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1

Introduction

In 1933 the Swiss astronomer Fritz Zwicky observed the COMA galaxy cluster and discov-

ered that the amount of visible matter of the cluster galaxies is insufficient to explain their

rotation velocities [1]. For that reason he introduced the concept of Dark Matter (DM)

which only gravitationally interacts without emitting radiation. Later, observations of the

rotation speed of gas and stars in spiral galaxies revealed more or less flat for practically all

observed galaxies [2]. The DM content of these galaxies must be more widely distributed

than the visible matter, since their velocity distributions do not show a Keplerian decrease,

as expected from the visible matter in the centre.

The total matter density fraction of DM in the Universe is obtained from observations of the

Cosmic Microwave Background Radiation (CMBR) with the Wilkinson Microwave Absorp-

tion Probe (WMAP) in combination with distance determinations from Type Ia supernovae

(SNe) and baryon acoustic oscillations (BAO) to be about 23% [3]. The total matter density

fraction of the baryonic matter is obtained to be about 4% which shows that the DM contri-

bution can only be explained by non-baryonic matter. However, the nature of DM remains

unknown until the present day.

A possible explanation for DM is a weakly interacting massive particle which is generally

called WIMP. Obviously, the constituents of DM have to be massive due to their ability

to interact gravitationally. A hint for the weak interaction of the DM particles comes from

their spatial distribution. Since DM is distributed over large distances its energy losses due

to interaction with other particles must be small. Otherwise, dense clusters of DM in the

centre of a galaxy, like in case of the visible matter, would have been formed. Such a weakly

interacting particle would be created in thermal equilibrium with all other particles in the

early Universe. In this state its annihilation and production rate would be equal because of

the high temperature of the early Universe. The temperature of the Universe dropped be-

cause of its expansion and at a certain temperarutre the expansion rate becomes higher than
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the annihilation rate. In this case freeze-out occurs, i.e. the annihilation stops. The time

when this happens is determined by the Hubble constant and the annihilation cross section.

The remaining relic density at this time, called relic density, is inverse proportional to the

annihilation cross section. From the Hubble constant and the relic density one finds indeed

that the annihilation cross section is of the order of a weak interaction cross section [4–8].

The DM in galactic haloes is assumed to be a mix of a smoothly distributed DM component,

which describes the DM distribution of individual WIMPs, and a clumpy DM component

characterizing the distribution of local DM overdensities, so-called DM clumps (DMCs) or

DM subhaloes. Local DM overdensities are resulting from primordial density fluctuations

in the early Universe. Due to the gravitational interaction between the DM particles DMCs

were formed after the freeze-out of the WIMPs. Subsequently, the DM clumps grew by

merging with smaller clumps. This process, called hierarchical clustering, results in giant

galactic haloes surrounding the luminous part of galaxies [9, 10]. The small clumps can be

destroyed by tidal forces in the gravitational potential of the forming galaxies, thus forming

a diffuse component of DM. Since not all clumps are destroyed during this process the DM

distribution in a galactic halo can be split into a diffuse and a clumpy component, as shown

by recent numerical simulations of structure formation [11, 12]. Recent N-body simulations

show that the radial dependence of the density distributions of the two DM components

might be different [13]. The gamma ray flux from DMA is proportional to the number den-

sity of the WIMPs. Therefore, the gamma ray flux should be dominated by the clumpy DM

component because of the increased density in the DM subhaloes.

Two kinds of measurement of the properties of the WIMP are possible. Either the interaction

of a WIMP with detector material is examined (direct searches) [14] or the final states of the

annihilation of WIMPs are considered (indirect searches) [15]. The present thesis addresses

the indirect determination of the Galactic DM density distribution using recent astronomi-

cal observations of the MW and the diffuse Galactic gamma radiation. The analysis of the

diffuse Galactic gamma radiation measured with the Energetic Gamma Ray Emission Tele-

scope (EGRET) in [16] showed an excess of gamma rays with a spectral shape of DMA and

a spatial distribution of the gamma ray fluxes which is consistent with a cored halo profile

in combination with a large scale structure of two rings if only a diffuse DM component is

considered. However, the resulting DM density distribution yielded a high surface density

which is incompatible with astronomical observations [17]. In this thesis diffuse Galactic

gamma radiation is reconsidered for a Galactic DM composition of a smoothly distributed

component and a component of DMCs.

The thesis is structured as follows. The theoretical framework is examined in Chapter 2.

The standard model of cosmology, which describes the current understanding of the Uni-

verse, is introduced and observations to confirm this model are discussed. The formation

of large structures like the Galactic DM halo and the MW are described in more detail.

Possible DM candidates are summarised, the DM relic density is described and the esti-

mation of the gamma ray flux produced by the diffuse and the clumpy DM component is
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given. After introducing the theoretical framework the DM density profile of the MW is

considered in more detail in Chapter 3. There the local DM density, which is important

for direct DM searches, is determined from current astronomical observations. First the

different Galactic matter contributions are parametrised and the astronomical observations

used to constrain the DM density distribution are described. Despite the new astronomical

data an improvement to the viable range for the local DM is not found, because of the

strong correlations between the visible and DM distribution. Furthermore, the smooth DM

haloes expected from N-body simulations were found not to describe the structure of the

rotation velocities in the outer Galaxy, which are increasing with radius. This inconsistency

is solved by the introduction of a DM substructure composed of two rings – one at the inner

Galaxy and one at the outer Galaxy – which is likely to be produced by the infall of a dwarf

galaxy in the Galactic gravitational potential. Although in this case the local DM density

is increased by a factor of about 3 compared to the density of the halo such a DM density

distribution is found to be consistent with recent astronomical data from the ”magic” ring

of stars, called the Monoceros ring [18, 19], and the structure in the gas flaring [20], which

can only be explained by a ring of DM. Subsequently, the gamma ray flux from DMA is

considered in Chapter 4. The diffuse Galactic gamma radiation measured with EGRET is

used to constrain the DM density distribution. Two models for the spatial DM distribution

are introduced. In the first model, called Single Profile (SP) model, the smooth and clumpy

DM components are distributed according to the same density distribution. In the second

one the density distributions of the two DM components are assumed to be different, called

Double Profile (DP) model. The clumpy (diffuse) DM component has a core (cusp) in the

centre in agreement with recent high-resolution N-body simulations [13]. The SP model

leads to high local DM densities which are incompatible with astronomical information. In

contrast astronomical observations are compatible with a DP model which provides lower

local DM densities. Preliminary data from the Fermi satellite, the successor of the EGRET

satellite, are consistent with the DP density model. Finally, in Chapter 5 the results of the

analysis are summarised and perspectives for further studies are given.
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2

Theoretical framework

“The innocent and light minded, who believe

that astronomy can be studied by looking at

the heavens without knowledge of mathematics,

will return in the next life as birds.”

Plato (Timaeus, 91d)

2.1 The Cosmological Principle

Cosmology describes the Universe which is defined as a large system which is not part of a

subsystem. Like all fields in physics cosmology is splitted into theoretical predictions and

observations. The question is whether the observable Universe can be used to verify or

falsify theoretical models for the entire Universe or not. For instance, measurements of the

CMBR [3] have shown that the observable Universe is highly homogeneous but it is possible

that homogeneity beyond the horizon may not be the case. This cannot be proven because

we are not able to measure it.

In order to make the Universe a physical object which can be described by fundamental

physical laws we have to suppose the cosmological principle [7]:

The observed part of the Universe represents

the Universe in its properties and structures.

The Universe is homogeneous in the large.

Today one can add to this principle that there is no preferred direction in the Universe imply-

ing that the Universe is also isotropic at the large. There is no velocity of the Universe itself

because it is the largest system and all measured velocities are measured with respect to the
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Figure 2.1: Map of the galaxy distribution produced from the complete 2dF Galaxy Red-

shift Survey. The map shows a homogeneous spatial distributions of the galaxies. Image

taken from [22].

Universe. The cosmological principle allows to test theoretical conclusions by observations

of the observable Universe. However, observations and measurements are only possible in

the case of inhomogenities like stars, galaxies, galaxy clusters and so on. Measurements of

the light emitted by galaxies show that these inhomogenities are uniformly distributed over

large scales [21] as shown in Figure 2.1. Their structure is explained through homogeneous

statistics and homogeneous laws of its genesis in Section 2.4.

In the eighteenth and nineteenth century the Universe was considered to be infinite, eternal

and Euclidean. Measurements showed that stars are more or less at rest, with constant av-

eraged luminosity per unit volume, and that there is no variability of seasonal and planetary

phenomena. All this led to the assumption that the Universe is also static or stationary.

However, a static Universe filled with massive and radiative objects is in crucial conflict

with simple cosmological considerations. Two famous problems of a static Universe will be

explained in more detail in the following sections.

Newton’s Paradox

One well-known conflict with a static Universe is Newton’s paradox, in which the gravita-

tional interaction of all objects in the Universe is considered. According to Newton’s theory

of gravity the gravitational force is given by

mẍ = −grad φ = −4πG grad

∫
R3

ρ(x′)

| x− x′ |
d3x′, (2.1)

where x represents the distance, φ is the gravitational potential and G is Newton’s gravita-

tional constant. The mass density distribution is given by ρ(r). Three important properties
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of the force in Eq. (2.1) are that it is always attractive, it acts on all masses and its range

is infinite. Although their strength decreases rapidly the forces between billions of galax-

ies are not negligible. Consequently, in a static and infinite old Universe all masses should

have collapsed into a large, dense singularity which obviously did not happen. There are

two explanations for the absence of the matter collapse. Either the age of the Universe is

not infinite or some effect compensates the gravitational pull between massive objects. The

motion of massive objects in a gravitationally bounded system prevents the gravitational

collapse of the system. Good examples for this effect are the rotation of the Moon around

the Earth, the rotation of the solar system around the Sun or the rotation of galaxies around

the centre of mass in a galaxy cluster. Therefore, in order to solve Newton’s paradox the

Universe is either not static or its age is not infinite. In Section 2.2 it is shown that both

cases are correct.

Olbers’ Paradox

Another most commonly known conflict with a static Universe is named after the German

astronomer Heinrich Olbers. He first asked why the night sky is dark, although this question

was already mentioned by Marcellus Palingenius in 1570 and Edmond Halley in 1720. This

question is justified since the range of electromagnetic radiation emitted by a star is infinite

and in a static and infinite old Universe the light of an infinite number of stars would

illuminate the night sky. Consequently, a static Universe would lead to a diverging averaged

surface luminosity of the sky. A star which appears with a radius R in the night sky and

which is the distance r away from Earth takes an area of about R2

r2 in the sky. The integration

of a homogeneous and static Universe is given by

Ω =

∫ ∞
0

4πr2R
2

r2
dr −→∞. (2.2)

The solution of this problem is very difficult and not possible in a static Universe. The

introduction of an expanding Universe only solved this problem since in this case just the

light of the stars within the horizon of the Earth are visible in the night sky.

2.2 The Standard Model of Cosmology

In this section the introduction of a model for an expanding Universe called the standard

model of cosmology and the evidence for this model are explained.

In 1915 Einstein published the theory of general relativity [23] introducing the famous field

equations of gravitation

Gµν = 8πG Tµν , (2.3)

where Gµν is the Einstein tensor representing the curvature of the four-dimensional space-

time and Tµν is the energy-momentum tensor for all involved fields like matter, radiation,
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etc.

Einstein believed in a homogeneous, infinite and static Universe. However, his calculations

showed that even in the simplest realisation of the Universe as a perfect fluid the field

equations cannot be solved with the assumption of a static Universe. In 1917 Einstein showed

that a physical solution for a three-dimensional sphere with constant positive curvature and

density can be obtained if these equations1

Gµν + Λ gµν = 8πG Tµν . (2.4)

contained a constant Λ [24]. It is called cosmological constant and represents some kind

of ground-value state of the scalar curvature. However, Einstein never solved his equations

for a specific cosmological model, because of the tensorial character, which leaves too much

freedom.

It was Friedmann who first solved Einstein’s field equations by assuming that the Universe

is homogeneous and isotropic [25]. This model, the Friedmann-Robertson-Walker (FRW)

cosmological model, is called the standard model of cosmology (or the Big Bang model) and

represents the current understanding of the evolution of the Universe. Friedmann showed

that a positive curvature of space and a cosmological constant are not necessary for solving

Newton’s paradox when the distance scale is assumed to be explicitly time-dependent. In

this scenario all distances vary with the same rate and all angles remain constant which let

the Universe appear to be static. Hence a comoving volume can be defined where galaxies

do not change their position according to their comoving coordinates. The expansion is thus

homogeneous and a definition of an origin of the Universe is not possible. The variation of

the distance scale is described by the scale parameter R(t). Its evolution is given by the

Einstein field equations

Rµν −
1

2
Rgµν ≡ Gµν = 8πGTµν . (2.5)

These equations connect mass and energy (on the right side) to curvature of the four-

dimensional space-time (on the left side) which is the fundamental concept of the theory

of general relativity. In this expression Rµν is the Ricci tensor or curvature tensor, R is the

Ricci scalar, Gµν is the Einstein tensor and gµν is the metric tensor which has in special

relativity [26] the simple realisation diag(1,-1,-1,-1). The kinematics of the Universe are

described by the Robertson-Walker metric

ds2 = dt2 −R(t) ·
{

dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

}
(2.6)

where r, θ and φ are the spatial coordinates of the comoving volume and k is the spatial

curvature scalar which can be chosen to be +1, −1 or 0 for positive, negative or zero spatial

curvature. The Robertson-Walker metric describes a homogeneous and isotropic Universe

with constant curvature. In order to be consistent with the symmetries of the metric and

1c = ~ = k = 1.
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the cosmological principle the energy-momentum tensor has to be diagonal and the spatial

components have to be equal. In the absence of matter in the energy-momentum tensor Tµν
is equal to zero while for an electromagnetic field Fµν the form of Tµν is given by

Tµν =
1

4π

(
FµλFνκg

λκ − 1

4
gµνFστFκλg

σκgλτ
)
. (2.7)

For a perfect fluid the components of the energy-momentum tensor are the time-dependent

energy density ρ(t) and pressure p(t):

T µν = diag(ρ,−p,−p,−p) (2.8)

The conservation of the energy-momentum tensor yields the first law of thermodynamics

d(ρ R3) = −p dR3 (2.9)

which connects energy density and pressure in the comoving volume. The increase of energy

in the comoving volume leads to the decrease of pressure in the volume. A simple equation

of state p = wρ, where w is independent of time, allows to make conclusions about different

epochs of the Universe

radiation (w = 1
3
) → ρ ∝ R−4

matter (w = 0) → ρ ∝ R−3

vacuum energy (w = −1) → ρ ∝ const.

In the early Universe the energy-momentum tensor was dominated by the radiation contri-

bution. If there was an inflation epoch during the history of the evolution of the Universe

the contribution of the vacuum energy was dominant. Today the Universe is dominated by

the matter contribution.

The combination of Einstein’s field equations and the Robertson-Walker metric yields the

following equations

Ṙ2

R2
+

k

R2
=

8πG

3
ρ and (2.10)

2
R̈

R
+
Ṙ2

R2
+

k

R2
= −8πGp (2.11)

where Eq. (2.10) is the Friedmann equation. It does not contain a cosmological constant since

Friedmann did not consider a static Universe. The difference of Eq. (2.10) and Eq. (2.11)

R̈

R
= −4πG

3
(ρ+ 3p). (2.12)

bears a first hint for a cosmological singularity, referred to as the Big Bang. At some

time the scale factor R(t) must have been zero if ρ + 3p was always positive in the past.
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An extrapolation beyond this singularity is not possible in the classical theory of general

relativity.

The expansion rate Ṙ
R

of the Universe is given by the Hubble constant H. With the Hubble

constant the Friedmann equation can be rewritten

k

H2R2
=

ρ

3H2/8πG
− 1 =

ρ

ρc
− 1 ≡ Ω− 1, (2.13)

where ρc is the critical density of the Universe. This equation shows the direct relation

between the sign of the spatial curvature and the sign of the dimensionless energy density

of the Universe

k = +1 −→ Ω > 1

k = 0 −→ Ω = 1

k = −1 −→ Ω < 1

Consequently Ω is larger than one for a closed Universe, less than one for an open Universe

and equal to one for a flat Universe as depicted in Figure 2.2. For closed models with Ω > 1

a physical radius of the three-dimensional sphere can be calculated with

Rcurv =
H−1

| Ω− 1 |1/2
. (2.14)

Friedmann’s model of an expanding Universe does not need a cosmological constant. How-

ever, vacuum fluctuations contribute to the energy density and thus counteract the grav-

itational force. Subsequently, the cosmological constant was added to the field equations

again. The Robertson-Walker metric in combination with Eq. (2.5) leads to the Einstein-

Friedmann-Lemâıtre (EFL) equations

R̈

R
= −4πG

3
(ρ+ 3p) +

1

3
Λ (2.15)

Ṙ2

R2
+

k

R2
=

8πG

3
ρ+

1

3
Λ (2.16)

which are analogous to Eq. (2.10) and (2.11). With the knowledge of the relation between

ρ and p the EFL equations describe the dynamics of the Universe. Actual measurements of

the pressure of the Universe show a very small value (p/ρ ≤ 10−4) validing the assumption

p = 0 and t = t0 in order to describe the present Universe. Thus the EFL equations change

to

ΩΛ =
Ωm,0

2
− q0 and (2.17)

k

R2
0 H

2
0

= Ωm,0 + ΩΛ − 1 (2.18)
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Figure 2.2: Visualisation of a closed Universe (Ω0 > 1) with positive spatial curvature,

an open Universe (Ω0 < 1) with negative curvature and a flat Universe (Ω0 = 1) without

curvature. Figure adapted from [27]
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where ΩΛ is the dimensionless vacuum energy density and q0 is the deceleration parameter

of the present Universe

q0 = −R̈0 R0

Ṙ2
0

. (2.19)

The hot Big Bang model is a very successful cosmological model. It is so robust that it is

possible to make speculations about the Universe at times as early as 10−43 seconds after the

Big Bang [6]. It is confirmed by several experimental measurements. The most important

arguments are the measurement of the Hubble expansion, the measurement of the CMBR

and the primordial nucleosynthesis. These arguments are also often referred to as “the three

pillars” of the hot big bang model. In the following chapters the three pillars are considered

in more detail.

2.2.1 Hubble Expansion

At about the time Einstein published his paper about a static and homogeneous Universe

astronomers did the first measurements of redshifts of luminous objects. They defined the

redshift z as the ratio of the detected wavelength to the emitted wavelength

1 + z =
λobs

λemit

. (2.20)

A non-vanishing value of z was interpreted as the radial velocity of galaxies moving away

from the Earth. In 1927 Edwin Hubble published results about the relation between the

distance of galaxies and their radial velocity. He found that z is higher for more distant

galaxies and that the data can be described by a simple linear equation

dr

dt
= H0 · r (2.21)

where r is the distance to the observed galaxy and gradient H0 is the Hubble constant.

Subscript 0 denotes the present value of a quantity.

From this simple relation one can make the following two conclusions. First, the Hubble

expansion law fulfils the cosmological principle due to its translation invariant form

d(r − r′)
dt

= H0(r − r′).

Hence the expansion is homogeneous and a definition of an origin of the Universe is not

possible. Using a time-dependent expansion parameter R(t) the present expansion rate is

given by the Hubble constant

H0 =
Ṙ(t0)

R(t0)
, (2.22)

leading to

1 + z ≡ R(tobs)

R(temit)
(2.23)
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for the redshift. The second conclusion from the expansion law in Eq. (2.22) is that the

current expansion rate of the Universe leads to a particular time t0 in the past at which the

distances between galaxies vanished. This is the first experimental hint for the Big Bang and

(assuming that H0 is independent of time) defines the age of the Universe. In the EFL model

the age of the Universe can be estimated using Eq. (2.18) and the relation ρ = ρ0 (R/R0)3.

Then the age of the Universe is given by

t0 =
1

H0

·
1∫

0

1√
1− Ωm,0 − ΩΛ + Ωm,0/x+ ΩΛx2

dx. (2.24)

This equation is valid as long as the Universe is dominated by the matter contribution

(p = 0). The easiest estimation can be done in the Einstein-de Sitter model (ΩΛ = 0 and

Ωm,0 = 1) in which the age of the Universe is

t0 =
2

3
· 1

H0

. (2.25)

These two approximations show that the order of the age of the Universe is roughly given by

the Hubble time which is simply the reciprocal of the expansion rate. However, for different

models of history of the expansion the values for the age of the Universe differ. Today the

Hubble constant is given by

H0 = 100 h
km

s Mpc
(2.26)

where the uncertainties of H0 are hidden in little h. The current value for h from WMAP

measurements [3] and thus the estimation of the age of the Universe is

h = 0.71± 0.04

and

t0 = (13.73± 0.12) · 109 yrs

2.2.2 Cosmic Microwave Background Radiation

The standard model of cosmology is characterised by its high grade of isotropy and ho-

mogenity. The best evidence for these attributes of the Universe is the uniformity of the

temperature of the cosmic microwave background radiation. In 1965 Arno Pensias and

Robert Wilson first observed the CMBR when they tried to remove an excess of noise at a

microwave antenna. The observed spectrum of the CMBR is a perfect black body spectrum

since photons and charged particles were in thermodynamical equilibrium at the time of de-

coupling. Therefore its intensity follows the Planck radiation law with a maximal intensity at

a wavelength of about 1 millimeter. The redshift of the photons (z ≈ 1000) can be estimated
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Figure 2.3: Hubble’s velocity-distance relation. A linear correlation between velocity and

distance is shown. The slope of the lines gives the Hubble constant H0. The two lines

represent different ways of correcting the motion of the Sun. Figure taken from [28].

with the ionisation energy of atomic hydrogen which is around 3000 K leading to an actual

temperature of the CMBR of 2.73 K. Aside from the anisotropy caused by the motion of the

Earth this temperature is highly isotropic. This high isotropy leads to a difficult problem,

known as horizon problem, for the description of the formation of large scale structures in

the Universe within the framework of the standard model of cosmology. This problem was

solved with the introduction of a inflationary Universe (see Section 2.3).

However, the isotropy of the Universe is not perfect. Since 1992 measurements of the satellite

experiments COBE [29] and WMAP [3] allow the mapping of the anisotropy of the CMBR.

A sky map of the temperature fluctuations from WMAP is shown in Figure 2.4. The fluctua-

tions of the temperature correspond to fluctuations of density at the time of decoupling. The

temperature is higher in regions with higher density. There the photons decouple later from

the thermodynamical equilibrium and therefore have a smaller redshift z. The temperature

fluctuations can be expanded in spherical harmonics:

∆T

T
=
∞∑
l=2

l∑
m=−l

almYlm(θ, φ) (2.27)

Due to the motion of the Earth the dipole anisotropy of the temperature fluctuations is very

large and has to be subtracted. The maximal amplitude of the quadrupole component is

about 30 µK which is approximately 10−5 of the averaged temperature. The angular average

of the temperature fluctuations is defined as

Cl = 〈alma∗lm〉 =
1

2l + 1

l∑
m=−l

alma
∗
lm (2.28)
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Figure 2.4: Map of the temperature anisotropies in the CMBR measured with WMAP

[30]. The difference between black and red spots is approximately 10−5 of the averaged

temperature of 2.73 K.

The coefficients Cl are shown as a function of the multipole moment l in Figure 2.5. This

power spectrum of the CMBR anisotropies is characterised by several acoustic peaks which

correspond to the compression and rarefunction of the baryon fluid. The odd numbered

peaks are sensitive to the compression and therefore to the total energy density of the Uni-

verse. The even numbered peaks correspond to the maximal rarefunction of the baryonic

matter which explains how the far plasma rebounds under radiation pressure. The physical

reason for these peaks are acoustic waves which result from the competing actions of the

gravitational attraction and the interaction pressure in the plasma at the time of decoupling.

Therefore, the CMBR is a snapshot of the oscillating photon radiation field at the time of

decoupling. Assuming a model for the origin of the anisotropies the shape of the power

spectrum and the relative position and relative heights of the acoustic peaks can be used to

constrain the values of cosmological parameters.

The power spectrum is relatively flat for l < 20 which shows that the temperature fluctu-

ations are independent of the angular scale for angular differences larger than 10 degrees.

The position of the first peak at l ≈ 200 corresponds to an angular difference of approxi-

mately one degree which is the maximal distance between space regions which are in causal

connection at the beginning of the matter dominated phase. This is in good agreement with

a flat Universe (Ω = 1). For a closed Universe (Ω > 1) the first peak would be at larger

angles while an open Universe (Ω < 1) would be characterised by a first peak at smaller

angles. The height of the first peak relative to the plateau at small values of l is sensitive

to the total energy density of the Universe. This constraints the matter content Ωm of the

Universe. The height of the first peak is larger for smaller values of Ωm since this implies
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Figure 2.5: The angular power spectrum of the CMBR brightness fluctuations measured

with WMAP is shown. The angular size of the fluctuations is given on the x-coordinate at

the bottom while the multipole moment is given at the top. The power spectrum is flat for

l < 20. The first, dominant peak is located at l ≈ 200 which agrees with a flat Universe.

The baryonic matter content Ωb corresponds to the ratio of the ratio of the height of the

first to the height of the second peak. Figure taken from [31].

the radiation to mass ratio is larger at the decoupling. In this case the radiation pressure is

higher compared to the gravitational attraction which results in more modes for the acoustic

oscillations. The ratio of the heights of the first and the second peak determines the content

of baryonic matter Ωb in the Universe. The value of the ratio is larger for a larger content of

baryonic matter since in this case the height of the second peak relative to the first peak is

smaller. The reason for this effect is that a larger Ωb leads to a larger maximal compression

during the gravitational collapse which increases the height of the odd numbered peaks as

well.

The analysis of the power spectrum of the CMBR shows the relative correlations between

the different matter contributions to the totel energy density of the Universe. In order to

obtain the total values of the baryonic density, the DM density and the density of the vacuum

energy the WMAP observations have to be combined with other combinations. In [3] the

5-year WMAP results were combined with distance measurements from Type Ia supernove
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(SNe) [32] and baryon acoustic oscillations (BAO) [33], which are both sensitive to the ex-

pansion of the Universe. In the distance measurements with SNe a supernova is treated as a

standard candle with known luminosity which makes a comparison of the distance from the

Sun to the SN with expections using the Hubble constant H0 possible. If the SN is further

away than expected an additional acceleration of the Universe by dark energy occured. In

case of the BAO distance correlations in the distribution of galaxies are examined. In order

to explain this correlation a point-like density perturbation in the early Universe consisting

of DM, gas, photons and neutrinos has to be imagined. The neutrinos immediately began to

stream out of the density perturbation because of their high velocity and their low interaction

rate with other particles. Contrary to this, the DM stayed in the centre of the perturbation

since it is only interacting gravitationally and it has a low intrinsic velocity. The gas and

the photons were coupled to each other because the ionised gas formed a plasma and the

propagation of the photons was prevented by scattering processes with electrons. This led

to a spherical sound wave in the plasma with a sound velocity of about 57% of the speed

of light. At the photon decoupling epoch the photons became free and the plasma began to

combine into neutral atoms. Then the sound velocity dropped and the pressure wave slowed

down. At the time when all photons leaked out of the gas perturbation the pressure wave

stalled and an acoustic peak at a diameter of about 150 Mpc had been formed. The distance

of the acoustic peak from the centre of the perturbation only depends on the speed of sound

in the plasma. The ratio of the current distance of the acoustic peak to the distance of 150

Mpc at the time of the decoupling of the photons represents the current scale parameter.

In Figure 2.6 the correlation between ΩΛ and Ωm obtained from the 5-year results of the

measurement of the CMBR with WMAP and the distance measurements from SNe and BAO

are shown. The resulting cosmological parameters are given in Table 2.1.
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Figure 2.6: The contours of the 68%, 95% and 99.7% confidence level on ΩΛ and Ωm

from the observation of the CMBR, from distance measurements with Type Ia supernovae

(SNe) and baryon acoustic oscillations (BAO) are presented. The parameter w is assumed

to be −1. Figure taken from [32].
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Parameter Symbol Value + uncertainty - uncertainty

Total density Ωtot 1.0052 0.0064 0,0064

Equation of state w -0.972 0.061 0.060

Matter density Ωm h2 0.136 0.0037 0.0036

Dark matter density Ωχ 0.233 0.013 0.013

Physical dark matter density Ωχh
2 0.1143 0.034 0.0034

Baryon density Ωb 0.0462 0.0015 0.0015

Physical baryon density Ωb h2 0.02265 0.00059 0.0059

Light neutrino density Ων h2 < 0.0065 (95 % CL)

Hubble constant H0 70.1 1.3 1.3

Age of the Universe (Gyr) t0 13.73 0.12 0.12

Age of decoupling (yr) tdec 375938 3148 3115

Age of reionisation (Myr) tr 432 90 67

Redshift of matter-radiation equality zeq 3280 88 89

Redshift of decoupling zdec 1091.00 0.72 0.73

Redshift of reionisation zion 10.8 1.4 1.4

Table 2.1: Summary of the cosmological parameters estimated from WMAP data combined

with BAO and SNe observations [3].
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2.2.3 Primordial Nucleosynthesis

The third experimentally verified prediction of the hot Big Bang model are the abundances

of the light elements in the Universe. In 1946 Gamow introduced the idea of primordial

nucleosynthesis [34]. Shortly before the CMBR was discovered the first estimation about

the abundance of Helium (4He) which was synthesised by the Big Bang was published by

Hoyle and Taylor [35]. Unfortantely the complete calculation of the primordial abundances

is a non-linear problem of a reaction network and can only be solved numerically. In the late

sixties and early seventies of the twentieth century the first detailed codes to calculate this

reaction network became available. In 1973 Wagoner wrote the so-called standard code for

primordial nucleosynthesis [36]. Its numerical accuracy is better than 1% which is a great

success for the model. A very important input parameter for the calculations is the ratio

of neutrons to protons since nearly all neutrons in the Universe were used to form 4He, the

most tightly bound light nuclear state. Therefore, a simple picture can be used in order

to estimate the abundance of 4He. At very early times the Universe consisted of a quark

gluon plasma where the quarks and gluons were in thermodynamical equilibrium. As the

strong interaction rates became smaller than the expansion rate of the Universe the quarks

froze out of this equilibrium and formed protons and neutrons. These particles were again

in thermodynamical equilibrium maintained by the weak interactions

n ←→ p+ e− + ν̄e,

νe + n ←→ p+ e−,

e+ + n ←→ p+ ν̄e. (2.29)

At this epoch (t = 10−2 sec, T = 10 MeV) the energy density of the Universe was dominated

by the radiation contribution (w = 1/3). As in the radiation-dominated phase the scale

factor is R(t) ∝
√
t and by using the Hubble constant as well as the Friedmann equation it

is possible to get the time dependence of the temperature of the Universe

H2 =
Ṙ2

R2
=

1

4t2
=

8πG

3
ρ =

8πG

3
geff

π2

30
T 4

t =

(
16π3Ggeff

45

)−1/2

· 1

T 2
(2.30)

where geff is the number of the relativistic degrees of freedom. These can be calculated from

e±, γ and 3 neutrino generations leading to geff = 10.75. When the weak rates are much

larger than the expansion rate H the reactions in Eq. (2.29) establish equilibrium and the

ratio of neutrons to protons is roughly one.

