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Abstract

The simulation of realistic final states is an indispensable tool to extract any conclusion
from experimental data obtained at high-energy collider experiments. More precise
theoretical predictions will be needed to accompany the ever increasing precision of
measurements reported by experiments.

This thesis focuses on the perturbative QCD part involved in these simulations, partic-
ularly parton showers, higher order QCD corrections, and their consistent combination.
A new parton shower algorithm based on subtraction dipoles is studied theoretically,
with emphasis on the proper inclusion of effects due to soft gluon radiation, and numeri-
cal results from an implementation of this algorithm in the Monte Carlo event generator
Herwig++ are reported.

In order to perform the combination of parton showers and higher order QCD correc-
tions, a theoretical handle is required to calculate expansions of parton shower predic-
tions in the strong coupling constant. Such a formalism is introduced on very general
grounds and used to set the theoretical grounds for combining parton showers and QCD
corrections at next-to leading (NLO) and next-to-next-to leading order (NNLO) in per-
turbation theory. A program setting up NLO calculations matched to the dipole-type
parton shower in an automatic way has been developed, and numerical results are re-
ported along these obtained from showering events described at leading order.
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Zusammenfassung

Die Simulation realisitischer Endzustände stellt ein unverzichtbares Hilfsmittel dar, um
Daten zu interpretieren, die mit Experimenten an Hochenergie-Kollidern gemessen wer-
den. Hier sind präzisere theoretische Vorhersagen nötig, die den immer genauer werden-
den Messungen gegenüber gestellt werden können.

Diese Arbeit beschäftigt sich mit dem Teil der Simulationen, der durch perturbative
Rechnungen in QCD bestimmt ist. Speziell werden hier Partonkaskaden, Korrekturen
höherer Ordnung und deren konsistente Kombination betrachtet. Theoretische Eigen-
schaften eines neuen Partonkaskaden-Algorithmus, basierend auf Subtraktions-Dipolen,
werden insbesondere bezüglich der korrekten Wiedergabe von Effekten bedingt durch
vielfache Abstrahlung weicher Gluonen untersucht. Numerische Resultate gewonnen
aus einer Implementierung dieses Algorithmus’ in dem Ereignis-Generator Herwig++
werden diskutiert.

Für die Kombination von Partonkaskaden und Korrekturen höherer Ordnung ist ein
theoretischer Formalismus nötig, der es erlaubt, Vorhersagen einer Partonkaskade sys-
tematisch in der starken Kopplungs-Konstante zu entwickeln. Solch ein Formalismus
wird in einer allgemeinen Art und Weise abgeleitet und benutzt um die theoretische
Basis der Kombination von Partonkaskaden und Korrekturen in nächst-führender Ord-
nung (NLO) und nächst-nächst-führender Ordnung (NNLO) zu berechnen. Im Rahmen
dieser Arbeit wurde zusätzlich zur Entwicklung der Dipole-Kaskade eine Monte Carlo
Simulation entwickelt, die Rechnungen in NLO automatisch mit dieser Partonkaskade
kombiniert. Diese verbesserte Simulation wird mit der Beschreibung von Ereignissen in
führender Ordnung verglichen.
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1 Introduction

The understanding of the fundamental building blocks of nature and the interactions
between them has constantly increased in the last decade. This knowledge – mainly
accumulated at high energy particle collider experiments – has been assembled in the
standard model (SM) of particle physics, comprising on the one hand a theory of elec-
tromagnetic and weak interactions being treated on equal footing.1 On the other hand,
the theory of strong interactions, which is by now accepted to be modelled by quantum
chromodynamics (QCD) is included, but no success has so far been made in consistently
including a quantum theory of gravity.

The SM, describing thus three of the fundamental forces of nature, is nowadays estab-
lished experimentally in a very precise way. Only one degree of freedom, the physical
Higgs boson, has so far not been discovered. This leaves as a yet open question the
mechanism of electroweak symmetry breaking. Further experimental findings, in par-
ticular the very existence of dark matter, and strictly also including the non-vanishing
neutrino masses, show that the SM is to some extent incomplete. From a theoretical
point of view, the SM may be regarded as an effective low-energy theory of a more fun-
damental model. Besides the search for the missing Higgs boson (including the question
whether this is the Higgs boson as assumed existing in the SM), it is the quest for any
‘new physics’ beyond the SM, which mainly triggered the development and build of the
Large Hadron Collider (LHC), by now in operation at CERN.

Gaining more insight into the dynamics of QCD in this context appears not to be a
major question raised, though it is of utmost importance in particular for phenomenology
at hadron colliders: QCD is the force confining the fundamental quarks in hadrons and
its influence is thus not avoidable in scattering processes involving hadrons. It needs to
be understood in detail to draw any conclusion from measurements performed at the

1The electroweak interactions in the standard model should not be regarded ‘unified’, as sometimes
stated. The correct term is that the electromagnetic and weak forces mix.
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1 Introduction

LHC experiments. Being of interest on its own as well, QCD dynamics has been explored
extensively at the LEP and HERA colliders, just to name two examples.

Predictions from QCD can be calculated by means of a perturbative expansion in
terms of its fundamental degrees of freedom – quarks and gluons, commonly referred to
as partons. Owing to the fact that QCD becomes strongly coupled at small momen-
tum transfers, partons produced in a scattering process will fragment into the observed
hadrons. The dynamics of this hadronization process is calculable from a perturbative
expansion only to some extent. The remaining part is subject to phenomenological mod-
els in place of the yet not analytically known behaviour of QCD at small energy scales.
Though perturbative calculations can be mapped to a certain class of observables by
identifying a ‘jet’ of hadrons as originating from a parton, a full simulation of realistic
final states as encountered in the experiments is mandatory to compare theoretical pre-
dictions to observed data. It is this need, which is common to all high energy physics
collider experiments, may their purpose be just the study of QCD dynamics or the search
for physics beyond the SM.

Simulations of this type, being implemented by using Monte Carlo methods and aiming
at the prediction of events with a frequency as observed in nature, have been provided
since more than 30 years. Since the first attempts, many insights have been gained into
the nature of multiple parton emission initiating the fragmentation process and non-
perturbative models modelling the last stage of hadron formation in a jet. A shortcoming
of these simulations is that almost all processes described are still modelled at the leading
order of QCD perturbation theory, though higher-order radiative corrections are by now
available from many collaborations. This includes recent approaches to fully automate
the calculation of these corrections, yet only for few processes a consistent inclusion of
these into realistic simulations has so far been achieved. One may raise the question of
an automated combination here as well.

Maintaining the correct description of multiple parton emission, or ‘parton showers’,
while easing the combination with higher order QCD corrections, is a further topic to
be considered in this context. Taking these two questions as a starting point, the work
at hand is actually structured in a two-fold way, dealing with new approaches to parton
showers on the one hand, and the inclusion of radiative corrections, on the other hand.
More precisely, the outline of this thesis is as follows:

In chapter 2 the basics of QCD are revisited, while chapter 3 reviews the treatment of
higher order QCD corrections, the resummation of leading contributions to all orders,
and the combination of both types of calculations. This forms the analytical counterpart
of combining parton showers and radiative corrections in a Monte Carlo simulation.

2



Chapter 4 develops a calculational formalism for predictions as expected from parton
shower simulations, forming not only the input to derive and cross-check analytically
properties of parton showers against expectations from perturbative calculations, but
especially to calculate fixed-order expansions. The knowledge of the latter is mandatory
to derive the consistent combination, or the matching, of parton showers and radiative
corrections.

In chapter 5, a new parton shower algorithm is introduced. This algorithm is much
better suited for including higher order QCD corrections and shown to still correctly
predict the leading effects of multiple parton emission to all orders. In chapter 6, use
is made of the formalism set up in chapter 4 to calculate the conditions to be met
when combining parton showers with next-to-leading order (NLO) calculations, and
investigates the same structures at next-to-next-to-leading order (NNLO).

Having set the scene on a theoretical ground, chapter 7 introduces Monte Carlo meth-
ods developed to automate the matching to NLO and to allow for more flexibility even
in the parton shower simulation itself.

Chapter 8 focuses on completely documenting the parton shower algorithm as used in
practise, including all technical details. Chapter 9 shares this motivation, now focusing
on matching. Numerical results as obtained from the implementation of these algorithms
are discussed in chapter 10, before turning to a summary and outlook on further possible
work in chapter 11. Three appendices are devoted to short documentations of the
software libraries constituting the core of the developed Monte Carlo simulation code,
and one appendix documents the validation of these codes.
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2 Quantum Chromodynamics

Based on the study of non-abelian gauge theories by Yang and Mills [1], and the ground-
breaking work of Callan, Gross, Wilczek and Politzer, [2, 3] and many others, quantum
chromodynamics (QCD) is by now accepted to be the theory of strong interactions.
Though not exactly solvable except numerically on a discrete space-time lattice, pre-
dictions for collider experiments can be calculated by a perturbative expansion in the
strong coupling. This is possible in the high-energy regime where the theory becomes
asymptotically free, i.e. weekly coupled. These predictions, which in some cases have
been calculated up to the fourth order in perturbation theory, are confirmed by exper-
iments with amazingly high precision. In this chapter we will shortly review the basics
of QCD.

QCD is a non-abelian gauge theory with (in general) gauge group SU(N), where N is
the number of charges to which the interaction couples, usually referred to as ‘colours’.
Experiments determined that N = 3. The QCD gauge field is a connection valued in
the Lie algebra su(N),

Aµ = Aaµt
a , Dµ = ∂µ + igAµ , (2.1)

where we introduced the respective covariant derivative Dµ. The classical Lagrangian is
given by

L = −1

4
Tr[FµνF

µν ] +

nf
∑

i=1

ψi(i 6 D −mi)ψi . (2.2)

The quark fields ψi, describing coloured fermions, transform in the fundamental rep-
resentation. The quanta of the gauge field are called gluons. The field strength is
calculated as the curvature associated to the gauge field connection,

Fµν = F a
µνt

a =
−i
g

[Dµ, Dν ] = ∂µAν − ∂νAµ + ig[Aµ, Aν ] . (2.3)

5



2 Quantum Chromodynamics

The quantisation is usually carried out within the framework of the Fadeev-Popov pro-
cedure, where the classical Lagrangian has to be supplemented with a gauge-fixing term
and the additional ghost contribution.1

Calculation of the renormalisation group evolution of the QCD coupling reveals that
QCD is – as opposed to QED – asymptotically free: the running coupling αs, with

µ2 ∂

∂µ2
αs(µ

2) = β(αs(µ
2)) , (2.4)

becomes large at small energy scales µ and small in the high-energy regime. Interpreting
the quarks as constituents of hadrons, it is this finding which enables the calculation of
high-energy scatterings of coloured particles by means of perturbation theory.

Scattering processes of hadrons in the high energy regime are seen as taking place
through scattering of the coloured constituents, called partons, accompanied with cer-
tain momentum distributions of these constituents inside the hadron. Coloured particles
produced in a scattering are assumed to evolve to lower energy scales by successive ra-
diation until eventually the confinement of partons in colour-singlet hadrons takes place
in the strongly coupled regime. The experimental manifestation of this phenomenon is
the observation of jets, collimated sets of hadrons moving in roughly the same direction.
In order to identify a jet originating from a parton, so-called infrared safe definitions of
a jet resolution are mandatory. Infrared safety is the in-sensitivity of these observables
to addition or removal of particles arbitrarily collinear to another particle or of arbitrary
small energy. The momentum distributions of partons inside hadrons, parton distribu-
tion functions, can to some extent be calculated perturbatively as well. More precisely,
their dependence on a typical energy scale of the hard scattering process is driven by
the very same phenomenon of multiple parton emission as leading to jet formation. This
reveals that a considerable amount of a hadron’s momentum is indeed being carried by
gluons.

Jet algorithms and the measurement of input momentum distributions to be evolved
according to the perturbatively calculable differential equation enable a comparison of
experimental data and parton level predictions. The parton level predictions do however
not correspond to realistic final states and a large part of QCD dynamics in the low
energy regime can only be taken into account by phenomenological models turning a
parton level final state into the observed hadronic final state. These models will not
be discussed here. A prerequisite is however having evolved a parton involved in a
high energy scattering to a scale where perturbation theory ceases to make sense. This
evolution is modelled through multiple parton emission, or ‘parton showers’, in current
Monte Carlo simulations.

1For axial gauges, n · A = 0, the ghost fields decouple, which is an advantage when in particular
considering singular limits as discussed in the next chapter, though loop calculations become more
involved.
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3 QCD in Practise

3.1 Overview

In this introductory chapter, practical aspects of perturbative calculations in QCD are
reviewed. In particular, higher order corrections at a fixed order, as well as the identi-
fication of leading contributions and their resummation to all orders – if possible – are
discussed.

The impact of the latter corrections can be carried out analytically using well estab-
lished frameworks, for a review see [4]. Most importantly for the work at hand, these
corrections can be turned into a Monte Carlo simulation, forming the basis of parton
shower event generator. Here, the contributions are modelled as multiple soft and/or
collinear parton emission. The resulting final state eventually provides the input for
non-perturbative models of hadronization as the next step to a fully realistic model of
final states as encountered in collider experiments.

3.2 Higher Order Corrections

Owing to the fact that QCD becomes strongly coupled at small momentum transfers,
and that the strong coupling is still of O(0.1) at scales encountered in high energy
physics experiments, higher order QCD corrections typically do not turn out to be
small. Neglected higher order corrections constitute an uncertainty on the theoretical
prediction calculated perturbatively.

7



3 QCD in Practise

Though unknown until actually calculated, their size may be estimated from the
dependence of the lower order calculation on the unphysical renormalisation and fac-
torisation scales.

These scales enter in the process of renormalisation of fundamental parameters and
parton distribution functions (PDF), needed to make sense of divergences encountered
in a fixed-order calculation by an infinite redefinition of these quantities, regarding un-
renormalised quantities as unobserved. Renormalisation of fundamental parameters is
concerned with divergences of ultraviolet origin, while renormalisation of PDFs (or frag-
mentation functions for predictions for processes with identified final state hadrons) deals
with divergences of infrared origin, particularly stemming from collinear divergences.

We shall here focus on infrared divergences, which turn out to be the most complicated
thing to handle when calculating a perturbative prediction for differential cross sections
as observed in experiment. The statement that physically observable quantities are
finite, provided one looks at a sufficiently inclusive observable is at the heart of the
KLN theorem, [5]. This justifies the procedure of factoring collinear divergences into
parton distributions and is a major prerequisite for the method of subtraction to work
for predictions of differential quantities at higher orders. This method will be discussed
in more detail, particularly focusing on next-to-leading order corrections, in the next
section.

The obstacle in calculating predictions for differential cross sections lies in the fact
that perturbative contributions at the same order enter with a different phase space
dependence. Particularly, Feynman diagrams with loops, to which we refer as virtual
corrections, and diagrams corresponding to parton emission will have to be considered.
We will call the latter real emission contributions. Both classes of diagrams are separately
infrared divergent. The infrared divergences of virtual corrections can be extracted in
dimensional regularisation as poles in the in the parameter ǫ, being connected to the
space-time dimensionality as d = 4 − 2ǫ upon expanding near ǫ = 0. The infrared
divergences in real emission contributions are hidden in the kinematic dependence of the
amplitude becoming singular whenever one or more emitted partons become soft and
or collinear to another parton1. They can be made explicit as poles in ǫ by analytical
integration of the resulting differential cross section over the phase space measure in d
dimensions and will then cancel the corresponding poles of the virtual contributions.
This cancellation will be incomplete for poles of collinear origin which appear whenever
an external parton’s momentum is not integrated over. This is precisely the case of
incoming or outgoing, identified partons, and the divergences are dealt with by means
of redefining PDFs and/or fragmentation functions.

The procedure outlined above then leads to finite predictions for inclusive cross sec-
tions. In practise, one is however interested in less inclusive quantities: Differential dis-
tributions may be used to separate signal from background contributions by kinematic

1Collinear divergences are present only for massless partons. We will however mostly be working in
the so-called chiral limit where quarks are treated as massless.
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3.3 Differential Cross Sections at NLO

cuts, or to extract the value of masses and couplings, which are otherwise inaccessible
from inclusive measurements. In addition, differential distributions form the key input
to fully exclusive Monte Carlo simulations of realistic final states as observed in experi-
ment. A framework to calculate higher order corrections to fully differential quantities
in a flexible way is therefore mandatory.

3.3 Differential Cross Sections at NLO

At NLO, an inclusive observable 〈F〉 defined for a 2→ n process is calculated as

〈F〉NLO =

∫

n

dσB(pn)F(pn) (3.1)

+

∫

n

dσV (pn)F(pn) +

∫ 1

0

dz

∫

n

dσB(pCn (z))F(pCn (z))P (z)

+

∫

n+1

dσR(qn+1)F(qn+1) ,

where dσB is the leading order (Born) differential cross section, dσV is the one-loop
virtual contribution, and dσR refers to the real emission contribution. In dimensional
regularisation, the renormalised one-loop correction will exhibit poles in 1/ǫ2 and 1/ǫ due
to the loop momentum becoming soft, or two neighbouring loop propagators becoming
simultaneously on-shell – which is the case for the loop momentum becoming collinear
to a (massless) external line. P (z) denotes the counter term originating from factoring
the collinear divergences of incoming or identified partons into parton distribution or
fragmentation functions, respectively. This contribution is divergent as 1/ǫ, and pC

denotes a phase space point with the corresponding incoming or identified parton’s
momentum rescaled by the convolution variable z. The correction to 〈F〉 is finite, if its
definition is infrared safe, i.e.

F(qn+1)→ F(pn) , (3.2)

whenever a parton’s momentum becomes ‘soft’, qk → λqk along with λ → 0, in case of
which the ‘soft’ parton is just removed from the set qn+1, or whenever two partons become
collinear to each other, in case of which the corresponding momenta are combined into a
common ‘emitter’ momentum. The real emission contribution is singular in any of these
unresolved limits, and the divergences are converted into poles in ǫ upon carrying out
the phase space integration. The KLN theorem then guarantees that all of the ǫ poles
cancel in the final expression.

If the integrands were all finite, then the integrals could be performed by Monte Carlo
methods, and each point generated to evaluate the integral could have been used to
book a histogram for the differential version of the observable F . Indeed, this method

9
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need not make any reference to a particular observable F , but could have been used for
arbitrary observables. The observation that the divergences present in the real emission
contribution do factor in a process independent way is at the heart of the subtraction
method to precisely achieve finiteness of all integrands. The factorisation properties can
be used to construct an auxiliary cross section which subtracts the divergences present
in dσR, and the analytic integration over the unresolved parton’s momentum will reveal
exactly those ǫ poles present in the virtual contribution and the collinear counter term
dσC – with opposite sign – again by virtue of the KLN theorem. More precisely, the
cross section is rewritten as

〈F〉NLO =

∫

n

dσB(pn)F(pn) (3.3)

+

∫

n

[

dσV (pn) +

∫

1

dσA(qn+1)−
∫ 1

0

dzdσB(pCn (z))F(pCn (z))K(z)

]

ǫ=0

F(pn)

+

∫ 1

0

dz

∫

n

dσB(pCn (z))F(pCn (z)) [P (z) +K(z)]ǫ=0

+

∫

n+1

[dσR(qn+1)F(qn+1)− dσA(qn+1)] .

Here dσA denotes the auxiliary cross section, and the subscript 1 on the integral denotes
the analytic integration over the unresolved parton’s momentum. The kernel K(z) is
constructed in such a way as to equal those contributions of the analytic phase space
integration, which are convolutions with the Born cross section. Note that no analytic
phase space integration over the real emission matrix element needs to be performed,
and all integrands are finite, provided F is infrared safe. Commonly used subtraction
algorithms are FKS, [6], antenna subtraction [7, 8], and dipole subtraction [9, 10].

3.4 Parton Showers and Resummation

Considering again the generic NLO correction 3.1, we shall now consider a class of
observables which cut out the divergences associated to soft or collinear parton emission
by introducing a resolution parameter ρ, e.g. the relative p⊥ between two partons. We
assume that lowering ρ precisely corresponds to the singular limits, such that the integral
of the real emission contribution above ρ is finite. The divergences leave their trace in
contributions of the form

αs ln2(ρ) and αs ln(ρ) (3.4)

(in one-to-one correspondence with the poles in 1/ǫ2 and 1/ǫ). The logarithms may
eventually overcome the smallness of αs for sufficiently small ρ, thereby spoiling the
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3.4 Parton Showers and Resummation

convergence of the perturbative series. A typical effect is seen e.g. in a three-jet rate
becoming larger than a two-jet rate below some value of the jet resolution. Indeed,
owing to the universal factorisation of soft and collinear divergences, these contributions
appear to all orders in αs as

αns ln2n(ρ) and αns ln2n−1(ρ) . (3.5)

This particular class of logarithmically enhanced contributions requires a strong ordering
of the energies and/or the transverse momenta of each individual parton emission, and
are referred to as ‘leading logarithmic’ (LL) contributions. Singular limits for which
two or more emitted partons do not satisfy this ordering give rise to lower powers of
logarithms,

αns ln2n−2(ρ) , αns ln2n−3(ρ) , ... (3.6)

referred to as next-to-leading logarithmic (NLL) contributions, etc.. The appearance of
these contributions to all orders requires their resummation to improve the convergence
of the perturbative series. Resummation is indeed possible owing to the factorisation
properties, and can be carried out analytically, [4]. The relation between fixed-order
calculations and all-order resummation is depicted in figure 3.1.

The essence of the resummation procedure is that the LL and NLL contributions
exponentiate to a form factor multiplying the leading order cross section,

∆(Q2, p2
⊥) = exp

(

−
∫ Q2

p2
⊥

dq2

q2

αs(q
2)

2π
Γ(q2, Q2)

)

. (3.7)

Here, Q2 is a hard scale typical to the process, and p2
⊥ is a typical transverse momentum

of the emitted parton, which is defined through the choice of resolution criterion, ρ ∼
p2
⊥/Q

2. Γ is called a Sudakov anomalous dimension, and the form factor is usually
referred to as a jet function in the analytic resummation frameworks.

As cross sections iteratively factor in the strongly ordered limits, the resummation (of
at least leading logarithms) can be turned into a probabilistic picture, where the Sudakov
form factor is interpreted as the probability of having not emitted a parton between two
scales Q2 and p2

⊥. This is the starting point for parton shower simulations, building up
parton cascades from a Monte Carlo algorithm and thereby performing resummation
of large logarithmic contributions as well. The probability density describing parton
emission at a scale selected according to the Sudakov form factor is given by the splitting
function multiplying the cross section in the collinear limit.

The all-order resummation of the effects of soft gluon emission is more involved. Here,
a probabilistic interpretation is not evident since the factorisation takes place at ampli-
tude level, leaving its trace in non-trivial colour correlations when squaring the factored
amplitude. The analytic resummation of these contributions aims at exponentiating the
correlation matrix, known as soft anomalous dimension, defining the soft function simi-
lar to the jet function, the matrix elements of which now need to be taken between the
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amplitude expressed in a certain basis of colour factors. In the limit of letting the num-
ber of colours to infinity, originally introduced by t’Hooft [11], these colour correlations
become diagonal and positive and a direct probabilistic interpretation is feasible. The
most important consequence of the radiation pattern encountered for soft gluon emission
is angular ordering, which can be traced back to a destructive interference of the real
emission amplitudes, suppressing soft radiation outside cones defined by a ‘colour dipole’
formed out of two partons. Parton showers which incorporate this effect are known as
coherent. One important consequence of coherence is that the LL coefficient of the Su-
dakov anomalous dimension implemented in such parton showers precisely equals the
LL coefficient as predicted by the soft anomalous dimension. An algorithm to include
the exact colour correlations in a parton shower simulation is proposed in chapter 5.

3.5 Overture: Matching Fixed Order and Resummation

As is evident from figure 3.1, the resummation and fixed order calculation both contain
the same orders starting from the fixed order calculation being carried out in next-to-
leading order (NLO). Thus, a procedure to match these calculation is required in order
to avoid double counting of contributions at the same order.

Figure 3.1 also shows that a given fixed order determines a respective logarithmic order
or vice-versa when one attempts a consistent combination of the two: a LL resummation
requires a NLO calculation, modelling the first real emission at LO, a NLL resummation
requires a NNLO calculation, modelling the first real emission at NLO. These are some-
times referred to as LO+LL and NLO+NLL, respectively (‘same number of N’s’). Since
the fixed-order will however also contain non-logarithmically enhanced contributions, it
is desirable to remove the double counting in a way such that the contributions in the
respective orders are determined by the fixed order. The probably most simple recipe
to achieve this (see [12] for an example) is to perform a fixed-order expansion of the
all-order resummation up to the order of the fixed-order calculation and subtract these
contributions from the combined result.

The very same recipe may immediately be applied to a Monte Carlo implementation
of a NLO calculation and a parton shower simulation to achieve the simulation of fully
exclusive final states at NLO or even higher accuracy.

The details of a new approach to coherent parton showering, and the combination of
parton showers and higher order corrections form the core of this thesis and are discussed
in the chapters to follow.
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Figure 3.1: Relation between fixed-order calculations and all-order resummation in the
plane of powers of the strong coupling and large logarithms L. Note that a
LL resummation requires a NLO calculation to match to, which models the
real emission at LO thus being referred to as LO+LL and so on. Gray lines
indicate improving a fixed order by a resummation of higher order, for which
a consistent matching is not possible.
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4 A Calculational Formalism for

Parton Showers

4.1 Overview

The purpose of this chapter is to introduce a new formalism in which predictions as
expected from a numerical parton shower simulation can (at least to some extent) be
calculated analytically in a rigorous way.

The starting point is to define any parton shower algorithm to be a stochastic process,
in particular a Markov process. Starting from this definition, which at first only is
justified by the way an actual Monte Carlo simulation is typically implemented, we will
show that the structures expected from perturbative QCD are indeed emergent.

A general conclusion that this is not accidental, or – stated in another way – a proof,
that QCD in a certain regime gives rise to Markovian dynamics of multiple parton
emission can however not be drawn.

To this extent, the formalism at hand should be considered as a tool for investigating
the properties of parton shower predictions beyond a purely numerical approach. This
tool will turn out to be of utmost importance particularly in the context of matching
parton showers and fixed order calculations in perturbative QCD.

The (time dependent) stochastic process to be considered occupies a state at a given
evolution time. Any such state is a collection of partons with well-defined momenta, the
evolution time is directly related to a resolution scale, which, starting from a hard scale
eventually may hit a value where perturbative parton emission ceases to take place and
models of non-perturbative physics will have to be applied.

The dynamics of transitions between a state occupied at some time to another state
occupied at a later time is governed by transition rates, which can be derived from the
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4 A Calculational Formalism for Parton Showers

factorisation properties of cross sections and are thus calculable in perturbative QCD.
The outline of this chapter is as follows: section 4.2 sets the scene for the formalism

by precisely defining the notion of a parton ensemble and the construction of the transi-
tion rates from factorising cross sections. Section 4.3 derives the evolution equations for
transition probability densities, before introducing generating functionals for the tran-
sition probability densities governing the dynamics of the parton shower. Section 4.4
outlines some applications of the formalism, particularly focusing on the extraction of
evolution equations for physical quantities such as parton luminosities, as well as fixed
order expansions, which will be extensively used in chapter 6.

4.2 Preliminaries

4.2.1 Parton Ensembles and Cross Sections

A m-parton configuration as predicted by a fixed-order calculation or as a state within
the parton shower evolution is generically denoted by

qm ≡ {q̂a, q̂b; q̂1, ..., q̂m} ,

where the q̂i collectively denote each parton’s momentum and quantum numbers, i = a, b
refers to incoming, i = 1, ..., m to outgoing partons. The dependence on the quantum
numbers is suppressed for readability as long as no ambiguities are present.

The measure on this space of states is taken to be

dφ(qm) =
m
∏

i=a,b;1

dd−1q̂i
(2π)d−12q̂0

i

, (4.1)

where we consider only massless partons in this context. For the purpose of matching
to fixed-order calculations carried out in dimensional regularisation, we shall assume a
general spacetime dimension d. Integrations over this measure are understood to contain
summations over the respective quantum numbers implicitly.

Note that the phase space measure does include a (formal) integration over incoming
parton momenta and is not constrained by a momentum conserving δ-function. The
purpose of this construction is to write a cross section for producing a partonic ensemble1

out of a collision involving incoming hadrons P ≡ Pa, Pb as the integral over

dσ(P, qm|Q;µF , µR) =
dσ̂(qm|Q;µF , µR)

dφ(qm)
F (P, qa,b, µF , µR)δF (P, qa,b)dφ(qm|Q) (4.2)

1We do not consider identified final state hadrons within this context.
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where
dφ(qm|Q) = (2π)dδ(

∑

i

q̂i − q̂a − q̂b −Q)dφ(qm) . (4.3)

F (P, qa,b, µF , µR) denotes the relevant parton luminosity and δF (P, qa,b) implements con-
straints originating from the particular factorisation framework considered, thereby re-
ducing the integration over incoming momenta to the relevant variables, e.g. longitudinal
momentum fractions within collinear factorisation. Here, the explicit expression is given
by

δF (P, qa,b) = δF (Pa, q̂a;Pb, xa)dxa δF (Pb, q̂b;Pa, xb)dxb (4.4)

with

δF (Pa,b, q̂a,b;Pb,a, xa,b) =

16π2

(2Pa · Pb)1−ε

(

(Pa · Pb)2

Pa · q̂a,b Pb · q̂a,b

)ε

δ

(

Pb,a · q̂a,b
Pa · Pb

− xa,b
)

δ

(

Pa,b · q̂a,b
Pa · Pb

)

(4.5)

and d = 4− 2ε as usual. We shall also use the shorthand

dφF (qm|Q) = δF (qa,b)dφ(qm|Q) (4.6)

for readability and the dependence on the hadron momenta is now understood implicitly,
when not stated otherwise.

The scale dependence of F (pa,b, µF , µR) is assumed to be governed by

µF
∂

∂µF
F (pa,b, µF , µR) =

∑

n

∫

F (qa,b, µF , µR)dK(qn|pa,b;µF , µR) (4.7)

where K has a perturbative expansion in αs. The only source of the µR dependence in F
is renormalisation carried out in the perturbative calculation of K. When not relevant,
we drop making explicit this dependence for readability.

4.2.2 Factorisation and the Derivation of Splitting Kernels

The parton shower splitting kernels need to be derived from approximate or exact fac-
torisation properties of the squared amplitude which we assume to be given by

|M(qm, µR, µF )|2 =
∑

n≤m

∑

α

|M(pn, µR, µF )|2Pα(qm|pn;µR) . (4.8)

The index α denotes a particular configuration of unresolved partons and this factori-
sation is accompanied by a kinematic mapping qm = qαm(pn) such that the phase space
measure obeys the convolution

dφF (qm|Q)F (qa,b, µF ) =

∫

dφF (pn|Q)F (pa,b, µF )dφαm−n(qm|pn;µF ) (4.9)
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where

dφαm−n(qm|pn;µF ) =

J α(qa,b)
F (qa,b, µF )

F (pa,b, µF )
dφ

(

qm

∣

∣

∣

∣

∣

∑

i

p̂i − p̂a − p̂b
)

δ (qn, q
α
n(pn)) . (4.10)

The Jacobian J α(qa,b) has its origin in mapping δF (qa,b) to δF (pa,b). Here, we introduced
δ-functions in the sense that

∑

m

∫

δ(pn, qm)dφ(qm) = 1 (4.11)

and
δ (qn, q

α
n(pn)) (4.12)

fixes n out of themmomenta qm to be determined by the mapping qα under consideration
thereby giving rise to phase space factorisation or convolution properties, respectively.
The momentum conservation constraint in the factorised phase space measure may be
implemented exactly or approximate compatible with a particular limit considered.

