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Abstract. We study the problem of maximizing the lifetime of a sensor network assigned to monitor a
given area. Our main result is a linear time dual approximation algorithm that comes arbitrarily close
to the optimal solution if we additionally allow the sensing ranges to increase by a small factor. The
best previous result is superlinear and has a logarithmic approximation ratio. We also provide the first
proof of the NP completeness of this specific problem.

1 Introduction

Wireless sensor networks have become a prominent research topic in recent years. Their
unique structure and limitations provide new and fascinating challenges. A network consists
of a union of small nodes that are equipped with sensing, communication and processing capa-
bilities. The nodes are usually only battery powered with no means of recharging. Therefore,
energy is a highly limited resource and energy consumption becomes a critical factor in this
context. On the other hand, the sensor nodes themselves are cheap and available in abun-
dance. This fact is exploited to counter their inherent limitations. Wireless sensor networks
can be used for a multitude of monitoring tasks. Thus, there has been a lot of research on
monitoring problems.

In this paper, we consider the question of how to maximize the lifetime of a monitoring
sensor network when each node has a nonrechargeable battery with limited capacity. The
basic idea is to switch on only subsets of nodes at a time while the remaining nodes are
in an energy saving sleep-mode. Our results apply to several variants of this question. In
the target monitoring problem, we are given a set of points in the plane that need to be
monitored, i.e., during the entire lifetime of the network and for every target t, there must
be an active node in its sensing range. In the area monitoring problem, every point in a
designated area must be monitored. During most of this paper we will assume a uniform
fixed sensing range for all the nodes. While this assumption is common in theoretical papers,
it is unrealistic in practice. However, we believe that our techniques can be adapted for
more general shapes of sensing areas. Moreover, sensing ranges do not come into play at all
when we reinterpret the area monitoring problem as the problem to regularly take samples
of point-measurements at a given minimum resolution, i.e., every point of the monitoring
area is at most a given distance away from a sample point. This combination of a simple
geometric model and a realistic interpretation was one of the main motivations for us to look
at this particular problem. Area monitoring was first studied by Berman et al. [1,2] and a
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superlinear algorithm for finding efficient schedules with a logarithmic approximation ratio
was presented. Our main result is a linear time dual approximation algorithm that comes
within a factor (1 − ε) of the optimum if we additionally allow the sensing range to grow
by a factor (1 + δ) for arbitrary constants ε and δ. Our focus is the approximability of this
problem. Thus, we are initially content with a sequential approximation algorithm which can
be later used to evaluate distributed variants.

We give more related work in Section 2, define the model in Section 3 and then present
the approximation algorithm in Section 4 and discuss an adaptation to target monitoring in
Section 5. Since previous NP-hardness results only apply to a variant of the target monitoring
problem without geometric structure, we also provide the missing NP-hardness proof in
Section 6. A conclusion and outlook completes the paper (Section 7).

2 Related Work

There has been a lot of activity in the field of wireless sensor networks over the last years
and, thus, there already exist many contributions dealing with the optimization of energy-
constraint networks designed for specific tasks. Monitoring tasks are a particularly large field
of applications for wireless sensor networks. Thus, determining schedules that maximize the
lifetime of these networks has been the focus of a lot of work.

In [3], Cardei and Wu first classify this problem as area monitoring and target monitoring.
Later in [1], Berman et al. argue that area monitoring can be reduced to target monitoring of
O(n2) targets for a class of sensor models, given a network of n sensors. Thus, it is sufficient
to regard only the latter problem.

Slijepcevic and Potkonjak study the problem of monitoring a set of targets in [4]. Their
approach is based on disjoint sets of sensor nodes each of which covers all of the targets. They
further simplify the problem by assuming that each node has the same initial energy. Thus,
in an optimal solution given these constraints, each node is used in at most one set and each
set is active for the same amount of time. They state that set-k-cover is a generalization of
their problem and provide a heuristic for set-k-cover which they use to solve their problem.
Unfortunately, they do not provide asymptotic runtimes or approximation guarantees.