Later (t ' 1 sec, T ' 1 MeV) the 3 neutrinos decouple from the plasma and the e± pairs

annihilate which leads to an increased photon temperature. Approximately at this time the
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rates of the weak interaction processes in Eq. (2.29) freeze out and the neutron-proton-ratio

is (
n

p

)
freeze out

= exp

(
−∆m

T

)
' 1

6
. (2.31)

Somewhat later (t = 1 to 3 min, T = 0.3 to 0.1 MeV) the neutrons and protons can form 2H

since the break-up of 2H by the heated photon bath becomes lower than the fusion rate. At

this time the neutron-to-proton ratio has decreased to about 1/7 by the decay of neutrons

and the number of relativistic degrees of freedom is geff = 3.36 because of the annihilation

of the e± pairs. The production of 4He via the chain reactions

2H(2H, n)3He(2H, p)2H,

2H(2H, p)3H(2H, n)4He and

2H(2H, γ)4He,

starts at this time. However, the photodisintegration of 2H is still very effective at these

temperatures which is the reason why not much 4He is produced. When the abundances of
4H, 3He and 3H are built up the available neutrons are quickly bound into 4He. Assuming

that all neutrons are bound in 4He its mass fraction can be estimated as

X4 '
4nHe
ntot

=
4(nn/2)

nn + np
=

2(n/p)

1 + (n/p)
. (2.32)

From the n/p = 1/7 ratio on finds X4 ≈ 0.25 in good agreement with measurements.

The predicted primordial abundances are a function of the baryon-to-photon ratio η =

nB/nγ. The reason is that during the primordial nucleosynthesis the Universe was radiation

dominated. The weak interaction rates in this epoch are proportional to the thermally

averaged cross section 〈σ|v|〉, which is a function of temperature, and the number density of

the concerning nuclear species nA(η,T) = (XA/A) ηnγ. For larger values of η the abundances

of the intermediate products 4H, 3He and 3H build up earlier and the 4He synthesis starts

earlier as well. Assuming a larger neutron-to-proton ratio in this case more 4He would be

produced via nucleosynthesis. Therefore, in addition to the only free cosmological parameter

η the primordial abundances are also sensitive to the physical parameters: the neutron half

life τ1/2(n) and the number of relavistic degrees of freedom geff . All weak interaction rates

depend on the neutron half-life, Γ ∝ T5/τ1/2(n), which is determined to be

τ1/2(n) = 10.5± 0.2 min.

An increase of τ1/2(n) decreases all weak interaction rates that interconvent neutrons and

protons and leads to a freeze-out of these particles at higher energies. According to Eq. (2.32)

this leads to a different estimation for the abundance of 4He. An increase of the second

parameter geff leads to a faster expansion rate at the same temperature. In this case neutrons
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Figure 2.7: The predicted primordial abundances for the various light elements as a function

of the baryon-to-photon ratio η. The primordial mass fraction for 4He YP is shown for

different values of geff and the error bar indicates the change of YP for ∆τ1/2(n) = ±0.2 min.

Figure was taken from [6].

and protons would freeze out of the thermodynamical equilibrium earlier, the neutron-to-

proton ratio would be larger and more 4He would be produced.

In Figure 2.7 the predicted primordial abundances is shown as a function of the baryon-to-

photon ratio η. More details about primordial synthesis can be found in [6, 7].

2.3 Inflation

As mentioned above the standard model of cosmology is very successful and confirmed

by observational measurements. However, there are still open questions which cannot be

answered by the standard model. The observation of the CMBR, one of the most important

verifications of the standard model, shows a very high smoothness of the Universe which,
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Figure 2.8: A schematic figure of the temperature potential VT (φ). Three different parts

are cleary visible. In part (a) a potential barrier is penetrated by quantum tunneling (if

necessary). In part (b) the potential is flat enough to satisfy the slow-roll conditions. This

is called the “slow-roll regime”. In part (c) φ oscillates rapidly around the minimum. Taken

from [6].

however, cannot be explained by the standard model. This problem is called the horizon

problem. On the other hand on small scales the Universe is full of inhomogeneities like

stars, galaxies, galaxy clusters, etc. The origin of these inhomogenities is not resolved in

the standard model of cosmology. In 1981 Guth proposed an inflationary scenario in the

very early Universe in order to solve these open questions [37]. Later in 1982 Linde [38]

and Albrecht and Steinhardt [39] published an extended model called slow-rollover inflation,

which represents our current understanding of the inflation of the Universe. The general idea

of inflation is that at a certain time in the early Universe the vacuum energy was the dominant

contribution to the energy density of the Universe. In this epoch small, smooth regions of a

size smaller than 1/H can easily grow up to the size of the current observable Universe. The

current model to describe inflation is based on spontaneous symmetry breaking (SSB) of a

scalar field φ which depends on the temperature of the Universe. The phase transition of

this symmetry breaking is characterised by an energy scale σ. If the temperature T is larger

than σ the temperature potential VT (φ) is minimal at 〈φ〉 = 0. When the Universe cools

down and the temperature reaches the critical temperature Tc in first order phase transition

a second minimum of the temperature potential at 〈φ〉 = σ 6= 0 is formed. Hence, the energy

density of the Universe is dominated by the vacuum energy and the scale factor R(t) increases

exponentially. A schematic figure of such potentials is shown in Figure 2.8. For temperatures

below the critical temperature the minimum at 〈φ〉 6= 0 is the global minimum. After the
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negotiation of any barrier between 〈φ〉 = 0 and 〈φ〉 = σ either by quantum tunneling or by

the disappearance of the barrier at some temperature below Tc, the motion of the scalar field

φ is described by

φ̈+ 3 H φ̇+ Γφφ̇+ V ′T (φ) = 0. (2.33)

This equation is analogous to the differential equation for a ball rolling down a hill with

friction. The course of the temperature potential shows that the motion of φ can be splitted

into two parts. At first φ moves slowly along the potential before it is captured and oscillates

around the new symmetry-breaking minimum. The first and the last term of Eq. (2.33)

are well known from classical mechanics, the second term describes the red shifting of the

momentum of φ and the third term descibes the oscillation of φ around 〈φ〉 = σ. Next these

two different motions of the scalar field are considered in more detail.

In the first regime, the so-called slow-roll regime, VT (φ) is quite flat and the kinetic energy

of φ is much less than its potential energy. The motion of φ is dominated by the friction, φ̈

is negligible and Γφ φ̇ is not operative. Therefore, the equation of motion is reduced to

3 H φ̇ = −V ′(φ). (2.34)

This means that the friction produced by the expansion of the Universe is equal to the

acceleration produced by the slope of the potential. Therefore, in the slow-roll regime the

motion of φ is uniform, which can only be obtained if a further acceleration of φ is negligible.

In order to neglect φ̈ the following conditions, the so-called slow-roll conditions, are required

|V ′′(φ)| � 9H2 ' 24π
V (φ)

m2
Pl

,

|V
′(φ)mPl

V (φ)
| �

√
48π. (2.35)

In the first condition the kinetic energy of φ needs to be much smaller than the potential

energy, so that

H2 ' 8π

3m2
Pl

V (φ). (2.36)

For any potential which is flat enough to satisfy these two conditions the scale factor R(t)

grows very strongly until φ is captured and oscillates around the minimum.

In the second regime, the rapid oscillation regime, φ performs damped sinusoidal oscillations

around 〈φ〉 = σ with a frequency ω2 = V ′′(σ)� H2. The equation of motion is given by

φ̈+ 3 H φ̇+ Γφ φ̇ = 0 (2.37)

where the minimal potential energy is set to zero. These oscillations correspond to a con-

densate of zero-momentum φ particles of mass mφ = V ′′(σ), which decay due to quantum

particle creation into lighter particles that couple to φ. The damping of the oscillations

which produces lighter particles leads to a reheating of the Universe called defrosting phase.
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The decay width of the φ particles is represented by Γφ. Assuming that φ decays into two

very light fermions which couple to φ the decay width is given by

Γφ =
h2mφ

8π
(2.38)

where the coupling strength is given by h. For t ' Γ−1
φ the φ particles begin to decay rapidly

which is the beginning of the radiation-dominated phase in the standard model of cosmology.

For further reading about the open questions in the standard model of cosmology and infla-

tion see [6, 7].

2.4 Structure formation

A closer look at the Universe shows that at small scales it is not homogenous at all. For

instance, in galaxy clusters the density is 102 to 103 times higher than the averaged density

in the Universe. In galaxies the density is even higher - approximately 105 times the aver-

aged density of the Universe. On the contrary the isotropy in the CMBR and the galaxy

distribution show that the Universe is smooth at large scales.

The question is why the Universe looks different for small and large scales. Cosmologists

have a general picture for what happened during the evolution of the Universe in order to

produce such a difference. In this scenario small, primeval density inhomogenities grew via

gravitational instability into large inhomogenities like galaxies, galaxy clusters, superclusters

and voids we observe today. These density fluctuations are defined as

δ(~x) ≡ δρ(~x)

ρ̄
=
ρ(~x)− ρ̄

ρ̄
, (2.39)

where ρ(~x) is the local density at the position ~x and ρ̄ is the averaged density of the Universe.

Since δ(~x) is a scalar quantity it is possible to use comoving or physical coordinates. The

Fourier expansion of the fluctuations is given by

δ(~x) =
∞∑

m,l,n=−∞

exp(−i~k · ~x) δk →
V

(2π)3

∫
Vol

δk exp(−i~k · ~x) d3k, (2.40)

δk = V −1

∫
Vol

δ(~x) exp(i~k · ~x) d3x, (2.41)

where V = L3 is the volume of the fundamental cube and ~k is the wavenumber for the modes

enclosed in this cube. For values of L comparable to the length scales of the problem the

spectrum of modes within this cube turns to a discrete spectrum with discrete wavenumbers

for the space coordinates. The comoving wavelength of a density fluctuation is given by

λ =
2π

|~k|
=

2π

k
. (2.42)
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The physical values of the wavenumber and wavelength are kphys = k/R(t) and λ = R(t) · λ.

In the radiation-dominated phase of the Universe the density inhomogeneities are small as

growing is inhibited by the radiation pressure of the photons. Once the Universe is dom-

inated by the matter component the density fluctuations start to grow via the Jeans, or

gravitational, instability (see Sect. 2.4.1) into large inhomogenties. So the time of matter-

radiation equality is the initial epoch of structure formation. In order to find a suitable

model for structure formation the initial conditions at that time have to be known. There-

fore, it is important to know the total amount of non-relativistic matter in the Universe

and its composition (cosmological constant, baryonic matter, Dark Matter, etc.). For a Uni-

verse dominated by Cold Dark Matter (CDM) consisting of WIMPs the DM decouples from

radiation first while the baryons are still strongly coupled to the photons. So the density

inhomogeneities in DM start to grow while the baryonic inhomogeneities cannot grow un-

til the baryons decouple from the radiation. The structures formed by DM are small and

dense because the DM particles are slow and massive which means that their gravitational

energy is dissipated very fast. These small structures grow via hierarchical clustering to

larger structures. This case is called bottom-up scenario. On the other hand, when DM

consists of light, relativistic particles, so-called Hot Dark Matter (HDM), like neutrinos the

baryonic matter decouples before the DM component. However, after the decoupling of the

neutrinos they cannot dissipate their gravitional energy since they are very light, fast and

weakly interacting. So they form larger and less dense structures than the CDM. Smaller

structures are formed by the collapse of these large structures which is the reason why this is

called top-down scenario. A further initial condition which has to be known is the spectrum

of the primeval density perturbations. Usually it is expected that the spectrum is isotropic

which means that it only depends on the wavenumber k. Since there is no definite model for

the primeval fluctuations it is conventional to use a simple power law in order to parametrise

the spectrum of primeval density fluctuations

|δk|2 = A · V · knp , (2.43)

where np is the primeval power spectrum index. If the density fluctuations are Gaussian, as

expected from inflationary models, any statistical quantity can be specified in terms of such

a spectrum. In this case the density contrast is given by(
∂ρ

ρ

)
=

1√
V
· k

3/2 · |δk|√
2π

= A ·M−α. (2.44)

The mass of the density spectrum is characterised byM . The power index α can be calculated

with α = 1/2 + np/6. A special power spectrum with α = 1 (np = 3) is the Harrison-

Zel’dovich spectrum. This spectrum is predicted by inflationary models of the expansion

of the Universe and describes density fluctuations with constant curvature. The type of

the density fluctuations at the time of matter-radiation equality is also important for a

structure formation model. It has to be distinguished between a curvature (or adiabatic)
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type which corresponds to fluctuations in the spatial curvature and an isocurvature type

which corresponds to local variations in the equation of state. Here, the isocurvature type

is explained in more detail. In this case pressure variations in the equation of state lead

to density perturbations. Generally the growing of an overdense region is splitted into two

parts
δρ

ρ
∝

{
R δρ/ρ . 1 (linear regime)

Rn(n & 3) δρ/ρ & 1 (non− linear regime).

In the linear regime the density distribution is still small and expands with the expansion

rate of the Universe. When it enters the non-linear regime it separates from the expansion of

the Universe and evolves like a small, separated and closed Universe with its own Friedmann

equation. After expanding to the maximal radius it recollapses under formation of a gravi-

tionally bound object. In an open Universe a small overdensity is insufficient to make such

regions supercritical and they will expand eternally. On the other hand, a closed Universe

with a total energy density bigger than unity will collapse before the overdensities become

supercritical. Therefore a near-critical Universe is a condition for this simple explanation

of structure formation in the Universe. The collapse of the overdensity is described by the

spherical collapse model. There the overdensity shrinks by a factor of two during the collapse

and increases its density by a factor of eight.

N-body simulation of the structure formation of the Universe [40, 41] show that such for-

mation processes result in a filamentary cosmic DM distribution as shown in Figure 2.9.

2.4.1 Jeans instability

In this section a short overview about the Jeans (or gravitational) instability is given. In this

model the expanding Universe is considered as a perfect, expanding fluid. The Newtonian

motion of a perfect fluid is described by the equation of continuity, the Navier-Stokes equation

and the Poisson equation

∂ρ

∂t
+ ~∇ · (ρ~v) = 0,

∂~v

∂t
+ (~v · ~∇)~v +

1

ρ
~∇p+ ~∇φ = 0,

∇2φ = 4πGρ. (2.45)

Here, ρ is the matter density, p the matter pressure, ~v the local fluid velocity and φ the

gravitational potential. In an expanding Universe these values are given by

ρ = ρ(t0) ·R−3(t)

~v =
Ṙ

R
~r

~∇φ =
4πGρ

3
~r, (2.46)
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Figure 2.9: An example of the filamentary structure of the mass distribution of the Uni-

verse. Figure adapted from [42].

where R(t) is the scale parameter of the usual Friedmann equation. Assuming that the

perturbations of these values are adiabatic, i.e. that there are no spatial variation in the

equation of state, in first order the perturbations satisfy Eq. (2.45). With the Fourier

expansion of ρ, ~v and φ, shown in Eq. (2.40), the first-order equations of (2.45) become

d(R~v⊥(~k))

dt
= 0,

~v||(~k) =
R(t)

ik
δ̇k +

const

R(t)
,

δ̈k + 2
Ṙ

R
δ̇k +

(
v2
sk

2

R2
− 4πGρ0

)
= 0, (2.47)

where ~v⊥ is the rotational and ~v|| the irrotational (∇×~v|| = 0) component of the perturbated

velocity field ~v(~k). The unperturbated density of the fluid is characterised by ρ0 and the

sound velocity in the fluid is given by v2
s = (∂p/∂ρ)adiabatic. These equations show that the

rotational modes are independent of the matter perturbations. So, for structure formation

only the irrotational modes are important. The Poisson equation in (2.47) turns out to be a

wave equation and the Jeans wavenumber k2
J = 4πGρ0R

2/v2
s separates gravitationally stable

and unstable modes.

For k � kJ the solutions are gravitationally stable and oscillate like a sound wave with

decreasing amplitude. The interesting solutions for structure formation are the gravitation-

ally unstable solutions with k � kJ since these are the growing modes. On the assumption
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that the growth of density perturbations starts at the matter-radiation equality and that

the Universe is spatially flat the Poisson equation has two independent solutions - a growing

mode and a decaying mode. A density perturbation can be expressed as a superposition of

these two solutions though the growing component becomes more important with increasing

time.

The growth of density fluctuation is well described by Newton’s gravitational theory as long

as the modes are within the horizon of the Universe λphys � H−1. For wavelengths of mag-

nitude of H−1 or higher the description with Newton’s theory is no longer valid and has to

be replaced by Einstein’s theory of general relativity. In this case both the Universe and

the density fluctuations are described by similar Friedmann models with the same expansion

rate. The Universe is assumed to be spatially flat (k = 0) whereas the density fluctuation is

assumed to be spatially spherical with positive curvature (k > 0) and higher density. So the

density perturbations are treated as a separated, closed Universe. Then the density contrast

between these models is given by the curvature of the density perturbation

δ =
ρ′ − ρ0

ρ0

=
k/R2

8πGρ0/3
, (2.48)

where the overdensity is characterised by ρ′. As discussed in Section 2.2 in the radiation

dominated epoch the matter density ρ is proportional to R−4 which means that the density

constrast is proportional toR2. On the other hand, in the matter dominated phase the matter

density is proportional to R−3 and thus the density contrast is proportional to R. Therefore,

in the framework of general relativity density fluctuations grow with a time-dependence of

δ ∝ t for the radiation dominated epoch and δ ∝ t2/3 in the matter dominated phase.

Further information about structure formation and the Jeans instability can be obtained

from [6,7, 43].

2.5 The Milky Way

Galaxies in the Universe have been observed since the development of the first telescopes. In

those days they were called nebulae because they appeared as fuzzy objects on the night sky.

So the early observed nebulae like the CRAB nebula are called after the star constellation

where they appear. Since 1920 the existence of other galaxies has been established. In

1936 Edwin Hubble introduced a scheme in order to categorise galaxies in his book ”The

Realm of the Nebulae” [44]. According to this scheme galaxies can be sorted in four different

categories: elliptical, lenticular, spiral and irregular. Elliptical galaxies are usually round,

smooth and without any features. They can be very large with a radius of a few hundred

kiloparsec2 (kpc) and their luminosity can vary from 10−1 to 100 times the luminosity of

2Parsec (pc) is an abbreviation for parallax second. One parsec is the distance perpendicular to the

ecliptic (rotation plane of the Earth around the Sun) for which the radius of the orbit of the Earth appears

under one arcsecond. It holds 1 pc = 3.26 light years.
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(a) Local Group (b) Satellites of the Milky Way

Figure 2.10: A summary of the galaxies in the LG and the Galactic satellites is given.

(a) The Local Group is composed of a large number of galaxies, even though its mass

is dominated by the two largest constituents - the MW and the Andromeda galaxy. The

Triangulum galaxy is the third largest galaxy in the LG with a mass of about 2% of the

mass of the MW. (b) A summary of the dwarf galaxies orbiting the Galactic centre of the

MW discovered until 1994 is shown. In this figure the Sagittarius dwarf galaxy, which was

discovered in 1994, is the nearest Galactic satellite. This is slowing ripped appart by the

MW. Figures taken from [45].

the MW. Lenticular galaxies consist of a rotating galactic disc and a rotating bulge but

a spiral structure of the disc does not exist. Unlike to the discs of lenticular galaxies the

galactic discs of spiral galaxies is structured with bright spiral arms which are outlined by

clumps of bright stars. The spiral galaxies themselves can be further sorted by properties

like luminosity of the galaxy or whether it has a central bar or not. The irregular categorie

contains all galaxies which do not fit in the other categories. Today it is used only for small

blue galaxies like dwarf galaxies without any organised structure.

The Milky Way (MW) is a typical spiral galaxy embedded in the local galaxy cluster, called

Local Group (LG). The LG is an accumulation of galaxies within a distance of about 5 – 7

million light years, which are gravitationally bound to each other. About 95% of the visible

matter in the LG is located in the MW and the Andromeda galaxy. The remaining galaxies

are much smaller dwarf galaxies. A summary of the galaxies in the LG is shown in Figure

2.10a. The MW itself is surrounded by several dwarf galaxies as shown in 2.10b. The two

nearest satellites are the Sagittarius dwarf [46] and the Canis Major dwarf [47] which both

are ripped apart by tidal forces from the gravitational potential of the MW.

The Galactic bulge in the central region of the Galaxy is the gravitational centre of the

Galaxy where gas density and the number density of stars is highest. The centre of the
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Galaxy is believed to consist of a supermassive black hole of a mass of approximately 106

M� where M� = 1.99 · 1030 kg. The most prominent feature of the MW is the thin and

roughly circular Galactic disc which is visible as a luminous band on the night sky. The spiral

structur consists of four large spiral arms: The Perseus arm, the Sagittarius-Carina arm, the

Norma arm and the Crux-Scutum arm. The Sun is located at a Galactocentric distance of

about 8.3 kpc in the Orion-Cygnus arm (local arm) which is a small lateral arm besides the

Sagittarius-Carina arm. The spiral structure of the Galactic disc is summarised in Figure

2.11. The study of the stellar population of the outer disc [18] based on the observation

of the fields at the Galactic anticentre with the Sloan Digital Sky Survey (SDSS) showed

a ring structure outside the main spiral structure of the Galactic disc. This ring, which is

unconnected to the spiral structure in the inner disc, is called outer ring or Monoceros ring.

A possible origin of this structure could be the tidal disruption of a nearby orbiting Galactic

satellite which is hidden within the Galactic disc. Further investigations on the ring structure

showed it is localised to a Galactocentric distance of ∼ 15 to ∼ 20 kpc and has a scale height

of about 750 pc [19]. However, the origin of the structure could not be ascertained. Shortly

after that the remnants of a very nearby dwarf galaxy were discovered as an overdensity of

M-giant stars in the Canis Major constellation [47]. The tidal stream of the disruption of the

Canis Major dwarf galaxy is therefore believed to be a likely explanation of the Monoceros

ring.

The radial dimension of the Galactic disc is approximately 20 kpc leading to a diameter of

roughly 120,000 light years. Its density distribution drops exponentially with Galactocentric

distance with a scale radius of 2 – 3 kpc. Furthermore, the disc is splitted into two parts

- a thin and a thick disc. The star densities in both parts drop exponentially in vertical

direction. The scale height for the thin disc is between 300 and 400 pc and for the thick disc

between 1000 and 1500 pc. Nearly 95% of the disc stars and all of the young, massive stars

are in the thin disc. The stars in the thick disc are older and poorer of heavy metals than the

stars in the thin disc. The interstellar room between the stars is filled with interstellar gas

and dust. These components lie within a thin layer of 100 pc from the midplane where the

height scale increases with the galactocentric distance. The interstellar gas, however, is not

a homogeneous medium. On small scales (smaller than about 1 kpc) it can be considered as

a multiphase medium of a smooth gas component and a component consisting of gas clouds.

These gas clouds host smaller gas clumps with even smaller subclumps. These hot and

dense gas regions are the places where stars are born [48]. This multiphase gas distribution

is analogous to the expected density distribution of the Dark Matter as will be discussed in

Section 2.6. The composition of the interstellar gas consists of three components: ionised

gas, neutral atoms and small molecules. Ionised gas consists of protons (in literature often

referred to as ionised hydrogen (HII)), electrons and ionised “metals”3 like oxygen, nydrogen

and sulfur. Atomic hydrogen (HI), helium, carbon and oxygen are examples for neutral atoms

and CO, HCN and CS for small molecules. All those components emit radiation either via

3In cosmology all elements except of hydrogen and helium are called “metals”.
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Figure 2.11: An illustration of the spiral structure of the Milky Way.

recombination, fine structure transition, hyperfine structure transition or vibration radiation.

Measurements of the redshift of this radiation are used to determine the velocity distribution

in the Galactic disc, called rotation curve of the MW.

2.5.1 Coordinate systems in the Milky Way

For the description of our Galaxy the spatial coordinates of Galactic objects have to be

defined. In order to specify a special point in the galaxy three different coordinate system

can be chosen: A spherical coordinate system centred at the Earth, a spherical system centred

at the Sun or a cylindrical system centred at the GC of the MW. All three coordinate system

will be shortly explained but only the last two systems were used in the analysis.

A spherical coordinate system centred at the Earth is quite easy to construct since it is just

an extension of the terrestrial coordinate system with the latitudes δ and the longitudes α.

The latitude can be measured with a telescope or a Sextant if the own latitudinal position

is known. To measure the longitude the exact time of the measurement has to be known

because of the rotation of the Earth. One degree in α corresponds to 15 minutes4. For

the measurement of the distance parallaxe methods, photometric methods or spectrometic

methods can be used. In such a coordinate system the rotation plane of the Sun around the

Earth, called ecliptic, is δ = 23◦27′ inclined to the equatorial plane of the coordinate system.

4The solution of the longitude problem of the seafaring was solved in Greenwich, England, through the

development of a clock which was possible to get over problems of a long journey on sea.
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Figure 2.12: Transformation between the coordinate system centred at the Sun and system

centred at the GC.

The Sun crosses this equator twice a year - on March 21st and September 23rd. These cross

points are called equinox. Also the Galactic plane is inclined with respect to the equator of

the coordinate system which is the reason why the disc of the MW is visible equally on the

northern and southern sky. The GC is located at α = 17h42m24s 5, δ = 27◦24′. These values

are dependent on the year of observation since the rotation axis of the Earth changes slowly.

Therefore, one has to take a reference for the coordinate system. Astronomers typically use

the vernal equinox of the Sun of the year 1950, 2000 or the current year.

The spherical coordinate system centred around the Sun is quite similar to the system centred

at the Earth. Here the longitudes are labelled with l and the latitudes are called b. The

connection line between the Sun and the GC is defined as l = 0 and the Galactic plane defines

b = 0. Longitudinal angles are in the range −180◦ ≤ l ≤ 180◦ and latitudinal angles change

between −90◦ ≤ b ≤ 90◦. The longitudes increase counterclockwise and negative (positive)

latitudes describe the region below (above) the Galactic disc. The region 0◦ < l < 180◦ is

sometimes referred to as northern Galaxy because it is visible on the northern hemisphere

of the Earth. Consequently, the region −180◦ < l < 0◦ is called southern Galaxy.

The cylindrial coordinate system centred at the GC is based on the coordinates R, φ and z.

The radius R is the Galactocentric distance of an object, z its height above the disc and φ

its azimuthal angle with respect to the connection line between Sun and the GC.

The description of the position of a Galactic object with respect to the GC and the Sun

is very important and necessary as density models of the Galaxy is always centred at the

GC. However, oberservations of the properties of an Galactic object are always done from

the position of the Earth. Figure 2.12 shows that the z and y coordinates are equal for

5For this representation the vernal equinox of the Sun in 1950 is taken as zero longitude. The angle is

increasing in counterclockwise direction and 24 hours describe a complete circle.
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both systems but the x coordinate is different. Within the Galactic plane the Galactocentric

distance of a Galactic object can be calculated with the measured longitude φ, the distance

to the Sun r and the distance R0 between the Earth and the GC using the law of cosine.

This transformation can be used to prove a chosen density distribution for the MW with

experimental observations as will be described in Chapter 3. Further reading about Galactic

coordinate systems can be done in [48].

2.6 Dark Matter

In the previous chapter we saw that the baryonic energy density is only about 4% of the

total energy density of the Universe. The measurement of this value was obtained in the last

quarter of the twentieth century. However, first hints on invisible matter were already found

in the 1930s. In 1932 Jan Oort found that the density of matter near the Sun obtained from

the kinematics of stars is larger than the density derived from the counting of stars [49].

This difference was explained with an additional amount of Dark Matter which was still

not visible yet. One year later Fritz Zwicky observed the kinematics of the COMA galaxy

cluster [1]. At this time measurements of the velocity distributions of the galactic disc,

called rotation curve, became available for several galaxies. Zwicky used measurements of

the rotation curves for seven galaxies in the COMA galaxy cluster and discovered that their

rotation curves differ from the mean velocity of the cluster itself. With a crude approximation

of the cluster radius he was able to calculate the total mass of the cluster. He estimated

the total mass of the cluster obtained from the rotation velocities of the galaxies is about

400 times higher than the total mass derived from the observation of the luminous matter.

Later in 1974 Ostriker and Einasto [50,51] independently proposed that even isolated spiral

galaxies are located in giant haloes which are several times larger than the radius of the

luminous matter and contain most of the total mass of the galaxy. Eight decades after the

establishment of DM in cosmological science its nature is still unknown. Candidates can be

separated into baryonic and non-baryonic DM. Baryonic DM consists of small solid objects

(dust), stellar objects which did not reach the lower mass limit for hydrogen burning of 0.08

M� (brown dwarfs) and stellar remnants like white dwarfs, neutron stars and black holes.

However, the baryonic DM is still a part of the baryonic matter which is only a small part

of the total matter of the Universe. So most of the DM is non-baryonic matter which can

be further separated into HDM and CDM. The different candidates of non-baryonic matter

are discussed in the following section.

2.6.1 Dark Matter Candidates

As its nature is completely unknown all possible explanations for DM need to be checked.

The search for possible DM candidates is still an interesting field of science and all analyses
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which consider DM have to choose at least one of these candidates. Reviews on this issue

are given in the publications [52–54].

