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Abstract. Thin-walled perforated sheeting is used for sound absorption in buildings. The perforation may 
extend over the whole surface or only parts of the sheeting, e.g. webs. So far only reduction factors for 
the in-plane stiffness and the bending stiffness of fully perforated sheets with an equilateral triangular 
perforation pattern are included in EN 1993-1-3 and EN 1999-1-4. These factors only apply to 
perforation patterns in form of equilateral triangles, because of the isotropy assumed during derivation. 
Furthermore, the equations provide only information on stiffness and not on the stability behaviour of 
thin-walled components. The insufficient and misleading formulations of these regulations are overcome 
by the investigations presented here. Design rules for trapezoidal sheeting which are fully or partly 
perforated with equilateral triangular or square perforation patterns are given. The design rules take 
into account the beneficial effect of the post-buckling behaviour of the sheeting. They also cover web 
crippling at supports or under local loads.

Starting with the basic aspects of the load-bearing behaviour, the parameters required for capturing the 
influence of the perforation are defined and determined for the different perforation patterns. By 
introducing these parameters into the design procedures for the calculation of the load-bearing capacity 
of thin-walled structural components being at risk of buckling failure, the use of these procedures is 
expanded to fully perforated structural components. Numerical investigations with the finite-elements-
method allow the verification of these theoretically derived calculation procedures.

Based on comprehensive numerical and experimental investigations on web crippling, it can be shown 
for fully and partially perforated trapezoidal profiles, that the influence of the perforation can be 
captured by multiplying the capacities according to EN 1993-1-3 and EN 1999-1-4 with a factor Cp for 
fully perforated profiles and Ctp for partially perforated profiles. A calculation procedure for these 
factors is given.  

The recalculations of more than 600 experimental tests with perforated trapezoidal and corrugated 
sheeting which were performed since the 1980s at the University of Karlsruhe show the good correlation 
between the calculation procedure and the test results. 

1 INTRODUCTION 

The rules and standards recently given in EN 1993-1-3 [1] and EN 1999-1-4 [2] include approaches 
for determining reduction factors for membrane or bending stiffness as a basis for a verification by 
calculation of the cross-section. Due to lack of other published investigations, the basis of these equations 
are numerical investigations by Schardt and Bollinger [3]. These equations, however, only apply to 
perforation patterns in form of equilateral triangles, because of the isotropy assumed during derivation. 
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Furthermore, the equations provide only information on stiffness and not on the stability behaviour of 
thin-walled components. This was the reason for starting the investigations presented here. 
Corresponding to the envisaged field of application of the results, the investigations restrict to perforation 
patterns with a continuous arrangement as equilateral triangle or as a square (Figure 1), with equal hole 
diameters d and spacings c. The perforation pattern is defined by the hole diameter d and the distance of 
the hole centres c. With regard to their mechanical properties, triangular perforation patterns are isotropic 
- the alignment of the perforation patterns to the load direction does not play any role. Based on the 
orthotropy, orientation must be considered for the quadratic perforation pattern. For this pattern, the most 
prevalent orientation is the alignment of the row holes parallel and rectangular or with an inclination of 
45° to the main stress directions.
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Figure 1: Perforation patterns 

2 STIFFNESS 

The perforation reduces the stiffness of the sheet. For the orthotropic sheet with the quadratic hole 
pattern, the stiffness matrix is:  
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In the present case with equal hole diameters d and spacings c, the following applies in addition:

pp KK ,22,11  (2) 

The reduced stiffness is expressed with the normalised effective bending stiffnesses k11, k12 and k44

related to the bending stiffness of the unperforated sheet.
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As in [3], it is assumed that the membrane and bending stresses are decoupled and the effective 
stiffnesses are determined with the basic elements of which the perforated sheet is composed. In addition 
to [3], on the one hand also quadratic perforation patterns are considered and on the other hand, to get a 
complete stiffness matrix, also the stiffnesses K12,p and K44,p are determined.  

The related effective bending stiffnesses decrease with increasing ratio d/c. Figure 2 shows in 
addition, that the plate thickness t (expressed by the ratio t/c) also has an influence on the bending 
stiffness. Figure 2 shows also, that for a constant d/c kij = Kij,p/Kij may be approximated by the geometry 



995

Thomas Misiek and Helmut Saal

function . This function describes the ratio of torsion stiffness to bending stiffness. Thus, only 
effective bending stiffnesses for a very small and a very large ratio t/c or t/c0 have to be determined 
between which an interpolation is performed by means of the geometry function 
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The related bending stiffnesses between which an interpolation has to be performed are in the 
following called kij,mint and kij,maxt. Then, the following applies:
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Figure 2: Interpolation between k11,mint and k11maxt for different values t/c. 

The normalised effective stiffnesses kij as a function of t/c can be found in [4] - [6] for the different 
perforation patterns. The effective bending stiffnesses are given  for a “very large” and a “very small” 
plate thickness by kmaxt and kmint. Then, an interpolation with equations (6) and (7) has to be performed. 

