bounce back
condition for the adjoint BGK-Boltzmann equations since it leads to

∫

Rd

vϕh(v) dv = 0 on I × ∂Ω

for all h which ensures with (5.50) w|∂Ω = 0 in I. To be mentioned is that the
brought up assumption (5.50) still remains to be verified analytically. However, the
numerical results discussed later in this section are found to be consistent with that
assumption. This encourages further investigations in this direction.

5.6.2. Numerical Realisation: Discretisation Issues and Optimisa-
tion Method of Choice. The previously formulated distributed control problem
is solved numerically in accordance to the adjoint-based strategy presented in Sec-
tion 5.1. The approach relies on the application of an iterative gradient-based
optimisation algorithm as stated in (3). The method applied to solve the test
case is a BFGS scheme combined with the Wolfe-Powell rule to determine the step
lengths. The initial control is set to α0 := 0. Then, in every optimisation step
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k = 1, 2, ... the primal and the adjoint equation is to be solved for a particular αk.
With the solution f(αk) of the primal problem J∞(f(αk),αk) can be computed.
If one additionally knows the solution of the corresponding adjoint equation ϕ, the
gradient d

dα
J∞(f(αk),αk) can be computed as stated in (5.6). Finally, with the

optimisation algorithm one obtains the descent direction dk and the step length δk.

For each αk (k = 1, 2, ...) the primal problem is given in terms of the side
condition Gh

∞
(f(αk),αk) = 0 for a particular h ∈ R>0. Except for the force term,

each of these side conditions reads just as the governing equation of the fluid flow
problem formulated in Subsection 2.3.1. For this problem a D3Q19 LBM is applied
to solve it numerically which leads to the discrete space Ih × Ωh × Q. The same
strategy is applied to solve the primal problems. In Subsection 2.3.2 further details
concerning the applied discretisation strategy are stated. Thereunder, the applied
methods to realise the boundary condition, the initial condition and also the stop
criteria are specified.

The adjoint problem which is to be solved in every optimisation step k = 1, 2, ...
reads as (5.28). In order to solve the system numerically a D3Q19 ALBM as
introduced in Section 5.4 is applied. The force term is treated separately as stated
in Subsection 5.4.4. The obtained discrete space is the same as the one obtained
for the discrete primal problem, namely Ih × Ωh × Q. In the primal problem
the average density in Ωh is kept close to a value of 1 by subtracting a constant
offset from the distribution function fi on every grid point in every time step (cf.
Subsection 2.3.2). This technique is carried over to the adjoint algorithm. One
obtains that the average of ρϕj

in Ωh is to be computed and that an offset is to
be subtracted from ϕj in Ih × Ωh × Q. With this procedure, it is ensured that the
average of ρϕj

in Ωh is kept to be close to zero. To check the convergence towards

a steady state the change of the obtained solutions is monitored in an L2-norm in
every time step t. The simulation is stopped if the stop condition

eh(t) := ||ϕj(t) − ϕj(t − h2)||L2(Ωh×Q) < ǫ (5.51)

is fulfilled for a t ∈ Ih whereby ǫ := 10−15.

Then, the control space U∞ = L2(Ω)3 is to be replaced by a finite dimensional
space. As ansatz-space Un := L2(Ωh)3 is chosen. It can be identified by Un

∼= R
n

which is of dimension

n := 3

(
1

h
− 1

)3

. (5.52)

The discrete control extension operator is defined for r ∈ Ωh and i = 1, 2, 3 accord-
ing to

(Bh,n(αn))i (r) := α3l(r)+i

whereby l(r) ∈
{

1, 2, ...,
(

1
h − 1

)3}
is the index belonging uniquely to a particular

r ∈ Ωh. With it, both the primal and the adjoint problem can be solved numeri-
cally for a given αn ∈ Un.

The goal functional J∞ is approximated applying the midpoint rule which leads
to an expression Jh,n which reads exactly as (4.11). Here, Jh,n is defined for the
considered h ∈ R>0 and for its by (5.52) coupled n. As for the test cases considered
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in the previous chapter the regularisation parameter is set to αreg = 0. Conse-
quently, after one has solved the primal problem numerically, Jh,n can be evaluated.

Finally, it is to be specified how (5.6) can be computed numerically for given
αk

n, fi(α
k
n) and ϕj(α

k
n) (i, j = 0, 1, ..., q−1). In the here considered cases (5.6) can

be obtained just as the optimality condition is derived in Subsection 5.2.3 according
to the transformations stated in (5.26). Suppose fh is the solution of the primal
problem and ϕh that of the adjoint problem which belongs to a dedicated αk ∈ U∞.
Then, one obtains

d

dα
J∞(fh(αk),αk) = αregα

k + B′

∫

Rd

ϕh(αk)

m
∇vfh(αk) dv (5.53)

for αk ∈ U∞ in I×Ω. This term needs to be evaluated (5.53) numerically based on
the discretisation employed before. As it is common praxis for the BGK-Boltzmann
equation the term ∇vfh(αk) is not treated directly. In Subsection 5.4.4 one of many
available approaches is addressed shortly. It relies on replacing the term ∇vfh(αk)
by ∇vMeq

fh(αk)
. Then considering the moments of ∇vfh(αk), a Gauss-Hermite

quadrature leads to q supporting points vi and weights wi (i = 0, 1, ..., q− 1) which
are identical to those belonging to the D2Q9 and D3Q27 model. This modus
operandi is now applied to evaluate the integral term of 5.53. The replacement of
fh(αk) by Meq

fh(αk)
leads to

d

dα
J∞(fh(αk),αk) ≈ B′

∫

Rd

ϕh(αk)

m
∇vMeq

fh(αk)
dv

= −B′

∫

Rd

ϕh(αk)(v)

m
3h2(v − ufh(αk))

︸ ︷︷ ︸
:=b(v)

Meq

fh(αk)
dv

for αk ∈ U∞ in I × Ω, whereby the regularisation parameter is set to be αreg =
0. Then, Gauss-Hermite quadrature can be applied analogue to (5.34) by setting
a(·,v) := b(v)nfh (v ∈ R) and assuming that the conditions imposed on a in
Subsection 5.4.2 also hold for bnfh . This yields

d

dα
J∞(fh(αk),αk)

≈ −B′
q−1∑

i=0

wi

w

ϕh(vi)

m
3h2(vi − ufh) exp

(
3h2vi · ufh − 3

2
h2ufh

2

)

= −B′
q−1∑

i=0

wi

w

ϕh
j

m
3h(ṽi − hufh)nfh exp

(
3hṽi · ufh − 3

2
h2ufh

2

)

for αk ∈ U∞ in I × Ω, whereby vi are supporting points and wi are weights for
i = 0, 1, ..., q − 1 which are identical to those belonging to the D2Q9 and D3Q27
model. Expanding the exponential function around 0 and neglecting all terms which
are in O(h3) yields

d

dα
J∞(fh(αk),αk) ≈ −B′

q−1∑

i=0

wi

w

ϕh
i

m
3hṽinfh in I × Ω

≈ −B′
q−1∑

i=0

wi

w

ϕh
i

m
3hṽinfh

i
in Ih × Ωh

for αk ∈ U∞ whereat in the last transformation nfh is replaced consistently by

nfh
i

(cf. Subsection 2.1.2). Finally, the gradient is evaluated just for αk
n ∈ Un.
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Therefore, B is replaced by Bh,n. Denoting the discretised evaluated gradient with
gJh,n(αk

n) one obtains for αk
n ∈ Un

d

dα
J∞(fh(αk

n),αk
n) ≈ gJh,n(αk

n) := −B′
h,n

q−1∑

i=0

wi

w

ϕh
i

m
3hṽinfh

i
in Ih × Ωh .

With it, all terms can be computed on a discrete base so that the test problem can
be solved numerically.

5.6.3. Presentation and Discussion of the Numerical Results. In this
subsection the numerical results obtained for the considered test case are presented
and analysed, whereby the discretisation parameter h is varied. The main aim is to
validate the presented approach and its realisation numerically. For that purpose
the obtained results are compared to those obtained for the first-discretise-then-
optimise approach presented in the previous chapter. Another goal of the presen-
tation is to provide a basis for comparisons with results obtained for the same test
case by applying other methods. In particular, it would be interesting to com-
pare the results to those which are obtained by modelling the underlying fluid flow
problem macroscopically, i.e. with the corresponding incompressible Navier-Stokes
equation as governing equation, and solving it by e.g. a FEM.

At first, for the dual problems, which are solved by a D3Q19 ALB scheme, the
convergence behaviour towards a quasi-stationary solution is studied. Exemplarily,
the system which occurs in the first optimisation step is considered. A compari-
son with the convergence behaviour obtained for the following optimisation steps
reveals no significant differences for the considered test case. Aiming to analyse
the characteristics, the change of the obtained solutions eh(t), which is defined ac-
cording to (5.51), is monitored in every time step t ∈ Ih. The results are depicted
for different discretisation parameters, namely h = 1/10, 1/20, 1/40, 1/80, 1/160, in
Figure 5.1.

The obtained results clearly show an exponential decrease of eh to a certain level
around 10−16 for all considered discretisation parameters h. This limitation can be
explained with the accuracy of the employed data type which is of double precision.
This implies that an relative precision error of more than 10−16 cannot be expected.
The differences in the reached level might be due to the accumulation of rounding

errors occurring then computing the L2(Ωh)-norm as a sum over q
(

1
h − 1

)3
terms.

Further, it is observed that e1/40, e1/80 and e1/160 show approximately the
same convergence characteristics. This result is not surprising. It indicates an
underlying physical meaning of the set of problems which might be founded in
the already mentioned relation between the hierarchy of adjoint BGK-Boltzmann
equations to a particular adjoint incompressible Navier-Stokes equation.

Moreover, from this observed convergence characteristics one can deduce an
experimental order of convergence for the costs to solve a linear system with

N := q
(

1
h + 1

)3
unknowns, which is given by an ALB equation, by means of an

ALB scheme. It is to be expected that the computational costs to perform one
time step depend linearly on N as the adjoint collision step (5.48) and the adjoint
propagation step (5.49) reveal. This theoretical result is confirmed experimentally
as shown in Table 5.1. As the graph in Table 5.1 illustrates, a certain accuracy
eh(t∗) is reached independently of h at about the same physical time t∗. However,
the number of time steps needed depends linearly on h2 so that e.g. for the test
case with h = 1/80 four times more time steps are to be performed to reach t∗ as for
the one with h = 1/40. With it, one obtains an experimental order of convergence
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Figure 5.1. In order to check the convergence behaviour, the de-
velopment towards a stationary solution is illustrated by the plot.
Therefore, eh(t) = ||ϕj(t) − ϕj(t − h2)||L2(Ωh×Q) is depicted as a

function of time for the first optimisation step and different dis-
cretisation parameters h.

which is a function of O(N5/3).

In Figure 5.2 the obtained numerical results for the goal functionals Jh,n of the
considered test case are presented for h = 1/10, 1/20, 1/40, 1/80. To compare the
results obtained for the different refinements levels, the evolution of the normalised
goal functionals Jh,n(fi(αn

k),αn
k)/Jh,n(fi(αn

1),αn
1) is shown as a function of

performed optimisation steps k = 1, 2, ... . The results for the corresponding approx-
imated derivatives are depicted in Figure 5.3. Here, for better comparability the
normalised normed gradients ||gJh,n(αk

n)||L2(Un)/||gJh,n(α1
n))||L2(Un) are stated for

all studied discretisation parameters h.
For all considered h it is observed that the value of the goal functionals de-

creases as the number of optimisation steps increases. However, they are not
found to tend to zero. In the case where h = 10, after 40 optimisation steps
Jh,n(fi(αn

k),αn
k)/Jh,n(fi(αn

1),αn
1) reaches a value of approximately 4.7 · 10−3

which decreases very slowly to 3.9 · 10−3 at k = 50; then, no further improvements
are obtained. Yet, it is measured that for all k > 6 the values obtained for the
normalised goal functional become smaller the smaller h is chosen. Further, in all
investigated cases a smaller relative error for the velocity field can be reached than
the one obtained as relative discretisation and model error for the underlying fluid
flow problem whereby F = F ∗ (cf. Section 2.3 and Figure 2.5). For h = 10 for
example, the relative error after 30 optimisation steps has been performed is found
to be ||ufi(αn

30) − u∗||L2(Ω10)
/||u∗||L2(Ω10)

≈ 0.024 while the relative discretisation

and model error is found to be ||ufi
−u∗||L2(Ω10)

/||u∗||L2(Ω10)
≈ 0.06. The develop-

ment of the gradients shows a similar behaviour. Depending on h after a certain
number of optimisation steps no further improvement can be observed. For h = 10,
again, this is the case from about k = 40 on. In the case where h = 20 after k = 70
optimisation steps and for h = 40 after k = 90 the value of the gradient does
not decrease monotonously anymore. Summing up all these observations, it seems
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Figure 5.2. The graph of the normalised goal functional
Jh,n(fi(αn

k),αn
k)/Jh,n(fi(αn

1),αn
1) understood as a function

of performed optimisation steps k is displayed for different dis-
cretisation parameters h.

Figure 5.3. The graph of the normalised normed gradient
||gJh,n(αk

n)||L2(Un)/||gJh,n(α1
n))||L2(Un) understood as a function

of performed optimisation steps k is displayed for different discreti-
sation parameters h.

plausible that the discretisation errors occurring, e.g. when solving the primal and
the dual problem, become visible in the mentioned behaviour.

