
GPU Accelerated Scientific Computing:

Evaluation of the NVIDIA Fermi

Architecture; Elementary Kernels and

Linear Solvers

Hartwig Anzt

Tobias Hahn

Vincent Heuveline

Björn Rocker

No. 2010-04

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association www.emcl.kit.edu

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

No. 2010-04

Impressum

Karlsruhe Institute of Technology (KIT)

Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86

76133 Karlsruhe

Germany

KIT – University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.kit.edu

GPU Accelerated Scientific Computing:

Evaluation of the NVIDIA Fermi Architecture;

Elementary Kernels and Linear Solvers

Hartwig Anzt, Tobias Hahn, Vincent Heuveline, Björn Rocker

Karlsruhe Institute of Technology (KIT)
Institute for Applied and Numerical Mathematics 4

76128 Karlsruhe, Germany
hartwig.anzt@kit.edu,tobias.hahn@kit.edu,vincent.heuveline@kit.edu,

bjoern.rocker@kit.edu

Abstract. This paper evaluates the latest GPU generation from NVIDIA, called "Fermi", with re-
spect to the previous generation. The experiments include benchmarks of elementary kernels as well
as of linear solvers applied to problems arising in the area of computational fluid dynamics.
Both the consumer version of the hardware (GeForce GTX 480 and GTX 280) as well as the professional
line (Tesla C2050 and C1060) are taken into account.

1 Introduction

Recently, the number of users and lines of code taking advantage of the computational power
of accelerators, especially GPUs, grew enormously. One reason is the facilitated programma-
bility of GPUs by NVIDIA’s CUDA and OpenCL. With the introduction of full double
precision support on GPUs, many scientific projects started using e.g. finite difference and
finite element techniques for the solution of systems of partial differential equations (PDEs)
using GPU hardware. Since 2003, several papers described the solution of the Navier-Stokes
equations for incompressible fluid flow on the GPUs [1,2] or other boundary value problems
[4]. An analysis of a meteorological simulation for tropical cyclones and an implementation
of rigid particle flows on GPUs can be found in [3].

With the introduction of built-in double-precision support and IEEE754 compatibility,
GPUs evolve towards universally usable processing units. Still, their paradigm is related to
former graphics stream processing: The same series of operations is applied to every element
of a set of data (i.e. a stream). Operations of a kernel are pipelined, such that many stream
processors can process the stream in parallel. The limiting factor in this context is memory
latency, especially when data dependency is high and data locality is low. GPUs always try
to hide memory latency by executing many kernel instances in parallel on the same core.
Switching these lightweight “threads” and operating on other register sets can be done in
just a few cycles, whereas the cost of fetching data from the global memory extends several
hundreds of cycles.

While the problem described above is often inherent for many-core computing, other
restrictions of stream processing techniques have been addressed in CUDA, which offer
e.g. gather and scatter operations on the global graphics memory. Furthermore, CUDA-
capable devices can be programmed with slightly extended C and runtime libraries, including
hardware support for double precision (obeying IEEE 754).

In fall 2009 NVIDIA released their new chip architecture "Fermi". This paper compares
the performance of this new architecture to former generations.

2 Hardware and Software Environment

2.1 Hardware Overview

As hardware platform for the evaluation we have chosen the accelerators from the actual
and previous generation both from the NVIDIA professional line (Tesla), as well as from
the NVIDIA consumer line (GeForce).

Name Tesla C2050 Tesla C1060 GTX 480 GTX 280a

Chip T20 T10 GF100 GT200

Transistors ca. 3 Mrd. ca. 1,4 Mrd. ca. 3 Mrd. ca. 1,4 Mrd.

