

Daniel Wasserrab

From Formal Semantics to Verified Slicing
A Modular Framework with Applications in Language Based Security

From Formal Semantics
to Verified Slicing

A Modular Framework with Applications in Language

Based Security

by
Daniel Wasserrab

KIT Scientific Publishing 2011
Print on Demand

ISBN 978-3-86644-594-9

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Dissertation, Karlsruher Institut für Technologie
Fakultät für Informatik,
Tag der mündlichen Prüfung: 19.10.2010

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

http://creativecommons.org/licenses/by-nc-nd/3.0/de/

From Formal Semantics to Verified Slicing
A Modular Framework with Applications in

Language Based Security

zur Erlangung des akademischen Grads eines

Doktors der Ingenieurswissenschaften/
Doktors der Naturwissenschaften

der Fakultät der Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Daniel Wasserrab

aus Burghausen

Tag der mündlichen Prüfung: 19. Oktober 2010

Erster Gutachter: Prof. Dr.-Ing. Gregor Snelting

Zweiter Gutachter: Prof. Tobias Nipkow, PhD

Acknowledgements

First, I would like to thank my adviser Prof. Gregor Snelting for giv-
ing me the freedom and means to carry out this research. His ideas
and constant trust in my abilities laid the foundations for this thesis. I
thank Prof. Tobias Nipkow not only for the second review of this the-
sis, but also for helping me with formalization and proof problems,
especially in the first part of this work. Dr. Frank Tip was very helpful
in the object-oriented details of the first part of this work.

I am very thankful for the many fruitful discussions in the “se-
mantics group”, with Andreas Lochbihler and Denis Lohner as co-
members. They stopped me several times from running into dead
ends or provided me with new perspectives on problems. I know I
will miss these discussions. Furthermore, I also thank them and Mar-
tin Hecker for reading preliminary drafts of this thesis.

The discussions with my “non-theorem proving” office co-workers
in Passau, Christian Hammer and Maximilian Störzer, were helpful to
get an unbiased view of things. Also, they have become more than just
working colleagues. The same can be said for all other members of our
group in Passau and Karlsruhe. In addition to the already mentioned
persons these are: Mirko Streckenbach, Dennis Giffhorn, Jürgen Graf,
Matthias Braun, Sebastian Buchwald, and Andreas Zwinkau.

I thank the students Martin Dirndorfer, Michael Pisula, and Jan
Aidel from Passau and Karlsruhe for their work on the CCCP project.

Last, but not least I thank my wife Karin. Without her love and
constant support this thesis would not exist. She confides so strongly
in my talent that I cannot doubt myself. I am proud and eager to spend
my life with her. Also, I thank my parents and my family for all their
assistance. Although they never quite understood what I was doing (I
do not blame them), they tried to give me as much help as possible.

Parts of this work were funded by the Deutsche Forschungsgemein-
schaft in DFG grant Sn11/10-1.

Zusammenfassung

Statische Programmanalysen sind ein weit verbreitetes Mittel, um aus
Programmtexten Informationen über Ausführungen zu erhalten, die
für jeden beliebigen Programmlauf gültig sind, ohne das Programm
selbst auszuführen. Statische Analysen werden heutzutage in verschie-
densten Ber ichen der Informatik eingesetzt, wie z.B. Compiler, Refac-
toring oder Debugging. Auch für sicherheitskritischen Anwendungen
werden statische Analysen inzwischen standardmäßig genutzt.

Viele Eigenschaften von statischen Analysen werden von nieman-
dem bezweifelt werden, für einige existieren sogar formale Beweise
(auf Papier). Dennoch stellt sich die Frage, inwiefern damit eine uner-
schütterliche Vertrauensbasis geschaffen wird, die vor allem für sicher-
heitskritische Systeme unverzichtbar ist. Maschinengeprüfte Beweise
können helfen, diese Vertrauensbasis zu schaffen bzw. zu verstärken,
da die Maschine jeden noch so kleinen Fehler in einem Beweis sofort
erkennt. Papierbeweise sind dagegen deutlich fehleranfälliger.

An unserem Lehrstuhl wurde eine Sicherheitsanalyse entwickelt
[52], die prüft, ob in einem Programm geheime Informationen in öf-
fentliche Ausgaben einfließen können. Solche Probleme werden in der
Informationsflusskontrolle (Information Flow Control, IFC) betrachtet,
einem Teilbereich der sprachbasierten Softwaresicherheit (Language
Based Security). Die Sicherheitsanalyse basiert auf Slicing, einer sta-
tischen Analyse auf Programmabhängigkeitsgraphen (Program Depen-
dence Graph), die konservativ approximiert, welche Programmpunkte
einen spezifischen Programmpunkt beeinflussen können. Der dort be-
trachtete Ansatz zu Slicing ist komplett graphbasiert und damit un-
abhängig von einer konkreten Programmiersprache.

Doch kann man den Resultaten dieser Analyse trauen? Oder mit
anderen Worten: Wer garantiert, dass die Resultate korrekt sind? An
unserem Lehrstuhl wurde das Projekt Quis custodiet ins Leben gerufen,
mit dem Ziel, die oben genannte und ähnliche Sicherheitsanalysen
maschinengeprüft zu verifizieren. Da diese Analysen aber auf Slicing
basieren, muss zuallererst einmal bewiesen werden, dass Slicing selbst
korrekt ist.

In dieser Arbeit wird ein modulares Framework im Beweisassis-
tenten Isabelle/HOL [81] auf Basis abstrakter Kontrollflussgraphen

entwickelt, um die Korrektheit von Slicing zu zeigen. Indem man
sich auf solche abstrakten Strukturen stützt, erhält man programmier-
sprachenunabhängige Korrektheitsresultate, d.h. anstatt eines Bewei-
ses für jede Sprache benötigt man im Ganzen nur noch einen Beweis.
Um diesen Beweis dann auf eine beliebige Sprache zu übertragen,
muss man nur noch für jedes beliebige Programms in dieser Sprache
zeigen, dass sein Kontrollflussgraph die erforderlichen Eigenschaften
des Frameworks erfüllt.

Dazu benötigt man eine formale Semantik der Sprache in Isabelle/
HOL. Der erste Teil dieser Arbeit zeigt, dass dies selbst für Kerne
von komplexen Hochsprachen machbar ist, indem eine formale Se-
mantik einer C++-Kernsprache definiert wird. Diese ist vollständig
objektorientiert und beinhaltet die komplizierte Mehrfachvererbung
von C++ mit ihren zwei Vererbungsarten. Ein bedeutendes Resultat
dieser Arbeit ist der erste Beweis [134], dass diese besondere Mehrfach-
vererbung die Typsicherheit nicht verletzt, was lange Jahre zwar ange-
nommen, aber nie bewiesen wurde. Typsicherheit und damit die Ab-
wesenheit von Laufzeitfehlern zu garantieren ist ein anderer wichtiger
Bereich der sprachbasierten Softwaresicherheit.

