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Introduction






Introduction

General relativity and quantum mechanics both describe nature remarkably well.
The two theories, however, cannot be unified thus far. In this thesis, we follow
Wheeler, who argued that at scales comparable to the Planck length of approxi-
mately 1.6 x 107> m smooth spacetime becomes a spacetime foam instead. The
idea is that quantum mechanical fluctuations in the curvature of spacetime are tak-
ing place constantly and, consequently, spacetime can no longer be considered to be
smooth. If even the topology of spacetime fluctuates, regions with nontrivial topol-
ogy (such as wormholes) could be constantly created and destroyed. Wheeler coined
the word spacetime foam for this particular spacetime structure at the Planck scale.

We discuss some general aspects of spacetime foam in Part II. Chapter 1 presents
Wheeler’s argument [1] for the existence of a spacetime foam. Although a direct
probing of physics at the Planck length seems impossible, in Chapter 2 we review
how data on cosmic rays can be used to place tight bounds on spacetime foam
parameters.

In Part III we discuss two types of spacetimes with nontrivial topology. In partic-
ular, we investigate if and how these spacetimes arise as solutions to Einstein’s field
equations. We start in Chapter 4 by reviewing spacetimes that contain wormholes.
As was discovered by Morris and Thorne [2], the field equations of general relativity
do indeed have wormhole solutions.

As a second type of nontrivial spacetime topology we consider spacetime defects.
Such a defect “disturbs” the otherwise smooth spacetime, similar to a dislocation
in an otherwise regular crystal. In the remainder of Part III, we focus on one
particular defect, which is created from smooth Minkowski spacetime by a “surgery”
procedure. The precise construction is given in Chapter 5. There, we also show
that the resulting space has the same topological properties as SO(3), the group
of rotations in three dimensions. To obtain a spacetime with such a defect we are
forced to introduce a matter field. Since the matter field must be compatible with
the topology of the spacetime, we introduce an SO(3)-valued scalar field in Chapter
6. As the field’s Lagrangian we choose that of a Skyrme model [3, 4]. We first
solve the field equation for two kinds of fixed background metric in Chapter 7. We
then present our numerical results for the complete Einstein-Skyrme equations in
Chapter 8. It turns out that the spacetime obtained this way has a singular Ricci
scalar curvature. Therefore, Chapter 9 reviews two singularity theorems by Gannon
[5] and Friedman, Schleich, and Witt [6]. These theorems relate the singularity to
the nontrivial spacetime topology and the matter energy density. The only way to
circumvent these theorems is to allow for a negative energy density. We discuss how
the model can be modified to achieve this.

In Part IV we discuss how microscopic spacetime defects modify the macroscopic
dispersion relations of electromagnetic waves and Dirac fermions. Following the work
of Bernadotte and Klinkhamer [7], in Chapter 11 we show that the presence of a
microscopic defect leads to boundary conditions for electromagnetic waves and Dirac
fermions. To satisfy these conditions correction fields have to be introduced. How
the correction fields lead to a modified dispersion relation is discussed in Chapter
12. We apply this procedure for two spherical defect models in Chapters 13 and 14.



Introduction

The last kind of defect, discussed in Chapter 15, is an example of a nonorientable
spacetime.
Part V summarizes our results.
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General Aspects of Spacetime Foam






Motivation

The two major theories of the last century, quantum mechanics and general rela-
tivity, both describe nature remarkably well in their respective ranges of validity.
Quantum mechanics successfully describes experiments from the molecular scale
down to sub-proton distances. General relativity correctly describes phenomena
from mm-scale laboratory experiments all the way up to cosmic distances. Even
though the two theories generally work on such vastly different scales there are sit-
uations where both theories have to be taken into account. Such situations occur at
the big bang and at the final state of the gravitational collapse of a star to a black
hole. In these situations matter is compressed to such small volumes that quantum
mechanics must ordinarily be taken into account. The mass of the amount of matter
involved is so much that gravity cannot be ignored either, and a unified treatment
of quantum mechanics and general relativity becomes necessary.

However, the unification of both theories has proven to be surprisingly difficult.
The two most popular approaches, superstring theory and loop quantum gravity,
have not yet yielded the desired result. One of the many problems that occur when
one tries to merge quantum mechanics and general relativity is the following. When
a physical system is confined in a small region, the uncertainty principle of quantum
mechanics dictates a large uncertainty in momentum. This large momentum uncer-
tainty translates into a large uncertainty in energy. An energy uncertainty causes
an uncertainty in spacetime curvature via Einstein’s equations of general relativ-
ity. Hence, the classical concept of spacetime is lost. But then one does not know
what to define quantum field theory on. So far, neither superstring theory nor loop
quantum gravity have found a generally accepted way out of this dilemma. It is a
common belief that quantum mechanical fluctuations of spacetime become sizable
at lengths comparable to the Planck length, (Gyh/c®)Y? ~ 1.6 x 107% m, or at
energies similar to the Planck energy, (hc®/Gn)"? 2.0 x 10°] =~ 1.2 x 10GeV.

Since a complete theory for quantized gravity does not yet exist, the answer to
the question of what happens at the Planck length is not known. In this thesis, we
follow Wheeler, who argued that at these length scales not only the geometry, but
also the topology of spacetime fluctuates. The result of this would be that spacetime
is no longer smooth but is made up of many regions with nontrivial topology. An
illustration of such a spacetime foam is given in figure1.1.

We now review Wheeler’s argument [1] for the existence of a spacetime foam
based on superspace'. The starting point is the observation [9] that it is possible to

!The superspace discussed here has nothing to do with the superspace occurring in supersym-
metric field theories.



1. Motivation

Figure 1.1.: An illustration of a classical spacetime foam at one instant of time. The
otherwise flat spacetime contains wormholes of all microscopic scales. This figure is
taken from [8].

reformulate Einstein’s equations in such a way that they describe the time evolution
of a three-dimensional hypersurface. This 3 + 1 split is a change of point of view in
general relativity, where one usually thinks of a four-dimensional spacetime, and is
essential in the studies of initial value problems in general relativity. Very briefly,
given a three-dimensional space with a spatial metric, a shift-vector, and a lapse
function, which together must satisfy certain constraints, it is possible to describe
the time evolution of that three-space. The resulting spacetime is then a solution
to Einstein’s equations. From this point of view, three-space is the analogue of a
particle in classical mechanics. At each instant in time, space has a certain “shape”
or geometry just as a classical particle has a certain position.

Wheeler defines superspace as the set of all three-geometries. The dynamical
evolution of an initial three-space then traces out a path through superspace. Clas-
sically, only paths that extremize the Einstein-Hilbert action occur. Such a path
is called a history and constitutes a four-dimensional spacetime that satisfies Ein-
stein’s equations of general relativity. Superspace is thus seen to play a similar role
in general relativity as configuration space in classical mechanics.

If we could prescribe both the three-geometry and its rate of change with infinite
precision we would obtain a path in superspace that is completely determined. But
suppose that the uncertainty principle applies in this situation as well and does
not allow this. Then the concept of a classical history in superspace would lose
its meaning. Just as the concept of a particle’s trajectory is replaced by a wave
function, so should the history be replaced by a superposition of histories. As in
Feynman’s path integral approach to quantum mechanics, to obtain the probability
of a transition from one three-geometry to another one should sum over all paths
that connect the initial and final three-geometry. In the sum each path should



be weighted by its classical Einstein-Hilbert action. On scales much larger than
the Planck length one could expect the probability of a transition from one three-
geometry to another is sizable only for those geometries that are connected by paths
that extremize the action. As mentioned above, such paths are spacetimes that are
solutions to Einstein’s field equations of general relativity. Hence, spacetime would
appear classical on scales much larger than the Planck length.

At scales comparable to the Planck length paths that are not allowed classically
could also become relevant. Two three-geometries might then be connected by
paths that contain spaces of different topologies as well. If one took “snapshots” of
three-space at different times, one would see spaces with different topologies. For
instance, one would first find a space with one wormhole, then two, and then without
a wormhole. Wheeler referred to this changing small scale structure as spacetime
foam.

Similar to a quantum system that tunnels from one classical state into another,
a spacetime obtained after tunneling could be long lived (compared to the Planck
time) if it were again a classical solution of Einstein’s field equations. The question
is then what kind of spacetimes with nontrivial topology are allowed by Einstein’s
field equations. We will address this in Part I1I. In particular, we will investigate
spacetimes that contain wormholes and topological defects. Assuming the existence
of such a classical spacetime foam, we show in Part IV how it modifies the dispersion
relations of electromagnetic waves and Dirac fermions that propagate through such
a spacetime foam.
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Experimental status

As discussed in the last chapter, quantum fluctuations in spacetime, if they indeed
exist, are believed to occur on length scales similar to the Planck length of 1.6 x 1073
m. This length corresponds to the Planck energy of approximately 1.2 x 10GeV.
Current high energy colliders reach an energy of a few TeV, which is 16 orders
of magnitude below the Planck energy. Using current technology, the radius of a
particle collider that reaches the Planck energy would need to be approximately
375 light years. Clearly, a direct and conventional probing of physics at the Planck
energy seems impossible.

However, there may be other effects through which physics at the Planck energy
might be observable. The idea that we follow in this thesis is that Lorentz symmetry
might no longer be valid at the Planck length. For example, the spacetime foam
discussed in the previous chapter introduces a preferred frame and thereby breaks
Lorentz invariance. The breakdown of Lorentz symmetry could manifest itself in
either a direction dependence of the speed of light (vacuum birefringence), an en-
ergy dependence of the speed of light (dispersion), or vacuum-Cherenkov radiation
of massive and electrically charged particles. We will discuss in detail how a space-
time foam leads to these kinds of effects in Part IV. Here, we just mention that,
over large wavelengths, the spacetime foam effectively acts like an ordinary medium
with an energy dependent index of refraction. Therefore, the dispersion relation of
electromagnetic waves gets modified compared to their form in Minkowski spacetime
and this allows for birefringence, dispersion, and Cherenkov radiation in vacuum.
One can use data on ultra high-energy cosmic rays (UHECR) to place severe bounds
on Lorentz symmetry breaking effects.

Amelino-Camelia et al. [10] presented the following idea to constrain modified
photon dispersion relations. Here, a modified dispersion relation is assumed to
yield an energy dependent speed of light. Consider a source that emits a flash of
light in a certain energy interval. If the speed of light depends on energy, then
photons of different energy would arrive at a detector at different times. Again, the
nonobservation of such a time delay yields bounds on the parameters of the modified
photon dispersion relation. Since the effect accumulates over distance traveled it is
advantageous to look for cosmic sources. Furthermore, the flash should be as brief
as possible to ensure that all photons really start at the same time. The energy
range of the photons should be as large as possible as well. Gamma-ray bursts
satisfy these conditions. They are outbursts of photons with energies up to several
TeV that occur at distances of up to millions of light years and yet last only a few
minutes. Since the classical spacetime foam models discussed in Part IV lead to
an energy dependent speed of light, gamma-ray bursts were used by Bernadotte

11



2. Experimental status

and Klinkhamer [7] to place bounds on the spacetime foam parameters [ and b (I
denoting the average defect separation and b the typical defect size).

To place bounds on vacuum-Cherenkov radiation one can use the idea of Beall [11]
(see also Coleman and Glashow [12]). We will show in Part IV that our spacetime
foam models lead to a reduced speed of light, whereas the maximal attainable speed
of fermions does not change. A fermion, a proton for instance, with very high energy
could then have a speed exceeding the speed of light. Whenever such a situation
occurs the proton emits Cherenkov radiation and thereby loses energy. It continues
to do so until its energy is reduced to a threshold energy, where its speed is equal to
the speed of light. Hence, the measurement of particles with ultra high energy can
place tight bounds on this threshold energy.

The highest energy collisions on Earth do not happen in man-made colliders but
occur in the upper regions of the atmosphere. These collisions take place between
the atomic nuclei of air molecules and cosmic rays. Although cosmic rays were
discovered about a hundred years ago their exact composition and origin are still
not understood completely. Current understanding is that cosmic rays are ionized
atomic nuclei that originate outside the solar system. Modern cosmic ray detectors,
such as the Pierre Auger Observatory, have observed cosmic rays with energies up
to 10M GeV [13].

Given a particle with energy above the threshold energy, it turns out that it
requires only nanoseconds for the particle’s energy to drop to the threshold energy.
Thus, the particle would lose its excess energy almost immediately and propagate
only a few meters. The fact that particles with energies as high as 10! GeV reach
Earth then means that the threshold energy for vacuum Cherenkov radiation must
be at least 10! GeV. To translate the bound on the threshold energy into a bound
on Lorentz symmetry breaking parameters requires a detailed calculation within
the specific theory. For the Lorentz symmetry violating modified Maxwell theory
this was done in [14, 15]. It is noteworthy that the bounds obtained by using
UHECRs are tighter than laboratory bounds by ten orders of magnitude. For the
classical spacetime foam models discussed in Part IV the calculations were done in
[7]. The result is that the average distance [ between the spacetime foam constituents
(defects) must be larger than the typical defect size b by a factor of 107. This result
then implies that spacetime appears to be rather smooth with only dilute defects.

Even though a direct probing of physics at the Planck length may be impossible,
the above two examples show that it is possible to set tight bounds on Lorentz
symmetry breaking and, thereby, constrain possible models of physics at the Planck
scale.

12
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Introduction to Part 111

Part III deals with solutions to Einstein’s equations that have nontrivial topology.
Having nontrivial topology means that these spacetimes contain closed curves that
cannot be contracted to a point. As such, they belong to a different class of space-
times than Minkowski spacetime. In Minkowski spacetime all closed curves are
contractible and “turning on” gravity may bend spacetime but does not change
its topological properties. The creation of spacetime with nontrivial topology may
therefore be beyond the scope of general relativity. But if such a spacetime is created
somehow (perhaps in a quantum-gravity phase) it is interesting to know if general
relativity does admit it as a solution.

We first consider wormholes as an example of spacetimes with nontrivial topology.
In brief, a wormhole connects asymptotically flat regions via a throat. Wormholes
have been studied in general relativity for a long time and we review some results in
Chapter 4. Usually, wormholes are unstable under small perturbations but recently
a mechanism was found that could stabilize them. The idea is to introduce a scalar
field with a suitable potential such that the Einstein-Klein-Gordon equation yields
a wormhole spacetime and kink-like solution for the scalar. Since a kink is stable
for topological reasons it could act as a “crutch” for the wormhole.

The remaining chapters deal with spacetimes that contain a topological defect.
Similar to a defect in an ordinary crystal, a spacetime defect disturbs the otherwise
trivial topology of the spacetime. Spacetime defects are defined by a “surgery”
procedure. In particular, we will discuss a type I defect. It is constructed out of
Minkowski spacetime by removing a spatial ball and identifying antipodal points on
the would-be boundary. The radius of the cut-out ball will be referred to as the
defect parameter. We give a detailed construction in Chapter 5. There, we will also
investigate the topology of the resulting space and what it implies for the curvature.

These considerations lead us to introduce a particular kind of scalar field in Chap-
ter 6. The Lagrangian of the field is taken to be that of the so-called Skyrme model
and the solutions are called Skyrmions. We also discuss the principal mechanism
through which this scalar field can again act as a “crutch” for the spacetime defect.
Finally, we state the Einstein-Skyrme equations.

Before we solve the full Einstein-Skyrme equations, we consider two kinds of
background metrics in Chapter 7. First, we take the background metric to be that
of Minkowski spacetime and solve the field equation numerically. If the winding
number of the Skyrmion is even, we reproduce the known results for Skyrmions.
However, when the winding number is odd, we find that there exists a finite defect
parameter that minimizes the energy. We then consider a background metric with
constant curvature. In this case, the field equation can be solved analytically. Again

15



3. Introduction to Part II1

we find a finite defect parameter that minimizes the energy of the Skyrmion.

Finally, we attempt to solve the full Einstein-Skyrme equations in Chapter 8.
Using a certain set of initial conditions we can reproduce the known results of
gravitating Skyrmions, if the Skyrmion’s winding number is even. For odd winding
number we find that the mass is minimized by a finite defect parameter. However,
a closer inspection reveals that the matter field does not account for all the mass
present in the spacetime. We interpret this spurious mass as the energy needed to
create this particular type of spherical defect. It is the work needed to “drill” a hole
in spacetime and “sew” it up again.

However, we show in Chapter 9 that the spacetimes constructed in this way have
a singular Ricci scalar curvature. This singularity can be accounted for by two
singularity theorems. Essentially, these theorems say that an asymptotically flat
spacetime with nontrivial topology and “normal” matter must have a singularity.
Therefore, we discuss a modification of the matter Lagrangian to allow the matter
field to have a negative energy density. So far, the resulting field equations could
not be solved.

16



Wormbholes

Before we discuss our attempt to find solutions to Einstein’s field equations that
contain a type I defect, we discuss another type of nontrivial spacetime topology,
namely spacetimes that contain a “wormhole”. This solution has been studied in the
literature extensively, and we give a brief review in this chapter. A wormhole con-
nects asymptotically flat regions of spacetime via a throat. Depending on whether
the wormhole connects two different regions or the same asymptotic region, one
speaks about inter- or intra-universe wormholes, see figure4.1(a) and figure4.1(b)
respectively. The wormholes depicted in figure 1.1 are intra-universe wormholes as
well.

In the context of this thesis, spacetimes with wormholes are of relevance because
they contain noncontractible closed curves. The black curve shown in figure4.1(b)
passes through the wormhole and returns to its starting point. Unlike a closed
curve in ordinary space R", this closed curve cannot be contracted to a point. A
manifold with such a property is called nonsimply connected. Simple connectivity
is a topological property, meaning that it cannot be lost or changed by a continuous
deformation of the manifold. For example, from the topological point of view a
doughnut equals a coffee cup, because both have a “hole” and one can be transformed
into the other continuously.

Historically, an early wormhole solution to general relativity was found by Einstein
and Rosen in 1935 [16], where it was referred to as a “bridge”. Later, the Einstein-
Rosen bridge turned out be a spacelike hypersurface in the extended Schwarzschild
solution [17]. Being spacelike, the bridge can never be crossed by particles because
they travel along timelike geodesics. It took half a century until traversible worm-
holes were found by Morris and Thorne in 1988 [2]. Here, traversible refers to a
number of requirements the spacetime must satisfy for an observer to pass through
the wormhole. For example, the observer should not encounter any spacetime sin-
gularity and should reach the other end of the wormhole in a reasonable amount of
time. Also tidal forces should not be too strong so that a human being, for example,
is not ripped to pieces. But Morris and Thorne found that the matter needed to
create the wormhole had to have negative energy density. They found out later!
that matter must always have these peculiar effects. The reason is that, roughly, a
spacetime with a nontrivial topology must have a singularity, unless matter has a
negative energy density. We will review some of these singularity theorems later in
Chapter 9.

Once a wormhole solution has been found, one may wonder if it is stable under

1See Chapter 14 of [18] for interesting details on this.
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4.1.

4. Wormholes

Figure 4.1.: Illustration of an (a) inter-universe and (b) intra-universe wormhole. (a) is
an embedding diagram of the Einstein-Rosen bridge. The black curve in (b) shows a
noncontractible loop.

small perturbations. Usually, this requires a great deal of work. Sushkov and Kim
found a wormhole solution that might be stabilized by an additional scalar field
¢ [19]. The trick is to add a suitable potential that has two different minima, ¢,
and ¢o. A finite energy configuration must then approach either of these minima at
infinity. If the field approaches one minimum as x — —oo, say ¢, and reaches ¢,
as r — 00, then it is not possible to deform the field continuously into one that is
constant, say ¢, [20]. Hence, the field is stable for topological reasons and is known
as a kink. The idea is now that ¢ approaches the vacuum ¢; in the asymptotic
region on one side of the wormhole and ¢, on the other side. Then the wormhole
could be stabilized by such a kink-like scalar field.

After giving the definition of a traversible wormhole in the next section, we review
the wormhole construction by Sushkov and Kim [19] in Section 4.2.

Traversible wormholes

The traversible wormholes were found by applying a “reverse engineering” approach.
Rather than asking what geometry is created by a given matter content, Morris
and Thorne [2] first specified the geometry of spacetime and then asked if general
relativity allows for such a geometry. If this is the case, one can ask what kind of
matter would be needed to create it. A spherically symmetric and static metric was
assumed to make the calculations manageable. For a wormhole to be traversible,
they made the following assumptions about the geometry

1. No singularities and horizons are present.

2. Tidal forces are small enough so that a traveler can pass through the wormhole.

18



4.2.

4.2. Wormbholes supported by a kink

3. The journey takes only a small amount of human lifetime, say, one year (both
in proper time for the traveler and in coordinate time of a static observer).

The matter needed to create a traversible wormhole violates the weak energy
condition, which means, roughly, that the energy density of matter must be nega-
tive in some regions of spacetime. We will discuss the interplay between nontrivial
spacetime topology and matter in Chapter 9. Here, we just mention that, since
the wormhole spacetime has no singularities (condition 1 above), Gannon’s singu-
larity theorem implies that the weak energy condition is violated. Furthermore, the
traversability means that a particle can cross the wormhole and return. Its world
line, projected onto the spatial hypersurface containing the wormhole, may then be
a noncontractible path. To avoid the topological censorship theorem, which forbids
such paths, matter must also violate the averaged null energy condition.

Wormbholes supported by a kink

We review the wormhole construction of Sushkov and Kim in this section [19]. They

succeeded in constructing a wormhole solution that is stabilized by a topologically

nontrivial scalar field. For this reason their work is of relevance to this thesis.
Their action reads (in units with ¢ = Gy = 1)

1 — 8mégp?
S = / (87;@3 — 9" 0,¢0,¢ — 2V(¢)) Vodiz. (4.1)

Here, R is the Ricci scalar of the metric g and ¢ is a scalar field with potential V.
The constant ¢ is dimensionless.

The potential is chosen to have two minima at ¢; and ¢5. A time-independent
scalar field ¢ must then approach either of the two minima as x approaches +o00, as
otherwise the energy would not be finite. If the field approaches the same minimal
value as x — +00, say ¢1, the field can be deformed continuously into the constant
field ¢;. However, it is known from field theory in flat spacetime that field config-
urations starting in one minimum at z = —oo and ending in the other at z = oo
are topologically stable [20]. In this case the field cannot be continuously deformed
into the constant solution, say ¢;. The idea of [19] was to use this effect to stabilize
a wormhole. The field has minimal value ¢; in one asymptotic region and ¢, in the
other. The field should vary from one to the other in the region of the wormhole
throat.

The static and spherically symmetric Ansatz for the metric reads

2

dp
Alp)

Here, p ranges from —oo to oo with roughly p < 0 on one side of the throat and
p > 0 on the other. The area of a two-sphere is given by 477?(p). The wormhole’s

ds> = —A(p) dt* +

+7%(p) (d6* + sin” 6 de?) . (4.2)
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4. Wormbholes

throat occurs where r(p) has a minimum. The potential is chosen as

212
2_m}
)

A -
Ve =7 |@-97 -
where ¢, A > 0, and m > 0 are constants. The two minima of V are
<Z51E<Z_5—\%7 ¢2E<13+%-

The conditions on a traversible wormhole given in the previous section then translate
into the following requirements

1. The function A(p) must be positive everywhere, so that no horizons exist.
Furthermore, no singularities must be present.

2. The radial function 7(p) must have a global minimum. This is then the worm-
hole throat radius.

3. Asymptotically, 7(p) — |p|, and A(p) — constant.

The last condition ensures that the coordinate radius |p| agrees with the radius
r, obtained by measuring the area of two-spheres. It also ensures that the metric
becomes flat asymptotically on both sides of the wormhole. Since the idea is that the
wormbhole is stabilized by the kink-like scalar field ¢, it must approach the vacuum
value ¢; on one side of the wormhole and ¢, on the other.

The analysis of [19] shows that wormholes are possible only if

1] < 1/3/87E, |do| > 1//87€.

It is convenient to work with the following dimensionless quantities

z=mp, i(x) =mr(p), nlx)=elp), n=2
m=n—1, mp=n+1, HE%-

The field equations derived from the action in equation (4.1) then read

" Smr? , "
2= —W[ﬁz—f(HQ) ], (4.3a)
AR — A"? —2 = ——18f’§7f§(227/2 . (%) , (4.3D)
(r*An) = &r*R(x)n — r*(n — 7)[(n — 7)* = 1] = 0. (4.3¢)

Here, and in the following, we wrote r instead of 7 for notational convenience. A
prime denotes differentiation with respect to x. Finally, the Ricci scalar reads

T,I T/I 7,,/2 2
R(x)=—-A"—4'"— —4A— —2A— +

r r rz  r2’
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4.2. Wormbholes supported by a kink

Notice that the value xy, where n(x¢) = 1/4/87¢k?, is a singular point of equa-
tions (4.3a) and (4.3b). The point z( is taken to be zero. The field equations are
regular at x = 0 if the following conditions are satisfied

! A/
To _ L (4.4a)
To 0
!

V 1
o VSR e L el (4.4D)
ro  12vEn A 2

where ro = r(0) and so on. Now, the fields can be expanded around z = 0
r(z) =ro+ryr—+---,
Alx) = Ao+ Ay + - - -,

(@)= ——
L \/ 8mEK?

Only the three parameters, 9, Ao, and 7, are independent, with r{ and A; already
being determined by equations (4.4a) and (4.4b). The model parameters &, k, and

7] are chosen as
£=1/6, k=1/V8m, n=1//8m¢kK?,

and the boundary conditions are

+ e+ -

ro=1, ng=0.2, Ay=36.321278.

Here, the first two parameters are just fixed to some value. The remaining parameter
(Ap) must, then, be tuned to give numerically a kink-like solution for the scalar
field. Figure4.2 shows the numerical solutions obtained for these parameters. First,
notice that the radius r indeed has a minimum at x ~ 3.5. The throat radius is
approximately 0.95. For large coordinate radii |p|, the radius r is seen to approach
|p|. Second, the kink-like character of the scalar field 7 can be seen from Figs. (4.2(c))
and (4.2(d)). Namely, it approaches the vacuum values 7; and 7y on the left and
right side, respectively. Third, the metric function A, depicted in Figs. (4.2(e)) and
(4.2(f)), is smooth and positive everywhere. Finally, the asymmetry of the solutions
is due to the different values of the potential V. Therefore, the spacetime is a
wormhole supported by a kink-like scalar field configuration.

Figure 4.3 shows the energy density of the scalar field. It peaks at approximately
x &~ 6.6 but is negative for some values as well. As mentioned in the introduction,
negative energy density is a general property of spacetimes with nontrivial topology.
We will elaborate on this point in chapter 9.

To summarize: Wormholes are spacetimes that contain asymptotic regions that
are connected by a throat. They are topologically distinct from the usual Minkowski
spacetime because they contain closed curves that cannot be contracted to a point.
As was first shown by Morris and Thorne [2], it is possible to have wormhole space-
times as smooth solutions of Einstein’s equations [2]. Deciding whether wormholes
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Figure 4.2.: The radius r, scalar field n and metric function A as functions of the dimen-
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sionless parameter x = mp. The throat of the wormhole is located at x ~ 3.5, the
minimal value of r. Therefore, points with = < 3.5 or « = 3.5 are on opposite sides
of the wormhole. The figures on the left and right show the “near” fields and “far”
fields, respectively. Notice that n approaches its vacuum values 1, = 1//87ék — 1
and 79 = 1//87&k + 1 (dashed lines) on the left and right side of the wormhole,
respectively. For details see text and [19].



4.2. Wormbholes supported by a kink

energy density

20 -

15+

10 -
. ‘/“‘x
—40 -20 \/ 20 40 60

Figure 4.3.: The energy density as a function of x = mp. Notice that it is negative at
some values of x.

are stable under small perturbations is difficult. Nonetheless, Sushkov and Kim [19]
constructed a wormhole that is supported by a scalar field configuration known as
a kink. Since a kink is stable for topological reasons it cannot smoothly relax to the
constant vacuum solution. This effect might stabilize the wormhole as well.

Since a wormhole is an example of a spacetime with nontrivial topology that is
supported by a suitable scalar field, we try a similar approach for the spacetime
with a type I defect. This will be the subject of the following chapters.
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o.1.

5.1.1.

Topological properties of manifolds with a
defect

In this chapter we will discuss what the existence of a defect implies for the topo-
logical properties of a space. Our goal is to study the topology of a space that
contains a spherical defect of type I. Such a defect is created from three-dimensional
Euclidean space by removing an open ball and identifying antipodal points on the
would-be boundary. This construction is due to [7], where this type of defect was
referred to as a 7 = 1 defect. Here, we will refer to it as a type I defect, to designate
that this defect will become the basic building block of our spacetime foam model I,
discussed in Chapter 13. We will denote the manifold that contains a type I defect
by M;.

Before discussing the three-dimensional case, we will introduce and illustrate
the necessary concepts for a two-dimensional version in Section 5.1. The two-
dimensional manifold that hosts this defect will be denoted by my;. Although its
purpose here is “pedagogical”, it will also play a role when we discuss a spacetime
foam of line defects in Chapter 15. Finally, we will discuss the spherical three-
dimensional type I defect in Section 5.2.

Two-dimensional circular defect

In this section we discuss the properties of a two-dimensional manifold that contains
a circular defect. The construction of this circular defect proceeds similarly to the
three-dimensional counterpart. That is, we start from R? and remove all points with
a distance smaller than the “defect radius” b. Antipodal points on the resulting
boundary circle are then identified.

Proof that m; is a manifold

To prove that my is a two-dimensional manifold, we have to show that [21]:
1. my is a topological space,
2. my can be covered by charts, mapping open sets in m; onto open sets in R

3. if two charts overlap, then the resulting map from R? to R? is infinitely differ-
entiable.
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5. Topological properties of manifolds with a defect
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Figure 5.1.: Open regions of a point on the defect and far away from it. The same figure
will also apply to the three-dimensional defect (where the third dimension is not
shown).