Hence differential cross sections obey the convolution

dσ(qm|Q;µF , µR) =

∫

dσ(pn|Q;µF , µR)dP (qm|pn;µF , µR) (4.13)

where the differential splitting rate is given by

dP (qm|pn;µF , µR) =
∑

n≤m

∑

α

Pα(qm|pn;µR)dφαm−n(qm|pn;µF ) . (4.14)

Eq. 4.10 has a straightforward interpretation: A cross section acts as a source of partonic
ensembles pn, and the source of different ensembles qm is obtained by multiplying the
original source with a splitting rate producing qm out of pn and summing over all possible
intermediate states pn. Note that dP is in general not a probability density. Physical
cross sections as the sum over all possible transitions are however required to be positive
in a perturbative domain.

A parton shower is assumed to evolve from larger to smaller scales t. This scale is
connected to a particular splitting under consideration by the parton shower splitting
kernels, which take the form

dPα(qm|pn; t) = Pα(qm|pn;µR)dφαm−n(qm|pn;µF )
∣

∣

µF,R=µα
F,R

(t)
δ(t− tα(qm)) (4.15)

such that
∫ t

t′
dτ

∫

dPα(qm|pn; τ) =

∫

Ωα(t,t′)

Pα(qm|pn;µR)dφαm−n(qm|pn;µF )
∣

∣

µF,R=µα
F,R

(qm)
,

(4.16)
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where µαF,R(qm) ≡ µαF,R(tα(qm)) and Ωα(t, t′) is the phase space region accessible for the
m− n additional partons when evolving between t and t′. Throughout we assume that
lowering scales indicate an evolution to infrared regions, i.e. t′ → 0 increases the phase
space available for soft and/or collinear emissions.

The definitions

dP (qm|pn; t) ≡ P (qm|pn; t)dφ(qm) ≡
∑

α

dPα(qm|pn; t) (4.17)

will often be used in the following sections.

4.2.3 An Aside on Cutoff Dependence of Infrared Safe Observables

In the context of matching to fixed order, we will face the problem of identifying changes
in infrared safe observables C(qm) due to a finite infrared cutoff imposed on the parton
shower. Particularly, these effects will appear in the form

δC(t, t′) =

∫ t

t′
dτ

∫

(C(qm)− C(pn)) dPα(qm|pn; τ) (4.18)

where we are interested in the region t′ ≪ t. Let us first focus on the phase space
measure and the splitting kernels involved. In any unresolved limit, for which λi(qm|pn),
i = 1, ..., 2(m− n), with λi(qm|pn)→ 0 as tα(qm)→ 0, the splitting kernels scale as

Pα(qm|pn; t) =
αm−ns cα(pn)

λ1(qm|pn) · · ·λ2(m−n)(qm|pn)
+O

(

1

λ2(m−n)−1
)

)

, (4.19)

and by dimensional analysis the phase space measure is then constrained to

dφαm−n(qm|pn;µF ) ∼ dλ1 · · ·dλ2(m−n) , (4.20)

by the requirement of giving rise to the expected logarithmic contributions,
∫ t

t′
dτ

∫

dPα(qm|pn; τ) ∼ cα(pn)α
m−n
s ln2(m−n)

(

T (pn)

t′

)

, (4.21)

where T (pn) is some hard scale associated to the kinematic configuration given by pn.
Conversely, infrared safety demands that C behaves as

C(qm) = C(pn) +
(

λ1(qm|pn) · · ·λ2(m−n)(qm|pn)
)

(Cm,0(pn) +O(λ)) , (4.22)

and the contributions to the infrared safe observable in the unresolved limits are now seen
to contribute power corrections only, i.e. contributions, which are not logarithmically
enhanced for t′ ≪ t,

δC(t, t′) ∼ αm−ns cα(pn)Cm,0(pn)
∫ t

t′
dτ

2(m−n)−1
∏

i=1

∫

dλi(t) (1 +O(λ)) . (4.23)
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4.3 Calculating Parton Shower Predictions

We will now establish the theoretical treatment of viewing multiple parton emission as a
Markov process on the space of states as defined in the previous section. This treatment
will naturally lead to evolution equations for any quantity predicted by a parton shower,
as long as it is actually implemented as such a stochastic process.

4.3.1 From Markov Processes to Evolution Equations

Markov processes obey the defining property that considering conditional probabil-
ity densities of finding a particular state qm at time t′, given any sequence of states
pn, pn1

, ..., pnk
at preceding times t′ < t < t1 < ... < tk actually only depends on the

state occupied just before,

p(qm, t
′|pn, t; pn1

, t1; ...; pnk
, tk) = p(qm, t

′|pn, t) ≡ ∆(qm, t
′|pn, t) (4.24)

where ∆(qm, t
′|pn, t) is interpreted as the transition probability density from pn at time

t to qm at time t′.
Thus ∆ obeys the product rule

∆(qm, t
′|pn, t) =

m
∑

i=n

∫

∆(qm, t
′|ki, τ)∆(ki, τ |pn, t)dφ(ki) (4.25)

for any t′ < τ < t. Note that we did restrict ourselves to exclude processes where partons
are absorbed in a transition. These processes actually pose no problem for the formalism.
It can however be shown that in the presence of both emission and absorption processes
a simple exponentiation of the probability to keep a state is not possible anymore: this
quantity will need to solve a a nonlinear evolution equation.

From the product rule we immediately find that

∆(qm, t|pn, t) = δ(qm, pn) . (4.26)

The transition rates P(qm|pn; t) are related to ∆ by considering expansions around small
time intervals,

∆(qm, t|pn, t+ δt) = δ(qm, pn) + P(qm|pn; t)δt+O(δt2) (4.27)

giving rise to the differential equation

∂

∂t
∆(qm, t

′|pn, t) =

m
∑

i=n

∫

∆(qm, t
′|ki, t)P(ki|pn; t)dφ(ki) . (4.28)
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The dependence on the smaller scale t′ may be inferred from a similar expansion

∆(qm, t− δt|pn, t) = δ(qm, pn) +Q(qm|pn; t)δt+O(δt2) . (4.29)

Note that ∆ changes by decreasing the smaller scale argument, as we evolve from higher
to lower scales. In general, P 6= Q, i.e. ∆ changes differently in both evolution directions.
Then

∂

∂t′
∆(qm, t

′|pn, t) = −
m
∑

i=n

∫

Q(qm|ki; t′)∆(ki, t
′|pn, t)dφ(ki) . (4.30)

Integrating both differential equations, adding the results and expanding around small
evolution interval changes, it is easy to prove that P = Q is required for consistent
solutions.

4.3.2 Virtual Corrections and the Impact of Unitarity

The above findings are valid for a unitary process, which obeys

1 =

∞
∑

m=n

∫

∆(qm, t
′|pn, t)dφ(qm) , (4.31)

thus imposing a sum rule on the splitting rates,

0 =
∞
∑

m=n

∫

P(qm|pn, t)dφ(qm) . (4.32)

From this it is evident, that the splitting rates do need to be of the form

P(qm|pn, t) = [P (qm|pn, t)]+ = P (qm|pn, t)− δ(qm, pn)
∞
∑

i=n

∫

P (ki|pn, t)dφ(ki) , (4.33)

generalising the +-distribution. If only parton splittings are present this implies that
transitions to lower multiplicities are absent and we find for the no-emission density
∆(pn, t, t

′) defined through

∆(qm, t
′|pn, t) = δ(qm, pn)∆(pn, t, t

′) + ∆T (qm, t
′|pn, t) (4.34)

(with ∆T (pn, t
′|pn, t) = ∆T (qm, t|pn, t) = 0) the simple differential equation

∂

∂t
∆(pn, t, t

′) = −∆(pn, t, t
′)

m
∑

i=n

∫

P (ki|pn; t′)dφ(ki) . (4.35)
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4 A Calculational Formalism for Parton Showers

with initial condition ∆(pn, t, t) = 1 giving rise to the expected functional form of the
Sudakov from factor.

Considering a process which obeys non-normalised transition densities,

1 6= N(pn, t, t
′) =

∞
∑

m=n

∫

∆0(qm, t
′|pn, t)dφ(qm) (4.36)

we find that the rates driving the normalised one,

∆(qm, t
′|pn, t) =

∆0(qm, t
′|pn, t)

N(pn, t, t′)
(4.37)

do indeed need to sum up to zero when summing over all reachable final states, and N
needs to be independent of t′. Conversely, the t-dependence of ∆0 is governed by kernels

N(pn, t)

N(qm, t)
[P (qm|pn; t)]+ + δ(qm, pn)

∂ lnN(pn, t)

∂t
, (4.38)

(where N(pn, t) ≡ N(pn, t, ·)) while the t′-dependence is the same for ∆ and ∆0 and the
initial condition is ∆0(qm, t|pn, t) = N(pn, t)δ(qm, pn).

The virtual correction to the splitting kernels is thus given by

V (pn, t) = −
∞
∑

i=n

∫

P (ki|pn; t)dφ(ki) +
∂ lnN(pn, t)

∂t
(4.39)

such that the origin of N is readily traced back to factoring virtual corrections beyond
the constraint imposed by the +-prescription, if these where explicitly taken into account
for defining the splitting kernels.

We will from now on collectively denote renormalisation and factorisation scales by µ
and assume that the dependence on a particular splitting solely enters as µα(tα) = µ(tα).
Cross sections after evolving from a hard scale t down to a lower scale t′ are then obtained
from

dσ(qm|Q;µ(t′)) =
∑

n≤m

∫

∆(qm, t
′|pn, t)dσ(pn|Q;µ(t))dφ(qm) . (4.40)

The total inclusive cross section is thus only preserved, if ∆ is normalised. If this
was not the case, i.e. by making the replacement ∆ → ∆0 in the above equation, and
dσ → dσ0, where dσ0 is ‘stripped’ from the factoring virtual correction, dσ(pn|Q;µ(t)) =
V (pn, t)dσ0(pn|Q;µ(t)), we need to renormalise

dσ0(pn|Q;µ(t))→ 1

N(pn, t)
dσ(pn|Q;µ(t)) (4.41)

to preserve the total inclusive cross section, where dσ now contains the virtual correc-
tions. Noting that the splitting kernels are derived in a perturbative expansion, lnN
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4.3 Calculating Parton Shower Predictions

needs to be of the highest order considered for the splitting rates P , such that this
renormalisation turns out to be a higher order ambiguity.

We therefore conclude that it is sufficient to only use factorising splitting rates which
do change the partonic ensemble and to impose unitarity order by order, considering
unitary processes with +-regulated splitting kernels P . It should be noted that this issue
is not connected to demanding that the evolved differential cross section – considered
for a particular configuration qm – should equal a known cross section. This will be
addressed when considering the matching of parton showers to fixed-order calculations
in chapter 6.

4.3.3 The Method of Generating Functionals

For the purpose of calculating fixed-order expansions of parton shower predictions, as
well as to infer the evolution structure it is useful to introduce the generating functional
of transition probabilities,

Z(pn, t
′, t)[u] =

∞
∑

m=n

∫

u(qm)∆(qm, t
′|pn, t)dφ(qm) . (4.42)

The scale dependence of Z can immediately be derived from the evolution equations for
∆ with initial conditions

Z(pn, t, t)[u] = u(pn) Z(pn, t
′, t)|u=1 = 1 . (4.43)

Particularly, the generating functional possesses the implicit solution

ln
Z(pn, t

′, t)[u]

u(pn)
=

∞
∑

m=n

∫ t

t′
dτ

∫
(

Z(qm, t
′, τ)[u]

Z(pn, t′, τ)[u]
− 1

)

P (qm|pn; τ)dφ(qm) . (4.44)

The transposition probabilities may be recovered using

∆(qm, t
′|pn, t) =

δ

δu(qm)
Z(pn, t

′, t)[u]

∣

∣

∣

∣

u=0

, (4.45)

whereas m-particle inclusive densities,

D(qm, t
′|pn, t) =

∑

i

∫

∆(qm ∪ ki, t′|pn, t)dφ(ki) , (4.46)

are given by

D(qm, t
′|pn, t) =

δ

δu(qm)
Z(pn, t

′, t)[u]

∣

∣

∣

∣

u=1

. (4.47)
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4.4 Applications

4.4.1 Extracting the Evolution of Parton Luminosities

In order to derive the evolution of parton densities as generated by a parton shower,
we make explicit the dependence of the transition rates on the partons luminosities as
dictated by the generalised splitting measure dφαm−n, eq. 4.10,

P (qm|pn; t) =
F (qa,b, µ(t))

F (pa,b, µ(t))
P̂ (qm|pn; t) . (4.48)

Considering the quantity

∆̃(qm, t
′|pn, t) =

F (pa,b, µ(t′))

F (qa,b, µ(t))
∆(qm, t

′|pn, t) (4.49)

we find that this obeys the product rule eq. 4.25, and thus describes a unitary Markov
evolution as well. The kernels P̃ which govern the dynamics of ∆̃ are again obtained
from expanding around small evolution intervals,

P̃(qm|pn; t) =

δ(qm, pn)

F (qa,b, µ(t))

∂F (pa,b, µ(t))

∂t
+
F (pa,b, µ(t))

F (qa,b, µ(t))

[

F (qa,b, µ(t))

F (pa,b, µ(t))
P̂ (qm|pn; t)

]

+

. (4.50)

By the unitarity constraint we then find the evolution equation for the parton luminosity,

1

F (pa,b, µ)

∂F (pa,b, µ)

∂µ
=

−
∞
∑

m=n

∫

F (pa,b, µ)

F (qa,b, µ)

∂t(µ)

∂µ

[

F (qa,b, µ)

F (pa,b, µ)
P̂ (qm|pn; t(µ))

]

+

dφ(qm) , (4.51)

or
∂F (pa,b, µ)

∂µ
=

∞
∑

m=n

∫

F (qa,b, µ)
∂t(µ)

∂µ

[

P̂ (qm|pn; t(µ))
]

+
dφ(qm) , (4.52)

precisely the functional form of the DGLAP equation. Note that for each splitting type
α, the splitting kernels impose a particular scale choice

µ = µ(tα(qm)) . (4.53)
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This choice, along with the chosen relation between the evolution variable and the fac-
torisation scale should be done in such a way that for each splitting type α

∂tα(µ, qm)

∂µ
= fα(qa,b) , (4.54)

since only then transitions involving final state partons only will not contribute to the
evolution of the parton luminosity due to the +-regularisation. Even then, the choice is
of importance and should be done in such a way as to reproduce the exact evolution of
the parton luminosity in the region where appropriate.

We further note that the luminosity does factor into independent densities for parton
a and b, only if there is no transition involving both incoming partons simultaneously.

4.4.2 Evolution Structure

The implicit solution of the generating functional is very useful when determining the
structure of a parton shower evolution. In particular, its factorisation properties will
immediately point to what subsets of a partonic ensemble can be considered evolving
independently of each other, given a set of splitting kernels.

We will here consider two examples: A shower based solely on 1 → 2 splittings, and
dipole-type showers. For the first case (in the limit of negligible recoils, such that the
partons are always considered on their mass shell), the splitting kernels take the form

P (qm|pn; t) = δm−n,1

n
∑

i=1

∑

j 6=i
p(q̂i, q̂j |p̂i; t)δ(qm\{q̂i, q̂j}, pn\{p̂i}) . (4.55)

Taking the test functions to factor into single partons,

u(pn) = û(p̂1) · · · û(p̂n) (4.56)

the factorisation of Z into functionals for each individual parton immediately follows,

Z(pn, t
′, t)[u] =

n
∏

i=1

Z1(p̂i, t
′, t)[u] (4.57)

where

ln

(

Z1(p̂i, t
′, t)[u]

û(p̂i)

)

=

∑

j 6=i

∫ t

t′
dτ

∫
(

Z1(q̂i, t
′, τ)[u]Z1(q̂j , t

′, τ)[u]

Z1(p̂i, t′, τ)[u]
− 1

)

p(q̂i, q̂j|p̂i; τ)dφ({q̂i, q̂j}) , (4.58)
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4 A Calculational Formalism for Parton Showers

such that in this case indeed each individual parton is an independently evolving entity
of the partonic ensemble.

Dipole-type showers are based on 2→ 3 splittings,

P (qm|pn; t) = δm−n,1

n
∑

i=1

∑

j 6=i

∑

k 6=i,j
d(q̂i, q̂k, q̂j |p̂i, p̂j ; t)δ(qm\{q̂i, q̂k, q̂j}, pn\{p̂i, p̂j}) ,

(4.59)
and provide the simplest form of implementing momentum conservation exactly and
local to each splitting.

It is natural to factor the test functions into ‘dipole functions’,

u(pn) =
n
∏

i=1

∏

j 6=i
û(p̂i, p̂j) , (4.60)

with û(p̂i, p̂j) = û(p̂j , p̂i). Assuming that the generating functional factors into indepen-
dent dipoles,

Z(pn, t
′, t)[u]

?
=

n
∏

i=1

∏

j 6=i
Z2(p̂i, p̂j, t

′, t)[u] , (4.61)

with Z2(p̂i, p̂j, t
′, t)[u] = Z2(p̂j , p̂i, t

′, t)[u], the integrand in the exponent, cf. 4.58, is given
by

n
∑

i=1

∑

j 6=i

∑

k 6=i,j
((•)− 1) d(q̂i, q̂k, q̂j|p̂i, p̂j; t)dφ({q̂i, q̂k, q̂j}) (4.62)

with

(•) =
Z2(q̂i, q̂k, t

′, t)[u]Z2(q̂k, q̂j , t
′, t)[u]

Z2(p̂i, p̂j, t′, t)[u]
(4.63)

×
∏

l 6=i,j,k Z2(q̂i, p̂l, t
′, t)[u]Z2(q̂j , p̂l, t

′, t)[u]Z2(q̂k, p̂l, t
′, t)[u]

∏

l 6=i,j Z2(p̂i, p̂l, t′, t)[u]Z2(p̂j, p̂l, t′, t)[u]
.

This shows that the factorisation takes place under very limiting conditions only. Con-
sidering, e.g. soft gluon emission only, where no flavour changes of emitting partons
are present, and the momenta of the emitting partons are assumed to be unchanged,
q̂i,j = p̂i,j when considering q̂k emitted from the dipole (i, j), we have

(•) =
Z2(p̂i, q̂k, t

′, t)[u]Z2(q̂k, p̂j, t
′, t)[u]

Z2(p̂i, p̂j, t′, t)[u]

∏

l 6=i,j,k
Z2(q̂k, p̂l, t

′, t)[u] . (4.64)

Finally, only for a colour ordered ensemble of partons, where an emission is always
placed between the emitting partons (with respect to the colour ordering), the last
factor is absent, giving rise to the naive picture of a tree of 1→ 2 dipole splittings.
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4.4 Applications

4.4.3 Fragmentation Functions

The perturbative contributions to fragmentation functions are the prototypes of m-
particle inclusive quantities as introduced in section 4.3.3, though these quantities in-
troduce a more general concept. Starting from an identified parton with momentum
p̂k, we are here interested in the change of the distribution of this partons momentum
p̂k → q̂k, when evolving between a hard and a soft scale t → t′, where p̂k is considered
to be produced in a hard process with final state pn.

Denoting by D̂k/H(QH , p̂k, t) the universal fragmentation function for a parton p̂k
fragmenting into a hadron H of momentum QH , we make use of the auxiliary concept
of Dk/H(QH , pn, t), describing fragmentation of p̂k into QH , if it has been produced in
association with the other partons p̂i contained in the final state pn. The latter is a
quantity which needs to be defined order-by-order in perturbation theory through the
total fragmentation function, which connects the two,

∫ ′
Dk/H(QH , pn, t)dσ(pn|Q, t) = D̂k/H(QH , p̂k, t)

∫ ′
dσ(pn|Q, t) , (4.65)

where primed integrals refer to summation and integration except the identified parton.
On the other hand, the two types of fragmentation functions are related by the one-
particle inclusive quantity

D({q̂}k, t′|pn, t) =
δ

δu({q̂k})
Z(pn, t

′, t)[u]

∣

∣

∣

∣

u=1

. (4.66)

through

Dk/H(QH , pn, t) =

∫

D̂k/H(QH , q̂k, t
′)D({q̂}k, t′|pn, t)dφ({q̂k}) (4.67)

by purely probabilistic reasoning. Note that, within collinear factorisation we can define
the usual fragmentation functions by

Dk/H(x, t) =

∫

δF (QH , q̂k;N, x)D̂k/H(QH , q̂k, t)dφ({q̂k}) (4.68)

upon selecting N to define how the collinear direction is approached. The difference
between Dk/H(QH , pn, t) and D̂k/H(QH , q̂k, t) is to some extent similar to the difference
between the generalised parton luminosity considered previously, and the ‘true’ parton
luminosities, being defined for each incoming parton independently. Indeed, the scale
dependence of Dk/H(QH , pn, t) is directly given by the definition of D({q̂}k, t′|pn, t) and
the evolution equation for the generating functional,

∂

∂t
Dk/H(QH , pn, t) =

∑

i

∫

Dk/H(QH , ki, t) [P (ki|pn, t)]+ dφ(ki) . (4.69)
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The scale dependence (and the very definition) of Dk/H(QH , pn, t) and D̂k/H(QH , p̂k, t)
thus coincide in the limit where the splitting kernels can be considered to mediate
splittings involving the identified parton only, giving rise precisely to the functional
form of the dynamics expected from perturbative QCD.

4.4.4 Fixed Order Expansions

The calculation of fixed order expansions of the parton shower generating functional Z
is of utmost importance for matching parton showers and fixed order calculations. We
will here give an outline of the general procedure as another application of the formalism
at hand, but postpone explicit calculations to chapter 6.

To start with, we introduce the perturbative expansion of the splitting kernels with re-
spect to the strong coupling evaluated at the scale chosen in dependence on the evolution
scale,

a(t) ≡ αs(µ(t)) , (4.70)

P (qm|pn, t) =
kmax
∑

k=1

k
∑

j=0

ak(t)P (k,j)(qm|pn, t)δm,n+j +O
(

akmax+1(t)
)

, (4.71)

such that at order ak(t) at most k additional partons are emitted. We did not include
purely virtual kernels P (pn|pn, t) according to the findings of section 4.3.2, but allow for
the possibility of flavour changing transitions of a state of fixed multiplicity, P (qn|pn, t),
which are not part of this category. At next-to-leading order (NLO), the expansion of Z
in the coupling a(t) can directly be translated into an expansion in the strong coupling
at a fixed scale µR, ᾱs = αs(µR). Starting from next-to-next-to-leading order (NNLO),
O(a2(t)), the scale choice µ(t) does enter the expansion in terms of a fixed coupling such
that care has to be taken in how the expansion in a fixed coupling is to be carried out.
We note in particular, that the splitting kernels are free to associate a scale depending
on the splitting type α considered, such that the splitting kernel expansion is indeed
more complicated,

ak(t)P (k,j)(qm|pn, t)→
∑

α

ak(tα(qm))P (k,j)
α (qm|pn, t) . (4.72)

Upon performing now the expansion in terms of the fixed coupling ᾱs, we also note that
there is the possibility that the scale choice for a lower multiplicity, m1 < m2, a final
state qm1

may feed into the contribution to a higher multiplicity one, qm2
. Depending

on the order of the β-function chosen to determine the running of the strong coupling,
one eventually finds the desired expansion of the splitting kernels,

P (qm|pn, t) =

kmax
∑

k=1

k
∑

j=0

ᾱks P̄
(k,j)(qm|pn, t)δm,n+j +O

(

ᾱkmax+1
s

)

, (4.73)
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where P̄ (k) now denotes the effective splitting kernel to be considered at order ᾱks , and we
have moved back the sum over splitting types α into the definition of P̄ (k). Accordingly,
the generating functional admits the desired expansion

Z(pn, t
′, t)[u] =

kmax
∑

k=0

ᾱksZ
(k)(pn, t

′, t)[u] +O
(

ᾱkmax+1
s

)

. (4.74)

Again, the implicit solution of the generating functional is the method of choice to obtain
the different terms Z(k). Note that it is sufficient to expand the exponential at most
to its kmax’th order, if an expansion up to O(ᾱkmax

s ) is desired. Plugging in then the
expansion of the splitting kernels and the generating functional itself, and equating the
contributions order-by-order, the Z(k) can recursively be calculated noting that

Z(0)(pn, t
′, t)[u] = u(pn) (4.75)

is fixed by the normalisation of Z.

4.5 Conclusions

In this chapter, we considered a rather pragmatic approach to multiple parton emission
based on, and triggered by, the fact that a typical parton shower implementation is
nothing but simulating these dynamics by means of simulating a Markov process in a
time variable referring to an evolution from harder to softer scales.

A thorough treatment of taking this fact as a defining property of multiple parton
emission revealed that these particular dynamics, along with the constraints being im-
posed by unitarity, do indeed give rise to the dynamics as expected from perturbative
QCD as basically emergent phenomena.

The main application of the formalism at hand is – however – motivated by the fact
to obtain an analytic handle on what is actually to be expected by the implementation
of a parton shower simulation, being completely defined by a set of splitting kernels and
some scale choices. Another result is to gain insight into how the splitting kernels at
hand govern the evolution dynamics of the simulation with respect to what subsets of a
partonic configuration may be considered to evolve independently. Finally, the formalism
provides the possibility to accurately calculate fixed order expansions of parton shower
predictions – a possibility which is mandatory to perform the matching to fixed-order
calculations.

Within this chapter we did not limit ourselves to any particular choice of a parton
shower algorithm. The formalism is rather setup in order to deal with a huge class of
these algorithms, even anticipating future generalisations in the direction of unintegrated
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parton distributions by not sticking to collinear factorisation as the choice of all factori-
sation schemes. Furthermore, this new approach is completely based on a probabilistic
picture thereby being closely linked to Monte Carlo implementations of parton showers
as opposed to formalisms aiming at a similar level of generality, e.g. the operator based
picture derived in [13–16].
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5 Coherent Showers with Local Recoils

5.1 Overview

In this chapter we outline a new formalism for dipole-type parton showers which main-
tain exact energy-momentum conservation at each step of the evolution. This shower
algorithm will be based on the kernels derived by Catani and Seymour, [9], originally
in the context of carrying out NLO calculations within the subtraction formalism. Par-
ticular emphasis is put on the coherence properties, the level at which recoil effects
do enter and the role of transverse momentum generation from initial state radiation.
The formulated algorithm is shown to correctly incorporate coherence for soft gluon
radiation.

Section 5.2 will focus on the effects of finite recoils and the coherence properties.
Section 5.3 will give all technical details for final state radiation, whereas section 5.4
describes a treatment of initial state radiation, which so far has not been used in similar
approaches, leading to a more physical picture of initial state radiation. Finally, sec-
tion 5.5 outlines a possible generalisation of the algorithm to include colour correlations
beyond the large-Nc limit.

5.2 Local Recoils, Form Factors and Coherence

We consider a single parton emission off a pair of partons with momenta pi and pj.
The probability for this emission is taken to be the sum of two splitting functions, each
associated with one leg. Using DGLAP splitting kernels and the Sudakov decomposition
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5 Coherent Showers with Local Recoils

for the splitting pi → qi, q,

qi = zpi +
p2
⊥

2pi · n z
n + k⊥ , (5.1)

q = (1− z)pi +
p2
⊥

2pi · n (1− z)n− k⊥ , (5.2)

where k2
⊥ = −p2

⊥ and k⊥ · pi = k⊥ · n = 0 constitutes the usual collinear approximation,
which may be extended to the quasi-collinear approximation for emissions off massive
partons, [17]. The light-like vector n defines the collinear direction, and therefore is used
as the gauge vector in a light-cone gauge when deriving the collinear-singular behaviour
of QCD matrix elements. n needs to be chosen along the colour connected partner pj,
the so-called physical gauge, in which interference diagrams are collinearly subleading
such that the unregularised splitting kernels are given by cut self-energy diagrams only.1

Note that, within this parametrisation, the DGLAP splitting kernels are functions of

z =
n · qi
n · pi

. (5.3)

Indeed, there is not a single choice of light-cone gauge, but rather a class of gauge choices
which are connected by rescaling the gauge vector n (i.e. longitudinal boosts along the
collinear direction), for which the splitting kernels are left invariant.

We are interested in extending this picture such as not to perform an approximation
in the choice of kinematics, thereby introducing exact energy-momentum conservation
within the splitting pi, pj → qi, q, qj. The choice of the recoil strategy is not unique.
However, choosing a spectator to absorb the longitudinal recoil of the splitting,

n = pj qj =

(

1− p2
⊥

2pi · pj z(1− z)

)

pj (5.4)

is the only choice compatible with the remaining gauge degrees of freedom in the func-
tional form of the splitting kernels. As we shall also see, this is the only choice which
guarantees that the splitting functions in a physical gauge do reproduce the correct soft
behaviour.

5.2.1 DGLAP Kernels, ‘Soft Correctness’ and Angular Ordering

As we are primarily interested in soft gluon radiation, we neglect gluon splittings into
quark-antiquark pairs in this section.

1We note that this is a gauge choice for each singular limit of interest. The definition of ’colour-
connected’ here applies in the large-Nc limit but may be generalised by including the full colour
correlations present at finite Nc.
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5.2 Local Recoils, Form Factors and Coherence

For final state radiation the spin-averaged DGLAP kernels are given by

Pqg(z) = CF

(

2z

1− z + (1− z)
)

, Pgg(z) = 2CA

(

z

1− z +
1− z
z

+ z(1− z)
)

,

(5.5)
such that matrix elements squared, summed over all collinear configurations factorise as

m+1〈M(q1, ..., qm+1)|M(q1, ..., qm+1)〉m+1 →
m
∑

i=1

∑

k 6=i

4παs
qi · qk

Pik(z) m〈M(q1, ..., pi, ..., qm+1)|M(q1, ..., pi, ..., qm+1)〉m . (5.6)

Note that in writing this expression, we do need to include a symmetry factor of 1/2
along with the gluon splitting function.

As each amplitude |M〉 is a colour singlet, i.e.

m
∑

i=1

T2
i +

m
∑

i=1

∑

j 6=i
Ti ·Tj = 0 (5.7)

we may rewrite collinear factorisation within the choice of the physical gauge for single
collinear configurations as

m+1〈M(q1, ..., qm+1)|M(q1, ..., qm+1)〉m+1 →
m
∑

i=1

∑

j,k 6=i

4παs
qi · qk

Pik(z)|n=pj m〈M(q1, ..., pi, ..., qm)|Cij|M(q1, ..., pi, ..., qm)〉m , (5.8)

where

Cij = −Ti ·Tj

T2
i

(5.9)

is the colour correlation operator as introduced in [9].
Within this framework, we have that

1

qi · q
z

1− z

∣

∣

∣

∣

n=pj

=
qi · pj

qi · q q · pj
1

qi · q
1− z
z

∣

∣

∣

∣

n=pj

=
q · pj

q · qi qi · pj
(5.10)

such that the single splitting function Pij(z)|n=pj
constitutes the complete, correct soft

behaviour for the dipole i, j. Note that the eikonal parts – as well as any other part of
a splitting function – is invariant under rescaling of the spectator momentum pj , which
is an even stronger motivation to use the longitudinal recoil strategy defined above.

This will also be a necessary requirement when trying to remove what we call ’soft
double counting’. As we will show now, this is closely related to the coherence properties
and logarithmic accuracy of a particular shower setup. To be precise, we consider the
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5 Coherent Showers with Local Recoils

form factor ∆ij(Q
2, µ2) associated to a final-final dipole i, j when evolving from a hard

scale Q2 to a soft scale µ2. Regarding the leading- (double) and next-to-leading (single)
logarithmic contributions, αnsL

2n and αnsL
2n−1 with L = ln(Q2/µ2) the correct behaviour

can be obtained from the coherent branching formalism [18], reproducing the results of
soft gluon resummation, [19], by considering the leading behaviour of the z-integrated
splitting kernel for µ2 ≪ p2

⊥ ≪ Q2. The resulting form factor reads

− ln ∆ij(Q
2, µ2) =

∫ Q2

µ2

dp2
⊥

p2
⊥

αs(p
2
⊥)

2π

(

Γi(p
2
⊥, Q

2) + Γj(p
2
⊥, Q

2)
)

, (5.11)

where the Sudakov anomalous dimensions Γi(p
2
⊥, Q

2) are given by

Γq(p
2
⊥, Q

2) = CF

(

ln
Q2

p2
⊥
− 3

2

)

, (5.12)

Γg(p
2
⊥, Q

2) = CA

(

ln
Q2

p2
⊥
− 11

6

)

, (5.13)

receiving contributions both at the LL level from soft collinear, at the NLL level from
hard collinear radiation. Note that the latter, i.e. the non-logarithmic terms in Γ
are determined by the average of the soft-suppressed, z-regular terms of the splitting
functions.