Im zweiten Teil dieser Arbeit wird die Korrektheit von Slicing in
Isabelle/HOL bewiesen. Diese Programmanalyse berechnet eine kon-
servative Approximation der Menge aller Programmpunkte, die einen
bestimmten Programmpunkt beeinflussen können. Deshalb sollte es
für die verwendeten Variablen an diesem Programmpunkt keinen Un-
terschied machen, ob man ein Programm durchläuft, in dem alle
Punkte entfernt wurden, die nicht in der Slicingmenge sind, oder das
ursprüngliche Programm. Wenn diese Eigenschaft gilt, ist Slicing kor-
rekt. Die vorliegende Arbeit beschränkt sich nicht nur auf intraproze-
durales Slicing – wie alle früheren Ergebnisse –, sondern betrachtet
auch den ausgefeilten interprozeduralen Algorithmus von Horwitz,
Reps und Binkley [57]. Dieser Algorithmus ist kontextsensitiv, d.h. er
unterscheidet verschiedene Aufrufstellen von Prozeduren, weshalb er
genauer als andere Algorithmen ist. Aufgrund der dafür benötigten
Summarykanten und interprozeduralen Besonderheiten wie Parame-
terübergabe etc. war es nicht trivial, diesen Algorithmus zu forma-
lisieren und verifizieren. Durch diese Verifikation wird in dieser Ar-
beit zum ersten Mal formal die Korrektheit des Horwitz-Reps-Binkley-
Algorithmus nachgewiesen.

Dass die Resultate tatsächlich auf verschiedenste Programmierspra-
chen anwendbar sind, zeigen zwei Instantiierungen des Frameworks:

xii

(i) eine einfache While-Sprache und (ii) die objektorientierte Bytecode-
sprache von Jinja [61], einer weit entwickelten Kernsprache für Java.

Zuletzt wird noch ein erstes Resultat für die Anwendbarkeit von
Slicing für IFC gezeigt, ein wichtiger Schritt für die Ziele des Projekts
Quis custodiet. Aufgrund der Korrektheitsresultate für Slicing konnte
gezeigt und bewiesen werden, wie klassische Nichtinterferenz mit-
tels Slicing garantiert werden kann. Diese verlangt, dass geheime In-
formationen keine öffentlich einsehbaren Variablen beeinflussen. Da
Slicing fluss- und (bei Verwendung des Horwitz-Reps-Binkley-
Algorithmus) auch kontextsensitiv ist, liefert dieses Verfahren weniger
Fehlalarme als die üblichen Sicherheitstypsysteme [96], die weder kon-
text- noch (bis auf wenige Ausnahmen) flusssensitiv sind.

xiii

Abstract

Static program analyses gain information from programs without ex-
ecuting them. They are commonly used in various areas such as com-
pilers, refactoring, or debugging, even in safety-critical applications.
While many program analyses are intuitively correct and some even
accompanied with manual proofs, machine-checked proofs can help
to verify complex analyses for which correctness is not so easy to see.

Our group developed a security analysis which determines if se-
cret information may leak to public output. Information flow control, a
subarea of language based security considers such problems. This ap-
proach bases on slicing, a program analysis which conservatively de-
termines which program points potentially influence a certain state-
ment. The slicing approach applied builds on (dependence) graphs,
hence is language-independent. But are the results of this analysis
trustworthy? Our group initiated the project Quis custodiet to verify
this and similar security analyses in theorem provers. But to achieve
this, slicing needs to be proved correct first.

This thesis presents a modular framework for slicing in the proof as-
sistant Isabelle/HOL which is based on abstract control flow graphs.
Building on such abstract structures renders the correctness results in
the framework language-independent. To prove that they hold for a
specific language, it remains to instantiate the framework with this
language, i.e., show that the control flow graph of a program fulfills
the properties of the framework.

This requires a formal semantics of this language in Isabelle/HOL.
The first part of this thesis shows that formal semantics even for so-
phisticated high-level languages are realizable. I formalize the formal
semantics of a C++ kernel language focusing on C++’s inheritance
mechanisms. Inheritance in C++ is complex as it allows (i) multiple
inheritance and (ii) two different kinds of inheritance relations. An
important result of this work is the first proof that inheritance à la
C++ does not compromise type safety.

In the second part, this thesis provides correctness proofs for dy-
namic as well as static intra- and interprocedural slicing. Prior works
only examine intraprocedural slicing and are restricted to simple im-
perative languages. In contrast, this thesis also proves the context-

sensitive interprocedural slicing algorithm by Horwitz, Reps, and
Binkley correct; this is the first formal correctness result on this stan-
dard algorithm.

By instantiating the framework with two different languages, I show
that the abstraction chosen in the framework are indeed sensible. Fi-
nally, via the correctness of slicing, this thesis proves that slicing can
guarantee classical noninterference, an important result for the Quis
custodiet project. All proofs in this thesis are carried out in the proof
assistant Isabelle/HOL.

xvi

Contents

1. Introduction 1
1.1. Context . 2
1.2. State of the Art . 3

1.2.1. Formal Semantics 3
1.2.2. Program Analysis and Information Flow Control 4

1.3. Contributions . 5
1.4. Isabelle . 6

1.4.1. Notation . 7
1.4.2. Locales . 8

2. Type Safe Semantics for C++ 9
2.1. The Story so far... 10
2.2. Multiple Inheritance in C++ 11

2.2.1. An Intuitive Introduction to Subobjects 11
2.2.2. The Rossie-Friedman Subobject Model 14
2.2.3. Examples . 16

2.3. The Present Situation of CoreC++ 19
2.3.1. Formalization . 19
2.3.2. Abstract Syntax of CoreC++ 21
2.3.3. Type System . 24
2.3.4. Semantics . 25

2.4. Improving the Semantics towards real C++ 29
2.4.1. Static and Dynamic Casts 29
2.4.2. Dynamic (and Static) Dispatch 35
2.4.3. Covariance and Contravariance 41
2.4.4. Well-formed Programs 46

2.5. Type Safety Proof . 47
2.5.1. Run-time Type System 47
2.5.2. Conformance and Definite Assignment 48
2.5.3. Progress . 50
2.5.4. Preservation . 50
2.5.5. The Type Safety Proof 51

2.6. Interpreting Real C++ Programs in the Semantics 52
2.6.1. Translation . 52
2.6.2. Evaluation . 54

Contents

3. Correctness Static Intraprocedural Slicing 57
3.1. What is Slicing? . 58

3.1.1. Dependences in Program Dependence Graphs . . 58
3.1.2. A Running Example 62

3.2. The Formalization . 65
3.2.1. The Abstract Intraprocedural Control Flow Graph 66
3.2.2. Formalizing Dependences 70
3.2.3. Program Dependence Graph 73

3.3. The Proof . 74
3.3.1. Weak Simulation 74
3.3.2. Correctness Proof 75
3.3.3. Applying Control Dependences 84

3.4. Instantiations . 85
3.4.1. A Simple Imperative Language: WHILE 85
3.4.2. A Sophisticated Object Oriented Byte Code Lan-

guage: Jinja VM Byte Code 88

4. Correctness of Dynamic Slicing 91
4.1. Framework Adaptions 91
4.2. Dynamic Backward Slicing 93
4.3. Correctness Proof . 94