It is interesting to note that the results are found in fairly good agreement to
those obtained applying the AD-based first-discretise-then-optimise strategy pro-
posed in the previous chapter, which are discussed in detail in Subsection 4.4.3.
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The conformity is observed both quantitatively and qualitatively. Comparing the
rate of decrease of the goal functionals, both approaches lead to a quadratically
decreasing goal functional (EOC = 2) for the smallest h and greatest n which is in
each case considered. Also the order of decline in the gradients is found to be sim-
ilar for both experiments. Quantitatively, the magnitude of improvement of both
the goal functional and its normed derivative are the same when comparing the two
approaches applied for similar discretisation parameters h and similar dimensions
n of the control variable. One observed difference is the range of fluctuation found
for the gradients. The results for the first-discretise-then-optimise approach show
a much higher fluctuation than the other results. However, it is measured that the
fluctuation is the smaller the higher the chosen dimensions n is.

Summing up, all discussed results are found plausible so that the proposed
approach and its implementation can be seen as validated by the numerical exper-
iments. This encourages a further deeper study of the approach both theoretically
and practically.

5.6.4. Presentation and Discussion of the Performance Results. This
last part of Chapter 5 is dedicated to present and discuss the performance results
obtained for the considered test case, which is solved numerically by the adjoint-
based approach as presented within this chapter. Thereby, solving the primal and
adjoint problem in every optimisation step is the most computing time demand-
ing part of the algorithm. In the considered framework, the primal problem is
nothing but a fluid flow problem those governing equation is a BGK-Boltzmann
equation. The performance of solving such problems numerically by applying an
LBM is discussed in detail in Chaper 3. Therefore, in the following, exclusively
the performance results concerning solving an adjoint BGK-Boltzmann equation
by an ALBM are studied. In addition, the results of both the sequentially and the
in parallel executed code are discussed and compared to those which are obtained
by applying the first-optimise-then-discretise strategy based on AD and which are
presented in Subsection 4.4.4.

The here considered results are obtained on the HPXC4000 supercomputer
(cf. Section 3.3). Thereby, as for the tests discussed in Section 3.3, only one core
per node is employed. The total number of cores involved is denoted by p. The
code is executed three times to avoid random hardware-caused outliers. Then, in
the following, always the averages of the three results are stated. All source code is
compiled with the Intel compiler (version 10.1.022) using the optimisation option
−O3 and linking Hewlett Packard’s MPI library (version 2.3.1).

The computing times needed to perform 100 time steps of an D3Q19 ALB
algorithm are measured. Thereby, in each test case, time step 100 to 199 of the
first optimisation step k = 1 is taken as a basis. The results are captured in the
variable tp(h, n) whereby h and, respectively, n characterise the test case with the
convention that n = 0 stands for the measured time needed to perform 100 times
steps of a D3Q19 LB algorithm.

At first, the results which are obtained by executing the source code sequen-
tially are presented. Varying the discretisation parameter h, the test results are
condensed in Table 5.1. The measured quantities are found to confirm the theoreti-
cal expectation that the computing times t1(h, n) grow linearly with the number of

unknowns Nh = q (1/h + 1)
3
. Thereunto, the ratios Nh/N2h and t1(h, n)/t1(2h, n)

provide this information. Since the computational costs for a primal problem also
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h 1/10 1/20 1/40 1/80

Nh 25, 289 175, 959 1, 309, 499 10, 097, 379
Nh/N2h 6.96 7.44 7.71

t1(h, 0) 0.19 s 1.47 s 9.62 s 69.80 s
t1(h, 0)/t1(2h, 0) 7.74 6.54 7.26

t1(h, n) 0.30 s 2.83 s 23.53 s 181.03 s
t1(h, n)/t1(2h, n) 9.43 8.31 7.69

t1(h, n)/t1(h, 0) 1.58 1.69 2.45 2.59

Table 5.1. This table displays the computing times t1(h, n) for
100 times steps solving the primal (n = 0) and the adjoint problem

(n = 3
(

1
h − 1

)3
) of the first optimisation step k = 1 on lattices

with different discretisation parameters h. The measured times are
obtained by executing the code on one core of one node on the HP
XC4000. The numbers of unknowns Nh are given also as fractions
relating the measured computing times of different discretisation
parameters h.

increase linearly with Nh, the ratio of the costs for a time step of the primal problem
compared to one of the adjoint problem with the same number of unknowns is ex-
pected to be constant. Experimentally, this ratio, i.e. t1(h, n)/t1(h, 0), is measured
to approximate a value of about 2.5 if h gets small. Here, it is to be mentioned that
the implementation of the ALB algorithm can still be optimised. In doing so, it
is expected that a ratio of about t1(h, n)/t1(h, 0) ≈ 1 can be reached. Comparing
this results with those obtained for the AD-based approach, the found results differ
substantially. There, t1(h, n) and t1(h, 0) are found to be related by (4.12) with
the experimentally gained constant Cgrad(1, h, n) ≈ 2.1. This results in a ration of
t1(h, n)/t1(h, 0) ≈ 1+2.1 ·n so that the AD-based approach is more expensive than
the adjoint-based approach in any of the considered cases.

Executing the code in parallel, the obtained results are found in accordance
to those presented in Section 3.4. This is not surprising, since, as remarked in
Section 5.5, the same parallelisation strategy (cf. Chaper 3) is applied to obtain a
parallel ALB scheme. In Figure 5.4 one finds the experimentally gained efficiencies
Eff plotted for different discretisation parameters h. Thereby, the quantity Eff is
defined according to (3.1). The graph clearly shows that the smaller h is chosen
the better the corresponding measured efficiencies become with a few exceptions for
small values of p. Then employing p = 256 cores the best efficiency of Eff ≈ 0.44
is obtained for h = 1/80. An efficiency of Eff ≈ 0.57 is obtained for the test
case considered in Section 3.4. Indeed, both problems have the same underlying
geometry Ω = [0, 1]3 in common and are both solved numerically by applying a
D3Q19 LBM. Yet, the discretisation parameter of the second problem is chosen
much smaller, namely h = 1/200. Taken this difference in h, together with the
results for other choices of h, shown there in Table 3.5, into account, extrapolation
yields the reasoning that the here measured results match, also quantitatively, fairly
well.

Summing up all observations, two conclusions can be drawn. The first one
concerns the computational costs for solving by an ALB scheme. The costs for
100 times steps are found to grow proportionally to the number of unknowns N
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Figure 5.4. Efficiency as a function of the number of cores em-
ployed for 100 time steps and various grid sizes obtained on the
HP XC4000 for the MPI-based approach.

which is in contrast to the AD-based approach investigated in the previous chapter.
For them, the costs are found to grow proportionally to nN , i.e. the costs are
about as many times higher as the dimension n of the control space Un. Secondly,
the parallelisation strategy proposed for LB schemes can also be applied to ALB
schemes whereat, as expected due to its common structure, both quantitatively
and qualitatively similar performance results are obtained. This second observation
also holds for the AD-based first-optimise-then-discretise approach. Nevertheless,
although the adjoint-based approach is clearly superior in terms of performance, for
many relevant applications in practice the easier implementation of an AD-based
strategy should not be ignored.



CHAPTER 6

Numerical Simulation of Human Respiratory

Flows

As already remarked in the introduction, the numerical simulation of the full
human respiratory system corresponds to one of the grand challenges in scien-
tific computing nowadays. The field of applications arising from this capability
is tremendous. For example, it encompasses the a priori analysis of possible im-
plications on the respiratory tract due to surgery or the environmental impact on
lungs. Thereby, especially the highly complex multi-physics phenomenology which
involves multi-scale features and the underlying complex geometry are main diffi-
culties. In this chapter some aspects of this problems are challenged. The presented
study is mainly dedicated to present the numerical results obtained for simulations
of respirations in an individual human nose and upper part of the human lungs.
Whereto, many methods and techniques introduced in the former chapters are ap-
plied. For instance, the underlying flow problems are formulated by means of the
mesoscopic model introduced in Chapter 1 which governing equations are BGK-
Boltzmann equations. The problems are solved numerically applying LBM as they
are studied in Chapter 2. The source code is executed in parallel taking advantage
of the hybrid parallelisation strategy which is in the focus of Chapter 3.

activity resting sitting light heavy
male adult (sleeping) awake exercise exercise

tidal volume 630 ml 750 ml 1300 ml 1900 ml
respiration frequency 12 min−1 12 min−1 20 min−1 26 min−1

mean ventilation rate 126 ml/s 150 ml/s 433 ml/s 823 ml/s
max. ventilation rate 198 ml/s 236 ml/s 681 ml/s 1293 ml/s

Table 6.1. Reference values for respiratory parameters at differ-
ent levels of physical activity for an adult man. The tidal volume
and the respiration frequency values are taken from Valentin et
al. [134]. There, more details are given concerning e.g. the def-
inition of the level of activity and how the reference values are
obtained. The mean ventilation rate is computed directly from the
former two values. For the computation of the maximum ventila-
tion rate it is assumed that the ventilation rate is a sine-shaped
function of time.

Recalling the aims stated in the introduction, the proposed approach is meant
to enable other scientists to get a better fundamental understanding of the respi-
ratory functionalities but also to accelerate the progress towards patient-specific
treatment strategies. Hence, in the following special care is taken to obtain reliable
results for individual patients. Firstly, original patient data together with realistic
everyday situations (cf. Table 6.1) build the basis for all considered test cases. The
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underlying geometry data for the numerical simulations are obtained by computer
tomography (CT) scans of a patient with a peripheral obstructive ventilation disor-
der diagnosed by Giotakis [16]. The male patient is 46 years old, 1.98 m tall and
his weight is 105 kg. Secondly, a convergence study is carried out. Thirdly, the
obtained results are compared with those obtained by others both experimentally
and numerically. Fourthly, the obtained results are compared to individual mea-
surements corresponding to the underlying geometries. Furthermore, a strategy for
a widely automated preprocessing dedicated for LB simulations in complex geome-
tries is introduced.

Flow characteristics in the human airways have been studied before both exper-
imentally and numerically. In a general manner, Kleinstreuer and Zhang provide
in [81] a detailed overview about publications considering state-of-the-art models,
experimental observations and computer simulations for all parts of the respiratory
system. In this work, short reviews of related published work are given separately
with respect to that part which is actually considered, namely for the human nose
in Section 6.2 and for the human lungs in Section 6.3.

In detail, this chapter is organised as follows. At first, in Section 6.1 a strategy
for a widely automated complete preprocessing, starting with CT data and end-
ing with start of the actual numerical simulation, is presented. The approach is
dedicated to prepare the discrete computational domain of complex geometries for
LB simulations. The approach is illustrated by considering two examples, namely
the lungs and nose which build the basis for the latter simulation. However, it
is stressed that the approach is by no means restricted to this application. In
Section 6.2 the flow of air in the human nose is considered by means of two test
configurations which are simulated. The first one aims to establish numerical evi-
dence for pseudo steady states and, furthermore, to validate the results by means
of a comparison with numerical results obtained by others and experimentally ob-
tained data for other similar geometries. The second test suite is formulated in a
way which enables a comparison with measurements obtained for the actual con-
sidered patient. Finally in the last section of this chapter, a feasibility study is
presented which enables applying a two-scale model describing the respiration in
the complete human lungs. Thereto, an expiration at a fixed flow rate in the upper
part of the considered human lungs is simulated and the results are analysed. In
each of the last two sections a short overview about the anatomy and physiology
of the human nose and, respectively, the human lungs is given. Both parts aim to
establish the terminology and physiology which is of interest for the remainder of
the respective sections.

6.1. Preprocessing for Complex Geometries: From CT Data to the
Simulation Setup

Before a numerical simulation can be started, a representation of the discrete
geometry together with the corresponding values for the initial and boundary con-
ditions need to be provided. Thereby, the required data must meet precise require-
ments which depend on the considered numerical method. In the framework of
LBM as they are introduced in Chapter 2, the geometry incorporates an inner fluid
region Ωh and a boundary Γh which must be defined as stated in Subsection 2.1.1.
Yet, usually the raw data is not given in this particular format. Hence, it needs to
be prepared. In the considered case, images of the respiratory tract obtained by
computer tomography (CT) and certain measurements constitute the starting basis.
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Figure 6.1. Circle of full numerical simulation exemplified for
the simulation of the flow in a human nose. The importance of the
preprocessing as part of a full numerical simulation becomes obvi-
ous. Consequently, automatisation of preprocessing steps becomes
indispensable.

All steps that are to be taken from the before mentioned starting point to the
actual start of a simulation are, in what follows, abstracted by the term prepro-
cessing. The importance of the preprocessing greatly comes to the fore if one is
faced to deal with complex geometries. In the cases considered here, the geome-
tries are highly complex. For example, parts of the geometry of both, the human
lungs and the inner nose, are of such small scales that they cannot be captured by
the best imaging technique available nowadays. Therefore, adequate preprocessing
techniques need to be developed and applied to enable realistic numerical simu-
lations of physical phenomena. Furthermore, one wants to or has to prepare the
data for a numerical simulation many times e.g. for patient-individual flows. In
this context to be mentioned are adaptive techniques which couple preprocessing,
simulation and optimisation techniques (cf. e.g. [9] and references therein). In this
framework e.g. a posteriori error estimation methods [3] are employed together
with grid refinement strategies to obtain more accurate results. All these examples
clearly show that the preprocessing cannot be seen isolated. In fact, the preprocess-
ing is rather a part of the full numerical simulation which comprises also the actual
numerical simulation and optimisation as well as the postprocessing. The relations
of the single parts of the full numerical simulation are depicted schematically in
Figure 6.1.