We will also show that m; is a Hausdorff space.

Simply put, defining a topology on a space is to define its open sets. We define
the open sets of m; by making reference to the topology of the original R?. An
e-neighborhood U, , of a point x € R? is defined by

U.={yeR?: |z —y|, < ¢}, (5.1)

where the subscript '2” emphasizes that the usual metric of R? is used. Thus, in the
topology of my we include all U, , for |z|; > b and € < |x|y — b.

The e-neighborhood of a point on the defect (that is, a point that originally
belonged to the circle with radius b) is defined by using two neighborhoods in R%:

Us={yeR: |z —yl, <e},
Us={yceR*: |z +yla<e}.

The first set consists of all points within a distance € of the point x, whereas the
second set contains all points within e-distance of the antipodal point —x. We define
the neighborhood for a point on the defect as the union of U, and U, but with all
points with a radius of less than b removed (see figure5.1):

Uwo=UiNU)\ Dy={y €R*: (|z—yly < e V |z+yl|a < ) Alyla > b}, (5.2)

where l%b is the interior of a disc with radius b, i.e. all points with |x|; < b. Notice
that the set in (5.2) is not open with respect to the usual topology of R?, but we
use it to define the open neighborhood of a point on the defect. The topology of
my is then the union of all U, , which are either of the form (5.1) or (5.2). To make
my a topological space we formally add the empty set () and m; as a whole to the
topology of mj.

26



5.1. Two-dimensional circular defect
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Figure 5.2.: The two regions that cover my. (a) The wedge-like regions that make up
Ui. (b) The wedge-like regions that make up Us. Both regions surround only one
axis. Here, the maximal and minimal values of ¢ are equal for both patches but do
not need to be in general.

Now that we have made m; a topological space, we have to give appropriate charts.
That is, we have to specify maps from open sets of m; to open sets of R2.

To define these maps we cover all of m; by two wedge-like regions, one including
the z-axis and the other the y-axis, as shown in figure5.2. All regions are defined
by referring to polar coordinates (r,¢) in the original R?. The idea is to construct
coordinates on these two “wedges” such that points on one side of the defect have
a positive coordinate, while points on the other side have a negative coordinate.
Finally, points on the defect have coordinate 0.

The “wedge” U; surrounding the z-axis is composed of two regions, see fig-
ure5.2(a). Points to the left of the defect have angles ranging from ¢; max to
®1,min + T, Whereas points to the right have ¢ in the range @1 max + 7 < ¢ < 27 or
0 < ¢ < @1 min. Furthermore, the wedge must not intersect the y-axis, which means
Grmin < /2 and 7/2 < Gy max < 7. Explicitly, we have

Ulz{xeRZ:er/\¢1,max<¢<¢1,min+ﬂ-
\% ¢1,max+ﬂ-<¢§2ﬂ- \ O§¢<¢1,min}-
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5. Topological properties of manifolds with a defect

On U; we introduce coordinates (Xi,Y]) via

¢—m/2 cosp < 0

r—=b, 0<cos
xino)={ [ I0 ST Wi = -2 srjz<o<n
' - p+m/2 0<¢p<m/2
Y1+7T/2 X; <0
b+ X, X1>0
r(Xl):{b_Xl X120 L (X, V) =X Yi+31/2 X1 >0AY; <7/2 .
b Yi—7/2 X1 >0AY; >7/2
(5.3)

Notice that 7(X;) = b+ |X;| and that the ranges of these new coordinates are

—00 <X < 00,
0 < }/vl(gbl,max) <§/1 < }/vl(gbl,min) <T.

Hence, a negative value of X; means that the point with this coordinate is “to the
left of the defect”, while it is “to the right” if X; > 0. Finally, points that are on
the defect have X; = 0.

Similarly, the “wedge” U, surrounding the y-axis is composed of points above and
below the defect, see figure5.2(b). Points “above” the defect have angles ranging
from 2 min tO @2max, While points “below” it have ¢omin + 7T < ¢ < Gomax + 7.
Since these “wedges” must not intersect the z-axis, we must have 0 < ¢g min and
®2.max < 7. Thus, the region Us is defined by

UQE{.TERQZTZZ)/\0<¢2,min<¢<¢2,max<ﬂ'
\/7T<¢2,min+7r<¢<¢27max+ﬂ-<2ﬂ'}.

Coordinates (Y3, X3) on U; are defined by

, <7 b+Yy,, Y>>0
X ={ o 6T =0T 2D e,
_Jr=b ¢<m X, Y220
YVQ(TaqS)_{b_,r.’ ¢>7‘r’ ¢(}6’X2)_{X2+7T, Y2<0 : (54)

Here, Y5 < 0 means that the point is “below” the defect, and “above” if Yy > 0.
Points on the defect have Y5 = 0. Now X3 is the angular variable and the ranges of
the coordinates are

—00 <Y5 < 00,
0< X2(¢2,min) <Xy < X2(¢2,max) <T.

We use the notation (Yz, Xs) in analogy to (r, ¢) to make clear that Y5 is the “radial”,
variable and that X, is the “angular” variable.

The next step in showing that m; is a manifold is to demonstrate that the coor-
dinates for U; and U, in overlapping regions are infinitely differentiable. Provided

28



5.1. Two-dimensional circular defect
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Figure 5.3.: The regions where the coordinate patches U; and Uy overlap. Notice that
the sets AU C and B U D are connected because of the antipodal identification at
the circle.

that @1 min < G2,min ANd @1 max < P2.max the overlap between U; and Us is not empty
and is shown in figure 5.3.

In the overlap regions, AU C and B U D, the coordinate functions for U; and U,
must be inverses of each other and infinitely differentiable. Using Y;(¢(Xa2, Ys)) etc.
and the explicit relations in (5.3) and (5.4) we find

AUC Xl(}/Q) :}/2, H(XQ):X2+7T/2, (55&)
BUD: Xi(Ya)=-Ys, Yi(Xs)=Xo—7/2. (5.5b)

From this one immediately sees that the coordinates are invertible functions of each
other and infinitely differentiable.

In summary, we have equipped m; with a topology and found coordinate charts
for it. In the two overlapping regions the charts are maps from R? to R? which are
invertible and infinitely differentiable. Thus, m; is a two-dimensional manifold.

We now show that the manifold m; also possesses the Hausdorff property, i.e.
given two distinct points p and ¢ of my, we show that there always exist open sets
U (containing p) and V (containing ¢) such that U NV = ). For two points not on
the defect we have, by definition, the usual topology of R? and hence the Hausdorff
property. When one point is on the defect (r = b) and the other is not (r > b),
we can always take € < (r —b)/2 in (5.1) and (5.2) and then the two sets do not
intersect. Finally, for two points (b, ¢1) and (b, ¢2) on the defect we can choose
€ < [b(¢1 — ¢2)]/2.

Usually all manifolds encountered in physics have the Hausdorff property. An
artificial example of a non-Hausdorff manifold can be found in figure 5 of [22].
However, since this example also involves a “cut-and-identify” procedure, it shows
that identification of points can lead to non-Hausdorff manifolds. In the context of
hypothetical time travel scenarios non-Hausdorff manifolds are also discussed in [23].
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5. Topological properties of manifolds with a defect

5.1.2. Properties of the manifold my

We continue the investigation of m; by showing that m; is a noncompact, nonori-
entable, and nonsimply connected manifold without boundary. Since we identified
only points of a finite radius, m; is still an unbounded space and hence not compact.

First, we show that m; does not have a boundary. By looking at figure5.1 one
could think that points with r = b constitute a boundary of m;. But keep in mind
that antipodal points are identified, which is not represented in figure5.1. We have,
therefore, to resort to the technical definition of a manifold with boundary [17, 21]:
a two-dimensional manifold has a boundary if it is covered by a family of open sets
which are homeomorphic to open sets of the "half plane” {(z,y) € R* : y > 0}.
Then the boundary consists of points with y = 0.

To show that m; does not have a boundary, we have to show that the coordinate
ranges are not half open intervals of the form [a,b). m; would have a boundary
if some coordinate would have values in a half open interval. For the (Xi,Y))
coordinates defined in equation (5.3) we have that X; ranges from —oo to +o0o and
Y1 lies in the open interval (Y1(é1 max), Y1(¢1,min)). A similar results holds for the
(X2,Y3) coordinates defined in equation (5.4). Since these two coordinate charts
cover all of m; and no coordinate value is mapped to an half open interval we
conclude that m; does not have boundary.

However, if we use the usual polar coordinates (r,¢) as coordinates for my, we
have r € [b,00) and it appears that points with » = b are boundary points. But
this boundary is a boundary of the coordinate values rather than a boundary of the
manifold. The reason is that the (r, ¢) coordinates are not adapted to the topology
of my at the defect. This can be seen from the fact that the identified points & and
—x still have different coordinates (b, ¢) and (b, 7 4+ ¢). It is for this reason that
the coordinates of equations (5.3) and (5.4) were introduced. In these coordinates
x and —x have the same coordinate and the whole defect is mapped to an interior
line. Therefore, when using polar coordinates we always have to take the coordinate
boundary at » = b into account. Such a coordinate boundary also occurs at the event
horizon of a Schwarzschild black hole when the usual spherical polar coordinates are
used. It must be taken into account when one uses the theorem of Gaufl to convert
a volume integral into an integral over the boundary of that volume.

Next, we consider the non-orientability of m;. Here, we follow the definition of [21]
and call a manifold orientable if the coordinates of any two overlapping charts U,
and U, are related by a transformation whose Jacobian has positive determinant.
In the overlap A U C, shown in figure5.3, we see from equation (5.5a) that the
Jacobian of the transformation from U; to U; has determinant +1. The coordinate
transformation in the overlap B U D, on the other hand, is given by equation (5.5b)
and has a Jacobian with determinant —1. Thus we see that my is not orientable.

Finally, we note that mj is not simply connected. Loosely speaking, a manifold is
simply connected if every closed loop can be shrunk continuously to a point. R? is
simply connected, while R? — {point} and a two-dimensional torus are examples of
nonsimply connected manifolds. All closed curves that do not encircle the defect can
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5.1.3.

5.1. Two-dimensional circular defect

(a)

Figure 5.4.: (a) A noncontractible curve which is closed in m; and passes through the
defect once. (b) Another closed curve in m; and which can be shrunk to a point.

be contracted to a point. Consider the curve of figure 5.4(a), which passes through
the defect and is closed in m; because the point P is identified with ). If we tried
to shrink the curve to a point by “sliding” () over to P, P would also move because
it is identical to ). Hence the curve in figure 5.4(a) cannot be contracted to a point
and my is not simply connected. The curve shown in figure 5.4(b), however, passes
through the defect twice, and can be shrunk to a point by the shown sequence of
curves. We thus find that curves which pass through the defect an even/odd number
of times can/cannot be contracted to a point. Two classes of closed curves, therefore,
exist on mj.

Topology of my

In this section we show that m; has the topology of the real projective plane. To
see this, we perform an inflection at the circle with » = b by introducing

p(r)=b/r, (5.6)

mapping m; into the unit disc. Antipodal points on the (coordinate) boundary
circle are still identified. Actually, the image of the coordinate transformation equa-
tion (5.6) is the unit disc with the origin removed. The unit disc with antipodal
points on the boundary identified is but one of the definitions of the real projective
plane RP?. Another way to define the real projective plane is to identify antipodal
points on S2%. Since points on the southern hemisphere are identical to points on
the northern hemisphere, it suffices to keep one hemisphere, say the northern one.
Antipodal points on the equator are now identified. By projecting the hemisphere
down to the equatorial plane we have arrived at the unit disc with antipodal points
identified. We have thus shown that

my ~ RP? — {point} . (5.7)

Here, ~ means “homeomorphic to”.
The result that my is topologically RP? — {point} agrees with all results of the
last section. First, because the origin is not included the unit disc is not closed and
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5. Topological properties of manifolds with a defect

hence not compact. When considering fields on m; we usually require that they
approach some constant value as r approaches oco. If this is the case we can add a
point {oo} to m; which then gets mapped to the origin by equation (5.6). In this
way we have done a one-point compactification of m;. Unless (non-)compactness is
of importance we will work with the compactified space which is then homeomorphic
to RP2.

Second, it is known that RP? is not orientable and nonsimply connected. This last
property can be seen from equation (5.4(b)) once one inflects all the curves at the
circle. Finally, the fundamental group 7 of the real projective plane is isomorphic
to Zs, the group of integers modulo 2,

m(RP?) ~ 7, .

This statement means that there are exactly two classes of closed curves, namely
those that can or cannot be contracted to a point.

Transformation of vectors at the defect

As an application of the results above, we derive the transformation properties of
vectors. They will be used later in Part IV. The idea is to look at a curve that
passes through the defect. In the coordinates (Y3, X5), defined in equation (5.4), this
simply means that the curve C' intersects the line Y5 = 0. Since we will work only in
one coordinate patch we drop the index ’2’ from now on. The map (Y, X) — (r, ¢),
given in equation (5.4), and C' induce a curve ¢ in R?. The point where C' intersects
the line Y = 0 has the two points (b, ¢) and (b, + ¢) as preimages in R?. This
awkwardness again results from the two points not being identified in R%. In the
same way, the tangent vector of C at (0, X) corresponds to two tangent vectors of ¢
in R One is the tangent vector of ¢ evaluated at (b, ¢) and the other is the vector
at (b, + ¢). We will show that these two vectors then automatically satisfy the
boundary conditions used in Chapter 13. Furthermore, although the curve ¢ does
not look smooth in R? we use an immersion of RP? into R® where £ and —x are
identified and the curve is indeed seen to be smooth.
We start with a curve defined in (Y, X)-coordinates by

C(A) = (Yo + A(Y1 = Yo), Xo + AM(X1 — X)), (5.8)
which is a straight line starting at C(0) = (Yo, Xo) and ending at C'(1) = (Y1, X;).
It is supposed to start below the Y-axis and intersect the Y-axis at A = 1/2. The
tangent vector V' of C as defined by equation (5.8) is given by
V = (Y1 — Yo)0y + (X1 — Xo)Ox .

As a specific example we consider the curve

CoxN) = (2N =1,7/4+ A7/2), (5.9)
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5.1. Two-dimensional circular defect

0.5

(a) (b)

Figure 5.5.: (a) Graph of the curve cex. The two (normalized) tangent vectors at @ and
—x are also shown. Notice that the graph does not look smooth at the defect, but
the tangent vectors satisfy equations (5.13a) and (5.13b). (b) The same curve, but
now the points belong to Boy’s surface, which is an immersion of the real projective
plane in R3. Now the curve looks smooth, but the points where cex passes through
the defect are mapped to a point where the surface intersects itself. For clarity, the
surface itself is not shown.

which intersects the Y-axis at A = 1/2. Next, we define the induced curve ¢(A) in
the (r, ¢)-coordinates R? by

where Y (\) and X (\) can be read off equation (5.8) and are explicitly given by

P = b+ [V = b+ Yo+ (Vi — Vo)A, (5.10a)

o 7T+X0+(X1—X0>)\, )\<1/2
Figure 5.5(a) shows the induced curve cq of Ce,. Now, as ¢ approaches the defect
from above, that is A > 1/2, we have

L de  Or 0] B

v(z)
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5. Topological properties of manifolds with a defect

while on the opposite side, meaning A < 1/2, we obtain

de  Or 0¢

v(—z) = lim = o @y

2205(@) = — (Y~ Y0)d, (—2) + (X, X0)0y(~a).

(5.12)
Due to the identification of & and —x, however, the vectors in equations (5.11) and
(5.12) are identical. Therefore, the components satisfy

v'(x) = —v"(—x), (5.13a)
v?(x) = v’ (—x). (5.13b)

Equations (5.13a) and (5.13b) are the boundary conditions we will use in Part IV.
Physically speaking, equation (5.13a) means that if a particle enters the defect on one
side, it leaves on the other side. Equation (5.13b) implies that if a vector points to
another point on the defect, then the identified vector points to the identified point.
The induced curve in figure5.5(a) looks discontinuous in the usual topology of R?,
but actually satisfies the boundary conditions of equations (5.13a) and (5.13b).
That equations (5.13a) and (5.13b) are indeed the boundary conditions for a tan-
gent vector of a smooth curve can also be seen by using an immersion of RP? into
R3. Out of the many immersions we use Boy’s surface, in the parametrization given
by [24]. If the complex number p = re’® of maximal absolute value 1 represents a
point of the unit disc, then the following yields a parametrization of Boy’s surface

z(p) = g.(p)/9(p), (5.14a)
y(p) = g4(p)/9(p) (5.14b)
z(p) = g:(p)/9(p) (5.14c)

with

e (222

S ()

1 1
gz(p)EIm< +p )——,
P +VhpP—1/) 2

9(p) = g2(p) + g.(p) + 92 (p) -

To find the graph of C' on Boy’s surface we first use equation (5.4) to obtain the curve
¢ in R% Second, we apply the coordinate transformation equation (5.6), mapping
¢ into the unit disc. Here, we finally use equations (5.14a)—(5.14c) to obtain the
graph on Boy’s surface. For the curve defined in equation (5.9) the result is shown
in figure 5.5(b) and is seen to be a smooth curve in R?* on Boy’s surface. For clarity,
Boy’s surface itself is not shown because it is a non-orientable and self-intersecting
surface. The marked point is the image of the two points where ¢ passes through
the defect and is a point where Boy’s surface intersects itself.
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5.1. Two-dimensional circular defect

5.1.5. Curvature of my

In this section we discuss the problems that arise when one tries to equip m; with
the standard Euclidean metric.
We start by equipping the original m; with the standard Euclidean metric

ds? = dr® 4 r?de*. (5.15)

As discussed in Section 5.1.2, the polar coordinates (r,¢) are not well suited to
investigate properties at the defect. Hence, we use the coordinates (Y, X) defined in
equation (5.4). Expressed in these coordinates the metric in equation (5.15) reads

ds® =dY? + (b+|Y])*dX>. (5.16)

Notice the dependence on the absolute value of Y. Using abs”(z) = 26(z) the Ricci
curvature is given by A ,

R = b+|Y|5(Y) = —65(Y), (5.17)
which is zero everywhere expect at the line Y = 0 representing the defect. Thus,
by imposing the standard Euclidean metric on m; the Ricci-scalar develops a -
singularity at the defect.

To better understand the occurrence of the curvature singularity we use the link
between a manifold’s geometry and its topology provided by the Gau-Bonnet the-
orem. If m is a two-dimensional compact manifold with boundary dm, then the
Euler characteristic of m, denoted x(m), is related to the Gaufl curvature K by

27y (m) :/mKdA—i—fgm kds . (5.18)

For a two-dimensional Riemannian manifold the Gauf3 curvature K is related to the
Ricel scalar R via

R=2K.

The geodesic curvature vector k of a curve is the covariant derivative of the tangent
vector T, that is
k=V7T, (5.19)

and the geodesic curvature k is the magnitude of k. The right hand side of equa-
tion (5.18) involves only quantities depending on the geometry of the manifold. The
left hand side is a multiple of the Euler characteristic and is a topological invariant,
i.e. it is independent of the metric. Hence, we can use equation (5.18) as a tool
to test whether a manifold with known topology admits a given metric. We now
show that the singularity in equation (5.17) ensures that the Gaufl-Bonnet theorem
is satisfied when the standard Euclidean metric is used on mj.

To apply equation (5.18) we must have a compact manifold. As shown in Section
5.1.2 the manifold m; is not compact. Therefore, we construct a compact submani-
fold of mj. For this we use polar coordinates (7, ¢) and consider a “ring” consisting
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of all points with b < r < R. Since this manifold is compact, with the circle of
radius R as its boundary (the points with » = b are just a coordinate boundary, see
Section 5.1.2), we can apply equation (5.18). After using equation (5.6) this “ring”
consists of all points with py < p < 1, where

This compact two-dimensional submanifold is actually the Mobius strip [25], and its
Euler characteristic is known to be

X(MB) = 0.

The Gauf-Bonnet theorem, equation (5.18), then implies that an admissible metric
for RP? must have a Gaufl curvature such that its integral over the Mdobius strip
cancels the contribution from the boundary.

After the inflection given by equation (5.6) the Euclidean metric in equation (5.15)

is given by
b2
ds? = —
p
The boundary circle with radius py, parametrized by arc length s € [0,27b/po], is

given by

b2
~dp” + ?dng : (5.20)

P05
<;5(3):27T—%05

Using this parametrization and the metric in equation (5.20) one obtains for the
curvature vector

K = pg/b2 8[) )

and for its magnitude

k=5

e

With this we obtain

0 2w b/ po

7{ kds = —/ ds =2m. (5.21)
OM& b Jo

If the metric in equation (5.20) were flat everywhere, we would have

KdA=0. (5.22)

Mo

Combining equations (5.22) and (5.21) would give

KdA+j§ kds = 2w # 2w x(Mo6) = 0.
Mb oMb
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Clearly, the Gaufl-Bonnet theorem is violated and we arrive at the conclusion that
it 1is not possible to equip the manifold m; with the Fuclidean metric that is flat
everywhere.

Using the (Y, X) coordinates, the Mobius strip consists of a box with =Y, <Y <
Yy and 0 < X < 7.! If we now use the Ricci scalar in equation (5.17) we obtain

b Y
KdA = / / + | |) O(Y)dYdX = —27. (5.23)
Mo
The two lines
Y(s) = +Yo,
s
X(s)=m—
() =725

constitute the boundary, and the arc length s runs from 0 to 7(b + Yp). On both
lines the magnitude  of the curvature vector equals 1/(1 + Yy) and we obtain

7T(b+Y())
kds = 2 ds = +27. 5.24
75)1\/{5 /0 b+ Yo ( )

Now combining equations (5.23) and (5.24) gives the correct result

KdA+j§ kds = =21 + 21 = 2w (M6) = 0.
M3 oMb

Thus, by imposing the standard Euclidean metric, which is flat almost everywhere,
the nontrivial topology of my forced the Ricci scalar to develop a d-singularity at the
defect. It is this singularity that, when integrated over, cancels the boundary term
and gives the correct Euler characteristic of the Mobius strip. Ultimately, we are
interested in finding solutions to Einstein’s equations that have nontrivial topology
but are free of singularities. Thus it is of interest to see what metrics on m; are
admissible and devoid of singularities. We now show that a metric with constant,
nonzero, curvature satisfies the Gau-Bonnet theorem and has no singularities.
A metric for m; with Gaufl curvature of 1/3b%, in the coordinates (p, ¢), reads

2

ds? =
1—p?

dp® + 3b? p*dep?.

Again, the boundary circle with radius py of Mobius strip is parametrized in terms
of arc length s as

p(s) = o,

¢(s) = NP

!Technically, points where either X = 0 or X = 7 are not in the coordinate patch (5.4) and we
would have to use the second patch, (5.3), as well. Since all quantities of interest are finite on
the z-axis (where X = 0 or X = ), however, it yields no contribution to the integrals. This
is the same as using spherical coordinates (r, 6, ¢) on the z-axis when all quantities are finite
there.
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with s ranging from 0 to 27 v/3bpo. The norm & of the curvature vector evaluates

to
V1-pj
K=
V3bpo

7{ kds = 2my/1 — p3. (5.25)
OMo

The integral of the Gaufl curvature evaluates to

and we obtain

PO
P
KdA = 27r/ — L __dp=-2m+/1—7p3. 5.26
. Ny V100 (5.26)

Equations (5.25) and (5.26) add up to zero, which is the correct result. Hence, we
have shown that by choosing a metric with nonvanishing curvature it is possible to
satisfy the GauB-Bonnet theorem without a singularity in the curvature.

To summarize: We constructed a two-dimensional circular defect, m; by removing
the interior of a disc of radius b and then identified antipodal points on the would-be
boundary circle. It was shown in Section 5.1.1 that m; is indeed a manifold. By
finding appropriate coordinates we derived the transformation properties of vectors
at the defect. Furthermore, we showed in Section 5.1.3 that m; is homeomorphic
to the real projective plane RP? (up to a one-point compactification). From this
we saw that my is nonorientable and nonsimply connected. Finally, we discussed
in Section 5.1.5 that m; cannot be equipped with the standard Euclidean metric,
because the Ricci scalar curvature contains a singularity. Most of the techniques
employed to analyze m; will be used in the next section, where we consider the
three-dimensional defect.

Three-dimensional spherical defect

In this section we investigate the three-dimensional space M containing a type I
defect. It will become a spatial hypersurface in a four-dimensional spacetime in the
following chapter. The construction is similar to its two-dimensional counterpart m;.
The starting point is R? from which we remove the interior of a ball of radius b. Now
points on the sphere with radius b constitute a boundary. By identifying antipodal
points on this sphere the boundary is removed. This is the same construction used
in [7] to create a 7 = 1 defect. As in the last section we first prove in Section
5.2.1 that M is a three-dimensional manifold. In Section 5.2.2 we show that it is
orientable and nonsimply connected. For completeness, we also derive the boundary
conditions for tangent vectors at the defect. Finally, in Section 5.2.3, we investigate
the topology and whether or not M; admits a smooth Euclidean metric.

38



5.2. Three-dimensional spherical defect

5.2.1. Proof that M is a manifold

The proof that M is a manifold proceeds along similar lines to the my case. After
defining the topology we give the coordinate charts and show that they are infinitely
differentiable in the regions of overlap.

We again start to define a topology on M; by making reference to the defining
R®. Similarly to equation (5.1), an e-neighborhood U, , of a point & € R* not on the
defect is defined by

U.={y e R3 : |l —yl3 < €}, (5.27)

where the subscript '3’ indicates that the usual metric of R? is used. Again we
include all U, , in the topology of M; with |x|3 > b and € < |x|3 —b. Two open sets
in R3 are also required to define the open sets for points on the defect:

Ui = {y€R3:\w—y\3<e},
Ueo = {yER3:|w+y|3<e}.

The first set is a ball of radius € centered at & while the second is a ball centered
around —x. Thus we define an open set for a point on the defect by

Uew = (Ual N Ue72) \ By={y € R? : (le—yls < eV |z+y|s < e)Alyls > b}, (5.28)

where the interior of a ball of radius b is subtracted this time. U., in (5.28) is
a straightforward generalization of (5.2). Again (5.28) is not an open set in the
defining R3. As for the m; case, M; is the union of all these Ue». To make M a
topological space we formally add the empty set () to the topology of M.

To define the coordinate maps of M; we need three “wedges”, one around each
axis but not intersecting the other two axes, as shown in figure5.6. We introduce
coordinate charts on each “wedge” as in the my case. On each chart, one coordinate
ranges from —oo to +oo and corresponds to the radius, where the sign encodes
whether a point is “left” or “right” of the defect. Points with coordinate 0 are on
the defect. For the “wedge” surrounding the z-axis we have to introduce another
set of spherical coordinates, as the usual spherical coordinates (r, 6, ¢) are ill defined
along the z-axis. We define the other set of coordinates (7,7, ¢), which are well
defined on the z-axis, by

x = rsind sin @,
Yy = rcosv,

z =rsind cos p.
With the definition that regions 1, 2, and 3 cover the z-, y-, and z-axes respectively,
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) 2
0
e
A<. ./.%
RN »‘. }):)

s

Figure 5.6.: One of the three “wedges” that are used to cover M;. The one shown here

surrounds the x-axis but does not intersect the other axes. The other two “wedges”
are obtained from this one by a 90° rotation.

we obtain the coordinate maps

| r=0b, cosp>0 b+ X, X1 >0
Xl(r7¢)_{b_r, COS¢<0 ) T(Xl)—{b_Xl’ X1<0
¢ —m/2, cosp <0
Z, X:1>0
Vi(@)={ 6—-3n/2, 3m/2<p<2m | e<X1,zl>={7r_1z %20
o+7/2, 0<¢p<m/2 1, X1
}/1—'_71-/27 X1<O

>
H(X1,Y) =4 Yi+31/2, X, >0AY; <7/2 Zﬂ&¢p:{ﬁ%9 gﬁj;g
Y —7/2, X;>0AY; >7/2 ’

(5.29)
’ - b+Ys, Yy>0
o r—b, ¢o<m _ 2, Y520
YVQ(’T‘,QS)—{ b—’f‘, ¢>7T ’ 9(}/2722)_{71__227 }/’2<0 )

R P R (S O - H I CE
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5.2. Three-dimensional spherical defect

p—m/2, cosp<0

b+2Zs, Z>0

X3(p) =< @—37m/2, 3n/2¢p <27 T(Zg):{b_zz 720
o+m/2, 0<p<m/2 '

- 9, cosp >0 - Y3, Z3>0

Yé(ﬁ’(p)_{w—ﬂ, cosp < 0 19(}/:3’23)_{7r—¥},, Z3 <0

X3+7T/2, Z3 SO
o(X3,723) =< X3+3r/2, Z>0ANX3<7/2 Zs(r,p) = {
Xs—7/2, Z>0NX3>7/2

r—>b, cosp >0
b—r, cosp <0

(5.31)

Notice that the coordinate patches in equations(5.29) and (5.30) are the two-
dimensional coordinates of equations (5.3) and (5.4) amended by the third coor-
dinate Z. We continue the practice of Section 5.1.1 and write for example (Z,Y, X)
to indicate that Z is the “radial” coordinate and Y and X are the “inclination”
and “azimuthal” angles, respectively. Points on the defect have “radial” coordinate
0, for example Y5 = 0 in equation (5.30). The ranges of the coordinates defined by
equation (5.29) are

—00 <Xj < 0,
0<Y <,
0<Zy<m,

and similarly for the other two. X; < 0 or X; > 0 in equation (5.29) means that the
point in question is to the “left” or to the “right” of the defect, respectively.