5. Correctness Static Interprocedural Slicing 99
5.1. The Slicer of Horwitz, Reps, and Binkley 100
5.2. The Formalization . 103

5.2.1. The Abstract Interprocedural Control Flow Graph103
5.2.2. Valid Control Flow Paths 110
5.2.3. System Dependence Graph 114
5.2.4. Formalizing the Horwitz-Reps-Binkley Slicer . . 120

5.3. The Proofs . 120
5.3.1. Precision . 121
5.3.2. Correctness . 122

5.4. Instantiations . 138
5.4.1. WHILE with Procedures: PROC 138
5.4.2. Jinja VM Byte Code Interprocedural 142

6. Information Flow Control via Verified Slicing 145
6.1. Information Flow Noninterference 146
6.2. The Proof . 147

6.2.1. The Assumptions 147

xviii

Contents

6.2.2. Low Equality . 149
6.2.3. Slicing Guarantees Noninterference 149

6.3. Lifting Arbitrary Framework Graphs 153

7. Discussion and Related Work 155
7.1. Formalization Sizes . 155
7.2. Type Safe Semantics for C++ 157

7.2.1. Type Safety Proofs for Object-Oriented Languages158
7.2.2. Semantics of Multiple Inheritance 159
7.2.3. C++ Multiple Inheritance 160

7.3. Correctness of Slicing . 160
7.3.1. Static Slicing . 160
7.3.2. Dynamic Slicing 162

7.4. Working with Proof Assistants 162
7.4.1. Modularized Proofs 162
7.4.2. Flow Graphs in Proof Assistants 163
7.4.3. Machine Checked Verification of Program Anal-

yses . 163
7.5. IFC Noninterference in Proof Assistants 164

7.5.1. Verification of Information Flow Type Systems . 164
7.5.2. Formalization of Goguen/Meseguer 165
7.5.3. Noninterference via Dynamic Logic 166

8. Future Work 167
8.1. Extending the CoreC++ Semantics 167
8.2. Extending the Slicing Framework 168
8.3. Extracting a Verified Slicer 169
8.4. Language Instantiations 169
8.5. Information Flow Control 170

9. Conclusion 171

A. Small Step Rules for CoreC++ 173

B. Constructor Eliminating Algorithm Example 177

Bibliography 181

Index 197

xix

Everything should be made as
simple as possible, but not sim-
pler.

A. Einstein 1
Introduction

Today, huge program developments in high-level languages are ubiq-
uitous. Therefore, we need the means to handle such big projects.
This includes the potential to guarantee that the program has some
properties, be it by design or via analysis. Safety properties are of par-
ticular interest: type safe languages can help to avoid certain run-time
errors during programming, whereas static program analyses help to
guarantee that the finished code fulfills some properties. Thus, de-
ciding this is shifted from the concrete program to the type system or
analysis. By verifying that a language is type safe or proving that the
program analysis result is indeed correct, one increases confidence in
these techniques significantly.

This thesis positions itself in this area of research. In its first part, it
presents a formalization of a formal semantics of C++, which focuses
on multiple inheritance, in a theorem prover, namely Isabelle/HOL
[81]. Multiple inheritance in C++ is dreaded mostly because of its
combination of virtual and non-virtual inheritance. In combination
with diamond-shaped inheritance relations, this may lead to quite
unintuitive behaviour. This thesis also provides a machine-checked
correctness proof that the semantics – and thus C++’s multiple inheri-
tance concept – is indeed type safe.

In the second part, this thesis formalizes a framework for a program
analysis called program slicing – or short slicing – based on dependence
graphs. Weiser introduced slicing some thirty years ago [135, 136] to
determine which program points may influence the execution at a cer-
tain statement. This is an important task in various areas of computer
science. Weiser’s work initiated a whole new research area, in which
a wealth of different slicing techniques and applications has been de-
signed and published.

CHAPTER 1. INTRODUCTION

Slicing based on dependence graphs is not restricted to specific lan-
guages. I provide a language-independent framework for slicing with
correctness proofs for dynamic, static intra- and interprocedural slic-
ing. This includes a proof that the context-sensitive slicing algorithm
by Horwitz, Reps, and Binkley [57] is indeed correct. I also instantiate
the framework with two different languages to show its applicability.
All of the proofs are again machine-checked in Isabelle/HOL.

Finally, this thesis proves that slicing guarantees classical informa-
tion flow noninterference. Information flow control [96] checks if se-
cret information can leak to public outputs. This result shows that
verifying sophisticated information flow algorithms such as [52] is no
longer out of reach.

1.1 Context
Information flow control (IFC), a subset of language based security (LBS)
[101], checks if secret information can leak to public output in a pro-
gram. Following years of research on dependence graphs and slicing,
our group developed a software security analysis for IFC which can
handle full Java byte code [52]. The security analysis builds on slicing
to gain information on which program points can influence others. As
it is flow-, context-, and object-sensitive, this analysis triggers fewer
false alarms than standard type system approaches [96]. It can handle
programs with up to 50kLoC.

Yet, as a security algorithm this work suffers from a severe draw-
back: it has no correctness proof. To eliminate this deficiency, our
group initiated the Quis custodiet project1. It aims at formally verify-
ing such information flow security analyses in theorem provers. Being
machine-checked, the correctness results will provide a new level of
confidence, as manual proofs for such complex algorithms are notori-
ously error-prone.

As the security analyses under consideration use slicing to deter-
mine if information flows between program points, their verification
requires to prove slicing correct first. The complex interprocedural
context-sensitive algorithm by Horwitz, Reps, and Binkley [57] (usu-
ally with an improvement by Reps et al. [91]) is standard, as the trade-
off between slice size and runtime is very good. Yet, every result in
this area prior to this thesis [92, 7, 90, 3] restricts itself to the intrapro-

1Quis custodiet ipsos custodes? Who is guarding the guards?, Juvenal.

2

1.2. STATE OF THE ART

cedural case. There is to our knowledge no work on the correctness of
context-sensitive interprocedural slicing.

Also, all of the correctness results mentioned above only consider
simple imperative languages. Yet, slicing algorithms such as the one
by Horwitz, Reps, and Binkley are based on dependence – and thus
on control flow – graphs, not on a concrete programming language.
Therefore, we aim for a language-independent framework which ax-
iomatizes these graph structures to prove slicing correct. Instantiat-
ing it with a semantics and concrete control flow graph formalization
transfers these results to a concrete language.

1.2 State of the Art

I briefly summarize the situation today in formal semantics and type
safety as well as in program analysis, focusing on IFC. More on these
topics can be found in Sec. 7.

1.2.1. Formal Semantics

Formal semantics is the standard mechanism to describe what a pro-
gram does without referring to prosaic descriptions or examples.
There are several ways to formalize semantics, e.g. axiomatic, denota-
tional, or operational. Whereas the denotational approach, which de-
scribes programs as partial functions between initial and final states,
was initially more common, operational semantics, which consider
execution on an abstract machine, became standard in the last years.
Wright and Felleisen [140] devised the now widely used approach to
prove type safety of operational semantics: progress and preservation,
i.e., the semantics does not get “stuck” and types are preserved by
semantic evaluation.