A more general model is analyzed by Cardei et al. in [5]. Here, sensor nodes are allowed
to be part of more than one set but their initial battery capacity is still assumed to be equal.
They propose two heuristics, one using a linear programming (LP) approach and the other
being a greedy algorithm. The former has a complexity of O(n3p3) with n the number of
sensor nodes and p an upper bound on the number of sets. The latter takes O(dm2n) with n
the number of sensor nodes, m the number of targets and d the minimum number of nodes
covering a target. They do not give approximation guarantees. Cardei et al. also provide a
proof of NP-completeness, reducing from 3-SAT. This proof is subsequently cited by most
works on this subject even though it only applies to the more general case with no geometric
structure.

In [1,2] Berman et al. discuss the problem of area monitoring without enforcing constraints
on the node sets or battery capacities as the previous authors did. They outline an efficient
data structure and algorithm to transform an area monitoring task to a target monitoring
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task. After giving a LP formulation of the problem, they provide an approximation algorithm
using the Garg-Könemann algorithm [6] as basis. Their proposed algorithm has a runtime
complexity of O(1/ε2n log n · T ) with n the number of sensor nodes and T the runtime of an
auxiliary min set cover algorithm. The approximation guarantee is (1 + ε)(1 + 2 log n). They
also provide LP formulations for two additional models, one only requiring partial coverage
of the area and the other taking into account communication costs. Both are solvable with
the same setup as their initial model.

A variation of the previous area monitoring problem is considered by Dhawan et al.
in [7]. They generalize upon the initial model of Berman et al. by introducing variable
sensor radii that are directly linked to their energy consumption over time. They provide an
approximation algorithm along the same line as Berman et al., introducing a new heuristic
for the Garg-Könemann subroutine. Their algorithm has an (1+ε)(1+logm) approximation
guarantee, m being the number of targets to cover and runs in O(1/ε2n log n · T ) with n the
number of sensor nodes and T the unspecified runtime of the subroutine.

The area monitoring problem introduced by Berman et al. was picked up by Gu et al. in
2007 [8]. Even though they only model target monitoring, this approach leads to the same
LP formulation. They extend the model by demanding the existence of a data gathering
tree with appropriate energy costs for communication. They propose a column generation
approach to exactly solve the LP problem and provide an algorithm to generate good initial
solutions. This is a well-known and adequate technique to manage large-scale LP problems
in practice. No runtime guarantees are provided since the problem is still NP-hard.

In 2009, Luo et al. revisited the problem as one example to demonstrate their technique
for solving large LPs [9]. As Gu et al. , they apply a column generation technique as exact
solver. Their main contribution is a new way to generate new columns that yields a speed-
up of more than one order of magnitude. Their model also offers rudimental support for
incorporating connectivity costs into the energy consumption of the sensor nodes. As before,
no theoretical runtime guarantees are given, only simulational values.

3 Model and Problem Definition

Sensor Network Model. This paper considers a sensor network consisting of n nodes {S1, . . . , Sn} =
S. Each node Si, i ∈ {1, . . . , n} consists of a triple (xi, yi, bi), denoting its position in the
plane (xi, yi) and its battery capacity bi. Nodes are placed arbitrarily in the plane. We as-
sume that nodes only consume energy while actively monitoring their surroundings and that
energy consumption is constant over time and independent of small changes in the sensing
range. We further assume that communication and processing costs are proportional to mon-
itoring costs1. All quantities are normalized, i.e. sensor nodes consume one unit of energy
per unit of time and battery capacity is given in units of energy.

Covers. Let A be a connected area with a description complexity linear in |S|. Given this
area A and a sensing range R, a set of sensor nodes C ⊆ S is called a cover, if area A is

1 Thus, we can incorporate communication and processing costs implicitly by using effective monitoring costs that
are a linear combination of all three types of costs.
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contained in the union of disks of radius R centered at each sensor node. In particular, the
set of all sensor nodes S is a cover if any cover exists. The set of all covers is called C.

