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Birth and death processes are useful in a wide range of disciplines from computer
networks and telecommunications to chemical kinetics and epidemiology. Data from
many different areas such as linguistics, music, or warfare fit Zipf’s law surpris-
ingly well. The Lerch distribution generalizes Zipf’s law and is applicable in survival
and dispersal processes. In this article we construct a birth and death process that
converges to the Lerch distribution in the limit as time becomes large, and we inves-
tigate the speed of convergence. This is achieved by employing continued fractions.
Numerical illustrations are presented through tables and graphs.

1. INTRODUCTION

Many types of data studied in physical and social sciences can be adequately described
by the Zipf distribution. Zipf’s law states that if we rank a collection of subjects in
nondecreasing order according to their size, the product of a power of the rank and
of the size of each object is constant throughout the collection. Consider a sequence
of data values, ordered as x(1) ≥ x(2) ≥ x(3) ≥ · · · ≥ x(n). We can think of r as the
rank and x(r) as the size of the rth data value in the ordered set. The relation rx(r) =
constant seems to hold for various kinds of objects, including cities in the United
States by population, books by number of pages, words in an essay by their frequency
of occurrence, and the biological genera by number of species. The rank-size relation
is known as Zipf’s law and its graph is a rectangular hyperbola.

Zipf’s law was later generalized to rqx(r) = constant, q > 0, leading to a discrete
probability distribution

P(X = r) = ζ(1 + q) r−(1+q), r = 1, 2, 3, . . . ,



where

ζ(s) =
∞∑

r=1

1

rs
, s > 1

is the zeta function. Data from many different areas such as linguistics, music, and
warfare fit such a law surprisingly well [17]. This empirical law is quite relevant to
many economic fields: to model the firm’s size (measured either by the number of
employees or by the receipts account), the distribution of wealth invested by individual
investors in financial markets, population sizes of the cities, the proportion of genera
with exactly r species, and the number of customers across a wide area network,
see [13]. Hill [7] presented a theoretical derivation of the rank-frequency form of
Zipf’s law based on a Bose–Einstein form of the classical occupancy model, with the
additional feature that the number of cells is random.

Generalizing the Zipf distribution, we have the Lerch distribution with

P(X = r) = czr

(ν + r)s
, r = 0, 1, 2, . . . ,

where 1/c = ∑∞
r=0 zr/(ν + r)s and ν is a positive parameter.

Motivation for using the Lerch distribution includes the following considerations.
Kulasekera and Tonkyn [8] and Aksenov and Savageau [1] have demonstrated that the
Lerch distribution is useful to model survival processes because its hazard function
can be constant, monotonically decreasing, or monotonically increasing depending
on the value of one parameter, and dispersal processes because its variance can be
greater, equal, or less than the mean.

In this article we explain how birth and death processes can be constructed with
limiting Lerch distribution.

2. BIRTH AND DEATH PROCESSES

Birth and death processes (BDPs) are widely used in a variety of fields, includ-
ing queues, inventories, reliability, communication, production management, neutron
propagation, optics, chemical reactions, epidemics, population dynamics, and many
other domains of application. They are useful in investigating phenomena that are
essentially concerned with a flow of events in time, especially those exhibiting such
highly variable characteristics as birth, death, transformation, evolution, arrival, and
departure. What makes BDPs so useful is that standard methods of analysis are avail-
able for determining numerous important quantities such as transient and stationary
distributions and first-passage times.

Connections among BDPs, continued fractions (CFs), and orthogonal polyno-
mials (OPs) are well known (Jones and Thron [19], Lorentzen and Waadeland [9],
Parthasarathy and Lenin [14]). CF approximations occupy a conspicuous place in
the mathematical literature owing to their interesting convergence properties as well
as their connections with many branches of mathematics such as number theory,



special functions, differential equations, and moment problems. Because count of their
algorithmic nature, they are used in numerical analysis, computer science, automata,
and electronic communication, among other fields. Their importance has grown further
with the advent of fast-computing facilities. Bowman and Shenton [4] have discussed
statistical applications of CFs.