Today, formal semantics on paper exist even for realistic high-level
languages, e.g. for Eiffel [6], Java [42], Scala [85] and C# [45]. All of
these works formalize semantics operationally (or using related con-
cepts, such as abstract state machines), the last three also include a
type safety proof.

Recently, proof assistants attracted attention as a means to formalize
semantics and prove type safety machine-checked. The work by Gor-
don [47] about formalizing the axiomatic semantics of Hoare [54] can
be considered a door-opener in this area. Jinja [61] and the preced-

3

CHAPTER 1. INTRODUCTION

ing Bali project was another significant milestone. Other impressive
works that describe the language semantics on a very detailed level,
yet do not contain type safety proofs, include the C [82] and C++ [83]
semantics by Norrish in HOL [48], and the JVM semantics formalized
in Coq [18], called Bicolano [36].

1.2.2. Program Analysis and Information Flow Control

Program analysis has made significant progress in the last years, not
least because object-oriented languages demand for complex analy-
ses. Points-to Analysis, for which efficient [112] and context-sensitive
[43] variants have been developed, and Shape Analysis [98] may serve
as examples. However, such analyses have become so elaborate that
it is hard to provide a correctness result that is more than just an in-
tuitive argument. In theorem provers in particular, correctness proofs
of analyses that go beyond simple dataflow analyses or compiler opti-
mizations are rare; the works on a Java byte code verifier [61, 17] and a
context sensitive points-to analysis [39] represent notable exceptions.

Nevertheless, IFC still disregards the cutting edge of modern pro-
gram analysis, despite its potential. Its standard approach are flow
types systems [96], for which advanced tools for Java [75] and OCaml
[105] exist. A big advantage of type systems is that they are com-
positional, i.e., smaller program parts can be checked independently,
whereas program analysis in this area still requires to analyze pro-
grams as a whole. Also, verifying flow type systems is in general more
easy, even in theorem provers, as techniques for formalizing and ver-
ifying such type systems in them is common knowledge. For some
correctness results regarding flow type systems in theorem provers,
see Sec. 7.5.1.

In general, type systems may suffer from false alarms, a problem
which no approach at all can eliminate completely due to decidability
problems. However, we expect precision to increase when the slic-
ing based algorithm developed in our group [52, 109] is used, as it is
context-, object-, and flow-sensitive; recent research presented a flow
type system [58] that fulfills the latter. But this precision comes at
a cost: (i) the algorithm is not trivial to understand, (ii) although it
can handle large programs, in general, it only scales well for small-
ish and less complex examples, and (iii) verification is much harder.
Prior to this thesis, only one correctness statement existed [109], but it
assumed the correctness of slicing instead of proving it.

4

1.3. CONTRIBUTIONS

1.3 Contributions

This thesis revolves around the following two statements:

• The multiple-inheritance of C++ is type safe.

• Dynamic as well as static intra- and interprocedural slicing is
correct, independent of the underlying language.

To show that both propositions are valid, I formalized them in the
proof assistant Isabelle/HOL [81] and verified them. Both formaliza-
tions are substantial and the accompanying proofs nontrivial.

While having been assumed for a long time, no formal proof showed
that multiple inheritance as realized in C++ is type safe. I formalize
a small but fully object-oriented core language which mirrors all mul-
tiple inheritance features of C++ precisely. Thus, it extends previous
work, e.g. [61, 126], which either does not consider multiple inheri-
tance at all or deviates from C++ in subtle but significant details. I
show that this semantics is type safe in the sense of Cardelli [33], i.e.,
no untrapped errors may occur at runtime, but controlled exceptions
are allowed. Hence, this constitutes the first proof that C++’s multiple
inheritance is type safe.

The framework for slicing provides the first formalization of depen-
dence graphs as real graph structures in a proof assistant. I define dy-
namic as well as static intra- and interprocedural slicing directly on
these structures, hence do not depend on a specific language; a lim-
itation, which restrains all the existing correctness proofs for slicing
based on dependence graphs. In the dynamic and static intraproce-
dural case, I was also able to eliminate the need for a concrete control
dependence definition. Instead, the correctness proofs hold for any
dependence relation which fulfills a certain criterion. By providing
language instantiations for the framework I demonstrate that I axiom-
atized the abstract graph structures sensibly. Via this modularization,
no language or control dependence instantiation has to reprove any
part of the slicing correctness proof.

No prior work addressed the correctness of context-sensitive inter-
procedural slicing, hence the correctness proof of the Horwitz-Reps-
Binkley slicing algorithm presented in this thesis is the first of its kind.
It comes with a precision proof, which guarantees that the slice re-
spects context-sensitivity. These proofs require to significantly adapt
the intraprocedural framework, but still retain language independence.

5

CHAPTER 1. INTRODUCTION

Again, two language instantiations show the validity of the frame-
work requirements.

Finally, I use these correctness results to prove that slicing can safely
guarantee classical information flow noninterference. This is the first
machine-checked correctness proof for IFC based on dependence
graphs [108, 109]. While this proof demands some adaptions to the
graphs, I also show that every valid framework graph can be easily
lifted to meet these requirements.

Since IFC as well as type safety are important areas of LBS, this the-
sis provides significant contributions to this area. Finally, this work
demonstrates that it is indeed possible to formalize and verify intricate
properties on elaborate structures in proof assistants such as Isabelle,
since they have now become powerful and user-friendly enough for
such tasks. This work extends the applicability of formal semantics
and theorem prover technology to a new level of complexity. Still, all
the formalizations and proofs are written in a declarative style, which
is easily understandable for human readers, instead of cryptic tactic
application. None of the results presented in this thesis would have
been realizable some ten years ago.

1.4 Isabelle

Isabelle is a generic interactive theorem prover (or proof assistant), in-
stantiable with different object logics, most widespread is Higher Order
Logic (HOL), which is also used in this work. Proof assistants are in
general not able to prove lemmas automatically, even when provided
with the definitions and statements necessary. Thus, formal proofs
still require much effort by an expert user, a limitation Isabelle shares
with all such proof systems. A proof is an interactive process, a dia-
logue where the user has to provide the overall proof structure and the
system checks its correctness but also offers a number of tools for fill-
ing in missing details. Chief among these tools are the simplifier (for
simplifying formulas) and the logical reasoner (for proving predicate
calculus formulas automatically).

Isabelle allows one to define functions in a way analogous to func-
tional programming languages (e.g. ML). Most of the proofs in this
paper are written in Isar [137], a language of structured and stylized
mathematical proofs understandable to both machines and humans.
This proof language is invaluable when constructing, communicat-

6

1.4. ISABELLE

ing and maintaining large proofs like the ones presented in this the-
sis. Definitions and lemmas taken from Isabelle are typeset small and
slanted. In few cases, the presentation is simplified w.r.t. the actual
formalization to achieve a better readability.

1.4.1. Notation

Types include the basic types of truth values, natural numbers and in-
tegers, which are called bool , nat , and int respectively. The space of
total functions is denoted by ⇒. Type variables are written ′a, ′b, etc.
t::τ means that the HOL term t has HOL type τ .

