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Abstract. This paper describes an approximation to the
lower incomplete gamma functionγl(a,x) which has been
obtained by nonlinear curve fitting. It comprises a fixed num-
ber of terms and yields moderate accuracy (the absolute ap-
proximation error of the corresponding normalized incom-
plete gamma functionP is smaller than 0.02 in the range
0.9≤ a ≤ 45 andx ≥ 0). Monotonicity and asymptotic be-
haviour of the original incomplete gamma function is pre-
served.

While providing a slight to moderate performance gain on
scalar machines (depending on whethera stays the same for
subsequent function evaluations or not) compared to estab-
lished and more accurate methods based on series- or con-
tinued fraction expansions with a variable number of terms,
a big advantage over these more accurate methods is the ap-
plicability on vector CPUs. Here the fixed number of terms
enables proper and efficient vectorization. The fixed number
of terms might be also beneficial on massively parallel ma-
chines to avoid load imbalances, caused by a possibly vastly
different number of terms in series expansions to reach con-
vergence at different grid points. For many cloud microphys-
ical applications, the provided moderate accuracy should be
enough. However, on scalar machines and ifa is the same for
subsequent function evaluations, the most efficient method
to evaluate incomplete gamma functions is perhaps interpo-
lation of pre-computed regular lookup tables (most simple
example: equidistant tables).
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1 Introduction

In cloud physics (and also in radar meteorology), it is com-
mon practice to use so-called gamma-distributions or gener-
alized gamma distributions (Deirmendjian, 1975) to describe
particle size distributions (PSD) of hydrometeors, either to
fit observed distributions (Willis , 1984; Chandrasekar and
Bringi, 1987) or to base parametrizations of cloud micro-
physical processes on it (e.g.,Milbrandt and Yau, 2005b;
Seifert and Beheng, 2006and many others). As will be out-
lined below, thisansatzmay lead to the necessity of com-
puting ordinary and incomplete gamma functions. Particu-
larly the incomplete gamma function poses certain practical
computation problems in the context of cloud microphysi-
cal parametrizations used on supercomputers, which up to
now hinders developers to apply parametrization equations
involving this function. These problems can be alleviated by
using a new approximation of this function that is introduced
in Sect.2 of this paper, which might ultimately lead to im-
provements in cloud microphysical parameterizations.

With regard to cloud- and precipitation particles, lety rep-
resent either the sphere volume equivalent diameterD or the
particle massm. Then, the distribution functionf (r,t;y)

describes the number of particles per volume at a specific
location r at time t having mass/diameter in the interval
[y,y + dy]. Dropping ther- and t-dependence for simpli-
city, f (y) is said to be distributed according to a generalized
gamma-distribution if it obeys

f (y) = N0 yµ exp
(
−λyν

)
(1)

with the four parametersN0, µ, ν andλ. If ν = 1, Eq. (1)
reduces to “the” gamma-distribution.

Note that if the widely used assumptionm ∼ Db with
b > 0 (e.g., Locatelli and Hobbs, 1974, and many others
thereafter) holds (most simple case: water spheres with
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330 U. Blahak: Efficient approximation of the incomplete gamma function

m ∼ D3), the generalized gamma distribution is invariant un-
der the transformation between the diameter- and the mass-
representation; only the values of the parameters are differ-
ent.

The parameters for Eq. (1) are not necessarily independent
in natural precipitation. For example, in case of rain drops
there has been observed some degree of correlation (Testud
et al., 2001; Illingworth and Blackman, 2002).