3. CONTINUED FRACTIONS AND BIRTH AND DEATH PROCESSES

Let {X(t)} be a BDP with state-dependent birth and death rates λn and μn,
respectively [2]. Then the probabilities

P(X(t) = n|X(0) = m) = Pmn(t)

satisfy the forward Kolmogorov equations

P′
m0(t) = −λ0Pm0(t) + μ1Pm1(t), (1)

P′
mn(t) = λn−1Pm,n−1(t) − (λn + μn)Pmn(t) + μn+1Pm,n+1(t), n = 1, 2, 3, . . . .

Let us define the coefficients

π0 = 1, πn = λ0λ1 · · · λn−1

μ1μ2 · · · μn
, n = 1, 2, 3, . . . .

The stationary distribution exists when
∑∞

n=1 πn < ∞, and its probabilities are
given by

Pn = πn∑∞
j=0 πj

, n = 0, 1, 2, . . . .

Writing fmn(z) = ∫ ∞
0 e−ztPmn(t) dt, Re(z) > 0, for the Laplace transform of Pmn(·),

(1) yields

f00(z) = 1

z + λ0 + (f01(z)/f00(z))
,

f0,n(z)

f0,n−1(z)
= −λn−1μn

z + λn + μn
+ f0,n+1(z)

f0,n(z)
, n = 1, 2, 3, . . . .

These equations result in the CF expansion

f00(z) = 1

z + λ0
− λ0μ1

z + λ1 + μ1
− λ1μ2

z + λ2 + μ2
. . . ,

which, in turn, leads to P00(t)) by inverting the corresponding Laplace transform
f00(z). Then P0n(t) can be recursively obtained from

μnP0n(t) = (P00(t) + · · · + P0,n−1(t))
′ + λn−1P0,n−1(t).



4. DISCRETE DISTRIBUTIONS

Consider a discrete distribution of a random variable X on nonnegative integers; that is,

P(X = r) = pr , r = 0, 1, 2, . . . .

Let μ1, μ2, μ3, . . . > 0 be given real numbers. Define λi−1 = (pi/pi−1)μi, i =
1, 2, 3, . . . . Then every BDP with birth parameters λi−1 and death parameters μi, i =
1, 2, 3, . . . , will have the same discrete distribution as its stationary distribution. We
will present several examples assuming P(X(0) = 1) = 1. The first one is simple.

Example 1: Let p0 + p1 = 1 and μ1 > 0. Take λ1 = μ1p1/p0. Then the transition
probability P0,0(t) is given by

P0,0(t) = p0 + (1 − p0)e
−(μ1/p0)t .

Example 2: Let p0 + p1 + p2 = 1 and μ1, μ2 > 0. Take λi = (pi+1/pi)μi+1, i = 0, 1.
If a1 = ((p1 + p0) + 1)μ1, a2 = ((p2 + p1) + 1)μ2, and

α1, α2 = −(a1 + a2) ± √[(a1 − a2)
2 + 4(p2/p1)μ1μ2]

2
,

then

P0,0(t) = C0 + C1eα1t + C2eα2t ,

where C0 = μ1μ2/α1α2, C1 = [α2
1 + α1(λ1 + μ1 + μ2) + μ1μ2]/[α1(α1 − α2)],

and C2 = [α2
2 + α2(λ1 + μ1 + μ2) + μ1μ2]/[α2(α2 − α1)].

Example 3: The probability functions of the Poisson, negative binomial, and binomial
distribution satisfy Panjer’s recurrence relation pk = (a + b/k)pk−1, k = 1, 2, 3, . . . ,
where a < 1 and b are some constants.

(a) The case a = 0 and b > 0 leads to a Poisson distribution with parameter b.

(b) If 0 < a < 1 and a + b > 0, we obtain a negative binomial distribution with
parameters 1 + b/a and a.

(c) The case a < 0, b = −a(n + 1), where n is a positive integer, leads to a
binomial distribution with parameters −1 − b/a and a/(a − 1).

There are no other distributions that will satisfy this recurrence relation. These
distributions have important applications in insurance [20].

In our situation, a BDP can be constructed with death rates μk , k = 1, 2, 3, . . . ,
and birth rates (a + b/k)λk , k = 0, 1, 2, . . . , which will have Poisson, binomial, or
negative binomial distributions for their stationary distribution.

Example 4: Let {pn} follow a geometric distribution (i.e., pn = ρn(1 − ρ), n =
0, 1, 2, . . . and μ1, μ2, μ3, . . . > 0. Taking λn−1 = ρμn, n = 1, 2, 3, . . . , the BDP with



birth and death parameters λn−1 and μn, n = 1, 2, 3, . . . , respectively, will have this
geometric distribution as its stationary distribution. In particular, for an M/M/1 queue,
we have μn = μ, n = 1, 2, 3, . . ..