Pairs come with the two projection functions fst :: ′a × ′b ⇒ ′a and
snd :: ′a × ′b ⇒ ′b . We identify tuples with pairs nested to the right:
(a , b , c) is identical to (a , (b , c)) and ′a × ′b × ′c is identical to ′a × (′b × ′c).

Sets (type ′a set) follow the usual mathematical convention. Func-
tion card returns the cardinality of a finite set; such sets fulfil the pred-
icate finite. ∅ is the empty set.

Lists (type ′a list) come with the empty list [], the infix constructor
·, the infix @ that appends two lists, and the conversion function set
from lists to sets. Variable names ending in “s” usually stand for lists
and |xs| is the length of xs. If i < |xs| then xs[i] denotes the i -th element
of xs. Functions hd and tl are standard, returning the first element and
the remainder of the list, respectively. Also last and butlast are defined
as usual, the former returns the last element, the latter chops off the
last element of the list. The standard functions map, which applies a
function to every element in a list, and filter, where [x ← xs . P] filters
all elements from xs which fulfil P, are also avilable.

Function update is defined as: f (a := b) ≡ λx . if x = a then b else f x,
where f :: ′a ⇒ ′b and a :: ′a and b :: ′b. If we have a list of values
as, which should be updated to values bs element by element in f, we
write f (as [:=] bs).

datatype ′a option = None | Some ′a adjoins a new element None to
a type ′a. All existing elements in type ′a are also in ′a option, but are
prefixed by Some. For succinctness we write bac instead of Some a.
Hence bool option has the values bTruec, bFalsec and None.

Case distinctions on data types use guards, where every guard must
be followed by a data type constructor. E.g. case x of byc ⇒ f y | None
⇒ g means that if x is some y then the result is f y where f may refer
to value y, and if x is None, then the result is g.

7

CHAPTER 1. INTRODUCTION

Partial functions are modeled as functions of type ′a ⇒ ′b option,
where None represents undefinedness and f x = bycmeans x is mapped
to y. Instead of ′a ⇒ ′b option we write ′a ⇀ ′b , call such functions
maps, and abbreviate f (x :=byc) to f (x 7→ y). The latter notation extends
to lists: f ([x1,. . . ,xm] [7→] [y1,. . . ,yn]) means f (x1 7→y1). . . (x i 7→y i), where i is
the minimum of m and n. The notation works for arbitrary list expres-
sions on both sides of [7→], not just enumerations. Multiple updates like
f (x 7→y)(xs [7→]ys) can be written as f (x 7→ y, xs [7→] ys). The map λx . None
is written empty, and empty(. . .), where . . . are updates, abbreviates to
[. . .]. For example, empty(x 7→y, xs [7→]ys) becomes [x 7→ y, xs [7→] ys]. The
domain of a map is defined as dom m = {a | m a 6= None}. Function
map-of turns a list of pairs into a map:

map-of [] = empty
map-of (p·ps) = map-of ps(fst p 7→ snd p)

1.4.2. Locales
Locales in Isabelle [8] provide the means to modularize proofs, using
self-defined proof contexts. Within a locale, one introduces (fixes) def-
initions and functions by stating their signature which may also con-
tain type variables. To impose certain constraints on these definitions
one assumes that the respective statement holds. When defining new
functions or proving lemmas within the locale one can then use these
fixed definitions and the assumed constraints.

One or multiple locales can also be extended by a new locale (using
+) with additional definitions and constraints. All the definitions and
lemmas proved in the base locales are available in the extended locale.

As a short example, consider the following definition of semigroups
where we fix an operator �, whose signature depends on the type
variable ′a, and assume that this operator is associative by the fact
named assoc. Defining a new locale semi-comm which extends semi
and requires that operator � is commutative (see rule comm) is also
straightforward.

locale semi =

fixes � :: ′a ⇒ ′a ⇒ ′a
assumes assoc : (x � y) � z = x � (y � z)

locale semi-comm = semi +

assumes comm : x � y = y � x

8

Well-typed programs cannot go
wrong.

R. Milner 2
Type Safe Semantics for C++

In [126], I showed how to integrate C++-like multiple inheritance, in-
cluding both repeated and shared (virtual) inheritance, in a formal
semantics and type system. However, the typing and semantics rules
presented there deviate in some cases from the actual behaviour of
C++. This chapter fills the last gaps and answers the final questions
by presenting the language CoreC++ [134], in which we reformulated
some rules such that the semantics and type system model exactly the
multiple inheritance of C++ in all its complexity.

Casting in the presence of multiple inheritance is a non-trivial oper-
ation, even more so as C++ provides two recommended casting oper-
ators, static_cast and dynamic_cast, whose behaviours can differ
significantly in some situations. Modeling dynamic dispatch and co-
variant return types posed the biggest challenge, as ambiguities may
occur at run-time which have to be resolved. The resulting semantics
enables one – for the first time – to fully understand and express the
behaviour of operations such as method calls, field accesses, and casts
in C++ programs without referring to compiler data structures such
as virtual function tables (v-tables) as usual in the standard [116].

I also present a type safety proof for the CoreC++ language. This
proof not only guarantees that C++’s multiple inheritance is no im-
pediment to type safety, but also shows that proof assistants are finally
powerful enough to machine-check formalizations of high-level pro-
gramming languages and to provide enough support to verify utterly
non-trivial properties on them.

This part of the thesis is joint work with Tobias Nipkow, Gregor
Snelting, and Frank Tip. They provided me with detailed insight in
the way C++ works and helped me in finding the right abstractions
for the formalization. Hence, in most parts of this chapter I use the
notion “we” instead of “I”.

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

The whole project, i.e., all the formalizations and the type safety
proof, is available online [127]. In a few cases I changed the syntax in
this thesis for readability.

2.1 The Story so far...

More than ten years ago, the group of Tobias Nipkow initiated the
project BALI1. It strived to formalize a large sequential subset of the
Java source and byte code semantics in the proof assistant Isabelle/HOL
and to prove both type safe. Java had already been regarded as type
safe at that time [42], however this consensus lacked the rigid formal
proof in a theorem prover. Furthermore, BALI aimed for the verifi-
cation of a compiler between the source and byte code language to-
gether with a byte code verifier. All these objectives were achieved
and the project culminated in the presentation of Jinja [61]. This work
demonstrated for the first time that machine-checking realistic high-
level programming languages has become reality.

Naturally, the question arose if C++, the other wide-spread object-
oriented programming language, also guarantees type safety. Of course,
one has to leave out of consideration things like pointer arithmetic or
templates, as these are inherently not type safe. But there is another
big difference between C++ and Java. One of the main sources of com-
plexity in C++ is a complex form of multiple inheritance, in which
a combination of shared (“virtual”) and repeated (“nonvirtual”) in-
heritance is permitted. Because of this complexity, the behaviour of
operations on C++ class hierarchies has traditionally been defined in-
formally [116], and in terms of implementation-level constructs such
as v-tables. In 1996, Rossie, Friedman, and Wand [94] stated that “In
fact, a provably-safe static type system [. . .] is an open problem” and
there was no real progress in this question the following years.