5.2.2 Sudakov Anomalous Dimensions in the Presence of Recoils

We now want to include the effects of a finite recoil. Within the minimal recoil strategy
outlined above the phase space measure exactly factorises to the phase space with respect
to the momenta before emission, pi,j and a measure for the emitted parton’s momentum,

dp2
⊥

p2
⊥

dz

(

1− λ p2
⊥

z(1− z)sij

)

, sik = 2pi · pj (5.14)

where we introduced λ→ 1 to explicitly keep track of these effects, which are otherwise
absent as p⊥ → 0 in the collinear limit. Owing to the invariance under rescaling the
spectator’s momentum, this is the only place where recoil effects do enter. Choosing a
phase space region related to an ordering in virtuality or transverse momentum,

4µ2 <
p2
⊥

z(1− z) < Q2 , (5.15)

we find

ΓVq (p2
⊥, Q

2) = CF

(

2 ln
Q2

p2
⊥
− 3

2
− 2λ

Q2

sij

)

, (5.16)

ΓVg (p2
⊥, Q

2) = CA

(

2 ln
Q2

p2
⊥
− 11

6
− 2λ

Q2

sij

)

. (5.17)
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5.2 Local Recoils, Form Factors and Coherence

Note that here, the recoil effects enter at the level of next-to-leading logarithms and the
coefficient of the leading logarithms turns out to be twice the correct result. The latter
observation has been noted since long [18]. From this example it is very clear that the
simple fact that the DGLAP splitting functions reproduce the correct soft behaviour is
not enough for the correct soft anomalous dimension. The wrong coefficient of the leading
logarithmic contributions may be attributed to a double counting of soft emissions,
originating from the fact that the above chosen phase space region does introduce an
overlap of the phase space available for emissions off either parton of the dipole.

Choosing angular ordering in the variable q̃ by disentangling soft and collinear limits2,
and imposing phase space constraints through a cutoff on the transverse momentum in
the soft limit(s),

q̃2 =
p2
⊥

z2(1− z)2
µ2 < z2q̃2 , (1− z)2q̃2 q̃2 < Q2 (5.18)

we recover the correct anomalous dimensions (5.12, 5.13) with recoil effects entering
beyond NLL,

ΓAOq (p2
⊥, Q

2) = CF

(

ln
Q2

p2
⊥
− 3

2

)

+ CF
p⊥
Q

(

1− 2λ
Q2

sij

)

+O
(

p2
⊥
Q2

)

, (5.19)

ΓAOg (p2
⊥, Q

2) = CA

(

ln
Q2

p2
⊥
− 11

6

)

+ 2CA
p⊥
Q

(

1− λQ
2

sij

)

+O
(

p2
⊥
Q2

)

, (5.20)

the subleading terms giving rise to power corrections in the form factor exponent.
Apart from the recoil effects, this result has a straightforward explanation: The phase

space region chosen for the angular ordered evolution provides disjoint regions for emis-
sions off either leg of the dipole, thereby removing the soft double counting observed
earlier. Note that this observation would then in principle allow to include local recoils
within the angular ordered DGLAP evolution.

5.2.3 A New Formalism Using Catani-Seymour Kernels

As outlined in the previous sections, taking a minimal choice to treat recoils yields a
dipole-type picture. Within such a cascade it is however difficult to maintain the strong
angular ordering, which is tied to the 1→ 2 nature of independent jet evolution.

Choosing the phase space to be restricted by a cutoff on the transverse momentum,
thereby assuming an ordering in p⊥ (or virtuality) is a much more natural picture to
consider for a dipole-type evolution. In addition, this also removes complications when
implementing matrix element corrections, either stand alone or for the purpose of match-
ing to NLO, as the first emission off a dipole then is indeed the hardest emission.

2Note that in the soft limit(s), z → ǫ , 1− ǫ, p2
⊥

scales as ǫ2.
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5 Coherent Showers with Local Recoils

To cure the problem of soft double counting generated by this evolution, one may mod-
ify the DGLAP splitting functions and ’continue’ them over the whole available phase
space in such a way, that the soft-singular pieces reproduce the correct soft behaviour
when adding both modified splitting functions.

More precisely, for each leg i we replace the eikonal part by the radiation pattern
associated with collinear emissions of pi

pi · pj
pi · q q · pj

→ pi · pj
pi · q (pi + pj) · q

(5.21)

while keeping the collinear parts exactly. Note that this minimal construction, which
does not modify the singular properties following from QCD, is nothing but the construc-
tion prescription for the subtraction kernels introduced in [9]: E.g. for gluon emission
off a final-final dipole we have in terms of the momentum fraction z and the variable y
introduced by Catani and Seymour

pi · pj
q · pj

=
1

1− z →
pi · pj

(pi + pj) · q
=

1

1− z(1− y) . (5.22)

This picture of local recoils using a single spectator parton is ideally supplemented
with exact factorisation of the phase space considering no kinematic approximation. One
choice, which so far has been implemented [20, 21] is to invert the kinematic mappings
as derived in [9].

For initial state radiation, taking the Catani-Seymour factorisation literally does have
shortcomings. Most prominently, the choice of keeping the initial state emitter’s momen-
tum collinear to the one before emission leads for example to the fact that a final state
singlet as in Drell-Yan lepton pair production, does receive a non-vanishing transverse
momentum from the very first shower emission only. Further, an initial-initial system
emitting a parton left the spectator parton unchanged, which might not be sufficient for
the description of the transverse momentum spectrum of the whole final state. The aim
of this work is to provide a formalism, which does overcome these problems. Further,
we are interested in the logarithmic accuracy and ordering of soft gluon radiation in our
setup reflecting coherence properties.

Starting from the final-state parametrisation given above, the outline of our formalism
is as follows: We obtain a parametrisation of the kinematics for initial state emitters
and/or spectators by considering the physical splitting processes while maintaining exact
energy-momentum conservation locally to each branching, i.e. involving the emitter-
emission system and a single spectator only. The spectator is restricted to take the
longitudinal recoil of the splitting only. For initial state radiation we do allow each
initial state emission to generate transverse momentum of the emitting incoming parton
in a backward evolution. This transverse momentum is then migrated to the complete
final state system by realigning the incoming partons to the beam axes at the end of the
evolution.
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5.2 Local Recoils, Form Factors and Coherence

For final-final dipoles, we find that the anomalous dimensions take the correct form
apart from the fact, that the dependence on the arbitrary hard scale Q2 is being replaced
by the dipole’s invariant mass sik,

ΓCSq (p2
⊥, Q

2) = CF

(

ln
sij
p2
⊥
− 3

2

)

− CFπλ
p⊥√
sij

+O
(

p2
⊥
Q2

)

, (5.23)

ΓCSg (p2
⊥, Q

2) = CA

(

ln
sij
p2
⊥
− 11

6

)

− CAπλ
p⊥√
sij

+O
(

p2
⊥
Q2

)

, (5.24)

with recoil effects entering beyond NLL.
We note that, in case of DGLAP kernels, the correct coefficient of the leading logarith-

mic contributions to the anomalous dimension is governed by the choice of boundaries
on the momentum fraction for a given (but arbitrary) hard scale Q2,

∫ 1−√κ

0

dz

1− z =
1

2
ln

(

Q2

p2
⊥

)

, (5.25)

with κ = p2
⊥/Q

2.
The above findings for the anomalous dimension can essentially be traced back to the

fact that the transition from a DGLAP kernel possessing a soft singularity ∼ 1/(1− z)
to the appropriate Catani-Seymour kernel (while keeping track of all recoil effects, i.e.
considering the soft limit at fixed p2

⊥) is the simple replacement

1

1− z →
(

1− κij
(1− z)

)

1− z
(1− z)2 + κij

, (5.26)

where κij = p2
⊥/sij . Here, the first factor is the effect of the finite recoil stemming from

the exact factorisation of the phase space measure.
Within the variables to be outlined in detail in the next section, we find that this

pattern generalises to the cases of initial state emitter or spectator partons, up to a sign
on the recoil term owing to timelike or spacelike virtualities of the emitter or whether
the relevant dipole scale is a spacelike momentum transfer or invariant mass.

Choosing the z boundaries (in the approximation considered above) to be given by

z < 1− p2
⊥
Q2

= 1− κ (5.27)

it is evident that the recoil contribution only gives rise to power corrections, while the
logarithmic contribution is given by

1

2

∫ 1

κ2

dξ

ξ + κij
=

1

2
ln

(

sij
p2
⊥

)

+ power corrections , (5.28)

thereby reproducing the correct coefficient up to the disappearance of the arbitrary
hard scale, an immediate consequence of the screening of the soft singularity at fixed
transverse momentum.
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5 Coherent Showers with Local Recoils

5.2.4 Structure of the Evolution

For final state radiation with final state spectator, our findings of the previous section
immediately signal a choice of the hard scale for a single dipole originating from a
hard process. Choosing an arbitrary hard scale Q2 6= sik will immediately result in the
appearance of spurious logarithmic contributions when performing the p2

⊥ integration.
For example, at fixed αs the leading logarithmic contributions for a dipole i, j, with

Casimir operators Ci,j associated to the partons, take the form

− ln ∆ij =
αs
4π

(C2
i + C2

j ) ln

(

Q2

µ2

)

ln

(

s2
ij

µ2Q2

)

+ NLL (5.29)

instead of the expected result

− ln∆ij =
αs
4π

(C2
i + C2

j ) ln2

(

Q2

µ2

)

+ NLL , (5.30)

the mismatch being manifest as an ambiguity at the level of next-to-leading logarithms.
We are therefore lead to the choice Q2 = sij , i.e. the hard scale associated to a dipole
is the respective invariant mass.

For initial state emitter or spectator partons, we assume that this generalises to choos-
ing the hard scale in such a way as to fill the complete phase space, modulo the infrared
cutoff.

Note that this choice does not determine the ordering per se, but only the choice of
hard scale and the shape of the phase space restriction when evolving between two scales.
The ordering is to be chosen in such a way, that the leading effects of multiple emissions
off each leg of the dipole do exponentiate. Due to the structure of the splitting kernels
given above and the additional complications from all finite recoil effects the explicit
exponentiation is beyond the scope of this paper.

Having however observed that we can reproduce the correct Sudakov anomalous di-
mension, while avoiding soft double counting we additionally note that within the vari-
ables chosen

p2
⊥ = 2

pi · q q · pj
pi · pj

(5.31)

for emission of a gluon of momentum q off a dipole (i, j). Ordering emissions in this
variable therefore corresponds to an ordering reproducing the most probable history of
multiple gluon emission according to the eikonal approximation in the limit of soft gluons
strongly ordered in energy.

It should further be noted that the angular ordering constraints for soft gluons are
indeed inherent to the p⊥-ordered evolution of a dipole cascade, as has been explicitly
shown in [?], provided that the transverse momentum is chosen to be spacelike in the
rest frame of a dipole. This is indeed the case for the evolution to be outlined in detail
in the following section.
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5.3 Final State Radiation

We therefore conclude that branchings within the physical kinematics outlined above
and based on the corresponding CS dipole splitting functions allow us to construct a
parton shower that has the right coherence properties. The final state emissions should
in this case be taken as outlined above, i.e. with the hard scale of a single cascade chosen
to be the dipole invariant mass and the evolution should be strictly ordered in transverse
momentum. However, in the naive adoption of the CS picture to a parton shower not
every initial state emission would contribute to the final state transverse momentum.
We will formulate a more suitable approach below.

5.3 Final State Radiation

5.3.1 Final State Spectator

Final state radiation with a final state spectator does represent the generic version of
the splitting kinematics chosen here. For a splitting (pi, pj) → (qi, q, qj) we choose the
standard Sudakov decomposition

qi = zpi +
p2
⊥

zsij
pj + k⊥ (5.32)

q = (1− z)pi +
p2
⊥

(1− z)sij
pj − k⊥ (5.33)

qj =

(

1− p2
⊥

z(1− z)sij

)

pj , (5.34)

where k2
⊥ = −2pi · pj ≡ −sij and k⊥ · pi,j = 0. The transverse momentum is defined in

the dipole’s rest frame to be purely spacelike,

p̂i,j =

(√
sij

2
,±p

)

, k̂⊥ = (0,p⊥) , p · p⊥ = 0 . (5.35)

Note that this does preserve the momentum of the emitting system, qi+ q+ qj = pi+pj.
The parametrisation gives rise to the phase space factorisation [9]

dφ(qi, q, qj|Q) = dφ(pi, pj|Q)
1

16π2

dφ

2π
dp2
⊥

dz

z(1− z)

(

1− p2
⊥

z(1− z)sij

)

(5.36)

Note that, in the collinear limit, this is the massless version of the kinematics as chosen
in [17]. It further constitutes the inversion of the ’tilde’-mapping, where the variables y
and z chosen in [9] are given by

y =
qi · q

qi · q + qj · q + qi · qj
=

p2
⊥

z(1− z)sij
, z =

pj · qi
pi · pj

. (5.37)
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Figure 5.1: Allowed phase space regions for emissions from a final-final dipole expressed
in the Dalitz variables xk = 2Q · pk/Q2 for a dipole of mass sij = 100 GeV
and infrared cutoff µ = 5 GeV. The shaded region is accessible for emissions
off the parton i, whereas the area enclosed by the solid line is accessible for
emissions off parton j. The area enclosed by the dotted line is an example of
the phase space excluded when starting at a scale lower than sij . Note that
the infrared cutoff is exaggerated for illustrative purposes only. In practise,
almost the whole physical phase space will be available.

The allowed phase space region (cf. Fig. 5.1) is obtained by considering the limits on
the emitter’s virtuality before emission (i.e. the invariant mass of the emitter-emission
pair),

4µ2 <
p2
⊥

z(1− z) < Q2
max = sij (5.38)

such that

µ2 < p2
⊥ <

Q2
max

4
, z± = z± =

1

2

(

1±
√

1− 4p2
⊥

Q2
max

)

. (5.39)

Averaging over azimuth, the final-final splitting kernels take the form

8παs
2qi · q

〈V (p2
⊥, z)〉 (5.40)
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such that the splitting probability is

dPij(p
2
⊥, z) =

αs
2π
〈V (p2

⊥, z)〉
(

1− p2
⊥

z(1− z)sij

)

dp2
⊥

p2
⊥

dz . (5.41)

Note that, comparing to the collinear limit, the effect of finite recoils is to act as a damp-
ing factor for large-angle hard emissions, provided that y < 1 which is a consequence of
the phase space boundary.

5.3.2 Initial State Spectator

For an initial state spectator we consider the crossing qj → −qa, pj → −pa, such that

qi = zpi +
p2
⊥

zsia
pa + k⊥ (5.42)

q = (1− z)pi +
p2
⊥

(1− z)sia
pa − k⊥ (5.43)

qa =

(

1 +
p2
⊥

z(1− z)sia

)

pa , (5.44)

where sia = 2pi · pa. Note that exact momentum conservation is trivially implemented
by just the fact that the parametrisation for a final state spectator does respect this
constraint. The transverse momentum is defined be purely spacelike in a frame where,

p̂i,a =

(√
sia
2

,±p

)

, k̂⊥ = (0,p⊥) , p · p⊥ = 0 . (5.45)

The phase space measure then obeys the convolution

dφF (qi, q, qa|Q; xa) = dφF (pi, pa|Q; xxa)
dφ

2π

x

16π2

dz

z(1− z)dp2
⊥ , (5.46)

where

x =
1

1 +
p2
⊥

z(1−z)sia

, z =
pa · qi
pa · pi

(5.47)

and it is straightforward to verify that this indeed gives rise to the phase space convolu-
tion as given in [9]. Including the parton distributions and the kinematic factor of the
partonic flux, the relevant measure is

fa(xa)

4qa · pb
dφF (qi, q, qa|Q; xa)dxa =

(

fa(xa/x)

fa(xa)
θ(x− xa)

dφ

2π

x

16π2

dz

z(1− z)dp2
⊥

)

fa(xa)

4pa · pb
dφF (pi, pa|Q; xa)dxa , (5.48)
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5 Coherent Showers with Local Recoils

where Pa and xa are the momentum of the incoming hadron and the momentum fraction
of the incoming parton respectively. pb denotes the momentum of the second incoming
particle in the collision entering the flux factor. The phase space limits can be obtained
as for the final state case,

4µ2 <
p2
⊥

z(1− z) < Q2
max , (5.49)

where, owing to x > xa, the hard scale of a dipole is now given by

Q2
max = sia

1− xa
xa

. (5.50)

The allowed phase space is shown in Fig. 5.2. Averaging over azimuth, the final-initial
splitting kernels take the form

8παs
2qi · q

1

x
〈V (p2

⊥, z)〉 (5.51)

such that the splitting probability is

dPia(p
2
⊥, z) =

αs
2π
〈V (p2

⊥, z)〉
fa(xa/x)

fa(xa)
θ(x− xa)

dp2
⊥

p2
⊥

dz . (5.52)

Note that the finite recoil enters only in the PDF ratio, reproducing the correct collinear
limit when x → 1. Once again, the effect of the finite recoil is a damping of hard
emissions for x ∼ xa.

5.4 A New Treatment of Initial State Radiation

5.4.1 Motivation

A construction of initial state radiation by just crossing prescriptions is not obvious
owing to the fact that the shower evolution is formulated as a backward evolution.

The physical variables thus need to be defined from the physical forward kinematics.
For the physical emission process qa → pa, q the relevant Sudakov decomposition for the
emission momentum q is

qforward = (1− z)qa +
p2
⊥

2n · qa(1− z)
n− k⊥ , (5.53)

where n is the backward lightcone direction defining the collinear direction, i.e. the final
or initial state spectator’s momentum.
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5.4 A New Treatment of Initial State Radiation

The parametrisation above is most conveniently inverted to backward evolution pa →
qa, q by considering the process in a frame where qa = pa/x, giving rise to

qbackward =
(1− z)
x

pa +
p2
⊥

2n · pa(1− z)
n− 1√

x
k⊥ . (5.54)

We therefore define the Lorentz invariant physical variables to be given by

x qa · q =
p2
⊥

1− z x n · q = (1− z)n · pa . (5.55)

The parametrisation keeping the emitter aligned with the beam axis can then be
related to a parametrisation where the initial state parton after (backward evolution)
emission does acquire a finite transverse momentum while keeping the spectator after
emission aligned with the one before emission.

It is this type of splitting kinematics which allows any emission off an initial state
parton to contribute transverse momentum to a final state system after having applied a
proper realignment boost once the parton shower evolution has terminated. Ideally, this
final boost should not be related to the parametrisation chosen but being determined
in a process dependent way such as to leave the interesting kinematic quantities of the
hard process invariant.

5.4.2 Final State Spectator

For initial state emissions with final state spectator, pa, pj → qa, q, qj, using the variables
introduced in [9],

x =
pa · pj

(pa − pj) · qa
u =

qj · qa
(pa − pj) · qa

, (5.56)

we use the parametrisation

qa =
1− u
x− upa +

u

x

1− x
x− upj +

1

u− xk⊥ (5.57)

q =
1− x
x− upa +

u

x

1− u
x− upj +

1

u− xk⊥ (5.58)

qj =
(

1− u

x

)

pj , (5.59)

which does preserve the momentum transfer, q + qj − qa = pj − pa. The transverse
momentum obeys

k2
⊥ = −u(1− u)1− x

x
saj saj = 2pa · pj . (5.60)

43



5 Coherent Showers with Local Recoils

Considering the collinear limit u→ 0, it is evident that the relevant momentum fraction
is x and we are therefore lead to choose the physical variables to be given by

u =
κ

1− z , x =
z(1− z)− κ
1− z − κ , κ =

p2
⊥
saj

. (5.61)

Indeed, the Lorentz transformation

Rµ
ν =

δµν +
x

(1− u)(x− u)
kµ⊥k⊥ν
pa · pj

+
u(1− x)
x− u

KµKν

pa · pj
+

x

x− u
kµ⊥Kν −Kµk⊥ν

pa · pj
(5.62)

with K = pa + pj relates the above parametrisation to one preserving the direction of
the incoming parton,

Rqa =
1

x
pa (5.63)

Rq = upj + (1− u)1− x
x

pa − k⊥ (5.64)

Rqj = (1− u)pj + u
1− x
x

pa + k⊥ . (5.65)

In order to derive the phase space convolution properties associated with the parametri-
sation given above, we employ the formalism outlined in the appendix. Substituting

u =
y

w + y(1− w)
, x =

1

w + y(1− w)
(5.66)

the parametrisation above is mapped to

(−qa) = w(−pa) + (1− w) y pj − q⊥ (5.67)

q = (1− w)(−pa) + w y pj + q⊥ (5.68)

qj = (1− y) pj , (5.69)

with q2
⊥ = −sajyw(1− w) such that the generalised phase space measure factors as

dφ(qj , q,−qa|Q) =
saj

16π2

dφ

2π

dx

x3
du dφ(pj,−pa|Q) . (5.70)

Having identified x to be the relevant momentum fraction from the parametrisation
5.63-5.65, we consider the hadronic collision in a frame where3

Pa · qa =
1

x
Pa · pa , N · qa =

1

x
N · pa , (5.71)

3Note that there is no a priori relation between incoming hadron and parton momenta in our formu-
lation. N denotes the light-like momentum defining the collinear direction and is taken along the
momentum of the beam not containing the emitter parton.
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such that the phase space convolution properties of both parametrisations become equiv-
alent at hadron level,

dφF (qi, q, aa|Q; xa) = dφF (pi, pa|Q; xxa)
dφ

2π

1

16π2

dz

z(1− z)− κdp2
⊥ , (5.72)

We stress that the crucial difference is related to the fact that, considering the physical
forward evolution, our parametrisation does generate a finite transverse momentum for
the parton entering the hard process after additional parton emission.

Averaging over azimuth, the initial-final splitting kernels take the form

8παs
2qa · q

1

x
〈V (p2

⊥, z)〉 (5.73)

such that the splitting probability is

dPai(p
2
⊥, z) =

αs
2π
〈V (p2

⊥, z)〉
fa(xa/x)

fa(xa)
θ(x− xa)

dp2
⊥

p2
⊥

(1− z)dz
z(1− z)− κ . (5.74)

Note that in the collinear limit, κ→ 0 we have x→ z such that the collinear behaviour
is properly reproduced.4

The phase space boundaries are given by the requirement that xa < x,

µ2 < p2
⊥ <

(1− xa)saj
4

, z± =
1

2

(

1 + xa ± (1− xa)
√

1− 4p2
⊥

(1− xa)saj

)

. (5.75)

5.4.3 Initial State Spectator

Initial state radiation with initial state spectator, pa, pb → qa, q, qb is described by the
parametrisation

qa =
1

v + x
pa +

v

x

1− v − x
v + x

pb +
1

v + x
k⊥ (5.76)

q =
1− v − x
v + x

pa +
v

x

1

v + x
pb +

1

v + x
k⊥ (5.77)

qb =
(

1 +
v

x

)

pb , (5.78)

preserving q − qa − qb = −pa − pb. The transverse momentum is defined to be purely
spacelike in the dipole’s rest frame and obeys

k2
⊥ = −(1− v − x)v

x
sab sab = 2pa · pb . (5.79)

4For readability we have suppressed indexing a possible flavour change of the incoming parton.
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Figure 5.2: Available phase space for a final-initial dipole with invariant momentum

transfer
√
saj =

√
−t = 100 GeV and an infrared cutoff of 5 GeV. The

shaded region is accessible starting at the hard scale, the region enclosed by
the solid line is an example of the phase space excluded when starting at a
lower scale. The phase space regions for an initial-final dipole are identical.
For a final-initial dipole, the variables are xp = x, zp = z, for the initial-final
one xp = x, zp = 1 − u. Note that in the latter case u → 1 and u → 0
correspond to a collinear limit.
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5.4 A New Treatment of Initial State Radiation

The variables x and v are those introduced in [9],

x =
pa · pb
qa · qb

, v =
qa · q
qa · qb

, (5.80)

and we define the physical variables to be given by

x =
z(1− z)− κ

1− z , v =
κ

1− z , κ =
p2
⊥
sab

. (5.81)

Note that the Lorentz transformation

Sµν =

δµν +
pb · pa

pb · qa qa · pa
qµa qa,ν +

pb · qa
pb · pa qa · pa

pµapa,ν −
1

qa · pa
(qµapaν + pµaqaν) (5.82)

does transform this parametrisation to a parametrisation where

Sqa =
1

x+ v
pa , Sqb =

x+ v

x
pb . (5.83)

Following the arguments of the previous section we then find the phase space convolution

dφF (qa, q, qb|Q; xa, xb) =

dφF
(

pa, pb|Q; (x+ v)xa,
x

x+ v
xb

)

dφ

2π

1

16π2

dz

z(1− z)− κdp2
⊥ . (5.84)

Averaging over azimuth, the initial-final splitting kernels take the form

8παs
2qa · q

1

x
〈V (p2

⊥, z)〉 (5.85)

such that the splitting probability is

dPab(p
2
⊥, z) =

αs
2π
〈V (p2

⊥, z)〉Fab
dp2
⊥

p2
⊥

(1− z)dz
z(1− z)− κ , (5.86)

with

Fab =
fa(xa/(x+ v))

fa(xa)
θ(x+ v − xa)

fb(xb(x+ v)/x)

fb(xb)
θ

(

x

x+ v
− xb

)

(5.87)

the ratio of incoming parton flux. 5 Note that in the collinear limit, v, κ→ 0 and x→ z
such that we find the correct collinear behaviour.

5As for the final state spectator, we have suppressed indexing a possible flavour change of the incoming
parton.
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5 Coherent Showers with Local Recoils

We remark that it would be possible to keep the spectator unchanged upon prop-
erly substituting the integrations over the incoming momentum fractions (the Jacobian
being equal to one). This, however, would invalidate the fact that the above given
parametrisation of the splitting kinematics does preserve energy-momentum locally in-
volving the emitter-emission-spectator system only (in fact, after applying the relevant
Lorentz transformation S this would constitute the inversion of the kinematics as used
in the dipole subtraction context). A further argument to not keeping the spectator
unchanged is that, following the discussion on soft and collinear factorisation, we see no
reason why the emission off the colour connected system pa, pb should leave pb unchanged
except for a strictly soft and/or collinear emission.

The phase space limits are now determined from x > xaxb = τ to be given by

z± =
1

2

(

1 + τ ± (1− τ)
√

1− 4p2
⊥

(1− τ)2sab

)

, p2
⊥ <

(1− τ)2sab
4

, (5.88)

and are shown in Fig. 5.3.

5.5 An Aside on 1/Nc-Suppressed Terms

5.5.1 Motivation

The shower algorithm as outlined in the previous sections is defined in the large-Nc limit,
thereby neglecting colour correlations

m〈M(q1, ..., qm)|Cij|M(q1, ..., qm)〉m (5.89)

between partons (i, j) which are not colour connected in the large-Nc limit. Experience
shows that from a purely phenomenological point of view, this approximation seems to
be justified by the fact that all existing parton showers (to which this approximation
is indeed common) give a reasonable description of all collider data collected so far6.
A quantitative analysis has however not been carried out so far. Though algorithms
have been suggested to fully include these correlations [15], they seem far from being
practical.

We will here outline an algorithm which is indeed practical, if a program dealing with
colour structures in a certain basis of SU(N) tensors is available. Since colour correla-
tions do have their origin in factorisation of QCD amplitudes for soft gluon emission, we
shall limit ourselves to this case only. Owing to the structure of the colour correlations
for factorisation at O(αs), this picture fits nicely into the algorithm outlined already.

6It should be noted, that the parton showers do not work in a strict large-Nc limit, keeping CF 6= CA/2
for Nc = 3.
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Figure 5.3: Available phase space for emissions off an initial-initial dipole of mass
100 GeV with τ = 0.02 and infrared cutoff 5 GeV. The shaded region is
the available phase space when starting from the hard scale, the region en-
closed by the solid line is an example of the phase space excluded when
starting at a lower scale.
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5.5.2 Modification of the Dipole Splitting Kernels

As already noted, the Catani-Seymour splitting kernels do contain the correct soft be-
haviour. We will therefore use the soft-singular parts of these kernels, as well as the
kinematic parametrisation and phase space boundaries outlined previously, but modify
them to include the ratio of colour correlated matrix elements squared at each step of
the evolution. To be precise, gluon emission at a scale p⊥ off an emitter-spectator pair,
pi, pj → qi, q, qj in association with m other partons is now described by a splitting
probability

dSij(p⊥, z) = dP soft
ij (p⊥, z)

m〈M(p1, ..., pm)|Cij|M(p1, ..., pm)〉m
m〈M(p1, ..., pm)|M(p1, ..., pm)〉m

(5.90)

where dP soft
ij (p⊥, z) denotes the soft singular part of the splitting probabilities introduced

earlier. This form of the splitting kernels is motivated by considering successive soft-
gluon approximations to the ratio of exact tree-level matrix elements squared,

|M(q1, ..., qm, q)|2
|M(p1, ..., pm)|2 , (5.91)

thereby iteratively constructing final states which are distributed according to the tree
level matrix elements in the soft gluon approximation, provided we consider all emitter-
spectator combinations for all pairs of partons. The modified dipole splitting kernels will
thus generate the soft gluon emission distributed according to the full colour correlations.

A major technical obstacle in this algorithm is the fact that the modified splitting
kernels will not be positive definite, posing a problem to a Monte Carlo implementation
along traditional lines. Extensions of the Monte Carlo algorithm being used here to the
case of non-positive definite splitting kernels are proposed in section 7.3.1.

5.5.3 Calculation of the Soft Gluon Amplitudes

In order to evaluate the amplitude |M〉m+1, which will enter the generation of splittings
after having emitted a soft gluon with momentum q off a partonic ensemble p1, ..., pm
in association with an emitter i and spectator j, we will have to define a physical gluon
polarisation, which we take to be given in terms of helicities ± and a phase ψ as

ǫ(q, ψ) = ǫ+(q) + eiψǫ−(q) . (5.92)

Note that the contributions to the polarisation dependent square of the eikonal current,

ǫ(q, ψ) · pi ǫ∗(q, ψ) · pj
pi · k pj · k

(5.93)
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admit the same partial fractioning underlying the construction of the splitting kernel
Sij , such that we select ψ with density given by the ratio of polarisation dependent to
polarisation summed amplitude squared, i.e.

Re(ǫ(q, ψ) · pi ǫ∗(q, ψ) · pj)
pi · pj

dψ

2π
. (5.94)

|M〉m+1 is then calculated by acting the resulting eikonal current on |M〉m,

|M〉m+1 =
m
∑

l=1

ǫ∗(q, ψ) · pl
q · pl

Tl|M〉m . (5.95)

The initial condition for this recursion is set by the amplitude associated to the hard
process from which the cascade did start evolving.

5.6 Conclusions

In this chapter we have specified a parton shower algorithm based on Catani–Seymour
subtraction kernels. The coherence properties of soft gluon radiation have been studied
in detail, and the algorithm has been shown to correctly take soft gluon coherence into
account. As opposed to similar approaches followed by other groups, [20, 21], a much
more physical treatment of initial state radiation has been constructed. Here, the final
state transverse momentum indeed builds up from multiple initial state emissions, as is
required to properly resum the leading contributions to all orders.

The advantage of the algorithm is an ordering in transverse momentum, such that
the first emission generated is indeed the hardest one – it is this fact which will greatly
simplify the matching to NLO QCD calculations. Finally, a possible extension of the
algorithm to include colour correlations beyond the large-Nc limit has been proposed.

All technical details necessary for an implementation have been given, and the full
algorithm as implemented as an add-on module to the Herwig++ [22] event generator,
will be specified in chapter 8.
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6 Matching Parton Showers and

Higher Orders

6.1 Overview

Matching parton showers and fixed order QCD calculations has been a vital research
field in recent years. Starting from the pioneering work of Frixione and Webber, [23],
which introduced the first successful implementation of matching parton showers and
NLO QCD calculations, many developments have been achieved. Motivated by schemes
for combining parton showers and tree-level matrix elements, [24, 25], first studies in
the direction of performing a similar merging at the level of NLO QCD have also been
carried out, [26].