Often, cloud microphysics parametrizations require the
computation of (or are – in case of “bulk” parametrizations
– based entirely on) moments of the PSD functions, leading,
in case of infinite moments, to the ordinary gamma function,
which is defined as

0(a) =

∞∫
0

e−t ta−1dt with a > 0 . (2)

For example, the mass contentL, which is of primary im-
portance, is the first moment of the distribution with respect
to the mass representation. Generally the momentsM(i) are
defined as

M(i)
=

∫
∞

0
yi f (y)dy

=

∫
∞

0
N0yi+µe−λyν

dy =

N0 0
(

i+µ+1
ν

)
ν λ

i+µ+1
ν

, (3)

hence the name “generalized gamma-distribution” forf (y).
Such infinite moments, also with non-integeri, enter state-
of-the-art bulk (moment) cloud microphysical parametriza-
tions in many ways, e.g., in the computation of collision
rates, deposition/evaporation rates and so on, which is ex-
tensively described in textbooks (e.g.,Pruppacher and Klett,
1997) or in the relevant literature (e.g.,Lin et al., 1983;
Seifert and Beheng, 2006; to name just a few).

However, many cloud microphysical processes involve
some sort of spectral cut off, for example, collision processes
like autoconversion or some 2- and 3-species collisions be-
tween solid and/or liquid particles. If, in bulk models, one
wishes to parametrize such processes, e.g., the conversion
of particles above a certain size/mass threshold to another
species by a certain process (e.g., “wet growth”; collisions of
ice particles with drops where the “outcome” depends on cer-
tain size ranges of the ice particles and the drops as proposed
by Farley et al., 1989), this would require the computation of
incomplete gamma functions. The lower incomplete gamma
function is defined as

γl(a,x) =

x∫
0

e−t ta−1dt with a > 0 . (4)

For example, consider the transformation of intermediate-
density graupel particles to high-density hail particles in con-
ditions of wet growth, which is important for hail forma-
tion. That is, if graupel particles are in an environment of

high content of supercooled liquid water drops (high riming
rate), then particles larger than a certain size/massmwg can-
not entirely freeze the collected supercooled water, because
the latent heat of fusion cannot be transported away from the
particles fast enough (e.g.,Young, 1993). The non-frozen
water might get incorporated into the porous ice skeleton of
the graupel and might refreeze later, leading to an increase
in bulk density (“hail”). FollowingZiegler (1985), the cor-
responding loss ofLg (graupel) toLh (hail) might be simply
parameterized by

∂Lg

∂t

∣∣∣∣
wetgr

= −
∂Lh

∂t

∣∣∣∣
wetgr

= −
1

1t

∫
∞

mwg

mgf (mg)dmg

= −

N0,gγu

(
µg+2

νg
,λgm

νg
wg

)
νg λ

µg+2
νg

g 1t

(5)

where the indexg denotes graupel and1t the numerical
time step. On the right-hand side, now the upper incom-
plete gamma functionγu(a,x)= 0(a)−γl(a,x) appears. Va-
lues ofmwg are usually in a range equivalent to a diameter
& 1 mm,µg is typically between−0.5 and 1, andνg ≈ 1/3.
BothN0,g andλg are> 0 but quite variable, so that the corre-
sponding value ofx in Eq. (4) might take on arbitrary values
> 0.

Equation (5) is a simple but instructive example of a bulk
cloud microphysical process parameterization, that com-
prises three typical features regarding the parametersa and
x of the incomplete gamma function in cloud physics. First,
the parametera depends on the shape parametersµ andν

of the assumed distribution Eq. (1) and not onN0 and λ.
Now, in most of the established one- or two-moment bulk
schemes,µ andν are fixed parameters which do not change
during a particular model simulation, so thata also remains
fixed (only recently, authors start to make at leastµ vari-
able in a diagnostic way for some of the processes, e.g.,
Milbrandt and Yau, 2005a; Seifert, 2008). Second, the in-
tegration limit respectively size- or mass thresholdm of the
process parameterization (mwg in the above Eq. (5) translates
into thex-parameterλmν of the incomplete gamma function.
That means, even ifm is a fixed parameter,x is not fixed be-
causeλ is variable. Therefore, in cloud physics eithera is
fixed andx varies during a model simulation (which will be
of importance later) or botha andx vary; the case of a vari-
ablea and fixedx has not yet occured in literature to the best
knowlegde of the author. Third,a attains non-integer values
in most cases, depending on the choice ofµ andν. As it
is outlined later, an integer value ofa leads to an analytic
expression for the incomplete gamma function, which facili-
tates its computation. Unfortunately, there is only a chance
to get integer values ofa if one assumes exponential particle
size- or mass-distributions, which is a serious and perhaps in
many cases unphysical restriction.
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Dividing Eq. (4) by the (ordinary) gamma Function
0(a) = γl(a,∞) leads to the normalized function