Modified Newton Dynamics (MOND)

The concept of DM was introduced after the observation that kinematics of objects in grav-

itationally bounded systems like galaxy clusters or galaxies are not consistent with the

kinematical predictions from the observation of the visible matter. Another way to explain

this difference without introducing DM is the introduction of violations to Newton’s law or

the theory of general relativity [55, 56]. However, it turned out that it is difficult to find

modifications which change gravity on all scales where the DM problem occurs. That is why

this option of solving the DM problem is not satisfactory since the “standard” theory of

gravitation describes a large amount of gravitational effects with enormous success.

Baryonic Dark Matter

The power spectrum of the CMBR is sensitive to the total energy density as well as to the

baryonic matter content of the Universe. The evaluation of the measured spectrum shows

that the baryonic matter content is much lower than the total matter content leading to

the assumption that most of the matter in the Universe is non-baryonic. However, even the

baryonic matter content is higher than the contribution of luminous baryons so baryonic

DM also exists. These “hidden baryons” may be interstellar or intergalactic gases, which

can be observed by the absorption of light from distant quasars, or massive and compact

halo objects, so-called MACHOs, in the halo of the Galaxy. The observation of such objects

is quite difficult. For this purpose a clever method is used where the intensity of the light

of far away stars (located in the Large Magellanic Cloud or the Small Magellanic Cloud) is

measured during the transit of a MACHO. Then the intensity of the star light rises because

of the microlensing effect of the MACHO [57]. Unfortunately, it can not be detected which

object has produced the lensing effect. Also very low-mass stars (M ≈ 0.1 M�) can produce

such lensing effects. In [58] it was shown that it is possible to identify events from stars

down to a mass of about 10−5 solar masses.

Non-baryonic Dark Matter

Most of the DM density in the Universe is non-baryonic matter. Theoretical particle physics

provides a large number of possible candidates for this matter contribution. Not all of these

candidates are considered here but four of the most discussed particles will be explained.

Massive neutrinos

In contrast to all other particles provided by theoretical particle physics to be a DM candidate
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the advantage of neutrinos is that they are known to exist. In the standard model of particle

physics (SM) neutrinos are treated to be massless which is consistent with direct kinematical

measurements. However, the observation of the solar neutrino flux by KAMIOKANDE [59],

SNO [60], K2K [61] and KARMEN [62] gives evidence that neutrinos can oscillate in flavour.

This effect does not seem to be solveable by modifications of the standard solar model [63]

which indicates that neutrinos must have a non-zero mass. The best laboratory upper limit

on the electron neutrino mass so far comes from tritium β-decay experiments [64]

mνe < 2.05 eV (@ 95% C.L.). (2.49)

Upcoming experiments like KATRIN [65] will reach a higher sensitivity on the electron

neutrino mass so that a more precise value is expected within the next years. However, in

combination with the small mass differences obtained from neutrino oscillation observations

a sum of all neutrino masses of about 6 eV can be obtained [66]. The cosmological mass

range allowed for this sum is more restrictive. From the observation of the CMBR with

WMAP a sum of the neutrino masses is determined to be [3]

3∑
i=1

mν,i = 0.67eV. (2.50)

Massive neutrinos are predicted to have been thermally produced in the early Universe and

decoupled at an energy of about 1 MeV. In this case their relic abundance depends on the

sum of the different flavour masses

Ων h
2 =

3∑
i=1

mνi

93eV
. (2.51)

With the upper mass limit from Eq. (2.50) this leads to a relic neutrino density of Ωνh
2 . 0.007.

This shows that the major part of the DM density in the Universe can not consist of massive

neutrinos.

Axion

The axion is also often discussed as a DM candidate. In particle physics it was introduced in

order to solve the CP violation of the strong interaction. When QCD was introduced as the

fundamental gauge theory of the strong interaction it was found that the non-perturbative

effects should induce a large CP violation in the strong interaction. It was Peccei and

Quinn [67] who introduced an additional spontaneously broken, global symmetry in order

to solve the strong CP violation problem. The Goldstone of this broken symmetry is the

axion. The upper limit on its mass obtained from laboratory searches, stellar cooling and

the dynamics of the supernova 1987 A is ma . 0.01 eV [54]. This mass is very low but

the coupling of the axion to ordinary matter particles is so weak that it was never in the

thermal equilibrium and it behaves like CDM today. The calculation of its relic abundance is
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uncertain because it depends on assumptions on the production mechanism. Nevertheless in

the axion mass range between 10−5 and 10−2 eV the axion passes all observational constraints.

Neutralino

One of the most promising DM candidates is provided by supersymmetric extensions of the

SM. In supersymmetry (SUSY) new particles at the energy scale of about 1 TeV are in-

troduced in order to solve the drawbacks of the SM [68]. In the minimal supersymmetric

standard model (MSSM) each SM particle is associated with a supersymmetric partner with

different spin. The superpartners of SM fermions are bosons and vice versa. The nomen-

clature for the new particles is a prefix ”s” for the superpartner of the SM fermions (scalar

fermion; e.g. selectron, stau, etc.) and a suffix ”ino” for the superpartner of the SM boson

(e.g. photino, Wino, Zino, etc.). Furthermore, a new multiplicative quantum number, the

R-parity, is introduced for the interaction between SM particles and SUSY particles. For

SM particles the R-parity is equal to 1 while for SUSY particles it holds R = −1. Assuming

R-parity conservation SUSY particles can only be produced and destroyed in pairs and the

lightest supersymmetric particle (LSP) is stable. In the minimal Supergravity (mSUGRA)

models, in which SUSY is broken via gravity mediation between the visible and the hidden

sector, the neutralino is the LSP. It is a mix of the neutrally charged photino, Zino and

the neutral Higgsinos. It is commonly assumed that the neutralino was produced in a large

number and that it was in thermal equilibrium in the early Universe. During the expansion

of the Universe its number density decreased until its interaction rate became smaller than

the expansion rate of the Universe. Then the neutralino froze out of the thermal equilibrium

and produced a relic density. The neutralino is a Majorana particle and is assumed to be

non-relativistic at the time of freeze out. The annihilation products are fermion and gauge

boson pairs. The attractivness of the neutralino as a DM candidate comes from several

particle properties: It is electrically neutrally charged so that it does not absorb or emit

light, it is stable so that it survived the long time from the freeze out until the present

day, it couples to gauge bosons and its mass explains the measured relic density for a large

SUSY-parameter range [68].

WIMPzilla

Assuming that the DM particle is a thermal relic of the early Universe the maximal mass

of the DM candidate is about 340 TeV. This is called unitary bound and was predicted in

1989 by Griest and Kamionkowski as a consequence of the maximal thermal annihilation

cross section [69]. The current unitary bound from measurements of the cosmic microwave

background is 34 TeV. WIMPzillas are superheavy DM candidates with masses larger than

1010 M�. Consequently these particles were not in thermal equilibrium during freeze-out

and therefore their relic abundance does not dependent on their annihilation cross section.
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The WIMPzillas can be produced in several ways. Among others it can be produced via

gravitational production between the inflationary and the matter-dominated Universe 6 or

via the oscillation of the inflation potential during the defrosting phase after the inflation.

A more detailed description of these production scenarios can be found in [70].

Kaluza-Klein Dark Matter

In 1921 Kaluza tried to unify electromagnetism with gravity by the introduction of addi-

tional components to the metric tensor [71]. This marks the birth of the idea of additional

dimensions which appear at high energies. These theories are called unified extra dimension

(UED) theories. In most of these UED models the ordinary 3 + 1 space-time is named

“brane” which is embedded in the expanded 3+δ+1 space-time called bulk. In the simplest

UED model focussed on DM a flat extra spatial dimension is introduced. The SM particles

can propagate in this extra dimension and therefore obtain an additional contribution to

their kinetic energy. So, for every bulk field a set of Fourier expanded modes exist which

is called Kaluza-Klein (KK) states. In the brane the KK states appear as a tower of states

with masses increasing with the mode number. Each of these new states contains the same

quantum numbers. The lightest Kaluza-Klein particle (LKP) is associated with the first KK

excitation of the photon refered to as B(1). With a mass of the LKP between 400 and 1200

GeV the observed DM quantities can be explained. The results of the LKP calculations are

sensitive to the spectrum of the first excitation of other particles. Coannihilation with the

next to the lightest KK excitation (NLKP) is possible as well. So, the spectrum of the LKP

is calculated to one-loop level so far. Unlike to the neutralino the LKP has bosonic character

so there is no helicity suppression in its annihilation. So the annihilation into fermion pairs is

more efficient than in the case of the neutralino. For further reading about extra dimensions

and Kaluza-Klein particles see [72].

2.6.2 Relic Density

From the WMAP microwave background experiment, combined with other sets of data,

that the relic density of DM in units of the critical density is Ωχ h2 = 0.1143 ± 0.0034.

A particle physics model for the describtion of DM has to fulfill this constraint. DM is

likely consist of WIMPs. Their relic density was formed when these particles froze out of

the thermodynamical equilibrium. In this epoch the time evolution of the WIMP number

density nχ can be approximated with the Boltzmann equation

dnχ
dt

= −3Hnχ − 〈σv〉 · (n2
χ − n2

χ,eq), (2.52)

6This production is similar to the generation of the density perturbations which are the starting point

for the present large scale structures.
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where H is the expansion rate of the Universe, 〈σv〉 the thermally average annihilation cross

section of the WIMP particle and nχ,eq is the number density in the thermodynamical equi-

librium. So the Boltzmann equation depends on the particle physics model which describes

the interactions of the WIMP particles. Consequently, the problem of solving the Boltz-

mann equation is actually a problem of the determination of the annihilation cross section.

However, using some simplified analytical considerations of the time evolution of the WIMP

number density without specifing a model for the interactions the annihilation cross section

of the WIMPs can be estimated. In thermal equilibrium the term proportional to the annihi-

lation cross section cancels out and the time derivation of the number density is proportional

to the expansion rate of the Universe H = Ṙ/R leading to nχ ∝ R−3. At early times when

the temperature of the Universe was higher than the WIMP mass the scale radius R ∝ 1/T

leads to nχ ∝ T 3. Consequently the annihilation rate

Γ = nχ · 〈σv〉 (2.53)

decreases with T3 as well. When the annihilation rate Γ drops below the expansion rate of

the Universe the WIMPs cease to annihilate. Then they fall out of the equilibrium and form

a constant density, called relic density, which is given by

Ωχh
2 =

mχnχ
ρc

≈
(

3 · 10−27cm3s−1

〈σv〉

)
. (2.54)

Using WMAP measurements the cross section is roughly 3 · 10−26 cm3 s−1. The numerical so-

lution of the Boltzmann equation is quite difficult since many different annihilation channels

(and eventually coannihilation processes) have to be taken into account for the calculation

of the annihilation cross section. Two program codes which numerically calculate the relic

density within the framework of supersymmetric particle physics are Darksusy [73] and

micrOMEGAs [74]. A numerical solution of the Boltzmann equation is shown in Figure 2.13.

2.6.3 Annihilation of Dark Matter particles

The constituents of DM are still unknown. Nevertheless, theories of structure formation in

the Universe give hints for the properties of a DM particle. In the framework of supersym-

metrical particle physics the neutralino is a promising candidate for the WIMP. This particle

is a Majorana particle with half-integer spin. In most of the supersymmetric particle models

the neutralino is the lightest supersymmetric particle (LSP) which is stable if R-parity is

conserved. A neutralino pair can annihilate into two SM particles. These annihilation prod-

ucts can be leptons, baryons or high energetic photons. The direct detection of electrons and

protons is not possible since they immediately disappear in the sea of the cosmic radiation

particles. However, the positrons, antiprotons and photons can be distinguished from the

Galactic background. The Feynman diagrams of the main annihilation channels and their
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Figure 2.13: Numerical solution of the Boltzmann equation. Figure taken from [6].

Figure 2.14: The main neutralino annihilation channels and their dependences on super-

symmetric model parameters and masses are shown. The parameters N1−4 are the first row

of the neutralino mixing matrix. Taken from [75].
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dependence on the model parameters are shown in Figure 2.14. The Feynman diagrams

show that the neutralinos are expected to annihilate into fermion-antifermion pairs and the

gauge bosons of the weak interaction (W±, Z) which produce a large amount of hadronic jets

mainly consisting of neutral pions. The neutral pions almost always decay into two photons

which is the reason why on average 30 to 40 photons are produced per WIMP annihilation

process. On the assumption that the internal velocity of the WIMPs is very low, which

is a good approximation for a WIMP mass of a few tens of GeV, the quarks in the final

state of the annihilation are monoenergetic. In this case the energy spectrum of the gamma

radiation resulting from the neutral pion decay only depends on the WIMP mass and the

involved annihilation channels.

The CDM in the Universe is gravitationally unstable, i.e. it forms gravitationally bounded

structures. This was shown in numerical simulations of the structure formation in the Uni-

verse [12, 40, 76], called N-body simulations, as well as in analytical calculations [10]. If the

primordial density fluctuations at the time of the beginning of the matter dominated phase

are large enough, bounded DM states at small scales, so-called DM clumps (DMC), can be

formed. In this case the DM contribution of the MW consists of two different components -

a smoothly and homogeneously distributed contribution, which will be hereafter referred to

as ”diffuse DM”, and a clumpy distributed contribution called ”clumpy DM”. In the next

two sections the annihilation fluxes of these contributions will be considered.

Diffuse Dark Matter

The diffuse DM component is given by the DM which is distributed in the halo of the MW.

The DM particles in the halo are distributed according to a smooth density distribution

called halo profile. For the DMA flux of the diffuse component φdiff in a particular direction

ψ with an energy E one has to integrate the squared DM number density along the line-of-

sight (los)

Φχ,diff (E,ψ,∆Ω) =
〈σv〉
4π
·
∑
f

dNf

dE
bf ·

1

∆Ω

∫
∆Ω

∫
los

〈ρχ〉2

m2
χ

dlψ. (2.55)

Here ∆Ω is the solid angle in the direction ψ and dNf/dE is the differential number of photons

per annihilation for a particular final state at the energy E and bf is the branching fraction of

this final state. The integration has to be done over the product of the density distributions

of the annihilating particles. This equation can be separated into a particle physics part

depending on the properties of the DM particle and a cosmological part depending on the

distribution of the DM. For the calculation of the cosmological part the density profile ρχ(r)

is of crucial importance. An estimate of the density profile of the diffuse DM can be obtained

by the comparison of the theoretical flux calculated with Eq. (2.55) and the experimentally

measured flux of the diffuse Galactic gamma radiation.
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Clumpy Dark Matter

Given the high clump density, most of the annihilation flux results from DM subhaloes. In

case of CDM and a power index of np ≈ 1 the small-scale clumps are the first gravitationally

bounded states in the Universe with a minimal mass of Mmin ∼ 10−6 M� [10]. The larger

clumps are formed later by hierarchial clustering. The small clumps are destroyed by tidal

forces from the gravitational potential of the large clump. This effect changes the density

profile and the mass of the large clump. However, this hierarchial clustering of small-scale

clumps is a complicated process since the DM clumps are not totally virialised when they

are captured by the next generation of larger clumps. This effect dominates the destruction

of DMCs in the early stage of structure formation. During the clustering process it is also

possible that small-scale clumps are not completely destroyed. Therefore, a large DMC hosts

a few smaller clumps and its structure is similar to the structure of giant galactic haloes with

masses of the order of 1012 M� which are also formed in this way. The baryonic matter fol-

lows the DM density distribution and forms stars and whole galaxies in the inner core of the

DM halo where the DM density is highest. Detailed N-body simulations of galaxies of the

size of the MW have shown that such a large halo can contain about 300,000 subhaloes. Due

to the hierarchical clustering process up to four smaller generations of DMCs can be found

in these subhaloes [11,12]. However, the number of subhaloes in the halo of the MW is much

larger than the number of observed satellite galaxies of the Milky Way. This is known as the

missing satellite problem. Up to the present day it is unclear why no galaxies are formed in

most of the subhaloes of the MW. The problem can be solved either by assuming that the

DM particles have a higher velocity dispersion, called Warm Dark Matter (WDM), which

would suppress the production of small-scale structures and reduce the number of low mass

subhaloes, or the formation of stars and galaxies is suppressed in the subhaloes by thermal

feedback from the young galaxy, quasars or supernovae. The second explanation agrees with

the large number of subhaloes but a better understanding of the prevention of star formation

by thermal feedback is necessary in order to solve the problem.

For the calculation of the annihilation signal of a DMC the density profile of the clump is

of crucial importance. Since the structures of a large clump and a galactic halo are similar

according to N-body simulations, the easiest way is to assume a similar parametrisation of

the density distributions. In both cases a power-law parametrisation is used. The parametri-

sation of the halo profile will be explained in Section 3.2.2. The annihilation flux of a DMC

was analytically calculated in [10]. There the internal density profile of a clump was assumed

as

ρint(r) =
3− β

3
ρ̄

(
r

Rcl

)−β
, (2.56)

where Rcl is the radius of the clump and r is the distance from the centre of the clump.

The value of the power index β is the range of 1.7 to 1.9. A further value important for the

description of a DMC is the core radius rc. The core is the region with the highest density

in the centre of the clump. According to [10] a theoretical estimation of the ratio of the core
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radius to the clump radius can be obtained from the density fluctuation δeq at the beginning

of the matter-dominated phase. The ratio of the core radius and the clump radius is then

given by the value xc = rc

Rcl
≈ δ3

eq. Analogous to the diffuse DM component with the internal

density profile the annihilation flux of the DMC is given by

Ṅcl = 4π

∞∫
0

r2 ρ
2
int(r)

m2
χ

〈σv〉 dr, (2.57)

=
3

4π
· 〈σv〉
m2
χ

· M
2

R3
cl

· S. (2.58)

Here as well as in Eq. (2.56) the variable r is the distance from the centre of the clump. The

WIMP mass is characterised by mχ and the clump mass by M. The value of the parameter S is

constant and depends on the density profile of the DMC. In the trivial case of a homogenous

sphere the value of S is equal to unity. Then the annihilation signal from a DMC which can

be observed at the position of the Earth is given by

ΦDM,clump =
1

4π

π∫
0

dθsin(θ)

∫ rmax(θ)

0

dr
2πr2

r2

Mmax∫
Mmin

dM

∫ Rmax

Rmin

dR ncl(R,M,Rcl)Ṅcl(M, r),

(2.59)

where ncl is the number density of DMCs in the Galactic halo. The variable R is the

galactocentric distance which varies between Rmin and Rmax. With the knowledge of the virial

radius Rvir of the MW, which is defined as the distance from the GC where the accumulated

density of the MW is 200 times the critical density of the Universe, the maximal distance

Rmax can be calculated with law of cosine and the galactocentric distance of the Sun.

A simple approximation can be done by the introduction of a so-called boost factor Bl which

characterises the increased luminosity of a clump with respect to the annihilation signal of

the smoothly distributed DM component. Assuming that the average clump luminosity is

equal in all directions the boost factor is independent of the direction of observation and the

number density of the DMCs can be parametrised by a radially dependent distribution. In

this case the signal of the clumpy DM component can be estimated analogously to the signal

of the diffuse component

ΦDM,clump(E,ψ,∆Ω) =
〈σv〉
4π
·
∑
f

dNf

dE
bf ·

1

∆Ω
·Bl ·

∫
∆Ω

∫
los

ncl(R) dlψ, (2.60)

where Bl is the boost factor which then depends on the clump density profile and the pri-

mordial spectrum of density fluctuations.

In the early stage of structure formation the DMCs were destroyed by the hierarchical clus-

tering process but nowadays this process is negligible. Today clumps are mainly destroyed

by gravitational forces produced by massive objects in the Galactic disc or the potential of



44 Theoretical framework

the entire MW. Since a DMC is a wide spread object the gravitational attraction towards a

massive object is different for the nearby and far away end of the clump. This effect leads to

different acceleration velocities of the DM particles inside the clump and destroys the clump.

That is why this effect is called tidal disruption. During the disruption process the outer

parts of the clumps are stripped away and form so-called tidal streams. The tidal disruption

of clumps is reflected in a constant boost factor (like in the case of no tidal desruption)

multiplied with a radially dependent survival probability which was calculated in [10]. This

survival probability of DMCs is crucially dependent on the value of xc. For xc � 0.05 the

survival probability at the GC P(0) is about zero which means that the clump is completely

destroyed. For smaller values of xc � 0.05 only the outer parts of the clump are stripped

away and the core of the clump remains. In this case the central value of P(0) = 1 since

the major contribution of annihilation flux of a clump stems from the core. In Figure 2.15

the survival probability is shown for xc = 0.05. Then the DMA flux of the clumpy DM

component is given by

ΦDM,clump(E,ψ,∆Ω) =
〈σv〉
4π
·
∑
f

dNf

dE
bf ·

1

∆Ω
·Bl ·

∫
∆Ω

∫
los

P (R) ncl(R) dlψ. (2.61)

As the analysis of the annihilation signal of different DM density distributions for the smooth

and the clumpy DM component is crucially dependent on the Galactic background radiation

produced by cosmic radiation. The relevant background processes are considered in the

following section.

2.7 Background Processes

In the previous section the gamma radiation flux produced by the different DM components

was explained. However, gamma radiation is not only produced by DMA but also by the

interaction of cosmic radiation (CR) with the interstellar medium (ISM). Cosmic rays are

the highest energetic particles yet known. Their sources and acceleration processes are still

subject of current discussions. The primary particles of the CR are mainly protons with

small contributions of electrons and helium nuclei. These particles are influenced by the

magnetic and the radiation field of the Galaxy, so they do not propagate along a straight

line but their trajectory looks like a staggered course. The energy spectrum of the diffuse

gamma radiation at the Earth is influenced by the gamma rays produced by the interaction

of CR protons and electrons with the ISM. In the standard model of particle physics the

main interaction processes are

e+ γ → e′ + γ′,

e+ p → e′ + p′ + γ, (2.62)

p+ p → π0 +X → γγ +X.
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Figure 2.15: Survival probability for DM clumps with respect to the Galactocentric dis-

tance r and the averaged clump density. Figure taken from [10].

The main contribution of the Galactic gamma rays is produced in the pion decay (pp)

process. There high energetic protons or nuclei from cosmic radiation interact with protons

of the interstellar gas. The shape of the energy spectrum of this contribution is consequently

dependent on the cosmic ray energy spectrum and the density distribution of the ISM. These

distributions are locally measured [75]. If the cosmic ray spectrum at the Earth is taken to

be representative for the entire Galaxy, called conventional model, the energy dependence

of the photons of the pp process is equal in all directions. The contributions of the inverse

Compton scattering process (eγ) and the Bremsstrahlung (ep) are small compared to the pion

decay process. The spectral shapes of the different components are known from accelerator

experiments and implemented in Monte Carlo generators like Pythia [77]. However, the

gamma ray spectrum produced with this model is not hard enough to explain the measured

energy spectrum of the diffuse Galactic gamma radiation. In order to explain the measured

data without introducing an additional component to the gamma ray spectrum the local

cosmic ray spectrum have to be harder which means that the locally measured cosmic ray

spectrum is not representative for the Galaxy. Such a model is called optimised model [78].

For a harder gamma ray spectrum the cosmic ray spectrum was modified in the low energy

region because in the high energy region the slope of the cosmic ray spectrum has to be

compatible with measured data. In the low energy region the flux of charged particles is

influenced by the magnetic field of the Sun. Due to this effect the slopes in the low energy

region can be different from the slopes predicted by the conventional model and a harder

spectrum can be obtained.
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In [16] both background models were used to analyse the gamma ray energy spectrum.

There the spectral shape of the gamma ray spectrum was fixed while the normalisation of

the gamma ray components was left free. It was found that even in case of an optimised

model the fit to the data was improved by introducing a gamma ray signal from DMA. The

conventional model was found to be consistent with a WIMP mass in the range from 50 to

60 GeV while the upper limit is increased to 100 GeV for a optimised model.

In the present analysis the propagation code Galprop [79] is used to calculate the energy

spectrum of the background radiation in different sky regions. There the propagation of

CR particles through the Galaxy is calculated by the numerical solution of the transport

equation which is given by

∂ψ

∂t
= q(~r, p)− 1

τf
ψ− 1

τr
ψ+~∇·

(
Dxx

~∇ψ − ~V ψ
)

+
∂

∂p
p2Dpp

∂

∂p

1

p2
ψ− ∂

∂p

[
ṗψ − p

3

(
~∇− ~V

)
ψ
]
.

(2.63)

There ψ = ψ(~r, p, t) is the time-dependent particle density in phase space, q(~r, p) describes

the source term for CRs, Dxx and Dpp describe the diffusion coefficient in space and mo-

mentum space. The convection velocity is given be ~V , the energy loss rate of the particles

is represented by ṗ and the time scales for fragmentation and radioactive decay are given by

τf and τr. The rigidity dependence of the spatial diffusion coefficient is given by

Dxx = β ·D0 ·
(
ρ

ρ0

)δ
, (2.64)

where β is the particle velocity and ρ0 describes a possible break in δ. In case of reacceleration

is taken into account the relation between the diffusion coefficient in space and in momentum

space is given by

Dpp ·Dxx =
4 p2 v2

A

3δ(4− δ2)(4− δ)w
. (2.65)

The parameter vA is the Alfven velocity which describes the velocity of waves in the cosmic

ray plasma. The level of turbulence in the plasma is given by w and is equal to the ratio of

the magnetohydrodynamic wave energy density to the magnetic field density. If convection

is taken into account the particle velocity V is assumed to increase linearly with vertical

height z which corresponds to cosmic ray driven magnetohydrodynamic wind models [80].

The source term for protons and electrons is estimated by a power law

q(~r, p) = q0(~r) ·
(
p

p0

)γp,e
(2.66)

with a possible break at p0 in the spectal index γp,e. For the nucleon energy losses ionisation

and Coulomb interactions are included while for electrons bremsstrahlung, inverse Comp-

ton scattering and synchrotron radiation is taken into account. The transport equation in

Eq. (2.63) is numerically solved in cylindrical coordinates. The convection is considered up

to a maximal vertical boundary zh. Beyond this boundary free escape of the CR is assumed.



2.7 Background Processes 47

The propagation equation is successively solved beginning with the heaviest nuclei to the

lightest nuclei including all secondary source functions. Subsequently, the propagation of

electrons and positrons is calculated. The energy spectra of the gamma radiation produced

by bremsstrahlung and inverse Compton scattering is then calculated with the propagated

particles and the gas distribution and radiation fields used for their propagation. The gamma

radiation produced by the pp process is calculated with the propagated energy spectra of

the protons and helium with the interstellar gas. The values of the conventional model used

for this analysis are summarised in the datacard file presented in Appendix A.

A further contribution to the background gamma radiation stems from extragalactic sources.

This radiation is likely produced by active galactic nuclei (AGN), quasars or blazars of nearby

galaxies. It increases relatively with increasing Galactic latitudes since the influence of the

Galactic disc is decreasing for higher latitudes. However, the extragalactic background radia-

tion (EGBR) is different for positive and negative latitudes. The shape of its contribution to

the energy spectrum of the gamma radiation is unknown since every extragalactic object has

individual properties. In the present analysis the EGBR is calculated according to an itera-

tive method including DMA [81]. There the gamma ray skymap is divided in several regions

in order to get various values of the gamma ray fluxes. The Galactic plane and the Galactic

pole are excluded since in the disc the EGBR is negligibly small and insufficient amount

of data at the Galactic poles. For each energy bin the measured gamma radiation flux is

plotted against the expected gamma ray flux. The approximation of this plot shows a linear

dependence with a slope equal to unity if a realistic background radiation model is chosen.

Then the extrapolation to zero provides the EGBR per energy bin. The expected gamma

radiation flux depends on the background radiation model and the spectrum of the gamma

radiation from DMA. Therefore, the EGBR is different for different background radiation

models and different WIMP masses. For a rough division of the sky a slight dependence of

the DM density distribution is expected since variations are averaged in this case.
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3

Constraints on the Dark Matter density

distribution from astronomical

observations

The total Galactic density distribution is subject to different astronomical observations. The

rotation velocity distribution in the Galaxy depends on the radial density distribution while

determination of the surface density at the Sun depends on the density decrease perpen-

dicular to the Galactic disc. Therefore, a combination of these measurements provides an

indication for the DM density distribution in the Galactic halo.

In the last years new results from astronomical data became available which can be used

to constrain the density distribution of the MW. For this reason a reconsideration of the

distribution of the luminous matter and DM in the Galaxy becomes worthwhile. First the

astronomical observations and the the parametrisation of the different matter contribution

(luminous matter and DM) are explained. After that the astronomical constraints are pre-

sented. At the end of the chapter an additional DM substructure composed of two circular

rings is examined and a discussion of the results is given.

3.1 Astronomical observations

The Galactic DM distribution is constrained by astronomical observations. In the following

sections the astronomical constraints used in this analysis are explained.
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Figure 3.1: Schematic picture of the Galaxy. The values r and Vc represent the Galac-

tocentric distance and the rotation velocity of the observed star while rmin describes the

minimal distance to the line-of-sight at which the light from the star travels to the Sun. The

Galactocentric distance of the Sun is r� and its rotation velocity is Vc,�. The distance from

the star to the Sun is d and the Galactic longitude at which the star is visible on the sky is

given by l. The value of β is the azimuthal angle.

