

 Karlsruhe Reports in Informatics 2010,17
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

The Shortcut Problem –
Complexity and Algorithms

Reinhard Bauer, Gianlorenzo D'Angelo, Daniel Delling,
Andrea Schumm and Dorothea Wagner

 2010

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

The Shortcut Problem � Complexity and Algorithms?

Reinhard Bauer1, Gianlorenzo D'Angelo2, Daniel Delling3, Andrea Schumm1, and Dorothea

Wagner1

1 Faculty of Informatics, Karlsruhe Institute of Technology (KIT),

fReinhard.Bauer, Andrea.Schumm, Dorothea.Wagnerg@kit.edu
2 Department of Electrical and Information Engineering, University of L'Aquila,

gianlorenzo.dangelo@univaq.it
3 Microsoft Research, dadellin@microsoft.com

Abstract. We study a graph-augmentation problem arising from a technique applied in recent ap-

proaches for route-planning. Many such methods enhance the graph by inserting shortcuts, i.e. addi-

tional edges (u;v) such that the length of (u;v) is the distance from u to v. Given a weighted, directed

graph G and a number c 2 Z+, the shortcut problem asks how to insert c shortcuts in G such that the

expected number of edges that are contained in an edge-minimal shortest path from a random node s to

a random node t is minimal. In this work, we study the algorithmic complexity of the problem and give

approximation algorithms. Further, we state ILP-based exact approaches and show how to stochastically

evaluate a given shortcut assignment on graphs that are too large to do so exactly.

1 Introduction

Background. Computing shortest paths in graphs is used in many real-world applications like

route-planning. Shortest paths from a given source to a given target can be computed by DIJK-

STRA'S algorithm, but the algorithm is slow on huge datasets. Therefore, it can not be directly

used for applications like car navigation systems or online working route-planners that require an

instant answer to a source-target query. In the last decade various preprocessing-based techniques

have been developed that yield much faster query-times (see [15, 20] for an overview).

One core part of many of these speedup techniques is the insertion of shortcuts [6�10, 12, 14,

16�18], i.e. additional edges (u;v) whose length is the distance from u to v and that represent

shortest u-v-paths in the graph. The strategies of assigning the shortcuts and of exploiting them

during the query differ depending on the speedup technique. Until now, all existing shortcut inser-

tion strategies are heuristics and only few theoretical worst-case or average case results are known

[1, 4].

In this context, an interesting new theoretical problem arises: Given a weighted, directed graph

G and a number c 2 Z+, the shortcut problem asks how to insert c shortcuts into G such that the

expected number of edges that are contained in an edge-minimal shortest path from a random node

s to a random node t is minimal.

Contribution. In this work we formally state the SHORTCUT PROBLEM and a variant of it, the

REVERSE SHORTCUT PROBLEM. We study the algorithmic complexity of the problems and state

exact, ILP-based solution approaches. We further describe two algorithms that give approximation

guarantees on graphs in which, for each pair s; t of nodes, there is at most one shortest s-t-path. It

turns out that this class is highly relevant as in road networks, most shortest paths are unique and

only little modi�cations have to be made to obtain a graph having unique shortest paths. Finally,

we show how to stochastically evaluate a given shortcut assignment on graphs that are too large

to do so exactly. Besides its relevance as a step towards theoretical results on speedup techniques,

we consider the problem to be interesting and beautiful on its own.

? Partially supported by the DFG (project WA654/16-1).

Related Work. Part of this work has previously been published in [5]. The diploma thesis [19]

experimentally examines heuristic algorithms to �nd shortcut assignments with high quality, in-

cluding local search strategies and a betweenness-based approach. The GREEDY-step algorithm

introduced in Section 5 is taken from this thesis. To the best of our knowledge, the problem of

�nding shortcuts as stated in this work has never been treated before. Speedup techniques that

incorporate the usage of shortcuts are the following. Given a graph G = (V;E) the multi-level

overlay graph technique [7, 12, 16�18] uses some centrality measures or separation strategies to

choose a set of important nodes V 0 in the graph and sets the shortcuts S such that the graph (V 0;S)
is edge minimal among all graphs (V 0;E 0) for which the distances between nodes in V 0 are as in

(V;E). Highway hierarchies [14] and reach based pruning [9, 10] iteratively sparsi�cate the graph
according to the importance of the nodes. After each sparsi�cation step, nodes v with small in- and

out-degree are deleted. Then for each pair of edges (u;v), (v;w) a shortcut (u;w) is inserted if nec-
essary to maintain correct distances in the graph. SHARC-Routing [6] and Contraction Hierarchies

[8] use a similar strategy.

Overview. This paper is organized as follows. Section 2 introduces basic de�nitions. The SHORT-

CUT PROBLEM and the REVERSE SHORTCUT PROBLEM are stated in Section 3. Furthermore,

results concerning complexity and non-approximability of the problems are given. Section 4 pro-

poses two exact, ILP-based approaches. In Section 5 a greedy algorithm is presented that gives an

approximation guarantee on graphs in which shortest paths are unique. Section 6 states an approx-

imation algorithm that works on graphs with bounded degree in which shortest paths are unique.

A probabilistic approach to evaluate a given solution of the SHORTCUT PROBLEM is introduced

in Chapter 7. Our work is concluded by a summary and possible future work in Section 8.

2 Preliminaries

Let A� X be a subset of a set X . The indicator function of A and X is the function 1A : X !f0;1g
de�ned as 1A(x) = 1 if x 2 A and 1A(x) = 0 otherwise.

Common Graph Theory. Throughout this work G = (V;E; len) denotes a directed, weighted,

graph with positive length function len : E!R+. Given nodes u and v, we call u a neighbor of v

if there is an edge (u;v) or (v;u). We denote by N(v) the set of all neighbors of v. Given a set S of
nodes, the neighborhood of S is the set S[Su2SN(u).

We denote by
 �
G the reverse graph of G, i.e. the graph (V;

 �
E ;
 �
len) with

 �
E := f(v;u) j (u;v) 2

Eg and �len being de�ned by �len(u;v) := len(v;u) for (v;u) 2 E.

A path P from x1 to xk in G is a �nite sequence (x1;x2; : : : ;xk) of nodes such that (xi;xi+1)2 E,
i = 1; : : : ;k� 1. We say P contains an edge (u;v) if (u;v) = (xi;xi+1) for some i 2 f1; : : : ;k� 1g
and use the abbreviation (u;v) 2 P. The length len(P) of P is the sum of the lengths of all edges

in P, i.e. len(P) = å
k�1
i=1 len(xi;xi+1). A shortest path from node s to node t is a path from s to

t of minimum length. Given two nodes s and t the distance dist(s; t) from s to t is the length of

a shortest path from s to t and ¥ if there is no path from s to t. The diameter of a graph G is

the largest distance in G, i.e. maxfdist(s; t) j s; t 2 Vg. The eccentricity eG(v) of a node v is the

maximum distance between v and any other node u of G.

A (rooted) tree with root (node) s is a graph T = (V 0;E 0) such that for each node t 2V 0 there is
exactly one path from s to t. We call v a descendant of t in T , if the path from s to v in T contains

t. Note that each node is a descendant of itself. A cycle C is a path of the form s = x1; : : : ;xk = s

with k � 2.

A shortest-paths tree with root s is a subgraph T = (V 0;E 0) of G such that T is a tree, V 0 is the

set of nodes reachable from s and such that for each edge (u;v)2E 0 we have dist(s;u)+ len(u;v) =

2

dist(s;v). Note that each path in T is a shortest path. The shortest-path subgraph with root s is the

subgraph Gs = (V 0;E 00) of G such that V 0 is the set of nodes reachable from s and E 00 is the set of

all edges with dist(s;u)+ len(u;v) = dist(s;v). Note that Gs contains exactly all shortest-paths in

G that start with s. Further, Gs is directed acyclic in case all edge weights are strictly positive.

Speci�c Notation. Consider a path (x1;x2; : : : ;xk). We say P contains node u before node v if

there are numbers i; j with 0� i� j� k such that u= xi and v= x j. We abbreviate that by u�P v.

An x1(-x2)(-x3)-x4-path is a path from x1 to x4 such that x1(�P x2)(�P x3) �P x4. A shortest x1(-

x2)(-x3)-x4-path is an x1(-x2)(-x3)-x4-path that is a shortest path from x1 to x4. Let

P�(x;y) := fs 2V j 9 shortest s-y-path containing xg
P+(x;y) := ft 2V j 9 shortest x-t-path containing yg

denote the sets of start- or end-vertices of shortest paths through x and y. Similarly, let

P(x;y) := f(s; t) 2V �V j 9 shortest s-t-path that contains x before yg

consist of all pairs of nodes, for which a connecting shortest path containing �rst x and y exists.

Finally, let

P./(x;y) := fu 2V j 9 shortest x-y-path that contains ug

be the set of all nodes that lie on a shortest x-y-path.

We call a graph G sp-unique if, for any pair of nodes s and t in G, there is at most one, unique

shortest s-t-path in G.

Let P = (x1;x2; : : : ;xk) be a path. The hop-length jPj of P is k� 1. Given two nodes s and t,

the hop-distance hG(s; t) from s to t is the minimum hop-length of any shortest s-t-path in G and

0 if there is no s-t-path in G or if s= t. We abbreviate hG(s; t) by h(s; t) if the choice of the graph
G is clear.

Considered Graphs. A simple graph is a graph such that for any two nodes u and v, there is at

most one edge (u;v) and such that no edge of the form (u;u) exists. Throughout this work, we only
consider simple graphs. We further assume that for each edge (u;v) in G it is len(u;v) = dist(u;v).
This can easily be assured by deleting edges (u;v) with len(u;v) > dist(u;v) in a preprocessing

step.

3 Problem Statement and Complexity

In this section, we introduce the SHORTCUT PROBLEM and the REVERSE SHORTCUT PROBLEM.

We show that both problems are NP-hard. Moreover, there exists no polynomial time constant

factor approximation algorithm for the REVERSE SHORTCUT PROBLEM and no polynomial time

algorithm that approximates the SHORTCUT PROBLEM up to an additive constant unless P= NP.