Problem Definition. Consider a sensor network S, an area A and a sensing range R. What
is the maximum time T area A can be monitored by these sensors before this becomes
impossible due to node failure? In particular, we want to determine a set of m covers C =
{C1, . . . , Cm} ⊆ C and a corresponding set of durations t = {t1, . . . , tm} that maximizes the
lifetime T =

∑m
j=1 tj while respecting the limited battery capacities, i.e.

∑
i:Sj∈Ci

ti ≤ bj ∀ Sj ∈ S. (1)

We refer to this problem as sensor network lifetime problem (SNLP) [1].

A tuple (C, t) is also called a schedule. Applying a schedule implies activating each cover
iteratively for the corresponding duration. If a cover is active, all of its sensor nodes are
active and all other ones are sleeping.

4 Approximation Algorithm

We introduce two techniques for solving simpler variants of the original problem. First, we
consider discretizing sensor positions by snapping them to a grid2. Secondly, we consider
solving subproblems restrained to small areas of the plane. Subsequently, we combine both
variants in our approximation algorithm and prove its approximation guarantee and asymp-
totic runtime.

A problem instance is denoted by a triple (S, A,R) with S the set of sensor nodes, A the
area to be monitored and R the sensing range of each node. A solution of problem (S, A,R)
consists of a tuple (C, t) with C a sequence of covers and t a sequence of corresponding
durations, i.e. ti denotes the duration of cover Ci. A solution is called feasible if condition
(1) is fulfilled. We abbreviate the lifetime of a solution of problem (S, A,R) by T 〈S, A,R〉.
The lifetime of an optimal solution is denoted by Topt〈S, A,R〉, respectively.

Subsequently, we usually omit mentioning area A for brevity. We also normalize sensing
ranges to 1 w.l.o.g. .

4.1 Discretizing Positions

Consider a modified problem with sensor nodes restricted to positions on a grid. Given an
algorithm A that computes f -approximate solutions for this special problem, we can find an
approximation of the original problem with a small computational overhead, if we also allow
the sensing radii to increase by a small amount. Lemma 1 summarizes this claim.

2 A grid is a set of points {(α · i, α · j)|i, j ∈ Z} with α ∈ R the width of the grid.
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Fig. 1. Left. Sensor node P with sensing range 1 covers area A. A grid of width δ/2 is plotted. Right. Sensor node P
has been moved to a grid position and its sensing range increased to 1 + δ/2. It still covers area A.

Algorithm 4.1: Grid-Relaxation
input: parameter δ ∈ [0, 1], sensor nodes S, area A, sensing range R
output: set of covers C, set of corresponding durations t

1. Define a grid of width δ/2.
2. Move every node in S to the closest point on the grid → S̃.
3. Use algorithm A to solve (S̃, 1 + δ/2) → (C, t).
4. Return (C, t).

Lemma 1. Let δ ∈ [0, 1]. Algorithm 4.1 yields a feasible solution of problem (S, 1 + δ) with
lifetime T 〈S, 1 + δ〉 ≥ f · Topt〈S, 1〉. The running time outside algorithm A is O(|S|).

Proof. Correctness : Consider the original problem (S, 1). Moving all nodes in S to the closest

point on a grid of width δ/2 yields S̃. Each node is shifted by at most
√
2
2
· δ/2 < δ/2.

Note that if we additionally increase the sensing range by a factor 1 + δ/2, a cover with
respect to (S, 1) is also a cover with respect to (S̃, 1 + δ/2) as depicted in Figure 1. Thus,
Topt〈S̃, 1 + δ/2〉 ≥ Topt〈S, 1〉 and algorithm A computes a solution of (S̃, 1 + δ/2) with
lifetime T 〈S̃, 1 + δ/2〉 ≥ f · Topt〈S̃, 1 + δ/2〉 ≥ f · Topt〈S, 1〉. A solution to (S̃, 1 + δ/2) is
also a solution to (S, 1 + δ) by the same argument as above for (S, 1) and (S̃, 1 + δ/2). Thus
the solution provided by algorithm A is also a feasible solution for (S, 1 + δ) with lifetime
T 〈S, 1 + δ〉 ≥ f · Topt〈S, 1〉.