3.1.1 Rotation velocity and Galactocentric distance to the
Sun

The rotation velocity of the Solar System around the GC and its Galactocentric distance is

determined by the observation of the kinematics of stars. Assuming that Galactic objects

rotate on circular orbits around the GC and that the observed stars lie within the orbit of

the Sun the observation is schematically shown in Figure 3.1. The Galactocentric distance

to the Sun is given by r� and its rotation velocity is given by Vc,�. The distance from the

Sun to the observed star is represented by d while the Galactocentric distance of the star

and its rotation velocity is given by r and Vc. From Figure 3.1 the following relations can

be derived

r · sin(α) = r� · cos(l)− d, (3.1)

r · cos(α) = r� · sin(l), (3.2)

r� = d · cos(l) + r · cos(β). (3.3)
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The radial and tangential velocity of the star with respect to the Sun is given by

Vr = Vc · cos(α)− Vc,� · sin(l), (3.4)

Vt = Vc · sin(α)− Vc,� · cos(l). (3.5)

The angular velocity of the solar system Ω� = Vc,�/r� and of the observed star Ω = Vc/r in

combination with the Eqs. (3.2) and (3.3) result in the radial and tangential velocity of the

star

Vr = (Ω− Ω�) · r� · sin(l), (3.6)

Vt = (Ω− Ω�) · r� · cos(l)− Ω · d. (3.7)

Assuming the observed star is in the vicinity of the Sun, d � r� or |r − r�| is small, the

angular velocity of the star can be approximated using the Taylor expansion Ω ≈ Ω� +

(∂Ω/∂r) · (r − r�). Then Eq. (3.3) subsequently changes to r0 = d · cos(l) + r. Using

this equation, the Taylor expansion of Ω and the additional theorems of the trigonomical

functions the expression for the velocities of the star result in

Vr = A · d · sin(2l), (3.8)

Vt = A · d · cos(2l) +B · d. (3.9)

A and B are the so-called Oort constants which are given by

A = −1

2
·

[(
∂Vc
∂r

)
r�

− Vc,�
r�

]
, (3.10)

B = −1

2
·

[(
∂Vc
∂r

)
r�

+
Vc,�
r�

]
. (3.11)

These values represent the azimuthal shear (A) and the vorticity (B) of the velocity field

generated by closed orbits. The most precise determination and therewith the normalisation

of the rotation curve is obtained from the Oort constants, which can be determined from

the precise distances and velocities of nearby stars [48, 82, 83]. The experimental values of

the Oort constants

A ≈ 14.4± 1.2 km s−1 kpc−1 (3.12)

B ≈ −12.0± 2.8 km s−1 kpc−1, (3.13)

have been taken from [84]. The difference A − B = v�/r� defines the local normalisation

of the rotation curve. The combination A-B can be more precisely determined than the

individual constants. [84] found A−B = v�/r� = 27± 2.5 km s−1 kpc−1. Using the proper

motion of the black hole in the Galactic centre (Sgr A*) [85] found

A−B = v�/r� = 29.45± 0.15 km s−1kpc−1, (3.14)
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which is in excellent agreement with recent measurements of parallaxes using the Very Large

Baseline Interferometry (VLBI) [86], which yield A−B = v�/r� = 30.3 ± 0.9 km s−1 kpc−1.

A further interesting property of the RC is its slope at the position of the Sun. This value

is strongly connected to the values of A and B and was determined in [87]. The slope of the

RC at the Sun was found there to be

Slope�,RC =
∂ln(v)

∂ln(r)

∣∣∣∣
r�

= −A+B

A−B
= −0.006± 0.016. (3.15)

For the sake of completeness it is mentioned that a generalisation to an non-axisymmetric

density distribution leads to two additional constants (C and K) which describe the radial

shear (C) and the local divergence (K) of the velocity field [88]. In this analysis a circular (or

a slightly elliptical) rotation within the Galactic disc is assumed. In this case C ≈ K ≈ 0.

From the observation of 28 stars orbiting Sgr A*, which is considered to be the centre of the

Galaxy because of its small own velocity, over nearly 16 years the distance between the Sun

and the GC has been determined to [89]:

r� = 8.33± 0.35 kpc, (3.16)

in agreement with [90]. With this Galactocentric distance a rotation velocity of the Sun of

v� = 244± 10.2 km s−1, (3.17)

can be derived using Eq. (3.14). This speed determines the mass of the Galaxy inside the

solar radius.

The Galactocentric distance r� and the rotation velocity v� of the Sun are important values

for the determination of the kinematics of Galactic objects which is considered in the next

section.

3.1.2 Rotation curve of the Milky Way

Each object, which is bound to the Milky Way, is orbiting around the Galactic centre where

the gravitational potential is strongest. Most of the stars and the interstellar medium are

located in the Galactic disc which rotates with a peculiar velocity distribution v(r) as well.

This velocity distribution is called the rotation curve (RC) of the Milky Way.

The comparison of the estimated velocity distribution with the rotation curve measured

for the Galactic disc of the Milky Way is an important check for the DM density profile.

However, the measurement of the RC of the Milky Way is not trivial since the Sun is also

located in the Galactic disc and all observations are done from this position. Therefore, the

Galactocentric distance r� and the rotation velocity v� of the Sun has to be known in order

to determine the distance of a Galactic object to the GC and to define the standard frame

of rest. The determinations of r� and v� were already discussed in the last section.
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The rotation velocity is measured for clouds of interstellar gas, like hydrogen and carbon

monoxide, and stars. In case of circular rotation the velocity of gas clouds can be determined

by the observation of their emitted radiation. For gas clouds within the solar circle the so-

called tangent point method is used. Therein the line-of-sight on which the light emitted by

the gas cloud travels to the Earth is tangential to the rotation circle of the gas. The rotation

velocity can then be determined with the measurement of the Doppler shift of the spectrum

of the emitted light. This method provides accurate values for the velocity distribution in

the inner Galaxy.

The determination of the outer rotation curve is rather difficult because a tangent point to

the rotation orbit of the gas cloud cannot be defined there. In this case the rotation velocity

is usually determined by the measurement of the distance from the observed gas cloud to the

Earth and its angular rotation velocity. However, the measurement of distances to Galactic

objects is not easy since stars, nebulae, etc. are only visible on the sky in two dimensions.

The third dimension, the distance to the object, remains hidden. In order to obtain the

distance different procedures are used. For small distances of a few hundred parsecs the

trigonometric, photometric or spectrometric parallax is used. In this case the small periodic

shift in the apparent location of the observed object which results from the changing location

of the Earth as it orbits around the Sun is determined. Another method to determine the

distance is the so-called distance modulus which is the difference of the apparent luminosity

and the absolute luminosity of an object. Therefore, a catalogue of objects with known

properties, called cosmic distance ladder, is needed. These objects are called standard can-

dles. For example, Cepheid variables or RR Lyrae stars with known absolute magnitudes

are used as standard candles. This methods for the determination of the distance to the

Earth unfortunately yield large uncertainties for larger distances which is reflected in the

determination of the rotation velocity for the outer Galaxy.

In 1992 a new method for the determination of the outer rotation curve was introduced [91].

Assuming that the rotation of the Galactic disc is circular and that the vertical distribution

of the gas only depends on the Galactocentric distance the distance to a rotating gas cloud

is obtained by the measurement of the vertical half width of the H2 distribution with this

method. However, in this case a detailed map of the vertical height of the gas distribution is

necessary since measurements have shown that the scale height is different for the northern

and the southern hemisphere [20]. This method works up to a radius of r ≈ 2 ·r�. For larger

radii the vertical H2 distribution is too frayed.

The velocity of a Galactic object is estimated from the matter density model by the calcu-

lation of the gravitational potential. Assuming that the object is circularly rotating around

the GC the rotation velocity is given by the equality of the centripetal and the gravitational

force

mv2

r
= m · dΦ

dr
, (3.18)
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where v is the rotation velocity at the galactocentric distance r. The gravitational potential

Φ is given by the Poisson equation

∆Φ = 4πGρ(r), (3.19)

where G is the gravitational constant and ρ(r) the density distribution of the Galaxy. In-

tegrating the density distribution twice yields the corresponding gravitational potential. In

spherical coordinates one finds:

Φ(r, θ, φ) = −
∞∫

0

r′2dr′
1∫

−1

dcosθ′
2π∫

0

dφ′
ρ(r′, θ′, φ′)√

r2 + r′2 − 2rr′ sin θ sin θ′ cos(∆φ)− 2rr′ cos θ cos θ′
,

(3.20)

where ∆φ = φ − φ′. For the MW two different rotation velocity distributions have been

measured: the radial dependence of rotation speed within the Galactic disc and the rotation

velocity of halo objects far away from the Galactic plane.

Rotation curve in the Galactic disc

For the calculation of the gravitational potential in the Galactic plane the polar angle θ

in Eq. (3.20) has to be set to π/2. In this case the last term of the square root in the

denominator vanishes and the potential is given by

Φ(r, π/2, φ) = −
∞∫

0

r′2dr′
1∫

−1

dcosθ′
2π∫

0

dφ′
ρ(r′, θ′, φ′)√

r2 + r′2 − 2rr′ sin θ′ cos(∆φ)
. (3.21)

Following Eq. (3.18) the rotation velocity within the Galactic plane is given by the derivation

of the gravitational potential with respect to the Galactocentric distance

v2

r
=
dΦ(r)

dr
=

∞∫
0

r′2dr′
1∫

−1

dcosθ′
2π∫

0

dφ′
ρ(r′, θ′, φ′)(r − r′ sin θ′ cos(∆φ))

(r2 + r′2 − 2rr′ sin θ′ cos(∆φ))3/2
. (3.22)

For the RC within the Galactic disc a combination of different measurements with different

tracers was summarised in [92]. The experimental data were scaled to v� = 244 km s−1 at

a Galactocentric distance of 8.3 kpc, as shown in Figure 3.2a. The rotation velocities in the

very inner part of the Galaxy (radii smaller than 2.5 kpc) are obtained from observations of

HI regions and their associated molecular clouds (CO) using the tangent point method [93].

Further data on the velocity distribution within the Sun’s orbit is adapted from [94,95] also

by tangent point observations of HI and CO regions. Beyond the solar circle the velocity

distribution is obtained by the observation of HII regions, planetary nebulae and stars [95,96].

These data sets have high experimental uncertainties by virtue of uncertain determinations

of the distance to the observed objects. Later publications provide velocity distributions
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(a) Rotation curve in the Galactic disc
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(b) Rotation curve in the Galactic disc (averaged)

Figure 3.2: Velocity distribution in the Galactic disc of the MW.

up to radii of about 20 kpc [97, 98]. There the RC beyond the orbit of the solar system

is obtained by using Merrifield’s method [91] which leads to smaller experimental errors.

Unfortunately, detailed observations of the RC in [98] are not included in the combination

of [92]. In the present analysis these data are included. On the other hand the observation

of carbon stars in the radial region of 9 to 15 kpc in [99] are excluded since the observed

stars show very low rotation velocities which probably results from their common origin in

the Canis Major star overdensity.

The rotation velocity was averaged in 18 radial bins from the GC up to a radius of 22 kpc,

as shown in Figure 3.2b. The different data sets as well as their averaged velocities in the

different radial bins are presented in Appendix B. The measured velocity distribution shows

a strong increase in the inner part of the Galaxy which presumably results from the dense

core of the Galaxy. In the region between 6 and 10 kpc a decrease of the rotation velocity is

observed. Then the rotation speed increases again. Such a peculiar change of slope cannot be

explained by a smoothly decreasing DM density profile, but needs an additional ringlike DM

substructure, e.g. the infall of a dwarf Galaxy, as mentioned in [16]. The vertical thickness

of this structure is of the order of 1 kpc, so it should not show up for halo stars well above

this height. The rotation of stars in the halo around the GC is explained in the following

section.
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Rotation curve in the halo

The rotation of halo stars around the GC does not proceed within the Galactic disc. The

plane in which a star is orbiting the GC is inclined with respect to the Galactic plane.

The kinematics of a large sample of roughly 2400 blue horizontal-branch (BHB) tracer halo

stars as detected in Sloan Digital Sky Survey (SDSS), with Galactocentric distances up to

about 60 kpc and vertical heights of z > 4 kpc, was recently analysed [100]. There the halo

star distribution from N-body simulations of the Galaxy with an NFW profile was used to

connect the observable values — line-of-sight velocity and distance — to the circular velocity

v(r) =
√
r ∂Φ/∂r. In order to estimate the rotation curve of halo stars the gravitational

potential as given in Eq. (3.20) has to be deviated according to the Galactocentric distance

of the halo star, which results in

v2

r
=
dΦ(r)

dr
=

∞∫
0

r′2dr′
1∫

−1

dcosθ′
2π∫

0

dφ′
ρ(r′, θ′, φ′)(r − r′ sin θ′ sin θ cos(∆φ)− r′ cos θ cos θ′)

(r2 + r′2 − 2rr′ sin θ′ sin θ cos(∆φ)− 2rr′ cos θ cos θ′)3/2
.

(3.23)

The sample of stars in [100] is observed for Galactic latitudes higher than about 45◦. For

this reason the halo star velocity curves are calculated for the latitudes 45◦ and 80◦. Then

these rotation curves are averaged for comparision with experimental data.

3.1.3 Mass of the Galaxy

In general, the total Galactic mass is measured indirectly either via the kinematics of distant

halo tracer stars, satellite galaxies or the vertical scale height of the gas distribution of the

Galactic disc.

The total mass of a galaxy is conventionally defined as the mass within the so-called virial

radius. At this radius the total mass of the accumulated density of the MW is equal to the

mass of a homogeneous sphere with a constant density of 200 times the critical density of

the Universe.

In [101] the mass of the MW was estimated from measurements of the radial velocities of

27 globular clusters and satellite galaxies for Galactocentric distances r > 20 kpc, using a

Bayesian likelihood method and a spherical halo mass model with a truncated radius. They

found a mass of the Galaxy within 50 kpc of M(50 kpc) = 5.4+0.2
−3.6 ·1011 M� and a total mass

of Mtot = 1.9+3.6
−1.7 ·1012 M�. A similar analysis was performed with more tracer stars by [102];

they found Mtot = 2.5+0.5
−1.0 · 1012 M�. These measurements used a simple parametrisation of

the potential. Analyses using an NFW profile for the DM distribution usually obtain a lower

total mass because of the steeper fall-off of the density profile at large distances.

Using a large sample of 2400 BHB stars from the SDSS in the halo (z > 4 kpc, r < 60 kpc)

and comparing the results with N-body simulations using an NFW profile find

Mr<60 kpc = 4.0± 0.7 · 1011M�, (3.24)
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which corresponds to Mtot = 1.0+0.3
−0.2 · 1012 M� [100]. To get this total mass adiabatic con-

traction [103] was allowed in which case the concentration parameter c, which is the ratio of

the virial radius and the scale radius of the DM halo profile, was taken as a free parameter in

the fit. This parameter turned out to be low (c = 6.6+1.8
−1.6; if adiabatic contraction is ignored,

the concentration parameter is around 12 and the mass decreases to Mtot = 0.9 · 1012 M�,

which is well within the errors. Similar mass values were found from the measurement of the

velocity dispersion in [104], although with larger errors. These measurements are consistent

with the favoured ΛCDM model in [105] where the virial mass is 1 ·1012 M�. The value from

Eq. (3.24) will be used in the analysis.

3.1.4 Local surface density and Oort limit

In addition to the velocity distributions in the Galactic disc and the DM halo the total

surface density Σ�,tot = Σ�,vis + Σ�,DM and the total density ρ�,tot = ρ�,vis + ρ�,DM at the

Solar position is used to constrain the density model. These are obtained as follows.

Integrating the density along the vertical direction within ± z from the Galactic plane yields

the surface density

Σdef (< |z|) =

z∫
−z

ρ(z′) dz′. (3.25)

First the surface density of the visible matter is considered. Its experimental value is obtained

by the observational determination of the luminous matter density in the vicinity of the Sun.

The total value results from the summation of the different contributions to the luminous

matter — the stellar population, stellar remnants and the interstellar gas. A summary of

the different measurements was given in [106]. The surface density of the baryonic matter

lies between 35 and 58 M� pc−2 (Table 3.1), which agrees with the estimation 48 ± 9

M� pc−2 [107, 108]. On the contrary to star counts dynamical determinations show even

larger values. In this case the surface density is obtained by the comparison of the star

velocities with the predictions of either a mass model of the Galaxy or a parametrisation of

the gravitational potential at the position of the Sun. In [107] the local surface density was

determined from a parametrisation of a mass distribution to be

Σ(< 1.1 kpc) = 71± 6 M� pc−2 (3.26)

while in [108] the modeling of the vertical gravitational potential resulted in Σ(< 1.1 kpc) =

74 ± 6 M� pc−2. The most recent determination of the surface density by [115] is consistent

with both measurements but allows somewhat larger errors Σ(< 1.1 kpc) = 68 ± 11 M�
pc−2.

In case of modeling the density distribution of the Galaxy the surface density is easily

determined by the integration in Eq. (3.25). If the graviational potential is parametrised the
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Contribution Surface density [M� pc−2] Reference

Visible stars 35 ± 5 [109]

27 [110]

30 [111]

Stellar remnants 3 ± 1 [112]

Interstellar gas 8 ± 5 [113]

13 - 14 [114]

Total 35-58

Table 3.1: Contributions to the local surface density of baryonic matter. The total values

in the last row include ±1σ errors.

surface density can be determined using Poisson’s equation (see Eq. (3.19)) which relates

the density to the second derivation of the gravitational potential

∆Φ =
1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2

∂2Φ

∂ϕ2
+
∂2Φ

∂z2
. (3.27)

Consequently, the surface density at the position of the Sun is obtained by the first derivative

perpendicular to the Galactic disc of the gravitation potential at the Sun. This corresponds

to the gravitational force orthogonal to the disc.

Σ(< |z|) =
1

2πG

z∫
0

∆Φdz′

=
1

2πG

z∫
0

(
1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2

∂2Φ

∂ϕ2
+
∂2Φ

∂z′2

)
dz′

=
1

2πG

∂Φ

∂z
+

z∫
0

1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2

∂2Φ

∂ϕ2

 dz′

=
1

2πG

(
∂Φ

∂z
+ 2 · (A2 −B2) · |z|

)
≈ 1

2πG

(
∂Φ

∂z

)
. (3.28)

Assuming that the rotation orbits are approximately circular and the absolute values of

the Oort Constants A and B are approximately equal the surface density is given by the

derivation of the gravitational potential in vertical direction.

In [116] the vertical potential was determined by a least-square fit of

φ(z) = 2πG ·
(

Σ ·
(√

z2 −D2 −D
)

+ ρeff · z2
)

(3.29)



3.1 Astronomical observations 59

in which D represents the scale height of luminous matter in the Galactic disc, Σ is the

surface density and ρeff is the density contribution of a spherical DM halo. In [115] a good

fit is obtained for values of ρeff within the range of 0 to 0.02 M� pc−3.

The first integration in z of Eq. (3.29) gives the total surface mass density within ±z from

the Galactic disc. The second integration in z gives the total mass density depending on z.

Therefore the total mass density of the Galactic disc at the position of the Sun is given by

ρtot(z = 0 kpc) =
Σ

2D
+ ρeff . (3.30)

Jan Oort proposed and performed an interesting measurement of the local matter density:

from the number of stars as a function of their height above the disc one can obtain the local

gravitational potential, which is directly proportional to the mass in the plane of the MW.

Using the precise measurements from the Hipparcos satellite one obtains for the local mass

density

ρ�,tot(z = 0 kpc) = 0.102± 0.010 M� pc−3, (3.31)

which includes visible and dark matter [108]. This value is called Oort limit, since it repre-

sents the lowest value for the local density. It was determined from the precise star counts

and velocity measurements in a volume of 125 pc around the Sun. In [117] the vertical

potential at slightly larger distances (a vertical cylinder of 200 pc radius and an extension

of 400 pc out of the Galactic plane) was analysed. For the dynamical estimation of the local

volume density they obtain the same value with a smaller error: ρ�,tot(z = 0) = 0.100 ±
0.005 M� pc−3. To be conservative, we will use the value from Eq. (3.31).

Gas flaring

The observation of the gas distribution is performed by the measurement of the radiative

emission of atomic hydrogen. The 21 cm line is a perfect tracer for this purpose since

under most circumstances the interstellar medium is transparent at this peculiar wavelength.

The results of the measurement of the spatial distribution of the 21 cm emission can be

found in [20]. Therein the half-width-half-maximum (HWHM) of the vertical decrease of

the interstellar gas distribution was measured for all Galactic longitudes, and a difference

for the northern and southern hemisphere of the Galactic disc was discovered. However,

the most interesting feature in the radial dependence of the HWHM was a flattening in the

radial region between 14 kpc and 20 kpc instead of an increase. This effect can be explained

with a DM ring at the Galactocentric distance of about 13 kpc [20]. There the gas flaring

results were described with an exponentially decreasing density distribution for the Galactic

disc with an additional DM ring of a mass of about 2.0 · 1010 M�.

In analogy to the barometric equation the vertical decrease of the interstellar hydrogen can

be parameterised by [116]

ρ(z) = ρ�,tot · exp

(
−Φ(z)

ω2

)
. (3.32)
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The vertical gravitational potential is given by Φ(z) and the vertical velocity dispersion of

the gas is ω. The experimental determination of the velocity dispersion yielded values of

7 ± 1 km s−1 [118] and 8 ± 1 km s−1 [119].

3.2 Parametrisation of the density distribution of
the Milky Way

The assumption of the different parts of the density distribution in the MW is the most

important part of the analysis. In this section the parametrisation of the luminous matter

and the DM density distribution of the Galaxy is explained.

3.2.1 Luminous matter density

The density distribution of the luminous matter of a spiral galaxy can be splitted into

two parts, the Galactic disc and the Galactic bulge. The parametrisation of the density

distribution of the bulge is adapted from [120]

ρb(r, z) = ρb ·
(
m

r0,b

)−γb
·
(

1 +
r̃

r0,b

)γb−βb
exp

(
− r̃

2

r2
t

)
, where r̃2 =

√
x2 + y2 + (z/qb)2.

For a good description of the RC near the GC the parameters of the bulge profile are found

to be γb = βb = 1.6, qb = 0.61, rt = 0.6 kpc, r0,b = 0.7 kpc and ρb = 360 GeV cm−3,

which corresponds to approximately 9.5 M� pc−3. This high density may be influenced by

the presence of black holes. At least one black hole with a mass of about 4.0 · 106 M� has

been observed in the GC [121].

The stellar contribution of the Galactic disc can be splitted into two discs — a thin and a thick

disc — which are usually parametrised by an exponentially decreasing density distribution.

The parametrisation of the Galactic disc is taken from [48]

ρd(r, z) = ρd · exp(−r/rd) · exp(−z/zd). (3.33)

The parameter ρd describes the density of the Galactic disc at the GC while rd and zd
describe the scale parameter in radial and vertical direction. There is some freedom in the

choice of the parameters for the Galactic disc. As in case of the bulge its density in the GC

is unknown, so it has to be a free parameter. The scale radius is adopted from [122]

rd = 2.3± 0.6 kpc. (3.34)

The scale height zd varies for the different components: young stars are born near z = 0, so

they have a much smaller scale height, while older stars have been kicked around and reach

scale heights up to 700 pc. Consequently, the disc has two distinct populations with two
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different scale heights. The thin disc consists of young, bright and metal-rich stars which

provide about 98% of the total stellar population [123]. Its scale height was determined

from a counting of stars with an absolute magnitude of MV > 6 to be zd ≈ 270 pc [124].

From measurements of the spatial distribution of K dwarf stars the vertical scale height

turns out to be smaller than 250 pc [125]. In [126] the scale height of the thin disc was

determined for stars with MV & 3.5 to be 260 ± 50 pc. Furthermore the interstellar gas and

dust contribution is also located in the thin disc. The thick disc consists of old, metal-poor

stars and could be the result of either an earlier thin disc or the merging of a satellite galaxy

with the MW [125]. Its scale height lies between 700 and 1500 pc and its local density is

about 5% of the local stellar density of the thin disc. For this reason the luminous matter

contribution is given only by the thin disc while small density contribution of the thick

disc is neglected in this analysis. For gas, which makes up 10% of the mass of the disc,

the scale height varies with Galactocentric radius because of the decreasing gravitational

potential at larger radii. Fortunately, the mass model of the Galaxy is not very sensitive to

the exact value of the scale height, so it is fixed to 320 pc, which is close to the value adopted

by [127]. The hole in the centre of the disc [127], the bar structure and the black hole are not

taken into account in the parametrisation, since the parameters of interest, i.e. the DM halo

parameters, are insensitive to the detailed mass distribution in the centre of the Galaxy. The

parametrisation of the visible mass discussed above leads to a mass of the Galactic bulge of

about 1.1 · 1010 M�. The mass of the Galactic disc varies in the range of 5 · 1010 to 7 · 1010

solar masses for different fits because of the variation of the parameters ρd and rd.

3.2.2 Dark Matter density

In addition to the baryonic matter the density distribution of the DM component has to

be parametrised. The first analyses of the structure formation in the Universe in 1977

[128, 129] predicted that DM in Galactic haloes is distributed according to a simple power

law distribution ρ(r) ∝ r−γ. However, later works based on numerical N-body simulations

[76, 130, 131] found that the slope of the density distribution in the DM halo is different

for different scales of the galactocentric distance. Today it is commonly believed that the

DM distribution in a spherical halo can be well fitted by an universal function with four

parameters. This parametrisation is given by

ρχ(r) = ρ�,DM ·
(
r

r�

)−γ [ 1 +
(
r
a

)α
1 +

(
r0
a

)α
] γ−β

α

, (3.35)

where r is the distance to the Galactic centre, r� is the galactocentric distance to the Sun,

a is the scale radius of the density profile and ρ� is the DM density of the halo at the

position of the Sun. The parameters α, β and γ characterise the radial dependence of the

density distribution. For r ≈ a the slope of the halo profile is about r−α, for r � a holds

a radial dependence of r−β and the slope of the halo profile in the centre of the Galaxy
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Profile α β γ a [kpc] Reference

NFW 1.0 3.0 1.0 20.0 [135]

BE 1.0 3.0 0.3 10.2 [132]

Moore 1.5 3.0 1.5 30.0 [76]

PISO 2.0 2.0 0.0 5.0 [16]

240 2.0 4.0 0.0 4.0

Table 3.2: Parameter settings for the different DM halo profiles considered in this analysis.

The parameters of the NFW profile are adapted from the publication by [135] but in this

analysis a larger scale radius a is used.

r � a is about r−γ. Many different sets for these parameters were suggested by different

analyses. In general, the results from numerical simulations show that the DM density in

the Galactic centre is divergent. Such profiles are called cuspy profiles due to the cusp in

the Galactic centre. This analysis considers several cuspy profiles. In 1997 Navarro, Frenk

and White [130] discovered that their simulation results can be approximated by a profile

with a slope of γ = 1 (hereafter referred to as NFW profile). Later simulations in 1999

by Moore et al. [76] prefer a profile with a steeper slope of γ = 1.5 (hereafter referred to

as Moore profile). A third cuspy halo profile was introduced in [132]. Arguing that the

microlensing data toward the Galactic centre produced by the MACHO collaboration is in

conflict with a density profile with γ ∼> 0.3 (hereafter referred to as BE profile). In contrast

to cuspy profiles the density distributions preferred by observations of rotation curves of

low surface brightness and dwarf spiral galaxies have a nearly constant DM density in the

Galactic centre (γ ≈ 0) [128, 129, 133, 134]. Such profiles are called cored profiles due to

the constant density in the central region. Two different cored halo profiles are considered

in this analysis. The first profile is called pseudo-isothermal profile (hereafter PISO) since

it is an isothermal profile (∝ r−2) which is flatted in the centre. The second cored halo

profile (hereafter 240) is similar to the PISO profile but decreases rather strongly for large

radii. The parameter settings for these profiles are summarised in Table 3.2 and their radial

dependence is shown in Figure 3.3.

3.3 Results

3.3.1 Local DM density

In the last section a parametrisation of the DM density distribution was introduced which

includes five parameters — three slopes α, β and γ, one scale radius a and the local DM

density ρ�,DM. The local DM density is a priori unknown. However, a reliable determination

of this value is of great interest for direct DM searches, where elastic collisions between
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the WIMPs and the target material of the detector are searched for [14]. This signal is

proportional to the local DM density. In the past the local DM density was determined

within a large range — 0.2 to 0.7 GeV cm−3 [136, 137]. The upcoming of new astronomical

data during the last years, discussed in Section 3.1, makes it worthwhile to reconsider the

determination of this value.

The three most important constraints for the density model of the Galaxy are given by the

rotation curve, the value v�, the total mass Mtot and the local mass density ρ�,tot. This

can be easily seen as follows: v2
� = v2

vis + v2
DM, where v2

vis and v2
DM are proportional to ρvis

and ρDM, respectively. For a given halo profile Mtot is determined by ρDM, while the Oort

limit ρ�,tot determines ρ�,tot = ρvis + ρDM. So in principle one has 3 constraints with only 2

variables ρvis and ρDM, if the shapes of the DM halo and the visible matter were known.

Unfortunately, additional important parameters are i) the eccentricity of the DM halo ii)

the concentration of the DM halo iii) the scale length of the disc and iv) the mass in the

bar/bulge. In addition the mass model is sensitive to the geometry, i.e. the Galactocentric

distance from the Sun d� and the halo profile. Additional constraints come from the surface

density, but as discussed before here the visible surface density has a large uncertainty. The

parameters and constraints have been summarised in Table 3.3. The parametrisation of the

mass of the bulge was chosen to describe the rotation curve at small radii, which works

reasonably well, as can be seen from Figure 3.5. Given that the mass model is not very

sensitive to this inner region, the parameters of the bulge will not be varied anymore.
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To optimise the remaining parameters in order to best describe the data, the following χ2

function was minimised using the Minuit package [138]

χ2 =
(M calc

tot −M
exp
tot )2

σ2
Mtot

+
(vcalc� − vexp� )2

σ2
v�

+
(ρcalctot − ρ

exp
tot )2

σ2
ρtot

+
(Σcalc

vis − Σexp
vis )2

σ2
Σvis

+

(Σcalc
tot − Σexp

tot )2

σ2
Σtot

+
(rcalcd − rexpd )2

σ2
rd

+
(Slopecalc�,RC − Slope

exp
�,RC)2

σ2
Slope�,RC

+

((A−B)calc − (A−B)exp)2

σ2
A−B

(3.36)

The index calc means the observables were calculated from the fitted parameters, while the

index exp denotes the experimental data for the observable and σ its error. The constraints

are summarised in Table 3.3.

The fit shows a more than 95% positive correlation between the local dark matter density

and the scale length of DM halo a and an equally large negative correlation with the scale

length rd of the baryonic disc. Consequently, it is difficult to leave parameters free in the fit.

Therefore the fit was first performed for fixed values of a (rows 1–3 of Table 3.4) and then rd
was fixed (rows 4–7). With the other free parameters all experimental constraints could be

met within errors, as indicated by the χ2 values in brackets below the fitted values in Table

3.4. Of course, the total mass changed for the different fits. Figure 3.4 shows the resulting

local DM density versus the total mass, as calculated from the fitted parameters. It shows

that in spite of the small errors for the local density for individual fits the spread in density

is still quite large.