Finally, we identify a critical parameter of the SHORTCUT PROBLEM and discuss some mono-

tonicity properties of the problem.

In the following, we augment a given graph G with shortcuts. These are edges (u;v) that are
added to G such that len(u;v) = dist(u;v). A set of shortcuts is called a shortcut assignment.

3

De�nition (Shortcut Assignment). Consider a graph G= (V;E; len). A shortcut assignment for

G is a set E 0 � (V �V) nE such that for any (u;v) in E 0 it is dist(u;v) < ¥. The notation G[E 0]
abbreviates the graph G with the shortcut assignment E 0 added, i.e. the graph (V;E [E 0; len0)
where len0 : E [E 0!R+ equals dist(u;v) if (u;v) 2 E 0 and equals len(u;v) otherwise.

When working with shortcuts we are interested in the expected number of edges that are contained

in an edge-minimal shortest path from a random node s to a random node t. The gain of a shortcut

assignment E 0 measures how much this value decreases due to the graph-augmentation with E 0.

De�nition (Gain). Given a graph G = (V;E; len) and a shortcut assignment E 0, the gain wG(E
0)

of E 0 is

wG(E
0) := å

s;t2V

hG(s; t)� å
s;t2V

hG[E 0](s; t) :

We abbreviate wG(E
0) by w(E 0) in case the choice of the graph G is clear.

The SHORTCUT PROBLEM consists of adding a number c of shortcuts to a graph, such that the

gain is maximal.

De�nition (SHORTCUT PROBLEM). Let G = (V;E; len) be a graph and c 2 Z+ be a positive

integer. Given an instance (G;c) the SHORTCUT PROBLEM is to �nd a shortcut assignment E 0

with jE 0j � c such that the gain wG(E
0) of E 0 is maximal.

We shortly consider an augmented graph G[E 0] = (V;E [E 0; len0) and choose nodes s and t

uniformly at random. The expected number of edges on an edge-minimal shortest s-t-path is
1
jV j2 ås;t2V hG[E 0](s; t) when we count pairs s and t with dist(s; t) = ¥ by 0. Hence, maximizing

the gain and minimizing this expected number of edges are equivalent problems.

The REVERSE SHORTCUT PROBLEM searches for a shortcut assignment E 0 of minimum car-

dinality achieving at least some given gain k. We assure that such a solution exists by stating an up-

per bound on k. To obtain k, we �rst compute the number jf(u;v) 2V �V j dist(u;v)<¥;u 6= vgj.
This is exactly the value of ås;t2V hG[S](s; t) when inserting all possible shortcuts S to G. Then we

subtract this value from ås;t2V hG(s; t).

De�nition (REVERSE SHORTCUT PROBLEM). Let G = (V;E; len) be a graph and k 2N be a

positive integer that is less than or equal toås;t2V hG(s; t)�jf(u;v)2V�V j dist(u;v)<¥;u 6= vgj.
Given an instance (G;k) the REVERSE SHORTCUT PROBLEM is to �nd a shortcut assignment E 0

such that wG(E
0)� k and such that jE 0j is minimal.

As an auxiliary problem to shorten proofs we will also consider the SHORTCUT DECISION PROB-

LEM.

De�nition (SHORTCUT DECISION PROBLEM). Let G= (V;E; len) be a graph and c;k 2N be

positive integers. Given an instance (G;c;k), the SHORTCUT DECISION PROBLEM is to decide if

there is a shortcut assignment E 0 for G= (V;E; len) such that wG(E
0)� k and jEj � c.

In order to show the complexity of the problems we make a transformation from SET COVER and

MIN SET COVER.

De�nition (SET COVER and MIN SET COVER). Let C be a collection of subsets of a �nite set

U such that
S

c2C c=U and let k 2 Z>0 be a positive integer. A set cover of (C;U) is a subset C0

ofC such that every element inU belongs to at least one member ofC0. Given an instance (C;U),
the problem MIN SET COVER is to �nd a set cover C0 of (C;U) of minimum cardinality. Given

an instance (C;U;k), the problem SET COVER is to decide if there is a set cover C0 of (C;U) of
cardinality no more than k. The size of a MIN SET COVER instance (C;U) is åc2C jcj.

4

c+
1

c−1

c+
2

c−2

c+
3

c−3

U1 U2 U3 U4

U

C−

C+

s {s}

Fig. 1: Graph G= (V;E) constructed from the SET COVER-instance fc1 = f1;2g;c2 = f2;3g;c3 = f3;4gg.

Notation (Solution). Given an fSHORTCUT PROBLEM, REVERSE SHORTCUT PROBLEM, MIN

SET COVERg-instance I, we denote by optfSP,RSP,MSCg(I) an arbitrary (optimal) solution of I on

the according problem.

We now show a relationship between SET COVER and the SHORTCUT PROBLEM.

Lemma 1. Let (C;U;k) be a SET COVER-instance. Then, there is a graph G = (V;E; len) such
that there is a set cover C0 for (C;U) of cardinality jCj0 � k if, and only if there is a shortcut

assignment E 0 for G of cardinality jEj0 � k and gain w(E 0)� (2jCj+1)jU j.
Further, the size of G and the time to compute G is polynomial in the size of (C;U). Finally,

given a shortcut assignment E 0 with w(E 0)� (2jCj+1)jU j, we can compute a set cover of cardi-

nality at most jE 0j in time polynomial in the size of (C;U;k).

Proof. Given an instance (C;U;k) of SET COVER we construct the graph G = (V;E; len) as fol-
lows: We denote the value 2jCj+ 1 by D . We introduce a node s to G. For each u 2 U , we in-

troduce a set of nodes Uu = fu1; : : : ;uDg to G. For each c in C, we introduce nodes c�, c+ and

edges (c�;c+), (c+;s) to G. The graph furthermore contains, for each u 2U and each c 2C with

u 2 c, the edges (ur;c
�);r = 1; : : : ;D . All edges are directed and have length 1. We abbreviate

U :=
S

u2UUu,C
� := fc�jc 2Cg and C+ := fc+jc 2Cg. See Figure 1 for an illustration.

We �rst observe that shortcuts in G are always contained in one of the following three sets:

U�fsg;C��fsg andU�C+. Given u 2U , we say u is covered by a shortcut (c�;s) 2C��fsg
if u 2 c.

Claim. Let C0 be a set cover of (C;U). Then, the shortcut assignment E 0 = f(c�;s) j c2C0g ful�lls
jE 0j= jC0j and w(E 0)� D jU j.

Obviously jE 0j = jC0j holds. For each node v 2U the hop-distance to node s decreases by 1

due to the insertion of E 0. As jU j= D jU j it is w(E 0)� D jU j.
Claim. Let E 0 be a shortcut assignment of G with w(E 0)�D jU j. Then, we can construct a shortcut
assignment E 00 �C��fsg of G with cardinality jE 00j � jEj and w(E 00)� D jU j in polynomial time.

We �rst check if jE 0j> jCj. In this case we set E 00 := f(c�;s)jc2Cg and terminate. Otherwise,

we proceed as follows until E 0 � C��fsg or each u 2 U is covered by a shortcut (c�;s): We

choose a shortcut (x;y) in E 0\ (U �C+[U �fsg). We further choose a shortcut (c�;s) 2V �V
such that there is a u 2 c which is not covered by any shortcut in E 0. Then, we set E 0 := (E 0 [
f(c�;s)g)nf(x;y)g.

The removal of a shortcut in U �C+ [U �fsg decreases the gain by at most 2. Let u 2U

be an element that is not covered by a shortcut in E 0 and let u 2 c 2C. The insertion of (c�;s) in
E 0 improves the hop distance h(v;s) for each node in v 2Uu which is not part of a shortcut in E 0

by 1. As there are 2jCj+ 1 nodes in Uu and we have at most jCj shortcuts, the gain increases by

5

at least 2jCj+1�jCj. Summarizing, at each step w(E 0) increases at least by 2jCj+1�jCj�2=
jCj�1� 0. Any shortcut assignment that covers all u 2U results in the desired gain. Hence, after

termination E 00 := E 0\ (C��fsg) gives a solution to the claim.

Claim. Let E 0 be a shortcut assignment of G with w(E 0) � D jU j. Then, we can compute in poly-

nomial time a set cover C0 for (C;U) of cardinality at most jE 0j.
We �rst use the last claim to transform E 0 such that E 0 � C��fsg and w(E 0) � D jU j. It is

w(E 0) = jE 0j+D jfu 2U j u is covered by a shortcut in E 0gj � D jU j. This implies that each u 2U
is covered by a shortcut in E 0 and fcj(c�;s) 2 E 0g is a set cover of (C;U). �

Theorem 1. The SHORTCUT DECISION PROBLEM is NP-hard.

Proof. Let (C;U;k) be a SET COVER-instance andG be constructed as described in Lemma 1. It is

(C;U;k) a yes-instance if and only if the SHORTCUT DECISION PROBLEM-instance (G; jkj;(j2jCj+
1)jU j) is a yes-instance, and the transformation is polynomial. �

We remember that an optimization problem P is called NP-hard if for every decision problem

P0 2 NP, the problem P0 can be solved in polynomial time by an algorithm which uses an oracle

that, for any instance of P, returns an optimal solution along with its value.

Corollary. The SHORTCUT PROBLEM and the REVERSE SHORTCUT PROBLEM are NP-hard.

The transformation applied in Lemma 1 also preserves part of the non-approximability of MIN

SET COVER.

Theorem 2. Unless P = NP, no polynomial time constant-factor approximation algorithm exists

for the REVERSE SHORTCUT PROBLEM, i.e. there is no combination of an algorithm apx and an

approximation ratio a > 0 such that

� apx(G= (V;E; len);k) is a shortcut assignment for G of gain at least k

� japx(G;k)j=joptRSP(G;k)j �a for all instances (G;k) of the REVERSE SHORTCUT PROBLEM
� the runtime of apx(G= (V;E; len);k) is polynomial in the size of (G= (V;E; len);k).

