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Chapter 1

Introduction

We consider a number of random points in some space with some prescribed
measure of distance. The largest interpoint distance between two points would
seem to be of interest. For example, the maximum distance between pairs of
stars describes the diameter of a galaxy, the maximum distance between bul-
let holes is one of the criteria of the weapon quality, the maximum distance
between nodes in a network gives the cover width of the network, the maxi-
mum difference between prices of some stock in a time span is a property of
its risk class. Alternatively, we may be interested in estimating the diameter of
some random set, which is impractical or impossible to be determined directly.
Indeed, we can consider the diameter of a random sample from the set as an
estimator. In each of these cases, and many others, one may be interested in the
asymptotic behavior of the distribution of certain extreme values as the number
of points becomes large.

A simple mathematical model for the above situations is as follows. Let
(Ω,A,P) be a probability space and (Xi)i≥1 a sequence of independent and iden-
tically distributed (i.i.d.) random vectors (“points”) Xi : Ω → Rd, where d ≥ 2
is a fixed integer. Writing ‖ · ‖ for the Euclidean norm in Rd, the largest inter-
point distance between X1, . . . , Xn is denoted by

Dn := max
1≤i< j≤n

‖Xi − X j‖.

In the terminology of random graphs, the random variable Dn may be consid-
ered as a threshold distance for completeness of the random graph G(χn; r) with
node set χn = {X1, . . . , Xn} in which any two points are connected by an edge if
their distance is at most r (see Penrose [34], p. 1).
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Let K ⊂ Rd be the support of the common distribution PX1 of the random
points X1, X2, . . ., i.e., K is the smallest closed set such that PX1(K) = 1. Write

diam(K) := sup
x1,x2∈K

‖x1 − x2‖ (≤ ∞)

for the diameter of K. Intuitively, diam(K) can be approximated by the largest
interpoint distance Dn, i.e. the diameter of the random point set {X1, . . . , Xn}.
Moreover, for all θ < diam(K),

P (Dn ≤ θ) = P


⋂

i, j=1,...,n
i, j

{
‖Xi − X j‖ ≤ θ

} ≤ P (‖X1 − X2‖ ≤ θ)b
n
2 c −→ 0

as n→ ∞, where b·c denotes the floor function. If diam(K) < ∞, we have

P (Dn ≤ θ) = 1

for each θ ≥ diam(K). Thus Dn
P
−→ diam(K) as n → ∞. Since Dn is nonde-

creasing in n, we conclude that

Dn
a.s.
−→ diam(K)

as n → ∞. This fact does not provide much information. Our aim throughout
this thesis is to provide weak convergence results for Dn, after some suitable
centralization and normalization. It is obviously of interest to gain some insight
into the speed of convergence of Dn to diam(K).

In the univariate case d = 1 the largest interpoint distance is the sample
range, the difference between the sample maximum and the sample minimum.
Since the random variables are assumed to be independent, the limit distribu-
tions of the maximum and the minimum can be derived by classical extreme
value theory, and the asymptotic distribution of the sample range is the con-
volution of the limit distribution for the extreme order statistics. If, for in-
stance, the distribution of Xi is uniform over [0,1], both n · (1 − max1≤i≤n Xi)
and n · min1≤i≤n Xi converge in distribution to a standard exponential law (see,
e.g., Galambos [17], p. 64-65, or Leadbetter et al. [28], p. 23). Since these two
rescaled extreme values are asymptotically independent, it follows that the limit
distribution of n · (1 − Dn) is a Gamma distribution with shape parameter 2 and
scale parameter 1. Making the transformation Xi 7→ 2Xi−1, we obtain the limit
distribution of the largest interpoint distance for uniformly distributed points in
[−1, 1] as follows:

lim
n→∞

P
(n
2
· (2 − Dn) ≤ t

)
= 1 − (1 + t) · e−t (1.1)
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for t > 0. Another instance is a standard normally distributed sample in R, for
which the asymptotic distribution of Dn is well known (see David and Nagaraja
[8], p. 211 and exercise 9.3.2), namely, for any t > 0,

lim
n→∞

P

√2 log n ·

Dn − 2
√

2 log n +
log log n + log 4π√

2 log n

 ≤ t


=

∫ ∞

−∞

exp
(
−t − e−t+u − e−u

)
du.

In the multivariate case d ≥ 2, there are only a few results in the literature
for the limit behavior of Dn. The reason is that, in contrast to the case d = 1,
the largest interpoint distance Dn does not have a simple expression in terms of
asymptotically independent extreme order statistics. Moreover, the interpoint
distances are based on point pairs, which are not always independent of each
other, e.g. (X1, X2) and (X1, X3) are not independent. Consequently, the classical
extreme value theory under the independence condition is not applicable in our
context.

If the points are standard normally distributed in Rd, d ≥ 2, the limit distri-
bution of Dn was obtained by Matthews and Rukhin [30]. Henze and Klein [23]
considered the more general case of a multivariate symmetric Kotz distribution
MK d(b, κ, 1, 0, Id), which contains the standard normal distribution for b = 1
and κ = 1/2. Writing l2n = log log n and l3n = log l2n for short, then for each
t ∈ R,

lim
n→∞

P
( √

(1/κ) log n ·
(
Dn − 2

√
(1/κ) log n

−
(1/2)(d + 4b − 7) l2n + l3n + a√

4κ log n

)
≤

t
2κ

)
= exp

(
−e−t

)
,

where

a = a(d, b) = log
(d − 1)2(d−7)/2Γ (d/2)
π1/2Γ (d/2 + b − 1)2 .

There are also some results for uniformly distributed samples. Appel and
Russo [5] stated that if the i.i.d. points are uniformly distributed in the d-dimen-
sional unit cube [0, 1]d associated with the supremum norm ‖·‖∞, then n·(1−Dn)
converges in distribution to a non trivial limit law with distribution function
1 − (e−t(t + 1))d, t ≥ 0. In related work, Appel et al. [4] provided a limit
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theorem for the diameter of uniformly distributed points in a compact planar set
A associated with the Euclidean norm. They assumed that A has a unique major
axis and that the boundary of A decays strictly faster than the function

√
x near

the endpoints of this major axis. The assumption of sub-
√

x boundary decay is
really restrictive, since many interesting sets are thereby excluded, in particular
ellipsoids and balls. However, in case of uniformly distributed points in the
unit disc, i.e. diam(A) = 2, Appel et al. [4] gave the rate of the limit distribution
of Dn by some bounds, although the existence of the limit distribution is not
proven. They stated that

1 − exp
(
−

4t5/2

35/2π

)
≤ lim inf

n→∞
P
(
n4/5 · (2 − Dn) ≤ t

)
≤ lim sup

n→∞
P
(
n4/5 · (2 − Dn) ≤ t

)
≤ 1 − exp

(
−

4t5/2

π

)
for each t > 0. An exact result for uniformly distributed points in a d-dimen-
sional ball was provided by Lao [26] using a Poisson limit theorem of Silverman
and Brown [38]. Independently of Lao, Mayer and Molchanov [32] obtained
the same result by first deriving an asymptotic distribution for the diameter of
a Poisson point process, and then applying the de-Poissonization technique to
obtain the same limit distribution for a general binomial point process. In [32] a
more general result was given for spherically symmetric distributed i.i.d. points
with certain conditions on the distribution of X1.

The method in [26] has been used later by Lao and Mayer [27] to derive
the limit law of a class of so-called U-max-statistics, which are similar to the
well known U-statistics. They considered i.i.d. random elements X1, X2, . . . in
some measurable space and a real-valued symmetric measurable function h of
k variables. The U-max-statistic of degree k associated with the kernel h is
defined by

Hn := max
J

h(Xi1, . . . , Xik),

where the maximum is taken over all permutations J = {(i1, . . . , ik) : 1 ≤ i1 <
· · · < ik ≤ n}. Notice that the only difference between U-max-statistics and
U-statistics is that the former deal with the maximum of the kernel whereas the
latter deal with the average of the kernel.

Using some known asymptotic results for U-statistics, Lao and Mayer [27]
derived the asymptotic behavior of the distribution of U-max-statistics by estab-
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lishing some relationship between U-max-statistics and U-statistics. In Chapter
2, we introduce a useful Poisson approximation theorem for some U-statistics.
Under the same necessary (and sufficient) conditions on the underlying distri-
bution of the sample, the limit law of U-max-statistics follows from this rela-
tionship.

In Chapter 3 we consider a sample of i.i.d. random points in the d-dimen-
sional unit ball. The asymptotic behavior of Dn will be treated for cases with
different underlying common distributions that are distinguished by the density
of the i.i.d. points near the boundary. The result for the case with a common
distribution of power type has been obtained in [27].

Chapter 4 is devoted to the study of the limit distribution of the maximum
with three arguments, e.g. the largest surface area or perimeter of all trian-
gles formed by point triplets. We take up the discussion made for uniformly
distributed random points on the unit circle.

Chapter 5 contains the limit law of the largest interpoint distance between
random points on the edges of a polygon in the unit ball. In this case, we
can make use of some known results in the classical extreme theory and some
geometric considerations to derive the limit law, instead of using the Poission
limit theorem as before. Simulations can also be found in this chapter to support
the obtained result.

In Chapter 6, we turn to the case that the random points are i.i.d. in the
support with finite major axes as square or cube. We first derive the limit dis-
tribution of the largest interpoint distance between the uniformly distributed
points in the unit square. Then, we generalize the method to some other distri-
butions in the unit square, or the uniform distribution in the unit hypercube with
dimension d ≥ 2, or the uniform distribution in a regular convex polygon. We
also give some bounds on the limit law of the largest distance between points
in an ellipse.

In the last Chapter, we highlight some open problems during the research
and give some preliminary considerations.





Chapter 2

Asymptotics for U-max-statistics

As mentioned in Chapter 1, we can define the extremes of symmetric kernels
based on random samples as a class of statistics analogous to U-statistics, which
we call U-max-statistics. In what follows, we study the asymptotic behavior of
the distribution of U-max-statistics as the sample size n tends to infinity.

Let X1, X2, . . . be a sequence of random elements in a measurable spaceM,
and let h : Mk → R denote a real-valued measurable function of k variables.
Analogous to U-statistics, we may also assume without loss of generality that
h is symmetric, because otherwise h could be symmetrized by putting

h̃(x1, . . . , xk) = max
i1,...,ik

h(xi1, . . . , xik),

where the maximum is taken over all permutations (i1, . . . , ik) of {1, . . . , k}. The
U-max-statistic of degree k associated with the kernel h is defined by

Hn := max
1≤i1<···<ik≤n

h(Xi1, . . . , Xik),

where the maximum is taken over all ordered k-tuples (i1, . . . , ik) in {1, . . . , n}.
The key to derive the limit law of Hn is to construct a U-statistic for each

n ∈ N, which has some relation to Hn and whose limit law can be derived by
some known limit theorem. For some θ ∈ R we define the random variable

Tn(θ) :=
∑

1≤i1<···<ik≤n

1{h(Xi1, . . . , Xik) > θ}, (2.1)

which counts the number of exceedances of the kernel h over the threshold θ.
Apart from the factor

(
n
k

)−1
, Tn(θ) is a U-statistic in the usual sense and is equal

to zero if and only if Hn does not exceed θ, i.e. we have

{Tn(θ) = 0} = {Hn ≤ θ}.
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If we can derive the limit distribution of Tn(θ), then the limit distribution of Hn

can also be obtained.
Barbour et al. [6], Theorem 2.M and Corollary 3.D.1, stated a Poisson ap-

proximation result for the sum of independent indicator random variables. They
gave the exact order of the error between the distribution of the sum and a suit-
able Poisson distribution by providing upper and lower bounds. Suppose I is
a collection of k-subsets a = {i1, . . . , ik} of {1, . . . , n} and, for each a ∈ I, 1a

is an indicator based on (X j, j ∈ a), having the value 1 if (X j, j ∈ a) satisfies
certain condition and the value 0 if not. Denote by W the sum of indicators
W =

∑
a∈I 1a and by pa the expectation of 1a for each a ∈ I. If (1a, a ∈ I) are

independent indicators, then

1
32

min(1,
1
λ

)
∑
a∈I

p2
a ≤ dTV(L(W),Po(λ)) ≤

1 − e−λ

λ

∑
a∈I

p2
a,

where L(W) denotes the law of W, Po(λ) stands for the Poisson distribution
with parameter λ =

∑
a∈I pa, and dTV(·, ·) is the total variation distance of prob-

ability measures.
Notice that, in (2.1) any two indicators 1{h(Xi1, . . . , Xik) > θ} and 1{h(X j1, . . . ,

X jk) > θ} are independent if and only if the two index sets {i1, . . . , ik} and
{ j1, . . . , jk} are disjoint. We are thus dealing with dissociated indicator ran-
dom variables (see [33]); the random number of exceedances Tn(θ) defined in
(2.1) is just a sum of dissociated indicators. Barbour et al. [6] also generalized
their Theorem 2.M to cover the case of dissociated random indicators. Using
the notations above, the family (1a, a ∈ I) is said to be dissociated if for each
A, B ⊂ I the subsets of random variables (1a, a ∈ A) and (1b, b ∈ B) are inde-
pendent whenever (

⋃
a∈A a) ∩ (

⋃
b∈B b) = ∅. In the case k = 1, a dissociated

family of indicators is equivalent to an independent family. If k ≥ 2, there is a
much wider scope. For each a, define I s

a = {b ∈ I : b , a, b ∩ a , ∅}. Barbour
et al. [6], Theorem 2.N, gave an upper bound of the error between the law of
the sum W of dissociated indicators and a Poisson distribution with parameter
λ =

∑
a∈I pa as follows:

dTV(L(W),Po(λ)) ≤ λ−1(1 − e−λ)
∑
a∈I

{
p2

a +
∑
b∈I s

a

(pa pb + E (1a1b))
}
.

In our case where I is the class of all k-subsets of {1, . . . , n} and the random
variables X1, . . . , Xn are i.i.d., the upper bound above can be given more explic-
itly. The following result can also be found in Barbour et al. [6], p. 35, which
is a direct consequence of the inequality above.
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Theorem 2.1. For any θ ∈ R and n ≥ k, let

p(θ) := P (h(X1, . . . , Xk) > θ) ,

λn(θ) := E (Tn(θ)) =

(
n
k

)
p(θ),

and, for r = 1, . . . , k − 1,

τr(θ) := p(θ)−1P (h(X1, . . . , Xk) > θ, h(X1+k−r, X2+k−r, . . . , X2k−r) > θ) .

We then have

dTV (L(Tn(θ)),Po(λn(θ)))

≤ (1 − e−λn(θ))

p(θ)
[(

n
k

)
−

(
n − k

k

)]
+

k−1∑
r=1

(
k
r

)(
n − k
k − r

)
τr(θ)

 , (2.2)

where the sum is defined to be zero if k = 1.

Note that p(θ) is the common value of the expectations of the indicators 1a =

1{h(Xi, i ∈ a) > θ}, a ∈ I, and τr(θ) is the common value of p(θ)−1E (1a1b) =

P (1b = 1|1a = 1) for all pairs a, b ∈ I for which |a ∩ b| = r. Obviously, the
behavior of the upper tail of the distribution of the kernel h plays an important
role.

One of the main applications of this theorem is that the law of the number of
exceedances Tn(θ) converges to a Poisson distribution as n→ ∞ if the expecta-
tion λn(θ) converges to some positive constant for each θ and the upper bound of
the error converges to zero as n→ ∞. We then get an approximation of the law
of the U-max-statistic Hn as n→ ∞. It is obvious that for a fixed threshold θ the
expectation λn(θ) either equals zero for all n or converges to infinity as n→ ∞.
We therefore must find a suitable sequence of transformations θn : Θ→ R with
Θ ⊂ R such that the tail probability p(θn(t)), t ∈ Θ, decreases in n and both
the convergence of λn(θn(t)) to some positive value and the convergence of the
upper bound of the error to zero hold for each t ∈ Θ. Without loss of generality,
we can choose Θ = [0,∞).

Poisson approximation in this context was first considered by Silverman and
Brown [38], who considered the statistical analysis of point patterns and stated
that

p(θn(t)) ≤ τ1(θn(t)) ≤ · · · ≤ τk−1(θn(t)) ≤ 1 (2.3)
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for each n ≥ k and each t ∈ Θ. On the other hand, since
(

m
l

)
= O(ml) for fixed l

and m→ ∞, the upper bound in (2.2) is of the order

O

p(θn(t))nk−1 +

k−1∑
r=1

τr(θn(t))nk−r


as n→ ∞. Moreover, the upper bound of the error converges to zero if and only
if p(θn(t))nk−1 → 0 and the summands converge to zero as n→ ∞. Suppose that
λn(θn(t)) converges to some positive constant, which means that p(θn(t)) must
be of the order O(n−k) and thus p(θn(t))nk−1 converges to zero. It thus remains
to prove that the summands converge to zero. Using the inequalities (2.3), we
obtain a simplified corollary, which was stated by Silverman and Brown [38].

Corollary 2.2. For Θ ⊂ R, let (θn)n≥k be a sequence of transformations θn :
Θ→ R. Suppose that for each t ∈ Θ there is a constant λ(t) ∈ (0,∞) such that

lim
n→∞

(
n
k

)
P (h(X1, . . . , Xk) > θn(t)) = λ(t) (2.4)

and

lim
n→∞

n2k−1P (h(X1, . . . , Xk) > θn(t), h(X1, . . . , Xk−1, Xk+1) > θn(t)) = 0.

(2.5)

We then have

Tn(θn(t))
D
−→ Po(λ(t)),

where
D
−→ denotes convergence in distribution.

Using this Poisson approximation on the special set
{
Tn(θn(t)) = 0

}
=

{
Hn ≤

θn(t)
}
, we obtain the limit behavior of the law of Hn:

lim
n→∞

P (Hn ≤ θn(t)) = exp{−λ(t)}, t ∈ Θ.

Hence, this is the main tool to derive the asymptotic results in Chapter 3.
Note that (2.4) is equivalent to the convergence

λn(θn(t)) = E (Tn(θn(t))) −→ λ(t)

as n → ∞ which implies tightness of the sequence (Tn)n≥k, a necessary crite-
rion for weak convergence of distributions. Furthermore, we can calculate the
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variance of Tn as follows:

V (Tn(θn(t)))

=
∑
a∈I

V (1a) +
∑
a,b∈I

Cov (1a, 1b)

=

(
n
k

)
p(θn(t))[1 − p(θn(t))] +

∑
a∩b,∅

[
E (1a1b) − p(θn(t))2

]
.

Here, the last sum is over all distinct pairs a, b ∈ I such that a∩b , ∅. Under the
first condition, the sum of the variances of indicators converges to the constant
λ(t), and the sum of the covariances of indicators is equal to

k−1∑
r=1

(
n
k

)(
k
r

)(
n − r
k − r

) [
P (1a = 1, 1b = 1) − p(θn(t))2

]
= O

 k−1∑
r=1

n2k−r p(θn(t)) · τr(θn(t))

 . (2.6)

From condition (2.5) and inequality (2.3) we conclude that each of the sum-
mands in (2.6) converges to zero, which implies

lim
n→∞

V (Tn(θn(t))) = λ(t). (2.7)

Obviously, condition (2.5) is sufficient but not necessary for (2.7). In the
case k > 2, it is sometimes useful to replace this single condition by the weaker
conditions

lim
n→∞

n2k−r p(θn(t))τr(θn(t)) = 0

for r = 1, . . . , k − 1.





Chapter 3

Largest distance in a ball

Using the results of Chapter 2, this chapter deals with the limit distribution of
the largest interpoint distance between points in the unit ball. The first two sec-
tions are preparations for the discussion. Section 3.3 states the results given in
Lao and Mayer [27], who considered the case that the underlying point distribu-
tion belongs to the so-called power type. Some of the asymptotic considerations
in the proofs of Lao and Mayer are studied in more detail. In Section 3.4 we
turn to another class of point distributions, called of logarithmic type, where
the points lie more likely near the boundary of the unit ball than in the case of
power type. The opposite case is the exponential type point distributions dis-
cussed in Section 3.5, where we shall see that the second condition of Corollary
2.2 is not satisfied. However, we detect an interesting phenomenon. In the last
section we shall deal with some special cases where the support of the point
distributions is a proper subset of the unit ball.

3.1 Preliminaries

Let (Xi)i≥1, Xi : Ω → Rd, be a sequence of i.i.d. random points, where d ≥ 2.
As before, write

Dn := max
1≤i< j≤n

‖Xi − X j‖

for the largest interpoint distance between X1, . . . , Xn.
This chapter studies the limit distribution of Dn under some general con-

ditions where the support of PX1 is some ball in Rd (except in the last section)
which, because of translation invariance and the fact that Dn is scale equivariant
(i.e., Dn(tX1, . . . , tXn) = t · Dn(X1, . . . , Xn), t > 0), may be taken without loss of
generality to be the unit ball Bd = {x ∈ Rd : ‖x‖ ≤ 1}. A notable exception can
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be found in Section 3.6 where we discuss some special cases in which the sup-
port of PX1 is contained in the unit ball and PX1(A) = 0 for some subset A ⊂ Bd

of positive Lebesgue measure.
If the support of PX1 is Bd, the random variable Dn converges almost surely

to diam(Bd) = 2 as n → ∞. To study the asymptotic behavior of 2 − Dn, we
choose a sequence of thresholds 2 − εn such that εn ↓ 0 as n→ ∞ and write

Tn :=
∑

1≤i< j≤n

1{‖Xi − X j‖ > 2 − εn}

for the number of exceedances of the interpoint distances over this threshold.
By Corollary 2.2, if conditions (2.4) and (2.5) hold, the random variable Tn

converges in distribution to a Poisson distribution as n→ ∞. As a consequence,
we have the following lemma.

Lemma 3.1. Let X1, X2, . . . be i.i.d. points in Bd and, for fixed t > 0, let
(εn(t))n∈N be a sequence of positive real numbers satisfying limn→∞ εn(t) = 0.
If

lim
n→∞

(
n
2

)
P (‖X1 − X2‖ > 2 − εn(t)) = λ(t) (3.1)

for some λ(t) ∈ (0,∞) and

lim
n→∞

n3P (‖X1 − X2‖ > 2 − εn(t), ‖X1 − X3‖ > 2 − εn(t)) = 0, (3.2)

then

lim
n→∞

P (2 − Dn ≤ εn(t)) = 1 − exp(−λ(t)).

Suppose throughout this chapter that P (X1 = 0) = 0. For each random point
Xi, i = 1, 2, . . ., write

Ri(ω) := ‖Xi(ω)‖, ω ∈ Ω

for the random distance (radius) between the point and the origin, and put

Ui(ω) :=


Xi(ω)
‖Xi(ω)‖ , if Xi(ω) , 0,

(1, 0, . . . , 0)T , otherwise.

Then, Ui(ω) is a point (angle) on the surface Sd−1 := {x ∈ Rd : ‖x‖ = 1} of the
unit ball which describes the direction of the point Xi. Since P (X1 = 0) = 0,
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there is a subset Ω0 ∈ A such that P (Ω0) = 1 and Xi(ω) = Ri(ω) · Ui(ω),
i = 1, 2, . . ., for each ω ∈ Ω0. We assume throughout this chapter that Ri and Ui

are independent for i = 1, 2, . . .. This condition holds if X1 has a spherical sym-
metric distribution. In this case the variables Ui, i = 1, 2, . . . are independent
and uniformly distributed on Sd−1.

As is common in classical extreme value theory, we classify the distribution
of the radius by its tail behavior. To this end, write tF := sup{x ∈ R : F(x) < 1}
for the right endpoint of a univariate distribution function F. The following
concept defines an equivalence relation on the set of all distribution functions.

Definition 3.1. Two distribution functions F1 and F2 are called tail-equivalent
if tF1 = tF2, and if

lim
t↑tF1

1 − F1(t)
1 − F2(t)

= lim
s↓0

1 − F1(tF1 − s)
1 − F2(tF1 − s)

= c

for some constant c ∈ (0,∞).

We also need the following concept of asymptotic equivalence of functions.

Definition 3.2. Let ψ1, ψ2 be real-valued functions defined on some nondegen-
erate interval M ⊂ R, and let s0 ∈ M. If ψ2(s) is non-zero for each s sufficiently
close to s0, we write ψ1(s) ∼ ψ2(s) as s→ s0 if and only if

lim
s→s0

ψ1(s)
ψ2(s)

= 1.

In this case ψ1 and ψ2 are called asymptotically equivalent as s→ s0.

According to this definition, the concept of tail-equivalence means that

1 − F1(tF − s) ∼ c · (1 − F2(tF − s))

for some c ∈ (0,∞) as s ↓ 0. The following lemmas are also useful for later
purposes.

Lemma 3.2. Let ψ1, ψ2 : R≥0 → R≥0 be measurable integrable positive real-
valued functions such that ψ1(s) ∼ ψ2(s) as s ↓ 0 and, let h : R2 → R be a
measurable function such that, for each s > 0, h(s, ·) is positive and integrable
on the interval (0, s). We then have

(a)
∫ s

0
ψ1(t) · h(s, t) dt ∼

∫ s

0
ψ2(t) · h(s, t) dt
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(b)
∫ s

0
ψ1(s − t) · h(s, t) dt ∼

∫ s

0
ψ2(s − t) · h(s, t) dt

as s ↓ 0. In particular, if h(s, t) = 1 for all s, t ∈ R, we have∫ s

0
ψ1(t) dt ∼

∫ s

0
ψ2(t) dt and

∫ s

0
ψ1(s − t) dt ∼

∫ s

0
ψ2(s − t) dt

as s ↓ 0.

Lemma 3.3. Let F be a distribution function satisfying F(0) = 0 and Ψ a
function defined on the support of F with Ψ(0) = 0. Suppose that F and Ψ

are differentiable and Ψ′ > 0 in a right neighborhood of 0. Moreover, assume
F′(s) ∼ Ψ′(s) as s ↓ 0. We then have

(a) F(s) ∼ Ψ(s),

(b) F ∗ F(s) ∼
∫ s

0
Ψ(s − x) Ψ′(x) dx

as s ↓ 0, where “∗” denotes convolution.

The proofs of these two lemmas can be found in Appendix A.
Throughout this chapter, ](·, ·) denotes the central angle between two points.

(The central angle means here the smaller of the two angles at the origin, it does
not mean the reflex angle.) The s-dimensional Hausdorff measure on Rn (see
Appendix B.1) will be denoted by H s. Note that the restriction of the (d −
1)-dimensional Hausdorff measure on Rd to Sd−1 is the surface area measure,
which is denoted by µd−1. In the computation we also use the Gamma function
and the Beta function, which are denoted by Γ (·) and B (·, ·), respectively.

3.2 Tail probability

We already know that the tail behavior of the distance between two random
points is of crucial importance for the limit behavior of Dn. In the following,
we derive some bounds on the probability that the distance between two points
exceeds a threshold which is close to 2. We then give the asymptotic behavior
of this probability under some further conditions on the point distribution.

Let X1, X2 be i.i.d. points in Bd, d ≥ 2, such that Xi = RiUi, i = 1, 2, where
Ri = ‖Xi‖ and Ui = Xi/‖Xi‖ ∈ S

d−1 are independent. Suppose that Ui has a
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density g with respect to µd−1. Denote by φ := ](−U1,U2) the central angle
between −U1 and U2. By using the law of cosines we have for each 0 < ε < 2

P (‖X1 − X2‖ ≥ 2 − ε)

= P
(
R2

1 + R2
2 + 2R1R2 cos φ ≥ (2 − ε)2, R1 + R2 ≥ 2 − ε

)
= P

cos φ ≥
(2 − ε)2 − R2

1 − R2
2

2R1R2
, R1 + R2 ≥ 2 − ε

 .
For small ε, an exceedance can only happen for a very small random angle φ.
The second order Taylor approximation to cos φ around 0 is 1− 1

2φ
2 cos ξ, where

ξ ∈ [0, φ]. Using this approximation and plugging Yi := 1−Ri, i = 1, 2, into the
last expression, we get

P (‖X1 − X2‖ ≥ 2 − ε)

= P

(
1 −

1
2
φ2 cos ξ ≥

(2 − ε)2 − (1 − Y1)2 − (1 − Y2)2

2(1 − Y1)(1 − Y2)
, Y1 + Y2 ≤ ε

)
= P

(
1
2
φ2 cos ξ ≤

4(ε − Y1 − Y2) + (Y1 + Y2)2 − ε2

2(1 − Y1)(1 − Y2)
, Y1 + Y2 ≤ ε

)
= P

(
φ2 cos ξ ≤ 4(ε − Y1 − Y2) + %(ε,Y1,Y2), Y1 + Y2 ≤ ε

)
(3.3)

=: p(ε),

where

%(ε,Y1,Y2) :=
4(ε − Y1 − Y2)(Y1 + Y2 − Y1Y2) + (Y1 + Y2)2 − ε2

(1 − Y1)(1 − Y2)
. (3.4)

Since Y1 + Y2 ≤ ε implies

|%(ε,Y1,Y2)| ≤
4 · |ε − Y1 − Y2| · |Y1 + Y2 − Y1Y2| + |Y1 + Y2|

2 + ε2

|1 − Y1| · |1 − Y2|

≤
6ε2

(1 − ε)2 ,

and 6ε2/(1 − ε)2 = 6ε2 + O
(
ε3

)
by Taylor series expansion, we obtain the

inequality |%(ε,Y1,Y2)| ≤ 7ε2 for sufficiently small ε.
Moreover, by some geometric considerations the upper bound on φ for the

distance exceeding the threshold 2 − ε reaches its maximum at R1 = R2 = 1,
and it follows from the inequality ‖X1 − X2‖ ≥ 2 − ε that

cos φ ≥
(2 − ε)2 − 2

2
= 1 − 2ε +

1
2
ε2.
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Since 0 ≤ ξ ≤ φ and the cosine function is decreasing on the interval [0, π], we
have

1 ≥ cos ξ ≥ cos φ ≥ 1 − 2ε +
1
2
ε2,

where the lower bound is positive for sufficiently small ε. Moreover, for the
reciprocal a Taylor series expansion yields

1 ≤
1

cos ξ
≤

1
1 − 2ε + 1

2ε
2

= 1 + 2ε + O
(
ε2

)
,

whence 1 ≤ 1
cos ξ ≤ 1 + 3ε for sufficiently small ε.