As a consequence of the prominent role of the preprocessing in the framework
of full numerical simulation the requirement of a high grade of automatisation of
preprocessing steps becomes obvious. This need is strengthened by the fact that the
complexity of the geometry makes handiwork to an exhausting and hence almost
impossible task.

In the following, a concept for a complete preprocessing dedicated to simulate
the flow in the human lungs and nose with LBM is presented. Thereby, emphasis is
placed to obtain a preferably automatised approach. The overall strategy consists
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of three main steps which constitutes the following chain:

CT data
Subsec. 6.1.1→ Surface mesh

Subsec. 6.1.2→ Voxel mesh
Subsec. 6.1.3→ Simulation .

A separate subsection is devoted to describe each of these steps. There, the concept
is explained by means of considering the preprocessing for LB simulations of the
flow in the human nasal cavity and the human lungs. All preprocessing steps are
illustrated by a series of images in the Figures 6.3 to 6.6, showing the segmented
CT data, the surface mesh, the volume mesh and finally the obtained numerical
results at six particular chosen slices of the nasal cavity.

Similar proprocessing approaches which are as well dedicated for complex ge-
ometries have been discussed before. For example, in [74] Inthavong et al. present
a preprocessing concept at which also CT data of a human nose serves as starting
point. However, the approach aims to create an unstructured tetrahedral mesh and
hence cannot be applied for LB simulations. Freitas et al. [41] extract a voxel mesh
representation of a human lungs cast including the main part of the trachea down
to the sixth generation of the bronchial tree. Thereby, as well CT data build the
starting point and a surface mesh is created in an intermediate step. Yet, there are
no details concerning an automatised preprocessing nor further deeper descriptions
of the employed preprocessing steps given.

6.1.1. From CT Data to Surface Mesh. Standard image processing meth-
ods which are often applied in the area of medicine are e.g. computer tomography
(CT) or magnetic resonance imaging (MRI). A common standard file format to
store the obtained images beside other data is the digital imaging and communica-
tions in medicine (DICOM) standard [100]. The considered cases are not excep-
tions. The data are obtained by a CT scan with a SOMATOM Sensation 64 [121]
and provided as DICOM files. In Figure 6.2 some images of the raw CT data are
displayed. Different levels of grey scales reflect different material densities. In the
presented images the original colours are negated, so that a dark colour represents
a high material density while a light one indicates a low material density.

The mean resolution of the scans is according to [121] 0.4 mm. Even with
this high resolution it is not possible to resolve all parts of the investigated human
lungs and nose. Additionally, minor movements of the patient and electronic noise
impede to obtain clear shapes of boundaries. In order to segment the volume of
the human lungs and nose which is filled with air an image segmentation technique
is to be applied. An overview of such approaches is given e.g. by Haralick et al. in
[60]. Among that great variety of methods offered one finds seeded [2] and dynamic
region growing schemes [123]. These enable robust and partly automated segmen-
tation of a region which can be identified by its colour level given by thresholds.
Similar methods are implemented for example in the software package Mimics [106]
from Materialise NV which is employed for the considered cases. For the human
nose in the Figures 6.3 and 6.5 the segmented CT data of chosen slices are depicted.
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Figure 6.2. The CT raw data of the considered patient. For
better visualisation the original colours are negated, so that now
a dark colour represents a high material density while a light one
indicates a low material density. The letters stand for Anterior,
Posterior, Top, Button, Left and Right and the numbers for the
position in an underlying Cartesian coordinate system.

After the two regions of interest (inner human lungs and nose) have been seg-
mented from the CT images the corresponding boundaries are extracted. The
surface is at first smoothened and later approximated by a certain number of tri-
angles. With this procedure a finer resolution of the volume mesh than that of the
original CT data can be obtained. As data format for the surface mesh serves the
quasi file format standard STL which is native to the stereolithography computer-
aided design (CAD) software created by 3D Systems [1]. These steps are as well
performed with help of the software package Mimics [106]. In the Figures 6.3 and
6.5 the smoothened surface of the considered inner nose geometry is visualised. The
pictures show the geometry in the same chosen planes as before for the segmented
CT data. The volume of this model is found to have a capacity of approximately
111.2 ml. 258, 186 triangles represent the surface which covers an area of about
469 cm2. Figure 6.14 shows the whole segmented CT data area of the human lungs
and the surface of that part of the human lungs which could be clearly extracted
from the segmented CT data. The obtained surface model consists of 17, 940 tri-
angles which cover an area of about 176 cm2 and give room for a capacity of
approximately 51.86 ml.

6.1.2. From Surface Mesh to Voxel Mesh. LBM require as discrete po-
sition space a uniform mesh Ωh ∪ Γh with discretisation parameter h ∈ R>0 which
is called the lattice. To handle different kinds of boundary condition Γh is split
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Figure 6.3. Segmented CT data (left) and cross-section of the
STL surface representation (right) both from top to bottom at the
planes y = r2 = 0.01, 0.04, 0.05 m.
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Figure 6.4. Cross-section of the voxel mesh (left) and simulation
results (right) obtained for a ventilation rate of 250 m/s both from
top to bottom at the planes y = r2 = 0.01, 0.04, 0.05 m.
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Figure 6.5. Segmented CT data (left) and cross-section of the
STL surface representation (right) both from top to bottom at the
planes y = r2 = 0.07, 0.09, 0.10 m.
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Figure 6.6. Cross-section of the voxel mesh (left) and simulation
results (right) obtained for a ventilation rate of 250 m/s both from
top to bottom at the planes y = r2 = 0.07, 0.09, 0.10 m.
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Figure 6.7. Voxel mesh representation of the considered hu-
man lungs with zoom to some bronchioles of lower generations
up to order 9. Different voxel colours indicate different bound-
ary conditions. The discretisation parameter is set to the value
h = 0.23 mm. In Table 6.6 the material numbers belonging to the
considered bronchioles are listed.

in k ∈ N disjoint parts Γi
h, i.e. Γh =

⋃k+1
i=2 Γi

h. The basic idea in order to obtain

a representation of Ωh ∪ Γh is to extend Ωh ∪ Γh to a cuboid-shaped lattice Ω̃h

which can be identified by a d-dimensional matrix A ∈ ×d
j=1N

nj where nj ∈ N for

j = 1, 2, ..., d. Then, each r ∈ Ω̃h is mapped to exactly one entry A(r) in A. In
the following, its value is said to be the material number. It is defined according to

A(r) :=





1 : if r ∈ Ωh

i : if r ∈ Γi
h

0 : otherwise .

(6.1)

With it, as it is illustrated in the next subsection, a generic setting up of LB sim-
ulations is simplified. To obtain the matrix A from a given surface representation
of a given geometry is the aim of this subjection.

The lattice Ωh ∪Γh can be interpreted geometrically. Each r ∈ Ωh ∪Γh is seen
as the centre of a hexahedron with a length, hight and depth of h. The hexahedrons
are cubes which are in the following referred to as voxels. Consequently, a lattice
is also said to be a voxel mesh. There exists a varity of techniques that enable
obtaining such meshes for a given surface mesh and for arbitrary h ∈ R>0. Among
them one finds methods known as ray tracing, ray stabbing or parity count. The
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material description number
number voxel

0 no fluid 11, 451, 556
1 fluid 1, 065, 810
2 wall 325, 887
3 nasopharynx 510
4 right nostril 425
5 left nostril 672

Table 6.2. Obtained number of voxels which are assigned to dif-
ferent material numbers for the lattice Ωh ∪ Γh with h = 0.45 mm
discretising the considered human nasal cavity. The corresponding
voxel mesh is shown in Figure 6.3 and Figure 6.5.

latter two are proposed by Nooruddin et al. in [105]. They are implemented in the
framework of the Common Versatile Multi-purpose Library for C++ (CVMLCPP)
which is an open source software invented by Beekhof [17]. Similar techniques are
offered by the commercial software HyperMesh [4]. The software additionally offers
a graphical user interface that allows an interactive manual marking of single voxels
but also of sets of voxels. This facility becomes very useful when considering the
geometry of an upper lungs model which incorporates various inflows, respectively,
outflows. In the considered model one is faced with 15 inflow and one outflow areas
and vice versa (cf. Figure 6.7). Therefore, for the voxelising and marking process
HyperMesh version 10.0 is used to obtain A. However, aiming to automatise a
marking process which is especially designed for human lungs or nose geometries
an adaption of the CVMLCPP implementation seems very attractive to enable
patient-individual simulations.

For the geometry of the nose cavity setting h = 0.45 mm, the voxelising and
marking process leads to a mesh with in total 1, 393, 304 voxels. The assigned mate-
rial numbers as well as the corresponding numbers of voxels are listed in Table 6.2.
In Figures 6.3 and 6.5 the obtained voxel mesh is visualised by means of its material
numbers.

The considered lungs geometry is discretised for h = 0.23 mm. This leads to
2, 043, 832 fluid and 283, 525 boundary voxels. Here, the material numbers 0, 1, 2 are
set as done for the nose cavity. The material number of voxels at the trachea inlet,
respectively, outlet is set to the value 3 while those of the 15 inlets, respectively,
outlets corresponding to the considered bronchioles are set to the value 100m + i.
Whereby, m represents the generation of the actual bronchiole according to the
numbering of Weibel [135, 136], and i = 1, 2, ... serves as counter to distinguish
the bronchioles of the same generation. The actual numbering is given in Table 6.6,
and the obtained mesh for the lungs is visualised in Figure 6.7.

6.1.3. From Voxel Mesh to Simulation. This subsection is dedicated to
describe the last part of the presented preprocessing approach for complex geome-
tries. Thereby, the way to go starts with a discrete representation of a geometry
equipped with additional information regarding different types of boundaries. The
data are provided by means of a d-dimensional matrix A which is defined according
to (6.1). The way ends with the setting up of an LB simulation, i.e. with step 2 of
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Algorithm 1.

A challenge is posed by the realisation of an automated assignment of boundary
conditions to particular voxels of the geometry. The reason is that in general
boundary conditions in LBM must be defined on a mesoscopic base, i.e. that the
distribution function fi is to be defined for in the fluid pointing directions vi ∈ Qin

(cf. Subsection 2.1.4). This is not a problem for the bounce back condition which is
imposed to realise a no-slip wall. However, it becomes a challenge for the realisation
of inlet and outlet conditions where particular macroscopic moments are fixed.
Here, the number of in the fluid pointing directions vi ∈ Qin varies depending on
the neighbourhood of the considered node r ∈ Γh. Frequently used approaches like
those of Inamuro et al. [73], Skordos [124] or Latt [88, 89] use finite differences
to compute the wanted distributions fi for vi ∈ Qin. Latt realises the mentioned
methods in the framework of OpenLB for 46 cases of possible neighbourhoods for
the three-dimensional case d = 3 (cf. OpenLB user guide associated with release
0.4 [86]). Yet, in practice these classification is not sufficient to handle all possible
cases emerging when considering complex geometries. Zimny faces this challenge in
[146]. At first, the number of all possible cases is reduced by posing the following
conditions, namely

(1) Every single boundary voxel is at least neighbour of one fluid voxel.
(2) Non of the fluid voxels is a neighbour of any non-fluid voxel.

Then, routines are realised which enable to modify the originial voxel mesh matrix
A automatically such that the two conditions hold. Additionally, with the help of
a refinement algorithm the number of cases can be reduced to 96. The refinement
scheme splits one voxel into Nd where N ∈ N and is in the following called the
refinement level. Afterwards, in accordance with the first of the two conditions
stated above all not needed boundary voxels are removed. Further, Zimny succeeds
in leading back the 96 cases to the before mentioned 46 categories. An automated
assignment of one of the 46 to a boundary voxel is implemented and validated by
comparing the results for a benchmark problem, namely the flow around a round
cylinder, with those obtained by others which are condensed in the work of Schäfer
et al. [118].

For the two considered geometries the mentioned techniques realised by Zimny
are applied to automise the initialisation process. The marcroscopic values imposed
for the inlet and outlet conditions are provided by means of one function for each
different boundary type i = 2, 3, ... of Γi

h.

6.2. Numerical Simulation of Intranasal Flows

In this section, numerical simulation results of intranasal flows are presented.
The aims of this study are, firstly, to illustrate the application of parallel LBM
for a realistic complex problem and, secondly, to provide validated insights in the
flow characteristics of intranasal flows. Especially the latter goal is interesting since
the underlying computational domain is obtained from a patient with a diagnosed
pathology. Thereunto, emphasis is placed to reveal possible abnormal specifics.

