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Zusammenfassung 
 

In dieser Studie wurde die Bacteriocinproduktion von zwei Lactobacillus plantarum 

Stämmen und ihre Wirksamkeit als Schutzkulturen zur Biokonservierung von Truthahnfleisch 

untersucht. Da Bakterien als Starterkulturen zur Lebensmittelherstellung, als Schutzkulturen 

oder als Probiotika eingesetzt werden, ist es zuerst notwendig die Sicherheit dieser Stämme 

bezüglich ihrer Antibiotikaresistenz zu untersuchen Daher wurde in dieser Studie das 

Vorhandensein von Antibiotikaresistenzen der Lactobacillus plantarum Stämme BFE 5092 und 

PCS20 bestimmt. Diese Lactobacillus plantarum Stämme zeigten eine intrinsische Resistenz 

gegen bestimmte Antibiotika, d.h. Vancomycin und Streptomycin. Genetisch übertragbare 

Resistenzen, wie z.B. Resistenzen gegen Tetracyclin, Erythromycin oder Chloramphenicol, 

wurden nicht  nachgewiesen. Diese Stämme konnten bezüglich ihrer Antibiotikaresistenzen 

somit als sicher angesehen werden. Dies ist Vorraussetzung, um den Status der qualifizierten 

Sicherheitsannahme („Qualified Presumption of Safety“, QPS) der europäischen Behörde für 

Lebensmittelsicherheit („European Safety Authority“, EFSA) für mikrobielle Stämme als 

Lebensmittelzusatz zu erhalten.  

 Lactobacillus plantarum Stämme produzieren eine Vielfalt chromosomal kodierter 

Bacteriocine und oftmals werden mehrere Bacteriocine von einem einzigen Stamm kodiert. In 

dieser Studie wurden die genetischen Loci für Bacteriocinproduktion der Lactobacillus 

plantarum Stämme BFE 5092 und PCS20 vollständig analysiert. Ein PCR „Screening“ für 

verschiedene, bekannte Plantaricingene zeigte, das Lactobacillus plantarum BFE 5092 die 

Gene für plnEF, plnJK und plnN besaß, wohingegen der Stamm PCS20 nur positiv für das 

plnEF Gene war. Weitere Untersuchungen des Bacteriocin-Locus von BFE 5092 zeigten 

beträchtliche Ähnlichkeiten zu Plantaricin Loci vorher beschriebener Lactobacillus plantarum 

Stämme C11 und WCFS1. Jedoch war der Locus von Lactobacillus plantarum PCS20 

ungewöhnlich, da er eine Mutation, als Resultat einer Deletion innerhalb des plnE Gens, zeigte. 

Diese Deletionen resultierten in einem hypothetisch produzierten Peptid, welche zwei 

Aminosäuren kürzer als Plantaricin E ist. Weiterhin unterschied es sich durch 24 Aminosäuren 

und besaß aber auch 30 identische Aminosäuren (15 am Aminoende und 15 am Carboxylende). 

Als Konsequenz hieraus ist die Aminosäuresequenz insofern verändert als dass kein 

funktionelles Signalpeptid vom „double-glycine“ Typ kodiert wird. Dies bedeutete wiederum, 

dass kein funktionelles Peptid produziert wird, obwohl RT-PCR Untersuchungen zeigten, dass 

das plnE Gen offensichtlich exprimiert wurde. Außerdem war ein Transposase Gen 

stromaufwärts im Plantaricin EFI Gencluster lokalisiert. Dieses war im Bacteriocin-Regulatorgen 

dem Histidin Protein Kinase Gen eingefügt. Zusammenfassend lässt sich sagen, dass diese 

Fakten auf einen Verlust der Plantaricingen-Funktion in Lactobacillus plantarum PCS20 als 

Resultat einer Transposition und Mutation hinwiesen.  

 Aufgrund des Vorhandenseins des mutierten Plantaricingens in Lactobacillus plantarum 
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PCS20 wurde nur der Stamm Lactobacillus plantarum BFE 5092 auf eine mögliche Anwendung 

als Schutzkultur zur Konservierung von Truthahnfleisch mit Salmonella Typhimurium oder 

Listeria monocytogenes als Zielpathogene näher untersucht. Der Stamm Lactobacillus 

plantarum BFE 5092 wuchs (wenn auch nicht sehr gut) und produzierte Bacteriocin bei 8 oder 

10°C und auch während des sessilen Wachstums auf Truthahnfleisch. Jedoch war dieser 

Stamm nicht in der Lage das Wachstum der Zielpathogene auf Truthahnfleisch unter den in 

dieser Studie verwendeten Bedingungen zu unterdrücken. Dies resultierte höchstwahrscheinlich 

daraus, dass dieser Stamm nicht in der Lage war bei geringen Temperaturen zu wachsen und in 

dieser Umgebung nicht wettbewerbsfähig war. Obwohl dieser Stamm für diesen Produkttyp in 

dieser Studie nicht geeignet erschien, könnte er trotzdem zur Biokonservierung anderer 

Lebensmittel, die unter anderen Bedingungen produziert und gelagert werden und für das 

Wachstum und die Bacteriocinproduktion dieses Stammes (Lactobacillus plantarum BFE 5092) 

besser geeignet sind, erfolgreich eingesetzt werden. Dies könnte in weiteren Studien untersucht 

werden.  
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ABSTRACT 
In this study, the bacteriocin production of two Lactobacillus plantarum strains was 

investigated and their effectiveness as protective cultures for the biopreservation of turkey meat 

was assessed. As bacteria used as starter cultures for the production of foods, as protective 

cultures or as probiotics, could possible contain antibiotic resistance genes, it was first 

necessary to determine the safety of these strains as pertaining to their antibiotic resistances. 

Therefore, in this study the incidence of antibiotic resistance was determined for the 

Lactobacillus plantarum strains BFE 5092 and PCS20. These Lactobacillus plantarum strains 

only showed an intrinsic resistance towards certain antibiotics, i.e., vancomycin and 

streptomycin, and no genetically transferable resistances, such as resistance towards 

tetrycycline, erythromycin or chloramphenicol, were detected. Thus, the strains could be 

regarded as safe from an antibiotic resistance point of view, which was considered as a 

prerequisite for obtaining ‘Qualified Presumption of Safety’ (QPS) status as proposed by the 

European Food Safety Authority (EFSA) for microbial strains added to foods.  

Lactobacillus plantarum strains produce a variety of chromosomally encoded 

bacteriocins and often multiple bacteriocins are encoded by a single strain. In this study, the 

genetic loci for bacteriocin production of Lactobacillus plantarum strains BFE 5092 and PCS20 

were completely analysed. PCR screening for various known plantaricin genes showed that 

Lactobacillus plantarum BFE strain 5092 contained the genes for plnEF, plnJK and plnN, while 

strain PCS20 was only positive for the plnEF genes. Further investigation of the bacteriocin 

locus of strain BFE 5092 showed remarkable similarity to the plantaricin loci previously 

described for Lactobacillus plantarum strains C11 and WCFS1. However, the locus of the 

Lactobacillus plantarum PCS20 strain was unusual in that it showed a mutation as a result of 

deletions within the plnE gene. These deletions led to a hypothetically produced peptide which 

is 2 amino acids shorter than plantaricin E. Furthermore, it differs by 24 amino acids, while it 

shares 30 identical amino acids, i.e., 15 at the amino end and 15 at the carboxyl end of the 

hypothetical peptide. As a consequence, the amino acid sequence is changed such that a 

double-glycine-type leader peptide would not be encoded. This implied that a functional peptide 

was not being produced, even though RT-PCR studies showed that the plnE gene was 

obviously expressed. Furthermore, a transposase gene was located upstream of the plantaricin 

EFI gene cluster. This was inserted into a bacteriocin regulatory gene, the histidine protein 

kinase gene. Taken together, these facts indicated a loss of plantaricin gene function in 

Lactobacillus plantarum PCS20 as a result of transposition and mutation. 

    Because of the presence of a mutated plantaricin gene in Lactobacillus plantarum 

PCS20, only the Lactobacillus plantarum BFE 5092 strain was further investigated for its 

possible application as protective cultures in preservation on turkey meat using Salmonella 

Typhimurium or Listeria monocytogenes as target pathogens. The protective Lactobacillus 
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plantarum BFE 5092 grew (although not well) and produced bacteriocin at 8 or 10°C as well as 

during sessile growth on turkey meat. This strain, however, was not capable of inhibiting the 

growth of the target pathogens on the turkey meat under the conditions of this study, most 

probably as a consequence of its low growth capability at low temperature, and its failure to 

compete in this environment. Although this strain was unsuitable for the type of product used in 

this study, it may nevertheless be successful for biopreservation of other food commodities, 

which are produced and stored under conditions and may be better suited for the growth and 

bacteriocin production of Lactobacillus plantarum BFE 5092, which could be further investigated 

in future studies.  
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CCHAPTER 1.0 
INTRODUCTION 
 

1.1  Lactic Acid Bacteria 
1.1.1  Taxonomy of the lactic acid bacteria 
 

he Firmicutes and Actinobacteria are the only Gram-positive phyla among the major 

eubacterial lineages. The Firmicutes consist of the classes Clostridia (class I), Mollicutes 

(class II) and Bacilli (Class III). The lactic acid bacteria (LAB) occur in class III, order II i.e., the 

‘Lactobacillales’ (Garrity and Holt, 2001). Lactic acid bacteria can generally be described as 

Gram-positive, non-motile, non-sporeforming, rod- or coccus-shaped organisms that ferment 

carbohydrates to form mainly lactic acid. Early LAB taxonomy was based on morphological and 

physiological features such as determination of end products of metabolism, the enantiomer of 

lactic acid produced, composition of cell wall amino acids as well as sugar fermentation patterns 

(Stiles and Holzapfel, 1997). However, a modern approach for classification of LAB is based on 

the premise that an unequivocal definition does not exist for this group of bacteria (Stiles and 

Holzapfel, 1997; Axelsson, 2004). Therefore, it is more appropriate to describe the ‘typical’ lactic 

acid bacterium, which is Gram-positive, non-sporeforming, catalase-negative, devoid of 

cytochromes, non-aerobic but aerotolerant, fastidious, acid-tolerant and strictly fermentative, 

with lactic acid as the major end-product of sugar fermentation (Klein et al., 1998; Axelsson, 

2004). Variations of this general description are common, and it is only the Gram-positive 

character really that cannot be argued with (Axelsson, 2004). 

T 

 The common ancestor of the order Lactobacillales to which all LAB belong developed 

from a common ancestor of all Bacilli (Makarova et al., 2006). The evolution of the 

Lactobacillales involved extensive loss of ancestral genes. Thus, while the common ancestor of 

the Bacilli possessed about 2700 to 3700 genes, the common ancestor of the Lactobacillales 

possessed about 2100-2200 genes, losing 600-1200 genes during evolution and these gene 

reductions were most probably a result of adaptation to nutritionally rich habitats (Makarova et 

al., 2006). Genes for biosynthesis of cofactors such as heme, molybdenum coenzyme, and 

panthothenate were lost, while cofactor transporters were acquired e.g., nicotinamide 

mononucleotide transporter (Makarova and Koonin, 2007). Another notable acquisition was a 

group of diverse peptidases, which are important commodities in the protein rich environments 

inhabited by LAB. The loss of heme/copper type cytochromes/quinol oxidase-related genes and 

catalase are characteristic for aerobic bacteria, indicating that the ancestor of Lactobacillales 

was a microaerophile or an anaerobe (Makarova and Koonin, 2007). Beyond gene loss, the 

Lactobacillales exhibit clear ancestral adaptations for nutritionally rich and microaerophilic 

environments, which include acquisition of genes via horizontal gene transfer and duplication of 
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genes for various enzymes and transporters of sugar and amino acid metabolism (Makarova et 

al., 2006, Makarova and Koonin, 2007). 

 

Before the advent of bacterial genomics, the taxonomy of the LAB was somewhat 

unclear. Based mostly on 16S rRNA gene sequences, three closely related lineages of the LAB 

were initially described by Woese (1987), i.e. the Leuconostoc group, the Lactobacillus 

casei/Pediococcus group and the Lactobacillus delbrueckii group. Carnobacterium, 

Enterococcus, Vagococcus, Aerococcus and Tetragenococcus were considered more closely 

related to each other than to any other LAB, while Lactococcus and Streptococcus appeared to 

be very closely related to each other and were described to form a separate branch (Schleifer 

und Ludwig, 1995). The genus Lactobacillus alone, which contains more than 145 species, is 

unusually diverse and its taxonomy has long been considered unsatisfactory because of the 

highly heterogenous nature of its members (Schleifer and Ludwig, 1995; Cachaya et al., 2006; 

Felis and Dellaglio, 2007).  

The recent availability of complete genomes of representative LAB strains of all major 

families of the Lactobacillales enables a more definitive analysis of their evolutionary 

relationships (Makarova et al., 2006; Makarova and Koonin, 2007). Accordingly, the 

streptococci-lactococci branch is considered to be basal in the Lactobacillales tree, and the 

Pediococcus group is a sister to the Leuconostoc group within the Lactobacillus clade. Thus, the 

Lactobacillus genus appeared to be paraphyletic with respect to the Pediococccus-Leuconostoc 

group and L. casei was placed at the base of the L. delbrueckii group (Makarova et al., 2006; 

Makarova and Koonin, 2007). Makarova et al. (2006) and Makarova and Koonin (2007) showed 

on the basis of a phylogenetic tree, reconstructed from concatenated alignments of four 

subunits of the DNA-dependant RNA polymerase sequences, a division of Lactobacillus into 

three distant groups, the first being comprised of L. brevis, L. plantarum and P. pentosaceus to 

which L. salivarius was basal. The second group consisted of L. gasseri, L. johnsonii, L. 

delbrueckii and L. acidophilus (Makarova and Koonin, 2007). An additional branch with 

Leuconostoc mesenteroides and Oenococcus oeni is wedged between L. brevis, P. 

pentosaceus and the L. plantarum group and L. salivarius, and thus L. salivarius is also basal to 

this branch. The third group consisted of Lactobacillus casei and L. sakei and was basal to the L. 

gasseri, L. johnsonii, L. delbrueckii and L. acidophilus groups (Makarova and Koonin, 2007) 

(Figure 1.1). 
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Figure 1.1  Phylogenetic tree of the Lactobacillales constructed on the basis of concatenated 

alignments of four (α,β,β’,δ) of the DNA—dependant RNA polymerase subunit protein 
sequences (adapted from Makarova and Koonin, 2007).  

 

 Whole genome comparisons of five Lactobacillus species (L. salivarius, L. plantarum, L. 

acidophilus, L. johnsonii and L. sakei) that were completely sequenced showed that there is no 

extensive synteny of the genome sequences of these five species (Canchaya et al., 2006), and 

the observed extreme divergence of the Lactobacillus genomes supports the recognition of new 

subdivisions as proposed by Dellaglio and Felis (2005). Whole genome alignments showed that 

the sequences with the best alignments were L. johnsonii and L. acidophilus, but alignments of 

these two species with the other three species showed much lower degrees of synteny at the 

interspecies level, than observed in other species genome comparisons with high and low-G+C 

content Gram-positive bacteria (Canchaya et al., 2006). These stepwise-decreasing degrees of 

similarity observed after genome alignments of members of the L. delbrueckii / L. acidophilus 

group were considered as a ‘hallmark of Darwinian evolution’ by Berger et al. (2007). Claessen 

et al. (2008) used the genomic data from 12 Lactobacillus strains to investigate whether a single, 

congruent phylogeny could be inferred. By reconstructing phylogenetic tress from concatenated 

sequences of 141 core proteins, as well as concatenated RNA polymerase subunit sequences, 

considerable incongruence was noticed, but it was still possible to distinguish four subgeneric 

groups i.e., group A (L. acidophilus, L. helveticus, L. delbrueckii ssp. bulgaricus, L. johnsonii and 

L. gasseri), group B (L. salivarius, L. plantarum, L. reuteri, L. brevis and P. pentosaceus), group 

C (L. sakei and L. casei) and group D (L. mesenteroides and O. oeni) (Claesson et al., 2008). 

However, the authors concluded that based on significantly different branching patterns within 

some groups and the availability of genomic data for too few members of the groups, three of 

the four groups could not confidently be identified as candidate novel genera within the current 

genus (Claesson et al., 2008). 
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The genera of LAB associated with foods include Lactococcus, Enterococcus, 

Streptococcus, Pediococcus, Tetragenococcus, Leuconostoc, Weissella and Oenococcus which 

have coccus shaped cells, as well as the genera Carnobacterium and Lactobacillus which are 

rod-shaped. The genus Weissella is somewhat unusual in that it includes some species which 

are rod-shaped, while others are coccus-shaped. In addition, these genera are furthermore 

quite heterogenous in their nutrient requirements, growth niches, growth temperatures and other 

phenotypic properties, and also differ in the respective pathways they utilise for metabolism. 

 

1.1.2  Lactic Acid Bacteria Metabolism 
Metabolically, LAB are on the threshold of anaerobic-to-aerobic life. They possess 

efficient carbohydrate fermentation pathways coupled with substrate level phosphorylation 

(Hammes and Hertel, 2009). In addition to substrate level phosphorylation, energy is generated 

by secondary transport systems including uniporters, proton-solute symporters and antiporters, 

all contributing to the generation of a proton motive force (Konings, 2002). Lactobacilli contain 

no isoprenoid quinones and no cytochromes systems to perform oxidative phosphorylation. 

However, they do possess flavine-containing oxidases and peroxidases to carry out the 

oxidation of NADH2 with O2 as the final electron acceptor (Hammes and Hertel, 2009). 

LAB are all chemo-organotrophs, i.e., they require carbohydrates for their metabolism 

and growth. They have rather complex nutritional requirements and also need vitamins and 

amino acids, as well as nucleotides for growth (Axelsson, 2004). There are two major pathways 

that are utilized for hexoses sugars. The first pathway (Emden Meyerhof pathway) is through 

the glycolytic pathway by splitting fructose-1,6-disphosphate in two triose sugar moieties, which 

are further converted to private and finally to lactate (Kandler et al,. 1983; Axelsson, 2004), with  

a net gain of 2 ATP/mol glucose. As the major end product here is lactate, this fermentation is 

also known as a homolactic fermentation (Axelsson, 2004). The second one 

(phosphogluconate/phosphoketolase pathway) is characterized by an initial dehydrogenation 

step with the formation of 6-phosphogluconate by oxidation of glucose-6-phosphate. This is 

followed by a decarboxylation reaction and the remaining pentose-5-phosphate is split by 

phosphoketolase into glyceraldehyde-3-phosphate and acetyl-phosphate, which are further 

metabolized to lactate and ethanol with a net gain of 1ATP/mol glucose (Kandler et al,. 1983). If 

fructose is present as an alternative electron acceptor, acetyl-phosphate may also be converted 

to acetic acid, with the concurrent reduction of fructose to manitol. The end products of this 

pathway thus include lactic acid, acetic acid, ethanol and CO2 and, based on the diversity of end 

products obtained this type of fermentation, it is also known as the heterolactic fermentation. 

Facultatively heterofermentative LAB can utilize pentoses such as arabinose or ribose, as they 

possess an inducible phosphoketolase and are thus able to convert these pentose sugars to 

glyceraldehyde-3-phosphate and acetyl-phosphate. Thus, they produce lactic and acetic acid 
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(or ethanol) as end-products of fermentation, without the production of CO2 (Cogan, 1995; 

Axelsson, 2004).  

 Many LAB can also metabolize arginine by a deiminase pathway forming ornithine, 

citrulline, NH3 and CO2 and generating 1 mol ATP from each mol of arginine used in the process 

(Poolman, 1993; Chaillou et al., 2005; Cogan et al., 2006). It is also well known that LAB may 

change their metabolism in response to various conditions, resulting in a different end-product 

pattern than seen with glucose fermentation under normal conditions. In most of these cases, 

the change can be attributed to an altered pyruvate metabolism, the use of external electron 

acceptors, or both. Depending on conditions and enzymatic capacity, LAB can use alternative 

ways of utilizing pyruvate. For example, one of the well known pathways among the LAB is 

leading to diacetyl (butter aroma) and acetoin/2.3-butanediol. This pathway is very significant 

technologically in the fermentation of milk (Axelsson, 2004). 

 

1.1.3 Lactic Acid Bacteria as Starters for Food Fermentations 

Historically, food fermentation developed by default rather than by design (Stiles, 1996). 

The term fermentation is often used imprecisely when referring to foods (Adams, 1999). Strictly, 

it describes the type of energy yielding anaerobic metabolism in which an organic substrate is 

incompletely oxidized and an organic compound acts as an electron acceptor. Examples are the 

production of ethanol by yeasts and production of organic acids by e.g. the LAB. However, in a 

more general use, the term fermentation is applied to any foods that have been subjected to the 

action of microorganisms or enzymes, so that desirable biochemical changes cause significant 

modification of the food (Cambell-Platt, 1987). LAB play an important role in food fermentations, 

causing characteristic flavor changes and exercising a preservative effect on the fermented 

product (Stiles, 1996). It is estimated that 25% of the European diet and 60% of the diet in 

developing countries consist of fermented foods (Holzapfel, 2005). 

The main effect of LAB in food fermentations is illustrated by their contribution to rapid 

acidification of the raw material by production mainly of lactic acid. In addition, some strains also 

produce other important compounds such as acetic acid, ethanol, aroma compounds, 

bacteriocins, exopolysaccharides and other important enzymes (e.g., proteases) that contribute 

to enhancing the shelf life and microbial safety of the fermented product and to improving the 

texture of product (Leroy and De Vuyst, 2004).  

LAB are associated with dairy, vegetable, meat and cereal fermentations (Stiles and 

Holzapfel, 1997; Nout and Sarkar, 1999; Holzapfel, 2002). Such foods can be fermented in 

three different ways, based on the source of the starter cultures, i.e. 1) natural fermentation 

(spontaneous fermentation), 2) back slopping and 3) controlled fermentation. Spontaneous 

fermentation results from the competitive activities of different microorganisms present naturally 

on the raw material. The strains with the highest growth rate will dominate the fermentation and 
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as the natural microbial flora of the raw material is not always the same, it is difficult to produce 

a product with consistent quality over a long time (Ray, 2001). Backslopping involves the use of 

a residue from a previous fermentation batch of acceptable quality (Holzapfel, 1997). The 

drawback with this practice is that retention of product characteristics over a long period may be 

difficult also due to changes in microbial types (Ray, 2001). Controlled fermentations which rely 

on the use of starter cultures lead to decreased production times and products with a more 

consistent quality. The starters are usually adapted to the substrate and are added to the raw 

materials at high numbers, which serves to accelerate the fermentation process. This enables 

stricter control of the fermentation and the outcome is more predictable. The first pure starter 

cultures were strains of Lactococcus lactis introduced simultaneously in Denmark and Germany 

in 1890 in the fermentation of milk for cheese and sourmilk production (Holzapfel, 1997). 