We now derive inequalities for p(ε) by putting the bounds on %(ε,Y1,Y2) and
on 1/ cos ξ into (3.3). On one hand, we have for sufficiently small ε

p(ε) ≥ P
(
φ2 ≤ 4(ε − Y1 − Y2) − 7ε2, Y1 + Y2 ≤ ε

)
= P

(
φ2 ≤ 4(ε − Z) − 7ε2, Z ≤ ε

)
=

∫ ε− 7
4ε

2

z=0
P
(
φ2 ≤ 4(ε − z) − 7ε2

)
dPZ(z)

=

∫ ε− 7
4ε

2

z=0
P
(
|φ| ≤

[
4(ε − z) − 7ε2

]1/2
)

dPZ(z)

=: p1(ε),

where Z := Y1 + Y2 and PZ is the convolution of PY1 and PY2. On the other hand,
we have

p(ε) = P

(
φ2 ≤

1
cos ξ

· (4(ε − Y1 − Y2) + %(ε,Y1,Y2)) , Y1 + Y2 ≤ ε

)
≤ P

(
φ2 ≤ (1 + 3ε) · (4(ε − Y1 − Y2) + 7ε2), Y1 + Y2 ≤ ε

)
≤ P

(
φ2 ≤ 4(ε − Y1 − Y2) + 20ε2, Y1 + Y2 ≤ ε

)
= P

(
φ2 ≤ 4(ε − Z) + 20ε2, Z ≤ ε

)
=

∫ ε

z=0
P
(
φ2 ≤ 4(ε − z) + 20ε2

)
dPZ(z)

≤

∫ ε+5ε2

z=0
P
(
|φ| ≤

[
4(ε − z) + 20ε2

]1/2
)

dPZ(z)

=: p2(ε).
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Like the lower bound p1(ε), this upper bound is only valid for sufficiently small
ε. For example, the second inequality involves the estimate 21ε3 ≤ ε2, which
holds if ε ≤ 1/21.

Both the integrands in p1(ε) and in p2(ε) involve probabilities of the form
P
(
|φ| ≤

√
η
)

for small η. With help of some geometric considerations, we can
prove the following result.

Lemma 3.4. Let U1,U2 be i.i.d. points on Sd−1, d ≥ 2, with bounded density g
with respect to µd−1 and let φ = ](−U1,U2). We then have

P
(
|φ| ≤

√
η
)
∼ β · η

d−1
2

as η ↓ 0, where

β =
π(d−1)/2

Γ
(

d+1
2

) ∫
Sd−1

g(u)g(−u) µd−1(du). (3.5)

Proof. For fixed u ∈ Sd−1, let φu := ](−u,U2) be the central angle between −u
and U2. We then have

P
(
|φ| ≤

√
η
)

=

∫
Sd−1

P
(
|φu| ≤

√
η
)

dPU1(u).

Write

Cu(η) := {v ∈ Sd−1 : ](−u, v) ≤
√
η}

for the spherical cap that contains the points on Sd−1 with a central angle to −u
of at most

√
η (see Figure 3.1). By a general form of Lebesgue’s differentiation

theorem (see Appendix A) we obtain

lim
η↓0

P
(
|φu| ≤

√
η
)

µd−1(Cu(η))
= g(−u)

for µd−1-almost every u ∈ Sd−1. Furthermore, since

P
(
|φu| ≤

√
η
)
≤ sup

u∈Sd−1
g(u) · µd−1(Cu(η))

and g is a bounded function,
∣∣∣∣P (
|φu| ≤

√
η
)
/µd−1(Cu(η))

∣∣∣∣ is bounded by a pos-
itive constant and hence integrable with respect to any finite measure. By the



20 CHAPTER 3. LARGEST DISTANCE IN A BALL

-u

√η

Cu(η)

Figure 3.1: The illustration of the geometric consideration.

dominated convergence theorem (see Appendix A), integration with respect to
the angular distribution yields∫

Sd−1
g(−u) dPU1(u) = lim

η↓0

∫
Sd−1

P
(
|φu| ≤

√
η
)

µd−1(Cu(η))
dPU1(u)

= lim
η↓0

1
µd−1(Cu(η))

∫
Sd−1

P
(
|φu| ≤

√
η
)

dPU1(u)

= lim
η↓0

P
(
|φ| ≤

√
η
)

µd−1(Cu(η))
. (3.6)

Since ∫
Sd−1

g(−u) dPU1(u) =

∫
Sd−1

g(u)g(−u) µd−1(du),

(3.6) implies

P
(
|φ| ≤

√
η
)
∼ µd−1(Cu(η)) ·

∫
Sd−1

g(u)g(−u) µd−1(du) (3.7)

as η ↓ 0.
Using the result derived in Appendix B.2 we obtain

µd−1(Cu(η)) ∼
π

d−1
2

Γ
(

d+1
2

) · η d−1
2
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as η ↓ 0. Plugging this into (3.7), we have

P
(
|φ| ≤

√
η
)
∼

π(d−1)/2

Γ
(

d+1
2

) η d−1
2

∫
Sd−1

g(u)g(−u) µd−1(du)

as η ↓ 0. �

Let (y1, y2) ∈ [0, 1]2 with y1 + y2 ≤ ε, z = y1 + y2 ∈ [0, ε] and

η1 := η1(z) := 4(ε − z) − 7ε2,

η2 := η2(z) := 4(ε − z) + 20ε2.

By Lemma 3.2 and Lemma 3.4 we have for ε ↓ 0

p1(ε) =

ε− 7
4ε

2∫
z=0

P
(
|φ| ≤

√
η1

)
dPZ(z)

∼ β ·

ε− 7
4ε

2∫
z=0

[
4(ε − z) − 7ε2

] d−1
2 dPZ(z) (3.8)

and

p2(ε) =

ε+5ε2∫
z=0

P
(
|φ| ≤

√
η2

)
dPZ(z)

∼ β ·

ε+5ε2∫
z=0

[
4(ε − z) + 20ε2

] d−1
2 dPZ(z) (3.9)

with β given in (3.5).
Recall that p1(ε) ≤ p(ε) ≤ p2(ε). If we can prove that limε↓0 p2(ε)/p1(ε) =

1, i.e.,

ε− 7
4ε

2∫
z=0

[
4(ε − z) − 7ε2

] d−1
2 dPZ(z) ∼

ε+5ε2∫
z=0

[
4(ε − z) + 20ε2

] d−1
2 dPZ(z)

as ε ↓ 0, we then obtain the asymptotic behavior of the tail probability p(ε).
We consider again the distribution of the angle Ui. If∫

Sd−1
g(u)g(−u) µd−1(du) = 0,
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then g(u)g(−u) = 0 µd−1-almost everywhere, which contradicts the assumption
that the support of the point distribution is the unit ball. However, since g is
bounded, we have ∫

Sd−1
g(u)g(−u) µd−1(du) ∈ (0,∞),

then β in (3.5) is a positive constant and by the dominated convergence theorem
both the integrals in (3.8) and in (3.9) converge to zero as ε→ 0. Consequently,
the tail probability converges to zero. Moreover, because of the boundedness,
the density g of Ui also satisfies∫

Sd−1
g(u)g(−u)2 µd−1(du) ∈ (0,∞),

which is essential for proving (3.2).
Since a necessary condition for the distance exceeding a threshold 2 − ε is

that the radii of the two points exceed 1 − ε, it is not surprising that the tail
of the distribution of Ri plays a central role. In the following sections we will
investigate the limit distribution of the largest interpoint distance under specific
conditions on the tail of the distribution of Ri.

3.3 Power type

Having proved the technical Lemma 3.4 and the expressions of the upper and
the lower bound on the tail probability p(ε), we now proceed to the main deriva-
tion of the extremal result under the assumption that the tail behavior of the
distribution function of Ri can be approximated by a power function.

Denote by F the distribution function of Yi := 1 − Ri, i = 1, 2, . . .. Suppose
that F is differentiable in a small right neighborhood of 0 and F′(s) ∼ aαsα−1

as s ↓ 0 for some a > 0 and α > 0. By Lemma 3.3, we have F(s) ∼ asα as
s ↓ 0. Since F is also continuous in a right neighborhood of 0, the distribution
function of R1 is P (R1 ≤ s) = 1 − F(1 − s) for sufficiently large s ∈ [0, 1].
The asymptotic expression for F implies that the distribution function of R1 is
tail-equivalent to the power distribution function 1 − (1 − t)α =: Ψ(t), i.e., we
have

lim
t↑1

P (R1 > t)
1 − Ψ(t)

= lim
s↓0

F(s)
sα

= a > 0.

We therefore say that the distribution of radius is of power type.
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The (right-hand) derivative of F at s = 0 is then given by

F′(0+) = lim
s↓0

F(s) − F(0)
s

= lim
s↓0

F(s)
sα
· sα−1 =


∞, if α < 1
a, if α = 1
0, if α > 1.

In other words, the probability distribution of R1 becomes sparser when ap-
proaching its right endpoint 1 if α > 1, it is homogeneous in the case α = 1 and
it becomes denser if α < 1.

We first derive the tail behavior of the distribution of the distance between
two points by investigating the asymptotic behavior of the upper bound p1(ε)
and the lower bound p2(ε).

Proposition 3.5. Let X1, X2 be i.i.d. points in Bd, d ≥ 2, such that Xi = RiUi,
i = 1, 2, where Ri = ‖Xi‖ and Ui = Xi/‖Xi‖ ∈ S

d−1 are independent. Suppose
that U1 has a bounded density g with respect to µd−1 and that the distribution
function F of 1 − R1 is differentiable in a small right neighborhood of 0 and
satisfies

F′(s) ∼ aαsα−1 (3.10)

as s ↓ 0 for some a > 0 and α > 0. As ε ↓ 0, we then have

P (‖X1 − X2‖ ≥ 2 − ε) ∼ σ1 · ε
d−1

2 +2α,

where

σ1 =
(4π)

d−1
2 a2Γ (α + 1)2

Γ
(

d+1
2 + 2α

) ∫
Sd−1

g(u)g(−u) µd−1(du). (3.11)

Proof. Let Yi := 1−Ri, i = 1, 2, and Z := Y1 + Y2. In the last section we proved
that the tail probability P (‖X1 − X2‖ ≥ 2 − ε) satisfies

p1(ε) ≤ P (‖X1 − X2‖ ≥ 2 − ε) ≤ p2(ε),

where

p1(ε) ∼ β ·

ε− 7
4ε

2∫
z=0

[
4(ε − z) − 7ε2

] d−1
2 dPZ(z),

p2(ε) ∼ β ·

ε+5ε2∫
z=0

[
4(ε − z) + 20ε2

] d−1
2 dPZ(z)



24 CHAPTER 3. LARGEST DISTANCE IN A BALL

as ε ↓ 0. Note that β is a positive finite constant given in (3.5).
At first, we derive the asymptotic behavior of the distribution function of Z.

By (3.10) and Lemma 3.3, Y1 has the distribution function F with

F(s) ∼ asα (3.12)

as s ↓ 0. Since Y1 and Y2 are i.i.d., applying Lemma 3.3 and substituting u = t/s
lead to the following asymptotic expression of the distribution function of the
convolution of Y1 and Y2:

F ∗ F(s) ∼
∫ s

0
a(s − t)α · aαtα−1 dt

= a2αs2α
∫ 1

0
(1 − u)αuα−1 du

= a2αs2αB (α + 1, α)

=
a2Γ (α + 1)2

Γ (2α + 1)
s2α (3.13)

as s ↓ 0.
The main part of the proof is to compute the integrals in p1(ε) and p2(ε) as

follows. Using integration by parts, we obtain

p1(ε) ∼ β

ε− 7
4ε

2∫
z=0

[
4(ε − z) − 7ε2

] d−1
2 dPZ(z)

= β · 4
d−1

2


[
(ε − z) −

7
4
ε2

] d−1
2

P (Z ≤ z)

∣∣∣∣∣∣ε−
7
4ε

2

z=0

+

ε− 7
4ε

2∫
z=0

d − 1
2

[
(ε − z) −

7
4
ε2

] d−3
2

P (Z ≤ z) dz


= β · 4

d−1
2

d − 1
2

ε− 7
4ε

2∫
z=0

[
ε −

7
4
ε2 − z

] d−3
2

F ∗ F(z) dz.

Applying the approximation (3.13) to the convolution F ∗ F, Lemma 3.2 yields

p1(ε) ∼ β · 4
d−1

2
d − 1

2
·

a2Γ (α + 1)2

Γ (2α + 1)

ε− 7
4ε

2∫
z=0

[
ε −

7
4
ε2 − z

] d−3
2

z2α dz
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as ε ↓ 0. By substituting t = z/(ε − 7
4ε

2), we have for ε ↓ 0

p1(ε)

∼ β ·
d − 1

2
·

4
d−1

2 a2Γ (α + 1)2

Γ (2α + 1)
·

(
ε −

7
4
ε2

) d−1
2 +2α ∫ 1

t=0
(1 − t)

d−3
2 t2α dt

= β ·
d − 1

2
·

4
d−1

2 a2Γ (α + 1)2

Γ (2α + 1)
·

(
ε −

7
4
ε2

) d−1
2 +2α

B
(
d − 1

2
, 2α + 1

)
= β ·

4
d−1

2 a2Γ (α + 1)2 Γ
(

d+1
2

)
Γ
(

d+1
2 + 2α

) ·

(
ε −

7
4
ε2

) d−1
2 +2α

.

Plugging formula (3.5) for β into p1(ε), it reduces to

p1(ε) ∼ σ1 ·

(
ε −

7
4
ε2

) d−1
2 +2α

as ε ↓ 0, where σ1 is the positive finite constant given in (3.11).
Using the same method and substituting t = z/(ε + 5ε2), we get

p2(ε)

∼ β

ε+5ε2∫
z=0

[
4(ε − z) + 20ε2

] d−1
2 dPZ(z)

= β · 4
d−1

2
d − 1

2

∫ ε−5ε2

z=0

[
ε + 5ε2 − z

] d−3
2 F ∗ F(z) dt

∼ β ·
d − 1

2
·

4
d−1

2 a2Γ (α + 1)2

Γ (2α + 1)

∫ ε+5ε2

z=0

[
ε + 5ε2 − z

] d−3
2 z2α dz

= β ·
d − 1

2
·

4
d−1

2 a2Γ (α + 1)2

Γ (2α + 1)
·
(
ε + 5ε2

) d−1
2 +2α

∫ 1

t=0
(1 − t)

d−3
2 t2α dt

= β ·
d − 1

2
·

4
d−1

2 a2Γ (α + 1)2

Γ (2α + 1)
·
(
ε + 5ε2

) d−1
2 +2α

B
(
d − 1

2
, 2α + 1

)
= σ1 ·

(
ε + 5ε2

) d−1
2 +2α

as ε ↓ 0.
Since p1(ε) ∼ p2(ε) as ε ↓ 0 and p1(ε) ≤ σ1ε

d−1
2 +2α ≤ p2(ε), the result in

Proposition 3.5 follows immediately. �
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Thus, under the condition (3.10), the tail probability of the distance between
X1 and X2 is asymptotically equal to some power function of ε. Indeed, we
need (3.10) to be true to obtain (3.13). By Lemma 3.3, the “direct” condition
(3.12) follows immediately from (3.10), and it coincides with the condition on
F given in Theorem 3.1 in Lao and Mayer [27]. However, the converse does
not always hold, e.g. for a Cantor-Lebesgue function.

A more general case of power type distribution function is regularly varying
distribution function. Suppose that F ∈ Rα, α > 0, where Rα denotes the set
of all functions which are regularly varying at 0 of index α (see Appendix C).
Then, we have F(s) ∼ sαL(s) as s ↓ 0, where L(s) is slowly varying at 0 (in
case of power type distribution, L(s) = a). By the monotone density theorem
stated in Appendix C, we have F′(s) ∼ αsα−1L(s) as s ↓ 0. Thus, using the
substitution u = t/s, the convolution of F has the asymptotic expression

F ∗ F(s) ∼
∫ s

0
(s − t)αL(s − t) · αtα−1L(t) dt

= αL(s)2s2α
∫ 1

0
(1 − u)α

L(s(1 − u))
L(s)

uα−1 L(su)
L(s)

du

∼ αL(s)2s2αB (α + 1, α) =
Γ (α + 1)2

Γ (2α + 1)
L(s)2s2α

as s ↓ 0, where we use the property lims↓0 L(st)/L(s) = 1, t > 0, for slowly
varying functions. The asymptotic expression of the tail probability can be
obtained similarly, as ε ↓ 0 we have

P (‖X1 + X2‖ ≥ 2 − ε) ∼ β 4
d−1

2
Γ (α + 1)2 Γ

(
d+1

2

)
Γ
(

d+1
2 + 2α

) ε
d−1

2 +2αL(ε)2.

To deduce the limit law of Dn, we still need more information about L(ε).
We return to the situation of power type distributions. The main result of

this section is as follows:

Theorem 3.6. Let X1, X2, . . . be i.i.d. points in Bd, d ≥ 2, such that Xi = RiUi,
i = 1, 2, . . ., where Ri = ‖Xi‖ and Ui = Xi/‖Xi‖ ∈ S

d−1 are independent. Suppose
that U1 has a bounded density g with respect to µd−1 and that condition (3.10)
holds for the distribution function F of 1 − R1. We then have

lim
n→∞

P

((
σ1

2

) 2
d−1+4α

· n
4

d−1+4α · (2 − Dn) ≤ t
)

= 1 − exp
(
−t

d−1
2 +2α

)
for t > 0, where σ1 is given in (3.11).
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Proof. First, we set

εn = εn(t) :=
(

2
σ1

) 2
d−1+4α

· n−
4

d−1+4α · t (3.14)

for fixed t > 0. We check the conditions (3.1) and (3.2) of Lemma 3.1. If they
are satisfied, then

P (2 − Dn ≤ εn) = P

2 − Dn ≤

(
2
σ1

) 2
d−1+4α

· n−
4

d−1+4α · t


= P

((
σ1

2

) 2
d−1+4α

· n
4

d−1+4α · (2 − Dn) ≤ t
)

−→ 1 − exp(−λ(t))

as n→ ∞, where λ(t) will be proved to be a positive finite constant as follows.
Applying Proposition 3.5 and plugging (3.14) into the tail probability, we

obtain

lim
n→∞

(
n
2

)
P (‖X1 − X2‖ > 2 − εn)

= lim
n→∞

n2

2
· σ1 · ε

d−1
2 +2α

n

= lim
n→∞

σ1

2
· n2 ·

2
σ1
· n−2 · t

d−1
2 +2α

= t
d−1

2 +2α =: λ(t) ∈ (0,∞).

Consequently, condition (3.1) holds.
To check condition (3.2) we will use the independence of the i.i.d. points

to obtain an upper bound for the probability of two overlapping exceedances.
Write Xi = UiRi, i = 1, 2, 3, and put Yi = 1 − Ri, i = 1, 2, 3. Then Y1, Y2, Y3 are
i.i.d. with the distribution function F, where

F(s) ∼ asα

as s ↓ 0 by Lemma 3.3. Put φ = ](−U1,U2) and φ′ = ](−U1,U3). By adopting
the same approach as in Section 3.2 and using the independence of Yi and Ui,
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i = 1, 2, 3, we obtain

n3P (‖X1 − X2‖ > 2 − εn, ‖X1 − X3‖ > 2 − εn)

= n3P
(
φ2 cos ξ ≤ 4(εn − Y1 − Y2) + %(εn,Y1,Y2),

φ′2 cos ξ′ ≤ 4(εn − Y1 − Y3) + %(εn,Y1,Y3),

Y1 + Y2 ≤ εn,Y1 + Y3 ≤ εn

)
≤ n3P

(
|φ| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′| ≤

[
4εn + 20ε2

n

] 1
2 , Yi ≤ εn, i = 1, 2, 3

)
= n3F(εn)3P

(
|φ| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′| ≤

[
4εn + 20ε2

n

] 1
2
)
, (3.15)

where %(εn,Y1,Y2) and %(εn,Y1,Y3) are given in (3.4) and ξ ∈ [0, φ], ξ′ ∈ [0, φ′].
We now deal with the probability in the last expression. To this end, let

φu = ](−u,U2) and φ′u = ](−u,U3), u ∈ Sd−1. Since φu and φ′u are i.i.d., it
follows that

P
(
|φ| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′| ≤

[
4εn + 20ε2

n

] 1
2
)

=

∫
Sd−1

P
(
|φu| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′u| ≤

[
4εn + 20ε2

n

] 1
2
)

g(u) µd−1(du)

=

∫
Sd−1

P
(
|φu| ≤

[
4εn + 20ε2

n

] 1
2
)2

g(u) µd−1(du).

As in the proof of Lemma 3.4 we have for each fixed u ∈ Sd−1

P
(
|φu| ≤

[
4εn + 20ε2

n

] 1
2
)
∼ g(−u) ·

π
d−1

2

Γ
(

d+1
2

) · (4εn + 20ε2
n)

d−1
2

∼ g(−u) ·
(4π)

d−1
2

Γ
(

d+1
2

) · ε d−1
2

n

as εn ↓ 0. Since g is a bounded function, the dominated convergence theorem
yields

P
(
|φ| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′| ≤

[
4εn + 20ε2

n

] 1
2
)

∼
(4π)d−1

Γ
(

d+1
2

)2 · ε
d−1
n ·

∫
Sd−1

g(−u)2g(u) µd−1(du) =: C · εd−1
n , (3.16)

where C is some finite positive constant because of the boundedness of g.
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Thus, applying the approximations F(εn) ∼ aεαn and (3.16) as εn ↓ 0 and
plugging (3.14) into the upper bound (3.15), we get

n3F(εn)3P
(
|φ| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′| ≤

[
4εn + 20ε2

n

] 1
2
)

∼ n3 ·C · εd−1
n · a3ε3α

n

= C · a3 ·

(
2
σ1

) 2(d−1+3α)
d−1+4α

· td−1+3α · n−
d−1

d−1+4α

−→ 0,

where asymptotic equality and convergence refer to n → ∞. Hence, the main
result follows directly from Lemma 3.1. �

So far, we did not impose any restriction on the distribution of the angle
except for the boundedness of g. A large class of multivariate distributions is the
class of spherically symmetric distributions, for which the random points have
independent radii Ri and directions Ui. Moreover, the directions are uniformly
distributed on Sd−1, e.g. Ui has the density

g0(u) =
1

µd−1(Sd−1)
1Sd−1(u) =

Γ
(

d
2

)
2πd/2 1Sd−1(u), u ∈ Rd, (3.17)

with respect to µd−1. In this case the integral figuring in (3.11) takes the value∫
Sd−1

g0(u)g0(−u) µd−1(du) =

∫
Sd−1

g0(u)2 µd−1(du)

=

∫
Sd−1

1
µd−1(Sd−1)2 µ

d−1(du)

=
1

µd−1(Sd−1)
=

Γ
(

d
2

)
2πd/2 .

Plugging this result into the assertion of Theorem 3.6, we get the following
corollary, which has also been proved in [32] using a different method.

Corollary 3.7. If the i.i.d. points X1, X2, . . . have a spherically symmetric dis-
tribution in Bd, d ≥ 2, and condition (3.12) holds for the distribution function
of 1 − ‖X1‖, we have

lim
n→∞

P

((
σ1

2

) 2
d−1+4α

· n
4

d−1+4α · (2 − Dn) ≤ t
)

= 1 − exp
(
−t

d−1
2 +2α

)
,
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t > 0, where

σ1 =
2d−2Γ

(
d
2

)
a2Γ (α + 1)2

√
π Γ

(
d+1

2 + 2α
) .

For the special case of uniformly distributed points in Bd, i.e. the case α = 1
and a = d, the limit distribution is as follows (cf. [26] and [32]).

Corollary 3.8. If X1, X2, . . . are independent and uniformly distributed in Bd,
d ≥ 2, we have

lim
n→∞

P

((
σ1

2

) 2
d+3
· n

4
d+3 · (2 − Dn) ≤ t

)
= 1 − exp

(
−t

d+3
2

)
, (3.18)

t > 0, where

σ1 =
2d+1d

(d + 1)(d + 3)B
(

d
2 + 1

2 ,
1
2

) .
Figure 3.2 shows a simulation of the limit law of the largest interpoint dis-

tance between points in the unit circle. The solid curves are the empirical dis-
tribution function (EDF) of ( 16

15π)2/5 · n4/5 · (2−Dn) with n = 1000 (lower curve)
and n = 100000 (upper curve), respectively. The dotted smooth curve is the
theoretical distribution function on the right-hand side of (3.18). We see that
the convergence of the EDF to the limit law is slow, so that we need a relatively
large sample size to get a good approximation.

If the parameters α, a and d are fixed, the limit distribution in Theorem 3.6
depends only on the value of the integral

∫
Sd−1 g(u)g(−u) µd−1(du). Denote by

g0 the uniform density on Sd−1 given in (3.17) and by Gc the class of bounded
centrally symmetric densities with respect to µd−1, i.e., we have g(u) = g(−u),
u ∈ Sd−1, for each g ∈ Gc. By the Cauchy-Schwarz inequality, we get(∫

Sd−1
g(u)g0(u) µd−1(du)

)2

≤

∫
Sd−1

g(u)2 µd−1(du) ·
∫
Sd−1

g0(u)2 µd−1(du).

Since∫
Sd−1

g(u)g0(u) µd−1(du) = 1/µd−1(Sd−1) =

∫
Sd−1

g0(u)2 µd−1(du),

it follows that∫
Sd−1

g(u)2 µd−1(du) ≥
1

µd−1(Sd−1)
=

∫
Sd−1

g0(u)2 µd−1(du),

i.e., the integral
∫
Sd−1 g(u)g(−u) µd−1(du) takes its minimum for g = g0, and we

have the following corollary:
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Figure 3.2: EDF’s of ( 16
15π )2/5 · n4/5 · (2 − Dn) with n = 1000 (lower curve)

and n = 105 (upper curve). The dotted smooth curve is the limit law
1 − exp

(
−t5/2

)
.

Corollary 3.9. Among the class Gc of centrally symmetric densities, the U-
max-statistic Dn is asymptotically stochastically minimal if the direction has a
uniform distribution on the surface of the unit ball.

Up to now, we have discussed the limit law of the largest interpoint distance
Dn, when the distribution of ‖X1‖ belongs to some class of power type distribu-
tions. In this case the limit law of Dn is of Weibull type, and the rescaling factor
is of the order O

(
n

4
d−1+4α

)
.

3.4 Logarithmic type

In this section we investigate the limit distribution of the largest interpoint dis-
tance for the case that the distribution function of R1 behaves like a logarithmic
function near 1.

Suppose that the distribution function F of Y1 = 1 − R1 is differentiable in a
small right neighborhood of 0, and that

F′(s) ∼
aα

(1 − α log s)2 ·
1
s

as s ↓ 0 for some a > 0 and α > 0. Thus, by Lemma 3.3 F has the asymptotic
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expression

F(s) ∼
∫ s

0

aα
(1 − α log t)2 ·

1
t

dt =
a

1 − α log s

as s ↓ 0. Since F is right-hand continuous at 0, then 1 − F(1 − s) is the distri-
bution function of R1 at least for sufficiently large s ∈ [0, 1]. The asymptotic
expression above then implies the tail-equivalence of the distribution of R1 and
the logarithmic distribution function 1 − 1

1−α log(1−t) =: Ψ(t), i.e., we have

lim
t↑1

P (R1 > t)
1 − Ψ(t)

= lim
s↓0

F(s) · (1 − α log s) = a > 0.

In this case, we say that the distribution of ‖X1‖ is of logarithmic type.
Notice that the distribution function F of logarithmic type belongs to the

class of slowly varying functions, because of

lim
s↓0

F(st)
F(s)

= lim
s↓0

1 − α log s
1 − α log s − α log t

= 1.

We now consider the (right-hand) derivative of F at 0. Using l’Hôpital’s rule
we get

F′(0+) = lim
s↓0

F(s) − F(0)
s

= lim
s↓0

F(s)
a/(1 − α log s)

· lim
s↓0

as−1

1 − α log s

= 1 ·
a
α

lim
s↓0

s−1

= ∞.

Actually, the speed of convergence of the derivative of F at 0 to infinity is even
more rapid than that of a distribution function of power type with α < 1 (see
page 23), a phenomenon that is illustrated in Figure 3.3.

Since the random points are more likely to fall in a narrow annulus close to
the boundary than in the case of a radial distribution function of power type, the
probability of an exceedance over a given threshold is greater. To compensate
for this effect with respect to the situation of Theorem 3.6, we need a rescaling
factor which converges to infinity more rapidly.

The following proposition gives the tail behavior of the distribution of the
distance between two points, in the setting of Section 3.4.
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Figure 3.3: The function 1/(1 − log s) decays more rapidly than all power
type distribution functions as s ↓ 0.

Proposition 3.10. Let X1, X2 be i.i.d. points in Bd, d ≥ 2, such that Xi = RiUi,
i = 1, 2, where Ri = ‖Xi‖ and Ui = Xi/‖Xi‖ ∈ S

d−1 are independent. Suppose
that U1 has a bounded density g with respect to µd−1 and that the distribution
function F of 1 − R1 is differentiable in a small neighborhood of 0 and satisfies

F′(s) ∼
aα

(1 − α log s)2 ·
1
s

(3.19)

as s ↓ 0 for some a > 0 and α > 0. As ε ↓ 0, we then have

P (‖X1 − X2‖ ≥ 2 − ε) ∼ σ2 · (log ε)−2 · ε
d−1

2

as ε ↓ 0, where

σ2 =
(4π)

d−1
2 a2

α2Γ
(

d+1
2

) ∫
Sd−1

g(u)g(−u) µd−1(du). (3.20)

Proof. As in Proposition 3.5, we deduce the asymptotic behavior of the bounds
on the tail probability.

