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Abstract
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large adverse stock price behavior. In this paper, we first discuss the limitations
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volatile markets. Based on the empirical evidence presented in this paper, our
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1. Introduction

The forecasting of the future behavior of the price of financial instruments is
an essential activity in the implementation of risk management and portfolio allo-
cation. The debate between the financial industry and regulators involves whether
the sophisticated mathematical and statistical tools that have been employed in
risk management and valuation of complex financial instruments have played a
role in the recent crisis. In particular, risk measures such as value-at-risk (VaR)
and black-box models for assessing the risks that institutional investors and reg-
ulated financial entities are exposed to have been singled out as the culprits (see
Turner (2009) and Sheedy (2009)). It is within this context that we discuss in this
paper a market model that is capable of explaining highly volatile periods. We
will demonstrate that the proposed model together with a measure of risk known
as the average value-at-risk (AVaR) offers a more reliable risk assessment, particu-
larly during financial crises. Furthermore, we will try to explain how “25 standard
deviation events” in the words of David Viniar, chief financial officer of Goldman
Sachs, can occurring. We do so by measuring the probability of occurrence of
market crashes by looking at time-series data and showing that this probability
strictly depends on the distributional assumption. We then compare these prob-
abilities to the “high standard deviation events” given by the normal probability
distribution that is typically assumed.

In order to obtain a good forecast for the distribution of returns, prediction of
future market volatility of the market is critical. Most of the recent empirical stud-
ies have shown that the amplitude of daily returns varies across time. Moreover,
there is ample empirical evidence that if volatility is high, it remains high, and if
it is low, it remains low. This means that volatility moves in clusters and for this
reason it is important to find a way to explain such observed patterns. This behav-
ior, referred to as “volatility clustering”, refers to the tendency of large changes
in asset prices (either positive or negative) to be followed by large changes, and
small changes to be followed by small changes. The volatility clustering effect
can be captured by the autoregressive conditional heteroskedastic (ARCH) and the
generalized ARCH (GARCH) models formulated by Engle (1982) and Bollerslev
(1986), respectively. However, in this paper we provide empirical evidence that
suggests that GARCH models based on the normal distribution would not have
performed well in predicting real-world market crashes such as Black Monday
(October 19, 1987) and, more recently, the global economic meltdown attributable
to the subprime mortgage meltdown in 2007 and the Lehman Brothers failure in
the latter half year of 2008. One reason for the poor performance is due to the
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assumption that the innovation of the GARCH model is normally distributed.
Asset management and pricing models require the proper modeling of the re-

turn distribution of financial assets. While the return distribution used in the tra-
ditional theories of asset pricing such as the capital asset pricing model is the
normal distribution, numerous studies that have investigated the empirical behav-
ior of asset returns in financial markets throughout the world reject the hypothesis
that asset return distributions are normally distributed. Returns from financial as-
sets show well-defined patterns of leptokurtosis and skewness which cannot be
captured by the normality assumption.

Enhanced GARCH models with non-normal innovation distributions have been
proposed. For example, Menn and Rachev (2008) used GARCH models with
α-stable innovations and the smoothly truncated α-stable innovations for option
pricing. A new class of distributions, the tempered stable distribution, has been
proposed recently to deal with the drawbacks of the α-stable distribution (see Kim
et al. (2008) and Bianchi et al. (2010)).

Most importantly, a suitable measure has to be employed to evaluate market
risk. The VaR measure has been adopted as a standard risk measure in the financial
industry, having been adopted by regulators to determine the capital requirements
for both banking and trading books (see Kiff et al. (2007)). However, the limita-
tions of the VaR measure have been well documented in the academic literature, as
well as among regulators and risk managers (see Bookstaber (2009)). Criticisms
of this risk measure include (1) a short sample of historical observations is insuf-
ficient to assess the risk one-day ahead, (2) the normal distributional assumption
is inadequate for forecasting extreme events, and (3) it is difficult to infer future
risk from past observed patterns, particularly under stressed scenarios. In this pa-
per, we address these three criticisms by (1) considering a ARMA-GARCH model
with non-normal innovation, (2) estimating the model with a sample including 10
years of daily data (including a more realistic measure of risk), principally fo-
cused on the negative tail, and (3) backtesting the model during market shocks.
By doing so, we hope to provide market participations with more reliable mathe-
matical and statistical tools that can be used to try to understand complex financial
market behavior. These tools cannot be used as black-boxes; market players have
to understand them to avoid financial debacles.