Mandelbaum, Hylnka, and Brill [10] have related the stationary distribution of
BDPs to nonhomogeneous geometric random variables.

5. LERCH LIMIT

The Lerch distribution is a discrete distribution with

P(X = r) = czr

(ν + r)s
, r = 0, 1, 2, . . . , z, ν > 0, s > 1,

where the normalization constant is the Lerch’s transcendent

1

c
= �(z, s, ν) =

∞∑
r=0

zr

(ν + r)s
.

This distribution has mean (�(z, s − 1, ν)/�(z, s, ν)) − ν when s > 2 and variance

(ν + μ)2 + [�(z, s − 2, ν) − 2(ν + μ)�(z, s − 1, ν)]/�(z, s, ν) when s > 3.

Moments and estimators for this distribution were derived by Zörnig andAltmann [18],
and the structural properties, reliability properties, and statistical inference were
investigated by Gupta, Gupta, Ong, and Srivatsava [6].

Let μ1, μ2, μ3, . . . > 0 be arbitrary and take

λn−1 =
[
ν + n − 1

ν + n

]s

zμn, n = 1, 2, 3, . . . .

Birth and death processes with these parameters will have a Lerch distribution for
their stationary distribution.

For one particular set, we discuss the method to obtain time-dependent proba-
bilities. Then, assuming P(X(0) = 0) = 1, the Laplace transform f0,0(z) of P0,0(t) is
given by the CF

f0,0(z) = 1

z + λ0
− λ0μ1

z + λ1 + μ1
− λ1μ2

z + λ2 + μ2
· · · .

We thus have

f00(z) ≈ An−1(z)

Bn(z)
, (2)



where ≈ signifies “approximately” and Bn(z) can be written in tridiagonal determi-
nant form as follows:

Bn(z) =

∣∣∣∣∣∣∣∣∣∣∣

z + λ0 1
λ0μ1 z + λ1 + μ1 1

λ1μ2 z + λ2 + μ2 1
. . .

λn−2μn−1 z + λn−1 + μn−1

∣∣∣∣∣∣∣∣∣∣∣
n×n

.

(3)

An−1(z) is obtained from Bn(z) by deleting the first row and first column.
We observe that Bn(z) is the determinant of a quasisymmetric matrix, which can be

transformed into a real symmetric matrix by a similarity transformation. The latter is
a real symmetric diagonal-dominant positive-definite tridiagonal matrix with nonzero
subdiagonal elements and, therefore, the eigenvalues are real and distinct. We denote
these eigenvalues by sn

1, sn
2, . . . , sn

n. Similarly, the roots of An−1(z) are negative, real,
and distinct, and we denote them by zn

1, zn
2, . . . , zn

n−1. Using partial fractions, (2) can
be expressed as

f0,0(s) ≈
n∑

j=1

∏n−1
r=1

(
z(n)

r − s(n)
j

)
(
z + s(n)

j

)∏n
r=1,r �=j

(
s(n)

r − s(n)
j

) .

On inverting, we get

P0,0(t) ≈
n∑

j=1

∏n−1
r=1

(
z(n)

r − s(n)
j

)
∏n

r=1,r �=j

(
s(n)

r − s(n)
j

)e−s(n)
j t . (4)

Murphy and O’Donohoe [12] have discussed the method of finding Pr(t) with initial
number m in the system. Specifically,

Pr(t) ≈
k∑

j=1

H(r)
j e−s(k)

j t , r = 0, 1, 2, . . . , (5)

where

H(r)
j := Br

( − s(k)
j

)
Bm

( − s(k)
j

)
Ak−1

( − s(k)
j

)
(∏m−1

i=0 λi

) (∏r
i=1 μi

)
B′

k

( − s(k)
j

) , (6)

B′
k

( − s(k)
j

) =
k∏

i=1,i �=j

(
s(k)

i − s(k)
j

)
,

and

k =
{

m + n + 1 for r ≤ m

r + n + 1 for r ≥ m.



The error due to the truncation of the CF is given by (Murphy and O’Donohoe [12])

Tn(Pr(t)) =
(∏m+n−1

i=0 λi

) (∏m+n
i=1 μi

)
t2n+m−r(∏m−1

i=0 λi

) (∏r
i=1 μi

)
(2n + m − r)!