The purpose of this chapter is to discuss in detail the matching of parton showers and
NLO calculations. We will here derive the matching conditions on very general grounds,
using the formalism introduced in chapter 4. We will show that we can exactly repro-
duce the matching types known so far, MC@NLO [23], and POWHEG, [27], identifying
them to be both members of the same class – the essential difference being indeed an
improvement to the subsequent parton shower, which is present for the latter scheme.

Since the general formalism considered indeed provides the right conditions for NLO
matching, we calculate the expansion of parton shower to O(α2

s), deriving matching
conditions to NNLO QCD calculations. Such an approach has not yet been considered
in the literature.

Before turning to detailed calculations, the next section will introduce the subject of
NLO matching in terms of a simple toy model.
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6 Matching Parton Showers and Higher Orders

6.1.1 A Toy Model of NLO Matching

The toy model starts by considering a very simple, one-dimensional phase space for the
Born degrees of freedom x, and another degree of freedom y referring to the real emission
contribution. y → 0 is considered the limit of unresolved parton emission.

Let O(x) an observable on the Born phase space, and O(x, y) on the real emission
phase space. Most importantly, O will have to be infrared safe, i.e.

O(x, y) = O(x) + yC(x, y) +O(y2) (6.1)

with C regular at y = 0.
At LO, the prediction for O is simply given by

〈O〉LO =

∫ 1

0

dxB(x)O(x) . (6.2)

At NLO, O receives contributions from Born, one-loop, and real-emission contributions,
respectively,

〈O〉NLO =

∫ 1

0

dxB(x)O(x) (6.3)

+ αs

∫ 1

0

dxV (x)O(x)

+ αs

∫ 1

0

dx

∫ 1

0

dy
R(x, y)

y
O(x, y) ,

where the real emission residue in y = 0 is R(x, 0) = B(x) and within dimensional
regularisation (restricted to this two-dimensional model), the virtual contribution will
as well exhibit a divergence in terms of a pole in ǫ = (d− 4)/2,

V (x) = −B(x)

ǫ
+ V̄ (x) . (6.4)

Within the subtraction formalism the NLO prediction is turned into

〈O〉NLO =

∫ 1

0

dxB(x)O(x) (6.5)

+ αs

∫ 1

0

dxV (x)O(x) + αs

∫ 1

0

dx

∫ 1

0

dy
A(x, y)

y1−ǫ O(x)

+ αs

∫ 1

0

dx

∫ 1

0

dy
R(x, y)O(x, y)− A(x, y)O(x)

y
.
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The singular behaviour of the subtraction term is fixed by the singularities of the real
emission, i.e. A(x, y) = B(x) +O(y), such that

〈O〉NLO =

∫ 1

0

dxB(x)O(x) (6.6)

+ αs

∫ 1

0

dx(V̄ (x) + Afinite(x))O(x) +O(ǫ)

+ αs

∫ 1

0

dx

∫ 1

0

dy
R(x, y)O(x, y)−A(x, y)O(x)

y
,

where all contributions are now numerically integrable.
A parton shower with splitting kernels P (x, y)/y, starting evolving off the Born pro-

cess, will predict O as

〈O〉PS =

∫ 1

0

dx

∫ 1

0

dyB(x)

(

δ(y)∆(x) + θ(y − µ)αs
P (x, y)

y
∆(x)

)

O(x, y) (6.7)

with the Sudakov from factor

− ln ∆(x) =

∫ 1

µ

dyαs
P (x, y)

y
. (6.8)

Expanding in αs, we find

〈O〉PS =

∫ 1

0

dxB(x)− αs
∫ 1

0

dx

∫ 1

µ

dy
P (x, y)

y
(O(x)− O(x, y)) +O(α2

s) . (6.9)

The αs coefficient in this contribution will be double counted, when naively letting the
parton shower act on events distributed according to the subtracted NLO calculation.1.

Matching NLO and parton shower now proceeds through subtracting this double
counted contribution from the fixed order,

〈O〉NLO,matched =

∫ 1

0

dxB(x)O(x) (6.10)

+ αs

∫ 1

0

dx(V̄ (x) + Afinite(x))O(x) +O(ǫ)

+ αs

∫ 1

0

dx

∫ 1

0

dy
P (x, y)− A(x, y)

y
O(x)

+ αs

∫ 1

0

dx

∫ 1

0

dy
R(x, y)− P (x, y)

y
O(x, y) .

1Note that the parton shower starting off the real emission contribution will change this only at
formally higher order O(α2

s)
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Here we assumed that letting the infrared cutoff of the parton shower µ to zero only
produces power corrections. This has already been shown on general grounds in sec-
tion 4.2.3. As these contributions are in any way subject to the dynamics of a hadroniza-
tion model, this poses no inconsistency when considering a complete event simulation.
Note that it is now also possible to generate events with finite weights, provided the
splitting kernels resemble the singular behaviour of the real emission contribution (and
hence the subtraction terms, as well).

Eq. 6.10 is the most general matched NLO prediction. Simplifications may however
be obtained by choosing a parton shower behaving ‘nice’ in this context, in particular
either P (x, y) = A(x, y), or P (x, y) = R(x, y), removing one of the contributions needed
to be calculated in the fixed-order part of the simulation.

6.2 The General Procedure

For a fixed-order cross section at the r-th order in perturbation theory, several contri-
butions of different final state multiplicity, dσk(pn|Q;µ) (in relative O(ᾱks ) with respect
to the lowest order, ᾱs denoting the running coupling at a fixed reference scale cf. sec-
tion 4.4.4) have to be considered. In order to deal with these contributions on equal
footing, and to make use of the formalism introduced in chapter 4, we define the gener-
ating functional of fixed-order cross sections up to kmax’th order by

σ(Q, µ(t))[u] =
kmax
∑

k=0

∑

n

∫

dσk(pn|Q;µ(t))

dφ(pn)
u(pn)dφ(pn) +O(ᾱkmax+1

s ) , (6.11)

where t sets a hard scale for the process at hand.
Making use of the generating functional of parton shower transition probabilities,

Z(pn, t
′, t)[u] the cross sections after parton showering can now easily be obtained by

replacing the the test functions u by Z,

σ+PS(Q, µ(t))[u] =

σ(Q, µ(t))[Z(µIR, t)[u]] ≡
kmax
∑

k=0

∑

n

∫

dσk(pn|Q;µ(t))

dφ(pm)
Z(pn, µIR, t)[u]dφ(pn) . (6.12)

µIR denotes the infrared cutoff of the parton shower. The matching condition is given
by demanding that the matched prediction, σmatched(Q, µ(t))[u], when evolved by the
parton shower, is equal to the fixed-order prediction up to the desired order ᾱkmax

s ,

σmatched+PS(Q, µ(t))[u] = σ(Q, µ(t))[u] +O(ᾱkmax

s ) (6.13)
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It can always be written as

σmatched(Q, µ(t))[u] = σ(Q, µ(t))[u]− σc(Q, µ(t))[u] , (6.14)

where σc(Q, µ(t))[u] contains the contributions double counted by the parton shower,
i.e. it is the fixed-order expansion of σ+PS(Q, µ(t))[u] up to the desired order, excluding
the fixed-order itself,

σc(Q, µ(t))[u] = σ+PS(Q, µ(t))[u]|O(ᾱkmax
s ) − σ(Q, µ(t))[u] , (6.15)

where the vertical line to the right denotes truncation of the expansion at the indicated
order. The task of calculating the matching conditions to a fixed-order prediction thus
is in calculating the fixed order expansion of the parton shower generating functional Z,
which is carried out explicitly up to O(α2

s) in the following section.

For practical purposes we shall see that the infrared cutoff has to be removed in the
matched fixed-order prediction, such that the matching is formally correct only up to
power corrections, cf. section 4.2.3,

σmatched+PS(Q, µ(t))[u] = σ(Q, µ(t))[u] +O(ᾱkmax

s ) + power corrections . (6.16)

6.3 Fixed-Order Expansions of a Parton Shower

In this section the fixed-order expansions of a parton shower to NLO (O(αs)) and
NNLO (O(α2

s)), as needed to facilitate the matching to NLO and NNLO calculations,
respectively, are calculated. The underlying formalism has already been outlined in
section 4.4.4.

6.3.1 Parton Showers to O(αs)

We will here consider a parton shower being built on splitting kernels in O(αs). The
scale choice for αs at the NLO level is of formally higher order, such that

P (qm|pn, t) = a(t)P (1,1)(qm|pn, t)δm,n+1 +O
(

a2(t)
)

(6.17)

= ᾱsP̄
(1,1)(qm|pn, t)δm,n+1 +O

(

ᾱ2
s

)
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with P = P̄ . The contributions Z(0,1) to the generating functional in leading and next-
to-leading order satisfy

Z(0)(pn, t
′, t) = u(pn) (6.18)

Z(1)(pn, t
′, t) =

∫ t

t′
dτ

∫

P̄ (1,1)(qn+1|pn, τ) (6.19)

×
(

Z(0)(qn+1, t
′, τ)− Z(0)(pn, t

′, τ)
)

dφ(qn+1)

=

∫ t

t′
dτ

∫

P̄ (1,1)(qn+1|pn, τ) (u(qn+1)− u(pn)) dφ(qn+1) .

This will be the main ingredient to derive NLO matching. Note that the structure is
similar to that of a subtracted real emission – a ‘Born type’ configuration pn is subtracted
from the ‘real emission configuration’, qn+1.

6.3.2 Parton Showers to O(α2
s)

Starting from NNLO, the scale choice for the strong coupling cannot be considered
being of formally higher order. To start with, we consider the parton shower built from
splitting kernels up to order a2(t), i.e.

P (qm|pn, t) = a(t)P (1,1)(qm|pn, t)δm,n+1 (6.20)

+ a2(t)P (2,1)(qm|pn, t)δm,n+1

+ a2(t)P (2,2)(qm|pn, t)δm,n+2 +O(a3(t)) ,

The first contribution is the leading order splitting emitting one additional parton, the
second is a one-loop correction to this splitting, while the third corresponds to a splitting
emitting two additional partons. These kernels are related to the desired fixed-order
expansion by the running chosen for αs,

a(t) = ᾱs + C(µ(t), µR)ᾱ2
s +O

(

ᾱ3
s

)

, (6.21)

P̄ (1,1)(qn+1|pn, t) = P (1,1)(qn+1|pn, t) (6.22)

P̄ (2,1)(qn+1|pn, t) = P (2,1)(qn+1|pn, t) + C(µ(t), µR)P (1,1)(qn+1|pn, t) (6.23)

P̄ (2,2)(qn+2|pn, t) = P (2,2)(qn+2|pn, t) . (6.24)
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The required next step in the recursive evaluation of the generating functional is then
given by

Z(2)(pn, t
′, t) =

1

2

(

Z(1)(pn, t
′, t)
)2

Z(0)(pn, t′, t)

+

∫ t

t′
dτ

∫

P̄ (1,1)(qn+1|pn, τ)
(

Z(1)(qn+1, t
′, τ)− Z(1)(pn, t

′, τ)
Z(0)(qn+1, t

′, τ)

Z(0)(pn, t′, τ)

)

dφ(qn+1)

+

∫ t

t′
dτ

∫

P̄ (2,1)(qn+1|pn, τ)
(

Z(0)(qn+1, t
′, τ)− Z(0)(pn, t

′, τ)
)

dφ(qn+1)

+

∫ t

t′
dτ

∫

P̄ (2,2)(qn+2|pn, τ)
(

Z(0)(qn+2, t
′, τ)− Z(0)(pn, t

′, τ)
)

dφ(qn+2) .

(6.25)

Inserting the results for Z(0) and Z(1) we find

Z(2)(pn, t
′, t) =

∫ t

t′
dτ

∫ τ

t′
dτ ′
∫

P̄ (1,1)(qn+2|qn+1, τ
′)P̄ (1,1)(qn+1|pn, τ)

× (u(qn+2)− u(qn+1)) dφ(qn+1)dφ(qn+2)

−
∫ t

t′
dτ

∫ τ

t′
dτ ′
∫

P̄ (1,1)(kn+1|pn, τ)P̄ (1,1)(qn+1|pn, τ ′)

× (u(qn+1)− u(pn)) dφ(qn+1)dφ(kn+1)

+

∫ t

t′
dτ

∫

P̄ (2,1)(qn+1|pn, τ) (u(qn+1)− u(pn)) dφ(qn+1)

+

∫ t

t′
dτ

∫

P̄ (2,2)(qn+2|pn, τ) (u(qn+2)− u(pn)) dφ(qn+2) .

(6.26)

Here, the first term corresponds to a subtracted real emission for parton emission off a
configuration which has already been produced by a first parton shower emission accord-
ing to the lowest order splitting kernel. The second term amounts to a subtracted real
emission contribution according to the lowest order kernel including a ‘virtual’ contribu-
tion originating from integrating over unresolved emissions which could have happened
at scales larger than the emission scale. The third term is completely analogous to the
one already encountered for the expansion up to O(αs), now considering the one-loop
corrected single parton emission kernel. Finally, the last term represents subtracting a
Born-type configuration from a double real emission configuration. As for the NLO case,
all of these contributions are very similar to the ones encountered in a NNLO calculation
carried out within subtraction. This will further be discussed in section 6.5.
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6.4 NLO Matching

In this section we will analyse the matching of a parton shower and NLO QCD cor-
rections. We will first introduce the generating functional for the NLO cross section in
the context of the subtraction formalism, before deriving the general ‘master formula’
as already sketched in the toy model given in the introduction. We will not consider
a particular subtraction scheme, as the general structure for these is dictated by the
singularity structure anyway. Examples of schemes being widely in use are dipole sub-
traction, [9] and FKS, [6].

6.4.1 The NLO Generating Functional

The subtraction terms being used in the context of NLO calculations are indeed similar
to the O(αs) splitting kernels used in a parton shower and may – regarding the general
structure – be thought of as being the inverse of a splitting kernel: a mapping is per-
formed from a n+1 parton configuration to a n-parton configuration being accompanied
by extracting the singular behaviour of the real emission matrix element.

More precisely, the subtraction terms are introduced as auxiliary cross sections to be
added and subtracted from the NLO calculation, together with an exact factorisation of
the real emission phase space similar to the one introduced when deriving parton shower
splitting kernels in section 4.2.2:

dσ
(1,1)
A (qn+1|Q;µ) = ᾱsD

(1,1)(pn|qn+1;µ)dφF (qn+1|Q;µ) (6.27)

= ᾱs
∑

α

∫

D(1,1)
α (pn|qn+1;µ)dφα1 (qn+1|pn;µ)dφF (pn|Q;µ) .

In the last line the phase space convolution associated to the kinematic mapping has been
introduced similarly to the case already used for the derivation of the splitting kernels.
Owing to the presence of spin correlations in the case of collinear parton emission off a
gluon, the D(1,1) have to be considered functions of the Born amplitude, a factorisation
in terms of the Born amplitude squared (and hence a factorisation of the auxiliary cross
section w.r.t. the Born cross section) being present only upon performing the integration
of the azimuthal degrees of freedom.

Since the subtraction terms D are constructed to reproduce the singular behaviour
of the real emission matrix element squared, their analytic integration over the one-
parton phase space in d dimensions will cancel the poles in ǫ being present in the virtual
corrections and the counter term used to renormalise the parton distribution functions by
virtue of the KLN theorem, as discussed in chapter 3. Within the subtraction formalism
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the final form of the NLO generating functional is then given by

σNLO(Q, µ)[u] =

∫

u(pn)dσ
(0,0)(pn|Q;µ) (6.28)

+ ᾱs

∫

u(pn)
(

dσ(1,0)(pn|Q;µ) + dσ
(1,0)
FC (pn|Q;µ)

+ D(1,1)(pn|qn+1;µ)dφF (qn+1|Q;µ)
)
∣

∣

ǫ=0

+ ᾱs

∫

(

dσ(1,1)(qn+1|Q;µ)u(qn+1)

− D(1,1)(pn|qn+1;µ)u(pn)
)

dφF (qn+1|Q;µ) .

As for the splitting kernels, we adopted the convention that superscripts (n,m) indicate
a contribution of order n in the strong coupling accompanied by emission ofm additional
partons both with respect to the leading order considered. The contributions in eq. 6.28
in order of their appearance are the leading order cross section, the sum of one-loop,
factorisation counter term and analytic integral of the subtraction term (to be considered
for ǫ = 0 after analytic cancellation of the poles), as well as the real emission contribution
accompanied by the unintegrated subtraction term.

The test functions appearing along with the individual contributions can directly be
translated in terms of Monte Carlo events being of either Born (u(pn)) or real emis-
sion (u(qn+1)) type. We will from now on drop the factorisation counter term and the
reference to the parton luminosity, when not relevant – these contributions pose no
conceptual problem, the factorisation counter term, after a proper deconvolution, can
always be attributed to be part of the virtual correction and the parton luminosity is
considered to be part of the phase space measure anyway.

6.4.2 Structure of the Matched Generating Functional

The contribution double counted by the parton shower can directly be inferred from
section 6.3.1:

σNLO,c(Q, µ(t))[u]|O(ᾱs) = ᾱs

∫

dσ(0,0)(pn|Q;µ(t)) (6.29)

×
∫ t

µIR

dτ

∫

P̄ (1,1)(qn+1|pn, τ) (u(qn+1)− u(pn)) dφ(qn+1)

Denoting by dσ
(1,0)
finite the contributions of virtual corrections, collinear counter term, and

integrated subtraction dipole after cancellation of the ǫ poles, the matched generating
functional is readily obtained from the general recipe, subtracting the double counted
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contributions from the NLO generating functional:

σNLO,matched(Q, µ(t))[u] =

∫

u(pn)
(

dσ(0,0)(pn|Q;µ(t)) + ᾱsdσ
(1,0)
finite(pn|Q;µ(t))

)

+ ᾱs
∑

α

∫

Ω(µIR,t)

P (1,1)
α (qn+1|pn; tα(qn+1))dφ

α
1 (qn+1|pn)u(pn)dσ(0,0)(pn|Q;µα(qn+1))

− ᾱs
∑

β

∫

D
(1,1)
β (pn|qn+1;µ(t))dφβ1 (qn+1|pn)u(pn)dφ(pn|Q)

+ ᾱs

∫

u(qn+1)dσ
(1,1)(qn+1|Q;µ)u(qn+1)dφ(qn+1|Q)

− ᾱs
∑

α

∫

Ω(µIR,t)

P (1,1)
α (qn+1|pn; tα(qn+1))dφ

α
1 (qn+1|pn)u(qn+1)dσ

(0,0)(pn|Q;µα(qn+1)) ,

(6.30)

where µα(qn+1)) ≡ µ(tα(qn+1)). Several remarks are in order. First, we considered the
general possibility that the kinematic mappings used by the parton shower (correspond-
ing to the summation index α) may not coincide with those used by the subtraction
terms (index β). We also kept the full dependence on the parton shower infrared cutoff
and the scale choices imposed by the splitting kernels.

It should be observed, that the matched generating functional delivers basically three
categories of events: Born events with weights given by the Born and finite virtual cross
sections, Born-type events with weights given by the difference of splitting kernels times
the Born cross section and subtraction terms (including a proper Jacobian after having
mapped either contribution to use the kinematic mapping of the other one), and real
emission type events with weights given by the real emission cross section minus the
splitting kernels times the Born cross section.

For practical purposes, the associated weights should be finite. Provided that the
parton shower kernels properly reproduce the singular behaviour of the real emission
matrix element, this is possible only upon removing the parton shower cutoff. Note,
however, that this change merely gives rise to a power correction as discussed in sec-
tion 4.2.3, which we will neglect. Attributing the possibility that t and tα(qn+1) are
chosen such that not all phase space may be available to parton shower emissions to
a vanishing splitting kernel in the non-accessible region, while including a Jacobian to
translate parton shower kinematic mappings to the ones used in the subtraction terms
and taking the scale µ to be independent of the parton shower scales, we can rewrite

∫

Ω(µIR,t)

P (1,1)
α (qn+1|pn; tα(qm+1))dφ

α
1 (qn+1|pn)dσ(0,0)(pn|Q;µ(tα(qm+1))) =

∫

P
(1,1)
β,eff (qβn+1(pn)|pn;µ)dφβ1 (qn+1|pn)dφ(pn|Q) (6.31)
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and, inverting the kinematic mapping qβ,

P
(1,1)
β,eff (qβn+1(pn)|pn;µ)dφβ1(qn+1|pn)dφ(pn|Q) = P

(1,1)
β,eff (qn+1|pβn(qn+1);µ)dφ(qn+1|Q) ,

(6.32)

where P
(1,1)
β,eff now is a product of the splitting kernel, the Jacobian needed to translate

the mappings α→ β, and the Born differential cross section.
This contribution does, however, in general not reproduce the point-wise singular

behaviour of the real emission contribution including the spin correlations. In order
to practically perform the matching, we therefore further assume that Pβ,eff has been
modified in such a way as to reproduce the spin correlations with the constraint that the
azimuthal average reproduces the kernel being used by the parton shower. The matching
condition is then correct upon azimuthal average, as has for example been discussed in
the context of the MC@NLO matching, [23].

In any case, the structure of the matched generating functional can now be cast into
a more transparent form,

σNLO,matched(Q, µ)[u] =

∫

u(pn)
(

dσ(0,0)(pn|Q;µ) + ᾱsdσ
(1,0)
finite(pn|Q;µ)

)

(6.33)

+ ᾱs
∑

β

∫

(

P
(1,1)
β,eff (qβn+1(pn)|pn;µ)−D(1,1)

β (pn|qβn+1(pn);µ)
)

× u(pn)dφ
β
1 (qn+1|pn)dφ(pn|Q)

+ ᾱs

∫

(

dσ(1,1)(qn+1|Q;µ)−
∑

β

P
(1,1)
β,eff (qn+1|pβn(qn+1);µ)

)

× u(qn+1)dφ(qn+1|Q) .

The finiteness of the three contributions separately is now evident. Eq. 6.33 is the general
version of the ‘master matching formula’ derived in the toy model, eq. 6.10. When
considering this matching formula for the case of the HERWIG parton shower and FKS
subtraction it constitutes the theoretical basis underlying the MC@NLO matching, [23].
The formalism is however more general and does not make any reference to a particular
subtraction nor parton shower algorithm.

In practise, the meaning of the above equation is to basically re-implement the program
calculating the NLO corrections. This is not desirable, and the obvious simplification is
to consider a parton shower with kernels given by the subtraction terms,

P
(1,1)
β,eff = D

(1,1)
β , (6.34)

upon which the contribution in the second line of eq. 6.33 vanishes, leaving a minor
modification to interface an NLO program in a consistent way to a parton shower:
instead of separately considering real emission phase space points, and ‘underlying Born’
phase space points weighted by the subtraction terms, real emission events are generated
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6 Matching Parton Showers and Higher Orders

only with a weight given by the sum of the real emission cross section minus all individual
subtraction term weights.

6.4.3 Matching with Matrix Element Corrections

Building a parton shower based on NLO subtraction kernels for just the purpose of
simplifying NLO matching is in general not guaranteed to provide precise predictions.
With the notable exception of the coherent dipole shower introduced in chapter 5, such
a shower may not properly take into account the contributions expected to be relevant
for multiple collinear and soft parton emission. A much more elegant simplification of
the matching can be obtained by improving the parton shower in such a way that it
will reproduce the exact real emission matrix element for the hardest emission. This
emission will in general not be the first one, such that so-called ‘truncated showers’ will
have to be added, [27, 28].

Since these showers indeed happen after the hardest emission has been generated,
they can formally be regarded to be built of splitting kernels mediating transitions from
a real emission configuration, starting with kernels of the form P (qn+2|qn+1). Thus, the
fixed-order expansion and matching conditions are still well defined in the context of
truncated showers.

Improving the parton shower to reproduce the real emission matrix element,

dσ(1,1)(qn+1|Q;µ) =
∑

β

P
(1,1)
β,eff (qn+1|pβn(qn+1);µ)dφ(qm+1|Q) (6.35)

will remove the contribution given in the last line of eq. 6.33, such that effectively only
Born type events are generated with a weight which is given by the Born differential
cross section including basically the NLO K-factor differential in the Born degrees of
freedom.

A complication arises due to the presence of the different kinematic mappings qβ(p)
and the need that – for practical purposes – an association of an emitted parton to
an emitter parton has to be chosen in a full simulation. This association can simply
be introduced by assigning additional weights accompanying each kinematic mapping.
In particular, we define the aforementioned improvement by constraining the splitting
kernels to satisfy

P
(1,1)
β,eff (qn+1|pβn(qn+1);µ)dφ(qm+1|Q) =

wβ(qn+1|pβn(qn+1);µ)
∑

β′ wβ′(qn+1|pβ
′

n (qn+1);µ)
dσ(1,1)(qn+1|Q;µ)

(6.36)
for arbitrary weight functions w. Working backwards to the definition of the parton
shower kernels these are then readily identified to be given by

P
(1,1)
β (qn+1|pn;µ) =

wβ(qn+1|pn;µ)
∑

β′ wβ′(qn+1|pβ
′

n (qn+1);µ)

|M(1,1)(qn+1, µ)|2
|M(0,0)(pn, µ)|2 , (6.37)
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i.e. being driven by the ratio of the real emission to the Born matrix element squared.
Splitting kernels of this kind, which we have motivated here by trying to simplify

the matching to NLO QCD corrections, are not a new concept. Indeed, they are a
well-known ingredient to almost all currently available parton shower simulations being
known as ‘matrix element corrections’ [29–32]. To this extent, we refer to NLO matchings
of this kind as ‘matching with matrix element corrections’, instead of referring to the
POWHEG scheme, [27], which we here have reproduced in a most general way.

6.5 Is NNLO Matching Possible?

Having derived NLO matching conditions in a most general way, we will in this section
investigate, if a matching to a NNLO calculation would be possible. It is indeed the cal-
culational formalism, general matching procedure and the ability to rigorously calculate
the fixed-order expansion of a parton shower prediction which enables this study and
similar attempts have not been reported in the literature so far.

6.5.1 The NNLO Generating Functional

Before discussing subtraction in the context of second-order corrections and defining the
NNLO cross section generating functional, we will here introduce the contributions to
be considered besides the ones already present for NLO corrections:

• The interference of two-loop amplitudes with the Born amplitude, and the modulus
squared of one-loop amplitudes,

dσ(2,0)(pn|Q, µ)

containing poles of order ǫ−4 through ǫ−1,

• the interference of one-loop amplitudes along with an additional parton and the
corresponding tree-level amplitudes,

dσ(2,1)(qn+1|Q, µ)

containing poles of order ǫ−2, ǫ−1 and divergences if the additional parton becomes
unresolved, i.e. either soft or collinear to another parton, and

• the tree-level amplitudes squared for emission of two additional partons,

dσ(2,2)(qn+2|Q, µ)
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containing divergences in single-unresolved limits, as well as divergences in double-
unresolved limits, i.e. whenever two partons are emitted collinear to another
parton, collinear to different partons, if one parton becomes soft in combination
with the other being emitted collinear, or if both partons are soft. All these
divergences have been classified and extracted e.g. in [33].

As opposed to the NLO case, there is no general algorithm on how subtraction at
NNLO is to be carried out. Developments towards such a general recipe are however
ongoing [34, 35], and proposed schemes have been shown to work in practise for few
selected processes [36,37]. The general structure of any subtraction scheme will however
be dictated by the singularity structure outlined before. In particular, subtraction terms
will be needed for

• The singularities associated to double unresolved parton emission present in the
double-real emission contribution dσ(2,2)(qn+2|Q, µ),

dσ
(2,2)
AA (qn+2|Q;µ) = ᾱ2

sD
(2,2|2)(pn|qn+2;µ)dφ(qn+2|Q) , (6.38)

mapping back to Born-type kinematics. Note that this is a sum of subtraction
terms for genuine double unresolved singularities, and products of two single un-
resolved singularities.

• The singularities associated to single-unresolved parton emission present in the
double-real emission contribution dσ(2,2)(qn+2|Q, µ),

dσ
(2,2)
A (qn+2|Q;µ) = ᾱ2

sD
(2,2|1)(qn+1|qn+2;µ)dφ(qn+2|Q) , (6.39)

mapping back to the configuration with one additional parton. This subtraction
term can actually be chosen to be the same as entering the NLO corrections to the
process at hand including an additional jet. It thereby cancels the ǫ-poles present
in dσ(2,1), requiring a subtraction term for

• the single-unresolved parton singularities present in the ǫ-finite remainder of the
subtracted interference of one-loop and tree-level single real-emission amplitudes
dσ(2,1)(qn+1|Q, µ) +D(2,2|1)(qn+1|qn+2;µ)dφ(qn+2|Q),

dσ
(2,1)
AV (qn+1|Q, µ) = ᾱ2

sD
(2,1|1)(pn|qn+1;µ)dφ(qn+1|Q) , (6.40)

mapping back to Born-type configurations.
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The generating functional for cross sections at NNLO thus takes the form

σNNLO(Q, µ)[u] = σNLO(Q, µ)[u]

+ ᾱ2
s

∫

u(pn)
(

dσ(2,0)(pn|Q, µ)

+D(2,2|2)(pn|qn+2;µ)dφ(qn+2|Q)

+D(2,1|1)(pn|qn+1;µ)dφ(qn+1|Q)
)
∣

∣

ǫ=0

+ ᾱ2
s

∫

((

u(qn+1)dσ
(2,1)(qn+1|Q, µ)

+u(qn+1)D
(2,2|1)(qn+1|qn+2;µ)dφ(qn+2|Q)

)
∣

∣

ǫ=0

−u(pn)D(2,1|1)(pn|qn+1;µ)dφ(qn+1|Q)
)

+ ᾱ2
s

∫

(

u(qn+1)dσ
(2,2)(qn+2|Q, µ)

− u(qn+1)D
(2,2|1)(qn+1|qn+2;µ)dφ(qn+2|Q)

−u(pn)D(2,2|2)(pn|qn+2;µ)dφ(qn+2|Q)
)

.