Proof. Given a MIN SET COVER-instance (C;U), assume to the contrary that there is a poly-

nomial time constant factor approximation apx of the REVERSE SHORTCUT PROBLEM with ap-

proximation ratio a . Using apx, we construct a constant-factor approximation algorithm for MIN

SET COVER, contradicting the fact that MIN SET COVER is not contained in the class APX unless

P= NP [3]:

As described in Lemma 1, we �rst construct the graph G, then compute E 0 = apx(G;(2jCj+
1)jU j) and �nally transform E 0 to a set cover instance C0 of (C;U) of size at most jE 0j. With

Lemma 1 we have that joptMSC(C;U)j= joptRSP(G;(2jCj+1)jU j)j. Hence it is jC0j=joptMSC j �
jE 0j=joptRSP(G;(2jCj+1)jU j)j � a which shows the theorem. �

Using a stronger result on the inapproximability of the MIN SET COVER-problem, we get a

slightly tighter lower bound on the approximation factor of the REVERSE SHORTCUT PROBLEM.

This is stated in the following proposition.

Proposition 1. Unless P = NP, there is a constant h such that there exists no polynomial time

algorithm that approximates the REVERSE SHORTCUT PROBLEM to a factor h � ln�W (jV j)�2
�
,

whereW denotes the LambertW function.

Proof. By [2], MIN SET COVER is not approximable within a factor h � ln jU j, for a certain con-

stant h . Assume that there is a polynomial time approximation algorithm apx for the REVERSE

6

SHORTCUT PROBLEM such that japx(G;k)j=joptRSP(G;k)j � h � ln�W (jV j)�2
�
for all instances

(G= (V;E);k) of the REVERSE SHORTCUT PROBLEM.

Let (C;U) be an arbitrary instance of MIN SET COVER. Analogous to the proof of Theorem

2, we construct a graph G = (V;E) with (2jCj+ 1)jU j+ 2jCj+ 1 nodes and a set cover C0 in

polynomial time such that jC0j=joptMSC(C;U)j � h � ln�W (jV j)�2
�
. As jCj � 2jU j, it is

jV j � (2jU j+1+1)jU j+2jU j+1+1= 2jU j+1(jU j+1)+ jU j+1� 2jU j+2(jU j+1)� ejU j+2(jU j+2)

Hence, it is jU j+2�W (jV j) and thus jC0j=joptMSC(C;U)j � h � ln jU j, which shows the proposi-
tion. �

Theorem 3. Unless P = NP, no polynomial time algorithm exists that approximates the SHORT-

CUT PROBLEM up to an additive constant, i.e. there is no combination of an algorithm apx and a

maximum error a 2R>0 such that

� apx(G;k) is a shortcut assignment for G of cardinality at most k

� the runtime of apx(G= (V;E; len);k) is polynomial in the size of (G;k)

� wG(optSP(G;k))�wG(apx(G;k))� a for all instances (G;k) of the SHORTCUT PROBLEM.

Proof. Assume to the contrary that there is an polynomial time algorithm apx that approxi-

mates the SHORTCUT PROBLEM up to an additive constant maximum error a and let (G =
(V;E; len);c;k) be a SHORTCUT DECISION PROBLEM-instance. To assure a 2 Z+, we set a :=
dae. We construct an instance (G=(V ;E; len);c) of the SHORTCUT PROBLEM by adding toG, for

each node v 2V , exactly c := a+1+ jV j2 nodes v1; : : : ;vc and directed edges (v1;v); : : : ;(vc ;v).
We further set len(vi;v) = 1 for i= 1 : : :c . This construction can be done in polynomial time. Let

E 0 denote apx(G;c).

Our aim is to solve (G = (V;E; len);c;k) in polynomial time. We can insert at most cmax :=
jf(u;v)2V �V nEjdist(u;v)<¥;u 6= vgj shortcuts into G. If c� cmax we can decide the problem

in polynomial time by adding all possible shortcuts and computing the according gain. Hence, in

the following we may assume c< cmax.

Claim. The endpoints of all shortcuts inserted by apx in G lie in V , i.e E 0 �V �V.
If a shortcut in G is not contained in V �V it must be contained in V �V because of the edge

directions inG. Assume that there is a shortcut (u;v)2 E 0 such that (u;v)2 (V nV)�V . Removing

(u;v) from E 0 will decrease the gain wG(E
0) by at most jV j2 (as it represents only paths starting

from u of length at most jV j+1). Afterwards inserting an arbitrary shortcut (x;y)2V�V increases

the gain wG(E
0 n f(u;v)g) by at least c (as it represents at least c paths ending at y of length at

least 2). Summarizing, wG((f(x;yg)[E 0) n f(u;v)g)�wG(E
0) � c �jV j2 > a contradicting the

approximation guarantee of apx.

Claim. We can use apx to decide (G = (V;E; len);c;k) in polynomial time contradicting the as-

sumption P 6= NP.

An exact algorithm can be seen as an approximation algorithm with maximum error a = 0. We

can show in a similar fashion as in the last claim that an optimal solution of (G;c) only consists

of shortcuts in V �V , i.e. optSP(G;c) � V �V . Given a shortcut assignment E 00 2 V �V it is

wG(E
00) = (1+c) �wG(E

00). Given an optimal solution E� for (G;c) and (G;c), it follows

(1+c)
�
wG(E

�)�wG(E
0)
�
= wG(E

�)�wG(E
0)� a:

Hence, wG(E
�)�wG(E

0)� a=(1+c)< 1 which implies wG(E
�) = wG(E

0) as both wG(E
�) and

wG(E
0) are integer valued. This shows the claim and �nishes the proof. �

7

Trivial approximation bounds. Consider an arbitrary non-empty shortcut assignment S. It is

n(n� 1) � ås2V åt2V hG(s; t) � n3 for any graph G = (V;E) and hence wG(S) � n3� n2+ n. As

each shortcut in S decreases the hop-distance from its start to its end-node to 1 we have that S is a

trivial factor (n3�n2+n)=jSj-approximation of the SHORTCUT PROBLEM.

Further, any shortcut assignment achieving the desired gain is a trivial factor n2-approximation

for the REVERSE SHORTCUT PROBLEM.

Bounded number of shortcuts. If the number of shortcuts c we are allowed to insert is bounded

by a constant kmax, the number of possible solutions of the SHORTCUT PROBLEM is at most�jV j2
kmax

�
=

jV j2!
(jV j2� kmax)!kmax!

� jV j2kmax :

This is polynomial in the size of the input graph G = (V;E; len). We can evaluate a given short-

cut assignment by basically computing all-pairs shortest-paths, hence this can be done in time

O(jV j2 log jV j+ jV jjEj) using Dijkstra's algorithm. For this reason, the case with bounded number

of shortcuts can be solved in polynomial time by a brute-force algorithm.

Monotonicity. In order to show the hardness of working with the problem beyond the complexity

results, Figure 2 gives an example that, given a shortcut assignment S and a shortcut s, s 62 S, the

following two inequalities do not hold in general:

w(S[fsg) � w(S)+w(s) (1)

w(S[fsg) � w(S)+w(s): (2)

It is easy to verify that in Figure 2 the inequalitiesw(fs1;s2g)>w(s1)+w(s2) andw(fs1;s2;s3g)<
w(fs1;s2g)+w(s3) hold.

2

s1 s2

s3

Fig. 2: Example Graph G with shortcuts s1, s2, s3, all edges for which no weight is given in the picture have weight 1.

Note that Inequality 2 holds if for any pair of nodes (s; t) of graph G, there is at most one,

unique shortest s-t-path in G. We call such a graph sp-unique and prove that fact in the following

lemma.

Lemma 2. Given an sp-unique graph G = (V;E; len) and a set of shortcuts S = fs1;s2; : : : ;skg.
Then, wG(S)� åk

i=1wG(si) and wG(S)� wG(fs1; : : :sk�1g)+wG(sk).

Proof. Given arbitrary but �xed a;b 2V we denote by wab
G (S) the gain of S on graph G restricted

to shortest a-b-paths, i.e. wab
G (S) = hG(a;b)� hG[S](a;b). Because of wG(S) = åu;v2V w

uv
G (S) it

suf�ces to show wab
G (S)� wab

G (fs1; : : :sk�1g)+wab
G (sk). The inequality w

ab
G (S)�åk

i=1w
ab
G (si) then

follows by induction. We write sk = (x;y). It is

wab
G (S) = wab

G (fs1; : : : ;sk�1g)+wab
G[s1;:::;sk�1]

(f(x;y)g):

8

If (a;b) 2 P(x;y) we have

wab
G[s1;:::;sk�1]

(f(x;y)g)� hG[s1;:::;sk�1](f(x;y)g)�1� hG(f(x;y)g)�1= wab
G (sk):

Further, if (a;b) 62 P(x;y) we have wab
G[s1;:::;sk�1]

(f(x;y)g) = 0= wab
G (sk): Hence, we have

wab
G (S)� wab

G (fs1; : : :sk�1g)+wab
G (sk)

which shows the lemma. �

Later, we use these results to present approximation algorithms for sp-unique graphs.

4 ILP-Approaches

In this section we present two exact, ILP-based approaches for the SHORTCUT PROBLEM. Through-

out this section, we are given an instance (G= (V;E; len);c) of the SHORTCUT PROBLEM that is

to be solved optimally.

For a vertex s 2 V , we denote by Ps the set of all vertices u 2 V for which an s-u-path exists.

Remember that we denote by P+(s;u) the set of all vertices v 2 V for which a shortest s-v path

containing u exists and that we denote by P./(x;y) the set of all vertices that lie on a shortest x-y-

path. We assume all distances in the graph to be precomputed and hence the sets Ps, P
./(x;y) and

P+(s;u) to be known for all s;u 2V .
Simple ILP-Formulation. The following ILP-formulation (SLSP) is straightforward and simple

but has the drawback to incorporate O(jV j4) variables. The interpretation of the ILP is as follows:

The variables kst (�; �) represent an edge-minimal shortest s-t-path in the augmented graph. It is

kst (u;v) = 1 if and only if the edge (u;v) is used in this path. We characterize all edges or possible

shortcuts (u;v) that can be used for a shortest s-t-path by introducing the set

A := f(s;u;v; t) 2V 4 j dist(s;u)+dist(u;v)+dist(v; t) = dist(s; t)< ¥; u 6= vg:
The variable c(u;v) equals 1 if the applied shortcut assignment contains (u;v). Instead of maxi-

mizing the gain, our aim is to minimize the expected hop-distance in the augmented graph.