The fit was repeated for other halo profiles yielding similar χ2 values as shown in the rows

9-11 in Table 3.4. That means that with the present data one cannot distinguish the different

halo profiles. So far only spherical halos have been discussed. Allowing oblate halos with

a ratio of short-to-long axis of 0.7 the local DM density increases by about 20%, as shown

by the last row of Table 3.4. An additional amount of DM in the Galactic disc corotating

with the stellar matter, so-called dark disc [139], can enhance this value considerably more,

so the uncertainty usually quoted for the local dark matter density in the range of 0.2 to 0.7

GeV cm−3 [136,137] is still valid in spite of the considerably improved data.

3.3.2 Ringlike Dark Matter substructure

In the previous section it was shown that astronomical data can be well described by cuspy

and cored profiles, simply because the gravitational potential in the GC is dominated by

baryonic matter. However, the velocity distribution in the outer Galaxy is not compatible

with a pure halo profile. In order to explain the increase of the rotation velocity at larger

radii an additional ringlike substructure of the DM is needed. The parametrisation of the

DM density distribution is modified to include a ringlike structure. In [92] such a structure

is assumed to consist of wavy rings which are accompanied by a depletion at smaller radii.
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Free Parameters

Component Parameter Symbol Value Unit

Halo Local DM density ρ�,DM - GeV/cm−3

Halo Scale Parameter a - kpc

Halo eccentricity εz - kpc

Disc Density at GC ρd - GeV cm−3

Disc scale length rd - kpc

Fixed Parameters

Disc scale height zd 320 pc

Bulge Density at GC ρb 360 GeV cm−3

Bulge Eccentricity qb 0.61

Bulge Scale rt 0.6 kpc

Bulge Scale r0,b 0.7 kpc

Bulge Slope γb 1.6

Bulge Slope βb 1.6

Constraints

All Mass inside 60 kpc MR < 60kpc 4.0 ± 0.7 1011 M�
Local Rotation speed Sun v� 244 ± 10 km s−1

Local Distance Sun-GC r� 8.33 ± 0.35 kpc

Local Total Surface Density Σ|z|<1.1 71 ± 6 M� pc−2

Local Visible Surface Density Σvis 48 ± 9 M� pc−2

Local Mass Density ρtot 0.102 ± 0.01 M� pc−3

Local Oort Constants A-B 29.45 ± 0.15 km s−2 kpc−1

Local Slope of rotation curve ∂ln(v�)/∂ln(r) -0.006 ± 0.016

Table 3.3: Free and fixed parameters for the density model of the Galaxy and experimental

constraints. One observes that there are 6 free parameters and 8 constraints. Mass densities

are in GeV cm−3 or in M� pc−3, where 1 M� cm−3 ≡ 37.97 GeV cm−3.
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Figure 3.4: The local DM densities ρ�,DM are shown for different fits with different param-

eters. The numbers correspond to the numbers of the fit results in Table 3.4. In 1 – 3 the

scale parameter a is fixed and the scale radius of the Galactic disc rd is left free. In 4 – 7

the scale radius of the disc rd is fixed and a is left free.

Instead this analysis considers the ring to be the result of the infall of a dwarf galaxy. In

this case there is no depletion at smaller radii.

Disclike structures, which co-rotate with the luminous matter, are expected from N-body

simulations of the accretion of satellite galaxies onto early galactic discs [140]. Coplanar tidal

streams resulting from the disruption of the satellite galaxy only feel the radial gradient of the

gravitational potential of the Galaxy, which leads to ringlike structures with a much longer

lifetime than the tidal streams in the halo. The tidal streams in the halo are quickly destroyed

by tidal shocks during the passage through the Galactic disc. Such a ringlike structure in

the MW, the Monoceros ring, has been traced almost completely around the Galaxy (see

Section 2.5). An enhancement of stars along this ring was discovered in the Canis Major

constellation [141,142] at Galactic longitudes around 240◦. This overdensity was interpreted

as a dwarf galaxy, called Canis Major Dwarf, which could be the progenitor of the tidal

stream. The velocity dispersion of the Canis Major stars is very low which further confirms

their common origin [143] and is not explainable with a warp of the Galactic disc [47].

As the RC at the inner Galaxy is independent on the DM halo profile in this section the

rotation velocities for a Galactocentric distance greater than 3 kpc are considered. The

parametrisation of the luminous matter was given in Section 3.2.1. The parameters of the

Galactic bulge did not change while the parameters of the Galactic disc are assumed to be

ρd = 100 GeV cm−3 and rd = 2.3 kpc. This parametrisation yield a local surface density of

the luminous matter of about 45 M� pc−2 which is in good agreement with experimental
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Figure 3.5: On the left side the mass inside a radius as a function of that radius is shown

for the different halo profiles defined in Table 3.2. The thin solid line represents the visible

mass which is different for different halo profiles because of the variation of the parameters

ρd and rd. Here the luminous matter for the NFW profile is shown. The steep line starting

at 40 kpc represents the mass of a sphere with a density of 200 times the critical density

of the Universe. The crossings of the mass distributions with this line represent the virial

radius and the total Galactic mass of the corresponding density distribution. On the right

side the rotation curve - calculated for different halo profiles - is compared with experimental

data.
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Figure 3.6: The circular velocity curve for halo stars above a height of z > 4 kpc. On

the left side the circular velocity curve for the NFW profile calculated for different angles

with respect to the Galactic disc is shown. On the right side the averaged circular velocity

curves for the different halo profiles are shown. The experimental data were obtained from

the publication by [100].
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data (see Section 3.1.4). The parametrisation of the Galactic DM component including rings

is given by

ρχ(~r) = ρ�,Halo·
(
r̃

r�

)−γ
·

[
1 +

(
r̃
a

)α
1 +

(
r�
a

)α
] γ−β

α

+
2∑

n=1

ρn exp

(
−(r̃gc,n −Rn)2

2 · σ2
R,n

−
∣∣∣∣ zσz,n

∣∣∣∣
)
, (3.37)

r̃ =

√
x2 +

y2

ε2xy
+
z2

ε2z
, r̃gc,n =

√
x2

(n) +
y2

(n)

εxy,n
,

where the first term represents the Galactic halo as given in the previous section and the

second term describes the DM rings. In this extended DM density distribution the halo

is not spherically shaped anymore. The eccentricities εxy and εz describe the flattening of

the halo profile within the Galactic disc and perpendicular to the disc. A further degree of

freedom concerning a triaxial halo profile is the angle φGC between the major axis of the halo

profile in the Galactic plane and the connection line between the Sun and the GC. In both

rings the DM distribution in z-direction decreases exponentially with the scale heights σz,n
and Gaussian distributed in r-direction around the ring radius Rn and a width σR,n. The

DM rings are allowed to be elliptical. Their eccentricities are given by the parameters εxy,n.

Like for the halo, the DM rings can be turned around the respective angles φn which is the

angle between the major axis of the ring and the connection line Sun - GC. Here, a spherical

NFW profile is assumed for the halo density distribution. Its scale radius is fixed to a = 12

kpc. The radial width of the outer ring is assumed to be different for the inner and the outer

side. This difference results from the conservation of angular momentum. The remnants of

an infalling dwarf galaxy with predetermined angular momentum with respect to the GC

cannot reach arbitrary small Galactocentric distances. Therefore, a Gaussian distribution

for the radial decrease of the inner side of the outer ring with a non-zero density at the GC

is disfavoured for this reason. In this analysis the radial density decrease of the inner side

of the outer ring is parametrised with two parabolic functions as an s-shape

ρOR(r) =

{
4ρOR

d2
OR
· (r − (ROR − dOR))2 for (ROR − dOR) < r < (ROR − dOR/2)

ρOR − 4ρOR

d2
OR
· (r −ROR)2 for (ROR − dOR/2) < r < ROR

(3.38)

where the parameter dOR is the distance in which the DM density decreases to zero.

The χ2 function in Eq. (3.36) is minimised using the DM density distribution in Eqs. (3.37)

and (3.38). The ring parameters of the best fit to the astronomical data are given in Ta-

ble 3.3.2. These parameters provide DM rings with masses of 7.5 · 109 solar masses for

the inner ring and 4.1 · 1010 solar masses for the outer ring. The local halo density ρ�,Halo

is found to be 0.31 GeV cm−3 while the total DM density at the position of the Sun is

ρ�,DM = ρ�,Halo + ρ�,IR + ρ�,OR = 1.0 GeV cm−3. The total DM density within the Galactic

disc is shown in Figure 3.7a. There the influence of the DM rings is clearly visible. At

the position of the inner ring the DM density is increased by about a factor of 5, while at
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the outer ring the density is about 14 times as high as the density of the DM halo at this

position. Although introducing DM rings increases the local DM density by a factor of three

the total surface density is still compatible with experimental data. For the ring parameters

in Table 3.3.2 a surface density of 78 M� pc−2 is obtained which is in good agreement with

determinations of the local surface density described in Section 3.1.4. The total mass distri-

bution of the Galaxy is presented in Figure 3.7b. In addition to the local surface density the

mass constraint in Section 3.1.3 is fulfilled by this density distribution too. This compati-

bility results from the fact that the total mass of the Galaxy is provided by the DM halo.

The DM rings only provide a few percent of the total Galactic mass. Therefore, the local

halo density ρ�,Halo is almost only constrained by the Galactic mass (if the concentration

or the scale radius a of the halo profile respectively is fixed). The velocity distribution in

the Galactic disc is shown in Figure 3.7c. It is shown there that a spherical NFW profile

in combination with two concentric DM rings at a Galactocentric distance of 4.5 and 12.5

kpc yield a good description of the change of slope at 9 kpc. The circular velocity curve of

halo stars in Figure 3.7d is in agreement with the experimental data, although halo stars

in a Galactocentric distance of about 20 kpc are measured with lower rotation velocities

than the rotation velocities predicted by the density model. The estimation of the HWHM

of the Galactic gas component from such an extended DM halo is shown in Figure 3.8a.

The description of the HWHM is improved by the introduction of a DM substructure, even

though the estimated gas flaring is too low in the radial region around 15 kpc. A lighter

ring with a mass of about 2.0 · 1010 solar masses, as found in [20], yields a good fit of the

HWHM, but is incompatible with the outer RC, as shown in Figure 3.8b.

Nevertheless, a DM halo profile with ringlike substructure composed of two DM rings is com-

patible with astronomical observations of the RC in the Galactic disc, the circular rotation

curve of halo stars, the local surface density and the total matter density at the Sun.

Parameter Inner Ring Outer Ring

ρRring
[GeV cm−3] 3.3 1.8

r [kpc] 4.5 12.5

σr [kpc] 1.8 3.7

σz [pc] 330 660

d [kpc] - 6.0

ε 1.0 1.0

φ [◦] 0.0 0.0

Table 3.5: Ring parameters of the best χ2 fit.
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Figure 3.7: Results of an DM halo profile combined with a DM substructure of two circular

DM rings at 4.5 and 12.5 kpc. (a) The radial dependence of the DM density is shown. The

influence of the DM rings is clearly visible. (b) Mass distribution of an NFW profile with

substructure. The crossing with the straight line represents the virial mass of the Galaxy

and its virial radius. (c) The RC in the Galactic disc for an NFW halo profile in combination

with two concentric DM rings. (d) The circular velocity curve of halo stars, averaged from

estimations of velocity curves at Galactic latitudes of 45◦ and 80◦.
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Figure 3.8: Gas flaring estimation of an DM halo profile combined with a substructure

of two circular DM rings at 4.5 and 12.5 kpc. (a) HWHM of the Galactic gas distribution

estimated with an NFW profile combined with two DM rings. For comparison the HWHM

estimated with an NFW profile without rings is shown. (b) The RC within the Galactic

disc. The increase of the rotation velocity at about 10 kpc can be described by a DM ring

outside the solar circle.
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3.4 Discussion

In this section it is shown that the astronomical constraints are consistent with a density

model of the MW consisting of a central Galactic bulge, a Galactic disc and an extended DM

halo. No sensitivity of the astronomical constraints concerning the discrimination between

cuspy and cored profiles is found since the total matter density in the GC is dominated by

the visible matter of the MW. The local DM density is obtained to be in the range between

0.2 and 0.4 GeV cm−3. Strong positive and negative correlations between the considered

parameters were found from the fit and they are causing the obvious correlation between

ρ�,DM and Mtot. For non-spherical haloes these values can be enhanced by 20%. If dark discs

are considered [139], densities up to 0.7 GeV cm−3 can easily be imagined, so the previous

range of 0.2 to 0.7 GeV cm−3 still seems valid. The velocity distribution in the Galactic

disc shows a change of slope which cannot be described by the considered halo profiles.

It is shown that a halo profile in combination with a DM substructure composed of two

concentric rings in the Galactic disc describes the RC. The Galactocentric distance of the

rings is obtained to be 4.5 and 12.5 kpc. Although the DM density is increased by a factor

of five at the position of the inner ring and a factor of 14 at the position of the outer ring the

astronomical observations can be met because the Sun is located between the rings where

the DM density is low. The DM rings are assumed to be the result of the infall of a dwarf

galaxy in the gravitational potential. Numerical simulations show that ringlike structures in

galaxies like the MW can be produced in such a scenario [144].



4

Constraints on the Dark Matter density

distribution from Galactic gamma rays

In the previous chapter the Galactic DM density distribution and especially the local DM

content were considered with respect to astronomical observations of the MW. In this chap-

ter the annihilation of DM particles is taken into account. Assuming that WIMPs annihilate

each other into charged particles and gamma rays the spatial distribution of the resulting

gamma radiation can be used to estimate the density distribution within the DM halo.

Charged annihilation products cannot be used for this purpose since they are strongly influ-

enced by the Galactic magnetic field while the gamma rays directly point back to the place

of their production. The gamma radiation produced by DMA consequently contributes to

the diffuse Galactic gamma radiation which was measured with the Energetic Gamma Ray

Emission Telescope (EGRET) experiment. The photon energy spectrum measured by this

experiment shows an excess above a photon energy of about 1 GeV which can be interpreted

as an gamma ray signal from DMA. A method for the reconstruction of the DM density

distribution using the diffuse Galactic gamma radiation is presented in the next section.

Subsequently, the diffuse Galactic gamma radiation measured with EGRET, which shows

an excess above a photon energy of about 1 GeV, is analysed according to this procedure.

In addition, new preliminary data from the Fermi satellite, the successor of EGRET, is anal-

ysed. At the end of the chapter recent observations of the diffuse Galactic gamma radiation

are discussed and upcoming experiments are explained.

4.0.1 The EGRET experiment

The EGRET [145–147] experiment was one of four telescopes (BATSE, OSSE, COMPTEL

and EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite which operated
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Figure 4.1: Schematic diagram of the EGRET instrument. The anticoincidence dome is

shown at the top. The direction and the energy of a photon, which produces an electron-

positron pair in the spark chamber, can be reconstructed from the traces of the leptons in

the spark chamber and their energy deposit in the calorimeter. Figure taken from [75].

in the orbit of the Earth for nearly 10 years (1991-2000). During this time CGRO measured

the diffuse gamma radiation from energies of 15 keV to energies above 50 GeV. Compared

to all other experiments on the CGRO satellite EGRET covered the highest energy range

from approximately 30 MeV to 30 GeV. The recorded data are publicly available on the

NASA’s webpage [148]. At the high end of the energy range the sensitivity was limited is

low counting statistics. EGRET was calibrated at the Stanford Linear Accelerator Center

(SLAC) and tested for proton-induced background at Brookhaven. A schematic picture

of the EGRET instument is shown in Figure 4.1. The central element of EGRET was

a multilevel spark chamber which was triggered by a directional scintillator coincidence

system. A Total Absorption Shower Counter (TASC) which consisted of 36 NaI(Tl) blocks

was installed below the spark chamber in order to measure the event energy. All calorimeter

blocks were optically coupled to form a monolithic scintillator which was viewed by 16

photomultiplier tubes (PMT). The instrument was covered by a scintillator dome which was

used in anticoincidence with the trigger system to veto charged particles. The gamma rays

entering the scintillator dome produced electron-positron pairs in the tantalum foils which

were located between the spark chamber tracking layers. The trigger coincidence system of

the spark chamber was installed between the lowermost tantalum foil and the bottom of the

tracker. It consisted of two 4 × 4 arrays of plastic scintillator tiles (one at the top and one
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Figure 4.2: The third EGRET catalogue is one of the main results of the experiment.

The main contribution of the resolved sources are the active galactic nuclei (AGN) which

are extragalactic sources and unidentified sources. Galactic sources, the Sun and pulsars,

are located at small latitudes in the Galactic disc. The Magelanic Clouds, our neighbour

galaxies, are also well resolved in this catalogue. Taken from [149].

at the bottom of the chamber). Furthermore, a time-of-flight (TOF) trigger system between

these two scintillator planes was installed in order to indicate downward-moving particles.

Therefore, an event trigger was produced by the measurement of the directional coincidence

of a signal produced by an electron or a positron, together with a signal of the TOF.

As the EGRET instrument was originally designed for 2 years it was a great success that

its operation time was nearly 10 years, although most data on diffuse gamma rays were

collected between 1991 and 1994. During that time EGRET measured not only diffuse

gamma radiation but also solar flares, pulsars, active galactice nuclei and other point sources.

These pointlike sources are summarised in the Third EGRET Catalogue which is shown in

Figure 4.2.



78 Constraints on the Dark Matter density distribution from Galactic gamma rays

4.1 Reconstruction of the Dark Matter density
distribution

The reconstruction method of the Galactic DM density distribution is based on the simul-

taneous consideration of

1. the energy spectrum of the diffuse Galactic gamma radiation, and

2. the directional distribution of the gamma radiation fluxes.

These distributions are sensitive to two different properties of the gamma radiation from

DMA. The photon energy spectrum depends on the mass of the WIMP while the spatial

distribution of the gamma radiation indicates the DM density distribution in the Galactic

halo. In [16] this method was used to analyse the diffuse Galactic gamma radiation assum-

ing a smooth distributed DM component. Here, this analysis is reconsidered assuming a

DM contribution composed a smooth distributed and a clumpy distributed DM component.

Next the photon energy spectrum and the spatial distribution of the gamma ray fluxes are

explained in more detail.

A special feature of the presented method is that only the shapes of the different contri-

butions (background radiation and DMA signal) are scaled in order to describe the energy

spectrum of the diffuse Galactic gamma radiation. Such a data-driven calibration of the

intensity of signal and background is widely used in experimental particle physics in order

to cancel out large, correlated and model-dependent systematical errors. Then the uncor-

related point-to-point error, which can be interpreted as the error of the spectral shape,

remains. The background radiation is composed of the gamma radiation from neutral pion

decay, bremsstrahlung and inverse Compton scattering processes, as explained in Section

2.7. The dominant background contribution (neutral pion decay) results from the interac-

tion of CR protons with interstellar gas. Its shape is known from fixed target experiments.

As the CR proton suffer little energy losses during their propagation through the Galaxy

the shape of this contribution is the same in all directions. The contributions of the CR

electrons (bremsstrahlung and inverse Compton scattering) can offer little differences for

different directions. The shape of the gamma ray signal from DMA is known from collision

experiments with electrons and positrons. In this analysis the common shape of the back-

ground radiation, estimated from GalProp [79], is fitted to the EGRET data. Thereby, the

scaling factor of the gamma ray signal from DMA (boost factor) is taken to be the same in

all sky directions, i.e. that the averaged luminosity of the DMCs is equal in all directions.

The scaling factors of the background radiation depend on the density distribution of CR

and interstellar gas in the Galaxy, which are not well known. Therefore, the scaling factors

of the background are left free for different sky regions. A fit of the shape of the individual

background contributions cannot explain the EGRET gamma ray excess.

In a first step the spectral shape of the background model in the separate sky regions is
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fitted to the experimental data. Therefore, the χ2 function

χ2 =
∑
i

(
f · φibg + φieg − φiexp

σi

)2

(4.1)

is minimised. There, φbg represents the Galactic background radiation flux, φeg is the flux of

the extragalactic background radiation, φexp is the measured diffuse Galactic gamma ray flux

and σ is the point-to-point error. The scaling parameter of the background radiation flux is f

while the index i denotes the specific energy bin. The second step is the approximation of an

extended theoretical model which includes the gamma ray signal from the DM contribution.

Then the χ2 function changes to

χ2 =
∑
i

(
f · φibg + φiDM,diff + φiDM,clump + φieg − φiexp

σi

)2

. (4.2)

This function includes the annihilation flux from the smoothly distributed DM φDM,diff and

the DMCs φDM,clump, as given by Eqs. (2.55) and (2.61), respectively. For the determination

of the DM density distribution the directionality of the gamma ray flux is considered. The

gamma radiation flux predicted by the DM density distribution and the gamma ray fluxes

from the Galactic and extragalactic background radiation are fitted to the experimental data

in different sky regions. For this purpose a finer division of the sky is necessary in order to

get proper information about the directionality of the gamma ray fluxes. Then a χ2 function

for the fit to the experimental fluxes is used again

χ2 =
∑
i,j

(
fi,j · φi,jbg + φi,jDM,diff + φi,jDM,clump + φi,jeg − φi,jexp

σi,j

)2

. (4.3)

The various bins in latitudinal and longitudinal direction are characterised by the indices

i and j. The background model is differently scaled in all i × j sky regions. For the

determination of the background scaling factors the gamma ray fluxes are splitted into two

energy ranges — a low energy range for photons below an energy of 500 MeV and a high

energy range for photons above 500 MeV. At low energies the total gamma radiation flux is

dominated by the background component which is the reason why the background scaling

factors fi,j are obtained from a fit to the data in this energy range. The fit of the EGRET

data shows a good agreement of the background scaling factors with the predictions of

GalProp. The gamma ray fluxes in the high energy region are used for the determination

of the Galactic DM density distribution. If the background components in all directions are

known from the low energy region the additional gamma radiation fluxes φi,j
DM,diff +φi,j

DM,clump

can be fitted to the experimental data. The gamma radiation from the diffuse DM component

is proportional to the line-of-sight integral of the squared DM density while the gamma ray

flux from the clumpy DM component is only proportional to the line-of-sight integral of the
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Figure 4.3: Radial dependence of the survival probability of DMCs in the MW. Different

central values are obtained by analytical calculations depending on the ratio of the core

radius and the virial radius of the DM clump, as explained in Section 2.6.3.

DM density to the first power, as explained in Section 2.6.3. However, the total gamma ray

flux from DMA is dominated by the gamma ray flux from the clumpy component because

of the increased annihilation rate of WIMPs in the core of DMCs which is reflected in the

boost factor, which is found to be much larger then unity. Consequently, the analysis of the

diffuse Galactic gamma is sensitive to the distribution of the clump DM component while

the diffuse DM mass is mainly determined by astronomical observations.

The gamma ray flux from DMA in clumps also depends on tidal disruption of DMCs in the

gravitational potential of the MW. This effect was discussed in Section 2.6.3. The survival

probability of clumps in the Galaxy can be different from unity in the GC. In this thesis the

survival probability P(r) is parametrised as [150]

P (r) =
2.3 · 106 − 1.0 · 106 · r + 1.7 · 105 · r2 − 6.3 · 103 · r3 + 91.1 · r4

1.3 · 105 − 1.7 · 104 · r + 2.2 · 103 · r2 − 84.0 · r3 + 1.2 · r4
· exp(−(4/r)4). (4.4)

The maximal value of this function is normalised to unity, the radius is scaled by a factor of

eight in order to obtain a saturation at a Galactocentric distance of about 5 kpc as indicated

in [10]. The radial dependence of the survival probability is shown in Figure 4.3. In the

following sections the diffuse Galactic gamma radiation measured with EGRET is analysed

according the abovementioned procedure. The results in [16] are used as an indication for

the parameters of the ringlike DM substructure.
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4.2 Results

4.2.1 Energy spectrum of the diffuse Galactic gamma ra-
diation

The energy spectrum of the diffuse Galactic gamma rays was found to be incompatible with

expectations from a conventional and an optimised model of the Galactic gamma radia-

tion [16]. It was shown that the fit of the energy spectrum can be much improved by the

introduction of a gamma ray signal produced by annihilation of a WIMP with a mass above

50 GeV. The upper limit for the WIMP mass was found to be 70 GeV for a conventional

model and 100 GeV for an optimised model. This result is still valid in case of mix of a

smoothly and a clumpy distributed Galactic DM component since the energy spectrum is

independent of the spatial distribution of the gamma fluxes. In the present thesis a WIMP

mass of about 60 GeV is assumed which is in the abovementioned range.

Following the analysis in [16] the energy spectrum is considered in six different sky regions

defined in Table 4.2.1. Region A is the energy spectrum in direction of the GC, where the

DM contribution is assumed to be largest, while the energy spectrum of the gamma radiation

from the Galactic disc without the GC is shown in region B. The spectrum of the Galactic

anticentre (opposite to the direction to the GC) is given in region C. The last regions D, E,

F are the spectra above the Galactic disc where the Galactic contributions are small and the

extragalactic background radiation becomes important.

The χ2 functions in Eq. (4.2) and Eq. (4.3) were minimised for the halo profiles defined

in Section 3.2.2 in combination with two DM rings. In each case the extragalactic back-

ground radiation is calculated according to the method in [81]. Therein the extragalactic

background is recursively calculated for each energy bin using the diffuse Galactic gamma

Region Longitudes Latitudes

A |l| < 30◦ |b| < 5◦

B |l| > 30◦ |b| < 5◦

C |l| > 90◦ |b| < 10◦

D |l| < 180◦ 10◦ < |b| < 20◦

E |l| < 180◦ 20◦ < |b| < 60◦

F |l| < 180◦ 60◦ < |b| < 90◦

Table 4.1: Here the definition of the different sky regions for the analysis of the energy

spectrum of the diffuse Galactic gamma radiation is shown. The coordinates l and b are

given in the coordinate system centred at the Sun where b = 0◦ defines the Galactic disc and

l = 0◦ defines the connection line between the Sun and the Galactic centre. More detailed

information about the coordinate system in section 2.5.
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radiation measured with EGRET. In this method the gamma ray flux produced by DMA

is taken into account. In Figure 4.4 the energy spectra of the diffuse gamma radiation for

the six different sky regions measured with EGRET are shown. The point-to-point error of

the data, which represents the error of the spectral shape, is 7%. In case of an additional

gamma ray flux from DMA with a WIMP mass of about 60 GeV the spectral fit is improved

from χ2/d.o.f. = 603.4/42 to χ2/d.o.f. = 30.9/36.

4.2.2 Spatial distribution of the diffuse Galactic gamma
radiation

In this section the results of the analysis of the spatial distribution of the diffuse Galactic

gamma radiation are presented. Therefore, the sky is divided into 180 angular bins. The

longitudes are divided into 45 bins with a width of 8◦ while the absolute values of the

latitudes are divided into four bins: 0◦ < |b| < 5◦, 5◦ < |b| < 10◦, 10◦ < |b| < 20◦ and

20◦ < |b| < 90◦. The gamma radiation flux from the diffuse and the clumpy DM component

is fitted to the experimental data according to Eq. (4.3). The density distributions of the

diffuse and the clumpy DM component are treated separately which leads to two possible

cases for the construction of the total DM density. In the first case one density distribution

is assumed for both DM components. Hereafter, this model is called Single Profile (SP)

density model. It corresponds to the analysis in Section 3.3.1 and 3.3.2. Then, the DM

density is given by

ρχ,tot = ρHalo
χ + ρIR

χ + ρOR
χ , (4.5)

where the indices IR and OR denote the inner and outer ring. The shape of the DM

halo profile is fixed and its normalisation ρ�,Halo is calculated under the requirement of the

fulfillment of the local rotation velocity v�.

In the second case the density distributions of the DM components are assumed to be

different. Such density models are preferred by recent numerical simulations of the structure

formation in the Universe [13]. Hereafter, this model is called Double Profile (DP) density

model. Then the total DM density distribution is

ρχ,tot = ρHalo,diff
χ + ρHalo,clump

χ + ρIR
χ + ρOR

χ . (4.6)

This model provides two local halo densities ρ�,Halo,diff and ρ�,Halo,clump which provides a fur-

ther free parameter compared to the SP model. For the determination of the normalisation

of the halo profile of the diffuse component the value of the total Galactic mass was used.

It is known from experimental measurements of the kinematics of halo stars that the total

Galactic mass of the MW is about 1.0 · 1012 M�. In order to obtain comparable results for

the different profile combinations the diffuse halo was normalised in order to obtain a total

mass for the diffuse component of 1.0 · 1012 M� at a Galactocentric distance of 200 kpc.

The local density of the diffuse component is consequently fixed if the parameters of the
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Figure 4.4: Energy spectrum of the diffuse Galactic gamma radiation in the six different

regions defined in Table 4.2.1. The uncertainty of the data is 7%.
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diffuse halo profile are fixed. The local density of the halo profile of the clumpy component

is determined under the requirement of the fulfillment of the local rotation velocity v�.

The diffuse DM distribution ρHalo,diff
χ is realised by a DM halo profile without rings. It

describes the distribution of individual DM particles in the Galactic halo. The spatial dis-

tribution of DMCs and any other local enhancement of DM particles is given by ρHalo,clump
χ +

ρIR
χ + ρOR

χ . The DM rings are supposed to consist of tidal streams produced by the tidal

disruption of DM clumps, the Sagittarius and the Canis Major Dwarf galaxy. Galactic tidal

streams are supposed to belong to the clumpy DM component since they are small over-

densities of DM. For this reason the clumpy DM component is assumed to consist of a halo

profile in combination with the DM rings while for the smooth component a halo without

rings is assumed.

Single Profile density model

In this section the results for the SP density model are presented. The minimisation of the

χ2 function in Eq. (4.3) was performed for the different halo profiles described in Section

3.2.2 combined with two DM rings. The scale radii a and the slopes α, β, γ of the different

profiles were fixed. The halo eccentricities (εxy and εz) as well as the ring eccentricities εIR
and εOR were adopted from [16]. The Galactocentric distance was fixed to r� = 8.3 kpc.

Since the rings are just slightly elliptical a small change of these values is hardly reflected

in the fit results. The survival probability of the DMCs is assumed to be constant. In this

case the gamma ray signal is dominated by clumps with a core radius smaller than 5% of

the entire dimension of the clump (see Setion 2.6.3).