In my diploma thesis [126], I tackled the task of extending the Jinja
source code language with multiple inheritance à la C++. The sub-
object model by Rossie and Friedman [93] that formalizes the object
model of C++ was used as a starting point. Rossie and Friedman de-
fined the behaviour of method calls and member access using this
model, but their definitions do not follow C++ behaviour precisely.
Hence, the semantics and type system rules in [126] represent just a

1http://isabelle.in.tum.de/bali/

10

http://isabelle.in.tum.de/bali/

2.2. MULTIPLE INHERITANCE IN C++

first step towards an accurate description of the behaviour of C++-like
multiple inheritance.

The next two sections – first an introduction to the multiple inher-
itance mechanisms of C++, then an overview of the existing formal-
ization – recapitulate the work of [126], thus are no contribution of
this thesis. In Sec. 2.4, I discuss some problems of the existing se-
mantics and show how to rewrite some rules so that their semantics
mirror those of C++ to the maximum extent possible. Basing on these
new rules, the type safety of C++-like multiple inheritance is then be
proved in Sec. 2.5. Finally, I present a tool for interpreting real C++
programs in the CoreC++ semantics (Sec. 2.6), discuss related work
and conclude.

2.2 Multiple Inheritance in C++

2.2.1. An Intuitive Introduction to Subobjects

C++ features both nonvirtual (or repeated) and virtual (or shared) multi-
ple inheritance. The difference between the two flavors of inheritance
is subtle, and only arises in situations where a class Y indirectly inher-
its from the same class X via more than one path in the hierarchy. In
such cases, Y will contain one or multiple X-“subobjects”, depending
on the kind of inheritance that is used. More precisely, if only shared
inheritance is used, Y will contain a single, shared X-subobject, and if
only repeated inheritance is used, the number of X-subobjects in Y is
equal toN , whereN is the number of distinct paths fromX to Y in the
hierarchy. If a combination of shared and repeated inheritance is used,
the number of X-subobjects in a Y -object will be between 1 and N (a
more precise discussion follows). C++ hierarchies with only single in-
heritance (the distinction between repeated and shared inheritance is
irrelevant in this case) are semantically equivalent to Java class hierar-
chies.

Fig. 2.1(a) shows a small C++ class hierarchy. In these and subse-
quent figures, a solid arrow from class C to class D denotes the fact
that C repeated-inherits from D, and a dashed arrow from class C to
class D denotes the fact that C shared-inherits from D. Here, and in
subsequent examples, all methods are assumed to be virtual (i.e.,
dynamically dispatched), and all classes and inheritance relations are
assumed to be public.

11

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

class Top { int x, y; ... };
class Left : Top { ... };
class Right : Top { int y; ... };
class Bottom : Left, Right { int x; ... };

Bottom

Left Right

Top x y

y

x

A B : B is repeated base class of A
(a)

Bottom

Left

Top

Right

Top [Bottom,Bottom.Right.Top]

[Bottom,Bottom.Right]

[Bottom,Bottom.Left.Top]

[Bottom,Bottom.Left]

[Bottom,Bottom]

(b)

[Bottom,Bottom.Left.Top]

[Bottom,Bottom.Left]

x y [Bottom,Bottom.Right.Top]

[Bottom,Bottom.Right]

x y

y

[Bottom,Bottom]

A B : subobject A directly contains subobject B or a pointer to subobject B

(c)

Figure 2.1.: The repeated diamond

In Fig. 2.1(a), all inheritance is repeated. Since class Bottom repeated-
inherits from classes Left and Right, a Bottom-object has one subob-
ject of each of the types Left and Right. As Left and Right each
repeated-inherit from Top, (sub)objects of these types contain distinct
subobjects of type Top. Hence, for the C++ hierarchy of Fig. 2.1(a),
an object of type Bottom contains two distinct subobjects of type Top.
Fig. 2.1(b) shows the layout used for a Bottom object by a typical com-
piler, given the hierarchy of Fig. 2.1(a). Each subobject has local copies
of the subobjects that it contains, hence it is possible to lay out the
object in a contiguous block of memory without indirections.

Fig. 2.2(a) shows a similar C++ class hierarchy in which the inher-
itance between Left and Top and between Right and Top is shared.

12

2.2. MULTIPLE INHERITANCE IN C++

class Top { void f() { ... }; ... };
class Left : virtual Top { ... };
class Right : virtual Top { void f() { ... }; ... };
class Bottom : Left, Right { ... };

Bottom

Left Right

Top f()

f()

A B : B is repeated base class of A
A B : B is shared base class of A

(a)

Bottom

Left

Right

Top [Bottom,Top]

[Bottom,Bottom.Right]

[Bottom,Bottom.Left]

[Bottom,Bottom]

(b)

[Bottom,Top]

[Bottom,Bottom.Left] [Bottom,Bottom.Right]

[Bottom,Bottom]

A B : subobject A directly contains subobject B or a pointer to subobject B

f()

f()

(c)

Figure 2.2.: The shared diamond

13

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

Again, a Bottom-object contains one subobject of each of the types
Left and Right, due to the use of repeated inheritance. However,
since Left and Right both shared-inherit from Top, the Top-subobject
contained in the Left-subobject is shared with the one contained in
the Right-subobject. Hence, for this hierarchy, a Bottom-object will
contain a single subobject of type Top. In general, a shared subobject
may be shared by arbitrarily many subobjects, and requires an object
layout with indirections (typically in the form of virtual-base pointers)
[115, p.266]. Fig. 2.2(b) shows a typical object layout for an object of
type Bottom given the hierarchy of Fig. 2.2(a). Observe that the Left-
subobject and the Right-subobject each contain a pointer to the single
shared Top-subobject.

2.2.2. The Rossie-Friedman Subobject Model

Rossie and Friedman [93] proposed a subobject model for C++-style
inheritance, and used that model to formalize the behaviour of method
calls and field accesses. Informally, one can think of the Rossie-Fried-
man model as an abstract representation of object layout. Intuitively,
a subobject2 identifies a component of type D that is embedded within
a complete object of type C. However, simply defining a subobject
type as a pair (C,D) would be insufficient, because, as we have seen
in Fig. 2.1, aC-object may contain multipleD-components in the pres-
ence of repeated multiple inheritance. Therefore, a subobject is iden-
tified by a pair [C,Cs], where C denotes the type of the “complete
object”, and where the path Cs consists of a sequence of class names
C1.Cn that encodes the transitive inheritance relation between C1

and Cn. There are two cases here: For repeated subobjects we have that
C1 = C, and for shared subobjects, we have that C1 is the least derived
(most general) shared base class of C that contains Cn. This scheme is
sufficient because shared subobjects are unique within an object (i.e.,
there can be at most one shared subobject of type S within any object).
More formally, for a given class C, the set of its subobjects, along with
a containment ordering on these subobjects, is inductively defined as
follows:

2 In this thesis, we follow the terminology of [93] and use the term “subobject” to
refer both to the label that uniquely identifies a component of an object type, as
well as to components within concrete objects that are identified by such labels.
In retrospect, the term “subobject label” would have been better terminology for
the former concept.

14

2.2. MULTIPLE INHERITANCE IN C++

1. [C,C] is the subobject that represents the “full” C-object.