Still today, traditional technologies for processing cheese and fermented meat without 

using starter cultures are being applied even in developed countries (Stiles and Holzapfel, 1997). 

Nevertheless, process technology and use of starter cultures have also allowed increasing sizes 

of fermentations to industrial scale and specific species, which affect product flavor, texture, and 

quality, have been further selected. Today, about 100 species from all LAB genera are used as 

starters for food fermentations (Leroy and De Vuyst, 2004).  

 

1.1.4 Use of LAB as Protective Cultures 
The most important aspect for the use of LAB in food fermentations is their contribution 

to food safety. A significant feature of a fermented food is the high titratable acidity. In cereal and 

vegetable products which are weakly buffered, an efficient lactic fermentation will produce a pH 

of 4.0 or less, at which the growth of bacterial pathogens is inhibited and many bacteria will die 

at a rate which increases with increasing ambient temperature (Nout and Motarjemi, 1997). 

However, organic acids such as lactic and acetic acids are not the only compounds produced by 

LAB that have a pronounced antimicrobial activity. Other fermentation end-products with 

antimicrobial activity include hydrogen peroxide (in the presence of oxygen), diacetyl, aldehydes 

(e.g., β-hydroxypropionaldehyde) and bacteriocins (Lindgren and Dobrogosz, 1990; Holzapfel et 

al., 1995).  

Since the role of microorganisms in spontaneous food fermentations became clear, man 

has tried to apply controlled fermentations in order to preserve food products. Today, food safety 

is more than ever an important issue and the search for new preservation methods goes on. 

The consumer wants food products which are fresh, natural, healthy and convenient and which 

are less heavily preserved (Ohlsson, 1994; Gould 1996). These demands are addressed in the 

marketplace by the emergence of a new generation of chill stored, minimally processed foods 

(Stiles, 1996). However, many of the new ready-to-eat and novel food types bring along new 

health hazards and new spoilage associations. Against this background, and relying on an 
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improved understanding and knowledge of microbial interactions, milder preservation 

approaches such as biopreservation have been developed (Holzapfel, 1997; Hugas, 1998). 

Biopreservation can be defined as a preservation method to improve safety and stability of food 

products in a natural way by using desired microorganisms (cultures) and or their metabolites 

without necessarily changing the sensory quality (Holzapfel et al., 1995; Lücke et al., 2000). 

 Protective cultures can be defined as antagonistic microorganisms (cultures) that are 

added to a food product only to inhibit pathogens and/or to extend shelf life, while changing the 

sensory properties of the product as little as possible (Lücke, 2000). Protective cultures differ 

from starter cultures in their functional objectives. Starter cultures are, by definition, used in food 

fermentations in order to modify the raw material to give it new sensory properties. This relies 

on the metabolic activity (acid production) of the culture, while the preservation effect 

(antimicrobial effect) is of secondary importance. For a protective culture, the functional 

objectives are the inverse. Although distinguished by their definition, in reality a starter culture 

and protective culture may be the same culture applied for different purposes under different 

conditions (Holzapfel et al., 1995). Biopreservation by protective cultures can be applied to food 

products by 1) adding crude, semi purified or purified microbial metabolites with inhibitory 

activity or 2) by adding pure and viable microorganisms (Hugas et al., 1998). Bacteriocins or 

their producer cultures are most often applied for biopreservation to inhibit the growth of 

spoilage or pathogenic bacteria. 

 

1.2 Bacteriocin Production by Lactic Acid Bacteria 
Bacteriocins were first discovered in 1925 and have subsequently been studied with 

growing interest. Bacteriocins are a heterogenous group of anti-bacterial peptides that vary in 

spectrum of activity, mode of action, molecular weight, genetic origin and biochemical properties. 

Currently, artificial chemical preservatives are employed to limit the number of microorganisms 

capable of growing within foods, but increasing consumer awareness of potential health risks 

associated with some of these substances has led researchers to investigate preservative 

agents such as bacteriocin produced by LAB (Abee, 1995). 

 

1.2.1 Classification of bacteriocins produced by lactic acid bacteria 
Bacteriocins produced by LAB can be grouped into three different classes, i.e., class I: 

lantibiotics or small, heat-stable, lanthionine containing, single- and two-peptide bacteriocins 

whose inactive pre-peptides are subject to extensive post-translational modification; class II: 

non-lanthionine containing and unmodified bacteriocins which are subdivided into three 

subclasses, namely, class IIa (pediocin-like bacteriocins), class IIb (two-peptide bacteriocins), 

and IIc (non-pediocin like, one-peptide bacteriocins); and class III the bacteriolysins or large, 

heat-labile, lytic proteins, often murein hydrolases (Drider et al., 2006). The inhibitory spectrum 
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of common LAB bacteriocins is relatively narrow compared to that of the antimicrobial peptides 

produced by eukaryotic cells. The current understanding of only the class IIa and IIb 

bacteriocins and their varied structural features, production, regulation, biological activity, and 

potential applications will be discussed below as these are relevant to this study.  

 
1.2.2 Class IIa bacteriocins 

The past few years have seen the emergence of class IIa bacteriocins produced by LAB 

as one of the most interesting groups of antimicrobials for use in food preservation (Cleveland et 

al., 2001) and in medicine, as antibiotic complement in treating infectious diseases (Ingham et 

al., 2003) or as antiviral agents (Wachsman et al., 1999, 2003). Some of the peptides inhibit the 

growth of Gram-positive food spoilage and pathogenic bacteria such as Bacillus cereus, 

Clostridium perfringens, Staphylococcus aureus and Listeria monocytogenes and thus the 

interest in these compounds for use in foods to prevent foodborne illness has been a primary 

objective (Drider et al., 2006). Class IIa bacteriocins are described as small (<10kDa), active 

against L. monocytogenes, heat stable and produced as unmodified peptides of 37 to 48 amino 

acids in length, having a net positive charge with pI values ranging from 8 to 10 (Nes et al., 

1996; Drider et al., 2006; Nissen Meyer et al., 2009). Sequence alignment of class IIa 

bacteriocins reveals that they consist of a highly conserved hydrophilic and charged N-terminal 

part (residues 1 to 16) containing a consensus amino acid sequence 

YGNGV(X)C(X)4C(X)V(X)4A (X denotes any amino acid) (Klaenhammer, 1993; Cleveland et al., 

2001; Drider et al., 2006) and a more variable hydrophobic and/or amphiphilic C-terminal part 

(Fig. 1.2). Based on amino acid sequence alignments three subgroups (see Fig 1.2) were 

suggested. It appears that the different subgroups have somewhat different three dimensional 

(3D) structures which in turn reflect differences in their target cell specificities. 
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Figure 1.2 Multiple sequence alignment of pediocin-like (class IIa) bacteriocins. The classification 

of the peptide into subgroups 1 to 3 is based on sequence similarities and differences 
in the C-terminal half. Adapted from Nissen-Meyer et al. (2009). 

 
 
 Structural analyses by NMR spectroscopy have shown that the class II bacteriocins consist of 

an N-terminal β-sheet-like domain which is structurally stabilized by a conserved disulfide bridge 

formed between two cysteine residues, and a C-terminal domain consisting of one or two α-

helices often ending with a structurally extended C-terminal tail (Fimland et al., 2005) (see Fig 

1.3). 

 

 
 
Figure 1.3 Schematic structure presentation of the class IIa bacteriocins for which 3D structures 

have been determined by NMR Adapted from Drider et al. (2006). 
 

Class IIa bacteriocins have no structure in water but in a membrane mimicking 

environment the N-terminal part forms the three-stranded antiparallel β-sheet–like structure 

supported by the conserved disulfide bridge and the C-terminal part consisting of the one or two 

amphiphilic α-helices followed by the somewhat extended C-terminal tail of varying length. In 
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most bacteriocins, this C-terminal tail seems to fold back onto the α-helix region, forming a 

hairpin-like structure (see Fig. 1.3). The N-terminal β-sheet–like structure and the hairpin-like C-

terminal parts are separated by a flexible hinge which allows the two parts to move relative to 

each other (Drider et al., 2006). 

 The conserved YGNGV sequence at the N-terminal part was proposed to be 

responsible for the antilisterial activity of class IIa bacteriocins, as all these bacteriocins share 

this or a variant of this sequence (see Fig. 1.2). Indeed, altering the residues in the YGNGV 

sequence led to reductions in potency (Quadri et al., 1997; Miller et al., 1998). The positively 

charged residues of class IIa bacteriocins are also located mostly in the N-terminal regions (Fig. 

1.2) and a study on the affinity of pediocin PA-1 derived peptide fragments with target cells 

suggested that electrostatic interactions, and not the YGNGV region, mediated the initial binding 

of pediocin to target cells (Chen et al., 1997), and that Lys11 and His12 as part of the cationic 

patch in the N-terminal β-sheet are of special importance in these interactions (Chen et al., 

1997; Kazazic et al., 2002; Vadyvaloo et al., 2004).  

 The hairpin-like C-terminal region of class IIa bacteriocins is diverse with respect to the 

number of residues and α-helices and the amino acid sequence and length of the C- terminal 

region following the helical segment(s). Studies have indicated that the C-terminal region 

penetrates the target bacterial cell membrane, thereby inducing leakage and causing cell death 

(Miller et al., 1998; Morisset et al., 2004; Fimland et al., 2005). Studies on the substitution of Trp 

residues in the bacteriocin sakacin P have shown that the Trp18 and Trp41 of sakacin P locate 

in the membrane-water interface of the target cell, whereas Trp33 locates in the hydrophobic 

part of the membrane, thereby creating the hairpin-like structure in the C-terminal part (Fig. 1.2) 

(Fimland et al., 2002). Thus, the hairpin-like C-terminal half of the molecule orients obliquely into 

the membrane, and the hydrophilic β-sheet–like N-terminal half is attached to the cell surface. 

The C-terminal region also seems to be important in determining the target cell specificity for 

class II bacteriocins. This was shown using hybrid bacteriocins constructed by combining N-

terminal and C-terminal regions from different bacteriocins.  

All class IIa bacteriocins whose modes of action have been studied permeabilise the 

cytoplasmic membrane. This is achieved by pore formation through insertion of the C-terminal 

region of the bacteriocins into the membrane. The membrane-located bacteriocin receptor was 

shown to be the enzyme IIC subunit of the mannose permease (EIItMan) (Ramnath et al., 2004), 

which belongs to the sugar phosphotransferase (PTS) system. The binding and insertion of the 

C-terminal halves of bacteriocin molecules leads to pore formation and induces leakage of K+, 

inorganic phosphate, amino acids and other low molecular weight compounds from cells. It also 

dissipates the Δψ and the ΔpH and consequently leads to a breakdown of the proton motive 

force, which in turn induces a rapid depletion of intracellular ATP ultimately resulting in cell 

death (Chikindas et al., 1993; Drider et al., 2006). Figure 1.2 shows some of the well studied 
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class IIa bacteriocins including those that are produced by L. plantarum strains, i.e. plantaricin 

423 and plantaricin C19.  

 

1.2.3 Class IIb bacteriocins 
The two-peptide class IIb bacteriocins consist of two different unmodified peptides, both 

of which must be present in about equal amounts in order for these bacteriocins to exert optimal 

antimicrobial activity (Oppegård et al., 2007). The sequences of two peptide bacteriocins are 

varied and homology is occasionally observed between different two-peptide systems (Garneau 

et al., 2002). The two peptide bacteriocins share many characteristics with one peptide 

bacteriocins, i.e., they are usually cationic and contain hydrophobic and/or amphiphilic regions. 

One or both peptides of some two-peptide bacteriocins (e.g., plantaricin E/F and J/K) may in 

fact individually display some, although low, antimicrobial activity, but high activity only occurs in 

combination with the complimentary peptide from the same two-peptide bacteriocin. In some 

cases, activity of one peptide can also be complimented with the second peptide from another 

bacteriocin system (Oppegård et al., 2007). For instance, the two complementary peptides that 

constitute lactococcin G are active at pico- to nanomolar concentrations when combined, but 

show no activity when tested individually at concentrations as high as 50 μM (Moll et al., 1996). 

The requirement of both complementary peptides for a potent antimicrobial effect clearly 

indicates that the two-peptide bacteriocins function together as one antimicrobial entity. Three of 

the two-peptide bacteriocins that have been identified and characterized, i.e. lactococcin G, 

lactococcin Q and enterocin 1071 show marked sequence similarity and are thus clearly 

evolutionary related.  

 Structure function studies have shown that the two peptides are unstructured in water 

and that there is no structural interaction between them in aqueous solution. However, they 

become structured upon exposure to membrane like entities and these induce the formation of 

an amphiphilic α-helix in the N-terminal and mid-region of both peptides. Furthermore, the 

peptides seem to interact upon contact with target membranes and this induces additional α-

helical structures in each other (Hauge et al., 1998). The two complementary peptides thus 

appear to interact in a structure-inducing manner upon arrival at the target membrane resulting 

in the formation of an antimicrobial peptide complex with amphiphilical α-helical regions, and the 

synergistic antimicrobial effect is thus apparently due to the inter-peptide interactions, rather 

than the complementary peptides interacting separately at different sites on the target cell 

(Oppegård et al., 2007). The 3D structure of plantaricin E (33 residues) and plantaricin F (34 

residues) peptides that constitute plantaricin EF have been analysed by NMR spectroscopy and 

peptide E forms two α-helix-like regions (residues 10 to 21 and 25 to 31) separated by a flexible 

GxxxG motif (residues 20 to 24), whereas peptide F forms one long helix from residue 7 to 32, 

with a kink and slightly more flexible region around Pro20. The E peptide has altogether two 
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putative helix-helix interaction GxxxG motifs, one at residue 5 to 9 and one at residue 20 to 24 

(between the helices), while the F peptide has one such motif at residue 30 to 34. It has been 

suggested that the two peptides interact in parallel and staggered fashion relative to each other 

and form a helix-helix-structure involving the GxxxG motifs, similar to those of the lactococcin α- 

and β-peptides (Fimland et al., 2008; Oppegård et al., 2009). 

The GxxxG motifs are common amongst nearly all class IIb bacteriocins, suggesting that 

membrane-penetrating helix-helix structures formed by two peptides might possibly be a 

common structure in most, if not all, two peptide bacteriocins. Lactococcin G perhaps is the 

most well characterized of the class IIb bacteriocins and a model for its structure function 

relationship was proposed (Rogne et al., 2008; Nissen-Meyer et al., 2009). As for plantaricin E/F 

NMR studies suggested α-helices in both the N-(residues 3-21) and C-(residues 24-34) terminal 

halves of the lactococcin G α-peptide in the presence of dodecylphosphocholine (DPC) micelles. 

Only one helix was found in the N-terminal half of the lactococcin β-peptide in the presence of 

DPC (Rogne et al., 2008). The α-peptide peptide has two GxxxG motifs (Gly7-Gly11 and Gly18 

to Gly22) and the β-peptide has one (Gly18 to Gly22). The proposed structure thus again entails 

that the α- and β-peptides are orientated in the same direction and form a staggered helix-helix 

structure that spans the target cell membrane (Rogne et al., 2008). The helix-helix segment 

consists of the N-terminal half of the α-peptide (from about residue 3 to 22) and the C-terminal 

half of the β-peptide (from residue 13 to 32) (Fig. 1.4). The structural model also entails that the 

cationic C-terminal end (residues 35-39) (RKKKH) of the α-peptide is unstructured and forced 

through the target cell membrane by membrane potential (negative inside) thereby positioning 

the C-termini of the two peptides inside the target cell. The Trp-rich N-terminal end of the β-

peptide is also proposed to be relatively unstructured and to position itself in the outer 

membrane interface thus forcing the N-termini of the two peptides to remain on the outer side of 

the target cell membrane and the helix-helix segment to transverse the membrane (Nissen-

Meyer et al., 2009; Fig. 1.4). 

 
 
Figure 1.4 schematic representation of the structural model of lactococcin G and its orientation in 

target-cell membrane. The two peptides interact through the GxxxG motif. Adapted  
from Nissen-Meyer et al. (2009).  
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All two-peptide bacteriocins, similar to the one-peptide class IIa bacteriocins, render 

target cell membranes permeable to a variety of small molecules. These two peptide 

bacteriocins, however, appear to display some specificity with respect to which molecules they 

conduct across membranes. For example, lactococcin G permeabilizes target cell membranes 

for a variety of monovalent cations such as Na+, K+, Li+, Cs+, Rb+ and choline, but not for 

divalent cations such as Mg2+ or anions. Plantaricin E/F and plantaricin J/K also permeabilize 

membranes for monovalent cations, including H+, but not for divalent cations or anions. It 

appears, however, that plantaricin E/F conducts cations more efficiently than plantaricin J/K and 

vice versa for anions (Moll et al., 1999; Nissen-Meyer et al., 2009). 

Well-studied two-peptide bacteriocins contain the L. plantarum bacteriocins plantaricin 

E/F, plantaricin J/K, plantaricin S (α, β peptides), plantaricin NC8 (α, β peptides) and plantaricin 

W (α, β peptides). 

 
1.2.4 Bacteriocin production and transport 

Bacteriocin genes may be either plasmid or chromosomally encoded. The gene 

encoding the bacteriocin peptide, i.e., the bacteriocin structural gene, generally encodes the 

bacteriocin as a prepeptide containing an N-terminal extension associated with transport. Both 

the class IIa and class IIb bacteriocins are encoded as prepeptides with an N-terminal extension 

which is removed by a site-specific proteolytic cleavage during export, and the mature 

bacteriocin or the bacteriocin peptides of class IIb bacteriocins are then secreted (Håvarstein et 

al., 1995, Nes et al., 1996). The presequence appears to play a dual role in that it serves to 

protect the cell from the cytosolic side from the antimicrobial effect of the bacteriocin by keeping 

the bacteriocin inactive, and it plays a role as a recognition signal during export and thus is 

important for trafficking of the prebacteriocins to the correct transporter.  

Most class IIa and class IIb bacteriocins are secreted by a dedicated ATP binding 

cassette (ABC) transporter. Among the bacterial ABC transporters, the bacteriocin exporters 

make up a small subfamily, which are unique in that they have two protein domains (C-terminal 

and N-terminal domains) on the cytosolic side anchored to the membrane by an intervening 

transmembrane region (Håvarstein et al., 1995). The C-terminal cytosolic domain contains the 

ATP binding cassette, which upon ATP hydrolysis energizes the secretion of the peptide out of 

the cell, whereas the N-terminal cytosolic domain contains the proteolytic activity necessary for 

cleavage and maturation of the prebacteriocin (Havarstein et al., 1995; Aucher et al., 2005). The 

presequence is cleaved at the C-terminal side of a double Gly motif, thereby liberating the 

mature bacteriocin. The ABC transporter protein, as well as a further membrane located, so-

called ‘accessory protein’, are required for export of the mature bacteriocin out of the cell 

(Franke et al., 1999; Ennahar et al., 2000). Because the cleavage signal appears to be the 

double Gly motif, the N-terminal extension involved in bacteriocin export is often termed the 
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‘double-glycine-type leader peptides’. Some class IIa bacteriocins (e.g., enterocin P, bacteriocin 

31, listeriocin 743A), instead have a sec-type leader sequence and these are translocated by 

the sec-dependent translocation system, while all class IIb bacteriocin peptides are encoded 

with a double-glycine-type leader sequence (Nissen-Meyer et al., 2009).  

 

1.2.5 Bacteriocin immunity  
For both the class IIa and class IIb bacteriocins, only one immunity peptide is required 

to protect the cell against the antimicrobial effect of the cognate bacteriocin. The immunity 

proteins are 85 to 118 amino acids in length, highly charged with most of them containing 25 to 

35% charged residues. Bacteriocin immunity proteins differ substantially in sequence, 

nonetheless they have been classified into three groups (A, B and C). They are cytosolic 

proteins, with a minor fraction of the cellular pool perhaps loosely associated with the inside of 

the cell membrane (Quadri et al. 1995; Dayem et al., 1996). When expressed inside of sensitive 

cells, they strongly protect against the cognate bacteriocin, but when immunity peptide and 

bacteriocin are added externally, no protection is seen, indicating that the immunity peptides act 

inside the cell (Quadri et al., 1995; Sprules et al., 2004). The 3D-structures of carnobacteriocin 

B2, enterocin A and piscicolin 126 immunity proteins have been elucidated and they are 

globular proteins with a left-turning four-helix bundle protein motif. The four antiparallel α-helices 

are amphiphilic and connected through short loops (Fig. 1.5). They are orientated relative to 

each other so that their hydrophobic faces interact to form a core in the centre of the protein, 

whereas the hydrophilic and charged faces of the helices constitute the protein surface (Drider 

et al., 2006). This distribution of residues gives rise to a structurally stable and hydrophilic 

cytosolic protein. Homology modeling of further class IIa immunity peptides shows that the four-

helix bundle is a conserved structural motif, that the length of the α-helices is relatively constant 

and that only minor differences exist in the loop regions (Johnsen et al., 2005a, b).  
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Figure 1.5  A ribbon diagram showing the overall structure of PedB, the pediocin immunity peptide. 
Adapted from Kim et al. (2006). 

 

Despite the 3D structural similarities, the immunity proteins display strong specificity with 

respect to the bacteriocins they to which they confer resistance (Quadri et al., 1995; Fimland et 

al., 2002; Johnsen et al., 2004). The protection specificity was shown in studies with hybrid 

immunity peptides to be determined by the C-terminal region. Thus, it is hypothesized that the 

C-terminal, membrane interacting hairpin domain of class IIa bacteriocins is recognized by the 

C-terminal parts of the immunity proteins (Johnsen et al., 2005a,b). Accordingly, the bacteriocin 

and immunity proteins are probably located on opposite sides of the cell membrane, but there 

seems to be no direct contact between the two molecules (Fimland et al., 2005) and thus the 

membrane itself or a specific component in it plays a crucial role as a mediator in the 

recognition between the bacteriocin and the immunity protein (Drider et al., 2006). Recently, it 

was shown that the lactococcin G immunity protein recognizes specific regions in both peptides 

of the two-peptide (class IIb) bacteriocin lactococcin G, i.e., the N-terminal part of lactococcin α-

peptide (residues 1-13), and the C-terminal part of the lactococcin β-peptide (residues 14-24) 

(Oppegård et al., 2009). The bacteriocin structural and immunity genes are generally located 

within the same operon and thus are expressed concomitantly. 