Flow characteristics in the human nose have already been studies both ex-
perimentally and numerically. Thereby, the focus is often placed to reveal the
morphological dependencies on the flow regime. For example, the experimental-
based studies of Ploetz [113], Courtiss and Goldwyn [30], Scherer et al. [119] and
Elad et al. [33] discuss controversially the role of the turbinates concerning lam-
inarity and turbulence. Churchill et al. [29] also addresses this issue but varies
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other morphological parameters like the nostrils angle. Furthermore, this work is
interesting hence a detailed review about further investigations of morphological
issues is provided. Numerical simulations of intranasal flows have been performed
at least since 1995 (cf. Keyhani et al. [79]). Since then, correlated with the increase
of computational power the underlying geometry and physical models have become
more and more complex. In [74] for example, an overview of recently published
articles in this context is provided. LBM are considered to face the problem by
Freitas [39, 40] and Finck et al. [38]. In contrast to the here presented approach,
in many studies the full complexity of the geometry, in particular the sinuses, is not
mapped (cf. [38, 39, 40, 71, 74]). Moreover, convergence studies of the numer-
ical simulations are hardly provided at all. In the remainder of this section other
approaches are mentioned, whereby further distinctions are stressed.

In order to challenge the request to obtain validated results, two problems are
formulated and solved. The problem specification and the chosen LBM are stated
in detail in Subsection 6.2.2. In the following subsection, at first an analysis of the
convergence behaviour of the numerical results obtained for the first problem with
different underlying discretisation parameters is presented. Then, results of this
test case are validated by comparing them to data obtained both numerically and
experimentally by others. Finally, samples of the obtained results are presented in
form of pictures of the computed flow field. The results of the second considered
problem are presented and discussed in Subsection 6.2.4 which is the last part of
this section. There, the numerical results are compared to measurements obtained
for the very patient. Another subsection is placed in front of all others. It is
devoted to present the common professional terminology concerning the anatomy
of the human nose as well as generally accepted facts about its physiology.

6.2.1. About the Anatomy and Physiology of the Human Nose. In
this subsection a brief overview is given. What follows is gathered from standard
literature [102, 120, 122, 145] and displays a terminology and points of views
concerning the physiology which is widely accepted.

The nose of a human is located centrally on the face continuing inside the head.
Its outer visible part is protuberance-shaped and houses the nostrils which are two
bean-shaped holes admitting the inspiration and expiration of air. In Figure 6.8 the
outer part is made visible by means of a surface mesh which is generated from CT
data as described in Subsection 6.1.1. The shape of the whole nose is determined
by the ethmoid bone and the nasal septum. The ethmoid bone separates the nose
cavity from the brain. The nasal septum consists mostly of cartilage. It separates
the two nostrils and continues in the inner part of the nose building a barrier which
forms two independent airways which are called in the following the right and the
left airway.

The inner part of the nose hosts pairs of the nasal vestibule, the nasal cavity,
pairs of several paranasal sinuses and the nasopharynx. The nasal vestibules are lo-
cated right behind the nostrils. The nasal cavity consists of the two airways. Three
horizontal outgrowths, called turbinates or conchae, divide the two airways in three
channels which are known as the superior, the middle and the inferior (nasal)
meatus. Paranasal sinuses are spaces filled with air which are located around the
nasal cavity. Among them one finds the maxillary sinuses, which are the largest
sinuses situated right and left of the airways, and the frontal sinuses which are the
second largest based on top of the nasal cavity. Behind the nasal cavity the two
airways fuse in the nasopharynx which is the upper part of the pharynx. Through
the pharynx which partly belongs to the digestive system the air passes to the rest
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Figure 6.8. The outer part of the nose is pictured on the two
images on the top. The left image shows the surface of the left
part of the face with the nose right in the middle of the face while
the right one depicts a closer look of the nostrils. Thereunder,
the inner part of the nose is displayed in two images. In both
pictures the surface of the face is shown from behind revealing a
view inside the head. In front of the surface the inner part of
the nose is visible. The images are obtained from CT data of the
investigated person as described in Subsection 6.1.1 in joint work
with Mayer and Weber in the framework of the United Airways
project [16].

of the respiratory system.

Medical scientists have different opinions concerning the physiology of the hu-
man nose. According to [102, 120, 122, 145] generally accepted are the following
functionalities:

• enables breathing,
• smelling,
• conditioning of inhaled air: warming, making it more humid, filtering.

Yet, ambiguous is e.g. whether the nasal cavity and the sinuses are vocal resonators
for the human voice or not [102, 145].
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Another phenomenon is observed, namely that the flow rate ratio of the two
airways constantly alters. That means that at one time more air is passes through
the right than the left airway and at another time the other way around. It is called
the nasal cycle and researched e.g. by Reinefeld [114].

Details concerning the above issues have been in focus of research for a long
time. For example, the air conditioning capability of the nose is already discussed by
Lehmann [91] in 1933. However, many questions are not answered yet. Nowadays,
numerical simulations deliver new insights. The impact of the geometry on the
nose flow is numerically investigated recently, for instance by Kelly et al. [78, 77],
Weinhold et al. [137], Hörschler et. al [71], Zachow et al. [141] and Finck et
al. [38]. Inthavong et al. [74] considers the conditioning of the inhaled air also
with the help of numerical simulations.

6.2.2. Problem Formulations and Discretisation Issues. In this subsec-
tion at first two series of fluid flow problems are formulated. Then, the numerical
methods to solve the problems are stated. Emphasis is placed to formulate the prob-
lems in a way that the results can be validated. The results of the first series are
to be compared to other numerically and experimentally gained results. The sec-
ond test suite is conceived such that the results can be validated by measurements
obtained by a method which is known as rhinomanometry (cf. Subsection 6.2.4).

The flow of air in a human nose which occurs during an inspiration or an ex-
piration is to be simulated for different fixed flow rates Fl. Breathing is naturally
a transient process. In that context the question arises if the problems are well-
defined, i.e. if for every considered flow rate Fl there exists in each case exactly
one solution. Providing that this is the case, it is expected that applying an LB
scheme leads in any of the considered cases to a unique discrete solution. If conver-
gence towards these pseudo steady states is observed the simulation will be stopped.

The underlying geometry is the inner nose of the before mentioned Central
European male. It is to be noted, that for this patient a peripheral obstructive ven-
tilation disorder is diagnosed by Giotakis [16]. The geometry data are obtained by
CT scans and prepared for the simulation as described in the previous section. With
these preprocessing steps a discrete representation of the inner nose is obtained for
the discretisation parameter of h = 0.45 mm/N whereby N ∈ N is the refinement
level belonging to the refinement strategy introduced in Subsection 6.1.3. Different
boundary regions are defined as stated in Table 6.2.

The first series of tests considers expirations with one inflow which is located at
the nasopharynx and two outflows at both nostrils. The other boundary is assumed
to be a wall which does not allow the air to slip. The considered flow rates vary,
namely Fl = 100 ml/s, 125 ml/s, 167 ml/s, 250 ml/s, 333 ml/s . These rates are
typically measured for male adults who rest, sit awake or do light exercises (cf. Ta-
ble 6.1). In the following, these cases are referred to as ex total.

The second test suite aims to validate the results by measurements obtained
by rhinomanometry. Here, inspirations and expirations with outflows and, respec-
tively, inflows which are located at the nasopharynx are considered. Yet, in the
considered cases there is only one outflow or, respectively, one inflow, either at the
right nostril or the left nostril. The other nostril is assumed to be closed, i.e. the
boundary condition at Γ4

h or Γ5
h is to adapted as a no-slip condition. This leads to

two cases which are referred to as re right and, respectively, re left. The underlying
geometry is chosen as for the ex total case. The flow rates Fl of interest vary up to
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material description applied boundary conditions for cases
number boundary ex total re right re left

2 wall bounce back bounce back bounce back
3 nasopharynx velocity bc velocity bc velocity bc
4 right nostril pressure bc pressure bc bounce back
5 left nostril pressure bc bounce back pressure bc

Table 6.3. This table provides an overview of the considered
tests. The fluid flow problems basically differ in the applied bound-
ary conditions at particular boundary parts. With the bounce back
condition a no-slip wall can be simulated. A boundary condition
of type velocity bc fixes the macroscopic velocity and pressure bc
the pressure at the boundary to a certain value.

a maximum flow rate of Fl = 250 ml/s.

The types of boundary conditions which are applied at the different boundary
parts Γi

h (i = 2, 3, 4, 5) depend on the actual considered problem. Thereto, in
Table 6.3 an overview is given.

The no-slip condition which is applied at the walls and, if required, at a closed
nostril is realised by the bounce back condition as stated in Subsection 2.1.4. At
the nasopharynx the macroscopic velocities are fixed to certain values. Simplifying,
it is assumed that the velocity is distributed as in a pipe where Poiseuille’s law
holds. Thus, the velocity is a quadratic function of the distance from the centre of
the plane Γ3

h. The magnitude of the velocity distribution is increased linearly with
the number of time steps up to 10, 000 steps. Thereby, the slope is chosen so that
the desired flow rate is reached at time step 10, 000. This start-up process aims to
avoid unnatural behaviour as well as numerical artefacts caused by e.g. violation
of smoothness. The boundary conditions at the open nostrils are set as pressure
conditions, i.e. the pressure is fixed while the macroscopic velocity is not. Both
macroscopic boundary conditions, namely the velocity and pressure condition, are
realised for the D3Q19 model by means of interpolation schemes which are pro-
posed by Inamuro et al. [73] as they are mentioned in Subsection 2.1.4 in more
detail.

For both test suites the pressure at the open nostrils is fixed to be 1, 013 hPa
and the air is assumed to flow at a temperature of T = 20 ◦C. Thus, the air can
be considered at normal conditions so that its speed of sound is cs = 343 m/s, its
density is ρ = 1.225 kg/m3 and its kinematic viscosity is ν = 1.4 · 10−5 m2/s. The
area of the boundary Γ3

h at the nasopharynx is found to be A = 1, 0328 cm2. To
reach the desired flow rates Fl the mean speed Umean(Fl) that is needed can be
computed. Let the characteristic macroscopic velocity be set to this mean speed.
Further, let the characteristic macroscopic length be fixed to

L := max
r∈Γ3

h

r1 − min
r∈Γ3

h

r1 = 0.0162 m .

Then, for each considered flow rate Fl the Reynolds number Re and the Mach
number Ma can be computed. Table 6.4 shows the obtained characteristic quantities
for different flow rates.

Due to the relative small Mach numbers and the fact that under normal con-
ditions air is a Newtonian fluid, the flow can be modeled by means of the BGK-
Boltzmann equation (1.67) (cf. Chapter 1). To solve the problems numerically an
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Fl Umean Re Ma

100 ml/s 0.97 m/s 1, 120 0.0028
125 ml/s 1.21 m/s 1, 401 0.0035
150 ml/s 1.45 m/s 1, 681 0.0042
167 ml/s 1.62 m/s 1, 871 0.0047
250 ml/s 2.42 m/s 2, 801 0.0071
333 ml/s 3.22 m/s 3, 731 0.0094

Table 6.4. Obtained characteristic speeds Umean, Reynolds num-
bers Re and Mach numbers Ma for different flow rates Fl. The
air is considered at normal conditions (1, 013 hPa, 20 ◦C). Thus,
the kinematic viscosity is ν = 1.4 · 10−5 m2/s and the speed of
sound is cs = 343 m/s. The characteristic length is defined by
L := maxr∈Γ3

h
r1 − minr∈Γ3

h
r1 = 0.0162m.

LBM is applied. The chosen model is the D3Q19 model as it is derived in Sec-
tion 2.1 and the pressure and velocity boundary conditions are realised as proposed
by Skordos [124].

In order to reduce the number of time steps needed to reach steady states, in the
following the problems are considered after a scaling. Thereto, the characteristic
speeds and the kinematic viscosity are set to

Ũmean :=
ULB

h
Umean ,

ν̃ :=
ULB

h
ν

(6.2)

for different, so called lattice speeds ULB := 0.1, 0.05, 0.01 . With this, the Reynolds

numbers stay the same while the new Mach numbers M̃a increase. According to
(2.1) the speed of sound in an LB simulation is set to cs = h−1. Thus, one obtains

M̃a = ULBUmean which is in all considered cases greater than the actual Mach
number Ma. If one restricts for Fl = 333 ml/s the choices for the lattice speeds

to ULB = 0.05, 0.01, it will hold that M̃a < 0.3 . For simplification reasons, the
density ρ = 1.225 kg/m3 is scaled to the value of ρ̃ = 1. As initial condition serves
the Maxwell distribution with u = 0 and ρ̃ = 1. The obtained results are finally
rescaled to the original standard unit system.

6.2.3. Presentation and Discussion of the Numerical Results I. In this
subsection the obtained numerical results of an expiration through both nostrils are
presented and discussed. The flow rates are fixed to be Fl = 100 ml/s, 125 ml/s,
167 ml/s, 250 ml/s, 333 ml/s. In the previous subsection, all considered test cases
are specified in detail. There, they are referred to as ex total.

All numerical experiments are carried out in parallel either on the HP XC4000
or on the JUROPA high performance computer which are shortly described in Sec-
tion 3.3. Thereby, both the full hybrid parallelisation approach as introduced in
Chapter 3, which is realised using OpenMP and MPI, and its pure MPI-based
part are employed. The hybrid parallel code related to the problem with N = 2,
ULB = 0.05 and Fl = 125 ml/s takes about four days to be executed on the HP
XC4000 employing in total 128 cores on 32 nodes. The set-up time is included but
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Figure 6.9. Time evolution of the total pressure drop ptotal(Fl)
at an expiration flow rate of Fl = 125 ml/s towards a pseudo
steady state. The lattice speed is chosen to be ULB = 0.05, and
the refinement level is set to N = 3.

for this example no output files for visualisation are written.