(SLSP) minimize å
(s;u;v;t)2A

kst (u;v) (3)

such that

å
v2P./(s;t);v 6=t

kst (v; t) = 1 s 2V ; t 2 Ps (4)

å
u2P./(s;v);u 6=v

kst (u;v) = å
w2P./(v;t);w6=v

kst (v;w) s 2V ; t 2 Ps;v 2 P./(s; t);v 6= s; t (5)

kst (u;v)� c(u;v) (s;u;v; t) 2 A; (u;v) 62 E (6)

å
(u;v)2V�VnE

c(u;v)� c (7)

kst (u;v) 2 f0;1g (s;u;v; t) 2 A (8)

c(u;v) 2 f0;1g (u;v) 2V �V nE (9)

9

Constraint 4 ensures that a shortest path for every s-t-pair is considered while Constraint 5

guarantees that s and t are connected by a path. The Constraint 6 forces shortcuts to be present

whenever edges are used that are not present in the graph. Finally, Constraint 7 limits the number

of shortcuts to be inserted. Consequently, a solution of model (SLSP) gives an optimal solution of

(G;c): The set f(u;v) 2 V �V jc(u;v) = 1g is a shortcut assignment for G of maximum gain and

cardinality at most c.

Obviously, there can be more than one edge-minimal shortest path from a given source to a

given target. Hence, the model may incorporate unwanted symmetries. In order to break these

symmetries one could use additional constraints. We did not further pursue this direction because

of the huge number of constraints that would be necessary. Note that the model stays correct when

relaxing Constraint 8 to

kst (u;v) 2 [0;1] (s;u;v; t) 2 A:

Flow-Based ILP-Formulation. The number of variables and constraints of the following integer

linear program (LSP) is cubic in jV j. The model exhibits two types of variables. It is c(u;v) = 1

if and only if the shortcut assignment found contains (u;v). Instead of directly counting the hop-

distance for each pair of nodes, we use a �ow-like formulation that counts, for each edge, how often

it is used in the solution. More detailed, the value of f s(u;v) can be interpreted as the number of

vertices t for which the hop-minimal shortest s-t-path found by (LSP) includes the edge or shortcut

(u;v).

The �ow outgoing from source s is exactly the number of vertices reachable from s (Con-

straint 11). As each node consumes exactly one unit of �ow (Constraint 12), it is assured that

a shortest-path from s to any reachable node is considered. Constraint 13 forces shortcuts to be

present whenever edges are used that are not present in the graph. Finally, Constraint 14 limits the

number of shortcuts to be inserted.

(LSP) minimize obj(f ;c) := å
s2V; u2Ps; v2P

+(s;u); u 6=v

f s(u;v) (10)

such that

å
v2Ps; s6=v

f s(s;v) = jPsj�1 s 2V (11)

å
u2P./(s;v); u 6=v

f s(u;v) = å
w2P+(s;v); w6=v

f s(v;w)+1 s 2V; v 2 Ps (12)

f s(u;v)� jP+(s;v)j � c(u;v) s 2V; u 2 Ps; v 2 P+(s;u)

(u;v) 62 E; u 6= v (13)

å
(u;v)2V�VnE

c(u;v)� c (14)

f s(u;v) 2 Z�0 s 2V; u 2 Ps; v 2 P+(s;u); u 6= v (15)

c(u;v) 2 f0;1g (u;v) 2V �V nE (16)

The proof of the following preparatory lemma shows that a solution of (LSP) can be converted

into a solution of equal objective value that, for each node, induces a shortest paths tree.

10

Lemma 3. There exists an optimal solution (f ;c) of (LSP), such that for each s2V , the subgraph
induced by Ts := f(u;v) 2V �V j f s(u;v)> 0g is a tree.

Proof. Let (f ;c) be a solution of (LSP). Then Ts is a directed acyclic graph with root s as Ts is

contained in the shortest path subgraph of G with root s. As long as Ts is not a tree proceed as

follows:

First, consider an arbitrary node y such that there are two edges (v;y) and (w;y) in Ts. Let x be
an arbitrary node such that there are disjoint x-y-paths P1 and P2 in Ts. Such a node x has to exist

as there is more than one shortest s-y-path in Ts and we can take any topological maximal node x

for which there is more than one x-y-path. Let (y0;y) be the last edge on P1 and D := f s(y0;y). For
each edge e on P1 we set f

s(e) := f s(e)�D , for each edge e on P2 we set f s(e) := f s(e)+D .

It is easy to verify that this does not change the feasibility of the solution. Obviously, the objec-

tive function cannot decrease because of this operation as (f ;c) is optimal. Further, the objective

function may not increase: Assume the contrary. Then P2 contains more edges than P1. Hence,

we would obtain a better feasible solution by setting f s(e) := f s(e)�D for each edge e 2 P2 and

f s(e) := f s(e)�D for each edge e 2 P1, contradicting the optimality of (f ;c). �

The following theorem shows that model (LSP) and the SHORTCUT PROBLEM are equivalent

with regard to exact solutions.

Theorem 4. Given a solution E 0 of the SHORTCUT PROBLEM the variable assignment

c0(u;v) =

�
1 ;(u;v) 2 E 0

0 ;otherwise

can be extended to a solution of (LSP). Further, given a solution (f ;c) of (LSP), it is

E 00 := f(u;v) 2V �V nE j c(u;v) = 1g

a solution for the SHORTCUT PROBLEM.

Proof. Given is a SHORTCUT PROBLEM-instance (G = (V;E; len);c). When working on (G =
(V;E; len);c)maximizing the gain is equivalent to �nding a shortcut assignment E 0 that minimizes

obj(E 0) := ås;t2V hG[E 0](s; t). Throughout this proof, we use this point of view.
Let E 0 be a shortcut assignment of (G = (V;E; len);c). Consider an arbitrary vertex s 2 V .

There is a shortest path tree Ts � G[E 0] such that, for each t 2 V with dist(s; t) < ¥, the number

of edges on the s-t-path in Ts equals hG[E 0](s; t). Such a tree Ts can be computed using Dijkstra's

algorithm by altering the distance labels to be tuples (edge length;hop distance) and applying

lexicographical ordering. Let

c0(u;v) =

(
1 ;(u;v) 2 E 0

0 ;otherwise

and

f 0s(u;v) =

�
0 ;(u;v) 62 Ts
jfw j w is descendant of v in Tsgj ; otherwise

The pair (c0; f 0) is a feasible solution of (LSP). We denote by PTs(s; t) the s-t-path in Ts and by

jPT (s; t)j the number of edges on this path. It is

å
t2Ps

hG[E 0](s; t) = å
t2Ps

jPTs(s; t)j= å
t2Ps
å
e2Ts

1e(PTs(s; t)) = å
e2Ts
å
t2Ps

1e(PTs(s; t))

= å
(u;v)2Ts

jfw j w is descendant of v in Tsgj= å
u2Ps; v2P+(s;u); u 6=v

f 0s(u;v)

11

Consequently, obj(c0; f 0) = obj(E 0).

On the other hand, let (f ;c) be a feasible solution of (LSP). With Lemma 3 we may assume

that, for each node s, the subgraph induced by Ts := f(u;v) 2 V �V j f s(u;v) > 0g is a tree.

Hence, we can show by induction that f s(u;v) = jfw j w is descendant of v in Tsgj for each edge

(u;v) 2 Ts. Further, it is

E 00 = f(u;v) 2V �V j c(u;v) = 1g
a feasible solution of the SHORTCUT PROBLEM. Finally, we show that obj(E 00) � obj(f ;c). We

consider each root s 2V separately. To bound the hop-distances in G[E 00] starting at s from above

we use the shortest paths tree Ts as a witness. This yields

å
t2Ps

hG[E 00](s; t)� å
t2Ps

jPTs(s; t)j

With the same computation as above, we derive

å
t2Ps

hG[E 00](s; t)� å
t2Ps

jPTs(s; t)j= å
u2Ps; v2P+(s;u); u 6=v

f s(u;v)

which shows the claim. �

Tuning the Flow-Based Formulation. In order to simplify model (LSP), we relax Constraint 15

to

f s(u;v) 2R�0 s 2V;u 2 Ps;v 2 P+(s;u) (17)

and denote the resulting model (10, 11, 12, 13, 14, 16, 17) by (RLSP).

Lemma 4. Let (f ;c) be a solution of (RLSP). Then (�;c) can be extended to a solution of (LSP)
with same objective value.

Proof. Note that Lemma 3 also holds for (RLSP). Hence, we assume that, for each node s, the

subgraph induced by Ts := f(u;v)2V�V j f s(u;v)> 0g is a tree. The integrality of f now follows

by induction on the nodes in reverse topological order. �

In order to heuristically speedup the solving process we may add the following constraints that

give bounds on the f -variables.

f s(u;v)� jP+(s;v)j s 2V; u 2 Ps; v 2 P+(s;u); u 6= v (18)

An additional heuristic improvement works as follows: It is ås;t2V hG(s; t) a sharp lower bound

for the objective function of model (LSP) in case no shortcuts are allowed. The value hG(a;b) �
jP(a;b)j is an upper bound for the amount that shortcut (a;b) improves the objective function.

We precompute ås;t2V hG(s; t) and, for each pair (a;b) of connected nodes, the value hG(a;b) �
jP(a;b)j. Then we can add the constraint

å
s2V; u2Ps;

v2P+(s;u); u 6=v

f s(u;v)

| {z }
=obj(f ;c)

� å
s;t2V

hG(s; t)

| {z }
lower bound of obj(f ;0)

� å
a;b2V

dist(a;b)<¥

c(a;b) � (hG(a;b) � jP(a;b)j)| {z }
upper bound of improvement
because of shortcut (a;b)

(19)

to additionally tighten the model.