(6.41)

6.5.2 Structure of the Matched Generating Functional

In order to obtain the double counted contributions, we will need to consider the leading
order cross section functional evaluated with the expansion of Z up to Z(2), as well as
the NLO generating functional evaluated with the expansion up to Z(1). Similarly to
Z(1), the contributions in Z(2) appear in a form, which allows to remove the infrared
cutoff at the cost of introducing a power correction. The matched generating functional
finally takes the form

σNNLO,matched(Q, µ)[u] =σNLO,matched(Q, µ)[u]

+ᾱ2
s (σNNLO,matched,0(Q, µ)[u]

+ σNNLO,matched,1(Q, µ)[u]

+ σNNLO,matched,2(Q, µ)[u]) ,

(6.42)

where the last three contributions refer to the generation of events of Born, single,
and double real emission type, respectively. The explicit expressions of the individual
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contributions are given by

σNNLO,matched,0(Q, µ)[u]

=

∫

u(pn)
(

dσ(2,0)(pn|Q, µ) (6.43)

+D(2,2|2)(pn|qn+2;µ)dφ(qn+2|Q)

+ D(2,1|1)(pn|qn+1;µ)dφ(qn+1|Q)
)
∣

∣

ǫ=0

+

∫ t

0

dτ

∫

u(pn)P̄
(1,1)(qn+1|pn, τ) (6.44)

×
(

dσ(1,0)(pn|Q, µ)

+

∫

D(1,1)(pn|kn+1, µ)dφ(kn+1|Q)

)
∣

∣

∣

∣

ǫ=0

dφ(qn+1)

−
∫ t

0

dτ

∫

u(pn)P̄
(1,1)(qn+1|pn, τ) (6.45)

×
(
∫

D(1,1)(pn|kn+1, µ)dφ(kn+1|Q)

+

∫ τ

0

dτ ′
∫

P̄ (1,1)(kn+1|pn, τ ′)dφ(kn+1)dσ
(0,0)(pn|Q, µ)

)

dφ(qn+1)

+

∫

u(pn)

(
∫ t

0

dτP̄ (2,1)(qn+1|pn, τ)dφ(qn+1)dσ
(0,0)(pn|Q, µ) (6.46)

− D(2,1|1)(pn|qn+1, µ)dφ(qn+1|Q)
)

+

∫

u(pn)

(
∫ t

0

dτP̄ (2,2)(qn+2|pn, τ)dφ(qn+2)dσ
(0,0)(pn|Q, µ) (6.47)

− D(2,2|2)(pn|qn+2, µ)dφ(qn+2|Q)
)

,
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σNNLO,matched,1(Q, µ)[u]

=

∫

u(qn+1)
(

dσ(2,1)(qn+1|Q, µ) +D(2,2|1)(qn+1|qn+2, µ)dφ(qn+2|Q)
)
∣

∣

ǫ=0
(6.48)

−
∫ t

0

dτ

∫

u(qn+1)P̄
(1,1)(qn+1|pn, τ) (6.49)

×
(

dσ(1,0)(pn|Q) +

∫

D(1,1)(pn|kn+1, µ)dφ(kn+1|Q)

)
∣

∣

∣

∣

ǫ=0

dφ(qn+1)

+

∫ t

0

dτ

∫

u(qn+1)

(

P̄ (1,1)(qn+1|pn, τ)
∫

D(1,1)(pn|kn+1, µ)dφ(kn+1|Q) (6.50)

+

∫ τ

0

dτ ′
∫

P̄ (1,1)(kn+1|pn, τ)P̄ (1,1)(qn+1|pn, τ ′)dφ(kn+1)

)

× dφ(qn+1)dσ
(0,0)(pn|Q, µ)

+

∫ t

0

dτ

∫

u(qn+1)

(

P̄ (1,1)(qn+1|pn, τ)
∫ τ

0

dτ ′
∫

P̄ (1,1)(kn+2|qn+1, τ
′)dφ(kn+2) (6.51)

− P̄ (2,1)(qn+1|pn, τ)
)

dφ(qn+1)dσ
(0,0)(pn|Q)

+

∫

u(qn+1)

(
∫ t

0

dτP̄ (1,1)(qn+2|qn+1, τ)dσ
(1,1)(qn+1|Q)dφ(qn+2) (6.52)

− D(2,2|1)(qn+1|qn+2, µ)dφ(qn+2|Q)
)

,

and

σNNLO,matched,2(Q, µ)[u]

=

∫

u(qn+2)
(

dσ(2,2)(qn+2|Q) (6.53)

−
∫ t

0

dτP̄ (2,2)(qn+2|pn, τ)dσ(0,0)(pn|Q)dφ(qn+2)

−
∫ t

0

dτP̄ (1,1)(qn+2|qn+1, τ)dσ
(1,1)(qn+1|Q)dφ(qn+2)

)

.

These equations provide the ‘master formula’ for NNLO matching, which is possible, if
the individual contributions corresponding to generation of Born, single and double real
emission events can separately be rendered finite. Note that the divergence structure of
P (1,1)(qn+1|pn, t) is fixed by the NLO matching as outlined in the previous section. The
finiteness of eq. 6.53 requires that P (1,1)(qn+2|qn+1, t) is of the same kind for the process
involving an additional parton emission, along with P (2,2)(qn+1|pn, t) being constrained
to contain the singularities originating from double unresolved parton emission. This
implies that eqs. 6.47 and 6.52 represent finite contributions as well. The subtracted
two-loop virtual part, eq. 6.43 is finite by definition. It therefore remains to prove that
the other contribution can also be rendered finite.
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We will first analyse terms 6.48 and 6.49. These contributions are free of poles in
ǫ, though separately divergent for a single unresolved parton. Note however that the
second contribution subtracts precisely the divergences originating from diagrams, where
the unresolved emission vertex is a tree-level object. The remaining divergences in the
sum of eqs. 6.48 and 6.49 thus stem from diagrams, where one of the external partons
attached to an unresolved splitting vertex is at the same time an external leg of the
loop integral. Since these contributions factor in the singular limits as well, see e.g. [38],
part of the splitting kernel P (2,1) in P̄ (2,1) can be chosen accordingly to obtain a finite
contribution from terms 6.48 and 6.49.

Provided that the convolution of the Born cross section and the first line in term 6.50
can be rewritten as a convolution of the same form as in the second line of term 6.50,
this contribution can, along with the first term in contribution 6.51 be absorbed into
the final definition of P (2,1) and the scale choice of the running coupling. Since now
σNNLO,matched,2(Q, µ)[u] and σNNLO,matched,1(Q, µ)[u] are independently finite, σNNLO,matched,0(Q, µ)[u]
will be finite as well owing to a finite total cross section.

This shows that NNLO matching should in principle be possible. The study of a
detailed setup with definite choices of splitting kernels is however beyond the scope of
this section but may be subject to future work.

6.6 Conclusions

In this chapter, making use of the formalism defined in chapter 4, we have set up the
theoretical framework for combining parton showers and higher order QCD corrections.
The advantage of this general treatment is the possibility for precise calculations of fixed-
order expansions of a parton shower, which is the only ingredient required to derive the
matching conditions on the level of generating functionals introduced for fixed-order
cross sections.

The contributions to these generating functionals can directly be interpreted in terms
of events to be generated by a Monte Carlo implementation associated with finite weights
obtained from the perturbative contributions.

After re-deriving the NLO matching schemes proposed so far in a most general way –
in particular independent of the choice of parton shower kernels and subtraction scheme
– the possibilities of combining NNLO QCD corrections and parton showers have been
evaluated. NNLO matching has been shown to be possible, though any implementation
seems to be out of reach at the moment, owing to the lack of a general subtraction
scheme.
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7 Monte Carlo Methods

7.1 Overview

For a complete simulation of the complex final states as implemented in the dipole
shower and matching algorithms to be introduced in chapters 8 and 9, efficient Monte
Carlo methods are mandatory. In particular, owing to the number of variables typical
probability densities (i.e. differential cross sections or splitting kernels) depend on, and
the fact that these are usually only known through a numerical implementation with
small or no knowledge on their analytical properties, standard approaches to sample
random variates according to a given density are not suitable.

For the case of just sampling according to a given density directly, two similar ap-
proaches of generating unweighted events ‘on the fly’ are known and implemented in
computer programs [39, 40]. These approaches have mainly motivated the work de-
scribed here. The main purpose of the development outlined in the next section is how-
ever to have a similar level of self-adapting and automatic sampling for a Sudakov-type
density associated to a density yet only known through a function call and depending
on probably a large number of variables. It is this functionality which finally enables
the implementation of automatic matrix element corrections and it is used to generate
splittings in the parton shower evolution as well.

The resulting software library, called exsample (for exponential sampler), is capable of
doing standard sampling, as well as Sudakov-type sampling and is documented in detail
in appendix A.
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7.2 Standard Sampling

In the context fixed-order calculations implemented using Monte Carlo methods, one is
at first interested in obtaining the integral of a differential cross section. Events to enter
histograms for observables are the points being generated to evaluate the differential
cross section accompanied by a weight given by the evaluated differential cross section.
We will call these weighted events. In performing realistic event simulations, besides
knowing the cross section for a given process, the main interest is in obtaining an event
sample where the relative occurrence of individual events reflects the properties of the
differential cross section, with an equal weight per event which is usually taken to be a
unit weight.

The procedure to transform a sample of weighted into such a sample of unweighted
events is usually being performed by the most simple form of von Neumann’s veto
algorithm: First, the maximum of the event weights is determined, and out of the
weighted events events are accepted with a probability given by the event weight divided
by the maximum event weight. This procedure can however be (and typically is) very
inefficient. One may think of instead processing weighted events through the successive
parton shower simulation. Owing to the complexity of the parton shower simulation
and all connected non-perturbative models this is as well not feasible given the fact that
for satisfactory Monte Carlo uncertainties one usually needs a much larger number of
weighted than unweighted events.

In a more refined version, being the general version of von Neumann’s veto algorithm,
one tries to determine an overestimate to the probability density to be sampled. Proposal
events are then drawn from this overestimate and accepted with probability given by
the true density to its overestimate. This method is obviously more efficient, the closer
the overestimate resembles the properties of the target density. In the context of Monte
Carlo integration, this procedure will reduce the variance of the integral’s estimate, if
the proposal points are used to obtain an average of the integrand.

When dealing with higher-order corrections, some contributions to a differential cross
section, such as a subtracted real emission, may turn out not to be positive definite.
A probabilistic interpretation is thus not directly possible anymore. One can however
consistently include such effects by assigning accordingly a negative weight to points
where the ‘density’ turns negative, the absolute value of which will be subtracted from
the contents of the corresponding histogram bin. Given an overestimate to the ‘densi-
ties’ absolute value, the unweighting procedure now uses the ratio of the absolute value
to this overestimate as acceptance probability, and unweighted events have weights ±1.
Any differential quantity – being always positive, negative or of indefinite sign – thus de-
termines a probability density in a generalised sense, and we will from now on generically
use the term density without quotation marks.
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Up to the precise way on how the overestimate is determined and how proposal events
are generated accordingly, this standard algorithm for drawing samples from a density,
along with obtaining the density’s integral, is given in algorithm 1 and entering at the
heart of the exsample implementation of standard sampling. Note that, though the
algorithm formally returns a set of events, in practise it acts like a continuous source
of events. This ability is mandatory to obtain a self-contained program package which
does not need to temporarily store events, being read in by yet another independent
program for further processing.

Algorithm 1 The standard sampling and integration algorithm.

sampleAndIntegrate(density, overestimate, Npoints) {
Require: support(density) ⊆ support(overestimate)
Require: overestimate(x) ≥ |density(x)| for all x ∈ support(overestimate)

norm←
∫

overestimate(x)dx
N ← 0
Nintegral ← 0
integral ← 0
events ← {}
while N < Npoints do

repeat
Draw x ∈ support(overestimate) according to overestimate(x)
overestimateWeight ← overestimate(x)
weight ← density(x)
integral ← integral +weight/overestimateWeight
Nintegral ← Nintegral + 1
r ← uniform random number on (0, 1)

until r < |weight|/overestimateWeight
N ← N + 1
Append (x, sign(weight)) to events

end while
integral ← integral× volume(support(overestimate))/(norm×Nintegral)
return integral and events

}

7.2.1 Adapting Overestimates

The standard sampling and integration algorithm outlined in the previous section will
only be efficient and producing an integral estimate with a small variance, if the overes-
timate is very close to the absolute value of the target density. Since, in practise, little
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or nothing is known about the target density except that it is available as a function
call from some library, a method to obtain an overestimate from which proposal events
can be drawn in a simple and efficient way is needed. One solution is to gain infor-
mation on the target density by presampling it, i.e. evaluating it a equally distributed
random points and recording the maximum in a histogram which in turn is used as the
overestimate.

Several limitations of a naive implementation of this procedure are evident:

• The true maximum of the target density will only be found when using an infinite
number of points to presample it. Even if a large number of points have been
used for presampling, such that the obtained maxima in the histogram are reason-
ably close to the true maximum, there is no guarantee that in the procedure of
generating events a maximum exceeding the recorded one will be found. In this
case the unweighting procedure is ill defined since the unweighting probability thus
calculated will be larger than one. The points used for presampling will also at
most be available for a very inaccurate calculation of the integral estimate, since
they are uniformly distributed in each bin of the histogram. The next section will
address in more detail the problems mentioned here.

• For densities depending on many parameters, setting up a truly d-dimensional his-
togram (for d parameters) will not be feasible owing to the memory required to
store this information, and sampling from such a histogram will then also become a
computationally expensive procedure. A potential solution would be an approach
similar to the VEGAS Monte Carlo integration program [41], recording the maxi-
mum of projections of the density per parameter dimension and using the product
of the histograms obtained to define the proposal density. The overestimate ob-
tained in each individual bin may however be far off the true maximum value in
the considered bin, thereby rendering the unweighting procedure inefficient again.
As will be shown in the next section, these bins will have to be equipped with an
additional counter to properly include newly encountered maxima exceeding the
original recorded ones, giving rise to the memory problems already mentioned.

To overcome the problems inherent to a naive implementation, exsample implements a
mechanism of a histogram-type overestimate function, which is iteratively adapted to the
target density in a way that a higher ‘bin’ density is present, where the target density’s
variance is larger than in regions where it may be considered flat. The structure of this
histogram-type overestimate is also chosen in a way that a fast sampling of it is feasible.

More precisely, exsample makes use of ‘cells’, which represent a sub-hypercube of the
volume where events are to be sampled in. Cells are organised in a binary tree, each
cell having either two or no children, in the latter case terminating the tree at this
branch. The union of the two hypercubes Ub and Uc represented by the two children
cells cb,c always equals the hypercube U(bc) represented by the parent cell c(bc). Each
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cell c contains the maximum of the target density encountered by a presampling as its
value wc, and the leaf cells of the tree, constituting a certain fractal-type partition of
the sampling volume into hypercubes define the overestimate function,

overestimate(x) =
∑

leaf cells c

wc θ(x ∈ Uc) . (7.1)

Each parent cell keeps track of the integrals Ic,b = wc,bvolume(Ub,c) of its children cells.
This allows for an efficient sampling of the overestimate function, as given in algorithm 2.
The root cell of the tree spans the whole sampling volume and is the only cell present at
the initial stage of the algorithm. Children cells are produced in an adaption step, itera-
tively building up the cell tree through splitting a cell into two children cells and aiming
at improving the algorithm’s efficiency along with gaining more detailed information on
the target density, i.e. a more fine-grained overestimate closer to it.

In order to achieve this, each cell always monitors its efficiency. In the current im-
plementation, this efficiency is taken to be the unweighting efficiency, i.e. the ratio of
accepted to attempted events in the unweighting step of the standard sampling algo-
rithm. If this efficiency drops below a user-supplied threshold, the cell is considered
‘bad’. With a frequency increasing from a user-supplied start value along the successive
generation of events and on encounter of a bad cell, a potential splitting of the cell is
determined to increase the efficiency of the algorithm.1

To obtain an optimal hyper-plane along which the cell should be split, each cell his-
tograms projections of the average target density value onto each variable dimension
i, 〈density(x)〉i. The dimension k orthogonal to this hyperplane, and the split point
xk defined by the intersection of the hyperplane and this direction are determined to
maximise a ‘gain’ measure, defined as

gaink(xk) =

∣

∣

∣

∫ xk

x−
k

〈density(x)〉kdx−
∫ x+

k

xk
〈density(x)〉kdx

∣

∣

∣

∫ x+
k

x−
k

〈density(x)〉kdx
, (7.2)

where x±k denote the cell’s boundaries in the variable xk. Again, a user-supplied param-
eter can steer the behaviour of the adaption by considering only those splits to be worth
performed, if the gain exceeds some value. In practical purposes it turned out to be
sufficient that the histogram recording the average of the target density consists of two
bins only and splits are always being performed at the midpoint of a cell’s extension in
some variable dimension. The general implementation has thus been removed from the
final version for performance considerations.

Out of the two children cells the target density is being presampled in that cell which
did not contain the maximum point used before to get a new estimate of the maximum.

1The introduction of this frequency is necessary to avoid too many split determinations and to let
newly created cells accumulate information on the function with sufficient statistics.
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The number of presampling points per cell is another user-defined parameter. The
choice of this parameter has to be carried out in view of the compensation procedure to
be defined in the next section with a trade-off between the time needed for presampling
and the time lost by the number of events to be vetoed by the compensation procedure.
There is no general rule on how it is to be determined. Experience gained so far show
that few thousand presampling points are an acceptable compromise.

7.2.2 Compensating for Erroneous Overestimates

Since the true maximum of the target density can never be determined with probability
one from the presampling procedure, care has to be taken on what constraints need to
be imposed on the sampling procedure once a point has been encountered exceeding the
currently used maximum. For a sufficiently large number of presampling points one may
reside on the statement that these points are rare and generated distributions will not
show any effect on the erroneous overestimate. Thinking about the overall efficiency of
the algorithm in performing its function of acting as a continuous source of unweighted
events with the smallest possible overhead, this is certainly not a criterion to base an
implementation on.

To define the method of compensation, we first introduce the notion of missing events
in a given cell. As for the cell’s integral, each parent cell carries the sum of the missing
events of its children cells. The number of missing events is not limited to be positive.
In case it is positive, the corresponding cell needs to be oversampled, i.e. the algorithm
is forced to sample events in cells with a positive number of missing events, lowering
this number in the selected cell if it is larger than zero. Oversampling is imposed on the
algorithm as long as there are cells with a positive count of missing events. Conversely,
if the missing event count is negative, a cell needs to be undersampled. If such a cell is
selected, its missing event count is increased, if it is smaller than zero and the selection is
vetoed, triggering a new cell selection. The complete cell selection algorithm is formally
given in algorithm 2.

Upon encounter of a new maximum w′c > wc, the number of missing events associated
to this change is calculated for each cell as

Nmiss
c = Nc

(

p′c
pc
− 1

)

. (7.3)

Here, Nc is the number of proposal events already generated in the cell, and pc (p′c)
denotes the probability to select cell c using the old (new) overestimate value. This
number is then added to each cell’s current missing event count. Note that undersam-
pling, Nmiss

c < 0 appears in the cells not containing the newly encountered maximum
owing to the change in normalisation of the overestimate density. Eq. 7.3 ensures that
within the currently accumulated statistics proposal events are always distributed ac-
cording to the last encountered maximum, provided the algorithm has been stopped in a
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state where it is not anymore forced to perform over- or undersamplings. This is evident
by rewriting eq. 7.3 as

Nmiss
c =

Nc

〈N〉c
(〈N ′〉c − 〈N〉c) (7.4)

where 〈N〉c = Npc (〈N ′〉c = Np′c) is the number of expected events in cell c for the total
number of generated events, N . The difference in brackets is the number of missing
events in the absence of fluctuations due to a finite number of generated events, and
the factor in front of it takes into account the currently accumulated statistics, i.e. how
much the population of the cell differs from its expected population.

Algorithm 2 The compensating cell selection algorithm. Once a cell has been selected
an event is generated inside its volume with uniform density.

selectCell() {
cell ← root cell
while cell is not a leaf do

if Nmiss(firstChild(cell)) > 0 ∧Nmiss(secondChild(cell)) ≤ 0 then
cell ← firstChild(cell)

else if Nmiss(firstChild(cell)) ≤ 0 ∧Nmiss(secondChild(cell)) > 0 then
cell ← secondChild(cell)

else
r ← uniform random number on (0, 1)
if r < integral(firstChild(cell))/integral(cell) then

cell ← firstChild(cell)
else

cell ← secondChild(cell)
end if

end if
end while
if Nmiss(cell) > 0 then
Nmiss(cell)← Nmiss(cell)− 1

else if Nmiss(cell) < 0 then
Nmiss(cell)← Nmiss(cell) + 1
cell ← selectCell()

end if
return cell

}
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7.3 Sudakov-type Distributions

In sampling splittings during the parton shower evolution, including the matrix element
corrections entering for the POWHEG-type NLO matching, drawing random variates
from Sudakov-type distributions is the main Monte Carlo method needed. These distri-
butions (which we will call just Sudakov distributions from now on) are defined given
a family of ‘kernel’ densities f depending on a number of parameters {ξ}, an evolution
variable x and d further variables ~z constituting the variables (x, ~z) to be sampled, as
functionals of the density f ,

dSudakov[f ](x|y, ~z, {ξ}) ≡ θ(y − x)f(x, ~z, {ξ})∆[f ](x|y)dtddz ≡

θ(y − x)f(x, ~z, {ξ}) exp

(

−
∫ y

x

dt

∫

ddwf(t, ~w, {ξ})
)

dtddz . (7.5)

The standard way of sampling these densities is known in the literature, see e.g. [29,42],
as the Sudakov veto algorithm and formalised in algorithm 3, making use of a Sudakov
distribution calculated from an overestimate to the kernel density. Note that in the form
quoted in the literature, the algorithm is not guaranteed to terminate and in practise a
lower cut on the evolution variable (i.e. the parton shower’s infrared cutoff) has to be
imposed, being determined in this abstract form as the maximum value of the evolution
variable x below which f is always zero. Upon selection of a scale below this cut, the
algorithm terminates in an error state (indicating in practise that radiation above the
infrared cutoff has not been selected). This condition will be met in a finite number
of rejection steps, since the algorithm keeps on selecting lower and lower values of the
evolution variable after each rejection step.

The cell-tree overestimates introduced for the standard sampling are ideally suited to
implement this algorithm in an adaptive way which does not require analytic knowledge
of the kernel density. The integral entering the exponent of the proposal Sudakov distri-
bution can easily be calculated from the cell-tree overestimate and is then recorded as
a linear interpolation which is easily inverted to sample the next value of the evolution
variable. The number of missing events is now calculated with respect to the proposal
Sudakov density, and the efficiency measure is evaluated as the acceptance efficiency of
the overall algorithm and not only the sampling of the additional parameters ~z.

The major obstacle in generalising the standard sampling to the case of sampling
Sudakov densities is that functionality is required to sample a proposal event given
that a set of parameters (in this case the selected value of the evolution variable and
the other parameters {ξ}) has been fixed. Consequently, the number of missing events
should also be available in dependence of any parameter point. exsample’s cell trees
provide the possibility of determining the sub tree of cells containing the parameter
point and calculating unique hash values for each possible sub tree. Sampling of random

78



7.3 Sudakov-type Distributions

Algorithm 3 The Sudakov veto algorithm.

sampleSudakov(y, {ξ}, density, overestimate) {
Require: support(density) ⊆ support(overestimate)
Require: density(x) ≥ 0 for all x ∈ support(density)
Require: overestimate(x) ≥ density(x) for all x ≡ (x, ~z, {ξ}) ∈ support(overestimate)
Require: xc = max(x< ∈ support(overestimate) | density(x, ·, ·) = 0 ∀x ≤ x<) known
r ← uniform random number on (0, 1)
if r > ∆[overestimate](y|xc) then
x← solution to r = ∆[overestimate](y|x)

else
return below evolution cutoff

end if
Draw ~z according to overestimate(x, ~z, {ξ})
r′ ← uniform random number on (0, 1)
if r′ < density(x, ~z, {ξ})/overestimate(x, ~z, {ξ}) then

return (x, ~z)
else

return sampleSudakov(x, {ξ}, density, overestimate);
end if

}

variates can then be constrained to take place only along the marked sub-tree for a given
parameter point, and the exponent integral and number of missing events are kept track
of in dependence on the hash value for a fast query of these quantities.

7.3.1 Do Splitting Kernels of Indefinite Sign Pose a Problem?

The Sudakov algorithm is limited to the case that ∆ can be interpreted as a probability,
taking values between zero and one. This is certainly guaranteed, if the kernel density f is
always positive. Given the general standard sampling algorithm there are no limitations
in making sense of Sudakov densities where f is not positive definite and the question
of extending the Sudakov veto algorithm to this case may be raised.

In order to see that this is indeed possible, we shall go back to sketch the proof of
the veto algorithm, dropping any dependence on parameters or other variables to be
sampled: Let g(x) be the overestimate to the desired kernel density f(x). Then, if the
algorithm performs no rejection step, the generated density is

dVeto(0)(y|x) = θ(y − x)∆[g](y|x)g(x)f(x)

g(x)
dx = θ(y − x)∆[g](y|x)f(x)dx . (7.6)
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If it did perform one rejection step, we have

dVeto(1)(y|x) =
∫ y

x

θ(y − z)∆[g](y|z)g(z)
(

1− f(z)

g(z)

)

θ(z − x)∆[g](z|x)g(x)f(x)

g(x)
dxdz =

θ(y − x)∆[g](y|x)f(x)

(
∫ y

x

(g(z)− f(z))dz

)

dx . (7.7)

It is easy to see that this generalises to n rejection steps as

dVeto(n)(y|x) = θ(y − x)∆[g](y|x)f(x)
1

n!

(
∫ y

x

(g(z)− f(z))dz

)n

dx , (7.8)

and summing over any number of rejection steps yields the desired result.
This proof now exhibits the two possible modifications of the algorithm to cope

with non-positive definite kernel densities f(x). The most simplest solution, in case
of which the algorithm still produces unweighted events with weights ±1 however re-
quires the knowledge of the zeros of f(x), an overestimate g(x) with |g(x)| ≥ |f(x)| and
sign(g(x)) = sign(f(x)), and a way to draw events from dSudakov[g](y|x). If all these
requirements are met, then the algorithm requires no modification2 except multiplying
the event weight by the sign of the overestimate encountered in generating proposal
events.

In a most general case, the above requirements for the simple algorithm cannot be
satisfied. Yet still a modification exists, at the expense that the algorithm will now
produce events with unit positive or negative weights and non-unit weights. It requires
the knowledge of an overestimate to the modulus of the kernel density, g(x) > |f(x)|
(note that a strictly larger overestimate is required). Proposal events are drawn from
dSudakov[g](y|x) without any conceptual problem, since now g(x) > 0. Proposal events
are accepted with probability |f(x)|/g(x), which is well defined in this case, and the
event weight is multiplied by the following prescription:

• If a proposal event x is rejected, multiply the event weight by

wreject =

{

1 : f(x) ≥ 0
g(x)−f(x)
g(x)−|f(x)| : f(x) < 0

. (7.9)

• If a proposal event x is accepted, multiply the event weight by

waccept = sign(f(x)) . (7.10)

Note that the fraction of events with weights |w| 6= 1 will be smaller, the closer g(x)
gets to |f(x)|.

In both proposed modifications, the proof again condenses to the fact that the density
generated after n rejection steps is the desired one given in eq. 7.8.

2Note that in this case f(x)/g(x) is always a probability.
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7.4 Exsample in Use

The exsample library implementing the adaptive sampling algorithms as outlined in the
previous sections has been tested with various densities. In this section, we will show few
mostly simple examples to show the basic features of exsample and prove its functionality.
Cross-checks for more complicated setups are also given in appendix D.

To begin with, we consider sampling of a two-dimensional Gaussian density aligned
on a diagonal of the sampling volume. Such densities are known to produce problems
to adaption algorithms based on purely projecting the density to the axes, as e.g. done
in the VEGAS algorithm. Figure 7.1 shows the sampling results, validated against a
numerical integration. The cell grid produced by exsample’s adaption algorithm is clearly
seen to well capture the structure of the integrand beyond what would be visible in
projecting it to either axis.

Figure 7.2 shows the results obtained by the adaptive Sudakov veto algorithm, using
a kernel density showing the generic behaviour of a QCD splitting function with running
αs,

f(κ, z) =
1

κ(1− z)
1

β ln(κ/λ)
θ(κ− µ)θ(z − κ) , (7.11)

where κ is taken to be the evolution variable (similar to the p⊥ of the branching) and z is
similar to a momentum fraction. µ > λ is an infrared cutoff. β and λ correspond to the
zero’th β-function coefficient and the QCD scale, respectively. Again, perfect agreement
with a numerical integration is found. In addition, figure 7.3 shows the functionality of
the compensation procedure by comparing results for the same distribution but different
numbers of presampling points used in the algorithm, which are all consistent with each
other.

In order to further test exsample’s capabilities in adapting integrands in high-dimensional
integration volumes, a ‘stress test’ has been performed using QCD antennae. For a
dipole being formed by partons of momenta p and p̄, the QCD antenna for emitting n
soft gluons is given by

antenna(p, p̄, q1, ..., qn) =
∑

σ∈Sn

(Q2)n p · p̄
p · qσ(1) qσ(1) · qσ(2) · · · qσ(n−1) · qσ(n) qσ(n) · p̄

, (7.12)

where Q = p + p̄ +
∑

k qk. A cut is applied constraining all invariants to a minimum
value, and the phase space is generated using the RAMBO algorithm, [43]. This setup
has been chosen for various reasons. First of all, since RAMBO requires an abundant
number of random numbers (four per final state momentum), the integrand scales to high
dimensionality already for a small number of soft gluons. Further, RAMBO by definition
does a flat phase space population, such that no dynamics present in the integrand is
being mapped out. The relevant behaviour of the integrand is in addition not present in
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Figure 7.1: A two-dimensional Gaussian distribution sampled by exsample. The lower
left box of the plot shows the plane of sampled variables x1,2 along with few
sampled events and the cell grid produced. To the top and right, projections
of the generated distribution versus the result from a numerical integration
are shown. Note that adaption methods based on projections (as, e.g. used
in VEGAS) would not have been able to resolve the full structure of the
density being aligned on a diagonal of the sampling volume.
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Figure 7.2: A Sudakov-type distribution with a QCD splitting function type kernel den-
sity as sampled by exsample using the adaptive Sudakov veto algorithm.
The vertical axis corresponds to the evolution variable, the horizontal to a
variable similar to a momentum fraction. Shown are few sampled events,
projections of the generated distribution versus the result from a numerical
integration, and the the cell grid produced.
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Figure 7.3: The same distributions as shown in figure 7.2, now sampled with a differ-
ent number of presampling points proving functionality of the compensation
procedure.
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each random variable separately, but correlated between various variables. Results for
three gluons, i.e. for 20 required random numbers, obtained from exsample are compared
to results obtained from a flat Monte Carlo integration being run with 50 million events.
The flat Monte Carlo approach generated a relative error of one per-mille, at the expense
of an unweighting efficiency of ǫ = 0.00112.

The error and unweighting efficiency obtained from running exsample are not unique
as it depends on the parameters chosen for the number of presampling points, and the
threshold values for the gain and efficiency measures. Errors in exsample are estimated
in a very conservative way due to the dynamics present during an exsample run. In par-
ticular, each run time interval between two cell splits defines an iteration, from which an
integral estimate is calculated. All estimates obtained this way are then used to calculate
the final integral estimate as an average over iterations. Further, when compensating,
points are not considered for integral evaluation due to the bias introduced by the com-
pensation procedure. In general we find, that exsample leads to unweighting efficiencies3

which are an order of magnitude better than those obtained from the flat Monte Carlo
approach, though errors hardly drop below 1% for requesting 500000 unweighted events
owing to the conservative way of estimating these. Within uncertainties, the integrals
reported by exsample are in complete agreement with the estimate obtained from the
standard Monte Carlo integration. Distributions of random numbers as obtained by
exsample have been cross-checked against the ones from the standard Monte Carlo and
agreement is found also here. Indeed, we find that the relative deviation from the exsam-
ple result to the high-statistics flat Monte Carlo run is in the per-mille range, which hints
towards overestimated errors for exsample.

7.5 Conclusions

In this chapter advanced Monte Carlo methods have been discussed, focusing on the
adaptive sampling of differential cross sections as well as an approach to draw random
variates from Sudakov-type densities as encountered in the parton shower evolution or
matrix element corrections as present in POWHEG-type matchings. The latter can be
sampled from kernels about which no analytic information is required, thus allowing
usage of complicated kernels being known only through a function call.

The adaptive sampling algorithms have been implemented in a C++ library, which
is used heavily by the shower and matching implementations to be discussed in the
next two chapters. Cross-checks on the functionality of the implementation have been
performed including the sampling of differential cross sections requiring up to 20 random
numbers without mapping out any of their dynamics.

3The unweighting efficiency in this case is defined as the ratio of generated unweighted events to the
number of function evaluations needed to obtain these.
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8 The Shower Algorithm in Practise

8.1 Overview

The purpose of this chapter is to describe the parton shower algorithm outlined in
chapter 5, as it is implemented in the event generator Herwig++ and used for phe-
nomenological studies as presented in chapter 10.

Section 8.2 describes the initialisation of the algorithm starting from a hard scat-
tering process, the generation of multiple parton emissions and finalising steps, before
handing over the generated event to a hadronization model. Section 8.3 will focus on
technical issues for the transition to particularly the cluster hadronization model used
by Herwig++. It also discusses the modelling of intrinsic transverse momentum, which
is needed to obtain a complete simulation of realistic final states at hadron colliders.