 

 

1.2.6  Regulation of bacteriocin production 
Production of some class IIa and class IIb bacteriocins produced by LAB is controlled 

by quorum sensing and thus a cell density-dependent regulation. Accordingly, a signal molecule 

(also termed induction peptide or pheromone) is secreted at a low but constant rate in most 

cells of the bacteriocin-producing population (Nes et al., 1996; Drider et al., 2006). The 

pheromone concentration thus reflects the cell density during growth and at a certain ‘threshold’ 

density. the pheromone-dependent regulatory system is activated The quorum sensing systems 

for bacteriocin production depend on three gene products and are accordingly termed ‘three 

component regulatory systems’ (Nes and Eijsinck, 1999). The three components include the (i) 

the inducer peptide (pheromone), (ii) the transmembrane histidine kinase (pheromone receptor) 
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and (iii) the cytosolic response regulator (Nes and Eijsinck, 1999; Drider et al., 2006). The 

inducer peptide is synthesized at a low level as a prepeptide, containing a double-glycine-type 

leader peptide which is cleaved and secreted through a dedicated bacteriocin ABC-transporter 

(Ennahar et al., 2000). At a certain concentration threshold of the externalized mature inducer 

peptide, the transmembrane histidine kinase is activated and this leads to the 

autophosphorylation of a conserved histidine residue at the cytosolic side of the transmembrane 

protein. Subsequently, the activated histidine kinase interacts with its cognate response 

regulator protein through transphosphorylation and the phosphate group of the histidine residue 

of the activated histidine kinase is transferred to a conserved Asp residue in the response 

regulator (Nes and Eijsinck, 1999; Ennahar et al., 2000). The phosphorylated and thus activated 

response regulator functions as a transcriptional activator and binds to bacteriocin gene-specific 

promoters and stimulates transcription. 

 The response activator also activates the genes encoding the three component system, 

and a positive feedback loop is thus initiated. At a certain time, all bacteriocin producers in the 

population may secrete bacteriocin and this sudden increase can have a great impact on the 

competing microbiota. The biosynthesis of several class II bacteriocins, in addition to cell 

density regulation, also were shown to vary with respect to growth temperature, ionic strength 

and pH (Cintas et al., 1997; Fimland et al., 2000; Drider et al., 2006). 

 

1.2.7 Lactobacillus plantarum bacteriocin loci 
In L. plantarum bacteriocin genes are often chromosomally encoded. Usually, more 

than one bacteriocin is encoded and genes required for biosynthesis, immunity, transport and 

regulation cluster together in a large bacteriocin locus of >10 kbp. The plantaricin bacteriocin 

locus in L. plantarum C11, isolated from a vegetable source, was first unraveled about 15 years 

ago, and since then different strains of L. plantarum (NC8, WCFS1, and J23) were found to 

harbor mosaic pln loci in their genomes (Fig. 1.6). Genes associated with bacteriocin production 

include the bacteriocin structural genes, immunity genes, and the genes encoding transporters, 

such as the ABC transporter and accessory protein genes. In the case of the L. plantarum 

strains C11 and WCFS1 bacteriocin gene loci, which have been intensively studied, inducible 

operons include those for plnEFI and plnJKL, which encode the two two-peptide bacteriocins 

plantaricin E/F and J/K and their cognate immunity proteins. The operon made up by the plnGH 

genes encodes an ABC-transporter (plnG) for transport of these bacteriocins as well as the 

accessory protein (plnH). Further downstream the operon, plnSTUVW encodes proteins 

belonging to the type II CAAX amino protease family and their role in plantaricin biosynthesis 

are yet unknown (Diep et al., 2009). The plnABCD operon is involved in regulation and encodes 

the three component regulatory system consisting of the inducer (plnA), the transmembrane 

histidine kinase (plnB) and the response regulator (plnCD). The plnMNOP codes for four 
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putative proteins of which PlnN seems to contain an N-terminal double-glycine leader 

consensus sequence. However, the synthetic peptide of the predicted mature part of PlnN did 

not show any bacteriocin activity (Anderssen et al., 1998). The plnOP encodes proteins with 

significant homology to family 2-glycosyl transferases and type II CAAX amino proteases, 

respectively (Diep et al., 2009).  

 The pln loci from NC8, J23 and J51 appear to be more divergent from the C11-pln locus, 

both in terms of gene content and organization. The J51 locus contains six operons, of which 

plnABCD, plnEFI and plnGHSTUVW are found as in the C11-pln locus. The plnMNOP genes 

are not found in this locus and the plnJKLR appears to be truncated, as it lacks the bacteriocin 

genes plnJK and the plnR-like gene differs from its counterpart in C11-pln. Moreover this locus 

contains two other bacteriocin operons, i.e., plNC8βαC and orf3-4-5. The regulatory operons in 

NC8-pln and J23-pln (Maldonado et al., 2003; Rojo-Bezares et al., 2007, 2008) are similar to 

each other, but different from those in C11-pln. Both loci contain a pheromone and a histidine 

protein kinase gene highly divergent from their C11 counterpart, and both possess only one 

response regulator gene plnD (see Fig. 1.6) (Diep et al., 2009). As in J51-pln the plnMNOP and 

plnJKLR operons are altered in either strain, the former being truncated in NC8, while the latter 

is missing the bacteriocin gene plnK in J23. The encoded J23-PlnJ is longer (73 amino acids) 

when compared to its counterpart (55 amino acids) in the other bacteriocin loci. The plNC8βαC 

is also present in NC8-pln but not in J23. In some plantaricin loci, a gene napA2 can be found 

(Fig. 1.6), which encodes a Na (+)/H (+) antiporter with unknown, if any, function in bacteriocin 

biosynthesis (Diep et al., 2009). 

 

 
 
Figure 1.6 Genetic map of pln locus of different L. plantarum strains: A: L. plantarum C11; B: L. 

plantarum WCFS1; C: L. plantarum NC8; D: L. plantarum J23. The pln genes are 
represented by arrows with different colors corresponding to each operon. The 
promoter sequences are indicated by small black arrows and the putative orfZ123 
promoter sequence is shown by a small black and discontinuous arrow. Adapted from 
Sáenz et al. (2009). 
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1.3 Application of protective cultures in meat biopreservation 
In recent years, concerns about the safety and quality of foods have increased. The 

extent of microbiological problems in food safety was clearly reflected in the WHO food strategic 

planning meeting (WHO, 2002) as it was found that (i) the emergence of new pathogens and 

pathogens not previously associated with food consumption is a major concern and (ii) 

microorganisms have the ability to adapt and change, and changing modes of food production, 

preservation and packaging have therefore resulted in altered food safety hazards.  

In industrialized countries, up to 10% of the population may suffer from foodborne 

diseases annually. To decrease the incidence of foodborne pathogens in foods, as well as high 

levels of chemical preservation of foods, the application of bacteriocin producing bacteria, 

especially LAB as starter or so-called ‘protective’ cultures, or their purified bacteriocins such as 

e.g., nisin, are recommend as alternative methods for ‘biopreservation’ of food. The bacteriocin 

or bacteriocin-producing LAB offer several desirable properties that make them suitable for food 

preservation: (i) are generally recognized as safe substances, (ii) are not active and non-toxic 

on eukaryotic cells, (iii) become inactivated by digestive proteases, having little influence on the 

gut microbiota, (iv) are usually pH and heat-tolerant, (v) they have a relatively broad 

antimicrobial spectrum, against many foodborne pathogenic and spoilage bacteria, (vi) they 

show a bactericidal mode of action, usually acting on the bacterial cytoplasmic membrane: no 

cross resistance with antibiotics (Gálvez et al., 2007). Especially, nisin is approved as a food 

additive not only in the Unite States, but also over 40 other countries for inhibiting the outgrowth 

of Listeria and Clostridium for over 50 years. 

In studies of meat preservation, several bacteriocins or protective cultures have already 

been used to inhibit growth of Listeria monocytogenes or other pathogens. Raw meat, stored 

aerobically under chilled conditions, is usually spoiled by Gram-negative bacteria, 

predominantly pseudomonads, and LAB compete poorly under these conditions. Hence, very 

high inocula of LAB protective culture are generally required to observe an effect on the shelf 

life of aerobically stored raw meat. Pathogens of most importance in raw meat, e.g., Salmonella, 

Campylobacter, E. coli and Yersinia enterocolitica are Gram-negative and thus insensitive 

towards bacteriocins. Therefore the benefit of the protective culture on aerobically stored meat 

is mostly to control pathogens such as L. monocytogenes (Lücke, 2000). The micropopulations 

of anaerobically packaged, chilled raw meats, on the other hand, is dominated mainly by LAB 

and inoculation with selected psychrotrophic LAB can be used to extend the shelf life and to 

protect against L. monocytogenes (Lücke, 2000). An overview of studies on the effectiveness of 

bacteriocinogenic LAB in raw meats is given in Table 1.1.  

Despite the successful results of some studies, the effectiveness of bacteriocinogenic 

cultures in food products and more specifically, in meat products can be limited by a range of 

factors. Firstly, some factors affect the efficacy of the bacteriocin itself, such as narrow activity 
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spectrum, poor solubility, limited diffusion and uneven distribution in the food matrix. 

Furthermore, inactivation through proteolytic enzymes can cause problems, as well as binding 

to food ingredients such as lipids or proteins. Problems of protective cultures may include poor 

adaptation to the substrate (pH, temperature and nutrients) and therefore poor growth and 

bacteriocin production (Buncic et al., 1997) as well as phage infections (Holzapfel et al., 1995).  

 
 
Table 1.1 Examples of food application of bacteriocin producing protective cultures and their 

effect on the target pathogenic or spoilage bacterial strain. 
 

Protective culture (Inoculation 
level, bacteriocin) 

Product Target Effect (log10 CFU/g) Reference 

Pediococcus strains (108 CFU/g, 
pediocin-like bacteriocin) 

Minced meat Y. enterocolitica 
L. monocytogenes 

7a Skyttä et al. 
(1991) 

Lactobacillus bavaricus MN (105 
CFU/g, bavaricin MN) 

Beef cubes L. monocytogenes +/- 5a Winkowski et 
al. (1993) 

Leuconostoc gelidum UAL187-22 
(104/cm2, leucocin A) 

Beef No inoculation of target 
cells 

No negative effect on 
odour / appearance 
compared to control 

Leisner et al., 
(1995) 

Leuconostoc gelidum UAL187-22 
(104/cm2, leucocin A) 

Beef Sulfide-producing L. 
sakei strain (102/cm2) 

4a or 3.5b Leisner et al., 
(1996) 

L. sakei CTC 494 (106, sakacin K) Chicken breast 
Minced raw 
meat 

L. innocua 2.5-3b Hugas et al. 
(1998) 

L. sakei CTC494 & E. faecium 
CTC492 (105 CFU/g, sakacin and 
enterocin) 

Model cooked 
pork 

Slime producing L. 
sakei and L. carnosum 

Partial prevention of 
ropiness 

Aymerich et al. 
(2002) 

Lactobacillus casei CRL 705 (106 
CFU/ml spraying solution, 2 lactocins) 

Beef L. monocytogenes and 
B. thermosphacta 

1.25a for B. 
thermosphacta and 
complete prevention of 
L. monocytogenes 
growth 

Castellano and 
Vignolo (2004) 

L. sakei CTC 4808 (107 CFU/g 
bacteriocin-like) 

Sliced beef Enterobacteriaceae 
Pseudomonas 
B. thermosphacta 

1-2a Katikou et al. 
(2005) 

L. sakei CWBI-B1365 (sakacin G) Raw beef Listeria monocytogenes 2.5 Dortu et al. 
(2008) 

E. faecium PCD71 (107 CFU/g, 
enterocin A,P, L50A/B) 

Chicken meat Listeria monocytogenes 0.7 Maragkoudakis 
et al. (2009) 

a difference in cell count at the final storage day between the product containing the protective culture and 
non-inoculated control product. 
b difference in cell count at the final storage day between the product containing the bacteriocinogenic 
LAB-strain and a control product containing non-bacteriocinogenic LAB strain. 
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1.4 Study Objective 
 

This study was performed within the framework of a European Union (EU) funded study 

entitled ‘Control and prevention of emerging and future pathogens at cellular and 
molecular level throughout the food chain’ or in short ‘PathogenCombat’ 
(www.pathogencombat.com/) which belonged to the 6th framework program (priority 5: Food 

Quality and Food Safety). This PathogenCombat study was carried out by a consortium of 44 

partners from research institutions (24) and the food industry (20) from 13 European countries. 

The overall objective of the PathogenCombat study was to provide new and essential 

information and methods to the food industry and public authorities on how to reduce the 

prevalence of new and re-emerging foodborne pathogens. 

 

The overall objective of this study, which was part of the greater PathogenCombat study, was to 

evaluate the success of functional lactic acid bacteria starter cultures with bacteriocin activity in 

controlling foodborne pathogens in food. The bacteriocin producing strains chosen as protective 

cultures were initially screened using high throughput screening by Christian Hansen (Denmark) 

for antimicrobial activity. Both strains showed antimicrobial activity against L. monocytogenes, 

as well as other target indicator bacteria. The German industrial food sector partner in the 

project, who was linked to our institute, was ‘Geflügelspezialitäten Ziegler’ (Bammental, Baden 

Württemberg) and the project coordination required us to develop methods for this local food 

producer, i.e. to develop functional starter strains as protective cultures for the biopreservation 

of aerobically stored turkey meat. The target pathogens for this food commodity were Listeria 

monocytogenes, as well as Salmonella enterica subsp. enterica serovar Typhimurium (S. 

Typhimurium). 

 

Specifically, this study aimed to: 

 

• Characterize the bacteriocins produced by two bacteriocin-producing Lactobacillus 

plantarum strains BFE 5092 and PCS20, which were chosen by the consortium in an 

initial screening. 

• To determine whether bacteriocin genes are located on the chromosome or whether they 

are plasmid located. 

• To compare the bacteriocin gene loci between the two strains and to identify the 

bacteriocins associated with the bacteriocin activity. 

• To assess the influence of low temperature on bacteriocin production in vitro and in vivo. 

• To evaluate the influence of growth state (i.e. sessile versus planktonic) on bacteriocin 

production in vitro. 

http://www.pathogencombat.com/
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• To determine whether bacteriocin production is regulated at the transcriptional level. 

• Assess the effectiveness of the protective L. plantarum BFE 5092 and PCS20 strains on 

inhibiting the foodborne pathogens L. monocytogenes or S. Enteritidis, or background 

spoilage microorganisms on fresh turkey meat. 
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CHAPTER 2.0 
MATERIAL AND METHODS 

 
he bacteria used in this study were cultured using the media and conditions described 

below. All media were from Merck (Darmstadt) and all chemicals from Roth (Karlsruhe) 

unless specified otherwise. 
T 
 

2.1 Culture media 
 
2.1.1 Bacteriocin screening medium (BSM) 
Composition (g/l): Meat extract 2.0; tryptone 10.0; yeast extract 4; Tween 80 1.0; citric acid di-

ammonium salt 2.0; MgSO4.7H2O 0.2; MnSO4.4H2O 0.05; K2HPO4.3H2O 8.7; KH2PO4 8.0; 

glucose 2.0; agar 15.0. Medium for testing bacteriocin production among lactic acid bacteria. 

 

2.1.2 Iso-Sensitest broth (Oxoid) 
Composition (g/l): Hydrolysed casein 11.0; peptones 3.0; glucose 2.0; sodium chloride 3.0; 

soluble starch 1.0; di-sodium hydrogen phosphate 2.0; sodium acetate 1.0; magnesium 

glycerophophate 0.2; calcium gluconate 0.1. Medium for testing antibiotic sensitivity of bacteria, 

used together with 10% MRS broth (see below) to test antibiotic sensitivity of lactic acid bacteria. 

 

2.1.3 LB broth (Luria-Bertani) broth 

Composition (g/l): Tryptone 10.0; yeast extract 5.0; NaCl 10. Medium for growing E. coli. 

 

2.1.4 LB Agar 
LB broth containing 15 g/l agar. 

 

2.1.5 M17 broth (Oxoid, Wesel) 
Composition (g/l): Peptone from soy meal 5.0; peptone from meat 2.5; yeast extract 2.5; meat 

extract 5.0; ascorbic acid 0.5; sodium β-glycerophosphate 19.0; magnesium sulphate 0.25. 

Medium for cultivation of lactococci and streptococci. 

 

2.1.6 M17 agar  

M17 broth containing 15.0 g/l agar. 

 

2.1.7 Malt Glucose agar 
Composition (g/l): D(+)-glucose 4.0, Yeast extract 4.0; Malt extract 10.0; CaCo3 2.0, pH 7.0; 

Agar 15.0. 
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2.1.8 MRS (De Man, Rogosa and Sharpe) broth (Merck) 
Composition (g/l): Peptone from casein 10.0; meat extract 8.0;yeast extract 4.0; D(+)-glucose 

20.0; dipotassium hydrogen phosphate 2.0; Tween 80 1.0; diammonium hydrogen citrate 2.0; 

sodium acetate 5.0; magnesium sulphate 0.2; manganese sulphate 0.04. Medium for culturing 

lactic acid bacteria. 

 

2.1.9 MRS agar  

MRS broth containing 15.0g/l agar. 

 

2.1.10 PALCAM agar supplemented with Listeria selective supplement (Oxoid). 
Composition (g/l): Peptone 23.0; starch 1.0; sodium chloride 5.0; agar 13.0; yeast extract 3.0; 

D(-)-mannitol 10.0; ammonium iron (III) citrate 0.5; esculin 0.8;glucose 0.5; lithium chloride 15.0; 

phenol red 0.08; pH, 7.0. The sterilised medium was cooled to 45-50°C and supplemented with 

5.0 mg/l polymixin-B-sulphate; 10mg/l ceftacidim and 2.5mg/l acriflavine. Medium for culturing 

Listeria spp.  

 

2.1.11 Salmonella / Shigella agar (Oxoid) 
Composition (g/l): peptone 10.0; lactose 10.0; oxbile 8.5; sodium citrate 10.0; sodium 

thiosulphate 8.5; ammonium iron(III) citrate 1.0; brilliant green 0.0003; neutral red 0.025; agar 

12.0. Dissolve by boiling. Medium for culturing Salmonella spp.  

 

2.1.12  SOB broth medium 

Composition (g/l): tryptone 20.0; yeast extract 5.0; NaCl 0.5. Dissolve in 950ml distilled water. 

Add 10ml of 250 mM KCl. adjust the volume of solution to 1 liter with distilled water and pH 8.0 

with 5 N NaOH. Just before use, add 5ml of 2M MgCl2. Medium used for E. coli in 

transformation experiments. 

 

2.1.13 SOC medium 

Filter sterilized 20 mM glucose (Merck) added to SOB medium after autoclaving. Medium used 

for E. coli in transformation experiments.  

 

2.1.14 SOB agar 
SOB broth medium containing 15g/l agar. 

 

2.1.15 Standard I broth 

Composition (g/l): peptone 15.0; yeast extract 3.0; sodium chloride 6.0; D(+)-glucose 1.0. 

General bacterial cultivation medium for aerobic, mesophilic bacteria. 
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2.1.16 Standard I agar 
Standard I broth containing 15g/l agar 

 

2.1.17 Tryptone Soya (TS) broth  
Composition (g/l): Pancreatic digest of casein 17.0; enzymatic digest of soya bean 3.0; sodium 

chloride 5.0; di-potassium hydrogen phosphate 2.5. General bacterial cultivation medium for 

aerobic, mesophilic bacteria. 

 

2.1.18 Violet red bile dextrose (VRBD) agar 
Composition (g/l): peptone from gelatine 7.0; yeast extract 3.0; sodium chloride 5.0; D(+)-

glucose 10.0; bile salt mixture 1.5; neutral red 0.03; crystal violet 0.002; agar-agar 13.0. Medium 

for cultivation of enterobacteria. 

 

 

2.2 Buffers and solutions 
 
2.2.1 DEPC-H2O 

DEPC (diethyl pyrocarbonate, Sigma) was added to bi-distilled water to a concentration of 0.1% 

to eliminate RNase. The solution was agitated overnight and then autoclaved to eliminate DEPC. 

DEPC-H2O is RNase free. 

 

2.2.2 EDTA (0.5 M) 
181.6 g EDTA (ethylenediaminetetraacetic acid) in 800ml distilled water, adjusted to pH 8.0 with 

approx. 20 g NaOH to dissolve and adjusted to 1 liter.  

 

2.2.3 GES solution 

5 M guanidinium thiocyanate (Sigma); 100 mM EDTA; 0.5% Sarkosyl; pH 8.0. 

  

2.2.4 Hybridisation buffers 
2.2.4.1 Alkaline Transfer Buffer 

0.4N NaOH;1M NaCl  
2.2.4.2 Denaturation solution 

1.5M NaCl; 0.5M NaOH  
2.2.4.3 Neutralising solution 

0.5M Tris.Cl (pH 7.2); 1M NaCl 
 

2.2.5 Loading buffer 
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2.5mg/ml bromophenol blue dye, 50% (v/v) glycerol in 1X TE (pH 8.0) 

 

2.2.6 Ringer solution (quarter-strength) (Merck) 
For 1l quarter-strength Ringer’s solution add two tablets to bi-distilled water, pH 7.0 

 
2.2.7  TBE (10X) 
Composition in (g/l): Tris.HCl (Roth) 121.1; boric acid 61.83; EDTA 0.76; final pH 8.0 

 

2.2.8  TELS 
25mM Tris, 10mM EDTA; 20% (w/v) sucrose; 20mg/ml lysosyme; 2U/ml mutanolysin (M9901 

Sigma)  

 

2.2.9 TER 
20ug/ml Rnase (sigma) dissolved in 1 x TE (pH8.0) buffer 

 

2.2.10 TERMLS 

10mM EDTA, 0.2g/l D (+) glucose; 0.015g/ml lysozyme (L3790, Sigma); 100U/ml mutanolysin 

(M9901, Sigma); 25μg/ml RNase (R6513, Sigma)  

 

2.2.11 Tris.HCl (1M) 
121.1g Tris-base dissolved in 800ml distilled water, adjusted to pH 8.0 with approx. 42ml HCl 

(Merck), adjusted to 1L and autoclaved.  

 

2.2.12 Tris EDTA (TE) Buffer pH 8.0 (10X) 
100 mM Tris-Cl (pH8.0); 10mM EDTA (pH8.0) 

 

2.2.13 20 X SSC 
Composition (g/l): NaCl 175.3; sodium citrate 88.2; pH adjusted to 7.0 with 12 N HCl (Merck) 

and volume adjusted to 1 liter. 
 
2.2.14  Solutions for small scale plasmid isolation from E. coli strains 
 

2.2.14.1  Alkaline lysis solution I 

50mM glucose; 25mM Tris-Cl (pH 8.0); 10mM EDTA (pH 8.0) 

 2.2.14.2  Alkaline lysis solution II 

0.2N NaOH; 1% (w/v) SDS, prepared fresh and used at room temperature 

2.2.14.3  Alkaline lysis solution III 

5M potassium acetate 60ml; glacial acetic acid 11.5ml; H2O 28.5ml. Stored at 4°C. 