{
(1 + tρr,m+n)

−2n−m+r+1 + O(t2)
}

for r ≤ m and

Tn(Pr(t)) =
(∏r+n−1

i=0 λi

) (∏r+n
i=1 μi

)
t2n+r−m(∏m−1

i=0 λi

) (∏r
i=1 μi

)
(2n + r − m)!

{
(1 + tρr,r+n)

−2n−r+m+1 + O(t2)
}

for r ≥ m, where

ρr,m+n = σm+n + σm+n+1 − σm − σr

(2n + m − r + 1)(2n + m − r − 1)

and

σn = λ0 +
n−1∑
r=1

(λr + μr).

Given a value of n (the nth convergent) and a sufficiently small error ε, the above error
formulas can be used to estimate a range of t for which this error is not exceeded.

6. NUMERICAL WORK

In this section we examine some numerical examples with exponent s = 4 having
Lerch limit

P(X = r) = czr

(ν + r)4
(r = 0, 1, 2, . . .)

with ν = 1 and ν = 4. We choose μk = 1/z (k = 1, 2, 3, . . .) and, hence,

λk−1 =
(

ν + k − 1

ν + k

)s

, k = 1, 2, 3, . . . .

The computation of P0 in (4) requires careful consideration. Computing the
numerator and denominator separately and dividing subsequently leads to a irre-
versible loss of precision. The numerically most stable way would be to order the
n − 1 terms in numerator and denominator in decreasing order of magnitude, dividing
the corresponding terms, and multiplying.

However, in our experience, it suffices to take the ordered roots z(n)
r and s(n)

r ; then
z(n)

r − s(n)
j and s(n)

r − s(n)
j are of comparable magnitude, and dividing both terms and

multiplying the n − 1 factors leads to a stable procedure. Since numerical routines for
eigenvalue computation typically deliver ordered eigenvalues, no additional ordering
is necessary.



Note that these remarks also apply for the computation of Pr in (5) since H(r)
j in

(6) contains the same products as above (with n replaced by k = n + 1 + max{m, r}).
In the following examples, we assume that the initial number in the system is

m = 3, and we draw graphs for Pr(t), r = 0, 1, 2, 3 and the mean function EX(t).
As the first example, we take z = 1/16; hence, μk = 1/z = 16. For ν = 1 and 4,

the stationary probabilities are the following:

ν = 1 : p0 = 0.996, p1 = 3.89 × 10−3, p2 = 4.80 × 10−5,

p3 = 9.50 × 10−7;

ν = 4 : p0 = 0.974, p1 = 2.49 × 10−2, p2 = 7.52 × 10−4,

p3 = 2.54 × 10−5.

Figure 1 shows the transient probabilities and the mean for ν = 1. For ν = 4, the
plot looks very similar and is omitted.

As the second example, we take z = 1/2, μk = 2. For ν = 1 and 4, the stationary
probabilities are the following

ν = 1 : p0 = 0.966, p1 = 3.02 × 10−2, p2 = 2.98 × 10−3,

p3 = 4.72 × 10−4;

ν = 4 : p0 = 0.785, p1 = 0.161, p2 = 0.0388,

p3 = 0.0105.

Figures 2 and 3 show the transient behavior for ν = 1 and ν = 4, respectively.
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FIGURE 1. Transient behavior for z = 1/16, μ = 16, s = 4, m = 3, and ν = 1.
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FIGURE 2. Transient behavior for z = 1/2, μ = 2, s = 4, m = 3, and ν = 1.
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FIGURE 3. Transient behavior for z = 1/2, μ = 2, s = 4, m = 3, and ν = 4.

In the last example, we use z = μk = 1. For ν = 1 and 4, the stationary
probabilities are the following:

ν = 1 : p0 = 0.924, p1 = 5.77 × 10−2, p2 = 1.14 × 10−2,

p3 = 3.61 × 10−3;

ν = 4 : p0 = 0.523, p1 = 0.214, p2 = 0.103, p3 = 0.0557.

Graphs of the transient behavior for ν = 1 and ν = 4 are shown in Figures 4
and 5, respectively.