8.2 The Complete Algorithm

8.2.1 A Mini-Review of Colour Flows

In order to obtain the initial conditions for the parton shower, information has to be
obtained on the colour connection properties of the partons attached to the hard scat-
tering process, at least in the large-Nc limit. Though this is a well-known technique,
and facilities are implemented for all hard processes available within Herwig++ [22], we
will here briefly review the notion of colour flows and how they are selected for a hard
process configuration, primarily to obtain definitions to be used in subsequent sections.
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The staring point is to translate all colour factors appearing in a QCD amplitude
to the fundamental representation. Within this context, it turns out to be useful to
normalise the SU(N) generators according to

Tr[tatb] = δab (8.1)

such that the strong coupling has to be rescaled by a factor 1/
√

2. The gluon wave
functions and the colour factor of the gluon propagator are then rewritten as

ǫµa(p) = ǫµb (p)(t
b)ij(t

a)ji ≡ ǫµij(p)(t
a)ji δab = (ta)ij(t

b)j i , (8.2)

and any combination of generators and structure constants can then be translated into
a product of Kronecker symbols by making use of the SU(N) Fierz identity,

(ta)ij(t
a)kl = δilδ

k
j −

1

N
δijδ

k
l . (8.3)

Here, upstairs indices correspond to the fundamental representation, or outgoing colour,
whereas downstairs indices transform according to the anti-fundamental representation
and are associated to outgoing anti-colour. Accordingly, a gluon carries colour and anti-
colour degrees of freedom. As is evident from the Fierz identity, or from the adjoint
representation property, 8 = 3 ⊗ 3̄ ⊕ 1, it cannot be regarded to be formed of an
independent colour-anticolour pair. This will only be the case in the large-N limit,
where the 1 contribution is absent.1 The net result of the operations above is that any
QCD amplitude can be written as

M =
∑

σ∈Sn

δi1σ(j1) · · · δinσ(jn)M(σ)j1···jni1···in . (8.4)

We will call each product of Kronecker symbols a colour flow, andM(σ)j1···jni1···in the corre-
sponding partial amplitude. Colour flows are now simply selected with relative weights
determined by the individual partial amplitudes squared. If only large-Nc contributions
should be taken into account, the partial amplitudes with a relative suppression to the
leading power of Nc are just dropped from this procedure, which for tree level amplitudes
guarantees that the singlet contribution for any gluon is absent.

The main definitions which will be needed in the following sections are colour con-
nectedness and colour singlet within the notion of colour flows δi1σ(j1) · · · δinσ(jn):

σ(ja) = jb ⇔ a and b are colour connected , (8.5)

σ(ja) = jb for all a, b ∈ I ⊆ {1, ..., n} ⇔ I is a colour singlet . (8.6)

1We note that this contribution decouples for purely gluonic amplitudes owing to the antisymmetry
of the three- and four-gluon vertices.
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8.2.2 Starting the Shower

The parton shower will start to evolve from a hard sub-process, which we divide into a
set of partons qm = {q̂1, ..., q̂m} and non-coloured particles q̂m+1, ..., q̂n. At this level, we
do not explicitly distinguish between incoming and outgoing partons or particles, but
just assume that this information is present somewhere. Further, a colour flow in the
large-Nc limit as defined in the previous subsection is assumed to be assigned to the
hard sub-process.

In order to start the evolution, all partons at the hard sub-process are first sorted
into colour singlets Cα. Practically, this is done by making use of the fact that a colour
singlet is ‘simply connected’ in the sense of its colour flow topology: Any parton i in
Cα can be reached from a parton j in Cα by just following colour lines and changing
from a colour to an anti-colour line at an external gluon. Each colour singlet is now an
independently evolving entity, and can only split into two colour singlets in the presence
of a g → qq̄ splitting.2

In the next step, the partons in each singlet Cα are sorted such that colour connected
partons are located at neighbouring positions, when representing Cα as a sequence. Note
that these sequences may be open or closed: We will call Cα open, or non-circular, if
there exists a circular permutation of the elements in Cα such that the partons at the
first and last position are not colour connected. Conversely, if there does not exist such a
permutation, Cα is called circular or closed. Once this sorting has been accomplished, we
will refer to the Cα as dipole chains: each pair of subsequent partons in Cα forms a dipole,
which may radiate. For each parton in each dipole, a hard scale is then determined as
defined in the previous chapter. The algorithm is defined in a formal way in alg. 4.
Examples of dipole chains are shown in fig. 8.1.

8.2.3 Evolution of the Parton Ensemble

The main shower algorithm acts on a set of dipole chains, C = {C1, ..., Cn}, and proceeds
as long as this set is non-empty. Dipole chains are removed from the list, if they stopped
evolving, i.e. if there was no splitting selected with a p2

⊥ above the shower’s infrared
cutoff µ2

IR. The first entry in C is taken to be the current chain. For each dipole
(i, j) in the current chain (with both possible emitter–spectator assignments, i.e. also
considering (j, i) along with (i, j)), any possible splitting (i, j) → (i′, k, j) is considered
to compete with all other possible splittings of the chain. For any such splitting, given

2It is known that for some observables colour singlets cannot be regarded as evolving independently.
The ‘cross-talk’ between two such systems is assumed to be mediated by exchanging any number of
soft gluons forming a colour singlet and are implemented in so-called ‘colour reconnection’ models.
We will not consider this possibility in this chapter. Indeed, these models are typically imposed
after the parton shower evolution has terminated.
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8 The Shower Algorithm in Practise

Figure 8.1: Examples of dipole chains. Thin arrowed lines indicate the colour connection
properties and may directly be translated to a corresponding δij . The left
figure shows a circular, the right figure a non-circular chain.

Algorithm 4 The initialisation phase of the parton shower.

initDipoleShower(event) {
P ← find coloured particles in event
C ← partition P into colour singlets
for Ck ∈ C do

sort Ck such that subsequent partons are colour connected
if Ck is non-circular then

shift elements in Ck such that (Ck)first and (Ck)last are colour-disconnected
end if
i← 1
while i < length(Ck) ∨ (i ≤ length(Ck) ∧ Ck circular) do
j ← (i mod length(Ck)) + 1
i← i+ 1
p2
⊥,i,j ← hard scale for emitter q̂i, spectator q̂j
p2
⊥,j,i ← hard scale for emitter q̂j , spectator q̂i

end while
end for

}
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a hard scale p2
⊥ associated to the emitter under consideration, a scale q2

⊥ is selected with
probability given by the Sudakov form factor

∆(i,j)→(i′,k,j)(q
2
⊥, p

2
⊥) = exp

(

−
∫ p2

⊥

q2
⊥

dq2

∫ z+(q2)

z−(q2)

dzP(i,j)→(i′,k,j)(q
2, z)

)

, (8.7)

where P(i,j)→(i′,k,j)(q
2, z) is the appropriate splitting probability as defined in chapter 5,

using the respective dipole splitting function Vi′,k;j.
The splitting with the largest selected value of q2

⊥ is then chosen to be the one to
happen, except the largest q2

⊥ turned out to be below the infrared cutoff. In this case
the current chain is removed from the set of dipole chains, inserted into the event record
and the algorithm proceeds with the next chain. The momentum fraction z is chosen
to be distributed according to dP(i,j)→(i′,k,j)(q

2, z). Since we make use of azimuthally
averaged splitting kernels, the azimuthal orientation of the transverse momentum is
chosen to be distributed flat.

Since the evolution factors into dipole chains as independently evolving objects, all
possible emitters in the chain – after having inserted the generated splitting – now get
the selected q2

⊥ assigned as their hard scale, or stay at the kinematically allowed scale
p2
⊥,i,j if q2

⊥ > p2
⊥,i,j. If a g → qq̄ splitting has been selected for a circular chain, this chain

becomes non-circular. If it has been selected for an already non-circular chain, this
chain breaks up into two independent chains exactly between the qq̄-pair, owing to the
colour structure of this splitting. This situation, along with non-exceptional splittings
is depicted in fig. 8.2. The evolution algorithm is formally defined in alg. 5

8.2.4 Finishing the Shower

After the shower evolution has terminated, the incoming partons with momenta pa,b in
general have non-vanishing transverse momenta with respect to the beam directions.
This necessitates a realignment of the complete event encountered at this stage. Follow-
ing the arguments of section 5.4, the momenta of the evolved incoming partons pa,b are
taken to define the frame of the collision at hand, i.e. hadron momenta P̃a,b. We then
seek a Lorentz transformation to take P̃a,b to the externally fixed hadron momenta Pa,b,
which is in turn used to realign the complete event.

To construct the momenta of the incoming hadrons P̃a,b, we require the three-momenta
of P̃a,b being collinear to the respective partonic three-momenta and define momentum
fractions

xa,b =
2P̃b,a · pa,b

S
. (8.8)

The momentum fractions are further constrained by requiring that

(P̃a + P̃b)
2 = S (8.9)
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→ →

Gluon emission off a circular chain. The chain stays circular.

→ →

Gluon emission off a non-circular chain. The chain stays non-circular.

→ →

g → qq̄ splitting in a circular chain. The chain becomes non-circular.

→ →

g → qq̄ splitting in a non-circular chain, triggering breakup of the chain.

Figure 8.2: Examples of parton emission from dipole chains. In these examples always
the upper dipole has been considered for emissions. Note that any dipole
may split in two different ways, splitting either of its legs. These competing
possibilities are not shown in the transition diagrams.
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Algorithm 5 The evolution phase of the parton shower.

runDipoleShower(C) {
Cfinal ← {}
while C non-empty do
C ← (C)first

p2
⊥ ← 0, (a, b→ a′, c, b)← undefined
i← 1
while i < length(C) ∨ (i ≤ length(C) ∧ C circular) do
j ← (i mod length(C)) + 1, i← i+ 1
for (k, l)← (i, j), (j, i) do

for possible splittings (k, l → k′, m, l) do
select q2

⊥ from ∆(k,l→k′,m,l)(q
2
⊥, p

2
⊥,i,j)

if q2
⊥ > p2

⊥ then
p2
⊥ ← q2

⊥, (a, b→ a′, c, b)← (k, l→ k′, m, l)
end if

end for
end for

end while
if p2

⊥ < µ2
IR then

move (C)first from C to Cfinal

continue
end if
select z from dP(a,b→a′,c,b)(p

2
⊥, z) and φ flat in [0, 2π]

calculate momenta q̂a, q̂c, q̂b from p̂a, p̂b and p2
⊥, z, φ

replace p̂a, p̂b by q̂a, q̂b and insert q̂c between q̂a and q̂b
i← 1
while i < length(C) ∨ (i ≤ length(C) ∧ (C)first,(C)last colour-connected) do
j ← (i mod length(C)) + 1, i← i+ 1
p2
⊥,i,j ← min(p2

⊥, p
2
⊥,i,j), p

2
⊥,j,i ← min(p2

⊥, p
2
⊥,j,i)

end while
if (a→ a′, c) = (g → qq) then

if (C)first,(C)last colour-connected then
shift elements in C such that (C)first and (C)last are colour-disconnected

else
move (C)c,...,last to C ′

append C ′ to C
end if

end if
end while
return Cfinal

}

93



8 The Shower Algorithm in Practise

where S is the centre-of-mass energy squared of the collision, such that the desired
Lorentz transformation does exist.

The second constraint is in principle to be chosen in such a way as to preserve the
most relevant kinematic quantity of the hard process which initiated the showering. By
default, we choose this to be the rapidity of a system X, which is either the system of
non-coloured particles at the hard sub-process, or the complete final state in case of a
pure QCD hard scattering.

In practise, one may indeed run into numerical instabilities in the sense that the trans-
verse components of the incoming partons are not zero after applying the realignment
transformation. If this case is detected and checked to be compatible with the typical
order of magnitude of these instabilities (experience shows that these are of the order
of 10−6 GeV), the components are put to zero and a small boost is applied to the final
state to correct for this change. This step is necessary in order not to cause problems
for steps in the simulation downstream of the parton showering.

8.3 The Transition to the Non-Perturbative Domain

8.3.1 Using the Cluster Hadronization Model

The cluster hadronization model, originally proposed in [44], is the hadronization model
used by the Herwig++ event generator. The model in its initial stage just after parton
showering, performs a splitting of gluons into quark-antiquark pairs such that in the
large-Nc limit a set of colour singlet clusters emerge from the event under consideration.

These clusters are then subsequently converted into hadrons, by either splitting them
into clusters of lower invariant mass or performing directly the decay to meson pairs,
in case another qq̄ pair is ‘popped’ from the vacuum inside the cluster, or baryon pairs,
where the creation of a diquark-antidiquark pair is assumed. Further details of the model
will not be discussed here.

The main assumption of the model is however, that both quarks are located on their
constituent mass shell, and gluons are as well assigned a non-vanishing constituent mass,
entering as a parameter of the model. In the standard Herwig++ parton shower, acting
as a 1→ 2 cascade, only scales and momentum fractions of the splittings are determined
during the evolution, the full kinematic information being constructed after the end of
the perturbative evolution. This setup thus straightforwardly allows to include the
constituent masses in this particular step. Since the dipole shower preserves momentum
conservation locally to each splitting, ending up with a set of massless partons, such a
treatment is not possible.

The way to perform the ‘reshuffling’ of the massless parton momenta to their con-
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stituent mass shells is chosen to be the following algorithm: Let Qc be the total mo-
mentum of all final state partons and perform a boost Λc to the centre-of-mass system
of Qc, ΛcQc = (Q̂c, 0). The boosted parton momenta pi are now put on the constituent
mass shell, including a global rescaling of their three-momenta,

pi = (|pi|,pi)→ p′i =
(
√

ξ2|pi|2 +m2
c,i, ξpi

)

. (8.10)

Momentum conservation then demands ξ being a solution to

Q̂c =
∑

i

√

ξ2|pi|2 +m2
c,i , (8.11)

which is obtained numerically. Finally the inverse boost Λ−1
c is applied to the new parton

momenta p′i.

8.3.2 Intrinsic p⊥ as an Onset of Non-Perturbative Effects

The parton shower evolution is well-defined only in the perturbative region of QCD with
a strong hierarchy of scales,

Λ2
QCD ≪ µ2 ∼ p2

⊥ ≪ Q2 . (8.12)

Here p⊥ is the typical transverse momentum of parton shower emissions, Q2 is a hard
scale of the order of several hundreds of GeV, and µ2 is a soft scale in the region of a
few GeV. Typically, µ2 refers to the infrared cutoff of the parton shower, below which
no emissions are generated and the event is passed on to a hadronization model.

At hadron colliders, it is phenomenologically known that the parton shower dynamics
alone is not capable of describing those properties of final states, which can directly be
related to the generation of transverse momentum in the final state system as being
build up by initial state radiation. Examples are the p⊥ distributions for Drell-Yan or
γ + jet events in the region of small transverse momenta.

To cure this problem, a distribution of ‘intrinsic transverse momentum’ carried by the
partons entering the hard collision is introduced. These dynamics, taking place after the
parton shower evolution has terminated, are attributed to non-perturbative dynamics
in the colliding hadrons. The typical distribution is taken to be Gaussian,

d2p⊥
πΛ2
⊥

exp

(

− p2
⊥

2Λ2
⊥

)

(8.13)

relating to a spatial distribution of partons inside the colliding hadrons with a width
1/Λ⊥.

For the dipole-type shower outlined previously, this model can be implemented for
hadron-hadron collisions, where at the end of the evolution each incoming parton a, b
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has a transverse momentum ~pa,b⊥ added to its spatial momentum. Determining a boost to

transform the outgoing three-momentum ~Q to ~Q+ ~pa⊥ + ~pb⊥, a rescaling of the incoming
parton momenta is then sufficient to restore overall energy-momentum conservation, and
Lorentz invariant properties of the final state are preserved.

In collisions involving one incoming hadron only, such as DIS, or for processes where it
is assumed that the QCD dynamics of partons from one and the other incoming hadron
basically factorise, such as in VBF, this procedure is not applicable anymore owing
to the fact that a part of the final-state system not related to the QCD dynamics of
the incoming parton of interest would have to absorb part of the recoil of the intrinsic
transverse momentum added to the incoming parton. 3

A different approach, originally followed by [45], is to ‘continue’ the parton shower
dynamics into the non-perturbative region, thereby generating intrinsic transverse mo-
mentum through successive soft parton shower emissions. This necessitates assumptions
on the infrared behaviour of the strong coupling αs(q

2), which will have to be regular
across the Landau pole q2 = Λ2

QCD. In [45], some simple models have been introduced.
We will analyse this approach in more detail here. Models using a simple modified αs
are available in the implementation of the dipole-type shower, along with the traditional
method applicable for hadron-hadron collisions.

Practically, the parton shower is allowed to generate emissions down to transverse
momenta of the order of the QCD scale, and we aim at modelling the onset of non-
perturbative dynamics by modifying the parton shower dynamics in the region where

Λ2
QCD ∼ p2

⊥ ≪ µ2 . (8.14)

The soft scale µ2 now becomes a parameter, which is not related to the termination
of parton shower dynamics. Note that we cannot claim to use this approach to model
dynamics below the QCD scale, since there the notion of a parton is indeed of no sense
anymore, while it may still be regarded valid to some extent in the domain considered
here.

For soft gluon emission off an incoming parton i, the distribution of transverse mo-
mentum generated by a single parton shower emission when backwards evolving from a
scale Q2 can be approximated by

d2p⊥
2π

∂

∂p2
⊥

{

fP←i(x, p
2
⊥)

fP←i(x,Q2)
exp

(

−
∫ Q2

p2
⊥

dq2

q2

αs(q
2)

2π
Γi(p

2
⊥, Q

2)

)}

, (8.15)

where Γi denotes the Sudakov anomalous dimension, of which we consider here only the

3In parton showers, which do not conserve energy and momentum locally at each branching, this
is not a problem. Here, the intrinsic p⊥ is generated as just being part of the dynamics of the
last splitting encountered and hence dealt with by the so-called ‘kinematic reconstruction’ which
determines physical momenta from the parton shower variables generated.
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leading logarithmic contribution,

Γq,g(p
2
⊥, Q

2) = CF,A ln

(

Q2

p2
⊥

)

. (8.16)

We are now interested in the distribution resulting in evolution from µ2, along with mod-
ifying the parton distribution functions and the strong coupling in the ‘soft’ region, i.e.
we regard this modifications to be power suppressed for scales well in the perturbative
region, p2

⊥ & µ2.
For the parton distributions, a smooth ‘freezing’ may be applied by replacing p2

⊥ →
p2
⊥ + µ2 in the argument of the PDF in eq. 8.15. Evolving from µ2 to p2

⊥ ≪ µ2, the p2
⊥

distribution may then, up to a x-dependent normalisation, be regarded universal,

dPq,g(p
2
⊥) =

d2p⊥
2π

∂

∂p2
⊥

exp

(

−
∫ µ2

p2
⊥

dq2

q2

CF,Aα̃s(q
2, µ2,Λ2

QCD)

2π
ln

(

µ2

q2

)

)

. (8.17)

Here, α̃s(q
2, µ2,Λ2

QCD) denotes the modified running coupling. We assume that for
q2 < µ2 the modified coupling can be expanded in terms of a power series,

α̃s(q
2, µ2,Λ2

QCD) =

∞
∑

k=0

ck(µ
2,Λ2

QCD)

(

q2

µ2

)k

. (8.18)

Since α̃s is regular across the Landau pole by definition, we can expand the exponent
in the region of interest, p2

⊥ ∼ Λ2
QCD ≪ µ2. In this region, we may also approximate

logarithms in p2
⊥/µ

2 by logarithms in Λ2
QCD/µ

2. The Sudakov exponent then behaves as

const +
CF,A
2π

c1(µ
2,Λ2

QCD)
p2
⊥
µ2

(

1 + ln

(

µ2

Λ2
QCD

))

+O
(

p4
⊥
µ4

)

. (8.19)

One of the simplest modifications of the strong coupling is probably to introduce a
smooth freezing here as well,

α̃s(q
2, µ2,Λ2

QCD) = αs(q
2 + µ2,Λ2

QCD) . (8.20)

For a one-loop running we then indeed find a Gaussian behaviour,

dPq,g(p
2
⊥) ∝ d2p⊥ exp

(

− p2
⊥

2Λ2
⊥

)

, (8.21)

with width

Λ2
⊥ = µ2

β0π ln2(µ2/Λ2
QCD)

CF,A(1 + ln(µ2/Λ2
QCD))

. (8.22)
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The width is smaller for gluons, implying a broader spatial distribution than for quarks,
which may also be motivated on more general grounds. For a soft scale µ ∼ 1 GeV,
three active flavours and ΛQCD ∼ 200...500 MeV, typical widths range in

Λ⊥ ∼ 800 MeV ... 1.2 GeV (8.23)

which is exactly in the right order of magnitude as obtained by fitting the simple Gaus-
sian model to data.

The estimate carried out in this section confirms that modelling the running of αs
in the region where an onset of non-perturbative is expected, may indeed give rise to
a distribution of transverse momenta of incoming partons, which is dominated by a
Gaussian behaviour. These models – besides the advantage given in the introduction
to this section – may however exhibit richer dynamics than the simple Gaussian models
themselves, thereby possibly allowing better fits to data.

8.4 Conclusions

In this chapter, the technical details to obtain a complete event simulation using the
coherent dipole parton shower introduced in chapter 5 have been given. Besides the
precise way, how initial conditions are determined on basis of a hard scattering process
and the evolution algorithm itself, issues related to handing over an event to the further
process of hadronization have been discussed. Alternative approaches to the generation
of intrinsic transverse momentum in context of the dipole parton shower – especially
needed for deep inelastic scattering or vector boson fusion processes – have been moti-
vated and shown to produce a distribution compatible with a Gaussian, but probably
richer in dynamics than more conservative models.
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9.1 Overview

The purpose of this chapter is to introduce all technical details specifying the implemen-
tation of NLO matching in the context of the Catani–Seymour dipole subtraction [9].

In particular, both variants of a purely subtractive matching and a POWHEG-type
matching with matrix element corrections will be discussed. Both options have been im-
plemented in the Matchbox add-on module to the Herwig++ event generator. Matchbox
additionally provides facilities to automatically setup the subtraction needed for a NLO
Monte Carlo simulation, requiring only phase space generators, tree-level, one-loop and
real emission amplitudes as external input. Matchbox is documented in appendix C.

The POWHEG variant can be used independently of the shower module used, whereas
consistent results from the subtractive matching can only be obtained along with the
dipole shower introduced in chapters 5 and 8. The matching has so far been studied
numerically for selected processes in chapter 10.

9.1.1 Notation and NLO Calculations in Dipole Subtraction

In this chapter, we will consider NLO calculations carried out using the dipole subtrac-
tion method, [9].

Instead of using the notation established there, we unify the indices of all possible
dipoles to ease readability, as expressions become quite complicated especially when
considering the POWHEG type matching. In addition, we adopt the conventions chosen
for the dipole kernels in the chapter 6 for consistency,

Dij,k ,Daij ,Daik ,Dai,b → Dα , (9.1)
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where the arguments are unified and we make explicit the dependence on either real
emission or ‘tilde’ kinematics, e.g.

Dij,k(q1, ..., qn+1) → Dα(pαn(qn+1)|qn+1) , (9.2)

where pαn(qn+1) and qαn+1(qn; p
2
⊥, z, φ) mark the ‘tilde’ mapping and its inverse,

p̃ij(qi, qj , qk) , p̃k(qi, qj, qk) ≡ pαn(qn+1) (9.3)

qi,j,k(p̃ij , p̃k; p
2
⊥, z, φ) ≡ qαn+1(pn; p

2
⊥, z, φ) .

Differential cross sections are considered in collinear factorisation and written in the
notation of chapter 6,

dσX(pn|Q, xa, xb, µF ) = fP←a(xa, µF )fP←b(xb, µF )dσX(pn|Q)dxadxb (9.4)

where the partonic cross section is in general of the form

dσX(pn|Q) = F (p̂a, p̂b)X(pn)dφ(pn|Q) . (9.5)

Here F (p̂a, p̂b) is the appropriate flux factor and X(pn) generically denotes any contribu-
tion to the cross section which can be cast in the above form, i.e. tree-level amplitudes
squared, one-loop tree-level interferences, subtraction terms, or the ‘deconvoluted’ finite
collinear terms to be discussed below. As opposed to the previous chapters, the phase
space measure dφ(pn|Q) now only refers to final state particles. In latter sections, it will
turn out to be useful to rewrite this as

dσX(pn|Q, xa, xb) = X(pn)dF (xa, p̂a, xb, p̂b)dφ(pn|Q) (9.6)

≡ X(pn)dφF (pn|Q, xa, xb) .

where we dropped making explicit the factorisation scale dependence from now on.
The finite collinear terms originating from counter terms to renormalise parton dis-

tribution functions and integrated subtraction terms are reported in [9] as convolutions
of Born-type cross sections of colour correlated amplitudes with certain ‘insertion oper-
ators’, e.g. for the incoming parton a

∫ 1

0

dz C(pan(z))dφ(pn|Qa(z))dF (xa, zp̂a, xb, p̂b) , (9.7)

where the superscript a along with an argument z indicates, that parton a’s momentum
is rescaled by z. The insertion operators themselves include +-distributions, and events
should be generated according to the rescaled incoming momentum zp̂a. A numerical
implementation is at first sight not obvious. Considering however the integration over
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9.1 Overview

the momentum fraction xa, these contributions can be rewritten in terms of a Born-type
cross section multiplied by modified PDFs along the lines of

∫ 1

0

dx

∫ 1

0

dzf(x)B(xz)P (z) =

∫ 1

0

dxB(x)

∫ 1

x

dz

z
f
(x

z

)

P (z) (9.8)

and the +-distributions can be expressed in a way to allow for numerical implementation.
All possible contributions are implemented in the DipolePKOperator class of the Matchbox
module documented in appendix C.

Any NLO cross section within the dipole subtraction thus takes the form

σNLO =

∫

|MB(pn)|2u(pn)dφF (pn|Q, xa, xb) (9.9)

+

∫

[2Re〈M∗
B(pn)MV (pn)〉+

〈MB(pn)|I|M(pn)〉]ǫ=0 u(pn)dφF (pn|Q, xa, xb)

+

∫

〈MB(pn)|(P̃ + K̃)|M(pn)〉u(pn)dφ̃F (pn|Q, xa, xb)

+

∫

(

|MR(qn+1)|2u(qn+1)

−
∑

α

Dα(pαn(qn+1)|qn+1)u(p
α
n(qn+1))

)

dφF (qn+1|Q, xa, xb)

where the insertion operators I are given in [9] and have been implemented in full
generality in the Matchbox module as well. P̃, K̃ and dφ̃F denote the deconvoluted
versions of the finite collinear terms originating from the insertion operators P,K given in
[9]. Here, the test functions u(pn) refer to the class of events to be generated by a Monte
Carlo realisation of the above integrals, and MB,R denote the Born and real emission
amplitudes, respectively. The subtraction terms Dα are automatically generated within
the implementation of NLO cross sections in Matchbox.

Since only the structure of the real emission and subtraction terms turns out to be
relevant for matching purposes, we from now on collectively denote Born, virtual and
insertion operator contributions by

∫

|MBV (pn)|2u(pn)dφF (pn|Q, xa, xb) .

Since all the integrals will be dealt with by means of Monte Carlo methods, we consider
the integrands to define probability densities1, and differentials are expressed in terms of

1Some contributions indeed may turn negative, thus a probabilistic interpretation does not seem to be
evident. Contributions of this type can, however, still be treated in a pseudo-probabilistic manner.
Details are given in chapter 7.
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9 NLO Matching in Practise

a Jacobian expressing the physical variables in terms of random numbers and a volume
element on the unit hypercube of these random numbers, e.g.

dφ(pn|Q) =

∣

∣

∣

∣

∂pn
∂~r

∣

∣

∣

∣

dkr (9.10)

and we identify ratios of differentials to actually mean the ratios of the corresponding
functions multiplied by the Jacobian in use to express them in terms of random numbers,
e.g. for two cross sections we define

dσX(qm|Q)

dσY (pn|Q)
≡ X(qm)

Y (pn)

∣

∣

∣

∂qm
∂~rq

∣

∣

∣

∣

∣

∣

∂pn

∂~rp

∣

∣

∣

. (9.11)

9.2 Subtractive Matching

The subtractive matching is the simplest variant of the matching schemes considered
here. From a computational point of view it is basically identical to the NLO calcula-
tion with the only exception that the subtracted real emission does not generate a real
emission event associated with a set of Born-type events per subtraction term, but just
the real emission event with weight given by the real emission and all subtraction terms.
This means just replacing u(pα(qn+1)) by u(qn+1) in the general expression of the NLO
cross section, eq. 9.9, in accordance with the findings in section 6.4.2, since the shower
splitting kernels exactly equal the subtraction terms.

In an algorithmic manner, the matching may thus be expressed very simple:

• Generate Born-type events pn with density

|MBV (pn)|2dφF (pn|Q, xa, xb) , (9.12)

• generate real-emission type events qn+1 with density

(

|MR(qn+1)|2 −
∑

α

Dα(pαn(qn+1)|qn+1)

)

dφF (qn+1|Q, xa, xb) , (9.13)

• and feed either into the dipole shower.

Note that this algorithm does require a minimal change to an already implemented
NLO calculation, which consists of just the technical interface to the dipole shower. A
subtlety, however, arises here. Since we are interested in describing the hardest emission
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9.3 Matching with Matrix Element Corrections

according to the exact real emission matrix element, the parton shower should not
generate harder emissions than the one fixed from the NLO calculation. Practically, this
is implemented by calculating the pα⊥ as defined by the inverse ‘tilde’ mapping from each
dipole and communicating this as a veto scale to the dipole shower, which is not allowed
to generate emissions with p⊥ > pα⊥ off the emitter, emission and spectator partons used
to evaluate Dα.

9.3 Matching with Matrix Element Corrections

9.3.1 The Matrix Element Correction

As discussed in section 6.4.3, the splitting kernels to be used for a matrix element
correction are given by the ratio of real emission and Born matrix elements squared,
weighted by (in principle) arbitrary weight functions for each kinematic mapping of
a subtraction term, i.e. for each subtraction term. It is most simple to choose the
subtraction terms themselves to define these weight functions. This has the advantage
that all divergences but the divergence associated to the subtraction term Dα are divided
out from the real emission matrix element, and dynamical features of the Born matrix
element, like peaks owing to unstable particles, are flattened out in the splitting kernel
considered.

Within this procedure, on faces three major problems:

• Some of the subtraction dipoles, in particular the ones with initial state emitter
and final state spectator or vice versa, are not positive-definite. This makes a
Monte Carlo treatment of the corresponding Sudakov-type distribution hard to
implement. Since the regions, where these dipole kernels become negative corre-
spond to hard, large angle parton emission, it is clear that this problem can be
cured by changing the irrelevant finite terms of the subtraction dipoles, provided
they are consistently taken into account in the integrated ones. Within the Match-
box implementation this has so far been carried out for the qq initial-final dipoles,
which have been modified to reproduce the the matrix element squared for gluon
emission off the corresponding vector current and are thus positive by definition.

• The Born matrix element squared may contain ‘radiation zeroes’. In this case, its
inverse is obviously ill-defined.

• The implementation of the parton densities at hand, which enter as a ratio in the
splitting kernels as well, may not be stable in particular for large x in the sense that
the interpolation used oscillates around zero rather than tending to zero smoothly.
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9 NLO Matching in Practise

This poses a problem similar to the radiation zeroes, however now without any
physical interpretation.

The latter two problems can be solved by introducing an auxiliary cross section
dσscreen(pn|Q; p2

⊥) which enters into the definition of the splitting kernels

dPα(p
2
⊥, z, φ|pn) = d3r

Dα(pn|qαn+1)
∑

β Dβ(p
β
n(qαn+1)|qαn+1)

× dσR(qαn+1|Q, x′a, x′b)
dσB(pn|Q, xa, xb) + dσscreen,α(pn|Q; p2

⊥)
, (9.14)

where we have already written the splitting kernel differential in the random numbers
determining p2

⊥, z and φ, and the dependence of qαn+1 = qαn+1(pn; p
2
⊥, z, φ) on the splitting

variables is understood implicitly. In order not change the divergence structure implying
the resummation of large logarithms, the screening cross section needs to vanish as
p2
⊥ → 0. Since Born zeroes cannot occur for p2

⊥ → 0 (the QCD singularities factor in
this limit with respect to the Born process) eq. 9.14 is free of these problems. If, in
addition, the screening cross section does not depend on the parton distributions, the
technical issues with PDFs becoming zero are cured as well. A treatment similar to the
above one has already been suggested by Nason, though applying only to the matrix
elements squared. Our treatment is more general, and does not make necessary the
modification of parton distributions to cure numerically ill-defined PDF ratios.

