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Acknowledgment

This thesis was conducted during my work as a research assistant at the In-
stitute of Anthropomatics - University of Karlsruhe (TH), chair Prof. R. Dill-
mann and at the Department of Diagnostic Radiology - University Hospital
Heidelberg, under the direction of Prof. G.M. Richter. It was performed
within the setting of the Research Training Group 1126 - Intelligent Surgery
and partly funded by DI 330/22, both founded by the German Research Foun-
dation (DFG). Further, I conducted a research internship at the Biomedical
Engineering Department - Carnegie Mellon University (CMU) in Pittsburgh,
PA, which was supported by InterACT and KHYS. I thank everyone who
provided support and encouragement through the pursuit of this project.

First of all, I would like to express my deep gratitude to Prof. Dr.-Ing. R.
Dillmann and Prof. Dr. med. G.M. Richter for being my supervisors. Thank
you for your invaluable guidance and precious support and for providing me
the opportunity and the freedom to explore the fascinating world of medical
engineering. Thank you for your interest in my work; you gave me the tools to
build this thesis. I also thank Prof. Dr. rer. nat. W. Juling and Prof. Dr.-Ing.
R. Stiefelhagen for being involved as examiners in my doctoral defense.

Deep appreciation to Dr. E.A. Finol for offering me the opportunity in con-
ducting a research internship in your group at CMU in Pittsburgh. I will never
forget our weekly meetings and all the useful discussions and invaluable advices
about computational biomechanics. Thank you for this great experience.

Grateful thanks to Dr. med. M. Kostrzewa for being so closely involved in
completing this thesis and for your extensive contributions in the experimental
validation. Thank you for the great effort you put in teaching me all about
the mysteries of medicine. I appreciated the time working with you.

I extend my deep thanks to Dr.-Ing. R. Kröger for your constructive criticisms,
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular pathologies are prevalent causes leading to high mortality every
year [PPR+05]. Stenosis, aneurysms, dissections and long-term endurance
result amongst others from complex blood flow patterns and fatigue of the
vessel wall. Aortic aneurysms for instance, are associated with a dilatation of a
highly fatigued vessel and represent one of the most dangerous cardiovascular
pathologies on the event of rupture. If left untreated, the aneurysm may
enlarge and eventually rupture. A rupture of the vessel results in serious
internal bleeding and leads to death unless treated rapidly. Only 10% of
the patients survive an aortic rupture. Cardiovascular diseases occur with
increasing incidence in patients above the age of 50.

Due to the high mortality and in order to intervene duly, it is essential to
identify reliable predictors for the development and the growth of the patholo-
gies. The currently used primary indicators for the evaluation of the associated
risks are based on the disease shape and stage as well as on the experience of
the physician [LWJ+02; Par98]. These observations are usually obtained from
routine tomography scans. For an aortic aneurysm, the risk of rupture is pos-
itively correlated with the diameter of the vessel and the aneurysm expansion
rate. An aneurysm diameter that is larger than 5 cm or an expansion rate
of more than 1 cm per year are considered to be risky and require a surgical
intervention. Lower diameters and expansion rates are usually classified as
still-non-risky and do not require the patient to undergo a surgery. Instead,
these patients are treated conservatively, for instance with anti-hypertensiva,
in order to avoid the risks and later complications associated with a surgi-
cal intervention. However, recent research shows that these predictors related
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to the extent of dilatation are not always sufficient enough and thus do not
present a reliable tool [VG05]. In fact, small aneurysms are also subject to
rupture, whereas larger ones sometimes may not. Previous studies indicate
that the risk for an abdominal aortic aneurysm (AAA) with a diameter less
than 5 cm to rupture ranges between 12.8% and 23.23% [VG05]. This is an
indication that aortic aneurysms are still not fully understood and that more
reliable predictors and further development of better patient-specific models
are necessary. Furthermore, the currently used predictors do not consider in-
dividual characteristics such as shape, material, physiology or biomechanics.
Various studies report that age, smoking and hypertension are factors which
also identify patients exposed to vascular risk [SvdLK+06].

Several studies have demonstrated that minimally invasive endovascular pro-
cedures are advantageous over conventional surgery in treating cardiovascular
pathologies [SvdLK+06; FMRK03]. However, several unsolved issues in this
field are still pertinent [VRW98]. An individual and efficient treatment re-
quires the knowledge of image-based physiological parameters that help the
interventional radiologist in evaluating his decisions during patient diagnosis
and assist the surgeon during surgical intervention. Thus, it is of primary
importance to be able to non-invasively identify parameters that individually
contribute to the development and growth of the pathologies.

Cardiovascular diseases tend to occur at sites with pathological hemodynam-
ics and elastomechanics. High wall stresses often correlate with regions of
fatigued vessel represented by decreasing wall strength. Wall stresses are the
forces which arise from the intraluminal pressure and the wall shear stresses
(WSS) acting on the inner wall surface. Abnormal blood flow parameters and
high stress distributions may therefore be causative and hence predictive fac-
tors for the growth of a vascular pathology. In presence of abnormal vessel
wall conditions, the blood flow patterns take complex forms. Complex flow
alterations result in high pressure and WSS gradients. The involved flow pat-
terns and the associated high intraluminal pressure weaken the vessel and lead
in turn to pathological conditions of its elastomechanical functioning. Due to
alterations in its structural constitution, the fatigued wall starts to expand
and may then rupture. A dilatation of the vessel is therefore mainly due to a
highly fatigued wall. Ruptures occur when the mechanical stresses acting on
the inner wall exceed the failure strength of the diseased vascular tissue.

Patient-specific computational modeling of cardiovascular biomechanics from
medical images may be helpful for patients with cardiovascular pathologies
to predict the associated risks and thus to evaluate the necessity of a surgi-
cal intervention. Image-based Computational Structure Mechanics (CSM) and
Computational Fluid Dynamics (CFD) based on the Finite Element/Volume
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Methods (FEM/FVM) have become efficient tools in modeling the blood flow
and the wall mechanics in human vessels. They allow to non-invasively simu-
late the individual hemodynamics and elastomechanics needed for an efficient
minimally invasive treatment. A realistic modeling can be achieved by coupling
both CFD and CSM simulations. The so called Fluid Structure Interaction
(FSI) is a numerical approach that allows computing patient-specific blood
flow and wall mechanics parameters in order to understand the underlying
factors affecting the interaction between hemodynamics and elastomechanics.

By simulating the pathological biomechanical conditions, CSM, CFD and FSI
allow to identify individual parameters such as high shear stress gradients or
weak spots and sites of excessive mechanical strain that contribute to the de-
velopment and growth of the disease. Simulations are needed to understand
the role of flow and pressure distributions in characterizing regions of stressed
vessels. Based on these predictions, a realistic insight into the pathological ves-
sel parameters may be provided and predictive simulations of disease growth,
state of fatigue and assessment of risk may be evaluated for a given patient.
The focus of this work is therefore to establish a simulation-based tool for the
computation of biomechanics to non-invasively help the diagnosis of patients
with vascular pathologies on an individual basis.

1.2 State of the Art

Various research approaches demonstrated that biomechanical analysis of the
vessels is a valuable tool in risk evaluation and therapy follow up. In a struc-
tural study conducted by Fillinger et al., wall stresses calculated using solid
models based on static homogeneous intraluminal pressure showed that the
peak wall stress is 12% more accurate than the AAA diameter in evaluat-
ing the aneurysm risk of rupture [FMRK03]. Further, the following factors,
amongst others, influence the hemodynamics and the elastomechanics: beside
the pulsatile blood pressure acting on the inner wall, the pathology shape and
size [VRW98], the wall thickness, the asymmetry, the presence of thrombus
[WMWV02; DMV03] as well as the wall and blood constitutive properties and
flow behavior. These factors are therefore essential for an accurate evaluation.

Venkatasubramaniam et al. [VFM+04] showed that the peak stress computed
in ruptured AAA is significantly higher than that in non-ruptured models.
They also found the wall stresses to be more sensitive to wall thickness than
to asymmetry and obtained a 20% increase in stress for a 25% reduction of
wall thickness. Sankar et al. [SL09] investigated the effects of asymmetry
of stenoses on the flow dynamics. Based on 5 idealized models with various
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degrees of asymmetry, they showed that increasing asymmetry significantly
influences the WSS and has therefore to be modeled accurately. Also Scotti et
al. [SSMF05] studied the effects of asymmetry and wall thickness on the wall
mechanics in 10 idealized models of AAA based on FSI and CSM simulations.
They found that the wall stresses increase with increasing asymmetry and that
a correct modeling of the variable wall thickness plays a significant role on the
computations. Their results report that homogeneous thickness assumption
underestimates the wall stresses by 77% compared to variable thickness.

Di Martino et al. [DMGF+01] were the first to present results of a patient-
specific fully coupled FSI simulation and suggested that the elastomechanics of
the wall are affected by the blood flow field. Scotti et al. [SSMF05] compared
their FSI and CSM results and showed that CSM underestimates the peak
stress by ≈ 9.2% with homogeneous thickness and by ≈ 29.4% with variable
thickness. The effects of both FSI and CSM modeling were also investigated
by Leung et al. [LWC+06]. In contrast to Scotti et al., the authors found that
the difference between the FSI and the CSM was less than 1%, thus suggesting
that CSM is sufficient for a pure prediction of stress distributions.

Leung et al. [LWC+06] also examined the influence of AAA geometries on the
wall stress in three patients with similar diameters (57 mm, 53 mm, 50 mm)
and showed that the diameter has less influence on the peak stress than the
patient-specific geometry. Vorp et al. [VRW98] found that the wall stress
increases with bulge diameter and asymmetry and hence is affected by the
aneurysm shape and size. Li et al. [LBBJ+07] conducted a numerical analysis
on the effects of different degrees of stenoses (30%, 50%, 70%) on the blood
flow and vessel wall mechanics and reported that the degree alone is not enough
to predict the risk of plaque rupture.

Various turbulent models have been used in CFD modeling to simulate the
turbulent flow behavior [YB04; TBM+09]. Other investigations assumed the
blood flow to be laminar [QTV00]. Li et al. [LBBJ+07] simulated the blood
flow with laminar and turbulent models and showed that for stenoses degrees
larger than 30%, the differences in the shear and radial (hoop) stresses be-
tween the laminar and turbulent models become considerable with significantly
smaller recirculation zones in the turbulent flow. Also Berguer et al. [BBK06]
studied the influence of blood flow turbulences on the wall stresses. They
considered an idealized axis-symmetric AAA model for their computations in
which the turbulent results demonstrated much higher pressure than the lam-
inar results. The authors suggested therefore that turbulences should be accu-
rately included into the modeling, while Khanafer et al. [KBB07] declared that
since the flow is only turbulent over a small cardiac cycle time period, these
results do not apply for the whole cardiac cycle. Furthermore, for simplicity
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most of the CFD simulations consider the blood as a Newtonian fluid with a
constant viscosity. Various investigations on the blood constitutive behavior
proposed however that blood should be actually modeled as a non-Newtonian
fluid [GvdVJ99; ABH05; KGBB06].

Scotti et al. [SF07] considered additionally the intraluminal thrombus (ILT)
in their work to simulate the wall forces. They showed that the presence of the
ILT reduces the stresses on the wall and that the peak moves to the thinner
thrombus location. The simulations were performed on a real patient with FSI
and CSM and the results show that taking into account the blood flow does not
have significant influence on the position of the peak wall stress. However, the
CSM method leads to a significant underestimation of the wall stresses, which
proves the conclusion proposed by the same authors 2 years before in [SSMF05].
Similar computations and results on the effects of thrombus were also reported
by Wang et al. Many other studies simulated the effects of stents and stent-
grafts on the flow dynamics and the wall mechanics [LK05a; LK05b; LK06b].
Prakash et al. [PE01] conducted research on the mesh resolution requirements
in 3D computational methods.

In summary, all current research approaches demonstrate that the simulation
of pathological biomechanical conditions is helpful in identifying individual
parameters such as high pressure and shear stress gradients or weak spots
and sites of excessive mechanical strain that contribute to the development
and growth of the pathologies. They also show how significant the effects
of patient-specific geometry and pathology shape, of accurate physics and of
coupled (FSI) and decoupled (CSM, CFD) modeling are on the simulation
results. However,

1. The computational models are rarely optimized in terms of all significant
aspects.

2. The simulations are usually restricted to one application pathology or
vessel region.

3. Mathematical and physical stability essential for reliable modeling are
mostly not considered.

4. High-quality meshes confining to the simulation requirements with mesh
optimization algorithms are rarely included in the generation process.

5. Due to the specific characteristics and the complexity of patient-specific
data, most of the studies manually create and process their mesh and
simulation models.

6. Experimental validation with real measurements and in-vivo data is
rarely conducted.
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A clinically implementable system requires the accounting for all these aspects
simultaneously for reliable modeling. In spite of all technological advancements
in computational methods this remains unsolved to this day.

1.3 Objective and Contribution

The primary objective of the present work is to establish a numerical approach
to non-invasively help the diagnosis of patients with vascular pathologies on
an individual basis. The aim is therefore to generate a reliable and easy-to-use
simulation tool for the computation of blood flow and vessel wall mechanics. In
this work, a patient-specific FEM-/FVM-based system, MoDiSim1, has been
designed, developed and evaluated to automatically simulate the hemodynam-
ics and the elastomechanics as well as their interaction within image-based
vessel models. MoDiSim provides an individual computational analysis for the
detection of regions with pathological conditions and for the evaluation of as-
sociated risks. For the computation of blood flow and vessel wall biophysical
parameters, individual numerical models for CSM, CFD and FSI have been
generated and implemented based on CT/MRI images and on in-vivo mea-
sured flow and pressure data. MoDiSim puts together commercial codes for
mesh generation, CSM, CFD and FSI in an easy-to-use way with automated
and hidden data transfer between the codes. Thus, through the automation of
the individual modeling steps, generating and running the simulations may be
performed directly in MoDiSim, without any knowledge about the operation
of the individual codes.

The specific goals and contribution of this work are defined as follows:

� Mesh Generation:
Finite-based simulations require accurate patient-specific mesh models.
For the generation of different modeling applications, various mesh gen-
eration processes are necessary and have been created and examined
[HBK+07; HSU+08].

� Vessel Wall Modeling:
Computational Structure Mechanics simulation models have been devel-
oped and implemented to simulate the response of the vessel wall to
intraluminal forces in order to understand the role of the elastomechan-
ics in characterizing regions of fatigued vessels [HSU+08; HFK+09]. The
simulations are based on a continuum structure mechanics approach and
the computations are thereby based on the finite element method.

1Modeling and Simulation framework for patient-specific vessels
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� Blood Flow Modeling:
Computational Fluid Dynamics simulation models have been developed
and implemented to describe the blood flow features and to simulate the
hemodynamics in individual vascular pathologies [HUK+06b; HUK+06a;
HKU+07]. The modeling is based on a continuum fluid dynamics ap-
proach and the computations are based on the finite volume method.

� Blood-Vessel Interaction:
More accurate and realistic modeling may be achieved by quantifying
the influence of flow alterations and non-uniform hemodynamic forces on
the wall strain and stress distributions. Fully coupled Fluid Structure
Interaction models have been developed and implemented to simulate the
physical interaction between the hemodynamics and the elastomechanics.

� Experimental Validation:
The validation of the simulations is necessary for a clinical implementa-
tion and was therefore performed using in-vivo pressure and ultrasound-
based velocity measurements, as well as 4D-CT images obtained from
individual experiments conducted on porcine aortas [HFK+09].

Further, an important feature of the modeling is to be able to reproduce the
patient-specific flow and structural fields in a stable and accurate way. The
aim is to develop a modeling framework to facilitate a clinical implementation
of such computational methods. For each of the above mentioned modeling
applications (Mesh, CSM, CFD and FSI), this includes:

� Simulation Workflow:
Building the elements of the individual process chain.

� Numerical Stability:
Attaining physical and mathematical stability for reliable simulations.

� Automation:
Automation of the modeling process by integrating all individual mod-
eling steps into the MoDiSim system.

� Optimization:
Optimization of the integrated components and implemented models.

� Individualization:
Individualization of the simulations in terms of imaging source, patient
geometry, vessel region or pathology shape and stage.

� Expandability:
Expandability of the system by allowing a flexible modular structure to
further include the simulation of different vessels or endovascular devices.
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1.4 Chapters Layout

The present work consists of 9 chapters. The individual chapters have the
following content:

Chap.2 describes the medical background behind the modeling. Particularly,
the anatomy and physiology of the cardiovascular system as well as an overview
on various aortic pathologies will be presented.

Chap.3 illustrates the simulation workflow for CSM, CFD and FSI simulations
in general, to be applied to the different applications. Building the individual
elements of the process chain, the MoDiSim system developed in this work as
well as the processed aortic models are described.

Chap.4 discusses the generation and processing of the meshes. After introduc-
ing the meshing quality and control functions necessary to obtain high-quality
and stable meshes, the mesh independency analysis performed in this work is
presented. Then, various meshing and processing approaches for the different
applications as well as the resulting meshed models are presented. Finally, the
integration of this step into MoDiSim will be described.

Chap.5 is devoted to the vessel wall modeling. The chapter includes a the-
oretical part dealing with the fundamental principles of continuum structure
mechanics, the elasticity theory and the finite element method, and an applied
part consisting of a description of the CSM simulation models used, the system
integration into MoDiSim as well as examples on the achieved results.

Chap.6 addresses the blood flow modeling. An overview on the theoretical
principles of continuum fluid dynamics, the blood constitutive modeling and
the finite volume method are first described. Following, the applied CFD
simulation models and the system integration are presented. The chapter is
also concluded by some of the obtained numerical results.

Chap.7 is dedicated to the blood-wall interaction simulations. After introduc-
ing the field of fluid-structure interaction and various coupling techniques and
solution approaches, the underlying physical interaction between the blood
flow and the vessel wall will be presented. Thereby, the applied FSI physi-
cal and mathematical models, the system integration as well as some of the
simulation results will be illustrated.

Chap.8 describes the experimental validation. The performed experiments
and the data acquired for the validation of the simulations as well as the eval-
uation technique and the quantified validation results are thereby presented.

Chap.9 concludes finally the whole work with a summarized discussion and
gives an overview on possible future developments in this field.



Chapter 2

Medical Background

2.1 Cardiovascular System

The cardiovascular system is a closed system consisting of the heart, the blood
and the blood vessels. It is responsible for the convective transport of sub-
stances within the body. It supplies all organs with blood which in turn sup-
plies the cells with nutrients and oxygen and disposes the body from carbon
dioxide and wastes. Thereby, the blood contributes in the integration of the
organs in a complete body system and contains components of the immune and
coagulation systems which defend the body from exogenic substances and loss
of blood. Further, a network of blood vessels connected partly in parallel and
partly in series is responsible for the entire circulatory system, divided into
the systemic (big) circulation and the pulmonary (small) circulation. Both
circulation parts involve the same blood vessel types which allow to take the
blood away from and back to the heart. Thereby, the pulmonary circulation
transports deoxygenated blood away from the heart to the lungs and returns
oxygenated blood back to the heart. Whereas, the systemic circulation trans-
ports oxygenated blood away from the heart to the rest of the body and returns
deoxygenated blood back to the heart. Furthermore, the oriented blood flow
direction necessary for the convection is achieved thanks to a pressure gradient
that is generated by the cardiac valves in the heart [SL00].

In the present section, the anatomy and physiology of the cardiovascular sys-
tem will be presented. After introducing the heart and the blood circulation,
the cardiac cycle and its physiological phases will be described. Then, the
blood vessels including the three main wall layers affecting the mechanical be-
havior of the vessels will be presented. Finally, the main artery in the body,
the aorta, will be also described.
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2.1.1 Heart and Blood Circulation

The heart is a muscle hollow organ consisting of four chambers: two ventricles
and two atriums. Due to their cyclic and synchronic movement, the heart rep-
resents the functional pump of the blood circulation. While the left ventricle
passes the blood from the lungs into the large systemic circulation, the right
ventricle returns the blood from the systemic circulation back to the lungs.
The left and the right ventricles are separated from the blood circulation sys-
tem with the two semilunar valves: the aortic and the pulmonary valves,
respectively [Sch07]. Furthermore, the left and the right atriums support the
filling of the ventricles. The atriums are connected to the ventricles through
the mitral and the trikuspid valves, also known as the atrioventricular valves,
allowing the blood to pass only in one direction.

The circulation of the blood begins in the right atrium, from which it flows
into the right ventricle through the tricuspid valve as shown in Fig.2.1. From
there the blood is pumped through the pulmonary valve into the pulmonary
artery which conducts it to the lungs. In the lungs, the blood gets oxygenated
before it flows back through the pulmonary vein to the left atrium. Through
the mitral valve, the blood passes then to the left ventricle where, under high
pressure, it gets pressed into the largest vessel, the aorta. The blood in the
aorta is branched out to reach and supply all cells in the body. After the
exchange with the cells, the deoxygenated blood returns back into the two
vena cavas which direct the blood back to the right atrium [SL00].

Figure 2.1: Heart and blood circulation.
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2.1.2 Cardiac Cycle

The pumping function of the heart is coordinated based on rythmetic and
spontaneous sequences of contraction and relaxation. The frequency of the
cardiac cycle depends on various factors such as rest, fatigue or emotions.
Under normal conditions, the frequency varies between 60 and 80 beats per
minute. In contrast to skeletal muscles, the cardiac muscle is composed of
special myocytes which regulate its own function without the help of external
nerves. These myocytes are located within the sinoatrial (SA) and the atri-
oventricular (AV) nodes responsible for the stimulation of a series of electrical
impulses. An action potential is first created by a wave of electrical stimula-
tion sent by the SA node which initiates the atrial contraction. With a delay,
allowing for the blood in the atriums to fill the respective ventricles, the wave
reaches the AV node leading to a contraction of the ventricles. The electrical
activity of the heart over time may be detected by skin electrodes and recorded
using electrocardiography (ECG). The cardiac cycle may be divided into four
phases [Sch07] as illustrated in Fig.2.2:

� Isovolumetric Contraction:
The cardiac cycle begins with an electrical stimulation signal leading to
an isovolumetric contraction of the heart under closed valves. Thereby,
the pressure in the ventricles increases up to the level in the aorta and
the atrioventricular valves close.

� Ejection:
As soon as the intraventricular pressure exceeds the aortic and pulmonary
pressure, the aortic and pulmonary valves open and the heart ejects the
blood out into the arteries. In the ejection phase, the pressure in the
ventricles increases further until it reaches its systolic maximum.

� Isovolumetric Relaxation:
Then, the pressure in the ventricles decreases below the pressure in the
aortic and pulmonary arteries and the aortic and pulmonary valves close.
Here starts the phase in which an isovolumic relaxation of the ventricles
takes place.

� Filling:
When the intraventricular pressure becomes lower than that in the atri-
ums, the atrioventricular valves open and the blood flows from the atri-
ums into the ventricles filling them again, while the pressure in the ven-
tricles stays almost constant.

Then follows the contraction phase again. Contraction and ejection build the
systole, while the diastole consists of the relaxation and the filling phases.
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Figure 2.2: Cardiac cycle: Systole with isovolumetric contraction (I) and
ejection (IIa and IIb) phases; Diastole with isovolumetric relax-
ation (III) and filling (IVa and IVb) phases [SL00].

2.1.3 Blood Vessels

Blood vessels are responsible for the transport of the blood through the body
within the circulatory system. There are various types of blood vessels, split in
mainly three categories: arteries and arterioles, capillaries, veins and venoles.
Arteries are derived from the aorta, which in turn are branched out into ar-
terioles and finally into capillaries. Arteries and arterioles are also known as
high-pressure vessels and take the oxygenated blood away from the heart. In
the capillaries, the exchange of substances between the blood and the tissues
takes place. The capillaries unify then into the venoles, which in turn join
the veins and finally reach the two large vena cavas. Veins and venoles belong
to the low-pressure system and transport the deoxygenated blood from the
capillaries back to the heart.
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Vessel walls consist in general of three layers: the tunica intima, the tunica
media and the tunica adventitia, shown in Fig.2.3.

� Tunica Intima:
The tunica intima is the thinnest and innermost layer consisting of a
single section of smooth endothelial cells that are in contact with the
flowing blood. They are carried by a thin basal membrane surrounded
by a subendothelial layer of connective tissue containing fine collagen
fibers and elastic bands called the elastica interna. The endothelial cells
have an elongated form and are in general directed parallel to the flow
direction [SK07]. The young, healthy intima is usually very thin and has
small influence on the mechanical properties of the vessel [HO03].

� Tunica Media:
The tunica media is the middle and thickest layer. It consists of circularly
arranged elastic laminae involving mainly elastic fibers. The individual
laminae are connected together through a complex network of thin elas-
tic fibrils, collagen fibrils and smooth muscle cells [HO03]. The vascular
smooth muscle, especially in the arteries, controls the caliber of the ves-
sel. The number of elastic layers, and hence the elasticity, decreases
with decreasing vessel size so that these are hardly present in muscular
arteries [BDZ07]. In the arteries toward the periphery, the elastic layers
are only present at the boundary sides of the media, known as elastica
interna and elastica externa. On the other hand, a thicker layer of elastic
material is present in the aorta, providing a high compliance necessary
to stand the high pressure pumped from the heart [RLD96], [Rem99]. In
average, 52 elastic laminae are present in the thoracic aorta. The me-
dia has the largest effect on the mechanical properties of healthy vessels
[HO03]. The direct mechanical influence of the smooth muscle cells is
thereby small; these are rather responsible for the production of other,
non-cellular structures.

� Tunica Adventitia:
The tunica adventitia is the outermost layer of the vessel. It is sur-
rounded by connective tissue and mainly consists of collagen fibrils ar-
ranged in helical structures. It also contains nerves that supply the mus-
cular layer, as well as nutrient capillaries (vasa vasorum) in the larger
blood vessels. It acts as a cylindrical shell [HO03] which reinforces the
vessel wall from overexpanding and rupturing, especially at high pres-
sure [SBRH02]. The adventitia is directly exposed and anchored to the
surrounding tissue and organs.
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Figure 2.3: Vessel wall layers: Intima, media and adventitia [HO03].

2.1.4 The Aorta

The aorta is the largest artery in the cardiovascular system. It has an average
diameter of 2.5 cm and is directly connected to the left ventricle of the heart.
The aorta is classified in two parts (Fig.2.4): the thoracic part located above
the diaphragma and the abdominal part located underneath. The aorta ascen-
dens denotes the short ascending part at the beginning of the thoracic aorta
and includes the arterial branches to the coronary arteries. Then, follows the
aortic arch, which represents the transition to the descending part, known as
the aorta descendens. The aortic arch includes the branches for the supply
of the head and the arms. The aorta descendens is divided into the aorta
thoracica descendens and aorta abdominalis descendens.
As the large arteries proximal to the heart, the aorta is elastically deforming
and has therefore a Windkessel function. In a healthy adult under normal con-
ditions, the blood is ejected intermittently with a frequency of 60 to 80 beats
per minute from the left ventricle into the aorta. The ejected stroke volume
in the systole is thereby partly absorbed through the elastic deformation of
the vessel wall. The elasticity in this context is denoted as compliance. As a
result of this compliant behavior, the peak pressure in the systole as well as
the strong pressure drop in the diastole may be smoothed through compensa-
tion. In addition, over the diastolic duration, the blood volume may be further
transported thanks to the restored forces. Consequently, the cyclic blood flow
from the heart takes a continuous form [Sch07].
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Figure 2.4: Anatomy of the thoracic (top) and the abdominal (bottom) aorta
[HRL66].
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2.2 Vascular Pathologies

The cardiovascular system is subject to various pathologies with different ori-
gins and effects. In the event of a vascular disease, the cardiovascular system
cannot function properly as the blood and nutrients distribution system for
the body. Depending on the severity and the stage of the pathology, this may
have fatal consequences for the patient. Pathologies of the blood vessels are
of particular importance in this work. The most common vascular pathologies
are arteriosclerosis, aneurysms and dissections.

In this section an overview on these three pathologies will be presented. Partic-
ularly, the origin and classification of the diseases will be described. Particular
attention in the description is given to the aorta, to which most of the appli-
cation examples in this work are associated.

2.2.1 Arteriosclerosis

The most common pathology of the blood vessels is the arteriosclerosis. The
term arteriosclerosis describes vascular pathologies that lead to a stiffening of
the vessel wall. The most common form of arteriosclerosis is the atherosclerosis.
It represents a degenerative disease and is also known as arterial calcification
as illustrated in Fig.2.5. More precisely, atherosclerosis is associated with a
development of atheromatous plaques in the tunica intima which lead after a
certain time to a weakening and degeneration of the arterial tissue. The risk
factors to initiate an atherosclerosis are manifold and vary from arterial hy-
pertension, overweight, diabetes mellitus to stress and nicotine abuse [Geb07],
as well as genetic predisposition, age, gender or various infections.

1
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Figure 2.5: Atherosclerotic change of the vessel wall [SL00].
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The disease starts with a perturbation in the substance exchange of the vessel
wall due to a dysfunction in the endothelial tissue. As a result, fats, proteins,
calcifications and other substances are stored and settled. This occurs due
to the building of special adhesion molecules by the endothelial cells which
lead to the migration of monocytes and T-lymphocytes into the subendothelial
space. The latter produce a large number of proinflammatory substances which
stimulate the migration of smooth muscle cells from the media into the intima.
Further, fibrous capsules are formed that enclose the accumulated cells which
in turn build the central necrotic core of the atheromatous plaques [SL00].

As a result of this process, arterioclerosis leads to a weakening of the intima and
to a destruction of the elastic fibrils in the muscle layers of the media increasing
its stiffness. The loss of elasticity is particularly dangerous for the vessels near
the heart. Through this effect, various other pathologies such as the building
of thrombos or the development of stenosis take place (Fig.2.6.a). Stenosis
is associated with a narrowing of the blood vessels and thus a perturbation
of the blood flow due to the deposit of various substances. The increasing
size of the plaques may lead at a certain advanced level to a restriction in
blood supply, ischemia, of the related vessels, and thus influencing the whole
blood circulation in a serious negativ way. Furthermore, through the high
flow velocity in the narrowed vessel regions, the atherosclerotic plaques may
rupture, leading to a development of a so called thrombos, which in turn
presents a risk of an accute occlusion or a pulmonary embolism.

(a) Thrombus and Stenosis (b) Aneurysm (c) Dissection

Figure 2.6: Vascular pathologies: Consequences of atherosclerosis [SL00].



18 Chapter 2. Medical Background

2.2.2 Aneurysms

A further consequence of the weakening of the vessel wall and the changes
in its elastic properties is the development of aneurysms, shown in Fig.2.6.b.
An aneurysm is a pathological dilatation of the vessel in which the diameter
becomes larger than 1.5 times the original diameter. This abnormal dilatation
of the vessel wall layers is locally restricted and permanent and is due to either
inherent or acquired vessel wall change. Over 90% of the aneurysms are at the
origin of an atherosclerosis. Through an atherosclerosis, the continuous dam-
age of the vessel wall may promote its dilatation. In few cases, an aneurysm
originates from inflammation or infections due to fungus or bacterium. Also,
inherited weakness of the collagen fibrils (Marfan syndrome) may lead to an
aneurysm [Sch07]. In general, the locations of the vessel wall at which an
aneurysm arises are not statistically distributed, but are especially present at
regions where the blood flow is disturbed. The crucial problem thereby is that
once an aneurysm has been developed, the high pressure produced by the blood
within the expanded aneurismal bulge leads in turn to further dilatation.

An aneurysm may be fusiform with a homogeneous dilatation in radial di-
rection, or saccate with a sac-like excrescence. Aneurysms are classified in
aneurysma verum (real), and aneurysma spurium (wrong). The most com-
mon aneurysms are the aneurysma verum, in which the vessel dilatation af-
fects all local wall layers. On the other hand, an aneurysm spurium originates
from a damage of the vessel wall in the form of lesions, for instance due to a
complication after a surgery or an arterial punctuation. Thereby, as a result
of the lesion, blood is emitted in the wall leading to an extravasal pulsating
hematoma.

Figure 2.7: Aneurysms classification after their position [BE08].
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Aneurysms may also be classified after their location; in the aorta this involves
thoracic (TAA), thoracic-abdominal and abdominal (AAA) aneurysms. For
these three types of aneurysms, there exist further classification approaches.
For instance, the Cooley classification represented in Fig.2.7 assigns four types
for the thoracic aorta [EKH+07]: Type-A = ascending, Type-B = aortic arch,
Type-C = aortic arch to descending and Type-D = descending.

2.2.3 Dissections

A dissection is associated with a longitudinal or transversal tearing in the in-
nermost tunica intima layer which leads to the development of a subendothelial
wrong canal between the intima and the media, as illustrated in Fig.2.6.c. As
a result, the vessel wall is split up and the blood flows between the layers.
The blood flowing into this second wrong canal may lead to a narrowing and
hence to a collapse of the actual vessel lumen, known as true lumen collapse
effect. In addition, a reentry effect arises when a further tearing of the intima
occurs yielding a new connection of the wrong lumen to the true lumen. Beside
the atherosclerosis, autosomal inherited connective tissue diseases such as the
Marfan syndrome present also risk factors for the development of a dissection.

Aortic dissections are classified after the Stanford classification in Type-A and
Type-B. Type-A describes dissections in which the tearing of the intima is
located prior the left arteria subclavia in the aortic arch and/or in the aorta
ascendens, while Type-B represents dissections below the left arteria subclavia.
Consequently, Type-A dissections are quite dangerous leading to an urgent
relocation of the vessel outlets. They present a surgical emergency and require
an aortic repair, since if left untreated they lead in 90% of the cases to death.
Type-B dissections are less crucial and depending on their stage may be treated
either in a conservative (medicinal) way or if required with an endovascular
surgery (stent implantation).

2.3 Diagnosis and Therapy of Aneurysms

Although the conducted work applies to any vessel type, shape or pathology,
aortic aneurysms have been the main application example in this work. There-
fore, this section is dedicated to aneurysm specific symptoms and diagnosis as
well as to the related risks and therapy options.
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2.3.1 Symptoms and Diagnosis

A large number of patients, especially at the beginning stage of the aneurysm,
do not show clinical symptoms. These usually show up at a late stage, when the
large dilated vessel starts to disturb its environment. The missing symptoms
make the diagnosis of aneurysms a difficult task. When present, noticeable
symptoms of AAA are mostly expressed in terms of back and diffuse abdom-
inal pain. Further symptoms are diffused pain in the legs, strangury and
alteration of diarrhea and obstipation. TAA show difficulties in swallowing,
cough, hoarseness, perturbation in the blood circulation in the arms and the
brain or even shortness of breath, mostly due to the high pulsating pressure
in the aneurysm. In few cases, signs of pulsating swelling may also indicate a
possible aneurysm.

Aneurysms are mostly discovered accidently in a routine inspection. For
asymptomatic patients, an ultrasound-based inspection is usually used being
the cheapest scanning way. As mentioned before, the currently used way to
evaluate the risk of rupture is based on the maximum diameter and on the
expansion rate of the aneurysm. A more accurate diagnostic inspection is ob-
tained via a tomographic CT- or MRI-scan to identify the exact diameter of
the vessel.

2.3.2 Risks and Therapy

Aneurysms have a high potential of rupture, as a result of the decrease in wall
strength due to the dilatation. A rupture of an AAA leads to serious bleeding
and is associated with 80-90% lethality, while 45-60% of the patients die due
to an hypovolemic shock before reaching the hospital. However, not every
aneurysm holds the same risk potential. Further, only 50% of the patients
survive an emergency surgery of a ruptured aneurysm. Since an aortic surgery
is related to various risks and complications, the advantages of the intervention
must be well evaluated and a surgery is only conducted when the risk of a
rupture overtakes those of the surgery itself.

The risk of rupture increases exponentially with the aortic diameter. In fact,
the risk of rupture for an infrarenal aortic aneurysm with a diameter of 5-6 cm
is 10%, of 6-7 cm is 20% and of a diameter more than 7 cm is 40% per year.
Based on this, therapy suggestions are derived as follow: an AAA diameter of
4.5 to 5.5 cm should be subject to an indication control for an intervention,
while an AAA with a diameter larger than 5.5 cm or an expansion rate larger
than 1 cm per year is an absolut indication for undergoing a surgical therapy
[SSMF05].
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Various therapy options are possible. These may be classified in two areas:
the conservative medicinal therapy and the surgical intervention in the form
of an open conventional or a minimally invasive endovascular surgery.

� Conservative Medicinal Therapy:
Goal of this conservative therapy is to control the high blood pressure,
the malfunction of substance exchange or even the related overweight
through the adoption of medicaments. Although thereby, since a devel-
oped aneurysm is associated with an irreversible dilatation, the aim is
not to eliminate the aneurysm but rather to positively affect the disease
growth by preventing further development and dilatation of the aneurysm
and thus reduce the high risk of rupture. This may be achieved for in-
stance by decreasing the blood pressure using anti-hyperthensiva which
in turn leads to a reduction in the loads applied at the vessel wall and
consequently lowers the risk factor for further dilatation.

� Conventional Open Surgery:
In the open conventional surgery, the diseased aneurismal part of the
aorta is replaced through a vessel prothesis. The access gate to the
infrarenal aorta is usually conducted retroperitoneal, that is situated be-
hind the peritoneum, while the thoracic access occurs through the left
intercostal space. In order to replace the diseased part, it is necessary
to separate the vessel from the blood circulation. This usually leads to
a strong increase in pressure that may be reduced using pressure de-
creasing agents or other surgical procedures such as a connection to a
cardiopulmonary bypass. Thereby, the blood is exhausted from the right
atrium through a canula, arterialized and then pumped again through
a canula into the body. After separating the diseased vessel part from
the blood circulation, the aneurysm sac is opened and depending on the
dilatation of the aneurysm, a cylindrical or a bifurcating prothesis is in-
terposed [BE08]. For the prophylaxis of infection, the aneurysm sac is
used to coat the prothesis.

� Minimally Invasive Surgery:
Another form of surgery is the minimally invasive intervention using
endovascular procedures. This advantageous approach is described in
detail in the next section.
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2.4 Endovascular Therapy

Due to its high invasiveness, the conventional surgery is often accompanied by
subsequent risks and complications especially in old patients. An alternative
form of the intervention with various advantages is in the field of the minimally
invasive surgery using endovascular procedures. Hereby, the diseased vessel
part is not replaced, but protected from the inside (endovascular) through the
implantation of a vessel prothesis (Fig.2.8). The intervention occurs under
angiographic control. Thereby, a stent or a stent-graft is inserted into the
vessel through an artery, for instance the arteria femoralis for the abdominal
aorta. The position of the stent i.e. stent-graft is adjusted using a guide
wire. Once the right position has been found in the angiography, the stent i.e.
stent-graft in the diseased part may be deployed. If required, the contact with
the wall is adjusted afterwards using an inflatable balloon (balloon dilatation).
The stent diameter around the necks, below and above the aneurysm where
the stent-graft is in touch with the healthy aorta, must be about 1 to 2 mm
larger than the aortic diameter in order to prevent migration [Medb].

Figure 2.8: Endovascular intevention: Stent-graft implantation [Medb].

Compared to a conventional open surgery, an endovascular intervention holds
mainly advantages in terms of the minimal invasiveness with a shorter stay
at the hospital and a faster convalescence of the patients. Furthermore, many
studies have demonstrated that endovascular therapies has lower morbidity and
lethality [Bec91]. The lethality rate decreases thereby from 50% to 20-30%
[Lut07]. However, an endovascular therapy can only be conducted under spe-
cial morphological requirements. Especially, the availability of a sufficient long
healthy aortic part cranial and caudal to the aneurysm with about 15 mm over-
lapping space [DB00], is required for the fixation of the endovascular prothesis.
After Allenberg, an endovascular therapy of infrarenal aneurysms may only be
conducted for types I, IIA and IIB as illustrated in Fig.2.9. Consequently, only
about 30% of all AAA patients may be treated with endovascular procedures.
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Figure 2.9: Endovascular therapy for AAA [Sie06].

2.4.1 Stents and Stent-Grafts

Endovascular devices are expandable mesh tubes designed to be inserted into
the diseased vessel. For obvious reasons, they are inserted in their undeployed
state through a catheter in the artery and navigated until they reach the right
position at which the device is deployed. A stent-graft is an endovascular
prothesis consisting of a mesh tube stent which surface is covered with an
elastic material called graft, as illustrated in Fig.2.10.

(a) Curved stent (b) Cylindrical stent-graft

Figure 2.10: Endovascular devices: Stent and stent-graft.

In the case of an aneurysm, a stent-graft is used in order to restore and stabilize
the normal pathway of the blood and to protect the fatigued vessel wall from
high intraluminal pressure. The blood should thereby flow only inside the
stent-graft. Consequently, the aneurysm is functionally shut off as in the open
surgery and the rupture risk is reduced.
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The field of stent-graft design is currently a popular research area. Since
the first implantation in the nineties, many types have been developed. The
individual stent-grafts differ in the type of fixation at the deployment area
or in the type of material used for both the stent and the graft and in the
design of the stent geometry. The design of a stent-graft is also related to its
application area. On one side, through its stiffness it must be able to overcome
all loads. On the other hand, it must be so flexible such to allow all deflections
which comes on its way during insertion [CSM02].

A stent without a graft is adopted in the therapy of stenosis to support the
vessel wall by expanding and preventing it from closing. When used in a stent-
graft, the stent serves the anchoring of the stent-graft in the healthy aortic wall
above and below the aneurysm. It also enforces the graft in the area of the
aneurysm and helps thereby to avoid a bending. Furthermore, by pressing
the graft towards the wall, the stent improves the building of new tissue in
the inbetween areas and hence enforces the healing process [WF99]. Possible
stent designs include the cylinder geometry, the mesh structure, the raised
wires and rings as well as the combination of various geometry-specific designs
[CSM02]. Current implanted stents are especially made of nitinol or steel
materials [Cow07] and include zig-zag patterns. Others are made of alloyment
based on cobalt, tantalum or drug-eluting and biocompatibel materials, which
are degraded by the body after a certain time. For the fixation, there exist
balloon-expandable and self-expandable stents, while balloon dilatation is only
adopted to conduct small placement corrections.

Most adopted grafts for the stent-grafts consist of polyethylene terephthalate
(PET) or polytetrafluorethylene (PTFE). PET is a solid plastic material used
in a woven or knitted textile form. Especially, woven textiles that may be
produced with a very low wall strength of 0.1 mm or less are adopted. PET-
tissue is very soft, though almost completely non-elastic. Its compliance is
equivalent to only 0.0016% diameter increase per mmHg, in contrast to the
thoracic aorta in which, depending on the age, a 0.14% to 0.27% diameter
increase per mmHG is obtained at the same diameter [WF99]. Compared to
PTFE, PET provides the advantage of larger stability, while ePTFE has better
compatibilty exciting less defence mechanisms. PTFE is a plastic polymer
of fluorine and carbon. It is used as a graft material in its expanded form
(ePTFE) at which it behaves plastically even at high pressures. During the
implantation, the diameter of the graft may get changed through the balloon
dilatation. ePTFE is more elastic than PET-tissue with a diameter increase
of 0.016% per mmHg, however still much less elastic than the aorta [WF99].
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2.4.2 Healing Process

The first reaction to the metallic stent after an endovascular therapy is the
development of thrombus due to the pressure against the wall and to the
negative charge of the metal surface. Few days post the implantation, the body
starts to change this thrombus. Thereby, the smooth muscle cells migrate into
the thrombus and build there new regeneration tissue, the neointima, mainly
consisting of collagen and which origin is still not fully understood. These
developments are concentrated on the stent but may also extend to the graft
[DB00]. A current hypothesis for this effect is based on the observation that,
since the cells responsible for repairing the arteries originate from the media,
this layer could also be the origin for the development of the neointima. The
hypothesis assumes that the damage of the smooth muscle cells of the media
leads to a high production of the structure elements elastin and collagen and
that the smooth cells start to migrate into the intima [MGF01].

(a) PET Graft with stenosis (b) ePTFE graft with weaker reaction

Figure 2.11: Reactions on grafts with PET and ePTFE materials [DB00].

A common post-implantation syndrome with pain and fever occurs when PET-
grafts are used and requires an accurate investigation to prevent possible infec-
tions. Hereby, the development of thrombus is particularly dominated, mostly
including also cells of the immune system, which effect is known as the neoin-
timal stenosis (Fig.2.11.a). Therefore, grafts made of PET should only be
implanted in large vessels with diameters larger than 10 mm. The higher
resilience compared to ePTFE may be here an advantage (Fig.2.11.b).

In case the stent is outside the graft, then a thin layer of neointima is developed,
with a thicker non-completely developed layer between the stent and the graft.
When the stent is inside the graft, thus directly facing the blood, then the
grown neointima is relatively thick yielding in a better healing. Further, the
graft permeability also plays an important role in the healing process [DB00].
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2.4.3 Risks and Complications

As mentioned before, compared to open surgery, endovascular therapies are
minimally invasive presenting various advantages. Especially, the lethality rate
and the recovery period for the patients decreases with a stentgraft implan-
tation. Minimally invasive surgeries may therefore be applied to old patients
who cannot undergo an open surgery anymore. However, various complica-
tions may arise during an endovascular implantation, imposing for instance
the removal and the replacement of the stent-graft with a new one.

The most frequent complication in the treatment of stenosis, especially in the
coronary arteries, is restenosis. A restenosis describes an occlusion of the vessel
through a tissue excrescence that originates from an inflammation of the vessel
wall that arises due to the dilatation of the vessel. It can also originate from an
atherosclerosis which arises due to a change in the hemodynamics compared
to the old form of the aorta. This risk may be reduced through a drug-eluting
stent (DES) [SDW+07].

In the treatment of aneurysms with a stentgraft implantation, endoleaks are
the most frequent complication and occur in 10% of the interventions. An
endoleak is a persistent blood flow outside the stent-graft lumen but inside the
treated aneurysm sac [SL00]. It mostly originates at the ends of the stent-graft
due to a deficient sealing of the vessel wall. It may also occur at intersection
regions between two overlapping stent-grafts or due to a porous material struc-
ture or simply a failure of the stent-graft material. As a result of an endoleak,
the high pressure in the aneurysm sac is maintained and the risk of rupture is
preserved. Endoleaks may also lead to a stent-migration. Persistent endoleaks
are dangerous and require an endovascular intervention, such as balloon dilata-
tion or implantation of a second stent-graft. In few cases, they even require
a treatment through an open surgery. Fortunately, in most of the cases they
just disappear alone few days after they arise without the necessity of an in-
tervention [IN01].
In few cases, the stent-graft cannot stand the existent forces and breaks. How-
ever, also here a further intervention is not always required. Further, stent-
migration may occur especially in the descending thoracic aorta and concerns
2% of the treated patients. In a stent-migration, the device leaves its original
position and migrates in the blood flow direction, and hence misses its appli-
cation location. Stent-migration is mainly due to shear stresses arising from
the pulsatile flowing blood and may in turn lead to endoleaks.
Finally, a strong dilatation of the neck is also possible. This mainly arises
in old patients with arteriosclerosis and may also lead to stent migration or
endoleaks. Also complications at the gate artery may lead to a prolongation
of the healing time for the patient [IN01].



Chapter 3

Simulation Workflow

3.1 Introduction: Approach & Requirements

Patient-specific computational modeling of cardiovascular disease is a complex
process consisting of several stages. Careful and adequate processing of all
steps beginning with the tomographic image data and ending with clinically
applicable and valid simulations must be performed and is indispensable for the
generation of accurate and individual results. The aim is therefore to develop
a reliable modeling process as well as to facilitate a clinical implementation of
such computational methods in the field of minimally invasive cardiovascular
diagnosis and endovascular therapy. Such a modeling provides a potential to
aid the diagnosis of aortic disease and their collateral risks, and represents a
promising milestone toward optimal planning and controlling the efficiency of
endovascular treatments.

Procedural Approach

The procedural approach for computational modeling involves the definition
of four aspects: problem, physics, mathematics and evaluation. In the problem
definition, the issues to be solved must be first formulated. In the physics defi-
nition, physical models that satisfy the problem definition must be established.
Then follows the mathematics definition, in which mathematical methods ap-
propriate to solve the defined physics have to be determined. Finally, the eval-
uation definition is concerned with representation forms that adequately and
clearly reflect the results. Corresponding to these aspects, four main questions
arise and have to be addressed: What parameters to solve? Which equations
to solve? How to solve these equations? And how to evaluate and represent
the results?



28 Chapter 3. Simulation Workflow

Modeling Requirements

With regards to a clinical implementation, the following requirements must be
fulfilled: First of all, the modeling must be reliable in terms of accuracy and
numerical stability. Therefore, the results must be interpretable on the basis
of physical fundamentals and mathematical theories. Beside reliability, an au-
tomation of the process is indispensable for the radiologist and the surgeon to
save time, complexity and unnecessary interaction during intervention. The
automation is achieved via system integration of all simulation components into
a single program to facilitate the interaction efficiency and usability. Further,
important features of the workflow are the optimization and individualization,
that is, generating simulations that are able to reproduce the patient-specific
physical parameters in an accurate way. Finally, the expandability of the sys-
tem is useful to enhance flexibility, by easily allowing an extension to include
further applications and pathologies as well as the integration of endovascular
devices or surrounding organs into the modeling process.