The parameter settings of the best fit to the spatial distribution of the gamma radiation

flux, the χ2 values and the boost factors are shown in Table 4.2. Comparing the fit results

for the different density distributions it becomes apparant that the 240 profile yields the

best description of the spatial distribution of the gamma ray fluxes. In case of the other

halo profiles too small gamma ray fluxes are predicted for intermediate Galactic latitudes

(10◦ < |b| < 20◦) in the region of the GC. The reason for this is the radial dependence of the

240 profile, as shown in Figure 3.3, which provides a higher DM density in the radial region

between 1 and 5 kpc compared to the other profiles. Consequently this profile provides a

higher gamma ray flux in the intermediate latitude region. In order to illustrate this effect

the longitudinal distribution of the NFW profile and the 240 profile are shown in Figures 4.5

and 4.6. The longitudinal gamma ray distributions of the remaining halo profiles are shown

in Appendix C. All density distributions are dominated by the DM rings as shown in Figure

4.7a. This effect results from the inconsistency of a pure halo profile with the experimental

data which was already found in [16], in which the DMA signal is only produced by the diffuse

DM component. On the contrary, in the present thesis the major part of the DMA signal

is produced by the clumpy component which is proportional to the line-of-sight integral of

the linear DM density distribution. The linear dependence leads to even higher densities
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NFW BE Moore PISO 240

ρ�,DM [GeV cm−3] 0.128 0.064 0.169 0.062 0.131

r� [kpc] 8.3 8.3 8.3 8.3 8.3

α 1.0 1.0 1.5 2.0 2.0

β 3.0 3.0 3.0 2.0 4.0

γ 1.0 0.3 1.5 0.0 0.0

a [kpc] 20.0 10.2 30.0 5.0 4.0

εxy 0.85 0.85 0.85 0.85 0.85

εz 0.7 0.7 0.7 0.7 0.7

φgc [◦] 87.0 85.3 83.4 83.3 83.0

ρIR [GeV cm−3] 12.6 13.3 13.1 13.2 10.6

RIR [kpc] 3.30 3.07 3.48 3.98 4.0

σr,IR [kpc] 4.15 3.74 3.7 3.73 3.74

dIR - - - - -

σz,IR [kpc] 0.323 0.366 0.306 0.317 0.29

εxy,IR 0.85 0.85 0.85 0.85 0.85

φIR [◦] -76.3 -77.9 -82.8 -77.5 -73.1

MIR [109 M�] 45.9 45.1 30.7 47.2 34.6

ρOR [GeV cm−3] 2.4 3.1 2.61 2.66 2.46

ROR [kpc] 12.69 12.94 12.60 12.75 12.86

σr,OR [kpc] 5.39 4.10 5.41 4.42 4.4

dOR 4.0 4.0 4.0 4.0 4.0

σz,OR [kpc] 1.0 1.07 1.06 1.02 1.02

εxy,OR 0.95 0.95 0.95 0.95 0.95

φOR [◦] -50.7 116.4 121.2 126.6 48.0

MOR [109 M�] 10.5 11.4 12.1 9.7 9.0

boost factor 37.7 38.4 37.9 36.3 43.6

χ2
long / d.o.f. 165.1 / 157 157.4 / 157 148.59 / 157 181.43 / 157 130.56 / 157

probability [%] 27.1 43.3 65.1 7.9 93.2

Table 4.2: Parameter settings of the SP model for the best approximations of the various

DM halo profiles. The radius of the solar orbit r0, the halo and ring eccentricities εxy, εz, εIR
and εOR as well as the halo parameters a, α, β and γ were fixed. The initial ring parameters

for the minimisation were adopted from [16].
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Figure 4.5: Longitudinal distribution of the diffuse Galactic gamma radiation obtained

from the NFW profile in combination with a large scale structure of two rings at 3.3 and

12.7 kpc. A good fit of the data is obtained for latitudes up to 10◦ and at the Galactic

poles. In the intermediate latitudinal region between 10◦ and 20◦ the intensity of the gamma

radiation from the GC cannot be described.
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Figure 4.6: Longitudinal distribution of the diffuse Galactic gamma radiation obtained

from the 240 profile in combination with a large scale structure of two rings at 4.0 and 12.9

kpc. A good fit of the data is obtained for latitudes up to 10◦ and at the Galactic poles.

Contrary to the fits of the remaining profile in this case a good fit to the gamma radiation

from the GC is obtained in the latitudinal region from between 10◦ and 20◦.
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compared to the case of just the diffuse DM component. Approximately equal densities are

obtained for the outer ring for all profile, but a difference for the inner ring becomes apparent.

Equal densities are obtained for the NFW, BE, Moore and PISO profile while a lower density

is obtained for the 240 profile because of the different shape of this profile. The determination

of the local halo density ρ�,Halo is performed under the requirement of the fulfillment of the

local rotation velocity v�. Therefore, a high maximal density for the inner ring leads to a low

local DM halo density in order to keep the centripetal force at the Sun constant. This effect

is reflected in the low total Galactic mass, which strongly depends on ρ�,halo, and a high mass

of the substructure which is about 30% of the total mass. The total mass distributions of the

different halo profiles are shown in Figure 4.7b. There it becames apparent that the total

mass distribution below a Galactocentric distance of one kpc is dominated by the visible

matter due to the high density in the Galactic bulge. Two bumps are visible at about 5

and 15 kpc which are the influence of the DM rings. The behaviour of the integrated halo

density becomes visible as soon as the influence of the outer ring disappears. The slope of

the density decrease at large radii is the same for all considered cuspy profiles (∝ 1/r3) which

is the reason why their mass distributions show the same increase for radii above 30 kpc.

However, the mass distribution of the PISO profile shows a steeper linear increase which

result from its lower density decrease at large radii (∝ 1/r2). The density distribution of the

240 profile show a rather steep decrease at large radii (∝ 1/r4) than the cuspy profiles. For

this reason its mass distribution decreases very fast and the total mass obtained from this

profile is nearly constant for large radii. The velocity distributions in the Galactic disc and in

the Galactic halo are presented in the Figures 4.7c and 4.7d. The strong influence of the halo

substructure in the SP model is once more reflected in the RC within the Galactic disc. All

profiles agree with the measurements of the rotation velocity within the Solar circle while in

the radial region between the rings the rotation velocity is much decreased by the dense outer

ring. The rotation curves of halo stars are obtained to be flat, structurless and in agreement

with the experimental determination as shown in Figure 4.7d. The vertical gravitational

potential at the position of the Sun is shown in Figure 4.7e. Its slope is closely connected to

the local surface density as presented in Section 3.1.4. However, the local surface densities of

all considered profile, as presented in Table 4.3, are too high in order to be consistent with

the experimentally determined value of 71± 6 M� pc−2 which is also reflected in the steep

increase of the vertical gravitational potential at the position of the Sun. The HWHM of the

Galactic gas distribution was calculated for all density distributions according to Eq. (3.32).

The results are presented in Figure 4.7f. The HWHM obtained from Moore and the NFW

profile are in good agreement with the experimental data while the remaining profiles yield

a strong decrease of the HWHM. For all density distributions a velocity dispersion of about

12 km s−1 is obtained which is inconsistent with the experimental determination of 8 ± 1

and 7± 1 km s−1 (see Section 3.1.4).

Summarizing the results in this section, the SP density model corresponds to our previous

analysis of the diffuse Galactic gamma radiation [16]. There, the Galactic DM component
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Figure 4.7: Resulting distributions of the SP density model. In this model the diffuse and

the clumpy DM component are distributed according to the same density distribution. The

radial dependence of the DM in the Galactic disc is shown in (a) while the mass distribution

is given in (b). The velocity distribution in the Galactic disc and in the Galactic halo are

shown in (c) and (d). In (e) the gravitational potential perpendicular to the Galactic plane

is shown and in (f) the half-width-half-maximum of the Galactic gas distribution is given.



90 Constraints on the Dark Matter density distribution from Galactic gamma rays

Astronomical constraint M60kpc Mtot ρ�,tot Σ�,tot

Units 1011 M� 1012 M� M� cm−3 M� cm−2

Experimantal values 4.0± 0.7 1.0+0.3
−0.2 0.1± 0.01 71± 6

NFW 2.6 0.42 0.179 139.7

BE 2.7 0.43 0.150 135.1

Moore 4.0 0.48 0.165 133.85

PISO 3.0 0.50 0.189 142.85

240 1.6 0.22 0.170 127.65

Table 4.3: Astronomical properties of the considered halo profiles of the SP density model.

For all considered halo profiles high total matter densities and high surface densities at the

position of the Sun are obtained. The reason are the high ring densities obtained from the

fit of the profiles to the longitudinal distribution of the gamma rays.

was assumed to be smoothly distributed in the Galactic halo which leads to a gamma ray

signal from DMA which is proportional to the line-of-sight integral of the squared density

distribution. In case of a clumpy DM component the gamma ray flux is dominated by

the signal produced in the clumps. Then, the observed gamma ray flux is proportional to

the line-of-sight integral of the linear density distribution. Hence, the densities of the DM

rings have to be much increased compared to the results in [16] in order to find a good

description of the spatial distribution of the gamma ray fluxes which is inconsistent with

the astronomical observations. This effect can be vanished in a density model in which the

density distributions of the two DM components are treated differently. Such a model is

discussed in the subsequent section.

Double Profile density model

The analysis of the directionality of the diffuse Galactic gamma rays is performed in the

way as for the SP model, i.e. that all halo slopes and eccentricities were fixed to the values

obtained in [16], the Galactocentric distance to the Sun is r� = 8.3 kpc and the survival

probability of clumps is assumed to be constant. However, contrary to the SP model in this

case the χ2 function in Eq. (4.3) is minimised for different combinations of the halo profiles

defined in Section 3.2.2.

The normalisation of the diffuse halo profile ρ�,Halo,diff is calculated under the requirement of

the fulfillment of a total Galactic mass of 1 ·1012 solar masses at a Galactocentric distance of

200 kpc. If the diffuse component is distributed according to the Moore profile the rotation

velocity of the Sun is already given by the diffuse component and a clumpy DM component

cannot be included anymore. In case of the 240 profile for the diffuse DM component a

large for ρ�,Halo,diff = 2.2 GeV cm−3 is obtained. The reason for this high normalisation is

the strong decrease (∝ 1/r4) of the density at large radii and the fixed value of its integral
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Figure 4.8: Fit results of the spatial dependence of the gamma ray flux from DMA for the

fifteen considered profile combinations. The convention for the labels of the x-axis is that

the first profile corresponds to the diffuse DM component and the second one is the halo

profile of the clumpy component.

up to a radius of 200 kpc. As the required mass for the diffuse DM component and the

local rotation velocity constraint cannot be simultaneously fulfilled by these profiles the halo

combinations with a Moore or a 240 halo profile for the diffuse DM component are left out

of the determination of the DM density distribution. For the remaining fifteen profile com-

binations the spatial dependence of the annihilation flux are analysed. Here, the survival

probability of the DMCs in the MW, as described in Chapter 2, is set to be constant in the

whole Galaxy, i.e. no tidal disruption of DMCs. This effect will be subsequently explained.

The results of the approximation of the spatial distribution of the DMA flux are shown in

Figure 4.8. The gamma radiation flux from the diffuse DM component results to be small

compared to the gamma radiation flux from the clumpy component. This effect stems from

the different scaling factor for these components. The scaling factor for the gamma ray flux

of the diffuse component is per definition equal to unity whereas the scaling factor of the

clumpy component (boost factor) is left free for the minimisation because of the unknown

luminosity of DMCs. For that reason the determination method is sensitive to the gamma

ray flux from the clumpy DM component. For all density profile combinations it therefore

holds a simple principle: Similar halo profiles for the clumpy DM component lead to similar

ring profiles. This principle is reflected in Figure 4.8 where it is shown that the χ2 values of

the approximation of the directionality of the DMA flux are more or less independent of the
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diffuse halo profile. Furthermore, it is clearly visible that combinations with the 240 profile

for the clumpy DM component yield the best results for the approximation of the direction-

ality of the diffuse Galactic gamma radiation. For this reason the analysis is restricted to

profile combinations with the 240 profile for the clumpy component. The parameter settings

of these combinations are shown in Table 4.4 while the parameters of the remaining combina-

tions are given in Table D.1 in Appendix D. The longitudinal distribution of the gamma ray

fluxes above a photon energy of 500 MeV obtained from the NFW-240 profile combination

is shown in Figure 4.9 while the results of the other profile combinations are also presented

in Appendix D. The total DM density distributions in the Galactic disc of the considered

halo profile combinations are shown in Figure 4.10a. The shape of the DM rings are very

similar for all three profiles. There the principle mentioned above is reflected again. The

distributions of the cuspy profiles are equivalent except for the innermost region where the

NFW profile of the diffuse component shows a much stronger increase than the BE profile.

The DM density of the clumpy halo profile and the ring masses are about three times higher

for the PISO-240 than for the other combinations. This difference as well as the equality of

the density distribution for the cuspy profiles results from the different density decrease of

the diffuse halo profiles. As the density of the PISO profile decreases proportional to 1/r2 at

large radii its mass increases stronger than for the cuspy profiles which are proportional to

1/r3 at large Galactocentric distances. Consequently, the local density of the PISO profile

is lower than for the other ones. This effect leads to a higher local density of the halo profile

of the clumpy component and the DM rings and a lower boost factor, as shown in the total

density at the Sun in Table 4.5. However, the fit to the longitudinal distribution is not

effected. The difference of the NFW and the BE profile are hardly reflected in the resulting

parameters since the total density in the GC is dominated by the baryonic matter compo-

nent. The total Galactic mass is shown in Figure 4.10b. It shows a similar distribution for all

halo profile combination which is an effect of the method used for the analysis. The obtained

values for the total mass within 60 kpc and the total Galactic mass are given in Table 4.5.

Both constraints are fulfilled by the considered halo combinations. The similarity of the

NFW-240 and the BE-240 combination as well as the high density obtained for the clumpy

component of the PISO-240 distribution is also apparent in the velocity distributions in the

Galactic disc and in the halo, presented in the Figures 4.10c,d. The shape of the RC in the

inner part of the Galctic disc is dominated by the disc component. Here, all combinations

agree with the experimental values. At the outer Galaxy the NFW-240 and BE-240 profile

yield too low velocities while a velocity increase results for the PISO-240 combination due to

the higher mass of the outer ring. The circular rotation curve of halo stars are obtained to

be structureless and flat in all cases. The slope of the vertical gravitational potential at the

Sun’s position is proportional to the local surface density. The results of the cuspy profiles

show similar results with a less steeper slope than the experimental data. The resulting

surface densities are compatible with the experimental determinations in Table 4.5. The

PISO-240 profile provides a stronger potential with a steeper increase. For this reason a
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NFW - 240 BE - 240 PISO - 240

ρ�,diff [GeV cm−3] 0.304 0.348 0.167

r0 [kpc] 8.3 8.3 8.3

αdiff 1.0 1.0 2.0

βdiff 3.0 3.0 2.0

γdiff 1.0 0.3 0.0

adiff [kpc] 20.0 10.2 5.0

εxy,diff 1.0 1.0 1.0

εz,diff 1.0 1.0 1.0

ρ�,clump [GeV cm−3] 0.0249 0.0245 0.0735

αclump 2.0 2.0 2.0

βclump 4.0 4.0 4.0

γclump 0.0 0.0 0.0

aclump [kpc] 4.0 4.0 4.0

εxy,clump 0.85 0.85 0.85

εz,clump 0.7 0.7 0.7

φgc [◦] 66 67 66

ρIR [GeV cm−3] 2.6 2.56 7.9

RIR [kpc] 3.5 3.4 3.4

σr,IR [kpc] 3.5 3.6 3.6

σz,IR [kpc] 0.312 0.302 0.315

εxy,IR 0.85 0.85 0.85

φIR [◦] -121.5 -116 -123

MIR [109 M�] 7.73 7.3 23.2

ρOR [GeV cm−3] 0.75 0.78 2.15

ROR [kpc] 12.7 12.7 12.7

σr,OR [kpc] 3.85 2.9 3.76

dOR 4.0 4.0 4.0

σz,OR [kpc] 0.8 0.83 0.8

εxy,OR 0.95 0.95 0.95

φOR [◦] -113 -76 70

MOR [1010 M�] 2.0 1.6 5.47

boost factor 258 254 89

χ2
long / d.o.f. 138.5 / 157 137.4 / 157 138.4 / 157

probability [%] 84.0 85.5 84.0

Table 4.4: Parameter settings of the DP model for the best approximations of the various

DM halo profiles to the measured diffuse Galactic gamma radiation from EGRET.
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Figure 4.9: Longitudinal distribution of the diffuse Galactic gamma radiation obtained

from the NFW-240 profile combination with a large scale structure of two rings at 3.5 and

12.7 kpc.
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Figure 4.10: Resulting distributions of the SP density model. In this model the diffuse and

the clumpy DM component are distributed according to the same density distribution. The

radial dependence of the DM in the Galactic disc is shown in (a) while the mass distribution

is given in (b). The velocity distribution in the Galactic disc and in the Galactic halo are

shown in (c) and (d). In (e) the gravitational potential perpendicular to the Galactic plane

is shown and in (f) the half-width-half-maximum of the Galactic gas distribution is given.



96 Constraints on the Dark Matter density distribution from Galactic gamma rays

Astronomical constraint M60kpc Mtot ρ�,tot Σ�,tot Mclump/Mdiff

Units 1011 M� 1012 M� M� cm−3 M� cm−2 %

Experimantal values 4.0± 0.7 1.0+0.3
−0.2 0.1± 0.01 71± 6 -

NFW-240 4.6 1.06 0.106 80.2 3.3

BE-240 4.8 1.07 0.107 80.5 2.9

PISO-240 3.7 1.2 0.157 107.5 8.9

Table 4.5: Astronomical properties of the considered halo profiles of the DP density model.

The total Galactic mass, the total matter density and the surface density near the Sun

obtained from the NFW-240 and BE-240 profile combinations are in agreement with the

experimental observation while the PISO-240 combination is in conflict with the local density.

The ratio of the total mass of the diffuse DM component and the total mass of the clumps

shows that the mass of the clumps in the PISO-240 profile is relatively increased by a factor

of three compared to the other profiles. Nevertheless, in all cases the total mass is dominated

by the diffuse DM component.

higher surface density is obtained which is not compatible with the data. The stronger ver-

tical gravitational potential is also obtained in the estimation of the HWHM of the Galactic

gas distribution shown in Figure 4.10f. For all halo combinations a velocity dispersion of

σ = 7.8 km s−1 is obtained which is in good agreement with the experimental measurements

in Section 3.1.4.

Summarizing the abovementioned results it becomes apparent that the best fit of the lon-

gitudinal distribution of the diffuse Galactic gamma radiation measured with EGRET is

obtained for a 240 profile in combination with two DM rings at 3.5 and 12.5 kpc. Whether

the astronomical constraints can be fulfilled or not depends on the density distribution of

the diffuse DM component. A strong density decrease (∝ 1/r4) for large Galactocentric

distances is incompatible with the total Galactic mass while a low density increase (∝ 1/r2)

for large radii yields to high ring densities which are incompatible with the total matter

density and the surface density at the position of the Sun. However, the resulting profile

combinations show a low velocity distribution at the outer Galaxy which probably results

from the assignment of the DM rings to the clumpy DM component. A diffuse fraction of

the DM rings is discussed in the following section.

4.2.3 Clumpiness of the Dark Matter rings

It was shown above that an NFW-240 profile combination with two DM rings at about 3.5

and 12.5 kpc yield a good description of the longitudinal distribution of the diffuse gamma

radiation fluxes. Furthermore, this model is in agreement with measurements of the local

surface density, the total Galactic mass at a Galactocentric radius of 60 kpc, the circular
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Figure 4.11: Galactic rotation curve with a fraction of 30% of diffuse DM in the outer ring.

rotation curve of stars in the Galactic halo and the HWHM of the gas distribution of the

Galactic disc. However, the rotation velocity at the outer Galaxy is obtained to be too low as

shown in Figure 4.10c. In the DP density model the DM rings contribute to the clumpy DM

density distribution since they are assumed to consist of corotating DMCs and tidal streams

which were likely produced by the infall of a dwarf galaxy. The smooth DM contribution

of the rings is assumed to be diffused out of the ring. The inconsistency with the velocity

distribution at the outer Galaxy indicates that a smooth component of the outer rings exist,

which do hardly contribute to the gamma ray signal from DMA. In order to find the fraction

of diffuse DM in the rings the DM density distribution is modified to

ρχ,tot = ρHalo,diff
χ + ηIR · ρdiff,IR

χ + ηOR · ρdiff,OR
χ +

ρHalo,clump
χ + (1.0− ηIR) · ρclump,IR

χ + (1.0− ηOR) · ρOR
χ . (4.7)

In Section 3.3.2 a good description of the RC is obtained for the ring parameters given

in Table 3.3.2. The maximal ring densities ρIR and ρOR found for the NFW-240 profile

combination were increased to the values given in Table 3.3.2 and the fit to the EGRET

data was performed again. The resulting velocity distribution is shown in Figure 4.11. A

good fit is obtained for ηIR = 0.0 and ηOR = 0.3. Consequently, the RC prefers that the

outer ring consists of 30% diffuse DM while the inner ring entirely consist of DMCs. The

reason for this difference may be explained by the different age of the rings. If the infall of

the dwarf galaxy occured late in the history of the MW the diffuse fraction brought in by

the dwarf galaxy might not be completely diffused out of the ring.
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P(0) [%] 75.0 50.0 25.0 0.0

only boost factor fitted

χ2
long / d.o.f. 142.2 / 157 145.7 / 157 150.12 / 157 155.3 / 157

probability [%] 77.9 71.1 61.8 50.0

fitted parameters

ρIR [GeV cm−3] 2.6 2.7 2.65 2.7

RIR [kpc] 3.4 3.4 3.3 3.3

σr,IR [kpc] 3.5 3.5 3.5 3.5

σz,IR [kpc] 0.309 0.297 0.310 0.303

MIR [109 M�] 7.42 7.48 7.53 7.35

ρOR [GeV cm−3] 0.74 0.74 0.735 0.715

ROR [kpc] 12.7 12.7 12.8 12.8

σr,OR [kpc] 3.7 3.9 3.7 3.7

σz,OR [kpc] 0.8 0.8 0.8 0.8

MOR [1010 M�] 1.9 1.9 1.8 1.8

χ2
long / d.o.f. 139.9 / 157 141.3 / 157 146.1 / 157 148.24 / 157

probability [%] 81.6 79.5 61.8 65.9

Table 4.6: Parameter settings of the DP model for the best approximations of the various

DM halo profiles to the measured diffuse Galactic gamma radiation.

Survival probability of Dark Matter clumps

The analysis of the diffuse Galactic gamma radiation for the SP and the DP density model is

performed with a constant survival probability for DMCs which means that the cores of DM

subhaloes are not destroyed by the tidal forces. In this section the influence of the central

value of the survival probability on the resulting density distributions is examined. The fit

of the NFW-240 profile combination to the longitudinal distribution of the diffuse Galactic

gamma rays is performed again for the P (0) = 0.75, 0.5, 0.75 and 0.0. First all parameters

except for the boost factor were fixed in order to obtain comparable results to P (0) = 1.0. In

the second step the ring parameters were left free for the fit to the longitudinal distribution

of the gamma rays. The results are summarised in Table 4.6. In case of a fixed profile it is

shown that the fit of the longitudinal distribution of the gamma radiation mildly depends

on the survival probability of clumps. A decline of the χ2 value is obtained but in all cases

the results are compatible with the experimental data. This effect results from the radial

dependence of the survival probability shown in Figure 4.3. It influences only the inner part

of the Galaxy while the gamma ray fluxes at large Galactic longitudes and at the Galactic

poles are not affected. If the parameters of the DM rings are left free the fit can be improved

by the increase of the inner ring which compensates the decrease of the central value of the

survival probability. The mass of the outer ring stays unchanged because at radii larger
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than 5 kpc the survival probability is constant. In case of P (0) = 0 the compensation of the

survival probability by the inner ring seems not effective anymore. In this case the ring mass

is reduced in order to increase the gamma radiation flux from the halo of the clumpy DM

component. Nevertheless, a mild dependence of the fit results concerning the variation of

the central value of the survival probability of DMCs is found which results from the special

radial dependence of the survival probability.

4.3 Discussion

In the last sections the results of the analysis of the diffuse Galactic gamma radiation were

presented. It was shown that the SP density model, in which a single density distribution is

assumed for the diffuse and clumpy DM component, is not able to describe the astronomical

constraints because of the high local DM density originating from the high ring masses

obtained in the this model. The reason for the high ring masses is the fit to the gamma

radiation at large longitudes and low latitudes and the domination of the gamma ray flux

from DMA in the clumps.

Different density distributions for the diffuse and the clumpy DM distribution were used

in the DP model. In this model the total Galactic mass is mainly provided by the diffuse

DM component which, however, hardly contributes to the diffuse Galactic gamma radiation.

The gamma radiation from DMA is mainly produced by the clumpy DM component. Thus,

in the DP model the total Galactic mass is decoupled from the DMA signal. In this case

lighter rings are obtained which are consistent with the local surface density and the local

matter density. For a diffuse DM fraction of about 30% (0%) in the outer (inner) ring is

compatible with the velocity distribution at the outer disc. This difference between inner

and outer ring may be due to the different ages, resulting in a larger diffusion at the diffuse

DM component. For the whole Galaxy the diffuse component is more than 90% of its mass

(see Table 4.5). The rings contribute 0.7% (1.9%) of the total mass of the inner (outer) ring,

respectively.

Towards the GC the DMCs may have experienced more tidal disruption by the collision with

stars or simply by passing the Galactic disc. However, the mass of the inner ring is strongly

correlated with the survival probability of the clumps, so the survival probability is not well

determined.

For the boost factors needed for the diffuse Galactic gamma rays Galactic propagation

models can be used to estimate the local Galactic antiproton flux. Simple propagation

models overestimate the Galactic antiproton flux by an order of magnitude as discussed

in [17]. However, recent propagation models are afflicted with large uncertainties because of

the little-known parameters of the local variation of the Galactic magnetic field or trapping

processes in magnetic clouds. In [151] it was shown that the overestimation of the antiproton

flux can be reduced in a more detailed propagation model including Galactic winds.
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(a) Scheme (b) Cutaway

Figure 4.12: (a) A schematic picture of the Fermi satellite is shown. The different compo-

nents of the Large Area Telescope are presented at the top of the picture while the instru-

ments of the Gamma-Ray Burst Monitor are shown at the lower left edge. (b) A cut-away

picture of the LAT instrument is shown. The LAT is enclosed by the segmented anticoinci-

dence detector which is yellow coloured. One tower of the 4 × 4 array is depicted in more

detail. The upper part consists of a silicon strip detector while the calorimeter is located at

the lower part of the tower.

4.4 Recent and future gamma ray observations

On June 11th 2008 the Gamma-Ray Large Area Space Telescope (GLAST), was succesfully

launched at the Cape Canaveral Air Force Station in Florida and later renamed the Fermi

Gamma-Ray Space Telescope. It is the successor of the EGRET telescope. The main aims of

the Fermi Telescope are the identification of so far unidentified point sources, the discovery

of new point sources and the observation of so-called gamma-ray bursts. Two instruments

are installed at the Fermi satellite - the Large Area Telescope (LAT), which is the main

instrument, and the Gamma-Ray Burst Monitor (GBM). In Figure 4.12a the design of the

Fermi satellite is shown. The LAT instrument is located on top of the satellite while the

GBM is a system of twelve small NaI detectors (bunches of three detectors on each corner)

at the lower part of the satellite. Large area observations of the Galactic gamma radiation

are done with LAT. It is sensitive to gamma rays in the energy range of 20 MeV to 300 GeV

and has an on-axis effective area of about 8000 cm2 for E > 1 GeV. The measurements of the

GBM complement the LAT in its observation of point sources and is sensitive to x-ray and
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Figure 4.13: Differential spectra of primary cosmic rays and the diffuse Galactic gamma

radiation are shown. Below an energy of about 15 GeV the spectrum of the CR protons

is affected by the protons emitted by the Sun. The proton spectrum for the maximal and

minimal Sun activity is shown. The fluxes of the extragalactic diffuse gamma radiation are

about five orders of magnitude smaller than the proton fluxes. The dashed line represents

10% of the extragalactic background radiation spectrum. Figure taken from [153].

gamma rays in the energy range of 8 keV to 40 MeV. The measurement of the diffuse Galac-

tic gamma radiation is performed with the LAT instrument which is shown in more detail in

Figure 4.12b. It is designed as a pair-production telescope composed of a 4 × 4 grid of towers.

Each tower consists of a silicon strip detector and a tungsten-foil tracker/converter, mated

with a hodoscopic cesium-hiodide calorimeter. The grid of towers is covered by a segmented

plastic scintillator anticoincidence detector in order to reject charged-particle backgrounds

from CR. The maximal ratio of CR electron flux to the averaged photon flux in the energy

range of 3 to 10 GeV is about 3000 while the CR proton flux is about four to five orders of

magnitudes higher than the photon flux as shown in Figure 4.13. The anticoincidence detec-

tor of the Fermi/LAT instrument was designed for an efficiency of at least 3 · 10−4 because

of the low efficiency of the calorimeter to capture the CR proton energy. Electrons from CR

produce an energy deposit in the calorimeter which is similar to the deposit of the gamma

radiation. Consequently, the anticoincidence detector of the Fermi/LAT mainly suppresses

the contamination with CR electrons while a combination of calorimeter and anticoincidence

detector is used to reject CR protons [152]. The segmentation of this detector is designed to

suppress self-vetoes produced by the backsplash effect in which secondary photons from the
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Figure 4.14: Preliminary energy spectrum of the diffuse Galactic gamma radiation averaged

over all Galactic longitudes in the latitudinal region of 10◦ < |b| < 20◦. The EGRET data is

shown in blue crosses and the Fermi/LAT data is shown in red dots. Systematic uncertainties

are presented as shaded areas. Adapted from [155].

electromagnetic shower created by incident high-energetic photons can Compton scatter in

the anti-coincidence detector and produce veto signals from the recoil electrons.