12

Experimental Results. While our main interest on the problem is of theoretical nature, we report

some experimental results of the ILP-based approaches. This shall allow for a quick comparison of

both formulations and for assessing the heuristic improvements. Our implementation is written in

Java using CPLEX 11.2 as ILP-Solver and was compiled with Java 1.6. The tests were executed on

one core of an AMD Opteron 6172 Processor, running SUSE Linux 10.3. The machine is clocked

at 2.1 GHz and has 16 GB of RAM per processor.

We tested on four different graph classes. The graph disk is a unit disk graph and generated

by randomly assigning 100 nodes to a point in the unit square of the Euclidean plain. Two nodes

are connected by an edge in case their Euclidean distance is below a given radius. This radius is

adjusted such that the resulting graph has approximately 1000 edges. The graph ka represents a

part of the road network of Karlsruhe. It contains 102 nodes and 241 edges. The graph grid is based

on a two-dimensional 10x10 square grid. The nodes of the graph correspond to the crossings in

the grid. There is an edge between two nodes if these are neighbors on the grid. Finally, the graph

path is a path consisting of 30 nodes. Edge weights are always randomly chosen integer values

between 1 and 1000. For each experiment, the computation time has been limited to 60 minutes.

The integrality-constraints of the k-variables of the simple model and the f -variables of the �ow

model have been relaxed. Some example outcomes are depicted in Figure 3.

The results are summarized in Table 1, columns mean the following: Columns Eq19 and Eq18

indicate if Equation 19 and Equation 18 are incorporated in the model. For the simple model, we

adapted Equation 19 in a straightforward fashion. Columns opt show if an optimal solution has

been found and proven to be optimal. Columns gap give the guaranteed approximation ratio of the

best feasible solution found within 60 minutes, i.e. the value (best feasible solution found - best

proven lower bound) / best proven lower bound. The value of gap is ¥ if no feasible solution has

been found in 60 minutes. Finally, columns time give the computation time in minutes.

We observe that the simple model does not bene�t from Equation 19 and the plain version

without this enhancement is always superior. For the �ow formulation, it turned out that the version

enriched with Equation 18 is best: This version is always better than the plain model without

improvement and than the formulation enhanced only with Equation 19. Further, it is most times

better than the version enriched with Equation 19 and 18. Finally, we see that Equation 19 was an

improvement to the plain model if more than one shortcut was to be inserted.

Comparing simple and �ow formulation we obtain that the �ow formulation is the winner.

The �ow formulation enhanced with Equation 18 was most times better than the simple model,

sometimes with a big gap. With one exception, the difference was small when the simple model

was better. Concluding, in this testset the �ow formulation enhanced with Equation 18 performed

best.

In our experiments we did not take memory consumption into account as the limiting factor

clearly was computation time. However, to enable a vague comparison of the memory consump-

tion, we report the number of nonzeros reported by CPLEX after the presolve routine in Table 2.

Note that this number turned out to be almost independent from the number of shortcuts to be

inserted.

5 Approximation using the GREEDY-Strategy

In this section, we propose a polynomial time algorithm that approximatively solves the SHORT-

CUT PROBLEM in a greedy fashion. Given the number c of shortcuts to insert, the approach �nds a

c-approximation of the optimal solution if the underlying graph is sp-unique. While the algorithm

works on arbitrary graphs, we we restrict our description to strongly connected graphs to increase

13

grid ka path disk

shortcuts model Eq19 Eq18 opt gap time opt gap time opt gap time opt gap time

1 �ow X 0 2 X 0 5 X 0 1 X 0 2

1 �ow X X 0 2 X 0 3 X 0 0 X 0 1

1 �ow X X 0 4 X 0 8 X 0 0 X 0 3

1 �ow X X X 0 2 X 0 7 X 0 0 X 0 2

1 simple X 0 16 X 0 29 X 0 1 X 0 14

1 simple X X 0 18 X 0 49 X 0 1 X 0 24

2 �ow 0.02 60 0.09 60 0.2 60 X 0 12

2 �ow X X 0 10 X 0 35 X 0 8 X 0 2

2 �ow X X 0 17 0.01 60 0.06 60 X 0 2

2 �ow X X X 0 3 X 0 40 X 0 9 X 0 2

2 simple X 0 20 X 0 26 X 0 2 X 0 12

2 simple X X 0 21 X 0 48 X 0 2 X 0 20

5 �ow 0.16 60 0.53 60 0.4 60 0.06 60

5 �ow X X 0 28 X 0 46 0.16 60 X 0 4

5 �ow X 0.05 60 0.12 60 0.39 60 X 0 55

5 �ow X X 0 60 0.01 60 0.17 60 X 0 9

5 simple X 0 30 X 0 40 0.04 60 X 0 15

5 simple X X 0 58 ¥ 60 ¥ 60 X 0 38

10 �ow 0.58 60 0.83 60 0.45 60 0.11 60

10 �ow X 0.03 60 0.49 60 0.27 60 X 0 27

10 �ow X 0.14 60 0.49 60 0.49 60 0.07 60

10 �ow X X 0.05 60 0.34 60 0.32 60 X 0 25

10 simple ¥ 60 ¥ 60 0.47 60 X 0 22

10 simple X ¥ 60 ¥ 60 2.08 60 X 0 39

Table 1: Experimental results of the ILP-approaches.

model Eq19 Eq18 grid ka path disk

�ow 274.818 328.102 34.391 249.564

�ow X 327.022 392.422 41.849 295.460

�ow X 342.689 409.157 43.029 311.547

�ow X X 394.737 473.390 50.379 357.146

simple 1.241.560 1.724.034 259.211 1.005.390

simple X 1.551.052 2.165.022 324.256 1.250.583

Table 2: Number of nonzeros reported by CPLEX after the presolve routine for each model and graph.

14

graph ka with 5 optimal shortcuts graph ka with 10 optimal shortcuts

graph grid with 5 optimal shortcuts graph grid with 10 optimal shortcuts

graph disk with 5 optimal shortcuts graph disk with 10 optimal shortcuts

Fig. 3: Optimal shortcut assignments for some example graphs.

15

readability. The restriction to sp-unique graphs is only needed for achieving the approximation

guarantee.

Description. Given the instance (G;c), the GREEDY approximation scheme consists of iteratively

constructing a sequenceG=G0;G1; : : : ;Gc of graphs whereGi+1 results from solving the SHORT-

CUT PROBLEM on Gi with only one shortcut allowed to insert. The pseudocode for the approach

is given as Algorithm 1. The following theorem shows the approximation ratio for GREEDY.

Algorithm 1: GREEDY(G;c)

input : graph G= (V;E; len), number of shortcuts c

output: shortcut assignment E 0

1 E 0 /0;

2 for i= 1;2; : : : ;c do
3 (x;y) argmaxfwG[E 0](f(x;y)g) j (x;y) 2V �V n (E [E 0); dist(x;y)< ¥g
4 E 0 E 0[f(x;y)g
5 output E 0.

Theorem 5. Consider an sp-unique graph G= (V;E; len) together with a positive integer c 2Z+.

The solution E 0 := GREEDY(G;c) of the GREEDY-approach is a c-approximation of an optimal

solution E�, i.e. wG(E
�)=wG(E

0)� c.

Proof. Let e1 2 E 0 be the �rst shortcut inserted by GREEDY. Then, wG(e) � wG(e1) for each

e 2 E�. Moreover by Lemma 2, w(E�)� åe2E� w(e). This yields

wG(E
�)� å

e2E�

wG(e)�
c

å
i=1

wG(e1) = c �wG(e1)� c �wG(E
0)

which shows w(E�)=w(E 0)� c. �

Basic Runtime Issues. The runtime of GREEDY crucially depends on how the next shortcut to be

inserted is found. A straightforward approach would be to �rst precompute the distance dist(s; t)
for each pair s; t 2 V as well as the shortest-path subgraph Gs for each node s 2 V . Then, the

evaluation of a possible shortcut can be done by running breadth-�rst searches on the jV j graphs
Gs. After insertion of a shortcut (a;b) to G, the shortest path subgraphs Gs can be adapted by

adding (a;b) to each subgraph Gs with dist(s;a) + dist(a;b) = dist(s;b). Hence Gs contains at

most jEj+c edges and the time needed for evaluating one shortcut is O(jV j � (jV j+ jEj+c)). This
leads to a runtime in O(jV j2 � jV j � (jV j+ jEj+ c)) for evaluating all jV j2 possible shortcuts. The
runtime O(jV j2 log jV j+ jV j � jEj) of precomputing the shortest-path subgraphs can be neglected.

In the remainder of this section, we show how to perform this step in time O(jV j3) using

dynamic programming. Consequently, the GREEDY-strategy can be implemented to work in time

O(c � jV j3). For better readability we assume that the underlying graph is strongly connected. The

generalization to arbitrary graphs is straightforward.

Greedily �nding one optimal shortcut in sp-unique graphs. In sp-unique graphs each shortest

path is edge-minimal. Hence, we can compute the gain of a shortcut (a;b) restricted to a pair of

nodes (s; t) in P(a;b) by the equation

hG(s; t)�hG[(a;b)](s; t) = hG(a;b)�1: (20)

16

Exploiting this we obtain

w(a;b) = (hG(a;b)�1) � jP(a;b)j= (hG(a;b)�1) � å
s2P�(a;b)

jP+(s;b)j: (21)

This equation directly leads to Algorithm 2 that �nds one optimal shortcut for sp-unique graphs.

The runtime of the algorithm lies in O(jV j3) as the computation of jP+(s;b)j is linear in jV j: For
each v 2V we have to check if dist(s;b)+dist(b;v) = dist(s;v).

Algorithm 2: GREEDY STEP ON SP-UNIQUE GRAPHS

input : graph G= (V;E; len), distance table dist(�; �) of G
output: optimal shortcut (a;b)

1 initialize w(�; �)� 0

2 compute hG(�; �)
3 for s 2V do

4 for b 2V do

5 compute jP+(s;b)j
6 for a 2V do

7 if dist(s;a)+dist(a;b) = dist(s;b) then
8 w(a;b) w(a;b)+(hg(a;b)�1)jP+(s;b)j
9 output arbitrary (a;b) with maximum w(a;b)

The problem with this approach is that we can not apply Algorithm 2 for the GREEDY-strategy,

even when the input graph is sp-unique: After insertion of the �rst shortcut, the augmented graph

is not sp-unique any more and hence we can not use Equation 20.

