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Abstract. The convergence analysis of Krylov subspace solvers usu-
ally provides an estimation for the computational cost. Exact knowledge
about the convergence theory of error correction methods using differ-
ent floating point precision formats would enable to determine a priori
whether the implementation of a mixed precision error correction solver
using a certain Krylov subspace method as error correction solver out-
performs the plain solver in high precision.

This paper reveals characteristics of mixed precision error correction
methods using Krylov subspace methods as inner solver.

1 Introduction

In computational science, the acceleration of linear solvers is of high interest.
Currently coprocessor technologies like GPUs offer outstanding single precision
performance. To exploit this computation power without sacrificing the accuracy
of the result which is often needed in double precision, numerical algorithms have
to be designed that use different precision formats.

Especially the idea of using a lower precision than working precision within
the error correction solver of an error correction method has turned out to im-
prove the computational cost of the solving process for many linear problems
without sacrificing the accuracy of the final result [1], [2], [3] and [4]. In many of
these papers, this approach is referred to as ”mixed precision iterative refinement
method”. Although this notation is widespread, we do think that the name ”er-
ror correction solver” emphasizes the error-correcting character of the algorithm.
For this reason, we will use both terms in our paper, but usually the latter one.
Although the free choice of the error correction solver type offers a large variety
of error correction methods, this work is focused on Krylov subspace methods,
since they are used for many problems.



The combination of a given outer stopping criterion for the error correction
method and a chosen inner stopping criterion for the error correction solver has
strong influence on the characteristics of the solver. A small quotient between
outer and inner stopping criterion leads to a high number of inner iterations
performed by the error correction solver and a low number of outer iterations
performed by the error correction method. A large quotient leads to a low number
of inner iterations but a higher number of outer iterations, and therefore to a
higher number of restarts of the inner solver.

To optimize this trade-off, exact knowledge about the characteristics of both
the solver and the linear system is necessary. Still, a theoretical analysis is diffi-
cult, since the convergence analysis of the error correction solver is affected when
using different precision formats within the method.

This paper presents results of numerical analysis concerning error correction
methods based on Krylov subspace solvers. First the general mathematical back-
ground of error correction methods is drafted, then the mixed precision approach
is introduced and analyzed with respect to the theoretical convergence rate. A
conclusion and prospects to future work complete the paper.

2 Mathematical Background

2.1 Error Correction Methods

The motivation for the error correction method can be obtained from Newton’s
method. Here f is a given function and x; is the solution in the i — th step:

Tip1 =z — (Vf ()7 fas). (1)

This method can be applied to the function f(x) = b— Az with V f(z) = A,
where Az = b is the linear system that should be solved.
By defining the residual r; := b — Ax;, one obtains

Tiv1 = — (Vf(2:) 7 f (@)
= Ty + A_l(b — AIZ)
= T + A_lTZ'.
Denoting the solution update with ¢; := A~ !r; and using an initial guess x as

starting value, an iterative algorithm can be defined, where any linear solver can
be used as error correction solver.

1: initial guess as starting vector: xq

2: compute initial residual: ro = b — Axg

3: while (|| Axz; —b|l2> ¢ 70 ||) do

4: r;=b— Ax;

5:  solve error correction equation: Ac; = 7;
6: update solution: x;+1 = z; + ¢;

7: end while

Algorithm 1: Error Correction Method



In each iteration, the inner correction solver searches for a ¢; such that Ac; =
r; and the solution approximation is updated by z;+1 = z; + ¢;.

2.2 Error Correction Solver

Due to the fact that the error correction method makes no demands on the
inner solver, any linear solver can be chosen. Still, especially the Krylov sub-
space methods have turned out to be an adequate choice for many cases. These
provide an approximation of the residual error iteratively in every computation
loop, which can efficiently be used to control the stopping criterion of the error
correction solver.

2.3 Convergence Analysis of Error Correction
Methods

If we denote the residual in the ith step as
T, = b— A:UZ

we can analyze the improvement associated with one iteration loop of the error
correction method.

Applying a solver to the error correction equation Ac; = r; which generates
a solution approximation with a relative residual error of at most €;nner || 7: ||,
we get an error correction term ¢;, fulfilling

T, — ACZ‘ = di,
where d; is the residual of the correction solver with the property
|| dz ”S Einner ” T || .

In the case of using a Krylov subspace method as inner solver, the threshold
Einner || 7 || can be chosen as residual stopping criterion.