MATERIALS AND METHODS 26
 
 

2.3 Plasmids used in the study, bacterial strains and growth conditions 
The bacterial strains and plasmids used are shown in Table 2.1. Lactobacillus 

plantarum strains BFE 5092 (Mathara et al., 2004; Vizoso Pinto et al., 2006) and PCS20 used in 

this study were deposited in the 6th Framework EU-Project PathogenCombat culture collection 

and were originally isolated from a Kenyan traditional fermented milk product ‘Kule naoto’, and a 

Slovenian home made cheese product, respectively. These strains, and other LAB strains 

(Table 2.1), were routinely grown in MRS medium at 30°C for 18 h. As an exception, the L. sakei 

DSM20017T strain used as an indicator in bacteriocin assays was grown in MRS broth at 25°C.  
 

Table 2.1 Strains and plasmids used in this study. 
 
Strains Relevant characteristics Source 

 
L. plantarum BFE 5092 plnE+, plnF+, plnJ+, plnK+ and plnN+ Mathara et al. (2004), 

this study 
L. plantarum PCS20 plnE+, plnF+ This study 
L. johnsonii La1 Bacteriocin-negative control strain Marteau et al. (1997) 
L. plantarum 299V Bacteriocin-positive control strain, plnE+, 

plnF+, plnJ+, plnK+ and plnN+ 
Adlerberth et al. 
(1996), this study. 

L. sakei DSM 20017T Indicator strain in bacteriocin activity test DSMZa 

L. pentosus DSM 20314 Indicator strain in bacteriocin activity test DSMZ 
E.faecalis FAIR-E24 (=BFE 
900) 

Bacteriocin-positive control stains, produces 
enterocins A and B  

Franz et al. (1996) 

L. monocytogenes EGDe 
serotype 1/2a 

Indicator strain in bacteriocin activity test, 
pathogen used on turkey challenge test with 
protective cultures L. plantarum strains BFE 
5092 and PCS20 

Glaser et al. (2001) 

S. enterica serovar 
Typhimurium S.TM SI 1344 

pathogen used on turkey challenge test with 
protective cultures L. plantarum strains BFE 
5092 and PCS20 

Salmonella reference 
Laboratory, Robert 
Koch institute 

Leuconostoc carnosum 
DMRICC 4010 

Commercial protective culture used in 
biopreservation of meats, produces leucocin A 
and leucocin C like bacteriocins 

Christian Hansen, 
Denmark 

E. coli DH5α Host strain for pUC19 
Genotype: fhuA2 Δ(argF-lacZ)U169 phoA 
glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 
endA1 thi-1 hsdR17 

Life Technologies 

E. coli top 10 Host strain for pUC19, pCHO1, and pCHO2 
Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) 
φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 
Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) 
endA1 λ- 

New England Biolabs 

Plasmid   
pUC19 LacZα, Ampr, 2.7kb New England Biolabs 
pCHO1 pUC19 containing 5.5kb XbaI-EcoRI fragment 

from L. plantarum BFE 5092 
This study 

pCHO2 pUC19 containing 4 kb XbaI-EcoRI fragment 
from L. plantarum PCS20 

This study 

aDSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen 
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Escherichia coli DH5α and E. coli top 10 were grown in Luria-Bertani broth (Sambrook et al., 

1989) at 37°C with agitation at 200 r.p.m. E. coli top 10 cells were transformed by 

electroporation and transformants were selected on SOB agar plates supplemented with 150 

µg/ml of ampicillin (Roth, Karlsruhe, Germany) using alpha complementation (blue white 

selection) as described by Sambrook et al. (1989). Listeria monocytogenes EGDe was grown in 

Standard I or Tryptone Soya broth at 37°C without agitation. Salmonella Typhimurium was 

grown in TSB (Roth) at 37°C. Stock cultures were kept at -80°C in the specific broth used for 

cultivation containing 20% (v/v) glycerol and were subcultured at least twice before use in 

experiments. 

 

2.4  Bacteriocin activity tests 
In order to determine presumptive bacteriocin activity, 5µl of the producer L. plantarum 

cultures were each spotted onto MRS agar plates and these were incubated at 30°C overnight. 

To minimize the acid effect on agar plates, the cultures were spotted onto BSM agar plates 

which were buffered with K2HPO4 and KH2PO4, contained less glucose than MRS medium (see 

2.1.1 and 2.1.7), and these were incubated at 30°C overnight. To determine the effect of growth 

temperature on bacteriocin production, plates were also incubated at 30, 20, 15, 12, 10 and 8°C. 

To determine whether the inhibitory activity was proteinaceous in nature, 5 µl of a 20 mg/ml 

proteinase K solution was spotted next to the producer colony after growth and incubated a 

further 3 h at 37°C. After incubation, the plates were overlayered with soft (0.75%) MRS agar 

containing ca. 1 x 106 CFU/ml of the L. sakei DSM 20017T for BSM plates and either L. sakei 

DSM 20017T or Listeria monocytogenes EGDe indicator strain for MRS plates. The plates were 

incubated at 30°C overnight and then examined for zones of clearing around the producer 

colony.  

  

2.5 Determination of antibiotic resistance profiles of Lactobacillus strains  
 The selected strains were investigated for their antibiotic resistance profile using the 

LAB susceptibility test medium (LSM) of Klare et al. (2005) which consists of Iso Sensitest broth 

containing 10% MRS broth. The two L. plantarum strains BFE 5092 and PCS20 were 

transferred in this medium at least two times. The strains were inoculated at a concentration of 

(1 X 108 CFU/ml) in LSM in 96 well microtiter plates, which contained a two-fold dilution series of 

each of the antibiotic being tested. The concentration range of antibiotic tested is shown in Table 

2.2 for each antibiotic. Thus, seven different antibiotics were used to determine the resistance of 

these strains under aerobic condition at 30°C. The minimum inhibitory concentration (MIC) was 

determined as the concentration of antibiotic where no visible growth of the bacteria occurred. 
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Table 2.2  Antibiotics and their concentration range used for testing susceptibility of  

L. plantarum strains. 
 

        Stock Solution 

Antibiotic 
Concentration of stock solution 

and diluents used to prepare 

stock 

Concentration range tested (µg/ml) 

Erythromycin 50mg/ml in ethanol 0.064, 0.125, 0.25, 0.5, 1, 2, 4, 6, 8, 16, 32, 64 

Gentamicin 50mg/ml in H2O 0.25, 0.5, 1, 2, 4, 6, 8, 16, 32, 64, 128, 256, 512 

Streptomycin 10mg/ml in H2O 0.25,0.5,1,2,4,6,8,16,32,64,128,256,512 

Ciprofloxacin 10mg/ml in H2O 0.25,0.5,1,2,4,6,8,16,32,64,128,256,512 

Vancomycin 50mg/ml in H2O 0.25,0.5,1,2,4,6,8,16,32,64,128,256,512 

Chloramphenicol 50mg/ml in ethanol 0.064,0.125,0.25,0.5,1,2,4,6,8,16,32,64 

Tetracycline 10mg/ml in ethanol 0.25,0.5,1,2,4,6,8,16,32,64,128,256,512 

 

 

2.6  Isolation of genomic DNA from L. plantarum strains and detection of known 
plantaricin genes by PCR amplification  
The total genomic DNA of Lactobacillus plantarum strains BFE 5092 and PCS20 was 

isolated in small-scale preparations from 5 ml of overnight culture grown at 30°C in MRS broth 

according to the guanidinium thiocyanate method of Pitcher et al. (1989), as modified by 

Björkroth and Korkeala (1996) for Gram-positive bacteria. Briefly, overnight cultures were 

harvested by centrifugation and washed with TE buffer containing 0.5% NaCl. After 

centrifugation at 9,512xg for 10 min, the pellet was resuspended in 100 µl of TERMLS for 

digesting the Gram-positive cell wall. The cells were lysed using 500µl amount of the GES 

solution and the preparation was incubated on ice with 7.5M ammonium acetate. After 

centrifugation at 15 000xg for 10 min the upper fraction was collected and DNA was precipitated 

using ice cold 2-propanol. The DNA was washed using 70% ethanol, dried in a rotary 

evaporator and resuspended in 200μl of 10mM Tris-HCl (pH8). The concentration was 

measured spectrophotometrically at 260 nm as described in Sambrook et al. (1989).  

For determining the presence of known plantaricin genes present in the genome of the 

L. plantarum strains, their structural genes were amplified were amplified in 50 µl volume PCR 

reactions each containing 100 ng template DNA, 10x Taq DNA polymerases buffer (GE 

Healthcare, Freiburg, Germany), 200 μM dNTP’s (Peqlab, Erlangen, Germany), 25 pM of each 

plantaricin genes specific forward and reverse primers and 1.5 U Taq DNA polymerase (GE 

Healthcare). PCR amplification of the bacteriocin genes was carried out using the primers for all 

described plantaricin genes (PlnN, PlnEF, PlnJK, Pln423, PlnS, Pln1.25, and PlnNC8) and the 

amplification conditions shown in Table 2.3. The PCR reactions were performed with an initial 

denaturation step at 94°C for 3 min, followed by 32 cycles of denaturation at 94°C for 1 min, 
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annealing at the different primer annealing temperatures (see Table 2.3) for 1 min, and 

extension at 72°C for 30s, followed by a final extension step at 72°C for 6 min. PCR products 

were separated by electrophoresis using a 2% (w/v) agarose gel, which was stained with 

ethidium bromide. PCR products present in the gel were visualized using a Fluorchem Imager 

5500 system (Alpha Innotech, USA) equipped with a UV light source. All PCR products were 

purified using PCR clean columns (Qiagen, Hilden, Germany) and subsequently commercially 

sequenced at GATC Biotech (Constance, Germany). The nucleotide sequences thus obtained 

were compared with sequences in the GenBank database using the BLAST algorithm. In 

addition, ClustalW nucleotide sequence alignments were done using the MegAlign module of 

the Lasergene software for DNA sequence analysis (version 7.0, DNASTAR). 

 
Table 2.3 PCR primers used for amplification of plantaricin genes 

aF: forward primer (5’ to 3’ direction), bR: reverse primer (3’ to 5’ direction) 

Target Positive 

control 

Annealing 

temperature 

(°C) 

Amplicon 

size (bp) 

Primer sequence 

plnJK L. plantarum 
299V  

56 306 Fa: ACG GGG TTG TTG GGG GAG GC 
Rb: TTA TAA TCC CTT GAA CCA CC 

plnEF L. plantarum 
299V  

60 365 F: GGT GGT TTT AAT CGG GGC GG 
R: ACT TGA TGG CTT GAA CTA TCC 

plnNC8 none 56 344 F: CAA ATT GAG GGC GGA TCA GTC 
R: TAA TCA CAC TGA ACA TCT CTA A 

pln1.25 none 50 249 F: TTA GCA TTG ATT GAT GGA GGA 
R: GCA TCC TAT GTG AGG CTG CTG 

plnS none 54 460 F: ATG CTG TTA TCG GTG GGA A 
R: TCA TGC AAG GAG TGC CCA TGC 

pln423 none 50 197 F: TAT GAT GAA AAA AAT TGA AAA AT 
R: CCA AAG ATA ATC CCC CCC CAT 

plnN L. plantarum 
299V 

50 160 F: GGG TTA GGT ATC GAA ATG G 
R: CTA ATA GCT GTT ATT TTT AAC C 

 

For making DIG labeled probes, specific plantaricin genes (plnEF) were amplified by 

PCR using the DIG probe synthesis kit (Roche, Mannheim Germany). These plantaricin genes 

were amplified in 50 µl volumes each containing 50ng of template DNA, 1x PCR buffer, 200μM 

dA(CG)TP’s, 130μM dTTP, 70μM DIG-dUTP, 25pM of each forward and reverse primer and 

2.5U polymerase enzyme mix (Expand High Fidelity, Roche). The amplification condition for 

DIG PCR labeling and the primers used are show in Table 2.3. The PCR conditions were as 

described above for the respective genes.  

 

2.7  Isolation of plasmid DNA from Gram-positive and Gram-negative bacteria  
Plasmid DNA from Lactobacillus strains BFE 5092 and PCS20 was isolated to 

determine whether the bacteriocin loci were located on the chromosome, or whether they were 
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plasmid borne. Plasmids from Gram-negative bacteria were isolated to clone the bacteriocin loci 

from these L. plantarum strains for sequencing. Plasmid DNA from Gram-positive bacteria was 

extracted using the method of Birnboim and Doly (1979), as modified by van Belkum and Stiles 

(1995). Briefly, overnight cultures were harvested by centrifugation (9,512xg, 10 min) and 

washed with TE containing 0.5% NaCl as for the genomic DNA isolation method. After removing 

the supernatant, the pellets were resuspended in 100µl TELS solution. Two hundred µl of 

freshly prepared lysis solution (Sambrook et al., 1989) was added to disrupt the cells, after 

which 150µl of 3M potassium acetate (pH 5.0) was added and the sample was put on ice for 5 

min. Next the protein was removed by phenol-chloroform and chloroform isoamyl extraction and 

precipitated with 2 volumes of absolute ethanol (Merck) and 1/9th volume of 3M sodium acetate 

(pH 5.2). The plasmid DNA was washed with 70% ethanol, dissolved in TER and incubated at 

30°C for 30 min to remove the RNA. Plasmid DNA from Gram-negative bacteria such as E. coli 

was extracted using the alkaline lysis method exactly as described by Sambrook et al. (1989).  

 

2.8 Cloning and characterisation of the plantaricin gene loci from L. plantarum 
strains BFE 5092 and PCS20 
Large scale genomic DNA was isolated from 40 ml of an overnight culture in MRS broth 

grown at 30°C exactly as described by Quadri et al. (1994). Genomic DNA was digested in 

double restriction digests using EcoRI and XbaI restriction enzymes. The resulting fragments 

were separated on 1% agarose gel, stained with ethidium bromide in TBE buffer and 

photographed under UV light. The DNA in the agarose gel was subsequently transferred onto a 

nylon membrane (Hybond N+; Amersham Phamacia) using a vacuum blotter (Bio-Rad, Munich). 

The membrane was pre-hybridised for 6 hours at 68°C and then hybridized at 54°C with a 

plnEF-specific probe using the DIG- labeling and detection kit according to methods described 

in the manual (Roche, Mannheim). The plnEF probe was generated using the DIG PCR 

synthesis kit (Roche) and the primers and PCR conditions for amplification of the plantaricin EF 

genes as described in Table 2.3. The hybridisation with the probe was done to compare the 

location of the plantaricin genes on the chromosome and to locate the gene fragment bearing 

these genes for cloning experiments.  

In addition, genomic DNA was also prepared and embedded into agarose plugs for 

PFGE analysis as described by Graves and Swaminathan (2001) to further compare the 

plantaricin loci in the different L. plantarum strains. The agarose plugs were washed, treated 

with proteinase K solution and again washed and digested with NotI (New England Biolabs, 

Frankfurt) as described by Huch et al. (2008). The agarose plugs were loaded onto a 1.2% 

Biozym Gold agarose (Biozym, Hessisch Oldendorf) gel which was subjected to electrophoresis 

in 0.5x TBE buffer at 14°C using a PFGE CHEF-DR III System (Bio-Rad). The switch times 

were 0.1-10s and the run time was 28 h. After electrophoresis, the gels were stained and 

visualised as described before (Kostinek et al., 2005) and subsequently blotted onto nylon N+ 
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membrane using a vacuum blotter. The membrane was pre-hybridised and subsequently 

hybridized with the plnEF probe as described above, and the gene signal was detected using 

the DIG labeling and detection kit (Roche) also as described above. 

The plantaricin gene loci of the L. plantarum BFE 5092 and PCS20 strains were cloned 

using the ‘shotgun’ cloning technique. Total genomic DNA of these strains was digested with 

XbaI and EcoRI restriction enzymes and separated on 1% agarose gels. For each strain, the 

DNA fragments ranging from 3 to 5-kbp were ligated into pUC19 (Table 2.1) using T4 DNA 

ligase (New England Biolabs) according to the manufacturer’s instructions. The ligated mixture 

was used to transform E. coli top 10 electrocompetent cells (Invitrogen, Karlsruhe) by 

electroporation according to the methods of Sambrook et al. (1989). Colony blots were prepared 

using standard technique (Sambrook et al., 1989) and clones were checked whether they 

contained the plantaricin gene insert by hybridizing with the plnEF gene probe as described 

above. Positive colonies were selected, grown in Luria-Bertani supplemented with antibiotic, 

their plasmid DNA was extracted using the Qiagen (Hilden) midi kit and the insert was 

commercially sequenced at GATC Biotech using custom designed primers. 

Sequences located further upstream or downstream of the cloned fragments were 

characterized by deriving primers from previously reported plantaricin operons and from PCR 

amplification of specific upstream and downstream regions from the respective strains genomic 

DNA. Furthermore, as the L. plantarum PCS20 region showed an atypical upstream region we 

also used the DNA walking SpeedUp™ kit of Seegene (Seegene, Biocat, Heidelberg) to amplify 

the unknown upstream region according to the kit manufacturer’s instructions. All PCR 

generated sequences were sequenced bi-directionally. Regions exhibiting sequence differences 

to corresponding gene sequences in the databases were again amplified and sequenced to 

confirm these differences. Thus, well-characterised gene sequences of the plantaricin loci of 

approx. 16 kbp and 10 kbp were obtained from L. plantarum strains BFE 5092 and PCS20, 

respectively. The DNA sequences of these plantaricin loci from L. plantarum strains BFE 5092 

and PCS20 were deposited in the GenBank database and received the accession numbers 

GU584090 and GU584091, respectively. 

 

2.9 RNA isolation and plnEF gene expression studies using RT-PCR 
To determine whether the plantaricin genes were actively transcribed in the L. 

plantarum strains, mRNA was reverse transcribed and the plnEF gene was amplified from the 

cDNA product. For this, total RNA was isolated from ca. 1 x 108 L. plantarum cells grown in MRS 

broth at 30°C to the end logarithmic growth phase (ca. 12 hours) using the GE RNA isolation kit 

(GE Healthcare Freiburg) and the Qiagen RNA protect solution according to the manufacture’s 

instructions. The concentration of RNA was determined spectrophotometrically at 260nm in UV 

cuvettes (Sambrook et al., 1989). RNA was used as template for RT-PCR using the Qiagen 

OneStep RT-PCR kit (cat. no. 210212) and the plnEF genes were amplified using the primers in 
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Table 2.3. RNA digested with 10mg/ml RNAse (Sigma) at 37°C for 45 min served as a negative 

control in the RT-PCR experiment. The PCR program used for the one-step PCR is described in 

Table 2.4. 

 
Table 2.4 PCR program for reverse transcription of the plnEF genes from L. plantarum strains 

BFE 5092 and PCS20 
 

Step Temperature Time Reaction 
1 50°C 30min reverse transcription 

2 95°C 15min activation of HotStar Taq DNA polymerase 
(Qiagen) 

94°C 30sec Denaturation 
52°C  30sec Annealing 3 (32 cycles) 
72°C 1min Extension 

4 72°C 10min final extension 
 

 
2.10 Expression of 16S housekeeping, plantaricin and lactate dehydrogenase genes 

by Lactobacillus plantarum growing in liquid (planktonic growth) or on solid agar 
medium (sessile growth) 
One of the aims of this study was to evaluate L. plantarum strains BFE 5092 and 

PCS20 for their suitability as protective cultures on turkey meat. As these bacteria would be 

growing on a meat surface, it was deemed important to know whether the plantaricin genes 

would be expressed also when the bacteria were sessile and, moreover, whether gene 

expression would be to a similar level when compared to growth in liquid culture. For this reason, 

the plantaricin gene expression was tested first in vitro in both liquid broth and on solid agar 

medium. The expression of the 16S rRNA, plnEF, plnG, plnJK, plnN and L-lactate 

dehydrogenase (lldh) genes by the L. plantarum strains PCS20 and BFE 5092 was determined 

when grown in TSB broth and when grown on TSB solidified with 2% agarose. For isolation of 

RNA from solid surfaces, the bacterial cells were spread-plated on large size (145 mm diameter) 

TSB agar plates (containing 2% agarose) and incubated for 48 hours at 30°C. The bacteria 

were harvested from the surface of the plates using 2 ml quarter-strength Ringers solution 

(Merck, Darmstadt, Germany) and a sterile glass spreader. For the liquid culture in TSB, the 

bacteria were inoculated (1% or ca. 1 x 106 CFU/ml) and then incubated overnight for 18 h. The 

initial cell concentration was adjusted to approximately 1 x 108 CFU for RNA isolation from cells 

isolated from both liquid and solid media, by measuring the optical density of the harvested 

bacteria at 580 nm and diluting the culture to an optical density value of 0.1 to 0.15 (of a 1:100 

dilution in quarter-strength Ringer’s solution), which corresponded to about 1 x 108 CFU/ml. 

The Illustra RNAspin mini RNA isolation kit from GE Healthcare was used for RNA 

isolation. To stabilise RNA before extraction with the GE kit, the RNA Protect reagent (Qiagen) 

was added to the washed cell suspension in quarter-strength Ringers solution (2:1 v/v) and 

incubated at room temperature for 5 min. After this, cells were centrifuged at 9,500×g and the 



MATERIALS AND METHODS 33
cell wall was digested in 1x TE buffer containing 20mg/ml lysozyme. The pellet was 

resuspended and RNA was isolated according to the RNA kit manufacturer’s instructions. After 

RNA isolation, total concentration of RNA was determined by spectrophotometry at 260nm in 

UV-cuvettes. Moreover, the ratio between the readings at 260nm/280nm (A260/A280) provided 

information on the purity of the nucleic acid, with pure preparations RNA ranged between 1.7 

and 2.0. 

The RNA was transcribed to cDNA using the iScript cDNA synthesis kit (Biorad). The 

RNA concentration used for cDNA synthesis was 100ng/μl and the reaction was done following 

the manufacture’s instructions. The cDNA synthesis protocol is described in Table 2.5.  

 
Table 2.5 PCR program used for cDNA synthesis using mRNA from L. plantarum strains BFE 

5092 and PCS20 as template. 
 

Step Temperature Time Reaction 
1 25°C 5min Primer annealing 
2 42°C 30min cDNA synthesis 
3 85°C 5min Reverse transcriptase 

enzyme inactivation 
4 4°C Hold Storage 

 

Real time PCR is one of the most sensitive and reliable quantitative methods for gene 

expression analysis. Data derived from real-time PCR can be quantified absolutely and/or 

relatively. This method relies on the comparison between expression of a target gene in a 

control sample and the expression of the same target gene in reference sample (Yuan et al., 

2006). To compensate for differences in expression as a result of differences in experimental 

setup such as e.g., efficiency of RNA extraction, the expression of the target gene is also 

compared relative to the expression of a housekeeping gene. 

 For real time PCR, the 16S rRNA gene was used as a housekeeping gene and a no 

template control (NTC) was used as negative control. Table 2.6 shows the primers used for 

amplification of the 16S, plnJK, plnN plnEF, plnGH, and lldh gene fragments by regular PCR, 

which were used as template for qRT-PCR to generate a standard curve. The table also shows 

the primers that amplify an internal fragment of these larger genes for quantitative real time 

PCR.  
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Table 2.6  Primers used to PCR amplify target genes as templates for generating a standard curve 

by conventional PCR and for quantitative PCR with primers designed to bind internal to 
the PCR product amplified by conventional PCR. 