An O(jV j3)-implementation for greedily �nding one optimal shortcut. In the following we

generalize the above approach to work with arbitrary graphs. The offset

wsb(t) := hG(s;b)+hG(b; t)�hG(s; t)

re�ects the increase of the hop-distance between given nodes s and t, if we restrict ourselves to

shortest paths containing b. We de�ne the potential gain gs(a;b) of a shortcut from a to b with

respect to s as

gs(a;b) := hG(a;b)�1�wsa(b) :

This is an upper bound for the decrease of the hop-distance between s and any t in the graph

G[(a;b)].

Lemma 5. For all vertices s; t;a;b 2V such that (s; t) 2 P(a;b) it holds that

hG(s; t)�hG[(a;b)](s; t) =maxfgs(a;b)�wsb(t), 0g:
Proof. Directly from the de�nition of potential gain and offset we obtain

gs(a;b)�wsb(t)> 0() hG(s; t)> hG(s;a)+1+hG(b; t) (22)

Case [gs(a;b)�wsb(t)> 0]. Then hG(s; t)> hG(s;a)+1+hG(b; t). The presence of shortcut (a;b)
decreases the s-t-hop-distance to hG[(a;b)](s; t) = hG(s;a)+1+hG(b; t) as the lemma assumes that

there is a shortest s-a-b-t-path. This yields

hG(s; t)�hG[(a;b)](s; t) = hG(s; t)�hG(s;a)�1�hG(b; t)

= hG(a;b)�1�hG(s;a)�hG(a;b)+hG(s;b)| {z }
=�wsa(b)

�hG(s;b)�hG(b; t)+hG(s; t)| {z }
=�wsb(t)

= gs(a;b)�wsb(t):

17

Case [gs(a;b)�wsb(t) � 0]. With Equation (22) we obtain hG(s; t) � hG(s;a) + 1+ hG(b; t).
Hence, a shortcut (a;b) does not improve the hop-distance from s to t and we have hG(s; t)�
hG[(a;b)](s; t) = 0. �

Lemma 5 implies that vertices t in P+(s;b) with the same value of wsb(t) bene�t from a

shortcut ending at b to the same extent, if we restrict ourselves to shortest paths starting at s. We

divide the vertices in P+(s;b) in equivalence classes with respect to wsb. Let

Di(s;b) := jft 2 P+(s;b) j wsb(t) = igj

be the number of vertices in these equivalence classes.

The algorithm we propose makes use of partial (weighted) sums of the Di(s;b) for �xed s and
b in V . So, for convenience, we introduce two further abbreviations :

Cr(s;b) :=
r

å
i=0

Di(s;b)

Dr(s;b) :=
r

å
i=0

i �Di(s;b):

With these de�nitions, we can form an alternative equation for w(a;b).

Lemma 6. Let a;b;s; t 2V be arbitrary nodes. Then

w(a;b) = å
s2P�(a;b)
gs(a;b)>0

�
gs(a;b) �Cgs(a;b)�1(s;b)�Dgs(a;b)�1(s;b)

�
:

Proof.

w(a;b) = å
s;t2V

�
hG(s; t)�hG[(a;b)](s; t)

�
= å

(s;t)2P(a;b)

�
hG(s; t)�hG[(a;b)](s; t)

�
+ å

(s;t)=2P(a;b)

�
hG(s; t)�hG[(a;b)](s; t)

�| {z }
=0

= å
(s;t)2P(a;b)
wsb(t)<gs(a;b)

�
hG(s; t)�hG[(a;b)](s; t)

�
+ å

(s;t)2P(a;b)
wsb(t)�gs(a;b)

�
hG(s; t)�hG[(a;b)](s; t)

�| {z }
=0 with Lemma 5

:

With Lemma 5, we yield

w(a;b) = å
(s;t)2P(a;b)
wsb(t)<gs(a;b)

gs(a;b)�wsb(t):

It is wsb(t)� 0 as (s; t) 2 P(a;b) and hence we have

w(a;b) = å
s2P�(a;b)
gs(a;b)>0

gs(a;b)�1

å
i=0

å
t2P+(s;b)
wsb(t)=i

gs(a;b)� i:

18

As gs(a;b) is independent of t we can transform the equation as follows

w(a;b) = å
s2P�(a;b)
gs(a;b)>0

gs(a;b)�1

å
i=0

Di(s;b) �
�
gs(a;b)� i

�

= å
s2P�(a;b)
gs(a;b)>0

�
gs(a;b)

gs(a;b)�1

å
i=0

Di(s;b)�
gs(a;b)�1

å
i=0

�
i �Di(s;b)

��

= å
s2P�(a;b)
gs(a;b)>0

�
gs(a;b) �Cgs(a;b)�1(s;b)�Dgs(a;b)�1(s;b)

�
:

This �nishes the proof. �

Lemma 6 is the key for obtaining our O(jV j3)-algorithm for performing one GREEDY-step,

which is stated as Algorithm 3: First, all distances and hop-distances are precomputed. We then

consider, for each s 2V , each shortest paths subgraph with root s separately. It is easy to see that

the values of D�(s; �),C�(s; �) and D�(s; �) can be computed in time O(jV j2).
Prepared with these values we are ready to apply Lemma 6. For each triple s;a;b2V , we check

if there is a shortest s-a-b-path and if gs(a;b)> 0. We increment w(a;b) according to Lemma 6 in

case of a positive answer. Finally, we take an arbitrary shortcut (a;b) that maximizes w(a;b). The
correctness of the algorithm directly follows from the de�nitions of D�(�; �),C�(�; �) and D�(�; �) and
Lemma 6. To reach the runtime in O(jV j3) we answer the question if a shortest s-a-b path exists

by checking if dist(s;a)+dist(a;b) = dist(s;b).

Algorithm 3: GREEDY STEP

Input: Strongly connected graph G= (V;E)
Output: shortcut (a;b) maximizing wG(f(a;b)g)

1 compute dist(�; �) and h(�; �)
2 initialize w(�; �)� 0

3 initialize Di(�; �)� 0

4 for s 2V do

5 for b; t 2V do

6 if there exists a shortest s-t-path containing b in G then

7 j compute wb(s; t)
8 D j(s;b) D j(s;b)+1

9 for b 2V do

10 C0(s;b) D0(s;b)
11 D0(s;b) 0

12 for r := 1 to n�1 do

13 Cr(s;b) Cr�1(s;b)+Dr(s;b)
14 Dr(s;b) Dr�1(s;b)+ r �Dr(s;b)

15 for a;b 2V do

16 if there exists a shortest s-b-path containing a and gs(a;b)> 0 then

17 w(a;b) w(a;b)+gs(a;b) �Cgs(a;b)�1(s;b)�Dgs(a;b)�1(s;b)

18 output arbitrary (a;b) with maximum w(a;b)

19

6 Approximation via Partitioning

The second algorithm works for sp-unique graphs with bounded degree and is based on a partition

of the nodes. It �nds an O
�
l �max

�
1;n2=(l 2c)

	�
approximation of the optimal solution, where

l is the number of subsets of the underlying partition.

Given an sp-unique graph G= (V;E; len) with bounded degree B, our approximation scheme

works as follows. It partitions V into small subsets, solves the SHORTCUT PROBLEM restricted

to each subset and then chooses the best solution among all subsets as an approximated solution.

If the subsets are small enough, we can solve the SHORTCUT PROBLEM restricted to each set in

polynomial time. Furthermore, the approximation ratio depends on the number of subsets. In fact,

if each optimal shortcut has both of its endpoints contained in one of the subsets, then the worst

case approximation ratio is given by the number of subsets. Otherwise, the following proposition

gives us the idea on how to bound the gain of the shortcuts which cross more than one subset.

Proposition 2. Let G= (V;E; len) be an sp-unique graph and s= (v1;v`) be a shortcut in G. Let

p= (v1;v2; : : : ;v`) be the shortest v1-vl-path. If we divide s into a set of shortcuts s1;s2; : : : ;sk such
that s1 = (v j0 = v1;v j1), s2 = (v j1 ;v j2), . . . ,sk = (v jk�1

;v jk), ji� ji�1 � 2, for each i = 1;2; : : : ;k
and `�1� jk � ` then, wG(s)� 2å

k
i=1wG(si).

Proof. Let us denote as a := h(v1;v`) = `� 2 the number of edges shortcutted by s and let us

denote as b the number of shortest paths shortcutted by s, b := jP(v1;v`)j, that is b is the number

of hop-minimal shortest paths in G and it is equal to the number of hop-minimal shortest paths

that uses the shortcut s in the graph augmented by adding s. By de�nition,

w(s) = a �b:

Similarly, for each i = 1;2; : : : ;k, we can denote as ai = ji� ji�1� 1 the number of edges short-

cutted by si and as bi := jP(v j;v j�1)j. Then,

w(si) = ai �bi:

As the shortest paths are unique, for each i= 1;2; : : : ;k, all the shortest paths in G that have p as a

subpath have also pi as a subpath. Thus, b� bi, for each i= 1;2; : : : ;k. Moreover, a�åk
i=1(ai+1)

because of ai = ji� ji�1�1 andåk
i=1(ai+1) = j1�1+ j2� j1+ : : :+ jk� jk�1 = jk�1� `�2=

a. Further, for each i= 1;2; : : : ;k is ji� ji�1 � 2. Hence ai � 1 and ai+1� 2ai. It follows that

w(s) = a �b�
k

å
i=1

(ai+1) �b� 2
k

å
i=1

ai �b� 2
k

å
i=1

aibi � 2
k

å
i=1

w(si):

�

A proof of the above proposition which work with a set of shortcut instead of only one is given

in the proof of Theorem 6.