Computational Overhead : O(|S|) is the time required to relocate all sensor nodes to their
closest grid point. ut

Note that this approach assumes that small changes in sensing range R have no impact
on the energy consumption of the sensor nodes. Also note that the applied approach of
rounding continuous values to some discrete numbers is a common technique found in many
other approximation schemes.
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4.2 Area Partitioning

Consider the original problem (S, A, 1) and a partition of the plane into axis-aligned squares
of width k. If we confine our problem to a single square T of this partition, we only have to
consider covering area A ∩ T with the subset of sensor nodes in S that lie within T or less
than one sensing range outside.

Given an algorithm A that computes f -approximate solutions for problems restricted to
small squared areas, we can compute a solution for each square of the partition and combine
them to a solution of the whole problem3. Unfortunately, such a solution does not have to
be feasible. It is possible that a sensor node has to be considered for the coverage of more
than one square and, thus, the node could require more than its available capacity to fulfill
its assignments.

Now, consider a set of k partitions T = {T i} with i ∈ {0, . . . , k− 1} = Zk. All partitions
consist of axis-aligned squares of width k. Partition T i+1 is generated from partition T i by
translation to the top and to the right by 1 for i ∈ Zk (see Figure 2). Observe that a sensor
node has to be considered for the coverage of at most 4 squares. But the case of more than
1 square only occurs in at most two partitions as shown in Figure 2.

A solution (Ci, ti) of problem (S, 1) constructed from the solutions of each square of
partition T i, i ∈ Zk as described above, satisfies the following two conditions

T 〈S, 1〉i =
∑

j:Ci
j∈C

i

tij ≥ f · Topt〈S, 1〉, (2)

∀Sn ∈ S :
∑

j:Sn∈Ci
j

tij ≤
{

4 · bn node Sn needed by more than one square,

1 · bn otherwise.
(3)

The lifetime T 〈S, 1〉i of each solution is the sum over the durations tij ∈ ti of its covers

Ci
j ∈ Ci. It is optimal up to a factor of f . Similarly, the active time of each sensor node

Sn ∈ S is the sum over the durations tij ∈ ti of each cover Ci
j ∈ Ci with Sn ∈ Ci

j, i.e. of the
covers containing node Sn. Its active time is at most 4 times its battery capacity.

Now, we can compute k (infeasible) solutions (Ci, ti) of problem (S, 1) with respect to
each partition T i, i ∈ Zk by combining the solutions of algorithm A for each square of the
respective partition as described above. We obtain a feasible solution by concatenating these
solutions and scaling the durations of each cover, i.e. (∪i∈Zk

Ci, c · ∪i∈Zk
ti). Here, c · ∪i∈Zk

ti

denotes a union of all ti with each element tij ∈ ti multiplied by c. Lemma 2 summarizes this
claim.

Lemma 2. Let k = d10/εe with ε ∈ (0, 1]. Given an (infeasible) solution (Ci, ti) of problem
(S, 1) with respect to each partition T i, i ∈ Zk that has lifetime T 〈S, 1〉i ≥ f · Topt〈S, 1〉, a
union of the solutions of all partitions as defined above and with c = (1 − ε)/k is a feasible
solution of problem (S, 1) with lifetime T 〈S, 1〉 ≥ f · (1− ε) · Topt〈S, 1〉.
3 The schedules of all squares can be run concurrently and independently. A node is active if the schedule of any

square requires it to be active.
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Fig. 2. Left. One partition T is depicted. Sensor node P has to be considered for the coverage of 4 squares, i.e. the
circle around P with radius equal to one sensing range overlaps 4 squares. Right. Three subsequent partitions T i−1,
T i and T i+1 are shown. In partitions T i−1 and T i node P overlaps 4 squares and Q only one. In partition T i+1 P
overlaps only one square and Q two squares.