After launch Fermi was calibrated for two months. Then gamma radiation data were recorded

one year. Recently, this data were made publicly available on the webpage of the Fermi

Science Support Center (FSSC) [154]. It shows the diffuse Galactic gamma radiation in

combination with gamma ray emission from Galactic point sources. In the intermediate lat-

itude region (region D in Table 4.2.1) the number density of point sources is small and the

diffuse Galactic gamma radiation is the dominant contribution. Therefore, the gamma radi-

ation from this region was analysed in [155]. The resulting energy spectrum was produced

using the instrument response function P6 V3 DIFFUSE and is shown in Figure 4.14. The

EGRET excess above a photon energy of 1 GeV is not confirmed by this data. Analyses of

the diffuse Galactic gamma radiation measured with Fermi/LAT are not published so far,

but a preliminary model of the diffuse gamma radiation is publicly available [154]. There

measurements of the gamma radiation of nearly 10 months were used and the exposure and

point spread function maps were generated using the P6 V3 DIFFUSE instrument response

function. The point sources were taken from 9 months data using a preliminary model of

the diffuse emission. The all-sky map of the observed gamma ray counts is shown in Fig-

ure 4.15a. The diffuse Galactic gamma radiation was modelled using contributions from

neutral pion decay, bremsstrahlung and inverse Compton scattering. For the calculation
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(a) Observed count map (b) Modelled count map

(c) Residual map (d) Diffuse γ-rays

Figure 4.15: All skymaps are produced for gamma ray energies between 300 MeV and 20

GeV. The count map of the gamma ray measurements of nearly 10 months with Fermi/LAT

is shown in (a) while the count map of the modelled diffuse gamma radiation in combination

with the modelled point sources is given in (b). In both pictures the counts are illustrated

with the same logarithmic scale. In Figure (c) the residual map expressed in sigma values

of (Nobs − Npred)/
√
Npred is given. It represents the statistical difference between (a) and

(b). The diffuse model itself is shown in Figure (d). It shows the integrated counts scaled

by the exposure in the same scale as in (a) and (b). Figures taken from [156].
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of these contribution measurements of the all-sky Leiden-Argentina-Bonn (LAB) composite

survey [157] were used for the Galactic distribution of ionised hydrogen N(HI) and the ve-

locity integrated intensities of carbon monoxide W(CO) were obtained from the Center for

Astrophysics compilation [158]. Maps of these distributions were derived for 6 concentrical

rings around the GC using the RC in [94]. The GALProp code was used to calculate the

intensities of primary and secondary CR protons and electrons. Then all gamma radiation

components were convolved with the LAT point spread function in the energy region from

0.3 to 20 GeV. Then the model prediction in combination with the modelled point sources,

as shown in Figure 4.15b, was fitted to the observed data in the energy range between

120 MeV and 20 GeV. The resulting residual map and the model prediction of the diffuse

Galactic gamma radiation are shown in Figures 4.15c,d. The resulting gamma radiation

fluxes were stored in 30 logarithmically equidistant energy bins from 50 MeV to 100 GeV in

the gll iem v02.fit file whereas the gamma ray fluxes above 20 GeV were extrapolated and

globally normalised to fit the Fermi/LAT data. These fluxes do not contain the isotropic

component produced by the EGBR. This contribution was separately determined and tab-

ulated in the file isotropic iem v02.txt. This model is the most accurate description of the

Fermi/LAT data which the LAT team produced so far but it shows some caveat like non-

neglibible residuals between the model and the observed fluxes in the low latitude region,

as shown in Figure 4.15c, and the extrapolation of the model above a photon energy of 20

GeV. A more detailed description of the model can be found at [156]. In the present thesis

this model was used to analyse the Fermi/LAT data. It was announced by the FERMI

collaboration that a new model for the diffuse Galactic gamma radiation will be published

in January 2010 which is, however, too late for the consideration in this thesis.

The gamma ray fluxes from the gll iem v02.fit model were considered in the same way as

the gamma radiation fluxes measured with EGRET. The considered data is restricted to the

energy range from 120 MeV to 20 GeV since in this range the model was fitted to the data.

A more detailed description can be found in the documentation to this model on the FSSC

webpage.

It was shown in the previous section that an NFW profile for the diffuse DM component

and a 240 profile in combination with two DM rings for the clumpy DM component yield

a good approximation of the gamma radiation measured with EGRET. This profile combi-

nation is used for a fit to the preliminary Fermi/LAT data. The uncertainty of the shape

of the energy spectrum is assumed to be 15% because of the possible background of CR

protons. The resulting energy spectra in the considered sky regions, defined in Table 4.2.1,

are presented in Figure 4.16 1. The extragalactic background radiation is parametrised with

a simple power law. The parameters were adapted from [151]. The energy spectra in all

regions show a significantly improved fit if a DM contribution with a WIMP mass of about

60 GeV is added. The DM contribution is decreased compared to the energy spectrum ob-

tained from the EGRET data. This decrease is reflected in the boost factor which is reduced

1The fits to the Fermi/LAT data were performed in collaboration with Iris Gebauer.



4.4 Recent and future gamma ray observations 105

10
-5

10
-4

10
-1

1 10 10
2

E [GeV]

E
2
 *

 f
lu

x
 [

G
e

V
 c

m
-2

 s
-1

s
r-1

]

EGRET

background

signal

extragalactic

Dark Matter

Pion decay

Inverse Compton

Bremsstrahlung

χ
2
: 17.87/22

χ
2
 (bg only): 81.49/23

(a) Region A

10
-5

10
-4

10
-1

1 10 10
2

E [GeV]

E
2
 *

 f
lu

x
 [

G
e

V
 c

m
-2

 s
-1

s
r-1

]

EGRET

background

signal

extragalactic

Dark Matter

Pion decay

Inverse Compton

Bremsstrahlung

χ
2
: 5.18/22

χ
2
 (bg only): 27.33/23

(b) Region B

10
-6

10
-5

10
-1

1 10 10
2

E [GeV]

E
2
 *

 f
lu

x
 [

G
e

V
 c

m
-2

 s
-1

s
r-1

]

EGRET

background

signal

extragalactic

Dark Matter

Pion decay

Inverse Compton

Bremsstrahlung

χ
2
: 4.55/22

χ
2
 (bg only): 20.7/23

(c) Region C

10
-6

10
-5

10
-1

1 10 10
2

E [GeV]

E
2
 *

 f
lu

x
 [

G
e

V
 c

m
-2

 s
-1

s
r-1

]

EGRET

background

signal

extragalactic

Dark Matter

Pion decay

Inverse Compton

Bremsstrahlung

χ
2
: 2.53/22

χ
2
 (bg only): 30.13/23

(d) Region D

10
-6

10
-5

10
-1

1 10 10
2

E [GeV]

E
2
 *

 f
lu

x
 [

G
e

V
 c

m
-2

 s
-1

s
r-1

]

EGRET

background

signal

extragalactic

Dark Matter

Pion decay

Inverse Compton

Bremsstrahlung

χ
2
: 1/22

χ
2
 (bg only): 6.8/23

(e) Region E

10
-6

10
-5

10
-1

1 10 10
2

E [GeV]

E
2
 *

 f
lu

x
 [

G
e

V
 c

m
-2

 s
-1

s
r-1

]

EGRET

background

signal

extragalactic

Dark Matter

Pion decay

Inverse Compton

Bremsstrahlung

χ
2
: 0.43/22

χ
2
 (bg only): 6.7/23

(f) Region F

Figure 4.16: Preliminary energy spectra of the diffuse Galactic gamma radiation measured

with Fermi/Lat in the regions defined in Table 4.2.1. The presented data was obtained

from the gll iem v02 model of the Galactic gamma emission. The uncertainty of the data is

assumed to be 15%. The fitted line represents the same fit as to the EGRET data with a

constant boost factor in all regions. The boost factor is reduced by a factor three compared

to the fit to the EGRET data shown in Figure 4.4.
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by a factor of about 3. The data points at high energies are understood as an additional

contribution from CR protons [159]. At a photon energy of about 1 (10) GeV about 60%

(0%) of the gamma rays split into an electron-positron pair in the calorimeter. Therefore,

for larger energies the contribution of misinterpreted photons produced by CR protons is

larger as shown by the tail in the CR proton flux shown in Figure 4.13. In this thesis the

diffuse gamma radiation in the energy region above 20 GeV is not taken into account.

Next the longitudinal distribution of the gamma radiation measured with Fermi/LAT is

considered. Here, the uncertainty of the shape is assumed to be smaller (7%) than for the

energy spectrum since in this case the integrated flux in the longitudinal bins is consid-

ered, so the possible background at higher energies has a smaller weight. In order to check

whether a ringlike substructure of the DM halo is needed to describe the gamma radiation

with Fermi/LAT four different cases examined. The NFW-240 profile is considered with two

rings, without the inner ring, without the outer ring and without both rings. The results are

presented in Table 4.7. There it is shown that the best fit of the longitudinal distribution

of the gamma ray fluxes is obtained for a halo profile combined with a substructure of two

DM rings. Therefore, such a profile can be regarded as a generic DM profile for the DM

density distribution by virtue of its consistency with recent astronomical observations and

the measurements of the diffuse Galactic gamma radiation with Fermi/LAT. The longitudi-

nal distribution of the gamma radiation fluxes obtained from the NFW-240 profile with two

DM rings is shown in Figure 4.17.

4.4.1 Future indirect DM searches

The Alpha Magnetic Spectrometer (AMS) is a large acceptance, high precision supercon-

ducting magnetic spectrometer which is constructed, tested and operated by an international

team composed of 56 institutes from 16 countries (including KIT). It is designed for an op-

eration time of at least three years in a height of 400 km at the International Space Station

(ISS). Its installation is planned for the last NASA space shuttle mission in the autumn of

Distribution χ2 / d.o.f. boost factor

With rings 30 / 157 80

Without OR 80 / 157 100

Without OR 65 / 157 138

Without rings 175 / 157 264

Without DM 250 / 157 -

Table 4.7: Different combinations of the DM rings for the NFW-240 profile combination

are shown. An additional DM contribution improves the fit while the best fit is obtained for

two DM rings.
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Figure 4.17: Preliminary longitudinal distribution of the diffuse Galactic gamma radiation

measured with Fermi/LAT. In (a) the longitudinal distribution of the gamma radiation

fluxes in the Galactic disc are presented. The background radiation is shown in yellow while

the gamma ray flux from DM is presented in red. The longitudinal distributions in the

intermediate latitude regions are presented in (b) and (c). The gamma ray fluxes at large

latitudes, where the influence of the extragalactic background is highest, is presented in (d).
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Figure 4.18: Schematic picture of the configuration of the AMS-02 detector.

2010. The main aim of the AMS project is search for antimatter and DM as well as the

measurement of cosmic radiation spectra of elements up to Z . 25. Gamma rays can be

measured up to a few hundred GeV. A schematic picture of the AMS-02 detector is shown

in Figure 4.18. The main building blocks of the AMS detector are the Transition Radiation

Detector (TRD), the Silicon Tracker (ST), the Time of Flight (TOF) spectrometer, the Ring

Image Cherenkov Counter (RICH) and the Electromagnetic Calorimeter (ECAL).

The TRD is designed to separate signals from electrons and protons in order to distinguish

signals from their antiparticles (positrons and antiprotons) from background radiation with

a rejection factor of 10−3 – 10−2. The TOF system consists of four scintillator planes and

provides a fast trigger to experiment concerning the up/down separation of traversing parti-

cles. In between the TOF system the ST is located. It is surrounded by a superconducting

magnet which is cooled down by liquide helium to a temperature of 1.8 K and produces

a magnetic field of about 0.87 T. This field changes the trajectory of traversing charged

particles in order to precisely measure their rigidity and the sign of their electrical charge

with the ST which consists of eight thin layers of double-sided silicon microstrip detectors.

At the bottom of AMS the RICH detector and the ECAL are located. The RICH detector

consists of a ∼ 1.5 cm thick plane of radiator material (NaF) and a subjacent matrix of

photomultipliers. In order to increase the efficiency of the RICH counter it is encircled by

a mirror which is formed as a cone. In the middle of the photomultiplier matrix a hole to

the ECAL, which is placed just below the RICH counter, is left open. The ECAL is used

to discriminate electromagnetic and hadronic showers and to image their development in
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Figure 4.19: Schematic picture of the particle identification signals in the AMS-02 detector.

3D. In addiation to all explained components an anticoincidence veto counter is installed

between the magnet and the ST. It assures that only particles which pass through the entire

detector are triggered [160, 161]. The signals of electrons, positrons, protons, anti-helium

nuclii and photons in the different detector components are shown in Figure 4.19. The edge

of AMS over EGRET and Fermi/LAT is the identification of particles in the TRD, ST, TOF

and the RICH counter which further reduces the fraction of misinterpreted photon signal

above an energy of 1 GeV produced by protons from cosmic radiation. The AMS mission

will therefore play an important role in the indirect search for DM.
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4

Summary and Outlook

In the first part of this thesis recent astronomical data on the rotation curve (RC), the local

surface density and the total matter density near the Sun, as obtained from the movement of

nearby stars, are used to constrain the local DM density. No sensitivity of these constraints

to cuspy or cored profiles is found since the gravitational potential near the Galactic centre

(GC) is dominated by the visible matter of the MW. The local DM density is found to be

in the range of 0.2 to 0.4 GeV cm−3 for spherical haloes and a DM density up to 0.7 GeV

cm−3 is obtained for oblate haloes including dark discs. However, the RC in the Galactic

disc shows a change of slope at about 9 kpc, which cannot be described by a smooth DM

halo profile. A DM halo profile in combination with a DM large scale structure composed

of two doughnutlike DM rings at 4.5 kpc and 12.5 kpc yield a good description of the RC

and is consistent with the other astronomical constraints, especially the flattening of the gas

flaring between 10 and 20 kpc can only be explained by such a ringlike structure. Rings of

DM are expected from the infall of a dwarf galaxy in the gravitational potential of the MW,

as is known from numerical simulations [144].

In the second part of the thesis the diffuse Galactic gamma radiation measured with the

EGRET satellite is used to constrain the DM density profile. Following the analysis in

[16] the energy spectrum and the spatial distribution of the gamma radiation fluxes are

simultaneously considered. In contrast to the study in [16] in the present analysis the DM

component was assumed to be a composition of a smoothly distributed component, which

describes the distribution of individual DM particles, and a component consisting of small

subhaloes called DM clumps. The two components were distributed either according to the

same profile, called Single Profile (SP) density model, or to different profiles, called Double

Profile (DP) density model.

1. The density distribution in the SP model corresponds to the density distribution in [16]

in which the diffuse Galactic gamma radiation is analysed using a smoothly distributed
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DM component. If DMA is dominated by the clumpy component the signal is only

linearly proportional to the clump density, not the average DM density squared. In

this case a higher averaged DM density is needed, also in the rings, which leads to

values of the local surface density and gravitational potential incompatible with the

data.

2. In the DP density model the spatial distribution of the diffuse Galactic gamma radia-

tion measured with EGRET is best described by a halo combination of a cored profile

for the DM clumps and a cuspy profile for the diffuse DM component in agreement

with recent high-resolution N-body simulations. The data need the additional ringlike

structures with parameters in agreement with the ringlike structures from the astro-

nomical data discussed above. The diffuse DM component makes up more than 90%

of the total mass while the rings provide 0.7% – 1.9% of the total mass. The ratio of

visible mass to DM mass is of the order 1/20 which is in good agreement with N-body

simulations.

3. Preliminary data of the diffuse Galactic gamma radiation measured with Fermi/LAT

show less of an excess. The resulting density distribution improves the χ2 value of the

fit of the longitudinal distribution of the gamma ray fluxes from 250 / 157 (without

DMA) to 30 / 157 (with DMA). The intensity of the gamma radiation from DMA is

decreased by a factor of three, resulting in a factor of three lower boost factor, but for

the high statistics of the Fermi data the inclusion of a gamma ray signal from DMA

in a description of the data yields a significant improvement.

4. In the present thesis a simple model for the propagation of cosmic ray particles is used.

For such a model the Galactic antiproton flux from the annihilation of a WIMP with

a mass below 100 GeV is overestimated by a factor of about 10, as described in [17].

This factor is reduced in a more sophisticated propagation model including Galactic

winds and for recent observations by Fermi/LAT an overestimation by a factor of three

is obtained [151] and can be further reduced by a more detailed 3D-modeling of the

spiral arms.

The preliminary Fermi/LAT energy spectrum of the gamma rays is increasing for photon

energies above 20 GeV which probably is the result of a further background from misinter-

preted cosmic-ray protons (fake photons). This background is currently under discussion

and a new release of the data with harder cuts against the background radiation is expected

soon. An analysis of these data remains to be done.

A further reduction of the background radiation component from fake photons is likely to

be reached with the AMS experiment which will be launched in 2010. In contrast to the

EGRET and the Fermi/LAT detector AMS has a magnetic spectrometer combined with an

electromagnetic calorimeter, a transition radiation detector and a Cherenkov counter. The
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combination of these detectors will allow a clean identification of all charged cosmic rays and

gamma rays, thus providing unique data for the indirect search for DM.
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A

GALPROP datacard for the Galactic

background radiation

Title = conventional model

n_spatial_dimensions = 2

r_min = 0. min r (in kpc)

r_max = 20. max r

dr = 1. delta r

z_min = -4. min z

z_max = +4. max z

dz = 0.2 delta z

p_Ekin_grid = Ekin p or Ekin alignment

Ekin_min = 1.e0 min kinetic energy per nucleon (MeV)

Ekin_max = 1.e9 max kinetic energy per nucleon

Ekin_factor = 1.2 kinetic energy per nucleon factor

E_gamma_min = 1.e0 min gamma-ray energy (MeV)

E_gamma_max = 1.e8 max gamma-ray energy (MeV)

E_gamma_factor = 1.3 gamma-ray energy factor

integration_mode = 1

nu_synch_min = 1.e6 min synchrotron frequency (Hz)

nu_synch_max = 1.e10 max synchrotron frequency (Hz)

nu_synch_factor = 1.5 synchrotron frequency factor

long_min = 0.25 gamma-ray intensity skymap long minimum (deg)

long_max = 359.75 gamma-ray intensity skymap long maximum (deg)

lat_min = -89.75 gamma-ray intensity skymap lat minimum (deg)

lat_max = +89.75 gamma-ray intensity skymap lat maximum (deg)

d_long = 0.5 gamma-ray intensity skymap long binsize (deg)

d_lat = 0.5 gamma-ray intensity skymap lat binsize (deg)

D0_xx = 5.8e28 diff coeff at reference rigidity
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D_rigid_br = 4.0e3 ref rigidity for diff coeff in MV

D_g_1 = 0.33 diff coeff index below reference rigidity

D_g_2 = 0.33 diff coeff index above reference rigidity

diff_reacc = 1 1=include diff reacceleration

v_Alfven = 30. Alfven speed in km s-1

damping_p0 = 1.e6 MV - some rigidity (where CR density is low)

damping_const_G = 0.02 a const derived from fitting B/C

damping_max_path_L = 3.e21 Lmax˜1 kpc, max free path

convection = 0 1=include convection

v0_conv = 0. v_conv=v0_conv+dvdz_conv*dz (km s-1)

dvdz_conv = 10. v_conv=v0_conv+dvdz_conv*dz (km s-1 kpc-1)

nuc_rigid_br = 9.e3 ref rigidity for nucl injection index (MV)

nuc_g_1 = 1.98 nucl injection index below ref rigidity

nuc_g_2 = 2.42 nucl injection index above ref rigidity

inj_spectrum_type = rigidity rigidity or beta_rig or Etot

nucleon injection spectrum type

electron_g_0 = 1.6 el injection index below ref rigidity0

electron_rigid_br0 = 4.e3 ref rigidity0 for el injection index (MV)

electron_g_1 = 2.54 el injection index above ref rigidity0

electron_rigid_br = 1.e9 ref rigidity for el injection index (MV)

electron_g_2 = 5. el injection index index above ref rigidity

He_H_ratio = 0.11 He/H of ISM, by number

X_CO = 1.9e20 conversion factor from CO integrated

temperature to H2 column

density (xcomode=0) (mol cm-2 K-1 (km/s)-1)

xcomode = 1 0:X_CO constant 1:X_CO increasing

# 0.15*X_CO ( 0.0 kpc < r < 4.0 kpc)

# 0.3 *X_CO ( 4.0 kpc < r < 6.0 kpc)

# 0.4 *X_CO ( 6.0 kpc < r < 8.0 kpc)

# 0.65*X_CO ( 8.0 kpc < r < 10.0 kpc)

# 2.5 *X_CO ( 10.0 kpc < r < 15.0 kpc)

# 5.0 *X_CO ( 15.0 kpc < r )

fragmentation = 1 1=include fragmentation

momentum_losses = 1 1=include momentum losses

radioactive_decay = 1 1=include radioactive decay

K_capture = 1 1=include K-capture

start_timestep = 1.e7

end_timestep = 1.e2

timestep_factor = 0.25

timestep_repeat = 20 number of repeats per timestep in timetep_mode=1

timestep_repeat2 = 0 number of timesteps in timetep_mode=2

timestep_print = 10000 number of timesteps between printings

timestep_diagnostics = 10000 number of timesteps between diagnostics
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control_diagnostics = 0 control detail of diagnostics

network_iterations = 2 number of iterations of entire network

prop_r = 1 1=propagate in r

prop_x = 1 1=propagate in z

prop_p = 1 1=propagate in momentum

use_symmetry = 0 0=no symmetry, 1=optimized symmetry

vectorized = 0 0=unvectorized code, 1=vectorized code

source_specification = 0 1:r,z=0 2:z=0

source_model = 1 0=zero 1=parameterized 2=Case&B 3=pulsars

4= 5=S&Mattox 6=S&Mattox with cutoff 7=Lorimer

B_field_model = 050100020 bbbrrrzzz bbb=10*B(0) rrr=10*rscale zzz=10*zscale

proton_norm_Ekin = 1.e+5 p kinetic energy for norm (MeV)

proton_norm_flux = 5.e-9 flux of p at norm energy (cm-2 sr-1 s-1 MeV-1)

electron_norm_Ekin = 34.5e3 el kinetic energy for norm (MeV)

electron_norm_flux = .4e-9 flux of el at norm energy (cm-2 sr-1 s-1 MeV-1)

max_Z = 28 maximum number of nucleus Z listed

use_Z_1 = 1

...

use_Z_28 = 1

iso_abundance_01_001 = xxx relative abundaces of primary spectrums

... tuned to get propagated fluxes correct

... different for optimized and conventional model

... no big influence on gammas

... see astro-ph/0101068 for details

total_cross_section = 2 total cross sec option: 0=L83 1=WA96 2=BP01

cross_section_option = 012 100*i+j i=1: use Heinbach-Simon C,O->B

j=kopt j=11=Webber, 21=ST

t_half_limit = 1.e4 year - lower limit on radioactive half-life

for explicit inclusion

primary_electrons = 1

secondary_positrons = 1

secondary_electrons = 1

secondary_antiproton = 2

tertiary_antiproton = 1

secondary_protons = 1

gamma_rays = 1 1=compute gamma rays

IC_anisotropic = 0 1=compute anisotropic IC

synchrotron = 0 1=compute synchrotron
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B

Rotation velocities

In this appendix the experimental data for the velocity distribution within the Galactic disc of

the MW is presented. First the data sets adapted from different publication [93–96,98,99,162]

are shown in Tables B.1 through B.7, then the averaged velocities are shown in the Tables

B.8 to B.14. All data sets are scaled to a Galactocentric distance of the Sun r� = 8.3 kpc

and a local rotation velocity of v� = 244 km s−1 and then averaged according to

r =
∑ ri

σ2
r,i

/
∑ 1

σ2
r,i

, σr =
1√∑
1/σ2

r,i

(B.1)

v =
∑ vi

σ2
v,i

/
∑ 1

σ2
r,i

, σv =
1√∑
1/σ2

v,i

(B.2)
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r [kpc] σr [kpc] v [km s−1] σv [km s−1]

2.92 0 239.12 16

3.75 0 253.76 15

4.58 0 262.30 20

5.41 0 250.10 12

6.25 0 257.42 6

7.08 0 253.76 8

7.91 0 247.66 8

8.33 0 244.00 0

9.50 0.32 235.46 6.5

10.83 0.72 261.08 16

11.66 0.80 274.50 18

12.41 0.96 272.06 21

13.24 0.88 271.45 17

13.99 0.80 265.96 14

14.99 0.88 274.50 16

16.24 1.28 286.70 25

17.58 1.28 283.04 20

18.49 2.16 270.84 33

20.33 2.24 267.79 30

21.07 2.80 247.05 34

Table B.1: Rotation velocity in the radial range from 3 to 21 kpc obtained from observation

of HI and molecular clouds within the solar circle and HII, planetary nebulae and stars at

the outer Galaxy. Data adapted from [162]. Data are shown in Figure 3.5a.
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r [kpc] σr [kpc] v [km s−1] σv [km s−1]

0.10 0.0 246.15 2.5

0.13 0.0 266.81 4.0

0.15 0.0 283.83 3.0

0.24 0.0 299.43 3.0

0.26 0.0 310.96 2.0

0.27 0.0 312.74 2.5

0.32 0.0 302.83 3.0

0.39 0.0 305.07 3.0

0.43 0.0 306.91 2.5

0.49 0.0 306.01 2.5

0.54 0.0 302.57 4.0

0.57 0.0 297.24 2.0

0.59 0.0 292.30 2.0

0.69 0.0 279.81 2.0

0.72 0.0 279.70 4.0

0.93 0.0 271.41 3.0

0.98 0.0 269.19 4.0

1.03 0.0 264.78 4.0

1.08 0.0 262.80 2.0

1.11 0.0 259.42 2.0

1.13 0.0 262.66 3.0

1.18 0.0 264.47 3.0

1.22 0.0 265.42 4.0

1.25 0.0 263.87 3.0

1.27 0.0 259.18 2.0

1.37 0.0 241.20 3.0

1.38 0.0 261.42 3.0

1.42 0.0 254.48 2.0

1.52 0.0 241.02 9.0

1.57 0.0 253.56 2.5

1.59 0.0 255.21 3.0

1.62 0.0 250.49 3.0

1.67 0.0 246.20 3.0

1.69 0.0 238.09 3.0

1.71 0.0 241.66 7.0

1.76 0.0 244.45 3.0

1.88 0.0 246.42 3.0

1.98 0.0 244.30 3.0

2.09 0.0 243.38 3.0

2.16 0.0 238.30 2.0

2.31 0.0 236.01 3.0

2.35 0.0 232.23 2.0

2.40 0.0 231.11 3.0

2.50 0.0 230.95 3.0

Table B.2: Rotation velocities in the radial range from 100 pc to 2.5 kpc from the obser-

vation of HI and CO in the inner Galaxy [93]. Data shown in Figure 3.5a.
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r [kpc] σr [kpc] v [km s−1] σv [km s−1]

1.92 0.0 245.69 7.0

2.02 0.0 241.75 1.5

2.16 0.0 233.42 1.5

2.45 0.0 229.50 3.0

2.53 0.0 236.59 3.0

2.55 0.0 231.90 1.5

2.60 0.0 230.90 2.0

2.65 0.0 232.59 2.0

2.69 0.0 228.79 1.5

2.74 0.0 231.21 1.5

2.79 0.0 231.55 1.5

2.84 0.0 230.43 1.5

2.89 0.0 230.53 1.5

2.94 0.0 234.53 2.0

2.99 0.0 231.59 2.0

3.04 0.0 234.74 1.5

3.06 0.0 236.14 1.5

3.10 0.0 226.76 1.5

3.16 0.0 232.32 1.5

3.19 0.0 235.89 1.5

3.23 0.0 233.55 1.5

3.29 0.0 233.14 1.5

3.33 0.0 228.99 1.5

3.35 0.0 233.57 1.5

3.38 0.0 239.95 1.5

3.44 0.0 245.76 1.5

3.47 0.0 240.43 1.5

3.51 0.0 236.41 1.5

3.55 0.0 238.49 1.5

3.59 0.0 241.18 1.5

3.63 0.0 241.19 2.0

3.67 0.0 243.00 2.0

3.72 0.0 240.41 2.0

3.76 0.0 239.69 1.5

3.82 0.0 238.78 2.0

3.84 0.0 241.90 1.5

3.90 0.0 241.12 1.5

3.94 0.0 245.27 1.5

3.98 0.0 246.38 1.5

4.02 0.0 247.48 1.5

4.06 0.0 241.88 1.5

4.12 0.0 245.61 1.5

4.14 0.0 253.24 1.5

4.17 0.0 256.90 1.5

4.21 0.0 258.98 1.5

4.26 0.0 259.33 1.5

4.31 0.0 261.26 1.5

4.36 0.0 262.21 1.5

4.41 0.0 260.12 1.5

4.44 0.0 252.35 1.2

4.49 0.0 252.57 1.5

4.53 0.0 254.53 1.5

4.57 0.0 253.80 2.0

4.61 0.0 267.35 1.5

4.64 0.0 262.75 3.5

4.66 0.0 269.99 3.0

4.70 0.0 259.50 1.5

4.75 0.0 245.94 1.5

4.80 0.0 244.09 2.0

4.85 0.0 246.87 2.0

4.90 0.0 243.07 1.5

4.95 0.0 242.92 1.5

4.99 0.0 254.00 1.5

5.04 0.0 252.43 1.5

5.08 0.0 252.92 1.5

5.10 0.0 260.06 1.5

5.14 0.0 256.41 2.0

5.16 0.0 258.88 1.5

5.19 0.0 259.29 1.5

5.24 0.0 257.92 1.5

5.29 0.0 260.46 1.5

r [kpc] σr [kpc] v [km s−1] σv [km s−1]