Updating the solution z;41 = x; + ¢;, we can obtain the new residual error
term

| rig1 || =1 b— Aziyr ||
= b—Az; +c) ||
= H b — AZCZ —Aci H
—— N~

=r; =d;—r;

— ” dz ||§ Einner |

T ||

Hence, the accuracy improvements obtained by performing one iteration loop
equal the accuracy of the residual stopping criterion of the error correction solver.
Using this fact, we can prove by induction, that after ¢ iteration loops, the
residual r; fulfills

7 1< e | 70 |1 (2)



If we are interested in the number 7 of iterations that is necessary to get the
residual error term r; below a certain threshold

i [[<ellroll
we use the properties of the logarithm and estimate

[rill <ellroll
;nner H 7o ||

1
Einner

2 <elrol

€
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1> —.
log Einner
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Since ¢ has to be an integer, we use the Gaussian ceiling function and obtain

Z.:[ log(e) w 3)

log(ginner )

for the number of outer iterations that is necessary to guarantee an accuracy of
[ril[<ellroll.

3 Mixed Precision Error Correction Solvers

3.1 Mixed Precision Approach

The underlying idea of mixed precision error correction methods is to use dif-
ferent precision formats within the algorithm of the error correction method,
updating the solution approximation in high precision, but computing the error
correction term in lower precision. This approach was also suggested by [1], [2],
[3] and [4].

Using the mixed precision approach to the error correction method, we have
to be aware of the fact that the residual error bound of the error correction solver
may not exceed the accuracy of the lower precision format. Furthermore, each
error correction produced by the inner solver in lower precision cannot exceed the
data range of the lower precision format. This means that the smallest possible
error correction is the smallest number ¢€;,,,, that can be represented in the lower
precision. Thus, the accuracy of the final solution cannot exceed €., either. This
can become a problem when working with very small numbers, because then
the solution correction terms can not be denoted in low precision, but in most
cases, the problem can be avoided by converting the original values to a lower
order of magnitude. If the final accuracy does not exceed the smallest number
that can be represented in the lower precision format, the mixed precision error
correction method gives exactly the same solution approximation as if the solver
was performed in the high precision format.

When comparing the algorithm of an error correction solver using a certain
Krylov subspace solver as error correction solver to the plain solver, we realize,



that the error correction method has more computations to execute due to the
additional residual computation, solution updates and typecasts.

The goal is to analyze in which cases the mixed precision error correction
method outperforms the plain solver in high precision. Obviously this is the
case if the additional operations (denoted with K) are overcompensated by
the cheaper execution of the iterative solver in low precision. Using an explicit
residual computation the computational costs of K is in the magnitude of the
matrix-vector multiplication. In case of an iterative update for the residual, the
complexity is even lower.

3.2 Convergence Analysis of Mixed Precision
Approaches

When discussing the convergence of the error correction methods in section 2.3,
we derived a model for the number of outer iterations that are necessary to
obtain a residual error below a certain residual threshold ¢ || ro ||2. Having a
relative residual stopping criterion €;,p- of the Krylov subspace solver used as
error correction solver, we need to perform (3)

iterations to obtain an approximation x; which fulfills
[ 7i ll=]lb— Aw; [l2< € [[ b— Az [l2=¢ || ro [|2 -

If we use the error correction technique in mixed precision, we have to mod-
ify this convergence analysis due to the floating point arithmetic. In fact, two
phenomena may occur that require additional outer iterations.

1. Independently of the type of the inner error correction solver, the low pre-
cision format representations of the matrix A and the residual r; contain
representation errors due to the floating point arithmetic. These rounding
errors imply that the error correction solver performs the solving process to a
perturbed system (A+dA)c; = r; +Ir;. Due to this fact, the solution update
c; gives less improvement to the outer solution than expected. Hence, the
convergence analysis of the error correction method has to be modified when
using different precision formats. To compensate the smaller improvements
to the outer solution, we have to perform additional outer iterations.

2. When using a Krylov subspace method as inner correction solver, the resid-
ual is computed iteratively within the solving process. As floating point
formats have limited accuracy, the iteratively computed residuals may differ
from the explicit residuals due to rounding errors. This can lead to an early
breakdown of the error correction solver. As in this case the improvement to
the outer residual error is smaller than expected, the convergence analysis
for error correction methods using Krylov subspace solvers as error correc-
tion solvers has to be modified furthermore. It may happen, that additional
outer iterations are necessary to compensate the early breakdowns of the
error correction solver.