Proof. Lifetime: The lifetime T 〈S, 1〉 of the union is the sum of the lifetimes T 〈S, 1〉i for
each partition T i, scaled by (1− ε)/k. This sum is bounded by

T 〈S, 1〉 =
1− ε
k

∑
i∈Zk

T 〈S, 1〉i ≥ 1− ε
k

∑
i∈Zk

f · Topt〈S, 1〉 = f · (1− ε) · Topt〈S, 1〉

as claimed in the lemma. The inequality follows by Equation (2).
Feasibility : Each sensor node Sn ∈ S is active for the sum of the durations tij of all covers

Ci
j ∈ Ci with Sn ∈ Ci

j over all partitions T i with i ∈ Zk. This sum is bounded by

1− ε
k

∑
i∈Zk

∑
j:Sn∈Ci

j

tij ≤
1− ε
k

(
(k − 2) · 1 + 2 · 4

)
· bn ≤ bn.

The first inequality follows by Equation (3) and the fact that a sensor node is only required
for the coverage of more than one square in at most two partitions. The second inequality
follows due to our choice of k. Thus, the active time of each sensor nodes Sn is bound by bn
and, therefore, the solution is feasible. ut

A similar approach, using shifting partitions to devise a polynomial approximation scheme
for numerous NP-complete geometric covering and packing problems, has first been proposed
by Hochbaum and Maas in [10].

4.3 Algorithm

After introducing these two techniques, we present our approximation algorithm. The general
approach is also depicted by Algorithm 4.3. We assume the availability of an algorithmA that
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computes f -approximate solutions for problem instances (S, 1) confined to a small squared
area and with sensor nodes restricted to positions on a grid with a runtime complexity of
gA(|S|). Note that this algorithm combines the restrictions of both algorithms assumed in
the previous sections.

Now, consider a general problem (S, 1). We construct a feasible solution (C, t) similar to
Section 4.2 by using algorithm A to compute solutions for squares of partitions of the plane
and combining them. But since algorithm A also requires the sensor nodes to lie on a grid,
we can only compute these solutions, if we allow the sensing radii to grow by a small amount,
similar to Section 4.1. The whole algorithm yields a solution that comes arbitrarily close to
the optimal solution if we additionally allow the sensing ranges to increase by a small factor
and runs in pseudo-linear time. Theorem 1 summarizes these claims.

Algorithm 4.3: Approximation Algorithm
input: parameter δ ∈ [0, 1], ε ∈ (0, 1], sensor nodes S, area A, sensing range R
output: set of covers C, set of corresponding durations t

1. Define a grid of width δ/2.
2. Move every node in S to the closest point on the grid → S̃.
3. Define k partitions T i of the plane into axis-aligned squares of width k with T i+1

generated from partition T i by translation to the top and to the right by 1 for i ∈ Zk.
4. For each partition T i,

– use algorithm A to solve (S̃, 1 + δ/2) confined to each square of T i,
– combine these partial solutions → (Ci, ti)

5. Unite the k solutions to (C, t) = (∪i∈Zk
Ci, (1− ε)/k · ∪i∈Zk

ti).
6. Return (C, t).

Theorem 1. Let δ ∈ [0, 1] and k = d10/εe with ε ∈ (0, 1]. Algorithm 4.3 computes a feasible
solution (C, t) of problem (S, 1 + δ) with lifetime

T 〈S, 1 + δ〉 ≥ (1− ε) · f · Topt〈S, 1〉.

The runtime complexity of Algorithm 4.3 is pseudo-polynomially bounded by

O
(
|S|+ ε|S| · gA(O(1/δ2ε2))

)
= O(|S|)

if area A can be fully contained in a number of squares of width k linear in |S|.

Proof. Feasibility : The feasibility of solution (C, t) follows directly from the proof of correct-
ness in Lemma 1 and the proof of feasibility in Lemma 2.

Approximation Guarantee: By applying a grid discretization, we obtain an approximation
guarantee T 〈S, 1 + δ〉 ≥ f · Topt〈S, 1〉 for the solution of each square according to Lemma 1.
As stated by Equation (2), the same approximation guarantee holds for each solution (Ci, ti)
of (S, 1 + δ) with (Ci, ti) obtained by combining the solutions of all squares of partition
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T i, i ∈ Zk. Combining these k solutions as described above, yields an additional factor
(1− ε) in the approximation guarantee according to Lemma 2. The claimed lifetime follows.

