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Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner∗
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Abstract

In this work we consider the following problem. Given a planar graph G with maximum
degree 4 and a function flex : E −→ N0 that gives each edge a flexibility. Does G admit a
planar embedding on the grid such that each edge e has at most flex(e) bends? Note that
in our setting the combinatorial embedding of G is not fixed.

We give a polynomial-time algorithm for this problem when the flexibility of each edge
is positive. This includes as a special case the problem of deciding whether G admits a
drawing with at most one bend per edge.

1 Introduction

Orthogonal graph drawing is one of the most important techniques for the human-readable
visualization of complex data. Its æsthetic appeal derives from its simplicity and straightfor-
wardness. Since edges are required to be straight orthogonal lines—which automatically yields
good angular resolution and short links—the human eye may easily adapt to the flow of an
edge. The readability of orthogonal drawings can be further enhanced in the absence of cross-
ings, i.e., if the underlying data exhibits planar structure. Unfortunately, not all planar graphs
have an orthogonal drawing in which each edge may be represented by a straight horizontal
or vertical line. In order to be able to visualize all planar graphs, nonetheless, we allow edges
to have bends. Since bends obfuscate the readability of orthogonal drawings, however, we are
interested in minimizing the number of bends on the edges. Previous approaches to orthogo-
nal graph drawing in the presence of bends focus on either the minimization of the maximum
number of bends per edge or the total number of bends in the drawing.

In typical applications, however, edges have varying importance for the readability depend-
ing on their semantic and their importance for the application. Thus, it is convenient to allow
some edges to have more bends than others.

We consider the following orthogonal graph drawing problem, which we call FlexDraw.
Given a 4-planar graph G, i.e., G is planar and has maximum degree 4, and for each edge e
a non-negative integer flex(e), its flexibility. Does G admit a planar embedding on the grid
such that each edge e has at most flex(e) bends? Such a drawing of G on the grid is called
a flex-drawing. For a graph with flex(e) > 0 for each edge e in G we shortly say that G has
positive flexibility.

The problem we consider generalizes a well-studied problem in orthogonal graph drawing,
namely the problem of deciding whether a given graph is β-embeddable for some non-negative
integer β. A 4-planar graph is β-embeddable if it admits an embedding on the grid with at most
β bends per edge.

Garg and Tamassia [5] show that it is NP-hard to decide 0-embeddability. The reduction
crucially relies on the ability to construct graphs with rigid embeddings. Later, we show that
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2 PRELIMINARIES 2

this is impossible if we allow at least one bend per edge. This is a key observation which yields,
among others, an efficient algorithm for recognizing 1-embeddable graphs. For special cases,
namely planar graphs with maximum degree 3 and series-parallel graphs, Di Battista et al. [1]
gave an algorithm that minimizes the total number of bends and hence solves 0-embeddability.
On the other hand, Biedl and Kant [2] show that every 4-planar graph admits a drawing with
at most two bends per edge with the only exception of the octahedron, which requires an edge
with three bends. Similar results are obtained by Liu et al. [9].

Liu et al. [8] claim to have found a characterization of the planar graphs with minimum
degree 3 and maximum degree 4 that admit an orthogonal embedding with at most one bend
per edge. They also claim that this characterization can be tested in polynomial time. Unfor-
tunately, their paper does not include any proofs and to the best of our knowledge a proof of
these results did not appear. Morgana et al. [11] characterize the class of plane graphs (i.e.,
planar graphs with a given embedding) that admit a 1-bend embedding on the grid by forbid-
den configurations. They also present a quadratic algorithm that either detects a forbidden
configuration or computes a 1-bend embedding.

If the combinatorial embedding of a 4-planar graph is given, Tamassia’s flow network can be
used to minimize the total number of bends [12]. Note that this approach may yield drawings
with a linear number of bends for some of the edges. Given a combinatorial embedding that
admits a 1-bend embedding, however, the flow network can be modified in a straightforward
manner to minimize the total number of bends using at most one bend per edge.

The problem we consider involves considering all embeddings of a planar graph. Many
problems of this sort are NP-hard. For instance, 0-embeddability is NP-hard [5], even though
it can be decided efficiently if we are given an embedding by minimizing the total number of
bends.

Contribution and Outline. In this work we give an efficient algorithm that solves Flex-
Draw for graphs with positive flexibility. Since FlexDraw contains the problem of 1-embed-
dability as a special case this closes the complexity gap between the NP-hardness result for
0-embeddability by Garg and Tamassia [5] and the efficient algorithm for computing 2-embed-
dings by Biedl and Kant [2].

We present some preliminaries in Section 2. In Section 3 we study orthogonal flex-drawings
of graphs with a fixed embedding and introduce the maximum rotation of a graph as a measure
of how “flexible” it is. In Section 4 we show that replacing certain subgraphs with graphs that
behave similarly does not change the maximum rotation. Based on this fact and the SPQR-
tree we give an algorithm that solves FlexDraw for biconnected 4-planar graphs with positive
flexibility. We extend our algorithm to arbitrary 4-planar graphs with positive flexibility in
Section 5.

2 Preliminaries

Orthogonal representation. The orthogonal representation introduced by Tamassia [12]
describes orthogonal drawings of plane graphs, by listing the faces as sequences of bends. The
advantage of the orthogonal representation is, that it neglects the lengths of the segments. Thus,
it is possible to apply different operations on the drawing without the need to worry about the
exact geometry. Our orthogonal representation is always normalized, i.e., each edge has only
bends in one direction; this slightly differs from the notion introduced by Tamassia.