In detail, our scheme works as follows. First, we partition the setV into setsP = fP1; : : : ;Plg,
where each Pi has size size=

c
p
ne=B (i.e. l = dn=sizee) for an arbitrary e > 0. Then, for each set

Pi 2P , we compute the neighborhood Ci := Pi[fu 2 N(v) j v 2 Pig of Pi and solve the shortcut

problem on G restricted to shortcuts inCi. That is, we compute

eSi = argmaxfw(S) j S is shortcut assignment �Ci�Ci and jSj � cg:

Finally, we determine the setCi, for which the shortcut assignment yields the most gain.

20

Algorithm 4: PARTITION

input : graph G= (V;E; len), number of shortcuts c, parameter e > 0

output: shortcut assignment S0

1 Partition the set V into setsP = fP1; : : : ;Pl g each of size size= c

p
ne=B.

2 for Pi 2P do

3 Ci := Pi[fu 2 N(v) j v 2 Pig
4

eSi := argmaxfwG(S) j S�Ci�Ci and jSj � cg
5 output S0 := argmaxfwG(eSi) j i= 1;2; : : : ;lg

Since size = c
p
ne=B and G has bounded degree B, jCij � c

p
ne holds. Hence, each solutioneSi can be computed by performing at most (c

p
ne)2c = n2e all pairs shortest paths computations

in G. As there are l = dn=sizee = dnB= c
p
nee sets, the overall computation time is O(f (n) � n2e �

n= c
p
ne) = O(f (n) � (n=l)2c � l), where f (n) is the time needed for computing all pairs shortest

paths in G.

The following theorem shows the approximation ratio for PARTITION.

Theorem 6. Given a weighted, directed, SP-unique graph G = (V;E; len) with bounded degree

and a positive integer c2N. Then, the solution computed by PARTITION is anO
�
l �max

n
1; n2

l 2c

o�
approximation for the optimal solution of the SHORTCUT PROBLEM instance (G;c) where l de-

notes the number of sets used by PARTITION.

Proof. Let S� denote an optimal solution to (G;c),P the partition and C the set of neighbour-

hoods Ci used by PARTITION. Let R be the set of (a;b) in V �V such that dist(a;b) 6= ¥.
For each (a;b)2R, we choose an arbitrary hop-minimal shortest a-b-path inG[S�]. Let S�(a;b)�

S� be the set of shortcuts on this path. Note that the shortest paths represented by the shortcuts in

S�(a;b) are edge-disjoint.
Now each s 2 S� is divided into a set of shortcuts as follows: Let p = (v1; : : : ;vr) be the path

represented by s, D(s) := /0 and i := 1. As long as i< r�1, proceed as follows: Let P be the cell

of vi+1 inP . Let j be the �rst index greater than i+1 such that v j =2 P, or r if such an index does

not exist. Set D(s) = D(s)[f(vi;v j)g and i := j.

For a shortcut s = (v1;v2), let hG(s) denote the hop-distance between v1 and v2 in G. It is

easy to see that for each s0 2 D(s), hG(s
0)� 2 and the shortest path represented by s0 is contained

completely in at least one set in C . Furthermore, for each s in S�, ås02D(s) hG(s
0) � hG(s)� 1,

hence 2 �ås02D(s)(hG(s
0)�1)� hG(s)�1.

Let S=
S

s2S� D(s) and for each s 2 S,U(s) be the set of s� 2 S� with s 2D(s). We now divide

the shortcuts in S according to the sets Ci in the following way. Let Si be the set of s 2 S such that

the shortest path represented by s is completely contained in Ci. Due to the construction of S, this

is a cover of S, i. e.
Sdn=sizee

i=1 Si = S.

Claim. w(S�)� 2 �ådn=sizeei=1 w(Si)
As shortest paths in G are unique, the insertion of S� decreases the hop-distance between two

nodes a and b with dist(a;b) 6= ¥ by the sum of the hop-lengths of the shortest paths represented

by the shortcuts in S�(a;b) minus jS�(a;b)j. Furthermore, as shown above, for each s� in S�,

hG(s
�)�1� 2 �ås2D(s�)(hG(s)�1) and thus,

w(S�) = å
(a;b)2R

å
s�2S�(a;b)

(hG(s
�)�1)� 2 � å

(a;b)2R
å

s�2S�(a;b)
å

s2D(s�)

(hG(s)�1)

= 2 � å
(a;b)2R

å
s2S

å
s�2S�(a;b)\U(s)

(hG(s)�1)

21

Assume that S�(a;b)\U(s) contains two shortcuts s1 and s2. As s1, s2 2 S�(a;b), the shortest

paths represented by s1 and s2 are edge-disjoint, contradicting the fact that they both contain the

shortest path represented by s. Hence, jS�(a;b)\U(s)j � 1 and

w(S�)� 2 � å
(a;b)2R

å
s2S

å
s�2S�(a;b)\U(s)

(hG(s)�1) = 2 � å
(a;b)2R

å
s2S:

S�(a;b)\U(s)6= /0

(hG(s)�1)

� 2 � å
(a;b)2R

dn=sizee

å
i=1

å
s2Si:

S�(a;b)\U(s)6= /0

(hG(s)�1)

For �xed (a;b) 2 R, let s1 and s2 2 Si be such that there exist s�1 2 S�(a;b)\U(s1) and s�2 2
S�(a;b)\U(s2). Due to the de�nition of S�(a;b), the shortest paths represented by s�1 and s�2 are

edge-disjoint, implying that the same holds for s1 and s2. Hence,

w(S�)� 2 � å
(a;b)2R

dn=sizee

å
i=1

å
s2Si:

S�(a;b)\U(s)6= /0

(hG(s)�1)� 2 � å
(a;b)2R

dn=sizee

å
i=1

(hG(a;b)�hG[Si](a;b))

= 2 �
dn=sizee

å
i=1

w(Si)

Let B be the maximum degree of a node in G and S0 be the solution computed by PARTITION.

For each i, two cases may occur:

� if jSij � c, since S0 = argmaxfw(eSi) j i= 1;2; : : : ;dn=sizeeg, then w(Si)� w(S0).
� If jSij> c, then we can group the shortcuts in Si into sets of size c. Since S

0= argmaxfw(eSi) j i=
1;2; : : : ;dn=sizeeg, each set of shortcuts of size c gives a decrease in overall hop length on

shortest paths that is smaller than w(S0) and hence w(Si)� w(S0) jSij
c
� w(S0) size

2B2

c
.

It follows that,

w(S�)� 2

dn=sizee

å
i=1

w(S0)max

�
1;
size2 �B2

c

�
� 2

�
n

size

�
w(S0)max

�
1;
size2 �B2

c

�
Hence, the approximation ratio can be bound as follows.

w(S�)

w(S0)
� 2

�
n

size

�
max

�
1;
size2 �B2

c

�
= O

�
n

size
max

�
1;
size2

c

��

= O

n

c
p
ne

max

(
1;

c
p
n2e

c

)!
= O

�
l �max

�
1;

n2

l 2c

��
:

�

7 Approximative Evaluation of the Measure Function

To evaluate the gain of a given shortcut assignment, a straightforward algorithm requires comput-

ing all-pairs shortest-paths. Since this computation is expensive, we provide a probabilistic method

to quickly assess the quality of a shortcut assignment. This approach can be used for networks,

where the computation of all-pairs shortest-paths is prohibitive, such as big road networks. For the

22

sake of simplicity we state the approach for the evaluation of m(S) :=ås;t2V hG[S](s; t), the adaption
to the SHORTCUT PROBLEM is straightforward. More concrete, we apply the sampling technique

to obtain an unbiased estimate for m(S) and apply Hoeffding's Bound [11] to get a con�dence

intervall for the outcome.

Theorem 7 (Hoeffding's Bound). If X1;X2; : : : ;XK are real valued independent random variables

with ai � Xi � bi and expected mean m =E[åXi=K], then for x > 0

P

�����åK
i=1Xi

K
�m

����� x

�
� 2e�2K

2x 2=åK

i=1
(bi�ai)

2

:

Given is a shortcut assignment S. Let X1; : : : ;Xk be a family of random variables such that for

i = 1; : : : ;K, the variable Xi equals jV jåt2V hG[S](si; t) where si 2 V is a vertex chosen uniformly

at random. We estimate m(S) by �m := åK
i=1Xi=K.

Because ofE(�m) = m(S)we can apply Hoeffding's Bound if we know lower and upper bounds

for the Xi. The values 0 and jV j3 are trivial such bounds. We introduce the notion of shortest path

diameter to obtain stronger upper bounds.

De�nition. The shortest path diameter spDiam(G) of a graph G is the maximum hop-distance

from any node to any other node in G.

Applying Hoeffding's Bound with 0� Xi � jV j2 spDiam(G) yields

Pfj �m�mj � xg � 2e�2Kx
2=(jV j4�spDiam(G)2)

and

P

����� �m�m�m
����� lrel

�
� 2e�2K(�m�lrel)

2=(jV j4�spDiam(G)2)

for a parameter lrel stating the relative size of the con�dence intervall.

The codomain of the variables Xi is �nite as V is �nite. In [11] it is reported that Hoeffding's

Bound stays correct if, when sampling from a �nite population, the samples are being chosen

without replacement. Algorithm 5 is an approximation algorithm that exploits the above inequality

and that samples without replacement.

Algorithm 5: STOCHASTICALLY ASSESS SHORTCUT ASSIGNMENT

input : graph G= (V;E [E 0; len), size of con�dence intervall lrel , signi�cance level a
output: approximation �m for m = ås;t2V hG(s; t)

1 compute random order v1;v2; : : : ;vn of V

2 compute upper bound spDiam for shortest path diameter

3 i 1; sum 0; �m �¥
4 while not (i= jV j+1 or 2 � exp(�2i(�m � lrel)2=(jV j4spDiam(G)2))� a) do

5 T grow shortest-paths tree rooted at vi (favoring edge-minimal shortest paths)

6 sum sum+jV j �åt2V h0(vi; t)
7 �m sum=i
8 i i+1

9 output �m

A straightforward approach to compute the exact shortest path diameter requires computing

all-pairs shortest-paths. This is reasonable when working with mid-size graphs that allow the com-

putation of all-pairs shortest paths and for which a large number of shortcut assignments shall be

evaluated.