Let Yi = 1 − Ri, i = 1, 2. The i.i.d. random variables Y1 and Y2 have the
distribution function F, where

F(s) ∼
a

1 − α log s
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as s ↓ 0, which follows from (3.19) and Lemma 3.3. As before, we put Z =

Y1 + Y2. We first derive the asymptotic behavior of the convolution of F with
itself. Lemma 3.3 yields

F ∗ F(s) ∼
∫ s

0

a
1 − α log(s − t)

·
aα

(1 − α log t)2 ·
1
t

dt.

In the following, we derive an upper and a lower bound for the right-hand side.
Since the function 1/(1 − α log(s − t)) is decreasing in t on the interval [0, s],
we have

a2α

∫ s

0

1
1 − α log(s − t)

·
1

(1 − α log t)2 ·
1
t

dt

≤
a2α

1 − α log s
·

∫ s

0

1
(1 − α log t)2 ·

1
t

dt

=
a2α

1 − α log s
·

1
α
·

1
1 − α log t

∣∣∣∣∣∣s
t=0

=
a2

(1 − α log s)2

∼
a2

α2(log s)2 ,

where “∼” refers to s ↓ 0. To find a lower bound, we confine the integration
to the interval [0, s/2] and then use the inequality 1

1−α log(s−t) ≥
1

1−α log(s/2) for
t ∈ [0, s/2]. We thus obtain

a2α

∫ s

0

1
1 − α log(s − t)

·
1

(1 − α log t)2 ·
1
t

dt

≥
a2α

1 − α log(s/2)
·

∫ s/2

0

1
(1 − α log t)2 ·

1
t

dt

=
a2α

1 − α log(s/2)
·

1
α
·

1
1 − α log t

∣∣∣∣∣∣s/2
t=0

=
a2

(1 − α log(s/2))2

∼
a2

α2(log s)2 ,
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where “∼” refers to s ↓ 0. Hence, we conclude that

F ∗ F(s) ∼
a2

α2(log s)2 (3.21)

as s ↓ 0.
Now, we deal with the lower bound p1(ε) given in (3.8). Using integration

by parts, we have

p1(ε) ∼ β ·

ε− 7
4ε

2∫
z=0

[
4(ε − z) − 7ε2

] d−1
2 dPZ(z)

= β · 4
d−1

2

{[
(ε − z) −

7
4
ε2

] d−1
2

P (Z ≤ z)

∣∣∣∣∣∣ε−
7
4ε

2

z=0

+

ε− 7
4ε

2∫
z=0

d − 1
2

[
(ε − z) −

7
4
ε2

] d−3
2

P (Z ≤ z) dz
}

= β · 4
d−1

2

ε− 7
4ε

2∫
z=0

d − 1
2

[
ε −

7
4
ε2 − z

] d−3
2

F ∗ F(z) dz.

Applying (3.21) on the convolution F∗F and using Lemma 3.2, the substitution
t = z/(ε − 7

4ε
2) yields

p1(ε)

∼ β · 4
d−1

2 ·
a2

α2

ε− 7
4ε

2∫
z=0

d − 1
2

[
ε −

7
4
ε2 − z

] d−3
2 1

(log z)2 dz

= β · 4
d−1

2 ·
a2

α2

(
ε −

7
4
ε2

) d−1
2

∫ 1

t=0

d − 1
2

(1 − t)
d−3

2
1

(log((ε − 7
4ε

2)t))2
dt

=
β · 4

d−1
2 a2 ·

(
ε − 7

4ε
2
) d−1

2

α2(log(ε − 7
4ε

2))2

∫ 1

t=0

d − 1
2

(1 − t)
d−3

2
(log(ε − 7

4ε
2))2

(log((ε − 7
4ε

2)t))2
dt.

Since for each fixed t ∈ (0, 1)

lim
ε↓0

(log(ε − 7
4ε

2))2

(log((ε − 7
4ε

2)t))2
= 1 and

∣∣∣∣∣∣∣ (log(ε − 7
4ε

2))2

(log((ε − 7
4ε

2)t))2

∣∣∣∣∣∣∣ ≤ 1,
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by the dominated convergence theorem we have

p1(ε) ∼
β · 4

d−1
2 a2 ·

(
ε − 7

4ε
2
) d−1

2

α2(log(ε − 7
4ε

2))2

∫ 1

t=0

d − 1
2

(1 − t)
d−3

2 dt

=
β · 4

d−1
2 · a2

α2(log(ε − 7
4ε

2))2
·

(
ε −

7
4
ε2

) d−1
2

=
σ2

(log(ε − 7
4ε

2))2
·

(
ε −

7
4
ε2

) d−1
2

as ε ↓ 0.
Similarly, applying integration by parts, substituting t = z/(ε + 5ε2) and

using some asymptotic considerations, the upper bound p2(ε) is asymptotically
equivalent to

p2(ε) ∼ β · 4
d−1

2

ε+5ε2∫
z=0

d − 1
2

[
ε + 5ε2 − z

] d−3
2 F ∗ F(z) dz

∼
β · 4

d−1
2 a2 ·

(
ε + 5ε2

) d−1
2

α2(log(ε + 5ε2))2

∫ 1

t=0

d − 1
2

(1 − t)
d−3

2 dt

=
σ2

(log(ε + 5ε2))2 ·
(
ε + 5ε2

) d−1
2

as ε ↓ 0.
Since by l’Hôpital’s rule we have

lim
ε↓0

log(ε − 7
4ε

2)
log(ε + 5ε2)

= lim
ε↓0

(1 − 7
2ε)(ε + 5ε2)

(ε − 7
4ε

2)(1 + 10ε)
= 1,

it is convenient to verify that

lim
ε↓0

p2(ε)
p1(ε)

= lim
ε↓0

ε + 5ε2

ε − 7
4ε

2


d−1

2
 log(ε − 7

4ε
2)

log(ε + 5ε2)

2

= 1.

Recall p1(ε) ≤ P (‖X1 − X2‖ ≥ 2 − ε) ≤ p2(ε). Combining this and

σ2

(
ε − 7

4ε
2
) d−1

2

(log(ε − 7
4ε

2))2
≤
σ2ε

d−1
2

(log ε)2 ≤
σ2

(
ε + 5ε2

) d−1
2

(log(ε + 5ε2))2

for sufficiently small ε, the proof of the proposition is completed. �



3.4. LOGARITHMIC TYPE 37

We have obtained the tail probability of the distance over the threshold 2−ε.
Thus, Lemma 3.1 leads to the following theorem:

Theorem 3.11. Let X1, X2, . . . be i.i.d. points in Bd, d ≥ 2, such that Xi = RiUi,
i = 1, 2, . . ., where Ri = ‖Xi‖ and Ui = Xi/‖Xi‖ ∈ S

d−1 are independent. Suppose
that U1 has a bounded density g with respect to µd−1 and that condition (3.19)
holds for the distribution function F of 1 − R1. We then have

lim
n→∞

P

((d − 1)2σ2

32

) 2
d−1

·

(
n

log n

) 4
d−1

· (2 − Dn) ≤ t

 = 1 − exp
(
−t

d−1
2

)
for t > 0, where σ2 is given in (3.20).

Proof. For a fixed real number t > 0, put

εn = εn(t) :=
(

32
(d − 1)2σ2

) 2
d−1

·

(
n

log n

)− 4
d−1

· t. (3.22)

Write l2n = log log n for short. Thus,

log εn =
2

d − 1
log

(
32

(d − 1)2σ2

)
−

4
d − 1

log n +
4

d − 1
l2n + log t.

If conditions (3.1) and (3.2) are satisfied, we use Lemma 3.1 to derive the limit
law of Dn as follows (cf. Section 3.3):

P (2 − Dm ≤ εn) = P

2 − Dn ≤

(
32

(d − 1)2σ2

) 2
d−1

·

(
n

log n

)− 4
d−1

· t


= P

((d − 1)2σ2

32

) 2
d−1

·

(
n

log n

) 4
d−1

· (2 − Dn) ≤ t


−→ 1 − exp (λ(t))

as n→ ∞ with λ(t) ∈ (0,∞).
Putting εn and log εn into (3.1) and using Proposition 3.10, we have

lim
n→∞

(
n
2

)
P (‖X1 − X2‖ > 2 − εn)

= lim
n→∞

n2

2
· σ2 · (log εn)−2 · ε

d−1
2

n

= lim
n→∞

[
1

2 log n
log

(
32

(d − 1)2σ2

)
− 1 +

l2n
log n

+
(d − 1) log t

4 log n

]−2

t
d−1

2

= t
d−1

2 =: λ(t).

Since t ∈ (0,∞), (3.1) is satisfied.
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The proof of the second condition is also analogous to the proof of Theorem
3.6. Put φ = ](−U1,U2) and φ′ = ](−U1,U3). As in (3.15), we use the inde-
pendence of Ri and Ui, i = 1, 2, 3, to obtain an upper bound on the probability
of two overlapping exceedances:

n3P (‖X1 − X2‖ > 2 − εn, ‖X1 − X3‖ > 2 − εn)

≤ n3F(εn)3P
(
|φ| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′| ≤

[
4εn + 20ε2

n

] 1
2
)
,

where

P
(
|φ| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′| ≤

[
4εn + 20ε2

n

] 1
2
)

∼
(4π)d−1

Γ
(

d+1
2

)2 · ε
d−1
n ·

∫
Sd−1

g(−u)2g(u) µd−1(du)

=: C · εd−1
n

as εn ↓ 0 is given in (3.16) and

F(εn) ∼
a

1 − α log εn

as εn ↓ 0 is the distribution function of Yi = 1 − Ri. Plugging (3.22) into the
upper bound, we have

n3F(εn)3P
(
|φ| ≤

[
4εn + 20ε2

n

] 1
2 , |φ′| ≤

[
4εn + 20ε2

n

] 1
2
)

∼ n3 ·Cε̇d−1
n ·

(
a

1 − α log εn

)3

= n3 ·C ·
(

32
(d − 1)2σ2

)2 (
n

log n

)−4

td−1a3

·

[
1 − α

(
2

d − 1
log

32
(d − 1)2σ2

−
4

d − 1
log n +

4
d − 1

l2n + log t
)]−3

= C ·
(

32
(d − 1)2σ2

)2

·
log n

n
· td−1 · a3 ·

[
1

log n

−
2α

(d − 1) log n
log

32
(d − 1)2σ2

−
4α

d − 1
+

4αl2n
(d − 1) log n

+
α log t
log n

]−3

−→ 0,

where asymptotic equality and convergence refer to n→ ∞. �
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As expected, the probability for an exceedance of the distance over a thres-
hold is asymptotically greater than the corresponding probability in case of a
power type distribution. Indeed, the rescaling factor in the limit law of Dn in
this case is of the order O

(
n4/(d−1)(log n)−4/(d−1)

)
, which grows asymptotically

faster than the rescaling factor of the order O
(
n4/(d−1+4α)

)
in Section 3.3.

3.5 Exponential type

Throughout this section we suppose that the distribution function F of Y1 =

1 − R1 is differentiable in a small right neighborhood of 0, and that

F′(s) ∼
aα
s2 exp

(
−
α

s

)
as s ↓ 0 for some a > 0 and α > 0. By Lemma 3.3, we then have

F(s) ∼
∫ s

0

aα
t2 exp

(
−
α

t

)
dt = a · exp

(
−
α

s

)
(3.23)

as s ↓ 0. The right-hand continuity of F at 0 ensures that R1 has the distribution
function 1−F(1− s) for sufficiently large s ∈ [0, 1]. Thus, the distribution of R1

is tail-equivalent to the exponential distribution function 1− exp
(
− α

1−t

)
=: Ψ(t),

i.e., we have

lim
t↑1

P (R1 > t)
1 − Ψ(t)

= lim
s↓0

F(s) · exp
(
α

s

)
= a > 0.

We therefore say that the distribution of R1 is of exponential type.
Notice that the distribution function F of exponential type is rapidly varying

with index∞, i.e., we have

lim
s↓0

F(st)
F(s)

= lim
s↓0

exp
(
−
α

st
(1 − t)

)
−→

{
0, if 0 < t < 1,
∞, if t > 1.

The distribution function F is differentiable in a right neighborhood of 0 and
the derivative is positive and converges to 0 as s → 0. Moreover, F′ decreases
more slowly than each of the power distribution functions with α > 0 (see page
23) when approaching 0, see Figure 3.4. Compared to the situation where F is
of power type (see Section 3.3), it is less probable that random points appear in
a narrow annulus close to the boundary of the unit ball. Hence, the probability
of an exceedance is asymptotically smaller.
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Figure 3.4: The function exp(1−1/s) increases more slowly than all power
type distribution functions as s ↓ 0.

As before, we first determine the asymptotic behavior of F ∗ F(s) as s→ 0.
By (3.23) and Lemma 3.3, substituting u = t/s leads to the following asymp-
totic expression as s ↓ 0:

F ∗ F(s) ∼
∫ s

t=0
a exp

(
−

α

s − t

)
·

aα
t2 exp

(
−
α

t

)
dt

=
a2α

s

∫ 1

u=0
exp

(
−

α

s(1 − u)u

)
1
u2 du.

Since the function u → 1
(1−u)u is decreasing on (0, 1

2) and increasing on (1
2 , 1),

we split up the integral into two parts and put v = 1
(1−u)u , which implies u =

1
2

(
1 ∓

√
1 − 4

v

)
and du

dv = ∓1/
√

v3(v − 4), respectively. Consequently,

F ∗ F(s) ∼
a2α

s


∫ ∞

v=4
exp

(
−
α

s
v
)

4

1 − √
1 −

4
v

−2
1√

v3(v − 4)
dv

+

∫ ∞

v=4
exp

(
−
α

s
v
)

4

1 +

√
1 −

4
v

−2
1√

v3(v − 4)
dv


=

a2α

s

∫ ∞

v=4
exp

(
−
α

s
v
)
·

v2 − 2v√
v3(v − 4)

dv.
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Finally, by substituting w = α
s (v − 4), we have

F ∗ F(s) ∼ a2s−
1
2 exp

(
−

4α
s

) ∫ ∞

w=0
e−w(sw + 4α)−

1
2 (sw + 2α)w−

1
2 dw

∼ a2s−
1
2 exp

(
−

4α
s

)
(4α)−

1
2 (2α)

∫ ∞

w=0
e−ww−

1
2 dw

=
√
παa2s−

1
2 exp

(
−

4α
s

)
, s ↓ 0, (3.24)

where the second asymptotic equivalence follows from the dominated conver-
gence theorem.

Recall that the main idea for deriving the limit law of Dn is to determine the
limit law of the random variable

Tn :=
∑

1≤i< j≤n

1{‖Xi − X j‖ > 2 − εn},

which counts the number of exceedances of the distance between two points
over the threshold 2 − εn. Condition (3.1) implies that the expected value of
Tn converges to a positive finite constant, which entails the tightness of the
sequence (Tn)n∈N. We first prove this convergence of E (Tn) for a suitable εn.

To this end, we first derive the asymptotic behavior of the lower and upper
bound p1(ε), p2(ε), defined in (3.8) and (3.9), of the tail probability p(ε) =

P (‖X1 − X2‖ ≥ 2 − ε) as ε ↓ 0. Using the same methods as in Proposition 3.10,
applying (3.24) for the convolution of F and substituting t = z/(ε − 7

4ε
2), we

have for ε ↓ 0

p1(ε) ∼ β · 4
d−1

2

ε− 7
4ε

2∫
z=0

d − 1
2

[
ε −

7
4
ε2 − z

] d−3
2

F ∗ F(z) dz

∼ β · 4
d−1

2
√
παa2 d − 1

2

ε− 7
4ε

2∫
z=0

[
ε −

7
4
ε2 − z

] d−3
2

z−
1
2 exp

(
−

4α
z

)
dz

= β4
d−1

2
√
παa2 d − 1

2

(
ε − 7

4ε
2
) d−2

2

1∫
t=0

(1 − t)
d−3

2 t−
1
2 exp

− 4α
(ε − 7

4ε
2)t

 dt

(3.25)

with β given in (3.5). We now deal with the integral in (3.25). Putting κε =
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4α/(ε − 7
4ε

2) for short and substituting u = κε/t − κε, we obtain∫ 1

t=0
(1 − t)

d−3
2 t−

1
2 exp

− 4α
(ε − 7

4ε
2)t

 dt

=

∫ ∞

u=0

(
u

u + κε

) d−3
2

(
κε

u + κε

)− 1
2

e−ue−κε
κε

(u + κε)2 du

= κ
1
2
ε e−κε

∫ ∞

u=0
u

d−3
2 e−u(u + κε)−

d
2 du

∼ κ
− d−1

2
ε e−κε

∫ ∞

u=0
u

d−3
2 e−u du

= Γ

(
d − 1

2

)  4α
ε − 7

4ε
2

−
d−1

2

exp

− 4α
ε − 7

4ε
2

 ,
where the asymptotic equivalence above as ε ↓ 0 follows from the dominated
convergence theorem. Plugging the asymptotic expression of the integral and
formula (3.5) for β into (3.25), we have

p1(ε) ∼ σ3 · (ε − 7
4ε

2)d− 3
2 · exp

− 4α
ε − 7

4ε
2


as ε ↓ 0, where

σ3 = π
d
2 a2α−

d−2
2

∫
Sd−1

g(u)g(−u) µd−1(du).

Analogously, the upper bound p2(ε) is asymptotically equal to

p2(ε) ∼ σ3 · (ε + 5ε2)d− 3
2 · exp

(
−

4α
ε + 5ε2

)
, ε ↓ 0.

Since

lim
ε↓0

p2(ε)
p1(ε)

= lim
ε↓0


ε + 5ε2

ε − 7
4ε

2

d− 3
2

exp

 4α
ε − 7

4ε
2
−

4α
ε + 5ε2


 = e27α > 1,

we do not know the exact asymptotic behavior of p(ε), but we can conclude
that the convergence of p(ε) to 0 is of the order O

(
εd− 3

2 exp(−4α
ε

)
)
.

In the following, fix t > 0 and put

εn = εn(t) :=
2α

γ + log n
(1 + δn) (3.26)
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with

γ :=
1
2

log
σ3(2α)d−3/2

2t
, δn :=

(d − 3/2)l2n
2 log n

.

Since E (Tn) =
(

n
2

)
p(εn) and p1(εn) ≤ p(εn) ≤ p2(εn), we now study the conver-

gence of q1(n) := log
(

n2

2 p1(εn)
)

and q2(n) := log
(

n2

2 p2(εn)
)
.

By plugging the Taylor series expansion of 1/(1 − 7
4εn) = 1 + 7

4εn + O
(
ε2

n

)
into q1(n), we have

q1(n) = log
σ3

2
+ 2 log n −

4α
εn −

7
4ε

2
n

+ (d − 3
2) log(εn −

7
4ε

2
n)

= log
σ3

2
+ 2 log n −

4α
εn
·

1
1 − 7

4εn
+ (d − 3

2) log εn + (d − 3
2) log(1 − 7

4εn)

= log
σ3

2
+ 2 log n −

4α
εn
− 7α + (d − 3

2) log εn + o(1)

= log
σ3

2
+ 2 log n −

2(γ + log n)
1 + δn

− 7α

+ (d − 3
2)

[
log(2α) − log(γ + log n) + log(1 + δn)

]
+ o(1).

Using 1/(1+δn) = 1−δn +O
(
δ2

n

)
and log(γ+ log n) = log(log n(1+γ/ log n)) =

l2n + o(1), we obtain

q1(n) = log
σ3

2
+ 2 log n − 2γ − 2 log n + 2δn log n − 7α

+ (d − 3
2) log(2α) − (d − 3

2)l2n + o(1).

Plugging γ and δn into q1(n), we have

q1(n) = log
σ3

2
− log

σ3(2α)d−3/2

2t
+ (d − 3

2)l2n − 7α

+ (d − 3
2) log(2α) − (d − 3

2)l2n + o(1)
= log t − 7α + o(1).

Analogously, we have

q2(n) = log t + 20α + o(1).

Consequently, the lower and the upper bound of the expected value of Tn

converge both to some (different) finite positive constants, i.e., we have

lim
n→∞

n2

2
p1(εn) = t · e−7α, lim

n→∞

n2

2
p2(εn) = t · e20α
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and thus

t · e−7α ≤ lim inf
n→∞

E (Tn) ≤ lim sup
n→∞

E (Tn) ≤ t · e20α.

Hence, the sequence (Tn)n∈N is tight.
On the other hand, we will prove that for εn given in (3.26) condition (3.2)

is not satisfied. To be more specific, the probability for two overlapping ex-
ceedances rescaled by n3 converges to infinity as n→ ∞. In view of Chapter 2,
this means that the variance of Tn converges to infinity.

In the following, we use again the geometric considerations and asymptotic
methods of Section 3.2 and Section 3.3. Set ε̃n = εn −

7
4ε

2
n for short, the substi-

tution t1 = y1/ε̃n and t2 = y2/(ε̃n − y1) = y2/ε̃n(1 − t1) yield

n3P (‖X1 − X2‖ ≥ 2 − εn, ‖X1 − X3‖ ≥ 2 − εn)

≥ n3P
(
|φ| ≤

[
4(εn − Y1 − Y2) − 7ε2

n

] 1
2 , Y1 + Y2 ≤ εn −

7
4ε

2
n

|φ′| ≤
[
4(εn − Y1 − Y3) − 7ε2

n

] 1
2 , Y1 + Y3 ≤ εn −

7
4ε

2
n

)
= n3

∫ ε̃n

y1=0

{∫ ε̃n−y1

y2=0
P
(
|φ| ≤

[
4(εn − y1 − y2) − 7ε2

n

] 1
2
)

dF(y2)
}2

dF(y1)

= n3
∫ 1

t1=0

{∫ 1

t2=0
P
(
|φ| ≤ [4ε̃n(1 − t1)(1 − t2)]

1
2

)
dF(ε̃n(1 − t1)t2)

}2

dF(ε̃nt1)

=: n3 p3(n). (3.27)

Applying Lemma 3.4 and integration by parts, the inner integral in (3.27) is
then asymptotically equivalent to∫ 1

t2=0
β4

d−1
2 ε̃

d−1
2

n (1 − t1)
d−1

2 (1 − t2)
d−1

2 dF(ε̃n(1 − t1)t2)

= β4
d−1

2 ε̃
d−1

2
n (1 − t1)

d−1
2

∫ 1

t2=0

d − 1
2

(1 − t2)
d−3

2 F(ε̃n(1 − t1)t2) dt2

∼ β4
d−1

2 a
d − 1

2
ε̃

d−1
2

n (1 − t1)
d−1

2

∫ 1

t2=0
(1 − t2)

d−3
2 exp

(
−

α

ε̃n(1 − t1)t2

)
dt2

(3.28)

as n → 0. Set κε(t1) = α/ε̃n(1 − t1) and substitute u = κε(t1)/t2 − κε(t1). This
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gives

∫ 1

t2=0
(1 − t2)

d−3
2 exp

(
−

α

ε̃n(1 − t1)t2

)
dt2

=

∫ ∞

u=0

(
u

κε(t1) + u

) d−3
2

e−ue−κε(t1) κε(t1)
(κε(t1) + u)2 du

= e−κε(t1)κε(t1)−
d−1

2

∫ ∞

u=0
u

d−3
2 e−u

(
κε(t1)

κε(t1) + u

) d+1
2

du

∼ Γ

(
d − 1

2

)
e−κε(t1)κε(t1)−

d−1
2 ,

where “∼” refers to n → 0 and follows from the dominated convergence theo-
rem. Putting this into (3.28) and then into (3.27), integration by parts yields

n3 p3(n)

∼ C1n3ε̃2d−2
n

∫ 1

t1=0
(1 − t1)2d−2 exp

(
−

2α
ε̃n(1 − t1)

)
dF(ε̃nt1)

∼ C1n3ε̃2d−2
n

{
2a(d − 1)

∫ 1

t1=0
(1 − t1)2d−3 exp

(
−
α(1 + t1)
ε̃n(1 − t1)t1

)
dt1

+
2aα
ε̃n

∫ 1

t1=0
(1 − t1)2d−4 exp

(
−
α(1 + t1)
ε̃n(1 − t1)t1

)
dt1

}
(3.29)

as n → 0, where C1 is some positive finite constant. Since the two integrals in
(3.29) have the same structure, we compute in the following the integral

∫ 1

t1=0
(1 − t1)k exp

(
−
α(1 + t1)
ε̃n(1 − t1)t1

)
dt1 (3.30)

for a general k ≥ 0. By studying the function v : t1 → 1+t1
(1−t1)t1

on the interval

(0, 1) we find that v has the local minimum
√

2
3
√

2−4
=: c at t1 =

√
2 − 1 and the

function is decreasing on (0,
√

2 − 1) and increasing on (
√

2 − 1, 1). Moreover,
the inverse function on the two interval parts is t1 = (v − 1 ∓

√
1 − 6v − v2)/2v

with dt1
dv = ∓(3v − 1)/(2v2

√
1 − 6v + v2) + 1

2v2 , respectively. According to this
consideration, we separate the interval of integration (0, 1) into two parts and
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substitute v = 1+t1
(1−t1)t1

. Then (3.30) is equal to

√
2−1∫

t1=0

(1 − t1)kexp
(
−

α(1+t1)
ε̃n(1−t1)t1

)
dt1 +

1∫
t1=
√

2−1

(1 − t1)kexp
(
−

α(1+t1)
ε̃n(1−t1)t1

)
dt1

=

∞∫
v=c

exp
(
− α
ε̃n

v
) 

v + 1 +
√

1 − 6v + v2

2v

k (
3v − 1

2v2
√

1 − 6v + v2
−

1
2v2

)

+

v + 1 −
√

1 − 6v + v2

2v

k (
3v − 1

2v2
√

1 − 6v + v2
+

1
2v2

) dv.

(3.31)

Furthermore, we use the substitution w = α
ε̃n

(v − c). For a fixed v ∈ (0,∞) the
terms in (3.31) reduce tov + 1 +

√
1 − 6v + v2

2v

k

=
c + 1

2c
+ O

(
ε̃2

n

)
,

v + 1 −
√

1 − 6v + v2

2v

k

=
c + 1

2c
+ O

(
ε̃2

n

)
and

3v − 1

2v2
√

1 − 6v + v2
−

1
2v2 =

3c − 1

2c2
√

2c − 6

√
α

ε̃nw
−

1
2c2 + O

(
ε̃

1
2
n

)
,

3v − 1

2v2
√

1 − 6v + v2
+

1
2v2 =

3c − 1

2c2
√

2c − 6

√
α

ε̃nw
+

1
2c2 + O

(
ε̃

1
2
n

)
as ε̃n ↓ 0. Then, invoking (3.31) and (3.30), we have∫ 1

t1=0
(1 − t1)k exp

(
−
α(1 + t1)
ε̃n(1 − t1)t1

)
dt1

∼ exp
(
−

cα
ε̃n

) (
c + 1

2c

)k 2(3c − 1)

2c2
√

2c − 6

√
α

ε̃n
·
ε̃n

α

∫ ∞

w=0
e−ww−

1
2 dw

= C2 ε̃
1
2
n exp

(
−

cα
ε̃n

)
as n→ 0, where C2 is some positive finite constant. Using this on the integrals
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in (3.29), we then obtain

n3 p3(n) ∼ C1n3ε̃2d−2
n

{
C3ε̃

1
2
n exp

(
−

cα
ε̃n

)
+ C4ε̃

− 1
2

n exp
(
−

cα
ε̃n

)}
∼ C1C4 n3

(
εn −

7
4ε

2
n

)2d− 5
2 exp

− cα
εn −

7
4ε

2
n

 (3.32)

as n→ ∞, where C1, C3 and C4 are positive finite constants.
To see the divergence of n3 p3(n), we now study log(n3 p3(n)). Plugging εn

given in (3.26) into (3.32), we have

log(n3 p3(n))

= log(C1C4) + 3 log n −
cα

εn −
7
4ε

2
n

+ (2d − 5
2) log(εn −

7
4ε

2
n)

= log(C1C4) + 3 log n −
cα
εn
−

7
4

cα + (2d − 5
2) log εn + o(1)

= log(C1C4) + 3 log n −
c(γ + log n)

2(1 + δn)
−

7
4

cα

+ (2d − 5
2)

[
log(2α) − log(γ + log n) + log(1 + δn)

]
+ o(1)

= C5 +

(
3 −

c
2

)
log n −

[
(2 −

c
4

)d +
3c
8
−

5
2

]
l2n + o(1),

where C5 is a positive finite constant. Since 3 − c/2 = 3 −
√

2
2(3
√

2−4)
≈ 3 −

5.828/2 > 0, we have

log(n3 p3(n)) −→ ∞, n→ ∞,

which implies the divergence of the expression in condition (3.2) as well as that
of V (Tn).

Since condition (3.2) is not satisfied with εn given in (3.26), we cannot use
Lemma 3.1 to obtain the limit law of Dn, although condition (3.1) holds for
some subsequence

(
E

(
Tnk

))
k≥1. Furthermore, we will show in the following that

the random variable Tn converges in probability to zero as n tends to infinity.
Set

ε̂n = ε̂n(t) :=
εn + 5ε2

n

2
(1 − νn)

with εn given in (3.26) and νn := (d − 3/2)l2n/ log n. Then, ε̂n < εn/2 for
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sufficiently large n. Letting

E(i, j) = {‖Xi − X j‖ ≥ 2 − εn},

A(i) = {‖Xi‖ ≥ 1 − ε̂n},

B(i) = {1 − (εn − ε̂n) ≤ ‖Xi‖ ≤ 1 − ε̂n},

it follows that

Tn = T (1)
n + T (2)

n ,

where

T (1)
n :=

∑
1≤i< j≤n

1
{
E(i, j) ∩ (A(i) ∪ A( j))

}
,

T (2)
n :=

∑
1≤i< j≤n

1
{
E(i, j) ∩ B(i) ∩ B( j)

}
.

Since {T (1)
n > 0} ⊂ ∪n

i=1A(i), we have for fixed ε > 0

P
(
T (1)

n > ε
)
≤

n∑
i=1

P (‖Xi‖ ≥ 1 − ε̂n)

= n · P (1 − ‖Xi‖ ≤ ε̂n)

∼ n · a exp
(
−
α

ε̂n

)
.