3 LOAD-BEARING CAPACITY OF PLANE CROSS-SECTION PARTS 

The ideal buckling stress of orthotropic rectangular plates under constant uniaxial compressive stress 
is given by:  
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as a function of the stiffnesses K11 and K22. The buckling coefficient
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for a rectangular plate with all edges simply supported depends on the corrected aspect ratio
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and the stiffness coefficient 
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Using the minimum value of equation (9), the ideal buckling stress of the rectangular plate with all 
edges simply supported subjected to compression is obtained by 

eppcr k ,,  (12) 

with the minimum of the effective buckling value  

44124411, 3.02 kkkkk p  (13) 

This effective buckling coefficient refers to Euler´s stress e of the unperforated plate. The 
normalisation with regard to the unperforated plate is only to simplify the application since all reducing 
influences of the perforation are then included with the buckling coefficient. This simplification is only 
possible for this case, in which a plate under constant uniaxial compressive stress is treated. The effective 
buckling coefficient for the actual value of t/c can be plotted versus d/c for the three perforation patterns 
described in Figure 1. If the values k ,p,mint and k ,p,maxt are already known for a plate under constant 
uniaxial compressive stress, the value k ,p for the actual value of t/c is also obtained by interpolation with 
the function  according to (6) and (7) with k ,p,mint and k ,p,maxt instead of kij,mint and kij,maxt. The values 
k ,p,mint and k ,p,maxt can be taken from Figure 3 depending on ration d/c, but they can also be calculated 
with equation (13), using the parameters kij presented in [4] – [6]. Compressive stresses varying along the 
width of the plate are dealt with in [6]. 
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Figure 3: Buckling value k ,p for different perforation patterns. 

Starting from the effective buckling stress cr,p of the perforated sheet the slenderness for calculating 
the effective width is determined from  
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corresponding to the procedure for the unperforated sheet. The reduction of the yield strength with 
the factor c0/c corresponds to the use of the gross cross-section when determining the stress in the 
perforated cross-section. When the effective width beff is determined, the weakening of the cross-section 
by the perforation is taken into account with the adaptation of the equation of Winter which for example 
for steel sheeting is:
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Equation (15) shows even better than equation (14) that the factor c0/c is necessary to present the 
controlling net cross-section by the gross cross-section. Since c0/c can be reduced from (15), there is no 
change of the limiting slenderness at which no buckling of the perforated sheet occurs and for which 
yielding becomes controlling: 

673.012.015.0lim,p  (16) 

4 WEB-CRIPPLING 

For trapezoidal profiles, the supporting force at the end support or intermediate support that can be 
transmitted to the substructure is limited by the failure mode web crippling (Figure 4). This load-bearing 
capacity primarily depends on the stiffness and strength of the webs. If trapezoidal profiles have a 
perforation extending completely or partly over the webs, the associated reduction of the cross-section 
and the stiffness results in a reduced web-crippling resistance. 

Figure 4: Web-crippling failure at supports. 

The equations of EN 1993-1-3 and EN 1999-1-4 for calculating the supporting force for trapezoidal 
profiles made of steel or made of aluminium respectively can be generalized as follows:  

CCCCtCR bBrfyB
2  (17) 

with
C constant factor 
t sheet thickness 
Cfy strength and stiffness 
Cr influence of the bending radii 
CbB support width or length of the load application 
C  slope of the web relative to the flanges 
The factors Ci describe – with the exception of the constant factor C as well as the factor Cfy – the 

influence of geometry and load-bearing capacity. The influence of perforation can be included using a 
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further factor Cp for fully perforated trapezoidal profiles. If the failure by web-crippling is considered as a 
buckling problem with k  = 4.0, we obtain with equation (13) 
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Analogous to this factor Cp for fully perforated webs, a factor Ctp can be determined for partially 
perforated webs. The factor Ctp was determined by FE-analysis, because the influence of the various 
geometrical parameters demanded for such a detailed study. Figure 5 shows qualitatively how the 
parameter Ctp depends on the ratio of width b1 to the support width bB. The necessary geometrical 
parameters are also presented in Figure 5. 
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For large widths b1 there is no reduction of the load-bearing capacity. Starting at a width b1 = tp  bB

it approximately decreases linearly with decreasing b1/bB. This applies until the perforation reaches the 
radius. From there on with b1  r  tan ( /2) a very strong reduction of the load-bearing capacity occurs. 
For these cases with b1  r  tan ( /2) the profile can be considered as fully perforated, i.e. the simplifying 
approach Ctp = Cp applies. The results of the numerical investigations presented in [7] lead to:  
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bB has to be limited to sw in equation (19) as well as in the criteria for differentiation. A statistical 
evaluation was performed to take into account the scatter in results. For design purposes, the 
characteristic values  
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should be used in connection with equation (19). Thus, the load-bearing capacity results in:  

dBtptpdB RCR ,  (24) 

with RdB according to EN 1993-1-3 or EN 1999-1-4. 

5 COMPARISON WITH TEST RESULTS 
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Figures 6a to 6d show a comparison of calculated load-bearing capacities with test results for 
different applications. From this it is obvious that theory matches praxis, showing the usual scatter for 
interaction of support reaction and bending (Figure 6d). 

6 CONCLUSION 

Thin-walled perforated sheeting is used for sound insulation in buildings. Unfortunately, the 
regulations of the EN 1993-1-3 and EN 1999-1-4 for perforated sheeting are insufficient and partly 
misleading. This paper overcomes these insufficiencies. The results of these improvements which also 
take into account the post-buckling resistance is expressed such that the calculation of the load-bearing 
capacity of thin-walled structural elements being at risk of buckling failure is correct and easy. This is 
achieved by introducing parameters kij into the design procedures of EN 1999-1-3 and EN 1999-1-4. 

Based on comprehensive numerical and experimental investigations on web crippling, it could be 
shown for fully and partially perforated trapezoidal profiles, that the influence of the perforation can be 
expressed with the application of a factor Cp for fully perforated webs and Ctp for partially perforated 
webs to the capacities of the unperforated sheeting according to EN 1993-1-3 and EN 1999-1-4. A 
calculation procedure for these factors is described. 

In [4], the previously mentioned facts are presented in such a way that they can easily be adopted in 
design codes. In addition, further topics such as shear buckling and corrugated sheeting are covered. 
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