The risk measure we use in this study is AVaR, which is the average of VaRs
less than the VaR for a given tail probability. AVaR, also called conditional value-
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at-risk (CVaR),1 is a superior risk measure to VaR because it satisfies all axioms of
a coherent risk measure and it is consistent with preference relations of risk-averse
investors (see Rachev et al. (2007)). The closed-form solution for AVaR for the
α-stable distribution, the skewed-t distribution, and the infinitely divisible distri-
butions containing tempered stable distributions have been derived by Stoyanov
et al. (2006), Dokov et al. (2008), and Kim et al. (to appear a), respectively.

Hence, in this paper, we discuss autoregressive moving average (ARMA)
GARCH models with α-stable and tempered stable innovations and then assess
the forecasting performance of these models by comparing them to other time-
series models that assume a normal innovation. We empirically test the perfor-
mance of these models for the S&P 500 index (SPX) during stressed financial
markets. The dataset includes the following stock market crashes: October 1987,
October 1997, the turbulent period around the Asian Crisis in 1998 through 1999,
the burst of the “dotcom bubble,” and the recent subprime mortgage crisis together
with the Lehman Brothers failure. We present VaR values for the two indexes for
all of these periods. In our backtests of VaR, we evaluate the accuracy of the VaR
models. Finally, we present a closed-form solution to the AVaR for the ARMA-
GARCH model with tempered stable innovations, and compute AVaR values for
the two indexes.

The remainder of this paper is organized as follows. ARMA-GARCH models
with the α-stable and tempered stable innovations are presented in Section 2. In
Section 3, we discuss parameter estimation of the ARMA-GARCH models and
forecasting return distributions for the two indexes for daily, weekly, and monthly
returns. The VaR values and the backtesting of the ARMA-GARCH models with
α-stable and tempered stable innovations are presented and the results then com-
pared to the classical models such as the equally weighted moving average model
and ARMA-GARCH model with normal innovations. The closed-form solution
of the AVaR measure for the ARMA-GARCH model with tempered stable inno-
vations is presented in Section 4, together with values of the AVaR for the two
indexes. In Section 5, we summarize our principal findings. We briefly review
three tempered stable distributions in the appendix.

2. ARMA-GARCH model with α-stable and tempered stable innovations

Let (St)t≥0 be the asset price process and (yt)t≥0 be the the return process
of (St)t≥0 defined by yt = log St

St−1
. We propose the ARMA(1,1)-GARCH(1,1)

1See Pflug (2000) and Rockafellar and Uryasev(2000, 2002).
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model: {
yt = ayt−1 + bσt−1εt−1 + σtεt + c,

σ2
t = α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1,

(1)

where ε0 = 0, and a sequence (εt)t∈N of independent and identically distributed
(iid) real random variables. The innovation εt is assumed to be the standard nor-
mal distribution. In this case, the ARMA(1,1)-GARCH(1,1) model is referred to
as the normal-ARMA-GARCH model.

If εt is assumed to be α-stable2 and tempered stable innovations, then we ob-
tain new ARMA(1,1)-GARCH(1,1) models. In this paper, we will consider three
tempered stable distributions: the standard classical tempered stable (stdCTS),
standard modified tempered stable (stdMTS), and standard rapidly decreasing
tempered stable (stdRDTS) distributions. New ARMA(1,1)-GARCH(1,1) mod-
els with the α-stable and three tempered stable innovations are defined as follows:

• Stable-ARMA-GARCH model3: εt ∼ Sα(σ, β, µ).

• CTS-ARMA-GARCH model: εt ∼ stdCTS(α, λ+, λ−).

• RDTS-ARMA-GARCH model: εt ∼ stdRDTS(α, λ+, λ−).

• MTS-ARMA-GARCH model: εt ∼ stdMTS(α, λ+, λ−).

Definitions and more details about the three tempered stable distributions are pre-
sented in the appendix to this paper.