5.34 0.0 258.37 2.0

5.39 0.0 259.69 1.5

5.43 0.0 252.74 1.5

5.49 0.0 257.57 1.5

5.52 0.0 255.17 1.5

5.56 0.0 255.54 1.5

5.59 0.0 253.26 2.0

5.64 0.0 253.12 1.5

5.68 0.0 248.09 1.5

5.73 0.0 250.75 1.5

5.76 0.0 251.89 1.5

5.80 0.0 257.51 1.5

5.84 0.0 256.17 1.5

5.90 0.0 258.68 2.0

5.93 0.0 255.91 1.5

5.98 0.0 256.14 1.5

6.03 0.0 255.02 1.5

6.10 0.0 255.67 1.5

6.15 0.0 249.89 3.0

6.17 0.0 254.22 1.5

6.22 0.0 256.27 1.5

6.27 0.0 261.25 1.5

6.30 0.0 268.98 1.5

6.36 0.0 271.73 1.5

6.40 0.0 248.44 1.5

6.45 0.0 249.88 1.5

6.47 0.0 266.78 1.5

6.52 0.0 267.00 1.5

6.57 0.0 269.30 1.5

6.61 0.0 273.30 1.5

6.62 0.0 274.13 1.5

6.66 0.0 277.79 3.5

6.71 0.0 269.48 1.5

6.76 0.0 250.06 2.0

6.81 0.0 253.33 1.5

6.86 0.0 253.55 15.0

6.91 0.0 255.48 2.0

6.96 0.0 254.97 2.0

7.01 0.0 253.98 2.0

7.04 0.0 256.33 1.5

7.06 0.0 254.56 1.5

7.10 0.0 262.26 2.0

7.13 0.0 246.53 1.5

7.17 0.0 251.05 1.5

7.20 0.0 250.60 1.5

7.25 0.0 256.31 1.5

7.30 0.0 246.04 1.5

7.35 0.0 257.36 1.5

7.40 0.0 253.07 2.0

7.45 0.0 254.76 2.0

7.50 0.0 251.32 2.0

7.52 0.0 253.22 1.2

7.57 0.0 247.22 1.6

7.62 0.0 251.31 1.5

7.64 0.0 246.25 1.5

7.66 0.0 244.73 1.5

7.74 0.0 250.60 4.0

7.78 0.0 250.49 1.5

7.82 0.0 255.25 3.0

7.87 0.0 249.99 1.2

7.88 0.0 250.44 1.2

7.94 0.0 244.29 1.3

7.99 0.0 244.52 1.5

8.04 0.0 247.30 1.5

8.07 0.0 243.77 1.3

8.09 0.0 243.47 1.5

8.13 0.0 247.02 1.5

8.18 0.0 258.10 1.5

8.23 0.0 256.00 1.5

8.28 0.0 257.56 1.5

8.33 0.0 253.15 1.5

Table B.3: Rotation velocities from ∼ 2 kpc to the Solar circle [94]. Data shown in Figure

3.5a.
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r [kpc] σr [kpc] v [km s−1] σv [km s−1]

10.75 0.0 185.65 7.01

10.57 0.0 241.26 11.85

10.82 0.0 189.64 6.25

11.36 0.0 217.98 2.53

10.81 0.0 164.85 10.27

13.04 0.0 126.17 2.61

10.85 0.0 237.57 13.02

11.76 0.0 257.36 13.27

11.86 0.0 149.99 2.67

11.50 0.0 240.46 5.5

14.35 0.0 217.53 14.21

12.07 0.0 253.14 7.26

12.68 0.0 298.05 4.15

10.57 0.0 213.32 11.78

14.17 0.0 294.73 5.92

13.66 0.0 279.48 12.48

13.71 0.0 180.72 11.31

12.65 0.0 89.46 6.73

12.78 0.0 236.61 6.65

11.66 0.0 250.87 9.82

13.12 0.0 233.30 8.63

15.23 0.0 160.53 10.77

11.58 0.0 229.37 11.6

10.79 0.0 205.31 5.15

11.42 0.0 222.03 11.32

10.88 0.0 223.21 17.38

10.67 0.0 173.29 6.03

11.01 0.0 203.62 8.06

9.89 0.0 178.13 6.05

9.73 0.0 195.20 2.01

9.83 0.0 212.68 5.05

10.91 0.0 204.89 4.06

10.85 0.0 264.96 6.09

10.01 0.0 175.77 6.09

10.68 0.0 224.86 13.54

Table B.4: Rotation velocities in the radial range from 9 to 15 kpc from the observation

of carbon stars [99]. Data shown in Figure 3.5a.
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r [kpc] σr [kpc] v [km s−1] σv [km s−1]

2.16 0.0 245.30 0.0

2.30 0.0 238.42 0.0

2.44 0.0 232.50 0.0

2.57 0.0 233.15 0.0

2.71 0.0 231.70 0.0

2.85 0.0 233.88 0.0

2.99 0.0 235.06 0.0

3.12 0.0 232.07 0.0

3.25 0.0 235.64 0.0

3.39 0.0 265.77 0.0

3.52 0.0 264.53 0.0

3.65 0.0 244.21 0.0

3.78 0.0 240.58 0.0

3.91 0.0 243.51 0.0

4.04 0.0 247.49 0.0

4.17 0.0 254.61 0.0

4.29 0.0 287.08 0.0

4.41 0.0 259.84 0.0

4.54 0.0 259.53 0.0

4.66 0.0 261.37 0.0

4.78 0.0 257.80 0.0

4.90 0.0 252.00 0.0

5.01 0.0 255.42 0.0

5.13 0.0 257.58 0.0

5.24 0.0 258.96 0.0

5.35 0.0 251.15 0.0

5.46 0.0 253.04 0.0

5.57 0.0 251.23 0.0

5.68 0.0 256.93 0.0

5.79 0.0 254.29 0.0

5.89 0.0 254.76 0.0

5.99 0.0 256.28 0.0

6.09 0.0 260.92 0.0

6.29 0.0 265.52 0.0

6.38 0.0 266.70 0.0

6.47 0.0 267.34 0.0

6.56 0.0 269.26 0.0

6.65 0.0 271.48 0.0

6.74 0.0 263.65 0.0

6.82 0.0 255.51 0.0

6.91 0.0 257.67 0.0

6.99 0.0 253.44 0.0

7.06 0.0 255.60 0.0

7.14 0.0 256.48 0.0

7.21 0.0 255.47 0.0

7.29 0.0 254.28 0.0

7.36 0.0 252.89 0.0

7.42 0.0 267.30 0.0

7.49 0.0 250.54 0.0

7.55 0.0 251.52 0.0

7.61 0.0 247.67 0.0

7.67 0.0 254.01 0.0

7.72 0.0 244.78 0.0

7.78 0.0 247.80 0.0

7.83 0.0 246.49 0.0

7.88 0.0 245.10 0.0

7.92 0.0 246.09 0.0

7.97 0.0 247.12 0.0

8.01 0.0 246.50 0.0

8.05 0.0 245.57 0.0

8.08 0.0 248.46 0.0

8.12 0.0 248.97 0.0

8.15 0.0 254.77 0.0

8.18 0.0 258.30 0.0

8.20 0.0 255.18 0.0

8.23 0.0 256.98 0.0

8.25 0.0 260.05 0.0

8.27 0.0 275.12 0.0

8.28 0.0 287.32 0.0

8.30 0.0 255.03 0.0

8.31 0.0 256.70 0.0

8.32 0.0 254.65 0.0

8.32 0.0 258.37 0.0

8.33 0.0 255.80 0.0

r [kpc] σr [kpc] v [km s−1] σv [km s−1]

8.33 0.0 244.09 0.0

8.32 0.0 244.10 0.0

8.32 0.0 244.64 0.0

8.31 0.0 244.02 0.0

8.30 0.0 247.71 0.0

8.28 0.0 246.57 0.0

8.27 0.0 246.57 0.0

8.25 0.0 248.82 0.0

8.23 0.0 246.61 0.0

8.20 0.0 247.13 0.0

8.18 0.0 247.20 0.0

8.15 0.0 249.41 0.0

8.12 0.0 250.80 0.0

8.08 0.0 252.12 0.0

8.05 0.0 253.74 0.0

8.01 0.0 255.90 0.0

7.97 0.0 252.74 0.0

7.92 0.0 251.46 0.0

7.88 0.0 251.20 0.0

7.83 0.0 241.49 0.0

7.78 0.0 250.12 0.0

7.72 0.0 252.10 0.0

7.67 0.0 252.30 1.0

7.55 0.0 251.88 0.0

7.49 0.0 254.44 0.0

7.42 0.0 257.91 0.0

7.36 0.0 256.55 0.0

7.29 0.0 250.86 0.0

7.21 0.0 254.50 0.0

7.14 0.0 257.22 0.0

7.06 0.0 257.68 0.0

6.99 0.0 260.15 0.0

6.91 0.0 257.80 0.0

6.82 0.0 254.65 0.0

6.74 0.0 247.42 0.0

6.65 0.0 254.16 0.0

6.56 0.0 260.59 0.0

6.47 0.0 260.38 0.0

6.38 0.0 260.12 0.0

6.29 0.0 260.16 0.0

6.19 0.0 255.38 0.0

6.09 0.0 251.65 0.0

5.99 0.0 250.18 0.0

5.89 0.0 248.79 0.0

5.79 0.0 243.55 0.0

5.68 0.0 241.07 0.0

5.57 0.0 238.91 0.0

5.46 0.0 245.11 0.0

5.35 0.0 245.29 0.0

5.24 0.0 247.49 0.0

5.13 0.0 247.21 0.0

5.01 0.0 248.96 0.0

4.90 0.0 244.68 0.0

4.78 0.0 249.39 0.0

4.66 0.0 248.56 0.0

4.54 0.0 250.50 0.0

4.41 0.0 255.08 0.0

4.29 0.0 280.73 0.0

4.17 0.0 273.89 0.0

4.04 0.0 273.84 0.0

3.91 0.0 268.15 0.0

3.78 0.0 245.46 0.0

3.65 0.0 244.09 0.0

3.52 0.0 246.84 0.0

3.39 0.0 251.50 0.0

3.25 0.0 247.96 0.0

3.12 0.0 241.47 1.0

2.99 0.0 242.99 0.0

2.85 0.0 240.10 0.0

2.71 0.0 242.68 0.0

2.57 0.0 243.76 0.0

2.44 0.0 254.22 0.0

2.30 0.0 249.65 0.0

2.16 0.0 258.72 0.0

Table B.5: Rotation velocities in the radial range from about 2 kpc to about 8 kpc [95],

shown in Figure 3.5a.
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r [kpc] σr [kpc] v [km s−1] σv [km s−1]

6.58 0.29 220.50 12.41

6.54 0.30 221.25 10.89

6.47 0.20 299.18 15.30

8.15 0.05 291.28 21.99

6.15 0.19 249.59 9.04

6.35 0.66 248.94 16.83

5.50 0.81 287.21 20.80

6.40 0.18 267.20 4.79

5.44 0.80 245.33 20.17

5.51 0.73 246.28 18.22

6.61 0.47 266.24 12.12

7.71 0.20 259.36 5.09

7.53 0.06 254.71 2.20

7.44 0.07 245.07 2.07

7.50 0.04 245.75 1.82

7.70 0.14 251.25 3.72

9.57 1.44 246.28 35.98

7.90 0.01 248.25 0.43

8.39 0.40 245.69 10.21

8.38 0.11 240.52 3.36

8.29 0.01 242.94 3.01

8.32 0.01 248.12 1.52

9.73 0.72 198.22 18.10

8.96 0.23 205.34 5.75

8.47 0.03 258.22 1.28

8.43 0.04 246.55 1.04

11.87 1.65 181.97 41.22

11.19 1.55 207.73 38.81

8.41 0.03 228.74 0.98

10.24 0.91 225.30 22.91

8.60 0.10 231.04 3.59

8.81 0.16 230.48 4.07

8.51 0.07 235.99 2.20

9.84 0.64 218.51 15.95

8.65 0.04 242.01 1.43

9.97 0.18 229.38 4.55

11.42 1.23 428.20 30.70

8.92 0.19 245.25 4.80

12.33 1.55 263.04 38.70

9.59 0.24 216.01 6.25

9.78 0.55 200.15 13.79

9.98 0.76 204.30 18.96

9.80 0.55 206.72 13.85

10.28 0.73 228.35 18.18

r [kpc] σr [kpc] v [km s−1] σv [km s−1]

9.54 0.42 211.06 11.28

9.15 0.28 219.36 7.09

10.66 0.85 241.92 21.38

9.67 0.45 213.47 11.36

10.01 0.62 235.25 15.83

9.35 0.32 195.12 8.02

9.91 0.55 232.66 13.82

9.77 0.49 233.96 12.31

9.97 0.16 199.04 8.35

10.07 0.25 269.42 6.95

8.98 0.24 239.61 6.78

11.45 0.75 257.99 18.72

15.74 0.77 316.05 19.36

16.35 2.33 216.07 58.43

14.13 1.74 231.97 43.59

14.25 0.58 240.3 14.57

13.53 0.78 281.95 19.76

12.52 0.58 239.12 14.97

8.72 0.038 282.69 9.16

11.93 1.09 268.38 30.35

12.84 0.40 248.10 10.18

16.87 2.58 241.92 64.64

8.78 0.14 255.71 5.35

8.73 0.13 202.11 3.58

12.18 0.98 246.41 24.65

13.18 0.49 256.46 12.37

9.10 0.14 242.93 4.32

9.84 0.19 242.93 4.62

8.79 0.04 234.92 3.46

17.17 2.81 260.14 70.44

13.24 0.76 222.49 18.91

14.85 0.67 257.88 16.74

11.14 0.71 254.51 17.79

10.94 1.06 175.32 26.40

9.23 0.11 234.54 3.08

12.23 1.32 273.66 33.04

11.77 0.50 239.02 12.54

12.98 1.78 251.12 19.46

9.89 0.52 259.42 13.01

12.33 1.17 262.43 29.36

9.84 0.36 206.26 9.09

12.54 0.67 268.36 16.94

9.22 0.31 235 7.91

10.94 0.44 228.90 11.15

16.75 2.71 389.42 67.63

Table B.6: Rotation velocities in the radial range of 8 to 17 kpc [96], shown in Figure 3.5a.
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r [kpc] σr [kpc] v [km s−1] σv [km s−1]

2.25 0.15 229.77 8

2.74 0.15 222 5

3.14 0.15 229.77 10

3.72 0.15 236.43 8

4.12 0.15 255.3 13

4.70 0.15 244.2 4

5.10 0.15 241.98 4

5.68 0.15 239.76 5

6.08 0.15 249.75 5

6.57 1.15 255.3 5

7.06 1.15 251.97 2

7.64 0.15 249.75 4

8.04 0.15 246.42 10

8.53 0.15 245.31 5

9.02 0.15 238.65 12

9.60 0.15 233.1 21

9.99 0.15 227.55 13

10.58 0.15 230.88 12

11.07 0.15 230.88 13

12.25 0.25 255.3 22

13.52 0.7 255.3 15

15.48 0.5 310.8 32

Table B.7: Rotation velocities in the radial range from about 2 to about 15 kpc [98], shown

in Figure 3.5a.

Nr. rmin [kpc] rmax [kpc] r [kpc] σr [kpc] v [km s−1] σv [km s−1]

1 0.0 1.0 0.0 0.0 0.0 0.0

2 1.0 1.5 0.0 0.0 0.0 0.0

3 1.5 2.0 0.0 0.0 0.0 0.0

4 2.0 2.5 0.0 0.0 0.0 0.0

5 2.5 3.0 2.92 0.01 239.12 16

6 3.0 4.0 3.75 0.01 253.76 15

7 4.0 5.0 4.58 0.01 262.30 20

8 5.0 6.0 5.41 0.02 250.10 12

9 6.0 7.0 6.25 0.02 257.42 6

10 7.0 8.0 7.45 0.02 250.71 5.66

11 8.0 8.5 8.33 0.03 244.00 0.77

12 8.5 9.0 0.0 0.0 0.0 0.0

13 9.0 10.0 9.50 0.32 235.46 6.5

14 10.0 11.0 10.83 0.72 261.08 16

15 11.0 12.0 11.66 0.80 274.50 18

16 12.0 14.0 13.31 0.50 268.99 9.61

17 14.0 16.0 14.99 0.88 274.50 16

18 16.0 22.0 17.79 0.75 275.40 11.96

Table B.8: Averaged values of the Galactocentric distances and the rotation velocities

given in Table B.1 in 18 radial bins. The averaged velocities are shown in Figure 3.5b.
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Nr. rmin [kpc] rmax [kpc] r [kpc] σr [kpc] v [km s−1] σv [km s−1]

1 0.0 1.0 0.15 0.00 281.42 0.84

2 1.0 1.5 1.20 0.00 259.35 0.77

3 1.5 2.0 1.68 0.00 247.45 1.02

4 2.0 2.5 2.28 0.00 235.31 1.03

5 2.5 3.0 0.0 0.0 0.0 0.0

6 3.0 4.0 0.0 0.0 0.0 0.0

7 4.0 5.0 0.0 0.0 0.0 0.0

8 5.0 6.0 0.0 0.0 0.0 0.0

9 6.0 7.0 0.0 0.0 0.0 0.0

10 7.0 8.0 0.0 0.0 0.0 0.0

11 8.0 8.5 0.0 0.0 0.0 0.0

12 8.5 9.0 0.0 0.0 0.0 0.0

13 9.0 10.0 0.0 0.0 0.0 0.0

14 10.0 11.0 0.0 0.0 0.0 0.0

15 11.0 12.0 0.0 0.0 0.0 0.0

16 12.0 14.0 0.0 0.0 0.0 0.0

17 14.0 16.0 0.0 0.0 0.0 0.0

18 16.0 22.0 0.0 0.0 0.0 0.0

Table B.9: Averaged values of the Galactocentric distances and the rotation velocities

given in Table B.2 in 18 radial bins. The averaged velocities are shown in Figure 3.5b.

Nr. rmin [kpc] rmax [kpc] r [kpc] σr [kpc] v [km s−1] σv [km s−1]

1 0.0 1.0 0.0 0.0 0.0 0.0

2 1.0 1.5 0.0 0.0 0.0 0.0

3 1.5 2.0 1.92 0.01 245.69 7.0

4 2.0 2.5 2.18 0.00 236.68 1.0

5 2.5 3.0 2.73 0.00 231.35 0.51

6 3.0 4.0 3.45 0.00 237.91 0.32

7 4.0 5.0 4.46 0.00 253.46 0.32

8 5.0 6.0 5.46 0.00 255.72 0.32

9 6.0 7.0 6.47 0.00 261.35 0.35

10 7.0 8.0 7.45 0.00 250.75 0.31

11 8 8.5 8.17 0.01 250.52 0.52

12 8.5 9.0 0.0 0.0 0.0 0.0

13 9.0 10.0 0.0 0.0 0.0 0.0

14 10.0 11.0 0.0 0.0 0.0 0.0

15 11.0 12.0 0.0 0.0 0.0 0.0

16 12.0 14.0 0.0 0.0 0.0 0.0

17 14.0 16.0 0.0 0.0 0.0 0.0

18 16.0 22.0 0.0 0.0 0.0 0.0

Table B.10: Averaged values of the Galactocentric distances and the rotation velocities

given in Table B.3 in 18 radial bins. The averaged velocities are shown in Figure 3.5b.
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Nr. rmin [kpc] rmax [kpc] r [kpc] σr [kpc] v [km s−1] σv [km s−1]

1 0.0 1.0 0.0 0.0 0.0 0.0

2 1.0 1.5 0.0 0.0 0.0 0.0

3 1.5 2.0 0.0 0.0 0.0 0.0

4 2.0 2.5 0.0 0.0 0.0 0.0

5 2.5 3.0 0.0 0.0 0.0 0.0

6 3.0 4.0 0.0 0.0 0.0 0.0

7 4.0 5.0 0.0 0.0 0.0 0.0

8 5.0 6.0 0.0 0.0 0.0 0.0

9 6.0 7.0 0.0 0.0 0.0 0.0

10 7.0 8.0 0.0 0.0 0.0 0.0

11 8.0 8.5 0.0 0.0 0.0 0.0

12 8.5 9.0 0.0 0.0 0.0 0.0

13 9.0 10.0 9.81 0.02 195.90 1.78

14 10.0 11.0 10.69 0.00 203.00 1.95

15 11.0 12.0 11.51 0.01 195.83 1.63

16 12.0 14.0 12.92 0.01 183.31 1.84

17 14.0 16.0 14.56 0.03 258.17 4.87

18 16.0 22.0 0.0 0.0 0.0 0.0

Table B.11: Averaged values of the Galactocentric distances and the rotation velocities

given in Table B.4 in 18 radial bins. The averaged velocities are shown in Figure 3.5b.

Nr. rmin [kpc] rmax [kpc] r [kpc] σr [kpc] v [km s−1] σv [km s−1]

1 0.0 1.0 0.0 0.0 0.0 0.0

2 1.0 1.5 0.0 0.0 0.0 0.0

3 1.5 2.0 0.0 0.0 0.0 0.0

4 2.0 2.5 2.28 0.00 245.81 0.32

5 2.5 3.0 2.76 0.00 237.73 0.27

6 3.0 4.0 3.48 0.00 247.12 0.21

7 4.0 5.0 4.44 0.00 258.69 0.20

8 5.0 6.0 5.48 0.00 250.06 0.18

9 6.0 7.0 6.55 0.00 259.44 0.18

10 7.0 8.0 7.53 0.00 251.94 0.14

11 8.0 8.5 8.21 0.00 252.16 0.14

12 8.5 9.0 0.0 0.0 0.0 0.0

13 9.0 10.0 0.0 0.0 0.0 0.0

14 10.0 11.0 0.0 0.0 0.0 0.0

15 11.0 12.0 0.0 0.0 0.0 0.0

16 12.0 14.0 0.0 0.0 0.0 0.0

17 14.0 16.0 0.0 0.0 0.0 0.0

18 16.0 22.0 0.0 0.0 0.0 0.0

Table B.12: Averaged values of the Galactocentric distances and the rotation velocities

given in Table B.5 in 18 radial bins. The averaged velocities are shown in Figure 3.5b.
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Nr. rmin [kpc] rmax [kpc] r [kpc] σr [kpc] v [km s−1] σv [km s−1]

1 0.0 1.0 0.0 0.0 0.0 0.0

2 1.0 1.5 0.0 0.0 0.0 0.0

3 1.5 2.0 0.0 0.0 0.0 0.0

4 2.0 2.5 0.0 0.0 0.0 0.0

5 2.5 3.0 0.0 0.0 0.0 0.0

6 3.0 4.0 0.0 0.0 0.0 0.0

7 4.0 5.0 0.0 0.0 0.0 0.0

8 5.0 6.0 5.49 0.45 258.13 11.33

9 6.0 7.0 6.39 0.09 257.35 3.42

10 7.0 8.0 7.90 0.00 248.33 0.40

11 8.0 8.5 8.30 0.00 242.93 0.56

12 8.5 9.0 8.70 0.02 235.95 0.91

13 9.0 10.0 9.51 0.06 228.64 1.56

14 10.0 11.0 10.29 0.19 248.46 4.92

15 11.0 12.0 11.57 0.33 244.50 8.24

16 12.0 14.0 12.84 0.20 252.55 5.19

17 14.0 16.0 14.49 0.42 246.92 10.66

18 16.0 22.0 16.74 1.47 236.61 36.92

Table B.13: Averaged values of the Galactocentric distances and the rotation velocities

given in Table B.6 in 18 radial bins. The averaged velocities are shown in Figure 3.5b.

Nr. rmin [kpc] rmax [kpc] r [kpc] σr [kpc] v [km s−1] σv [km s−1]

1 0.0 1.0 0.0 0.0 0.0 0.0

2 1.0 1.5 0.0 0.0 0.0 0.0

3 1.5 2.0 0.0 0.0 0.0 0.0

4 2.0 2.5 2.25 0.15 229.77 8.0

5 2.5 3.0 2.74 0.15 222.00 5.0

6 3.0 4.0 3.43 0.11 233.83 6.25

7 4.0 5.0 4.41 0.11 245.16 3.82

8 5.0 6.0 5.39 0.11 241.11 3.12

9 6.0 7.0 6.32 0.11 252.53 3.54

10 7.0 8.0 7.35 0.11 251.53 1.79

11 8.0 8.5 8.04 0.15 246.42 10.0

12 8.5 9.0 8.53 0.15 245.31 5.0

13 9.0 10.0 9.54 0.09 233.48 8.13

14 10.0 11.0 10.58 0.15 230.88 12.0

15 11.0 12.0 11.07 0.15 230.88 13.0

16 12.0 14.0 12.39 0.24 255.30 12.39

17 14.0 16.0 0.0 0.0 0.0 0.0

18 16.0 22.0 0.0 0.0 0.0 0.0

Table B.14: Averaged values of the Galactocentric distances and the rotation velocities

given in Table B.7 in 18 radial bins. The averaged velocities are shown in Figure 3.5b.
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C

Single Profile plots

In this appendix the results of the Single Profile (SP) density model for the Navarro-

Frenk-White (NFW) profile, the Binney-Evans (BE) profile, the Moore profile, the pseudo-

isothermal (PISO) profile and the 240 profile are presented. For each profile the energy

spectrum and the longitudinal distribution of the diffuse Galactic gamma rays measured

with EGRET, the DM density distribution in the Galactic plane, the resulting Galactic

mass, the rotation curve of the Galactic disc and the vertical gravitational potential at the

position of the Sun are shown. In general, the profiles result in too high ring densities, which

yield a local DM density in disagreement with the local DM density given by the Oort limit

and the local surface density (see too large vertical potential in the following figures).
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Figure C.1: Fit results for the NFW halo profile. The energy spectra of the diffuse Galactic

gamma radiation are shown in (a) – (f) for the different regions defined in Section 4.2.1. The

longitudinal distribution of the diffuse gamma radiation above a photon energy of 500 MeV

is shown in (g) – (j). The rotation curve in the Galactic disc, the gravitational potential

perpendicular to the Galactic plane at the position of the Sun, the density distribution in

the disc and the total mass of the Galaxy are shown in (k) – (n). The parameters of the

density distribution are given in Table 4.2.
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Figure C.2: Fit results for the BE halo profile. The energy spectra of the diffuse Galactic

gamma radiation are shown in (a) – (f) for the different regions defined in Section 4.2.1. The

longitudinal distribution of the diffuse gamma radiation above a photon energy of 500 MeV

is shown in (g) – (j). The rotation curve in the Galactic disc, the gravitational potential

perpendicular to the Galactic plane at the position of the Sun, the density distribution in

the disc and the total mass of the Galaxy are shown in (k) – (n). The parameters of the

density distribution are given in Table 4.2.
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Figure C.3: Fit results for the Moore halo profile. The energy spectra of the diffuse Galactic

gamma radiation are shown in (a) – (f) for the different regions defined in Section 4.2.1. The

longitudinal distribution of the diffuse gamma radiation above a photon energy of 500 MeV

is shown in (g) – (j). The rotation curve in the Galactic disc, the gravitational potential

perpendicular to the Galactic plane at the position of the Sun, the density distribution in

the disc and the total mass of the Galaxy are shown in (k) – (n). The parameters of the

density distribution are given in Table 4.2.
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Figure C.4: Fit results for the PISO halo profile. The energy spectra of the diffuse Galactic

gamma radiation are shown in (a) – (f) for the different regions defined in Section 4.2.1. The

longitudinal distribution of the diffuse gamma radiation above a photon energy of 500 MeV

is shown in (g) – (j). The rotation curve in the Galactic disc, the gravitational potential

perpendicular to the Galactic plane at the position of the Sun, the density distribution in

the disc and the total mass of the Galaxy are shown in (k) – (n). The parameters of the

density distribution are given in Table 4.2.
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Figure C.5: Fit results for the 240 halo profile. The energy spectra of the diffuse Galactic

gamma radiation are shown in (a) – (f) for the different regions defined in Section 4.2.1. The

longitudinal distribution of the diffuse gamma radiation above a photon energy of 500 MeV

is shown in (g) – (j). The rotation curve in the Galactic disc, the gravitational potential

perpendicular to the Galactic plane at the position of the Sun, the density distribution in

the disc and the total mass of the Galaxy are shown in (k) – (n). The parameters of the

density distribution are given in Table 4.2.



D

Double Profile plots

In this appendix the results of the Double Profile (SP) density model for combinations the

Navarro-Frenk-White (NFW) profile, the Binney-Evans (BE) profile, the Moore profile, the

pseudo-isothermal (PISO) profile and the 240 profile are presented. In Section 4.2.2 it was

shown that the constraint from the total Galactic mass and the local rotation velocity is

not simultaneously fulfilled by the profile combinations with a Moore or a 240 profile for the

diffuse DM component. Therefore, these profile combinations are not taken into account.

The fit results of the remaining combinations are summarised in Figure 4.8. Here, for each

profile combination the energy spectrum and the longitudinal distribution of the diffuse

Galactic gamma rays measured with EGRET, the DM density distribution in the Galactic

plane, the resulting Galactic mass, the rotation curve of the Galactic disc and the vertical

gravitational potential at the position of the Sun are shown. The best results are obtained

for profile combinations with a 240 profile for the clumpy DM component since this profile

provides a higher DM density at intermediate latitudes (compare fit of the longitudinal

gamma ray distribution at high intermediate latitudes for the different combinations).
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Figure D.1: Fit results for the NFW-NFW profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.2: Fit results for the NFW-BE profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.3: Fit results for the NFW-Moore profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.4: Fit results for the NFW-PISO profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.5: Fit results for the NFW-240 profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table 4.4.
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Figure D.6: Fit results for the BE-NFW profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.7: Fit results for the BE-BE profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.8: Fit results for the BE-Moore profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.9: Fit results for the BE-PISO profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.10: Fit results for the BE-240 profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table 4.4.
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Figure D.11: Fit results for the PISO-NFW profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.12: Fit results for the PISO-BE profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.13: Fit results for the PISO-Moore profile combination. The energy spectra

of the diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions

defined in Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above

a photon energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc,

the gravitational potential perpendicular to the Galactic plane at the position of the Sun,

the density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.14: Fit results for the PISO-PISO profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table D.1.
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Figure D.15: Fit results for the PISO-240 profile combination. The energy spectra of the

diffuse Galactic gamma radiation are shown in (a) – (f) for the different regions defined in

Section 4.2.1. The longitudinal distribution of the diffuse gamma radiation above a photon

energy of 500 MeV is shown in (g) – (j). The rotation curve in the Galactic disc, the

gravitational potential perpendicular to the Galactic plane at the position of the Sun, the

density distribution in the disc and the total mass of the Galaxy are shown in (k) – (n).

The parameters of the density distribution are given in Table 4.4.
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