The screening cross section has however to be taken into account for the fixed order
calculation in order to reproduce the correct NLO cross section and will thereby spoil
the original simplicity of using the NLO K-factor differential in the Born variables to
generate events to enter the matrix element corrected shower.

9.3.2 The Fixed Order Calculation

Including the screening cross section the fixed order cross section can then be calculated
to be constructed of densities for Born-type and real emission type events. The densities
for Born-type events closely resemble the K-factor modification,

dσinclusive(pn|Q, xa, xb) =

dkrB

(

dσBV (pn|Q, xa, xb)
dkrB

+ d3r
dσR,inclusive(pn|Q, xa, xb)

dkrBd3r

)

(9.15)

where

dσR,inclusive(pn|Q, xa, xb)
dkrBd3r

=
dσB(pn|Q)

dkrB

∑

α

Dα(pn|qαn+1)
∑

β Dβ(p
β
n(qαn+1)|qαn+1)

×
(

dσR(qαn+1|Q, x′a, x′b)
dσB(pn|Q, xa, xb) + dσscreen,α(pn|Q; p2

⊥)
− dφF (qαn+1|Q, x′a, x′b)

dφ(pn|Q)

)

. (9.16)
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9.3 Matching with Matrix Element Corrections

To generate events according to these densities, a k + 3-dimensional random number
point is chosen, where the three additional degrees of freedom are discarded. Owing to
the fact that the integration volume in terms of random numbers is the unit hypercube,
this procedure produces the integration over the degrees of freedom of the parton emitted
in the real emission on average.

Events of real emission type are to be generated with density

dσR(qn+1|Q, xa, xb) ×
∑

α

dσscreen,α(p
α
n(qn+1)|Q; p2

⊥)

dσB(pαn(qn+1)|Q, x′a, x′b) + dσscreen,α(pαn(qn+1)|Q; p2
⊥)

× Dα(pαn(qn+1)|qn+1)
∑

β Dβ(p
β
n(qn+1)|qn+1)

dlrR ,

(9.17)

which is just a reweighting of the real emission contribution. Events of both classes can
then be showered by a parton shower using a matrix element correction as defined in the
previous section, and a communication of veto scales applies to the real emission con-
tribution along the same lines as for the subtractive matching. Note that the individual
contributions are positive, as long as the screening cross section is bounded from above
by a reasonable value.

Since this type of matching is independent of the parton shower to act downstream, the
actual implementation does not make any reference to the dipole parton shower, and real
emission contributions according to the matrix element correction are generated outside
any shower module, presenting a real emission sub process supplemented with proper
veto scales, or a Born-type sub process to the shower, if radiation has been generated
according to the matrix element correction or not, respectively.

Note that, when putting the screening cross section to zero, the original simplicity of
the POWHEG-type matching is recovered. The matrix element corrections, inclusive
and real-emission type contributions are all setup and calculated in an automated way
within the Matchbox implementation. The screening cross section is by default chosen
from the corresponding phase space and the dimensionality required by the phase space,
i.e.

dσscreen,α(p
α
n(qn+1)|Q; p2

⊥) =
(pα⊥)2

sα(qn+1)

dφ(qn+1|Q)

(sα(qn+1))nout
, (9.18)

where pα⊥ is the transverse momentum associated to the mapping pαn(qn+1), and sα(qn+1)
is the appropriate mass squared of the emitter-spectator pair in pαn. Other choices may
be possible.
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9 NLO Matching in Practise

9.4 Conclusions

In this chapter all technical details for NLO matching as implemented in the Matchbox
module have been discussed. Matchbox is capable of setting up NLO calculations in
an automated way, with the only need of having Born-, one-loop-, and real emission
amplitudes provided.

All manipulations to obtain the quite simple matched calculation for the subtractive
scheme, or the more complicated matching with matrix element corrections, can be car-
ried out automatically as well. Problems due to non-positive definite dipole kernels have
been solved by modifying finite terms, and a scheme has been introduced to cope with
radiation zeroes as well as numerical instabilities in the evaluation of parton distribution
functions. Numerical results of applying these matching schemes to simple processes are
presented in chapter 10.
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10 Simulation Results

10.1 Overview

In this chapter, numerical results from the implementation of the dipole shower algo-
rithm and the automatised NLO matching are presented. Simulation results for e+e−

annihilation into hadrons as measured by the LEP experiments, deep inelastic scattering
as present at the HERA collider and Drell-Yan pair production at Fermilab’s Tevatron
collider have been compared to data. Both LO and NLO predictions are considered. All
software modules involved in the simulation part of hard process generation at LO and
NLO as well as the parton showering are documented in appendices A – C. Appendix
D gives an overview on validation of the code’s functionality.

10.2 Jet Production in e+e− Annihilation

In this section we extensively discuss simulation results for jet production in e+e− an-
nihilation, in particular as measured by the experiments at the LEP collider running
at a centre-of-mass energy of 91.2 GeV. The hard process of interest here, e+e− → qq̄,
offers the possibility to explicitly test the coherence properties of the parton shower,
and the data acquired by the LEP experiments allow to fix parameters entering the
hadronization model.
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10.2.1 An Explicit Test of Soft Gluon Coherence

In order to test the coherence properties of the dipole shower algorithm we here define
an observable, which is sensitive to the very defining property of coherent emission
of soft gluons. Though the observable may indeed be defined at hadron level, when
supplemented by a proper jet resolution criterion, we here define it on parton level in
order to make explicit the behaviour of parton showering only.

To be precise, we select events with four partons in the final state. Since these are
produced through e+e− annihilation, their overall colour state is a singlet. The required
four final state partons are ordered in energies, with one referring to the hardest, four
to the softest parton. The observable is defined in terms of angles between the partons
in the CMS of the collision, θij , and the energy fraction of the softest parton,

x4 =
E4

Etot

. (10.1)

We require partons two and three to be collinear,

θ23 < θc , (10.2)

and the fourth parton to have an energy below some threshold,

x4 < xc . (10.3)

The event topology is sketched in Figure 10.1. We are interested in the correlation
between energy and angular ordering. To this extent we consider the difference in
opening angles, assuming that partons three and four have been emitted by parton two,

θ∗ = θ24 − θ23 . (10.4)

In order to suppress contributions where the soft parton has most probably been emitted
from parton one, we further require

θ24 <
π

2
. (10.5)

The distribution of θ∗ is thus expected to be dominated mainly by the angular ordering
property, i.e. we expect a suppression of events with θ∗ < 0. An enhancement towards
θ∗ = 0 should however be present, since this corresponds to emitting the soft parton
collinear to parton three. Note that this singularity is actually screened by the Sudakov
form factor, thus we expect a peak towards θ∗ & 0, providing another important cross
check on the connection of the evolution variable to coherence properties.

The manifestation of a coherent evolution is, however, most notably the property that
for large-angle emission the colour sub structure of the collinear parton pair cannot be
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1
2 3

4

Figure 10.1: The event topology selected for testing coherence properties.

resolved by the soft parton. This implies that it is being preferably emitted as if there
were only two hard partons forming the corresponding dipole. In this region, there is no
Sudakov suppression in the angular variable, and the distribution of θ∗ is to be governed
by the corresponding radiation pattern for an emitter being combined of partons two
and three. For small θ23 the angle to the respective combined emitter may roughly be
taken to be θ∗ itself, that is we expect a drop of θ∗ towards θ∗ ∼ π/2, with a steep
fall-off starting from θ∗ = π/2− θc, which is just a consequence of the cuts imposed1. In
particular, there should not be an enhancement towards θ∗ ∼ π/2. For the p⊥ ordered
dipole shower we exactly find the expected behaviour, whereas a virtuality ordering
does not exhibit the coherence features. The simulation results for xc = 0.1, comparing
different orderings are shown in Figure 10.2.

The angular ordered shower of Herwig++ shows the same qualitative behaviour of
the θ∗ distribution as for the p⊥ ordered dipole shower, confirming that the p⊥ ordering
gives rise to a coherent evolution. Note that one cannot expect the showers to be
in perfect agreement, since after all these are different shower implementations. The
differences in the observable considered are influenced by many properties which are
not connected to the choice of evolution though significantly differ between both shower
implementations. In particular, the kinematic reconstruction at the end of the evolution

1In this region, the selected events tend to isotropic three-jet configurations, making it impossible for
the fourth parton to be soft by the energy-momentum constraint.
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Figure 10.2: The θ∗ distribution for θc = π/8 and xc = 0.1.

present in Herwig++, as opposed to the local recoils implemented in the dipole shower,
and the dead phase space region inherent to the angular ordered evolution should be
mentioned here.

10.2.2 Tuning of Parameters

The variety of data acquired by the LEP experiments allow for a systematic fir of pa-
rameters of the parton shower and the hadronization model. In a preliminary fit, the
parameters assumed to mainly determine the description of event shape variables and
jet rates as measured by the DELPHI experiment [46] and jet observables as reported
by the OPAL collaboration [47] have been fitted using the Rivet [48] and Professor [49]
systems. The parameters and ranges considered are given in table 10.1, along with a
short description. Parameters which are known to mainly affect individual hadron mul-
tiplicities have not been varied, and fragmentation parameters for heavy quarks have
been set equal to the values of those for light quarks. A simple modification of the
running of αs in the infrared has been adopted by replacing its argument q2 → q2 +µ2

soft,
cf. section 8.3.2, since there is no reason of assuming that this model should not be valid
for final state radiation.

Separate fits have been performed for LO and NLO predictions. LO predictions have
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Parameter Range Description
αs(M

2
Z) 0.1− 0.13 Input αs at Z mass.

µIR,FF 0.5 GeV − 2.0 GeV Infrared cutoff for final-final dipoles
µsoft,FF 0.0 GeV − 1.2 GeV Soft scale for final-final dipoles
mg,c 0.67 GeV − 3.0 GeV Gluon constituent mass
Clmax 0.5 GeV − 10 GeV Maximum cluster mass
Clpow 0.0− 10.0 Cluster mass exponent
Clsmr 0.0− 10.0 Cluster direction smearing
Psplit 0.0− 1.4 Cluster mass splitting parameter

Table 10.1: The parameters varied for the fit to LEP data.

Parameter LO NLO
αs(M

2
Z) 0.113185± 0.007281 0.117550± 0.005053

µIR,FF (1.416023± 0.306430) GeV (1.245196± 0.226821) GeV
µsoft,FF (0.242725± 0.202069) GeV 0.0 GeV 2

mg,c (1.080386± 0.499546) GeV (1.007680± 0.265565) GeV
Clmax (4.170320± 0.589504) GeV (3.664004± 0.639504) GeV
Clpow 5.734681± 1.006965 5.687022± 0.869322
Clsmr 4.548755± 2.350193 3.115744± 2.436793
Psplit 0.765173± 0.074008 0.771329± 0.074248

Table 10.2: Parameters for LO and NLO fits to LEP data.

been obtained by running just the parton shower, using a one-loop running αs. NLO
prediction have been obtained by means of supplementing the shower with the matrix
element correction matching without using the Born screening cross section and a two-
loop running αs. In total we find that the NLO simulation gives a marginally better
fit than the LO one, though the description of data is completely comparable within
experimental uncertainties.

The fitted parameter values are displayed in table 10.2. Most notably, the hadroniza-
tion parameters for the LO and NLO fit do not significantly differ. For both predictions,
a modification of the infrared running of αs seems not to be preferred.

The infrared cutoff of the parton shower is determined more precisely by the NLO
fit, which prefers a smaller cutoff. In other words, it prefers that more of the dynamics
are modelled by a QCD prediction than by the phenomenological hadronization model.
Also αs(M

2
Z) is determined more precisely by the NLO fit. Both αs values obtained are

compatible with the world average [50] of 0.1184, where the NLO result is closer to this

2This parameter was predicted negative by Professor though consistent with zero and has thus been
fixed.
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Figure 10.3: Differential jet rates as predicted by the leading order and next-to-leading
order simulations. Note that the small yij bins correspond to invariant
masses in the vicinity of or below the QCD scale and are thus almost only
subject to non-perturbative modelling. More sophisticated models or a
more systematic fit may reveal an even better description of data in this
phasespace region.
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Figure 10.4: Some event shape variables as predicted by the leading order and next-to-
leading order simulations. Here, we additionally compare to the standard
Herwig++ shower, showing that the dipole shower gives a significantly im-
proved description already at leading order.
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Figure 10.5: p⊥ and rapidity distributions with respect to the thrust axis.

value. In figures 10.3 and 10.4 the LO and NLO simulation results are compared for
selected observables.

In figure 10.5 the p⊥ and rapidity distributions with respect to the thrust axis are
displayed. Figure 10.6 shows two observables, which have not been included in the fit
and thus test the predictivity of the simulation to some extent. For the energy-energy
correlation we find an almost perfect description. The correlation of the out-of-plane
p⊥ and the hadron energy fraction xp is not described properly. This is the case for
the Herwig++ shower as well, though interestingly this is the only observable to show
significant improvements by the NLO matching. We trace back this to the fact that
the NLO prediction gives an improved description of three-jet final states, entering this
observable in the definition of the thrust axis and event plane.

10.2.3 Comparison of Matching Strategies

The Matchbox framework provides to switch between the POWHEG-type matching with
matrix element corrections including or excluding the auxiliary Born screening cross sec-
tion, and subtractive matching. For reasons of systematics it is instructive to compare
these approaches. No separate fit for the variants not considered so far has been per-
formed and the NLO fit values as given in the previous section have been used. The
different matching strategies give completely comparable results. If there are small
visible differences, there is no clear tendency that either variant would give a better
description than any of the others. Figure 10.7 compares the matching strategies for
two jet rate observables. To this extent, the subtractive matching could be preferred
amongst the POWHEG-type ones owing to its smaller computational complexity. This
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Figure 10.6: Energy-energy correlation and out-of-plane p⊥ correlation w.r.t. the thrust
axis. These observables have not been included in the fit and thus provide
a test of the predictivity of the simulation. The p⊥ correlation is the only
observable showing a significant improvement by the NLO matching. It
should be noted that this observable turns out to be problematic also for
the Herwig++ shower.

Parameter LO NLO
µIR,F I (0.796205± 0.333340) GeV (0.718418± 0.210448) GeV
µsoft,F I (1.355894± 0.432515) GeV (1.003714± 0.252398)GeV

Table 10.3: Parameters for LO and NLO fits to HERA data.

statement of course includes that negative weighted events do not pose a major problem
and also has to be decided in a process dependent matter since there is no hint, if the
behaviour observed here is a general feature.

10.3 Deep Inelastic Scattering

Owing to the approximation underlying the parton shower, cf. chapter 5, diagrams con-
tributing to parton emission of a given dipole (i, j) may be considered a gauge invariant
subset in the soft and/or collinear limits for Nc →∞. This motivates that the infrared
cutoffs and soft scales entering the emission probabilities need not be the same for all
dipoles. The emitter-spectator configurations forming gauge invariant quantities in this
sense are the two emitter choices for final-final dipoles, initial-initial dipoles, and the
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Figure 10.7: Comparison of matching strategies exemplified for the Durham two-jet rate
and JADE differential four-jet rate.

combination of initial-final and final-initial configurations. Fitting DIS data therefore
allows to fix the infrared cutoff and soft scale for the latter, before finally constraining
the same parameters for initial-initial dipoles at a hadron collider, which is considered
in the next section.

For the fit described here, the same technique as for LEP, and data accumulated by
the H1 experiment [51] have been used. For LO and NLO, the default Herwig++ PDFs,
MSTW 2008 LO [52] and MRST 2002 NLO [53], have been used. The same PDFs were
considered for hadron collider data to be discussed in the next section. The NLO fit was
obtained by running the matching with matrix element correction.

The findings are similar as for the fit to LEP data. The matched NLO prediction gives
a comparable fit to the LO simulation, while preferring both a smaller infrared cutoff
and screening scale. The fitted parameters are given in table 10.3.

In figures 10.8 and 10.9 simulation results are compared to transverse energy flows
dE⊥/dη in various bins of the Bjorken variable x and momentum transfer Q2. Both
predictions give a comparable and reasonable description of HERA data over the whole
range of the (x,Q2) plane.

Figure 10.10 shows the average transverse energy as a function of Q2 in both the
central and forward detector regions. These observables are clearly improved by the
NLO matching at small momentum transfers, though the description of the forward
region may be improved. The fact that this region is not properly described by an
ordinary parton shower is not surprising: in this region, large logarithms of the Bjorken
variable have a major impact and need to be resummed by a CCFM-type evolution, see
e.g. [54].
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Figure 10.8: Transverse energy flows as measured by H1 compared to LO and NLO
simulations.
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Figure 10.9: Transverse energy flows as measured by H1 compared to LO and NLO
simulations.
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Figure 10.10: Average transverse energy in the central and forward regions as measured
at HERA and compared to leading order and next-to-leading order predic-
tions. In the central region, the NLO prediction is fully contained within
the experimental uncertainties.

10.4 Vector Boson Production at Hadron Colliders

In this last section of comparing data to simulation results, we investigate the dipole
shower’s and matching performance in hadron-hadron collisions. Specifically, the p⊥
spectrum of Z bosons produced at the Tevatron is considered. Before comparing to
data, we analyse the impact of the new kinematic prescription for initial state radiation
by considering a parton level analysis only.

10.4.1 The Relevance of the Recoil Scheme

The effects of the altered recoil scheme for initial state radiation can most prominently be
analysed by looking at the predictions for the p⊥ spectrum of the Z boson in pp̄→ Z+X
events. Events have been generated at parton level without inclusion of intrinsic p⊥. So-
called ‘forced splittings’ to valence quarks are however present, which to some extent
contribute transverse momentum to the final state system. We analyse the effect on the
p⊥ spectrum by constraining the parton shower evolution to generate a fixed number of
initial state emissions according to the proposed recoil scheme, comparing to the recoil
scheme which keeps the initial state emitter aligned with the beam axis. We will refer
to the first scheme as ‘non-collinear’, the second will be called the ‘collinear’ scheme.
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Figure 10.11: The Z p⊥ spectrum when limiting the shower to two initial state emis-
sions, which is the first contribution to show differences between the recoil
schemes. The vertical grey line marks the infrared cutoff. Note that the
non-collinear scheme shows a much more smooth transition to the non-
perturbative domain.

For a single initial state emission we expect no difference in the distributions, since
the two parametrisations for one emission are related by a boost, which in the case of the
non-collinear scheme is applied after the emission has been generated. We exactly find
the expected agreement, which provides a cross check of our implementation. Starting
from two emissions, differences are clearly visible. Figure 10.11 shows the example of
two emissions, and we find the same systematics for higher multiplicities and the overall
spectrum. Though visible at parton level, the effect may be screened at hadron level ow-
ing to non-perturbative modelling, in particular intrinsic transverse momentum, leading
to comparable results when the full simulation is taken into account. The influence of
the different schemes on constraining non-perturbative parameters such as the width of
the intrinsic p⊥ distribution to reasonable ranges would have to be studied in a dedicated
fit to data.
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10.4.2 The Drell-Yan p⊥ spectrum

After having determined the simulation parameters for hadronization, final state ra-
diation, and radiation off an final-initial dipole by fitting LEP and HERA data, two
parameters remain to be determined: the infrared cutoff and soft scale for radiation off
an initial-initial dipole. The best observable to constrain these parameters is probably
the p⊥ spectrum of e+e− Drell-Yan pair production as measured by the CDF collabora-
tion [55]. Since the Drell-Yan process receives rather large QCD corrections of order 20%
from leading to next-to-leading order and a still considerable correction at NNLO, both
fits have been performed by normalising the simulation to the measured cross section.
The matrix element matching including the Born screening cross section has been used
here, as for the DIS data.

The cubic interpolation used by Professor turned not to be able to describe the simu-
lation dynamics over a wide parameter range for this observable. Therefore a different
method to obtain a preliminary fit has been used here: out of a sample of 200 randomly
generated points in parameter space the point with smallest χ2 has been chosen. When
normalised to data, we find that LO and NLO simulations are again comparable, with
the NLO fit surprisingly being worse than the LO one. Further, though finding a rea-
sonable description of the hard tail of the p⊥ spectrum for both predictions, the peak
position is not reproduced properly. Since the peak position is known to be determined
almost completely by non-perturbative models of the distribution of incoming parton
momenta, there are basically two possible reasons for this result:

• The modelling of intrinsic p⊥ by the simple modification of shifting the argument
of αs may not be sufficient, and other models would have to be considered. In
particular models, where the running of the strong coupling in the infrared region
exhibits a peak somewhere below a soft scale instead of just a plateau could be
promising.3 These models would enhance soft emissions at intermediate transverse
momenta while suppressing the occurrence of too low p⊥ emissions – resulting in
shifting the peak to higher p⊥ as required by the data.

• The model may be sufficient for Hadron-Hadron and DIS data separately, but the
DIS data prefer a different parameter set for final-initial (FI) dipoles. This can be
constrained by either a simultaneous fit to both experiment’s data or by re-fitting
the FI parameters to the CDF data.

Either case implies a shortcoming of the non-perturbative models involved, and im-
proving these will be subject to future work. In order to get a first handle on the
systematics, further fits have been done: first a fit of the initial-initial (II) parameters
while including the traditional Gaussian model for intrinsic p⊥, and a re-tune of both

3This behaviour is motivated by results for αs obtained from lattice simulations.
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Fit Strategy Parameter LO NLO

HERA→ TVT + 〈p⊥〉
χ2 3.00315 1.73401
µIR,II 0.367359 GeV 0.275894 GeV
µsoft,II 0.205854 GeV 0.254028 GeV
Λ⊥,valence 1.68463 GeV 1.26905 GeV
Λ⊥,sea 1.29001 GeV 1.1613 GeV

HERA→ TVT
χ2 2.97787 3.42818
µIR,II 0.307381 GeV 0.210811 GeV
µsoft,II 0.22353 GeV 0.563621 GeV

TVT only
χ2 1.63246 3.05275
µIR,F I 0.252593 GeV 0.252309 GeV
µsoft,F I 0.690434 GeV 1.5097 GeV
µIR,II 0.363603 GeV 0.502962 GeV
µsoft,II 0.495252 GeV 0.392963 GeV

Table 10.4: Parameters for LO and NLO fits to CDF p⊥(Z) data. The notation
HERA→TVT indicates FI parameters fixed by the HERA fit. Note that
uncertainties could not be determined owing to the different fit method used
here. This results reveal that there is a huge impact of non-perturbative mod-
els in describing this particular observable, and more sophisticated models
and a more systematic fit will have to be considered.

FI and II parameters to the CDF data. The results are given in table 10.4, where 300
parameter points have been used for the latter fits. Figure 10.12 compares the different
predictions. By including intrinsic p⊥ we find reasonable values for the width of the
Gaussian distribution Λ⊥, with the NLO matching preferring smaller widths. Here, the
expected hierarchy with the NLO fit being better than the LO one is apparent, and we
find Λ⊥,sea < Λ⊥,valence, i.e. a broader spatial distribution for sea partons as compared to
valence partons. By re-tuning the FI parameters, we again find the counter-intuitive fact
of a NLO prediction being worse than a LO one, though more points in parameter space
would have to be considered to obtain a definite statement. In total, this study reveals
that there is a huge impact of non-perturbative models in describing the Z p⊥ spectrum
and the simple modified-αs model does indeed not seem to be sufficient to describe these
dynamics. Figure 10.13 compares LO and NLO simulations run with parameters from
the fit including intrinsic p⊥, while keeping FI parameters as obtained from HERA data.
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Figure 10.12: Fit strategies for LO and NLO compared to CDF data. See text and
table 10.4 for details.
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Figure 10.13: LO and NLO predictions for the Z p⊥ spectrum. The FI parameters have
been fixed by the HERA fit, and II parameters and intrinsic p⊥ width have
been varied.
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10.5 Conclusions

In this chapter, we have presented simulation results obtained by an implementation of
the dipole shower and matching algorithms described in detail in the previous chapters.
Parameters of the simulation have been obtained by successive fits to data acquired at
LEP, HERA and the Tevatron, constraining first hadronization parameters, the value
of αs at the Z mass and the parameters entering radiation off final-final dipoles from
LEP data. This fit exhibits a very good description of several observables at LEP. The
predictivity has been tested by looking at observables not included in the fit and a
reasonable description is obtained also here. The three possible matching schemes have
been compared and shown to yield comparable results, though this may not be regarded
a process independent statement.

The parameters entering radiation off final-initial and final-initial dipoles have been
constrained from data acquired by the H1 experiment. The transverse energy flows
measured there are reasonably described over the complete (x,Q2) plane. In the last
step, parameters for radiation off initial-initial dipoles have been obtained from the Z p⊥
spectrum as measured by CDF. Non-perturbative modelling is shown to have a major
impact in describing this observable, and more sophisticated models will have to be
considered here.

In all cases we find that the NLO predictions give results comparable to LO predic-
tions, with no or few improvements visible. This may be attributed to the ‘simplicity’
of the processes studied here in the sense that only two coloured partons are involved
in the Born process yielding trivial colour correlations and factoring vertex corrections
only. The programs developed within the context of this work allow however to study
more complex processes, which will be looked at in future work.
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11 Outlook

The collider experiments being currently operated, most notably these at CERN’s Large
Hadron Collider, require theoretical predictions for final states as encountered in reality.
Up to recent work, these predictions – being carried out by using Monte Carlo methods
– have mostly only been available at the leading order of QCD perturbation theory.
The increasing precision of data acquired at collider experiments, including those from
experiments not being in operation anymore, require a similar precision for theoretical
predictions. Including higher-order QCD corrections into parton shower simulations
has thus emerged to be a vital field of research. In this thesis, a twofold approach has
been presented to improve simulations to the next-to-leading order in QCD perturbation
theory.

This includes on the one hand theoretical development and the implementation of a
parton shower algorithm which eases the combination with higher order QCD correc-
tions, while maintaining the correct description of multiple parton emission. On the
other hand, a detailed and rigorous theoretical basis for deriving matching conditions
to higher orders has been formulated. Within this calculational formalism, the most
general form of matching parton showers and NLO calculations, and, for the first time
also NNLO corrections, have been calculated.

The new parton shower algorithm and a framework for setting up NLO calculations
and performing parton shower matching either through matrix element corrections or
subtractive matching in a fully automated way have been implemented within the event
generator Herwig++. The NLO framework requires solely a code calculating the respec-
tive tree-level and one-loop amplitudes, for which automated approaches are available as
well besides many specialised and optimised codes for certain classes of processes. This
opens up possibilities to provide a self-contained event simulation at NLO with less or
no additional work required, as opposed to other approaches. A major technical obstacle
to achieve such a level of automation has been solved by the development of dedicated
Monte Carlo methods and a flexible library implementing these to sample the required
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distributions without analytic knowledge about matrix element properties.
The simulation has been validated for simple processes at all major collider types,

i.e. for e+e− annihilation into jets, deep inelastic scattering, and Drell-Yan lepton pair
production at hadron colliders. Reasonable agreement has been found with data acquired
by the LEP experiments, H1 and CDF. For this class of processes, the impact of NLO
corrections turned out not to be significant besides the overall normalisation after having
performed independent fits at LO and NLO precision. Since this is certainly not a
general statement and readily traced back to the fact that in these processes no non-
trivial colour correlations nor non-factoring virtual corrections are involved, the study
of more complex processes is mandatory. The software libraries developed enable these
studies in a straightforward way, and one of the ‘non-trivial’ processes to be considered
next will certainly be the inclusion of NLO QCD corrections to jet pair production
at hadron colliders, a process which is of interest for example when extracting parton
distributions.

A further improvement of the simulation would be the consistent combination of
NLO QCD corrections to processes being accompanied by an additional number of jets.
Such a combination has successfully been achieved at LO already within the context
of CKKW/L merging, and a similar merging at NLO is thus of utmost importance.
Again, the simulation developed in this thesis work may form the basis of such an
algorithm. Having at hand the theoretical basis to perform matching at NNLO, and the
recent developments in turning NNLO calculations into fully differential Monte Carlo
programs, a first attempt to implement such a matching will certainly be undertaken in
the near future.
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This appendix documents the main structure of the exsample library used to sample
events from differential cross sections and Sudakov-type densities. The main exsample
classes are described in table A.1. The next sections describe the most important classes
for a user of exsample, i.e. the interface to the density to be sampled, the interface to
parameters steering the adaption behaviour and the usage of the generator classes for
standard sampling or Sudakov-type sampling as discussed in chapter 7. exsample pro-
vides an interface of the standard sampling generator to ThePEG’s SamplerBase interface
used in generating events.

A.1 The Density Interface

All exsample classes heavily make use of the template facilities provided by C++ to act
in a very generic way. To this extent, there is no base class for a class representing a
density to be sampled. The exsample generator classes instead expect the density object
to meet a certain concept, which is defined in the following. In addition, the exsample
generator classes are templated with the type of container representing a point in the
sampling volume. This defaults to std::vector which we will assume has been used here.
A density object then needs to provide the following methods:

• pair<vector<double>,vector<double> > support() const Return the boundaries of
the sampling volume as a pair of the lower left and upper right corner.

• size t dimension() const Return the number of variables the density depends on

• unsigned long maxtry() const Return the maximum allowed number of attempts to
draw an event from the density.
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Class Name Description
binary tree Generic binary tree class used to build up sam-

pling trees. Contains implementation of the sub-
tree hashing algorithm and selection of tree leafs
according to a selector object.

cell A sampling cell.
sampling selector Selector class passed along a binary tree to sample

cells in the standard sampling context.
parametric sampling selector Selector class passed along a binary tree to sample

cells with some variables fixed.
linear interpolator Implementation of a simple linear interpolation

and its inversion, used to generate the next evo-
lution variable in the Sudakov veto algorithm.

statistics Generic statistics class used to accumulate infor-
mation in the Monte Carlo estimate of a density’s
integral and overall efficiencies.

adaption info Container for parameters steering the adaption be-
haviour of the exsample algorithm.

generator Main class for standard sampling of densities.
exponential generator Main class for Sudakov-type sampling.

Table A.1: The main classes of the exsample library.
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• unsigned long presampling points() const Return the number of presampling points
which should be used for the density.

• void start presampling() Informs the density object that exsample is about to pre-
sample the density.

• void stop presampling() Informs the density object that exsample is done with pre-
sampling the density.

• double evaluate(const vector<double>&) Evaluate the density at the given point.

Additional functions to be supplied for Sudakov-type sampling are

• vector<bool> variable flags() const Indicate which of the variables are not consid-
ered parameters, including the evolution variable.

• size t evolution variable() const Indicate which of the variables corresponds to the
evolution variable.

• size t evolution cutoff() const Return the lower boundary on the evolution variable.

• vector<double> parameter point() const Return the parameter values at which the
next event should be generated.

A.2 The Generator Classes

The main interface of the generator classes, with a template parameter Function repre-
senting the density object, consists of the following methods:

• void function(Function* f) Set the density object.

• Function& function() Return the density object.

• adaption info& sampling parameters() Access the adaption parameters (see next sec-
tion for details).

• void initialize() Initialize the generator.

• double generate() Generate an event and return the sign of its weight (for standard
sampling), or zero or one for Sudakov-type sampling indicating if the event has
been selected below or above the evolution variable cutoff.

• const vector<double>& last point() const Return the last generated event.
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• void reject() Indicate that the last generated event has been rejected by the code
using the generator. Rejections of this type will be included in optimizing the
efficiency.

• void finalize() Finalize the generator performing cleanup and calculation of final
statistics accumulated.

Methods special to generator are:

• const statistics& stats() const Return the statistics object accumulating information
on integral estimates and efficiency.

• double integral() const Return the estimate of the density’s integral.

• double integral variance() const Return the variance on the integral estimate.