Runtime: According to Lemma 1, there is an additive overhead of O(|S|) when using
a grid discretization. The solution for each square can be found in gA(O(1/δ2ε2)) since each
square only contains O(1/δ2ε2) distinct grid points and, thus, at most as many sensor nodes.
The number of sensor nodes to be considered for covering each square is higher by at most
a constant factor since only nodes closer to the square than one sensing range have to be
considered in addition. There are k partitions and area A is contained in at most O(ε2|S|)
squares. Thus, a solution for k ·O(ε2|S|) = O(ε|S|) squares has to be found.

The maximum number of squares can be assessed by regarding the minimum requirements
for covering area A. A disk cover requires at least 2/

√
27 disks of radius 1 to cover the

unit square [11]. Thus, we need 2k2/
√

27 sensor nodes to cover a square of width k. If
a problem contains |S| nodes, the number of squares that can be covered is bounded by
2|S|k2/

√
27 = O(ε2|S|). ut

Note that if δ, ε are constant, the input of algorithm A is of constant size. Thus, any
implementation of algorithm A would only contribute a constant factor to the runtime of
Algorithm 4.3 with respect to |S|. Naturally, one would try to use an efficient implementation
or one with a good approximation ratio f . For example, even an exact solver could be used.
Also note that we did not optimize the numerical constants of the grid width and the number
of partitions.

5 Adaptation to Target Monitoring

Berman et al. stated in [1,2] that the area monitoring problem can be reduced to a target
monitoring problem for convex sensing ranges. Thus, many subsequent studies only concern
themselves with target monitoring. Our approximation algorithm was originally designed for
the problem of monitoring an arbitrary area, but it can be easily adapted to monitor a set
of discrete targets.

In principle, Algorithm 4.3 is already sufficient for this task. We only have to replace
algorithm A by another one that solves the target monitoring problem on a squared area
with sensor nodes placed on a grid. However, the runtime of this algorithm also depends on
the number of targets. This can be resolved by also discretizing target positions. Multiple
targets occupying the same position can be regarded as one for the purpose of covering. If
we relocate them to the same grid positions as the sensor nodes, there are at most O(1/δ2ε2)
targets in each square. Thus, the runtime no longer depends on the number of targets.

Note that for the proofs to remain correct, Topt〈S, 1−δ〉 has to be replaced by Topt〈S, 1−
2δ〉 since now both, sensor nodes and targets, are relocated.

6 Proof of NP-Completeness

In this section, we provide a proof of NP-completeness of SNLP by exploiting certain prop-
erties of linear programs (LPs). We are convinced that this novel proof is necessary since
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the currently accepted proof by Cardei et al. in [5] does not take into account the geometric
structure of the problem. By this omission a much more difficult problem was considered.

We first introduce a geometric problem and prove its NP-completeness. Then, we formu-
late SNLP as linear program and prove that it is equally hard to solve than a related LP
problem. Finally, we show that the related problem and the geometric problem are equivalent.

Theorem 2. The Minimum Dominating Set (MDS) problem on unit disk graphs is NP-hard
[12]. The same is true for weighted MDS on unit disk graphs.

Lemma 3. Given a unit disk graph G = (V,E) and a unit disk embedding of V , a set D ⊆ V
is a dominating set iff the the set of unit disks centered at D is a cover of V .

Proof. First, let the set of unit disks centered at D be a cover of V . Thus, there is at least
one node d ∈ D for each node v ∈ V with a distance of at most 1. By definition of the unit
disk graph, there exist an edge (d, v) or d ≡ v. Therefore, D is a dominating set of G.

Now, let D be a dominating set of G. Thus, every node v ∈ V is either in D or neighboring
to a node d ∈ D. By definition of the unit disk graph, the distance between v and d is at
most 1. Therefore, the set of unit disks centered at D covers N . ut

Definition 1. Minimum-Cost Geometric Disc Coverage (MCGDC). Given a set of points
P in the plane and a set of unit disks U with associated costs c1,...,|U |. Can all points in P be
covered by a subset D ⊆ U with total cost

∑
i∈D ci ≤ C?