The orthogonal representation of a plane graph G is defined as a set of lists R containing a
listR(fi) for each face fi of G. For each face fi the listR(fi) is a circular list of edge descriptions
containing the edges on the boundary of fi in clockwise (counter-clockwise if fi is the external
face) order. Each description r ∈ R(fi) contains the following information: edge(r) denotes the
edge represented by r, bends(r) is an integer whose absolute value is the number of 90◦-bends
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of edge(r), where positive numbers represent bends to the right and negative numbers bends
to the left. For a given edge description r ∈ R(fi) we denote its successor in R(fi) by r′ and
represent the angle α between edge(r) and edge(r′) in fi by their rotation rot(r, r′) = 2−α/90◦.
Every edge has exactly two edge descriptions, if r is one of them, the other is denoted by r̄.
Since each face forms a rectilinear polygon, every orthogonal representation R of an orthogonal
drawing has the following three properties.

I Each edge description r is consistent with r̄, i.e., bends(r̄) = −bends(r).

II The interior bends of any face fi sum up to 4 and the exterior bends to -4:

∑
r∈R(fi)

(
bends(r) + rot(r, r′)

)
=

{
−4, if f is the external face,

+4, if f is an internal face.

III The angles around every node sum up to 360◦.

Given an orthogonal representation R of a graph, a corresponding orthogonal drawing can be
computed efficiently [12]. Hence, it is sufficient to work with orthogonal representations. An
orthogonal representation is valid for a given flexibility function flex if | bends(r)| ≤ flex(edge(r))
for each edge description r.

For a planar graph G = (V,E) with orthogonal representation R and two vertices s and t
on the outer face f1, we denote by πR(s, t) the path in R(f1) that connects s and t in counter-
clockwise direction. Such a path π = π(s, t) consists of consecutive edge descriptions r1, . . . , rk.
We define the rotation of π as

rotR(π) =

k∑
i=1

bends(ri) +

k−1∑
i=1

rot(ri, ri+1).

Moreover, if v is a vertex of G that has exactly one angle in the outer face, we denote by rotR(v)
the rotation of this angle. Note that, for a single edge description r we have rot(r) = bends(r).
If it is clear from the context which orthogonal representation is meant we omit the indices of
π and rot. The concept of rotation is similar to the spirality defined by Di Battista et al. [1].

The value rot(π(s, t)) describes the shape of the path π(s, t) in the orthogonal representation
in terms of the angle between its start- and its endpoint. Fixing the rotation of π(s, t), π(t, s)
and the outer angles at s and t in a sense determines the shape of the outer face. In Section 4,
we will exploit this by replacing certain subgraphs of G with simpler graphs whose outer faces
have the same shapes.

Connectivity, st-graphs and the SPQR-tree. A graph is connected if there exists a path
between any pair of vertices. A separating k-set is a set of k vertices whose removal disconnects
the graph. Separating 1-sets and 2-sets are cutvertices and separation pairs. A graph is bicon-
nected if it does not have a cut vertex and triconnected if it does not have a separation pair.
The maximal biconnected components of a graph are called blocks.

The block-cutvertex tree of a connected graph is a tree whose nodes are the blocks and
cutvertices of the graph. In the block-cutvertex tree a block B and a cutvertex v are joined by
an edge if v belongs to B.

A weak st-graph is a 4-planar graph G = (V,E) with two designated vertices s and t such
that the graph G+st is planar and has maximum degree 4. An st-graph is a weak st-graph such
that G+ st is biconnected. An orthogonal representation R of a (weak) st-graph with positive
flexibility is valid if each edge e has at most flex(e) bends and s and t are embedded on the
outer face. A valid orthogonal representation of a (weak) st-graph is tight if all angles at s and
t in inner faces are 90◦.
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We distinguish st-graphs with deg(s),deg(t) ≤ 2 by the degrees of s and t. An st-graph is
of Type (1,1) if deg(s) = deg(t) = 1, it is of Type (1,2) if one of them has degree 1 and the
other one has degree 2 and it is of Type (2,2) if deg(s) = deg(t) = 2.

To handle the decomposition of biconnected graphs into triconnected components we use the
SPQR-tree, which was introduced by Di Battista and Tamassia [3, 4]. A detailed description of
the SPQR-tree can be found in Appendix A and in the literature [3, 4, 6]. Here we just give a
sketch and some notation.

The SPQR-tree T of a graph G is a rooted tree that is determined by the split pairs of G. A
split pair is a pair of vertices that are either connected by an edge or that is a separation pair.
In the latter case the corresponding connected components are called the split components of
the split pair.

The SPQR-tree T has four different types of nodes, namely S-,P-,Q- and R-nodes. Each
node µ of T has an associated biconnected multigraph, its skeleton, denoted by skel(µ), which
can be seen as a simplified version of the original graph. An edge uv in skel(µ) indicates that
{u, v} is a split pair and the edge uv represents one or more split components of {u, v}. The
pertinent graph of a node µ, denoted by pert(µ) is the graph that is represented by the subtree
of T with root µ. Note that in particular each pertinent graph is an st-graph. The SPQR-tree of
a graph G represents all planar embeddings of G in the sense that choosing planar embeddings
for all skeletons of T corresponds to a choosing a planar embedding of G and vice versa.

Our approach. We start out with an observation. Let G be a 4-planar graph with positive
flexibility and let {s, t} be a split pair of G that splits G into two subgraphs G1, G2 and let eref

be an edge of G1. Let ρ be the maximum rotation of π(s, t) over all embeddings of G2 where s
and t are on the outer face.