Substituting a = 0 and b = 0, α1 = 0, and β1 = 0 into (1), we obtain the
constant volatility (CV) market model. In the CV model, the conditional vari-
ance becomes constant, i.e. σt =

√
α0 for all t ≥ 0. Substituting a = 0 and

b = 0 into (1), we obtain the GARCH(1,1) model. If the innovation distributions
are normally distributed, the CV and GARCH(1,1) models are referred to as the
normal-CV model and the normal-GARCH model, respectively. Similarly, if in-
novation distributions are α-stable distributed, the CV and GARCH(1,1) models
are referred to as the stable-CV model and the stable-GARCH model, respec-
tively. Moreover, if the innovation distributions are the three tempered-stable dis-
tributions, the CV and GARCH(1,1) models are referred to as the tempered stable
process (e.g., CTS-CV model and CTS-GARCH model).

2Extensive analysis of α-stable distributions and their properties can be found in Samorodnit-
sky and Taqqu (1994), Rachev and Mittnik (2000), and Stoyanov and Racheva-Iotova (2004a,b).

3In subsequent discussions of the α-stable distributions in this paper, we restrict ourselves to
the non-Gaussian case in which 0 < α < 2.
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For convenience, the normal time series model refers to the normal-CV, normal-
GARCH, and normal-ARMA-GARCH models, the stable time series model refers
to stable-CV, stable-GARCH, and stable-ARMA-GARCH models, and the tem-
pered stable time series model refers to the CV, GARCH(1,1), and ARMA(1,1)-
GARCH(1,1) models with the CTS, MTS, and RDTS innovations.

3. Parameter estimation and forecasting return distribution

In this section, we estimate the parameters for the CV model, the GARCH(1,1)
model, and the ARMA(1,1)-GARCH(1,1) model. We use the historical data of the
SPX. We then analyze the probability of market crashes.

Parameters of the CV, GARCH(1,1), and ARMA(1,1)-GARCH(1,1) models
are estimated from daily, weekly, and monthly returns. For daily returns, we use
the closing price of those indexes. Weekly returns are calculated using closing
prices on every Friday. If Friday is a holiday, then we use the trading day before
that Friday. Monthly returns are calculated using the closing price of the last
trading day of each month. In Figure 1, we show the daily, weekly, and monthly
returns of the SPX.

Parameters of the normal-CV, normal-GARCH, and normal-ARMA-GARCH
models are estimated using the maximum likelihood estimation method (MLE).
For the other cases, the parameters are estimated as follows:

1. Estimate parameters α0, α1, β1, a, b, c with Student-t distributed innovation
by the MLE. For estimating the parameters of the CV models, all param-
eters except α0 are assumed to be zero. For the GARCH(1,1) model, the
parameters a and b are assumed to be zero.

2. Extract residuals using the estimated parameters.

3. Fit the parameters of the innovation distribution (the α-stable, CTS, MTS,
and RDTS distributions) to the extracted residuals using the MLE.4

3.1. Daily return of S&P 500 index
We selected five days of market crashes for daily returns of the SPX: October

19, 1987 (Black-Monday), October 27, 1997 (Asian Turmoil), August 31, 1998
(Russian Default), April 14, 2000 (Dotcom Collapse), and September 29, 2008

4See Bianchi et al. (to appear).
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(U.S. financial crisis). In order to investigate the forecasting performance of each
model, we estimate parameters using 10 years of historical data through the closest
trading day before the selected crash day. The returns and data for estimating the
parameters are described in Table 1.

In Tables 3 to 7 we report estimation results for each dataset described in Ta-
ble 1. These tables provide parameter estimation results for the CV, GARCH(1,1),
and ARMA(1,1)-GARCH(1,1) models with the normal and Student-t distributed
innovations as well as estimated parameters for the α-stable, standard CTS, stan-
dard MTS, and standard RDTS distributions. For the assessment of the goodness-
of-fit, we use the Kolmogorov-Smirnov (KS) test and also calculate the Anderson-
Darling (AD) statistic, the latter statistic providing a better test to evaluate the tail
fit.

Based on the goodness-of-fit statistics reported in Tables 3 to 7, we conclude
the following:

• For all six datasets, the three time series models based on the normal distri-
bution are rejected by the KS test at the 1% significance level.

• The stable-CV model is rejected by the KS test at the 1% significance level
in the U.S. financial crisis case.

• The KS test applied to the data ending with September 26, 2008, the day be-
fore the biggest loss during the U.S. financial crisis, shows that the CTS-CV,
the MTS-CV, the RDTS-CV, the RDTS-GARCH, and the RDTS-ARMA-
GARCH models are not rejected while all other models are rejected at the
1% significance level.

• The AD statistic for the three time series models based on the normal dis-
tribution are significantly larger than those of the other models. That means
the normal distribution cannot describe the fat-tail behavior of the empirical
innovation distribution.