Taking into account the above described approach and requirements, the main
focus of the present chapter includes the following:

� Building the elements of the process chain in an accurate and stable way.

� Automation of the process via integration of the individual steps into an
extendable simulation system.

� Optimization and individualization of the modeling in terms of patient
geometry, pathology shape and vessel region.

3.2 Process Chain for CSM, CFD and FSI

Processing image-based computational modeling consists of the stages repre-
sented in Fig.3.1. The simulation workflow is a chain that begins with the
segmentation of the patient-specific tomographic images after 3D reconstruc-
tion. From the segmented data, an initial geometrical model is created and
has to be preprocessed. Then, high-quality meshes required for running and
converging the simulations are generated. Reliable physical models must be
defined in order to determine the system of equations to be solved. Real-
istic initial and boundary conditions, based on individual and physiological
measured data, are required for the solution of the system of partial differen-
tial equations. Mathematical models based on appropriate numerical methods
need to be defined in order to discretize the system of equations and perform
the simulations. Finally, proper representation and evaluation of the results is
necessary to visualize, analyze and quantify the parameters of interest.
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Figure 3.1: Simulation workflow.

The individual elements of the process chain are described in the next sections.

3.2.1 Segmentation of the CT/MRI images

Patient-specific modeling is based on morphological data derived from either
computed tomography (CT) or magnetic resonance imaging (MRI) scans. For
patient-specific biomechanical simulations, great care has to be taken when
generating the three-dimensional (3D) description of the geometry of inter-
est. The CT data are therefore accurately segmented, extracting the region
of interest limited by the vessel wall. An initial approximation of the bound-
ary surface is first generated from the 3D scan based on the region growing
approach. The output of the 3D segmentation usually shows many artifacts,
inaccurate boundary contours and inhomogeneous lumen domain (Fig.3.2.a).
A fine and adequate segmentation is a prerequisite to achieve accurate and
stable numerical results. For this reason, a manual correction of the 2D slices,
usually in axial direction, is further required to improve the 3D segmentation
by removing pixels outside, or filling in pixels inside the lumen (Fig.3.2.b). The
final segmentation shows good results (Fig.3.2.c) though it is time-consuming.

Due to limitations in the quality of the CT and MRI images, the detection of
the wall thickness is not directly possible. The region of interest is therefore
represented by the inner wall of the model. In order to determine the wall
volume, a thickness is defined and assigned to the inner wall as described in
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(a) Initial approximation (b) 2D-correction (c) Final result

Figure 3.2: Patient-specific segmentation step.

Chap.4. Alternatively, the segmented lumen is dilated by a certain number of
pixels n to additionally derive the outer wall surface. n is chosen depending
on the resolution of the images, so that the desired wall thickness is obtained.
In this way, a homogenous thickness is assumed. In all cases, the knowledge of
the wall thickness is a crucial issue for accurate modeling. The segmentation
is performed using the software package Mimics (Materialize Inc.).

3.2.2 3D Model Generation and Preprocessing

The generation and the preprocessing of the three-dimensional geometrical
model is performed based on the segmented patient images.

Generation of the 3D Geometrical Model

From the segmented Dicom slices, an initial 3D geometrical model is created
by combining all 2D slices into one dataset. Then, using a surface triangula-
tion based on the marching cubes method [LC87], an initial boundary surface
is constructed from the volume model. The algorithm generates isosurfaces
from the volume based on a minimum/maximum specified scalar range. The
generation of the 3D model and the extraction of the boundary surface made
for the inner wall are also performed for the dilated outer wall, in case this
latter is used for the determination of the wall volume.
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Preprocessing of the 3D Geometrical Model

The processing of the obtained 3D geometrical model is performed using the
software Paraview, an open source vtk/itk based scientific application devel-
oped by Kitware Inc for medical image processing.

Prior the mesh generation step, the boundary surface of the segmented model
must be preprocessed and optimized. Thereby, the obtained geometry is first
idealized using Laplacian smoothing to adjust the vertices distribution and the
cells shape. Then a surface-cleaning filter is applied to merge duplicate points
within a specific tolerance as well as to remove unused points. Further, in
order to ensure simulations free of oscillations, the blood must flow orthogonal
to the inlet and outlet faces. Therefore, a clip filter is applied, to cut and
readjust the inlet and outlet boundary faces such that their normal is parallel
to the flow direction. Finally, the resulting aortic wall surface is extracted and
exported into an .stl or a .vtk file consisting of 3D triangles.

(a) Generated model (b) Surface optimization (c) Boundary clipping

Figure 3.3: 3D model generation and preprocessing steps.

Fig.3.3 shows the generation and preprocessing of the segmented geometrical
model. The concatenation of all 2D slices into one dataset and the triangu-
lation of the set of points representing the image file is shown in (a). The
smoothing and cleaning filter effects are illustrated in (b) and show a clear
improvement of the surface quality. Finally the clipped surface, which allows
the blood to flow in normal direction to the inlet and out of the outlet faces, is
shown in (c) and is a necessary prerequisite for simulations free of backflows.
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3.2.3 Mesh Generation and Processing

Blood flow and vessel wall computations based on the Finite Element and
Volume Methods require the generation of finite cells to represent the blood
and the wall elements. The computation of the parameters then occurs on
those discrete elements before it is integrated over the whole volume domain.
Furthermore, to enhance numerical stability, which in turn affects the con-
vergence and the accuracy of the simulations, high-quality three dimensional
surface and volume mesh models have to be created. At this point, the ob-
tained and preprocessed vessel surface does not yet guarantee the stability of
the simulations. A high quality surface mesh must be free of high-skewness
cells. This is achieved by integrating a variety of mesh control functions which
allow the generation of high quality and controlled meshes. Quality controlling
is based on mesh functions accounting for

� the curvature at the boundary surface,

� the distribution of the cell size near the wall boundary, and

� the propagation of the mesh from the surfaces into the volume.

Triangular and quadratic elements are generated for the surface meshes. As
for the volume meshes, they consist of tetrahedral, hexahedral and wedge cells.
Depending on the application, various meshing processes had to be developed
to generate suitable mesh models. These may be summarized by:

� Boundary Surface meshing for wall and blood-wall interaction simula-
tions

� Blood Volume meshing for blood and blood-wall interaction simulations

� Wall Volume meshing for blood-wall interaction simulations

Details on the mesh generation processes depending on the different applica-
tions and on the used control functions will be described in Chap.4.

3.2.4 Physical Modeling

An indispensable issue for a reliable interpretation of patient-specific compu-
tational modeling in medical applications is to be based on realistic physical
theories. Physical modeling involves two aspects: describing the fundamental
mechanical behavior through the fundamental equations, and taking into ac-
count the material constitutive properties based on physical material laws.
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Fundamental Equations

Simulating the hemodynamics and the elastomechanics within vessel models
is equivalent to solving the time-dependent fundamental equations governing
the blood flow and the vessel wall domains. These are represented by physi-
cal conservation laws and principles. For the blood domain, they represent a
mathematical relationship between the main fluid variables, flow velocity and
pressure, together with the fluid physical properties in the lumen region. For
the wall domain, the fundamental equations are equivalent to mathematical
expressions relating the mechanical forces to the wall deformation through the
structure physical properties in and along the wall region.

Material Laws

Another important aspect while simulating the blood flow and the vessel wall
is to accurately describe the physical nature of the materials being modeled.
Thus, beside the fundamental fluid and structure mechanics conservation equa-
tions, the properties of the blood as a fluid and the wall as a solid must be
physically defined. Physical properties are described through the flow type
and through material laws which represent the material behavior in terms of
constitutive equations. Essential fluid constitutive models are those describing
the viscosity and the compressibility of the blood. For the structure, constitu-
tive behavior mainly includes the modeling of the elasticity, the isotropy and
the compressibility of the wall.

Details on the derivation and the application of the fundamental equations
and the material laws are described in Chap.5 and Chap.6 for the structure
and the fluid domains, respectively.

3.2.5 Initial and Boundary Conditions

For each computational point, a finite approximation of the partial differential
equations will be established. In order to solve the resulting system of equa-
tions governing the blood flow and the vessel wall domains, information about
the initial and the boundary solutions need to be defined. Model boundaries
are for instance the inlet, the outlets, the inner wall, the blood-wall interface,
the thrombos-blood or stent-wall faces. Choosing proper initial and boundary
conditions is indeed essential to successfully solve a given problem. The re-
quired conditions depend on the type of the computational domain and on the
governing equations used. In general, boundary conditions are given in terms
of [FP08]:
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� The value of the variable, known as the Dirichlet boundary condition

� The gradient of the variable, usually derived in normal direction to the
boundary, known as the Neumann boundary condition

� A combination of the Dirichlet and the Neumann conditions

For realistic simulations and to keep the model patient-specific, individual
physiological data, when available, are used to set the conditions at the bound-
aries of the vessel model. Boundary conditions are usually expressed in terms
of data based on steady or unsteady flow and pressure profiles along the car-
diac cycle, or in terms of degrees of freedom (DOF) constraints. The profiles
are obtained either via direct measurements at specific locations, or via indi-
rect derivation based on physical and/or physiological laws. Examples are the
derived inhomogeneous Womersley spacial profiles and the conservation-based
pressure-specific or outflow-rate boundary conditions. All profiles are prepro-
cessed to avoid undesirable oscillations later in the simulations. Finally, a
good initialization of the model from appropriate locations or values increases
stability and enforces convergence as well as reduces the simulation time.

All these conditions will be described and discussed in Chap.5, Chap.6 and
Chap.7, according to their respective application.

3.2.6 Mathematical Modeling

The resulting set of equations consists of a nonlinear complex system of partial
differential equations. Analytical algebraic methods have limitations solving
such elaborate systems. Numerical approaches are needed instead to solve
analytically non-solvable problems. The Finite-Element Method (FEM) and
Finite-Volume Method (FVM) are numerical approaches with high-potential
in solving time-dependent complex systems of nonlinear partial differential
equations. The FEM and FVM methods are based on the discretization of
the governing equations using a numerical finite mesh. The use of a finite
mesh with a large number of elements and the integration of the conservation
equations over the individual cells, result in exact solutions of the FEM and
FVM methods. Not to forget the fundamental feature of finite methods being
based on physical theories, indispensable for reliable interpretation of patient-
specific medical results.

Applying appropriate FEM- and FVM-based numerical solvers depends on
many factors such as the desired accuracy, the time available but also on
the physical problem such as dealing with static or dynamic domains. Thus,
depending on the application, appropriate spatial and temporal discretiza-
tion techniques may be applied. Further, coupling algorithms for fluid-solid
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variables, interpolation methods, contact algorithms for solid-solid problems,
iteration solution methods etc. should be defined to numerically solve the con-
servation equations. The main focus thereby is to achieve numerically stable
solutions.

The formulation and the application of FEM- and FVM-based solutions are
presented in Chap.5 and Chap.6, respectively. Further mathematical aspects
concerning the interaction of coupled problems are described in Chap.7.

3.2.7 Representation and Evaluation

Once the entire process is compiled and the simulations are performed, the
results may be finally visualized and quantified in a comprehensible way.

In general, quantifying the simulation results is a time intensive and complex
task especially when large number of data is considered. Further, evaluation
approaches depend on the desired precision and mainly on the time available.
Forms of presentation also depend on the problem definition, goals and the re-
sults themselves. Therefore, in order to facilitate this task, relevant evaluation
parameters such as velocity vectors and magnitudes, pathlines, blood pressure,
displacement fields or various wall stress distributions are defined, depending
on the application, at various regions and times of interest. Evaluation regions
and times are chosen such as to support the radiologist and the surgeon in
their decisions. Considerable locations representing a potential help in diag-
nosis and risk prediction concern areas with formation of recirculation zones,
development of vortices, reversed flows or high pressure, stresses and strains.
These usually occur within the cardiac cycle at the peak and late systole and
at the early diastole, where the wall stresses are too high or the recirculation
zones grow to large 3D vortices with reversed flow at the outlet boundaries.

3.3 Numerical Stability

Numerical stability of the simulations is an essential aspect for realistic and
accurate patient-specific biomechanical modeling. Demonstration of numeri-
cal stability is computationally expensive and time-consuming. Consequently,
most of the investigations carried out in this domain do not consider this as-
pect. However, provided that accuracy is an indispensable step for a reliable
evaluation of surgical procedures and planning of optimal therapies which lead
to much more efficient treatments, numerical stability was cautiously investi-
gated in this work.
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The precision of the approximation improves with the level of dis-
cretization and the degree of interpolation chosen, while the detri-
ment of the necessary computation time and memory size [Zie89].

3.3.1 Mathematical Stability

Mathematical stability is attained by ensuring individual converged solutions
of the numerical computations. It is characterized by small residuals and mod-
erate number of iterations leading to fast convergence. It is also represented by
results that are independent on the size of the timesteps used. Mathematically
stable simulations are achieved through the integration of the conservation
equations based on appropriate mathematical models. In particular, the inte-
gration of optimized algorithms, discretization schemes and numerical solvers,
compatible choice of various settings as well as definition and adaptation of
suitable parameters are of major importance.

3.3.2 Physical Stability

While the mathematical stability is characterized by the convergence, physi-
cal stability is represented by the accuracy. It is ensured by applying reliable
physical models and realistic and consistent boundary conditions. Physical
stability is also enhanced by generating results that are independent on the
mesh configuration of the model. This is achieved by performing a computa-
tional grid analysis in which the properties of the meshes required for stable
results are determined. Thereby, several resolution refinements are performed
via iterative simulating until mesh-independent computations are reached.

3.4 System Integration into MoDiSim

A patient-specific simulation system has been developed to automatically sim-
ulate and analyze the blood flow and the vessel wall as well as their interaction
in the aorta. The primary goal thereby is to attain a numerical tool to aid the
diagnosis of aortic pathologies and predict associated risks and which after all:

� operates automatically with minimal effort and interaction

� holds an expandable structure

� is optimized in terms of integrated models

� allows individual computations
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These issues are determining requirements and were realized in this work. They
are presented in the following sections.

3.4.1 Automation of the Modeling

Manual processing of the individual steps of the workflow chain is a time con-
suming and expensive task. Further, beside the time and complexity aspects, it
also requires that the user is familiar with the individual application programs,
their technical components and especially, not unimportant, the physical and
mathematical background of the modeling. Keeping in mind that for clinical
applications, the primary target user is a medical doctor, whose time should be
rather concentrated on the patient and whose interaction capability with com-
plex software components as well as physical and mathematical knowledge are
limited. Therefore, besides reliability, an automation of the simulation process
is necessary for the radiologist and the surgeon to save time and complexity
and to reduce effort and unnecessary interaction during intervention.

Automatic processing with individual awareness in terms of geometry and
conditions is a prerequisite for performing fast, accurate and realistic finite-
element computations of the hemodynamics and the elastomechanics in the
arteries and is therefore included in this work. The automation is realized
via integration of all individual modeling steps into a single simulation system
to facilitate the interaction efficiency and usability. Strategy for dealing with
complex geometries depends on time available, desired quality and accuracy
[Gam06]. The automatic approach developed in this work has a trade-off
between computational cost and complexity, mesh size and accuracy, quality
and physics, with minimal interaction and processing effort.

3.4.2 The MoDiSim Simulation System

The MoDiSim system encloses the whole process for the generation of sta-
ble patient-specific simulation models. It allows automatic processing of the
individual steps of the simulation workflow. All algorithms and approaches
related to each individual step are integrated into an independent component.
Furthermore, the system offers a flexible simulation environment with inter-
faces to the mesh generators Gambit and TGrid, to the structure mechanics
FEM-program Abaqus, to the fluid dynamics FVM-program Fluent and to
the FEM-program Adina, which indeed includes Fluid-Structure interaction
capabilities.
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All components are represented within an interface through which the user
interacts with the program. Each component operates in its own dialog in-
terface, so that it can be processed apart, independent from the other. For
each application the user specifies through the interface the specific models,
parameters and various conditions associated to the defined problem. The pro-
gram generates then automatically the necessary input files and models, gives
them to the specific programs, performs all necessary checks, and executes the
simulations. A visualization part is also included within each interface, which
allows to visualize and analyze various parameters of the simulation results in
3D at any instant of time.

3.4.3 Modeling Components

In total, the simulation process is integrated within the MoDiSim system into
five main components (Fig.3.4). These include mesh generation, mesh process-
ing, vessel wall simulations, blood flow simulations and blood-wall interaction
simulations, respectively. Each modeling component represents an indepen-
dent and individual application.

Figure 3.4: MoDiSim: Components in the main interface.

A diagram representing the system architecture and the components overview
is sketched in Fig.3.5. The modeling components are described in the following:

1. Mesh-Gen:
The mesh generation step is integrated into this component. Mesh-Gen
was developed to automatically generate complex patient-specific mesh
models from CT and MRI image-based segmented geometries of healthy
and diseased vessels. The mesh generation includes various processes for
the creation of optimized surface mesh models for the vessel wall and
the interface surfaces as well as volume mesh models for the blood and
the wall domains. The meshing is executed based on the mesh genera-
tors Gambit and TGrid. More details on the Mesh-Gen component are
presented in Chap.4.
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2. Mesh-Pro:
This component includes the automatic processing of the generated meshes.
Mesh-Pro consists of a conversion library for various finite mesh models
(.vtk, .stl, .neu, .msh, .inp, .in) required for CSM, CFD and FSI sim-
ulations within patient-specific vessels. Further, the converted models
include, depending on the modeling application, predefined FE sets nec-
essary for the definition of individual boundary conditions. More details
on the Mesh-Pro component is also described in Chap.4.

3. CSM-Sim:
The Computational Structure Mechanics (CSM) simulation part is inte-
grated into this component. CSM-Sim was developed to automatically
define, perform and analyze vessel wall simulations in patient-specific
aortic models. It includes continuum structure mechanics modeling,
constitutive formulation of the vessel elasticity, definition of appropri-
ate boundary conditions, integration of FEM-based discretizations and
representation of the results. The computations are automatically exe-
cuted based on the FEM program Abaqus. The CSM-Sim component is
presented in details in Chap.5.

4. CFD-Sim:
The Computational Fluid Dynamics (CFD) simulation part is integrated
into this component. CFD-Sim was developed to automatically define,
perform and analyze patient-specific blood flow simulations in the aorta.
Hereby, continuum fluid dynamics modeling, constitutive blood behavior,
various boundary conditions, FVM-based solution approaches as well as
quantification of the simulations are integrated. The automatic computa-
tions are based on the FVM program Fluent. The CFD-Sim component
is described in details in Chap.6.

5. FSI-Sim:
The Fluid-Structure Interaction (FSI) modeling is integrated into this
component. CFD-Sim and CSM-Sim allow separate simulations of blood
flow and vessel wall assuming rigid walls and predefined loads, respec-
tively. To achieve more realistic computations, FSI-Sim was devel-
oped to automatically perform, quantify and visualize patient-specific
blood-vessel interaction simulations. It basically consists of two sub-
components for CFD and CSM modeling which are coupled together
through their interface. The automatic coupled computations are thereby
performed using the FEM program Adina. A detailed description of FSI-
Sim is included in Chap.7.
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Figure 3.5: MoDiSim: Components overview.
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3.4.4 Expandability of the System

Further, expandability is another important factor necessary when developing
systems for medical applications. The system must be extendable to match
the actual needs of the user. Thanks to its flexible structure, the MoDiSim
system developed in this work can be easily extended to include modeling
of various vessel parts, new pathologies, surrounding organs or implantable
endovascular devices. This can be achieved via integration of further compo-
nents, sub-components or simply new objects within the existing system mod-
ules. Examples would be for instance the integration of new physical models to
simulate different vessels, dissections and stenoses, intraluminal thrombos or
even implanted stents and stent-grafts. In this case, the mesh generation and
conversion steps can be extended as well to match the new modeling aspects.

3.4.5 Optimization of the Models

In the next step, the components of the process chain were further devel-
oped and the individual elements were optimized. Therefore, the effect of ap-
propriate physical models on the patient-specific modeling were investigated.
Thereby, the effects of various blood viscosity and flow turbulence on the hemo-
dynamics, the effects of static and dynamic simulations, of linear and nonlinear
elasticity, of various wall thicknesses and of stent-implantation on the biome-
chanics were evaluated. Also, various numerical methods were integrated to
ensure stable solutions and optimized parameters enhancing the convergence
course were determined. Since the stability of the computations is signifi-
cantly influenced by the choice of the mesh model and its cells decomposition,
the effects of various mesh configurations on the convergence of the simula-
tions were also investigated. Thereby, universal mesh parameters for aortic
geometries that ensure numerical stability were also extracted based on mesh
refinement analysis. Furthermore, numerical tools were developed for the ac-
quisition of accurate boundary conditions. This includes the derivation and
the implementation of special flow and pressure conditions based on physical
and physiological laws.

3.4.6 Individualization of the Simulations

Individual-awareness in terms of geometry and conditions as well as improved
physical properties presents another essential aspect. Individualization is demon-
strated by allowing the simulation of different individual applications: different
patient geometries, different vessel regions and different pathological states.
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The system independency, also in terms of the imaging source, can be repre-
sented as follow:

� CT- and MRI- based images:
The models originate from either CT or MRI scans, making the system
valid for both imaging techniques. In fact, this is obvious, since the key
difference lies in the segmentation step. And as long as the segmented
3D model is available, whether it originates from CT or MRI images, the
remaining steps of the simulation workflow can be processed in the same
way.

� Abdominal and thoracic aortas:
Further, both abdominal and thoracic parts of the aorta are presented.
The modeling was made possible through the integration of various as-
sociated physical models and by ensuring that the mesh generation and
conversion steps are independent on the shape of the 3D geometry. Six
abdominal and one thoracic aortas are processed within this work. The
thoracic model was simulated indeed in a post stent-graft implantation
state and the effects of the stent-graft design on the elastomechanics and
on the hemodynamics were evaluated.

� Healthy and diseased, human and porcine aortas:
Simulation independency in terms of the patient and in terms of the
shape of the disease is presented by modeling healthy and diseased as
well as human and porcine aortas. This was mainly achieved through
the integration of various constitutive material models for the blood and
the wall with specific appropriate parameters. Four healthy and three
diseased aortas were modeled. Four of the seven models originate from
human and three from porcine aortas.

3.5 Processed 3D Aortic Models

In total, ten individual simulations were processed within the MoDiSim sys-
tem. These arise from seven subject-specific, abdominal and thoracic, healthy
and diseased, human and porcine aortic models. The individual geometries
originate from morphological data derived from CT or MRI scans. A total
number of slices ns was acquired to reconstruct an aortic model from about
the renal arteries to the aortic bifurcation for the abdominal part, and from
above the aortic valve down to the renal arteries for the thoracic part. The
2D image size was xi ∗ yi mm2 and the slice thickness was ds mm, resulting in
a voxel size of xv ∗ yv ∗ zv mm3 at a resolution of xp ∗ yp pixels.
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All models information are summarized in Tab.3.1, including number of slices,
image size, slice thickness, image resolution and voxel size.

Table 3.1: Summary of all processed models.

Model ns xi ∗ yi ds xp ∗ yp xv ∗ yv ∗ zv Origin

CT-AA 210 128*128 1.0 512*512 0.25*0.25*1.0 Human
CT-AAA 109 256*256 3.0 512*512 0.50*0.50*3.0 Human
CT-TAA 210 128*128 1.0 512*512 0.25*0.25*1.0 Human
MR-AAA 41 471*353 7.5 256*192 1.84*1.84*7.5 Human
4D-CT-P1 182 294*294 0.9 512*512 0.57*0.57*0.9 Porcine
4D-CT-P2 275 77*77 0.9 512*512 0.15*0.15*0.9 Porcine
4D-CT-P3 222 102*102 1.0 512*512 0.20*0.20*1.0 Porcine

All three-dimensional geometrical models are accurately reconstructed via seg-
mentation and preprocessing as described in Sec.3.2. For CT-AAA, MR-AAA
and CT-TAA the intraluminal thrombus (ILT) and the stent were additionally
included. The patient-specific segmentation, the extraction of the 3D geomet-
rical models and the preprocessing of the boundary surfaces prior to meshing
are shown in Fig.3.7 to Fig.3.12.

Figure 3.6: CT-AA: Patient CT-based Abdominal Aorta.



44 Chapter 3. Simulation Workflow

Figure 3.7: CT-AAA: Patient CT-based Abdominal Aortic Aneurysm.

Figure 3.8: CT-TAA: Patient CT-based Thoracic Aortic Aneurysm.
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Figure 3.9: MR-AAA: Patient MR-based Abdominal Aortic Aneurysm.

Figure 3.10: 4D-CT-P1: Porcine1 4D-CT-based Abdominal Aorta.

Figure 3.11: 4D-CT-P2: Porcine2 4D-CT-based Abdominal Aorta.

Figure 3.12: 4D-CT-P3: Porcine3 4D-CT-based Abdominal Aorta.
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3.6 Summary

The aim of this chapter was to present the simulation process developed in this
work for patient-specific and image-based blood flow and vessel wall modeling
in the aorta. First, the procedural approach and the modeling requirements
were illustrated. Then, the building of the process chain required for the com-
putations was briefly described. The workflow consists of fine segmentation
of the patient data, extraction and processing of the 3D geometrical model,
generation of high-quality controlled surface and volume meshes, definition of
appropriate physical models, setting of realistic boundary conditions, numer-
ical computations using accurate mathematical solvers and finally evaluation
of the simulations. Then, aspects involving the numerical stability essential
for reliable computations were presented. Further, the integration of the indi-
vidual steps into MoDiSim including automation of the process, expandability
of the system, optimization and the individualization of the simulations, indis-
pensable for a clinical implementation of such a patient-specific system, were
described. The five components of the MoDiSim system were also briefly pre-
sented and a more detailed description will proceed in the next four chapters.
Chap.4 will include the mesh generation and processing steps. While Chap.5,
Chap.6 and Chap.7 will include the CSM, CFD and FSI modeling parts, re-
spectively. Finally, the patient-specific aortic models processed in this work
were presented at the end of this chapter.



Chapter 4

Mesh Generation & Processing

4.1 Introduction: Meshing Requirements

Numerical simulations of the vessel wall, the blood flow and the blood-wall in-
teraction require exact patient-specific mesh models to be generated. Further,
depending on the application, different processing techniques of the meshes
have to be provided. The obtained boundary surfaces of all models presented
in Sec.3.5 do not yet guarantee the stability of the simulations. Generating
high-quality meshes that lead to stable patient-specific simulations is essen-
tial and must be therefore included within the mesh generation process. A
poor quality mesh can lead to unstable and inaccurate solutions. Also, since
timesteps generally depend on the mesh element type, size and quality, a bad
mesh may slow down or even freeze convergence. Hence, while generating mesh
models to meet the requisite of the simulations, it is important to keep the
following in mind:

High-Quality Meshes ⇐⇒ Stability ⇐⇒ Accuracy and Convergence

Assigning and checking mesh quality metrics, integrating mesh control func-
tions, investigating mesh independency, formulating appropriate mesh genera-
tion approaches, obtaining good mesh results as well as automating the mesh
generation process including processing of individual FE models represent the
core of patient-specific meshing requirements and were therefore conducted in
this work. Based on these issues, the demands for reliable and stable indi-
vidual blood flow and vessel wall simulations can be fullfilled. These essential
aspects will be described in details in the next sections of this chapter.
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4.2 Mesh Quality

Small local variations in mesh size between adjacent cells and gradual growth
in mesh size or direction are, amongst others, characteristics of a good mesh.
While smoothing may improve the overall quality by adjusting the node lo-
cations within the mesh, it should be handled with caution when applied to
patient-specific models. Considering the fact that smoothing may indeed be-
come an extensive process when dealing with complex geometries.

4.2.1 Quality Checking

A high-quality three-dimensional grid must be free of high-skewed elements.
The quality of surface and volume mesh models required for stable simulations
may be checked based on mesh quality metrics. To verify the quality of a mesh
model, the quality range of each generated mesh element should be examined.
High-quality surface and volume meshes required for the simulations must
be generated so that tolerant spacing attributes are obtained and the quality
ranges of the metric parameters (see below QEAS and QESS) do not exceed
certain critical average values. Otherwise, high-skewed elements must be op-
timized and large spacing variations between adjacent cells minimized. This
is achieved through an improved remeshing of the domain and readjustment
of the mesh parameters. There exist several methods to assign and check the
mesh quality [Gam06]: size-based such as the Size Change parameter, ratio-
based such as the Aspect Ratio, the Diagonal Ratio and the Edge Ratio, or
skew-based such as the EquiAngle Skew, the EquiSize Skew and the MidAngle
Skew metrics.

4.2.2 Quality Metrics

The most important three metrics used in this work for the specification of the
mesh quality are based on the EquiAngle Skew QEAS, on the EquiSize Skew
QESS and on the Size Change parameters. These metrics are shortly discussed
in the following:

� Size Change:
The Size Change metric parameter specifies the maximum ratio of the
size of an element relative to its neighbors. It only applies to three-
dimensional elements and may be described by:

QSC = max [r1, r2, ...rn] (4.1)
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where ri being the individual ratios of area or volume of an element i
relative to its neighboring elements and n is the total number of ele-
ments present in the mesh. In order to compute QSC , ri is determined
individually for all elements as:

ri =
Si

Sj

(4.2)

where Si and Sj are the area or volume of the element i and its neighbor
element j, respectively. QSC= 1 describes an element surrounded by
neighbors for which the areas or volumes have exactly the same dimen-
sions, as found for instance in a uniform mesh.

� EquiAngle Skew:
The EquiAngle Skew parameter is a normalized measure of skewness. It
may be expressed as:

QEAS = max

[
θmax − θe
180− θe ,

θe − θmin

θe

]
(4.3)

where θmin and θmax being the smallest and largest angles in the cell
respectively, and θe being the angle for an equiangular element that cor-
responds to a similar form. θe equals 60

◦ for triangular and tetrahedral
cells and 90◦ for quadratic and hexahedral cells. QEAS= 0 describes a
perfectly orthogonal mesh element, whileQEAS= 1 describes a rather de-
generate, poorly shaped element. Per definition, a high-quality 3D mesh
is related to average QEAS values of 0.4. All meshes generated in this
work do not exceed this average value and thus conform to the definition
of the high-quality mesh range.

� EquiSize Skew:
The EquiSize Skew parameter is another measure of skewness based on
the size of the element. It is defined by:

QESS =
Se − S
Se

(4.4)

where S is the area in 2D or the volume in 3D of the element of interest
and Se is the maximum (2D) area or (3D) volume of an equilateral cell
which circumscribing radius is identical to that of the meshed element
[Gam06]. Similar to the EquiAngle Skew parameter, QESS= 0 describes
a perfectly equilateral element, QESS= 1 describes a rather degenerate
mesh, while average QESS= 0.4 defines a high-quality 3D mesh. Also
the QESS values of all meshes generated in this work conform to the
definition of high-quality meshes with average values less than 0.4.
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4.3 Mesh Control Functions

Enhanced quality may be obtained by controlling and optimizing the surface
and the volume meshing. Mesh optimization is included by integrating mesh
control functions into the mesh generation process. Mesh control functions
allow to control the properties and the configuration of the mesh in specific
regions and proximal to objects to which they are attached. Three control func-
tions adapted from Gambit are included in this work: curvature size, meshed
size and boundary layers functions. Size functions prescribe the characteristics
of the mesh elements in terms of minimum or maximum size, adjacent angles
and total number. Boundary layers affect the size and type of mesh elements as
well as the spacing between mesh nodes within specific defined mesh patterns.

4.3.1 Boundary Layers

Of particular importance are boundary layers, used to control the topology
of the mesh in specific locations. Thanks to their geometrical topology of
mapped prisms, boundary layers prevent tetrahedrons from standing with one
tip on the wall, which badly affects the computation of wall fluxes. Further, by
defining row sections directly attached to a particular face and by prescribing
the spacing of the mesh nodes between these rows, the accuracy of information
to be computed around this face can be controlled. Boundary layers can be
for instance attached to the boundary surface of the vessel wall to allow for
an accurate computations of parameters near the wall. Shear stresses, derived
from the gradients of the velocity vectors, are characterized to be larger in
the region immediately adjacent to the vessel wall than in the lumen domain.
By generating small cells at locations close to the wall and decreasing the
mesh density in direction toward the inside of the lumen mesh, these velocity
gradients can be better resolved.

(a) Wall BL (b) Blood BL (c) Wall and blood BL

Figure 4.1: Applied boundary layers (BL).
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Boundary layers are characterized by the attachment elements defining their
location, by the type of the algorithm determining their shape and by the di-
mension of the parameters defining their characteristics. Attachment elements
include the edge or face to which the boundary layer is attached. Further, if
multiple directions are possible, for instance when the boundary layer is at-
tached to a face shared by more than one volume, the corresponding volume
defining the boundary layer direction must be also specified. The algorithm
type determines the approach describing the general behavior of the boundary
layer. The defined type of the algorithm together with the specified dimension
of the parameters are applied along the boundaries of the specified attachment
element in order to create the boundary layers. The dimensions of the bound-
ary layer are determined through parameters that define its characteristics.
These include the number of boundary layer rows, the height of the first row
of mesh elements, the growth factor and the total number of rows. The growth
factor specifies the height of each succeeding row of elements, while the total
number of rows determines the depth of the boundary layer. The parameters
to be specified vary according to the algorithm type used.

Boundary Layers Algorithms

Three boundary layers algorithms are provided in Gambit to define the height
of the first row elements and to compute the size of the succeeding rows. In
the uniform algorithm (Fig.4.2.a) each row within the boundary layer domain
exhibits a uniform height. Thereby, the elements in the first row are first
assigned a uniform size a across the attachment element. The first row size of
the boundary layer is defined by the distance between its attachment element
and the first row of mesh nodes within the boundary layer, so that the prism
height equals the cell height. Then, a constant growth factor G representing
the ratio between the heights of two successive rows is used to compute the size
of the next row elements. As a result, since the growth factor is constant, all
succeeding rows will also be assigned a uniform height. The uniform algorithm
is simply defined by G = b/a [Gam06], where b is the distance between the
first and second rows. Based on this algorithm, the height of any row may be
computed as the product of the growth factor with the size of the previous
row in the boundary layer. Further, based on the first row a, on the growth
factor G and on the row value r specifying the total number of rows to be
included in the boundary layer, the total depth D of the boundary layer may
be computed as:

D = a
(
1 +G+ · · ·+Gr−1) = a. r−1∑

j=0

Gj (4.5)
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The uniform algorithm has been implemented in this work through journal
files and may be automatically executed by specifying the related parameters.

Figure 4.2: Boundary layers uniform algorithm [Gam06].

Alternatively, the aspect ratio first and the aspect ratio last algorithms may
also be used to compute the shape of the boundary layer. In the aspect ratio
first algorithm, the first row size varies in proportion to the edge mesh interval
lengths. For the aspect ratio last algorithm, a uniform height is first assigned
to all first-row elements, while individual growth factors Gi are used. Gi vary
across the boundary layer in proportion to the edge mesh interval widths. A
detailed description of the algorithms may be found in [Gam06].

4.3.2 Surface Size Function

Surface size functions are used to control the growth of mesh intervals and the
size of elements on a 2D surface. Curvature size functions implemented in this
work are surface size functions used to control the mesh size while accounting
for the curvature of the wall surface. This allows, based on a curvature angle
and a growth factor, to generate fine cells at sites where the curvature of
the wall is high and larger ones at sites where the wall surface is rather flat.
By specifying a maximum angle φ, a curvature size function allows to limit
the angle θ between the normals in outward direction of any two adjacent
mesh elements located proximal to the highly curved source surface. Thereby,
the mesh characteristics of geometric configurations including highly curved
surfaces can be directly influenced. The size is computed such that:

size = 2rc sin (φ/2) (4.6)

with

rc =
h/2√

(1− cos(θ)) /2 and cos(θ) =
NA • NB

‖NA‖ • ‖NB‖ (4.7)
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Figure 4.3: Curvature size function definition.

Patient-specific geometries include uneven curved surfaces. If meshed using a
specified fixed mesh element size, the resulting mesh would represent only a
coarse approximation of the geometry shape. As a result, numerical simula-
tions based on the coarse mesh cannot provide detailed information for com-
puted parameters at specific locations. While uniformly reducing the specified
mesh size would allow to create finer elements, it would also significantly in-
crease the overall number of mesh elements in the entire configuration. Creat-
ing a curvature size function allows better approximating the geometry without
reducing the overall mesh size. Thereby, mesh refinement is applied only in lo-
cations of high curvatures such that the mesh sizes satisfy to the requirements
of the curvature size function.

Figure 4.4: Curvature size function effects on the wall and thrombus.

Curvature size functions are characterized by the source and attachment ele-
ments defining the geometry and by the dimension of the parameters specifying
the exact characteristics. The curvature size function parameters are the max-
imum allowable angle between the normals of adjacent mesh elements, the
growth rate specifying the increasing in the edge size of the next elements and
the maximum and minimum sizes of the elements specifying the maximum and
minimum allowable edge lengths for the attachments, respectively.



54 Chapter 4. Mesh Generation & Processing

4.3.3 Volume Size Function

An unsettled fine mesh may quickly increase the overall mesh size resulting
in unnecessary expensive computational cost. Meshed size functions are 3D
volume size function which allow to control the mesh distribution by confining
smaller cells only to locations where they are needed. Hence, they allow to
limit the mesh size over particular regions. The mesh growth is controlled from
meshed sources into attachment regions. In order to reduce the overall mesh
size inside the blood region, a meshed size function can be applied to control
the propagation of the mesh from the meshed wall surfaces into the lumen
volume. Meshed size functions control the maximum mesh size as a function
of distance from a given source region [Gam06]. Thereby, non-constant start
sizes are defined as to vary with location on the source according to the sizes of
its existing mesh elements. Obviously, in order to apply a meshed size function,
the source elements must be meshed prior to meshing the attachment region.
As a result, smaller first row mesh cells are obtained at locations adjacent to
fine source mesh elements. This in turn affects the growth of the mesh as well
as the total number of elements created in the volume attachment region.

Similar to curvature size functions, meshed size functions require the specifi-
cation of a premeshed source and attachment elements defining the shape and
location of the application regions as well as the specification of the dimension
of the parameters defining the mesh characteristics. The meshed size function
parameters are the growth rate specifying the increase in mesh size rising from
the source region and the maximum size defining the maximum allowable mesh
edge length within the attachment region.

(a) At the inlet (b) Along a z-slice

Figure 4.5: Meshed size function effects within the blood.
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4.4 Mesh Independency

While the stability of the simulations in terms of convergence is influenced
by the type and the form of the mesh elements, the approximation and thus
the stability in terms of accuracy is significantly affected by the size of the
meshes. Accuracy is ensured by generating results that are independent on the
mesh configuration of the model. A computational grid analysis was therefore
performed in order to:

� Investigate the effects of different mesh configurations on the hemody-
namics parameters of the blood flow

� Determine the mesh properties that result in accurate stable simulations

� Acquire universal optimized mesh parameters for the control functions
that lead to mesh-independent results for individual aortic geometries.

4.4.1 Methods

Iterative simulating based on several resolution refinements is performed un-
til mesh-independent computations are reached. The blood flow is simulated
using two kinds of geometries: an idealized cylindrical and a CT-based patient-
specific aortic aneurysm geometry. The velocity and the WSS distributions are
computed by solving the system of partial differential equations corresponding
to the continuity and momentum equations in the luminal region. Finally, the
effects of the different mesh configurations on the velocity and WSS distribu-
tions within the geometries are analyzed and evaluated. The CFD simulations
are based on the finite volume method in Fluent. Details on the CFD simula-
tions and on the FVM approach are described in Chap.6.

Idealized Geometry

In order to get a rough approximation of the desired mesh parameters, an
idealized geometry was first considered. The resulting parameters are then
used as a first estimation for the real geometry. The idealized geometry consists
of a cylinder of radius 1 cm and a height of 30 cm (Fig.4.7).
Seven mesh configurations are generated varying the size of the first layer
from 0.10% to 2.00% of the diameter. Four layers are defined for each mesh
configuration with a growth factor of 1.2. The wall surface and the rest of
the volume are meshed with equally sized (0.1 cm) triangular and tetrahedral
elements, respectively. The CFD simulations are carried out considering a
steady laminar blood flow with a constant inlet velocity of 0.5 ms−1.
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Patient-Specific Geometry

For the individual blood flow computations, the simulation workflow described
in Chap.3 and developed for CFD simulations is applied. The patient-specific
geometry is based on a CT scan of an abdominal aortic aneurysm (CT-AAA
model), consisting of the lumen region and the arterial wall.
Four different mesh configurations are used. The wall surface of all models
is the same, meshed using triangular elements. The surface is thereby based
on a size function accounting for the curvature at the wall, defined with a
curvature angle equal 5�. This was defined as a first approximation based on
mesh independency in terms of wall stresses from CSM simulations. On the
other hand, varying volume meshes between the four models have been used.
The propagation of the mesh from the wall surface into the volume is controlled
using a meshed size function. The distribution of the fluid cell size near the wall
is controlled using a boundary layers (BL) control function. The BL are defined
such that the fluid domain contains small cells at locations close to the wall,
and which increase in direction toward the inside of the fluid. The meshes in the
boundary domain consist of three layers of wedge shaped finite elements. The
size of the first BL used for the four configurations is 0.50, 0.75, 1.00 and 1.50%
of the inlet diameter (2 cm), and the growth factor is defined as 1.2. Finally, a
whole cardiac cycle of period T= 0.85 s was modelled and the timestep size was
successively reduced until timestep-independent computations were obtained.

Figure 4.6: The finest AAA wall surface mesh model based on the curvature
size function, and the inlet of the AAA with the finite boundary
layers and volume mesh elements.
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(a) 0.1% first layer size (b) 0.5% first layer size

Figure 4.7: Idealized mesh models with four BL of various first layer size.

4.4.2 Results

Numerical results on the effects of the different mesh resolution on the flow pat-
terns within the idealized cylindrical and the patient-specific aortic aneurysm
geometries are presented, and the stability of the CFD simulations is eval-
uated. Provided that the primary physical variables of interest for arterial
modeling are flow-based quantities, results on the effects of the boundary lay-
ers configurations are therefore examined in terms of velocity and WSS dis-
tributions. Mesh-independency is then assessed by comparing and evaluating
both the computed velocities and the computed wall shear stresses. Based on
the results, automatic generation of patient-specific meshes that lead to stable
simulations could be made possible (Sec.4.8).

Idealized Geometry

The velocity distribution within the plane z= 29 cm and the WSS distributions
between z= 20 cm and z= 30 cm along the cylinder are evaluated for all seven
mesh configurations. The relative error of the mean velocity in a portion
(-1.0 cm < x < -0.7 cm) within the plane z= 29 cm decreased with mesh-
refinement from 6.3% at transition of the BL configuration from 0.10 to 2.00%
of the inlet diameter, to 2.1% at transition from 0.10 to 0.25%. In this domain,
the distribution of the tangential velocity points near the wall is homogeneous
and presents the best interpolation scheme. As a result, the error by the
derivation of the gradients (WSS) is minimized. The relative error of the
mean-average WSS decreased from 49.3% at transition from 0.10 to 2.00%,
to 7.7% at transition from 0.10 to 0.25%. The obtained parameters for the
boundary layers function of an idealized geometry with an inlet diameter and
a length equal to 2 cm and 30 cm respectively, are presented in Tab.4.1.
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Table 4.1: Results of the velocity (V) and WSS computations and the corre-
sponding relative errors (%) obtained at transitions between the
different mesh configurations within the idealized models.

% of diameter WSS (Pa) WSS (Pa) V (m/s) V∗ (m/s)
size of first BL 29.0<z<30.0 20.0<z<30.0 z=29.0 z=29.0

0.10 1.68803 1.72217 0.49931 0.31900
0.25 1.54509 1.58993 0.49931 0.32581
0.50 1.34474 1.37504 0.49912 0.33419
0.75 1.19247 1.21731 0.49923 0.33665
1.00 1.10429 1.07663 0.49919 0.32941
1.50 0.92911 0.96452 0.49907 0.33716
2.00 0.91686 0.87322 0.49917 0.29884

Transition from Rel. Error Rel. Error Rel. Error Rel. Error

0.10 to 0.25 8.468 7.679 0.001 2.135
0.10 to 0.50 20.337 20.156 0.039 4.761
0.10 to 0.75 29.357 29.315 0.017 5.532
0.10 to 1.00 34.581 37.484 0.025 3.263
0.10 to 1.50 44.959 43.994 0.048 5.693
0.10 to 2.00 45.684 49.296 0.028 6.320

V∗: Velocity at z= 29 cm for the portion -1.0 cm < x < -0.7 cm

Patient-Specific Geometry

The computations for the patient-specific aortic model are carried out along
the whole cardiac cycle. Timestep independent simulations are reached using
1000 equally spaced timesteps. The velocity distribution in the lumen region
within a portion -3.2 cm < x < -2.7 cm of the plane z= 16.5 cm orthogonal
to the flow direction, and the WSS distributions in the aneurismal region
between z= 12.5 cm and z= 21.0 cm are evaluated at peak systole (t= 0.15 s)
and diastole (t= 0.34 s) for all four mesh configurations. The relative error
of the mean average velocity showed its minimum, 0.1% in the systole and
2.6% in the diastole, for the finest BL mesh configuration at transition from
0.50 to 0.75% of the inlet diameter. As for the WSS, the minimum was also
obtained for the finest mesh configuration and the relative error of the mean-
average decreased from 9.7% to 2.5% at systole and from 17.4% to 7.6% in
the diastole. The parameters for the boundary layers function obtained for an
aortic geometry having the approximate dimensions of an inlet diameter and
a length equal to 2 cm and 30 cm, respectively are presented in Tab.4.2.
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Table 4.2: Results of the velocity (V), WSS computations and the corre-
sponding relative errors obtained at transitions between the dif-
ferent configurations, at systole (S) and diastole (D).

% of diameter WSS - S V+ - S WSS - D V+ - D
size of first BL 12.5<z<21.0 z=16.5 // -3.2<z<-2.7 z=16.5 //

0.50 (0.10 mm) 0.23596 0.04007 0.10160 0.00691
0.75 (0.15 mm) 0.24183 0.04010 0.10933 0.00709
1.00 (0.20 mm) 0.25038 0.04012 0.11437 0.00732
1.50 (0.30 mm) 0.25874 0.04058 0.11931 0.00756

Transition from Rel. Error Rel. Error Rel. Error Rel. Error

0.50 to 0.75 2.490 0.070 7.605 2.551
0.50 to 1.00 6.110 0.120 12.564 5.916
0.50 to 1.50 9.655 1.268 17.431 9.342

V+: Velocity at z= 16.5 cm for the portion -3.2 cm < x < -2.7 cm

The results presented in Tab.4.1 and Tab.4.2 show that mesh-independency as
assessed based on computed velocities is insufficient to state mesh-independency
for computed wall shear stresses. This is an indication that WSS computa-
tion is much sensitive to mesh configuration than flow velocity computation.
Therewith, the present grid investigation confirms a previous study of [PE01].

As for the curvature size function (cSF) and the meshed size function (mSF)
parameters, they are determined such that the mesh is optimized in the sense
that it does not contain high-skewed elements for all BL configurations. There-
fore, the skewness parameters defined in Sec.4.2 are assigned to all mesh con-
figurations and checked for their quality range. The parameters of the cSF and
the mSF obtained from the present analysis and used later for the automation
process of individual aortic geometries, are summarized in Tab.4.3.

Table 4.3: Parameters for the curvature and the meshed size functions ob-
tained from all boundary layers mesh configurations described
above within the patient-specific CT-AAA model.

angle (�) growth min (mm) max (mm)

cSF 5 1.2 0.3 3
mSF - 1.1 - 3
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4.5 Mesh Generation Approaches

Various mesh generation approaches have been developed allowing the gener-
ation of high-quality meshes for CSM, CFD and FSI applications. Thereby,
unstructured meshes are adopted, allowing a high flexibility for the adaptation
of the grid at the boundaries of the domain. Further, hybrid meshes consist-
ing of hexahedrons, wedges, pyramids and tetrahedrons are used providing a
better control for complex geometries. The mesh generation is carried out us-
ing the mesh generators Gambit and TGrid. The mesh generation processes
for surface wall and interface wall meshing, for volume blood meshing and for
volume wall meshing, developed and implemented in this work are described
in the following sections.

4.5.1 Surface and Interface Meshing

Biomechanical simulations of the vessel wall as well as fully coupled simula-
tions between blood and wall require the generation of surface meshes for the
definition of the boundary vessel and the common interface, respectively. The
process of generating individual 3D patient-specific boundary surfaces of ves-
sel wall models is implemented into the MeshSurface algorithm and can be
described by the following steps:

1. First, the .stl created from the segmentation step is imported and the
old mesh is reset.

2. In order to describe the wall curvature, a homogeneous fine mesh that
better represents the real surface of the wall is then generated and ex-
ported as a mesh file.

3. Within a new session, the created fine mesh is read, removed and a
control function accounting for the curvature of the wall surface (cSF) is
created. As mentioned before, the cSF allows to control the distribution
of the cell size taking into account the curvature of the wall at that
location.