P(a,x) =
γl(a,x)

0(a)
(6)

with values monotoneously increasing from 0 forx = 0 to 1
for x → ∞. The majority of the increase from 0 to 1 occurs
at values ofx arounda with a “band width” of about

√
a (see

black curves in Fig.1, in anticipation of the following).
Taking the complement 1−P(a,x) leads to the so-called

upper normalized incomplete gamma functionQ(a,x),
which, upon multiplication with0(a), gives the integral in
Eq. (4) but with lower limit x and upper limit∞, which is
denoted byγu(a,x). Computing any ofγl(a,x), γu(a,x),
P(a,x) or Q(a,x) will lead to any of the other functions by
simple transformations.

Complete and incomplete gamma functions are well-
known and treated extensively in the mathematical litera-
ture, and there are various ways to compute these functions
in practice. To start with0(a), along with the well-known
recurrence relations,Press et al.(1993) devise a very effi-
cient and very accurate approximation fora > 0, which is
sufficient for cloud microphysical applications, and which
has been originally derived byLanczos(1964). Incomplete
gamma functions are analytic for integer values ofa (see
Eqs.18–22 later in this paper); for arbitrary values ofa, a
widely used method devised again byPress et al.(1993) uses
a series expansion ofγl(a,x) or a continued fraction expan-
sion ofγu(a,x), depending on whetherx is larger or smaller
than a + 1. These expansions are summed up to a certain
number of terms until convergence is reached. The required
number of terms depends ona andx and on the desired nu-
merical accuracy.

While this is a very accurate method, the numerical burden
is comparatively high within the framework of cloud models
and is hard to predict because of the variable number of terms
required to reach the desired accuracy, and, on vector ma-
chines, this method leads to vectorization problems, which
might drastically lower the computing performance. We be-
lieve that, among other reasons, these practical problems and
the supposedly high computational costs with regard to the
low computing performance up to now prevented many cloud
physicists from extensively using parametrizations which in-
volve incomplete gamma functions, such as Eq. (5). In some
cases where incomplete gamma functions have been used,
simple analytical approximations for very special and fixed
values ofa were employed, e.g., a piecewise linear “ramp”
function of x for non-integera in Cotton et al.(1986). Or,
as inFarley et al.(1989), finite integrals similar to the one in
Eq. (5) — analytically resulting in incomplete gamma func-
tions — have been calculated numerically (which is perhaps
even more costly than Press’s method!).

However, if the parametera is fixed during subsequent
function evaluations (as is the case for many cloud micro-
physical process parametrizations in the context of bulk ap-
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Fig. 1. P (a,x) (black lines) for some values of a as function of x. Grey lines: proposed approximation
Eq. (12) with coefficients given by Eq. (14) and Table 1.
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Fig. 1. P(a,x) (black lines) for some values ofa as function of
x. Grey lines: proposed approximation Eq. (12) with coefficients
given by Eq. (14) and Table1.

proaches), the most efficient way in this case is perhaps in-
terpolation from pre-computed regular lookup tables with re-
spect tox at fixeda. “Regular” is meant here in the sense that
the indices of neighbouring table values can be computed
from the interpolation point instead of a grid point search.
Generally, this is achieved if the distance between tabulated
values can be given by some functional form.