Based on the estimated parameters, we can calculate the probabilities of occur-
rence of those crashes. The average times of occurrence of crashes are calculated
by

1

250 · P [εt ≤ ε∗t ]
, (2)

where ε∗t is observed residual at time t. By taking into consideration the estimates
of the above selected models, in Table 3 we provide the residuals observed the
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day before the crash, and the probabilities that the Black Monday collapse will
happen, together with the average time of occurrence as defined in (2).

From the results reported in Table 3, we see that the probabilities that the
Black Monday decline will happen based on the estimated three normal time series
models are considerably less than the other models. At the same time, average
time of occurrence based on the three normal time series models are significantly
long. That is, the crash should happen only once every 7.966·10141 years under the
normal-CV model. If we use the normal-GARCH and normal-ARMA-GARCH
models, the crash is expected to happen once every 2.554 · 1039, and 2.904 · 1039

years, respectively. Those time values are longer than the age of universe.5 In
reality, a similar fall should be expected once every 30–50 years, and hence those
three models based on the normal distributional assumption are not realistic. In
contrast, the three models based on the α-stable distribution are more realistic than
the three models based on the normal one. Average times of occurrence are 80
years, 37.26 years, and 40.31 years for the stable-CV, stable-GARCH, and stable-
ARMA-GARCH models, respectively. The nine models that consider tempered
stable distributions have better performance than the corresponding three normal
time series models. The nine tempered stable time series models have longer
average times of occurrence than the corresponding stable time series model, but
significantly shorter than those of the corresponding normal time series models.

In Tables 4 to 6 we present the empirical analysis conducted for the Asian
Turmoil (Table 4), the Russian Default (Table 5), and the Dotcom Collapse (Table
6). In these investigations, we obtain similar results as in the Black Monday case.
That is, the normal time series models are not realistic. Average times to occur-
rence of the crash for the three stable time series models are shorter than the other
models investigated.

We also investigate the probability that the crash on September 29, 2008 would
occur. On that day the SPX declined 9%. This crisis was caused by the default
of Lehman Brothers on September 15, 2008, and the market at that time was
characterized by increased volatility. We estimate parameters using the data until
September 26, 2008 and forecast the probability that the crash on September 29,
2008 will occur. Average times of occurrences are 1.99 · 1013, 502.1, and 732.3
years for the normal-CV, normal-GARCH, and normal-ARMA-GARCH models,
respectively. That is, we do not obtain any serious alerts from the three normal

5Astronomers estimated that the age of universe is between 12 and 14 billion years. See
http://map.gsfc.nasa.gov/.
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time series models even though the models do consider the volatility clustering
effect. Constant volatility models such as the CTS-CV, MTS-CV, and RDTS-CV
models do not perform satisfactorily either. In contrast, the α-stable and tempered
stable time series models that account for volatility clustering have better fore-
casting power. Those models provide very short times of occurrence for the crisis,
and hence one can consider them to be superior early-warning models.

3.2. Weekly and monthly returns of S&P 500 index
Next, we selected three of the market crashes analyzed in Section 3.1. How-

ever, instead of considering daily returns, we analyze the time series of SPX
weekly returns ending in the week October 19–23, 1987 (Black Monday), April
10–14, 2000 (Dotcom Collapse), and October 6–10, 2008 (U.S. financial cri-
sis). In order to investigate the forecasting performance of each model, we esti-
mate parameters for historical weekly returns one week before the selected crash
days. Then, we also analyze the time series of SPX monthly returns, selecting the
months October 1987 and October 2008. The SPX dropped 24.54%, and 18.42%
in October 1987 and October 2008, respectively. Table 2 describes returns and
data considered in the estimation.

Tables 8 to 12 report the estimated parameters of the CV, GARCH, and ARMA-
GARCH models with normal and Student-t distributed innovations, the estimates
relative to α-stable, standard CTS, standard MTS, and standard RDTS distribu-
tions, the KS statistics with the corresponding p-values, and the AD statistics for
all the models considered, for weekly and monthly returns. These results indicate
the following:

• For Black Monday and the U.S. financial crisis, the normal-CV and the
stable-ARMA-GARCH models are rejected by the KS test at the 1% signif-
icance level.

• In all cases, the stable-CV model is rejected by the KS test at the 1% signif-
icance level.