To illustrate the speed of convergence of the numerical method in Section 5,
consider the case ν = 1. The computation of P0 and P1, accurate to six significant
digits, needs k = 8 for z = 1/16 and k = 16 for z = 1/2. For z = 0.9 and z = 1,
we have to use approximately k = 45 and k = 60. Hence, the speed of convergence
decreases with increasing value of z; but in all cases, k = 100 is enough to get highly
reliable results.
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FIGURE 4. Transient behavior for z = 1, μ = 1, s = 4, m = 3, and ν = 1.
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FIGURE 5. Transient behavior for z = 1, μ = 1, s = 4, m = 3, and ν = 4.

6.1. Accelerating the Speed of Convergence for the Zipf Limit

The last section showed that the computation is possible with high accuracy even for
the case ν = z = 1, which leads to the Zipf limit law:

P(X = r) = 1

ζ(s)

1

(1 + r)s
, r = 0, 1, 2, . . . . (7)

However, in addition to the parameter of the Zipf distribution, the speed of convergence
depends crucially on the birth and death rates.

If we put λ0 = 1 and λk = μk = (k + 1)s, k = 1, 2, . . ., we obtain, again, the
Zipf law (7) as a limiting distribution, but the development of the process over time
and the convergence behavior of the numerical procedure are completely different.



TABLE 1. Speed of Convergence for P0(t) with Unmodified and Modified Rates

k t = 0.5 t = 1 t = 2 t = 5

Unmodified rates 20 0.9117042 0.8905969 0.8499887 0.7389401
50 0.9192899 0.9106700 0.8939266 0.8455217

200 0.9229279 0.9206318 0.9163837 0.9037576
1000 0.9238799 0.9232780 0.9224247 0.9198709
5000 0.9240693 0.9238067 0.9236356 0.9231237

Modification 1 20 0.9235242 0.9222317 0.9199904 0.9133002
50 0.9240222 0.9236713 0.9233226 0.9222785

200 0.9241107 0.9239223 0.9239004 0.9238360
1000 0.9241164 0.9239382 0.9239369 0.9239343
5000 0.9241166 0.9239388 0.9239383 0.9239382

Modification 2 10 0.9241167 0.9239389 0.9239384 0.9239384
20 0.9241167 0.9239389 0.9239384 0.9239384
50 0.9241167 0.9239388 0.9239384 0.9239384

100 0.9241167 0.9239388 0.9239384 0.9239384

As an example, we consider the case s = 4 and m = 0. The upper part of Table 1
shows the approximation of P0(t) for t = 0.5, 1, 2, and 5. We see very slow con-
vergence, becoming worse as time increases. Comparing P0(2) with the exact value
1/ζ(4) = 0.9239384 shows that even for k = 5000, we obtain only three correct digits.

However, we have found that a simple modification of the highest birth and death
rates, which appear in Bn(z) in (3), dramatically increases the speed of convergence.
This modification consists in an enlargement of μk−1 and a downsizing of λk−1.
Specifically, we used the following:

Modification 1: λmod
k−1 = λk−1/(k − 1), μmod

k−1 = (k − 1)μk−1;

Modification 2: λmod
k−1 = λk−1/(k − 1)2, μmod

k−1 = (k − 1)2μk−1.

The results can be found in the middle and lower parts of Table 1. For modification 1,
we have four correct digits of P0(2) for k = 200, a considerable improvement. Even
more astonishing, modification 2 delivers the correct value (up to seven digits) even
for k = 10. We found the same behavior for other values of m, r, and s. A theoretical
explanation of this phenomenon is an open question.

6.2. Computing theTransient Distribution via the Matrix Exponential

In this subsection we compare the numerical methods described in Section 5 with the
direct solution of the forward Kolmogorov equations in (1). The first k equations can
be written as

P′(t) = QP(t), (8)



where

P(t) =

⎛
⎜⎜⎜⎝

Pm0(t)
Pm1(t)

...
Pm,k−1(t)

⎞
⎟⎟⎟⎠ ,

Q =

⎛
⎜⎜⎜⎝

−λ0 μ1

λ0 −λ1 − μ1 μ2

. . .
. . .

. . .
λk−2 −λk−1 − μk−1

⎞
⎟⎟⎟⎠

k×k

.

The differential equation (8) has the solution

P(t) = eQt P(0).