Theorem 3. MCGDC is NP-complete.

Proof. NP-hardness is proved by reduction of the decision variant of weighted MDS. Nodes
V of the MDS input graph G = (V,E) become centers of the unit disks U in MCGDC and
are also used as point set P . Then, the geometric cover of U computed by MCGDC is also a
dominating set of V , as shown by Lemma 3. Since costs in MCGDC correspond to weights
in MDS, a solution of MCGDC is also a solution of the decision variant of weighted MDS.
NP-completeness follows trivially. ut

Definition 2. Linear Programs. SNLP can be formulated as linear program Topt〈S, 1〉 =
max{1 · t|Mt ≤ b} with 1 = (1, . . . , 1) ∈ R|S| and Mi,j = 1 iff Si ∈ Cj, Mi,j = 0 otherwise.
Note that each column of matrix M corresponds to a cover Cj ∈ C.

The dual linear program min{b w|MTw ≥ 1} can be read as finding minimal costs for
all sensor nodes so that the cost of each cover is at least 1. We interpret the elements of
w = (w1, . . . , w|S|) as costs for using the respective nodes, i.e. wi is the cost of node Si ∈ S.

Definition 3. Separation Problem. Given an LP, verify whether a candidate solution meets
all constraints of the LP, and if not, provide a counter-example.

Theorem 4. The separation problem associated with an LP is polynomially solvable iff the
corresponding LP is polynomially solvable [13].

Lemma 4. The separation problem associated with the dual of SNLP is equivalent to MCGDC.
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Proof. The separation problem associated with the dual of SNLP can be formulated as
follows: Given a candidate solution consisting of sensor nodes S and associated weights w,
decide whether there exists a cover of area A using nodes with a total cost of less than 1. If
true, the candidate solution does not fulfill all constraints. Since covering an area is equal
to covering a set of points [1,2], this problem is equal to MCGDC with costs ci = wi and
C = 1. ut

Theorem 5. The Sensor Network Lifetime Problem (SNLP) is NP-complete.

Proof. Theorem 3 states that MCGDC is NP-complete. Since MCGDC and the separation
problem associated with the dual of SNLP are equivalent (Lemma 4), the latter is also NP-
complete. Thus, the dual of SNLP is also NP-complete by Theorem 4. Since a solution of
the dual problem of an LP can be transformed into a solution of the LP in polynomial time
[14], SNLP is NP-complete. ut

7 Conclusion

Even though our theoretical results are very strong, they only mark a first step. There are still
many ways to enhance the underlying model, e.g. considering non-uniform sensing ranges is
of great interest to us. Thus, we are currently looking into basing our algorithm more firmly
in the field of computational geometry. By proving its approximation and runtime guarantees
for general low-dimensional metrics, the inclusion of obstacles and variable sensing ranges
into our model should become easy. Also, a generalization to higher dimensions and angular
dependent sensor ranges would be possible, as well removing of the dependence on squared
partitions which would provide more flexibility.

Furthermore, we intend to implement and to experimentally evaluate our approximation
algorithm using an exact solver based on column generation as algorithm A for computing
the small subproblems. This task will most likely encompass several interesting aspects of
the field of algorithm engineering.

Since we are considering a sensor network, a distributed implementation of our algorithm
is a natural extension. Its structure is already well-suited for a parallel implementation with
the partition of the considered area into independent squares. This could be taken even fur-
ther, e.g. with all sensor nodes organizing themselves independently into these partitions.
Thus, we are also interested in looking into distributed variants of our approximation algo-
rithm.

Finally, we hope that our novel proof of NP-completeness will be spread in the community
and, henceforth, be referenced as correct proof for the area monitoring problem (SNLP).

Acknowledgements. We would like to thank Sanjeev Arora and David Steurer for provid-
ing key ideas of this work and the enlightening insight into approximation algorithms and
computational geometry they provided.
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