4. Based on appropriate parameters for the defined cSF, the wall is meshed
with triangular elements for the decoupled wall simulations and with
quadratic elements for the interface in the fully coupled FSI simulations.

5. Rotation and translation are then applied to align the geometry with
zero-coordinates at the center of the inlet of the model.

6. Finally, the resulting mesh is saved as a .dbs file and exported into a
.msh surface mesh.
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4.5.2 Volume Blood Meshing

Decoupled simulations of the blood flow as well as fully coupled simulations
require the generation of volume meshes to represent the blood elements. The
meshing process developed for the generation of 3D finite blood volume meshes
is implemented into the MeshBloodVolume algorithm and can be described by
the following steps:

1. The geometrical volume model represented by the closed surface of the
fluid domain is first created by stitching the inlet, outlets and the wall
faces together. The surfaces in turn are created from the edges defining
their boundaries.

2. In order to control the distribution of the fluid cell size near the wall,
a BL control function is defined to generate small cells proximal to the
wall surface. They consist of hex-shaped or wedge-shaped finite elements,
depending on the original wall surface boundary mesh type.

3. Further, to control the propagation of the mesh from the surfaces into the
volume, a mSF function is defined from the wall into the fluid domain.

4. Then appropriate parameters are associated to these control functions
and the volume mesh model is generated with tetrahedrons.

5. Finally, various zones are specified based on the boundary and the con-
tinuum types. The specifications include the definition of the physical
characteristics of the model at its boundaries and within its domain.

4.5.3 Volume Wall Meshing

While the vessel domain for the decoupled wall simulations in Abaqus may
be represented by 3D shell elements, hyperelastic modeling in Adina requires
the generation of 3D solid elements to represent the vessel wall. Thus, for the
fully coupled simulations, the outer wall boundary must be additionally defined
beside the inner wall to create a 3D volume of the wall model. As mentioned
in Sec.3.2, detection of the outer wall border is not directly possible from the
CT or MRI patient images. Instead, the generation of the volume wall domain
with a homogeneous thickness is achieved in two alternative ways:

� The dilated lumen from the segmentation step is used to create the vol-
ume model represented by the closed surface of the wall domain. Then, a
meshed size function is defined from the inner wall into the wall volume.
Finally, the 3D volume mesh model of the defined geometry is generated
using tetrahedrons.
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� A volume mesh model is directly generated by mapping the inner wall
mesh outwards by a certain number of boundary layers of defined size.
In this way, eight-node brick elements are used for the wall volume mesh
domain. This approach has two advantages: First, no information about
the outer wall is necessary, that is, the dilation step in the segmentation
can be skiped, saving time and effort. And second, hexahedrons are more
stable for nonlinear material modeling than tetrahedral elements.

The second approach was therefore implemented into the MeshWallVolume
algorithm as the standard method for the generation of 3D volume wall mesh
models.

4.6 Meshing Results

The developed meshing processes are applied to all seven subject-specific 3D
models obtained from the segmentation step and summarized in Tab.4.4. This
demonstrates that the implemented meshing approaches can be applied to
any shape geometry independent on its origin, thus ensuring individualization.
The geometrical models originating from CT- and MRI- scans of abdominal
and thoracic, healthy and diseased, humans and porcine aortas were shown in
Fig.3.6 to Fig.3.12. A summary of all corresponding mesh results generated
in this work including the types of the applied simulation and the associated
mesh is presented in Tab.4.4.

Table 4.4: Summary of all generated mesh models.

Model Simulation Type Mesh Type

CT-AA CFD Surface, Volume Blood
CT-AAA CSM, CFD Surface, Volume Blood

CT-TAA(+Stent) CSM, CFD Surface, Volume Blood
MR-AAA CSM, FSI Surface, Volume Blood, Volume Wall
4D-CT-P1 CSM Surface
4D-CT-P2 FSI Surface, Volume Blood, Volume Wall
4D-CT-P3 FSI Surface, Volume Blood, Volume Wall

All resulting meshes showed high quality cells required for the simulations. The
quality ranges of the metric parameters QEAS and QESS for the individual cells
do not exceed 0.4 for the surface meshes and 0.97 for the volume meshes. The
next sections include details on the meshing results for each mesh type.



4.6. Meshing Results 63

4.6.1 Surface and Interface Meshing

Obviously, for all simulation types, the first step in creating the mesh starts by
generating the boundary surface of the model. Therefore, surface meshes for
all the seven models had to be generated. They are defined by the wall bound-
ary, the lumen boundary and the interface for the CSM, the CFD and the FSI
applications, respectively. The surface meshes contain triangular cells when
used for CSM or CFD simulations and quadratic cells if used for FSI simula-
tions. In both cases the mesh generation is based on curvature size functions.
In total, eight surface mesh models used for ten applications are generated
from the seven geometrical models. A summary of these meshes including the
mesh element type and size is presented in Tab.4.5. The corresponding results
are shown in Fig.4.8 to Fig.4.11 and Fig.4.13.a, Fig.4.14.a and Fig.4.15.a.

Table 4.5: Summary of the generated surface mesh models.

Model Application Type Size

CT-AA-SMesh CFD Tri 24272
CT-AAA-SMesh CSM, CFD Tri 99820
CT-TAA-SMesh CSM, CFD Tri 26106
MR-AAA-SMesh CSM Tri 56656
MR-AAA-IMesh FSI Quad 11423
4D-CT-P1-SMesh CSM Tri 29094
4D-CT-P2-IMesh FSI Quad 23953
4D-CT-P3-IMesh FSI Quad 21276

(a) MR-AAA-SMesh (b) MR-AAA-IMesh

Figure 4.8: MR-AAA: Boundary surface and interface mesh models.
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Figure 4.9: 4D-CT-P1: Wall surface mesh model (4D-CT-P1-SMesh).

Figure 4.10: 4D-CT-P2: Interface mesh model (4D-CT-P2-IMesh).

Figure 4.11: 4D-CT-P3: Interface mesh model (4D-CT-P3-IMesh).

The cSF parameters are defined with a 5 or 10 curvature angle, a 20% growth
factor and with cell sizes varying between 0.1 mm and 0.3 mm for the minimum
and between 1 mm and 3 mm for the maximum parameters.
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4.6.2 Volume Blood Meshing

Volume mesh models are generated to represent the blood elements for CFD
and FSI applications. In total six blood volume meshes corresponding to four
patients and two porcine models were generated. The volume meshing results
are based on the BL and the mSF functions. The resulting element types
depend on whether the available surface mesh contains triangular cells (CFD)
or quadratic cells (FSI). In both cases, 4-node tetraedric elements are used for
the inside of the lumen. The difference remains in the volume part enclosing
the boundary layers domain. The tetrahedrons are mixed with 6-node wedge
elements for the CFD meshes, and with 5-node pyramids and 8-node hex-
aedric flow-condition-based-interpolation (FCBI) elements for the FSI meshes
(Fig.4.12). Note that model CT-AA also includes hexahedrons resulting from
two extra volumes appended at two of the outlets to reduce backflow effects.
A summary of the blood volume mesh models including mesh element type
and size is presented in Tab.4.6. The corresponding meshing results are shown
in Fig.4.13.b, Fig.4.14.b, Fig.4.15.b and Fig.4.17.a, Fig.4.18.a, Fig.4.19.a.

(a) 8-node Hex (b) 5-node Pyramids (c) 4-node Tet

Figure 4.12: Blood mesh cross-section showing the resulting FSI elements.

Table 4.6: Summary of the generated mesh models for the blood domain.

Model Application Type Size

CT-AA-VBMesh CFD Wedges, Tet, Hex 209425
CT-AAA-VBMesh CFD Wedges, Tet 1054721
CT-TAA-VBMesh CFD Wedges, Tet 278089
MR-AAA-VBMesh FSI Hex, Pyramids, Tet 230597
4D-CT-P2-VBMesh FSI Hex, Pyramids, Tet 390310
4D-CT-P3-VBMesh FSI Hex, Pyramids, Tet 365573

The parameters used to define the BL function are: number of layers = 3 or
4, first row size varying between 0.1 mm and 0.3 mm and growth rate = 1.2.
As for the mSF, it is defined by a maximum size varying between 1 mm and
3 mm and a growth factor of 10% toward the inside of the fluid domain.
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(a) CT-AA-SMesh (b) CT-AA-VBMesh

Figure 4.13: CT-AA: Boundary surface and blood volume mesh models.

(a) CT-AAA-SMesh (b) CT-AAA-VBMesh

Figure 4.14: CT-AAA: Boundary surface and blood volume mesh models.

(a) CT-TAA-SMesh (b) CT-TAA-VBMesh

Figure 4.15: CT-TAA: Boundary surface and blood volume mesh models.
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4.6.3 Volume Wall Meshing

Beside the blood elements, volume mesh models are generated to represent the
wall elements for FSI applications. One MRI-based patient and two CT-based
porcine wall mesh models are generated. The wall meshing results are obtained
by extending the surface wall to include layers with a predefined homogeneous
thickness as described in Sec.4.5 and shown in Fig.4.16. Eight-node brick
elements are used for the wall domain, provided that the surface mesh for
the FSI applications consists of quadratic cells. A summary of the volume
mesh models for the wall including mesh element type and size is presented
in Tab.4.7. The meshing results of the wall domain are shown in Fig.4.17.b,
Fig.4.18.b and Fig.4.19.b for models MR-AAA, 4D-CT-P2 and 4D-CT-P3,
respectively.

Figure 4.16: Outer wall generation from the inner boundary surface.

Table 4.7: Summary of the generated mesh models for the wall domain.

Model Application Type Size

MR-AAA-VWMesh FSI Hex 34269
4D-CT-P2-VWMesh FSI Hex 95812
4D-CT-P3-VWMesh FSI Hex 85104

To define the wall domain the number of layers used is 3 for MR-AAA and 4
for 4D-CT-P2 and 4D-CT-P3. The surface normal is defined to point outwards
as emerging from the wall. The uniform algorithm is used with a growth factor
equals 1, that is generating equally sized elements of 0.5 mm. This resulted
in a wall thickness of 1.5 mm for the patient and 2.0 mm for the porcine models.
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(a) MR-AAA-VBMesh (b) MR-AAA-VWMesh

Figure 4.17: MR-AAA: Blood and wall volume mesh models.

(a) 4D-CT-P2-VBMesh (b) 4D-CT-P2-VWMesh (c) 4D-CT-P2-VMesh

Figure 4.18: 4D-CT-P2: Blood, wall and combined volume mesh models.

(a) 4D-CT-P3-VBMesh (b) 4D-CT-P3-VWMesh (c) 4D-CT-P3-VMesh

Figure 4.19: 4D-CT-P3: Blood, wall and combined volume mesh models.
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4.7 Mesh Processing

For the application of different simulations, different mesh input files are
needed to define the geometry, the physical properties and the boundary con-
ditions. While the mesh geometry is defined by the coordinates of the nodes
and by the configuration of the node-based elements, the FEM-based compu-
tations also require special sets of finite elements (FE) to be generated for the
definition of various boundary and initial conditions. The mesh generation was
therefore extended to further process the created meshes, by converting them
and by generating appropriate predefined FE sets. The further processing
strongly depends on the simulation application and on the software package
to be used. Once processed, the resulting meshes can be directly used for the
CFD, CSM and FSI simulations.

4.7.1 Conversion

A conversion library was first developed and integrated into MoDiSim, allowing
to toggle between different mesh types. Thereby, the supported formats include
.vtk, .stl, .msh, .neu, .inp and .in files. The .vtk and the .stl files consist of
non-optimized surfaces with arbitrary distributed nodes generated from the
marching cubes triangulation algorithm. They contain the first approximation
of the model geometry resulting from the extraction of the 3D boundary surface
of the segmented images. The .msh and the .neu files are Gambit and TGrid
formats. The .msh file is also the Fluent input geometry file. High-quality
meshes are first generated into the .msh format and can be used for blood flow
(CFD) simulations in Fluent. The .inp and the .in files represent the Abaqus
and the Adina formats. They are compiled in an FE language and can be used
for vessel wall (CSM) and coupled blood-vessel (FSI) simulations, respectively.
Depending on the application, surface and/or volume meshes are involved with
each mesh type (Tab.4.8).

Table 4.8: Conversion library: Various surface (S) and volume (V) meshes.

from \ to .stl .inp .in .txt
.vtk S - - -
.stl - S - -
.msh S S,V V -
.neu - - V -
.inp - - S -
.in - - S nodes
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4.7.2 FE-sets

Predefined sets of nodes, elements and faces, necessary for the definition of in-
dividual velocity, pressure and constraint boundary conditions for CFD, CSM
and FSI applications are then generated. CFD simulations require pressure-
based and/or flow-based boundary conditions, while CSM simulations require
pressure-load and constraint boundary conditions. FSI simulations require be-
side the flow-, pressure- and constraint-based conditions, an interface boundary
for the definition of the interaction conditions. Depending on the application
and on the boundary condition type, various required sets at the inlet, out-
lets and boundary faces are extracted and defined from the meshes. Further,
any contact problem if present would also require specific sets to be available
for the definition of contact boundary conditions. A summary of the most
important provided FE sets is presented in Tab.4.9.

Sim \ BC Inlet Outlets Wall
CFD(Fluent) Faces Faces Faces
CSM(Abaqus) Nodes Nodes Elements
FSI-Blood(Adina) Nodes ElFaces Nodes
FSI-Wall(Adina) Nodes Nodes ElFaces

Table 4.9: Overview: FE-sets generation.

4.8 System Integration in Mesh-Gen and Mesh-Pro

Due to the specific characteristics and the complexity of patient-specific data,
most of the investigations in this field manually create and process the mesh
models. Further, in order not to even more increase the time effort associated
with the manual processing, mesh optimization algorithms are rarely included
in the generation process. Manual mesh generation generally requires more
than half of the analysis time excluding the simulation time. Strategies for
dealing with complex geometries depend on time available, desired quality and
accuracy. Automatic mesh generation with individual awareness in terms of
geometry and conditions is a prerequisite for performing fast and accurate com-
putations of hemodynamics and biomechanics within patient-specific vessels.
It represents an essential aspect for efficient evaluation of clinical procedures
individually for each patient. A numerical tool was therefore developed to au-
tomatically generate and process complex patient-specific finite element mesh
models from image-based vessel geometries. The automatic approach repre-
sents a compromise between computational cost, mesh quality and physics.
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The automatic generation tool is evaluated using different image-based subject-
specific aortic models. It is compiled in two steps providing meshing and pro-
cessing with minimal interaction effort. These are integrated into the Mesh-
Gen and the Mesh-Pro components of the MoDiSim system. The correspond-
ing user interfaces provided for loading and interacting with the different mesh
data are shown in Fig.4.20 and Fig.4.21, respectively.

Figure 4.20: User-Interface of the mesh generation component Mesh-Gen.
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Figure 4.21: User-Interface of the mesh processing component Mesh-Pro.

4.8.1 Automation of Mesh Generation

The first component Mesh-Gen includes the automatic generation of accurate
patient-specific mesh models of healthy and diseased vessels. The automatic
generation includes mesh optimization based on the integration of various
control functions and thus satisfies the requirements for stable simulations.
Therefore, based on the user interaction with the Mesh-Gen represented in
Fig.4.20, various journals are created to automatically generate high-quality
controlled and optimized surface and volume mesh models for various compu-
tational domains. The activity diagram of Mesh-Gen is illustrated in Fig.4.22.
The journals consists of the individual steps of the mesh generation processes
represented by the three developed algorithms described in Sec.4.5:
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� The automation of the surface meshing approach for the wall and the
interface is accomplished via implementation of the MeshSurface algo-
rithm representing the surface wall and interface meshing process into
Mesh-Gen for CSM and FSI applications, respectively.

� The volume mesh generation for the blood models is automated via in-
tegration of the volume blood meshing process through the MeshBlood-
Volume algorithm into Mesh-Gen for both CFD and FSI applications.

� As for the volume mesh generation of the wall models, it is automated
by implementing the MeshWallVolume algorithm for the volume wall
meshing process into Mesh-Gen for FSI applications.

Thereby, the mesh parameters needed for the automatic application of the
mesh control functions are acquired from the previously performed compu-
tational grid analysis described in Sec.4.4, in which the numerical stability of
the simulations in terms of mesh independency was investigated. The obtained
parameters have been presented in Tab.4.2 and Tab.4.3.

4.8.2 Automation of Mesh Processing

The automatic mesh generation tool has been then extended to automatically
further process the generated patient-specific mesh models as described in
Sec.4.7. The second component Mesh-Pro includes the automatic conversion
of the mesh models to specific mesh files and the generation of predefined FE
sets required for the definition of appropriate boundary conditions. This occurs
depending on the application, that is depending on the type of the simulation
(CSM, CFD and FSI) and on the software to be applied. Therefore, based
on the user interaction with Mesh-Pro represented in Fig.4.21, the processing
tool provides access to various surface and volume mesh configurations and
performs connections between the finite nodes and elements using different
mesh definition types (.vtk, .stl, .msh, .neu, .inp, .in). The processing of
the mesh models functions fully automatically based on various implemented
algorithms as illustrated in the activity diagram in Fig.4.23. The processing
is based on the zone specifications defined in the generated .msh mesh model
using the boundary and the continuum types as previously described. The
predefined settings are automatically created and saved into the mesh files and
can be used for the application of physical properties and boundary conditions
for the fluid and solid domains as well as their contact-interface where they
interact together.



74 Chapter 4. Mesh Generation & Processing

Figure 4.22: Activity diagram of the mesh generation componentMesh-Gen.
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Figure 4.23: Activity diagram of the mesh processing component Mesh-Pro.
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4.9 Summary

In this chapter the mesh generation process developed in this work and required
for patient-specific and image-based blood flow and vessel wall modeling in the
aorta, was presented. First, a short introduction including the meshing require-
ments for accurate simulations was described. Then, the metrics for assigning
and checking the quality of a given mesh model were introduced. Further,
mesh optimization based on the integration of mesh control functions for cur-
vature size and mesh size as well as boundary layers and designed to enhance
the mesh quality was presented. Next, mesh independency based on a com-
putational grid analysis in which iterative mesh refinement was performed to
investigate and achieve numerical stability was described. Then, the meshing
approaches including three processes required for the generation of high-quality
surface and volume meshes from the segmented patient data were presented.
Following the meshing approaches, meshing results from the three processes
were illustrated. Then, the processing of the 3D meshes and the creation of the
FE-Models including appropriate FE-sets necessary for the definition of indi-
vidual boundary conditions required to solve the governing system of partial
differential equations is presented. Finally, the automation of the mesh gen-
eration process via the Mesh-Gen and the Mesh-Pro components integrated
into the MoDiSim system, indispensible for medical applications and clinical
implementation was described at the end of this chapter.



Chapter 5

Vessel Wall Modeling

5.1 Introduction

Pathological conditions of the elastomechanical functioning of the vessel weaken
the wall and may lead to its rupture. Structural modeling of the vessel wall
provides an insight into its mechanical behavior. It allows to identify individ-
ual parameters such as weak spots associated with high stresses and sites of
excessive mechanical strain. This may enable accurate predictive simulations
of development, growth, fatigue and failure of cardiovascular disease.

Physical modeling based on individual model characteristics is indispensable
for realistic simulations. The approach consists of applying the concepts of
physics together with constitutive modeling to simulate the dynamic behavior
of objects. Image-based Computational Structural Mechanics (CSM) based on
the Finite Element Method (FEM) as a numerical approach, has become an
efficient tool in simulating the individual biomechanics in deformable human
arteries.

The purpose of this chapter is to describe the theoretical and applied aspects
behind the modeling of the vessel wall. In order to understand the funda-
mentals of the modeling, theoretical background on the physics of structure
mechanics, followed by the biomechanical constitutive relations and the nu-
merical approach of the FEM are first presented. Next, the CSM simulations
performed by applying the modeling steps to the vessel wall are described.
The integration of the modeling steps into the MoDiSim system follows the
generation of the process chain. Finally, some of the results applied to various
individual models will be illustrated.
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5.2 Continuum Structure Mechanics

While bodies consist of atoms, continuum mechanics is the study of physics
based on a simplified approach dealing with the objects as a continuum. It
involves a macroscopic physical approximation, ignoring the heterogeneous ma-
terial microstructures. So, notions of spins or the uncertainty principle such
as present in quantenphysics, are not available here. As a result, the classical
conservation equations for energy and momentum remain valid at the infinites-
imale level. Continuum structure mechanics is the area of the physics dealing
with the mechanics of continuum solids. It involves the study of the kinematics
and mechanical behavior of bodies with defined shape. Thus, the main con-
cept in structure mechanics deals with the notion of forces and deformation,
or action and motion. In particular, the state of a system may be described in
terms of stress and strain variables, and in terms of the equations of motion
derived from the conservation laws. From a biomechanical point of view, soft
tissue modeling consists of analyzing the mechanical properties relating the
tension in the material to the deformation it undergoes.
In this section, the theoretical concepts of kinematics configurations, deforma-
tion and displacements, strain and stress as well as the equations of motion are
presented. The section is concluded with the virtual work principle required
for the numerical solutions. For a better understanding, particular attention
is given to the physical meaning of these theoretical relations.

5.2.1 Lagrangian and Eulerian Configurations

When moving, a continuum object occupies different configurations in space
at various times. In order to describe the kinematics of a continuous solid, it is
therefore convenient to define the evolution of motion in terms of two config-
urations: a reference configuration describing the initial undeformed state of
the particle and a current configuration describing its deformed status at any
subsequent time. The reference or Lagrangian configuration is usually used
in solid mechanics, while the current, Eulerian configuration is rather used in
fluid mechanics. From an observer point of view, the Lagrangian configuration
involves the description seen by an observer moving with the moving objet
and observing the changes in time as the body moves in space. The results
obtained are independent of the choice of initial time and reference configu-
ration. The Eulerian configuration rather involves the description of what is
currently happening at a fixed point in space as time progresses. It is based on
the description seen by an observer standing in a fixed frame and observing the
changes through time that are taking place at a certain position as different
material points pass through it.
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Consider Ω to be a finite body moving between a reference configuration Ω0
defined at time t0 = 0, and any following configuration Ωt defined at the cur-
rent time t. Let X and x be the continuous coordinate vectors of any point P
in Ω, defined with respect to the Lagrangian and the Eulerian configurations,
respectively Fig.5.1. As the solid evolves in time, its motion can be made ei-
ther in terms of the referential Lagrangian coordinates Xi or in terms of the
current Eulerian xi coordinates.

Figure 5.1: Lagrangian and Eulerian configurations.

5.2.2 Deformation and Displacement

The kinematics of a continuum body when changing its configuration can
be described by a displacement. The displacement of a body consists of a
simultaneous translation and rotation and of a deformation.

Deformation and Deformation Gradient Tensors

Deformation of a continuum solid specifies the change in its shape or size when
it moves from the reference configuration Ω0 to the current configuration Ωt. In
the Lagrangian configuration, it can be described by a continuous mapping of
the coordinates of any point P belonging to Ω from the reference configuration
onto the current configuration:

x = x (X, t) or xi = xi (X, t) (5.1)
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The deformation gradient tensor F allows mapping any elementary segment
dX of Ω defined in Ω0 into an elementary segment dx defined in the current
Ωt. It is defined as the Jacobian matrix of the function x and can be obtained
by differentiating Eq.5.1 with respect to the Lagrangian coordinates:

dx = F dX or dxi =
∑
j

∂xi (X, t)

∂Xj

dXj (5.2)

with

F =

[
∂xi

∂Xj

]
=

⎡
⎢⎢⎣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

⎤
⎥⎥⎦ (5.3)

Similarly, the reversed deformation can be described in the Eulerian config-
uration by mapping the coordinates of any point P in Ω from the current
configuration back onto the original coordinates. It is defined by:

X =X (x, t) or Xi = Xi (x, t) (5.4)

And the reversed deformation gradient tensor G, defined as the Jacobian ma-
trix of the function X, can be obtained by differentiating Eq.5.4 with respect
to the Eulerian coordinates:

G =

[
∂Xi

∂xj

]
=

⎡
⎢⎢⎣

∂X1

∂x1

∂X1

∂x2

∂X1

∂x3

∂X2

∂x1

∂X2

∂x2

∂X2

∂x3

∂X3

∂x1

∂X3

∂x2

∂X3

∂x3

⎤
⎥⎥⎦ = F−1 (5.5)

A necessary and sufficient condition for this inverse function to exist is that
the determinant of the Jacobian matrices F and G is different from zero:

det (F ) =

∣∣∣∣ ∂xi

∂Xj

∣∣∣∣ =
∣∣∣∣∂Xi

∂xj

∣∣∣∣ = det (G) �= 0 (5.6)

Volume and Surface Changes

Further, the elementary volume change dv in the current configuration Ωt can
be obtained by mapping the elementary volume dV in the original configura-
tion using the Jacobian J of the deformation gradient tensor F :

dv = JdV with J = det (F ) (5.7)
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As for the elementary surface change ds in the current configuration Ωt, it
can be obtained from the elementary surface dS in the original configuration
Ω0 based on the Jacobian J and on the transpose of the reverse deformation
gradient tensor G as follows:

nds = JGTNdS (5.8)

where n and N are the normals to ds and dS in Ωt and Ω0, respectively.

Displacement and Displacement Gradient Tensor

The trajectory x (X, t) of any point in space is usually an unknown function.
The notion of displacement is therefore preferably used than that of the defor-
mation. Displacement in continuum mechanics is a vector that describes the
change in position of a point P in Ω between the reference Ω0 and the current
Ωt configurations. In the Lagrangian configuration Ω0 it is defined as:

u (X, t) = x (X, t)−X (5.9)

An assignment of the displacement vectors for all points P in Ω when moved
from Ω0 to Ωt is known as the displacement field. Using the definitions of F
andG in Eq.5.3 and Eq.5.5 respectively, the elementary displacement variation
du in the Lagrangian configuration Ω0 may be defined as:

du (X, t) = dx (X, t)− dX = (F − I) dX (5.10)

The displacement gradient tensor ∇u may be obtained by differentiating the
displacement vector with respect to the Lagrangian coordinates in Ω0. The
definition of ∇u follows then from Eq.5.10 and may be expressed as:

∇u = F − I with dui =
∑
j

∂ui (X, t)

∂Xj

dXj (5.11)

Similarly, defined in the Eulerian configuration Ωt, the displacement vector U ,
the displacement variation dU and the displacement gradient tensor ∇U can
be respectively described by:

U (x, t) = x−X (x, t) (5.12)

dU (x, t) = dx− dX (x, t) = (I −G) dx (5.13)

∇U = I −G with dUi =
∑
j

∂Ui (x, t)

∂xj

dxj (5.14)
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5.2.3 Strain Analysis

In structure mechanics, strain is a measure of the distortion of a deformed
continuum body. A body is said to be distorted if the distance between at
least two of its points changes after it has moved. Strains represent the amount
of change of the relative displacement between particles of a material. They
are produced by forces or stresses acting on the material body. Within a
deforming body, they can be represented by the normal strain and the shear
strain components. Normal strains are defined by the change in length that
occurs along the material lines. They are therefore associated with the amount
of stretch or compression and called tensile strains and compressive strains,
respectively. On the other side, shear strains are defined by the change in the
angle between initially perpendicular pairs of lines. They describe the amount
of distortion related with the sliding of the material planes. Thus, in order to
describe the state of strain of a continuum body Ω, it is necessary to quantify
the normal and shear components of the strain tensor for all points P in Ω.

Lagrangian Strain Tensors

The squared lengths of the elementary segment dx in the Lagrangian configu-
ration may be derived using Eq.5.3:

dx2 = dxTdx = dXTF TF dX (5.15)

with the tensorial product defined as the right Cauchy-Green dilation tensor:

C = F TF (5.16)

The left Cauchy-Green dilation tensor may be also introduced as:

B = FF T (5.17)

Now using Eq.5.15 and Eq.5.16, the squared length variation in the Lagrangian
configuration may be expressed as:

dx2 − dX2 = dXT (C − I) dX = dXT2EdX (5.18)

where E represents the Green-Lagrange or the Lagrangian strain tensor:

E =
1

2
(C − I) (5.19)

C, B and E are second-order symmetric tensors allowing the calculation of
the length variation of any segment dX known in the reference configuration.
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Eulerian Strain Tensors

Now using Eq.5.5, the squared lengths of the elementary segment dX in the
Eulerian configuration may be derived as:

dX2 = dXTdX = dxTGTGdx (5.20)

The tensorial product in Eq.5.20 is defined as the Cauchy strain tensor:

c = GTG (5.21)

Obviously, the Cauchy strain tensor is also the inverse of the left Cauchy-
Green dilation tensor, B−1 = c. Using Eq.5.20 and Eq.5.21, the squared
length variation in the Eulerian configuration may be then expressed as:

dx2 − dX2 = dxT (I − c) dx = dxT2edx (5.22)

where e is defined as the Euler-Almansi or the Eulerian strain tensor:

e =
1

2
(I − c) (5.23)

c and e are also second-order symmetric strain tensors allowing the calculation
of the length variation of any segment dx known in the current configuration.

Extension Ratios and Invariants

The extension ratios are strain parameters appropriate for purpose of experi-
mental evaluation. They are defined by the diagonal elements of the deforma-
tion gradient tensor F :

λi = Fii =
∂xi

∂Xi

i = 1,2,3 (5.24)

In terms of the principal strain components Cii and Eii, they become:

Cii = λ2i and Eii =
1

2

(
λ2i − 1

)
(5.25)

Further, the invariants IH, IIH and IIIH of any second order tensor H may
be defined in terms of its eigenvalues h1, h2 and h3 as follows:⎧⎪⎪⎨

⎪⎪⎩
IH = tr (H) = h1 + h2 + h3

IIH = 1
2

[
tr (H)2 − tr (H2)

]
= h1h2 + h1h3 + h2h3

IIIH= det (H) = h1h2h3

(5.26)
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Based on this definition and using Eq.5.19 and Eq.5.25, the invariants IC, IIC

and IIIC of C may be defined for use in experiments in terms of the extension
ratios rather than in terms of the principal strains Eii as:⎧⎪⎪⎨

⎪⎪⎩
IC = 3 + 2IE = λ21 + λ22 + λ23

IIC = 3 + 4IE + 4IIE = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3

IIIC= 1 + 2IE + 4IIE + 8IIIE= λ21λ
2
2λ
2
3

(5.27)

Strain-Displacement Relationship

In the equations describing C, E, c and e, the strain tensors are represented
in terms of the deformation gradients F and G. It is however important to
describe the strains as a function of the displacement. Using the relationship
between the displacement and the deformation in Eq.5.11, the right Cauchy-
Green strain tensor C can be reexpressed as:

C = F TF = I +∇u+∇uT +∇uT∇u (5.28)

And from Eq.5.19, the Green-Lagrange strain tensor E can be written as:

E =
1

2

(∇u+∇uT +∇uT∇u) (5.29)

Thus, knowing the displacement vector u, the state of a deformed body can
be described in terms of the Lagrangian strain tensor E as a function of u and
independently of the chosen coordinate system:

E =

⎡
⎢⎢⎣

ε11
1
2
ε12

1
2
ε13

1
2
ε21 ε22

1
2
ε23

1
2
ε31

1
2
ε32 ε33

⎤
⎥⎥⎦ (5.30)

with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε11 =
∂u1

∂X1
+ 1
2

∑
k

(
∂uk
∂X1

)2
; ε12 =

∂u1

∂X2
+ ∂u2

∂X1
+

∑
k

(
∂uk
∂X1

∂uk
∂X2

)
= ε21

ε22 =
∂u2

∂X2
+ 1
2

∑
k

(
∂uk
∂X2

)2
; ε13 =

∂u1

∂X3
+ ∂u3

∂X1
+

∑
k

(
∂uk
∂X1

∂uk
∂X3

)
= ε31

ε33 =
∂u3

∂X3
+ 1
2

∑
k

(
∂uk
∂X1

)2
; ε23 =

∂u2

∂X3
+ ∂u3

∂X2
+

∑
k

(
∂uk
∂X2

∂uk
∂X3

)
= ε32
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5.2.4 Forces and Euler-Cauchy Principle

Consider a finite body Ω moving between an initial configuration Ω0 and a
current configuration Ωt. Ω occupies a deformed state in Ωt as a result of being
subject to applied forces acting on it and causing its deformation. Applied
forces represent the action of the outside exerted on the solid. As a reaction to
the external applied forces, internal forces arise inside the material to keep it in
equilibrium. The amount of forces within a continuum body can be expressed
in terms of stresses based on the principle of Euler and Cauchy.

Applied Forces

In the Eulerian configuration Ωt associated with an arbitrary deformation
x(X, t), Ω is subject to two kinds of applied forces: volume and surface forces.
Volume or body forces are forces exerted on the volume, that is on the interior
of a body, such as gravitational forces. If ω is a volume domain of Ω, then
the volume forces may be expressed by a function f that represents the force
density per unit volume of the applied volume forces: f := ω −→ R

3. As
for surface forces, such as contact forces, they represent forces acting on the
surface, that is on the boundary of the body. They may be expressed by a
function g that represents the force density per unit surface of the applied
surface forces: g := ∂ω −→ R

3. With g being applied on a finite portion of
the boundary surface ∂ω of Ω.

Stress Principle of Euler and Cauchy

So far, surface and volume forces acting on a continuum body were intro-
duced. However, the way they are related together was omitted. The Euler
and Cauchy stress principle consists of formulating axioms relating these forces
together. The fundamental principle is considered as the basis of continuum
mechanics and indicates that: For a deformed body Ω in the current configura-
tion Ωt which is subject to volume and surface forces represented by the density
functions f (x) and g (x) respectively, there exists a vector ts such that:

(a) Current stress vector: The surface forces g (x) can also be described in
terms of ts as a function of the surface normals n. Thus, if Ls is the external
load applied on a boundary surface element ds of Ω, then there exists a current
internal stress vector ts (x,n) in Ωt along the unit outer surface normal n at
ds of Ω, such as:

ts (x,n) = g (x) = lim
ds→∞

dLs

ds
(5.31)
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(b) Force balance: For the continuum body Ω to be in equilibrium in Ωt, the
motion equilibrium equations with respect to an arbitrary point P in the body
must be satisfied: ∫

v

ρΓvdv =

∫
v

f vdv +

∫
s

tsds (5.32)

(c) Momentum balance: At the same time, the momentum equilibrium equa-
tions must also be satisfied in every point in the body such that:

∫
v

ρΓv ∧ xdv =
∫
v

f v ∧ xdv +
∫
s

ts ∧ xds (5.33)

where ρ is the mass density, Γv is the acceleration at point P , and f v and ts

are the external forces. Thus, the fundamental principle of Euler and Cauchy
first indicates the existence of an elementary surface vector ts (x,n) ds along
the surface boundaries of the deformed configuration. Then, the stress prin-
ciple shows that ts (x,n) ds at a point P is characterized by its geometrical
dependency on only the surface normal vector n of ds at P . Finally, if the
body is in static equilibrium, then the equilibrium equations of motion and
momentum must be satisfied for zero acceleration. Thus, the principle asserts
that in static equilibrium the resultant forces vector vanishes and that its re-
sulting momentum with respect to the origin, and thus with respect to any
arbitrary point (classical property of torsors) also vanishes.

5.2.5 Stress Analysis

In structure mechanics, stress is the measure of the amount of applied forces
on a continuum object per unit area. Based on the continuum concept, there
are internal forces distributed within the body and produced as reaction to the
external applied forces. Stress is therefore a measure of the intensity of these in-
ternal forces governing the material particles of the body. Like strains, stresses
may also be described by normal stress and shear stress components. Normal
stresses are exerted perpendicular to the surface area on which the forces act.
They are associated with a stretching or compression of the body and are
called tensile and compressive stresses respectively. Further, normal stresses
causing both stretching and compression are known as bending stresses. As
for shear stresses, they are exerted parallel to the surface. In practice, shear
stresses cause twisting of the body or sliding of the material layers over each
other and are known as torsional stresses.



5.2. Continuum Structure Mechanics 87

Cauchy Stress and Eulerian Equations of Motion

Based on the Euler and Cauchy principle, Cauchy derived one of the most im-
portant theorems in continuum mechanics. The Cauchy theorem asserts the
existence of an internal second order tensor σ (x), corresponding to the phys-
ically true stress in the material, that is related to the stress vector ts (x,n).
Further, according to Cauchy’s theorem, σ (x), named the Cauchy’s stress
tensor, is linear with respect to its second argument n. Thus, the theorem
states that: For each point x of Ω in Ωt and for all normals n at the boundary
of Ω, there exists a second order tensor σ (x) such that :

ts (x,n) = σT (x)n (5.34)

In matrix form, the relationship between the components of the Cauchy stress
vector tsj acting on a plane with normal vector n and the components of
the Cauchy stress tensor σij describing the state of stress in the Eulerian
configuration can be expressed by:

ts =

⎡
⎢⎢⎣
ts1

ts2

ts3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎥⎥⎦

T

·

⎡
⎢⎢⎣
n1

n2

n3

⎤
⎥⎥⎦ = σTn (5.35)

Applying the divergence theorem for tensor fields on σ in Eq.5.34 allows trans-
forming the surface integral appearing in the axiom of force balance Eq.5.32
into a volume integral. As a result, the Eulerian equation of motion in Eq.5.32
becomes:

ρΓv = f v + div
(
σT

)
(5.36)

Eq.5.36 vanishes in static equilibrium when the acceleration Γv becomes zero.
Further, applying the Green’s formula on σ in Eq.5.34 allows transforming the
surface integral appearing in the axiom of momentum balance Eq.5.33 into a
volume integral. Using in addition Eq.5.36, the symmetry property of the
Cauchy stress tensor may be derived such as:

σT = σ (5.37)

Using Eq.5.37 and Eq.5.36, the equations of motion in the current configuration
Ωt may be also expressed in the form:

ρ
∂2ui

∂t2
= f v

i +
∑
j

∂σij

∂xj

(5.38)
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The Cauchy theorem and its consequences may be summarized in three points.
First, it indicates the existence of the Cauchy stress tensor, related to the
Cauchy stress vector and proportional to the normal vector n (Eq.5.34). Sec-
ond, it asserts that at each point x of Ω the stress tensor is symmetric
(Eq.5.37). This consequence leads to the Voigt notation which allows express-
ing σ in terms of only six independent stress components instead of nine and
thus increasing the numerical efficiency of computational structural mechan-
ics. Third, the theorem indicates that the tensor field σ and the vector fields
f and g are related by partial differential equations in v and by a boundary
condition on s, respectively.

Kirchhoff Stresses and Lagrangian Equations of Motion

The Cauchy stress tensor σ describes the state of the stress in the current
configuration. However, variables defined with respect to the Eulerian configu-
ration are usually unknown. Therefore, these variables as well as the equations
of motion must be expressed in the known reference Lagrangian configuration.
The equation of motion in the initial configuration is obtained using equations
Eq.5.7, Eq.5.8 and Eq.5.36 and by applying the mass conservation principle
(Eq.5.69): ∫

V

ρ0Γ
V dV =

∫
V

fV JdV +

∫
S

T TNdS (5.39)

where T is obtained from σ and represents the first Piola-Kirchhoff stress
tensor:

T = JGσ (5.40)

T , also known as the Lagrange tensor, describes the forces in the present
configuration related to areas in the reference configuration. It therefore cor-
responds to the internal stress tensor that would be obtained by applying the
current external load onto the initial undeformed configuration. In general,
the components of the 1st Piola-Kirchhoff stress tensor depend on the orien-
tation of the body with T T �= T . The first Kirchhoff stress tensor is thus not
symmetric. However, the constitutive equations in the reference configuration
take usually a simpler form when related to a symmetric stress tensor. The
second Kirchhoff stress tensor S is therefore introduced. S may be obtained
from the first tensor T such as:

S = TGT = JGσGT (5.41)
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The second Kirchhoff stress tensor is symmetric and its components are in-
dependent on the orientation of the body. It relates forces and areas defined
in the initial configuration. S corresponds to the internal stress tensor de-
fined in the initial configuration and equivalent to the current stress tensor. It
preserves and takes into account all geometrical changes between both configu-
rations [MS91]. Based on S, the current equation of motion in the Lagrangian
configuration then becomes:∫

V

ρ0Γ
V dV =

∫
V

fV JdV +

∫
S

FSTNdS (5.42)

5.2.6 Virtual Work Principle

In absence of analytical resolution approaches for the equations of motion de-
scribed in Eq.5.36 and Eq.5.38, the kinematics of the system must be resolved
using another principle. The finite element representation is usually formulated
in terms of a (weak) variational form of the dynamics differential equations.
In structural mechanics, the weak variational formulation is achieved using the
principle of virtual work.
If ∂û denotes an arbitrary virtual displacement in the current configuration of
the body Ω, and r is a residual force applied on Ω, then the virtual mechanical
work ∂Ŵ applied to Ω by r during ∂û per unit volume and time is:

∂Ŵ = r∂û (5.43)

In static equilibrium, the virtual work ∂Ŵ vanishes implying that equation
Eq.5.43 becomes zero.

Variational Formulation in the Eulerian Configuration

The local equation of virtual work in the current configuration is obtained by
applying the principle of virtual work to (Eq.5.36). The inner product of a
vector field ∂ûT that vanishes on a part s′ of the boundary surface s, where
the essential boundary conditions are prescribed, gives:

∂ûTρΓv = ∂ûTf v + ∂ûTdiv
(
σT

)
(5.44)

Integrating (Eq.5.44) over v and applying a divergence transformation leads
to the variational weak form:∫

v

∂ûTρΓvdv =

∫
v

∂ûTf vdv +

∫
s

∂ûT tsnds−
∫
v

tr
(
∂êTσ

)
dv (5.45)
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Transformation to the Lagrangian Configuration

The description of the state variables in the Lagrangian configuration in terms
of the Eulerian stress and strain tensors σ and e may be obtained from Eq.5.5,
Eq.5.19, Eq.5.23 and Eq.5.41:

∂e = GT∂EG and σ = J−1FSF T (5.46)

The variational weak form described in Eq.5.45 may be then derived in the
reference configuration using Eq.5.46 such as:∫

V

∂ûTρ0Γ
V dV =

∫
V

∂ûTfV dV +

∫
S

∂ûT tSNdS−
∫
V

tr
(
∂ÊTS

)
dV (5.47)

where ΓV , fV and tS are the reference acceleration and external actions equiv-
alent to Γv, f v and ts used in the current configuration.

5.3 Physical Constitutive Laws

A boundary value problem consists of equilibrium, kinematical and consti-
tutive equations together with prescribed and natural boundary conditions.
Constitutive laws label all that we do not know about the boundary value
problem. In the previous section stresses and strains were described as state
variables reflecting force and deformation measurements. Thereby, the defor-
mation was written in terms of the strains while the equilibrium equations
were expressed in terms of the internal stresses. The way these variables de-
pend on each other was omitted. The present section consists of formulating
constitutive equations relating the stresses in the material to the strains it un-
dergoes. Constitutive relationships are material specific functions describing
the deformation response of a material when a force acts on it. They represent
a relation between physical variables which do not follow directly from a phys-
ical law. Combined with the equilibrium equations that do represent physical
laws, a physical problem can be solved.
Constitutive relationships are obviously influenced by the type of material
under consideration. Common material descriptions are hereby hyperelastic,
elastoplastic, viscoplastic and viscoelastic models. Furthermore, constitutive
equations may be time-independent as in the case of small strain linear elastic
models, or strain-rate dependent as in the case of viscous materials. They also
depend on further physical properties such as compressibility or anisotropy.
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5.3.1 Elasticity Theory

In general, a material for which the internal stress at any point P is a function
of the current strain associated with that point is known as elastic. Further,
the theory of elasticity states that the stress at any time t depends only upon
the local deformation at that time, and not upon the history of the deformation
[OS89]. The constitutive behavior of elastic materials may be described as a
function relating the deformation gradient tensor F and the Piola-Kirchhoff
second stress tensor S. Thereby, the objectivity principle must be satisfied,
stating that the internal state of the material must be invariant when the
current configuration undergoes a rigid body deformation. Thus, decomposing
F into an orthogonal rotation R and a right U or left V stretch tensors gives:

F = RU = RC−1 and F = V R = B−1R (5.48)

S should not depend on the rotation component but rather on F only through
the stretch component, for instance through the right Cauchy-Green dilation
tensor C = U 2 = F TF . The formulation of elasticity thus becomes:

S = S (F ) = S (C) (5.49)

Nonlinear Elasticity

Nonlinear elasticity includes physical and geometrical nonlinearities. Physical
nonlinearities may be described by the nonlinear function between stress and
strain, for instance between S and C. As for geometrical nonlinearities, they
are described by the nonlinear relationship between the strain and the defor-
mation, for instance between C and F . Considering an isotropic material, the
general constitutive Eq.5.49 may be developed as follows:

S (C) = a0I + a1C + · · ·+ anC
n (5.50)

Further, based on the Cayley-Hamilton theorem, the tensor C must satisfy its
own characteristic equation:

C3 − ICC
2 + IICC − IIICI = 0 (5.51)

As a result, the formulation of nonlinear elasticity in Eq.5.50 may be expressed
in terms of C or E as :

S (C) = a0I + a1C + a2C
2 or S (E) = α0I + α1E + α2E

2 (5.52)

where a0, a1, a2 and α0, α1, α2 are fucntions of the invariants IC , IIC , IIIC and
IE, IIE, IIIE, respectively.
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Linear Elasticity

A continuous material is said to be linear elastic if both geometrical and phys-
ical linearities apply [Lei74]. Geometrical linearity may be assumed if the
Eulerian and Lagrangian configurations are very close and approximately the
same. In case of small deformations, the geometrical linear relation derived
from Eq.5.52 and expressed in terms of the infinitesimal strain ε becomes:

σ (ε) ≈ α0I + α1ε+ α2ε
2 (5.53)

Physical linearity may be assumed if the stress and the strain tensors, S and
E, are related by a linear law. This may be obtained by developing the tensor
C and its invariants in terms of the tensorE and its invariants and by omitting
all existent quadratic terms. In this case, the physical linear relation derived
from equations Eq.5.52 becomes:

S = S0 + λIEI + 2μE (5.54)

with S0 = [0] since the initial undeformed state of the material is also un-
stressed. λ and μ are known as the Lamé constants. Combining both lineari-
ties together, the constitutive relationship for linear elastic materials may be
described in terms of the Hooke law as:

σ =KEε = λtr(ε)I + 2με (5.55)

For purpose of rheological experimentation, other forms of the Hooke law have
been developed by introducing the Young modulus E and the Poisson coeffi-
cient ν defined by:

E =
μ (3λ+ 2μ)

λ+ μ
and ν =

λ

2λ+ μ
(5.56)

And the vectorial form of the Hooke’s law in terms of E and ν becomes:

⎡
⎢⎢⎢⎢⎣

σ11

σ22

σ33

σi<j

⎤
⎥⎥⎥⎥⎦ =

E

(1 + ν) (1− 2ν)

⎡
⎢⎢⎢⎢⎢⎣
1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 (1−2ν)
2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ε11

ε22

ε33

2εi<j

⎤
⎥⎥⎥⎥⎦
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Nonlinear Hyperelasticity

Hyperelasticity describes nonlinear elastic materials which behavior is indeed
path-independent. Thereby, during a deformation process, the work done by
the stresses only depends on the initial and final configurations at times t0
and t. While linear elasticity is characterized by its mathematical simplicity,
most biological soft tissue are hyperelastic materials. Therefore, hyperelastic
constitutive behavior is particularly convenient in biomechanical modeling. It
indeed constitutes the basis for more complex material models derivation.

Hyperelastic constitutive equations may be described by a stored strain energy
functionW relating the first Piola-Kirchhoff stress tensor T to the deformation
gradient tensor F :

T =
∂W (F )

∂F
(5.57)

W describes the internal elastic potential stored in the material per unit unde-
formed volume resulting from the work done by the stresses from the initial to
the current position, as a function of the strain at that point in the material.
Introducing again F through C to account for the objectivity principle and us-
ing Eq.5.41 for the second Piola-Kirchhoff stress tensor S, the hyperelasticity
equation becomes:

S = 2
∂W (C)

∂C
(5.58)

Considering an isotropic material, the strain energy function W (C) may be
written in terms of the three invariants of C as W (IC , IIC , IIIC). As a result,
S in Eq.5.58 may be developed as follows:

S = 2

[
WI

∂IC
∂C

+WII

∂IIC
∂C

+WIII

∂IIIC
∂C

]
(5.59)

The derivatives of the invariants may be obtained from the characteristic
Eq.5.51 such as:

∂IC
∂C

= I;
∂IIC
∂C

= ICI −C; ∂IIIC
∂C

= IICI − ICC +C
2 (5.60)

Inserting Eq.5.60 into Eq.5.59, the general forms of elasticity obtained in
Eq.5.52 may be found again. Thereby, the specific hyperelasticity coefficients
are:

a0 = 2 (WI + ICWII + IICWIII) ,

a1 = −2 (WII + ICWIII) and a2 = 2WIII

(5.61)
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5.3.2 Anisotropy

Anisotropy is a mechanical property that describes the direction-dependent
constitutive behavior of the material. In soft tissue, it results from material
degeneration leading to an increase in mechanical anisotropy with the circum-
ferential stiffening direction. Planar biaxial mechanical evaluation allows for
3D constitutive modeling as well as investigation of the nature of mechani-
cal anisotropic behavior. The general form of the strain energy function for
an anisotropic hyperelastic material may be decomposed into two parts: an
isotropic component related to the matrix material and an anisotropic compo-
nent characterizing the orientation of the material fibers.