Perhaps the most simple example is an equidistant table,
where the indices of the neighbouring valuesxi andxi+1 in
the table, required to obtain the interpolated value ofγl at a
pointx, can be explicitly computed fromx, the starting point
x1 of the table and the table increment1x,

i = INT

(
x −x1

1x

)
+1 . (7)

This is much more efficient and predictable compared to a
non-regular table, where a search loop with a nested if-clause
is necessary to findi. Another example of a regular lookup
table would be logarithmically equidistant.

For the equidistant table, further efficiency is gained by
pre-computing the constant 1/1x, so that the costly division
is replaced by a cheap multiplication. If linear interpolation
between neighbouring table values is used (accuracy might
be gained from decreasing1x), so that

γl(x) ≈ γl,i +
γl,i+1−γl,i

1x
(x −xi) , (8)

then altogether only one integer rounding operation and a
few additions and multiplications have to be performed per
γl evaluation. This method has been used, e.g., byHarringon
et al.(1995) andWalko et al.(1995). Alternatively one could
use more costly higher order interpolation schemes and at the
same time reduce1x.

In case thata is not fixed, the lookup table would have to
be two-dimensional, requiring two-dimensional interpolation
techniques (bilinear in the most simple case).
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Fig. 2. x995as function ofa. x995 is defined byP(a,x995) = 0.995.

The necessary span of the table with respect tox at a cer-
tain value ofa may be taken from 0 to the valuex995 where
P(a,x995) = 0.995.x995 as a function ofa may be estimated
from the approximative formula

x995(a) = g1
(
1− exp

(
g2ag3

))
+ g4a (9)

g1 = 36.63 g2 = −0.1195

g3 = 0.3393 g4 = 1.156

which has been obtained by nonlinear curve fitting and which
is depicted in Fig.2. At x > x995, P(a,x) ≈ 1 respectively
γl(a,x)≈ 0(a).

Unfortunately such lookup tables also lead to vectoriza-
tion problems because of memory bank conflicts, in case of
many parallel vector tasks having to access the same table
values at the same time. On such types of architectures, it
is desirable to have an approximation formula at hand with a
fixed number of mathematical terms, regardless ofa andx.
At the same time, for many applications a reduced accuracy
may be acceptable, e.g., approximation errors forP within
0.01 absolute and/or 1% relative. Lanczos’s very accurate
approximation to0(a) does already fulfill the requirement
of a fixed number of terms. The purpose of this paper is to
develop such an approximation also forγl(a,x), although at
a reduced accuracy.

2 Approximation of the lower incomplete
gamma function

We seek an approximation by means of nonlinear curve fit-
ting, because this leads to the desired fixed number of terms,
as opposed to relying on the convergence of series expan-
sions. To motivate a regressionansatz, series expansions

are however useful. A series expansion ofγl(a,x) can be
obtained by plugging the Taylor series of the exponential
function exp(−t) into Eq. (4) and integrating each term sep-
arately, which leads to (Abramowitz and Stegun, 1970)

γl(a,x) = xa
∞∑
i=0

(−1)i
xi

i!(i +a)
. (10)

A different well-known representation (e.g.,Press et al.,
1993) is

γl(a,x) = exp(−x)xa
∞∑
i=0

xi

(a+ i)(a+ i −1)···a
, (11)

which can be obtained from Eq. (10) after tedious manipu-
lation by separating the series representation of exp(−x) by
means of the Cauchy-product and solving for the series coef-
ficients by equating the pre-factors for each individual power
of x.