As the last part of the proof we have to check that the coordinates in Eqs.(5.29)—
(5.30) are inverses of each other and infinitely differentiable on the region where the
“wedges” overlap. For regions 1 and 2 the check is similar to the m; manifold, now
amended by a third Z coordinate. The result is

AU C: Xl(ifg) = YQ, H(XQ) = X2 + 7T/2, Z1 = ZQ, (532&)
BUDX1<}/2) :—}/2, Y1<X2):X2—7T/27 21:71'—227 (532b)

where A is the three-dimensional analog of the region A in figure 5.3, and similarly
for the other ones. From equation (5.32) we see that the two coordinates are inverses
of each other and smooth functions of each other. Due to the use of two spherical
coordinates the relations between the coordinates on the overlaps of region 3 with
region 1 and 2 are less trivial. For example, in the overlap region of 2 and 3 given

by

0< Xy <, 0<X3<7T/2,

0< Zy<m/2, 0<Y3<7/2, (5.33)
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we find,
X3(Xs, Z5) = /2 + arctan(tan Zy cos Xs) ,
\/1 — sin? Z, sin? X2>

sin /5 sin X

Y3(Xs, Z5) = arctan < Z3(Yz) = Ya,

Xo(X3,Y3) = arccot(— tan Ys cos X3) ,
\/1 — sin? Y sin? Xg)

5.34
sin Y3 sin X3 ( )

Z5(X3,Y3) = arctan (
However, neither function has a pole in the coordinate specified by (5.33) and is
infinitely differentiable. Also, using standard trigonometric identities one can show
that these functions are inverse to each other. Similar relations hold for the other
overlap regions, thus showing that the coordinate charts are infinitely differentiable
on the overlaps. Thus all charts are invertible smooth maps in the regions of overlap,
and hence M is a manifold.

That M; has the Hausdorff property is shown in the same way as for m;. The
only difference is that for two points (b, 01, ¢1) and (b, O, ¢o) on the defect we have
to take € to be the minimum of either |b(¢; — ¢2)|/2 or [b(6; — 62)]/2.

Properties of M;

We now show that M is a noncompact, orientable and nonsimply connected man-
ifold without boundary. The arguments for each of these properties are similar to
those discussed for my in Section 5.1.2.

The fictitious coordinate boundary at » = b again results from the spherical polar
coordinates not being suited to describe the defect. In the usual topology of R? these
points are boundary points, but in the topology of M, defined in equation (5.28),
they are not. Also, in the coordinate patches adapted to the topology of M, as
defined by Eqgs.(5.29)—(5.29), points on the defect are mapped into the interior of
the coordinate “box”.

Again, noncompactness follows from the fact that we identified only points at
a finite radius and M is still unbounded. That M is not simply connected can
also be seen from figure 5.4, which applies to M} as well, if we think of it as a two-
dimensional slice through M. Closed curves in M therefore fall into two distinct
classes: those which can or cannot be contracted to a point.

Finally, we find that Mj is orientable as opposed to the nonorientable m;. When
calculating the Jacobian of the transformation in equation (5.32b) the third equation
yields an additional minus sign, as compared to equation (5.5b), and the resulting
determinant is +1. A lengthy, but straightforward, calculation reveals that the
Jacobians of the transformations in equation (5.34) also have Jacobians with positive
determinants.

We close this section by deriving the transformation properties of tangent vectors
at the defect. The idea is exactly the same as in Section 5.1.4. In the (Y, Z, X)
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coordinate patch we consider the straight line C'
C(A\) = Yo+ AY1 = Y0), Zo + A(Z1 — Zo), Xo + M X1 — Xo)), (5.35)

with A € [0,1] and which is supposed to pass through the Y = 0 plane at, say,
A = 1/2. Writing AY for Y} — Y (and similarly for Z; — Z, and X; — X)), the
tangent vector V' of C reads

V=AY0y + AZ0; + AXOx .

Now we use equation (5.30) to obtain the image ¢ of C' in R?

r(A) =b+ Yo+ AY )|, (5.36a)

B Zo+AZN, A >1/2
0(A) = { T—Zo—AZ\, A<1/2 (5.36b)

B Xo+AXA, A>1/2
o(A) = { T+ Xo+ AXA, A< 1/2 (5.36¢)

As \ approaches 1/2 the two tangent vectors v of ¢ at  and —a read
) de
v(x) = /\l111§12+ T AY O, (x) + AZOy(x) + AXOy(x) , (5.37a)
d

o(~@)= lim_ d—i = —AYO,(~x) — AZOy(—x) + AXDy(—z).  (5.37b)

Since spherical coordinates are not adapted to the topology of M, the tangent vector
of ¢ at the defect appears as the two vectors in equation (5.37). Therefore, when we
identify the two vectors, we obtain the following for the components

v'(x) = —v"(—x), (5.38a)
v(x) = 0 (—x), (5.38b)
v?(x) = +v°(—x) . (5.38¢)

Equations (5.38a)—(5.38¢c) are the boundary conditions for a type I defect that will
be used in Chapter 13 (equations (13.6a)—(13.6¢)). In the next section it will be
shown that M; is homeomorphic to RP3. Unfortunately, there exists no way to
represent RP? as a subset of R3.

Topology and curvature of Mj

The proof that
M; ~ RP?* — {point}

proceeds along similar lines to those in Section 5.1.3. We work in spherical polar
coordinates and perform an inflection at the sphere of radius b, see equation (5.6).
In this way, Mj is mapped into the unit ball with antipodal points on the boundary
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identified. Again the origin of the ball is not included, making the space non-
compact. Provided that all fields defined on M have a well-defined limit as » — oo
we can add a point {oo} to M; and obtain a compact space. This extra point is
then mapped to the origin by the inflection. The unit ball with antipodal points
identified is, however, just one definition of the real projective space RP3 [21]. This
concludes the proof that M ~ RP? — {point}.

This result is consistent with the properties of M stated in the previous section.
Namely, RP? is a three-dimensional, orientable, nonsimply connected manifold with-
out boundary.

To see what happens when we equip M; with a flat Euclidean metric we employ
the coordinates (Y, Z, X) defined in equation (5.30). However, we start with the
metric given in spherical polar coordinates as

ds® = dr? 4+ r?d6? + r?sin® 6d¢?
which in the (Y, Z, X) coordinates reads
ds?* =dY? + (b + [Y])2dZ% + (b+ |Y])?sin® Zd X 2.

The Ricci scalar R can now be calculated as

abs'(Y)? — 1+ 2(b + abs(Y))abs” (V)

h==2 (b+ abs(Y))? (5:39)
After using
abs'(z)? =1,
abs”(z) = 26(z),
equation (5.39) turns out to be
T +52$)/S)(Y) - _8M ' (5:40)

Equation (5.40) shows that by forcing M to have the Euclidean metric almost ev-
erywhere, a d-function in the Ricci scalar is created at the defect. Since there is
no Gauf3-Bonnet theorem in three dimensions we cannot interpret the magnitude of
this singularity. Its existence is tied to the antipodal identification at the defect.
To see what happens if we use a metric with constant curvature instead, it is useful
to start by giving the metric in the inflected coordinates (p, 0, ¢). By rescaling p we
can always ensure that p is in the range from 0 to 7. We choose the following metric

ds? = dp? + 4sin®(p/2) d6* + 4sin?(p/2) sin? 6 d¢? .

After the transformation p — 7/r and then using coordinates (Y, Z, X') the metric
transforms into
2

v T T
ds? = —— _ dY?+4sin? [ ——— ) dZ? +4sin? [ ———— in?Zdx?2.
R T (2<1+m>) M Ty
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From this we obtain the following for the Ricci scalar

3 (1+Y)])? m 3
R = 5t 4? cot (m) IW(Y) = 5 (5.41)

Unlike the Ricci scalar in equation (5.40) the term in front of the é-function evaluates
to zero and R is constant and smooth everywhere.

We conclude this section by one further property of RP? which is also shared
by M. As in the previous paragraph we perform a rescaling of RP? such that we
obtain a ball with radius 7 and antipodal points with p = 7 are identified. This
ball is identical to SO(3), the group of rotations in three-dimensional Euclidean
space. Such a rotation can always be parametrized by giving the axis of rotation
and the magnitude of the rotation. The axis of rotation is specified by a unit vector
n, which in turn is specified once the usual angles # and ¢ are given. The rotation
around n with rotation angle w is then carried out in the usual right handed sense.
w is thus restricted to be in the interval [0, 7] (for a rotation of more than 180° we
have to rotate around —n in the right handed sense). The group of rotations is
parametrized by points in the ball of radius 7. Finally, note that a rotation of 180°
around 7 gives the same result as a 180° rotation around -n. Thus, antipodal points
on the boundary have to be identified and SO(3) is identical to a ball of radius
m with antipodal points on the boundary identified. To summarize, we have the
following relations between My, RP3 and SO(3)

M; ~ RP? — point ~ SO(3) — point .

The result that M is homeomorphic to SO(3) is crucial for the following chapters.
Ultimately, we want to find solutions to Einstein’s equations that have the spatial
topology of Mj. Matter fields then have to be compatible with this topology as
well. Since Mj is SO(3) topologically, we will see that an SO(3)-valued scalar field
naturally fits on this spacetime.
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6.2.

An SO(3)-Skyrme model

General considerations

In the last chapter we showed that the space M; of a defect obtained from R3
by removing a ball of radius b and antipodal identification is a three-dimensional
manifold and has the topology of SO(3). Now, we investigate if and how M; can be
a spatial hypersurface of a four-dimensional spacetime. This spacetime would then
have the topology R x SO(3). As regards to Part IV we also want the spacetime
to be Minkowskian far away from the defect, which requires spacetime to become
flat asymptotically. The results of Chapter 5 indicate that the nontrivial topology
of M will not allow the flat Minkowski metric to be smooth everywhere. Rather,
a metric with constant curvature seems to be preferred. Thus, to obtain a metric
that is at least flat asymptotically, we require some matter field which, via Einstein’s
equations, “irons out” the curvature at infinity. If this turns out to be the case, then
the defect can be considered as an isolated region for which a mass can be defined.
As an additional feature we would like the defect to be stable in the sense that there
exists some finite defect parameter b which minimizes the mass of the defect. If the
defect were to shrink to zero its mass would become infinite. Such a shrinking can
only be discussed within the full time-dependent Einstein equations, if at all. To
discuss what happens in this limit probably requires quantum gravity as well. To
avoid all these difficulties we constrain our investigations to the time-independent
case and treat b as an additional parameter of our model. We then compare how
quantities such as the mass of a defect depend on b.

The Skyrme field

For the reasons stated in the last section, we want a matter field that is compatible
with the topology of the spatial hypersurface. On the one hand, we want the matter
field to have a sufficiently rich structure to give nontrivial effects. On the other hand,
we want it to be simple enough so that the equations of motion do not become too
complicated. The result of these considerations is that we take an SO(3)-valued
scalar field ) as our matter field

Q:Rx M ~RxS0(3) - {point} — SO(3) . (6.1)

This matter field is simple in the sense that it is a scalar field, and is rich because
of its nontrivial internal group structure. We are only looking for static solutions
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to Einstein’s equations, and hence we take () to be time-independent. Furthermore,
we make a hedgehog Ansatz for )

O(z) = Ra(F(r)) . (6.2)

In equation (6.2), « is a point of the spatial hypersurface M; with coordinates
(r,0,¢), r > b. On the right hand side, R;(w) denotes the usual rotation ma-
trix in R?® around an axis specified by the unit vector 7 with a rotation angle w.
The name “hedgehog” for these kinds of field was introduced by [26] and refers to
the property that the direction in space given by « is in the same direction 7 in the
internal space. Finally, F(r) is the profile function. It is this function which is to
be determined by the field equations. A general rotation around z with angle w is
given by

Ri(w) =coswl +sinwn-X + (1 —cosw)n ®@n, (6.3)
where X stands for the three generators of SO(3) around the -, y-, and z-axes
00 O 0 01 0 -1 0
X,=100 -1 |,X,= 0O 00|, X,=1 0 0. (6.4)
01 0 -100 0 0 O

The hedgehog Ansatz equation (6.2) then reads explicitly
Qx) =cos F(r)1+sinF(r)z- X +[1 —cos F(r)]z @z . (6.5)

As mentioned in Section 5.2.3 on page 45, we parametrize an element of SO(3) by
three angles (9, o, 3), with both ¢ and « ranging from 0 to = and € [0,27]. The
pair (a, ) defines the axis of rotation and ¥ is the angle of rotation. Now using
spherical polar coordinates (7,0, ¢) for the base space M; and the hedgehog Ansatz
for €2 we obtain

)= F(r), (6.6a)
alxz) =0, (6.6b)
B(x) = 6. (6.6¢)

The first condition which the nontrivial topology of M; demands of € is that it must
be equal at identified points

Qx| =Q(—=| _,). (6.7)

r:b)

Since n(x) = —n(—=x), a comparison with equation (6.3) shows that equation (6.7)
requires

sin F(b)n(x) - X =sin F(b)n(—x) - X = —sin F(b) n(x) - X,
which can only be satisfied if
Fby=nm, neZ. (6.8)

We show in Appendix A.1 that, with this boundary condition, the gradient V)
automatically satisfies the boundary conditions for a vector at the defect.
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6.3. The Skyrme Lagrangian

We now introduce the Lagrangian L for our model. We include the Hilbert La-
grangian for the metric. Besides a kinetic term the Lagrangian for €2 is also sup-
posed to include terms that are fourth order in the field derivatives. The first term
is the usual Skyrme term [3, 4], while the additional second term is the kinetic term
squared [27]. Thus the model Lagrangian takes the form

L = / E dgx = / (‘Cgrav + ‘Ckin + LSkyrme + ‘Cadd) d3$7 (69)
MI MI

where the Hilbert-, kinetic-, and Skyrme Lagrange densities are given by

Lorav = 1 673GNR\/—— : (6.10a)
Ly = ZQTr (W) /=g, (6.10b)
Logme = 5T (0] [0, 04]) V=7, (6.10c)
Loga = Klz Tr(w, ™)) V=g . (6.10d)

Here, R denotes the Ricci curvature of the metric g with signature (—, +, +, +) and
Gy is Newton’s constant. In units with ¢ = 1, the quantities f? and 1/e* have
the dimensions of mass over length and mass times length respectively, while v is
dimensionless and assumed to be positive. The field w, = Q2719,Q takes values
in the Lie-algebra so(3). We use the following notational conventions. Lower case
Greek letters denote spacetime coordinates while lower case Roman letters denote
the coordinates of the spatial M;. Capital Roman letters denote the internal SO(3)
or so(3) coordinates and run from 1 to 3. For example, we write

_ L
wy = w, XL,

for the Lie-algebra valued one-form w,,, with the basis vectors X, of so(3) defined
in equation (6.4). While the spacetime indices are raised and lowered with the
spacetime metric, the placement of the Lie-algebra indices solely follows notational
convenience. Einstein’s summation convention is understood for all kinds of repeated
indices, unless stated otherwise.

Equation (6.10a) is the usual Hilbert Lagrange density of general relativity and
the remaining three terms make up the matter Lagrangian for the scalar field. The
first of these terms, equation (6.10b), gives the kinetic energy of Q2. Equation (6.10c¢)
is originally due to Skyrme [3, 4]. Together, equations (6.10b) and (6.10c) constitute
the Lagrangian of the so-called Skyrme model. Instead of our SO(3)-valued field
2 Skyrme’s field is SU(2)-valued. The motivation to study this model comes from
the fact that it has stable solutions that are characterized by a topological quan-
tum number. These solutions, called Skyrmions, are interpreted as baryons and
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6. An SO(3)-Skyrme model

small perturbations around these solutions correspond to mesons. The Skyrmion’s
topological quantum number is identified with the baryon number B. Witten has
shown [28] that the SU(2)-Skyrme model can be regarded as a low energy effec-
tive field theory for quantum chromodynamics. Furthermore, the Skyrme model
becomes exact in the limit where the number of colors becomes large. Today, quan-
tized Skyrmions of higher topological quantum numbers are used as models for light
nuclei [29]. When gravity is included in the model, that is the terms in Egs. (6.10a)—
(6.10c) comprise the action, one speaks of a gravitating Skyrme model. Solutions
to this theory that also have a topological quantum number were found in [30] and
are called gravitating Skyrmions. Due to the close relation between SO(3) and
SU(2), on which we comment in depth in Chapter 7, we can reproduce all of the
results of the SU(2)-Skyrme model. Finally, the additional fourth order term, equa-
tion (6.10d), was not present in the original work of Skyrme. In the form used here
it is due to [27]. Tts main effect is that it gives a negative contribution to the energy
density (for v > 0), as we will show in Section 6.4. We will ignore this term in
the following chapters, that is we set v = 0, but will consider it later in Chapter 9,
where we will also discuss the physical reason for its inclusion in the model.

Finiteness of the action requires finiteness of the Lagrangian in equation (6.9),
which in turn implies that the matter field €2 must approach the constant 1 suffi-
ciently fast. For the hedgehog Ansatz in equation (6.5) this means that the profile
function must approach 0 as r approaches co. In summary, the nontrivial topology
created by the defect and finiteness of the action demand the following two boundary
conditions for the profile function of the hedgehog Ansatz

Fb)=nm neZ, (6.11a)
F(0) =0. (6.11b)

The first important aspect of the boundary conditions in equations(6.11a) and
(6.11b) is that they allow for a one-point compactification of M;. As described
in Chapter 5 this means that we amend M by a point {co} where the profile func-
tion is supposed to take the value 0. Therefore, we have, at fixed times, that € is
topologically a map

Q:50(3) — SO(3). (6.12)

It is argued in [31] that maps from SO(3) to SO(3) fall into distinct homotopy
classes. The meaning of this is that maps from SO(3) to SO(3) that cannot be
deformed into each other continuously belong to different classes. In this language
the closed loops in SO(3) considered in Chapter 5 are maps from the circle S* to
SO(3) and fall into two distinct classes. According to [31] the homotopy classes of
maps from SO(3) to SO(3) are related to the homotopy classes from S? to SO(3).
It is well known [21] that the latter can be equipped with a group structure, called
the homotopy group. One has [21]

75(SO(3)) ~ Z, (6.13)
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6.4. The field equations

where m3(SO(3)) denotes the homotopy group of maps from S® to SO(3). The inte-
ger occurring in equation (6.13) is called the topological degree or winding number
and counts, loosely speaking, how many times a given map “winds around” SO(3).
An important property of the winding number is that it is a topological invariant: if
a map is deformed continuously its winding number does not change. In the SU(2)-
Skyrme model one considers maps from S* to SU(2) ~ S3 and the homotopy group
of these maps is also Z. The winding number is then interpreted as the baryon
number.

Instead of maps from S® to SO(3) we consider a matter field  that is a map from
SO(3) to SO(3). It is argued in [31] that the corresponding homotopy classes can
also be categorized by an integer, and hence that the winding number is a topological
invariant. We show in Appendix A.2 that the integer n occurring in the boundary
condition equation (6.11a) is actually the winding number of €.

The field equations

The field equations for € in terms of the three coordinates 6% are the Euler-Lagrange

equations
d 0Ly 0L
— =0 6.14
dar 00,05 00K ’ ( )
where the Lagrange density of matter Ly is the sum of Lyin, Lsiyrme, and Lada.
Writing

_ _, 00 06F
Wy = Q 16MQ =0 1@ % = wL&ﬂL, (615)

and using

—§TI'((,()L (,L)M) = HLM7

1
—éTl" ([wL,WM] [WO,WP]) = HroHyp — HrpHyo,

where Hpys are the components of the metric of SO(3), explicitly given by
H = d¥? + 4sin?(9/2) da? + 4sin®(9/2) sin® a df?, (6.16)

we obtain
2

Liin = —%HLM%QL@V@MQW\/E )
1

Lskyrme = 32 (HroHyp — HppHyo) 8;L9L6V9Malieoa)\9pgungy>\\/§7
Loga = %62HLMﬁueL&,HMg“"Hopﬁnﬁoﬁ)ﬂpg“’\\/§.
The energy-momentum tensor 7, of the Skyrme field €2 is defined by
aLmat
Tuy =-2 aguy + g;wLmata (617)
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6. An SO(3)-Skyrme model

with Liyat = Lmat/vV/—9 and Liyat = Liin + Lskyrme + Lada. Finally, the Euler-
Lagrange equations are complemented by Einstein’s field equations

1
RMV - §gMVR = 87TGN TMV s

where R, and R denote the Ricci tensor and scalar of the metric g, respectively.

We now derive the Einstein-Skyrme field equations used in later chapters. The
Ansatz for the static, spherically symmetric spacetime metric ¢ in spherical polar
coordinates (t,7,0,¢) is

ds? = —ed % 4+ 20 r? 4 12d6% 4 12 sin?(F)de? (6.18)

with two functions v(r) and A(r). From now on we work with the dimensionless
radial coordinate

r=fer, (6.19a)
Tdef = feb (619b>
In the following we will suppress the = dependence of v(z), A(z), and F(x) and write

a prime for d/dx. To obtain an asymptotically flat metric the functions v and A
must satisfy

v(oco) =0, (6.20a)

A(o0) = 0. (6.20D)
Using the hedgehog Ansatz given in equation (6.5) for the matter field and equa-
tion (6.18) for the metric, Einstein’s equations in the form 2> G* = 87Gy 2> T
become

672)\

e (14+22)—1= 87T7){T [° + 4sin® (F/2) (1 — 2v/3)] F "

— 4sin®(F/2) [1 - w (1— 47/3)]
_ %64%21:/4} , (6.21a)

2¢ (V' +N)=8mn [(xZ +4sin® (F/2) (1 —27v/3)) F”* — %e_kaQF"l] ,  (6.21b)

ez [(V = N1+ av) + a] = 2m [16(1 — 47/3)%

— e P2 — e P F?/3) |, (6.21c)
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6.4. The field equations

where the first, second, and third equations follow from the (¢,t), (x,z), and (0, 6)
component of Einstein’s equations, respectively. The dimensionless quantity 7 is

defined by
n= Gy f?, (6.22)

and gives the relative strength between Newton’s constant Gy and the Skyrme
constant f. Due to the spherical symmetry, the (¢, ¢)-component equals the (6, 0)-
component in equation (6.21c). To obtain the explicit form of the Euler-Lagrange
equations for the three components (9, a, 3) from equation (6.14) with the spacetime
metric ¢ given in equation (6.18) and the internal metric H in equation (6.16) is
tedious but straightforward. Inserting the hedgehog Ansatz in the result shows that
the functions o and 3 given in equations (6.6b) and (6.6¢) satisfy the Euler-Lagrange
equations automatically. The only nontrivial equation is that for the profile function

0=—[(1—reF"?) 2 +4sin®(F/2) (1 — 2v/3)] F”
_2sin F % (1—27/3) F? — e <1 + 2# (1- 47/3))}
— [2z+ (2® + 4sin® (F/2) (1 — 2v/3)) ( = X)] F
+ %8_2)\ (Qx + 22 (V- 3)\')) F*. (6.23)

Notice that v/ can be eliminated from equations (6.21b) and (6.23) by use of equa-
tion (6.21a). After doing this we obtain

0=—[(1—~e F?)2® + 4(1 — 2v/3) sin*(F/2)] F”
+ 2e2A [1 +2(1 — 47/3)%] sin F'

+ % <[4(1 - 27/3)% - 1} 2% + 226 ll +4(1 —2v/3)
X {327msin2(F/2) [1 +(1— 47/3)%] — 1})

— (1= 29/3)sin(F)F? — T g ll +4(1—2y/ 3)—Sin23(;F5 /2)} F’

sinQ(F/Q)]

T2

3

- 2?733 l327m sin®(F/2) (1 +(1- 47/3)%:(3%) - 1] F?, (6.24a)

.9
20\ = {327rnsin2(F/2) [1 +(1- 47/3)%;%] - 1} - %%eQ’\xQF”

in?(F/2
+ 1+ dmpa? [1 41— 27/3)%] F?, (6.24D)
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6. An SO(3)-Skyrme model

2

2 = e — 1+ 8mn (% [1 — %G_QAFQ] F?+ QSiHQ(F/Q)

X {(1 — 2y/3)F? — 2¢* [1 +(1— 47/3)%} }) .
(6.25)

Equations (6.24) and (6.25) are the Einstein-Skyrme equations that we want to solve
subject to the boundary conditions in equations (6.11) and (6.20) and which we
repeat here in dimensionless units for completeness

F(zqer) =nm, F(oo)=

0,
v(oo) =0, A(c0) =0,

where xge¢ is defined in equation (6.19b) and n € Z is the winding number of the
Skyrme field (see discussion on page 51).

Before we solve these field equations, we mention some of their properties. First,
notice that the equations for the metric components (equations (6.24b) and (6.25))
are first order equations, while the equation for the profile function(equation (6.24a))
is of second order. Differentiating equation (6.25) with respect to x and inserting the
result together with equations (6.24) and (6.25) into equation (6.21c) we find that it
is satisfied identically. Therefore, it suffices to consider the first order equations for
the metric.

A second property of equations (6.24) and (6.25) is the asymptotic behavior of the
metric and the profile function. To obtain this behavior we rewrite the equations in
terms of £ = 1/x and expand around £ = 0. The result of this straightforward but
tedious calculation is

1
Fasympt( + O (ﬁ) 5 (626&)
1
)\asympt( + O (;) (626b)
Vasympt (T) = —Aasympt (T) - (6.26¢)

Here, F, and A\, are constants. The result of equation (6.26c) enables us to use
the following strategy in solving the ordinary differential equations (ODEs) in equa-
tions (6.24) and (6.25). First, we try to solve equations(6.24a) and (6.24b) nu-
merically from xger to some x,,.. Provided we have a solution for F' and \ we use
equation (6.26¢) to obtain the value of v at 2y, Which serves as our initial condition
for equation (6.25).

We conclude this section by giving the explicit expression for the energy den-
sity. With the Lagrangian given by equation (6.9) we evaluate equation (6.17) using
the hedgehog Ansatz (equation (6.6)) for the matter field and the Ansatz in equa-
tion (6.18) for the metric. The energy density of the matter field is then given by
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6.4. The field equations

the Ty component and reads

14 (1—4v/3) p

sinQ(F/Q)]

1 in?(F/2
+ et {1 41— 27/3) ;2 / )] F? = Ll p(6.27)

where e? f4 has units of mass per length cubed. Terms proportional to ~ originate
from the additional Lagrangian L,qq in equation (6.9). As can be seen from equa-
tion (6.27) these terms always lower the energy density. Without them the energy
density is strictly positive.
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7.1.

Nongravitating SO(3)-Skyrmions

Before we consider gravity, we first investigate solutions to the Skyrme model on
a fixed background. First, we take (an almost) flat background metric and, then,
one with constant curvature. In the latter case the field equations can be solved
analytically. Throughout this section we relate our findings to known results of the
SU (2)-Skyrme model. Furthermore, we only consider the kinetic- and Skyrme-term
in this chapter that is, the Lagrangian is given by

L= L3z = / (Lyin + Lskyrme) 3. (7.1)
My My

It can be obtained from equation (6.9) by setting v = 0 and ignoring the Hilbert-
Lagrangian Ly -

Flat background metric

In this section we equip the M; spacetime with the usual Minkowski metric. As
mentioned in Section 5.2.3, this metric is flat almost everywhere - that is, its Ricci
scalar is a d-function centered at the defect. Despite this shortcoming we consider
the Minkowski background metric as a “benchmark” scenario. It will be shown later
in this section that our SO(3)-Skyrme model reduces to the usual SU(2)-Skyrme
model in the appropriate limit. The latter model does have solutions on Minkowski
spacetime.

We work in the usual spherical polar coordinates (¢, 7,6, ¢) for Minkowski space-
time, and the metric takes the form

ds* = —dt* + dr? + r2d6? + r? sin?(0)d¢? . (7.2)
Compared to the Ansatz in equation (6.18) we now have

v(r)
Ar) =

0, (7.3a)
0. (7.3b)

For the SO(3)-valued matter field 2 we keep using the hedgehog Ansatz given in
equation (6.5) on page 48, which we repeat here for completeness

Qx) =cos F(r) 1 +sinF(r)z- X + (1 —cos F(r))z® .
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7. Nongravitating SO(3)-Skyrmions

In terms of the coordinates (9, «, 3) for SO(3) the hedgehog Ansatz reads

I(x) = F(r),
alx) =0,
Blx) =o.

As mentioned in Section 6.4, these Ansdatze for a and [ automatically satisfy the
Euler-Lagrange equations for generic metric functions v and A. This result, there-
fore, holds true for the situation considered here, with both » and A vanishing. The
only field equation not already satisfied is the one for the profile function F', which
reads

2sin2 (F/2)

1
(2 + 4sin? (F/2)) F" + 20 F' + 2sin F <§F/2 . 2
a

) =0. (74
Recall that we are using the dimensionless quantity z = fer. Notice that equa-
tion (7.4) is just equation (6.24a) without gravity (Gy = 0 leading to n = 0), 7 set
to 0, and using equation (7.3). The boundary conditions for F' in this flat metric sce-
nario are the same as the ones in curved spacetime, because €2 must still respect the
nontrivial topology of M; and should have a finite energy. Again, for completeness,
we repeat the boundary conditions here

F(zqet) =nm, n€Z, (7.5a)

F(o0) =0, (7.5b)

where x4 = feb, and the integer n is the winding number of 2. Our task is to

solve equation (7.4) for various values of the parameter x4, subject to the boundary
conditions in equation (7.5).

Before we do this, however, we give the energy density of (). Using the simplifi-
cations mentioned above, the energy density, equation (6.27), turns into

1 1,  sin®(F/2) o sin?(F/2)
0 571 = QF + 47$2 2F + 1+ —2 | (7.6)

The total field energy E is thus given by

| F/2 in%(F/2
T00d3:p:477/ —F’2+4M [2F’2+1+M] dz.

x? x?
(7.7)
Notice that the energy depends on the defect parameter x4 through the lower limit
of integration. An important property of the energy, as given in equation (7.7), is
that it can be rewritten in terms of the winding number n. To see this, we complete
the square in equation (7.7) and obtain, after some algebra,

def4 7 / <F/ Sm(f%) + 2sin(F/2)%(F' 4+ v/2)?