The quantities of interest in the following are the pressure drops

ptotal(Fl) := pnasopharynx(Fl) − pnostrils(Fl) (6.3)

occurring between the pressure at the inflow pnasopharynx and the outflows pnostrils.
The positions, where the values for the pressures are taken, are always fixed to be
in the fluid close to the position in the centre of the area Γi

h, namely at

ri
mid :=

1

2




maxr∈Γi
h

r1 + minr∈Γi
h

r1

maxr∈Γi
h

r2 + minr∈Γi
h

r2

maxr∈Γi
h

r3 + minr∈Γi
h

r3


− hNn (i = 3, 4, 5) . (6.4)

At first, the convergence towards pseudo steady states for the simulated total
pressure drops ptotal(Fl) is studied. Thereunto, exemplary the case with an expira-
tion flow rate of Fl = 125 ml/s is studied. For all other cases a similar behaviour
is observed. In Figure 6.9 the result for ptotal(Fl) is plotted as a function of time
steps obtained for an LB simulation with a lattice speed of (ULB = 0.05) based on
a lattice which is refined with level N = 3.

The plot shows that after a certain number of time steps the quantity of interest
oscillates in a certain range. This behaviour is also observed for other choices of lat-
tice speeds (ULB = 0.1, 0.05, 0.01) and refinement levels (N = 2, 3, 4). Thereby, the
frequency is found to be the smaller the greater the lattice speed is chosen. For the
amplitude no significant differences are observed. The reasons for this noise might
be related to the choice of the boundary condition at the outlet (see the discussion
of artificial boundary conditions and especially do-nothing pressure boundary con-
ditions for similar problems in Specovius-Neugebauer et al. [20, 126]). To quantify
the observations the minimal p−total(125) and maximal p+

total(125) computed values
for the pressure drop occurring between time step 400, 000 and 600, 000 are de-
termined. Then, in order to obtain a basis for further comparisons, ptotal(125) is
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N ULB p+
total(125) p−total(125) ptotal(125)

2 0.05 3.99 4.38 4.19

3 0.10 3.62 3.95 3.79
3 0.05 3.54 3.88 3.71
3 0.01 3.69 3.89 3.79

4 0.05 3.49 3.79 3.64

Table 6.5. Obtained results for the total pressure drop for dif-
ferent choices of lattice speeds ULB and refinement levels N .
p−total(125) and p+

total(125) are the minimal and maximal computed
values for the pressure drop occurring between time step 400, 000
and 600, 000 while ptotal(125) denotes their mean.

set to the mean of the minimum and maximum. Similarly, this procedure is also
applied to all other in the remainder of this chapter referred results for pressure
drops which are consequently marked with an overbar. The quantitative results of
the investigated case (Fl = 125 ml/s) are given in Table 6.5. They clearly show a
satisfying convergence behaviour so that the assumption of the existence of pseudo
steady states can be seen as numerically evidenced.

Now, the numerical results are compared to those obtained by three others.
Thereunder, one result is obtained experimentally while the other two are obtained
by numerical simulations with commercial CFD software. All three results are cap-
tured in the graph in Figure 6.10.

The first of the three considered approaches is the experimentally obtained one.
Kelly et al. [77] consider for their experiments a plastic replica of nasal airways. Its
underlying geometry is captured by means of MRI scans of a normal 53 year old
male (cf. Swift [130]). The cast does not encompass all details of a human nose.
In particular, the maxillary and frontal sinuses are not captured. However, the two
airways up to the nasopharynx are considered in similar measures to those of the
underlying geometry researched here.

The second data for comparison is computed numerically by Weinhold and
Mlynskiet [137]. The referred results are obtained for a 27 year old male with a
normal nasal anatomy. The computational domain is obtained by reconstructing
a CT scan with a resolution of 1 mm to a 3D model whereby the sinuses are not
captured. A finite volume scheme is employed to solve the incompressible Navier-
Stokes equation together with a turbulence model of k-ǫ-type.

The last dataset is provided by Inthavong et al. [74] who consider a more com-
plex physical model which describes besides the flow also the heat transfer in a
human nose. The underlying geometry is the inner nose of a 25 years old healthy
Asian male, again, without the sinuses. The 3D model is constructed based on CT
scans. For the computation of flow rates up to 250 ml/s a laminar and for high
flow rates a turbulent k-ǫ-type model is employed.

All three cases differ to a greater or lesser extent to each other but also to the
here considered case. Distinctive features are e.g. their underlying geometries, the
chosen physical models or the employed numerical methods. Disregarding these
differences, all results for the pressure drops are found fairly close to each other.
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Figure 6.10. Comparison between the numerical results for the
pressure drop ptotal(Fl) (Pa) for different flow rates Fl (ml/s)
and the results obtained numerically by Weinhold et al. [137],
Inthavong et al. [74] and experimentally by Kelly et al. [77].

On the one hand it is concluded that the presented approach for the particular case
is validated. On the other hand, in light of the mentioned differences critical ques-
tions concerning the informative value of the computed total pressure drop arises.
Further, for the considered patient a peripheral obstructive ventilation disorder is
diagnosed (cf. Giotakis [16]). Yet, the results are found in good agreement with
other results which are founded on data from patients who are considered to have
no pathologies. This leads to the reasoning that the benefit of simulating the total
pressure drop seems to be limited for medical applications.

The obtained velocity field for a flow rate of Fl = 250 ml/s is presented in the
Figures 6.3 and 6.5 by means of a coloured representation of the velocity magnitude
in six chosen cross-sections. A three-dimensional impression of the computed flow
field is suggested through the pictures in Figure 6.11. There, the velocity magnitude
is visualised by a number of coloured three-dimensional spheres for an expiration
flow rate of Fl = 100 ml/s. Particularly important to note is the right upper picture
which clearly displays high velocity magnitudes at the left inferior meatus. Indeed,
a deeper analysis reveals that the highest values in the whole domain, namely about
1.64 m/s, are obtained there. Further, it is determined that only approximately
26 ml of the in total 100 ml/s leave the left nostril. This found asymmetrical
behaviour may be caused by a stenosis in that particular part of the geometry
which is possibly the reason for the diagnosed peripheral obstructive ventilation
disorder.

6.2.4. Presentation and Discussion of the Numerical Results II. This
subsection is dedicated to present and discuss the numerical results for the test
cases re right and re left which are specified in Subsection 6.2.2. The problems are
formulated in a way that a comparison with measured data obtained by a method
called rhinomanometry is enabled. As before for the case ex total all experiments
are carried out in parallel applying the same techniques either on the HP XC4000
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Figure 6.11. The simulated flow field for an expiration flow rate
of Fl = 100 ml/s is shown from different point of views, whereby the
right upper picture displays a closer look to a significant narrow at
the left inferior meatus. The magnitude of the velocity is visualised
as coloured three-dimensional spheres. The lattice speed in the LB
simulation is set to ULB = 0.01. No refinement is done (N = 1);
and the simulation is stopped after 550, 000 times steps has been
performed.

or on the JUROPA high performance computer.

The particular method which is employed to obtain the measurements is re-
ferred to as active anterior rhinomanometry (cf. [72]). During the measuring the
patient sits in an upright position. A mask with integrated flow and pressure sen-
sors is places densely upon his outer nose. Then, pairs of pressure drops and flow
rates are measured during an inspiration and an expiration through each of the two
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Figure 6.12. Scan of the original measured data pm
right

−1 and

pm
left

−1 which are obtained from the considered patient by means
of an active anterior rhinomanometry method. It is to be noted
that the inverse functions are plotted.

nostrils independently. A drawing of the schematic setup is given by Huizing et
al. in [72, Fig. 2.116]. The two obtained series of pairs can be represented by the
functions pm

right(Fl) and pm
left(−Fl) which correspond to the pressure drops obtained

by means of the numerical simulation. They are defined similarly to (6.3), namely

pright(Fl) := pright nostril(Fl) − pleft nostril(Fl) ,

pleft(−Fl) := pleft nostril(−Fl) − pright nostril(−Fl)

which are taken at ri
mid for i = 4, 5 which are defined as before in (6.4).

The originally measured rhinomanometry data of the very patient whose ge-
ometry is considered for the numerical simulations is provided in Figure 6.12. The
measurements are just taken once which considerably lessens the informative value
since the absence of significant possible measuring errors can not be guaranteed.
However, according to Giotakis [16] the peripheral obstructive ventilation disor-
der is clearly displayed by the unusual asymmetric shape of the two graphs. In
particular, the extreme flat graph of pm

right is found deviant. In the literature [72]

pm
right(±400 ml/s) ≈ pm

left(±400 ml/s) ≈ 150 Pa is given as reference value for a
healthy human. Yet, the considered rhinomanometry data are found to differ sig-
nificantly from this standard value.

For the computed pressure drops pright and pleft a convergence characteristics
towards pseudo steady states similar to those studies in the previous subsection is
observed. In order to obtain well defined results the averaging strategy proposed
in there is also applied here. In Figure 6.13 the corresponding computed mean
pressure drops pright and pleft are stated. Thereby, the display format is chosen as
those of the rhinomanometry data presented in Figure 6.12. With this, a qualitative
comparison is enabled.

The simulation results are found to show similar characteristics as the measured
data. The similarities are in particular that the two graphs are not symmetric and
the graph of pright

−1 is abnormally flat while those of pleft
−1 is much more of a

standard healthy shape. Summing up, it is concluded that the experimental and
simulation results qualitatively match. Furthermore, these results are in agreement
with those observations concerning the found asymmetry of the velocity field and
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Figure 6.13. Simulated pressure drops pright
−1 and pleft

−1. In
order to enable easy comparison with the rhinomanometry data
given in Figure 6.12, the inverse functions of the simulated pressure
drops are plotted.

flow rate in the two airways. This further confirms the assumption that a stenosis in
a particular part of the geometry is the reason for the diagnosed pathology. In this
context, optimisation techniques as they are proposed in Chapter 4 or alternatively
in Chapter 5 could help to develop strategies for adequate surgery planning.

6.3. Numerical Simulation of the Flow in the Upper Human Lungs

Describing the respiration in the human lungs seems unequally more difficult
than describing it in the human nose. For example, the major part of the human
lungs is such fine structured that nowadays available CT scanners cannot capture
it. Furthermore, even if the geometry of a complete lungs could be reconstructed,
it would be impossible to simulate the complete system due to associated enormous
computational costs. Thus, adequate modelling is required to realistically map the
underlying characteristics.

Various models have been proposed and applied in recent years. Kleinstreuer
and Zhang provide a detailed overview in [81]). There, it is stated that the consid-
ered research topics concern mostly the effect of geometry changes during inhalation
whereby the corresponding experiments and numerical simulations focus mainly on
specific parts of the lungs. Yet, coupled approaches have already been proposed for
the human lungs. For example, Baffico et al. [10] introduces, analyses and applies
a multi-scale model for the human lungs (cf. Subsection 6.3.2). In recent years, the
computational studies seem to be dominated by a discussion about the adequate-
ness of different turbulent models (cf. e.g. [11, 80, 92, 95] and references therein).
Besides many approaches which employ modelled bronchial trees as computational
domain, one also finds some which employ realistic geometries obtained by e.g. CT
or MRI scanners. Li et al. [92], Baffico et al. [10] and Fetita et al. [37] consider
up to the first six generations1 of a bronchial tree. In the latter two approaches,
the underlying geometry is reconstructed applying a marching cube-based adaptive

1An approach for a numbering of generations in a bronchial tree is provided by Weibel in

[135, 136].
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approach as proposed by Fetita et al. [37] which leads to a relative accurate re-
construction in comparison with other approaches based on e.g. region growing
methods. Further to be mentioned is the approach of Freitas and Schröder [41]
where an LBM is applied to simulate the airflow in the upper part of the human
lungs. The underlying geometry is based on a model comprising the first six gen-
erations.

The goal of this section is to study the feasibility of a two-scale approach for
the simulation of an expiration at a fixed flow rate of Fl = 150 ml/s in the human
lungs. The upper part of the human lungs which can be reconstructed from CT
scans serves as computational domain for an LB simulation. The rest of the lungs’
geometry is modelled. Its functionality is described by another model. The two
parts are coupled by means of boundary conditions.

The first part of this section focuses on introducing the relevant professional
terminology concerning the anatomy of the human lungs and generally accepted
facts about its physiology. Subsection 6.3.2 is dedicated to describe the considered
two-scale model. Based on this description, a particular flow problem in the upper
human lungs is formulated and details concerning the LB-based dicretisation are
stated. Finally, in Subsection 6.3.4 the numerically obtained simulation results are
presented and discussed.

6.3.1. About the Anatomy and Physiology of the Human Lungs. In
the following, a brief overview is given. The subsection aims to establish the ter-
minology and physiology which is of interest for the remainder of this section. The
explanation to come follows essentially standard literature [50, 122, 135].