W =W (C, θ) =Wisotropic (C) +Wanisotropic (C, θ) (5.62)

where θ denotes the angle between the fiber reinforcement vectors and the
circumferential stiffening direction of the wall. The isotropic part includes the
isochoric and the volumetric elastic responses of the material and must be
written in terms of the three invariants of C only. As for the anisotropic part,
it can be expressed as scalar-valued functions in terms of the invariants Ii,
i = 4, · · · ,8:

W =Wisotropic (I1, I2, I3) +Wanisotropic (I4, I5, I6, I7, I8) (5.63)

Where the isotropic invariants are:⎧⎪⎪⎨
⎪⎪⎩

I1 = IC = tr (C)

I2 = IIC = 1
2

[
tr (C)2 − tr (C2)

]
I3 = IIIC= det (C)

(5.64)

And the anisotropic invariants are expressed in terms of C, a0, and b0 as:⎧⎪⎪⎨
⎪⎪⎩

I4 = a0.C.a0 I5 = a0.C
2.a0

I6 = a0.C.b0

I7 = b0.C.b0 I8 = b0.C
2.b0

(5.65)

with a0 and b0 represent the directions of the collagen fibers:

[a0] = [cos θ sin θ 0] and [b0] = [cos θ − sin θ 0] (5.66)

The material parameters of W used to model the anisotropic behavior may be
obtained by means of nonlinear regression analysis fitting the model to biaxial
representative stress-stretch experimental data.
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A material is said to be isotropic, if its constitutive behavior can be assumed
to be identical in any chosen material direction/axes. For a hyperelastic ma-
terial, this requires that the strain energy function relationship W must be
independent on the fiber orientation angle θ. Thus, the anisotropic contribu-
tionWanisotropic in Eq.5.63 vanishes and the strain energy functionW expressed
only as a function of the invariants of C becomes for an isotropic material:

W =W (C) =Wisotropic (IC , IIC , IIIC) (5.67)

5.3.3 Compressibility

Compressibility is related to the change in volume of a material once subjected
to a force or pressure. Its relative magnitude is usually measured in terms of
the compressibility modulus κ, defined as the relative volume decrease caused
by an applied increase in pressure. For an isothermal process, κ is given by:

κ = − 1
V

∂V

∂p
=
1

K
(5.68)

where K is the bulk modulus, defined as the inverse of the compressibility and
measures the resistance of a material to an applied compression. Using the
mass conservation principle and Eq.5.7, and to account for both configurations,
compressibility may also be expressed by the Jacobian J of the deformation
gradient tensor F :

J = det (F ) =
dv

dV
=
ρ0
ρ

(5.69)

If at large deformations, the change in volume is negligible compared to the
change in shape, then J = 1 and the material is said to be incompressible
[OS89]. In practice however, large strain processes in soft-tissue applications
take place under nearly incompressible conditions. Nearly incompressible ma-
terials denote truly incompressible materials which still include a small volu-
metric deformation in their numerical treatment. Thus, although J may be
replaced by 1 in the case of incompressibility, retaining J in the upcoming
equations is necessary to describe the nearly incompressible case. This has the
advantage that the finite element analysis is not strictly constrained, and hence
numerical stability is enforced. For an isotropic incompressible material sub-
jected to a hydrostatic pressure p, it is physically appropriate to separate the
p component from the true deviatoric component of the stress tensor. For ap-
plications in biomechanics, the true Cauchy stress tensor may be decomposed
into an elastic and a pressure stress components:

σ = σ′ (C)− pI (5.70)
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Substituting Eq.5.70 into Eq.5.40 and Eq.5.41, similar decomposition can be
established in terms of the Lagrangian stress tensors. The equivalent second
Piola-Kirchhoff stress tensor may be expressed as:

S = S′ (C)− pJC−1 (5.71)

The above equation is important as it enables the hydrostatic pressure p to be
directly evaluated from S:

p =
1

3
tr (σ) =

1

3
J−1tr (SC) (5.72)

Further, from Eq.5.3, Eq.5.16, Eq.5.51 and Eq.5.60 we have:

IIIC = J2 and
∂IIIC
∂C

= IIICC
−1 (5.73)

Thus, assuming a hyperelastic material and using Eq.5.73, the second Piola-
Kirchhoff stress tensor becomes:

S = S′ (C)− p

J

∂IIIC
∂C

(5.74)

Furthermore, it is useful to isolate the third determinant IIIC governing the
compressibility in the strain energy function. W may be therefore expressed
as a sum of two differentiable functions by decomposing it into a distortional
energy component W1 and a dilatational energy component W2 involving the
volume properties such that:

W (IC , IIC , IIIC) =W1 (IC , IIC) +W2 (IIIC) (5.75)

Using Eq.5.75, and writing W2 as a function of the Lagrange multiplier L, the
second Piola-Kirchhoff stress tensor S in Eq.5.58 becomes:

S =
∂W1 (Ic, IIc)

∂E
+
∂W2 (IIIc)

∂E
= S′ (C) + L

∂IIIc
∂E

(5.76)

Alternatively, the dilatational componentW2 in the strain energy function may
be expressed in terms of U (J) as a function of the bulk modulus K, so that
the incompressibility constraint is generally enforced by L or K being related
to the hydrostatic pressure p as follow:

L = − p

2J
or K =

p

J − 1 (5.77)
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5.3.4 Hyperelastic Models

As mentioned, the constitutive behavior of materials may be described using
3D stress-strain relationships. For most soft tissue, the mechanical properties
follow hyperelastic material laws. Their constitutive response can be therefore
modeled using a strain energy function, from which stress-strain equations
may be derived. The aim of experimentation is to predict the mechanical
behavior of the materials by describing their constitutive properties. While
for linear elastic materials this is trivial, quantifying the mechanical response
of nonlinear materials remains a challenging task due to lack in measurement
methods. Formulating general mathematical models to predict the constitutive
response of a material under well-defined conditions is therefore very helpful. In
the following, various available forms of strain energy functions for hyperlastic
models useful for use in soft-tissue modeling are presented. The general form
of the strain energy function W for an isotropic material may be written as
a function of the three invariants. In an undeformed state, IC = I1 = 3,
IIC = I2 = 3 and IIIC = I3 = 1. Thus, W per unit of reference volume
may be expressed as a Taylor series in power of (I1 − 3), (I2 − 3) and (I3 − 1)
[Ogd84]:

W =
∞∑

p,q,r=0

cp,q,r (I1 − 3)p (I2 − 3)q (I3 − 1)r (5.78)

The constitutive law parameters are quantified via experimentation. For ap-
plication in experiments, it is more appropriate to express the strain energy
function in terms of the extension ratios λ1, λ2 and λ3. Thus, using Eq.5.27,
W described in Eq.5.78 may be written as [Ogd84]:

W =
∞∑

p,q,r=0

ap,q,r {[λp
1 (λ

q
2 + λq

3) + λp
2 (λ

q
3 + λq

1) + λp
3 (λ

q
2 + λq

1)] (λ1λ2λ3)
r − 6}

(5.79)

with c000 = a000 = 0 and (p, q, r) are integer numbers.

� Polynomial Forms:
Based on the distortional and dilatational energy components W1 and
W2 the general polynomial form of W may be written as:

W (I1, I2, I3) =
N∑

p+q=1

cp,q,0 (I1 − 3)p (I2 − 3)q +
M∑
r=1

c0,0,r (I3 − 1)r (5.80)

where the first terms give the initial shear modulus μ0 = 2 (c1,0,0 + c0,1,0).
A particular case of the polynomial form is the second-order Mooney-
Rivlin model obtained for N = M = 2.
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� Reduced Polynomial Forms:
If additionally all terms related to the second invariant I2 can be disre-
garded, Eq.5.80 leads to the general reduced polynomial form:

W (I1, I3) =
N∑

p=1

cp,0,0 (I1 − 3)p +
M∑
r=1

c0,0,r (I3 − 1)r (5.81)

Particular cases of the reduced polynomial model are for instance the
first-order Neo-Hookean and the third-order Yeoh potentials obtained
for N = M equal 1 and 3, respectively.

� Ogden Form:
In the Ogden model, W is formulated in terms of the extension ratios
described in Eq.5.79. It is derived by expressing the distortional and
dilatational energy components W1 and W2 in terms of λi such that:

W =
N∑

p=1

2ap,0,0 (λ
p
1 + λp

2 + λp
3 − 3) +

M∑
r=1

6a0,0,r [(λ1λ2λ3)
r − 1] (5.82)

The Ogden forms are generally more accurate in fitting experimental re-
sults, require however multiple uni- and biaxial test data to be available.

� Exponential Form:
In some applications, it is convenient to express W as an exponential
relation. The form was derived on the basis of the uniaxial exponential
relation first developed by Fung. In terms of the invariants it integrated
in the form [Sny72]:

W (I1, I2, I3) =
N∑

p+q=1

cp,q,0 e
α(I1−3)p+β(I2−3)q +W2 (I3) (5.83)

� Saint Venant-Kirchhoff Model:
Finally, it is worth to mention that the simplest form of a hyperelastic
material is the St. Venant-Kirchhoff model, being an extension of the
linear elasticity to the nonlinear regime. It is obtained analog to the
Hooke’s law defined in Eq.5.55 by replacing the infinite strain ε by the
Lagrangian Green strain E. It has the form:

W =
λ

2
[tr(E)]2 + μtr(E2) (5.84)

Through few manipulations, W may be expressed in terms of the in-
variants. In practice however, the St. Venant-Kirchhoff model has been
found to be inaccurate beyond the small strain regime.
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5.4 Finite Element Method

The basics of continuum mechanics and constitutive laws provide the differ-
ential equations necessary to describe the physical behavior of the material
system under consideration. Mathematical resolution approaches are needed
to obtain temporal and spacial solutions of the unknown state variables. Nu-
merical solutions are obtained by defining necessary transformations of the
system of partial differential equations to a discrete formulation of the prob-
lem. The Finite Element Method (FEM) is a numerical technique appropriate
to solve complex systems of nonlinear partial differential equations which can
not be solved via analytical approaches.

Soft-tissue modeling includes in general physical and geometrical nonlineari-
ties. Thus, for realistic simulation of nonlinear processes, resolution methods
must take this aspect into account. The nonlinear FEM allows approximating
a solution using incremental techniques applied on spatial and temporal finite
discretized domains, combined with explicit or implicit integration approaches
and updated via appropriate iterative schemes.

5.4.1 Galerkin’s Formulations

The general continuous equations of motion in the deformed and the reference
coordinates have been derived in terms of the variational forms in Eq.5.45
and Eq.5.47. The Galerkin formulation represents the basis of the FEM in
which the basic equations are approximated with appropriate discrete weight-
ing functions and then integrated over the region of interest [Zie89]. It is
equivalent to the weak variational equations written in the form of the virtual
work principle, such as:

∂Ŵ tot = ∂Ŵ ext + ∂Ŵ int (5.85)

In the Eulerian configuration, the Galerkin formulation follows from Eq.5.45
and can be written as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂Ŵ tot=

∫
v
∂ûTρΓvdv inertial virtual work

∂Ŵ ext=
∫
v
∂ûTf vdv +

∫
s
∂ûT tsnds external virtual work

∂Ŵ int= − ∫
v
∂êTσ′dv internal virtual work

(5.86)

where σ′ and e are the vectorial forms of the original σ and e tensors.
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Similarly, in the form of the virtual work principle, the Galerkin formulation in
the Lagrangian configuration is equivalent to the variational equations derived
in Eq.5.47 and written as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Ŵ tot=
∫
V
∂ûTρ0Γ

V dV inertial virtual work

∂Ŵ ext=
∫
V
∂ûTfV dV +

∫
S
∂ûT tSNdS external virtual work

∂Ŵ int= − ∫
V
∂ÊTSdV internal virtual work

(5.87)

where S and E are the vectorial forms of the original S and E tensors.

5.4.2 Geometric Discretization

The FEM is based on the geometrical discretization of the continuous domain
Ω by approximating the space to a discrete domain of finite element meshes
with regular shapes. As a result, any continuous function g(P ) applied to a
point P in Ω may be expressed as an interpolated function of the discrete mesh
by a finite system of equations g(Ni) in terms of the node coordinates.

Shape Functions

Shape functions Hi provide a mean for interpolation between the discrete node
variables Ni within a finite mesh element. They are defined in a local system
(ξ, η, ζ) resulting from an element transformation from the global to the local
coordinates. The general interpolation form for approximating an unknown
continuous function by a discrete expression may be written as:

g(P ) =
n∑
i

Hi(ξi, ηi, ζi)g(Ni) (5.88)

with the functions Hi(ξl, ηl, ζl) = δil and δil is the Kronecker delta, reflecting
the one-to-one correspondence between the nodes of the parent element in the
local and the distorted element in the global coordinate system. In general,
any finite element shape compatible with the space dimension to discretize can
be used for defining the shape functions. However, the use of functions arising
from regular shaped elements with symmetric properties are more convenient
to specify the relation between the global and local coordinate systems. Such
functions are known as basic shape functions and may be approximated in
terms of reduced parameters based on the same polynomial functions for all
mesh elements [ZT06]. Their associated interpolation procedures and corre-
sponding elements are known as isoparametric.
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Further, interpolating a constant function over the simulation domain, that is
specifying a constant value of g(Ni) for all Ni, must result in a constant value
of g(P ). This leads to the characteristic property for standard shape functions
stating that

∑n
i=1Hi = 1 for all nodes n of Ω. In terms of coordinate vec-

tors X and N for an arbitrary point and its corresponding elementary nodes
respectively, shape functions may be defined as:

X =
n∑
i

HiNi =HN (5.89)

Different interpolation schemes for standard shape functions in one, two and
three dimensions may be derived from isoparametric procedures for lines, tri-
angles, quadrilaterals, tetrahedrons and hexahedrons. Linear interpolations
may be obtained using first-order polynomial functions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1D−Line =
1−ξ
2
N1 +

1+ξ
2
N2

X2D−Tri = ξN1 +ηN2 +(1−ξ−η)N3

X2D−Quad=
(1−ξ)(1−η)

4
N1 +

(1+ξ)(1−η)
4

N2 +
(1+ξ)(1+η)

4
N3 +

(1−ξ)(1−η)
4

N4

X3D−Tet = (1−ξ−η−ζ)N1 +ξN2 +ηN3 +ζN4

X3D−Hex =
∑8

i=1 hiNi with hi =
1
8
(1±ξ)(1±η)(1±ζ)

Similarly, different orders of interpolating shape functions can be applied to
enhance the accuracy of the mesh element. For higher orders of interpolation,
derivatives are additionally needed for the calculation of the coefficients of
the polynomials. Nonlinear quadratic interpolations may be obtained using
second-order polynomial functions, like for instance the six-node interpolation
of a quadratic 2D triangular element described by its shape function:

H = [α (2α− 1) ξ (2ξ − 1) η (2η − 1) 4ξα 4ξη 4ηα] (5.90)

with α = 1 − ξ − η. Extensions of the standard shape functions for finite
element programs are well described in relevant literature [Sch91].

Discretized Equations of Motion

In order to apply the geometrical discretization to the continuous equations of
motion, the displacement functions u of the application points P of fV

n and tSn
as well as their derivatives u̇ and ü are expressed based on Eq.5.89 in terms
of the nodal displacement vectors U such as:
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uf =HfU u̇f =HfU̇ üf =HfÜ

ut =H tU u̇t =H tU̇ üt =H tÜ
(5.91)

In addition, the strain-displacement relationship defined in Eq.5.19 may be
written in terms of U and the nonlinear differential operator B as E =
B (U)U . Consequently, the Galerkin’s formulation in Eq.5.87 for the gen-
eral nonlinear constitutive relationship where S(E, Ė) transforms in the weak
form of the virtual work as:

∂Ŵ tot = ∂Ŵ ext + ∂Ŵ int (5.92)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Ŵ tot= ∂ÛT
(∫

V
ρ0H

THdV
)
Ü

∂Ŵ ext= ∂ÛT
(∫

V
HfTfV dV +

∫
S
H tT tSNdS

)
∂Ŵ int= −∂ÛT

[∫
V

BTS(U , U̇)dV
] (5.93)

where B and S are the vectorial forms of the original B and S tensors. The
general elementary finite tensorial equation representing the dynamic response
of the system is obtained after removing the virtual nodal displacement ∂Û :

MÜ +Π
(
U , U̇

)
= L (5.94)

with⎧⎪⎪⎨
⎪⎪⎩
M=

∫
V
ρ0H

THdV mass matrix

Π =
∫
V

BTS(U , U̇)dV int. force vector

L =
∫
V
HfTfV dV +

∫
S
H tT tSNdS nodal ext. force vector

(5.95)

Similar forms for the global tensorial equations may then be derived by com-
bining all the elementary equations. Furthermore, when the stress tensor S
may be decomposed in terms of independent viscous and elastic components,
such the case of the Kelvin Voigt constitutive material, the internal force vec-
tor Π may be expressed in terms of uncoupled damping D and stiffness K
matrices [Hug00], so that the dynamic response defined in Eq.5.94 becomes:

MÜ +DU̇ +KU = L (5.96)
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5.4.3 Incremental Approach

In order to describe the dynamic mesh response to the applied forces, the dis-
cretized differential system defined in Eq.5.94 for the global vector U must be
solved. In general, solutions for the second-order dynamic equations cannot
be obtained in their common nonlinear form. Instead, the nonlinear time-
dependent system must be discretized into piecewise finite temporal domains
allowing and replaced with linear incremental relations. Iterative step-by-step
approximation of the solution may then be applied using linear integration
algorithms allowing an incremental update of the variables at each iteration
step. Applying incremental approaches requires that all relations are expressed
in their incremental forms. The Eulerian incremental approach in which all
the variables refer to the deformed state is inconvenient, since the current con-
figuration is the problem unknown to be solved [Kle89]. While in the Total
Lagrangian approach the variables are described in the original undeformed
configuration, the Updated Lagrangian, also known as the Approximate Eule-
rian, is more general and has proven to be computationally efficient referring
to the recently computed configuration. Thus, referred to any previous con-
figuration, the increments in the Piola-Kirchhoff stress Sn ≡ S(tn) and the
Green-Lagrange strain En ≡ E(tn) variables may be defined as:

ΔS = Sn+1 − Sn and ΔE = En+1 −En (5.97)

Further, writing the increments in strain as a sum of a linear and a nonlinear
components using Eq.5.29 gives:

ΔE = ΔEL +ΔENL with (5.98){
ΔEL = 1

2

[
Δ(∇un) + Δ

(∇uT
n

)
+Δ

(∇uT
n

)∇un +∇uT
nΔ(∇un)

]
ΔENL= 1

2

[
Δ

(∇uT
n

)
Δ(∇un)

]
Incremental Equations

The elementary Galerkin’s equation in the Eulerian configuration at step n+1
may be concluded from the known variables at step n using Eq.5.86 such as:

∂Ŵ tot
n+1 = ∂Ŵ ext

n+1 + ∂Ŵ int
n+1 (5.99)

With regard to the Lagrangian incremental approach, these Eulerian equations
of motion must be moved into the previous configuration where all variables
are assumed to be known at step n. The Galerkin’s formulation in the La-
grangian configuration may be described as:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Ŵ tot
n+1=

∫
V
∂ûT

n+1ρnΓ
V
n+1dV inertial

∂Ŵ ext
n+1=

∫
V
∂ûT

n+1f
V
n+1dV +

∫
S
∂ûT

n+1t
S
n+1NdS external

∂Ŵ int
n+1= − ∫

V
∂Ê

T

n+1Sn+1dV internal

(5.100)

where the volume, surface and local normal to the external surface are defined
at step n. In contrast to the internal work, the external forces applied on
the current -unknown- configuration at step n + 1 can not be defined in the
previous configuration at step n. The work arising from the external forces
was therefore expressed by assuming that their description in the previous
and current configurations is equal. Using Eq.5.97 and Eq.5.98 and writing
∂En+1 = ∂(ΔE), the internal virtual work defined in Eq.5.100 may be divided
into:

∂Ŵ int
n+1 = ∂Ŵ LS

n+1 + ∂Ŵ LΔ
n+1 + ∂ŴNS

n+1 + ∂ŴNΔ
n+1 (5.101)

By definingKM
n and SR

n as the tangent material stiffness matrix and the resid-
ual constitutive stress respectively, the incremental strain-stress constitutive
relationship may be written as:

ΔS =KM
n ΔE + S

R
n (5.102)

Further, by assuming that ∂ŴNΔ
n+1 = 0 and ΔS ≈ ΔS(ΔEL) which allow

linearizing ∂Ŵ int
n+1 in Eq.5.101, the virtual incremental equation of motion

defined in Eq.5.99 becomes:

∂Ŵ tot
n+1 = ∂Ŵ 1

n+1 + ∂Ŵ 2
n+1 + ∂Ŵ 3

n+1 + ∂Ŵ ext
n+1 (5.103)

with the first term reflecting the inertial effects, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ŵ tot
n+1 =

∫
V
∂ûT

n+1ρnΓ
V
n+1dV inertial

∂Ŵ 1
n+1 = −

∫
V
∂
(
ΔÊL

)T [
Sn + SR

n

]
dV internal force

∂Ŵ 2
n+1 = −

∫
V
∂
(
ΔÊL

)T

KM
n ΔELdV linear strain

∂Ŵ 3
n+1 = −

∫
V
∂
(
ΔÊNL

)T [
Sn + SR

n

]
dV geometric

∂Ŵ ext
n+1 =

∫
V
∂ûT

n+1f
V
n+1dV +

∫
S
∂ûT

n+1t
S
n+1NdS external

(5.104)
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Finite Incremental Equations

In order to convert the incremental virtual work defined in Eq.5.104 into a
finite element formulation, a discretization as defined in Eq.5.91 is considered,
allowing indeed usingE = BU to express the linear and nonlinear components
of the strain-displacement relations in the form:

ΔEL = BL
nΔU and ψΔENL = ΔUTBNLT

n ΨBNLT

n ΔU (5.105)

where, for any matrix ψ, Ψ is a matrix composed of ψ matrices on its diagonal
and zeros elsewhere. Thereby, ΔU represents the incremental nodal displace-
ment at step n. Inserting these into Eq.5.103, the incremental finite virtual
formulation for real work (ΔÛ ≡ ΔU) becomes:

MnÜn+1 +
(
KL

n +K
NL
n

)
ΔU = Ln+1 −Rn (5.106)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mn =
∫
V
ρnH

THdV tangent mass matrix

KL
n =

∫
V

BLT

n KM
n BL

ndV linear tangent stiffness matrix

KNL
n =

∫
V

BNLT

n

[
Sn + SR

n

]
SNL

n dV geometric stiffness matrix

Rn =
∫
V

BLT

n

[
Sn + SR

n

]
dV int. force vector

Ln+1=
∫
V
HfTfV

n+1dV +
∫
S
H tT tSn+1NdS nodal ext. force vector

(5.107)

In the general case where S = S(E, Ė), Eq.5.102 is replaced by:

ΔS =KM
n ΔE +D

M
n ΔĖ + S

R
n (5.108)

And the general incremental finite virtual work formulation in Eq.5.106 may
be developed from Eq.5.96, after including the tangent damping matrix Dn

and combining the linear and the nonlinear stiffness terms into the tangent
stiffness matrix Kn, as:

MnÜn+1 +DnU̇n+1 +KnΔU = Ln+1 −Rn (5.109)

with

Rn = Ln −MnÜn −DnU̇n and Rn+1 = Rn +KnΔU (5.110)
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5.4.4 Time Integration

Solving for the unknown ΔU , explicit or implicit time integration methods for
approximating the acceleration, the velocity and the displacement are provided
allowing temporal incremental solutions of the problem.

Explicit Integration Approach

In the explicit time integration, the governing equilibrium is assumed to be
known at step n to obtain a solution for the unknown ΔU at step n + 1. An
explicit formulation based on central difference approximations is given by:

Ün =
1

Δt2
(Un+1 − 2Un +Un−1) =

1

Δt2
[ΔU − (Un −Un−1)] (5.111)

U̇n =
1

2Δt
(Un+1 −Un−1) =

1

2Δt
[ΔU + (Un −Un−1)] (5.112)

Incremental equations may be then obtained by inserting Eq.5.111 and Eq.5.112
into Eq.5.109 written for n− 1 to give:[
1

Δt2
Mn +

1

2Δt
Dn

]
︸ ︷︷ ︸

An

ΔU = Ln −
[
Rn −

(
1

Δt2
Mn − 1

2Δt
Dn

)
(Un −Un−1)

]
︸ ︷︷ ︸

Yn

with An, Ln and Yn being the effective stiffness matrix, the nodal external
force vector and the effective internal force vector respectively, defined at n.
The central difference approach is effective if the mass and damping matrices
are diagonal, since then no effective stiffness matrix needs to be factorized
[Bat96]. Also, it is more effective when used with low-order elements, avoiding
the use of quadratic elements. No zero-mass degree of freedom may be em-
ployed, otherwise singularities in the displacements will be obtained. Indeed,
the explicit approach does not reduce to the static case when the inertial and
viscous effects are neglected.

Implicit Integration Approach

The implicit method assumes the equilibrium at t + Δt to obtain solution at
t + Δt. The implicit formulations for the finite approximation at step n + 1
based on the Newmark method are written in terms of two parameters:
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Un+1 = Un + U̇nΔt+

[(
1

2
− α

)
Ün + αÜn+1

]
Δt2 (5.113)

U̇n+1 = U̇n +
[
(1− β) Ün + βÜn+1

]
Δt (5.114)

By deriving Ün+1 and U̇n+1 from these equations and inserting them into
Eq.5.109, the incremental dynamics formulation becomes:

AnΔU = Ln+1 − Yn (5.115)

with⎧⎨
⎩
An =

1
αΔt2
Mn +

β
αΔt
Dn +Kn and

Yn = Rn −Mn

[
1

αΔt
U̇n +

(
1
2α
− 1) Ün

]
−Dn

[(
β
α
− 1) U̇n +

Δt
2

(
β
α
− 2) Ün

]

where α and β being the Newmark control parameters enhancing stability and
accuracy of the time integration. For (α; β) equal (0.5; 0.25) and (1; 0.5), the
method reduces to the trapezoil rule and the implicit Euler, respectively. Since
the Newmark method assumes the equilibrium at the unknown time t+Δt, the
tangent matrix Kn appears as factor of the required ΔU . A factorization of
the effective stiffness matrix is always required, whether the mass and damping
matrices are diagonal or banded. The method is more effective when employed
with higher-order elements and consistent mass discretization. Furthermore,
it can be used for static analysis by neglecting the inertial and viscous effects.

5.4.5 Implicit Iteration Methods

As a result of the incremental formulation, the nonlinear equations must be
replaced by finite linear incremental relations. The dynamic equilibrium in the
explicit solution is established at the known configuration at time t. Thus, the
explicit finite element solution is consistent with the dynamic conditions. On
the other hand, the solution in the implicit approach does not satisfy in general
the nodal equilibrium accurately. Therefore, improving the implicit solution is
necessary, where the equilibrium equations are considered at an unknown t+Δt
configuration. An effective solution may be obtained by performing additional
iterations within each time step based on the Newton-Raphson schemes to
ensure that nodal point equilibrium is sufficiently satisfied [Kle89].
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Full Newton-Raphson

The iterative algorithm used in the full Newton-Raphson scheme to solve the
dynamics equations can be described as follow:

MnÜ
i
n+1 +DnU̇

i
n+1 +K

i
n+1ΔU

i = Ln+1 −Ri−1
n+1 with (5.116)

K0
n+1 =Kn R0n+1 = Rn U 0n+1 = Un as initial conditions

with i ≡ (1,2,3, . . .) and Ü i
n+1, U̇

i
n+1 and U

i−1
n+1 +ΔU

i are the approximations
of the nodal acceleration, velocity and displacement vectors obtained at the
i-th iteration, respectively. As for the vector of internal nodal force Ri−1

n+1, it is
equivalent to the state of element stresses corresponding to the displacements
configuration U i−1

n+1, with U
(i)
n+1 = U

(i−1)
n+1 + ΔU (i) and where ΔU i is the i-th

correction to the incremental displacement vector. The full Newton-Raphson
iteration algorithm imposes that the effective stiffness matrix is updated and
factorized at the beginning of each new iteration load step Fig.5.2 (left).

Modified Newton-Raphson

The use of solution techniques that are less expensive and more efficient in
accounting for nonlinear responses where the full scheme does not must be
considered. The iterative algorithm may be formulated as:

MnÜ
i
n+1 +DnU̇

i
n+1 +KnΔU

i = Ln+1 −Ri−1
n+1 (5.117)

In the modified Newton-Raphson iteration scheme the tangent stiffness matrix
Kn is not updated at each iteration and the effective stiffness matrix is factor-
ized only once at each time step Fig.5.2 (right). In this case, all nonlinearities
are included in the evaluation of the internal nodal force vector Ri−1

n+1.

Figure 5.2: Full and modified Newton-Raphson iterations [Kle89].
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5.5 CSM Simulation Models

The theoretical principles described above are applied to simulate the vessel
wall as a structure. Three-dimensional computations have been carried out
to numerically describe the elastomechanics of the vessel wall domain at any
time. The generation of image-based biomechanical models is based on the
developed workflow described in Chap.3 and applied to Computational Struc-
ture Mechanics (CSM). Based on patient-specific geometries and meshes, static
and dynamic physical models, arterial wall material properties, realistic bound-
ary and initial conditions, mathematical solution methods and finally stability
analysis are needed and discussed in detail in the following sections. The CSM
simulations are based on the FEM approach to compute and evaluate the wall
stress distribution (Fig.5.3), vessel deformation (Fig.5.3) and material param-
eters (Fig.5.5). The numerical solvers of the FEM-based program Abaqus are
used to solve the fundamental equations governing the vessel wall domain.

Figure 5.3: Stress distribution. Figure 5.4: Strain analysis.

Figure 5.5: Constitutive evaluation of material parameters.
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5.5.1 Physical and Constitutive Modeling

Physical modeling is a two-stages process involving two aspects: First the dy-
namic behavior of the vessel wall is described through the fundamental equa-
tions, and second the vessel material properties are described through their
constitutive equations.

Wall Governing Equations

The three-dimensional fundamental equations governing the vessel wall domain
are described based on the Euler-Cauchy principle. They are represented by
the dynamics equations and the symmetry of the Cauchy stress tensor de-
rived from the force and momentum balance equations, respectively. Solving
the vessel wall domain is therefore equivalent to solving the boundary value
problem represented by the time-dependent equations given by:

ρwüw = f
v
w +∇

(
σT

w

)
(5.118)

and
σT

w = σw (5.119)

where ρw is the wall density, üw the wall acceleration, σT
w the current wall

stress tensor and f v
w the wall forces per unit volume.

Wall material properties

A reliable biomechanical analysis of the arterial wall requires not only a precise
three-dimensional description of the governing equations, but also appropriate
constitutive modeling of the elastomechanical material behavior of the vessel.
Structural constitutive models describe the elasticity, the anisotropy and the
compressibility of the wall. The arterial wall is assumed to be a homogeneous,
isotropic material with the energy strain function W expressed in terms of the
three invariants of the Cauchy-Green dilation tensor:

W =Wisotropic (C) =W (I1, I2, I3) (5.120)

Many structural studies have used aortic models based on the theory of lin-
earized elasticity. However, ex-vivo experiments show that the vascular tissue
is a complex structure, materially nonlinear and that the constitutive behavior
of the aortic wall is highly affected by the presence of a pathology, such as an
aneurysm or a stenosis, compared to a healthy aorta [RWV96].
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Eight vascular models are implemented in this work. Besides a simplified lin-
ear elastic model, the vascular tissue is considered as a nonlinear hyperelastic
material based on a finite strain constitutive theory assuming that the wall
undergoes large displacements prior to rupture.

� Abdominal Aneurysmal Vascular Model:
The constitutive behavior of abdominal aneurysms is based on equations
derived from the abdominal aneurysmal arterial tissue. It is mathemat-
ically described by a second-order (n = 2) reduced polynomial model:

W = c100 (I1 − 3) + c200 (I1 − 3)2 (5.121)

The material parameters of this constitutive model are adapted from re-
alistic measurements obtained from ex-vivo uniaxial testing and analysis
of 69 AAAs and estimated to the population mean values [RV00], with:

c100 = 0.174 Nmm
−2 and c200 = 1.881 Nmm

−2

� Thoracic Aneurysmal Vascular Model:
The behavior of thoracic aneurysms is based on constitutive equations
derived for the thoracic aneurysmal tissue. It is also described by the
second-order reduced polynomial model presented in Eq.5.121. Its ma-
terial parameters are adapted from realistic biaxial tensile data derived
from ex-vivo analysis of patients with TAAs [VSE+03]:

c100 = 0.11 Nmm
−2 and c200 = 0.53 Nmm

−2

� Abdominal Healthy Vascular Model:
The constitutive modeling of healthy abdominal aortas is derived from
measurements performed on healthy human abdominal aortic tissue. It
is described by the third-order reduced polynomial model:

W = c100 (I1 − 3) + c200 (I1 − 3)2 + c300 (I1 − 3)3 (5.122)

The corresponding material parameters are obtained from biaxial tensile
data derived by [VGSV04]:

c100 = 0.01296 Nmm
−2; c200 = 0.00114 Nmm−2; c300 = 0.00591 Nmm−2

� Thoracic Healthy Vascular Model:
The mechanical behavior of healthy thoracic aortas is based on measure-
ments performed on healthy human thoracic aortic tissue. It is described
by the second-order reduced polynomial model with parameters derived
from biaxial tensile data obtained by [VSE+03]:

c100 = 0.110 Nmm
−2 and c200 = 0.090 Nmm

−2
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� Porcine Abdominal Vascular Model:
Further, the constitutive mechanical behavior of porcine abdominal aor-
tas is based on a third-order polynomial hyperelastic model given by:

W = c010 (I2 − 3) + c110 (I1 − 3) (I2 − 3) + c300 (I1 − 3)3 (5.123)

The parameters are derived from ex-vivo experiments performed by [PLD+03]
on the abdominal aortic tissue, with:

c010 = 0.01536 Nmm
−2; c110 = 0.01634 Nmm−2; c300 = 0.003407 Nmm−2

� Porcine Thoracic Vascular Model:
As for the porcine thoracic aorta, it is described based on Eq.5.121. The
material parameters are derived by means of evaluation, performed in
this work, of stress-strain data obtained from [Sok07] (Fig.5.6):

c100 = 0.00838 Nmm
−2 and c200 = 0.0198 Nmm

−2

Figure 5.6: Evaluation of the thoracic porcine model from testdata.

Figure 5.7: Stress-Strain curves for both porcine material models.



5.5. CSM Simulation Models 113

� Thrombus Hyperelastic Model:
Also, the constitutive behavior of the surrounding intraluminal thrombus
material is implemented based on equations derived from a second-order
(n = 2) polynomial model:

W = c010 (I2 − 3) + c020 (I2 − 3)2 (5.124)

with material parameters obtained from uniaxial tensile measurements
performed by [DMV03] and given by:

c010 = 0.028 Nmm
−2 and c020 = 0.0286 Nmm

−2

� Linear Elastic Model:
Finally, for comparison and to examine the influence of the hyperelastic
material properties on the elastomechanics, a linear elastic wall model is
considered with a Youngs modulus of elasticity E = 2.7 MPa.

Furthermore, the arterial wall is considered as a nearly incompressible mate-
rial with a density ρw = 1200 Kgm−3 and a Poisson ratio ν = 0.499. The
incompressibility constraint is modeled by the expression of the second Piola-
Kirchhoff stress tensor S in terms of its deviatoric component S′ and the
Lagrangian strain tensor E, given by Eq.5.76 and Eq.5.77.

5.5.2 Initial and Boundary Conditions

Biomechanical simulations of the vessel require the knowledge of the load dis-
tribution on the wall and of a set of prescribed displacement constraints. The
Neumann and Dirichlet conditions, describing the load and the constraint con-
ditions, respectively, are needed to solve and initialize the system of differential
equations governing the structural model. Both static and dynamic compu-
tations have been carried out on the patient geometries. For the dynamic
simulations, the transient load distribution on the inner aortic wall is based
on real time-dependent pressure profiles obtained either from previous blood
flow (CFD) simulations for the same patient as shown in Fig.5.8 [HKU+07] or
from direct in-vivo or ex-vivo measurements. Fig.5.8 shows the relative total
pressure distribution on the aortic wall at peak systole. In order to get rid of
undesirable oscillations and instabilities in the simulations, the pressure profile
is slightly idealized by smoothing the curve (Fig.5.9.b). Indeed, the pressure
profile is considered as homogeneous in space assuming that the local blood
pressure variation within the aorta is relatively small [SF07]. A stabilization
phase of 1s is applied prior to both simulations to increase the pressure from
0 to its initial value pini. For the static simulations, only diastolic pd and peak
systolic ps pressures are considered (Fig.5.9.a).
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· · · · · · · · · · · ·
Figure 5.8: CFD simulations: Wall pressure distribution at various times.

(a) Static (b) Dynamic

Figure 5.9: Load boundary conditions: Static and dynamic pressure profiles.

As for the boundary of the vessel wall defined by the inlet and the outlets, the
displacement constraint condition is implemented for all degrees of freedom.
Thereby, zero translation is imposed on the nodes ends. This allows fixing the
aorta, reflecting the real situation being hold by the surrounding organs.

5.5.3 Mathematical and Numerical Modeling

The resulting three-dimensional equations governing the vessel wall domain
consist of a complex nonlinear system of partial differential equations. The
numerical discretization of the simulation domain is based on the finite ele-
ment approach. The CSM simulations are carried out using the FEM-program
Abaqus. Thereby, the computational domain is discretized into three-node fi-
nite shell elements. The interpolation scheme between the discrete node vari-
ables within the finite elements is based on a linear polynomial function. The
interpolating shape function is hereby expressed by:

Hshell = [ξ η (1− ξ − η)] (5.125)
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The coordinate vectors of an arbitrary point X and of its elementary nodes
N are related through H by X =

∑n
i HiNi. The conservation equations

are integrated over the individual cells in their weak form generating a set of
differential equations. The field variables are then approximated at the centre
of the cells so that dynamic equilibrium, represented by the error function
Ψ(u):

Ψ(u) = E(u)− F = 0 (5.126)

is achieved. E(u) is the internal energy expressed as a function of the dis-
placement u, produced by the structure as a reaction to the external forces F
applied on it. The nonlinear second-order discretized equations are replaced
with incremental equations by applying the Updated Lagrangian approach.
The time-dependent incremental equations for the finite displacements are ob-
tained using an implicit time integration. The implicit formulation is based on
the Newmark method assuming equilibrium at time t+Δt to obtain solution at
t+Δt. The Newton-Raphson iteration method is used to solve the nonlinear
system of governing equations. As a result, the analysis can be assumed as
linear and E(u) can be represented as a linear function of the stiffness matrix
K:

E(u) =Ku (5.127)

Nodal equilibrium of the resulting linearized system of equations is solved
using an iterative approach based on the Gauss-Seidel algorithm, described
in Sec.7.2.8. Finally the local solution is integrated into the whole domain.
Consequently, the stress distributions and the vessel deformation are computed
and evaluated at any instant of time within the computational domain.

5.5.4 Numerical Stability - Discussion

Explicit integration is conditionally stable, requiring that the time step size
Δt is smaller than a critical step size calculated from the smallest period in
the finite element mesh. Δt is related to the element properties and is given
by:

Δt ≤ Δtcr = TNmin

π
=

2

wNmax

In order to overcome the stability limitation of explicit methods, the implicit
time integration is used to achieve more accurate solutions and faster conver-
gence. The implicit formulation is unconditionally stable, meaning that the
choice of the time step increment Δt is rather based on accuracy issues and
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that much larger sizes Δt can be used. Thereby, in order to obtain fast con-
vergence, an appropriate selection of the Newmark control parameters α and
β is of great importance. The method is in general stable for:

β ≥ 0.5 and α ≥ 0.25 (β + 0.5)2

The trapezoil rule is obtained for β = 0.5 and α = 0.25. With Tlow being the
lowest period of interest, the step size Δt recommended for dynamic analysis
with the trapezoil rule is given by:

Δt

Tlow

= wlowΔt ≤ 0.20

Further, the use of the Newton-Method allows improving the implicit solution,
where the equilibrium equations are considered at an unknwon time configura-
tion. The full Newton-Raphson iteration scheme combined with a reasonable
load incrementation method is usually sufficient to ensure an accurate solution
of the dynamic response of the model. However, since the algorithm imposes
that the effective stiffness matrix is updated and factorized at the beginning of
each new load step and in each iteration as shown in Fig.5.2, this method may
be computationally expensive per iteration. Still with the advantage that the
more expensive per iteration the method is, the less iterations are needed to
achieve convergence. Alternatively, the modified Newton-Raphson may be also
used in order to achieve convergence. The method does not impose the recom-
putation of the tangent of the stiffness matrix after every iteration. Instead,
the same initially computed matrix is used for the whole course of iterations.
As a result, the modified Newton-Raphson scheme may be computationally
less expensive than the full Newton, however at the cost of the total num-
ber of iterations required to reach time convergence. Therefore, the Quasi
Newton-Raphson method is used as another alternative choice, combining the
advantages of both methods. The algorithm imposes the recomputation of the
tangent of the stiffness matrix only after a certain interval n of iteration steps.

Finally, mathematical stability is ensured by generating time-step indepen-
dent computations, characterized by a few numbers of iterations and small
residuals, while compromising between accuracy and computational cost. Fur-
thermore, all dynamic results represented below are evaluated at the fourth
cardiac cycle, ensuring convergence and providing indeed periodicity. As for
the physical stability, it is ensured by using mesh configurations based on the
previous stability study [HBK+07] carried out on individual aortic models.
Exact solutions are guaranteed by the large number of finite elements present
in the computational domain.
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5.6 System Integration in CSM-Sim

The vessel wall modeling steps are integrated in MoDiSim into the component
CSM-Sim. As described in Sec.3.4, CSM-Sim was developed to automati-
cally generate, perform and quantify computational vessel wall simulations in
patient-specific aortic models at any time. The user interface of CSM-Sim is
shown in Fig.5.10. The system integration includes the process automation,
the physical optimization as well as individualization and expandability.

Figure 5.10: User-Interface of the CSM simulation component CSM-Sim.
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5.6.1 Automation

The process automation of the vessel wall simulations is achieved via integra-
tion of the CSM modeling steps into the component CSM-Sim. These are
processed by the program automatically based on a minimal user interaction.
Once the vessel wall model is defined and the computations are performed,
the simulation results can be also visualized and analyzed, providing a physi-
cal insight into the elastomechanical vessel parameters. The most important
actions in the CSM-Sim component sketched in Fig.5.11 are described below:

� Write Data:
TheWriteInp method first checks the data in the .inp input surface mesh
of the aorta for any existing simulation settings by looking for predefined
Abaqus command keywords. Then, a new simulation subdirectory is
created to which the .inp file is copied. All simulation settings will be
written into this new .inp file.

� Adjust Physical Settings:
The StoreAndAdjustExistingSettings method replaces the thickness of all
shell sections with the thickness of the aortic wall. WriteMaterial adds a
material model into the .inp file describing the aortic wall and associates
appropriate material parameters. The selection of the material models
and their parameters is user-defined. Therefore, the input .inp has to
include at least one section definition for the aortic wall material.

� Define Boundary Conditions:
WriteAmplitude adjusts the values in the pressure profile to the mini-
mum pressure before writing these into the .inp file as amplitude RAMP.
WriteBoundaryCondition defines a DOF constraint condition at all end-
ing nodes. Therefore, a nodeset including all nodes of the inlet and
outlets must be predefined in the input .inp file as described in Sec.4.7.

� Define Simulation Steps and Solvers:
WriteLiftUpStep defines a static step to lift the pressure to its initial
value. WriteDynamicStep writes a dynamic cardiac cycle using the de-
fined amplitude. WriteStaticStep writes a static simulation step related
to the systolic pressure. All pressure loads are applied on the inner side
of the aortic surface, which has to be predefined in the input surface mesh
file. The output requests are subsequently written into the .inp file after
every n steps using WriteOutputRequests. The frequency of the output
requests per step may be defined by the user. Finally, the desired solver
and timestep settings are applied to each defined step in the cycles.
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Figure 5.11: Activity diagram of the CSM simulation component CSM-Sim.
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� Start the Datacheck:
StartAbaqusDatacheck starts an Abaqus datacheck on the stored .inp file,
which includes the simulation settings. WaitForEnd waits for all Abaqus
processes to terminate. SearchForErrorInLog searches for errors in the
resulting job.log file and outputs them.

� Start the Simulation:
StartAbaqusSimulation starts Abaqus with the parameter ‘continue’. Wait-
ForEnd waits again for all Abaqus processes to terminate. Finally, the
simulation status will be printed in the .log, as soon as the .sta file is
created in the simulation subdirectory.

� Visualize the Results:
Finally, automatic quantification of the results is performed. Using a
predefined python script, AnimateTimeHistory starts Abaqus again and
creates pictures and videos, animating the results of the wall stress dis-
tribution and deformation sequences along the simulated aortic model.

5.6.2 Optimization

A step by step approach was adopted while integrating the individual models
of CSM-Sim into MoDiSim. Thereby, simpler properties were integrated first,
while in the next step these were optimized and improved by extending them to
more complex models. At the end, various modeling options are implemented.
Static and dynamic realistic computations of the wall mechanics are now possi-
ble. Linear elastic and nonlinear hyperelastic material models are implemented
for the constitutive modeling of the vessel wall. Further, both polynomial and
reduced polynomial material models are integrated for hyperelastic modeling.
Various homogeneous wall thicknesses can also be modeled. Both the Newton-
Raphson and the Quasi-Newton-Raphson iteration techniques are integrated
and may be employed for the computation of the stiffness matrices. For the so-
lution of the linear system of equations, the AMG iterative FEM-based implicit
solver is mainly adopted, but the direct solution method may be also alterna-
tively used. Both fixed and automatic time advancement are implemented in
the advanced settings allowing a flexible control of the time stepping and thus
the convergence behavior of the simulations. As for the representation of the
results, CSM-Sim also includes automatic quantification of the wall von Mises
stress and deformation sequences for the whole modeled aorta. Furthermore,
the effects of these various models have been evaluated for their physical effects
and some of them are presented in the results section.
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5.6.3 Individualization

Individual strain energy functions with appropriate material parameters for
healthy and aneurysmal, for human and porcine, and for thoracic and abdom-
inal models are integrated allowing the simulation of various and individual
aortas. Also, the implementation of a flexible controlling of the wall thick-
ness is an essential factor for simulating different models. Further, the wall
boundary conditions, defined based on individual pressure data that are ob-
tained from direct in-vivo measurements or from subject-specific CFD-based
simulations, enhances the individuality of the modeling. The individualization
is also expressed by the system independency in terms of the imaging source
and in terms of the shape of the geometry or of the pathology. In total, four
subject-specific aortic wall models have been processed and simulated using
CSM-Sim. These are shown in overview in Fig.5.12 and originate from the
CT-based human abdominal aortic aneurysm (Fig.3.7), the CT-based thoracic
aortic aneurysm (Fig.3.8) with and without stent-graft, the MRI-based human
abdominal aortic aneurysm (Fig.3.9) and the 4D-CT based porcine abdominal
aorta (Fig.3.10). Details on the results will be presented in the next section.

(a) CT-AAA (b) CT-TAA

(c) MR-AAA (d) 4D-CT-P1

Figure 5.12: CSM simulations with four individual vessel wall aortic models.
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5.7 CSM Simulation Results

Simulation results of the vessel wall mechanics within the four individual mod-
els are presented in terms of strains for the quantification of the wall defor-
mation and in terms of von Mises stresses for the analysis of the wall material
failure. The von Mises stress index is a function of the invariants of the stress
tensor. It is based on the von Mises shear distortion failure criterion and is
therefore an adequate indicator of the wall strength state. Furthermore, all dy-
namic simulation results represented below are evaluated at the fourth cardiac
cycle, ensuring convergence and periodicity.

5.7.1 Effects of transient pressure and material nonlin-
earity using CT-AAA

Within the patient-specific CT-based AAA model individual biomechanical
simulations are presented as a transient indirect coupled approach of fluid
and structure based on the finite element method. The vessel wall stress and
deformation can be accurately evaluated as being based on dynamic and real-
istic pressure patient-specific simulations from CFD (Sec.6.7.3). The effects of
the transient pressure distribution and of the material nonlinearity are evalu-
ated by performing static/dynamic and elastic/hyperelastic simulations respec-
tively. The effects on the diseased geometry are also evaluated by analyzing
the simulations within and distal to the aneurysmal bulge model. In all sim-
ulations, high wall stresses are found near points where the surface curvature
changes its orientation from convex to concave within the aneurysmal bulge.
Whereas, low stress values are always located at healthy regions distal to the
aneurysmal bulge. All maximum wall stresses occur at the peak systolic stage
and are always found at the same node location where the aorta splits into
the iliac arteries. Tab.5.1 represents the maximum, minimum and mean von
Mises values at peak systole within the whole AAA geometry for the elastic
static, hyperelastic static, elastic dynamic and hyperelastic dynamic models.