There are various ways to compute the matrix exponential eQt (see, e.g., Moler and
Van Loan [11]); we used the function expm in the R library Matrix [3], which uses
Ward’s diagonal Pade approximation with three-step preconditioning; this method is
among the procedures recommended by Moler and Van Loan [11].

The results with the same birth and death rates and parameter values as in the
example in Section 6.1 are shown in Table 2; thus, they can be compared directly with
the results in Table 1.

For the unmodified birth and death rates, the entries in the upper part of Table 2
are in very good agreement with the corresponding entries in Table 1. The two modi-
fications of the highest birth and death rates again lead to a significant increase in the
speed of convergence; however, the effect in not as pronounced as in Section 6.1.

TABLE 2. Speed of Convergence for P0(t) with Unmodified and Modified Rates by
Computing the Matrix Exponential

k t = 0.5 t = 1 t = 2 t = 5

Q with unmodified rates 20 0.9117042 0.8905969 0.8499887 0.7389400
50 0.9192899 0.9106700 0.8939266 0.8455217

200 0.9229279 0.9206318 0.9163836 0.9037575
1000 0.9238798 0.9232778 0.9224244 0.9198700

Q with modification 1 20 0.9235242 0.9222317 0.9199904 0.9133002
50 0.9240222 0.9236713 0.9233226 0.9222784

200 0.9241107 0.9239222 0.9239002 0.9238355
Q with modification 2 20 0.9241519 0.9239721 0.9239651 0.9239454

50 0.9241189 0.9239410 0.9239404 0.9239398
100 0.9241169 0.9239390 0.9239384 0.9239380

Q̃ with unmodified rates 20 0.9241486 0.9239718 0.9239714 0.9239714
50 0.9241188 0.9239410 0.9239406 0.9239406

100 0.9241169 0.9239391 0.9239386 0.9239386
200 0.9241167 0.9239388 0.9239384 0.9239383



The main disadvantage of the direct computation of the matrix exponential con-
sists of the large time and memory requirements: The computation for k = 1000
needed about 30 min compared to 5 s for the method in Section 6.1. Further, k = 5000
did not work due to memory overflow.

As an alternative approach, one can truncate the state space to {0, 1, . . . , k − 1}.
Then the forward Kolmogorov equations of this finite BDP can be written as in (1)
for j = 0, . . . , k − 2, but for k − 1, we obtain

P′
m,k−1(t) = λk−2Pm,k−2(t) − μk−1Pm,k−1(t).

Therefore, P′(t) = Q̃P(t), where Q̃ is the generator of the truncated process; that is,

Q̃ =

⎛
⎜⎜⎜⎝

−λ0 μ1

λ0 −λ1 − μ1 μ2

. . .
. . .

. . .
λk−2 −μk−1

⎞
⎟⎟⎟⎠

k×k

.

The differential equation now has the solution P(t) = eQ̃tP(0). For large k, one can
expect the same solution as earlier; however, the convergence is much faster with Q,
as the last part of Table 2 clearly shows.

An unreckoned bottom line from this section follows that the choice of the highest
birth and death rates is decisive for the quality of the solution when treating an infinite
BDP numerically.

7. SPEED OF CONVERGENCETO STATIONARITY

Consider a BDP {X(t)} with birth rates λ0, λ1, λ2, . . . and death rates μ0, μ1, μ2, . . . .
We assume X(0) = 0,

∑∞
j=0 πj < ∞, and

∑∞
j=0(λjπj)

−1 = ∞, where

π0 = 1 and πj = λ0λ1 · · · λj−1

μ0μ1 · · · μj
, j ≥ 1,

as in Section 3. Then {X(t)} is uniquely determined by its birth and death rates, Pj =
πj/

∑∞
k=0 πk , where Pj = limt→∞ P0j(t) and P0j(t) = P(X(t) = j|X(0) = 0). Further,

limt→∞ EX(t) = EX , with X denoting a random variable with distribution {Pj, j ≥ 0}.
The speed of convergence to stationarity of the BDP is usually characterized by

α� = sup{α ≥ 0 : Pj − P0j(t) = O(e−αt) as t → ∞ for all j ≥ 0}

or its reciprocal 1/α�, the relaxation time. However, there exists no general expression
for α� in terms of the birth and death rates. As an alternative measure, Stadje and



Parthasarathy [16] and Coolen-Schrijner and Van Doorn [5] considered the quantities
I = ∫ ∞

0 [EX − EX(t)] dt and the normalized value

m =
∫ ∞

0
[1 − EX(t)/EX] dt = I/EX.