Human lungs are arranged on both sides of the heart in two cavities. Corre-
spondingly, they are called right lung and left lung. The right lung consists of three
lobes and the left one of two lobes. They are separated by fissures. According
to their attributed functionally, the lungs can also be separated into two parts,
namely the respiratory zone and the conducting zone. The respiratory zone con-
sists amongst others of respiratory bronchioles and alveoli where the gas exchange
actually occurs. The conducting zone provides a connection for the air to flow from
the upper respiratory system, i.e. larynx and nose, to the respiratory zone. This
airway system is shaped like the root of a tree. The trachea can be seen as the
stem of the thought tree. It is a tube with an inner diameter of about 2 cm and a
length of about 12 cm. The trachea starts at the upper respiratory system. Then,
it splits into two airways which are called the main bronchi. Each bronchi continues
to divide multiple times leading to smaller and smaller tube-shaped airways which
subdivide as well and which are called bronchioles. Finally, they end in the alveolar
sacs which are clusters of alveoli.

As indicated above, the main functionalities provided by the human lungs is
the transport, dispersion and exchange of gas. Typically, obtained ventilation rates
and frequencies are given in Table 6.1 for different levels of physical activity for
an adult man. As well for an adult male, the total capacity of the lungs is found
to be about 6 litre. According to Weibel [136], approximately 10 per cent of it
equates to the volume that corresponds to the conducting zone. The same author
[135, 136] employs a numbering common for binary trees for that of the bronchi and
bronchioles. The result is a bronchial tree with about m = 23 generations leading
to a number of about up to 2m bronchi and bronchioles. Thereby, about the last
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Figure 6.14. The human lungs shown from the front (left) and
from above (right). Visualised are the segmented CT data area
(grey) of the considered human lungs and the surface (blue) of that
part of the upper human lungs which could be clearly extracted
from the segmented CT data. The surface mesh consists of 17, 940
triangles which cover an area of about 176 cm2 and give room
for approximately 51.86 ml of air. The images are obtained by
means of joint work with Gengenbach in the framework of the
United Airways project [15].

6 generations consists of respiratory bronchioles which are part of the respiratory
zone.

Beside the respiratory function of the human lungs, in the literature, e.g. in
[50, 122, 135], one frequently finds that different parts of lungs provide other func-
tionalities, like for example that breathed air is warmed, cleaned and humidified in
the lungs.

The parts of the lungs which belong to the respiratory zone are of small scales,
e.g. the diameter of an alveoli is about 50-250 µm. Thus, it is impossible to
capture these fine structures by nowadays CT scanners which are used in everyday
medical practice. But also the conducting zone of the lungs cannot be captured
completely. Both parts of the considered human lungs, namely the resolvable and
non-resolvable, are pictured in Figure 6.14. Not least due the complexity of the
geometry of the human lungs, adequate models are required to describe and finally
numerically simulate full respiration.

6.3.2. A Two-scale Model for the Respiration in the Human Lungs.
The basic idea of the proposed two-scale model is to couple two individual models,
one describing the flow in the upper, resolvable part of the human lungs and an-
other one describing the flow and the actual gas exchange. The coupling is realised
via an adequate setting of boundary conditions at the links which are given by the
ends of the resolved bronchi tree. In Figure 6.15 the idea of the two-scale model is
illustrated.

For the upper lungs model it is assumed that the fluid is incompressible and
Newtonian. Thus, according to Chapter 1 the incompressible Navier-Strokes eqa-
tion as well as the BGK-Boltzmann equation are suitable governing equations. The
latter mesoscopic model approach is considered in the following. Then, as condition
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Figure 6.15. Scheme of the coupling between the models for the
upper and the lower lungs. The image is obtained by means of joint
work with Gengenbach in the framework of the United Airways
project [46].

for the boundary located at the trachea a pressure condition is set. The conditions
for the boundaries at the considered ends of the resolved bronchioles are set to
be inlet or outlet velocity conditions. Whereby, the velocity is distributed as in a
pipe aligned in normal direction to the boundary where Poiseuille’s law holds. At
each bronchiole the maximum velocity magnitude or alternatively the flow rate Fl,
which both characterises the distribution, is assumed to be given by the model for
the lower lungs. In turn, the upper lungs model provides, in particular the pressure
distribution for the boundaries at all bronchi which serves as input for the lower
lungs model. In this context to be mentioned is a similar model introduced by Baf-
fico et al. [10]. It basically differs in the kind of boundary conditions for the upper
model at any bronchiole’s end. Instead of a velocity condition, it is proposed to set
a pressure condition. The employed model for the lower lungs takes the velocity
profiles at the bronchioles’ ends boundaries as input.

Weibel’s model for the geometry of the bronchial tree (cf. Subsection 6.3.1)
provides the basis for many other models aiming to describe the respiration in the
human lungs, which have been proposed in recent years. For example, Grandmont
et al. [51] propose to model the breathing functionality of the lungs by a spring-
mass system with dissipation. The bronchi tree is assumed to be a symmetrical
dyadic tree of pipes while the flow in it obeys Poiseuille’s law. At the outlets of the
dyadic tree the flow is delimited by two successive masses which model the alveolar
sacs. Yet, in the presented two-scale approach such a bronchial tree model is just
employed to model the non-resolvable bronchioles of the bronchial tree. Thereto,
at the end of any resolved bronchus a bronchial tree model like that of Grandmont
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et al. [51] is employed whereby its input data depends on the pressure distribution
of the respective bronchus. A similar model is proposed by Gengenbach [48]. It
takes besides the pressure distribution also the generation and the diameter of any
bronchus, respectively bronchiole which represents the root of the respective tree,
into account. This model relies, similarly to the one researched by Grandmont
et al. [51], on the assumption that the non-resolvable parts of the bronchial tree
can be described by a symmetrical dyadic tree of pipes whereby for the fluid flow
Poiseuille’s law holds.

6.3.3. Problem Formulation and Discretisation Issues. In the previous
subsection a two-scale model describing the respiration in the human lungs is intro-
duced. Thereby, it is suggested to model the flow in the resolvable, upper part of the
human lungs by means of the BGK-Boltzmann equation. The aim of this subsec-
tion is to illustrate the feasibility of the sub-model for the upper lungs. Thereunto,
in the following, a prototypical fluid flow problem is formulated and the applied
numerical methods in order to solve it are stated.

An expiration for a realistic everyday situation is to be simulated. Thereby, the
flow rate is fixed to be Fl = 150 ml/s which is typically observed for adult males in
situations of resting or sitting awake (cf. Table 6.1). The air is considered at normal
conditions, i.e. 1, 013 hPa and T = 20 ◦C. Thus, its speed of sound is cs = 343 m/s,
its dencity is ρ = 1.225 kg/m3 and its kinematic viscosity is ν = 1.4 · 10−5 m2/s.
Since the respiration is naturally a transient process, it is not clear if a unique solu-
tion for the considered configuration exists. However, encouraged by the numerical
results presented in Subsection 6.2.3 for an intranasal flow for a fixed flow rate of
Fl = 150 ml/s, it is assumed that such a pseudo steady state exists.

The problem is solved numerically by applying a D3Q19 LBM as it is derived in
Section 2.1. The pressure and velocity boundary conditions are realised as proposed
by Skordos [124]. A no-slip condition is set for boundaries representing walls. It is
realised by the bounce back rule according to its specification in Section 2.1.4.

The underlying discrete geometry Ωh for the considered problem is that part of
the lungs which could be reconstructed from CT scans according to the procedure
decribed in Section 6.1. The person whose lungs have been scanned is the same 46
years old European male who is considered in Section 6.2 for the simulation of in-
tranasal flows. According to the refinement strategy introduced in Subsection 6.1.3
one obtains the discretisation parameter of h = 0.23 mm/N for a refinement level
N ∈ N.

To distinguish different boundary regions Γi
h material numbers i are introduced

as stated in Subsection 6.1.2. Whereby, i = 2 denotes the boundary which repre-
sents the wall of the bronchial tree, i = 3 the boundary at the trachea and 100m+j
one of the 15 inlets at the considered bronchioles with m representing the gener-
ation of the actual bronchiole according to the numbering of Weibel [135, 136]
and with j = 1, 2, ... serving as counter to distinguish the bronchioles of the
same generation. The so obtained material numbers are condensed in the set
B := {401, 402, 403, 404, 501, 502, ..., 507, 601, 701, 801, 901}. In Figure 6.7 the re-
sulting geometry representation of the computational domain Γi

h is depicted.

According to the model description for the upper lungs stated in the previous
section, a velocity condition is set at the 15 inlets at the bronchioles’ ends, and
a pressure condition is applied at the boundary at the trachea Γ3

h. Furthermore,
it is stated there, that at all inflow boundaries Γi

h (i ∈ B) at the bronchioles the
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maximum velocity magnitude U i
max or a flow rate is assumed to be given by the

bronchial tree model. Based on that information and Poiseuille’s law, the velocity
distribution at every single boundary area is computed. In the presented feasibility
study for the upper lung sub-model, the maximum velocity magnitudes are assumed
to be the same for all 15 inflows, i.e. Umax = U i

max for all i ∈ B. Thence, differ-
ent flow rates are obtained at different bronchioles’ ends since the corresponding
boundary areas are of different sizes. However, with the given wanted total flow
rate of Fl = 150 ml/s the maximum velocity magnitude, namely can be computed.
It is found to be approximately Umax ≈ 5.28 m/s.

The area of the boundary Γ3
h at the trachea is found to be approximately

A ≈ 0.9065 cm2. To reach the desired flow rate of Fl = 150 ml/s a mean speed
of Umean(Fl) ≈ 1.65 m/s is needed. This mean speed is considered to be the
characteristic macroscopic velocity. The characteristic macroscopic length is fixed
to

L := max
r∈Γ3

h

r1 − min
r∈Γ3

h

r1 = 0.015 m .

With it, the kinematic viscosity ν = 1.4 · 10−5 m2/s and speed of sound cs =
343 m/s, one obtains the Reynold number Re ≈ 1768 and the Mach number Ma ≈
0.0048.

The number of time steps needed to reach a steady state can be reduced by
introducing lattice speeds ULB = 0.01, 0.005, 0.002 and scaling the problem accord-

ing to (6.2). This leads to a problem with the same Reynolds number R̃e = Re

but a different Mach number M̃a = ULBUmean. For simplification the as constant
assumed density ρ = 1.225 kg/m3 is scaled to ρ̃ = 1. The obtained and in the
following subsection presented results are rescaled to the original system of units.

The initial distribution fi(t0) is set to be Maxwellian distributed with u = 0
and ρ̃ = 1 in Ωh × Q. In order to avoid unnatural behaviour as well as numerical
artefacts caused by e.g. violation of smoothness, the maximum velocity magnitude
is increased linearly in the first 100, 000 time steps from Umax = 0 to Umax =
5.28 m/s.

6.3.4. Presentation and Discussion of the Numerical Results. The pre-
sentation and discussion of the numerical results obtained for the simulation of an
expiration at a fixed flow rate of Fl = 150 ml/s in the upper human lungs are the
subjects of this subsection. The simulation set-up is described in the last two sub-
sections, more precisely the underlying physical two-scale model in Subsection 6.3.2
and the numerical methods applied in Subsection 6.3.3.

As the numerical experiments for the simulation of intranasal flows, the ones
discussed here are executed in parallel either on the HP XC4000 or on the JUROPA
high performance computer both described in Section 3.3. It is always taken ad-
vantage of the full hybrid parallelisation approach presented in Chapter 3, which is
realised using OpenMP and MPI. For example, employing in total 1, 024 cores on
256 nodes on the HP XC4000, the execution of the code associated with a problem
with N = 2 and ULB = 0.005 takes about 46 hours and 17 minutes for 1, 325, 200
time steps. This problem configuration is typical for the presented results. The re-
ferred execution time also includes the needed times to set up the simulation and to
write 2, 650 output files. In this context, the discussion of the performance results
obtained for similar problem configurations which is presented in Subsection 3.4.2
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Figure 6.16. Time evolution of the total pressure drops p3,i (i ∈
B) at an expiration flow rate of Fl = 150 ml/s towards a pseudo
steady state. The lattice speed is chosen to be ULB = 0.005, and
the refinement level is set to N = 2.

is to be noted.

The relevant quantity for the coupling of the two models is the obtained pressure
at the bronchioles’ ends Γi

h (i ∈ B). The simulated pressures are captured by the
variable pi (i ∈ B ∪ {3}) and taken close to the position in the centre of the area
Γi

h, namely at

ri
mid :=

1

2




maxr∈Γi
h

r1 + minr∈Γi
h

r1

maxr∈Γi
h

r2 + minr∈Γi
h

r2

maxr∈Γi
h

r3 + minr∈Γi
h

r3


− 2hNn (i ∈ B ∪ {3}) .

With it, the pressure drops can be computed according to

p3,i := pi − p3 (i ∈ B) .

It is to be noted, that p3 ≈ 1, 013 hPa due to the boundary condition applied at
the boundary which belongs to the outflow area Γ3

h at the trachea.

At first, the asymptotic towards a pseudo steady state is studied. Thereto, the
evolution of the simulated pressure drops p3,i (i ∈ B) are monitored over a certain
number of time steps for different refinement levels N = 2, 3 and lattice speeds
ULB = 0.01, 0.005, 0.002. Exemplary the case which is characterised by N = 2
and ULB = 0.005 is studied. For all other considered cases a similar behaviour is
observed. In Figure 6.16 for all i ∈ B the corresponding computed mean pressure
drops p3,i are plotted as functions of time steps.