—3v2r <— sin(F/2)F )

e
E(xdef) - =
f My Tdef
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7.1. Flat background metric

Comparing with equation (A.6) on page 139, we see that the integral over the last
term is just a multiple of the winding number n of the field. Therefore, we obtain
the following relation between the field energy and the winding number

E(Zger) =3V27mn+ /OO z° (ﬂ + ZM) + 28in(F/2)%(F' +V/2)dz .

e
4r f ot V2 22
(7.8)

Since the integrand in equation (7.8) is a sum of two squares, its contribution to
the energy is always positive. Thus, within a topological sector, where all field
configurations have the same winding number n, the energy is bounded from below
by

EBogo = 12\/571’2 nf/e < E(.I‘def). (79)

A similar bound, with n replaced in equation (7.9) by —n, holds when n < 0. This
topological bound on the energy is named after Bogomolnyi, who discovered that
topological solitons in many theories have energies bounded by the topological degree
[32]. The Bogomolnyi bound can be achieved iff both squares in equation (7.8) vanish
identically, and this condition leads to the following two first order equations for F

F'=—v2, (7.10a)
F = —@M. (7.10D)

12

Since the first equation requires F’ to be constant while the second demands F” to
vary, we see that they cannot both be satisfied. Indeed, we will see later that the
energy exceeds the Bogomolnyi bound by at least 23%.

Solutions with even winding number

Instead of starting with the investigation of Skyrme fields with winding number 1,
we will first investigate fields that have an even winding number. As we will see,
such fields correspond to the well studied SU(2)-Skyrme fields, and we reproduce
various results known in the literature.

Specifically, we will take the winding number to equal 2, and equation (7.5a) reads

F(.ﬁl]def) = 2.

Unfortunately, an analytic solution to equation (7.4) is not known, and we have to
revert to numerical methods. Since the problem is a boundary value problem, we
use the so-called shooting method. With this method, one starts at one end of
the interval (here xqef), where the function satisfies the boundary condition (here
F(z4ef) = nm, with n = 2). Then one “guesses” the remaining unknown derivative
(here F'(zqef)), and “shoots” by evolving the ODEs (here just one) to the other
boundary. Usually, the numerical solution obtained in this way will not satisfy
the boundary conditions at the second end point. One then goes back and adjusts
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T L X
0 5 10 15 20 25

Figure 7.1.: The profile function F(z) for n = 2 and zg¢ = 1/v/2 (indicated by the
dashed line).

the unknown derivative at the starting point (here F'(xg4e)) until the numerical
solution satisfies all boundary conditions. Since our second end point is oo, an exact
implementation of the shooting algorithm is not possible. To obtain numerical
solutions with high accuracy in this case one would have to substitute © — £ = 1/x
and start from ¢ = 0. Finally, one shoots from both x4 and & = 0 to some
intermediate point until one obtains a smooth function there. Here, we follow a
slightly less accurate, but much easier, method. Namely, we start at zq.f and, after
“guessing” a value for F”(z4e), solve the ODEs to some maximal x,,,. We end the
shooting if the profile function is sufficiently small at x,,,, and physical quantities,
such as the energy, do not change under variation of x,,,.. When comparable results
exist in the literature, we are always in agreement, within numerical uncertainty.

Figure 7.1 shows the profile function F(x) for the particular value x4 = 1/v/2.
More interesting than the profile function is the dependence of the field energy on
Tqef- Figure 7.2 depicts the ratio of the field energy and the topological lower bound
as a function of xg4er. The energy always exceeds its lower bound by at least 23%.
This is in agreement with the discussion following equations(7.10a) and (7.10b),
where we showed that the lower bound cannot be achieved. As x4 approaches
zero, the energy remains finite and is larger than Ep,e, by approximately 23%.

It is not a coincidence that the SU(2)-Skyrme model also has a hedgehog solution
with winding number 1 that exceeds the Bogomolnyi bound by 23%. The reason
for this is that, in the situation considered here, {2 is a map with winding number
2, and, hence, covers SO(3) twice. But a map that covers SO(3) twice is equivalent
to a map that covers SU(2) once, because SU(2) is the double cover of SO(3) [21].
Therefore, our SO(3)-Skyrmion with n = 2 is equivalent to an SU(2)-Skyrmion with
B = 1. Explicitly, we have

where o denotes the three Pauli matrices, and x(r) = F(r)/2. Indeed, we can
recover the field equations of the SU(2)-Skyrme model as follows. To compare
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E(xger)/ EBogo
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Figure 7.2.: Ratio of the field energy E(z4e) and the Bogomolnyi bound Epgg, as a
function of the defect parameter x4 = e fb with winding number n = 2. Here,
EBogo is the lower bound on the energy, see equation (7.8). The ratio increases as
Zdef increases, but approaches the finite value ~ 1.23 in the limit of vanishing xqes.

our equations with those of the SU(2)-Skyrme model, as given in [20], we have to
substitute

F — 2y, (7.11)
and rescale the dimensional quantities f and e as

f— 12, (7.122)

e — V8g. (7.12b)

From equation (7.11) we see that our boundary condition, F'(0) = 2, transforms
into x(0) = m, which is the correct boundary condition for U(x) at the origin.
Finally, to compare our dimensionless radius, x = fer, to the one used by [20],
T = fgr, we use equation (7.12) and obtain

:L’—>\/§:%.

When expressed in these rescaled quantities, our field equation, equation (7.4), be-
comes

- . - . sin?
(7% + 2sin® ) x” + 27 + sin(2x) {X’Q —1- ﬁx] =0,

which equals equation (9.21) in [20] (our x(Z) corresponds to their f(r)). In the
limit of vanishing defect parameter our energy, E(0) ~ 1.23Ep,,,, agrees with the
energy obtained in [30], once equation (7.9) is used for Ep.g, and our parameters are
rescaled according to equation (7.12). Explicitly, we find that the limiting energy
E(0) = 1.23 X Epggo = 1.23 x 12/27% x 2 ~ 412 /e has the value ~ 72.8 when the
rescaled units of equation (7.12) are used. This value can also be read from figure (1)
in [30].
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Figure 7.3.: The profile function F(z) for n = 1 and zge = 1/v/2 (indicated by the
dashed line).

We now comment on finiteness of the energy in the limit 240 — 0. With F'(zgef) =
27 at the defect, the field 2 reads

Q(a:def) = R@(Qﬂ') =1.

Since € is just a constant at the defect, it is well defined even when x4 = 0. As a
result, the field energy remains finite for vanishing defect parameter.

Solutions with odd winding number

Although the method to obtain numerical solutions to the field equation, equa-
tion (7.4), when n is odd, is the same as discussed in the last subsection, the prop-
erties of the solution are quite different.
Here, we concentrate on n = 1, and our boundary condition at the defect is given
by
F ({L‘def) = T.

Numerically solving equation (7.4), subject to this boundary condition, yields profile
functions such as the one shown in figure 7.3 for x4t = 1/v/2. A comparison with the
profile function for the case n = 2 in figure 7.1 does not show qualitative differences.

This changes when we consider the energy. Figure 7.4 shows the ratio of the field
energy and the Bogomolnyi bound FEg,e, for n = 1. The energy exceeds Fpqg, for
all z4er by at least 22%, and the minimal energy is reached when zq4e¢ ~ 1/4/2. Since
Epogo is linear in n, this minimal energy equals half of the energy of the solution
with n = 2. For zge > 1/v/2 the energy grows linearly, whereas it diverges like
1/2qer when xge approaches zero. This contrasts with the case when n = 2, where
the ratio does not diverge as xq.f — 0, but approaches 1.23 instead. The reason for
this dependence on the winding number can be understood as follows.

For n odd, €1 reads, at the defect,

O(@aer) = Ro(m) = 1 + 28 @ . (7.13)

62



7.2.

7.2. Background metric with constant curvature

E(X4er)/EBogo
201
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Figure 7.4.: Ratio of the field energy E(x4cr) and the Bogomolnyi bound Epgg, as a
function of zge = feb for n = 1. The minimum occurs at zqer ~ 1/v/2, where the
energy exceeds the Bogomolnyi bound by approximately 22%. The curve a/Xqer +
bxgef + ¢ is fitted to the points with a ~ 0.264, b =~ 0.55, and ¢ = 0.457.

The field now contains a term proportional to n ® n, which is not well-defined at
the origin and is not present for even n. On the usual Euclidean space, where the
origin is not removed, this property would disqualify 2 from being a smooth field
everywhere, and we would be forced to consider fields with even winding number
only. Here, however, the origin is removed and antipodal points at » = b are
identified, leading to the requirement that 2 must satisfy Q(x) = Q(—x) there. As
can be seen from equation (7.13), the SO(3)-valued field €2 can satisfy this without
being a constant, and this distinguishes it from an SU(2)-valued field. It is this
richer structure, together with the Skyrme term in equation (7.1), that causes the
1/zge-dependence of the energy.

To conclude, we can see that the field energy has a minimum at a finite defect
parameter Tqer ~ 1/ V2 if the winding number of 2 is odd. When (2 has an even
winding number, it is equivalent to an SU(2)-Skyrme field, and as such has a finite
energy even when x4 — 0. In the following chapter, these results will be seen to
carry over to the gravitating case as well.

Background metric with constant curvature

Since the flat background metric has a singular Ricci scalar, in this section we
consider a metric for M that is free of any singularity. As shown in Section 5.2.3,
a metric with constant curvature is such a metric. Since M is SO(3) topologically
we will use the metric of SO(3) as the metric for M;. Besides being singularity free,
this metric has constant curvature.
It turns out to be convenient to work with the coordinate
7b?

€r)="".

r
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7. Nongravitating SO(3)-Skyrmions

Notice that because r € [b, 00) we have £ € (0, 7b]. So, in the coordinates (£, 6, ¢) the
space M is seen to be a ball of radius b with antipodal boundary points identified.
The metric of SO(3), given in equation (6.16), then reads in these coordinates

ds® = A& + 4b” sin® (£/2b) [d6? + sin® 6 d¢?] .
Taking it as the spatial metric, we use the following for the spacetime metric
ds* = —dt* + d&* + 4b% sin® (£/2b) [dO® + sin® 0 d¢?] . (7.14)
We introduce dimensionless coordinates as
o=ef¢

with gqer = ef b, so that o is in the range (0, Toqef]. Again, after making a hedgehog
Ansatz

I(z) = F(o),
alxz) =0,
Blx) =9,

we find that the only Euler-Lagrange equation not already satisfied is the one for
the profile function, which reads

) ) 2926 sin?(0/204ef) + sin?(F/2)] sin F
e [R50 2000) + s (F2)] 1 = Lrn (0] 200) S (/)

sin®(0/20acr)
— Ofet [20dcr sin(0/ 0aer) + F'sin F| F'.
(7.15)
The boundary conditions for a field with winding number n = 1 are
F(moaet) =, (7.16a)
F(0)=0. (7.16D)

A solution of equation (7.15) that satisfies these boundary conditions is

F(0) = 0/ 0det - (7.17)

Notice that with this profile function the field €2 becomes the identity map between
M; ~ SO(3) and the target SO(3). The energy of the field, in terms of the Bogo-
molnyi bound 12v/272, turns out to be

e 2

Eour) = 12V2r"dr /0 s (F)2) -2

sin?(F/2)
O3 SI*(0/20act

+ 03er sin®(0/20aer) {\/QF’— )] do, (7.18)
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7.3. Summary

and inserting the solution equation (7.17) yields

e 1
E(04e)~ = 67° (

+ 2Qdef) .
f Odet

The minimum energy is thus seen to occur at gger = 1/ V2 and is, in fact, the
Bogomolnyi bound. So, unlike for the flat background metric used in the last section,
the Bogomolnyi bound can be achieved.

From the analytic point of view, this can be seen by looking at the two first order
ODEs arising from minimizing equation (7.18)

F'=+/2, (7.19a)

in®(F/2)
VoF = ( . 7.19b
e s (020000 (7.190)

As in equation (7.10a) on page 59, we see from the first equation that F' must be a
linear function of p.! Due to the sin’-term in the denominator of equation (7.19b),
instead of the z? in equation (7.10b), the o-dependent numerator and denomina-
tor cancel, provided F' is of the form o/pger. As a result, the right hand side of
equation (7.19b) is now a constant. Finally, equation (7.19b) is compatible with
equation (7.19a) iff gger = 1/+/2. Ultimately, the 22- or sin?>-denominator trace back
to the use of the flat or curved background metric, equation (7.2) or equation (7.14),
respectively.

There is also a geometric reason why the Bogomolnyi bound can be achieved for
the curved metric in equation (7.14), but not for the flat one in equation (7.2). We
argued in the last chapter that our boundary conditions allow a point co to be
adjoined to M. As a result, M; becomes compact and topologically equivalent to
SO(3). Whether it is also isometric to SO(3) depends, of course, on what metric
we prescribe on M. Since 2 is a map from My to SO(3) we can use it to pull back
the metric on SO(3) to Mj. Now, it was shown in [33] that the energy of a Skyrme
field is a measure of how well it preserves the metric. The Bogomolnyi bound can
only be obtained if the Skyrme field is an isometry — that is, if it preserves lengths
and angles. Since SO(3) is a space of constant curvature, €2 cannot be an isometry
if we equip M; with a flat background metric. Hence, the Bogomolnyi bound can
never be achieved. But when the metric equation (7.14) is used on My, the Skyrme
field can be an isometry. In the units used here, this happens when gqer = 1/v/2.

Summary

In this chapter, we investigated the SO(3)-Skyrme model on M for two fixed back-
ground metrics. The first of these two metrics was taken to be the (almost) flat

IThe sign in equation (7.10a) is opposite to the one in equation (7.19a), because, here, F increases
from 0 to wogef for increasing p.
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7. Nongravitating SO(3)-Skyrmions

Minkowski metric. We then solved the resulting Euler-Lagrange equations numeri-
cally. It turned out that we recovered the well studied SU(2)-Skyrme model when
the winding number of the Skyrme field was even. For this reason, the field energy
remained finite even in the limit of vanishing defect parameter. However, when the
winding number is odd, we found that a finite defect parameter exists, for which the
energy is minimized. In either case, the energy always exceeds its topological lower
bound.

When M is equipped with the natural metric of SO(3) the resulting Euler-
Lagrange equation was solved analytically. Again, the energy had a minimal value
for a finite defect parameter. Unlike the previous case, this minimal value equaled
the topological lower bound. The geometric reason for this is that the Skyrme field
is an isometry in this special case.

We will study the gravitating Skyrme model in the next chapter, and will see that
the qualitative features of the solutions are the same as in this chapter.
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Gravitating SO(3)-Skyrmions

We now consider gravitating SO(3)-Skyrmions. Throughout this chapter we will
work with the Lagrangian

L= / L dgl‘ = / (Cgrav + Ckin + ‘CSkyrme) dgx . (81)
MI MI

The Ansatz for the metric is
ds® = =M + P dr? +12d6% + 12 sin?(0)d¢? (8.2)

and we make a hedgehog Ansatz for the SO(3)-valued scalar field €2, with the profile
function F'(r) to be determined from the field equations. Hence, the field equations
for the metric and the Skyrme field are the ones given in Eqs.(6.24)-(6.25), still
with v = 0. Before we present our numerical results in Sections8.3.1 and 8.3.2, we
comment on different ways to obtain the mass of the curved spacetime. The first
method “weighs” the spacetime by looking at the orbits of massive test particles
and applying Kepler’s third law. This method is used, in fact, by astronomers to
measure a mass of a black hole. By observing the orbits of stars close to the center
of the Milky Way, they inferred the central mass to be about 4.3 million solar masses
[34]. The second method uses Komar’s definition for the mass [35]. It is useful for
us, since it allows for a decomposition into three different components: the energy
density, the gravitational energy density, and what we call the defect mass. We
interpret the latter contribution as the energy needed to create the type I defect.
The two methods yield the same mass.

As for the nongravitating case, we find that the mass of an SO(3)-Skyrmion
with even winding number approaches a finite value for vanishing defect parameter.
In this limit the mass equals that of the gravitating SU(2)-Skyrmion. For SO(3)-
Skyrmions with odd winding number, the mass has a minimal value for a finite defect
parameter. Unlike the flat case, the mass does not diverge for vanishing defect
parameter. Instead, an event horizon begins to form, once the defect parameter
drops below a critical value.

Defect mass via Kepler’s 3rd law

In this section we “weigh” the defect by considering a massive test particle on a
stable circular orbit far away from the defect. An observer at ry sends out a test
particle on a stable circular orbit, and then measures the time 7" at which the particle
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8. Gravitating SO(3)-Skyrmions

returns. The mass contained within the radius ry, causing the particle to move on
a circular path, can then be calculated via Kepler’s 3rd law as

o\ 2
MKepler<T0) GN = <?) Tg s (83)
where the major half axis is r¢ in this case. We now express Mgepler in terms of the
metric by solving the geodesic equation for the test particle.

The four-velocity of the particle reads

(ut) = (i,?’“,é, <b) = dzt /dr

and is normalized to —1, i.e. w,u* = —1. Here, 7 is the proper time. In the
following, we assume that the particle is in the equatorial plane, where 6 = /2.
The geodesic equation V,u = 0 then reads explicitly

= 27/, (8.4a)

f— _,r-,2>\/_e—Q(A—u)i2yl+e—2)\r¢2’ (84b)

b = _2¢'>i, (8.4c)
T

where a prime denotes d/dz. The spacetime described by the metric in equation (8.2)
admits a time-like Killing field (£#) = (1,0, 0,0), and a space-like Killing field (¢*) =
(0,0,0,1). Therefore, the following two quantities are conserved on the particle’s
geodesic

E = —g, & =e*t, (8.5a)
L =g, " =1, (8.5b)

Here, F is the particle’s energy, in units of its rest mass, as seen by a static observer
— that is, an observer whose four-velocity equals (£#) = (1,0,0,0) and who is at
rest at infinity. In a similar way, the quantity L can be interpreted as the particle’s
angular momentum divided by its rest mass.

For a circular orbit we have r(7) = ro and 7 = 0 as well as ¥ = 0. The two
geodesic equations for ¢ and ¢, equations (8.4a) and (8.4c), then simplify to ¢ = 0
and ¢ = 0. Starting the experiment at time t = 0 at an angle ¢ = 0 and using
equations (8.5a) and (8.5b) the solutions to equations (8.4a) and (8.4c) are

o(r) = T—(Q]T.

The particle has completed a full period in a proper time 7p if ¢(7p) = 2. Therefore,
the observer measures a period T of

E
T =t(rp) =271y e’2”(r°)z .
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8.1. Detect mass via Kepler’s 3rd law

Hence, the observer determines the mass within the orbit to be

e4u(r0) LZ

To E2.

MKepler<T0> GN - (86)

To eliminate £ and L from equation (8.6), notice that equation (8.4b) can be written

as 9
L
P = 672)\ ( o 672VE2VI )

pecy
For a circular orbit 7 must vanish, which leads to
e’2”("°)E2V'(r0) =e L2/ (8.7)

With this result we can eliminate both L and E in equation (8.6), and the Kepler
mass reads
MKepler (TO)GN = GQV(TO) 7’8 V/<TO> . (88)

Finally, we use x = fer and obtain

Mgepiere/ f = 20 221/ (20) /), (8.9)

where 7y = efry, n = Gy f?, and e/ f has the unit of one over mass.

At the end of Section 6.4 we showed that v becomes —\, /= asymptotically. Thus,
we see that the constant A, must be positive, as otherwise the mass in equation (8.8)
would neither be finite nor positive. Explicitly, we have

Aso

2
M\Kepler = lim Mgepler(z0)e/f = lim e oo/ 0 o — = Ao/,
To— 00 r9—00 n I‘O
and the physical interpretation of the free parameter A, is that it gives the mass of
the spacetime.

We conclude with two brief remarks. The first is that equation (8.8) yields the
mass M appearing in the Schwarzschild-metric. This can be seen directly by using
v =1In(1-2M/r)/2 in equation (8.9). The second remark concerns the normalization
of the four-velocity (u*). Using equations (8.5a) and (8.5b) we find w,u” = L?/
r? —e ?YE? = —1, and solving for E? we find

E? =e* (1+L*/r?) .

Equating this with the other equation for E? (equation (8.7)), and solving for L? we
find

L>=7/1—r/>0.

Since we know that ¢/ > 0 holds at least asymptotically, we find that the condition
for the existence of circular orbits is

7’01/(7“0) <1.
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8. Gravitating SO(3)-Skyrmions

8.2. Komar mass of the defect

Besides the mass obtained via Kepler’s law, there is another way to define the mass
of a gravitating system. It is useful, because it allows us to see how much each
field energy contributes to the total mass. The definition is due to Komar [35], and
can be applied whenever the spacetime is static, asymptotically flat, and which is
vacuum in the neighborhood of infinity [17]. All of these requirements hold for the
spacetime under consideration. Furthermore, the spacetime must have a timelike
Killing vector field {# with £#¢, — —1 as r — oo. The timelike vector field given in
the last section has such a normalization, because £/, = —exp(2v) — —1.
Working directly in dimensionless quantities, the Komar mass within a radius z

is then defined by [17]

e 1

—=——" ¢ a, 8.10

f 8mn Js ( )
Here, S is a spatial two-Sphere of radius xy. The two-form « is obtained by acting
with the natural volume form e = \/|g| dzAdfOAd¢ on the tensor field (V#£)0,®0,.

The result of this operation is

MKomar <x0>

a = —2e""2%/ sinfdo A dg. (8.11)
Equation (8.10) then yields
Myomar(0)e/ f = e?@)=A0) 421/ (2:0) /1y . (8.12)

At first glance, equation (8.12) is similar to, but not quite the same as, equation (8.8).
However, asymptotically Visympt(Z0) = —Aasympt (o) = Aoo/T0, and then the expo-
nent in equation (8.12) equals that in equation (8.8). Thus we find
— 2\
MKomar = lim MKomar(xO)e/f = lim 672)\00/10 — ;.20 = )‘00/777
To—00 To—00 n
which agrees with the asymptotic value of the Kepler mass.
As for Mkepler, equation (8.12) yields the mass M of a Schwarzschild spacetime,
once the appropriate expressions for the metric functions v and A\ are substituted.
We now rewrite the surface integral occurring in the definition of the Komar mass
as a volume integral. This will allow us to see the contribution of the Skyrme field
energy and the “gravitational field energy” separately. Since the spatial hypersurface
is topologically SO(3) and, hence, orientable, we can use Stokes’s theorem to convert
the surface integral in equation (8.10) into a volume integral. For a two-form w

Stokes’s theorem reads
/ dw= f w,
M OM

where M is the manifold and OM its boundary. In our case, and with the coordinates
used so far, the volume X is enclosed by the sphere at xg and the defect at xger. As
mentioned in Chapter 5, the latter sphere constitutes a “coordinate boundary” only,
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8.2. Komar mass of the defect

because the z-coordinate is bounded from below by x4.. We therefore find that the
boundary 93 consists of the two disjointed sets S, and Sy .. Using Stokes’s theorem
we find

def*
1 1
R a+ — a:—/da. (8.13)
871 Js,, 811 Js,,., nJs

The plus sign on the left hand side is due to the opposite orientation of S, . On
the right hand side the three-form da can be expressed in terms of the Ricci tensor
R, as [17]

da = —2R,,n""dV .

Here

(n*) =(e7",0,0,0),
dV = e*z?sin 6 dz df do,

denote the unit future pointing normal to ¥, and the natural volume form on 3,
respectively. The relevant component of the Ricci tensor reads

Roo =" N [2—a\W + 2 + 2] Jz.
Notice that da = —2R°n°dV can be simplified using
Roo&®n’dV = 9, (" *z*V) sinfdz A df A dg.
Putting all of this together, the Komar mass is given by

1 1

1
M omar - T 5__ = T R v rEYdV — — . 8.14
maleoe/] =g f o= g [ Raeav - a s

Sxdef

Now, we use Einstein’s equations, R,, = 87Gy (1, —1/2Tg,,), to obtain an ex-
pression for the Komar mass in terms of the energy momentum tensor. We find that
the Komar mass can be written as a sum of three terms

MKomar($O)6/f - Mmat(xO)e/f + Mgrav(xO)e/f + Mdefe/f (815)
where

Mmat(xO)? = / Tooe ™=@ 22 ginfdr di do, (8.16a)

b

e _ Ma)—v(z) 2 o

Mgrav(~r0)? = [ (Too — Tgno) € x” sinfdzdfde, (8.16b)

v

1 1

Mdefe/f = _—87'('77 . o = 5 ey(xdef)_)\(xdef) Xdef2 I/,(Xdef) . (816C)

Notice that the mass is no longer given by an integral over just the energy density 7g.
However, when spacetime is flat, equation (8.16a) reduces to the usual expression for
the energy, see equation (7.7). The second contribution, equation (8.16b), contains
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8. Gravitating SO(3)-Skyrmions

the gravitational energy within the volume. The integrand cannot, however, be
understood as the local energy density of the gravitational field. The physical reason
for this is that one can always find a local Minkowskian coordinate system where
the effects of gravitational forces are absent, and, hence, the local gravitational field
energy vanishes as well [36]. As a result, the concept of “local gravitational energy
density” becomes a coordinate dependent one. Hence, various expressions for the
“local energy density” exist, but they are only pseudo-tensors in the sense that
they depend on the coordinate system used. For example, both the Einstein- and
Landau-Lifshitz pseudo-tensors are valid in Cartesian coordinates only. The form
of the pseudo-tensor used here is due to Mgller [37] (see also [38]). Despite the
coordinate arbitrariness of the integrands, the volume integral in equation (8.16b)
is independent of the coordinates used, because it arises from a surface integral.
Hence, we emphasize that the total energy within a sphere is well defined by the
first surface integral in equation (8.14).

The last contribution, Mg, requires some special considerations. In the form
given in equation (8.16¢), it is due to the coordinate boundary at xger. To see what
happens to My in a coordinate system that does not have this boundary, we use the
(Y, Z, X)-coordinates, introduced in equation (5.30) in Section 5.2.1. Recall that, in
these coordinates points have coordinate Y = 0 on the defect, with Y € (—o0, 00),
and that there is thus no coordinate boundary.

The sphere at xy is mapped to the two planes Y = Y, = zy — Xger > 0 and
Y =Y. = xXqger — 2o < 0. Hence, equation (8.14) becomes

1 1 1
MKomaryef:_— o — — o= —
(Yole/ 81N Jy—v. 81N Jy—y_ 47

/ R,n"&"dV . (8.17)
b))

Furthermore, the metric transforms into
d82(6f)2 g _elj(xdef“l"yv‘)d‘j—'2 + e)‘(xdef“r‘y‘)dy2 + (Xdef + |Y|)2 (dZ2 + Sln2 Zdy2) ,

where, in a slight misuse of notation, the time and radial coordinates, 7" and Y, are
dimensionless. To calculate the Ricci tensor R, we again use [abs'(z)]* = 1 as well
as abs”(z) = 20(z). We obtain

Rpp =2 2V (et HY D= AlGxaer+1Y])] V(xaet 4+ [Y]) 6(Y) + o2V (aer+ 1Y) =A(xaer+Y])]

< { [u/<xdef+ VD) = V(o [Y]) + (x4 [Y])

— | V
Xdef+ |Y|

+ I/”(Xdef + |Y|)} . (818)

Hence, the price for the disappearance of the boundary at x4 is the occurrence
of a o-function centered at Y = 0. The volume integral in equation (8.17) is then
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8.2. Komar mass of the defect

explicitly given by

Yy ™ ™
/ R,,nt¢"dV :/ / / {QGV(xdeerlYl)A(xdef+Y)(Xdef + |y|)2y/<xdef + Y] 6(Y)
o y_ Jo Jo

+ e (XaerHY D) = AGxder +1Y]) (Xqef + |y|)2 |:V”(Xdef + 1Y)

2
"(Xaet + |Y]) = N (xaet + |V ——— |V (xqet + |V
(Vs 1Y) = N+ YD+ =) a1V}
xsinZdXdZdY .

The integrals over X, Z and the J-function are trivial. To evaluate the remaining
integral over Y, we split the integration region as follows

Yy 0 Yy
/ ay = / dy + / dy’,
Y_ Y_ 0

and substitute u = xgef — Y and u = xger + Y in the first and second integral on the
right hand side, respectively. Finally, we use

d d
eV (W =Au),, ({2 + u[(u) — N ()]} (u) + V" (u)u) = —e”(“)_)‘(“)uZV’(u) = —g(u),
du du
to obtain
1
i [ Rugrav = et X 2 )

" % [—9(Xaer) + 9(z0) + g(x0) — g(Xdef)]

= el/(ro)f%(xo)xg,/@o)/n 7

which equals the result obtained in equation (8.12).
To learn more about the origin of the o-function in equation (8.18) we use Ein-
stein’s equations,

1
Ry = 8mn <T00 - §Tgoo> .

The right hand side turns out to be

1 2V (xaer Y1) sin® (F (xaet + Y])/2)
Too — =T =—— [4(1 — 4~v/3
(o= 57w = e (10— 0™
+ 20701 2/3) sin (Pl + [¥])/2)F (s + [Y])
1
— 55 (Kaer + [V]) e 0 D P scger + |Y|)4] (8.19)

Notice that equation (8.19) does not contain a d-function! Thus, the left hand side
of Einstein’s equation is singular at the defect, whereas the right hand side is not.
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Or, phrased in another way, the singularity in R, is not sourced by the matter
field. Indeed, looking back at equation (8.14), we see that the singularity shows up
as the surface integral of a geometric quantity that is not directly related to matter.
If matter is not the source of Mgy, what could be? Here, we interpret Mgyes as the
energy needed to create the type I defect out of the original Minkowski spacetime.
Loosely speaking, My.s measures the work needed to “drill” a hole in spacetime and
“twist” the boundary before “sewing” it up again. To prove that this is really the
case, one would need to have a theory where it is possible to describe these changes
in topology dynamically. Common belief is that a theory of quantum gravity is
needed for this. From this point of view, it is understandable that our classical
matter field {2 cannot create such a transition. It can, however, prevent the defect
from “collapsing” or “shrinking”, as we will show in the next section.