Table 5.1: Maximum, minimum and mean von Mises values at peak systole
for the various simulations.

Max (MPa) Min (MPa) Mean (MPa)

Elastic Static 0.648 0.00150 0.116
Hyperelastic Static 0.952 0.00216 0.121
Elastic Dynamic 0.641 0.00153 0.115
Hyperelastic Dynamic 0.948 0.00220 0.121
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Effect of Transient Pressure Distribution

To evaluate the effect of the time-dependent pressure distribution on the
biomechanics, static and dynamic simulations have been performed on the
AAA geometry. The dynamic simulations utilize the time-dependent pres-
sure profile shown in Fig.5.9.b to simulate the effect of blood pressure on the
wall stresses and deformation along four cardiac cycles. The cycle period was
0.85 s, with peak pressure occurring at t= 0.30 s. The static simulations com-
pute only the diastolic p (t= 0.10 s) and peak systolic p (t= 0.30 s) pressures.
A stabilization phase of 1 s is applied prior to both simulations to increase
the pressure to its initial value. The results were analyzed at the peak systolic
phase. For both the elastic (Fig.5.13) and the hyperelastic (Fig.5.14) models,
maximum, minimum and mean values of the strain and the von Mises stress
are found to be similar with slightly lower strains and higher stress distribution
for the static model. The difference observed is less than 2%.

Figure 5.13: Static (left) and dynamic (right) von Mises wall stress compu-
tations at peak systole for the elastic model.

Figure 5.14: Static (left) and dynamic (right) von Mises wall stress compu-
tations at peak systole for the hyperelastic model.
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Effect of Material Nonlinear Elasticity

Dynamic computations have been performed on the elastic and hyperelastic
models to evaluate the effect of the material constitutive nonlinearity on the
strain and stress distributions. Fig.5.15 shows the stress results on the de-
formed AAA geometry at early systole, peak systole and peak diastole. During
systolic ascension, similar stress distribution is observed in both models with
most of the values lying between 0.2 and 0.3 Nmm−2. Strains and stresses
reached their maximum at peak systole (t= 0.30 s) with significantly larger
values found in the nonlinear model. Thereby, the stress increased by a factor
of 4.4 in the hyperelastic model and only 2.6 in the elastic model. At the third
diastolic time represented by the second pressure peak (t= 0.52 s), the strains
and stresses decelerated again with slower deceleration found in the hypere-
lastic model. In general, the stress distribution and the stress change rate are
found to be always higher in the hyperelastic material.

Figure 5.15: Elastic (left) and hyperelastic (right) von Mises stresses at
t= 0.17 s (top), t= 0.30 s (middle) and t= 0.52 s (bottom).
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5.7.2 Effects of Wall Thickness using MR-AAA

CSM simulations within the patient-specific MR-based AAA model have been
performed with various wall thicknesses. With an average thickness of 1.5 mm
found for patients with AAA, diseased walls with calcification become thicker
while aneurysms without thrombus have much thinner walls.

To quantify the significance of wall thickness variation on the simulations, five
models with 1.0 mm, 1.2 mm, 1.5 mm, 1.8 mm and 2.0 mm homogeneous thick-
nesses were simulated. The simulations were conducted using the hyperelastic
material model for the abdominal aneurysmal aortic tissue as given in Sec.5.5.1.
For all five models, the local maximum stress within the aneurysm was found
at the same location, represented by element 30668 shown in Fig.5.17. The
von Mises stress over time for this element is illustrated in Fig.5.16.a. Tab.5.2
summarizes the maximum, mean and minimum stress values for this element.

(a) Max von Mises stress (b) Peak axial deformation

Figure 5.16: Maximum stress profile over time and peak cross-sectional de-
formation in the aneurysm for all thicknesses.

For all five thicknesses, the maximum stresses are found at the peak systolic
time t= 0.30 s. The stress increase between the thicker and the thinner mod-
els is equal 80.6%, equivalent to 0.083 MPa relative to the time-averaged von
Mises stress. Further, compared to the average thickness 1.5 mm, the max-
imum stress change is larger when decreasing the thickness to 1.2 mm i.e.
1.0 mm than when increasing it to 1.8 mm i.e 2.0 mm. A 0.3 mm thickness
decrease i.e increase results in +0.0399 MPa = +21.829% i.e -0.062 MPa = -
14.031% stress change, respectively. Similarly, a 0.5 mm thickness decrease i.e
increase results in +0.098 MPa = +34.484% i.e -0.062 MPa = -21.809%. This
demonstrates that the stress distribution is much more affected by a thinning
than by a thickening of the wall.
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Fig.5.16.b shows the deformation profiles at peak systolic time for all five
thicknesses along an axial cross-section in the middle of the aneurysmal bulge.
The black contour represents the initial undeformed state of the cross-section at
zero-pressure. Obviously, the thinner wall deforms at most and the maximum
deformation takes place in direction of the bulge.

Table 5.2: Maximum, mean and minimum stresses over the cardiac cycle.

Wall Thickness (mm) 2.0 1.8 1.5 1.2 1.0

Max Stress (MPa) 0.222098 0.244189 0.284044 0.346049 0.381995
Mean Stress (MPa) 0.102570 0.114025 0.134847 0.161831 0.185243
Min Stress (MPa) 0.012397 0.014492 0.018741 0.024885 0.030444

Additionally, the stress variation at five different elements for all wall thick-
nesses is shown in Fig.5.17. As expected, the stress profiles for the thicknesses
1.8 mm and 2.0 mm are closer to each other than the other curves. Further,
while the profiles of 1.5 mm, 1.8 mm and 2.0 mm show similar courses, those
of 1.0 mm and 1.2 mm are quite different. This demonstrates that thinner
walls are much more sensitive to the stress distribution.

(a) Stress variation (b) Elements overview

Figure 5.17: Stresses at five different elements at peak pressure time with
elements overview.

Fig.5.18 illustrates the static and dynamic stress distributions at the peak
systolic time for all wall thicknesses. The stresses decrease continuously from
the thinner to the thicker model. However, as mentioned above, the decrease
is not linear. Also here, similar strain and stress distributions were found for
the static and the dynamic computations with slightly lower strains and higher
stress distribution for the static model.
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Figure 5.18: Static (left) and dynamic (right) von Mises stresses for the 1.0,
1.2, 1.5, 1.8 and 2.0 mm wall thicknesses shown from the top
to the bottom, respectively.
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5.7.3 Effects of Stent and Stent-Graft using CT-TAA

The design of endovascular devices affects the vessel morphology which in turn
influences the strain and stress distribution at the wall. In this section, patient-
specific vessel wall modeling in the CT-based thoracic aorta CT-TAA (Fig.3.8)
after endovascular treatment is presented. Post-endovascular modeling enables
accurate predictive simulations of material failure and potential complications
by evaluating the state of the patient vessel based on the quantification of its
elastomechanics. Various simulations of the interaction between the structural
models - aorta, stent and stent-graft - are presented below.

CT-TAA without Stent-Graft

In order to evaluate the effects of the endovascular device on the elastome-
chanics, a simulation of the thoracic aorta without stent-graft was first per-
formed. The wall constitutive material is based on the hyperelastic thoracic
aortic model presented in Sec.5.5.1. For the boundary conditions, the time-
dependent pressure profile shown in Fig.5.9 was applied at the inner wall, while
the DOF constraint was used for the inlet and the outlets. The pressure curve
was scaled such that the diastolic minimum pressure found at t= 0.1 s corre-
sponds to 0 mmHg, while the maximum of 41.25 mmHg occurred at t= 0.287 s.
The simulation is conducted in two steps: a static step in which the pressure
is increased to its initial value at 6 mmHg and a dynamic step using the pres-
sure profile with a period T= 0.8 s. Fig.5.19 illustrates the von Mises stress
distribution at the systolic time with peak values found in the descending part
where the stent-graft has been implanted and around the inlet.

Figure 5.19: Wall stress distribution without stent-graft at t= 0.287 s.
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CT-TAA with Stent

The aorta with stent was next simulated with a tied linear contact modeled
between the inner surface of the aorta and the surface of the stent volume.
For the definition of the contact interaction, the aorta was chosen as the slave
surface while the stent as the master surface. The stent material model of
nitinol is used as a linear elastic model with an elasticity modulus E= 75 GPa
[AAL+04], a poisson number ν= 0.33 and a density ρ= 6450 Kgm−3 [Meda].
Compared to the simulation without stent, the von Mises stresses presented in
Fig.5.20 are clearly lower in the aortic part carried by the stent. This is due
to the circular aortic strains being constrained by the stent.

Figure 5.20: Stress distribution in the aorta of the simulation with stent at
t= 0.287 s (scale: 0 Nmm−2 in blue, 0.1 Nmm−2 in red).

The contact of the stent with the aorta also results in much higher stresses
in the stent as shown in Fig.5.21. This is due to the stent being less elastic,
which also results in much smaller stent strains, compared to the aortic strains
in the area outside the stent. The largest stent stresses are found at the curved
locations, associated with the zig-zag stent geometry.

Figure 5.21: Stress distribution in the stent of the simulation with stent at
t= 0.287 s (scale: 0 Nmm−2 in blue, 7 Nmm−2 in red).
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CT-TAA with Stent-Graft

A geometrical model of the graft was additionally generated and included in
the simulations. The stent-graft type could be identified from the shape of the
stent and consists of nitinol and PET materials [Medb]. The PET material is
modeled as a linear elastic model with E= 3 GPa, ν= 0.4 and ρ= 0.133 Kgm−3

[PMW+09]. Based on the simulations of the aorta, two tied linear contacts
with the surface-to-surface approach are modeled: between aorta and graft
and between graft and stent. Through the adaptation to the stent, the graft
surface is less regular than that of the aorta and therefore the aortic surface
was chosen as the slave surface for the aorta-graft contact. As for the graft-
stent contact, the stent surface was chosen as the slave surface, since it has
clearly a much finer mesh.

Figure 5.22: Histological cross-section from [DB00] compared to the gener-
ated aorta (red), stent (grey) and graft (blue).

Compared to the simulation with only the stent, the aortic von Mises stresses
in the area of the stent-graft are much smaller as shown in Fig.5.23. This is
due to the aortic strains being constrained through the graft.

Figure 5.23: Stress distribution in the aorta of the simulation with stent-graft
at t= 0.287 s (scale: 0 Nmm−2 in blue, 0.1 Nmm−2 in red).
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The stress generated in the graft is much higher than the aortic stress and is
therefore shown in Fig.5.24.a using a different scale. The largest graft stresses
are found at the upper and lower ends, since at these ends, the graft is not
supported by the stent and the graft displacements are not constrained. The
smallest stresses are found in the areas in contact with the stent.

(a) Stress in the graft (b) Stress in the stent

Figure 5.24: Stress distribution in the graft (a) and stent (b) of the simula-
tion with stent-graft at t= 0.287 s (scale (a): 0 Nmm−2 in blue,
2 Nmm−2 in red; scale (b): 0 Nmm−2 in blue, 7 Nmm−2 in red).

The stress in the stent generated through the contact with the graft and shown
in Fig.5.24.b is clearly smaller than that of the simulation with only the stent,
since the aorta with stent-graft is additionally supported by the graft.

Aorta with Stent-Graft-Equivalent

Instead of considering individual material models for the stent and the graft, it
is possible to generate one material model that reproduces the elasticity of the
connected stent-graft structure. This is denoted as the stent-graft-equivalent
and has the advantage that only one contact between the aorta and the stent-
graft needs to be modeled. For the simulation, a tied linear contact is used in
the same way as done in Sec.5.7.3.

� Stent-Graft-Equivalent from measurements:
[LK05c] generated a stent-graft-equivalent material based on measure-
ments on self-made stent-grafts conducted by [SIK+01] and analyzed
under steady and dynamic pressure variations. The elasticity modulus,
the poisson number and the shell thickness are E= 10 MPa, ν= 0.27 and
d= 0.2 mm, respectively. The corresponding von Mises stresses on the
aortic part that is hold by the stent are clearly higher than the previ-
ous simulation with the stent-graft. This is obviously due to the smaller
elasticity modulus of the stent-graft-equivalent material model.
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Figure 5.25: Stress distribution in the aorta of the simulation with stent-
graft-equivalent from measurements at t= 0.287 s (scale:
0 Nmm−2 in blue, 2 Nmm−2 in red).

� Stent-Graft-Equivalent from manufacturer’s data:

From manufacturer’s data of an industrial stent-graft [Coo03] with a
PET material for the graft and steel for the stent, [LK06a] generated a
stent-graft-equivalent material model with E= 100 MPa, ν= 0.35 and
d= 0.2 mm, respectively. Although this stent-graft is stiffer than the
self-made from [SIK+01], it still has a lower elasticity modulus than that
of the PET graft material alone (3 GPa). Consequently, the von Mises
stresses on the aortic part hold by the stent are also here higher than
those of the simulation with stent-graft described in Sec.5.7.3.

Figure 5.26: Stress distribution in the aorta of the simulation with stent-
graft-equivalent from manufacturer’s data at t= 0.287 s (scale:
0 Nmm−2 in blue, 2 Nmm−2 in red).
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5.7.4 Cross-sectional Strain Analysis using 4D-CT-AA

The 4D-CT-P1 porcine model, obtained from a dynamic CT scan was simu-
lated to quantify the stress distribution and the deformation along 20 phases
of the cardiac cycle. The quantification of the deformation is used for the val-
idation of the structural simulations and will be described in detail in Chap.8.

A cross-sectional strain analysis is performed for the quantification of the de-
formation within the porcine model. The deformation over the cardiac cycle is
analyzed along various cross-sections of the aorta obtained from lateral cuts.
Strain computations showed that the nodes located along the cross-sectional
rings are not the same at the different times. This demonstrates that the de-
formation of the vessel is subject to distortion, that the displacement does not
only occur in radial direction and that there are also rotation and translation
acting in the other directions. This can be explained by the fact that subject-
specific geometries are not homogeneous, resulting in distortion and forces
acting inconstantly on the elements. Furthermore, the deformation computed
based on a linear elastic model is found to be less valuable than that ob-
tained from the hyperelastic model. This can be estimated by the fact that
elastic models based on linear theories only apply at small loads and on the
undeformed geometry and thus do not account for all cross-sectional strains.
Fig.5.27 show the stress distribution along the aortic model and strain analysis
across a cross-section located at mid-distance between the renal arteries and
the aortic bifurcation obtained from the hyperelastic model.

(a) Stress distribution (b) Strain analysis

Figure 5.27: Stress distribution and cross-sectional strain analysis.

The wall deformation results along five different cross-sections are presented
and compared to the dynamic CT deformation obtained from the experiments
in Sec.8.4.
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5.8 Summary

In this chapter, computational modeling of the vessel wall to describe, simulate
and analyze the mechanical behavior of the vessel wall within individual aortic
models was presented. First, the physical fundamentals behind the modeling
based on the concepts of continuum structural mechanics were illustrated by
means of the elasticity theory and the strain-stress relationships. Then, the
biomechanical constitutive laws necessary to describe the material behavior
of the structure to be modeled were presented. The mathematical relations
for the numerical discretization and the resolution of the governing equations
based on the finite element method were then presented. Next, the theoretical
aspects described in the first three sections were applied to the vessel wall in the
CSM simulation section. Further, the integration of the vessel wall modeling
steps into the CSM-Sim component of the MoDiSim simulation system was
also described. Thereby, the automation of the steps, the optimization of
the individual models as well as the individualization of the CSM simulations
were presented. Finally, some simulation results obtained from four individual
image-based models are shown at the end of this chapter. The effects of various
models and aspects were thereby also presented.



Chapter 6

Blood Flow Modeling

6.1 Introduction

Cardiovascular diseases originate from complex hemodynamics conditions of
the blood flow. The involved flow patterns and the associated high intralu-
minal pressure affect the vessel wall resulting in various forms of pathologies.
Blood flow modeling provides an insight into the pathological conditions of
the hemodynamics inside the vessel. It enables accurate predictive simula-
tions of individual parameters such as sites of high pressures, velocity fields,
recirculation zones or shear stress distributions.

Physically-based modeling is necessary to produce realistic blood flow sim-
ulations. Image-based Computational Fluid Dynamics (CFD) based on the
Finite Volume Method (FVM) as a numerical approach, has become an effi-
cient tool in simulating the individual hemodynamics in human arteries. The
CFD approach consists of applying the physics of fluid dynamics, combined
with constitutive modeling of the blood to simulate the dynamic behavior of
the flow.

In this chapter the theoretical and applied aspects behind blood flow modeling
will be described. The concepts of the modeling are first introduced based on
the theoretical physics of fluid dynamics. Then, the constitutive laws govern-
ing the blood and the numerical approach of the finite volume method are
presented. Next, the generation of the process chain and the performed sim-
ulations for the blood flow are described. Then, the integration of the CFD
modeling steps into MoDiSim is presented. Finally, individual results from
various patient-specific aortic models will be illustrated.
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6.2 Continuum Fluid Dynamics

Continuum fluid dynamics is associated with the area of the physics dealing
with the dynamics of continuous fluids. It involves the study of the mechan-
ics of bodies with undefined shape. The basic concept of fluid dynamics is
based on mathematical statements of three fundamental principles from the
laws of physics. In particular, describing the motion of a fluid involves the con-
tinuity, momentum and energy equations derived from the mass, momentum
and energy conservations, respectively. Thus, based on fundamental governing
equations derived from extensive (mass, momentum and energy) properties,
the state of a fluid may be described in terms of its intensive (flow velocity,
pressure, density and temperature) variables being independent on the amount
of the considered material.
The aim of the present section is to describe the theoretical concepts of fluid
dynamics by discussing the fundamental conservation laws from which the
basic equations of fluid motion are derived. Due to its importance for a bet-
ter understanding, particular attention is given to the physical meaning of
these fundamental principles in obtaining an appropriate flow model and in
extracting the suitable mathematical equations that describe these physical
principles.

6.2.1 Configuration Formulations

The common approach for formulating a suitable solid model, from which
the conservation equations are derived, is based on the description of a given
control mass. This is not a trivial approach for a fluid. While for a solid body
it is easy to visualize and define a certain control mass, it is rather hard to
define and trace a fixed amount of mass for a fluid in motion. In order to
define a suitable model for a moving fluid, it is easier to describe it in a given
space, namely a control volume, instead of tracing its control mass. Also, an
accurate representation of the conservation law in an appropriate configuration
is important for the numerical solution as described in Sec.6.4.

Finite and Infinitesimal Control Volumes

A volume space may be defined in terms of a finite or an infinitesimal control
volume. A finite control volume is a closed volume V defined within a finite,
reasonably large, region of the flow and bounded by a closed control surface
S (Fig.6.1.a). The governing fluid equations derived directly by applying the
conservation physical laws to a finite control volume are in integral form.
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Processing these forms allows to indirectly obtain the governing partial dif-
ferential equations. An infinitesimal control volume is an infinitesimal small
fluid element in the flow with a differential volume dV that is enclosed by
a differential surface dS (Fig.6.1.b). Despite its infinitesimal definition, the
fluid element still contains enough molecules so that it can be considered as
a continuous medium. Applying the fundamental physical principles to an
infinitesimal fluid element leads directly to the fluid governing equations in
partial differential equation form.

Fixed and Moving Configurations

Furthermore, the control volume may be considered as either fixed in space
with the fluid moving through it, or moving with the fluid such that the same
fluid particles are always inside it (Fig.6.1). For an infinitesimal moving con-
trol volume, its trajectory is indeed along a streamline with a velocity vector
v equal to the velocity of the flow at each point. Based on these formula-
tions, various forms of the governing equations may be derived. The fluid
equations obtained, directly or indirectly, from a control volume fixed in space
represent the conservation form of the governing equations. While the equa-
tions obtained from a control volume moving with the fluid, represent the
non-conservation form of the governing equations. In general, through simple
manipulation it is possible to toggle from one form to the other. While for ana-
lytical fluid dynamics it is irrelevant which form is used, the numerical stability
in CFD applications strongly depends on the choice of the equations form and
therefore it is necessary to distinguish between the use of these various forms.

(a) Finite control volume (b) Infinitesimal fluid element
fixed in space moving with the flow

Figure 6.1: Finite and infinitesimal control volumes within fixed and moving
configurations [WA09].
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6.2.2 Substantial Derivative

A common term used in fluid dynamics which physical meaning is of vital
importance for the derivation and the understanding of the governing equations
is the substantial derivative. Considering the infinitesimal flow model with a
small fluid element of volume dV moving with the flow through a cartesian
space with unit vectors ii = (i1, i2, i3), the motion of the fluid from point 1 at
t = t1 to point 2 at t = t2 is illustrated in Fig.6.1.b. For a general unsteady
flow, the velocity field vectors in this space expressed in terms of the position
vectors x = (x1, x2, x3) are given by:

v = v1(x, t)i1 + v2(x, t)i2 + v3(x, t)i3 =
3∑

i=1

vi(x, t)ii (6.1)

Taking the scalar density as field variable for the derivation of the substantial
derivative, written as a function of both space and time ρ = ρ(x, t), then the
density ρ2 of the fluid element dV at point 2 and time t2 may be expressed as
a Taylor series about point 1 at t1 where the density of dV is ρ1 as follow:

ρ2 = ρ1 +

(
∂ρ

∂x1

)
1

Δx1 +

(
∂ρ
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)
1

Δx2 +

(
∂ρ
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)
1

Δx3 +

(
∂ρ

∂t

)
1

Δt (6.2)

+ higher order terms, with Δxi = xi(2) − xi(1) and Δt = t2 − t1. Dividing
Eq.6.2 by Δt and taking the limit as t2 approaches t1 while ignoring higher
order terms, the instantaneous time rate of change of density of the fluid
element as it moves through point 1 may be defined as:

Dρ

Dt
≡ lim

t2→t1

(
ρ2 − ρ1
t2 − t1

)
=

3∑
i=1

vi
∂ρ

∂xi

+
∂ρ

∂t
(6.3)

From Eq.6.3 and using the vector operator ∇, the expression of the substantial
derivative operator becomes:

D

Dt
≡ ∂

∂t
+ (v.∇) (6.4)

D
Dt
and ∂

∂t
have different physical and numerical implications: while Dρ

Dt
is the

time rate of change corresponding to the moving configuration as the fluid
element sweeps through the space, ∂ρ

∂t
represents the local derivative corre-

sponding to the fixed configuration and is physically the time rate of change
at stationary point due to transient fluctuations in the flow field.
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As for (v.∇), it represents the convective derivative and is physically the time
rate of change due to the movement of the fluid element from one location to
another in the flow field where the flow properties are spatially different.

The substantial derivative may be applied to any flow field variable and its
vectorial expression in Eq.6.4 is valid for any coordinate system. Mathemat-
ically, it is equivalent to the total differential d

dt
in calculus notation, defined

by applying the chain rule to a variable and writing dxi
dt
in terms of the i-th

velocity vi after differentiating with respect to time such as:

d

dt
=

∂

∂t
+

3∑
i=1

vi
∂

∂xi

(6.5)

6.2.3 Mass Conservation

The physical statement of the mass conservation principle applied to an ap-
propriate fluid model leads to the continuity equation which reflects the first
fundamental law of fluid dynamics. As mentioned above, the governing equa-
tions may be derived in various forms having different physical meanings de-
pending on the definition of the control volume and the configuration used.
Due to its physical relevance when applied to CFD problems, the distinction
in using either the conservation or the non-conservation forms of the governing
equations is derived below.

Continuity Equation from a Finite Fixed Configuration

Applying the mass conservation principle to a finite control volume fixed in
space leads to indirectly obtain the conservation form of the partial differential
equations. The physical formulation of this approach states that the net mass
flow out of the control volume V through its surface S is equal to the time rate
of mass decrease inside the control volume, that is:

∂

∂t

∫
V

ρdV +

∫
S

ρvdS = 0 (6.6)

which is the integral conservation form of the continuity equation. The differ-
ential form of these equations may be obtained by placing the time derivative
inside the integral, which is possible since the limits of integration of a fixed
control volume are constant, and by applying the divergence theorem to trans-
form the surface integral into a volume integral:∫

V

∂ρ

∂t
dV +

∫
V

∇(ρv)dV = 0 (6.7)
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The integral in Eq.6.7 must vanish for an arbitrary choice of the finite control
volume within the fluid domain. Thus, at every point within the control vol-
ume the integrand must be zero, so that the partial conservation form of the
continuity equation becomes:

∂ρ

∂t
+∇(ρv) = 0 (6.8)

Continuity Equation from an Infinitesimal Moving Configuration

On the other hand, considering the model of an infinitesimal fluid element
moving with the flow leads to directly obtain the non-conservation form of the
partial differential equations. Manipulating these equations allow indeed to
obtain their conservation form. Based on this approach, the physical statement
of the mass conservation principle may be formulated as the time rate of change
of the mass of the fluid element is zero as the element moves along with the
flow. Denoting the fixed mass of the element by ∂m and its volume by ∂V ,
and using the physical meaning of the substantial derivative invoking the time
rate of change, we have:

D(∂m)

∂t
= 0 or

Dρ

∂t
+ ρ

[
1

∂V

D(∂V )

Dt

]
= 0 (6.9)

The term in brackets is defined as the divergence of the velocity given by ∇v.
Physically, ∇v reflects the time rate of change of the volume of a moving fluid
element with constant mass, per unit volume. From this definition Eq.6.9
becomes:

Dρ

∂t
+ ρ∇v = 0 (6.10)

which is the non-conservation form of the continuity equation from which the
conservation form may be further obtained. Substituting the expressions re-
sulting from the definitions of ∇(ρv) and Dρ

∂t
into Eq.6.10, gives:

(
∂ρ

∂t
+ v∇ρ

)
+ (∇(ρv)− v∇ρ) = 0 (6.11)

which is, after simplification, the same conservation form of continuity equation
obtained in Eq.6.8.
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6.2.4 Momentum Conservation

Applying the momentum conservation principle to an appropriate fluid model
leads to the momentum equations, also known as the Navier-Stokes equations
named in honor of the physicists C. Navier and G. Stokes who independently
derived these equations in the first half of the nineteenth century. The general
Navier-Stokes equations arise from applying the fundamental physical princi-
ple of Newton’s second law of motion to fluid dynamics. Physically, Newton’s
second law applied to the infinitesimal moving fluid element model with con-
stant mass states that the net force vector applied on the fluid element is equal
to the product of its mass with its acceleration, or for the xi direction:

Fi = mai (6.12)

Applied Forces

As already discussed in the last chapter, a moving object is subject to two
kinds of forces: volume forces acting directly on its volumetric mass and surface
forces acting directly on its surface. Volume forces usually act at distance such
as gravitation or electro-magnetic forces. Denoting fi as the volume force per
unit mass acting on the fluid element in the xi direction, then the volume force
on the fluid element in this direction can be written as:

f v
i = ρfidV (6.13)

Surface forces in the fluid originate from the pressure and from the shear and
normal stress distributions, both exerted by the outside flow surrounding the
fluid element. The fluid shear and normal stresses are imposed by means of
friction and depend on the velocity gradients in the flow. They are related to
the time rate of deformation change of the fluid element, specifically, to the
time rate of change of the shearing deformation and the time rate of change
of the volume, respectively. Fig.6.2 illustrates the surface forces acting on a
fluid element in the x1 direction, with τij denoting the stress in the xj di-
rection applied on a plane perpendicular to the xi axis. Thereby, the force
directions on opposite faces are consistent with the convention that positive
increases in all velocity components vi occur in the positive axes directions.
Thus, on the faces adhe i.e. bcgf perpendicular to the x1 axis, the pres-
sure forces pdx2dx3 i.e. [p + (∂p/∂x1)dx1]dx2dx3 always press inward on the
fluid element. As for the viscous actions of the normal stresses τ11dx2dx3 i.e.
τ11 + [(∂τ11/∂x1)dx1]dx2dx3, they try to pull the element in the negative i.e.
positive x1 direction, keeping the value of v1 just to the left i.e. right of face
adhe i.e. bcgf smaller i.e. larger than its value on that face.
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(x,y,z)≡(x1,x2,x3) and (u,v,w)≡(v1,v2,v3)

Figure 6.2: Surface forces acting on a fluid element [WA09].

Considering all force components exerted on the fluid element, the total surface
force tsi in an xi direction may be simplified as:

tsi =

(
− ∂p

∂xi

+
∂τ1i
∂x1

+
∂τ2i
∂x2

+
∂τ3i
∂x3

)
dV = ∇tidV (6.14)

where ti is the stress tensor representing the molecular transport rate of the
impulse in the xi direction, composed of a viscous and a pressure term:

ti = −pii +
3∑

j=1

τjiij (6.15)

Navier-Stokes Equations

The total force vector Fi applied in the xi direction on a moving fluid element
may be obtained by adding f v

i and tsi . Fi represents the left-hand side of
the momentum conservation equation. The right-hand side can be obtained
by expressing the fixed mass of the moving fluid element as m = ρdV and
its acceleration ai as the time rate of change of its velocity, namely by its
substantial derivative. Inserting these into Eq.6.12, the xi component of the
momentum equation for a viscous flow takes after simplification the form:

ρ
Dvi
Dt

= − ∂p

∂xi

+
∂τ1i
∂x1

+
∂τ2i
∂x2

+
∂τ3i
∂x3

+ ρfi (6.16)
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The governing momentum equations derived based on this approach are di-
rectly obtained as partial differential equations in the non-conservation form.
Processing these equations allows indeed to obtain the conservation form of the
Navier-Stokes equations. By using the definition of the substantial derivative
and applying the product divergence theorem, the left-hand side of Eq.6.16
becomes:

ρ
Dvi
Dt

=
∂ρvi
∂t

− vi
∂ρ

∂t
− vi∇ (ρv) +∇ (ρviv) (6.17)

The second and third terms of this equation include the left-hand side of the
continuity equation given in Eq.6.8 which indeed equals zero. Consequently,
substituting the simplified Eq.6.17 into Eq.6.16 leads to the general Navier-
Stokes equations in conservation form given in the xi direction by:

∂ρvi
∂t

+∇(ρviv) = ∇
(
−pii +

3∑
j=1

τjiij

)
+ ρfi (6.18)

6.2.5 Energy Conservation

The physical statement of the fundamental principle of energy conservation
represents the first law of thermodynamics translated in terms of the energy
equations. Applied again to the infinitesimal moving control volume model,
the energy conservation states that the rate of change of energy inside the fluid
element = the net flux of heat into the element + the rate of work done on the
element due to volume and surface forces.

Rate of Work: The expression for the rate of work done by a force applied on
a moving fluid element is equivalent to that force multiplied with the velocity
component in the force direction. Thereby, forces in the positive i.e. negative
xi direction do positive i.e. negative work. Considering body forces f exerted
on the fluid element moving at a velocity v, the rate of work done by these
forces isW v = ρfvdV . Further, the rate of workW s

i done by the surface forces
illustrated in Fig.6.2 and acting in the xi direction on the moving fluid element
is simply the product of the vi component of the velocity with these forces. In
total, the net rate of work W net done on the moving fluid element due to the
surface force contributions in the x1, x2 and x3 directions, as well as the body
force contribution may be obtained as the total sum:

W net =

[
3∑

i=1

(
−∂(vip)

∂xi

+
∂(viτ1i)

∂x1
+
∂(viτ2i)

∂x2
+
∂(viτ3i)

∂x3

)
+ ρfv

]
dV (6.19)

Eq.6.19 includes indeed the divergence ∇(pv) represented by the sum of the
three terms including the pressure.
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Net Flux of Heat: The heat flux into the element originates from volumetric
heating due to absorption or emission of radiation and from heat transfer
across the surface due to thermal conduction. If q̇ denotes the positive rate of
volumetric heat change per unit mass, then the volumetric heating Hvh may
be defined by:

Hvh = ρq̇dV (6.20)

Further, defining q̇i as the heat transfer in the xi direction per unit time and
area due to temperature gradients, the heat transferred across all faces into
the fluid element by thermal conduction becomes:

Hht = −
(
∂q̇1
∂x1

+
∂q̇2
∂x2

+
∂q̇3
∂x3

)
dV (6.21)

Taking into account that the heat transfer by thermal conduction q̇i is propor-
tional to the local temperature gradient ∂T/∂xi via the thermal conductivity
coefficient k, the net heat flux into the element Hnet expressed as the sum of
Hvh and the total Hht becomes:

Hnet =

[
3∑

i=1

∂

∂xi

(
k
∂T

∂xi

)
+ ρq̇

]
dV (6.22)

Rate of Change of Energy: At last, the time rate of change of energy
per unit mass inside a moving fluid element may be expressed in terms of the
substantial derivative. With the total energy of a moving fluid per unit mass
defined as the sum of its internal energy e and its kinetic energy v2/2 and with
the mass of the fluid element being again ρdV , the rate of change of energy
Enet becomes:

Enet = ρ
D

Dt

(
e+

v2

2

)
dV (6.23)

Energy Equations

Finally, the energy equation in non-conservation form derived from the ap-
plication of the energy physical principle to an infinitesimal moving control
volume is obtained by setting Enet = Hnet +W net. The energy equation in
conservation form may be derived in a similar way as for the momentum equa-
tions by using the definition of the substantial derivative and applying the
divergence theorem such as:

ρ
D

Dt

(
e+

v2

2

)
=

∂

∂t

[
ρ

(
e+

v2

2

)]
+∇

[
ρ

(
e+

v2

2

)
v

]
(6.24)
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The final energy equation in conservation form written in terms of the total
energy may be obtained by substituting the Enet term in the non-conservation
form by the right-hand side of Eq.6.24 so that:

∂

∂t

[
ρ

(
e+

v2

2

)]
+∇

[
ρ

(
e+

v2

2

)
v

]
=

[
3∑

i=1

∂

∂xi

(
k
∂T

∂xi

)
+ ρq̇

]

+

[
3∑

i=1

(
−∂(vip)

∂xi

+
∂(viτ1i)

∂x1
+
∂(viτ2i)

∂x2
+
∂(viτ3i)

∂x3

)
+ ρfv

] (6.25)

6.2.6 Numerical Equations Form

All above equations derived from the fundamental principles include the di-
vergence of some physical flux on the left-hand side of their conservation form;
the divergence of the mass flux ρv is involved in Eq.6.8, the xi component of

the momentum flux ρviv in Eq.6.18 and the (total) energy flux ρ
(
e+ v2

2

)
v in

Eq.6.25. These conservation forms are the direct result of applying the physical
laws on a control volume that is fixed in space. For such a configuration, the
concerned quantities are the mass, momentum and energy fluxes into and out
of the volume. They become therefore the dependent variables rather than the
primitive variables for pressure, velocity, density and temperature. Further,
the conservation forms of these equations take all the same generic form and
the entire system of the conservation equations may be therefore represented
in terms of column vectors U, F, G, H and J in the form [WA09]:

∂U

∂t
+

∂F

∂x1
+
∂G

∂x2
+
∂H

∂x3
= J (6.26)

As a result, the obtained solution variables based on this approach invoke the
elements in U (ρ, ρvi and ρ(e + v2

2
)) as the dependent variables rather than

the primitive variables vi and e. These are usually solved numerically in steps
of time, from which the primitive variables may be further derived. Also, the
terms in Eq.6.26 include all flow variables and thus all flow information within
the single xi and t derivatives. Compared to Eq.6.18 and Eq.6.25 containing xi

derivatives explicitly appearing in their right-hand side, the flow equations in
the form of Eq.6.26 are said to be in strong conservation form. Another form
of the conservation equations is the general transport equation for a scalar
quantity φ. In the continuity equation φ is equivalent to 1 while in the mo-
mentum equation φ represents the velocity vi. With Γφ denoting the diffusion
coefficient and fφ the source of φ per unit volume, the general transport scalar
equation may be expressed in vector form as:

∂ρφ

∂t
+∇(ρφv) = ∇(Γφ∇φ) + fφ (6.27)
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6.3 Physical Properties and Constitutive Laws

An essential aspect while modeling the dynamics of the flow is an accurate and
realistic description of the physical nature of the fluid as a material. Thus, a re-
liable flow analysis requires not only a description of the fundamental equations
but also appropriate constitutive laws for the fluid material. In the previous
section the governing equations of fluid dynamics were derived based on the
fundamental conservation principles. These equations contain terms such as
the density describing the compressibility or the shearing stress containing the
viscous physical nature of the fluid. Furthermore, the fundamental equations
are basically derived for laminar flow and do not include the effects of tur-
bulence. Constitutive relationships allow describing these physical properties
governing the general behavior of the fluid. Substituted into the governing
equations, a physical problem may be accurately solved. This section deals
with the description of various material properties of the fluid which influ-
ence the behavior of the flow and based on which constitutive equations may
be derived for the definition of a suitable flow model. To mention that from
this point on, the energy equation will be omitted and the description will be
restricted to the continuity and the momentum equations.

6.3.1 Incompressibility

Compressibility was introduced in the last chapter for soft tissue modeling.
Also in fluid dynamics, its relative magnitude may be measured in terms of
the bulk modulus K defined in Eq.5.68. It is similarly related to the change
in volume of a fluid with a fixed mass once subjected to a force or pressure.
Compressible fluids are therefore fluids with variable density. Most liquids
exhibit no change in volume at constant temperature. Such fluids have a
constant density and are said to be incompressible. On the other hand, most
gases are rather compressible fluids and their density takes variable values
following the general gas equations p = ρRT .
Considering a fluid element with constant mass moving along a streamline in
an incompressible flow, then the density of this element is constant resulting
in a constant volume. As a result, the divergence of v being the time rate of
change of the volume of a fluid element per unit volume and defined as part of
Eq.6.9 becomes zero. Consequently, the mass conservation principle leads to
the continuity equation for an incompressible fluid in the form:

∇v = 0 (6.28)

This result complies with the continuity equation derived in Eq.6.8 for a general
compressible fluid with ∂ρ

∂t
= 0.
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As for the vectorial form of the momentum equation for an incompressible
fluid, it may be expressed by:

ρ

[
∂v

∂t
+ (v∇)v

]
= −∇p+∇τ + ρf (6.29)

6.3.2 Viscosity

An realistic modeling requires also an accurate description of the physical na-
ture of the viscous properties of the fluid. Viscosity describes the resistance of
fluid deformation due to the flow. Glenn Elert mentioned in the Physics Hy-
pertextbook that fluids resist the relative motion of immersed objects through
them as well as to the motion of layers with differing velocities within them.
Isaac Newton defined in the late seventeenth century the fluid resistance, or
the molecular viscosity μ as the ratio of the shearing stress to the fluid time
rate of strain, or velocity gradients. Based on Newton’s statement, Stokes
derived in 1845 the following relationship for viscous fluids:

τij = 2μDij − 2/3μδij∇v (6.30)

where Dij is the rate of deformation tensor, given by:

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
or D =

1

2

[
∇v + (∇v)T

]
(6.31)

The stress tensor defined in Eq.6.15 takes then the form:

ti = −pii +
3∑

j=1

μ

(
∂vi
∂xj

+
∂vj
∂xi

)
ij − 2

3

∂vj
∂xj

μii (6.32)

Consequently, the resulting conservative form of the Navier-Stokes equation
with viscosity terms may be obtained by replacing Eq.6.32 into Eq.6.18. Fur-
ther, the fluid is assumed as Newtonian if its dynamic viscosity is constant.
Stokes’ derivation was originally defined for Newtonian fluids. However, in
some fluids such as the blood, the flow behavior in areas of low shear rates
cannot be neglected. Under such varying conditions, the dynamic viscosity be-
comes a function of the shear rate and cannot be modeled as constant. Instead,
the shear stresses and the velocity gradients exhibit a nonlinear relationship.
This behavior with shear-dependant viscosity is known as non-Newtonian be-
havior. Viscous equations are used to reproduce the non-Newtonian properties
by describing the shear-viscosity relation within the fluid flow.
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Furthermore, non-Newtonian models may describe a shear-thinning or a shear-
thickening behavior where the dynamic viscosity is a decreasing or increasing
function of the shear rate, respectively. In both cases, the shear rate is defined
as a function of the second invariant of the rate of deformation tensor [SC05].

γ̇ =

√
1

2

∑
i

∑
j

DijDji (6.33)

6.3.3 Laminar and Turbulent Flow

Despite all advances achieved in the field of turbulent fluid dynamics by Reynolds,
Prandl, Heisenberg or Landau, it is still until the date simpler to explain the
black hole theory than to estimate the velocity of the water flowing out of the
tap! Turbulence is still one of the most complex physical disciplines and is
up to date not fully understood. A flow that exhibits a regular motion along
parallel streamlines which layers do not interfere together is called laminar. A
turbulent flow on the other hand, is a fluid flow in which apparent randomness,
unpredictable fluctuations and irregular motions occur. It is characterized by
recirculation zones, chaotic vortices and unregulated property changes. Tur-
bulent flows contain eddies of different characteristic length scales, affecting in
turn velocity scales and time scales. Eddies of large scales are unstable and
may break up with their total kinetic energy giving rise to smaller eddies with
smaller energy. The breaking process continues iteratively with the smaller
eddies until a sufficiently small length scale is achieved. An exact and definite
definition of turbulence in fluid dynamics is however complex and recircula-
tion, fluctuations and eddies may also be present in laminar flows. The onset
of turbulence may be described by means of the dimensionless Reynolds num-
ber Re, defined as the ratio of the inertial forces to viscous forces present in
the flow. For a flow in a pipe of diameter D, the Reynolds number (1883) is
defined as:

Re =
ρvD

μ
=

vD

ν
(6.34)

Turbulent flow usually occurs at large values of the Reynolds number. In prac-
tice, Reynold found out that for such fluids, the flow is laminar for Re ≤ 2000
and becomes turbulent for Re ≥ 4000. Mathematically, there exist various
approaches for modeling and prediction of turbulence effects. Three categories
of methods are briefly discussed here.
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Direct Numerical Simulation

The most accurate way to simulate turbulent flow behavior is to numerically
solve the governing equations only by means of discretization, without any
turbulence modeling approximation. This numerical technique is therefore
known as the direct numerical simulation (DNS). In this way, all flow motions
associated with the whole range of small eddies must be resolved in space
and time. Thereby, the dimension of the numerical domain must be at least
as large as the physical domain or the smallest turbulent vortex to ensure
that all significant structures are enclosed. A common scale hereby is the
integral scale L, which represents the length for which the velocity fluctuations
still correlate. On the other hand, a valid simulation must also reflect the
whole dissipation of the kinetic energy, which takes place at the smallest scales
where the viscosity dominate. Thus, the numerical domain can not be larger
than the scale dominated by the viscosity, called the Kolmogorov scale, η.
Consequently, the number of mesh points in each direction must at least equal
L/η, which can be proven to be proportional to Re

3/4
L [TL90]. As a result,

the number of timesteps integration and thus the total computational effort
also grow proportional to Re3L. Even at low Reynolds numbers and for most
applications the DNS effort exceeds the capacity of most modern nowadays
available supercomputers.

Large Eddy Simulation

An alternative numerical approach for solving the partial differential equations
governing the turbulent flow domain is the large eddy simulation (LES), first
formulated in the late 1960s. In this method only the large scale motions asso-
ciated with the large eddies in the flow are resolved explicitly, while the smaller
eddies approximations are modeled using subgrid scale (SGS) models. This is
equivalent to solving the filtered Navier-Stokes equations with an additional
SGS stress term. The most used SGS models are the Smagorinsky model
(1963) and its dynamic forms as well as the deconvolution model. By adding
an extra eddy viscosity into the governing equations, these models compen-
sate for the unresolved small turbulent scales. The LES technique is based on
Kolmogorov’s theory (1941) of self similarity stating that large eddies are influ-
enced by the flow geometry, while smaller eddies have a universal shape being
self similar. The computational effort associated with the LES is less than
that of the DNS but still larger than that of solving the Reynolds-averaged
Navier-Stokes equations.

Fig.6.3 illustrates an LES and a DNS turbulence motion and the corresponding
time-dependent velocity components.
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Figure 6.3: LES and DNS turbulence motions and their velocity components
[FP08].

Reynolds-Averaged Navier-Stokes

As shown in the previous sections, for moderate Reynolds numbers, it is pos-
sible to describe turbulent flows by means of the DNS, however with restric-
tions depending on the computational resources and the algorithm efficiency.
Real-life flow problems may be better solved based on the Reynolds-averaged
Navier-Stokes equations (RANS) combined with turbulence modeling to sim-
ulate the effects of turbulent flows. Although the LES is able to provide an
increased level of instantaneous characteristics compared to the RANS, this
remains only an advantage for flow simulations involving chemical reactions or
acoustic prediction. Mathematically, RANS modeling is based on the Reynolds
decomposition, allowing to separate the flow into an average component and
a perturbation or fluctuation component. Such a decomposition mainly leads
to additional Reynolds stress terms describing additional momentum transfer
and which can be used to resolve the turbulent flow besides the governing
equations. The RANS approach and an overview on the turbulence models
will be described in the next section.

6.3.4 RANS Equations and Turbulence Models

In the Reynolds-averaged methods, the whole unstationarity is averaged, that
is, the whole time variation is considered as a part of the turbulence. Through
the averaging, nonlinearities in the governing equations lead to extra terms
which have to be additionally modeled. The complexity of the turbulence
makes it almost impossible to find a unique RANS-based model able to describe
the whole turbulence in an enough accurate way. That is why turbulence
models are more engineering approximations rather than physical laws [FP08].
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RANS Equations

As mentioned above, RANS modeling is based on the Reynolds decomposition
separating the flow into an average part and a perturbation part. Thus, a vari-
able φ may be written as a sum of its time averaged value and a perturbation
around this average such as:

φ(xi, t) = φ̄(xi, t) + φ′(xi, t) (6.35)

For quasi-steady flows, φ̄(xi) is constant in time and may be indeed written
within a large enough time interval T as:

φ̄(xi) = lim
T→∞

1

T

∫ T

0

φ(xi, t)dt (6.36)

While for unsteady flows φ̄(xi, t) denotes the Reynolds-average and its mean
value along N Ensemble members is:

φ̄(xi, t) = lim
N→∞

1

N

N∑
n=1

φn(xi, t) (6.37)

Eq.6.36 shows indeed that the fluctuations are defined such that their time
average equals zero, φ̄′ = 0. Physically, this means that the average of a linear
term is identical to the value of that term itself. On the other hand, two
nonlinear uncorrelated variables φ and ϕ lead to additional covariance terms
φ′ϕ′ describing the correlation of the fluctuations, such as:

φϕ = (φ̄+ φ′)(ϕ̄+ ϕ′) = φ̄ϕ̄+ φ′ϕ′ (6.38)

Applying the above equations to the governing equations leads to the RANS
equations for turbulent flow. These contain the additional nonlinear Reynolds
stresses term that introduces additional momentum transfer to reflect the tur-
bulence. The RANS turbulence equations in terms of the continuity and the
xi-component of the momentum equations are:

∂ρ

∂t
+

3∑
j=1

∂ρv̄j
∂xj

= 0 and (6.39)

∂ρv̄i
∂t

+
3∑

j=1

∂
(
ρv̄iv̄j + ρv′iv

′
j

)
∂xj

= − ∂p̄

∂xi

+
3∑

j=1

∂τ̄ji
∂xj

+ ρf̄i (6.40)

with τ̄ji = τ̄ij = μ

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
− 2/3μδij∇v̄ (6.41)

Where the fluctuations effects due to the time-averaged normal and shear
stresses are relatively small and therefore neglected in the expression of τ̄ji.



152 Chapter 6. Blood Flow Modeling

Figure 6.4: RANS: Steady and unsteady averaging processes [FP08].

Turbulence Models

With the additional turbulent stresses ρv′iv
′
j in the RANS equations, the gov-

erning system becomes unsolvable, including more unknown than equations.
The so known closure problem imposes that additional equations must be de-
fined in order to solve the flow dynamics. This is achieved by adopting approx-
imations, defined as turbulence models, that describe the additional fluctua-
tions in the flow. In 1877 J. Boussinesq proposed to model turbulent stresses
in a way similar to that of the normal and shear stresses and introduced the
concept of the eddy viscosity. His concept is based on the formulation that the
additional Reynolds stresses are given by augmenting the molecular viscosity
with an eddy viscosity. Writing the RANS equations in a vectorial form gives:

∂ρv̄

∂t
+ ρ (v̄∇) v̄ = −∇p̄+∇τ̄ +∇τ̄t + ρf̄ (6.42)

with τt denotes the Reynolds stress tensor with −ρv′iv′j turbulent stress vari-
ables. After Boussinesq, these turbulent stresses may be expressed -analog to
the viscous stresses in Eq.6.41- in terms of the eddy viscosity μt in the form:

−ρv′iv′j = μt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
− 2/3ρδijk (6.43)

where k = 1/2 v′iv
′
i denotes the kinetic energy of the turbulence. Turbulence

models that are based on the concept of Boussinesq aim to model μt. They
are classified following the number of additional partial differential equations
they include. Algebraic turbulent models are known as zero-level models, while
models requiring one or two PDE are known as one-level and two-level models,
respectively. Further derivation of these models based on modeling of μt may
be found in the books of fluid dynamics such as in [OBD09] or [FP08]. The
most known two-level model is the k − ε model, which will be integrated for
the simulations in this work.
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6.4 Finite Volume Method

The fundamental equations of fluid dynamics are the results of physical state-
ments of the mass, momentum and energy conservation laws applied on a
closed volume. Together with the constitutive material laws, these dynamics
equations describe the complex physical behavior of the flow motion. The main
complexity lies in the hybrid character of the flow leading to a mixed regions
with different characteristic equations. As a result, great numerical effort as
well as sophisticated mathematical resolution approaches are required to solve
these equations iteratively. The purpose of the numerical techniques remain
to obtain a temporal and spacial derivation of the unknown flow variables.
Furthermore, the blood flow is dominated by physical and geometrical non-
linearities, which are even more dominant as in soft-tissue modeling. These
nonlinearities must also be taken into account by the resolution methods for
realistic simulations. The Finite Volume Method (FVM) is an appropriate nu-
merical technique which has shown great efficiency in solving complex systems
of nonlinear time-dependent fluid dynamics problems. Similar to the FEM, the
FVM solution is approximated based on spatial and temporal discretization of
the fluid domain using incremental techniques and combined with numerical
integration methods and suitable iterative schemes.