 

Gene 
Name Primer name Sequence 

Size 
(base 
pair) 

16S fw, conventional PCR primera 5’ AG AGT TTG ATC MTG GCT CAG 3’ 1539 
16S rev, conventional PCR primer 5’ GG NTA CCT TGT TAC GAC TTC 3’  
16S fw qRT primerb 5’ TCA TGA TTT ACA TTT GAG TG 3’ 121 

16S 
rRNA 

16S rev qRT primer 5’ GAC CAT GCG GTC CAA GTT GTT 3’  
plnN fw conventional PCR primerc 5’ CTA ATA GCT GTT ATT TTT AAC C 3’ 1697 
pln JK rev conventional PCR primer 5’ TTA TAA TCC CTT GAA CCA CC 3’  
plnN fw qRT primer 5’ CGT TGA AGG TGG AAA AAA CT 3’ 94 
plnN rev qRT primer 5’ CAT GCC ATG CAC TCG AAG TT 3’  
plnJK fw qRT primer 5’ TGA AGA ATT AAC TGC TGA CG 3’ 84 

pln 
NJK 

plnJK rev qRT primer 5’ GAA CCA CCA AGC ACG GCC CG 3’  
plnEF fw conventional PCR primer 5’ GGT GGT TTT AAT CGG GGC GG 3’ 305 
plnEF rev conventional PCR primer 5’ ACT TGA TGG CTT GAA CTA TCC 3’  
plnEF fw qRT primer 5’ CTA TTT CAG GTG GCG TTT TC 3’ 93 Pln EF 

plnEF rev qRT primer 5’ GTG GAT GAA TCC TCG GAC AG 3’  
plnGH fw conventional PCR primer 5’ GAG ATG GAC TGT GGG GTC GC 3’ 2954 
plnGH rev conventional PCR primer 5’ GTC TCA ACA CTG TAC TTC GT 3’  
plnG fw qRT primer 5’CCG GAG TTG CCC TTT TCT TT 3’ 97 pln G 

plnG rev qRT primer 5’TGC TTT AAT AAG CTT GGA AT 3’  
lldh fw conventional PCR primer 5’ GTT GTT ATT ACA GCC GGT GCG 3’ 691 
lldh rev conventional PCR primer 5’ TTT TTC AAA GTT GCG GCG A 3’  
lldh fw qRT primer 5’ TGT TGA TCC TCG TTT CGT TG 3’ 137 lldh 

lldh rev qRT primer 5’ AAA TCT TCG TCA GAA ACG CCT 3’  
a conventional PCR product is diluted in a decimal dilution series and used in qRT-PCR to obtain a 
standard curve 
b qRT primer used in quantitative PCR reactions with conventional PCR product used in standard curve 
dilutions as template or with cDNA as template 
c the conventional PCR product plnNJK contained the binding sites for qRT primers for both plnN and 
plnJK 
The 16S is the 16S rRNA gene for L. plantarum species.  
The plnEF, plnJK, and plnN are the plantaricin genes in L. plantarum C11 (Anderssen et al., 1998). 
The plnG is the bacteriocin dedicated ABC transporter gene in L. plantarum C11 (Anderssen et al., 1998). 
The lldh is L-lactate dehydrogenase gene in L.plantarum 423 (Ramiah et al., 2007).  
 

 

 

 

 

 

 

The PCR protocol that was used for qRT-PCR is shown in Table 2.7. The qRT PCR was 

done in 96 well qRT PCR microtiter (Biorad) plates which were sealed with foil (Biorad). The 

PCR was done using a Biorad iQ5 qRT PCR cycler with SYBRGreen. In this method, the 

increase in PCR product is determined in real time by increase of the SYBR-Green fluorescens. 

SYBR-Green is excited by light with a wavelength of 494 nm and emits with a maximum of 521 
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nm. The intensity of the light emission is measured and the data are displayed by the Biorad iQ5 

documentation software. 

 
Table 2.7  Contents for the RT-PCR using cDNA as template 

 

Reagents Volume per reaction 
IQ SYBR Green Supermix 12.5μl 
Forward primer (50 pmol/ μl) 0.125 μl 
Reverse primer (50 pmol/ μl) 0.125 μl 
cDNA template (5ng/ μl) 3 μl 
H2O nuclease free water 9.25 μl 
Total volume 25 μl 

 

 

2.11  Quantitative Real Time PCR data analysis 
2.11.1  Determining the gene copy number for quantification of absolute gene 

expression and establishing a standard expression curve 
All PCR products were amplified in conventional PCR reactions from L. plantarum 

strains BFE 5092 or PCS20 genomic DNA to serve as templates for generating standard curves 

in qRT-PCR experiments. To show that the PCR reactions amplified the correct genes, the PCR 

products were subjected to gel electrophoresis on 1.5% agarose gels to confirm their expected 

sizes. In addition, all PCR products were partially or completely sequenced as to confirm their 

identity. To generate standard curves for expression studies of each of these specific genes, the 

conventional PCR products were measured at 260 nm using a by Nanodrop-Photometer 

(Peqlab) and the DNA concentration was determined from this optical density reading 

(Sambrook et al., 1989) in ng/µl. The molar mass of the PCR product was calculated on the 

basis of the number of nucleotides and their average molecular weight (600g/Mol/l) and the 

concentration of DNA determined. The molarity was established by dividing the determined 

concentration by the molar mass. As Avogadro’s number states that one mole equates to 6.025 

x 1023 molecules, the copy number of the PCR product could be determined by multiplying the 

determined molarity with Avogadro’s number. 

After every cycle of the qRT-PCR reaction, the iQ5 cycler used measures the 

fluorescence intensity of the SYBRGreen reporter dye. The detection software documents these 

fluorescence data in a coordinate system with the corresponding cell cycle in a semilogarithmic 

coordinate system. Thus a function is generated which shows the kinetics typical of the reaction. 

The amplification kinetics are only ideal in the exponential area, thus a quantification is only 

possible in this exponential range. The Ct value that is determined is a ‘threshold value’, i.e. the 

value where the signal clearly distinguishes itself from the background fluorescence and 

identifies the cycle at which this measurable fluorescence intensity is reached. Therefore, the 

higher a gene is expressed the higher its cDNA copy number and the earlier the Ct-value will be 
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reached. Thus, the lower the Ct-value, the higher the gene is being expressed.  

For generating the standard curve, a suspension of PCR product of the target gene 

produced by conventional PCR, which contained about 107 copies/ul was prepared, and 10-fold 

serial dilutions were made down to 102 copies/ul. The diluted PCR product sample for making 

the standard curve was used in real-time PCR. Thus, a calibration curve was constructed by 

relating the Ct-value detected automatically by qRT cycler to the copy number and by linear 

regression of the standard curve data. In order to determine absolute gene expression levels, 

measured from the fluorescence obtained in the qRT-PCR reaction with cDNA. The Ct-values 

were used to calculate the copy number by entering the value into the linear regression 

equation and solving the equation to arrive at the for the copy number. An example of a linear 

regression of a standard curve is shown in Figure 2.1. 

 

 
Figure 2.1  Example for Ct-values determined for generation of a standard curve using DNA from a 

decimally diluted PCR product sample with known copy numbers. The Ct value was 
plotted as a function of the logarithm of numbers of copies of template. The real 
expression copy number can be correlated from this curve after performing a linear 
regression.  

 
 

2.11.2  Determining relative gene expression by quantitative PCR using the ∆∆Ct method 
To determine the relative gene expression, the expression levels determined by qRT-

PCR of a target gene were normalised to those of a non-regulated reference or housekeeping 

gene, in this study the 16S rRNA gene. Nomalisation against a housekeeping gene minimizes 

considerable deviations in transcription levels which result from experimental difficulties, i.e. for 

example in RNA isolation, and which should not be wrongly interpreted as real differences in 

transcription levels. The quantification of the relative expression in this work was by the ∆∆Ct 

method (Livak and Schmittgen, 2001). This method is based on the assumption of a 100% 

efficiency of the PCR reaction. In this method, the ∆Ct  
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value of the samples is first calculated from  

 

 ∆Ct = Ct target gene  - Ct reference gene 

 

which relates the expression of the target gene relative to that of the reference gene. To relate 

the relative expression of the target gene under test condition to the reference gene under 

reference condition, the ∆∆Ct-value is calculated as follows 

 

 ∆∆Ct=∆Ct sample) - ∆Ct control 

 
The fold-change in expression (increase or decrease) for each gene from control to the sample 

can be calculated as follows 

 

relative expression = 2-∆∆Ct 
 

In all qRT-PCR experiments all samples were pipeted three times and three measurements 

were obtained. The mean expression and the standard deviations were calculated.  

 

2.12 Microbiological analysis of turkey meat and inoculation with protective culture 
and / or pathogenic bacteria  

 In order to test the L. plantarum strain BFE 5092 selected by the PathogenCombat 

coordinators as a protective culture, this strain was inoculated onto turkey breast meat in the 

presence or absence of pathogens. The turkey breast meat was obtained from a partner in the 

PathogenCombat Project (Ziegler, Bammental) who sent the meat on the same day the animal 

was slaughtered under cooled (on ice) conditions. The turkey meat (without skin, breast meat 

cut) was further cut into portions of ca 7 x 8 cm in a sterile laminar flow unit using a sterilised 

knife. Different samples were prepared, i.e., uninoculated control or sterilised turkey meat (see 

below) inoculated with only L. plantarum BFE 5092 as protective culture at approx 107 CFU/g, 

or sterilised turkey meat inoculated with L. plantarum BFE 5092 protective culture at 107 CFU/g 

and with the pathogen L. monocytogenes EGDe at a level of 105 CFU/g or with the pathogen 

Salmonella Typhimurium at a level of 105 CFU/g, or non-sterilised turkey meat with protective 

culture or pathogen, or sterilised turkey meat (see below) with only L. monocytogenes EGDe as 

pathogen at a level of 105 CFU/g or with only Salmonella Typhimurium at a level of 105 CFU/g. 

Before inoculation, the bacteria were grown in MRS broth (L. plantarum) or in Standard I broth 

(L. monocytogenes) at 30°C for 18 h. The optical density of the cultures was determined 

spectrophotometrically at 580 nm and the culture was washed with Ringers solution and diluted 

to obtain the required concentration. For some samples, turkey meat was sterilised using a 

linear accelerator at 10 kGy. The linear accelerator was a CIRCE III accelerator with 10MeV 
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energy and 15kW power (Getinge Linac Technologies, Orsay, France). 

The turkey meat portions all were placed in Petri dishes and the bacteria were surface 

inoculated and spread on the surface using a sterile glass spreader. The turkey meat samples 

were stored at 8°C incubation temperature. This temperature was chosen as lower 

temperatures would not permit growth of the L. plantarum protective culture which was known to 

have a minimum growth temperature of 8°C. Microbiological sampling was done in duplicate at 

specific time intervals (every second or third day). For sampling, the turkey meat was 

transferred from the Petri dish into 50ml Ringer’s solution and was pummeled with a stomacher 

for 1 min. After stomaching, 25ml of suspension was separately collected in falcon tubes for 

RNA isolation and then mixed with same volume of ice cold methanol (Roth) to prevent RNA 

degradation and to stop RNA expression. A further 1 ml sample of the suspension was removed 

to measure the pH. For enumeration of microorganisms, tenfold serial dilutions (10-1–10-6) were 

made for each sample and either 100µl or 10 μl of the appropriate dilutions was spread plated 

onto selective media for isolation of the different microbial groups. Thus Standard I agar was 

used for determining the total aerobic and mesophilic count at 30°C, MRS agar pH 6.4 was 

used for enumeration of total LAB at 30°C and Violet Red Bile Dextrose Agar (VRBD) (Merck) 

for enumeration of Enterobacteriaceae at 37°C under aerobic conditions. Potato Dextrose Agar 

(PDA) was used for the enumeration of yeasts at 25°C. An antibiotic cocktail consisting of 

penicillin G (100μg/ml), streptomycin (250μg/ml), vancomycin (25μg/ml), chloramphenicol 

(20μg/ml) and erythromycin (50μg/ml) was added to Potato Dextrose Agar to inhibit bacteria. 

Palcam agar supplemented with Listeria selective supplement (Oxoid) was used for 

enumeration of L. monocytogenes at 37°C, and Salmonella / Shigella agar for enumeration of 

Salmonella at 37°C. 

 
2.13 Expression of antimicrobial genes and genes encoding surface proteins by L. 

plantarum strain BFE 5092 during growth on turkey meat using quantitative PCR 
In order to determine the cause of any potential antimicrobial activity of the protective L. 

plantarum BFE 5092 culture in inhibiting pathogens in the challenge tests on turkey meat, the 

expression of genes associated with antimicrobial activity, i.e. L-lactate dehydrogenase genes 

and plantaricin EF, JK, N was determined by qRT-PCR as described above (see 2.12 and 2.13). 

Firstly, the study aimed to determine whether these genes were expressed at all on the turkey 

meat surface and secondly, as bacteriocin expression is a cell density regulated phenomenom, 

it was aimed to see whether RNA expression occurred at levels similar to those expression 

levels seen in vitro at similar cell numbers. Also, it was aimed to elucidate whether the presence 

of a Gram-positive pathogen (i.e. Listeria monocytogenes) would be able to enhance expression 

of the bacteriocin genes.  

 Before the expression of these genes could be measured using qRT-PCR, methods 

were needed to be established for isolating the bacteria from the food surface and isolating their 
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RNA. This was deemed difficult because of the presence of food components (especially 

protein) in the RNA isolation protocol and because of the presence of autochthonous bacteria 

whose RNA would be co-isolated. Total RNA was isolated by removing 25 ml of the food matrix 

suspension (see above) and by adding 25 ml of ice cold methanol to fix the cells and freeze 

RNA expression. The bacteria were harvested from the solution by low speed centrifugation at 

200 xg for 5 min. This centrifugation left the bacteria in the supernatant while it served to pellet 

food components. To further decrease turkey meat components, the bacteria were centrifuged 

two more times at same low speed and the clear supernatant was transferred to a fresh 

Eppendorf tube. RNA was again stabilised by the addition of two volumes RNA Protect (Qiagen) 

After these steps, the RNA isolation proceeded with the General Electric Healthcare RNA 

isolation kit according to the manufacturers instructions and as mentioned above (see 2.9). In 

order to eliminate any remaining DNA contamination in the RNA sample, an additional DNase 

treatment step with DNAse from Ambion (Hilden) was performed. For this, 2U/μl was added to 

the sample and incubated at 37°C for 30 min. After incubation, the sample was mixed with 

DNase inactivation beads, and the remaining pure RNA was collected by centrifugation at 

10,000 xg for 1.5min. The total RNA concentration was determined by measuring the 

absorbance at 260 nm using a NanoDrop spectrophotometer as previously described 

(Sambrook, 1989). To measure the expression of the target genes, the cDNA synthesis and 

qRT-PCR was performed as described above (see 2.11 and 2.12).  
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CHAPTER 3.0  
RESULTS 
 

3.1  Safety of protective cultures with respect to antibiotic resistance  
ccording to EFSA (2005), bacteria used as starter cultures for food and feed should not 

contain transferable antibiotic resistances. For this reason, the L. plantarum BFE 5092 and 

PCS20 strains investigated in this study for development of potential protective cultures were 

investigated for their antibiotic resistance profile using the LAB susceptibility test medium (LSM) 

as suggested by Klare et al. (2005). These two L. plantarum strains did not show any 

conspicuous antibiotic resistances. According to the antibiotic resistant breakpoints from 

FEEDAP (2005) for gentamicin, streptomycin, tetracycline, chloramphenicol, vancomycin and 

and erythromycin for L. plantarum strains (see Table 3.1), these strains could be considered as 

susceptible to these antibiotics. Unfortunately FEEDAP does not list a breakpoint value for 

ciprofloxacin and the resistance towards this antibiotic was considerably high at 64 and 512 

µg/ml for L. plantarum strains BFE 5092 and PCS20, respectively. 

 A

 
Table 3.1. Antibiotic resistance profile of protective L. plantarum strains BFE 5092 and PCS20. 

 

Minimum inhibitory concentration (μg/ml) 
Strain 

ER GM SM CI VM CL TC 
L. plantarum BFE 5092 0.032 0.064 16 64 256 1 8 
L. plantarum PCS20 0.016 2 16 512 >512 2 8 
Breakpoint valuea 4 64 64 n.l.b n.r.c 8 32 

a:breakpoints according to FEEDAP (2005) ER: erythromycin, GM: gentamicin, SM: streptomycin. CI: 
ciprofloxacin, VM: vancomycin, CL: chloramphenicol, TC: tetracycline. The value ‘>512’ means no growth 
inhibition occurred and this was the maximum concentration tested. 
b n.l.: not listed by FEEDAP, c n.r.: not required by FEEDAP 
 
 
3.2 Bacteriocin activity and PCR amplification of known bacteriocin genes 

In order to detect whether the L. plantarum strains used in this study produced 

bacteriocins, the deferred inhibition assay with MRS agar was carried out, in which bacteriocin 

production by a producer colony on an agar plate is tested. The bacteriocin diffuses into the 

agar and is detected by the absence of growth of a lawn of indicator which is overlayered on top 

of the producer culture after it has grown. Furthermore, possible bacteriocin production was 

determined by PCR amplification of known bacteriocin genes using custom designed primers 

specific for these genes.  

Using the deferred inhibition assay with L. sakei DSM 20017T as a sensitive indicator, 

the zones of inhibition around the L. plantarum BFE 5092 and PCS20 producer strains were 

approx. 19 mm and 18 mm, respectively, measured from the edge of the colony (Fig. 3.1). By 
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spotting 3 µl of 10 µg/ml proteinase K solution next to the producing culture that was grown 

overnight, and then incubating a further 3 hours for proteinase K activity at 37°C, the inhibition 

zone was not visibly decreased in the vicinity of the proteinase K spot. This indicated that a 

bacteriocin activity based on a proteinaceous compound could not be detected.  
 

L. plantarum PCS 20 L. plantarum BFE 5092

 

 

Figure 3.1  Deferred inhibition assay using L. plantarum strains BFE 5092 and PCS20 against L. 
sakei DSM20017T. Overnight cultures were spotted onto MRS agar plates and 
overlayered with the L. sakei indicator strain in MRS soft agar. After re-incubation, 
positive strains showed a clear zone of inhibition surrounding the producer colony. 

 

To diminish the effect of lactic acid produced by the different L. plantarum strains on the 

sensitive indicator strain L. sakei DSM 20017T, buffered agar medium (BSM medium, see 2.1.1) 

containing 10x less glucose than in MRS agar, and more buffering substances such as 

K2HPO4·3H2O and KH2HPO4, was used to test again for bacteriocin activity using the deferred 

inhibition assay. Using this assay, a zone of inhibition of approx. 5 mm measured from the edge 

of the colony was detected for the L. plantarum strains BFE 5092, while only a very slight zone 

of less than 1 mm could be detected for L. plantarum PCS20 (Fig. 3.2). In the case of L. 

plantarum BFE 5092, spotting 5 µl of a 10 mg/ml proteinase K solution next to the colony 

diminished the inhibition zone (Fig. 3.2) showing clearly that the activity was due to a 

proteinaceous compound such as a bacteriocin. 

 

 

L. plantarum PCS 20 L. plantarum BFE 5092 

 

Figure 3.2  Deferred inhibition assay using L. plantarum strains BFE 5092 and PCS 20 against L. 
sakei DSM20017T. Overnight cultures were spotted onto BSM agar plates and 
overlayered with the L. sakei indicator strain in BSM soft agar. After re-incubation at 
room temperature, positive strains showed a clear zone of inhibition surrounding the 
producer colony. The effect of proteinase K spotted next to producer strain resulted in a 
decrease in the size of the inhibition zone where the enzyme was spotted (see arrow).  
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Using custom-designed primers for known bacteriocin genes (see Table 2.3) and total 

genomic DNA from L. plantarum strain BFE 5092 and the control strain L. plantarum 299V, it 

could be shown that both these strains contained the structural genes for the bacteriocins PlnEF, 

PlnJK, and PlnN, which was confirmed by sequencing of the resulting PCR products (Fig. 3.3a). 

In contrast, the L. plantarum strain PCS20 contained only the structural genes for plantaricin EF 

(Fig. 3.3b).  

 

 
 
Figure 3.3 Agarose gel electrophoresis of PCR products obtained after PCR amplification of L. 

plantarum genomic DNA with custom designed primers for the known plantaricin genes 
a) DNA isolated from L. plantarum BFE 5092 M: standard 100 base pair marker a; 
plantaricin 1.25, b; plantaricin 4.23, c; pediocin AcH, d; plantaricin N, e; plantaricin EF, f; 
plantaricin NC8, g; plantaricin S, h; plantaricin JK b) DNA isolated form L. plantarum 
PCS20 A; plantaricin 423, b; plantaricin 1.25, c; plantaricin N, d; plantaricin NC8, e; 
plantaricin EF, f; plantaricin S, g; plantaricin JK, h; pediocin AcH. The lower (100 bp or 
smaller) bands on the gels correspond to primer or primer dimer bands.  

 

The nucleotide sequences of the plnEF, plnJK and plnN PCR products, which were 

amplification products of the part of the gene encoding the mature bacteriocin peptides from L. 

plantarum strains BFE 5092, PCS20 (plnEF only) and 299V, showed identical sequences to 

those previously reported (Diep et al., 1996; Kleerebezem et al., 2003). Translation of 

nucleotide sequences of this partial sequence resulted in amino acid sequences constituting the 

mature parts of the PlnJK, PlnEF and PlnN peptides, which were identical to those reported 

previously for L. plantarum C11 (Diep et al., 1996) and L. plantarum WCFS1 (Kleerebezem et 

al., 2003) (results not shown).  

 
3.3  Localisation and organisation of the plantaricin operons on the genomes 

of L. plantarum strains BFE 5092 and PCS20  
 Bacteriocin operons are known to be located either on the chromosome or on plasmid 

DNA. The localisation of the plantaricin genes produced by L. plantarum strains BFE 5092 and 

PCS20 was important firstly to compare the gene loci of the two strains and secondly to clone 

the gene loci to characterize them at a genetic level. In order to localize and preliminarily 

characterize the plantaricin gene loci in the different L. plantarum strains, plasmid DNA as well 

as the chromosomal DNA was isolated. The chromosomal DNA was cut with the restriction  

a b c d e f g h M M 
a) 

b c a d e f g h M M 
b) 
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enzymes XbaI and EcoRI and was run together with the isolated plasmid DNA fractions on an 

agarose gel. As shown in Fig. 3.4, L. plantarum BFE 5092 and L. plantarum PCS20 both 

contained plasmid DNA. Following electrophoresis, the gel was blotted and probed with a 

plantaricin EF probe. The hybridisation result showed that the plantaricin locus was located on 

the chromosome of these L. plantarum strains and not on the plasmid DNA. Hybridisation of the 

plantaricin EF probe with the XbaI and EcoRI digest of the chromosomal DNA furthermore 

showed that the loci appeared to be similarly localized on the chromosome, as a hybridisation 

signal occurred at the same position on the gel (Fig. 3.4). L. plantarum strain 299V, on the other 

hand, clearly showed a different localisation on the chromosome, as the hybridisation signal 

occurred at a different position. L. johnsonii La1 was used as negative control to detect any 

unspecific hybridisation signals, which did not occur (Fig. 3.4).  
 