• In the U.S. financial crisis case, the stable-GARCH model is rejected by the
KS test at the 1% significance level.

• The three stable and nine tempered stable time series models have a better
AD statistic than those of the three normal time series models.

• The nine tempered stable time series models are not rejected by the KS test
for all datasets.
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Based on Tables 11 and 12, we conclude the following:

• The KS test does not reject any time series model at the 1% significance
level.

• The three normal time series models have significantly larger AD statistics
than the other models. That is, the normal time series models cannot explain
the tail properties of the monthly return distribution better than the other
models investigated.

Based on the estimated parameters, we can calculate the probability that those
crashes will happen. In Tables 8 to 10 we also provide observed residuals for
weekly returns and probabilities that the collapse will happen in weekly analysis.
In Tables 11 and 12 we provide the observed residuals for monthly returns, as
well as the probabilities that the collapse will happen in monthly analysis. In the
weekly analysis, the average time of occurrence is calculated by

1

53 · P [εt ≤ ε∗t ]
,

where ε∗t is observed residual of weekly returns, while in the monthly analysis, it
is calculated by

1

12 · P [εt ≤ ε∗t ]
,

where ε∗t is observed residual for monthly returns.
Following are fair conclusions from the results reported in the tables:

• Average time of occurrences of the three normal time series models are very
large and unrealistic in both the weekly analysis and the monthly analysis.

• The three stable time series models are more realistic than the three normal
time series models in view of average time of occurrences.

• In ARMA-GARCH models, average times of occurrence of the stable-AR-
MA-GARCH models for both the weekly analysis and the monthly analysis
are shorter than the other models investigated.

• Average times to occurrences of the CTS-ARMA-GARCH, MTS-ARMA-
GARCH, and RDTS-ARMA-GARCH are longer than the three normal-
ARMA-GARCH models and shorter than the three stable-ARMA-GARCH
models for the weekly and monthly cases, respectively.
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• In the CV and GARCH models, we obtain the same conclusion as the
ARMA-GARCH model cases.

4. VaR and AVaR for ARMA-GARCH model

In this section we discuss the VaR and AVaR for the ARMA-GARCH model
with stable and tempered stable innovations.

4.1. VaR and backtesting
The definition of VaR with the significance level η is

VaRη(X) = − inf{x ∈ R|P (X ≤ x) > η}.

Considering the ARMA-GARCH model defined, we can define the VaR for the
information until time t with significance level η as

VaRt,η(yt+1) = − inf{x ∈ R|Pt(yt+1 ≤ x) > η},

where Pt(A) is the conditional probability of a given event A for the information
until time t.

We consider five models: the normal-CV, the exponentially weighted mov-
ing average (EWMA),6 the normal-ARMA-GARCH, the stable-ARMA-GARCH,
and the CTS-ARMA-GARCH. For all five models we estimate the parameters
by considering the time series from December 14, 2004 to December 31, 2008.
For each daily estimation, we used about 10 years of historical return data for
the SPX. We then computed VaRs for the five models. Figure 2 shows the SPX
daily returns and negative values of daily VaRs with 1% significance level (i.e.
−VaRt,0.01(yt+1)) for all five models considered. Based on those figures, we ob-
serve that the normal-CV model is not able to capture market crashes.

For evaluating the accuracy of VaR for the five models, we perform the back-
testing by Kupiec’s proportion of failures test developed by Kupiec (1995). For
this, the number of violations (violations occur when the actual loss exceeds the
estimate) from the empirical data are compared to the accepted number of ex-
ceedances at a given significant level. In Table 13 we report the number of vio-
lations and p-values of Kupiec’s backtest for the SPX. We count the number of

6We follow the EWMA model of J.P. Morgan RiskMetrics. In the model, the daily volatility
formula is given by σ2

t = λσ2
t−1 + (1− λ)y2

t−1 with λ = 0.94.
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violations and the corresponding p-values for 1%-VaRs for the five models by
considering different time periods: 1, 2, and 4 years.

From Table 13, we conclude the following for the SPX:

• All five models are not rejected at the significance level of 5% in the period
from (1) December 14, 2004 to December 15, 2005 and from December 16,
2005 to December 20, 2006 (1-year backtest), and (2) December 14, 2004
to December 20, 2006 (2-year backtest).

• For all crash dates investigated, the stable-ARMA-GARCH model is not re-
jected at the significance level of 5%, and the CTS-ARMA-GARCH model
is not rejected at the significance level of 1%.