It turns out that forx � a the first two terms in Eq. (11) are
sufficient to give a reasonable approximation. For largerx,
an ever increasing number of terms is necessary. On the other
hand, forx → ∞, P(a,x) approaches 1 seemingly similar
to something like 1− c−x

4 , with some positive numberc4.
The former approximation is asymtotically correct forx →

0, the latter forx → ∞. Therefore, a 4-parametricansatz
γ̃l(a,x;c1,c2,c3,c4) is constructed which blends the former
function (slightly modified by the the fitting parameterc1)
into the latter:

γl(a,x) ≈ γ̃l(a,x)

= exp(−x)xa

(
1

a
+

c1x

a(a+1)
+

(c1x)2

a(a+1)(a+2)

)

(1−W(x)) + 0(a)W(x)
(
1−c−x

4

)
(12)

W(x)=
1

2
+

1

2
tanh(c2(x − c3)) . (13)

For many fixed values ofa ∈ [0.1,30], nonlinear curve
fitting by the Levenberg-Marquardt-method with respect to
x ∈ [0,x995(a)] leads to a large number of coefficient setsc1
to c4, each coefficient being a function ofa. γ̃l(a,x) denotes
the resulting fit,P̃ (a,x) = γ̃l(a,x)/0(a) and Q̃ = 1− P̃ .
The results of such curve fits have been found very pleas-
ing, as the absolute approximation errors of the resulting nor-
malized functionsP andQ are generally less than 0.01 over
the employeda-x-domain. This corresponds to a relative er-
ror |(P̃ −P)/P | < 1% for x ' a and|(Q̃−Q)/Q| < 1% for
x . a. The relative errors might be larger whenP(a,x) and
Q(a,x) approach 0, but relative errors are not meaningful in
that case. The fits show the same asymptotic behaviour as the
original function and are found to always increase monoton-
ically with increasingx, which is essential to be of practical
use.
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Table 1. Coefficientspi , qi , ri , andsi for the approximation functionŝc1(a) . . .ĉ4(a) in Eq. (14).

i pi qi ri si

1 9.4368392235E-03 1.1464706419E-01 0.0 1.0356711153E+00
2 −1.0782666481E-04 2.6963429121E+00 1.1428716184E+00 2.3423452308E+00
3 −5.8969657295E-06 −2.9647038257E+00 −6.6981186438E-03 −3.6174503174E-01
4 2.8939523781E-07 2.1080724954E+00 1.0480765092E-04−3.1376557650E+00
5 1.0043326298E-01 – – 2.9092306039E+00
6 5.5637848465E-01 – – –
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Fig. 3. Numerical values (grey stars) of the regression coefficientsc1 throughc4 in Eq. (12) as derived by nonlinear regression for fixed
values ofa. Black lines: nonlinear regression functions to each ofc1 throughc4 as functions ofa afteransatz(14) and the coefficients from
Table1.

As a last step,c1 to c4 are approximated as functions ofa,
again by nonlinear curve fitting. The results are

c1(a) ≈ ĉ1(a) = 1 + p1a + p2a2
+ p3a3

+ p4a4

+ p5 (exp(−p6a) − 1) (14)

c2(a) ≈ ĉ2(a) = q1 +
q2

a
+

q3

a2
+

q4

a3
(15)

c3(a) ≈ ĉ3(a) = r1 + r2a + r3a2
+ r4a3 (16)

c4(a) ≈ ĉ4(a) = s1 +
s2

a
+

s3

a2
+

s4

a3
+

s5

a4
, (17)

where the particular functional forms have been arrived at by
guessing and experimentation. The values for the parameters

p1 . . .p6, q1 . . .q4, r1 . . .r4 ands1 . . .s5 are given in Table1.
Replacing in Eq. (12) c1 . . .c4 by ĉ1 . . .ĉ4 leads to the final
approximationγ̂l(a,x). Figure1 shows examples of the nor-
malizedP̂ (a,x) = γ̂l(a,x)/0(a) (grey lines) as function ofx
for some fixed values ofa in comparison to the original func-
tion P(a,x) (black lines), demonstrating a reasonably good
agreement.