Now,

log n + log a −
α

ε̂n

= log n + log a −
(

2α
εn
− 10α + o(1)

)
(1 − νn)−1

= log n + log a −
(
(γ + log n)(1 + δn)−1 − 10α + o(1)

)
(1 − νn)−1

= log a − γ + 10α −
(

d−3/2
2

)
l2n + o(1) −→ −∞

as n→ ∞, which means that T (1)
n

P
−→ 0 as n→ ∞.

To show the convergence of T (2)
n we need to study the modified tail proba-

bility P (E(1, 2) ∩ B(1) ∩ B(2)). Let ε̄n = εn + 5ε2
n for short. By adopting the
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notations and geometric considerations in Section 3.2, we have

P (E(1, 2) ∩ B(1) ∩ B(2))

≤ P
(
|φ| ≤ [4(εn − Y1 − Y2) + 20ε2

n]
1
2 ,Y1 + Y2 ≤ εn, ε̂n ≤ Y1,Y2 ≤ εn − ε̂n

)
≤

ε̄n−ε̂n∫
y1=ε̂n

ε̄n−y1∫
y2=ε̂n

P
(
|φ| ≤ [4(ε̄n − y1 − y2)]

1
2

)
dF(y2) dF(y1)

∼ β 4
d−1

2

ε̄n−ε̂n∫
y1=ε̂n

ε̄n−y1∫
y2=ε̂n

(ε̄n − y1 − y2)
d−1

2 dF(y2) dF(y1)

= β 4
d−1

2

ε̄n−ε̂n∫
y1=ε̂n

{
(ε̄n − y1 − y2)

d−1
2 F(y2)

∣∣∣∣∣ε̄n−y1

y2=ε̂n

+

ε̄n−y1∫
y2=ε̂n

d − 1
2

(ε̄n − y1 − y2)
d−3

2 F(y2) dy2

}
dF(y1)

=: β 4
d−1

2 ·
{
p5(n) + p6(n)

}
=: p4(n) (3.33)

with

p5(n) :=

ε̄n−ε̂n∫
y1=ε̂n

−(ε̄n − ε̂n − y1)
d−1

2 F(ε̂n) dF(y1),

p6(n) :=

ε̄n−ε̂n∫
y1=ε̂n

ε̄n−y1∫
y2=ε̂n

d − 1
2

(ε̄n − y1 − y2)
d−3

2 F(y2) dy2 dF(y1),

where “∼” in (3.33) refers to n → ∞ and follows from Lemma 3.4. We now
deal with p5(n) and p6(n), respectively.

Integration by parts, followed by the substitution t = (y1− ε̂n)/(ε̄n−2ε̂n) and
invoking (3.23) lead to

p5(n) ∼ (ε̄n − 2ε̂n)
d−1

2 F(ε̂n)2 −
d − 1

2
a(ε̄n − 2ε̂n)

d−1
2 F(ε̂n)

·

∫ 1

t=0
(1 − t)

d−3
2 exp

(
−

α

(ε̄n − 2ε̂n)t + ε̂n

)
dt
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as n→ ∞. Letting κn = α/(ε̄n − ε̂n) and u = α
(α/κn−ε̂n)t+ε̂n

− κn, we obtain

p5(n) ∼ (ε̄n − 2ε̂n)
d−1

2 F(ε̂n)2 −
d − 1

2
aα−

d−1
2 F(ε̂n)(ε̄n − ε̂n)d−1

· exp
(
−

α

ε̄n − ε̂n

) ∫ τn

u=0
u

d−3
2 e−u

(
κn

u + κn

) d+1
2

du

where τn = α/ε̂n − κn = 4ανn/(ε̄n(1 − ν2
n)). Since for fixed u ∈ (0,∞) we have

κn/(u + κn)→ 1 as n→ ∞ and | κn
u+κn
| ≤ 1, then∫ τn

u=0
u

d−3
2 e−u

(
κn

u + κn

) d+1
2

du ≤

∫ ∞

u=0
u

d−3
2 e−u

(
κn

u + κn

) d+1
2

du

−→

∫ ∞

u=0
u

d−3
2 e−u du = Γ

(
d − 1

2

)
by the dominated convergence theorem. On the other hand, since τn → ∞ as
n→ ∞, we have for fixed c > 0 and sufficiently large n∫ τn

u=0
u

d−3
2 e−u

(
κn

u + κn

) d+1
2

du ≥
∫ c

u=0
u

d−3
2 e−u

(
κn

u + κn

) d+1
2

du.

As n → ∞, the latter integral converges to
∫ c

u=0 u
d−3

2 e−u du by the dominated
convergence theorem. Letting c→ ∞, it follows that

lim
n→∞

∫ τn

u=0
u

d−3
2 e−u

(
κn

u + κn

) d+1
2

du = Γ

(
d − 1

2

)
.

Hence,

p5(n) ∼ a2 exp
(
−

4α
ε̄n(1 − νn)

)
(ε̄nνn)

d−1
2

− a2α−
d−1

2 Γ
(

d+1
2

)
2−d+1 exp

(
−

4α
ε̄n(1 − ν2

n)

)
ε̄d−1

n (1 + νn)d−1

as n→ ∞.
By using the substitution t1 = y1/ε̄n and t2 = (y2 − ε̂n)/(ε̄n − ε̂n − y1) and

(3.23), it follows that

p6(n) ∼
d − 1

2
a

(1+νn)/2∫
t1=(1−νn)/2

(ε̄n − ε̂n − ε̄nt1)
d−1

2

1∫
t2=0

(1 − t2)
d−3

2

· exp
(
−

α

(ε̄n − ε̂n − ε̄nt1)t2 + ε̂n

)
dt2 dF(ε̄nt1).
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as n→ ∞. Set κn(t1) := α/(ε̄n(1 − t1)) and u := α
(α/κn(t1)−ε̂n)t2+ε̂n

− κn(t1), we then
have

p6(n) ∼
d − 1

2
aα−

d−1
2 ε̄d−1

n

(1+νn)/2∫
t1=(1−νn)/2

(1 − t1)d−1 exp
(
−

α

ε̄n(1 − t1)

)
τn(t1)∫

u=0

u
d−3

2 e−u
(

κn(t1)
u + κn(t1)

) d+1
2

du dF(ε̄nt1)

with τn(t1) = α/ε̂n − κn(t1). By the dominated convergence theorem, we obtain
on one hand

∫ τn(t1)

u=0
u

d−3
2 e−u

(
κn(t1)

u + κn(t1)

) d+1
2

du

≤

∫ ∞

u=0
u

d−3
2 e−u

(
κn(t1)

u + κn(t1)

) d+1
2

du

−→

∫ ∞

0
u

d−3
2 e−u du = Γ

(
d − 1

2

)
.

On the other hand, we have for fixed c > 0 and sufficiently large n

∫ τn(t1)

u=0
u

d−3
2 e−u

(
κn(t1)

u + κn(t1)

) d+1
2

du

≥

∫ c

u=0
u

d−3
2 e−u

(
κn(t1)

u + κn(t1)

) d+1
2

du.

The latter integral converges to
∫ c

0 u
d−3

2 e−u du as n→ ∞. Thus,

lim
n→∞

∫ τn(t1)

u=0
u

d−3
2 e−u

(
κn(t1)

u + κn(t1)

) d+1
2

du = Γ

(
d − 1

2

)
.
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By using integration by parts and (3.23) again, we have

p6(n)

∼ aα−
d−1

2 Γ

(
d + 1

2

)
ε̄d−1

n

(1+νn)/2∫
t1=(1−νn)/2

(1 − t1)d−1 exp
(
−

α

ε̄n(1 − t1)

)
dF(ε̄nt1)

∼ aα−
d−1

2 Γ

(
d + 1

2

)
ε̄d−1

n

{
a
[(

1−νn
2

)d−1
−

(
1+νn

2

)d−1
]

exp
(
−

4α
ε̄n(1 − ν2

n)

)

+
aα
ε̄n

(1+νn)/2∫
t1=(1−νn)/2

(1 − t1)d−3 exp
(
−

α

ε̄nt1(1 − t1)

)
dt1

}
(3.34)

as n → ∞, where the derivative of (1 − t1)d−1 exp
(
− α
ε̄n(1−t1)

)
is asymptotically

equal to α
ε̄n

(1− t1)d−3 as n→ ∞ by omitting the asymptotically negligible terms.
To compute the last integral, we substitute v := 1

t1(1−t1) . Since this function
has a local minimum at 1/2, we split up the interval of integration into two

parts (1−νn
2 , 1

2) and (1
2 ,

1+νn
2 ). The inverse function is t1 = 1

2

(
1 ∓

√
1 − 4

v

)
and the

derivative is dt1
dv = ∓1/

√
v3(v − 4), respectively. It follows that

(1+νn)/2∫
t1=(1−νn)/2

(1 − t1)d−3 exp
(
−

α

ε̄nt1(1 − t1)

)
dt1

=

4/(1−ν2
n)∫

v=4

exp
(
−
α

ε̄n
v
) (

1 +
√

1 − 4/v
)d−3

+
(
1 −
√

1 − 4/v
)d−3

2d−3
√

v3(v − 4)
dv.

(3.35)

Substitute w = α
ε̄n

(v − 4), the integral is then equivalent to

ρn∫
w=0

exp
(
−w −

4α
ε̄n

)
2−d+3 αε̄n√

ε̄nw(ε̄nw + 4α)3

·

(1 +

√
ε̄nw

ε̄nw + 4α

)d−3

+

(
1 −

√
ε̄nw

ε̄nw + 4α

)d−3 dw

= 2−d+3αε̄
1
2
n exp

(
−

4α
ε̄n

) ∫ ρn

w=0
e−w w−

1
2 ζn(w) dw (3.36)
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where ρn := 4αν2
n/(ε̄n(1 − ν2

n)) −→ 0 as n→ ∞ and

ζn(w) := (ε̄nw + 4α)−
3
2 ·

(1 +

√
ε̄nw

ε̄nw + 4α

)d−3

+

(
1 −

√
ε̄nw

ε̄nw + 4α

)d−3 .
To compute the integral in (3.36), we substitute s := w/ρn and obtain∫ ρn

w=0
e−w w−

1
2 ζn(w) dw = ρ

1
2
n

∫ 1

s=0
s−

1
2 e−ρns ζn(ρns) ds.

Since for each fixed s ∈ (0, 1) we have limn→∞ e−ρns = 1, limn→∞ ζn(ρns) =

2−2α−3/2 and e−ρnsζn(ρns) is uniformly bounded in n and s by (4α)−3/2(2d−3 +1),
it follows from the dominated convergence theorem that

lim
n→∞

∫ 1

s=0
s−

1
2 e−ρnsζn(ρns) ds = 2−2α−

3
2

∫ 1

s=0
s−

1
2 ds = 2−1α−

3
2 .

Invoking (3.35) and (3.36), we then have

(1+νn)/2∫
t1=(1−νn)/2

(1 − t1)d−3 exp
(
−

α

ε̄nt1(1 − t1)

)
dt1

∼ 2−d+3αε̄
1
2
n exp

(
−

4α
ε̄n

)
ρ

1
2
n 2−1α−

3
2

= 2−d+3αε̄
1
2
n exp

(
−

4α
ε̄n

)
2α1/2νn

ε̄1/2
n (1 − ν2

n)1/2
2−1α−

3
2

∼ 2−d+3 exp
(
−

4α
ε̄n

)
νn,

where “∼” refers to n→ ∞. Plugging this into (3.34), we have

p6(n) ∼ a2α−
d−1

2 Γ
(

d+1
2

)
exp

(
−

4α
ε̄n(1 − ν2

n)

)
ε̄d−1

n

[(
1−νn

2

)d−1
−

(
1+νn

2

)d−1
]

+ a2α−
d−3

2 Γ
(

d+1
2

)
2−d+3 exp

(
−

4α
ε̄n

)
ε̄d−2

n νn

as n→ ∞.
Recall that T (2)

n counts the number of exceedances of points that both fall in
the narrow annulus with inner radius 1 − (εn − ε̂n) and outer radius 1 − ε̂n. By
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plugging the asymptotic expressions of p5(n) and p6(n) into (3.33), we have

E
(
T (2)

n

)
=

(
n
2

)
P (E(1, 2) ∩ B(1) ∩ B(2))

≤
n2

2
(p4(n) + o(1))

= C1n2 exp
(
−

4α
ε̄n(1 − νn)

)
(ε̄nνn)

d−1
2

+ C2n2 exp
(
−

4α
ε̄n(1 − ν2

n)

)
ε̄d−1

n

+ C3n2 exp
(
−

4α
ε̄n

)
ε̄d−2

n νn,

where C1 C2 and C3 are finite constants. We now study each of these summands
separately by taking its logarithm and using the definitions of ε̄n and νn. Firstly,
we have

log C1 + 2 log n −
4α

ε̄n(1 − νn)
+

d − 1
2

log ε̄n +
d − 1

2
log νn

= log C1 + 2 log n −
4α
εn

+ 20α −
4ανn

εn
+ d−1

2 log εn + d−1
2 log νn + o(1)

= C̃1 −

(
2d −

5
2

)
l2n +

d − 1
2

l3n + o(1)

−→ −∞

as n → ∞, where C̃1 is a finite constant and l3n = log log log n. Secondly, we
have

log C2 + 2 log n −
4α

ε̄n(1 − ν2
n)

+ (d − 1) log ε̄n

= log C2 + 2 log n −
4α
εn

+ 20α + (d − 1) log εn + o(1)

= C̃2 −
1
2

l2n + o(1)
−→ −∞
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as n→ ∞ for some finite constant C̃2. At last, we have

log C3 + 2 log n −
4α
ε̄n

+ (d − 2) log ε̄n + log νn

= log C3 + 2 log n −
4α
εn

+ 20α + (d − 2) log εn + log νn + o(1)

= C̃3 −
1
2

l2n + l3n + o(1)
−→ −∞

as n→ ∞ for some finite constant C̃3. Consequently, we conclude that

E
(
T (2)

n

)
−→ 0, n→ ∞.

Finally, it follows from Markov’s inequality that for each ε > 0

P
(
T (2)

n > ε
)
≤
E

(
T (2)

n

)
ε

−→ 0

as n → ∞, which implies the convergence of T (2)
n to 0 in probability. Together

with T (1)
n

P
−→ 0, we then obtain

Tn = T (1)
n + T (2)

n
P
−→ 0

as n→ ∞.
Up to now, we have proved the following three facts about the random vari-

able Tn:

1.) 0 < lim inf
n→∞

E (Tn) ≤ lim sup
n→∞

E (Tn) < ∞,

2.) lim
n→∞

V (Tn) = ∞,

3.) Tn
P
−→ 0 as n→ ∞.

At first glance these conclusions are confusing. In fact, we can explain this
phenomenon by the following consideration: Only the points in the narrow an-
nulus close to the boundary lead to the exceedances. Since the probability that
a point appears in such an annulus is very small, the number of exceedances Tn

converges in probability to zero. However, if a point appears in the annulus, it
will lead to a cluster of exceedances, so that the expected value of Tn converges
to a positive finite constant, and the variance of Tn converges to infinity.
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3.6 Conical and angular supports

In this section, we study some special cases in which the support of the point
distribution is a proper subset of the d-dimensional unit ball, d ≥ 2, and the null
set with respect to the probability measure PX1 has a positive Lebesgue measure.

Let K ⊂ Bd denote the support of PX1, and put −K := {x ∈ Rd : −x ∈ K}. A
necessary condition for the largest interpoint distance converging almost surely
to the diameter 2 is that for each r ∈ (0, 1) the set Ar := {x ∈ Rd : ‖x‖ ≥ r}
satisfies PX1(Ar ∩K) > 0 and PX1(Ar ∩−K) > 0. That means, the probability for
a point pair appearing in opposite directions and arbitrary close to the boundary
is positive.

Firstly, we consider the case that the support of PX1 is a set bounded by the
surface of the unit ball and a circular conical surface with vertex at the origin
(see Figure 3.5). Denote by KU the support of PU1, then KU is the union of

  

K

K

Figure 3.5: The conical support of PX1 .

the two spherical caps cut off by the conical surface. Suppose that U1,U2, . . .

are i.i.d. with a bounded density g with respect to µd−1, then g(u) = 0 for all
u ∈ Sd−1 \ KU . Thus, the tail probability of the distance between two points
has the similar lower bound p1(ε) and upper bound p2(ε) in the form of (3.8)
and (3.9). The only difference is that the integral

∫
KU

g(u)g(−u) µd−1(du) in the
constant β given in (3.5) is over the support KU of PU1 instead of over the whole
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unit sphere Sd−1. And consequently, the asymptotic distribution of the largest
interpoint distance is also similar to the former according to the distribution of
the radius.

Secondly, we consider an annular support of the point distribution. Suppose
that the random points are i.i.d. in an annulus with inner radius r and outer
radius 1 (see Figure 3.6). We note that the exceedance {‖X1−X2 ≥ 2−ε‖} occurs

  

K

r

Figure 3.6: The annular support of PX1 .

only if both ‖X1‖ ≥ 1 − ε and ‖X2‖ ≥ 1 − ε. Hence, we just need to consider
the points which lie in the narrow annulus with width ε closing the boundary of
the unit ball. Let r < 1 be fixed. Since {1 − ε ≤ ‖X1‖ ≤ 1} ⊂ {r ≤ ‖X1‖ ≤ 1}
for sufficiently small ε, the lower and the upper bound of the tail probability
P (‖X1 − X2‖ ≥ 2 − ε) have the same asymptotic expressions (3.8) and (3.9) as
ε ↓ 0. Hence, if the radial distribution of the random points belongs to the
power type, the limit distribution of the largest interpoint distance is the same
as in Theorem 3.6, if the radial distribution belongs to the logarithm type, the
limit law is the same as in Theorem 3.11.

An extreme case of the annular support of PX1 is the surface Sd−1 of the unit
ball. In this case, the radii Ri, i = 1, 2, . . ., are almost surely equal to 1, and the
points can be represented by the direction component, i.e. Xi = Ui, i = 1, 2, . . ..
Suppose as before that U1 has a bounded density g with respect to µd−1. The
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probability for an exceedance of distance between two points is

p(ε) := P (‖U1 − U2‖ ≥ 2 − ε)

= P
(
12 + 12 + 2 cos φ ≥ (2 − ε)2

)
= P

(
cos φ ≥ 1 − 2ε +

1
2
ε2

)
= P

(
φ2 cos ξ ≤ 4ε − ε2

)
,

where φ = ](U2,−U1) and ξ ∈ [0, φ]. Recall that 1 ≤ 1/ cos ξ ≤ 1 + 3ε (see
page 18), hence, 4ε − ε2 ≤ (4ε − ε2)/ cos ξ ≤ (1 + 3ε)(4ε − ε2) ≤ 4ε + 11ε2 for
sufficiently small ε. By using Lemma 3.4 we obtain the asymptotic behavior of
the lower and the upper bound for p(ε) as follows:

p(ε) ≥ p1(ε) := P
(
|φ| ≤ (4ε − ε2)1/2

)
∼ β · (4ε − ε2)

d−1
2 ,

p(ε) ≤ p2(ε) := P
(
|φ| ≤ (4ε + 11ε2)1/2

)
∼ β · (4ε + 11ε2)

d−1
2 ,

where β is given in (3.5). Since limε↓0 p2(ε)/p1(ε) = 1, we have

P (‖X1 − X2‖ ≥ 2 − ε) ∼ β · (4ε)
d−1

2

as ε ↓ 0. Set

εn = εn(t) :=
(
2d−2β

)− 2
d−1
· n−

4
d−1 · t

for t > 0. Plugging εn into the tail probability, condition (3.1) reduces to

lim
n→∞

(
n
2

)
P (‖X1 − X2‖ > 2 − εn)

= lim
n→∞

n2

2
· 4

d−1
2 β · 2−d+2β−1n−2t

d−1
2

= t
d−1

2 ∈ (0,∞).

The proof of condition (3.2) is analogous to the proof of Theorem 3.6. Thus,
we have the following limit law of Dn:

Corollary 3.12. If X1, X2, . . . are i.i.d. on Sd−1, d ≥ 2, with a bounded density g
with respect to µd−1, we have

lim
n→∞

P
((

2d−2β
) 2

d−1
· n

4
d−1 · (2 − Dn) ≤ t

)
= 1 − exp

(
−t

d−1
2

)
, (3.37)

where β is given in (3.5). If g is the uniform distribution on Sd−1, we have
β = 1/π.
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Note that the point distribution on Sd−1 can also be regarded as a special
case of radial distribution of power type with α = 0 and a = 1. Plugging these
values into the limit law of Dn given in Theorem 3.6, we get the same formula
as (3.37). Moreover, in this case the radial distribution belongs to the class of
slowly varying distribution functions. Since the points are only possible to lie
on the boundary of the unit ball, it is more likely to observe an exceedance of
the distance over the threshold 2 − ε. Therefore, the rescaling factor must be
asymptotically greater than its counterparts in the situation of Theorem 3.11 and
Theorem 3.6. Indeed, the rescaling factor of the order O

(
n4/(d−1)

)
is consistent

with this intuitive consideration.
In Figure 3.7 there is a simulation of the limit law of the largest distance

between uniformly distributed points on the unit circle.

Figure 3.7: EDF of (n4/π2) · (2 − Dn) with n = 1000 random points. The
dotted smooth curve is the limit law 1 − exp

(
−
√

t
)
.

In case α = 0 and a ∈ (0, 1), the points are distributed both in Bd and on
Sd−1 with

P (‖X1‖ = 1) = P (1 − ‖X1‖ = 0) = F(0) = a > 0.

Moreover, we suppose that

F(s) − a ∼ ãsα̃

as s ↓ 0 for some ã > 0 and α̃ > 0, which implies that the distribution function
F of 1 − ‖X1‖ jumps at 0 from 0 to a and then behaves as a power function ãsα̃
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in a small right neighborhood of 0. We can separate the tail probability of the
distance between two points into the following four disjoint cases:

P
(
‖X1 − X2‖ > 2 − ε, X1, X2 ∈ S

d−1
)
∼ C1 · ε

d−1
2 ,

P
(
‖X1 − X2‖ > 2 − ε, X1, X2 ∈ B

d \ Sd−1
)
∼ C2 · ε

d−1
2 +2α̃,

P
(
‖X1 − X2‖ > 2 − ε, X1 ∈ S

d−1, X2 ∈ B
d \ Sd−1

)
∼ C3 · ε

d−1
2 +α̃,

P
(
‖X1 − X2‖ > 2 − ε, X1 ∈ B

d \ Sd−1, X2 ∈ S
d−1

)
∼ C3 · ε

d−1
2 +α̃,

where C1,C2,C3 are finite positive constants. Since the first part of the tail
probability dominates the others for sufficiently small ε, the limit law of Dn is
the same Weibull distribution as in (3.37) with the rescaling factor of the same
order O

(
n

4
d−1

)
, i.e.,

lim
n→∞

P
((

2d−2a2β
) 2

d−1
· n

4
d−1 · (2 − Dn) ≤ t

)
= 1 − exp

(
−t

d−1
2

)
.

Actually, this effect of dominance by the points on Sd−1 also exists, if the ra-
dial distribution function is of the logarithmic type before it jumps by a at the
boundary of the unit ball.



Chapter 4

Largest area of triangles

In this chapter, we indicate how the Poisson approximation can be used in prob-
lems involving the maximum of a function of three arguments. As an example
for such a kernel function, we consider the area of triangles that are formed
by triplets of i.i.d. random points. Other examples could be the perimeter of
triangles formed by point triplets or the average distance between three points
(the maximum of such average distances was called “triameter” by Grove and
Markvorsen in [19]).

To simplify the computation, we consider the case of uniformly distributed
points on the unit circle. The derivation of the limit law is similar to the reason-
ing in Lao and Mayer [27] for the case of the largest perimeter of the triangles.

Let X1, X2, . . . be independent and uniformly distributed points on the unit
circle S1, and let A(i, j, k) denote the area of the triangle formed by different
points Xi, X j and Xk. The maximum area

An := max
1≤i< j<k≤n

A(i, j, k)

converges almost surely to the area of an equilateral triangle with vertices on
S1, i.e., An → 3

√
3/4 as n→ ∞ with probability 1.

We first determine the asymptotic behavior of the tail probability of A(1, 2, 3)
over a threshold close to 3

√
3/4.

Proposition 4.1. Let X1, X2, X3 be independent and uniformly distributed points
on S1. We then have

P

A(1, 2, 3) ≥
3
√

3
4
− ε

 ∼ 4
3π
ε, ε ↓ 0. (4.1)

Proof. By rotational symmetry, we may without loss of generality fix X1 and
put X1 = (1, 0). Let φ1, φ2 be the angles (at the origin) measured counterclock-
wise between X1 and X2 and between X1 and X3, respectively (see Figure 4.1).
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Figure 4.1: Illustration of a triangle with vertices on the unit circle.

Thus, φ1 and φ2 are independent and uniformly distributed in (0, 2π). Since
P (φ1 ≤ φ2) = 1/2, symmetry yields

P

A(1, 2, 3) ≥
3
√

3
4
− ε

 = 2 · P
A(1, 2, 3) ≥

3
√

3
4
− ε, φ1 ≤ φ2

 .
Moreover, we put φ1 = 2π/3 + α1 and φ2 = 4π/3 + α2 with independent ran-
dom variables α1 uniformly distributed in (−2π/3, 4π/3) and α2 uniformly dis-
tributed in (−4π/3, 2π/3). Under the condition φ1 ≤ φ2 only the point triplets
with φ1 close to 2π/3 and φ2 close to 4π/3 deserve attention. We therefore con-
sider in the following the behavior of the area for small α1 and α2. Suppose that
φ1 ≤ φ2.

Firstly, to obtain bounds for α2, we fix X2 = (−1
2 ,
√

3
2 ), so that φ1 = 2π/3.

Then, A(1, 2, 3) ≥ 3
√

3
4 − ε and elementary trigonometric arguments yield

A(1, 2, 3) =

√
3

2

(
cosα2 +

1
2

)
≥

3
√

3
4
− ε,

and a Taylor series expansion yields

|α2| ≤ arccos
(
1 − 2ε/

√
3
)

= 2 · 3−1/4√ε + O
(
ε3/2

)
< 2
√
ε (4.2)

for sufficiently small ε > 0. Analogously, by fixing X3 = (−1
2 ,−

√
3

2 ) so that
φ2 = 4π/3, we obtain |α1| < 2

√
ε. Consequently, |α2 − α1| < 4

√
ε.

Using trigonometric formulae, the area of the triangle formed by X1, X2 and
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X3 is

A(1, 2, 3) =
1
2
·
[
sin φ1 + sin(φ2 − φ1) + sin(2π − φ2)

]
=

1
2

[
sin

(
2π
3

+ α1

)
− sin

(
4π
3

+ α2

)
+ sin

(
2π
3

+ α2 − α1

)]
.

(4.3)

Taylor series expansions of α1, α2 and α2 − α1 around 0 yield

sin
(
2π
3

+ α1

)
=

√
3

2
−

1
2
α1 −

√
3

4
α2

1 +
1
12
α3

1 + oP

(
α4

1

)
,

sin
(
4π
3

+ α2

)
= −

√
3

2
−

1
2
α2 +

√
3

4
α2

2 +
1

12
α3

2 + oP

(
α4

2

)
,

sin
(
2π
3

+ α2 − α1

)
=

√
3

2
−

1
2

(α2 − α1) −

√
3

4
(α2 − α1)2

+
1

12
(α2 − α1)3 + oP

(
(α2 − α1)4

)
.

Putting the restrictions on α1, α2 and α2 − α1 into the Taylor series expansions
of the sine functions and then into (4.3), we obtain

A(1, 2, 3) ≥
3
√

3
4
−

√
3

4

(
α2

1 + α2
2 − α1α2

)
−C1ε

3/2,

A(1, 2, 3) ≤
3
√

3
4
−

√
3

4

(
α2

1 + α2
2 − α1α2

)
+ C1ε

3/2,

where C1 > 0 is some constant and ε is sufficiently small. It follows that

2P
(
α2

1 + α2
2 − α1α2 ≤

4
√

3
ε −C2ε

3/2, α1 ≤
2π
3

+ α2

)
≤ P

A(1, 2, 3) ≥
3
√

3
4
− ε


≤ 2P

(
α2

1 + α2
2 − α1α2 ≤

4
√

3
ε + C2ε

3/2, α1 ≤
2π
3

+ α2

)

with C2 > 0 and ε sufficiently small. We now compute 2P
(
α2

1 + α2
2 − α1α2 ≤
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δ, α1 ≤
2π
3 + α2

)
for a sufficiently small δ > 0. Conditioning on α1 = θ yields

2P
(
α2

1 + α2
2 − α1α2 ≤ δ, α1 ≤

2π
3

+ α2

)
=

1
π

∫ 4π/3

−2π/3
P

(
θ2 + α2

2 − θα2 ≤ δ, α2 ≥ θ −
2π
3

)
dθ

=
1
π

∫ 4π/3

−2π/3
P

∣∣∣∣∣α2 −
θ

2

∣∣∣∣∣ ≤
√
δ −

3θ2

4
, α2 ≥ θ −

2π
3

 · 1 {
3θ2

4
≤ δ

}
dθ

=
1

2π2

∫ √
4δ/3

−
√

4δ/3
2

√
δ −

3θ2

4
dθ

=

√
3

3π
δ, (4.4)

where we note that
{
|α2 − θ/2| ≤

√
δ − 3θ2/4

}
⊂ {α2 ≥ θ − 2π/3} holds for suf-

ficiently small δ > 0 and θ ∈ [−
√

4δ/3,
√

4δ/3]. Plugging δ = 4
√

3
ε∓C2ε

3/2 into
(4.4), we obtain the following lower and upper bounds on the tail probability:
√

3
3π

(
4
√

3
ε −C2ε

3/2
)
≤ P

A(1, 2, 3) ≥
3
√

3
4
− ε

 ≤ √3
3π

(
4
√

3
ε + C2ε

3/2
)
.

Consequently, (4.1) follows for ε ↓ 0. �

Figure 4.2 shows the EDF of 3
√

3/4− A(1, 2, 3), based on a simulation with
105 replications. As ε ↓ 0 the EDF behaves asymptotically like the linear
function 4

3πε (dotted line), confirming (4.1).
In the following, we set for each t > 0

εn := εn(t) :=
9π
2

n−3t. (4.5)

Hence, condition (2.4) is satisfied, i.e., we have

lim
n→∞

(
n
3

)
P

A(1, 2, 3) ≥
3
√

3
4
− εn

 = lim
n→∞

n3

6
·

4
3π
·

9π
2

n−3t = t.