 
Figure 3.4  Photonegative of agarose gel with XbaI and EcoRI digested chromosomal and plasmid 

DNA (a) and corresponding membrane hybridised with plnEF probe (b). A: Plasmid 
from L. plantarum PCS20, B: Plasmid from L. plantarum BFE 5092, C: Plasmid from L. 
plantarum BFE 905 (positive plasmid control), D: L. plantarum BFE 5092 chromosomal 
DNA, E: L. plantarum PCS20 chromosomal DNA, F: L. plantarum 299V chromosomal 
DNA as positive control, G: L. johnsonii La1 chromosomal DNA as negative control.  

 

PFGE with DNA restricted with NotI was also used to determine whether the plantaricin 

locus was located on different chromosomal locations in the two L. plantarum BFE 5092 and 

PCS20 strains. A completely different banding pattern of the PFGE fingerprint showed that 

these two L. plantarum strains were clearly not clonally related. In contrast to the hybridisation 

results obtained with the chromosomal DNA cut with XbaI and EcoRI restriction enzymes, the 

hybridisation of the PFGE gel showed that indeed the plantaricin loci in the two strains occurred 

at different sections of the chromosome, as the probe hybridized at two very different positions, 

i.e., with a band of about 97 kbp in L. plantarum BFE 5092, but with a smaller band in L. 

plantarum PCS20 (Fig. 3.5). 
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Figure 3.5 NotI digested total DNA fragments in pulsed field gel electrophoresis and corresponding 

hybridisation on nylon membrane. A: L. plantarum BFE 5092 B: L. plantarum PCS20. 
On the nylon membrane, plnEF DIG labeled probes were detected at different positions 
depending on the strains. Upper arrow (A) marker size neighboring 97 kb, lower arrow 
(B) between 97kb and 48.5kb. 

 

3.4 Characterisation of the plantaricin loci of L. plantarum strains BFE 5092 
and PCS20 
The nucleotide sequence of the plnE and plnF genes of the L. plantarum strain BFE 

5092 was 100% identical to that of the corresponding genes of L. plantarum strains C11, 299V 

or WCFS1 as deposited in the databank. Although the plnF gene produced by L. plantarum 

PCS20 was also identical to the corresponding gene in L. plantarum strains C11, 299V, WCFS1 

and BFE 5092 (result not shown), the sequence of the plnE gene in strain PCS20 differed from 

the corresponding nucleotide sequences for this gene when compared to these other strains 

(Fig. 3.6). There was a deletion of one nucleotide 47 base pairs downstream of the plnE ATG 

start codon, which results in a frame shift of the open reading frame (ORF). Thus, the amino 

acids translated from the nucleotide sequence are initially identical for up to the first 15 amino 

acids, but differ by the next 24 amino acids. Two further deletions, one of two adjoining 

nucleotides and one of three adjoining nucleotides occurred downstream (Fig. 3.6). Thus, a total 

of 6 base pair deletions took place within the gene, which finally shifts the ORF back into the 

plantaricin-encoding frame, thus resulting in an identical 15 amino acid carboxyl end to 

plantaricin E as produced by L. plantarum strains C11 and WCFS1. Therefore, these deletions 

led to a hypothetically produced peptide which is 2 amino acids shorter than plantaricin E, and  
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C11a  ATGCTACAGTTTGAGAAGTTACAATATTCCAGGTTGCCGCAAAAAAAGCTTGCCAAAATATCTG 
PCS20  ATGCTACAGTTTGAGAAGTTACAATATTCCAGGTTGCCGCAAAAAA-GCTTGCCAAAATATCTG 
WCFS 1  ATGCTACAGTTTGAGAAGTTACAATATTCCAGGTTGCCGCAAAAAAAGCTTGCCAAAATATCTG 
 
Amino acidb M  L  Q  F  E  K  L  Q  Y  S  R  L  P  Q  K  K  L  A  K  I  S  G 
PCS20 aa  M  L  Q  F  E  K  L  Q  Y  S  R  L  P  Q  K  S-  L  P  K  Y  L   
 
C11a       GTGGTTTTAATCGGGGCGGTTATAACTTTGGTAAAAGTGTTCGACATGTTGTTGATGCAATTGG 
PCS 20  GTGGTTTTAATCGGGGCGGTTATAACTTTGGTAAAAGTGTTCGACAT—-TGATGA---AATTGG 
WCFS 1  GTGGTTTTAATCGGGGCGGTTATAACTTTGGTAAAAGTGTTCGACATGTTGTTGATGCAATTGG 
 
Amino acidb      G  F  N  R  G  G  Y  N  F  G  K  S  V  R  H  V  V  D  A  I  G  
PCS20 aa  V  V  L  I  G  A  V  I  T  L  V  K  V  F  D  I    D  E     I  G  
 
C11a  TTCAGTTGCAGGCATTCGTGGTATTTTGAAAAGTATTCGTTAA 
PCS 20  TTCAGTTGCAGGCATTCGTGGTATTTTGAAAAGTATTCGTTAA 
WCFS 1   TTCAGTTGCAGGCATTCGTGGTATTTTGAAAAGTATTCGTTAA 
 
Amino acida S  V  A  G  I  R  G  I  L  K  S  I  R  *   
PCS20 aa   S  V  A  G  I  R  G  I  L  K  S  I  R  *   
 
 
Figure 3.6  Nucleotide sequences and amino acid translations of plantaricin E gene in different L. 

plantarum strains selected in this work. Nucleotide deletions are shown, substitutions 
shown in bold print. Amino acid differences are also shown in bold print. Note the 
absence of a double-glycine leader sequence cleavage site (indicated by an arrow) for 
the plnE sequence of L. plantarum PCS20. Boxes show the conserved GxxxG 
sequences involved in peptide helix-helix interaction.  

 

 

differs by 24 amino acids, while it shares 30 identical amino acids, i.e., 15 at the amino end and 

15 at the carboxyl end of the hypothetical peptide (Fig. 3.6). As a consequence of the first 

deletion, the amino acid sequence is changed such that a double-glycine-type leader peptide is 

not encoded by the L. plantarum PCS20 plnE gene (Fig. 3.6). 

 The 16 kbp bacteriocin locus of the probiotic strain L. plantarum BFE 5092 was 

completely sequenced in this study in both directions and contained 20 genes 

(plnRLKJMNOPQABCDIFEGHTU) involved in biosynthesis, regulation, transport and immunity 

of 3 bacteriocin systems, i.e., the two-peptide bacteriocins plantaricin EF and plantaricin JK, as 

well as plantaricin N (Fig. 3.7). Of these, the translated products PlnR, PlnL, PlnK, PlnJ, PlnM, 

PlnO, PlnP, PlnQ, PlnA, PlnE, and PlnF were 100% identical to those reported for these gene 

products in L. plantarum strain WCFS1 (Kleerebezem et al., 2003). The other translation 

products associated with the genes from this bacteriocin locus also showed high similarities of 

96.4, 98.0, 87.9, 98.4, 99.3 and 99.1 % identity for the PlnB, PlnC, PlnD, PlnI, PlnG and PlnH 

proteins, respectively. The plnT gene was unusual as it appeared to be a ‘fusion’ of the gene 

sequences of the plnS and plnT genes as found in L. plantarum strains WCFS1 and C11.  
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Figure 3.7  Genetic map of plantaricin locus of different L. plantarum strains (A) L. plantarum 

WCFS1 (GenBank accession number AL935253); (B) L. plantarum BFE 5092 
(GenBank accession number GU584090, this study); (C) L. plantarum PCS20 
(GenBank accession number GU584091, this study). The pln genes are shown by 
arrows corresponding to the approximate size of genes. In the case of L. plantarum 
PCS20, the hypothetical amino acid sequence in front of transposon gene is similar to a 
hydantoinase / oxoprolinase gene. The promoter sequences are indicated by small 
black arrows. Open reading frames shown by dotted line were only partially sequenced 
and the lines indicate the truncated part of the gene. 

 

Nevertheless, a counterpart plnS/T gene with 96.9% sequence identity was found in L. 

plantarum strain V90 (Diep et al., 2009). In this study, only part of the plnU gene which flanks 

the plnT gen was PCR amplified. Sequencing did also not continue beyond the partial plnU 

sequence. It is known that the plnGHSTUVW genes are highly conserved in the pln gene locus 

(Diep et al., 2009). Moreover, the bacteriocin systems of L. plantarum strains WCFS1 and C11 

are known to contain at least four more genes located downstream of plnSTU, i.e., plnVWXY 

(Kleerebezem et al., 2003; Diep et al., 2009).  

In contrast to the plantaricin locus of strain BFE 5092, the approx. 10.0 kbp locus of L. 

plantarum PCS20 sequenced in this study (Fig. 3.7) contained only the genes for the plantaricin 

EF peptides (mutated in the case of plantaricin E, see above), the gene encoding the plantaricin 

EF immunity peptide (plnI) and genes for bacteriocin transport (plnGHTU). Again, in this case 

only a partial sequence was obtained for plnU, because the gene was not completely PCR 

amplified and sequencing did not proceed beyond the plnU gene. The PlnI, PlnG and PlnH 

protein sequences from L. plantarum PCS20 were 100, 99.6, and 99.1% identical compared to 

the corresponding sequences of L. plantarum WCSF1. The plnT gene was similar (97.8% amino 

acid identity) to that of the BFE 5092 strain, and shared 95.6% sequence identity with the plnT 
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gene of L. plantarum strain V90 (Diep et al., 2009). Upstream of the plnEF genes there were 

genes involved in regulation of synthesis of the bacteriocin NC8, i.e., a histidine protein kinase 

gene, as well as a response regulator gene (Fig. 3.7), both of which have high homology to the 

response regulator genes plNC8HK and plnD of L. plantarum NC8, which regulate production of 

the two-peptide bacteriocin plantaricin NC8 (Maldonado et al., 2004). However, the histidine 

kinase gene was not present as a complete gene but was disrupted by a transposon insertion 

from the 516th nucleotide of the corresponding plNC8HK gene. Thus, the translated sequence 

when compared to that of the plNC8HK sequence lacks the first 172 amino acids. The 

remainder of the translated amino acid sequences was 86.5% identical when comparing the 

translated gene product of the two strains. A direct repeat (AAATGAAA) was present at the end 

of the transposon, similar to that of the transposon inserted upstream of the plnQ gene in strain 

V90 (Diep et al., 2009). A further difference was that the NC8 induction factor gene (plNC8IF), 

which occurs directly upstream of the NC8 histidine kinase gene in the genetic of L. plantarum 

NC8 (Maldonado et al., 2004), was absent (Fig. 3.7) and instead, the transposon gene 

interrupted the plantaricin NC8 histidine kinase (Fig. 3.7). The complete transposon gene was 

sequenced and this showed 99.2% similarity in amino acid sequence to the V90 transposon of 

the MULE superfamily as described to occur in the plantaricin V90 locus (Diep et al., 2009). 

Approx. 1 kbp was sequenced upstream of the transposon, but the remainder of the plNC8HK 

gene, nor the plNC8IF gene, could be detected. Instead, a gene encoding a 

hydantoinase/oxoprolinase gene was found upstream of the transposon (Fig. 3.7). Furthermore, 

the plNC8IF gene could not be amplified with primers specific for this gene in this study (results 

not shown). 
 

3.5 Expression of the plnEF genes in L. plantarum strains BFE 5092 and PCS20 
Plantaricin expression studies were done to test whether plantaricin genes were being 

expressed by both strains. The observed deletions in the plnE gene of L. plantarum PCS20 

were not thought to affect plantaricin gene expression, as these were inside the open reading 

frame and thus unlikely to affect possible regulatory sequences. Nevertheless, these 

experiments still could confirm that these mutations would not affect the plnEF expression. The 

expression of the plnEF genes was investigated by RT-PCR using the primers for amplification 

of the plnEF genes which amplify a PCR product of 306 bp (Table 2.3). The expression of the 

plnEF gene of L. plantarum strains BFE 5092 and PCS20 is shown in Figure 3.8. Both strains 

clearly expressed these genes, as the mRNA could successfully be transcribed to cDNA which 

served as template to amplify the 306 bp PCR product. As expected from the plantaricin loci 

sequence analyses of strains BFE 5092 and PCS20, the frameshift mutations observed in strain 

PCS20 did not affect gene expression and apparently a mutated plnE gene thus must have 

been expressed to a mutated PlnE peptide. It seems that the primers were able to bind in the 

beginning of open reading frame and the end of plnE region. Therefore, the mutation happened 
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within the reading frame and did not affect the transcription of the plnE locus. 

 

 

 

 
Figure 3.8  Amplification of plantaricin EF fragment using reverse transcriptase PCR A: Biorad 100 

bp ladder B: RNase treated RNA from L. plantarum BFE 5092 used as negative control, 
C: RT-PCR product of the plnEF genes of L. plantarum BFE 5092 (upper band), D: 
RNase treated RNA from L. plantarum PCS20 used as negative control, E: RT-PCR 
product of the plnEF genes of L. plantarum PCS20 (upper band). The lower band at 
about 100 bp corresponds to primer. 

 

 

3.6  Expression of plantaricin genes under different growth conditions 
 The L. plantarum strains BFE 5092 and PCS20 were aimed to be tested as protective 

cultures for preservation of turkey meat as requested by the PathogenCombat management, on 

grounds that the German national food sector partner (Geflügelspezialitäten Ziegeler) was a 

turkey producer. The L. plantarum strain PCS20 was included in this investigation despite the 

fact that the only plantaricin genes (plnEF) present in this strain were mutated and probably not 

functional, purely for comparison reasons, i.e., to compare the expression pattern of the two 

strains under the different test conditions. Before testing the strains for their biopreservative 

activity on turkey meat, their growth and gene expressions under growth conditions expected to 

occur in this food environment were tested in vitro. It was thus expected, that the bacteria would 

be growing at low temperature for storage of turkey meat, and that they would be sessile, i.e. 

growing on the meat surface as opposed to growth in liquid (planktonic). For this reason 

plantaricin and lactate dehydrogenase gene expressions were tested under such in vitro 

conditions.   

  

3.6.1 Growth and inhibitory activity at different growth temperatures in vitro 
Growth and inhibitory activity were tested for the protective L. plantarum strains PCS20 

and 5092, as well as for the control strain 299V at different temperatures, in order to determine 

the lower growth limit and whether inhibition of indicator strains occurs at low temperature. For 
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testing the antimicrobial activity of the L. plantarum cells grown at different temperatures, the 

overnight producer L. plantarum cultures were grown at decreasing temperatures of 30, 20, 15, 

12, 10 and 8°C. Eight degrees Celsius was determined to be the minimum growth temperature 

for L. plantarum strains PCS20 and BFE 5092 (Table 3.2), however growth as a colony on the 

plate was noticed to be slow and leading only to reduced colony growth. Antimicrobial activity of 

L. plantarum strains BFE 5092, PCS20 and 299v was determined using the deferred inhibition 

assay with the sensitive indicator strains Lactobacillus pentosus DSM 20314 or L. sakei DSM 

20017T and zones occurred when the producer cultures were grown at either 30, 20, 15, 12, 10 

and 8°C. However, a progressive decrease in the zone of inhibition with decreasing temperature 

(Table 3.2) was noticed, and at 8°C only slight inhibition occurred. 
 

Table 3.2 Growth and bacteriocin production of L. plantarum strains determined using the 
deferred inhibition assay with MRS agar at different temperatures. Inhibition zones 
were measured from the edge of the producer colony. 

 
Zone of inhibition (mm) against L. pentosus DSM 20314 at different growth 

temperatures 
Strain 

30°C 20°C 15°C 12°C 10°C 8°C 
299v 3 3 4 5 2 0 
5092 3 3 3 4 2 0 
PCS20 2 2 3 2 0 0 
 Zone of inhibition (mm) against L. sakei DSM 20017T at different growth 

temperatures 
299v 6 5 4 4 1 0-1 
5092 5 6 4 4 1 0-1 
PCS20 6 5 3 3 1 0-1 
 
 

The expression of the lactate dehydrogenases (lldh) and plantaricin genes, i.e. the 

plnEF bacteriocin and plnG ABC transporter genes, were measured by qRT-PCR. In addition, 

the expression of the 16S housekeeping gene was also measured, as a reference gene for 

determining relative expression. Both strains expressed the plnEF, 16S, lldh and plnG genes at 

approximately similar copy numbers at both 8°C and 30°C when measured using absolute 

expression (Figs. 3.9, A & C). This correlated to the inhibitory activity observed on the agar 

plates, were zones of activity could be determined to as little as 8°C growth temperature (Table 

3.2). Thus, by determining absolute gene expression, low temperature did not appear to affect 

gene expression levels when compared to optimum growth temperature of 30°C. Using the 

absolute gene expression data, the relative expression levels were calculated by comparing the 

expression levels of the genes to that of the 16S rRNA gene, and by comparing the expression 

at low temperature to that at optimal temperature of 30°C (normalised to 1 in this method, see 

Fig. 3.9) using the ∆∆Ct method described above. The relative expression data showed that the 

temperature seemed to be able to somewhat affect expression of the plantaricin genes in that 

expression at 8°C was approximately 0.75-fold less (Fig. 3.9B and D) to that at 30°C, against 

which was normalised. However, this is only a very small difference, when considering that a 

significant increase or decrease in expression should be at least two-fold change in expression.  
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Figure 3.9  Absolute and relative expression of 16S, lldh, plnEF and plnG genes under different 

growth temperature conditions in L. plantarum strains PCS20 (A, C) and BFE 5092 (B, 
D) A, B: absolute quantification C, D: relative expression. 16S: 16S rDNA gene used as 
housekeeping gene for normalization (maroon bars) in relative expression 
determinations (blue bars). LLDH: L-lactate dehydroganase gene, plnEF: plantaricin EF 
gene, plnG: plantaricin ABC transporter gene. The reference gene expression for 
relative expression analysis was expression at 30°C (normalised to 1.0). 

 
 
 
3.6.2 Expression of plantaricin-encoding genes by sessile and planktonic 

Lactobacillus plantarum strains 

The expression of the lactate dehydrogenase (lldh), plnEF and plnG ABC transporter 

genes by sessile and planktonic strains BFE 5092 and PCS20 were also investigated in vitro 

using TSB broth (planktonic) and TSB agar containing 2% agarose (sessile). Cells were grown 

at 30°C, harvested at a cell density of 108 cells and their gene expression was quantified by 

qRT-PCR. Expression levels of L. plantarum PCS20 genes are shown in Fig. 3.10.  
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Figure 3.10  Absolute (A) and relative (B) expression of 16S, lldh, plnEF and plnG genes under 
different growth conditions such as planktonic (yellow bars) and sessile (green bars) in 
L. plantarum strain PCS20 16S: 16S rRNA gene used as housekeeping gene in relative 
expression determinations. LLDH: L-lactate dehydrogenase gene, plnEF: plantaricin EF 
gene, plnG: plantaricin ABC transporter gene. The reference gene expression for 
relative expression analysis was expression under planktonic growth (normalised to 1.0). 

 

The expression levels of lldh, plnEF and plnG when quantified using absolute 

expression were overall quite similar during sessile and planktonic growth, but differed slightly 

for plnEF expression (approx. 0.5 log in copy number difference) (Fig. 3.10A). The relative 

expression levels of the lldh, plnEF and plnG genes are shown in Figure 3.10B. The lldh genes 

were clearly expressed to very similar levels. However, the plnEF and plnG genes appeared to 

be expressed at higher levels during sessile growth on solid medium, when compared to 

planktonic growth in liquid medium. The expression levels of the plnEF and plnG genes, 

however, were three-fold or four-fold higher during sessile growth on solid medium, when 

compared to that in broth, respectively. When taking the standard error into account, which was 

derived from 3 replicate experiments, it spanned in range about 1.5 gene expression folds.  
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Thus, it is doubtful whether the plnEF genes indeed were expressed higher during sessile 

growth on solid medium. Nevertheless, a clear elevation of gene expression was noted for the 

plnG gene expression, which is involved in bacteriocin transport (Diep et al., 1996) (Fig. 3.10B). 

In this case, the transporter gene was relatively three times more expressed when the strain 

was grown under sessile conditions. 

Very similar results of absolute expression were obtained for L. plantarum BFE 5092 

under both growth conditions (Fig. 3.11). In this experiment, the expression of all the plantaricin  
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Figure 3.11  Absolute (A) and relative (B) expression of 16S, lldh, plnEF, plnJK, plnN and plnG 

genes under different growth conditions such as planktonic (yellow bars) and sessile 
(green bars) in L. plantarum strain BFE 5092 16S: 16S rRNA gene used as 
housekeeping gene in relative expression determinations. LLDH: L-lactate 
dehydroganase gene, plnEF: plantaricin EF gene, plnG: plantaricin ABC transporter 
gene, plnJK: plantaricin JK genes, plnN: plantaricin N gene. The reference gene 
expression for relative expression analysis was expression under planktonic growth 
(normalised to 1.0). 

 

genes (i.e., plnEF, plnJK, plnN and plnG) present in this strain were evaluated, as well as the 

expression of the 16S rRNA and lldh genes. When the absolute expression levels were 

determined, again the expression of these genes generally appeared to be very similar under 
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the two growth conditions, with only slight differences in expression levels noticeable for 

example for the plnEF and plnN genes (Fig. 3.11A). When relative expression levels were 

determined and the standard error was taken into account, there was also no obvious difference 

in the expression levels of the plantaricin and lldh genes (Fig. 3.11B) under both growth 

conditions. Indeed the greatest difference noted in expression level was that of the plnJK gene, 

which was only 1.5-fold higher under sessile growth conditions and which is lower than the two-

fold expression required signalling an obvious difference in gene expression.  

 

 

3.7  Growth and gene expression of the L. plantarum BFE 5092 protective 
culture, and challenge tests with foodborne pathogens L. monocytogenes 
and S. enterica serovar Typhimurium on turkey meat at low temperature 
The experiments with the protective culture for biopreservation of turkey meat were 

done using the strain L. plantarum BFE 5092 only, as it was shown that the L. plantarum PCS20 

strain contained a mutated plnEF gene and thus was probably not capable of producing a 

functional two-peptide bacteriocin. In addition, this strain did not show the presence of other 

bacteriocin genes. The turkey meat for these experiments was provided by the designated 

national German partner in the PathogenCombat consortium with whom it was decided by the 

management that our institute should cooperate to test the protective cultures in their product. 