If G2 is of Type (1,1) then obviously the following holds. If G admits a valid orthogonal
drawing with the given flexibility such that eref is embedded on the outer face then also the
graph G′ where G2 is replaced by a single edge st with flexibility ρ admits such a drawing.
Graphs of Type (1,2) and (2,2) allow for similar substitutions.

Thus we can substitute st-graphs of each type with a small gadget graph to obtain a new
graph G′ such that if G has a valid drawing then also G′ has one. We show that the converse is
also true, i.e., if the graph G′ admits such an embedding then also G does. We then exploit this
characterization algorithmically using the SPQR-tree of G to successively replace subgraphs
of G by simpler graphs.

3 The Maximum Rotation with a Fixed Embedding

The goal of this section is to derive a description of the valid orthogonal representations of a
given (weak) st-graph with positive flexibility and a fixed embedding. Namely, we prove that
the values that can be obtained for rot(π(s, t)) form an interval for these graphs. We show
that if there exists a valid orthogonal representation R with rotR(π(s, t)) ≥ 0 then there exists
an orthogonal representation R′ with rotR′(π(s, t)) = rotR(π(s, t))− 1, which can be obtained
from R by only altering the number of bends on certain edges.

To model the possible changes of an orthogonal representation R of a (weak) st-graph G
that can be performed by only changing the number of bends on edges we introduce the flex
graph G× of G with respect to R, which is based on the bidirected dual graph of G. Thus, the
flex graph is a directed multigraph. See Fig. 1a for an illustration. We start out by adding to
G the edge st and embed it into the outer face of G thus splitting the outer face into two faces
f` and fr, where f` is bounded by π(s, t) and the new edge {s, t} and fr is bounded by π(t, s)
and {s, t}. We denote this graph by Ḡ and its dual graph by Ḡ∗. We set V × = V (Ḡ∗) and we
define E× as follows. For each edge e of G denote its incident faces in Ḡ by fu and fv and let ru
and rv be the edge descriptions of e in R(fu) and R(fv), respectively. We add the edge (fu, fv)
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t

f` fr
e1

e2
a) e2

s

t

f` fr

b) s

t

f` fr

c)

Figure 1: An st-graph with flexibility 1 for all edges with rot(π(s, t)) = 1 and its flex graph G×

(a), after removal of bridge e1 (b), and removal of edge e2 (c).

if −flex(e) < bends(ru) and, analogously, we add (fv, fu) if −flex(e) < bends(rv). Consider
an edge (fu, fv) of G× and let ru and rv be the edge descriptions of the corresponding edge e
in G. The fact that (fu, fv) ∈ E× indicates that it is possible to decrease bends(ru) (and thus
increase bends(rv)) by at least 1 without violating the flexibility of e.

Assume that there exists a simple directed path from f` to fr in G×. Let f` = f1, f2, . . . , fk =
fr be this path. We construct a new orthogonal representation R′ from R as follows. For each
edge fifi+1, i = 1, . . . , k−1, let ei be the corresponding edge of G and let ri ∈ R(fi), r̄i ∈ R(fi+1)
be its edge descriptions. We obtain R′ from R by decreasing bends(ri) by 1 and increasing
bends(r̄i) by 1 for i = 1, . . . , k − 1. First, it is clear that R′ satisfies Properties I and III since
we increase and decrease the number of bends consistently and we do not change any angles at
vertices. Property II holds since each face of G has either none of its edge descriptions changed
or exactly one of them is increased by 1 and exactly one of them is decreased by 1. Moreover,
since the path starts at f` and ends at fr we have that rotR′(π(s, t)) = rotR(π(s, t)) − 1. We
now show that such a path exists if rot(π(s, t)) ≥ 0.

Lemma 1. Let G be a weak st-graph with positive flexibility and let R be a valid orthogonal
representation of G with rotR(π(s, t)) ≥ 0. Then the flex graph G× contains a directed path
from f` to fr.

Proof. Assume that G is a minimal counter example such that G× does not contain such a path.
First, we show that in G× there exists at least one edge starting from f`. Let π(s, t) be composed
of the edge descriptions r1, . . . , rk in R(f), where f is the outer face of G. Then, by assumption
we have rot(π(s, t)) =

∑k
i=1 bends(ri) +

∑k−1
i=1 rot(ri, ri+1) ≥ 0. Since rot(ri, ri+1) ≤ 1 for

i = 1, . . . , k − 1 we have that
∑k

i=1 bends(ri) ≥ −k + 1 and hence there is at least one rj with
bends(rj) ≥ 0. Hence, G× contains an edge corresponding to edge(rj) that starts at f`. This
shows that there always exists an edge (f`, fu) in G×. We distinguish three types of edges
(f`, fu). If fu = fr then (f`, fu) is the desired path.

If fu = f` the corresponding edge e of G is a bridge whose removal does not disconnect s
and t, see Fig. 1b, then let H be the connected component of G− e containing s and t and let
S be the restriction of R to H. For the outer face of H we have that rotS(π(s, t)) + rotS(s) +
rotS(π(t, s))+rotS(t) = −4. Since πR(t, s) = πS(t, s) we have that rotS(π(t, s)) = rotR(π(t, s)).
Moreover, since we only remove edges the angles at s and t (and thus their rotations) do
not decrease, i.e., we have rotS(t) ≤ rotR(t) and rotS(s) ≤ rotR(s). Hence, we have that
rotS(π(s, t)) ≥ −4 − rotR(π(t, s)) − rotR(s) − rotR(t) = rotR(π(s, t)) ≥ 0. Since H has fewer
edges than G it is not a counter example and its flex graph H× contains a path from f` to fr.
Since H× is a subgraph of G× this contradicts the assumption that G is a counter example.