6.4.1 FVM versus FEM

The FVM holds the same geometric characteristic, in the sense of flexibility,
as the FEM. In both methods, the continuum domain is subdivided into cells
(FVM) or elements (FEM) forming a grid which may have structured or un-
structured forms. The use of unstructured grids allows handling very complex
geometries and represents an important advantage of these methods compared
to the finite difference method (FDM) which needs a structured grid. On the
other hand, while the discrete solution of the FEM problem have a prescribed
form, the FVM solution is not assumed to do so. The FEM solution has to
belong to a function space built by linearly or quadraticaly varying function
values between values in the nodes. The nodes in turn are chosen at spe-
cific positions belonging to the elements which makes the numerical solution
strongly influenced by the geometric discretization of the domain. The FVM
solution does not require a definition of a function space and the choice of the
nodes may be defined in a way that does not imply an interpolation structure
[WA09]. Furthermore, in the FVM the volumes to which the conservation laws
are applied may be decoupled from the cells related to geometry discretization.
As a result, the freedom in determining the function definition of the discrete
flow field in the FVM is enhanced and becomes larger than in the FEM.
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However, in contrast to the FDM, defining derivatives in the FVM is not triv-
ial. Since the computational grid is usually neither orthogonal nor equally
spaced, a definition of a derivative based on a Taylor expansion is not possi-
ble. Furthermore, the FVM does not have a mechanism similar to the weak
formulation, to convert higher order derivatives into lower ones as it is the case
in the FEM. In the FVM, it is extremely important to accurately represent
the conservation laws for the numerical solution. In order to achieve this, in
many situations where discontinuities occur, the solution of the fundamental
equations is to be interpreted in its weak form, as a solution of the equations
in their integral form. Therefore, the numerical solution in the FVM is based
on the discretization of the integral form of the equations rather than the dif-
ferential form.
In summary, the FVM combines the freedom in the geometric representation
of the grid from the FEM with the flexibility in the function representation
of the discrete flow field variables from the FDM. It is this combination to-
gether with the control volume based formulation of a flow problem, reflecting
a robust physical discretization, which mark the specific distinctiveness of the
FVM in CFD applications.

6.4.2 Spatial Discretization

In general, the FVM-based discretization process for the solution of the gov-
erning conservation laws consists of the decomposition of the flow domain into
finite control volumes based on a generated numerical grid and the integration
of the governing equations over the individual control volumes. Based on the
discretized nonlinear equations, algebraic equations for the discrete dependent
flow variables may be derived and linearized. Finally, the resultant linearized
algebraic system of equations may be solved iteratively using interpolation and
coupling techniques to determine the values of the dependent variables within
the flow domain. The first step in the discretization is the definition of the
points in the computational domain, where the values of the unknown vari-
ables will be calculated. The distribution problem is more complex as it seems
and is indeed related to the properties of the conservation equations.

Cell-Volume Formulation

A grid is first generated by decomposing the computational domain into a fi-
nite number of non-overlapping cells spaming the flow field. Complex problems
usually require that the cells are elements of an unstructured grid, allowing
high flexibility in the adjustment of the gid to the boundaries of the domain.
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Further, control volumes must be defined for which the conservation laws are
applied. The flow field variables are then determined in some discrete points
of the cells, called nodes. There are many possibilities for the definition of the
control volumes and the distribution of the computational points within the
numerical domain. The choice of the nodes strongly depends on the intention
to represent the solution by an interpolation structure or not. The FEM-like
FVM uses cells to which an interpolation structure is associated. Thereby, the
control volumes are defined to adapt the grid geometry and the computational
points are defined in the cell-centres (Fig.6.5.a) for representation as piece-
wise constant functions or in the cell-vertices (Fig.6.5.b) for representation as
piecewise linear or bilinear functions. Alternatively, since the FVM does not
require a definition of a function space, nodes can be chosen without associ-
ating an interpolation structure. More flexibility in the flux definition can be
obtained by using an interweaving grid with nodes at the vertices of the grid
and which can be constructed by connecting the centres of the cells as shown
in (Fig.6.5.c). Here, The semi-discretization is very close to the FDM and is
called conservative FDM-like or vertex-based FVM. Another alternative, is to
first fix the position of the computational points, and then define the control
volumes such that their sides lie at mid-distance between two computational
points. Advantadge of the first cell-centred formulation is that the value of
the dependent variables equals the mean value over the control volume with
second-order accuracy, higher than that of the vertex-based method. In the
cell-vertex formulation, the control volumes can either coincide with the cells
or consist of a group of cells around a node. In both cases a linear interpo-
lation of the fluxes is possible making this formulation second order accurate
in space, independent on the grid irregularity. Advantage of the last method
is that the central difference approximation of the derivative at a side is more
precise when the side occupies such a configuration. The discretization prin-
ciple is similar for all variants, the relationship between the different points
positions in the integration domain must be however adapted each time.

(a) Cell-centred (b) Cell-vertex (c) Vertex-based

Figure 6.5: FVM: Control volumes [WA09].
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Discretized Conservation Equations

The finite control volume approach applied to a fixed configuration in space is
used to convert the governing equations to an algebraic equation which can be
solved numerically. For the geometric discretization, the cell-centred formula-
tion is considered with values of the dependent variables representing the mean
value over the control volume. While the FDM approximates the differential
quotients in the governing equations to difference quotients, the FVM uses the
integral form of the equations as a starting point.
Considering the general three-dimensional scalar transport form from Eq.6.27
and using the Gauss theorem, the expression of the integral form for an arbi-
trary control volume may be written as:∫

V

∂ρφ

∂t
dV +

∫
S

ρφvndS =

∫
S

Γφ∇φndS +
∫
V

ρfφdV (6.44)

The conservation laws in their integral form are satisfied over the whole com-
putational domain by adding these equations for all control volumes. In order
to derive an algebraic equation for a specific control volume, the surface and
volume integrals must be numerically approximated for each V . In this way,
since the surface integrals along the inner sides of the control volumes com-
pensate each other, the global conservation required by the physical laws is
provided. For a multi-dimensional arbitrary unstructured meshes, the general
form of the semi-discretization is obtained by approximating the steady-state
form of the general scalar transport equation which results in:

Nf∑
f

ρfφfvfnfdSf =

Nf∑
f

Γφ∇φfnfdSf + ρfφV (6.45)

where Nf represents the number of faces enclosing the control volume and f
denotes a certain face. These discretized equations contain the unknown scalar
values φ of a flow variable at the centre of the corresponding control volume as
well as the unknown scalar values φf through the boundary faces enclosing the
volume. The solution of this equation leads in general to a nonlinear form with
respect to these variables. Using Newton-based approaches, a linearization of
Eq.6.45 may be achieved and the result of the discretization may be expressed
in the form:

acφ =
∑
nc

ancφnc + b (6.46)

Where nc denotes the neighbour cells and ac and anc represent the linearized
coefficients of the scalar values φ and φnc stored at the center c of V and its
the neigbour cells. nc depends on the grid topology and except for boundary
cells is in general equal the number of faces enclosing the cell.



6.4. Finite Volume Method 157

6.4.3 Interpolation and Differentiation

In order to solve the discretized equations for a flow variable at the centers
of a control volume, the unknown scalar values φf in the convection term as
well as their gradient values ∇φf in the diffusion term at the faces enclosing
that volume must be additionally calculated. There are many approaches to
interpolate the boundary surface values of a scalar from surrounding cell center
values. Some of these approaches, require the evaluation of differentials, also
needed for the computation of the gradients of the scalar values ∇φf in the
diffusion term at these faces.

Interpolation Schemes

The interpolation of the boundary surface values from surrounding cell center
values may be achieved using central, upwind or weighted average combination
schemes of various accuracy orders. Two schemes that are used in this work
are described here [FI06]:

� Upwind Interpolation:
In the upwind schemes, the cell variables located upstream, or upwind,
relative to the normal velocity direction vn in Eq.6.45 are used to derive
the boundary surface scalar values φf . A first-order upwind accuracy
may be obtained by assuming the values at the surface to be equal to the
values in the cell they belong to, in the upwind direction. The cell values
are in turn assumed as constant within the whole cell and are determined
as a cell-average values calculated at the centre of the cell. While first-
order accuracy may be sufficient for simple problems, it is important to
adapt higher order accuracy schemes for solving complex problems where
reliable results are desired. Higher order accuracy may be achieved using
a multidimensional linear reconstruction approach [BJ89]. Thereby, the
computation of the boundary surface scalar values is based on a Taylor
series expansion of the cell-centered values φ in the upstream cell, about
the centre of the cell. The computation of the scalar values φf based on
a second-order upwind scheme may be expressed by:

φf = φ+∇φ.r (6.47)

where r represents the displacement vector from the centre of the up-
stream cell centroid to the centre of the boundary face. In order to solve
Eq.6.47, the scalar gradients ∇φ in each cell need indeed to be evaluated.
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� QUICK Interpolation:
QUICK schemes are used to compute higher-order boundary face con-
vected values in meshes where the grid can be assumed as aligned with
the flow direction, that is, where only upstream and downstream faces
and cells are found. Thereby, a boundary face variable φf is evaluated
as a weighted average of second-order upwind and central interpolations
[LM90]. Considering the one-dimensional control volume illustrated in
Fig.6.6 and that the flow direction is from left to right, the φe through
face e is computed as:

φe = θ

[
Sd

Sc + Sd

φP +
Sc

Sc + Sd

φE

]
+ (1− θ)

[
Su + 2Sc

Su + Sc

φP − Sc

Su + Sc

φW

]
(6.48)

The value of θ is determined such that new solution extrema are avoided.
Choosing θ = 1 results in a central second-order interpolation while θ = 0
results in a second-order upwind discretization. Practically, the QUICK
scheme is used with θ = 1/8.

Figure 6.6: Illustration of the QUICK scheme: 1D control volume [FI06].

Differentiation Schemes

Differentiation schemes are needed for the computation of gradients and deriva-
tives. These must be evaluated in order to solve the unknown diffusion terms
in the general flow conservation equation as well as for the computation of
boundary face scalars in the upwind schemes. The gradient of a scalar may be
computed based on the Green-Gauss or the Least Squares approaches. Using
the Green-Gauss theorem, the discrete gradient ∇φ of a given scalar variable
φ at the centre c of the cell may be expressed as [FI06]:

(∇φ)c = 1

ν

∑
f

φ̄fSfnf (6.49)

where f representing the number of faces enclosing the volume.
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� Cell-based differentiation:
A Green-Gauss cell-based interpolation of φ̄f at the face-centre of the cell
may be obtained from the arithmetic average of the cell-centre values of
the surrounding cells ci, such that:

φ̄f =

∑nc
i φci

nc
(6.50)

where nc represents the number of the neighbour cells.

� Node-based differentiation:
A Green-Gauss node-based interpolation, more accurate for unstructured
triangular and tetrahedral meshes, may be alternatively used. Thereby,
φ̄f at the face-centres of the cell are evaluated as arithmetic average over
the nodal values of the face:

φ̄f =

∑nf

i φni

nf

(6.51)

where nf denotes the number of nodes belonging to the face f , and
φni represent the nodal values computed as weighted average from the
surrounding cell-centered values, by solving a constrained minimization
problem based on the approach proposed by [RBY91].

With the definition of the discrete cell-centred gradients (∇φ)c and the face
values φ̄f , the discrete face values φf may be evaluated and thus the semi-
discretization is completed.

6.4.4 Pressure-based Formulation

A pressure-based formulation, appropriate for low-speed incompressible flow
problems, may be used to solve the discretized equations governing the flow
for the mass and momentum conservation and, when appropriate, for energy
conservation or other constitutive scalars such as for turbulence modeling.

Pressure Interpolation

Considering the integral conservation form of the momentum equations ob-
tained from Eq.6.44 for a scalar value φ = v:∫

V

∂ρv

∂t
dV +

∫
S

ρvvndS = −
∫
S

pIndS +

∫
S

τndS +

∫
V

ρfdV (6.52)
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The discretized form of the momentum conservation in the xi-direction is ob-
tained based on the control volume approach with φ = vi leading to:

acvi =
∑
nc

ancvi,nc +
∑
f

pfSii + ρfi (6.53)

In order to obtain a solution for the velocity field, the unknown face pres-
sure field and face mass fluxes must be first computed. A co-located scheme
is used, storing both pressure and velocity at the cell centers. Thus, for the
derivation of the pressure face values pf from the cell values, a pressure inter-
polation scheme is additionally required. Thereby, pf are interpolated based
on momentum equation coefficients [RC83] given by:

pf =

(
pc0
ac,c0

+
pc1
ac,c1

)
/

(
1

ac,c0
+

1

ac,c1

)
(6.54)

Using this scheme, a smooth and valid interpolation may be achieved as long
as the pressure variation between the cell centers and thus the gradients in
the momentum terms between the control volumes may be assumed as small.
For flow problems including strongly curved domains or high recirculations,
refining the mesh in regions of high gradient is necessary for an adequate
resolution of the pressure variation. Alternatively, the PRESTO (PREssure
STaggering Option) interpolation scheme, using the discrete continuity balance
for a staggered control volume about the face to compute the face pressure may
also be used [FI06]. The PRESTO approach is based on a similar algorithm
to that of the staggered-grid schemes proposed in [Pat80].

Mass-Flux Interpolation

The continuity equation in integral conservation form may be similary obtained
from Eq.6.44 for a scalar value φ = 1 such as:∫

V

∂ρv

∂t
dV +

∫
S

ρvndS = 0 (6.55)

Approximating Eq.6.55 over the control volume V results in the discrete con-
tinuity equation in the form: ∑

f

ρfvnSf = 0 (6.56)

where ρfvn = Jf denotes the face mass flux through f . Here again, a solution
of the mass fluxes through the faces is needed to resolve the velocity field.
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The co-located scheme requires to interpolate the face values of the velocity
vn from the stored cell-centred values. In order to prevent unphysical checker-
boarding of pressure, a linear interpolation should be avoided [FI06]. Instead,
a nonlinear scheme based on momentum weighted averaging as outlined in
[RC83] may be performed. Finally, the velocity values at the faces are interpo-
lated using weighting factors based on the ac coefficient from Eq.6.53, leading
to an expression of the face fluxes Jf in the form:

ρfvn = ρf
ac,c0vn,c0 + ac,c1vn,c1

ac,c0 + ac,c1
+ df [(pc0 + (∇p)c0.r0)− (pc1 + (∇p)c1.r1)]

(6.57)

where pc0, pc1 are the pressures and vn,c0, vn,c1 the normal velocities defined at
the centres of the two cells enclosing the face f (in 2D), while df is a function
of āc, denoting the average of the momentum equation ac coefficients for these
two cells. Finally, while upwind interpolation for the density at cell faces may
be performed for compressible flow computations using for instance the ideal
gas law, incompressible flows are based on simple arithmetic density averaging.

Pressure-Velocity Coupling

The flow problem is solved by coupling the pressure and the velocity fields.
Thereby, an additional condition for the pressure is extracted by manipulat-
ing the continuity equation using Eq.6.57. The pressure-velocity coupling is
performed based on either a segregated or a coupled algorithm.

� Segregated Algorithms:
In this formulation, the governing equations are solved segregated from
each other. Many schemes based on the predictor-corrector approach
may be used to achieved a pressure-velocity segregated coupling. Thereby,
mass conservation is enforced and the pressure field is derived based on
the relationship between the velocity and the pressure corrections. Using
Eq.6.57, the solution of the momentum equation with a guessed pressure
field p∗ may be expressed in the form:

J∗f = Ĵ∗f + df (p
∗
c0 − p∗c1) (6.58)

where J∗f is the guessed resulting mass face flux and Ĵ∗f contains the
guessed influence of velocities from the two cells located on either side of
the face f . In order to satisfy to the continuity equation, the corrected
flux Jf is obtained by adding a correction flux J

′
f based on a cell-centred

pressure correction p′ to the guessed flux J∗f such as:

J ′f = df (p
′
c0 − p′c1) (6.59)
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Substituting the guessed flux and the correction flux equations into the
continuity equation Eq.6.56 for the corrected flux term Jf leads to the
discrete pressure correction p′ equation in the cell given by:

acp
′ =

∑
nc

ancp
′
nc +

∑
f

J∗fSf (6.60)

where the second term corresponds to the net flow rate into the cell.
Eq.6.60 may be solved using an algebraic multigrid (AMG) method
(Sec.7.2.8) leading to a solution in which the corrected cell pressure,
related to an under-relaxation factor αp, and the corrected face flux,
satisfying the discrete continuity equation, are given respectively as:

p = p∗ + αpp
′ and Jf = J∗f + df (p

′
c0 − p′c1) (6.61)

The segregated approach described above is known as the SIMPLE al-
gorithm. Extended variants of this basic procedure with further benefits
are the SIMPLE-Consistent or SIMPLEC and the PISO algorithms. In
the SIMPLEC approach a modified equation is indeed used for the face
flux correction to enhance convergence [FI06]. In the modified expres-
sion, the coefficients df used in Eq.6.59 for J

′
f are redefined as a function

of the linearized coefficients ac and anc in terms of (ac −
∑

nc anc).

� Coupled Algorithms:
Alternatively, the momentum and the pressure-based continuity equa-
tions may be solved using a coupled algorithm. Thereby, the pressure-
velocity coupling is achieved by processing the momentum and the pressure-
correction equations from the segregated algorithm in a single step in
which the coupled system of equations is solved. Remaining scalar equa-
tions, if present, are then solved in a decoupled manner using the segre-
gated algorithm. In general, since the discrete system of momentum and
continuity equations is solved together, the convergence of the solution
is significantly improved when using the coupled algorithm. However,
since all momentum and pressure equations in the system need to be
stored simultaneously when solving for the velocity and pressure fields,
the memory requirement for the coupled algorithm is much higher com-
pared to the segregated algorithm, where just a single equation need to
be stored at once. In the end, the size of the mesh and the available time
and memory represent the main issues in deciding whether a segregated
or a coupled algorithm should or could be used for the pressure-velocity
coupling problem.
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6.4.5 Time Integration

Unsteady flow simulations require indeed the discretization of the governing
equations in time. Thus, the transient terms of the governing equations dis-
cretized in space must be integrated over time steps Δt. Integrating Eq.6.44
over each control volume and taking into account that the integration domain
is independent on time since the equations are derived for control volumes fixed
in space, the discretization of the time-dependent equations may be written as
a function f involving the spacial discretization for the variable φ and given
in the generic form as f(φ) = ∂φ/∂t.

A first-order discretization scheme is obtained by integrating the transient
derivative using a backward difference method based on Taylor’s series expan-
sion, leading to the first-order accurate time integration in the form:

φn+1 − φn

Δt
= f (φ) (6.62)

A more accurate discretization is obtained by neglecting terms of order (Δt)3

and higher, resulting in the second-order time discretization in the form:

3φn+1 − 4φn + φn−1

2Δt
= f (φ) (6.63)

Methods for the integration and linearization of the governing unsteady equa-
tions with respect to the dependent variables φ(t) may be achieved in an
explicit or implicit way, depending on the evaluation time level of f(φ).

Explicit Time Integration

An explicit integration is based on the evaluation of the function f(φ) at the
current time such that the variable values φ(t+Δt) at the next time step are
explicitly derived from the existing values φ(t) at the previous time:

φn+1 = φn +Δtf (φn) (6.64)

This explicit approach is known as the forward Euler method. Alternative
explicit time integration methods advancing the solution from time t to t+Δt
are the multi-stage Runge-Kutta methods [FP08]. Explicit methods were orig-
inally developed because they are easy to define and simple to implement.
However, the major restriction of these methods is their stability character-
istics. Furthermore, the explicit application is restrictive and should not be
used for incompressible computations, which need to be iterated within each
time step to achieve accurate convergence [FI06].
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Implicit Time Integration

The implicit integration is based on the evaluation of the function f(φ) at the
next time such that the variable values at the next time step φ(t + Δt) are
related to the surrounding values φ(t+Δt) at the same time through f . The
general Euler-alpha time implicit integration form is given for α �= 0 by:

φn+1 = φn +Δt
[
αf

(
φn+1

)
+ (1− α) f (φn)

]
(6.65)

This one-step implicit equation represents in general a nonlinear system and
is known as the backward Euler for α = 1 and as the trapezoidal method for
α = 1/2, respectively. Solving such a nonlinear system, requires a high compu-
tational effort per time step which unless reduced would lead to a disadvantage
with respect to explicit methods. To reduce this effort and simplify this system
of equations, a linearization is performed such that:

f
(
φn+1

)
= f (φn) +

∂fn

∂φ

(
φn+1 − φn

)
(6.66)

where ∂fn

∂φ
represents the Jacobian matrix evaluated at time t. By introducing

Δφ = φn+1 − φn, the linearized implicit time integration equation may be
written as a system of unknown Δφ in the form:[

1− αΔt
∂fn

∂φ

]
Δφ = Δtf (φn) (6.67)

Eq.6.67 is solved iteratively at each time step to account for nonlinearities and
has the advantage being unconditionally stable with respect to the size of the
integration time step.

6.4.6 Iterative Algorithms

When the governing equations are discretized in space, the resulting system is
in general nonlinear with respect to the variables. To account for the nonlin-
earity of the discretized equations being derived, it is necessary to solve the
variations of these equations using incremental approaches. This is usually
solved by relaxation methods (i.e. Gauss-Seidel, Jacobi) (Sec.7.2.8), repre-
senting adaptations to a nonlinear system of methods developed for linear
systems.
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Iterative Steady-State Algorithm

For the steady-state flows, the discretized system of equations is usually solved
using iterative under-relaxation algorithms.

� Variables Under-Relaxation:
The under-relaxation of variables, or explicit relaxation, is used for mate-
rial properties to control the change of the variables φ by reducing their
values produced during each iteration. Within each control volume, the
algorithm relates the new value of φ with its old value φo, the computed
change Δφ, and the under-relaxation factor α such that:

φ = φo + αΔφ (6.68)

� Equations Under-Relaxation:
The under-relaxation of equations, or implicit relaxation, is used to sta-
bilize the convergence behavior of the outer nonlinear iterations in the
system of discretized equations. This is achieved by introducing for each
control volume selective amounts of variable φ such that:

acφ

α
=

∑
nc

ancφnc + b+
1− α

α
acφo (6.69)

Iterative Time-Advancement Algorithm

For time-dependent flows, the discretized form of the generic transport equa-
tions is solved using time-advancement algorithms. An implicit discretization
of the transient derivative in Eq.6.44 is achieved by evaluating all convective,
diffusive and source terms in the flow fields at time t+Δt such that:∫

V

∂ρφ

∂t
dV +

∫
S

ρn+1φn+1vn+1ndS =

∫
S

Γn+1
φ ∇φn+1ndS +

∫
V

qn+1φ dV (6.70)

The splitting error introduced by the segregated solution solving the equa-
tions sequentially is controlled using an iterative time-advancement scheme.
Thereby, nonlinearity of the individual and coupled equations is fully accounted
for by solving all equations iteratively for a given timestep until the conver-
gence criteria are met by eliminating the splitting error. This is achieved by
performing a number of outer iterations before advancing the solutions by one
time-step.
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6.5 CFD Simulation Models

The fundamental principles of fluid dynamics, constitutive modeling and the
FVM approach described above are applied to the blood as flow and material.
Three-dimensional computations have been carried out to simulate the hemo-
dynamics within the blood domain and along the lumen boundary at any time.
The blood flow simulations consist of a similar process described for the ves-
sel wall, though here applied to Computational Fluid Dynamics (CFD). CFD
simulation models are generated to compute velocity fields (Fig.6.7), pres-
sure distributions (Fig.6.8.a) and shear stresses (Fig.6.8.b) in the aorta. For
the solution of the governing equations, the numerical solvers of the CFD pro-
gram Fluent are used to obtain FVM-based results of the blood hemodynamics
through the vessel.

(a) Pathlines (b) Velocity vectors (c) Vortices

Figure 6.7: Velocity pathlines, vectors and vortices in the thoracic aorta.

(a) Pressure (b) WSS

Figure 6.8: Pressure and wall shear stress (WSS) distributions.
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6.5.1 Physical and Constitutive Modeling

As mentioned before, physical modeling involves the description of the dy-
namics behavior of the flow through the fundamental equations as well as the
description of the fluid properties through the constitutive equations which are
then included into the fundamental equations.

Blood Flow Governing Equations

Solving the blood flow is equivalent to solving the time-dependent fundamen-
tal equations including the mass, momentum and energy conservation laws.
Assuming that inside the body the temperature variations along the aorta are
small, the energy conservation may be neglected and the system of governing
equations is described by the continuity and Navier-Stokes equations. For the
blood domain, they represent a mathematical relationship between the main
blood flow variables, pressure p and velocity v in the flow direction, together
with the blood physical properties in the lumen region. For a laminar blood
flow, the continuity and Navier-Stokes equations are respectively:

∂ρb
∂t

+∇(ρbv) = 0 (6.71)

and
∂ρbv

∂t
+ ρb (v∇)v = −∇p+∇τ + ρbfb (6.72)

Blood and Blood Flow Properties

An accurate description of the physical nature of the blood as a fluid is an
essential aspect in modeling the blood flow. Eq.6.71 and Eq.6.72 include the
mass density ρb and the viscosity μb (in τ) of the blood and do not include
turbulence effects. These must be physically defined beside the fundamental
blood dynamics conservation equations. The physical behavior of the blood is
described in terms of its constitutive equations based on blood rheology and
in terms of turbulence models for the blood flow.

For the blood flow type, with a time-averaged calculated Reynolds number less
than 2000, the flow is assumed to be laminar. In models where Re approx-
imated from Eq.6.34 takes higher values, turbulence based on the Reynolds-
averaged approach is included into the governing equations. Thereby, the
RANS equations are determined based on the k − ε two-level model, where
turbulence is solved by:
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∂ (ρk)

∂t
+
∂ (ρvjk)

∂xj

= Pk − ρε+
∂

∂xj

[(
μ+

μt

σk

)
∂k

∂xj

]
(6.73)

and

∂ (ρε)

∂t
+
∂ (ρvjε)

∂xj

= Cε1Pk
ε

k
− ρCε2Pk

ε2

k
+

∂

∂xj

[(
μ+

μt

σε

)
∂ε

∂xj

]
(6.74)

Details on the derivation of these equations may be found in [FP08]. Cε1= 1.44
and Cε2= 1.92 are model constants, σk= 1.0 and σε= 1.3 are the turbulent
Prandtl numbers for k and ε, respectively. Pk is the production rate and with
Cμ= 0.09, the eddy viscosity μt may be expressed by:

μt = ρCμ
k2

ε
(6.75)

As for the blood rheology, in general, the shear rate within the blood in large
arteries may be assumed as greater than 100 s−1 [BPC06] and therefore blood
may be treated as a Newtonian fluid. The Newtonian model is approximated
by the high shear rate limit viscosity. Its shear independent dynamic vis-
cosity μ is considered to be constant and equal 0.0035 Nsm−2. However, a
higher order of accuracy is achieved by modeling the real shear-thinning be-
havior of the blood. Over a cardiac cycle the shear rate varies between 0 and
1000 s−1 [AWWL06]. Thus, the behavior of the blood flow in areas of low
shear rates should not be neglected. For shear rates lower than 100 s−1, red
blood cells (RBC) stack together and form rouleaux, increasing the blood vis-
cosity. RBC aggregation degrades as the shear rate increases. Due to these
blood varying conditions, the dynamic viscosity becomes a function of the
shear rate and cannot be modeled as constant anymore. Instead, the shear
stresses and the velocity gradients exhibit a nonlinear relationship. There-
fore, the non-Newtonian shear-dependent blood viscosity is also integrated by
including the viscous terms from the constitutive equations into the system
of governing equations. Practically, blood constitutive equations representing
the non-Newtonian viscous properties follow the Carreau, the power-law or the
Casson models [BPC06] sketched in Fig.6.9.

The Carreau model is implemented in this work and is given by:

μ = μ∞ + (μ0 + μ∞)
[
1 + (F (T )γ̇λ)2

](n−1)/2
(6.76)

with

F (T ) = exp

[
α

(
1

T − T0
− 1

Tα − T0

)]
(6.77)
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Figure 6.9: Newtonian and non-Newtonian blood viscosity models.

The Carreau model is characterized by the zero μ0 and the infinite μ∞ shear
rate viscosities, by the relaxation time constant λ, the power law index n and
by the reference temperature Tα. μ0 and μ∞ represent the upper and lower
limiting values of the blood viscosities, respectively. λ and n describe the
transition and deviation of the blood from Newtonian fluid, respectively. Tα is
the reference temperature at which the viscosity is temperature-independent,
that is for which F (T ) = 1. These non-Newtonian input parameters depend
on the constituents of the blood and are chosen for the viscous constitutive
equations to fit experimental data from [ABK+05], with:

μ0 = 0.056 Nsm
−2; μ∞ = 0.0035 Nsm−2; λ = 3.313 s; n = 0.357; Tα = 310 K

By including the viscous terms from the constitutive equations into the sys-
tem of partial differential equations, the new viscosity can be evaluated and
recalculated at each iterative process of the simulations.

Finally, beside its viscous and flow turbulent properties, blood is assumed as
a homogeneous continuous and incompressible fluid with a constant density of
1050 Kgm−3.

6.5.2 Initial and Boundary Conditions

In order to solve the system of partial differential equations governing the blood
flow, a set of initial and boundary conditions needs to be defined. Using proper
conditions is essential to successfully solve fluid flow problems. For patient-
specific simulations, realistic and individual data based on physiological flow
and pressure measurements are used to set the conditions at the boundaries
of the aortic model. The needed conditions are presented below:
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Initial Conditions

For the initial conditions at time t= 0 s, the whole model is initialized with the
velocity v0 at the end of the late diastole. If indeed v0= 0 m/s, the initialization
results in zero-velocity everywhere in the computational domain.

Inlet Boundary Conditions

The boundary conditions at the inlet of the aortic model are determined from
individual flow measurements based on pulsatile velocity profiles.

� Homogeneous flow-based measurements:
A time-dependent homogeneous velocity profile based on MR or Ultra-
sound flow measurements is used to set the inlet boundary conditions for
unsteady simulations. The profile is idealized by smoothing the curve in
order to get rid of undesirable oscillations in the simulations and then
transformed to describe the mean velocity of the flow within one car-
diac cycle. The unsteady profiles are measured in planes above the renal
arteries and behind the cardiac valve for application at the inlet of the
abdominal and thoracic aortic models, respectively. One of the MR-
based velocity profiles used in this work is shown in Fig.6.10.a Thereby,
the input flow shows its peak at t= 0.18 s and become zero at t= 0.44 s.

� Spatial flow-based distribution:
For a more accurate description of the flow, the spacial distribution at
the inlet may be considered. This spatial flow-based condition have been
developed in this work primarily for applications to the simulation of the
interaction between the blood and the wall. The derivation of this con-
dition is therefore described in Sec.7.3.2. Nevertheless, it can certainly
be also used at this point for the blood flow simulations.

(a) Velocity-Inlet (b) Pressure-Outlet

Figure 6.10: Flow-based and pressure-based boundary conditions.
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Outlet Boundary Conditions

The boundary conditions at the outlets are determined from individual pressure-
based measurements or alternatively derived in terms of outflow rates.

� Pressure-based measurements:
An unsteady homogeneous pressure profile based on individual measure-
ments is used to set the boundary conditions at the outlets of the aortic
model. Here also, the pressure curve within one cardiac cycle is smoothed
in order to avoid undesirable oscillations in the simulations. An example
of an unsteady pressure profile measured in the aorta and used as bound-
ary conditions at the outlet of the aortic models is shown in Fig.6.10.b.
The profile shows its peak at t= 0.1 s and becomes zero at t= 0.3 s,
respectively.

� Velocity-based outflow-rates:
Alternatively, the boundary conditions at the outlets are determined
in terms of outflow-rates. Thereby, the inlet velocity profile is used to
derive the flow rates at the outlets based on physiological data taken
from [BKMH78]. Obviously, the calculated scaled rates depend on the
geometry shape of the aorta being modeled. Therefore, a code has been
developed to automatically scale and compute the rates at the outlets
using input information about the available outlets in a given model
as shown in Fig.6.11. Thereby, the user defines through the interface
which outlets exist, for which the scaled outflow rates are automatically
calculated.

� Pressure-based outlet-specific:
A more accurate outlet boundary condition may be derived based on
distinct pressure profiles that are computed individually for each outlet.
This outlet-specific pressure-based condition has been developed in this
work mainly for application to the coupled blood flow and vessel wall
simulations. Though, it may be certainly applied for decoupled blood
flow modeling as well. The derivation of this conditions is described in
Chap.7.

Wall BC

In CFD simulations, the blood vessel is usually modeled as rigid. Assuming
non-moving walls, the no-slip boundary condition is defined:

vb = u̇w (6.78)

resulting in a zero-velocity vb of the blood at the wall.
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Figure 6.11: Mapping the flow rates at the existing outlets.

6.5.3 Mathematical and Numerical Modeling

The flow domain is numerically solved based on the finite volume approach.
The CFD simulations are carried out using the program Fluent. A numerical
code integrated in the FVM-program based on the cell-centred formulation
where the control volumes are defined to adapt to the grid geometry is chosen
to spacially discretize the computational domain. Thereby, the computational
points are defined in the centres of the cells where the values of the dependent
variables are stored. The flow equations are solved using the second-order
upwind interpolation scheme for the convection and viscous terms of each gov-
erning equation. Further, the cell-based Green-Gauss differentiation algorithm
is used to compute the discrete gradients at the face-centre of the cells.
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The pressure-based approach is adopted to discretize the resulting complex
time-dependent system of nonlinear equations. In this formulation, the veloc-
ity fields are extracted from the momentum equations using pressure followed
by velocity interpolations. While the pressure fields are derived by solving
the pressure correction equations, obtained by manipulating the continuity
and the momentum equations. The time-dependent differential continuity
and Navier-Stokes equations are discretized in an implicit manner using the
Euler integration. Hereby, the field variables are interpolated to the faces
of the control volumes using a second-order time discretization scheme. For
the pressure-velocity coupling, the segregated approach in which the govern-
ing equations are solved one by one is used. Thereby, the solver employed
the Pressure Implicit Splitting of Operators (PISO) algorithm, a variant of
the SIMPLE approach useful for unsteady problems, to solve the 3D Navier-
Stokes equations. In the PISO algorithm the pressure-velocity coupling uses
a higher degree of the approximate relation between the pressure and the ve-
locity corrections. Thereby, an iterative skewness correction is performed in
which the pressure-correction gradient is recomputed after the initial solution
of the pressure-correction equation and used to update the mass flux correc-
tions. In addition, an iterative neighbor correction process is performed to
move the repeated calculations inside the solution of the pressure-correction
equation needed to satisfy momentum balance.

Finally, the iterative steady-state and time-advancement algorithms are used
to account for nonlinearities. The resulting linearized system of governing
equations is solved based on the Algebraic Multigrid (AMG) relaxation Gauss-
Seidel technique as described in Sec.7.2.8.

6.5.4 Numerical Stability - Discussion

The spacial discretization used based on the cell-centred formulation has the
advantage being of second order accuracy, higher than that of the vertex-based
method as described in Sec.6.4.2. Overall time-discretization error is deter-
mined by the choice of the time discretization and the time-advancement ap-
proaches. Truncation errors are introduced by the time discretization scheme
and were reduced from O(t) to O(t)2 by using a second-order scheme. Further,
the splitting errors introduced by the segregated solution process when solving
the flow equations in sequence is controlled using an appropriate time-iteration
scheme. While the non-iterative approach would reduce the splitting error to
the same order as the truncation error, the iterative scheme used in this work
reduces that error to zero. Thus, overall accuracy is enhanced, although the
number of outer-iterations required per timestep becomes larger than one.



174 Chapter 6. Blood Flow Modeling

When explicit methods are adopted, the used integration time step is lim-
ited by the Courant-Friedrich-Lewy condition to an upper allowable bound
which equals the minimum of all the local time steps in the domain. To over-
come the limitation in stability characteristics of explicit methods, the implicit
formulation is rather used to achieve more accurate solutions and faster con-
vergence. In addition, the implicit discretization of the convective terms in
Eq.6.70 yields to non-linear terms in the discretized equations, which solution
requires a large number of iterations per time step. To reduce the nonlinear
terms in the resulting equations and speed up the convergence within each
time step, the Frozen Flux Formulation in Fluent is used for the simulation
of transient problems. This iterative formulation provides an alternative dis-
cretization of the convective terms which preserves the same order of accuracy
of the solution. However, the discretization is based on the mass flux at the
cell faces from the previous time t.

Furthermore, with two additional skewness and neighbour corrections, PISO
improves the efficiency by reducing the number of iterations required to achieve
convergence, though it needs a little more time per solver iteration. Thereby,
beside the neighbour correction, the skewness correction process significantly
accelerates convergence of distorted meshes, if present. The use of a high-
quality finite mesh with a large number of elements generated based on con-
trol functions result in exact accurate solutions. Further, using meshes with
individual optimized parameters obtained from the grid refinement analysis
described in Sec.4.4, ensured the generation of simulation results that are in-
dependent on the mesh configuration of the model.

To overcome the simulation cost in terms of computational time and effort,
the tetrahedral volume elements are converted into polyhedral cells. This is
adapted within Fluent when the computational capacities are passed over, re-
ducing the number of cells by a factor of four. The computational time varied
depending on the domain size and the hardware used. For instance, performed
on an 6.4 GHz 8 GB Ram PC, a CFD computation required approximately
20 hours. Timestep independent results were achieved using approximately
1000 equally spaced time steps to model a whole cardiac cycle. This is equiv-
alent to a timestep size ts= 0.8 ms for a cycle period T= 0.8 s. The com-
putational results based on these timesteps settings showed mathematically
stable solutions characterized by fast convergence, few numbers of iterations
and small residuals. Further, the computations could be performed without
undesired physical effects, such as backflows. The maximum number of iter-
ations per timestep was set to 20. Near the systole, 5 to 7 iterations were
required to converge the solution, whereas near the diastole up to 20 iterations
were needed.
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6.6 System Integration in CFD-Sim

The modeling steps of the blood flow simulations are integrated in MoDiSim
into the component CFD-Sim. CFD-Sim has been developed to automatically
perform and visualize computational blood flow simulations in patient-specific
aortic models at any time. The user interface of CFD-Sim is shown in Fig.6.12.
Automation of the simulation process, physical optimization and individual-
ization within CFD-Sim are described in the next sections.

Figure 6.12: User-Interface of the CFD simulation component CFD-Sim.
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6.6.1 Automation

The automation of the blood flow simulations is achieved via integration of the
CFD modeling steps into the component CFD-Sim. MoDiSim executes these
steps automatically based on a minimal user interaction. Further, CFD-Sim
includes automatic post-processing part providing a visualization of the hemo-
dynamics. That involves the quantification of wall pressure, shear stresses,
velocity pathlines and particle trace for the whole simulated model. The most
important actions in the CFD-Sim component sketched in Fig.6.13 are de-
scribed below:

� Create Directories:
CreateSubdirectories and CreatePostProcessingDirectories create first a
new subdirectory for all generated files as well as subdirectories for the
different plots of the simulation results and for the animation files, re-
spectively.

� Define Postprocessing Settings:
The CreateInjectionSettings writes journal commands for the creation
of injections. Single or multiple injections are defined in MoDiSim with
velocities and times relying on the given velocity profile. CreatePost-
ProcessingScheme creates a scheme file which contains new custom com-
mands that generate plots of the simulation results and animation of
these plots.

� Write First Commands:
WriteInitialCommands defines settings to start the transcript, load the
profiles, check the grid and set the simulation type (unsteady or steady).
These commands have to be written first, because they influence the
available commands afterwards. WriteFileSectionSettings writes the com-
mands to set the file saving-frequency and the file names.

� Define Physical and Boundary Settings:
WriteDefineSectionSettings defines the commands to set the physical
models including settings for laminar or turbulent flow and settings for
material properties. Also, commands for setting various boundary con-
ditions are defined here.

� Define Solver Settings:
WriteSolveSectionSettings writes the commands for the numerical solu-
tion. These include defining discretization schemes, multigrid settings,
convergence limits, initialization of the simulation as well as monitoring
settings.
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Figure 6.13: Activity diagram of the CFD simulation component CFD-Sim.
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� Write Final Commands:
WriteFinalCommands defines the last commands to start the simulation,
save the settings before and after the simulation and exit the program.
Also the commands for the injections and to load and execute the scheme
files during the simulation are written here.

� Write Journal File:
WriteSettingsInJournalFile writes all commands in an executable journal
file. For the simulations, the journal contains all commands to set the
various simulation settings. For visualization, only settings for opening
the results files are written. For animations, the commands for loading
the scheme file are additionally defined.

� Start Simulation and/or Visualization:
The StartFluentWithJournalFile action is finally implemented to run
Fluent with different journal files in order to perform and/or visualize
the simulation.

6.6.2 Optimization

The automated process in CFD-Sim was next optimized by improving and ex-
tending the integrated models. Consequently, optimized modeling is achieved
in CFD-Sim, allowing a wide range of simulation options. Steady-state and
unsteady-pulsatile computations of the hemodynamics are possible. Beside
modeling of laminar flows, the k-ε turbulent model is also integrated to simulate
the dynamics of the flow. Further, constitutive behavior of the blood viscosity
is included by integrating both the Newtonian and the non-Newtonian Carreau
viscosity models. The effects of these viscosity models have been additionally
evaluated and are discussed in the results section. For the pressure-velocity
coupling, the Pressure Implicit Splitting of Operators (PISO) as well as the
SIMPLE and the SIMPLEC algorithms are integrated, useful for unsteady
and steady solutions of the 3D Navier-Stokes equations, respectively. Various
discretization and interpolation schemes are implemented for different order of
accuracy. The convergence behavior of the simulations may be quasi-controlled
directly in CFD-Sim by the timestep number and size inputs, the underelax-
ation parameters and the residual criteria. Furthermore, several options for
defining the boundary conditions are integrated, allowing pressure-based and
flow-based outlet conditions. This in turn allows improving the backflows be-
havior of the simulations. Automatic quantification of the WSS, the pressure
and the velocity-based pathlines is also included and may be conducted during
the simulations or/and within the extra advanced post-processing option.
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6.6.3 Individualization

Individual blood flow simulations, independent on the vessel region, is made
possible in MoDiSim mainly through the integration of laminar and turbulent
flow models allowing to simulate both abdominal and thoracic parts of the
aorta, respectively. Individualization in terms of conditions is also achieved
through MoDiSim by allowing the definition of inlet and outlet boundary con-
ditions based on individual pressure and/or flow data obtained from direct
patient measurements. Shape-independent (pathology) simulations is rather
achieved at the meshing level. The computation of steady-state and unsteady
flows is made possible through the integration of different appropriate solvers.
In total, three patient-specific aortic models have been processed and simulated
using CFD-Sim. These are human-based and are shown in Fig.6.14. They orig-
inate from the CT-based abdominal aorta (Fig.3.6), the CT-based abdominal
aortic aneurysm (Fig.3.7) and the CT-based thoracic aortic aneurysm after
stent-graft implantation (Fig.3.8). Details on the results are presented in the
next section.

(a) CT-AA: Pressure contours (b) CT-AAA: Wall shear stress

(c) CT-TAA: Velocity pathlines

Figure 6.14: CFD simulations with three individual blood flow aortic models.
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6.7 CFD Simulation Results

Numerical results on the performed CFD simulations are illustrated here on the
examples of the three models shown in Fig.6.14. The CFD computations were
carried out to describe velocity fields, pressure and shear stress distributions
along the aortic wall and within the blood domain at any time. The effects of
various physical models on the simulations are also discussed.

6.7.1 Wall Shear Stresses using CT-AA

In order to evaluate the hemodynamics in a normal subject, the simulations
are first applied to the model of the healthy abdominal aorta CT-AA shown
in Fig.3.6. A whole cardiac cycle of period T= 0.85 s was modeled using
1000 equally spaced timesteps. The velocity profile shown in Fig.6.10.a was
thereby applied at the inlet, while the outflow rates were computed for the
outlet boundaries. Fig.6.15 shows the velocity vectors near the wall surface
(a and c) and the corresponding wall shear stress distribution (b and d) at
t= 0.31 s and t= 0.18 s, respectively.

(a) Velocity vectors, t= 0.31 s (b) WSS, t= 0.31 s

(c) Velocity vectors, t= 0.18 s (d) WSS, t= 0.18 s

Figure 6.15: Velocity vectors and corresponding shear stress distributions.
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The WSS are computed from the resultant of the velocity gradients near the
wall. Fig.6.16.a to Fig.6.16.e show the WSS distributions along the aortic
model at t= 0.09 s, 0.18 s, 0.36 s, 0.50 s and 0.53 s, respectively. They nicely
show how the WSS increase from the early systole to the peak systole, where
they become maximal, then decrease to the late systole, until they reach a
value near zero during the diastole, and increase again at the peak diastole.
The figures on the left represent a colored scale of the magnitude of the WSS in
Pascal, while the figures on the right represent an XY-plot of the WSS (y-axis
in Pascal) along the z-position in aortic flow direction (x-axis in mm).

Regions of relative low WSS were observed below the renal arteries level (blue
on left-figures and z > 70 mm on right-figures), while higher WSS values were
found within the small arteries (red on left-figures and z < 70 mm on right-
figures). This can be estimated, according to the definition of the WSS, by
the large diameter and the low velocity fields in regions of large diameters
i.e. below the renal arteries, and by the small diameters and the high velocity
fields within the small arteries. This explanation can be also approximated to
the Hagen-Poiseuille formulation which assumes, for parabolic blood velocity
profiles in near-circular lumens, the mean shear stresses to be proportional to
the volume flow and inverse proportional to the radius R3.

The mean WSS were expressed in terms of area weighted averages (AWA) over
the wall along the whole cardiac cycle. The maximum mean WSS was found
at the peak systole with a relative high value of 6.85 Pa. The high systolic
WSS at t= 0.18 s can be explained by the high peak velocity at that time
i.e. where the velocity field exhibits its maximum. As for the lowest mean
WSS, it was found to be 0.2 Pa at t= 0.50 s during the diastole, and is due to
the nearly zero inlet velocity profile at that time. Further, the mean WSS at
early systole (t= 0.09 s), late systole (t= 0.3 s) and peak diastole (t= 0.53 s)
were 1.03 Pa, 0.86 Pa and 1.58 Pa, respectively. Note that these values are
the averages along the whole model, including high values in the small arteries
and that the percentage p of cells at the wall surface with WSS values less
than 0.5 Pa is 91.1% at early systole, 88.4% at peak systole, 93.2% at late
systole, 99.5% at diastole and 88.7% at peak diastole.

The mean range of the computed values agrees with the range obtained by
other in vivo and in vitro methods. [OKM+95] and [TCE+02] reported mean
WSS values varying between 0 Pa and 1.04 Pa under resting conditions with
an approximate blood flow of 3 litres/min. Their values however excluded the
small arteries, thus only included the infrarenal and supraceliac regions. This
corresponds to our results simulated at early (t= 0.09 s) and late (t= 0.36 s)
systole, for z-positions larger than 70 mm. Fig.6.16.a and Fig.6.16.c show mean
values of approximately 0.5 Pa in these regions.
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(a)
t= 0.09 s,
AWA= 1.03 Pa,
p= 91.1 % cells

(b)
t= 0.18 s,
AWA= 6.85 Pa,
p= 88.4 % cells

(c)
t= 0.36 s,
AWA= 0.86 Pa,
p= 93.2 % cells

(d)
t= 0.50 s,
AWA= 0.28 Pa,
p= 99.5 % cells

(e)
t= 0.53 s,
AWA= 1.58 Pa,
p= 88.7 % cells

Figure 6.16: Shear stress distribution on the wall (left) and in the flow z-
direction (right) at five different times.
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6.7.2 Pathological Aneurysm Conditions using CT-AAA

Pathological blood flow characteristics are simulated using the CT-based patient-
specific geometry of the abdominal aortic aneurysm shown in Fig.3.7, consist-
ing of the lumen region and the arterial wall. Fig.6.17 shows the dynamic and
the static pressure contours along a sagittal cut in the flow direction at the
diastolic time t= 0.34 s. The dynamic pressure is a function of squared the
velocity, while the static pressure rather reflects the wave propagation due to
the pulsatile nature of the cardiac cycle. Obviously, high intraluminal static
pressure is present within the aneurysmal bulge.