However, condition (2.5) does not hold for this choice of εn. Recall that (2.5)
is a sufficient but not necessary condition for the validity of the Poisson limit
theorem given in Corollary 2.2. We shall replace this condition by the following
weaker conditions:

lim
n→∞

n4P

A(1, 2, 3) >
3
√

3
4
− εn, A(1, 2, 4) >

3
√

3
4
− εn

 = 0, (4.6)

lim
n→∞

n5P

A(1, 2, 3) >
3
√

3
4
− εn, A(1, 4, 5) >

3
√

3
4
− εn

 = 0. (4.7)
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Figure 4.2: A simulation of the tail probability in (4.1) with 105 replica-
tions.

We now state the result of the limit law for An.

Theorem 4.2. Let X1, X2, . . . be independent and uniformly distributed random
points on S1. We then have for t > 0

lim
n→∞

P

n3 ·

3
√

3
4
− An

 ≤ t
 = 1 − exp

(
−

2
9π

t
)
.

Proof. As mentioned, it remains to check conditions (4.6) and (4.7). As in
Proposition 4.1, we denote by φ1, φ2, φ3 the angles between X1, X2, between X1,
X3 and between X1, X4, respectively, measured counterclockwise. Obviously,
they are independent and uniformly distributed in (0, 2π). There are six different
orders of φ1, φ2 and φ3, each occurring with probability 1/6. Note that φ2 ≤

φ1 ≤ φ3 and φ3 ≤ φ1 ≤ φ2 are not possible in case of a double exceedance with
overlapping points X1, X2. Since {φ1 ≤ φ2}∩{φ1 ≤ φ3} and {φ1 ≥ φ2}∩{φ1 > φ3}

are disjoint, using symmetry we have

P

A(1, 2, 3) >
3
√

3
4
− εn, A(1, 2, 4) >

3
√

3
4
− εn


= 2 · P

(
A(1, 2, 3) >

3
√

3
4
− εn, A(1, 2, 4) >

3
√

3
4
− εn, φ1 ≤ φ2, φ1 ≤ φ3

)
.

(4.8)
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Put φ1 = 2π
3 +α1, φ2 = 4π

3 +α2 and φ3 = 4π
3 +α3. Thus α1, α2, α3 are independent

and uniformly distributed in (−2π/3, 4π/3), (−4π/3, 2π/3) and (−4π/3, 2π/3),
respectively. By the same geometric considerations as in (4.2), we conclude that
|αi| < 2

√
εn, i = 1, 2, 3, is a necessary condition for A(1, 2, 3) > 3

√
3/4 − εn

and A(1, 2, 4) > 3
√

3/4 − εn. Invoking (4.8) above, we then obtain

P

A(1, 2, 3) >
3
√

3
4
− εn, A(1, 2, 4) >

3
√

3
4
− εn


≤ 2 · P

(
α1, α2, α3 ∈

(
−2
√
εn, 2

√
εn

))
= 2 ·

(
4
√
εn

2π

)3

=
16
π3 ε

3/2
n .

Plugging (4.5) into this, we therefore have

lim
n→∞

n4 ·
16
π3 ·

(
9π
2

n−3t
)3/2

= 0.

We now consider the two triangles formed by triplets (X1, X2, X3) and (X1,

X4, X5) with one common vertex. Let φ1, φ2, φ3, φ4 denote the angles between
X1 and Xi, i = 2, 3, 4, 5, respectively, measured counterclockwise. Thus, they
are independent and uniformly distributed in (0, 2π). We consider the following
four disjoint cases: {φ1 ≤ φ2}∩{φ3 ≤ φ4}, {φ1 ≤ φ2}∩{φ3 > φ4}, {φ1 > φ2}∩{φ3 ≤

φ4}, {φ1 > φ2} ∩ {φ3 > φ4}. By symmetry, we conclude that

P

A(1, 2, 3) >
3
√

3
4
− εn, A(1, 4, 5) >

3
√

3
4
− εn


= 4 · P

(
A(1, 2, 3) >

3
√

3
4
− εn, A(1, 4, 5) >

3
√

3
4
− εn, φ1 ≤ φ2, φ3 ≤ φ4

)
.

Put φ1 = 2π
3 +α1, φ2 = 4π

3 +α2, φ3 = 2π
3 +α3, φ4 = 4π

3 +α4. Hence α1, α2, α3, α4

are independent, and α1, α3 are uniformly distributed in (−2π/3, 4π/3), while
the distribution of α2, α4 is uniform over (−4π/3, 2π/3). By analogy with the
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reasoning given above, we have

P

A(1, 2, 3) >
3
√

3
4
− εn, A(1, 4, 5) >

3
√

3
4
− εn


≤ 4 · P

(
α1, α2, α3, α4 ∈

(
−2
√
εn, 2

√
εn

))
= 4 ·

(
4
√
εn

2π

)4

=
64
π4 ε

2
n.

Invoking (4.5), it follows that

lim
n→∞

n5 ·
64
π4 ·

(
9π
2

n−3t
)2

= 0.

Theorem 2.1 yields the result. �

The simulation of the convergence given in Theorem 4.2 needs a large sam-
ple size, because the upper bound on the total variation distance in (2.2) con-
verges to zero rather slowly. Figure 4.3 shows the simulation results of the limit
law of An with different sample sizes, corroborating the theoretical findings.

Figure 4.3: EDF’s of n3 ·
(

3
√

3
4 − An

)
with n = 100 (lower curve) and

n = 10000 (upper curve), respectively. The dotted smooth curve is the
limit law 1 − exp(− 2

9π t).
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In a similar way, we can treat the largest perimeter of the triangles formed by
triplets of points that are uniformly distributed on the unit circle. As in the case
of area the perimeter attains its maximum value 3

√
3, if and only if its vertices

form an equilateral triangle. Denote by

S n := max
1≤i< j<k≤n

peri(i, j, k)

the largest perimeter of the triangles formed by X1, . . . , Xn. We then have for
t > 0

lim
n→∞

P
(
n3 ·

(
3
√

3 − S n

)
≤ t

)
= 1 − e−

2
9π t.

This result was deduced by Lao and Mayer in [27].



Chapter 5

Largest distance between points on the
edges of polygons

Up to now, attention has been confined to studying the limit law of U-max-
statistics by means of a Poisson limit theorem stated in Chapter 2. In some
particular cases, one may derive such a limit law by classical extreme value
theory and some geometric considerations. As an example we now consider
the largest interpoint distance Dn between n points that are independent and
uniformly distributed on the edges of a regular convex polygon in R2. In this
case Dn converges almost surely to the length of the longest diagonals. If the
polygon has an even number of sides the longest diagonals pass through the
center of the polygon. Moreover, for any two different diagonals the sets of
endpoints are disjoint. Intuitively, only the points that are nearest to the end-
points of such a diagonal deserve attention. For large n these point sets are
disjoint for different diagonals, so that we can treat them separately by making
use of the independence of the points. If the number of sides is odd, the longest
diagonals do not meet the center of the polygon, and there are any two such di-
agonals starting at each vertex. Consequently, the sets of endpoints for distinct
diagonals are not disjoint and we cannot use an independence property of the
points.

In Section 5.1 we prove a general result on the limit law of Dn for the case
that the points are distributed on a polygon with an even number of sides. In
Section 5.2 we discuss the limit law of Dn in case of points on a polygon with
an odd number of sides by observing an example of triangle.
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5.1 Polygon with an even number of sides

Let K ⊂ R2 be the boundary of a 2m-sided regular convex polygon, m ∈ N,
with vertices v1, . . . , v2m. Since K exhibits rotational symmetry of order 2m and
all its vertices lie on a common circle, we assume without loss of generality
that the circumscribed circle of K is the unit circle, and that the vertices are
ordered counterclockwise with v1 = (1, 0). Denote by Ki the side connecting
vi and vi+1, i = 1, . . . , 2m, so that K =

⋃2m
i=1 Ki. Additionally, put v2m+1 := v1

for convenience. To be more explicit, we regard Ki as a half-open interval that
contains the point vi. Split each side Ki by its midpoint into two disjoint (half-
open) parts, then Ki = K(1)

i + K(2)
i , where K(1)

i denotes the first half from vi to
the midpoint, while K(2)

i denotes the second half from the midpoint to vi+1.
Let X1, X2, . . . be independent uniformly distributed random points on K.

Each of these points can be generated in two steps. We first choose one of
the half-sides K(ν)

i , i = 1, . . . , 2m and ν = 1, 2, completely at random and,
independently of this choice, place the point according to a uniform distribution
on K(ν)

i . In what follows, we identify each point on K(1)
i with its distance to

the endpoint vi and each point on K(2)
i with its distance to the endpoint vi+1,

i = 1, . . . , 2m. Thus, the uniform distribution of the points on K(1)
i and on K(2)

i
can be represented by a uniform distribution of these distances over [0, a/2) and
(0, a/2], respectively, where a is the common length of the sides.

Let X1, X2, . . . , Xn be generated in that way. Writing

N(ν)
i := N(ν)

i (n) :=
n∑

j=1

1{X j ∈ K(ν)
i }

for the number of points falling in K(ν)
i , i = 1, . . . , 2m and ν = 1, 2, the random

vector
(
N(1)

1 ,N(2)
1 ,N(1)

2 ,N(2)
2 , . . . ,N(1)

2m,N
(2)
2m

)
has a multinomial distribution with

parameters n and pi = 1/(4m), i = 1, . . . , 4m. By the strong law of large
numbers, we have

N(ν)
i

n
−→

1
4m

, n→ ∞, (5.1)

almost surely for i = 1, . . . , 2m and ν = 1, 2.
Let

Bn :=
2m⋂
i=1

2⋂
ν=1

{
N(ν)

i ≥ 1
}

(5.2)
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denote the event that there is at least one point on each K(ν)
i . We have

P (Bn) = 1 − P

 2m⋃
i=1

2⋃
ν=1

{N(ν)
i = 0}


≥ 1 −

2m∑
i=i

2∑
ν=1

P
(
N(ν)

i = 0
)

= 1 − 4m ·
(
1 −

1
4m

)n

−→ 1

as n → ∞. Since for any sequence of events (An)n∈N such that limn→∞ P (An)
exists we have

lim
n→∞

P (An) = lim
n→∞

(
P (An|Bn) · P (Bn) + P

(
An|Bc

n
)
· P

(
Bc

n
) )

= lim
n→∞

P (An|Bn) ,

the limit law of Dn is the limit law of Dn conditionally on Bn. Due to this
relation, the following considerations are always based on condition Bn.
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Figure 5.1: Illustration of the notations (m = 2).

Suppose we are standing at one of the vertices vi and are facing the origin,
then the most distant vertex from vi is vm+i for i ≤ m or vi−m for i > m. Denote
by Xl

(i) and Xr
(i) the nearest points to vi on the left-hand side and on the right-

hand side, respectively (see Figure 5.1). We then define for each i = 1, . . . ,m a
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cluster of distances as follows:

Drl(i,m + i) := ‖Xr
(i) − Xl

(m+i)‖,

Drr(i,m + i) := ‖Xr
(i) − Xr

(m+i)‖,

Dlr(i,m + i) := ‖Xl
(i) − Xr

(m+i)‖,

Dll(i,m + i) := ‖Xl
(i) − Xl

(m+i)‖.

(5.3)

Let Xi, X j be any two points such that (without loss of generality) Xi ∈ K1.
Since

‖Xi − X j‖ ≤ max
{
‖Xi − Xl

(m+1)‖, ‖Xi − Xr
(m+1)‖, ‖Xi − Xl

(m+2)‖, ‖Xi − Xr
(m+2)‖

}
≤ max

{
Drl(1,m + 1), Drr(1,m + 1), Dll(2,m + 2), Dlr(2,m + 2)

}
,

the collection of distances given in (5.3) for i = 1, . . . ,m contains all the can-
didates for the largest interpoint distance. Moreover, these collections are inde-
pendent for different values of i, because they are formed by disjoint point sets.
Let

Dn(i,m + i) := max
j,k∈{r,l}

D jk(i,m + i)

denote the maximum of cluster i, i = 1, . . . ,m. We therefore have

Dn := max
1≤i< j≤n

‖Xi − X j‖ = max
i=1,...,m

Dn(i,m + i).

Since Dn(i,m + i), i = 1, . . . ,m, are i.i.d., it is crucial to study the asymptotic
behavior of Dn(1,m + 1). Then, the limit law of Dn follows immediately from
the classical extreme value theory for i.i.d. random variables. Our result is
stated in the following theorem.

Theorem 5.1. Let X1, X2, . . . be independent and uniformly distributed points
on the sides of a 2m-sided regular convex polygon, m ∈ N, with diameter 2. We
then have for t > 0

lim
n→∞

P

(
1

ma
· n · (2 − Dn) ≤ t

)
= 1 −

(
2t
a

+ 1
)m

· exp
(
−

2m
a

t
)
,

where

a = 2 sin
π

2m

is the length of the sides.
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Proof. We first determine some geometric quantities that are useful for later
purposes. Since the regular polygon has 2m sides, the central angle between
two neighboring vertices is α := π/m, and the side length is

a =

√
2 − 2 cos

π

m
= 2 sin

π

2m
.

Each interior angle and each exterior angle is equal to π − π/m = π − α and
π/m = α, respectively. For each i = 1, . . . ,m the two sides Ki and Km+i are
parallel. If we extend the two sides Ki and Km+i−1 (or Km+i+1), they will intersect
at some point (see Figure 5.2). This point and the two vertices vi, vm+i constitute
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Figure 5.2: The geometric quantities (m = 4).

an isosceles triangle with base angles equal to half of an interior angle. Hence,
the included angle between the two extension lines is equal to π− (π−α) = α =

π/m. Denote by b the length of the distance between the point of intersection
and one of the vertices vi and vm+i, that satisfies 2

sin(π/m) = b
sin((π−α)/2) . Plugging

α into this equation, we have

b =
2 sin

(
π
2 −

π
2m

)
sin π

m
=

2 cos π
2m

sin π
m

=
2 cos π

2m

2 sin π
2m cos π

2m
=

1
sin π

2m
=

2
a
.
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In the following, we identify each of the critical points Xl
(i) and Xr

(i), i =

1, . . . , 2m, by its nearest distance to one of the vertices. For i = 1, . . . , 2m
define

Yi,N(1)
i

:=

 ‖Xr
(i) − vi‖ = minX j∈K(1)

i
‖X j − vi‖, if N(1)

i ≥ 1,
a/2, if N(1)

i = 0,

Yi,N(2)
i

:=

 ‖Xr
(i+1) − vi+1‖ = minX j∈K(2)

i
‖X j − vi+1‖, if N(2)

i ≥ 1,
a/2, if N(2)

i = 0,

where we define Xl
(2m+1) := Xl

(1). Since, conditionally on Bn given in (5.2),

the distances
{
‖X j − vi‖; X j ∈ K(1)

i

}
,
{
‖X j − vi+1‖; X j ∈ K(2)

i

}
, i = 1, 2, . . . , 2m,

are independent and U(0, a/2)-distributed, the random variables Yi,N(1)
i

, Yi,N(2)
i

(i = 1, . . . , 2m) are extremes of i.i.d. random variables with random sample
sizes N(1)

i and N(2)
i , respectively. The classical extreme value theory yields

P
(
n ·min1≤ j≤n Z j ≤ t

)
= 1 − exp (−2t/a), if the random variables (Z j) j∈N are

independent and U(0, a/2)-distributed. By a similar method used in the proof
of Lemma 6.2.3 in Galambos [17], we obtain for i = 1, . . . , 2m and ν = 1, 2

N(ν)
i · Yi,N(ν)

i

D
−→ E(ν)

i

as n → ∞, where
(
E(ν)

i : i = 1, . . . , 2m; ν = 1, 2
)

are independent and exponen-
tial distributed random variables with parameter 2/a. More precisely, E(ν)

i has
density f (t) = 2

a exp(−2t
a ) and distribution function F(t) = 1−exp(−2t

a ) for t ≥ 0.
Invoking (5.1), we have

n
4m
· Yi,N(ν)

i
=

1/4m

N(ν)
i /n

· N(ν)
i Yi,N(ν)

i

D
−→ E(ν)

i (5.4)

as n→ ∞.
As hinted, the pivot of the proof is to derive the limit law of Dn(1,m+1). We

first represent the four distances Drl(1,m + 1), Drr(1,m + 1), Dlr(1,m + 1) and
Dll(1,m + 1) given in (5.3) with the help of Yi,N(ν)

i
, i = 1, . . . , 2m and ν = 1, 2.

Suppose that condition Bn holds. To simplify notations, we will write Y (ν)
i :=

Yi,N(ν)
i

in the following.

Using the law of cosines and plugging α = π/m and b = (sin π
2m)−1 = 2/a
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into the expression, we get

Drl(1,m + 1)

=

√(
b − Y (1)

1

)2
+

(
b − Y (2)

m

)2
− 2

(
b − Y (1)

1

) (
b − Y (2)

m

)
cosα

=

√
2b(1 − cosα)

(
b − Y (1)

1 − Y (2)
m

)
+ Y (1)

1
2

+ Y (2)
m

2
− 2Y (1)

1 Y (2)
m cosα

=

√
2a

(
2
a
− Y (1)

1 − Y (2)
m

)
+ Y (1)

1
2

+ Y (2)
m

2
− 2Y (1)

1 Y (2)
m cos

π

m
.

Since −1 ≤ cos π
m ≤ 1, we have on one hand

Drl(1,m + 1) ≥

√
2a

(
2
a
− Y (1)

1 − Y (2)
m

)
+

(
Y (1)

1 − Y (2)
m

)2

≥

√
2a

(
2
a
− Y (1)

1 − Y (2)
m

)
and on the other hand

Drl(1,m + 1) ≤

√
2a

(
2
a
− Y (1)

1 − Y (2)
m

)
+

(
Y (1)

1 + Y (2)
m

)2
.

Obviously, both Y (1)
1 and Y (2)

m converge in probability to 0 as n→ ∞. Invok-
ing (5.4) we have

n
4m
·
(
Y (1)

1 + Y (2)
m

) D
−→ E(1)

1 + E(2)
m , n→ ∞.

Since Y (1)
1 + Y (2)

m
P
−→ 0 as n→ ∞, it follows from Sluzky’s lemma that

n
4m
·
(
Y (1)

1 + Y (2)
m

)k
=

n
4m
·
(
Y (1)

1 + Y (2)
m

)
·
(
Y (1)

1 + Y (2)
m

)k−1 P
−→ 0

as n→ ∞ for each k > 1.
Regarding the lower and the upper bound of Drl(1,m + 1) as functions of

Y (1)
1 + Y (2)

m and taking their Taylor series expansions around 0, we find that the
first order Taylor approximations coincide. Hence, we obtain

Drl(1,m + 1) = 2 −
a
2

(
Y (1)

1 + Y (2)
m

)
+ oP

(
Y (1)

1 + Y (2)
m

)
,
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and Sluzky’s lemma yields
n

2ma
· (2 − Drl(1,m + 1))

D
−→ E(1)

1 + E(2)
m

as n→ ∞.
To derive the limit law of Drr(1,m + 1) we draw an auxiliary line that passes

through the vertex vm+1 and is parallel to the line formed by Xr
(1) and Xr

(m+1) (see
Figure 5.2). It follows from the law of cosines that

Drr(1,m + 1)

=

√
b2 +

(
b − Y (1)

1 − Y (1)
m+1

)2
− 2b

(
b − Y (1)

1 − Y (1)
m+1

)
cosα

=

√
2b(1 − cosα)

(
b − Y (1)

1 − Y (1)
m+1

)
+

(
Y (1)

1 + Y (1)
m+1

)2

=

√
2a

(
2
a
− Y (1)

1 − Y (1)
m+1

)
+

(
Y (1)

1 + Y (1)
m+1

)2
.

Arguing as above, we have

Drr(1,m + 1) = 2 −
a
2

(
Y (1)

1 + Y (1)
m+1

)
+ oP

(
Y (1)

1 + Y (1)
m+1

)
.

Analogously to Drl(1,m + 1) and Drr(1,m + 1), we obtain

Dlr(1,m + 1) = 2 −
a
2

(
Y (1)

m+1 + Y (2)
2m

)
+ oP

(
Y (1)

m+1 + Y (2)
2m

)
,

Dll(1,m + 1) = 2 −
a
2

(
Y (2)

m + Y (2)
2m

)
+ oP

(
Y (2)

m + Y (2)
2m

)
.

Note that the first order Taylor polynomials of the four distances coincide.
Since Dn(1,m + 1) = max j,k∈{r,l}

{
D jk(1,m + 1)

}
, we conclude that

n
2ma

· (2 − Dn(1,m + 1))

= min
j,k∈{r,l}

n
2ma

·
{
2 − D jk(1,m + 1)

}
= min

{ n
4m

(
Y (1)

1 + Y (2)
m

)
,

n
4m

(
Y (1)

1 + Y (1)
m+1

)
n

4m

(
Y (1)

m+1 + Y (2)
2m

)
,

n
4m

(
Y (2)

m + Y (2)
2m

)}
+ oP(1). (5.5)

From (5.4) and the independence of Y (ν)
i , i = 1, . . . , 2m and ν = 1, 2, it is

obvious that
n

4m
·
(
Y (1)

1 ,Y (2)
m ,Y (1)

m+1,Y
(2)
2m

) D
−→

(
E(1)

1 , E(2)
m , E(1)

m+1, E
(2)
2m

)
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as n→ ∞. Let h : R4 → R be defined by

h(y1, y2, y3, y4) := min{y1 + y2, y1 + y3, y3 + y4, y2 + y4}.

The continuous mapping theorem and (5.5) then yield

n
2ma

· (2 − Dn(1,m + 1))

D
−→ min

{
E(1)

1 + E(2)
m , E(1)

1 + E(1)
m+1, E(1)

m+1 + E(2)
2m, E(2)

m + E(2)
2m

}
=: E

as n→ ∞.
Since E(1)

1 , E(2)
m , E(1)

m+1 and E(2)
2m are independent and Exp(2/a)-distributed,

we can deduce the distribution function of E conveniently. The details can be
found in Appendix D.1. The result is

lim
n→∞

P

(
1

2ma
· n · (2 − Dn(1,m + 1)) ≤ t

)
= 1 −

(
4t
a

+ 1
)
· exp

(
−

4t
a

)
for each t ≥ 0. Applying the independence of Dn(i,m + i), i = 1, . . . ,m, and the
relation Dn = maxi=1,...,m Dn(i,m + i), we have

lim
n→∞

P

(
1

2ma
· n · (2 − Dn) ≤ t

)
= lim

n→∞
P

(
min

i=1,...,m

{
1

2ma
· n · (2 − Dn(i,m + i))

}
≤ t

)
= 1 − lim

n→∞
P

(
1

2ma
· n · (2 − Dn(1,m + 1)) > t

)m

= 1 −
(
4t
a

+ 1
)m

· exp
(
−

4m
a

t
)
.

By a simple transformation, we get the limit law stated in Theorem 5.1. �

As examples, we consider the cases m = 1 and m = 2.
If m = 1, the random points are uniformly distributed on a diameter of the

unit circle and a = 2 sin π
2 = 2. The limit law of Dn is then

lim
n→∞

P
(n
2
· (2 − Dn) ≤ t

)
= 1 − (t + 1) e−t,

which coincides with the limit law given in (1.1).
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Figure 5.3: The simulation of the limit law of Dn, when the points are
distributed on the sides of a square.

If m = 2, the random points are uniformly distributed on the sides of a square
with side length a = 2 sin π

4 =
√

2. Thus, the limit law of Dn reduces to

lim
n→∞

P

 √2
4

n (2 − Dn) ≤ t
 = 1 − (

√
2 t + 1)2 · e−2

√
2 t (5.6)

for t > 0. Figure 5.3 gives a concrete simulation of this limit law. Firstly, we
generated 500 points that are independent and uniformly distributed on the sides
of a square with side length

√
2, and then determined their largest interpoint

distance. This procedure was repeated 500 times. Figure 5.3 shows the EDF of
√

2
4 · 500 · (2 − D500). The dotted smooth curve in Figure 5.3 is the distribution

function figuring on the right-hand side of (5.6). The EDF approximates the
smooth curve very well, which corroborates our theoretical findings.

5.2 Polygon with an odd number of sides

Let X1, X2, . . . be independent uniformly distributed random points on the bound-
ary K ⊂ R2 of a (2m + 1)-sided regular convex polygon, m ∈ N. As be-
fore, we denote the vertices counterclockwise by v1, . . . , v2m+1 with v1 = (1, 0)
and denote by Ki the side connecting vi and vi+1, i = 1, . . . , 2m + 1, so that
K =

⋃2m+1
i=1 Ki. Additionally, put v2m+2 := v1. We split each side Ki by its

midpoint into two disjoint half-open parts K(1)
i and K(2)

i .
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Let

N(ν)
i := N(ν)

i (n) :=
n∑

j=1

1{X j ∈ K(ν)
i }

be the number of points in K(ν)
i , i = 1, . . . , 2m + 1 and ν = 1, 2. By the strong

law of large numbers, we have

N(ν)
i

n
−→

1
2(2m + 1)

, n→ ∞,

almost surely for i = 1, . . . , 2m + 1 and ν = 1, 2. The following considerations
are always based on the condition

Bn :=
2m+1⋂
i=1

2⋂
ν=1

{
N(ν)

i ≥ 1
}

which states that there is at least one point on each half-side K(ν)
i . Note that

limn→∞ P (Bn) = 1.
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Figure 5.4: Illustration of the geometric quantities in a pentagon (m = 2).

In a regular convex polygon with 2m + 1 sides, the central angle between
two neighboring vertices is α := 2π/(2m + 1), and the side length is

a =

√
2 − 2 cos

2π
2m + 1

= 2 sin
π

2m + 1
.

The following schema gives all the possible pairs of endpoints, which form the
longest diagonals:

v1
�vm+1

�vm+2

v2
�vm+2

�vm+3

. . . vi
�vm+i

�vm+i+1

. . . vm
�v2m

�v2m+1

vm+1
�v2m+1

�v2m+2 = v1
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where � and � mean the connections by one of the longest diagonals. Thus,
there are altogether 2m + 1 diagonals with the maximal length

s =


1 +

√
1 −

a2

4

2

+
a2

4


1/2

=
[
2 +
√

4 − a2
]1/2

.

We adopt the notations Xl
(i), Xr

(i) for the nearest points to vi on the left- and
right-hand side. Then, for each i = 1, . . . ,m + 1 there is a cluster of distances
defined by

Drl(i,m + i) := ‖Xr
(i) − Xl

(m+i)‖,

Drr(i,m + i) := ‖Xr
(i) − Xr

(m+i)‖,

Dlr(i,m + i) := ‖Xl
(i) − Xr

(m+i)‖,

Dll(i,m + i) := ‖Xl
(i) − Xl

(m+i)‖,

(5.7)

and for each i = 1, . . . ,m there is a cluster of distances defined by

Drl(i,m + i + 1) := ‖Xr
(i) − Xl

(m+i+1)‖,

Drr(i,m + i + 1) := ‖Xr
(i) − Xr

(m+i+1)‖,

Dlr(i,m + i + 1) := ‖Xl
(i) − Xr

(m+i+1)‖,

Dll(i,m + i + 1) := ‖Xl
(i) − Xl

(m+i+1)‖.

(5.8)

Since for any distinct points Xi, X j such that (without loss of generality) Xi ∈ K1

the following inequality holds:

‖Xi − X j‖

≤ max
{
‖Xi − Xl

(m+1)‖, ‖Xi − Xl
(m+2)‖, ‖Xi − Xl

(m+3)‖,

‖Xi − Xr
(m+1)‖, ‖Xi − Xr

(m+2)‖, ‖Xi − Xr
(m+3)‖,

}
≤ max

{
Drl(1,m + 1), Drl(1,m + 2), Dll(2,m + 2), Dll(2,m + 3),

Drr(1,m + 1), Drr(1,m + 2), Dlr(2,m + 2), Dlr(2,m + 3)
}
,

the collection of the distances given in (5.7) and (5.8) contains all the 4 ·(2m+1)
candidates for the largest interpoint distance. Define for each i = 1, . . . ,m + 1

Dn(i,m + i) := max
j,k∈{r,l}

D jk(i,m + i)



5.2. POLYGON WITH AN ODD NUMBER OF SIDES 81

and for each i = 1, . . . ,m

Dn(i,m + i + 1) := max
j,k∈{r,l}

D jk(i,m + i + 1).

Notice that these random variables are not independent, so that the computation
cannot be simplified as in Section 5.1. In what follows, we derive the limit law
of Dn, when the points are on the sides of an equilateral triangle.

Theorem 5.2. Let X1, X2, . . . be independent and uniformly distributed points
on the sides of a equilateral triangle with radius 1 (from the centre to one of the
vertices). We then have for t > 0

lim
n→∞

P
(n
3
·
(√

3 − Dn

)
≤ t

)
= 1 − exp

{
−2
√

3t
}
·

(
3
2

+ 2
√

3t +
569
384

t2 +
1043
9216

√
3t3

)
+

1
2
· exp

{
−

25
12

√
3t

}
− exp

{
−

53
24

√
3t

}
+ exp

{
−

13
6

√
3t

}
. (5.9)

Proof. In the case m = 1 we have a equilateral triangle with side length a =
√

3
and the maximal diagonal length s =

√
3. There are 12 candidates for the

largest interpoint distance, which are plotted in Figure 5.5.
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Figure 5.5: Candidates for the largest interpoint distance in the case m = 1.