To summarize: Within the framework of general relativity, the mass is defined
primarily not through a volume integral of an energy density, but by geometric
quantities in the asymptotically flat region of spacetime. Here, we have used two
definitions that are equivalent in our scenario. In the first definition one “weighs”
the defect by looking at closed orbits of test particles and then applying Kepler’s
third law. The second definition is due to Komar [35]. It is useful, because it allows
the mass to be decomposed into three contributions. The first contribution is just
the volume integral of the energy density, similar to flat spacetime. The second part
represents the gravitational energy of the system. Finally, the third contribution
does not arise from the matter field, and we interpret it as the energy required to
create a type I defect out of Minkowski spacetime.

Numerical results

Here, we present numerical solutions to the Einstein-Skyrme equations (6.24) and
(6.25) in Section 6.4. The boundary conditions are

F(zqet) =nm, F(oco)=0,

Voo) =0,  A(oc) = 0. (8.20)

The method used to obtain these results is the same as in the nongravitating case,
see Section 7.1.1. That is, we give initial conditions for F' and \ at xg.f, and evolve
the functions numerically up to some sufficiently large x. Using the fact that, asymp-
totically, » = —\, we obtain the initial condition for v and evolve back to Xqef-
Since the ODE for F is of second order and equation (8.20) yields only one con-
dition at xger, we have F’(xgef) as an unknown parameter. Furthermore, equa-
tion (8.20) does not yield any condition for A(xgef), so this constitutes another un-
known parameter. These two parameters need to be determined, such that the
boundary conditions at infinity are satisfied. In the usual SU(2)-Skyrme model,
regularity of the field equations at the origin leads to an additional relation between
F(2min) and A(Zyin). The relation can be used to express the latter in terms of the
former [30, 39]. Then there is only one free parameter which needs to be adjusted.
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8.3. Numerical results

(b)

Figure 8.1.: Numerical solutions of the Einstein-Skyrme equations as functions of the
dimensionless radius x = ef r. (a) Profile function F. (b) Metric functions A (con-
tinuous) and v (dashed). The solutions were obtained with G f? = 1/4007 and
Xdef = 1 (dotted vertical line). The winding number of the Skyrme field was 2.

Since we explicitly removed the origin, regularity at the origin is not an issue here.

Alternatively, we could use the asymptotic expansions for F' and A, equations (6.26a)

and (6.26b). Again, however, two unknown parameters, I, and A\, are required.
In this chapter, we decide to use

)\(Xdef) =0 )

for two reasons. First, when Gy — 0, our results approach that of the nongravitating
case. Second, when x4 = 0 and our SO(3)-Skyrme field has an even winding
number, our results agree with the results of the gravitating SU(2)-Skyrme model
(30, 39].

Results for even winding number

For the nongravitating case, we start by investigating SO(3)-Skyrmions with even
winding number. Specifically, we choose

F(Xdef) = 2.

With this boundary condition, our SO(3)-Skyrmion, with n = 2, is equivalent to
an SU(2)-Skyrmion with winding number B = 1 ( see the discussion in Section
7.1.1 on page 60). For this reason, we expect our numerical results to agree in the
appropriate limits with the results known in the literature.

Figure 8.1 shows numerical solutions obtained for n = Gy f? = 1/4007 and Xqef =
1. The solutions for other values are qualitatively the same. We depict the (Komar)
mass as a function of xqef in figure8.2. First, notice that the mass approaches a
finite value for vanishing xg4.;. The reason for this finiteness is the same as in flat
space. Recall that for F(xqef) = 27, the field Q equals 1 at the defect. This is well
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Figure 8.2.: Dependence of the dimensionless mass M= Mxomar €/f on xget = ef b for
Gnf? = 1/400m and winding number n = 2. The limiting value is approximately
353. Lines are to guide the eye.

defined even when x4, = 0, and is independent of whether the base space is curved
or not. Second, because with n = 2 our SO(3)-Skyrmion is equivalent to a B = 1
SU(2)-Skyrmion, we can compare our numerical result for the limiting value of the
mass with that of a gravitating SU(2)-Skyrmion. To compare with the results of
[39], we have to rescale our dimensionful quantities f and e as

f3ﬁf2/27
63—>\/§62.

Here, the indices '3’ or ’2” denote constants used in this thesis (SO(3)) or in [39]
(SU(2)), respectively. Thus, our value of n = Gy f3 is equivalent to the factor o/
167 used in [39], where o = 47G y f2. To relate our mass M, in units of f3/e3, to
their mass, in units of f;/es, we have to divide M by v/32. Hence, our 7 of 1/4007
corresponds to a value of & = 4 x 1072, and our mass of ~ 353.04f3/e3 equals
~ 62.41 fy/ey. This is in agreement with the result of [39], as stated in their table 1.

Figure 8.3 shows how the mass depends on the relative strength n = Gy f? be-
tween Newton’s constant GG and the Skyrme constant f. There exists a critical
value Npax =~ 8.03 x 107* above which no solutions can be found. Below 1yay two
branches of solutions exists which coalesce at n,... One such branch approaches
the nongravitating Skyrmion as 7 approaches 0, whereas the energy of the other
diverges.

To summarize: In this subsection we investigated our numerical results for the
gravitating SO(3)-Skyrmion with winding number n = 2. When x4t — 0 the mass
approaches that of the gravitating SU(2)-Skyrmion with winding number one [39].

76



8.3.2.

8.3. Numerical results

700 |
600
500

400

300 L L L L L L L L L L L L L L L L L
0.0000 0.0002 0.0004 0.0006 0.0008

Figure 8.3.: Dependence of the dimensionless mass M = Mxomar€/f on n = Gy 12
for xqet = 1072 and winding number n = 2. For the lower branch (circles) the mass
continuously approaches that of the nongravitating SO(3)-Skyrmion. The energy of
the upper branch (squares) diverges as 7 — 0. Lines are to guide the eye.

We also reproduce the two “branches” of solutions. The two branches meet at a
maximal value of n, above which no solutions exists. One branch approaches the
nongravitating solution when 1 — 0.

Since the (Komar) mass increases for increasing xqer but approaches a finite value
when xgo¢ — 0, we conclude that there is no finite defect parameter that minimizes
the energy of the system in this case. Hence, as far as energy is concerned, there is
nothing that would prevent the defect from collapsing.

Results for odd winding number

Having established in the last section that our model reproduces the well-studied
gravitating SU(2)-Skyrmion in the appropriate limit, we now turn to the gravitating
SO(3)-Skyrmion. To obtain results not already contained in the SU(2) case, we
consider Skyrme fields with odd winding number n. Specifically, we choose n = 1
and the boundary condition for the profile function reads

F(Xdef) = Tr.

Figure 8.4 shows numerical solutions of the profile function F' and the two metric
functions A and v obtained for n = G f? = 1/4007 and xg¢s = 1/v/2. The solutions
for other values are qualitatively the same. We depict the (Komar) mass as a
function of xgef in figure 8.5 with 7 fixed at 1/160007. First, notice that there is a
finite value of xgef = 1/ v/2 that minimizes the mass. When compared at the same
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Figure 8.4.: Numerical solutions of the Einstein-Skyrme equations as functions of the
dimensionless parameter z = efr. (a) Profile function F. (b) Metric functions A
(continuous) and v (dashed). The solutions were obtained with G f? = 1/4007 and
Xdof = 1/v/2 (dotted vertical line). The winding number of the Skyrme field was one.
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Figure 8.5.: Dependence of the dimensionless mass M= Mxomar €/f on xget = ef b for
Gnf? = 1/160007 ~ 2 x 1075 and winding number n = 1. Within the numerical
uncertainty, the minimal value occurs at © = 1/ V2. The vertical line at Xqo =
0.03327048 marks the critical value of x4ef, below which no solutions have been found.
The curve a/Xqef + bxXqet + ¢ is fitted to the points with a ~ 40.58, b ~ 101.12, and
c~T77.31.
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Figure 8.6.: Dependence of the dimensionless mass M = Mxomar€/f of the n = 1
SO(3)-Skyrmion on n = G f2 for xger = 1/+v/2 (circles, joined by continuous lines) and
Xdef = 1/2 (squares, joined by dashed lines). For each xqef two branches exist, which
coalesce at a maximal value of . This maximal value depends on xge. As n — 0,
the limiting masses of the two lower branches approach those of the nongravitating
n =1 SO(3)-Skyrmions. For small n, the masses obtained for x4ef = 1/2 are slightly
larger than those for xger = 1/ V2. However, for n close to the maximal value the
masses for xgef = 1/2 are slightly smaller. The masses of the upper branches diverge
for 7 — 0, with those for xgef = 1/2 being smaller than those for xqer = 1/v/2.

value of 7, the minimal mass of the n = 1 SO(3)-Skyrmion is about half that of
the limiting value of the n = 2 SO(3)-Skyrmion. For n = 1/160007r ~ 2 x 1077,
we obtain masses of approximately 204f/e and 411f /e for the SO(3)- and SU(2)-
Skyrmions, respectively (see also figures 8.5 and 8.3). A good fit to the data is given
by a curve of the form a/Xqer + bXqer + ¢. For the values of the parameters a, b,
and c see the caption of figure8.5. Hence, the mass increases linearly for xgqer > 1/
V2 and diverges like 1/xger for smaller x4e. However, unlike for the case of the
nongravitating n = 1 SO(3)-Skyrmion, there exists a minimal value for xq.s below
which no solutions could be found.

Figure 8.6 shows the dependence of the mass on 7 for two values of xqof. As for the
n = 2 Skyrmion, two branches exist for each xq.;. The two branches coalesce at a
maximal value of 17 that, now, depends on xger. As n — 0, the limiting masses of the
two lower branches approach those of the nongravitating n = 1 SO(3)-Skyrmions.
In the lower branches the masses for xqor = 1/2 exceed those for xgef = 1/ V2 if 7 is
close to zero. However, when n approaches the maximal allowed value the masses
for xgef = 1/2 are smaller than those for xqo = 1/ V2. The masses of the upper
branches diverge for n — 0, with those for xgqef = 1/2 being smaller than those for

Xdef = ]-/\/§
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Figure 8.7.: Dependence of the dimensionless mass M = Mxomar €/ f on the dimen-
sionless defect parameter xqof = ef b for (a) n = 1/320r ~ 0.001 and (b) n = 1/
1607 ~ 0.002. The smallest defect parameters, below which no solutions exists, occur
at xger ~ {0.29, 0.48}, respectively. The curve a/Xqef + bxget + ¢ is fitted to the points
with a =~ {22.2526, 11.9909}, b ~ {71.3271, 70.2021}, and ¢ ~ {105.595, 101.226} for
the {left, right} figures, respectively. Notice that the would-be minimum of the right
curve is at Xgef = \/a/b =~ 0.41, which is already smaller than the smallest attainable

Xdef-

Figure 8.7 depicts the dimensionless mass M as a function of Xgef for two more
values of . The first value, n = 1/3207 = 0.001, is the one where the two lower
branches of figure 8.6 cross. As can be seen from figure 8.7(a) the masses are (almost)
equal at these two defegt\ parameters and the minimal value occurs at xg.r ~ 0.6.
The xqef dependence of M at the value n = 1/3207 ~ 0.001 is shown in figure8.7(b).
This particular value of 7 is almost the maximum allowed value for which solutions
with xgqer = 1/2 exist. Here, no minimal value of the mass exists, and the mass
increases monotonically with increasing Xqef.

Discussion

We now discuss the various properties of the gravitating SO(3)-Skyrmions.

First, we consider how the dimensionless mass M depends on the relative strength
n = Gxnf? between Newton’s constant Gy and the Skyrme constant f. For either
n =1 or n = 2 Skyrmions two “branches” of solutions exist, see figures 8.3 and 8.6.
One branch has a mass that is always smaller than that of the other branch and we
will refer to them as the lower- and upper branch, respectively. The solutions in the
lower branch converge to the nongravitating solutions as n approaches zero. Hence,
M approaches the energy of the nongravitating Skyrmions. However, the masses of
the upper branch diverge in this limit. Furthermore, there exists a maximum value
of n above which no solutions exist. When n = 1, this value depends on xg4.

As first noticed in [39], the occurrence of two branches can be understood by
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noting that the limit 7 — 0 can either mean G — 0 or f — 0. In the former case,
the solutions approach the nongravitating Skyrmion and the mass remains finite.
However, dimensionless quantities such as x = fer are not suitable for the purpose
of investigating f — 0. To analyze the limit f — 0 new quantities are introduced

[39]

TS Ve Vina (8.21)
w(x) = cos(F(x)/2). (8.21b)

When Egs. (6.24)—(6.25) are expressed in these new variables and 7 is set to zero
the equations remain well defined. Furthermore, they become equivalent to the
spherically symmetric magnetic Einstein-Yang-Mills equations [40]. Their solutions

interpolate between w(0) = 1 and w(oco) = —1 and these boundary conditions are
gauge equivalent [41] to w(0) = —1 and w(co) = 1. Our boundary conditions for
F, when n = 2, translate into w(xqef) = cos(m) = —1 and w(oo) = cos(0) = 1.

Since these are valid boundary conditions for the Einstein-Yang-Mills equations, we
expect that the mass of the upper branch approaches that of the solution of the
Einstein-Yang-Mills equations, once the appropriate units are used. To compare
our value of M to the value given in [39, 41|, we have to multiply our value by
\/n/327. Doing this, we find that the mass of the upper branch no longer diverges
but approaches the value ~ 0.856; which is approximately 3% larger than the value
given in [39, 41] (= 0.83).

The situation is different when n = 1. Now, our boundary conditions for F
translate into w(xqer) = cos(m/2) = 0 and w(oo) = cos(0) = 1. But it was shown in
[41] that regular solutions of the Einstein-Yang-Mills equations must have w(0) =
+1. Therefore, our boundary condition w(xgef) = 0 does not allow for a regular
solution in the limit f — 0. As a result, the masses of the upper branches diverge in
the limit n — 0. Even after rescaling the mass by a factor y/7/327, which produced
the correct finite result in the previous paragraph, the rescaled mass diverges.

Next, we discuss the existence of the maximal value of  above which no solutions
exist. This maximal value was first found by [30] for gravitating SU(2)-Skyrmions.
It was then argued in [39] that at this value the Schwarzschild radius Rscnw = 2GNM
becomes comparable to the “actual radius” of the Skyrmion and the configuration
must collapse. To get a second length scale to compare to the Schwarzschild radius,
we define ry as the radius that minimizes exp(—2\). By comparing our Ansatz
for the metric with the Schwarzschild metric, we see that exp(—2\) corresponds to
1—2M/r. In the Schwarzschild metric the minimum would be a root, and ry would
equal Rguyw. Hence, if the ratio Rseny/7TH equals one, we have a horizon. Figure 8.8
shows the ratio of Rgcy and g as a function of n) for n = 1 (figure 8.8(a)) and n = 2
(figure 8.8(b)). From these figures we see that Rguy indeed becomes equal to ry as
1 approaches its maximal value.

Finally, we turn to the difference in the qualitative behavior of the mass between
the n =1 and n = 2 Skyrmions as the defect parameter x4 approaches zero. This
difference can be seen by comparing figure 8.2 and figure 8.5. Namely, for n = 2 the
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Figure 8.8.: Ratios of the Schwarzschild radius Rgchw = 2GNM to ry as a function of
n = Gy f? for SO(3)-Skyrmions with (a) n = 1 (xgef fixed at 1/4/2) and (b) n = 2.
Here, rp is the radius that minimizes exp(—2\). A ratio of one indicates that the
extent of the Skyrmion becomes comparable to its Schwarzschild radius.

mass approaches a constant, figure8.2, whereas for n = 1, figure8.2, there exists
a finite xqof below which no solutions exist. As mentioned in Section 8.3.1, the
boundary condition n = 2 implies F(xqef) = 27, leading to Q = 1 at the defect.
Since the field is constant at the defect, it is well defined even when x4of = 0, and
the mass remains finite. However, the boundary condition F'(xgef) = m implies that
Q = —1 + 2n ® n, where n is the ordinary unit normal vector. Now the field is
not well defined at xqof = 0. In the (almost) flat case considered in Section 7.1,
this resulted in a divergent energy as Xqor approached zero. Here, in the gravitating
case, we find a minimal value for xq. instead. Figure8.9 shows the minimal value
of exp(—2)) as a function of xgef for n &~ 2 x 107°. A fit to the data yields that
exp(—2)) has a zero at xqor ~ 0.0330546. The physical significance of this is that
the expansion 6 of a family of null geodesics is proportional to exp(—\) [42]. The
surface where exp(—\), and hence 6 vanishes, is called an apparent horizon [22], and
it can be shown [22] that it implies the existence of an event horizon. Therefore, we
have found that an event horizon forms at the smallest possible value of xgef.

Summary

In this chapter we investigated gravitating SO(3)-Skyrmions. Two different methods
were used to obtain the mass of a gravitating Skyrmion. The first was an application
of Kepler’s third law (Section 8.1) and the second used a mass definition due to
Komar (Section 8.2). Both yield the same answer, but the latter definition allows us
to investigate different contributions to the mass. Besides the contribution arising
from the matter energy density and the gravitational self-energy we found a third
contribution, Mges. Since My traces back to a d-singularity in one of the components
of the Ricci tensor that is not sourced by the matter field, we interpret it as the
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Figure 8.9.: Minimal value of exp(—2)\) as a function of xqe¢ = feb for n = Gy f? ~
2x 107°. The curve a(xgef — b)° is fitted to the data with a ~ 1.60775, b ~ 0.0330546,
and ¢ &~ 0.191296. This shows the presence of an event horizon at x4er ~ 0.0330546
(for details see text).

energy needed to create a type I defect out of Minkowski spacetime.

Varying the parameter n = G f2, we found in Sections8.3.1 and 8.3.2 that two
“branches” of solutions exist, which coalesce at a maximal value of 7. No solutions
exist above this maximal value. The masses of the solutions in the so-called lower
branch were always smaller than those in the upper branch. In the limit n — 0,
the lower branch approaches the nongravitating Skyrmion, whereas the mass of the
upper branch diverges. We discussed how this upper branch is related to solutions
of the Einstein-Yang-Mills equations. When the winding number n of the Skyrme
field is even the upper branch approaches a regular solution of these equations as
n — 0. After using appropriate units, we found that the rescaled mass becomes
finite in this limit. However, we showed that the boundary conditions for n odd do
not allow for a regular solution of Einstein-Yang-Mills equations. As a result, even
the rescaled mass diverges as n — 0.

Ultimately, we were interested in the dependence of the mass (in the lower branch)
on the defect parameter x4 = efb. We found a dependence similar to the one for
the nongravitating SO(3)-Skyrmions. Namely, the mass approaches a finite value
when xgo — 0 if n = 2. However, if n = 1, we found that a finite value of xgef
exists that minimizes the mass, provided that 7 is not too large. Unlike the mass of
the nongravitating Skyrmion, it does not diverge as xqof — 0. We found a minimal
value of x4ef, below which no solutions could be found. It turned out that an event
horizon forms at this minimal value.

Thus, we find that a gravitating SO(3)-Skyrmion with odd winding number has
the potential to energetically stabilize a spacetime with a type I defect. But besides
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the o-singularity in the Ricci tensor there is yet another singularity on which we
comment in depth in the next chapter.
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Nontrivial topology and singularity
theorems

We presented numerical results of the Einstein-Skyrme equations in the previous
chapter. Now, we show that these spacetimes are singular. First, in Section 9.1, we
show that the Ricci scalar contains a d-function centered at the defect. To find this
O-function we use the methods developed in Section 5.2.3. Recall that we showed
there that the space M equipped with an (almost) flat metric has a diverging Ricci
scalar. In fact, there exist theorems in general relativity that assert a singularity
in a spacetime with nontrivial topology. We state these theorems in Section 9.2
(without proofs). In Section 9.3 we show that the spacetime containing a type I
defect satisfies all the prerequisites of these theorems. Therefore, the divergence of
the Ricci scalar is tied to the nontrivial topology of the spacetime. As the singularity
theorems require matter with positive energy, a way to circumvent them is to allow
for a negative energy density. For this reason we consider an additional term in the
matter Lagrangian that gives a negative contribution to the energy. However, the
search for smooth solutions of the Einstein-Skyrme equations has thus far yielded
no results.

Singularity in the spacetime with a spherical defect

We have seen in Section 8.2 that components of the Ricci tensor are singular at the
defect. We now show that the Ricci scalar also has a singularity at the defect. Since
it is a property of a scalar, this divergence does not arise from a mere choice of bad
coordinates. Again, we use coordinates (Y, Z, X) to discuss various quantities at the
defect. They are defined in equation (5.30). Recall that, in these coordinates, points
on the defect have Y = 0 and Y € (—00,c0). In these coordinates the Ansatz for
the metric we have been using thus far reads

ds® = —eCartVDAT? 4 A0t W QY2 4 (x40 + |Y])? [d 2% + sin? Z dY?] .
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Here, the defect parameter is defined by x4 = feb and all lengths are in units of
1/fe. The Ricci scalar R of this metric is then seen to be

fo—2ACeaer+Y )

R=— 2" " (o4 gt/ (xaer + |Y])] 6(Y
—— (2 + XaetV (Xaet + [Y])] 6(Y)

9e—2A(xaer+Y )
t e yne

(Xdet + [Y])
X [2 + (Xdef + |Y|)V/(Xdef + |Y|)] - (Xdef + |Y|)V”(Xdef + |Y|)}) . (91)

(09D 1+ g+ 1Y) {1 G + 1Y) = X Gar + Y1)

Notice that R contains a term proportional to a J-function centered at Y = 0. We
encountered a similar problem in Section 5.2.3. There, we discussed two metrics for
M;i. Both metrics led to a d-function in the Ricci scalar, but for one the coefficient
in front of the singularity turned out to be identically zero. Here, this coefficient in
equation (9.1) would vanish if

I/(Xdef) = _2/Xdef . (92)

But from the field equation for v, equation (6.25) (with F'(Xqer) = 1, AM(Xgef) = 0,
and v = 0), we get

V (Xaet) = 27N (Xdef ) *Xdet ,n even 9.3)
270 [(4 4 xaer®) B (xaer) /Xaer — 8(1+ Xaof?) /Xaet®] 51 0dd '

When the winding number n is even, equation (9.3) yields a positive derivative of
v whereas equation (9.2) requires a negative one. For n odd, the square bracket in
equation (9.3) could at least become negative, but it turns out that this is not the
case for the numerical solutions discussed in the last chapter. Hence, we conclude
that it is not possible to make the coefficient of the J-function vanish.

In fact, there exist several singularity theorems regarding spacetimes with a non-
trivial topology. We will state these theorems in the next section, and use them to
conclude that the diverging Ricci scalar is a consequence of the nontrivial topology.
However, these theorem can be circumvented if the matter field has some “exotic”
properties.

Singularity theorems

Several singularity theorems exist for general relativity, even though it is not possible
to define a singularity of spacetime rigorously [17, 22].

Before we give the precise definitions needed for the singularity theorems, we
develop an intuitive picture, capturing the ideas behind them. Naively, one could
define a singularity of spacetime as a place where geometric quantities like the
Ricci scalar diverge. But when geometric quantities are not defined at a place, a
metric cannot be defined there either. And without a metric, there is no spacetime.
Therefore, the singularity theorems of general relativity “only” prove the existence
of the “holes” left behind by a spacetime singularity.
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To do this, the theorems prove the existence of so-called incomplete geodesics.
Loosely speaking, a geodesic is incomplete if it reaches the “edge” of spacetime in
a finite amount of proper time. Thus the spatial infinity of Minkowski spacetime is
not a singularity, because any particle needs an infinite amount of proper time to
reach it. On the other hand, particles can reach the (nonexistent) value r = 0 of
the Schwarzschild metric in a finite amount of proper time.

As with all theorems, the singularity theorems require some assumptions. Since
the theorems concern the behavior of geodesics, some assumptions on the geometry
of spacetime are required. In general relativity the geometry is linked to the matter
content via Finstein’s equations. It turns out that one of the assumptions for the
occurrence of incomplete geodesics is that matter is not “exotic”. Here, matter is
considered exotic if, for example, it has negative energy density. Furthermore, the
spacetime must not allow for “time travel”. Since the energy condition is satisfied for
the baryonic and dark matter in our universe, and there is not the slightest evidence
that “time travel” is possible, the theorems prove that incomplete geodesics are
present inside a black hole and at the big bang.

In particular, Gannon showed [5] that a spacetime with a nonsimply connected
spatial hypersurface has incomplete geodesics. As with the other singularity the-
orems, Gannon’s theorem requires matter not to be “exotic”. Building upon this
result, it was shown [6] that the “active probing” of the nontrivial topology is not al-
lowed either. Roughly, this means that all geodesics that start at infinity in the past
and arrive at infinity in the future lie in the topologically trivial part. Therefore,
an experimenter at infinity cannot probe the topology by sending out test particles
that pass through the nontrivial part of spacetime and which return afterwards.
The view of the nontrivial topology is “censored” from the experimenter, and there-
fore the theorem is known as the topological censorship theorem. The theorem also
gives support to Penrose’s censorship conjecture. The latter conjectures that all sin-
gularities are hidden behind an event horizon (the possible exception being initial
singularities like the big bang).

We now state the above mentioned theorems, together with all definitions re-
quired.

First of all, we say that a curve is causal if it is not spacelike. Thus, two events
that can be connected by either a particle’s or a photon’s world line can influence
each other. Following [17], we define a future endpoint p of a future directed causal
curve A in a spacetime M if for every neighborhood O of p there exists a parameter
to such that A(t) € O for all ¢t > t;. The curve is said to be future inextendible if
it has no future endpoint. A curve is incomplete if it is inextendible but only has
a finite range of affine parameter. For example, the geodesic of a massive particle
inside a Schwarzschild black hole is incomplete because the would-be endpoint r = 0
is not present in the spacetime, and as the particle approaches r = 0 its proper time
remains finite.

The remaining definitions are given in [5]. A partial Cauchy surface S is a spacelike
hypersurface without an edge, and is called a Cauchy surface if it also has the
property that every causal curve in M intersects S. The importance of Cauchy
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surfaces is that they serve as initial hypersurfaces. Given a three-metric (together
with a lapse function and a shift vector) and all matter fields on a Cauchy surface
it is possible to solve Einstein’s equations with these initial conditions to yield a
four-dimensional spacetime. A manifold S is said to be nonsimply connected if its
first fundamental group is nontrivial. As mentioned in Sections5.1.2 and 5.1.3, this
statement means that nonsimply connected manifolds contain closed curves that
cannot be continuously shrunk to a point.

Next, we define the convergence ¢ of a congruence of geodesics. A family of
geodesics is a congruence in S if through each point of S there passes precisely one
geodesic. Here, we consider a congruence of timelike geodesics normal to S. This
means that the tangent vectors £ of each geodesic are timelike, normal to S and
have unit length. Then the convergence ¢ of the congruence is defined by

c= _Vaga :

Here, a = 1,2,3, because the condition of the £’s being normal to S effectively
reduces them to three-dimensional vectors. We mention in passing that the negative
of ¢ is called the expansion of the congruence [17]. The convergence ¢ is a measure
for how fast nearby geodesics approach or separate from each other if ¢ > 0 or
¢ < 0 respectively. It also plays a key role in many singularity theorems. For
example, consider a sphere inside a Schwarzschild black hole. It turns out that
the convergence of both in- and out-going geodesics emanating from this sphere is
positive [22]. This clearly signals that something strange is going on, since normally
one finds the negative and positive convergence for the in- and out-going geodesics,
respectively.

Gannon introduced the notion of a spacelike hypersurface S that is regular at
infinity. For S to be regular at infinity, it must satisfy the following three conditions
[5]

1. S = U2, W;, where each W; is a compact-three manifold whose boundary
OW; is homeomorphic to a sphere.

2. S with the interior of any W; removed is homeomorphic to OW; x RT, where
R™ denotes the set of positive reals.

3. The inward directed null geodesics orthogonal to OW; have positive conver-
gence.

In essence, such an S allows the region with nontrivial topology to be surrounded by
spheres that are “well-behaved”, i.e. the inward directed geodesics are converging?.
A spacetime that is asymptotically flat satisfies all these requirements (except for
the compactness) [17].

!The example of a sphere in the interior of a Schwarzschild black hole shows that this need not
always be the case.
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The last definition needed for the singularity theorem is the weak energy condition.
The matter energy momentum tensor is said to satisfy the weak energy condition if
for every timelike vector &

Tw8"€" > 0. (9.4)

Since T,,,£#£" is the energy density seen by an observer with four-velocity &, equa-
tion (9.4) states that the energy density must be positive (or zero) for all observers.

Finally, we have all ingredients to state Gannon’s singularity theorem, a proof of
which can be found in [5].

Theorem 9.1 (Gannon’s theorem) Let (M,q) satisfy the [weak] energy condition
and have a partial Cauchy surface S nonsimply connected and reqular near infinity.
Then if ¢ > 0 everywhere on S, (M,q) is not timelike geodesically complete.

Here, the positive convergence refers to the inward directed geodesics. Essentially,
theorem 9.1 states that a static, asymptotically flat manifold M containing a non-
simply connected three-manifold has a singularity. Notice that the theorem requires
matter to satisfy the weak energy condition.

Before we show that our spacetime with a type I defect satisfies all the pre-
requisites of theorem 9.1, we state one more theorem concerning spacetimes with
nontrivial topology.