Otherwise, fu is an internal face of G, see Fig. 1c. Let e be the corresponding edge of G.
Let H := G − e and let S be the orthogonal representation R restricted to H. Note that the
flex graph of H× of H can be obtained from G× by removing all edges between f` and fu and
merging f` and fu into a single node f ′`. As above we obtain that rotS(π(s, t)) ≥ 0 and hence
in H× there exists a path from f ′` to fr. The corresponding path in G× (after undoing the
contraction of f` and fu) either starts at f` or at fu and ends at fr. In the former case we have
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f1

(a)

t

s1s2

π(s1, s2)

(b)

t

s1
s2
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t
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f2
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(d)

Figure 2: Orthogonal representation that is not tight since s has an angle of 180◦ in f2 (a).
Splitting s into s1 and s2 yields the path π(s1, s2) with rotation at least 4 (b), hence the rotation
can be reduced (c). Merging s1 and s2 back into s yields a tight orthogonal representation (d).

found our path, in the latter case the path together with the edge (f`, fu) forms the desired
path. Again this contradicts the assumption that G is a counter example.

Recall that a valid orthogonal representation of a (weak) st-graph is tight if the inner angles
at s and t are 90◦. We show that a valid orthogonal representation can be made tight without
decreasing rot(π(s, t)). The proof is illustrated in Fig. 2.

Lemma 2. Let G be a weak st-graph with positive flexibility and let R be a valid orthogonal
representation. Then there exists a valid orthogonal representation R′ of G with the same planar
embedding such that R′ is tight, rotR′(π(s, t)) ≥ rotR(π(s, t)) and rotR′(π(t, s)) ≥ rotR(π(t, s)).

Proof. Let f1 be the outer face and assume that f2 is an inner face incident to s whose inner
angle at s is larger than 90◦. We show how to decrease this angle by 90◦ by only changing the
number of bends on certain edges. Hence, by applying the described operation iteratively, we
can reduce all internal angles at inner faces incident to s and t to 90◦.

Let e1 and e2 be the two edges incident to s such that e1 occurs before e2 when traversing
the boundary of f2 clockwise starting from s. Assume that e1 is incident to f1 (the case that
only e2 is incident to f1 works similarly).

We split s into two vertices s1 and s2. We attach to e1 to s1 and we attach to s2 the remaining
edges incident to s. Let the resulting graph be H and let S be the orthogonal representation
of H induced by R. Since f2 is an internal face its total rotation in R is 4 and since the angle
at s was at least 180◦ we have that rotS(π(s1, s2)) ≥ 4. By Lemma 1 the flex graph H× of H
contains a simple path that reduces the rotation along π(s1, s2) by 1. This path either contains
an edge stemming from π(s2, t) or an edge of π(t, s1) and hence either increases rotS(π(s2, t)) or
rotS(π(t, s1)) by 1 where the other one remains unchanged. We obtain R′ by merging s1 and s2

back into s. Since rotS(π(s1, s2)) was decreased we increase the rotation at s in f2 by 1 without
decreasing rotR(π(s, t)) = rotR(π(s2, t)) or rotR(π(t, s)) = rotR(π(t, s1)). Note that aside from
changing the number of bends on certain edges we did only change angles incident to s.

Let G be an st-graph with positive flexibility and a fixed planar embedding E . Lemma 1
shows that the attainable values of rot(π(s, t)) for a given st-graph with a fixed embedding
form an interval. Hence, the set of possible rotations can be described by the boundaries
of this interval and we define the maximum rotation of G with respect to E as maxrotE =
maxR∈Ω rotR(π(s, t)) where Ω contains all valid orthogonal representations of G whose embed-
ding is E .

The following theorem states that indeed the maximum rotation essentially describes the
orthogonal representations of st-graphs with fixed embedding and positive flexibility.

Theorem 1. Let G be an st-graph with positive flexibility and fixed embedding E. Then for each
ρ ∈ {−1, . . . ,maxrotE(G)} there exists a valid and tight orthogonal representation R of G with
planar embedding E such that rotR(π(s, t)) = ρ.
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Proof. Let ρ ∈ {−1, . . . ,maxrotE(G)}. We show how to construct an orthogonal representation
R with rot(π(s, t)) = ρ. Let S be an orthogonal representation of G with embedding E such
that rotS(π(s, t)) = maxrotE(G). By Lemma 2 we can make S tight while preserving its
embedding and rot(π(s, t)). We then apply Lemma 1 to reduce rot(π(s, t)) to ρ. Note that the
representation remains tight as the angles around vertices are not changed by this operation.

Using a variant of Tamassia’s flow network [12] the maximum rotation can be computed
efficiently for st-graphs with a fixed embedding.

Theorem 2. Given an st-graph G = (V,E) with fixed embedding E with s and t on the outer
face we can compute maxrotE(G) in O(n3/2) time or decide that G does not admit a valid
orthogonal representation with this embedding.

Proof. We use the flow network of Tamassia [12] to check whether G admits a valid orthogonal
representation with its given embedding. Since this flow network is planar and the in- and
out-flow of each sink and source is fixed this can be done in O(n3/2) time [10].