In these studies, the growth of L. plantarum BFE 5092 on turkey meat at low temperature was 

assessed and their expression of bacteriocin and adhesion genes was monitored. Also, the 

inhibitory effect of this protective culture against foodborne pathogens such as L. 

monocytogenes and S. Typhimurium was also assessed. Moreover, this inhibitory activity was 

compared to that of a commercial protective culture, i.e., Leuconostoc carnosum 4010 which is 

supplied commercially for bioprotection by Christian Hansen (Denmark). 

 

3.7.1 Growth of L. plantarum BFE 5092 on turkey meat 
First, we wanted to assess whether L. plantarum BFE 5092 was also capable of 

growing at low temperature on turkey meat. In the previous experiments it was shown that 

growth in MRS broth occurred down to 8°C but it needed to be confirmed that the bacteria 

would also survive and growth on turkey meat at this temperature. To prevent autochthonous 

LAB, which may be present naturally on turkey meat, to interfere with enumeration of the 

protective culture, the turkey meat was sterilized at 10kGy using a linear accelerator, which is 

present at our institute. It could be shown that this irradiation destroyed all background microbial 

populations (results not shown). The growth of L. plantarum BFE 5092 on turkey meat at 8°C is 

shown in Figure 3.12. The L. plantarum BFE 5092 culture was inoculated at approx. 107 CFU/g 

and did not grow well on the turkey meat at 8°C, as the count did eventually increase to only 

approx. 108 CFU/g after 9 days, this implied that the bacteria survived on the meat but were only 
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able to multiply slowly (Fig. 13.12). Interestingly, on non-sterilised meat there appeared to be 

background LAB populations, which increased in number from approx. 104 CFU/g to 109 CFU/g. 

This was a similar number as reached on turkey meat that was not irradiated but inoculated with 

L. plantarum BFE 5092 also at 107 CFU/g. Thus, it could be deduced that this increase in LAB 

numbers on inoculated but non-sterilised turkey meat was due also to autochthonous LAB, 

which clearly appear to be better adapted to this temperature and environment.  
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Figure 3.12 Total LAB log10 CFU/g number of L. plantarum BFE 5092 growing on irradiated (10kGy, 

blue bars) or non-irradiated turkey meat compared (yellow bars) compared to 
background lactic acid bacterial growth on turkey meat left uninoculated (maroon bars) 

 

The development of the pH of the turkey meat inoculated with the protective culture, 

and that of the meat left uninoculated, is shown for the meat during storage at 8°C in Figure 

3.13. The pH of the sterilised meat inoculated with L. plantarum BFE 5092 stayed constant at 

just below pH 6.0, indicating that the bacteria did not acidify the product, and thus also that the 

protective culture did not grow well. In contrast, the pH of the turkey meat stored at 8°C and left 

uninoculated increased to a level of ca. pH 8.0 after 5 days, indicating that bacteria were 

utilizing protein and metabolising this to compounds which increase the pH (e.g. ammonium). 
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Figure 3.13 pH development of sterilized turkey meat inoculated with protective culture L. plantarum 

BFE 5092 (maroon bars) and of non-sterilised turkey meat left uninoculated (blue bars) 

 

3.7.2 Growth of L. plantarum BFE 5092 and expression of bacteriocin genes when co-
inoculated with Salmonella Typhimurium on turkey meat 
The growth of the protective culture L. plantarum BFE 5092 on turkey meat and its 

potential inhibitory activity towards Salmonella Typhimurium was determined by spread plating 

and selective enumeration of LAB on MRS agar and Salmonella on Salmonella/Shigella agar. 

The turkey meat in this experiment was left un-inoculated and non-sterilised as a control, while 

sterilized turkey meat (linear accelerator at 10kGy) was inoculated with either Salmonella 

Typhimurium alone (105 CFU/g), L. plantarum BFE 5092 alone (107 CFU/g) and both S. 

Typhimurium and L. plantarum BFE 5092 at 105 and 107 CFU/g, respectively. Also, non-

irradiated meat was inoculated with both the protective culture and S. Typhimurium at the same 

concentrations as above. The LAB counts determined on MRS agar are shown in Figure 3.14. L. 

plantarum BFE 5092 inoculated onto irradiated turkey meat stored at 8°C showed no growth 

and remained at a mean count of approx 107 CFU/g. In contrast, the LAB on non-sterilised meat 

grew to high numbers, from ca 106 CFU/g to 108 CFU/g. The non-sterilised turkey meat 

inoculated with the protective culture had a higher initial count of 107 CFU/g when compared to 

the non-inoculated, non-sterilised meat, and thus this was due to inoculation with this amount of 

bacteria. The increase in LAB count to 109 in this sample (non-sterilised, inoculated with 

protective culture), however, could not be described as a result of the growth of the protective 

culture, as clearly it did not grow on the sterilised meat, but rather was due to growth of the 

background LAB populations of the meat (Fig. 3.14).  
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Figure 3.14  Numbers (log10 CFU/g) of LAB on turkey meat stored at 8°C determined on MRS agar. 

Turkey meat, non-sterilised with no cultures added, blue bars; non-sterilised meat with 
both protective culture and Salmonella added, maroon bars; sterlised turkey meat with 
both protective culture and Salmonella added, yellow bars; sterilised turkey meat with 
protective culture added, light green bars. Sterilised meat inoculated with Salmonella 
only did not show any growth as this pathogen does not grow on this medium. Counts 
shown are from triplicate determinations and the standard error is indicated.  

 

Salmonella counts were assessed on Salmonella and Shigella agar, and showed that in 

the non-sterilised sample without added bacteria, Salmonella and possibly other bacteria able to 

grow on the Salmonella / Shigella agar were present at a level of 108 CFU/g already on day 0. 

This number increased further to 1010 CFU/g at day 5, after which it decreased to 109 CFU/g on 

day 7 and 9 (Fig. 3.15). It was not possible to distinguish Salmonella strains on the basis of 

colony characteristics on the Salmonella / Shigella medium alone, but it is very possible that 

other Gram-negative bacteria could also have grown. In both the samples sterilised and 

inoculated with only Salmonella, and sterilised and inoculated with both Salmonella and the 

protective culture, the Salmonella counts increased from an initial value of ca. 105 CFU/g to ca. 

107 CFU/g (Fig. 3.15). The L. plantarum protective culture was previously tested for its ability to 

grow on Salmonella / Shigella agar and was incapable to do so (result not shown). Therefore, 

the count of the co-culture of protective culture and Salmonella was due to the presence of 

Salmonella only. The protective culture clearly had no inhibitory effect on the growth of 

Salmonella on the sterilised turkey meat when grown in co-culture, as the number of 

salmonellae was similar, if not somewhat higher on the sterilized turkey meat inoculated with 

both strains, when compared to sterilised turkey meat inoculated only with the Salmonella strain 
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(positive control) (Fig. 3.15). 
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Figure 3.15  Numbers (log10 CFU/g) of Salmonella on turkey meat stored at 8°C determined on 

Salmonella / Shigella agar from turkey meat, non-sterilised with no cultures added, blue 
bars; sterilised meat with both protective culture L. plantarum BFE 5092 and 
Salmonella added, maroon bars; sterlised turkey meat inoculated with Salmonella only, 
yellow bar. Counts shown are from triplicate determinations and the standard error is 
indicated.  

 

3.7.3 Growth of L. plantarum BFE 5092 and expression of bacteriocin genes when co-
inoculated with Listeria monocytogenes EGDe on turkey meat 
The growth of the protective culture L. plantarum BFE 5092 and its potential inhibitory 

activity against the foodborne pathogen L. monocytogenes EGDe on turkey meat was 

determined by spread plating and selective enumeration of LAB on MRS and L. monocytogenes 

on supplemented PALCAM agar. In the above experiment with Salmonella, a storage 

temperature of 8°C was used, and it was seen that the protective culture did not grow well. 

Therefore, in this experiment a slightly higher storage temperature of 10°C was used, which 

was hoped to allow better growth of the L. plantarum BFE 5092 strain. In addition, the 

expression of the plantaricin EF, JK and N genes was also determined from the protective 

culture cells growing on the turkey meat. Contrary to the above experiments with Salmonella, 

the turkey meat could not be sterilised in these experiments with L. monocytogenes as, 

unfortunately, the linear accelerator was damaged and became non-functional. This equipment 

remained non-functional and was subsequently decommissioned, making this convenient 

technique for sterilisation of turkey meat unavailable for further experimentation. The turkey 

meat in this experiment was thus left non-sterilised and un-inoculated as a control, while non-

sterile turkey meat was inoculated with either L. monocytogenes EGDe alone (105 CFU/g), L. 

plantarum BFE 5092 alone (107 CFU/g) or with both L. monocytogenes EGDe and L. plantarum 

BFE 5092 (at 105 and 107 CFU/g, respectively). The LAB counts determined on MRS agar are 
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shown in Figure 3.16. The LAB count in un-inoculated, non-sterilised turkey increased from an 

initial of 106 CFU/g to 109 CFU/g within 8 days storage. Thus, the initial contamination with 

autochthonous LAB again was high and these bacteria were well adapted to grow at low 

temperatures in this environment. The LAB count of the non-sterilised turkey meat inoculated 

with L. plantarum protective culture was higher at 108 CFU/g at day 0, which was a result of the 

inoculation with the protective culture. These counts also increased to a similar level in a similar 

time frame when compared to the non-inoculated control, suggesting again that the growth of 

LAB observed was probably the result of the background, autochthonous populations. 

Unfortunately, since the linear accelerator was decommissioned, there was no possibility of 

monitoring the growth of only the protective culture at 10°C using sterilized turkey meat.  

The un-inoculated turkey meat and the meat inoculated with only the protective culture, 

both showed that listeriae occurred naturally on the turkey meat and grew to levels of approx. 

104 CFU/g after 8 days of storage at 10°C (Fig. 3.16). Clearly, the presence of the protective 

culture L. plantarum BFE 5092 did not have an effect on the growth of autochthonous listeriae. L. 

monocytogenes EGDe grew well from an initial level of ca. 105 CFU/g after inoculation to a high 

number of >108 CFU/g after 8 days, showing that the strain could grow well on this product and 

at the conditions of storage. This pathogen could also reach similar numbers (>108 CFU/g) in 

turkey meat when co-inoculated with the protective culture L. plantarum BFE 5092, indicating 

that this strain was not able to inhibit L. monocytogenes EGDe in this environment at 10°C (Fig. 

3.16).  

The Gram-negative bacteria also grew well from an initial count of 103 CFU/g at day 0 

to 1011 CFU/g on day 8, on non-sterile turkey meat inoculated with both protective culture and L. 

monocytogenes EGDe, or with only L. monocytogenes EGDe. This indicated that, again, the 

protective culture also had no inhibitory effect against Gram-negative spoilage bacteria under 

the conditions of this study (Fig. 3.16).  
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Figure 3.16 Numbers (log10CFU/g) of naturally occurring bacteria on turkey meat (A), on turkey 

meat inoculated with protective culture BFE 5092 (B), on turkey meat inoculated with 
both L. monocytogenes EGDe and L. plantarum BFE 5092 (C) and on turkey meat 
inoculated only with L. monocytogenes EGDe (D). ST1 medium was used for 
enumeration of total of aerobic mesophilic bacteria (yellow bars), MRS for LAB (maroon 
bars), VRBD for enumeration of Enterobacteriaceae (blue bars), Palcam with Listeria 
selective supplement for listeriae (green bars) and malt glucose medium containing 
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antibiotic cocktail for yeasts (dark blue bars). Results are triplicate determinations and 
the standard error is shown.  

 

 Concurrent to determinations of cell counts, the expression of the plnEF, plnJK and 

plnN bacteriocin genes were determined during ‘growth’ of L. plantarum BFE 5092 on the turkey 

meat stored at 10°C in the experiment above. The plnEF genes expression in the co-culture of 

protective strain and pathogen was relatively low at days 0 and 5, and did not differ more than 

one-fold (Fig. 3.17). This relative expression was noticeably higher on day 2, at approximately 

five-fold higher expression of these genes by L. plantarum BFE 5092 inoculated together with 

the pathogen L. monocytogenes EGDe, than L. plantarum BFE 5092 being inoculated on turkey 

meat alone. However, the standard error was noticeably high, indicating quite some variation 

between the triplicate samples. The expression of the plnN gene appeared to be higher at days 

0 and day 2 (2.96 and 1.85-fold expression) when the L. plantarum BFE 5092 strain was 

inoculated together with L. monocytogenes EGDe, as compared to L. plantarum BFE 5092 

being inoculated on turkey meat alone. Again, the standard deviation was quite large and thus it 

could not be ruled out that the expression was quite high especially at  
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Figure 3.17  Relative expression of plnEF (A), plnN (B) and plnJK (C) genes during growth of L. 
plantarum BFE 5092 protective culture on non-sterilised turkey meat (black bars) and of 
the protective culture L. plantarum BFE 5092 growing together with Listeria 
monocytogens EGDe on non-sterilised turkey meat (white bars) The reference gene 
expression for relative expression analysis was expression of the genes on turkey meat 
only inoculated with L. plantarum BFE 5092 (normalised to 1.0). 

 
day 0. At day 5 there was no noticeable difference in expression, as the difference in 

expression levels was less than one-fold. Expression of the plnJK genes appeared to be similar 

throughout the incubation period, as the difference in the expression levels of this gene between 
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the experiments with L. plantarum protective culture alone, or that of L. plantarum BFE 5092 

together with L. monocytogenes EGDe on turkey meat, did not differ more than one-fold (Fig. 

3.17). 

 

3.8  Growth of the Leuconostoc carnosum 4010 protective culture and 
challenge tests with foodborne pathogen S. enterica serovar Typhimurium 
on turkey meat at low temperature 

 

The L. plantarum strain BFE 5092 chosen by the consortium as protective culture for 

use in turkey meat biopreservation, as seen above, did not grow well at low temperatures. Also 

as seen above, the effect on the protective culture on inhibition of the foodborne pathogens L. 

monocytogenes EGDe and S. Typhimurium on turkey meat was negligible. For this reason, the 

commercial protective culture Leuconostoc carnosum 4010, marketed by Christian Hansen 

(Denmark), which is known to grow well at low temperature and produce two bacteriocins, 

leucocin A and leucocin C (Jacobsen et al., 2003), was used in biopreservation of turkey meat 

to determine whether the lack of success observed with the L. plantarum strain BFE 5092 was 

due to its failure to grow well at low temperature. These experiments were done when it was still 

possible to sterilize turkey meat with the linear accelerator, and the turkey meat was prepared 

as for the other experiments. The L. carnosum 4010 protective culture was inoculated at 107 

CFU/g while the pathogen S. Typhimurium was inoculated at a level of 107 CFU/g. For this 

experiment, the gene expression of the leucocin genes was not determined, as these 

bacteriocins are similar to leucocin A and leucocin C but their genes have never been fully 

elucidated and no primers for amplifying their genes or for use in qRT-PCR are available. 

 Indeed, the L. carnosum strain 4010 showed good growth on sterilized turkey meat at 

8°C growing from an initial of 107 CFU/g at day 0 to approx. 1010 CFU/g at days 5 and 8, as 

determined from the LAB count on MRS agar (Fig. 3.18). The LAB counts from sterilised and 

non-sterilised turkey meat were very similar, indicating that the majority of LAB growing on the 

non-sterilised turkey meats were the protective culture. The non-sterilised turkey meat left un-

inoculated showed that the autochthonous LAB on the turkey meat occurred at a level of 104 

CFU/g on day 0 and increased to only 108 CFU/g on day 8 (Fig. 3.18).  
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Figure 3.18  Numbers (log10 CFU/g) of LAB on turkey meat stored at 8°C determined on MRS agar. 
Sterilised turkey meat with Leuconostoc carnosum 4010, blue bars; sterilised meat with 
both protective culture and Salmonella added, maroon bars; non-sterlised turkey meat 
without inoculum, light green bars; non-sterilised turkey meat with both protective 
culture and Salmonella, violet bars. Sterilised meat inoculated with Salmonella only did 
not show any growth as this pathogen does not grow on this MRS medium. Counts 
shown are from triplicate determinations and the standard error is indicated.  

 

S. Typhimurium again showed good growth on sterilized turkey meat when inoculated 

at a level of 107 CFU/g growing to approx. 109 CFU/g (Fig. 3.19). On both sterilized and non-

sterilised turkey meat, Salmonella (inoculated together with L. carnosum 4010 on non-sterilised 

meat) grew to a level of 1010 CFU/g. This indicated that firstly, the turkey meat contained 

autochthonous Gram-negative bacteria which could grow on Salmonella / Shigella agar, and 

this resulted in a higher growth when compared to sterilised meat inoculated with only S. 

Typhimurium. Secondly, the protective culture L. carnosum 4010 obviously did not have a major 

effect on the growth of Salmonella or background Gram-negative bacteria, as the level of growth 

detected on this agar was the same as on agar inoculated with S. Typhimurium alone up to day 

5, when the Salmonella count on Salmonella / Shigella agar reached approx. between 107 and 

108 CFU/g (Fig. 3.19). After day 5, there was a ca 1 log10 CFU/g difference, indicating that the 

Salmonella count on the turkey meat inoculated with only Salmonella was ca. 1 log higher than 

the meat inoculated with both Salmonella and L. carnosum 4010 (Fig. 3.19).   
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Figure 3.19: Numbers (log10 CFU/g) of Salmonella on turkey meat stored at 8°C determined on 

Salmonella / Shigella agar. Sterilised meat with both protective culture and Salmonella 
added, maroon bars; sterilised meat with Salmonella added, light yellow bars; non-
sterilised turkey meat without inoculum, light green bars; non-sterilised turkey meat 
with both protective culture and Salmonella, violet bars. Counts shown are from 
triplicate determinations and the standard error is indicated. 

 

 

 

The Salmonella count at day 8 was approx. 109 CFU/g. This difference in the 

Salmonella count occurring at day 8 was a clear difference, but occurred quite late in the 

storage period, i.e. at the last day at which the product was already terminally spoilt. Generally 

for all turkey experiments (at both 8 and 10°C) the turkey meat became noticeably spoiled (off 

odour and slimy appearance) on day 5 and later in the storage period. This noticeable spoilage 

was paralleled by a rise in pH (see Fig. 3.13) and an increase in microbiological counts, 

especially that of Gram-negative bacteria determined on either violet red bile dextrose (VRBD) 

or Salmonella / Shigella medium (Figs. 3.15, 3.16 and 3.19).  
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CHAPTER 4.0 
DISCUSSION AND CONCLUSION 
 

n a previous study, potentially probiotic LAB were isolated from ‘kule naoto’ a Kenyan 

fermented milk product, and from homemade Slovenian cheese. The probiotic 

characteristics of L. plantarum strain BFE 5092 were investigated in depth (Mathara et al., 

2004; Vizoso Pinto et al., 2006, 2007, 2009) L. plantarum is especially interesting in that it 

occurs in a wide variety of environmental niches, including plant-based, dairy and meat 

fermentations (Stiles and Holzapfel, 1997), African traditional fermented milks (Beukes et al., 

2001; Mathara et al., 2004), and is a normal inhabitant of the human gastrointestinal tract 

(Tannock, 1999; Claesson et al., 2007). Its wide distribution and adaptability to different 

conditions prevailing in these environments is probably based on its large genome, which 

contains genes for utilization and transport (including 25 complete PEP-PTS sugar transport 

systems) of a wide variety of sugars and stress-related proteins, localised in a region close to 

the origin of replication, which has been termed a ‘lifestyle island’ and which probably arose 

from horizontal gene transfer events (Kleerebezem et al., 2003). Based on the versatility of 

these strains, their antimicrobial activity as determined in a high throughput screening assay by 

Danisco, and their known high capacity to colonise different environmental niches, the 

PathogenCombat consortium specifically selected two L. plantarum strains for development as 

possible functional strains in the PathogenCombat project. The fact that these strains showed 

antimicrobial activity was a decisive criterion for their use as protective cultures. Moreover, the 

well-described probiotic characteristics of L. plantarum BFE 5092 could make this strain 

interesting for use in foods which would not be heated, as the bacteria could play a dual role, 

i.e., as a protective culture in inhibiting food borne pathogenic bacteria in food and in delaying 

spoilage, and as probiotics after being ingested by the consumer. The PathogenCombat 

consortium was a very large consortium (more than 40 members) of many European nations, 

and the strains were targeted for development in different food products. This study was done 

together with a German national partner that was involved in production of raw turkey meat 

products. Thus, the strains in this study were investigated mainly for their role as a protective 

culture in the biopreservation of meat. As this raw meat would be heated before consumption, 

the probiotic aspect did not play a role in this study. However, it should be emphasized that it 

could play a role in biopreservation of other products such as cheese or fermented vegetables, 

and to investigate this was the objective of other study partners associated also with 

PathogenCombat.  

I 

 

4.1 Safety of protective L. plantarum BFE 5092 and PCS20 strains for 
biopreservation of turkey meat 
Bacteria used as starter cultures for the production of foods, as protective cultures or as 
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probiotics could possibly contain antibiotic resistance genes (Mathur und Singh, 2005). In the 

past years, studies on the selection for and dissemination of antibiotic resistances have focused 

mainly on clinically relevant bacterial species. More recently, it was speculated that food 

bacteria may act as reservoirs of antibiotic resistance genes (Klein et al., 1998; Franz et al., 

2005). Fermented foods, or other foods with intentionally added bacteria such as probiotics or 

starter cultures, therefore may be important vehicles for delivery of enormous amounts of living 

bacteria into the human body. These may carry transferable antibiotic resistances, which might 

be transferred to commensal or pathogenic bacteria. Recently, the European Food Safety 

Authority (EFSA) has taken responsibility to launch the European initiative towards a ‘Qualified 

Presumption of Safety‘ (QPS) concept which, similar to the GRAS system in the USA, is aimed 

to allow strains with established history and safety status to enter the market without extensive 

testing requirements (EFSA, 2005). The presence of transmissible antibiotic resistance markers 

in the evaluation of strains thus is an important safety criterion and strains harbouring antibiotic 

resistances would not be regarded as safe. For this reason, the incidence of antibiotic 

resistances was determined for the L. plantarum strains BFE 5092 and PCS20 in this study, as 

these strains were selected by the PathogenCombat consortium for possible development as 

protective cultures for human food production.  