• bool compensating() const Return true, if the generator is in a compensating state,
i.e. if there are cells with a non-zero number of missing events.

A.3 Adaption Parameters

The parameters steering the adaption are contained in a simple adaption info structure,
providing the following members:

• double efficiency threshold Lower limit on the unweighting efficiency below which a
cell will be considered for splitting.

• double gain threshold Value of the gain measure, eq. 7.2, above which a cell split is
considered worth being performed.

• unsigned long freeze grid The number of accepted events after which the adaption
procedure should be stopped. If zero, adaption is always being performed.

• vector<bool> adapt False values indicate that the corresponding variable should
not be included in the adaption procedure. No efficiency is recorded for such
variables, nor are splits being performed along the corresponding hypercube di-
mension.
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B The DipoleShower Module

This appendix documents the DipoleShower add-on module to the Herwig++ event gen-
erator. DipoleShower has been developed as part of this thesis, and will be made pub-
licly available in the near future. It implements the dipole shower algorithm defined in
chapters 5 and 8 and is well integrated with Herwig++’s structure to handle multiple
interactions for hadron collisions.

Section B.1 gives an overview of the main classes of the module, whereas section B.2
introduces more details of the work flow how an event is handled. Finally, section B.3
introduces the module from a user’s point of view.

B.1 General Structure and Main Classes

The DipoleShower modules maps the physical ingredients of the parton shower algo-
rithm almost one-to-one to an object hierarchy. The corresponding classes are however
implemented in a more abstract way such as to allow for additional flexibility, when e.g.
considering ordering variables other than the transverse momentum or to allow for the
implementation of splitting kernels for emission off massive quarks.

The most basic object entering is probably the Dipole class, representing a dipole
formed by two partons. Dipole objects are assembled in DipoleChain objects, as intro-
duced in chapter 8.

The splitting probabilities are defined by an object of class DipoleShowerSplittingK-
ernel, representing the azimuthally averaged dipole splitting function, together with a
DipoleSplittingKinematics object implementing the kinematic parametrization and the
phase space weight to accompany the splittings described, and a ThePEG::AlphaS object
implementing the running strong coupling. DipoleShower provides one- and two-loop

131



B The DipoleShower Module

running αs implementations, where the threshold matching is simply performed by re-
quiring continuity of αs(q

2) alongm2
n, where mn is the mass of the n’th flavour to become

active.

Splittings for a dipole are generated by DipoleSplittingGenerator objects, assembling
DipoleShowerSplittingKernel, DipoleSplittingKinematics and ThePEG::AlphaS objects to
completely define a splitting probability1. The needed Sudakov-type distribution is
sampled by making use of the Exsample library. Any sensible choice of evolution for the
dipole cascade can be implemented in objects deriving from the DipoleEvolutionOrdering
class.

The complete showering of a sub process is managed by the DipoleShowerHandler class.
Several utility classes are provided for special tasks within the evolution and management
of the event record. The main physics classes are listed in table B.1, along with a short
description making use of the notation as introduced in chapter 8. The list of utility
classes can be found in table B.2.

B.2 Work Flow

The general initialization and evolution algorithms have already been formalized in 8.2.
This section gives an overview of how the components described in the previous section
act together such as to implement these algorithms. This work flow is depicted in
figure B.1.

In the initialization phase, the colour ordering is performed by making use of ThePEG’s
representation of colour flows. Colour flows are represented by colour lines containing
references to the particles which are connected to these lines. Colour ordering can thus
be implemented relatively straightforward, by noting that a colour singlet is ‘simply
connected’ with respect to its colour flow topology, i.e. walking along colour lines (being
the equivalent of a fundamental-representation Kronecker-δ), any parton in the singlet
can be reached by following colour lines, changing from a colour to an anti-colour line on
an external gluon. Along this ‘walk’, the referred ThePEG::Particle objects are already
appended to a list. A new list is opened, when the end of a colour singlet is reached.

The colour ordered partons are then sorted in dipole chains, and the hard scales are
reported by the DipoleEvolutionOrdering object, given additional parameters such as the
type of the splitting through a reference to a DipoleSplittingKernel object.

During the evolution stage, a performance-critical issue is the efficient generation of
candidate splittings for each dipole – this is much more important than in a traditional
parton shower, since in dipole-type showers all dipoles in a chain are competing for
splittings at any stage at the evolution, giving a multiple of the candidate splittings to

1The ThePEG::AlphaS object is actually contained in the DipoleSplittingKernel objects.
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Class Name
(← Inherits from)

Description

DipoleSplittingKinematics
← ThePEG::HandlerBase

Base class for kinematic parametrisations and
phase space weight

q̂a,c,b(p̂a,b, p
2
⊥, z, φ) , dφ1(p̂a,b, p

2
⊥, z)

DipoleSplittingKernel
← ThePEG::HandlerBase

Base class for azimuthally averaged splitting ker-
nels

〈Va,c,b〉(p̂a,b, p2
⊥, z)

.
DipoleSplittingGenerator
← ThePEG::HandlerBase

Assembles DipoleSplittingKernel, DipoleSplit-
tingKinematics, ThePEG::AlphaS and PDFRatio
objects to sample p2

⊥, z points according to the
density

dP(a,b→a′,c,b)(p
2
⊥, z)∆(a,b→a′,c,b)(p

2
⊥, p

2
⊥,a,b)

Dipole Class representing a dipole q̂a, q̂b. Associates to
a pair of ThePEG::Particle objects information on
momentum fractions and PDF’s for incoming par-
tons, and a DipoleIndex object for each emitter-
spectator assignment.

DipoleChain Represents a dipole chain C and provides imple-
mentations of inserting dipole splittings, rotating
or a chain which became non-circular or splitting
a non-circular chain.

DipoleEventRecord Represents a collection of dipole chains, C. Pro-
vides implementations for colour ordering and
chain finding of partons at a hard sub process, and
filling the ThePEG event record after the showering
has terminated.

DipoleEvolutionOrdering
← ThePEG::HandlerBase

Base class for selecting hard scales, assigning scales
after a splitting and determining a winner split-
ting.

DipoleShowerHandler
← Herwig::ShowerHandler

Main class steering the showering of a
ThePEG::SubProcess object as passed from
the Herwig::ShowerHandler class.

Table B.1: Main classes of the DipoleShower module.
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Class Name
(← Inherits from)

Description

DipoleIndex Indexes a emitter-spectator selection for a
dipole of flavours a, b, along with references to
ThePEG::PDF objects for incoming partons. Used
to index different splitting generators capable of
selecting splittings of a dipole of given type.

DipoleSplittingInfo Contains full information on a splitting to be per-
formed, i.e. a DipoleIndex object, a reference to a
DipoleSplittingKinematics object, and the selected
values of p2

⊥, z and φ.
DipolePartonSplitter Performs 1 → 2 parton splittings with the proper

selection of colour information.
PDFRatio
← ThePEG::HandlerBase

Numerical stable implementation of ratios of the
form

fP←a(x/z, q
2)

fP←b(x, q2)

IntrinsicPtGenerator
← ThePEG::HandlerBase

Traditional approach to Gaussian-distributed in-
trinsic transverse momentum of incoming partons.
Applicable to hadron-hadron collisions only.

ConstituentReshuffler
← ThePEG::HandlerBase

Performs the transformation (‘reshuffling’) of par-
tons from their pole to constitutent mass shells
in order to make use of the cluster hadronization
model possible.

Table B.2: Utility classes of the DipoleShower module.
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Figure B.1: Work flow in the DipoleShower module.
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be generated to reach the same multiplicities, as if there where only individually evolving
partons undergoing 1→ 2 splittings.

The Exsample library enables a very efficient sampling of a single splitting kernel,
though it needs a certain ‘adaption’ phase and nonetheless a non-negligible amount of
memory. The task is therefore to keep the number of Exsample::exponential generator
objects as small as possible.

To this extent, new generators are firstly only built and initialized, if a splitting of
a certain type occurs for the first time during running the generator. This avoids a
long initialization phase potentially presampling kernels which will never be used in
the evolution. Secondly, each DipoleSplittingKernel can flag a certain splitting type to be
equivalent to another splitting type. In this case, generation of the equivalent splitting is
automatically redirected for the already running Exsample::exponential generator object.
Examples of this type are all splittings with a massless final state spectator, making no
reference to the flavour of the spectator.

B.3 User Interaction

This section describes the most relevant interfaces of the main DipoleShower classes
steerable from input files. For a complete documentation the reader is referred to the
source code documentation.

B.3.1 ‘End User’ Interfaces

DipoleSplittingKinematics interfaces:

• IRCutoff: Set the p⊥ infrared cutoff in units of GeV

DipoleSplittingKernel interfaces:

• AlphaS: The αs implementation to be used.

• SplittingKinematics: The kinematics parametrization to be used.

• PDFRatio: The PDFRatio object for numerical stable evaluation of PDF ratios.

• Flavour: The quark flavour to be produced, if ambiguous (e.g. in g → qq̄ the
flavour cannot be obtained from the flavours of the splitting dipole).

• ScreeningScale: Optional soft scale µ in units of GeV for a simple modification of
αs in the infrared region, α̃s(q

2) = αs(q
2 + µ2).
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• PresamplingPoints: The number of points used for presampling the splitting kernel.

• MaxTry: The maximum number of attempts to generate a splitting.

DipoleShowerHandler interfaces:

• Kernels: Vector of splitting kernels to be considered.

• EvolutionOrdering: The evolution ordering to be used.

• ConstituentReshuffler: The object to transform partons to constitutent mass shells.

• IntrinsicPtGenerator: Intrinsic p⊥ generation for hadron-hadron collisions.

• GlobalAlphaS: When used, the ThePEG::AlphaS objects of all splitting kernels are
overridden by the object set through this interface.

• DoFSR: Switch On or Off final state radiation.

• DoISR: Switch On or Off initial state radiation.

IntrinsicPtGenerator interfaces:

• ValenceIntrinsicPtScale: The mean intrinsic p⊥ for valence quarks in GeV.

• SeaIntrinsicPtScale: The mean intrinsic p⊥ for sea quarks and gluons in GeV.

B.3.2 Developer Interfaces

DipoleSplittingKernel interfaces:

• MCCheck: Set a DipoleMCCheck object to numerically cross check sampled distri-
butions.

DipoleShowerHandler interfaces:

• NEmissions: Limit the number of emissions to be generated.

• DiscardNoEmissions: When switched On, events which did not radiate are dis-
carded. If NEmissions> 0 only events with exactly NEmissions emissions are ac-
cepted.

• Verbosity: Different levels of verbosity ranging from 1 to 3 to print debug informa-
tion on the showering being performed. 0 disables debug output.
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C The Matchbox Module

This appendix documents the Matchbox add-on module to the Herwig++ event gener-
ator. Matchbox has been developed as part of this thesis, and will be made publicly
available in the near future.

Along with the Matchbox development, several extensions to the ThePEG software
framework, on which both Herwig++ and Matchbox are based, have been implemented
in order to enable the processing of NLO Monte Carlo event generation within ThePEG.

The outline of this appendix is as follows: section C.1 discusses the general structure,
main classes and gives a brief overview of the NLO extensions to theThePEG framework.
Section C.2 introduces the interface to matrix elements provided by external codes,
while section C.3 outlines, how Matchbox automatically generates subtraction terms.
Section C.4 sketches the work flow of the complete module when running ‘plain’ or
matched NLO calculations, before section C.5 introduces a user’s view on Matchbox.

C.1 General Structure and Main Classes

Being developed within the paradigm of an object-oriented library, Matchbox closely
resembles the structure of a NLO calculation, and the matching schemes already dis-
cussed.

The ingredients for a standard NLO calculation are grouped into generic interfaces
to (tree-level) matrix elements and interferences of one-loop and Born amplitudes, con-
tributions of the dipole subtraction acting at the level of virtual corrections, i.e. the
so-called insertion operators I, P and K, and subtracted real emission matrix elements.
Phase space generators are considered part of the corresponding tree-level matrix ele-
ment interface.
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All these contributions are assembled into a ThePEG::SubProcessHandler object by
the NLOFactory class, which is then handled by ThePEG’s standard event generation
chain. In addition, Matchbox provides utilities for coding amplitudes using contemporary
techniques based on the spinor helicity formalism. The main classes for performing NLO
calculations are listed in tables C.1, C.2 and C.3, along with a short description of the
physics object they represent.

C.1.1 NLO Extensions for the ThePEG Framework

The ThePEG framework has been designed to provide a toolkit for the full simulation
of events in a high-energy physics experiment, starting from a hard sub process, going
on to parton showers, multiple parton interaction models, hadronization and decays
of unstable particles. It provides enormous flexibility for this whole chain of event
simulation, but so far has been implemented and maintained with only leading order
cross sections in mind. Though recently support has been added for merging tree-level
matrix elements of different multiplicity and parton showers, native support for NLO
calculations and matching to parton showers has so far been missing.

During the development of Matchbox, several obstacles with regard to NLO calcula-
tions have been removed and additional functionality to natively support NLO calcu-
lations has been added to ThePEG. In particular, the frequently encountered grouping
of a real emission phase space point along with a set of Born-type phase space points
originating from subtraction terms is now possible. The corresponding functionality
has, however, been implemented in a generic way, as such groupings may not only ap-
pear in the context of subtracted real emission matrix elements and are indeed also
used by Matchbox to calculate inclusive NLO cross sections as entering POWHEG-type
matchings. The main extensions are described in table C.4.

C.1.2 Matching with Matrix Element Corrections

Matchbox is in particular capable of automatically turning a NLO calculation into a
POWHEG-type matching, or ‘matching with matrix element correction’. Again, the
class structure closely resembles the contributions entering this matching scheme. A
crucial concept within this context are the various forms of ratios of a matrix element
squared, or a subtraction dipole, divided by a sum of subtraction dipoles. These contri-
butions are all represented by objects of type ME2byDipoles. The inclusive QCD cross
section is evaluated by making use of a specialized ThePEG::MEGroup class, the ‘finite’
real emission contributions – if a screening of the Born process due to radiation zeroes or
vanishing flux factors is in order – are represented by ordinary MatchboxMEBase objects,
re-weighted by the required ME2ByDipoles objects.
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Class Name
(← Inherits from)

Description

MatchboxMEBase
←ThePEG::MEBase

Base class for tree-level matrix elements. Repre-
sents

• amplitudes squared, |M|2

• correlated amplitudes, 〈Mµ|CµνTi ·Tj|Mν〉,

• and a phase space generator for the process
implemented.

MatchboxVirtualMEBase
←ThePEG::HandlerBase

Base class for virtual corrections. Represents

• one-loop/Born interference,

• or insertion operators.

MatchboxNLOME
← ThePEG::MEBase

Assembles a MatchboxMEBase and several Match-
boxVirtualMEBase objects calculating the Born
process and virtual corrections, respectively.

SubtractionDipole
← ThePEG::MEBase

Base class for subtraction dipoles Dij,k.

TildeKinematics
← ThePEG::HandlerBase

Base class for the ‘tilde’ mapping,
p̃ij(qi, qj , qk),p̃k(qi, qj , qk) ≡ pαn(qn+1).

SpinCorrelationTensor A Lorentz tensor of the form cηµν + kµlν used for
spin-correlated amplitudes.

SubtractedME
← ThePEG::MEGroup

Assembles a MatchboxMEBase and several Sub-
tractionDipole objects calculating a subtracted real
emission matrix element.

Table C.1: The main classes used to perform NLO calculations within Matchbox.
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Class Name
(← Inherits from)

Description

DipoleRepository Contains the different SubtractionDipole objects
and insertion operators available. Any dynam-
ically loaded library may register subtraction
dipoles or insertion operators with the Dipol-
eRepository.

DipoleIOperator
← MatchboxVirtualMEBase

The insertion operator I, capable of dealing with
arbitrary processes for massless quarks.

DipolePKOperator
← MatchboxVirtualMEBase

The sum of the insertion operators P and K, capa-
ble of dealing with arbitrary processes for massless
quarks.

NLOFactory
← ThePEG::SubProcessHandler

Assembles all contributions to a NLO calculation
into a ThePEG::SubProcessHandler object to be
used by the standard event generation chain.

Table C.2: Classes used for the automated dipole subtraction provided by Matchbox.

Class/Namespace Name Description
SpinorHelicity (namespace) Provides implementations of the Weyl spinors |p〉

and |p], spinor inner products 〈pq〉, [pq] and cur-
rents 〈p|γµ|q], [p|γµ|q〉.

AmplitudeCache Caching facilities for invariants, spinor products
and off-shell currents.

Table C.3: Support for implementing spinor helicity amplitudes in Matchbox.

Class Name
(← Inherits from)

Description

MEGroup
← MEBase

Base class for a ‘matrix element group’, consisting
of a ‘head’ matrix element (e.g. a real emission
matrix element) and a set of ‘dependent’ matrix
elements (e.g. subtraction terms)

StdXCombGroup,
StdDependentXComb
← StandardXComb

Information on phase space points associated to a
MEGroup object.

SubProcessGroup
← SubProcess

A group of a ‘head’ and a set of ‘dependent’ hard
sub process objects, as generated by a MEGroup
object.

Table C.4: Main NLO extensions to ThePEG.
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Again, all pieces are assembled automatically into a ThePEG::SubProcessHandler by
the PowhegFactory class. A specialized PowhegSplittingGenerator class acts as a so-called
post sub-process handler within ThePEG, generating real emission radiation according
to the matrix element correction Sudakov form factor, eventually replacing a Born-type
with a real emission type sub-process. The main classes relevant for the automatised
POWHEG matching are listed in table C.5.

C.2 The Matrix Element Interface

One of the main design criteria in the development of Matchbox has been to use already
existing programs for calculating the amplitudes for certain processes and to facilitate the
efficient generation of phase space points – leaving the main task of matching calculations
to Matchbox, while not imposing unnecessary constraints on the fixed-order codes.

The interface between both is Matchbox’s generic matrix element handling, defined
through the MatchboxMEBase and MatchboxMEVirtualBase base classes, which are de-
scribed in more detail in this section. The interface closely complies with parts of a
proposal raised by the author at the Les Houches workshop 2009, [56].

Besides the functionality required by ThePEG::MEBase, which includes implementing
a phase space generator through

ThePEG::MEBase::generateKinematics(const double * r) ≡
∣

∣

∣

∣

∂φ(pn)

∂~r

∣

∣

∣

∣

, 1 (C.1)

and the tree-level matrix element squared through

ThePEG::MEBase::me2() ≡ |M|2 , (C.2)

MatchboxMEBase requires amongst minor bookkeeping issues the implementation of
colour- and potentially colour- and spin-correlated amplitudes,

MatchboxMEBase::colourCorrelatedME2(pair<int,int> ij) ≡ 〈M|Ti ·Tj

T2
i

|M〉 , (C.3)

MatchboxMEBase::spinColourCorrelatedME2 (C.4)

(int g, pair<int,int> ij, SpinCorrelationTensor C) ≡ 〈Mµg
|Cµgνg

Ti ·Tj

T2
i

|Mνg
〉 .

1Storing generated momenta in ThePEG::MEBase::meMomenta(), and the actual value of the Jacobian
through ThePEG::MEBase::jacobian(double x).
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Class Name
(← Inherits from)

Description

ME2byDipoles
← MatchboxReweightBase

Base class for objects of type

X(qn+1)
∑

αD(pαn(qn+1)|qn+1)

InvertedTildeKinematics
← ThePEG::HandlerBase

Base class for the inverted ‘tilde’ mapping,
qi,j,k(p̃ij, p̃k; p

2
⊥, z, φ) ≡ qαn+1(pn)

PowhegInclusiveReweight
← ME2byDipoles

Re-weights a subtraction dipole,

Dα(pn|qαn+1(pn))×
|MR(qαn+1(pn))|2

∑

β Dβ(p
β
n(qαn+1(pn))|qαn+1(pn))

to obtain a contribution to the inclusive NLO cross
section.

PowhegRealReweight
← ME2byDipoles

Re-weights a real emission matrix element,

|MR(qn+1)|2 ×
Dα(pαn(qn+1)|qn+1)

∑

β Dβ(p
β
n(qn+1)|qn+1)

contributing to the ‘finite’ real emission.
PowhegSplittingKernel
← ME2byDipoles

Represents the matrix element correction kernel,

Dα(pn|qαn+1(pn))

|MB(pn)|2
× |MR(qαn+1(pn))|2
∑

β Dβ(p
β
n(qαn+1(pn))|qαn+1(pn))

PowhegInclusiveME
← ThePEG::MEGroup

Assembles a MatchboxNLOME, a MatchboxMEBase
and a set of SubtractionDipole objects to calculate
the NLO inclusive cross section.

PowhegSplittingGenerator
← ThePEG::StepHandler

Samples the real emission according to the ma-
trix element correction Sudakov form factor, even-
tually replacing a Born-type by a real emission
ThePEG::SubProcess object.

PowhegFactory
← ThePEG::SubProcessHandler

Given a NLOFactory object, assembles all con-
tributions to the fixed-order cross section into a
ThePEG::SubProcessHandler object and a set of
PowhegSplittingKernel objects to be used by a
PowhegSplittingGenerator.

Table C.5: Matchbox’s facilities for automatic POWHEG matching. For the notation
the reader is referred to chapter 9.
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The interface to virtual corrections requires the implementation of differential cross
sections similar to ThePEG::MEBase, though the communication of the corresponding
sub-process is simplified through the

bool MatchboxVirtualMEBase::apply(...)

method, which is given a flavour assignment for a certain sub-process and shall return
true, if the virtual correction is to be included for the process, and false otherwise.

With respect to the automated dipole subtraction, it is important for the virtual
correction implementation to communicate, if it uses conventional dimensional regular-
ization (CDR) or dimensional reduction (DR) through the

bool MatchboxVirtualMEBase::isDR()

method, which should return true for the case of DR and false for the case of CDR.

C.3 Automatic Generation of Subtraction Terms

The automatic generation of subtraction terms is based on ThePEG’s built-in functional-
ity of communicating tree-level Feynman diagrams through the ThePEG::Tree2toNDiagram
class. Within the development of Matchbox this class has been enhanced to support
‘mergings’ of two external partons attached to the same vertex. A ThePEG::Tree2toNDiagram
is now capable of trying to merge an ‘emission’ particle and an ‘emitter’ particle, return-
ing either failure, if emission and emitter are not connected to the same vertex, or the
diagram resulting from the merging, including identifying the emitter after the merging
through the

ThePEG::Tree2toNDiagram::mergeEmission(int emitter, int emission)

method. Within a real emission matrix element, all possible mergings are checked,
eventually giving rise to inclusion of the corresponding dipole if the merging returned
a valid ‘underlying Born process’ from the merging. The corresponding dipole is then
looked up from the global DipoleRepository object and inserted into the SubtractedME
object to be built by the NLOFactory object.

Further, all insertion operators known to the DipoleRepository are queried, if they
apply to the Born process at hand and are inserted into the corresponding MatchboxN-
LOME object to be built by the NLOFactory.
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C.4 Work Flow for NLO Calculations and Matching

The work flow of Matchbox to perform NLO calculations and matching to parton showers
has been outlined in detail in the previous sections. The purpose of this section is to
restore the global view in terms of a simple work flow diagram, given here:

C.5 User Interaction

This section describes the most relevant interfaces of the main Matchbox classes steerable
from input files. For a complete documentation the reader is referred to the source code
documentation.

C.5.1 ‘End User’ Interfaces

MatchboxMEBase interfaces:

• FactorizationScaleFactor: Factor to rescale the factorization scale µF .
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• RenormalizationScaleFactor: Factor to rescale the renormalization scale µR.

NLOFactory interfaces:

• BornMEs: A vector of MatchboxMEBase objects implementing the Born processes
to be considered.

• Virtuals: A vector of MatchboxVirtualMEBase objects implementing virtual correc-
tions to the Born processes set in BornMEs.

• RealEmissionMEs: A vector of MatchboxMEBase objects implementing real emis-
sion corrections to the Born processes set in BornMEs.

• SubProcessGroups: When switched On, ThePEG::SubProcessGroups are created by
the NLOFactory for running a ‘plain’ NLO calculation. Otherwise, real emission
events are generated with a weight determined by the sum of real emission and sub-
traction term weights. The latter option (Off) can be used to run the DipoleShower
on such events, performing the subtractive matching scheme.

PowhegFactory interfaces:

• NLOFactory: Set the NLOFactory object from which a matching with matrix ele-
ment corrections should be built.

C.5.2 Developer Interfaces

NLOFactory interfaces:

• SubtractionData: Set a path where real emission phasespace points along with real
emission and subtraction contributions are written to text files for checking the
subtraction.

• Verbose: When switched On, the NLOFactory object will dump information on the
automatic setup of the NLO calculation to standard output.

• Mode: Switch to select only parts of the NLO calculation. Options are All to take
into account all contributions, BornVirtual for only Born and virtual corrections,
or SubtractedReal for only subtracted real emission contributions.

PowhegFactory interfaces:

• Verbose: When switched On, the PowhegFactory object will dump information on
the automatic setup of the matched calculation to standard output.
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D Code Validation

This appendix gives an overview of the validation of the quite complex simulation code.
Almost all classes available in the DipoleShower and Matchbox modules provide the
possibility to extensively print out diagnostic information through both initialisation
and event generation phases. The first test of functionality has been performed by
looking in detail at these logs, and no malfunction has so far been recognised.

On the fixed order side, the performance of exsample on integrating cross sections
has been cross-checked against ThePEG’s built in ACDCSampler.1 Full agreement has
been found. In the following we will discuss validations of the shower implementation as
present in the DipoleShower module as well as the NLO and matching code as present
in Matchbox.

D.1 Shower Kernels

The sampling of shower splitting kernels has been explicitly verified in situ, meaning
using the full implementation as present in the simulation code, against an independent
implementation using a numerical integration to obtain the Sudakov-type distributions.
Figure D.1 shows that full agreement has been found for the final-final splitting kernels,
where the test has been performed using ‘dummy’ matrix elements producing a certain
dipole of fixed invariant mass or in a range of masses. A similar test for kernels involv-
ing initial state partons is hard to implement owing to the limitations imposed by the
ThePEG framework, as matrix elements cannot decide themselves on the distribution of
incoming partons. Since the structures handling and sampling the splitting kernels are

1Where possible, since ACDCSampler is unable to handle differential cross sections of indefinite sign.
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implemented in a completely generic way, treating final-final and other dipole splitting
types on equal footing, no discrepancy is expected if the test was possible.

D.2 NLO Corrections

For the processes discussed in chapter 10, all leading-order cross sections have been
checked to agree with the built in Herwig++ matrix elements.

In a next step, the functionality of the subtraction terms has been tested. Figures D.3
and D.3 show two typical examples of the ratio of subtraction to real emission cross
section, plotted against each of the invariants entering the propagator denominators,
proving full functionality of this part.

The ‘plain’ NLO cross section, and the inclusive one entering the matching with matrix
element correction have been checked to agree, with and without the usage of the Born
‘screening’ cross section. The NLO cross section for e+e− → jets has been validated
against the analytically known K-factor of 1 + αs/π. The NLO cross section for Drell-
Yan has been checked against the existing POWHEG implementation in Herwig++. For
deep inelastic scattering, the subtraction terms have been modified in order to have
positive definite dipole kernels, finite terms of the integrated subtraction terms have
been changed accordingly. The functionality of the subtraction has been checked with
both variants, and the NLO cross sections with and without modifications are found to
agree.

A non-trivial cross check of the matrix element correction code and exsample as the
underlying ‘working horse’, is to consider the spectra for a gluon emission off a qq̄ dipole
as generated by the shower, which is validated against a numerical integration of the
expected distribution implemented in a completely independent code. By putting the
real emission matrix element entering the matching to be equal to the sum of dipoles
(the correctness of which has been checked by verifying that the cross section of the
subtracted real emission matrix element is consistent with zero), the matrix element
correction must produce the same spectrum as the shower code. Figure D.4 shows that
this is indeed the case. It should be stressed that the machinery underlying the setup of
the matrix element correction is much more complex than the shower implementation,
and, that the splitting kernel entering the matrix element correction does depend on
more parameters2 than the one parameter of the shower kernel (corresponding to the
dipole invariant mass). Again, a similar check for hadron collisions is hard to implement,
but the same argument of the generic code structure handling all ingredients, as given
in the previous section, applies also here.

2In a realistic application these are not two random numbers needed for the Born process, but indeed
six, since photon radiation is generated of each incoming lepton, requiring two random numbers per
incoming lepton.
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Figure D.1: Comparison of sampled final-final splitting kernels (blue lines) versus results
from a numerical integration (turquoise lines) at two different dipole masses,
sij = (100GeV)2 (continuous lines) and sij = (50GeV)2 (broken lines).
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Figure D.3: Envelopes of the ratio of the subtraction to the real emission cross section
versus the propagator denominator for all singular configurations in Z + jet
production.
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Figure D.4: p⊥ and z spectra as generated from a final state qq̄ dipole in LEP events.
Putting the real emission matrix element to be equal to the sum of subtrac-
tion dipoles needs to reproduce the shower distribution (up to a normali-
sation) and thus provides a non-trivial cross check of the matching imple-
mentation, the complexity of which is much larger compared to the shower
implementation.

153



D Code Validation

154



References

[1] C.N. Yang und R.L. Mills, Conservation of isotopic spin and isotopic gauge
invariance, Phys. Rev. 96 (1954) 191–195.

[2] D.J. Gross und F. Wilczek, Ultraviolet behaviour of non-Abelian gauge theories,
Phys. Rev. Lett. 30 (1973) 1343–1346.

[3] G.C. Callan und D.J. Gross, Bjorken scaling in quantum field theory, Phys. Rev.
D8 (1973) 4383–4394.

[4] J. C. Collins, D. E. Soper, and G. F. Sterman, Factorization of Hard Processes in
QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1–91, [hep-ph/0409313].

[5] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962)
650–677.

[6] S. Frixione, Z. Kunszt, and A. Signer, Three jet cross-sections to next-to-leading
order, Nucl. Phys. B467 (1996) 399–442, [hep-ph/9512328].

[7] D. A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev. D57
(1998) 5410–5416, [hep-ph/9710213].

[8] A. Gehrmann-De Ridder and M. Ritzmann, NLO Antenna Subtraction with
Massive Fermions, JHEP 07 (2009) 041, [arXiv:0904.3297].

[9] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections
in NLO QCD, Nucl. Phys. B485 (1997) 291–419, [hep-ph/9605323].

155



References

[10] S. Catani, S. Dittmaier, M. H. Seymour, and Z. Trocsanyi, The dipole formalism
for next-to-leading order QCD calculations with massive partons, Nucl. Phys.
B627 (2002) 189–265, [hep-ph/0201036].

[11] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B72
(1974) 461.

[12] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, The q(T) spectrum of the
Higgs boson at the LHC in QCD perturbation theory, Phys. Lett. B564 (2003)
65–72, [hep-ph/0302104].

[13] Z. Nagy and D. E. Soper, Parton showers with quantum interference: leading
color, with spin, JHEP 07 (2008) 025, [arXiv:0805.0216].

[14] Z. Nagy and D. E. Soper, Parton showers with quantum interference: leading
color, spin averaged, JHEP 03 (2008) 030, [arXiv:0801.1917].

[15] Z. Nagy and D. E. Soper, Parton showers with quantum interference, JHEP 09
(2007) 114, [arXiv:0706.0017].

[16] Z. Nagy and D. E. Soper, Matching parton showers to NLO computations, JHEP
10 (2005) 024, [hep-ph/0503053].

[17] S. Gieseke, P. Stephens and B.R. Webber, New formalism for QCD parton
showers, JHEP 12 (2003) 045, [hep-ph/0310083].

[18] G. Marchesini and B.R. Webber, Simulation of QCD Jets Including Soft Gluon
Interference, Nucl. Phys. B238 (1984) 1.

[19] A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared Sensitive
Quantities in Perturbative QCD, Phys. Rept. 100 (1983) 201–272.

[20] S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour
dipole factorisation, JHEP 03 (2008) 038, [arXiv:0709.1027].

[21] M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole
formalism, Phys. Rev. D76 (2007) 094003, [arXiv:0709.1026].
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