However, Fig.3 shows the coefficientsc1 to c4 as obtained
by the curve fits at constanta (grey stars) along with the
corresponding approximationŝc1 . . .ĉ4 given by Eqs. (14)–
(17) (black lines), and some difficulties at the lower range
of a-values (a < 0.9) are apparent. Therefore,γ̂l(a,x) (resp.
P̂ (a,x)) with the set of coefficients in Table1 is not likely
to be a good approximation toγl(a,x) (resp. P(a,x)) for
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Fig. 4. Relative (left) and absolute (right) error of the proposed approximationP̂ (a,x) = γ̂(a,x)/0(a) as function ofa andx/(a+1). The
parameterx has been scaled bya +1 because the main variation ofP(a,x) with x takes place atx-values arounda +1. The vertical grey
lines ata = 0.9 indicate the lower boundary with respect toa of the(a,x)-range where errors are acceptable.

a < 0.9, a fact that is clearly demonstrated in Fig.4, which
depicts the relative and absolute errors(P̂ −P)/P (left plate)
andP̂ −P (right plate) as function ofa andx. In these fig-
ures,x has been scaled bya+1 sinceP varies mostly in the
region ofx arounda+1.

Where do these difficulties for small values ofa come
from? To understand this, it is instructive to look at the ana-
lytical formulas forγl(a,x) in case ofa being an integerm,
starting withm = 1,

γl(1,x) = 1 − e−x (18)

γl(2,x) = 1 − (x +1)e−x (19)

γl(3,x) = 2 − (x2
+2x +2)e−x (20)

γl(4,x) = 6 − (x3
+3x2

+6x +6)e−x (21)
...

γl(m,x) =

[
−tm−1e−t

]x
0

+ (m−1)

x∫
0

tm−2e−t dt

= −xm−1e−x
+ (m−1)γl(m−1,x)

= 0(m)−

(
m−1∑
i=0

d i

dxi

(
xm−1

) )
e−x . (22)

The last finite sum representation has been deduced from the
representations atm = 1,2,... and can be proved by a) taking
the first derivative with respect tox, which yieldsxm−1e−x

as it should, and b) by the fact that the highest derivative (last
element in the sum) equals(m−1)! (which is0(m)), so that
for x = 0 the correct valueγl(m,0) = 0 is obtained. For small
integer values ofm, this representation is an efficient way to
evaluateγl .

Now, concerning the difficulties for small values ofa, γl

for a = 1 (Eq. 18) is a simple exponential function which
matches theansatz(12) only in the limitsc2 → ∞, c3 = 0
andc4 = e. As a → 1, the coefficientsc2 to c4 go towards
these values, as is shown in Fig.3, with the singularity of
c2 at a = 1. Of course ata = 1 the fitting algorithm leads
to a “compromise”-solution with finitec2; otherwise, a kind
of branch-cut of the coefficients arounda = 1 can be ob-
served. For larger values ofa, the analytical formulation of
γl gets more complicated (fora being an integerm, more and
more terms get involved into the finite sum in Eq. (22) asm

increases) and is more likely to be well describable by the
ansatz(12).

For most cloud microphysical applications, the branch for
a > 1 seems to be the important one. Therefore, the approx-
imations (14)–(17) are developed to represent mainly that
branch. By altering the regression functions to, e.g., rational
functions, it would perhaps be possible to find approxima-
tions which encompass both branches.

It turns out, however, that the approximations (14)–(17)
are applicable fora-values down to 0.9, because fora ≥

0.9, the absolute error|P̂ − P | given in Fig. 4 (right fig-
ure) remains below 0.02 everywhere, and the relative error
|(P̂ −P)/P | (left figure) is also quite small except whenP

gets close to 0. But here, the relative error is not a good error
measure anyways. Beyond the range ofa-values for which
P̂ has been fitted, it turns out that the approximation error
remains within the same small limits up toa = 45. Above
that,P̂ is not a good approximation.