Again, we have to introduce some definitions to state the topological censorship
theorem [6]. First, a spacetime M is globally hyperbolic if it has a Cauchy surface S.
So, a globally hyperbolic spacetime arises from the evolution of suitable initial con-
ditions. Next, we introduce future and past null infinity together with the definition
for asymptotic flatness. M is asymptotically flat if

1. There is a conformal completion M of M such that M is compact and with
metric g = Q2g, where ¢ is the metric of M and ) is positive.

2. The boundary J = M — M is a disjoint union of future and past null infinity
J*t and J~. Each null infinity has the topology R x S?. The conformal factor
() vanishes on J but has non vanishing null divergence.

This represents the intuitive notion of infinity as spheres with “large” r at each
instant of time ¢. In a Minkowski spacetime all light rays (null geodesics) start at
past null infinity J~ and end at J*. For a Schwarzschild black hole the event
horizon prevents some light rays from reaching future null infinity.

Instead of the weak energy condition, the topological censorship theorem only
requires matter to satisfy the averaged null energy condition. It states that the
integral of the energy density along any null geodesic with tangent vector k and
affine parameter A must be positive

/ Tk dA > 0. (9.5)

The last ingredient for the topological censorship theorem is a timelike curve =
from past to future null infinity, which lies in the simply connected part of J. We
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9. Nontrivial topology and singularity theorems

are now in the position to state the topological censorship theorem, a proof of which
can be found in [6].

Theorem 9.2 (Topological censorship theorem) If an asymptotically flat, globally
hyperbolic spacetime (M,q) satisfies the averaged null energy condition, then every
causal curve from J~ to T is deformable to o rellative to] J.

Thus, if an experimenter remaining at infinity tries to actively detect the nontrivial
topology by sending out test particles she will find that all particles that return
follow paths that can continuously be deformed to her own world line. Particles
that traverse a topologically nontrivial portion of spacetime never return.

The two theorems can be summarized by saying that an asymptotically flat space-
time with nontrivial topology where matter has positive energy has a singularity
(Gannon’s theorem) and the view of the nontrivial topology is censored from an
outside observer (topological censorship theorem). Next, we show how our space-
time with a type I defect fits into this picture.

First of all, we showed in Section 6.1 that the spacetime with a type I defect has
the topology RxSO(3)—{point}. Every spatial hypersurface has the topology of
SO(3) and we showed in Section 5.2.2 that SO(3) is nonsimply connected. The main
prerequisite of the singularity theorems, a nonsimply connected spatial hypersurface,
is thus satisfied.

Our metric g approaches the flat Minkowski metric sufficiently fast as r approaches
infinity. In fact, we showed in Section 6.4 that g, and g,, are inverse to each other
in this limit. Hence, far away from the defect the metric approaches a Schwarzschild
metric, and the latter is known to be flat asymptotically. The compact sets W
needed in the definition of regularity at infinity consist of all points with radius
b < r < r;. Once the interior of such a W; is removed, the resulting space has a
radial coordinate in the range r; < r < oo and the sphere of radius r; as a boundary.
(Recall that this surgery corresponds to the first step in the construction of the
type I defect.) Also, the convergence turns out to be positive for inward directed
geodesics. Therefore, our spacetime is asymptotically flat and regular near infinity.
From proposition 6.9.2 of [22] it follows that it is also globally hyperbolic.

Now we consider the weak energy condition. We gave the expression for the
energy density seen by a static observer, where it equals Tg, in equation (6.27).
Recall that we are still using v = 0 and, then, T is seen to be positive. Using the
explicit expressions for the remaining components, it is not difficult to show that
T,,64¢” > 0 for any timelike §. Therefore, the weak energy condition is satisfied by
our matter field. The weak energy condition also implies the null energy condition,
and hence the averaged null energy conditions is satisfied as well.

We have seen that a spacetime with a type I defect satisfies all assumptions of
the two singularity theorems. Therefore, Gannon’s theorem asserts the existence
of incomplete timelike geodesics. This means that at least one particle can “end
its existence” in a finite amount of proper time. The way the particle’s existence
ends is that it encounters the singularity of the Ricci scalar, given in equation (9.1).
Given our matter with positive energy density and the spacetime with the topology
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9.3.

9.3. Circumventing the singularity theorems

Experimenter

Figure 9.1.: Curves illustrating the topological censorship theorem. An experimenter
at infinity sends out two test particles, which travel on paths ¢ and ;. The particle
following path 7y does not hit the defect and returns to the observer. Notice that
7o can be continuously deformed into the observer’s world line. The other particle
follows 71 and hits the defect, where it encounters the singularity in the Ricci scalar.
Hence it does not return to the observer. Notice that if v; were amended by the
dotted path, it would be a path that is not deformable to the observer’s world line.
This illustrates that all particles that return to an observer at infinity lie in the
topologically trivial part of the spacetime.

of SO(3), the singularity had to occur. Gannon’s theorem is thus seen to be the
reason for the d-function in equation (9.1).

The singularity also effectively censors the observation of the defect. Consider
an experimenter far away from the defect who sends out two test particles (see
figure9.1). One particle does not pass through the defect and returns to the ex-
perimenter (curve 7y in figure9.1). In agreement with the topological censorship
theorem, this curve is deformable to the experimenter’s world line. The other parti-
cle hits the defect, where it encounters the singularity (curve 7, in figure 9.1). Hence,
it cannot continue its journey and does not return to the experimenter. Therefore,
the experimenter cannot actively probe the nontrivial topology and the view of the
defect is censored. Notice that if 7, were amended by the dotted curve in figure9.1,
the path would not be deformable to the experimenter’s world line.

Circumventing the singularity theorems

We have seen that singularities always occur in spacetimes that have a nontrivial
topology and where the energy density of matter is positive. Since the spacetime
with a type I defect does have nontrivial topology, and the energy density of the
SO(3)-Skyrme field is positive, the Ricci scalar contains a o-function centered at
the defect (see equation (9.1)). To make the coefficient in front of the d-function
vanish, the condition in equation (9.2) needs to be imposed. The spacetime would
then be smooth. The singularity theorems then imply that the spacetime cannot be
flat asymptotically. We conclude that we must have negative matter energy density
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9. Nontrivial topology and singularity theorems

if we want a smooth, asymptotically flat spacetime with nontrivial topology.

In our model Lagrangian, equation (8.1), we have thus far only used the kinetic-
and Skyrme term. This results in a positive energy density (see discussion at the end
of Section 6.4). The inclusion of the additional fourth-order term to the Lagrangian
yields terms that give a negative contribution to the energy density. With these
additional terms we can in principle achieve a negative density, and circumvent the
singularity theorems this way.

The task is now to solve Eqs.(6.24)—(6.25) with v > 0. As before, the boundary
conditions for the profile function F' and the metric are

F(zqet) =nm, F(oco)=0,

(oc) =0,  A(o) = 0. (9:6)

The first condition ensures that the matter field is compatible with the topology
at the defect and the second gives a vanishing energy density at infinity. That
spacetime is asymptotically flat is ensured by the remaining two conditions. Also,
for the spacetime to be smooth at the defect, we must have

I/,(Xdef) = —2/Xdef . (97)

Now, v/ (Xqef) also needs to satisfy the field equation (6.25). Together, equations (9.7)
and (6.25) yield a nontrivial relation. We use this relation to solve for A(xqf) instead
of simply setting A\(xqef) to zero. Therefore our initial condition for A is

A(Xdef) = f(Xdets I (Xaet), 75 7) (9.8)

where f is a transcendental function of Xgef, F”(Xqef), v, and 7. Since f is essentially
a logarithm of square roots, the requirement that the arguments be positive leads to
further relations between the shooting parameter F’(xgef) and the model parameters
Xdef, Y, and 7).

“All” that is left to do is to solve the field equations subject to the conditions
of equations (9.6)—(9.8). Unfortunately, this is not as simple as it sounds. For one
thing, we showed in Section 5.2.3 that even the “flat” Minkowski metric has a sin-
gularity at the defect. Therefore, we cannot start from a known flat space solution
and then slowly increase 1 to obtain a gravitating SO(3)-Skyrmion. Instead, we
expect some minimal 7 to exist, below which no solutions occur. Furthermore, with
v > 0, the coefficient in front of F” in the field equation (6.24a) can become zero.
Since the field equations for F' and A are coupled, such a zero leads to A approaching
—o0. This could very well be a consequence of the topological censorship theorem.
Namely, if there is no singularity at the defect, and the averaged null energy condi-
tion is still satisfied, then an event horizon must form around the defect. Otherwise,
an experimenter could view the defect by sending particles through it and detect-
ing them later. A\ approaching —oco would then signal that we approach the event
horizon from the inside. (Recall that we start at xqer and evolve to 00.)

We conclude with one remark. In Section 8.2 we found that the Ricci tensor
contains a singular part that is not sourced by the matter field. Since this singularity
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9.3. Circumventing the singularity theorems

contributes to the mass via My we interpreted it as the energy needed to create
a type I defect out of Minkowski spacetime. From equation (8.18) we see that the
singular part is proportional to /(xgef). Thus, even if the spacetime were smooth
at the defect, which is the case if 1/(Xqef) = —2/Xqer, the Ricci tensor would still be
singular and Mgy would not vanish. This further supports our interpretation that
Mo cannot be explained by the field equations of general relativity themselves, but
requires a theory which describes dynamical changes in topology.
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10.

Summary of Part 111

Part III investigated two types of spacetimes with nontrivial topology, and whether
general relativity admits these kind of spacetimes as solutions of the field equations.
We started by reviewing wormhole spacetimes and how they can arise as solutions
to Einstein’s equations. The focus in the remainder of Part III was on another
class of spacetime: a spacetime containing a type I defect. Due to its topological
properties we argued that an SO(3)-valued scalar field would be needed to obtain
this spacetime as a solution of Einstein’s equations.

We investigated wormholes in Chapter 4. A wormhole connects asymptotic re-
gions of spacetime via a throat. In particular, we concentrated on inter-universe
wormholes. These wormholes connect two different asymptotic regions of space-
time. One of the earliest wormhole solutions was found by Einstein and Rosen in
1935 [16] and is now known as the Einstein-Rosen bridge. A closer inspection re-
vealed that no particle could actually cross the bridge. It was several decades later,
in 1988, that Morris and Thorne [2] found a wormhole solution that is traversible.
By this, it is meant that a particle can actually pass through the wormhole in a
reasonable amount of time and without encountering a singularity. In general such
traversible wormholes are unstable under small perturbations. It was for this reason
that Sushkov and Kim [19] considered a wormhole supported by a scalar field. The
potential of the field was chosen in such a way that the field had some properties of
a kink. In particular, a kink-like solution is stable because of its topological proper-
ties. These properties do not change under small perturbations. Hence, the scalar
field acts as a “crutch” for the wormhole.

In the remaining chapters of Part III we considered spacetimes with topological
defects. Our main focus was a defect constructed by removing a ball from R? and
identifying antipodal points on the would-be boundary. The three-space resulting
from this “surgery” is called M; and the radius of the cut-out-ball the defect parame-
ter. We proved in Chapter 5 that M is a three-dimensional manifold. Furthermore,
we showed that it shares many topological properties with SO(3), the group of ro-
tations in R3. It turned out that it is not possible to equip M; with a Minkowski
metric, because of a singularity in the Ricci scalar curvature at the defect. We
showed that a metric with constant curvature, however, does not have a singular
curvature.

Since we want the defect to be an isolated system in a smooth spacetime, a
curved metric at the defect must become flat at large distances. Therefore, we
added a matter field to the spacetime in order to “iron out” the curvature at infinity
via Einstein’s equations. The field had to be compatible with the topology of the
spacetime and, therefore, we introduced an SO(3)-valued scalar field in Chapter 6.
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10. Summary of Part II1

The field’s Lagrangian was that of a Skyrme model. It turned out that the model
allowed for field configurations that have an integer winding number. We refer to
these configurations as SO(3)-Skyrmions, and the winding number is a topological
invariant: it cannot change under small perturbations. Therefore, the hope was that
the SO(3)-Skyrmion acts like a “crutch” for the defect in a similar fashion as the
kink and the wormhole discussed in Chapter 4.

Since the Einstein-Skyrme equations constitute a coupled set of nonlinear equa-
tions, we first investigated the Skyrme model on a fixed background metric in Chap-
ter 7. First, we considered the standard, flat, Minkowski background metric. We
solved the field equations numerically in this case. It turned out that the field’s
energy depends on the winding number and the defect parameter. If the winding
number is even, the energy approaches that of a standard SU(2)-Skyrmion in the
limit of vanishing defect parameter. This is so because an SO(3)-valued field with
even winding number is equivalent to an SU(2)-valued field with half that winding
number. If the winding number is odd, however, the energy diverges for a vanishing
defect parameter. In this case there exists a finite defect parameter that minimizes
the energy. Since the Minkowski metric contains a singular Ricci scalar curvature,
we also discussed a smooth metric with constant curvature. In this case, the field
equations could be solved analytically. Again we found a finite defect parameter
that minimizes the energy.

We considered gravitating SO(3)-Skyrmions in Chapter 8. For this, we solved the
Einstein-Skyrme equations numerically. Again the mass depended on the winding
number and the defect parameter. When the winding number is even, the model
reproduces all known results for gravitating SU(2)-Skyrmions. The mass is again
minimized for a finite defect parameter when the winding number is odd. In this
way, the SO(3)-Skyrmion does indeed act as a “crutch” for the defect. However,
unlike for the flat case, the mass does not diverge for vanishing defect parameters.
Instead, an event horizon forms at a minimal defect parameter. A closer look at
the different mass contributions revealed that not all of the mass is sourced by the
matter field. We interpret this spurious mass as the energy needed to create such a
defect (i.e. the energy needed to “drill” a hole in Minkowski spacetime).

The spacetimes constructed in Chapter 8 are all plagued by a singular Ricci scalar
curvature. This is due to the singularity theorems discussed in Chapter 9. These
theorems can be summarized as follows: an asymptotically flat spacetime with non-
trivial topology where the energy density of matter is positive must develop a singu-
larity. The only way to circumvent these theorems without giving up either asymp-
totic flatness or nontrivial topology is to add matter that yields a negative energy
density. That the energy density does indeed become negative near the throat of a
traversible wormhole was already found by Morris and Thorne. It is possible to add
an additional term to the matter Lagrangian of the Skyrme model that always yields
a negative contribution to the energy density. As a result the field equations be-
come even more complicated and one more undetermined parameter is introduced.
Therefore, the question of whether general relativity does admit a spacetime with a
type I defect is still open.
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11.

General defect construction and boundary
conditions

The construction of the spacetime defects always follow the same cut-and-glue pro-
cedure. Following [7], the starting point is three-dimensional Euclidean space. The
first step is to remove an open set from this Euclidean space. For the defects con-
sidered in this thesis these regions will be either balls or tubes. The geometrical
quantities that describe these shapes, such as the radius of the ball, will be referred
to as defect parameters. In the next step, points on the resulting boundary are
identified. Thus, the resulting space ¥ does not have a boundary, but can have
nontrivial topological properties. Finally, > becomes a spatial hypersurface in the
four-dimensional spacetime M which has the structure R x . Furthermore, we will
assume that the spacetime metric is simply given by the Minkowski metric.
After the first step of removing an open region, points on the boundary are iden-
tified according to
x~I(x)=a, (11.1)

where I(x) is an involution. A function / is an involution if it is its own inverse,
or I(I(z)) = x. Here, this property ensures that the identified point of @’ is «
again. Besides the removed region, the specific form of the involution determines all
other properties of the resulting spacetime. For example, the defects of Chapters 13
and 14 are both constructed by removing an open ball, but because of the different
identifications one spacetime is simply connected while the other is not.

The identification of the “boundary points” also induces an identification of the
tangent spaces at @ and «’. To obtain the identification rule for vectors, we decom-
pose a vector v at x into its normal and tangential parts with respect to the original
surface

V(Z) = Vnorm + Vtang -

Because the differential I, of the identification I maps tangent vectors at x to
tangent vectors at @’ we use it to identify the tangential part of vectors at identified
points. That is, the tangential part vi.ng at @ is identified with vy, at ' via

Vtang(E) ™~ Vg (T') = (@) Vtang () - (11.2)

Given two tangential basis vectors e; and e, (for example 6 and <;A5 in spherical
coordinates) the outward pointing normal basis vector n at x given by n = e; X es.
Hence the normal part of v is given by

Vnorm () = vp(x)n(x) = v(x) - n(x) n(x) .
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11. General defect construction and boundary conditions

Since e; (i = 1,2) is identified with €, we have the following identification of the
normal basis vector at & and «’

n(x) = e (x) x ex(x) ~ ey (x') x ey(x') = n'(z'), (11.3)
and equation (11.3) finally leads to the identification rule for v, at @ and &’
Vnorm (T) ~ Vporn (') = v(2') - 0/ (2') 0/ (') . (11.4)

Equations (11.2) and (11.4) must be satisfied by all vector fields at the defect and
hence impose nontrivial boundary conditions. In particular, these conditions must
be satisfied by the electric field. They apply to the magnetic field with a slight
modification, due to its pseudo-vector character.
For a Dirac spinor ¢ (x,t) we require that ¢ at x is related to v at the identified
point &’ by
¢(taml) = S(m)w(tam) ) (11'5)

where S is a 4 x 4 matrix. To obtain some properties of S, we investigate the
probability four-current (j*) of the Dirac spinor. Its components are defined by

7' =y =91 ey,

where the three 4 x 4 matrices ¢ are given by

in terms of the 2 x 2 Pauli matrices o.
First, we want the probability density j° at @ to equal the probability density at
a’. Explicitly, this means

i(@) = j°(2)
= ¢l (@) P(z) = ¢'(@') ¥(2)
& Pl(a) () = ¢'(x) S'(@)S(x)y(t, @)

where we have used equation (11.5) to express ¢(x’) in terms of ¢(x) in the last
line. But this means that S must be a unitary matrix

St(z)S(z) =1. (11.6)

Second, an important property of the probability four-current is that it is a vector
and, hence, its spatial part j must satisfy equations (11.2) and (11.4) as well. Thus,
S must satisfy three more constraints imposed by the identification. We will make
these constraints more specific once we have given the identification maps in the
following chapters.
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Finally, we mention another nontrivial property of S. Of course, equation (11.5)
must also hold, when it is evaluated at the point x’:

Y(t,x) = S(x)(t, x'). (11.7)

Replacing ¢ (t, ') above with the r.h.s of equation (11.5) yields

U(t,x) = S(@')S(@)y(t, x).

Therefore, S(2')S(x) must be the unit matrix and, because of the unitarity of S,
we finally have that
S(z') = St(x). (11.8)

To summarize the above findings: The tangential part of any vector field must
satisfy equation (11.2), whereas the normal part must respect equation (11.4). These
equations lead to three boundary conditions at the defect. For a Dirac spinor we
require that the spinor at « is related to the spinor at the identified point ' by a
unitary matrix S that must also satisfy equation (11.8). Finally, three more condi-
tions on S are imposed by demanding that the spatial part of the probability current
must satisfy equations (11.2) and (11.4).

101



11. General defect construction and boundary conditions

102



12.

12.1.

From a single defect to classical spacetime
foam

We discussed how to construct a single spacetime defect in the previous chapter.
Now, we build a spacetime foam out of many such defects, based on the work by
Bernadotte and Klinkhamer [7]. We explain the mechanism by which a classical
spacetime foam leads to macroscopic dispersion relations for electromagnetic waves
and Dirac spinors.

Recall that we assume spacetime to be flat Minkowski spacetime away from a
single defect. After the creation of the first defect we can, therefore, create a second
defect far away from the first. Here, “far” means that the separation [ between the
two defects is much larger than their individual defect parameters b. Next, we add
a third defect far away from the other two. Finally, then, our model of a spacetime
foam is obtained by adding many defects at positions @;. Furthermore, we assume
that the defects are homogeneously distributed and that their separation [ is always
much larger than the defect parameter b. Since b < [ our foam is a dilute gas of
defects.

We show in the following two sections how such a spacetime foam model leads
to modifications of the dispersion relations for electromagnetic waves and Dirac
fermions. In the limit where the wavelength is much larger than the defect parameter
the spacetime foam acts like an ordinary medium with a wavelength-dependent index
of refraction.

Dispersion relation for electromagnetic waves

Since spacetime is still Minkowski spacetime away from the defect, we know that
plane waves with wave vector k are valid solutions to Maxwell’s equations. Hence,
the electric- and magnetic field will, respectively, be given by

E,.(t,x) = Re Egexp(ik -  — iwt),
B, (t,z) = Re Byexp(ik -  — iwt) .

Here, E and By are constant vectors such that (k, Eq, By) are pairwise orthogonal.

However, when we discuss specific defect examples in Chapters 13-15, we will
see that these plane waves do not satisfy the boundary conditions at the defects.
Therefore, correction fields E. and B, have to be added to the plane wave solutions,
such that the sum satisfies the boundary conditions.
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12. From a single defect to classical spacetime foam

We will find in Chapters 13 and 14 that the correction field for the electric field is
approximately given by a dipole field p. Phrased differently, a single defect responds
to the incoming plane wave by emitting dipole radiation. Following Section 4.5 of
[43] we define the polarizability a of a defect by

E.~p=aFE,, (12.1)

where a can either be a scalar or tensor quantity. In this way, it is possible to
assign a microscopic polarizability to a single defect. Since the spacetime foam was
constructed using the dilute gas approximation, we can use the Clausius-Mossotti
relation to obtain the electric permittivity e. Namely, the microscopic quantity « is
related to the macroscopic € by

e—l_na
e+2 3

Y

where n denotes the number density of defects. Inverting this we obtain

1+ 2na/3

=T a3 =1+na+ 0 ((ne)?), (12.2)

where we have used the assumption that the defects are very dilute (n < 1) in the
last step.

Since essentially the same reasoning applies to the magnetic field as well, we will
see in Chapters 13-15 that the magnetic correction field is also given by a dipole
field p. Hence, we define the magnetic moment 3 of the defect by

Bch:ﬁBpw-

Again using the dilute gas approximation, we find that the magnetic permeability
1 is given by
uw=1+ns+0 ((na)Q) : (12.3)

The two macroscopic quantities € and g then allow us to calculate the index of
refraction n(k) via

n(k) = v/eR) (k). (12.4)
where we have emphasized that the permittivity e and permeability 4 may both be
functions of the wave number k = |k|. Equation (12.4) has the interpretation that
a classical spacetime foam composed of microscopic defects acts like an ordinary
medium with an index of refraction that depends on the wave number.

Finally, we obtain the dispersion relation via
2.2 2.2
9 c’k c’k
w(k) = = : (12.5)
n?(k)  e(k)u(k)
If € and p depend on the wave vector then equation (12.5) gives a dispersion relation
that is modified compared to its form in empty Minkowski space.
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12.2. Dispersion relation for Dirac spinors

12.2. Dispersion relation for Dirac spinors

As for the electromagnetic field, we find that a plane wave solution of the Dirac
equation does not satisfy the boundary conditions at a single defect. We, therefore,
add a correction spinor to the plane wave, such that the sum satisfies the boundary
condition. Here, we are interested in a Dirac fermion of very high energy compared
to its rest mass m. Its wavelength is also supposed to be much larger than the defect
parameter b and defect separation [:

m<k<1/l<1/b.
An initial solution to the free Dirac equation
10(t, @) = (—la- V+m ) ¢(t, ) ,

where the matrices a and (3 are defined in Appendix B, is a plane wave traveling in
the positive z direction:

1
. : 0
Ypw(t, ) ~ exp (ikz — iwt) nE (12.6)
0
which, however, will turn out not to satisfy the boundary condition
U(t, ®her) = S(Xae) Y (t, Taer) - (12.7)

Here, x4¢r denotes a point on the defect and ! its identified point. Therefore, we
have to add a correction spinor v, (¢, x) such that the total spinor

Yot (t, ) = Ypw(t, ) + Ye(t, ), (12.8)

satisfies the boundary condition.

To find ¢.(¢, x), let us first investigate ¢ (t, ), for a point on the defect. Provided
that the typical extent of the defect is small compared to the particle’s wavelength
we have, to lowest order in k - x4.r,

Yow (t, Taer) ~ exp (—iwt) (12.9)

O = O =

Thus, the plane wave at the defect is, to lowest order, constant in space. We then
make the following Ansatz for the correction spinor

et ) = g(r) ST(@) Y (t, acr) - (12.10)
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12. From a single defect to classical spacetime foam

Here, r = |x| and g(|@qe|) = 1. Provided that S satisfies
St(x') = S(x), (12.11)

the spinor in equation (12.8) satisfies the boundary condition in equation (12.7).
Namely, the right hand side of equation (12.7) becomes

S(Xaef)Urot (f, Taer) = S(Taet)Vpw (t, Taet) + S (Taer) ST (X o) Vpw (t, Tater)
= wpw<t7 wdef) + S<wdef>1/}pw<t7 wdef) . (1212)

By virtue of equation (12.11) the left hand side of equation (12.7) is given by

wtOt (tv w:ief) = wPW<t7 wdef) + S<wdef>1/}pw<t7 wdef) 5 (1213)

where we have also used the fact that the plane wave spinor is, to lowest order,
constant at the defect.

As was shown in the previous chapter, the explicit form of S(x) needs to be
determined such that the probability four-current has the correct transformation
property at a single defect. Once we have determined S(x) we immediately obtain
the correction spinor from equation (12.10). In a spacetime foam we sum up the
correction spinors of the individual defects. Given the explicit expressions for the
correction spinors, we will see that this sum averages to zero. Therefore, only
the plane wave contribution does not vanish on scales much larger than the defect
separation. The result is that the dispersion relation of a Dirac fermion is not
modified compared to its form in Minkowski spacetime.
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13.

13.1.

Model I: sphere with antipodal points
identified

Defect construction

Following the general procedure in Chapter 11 we start the construction by removing
all interior points of a spatial ball of radius b. In the rest of this chapter we will use
spherical polar coordinates (r,6,¢) and let (7,0, $) denote the usual right-handed
set of normal basis vectors.

In the second step we identify antipodal points on the boundary —i.e. the general
identification equation (11.1) now becomes

ZTaer ~ [(xdel) = x)p = —@ger - (13.1)

Via this identification we have constructed a type I defect. For the topological prop-
erties of the resulting space see Section 5.2.3. This type of defect is also discussed in
[7], where it is called a 7 = 1 defect. Unless stated otherwise, all points are supposed
to be on the defect. Since I(x) = —, its differential is I.(x) = —1. Hence, the
rule for the identification of tangential parts of a vector, equation (11.2), now takes
on the following form

'Utang(m) ~ v;ang(_m) = _vtang(w) :
In particular, we have
0(x) ~ 0'(—x) = —0(x) = —0(—=x), (13.2a)

o(@) ~ ¢'(—z) = —d(z) = (-, (13.2b)

for the tangential basis vectors 6 and gZA> From equation (11.4) this implies
a(x) ~ i/ (x) =0 (—x) x ¢'(—z) = i(x) = —i(z'). (13.3)

Notice that the direction of the identified vectors is reversed with respect to to
the original vectors in equations (13.2a) and (13.2b), whereas the outward pointing
normal at @ is identified with the inward pointing normal at —a. The identifications
(13.2a)—(13.3) are shown in figure 13.1. Notice that the normal part “goes through”
the defect, while the tangential part changes direction. This also means that if the
tangential part at & points to another point y on the defect, then its identified
vector at '’ points to y'.

107



13. Model I: sphere with antipodal points identified

J/

Figure 13.1.: Identification of the tangential and normal part of a vector at the defect
with antipodal points identified. Notice that, in accord with equation (13.3), the
normal part “goes through” the defect, while the tangential part, in agreement with
equations (13.2a) and (13.2b), changes direction. This also means that if the tangen-
tial part at & points to another point y on the defect, then its identified vector at x’
points to y’.

It is useful to express the identifications (13.2a)-(13.3) in terms of components.
To this goal we write

V(@) = Vnom (&) + Viang(®) = va(@)t(@) + vo(@)0(2) +v5(x)d(x),  (13.4)

and

V' (~@) = Vouun(—®) + Ol (—2) =0, (—2) i () + v(—)b(—2)

+ ) (—z)d (—z). (13.5)
To be explicit, the components v,(x) and v, (—x) are defined by n(x) - v(x) and

n'(—x) - v(—x), respectively. Similar equations hold for the other components. But
since the vectors in equations (13.4) and (13.5) are the same we must have

vn(®) = v, ('),
vo(x) = vy(a')
vs () = vy (')

108



13.2.
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Thus we obtain the boundary conditions, to be satisfied by any vector field, expressed
in terms of the coordinate basis as

() = —v,(—2) , (13.6a)
ve(x) = —vyg(—x) (13.6b)
ve(x) = +vg(—x) . (13.6¢)

The meaning of equation (13.6a) is that if a vector points inwards at @ it must point
outwards at @', which is nothing but the meaning of equation (13.3) expressed in
coordinates. Equations (13.6b) and (13.6¢) express the property that if a vector at
x points to to another point y on the defect, then its identified vector at @’ points
to y’. Recall that equations (13.6a)-(13.6¢) were also derived in Section 5.2.2.

Electromagnetic field
The boundary conditions in equations (13.6a)-(13.6¢) apply for the electric field

E(x) as well. Since the magnetic field B(x) is dual to the electric field, its boundary
conditions are the negative of the conditions for E(x). Thus, we have

E,(x)=—-E,(—x), B,(x) = +B,(—x), (13.7a)
E@(IB) = —Eg(—.’B) s B@(IE) = —|—B.9<—.’B) s (137b)
Ey(x) = +E4(—x), By(x) = —By(—x) . (13.7¢)

By construction, spacetime is simply Minkowski spacetime away from the defect,
and plane waves are solutions to the Maxwell equations in vacuum. Here we choose
a plane wave propagating in the positive z-direction with the electric field parallel
to the x-axis:

E,.(t,x) = Re Ey exp(ikz — iwt)z,
B, (t,z) = Re Eyexp(ikz — iwt)y .