Suppose that condition Bn holds. We now identify the endpoints of these
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candidates by its distance to the nearest vertex. Define

Y1 := Y1,N(1)
1

:= ‖Xr
(1) − v1‖ = min

X j∈K(1)
1

‖X j − v1‖,

Y2 := Y1,N(2)
1

:= ‖Xl
(2) − v2‖ = min

X j∈K(2)
1

‖X j − v2‖,

Y3 := Y2,N(1)
2

:= ‖Xr
(2) − v2‖ = min

X j∈K(1)
2

‖X j − v2‖,

Y4 := Y2,N(2)
2

:= ‖Xl
(3) − v3‖ = min

X j∈K(2)
2

‖X j − v3‖,

Y5 := Y3,N(1)
3

:= ‖Xr
(3) − v3‖ = min

X j∈K(1)
3

‖X j − v3‖,

Y6 := Y3,N(2)
3

:= ‖Xl
(1) − v1‖ = min

X j∈K(2)
3

‖X j − v1‖.

By the same considerations as in Section 5.1 and N(ν)
i /n −→ 1/6 as n→ ∞, we

conclude that
n
6
· Y1 =

1/6

N(1)
1 /n

· N(1)
1 Y1

D
−→ E1 (5.10)

as n→ ∞, where E1 is an exponential distributed random variable with param-
eter 2/

√
3. Moreover, this convergence holds for each Yi, i = 1, . . . , 6, when

rescaled by n/6, with i.i.d. limit laws E1, . . . , E6, respectively.
Now, all the 12 candidates can be represented with the help of Y1, . . . ,Y6.

Since under condition Bn the random variables Y1, . . . ,Y6 are independent, we
can obtain the limit law of Dn by using the continuous mapping theorem. We
first treat four candidates in some detail. To begin with, we have

Drl(1, 2) =
√

3 − Y1 − Y2 =
√

3 − (Y1 + Y2) .

By using the law of cosines we have

Drr(1, 2) =

√
(
√

3 − Y1)2 + Y2
3 − (

√
3 − Y1)Y3

=

√
3 − 2

√
3Y1 −

√
3Y3 + Y2

1 + Y2
3 + Y1Y3

≥

√
3 −

(
2
√

3Y1 +
√

3Y3

)
and on the other hand

Drr(1, 2) ≤

√
3 −

(
2
√

3Y1 +
√

3Y3

)
+

(
2
√

3Y1 +
√

3Y3

)2
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Since these bounds are both functions of 2
√

3Y1 +
√

3Y3, we take first order
Taylor approximations and obtain

Drr(1, 2) =
√

3 −
(
Y1 +

1
2

Y3

)
+ oP

(
2
√

3Y1 +
√

3Y3

)
.

Using similar considerations, we have

Drl(1, 3) =

√
(
√

3 − Y1)2 + (
√

3 − Y4)2 − (
√

3 − Y1)(
√

3 − Y4)

=

√
3 −
√

3Y1 −
√

3Y4 + Y2
1 + Y2

4 − Y1Y4

=
√

3 −
(
1
2

Y1 +
1
2

Y4

)
+ oP

(√
3Y1 +

√
3Y4

)
and

Drr(1, 3) =

√
Y2

1 + (
√

3 − Y5)2 − Y1(
√

3 − Y5)

=

√
3 −
√

3Y1 − 2
√

3Y5 + Y2
1 + Y2

5 + Y1Y5

=
√

3 −
(
1
2

Y1 + Y5

)
+ oP

(√
3Y1 + 2

√
3Y5

)
.

The other distances can be obtained similarly. We have

Dll(2, 3) =
√

3 −
(
1
2

Y2 + Y4

)
+ oP

(√
3Y2 + 2

√
3Y4

)
,

Dlr(2, 3) =
√

3 −
(
1
2

Y2 +
1
2

Y5

)
+ oP

(√
3Y2 +

√
3Y5

)
,

Dll(1, 2) =
√

3 −
(
Y2 +

1
2

Y6

)
+ oP

(
2
√

3Y2 +
√

3Y6

)
,

Drl(2, 3) =
√

3 − (Y3 + Y4) ,

Drr(2, 3) =
√

3 −
(
Y3 +

1
2

Y5

)
+ oP

(
2
√

3Y3 +
√

3Y5

)
,

Dlr(1, 2) =
√

3 −
(
1
2

Y3 +
1
2

Y6

)
+ oP

(√
3Y3 +

√
3Y6

)
,

Dll(1, 3) =
√

3 −
(
1
2

Y4 + Y6

)
+ oP

(√
3Y4 + 2

√
3Y6

)
,

Dlr(1, 3) =
√

3 − (Y5 + Y6) .
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Since

Dn = max
{
Drl(1, 2), Drr(1, 2), Drl(1, 3), Drr(1, 3), Dll(2, 3), Dlr(2, 3),

Dll(1, 2), Drl(2, 3), Drr(2, 3), Dlr(1, 2), Dll(1, 3), Dlr(1, 3)
}
,

we apply (5.10) and the continuous mapping theorem and obtain the limit law
as n→ ∞ as follows:

n
3
·
(√

3 − Dn

)
= 2 ·

n
6
·min

{√
3 − Drl(1, 2),

√
3 − Drr(1, 2),

√
3 − Drl(1, 3),

√
3 − Drr(1, 3),

√
3 − Dll(2, 3),

√
3 − Dlr(2, 3),

√
3 − Dll(1, 2),

√
3 − Drl(2, 3),

√
3 − Drr(2, 3),

√
3 − Dlr(1, 2),

√
3 − Dll(1, 3),

√
3 − Dlr(1, 3)

}
D
−→ 2 ·min

{
E1 + E2, E1 +

1
2

E3,
1
2

E1 +
1
2

E4,
1
2

E1 + E5,

1
2

E2 + E4,
1
2

E2 +
1
2

E5, E2 +
1
2

E6, E3 + E4,

E3 +
1
2

E5,
1
2

E3 +
1
2

E6,
1
2

E4 + E6, E5 + E6

}
=: 2 · E. (5.11)

The distribution function of E is obtained in Appendix D.2 by long and
tedious computations. Then, the limit law can be obtained by a simple transfor-
mation. �

Figure 5.6 shows the EDF of 500
6 ·

(√
3 − D500

)
, based on 500 replications.

The dotted smooth curve shows the limit distribution function given on the
right-hand side of (5.9).

In principle the method in the proof of Theorem 5.2 can be generalized to
a general regular convex polygon with an odd number of sides. However, the
analytical complexity grows rapidly with the number of sides, since we cannot
exploit an independence property that holds for polygons with an even number
of sides.

Consider a regular convex polygon with 2m + 1 sides, m ≥ 2. The interior
angles and the exterior angles are equal to π − α = (2m − 1)π/(2m + 1) and
α = 2π/(2m + 1), respectively. For further purposes, it requires knowing more
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Figure 5.6: EDF of 500
6 ·

(√
3 − D500

)
and limit distribution function (5.9)

in case of an equilateral triangle.

geometric quantities with respect to each longest diagonal. By the symmetry
of the polygon, we consider for instance the longest diagonal connection v2

and vm+2 (see Figure 5.7). The extension lines of the two sides K2 and Km+1

intersect at a point u, the origin and points u, v2, vm+2 shape a kite. Since the
central angle between v2 and vm+1 is 2mπ/(2m + 1) and the two equal angles
are half of the interior angle, then the included angle between the two extension
lines is

β := 2π −
2mπ

2m + 1
− (π − α) =

3π
2m + 1

.

Furthermore, since the points u, v2, vm+2 form an isosceles triangle, its base is
the longest diagonal with length s, by the law of sines the distance between u
and v2 (or vm+2) is

b :=
s · sin((π − β)/2)

sin β
=

s
2 sin(β/2)

.

On the other hand, if we extend the two sides K1 and Km+2, they will intersect
at some point w, and the points u, v2, w, vm+2 shape a kite. Thus, the included
angle between the extension lines is

γ := 2π − β − 2(π − α) =
π

2m + 1
.
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Figure 5.7: The geometric quantities (m = 4).

The distance between w and v2 (or vm+2) follows from the law of sines:

c :=
s · sin((π − γ)/2)

sin γ
=

s
2 sin(γ/2).

Suppose that condition Bn holds. Analogous to the proof of Theorem 5.2,
we denote for i = 1, . . . , 2m + 1

Y2i−1 := min
X j∈K(1)

i

‖X j − vi‖,

Y2i := min
X j∈K(2)

i

‖X j − vi+1‖.

Thus, for each k = 1, . . . , 4m + 2
n

2(2m + 1)
· Yk

D
−→ Ek, (5.12)
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where (Ek)k=1,...,4m+2 are independent and exponential distributed random vari-
ables with parameter 2/a.

In the following, we represent the distances given in (5.7) and (5.8) with the
help of (Yk)k=1,...,4m+2. For each i = 1, . . . ,m + 1 we have

Drl(i,m + i)

=
[
(b − Y2i−1)2 + (b − Y2(m+i−1))2 − 2(b − Y2i−1)(b − Y2(m+i−1)) cos β

] 1
2

=
[
2b2(1 − cos β)

] 1
2
−

1
2b

[
2b2(1 − cos β)

] 1
2 (Y2i−1 + Y2(m+i−1))

+ oP(Y2i−1 + Y2(m+i−1))

= s − sin
β

2
(Y2i−1 + Y2(m+i−1)) + oP(Y2i−1 + Y2(m+i−1)),

where we take the first order Taylor approximation and use b = s/(2 sin(β/2)).
Similarly, we have

Drr(i,m + i)

=
[
b2 + (b − Y2i−1 − Y2(m+i)−1)2 − 2b(b − Y2i−1 − Y2(m+i)−1) cos β

] 1
2

= s − sin
β

2
(Y2i−1 + Y2(m+i)−1) + oP(Y2i−1 + Y2(m+i)−1),

Dll(i,m + i)

=
[
b2 + (b − Y2(i−1) − Y2(m+i−1))2 − 2b(b − Y2(i−1) − Y2(m+i−1)) cos β

] 1
2

= s − sin
β

2
(Y2(i−1) + Y2(m+i−1)) + oP(Y2(i−1) + Y2(m+i−1)),

Dlr(i,m + i)

=
[
(c − Y2(i−1))2 + (c − Y2(m+i)−1)2 − 2(c − Y2(i−1))(c − Y2(m+i)−1) cos γ

] 1
2

= s − sin
γ

2
(Y2(i−1) + Y2(m+i)−1) + oP(Y2(i−1) + Y2(m+i)−1).

Note that we use the notations Y0 := Y4m+2 and E0 := E4m+2. Analogously, we
obtain for each i = 1, . . . ,m

Drl(i,m + i + 1) = s − sin
γ

2
(Y2i−1 + Y2(m+i)) + oP(Y2i−1 + Y2(m+i)),

Drr(i,m + i + 1) = s − sin
β

2
(Y2i−1 + Y2(m+i)+1) + oP(Y2i−1 + Y2(m+i)+1),

Dll(i,m + i + 1) = s − sin
β

2
(Y2(i−1) + Y2(m+i)) + oP(Y2(i−1) + Y2(m+i)),

Dlr(i,m + i + 1) = s − sin
β

2
(Y2(i−1) + Y2(m+i)+1) + oP(Y2(i−1) + Y2(m+i)+1).
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Applying (5.12) and the continuous mapping theorem yield the general ex-
pression of the limit law as follows:

Theorem 5.3. Let X1, X2, . . . be independent and uniformly distributed points
on the sides of a (2m + 1)-sided regular convex polygon, m ≥ 2, with radius 1
and side length a = 2 sin π

2m+1 . We then have

n
2m + 1

· (s − Dn)

D
−→ 2 ·min

i=1,...,m+1
j=1,...,m

{
sin

β

2
(
E2i−1 + E2(m+i−1)

)
, sin

β

2
(
E2i−1 + E2(m+i)−1

)
,

sin
β

2
(
E2(i−1) + E2(m+i−1)

)
, sin

γ

2
(
E2(i−1) + E2(m+i)−1

)
,

sin
γ

2

(
E2 j−1 + E2(m+ j)

)
, sin

β

2

(
E2 j−1 + E2(m+ j)+1

)
,

sin
β

2

(
E2( j−1) + E2(m+ j)

)
, sin

β

2

(
E2( j−1) + E2(m+ j)+1

)}
=: 2 · E,

where β = 3π/(2m+1), γ = π/(2m+1) and Ei, i = 0, . . . , 4m+1, are independent
and exponential distributed random variables with parameter 2/a.

Since E is the minimum of finitely many linear combinations of independent
and exponential distributed random variables, its existence is ensured. How-
ever, the computation of the limit distribution function seems to be prohibitive.



Chapter 6

Largest distance in a support with major
axes

In this chapter, we turn our attention to random points in a polytope or an el-
lipse. In the first section we investigate the limit law of the largest interpoint
distance in case the underlying distribution is uniform in the unit square. After
giving some simple polynomial bounds for the limit distribution function, we
deduce the exact limit law by some asymptotic and geometric considerations.
In subsequent sections we generalize the approach adopted in Section 6.1 in
three directions. Firstly, we drop the restriction that the underlying distribu-
tion is uniform. Some general conditions on the density f of X1 are given and
several examples for f can be found in Section 6.2. Secondly, we tackle the
general case of uniformly distributed points in a cube or a hypercube with di-
mension d ≥ 2. In the final Section 6.4 the support of the uniform distribution
of the random points is a regular convex polygon. Moreover, we treat the case
of a uniform distribution in an ellipse. For the latter case we improve the lower
bound for the limit law given in [4] by Appel, Najim and Russo.

6.1 Uniform distribution in the unit square

Suppose that X1, X2, . . . are independent with a uniform distribution in the unit
square [0, 1]2. Let v1 = (0, 0), v2 = (1, 0), v3 = (1, 1), v4 = (1, 0) denote the four
vertices. With v5 := v1, let Ki be the side connecting vi and vi+1, i = 1, . . . , 4.
Obviously, the largest interpoint distance Dn := max1≤i< j≤n ‖Xi − X j‖ converges
almost surely to the length

√
2 of the diagonals.

Choose a sequence of thresholds
√

2 − εn such that εn ↓ 0 as n → ∞, and
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denote by

En(i, j) :=
{
‖Xi − X j‖ >

√
2 − εn

}
, 1 ≤ i < j ≤ n,

the event that the distance between Xi and X j exceeds the threshold. For each
x0 ∈ [0, 1]2 write

Cn(x0) :=
{
x ∈ [0, 1]2 : ‖x − x0‖ >

√
2 − εn

}
for the cap that contains the points having a distance to x0 larger than

√
2 − εn.

Note that for large n, a necessary condition for an exceedance is that one of
the endpoint lies in Cn(vk), k = 1, 2, and the other in Cn(vk+2). By the central
symmetry of the unit square, we study without loss of generality the area of
Cn(v3).
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(1, ζ)

(η, 1)

(δn, 0)

(0, δn) √ 2 −
ε n

Figure 6.1: Illustration of the notations.

To obtain the cap Cn(v3) consider the circle with center v3 and radius
√

2−εn

(see Figure 6.1). For sufficiently large n, this circle intersects the sides K1 and
K4 at (δn, 0) and (0, δn) respectively, where δn =

√
2εn + 1

2ε
2
n +O

(
ε3

n

)
≤
√

2εn +

ε2
n =: δ̃n. Denote by Ãn(v3) the triangle formed by (̃δn, 0), (0, δ̃n) and v1, which

contains Cn(v3) and has the area 1
2 δ̃

2
n = 1

2(
√

2εn+ε2
n)2 = ε2

n+
√

2ε3
n+ 1

2ε
4
n. Further-

more, the circle intersects the diagonal connecting v1 and v3 at (
√

2
2 εn,

√
2

2 εn), the
tangent to the circle at this point intersects K1 and K4 at (

√
2εn, 0) and (0,

√
2εn)

respectively. The triangle An(v3) formed by these intersection points and v1

is contained by Cn(v3) and has the area 1
2(
√

2εn)2 = ε2
n. We therefore have

area(Cn(v3)) ∼ ε2
n as n → ∞. Moreover, the integral of a continuous function

on Cn(v3) is asymptotically equal to the corresponding integral over An(v3).
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The following lemma is also useful for later purposes:

Lemma 6.1. There is a constant C > 0, such that for sufficiently large n

sup
x=(s,t)∈Cn(v3)

∣∣∣∣∣∣∣P (
‖X1 − x‖ >

√
2 − εn

)
−

(
εn −

s + t
√

2

)2
∣∣∣∣∣∣∣ ≤ C · ε3

n.

Proof. Since the density of X1 is uniform over [0, 1]2, the probability in the
formula above is equal to the area of the cap Cn(x). Note that, for each x =

(s, t) ∈ Cn(x), we have 0 ≤ s, t ≤ δn ≤
√

2εn + ε2
n for sufficiently large n.

The circle with center x and radius
√

2 − εn intersects K2 and K3 at (1, ζ) and
(η, 1), respectively. (See Figure 6.1.) The area of Cn(x) is bounded by the area
of the triangle An(ζ) formed by v3, (1, ζ), (ζ, 1) and the area of the triangle
An(η) formed by v3, (η, 1), (1, η). In the following, we compute the area of the
triangles area (An(ζ)) = 1

2(1− ζ)2 and area (An(η)) = 1
2(1− η)2. Some geometric

considerations yield

1 − ζ = 1 − t −
√

(
√

2 − εn)2 − (1 − s)2,

1 − η = 1 − s −
√

(
√

2 − εn)2 − (1 − t)2.

We have on one hand√
(
√

2 − εn)2 − (1 − s)2 ≤

√
(1 − (

√
2εn − s))2 = 1 − (

√
2εn − s)

as well as

1
2

(1 − ζ)2 ≥
1
2

(√
2εn − s − t

)2
=

(
εn −

s + t
√

2

)2

. (6.1)

On the other hand, since ε̃n(s) := 2(
√

2εn − s) + ε2
n − s2 ≤ 3εn for 0 ≤ s ≤

√
2εn + ε2

n and large enough n, we obtain by Taylor series expansions of ε̃n

around 0√
(
√

2 − εn)2 − (1 − s)2 =

√
1 − 2(

√
2εn − s) + ε2

n − s2

≥ 1 −
1
2

[
2(
√

2εn − s) + ε2
n − s2

]
−C1ε

2
n

≥ 1 − (
√

2εn − s) −C2ε
2
n,
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where C1, C2 are suitable positive constants that do not depend on s and t. It
follows that

1
2

(1 − ζ)2 ≤
1
2

(√
2εn − s − t + C2ε

2
n

)2
=

(
εn −

s + t −C2ε
2
n

√
2

)2

.

Together with (6.1), we have for n large enough∣∣∣∣∣∣∣12(1 − ζ)2 −

(
εn −

s + t
√

2

)2
∣∣∣∣∣∣∣ ≤ C3ε

3
n,

where C3 is some positive constant not depending on s and t. Analogously, we
have ∣∣∣∣∣∣∣12(1 − η)2 −

(
εn −

s + t
√

2

)2
∣∣∣∣∣∣∣ ≤ C4ε

3
n

for a suitable constant C4 > 0 that does not depend on s and t. The lemma is
proved. �

For i, j, k, l ∈ N we define the relations

(i, j) ≺ (k, l) :⇔ (i = k and j < l) or (i < k),

(i, j) � (k, l) :⇔ (i = k and j ≤ l) or (i < k),

and set

εn := εn(t) := t · n−1/2 (6.2)

for t > 0. By the inclusion-exclusion principle we have

pn(t) := P
(
n1/2 · (

√
2 − Dn) ≤ t

)
= P

(
Dn >

√
2 − εn

)
= P

 ⋃
1≤i< j≤n

En(i, j)


=

n∑
ν=1

(−1)ν−1S ν,n(t)

where

S ν,n(t) :=
∑

(1,2)�(i1, j1)≺...
≺(iν, jν)�(n−1,n)

P (En(i1, j1) ∩ . . . ∩ En(iν, jν)) .
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In the following we give some bounds by using the Bonferroni inequalities.
Conditioning on X1 = x for a x ∈ ∪4

i=1Cn(vi) and approximating the region
of integration Cn(v3) by the triangle An(v3), Lemma 6.1 yields for n→ ∞

P (En(1, 2)) ∼ 4 ·
∫ √

2εn

s=0

∫ √
2εn−s

t=0

(
εn −

s + t
√

2

)2

dt ds =
2
3
ε4

n,

P (En(1, 2) ∩ En(1, 3)) ∼ 4 ·
∫ √

2εn

s=0

∫ √
2εn−s

t=0

(
εn −

s + t
√

2

)4

dt ds =
4

15
ε6

n.

Plugging (6.2) into the expressions, we obtain

S 1,n(t) =
∑

1≤i< j≤n

P (En(i, j)) =

(
n
2

)
P (En(1, 2)) −→

t4

3
=: S 1(t) (6.3)

as well as

S 2,n(t) =
∑

(1,2)�(i, j)≺
(k,l)�(n−1,1)

P (En(i, j) ∩ En(k, l))

=

(
n
3

)
· 3 · P (En(1, 2) ∩ En(1, 3)) +

(
n
4

)
· 3 · P (En(1, 2))2

−→
2t6

15
+

t8

18
=: S 2(t) (6.4)

as n→ ∞. Thus, the Bonferroni inequalities yield

S 1(t) − S 2(t) ≤ lim inf
n→∞

pn(t) ≤ lim sup
n→∞

pn(t) ≤ S 1(t).

Similarly, we have for n→ ∞

S 3,n(t) −→
83t8

1260
+

2t10

45
+

t12

162
=: S 3(t), (6.5)

S 4,n(t) −→
t8

140
+

4t10

105
+

583t12

18900
+

t14

135
+

t16

11944
=: S 4(t). (6.6)

We then get the following more precise bounds:

Theorem 6.2. Let X1, X2, . . . be independent and uniformly distributed points
in the unit square [0, 1]2. For t > 0, we have

S 1(t) − S 2(t) + S 3(t) − S 4(t) ≤ lim inf
n→∞

P
(
n1/2 ·

(√
2 − Dn

)
≤ t

)
≤ lim sup

n→∞
P
(
n1/2 ·

(√
2 − Dn

)
≤ t

)
≤ S 1(t) − S 2(t) + S 3(t),

where S 1, S 2, S 3 and S 4 are given in (6.3)-(6.6).
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Figure 6.2: The thick curve is the EDF of n1/2(
√

2 − Dn). The smooth
curves are, from above to below, S 1(t), S 1(t)−S 2(t)+S 3(t), S 1(t)−S 2(t)+

S 3(t) − S 4(t) and S 1(t) − S 2(t).

These polynomial lower and upper bounds for pn(t) become more and more
precise by taking into account more S ν,n’s. However, the bounds are not always
nondecreasing and do not take values in [0, 1] for large t, so we have to restrict
the choice of t to a bounded interval. Since the upper and lower bounds are
both 0 for t = 0 and their difference increases in t, the approximation of pn(t)
by these bounds is applicable only for small t (see Figure 6.2).

As noted above, only the points that are close to the vertices deserve atten-
tion for large n, and the candidates of the largest distance are the point connec-
tions which are close to one of the two diagonals. For reasons of symmetry, it
suffices to consider the diagonal connecting v1 = (0, 0) and v3 = (1, 1).

In what follows, let Yi denote the distance between the orthogonal projection
of Xi onto the diagonal and the vertex v1, 1 ≤ i ≤ n. Let Un := min1≤i≤n Yi and
Vn := max1≤i≤n Yi, thus Mn := Vn − Un is the sample range of Yi, i = 1, . . . , n.
With these notations we now give the limit law of Mn.

Lemma 6.3. We have

n1/2 · (
√

2 − Mn)
D
−→ WU + WV

as n → ∞, where WU and WV are independent Weibull distributed random
variables with distribution function

P (WU ≤ t) = P (WV ≤ t) = 1 − e−t2
=: G(t), t > 0.
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Proof. Since the points are uniformly distributed in the unit square, Y1,Y2, . . .

are i.i.d. with density

fY(t) =


2t, if 0 ≤ t <

√
2

2 ,

2
√

2 − 2t, if
√

2
2 ≤ t ≤

√
2,

0, otherwise,

and distribution function

FY(t) =



0, if t < 0,

t2, if 0 ≤ t <
√

2
2 ,

1 − (
√

2 − t)2, if
√

2
2 ≤ t ≤

√
2,

1, if t >
√

2.

It follows that for each t > 0

P
(
n1/2 · Un ≤ t

)
= 1 − P

(
Un > tn−1/2

)
= 1 −

(
1 − FY(tn−1/2)

)n

= 1 −
(
1 −

t2

n

)n
n→∞
−→ 1 − e−t2

= G(t)

and

P
(
n1/2 · (

√
2 − Vn) ≤ t

)
= P

(
Vn ≥

√
2 − tn−1/2

)
= 1 − FY

(√
2 − tn−1/2

)n

= 1 −
(
1 −

t2

n

)n
n→∞
−→ 1 − e−t2

= G(t),

which implies n1/2 · Un
D
−→ WU and n1/2 · (

√
2 − Vn)

D
−→ WV as n → ∞ with

WU , WV i.i.d. with the distribution function G. The result follows from the
asymptotic independence of Un, Vn and the continuous mapping theorem. �

By the convolution formula, the limit distribution function is

G ∗G(t) =

∫ t

0

∫ s

0
2(s − u)e−(s−u)2

2ue−u2
du ds

= 1 −
{

e−t2
+

√
π

2
t e−t2/2 (2Φ(t) − 1)

}
=: 1 − H(t), (6.7)
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where Φ(·) denotes the distribution function of the standard normal law.
We shall now put an upper index in the notations above to denote the number

of diagonals, where we number the diagonal connecting vk and vk+2 by k, k =

1, 2. For instance, Y (1)
i (i = 1, . . . , n) are the distances between the projections

of the points onto the diagonal connecting v1 and v3, M(1)
n denotes the sample

range of Y (1)
i , 1 ≤ i ≤ n. The idea to obtain the limit law of Dn is to approximate

Dn by the maximum of M(1)
n and M(2)

n . Then, the main result of this section is
stated as follows:

Theorem 6.4. Let X1, X2, . . . be independent and uniformly distributed points
in the unit square [0, 1]2. We then have

n1/2 ·
(√

2 − Dn

) D
−→ min

{
W (1)

U + W (1)
V , W (2)

U + W (2)
V

}
as n → ∞, where W (k)

U ,W (k)
V , k = 1, 2, are independent Weibull distributed

random variables with distribution function G(t) = 1 − e−t2
, t > 0.

Note that the limit distribution function is given by

lim
n→∞

P
(
n1/2 ·

(√
2 − Dn

)
≤ t

)
= 1 − (1 −G ∗G(t))2

= 1 − H(t)2

for each t > 0 with H(t) defined in (6.7).

Proof. Set εn := εn(t) := tn−1/2 for t > 0. We now investigate the probability
of an exceedance of Dn over the threshold

√
2 − εn. On one hand, we have

Dn ≥ max{M(1)
n ,M(2)

n }, which implies

P
(
Dn ≥

√
2 − εn

)
≥ P

(
max{M(1)

n ,M(2)
n } ≥

√
2 − εn

)
. (6.8)

On the other hand, we assume that x1 and x2 are the endpoints of Dn which are
closest to two opposite vertices, respectively. We move the diagonal connecting
these vertices parallel to itself till it passes through one of the two endpoints x1

and x2 (see Figure 6.3). Without loss of generality let x1 be the point on the
parallel line. Denote by z2 the orthogonal projection of x2 onto the parallel
line, then the distance between the orthogonal projections of x1 and x2 onto the
diagonal is equal to ‖x1 − z2‖.
Suppose that the inequality ‖x1 − x2‖ ≥

√
2 − εn holds. Note that a necessary

condition for this is ‖x2 − z2‖ ≤
√

2δn ≤ 2εn +
√

2ε2
n. Then, the Pythagorean
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Figure 6.3: Geometric considerations in the proof of Theorem 6.4.

theorem yields for sufficiently large n

‖x1 − z2‖ =
√
‖x1 − x2‖

2 − ‖x2 − z2‖
2

≥

√
(
√

2 − εn)2 − (2εn +
√

2ε2
n)2

≥

√
2 − 2

√
2εn − 4ε2

n

≥
√

2 − εn − 2ε2
n,

where we used a Taylor series expansion of εn around 0 in the last inequality.
Since max{M(1)

n ,M(2)
n } ≥ ‖x1 − z2‖, we obtain

P
(
Dn ≥

√
2 − εn

)
≤ P

(
max{M(1)

n ,M(2)
n } ≥

√
2 − εn − 2ε2

n

)
. (6.9)

It remains to show that the right-hand sides of (6.8) and (6.9) converge to the
same limit as n → ∞. By plugging εn = tn−1/2 into the formula and using
Lemma 6.3 we obtain on one hand

lim
n→∞

P
(
max{M(1)

n ,M(2)
n } ≥

√
2 − εn

)
= lim

n→∞
P
(
n1/2

(√
2 −max{M(1)

n ,M(2)
n }

)
≤ t

)
= lim

n→∞
P
(
min{n1/2(

√
2 − M(1)

n ), n1/2(
√

2 − M(2)
n )} ≤ t

)
= P

(
min{W (1)

U + W (1)
V , W (2)

U + W (2)
V } ≤ t

)
= 1 − P

(
W (1)

U + W (1)
V > t

)2

= 1 − H(t)2,

and on the other hand

lim
n→∞

P
(
max{M(1)

n ,M(2)
n } ≥

√
2 − εn − 2ε2

n

)
= lim

n→∞
P
(
n1/2

(√
2 −max{M(1)

n ,M(2)
n }

)
≤ t + 2t2n−1/2

)
= P

(
min{W (1)

U + W (1)
V , W (2)

U + W (2)
V } ≤ t

)
= 1 − H(t)2.

The theorem has been proved. �
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Figure 6.4 shows a simulation of the EDF of n1/2 · (
√

2 − Dn) with n = 500
points. The limit law is given as the dotted smooth curve. The simulation
corroborates the result of Theorem 6.4.

Figure 6.4: EDF of n1/2 · (
√

2 − Dn), n = 500, and the limit distribution
function 1 − H(t)2.

6.2 Non-uniform points in the unit square

The technique applied in the proof of Theorem 6.4 does not involve the uniform
distribution of the random points. This assumption has been used in the proof
of Lemma 6.3 to obtain the limit law of the sample range of the projections
onto a diagonal. We shall now replace this assumption by a less restrictive one.
Namely, if the sample range of the orthogonal projections of the points onto
each diagonal has a limit law when suitably normalized, we can deduce the
limit law of the largest interpoint distance.