Putting

T =
∞∑

k=0

r2
k

λkPk
, τ0 = 0, τj = Pj

j−1∑
k=0

rk

λkPk
, j = 1, 2, . . . ,

where rk = ∑∞
l=k+1 Pl for k ≥ 0, Coolen-Schrijner and Van Doorn [5] proved that

Ij =
∫ ∞

0
[P0j(t) − Pj] dt = TPj − τj, j = 0, 1, 2, . . . ,

and I = ∑∞
j=0 jτj − T · EX .

We computed these quantities for the examples in Section 6; parts of the results
are given in Table 3. The upper part of Table 3 shows I0, I1, I2, T , I , and m for μk = 1/z
and

λk−1 =
(

ν + k − 1

ν + k

)s

, k ≥ 1.

We refer to this choice of birth and death rates as in case 1. The middle
and lower part of Table 3 show the same quantities for μk = (ν + k)s/z, λk−1 =
(ν + k − 1)s, k ≥ 1 (case 2) and μk = (ν + k)s, λk−1 = z(ν + k − 1)s, k ≥ 1 (case
3), respectively. We always chose s = 4 and the same values of z and ν for the three
sets of rates.

Although the limiting distribution is the same in all three cases, Table 3 shows that
the speed of convergence to stationarity is quite different. Looking at the normalized

TABLE 3. Speed of Convergence to Stationarity for Different Birth and Death
Rates

z ν I0 I1 I2 T I m

1/16 1 2.5e-04 −2.5e-04 −6.1e-06 2.5e-04 2.6e-04 6.5e-02
1/16 4 1.7e-03 −1.6e-03 −9.6e-05 1.7e-03 1.8e-03 6.7e-02
1/2 1 0.021 −0.016 −0.0034 0.022 0.027 0.71
1/2 4 0.15 −0.076 −0.045 0.20 0.29 0.99
1/16 1 1.6e-05 −1.5e-05 −2.3e-07 1.6e-05 1.6e-05 4.0e-03
1/16 4 2.6e-06 −2.5e-06 −1.1e-07 2.7e-06 2.7e-06 1.0e-04
1/2 1 1.2e-03 −1.0e-03 −1.2e-04 1.2e-03 1.4e-03 3.5e-02
1/2 4 2.1e-04 −1.3e-04 −5.2e-05 2.6e-04 3.2e-04 1.1e-03
1/16 1 2.5e-04 −2.5e-04 −3.6e-06 2.5e-04 2.5e-04 6.3e-02
1/16 4 4.2e-05 −4.0e-05 −1.8e-06 4.3e-05 4.4e-05 1.7e-03
1/2 1 2.3e-03 −2.0e-03 −2.5e-04 2.4e-03 2.7e-03 7.1e-02
1/2 4 4.1e-04 −2.6e-04 −1.0e-04 5.3e-04 6.5e-04 2.2e-03



value m in the last column, we see that the convergence in the first case is slower than
in the other two cases.

As a general rule, large birth and death rates lead to fast convergence to stationarity.
To be specific, we consider the choice z = 1/2 and ν = 4. Here, the birth and death
rates in case 1 are much smaller than in case 3, which, in turn, are smaller than in case
2. Accordingly, convergence is much slower in the first than in the other two cases,
and slower in the third than in the second case.

Next, let z = 1/16 and ν = 1. Here, the rates for cases 1 and 3 are smaller than
for case 2; hence, convergence is slower. Between case 1 and 3, things are mixed,
which leads to a similar speed of convergence.

Remark: All computation in this and the preceding section are done using the
statistical software R [15].

8. CONCLUSIONS

In view of the importance of Lerch’s distribution in several disciplines, it is of interest
to construct a function of time that converges to the Lerch distribution as time becomes
large. This is achieved by recourse to BDPs. We applied a numerical procedure using
CFs to obtain time-dependent probabilities. There, the truncation of the number of
terms plays an important role. A modified numerical procedure with altered highest
birth and death rates leads to a much faster rate of convergence and thereby a consid-
erable reduction in computation time. As alternative method, we considered the direct
computation of the matrix exponential; again, the highest rates play a crucial role.
Finally, we applied a recently proposed criterion to describe the speed of convergence
to stationarity, which highly depends on the parameter of the process.
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