• The normal-CV, EWMA, normal-ARMA-GARCH models are rejected, but
the stable-ARMA-GARCH and CTS-ARMA-GARCH models are not re-
jected at the significance level of 5% for the period from December 21,
2006 to December 31, 2008 (2-year backtest) and December 14, 2004 to
December 31, 2008 (4-year backtest).

According to the 1-year backtest, the discrepancy between the normal-CV,
EWMA, normal-ARMA-GARCH, and stable and CTS-ARMA-GARCH is ob-
served one year prior the crash of 2008. Hence, we consider that discrepancy as
early warning indicators of a forthcoming market crash.

4.2. AVaR for the ARMA-GARCH model with tempered stable innovations
In this section, we discuss AVaR for the ARMA-GARCH model with CTS in-

novation, and provide an empirical example of the AVaR under the CTS-ARMA-
GARCH model for the SPX.

The definition of AVaR with the significance level η is

AVaRη(X) =
1

η

∫ η

0

VaRε(X)dε

where VaRε(X) is the VaR of X with the significance level ε. If the distribution
of X is continuous, then we have

AV aRη(X) = −E [X|X < −V aRη(X)] .

Consider the ARMA-GARCH model defined in (1). Since for every t > 0 the
distribution of yt is continuous, we define the conditional AVaR of yt+1 for the
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information until time t with the significance level η by the following form:

AV aRt,η(yt+1) = −Et [yt+1|yt+1 < −V aRt,η(yt+1)] ,

where V aRt,η(yt+1) is the VaR of yt+1 for the information until time t with the
significance level η and Et is the conditional expectation for the information until
time t. By equation (1), we have

AV aRt,η(yt+1)

= −Et [ayt + bσtεt + σt+1εt+1 + c|yt+1 < −V aRt,η(yt+1)] .

Since yt, σt, εt, and σt+1 are determined at time t, we have

AV aRt,η(yt+1)

= −(c + ayt + bσtεt + σt+1Et [εt+1|yt+1 < −V aRt,η(yt+1)]).

Moreover, since we can prove that

−V aRt,η(yt+1) = ayt + bσtεt + σt+1(−V aRt,η(εt+1)) + c,

we obtain

AV aRt,η(yt+1) = −(c + ayt + bσtεt + σt+1Et [εt+1|εt+1 < −V aRt,η(εt+1)]),

or
AV aRt,η(yt+1) = −(c + ayt + bσtεt) + σt+1AV aRt,η(εt+1).

Since εt+1 is independent of the information until time t and it is continuously
distributed, we have

AV aRt,η(εt+1) = −E [εt+1|εt+1 < −V aRη(εt+1)] = AV aRη(εt+1).

If εt+1 is tempered stable, then the formula AV aRt,η(εt+1) can be obtained by the
following proposition (see Kim et al. (to appear a)).7

Proposition Let Y be a random variable for the return of an asset or portfolio.

7AVaR is defined on the loss distribution in Kim et al. (to appear a). We changed the proposition
because we are looking at the return distribution.
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Suppose Y is infinitely divisible and the distribution function of Y is continuous.
If there is ρ > 0 such that |φY (−u + iρ)| < ∞ for all u ∈ R, then

AVaRη(Y ) (3)

= VaRη(Y )− e−VaRη(Y )ρ

πη
<

(∫ ∞

0

e−iuVaRη(Y )φY (−u + iρ)

(−u + iρ)2
du

)
.

In Figure 3, we report the SPX daily returns and daily values of (−AVaRt,0.01

(yt+1)) for the normal-ARMA-GARCH and CTS-ARMA-GARCH models. Com-
paring Figure 3 to Figure 2, one can graphically check the differences between
these two risk measures. In particular, AVaR seems to be more conservative un-
der stressed scenarios. This means that AVaR can be considered a good indicator
during highly volatile markets.

In Figure 4, we present the daily differences for the S&P500 between AVaRt,0.01

(yt+1) for the CTS-ARMA-GARCH model and VaRt,0.01(yt+1) for the normal-
ARMA-GARCH model. The spreads from July 2007 to September 2008 are typ-
ically larger than the spreads until July 2007. Finally, the index declines sharply
in September 2008. The same phenomenon is observed for the the daily differ-
ences of AVaRt,0.01(yt+1) between the normal-ARMA-GARCH model and CTS-
ARMA-GARCH model presented in Figure 5. Hence, we consider the increasing
spread between 1%-AVaR for the CTS-ARMA-GARCH model and 1%-VaR (or
1%AVaR) for the normal-ARMA-GARCH model and as early warning indicators
of a pending market crash.