We add to G the edge st and embed it into the outer face such that we split the outer face
of G into two parts f` and fr where f` is bounded by π(s, t) and st and fr is the outer face of
G+ st.

We claim that in a valid orthogonal embedding of G + st that maximizes rot(r) with its
embedding we have that maxrotE(G) = rot(r) + 2 where r is the edge description of st in fr.

The equation maxrotE(G) ≥ rot(r) + 2 follows from the fact that in a valid orthogonal
embedding of G+st the total rotation in the face f` is 4. Conversely, by Lemma 2 there exists a
tight orthogonal representation R of G with embedding E such that rot(π(s, t)) = maxrotE(G).
Since R is tight we can attach st in the outer face with rot(π(s, t))− 2 bends. This shows the
claim.

Now it remains to show that we can maximize rot(r) efficiently. We first use the flow network
of Tamassia [12] to compute an arbitrary valid orthogonal representation of G+st. To maximize
rot(r) we wish to modify the corresponding flow F in the flow network of Tamassia such that
the flow on the edge (fr, f`) is maximized while the flow on (f`, fr) is 0, which corresponds to
maximizing bends(r). This can be done by computing a maximum flow from f` to fr in the
residual graph of Tamassia’s flow network with respect to F after removing the edges stemming
from st. Since this network is planar and the source and the sink lie at the same face the
maximum flow can be computed in O(n) time [7].

4 Biconnected Graphs

Until now the planar embedding of our input graph was fixed. Now, we assume that this
embedding is variable. Following the approach of the previous section we define the maximum
rotation of a (weak) st-graph G as maxrot(G) = maxE∈Ψ maxrotE(G) where Ψ contains all
planar embeddings of G such that s and t are embedded on the outer face.

In this section we show that maxrot(G) essentially describes all valid orthogonal represen-
tations of G in the sense that substituting a subgraph H of G with a different graph H ′ with
maxrot(H) = maxrot(H ′) does not change maxrot(G). We further use this substitution to give
an algorithm that computes maxrot by successively reducing the size of the graph. To handle
the different possible planar embeddings we use the SPQR-tree and we substitute subgraphs
with small graphs that have only one embedding. We need the following technical lemma.

Lemma 3. Let G be an st-graph with deg(s),deg(t) ≤ 2 and let R be a tight orthogonal repre-
sentation of G. Then rot(π(s, t)) + rot(π(t, s)) = −x where x is 0,1 and 2 for graphs of Type
(1,1), (1,2) and (2,2), respectively.
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Figure 3: Illustration of Lemma 4, st-graph G with split pair {u, v} splitting off H (left),
replacement of H with a tight orthogonal representation (middle) and replacement of H with
a graph H ′ with maxrot(H) = maxrot(H ′) = 3 (right).

Proof. By property II we have that rot(π(s, t)) + rot(t) + rot(π(t, s)) + rot(s) = −4. If s has
degree 1 we have that rot(s) = −2. If deg(s) = 2 holds then s is incident to exactly one inner
face and by assumption it has an angle of 90◦ in this face. Hence, in the outer face there is an
angle of 270◦ and thus rot(s) = −1. As the same analysis holds for t the claim follows.

The following theorem shows that indeed the maximum rotation describes all possible rota-
tion values of an st-graph.

Theorem 3. Let G be an st-graph with positive flexibility and let ρ be an integer. Then there
exists a tight orthogonal representation R of G with rot(π(s, t)) = ρ if and only if −maxrot(G)−
x ≤ ρ ≤ maxrot(G) where x depends on the Type of G and x = 0, 1, 2 for Types (1,1), (1,2)
and (2,2), respectively.

Proof. We first show the only if part. Let R be any embedding of G. By the definition
of maxrot(G) we clearly have that rotR(π(s, t)) ≤ maxrot(G). By definition we also have that
rotR(π(t, s)) ≤ maxrot(G) (otherwise by mirroring we could obtain an orthogonal representation
R′ with rotR′(π(s, t)) > maxrot(G)) and hence with Lemma 3 we obtain − rot(π(s, t)) − x ≤
maxrot(G).

It remains to show that for any given ρ in the range we can find a valid orthogonal repre-
sentation. If −1 ≤ ρ ≤ maxrot(G) we find an orthogonal representation as follows. Let R be
a valid orthogonal embedding of G with rot(π(s, t)) = maxrot(G). By Lemma 2 we can reduce
the inner angles at s and t to 90◦ without decreasing rot(π(s, t)). By Theorem 1 we thus find
the desired orthogonal representation.

If ρ ≤ −2 holds, by Lemma 3 we need to find a valid orthogonal representation R with
rotR(π(t, s)) = −ρ − x =: ρ′. Note that by the definitions of ρ and x we have that 0 ≤ ρ′ ≤
maxrot(G). As above we obtain a valid orthogonal embedding R′ of G with rotR′(π(s, t)) = ρ′.
We obtain R by mirroring R′.

Note that if s (or t) has degree 1 then its incident edge allows for three different rotations
and hence the range of valid rotations contains at least three integers. This observation together
with the theorem yields the following.

Corollary 1. Let G be an st-graph with positive flexibility. If G admits a valid drawing then
maxrot(G) ≥ 1 if G is of Type (1,1) or (1,2) and maxrot(G) ≥ −1 if G is of Type (2,2).

In particular, Theorem 3 shows that an st-graph G with deg(s) = deg(t) = 1 essentially
behaves like a single edge st with flexibility maxrot(G). The following lemma shows that we can
replace any st-graph with deg(s),deg(t) ≤ 2 in a graph G by a different st-graph of the same
type and with the same maximum rotation without changing maxrot(G). Fig. 3 illustrates the
lemma and its proof.