However, a plane wave does not satisfy the boundary conditions in (13.7a)-(13.7c¢).
As mentioned in the previous chapter, we introduce a correction field

E.(t,x) = — exp(—iwt) VP, ()

such that E = E,+ E. fulfills conditions (13.7a)—(13.7¢). We now expand ®.(x)
in spherical harmonics Y, (6, ¢) as

AP
(I)C<T, 0, ¢) = E Tl—ll—l Y; (97 (b) :
Lm

To find the coefficients a;", we expand the components of E,, and E. in spherical
harmonics as well. We then choose them in such a way that E.. satisfies conditions
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13. Model I: sphere with antipodal points identified

(13.7a)—(13.7¢c). It turns out that the coefficients of ®.(x) must be given by

A — { Jamitlp? B léllill) (71-1(kb) + jig1 (kb)) 1 odd, m = =+1 (13.8)

0 otherwise

Here, b denotes the defect parameter and j;(x) denotes the [th spherical Bessel
function. We see from equation (13.8) that the correction field is, to lowest order
in [, given by a dipole with [ = 1. From equation (13.8) we find that the only
nonvanishing dipole moment reads (see Section 4.1 of [43]):

P = 476 Eg(jio (kb) + j2 (kD)) . (13.9)

Note that it is aligned with the external electric field of the plane wave. There is
no quadrupole moment because all coefficients with [ = 2 are zero. Furthermore,
higher multipoles will be suppressed because j;(kb) ~ (kb)! and kb < 1. Comparing
equation (13.9) with equation (12.1) we see that the polarizability of a single defect
is given by
(k) = 47 (jo (kD) + jo (kD))
Via the inverted Clausius-Mossotti relation in equation (12.2) we then obtain the
permittivity e
e1(k) = 1+ 4mnb®(jo(kb) + jo (kb)) (13.10)
Similarly, we find that the magnetic field of the plane wave does not satisfy the
boundary conditions in (13.7a)—(13.7¢). Again, we add a magnetic correction field

B (t,x) = — exp(—iwt)VP.(x)

such that the sum By, = B+ B, satisfies the boundary conditions. The potential
@, is expanded into spherical harmonics as

Bm
Po(r,0,0) = Y —5Y"(0,0).
lm

Following the same procedure as for the electric field, we obtain for the coefficients

142 ! i ) =
B — { —/m T2 E, m(}kl(kl)) +jipa (kb)) Lodd, m = =+1 . (13.11)

0 otherwise

Using these coefficients, we find that the only nonvanishing component of the dipole
field reads
py = —27Tb3E0<]0<]€b> + j2<kb)) .

As for the electric field, the magnetic correction is aligned with the magnetic field
of the incoming plane wave. No monopole or quadrupole radiation is present and
higher multipoles are suppressed. Therefore, the magnetic moment of a single defect
is given by

Bi(k) = —2mb (jo(kb) + ja(kD))
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which finally yields
p1(k) = 1 — 2mnb®(jo (kb) + ja(kb)) . (13.12)

Now that we have determined the permittivity e;(k) and the permeability pp(k)
we can use equation (12.5) to calculate the macroscopic dispersion relation for a
spacetime foam composed of type I defects

k2 c2k?
wi (k) = = : : : : :

: cr(k)pn(k) {1+ dmnb®[jo(kb) + j2(kb)[H{1 — 2mnb? [jo (kb) + Jz(klz)])} )

13.13

Keeping in mind that the number density of defects is n ~ 1/1*> and that the space-

time foam is very dilute (b < [) we have nb®> < 1. Since the wavelength A\ ~ 1/k

of the plane wave is supposed to be much larger than the defect parameter b we

have kb < 1 as well. We can, therefore, do a Taylor expansion in nb® and kb and
equation (13.13) yields

W2(k) = 2k (1 — 2mmb®) + gnb502k4 +O () +0 (kb)) ., (13.14)

which agrees with the result given in [7]. Notice that, because the first bracket is less
than one, the speed of light is reduced compared to the free case. If it were not for the
term oc k* an experimenter, measuring only light, could not distinguish an empty
spacetime from one containing a spacetime foam. Finally, we want to emphasize
that equation (13.14) gives a direct link between the microscopic parameters n and
b of the spacetime foam and the macroscopic dispersion relation.

Dirac spinor field

As mentioned in Chapter 11 the Dirac spinor must satisfy the boundary condition
in equation (11.5). For the defect model discussed in this chapter it reads

Y(t, —x) = Si(x)Y(t, x), (13.15)

where Sy is the appropriate 4 x 4 matrix for a type I defect.
The boundary conditions in equations (13.6a)-(13.6¢) lead to the following trans-
formation properties the components of j in spherical coordinates (r, @, ¢):

Jn(x) = —ju(x’), (13.16a)
Jo(x) = —jg(x'), (13.16b)
Jo(@) = Jo(a) . (13.16¢)

With the use of equation (13.15) the four-current at &’ is given by

gt x') = (¢, :c)TS(a:)T(ﬂ, a)S(x)Y(t,x) . (13.17)
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13. Model I: sphere with antipodal points identified

In the following, we omit the 9" ... part for sake of brevity. With this convention,
we obtain the following from equation (13.16a)

n(x) - a=—ST(x)a(z')  aS(x)
& i(x) - a = ST(x)a(x) - aS(x) (13.18)

where we have used the fact that n(ax’) = —n(x). Multiplying from the left with S
and using the unitarity of S, equation (13.18) turns into

[S(x),n(x) - a] =0. (13.19)

In the same way we obtain

{S(m), i(x) - a}
{8@)d(@)-a}

0, (13.20)

0. (13.21)

A unitary matrix satisfying equations (13.19)—(13.21) is

Si(z) =iz - a, (13.22)

with & = @ /|| = n. The proof follows from equations(B.2a) and (B.2b) in Ap-
pendix B. Furthermore, using the fact that a are hermitian matrices and that
n(—x) = —n(x) we find that S satisfies

Si(—x) = Si(z),

as well. Therefore, the matrix given in equation (13.22) satisfies all required prop-
erties. Notice that the parity transformation matrix Sp = (3 does not satisfy equa-
tion (13.19). Hence, the transformed spinor cannot simply be a spinor reflected at
the origin.

As was shown in Section 12.2, the following spinor satisfies the boundary condition
in equation (13.15) at the defect

Vior(t, ®) = Ypue(t, @) + 9(r) S] (@)U (1, Tt -

To satisfy the Dirac equation away from the defect, the function g must be given by

g(r) = b*/r*.

All in all, the total spinor for a single defect reads

1 cos 0,
. . 0 . . b2 sin 91 exp(i<b1)
Yot (t, ) ~ exp (ikz — iwt) L 1exp(—1wt)r—% cos b, , (13.23)
0 sin 91 exp(i<b1)
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13.4. Summary

where (r1, 61, ¢1) are the spherical coordinates of & with respect to the defect center.
As for the electromagnetic case, discussed in the previous section, this result agrees

with [7].

The next step is to sum over /N defects with centers x; for j =1,---, N:
1 cos 0;

D T )gor ~ (k2 — iwt) 01 (—iwt) al b? sin 0; exp(i¢;)
) or ~ exp (ikz —iw ) iexp(—iw > r “ P cos b,

0 . sin 0; exp(i¢;)

(13.24)
Here, (6;, ¢;) are the spherical coordinates of Z; with respect to the jth defect center.
For many randomly positioned defects (N > 1) the components of the correction
spinors average to zero.

Summary

The type I spacetime defects discussed in this chapter were created by first removing
an open spatial ball of radius b from empty Minkowski spacetime. Antipodal points
on the boundary were then identified. Since the spacetime away from the defect is
still flat Minkowski spacetime, a dilute spacetime foam was created by “punctuating”
Minkowski spacetime by many well-separated defects.

In Section 13.1 we discussed the resulting boundary conditions for a vector field at
a single defect. These conditions then have to apply for electric and magnetic fields
as well. Since plane waves are solutions to Maxwell’s equations between the defects
but do not satisfy the boundary conditions, we introduced appropriate correction
fields in Section 13.2. Furthermore, we calculated the polarizability and magnetic
moment of a single defect. Via the Clausius-Mossotti relation we obtained the
macroscopic permittivity and permeability. Finally, we calculated the dispersion
relation for electromagnetic waves propagating through a spacetime foam composed
of a dilute ensemble of defects. The dispersion relation was found to be different
compared to its form in Minkowski spacetime. In particular, the speed of light is
lower than in empty Minkowski spacetime and a quartic term exist.

We also calculated the correction spinor for a Dirac fermion in Section 13.3. This
correction is necessary because the probability-current of a plane wave solution of the
Dirac equation does not satisfy the boundary conditions at a single defect. However,
when summed over many defects, these corrections average to zero. Thus, only the
initial plane wave solution remains at distances which are large compared to the
average defect separation. As a result, the dispersion relation of a Dirac fermion is
not modified compared to its form in Minkowski spacetime.

Our results agree with [7], where the present defect type is referred to asa 7 =1
defect.
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14.

14.1.

Model II: sphere with mirrored points
identified

Defect construction

The construction of this defect starts in the same way as that of the previous defect.
That is, the interior of a sphere with radius b is cut out from R3. Now, however, a
point @ on the defect is identified with its mirror image, obtained by mirroring « at
an equatorial plane with normal a. Explicitly, we have

Ldef "~ wdef = [(wdef) (]1 —2a X )wdef . (141)

For electromagnetic waves, this defect was also discussed in [7], where it is referred
to as a 7 = 2 defect. In the following, all points are supposed to be on the defect,
unless stated otherwise. For a two-dimensional illustration see figure 14.1. Vectors
tangent to the sphere are identified via the differential I, of the identification map.
Therefore, we have the following relations between the basis tangent vectors and
their identified counterparts

() ~ 0'(x ') = I.0(x) = O(x) — 2a9(x)a, (14.2a)
Lo(x) = ¢(x) — 2a4(x)a, (14.2D)

where ag(x) = 6(x) - @ and similarly for a,(x).
The normal vector n is identified with

ax) ~ 7' () =0'(x') x ¢(x). (14.3)

Some algebra then gives the following relation between the identified normal vector
7/(x’) and the normal vector n(x’)

W (x') = —n(z). (14.4)

The identification rules in equations (14.2) and (14.3) then imply the following
conditions on the normal and tangential components of a vector field v(x).

vp(z) = (x (14.5a)
ve(x) = vy(x'), (14.5b)
vg(x) = vj(x (14.5¢)
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%

J

Figure 14.1.: Identification of the tangential and normal part of a vector at the defect
with mirrored points identified. Notice that the normal part “goes through” the
defect, while the tangential part changes direction. This also means that if the
tangential part at @ points to another point y on the defect, then its identified vector
at ' points to y’.

where v] (') = n/(x')v(x’), etc. are the components of v(x’) with respect to the
identified basis at ’. Notice that, because of equation (14.4), a vector field that
satisfies equation (14.5a) points away from the defect at @’ if it points towards it at
x. This allows a particle to “go through” the defect. The last two equations have
the interpretation that if a vector at « points to another point y on the defect, then
the identified vector at ' points to the identified point y'.

Electromagnetic field
As for the defect discussed in the previous chapter, the boundary conditions in

equations (14.5a)—(14.5¢) translate into the following conditions for the electric and
magnetic field

E,.(x) = E/ (z'), B,(x) = —B/ (2'), (14.6a)
Ey(x) = Ey(2'), By(x) = —By(x') , (14.6Db)
Ey(x) = Ey(x'), By(x) = =By ('), (14.6¢)

where, again, the conditions for the magnetic field are dual to those of the electric
field. The next steps follow the same pattern as in the previous chapter. That is,
we choose the coordinates such that a plane electromagnetic wave vector is parallel
to the z-axis, which means that E, and By, are given by

E,.(t,x) = Re Ey exp(ikz — iwt)T,
B, (t,z) = Re Eyexp(ikz — iwt)y .
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14.2. Electromagnetic field

To satisfy the boundary conditions we introduce a correction field E.(¢,x), which
is derived from the negative gradient of a scalar potential

Ar
(I)c<r7 07 ¢) = Z Tl—_lHYE (97 (b) )
L,m

The coefficients A;" need to be determined such that the sum of E, and E. satisfies
equations (14.6a)—(14.6¢). We find for [ =1

o —(a2 — 3 —iagay), m=1

A7 = \[TB L) + 0] Vaaa,  m=0
(a2 — + +iaga,), m=—1

Hence, the induced dipole reads

b = 0708 (k1) + 1ok (a2 - 3 ) B,

py - 67Tb3 []0<kb) + ]2<kb)] amayEO )
p. = 67b° [jo(kb) + jo(kb)] aza.Ey .

Recalling that p = aFE,, and that the electric field is parallel to the z-axis, we
obtain for the polarizability «

a = 27b* [jo(kb) + j2(kD)] (34 ® a — 1) . (14.7)

Since the defect induces a preferred direction a the polarizability « is given by a
tensor that depends on a. We now make the assumption that the directions of the
individual defects are not aligned!. In this case, the off-diagonal elements of o in
equation (14.7) average to zero, whereas the diagonal elements yield

<al>=<a,>=<al>=1/3,

and, hence, the polarizability vanishes for many randomly orientated defects. The
(inverted) Clausius-Mossotti relation in equation (12.2) then yields a permittivity e
of

em =1,

which does not differ from its empty space value.
To satisfy the boundary conditions equations (14.6a)—(14.6¢) the magnetic field
B,,, requires a correction field B, as well. We again write

B (t,x) = —exp(—iwt)VP.(x),

For the case of aligned defects see [7]. In this case, the spacetime foam becomes a birefringent
medium.
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14. Model II: sphere with mirrored points identified

and expand the potential @.(x) into spherical harmonics. The coefficients of this
expansion with [ = 1 read

3, _ axay—i(aZ—Z/?)), m=1
BT =4/ 7() [jo(kb) + ja(kD)] —\/2a,a., m =0
—apay +1(a2 —2/3), m=—-1

With these coefficients, we obtain the induced dipole of a single defect as

Pz = —67 (Jo(kb) + jo(kb)) b’aza, Ey
py = —67 (jo(kb) + ja(kb)) b° (az —2/3) Ey,
p. = =67 (jo(kb) + ja(kb)) b a.a, Ey .

Since the magnetic field of the incoming plane wave is parallel to the y-axis we find
that the magnetic moment (3 is given by

B = =21’ [jo(kb) + ja(kb)] (3a ® a — 21) . (14.8)

This is similar to the polarizability « in equation (14.7), but notice the factor 2 in
front of the unit matrix. It is because of this factor that the averaged magnetic
moment does not vanish but yields

< B >= 27b* [jo(kb) + ja(kb)] 1.
Using equation (12.3) we find for the permeability u
pna() = 1+ 28 [jo kD) + jo(kD)]

which, unlike the permittivity, differs from its form in empty space. Therefore, the
dispersion relation of electromagnetic waves propagating through a spacetime foam
of nonaligned model II defects reads

W) = — K o
1) = R~ T {1+ 20l [ ) + (D))

(14.9)

As in the previous chapter, the dilute gas approximation (nb* < 1) and the assump-
tion that the wavelength is much larger than the defect parameter (kb < 1) allow
us to make a Taylor expansion of equation (14.9). The result is

wii(k) = 2k* (1 — 2mnb?) + gnb502k4 + O ((nb*)%) + O ((kb)?) . (14.10)

To the order shown, this result coincides with the dispersion relation of the previous
chapter, see equation (14.10) and also [7].
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14.3. Dirac spinor field

A Dirac spinor 1 at x is related to the spinor at @’ via

bt @) = S(@)v(t, ),

where S() is a unitary 4 x 4 matrix. The spatial part of the probability four-current
reads

j(x) =y (@)ay (),

where the matrices a are defined in Appendix B. Since j(x) is also a vector field,
its components must also satisfy the boundary conditions (14.5a)—(14.5¢). Using
equation (14.4) we obtain

Jn(®) = —jn(@’), (14.11a)
Jo(x) = jo(x') (14.11b)
Jo(x) = jy(x') . (14.11c¢)

We rewrite j(x') by using equation (13.17) and drop the 7. . .1 part in the following.
With this convention, we obtain from equation (14.11a)

n(x) - a=—S(x) ) asS(x)
s a(x) a=—S(x)[n(x) — 2a,(x)d] - aS(x) (14.12)

where we have used n(x’) = n(x) — 2a - n(x) a. Multiplying from the left with S(x)
and using the unitarity of S(x), equation (14.12) becomes

{S(x),n(x)  a} =2a,(x)a-aS(x). (14.13)
Along the previous lines, equations (14.11b) and (14.11c) yield
[S(m),é(m) : a] = —2ay(z)a- aS(z), (14.14a)
[S(IE), o) - a] = —2a4(x)a- aS(x). (14.14D)
A unitary matrix satisfying equations (14.13)—(14.14) is given by
Sn(z) =i(a- o) (T-a). (14.15)

The proof is an application of the rules collected in Appendix B. Finally, we note
that Sp(x) satisfies

Shi(a') = Su(z),

which follows from n(x') = I,n(x) and the rules in Appendix B.
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14. Model II: sphere with mirrored points identified

Now that we have the matrix Si we can use it in equation (12.8) to obtain the
total spinor.

W(t, @) ~ exp (ikz — iwt)

O = O =

cos 01 cos ¥y + sin 0 sin vy exp(i(v1 — ¢1))

_ex (—iwt)ﬁ cos ¥y sin 6y exp(igy) — sin vy cos Oy exp(ipr)
p r? cos 01 cos ¥y + sin 0y sin ¥ exp(i(p1 — ¢1))

cos U1 sin 6y exp(ip1) — sin 4 cos 0y exp(ip1)
(14.16)

Here, (01, ¢1) and (9, 1) are the spherical coordinates of & and a with respect to
the defect center, respectively.
The next step consists of summing over N defects. Their individual mirror planes

are given by the normal vectors a;, with e =1,..., N.
1
. . 0
U(t, @) ~ exp (ikz — iwt) 1
0

cos 0 cos ¥ + sin 0 sin ¥;e!(#i=91)

b? cos¥; sin 0;€'% — sin¥); cos 0;€'%s

|z — x;|2 | cosb;cosd); + sinb;sin ;el(pi=ei)
cos ¥, sin Qjei¢f — sin ¥, cos Hjei“"f

(14.17)

Here, (6;, ¢;) and (9;, p;) are the spherical coordinates of Z; and a; with respect to
the jth defect center. As in the previous chapter, the components of the correction
spinors average to zero for many randomly positioned defects (N > 1). Notice that
this would happen even if the individual vectors a; were aligned (i.e. if we had
constant ¥; and ¢, for all defects).

14.4. Summary

The type II defects studied in this chapter were created by removing an open spatial
ball from Minkowski spacetime. The identification of points proceeds by reflecting
them at an equatorial plane with normal a. The spacetime foam is then created
by “punctuating” Minkowski spacetime with many such defects. We have assumed
that the vectors a of the individual defects are randomly oriented. To obtain the
dispersion relations for electromagnetic fields and Dirac fermions we followed the
general procedure described in Chapter 12 and again outlined in the summary of
the previous chapter (Section 13.4).
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14.4. Summary

We discussed the electromagnetic field in Section 14.2. Since the defect has a
preferred direction given by a, its microscopic polarizability and magnetic moment
turned out to be tensors depending on a. Averaging over many defects, we found
that the polarizability vanished whereas the magnetic moment did not. Hence,
only the macroscopic permeability was changed compared to its value in Minkowski
spacetime. The resulting dispersion relation was found to approximately equal the
one found in Chapter 13. Tt is also the result found in [7], where the presently
discussed defect type is called a 7 = 2 defect.

Section 14.3 discussed the correction spinor for a Dirac fermion. We calculated
the correction spinor required such that the probability four-current satisfies the
boundary conditions at the defect. When summing over many defects the correction
spinors averaged to zero. Hence, only the original plane wave spinor remained on
scales larger then the defect separation. The dispersion relation of a Dirac fermion
is, therefore, not modified.
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15.1.

15.2.

Model III: line defect

Defect construction

This defect is constructed by removing all interior points of a spatial tube of radius
b and length L. We assume that the linear dimension L is much larger than the
radius b, so that we can ignore the bottom and lid of the tube. Furthermore, the
cylinder axis is denoted by a. Next, antipodal points on the cylindrical boundary
are identified, see figure15.1. Rotating a point x4 on the cylinder around the
cylinder axis a by 180° yields its antipodal point. Therefore, we have the following
identification rule

/ _ ~ A~
Ldef ~ Lyer = Ra(ﬂ)wdef = 20 Tgef @ — Tdef

where we have used equation (6.3) with w = m and n = &. The differential I, used
to identify vectors tangent to the cylinder is then given by

L, =2a®a—1. (15.1)

For the electromagnetic waves discussed in Section 15.2 it will be convenient to let
the cylinder axis coincide with the z-axis and let the wave vector k be arbitrary.
However, when we discuss Dirac fermions in Section 15.3, we will choose the propa-
gation to be along the z-axis and let the cylinder axis a be arbitrary. We will give the
explicit form of the transformation properties of vectors implied by equation (15.1)
in the respective sections. Here, we just mention that we choose them in such a way
that they allow a particle to go through the defect, see figure 15.1.

Before we continue, we want to discuss the crucial difference between the defect
of this chapter and the ones of the previous two chapters. Namely, by inspecting
figure 15.1 we see that a left-handed dreibein entering the defect emerges right-
handed. Therefore, the resulting spacetime is nonorientable. Another way to see this
is the following. In a plane perpendicular to the cylinder axis the defect corresponds
to the two-dimensional defect discussed in Section 5.1. In particular, we showed in
Section 5.1.2 that this manifold is nonorientable.

Electromagnetic field

To obtain the explicit form of the boundary conditions on the electric and magnetic
fields we choose the cylinder axis a to be parallel to the z-axis, that is a = 2. In
cylindrical coordinates (p, ¢, z), a point on the defect with coordinates (b, ¢, z) is
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15. Model III: line defect

P

Figure 15.1.: To construct a line defect, a cylinder of radius b is removed from space
and antipodal points on the resultant boundary are identified. The identification of
vectors is also shown.

then identified with its antipodal point having coordinates (b, 7 + ¢,2). Using I,
from equation (15.1) we obtain the following for the basis vectors (¢, é.), which are
tangent to the cylinder,

ol
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>
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') = Lo(x) = —)(m) = d(a') (15.2a)
L:=2. (15.2b)
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These two conditions mean that if a vector at & points to another point y on the
defect, than the vector at &’ points to vy, see figure 15.1. For the normal basis vector
p we have to make the following identification

pla) ~ pl(a) = —d'(@) x 2 = —p(a') = pl=).

Notice that the additional minus sign ensures that the outward pointing normal
vector p(x) at « is identified with the inward pointing normal —p(x’) at the identified
point @’. Therefore, we have the following boundary conditions for a vector field
v(x)

vy(x) = —v,(z'), (15.3a)
vy(x) = Fvy(x'), (15.3Db)
v(x) = Fv,(2). (15.3¢)

where v,(x) = v(x) - p(x) and similarly for the other components.
The boundary conditions in equations (15.3a)—(15.3¢) imply the following trans-
formation properties of electromagnetic fields at the defect.

Fy(@) = —E,(x), B,(x) = +B,() (15.4a)
Ey(x) = +Ey(x'), By(x) = —By (') (15.4b)
E.(x) = +E.(x'), B.(x) = —B.(x'), (15.4c)
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15.3. Dirac spinor field

where, as for the other defects, the conditions on the magnetic field are dual to those
of the electric field.

Away from the defect spacetime is just Minkowski spacetime. Therefore, plane
waves are the solutions of Maxwell’s equations. But these do not satisfy the bound-
ary conditions at the defect, and hence correction fields E.(x) and B.(x) need to
be introduced. The calculations to obtain these fields are quite involved and are
given in Appendix C. The result, however, is quite simple

E.(t,x) = —E,(t,x), (15.52)
B.(t,z) = —B,.(t.z). (15.5b)

Notice that the correction fields are the negative of the plane wave fields, not only
at the defect but for all points . Hence, the total electromagnetic field vanishes
everywhere. This result disagrees with the one in [7], where the line defect is dis-
cussed briefly in footnote 20. The two different results trace back to a different
identification of the electric and magnetic fields. In this thesis we impose nontrivial
conditions on the components parallel to the cylinder (see equation (15.4c)). The
conditions leading to the result in [7] are that only the perpendicular components
transform nontrivially (see Chapter 6 of [44]).

One reason for the vanishing of the total field might be that the Ansatz for the
correction fields is too restrictive. Due to the form of the boundary conditions we
choose an Ansatz involving vector spherical harmonics. Furthermore, the electric
and magnetic correction fields are coupled due to Maxwell’s equations.

Another reason might be the nonorientability of the spacetime. It implies some
restrictions on vector fields that are defined globally. For example, one cannot
globally define a unit normal vector field on the Mobius strip. One can, however,
define a normal vector field provided that is has at least one zero. Here, this could
imply that the total electric field vanishes at some point. Via Maxwell’s equations
this could then lead to a vanishing magnetic field as well.

Certainly, the vanishing of the electromagnetic field on this nonorientable space-
time would be an interesting subject of future research.

Dirac spinor field

To obtain the correction fields for a Dirac spinor it is useful to let the plane wave
propagate in the z-direction. The cylinder axis is given by a unit vector a. Rotating
a point @ on the cylinder around the cylinder axis a by 180° yields its antipodal
point. Therefore, we have the following identification rule

x~x' =Ry(m)x=2a-v4a—x,

where we have used equation (6.3) with w = m and n = &. The differential I, used
to identify vectors tangent to the cylinder is then given by

I, =2a®a—-1.
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15. Model III: line defect

Since the basis vectors p, qB, and Z are neither strictly normal nor tangent to a
cylinder with arbitrary orientation a we introduce a new set of normal and tangent
basis vectors as follows. For a cylinder whose axis is parallel to the z-axis, the basis
vectors gZ;, and Z are tangent and p normal to the surface. Now, let a be obtained
by rotating 2, that is, there exists some rotation matrix D such that

a=Dz.

Acting with this D on the original basis vectors yields the following vectors

a,(xz) = Dp, (15.6a)
ag(x) = Do, (15.6b)
a=Dz. (15.6¢)

Since they are obtained by a rotation of a right-handed dreibein of basis vectors,
the vectors defined in equations (15.6a)—(15.6¢) also form a right-handed dreibein
of basis vectors. Furthermore, a,(x) is normal to the cylinder, whereas both a,(x)
and a are tangent to the cylinder. Now, the basis vectors are identified via

In the last line a is identified with itself and this reflects the fact that only points
in the plane perpendicular to the cylinder axis are identified. Finally, we have the
following for the normal vector

ay(x) ~ a(x') = —ay(x') x d'(x') = —a,(x') = a,(x). (15.7)
The minus sign is again needed to ensure that the outward pointing normal at x is
identified with the inward pointing normal at «’. It is a peculiarity of the cylindrical
defect because in all the other types of defects the outward pointing normal at x is
identified with the inward pointing normal at @’. The boundary conditions on the
spatial components of the probability current then read

Jo(®) = j, (') = —jp(@') (15.8a)
Jo(m) = jo (@) = jo(T') (15.8b)
Ja(®) = jo(®) = ja(Z') (15.8¢)

The first equations express the boundary conditions in terms of the identified basis
and the second in terms of the coordinate basis at @’. Here, in a slight misuse of
notation, the components of the vector field are defined by

3(@) = jo(®)a,(®) + js(®)ag(2) + ja(2)a

As mentioned, the minus sign in equation (15.8a) ensures that a particle really goes
through the defect.
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15.3. Dirac spinor field

Again, the Dirac spinors at @ and @’ are related by a 4 x 4 matrix S as

P(t, ') = S(x)Y(t,x), (15.9)

and the probability four-current is given by

(@) = () (1, a)y(t ).
The boundary conditions (15.8a)—(15.8¢) then translate into

[S,a, o] =0, (15.10a)
{S,ay-0a} =0, (15.10b)
[S,a-a] =0, (15.10¢)

where all quantities are evaluated at . A unitary matrix satisfying equations
(15.10a)—(15.10c¢) is

Si(x) = [pay(x) - o — qa - aa,(x) - o, (15.11)
where p and ¢ are any real numbers that satisfy
g =1,

The proof consists of an application of equations (B.3) and (B.4) in Appendix B.
Notice the occurrence of [ in the definition of equation (15.11). Since [ is the
representation of the parity operator in spin space (see for instance [45]), we see
that equation (15.9) implies that the Dirac spinor receives a reflection in spin space
when it passes through the defect. Furthermore, we find that Syy(x) satisfies

Sti(x") = Si(z) . (15.12)

If we now assume that the defect’s radius b and linear dimension L is small compared
to the wavelength we can approximate the plane wave spinor by the constant spinor
in equation (12.9). We then obtain the following for the correction spinor

(ap),
(ag), +1(ag),
— (ag), —1i(ag),
where (G4), is the z-coordinate of G, defined in equation (15.6b), and similarly for

the other two components. For the total spinor we thus obtain

(o

Yot (t, ) ~exp (ik - & — iwt) .
o-k ( )

’(/)c(t, iL‘) ~ SITH(m)wPW(t? mdef) ~ (p - iQ) ) (15'13)

0
0
i(p — iq) exp(—iwt) > eXp(<)1¢1) , (15.14)
P1
— exp(ign)
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where (p1, ¢1,21) are the cylindrical polar coordinates with respect to the defect’s
center. Here, we have again used coordinates where the cylinder axis corresponds
to the z-axis.

For many randomly oriented line defects, we see from equation (15.13) that the
correction spinors of the individual defects average to zero. Even when the de-
fects “conspire” to align themselves, so that defects have the same cylinder axis a,
equation (15.14) implies that the correction spinors average to zero.