To illustrate the situation, we first briefly discuss the univariate case. Let
X1, X2, . . . be i.i.d. in the interval [0, 1] with distribution function F. Since the
asymptotic behavior of the sample range of the projections depends only on the
local behavior of F at 0 and 1, we assume that F satisfies

F(s) ∼ asα, s ↓ 0,
F(1 − s) ∼ 1 − bsβ, s ↓ 0,
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for some positive constant a, b and α, β. This implies that F behaves like a
power function in the neighborhood of 0 and 1. Put Un := min1≤i≤n Xi, Vn :=
max1≤i≤n Xi and Mn := Vn−Un. Then, n1/α·Un and n1/β·(1−Vn) converge as n→
∞ to Weibull laws W1 and W2 with distribution functions G1(t) = 1−exp (−atα)
and G2(t) = 1 − exp

(
−btβ

)
, respectively. Moreover, the normalized extremes

are asymptotically independent (see e.g. [17], Theorem 2.9.1). If α > β, the
asymptotic behavior of Un dominates that of Vn, i.e., by using Sluzky’s lemma
we have for n→ ∞

n1/α · (1 − Mn) = n1/α · (1 − Vn) + n1/α · Un
D
−→ W1.

Similarly, for α < β we have

n1/β · (1 − Mn) = n1/β · (1 − Vn) + n1/β · Un
D
−→ W2.

More interesting is the case α = β, in which both Un and Vn contribute to Mn

in a non-negligible way. It follow from a result by Galambos [17] (Theorem
2.9.2) that for n→ ∞

n1/α · (1 − Mn) = n1/α · (1 − Vn) + n1/α · Un
D
−→ W1 + W2.

Now, let X1, X2, . . . be i.i.d. random points in the unit square with a density
f : [0, 1]2 → R≥0. Denote by K the support of PX1. Assume that the Lebesgue
measure of [0, 1]2 \ K is zero and for each vertex there is an l ∈ N0 such that
the l-th order (mixed) partial derivatives of f at the vertex are not all equal to
zero. Denote by Y (1)

1 ,Y (1)
2 , . . . the distances from the orthogonal projections of

the points onto the diagonal v1v3 to v1, and by Y (2)
1 ,Y (2)

2 , . . . the distances from
the orthogonal projections of the points onto the diagonal v2v4 to v2. For each
k = 1, 2, the random variables Y (k)

1 ,Y (k)
2 , . . . are i.i.d. in the interval [0,

√
2] with

the distribution function

F(1)
Y (t) :=



√
2t∫

x=0

√
2t−x∫

y=0
f (x, y) dy dx, if 0 ≤ t ≤

√
2

2 ,

1 −
1∫

x=1−
√

2t

1∫
y=2−

√
2t−x

f (x, y) dy dx, if
√

2
2 < t ≤

√
2,

for k = 1 and

F(2)
Y (t) :=



1∫
x=1−

√
2t

x−1+
√

2t∫
y=0

f (x, y) dy dx, if 0 ≤ t ≤
√

2
2 ,

1 −

√
2t∫

x=0

1∫
y=x+1−

√
2t

f (x, y) dy dx, if
√

2
2 < t ≤

√
2,
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for k = 2. Put U(k)
n := min1≤i≤n Y (k)

i and V (k)
n := max1≤i≤n Y (k)

i , k = 1, 2. To study
the asymptotic behavior of U(k)

n and V (k)
n as n → ∞, we need more information

about the behavior of f in the neighborhood of each vertex. For k = 1, 2, define

αk := min
{

l ∈ N0 : ∃r ∈ {0, . . . , l} with
∂l

∂xr∂yl−r f (vk) , 0
}
, (6.10)

βk := min
{

l ∈ N0 : ∃r ∈ {0, . . . , l} with
∂l

∂xr∂yl−r f (vk+2) , 0
}
, (6.11)

where v1 = (0, 0), v2 = (1, 0), v3 = (1, 1), v4 = (0, 1). The Taylor polynomial of
order αk at the point vk = (x0, y0), k = 1, 2, is

f (x, y) =

αk∑
r=0

(x − x0)r(y − y0)αk−r

r!(αk − r)!
·

∂αk

∂xr∂yαk−r f (x0, y0),

so that by integrating we obtain

F(k)
Y (t) ∼ aktαk+2, t ↓ 0, (6.12)

for some constant ak > 0. Similarly, the Taylor polynomial of order βk at
vk+2 = (x0, y0), k = 1, 2, is

f (x, y) =

βk∑
r=0

(x − x0)r(y − y0)βk−r

r!(βk − r)!
·

∂βk

∂xr∂yβk−r f (x0, y0),

then

F(k)
Y (
√

2 − t) ∼ 1 − bktβk+2, t ↓ 0, (6.13)

with bk > 0. For instance, if f (0, 0) > 0, then F(1)
Y (t) ∼ f (0, 0) t2 as t ↓ 0. Using

(6.12) and (6.13), we conclude that

lim
n→∞

P
(
n1/(αk+2) · U(k)

n ≤ t
)

= 1 − lim
n→∞

[
1 − F(k)

Y

(
n−1/(αk+2)t

)]n

= 1 − lim
n→∞

[
1 − aktαk+2n−1

]n

= 1 − exp
(
−aktαk+2

)
=: G(k)

U (t)

and

lim
n→∞

P
(
n1/(βk+2) · (

√
2 − V (k)

n ) ≤ t
)

= 1 − lim
n→∞

[
F(k)

Y

(√
2 − n−1/(βk+2)t

)]n

= 1 − lim
n→∞

[
1 − bktβk+2n−1

]n

= 1 − exp
(
−bktβk+2

)
=: G(k)

V (t)
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exist and are nondegenerate for t > 0, k = 1, 2. then the limit laws of the sample
ranges M(1)

n and M(2)
n can be derived similarly to the univariate case. Namely,

with different values for αk and βk, M(k)
n reduces to one of U(k)

n and V (k)
n in limit,

k = 1, 2, and with αk = β = k, M(k)
n is the convolution of two asymptotically

independent random variables with limit laws G(k)
U and G(k)

V , respectively. The
limit law of Dn is contained in the following theorem.

Theorem 6.5. Let X1, X2, . . . be i.i.d. points in [0, 1]2 with density f and α1, α2,
β1, β2 defined in (6.10) and (6.11), respectively. Denote γ := max{α1, α2, β1, β2}.
We then have as n→ ∞

n1/(γ+2) ·
(√

2 − Dn

) D
−→ min

{
W (1)

U + W (1)
V , W (2)

U + W (2)
V

}
=: Z,

where W (k)
U and W (k)

V , k = 1, 2, are independent random variables and

(a) if αk = γ, then W (k)
U has the distribution function

P
(
W (k)

U ≤ t
)

= 1 − exp
(
−aktαk+2

)
= G(k)

U (t), t > 0,

with some constant ak > 0, else if αk < γ, then W (k)
U = 0 almost surely;

(b) if βk = γ, then W (k)
V has the distribution function

P
(
W (k)

V ≤ t
)

= 1 − exp
(
−bktβk+2

)
= G(k)

V (t), t > 0,

with some constant bk > 0, else if βk < γ, then W (k)
V = 0 almost surely.

In the case α1 = α2 = β1 = β2 = γ, we obtain the distribution function of Z by
a convolution formula, i.e. for t > 0

P (Z ≤ t) = 1 −
(
1 −G(1)

U ∗G(1)
V (t)

)
·
(
1 −G(2)

U ∗G(2)
V (t)

)
.

Proof. Analogous to the proof of Theorem 6.4. �

To illustrate the theorem, we consider several examples.

Example 6.1. Let X1, X2, . . . be i.i.d. random points in [0, 1]2 with the pyramid-
shaped density

f (x, y) :=



6y, if y ∈ [0, 1
2] and x ∈ [y, 1 − y),

6(1 − x), if x ∈ (1
2 , 1] and y ∈ [1 − x, x),

6(1 − y), if y ∈ (1
2 , 1] and x ∈ (1 − y, y],

6x, if x ∈ [0, 1
2) and y ∈ (x, 1 − x]
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Figure 6.5: The density function of the pyramid-shaped point distribution
and a sample with n = 1000 random points.

(see Figure 6.5). By symmetry, we only need to consider the sample range
of the projections onto the diagonal v1v3. For each t ∈ [0,

√
2

2 ], the probability
P
(
Y (1)

1 ≤ t
)

is equal to the volume of the tetrahedron with base area t2 and height
f (t/
√

2, t/
√

2). By straightforward algebra, we obtain for k = 1, 2

F(k)
Y (t) ∼

√
2t3, t ↓ 0.

It follows that for t > 0

lim
n→∞

P
(
n1/3 · U(k)

n ≤ t
)

= 1 − lim
n→∞

[
1 − F(k)

Y

(
n−1/3t

)]n

= 1 − lim
n→∞

1 − √2t3

n

n

= 1 − exp
(
−
√

2t3
)

=: G(t).

By symmetry of F(k)
Y , n1/3 · (

√
2 − V (k)

n ) converges to the same limit. Hence, the
limit law follows from Theorem 6.5:

n1/3 ·
(√

2 − Dn

) D
−→ min

{
W (1)

U + W (1)
V , W (2)

U + W (2)
V

}
=: Z

where W (k)
U and W (k)

V , k = 1, 2, are i.i.d. Weibull random variables with the
distribution function

G(t) = 1 − exp
(
−
√

2t3
)
, t > 0.

Figure 6.6 shows the EDF’s of n1/3 · (
√

2 − Dn) with n = 100 (upper curve),
n = 1000 (lower curve) points and the theoretical limit distribution function
(thick smooth curve).
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Figure 6.6: EDF’s of n1/3 ·(
√

2−Dn) with n = 100 (upper curve), n = 1000
(lower curve), and the limit distribution function for the pyramid-shaped
density (thick smooth curve).

Example 6.2. Let X1, X2, . . . be i.i.d. random points in [0, 1]2 with the wedge-
shaped density

f (x, y) := c − (2c − 2) · x, x, y ∈ [0, 1],

for some positive constant c ∈ [1, 2] (see Figure 6.7). Note that the density is not
symmetric with respect to the center of the unit square, but to the line y = 1/2.
Moreover, f (0, y) = c and f (1, y) = 2 − c are the maximum and the minimum
of f , respectively. By some geometric considerations, the distribution function
of Y (1)

i , i = 1, . . . , n, satisfies

F(1)
Y (t) = ct2 −

√
2

3
(2c − 2)t3, 0 ≤ t <

√
2

2
,

F(1)
Y (t) = 1 − (2 − c)(

√
2 − t)2 −

√
2

3
(2c − 2)(

√
2 − t)3,

√
2

2
≤ t ≤

√
2.

Choosing n1/2 as the normalizing factor for U(1)
n , it follows that

lim
n→∞

P
(
n1/2 · U(1)

n ≤ t
)

= 1 − lim
n→∞

[
1 − F(1)

Y

(
n−1/2t

)]n

= 1 − lim
n→∞

[
1 −

ct2

n
+ O

(
n−3/2

)]n

= 1 − exp
(
−ct2

)
=: G1(t)
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Figure 6.7: The density function of the wedge-shaped point distribution
with c = 3/2 and a sample with n = 1000 random points.

for t > 0. To derive the limit law of V (1)
n , we treat the cases c = 2 and c < 2

separately. If c = 2, i.e. if f (1, y) = 0, the squared term in F(1)
Y vanishes for

√
2

2 ≤ t ≤
√

2. We choose n1/3 as the normalizing factor and obtain for t > 0

lim
n→∞

P
(
n1/3 ·

(√
2 − V (1)

n

)
≤ t

)
= 1 − lim

n→∞

[
F(1)

Y

(√
2 − n−1/3t

)]n

= 1 − lim
n→∞

1 − 2
√

2
3
·

t3

n

n

= 1 − exp
−2
√

2
3

t3
 .

Since the asymptotic behavior of V (1)
n dominates that of U(1)

n , the symmetry of
f with respect to y = 1/2 and Theorem 6.5 yield

lim
n→∞

P
(
n1/3 ·

(√
2 − Dn

)
≤ t

)
= 1 − exp

−2
√

2
3

t3
 .

If c < 2, choosing n1/2 as the normalizing factor for V (1)
n yields for t > 0

lim
n→∞

P
(
n1/2 ·

(√
2 − V (1)

n

)
≤ t

)
= 1 − lim

n→∞

[
F(1)

Y

(√
2 − n−1/2t

)]n

= 1 − lim
n→∞

[
1 −

(2 − c)t2

n
+ O

(
n−3/2

)]n

= 1 − exp
(
−(2 − c)t2

)
=: G2(t).

Thus, we have

lim
n→∞

P
(
n1/2 ·

(√
2 − M(1)

n

)
≤ t

)
= G1 ∗G2(t).
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By symmetry of f with respect to y = 1/2, M(2)
n has the same limit law as M(1)

n .
Hence, we have

n1/2 ·
(√

2 − Dn

) D
−→ min

{
W (1)

U + W (1)
V , W (2)

U + W (2)
V

}
=: Z

where the distribution function of Z is

P (Z ≤ t) = 1 − (1 −G1 ∗G2(t))2 , t > 0.

A simulation of the EDF’s of n1/2 · (
√

2 − Dn) with n = 100 (upper curve) and
n = 1000 (lower curve) points can be found in Figure 6.8. Note that c = 1
yields the uniform distribution on [0, 1]2. In this case we have G1(t) = G2(t) =

1 − exp(−t2) and thus the limit law of Theorem 6.4.

Figure 6.8: EDF’s of n1/2 ·(
√

2−Dn) with n = 100 (upper curve), n = 1000
(lower curve) and the limit distribution function for the wedge-shaped den-
sity with c = 3/2 (thick smooth curve).

Example 6.3. Let X1, X2, . . . be i.i.d. random points in [0, 1]2 with the parabo-
loidal-cup-shaped density

f (x, y) := c
(
x −

1
2

)2

+ c
(
y −

1
2

)2

+ 1 −
c
6
, x, y ∈ [0, 1], (6.14)

for some constant c ∈ [0, 6]. Note that the case c = 0 yields the uniform
distribution on [0, 1]2. If c = 6 the curvature is maximal and f vanishes at the
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center of the unit square. A plot of f with c = 6 and an example of a point
sample can be found in Figure 6.9. The density is symmetric with respect to
(1

2 ,
1
2) and attains its maximal value 1 + c/3 at the four vertices. For t ∈ [0,

√
2

2 ]

Figure 6.9: The density (6.14) with c = 6 and a sample with n = 1000
random points.

we obtain the distribution function F(k)
Y , k = 1, 2, by integrating f on the triangle

formed by (
√

2t, 0), (0,
√

2t) and v1. The result is

F(k)
Y (t) =

(
1 +

c
3

)
t2 −

2
√

2
3

ct3 +
2
3

ct4 ∼

(
1 +

c
3

)
t2, t ↓ 0.

By symmetry of f , F(k)
Y is symmetric with respect to

√
2/2. For t ∈ (

√
2

2 ,
√

2]
we thus have for k = 1, 2

F(k)
Y (t) = 1 − F(k)

Y

(√
2 − t

)
.

Choosing n1/2 as the normalizing factor for both of U(k)
n and V (k)

n , k = 1, 2, we
then have for t > 0

lim
n→∞

P
(
n1/2 · U(k)

n ≤ t
)

= 1 − lim
n→∞

[
1 − F(k)

Y

(
n−1/2t

)]n

= 1 − lim
n→∞

[
1 −

(
1 +

c
3

) t2

n

]n

= 1 − exp
(
−

(
1 +

c
3

)
t2
)

=: G(t)

and

lim
n→∞

P
(
n1/2 ·

(√
2 − V (k)

n

)
≤ t

)
= 1 − lim

n→∞

[
F(k)

Y

(√
2 − n−1/2t

)]n
= G(t).
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Consequently, we derive the limit law by Theorem 6.5:

n1/2 ·
(√

2 − Dn

) D
−→ min

{
W (1)

U + W (1)
V , W (2)

U + W (2)
V

}
=: Z

where W (k)
U and W (k)

V , k = 1, 2, are i.i.d. Weibull random variables with the
distribution function

G(t) = 1 − exp
(
− (1 + c/3) t2

)
, t > 0.

Figure 6.10 shows a simulation of the EDF’s of n1/2 · (
√

2 − Dn) with n = 100
(lower curve) and n = 1000 (upper curve) points.

Figure 6.10: EDF’s of n1/2 · (
√

2 − Dn) with n = 100 (lower curve) and
n = 1000 (upper curve) as well as the limit distribution function for the
density (6.14) with c = 6 (thick smooth curve).

Example 6.4. As a last example we discuss the case with a paraboloidal-cap-
shaped density. Let X1, X2, . . . be i.i.d. random points with density

f (x, y) := −c
(
x −

1
2

)2

− c
(
y −

1
2

)2

+ 1 +
c
6
, x, y ∈ [0, 1], (6.15)

for some constant c ∈ [0, 3]. If c = 0, the density is a uniform distribution in
[0, 1]2 and, if c = 3, the curvature is maximal and the density vanishes at the
four vertices (see Figure 6.11). The density is symmetric with respect to the
center of the unit square and attains its minimum 1− c/3 at each of the vertices.
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Figure 6.11: The density function (6.15) with c = 3 and a sample with
n = 1000 random points.

We obtain the distribution function F(k)
Y for t ∈ [0,

√
2

2 ] by integrating f over the
triangle formed by (

√
2t, 0), (0,

√
2t) and v1. Straightforward calculations yield

for k = 1, 2

F(k)
Y (t) =

(
1 −

c
3

)
t2 +

2
√

2
3

ct3 −
2
3

ct4, (6.16)

and by symmetry,

F(k)
Y (t) = 1 − F(k)

Y

(√
2 − t

)
, t ∈

 √2
2
,
√

2
 .

Notice that the squared term in (6.16) vanishes for the case c = 3, which re-
quires a different choice of the normalizing factor for U(k)

n and V (k)
n , k = 1, 2.

For c ∈ [0, 3) we choose n1/2 as the normalizing factor for both of the ex-
tremes. Then, for each t > 0

lim
n→∞

P
(
n1/2 · U(k)

n ≤ t
)

= lim
n→∞

P
(
n1/2 ·

(√
2 − V (k)

n

)
≤ t

)
= 1 − lim

n→∞

[
1 − F(1)

y

(
n−1/2t

)]n

= 1 − lim
n→∞

[
1 −

(
1 −

c
3

) t2

n
+ O

(
n−3/2

)]n

= 1 − exp
(
−

(
1 −

c
3

)
t2
)

=: G(t).

Applying Theorem 6.5 we get the limit law of Dn as follows:

n1/2 ·
(√

2 − Dn

) D
−→ min

{
W (1)

U + W (1)
V , W (2)

U + W (2)
V

}
,
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where W (k)
U and W (k)

V , k = 1, 2, are i.i.d. Weibull random variables with the
distribution function

G(t) = 1 − exp
(
− (1 − c/3) t2

)
, t > 0.

Figure 6.12 shows that the approximation of limit law by the EDF becomes

Figure 6.12: EDF’s of n1/2 · (
√

2 − Dn) for n = 200 (upper curve), n =

1000 (middle curve) and n = 5000 (lower curve) together with the limit
distribution function (thick smooth curve) for the density (6.15), c = 1.

better with increasing n.
Now, for c = 3 we choose n1/3 as the normalizing factor. For t > 0 it follows

that

lim
n→∞

P
(
n1/3 · U(k)

n ≤ t
)

= lim
n→∞

P
(
n1/3 ·

(√
−V (k)

n

)
≤ t

)
= 1 − lim

n→∞

[
1 − F(k)

y

(
n−1/3t

)]n

= 1 − lim
n→∞

[
1 −

(
2
√

2c
) t3

n
+ O

(
n−2

)]n

= 1 − exp
(
−

(
2
√

2c
)

t3
)

=: G̃(t).

Theorem 6.5 yields the limit law

n1/3 ·
(√

2 − Dn

) D
−→ min

{
W̃ (1)

U + W̃ (1)
V , W̃ (2)

U + W̃ (2)
V

}
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where W̃ (k)
U and W̃ (k)

V , k = 1, 2, are i.i.d. Weibull random variables with the
distribution function

G̃(t) = 1 − exp
(
−2
√

2ct3
)
, t > 0.

Figure 6.13 illustrates an approximation of the limit law by the EDF of n−1/3 ·

Figure 6.13: EDF of n1/3 · (
√

2 − Dn), n = 1000, and the limit distribution
function (thick smooth curve) for the density (6.15) with c = 3.

(
√

2 − Dn), n = 1000, for the paraboloidal-cap-shaped distribution with c = 3.
We now discuss the influence of the parameter c on the speed of conver-

gence. In Figure 6.14 there is a comparison of simulations with c = 0, 1, 2 and
3 and n = 1000 points, respectively. As mentioned, for c = 0 the distribution
is uniform, and the limit law agrees with that given in Theorem 6.4, with the
convergence rate n1/2. For c ∈ (0, 3) the density is strictly positive on the unit
square and the convergence rate is n1/2. We note that the speed of convergence
seems to decrease with growing c. For c = 3 the density vanishes at the four
vertices of the unit square, and the rate of convergence is n1/3. We see that the
EDF with n = 1000 points resembles the limit law very closely.

6.3 Generalizations: The unit d-cube

In this section, let X1, X2, . . . be uniformly distributed points in the unit hyper-
cube [0, 1]d, d ≥ 2. Such unit hypercube has 2d vertices with coordinates equal
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Figure 6.14: EDF’s (n = 1000) and limit distribution functions (thick
smooth curves) of Dn for the density (6.15) with c = 3, c = 0, c = 1 and
c = 2 (from above to below).

to 0 or 1 and 2d−1d edges with length 1. There are 2d−1 space diagonals with
the maximal length of

√
d, to which Dn converges almost surely. The key part

to derive the limit law of Dn is to determine the limit law of the sample range
of the orthogonal projections of X1, . . . , Xn onto a space diagonal.

Generalizing Theorem 6.4, we shall prove the following result.

Theorem 6.6. Let X1, X2, . . . be independent and uniformly distributed in the
unit hypercube [0, 1]d, d ≥ 2. We then have

n1/d ·
(√

d − Dn

) D
−→ min

1≤k≤2d−1

{
W (k)

U + W (k)
V

}
=: Z

as n → ∞, where W (k)
U , W (k)

V , k = 1, . . . , 2d−1, are independent Weibull dis-
tributed random variables with distribution function

G(t) = 1 − exp
(
−

dd/2

d!
td
)
, t > 0.

Moreover, the limit distribution function is

P (Z ≤ t) = 1 −
{
1 −G ∗G(t)

}2d−1
.

Proof. We consider the space diagonal connecting (0, . . . , 0)T and (1, . . . , 1)T .
Let Y1,Y2, . . . denote the distances between the orthogonal projections of the
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points onto this diagonal and the vertex (0, . . . , 0)T . Note that Y1,Y2, . . . are
i.i.d. and take values in the interval [0,

√
d]. We derive the distribution func-

tion of Y1 by some geometric considerations. Choose a t > 0 sufficiently
small and consider a (d − 1)-dimensional hyperplane orthogonal to the diag-
onal and having a distance t from the vertex (0, . . . , 0)T . (The chosen t is so
small that the orthogonal hyperplane intersects only the edges of the hypercube
with (0, . . . , 0)T as one of the endpoints.) This hyperplane cuts off a corner from
the hypercube. The cut-off part is a d-dimensional simplex formed by the ver-
tex v1 := (0, . . . , 0)T and the d intersection points w1, . . . ,wd of the hyperplane
and the edges. We first determine the common distance s between v1 and wi,
i = 1, . . . , d. This simplex can be regarded as a pyramid with apex v1 and base
formed by w1, . . . ,wd. Since all adjacent edges at v1 are pairwise orthogonal,
the base is a (d − 1)-dimensional regular simplex with edge length

√
2s. More-

over, the circumradius of the base is r =
√

s2 − t2. It is well-known that d2r2 is
greater than or equal to the sum of squared lengths of the edges (see e.g. [9])
and, equality holds if and only if the simplex is regular. We then have

d2(s2 − t2) =

(
d
2

) (√
2s

)2
= d(d − 1)s2

and hence s =
√

dt. Thus, w j is the vector with the j-th coordinate equal to
√

dt
and other coordinates equal to 0, j = 1, . . . , d. Since the points are uniformly
distributed, the volume of the simplex is the probability P (Y1 ≤ t). The well-
known formula yields

P (Y1 ≤ t) =
1
d!

det (w1 − v1, . . . ,wd − v1)

=
1
d!
·
(√

dt
)d

=
dd/2

d!
td.

Putting Un := min1≤i≤n Yi and Vn := max1≤i≤n Yi, we have for each t > 0

lim
n→∞

P
(
n1/d · Un ≤ t

)
= lim

n→∞

[
1 − P

(
Un > n−1/dt

)]
= lim

n→∞

[
1 −

(
1 −

dd/2

d!
·

td

n

)n]
= 1 − exp

(
−

dd/2

d!
td
)

= G(t),

and, by symmetry, we obtain similarly

lim
n→∞

P
(
n1/d ·

(√
d − Vn

)
≤ t

)
= G(t), t > 0.
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Hence, the sample range Mn of Y1, . . . ,Yn has the following asymptotic distri-
bution:

lim
n→∞

P
(
n1/d ·

(√
d − Mn

)
≤ t

)
= G ∗G(t), t > 0.

The rest of the proof is analogous to the proof of Theorem 6.4. �

The next result is given to exemplify the theorem above.

Corollary 6.7. Let X1, X2, . . . be independent and uniformly distributed points
in the unit cube [0, 1]3. We then have

n1/3 ·
(√

3 − Dn

) D
−→ min

k=1,2,3,4

{
W (k)

U + W (k)
V

}
=: Z

as n → ∞, where W (k)
U , W (k)

V , k = 1, 2, 3, 4, are independent Weibull distributed

with distribution function G(t) = 1 − exp
(
−
√

3
2 t3

)
, t > 0. More precisely, the

limit distribution function is

P (Z ≤ t) = 1 −

1
2

exp
− √3

2
t3
 +

33/4
√

2π
72

t−3/2
(
9t3 + 4

√
3
)

· exp
− √3

8
t3
 [2Φ

(
33/4

2
t3/2

)
− 1

]
4

,

t > 0, where Φ(·) is the distribution function of the standard normal distribu-
tion.

Figure 6.15 shows an approximation of the limit law in Corollary 6.7 by the
EDF of n1/3 · (

√
3 − Dn), n = 500.

6.4 Generalizations: Polygons and ellipse

In this section, we shall turn back to the 2-dimensional situation. We note
that there are three crucial points in our method. The first one is that the sup-
port of the point distribution has finitely many major axes with disjoint sets of
endpoints, that ensures the independence of the sample ranges of the orthogo-
nal projections onto each axis. Secondly, the point distribution has a smooth
density, so that the maximum and the minimum of the distances between the
orthogonal projections onto an axis and one of the endpoints converge weakly
to nondegenerate distributions, respectively. The last crucial point is that Dn is
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Figure 6.15: EDF of n1/3 · (
√

3 − Dn), n = 500, and the limit distribution
function (dotted smooth curve), d = 3.

asymptotically equal to the maximum of all sample ranges of the projections
onto the axes. In the following, we shall get rid of the restriction of the unit
square.

We consider a regular convex polygon with 2m sides, m ∈ N, which has
unit area, interior angle β = π − π/m and m major diagonals with length
s = 2/

√
m sin(π/m). For a uniform point sample in such support, we have

the following result:

Theorem 6.8. Let X1, X2 . . . be independent and uniformly distributed points
inside the regular convex polygon with 2m sides, m ∈ N, and unit area. We
then have

n1/2 ·

(
2

√
m sin(π/m)

− Dn

)
D
−→ min

1≤k≤m

{
W (k)

U + W (k)
V

}
as n → ∞, where W (k)

U , W (k)
V , k = 1, . . . ,m, are independent Weibull distributed

random variables with distribution function G(t) = 1 − exp
(
−t2 cot π

2m

)
, t > 0.

Proof. By adopting the notations in Section 6.1, we have

F(k)
Y (t) ∼ tan

β

2
· t2 = cot

π

2m
· t2, t ↓ 0.
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It follows that for each t > 0

lim
n→∞

P
(
n1/2 · U(k)

n ≤ t
)

= 1 − lim
n→∞

(
1 − F(k)

Y (tn−1/2)
)n

= 1 − lim
n→∞

(
1 − cot

π

2m
· t2n−1

)n

= 1 − exp
(
− cot

π

2m
· t2

)
=: G(t).

Similarly, n1/2 · (s− V (k)
n ) converges to the same Weibull law as n→ ∞. Hence,

n1/2 ·
(
s − M(k)

n

) D
−→ W (k)

U + W (k)
V

as n → ∞ for k = 1, . . . ,m, where W (k)
U and W (k)

V are i.i.d. with the distribution
function G. Now, we set εn = tn−1/2 and prove that Dn and max1≤k≤m M(k)

n

have the same asymptotic behavior as n → ∞. Since Dn ≥ max1≤k≤m M(k)
n , one

direction is trivial. For the other direction, suppose without loss of generality
that Dn = ‖x1 − x2‖ ≥ s − εn holds. By the same geometric considerations as in
the proof of Theorem 6.4, we obtain

max
1≤k≤m

M(k)
n ≥ ‖x1 − z2‖ =

√
‖x1 − x2‖

2 − ‖x2 − z2‖
2,

where z2 denotes the orthogonal projection of x2 onto the line parallel to the
diagonal and passing through x1 (see Figure 6.3). Since ‖x2 − z2‖ ≤ cot(π/2m) ·
εn + C1ε

2
n for some C1 > 0 and sufficiently large n, a Taylor series expansion of

εn at 0 yields

max
1≤k≤m

M(k)
n ≥

√
(s − εn)2 − (cot(π/2m) · εn + C1ε2

n)2

≥ s − εn −C2ε
2
n,

where C2 > 0 is some constant. Consequently, we have

P (Dn ≥ s − εn) ≤ P
(

max
1≤k≤m

M(k)
n ≥ s − εn −C2ε

2
n

)
= P

(
n1/2

(
s − max

1≤k≤m
M(k)

n

)
≤ t + C2t2n−1/2

)
−→ P

(
min

1≤k≤m

{
W (k)

U + W (k)
V

}
≤ t

)
as n→ ∞. This completes the proof. �

For m = 3 the support of the uniform distribution is a regular hexagon with

unit area. The length of the major diagonals is s = 2/
√

3
√

3/2. Figure 6.16
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Figure 6.16: EDF of n1/2 · (2/
√

3
√

3/2 − Dn) with n = 1000 and the limit
distribution function for the largest distance in a regular hexagon (thick
smooth curve).

shows an approximation of the limit law given in Theorem 6.8 by the EDF of
n1/2 · (s − Dn), n = 1000.