Lemma 4. Let G = (V,E) be an st-graph with positive flexibility and let {u, v} be a split pair
of G that splits G into two components G− and H such that G− contains s and t and H is an
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Figure 4: Gadgets for st-graphs with maximum rotation ρ depending on the Type.

st-graph of Type (1,1), Type (1,2) or Type (2,2) (with respect to vertices u and v). Let H ′ be an
st-graph with designated vertices u′, v′ of the same type as H with maxrot(H ′) = maxrot(H).

Then G admits a valid orthogonal representation R with rotR(π(s, t)) = ρ if and only if
the graph G′, which is obtained from G by replacing H with H ′ admits a valid orthogonal
representation R′ with rotR′(π(s, t)) = ρ.

Proof. Given a valid orthogonal representation R of G we wish to find a valid orthogonal rep-
resentation R′ of G′ such that rotR(π(s, t)) = rotR′(π(s, t)). The other direction is symmetric.

We first treat the case that H is of Type (1,1). Let S be the restriction of R to H.
By Theorem 3 we have that rotS(π(u, v)) ∈ {−maxrot(H), . . . ,maxrot(H)} and hence, again
by Theorem 3, there exists a valid orthogonal representation S ′ of H ′ with rot(π(u′, v′)) =
rot(π(u, v)). Since H is of Type (1,1) we have that rotS′(u

′) = rotS(u), rotS′(v
′) = rotS(v),

rotS′(π(u′, v′)) = rotS(π(u, v)) and rotS′(π(v′, u′)) = rotS(π(v, u)). Hence by plugging S ′ into
the restriction of the orthogonal embedding R to G− we obtain the desired embedding R′ of
G′.

In the case where H is of Type (1,2) we can assume that u has degree 2 and deg(v) = 1.
Then the angle at u in fi is 90◦ or 180◦ where fi is the inner face of H incident to u. If this
angle is 90◦, i.e., S is tight, we replace it by a corresponding tight embedding of H ′ with the
same rotation, which exists by Theorem 3. For the case where we have an angle of 180◦ at u
in fi we show how to construct an orthogonal representation R′′ of G having the same planar
embedding as R such that rotR′′(π(s, t)) = rotR(π(s, t)) and the angle at u in fi is 90◦. Then
R′ can be constructed from R′′ as above.

By Theorem 3 there exists a valid and tight orthogonal representation S ′′ of H with either
rotS′′(π(u, v)) = rotS(π(u, v)) or rotS′′(π(v, u)) = rotS(π(v, u)). Without loss of generality
assume the former, the other case is symmetric. Since we have increased the outer angle at u
we have that rotS′′(u) = rotS(u)−1 and hence rotS′′(π(v, u)) = rotS(π(v, u)) + 1. Let f` and fr
be the faces in G whose boundaries contain π(u, v) and π(v, u), respectively. Then we obtain
R′′ by plugging S ′′ into the restriction of R to G− such that the angle at u in fr is increased
by 90◦ to 180◦. Since the angle at u in fi was decreased by 90◦ the sum of angles around u
remains 360◦. Additionally, by increasing the angle at u in fr, its rotation is decreased by 1
which compensates the increased rotation along π(v, u). Hence R′′ is the claimed orthogonal
representation. This finishes the treatment of graphs of Type (1,2). Graphs of Type (2,2) can
be treated analogously.

We now present three especially simple families of replacement graphs, called gadgets, for
st-graphs of Types (1,1), (1,2) and (2,2), respectively; see Fig. 4. Let ρ be an integer. The
graph Gρ1,1 is simply an edge st with flex(st) = ρ. The graph Gρ1,2 has three vertices s, v, t
and two edges between s and v, both with flexibility 1, and the edge vt with flexibility ρ. The
gadget Gρ2,2 consists of two parallel edges between s and t, both with flexibility ρ+2. Note that
by Corollary 1 all edges of our gadgets have again positive flexibility and that maxrot(Gρ1,1) =
maxrot(Gρ1,2) = maxrot(Gρ2,2) = ρ. Moreover, each of these graphs has a unique embedding
with s and t on the outer face.

We now describe an algorithm that computes maxrot(G) for a given st-graph G with positive
flexibility or decides that G does not admit a valid orthogonal representation. We use the SPQR-
tree T ofG+st, rooted at the Q-node corresponding to st to represent all planar embeddings ofG
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with s and t on the outer face. Our algorithm processes the nodes of the SPQR-tree in a bottom-
up fashion and computes the maximum rotation of each pertinent graph from the maximum
rotations of the pertinent graphs of its children. For each node µ we have a variable maxrot(µ).
We will prove later that after processing a node we have that maxrot(µ) = maxrot(pert(µ)).
For each Q-node µ we initialize maxrot(µ) to be the flexibility of the corresponding edge. We
now show how to compute maxrot(µ) from the maximum rotations of its children. We make a
case distinction based on the type of µ.

If µ is an R-node let µ1, . . . , µk be the children of µ and let H1, . . . ,Hk be their pertinent
graphs. Each virtual edge in skel(µ) represents at least one incidence of an edge of G to its
poles. Since skel(µ) is 3-connected each node has at least degree 3 and hence no virtual edge
can represent more than two incidences, i.e., the nodes of skel(µ) have degree at most 2 in
the subgraphs of G that are represented by the virtual edges of µ. As we already know their
maximum rotations we can simply replace each of the graphs by a corresponding gadget; we
call the resulting graph Gµ. Since the embeddings of all gadgets are completely symmetric it
is enough to compute the maximum rotations of Gµ for the only two embeddings E1 and E2

induced by the embeddings of skel(µ). We set maxrot(µ) = max{maxrotE1(Gµ),maxrotE2(Gµ)}
if one of them admits a valid representation. Otherwise we stop and return “infeasible”.