2. if S1 = [C,Cs.X] is a subobject for class C where Cs is any
sequence of class names, and X shared-inherits from Y , then
S2 = [C, Y] is a subobject for class C that is accessible from S1

through a pointer.

3. if S1 = [C,Cs.X] is a subobject for class C where Cs is any se-
quence of class names, and X repeated-inherits from Y , then
S2 = [C,Cs.X.Y] is a subobject for class C that is directly con-
tained within subobject S1.

Fig. 2.1(c) and Fig. 2.2(c) show subobject graphs for the class hierarchies
of Fig. 2.1 and Fig. 2.2, respectively. Here, an arrow from subobject S
to subobject S ′ indicates that S ′ is directly contained in S or that S has
a pointer leading to S ′. For a given subobject S = [C,Cs.D], we call
C the dynamic class of subobject S and D the static class of subobject S.
Associated with each subobject are the members that occur in its static
class. Hence, if an object contains multiple subobjects with the same
static class, it will contain multiple copies of members declared in that
class. For example, the subobject graph of Fig. 2.1(c) shows two subob-
jects with static class Top, each of which has distinct fields x and y.

Intuitively, a subobject’s dynamic class represents the type of the
“full object” and is used to resolve dynamically dispatched method
calls. A subobject’s static class represents the declared type of a vari-
able that points to an (subobject of the full) object and is used to re-
solve field accesses. In this thesis, we use the Rossie-Friedman subob-
ject model to define the behaviour of operations such as method calls
and casts as functions from subobjects to subobjects. As we shall see
shortly, it will be necessary in our semantics to maintain full subob-
ject information even for “static” operations such as casts and field
accesses.

Multiple inheritance can easily lead to situations where multiple
members with the same name are visible. In C++, many member ac-
cesses that are seemingly ambiguous are resolved using the notion of
dominance [116]. A member m in subobject S ′ dominates a member m
in subobject S if S is contained in S ′ (i.e., S ′ has a path leading to
S in the subobject graph). Member accesses are resolved by select-
ing the unique dominant member m if it exists; otherwise an access is

15

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

ambiguous3. For example, in Fig. 2.2, a Bottom-object sees two dec-
larations of f(), one in class Right and one in class Top. Thus a call
(new Bottom())->f()) seems ambiguous. But it is not, because in
the subobject graph for Bottom shown in Fig. 2.2(c), the definition of
f() in [Bottom,Bottom.Right] dominates the one in [Bottom,Top]. On
the other hand, the subobject graph in Fig. 2.1(c) contains three defini-
tions of y in [Bottom,Bottom.Right], [Bottom,Bottom.Right.Top], and
[Bottom,Bottom.Left.Top]. As there is no unique dominant definition
of y here, a field access (new Bottom())->y) is ambiguous.

2.2.3. Examples
We will now discuss some examples to illustrate the subtleties that
arise in the C++ inheritance model; more can be found in the subse-
quent sections.

Example 1. Dynamic dispatch behaviour can be counterintuitive in
the presence of multiple inheritance. One might expect a method call
always to dispatch to a method definition in a superclass or subclass
of the type of the receiver expression. Consider, however, the shared
diamond example of Fig. 2.2, where a method f() is defined in classes
Right and Top. Now assume that the following C++ code is executed
(note the implicit up-cast to Left in the assignment):

Left* b = new Bottom(); b->f();

One might expect the method call to dispatch to Top::f(). But in
fact it dispatches to f() in class Right, which is neither a superclass
nor a subclass of Left. The reason is that up-casts do not switch off
dynamic dispatch, which is based on the receiver object’s dynamic
class. The dynamic class of b remains Bottom after the cast, and since
Right::f() dominates Top::f(), the former is called.

This makes sense from an application viewpoint: Imagine the top
class to be a “Window”, the left class to be a “Window with menu”,
the right class to be a “Window with border”, the bottom class to be
a “Window with border and menu”, and f() to compute the avail-
able window space. Then, a “Window with border and menu” object
which is casted to “Window with menu” pretends not to have a border

3 In some cases, C++ uses the static class of the receiver for further disambiguation.
This will be discussed shortly.

16

2.2. MULTIPLE INHERITANCE IN C++

anymore (border methods cannot be called). But for the area compu-
tation, the hidden border must be taken into account, thus f() from
“Window with border” must be called.

Example 2. The next example illustrates the need to track some sub-
object information at run-time, and how this complicates the seman-
tics. Consider the program fragment in Fig. 2.3(a), where b points to a
B-subobject. This subobject occurs in two different “contexts”, namely
either as a [D,D.B] subobject (if the then-case of the if statement is exe-
cuted), or as an [E,E.B] subobject (if the else-case is executed). Note
that executing the assignments b = new D() and b = new E() in-
volves an implicit up-cast to type B. Depending on the context, the call
b->f() will dispatch to D::f() or E::f(). Now, executing the body
of this f() involves an implicit assignment of b to its this pointer.
Since the static type of b is B, and the static type of this is the class
containing its method, an implicit down-cast (to D or to E, depending
on the context) is needed. At compile time it is not known which cast
will happen at run-time, which implies that the compiler must keep
track of some additional information to determine the cast that must
be performed.

In a typical C++ implementation, a cast actually implies changing
the pointer value in the presence of multiple inheritance, as is illus-
trated in Fig. 2.3(b). The up-cast from D to B (then-case, upper part of
Fig. 2.3(b)) is implemented by adding the offset delta(B) of the [D,D.B]-
subobject within the D object to the pointer to the D object. After-
wards, the pointer points to the [D,D.B]-subobject. As we discussed,
the subsequent call b->f() requires that the pointer be down-casted
to D again. This cast is implemented by adding the negative offset
−delta(B) of the [D,D.B]-subobject to the pointer. The else-case (lower
part of Fig. 2.3(b)) is analogous, but involves a different offset, which
happens to be 0. In other words, the offsets in the then- and else-cases
are different, and we do not know until run-time which offset has to be
used. To this end, C++ compilers typically extend the virtual function
table (v-table) [115] with “delta” values that, for each v-table entry,
record the offset that has to be added to the this-pointer in order to
ensure that it points to the correct subobject after the cast (Fig. 2.3(b)).

Our semantics correctly captures the information needed for per-
forming casts, without referring to compiler data structures such as
v-table entries and offsets.

17

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

class A {...};
class B {void f();};
class C {...};
class D : A,B {void f();};
class E : B,C {void f();};

B* b;
if (...)
b = new D();

else
b = new E();

b->f();

ED

CBA

f()

f()

f()

(a)

&D:f

D

A vptr

Then:
this-pointer

after offset adjustment for f()

start call f() delta-values

A&D vtable

B vtableB vptr

0

&D:f -delta(B)

&E:f

E

B vptr

Else:
this-pointer

after offset adjustment for f()

start call f()

delta-values

B&E vtable

C vtableC vptr

0

&E:f -delta(C)

(b)

Figure 2.3.: C++ fragment demonstrating dynamically varying sub-
object context

18

2.3. THE PRESENT SITUATION OF COREC++

Example 3. This example is taken from [89]. It shows that many
compilers treat dominance incorrectly and thus have problems with
field access/assignment (as well as method call):

class A { int x; };
class B { int x; };
class C : virtual A, virtual B { int x; };
class D : virtual A, virtual B, C {};

(new D())->x = 42;

The g++ compiler rejects the left hand side of (new D())->x = 42

as ambiguous, whereas the Intel R© C++ compiler correctly accepts this
program.