For the computed pressure drops pi (i ∈ B), the convergence characteristics
towards pseudo steady states is observed to be similar to those obtained for the
simulations of expirations through the human nose, studied in Subsection 6.2.3.
Taking the smaller lattice speeds into account which lead to smaller physical times
per time step, the decay of the oscillations is also in accordance to the other men-
tioned results. Yet, they indicate that the start-up phase of 100, 000 time steps is
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material N =2 N =3
number i ULB =0.005 ULB =0.002 ULB =0.01 ULB =0.005 ULB =0.002

401 3.6 10.9 3.4 3.3 1.3
402 9.9 9.0 5.7 6.9 7.1
403 16.9 23.8 11.0 12.9 17.5
404 16.7 18.2 12.8 12.1 10.1
501 2.9 4.1 4.2 6.4 9.1
502 19.5 32.3 6.4 6.4 9.5
503 4.3 5.0 2.1 2.3 3.7
504 2.9 2.7 3.7 3.5 3.7
505 30.2 23.1 26.6 25.5 29.9
506 5.9 9.7 4.8 5.0 6.5
507 4.6 4.2 3.8 4.1 4.8
601 9.9 16.4 6.7 9.5 20.1
701 −1.5 −8.1 11.4 23.8 57.5
801 36.0 51.3 11.7 14.2 20.4
901 24.4 32.8 24.1 37.0 55.6

Table 6.6. Obtained results for the mean pressure drops pi (Pa)
for different choices of lattice speeds ULB and refinement levels N .

not sufficient. However, in consideration of the high computational costs a longer
start-up phase is hardly feasibly.

In order to obtain well defined results the averaging strategy proposed in Sub-
section 6.2.3 is similarly applied here. In Figure 6.6 the corresponding computed
mean pressure drops pi (i ∈ B) are stated for differently chosen refinement levels
N and lattice speeds ULB .

The obtained results are not all found to be independent of N and ULB . Espe-
cially in the bronchioles of higher generations, i.e. m = 6, 7, 8, 9, relative deviations
of more than 100 per cent are observed. In turn, in other bronchioles the differences
are comparatively small. By trend, this is the case when the simulated pressure
drops are rather small. Then coupling the two models of the two-scale approach, it
is expected that due to the character of the model for the lower parts of the lungs
great differences of the pressure drops dissipate. In this respect, a full coupling of
the two models seems possible.

In Figure 6.17 the simulated flow field is displayed in form of the velocity
magnitude in chosen cross-sections. The underlying refinement level is set to N = 2
and the lattice speed to ULB = 0.005. In the same picture, a closer look to four
planes located around the first bifurcation of the bronchial tree clearly reveals
the complex characteristics of the flow field. There, the obtained values for the
velocity magnitude are found to be about 2.6 m/s which is between the mean
speed Umean ≈ 1.65 m/s at the outlet at the trachea and the maximum speed
Umax = 5.28 m/s at the inlet at the bronchioles’ ends. Relative high velocity
magnitudes of up to about 9.07 m/s are observed in the bronchiole which ends in
Γ901

h .
Summing up, the simulated pressure drops are found to reach pseudo steady

states for several chosen discretisation parameters, i.e. lattice speeds ULB and
refinement levels N . However, not all results are observed to approach values in-
dependent of ULB and N . Yet, due to the dissipative property of the model for the
lower part of the lungs, a realisation of the two-scale approach seems practicable.
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Figure 6.17. The simulated flow field for an expiration flow rate
of Fl = 150 ml/s in the human lungs is shown by mean of various
planes. The intersections are coloured according to the computed
velocity magnitude which is provided in meter per second. A closer
look is provided to four planes around the first bifurcation of the
bronchial tree. There, the complexity of the flow dynamics clearly
becomes visible. The lattice speed in the LB simulation is set to
be ULB = 0.005 and the refinement level to N = 2. The simulation
is stopped after 800, 000 times steps has been performed.

In future works, a better resolution of the extracted geometry and the adoption
of other boundary conditions, like the one proposed by Bouzidi et al. [22], should
also be considered in order to obtain a better boundary approximation and with
it potentially more stability. Furthermore, the relative high computational costs
might be reduced.





Summary and Outlook

In this last chapter, the content of this thesis as well as the obtained results
are summerised and open questions arising in the context of the presented work
are addressed chapter by chapter. Then, at the end, an integrative perspective is
provided which concludes the work.

In Chapter 1, two physical models which both describe the dynamics of in-
compressible Newtonian fluids are introduced and compared to each other. The
first is a macroscopic model governed by the incompressible Navier-Stokes equa-
tion and the second is a mesoscopic model governed by the Boltzmann equation
or its simplification, the BGK-Boltzmann equation. The stochastic origin of the
mesoscopic model is emphasised by deriving it in an appropriate framework. Tak-
ing advantage of stochastic methods, seems to be promising with respect to enable
a deeper analysis of the corresponding governing equations. This might help an-
swer the open questions concerning e.g. solvability of the Boltzmann equation, its
connection to the incompressible Navier-Stokes equation, and in turn its solvability.

In the following chapter, LBM are introduced as discretisation techniques for
families of BGK-Boltzmann equations. A framework is established which enables
the derivation of families of consistent LB equations from certain families of BGK-
Boltzmann equations. An interesting unanswered question is whether the stability
of the considered LB schemes can also be shown by taking advantage of the provided
framework. Further, a complete analysis of adequate boundary conditions remains
to be provided. The promising results obtained for the two examples considered at
the end of Chapter 2 encourage further investigations in these directions.

A hybrid parallelisation concept especially developed for LBM is the subject
of Chapter 3. The strategy and its realisation, which allows coping with platforms
sharing the properties of both shared and distributed architectures, is illustrated
in detail. The performance results for two examples are presented and discussed.
The MPI-based approach is found to be efficient for both problems with underlying
simple and complex geometries since the computing time can almost be halved even
if a relatively large number of nodes employed, e.g. 128, is doubled. It is expected
that applying a sophisticated graph-based partitioning algorithm leads to a further
improvement of the efficiency. This should be taken into account in future work.
Further, it is revealed that the shared memory approach that uses OpenMP cannot
compete against the MPI version on SMP nodes. To achieve competitive perfor-
mance results the memory hierarchy and binding of threads to specific processors
on platforms with NUMA have to be taken into account. Since OpenMP does not
provide any support for memory hierarchies and affinity control, the programmer is
left to use utilities provided by the operating environment which makes the software
more complex and less portable. The motivation of the proposed hybrid paralleli-
sation concept is based on the idea that this kind of local partition at the nodal
level should automatically be treated by the considered parallelisation paradigm.
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Since OpenMP is actually intended to offer such an interface, the results clearly
reveal the need of optimising the considered implementation of OpenMP.

Chapter 4 and Chapter 5 introduce strategies to numerically solve fluid flow
control and optimisation problems, where the side conditions are governed by a
BGK-Boltzmann equation. These strategies are then realiesed and finally applied
to certain test cases. Both approaches are suitable for parallel computations and
take advantage of the hybrid concept introduced in Chapter 3. Although they are
both gradient-based and hence require the computation of certain derivatives, the
two approaches differ in the way that the derivatives are obtained.

In the first of the two chapters, the application of a first-discretise-then-optimise
strategy based on an AD forward mode technique is illustrated. Then, a generic
parallel implementation is presented and its realisation is discussed. The obtained
numerical results for an example are found to verify the approach. The correspond-
ing performance results reveal a roughly linear growth of the time needed to perform
one optimisation step with respect to the dimension of the control space multiplied
with the number of unknowns of the underlying discrete fluid flow problem. For the
parallel case, this growth rate is observed to decrease which attests the scalability
of the approach. Whether an AD backward mode scheme can be realised in order
to solve realistic 3D problems more efficiently or not, remains an open question.
Difficulties occurring in this context and possible strategies to overcome them are
also discussed in this chapter.

The first-optimise-then-discretise ansatz is followed in Chapter 5. The approach
is based on obtaining the required derivatives by means of solutions of adjoint prob-
lems. A first order optimality system as necessary condition for an optimum of the
continuous optimisation problem is derived by applying Lagrange’s formalism. Es-
tablishing a sufficient condition for an optimum and, furthermore, proving its solv-
ability need to be tackled in future works. The adjoint BGK-Boltzmann equation
is then derived as the governing equation of a prototypical adjoint problem. After-
wards, methods similar to LBM are introduced and applied to discretise equations
of this type. This leads to adjoint lattice Boltzmann equations whose structure is
similar to those of LB equations. Aspects concerning the parallel implementation
are also addressed. At the end of the chapter, the distributed control problem for-
mulated in Chapter 4 is considered as a test case. The obtained results are found to
numerically verify the realisation. Interesting to note is the convergence behaviour
towards a steady state, which indicates an underlying physical meaning that might
be founded in a relation between a family of adjoint BGK-Boltzmann equations
and an adjoint incompressible Navier-Stokes equation. This encourages further in-
vestigations aiming to verify the relation. A test of the parallel performance reveals
a similar scalability as for the LB equations tested in Chapter 3. Finally, both the
numerical and the performance results are compared to those obtained by applying
the AD-based strategy. The computational costs for solving by an ALB scheme
are observed to grow proportionally to the number of unknowns of the fluid flow
problem and to be independent to the number of control variables. Although the
costs are found to be smaller than those measured for the AD-based approach, the
easier implementation of an AD-based strategy should not be ignored in practice.

In Chapter 6, the numerical results obtained for simulations of the respiration
in an individual human nose as well as in the upper part of a human lungs are
presented. The underlying geometry data are obtained by computer tomography
(CT) scans of a patient with a diagnosed ventilation disorder. A preprocessing
concept, that is to a large extend automated is first presented. This procedure is
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used to transform the raw data to a form suitable for the simulation of fluid flows
in complex geometries with an LB algorithm. The realisation of the strategies is
tested by extracting the computational domains of the lungs and nose from the
mentioned CT data.

The flow of air in the human nose is simulated for two test configurations
both corresponding to realistic everyday situations, i.e. with flow rates of 100 −
333 ml/s. The first of them is an exhalation through both nostrils at several fixed
ventilation rates. Numerical evidence is established for the simulated values for
total pressure drops occurring between the nostrils and the nasopharynx. Firstly,
the simulation is found to approach pseudo steady states independently of the
discretisation parameter and the grid resolution. Secondly, the results are validated
by means of a comparison with numerical results as well as experimentally data
both obtained by others for similar geometries. Considering the computed flow
field, a stenosis at the left inferior meatus is found to be the possible cause for
the ventilation disorder. The results encourage further research in this direction.
Both inspirations and expirations in geometries of other patients could be simulated
with the aim of discovering similar pathologies related in the geometry of the nose.
The second test case considers respirations through only one nostril at a time.
Comparing the numerical results with measurements from the very patient obtained
by rhinomanometry methods, quantitative agreement is observed. In the future,
the same test should be repeated based on a wider measurement basis so that also
a quantitative agreement can be achieved.

Finally, a feasibility study for the numerical simulation of respirations in the
complete human lungs is presented. As part of a two-scale approach, the consid-
ered problem is an exhalation at a fixed flow rate of 150 ml/s in the upper part
of the human lungs. The computed pressure drops between an upper trachea part
and several bronchioles of up to the 9th generation are observed to reach a steady
state for different considered discretisation parameters. A full coupling of the two
sub-models of the two-scale approach seems practicable and should be taken into
account in future works. A finer resolution of the extracted geometry and the
adoption of other boundary conditions like the one proposed by Bouzidi et al. [22],
should also be considered in order to obtain a better boundary approximation and
with it potentially more stability. Furthermore, the high computational costs might
be reduced.

Last but not least, it seems promising to consider the application of the opti-
misation strategies proposed in Chapter 4 and Chapter 5 in future works to learn
more about human respiratory flows. Firstly, the range of feasible applications
widens, encompassing for example patient-individual in advance surgery planning
or optimising the medication via asthma sprays. Secondly, these strategies make
it possible to establish other techniques like adaptive mesh refinement strategies
or optimal experimental design approaches. This, in turn, leads to lower compu-
tational costs and more accurate results on the one hand and widens the possible
range of applications even further on the other. Thus, completely new aspects re-
lated to the grand challenge of being able to numerically simulate the full human
respiratory system can be tackled in the future.
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APPENDIX A

The Open Source Library OpenLB

A.1. Project Scope and Overview

The OpenLB project aims at setting up an open source implementation of LBM
in an object oriented framework. The code is written in C++ and intended to be
used both by application programmers and by developers who may add their own
particular dynamics. It supports advanced data structure that take into account
complex geometries and parallel program executions. The programming concepts
strongly rely on dynamic genericity via the use of object oriented interfaces as
well as static genericity by means of templates. This design allows an efficient,
straightforward and intuitive implementation of LBM. It is cross-verified for soft-
ware quality by several reviewers and is presented along with a user guide. To the
knowledge of the authors, the OpenLB project is the first attempt to produce a
generic platform for LB programming and to share it with the community via a
system of open source contributions.

An overview of the computational framework employed in OpenLB and the
features of the latest release 0.5 of OpenLB is given in the following:

Overview Computational Framework:

• Platform independent developments
• Modular, extensible C++ code
• Object-oriented programming style
• Template-based genericity
• Open source (GNU General Public License, version 2) .