If µ is a P-node we treat µ similar as in the case where µ is an R-node. Again, we have
that each pole has degree at least 3 in skel(µ) and hence no virtual edge can represent more
than two edge incidences. We replace each virtual edge with the corresponding gadget and try
all possible embeddings of skel(µ), which are at most six and store the maximum rotation or
stop if none of the embeddings admits a valid representation.

If µ is an S-node let µ1, . . . , µk be the children of µ. We set maxrot(µ) =
∑k

i=1 maxrot(µi)+
k − 1.

Theorem 4. Given an st-graph G = (V,E) with positive flexibility it can be checked in O(n3/2)
time whether G admits a valid orthogonal representation. In the positive case maxrot(G) can
be computed within the same time complexity.

Proof. We prove the invariant that after the algorithm has processed node µ it holds that
maxrot(µ) = maxrot(pert(µ)). The proof is by induction on the height h of the SPQR-tree T
of G+ st. Let µ be the node of T whose parent corresponds to st.

If h = 1 then G is a single edge e and µ its corresponding Q-node. Since maxrot(G) = flex(e)
the claim holds. For h > 1 let µ1, . . . , µk be the children of µ. By induction we have that
maxrot(µi) = maxrot(pert(µi)) for i = 1, . . . , k. We make a case distinction based on the type
of µ.

If µ is an R- or a P-node then by Lemma 4 we have that maxrot(Gµ) = maxrot(pert(µ))
and since the gadgets have a unique embedding we consider all relevant embeddings of Gµ. If
none of the embeddings admits a valid orthogonal representation then obviously also pert(µ)
and thus G do not admit valid orthogonal representations.

If µ is an S-node and the pertinent graphs of its children admit a valid orthogonal repre-
sentation then there always exists a valid orthogonal representation of pert(µ). Let H1, . . . ,Hk

be the pertinent graphs of the children of µ and let v1, . . . , vk+1 be the vertices in skel(µ) such
that vi and vi+1 are the poles of Hi. By Theorem 3 there exist tight orthogonal representations
R1, . . . ,Rk of H1, . . . ,Hk with rot(π(vi, vi+1)) = maxrot(µi). We put these orthogonal repre-
sentations together such that the angles at the nodes v2, . . . , vk on π(v1, vk+1) are 90◦. Hence
we get an orthogonal representation of pert(µ) with rot(π(v1, vk+1)) =

∑k
i=1 maxrot(µi)+k−1.

On the other hand if we had an orthogonal representation of pert(µ) with a higher rotation then
at least one of its children µi would need to have a rotation that is bigger than maxrot(µi).

This proves the correctness of the algorithm. For the running time note that the SPQR-tree
can be computed in linear time [6]. The time for computing maxrot(µ) for a given node µ from
the maximum rotations of its children can be done in O(| skel(µ)|3/2) time by Theorem 4 since
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skel(µ) has only a constant number of embeddings. The total running-time follows from the
fact that the total size of all skeletons is in O(n).

This theorem can be used to solve FlexDraw for biconnected 4-planar graphs with positive
flexibility. Such a graph G admits a valid orthogonal representation if and only if one of the
graphs G− e, e ∈ E(G) (which is an st-graph with respect to the endpoints of e) admits a valid
orthogonal representation such that e can be added to this representation. This can be done if
and only if maxrot(G−e)+flex(e) ≥ 2. This can be seen as follows. Let s and t be the endpoints
of e. Adding e to G− e creates a new interior face and the total rotation of this new face needs
to be 4. We can have at most two 90◦ angles at s and t, hence maxrot(G− e) + flex(e) ≥ 2 is
a necessary condition. On the other hand, it is not hard to see that it is possible to add e to a
tight orthogonal representation of G− e. If flex(e) ≥ 3 then we can add e to a tight orthogonal
representation of G − e with rot(π(s, t)) = −1. Otherwise, we add e to a tight orthogonal
representation of G− e with rot(π(s, t)) = 2− flex(e), which is possible since 2− flex(e) ≥ −1
holds in this case. We obtain the following theorem; the running time is due to O(n) applications
of the algorithm for st-graphs.

Theorem 5. FlexDraw can be solved in time O(n5/2) for biconnected 4-planar graphs with
positive flexibility.

5 Connected Graphs

In this section we generalize our results to connected 4-planar graphs that are not necessarily
biconnected. We analyze the conditions under which orthogonal representations sharing a cut
vertex can be combined and use the block-cutvertex tree to derive an algorithm that decides
whether a connected 4-planar graph with positive flexibility admits a valid orthogonal drawing.

Lemma 5. Let G be a connected 4-planar graph with cutvertex v and corresponding cut com-
ponents H1, . . . ,Hk. Then G admits a valid orthogonal representation if and only if all cut
components Hi have valid orthogonal representations such that at most one of them has v not
on the outer face.

Proof. The only if part is clear since a valid orthogonal representation of G induces valid or-
thogonal representations of all cut components Hi such that at most one of them does not have
v on its outer face.

Now let Si be valid orthogonal representations of the cut components Hi for i = 1, . . . , k
such that at most one of them does not have v on its outer face.