5. Conclusion

In this paper, we discussed models with stable and tempered stable innova-
tions, and provided an assessment of their forecasting power relative to other mod-
els widely used in the industry. The proposed models are applied to the analysis
of the S&P 500 index during highly volatile markets.

Our first finding is that the time series models based on the assumption of a
normal innovation do not provide a reliable forecast of the future distribution of
returns, even if they account for volatility clustering. In particular, we our em-
pirical evidence indicates that time series models with stable and tempered stable
innovations have better predictable power in measuring market risk compared to
standard models based on the normal distribution assumption.

We also analyzed the behavior of VaR depending on different distributional
assumption. We backtested VaR by considering the last four years of log returns
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for the SPX. The Kupiec’s proportion of failures test rejects the three normal time
series models considered, but does not reject the stable and tempered stable time
series models.

Finally, we derived a closed-form solution for the AVaR for the ARMA-GARCH
models with tempered stable innovation and applied this formula to calculate daily
AVaRs with the CTS-ARMA-GARCH models with respect to the last four years
of data.

The principal findings of the paper are twofold. First, in a low volatile market,
the models proposed in this paper are practically identical to the corresponding
Gaussian models. Second, the proposed models can be used as early warning
systems for a forthcoming sharp market downturn.
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Boyarchenko, S. I., Levendorskiĭ, S. Z., 2000. Option pricing for truncated Lévy
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Appendix

In this section we review three classes of tempered stable distributions for
modeling a return distribution. Generally, these distributions do not have closed-
form solutions for their probability density function. Instead, they are defined by
their characteristic function.

Let α ∈ (0, 2) \ {1}, C, λ+, λ− > 0, and m ∈ R.

1. A random variable X is said to follow the classical tempered stable (CTS)
distribution if the characteristic function of X is given by

φX(u) = φCTS(u; α, C, λ+, λ−,m) (4)
= exp(ium− iuCΓ(1− α)(λα−1

+ − λα−1
− )

+ CΓ(−α)((λ+ − iu)α − λα
+ + (λ− + iu)α − λα

−)),

and we denote X ∼ CTS(α, C, λ+, λ−, m).8

2. A random variable X is said to follow the modified tempered stable (MTS)
distribution9 if the characteristic function of X is given by

φX(u) = φMTS(u; α, C, λ+, λ−,m) (5)
= exp(ium + C(GR(u; α, λ+) + GR(u; α, λ−))

+ iuC(GI(u; α, λ+)−GI(u; α, λ−))),

where for u ∈ R,

GR(x; α, λ) = 2−
α+3

2
√

πΓ
(
−α

2

) (
(λ2 + x2)

α
2 − λα

)

8The CTS distribution has been introduced under different names including: truncated
Lévy flight by Koponen (1995), the KoBoL distribution by Boyarchenko and Levendorskiĭ (2000),
and the CGMY distribution by Carr et al. (2002).

9See Kim (2005) and Kim et al. (2009).
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and

GI(x; α, λ) =2−
α+1

2 Γ

(
1− α

2

)
λα−1

[
2F1

(
1,

1− α

2
;
3

2
;−x2

λ2

)
− 1

]
,

where 2F1 is the hypergeometric function. We denote an MTS distributed
random variable X by X ∼ MTS( α, C, λ+, λ−, m).

3. A random variable X is said to follow the rapidly decreasing tempered sta-
ble (RDTS) distribution 10 if the characteristic function of X is given by

φX(u) = φRDTS(u; α,C, λ+, λ−,m) (6)
= exp (ium + C(G(iu; α, λ+) + G(−iu; α, λ−))) ,

where

G(x; α, λ) = 2−
α
2
−1λαΓ

(
−α

2

) (
M

(
−α

2
,
1

2
;

x2

2λ2

)
− 1

)

+ 2−
α
2
− 1

2 λα−1xΓ

(
1− α

2

)(
M

(
1− α

2
,
3

2
;

x2

2λ2

)
− 1

)
,

and M is the confluent hypergeometric function. In this case, we denote
X ∼ RDTS(α, C, λ+, λ−, m).