A further condition forP̂ to be of practical use is that this
function increases monotonically with respect to increasingx

at fixeda, as does the original functionP . One possibility to
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Fig. 5. ∂P̂ (a,x)/∂x = 1/0(a)∂γ̂l(a,x)/∂x as function ofa and
x/(a+1). Same scaling ofx and same grey line as in Fig.4.

check monotonicity is to look at the sign of the partial deriva-
tive of P̂ with respect tox. Figure5 shows∂P̂ (a,x)/∂x =

1/0(a) ∂γ̂l(a,x)/∂x (the formula is omitted for brevity) as
function of a andx, and it is apparent that values are> 0
everywhere, which indicates the desired monotonicity.

Concerning the efficiency of the proposed approximation,
it has been found that, on our scalar linux desktop computer
using the gfortran compiler and high optimization, it is faster
by a moderate factor 4 on average compared to the efficient
method ofPress et al.(1993) mentioned in the introduction.
Here, the speed-up depends ona andx, that is, on the number
of required terms and the desired accuracy in Press’s method.
The latter has not been changed from its original values.

A more impressive speed-up is gained, however, in the
case where subsequent evaluations at thesamevalue of a
are needed, as is the case in cloud physics: many coefficients
of the terms in the proposed approximation only depend ona

and may be pre-computed once, so that we were able to ob-
tain a speed-up factor of about 15 on average. But the biggest
advantage is perhaps on vector CPUs, where the fixed num-
ber of terms makes vectorization easy for programmers and
compilers. Also, there might be advantages on massively
parallel machines in that the method avoids load imbalances
otherwise caused by different numbers of terms in series ex-
pansions to reach convergence at different grid points.

Further experiments, in which the hyperbolic tangent in
Eq. (12) has been replaced by the simple but accurate and
continuously differentiable rational approximation

tanh(x) ≈


−1 x ≤ −

ct
3

9c2
t x+27x3

c3
t +27ct x

2 −
ct
3 <x<

ct
3 ct=9.37532

1 x ≥
ct
3

(23)

did not increase efficiency on our desktop computer. This is
presumably because the necessary numerical division ope-
ration is very costly and because the tanh-function is al-
ready implemented in a very efficient way in state-of-the-art
compilers. Nevertheless, if on a specific computer system
the computation of tanh should cause efficiency problems,
Eq. (23) might be tried instead. Observe that changing the
value forct would only rescale the function along the x-axis
but preserve the differentiability and the “outer” function va-
lues−1 and 1, a fact that renders Eq. (23) a quite general
blending function.

3 Summary

This paper describes an approximation to the lower incom-
plete gamma function which has been obtained by nonlin-
ear curve fitting. It comprises a fixed number of terms and
yields moderate accuracy (absolute approximation error of
P is <0.02 in the range 0.9 ≤ a ≤ 45 andx ≥ 0), which
should be enough for most cloud microphysical applications,
but may be problematic for other applications. The proposed
approximationP̂ consists of Eq. (12) in combination with
Eqs. (14)–(17) and coefficients given in Table1. Mono-
tonicity and asymptotic behaviour of the original incomplete
gamma functions are preserved, which is important.

The method is generally only slightly more efficient in
terms of the required number of floating point operations
than the more accurate method ofPress et al.(1993), but
if subsequent evaluations at a certain fixed value ofa are
sought (which is often the case in cloud microphysics), then
a significant performance increase can be obtained by pre-
computing certain terms and coefficients which only depend
on a. On scalar architectures, however, the most efficient
method to evaluate incomplete gamma functions is certainly
interpolation of regular lookup tables as described in the in-
troduction.

A great advantage of the proposed approximationP̂ is its
applicability on vector CPUs, because the formula with its
fixed number of terms is well suited for vectorization, as op-
posed to, e.g., Press’s method or other more accurate algo-
rithms based on series- or continued-fraction representations.

With regard to massively parallel machines (where the use
of equidistant lookup tables might pose memory issues), the
fixed number of terms might be also beneficial to avoid load
imbalances caused by different numbers of terms in series
expansions to reach convergence at different grid points.
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