Core frequency 1.15 GHz 1.3 GHz 1.4 GHz 1.3 GHz

Shaders (MADD) 448 240 480 240

GFLOPs (single) 1030 933 1.345 933

GFLOPs (double) 515 78 168 78

Memory 3 GB GDDR5 4 GB GDDR3 1.5 GB GDDR5 1 GB GDDR3

Memory Frequency 1.5 GHz 0.8 GHz 1.8 GHz 1.1 GHz

Memory Bandwidth 144 GB/s 102 GB/s 177 GB/s 141 GB/s

ECC Memory yes no no no

Power Consumption 247 W 187 W 250 W 236 W

IEEE double/single yes/yes yes/partial yes/yes yes/partial

Table 1. Key system characteristics of the four GPUs used for the tests. Computation rate and memory bandwidth
are peak respectively theoretical values.

Host Device

CPU MEM BW H2D GPU MEM BW D2H CC
[GB] [GB/s] [GB/s] [GB] [GB/s] [GB/s] ECC

2 x Intel Xeon 32 12.07 PA: 3.25 Tesla T20 3 BT: 91.28 PA: 2.51 2.0
(E5520, 4 cores) PI: 5.86 daxpy: 82.5 PI: 4.75

ddot: 88.3 Yes

2 x Intel Xeon 16 6.14 PA: 1.92 Tesla T10 4 BT: 71.80 PA: 1.55 1.3
(E5450, 4 cores) PI: 5.44 daxpy: 83.1 PI: 3.77

ddot: 83.3 No

1 x Intel Core2 2 3.28 PA: 1.76 GTX 480 1.5 BT: 108.56 PA: 1.38 2.0
(6600, 2 cores) PI: 2.57 daxpy: 135.0 PI: 1.82

ddot: 146.7 No

1 x Intel Core i7 6 12.07 PA:5.08 GTX 280 1.0 BT: 111.54 PA: 2.75 1.3
(920, 4 cores, SMT on) PI:5.64 daxpy: 124.3 PI: 5.31

ddot: 94.81 No

Table 2. Systems’ configurations. The abbreviations are as follows: MEM is the amount of memory, BW the
Bandwidth, H2D denotes the Host to Device bandwidth via PCIe and D2H the other way round, CC is the CUDA
’compute’ capability and ECC is the availability of error correcting memory. PA means pageable memory is allocated,
PI denotes the usage of pinned memory.

3 Numerical Experiments

In a first step, we perform benchmarks for some elementary kernels: we execute dot-products,
vector updates, scalar-products, matrix-vector and matrix-matrix operations both in single
and double precision.
In a second test, we evaluate the performance of a CG solver applied to a stencil-discretization
of the Laplace equation.
Finally, we apply mixed precision iterative refinement solvers to linear systems arising in

of the Laplace equation on a unit square using linear test-functions, which is equivalent to
a finite differences discretization based on the 5-point-stencil. The matrix has the following
characteristics: 4.000.000 degrees of freedom (dofs) and 19.992.000 nonzero entries (nnz).

All computations run exclusively on the accelerator and are performed in double preci-
sion, the stopping criteria for the residual is set to 10

−6.
First the performance results for the itemized kernels within the CG are presented and

afterwards the complete runtime for the solver:

C2050 C1060 GTX 480 GTX 280

ddot (sec) 0.000725 0.000768 0.000436 0.000675

ddot (Gbyte/s) 88.28 83.33 146.78 94.81

ddot (GFlops/s) 11.03 10.42 18.35 11.85

dscale+daxpy (sec) 0.00185 0.001916 0.001153 0.001285

dscale+daxpy (Gbyte/s) 51.89 50.10 83.26 74.71

dscale+daxpy (GFlop/s) 4.33 4.18 6.94 6.23

dcsrgemv (sec) 0.0187 0.019591 0.011527 0.013145

dcsrgemv (Gbyte/s) 17.10 16.33 27.75 24.34

dcsrgemv (GFlop/s) 2.14 2.04 3.47 3.04

daxpy (sec) 0.001163 0.001151 0.000711 0.000772

daxpy (Gbyte/s) 82.55 83.41 135.02 124.35

daxpy (GFlop/s) 6.88 6.95 11.25 10.36

Table 4. Performance evaluation of elementary kernels of the CG-algorithm on the four evaluated accelerators. All
measurements are performed in double precision.