(a) Dynamic pressure (b) Static pressure

Figure 6.17: Dynamic and static pressures along a vertical plane at t= 0.34 s.

The effects of recirculation zones on the WSS distribution are illustrated in
Fig.6.18. While the velocity flow at the systole represents almost laminar path-
lines (a), the diastolic phase is characterized by the formation of recirculation
zones associated with abnormal curved areas arising due to the aneurysm. At
early systole few of the vortices start to develop, and during the diastole the
recirculation zones grow to large 3D vortices with reversed flow. As a result,
the diastolic velocity gradients at the inlet of the aneurysmal bulge take higher
values leading to higher local WSS (d) compared to the systolic values (c).

6.7.3 Effects of non-Newtonian Blood using CT-AAA

Although blood is actually a non-Newtonian fluid, most of the investigations
carried out in this domain consider the blood as a Newtonian fluid with a con-
stant viscosity. In order to understand the effects of this behavior on the flow
patterns, it is essential to investigate the hemorheology using different blood
viscosity models. CFD results on the effects of the non-Newtonian Carreau-
based model on the pulsatile velocity and WSS distributions within the aortic
aneurysm geometry have been analyzed and compared to those of the Newto-
nian model with constant viscosity. The computations are thereby carried out
at any time within the cardiac cycle.
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(a) Pathlines, t= 0.15 s (b) Pathlines, t= 0.34 s

(c) WSS, t= 0.15 s (d) WSS, t= 0.34 s

Figure 6.18: Velocity pathlines and corresponding shear stress distributions.

A comparison of both models at the peak systole (t= 0.15 s) and during the
diastole (t= 0.34 s) indicates that the unsteady flow parameters are influenced
by the non-Newtonian behavior of the blood. The results also show that
the effect is more predominant within the small arteries (celiac, mesenteric
superior, renal, femoral) than within the main aortic vessel. This is because
the red blood cells (RBC) aggregation is also influenced by the size of the
domain [CK91] and the shear-thinning behavior of blood is lower in regions of
small diameters.

Specifically, the effects on the WSS distributions are marked, in particular
within the small vessels but also in the aneurysmal region. The highest WSS
is observed in the Carreau model in all cases. This is due to the fact that the
viscosity of the non-Newtonian model is higher than that of the Newtonian
model along the whole shear rate range. Indeed, the effect is more pronounced
in the diastole than in the systole due to the low velocity during diastole
resulting in a lower shear-thinning behavior.
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The results also show that axial and radial components of the flow velocity
patterns, as well as the velocity magnitude in the lumen region face alterations
and are affected by the non-Newtonian blood behavior. These results are
evaluated along the centerlines L1, L2, L3, L4 and L5 represented in Fig.6.19,
and along the lines in the x-direction lying in the planes P50, P110, P150,
P220 and Pmes. L5 and Pmes lie inside the mesenteric superior artery. All
planes are orthogonal to the flow in the z-direction.

Figure 6.19: Overview: Evaluation sites for the non-Newtonian behavior.

The distribution of the velocity magnitude along the centerlines L3 and L5
is shown in Fig.6.20.a and Fig.6.20.b at peak systole and in Fig.6.20.c and
Fig.6.20.d at diastole, respectively. In both cases, the non-Newtonian velocity
magnitude showed higher values along these lines. Indeed the effect is predom-
inant along the centreline through the small artery (L5) than that through the
aneurysmal region (L3). Similar results were obtained along L1, L2 and L4.
Also the dynamic pressure effects take the same course along these lines.
The results of the velocity distribution at the lines in the x-direction lying
within the planes P150 and Pmes, orthogonal to the flow in the z-direction,
are shown in Fig.6.21.a and Fig.6.21.b at peak systole and in Fig.6.21.c and
Fig.6.21.d at diastole, respectively. Compared to the Newtonian velocity, the
non-Newtonian computations along these lines show lower values near the wall.
Consequently, in order to compensate for the total volume flow, the velocities
in the inside increase and show higher values. This also explains the higher
non-Newtonian velocities along the centrelines L3 and L5, shown in Fig.6.20.
Further, the simulations show that the radial velocity along all lines is in gen-
eral more affected by the non-Newtonian behavior than the axial velocity.

In summary, the results show that including the non-Newtonian properties
is important and cannot be neglected while computing parameters in regions
near the wall. The computations agree with experimental results obtained by
other in-vivo and in-vitro methods as reported in [GvdVJ99; KGBB06].
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(a) L3, t= 0.15 s (b) L5, t= 0.15 s

(c) L3, t= 0.34 s (d) L5, t= 0.34 s

Figure 6.20: Velocity magnitudes along the centerlines L3 and L5.

(a) X150, t= 0.15 s (b) Xmes, t= 0.15 s

(c) X150, t= 0.34 s (d) Xmes, t= 0.34 s

Figure 6.21: Velocity magnitudes along the lines X150 and Xmes.
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6.7.4 Effects of Stent-Graft Implantation using CT-TAA

The thoracic aortic aneurysm model shown in Fig.3.8 originates from a CT
scan after stent-graft implantation. Unsteady simulations with outflow rates
boundary condition and k-ε-based turbulent flow model are considered for the
evaluation of the effects of the stent-graft on the flow dynamics in the aorta.

Figure 6.22: Pathlines at early, peak, late systole and peak diastole.

Figure 6.23: WSS at early, peak, late systole and peak diastole.

Figure 6.24: Static pressure at early, peak, late systole and peak diastole.
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The results are evaluated at four different times along the cardiac cycle as
shown Fig.6.24, Fig.6.22 and Fig.6.23. The flow dynamic is significantly influ-
enced at three marked sites caused by the presence of the stent-graft. These
sites are located at the aortic arch where the upper end of the stent is fixed,
at the break area in the middle of the stent-graft and at the lower fixed end of
the stent. All these sites present a narrowing in the geometry and are there-
fore associated to high stress gradients at the wall. A flow disruption at high
velocities is found at the upper stent-end fixation. The rough surface of the
stent enforces the flow disruption and causes additionally high turbulences in
the first upper part of the stent-graft. The vortices start to develop right after
the peak systolic time as shown in Fig.6.22. The high shear stresses at the wall
resulting from the abnormal flow patterns have probably lead to the failure
of the stent at these sites. The stent-break in turn resulted in small swirling
effects in the following part of the aorta. At the lower stent-end, the turbu-
lences are found at the end of the systole and at the diastole. However, at the
end of the diastole, the flow velocities are so small, that the risks associated
with the abnormal flow are minimal. Further, the WSS values at the three
marked sites show local maxima as illustrated in Fig.6.23. Thus, the wall at
these sites is under high stress which may lead to lesions and extend to cause
tissue tearing. Fig.6.24 shows the propagation of the pulse wave within the
aortic geometry. Thereby, due to the chosen boundary condition, the pressure
values are not comparable with real values, and the pressure gradients should
be considered instead of the absolute values.
Furthermore, a steady-state simulation with a constant flow rate equal half of
the peak velocity is evaluated. The steady-state computations are compared
to the unsteady simulations at t ≈ 0.067 s and t ≈ 0.287 s, where the velocity is
equivalent to 0.37 m/s. Fig.6.25, Fig.6.26 and Fig.6.27 summarize the results
of the three simulations. The computations of the unsteady simulation at the
early systole are relatively similar to those of the steady-state simulation, since
both present accelerating flow. Thereby, the WSS maxima at the critical sites
present similar distribution. Consequently, the steady-state approach may be
applied for a fast diagnosis of critical sites with high WSS gradients at low
computational effort. On the other hand, the results at the late systole, in
which the flow is decelerating, present different profiles and show higher local
WSS maxima at the upper stent-half and at the stent-break. Also, the signif-
icant difference is illustrated through the pathlines, where high turbulences in
the late systole start to develop due to the deceleration of the flow velocity.
Overall, while the flow behavior in the acceleration phase may be reflected, a
steady-state evaluation cannot accurately describe the hemodynamics in the
deceleration phase. Consequently, the application of the steady-state simula-
tions should be restricted, where the pulsatile characteristics of the dynamic
blood flow cannot be accurately detected.
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Figure 6.25: Pathlines, pressure and WSS distribution of the steady-state
simulation with velocity of 0.37 m/s.

Figure 6.26: Pathlines, pressure and WSS distribution of the unsteady sim-
ulations at early systole.

Figure 6.27: Pathlines, pressure and WSS distribution of the unsteady sim-
ulations at late systole.
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6.8 Summary

The aim of this chapter was to describe the computational modeling of the
blood flow for simulating and analyzing the hemodynamics within individual
aortic models. First, the physical fundamentals of the modeling based on the
concepts of continuum fluid dynamics were presented. Thereby, the funda-
mental equations governing the motion of the flow were derived based on the
conservation principles. Then, the constitutive material laws necessary to de-
scribe the fluid behavior to be modeled were presented. The mathematical
relations for the numerical discretization and the resolution of the governing
equations based on the finite volume method were then presented. Next, the
theoretical steps described in the first three sections were applied to gener-
ate computational models for the blood flow in the CFD simulation section.
Further, the integration of the blood flow modeling steps into the CFD-Sim
component of the MoDiSim simulation system was also described. Thereby,
the automation of the steps, the optimization of the individual models as well
as the individualization of the CFD simulations were presented. Finally, some
simulation results obtained from three individual image-based models are il-
lustrated at the end of this chapter. The effects of various models and physical
aspects were thereby also presented.



Chapter 7

Blood-Wall Interaction

7.1 Introduction

In the CFD simulations of the blood flow, the vessel wall was assumed as rigid
and thus was not included into the modeling process. In the CSM simulations
of the vessel wall, the blood flow was assumed as a known load condition for the
modeling. Over a cardiac cycle, the blood dynamics and the wall mechanics
are strongly influenced by each other. In fact, the blood forces affect the wall
deformation and the wall displacements affect the flow patterns. Therefore,
the physical interaction between the vessel wall and the blood flow is a cru-
cial consideration and has to be taken into account for accurate computations.
Considering the blood-wall interaction leads to more realistic and reliable sim-
ulations for the analysis of cardiovascular diseases. Such a physical interaction
may be modeled by means of the Fluid-Structure Interaction (FSI) approach.

7.2 Fluid-Structure Interaction

FSI modeling allows simulating the interaction between a deformable structure
with the surrounding fluid. During the interaction, the fluid forces applied on
the solid results in its deformation and the resulting solid deformation yields
a change in the fluid domain. The complexity of Fluid-Structure problems
makes an analytical solution out of question. Numerical FSI problems may
therefore be solved by coupling CFD and CSM models describing the fluid
and the structure, respectively. The numerical solution of the individual fields
may be obtained based on different approaches. However, this would yield to
resctrictions on the coupling and iteration methods allowed for the solution.
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In the following, the FEM approach is considered for both the fluid and the
solid domains to obtain a numerical solution for the FSI problem.

7.2.1 Arbitrary Lagrangian-Eulerian Formulation

When modeling the structural model, the Lagrangian configuration is applied,
where the changes in the solid position are observed as it moves in space.
The fluid flow is rather analyzed in the Eulerian configuration, where instead
of following the fluid particles, the changes taking place at fixed positions in
space are observed. However, in FSI analysis, the fluid-structure interface is
deformable and the problem includes moving boundary conditions prescribing
nodal positions determined by the structural displacements. As a result, the
motion of the fluid boundary nodes described along the moving geometric
boundary must be described using the Lagrangian coordinates. Elsewhere in
the computational domain, the interior fluid nodes may be described in a quite
arbitrary configuration as long as they comply to the boundary coordinates,
mesh quality and physical requirements. The so called Arbitrary Lagrangian-
Eulerian (ALE) configuration is shown in Fig.7.1.a.

(a) ALE configuration (b) ALE system

Figure 7.1: Illustration of the ALE configuration and coordinate system.

So, solving FSI problems requires that the governing system of equations de-
scribing the fluid model must be moved to the ALE coordinate system. An
ALE coordinate system may be defined by transforming the moving coordinate
system (x, t) into a new coordinate (ξ, τ) such that:

x(ξ, τ) = ξ + d (ξ, τ) (7.1)

where t = τ and d is the displacement vector representing the arbitrary moving
coordinates. The ALE system is illustrated in Fig.7.1.b.
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Based on this definition, the time derivative of a given function f(x, t) =
f(ξ + d(ξ, τ), τ) may be written as:

∂f

∂t
=
∂f

∂τ
−w.

∂f

∂x
(7.2)

where w = ∂x/∂τ = ∂d/∂τ denotes the moving coordinate velocity. The
ALE system of fluid equations is then obtained by substituting Eq.7.2 into the
Eulerian governing equations derived in Chap.6. The non-conservative form
of the continuity and momentum equations defined in Eq.6.10 and Eq.6.16
transform in the ALE system respectively to:

∂ρ

∂τ
+ (v −w)∇ρ+ ρ∇v = 0 (7.3)

and

ρ
∂vi
∂τ

+ ρ (v −w)∇vi −∇ti = ρfi (7.4)

In these ALE equations, the convective velocity is replaced by the relative
velocity. When w = 0 or w = v, the equations simplify to the Lagrangian
or the Eulerian cases, respectively. As for the ALE conservative form of the
governing equations derived in terms of the general transport scalar equation
described in Eq.6.27, it may be expressed in integral form as:

∂

∂τ

∫
V

ρφdV +

∫
S

(−wρφ+ (ρφv − Γ∇φ)) dS =
∫
V

qφdV (7.5)

Obviously, in an FSI analysis, while the primary variables in the structural
model are the displacements, those of the fluid flow include the usual fluid
variables as well as the displacements.

7.2.2 Interface Definition

The interaction between the fluid and the solid occurs by exchanging phys-
ical variables at a common interface. Defining a valid interface is therefore
a crucial factor for obtaining successful solutions of FSI problems. Since the
fluid and the solid domains are usually generated using different elements, the
discretization of the two meshes on the interfaces is in general incompatible.
A coupling is therefore only possible if the distances between the nodal points
at the fluid and the solid boundaries do not exceed a certain critical value rc.
The relative distance from the fluid nodes to the solid interface rf and that
from the solid nodes to the fluid interface rs are defined by:

rf = max

{
df
Ds

}
< rc and rs = max

{
ds
Df

}
< rc (7.6)
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where df , ds, Df and Ds represent the distances from a nodal point to the
boundary and the element length for the fluid and the solid respectively, as
illustrated in Fig.7.2.b for the case of rf .

(a) F-S interfaces (b) F-S distances

Figure 7.2: Interfaces and distance measurements between fluid and solid.

The general case of non-matching grids, assuming different interface nodal
positions for the fluid and solid models is shown in Fig.7.2.a. Exchanging
variables at the interfaces is achieved by means of interpolation with the sur-
rounding nodal values. Thus, the displacements at the fluid interface nodes
are interpolated from the surrounding nodal displacements at the solid inter-
face. Further, the nodal stresses at the solid interface are interpolated from the
fluid traction using the nodal stresses at the fluid interface. In the ideal case
of matching grids where the interface meshes are compatible, the interpolation
at a particular fluid or solid position is achieved using the variables located at
the same solid or fluid nodes, respectively.

7.2.3 Equilibrium Conditions

Obviously, common conditions for the fluid and the structure needed to es-
tablish exchange equilibrium are defined and applied at the interfaces. These
conditions include the displacement compatibility and the traction equilibrium.
The displacement compatibility is expressed as the kinematic condition:

df = ds (7.7)

where df and ds denote the fluid and solid nodal displacements at the inter-
faces. As a result of the displacement compatibility, the velocity condition may
be derived as well. This is defined in terms of the no-slip or the slip boundary
conditions, given respectively by:

v = ḋs and n.v = n.ḋs (7.8)
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As for the traction equilibrium, it is expressed by the dynamic condition:

tfn = tsn (7.9)

where tf and ts denote the fluid and solid nodal stresses at the interface,
respectively. Defining hd as the virtual solid displacement, the fluid force
along the interfaces is derived from the fluid stress such that:

Ff (t) =

∫
hdtfdS (7.10)

The coupling at the interface is achieved by mapping the fluid nodal displace-
ments according to the kinematic condition and the structure nodal stresses
according to the dynamic condition. Given the fluid displacements at the
boundary nodes, the internal nodal displacements may be computed based on
a special moving mesh procedure such that the initial mesh quality is preserved.
Based on the actual fluid nodal positions, the ALE governing equations of the
flow domain are solved. Furthermore, the fluid force defined in Eq.7.10 exerted
at the nodes of the solid interface includes usually stresses at neighbour solid
nodes. As a result, all fluid and solid solution variables at the interfaces are
somewhat indirectly coupled together.

7.2.4 Iteration Convergence

A coupled fluid-structure system includes nonlinear fluid equations and is obvi-
ously always nonlinear, independent on the linearity of the structure equations.
As a result, iterative approaches are needed for the solution of FSI problems.
The iteration criteria required to achieved convergence varies depending on
the problem definition as well as on issues concerning available time, required
accuracy or disposable computational effort and resources. Obviously, since
structure displacement and fluid stress represent the exchange variables on
the fluid-structure interfaces, convergence criteria based on these variables are
generally used.

The displacement convergence conditions rd is defined in terms of the displace-
ment tolerance εd such that:

rd ≡
∥∥dk

s − dk−1
s

∥∥
max

{∥∥dk
s

∥∥ , ε0} ≤ εd (7.11)

As for the stress convergence rt, it is similarly defined in terms of the stress
tolerance εt given by:

rt ≡
∥∥tks − tk−1s

∥∥
max

{∥∥tks∥∥ , ε0} ≤ εt (7.12)
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where ε0 denotes a constant tolerance set to a small value and used to avoid
overriding very small displacement and stress values.

7.2.5 FEM Coupled Equations

While different numerical approaches may be applied to solve the fields of the
coupled system, the allowed solution methods in this case become limited. For
instance, the numerical solution of a coupled system in which the finite volume
approach is used to solve the fluid domain and the finite element approach to
solve the structure domain, is obviously restricted to iterative methods. The
use of a unique numerical discretization approach allows overcoming such re-
strictions and has various advantages [LM01]. Assuming an FEM-based ap-
proach as described in Chap.5 to solve the governing conservation equations for
both the fluid and the solid domains, the corresponding discretized equations
for the individual fields in matrix form may be formulated by:⎧⎪⎪⎨

⎪⎪⎩
Qf [v, v̇, p]= Kfv +Mf v̇ +Gfp

Qs[d, ḋ, d̈]= Ksd+Dsḋ+Msd̈

Qm[r] = Kmr

(7.13)

where r represents the node positions within the ALE mesh domain m. The
coupled FSI system is obtained by interpolating the displacement and stress
variables at the interface as described above. Denoting X = (Xf ,Xs) as the
solution vector of the coupled problem, then the coupled FSI system may be
written in terms of the fluid and solid finite element equations as:

F[X] ≡
[

Ff [Xf ,ds(Xs)]

Fs [Xs, tf (Xf )]

]
(7.14)

where Xf and Xs represent the soltution vectors defined for the fluid and the
solid nodes, while Ff and Fs are the finite element equations corresponding to
Qf and Qs, respectively. A detailled description and the mathematical deriva-
tion of these formulations are well explained in [LM01; Bat96]. Obviously,
the decoupled FEM system of the fluid and the solid equations follows from
Eq.7.14 such that: Ff [Xf , 0] = 0 and Fs[Xs, 0] = 0.
Solving the coupled system may occur as a one-way or a two-way interaction
scheme. In the one way coupling, only the fluid stresses are applied on the
structure interface while no feedback is given from the structure toward the
fluid. A more accurate coupling is achieved based on the two-way scheme,
where both the fluid stresses and the structure displacements are exchanged
onto the solid and the fluid, respectively.
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7.2.6 Time Integration Consistency

It is clear at this point that the systems describing the fluid flow and the
solid domain are the same on the fluid-structure interfaces. Consequently,
the coupled FSI solution obviously requires a consistent time integration for
both system of equations. Furthermore, the fluid and the solid equilibrium is
generally satisfied at different times and schemes. Assuming the Euler-alpha
method used for the fluid equations Qf [v, v̇, p] and that the fluid equilibrium
is obtained at time t+αΔt, then the time integration for the pressure, velocity
and acceleration variables may be written as:⎧⎪⎪⎨

⎪⎪⎩
pt+αΔt= pt+Δtα+ pt (1− α)

vt+αΔt= vt+Δtα+ vt (1− α) ≡ (dt+Δt − dt)/Δt

at+αΔt= at+Δtα+ at (1− α) ≡ (vt+Δt − vt)/Δt

(7.15)

Further, assuming that the solid equilibrium for the equations Qs[d, ḋ, d̈] is

obtained at t + Δt, then the velocity vt+Δt = ḋ
t+Δt

and the acceleration

at+Δt = d̈
t+Δt

variables can be derived from Eq.7.15 in terms of the unknown
displacement dt+Δt. Substituting these equations into the coupled system
described in Eq.7.13, the consistent time integration scheme for an FSI problem
may be finally expressed as:⎧⎨

⎩
Qt+αΔt

f ≈ Gf

[
vt+αΔt, (vt+αΔt − vt)/αΔt, pt+αΔt

]
= 0

Qt+Δt
s ≈ Gs

[
dt+Δt, adt+Δt + bξt,dt+Δt + ηt

]
= 0

(7.16)

7.2.7 Coupling Approaches

The main objective of FSI coupling is to analyze the interaction between the
fluid and the structure under consideration. A solution may be obtained by
simulating the response of a coupled system of both computational models.
Many solution approaches exist to achieve such a numerical coupling [Wal99].
From the application point of view, these may be classified into three cate-
gories:

� The direct approach

� The iterative approach

� The field elimination
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(a) Direct coupling (b) Iterative coupling (c) Field elimination

Figure 7.3: Various coupling approaches for FSI problems.

The classification and main differences of these approaches are illustrated in
Fig.7.3. Thereby, X denotes the field variables, L is a differential operator
and F the right-hand side of the individual fields. Further, the fluid f and
solid s domains are represented by the red and blue fields, respectively. In
the last, field elimination approach, the solutions within an individual field
are assigned to the equations of the other field before the old one is destroyed.
The application of this approach is however restricted to simple linear analysis,
which misfits the complex demands of most FSI problems. The evaluation of
the field elimination after [PF83] states: ’it can be properly characterized as
a poor strategy that eventually leads to a computational horror show for more
general problems’ [Wal99].

In the following therefore, the direct and the iterative approaches as well as
their pros and cons are presented.

Direct Coupling

In the direct approach, the entire problem is defined and solved simultaneously.
Thereby, the equations governing the dynamics of the fluid and the mechan-
ics of the structure are combined and solved within one coupled system and
using a single solver. The simultaneous formulation includes all physical and
numerical dependencies of the field variables. The linearization of the coupled
system occurs then in the same way as for the fluid or solid equations being
treated apart. The matrix system arising from the coupled fluid and structure
equations may be thus expressed as:[

Aff Afs

Asf Ass

]⎡
⎣ ΔXk

f

ΔXk
s

⎤
⎦ =

[
Bf

Bs

]
(7.17)

and
Xk+1 = Xk +ΔXk (7.18)
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Assuming indeed that the Newton-Raphson method is used to solve the non-
linear equations, then:⎧⎪⎪⎨

⎪⎪⎩
Bf = −Fk

f ≡ −Ff

[
Xk

f , λdd
k
s + (1− λd)d

k−1
s

]
Bs = −Fk

s ≡ −Fs

[
Xk

s , λtt
k
f + (1− λt)t

k−1
f

]
Aij = ∂Fk

i /∂Xj ; (i, j) = (f, s)

(7.19)

Thereby, the fluid stress and the solid displacement have been relaxed, using a
stress relaxation factor λt and a displacement relaxation factor λd, respectively.

The unknown solution t+ΔtX at time t+Δt is considered to be derived from tX,
being the solution at time t. The two-way direct coupling approach yielding a
fully coupled solution is demonstrated by the following algorithm [Adi08]:

1. Start with the initial condition: X0 =t X

2. Iterate for k = 1, 2, · · · < kmax to obtain solution at t+Δt

3. Assemble single fluid Ff and solid Fs equations

4. Compute the coupling matrices Aij for (i, j) = (f, s)

5. Solve the linearized coupled system and update the solution

6. Compute the stress rt and/or displacement residuals rd for convergence

7. Check converged solution: Yes= jump to (8); No= back to (3) with k+1

8. Accept and/or save and/or print solutions t+ΔtX

Steps 1 to 8 are repeated for the entire temporal domain.

Iterative Coupling

In the iterative, or staggered approach, the computational fields are defined
and solved separately independent from each other. Thereby, the equations
governing the fluid dynamics and the structure mechanics are solved within
two systems that are coupled together. The so called partitioned formulation is
thus based on separate physical and numerical conditioning of the individual
fields and field variables. The interaction of the fluid and the structure is
accounted for though the transfer of constraints between the individual fields.
This is achieved by using the previous iterated coupling information. The first
contribution of iterative methods for coupled analysis originate from [PFD77].
An overview over prediction tools and substitution techniques necessary to
achieve such a communication may be found in [FPF98].
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Similar to the direct coupling, the unknown solution t+ΔtX is assumed at
time t + Δt and has to be derived from the solution tX at time t. The two-
way iterative coupling approach also leading to a fully coupled solution is
demonstrated by the following algorithm:

1. Start with the initial condition: d−1s = d0s =
t ds and t0f =

t tf

2. Iterate between fluid and solid for k = 1, 2, · · · < kmax

3. Solve the fluid equations for Xk
f using prescribed displacements ds:

Ff

[
Xk

f , λdd
k−1
s + (1− λd)d

k−2
s

]
= 0

4. Stress convergence is required? Yes= go to (5); No= go to (7)

5. Compute and check the stress residuals rt

6. Converged solution for t? Yes= go to (7); No= back to (3) with k + 1

7. Displacement convergence required? Yes= go to (8); No= jump to (10)

8. Solve the structure equations for Xk
s using prescribed tf :

Fs

[
Xk

s , λtt
k
f + (1− λt)t

k−1
f

]
= 0

9. Compute the fluid displacements dk
f using prescribed conditions:

dk
f = λdd

k
s + (1− λd)d

k−1
s

10. Compute and check the displacement residuals rd

11. Converged solution for d? Yes= go to (12); No= back to (3) with k + 1

12. Accept and/or save and/or print solutions t+Δt(Xf ,Xs)

Thereby, at least one of the convergence criteria is obviously required and must
be computed. Finally, steps 1 to 8 are repeated until the entire temporal range
of the computations is covered. Here also, relaxation factors are applied and
have particular importance in reaching convergence in the iterations.

Parallel and Serial Coupling

Practically, there exist two techniques to realize an iterative coupling for the
integration of FSI solutions. The main difference hereby is based on the way,
in parallel or in serial, the fields are coupled together.
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The iterative algorithm just described above illustrates a two-way partitioned
coupling. This kind of coupling is called strong or parallel coupling. Thereby,
the governing equations for the fluid and the solid models are solved indi-
vidually in parallel by using the latest information provided from each other.
Equilibrium iterations between the fluid and the solid continue until the solu-
tion of the coupled equations is converged [Adi08]. As a result, all coupling
conditions between the fields are fulfilled at the end of every timestep and the
whole system is in equilibrium at the new time t + Δt. Therefore, based on
this approach, an implicit coupling may be achieved through iteration between
the fields within one timestep [CL97]. Consequently, a strong staggered cou-
pling carries in it all advantages of implicit approaches, mainly that of being
unconditionally stable, having no restrictions concerning the allowed timestep
size that can be used. This may however lead to a relatively high computa-
tional cost in terms of the number of iterations required to achieve convergence
between the fields.

Alternatively, the iterative approach may be realized as a one-way partitioned
coupling. The simple one-way staggered coupling is also known as the weak
or the serial approach. In this case, the governing equations for the fluid
and the solid models are solved individually in sequence. Thereby, coupling
information from the individual solutions of one field is transferred to the
other field which is now considered at the next timestep. As a result, such a
procedure does not allow a simultaneous satisfaction of all coupling conditions
at the interface, in terms of both displacement and velocity. Further, weak
coupled integration approaches do not inherit the same numerical properties
from their individual fields. So, they are only of first order in Δt, even when
the individual fields are based on second or higher-order approaches. Further,
being based on a serial procedure, the weak approach includes an explicit
part, even when the individual fields are implicit [CL97]. Thus, in general
serial coupling is conditionally stable even when both individual fields are
unconditionally stable. The latter point represents the major constraint of
this approach when used to solve real FSI problems.

An overview on the fundamental approaches and various application fields of
parallel and serial iterative coupling may be found in [FPF98]. Furthermore,
requirements and optimization strategies are presented in [WMR99].

Direct versus Iterative

Which approach to apply for solving an FSI problem? A suitable choice of a
coupling approach depends on many factors. In search of a reasonable answer,
in the following, the direct and iterative methods are compared together.
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An iterative approach benefits with a modular design allowing to couple two
independent models together. In the direct coupling the fluid and the solid
equations are solved using a single solver. The partitioned method on the
other hand, allows a solution of the governing equations based on two different
solvers. In that way, different spacial and temporal discretization techniques
may be applied for the fluid and the structure models such that to meet the
specific requirements and characteristics of the individual fields. Also, the
flexibility in choice of independent solution techniques allows the application
of more efficient methods developed particularly for either the fluid or the
solid equations. Finally, through the partitioning into individual fields, the
differences in the stiffness coefficients of the system equations of the individual
fields do not necessarily lead to bad conditioning of the whole problem.

On the other hand, the advantages of iterative methods are not obtained for
free. While a partitioned approach allows flexible modification and optimiza-
tion of the individual techniques, iterative simulations require also the integra-
tion of a coupling algorithm. The main disadvantages face to direct methods,
concern especially stability and accuracy issues of the whole coupled system.
As mentioned above, iterative approaches behave explicitly and are therefore
unconditionally stable, even when the individual fields are both based on im-
plicit approaches and thus conditionally stable. Furthermore, since the gov-
erning equations are solved simultaneously in one matrix, direct methods are
much more robust in terms of accuracy of the results. This property get lost
or at least damped through the iterations between the two systems. While a
strong iterative approach may lead to similar accuracy level as in the direct
method, this can only be achieved at the cost of laborious work and very well
formulated algorithms. The direct method is in general faster than the itera-
tive method. On the other side, since the problem is partitioned into two parts,
the solution effort is reduced and the iterative method requires less memory
than the direct method.

In general, direct coupling is appropriate for small to medium sized problems
without contact definition. Whereas, iterative approaches are more suitable
for small to large sized problems with or without contact conditions. The
direct method has proven efficiency in application for transient analysis, while
iterative methods are better when used for steady-state analyses [Adi08].

However, a definitive statement about an exclusive choice is pointless at this
level. Obviously, the answer to the above question may be easily formulated
now: It all depends on the nature and complexity of the problem to be solved,
on the available time and computational resources and of course on the user
priority concerning stability and accuracy issues.
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7.2.8 Solution Methods

The approach for solving the governing equations consists of two kinds of
iterations: the outer and the inner iterations. For the solution of the nonlinear
system of equations, incremental iterative approaches are used similar to the
decoupled CFD and CSM problems. The segregated and the Newton-Raphson
methods, described in Chap.6 and Chap.5, respectively may be used as outer
iteration methods for solving FSI problems.

In order to obtain the linear equations in the segregated method, each variable
is integrated while considering all other variables to be fixed. This applies for
all equations except the continuity equation, for which a pressure-correction
relation is derived based on the discretized momentum equations to satisfy
velocity corrections. On the other hand, the Newton-Raphson method gen-
erally derives the linear flow and structural equations by assuming the entire
variables in the fluid and solid domains. Depending on the desired coupling
scheme to be used, either the Newton-Raphson or the segregated method may
be chosen. The Newton-Raphson method used in the vessel wall modeling can
be applied for both direct and iterative FSI coupling approaches. While the
segregated method used in the blood flow modeling, in which even the blood
equations are not coupled together, cannot be used for direct FSI coupling.

Once the linear systems are derived, a solution of the resulting linearized equa-
tions can be then obtained by applying inner iterations based on either direct
or iterative methods. When the segregated method is applied to linearize the
governing equations, the variables are derived in a certain order in the outer
iteration using the linear solver. On the other hand, if the nonlinear system is
solved using the Newton-Rapson method, then the linear solver is applied to
solve the vector X containing all solution variables. There exist various forms
of such linear solvers. The most famous direct solution may be obtained based
on the Gauss elimination method. The iterative solution is usually based on
the Gauss-Seidel algorithm. Thereby, the flow problem and structural problem
are solved successively until convergence criteria are satisfied.

Gauss-Seidel Relaxation Algorithm

Relaxation methods are used to solve partial differential equations that in-
volve splitting the sparse matrix and then iterating until a solution is found
[PFTV92]. The Gauss-Seidel algorithm combined with a scalar algebraic
multigrid (AMG) method may be used to solve the linearized scalar equations.
Thereby, the N equations of aijxj = bi are solved one by one in sequence by
using the previously computed results as soon as they become available.
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The point implicit Gauss-Seidel relaxation procedure is based on two sweeps
of the unknowns in forward and backward directions. For the scalar system,
first a forward sweep is performed such that:

x
k+1/2
i =

bi −
∑

j<i aijx
k+1/2
j −∑

j<i aijx
k
j

aii
(7.20)

where i = 1 · · ·N denotes the number of unknowns. Then, a backward sweep
follows the forward one which can be written as:

xk+1
i =

bi −
∑

j<i aijx
k+1/2
j −∑

j<i aijx
k+1
j

aii
(7.21)

Since each new iterate component depends upon all previously computed com-
ponents, the computations in the Gauss-Seidel method are performed in a serial
manner. Furthermore, as a result of the serial computations, the new iterate
xk depends upon the order in which the equations are examined and thus their
components will be changed if this ordering is changed.

Gauss Elimination Algorithm

Alternatively, the linear system of equations may be solved based on the Gaus-
sian elimination. The algorithm is the standard direct linear solution method
and consists of two steps: a Forward Elimination in which the matrix system is
reduced to an echelon form based on elementary row operations, followed by a
back substitution to solve for the unknown variables. The algorithm involves a
matrix decomposition, such as an LDU decomposition, expressing an original
matrix A as a product of lower triangular L, upper triangular U and diagonal
D invertible matrices, such that:

A = LDU (7.22)

Since the diagonal elements of L and U are all ones, all the matrices may be
stored into the original matrix. Once the decomposition matrices are com-
puted, the equation is solved such that:

X = A−1B = U−1D−1L−1B (7.23)

The arithmetic operations required to solve an n× n matrix is of the order of
O(n3) (= 2/3n3 operations) [Adi08]. For large systems, iterative methods are
therefore more efficient. Further, the algorithm has in principle large round-off
errors. These can be however resolved by applying matrix pivoting before elim-
inating any variable. This column and/or row interchanging is very efficient to
enhance the numerical stability of the computations though it obviously adds
to the total computational cost required to find a solution.



7.3. FSI Simulation Models 205

7.3 FSI Simulation Models

Simulating the interaction between the blood flow and the vessel wall provides
a significant insight into the underlying real physical behavior of the hemo-
dynamics and the elastomechanics of the vessels. Numerical modeling of the
interaction between the fluid and the structure consists of a coupled model-
ing of CFD and CSM models as described separately in Chap.6 and Chap.5,
respectively. The theoretical formulations arising from the coupling problem
have been presented in the previous sections of this chapter. Together with
the fundamental principles of fluid dynamics and solid mechanics already de-
scribed, these formulations will now be applied to simulate the blood-vessel
interaction problem. The FSI simulation process for computing the physical
interaction between the hemodynamics and the elastomechanics is based on
the steps described in Sec.3.2 applied to a coupled CFD-CSM problem. Appro-
priate image-based patient-specific mesh models for the blood volume, the wall
volume and the interface domains are thereby generated based on the specific
meshing processes established for FSI applications and described in Sec.4.5.
The FSI computations of the relevant parameters, such velocity fields, pres-
sure loads, wall stress and strain distributions are based on the finite element
approach described in Chap.5 and applied for both the blood and the wall
models. For the solution of the fundamental equations governing the blood
and the wall domains, the numerical solvers of the software Adina are adopted
to obtain FEM-based simulation results.

In the following sections, the physical models, material properties, boundary
and initial conditions and mathematical models governing the blood flow and
the arterial wall domains and used for performing the FSI simulations are
presented. Also, a stability analysis describing the influence of the applied
models on the convergence behavior of the simulations will be discussed.

Figure 7.4: Coupling blood flow and vessel wall simulations.
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7.3.1 Physical and Constitutive Modeling

Physical modeling of the interaction between the blood flow and the vessel wall
includes the description of the behavior of the flow dynamics and the vessel
mechanics through the fundamental equations, as well as the description of
the material properties of the blood and the wall through their appropriate
constitutive equations. The constitutive equations are then substituted into
the fundamental equations of the respective domain, before they finally get
coupled for the analysis of the interaction together.

Blood Modeling

The three-dimensional equations governing the dynamics of the blood flow
were derived in Chap.6 from the mass and momentum conservation laws. Here
again, the energy conservation may be neglected assuming small temperature
variations along the aorta. The system of governing equations represented by
the continuity and the Navier-Stokes equations for a laminar blood flow in the
ALE configuration is given by Eq.7.3 and Eq.7.4.
The constitutive equations needed for the description of the physical behavior
of the blood as a fluid were also described in Chap.6 based on the material
laws. These include mainly incompressible, viscous and turbulent properties
required beside the fundamentals equations. Blood incompressibility is deter-
mined in terms of the constant mass density ρ= 1050 Kgm−3. The Newtonian
viscosity is given in terms of the shear-independent constant μ, while the shear-
thinning non-Newtonian behavior of the blood is defined based on the Car-
reau model given in Eq.6.76. The associated non-Newtonian blood constants
characterizing the Carreau model were introduced in Sec.6.5.1. Further, in
flow domains where the time-averaged Reynolds number defined in Eq.6.34 is
larger than Recrit, the turbulent behavior of the blood is described based on
the Reynolds-averaged approach. Thereby, the k − ε two-level model defined
in Eq.6.73 and Eq.6.74 is used for the determination of the governing RANS
equations. The constant parameters corresponding to the k − ε model were
also introduced in Sec.6.5.1.

Wall Modeling

The time-dependent vessel equations governing the elastomechanics of the wall
domain are described in Chap.5 based on the Euler-Cauchy principle. These
were derived from the Eulerian force and momentum balance equations, rep-
resented by the dynamics equations and the symmetry of the Cauchy stress
tensor and given in Eq.5.36 and Eq.5.37, respectively.
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The wall material properties and the elastomechanical behavior of the vessel
are also described in Chap.5 in terms of the wall constitutive equations. Ar-
terial wall constitutive equations involve the description of the elasticity, the
anisotropy and the compressibility of the wall. Also here, the vascular tissue
is modeled as a non-linear hyperelastic material based on a finite strain con-
stitutive theory assuming that the wall undergoes large displacements prior
to rupture. The energy strain function W describing the nonlinear hypere-
lastic aortic wall as a homogeneous, isotropic and incompressible structure is
expressed in terms of the three invariants of the Cauchy-Green dilation ten-
sor given in Eq.5.67. Based on W , the elastomechanical constitutive behavior
of abdominal and thoracic aneurysms as well as healthy human and porcine
aortic materials is modeled using the hyperelastic models defined in Sec.5.5.1.

7.3.2 Initial and Boundary Conditions

The initial and boundary conditions for the FSI simulations consist of individ-
ual conditions involving the separated blood and wall domains, and of interface
conditions for the coupled domain.

Blood Conditions

Blood conditions involve velocity-based and pressure-based conditions to be
applied at the inlet and the outlets of the blood model. A first set of con-
ditions appropriate for use at the inlet and the outlets of the blood domain
was presented in Sec.6.5.2. In search of more accurate computations, two
additional conditions have been developed specifically for application to the
coupled FSI simulations. These are the flow-based spatial distribution and
the pressure-based outlet-specific conditions. Thus, beside the homogeneous
flow-based condition for the inlet and the pressure-based and outflow-rates
conditions for the outlets, these two conditions can be alternatively applied to
the inlet and the outlet boundaries, respectively.

� Flow-based spatial distribution:
In the homogeneous profiles, the velocity values are considered as con-
stant along the inlet at a given instant of time. Alternatively, the spa-
cial distribution of the inlet flow may be considered for more accurate
boundary conditions. The spacial distribution is derived based on the
Womersley profiles, calculated from known homogeneous pulsatile flow
measurements. Thereby, the spacial distribution of the velocity w in the
flow direction z is computed as a function of the radius r in the inlet
cross-section:
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A Matlab code has been developed to automatically derive the spatial
Womersley distribution by computing the unsteady profiles for each mesh
node at the inlet cross-section based on a Fourier analysis. The derivation
is illustrated in Fig.7.5. Assuming that ∂p/∂z = A∗eiwt, then:

w (y = r/R) =
A∗

iwρ

(
1− J0

(
αyi3/2

)
J0 (αi3/2)

)
eiwt (7.25)

Obviously, the number of time-functions associated with the boundary
conditions is related to the number of mesh nodes at the inlet face. This
number varies usually in the range of hundreds of functions. In order to
facilitate the processing, the code can optionally save the time-dependent
results at each node automatically into the Adina form so that these can
be directly applied for running the FSI simulations.

(a) Fourier harmonics (b) Homogeneous inlet velocity

(c) Inlet mesh nodes (d) Peak Womersley profile

Figure 7.5: Computation of the Womersley flow condition for 4D-CT-P2.
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� Pressure-based outlet-specific:
While the pressure-based condition assumes the pressure to be the same
at all outlets, the application of distinct profiles for the different out-
lets leads to more accurate modeling. Therefore, another Matlab code
has been developed to derive pressure-based outlet-specific conditions
based on the mass and energy conservation laws as described in [FKA03].
Thereby, the geometric properties of the aortic model must be accurately
pre-measured. In the current implementation, the pressure pi at a given
outlet i and at a given instant of time t expressed in terms of the known
velocity v0 and pressure p0 profiles at the inlet is derived such that:

pi(t) = p0(t) + α
v20(t)

2
ρ− v2i (t)

2
ρ

(
α+ f

L0,i
Di

)
+ ρg (z0 − zi) (7.26)

Where vi is the velocity profile at the outlet i, computed for instance
from an outflow-based condition, α = 1/A

∫
(u/v)3dA denotes the kinetic

correction factor, with u and v being the instantaneous and the spatially-
averaged velocity at a cross section, f = 8τw/ρv

2 is a flow-induced WSS
dependent friction factor, Di is the diameter of the outlet and L0,i =
L0 + Li is the centreline length from the inlet to the outlet i. The code
automatically generates the pressure profiles at all outlets by solving pi
for each time t based on a user-defined timestep size Δt and a consistent
period T for all given velocity and pressure profiles (Fig.7.6).

(a) Inlet velocity (b) Inlet pressure

(c) Outlet velocities (d) Outlet-specific pressures

Figure 7.6: Computation of the outlet-specific pressures for 4D-CT-P3.
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Wall Conditions

As for the wall boundary conditions, they consist of the Dirichlet condition
applied at the boundaries of the solid model. The physical condition is similar
to the case of the vessel wall modeling described in Chap.5. Thereby, the aorta
is virtually fixed by the surrounding organs by imposing zero translation at its
ends. However, since the wall domain for FSI simulations consists of a volume
mesh, the definition of the displacement condition in this case of FSI has to be
adapted to the application and the software used. Therefore, the constraint
condition for all degrees of freedom is defined at the inlet and the outlet faces,
determined specifically while generating the FE-Mesh model for application to
coupled FSI simulations, as described in Sec.4.7.

Interface FSI Conditions

The particular point characterizing FSI simulations is that no prescribed loads,
at least not directly, are defined at the wall of the solid model. Instead, the
interaction between the blood flow and the vessel wall is computed at each
timestep. Therefore, the Neumann condition applied at the wall in the case
of CSM, is replaced here by the special FSI boundary condition applied at
the interfaces. In contrast to usual boundary conditions, the special boundary
conditions contain unknown variables determining the interaction. These are
discretized, assembled and solved into the global system of equations [Adi08].
The definition of the special FSI condition has again to be adapted to the
form and the element type of the interfaces being related to the software used.
While direct nodes are used for the blood interface, the special FSI condition
is applied to the nodes as part of the element faces for the wall interface.

7.3.3 Mathematical and Numerical Modeling

The coupled equations governing the blood flow and the vessel wall domains in-
volve a nonlinear system of partial differential equations. The computational
domains are thereby discretized based on the FEM into three dimensional
8-nodes hexahedric elements for the wall domain and 4-nodes tetrahedric ele-
ments for the blood domain. Further, the interface consists of two-dimensional
4-nodes quadratic elements, while at the wall-blood transition the blood in-
cludes indeed a layer of 3D 5-nodes prisms elements. The associated interpo-
lating shape functions for the discrete node variables within the finite elements
are defined based on the polynomial functions described in Sec.5.4.2.
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The finite element conservation equations are obtained by integrating the gov-
erning equations in their weak form over the individual cells using the Galerkin
method. The variational forms of the equations are obtained, depending on the
models, in a similar way as derived in Chap.5 for the solid equations. Dynamic
equilibrium is solved by interpolating the field variables of the differential equa-
tions at the centre of the elements. The Arbitrary Lagrangian-Eulerian formu-
lation is adopted to derive and approximate the nonlinear discretized equations
to their incremental forms. All time-dependent differential equations are dis-
cretized using implicit formulations based on the Newmark, the Euler and the
Composite (see Sec.7.3.4) methods.
The Newton-Raphson approach is adopted to solve the resulting time-dependent
system of nonlinear partial differential equations. In this formulation, the en-
tire field variables are assumed together. This approach is used rather than
the segregated method, since it enables dealing with both direct and iterative
FSI coupling. Nodal equilibrium of the resulting linearized system of governing
equations is solved using either a direct iteration approach based on the Gauss
Elimination Algorithm or an iterative approach based on the Gauss-Seidel
algorithm. In Adina, the direct and the iterative linear solution methods are
applied using the sparse and the AMG solvers, respectively. These are adopted
depending on the coupling scheme to be used to solve the FSI problem. Fi-
nally, the direct coupling algorithm described in Sec.7.2.7 is primarily used to
obtain the fluid and structure response by computing the interaction between
both domains.

7.3.4 Numerical Stability - Discussion

Numerical stability of the coupled simulations includes the individual stability
of the blood flow and vessel wall models as well as stability related to the
coupling scheme. Stability issues of the individual simulation models were dis-
cussed in Chap.5 and Chap.6 and also apply for the coupled models.
Enhanced stability is first obtained by avoiding discrepancies between the two
interfaces. This was achieved by using conformal meshes generated based on
the optimized mesh processes described in Chap.4.
Implicit time integration is used for more accurate solutions and to over-
come the limitation of explicit methods being conditionally stable and to
achieve more accurate solutions. When the implicit Euler method presented in
Sec.6.4.5 is used, a necessary condition to obtain stable consistent time inte-
gration as described in Eq.7.16 is to have α ≥ 1/2 [Adi08]. While the trapezoil
rule with scheme of α = 1/2 is second-order accurate, it is usually unstable
when nonlinear equations or non-uniform element size is used. On the other
hand, excluding this value, the Euler method is first-order accurate in time.
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The Euler backward method with α = 1 leads to stable conditions for most
real applications, though it is only first-order accurate. For more accurate FSI
simulations, a second-order scheme based on two consecutive sub-timesteps is
used. Thereby, in the first step the variables are solved at time t+ γΔt based
on the α-Euler method, then solutions at time t+Δt are obtained [BZJ99]:

ut+γΔt = ut + γΔtf
(
ut+1/2γΔt

)
and (7.27)

ut+Δt = ut+βγΔt + (1− α)Δtf
(
ut+Δt

)
with (7.28)

ut+βγΔt = (1− β)ut + βut+γΔt,

γ = 2− 1/α, β = α2/ (2α− 1) , 1/2 < α < 1

Truncation errors introduced by the second-order time discretization scheme
(O(t)2) are minimized by using α = 1/

√
2. The composite method needs ob-

viously twice the computational cost per timestep. However, it may provides
faster solutions if less number of timesteps overall can be used.
The automatic time stepping method provided in Adina controls the timesteps
to enhance convergence in case solutions cannot be reached with the current
timestep size. This is particularly important in dynamic computations, where
matrix conditioning may be improved by using smaller timesteps and where
the application of smaller load increments may be more efficient. Furthermore,
the automatic time-stepping allows controlling the accuracy of the dynamic so-
lution. The accuracy criterion based on which accuracy checking is performed
after each iteration is defined by:

max
∣∣∣U t+Δt/2

im − U
t+Δt/2
ih

∣∣∣ ≤ εd

where i denotes the translational degrees of freedom, U
t+Δt/2
ih the displacement

at time t + Δt/2. On the other hand, since the timesteps are successively
subdivided until convergence is reached, the initial and the final sizes must be
properly controlled otherwise the process can become very expensive if these
are far different. Finally, a proper dealing with the way the next timestep
following the convergence is further processed (such as to return to the original
timestep size, to use the time increment that gave convergence, or to proceed
through user-defined time points) is very important.