Overview Features:

• 2D and 3D simulations by means of LBM
• Various LBM, e.g. BGK, MRT, Regularized LB [89, 88]
• Various lattice types, e.g. D2Q9, D3Q15, D3Q19, D3Q27
• Multi physical models (multiphase, thermal flows)
• Local and non-local boundary condition types, e.g. Inamuro [73], He and

Zou [64], Latt (regularized LB) [89, 88]
• Checkpointing for interrupted program executions
• Parallelism for shared and distributed memory platforms
• Visualisation, e.g. based on VTK [7]
• Straightforward coupling to external tools for pre- and postprocessing

Furthermore, a documentation for developers as well as user guides for several
releases are provided on the OpenLB website http://www.openlb.org .

Beside the overview and technical reports, e.g. [85], given on the OpenLB
website, one finds more details, in particular concerning the computational con-
cepts realised in the OpenLB code, in [68]. Ongoing work concerning the hybrid
parallelisation strategy (cf. Chapter 3) which has been realised in OpenLB is pre-
sented [66]. Latt, Malaspinas et al. dedicated their work [90] a comparison of
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various common boundary conditions which are dedicated for LBM. The present
tests are performed using the OpenLB library.

A.2. Authors

Several scientists form the basis of the OpenLB project. The names of all partic-
ipants, both project coordinators and code developers, are arranged in alphabetical
order as follows:

Project Coordinators:

• Vincent Heuveline (KIT, Universität Karlsruhe (TH))
• Mathias J. Krause (KIT, Universität Karlsruhe (TH))
• Jonas Latt (Ecole Polytechnique Federale de Lausanne)

Code Developers:

• Mathias J. Krause (KIT, Universität Karlsruhe (TH))
– OpenMP parallelisation
– Cuboid data structure for MPI parallelisation
– Makefiles

• Jonas Latt (Ecole Polytechnique Federale de Lausanne)
– Development of the OpenLB core
– Integration and maintenance of added components

• Orestis Malaspinas (Ecole Polytechnique Federale de Lausanne)
– Alternative boundary conditions (Inamuro [73], He and Zou [64],

Non-linear FD)
– Alternative LB models (Entropic LB [5], MRT [31])

• Bernd Stahl (University of Geneva)
– MultiBlock structure for MPI parallelisation
– Parallel version of (scalar or tensor-valued) data fields
– Visualization Toolkit (VTK) [7] output of data

• Simon Zimny (KIT, Universität Karlsruhe (TH))
– Preprocessing, automated setting of boundary conditions

A.3. Awards

OpenLB has played a major role in the two proposals of the United Airways
project (cf. Appendix B.3) for the Itanium Innovation Awards. The contest is
organised by the Itanium Solutions Alliance which is a global consortium of notable
hardware, operating system and application vendors.

Both presented solution strategies for numerical simulations of human respira-
tory flows were awarded in the category of Humanitarian Impact

• as Finalist in 2007 and
• as Honorable Mention Finalist in 2009 .

A detailed presentation of the subject of the two proposals as well as a press
release for the 2009 award can be found in Appendix B.3.



APPENDIX B

The United Airways Project

B.1. Project Scope and Challenges

The prospect of the United Airways project is the complete description of the
flow behaviour in the human respiratory system by means of highly efficient nu-
merical simulations. The approach followed in the United Airways project relies on
an integrative methodology allowing to analyse the interaction of the human nose,
paranasal sinuses, larynx and lungs in a coupled way.

On the one hand numerical investigations of respiration is meant to enable
fundamental research towards a better understanding of the flow dynamics in the
respiratory tracts. On the other hand, it also forms a basis for many applications in
the public health sector. Possible applications range from the study of the environ-
mental impact on the human airways or the optimisation of the sprays for rhinitis,
sinusitis and asthma treatment to the point of patient-individual simulations of the
impact of respiratory tract surgeries.

The challenges that have to be faced then considering fundamental research or
such applications are manifold. They encompass dedicated modelling, automated
preprocessing (from CT scans to volume meshes), optimal experimental design,
mathematical optimisation, real-time simulations, efficient high performance com-
puting, visualisation and many more.

As manifold as the challenges are the research fields which are touched then
coping with the challenges. The interdisciplinary framework of the United Airways
project relies on the expertise of principle investigation in the following areas

• Medicine (diagnosis/treatment)
• Environmental medicine
• Occupational medicine
• Biotechnology
• Numerical simulation
• Mathematical optimisation
• High performance computing
• Visualisation .

So far, numerical simulations have been performed for the human lungs and the
human nose separately. Thereunto, a strategy for a partly automated preprocessing
of complex geometries based on CT scans is proposed and realised (cf. Section 6.1,
Gengenbach [47] and Zimny [146]. Further, a hybrid parallelisation concept dedi-
cated for LBM is proposed, implemented in the framework of OpenLB and tested
successfully for the geometry of the human lungs (cf. Chapter 3). The obtained nu-
merical results for the human nose and the upper human lungs which are obtained
by means of LBM are presented in Chapter 6. A model for the lower generations
of the lungs has been implemented, parallelised and tested successfully by Gengen-
bach. The corresponding numerical and performance results are presented in [47].
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B.2. Participants

Several scientists, which are mathematicians and physicians, participate in the
United Airways project. The names of the current team members with their con-
tributions are listed above in alphabetical order.

• Thomas Gengenbach (KIT, Universität Karlsruhe (TH))
– Project coordination
– Modelling (lungs)
– Numerical simulations based on FEM (lungs)
– Preprocessing and postprocessing

• Thomas Henn (KIT, Universität Karlsruhe (TH))
– Automisation of the preprocessing

• Werner Heppt (Städtisches Klinikum Karlsruhe)
– Consulting, supervising (medical aspects)

• Vincent Heuveline (KIT, Universität Karlsruhe (TH))
– Consulting, supervising (numerical aspects)

• Mathias J. Krause (KIT, Universität Karlsruhe (TH))
– Modelling (upper lungs, nose)
– Numerical simulations based on LBM (lungs, nose)
– Preprocessing and postprocessing dedicated for LBM

• Simon Zimny (KIT, Universität Karlsruhe (TH))
– Numerical simulations based on LBM (nose)
– Preprocessing dedicated for LBM

To be mentioned are also the names of formerly participants, namely Martin
Baumann, Evangelos Giotakis, Rolf Maier and Paul Weber. (cf. names is references
for 2008 [16], 2009 [15] and 2010 [46]).

B.3. Awards

The United Airways project has been awarded in the contests Itanium Inno-
vation Awards 2007 and 2009. The awards are given by the Itanium Solutions
Alliance in four different categories for approaches of all areas of industry and re-
search developed using Intel Itanium-based solutions.

In both years, work related to the United Airways project has been submitted
in the category Humanitarian Impact.

The focus of the the 2007 proposal has been placed on the development, realisa-
tion and obtained perfortance results of the hybrid parallelisation strategy which is
presented in Chapter 3. The proposal has been awarded as Finalist together with
others handed in by applicants of e.g. the Stanford University and the Imperial
College London.

In 2009, efficient high performance computing for the numerical simulation of
the flow in the human lungs form the basis of the application. Performance results
obtained for an MPI-based implementation, which is especially designed for com-
plex geometries like the human lungs and which is part of the open source code
OpenLB, are presented. Beside, topics regarding an adequate preprocessing and
postprocessing are addressed as well. The presented work has earned the title Hon-
orable Mention Finalist. In the following, the corresponding press release from the
Intel Corporation is imprinted:
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KARLSRUHE UNIVERSITY EARNS HUMANITARIAN IMPACT HONOR-
ABLE MENTION IN THE 2009 ITANIUM SOLUTIONS ALLIANCE INNOVA-
TION AWARDS

PORTLAND, Ore., July 27 - The Itanium Solutions Alliance today announced
that Karlsruhe University has been awarded an honorable mention for its entry
in the 2009 Innovation Awards program. Karlsruhe University’s United Airways
project in Germany used Itanium-based HP hardware to analyze the interaction of
the human nose, sinuses, larynx and lungs with the goal of compiling a complete
numerical simulation of flow behavior in the human respiratory system. The end
benefits of this project include optimizing asthma sprays, improving the quality of
medical operations and understanding the impact of respirable dust.

The Itanium Solutions Alliance Innovation Awards were designed to recognize
and reward end users and developers for outstanding use of Intel Itanium-based
servers in their applications. A panel of distinguished judges evaluated submissions
on a number of criteria such as difficulty of challenge, results produced, and origi-
nality of the solution.

”For our second annual Innovation Awards, we received a large number of very
compelling entries from across the globe, showcasing a wide variety of innovative
applications backed by Itanium-based technology,” said Joan Jacobs, president and
executive director of the Itanium Solutions Alliance. ”We are pleased to recognize
this year’s finalists for their groundbreaking work with Itanium-based systems from
across the spectrum of industry and research.”

The Humanitarian Impact category awards the innovative use of Itanium-based
systems to deliver results that benefit humanity through research, social improve-
ments or other humanitarian efforts. Examples include natural disaster modeling
and prediction, resource management, health care advances, and biosciences re-
search.





Nomenclature

Abbreviations

AD Automatic differentiation
ALB Adjoint lattice Boltzmann
ALBM Adjoint lattice Boltzmann methods
BGK Bhatnagar, Gross and Krook
CAD Computer-aided design
CFD Computational fluid dynamics
CT Computer tomography
DICOM Digital imaging and communications in medicine
FD Finite difference
FEM Finite element method
I/O Input/output
EOC Experimental order of convergence
GMRES Generalised minimal residual method
HPC High performance computing
LB Lattice Boltzmann
LBM Lattice Boltzmann methods
LDC Lid-driven cavity
LGCA Lattice gas cellular automata
MLUP/s Million fluid lattice-site updates per second
MLUP/ps Million fluid lattice-site updates per process and second
MRI Magnetic resonance imaging
MRT Multi relaxation time
NUMA Non-uniform memory access
SMP Symmetric multiprocessing
UMA Uniform memory access
VTK Visualization toolkit
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Fluid Constants, Parameters and Variables

T Absolute temperature Subsection 1.3.2
L Characteristic length Subsection 1.3.5
U Characteristic speed Subsection 1.3.5
ρ Density Subsection 1.1.1
F Density of volume force Subsection 1.1.3 (1.12)
µ Dynamic viscosity Subsection 1.1.5 (1.30)
ν Kinematic viscosity Subsection 1.3.5 (1.71)
Kn Knudsen number Subsection 1.3.5 (1.69)
Ma Mach number Subsection 1.3.5 (1.70)
c Mean absolute thermal velocity Subsection 1.3.4 (1.65)
lf Mean free path Subsection 1.2.1
ω Mean free time Subsection 1.3.4 (1.66)
f Particle density function Subsection 1.2.2 (1.35)
σ Particle diameter (microscopic) Subsection 1.2.1
p Pressure Subsection 1.1.1 (1.2)
Re Reynolds number Subsection 1.3.5 (1.73)
cs Speed of sound Subsection 1.3.5
D Strain rate tensor Subsection 1.1.1 (1.3)
P Stress tensor Subsection 1.1.3 (1.15)
R Universal gas constant Subsection 1.3.2
u Velocity of flow (macroscopic) Subsection 1.1.1 (1.1)
v Velocity of molecules (microscopic) Subsection 1.2.1

Norms and Spaces

x · y Standard scalar product for x,y ∈ R
n, n ∈ N

||x|| Euklidean norm,
√

x · x for x ∈ R
n, n ∈ N

d Dimension of the position space Ω, d = 2, 3
R≥0 Positive real numbers with zero, x ∈ R with x ≥ 0
R>0 Positive real numbers x ∈ R, with x > 0
R

d
n+ Positive half space, x ∈ R

d with x · n > 0 for n ∈ ∂Ω
R

d
n− Negative half space, x ∈ R

d with x · n < 0 for n ∈ ∂Ω
h Discretisation parameter, h ∈ R>0

Ω Domain filled by the fluid, Ω ⊆ R
d

Ωh Lattice, uniform mesh with spacing h, Ωh
∼= Xh ⊆ N

d

∂Ω Boundary of Ω, ∂Ω ∼= X ⊆ R
d−1

∂Ωh Boundary of Ωh, ∂Ωh
∼= Xh ⊆ N

d−1

I Time interval [t0, t1] = I ⊆ R, 0 ≤ t0 < t1 < ∞
Ih Discrete time interval, Ih :=

{
t ∈ I : t = t0 + h2k, k ∈ N

}

n(r) Unit outward normal at r ∈ ∂Ω, n(r) ∈ R
d

In Identity matrix of dimension n ∈ N

||ξ||L2(X) L2(X)-norm over X ⊆ R
d,

||ξ||L2(X) := (
∫

X
ξ(x) dx)1/2 for ξ ∈ L2(X)

||ξh||L2(Xh) L2(Xh)-Norm over Xh ⊆ N
d,

||ξh||L2(Xh) := ( 1
hd

∑
x∈Xh

ξ(x))1/2 for ξh ∈ L2(Xh)

Cn
0 (X) All ξ ∈ Cn

0 (X) are n-times continuous differentiable in X ⊆ R
d

with compact support in Y ⊆ X, n ∈ N or n = ∞, X open
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Differential Operators

d
dx Total derivative
∂
∂x Partial derivative

∇x Gradient
∇x· Divergence
∇x× Curl
∇x⊗ Jacobian
∆x Laplacian