 Lactobacilli, leuconostocs and lactococci are generally susceptible to antibiotics which 

inhibit protein synthesis such as chloramphenicol, erythromycin and tetracycline, but more 

resistant towards the aminoglycosides such as neomycin, kanamycin, streptomycin and 

gentamicin (Danielsen and Wind, 2003; Gevers et al., 2003a, b; Katla et al., 2001, 2002; 

Temmerman et al., 2003; Delgado et al., 2005; Hummel et al., 2007; Ammor et al., 2007). The 

results of this study confirm this, as no resistances towards chloramphenicol, erythromycin and 

tetracycline could be determined, while the strains showed elevated resistance towards the 

aminoglycoside streptomycin. Specific strains of Lactobacillus, Lactococcus lactis, and 

Pediococcus have been shown to be highly resistant towards chloramphenicol, clindamycin, 

streptomycin, erythromycin and tetracycline (Temmerman et al., 2003; Ammor et al., 2007; 

Klare et al., 2007; Florez et al., 2008). This resistance has in many cases been attributed to the 

presence of resistance genes (Stroman et al., 2003; Florez et al., 2006; Ammor et al., 2007, 

2008), but this was not the case in this study.  

 The two strains did, however, show a high vancomycin resistance. However, the 

leuconostocs, pediococci and several Lactobacillus spp., especially L. rhamnosus, L. paracasei, 

L. plantarum and L. reuteri, seem to be intrinsically resistant towards this antibiotic, whereas 

most Lactococcus and lactobacilli belonging to the L. acidophilus group appear to be sensitive 

(Danielson and Wind, 2003; Delgado et al., 2005; Ammor et al., 2007; Klare et al., 2007). The 

resistance of Lactobacillus, Pediococcus and Leuconostoc spp. to vancomycin was determined 

to be due to the presence of D-ala-D-lactate in their peptidoglycan rather than the D-ala-D-ala 

dipeptide (Klein et al., 2000). The observed high resistance to vancomycin for L. plantarum 
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strains BFE 5092 and PCS20 in this study thus appears to only reflect an intrinsic resistance 

and not a resistance based on a transferable trait. Lactobacilli are usually resistant to most 

nucleic acid synthesis inhibitors such as enoxacin, ciprofloxacin, perfloxacin, norfloxacin, 

nalidixic acid, sulphamethoxazole, trimethoprim and metrodinazole (Ammor et al., 2007) and 

such resistances appear to be intrinsic rather than acquired. Thus the high ciprofloxacin 

resistance was probably also an intrinsic resistance. Overall, therefore, the L. plantarum BFE 

5092 and PCS20 strains in this study did not give cause to concern regarding antibiotic 

resistances which was considered as a prerequisite for obtaining QPS status and for further 

development as a protective culture. 

 

4.2 Bacteriocin production by L. plantarum strains BFE 5092 and PCS20 and 
genetic characterisation of the bacteriocin loci 
Many L. plantarum strains isolated from different environments are known to produce 

bacteriocin, often more than one (Ben Omar et al., 2008; Knoll et al., 2008; Rojo-Bezares et al., 

2008; Settani et al., 2008; Diep et al., 2009; Sáenz et al., 2009). Bacteriocin production in this 

species may partly contribute to its success in colonizing a wide variety of niches such as 

fermenting wine and olives, fermented cheeses, vegetables and sausages, as well as the 

human saliva and gastrointestinal tract (Ehrmann, 2000; Holo et al., 2001; Maldonado et al., 

2003; Ben Omar et al., 2008; Knoll et al., 2008; Rojo-Bezares et al., 2008; Trmcić et al., 2008; 

Müller et al., 2009; Diep et al., 2009; Sáenz et al., 2009). The genetic determinants for 

bacteriocins in most investigated L. plantarum strains, such as C11 (Diep et al., 1996), LMG 

2379 (Holo et al., 2001), NC8 (Maldonado et al., 2003), J23 (Rojo-Bezares et al., 2008) and J51 

(Navarro et al., 2008) are generally chromosomally encoded, and are organized in gene 

clusters. This was also true for the strains BFE 5092 and strain PCS20 in this study. The 

bacteriocin genes in both strains were chromosomally located, but PFGE analysis followed by 

hybridisation with a plnEF probe, showed that the genes occurred on different regions of the 

respective chromosomes. Indeed, this confirms results by Molenaar et al. (2005) who explored 

genome diversity of L. plantarum strains using microarrays and showed that regions encoding 

plantaricin biosynthesis varied between strains. 

PCR screening for various known plantaricin genes showed that the L. plantarum strain 

BFE 5092 contained the genes for plantaricins EF, JK and N, while strain PCS20 was only 

positive for the plnEF genes. Both strains were negative for plantaricin genes such as 

plantaricin 423, 1.25β, NC8, W and S. The presence of genes encoding plantaricin S and 

plantaricin W are relatively rare among bacteriocinogenic L. plantarum strains, and these two 

bacteriocins were found in strains from olive and wine fermentation, respectively (Jimenez-Diaz 

et al., 1993; Holo et al., 2001).  

The common feature of most plantaricin loci appears to be the presence of 1) a two-

component regulatory system consisting of a membrane bound histidine protein kinase and a 
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cytoplasmic response regulator, 2) an inducing peptide, 3) a dedicated ABC transport system 

and 4) a number of adjacent bacteriocin-related peptides. The plantaricin loci of different 

bacteriocinogenic L. plantarum strains thus seem to be mosaic like structures with different 

modules and reorganizations presenting a high plasticity (Sáenz et al., 2009). In an analysis of 

the presence and arrangement of 27 plantaricin-related genes among 33 bacteriocinogenic L. 

plantarum strains from grape must, Sáenz et al. (2009) described seven genetic groups which 

they termed plantaritypes which together contained 18 subgroups. The most common group 

encountered, group 1, contained strains C11 and WCFS1, with strain C11 described as the ‘type 

strain’ of this group (Sáenz et al., 2009). This group contains genes of the plnABCD regulatory 

system, as well as the plnMNO genes, but shows slight differences in the presence of some of 

the bacteriocin peptide genes, which allows strain classification within six subgroups. Both L. 

plantarum strains C11 and WCFS1 grouped into subgroup 1.1, as these have similar plantaricin 

gene combinations and a similar gene arrangement. The bacteriocin locus of L. plantarum strain 

BFE 5092 determined in this study could clearly be described as also belonging to plantaritype 

1 (subgroup 1.1) as the gene combinations and arrangement were similar to those of strains 

C11 and WCFS1 (Figs. 1.6 & 3.6).  

The plantaricin gene locus of L. plantarum strain PCS20, however, was unusual in that 

only the plnEF genes could be PCR amplified and that no PCR product was obtained for plnJK 

and plnN. Sequencing of the plantaricin locus of strain PCS20 showed that the plnEFI and 

plnGH genes were present. This arrangement, of absence of plnJK and plnMNO genes, 

presence of plnEFI genes and combination with plNC8HK and plnD genes is unusual and does 

not correspond to any of the plantaritypes as described by Sáenz et al. (2009). Furthermore, the 

transposon insertion into the plNC8HK gene clearly disrupted the operon and the plNC8IF gene 

could not be detected upstream of the transposon. Diep et al. (2009), when comparing the 

mosaic loci of plantaricin genes of different L. plantarum strains, concluded that the organization 

of the pln loci appeared to be bi-faceted, with one part (plnEFI and the transport operon 

plnGHSTUVW) being highly conserved, while the less conserved part includes the regulatory 

operon, and two or three other bacteriocin operons. Indeed, this ‘minimalistic’ plantaricin locus 

of strain PCS20 seems to confirm this, as the conserved genes plnEFI and plnGH are present, 

while the less conserved genes concerned with regulation appear to be disrupted and other 

bacteriocin operons are absent. 

 The nucleotide sequence analysis of the plnEFI operon revealed an interesting and 

unique gene sequence which translated resulted in a peptide which deviated significantly from 

the conserved PlnE amino acid sequence. Thus, a peptide results which theoretically is 2 amino 

acids shorter and differs by 24 amino acids while having 30 amino acids identical to that of PlnE 

described for strains WCFS1 and C11. This implies that there is a substantial difference (approx. 

46%) to the regular PlnE peptide amino acid sequence. The RT-PCR results in this study clearly 

showed that the mutations which occur within the plnE gene sequence clearly do not affect 
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transcription of the plnEF genes. Nevertheless, it can be assumed that if the peptide is 

translated, a non-functional two-peptide bacteriocin would be produced. The reasons for this are 

two-fold. Firstly, the first deletion occurs in the double-glycine-type N-terminal extension 

sequence for the bacteriocin shifting the sequence out of frame. Thus, the double-glycines 

which serves as a recognition signal for the proteinase part of the dedicated ABC transporter 

(Håvarstein et al., 1995) and which are located at positions -2 and -1 relative to the cleavage 

site, are not encoded. In the PlnE peptides of L. plantarum strains C11 and WCFS1 these 

double glycines occur at positions 22 and 23 of the prepeptide (Fig. 3.6). Thus, it is doubtful 

whether the PCS20 mutated PlnE would be correctly processed and transported out of the cell 

by the ABC transporter. Secondly, recent three-dimensional structure studies on the PlnE two-

peptide bacteriocin showed that PlnE has two GxxxG motifs, one at residues 5 to 9 and one at 

residues 30 to 40 of the mature peptide, which are thought to interact with the PlnF peptide 

through helix-helix interactions (Oppegård et al., 2007; Fimland et al., 2008). As a result of the 

first deletion in the plnE gene, the first of these two motifs is missing and the amino acid 

sequence in this region is significantly altered.  

 The insertion of the transposon into the histidine protein kinase gene at the site 

encoding amino acid 172 in the corresponding plNC8HK gene resulted in a gene disruption, and 

therefore the production of a functional histidine protein kinase is also unlikely. Transposon 

insertion into a plantaricin locus was previously described for L. plantarum strain V90 (Diep et 

al., 2009), in which a transposon, which encodes a transposase of the so-called MULE 

superfamily, inserted just upstream of the plnQ gene (Diep et al., 2009) into a direct repeat 

target sequence. This target sequence was also found downstream of the transposon in the 

plNC8HK gene in PCS20. Speculatively, the transposon insertion in the plNC8HK-like gene in L. 

plantarum PCS20 possibly led to a disruption in bacteriocin regulation and activity, this selecting 

against the bacteriocin locus. The mutations in the plnE gene furthermore suggest that this 

bacteriocin locus in this strain is getting selected against and, therefore, appears to be 

becoming redundant.  

When the strains were selected by the PathogenCombat consortium, nothing was known 

about which bacteriocins, if any, these strains produced. In this study, the detailed genetic 

analysis was successful in determining which plantaricin genes were present. Furthermore, the 

detailed analyses of the plantaricin gene locus of L. plantarum PCS20 also clearly showed 

mutations, which pointed towards a highly possible defect in bacteriocin production. For this 

reason, it was decided not to continue with the study of L. plantarum PCS 20 as a protective 

culture in the biopreservation of turkey meat, and L. plantarum BFE 5092 was the culture of 

choice for these studies, as this strain showed an intact bacteriocin locus. Moreover, it appeared 

to encode at least three different plantaricins, i.e., the two component plantaricins EF and JK, as 

well as the linear plantaricin peptide plantaricin N. 
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4.3 L. plantarum BFE 5092 as a protective culture in the biopreservation of 

raw turkey meat 
Lactobacilli are extremely fastidious organisms, adapted to complex organic substrates 

such as carbohydrate for energy source, amino acid, and vitamins (Elli et al., 2000). The 

lactobacilli grow best in slightly acidic environments with an initial pH of 6.4-5.4 and the growth 

ceases when pH 3.6-4.0 is reached. Also, most lactobacilli grow best at mesophilic 

temperatures with an upper limit of around 40°C and some can grow below 15°C or even below 

5°C. Obviously, the growth temperature has a great influence on the production kinetics of 

secondary metabolites. Maximum bacteriocin production is well known to occur at the optimum 

growth temperature of the bacterial strain (Leroy and De Vuyst, 1999). Clearly, different LAB 

grow in quite diverse environments and are adapted to very different environmental conditions 

such as temperature and pH. Leuconostoc, Weissella and Carnobacterium species, together 

with certain Lactobacillus spp. such as L. sakei and L. curvatus, for example, are adapted to 

grow in meats which are stored at low temperature and thus have a low growth optimum 

temperature between 20 and 30°C (Holzapfel et al., 2005; Hammes and Hertel, 2009). 

Therefore, bacteriocin production by these strains also usually occurs at a maximum at lower 

environmental temperatures. For example, bacteriocin production by L. mesenteroides E131, L. 

mesenteroides L124 and L. curvatus L442 was at an optimum at 25°C (Mataragas et al., 2004; 

Drosinos et al., 2005) Lactobacillus plantarum, on the other hand, grows at an optimum 

temperature of 30°C. Similarly, bacteriocin production by Carnobacterium piscicolin UAL26 

isolated from meat was only produced at temperatures between 1 and 16°C, with a maximum at 

10-16°C (Gursky et al., 2006). The protective culture Leuconostoc carnosum strain 4010 was 

shown to be able to produce bacteriocin even at the low temperature of 5°C (Budde et al., 2003).  

Due to their higher growth optimum temperature, it was not clear at which lower limit 

bacteriocin production would still occur in the L. plantarum strains in this study. For this reason, 

bacteriocin production was studied at both the physiological as well as the genetic level at 

different low temperatures. It could thus be shown that the bacteriocin production, as 

determined by the deferred inhibition assay, occurred down to the lower growth limit of L. 

plantarum, i.e. 8°C. However, the inhibition zones detected were decreasing with lower 

temperature, indicating a decrease in antimicrobial activity. As L. plantarum also produces 

organic acids which can also play a role in the production of an inhibition zone, quantitative 

PCR was used to measure expression of the bacteriocin genes as a means to determine 

whether bacteriocin production would still occur at low temperatures. This was the case, as 

using qRT-PCR it could be established that the plnEF and the plnG genes were being 

expressed at a temperature as low as 8°C. Nevertheless, the growth of the microorganisms at 

the lower growth limit of 8°C was also noted to be diminished and the gene expression was 

slightly lower, although not more than one-fold lower (Fig. 3.9). When storing fresh meats, the 

temperature should be as low as possible. The results, however, suggested that below 8°C, 



DISCUSSION AND CONCLUSION 70
growth of L. plantarum BFE 5092 would probably not occur, and therefore there would also be 

no bacteriocin production below 8°C. Even at 8°C it was doubtful that bacteriocin would be 

produced in sufficient amounts or that the protective culture would establish itself as a 

predominant strain. Thus, we also used a slightly higher temperature of 10°C, which may occur 

in household refrigerators, although this would already indicate a temperature abuse. Taken 

together, these facts already indicated that the L. plantarum BFE 5092 strain would not be well 

suited as a protective culture for raw poultry meat. Nevertheless, the PathogenCombat 

management insisted on testing the use of this strain for biopreservation of turkey meat, as well 

as other food preservation purposes, despite misgivings to its effectiveness from this study.  

A further complication may be that plantaricin production is a cell-density, regulated trait. 

The gene locus of L. plantarum BFE 5092 clearly showed all the genes associated with 

bacteriocin regulation (Fig. 3.7). As production of the bacteriocin thus is cell density dependant, 

these bacteria were inoculated in this study at high cell concentration (107 CFU/g) so that 

bacteriocin production would occur. Bacteriocin production may, however, also be dependant 

on whether bacteria are growing in liquid medium (planktonic growth) or on solid medium 

(sessile growth). Maldonado et al. (2003, 2004) showed that L. plantarum NC8 is unable to 

produce bacteriocin when inoculated as a pure culture in liquid medium regardless of the 

inoculum size and growth conditions. Thus, we tested in our study wherther bacteriocin 

production would occur under both planktonic and liquid growth conditions. This also would 

yield data on whether the strain would produce bacteriocin when growing on a turkey meat 

surface.  

Clearly, our quantitative expression analysis results suggested that under both liquid 

and solid medium growth conditions, the L. plantarum bacteriocin genes were being expressed 

about equally well (Figs. 3.10 & 3.11). Interestingly, for L. plantarum strain PCS20 the plnG 

gene, which encodes the bacteriocin dedicated ABC transporter, appeared to be higher 

expressed on solid medium when compared to liquid medium. The L. plantarum PCS20 strain 

also contains bacteriocin regulatory genes (although incomplete) similar to the L. plantarum 

NC8 strain used in the studies of Maldonado et al. (2003, 2004). Speculatively, the inability of 

the L. plantarum strain NC8 to produce bacteriocin in liquid thus may be a result of the 

interaction of the response regulator with the promoter of the transport operon. This was never 

investigated by Maldonado et al. (2003, 2004) and would require further investigation. 

Unfortunately strain NC8 was not available in our study to investigate this further. The results of 

this study thus suggested that bacteriocin production by L. plantarum BFE 5092 at low 

temperatures of 8°C (or 10°C) would be possible, and that bacteriocin would be produced both 

under liquid as well as sessile growth conditions. Furthermore, as L. plantarum PCS20 

contained a mutated plantaricin E gene and no further genes involved in bacteriocin production 

could be detected, it was decided to test the biopreservative activity of the L. plantarum strain 

on turkey meat only with L. plantarum BFE 5092. 
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 The biopreservative potential of L. plantarum BFE 5092 was tested with turkey meat 

and using Salmonella Typhimurium or L. monocytogenes as pathogens which are typical for this 

type of product. The pathogens were inoculated at dosages which corresponded to their 

infective dose. The inoculation level chosen for the pathogens was considered higher than 

natural contamination, but this was done deliberately in order to be able to determine an 

inhibitory effect resulting from the use of the protective culture. Our results clearly showed that 

the ‘protective’ culture had no effect, i.e. it was unable to inhibit either Salmonella Typhimurium 

or L. monocytogenes on aerobical stored, raw turkey meat under the conditions of this study. 

This was expected for Salmonella as bacteriocins generally are not active towards Gram-

negative bacteria. This is because Gram-negative bacteria have a second cell membrane which 

contains a lipopolysaccharide layer in the outer leaflet of the outer membrane, which 

bacteriocins cannot penetrate. 

 

Bacteriocin producing LAB have been used with varying success in biopreservation of 

raw meat products. Skyttä et al (1991) noted a strong inhibitory effect of bacteriocin-producing 

Pediococcus strains against Yersinia enterocolitica and L. monocytogenes in minced beef. 

Winkowski et al. (1993) and Leisner et al. (1996) also could show good inhibition of L. 

monocytogenes or spoilage L. sakei strains in raw beef, respectively. When a bacteriocin-

producing L. sakei strain was used as protective culture on chicken breast or mincer raw meat, 

Hugas et al. (1998) determined a 2.5 to 3 log10 reduction in numbers of co-inoculated Listeria 

innocua. On the other hand, Dortu et al. (2008) showed that bacteriocin-producing L. sakei and 

Lactobacillus curvatus strains could inhibit the growth of L. monocytogenes in raw beef, but not 

on raw chicken breast, even though the experiments were done using the same levels of 

inoculation of protective cultures and pathogen. These results were similar, therefore, to our 

study, even though the bacteriocin-producing L. sakei and L. curvatus used by Dortu et al. 

(2008) are probably better adapted to growth and bacteriocin production at low temperatures, 

as they are typically associated with meat products.   

 Dortu et al. (2008) also noted that under the conditions of their study, the bacteriocins 

produced did not seem to have noticeable activity, and they hypothesised that this could be due 

to either the absence of production of bacteriocin in the poultry meat, to its inactivation through 

binding to food ingredient, or possibly due to the activity of endogenous protease. Such 

explanations have been previously put forward for failure to see bacteriocin activity in food 

products (Aasen et al., 2003; Katla et al., 2002; Galvez et al., 2007; Katikou et al., 2005; 

Vermeiren et al. 2006a, b). Apart from the fact that the ‘protective’ L. plantarum BFE 5092 

culture did not grow well at 8 or 10°C in our study, and hence probably was not a good 

competitor in this environment, the noted absence of any inhibitory activity could speculatively 

also have been due to two other factors. Firstly, the pH of the turkey breast meat was found to 

increase to levels above neutral after 2 days. This was probably a result of the fact that Gram-
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negative bacteria were clearly highly competitive in this environment, grew to high levels and 

probably metabolised amino acids, liberating ammonium and thus increasing the pH. 

Psychrotrophic Pseudomonas spp. (especially the non-fluorescent group II Pseudomonas i.e., P. 

fragi and P. lundensis) are the dominant and metabolically most significant spoilage organisms 

of raw poultry meat (McMeekin, 1975; Balamatsia et al., 2006; Arnaut-Rollier, 1999; Charles et 

al., 2006). These dominant Pseudomonas spp. demonstrate a primary glycolytic phase of 

growth, where the metabolism of glucose occurs. This is followed by a secondary metabolic 

phase, where amino acids and lactate are degraded and ammonium is liberated, leading to a 

rise in pH. After these low molecular weight compounds become metabolised, these bacteria 

can synthesize and secrete extracellular proteinases, which degrade the muscle protein again 

to amino acids and ammonium (Greer, 1989). 

 Thus, even though bacteriocin may have been produced by the ‘protective’ culture L. 

plantarum BFE 5092 on turkey meat, it might not have resulted in antimicrobial activity as 

bacteriocins, are active in the acidic range at pH 5.0 or below, but not in the neutral or alkaline 

range (Messens and de Vuyst, 2002). Furthermore, the bacteriocins may have become 

degraded by extracellular proteinases of the naturally occurring, Gram-negative spoilage 

association. Lastly, the Gram-negative spoilage bacteria were also better adapted to the 

substrate, and showed a much quicker growth than the ‘protective’ culture, so that even a 

possible acid inhibition was not possible. Thus it could be concluded, that although the L. 

plantarum BFE 5092 strain possessed at least 3 bacteriocin systems, which were active and 

expressed at low temperature and during sessile growth on turkey meat, this strain was 

unsuitable for biopreservation of this meat product, most probably as a consequence of its low 

growth capability at low temperatures and its failure to compete in this environment. Possible 

inactivation of its bacteriocins by proteases from Gram-negative bacteria, or inactivity of 

bacteriocins at high pH could also have contributed to this failure to inhibit foodborne pathogens. 

 To determine whether the pH or possible inactivation by proteases could explain the 

inability of the protective L. plantarum BFE 5092 culture to inhibit pathogens, a protective control 

strain, which is commercially used for biopreservation of meats, was also used in our 

experiments. Leuconostoc carnosum strain 4010 (Christian Hansen) is known to grow well and 

to produce bacteriocins at low temperatures (Budde et al., 2003). Indeed, this strain also 

showed good growth at 8°C in our study, but was also not able to inhibit the growth of the 

background bacterial populations.  

For future development, the L. plantarum BFE 5092 strain might still make an excellent 

multifunctional strain in the biopreservation of other food commodities such as fermented milk 

products (in the manufacture of yoghurt or cheese, for example). The strain could also possibly 

be considered as multifunctional, as it could serve not only as a protective culture in these food 

commodities, i.e., for the inhibition of foodborne pathogens such as Listeria, but when ingested 

it could also have a potential probiotic activity. Thus, although this strain was unsuitable for the 
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type of product used in this study, it may well be successful for biopreservation of other food 

commodities, which are produced and stored under conditions that may be better suited for 

growth. This possibility, as well as its previously determined probiotic potential, could not be 

further investigated in this study under the framework of the PathogenCombat project, but would 

make interesting future research. 
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