We conclude this section by discussing the effect of the parity operator in equa-
tion (15.11). Recall that the parity operation transforms the left- and right-handed
components of a Dirac spinor into each other (see, for instance, I11.3 of [46]). Now,
assume that we had discussed a massless Dirac fermion. The Dirac equation would
then have decoupled into two equations for two Weyl spinors; one for the left-handed
Weyl spinor and the other for the right-handed spinor. When passing through the
line defect, the parity operator acts on the (massless) Dirac spinor and exchanges
the left- and right-handed Weyl spinors. Phrased differently, the defect induces an
interaction between the two Weyl spinors. Such an interaction can be described by
an effective Lagrangian with a mass term. Hence, the nonorientable defect would
induce an effective mass for chiral fermions. This was also the result of an explicit
calculation performed in [47], where the defect was a nonorientable wormhole.

Summary

In this chapter the spacetime defect is created by removing the interior of a tube and
then identifying antipodal points on the cylindrical boundary. Unlike the previous
two types of defects, the resulting space is nonorientable.

We found the peculiar result that only a vanishing electromagnetic field could
satisfy the electromagnetic boundary conditions. As discussed at the end of Section
15.2, this could either be due to a too restrictive Ansatz for the correction fields, or
be a result of the nonorientable nature of the spacetime. That this result is different
from the one obtained in footnote 20 of [7] traces back to different identification
rules for the electromagnetic field.

Contrasting with the result for the electromagnetic field, a well defined correction
spinor for a Dirac fermion was found. Intuitively, the reason is that the Dirac
spinor can make an additional “twist” in spin space to compensate for the “flip” in
three-space.
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Summary of Part IV

Building on the work by Bernadotte and Klinkhamer [7], we showed in Part IV how
a foam of spacetime defects affects the propagation properties of electromagnetic
waves and Dirac fermions. The spacetime foam was supposed to be a dilute gas of
spacetime defects. The wavelength of the electromagnetic waves and fermions was
assumed to be much larger then the average defect separation.

Chapter 11 described the general procedure used to construct a single spacetime
defect and the resulting boundary conditions on vector and spinor fields. The idea is
to start with empty Minkowski spacetime and, then, remove an open spatial region
from it. In the next step, points on the resulting boundary are identified. The
geometric shape of the cut-out region and the identification rule determine the type
of spacetime defect. Spacetimes obtained by this surgery do not have a boundary
but have a different topology than the original Minkowski spacetime. We also give
the relation between the identification of points and the transformation properties
for vector fields on the defect. Furthermore, we state the boundary condition a
Dirac spinor field has to satisfy at identified points.

Having discussed the effects of a single defect, Chapter 12 investigates how a
spacetime foam of many such defects affects the propagation of electromagnetic
waves and Dirac spinors. Such a foam can be created by “punctuating” Minkowski
spacetime by many well-separated defects. Since spacetime is assumed to be flat
between the defects, plane waves are solutions to Maxwell’s and Dirac’s equations.
As a plane wave does not satisfy the boundary conditions, correction fields were
introduced. For the electromagnetic field these correction fields turned out to be
given by approximate dipole fields. Hence, a microscopic polarizability and magnetic
moment could be assigned to a single defect. Via the Clausius-Mossotti relation
the macroscopic permittivity and permeability could be calculated, which yield an
index of refraction that depends on the wave vector. In this way, a spacetime foam
corresponds to an ordinary medium. To obtain the macroscopic spinor we averaged
over the spinorial correction fields of many defects.

Chapters 13-15 then discuss three explicit examples of spacetime defects. The
first two defects, discussed in Chapters 13 and 14, are created by removing an open
ball. For the defect in Chapter 13 we identify antipodal points on the boundary. The
electromagnetic correction fields then yielded a dispersion relation that is different
than in empty Minkowski spacetime. The speed of light is reduced compared to its
value in Minkowski spacetime and quartic terms exist as well. However, the spinorial
correction fields average to zero and, hence, only the plane wave solution exists on
macroscopic scales. The dispersion relation for a Dirac spinor is not modified.

For the defect discussed in Chapter 14 the identification rule identified points
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16. Summary of Part IV

that were mirrored at an equatorial plane. The normal to this equatorial plane then
defined a preferred direction. However, when the planes of the individual defects
are not aligned, the dispersion relation for electromagnetic waves equals the one of
Chapter 13. Similarly, we found that the spinorial correction fields averaged to zero,
even when the defects were aligned.

Finally, we discussed a line defect in Chapter 15. Unlike the other two defect
models, the line defect yields a nonorientable spacetime. We again found that the
spinorial correction fields averaged to zero and that only the plane wave spinor
“survives” on large scales. However, we found that the electromagnetic field vanishes
on this spacetime, which would rule out the existence of such a defect in nature. If
this peculiar behavior is indeed due to the non-orientability of this space this would
provide evidence for the conjecture of Wheeler [1] that nonorientable spaces do not
occur in a spacetime foam.
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Summary

In this thesis we investigated relations between nontrivial spacetime topologies
and modified dispersion relations.

In Part II, we reviewed Wheeler’s argument for the existence of a foam-like nature
of spacetime at distances comparable to the Planck length. The idea is that quantum
mechanical fluctuations in the curvature allow spacetime to change its topology.
Spacetime would then constantly tunnel from one topology to another at these
length scales. As a result, spacetime would become foam-like. Since a theory to
describe such tunneling of spacetime is lacking, we investigated if and how spacetimes
with nontrivial topology arise as solutions to Einstein’s field equations of general
relativity.

We investigated two types of classical spacetimes with nontrivial topology in Part
ITI. First, we reviewed known results of spacetimes that contain wormholes in Chap-
ter 4. As was discovered by Morris and Thorne, general relativity admits traversible
wormholes. These are wormholes that can, at least in principle, be crossed by a
particle. To stabilize a wormhole Sushkov and Kim introduced a scalar matter
field. The field’s potential was chosen so that the field acquired kink-like properties.
In particular, the field has a topological charge that cannot change under smooth
deformations. Therefore, the field acts like a “crutch” for the wormhole.

The second type of spacetimes we considered were spacetimes with a topological
defect. A spacetime defect is created with a “surgery” procedure, in which a spatial
region is cut out of spacetime, and then points on the boundary are identified. From
this point of view, a spacetime defect resembles a dislocation of a single atom in an
otherwise regular crystal. We focused on one particular kind of defect in Part III.
This type I defect is created by first removing from space an open ball of radius b. In
the second step, antipodal points on the boundary are identified. As was shown in
Chapter 5, the resulting space M is still a manifold. Furthermore, we showed that
it has the same topological properties as SO(3), the group of rotations in three di-
mensions. In particular, M; contains noncontractible loops, making it topologically
nontrivial. Moreover, we showed that if M is equipped with the Euclidean metric,
the Ricci scalar curvature is singular at the defect. A metric with constant curva-
ture turned out to be smooth instead. Since we wanted the defect to be an isolated
system, the spacetime containing it must become flat far away from the defect. The
idea was to add a matter field to the spacetime. Via Einstein’s equations a matter
field could “iron out” the curvature, at least asymptotically.

This matter field should also respect the topology of the spacetime. For this
reason, we discussed an SO(3)-valued scalar field in Chapter 6. The field’s La-
grangian was taken to be that of a Skyrme model. We concluded Chapter 6 with
the Einstein-Skyrme equations that describe the evolution of the spacetime metric
and the matter field. We first solved the matter field equation in Chapter 7, with
the background metric held fixed. For example, we took the background metric to
be flat. The energy of the field then depended on the winding number and the defect
parameter b. If the winding number is two, then the energy decreases with decreas-
ing defect parameter but remains finite in the limit of vanishing defect parameter.
This limiting energy equals that of an SU(2)-Skyrmion with winding number one.
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However, if the winding number equals one, the field’s energy diverges for vanishing
defect parameter. Furthermore, we found a finite defect parameter that minimized
the energy.

The findings of the nongravitating case essentially carried over to the gravitating
case discussed in Chapter 8. Besides the winding number and the defect parameter,
the mass also depends on the relative strength of Newton’s constant and the Skyrme
constant appearing in the matter Lagrangian. For even winding number, our results
are the same as those of the gravitating SU(2)-Skyrmion discussed in the literature.
In particular, the mass approaches a finite value for vanishing defect parameter.
When the winding number is one, we found that the mass is again minimized for a
finite defect parameter. Now, however, there exists a minimal defect parameter, at
which an event horizon forms. Therefore, no solutions with smaller defect parameter
exist.

The Ricci tensor, governing the geometry of the spacetime, contains a singular
part that has no analogue on the matter side. We showed in Chapter 8 that this
singularity contributes to the mass of the system even though it is not caused by
the matter field. We interpret this spurious mass as the energy needed to create this
specific kind of defect. Clearly, this issue deserves further research.

The Ricci scalar curvature is also singular at the defect. This singularity can be ex-
plained by the singularity theorems presented in Chapter 9. Briefly, these theorems
assert that an asymptotically flat spacetime with nontrivial topology must have a
singularity, provided that the matter energy density is positive. To circumvent these
theorems we discussed an additional term in the matter Lagrangian, which always
gives a negative contribution to the energy density. The resulting field equations,
however, could not be solved thus far. It is, therefore, still open whether general
relativity admits this particular kind of spacetime defect as a solution.

Part IV investigates how microscopic spacetime defects influence the macroscopic
dispersion relations of electromagnetic waves and Dirac fermions. The three types
of defects considered are created by first removing an open region from three-
dimensional space and then identifying points on the boundary. Away from the
defect spacetime remains flat. The spacetime foam is then modeled by many such
well-separated defects.

As shown in Chapter 11, these identifications imply nontrivial boundary condi-
tions on vector and spinor fields. Physically, they ensure that a particle can “pass
through” the defect. Since spacetime is still flat away from the defect, plane waves
are solutions to Maxwell’s equations and the Dirac equation. However, they do not
satisfy the boundary conditions at the defect. Therefore, correction fields have to be
added, such that the total field satisfies the boundary conditions. How to obtain the
modified dispersion relations from these correction fields was the subject of Chapter
12. In the electromagnetic case, the correction fields are, to lowest order, dipole
fields. In this way it is possible to assign a microscopic polarizability to a spacetime
defect. The Clausius-Mossotti relation can then be used to obtain the macroscopic
dielectric constant. The same reasoning leads to a magnetic permeability, and to-
gether the two yield the index of refraction. Since this index of refraction generally
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depends on the wave vector, the result is a dispersion relation for electromagnetic
waves that is different from the one in empty spacetime. In the case of a Dirac
fermion the contributions from each individual defect average to zero. The result is
an unmodified dispersion relation for a Dirac fermion.

As explicit examples, we discussed two types of defects that were created by first
removing an open ball. For the defect discussed in Chapter 13 antipodal points on
the boundary were identified. In Chapter 14 points mirrored at an equatorial plane
were identified instead. We obtained modified dispersion relations for electromag-
netic waves by using the method discussed above. The corrections for the Dirac
spinor averaged to zero for many defects.

Finally, Chapter 15 discussed a defect created by removing the interior of a tube
and then identifying antipodal points on the cylindrical boundary. As with the
previous defect types, we obtained the correction spinor for a Dirac fermion. But
we found that the total electromagnetic field vanishes on this spacetime. If this
effect is due to the nonorientable nature of this defect, it would provide evidence
for Wheeler’s conjecture that nonorientable topologies do not occur in a spacetime
foam. The origin of this “super-selection rule” might be an interesting subject for
future research.
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Further properties of the SO(3)-Skyrme
field

In this appendix to Chapter 6 we prove two properties of the SO(3)-valued scalar
field €. The first, proven in Section A.1, is that the gradient of the hedgehog Ansatz
satisfies the boundary conditions for a vector field at the defect. The second proof,
presented in Section A.2, shows that the integer occurring in the boundary of the
profile function equals the winding number.

Gradient of the Skyrme field at the spherical defect

We now show that the gradient V() automatically satisfies the boundary conditions
for a vector at the defect, provided € is given by the hedgehog Ansatz

and the profile function F' satisfies equation (6.8), which we repeat here for conve-
nience

Fb)=nm, neZ. (A.1)
The components of the gradient are given by
(VQ)' = ¢"9;,Q.

Provided that the (inverse) metric is diagonal and continuous at the defect, that is
gij(az}r:b) = gij(—:r;}r:b), it suffices to show (see equation (5.38))

8TQ(w‘r:b) = —8TQ(—w‘T:b) : (A.2a)
x| _,) = —00Q—x| _,) . (A.2b)
8¢Q(.’B‘T:b) = aqu(—.’B‘T:b) . (AQC)

From equation (6.5) we obtain

0.Q=F(r)[sinF(r)(t®&—1)+cos F(r)z - X],
O =sin F(r)f- X +(1—cos F(r)(0 @&+ 2 ®40),
s =sinF(r)¢- X + (1 —cos F(r)) (¢ @ &+ 1 ® ).
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A. Further properties of the SO(3)-Skyrme field

Using the boundary condition in equation (A.1) for the profile function at the defect,
these equations turn into

0,0 =(-1)"F'(b)i X, (A.3a)
0O =01—-(-1D)"0®i+ix0), (A.3D)
0,0 =[1—(-1)")(¢02+2®¢). (A.3c)

from which we see that equations (A.3a) and (A.3b), evaluated at —a, gain one minus
sign whereas equation (A.3c) remains the same. These are exactly the relative signs
required in Eqs. (A.2a)—(A.2c). Hence, when a hedgehog Ansatz is used for 2, its
gradient V{2 automatically satisfies the boundary conditions for a vector field.

Calculation of the winding number

In calculating the winding number of Q we follow [20]. First, we need the normalized

volume form vol of SO(3). As mentioned on page 48 we parametrize SO(3) by three
angles (9, a, 3). In these coordinates the metric H of SO(3) reads

H = dv? + 4sin?(¥/2)da® + 4sin’(9/2) sin® ad5° . (A.4)
From equation (A.4) we find the corresponding normalized volume as

—

) .
o sin®(1¥/2) sin «

272

1
VHAD A da Adf =

82

A9 Ada AdB,

where v H denotes the square root of the determinant of H. The factor 872 is the
invariant volume of SO(3) [48]. The topological degree of Q is then given by the

integral of the pull-back of vol:

degQ:—/MIQ* (\70\1>

== VH((@), (@), () det (6—01) de! Ada? Ada?. (A.5)

My 8772 afL‘Z

oz
denotes the determinant of the Jacobian of the map €2. Strictly speaking, the degree
is only defined for maps between manifolds of the same dimension and we have a

Here (07) and (2%) are the coordinates of SO(3) and M respectively, and det (‘991->
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(341) dimensional theory. Since we only consider time-independent fields, however,
Q) is effectively a map between three-dimensional manifolds. The minus sign arises
because we “suppress” the time dimension. For time-dependent fields we would
instead have to integrate the time-component of the topological current instead
[49]. Explicitly using the hedgehog Ansatz

U(x) = F(r),
alx) =10,
flx) = ¢,

then yields /H(x) = 4sin?(F(r)/2)sin@ and det (gii) = F'(r). Finally, equa-
tion (A.5) turns out to be

21 T 004 2 F 2) ¢i 9 0
degQ:—/ / / sin”(F(r)/ >Sm9F’(r)dfrd«9d¢:——/ sin?(F/2)dF
0 o Jb 82 T Jn
=nNn.

w (A.6)

In the second integral we used the boundary condition in equation (6.11a). Equa-
tion (A.6) is the final result, the winding number of the field €2 is given by the integer
n occurring in the boundary condition at the defect. Alternatively, the degree of €2
could have been obtained by counting the number of preimages of a generic point
in SO(3) (here n) multiplied with the sign of Jacobian of the map € (here, -1 since
F decreases from 7 to 0) and the additional factor —1 [20].
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Properties of o matrices

This appendix summarizes some relations between a-matrices. These relations are
used to find the correction spinors in Sections 13.3, 14.3, and 15.3.
The three 4 x 4 matrices a are defined by

az(gg).

Here, o denote the three 2 x 2 Pauli matrices, which read explicitly

_ (01 (0 i (1 0
“=\10) %=\i o) 2=\o0o -1 )"

For two three-vectors v and w the following relation holds
voow-o=v wly,+ioc-(vxXw),
where 15 denotes the two-dimensional unit matrix. Using this relation we obtain
vooaw -a=v-wly+ioc- (v xw)| @ 1,. (B.1)
In particular, we have for any unit vector a
(- ) =14.

In case of the standard normalized basis vectors in spherical polar coordinates
(n,0,¢) we have
n-af-a=ioc-p® 1y,

where we have used i x § = gZA> Similar relations are obtained through cyclical
permutation of the basis vectors.
For the commutator and anti-commutator the following relations hold

v-a,w-a] =2ic(v xw)]®1,, (B.2a)
{v-a,w-a} =2v wl,. (B.2b)

From the last relation we obtain
vooaow-a=2v-wl,—w-av-o.
The product for two orthogonal vectors therefore anti-commutes

voow-a=—w-av-o,ifvlw. (B.3)
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Finally, we define the hermitian matrix [ as

_( 1y O
p= ( 0 —1, ) '
This matrix anti-commutes with each of the a-matrices and we have

v-af=—pv-a.
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Electromagnetic correction fields for a line
defect

In this appendix we calculate the electromagnetic correction fields for the line defect
discussed in Chapter 15. The cylinder has radius b and its axis is parallel to the
z-axis. In polar coordinates (p, ¢, z) the boundary conditions for the electric and
magnetic field read

Ey(x) = —E,('), B,(x) = +B,(x') (C.la)
Ey(x) = +Ey(a'), By(®) = —By(x') , (C.1b)
E.(xz) =+E.(2), B.(xz) = —B.(x). (C.1c)
Here, ' is a point on the cylinder with coordinates (b, ¢',2") = (b, + ¢, 2). It is

convenient to switch to spherical polar coordinates (r, 6, ¢) at this point. Hence the
point (b, 8, ¢) is identified with (b, 0, ¢) = (b, 0, ¢+ 7). The transformation of polar
basis vectors to spherical basis vectors is given by

p(x) = sin On(z) + cos 00(x) ,

% = cosOn(xz) — sin 0(x)

Therefore, the boundary conditions for the electric and magnetic field become
E,(x) = (cos* @ —sin*0') E,(x') — 2cos @' sind Ey(x'),
Ey(x) = —(cos® 0 —sin® ') Ey(x') — 2cos @ sind E,(x'),
Bylw) = By(a)
B(x) = —(cos®§ —sin® ') B, (') +2cos ) sinf) By(x'),
By(x) = —(cos® 0’ —sin® @) By(x') + 2 cos @ sin @’ B, (x'),
By(x) = =By (') .

Since we want to perform an expansion in vector spherical harmonics we multiply
the equations for the spherical components by sin # and obtain

E,(x) = (cos? 0 —sin?0) E, (') — 2cos ) sin§ Ey(z'), (C.2a)
sinf Ey(x) = —(cos® 0 —sin?@') sinf Fy(x') — 2cos @ sin*0 E,(x'), (C.2b)
sinf Eg(x) = sin@' Eg(x'), (C.2¢)

By(x) = —(cos® 0 — sin® ) B,,(x') +2cos @ sin@’ By(z'), (C.2d)
sin@ By(x) = (cos® §' — sin?@') sin @ By(x') + 2cos @ sin® @' B, ('), (C.2e)
sinf By(x) = —sin @' By(a') . (C.2f)
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C. Electromagnetic correction fields for a line defect

In this step we also used the fact that § = 6’. To expand the fields we use the
following definition for the vector spherical harmonics [50, 51]

Y'(0,0) =Y, ¥€"0,0)=rVY™, ®"0,¢6)=nx ¥, 0).

Here, n = n(6, ¢) is the radial unit vector and Y;™ = Y;"(6, ¢) denotes a spherical
harmonic function. In terms of this basis the correction fields read

- ot {0+ DA YT + 4L k) B+ )

) d
B¢ — Za}” filkr)® + %ﬁlm [l(l + Dgi(kr)Y " + o (rai(kr)) \I'}”} ,
lym

where o and 3" are the coefficients which need to be determined such that E'*
and B"" satisfy the boundary conditions (C.2a) to (C.2f). The two radial functions
fi(kr) and g;(kr) are linear combinations of spherical Bessel functions [43], whose
precise form will be determined later. Our aim is to expand all components of the
correction fields, and the expressions on the right hand side of the boundary con-
ditions, into spherical harmonics. Matching the coefficients gives a inhomogeneous
linear system of equations for the coefficients ;" and 3;". This system turns out to
have a unique solution.
To obtain the components of E and B¢ in spherical coordinates we use

Y =Y,
sin 0 U = sin 09, Y;™ 0 + 0,Y," 9,
sin 0 @ = sin 09,Y;™ ¢ — 9,Y,™ 0

The derivative with respect to 6 can be written as a sum of two spherical harmonics

sin 0 9y Y™ = _<l+1)\/(l—m)(l+m) v _H\/(l—l— 1 —m)(l+1+m)Ym

20+ 1)(20—1)"" 20+ 1)(20+3) MY

By using these equations we can now express the coefficients of E° as a sum of
spherical harmonics. Explicitly, we obtain

=X E
sin 0F§ = sin 60 - B = > E§"Y;",
L,m

sin0E5 = sin66 - B =Y ES/'Y™,
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with

(r+1
LDy

o _i(l+2)\/(l+1— ;(l+1+m)
(I +
(21

cm —
Enl =

kr (20 +1)(21 + 3) O fra (k)] y — img (kr) 5"

_i(l—l)\/( m)
kr (20 —1)

om (l+1—m)({+1+m) " m "
ol = (I+ 2)\/ 20+ 1)(20 + 3) gl+1(7€7“)ﬁz+1 + Ear [r fu(kr)]ey

(l—m)(l+m) .
- 1>\/(25 Ty ) kA

Similarly, the coefficients of the magnetic field are defined by

)) O, fir(kr)lad,

B;=n-B°=> BY",

sin@B§ =sin 0 - BC =Y Bg'Y;" |

lym
sin @B =sinf¢ - B =Y BSI'Y",
lm
and read
em _(T+1)

[+2 [(I+1-— [+1
B = \/ AT oI —imi(hr)ar

i(l—1) [(I—=m)(I+m) "
_ \/(zz —1)(20+ 1)8’“[7”91—1(“)]@—1’

Biit=—(+ 2)\/<l +él—+773212;r+134; " fskrals %&’ okl

e

The electric and magnetic field of a plane wave with wave vector k = (k, 9, p) are
given by

Epw(w) = eik'm EO s
B (x) =** By .
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C. Electromagnetic correction fields for a line defect

Here, E, and By are constant vectors. Of course, k, Ey, and B are pairwise or-
thogonal but the dreibein (k, Ey, By) can have an arbitrary orientation. To expand
the plane wave vectors into spherical harmonics we use the well known relation [43]

exp(ik - x) = Z47T iy (9, @) ji(kr) Y™ = Zc;”Ylm,

lm lm

where the ¢]"’s are functions of r that depend on k, ¥, and ¢. We then have

EPY = e** (F,, sinf cos ¢ + Eyysinf sing + Ey, cosf) = ZES‘;’mYlm,

lm

sin 0B} = sin 0e'** (Ey, cos O cos ¢ + Ey, cosf sin g — Ey ,sin0)
=D By
Lm

sin 0" = e* (Ey, sinf cos ¢ — Ey,sinf sin ¢) = Z ESTY™
!

To obtain these coefficients explicitly, we note that the trigonometric factors can be
decomposed into spherical harmonics as

4
cos@:\/—ﬂYlO, sin?f = - \/7(\/_3/0 >,
3 3
. 2y 1 . . 2T ~1
sinflcosp = — ?(Y1 -Y ), sinfsing =i ?(Y1 +Y] ),

27 o . [2m _
E(Y;_Y{l)’ cosfsinfsing =i 1—5(Y;+Y2 1).

cosfsinfcosp = —

Next, we use the following equation to rewrite a product of spherical harmonics into
a sum of spherical harmonics

I+L

20+ 1)2L+1) (1 L|X
l L _ m—+M
YYM_/\;L Ar(2A + 1) (0 0‘0)(m M‘erM)Y ’

with ( 75@ ]\Z ‘ 2 ) denoting the Clebsch-Gordan coefficients. This procedure fi-
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nally yields for EP7™

EPvm | (l+m+1)(l—|—m—|—2) Cm+1
" @+ 1)20+3)

(2z—1)(2z+1) -1 5
(—m+D)(I+m+1) (—m)i+m) .
+<\/ (21 +1)(2+3) l+1+\/(21—1)(2z+1)cl_1> -
(l=m+Dl=m+2) .,
- (21 +1)(21 + 3) Cly1

(l+m)l+m—=1) ,. 1\ Eox —1Eo,
N @-n@ry )T

Similar lengthy expressions follow for Egy’™ and EZ)™. The coefficients B} ™,
By™, and BJ)™ are obtained by replacing Ey; with By, in the coefficients of the
electric field.

Finally, note that the trigonometric factors on the right hand sides of equa-
tions (C.2a)—(C.2f) can readily be written as a sum of spherical harmonics

cos?  — sin? 9__M \/7}/207

sin 9(:059_—<\/7Y0 \/7Y0)

After we have expanded the prefactors in equations (C.2a)—(C.2f) into spherical
harmonics as well as the components of the plane wave and the correction fields, we
can write the right hand sides of equations (C.2a)—(C.2f) as a sum of spherical har-
monics. Finally, we use Y,"(¢',¢’) = (—1)"Y,"(0, ¢). For example, equation (C.2a)
yields

B _ JUl=m)(+2—m)+ 24+ m)(+1+m) o
2(—-1)m (20 + 1)(20 + 3)2(21 + 5) itz
(1_2m)(1+2m) tot m
2020 —1)(20+3) ™

(I=1—m)l—m)I+m)l—1+m) .0
' \/ (20 —3)(2l — 1)2(21 + 1) B

U=m+D+m+ D) porm =M+ M) e
- (20 +1)(20 + 3) o T\ Q- D@2+ 1)
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C. Electromagnetic correction fields for a line defect

We now have all ingredients necessary to transform equations (C.2a)—(C.2f) into
an inhomogeneous linear system of equations for the unknown coefficients ;" and
B". Due to equations (C.2b) and (C.2e), the general system involves the 14 un-
knowns ;" 5, "5, ..., )t s, B3, ... 35 and is not easy to solve. But we are mainly
interested in the coefficients with [ = 1 and the system for these can be solved. Con-
sidering the prefactors of Y in equations (C.2a)—(C.2f) gives only five equations for
six coefficients af, a3, a9, 37, 33, 3y (the equation arising from equation (C.2c) is sat-
isfied identically). Including, however, the prefactors of Y gives five additional
equations also involving o and 7. Hence, we have ten equations for eight un-
knowns. Two of these equations are actually linear combinations of the other eight,

once we set the unknown radial functions f;(kr) and g;(kr) to

filkr) = ji(kr),
g(kr) = g/(kr).

Thus, we arrive at the following system

0 A4, 0O 0 0 0 0 0 ol
Agqn 0 Az O 0 0 0 0 af Co
0 0 0 0 0 Bgy, 0 0 ad cs
0 0 0 0 By 0 By 0 ad ¢y
As; 0 0 0 0 0 0 0 a0 || e
Agi 0 Ags 0 0 0 0 0 ol e | (C.3)
0 As 0 Ay O 0 0 0 0 cr
0 0 0 0 B&l 0 B&g 0 g Cg
00 0 0 0 0 Bygy 0 Byy 0 co
0 A1072 0 0 0 0 0 0 C10

Explicitly, the matrix elements read

4 4 161 —4
—Jj1, Ay = ———=Jo, As 3 = ——=J, As1 = —J1,
\/g]1 2! 5\/§j2 > 5\/?72 > \/3]1

4 . 16/3i . 3 161 |
A6,1 = —3]2, A6,3 = 57\/?]2, A10,2 = —4\/;727 A7,4 = 7—\/333

B3,2 = A1,2, B4,3 = B—ﬁjQ, BS,B = A6,37 39,4 = A7,47

where all spherical Bessel functions j,, depend on kr. The remaining matrix elements
are

ALQ =

4 3. (g2lkr) 3 _ 8 .
tna =[5 (20 - Lin) ) B = 1 Galr) = i),

By, = 2 <j0(k:'r) + 2M) . By= —87{/351 (2j1(/<:r) - 3%) |
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The coefficients on the right hand side are given by

1 = —4\/7_T1 (EOmk:v + EOyky) j1<l€T)/]€ )
cr =4 (Eozks + Eoyky) kzj?(kr)/k2 )
cs = —4/miBo. kg (kr)/k,

_ 4\/EBOZ (2jo(kr) — jo(kr) + 3kz%ja(kr) /K?) |

Cy = 3
cs = 4By, g (kr) ,
cg = 4V 31 (Eozky + Eoyky) k,zgjl(kr)/k‘2 ,

44/ 31 o (kr ]
¢ = = (Busks + Boyky) <‘72](W ) _ jg(k'f’)) ,

B T 271 (kr) k2%
Cg = —4\/;32 ( Ior — 3@]2(!97’) y
co = 4V 3miBy. (j(kr) + k2js(kr) /k?) [k,
Cio = —4v 37TE0Z]€Zj2(]{ZT)/k .

We find the coefficients of and 3 by solving equation (C.3). In the same way, we
can obtain a linear system of equations for the coefficients with m = —1 and m = 1.
For m = —1,0,1 and [ up to 3 we obtain

cm pwm cm pwm
Enl - _Enl ) Bnl - _Bnl )
cm pwm cm pwm
Eyl" = —Eg; By = =By, ™,
cm pwm cm pwm
By = —ED™ B = — B

This means that the correction fields for a line defect are the negative of the incoming
plane wave. Hence, the two fields sum to zero, and the total electromagnetic field
vanishes.
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C. Electromagnetic correction fields for a line defect
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