A weak interaction between the fluid and the solid assumes that the influence
of the solid deformation on the fluid is small and thus can be neglected. As
a result, a one-way coupling scheme in which only the fluid stress is applied
on the structure interface, does not enforce the desired equilibrium within a
timestep. Therefore, two-way coupling was applied, in which both the fluid
and the structure are influenced by the structure displacement and by the
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fluid stress, respectively, and yields to more accurate interaction. Thereby,
both displacement and stress convergence criteria has to be satisfied for accu-
rate simulations of the interaction. The direct and the iterative FSI coupling
schemes in two-ways coupling were presented and compared in Sec.7.2.7. In
general, while the direct coupling requires more memory, it is much faster and
accurate than the iterative coupling. Thus, when enough memory is available
the direct FSI coupling is the scheme of choice.

In general, the memory and solution time needed by the segregated method
behave linearly with the mesh size and are less than those needed by the
Newton-Raphson method. Nevertheless, since the variables in the segregated
solution are not solved simultaneously in one matrix system, it is relatively
hard to achieve convergence on each iteration. Under-relaxation algorithms are
therefore required and the outer and inner solution processes must be properly
controlled. These factors were described in Chap.6 and usually depend on the
mesh quality of the computational domain, on the difficulty of the problem and
on the solution variables being solved. Furthermore, the use of the Newton-
Raphson rather than the segregated method to solve the nonlinear equations
also adds to the flexibility in applying coupling FSI schemes. Obviously, when
the segregated method is used, in which even the fluid variables are not coupled
together, direct FSI cannot be applied. Further, the implicit solution in which
the equilibrium equations are considered at an unkwon time configuration
is improved by the use of the Newton-Method. Also, when necessary, line
searches as implemented in Adina may be used to enforce convergence though
they add to the overall cost per iteration [Adi08]. The pros and cons of the
full and modified Newton-Raphson iteration schemes discussed in Chap.5 also
apply here for the coupled dynamic response.

The stability of an iterative solver requires a proper control of the convergence
of the inner iterations. Thereby, the variable and equation residuals riv and r

i
e

in the inner iteration i are related to variable and equation scales, vo and eo,
determined in the outer iteration convergence. The convergence criteria of the
inner iteration is then defined such to sastisfy the condition rij ≤ pσjεj. The
right side of the condition denotes a percentage p of the critical residual in
outer iteration convergence represented in terms of the variable and equation
reduction numbers σj and outer tolerances εj, with j = v, e [Adi08]. The direct
solver is more efficient, accurate and stable, though it requires more memory
storage than iterative solvers [ZZJ+03]. By using the sparse direct solver, this
memory can be efficiently reduced. The sparse solver performs a reordering of
the finite element equations while preserving the parsity of the original system
matrix. Then, it minimizes the number of fill-ins by performing a symbolic
factorization and thus reduces the required time and storage.
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7.4 System Integration in FSI-Sim

The coupled blood-wall simulation models are integrated in MoDiSim into
the component FSI-Sim. FSI-Sim consists of blood and wall functions for
generating and performing the simulations. It allows automatic, optimized and
individual computations and visualization of blood-wall interaction simulations
in patient-specific aortic models at any time. The user-interaction with FSI-
Sim is realized through the main interface illustrated in Fig.7.7.

Figure 7.7: User-Interface of the FSI simulation component FSI-Sim.
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7.4.1 Automation

The automation of the coupled simulations is achieved by integrating the FSI
modeling steps for the individual fields into FSI-Sim. These steps are pro-
cessed by MoDiSim and executed within Adina automatically based on a min-
imal user interaction through the FSI-Sim user-interface. The most important
implemented actions in the FSI-Sim component are sketched in Fig.7.8. These
are described below:

� Generate Simulation Files:
The CreateSimulationInputFiles method creates first a directory for the
entire simulation and in there various subdirectories for each of the re-
quired subsimulations (for the static ramp-simulation and for each split-
part of the transient simulation). In each of these subdirectories one copy
of the BloodMesh input file and one copy of the WallMesh input file are
created. During the processing, the simulation settings are written to
these copies.

� Define Main Settings:
The WriteMasterSection method generates the corresponding master
sections for each of the subsimulations. The master section contains
the main simulation settings such as the solvers to be used or the type of
the simulation. The definition of the master sections in Adina is different
for blood flow and vessel wall simulations and has therefore to be created
for each input model apart. For transient (blood) and dynamic (wall)
simulations, the TStart property for restart options is also adjusted here.
Finally, settings defining the type and format of the results output files
are determined by the WritePortholeSection method.

� Define Timestpes and Timefunctions:
WriteTimestep writes the timesteps for each subsimulation using default
values or user-defined inputs given through the FSI-Sim interface. There
exist therefore three possible basic constellations: 1) a single static simu-
lation in which the number of timesteps and the timestep size for velocity
and pressure are given by the user, 2) a ramp simulation prior a dynamic
simulation where the number of timesteps and their size for the ramp to
the initial values in the profiles are determined by default values, 3)
a dynamic simulation in which the number of timesteps and their size
is based on user-defined values. WriteTimeFunctions defines in the dy-
namic case the input time-dependent profiles of the velocity and pressure
as single time functions. In the static case, one linear time function for
velocity and one for pressure are created. The characteristic points of
these functions depend thereby on the defined timestep settings.
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Figure 7.8: Activity diagram of the FSI simulation component FSI-Sim.
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� Define Boundary Conditions:
WriteFixitySettings writes the constraint boundary condition for the wall
simulation. This is defined by fixing the x-, y- and z-coordinates at the
inlet and the outlets of the wall domain. WriteLoads defines the load
boundary conditions in terms of velocity-load for the inlet and pressure-
load for the outlets of the blood domain. Thereby, velocity is applied
on the nodes in positive z-direction, while pressure is applied as normal
traction on the outlets. WriteInitialCondition defines the settings of the
initial condition for the computations. For all simulations the z-velocity
is set to zero within the whole computational domain.

� Define Material Settings:
WriteMaterial defines the compressibility and elastic material properties
of the vessel wall domain as well as the compressibility and viscous prop-
erties of the blood material. Thereby, all associated parameters are also
determined here.

� Define Solution Approaches:
WriteIterationSettings defines the iteration solution method in the sim-
ulations. For both the blood and the wall domains, Newton-based meth-
ods are used and applied with the necessary parameters. WriteAnaly-
sisSettings writes the time-integration approaches for the dynamic sim-
ulations. These consist of either the Euler or the Composite method
for the blood flow and of the Newmark method for the vessel wall com-
putations. WriteKinematicsSettings defines the settings governing the
wall kinematics such as large displacement and small strain theories.
WriteToleranceSettings determines the convergence behavior of the sim-
ulations by setting tolerance limits parameters. These are different for
static and dynamic simulations and for blood and wall simulations.

� Define Final Settings:
WriteSaveAndPrintSettings writes the settings defining the saving fre-
quency of the results in terms of timestep numbers. Therefore the total
timesteps of the particular subsimulation has to be precomputed. Write-
SolvingSection applies the settings to create the executable files for the
simulations. Therefore the filenames with corresponding subdirectory for
a particular subsimulation are needed.

� Start FSI Simulation:
For an FSI simulation two executable files are needed, describing the
wall and the blood models individually. These files are either created
automatically at the end of CreateSimulationInputFiles or explicitly by
the user in the MoDiSim-UI, in case further processing of the simulation
data is still desired.
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7.4.2 Optimization

Next, optimization of the automated computations is conducted by extend-
ing the integrated models. Consequently, various FSI modeling options are
made accessible and depending on the application, the optimal related models
are automatically chosen by MoDiSim. The optimization consists of improved
models for both the blood and the wall modeling, as described in the individ-
ual corresponding chapters. Therefore, only the most important optimization
aspects are listed below. These can be directly selected and defined within
FSI-Sim.

� Steady-state and dynamic coupled computations of the interaction be-
tween the hemodynamics and the wall mechanics are possible.

� Constitutive materials including linear elastic and nonlinear hyperelastic
models are integrated for the wall elasticity.

� Further, various polynomial-based models with specific material param-
eters are implemented for hyperelastic modeling.

� Constitutive behavior of blood viscosity is included by integrating both
the Newtonian and the Carreau-based non-Newtonian viscosity models.

� Laminar and k − ε-based turbulent modeling are available to simulate
the dynamics of the flow.

� Several options for defining the boundary conditions are included, allow-
ing pressure-based, flow-based and DOF constraints conditions. Thereby,
the application regions have been appropriately defined in the Mesh-Pro
component. Also, the interface finite mesh and the moving condition are
defined as compatible for both the fluid and the solid models.

� The convergence behavior may be quasi-controlled by adopting various
cycle splits and time-stepping options.

� Implicit time integration may be employed based on both the Euler and
the Composite discretization schemes.

� Further, the direct sparse and the multigrid iterative linear solvers may
be adopted for the fluid and the solid iterations.

� The simulations result can be visualized, providing a realistic insight into
the coupled hemodynamics and elastomechanics parameters. Herefore,
FSI-Sim includes automatic quantification of various Wall Stresses, de-
formation, pressure profiles as well as velocity based-pathlines as image
sequences for the simulated model.
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7.4.3 Individualization

Individual FSI modeling, independent on the vessel region, shape or origin of
the aorta is also presented for the Adina-based simulations in FSI-Sim. As a
result, thoracic and abdominal, healthy and aneurysmal, human and porcine
aortas may be processed. Patient- and region-independent FSI modeling are
achieved through the integration of various flow and material constitutive mod-
els with appropriate parameters required for performing individual simulations,
as described in Chap.5 and Chap.6. Besides the individual geometry, the def-
inition of individual boundary conditions is of great importance for coupled
simulations. Therefore, also here, the inlet, outlet and interface conditions may
be defined based on physiological pressure and flow data obtained from direct
subject-specific measurements. Three individual aortic models have been pro-
cessed and simulated using FSI-Sim. These are shown in Fig.7.9 and originate
from the patient-specific MR-based abdominal aorta (Fig.3.9) and the two 4D-
CT-based porcine abdominal aortas (Fig.3.11 and Fig.3.12). Examples of the
numerical results are presented in the next section.

(a) MR-AAA: 3D wall pressure

(b) 4D-CT-P2: Velocity vectors within a vertical plane

(c) 4D-CT-P3: Pressure contours within a vertical plane

Figure 7.9: FSI simulations with three individual aortic models.
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7.5 FSI Simulation Results

Coupled simulation results between the blood flow and the vessel wall were
carried out to analyze the physical interaction between the hemodynamics
within the blood domain and the elastomechanics along the wall at any time.
Some numerical examples of the simulation results of three models are pre-
sented below. Compromising between accuracy and computational cost, the
simulations were performed using timestep sizes in the order of ts= 0.8 ms to
model a cardiac cycle of period T= 0.8 s with the direct coupling scheme.

7.5.1 Coupled vs. Decoupled Results using MR-AAA

In order to evaluate the efficiency of FSI simulations in terms of accuracy,
coupled and decoupled simulations were performed and compared. The decou-
pled computation consists of a CFD simulation followed by a CSM simulation.
Thereby, the wall pressure distribution obtained from the CFD is used as wall
boundary condition in the CSM. All results are evaluated at the peak systolic
time t= 0.28 s. Fig.7.10 shows the velocity magnitudes along a vertical plane
for the decoupled CFD (a) and coupled FSI (b) simulations. Fig.7.11 and
Fig.7.12 illustrate the 3D wall displacements and stress distributions resulting
from the decoupled CSM (a) and coupled FSI (b) simulations.

The velocity contours show similar course in both simulations with slightly
higher values found in the decoupled model. More significant is the influence
of the coupled approach on the total displacements with maximum values of
5.8 mm for the CSM and 4.5 mm for the FSI computations (including trans-
latory motion). The most significant effect is demonstrated through the wall
stress distributions. The decoupled CSM simulation resulted in much higher
stresses than the FSI with CSM and FSI peak values equal 1.1 Nmm−2 and
0.5 Nmm−2, respectively. These results are in contradiction with previous
investigations stating that CSM underestimates the stresses. In fact, our ex-
ample shows that the primary factor affecting the results is the amplitude of
the pressure profile obtained from CFD and applied as boundary condition
for CSM. CSM computations utilize a homogeneous profile based on predic-
tions stating that the fluid pressure drop across the aorta is small at 0.1 KPa
[WRS+05]. However, the CFD pressure gradients obtained here were higher,
which makes a homogeneous assumption inaccurate. Also, the CFD pressure
values were much higher than those obtained from the FSI and resulted there-
fore in higher displacements and wall stress distributions. Consequently, since
stresses are the primary indicator for failure of the vessel wall, computations
with non-uniform pressure should be adopted for reliable evaluation.
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(a) Decoupled (CFD) simulation (b) Coupled (FSI) simulation

Figure 7.10: Velocity magnitudes along a vertical plane from CFD and FSI.

(a) Decoupled (CSM) simulation (b) Coupled (FSI) simulation

Figure 7.11: 3D displacements of the vessel wall from CSM and FSI.

(a) Decoupled (CSM) simulation (b) Coupled (FSI) simulation

Figure 7.12: 3D stress distributions along the vessel wall from CSM and FSI.
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7.5.2 FSI from in-vivo Experiment using 4D-CT-P2

The 4D-CT-P2 abdominal model, obtained from a dynamic CT-scan and from
in-vivo measurements performed on a porcine aorta was simulated to quantify
and validate the elastomechanics and the hemodynamics over several cardiac
cycles. Measured velocity and pressure profiles above the celiac artery were
used for the inlet and outlets boundary conditions, respectively. Fig.7.13,
Fig.7.14 and Fig.7.15 show the cross-sectional wall stress and strain distribu-
tions, the 3D wall pressure contours and recirculation zones around the celiac
artery, respectively.

(a) Cross-sectional wall stress (t= 0.24 s)

(b) Cross-sectional wall strain (t= 0.24 s)

Figure 7.13: Peak stress and strain distributions across the wall.

The quantification of the wall deformation and of the blood pressure and flow
profiles used for the validation of the FSI simulations will be presented in
details in Chap.8.
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(a) t= 0.12 s (b) t= 0.28 s (c) t= 0.60 s

Figure 7.14: 3D wall pressure contours.

(a) Vortices inside the celiac (b) Particle trace from the celiac

(c) Velocity vectors (t= 0.16 s) (d) Velocity vectors (t= 0.20 s)

Figure 7.15: Turbulence and recirculation zones around the celiac artery.
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7.5.3 FSI from in-vivo Experiment using 4D-CT-P3

The 4D-CT-P3 porcine model is obtained in a similar way as the 4D-CT-P2
model and is also used for the validation of the FSI simulations. The inlet
and outlets boundary conditions are also defined from velocity and pressure
measurements, respectively, obtained above the celiac artery. A detailed eval-
uation of the results based on the quantification of the wall deformation and
the pressure and flow profiles is presented in Chap.8. Fig.7.16, Fig.7.17 and
Fig.7.18 show the 3D wall stress distribution, the pathlines injected from the
inlet and the velocity vectors at the aortic bifurcation, respectively.

(a) Systolic wall stress distribution at t= 0.28 s

(b) Diastolic wall stress distribution at t= 0.68 s

Figure 7.16: Effective 3D stress distribution along the wall.
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(a) after 0.20 s (b) after 0.44 s (c) after 0.80 s

Figure 7.17: 3D pathlines injected from the inlet.

(a) t= 0.20 s (b) t= 0.32 s

Figure 7.18: Velocity vectors at the aortic bifurcation.
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7.6 Summary

In summary, this chapter describes computational modeling and implementa-
tion of the blood-wall interaction within patient-specific aortic vessels. The
mutual physical interaction between the blood flow and the vessel wall along
the cardiac cycle is the primary reasons why FSI simulations are necessary for
real modeling. This is why this part was indeed included in this work besides
the separate blood flow and vessel wall modelings. First, the main aspects
and requirements concerning the field of Fluid-Structure Interaction were pre-
sented. These include general modeling definitions, coupling approaches and
solution techniques. The explanation of these aspects is based on the knowl-
edge of the physical fundamentals governing the blood flow and the vessel
wall as well as the mathematical fundamentals necessary for the derivation of
FEM-based solutions. Then, the models applied to perform the FSI simula-
tions using the developed workflow for patient-specific modeling are presented.
Next, the integration of the blood-wall interaction simulation steps into the
FSI-Sim component of the MoDiSim system was described. Thereby, the au-
tomation of the simulations, the optimization of the models as well as the
individualization of the computations were presented. Finally, some examples
from the FSI simulation results obtained from three individual image-based
models are shown at the end of this chapter.



Chapter 8

Experimental Validation

8.1 Introduction

An experimental validation is necessary for the evaluation and the clinical
implementation of computational systems [KHK+07]. Based on predictions
originating from validated models, individual biomechanical analysis can be
conducted providing a reliable tool to understand the underlying biomechanics
of vascular pathologies. In the present chapter, we implement in-vivo morpho-
logical and physiological data acquired from experiments performed on porcine
abdominal aortas to:

1. Generate computational models from in-vivo data to simulate the biome-
chanics of the vessels.

2. Validate the simulations by quantifying and comparing the results with
the experimental data.

3. Evaluate the efficiency of fully coupled simulations compared to decou-
pled simulations.

All experiments have been performed at the University Hospital of Heidelberg,
Department of Diagnostic Radiology within the medical thesis of cand. med.
M. Kostrzewa under the supervision of Prof G.M. Richter. The generation of
the computational models has been conducted during a research internship at
the Carnegie Mellon University (CMU) in Pittsburgh, PA, under the supervi-
sion of Prof E.A. Finol at the Biomedical Engineering Department, Vascular
Biomechanics and Biofluids Laboratory. While the processing and the evalu-
ation of the simulations have been conducted at the University of Karlsruhe,
Institute of Anthropomatics, chair Prof R. Dillmann.
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8.2 Experimental Setting and Data

For the validation of the simulations, an experimental methodology has been
developed and implemented in [Kos09]. In-vivo experiments were conducted
on the 25 kg minipigs 4D-CT-P1 (Fig.3.10), 4D-CT-P2 (Fig.3.11) and 4D-CT-
P3 (Fig.3.12), with the objective of acquiring morphological and physiological
data required for executing and evaluating the simulations. The data consist of
4D high-resolution, ECG-triggered, dual source CT images, in-vivo measured
catheter-based pressure and ultrasound-based velocity profiles. The setting of
the experimental environment in the angiography room is shown in Fig.8.1.

Figure 8.1: Experimental setup in the angiography room.

Furthermore, models 4D-CT-P2 and 4D-CT-P3 have been subject to an in-
frarenal stent implantation with different designs, thus all measurements are
available pre- and post-stent implantation. In this work, only pre-stent data
are adapted for the validation of the simulations. Details on all experiments
and protocols performed are described in [Kos09]. The experiments workflow
is illustrated in Fig.8.2.
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(a) Dynamic CT (b) Artery preparation

(c) Gate placement (d) Angiographic control

(e) In-vivo pressure measurements (f) Ultrasound flow measurements

Figure 8.2: Experimental validation: Workflow.
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8.2.1 Dynamic 4D-CT with Contrast Medium

The dynamic (4D) CT image datasets provide the 4D geometry of the aor-
tic models. The 4D-CT images were acquired using the dual source CT
by Siemens, Somatom Definition (Fig.8.2.a), allowing the reconstruction of
highly accurate 3D vessel models at various times. The CT images were ECG-
triggered and reconstructed with a slice thickness of 0.9 mm for 4D-CT-P1
and 4D-CT-P2 and of 1 mm for 4D-CT-P3. The 2D image size, pixel size
and resolution of the individual three models have been described in Tab.3.1.
Further, the images were acquired at 5% intervals yielding 21 phases in the
cardiac cycle with periods equal T= 0.8 s. While only one -the diastolic- phase
is needed to reconstruct the geometry, the other 20 phases are used to com-
pute the change in the geometry over time. These changes can be compared
to the strain fields obtained from the numerical simulations and hence used for
the validation of the vessel wall computations. Fig.8.3 shows one transversal
cross-section taken at various times with the aorta marked in pink.

Figure 8.3: Dynamic CT images. Figure 8.4: Bolus track [Kos09].

The dynamic CT was performed under respiratory arrest in order to avoid
artifacts due to breathing motion. Further, for a better detection of the aorta,
50 ml contrast medium (Imeron 400, Byk Gulden, ultravist 370, shering) fol-
lowed by 50 ml NaCl-Bolus was injected and monitored. Through repeated
1-slice-scan at the level of the H. aortae, the contrast enhancement could be
observed over time. At a contrasting higher than 100 HU, the triggering of the
CT data was automatically started, as illustrated in Fig.8.4 [Kos09].
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8.2.2 Catheter-based in-vivo Pressure Measurements

Under the guidance of a Polystar Top angiography system (Fig.8.2.d), a pres-
sure probe was introduced into the abdominal aorta through a gate (Fig.8.2.c)
placed in the femoral artery after its preparation (Fig.8.2.b). Pressure pro-
files including several cycles were then generated by invasive measurements
(Fig.8.2.e) 2 cm proximal to the celiac trunk (TC) for all three models and
1 cm proximal to the aortic bifurcation (AB) for 4D-CT-P2 and 4D-CT-P3.
Positions TC and AB are shown in Fig.8.8. The measured pressure profiles are
used as parameters for the boundary conditions as well as for the validation
of the FSI simulations previously described in Sec.7.5.2 and Sec.7.5.3.

Figure 8.5: Digitization process of the pressure measurements [Kos09].

Since there was no digital output and in order to obtain the measured profiles
in a digital X-Y form, the obtained pressure curves were first printed from the
monitor to thermo-sensitiv paper and the images were scanned (A). Using the
software DigitizeIt, the curves were digitized by giving the X- and Y- scale
values (B) and plotted (C). The so resulting pressure curves include about
920 data points and about 5 cardiac cycles from which an average profile was
generated for each measurement (D) [Kos09].
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8.2.3 Ultrasound-based Flow Measurements

Following the invasive pressure measurements, ultrasound-based measurements
were performed using a General Electric Logiq 9 device to additionally obtain
individual flow information (Fig.8.2.f). The measurements were acquired at the
same TC and AB positions shown in Fig.8.8, where the pressure measurements
were acquired, that is, 2 cm proximal to the celiac trunk and 1 cm proximal
to the aortic bifurcation. The measured flow profiles are used as additional
parameters for the boundary conditions as well as for the validation of the FSI
simulations previously described in Sec.7.5.2 and Sec.7.5.3.

Figure 8.6: Digitization process of the flow measurements [Kos09].

Also here, the digitization of the flow data presented a problem, since the
ultrasound device did not allow a data point export. Fig.8.6 illustrates the
flow digitization process as adopted by [Kos09]. Thereby, the data were first
exported as images (A). Contrast enhancement was then applied by adopting
various image processing filters using Adobe Photoshop (B) based on which the
profiles could be digitized in DigitizeIt (C). The resulting flow curves consist
of about 460 data points and about 5 cardiac cycles from which an average
profile was generated for each measurement (D).
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8.3 Simulations and Evaluation Approach

Based on the experiments, individual biomechanical simulations have been
performed on the three models and the computations were evaluated for com-
parison with the acquired experimental data. FSI simulations are computa-
tionally much more expensive compared to decoupled simulations. In order to
evaluate the efficiency of these approaches in terms of accuracy, two kinds of
simulations were performed:

� CSM as a decoupled approach on 4D-CT-P1 as described in Chap.5.

� Fully coupled FSI simulations on 4D-CT-P2 and 4D-CT-P3 as described
in Chap.7.

The segmented 3D geometrical models of 4D-CT-P1, 4D-CT-P2 and 4D-CT-
P3 are illustrated in Fig.3.10, Fig.3.11 and Fig.3.11, respectively and the cor-
responding simulation results were presented in Sec.5.7 and Sec.7.5. In the
following, the results of 4D-CT-P1 are used to evaluate the wall deformation
obtained from CSM simulations, while the results of 4D-CT-P2 and 4D-CT-P3
are used for the evaluation of FSI simulations in terms of wall deformation as
well as pressure and flow computations.

8.3.1 Wall Deformation Simulations

For the evaluation of the wall deformation, the following approach is adopted:

Identification of the cross-sections:

For the validation of the wall deformation in 4D-CT-P1, 5 cross-sections were
chosen including 2 suprarenal (Z1= 33.4 mm and Z2= 51.4 mm) and 3 in-
frarenal (Z3= 100.0 mm, Z4= 113.5 mm and Z5= 127.9 mm) datasets as
shown in Fig.8.7. Thereby, the reference origin with zero coordinates was
defined at the centre of the inlet cross-section. On the other hand, since 4D-
CT-P2 and 4D-CT-P3 were subject to a stent implantation, the location of
the cross-sections was chosen related to the position of the implanted stent as
shown in Fig.8.8.a on the example of 4D-CT-P2. These include:

� the suprarenal SR cross-section located at mid-distance between the T.
coeliacus and the Aa. renales,

� the infrarenal IR cross-section located directly above the stent,

� the mid-stent MS cross-section located at mid-distance of the stent, and

� the cross-section AB located 1 cm proximal to the aortic bifurcation
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Isolation of the cross-sections:

The isolation of the above listed cross-sections from the complete dynamic CT
dataset was performed based on the identification of the slice position in a
transversal view. For 4D-CT-P2 and 4D-CT-P3, the slice positions were first
identified in the post-stent datasets and the same locations were assigned to
the pre-stent images as shown in Fig.8.8.b. Finally, the corresponding slice
position as saved in the Dicom header of the CT images was used to extract
the same cross-sections in the computational models as illustrated in Fig.8.8.c.
Thereby, the clipped geometrical part at the inlet and outlet boundaries of the
aorta obtained from processing the geometrical models as described in Sec.3.2
had to be taken into account. Therefore, the clipped geometry size was sub-
stracted from the original geometry while calculating the exact cross-sectional
positions in the simulated models.

Evaluation Times:

The dynamic CT measurements were performed over the whole cardiac cycle
(100%) in 5% steps. As a result, each cross-sectional set was composed of 21
images allowing the evaluation at 21 different times. With a period T= 0.80 s
for all three models, the evaluation times corresponding to 0.04 s timesteps
were t= 0.00 s, 0.04 s, . . . , 0.76 s, 0.80 s.

Figure 8.7: Cross-sections used to evaluate the wall deformation in model
4D-CT-P1 based on CSM simulations.
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(a) Dynamic CT post-stent [Kos09]

(b) Dynamic CT pre-stent [Kos09]

(c) Corresponding cross-sections in the computational model

Figure 8.8: Cross-sections used to evaluate the wall deformation (SR, IR,
MS, AB) and the pressure and flow computations (TC, AB) for
models 4D-CT-P2 and 4D-CT-P3 based on FSI simulations.
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Quantification of the Deformation:

At the selected cross-section locations represented by Z1, Z2, Z3, Z4 and Z5
for 4D-CT-P1 and by SR, IR, MS and AB for 4D-CT-P2 and 4D-CT-P3, the
deformation of the aorta was evaluated. Each cross-section is composed of 21
images representing the dynamic motion of the vessel at this cross-section for
the cardiac cycle. Thus, a total of 105 simulation images were examined for 4D-
CT-P1 and 84 for each 4D-CT-P2 and 4D-CT-P3. The dynamic displacement
in each slice was quantified in terms of the hydraulic diameter (Dh). The
hydraulic diameter is commonly used in the field of hydrodynamics to deal
with fluids flowing in noncircular domains. It is calculated based on area (A)
and perimeter (P) measurements for each phase such that:

Dh = 4
A
P

The quantification of the wall deformation in each cross-section and for each
image is illustrated in Fig.8.9 on the example of 4D-CT-P3. The areas and
perimeters are measured by delineating the wall boundary for each cross-
sectional image using the Digimizer image analysis software as shown in Fig.8.9.b.
Prior the measurements, a calibration of the simulation images into Digimizer
is performed (Fig.8.9.a). Finally, the hydraulic diameter profile (Fig.8.9.d)
for each cross-section is derived from the resulting area and perimeter profiles
(Fig.8.9.c) after performing the measurements on all the 21 images.

(a) Image calibration (b) Cross-sectional measurements

(c) Area and perimeter profiles (d) Hydraulic diameter profile

Figure 8.9: Quantification of the wall deformation in each cross-section.
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Similar evaluation for the same cross-sections and the same images have been
performed in [Kos09] for the CT data. The CT and the simulations were then
compared by analyzing the sequences at 5% increments. Fig.8.10 shows an
example of the measurements performed on the dynamic CT data and on the
CSM simulations results for the same cross-section (Z3) and the same image
at t= 0.41 s for model 4D-CT-P1.

(a) Simulations (b) CT

Figure 8.10: Wall deformation in 4D-CT-P1 at Z3= 100.0 mm and t= 0.41 s
for both the dynamic CT and the CSM simulations.

8.3.2 Blood Pressure Simulations

Further, an additional TC cross-section located 2 cm above the celiac trunk
was identified and isolated as shown on the left-hand side of Fig.8.8.c. Cross-
sections TC and AB are then used for the evaluation of the pressure and the
flow results of the FSI simulations, being the positions at which the experi-
mental measurements were performed.

Fig.8.11 and Fig.8.12 show the contours of the pressure results obtained from
the FSI simulations at cross-sections TC and AB for 4D-CT-P2 and 4D-CT-P3,
respectively. Pressure profiles over time of the area-weighted cross-sectional
values are then derived for comparison with the catheter-based in-vivo mea-
sured profiles as presented in Sec.8.4.

8.3.3 Blood Flow Simulations

In a similar way, the flow simulations were evaluated. The velocity distribu-
tions at the TC and AB cross-sections obtained from the FSI simulations for
models 4D-CT-P2 and 4D-CT-P3 are shown in Fig.8.13 and Fig.8.14, respec-
tively. The corresponding average profiles over time are similarly extracted
for comparison with the ultrasound-based flow measurements and will be pre-
sented in Sec.8.4.



238 Chapter 8. Experimental Validation

(a) t= 2.72 s (b) t= 3.00 s

Figure 8.11: Pressure simulations (FSI) in TC and AB for 4D-CT-P2.

(a) t= 2.72 s (b) t= 3.00 s

Figure 8.12: Pressure simulations (FSI) in TC and AB for 4D-CT-P3.

(a) t= 2.44 s (b) t= 2.80 s

Figure 8.13: Velocity simulations (FSI) in TC and AB for 4D-CT-P2.

(a) t= 2.44 s (b) t= 2.80 s

Figure 8.14: Velocity simulations (FSI) in TC and AB for 4D-CT-P3.



8.4. Experiments vs. Simulations 239

8.4 Experiments vs. Simulations

The computations are evaluated by comparing the simulations to the in-vivo
measurements obtained from the above described experiments. The dynamic
CT data are used to evaluate the simulated wall deformation in 4D-CT-P1,
4D-CT-P2 and 4D-CT-P3, while the ultrasound-based flow and catheter-based
pressure measurements are used to evaluate the numerical flow and pressure
fields computed from the FSI simulations for 4D-CT-P2 and 4D-CT-P3. In the
following, the obtained results for all three models are presented. All dynamic
simulation results represented below are evaluated at the fourth cardiac cycle,
ensuring convergence and periodicity. They were simulated with a homoge-
neous wall thickness of 2 mm and with the hyperelastic material model for
porcine abdominal aortic tissue described in Sec.5.5.1.

8.4.1 4D-CT-P1 (Experiment 1 with CSM)

As mentioned before, CSM simulations were performed on 4D-CT-P1 and
the dynamic CT are used to validate the wall deformation. As a boundary
condition for the CSM simulations, the pressure profile measured at location
equivalent to TC and shown in Fig.8.15 is applied at the inner aortic wall.

Figure 8.15: In-vivo measured pressure profile used for the boundary condi-
tions of the CSM simulations for the 4D-CT-P1 model.
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Wall Deformation Profiles

The wall deformation over the cardiac cycle for 4D-CT-P1 is validated along
the depicted five cross sections of the aorta Z1, Z2, Z3, Z4 and Z5, obtained
from lateral cuts orthogonal to the z-direction.

Figure 8.16: Wall deformation at the cross-sections Z1, Z2, Z3, Z4 and Z5
for model 4D-CT-P1 based on CSM.

Fig.8.16 presents the measured hydraulic diameters for 4D-CT-P1 as a function
of the cardiac cycle phase for the five cross-sections from the 4D-CT images
and the computational results. The transient deformation resulting from the
simulations follows similar profiles to those found in the 4D-CT images, with
lower hydraulic diameter values obtained at the beginning and the end of the
cardiac cycle, and higher values during systole. The Root Mean Square (RMS)
errors of the hydraulic diameter for sections Z1, Z2, Z3, Z4, and Z5 are 0.188,
0.252, 0.280, 0.237, and 0.204 mm, respectively. This is equivalent to an error
of 0.327, 0.438, 0.487, 0.412, and 0.354 pixels. Relative to the time-averaged
hydraulic diameter measured for each 4D-CT slice (11.178 mm, 10.923 mm,
10.284 mm, 10.333 mm and 10.145 mm), this is equivalent to an error of 1.7%,
2.3%, 2.7%, 2.3%, and 2.0%, respectively. The maximum hydraulic diameter
is obtained for all slices at t= 0.287 s (35% phase) for both simulations and
4D-CT. The maximum deformation is obtained at the upper suprarenal slice
Z1. The displacements decreased towards the iliac arteries where a minimal
vessel diameter change is found at the lower infrarenal slice Z5.
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8.4.2 4D-CT-P2 (Experiment 2 with FSI)

The FSI simulations of 4D-CT-P2 are validated in terms of the wall deforma-
tion as well as the pressure and the flow profiles.

Wall Deformation Profiles

Figure 8.17: Wall deformation at the cross-sections SR, IR, MS and AB for
model 4D-CT-P2 based on FSI.

Fig.8.17 presents the measured hydraulic diameters for 4D-CT-P2 as a function
of the cardiac cycle phase for the four cross-sections from the 4D-CT images
and the computational results. Here also, the transient deformation resulting
from the simulations follows similar profiles to those found in the 4D-CT im-
ages, with lower hydraulic diameter values obtained at the beginning and the
end of the cardiac cycle, and slightly higher values during systole. The Root
Mean Square (RMS) errors of the hydraulic diameter for sections SR, IR, MS
and AB are 0.14 mm, 0.219 mm, 0.227 mm and 0.276 mm respectively. This
is equivalent to an error of 0.931, 1.46, 1.511 and 1.839 pixels. Relative to the
time-averaged hydraulic diameter measured for each 4D-CT slice (10.193 mm,
9.048 mm, 8.816 mm and 8.943 mm), this is equivalent to an error of 1.4%,
2.4%, 2.6%, and 3.1%, respectively. The maximum hydraulic diameter is ob-
tained for all slices at the 30% phase for both simulations and 4D-CT. The
maximum deformation is obtained at the upper suprarenal slice SR. However,
the displacements did not decrease continuously downwards and the minimal
vessel diameter change is found at cross-section MS rather than the lower AB
position.
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Blood Pressure Profiles

The RMS errors of the blood pressure are equivalent to 1.451 mmHg at TC and
7.433 mmHg at AB. Relative to the time-averaged in-vivo pressure measured
for TC and AB (104.294 mmHg and 113.475 mmHg), this is equivalent to an
error of 1.4% and 6.6%, respectively.

Figure 8.18: Pressure profiles at cross-sections TC and AB for 4D-CT-P2.

Blood Flow Profiles

The RMS errors of the blood flow in terms of velocity are equivalent to
68.176 mms−1 at TC and 117.508 mms−1 at AB. Relative to the time-averaged
ultrasound-based flow measured for TC and AB (338.593 mms−1 and 274.266 mms−1),
this is equivalent to an error of 20.1% and 42.8%, respectively.

Figure 8.19: Velocity profiles at cross-sections TC and AB for 4D-CT-P2.
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8.4.3 4D-CT-P3 (Experiment 3 with FSI)

Similar to 4D-CT-P2, the FSI simulations of 4D-CT-P3 are validated in terms
of the wall deformation as well as the pressure and the flow profiles.

Wall Deformation Profiles

Figure 8.20: Wall deformation at the cross-sections SR, IR, MS and AB for
model 4D-CT-P3 based on FSI.

Fig.8.20 presents the measured hydraulic diameters for 4D-CT-P3 as a function
of the cardiac cycle phase for the four cross-sections from the 4D-CT images
and the computational results. Again, the transient deformation resulting from
the simulations follows similar, somehow flat, profiles to those found in the 4D-
CT images with lower hydraulic diameter values obtained at the beginning and
the end of the cardiac cycle, and slightly higher values during systole. The Root
Mean Square (RMS) errors of the hydraulic diameter for sections SR, IR, MS
and AB are 0.203 mm, 0.208 mm, 0.237 mm and 0.218 mm, respectively. This
is equivalent to an error of 1.015, 1.038, 1.184 and 1.091 pixels. Relative to the
time-averaged hydraulic diameter measured for each 4D-CT slice (10.856 mm,
9.887 mm, 9.485 mm and 9.738 mm), this is equivalent to an error of 1.9%,
2.1%, 2.5%, and 2.2%, respectively. The maximum hydraulic diameter is
obtained for all slices at the 35% phase for both simulations and 4D-CT.
Also here, the maximum deformation is obtained at the upper suprarenal slice
SR. Similar to 4D-CT-P2, the displacements did not decrease continuously
towards the iliac arteries and the minimal vessel diameter change is found at
cross-section MS.
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Blood Pressure Profiles

The RMS errors of the blood pressure are equivalent to 1.174 mmHg at TC and
5.28 mmHg at AB. Relative to the time-averaged in-vivo pressure measured
for TC and AB (114.375 mmHg and 109.836 mmHg), this is equivalent to an
error of 1.0% and 4.8%, respectively.

Figure 8.21: Pressure profiles at cross-sections TC and AB for 4D-CT-P3.

Blood Flow Profiles

The RMS errors of the blood flow in terms of velocity are equivalent to
21.508 mms−1 at TC and 109.274 mms−1 at AB. Relative to the time-averaged
ultrasound-based flow measured for TC and AB (317.881 mms−1 and 234.419 mms−1),
this is equivalent to an error of 6.8% and 46.6%, respectively.

Figure 8.22: Velocity profiles at cross-sections TC and AB for 4D-CT-P3.
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8.5 Discussion

Subject-specific biomechanical simulations and validation based on in-vivo ex-
periments performed on three porcine aorta are presented. This work is a first
attempt to numerically simulate and experimentally validate the biomechanics
in the aorta based on real morphological data and boundary conditions. By
using the actual vessel geometry and implementing physiological in vivo-based
pressure and flow boundary conditions in the computations, a necessary step
towards realistic patient-specific modeling could be taken. An experimentally
validated patient-specific simulation system based on realistic geometrical and
physical data can be implemented clinically and presents a reliable tool in eval-
uating non-invasively individual therapies and treatment strategies in the field
of minimally invasive surgery. The accuracy of the computations is evaluated
based on the quantification of the vessel deformation and of the intraluminal
pressure and flow profiles in both the simulations and the acquired experimen-
tal data.

8.5.1 Wall Deformation Results

The wall motion was validated by measuring the dynamic hydraulic diameter
from the biomechanical simulations and from the 4D-CT data at 21 phases of
the cardiac cycle, for various specific cross-sections of the aorta. The compu-
tation of the wall mechanics is based on CSM simulations for the first porcine
model 4D-CT-P1 obtained by computing the arterial wall response to a real-
istic measured pulsatile aortic pressure, and on FSI simulations with coupled
blood flow for models 4D-CT-P2 and 4D-CT-P3. The results show that ac-
curate vessel wall modeling is possible using FEM-based CSM simulations for
which RMS errors varying between 1.7% and 2.7% based on the time-averaged
hydraulic diameter estimated at five cross-sections for model 4D-CT-P1 were
obtained. Although computations that are more reliable should be obtained
when also incorporating the fluid dynamics into the numerical model by means
of FSI, the FSI simulations showed very similar results, with RMS errors vary-
ing between 1.9% to 2.5% for model 4D-CT-P2 and between 1.4% to 3.1% for
model 4D-CT-P3. Obviously, since larger amount of input data is necessary to
conduct FSI simulations, the sources of error become also higher. Further, the
maximum diameters of all cross-sections were found at the same cardiac phase
within each model, indicating that the pulse wave was significantly reduced
on its way to the abdominal aorta. Finally, in contrast to the FSI results, the
CSM systolic deformation was always higher than that obtained from the dy-
namic CT. This demonstrates that CSM is strongly influenced by the pressure
profile applied at the wall boundary.
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8.5.2 Blood Pressure Results

The obtained RMS errors of the blood pressure are equivalent to 1.4% and
6.6% for 4D-CT-P2 and 1.0% and 4.8% for 4D-CT-P3, calculated relative
to the time-averaged in-vivo pressure measured for TC and AB, respectively.
These results show that the pressure profiles based on FSI simulations can
be accurately computed, as being compared to precise in-vivo and individual
measured pressure profiles.

8.5.3 Blood Flow Results

On the other hand, the RMS errors of the blood flow do not imply good results,
especially for the lower cross-section AB. From the numerical point of view,
AB is located directly above a stagnation point in which the flow should be
relatively low due to the high local pressure values. However, in contrast to
the human anatomy (Fig.2.4), the porcine Aa. iliacae internae branches out
directly from the aorta abdominalis. Consequently, the porcine aorta does not
include a stagnation point at the aortic bifurcation, which explains the higher
experimental values and thus the difference in the results. Another reason
may be due to difficulties in the definition of the exact position at which the
ultrasound measurements were performed; probably, the flow measurements
reported at AB were taken at some higher level along the aorta.

8.6 Summary

The experimental validation of the numerical simulations were presented in
this chapter. The experiments performed on three porcine aortas and the
data acquired to generate the computational models and to experimentally
validate the biomechanical simulations were first described. The experimen-
tal data consisting of morphological images acquired by dynamic 4D-CT and
physiological pressure and flow profiles generated by catheter-based invasive
and ultrasound-based flow measurements were thereby presented. Further, the
approach followed to evaluate the computations in terms of quantification of
the vessel wall deformation, and of the pressure and velocity profiles as well as
the FEM-based simulations were presented. Then, the computed vessel wall
deformation, the pressure profiles and the velocity profiles of the three porcine
models are validated by comparing the provided experimental data with the
simulation results. Finally, the experimental and simulation results as well as
the efficiency of the CSM and the FSI computational methods were discussed.
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Conclusions

9.1 Summary and Discussion

Patient-specific computational modeling of biomechanics based on medical
imaging provides a physical and realistic insight into the blood hemodynam-
ics and the wall elastomechanics and enables accurate predictive simulations
of development, growth and failure of cardiovascular pathologies. In spite of
all technological advancements in computational methods, a clinically imple-
mentable system allowing reliable modeling was not available up to now. The
primary objective of the present work was to establish a numerical approach
to non-invasively help the diagnosis of patients with vascular pathologies on
an individual basis.

The patient-specific FEM-/FVM-based simulation system MoDiSim, has been
therefore designed, developed and evaluated to automatically simulate the
hemodynamics and the elastomechanics as well as their interaction within
CT/MRI image-based vessel models. MoDiSim represents a tool for the detec-
tion of regions with pathological hemodynamics and elastomechanics and for
the evaluation of associated risks.

For the computation of blood flow and vessel wall biophysical parameters,
a simulation workflow has been first developed, applied for CSM, CFD and
FSI applications and finally integrated into MoDiSim. The process chain for
the simulations was therefore generated, consisting of a fine segmentation, the
creation of 3D geometrical models, the generation and processing of controlled
surface and volume meshes, the setting of realistic boundary conditions and of
the computations using appropriate physical models and mathematical solvers
leading to stable and accurate solutions.



248 Chapter 9. Conclusions

Due to the significant effects of patient-specific geometry and pathology shape,
of high-quality meshes, of accurate physics, of realistic boundary conditions
and of coupled and decoupled modeling on the simulation results, great care
was taken while building the elements of the individual process chains. Fur-
thermore, the effects of pulsatile dynamic modeling, of material blood and
wall constitutive relations, of the impact of physiological boundary conditions
and of stent-graft implantation on the hemodynamics and the elastomechanics
have been evaluated.

The effects of different mesh configurations on the computed parameters have
been investigated to determine the properties of the meshes that result in stable
simulations. Based on these results, automatic generation of stable patient-
specific mesh geometries was made possible. Further, a numerical tool to
automatically process and convert the finite mesh models as required for CSM,
CFD and FSI applications within patient-specific vessels has been developed
and integrated into MoDiSim.

The CSM computations simulate the arterial wall response to an applied pre-
defined pressure load. The CFD computations simulate the hemodynamics
while assuming a rigid vessel wall. Coupling the hemodynamics and the elas-
tomechanics by means of FSI allows more reliable simulations of the physical
interaction between both models. FSI simulations are however computation-
ally demanding. MoDiSim includes therefore CSM, CFD and FSI modeling,
while keeping the freedom and flexibility for the user to choose the application
method depending on the available time and computational resources.

For the validation of the computational results, in-vivo experiments have been
performed on porcine aortas to experimentally evaluate the results based on
morphological data obtained from dynamic 4D-CT imaging, catheter-based in-
vivo pressure and ultrasound-based flow measurements. The simulation results
were compared, discussed and evaluated.

After all, the most important contribution of this work remains in the in-
dividualized, optimized and especially automated feature of MoDiSim, being
essential for performing reliable, efficient and fast evaluation and hence for a
clinical implementation. By accounting for individual geometry and conditions
as well as implementing optimized physical models, a necessary step towards
realistic patient-specific modeling could be taken. MoDiSim provides an indi-
vidual computational analysis of potential predictions on the assessment of the
pathological state for various pathologies and vessel regions and was evaluated
using various aortic models. The expendable features of MoDiSim allow for
flexible integration of further components such as extending its application for
predictive simulations with endovascular devices for optimal planning.
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9.2 Future Developments

Finally, future developments and further research activities in regard to seg-
mentation and endovascular devices are shorty outlined below:

Automatic Segmentation and Detection of Wall Thickness

The segmentation of the CT and MRI images performed in a semi-automatic
way showed good results, but was time consuming. In order to facilitate a
clinical implementation of this step, further development in the segmentation
techniques and the application of more sophisticated, vessel-specific and es-
pecially automated algorithms are needed to improve the results in terms of
accuracy and speed.

Furthermore, a homogeneous wall thickness was assumed in this work, which
in general underestimates the wall stresses compared to variable thickness. An
accurate modeling of the variable wall thickness is a crucial factor affecting the
computation of wall stresses. A more reliable modeling requires therefore the
detection of the real non-homogeneous wall thickness from the patient images.
This in turn requires further development and improvement in the imaging
techniques and resolution quality.

Ongoing research on automatic segmentation of patient-specific aortic models
as well as automatic detection of patient-specific wall thickness from CT and
MRI images is conducted by [SDG+08] and [MDMA+09].

Computational Design and Optimization of Stents and Stent-Grafts

The work is a milestone towards a numerical methodology for the computa-
tional design and optimization of stents and stent-grafts in the prefield of the
intervention for patients with vascular pathologies on an individual basis.

In face of the advantages of minimally invasive surgery in treating cardiovas-
cular pathologies, complications following endovascular treatments show that
further advances in stent-graft development are needed. Post-repair complica-
tions include endoleaks formation, stent migration or even failure of the stent
material. These may have fatal consequences on the patient. An endovascular
treatment with individual awareness in terms of design geometry and material
characteristics is therefore a crucial issue for efficient therapies.

An optimal treatment may be achieved when associated to an individual choice
of the stent or stent-graft design. The design of a stent-graft can be primar-
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ily defined by material and geometry parameters. The choice of the optimal
design highly depends on the shape and the size of the pathology, as well as
on the wall biomechanics and the blood flow characteristics inside the ves-
sel. Thus the knowledge of such parameters, considering the patient-specific
geometry, elastomechanics and hemodynamics, may be helpful in the field of
minimally invasive surgery to predict optimal therapies and improve individual
treatments.

The future vision is to conduct research on the quantitative variables for design
optimization of endovascular devices that best fulfill the patient’s needs based
on FSI simulations. Fully coupled simulations including virtual endovascular
models should be developed to study the interaction between stent-grafts, ves-
sel wall and blood flow within patient-specific vascular models. From the FSI
simulations variables, such as flow patterns, fluid pressure, wall stresses and
strains can be obtained. Based on these, parameters describing endovascular
device geometry and material characterization providing optimal biomechan-
ical conditions for the blood flow and the vessel wall can be derived for each
individual patient.

This can be achieved by quantifying the changes in the vascular morphology
(diameter, volume, curvature etc.) due to the different stent-graft designs
(diameter, strut number, width, thickness and elastic material properties),
which in turn influences the hemodynamics and the wall mechanics as well as
the interaction between them. The design of the endovascular devices may be
then evaluated by studying the relation between the vessel size and the stent-
graft design, and by analyzing the effects of the device geometry and material
characterization on the flow, pressure, strain and stress distributions of the
various stented and of the pre- and post-stented models. Consequently, by
precisely adapting endovascular devices to the patient’s anatomic conditions,
therapies and treatment strategies can be optimized as an assessment tool for
optimal placement and improved device design to minimize post-procedural
complications.
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