Fig. 6. Runtime of the CG algorithm for the Laplace test case for the four evaluated accelerators. tc employs the
use of texture cache, ntc without using it.

3.3 Iterative Refinement Method

To be able to evaluate the computational power of the hardware platform in a more complex
application, we use a GPU-implementation of a plain GMRES-(30) solver and a mixed-
precision iterative refinement implementation based on the same solver. Mixed precision

iterative refinement solvers use a less complex floating point format for the inner error cor-
rection solver, and are therefore able to exploit the often superior low precision performance
of GPUs and the double precision performance of the CPU [6], [8], [7].

Both, the plain double GMRES-(30) and the mixed precision variant use the relative
residual stopping criterion of ε = 10

−10 ‖ r0 ‖2, while we choose εinner = 10
−1 ‖ ri ‖2 as

inner stopping criterion for the error correction variant.
In case of the mixed precision iterative refinement implementation, the error correction

solver is performed on the GPU, while the solution update is led to the CPU of the same
system. This enables to handle larger problems, since the available memory on the GPU is
usually very limited.

We compare the total needed computation time with the performance results on similar
systems.

As test problems, we use three systems of linear equations CFD1, CFD2 and CFD3
affiliated with the 2D modeling of a Venturi Nozzle in different discretization fineness. The
distinct number of supporting points leads to different matrix characteristics in terms of
dimension, sparsity, and the condition number.

CFD1 CFD2 CFD3

problem: 2D fluid flow
matrix dimension: n = 395009

sparsity: nnz = 3544321

storage format: CRS

problem: 2D fluid flow
matrix dimension: n = 634453

sparsity: nnz = 5700633

storage format: CRS

problem: 2D fluid flow
matrix dimension: n = 1019967

sparsity: nnz = 9182401

storage format: CRS

Table 5. Sparsity plots and properties of the CFD test-matrices.

Experiment setup Computation Time (s)

problem solver type C2050 C1060 GTX 480 GTX 280

CFD 1
plain double GMRES-(30) 164.845 252.749 145.237 183.375
mixed precision GMRES-(30) 80.489 129.191 60.985 98.462

CFD 2
plain double GMRES-(30) 473.385 778.753 456.176 518.492
mixed precision GMRES-(30) 273.995 510.385 256.432 301.411

CFD 3
plain double GMRES-(30) 993.638 1921.640 1145.082 1046.493
mixed precision GMRES-(30) 554.287 1555.360 669.574 697.120

Table 6. Computation time (s) for problem CFD 1, CFD 2 and CFD 3 based on a GMRES-(30).

4 Energy efficiency

Beside the computational performance energy efficiency becomes more and more important
for customers from academia and industry. We present results based on the theoretical peak
power consumption of the accelerators from Tabular 1 and the runtime for our CG solver.

Fig. 7. Energy consumption in Watt hours (Wh) for the Laplace test case for four evaluated accelerators. tc employs
the texture cache, ntc does not.

5 Conclusion

The current GPU generation offers enormous potential that can be utilized not only in con-
structed examples, but also CFD applications with academic and non-academic background.
A basic condition for this is that the underlying mathematical model combined with the
numerical schemes for solving it offers enough parallelism to create a sufficient number of
threads for the GPU to cover waiting time for memory calls of one GPU-thread by execut-
ing another thread. Exchanging threads is cheap compared to the time a global memory
operation takes.

The programmability of NVIDIA-GPUs was heavily simplified by the introduction of
CUDA compared to the most common former approaches. Due to this, significant perfor-
mance increases can be achieved in very short time e.g. by extending existing applications
with accelerated kernels in Fortran and C/C++, as the partially ported meteorological
implementation from [3] shows. Highest performance is achieved when porting the code
completely thus avoiding host-device communication as much as possible.