The cumulants of X are defined by

cn(X) =
∂n

∂un
log E[eiuX ]|u=0, n = 1, 2, 3, · · · .

For the three tempered stable distributions, we have E[X] = c1(X) = m. The
cumulants of the three tempered stable distributions for n = 2, 3, · · · are presented
in the following table:

Distribution of X cn(X) for n = 2, 3, · · ·
CTS CΓ(n− α)(λα−n

+ + (−1)nλα−n
− )

MTS 2n−α+3
2 CΓ

(
n+1

2

)
Γ

(
n−α

2

)
(λα−n

+ + (−1)nλα−n
− )

RDTS 2
n−α−2

2 CΓ
(

n−α
2

) (
λα−n

+ + (−1)nλα−n
−

)

10See Kim et al. (to appear b).
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By substituting the appropriate value for the two parameters m and C into the
three tempered stable distributions, we can obtain tempered stable distributions
with zero mean and unit variance. That is,

1. X ∼ CTS(α, C, λ+, λ−, 0) has zero mean and unit variance by substituting

C =
(
Γ(2− α)(λα−2

+ + λα−2
− )

)−1
, (7)

The random variable X is referred to as the standard CTS distribution with
parameters (α,λ+,λ−) and denoted by X ∼ stdCTS(α, λ+, λ−).

2. X ∼ MTS(α, C, λ+, λ−, 0) has zero mean and unit variance by substituting

C = 2
α+1

2

(√
πΓ

(
1− α

2

) (
λα−2

+ + λα−2
−

))−1

(8)

The random variable X is referred to as the standard MTS distribution and
denoted by X ∼ stdMTS(α, λ+, λ−).

3. X ∼ RDTS(α, C, λ+, λ−, 0) has zero mean and unit variance by substitut-
ing

C = 2
α
2

(
Γ

(
1− α

2

) (
λα−2

+ + λα−2
−

))−1

(9)

The random variable X is referred to as the standard RDTS distribution and
denoted by X ∼ stdRDTS(α, λ+, λ−).
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Table 1: Data for analyzing daily return of the SPX

Crash Date Return Data for forecasting Number of
observations

Black Monday Oct. 19,1987 −23% daily return ending 2,490
with Oct. 16, 1987

Asian Turmoil Oct. 27,1997 −7% daily return ending 2,504
with Oct. 24, 1997

Russian Default Aug. 31,1998 −7% daily return ending 2,503
with Aug. 28, 1998

Dotcom Collapse Apr. 14,2000 −6% daily return ending 2,504
with Apr. 13, 2000

U.S. Financial Crisis Sept. 29,2008 −9% daily return ending 2,505
with Sept. 26, 2008

Table 2: Data for analyzing weekly and monthly returns of the SPX

Data for weekly returns

Crash Date Return Data for forecasting Number of
observations

Black Monday Oct. 19 − 23, 1987 −13.01% weekly return ending 1,461
with Oct. 16, 1987

Dotcom Collapse Apr. 10 − 14, 2000 −11.14% weekly return ending 1,577
with Apr. 7, 2000

U.S. Financial Oct. 6 − 10, 2008 −20.08% weekly return ending 1,578
Crisis with Oct. 3, 2008

Data for monthly returns

Crash Date Return Data for forecasting Number of
observations

Black Monday Oct. 1987 −24.54% monthly return ending 332
with Sept. 1987

U.S. Financial Oct. 2008 −18.42% monthly return ending 359
Crisis with Sept. 2008
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Figure 1: Daily, weekly, and monthly returns of the SPX from January 1987 to
December 2008.
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Figure 2: VaR (−VaRt,η(yt+1)) for the SPX returns for the normal-CV, the EWMA,
the normal-ARMA-GARCH, the stable-ARMA-GARCH, and the CTS-ARMA-GARCH
model. 34
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Figure 3: The 1%-AVaRs (−AVaRt,0.01(yt+1)) of the SPX, for the normal-ARMA-
GARCH and CTS-ARMA-GARCH models.
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Figure 4: The differences between 1%-VaR for the normal-ARMA-GARCH and 1%-
AVaR for the CTS-ARMA-GARCH models with respect to the SPX. The differences are
increasing in the solid rectangles.
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Figure 5: The differences between 1%-AVaR for the normal-ARMA-GARCH and 1%-
AVaR for the CTS-ARMA-GARCH models with respect to the SPX. The differences are
increasing in the solid rectangles.
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