23

In case the computation of all-pairs shortest-paths is prohibitive one can also use upper bounds

for the shortest path diameter. We obtain an upper bound the following way: �rst we compute an

upper bound diam(G) for the diameter of G. To do so we choose a set of nodes s1;s2; : : : ;sl uni-
formly at random. For each node si the value e �G (si)+eG(si) is an upper bound for the diameter of

G. We set diam(G) to be the minimum of these values over all si. Note that this approach does not

directly transfer to the shortest paths diameter as, in general, maxv2V hG(v;si)+maxv2V hG(si;v)
is not an upper bound for spDiam(G). The bound diam(G) is a 2-approximation for the exact

diameter diam(G) of G already for l = 1 as there is are u;v 2V such that

diam(G) = dist(u;s1)+dist(s1;v)� diam(G)+diam(G) = 2 �diam(G):

Let lenmax and lenmin denote the lengths of a longest and a shortest edge in G, respectively.

The value diam(G)= lenmin is a 2 � lenmax = lenmin approximation for the shortest path diameter

as spDiam(G)� diam(G)= lenmax.

A more expensive approach works as follows: After computing diam(G), we choose a tuning
parameter h . Then we grow, for every node s on G, a shortest paths tree whose construction is

stopped as soon as one vertex with distance of more than diam(G)=h is visited. When breaking

ties between different shortest paths we favor edge-minimal shortest paths. We denote by tmax the

maximum number of edges of the shortest paths on any of the trees grown. Then spDiam= tmax �h
is an upper bound for the shortest path diameter of G (and an h-approximation as spDiam(G) �
tmax). The pseudocode of that algorithm is given as Algorithm 6.

Algorithm 6: COMPUTE UPPER BOUND FOR SHORTEST-PATHS DIAMETER

input : graph G= (V;E; len), tuning parameter l, tuning parameter h

output: upper bound spDiam for the shortest path diameter of G

1 diam(G) ¥; t 0;

2 for i= 1; : : : ; l do
3 s choose node uniformly at random

4 grow shortest paths tree rooted at s

5 grow shortest paths tree rooted at s on the reverse graph
 �
G

6 diam(G) minfdiam(G);maxv2V fdist(s;v)g+maxv2V fdist(v;s)gg
7 for s 2V do

8

T grow partial shortest paths tree rooted at s (favoring edge-minimal shortest paths).

stop growing the tree when the �rst node with dist(s;v)> diam(G)=h is visited.

tmax maxftmax;maximal number of edges of a path in T g
9 output spDiam := tmax �h

Obviously, the whole proceeding only makes sense for graphs for which the shortest path

diameter is much smaller than the number of nodes. This holds for a wide range of real-world

graphs, in particular for road networks. For example, the road network of Luxembourg provided

by the PTV AG [13] consists of 30733 nodes and has a shortest path diameter of only 429. The

road network of the Netherlands consists of 946.632 nodes and has a shortest path diameter of

1503.

8 Conclusion

Summary. In this work we studied two problems. The SHORTCUT PROBLEM is the problem of

how to insert c shortcuts in G such that the expected number of edges that are contained in an

24

edge-minimal shortest path from a random node s to a random node t is minimal. The REVERSE

SHORTCUT PROBLEM is the variant of the SHORTCUT PROBLEM where one has to insert a min-

imal number of shortcuts to reach a desired expected number of edges on edge-minimal shortest

paths.

We proved that both problems are NP-hard and that there is no polynomial time constant factor

approximation algorithm for the REVERSE SHORTCUT PROBLEM, unless P = NP. Furthermore,

no polynomial time algorithm exists that approximates the SHORTCUT PROBLEM up to an additive

constant unless P= NP.

The algorithmic contribution focused on the SHORTCUT PROBLEM. We proposed two ILP-

based approaches to exactly solve the SHORTCUT PROBLEM: A straightforward formulation that

incorporatesO(jV j4) variables and a more sophisticated �ow-like formulation that requiresO(jV j3)
variables.

We considered two approximation strategies. A straightforward greedy approach computes a

c-approximation of the optimal solution if the input graph is such that shortest paths are unique.

We further presented a dynamic program that performs a greedy step in time O(jV j3) which yields
an overall runtime in O(c � jV j3). The main idea of the second approach is to partition the set of

nodes. It computes an O
�
l �max

�
1; jV j2=(l 2c)

	�
approximation of the optimal solution where l

is the number of subsets of the underlying partition. Let f (jV j) be the time needed for computing

all pairs shortest paths. The runtime of the second approach lies in O(f (jV j) � (jV j=l)2c �l) if the
input graph has bounded degree.

Finally, we proposed a probabilistic method to quickly evaluate the measure function of the

SHORTCUT PROBLEM. This can be used for large input networks where an exact evaluation is

prohibitive.

Future Work. There exists a wide range of possible future work on the problem. From a the-

oretical point of view the probably most interesting open question is that of the approximability

of the SHORTCUT PROBLEM. It is still not known if it is in APX. Furthermore, it would be help-

ful to identify graph classes for which the SHORTCUT PROBLEM or the REVERSE SHORTCUT

PROBLEM become tractable.

From an experimental point of view, it would be interesting to develop heuristics that �nd

good shortcuts for large real-world input. In particular, evolutionary algorithms and local search

algorithms seem to be promising.

25

References

1. I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway Dimension, Shortest Paths, and Provably

Ef�cient Algorithms. In M. Charikar, editor, Proceedings of the 21st Annual ACM�SIAM Symposium on Discrete

Algorithms (SODA'10), pages 782�793. SIAM, 2010.

2. N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-restrictions. ACM Transactions on

Algorithms, 2(2):153�177, 2006.

3. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, and A. Marchetti-Spaccamela. Complexity and Approximation -

Combinatorial Optimization Problems and Their Approximability Properties. Springer, 2nd edition, 2002.

4. R. Bauer, T. Columbus, B. Katz, M. Krug, and D. Wagner. Preprocessing Speed-Up Techniques is Hard. In

Proceedings of the 7th Conference on Algorithms and Complexity (CIAC'10), volume 6078 of Lecture Notes in

Computer Science, pages 359�370. Springer, 2010.

5. R. Bauer, G. D'Angelo, D. Delling, and D. Wagner. The Shortcut Problem � Complexity and Approximation. In

Proceedings of the 35th International Conference on Current Trends in Theory and Practice of Computer Science

(SOFSEM'09), volume 5404 of Lecture Notes in Computer Science, pages 105�116. Springer, January 2009.

6. R. Bauer and D. Delling. SHARC: Fast and Robust Unidirectional Routing. In I. Munro and D. Wagner, editors,

Proceedings of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX'08), pages 13�26. SIAM,

April 2008.

7. F. Bruera, S. Cicerone, G. D'Angelo, G. D. Stefano, and D. Frigioni. Dynamic Multi-level Overlay Graphs for

Shortest Paths. Mathematics in Computer Science, 1(4):709�736, April 2008.

8. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction Hierarchies: Faster and Simpler Hierarchi-

cal Routing in Road Networks. In C. C. McGeoch, editor, Proceedings of the 7th Workshop on Experimental

Algorithms (WEA'08), volume 5038 of Lecture Notes in Computer Science, pages 319�333. Springer, June 2008.

9. A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A*: Ef�cient Point-to-Point Shortest Path Algorithms.

In Proceedings of the 8th Workshop on Algorithm Engineering and Experiments (ALENEX'06), pages 129�143.

SIAM, 2006.

10. A. V. Goldberg, H. Kaplan, and R. F. Werneck. Better Landmarks Within Reach. In C. Demetrescu, editor, Pro-

ceedings of the 6th Workshop on Experimental Algorithms (WEA'07), volume 4525 of Lecture Notes in Computer

Science, pages 38�51. Springer, June 2007.

11. W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical

Association, 58(301):713�721, 1963.

12. M. Holzer, F. Schulz, and D. Wagner. Engineering Multi-Level Overlay Graphs for Shortest-Path Queries. In Pro-

ceedings of the 8th Workshop on Algorithm Engineering and Experiments (ALENEX'06), pages 156�170. SIAM,

2006.

13. PTV AG - Planung Transport Verkehr. http://www.ptv.de, 2008.

14. P. Sanders and D. Schultes. Engineering Highway Hierarchies. In Proceedings of the 14th Annual European

Symposium on Algorithms (ESA'06), volume 4168 of Lecture Notes in Computer Science, pages 804�816. Springer,

2006.

15. P. Sanders and D. Schultes. Engineering Fast Route Planning Algorithms. In C. Demetrescu, editor, Proceedings

of the 6th Workshop on Experimental Algorithms (WEA'07), volume 4525 of Lecture Notes in Computer Science,

pages 23�36. Springer, June 2007.

16. D. Schultes and P. Sanders. Dynamic Highway-Node Routing. In C. Demetrescu, editor, Proceedings of the

6th Workshop on Experimental Algorithms (WEA'07), volume 4525 of Lecture Notes in Computer Science, pages

66�79. Springer, June 2007.

17. F. Schulz, D. Wagner, and K.Weihe. Dijkstra's Algorithm On-Line: An Empirical Case Study from Public Railroad

Transport. ACM Journal of Experimental Algorithmics, 5(12):1�23, 2000.

18. F. Schulz, D. Wagner, and C. Zaroliagis. Using Multi-Level Graphs for Timetable Information in Railway Systems.

In Proceedings of the 4th Workshop on Algorithm Engineering and Experiments (ALENEX'02), volume 2409 of

Lecture Notes in Computer Science, pages 43�59. Springer, 2002.

19. A. Schumm. Heuristic Algorithms for the Shortcut Problem. Master's thesis, July 2009.

20. D. Wagner and T. Willhalm. Speed-Up Techniques for Shortest-Path Computations. In Proceedings of the 24th

International Symposium on Theoretical Aspects of Computer Science (STACS'07), volume 4393 of Lecture Notes

in Computer Science, pages 23�36. Springer, 2007.

26

	2010,17_Titelbl.pdf
	bddsw-tr.pdf