We denote the total number of additional outer iterations, induced by the
rounding errors and the early breakdowns when using Krylov subspace methods
for the inner solver, with g, and obtain

{ loge %g n

lOg Einner

for the total number of outer iterations. It should be mentioned, that in fact
g does not only depend on the type of the error correction solver, but also on
the used floating point formats, the conversion and the properties of the linear
problem including the matrix structure.

In order to be able to compare a mixed precision error correction solver
to a plain high precision solver, we derive a model serving as an upper bound
for the computational cost. We denote the complexity of a Krylov subspace
solver generating a solution approximation with the relative residual error ¢
as Csolver (€). We can obtain this complexity estimation from the convergence
analysis of the Krylov subspace solvers [5]. Using this notation, the complexity
of an error correction method using a correction solver with relative residual
erTor €;nner can be displayed as

Crized(€) =
([%@)1 i g) (Cootoer Eimmer) -5+ K) (5)

log(ginner

where s < 1 denotes the speedup gained by performing computations in the low
precision format (eventually parallel on the low precision device) instead of the
high precision format. We denote the quotient between the mixed precision error
correction approach to a certain solver and the plain solver in high precision with

Cm,i:r}e € 3
[solver = meigtf;’ and obtain

- (| =5 |+ 9) - (Cootver(Einner) - s + K) .

l p—
fso ver Csolve'r (5)

Analyzing this fraction, we can state the following propositions:

1. If fsower < 1, the mixed precision error correction approach to a certain
solver performs faster than the plain precision solver. This superiority of the
mixed precision approach will particularly occur, if the speedup gained by
performing the inner solver in a lower precision format (e.g. on a accelerator)
overcompensates the additional computations, typecasts and the eventually
needed transmissions in the mixed precision error correction method.

2. The inverse —— could be interpreted as speedup factor obtained by the
implementatiosﬁ ‘of the mixed precision refinement method with a certain
error correction solver. Although this notation does not conform with the
classical definition of the speedup concerning the quotient of a sequentially
and a parallelly executed algorithm, we can construe —L— as measure for

fsol'ue'r‘

the acceleration triggered by the use of the mixed precision approach (and
the eventually hybrid system).




3. The iteration loops of Krylov subspace solvers are usually dominated by
a matrix-vector multiplication. Hence, using a Krylov subspace method as
error correction solver, the factor fsoier is independent of the problem size
for large dimension. This can also be observed in numerical experiments (see

[6])-

Exact knowledge of all parameters would enable to determine a priori whether
the mixed precision refinement method using a certain error correction solver
outperforms the plain solver. The computational cost of a Krylov subspace solver
depends on the dimension and the condition number of the linear system [5].

While the problem size can easily be determined, an approximation of the
condition number of a certain linear system can be obtained by performing a
certain number of iterations of the plain Krylov subspace solver, and analyzing
the residual error improvement.

The only factor that poses problems is g, the number of additional outer
iterations necessary to correct the rounding errors generated by the use of a lower
precision format for the inner solver. As long as we do not have an estimation
of g for a certain problem, we are not able to determine a priori, which solver
performs faster.

To resolve this problem, an implementation of an intelligent solver suite could
use the idea to determine a posteriori an approximation of g, and then choose
the optimal solver. To get an a posteriori approximation of g, the solver executes
the first iteration loop of the inner solver and then compares the improvement
of the residual error with the expected improvement. Through the difference, an
estimation for the number of additional outer iterations can be obtained, that
then enables to determine the factor fsoer and choose the optimal version of
the solver.

4 Conclusions and Future Work

This paper shows results of numerical analysis concerning the convergence the-
ory of mixed precision error correction methods. These results contribute to
the possibility to control the usage of different precision formats within a error
correction solver.

A problem still requiring a more satisfactory solution is to determine the ex-
act dependency of the number of additional outer iterations on the characteristics
of the linear system, the solver type, the inner and outer stopping criterion, and
the used floating point precision formats. Further work in this field is necessary
to enable an estimation depending on these parameters.

Technologies like FPGAs and application-specific designed processors offer a
free choice of floating point formats. Controlling the usage of these precision for-
mats within error correction solvers is necessary for optimizing the performance.
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