If all of them have v on their outer face then by Lemma 2 we can assume that these
representations are tight. Then it is clear that the components H1, . . . ,Hk can be merged
together in v maintaining their representations Si.

Otherwise, one of the representations, without loss of generality R1, does not have v on the
outer face. If v has degree at least 2 in at most one of the graphs, we can simply merge the
corresponding tight representations as bridges can always be added.

The only problem that can arise is that there are exactly two components H1 and H2, v has
degree 2 in both of them, and the angles incident to v in H1 are 180◦. We resolve this situation
by either increasing or decreasing the number of bends of an incident edge and changing the
angles at v appropriately.

Now let G be a connected 4-planar graph with positive flexibility and B its block-cutvertex
tree. Let further B be a block of G that is a leaf in B and let v be the unique cutvertex of B.

If B is the whole graph G we return “true” if and only if G admits any valid orthogonal
representation. This can be checked with the algorithm from the previous Section.
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If B is not the whole graph G we check whether B admits a valid orthogonal representation
having v on its outer face. This can be done with the algorithm from the previous section by
rooting the SPQR-tree of B at all edges incident to v. If it does admit such an embedding then by
Lemma 5 G admits a valid orthogonal embedding if and only if the graph G′, which is obtained
from G by removing the block B, admits a valid orthogonal embedding. We check G′ recursively.
If B does not admit such an embedding we mark B and proceed with another unmarked leaf.
If we ever encounter another block B′ that has to be marked we return “infeasible”. This is
correct as in this case B has to be embedded in the interior of B′ and vice versa, which is
obviously impossible. Checking a single block B can be done in O(|B|5/2) time by Theorem 5.
Since the total size of all blocks is in O(n) the total running-time is O(n5/2). This proves the
following theorem.

Theorem 6. FlexDraw can be solved in O(n5/2) time for 4-planar graphs with positive flex-
ibility.

Conclusion. We have shown that FlexDraw can be solved efficiently for graphs with positive
flexibility. Moreover, it is straightforward to generalize our algorithm to positive flexibility
functions flex : E −→ N ∪ {∞}, i.e., some edges may be bent arbitrarily often. An interesting
open question is whether FlexDraw can still be handled if few edges are required to have no
bends.
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A SPQR-tree

In this section we describe the structure of SPQR-trees and introduce some notation, following
Di Battista and Tamassia [3, 4]. A graph G with vertices s and t is st-biconnectible if adding
the edge st makes G biconnected. A split pair of G is either a separation pair of G or a pair
of adjacent vertices. A split component of a split pair {u, v} is either an edge uv or a maximal
subgraph C of G such that C contains u and v and {u, v} is not a split pair of C. A maximal
split pair {u, v} is a split pair of G such that there is no other split pair {u′, v′} of G such that
{u, v} is contained in a split component of {u′, v′}.

The SPQR-tree T of G describes a recursive decomposition of G along its split pairs. The
nodes of T are of four types: S, P, Q, and R. Each node µ of T has an associated st-biconnectible
multigraph, the skeleton of µ, denoted by skel(µ). It can be seen as a sketch of the graph as it
shows how the children of µ, which are represented as virtual edges of skel(µ), are arranged in
µ. To obtain the pertinent graph of µ, denoted by pert(µ), we replace each virtual edge ei of
skel(µ), with the skeleton skel(µi) of its corresponding child µi. The tree is recursively defined
as follows.
Base Case: If G consists of a single edge from s to t then T is a single Q-node whose skeleton
is G itself.
Series Case: If G is not biconnected, let v1, . . . , vk−1, k ≥ 2, be its cutvertices and let
G1, . . . , Gk be its blocks in the order from s to t. Then the root µ of T is an S-node and
its skeleton is the chain of length k on the vertices s, c1, . . . , ck−1, t.
Parallel Case: If {s, t} is a split pair of G with split components G1, . . . , Gk, k ≥ 2 then the
root µ is a P-node and its skeleton consists of k parallel edges from u to v.
Rigid Case: If none of the above cases applies let {s1, t1}, . . . , {sk, tk} be the maximal split
pairs of G and denote by Gi the union of all split components of {si, ti}. Then the root µ of
T is an R-node. The graph skel(µ) is obtained from G by replacing each subgraph Gi with a
single edge siti.

In the last three cases (series, parallel, and rigid), µ has children µ1, . . . , µk such that µi is
the root of the decomposition tree of the graph Gi. Fig. 5 shows an example. Note that by
construction all leaves of T are Q-nodes and each Q-node corresponds to a unique edge of the
original graph. The SPQR-tree rooted at a Q-node corresponding to an edge e represents all
possible planar embeddings of G such that e is embedded on the outer face. In fact a planar
embedding of G induces planar embeddings for all skeletons of T and vice versa. By definition
only the skeletons of P- and R-nodes admit choices for their embeddings.

Finally, the SPQR-tree T of a planar graph G with n vertices has O(n) nodes of each type
S,P,Q, and R and the total size of all skeletons is in O(n). Moreover, the SPQR-tree of G can
be computed in linear time [6].
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Figure 5: Since {s, t} is a split pair of the graph in the top left we obtain the P-node P1 with
one subgraph associated with every edge in skel(P1). Further decomposition of these subgraphs
yields the S-nodes S1 and S2 and the R-node R1. The resulting SPQR-tree is shown on the
bottom. Note that the Q-nodes are omitted and the edges associated with the parent are
depicted as dashed line.
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