The new generation of Tesla and GeForce accelerators based on the Fermi architecture
offer an enormous gain in computational performance by looking on the theoretical values
compared to the previous generation. For many kernels and applications based on such
kernels, the performance can be used in practice. But when memory bandwidth is the
limiting factor the computational power can not be exploited completely due to the fact that
the memory bandwidth did not increase to the same ratio (see table 1). We see speedups
of about 1.2 for the CG-algorithm from the last generation to the new one. Similar results

can be observed for the mixed precision iterative refinement solvers, though the speed-up
decreases for larger dimension, as then the memory bandwidth becomes the bottleneck.

The energy efficiency tests reveal that the performance gain in terms of execution time of
the new Fermi generation comes with the price of a significantly higher energy consumption.

Finally, it should be mentioned, that besides the floating point performance, this paper
focuses on, the resilience of hardware is of importance in cluster computing. It should be
emphasized, that the higher performance of the consumer cards comes with an uncertainty
in terms of correctness of long-lasting computations. The importance of ECC is a topic of
further investigation.

Acknowledgement

The authors would like to thank Dimitar Lukarski from the Shared Research Group (SRG)
[9] for his assistance while performing the benchmarks and his contributions for the content
of this paper.

References

1. Bolz, J., Farmer, I., Grinspun, E., Schröder,P.: Sparse matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Transactions on Graphics, vol. 22, 2003, pp. 917-924.

2. Krüger, J., Westermann, R.: Linear algebra operators for gpu implementation of numerical algorithms. ACM
Transactions on Graphics, vol. 22, 2003, pp. 908-916.

3. Hahn, T. and Heuveline, V. and Rocker, B.: GPU-based Simulation of Particulate Flows with CUDA: Proceedings
of the PARS Workshop 2009, German Informatics Society, 2009

4. Goodnight, N., Lewin, G., Luebke, D., Skadron, K.: A multigrid solver for boundary-value problems using pro-
grammable graphics hardware. Eurographics/SIGGRAPH Workshop on Graphics Hardware, 2003, pp. 102-111.

5. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edition: SIAM: Philadelpha, PA, 2003
6. Anzt, H. and Rocker, B. and Heuveline, V.: Mixed Precision Error Correction Methods for Linear Systems:

Convergence Analysis based on Krylov Subspace Methods: Proceedings of PARA 2010 State of the Art in Scientific
and Parallel Computing, 2010

7. Anzt, H. and Rocker, B. and Heuveline, V.: An Error Correction Solver for Linear Systems: Evaluation of Mixed
Precision Implementations: Proceedings of VECPAR 2010 High Performance Computing for Computational Sci-
ence, 2010

8. Anzt, H. and Rocker, B. and Heuveline, V.: Energy efficiency of mixed precision iterative refinement methods
using hybrid hardware platforms: Computer Science - Research and Development, Springer Berlin / Heidelberg,
2010

9. Shared Research Group (SRG), Karlsruhe Institute of Technology (KIT), http://www.numhpc.math.kit.edu

Preprint Series of the Engineering Mathematics and Computing Lab

recent issues

No. 2010-03 Hartwig Anzt, Vincent Heuveline, Björn Rocker: Energy Efficiency of Mixed Precision

Iterative Refinement Methods using Hybrid Hardware Platforms: An Evaluation of

different Solver and Hardware Configurations

No. 2010-02 Hartwig Anzt, Vincent Heuveline, Björn Rocker: Mixed Precision Error Correction

Methods for Linear Systems: Convergence Analysis based on Krylov Subspace Methods

No. 2010-01 Hartwig Anzt, Vincent Heuveline, Björn Rocker: An Error Correction Solver for Linear

Systems: Evaluation of Mixed Precision Implementations

No. 2009-02 Rainer Buchty, Vincent Heuveline, Wolfgang Karl, Jan-Philipp Weiß: A Survey on

Hardware-aware and Heterogeneous Computing on Multicore Processors and

Accelerators

No. 2009-01 Vincent Heuveline, Björn Rocker, Staffan Ronnas: Numerical Simulation on the

SiCortex Supercomputer Platform: a Preliminary Evaluation

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a

preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.