Appel, Najim and Russo used in [4] a different method to approximate Dn

and gave the same result for the asymptotic behavior of Dn in a regular convex
polygon. They also provided some lower and upper bounds for the limit law
of Dn in an ellipse with unit area. We shall derive in the following an sharper
lower bound on the limit distribution function of suitable normalized Dn.

Theorem 6.9. Let X1, X2, . . . be independent and uniformly distributed points
in the ellipse with major half axis a > 1/

√
π and unit area. We then have for

each t > 0

lim inf
n→∞

P
(
n2/3 · (2a − Dn) ≤ t

)
≥ G ∗G(t),

where G ∗G is the convolution of G(t) = 1 − exp
(
−4
√

2
3π a−3/2t3/2

)
with itself.

Proof. Since the ellipse has unit area, the minor half axis is b = 1/(πa) < a.
Because of translation invariance we take without loss of generality

(x − a)2

a2 +
y2

b2 = 1, (x, y) ∈ R2,
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as the boundary function of the ellipse, which implies that (0, 0) and (2a, 0) are
the endpoints of the major axis and y = ± 1

πa2

√
2ax − x2 for each (x, y) on the

boundary. Adopt the notations of Section 6.1. Since the points are uniformly
distributed, we obtain by integrating the boundary function

FY(t) =
1
2
−

1
π

[a − t
a2

√
2at − t2 + arcsin

(
1 −

t
a

)]
for each t ∈ (0, 2a). It follows from a Taylor series expansion of FY around 0
that for each t > 0

lim
n→∞

P
(
n2/3 · Un ≤ t

)
= 1 − lim

n→∞
P
(
Un > tn−2/3

)
= 1 − lim

n→∞

(
1 − FY(tn−2/3)

)n

= 1 − lim
n→∞

1
2

+
1
π

π2 − 4
√

2
3

a−3/2t3/2n−1
n

= 1 − exp
−4
√

2
3π

a−3/2t3/2
 =: G(t).

By symmetry, n2/3 ·(2a−Vn) converges to the same limit law as n→ ∞. Finally,
since Dn ≥ Mn = Vn−Un, we obtain the lower bound given in Theorem 6.9. �

Figure 6.17 shows simulation results of the EDF’s of n2/3 · (2a − Dn) with
a = 0.6, a = 0.8, a = 1 and a = 2, and the bounds for the limit distribution
function given in Theorem 6.9. In addition, the EDF’s and the lower bounds lie
between the lower and upper bounds by Appel, Najim and Russo [4], i.e., they
stated that for t > 0

P

(
W1 + W2 ≤

t
1 + γ

)
≤ lim inf

n→∞
P
(
n2/3 · (2a − Dn) ≤ t

)
≤ lim sup

n→∞
P
(
n2/3 · (2a − Dn) ≤ t

)
≤ P (W1 + W2 ≤ t) ,

where γ = 1/(π2a4 − 1) and W1, W2 are i.i.d. with the distribution function
1 − exp(−ct3/2) with c = 2

3(2π2a4 − 1)
√

2a
(π2a4−1)3 . For small a, the upper and

lower bounds differ considerably, and they become closer with growing a.
Turning back to the last crucial point stated at the beginning of this sec-

tion, we note that Dn and the maximum of the sample ranges have the same
asymptotic behavior, if the boundary function of the bounded support has a
sub-
√

x decay at the endpoints of the major axes. We state this requirement
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Figure 6.17: The thick curve in each image is the EDF of n2/3 · (2a − Dn),
n = 20000, for different a. The smooth curves in each image are, from
above to below, the upper bound given in [4], the lower bound given in
Theorem 6.9 and the lower bound given in [4] for the limit distribution
function.

more precisely by considering one of the major axes. Let s > 0 denote the
length of the major axis, and its endpoints are (0, 0) and (s, 0). If the bound-
ary function of the support is described by h1(x) and h2(x) with h1 ≥ h2 on
[0, s] and h1(0) = h2(0) = h1(s) = h2(s) = 0, then they satisfy h1(x)/

√
x → 0,

h2(x)/
√

x → 0 as x → 0 and h1(x)/
√

s − x → 0, h2(x)/
√

s − x → 0 as x → s.
These conditions on the boundary function hold for the regular convex poly-
gons. However, for the ellipses the boundary has a

√
x decay, so that we derive

only a lower bound of the limit law of Dn.



Chapter 7

Open problems and conjectures

At the end of this thesis, we want to highlight some open questions related to
limit laws of extremes, and give some suggestions for further research.

7.1 Spherically symmetric distributions with unbounded
support

In this thesis, the distribution of X1 was assumed to have bounded support. If
the support of PX1 is unbounded, the largest interpoint distance Dn converges
almost surely to infinity as the sample size increases. What is the possible limit
law of Dn, when suitably rescaled, in this case?

To be more specific, suppose that PX1 is spherically symmetric. Let Xi =

RiUi, i = 1, 2, . . ., be i.i.d. random points with independent radial component Ri

and directional component Ui, where Ri has distribution function F with

sup{t > 0 : F(t) < 1} = ∞,

and Ui has the uniform distribution on Sd−1. If X1 has a standard d-variate
normal distribution, the limit law of Dn is a Gumbel distribution (see Matthews
and Rukhin [30]). This result was generalized by Henze and Klein [23] to the
case of the (short-tailed) spherically symmetric Kotz type distribution.

Henze and Lao [24] obtained the limit law of Dn, if F belongs to the maxi-
mum domain of attraction of the Fréchet distribution, i.e.,

1 − F(s) = s−α · L(s), s > 0,

for some constant α > 0 and some slowly varying function L. Since the right
tail of F is regularly varying with index −α, the technique used in [30] and [23]
is not applicable. By using point process techniques, the limit law of Dn, when
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rescaled by 1/ inf{t ∈ R : F(t) ≥ 1 − 1/n}, can be given as the supremum of
distances between points of a certain Poisson process.

For other cases of spherically symmetric point distributions with unbounded
support, the limit behavior of Dn is still unknown.

7.2 Radial distributions of exponential type

In the situation of Section 3.5 with a radial distribution of exponential type, we
detected an interesting phenomenon. We found a threshold 2 − εn, so that the
expected number of exceedances ‖Xi − X j‖ > 2 − εn is stabilized, i.e. condition
(3.1) is satisfied. But the variance of the random number tends to infinity as
n → ∞, i.e. condition (3.2) fails, so that the Poisson approximation theorem
is not applicable. Moreover, it has been proved that this number converges to
zero in probability. However, an honest limit law of Dn under this setting is still
unknown.

7.3 Largest area of triangles formed by points in a circle

Suppose that, under the setting of Chapter 4, the points are uniformly dis-
tributed inside the unit circle. By some geometric considerations and tedious
calculations, we deduce that

1 − e−t4/c1 ≤ lim inf
n→∞

P

n3/4
3
√

3
4
− An

 ≤ t


≤ lim sup
n→∞

P

n3/4
3
√

3
4
− An

 ≤ t
 ≤ 1 − e−t4/c2

with c1 = 108π2 and c2 = 81
256π

2. We conjecture that n3/4
(
3
√

3/4 − An

)
has a

nondegenerate Weibull limit distribution.

7.4 Largest distance between points in an ellipse

In Section 6.4 we gave a lower bound for the limit law of Dn, when the points
are uniform inside an ellipse. The limit distribution of the maximum interpoint
distance for points distributed uniformly in a (proper) ellipse is still unknown.



Appendix A

Proofs of Lemma 3.2 and 3.3 and some
convergence theorems

Proof of Lemma 3.2. Since ψ1(s) ∼ ψ2(s) as s ↓ 0, it follows that for each δ > 0
there is some s0 > 0 such that ∣∣∣∣∣ψ1(s)

ψ2(s)
− 1

∣∣∣∣∣ ≤ δ
and thus

(1 − δ) · ψ2(s) ≤ ψ1(s) ≤ (1 + δ) · ψ2(s)

for all s ∈ [0, s0]. For each s ∈ [0, s0] and t ∈ [0, s] we therefore have

(1 − δ) · ψ2(t) · h(s, t) ≤ ψ1(t) · h(s, t) ≤ (1 + δ) · ψ2(t) · h(s, t),

and since s − t ∈ [0, s0] we also have

(1 − δ) · ψ2(s − t) · h(s, t) ≤ ψ1(s − t) · h(s, t) ≤ (1 + δ) · ψ2(s − t) · h(s, t).

By integrating we get

(1 − δ)
∫ s

0
ψ2(t) · h(s, t) dt ≤

∫ s

0
ψ1(t) · h(s, t) dt

≤ (1 + δ)
∫ s

0
ψ2(t) · h(s, t) dt

and

(1 − δ)
∫ s

0
ψ2(s − t) · h(s, t) dt ≤

∫ s

0
ψ1(s − t) · h(s, t) dt

≤ (1 + δ)
∫ s

0
ψ2(s − t) · h(s, t) dt

for all s ∈ [0, s0], and (a) and (b) follow immediately. �
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Proof of Lemma 3.3. (a) follows immediately from Lemma 3.2. To prove (b),
note that by Fubini’s theorem, we have

F ∗ F(s) =

∫ s

0
F(s − x) dF(x) =

∫ s

0
F(s − x)F′(x) dx, s ≥ 0.

Since F′(s) ∼ Ψ′(s) and F(s) ∼ Ψ(s) as s ↓ 0, for each δ > 0 there is some
s0 > 0 such that ∣∣∣∣∣F(s − x)F′(x)

Ψ(s − x)Ψ′(x)
− 1

∣∣∣∣∣ ≤ δ
for each s ∈ (0, s0) and each x ∈ (0, s), whence

(1 − δ)Ψ(s − x)Ψ′(x) ≤ F(s − x)F′(x) ≤ (1 + δ)Ψ(s − x)Ψ′(x)

for each s ∈ (0, s0) and each x ∈ (0, s). By integrating we get

(1 − δ)
∫ s

0
Ψ(s − x)Ψ′(x) dx ≤

∫ s

0
F(s − x)F′(x) dx

≤ (1 + δ)
∫ s

0
Ψ(s − x)Ψ′(x) dx

for each s ∈ (0, s0), which proves the assertion. �

The following convergence theorems are useful in the proof of Lemma 3.4:

Theorem A.1 (Generalized Lebesgue’s differentiation theorem). Let ν be a
Borel regular measure over Rd such that every bounded subset of Rd has fi-
nite ν measure, and let f be an Rd-valued ν-measurable function such that∫

A | f | dν < ∞ for every bounded ν-measurable subset A ⊂ Rd. Then, for ν-
almost every x ∈ Rd

lim
n→∞

1
ν(Bn)

∫
Bn

f dν = f (x),

where (Bn)n≥1 denotes a sequence of balls centered at x, and the diameter of Bn

tends to 0 as n→ ∞.

We can also replace the balls (Bn) by a family of sets U, which satisfies the
following conditions: Firstly, there is a constant c > 0 such that each set U
from the family is contained in a ball Bn with ν(U) ≥ cν(Bn); secondly, each
x ∈ Rd is contained in arbitrarily small sets from the family. Then, the same
result holds when these sets shrink to x.
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Theorem A.2 (Dominated convergence theorem). Let f1, f2, . . . be a sequence
of real-valued measurable functions on a measure space (Ω,A, µ). Suppose
that fn → f pointwise µ-almost everywhere as n → ∞, and that | fn| ≤ g for all
n, where g is a µ-integrable nonnegative function on Ω. Then f is µ-integrable,
and ∫

f dµ = lim
n→∞

∫
fn dµ.





Appendix B

Hausdorff measure and surface area
measure

B.1 Hausdorff measure

Hausdorff measure is a type of outer measure, which measures some “very
small” subsets of Rn. This brief introduction refers to the book by Evans and
Gariepy [12].

Let (X, d) be a metric space. For any A ⊂ X we define the diameter of A as

diam(A) := sup
x,y∈A

d(x, y), diam(∅) := 0.

Let s ≥ 0 and δ > 0. Define

H s
δ (A) := inf

 ∞∑
i=1

ωs

(
diam(Bi)

2

)s

: A ⊂
∞⋃

i=1

Bi, diam(Bi) ≤ δ

 ,
where the infimum is taken over all countable covers of A by sets Bi ⊂ X, i ∈ N,
satisfying diam(Bi) ≤ δ, and

ωs =
πs/2

Γ
(

s
2 + 1

)
is the volume of the s-dimensional unit ball.

Notice that H s
δ (A) is decreasing in δ, since for δ′ > δ the corresponding

family (B′i)i∈N contains more sets and hence the infimum is smaller. Thus, the
limit limδ→0 H s

δ (A) exists, and the s-dimensional Hausdorff measure of A is
defined as

H s(A) = lim
δ→0

H s
δ (A) = sup

δ>0
H s

δ (A).
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Example B.1. (i) If A ⊂ Rn, then H 0(A) counts the number of points in A,
so it is the so-called counting measure.

(ii) If A is a simple curve in Rn, then H 1(A) is the length of the curve A.

(iii) If A ⊂ R2 measurable, then H 2(A) measures the area of A.

Moreover, the n-dimensional Lebesgue measure and n-dimensional Haus-
dorff measure agree onRn. A detailed proof can be found in Evans and Gariepy
[12], Section 2.2.

B.2 Surface area measure of a spherical cap

For a point u ∈ Sd−1 and a η ≥ 0, let

Cu(η) =
{
v ∈ Sd−1 : ](−u, v) ≤

√
η
}

be the spherical cap centered at −u with the maximal central angle
√
η. One

can obtain the surface area of Cu(η) by integrating in spherical coordinates. It
is very similar to the computation of the surface area of a sphere, which can
be found in many literatures, e.g. Walter [39] (page 253-254) or Amann and
Escher [3] (page 198-201).

Now, we derive step by step the following asymptotic result as η→ 0:

µd−1(Cu(η)) ∼
π

d−1
2

Γ
(

d+1
2

) · (d − 1) ·
∫ √

η

t=0
td−2 dt

=
π

d−1
2

Γ
(

d+1
2

) · η d−1
2 , (B.1)

which is applied in the proof of Lemma 3.4.
By symmetry, we choose −u = (0, 0, . . . , 0, 1) without loss of generality.

Then

Cu(η) =
{
(y1, . . . , yd−1,H(y1, . . . , yd−1)) ∈ Rd : y2

1 + · · · + y2
d−1 ≤ sin2 √η

}
with

H(y1, . . . , yd−1) :=
√

1 − y2
1 − · · · − y2

d−1.
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Thus, the surface area can be derived by the method stated in [39] (§ 8.9). Put
y := (y1, . . . , yd−1) ∈ Rd−1 and A := {y ∈ Rd−1 : ‖y‖ ≤ sin

√
η}. Since

∂H
∂yi

=
−yi√

1 − ‖y‖2

for i = 1, . . . , d − 1, we have

µd−1(Cu(η)) =

∫
A

√
1 +

(
∂H
∂y1

)2

+ · · · +

(
∂H
∂yd−1

)2

dy

=

∫
A

1√
1 − ‖y‖2

dy.

To proceed the computation, we transform the integral to polar coordinates.
Set

y1 = r sin θ1 . . . . . . . . . sin θd−3 sin θd−2,

y2 = r sin θ1 . . . . . . . . . sin θd−3 cos θd−2,

y3 = r sin θ1 . . . sin θd−4 cos θd−3,
...

yd−2 = r sin θ1 cos θ2,

yd−1 = r cos θ1,

where r ≥ 0, 0 ≤ θd−2 ≤ 2π and 0 ≤ θi ≤ π for i = 1, . . . , d − 3. The
transformation yields

µd−1(Cu(η)) =

∫ sin
√
η

r=0

∫ π

θ1=0
. . .

∫ π

θd−3=0

∫ 2π

θd−2=0

1
√

1 − r2

rd−2(sin θ1)d−3(sin θ2)d−4 . . . sin θd−3 dθd−2 . . . dθ1dr,

where the (d − 2)-dimensional integral of the angles θ1, . . . , θd−2 is known as∫ π

θ1=0
. . .

∫ π

θd−3=0

∫ 2π

θd−2=0
(sin θ1)d−3(sin θ2)d−4 . . . sin θd−3 dθd−2 . . . dθ1

=
2π

d−1
2

Γ
(

d−1
2

) =
π

d−1
2

Γ
(

d+1
2

) · (d − 1)

(see e.g. [39] p. 254). Thus, by substituting t = arcsin r, the surface area of
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Cu(η) reduces to

µd−1(Cu(η)) =
π

d−1
2

Γ
(

d+1
2

) · (d − 1) ·
∫ sin

√
η

r=0

rd−2

√
1 − r2

dr

=
π

d−1
2

Γ
(

d+1
2

) · (d − 1) ·
∫ √

η

t=0
(sin t)d−2 dt.

Recall that we observe here the surface area for a very small η. Applying the
Taylor series expansion of sin t at 0, Lemma 3.2 leads to (B.1) as η→ 0.



Appendix C

Regularly varying functions

Nowadays, the theory of regularly varying functions, imported by Feller [14]
into probability theory, plays a crucial role in extreme value theory, especially
for questions about domains of attraction. We state here some useful results for
our concept. Further information can be found e.g. in Embrechts et al. [11] or
Resnick [36].

Definition C.1. (a) A positive measurable function h on (0,∞) is said to be
regularly varying at 0 of index α ∈ R (we write h ∈ Rα) if

lim
s↓0

h(st)
h(s)

= tα, t > 0.

(b) A positive measurable function L on (0,∞) is said to be slowly varying at
0 (we write L ∈ R0) if

lim
s↓0

L(st)
L(s)

= 1, t > 0.

(c) A positive measurable function h on (0,∞) is said to be rapidly varying
with index∞ (we write h ∈ R∞) if

lim
s↓0

h(st)
h(s)

=

{
0, if 0 < t < 1,
∞, if t > 1.

If h ∈ Rα then h(t)/tα ∈ R0, so a α-varying function is always representable
as tαL(t). Note that the convergences above are uniform on each compact subset
of (0,∞). Moreover, we can represent a regularly varying function h ∈ Rα for
some α ∈ R as follows:

h(x) = c(x) exp
(∫ x

z

δ(u)
u

du
)
, x ≥ z,
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for some z > 0, where c(·) and δ(·) are measurable functions with c(x) → c0 ∈

(0,∞) and δ(x)→ α as x→ 0. This representation is often applicable.
The following theorem, which can be found in [11] (Theorem A.3.7), gives

the asymptotic behavior of the differentiation of regularly varying functions.

Theorem C.1 (Monotone density theorem). Let

F(x) =

∫ x

0
f (y) dy

(
or

∫ ∞

x
f (y) dy

)
,

where f is monotone on (z,∞) for some z > 0. If

F(x) ∼ cxαL(x), x→ 0,

with c ≥ 0, α ∈ R and L ∈ R0, then

f (x) ∼ cαxα−1L(x), x→ 0.



Appendix D

The computation of the limit laws in
Chapter 5

D.1 The limit law in Section 5.1

Let E(1)
1 , E(2)

m , E(1)
m+1, E

(2)
2m be i.i.d. random variables with distribution function

F(t) := 1 − exp
(
−2t

a

)
and density f (t) := 2

a exp
(
−2t

a

)
for t ≥ 0, where a is a

positive constant. Define

E := min
{
E(1)

1 + E(2)
m , E(1)

1 + E(1)
m+1, E(1)

m+1 + E(2)
2m, E(2)

m + E(2)
2m

}
.

In the following we derive the distribution function of E. For each t ≥ 0 we
have

P (E > t)

= P
(
E(1)

1 + E(2)
m > t, E(1)

1 + E(1)
m+1 > t, E(1)

m+1 + E(2)
2m > t, E(2)

m + E(2)
2m > t

)
=

∞∫
u=0

∞∫
v=0

P
(
u + E(2)

m > t, u + E(1)
m+1 > t, v + E(1)

m+1 > t, v + E(2)
m > t

)
dPE(2)

2m(v) dPE(1)
1 (u)

=

∞∫
u=0

∞∫
v=0

P
(
E(2)

m > t − u, E(2)
m > t − v

)2
· f (v) dv · f (u) du. (D.1)

We compute the double integral by splitting up the region of integration into
four disjoint cases as follows:

1.) 0 ≤ u ≤ t and 0 ≤ v ≤ u:
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∫ t

u=0

∫ u

v=0
P
(
E(2)

m > t − u, E(2)
m > t − v

)2
· f (v) dv · f (u) du

=

∫ t

u=0

∫ u

v=0
P (E3 > t − v)2 · f (v) dv · f (u) du

=

∫ t

u=0

∫ u

v=0
e−

4
a (t−v) ·

2
a

e−
2v
a dv ·

2
a

e−
2u
a du

= e−
4t
a

∫ t

u=0

(
2
a
−

2
a

e−
2u
a

)
du

=
2t
a

e−
4t
a + e−

6t
a − e−

4t
a ,

2.) 0 ≤ u ≤ t and u ≤ v ≤ ∞:∫ t

u=0

∫ ∞

v=u
P
(
E(2)

m > t − u, E(2)
m > t − v

)2
f (v) dv · f (u) du

=

∫ t

u=0

∫ ∞

v=u
P
(
E(2)

m > t − u
)2
· f (v) dv · f (u) du

=

∫ t

u=0

∫ ∞

v=u
e−

4
a (t−u) ·

2
a

e−
2v
a dv ·

2
a

e−
2u
a du

= e−
4t
a

∫ t

u=0

2
a

du

=
2t
a

e−
4t
a ,

3.) t ≤ u ≤ ∞ and 0 ≤ v ≤ t:∫ ∞

u=t

∫ t

v=0
P
(
E(2)

m > t − u, E(2)
m > t − v

)2
· f (v) dv · f (u) du

=

∫ ∞

u=t

∫ t

v=0
P
(
E(2)

m > t − v
)2
· f (v) dv · f (u) du

=

∫ ∞

u=t

∫ t

v=0
e−

4
a (t−v) ·

2
a

e−
2v
a dv ·

2
a

e−
2u
a du

= e−
4t
a

(
e

2t
a − 1

) ∫ ∞

u=t

2
a

e−
2u
a du

= e−
4t
a − e−

6t
a ,

4.) t ≤ u ≤ ∞ and t ≤ v ≤ ∞:
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∫ ∞

u=t

∫ ∞

v=t
P
(
E(2)

m > t − u, E(2)
m > t − v

)2
· f (v) dv · f (u) du

=

∫ ∞

u=t

∫ ∞

v=t
P
(
E(2)

m > 0
)2
· f (v) dv · f (u) du

=

∫ ∞

u=t

∫ ∞

v=t

2
a

e−
2v
a dv ·

2
a

e−
2u
a du

= e−
2t
a

∫ ∞

u=t

2
a

e−
2u
a du

= e−
4t
a .

Plugging these four parts of double integrals into (D.1), we obtain

P (E ≤ t) = 1 − P (E > t) = 1 −
(
4t
a

+ 1
)
· e−

4t
a .

D.2 The limit law in Section 5.2

Let E1, . . . , E6 be independent and Exp(2/
√

3)-distributed random variables

with distribution function F(t) = 1−exp
(
− 2
√

3
t
)

and density f (t) = 2
√

3
· exp

(
− 2
√

3
t
)

for t ≥ 0. The limit law E is presented as the minimum given in (5.11), whence
for t ≥ 0

P (E > t) = P
(
E1 + E2 > t, E1 + 1

2 E3 > t, 1
2 E1 + 1

2 E4 > t, 1
2 E1 + E5 > t,

1
2 E2 + E4 > t, 1

2 E2 + 1
2 E5 > t, E2 + 1

2 E6 > t, E3 + E4 > t,

E3 + 1
2 E5 > t, 1

2 E3 + 1
2 E6 > t, 1

2 E4 + E6 > t, E5 + E6 > t
)
.

We define the following events:

A1 = {E1 + E2 > t, E1 + 1
2 E3 > t, 1

2 E1 + 1
2 E4 > t, 1

2 E1 + E5 > t},

A2 = {12 E2 + E4 > t, 1
2 E2 + 1

2 E5 > t, E2 + 1
2 E6 > t},

A3 = {E3 + E4 > t, E3 + 1
2 E5 > t, 1

2 E3 + 1
2 E6 > t},

A4 = {12 E4 + E6 > t},

A5 = {E5 + E6 > t}.

By conditioning on E1 = z with z > 0, we can split the probability P (E > t)
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into three parts P (E > t) = I1 + I2 + I3, where

I1 =

t∫
z=0

P
(
{E2 > t − z, E3 > 2t − 2z, E4 > 2t − z, E5 > t − z

2}

∩A2 ∩ A3 ∩ A4 ∩ A5
)
f (z) dz,

I2 =

2t∫
z=t

P
(
{E4 > 2t − z, E5 > t − z

2} ∩ A2 ∩ A3 ∩ A4 ∩ A5

)
f (z) dz,

I3 =

∞∫
z=2t

P (A2 ∩ A3 ∩ A4 ∩ A5) f (z) dz.

We can further split each of the three integrals by conditioning on E2 = w for
w > 0. For example, we have I3 = I3,1 + I3,2 + I3,3, where

I3,1 =

∞∫
z=2t

t∫
w=0

P
(
{E4 > t − w

2 , E5 > 2t − w, E6 > 2t − 2w}

∩A3 ∩ A4 ∩ A5
)
f (w) f (z) dw dz,

I3,2 =

∞∫
z=2t

2t∫
w=t

P
(
{E4 > t − w

2 , E5 > 2t − w} ∩ A3 ∩ A4 ∩ A5

)
f (w) f (z) dw dz,

I3,3 =

∞∫
z=2t

∞∫
w=2t

P (A3 ∩ A4 ∩ A5) f (w) f (z) dw dz.

Then, conditioning on E3 = v for v > 0 yields a further splitting for each of I3,1,
I3,2 and I3,3. For example, we have I3,3 = I3,3,1 + I3,3,2 + I3,3,3 with

I3,3,1 =

∞∫
z=2t

∞∫
w=2t

t∫
v=0

P
(
{E4 > t − v, E5 > 2t − 2v, E6 > 2t − v}

∩A4 ∩ A5
)
f (v) f (w) f (z) dv dw dz,

I3,3,2 =

∞∫
z=2t

∞∫
w=2t

2t∫
v=t

P
(
{E6 > 2t − v} ∩ A4 ∩ A5

)
f (v) f (w) f (z) dv dw dz,

I3,3,3 =

∞∫
z=2t

∞∫
w=2t

∞∫
v=2t

P (A4 ∩ A5) f (v) f (w) f (z) dv dw dz.

In the last step, we compute the integrals by conditioning on E6 = u for u > 0.
Firstly, we have
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I3,3,1 =

∞∫
z=2t

∞∫
w=2t

t∫
v=0

∞∫
u=2t−v

P (E4 > t − v, E5 > 2t − 2v) f (u) f (v) f (w) f (z)

du dv dw dz

=

∞∫
z=2t

∞∫
w=2t

t∫
v=0

∞∫
u=2t−v

e−
2(t−v)
√

3 e−
2(2t−2v)
√

3

(
2
√

3

)4
e−

2u
√

3 e−
2v
√

3 e−
2w
√

3 e−
2z
√

3

du dv dw dz

=
1
3

(
e2
√

3t − 1
)

e−6
√

3t.

Secondly, it follows that

I3,3,2 =

∞∫
z=2t

∞∫
w=2t

2t∫
v=t

∞∫
u=2t−v

P (E4 > 2t − 2u, E5 > t − u) f (u) f (v) f (w) f (z)

du dv dw dz

=

∞∫
z=2t

∞∫
w=2t

2t∫
v=t

t∫
u=2t−v

P (E4 > 2t − 2u, E5 > t − u) f (u) f (v) f (w) f (z)

du dv dw dz

+

∞∫
z=2t

∞∫
w=2t

2t∫
v=t

∞∫
u=t

f (u) f (v) f (w) f (z) du dv dw dz

=
4
3

e−4
√

3t +
1
6

e−6
√

3t −
3
2

e−
14
√

3
t
.

Finally, we have

I3,3,3 =

∞∫
z=2t

∞∫
w=2t

∞∫
v=2t

∞∫
u=0

P (E4 > 2t − 2u, E5 > t − u) f (u) f (v) f (w) f (z)

du dv dw dz

=

∞∫
z=2t

∞∫
w=2t

∞∫
v=2t

t∫
u=0

P (E4 > 2t − 2u, E5 > t − u) f (u) f (v) f (w) f (z)

du dv dw dz

+

∞∫
z=2t

∞∫
w=2t

∞∫
v=2t

∞∫
u=t

f (u) f (v) f (w) f (z) du dv dw dz

=
3
2

e−
14
√

3
t
−

1
2

e−6
√

3t.

All the other split integrals are computed by a Maple program. Finally, the
probability P (E > t) can be obtained by summing up all of the integrals, and
the limit distribution function is equal to 1 − P (E > t).
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This work establishes several weak limit laws for problems in 
geometric extreme value theory. We find the limit law of the 
maximum Euclidean distance of independent and identically 
distributed points, as the number of points tends to infini-
ty, under certain assumptions on the underlying distribution. 
For points in a ball, a main tool of proof is a Poisson approxima-
tion theorem. This method is also applicable for some other 
functionals, such as the maximum area or the maximum 
perimeter of triangles formed by point triplets. For points 
distributed inside a cube, inside a polygon or on the edges of a 
polygon, the limit distribution of the largest interpoint distance 
is obtained by classical extreme value theory and some geo-
metric considerations.
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