Clearly, the semantics of method calls, field accesses, and casts are
quite complicated in the presence of shared and repeated multiple in-
heritance. Typical C++ compilers rely on implementation-level arti-
facts such as v-tables and subobject offsets to define the behaviour of
these constructs. In the next sections, we present a formalization that
relies solely on subobjects and paths, which enables us to demonstrate
type safety.

2.3 The Present Situation of CoreC++

In the following, we will give a short introduction how the semantics
has been formalized in [61, 126] before we go into the details of the
relevant object-oriented constructs.

2.3.1. Formalization
Names, paths, and base classes. Type cname is the (HOL) type of
class names. The (HOL) variables C and D will denote class names, Cs
and Ds are paths. We introduce the type abbreviation path = cname list .

Programs are denoted by P. For the moment we do not need to
know what programs look like. Instead we assume the following
predicates describing the class structure of a program:

• P ` C ≺R D means D is a direct repeated base class of C in P.
• P ` C ≺S D means D is a direct shared base class of C in P.
• �∗ means (≺R ∪ ≺S)∗.
• is-class P C means class C is defined in P.

19

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

Subobjects. We slightly changed the appearance of subobjects in com-
parison with Rossie-Friedman style: we use a tuple with a class and a
path component where a path is represented as a list of class names.
For example, a Rossie-Friedman subobject [Bottom,Bottom.Left] is
translated into (Bottom,[Bottom,Left]).

The subobject definitions are parameterized by a program P. First
we define SubobjsR P, the subobjects whose path consists only of re-
peated inheritance relations:

is-class P C
(C , [C]) ∈ SubobjsR P

P ` C ≺R D (D , Cs) ∈ SubobjsR P
(C , C ·Cs) ∈ SubobjsR P

Now we define Subobjs P, the set of all subobjects:

(C , Cs) ∈ SubobjsR P
(C , Cs) ∈ Subobjs P

P ` C �∗ C ′ P ` C ′≺S D (D , Cs) ∈ SubobjsR P
(C , Cs) ∈ Subobjs P

We have shown that this definition and the one by Rossie and Fried-
man (see Sec. 2.2.2) are equivalent. Ours facilitates proofs because
paths are built up following the inductive nature of lists.

Path functions. We need a concatenation of paths @p such that the
following property holds under the assumption that program P is
well-formed4:

If (C , Cs) ∈ Subobjs P and (last Cs , Ds) ∈ Subobjs P
then (C , Cs @p Ds) ∈ Subobjs P .

If the second path only contains repeated inheritance, then it starts
with the same class the first one ends with, so we can append both
of them via @ (taking care to just use the common class once). If the
second path begins with a shared class, the first path just disappears
(because we lose all information below the shared class).

Thus, function @p appends two paths assuming the second one is
starting where the first one ends with:

Cs @p Cs ′≡ if last Cs = hd Cs ′ then Cs @ tl Cs ′ else Cs ′

4A well-formed program requires certain natural constraints of the program such
as the class hierarchy relation to be irreflexive (see Sec. 2.4.4).

20

2.3. THE PRESENT SITUATION OF COREC++

An ordering on paths @1 is defined as follows:

(C , Cs) ∈ Subobjs P (C , Ds) ∈ Subobjs P Cs = butlast Ds
P ,C ` Cs @1 Ds

(C , Cs) ∈ Subobjs P P ` last Cs ≺S D
P ,C ` Cs @1 [D]

The reflexive and transitive closure of @1 is written v. The intuition of
this ordering is subobject containment: P ,C ` Cs v Ds means that sub-
object (C ,Ds) lies below (C ,Cs) in the subobject graph. For example,
it is not hard to derive P ,Bottom ` [Bottom] v [Bottom ,Left ,Top] (in the
repeated diamond) from these definitions.

2.3.2. Abstract Syntax of CoreC++
We do not define a concrete syntax for CoreC++, just an abstract syn-
tax. The translation of the C++-subset corresponding to CoreC++ into
abstract syntax is straightforward and will not be discussed here.

In the sequel, we use the following (HOL) variable conventions: V
is a (CoreC++) variable name, F a field name, M a method name, e an
expression, v a value, and T a type.

In addition to cname (class names) there are also the (HOL) types
vname (variable and field names), and mname (method names). We do
not assume that these types are disjoint, e.g. all of them may be strings.

References. A reference refers to a subobject within an object. Hence
it is a pair of an address that identifies the object on the heap (see
Sec. 2.3.4 below) and a path identifying the subobject. Formally:

reference = addr × path

The path represents the dynamic context of a subobject as a result
of previous casts (as explained in Sec. 2.2.3), and corresponds to the
result of adding “delta” values to an object pointer in the standard
“v-table” implementation. Our semantics does not emulate the stan-
dard implementation, but is more abstract.

Note: CoreC++ references are not equivalent to C++ references, but
are more like C++ pointers.

As an example, consider Fig. 2.3. If we assume that the else state-
ment is executed, then b will have the reference value (a , [E , B]) where
a is the memory address of the new E object, and path [E , B] represents

21

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

the fact that this object has been up-cast to B and b in fact points to the
B subobject.

Values and Expressions. A CoreC++ value (abbreviated val) can
be

• a boolean Bool b, where b :: bool, or

• an integer Intg i, where i :: int, or

• a reference Ref r, where r :: reference, or

• the null reference Null, or

• the dummy value Unit.

CoreC++ is an imperative but expression-based language where state-
ments are expressions that evaluate to Unit. The following expres-
sions (of HOL type expr) are supported by CoreC++:

• creation of a new object: new C

• static casting: stat cast C e

• dynamic casting: dyn cast C e

• literal value: Val v

• binary operation: e1 �bop� e2 (where bop is one of + or ==)

• variable access Var V and variable assignment V := e

• field access e .F{Ds} and field assignment e1.F{Ds} := e2
(where Ds is the path to the subobject where F is declared)

• method call e .M (es) and qualified method call e .C ::M (es)

• block with a locally declared variable: {V :T ; e}

• sequential composition: e1;; e2

• conditional: if (e) e1 else e2
(do not confuse with HOL’s if b then x else y)

• while loop: while (e) e ′

• throwing arbitrary exceptions throw e

22

2.3. THE PRESENT SITUATION OF COREC++

prog = cdecl list cdecl = cname × class
class = base list × fdecl list ×mdecl list
fdecl = vname × ty mdecl = mname ×method
method = ty list × ty × vname list × expr

datatype base = Repeats cname | Shares cname

Figure 2.4.: Abstract program syntax

The constructors Val and Var are needed in our meta-language to dis-
ambiguate the syntax. Binary operators are evaluated left-to-right, in
C++ this order is unspecified. There is no return statement because
everything is an expression and returns a value.

The annotation {Ds} in field access and assignment is not part of
the input language but is something that a preprocessor, e.g., the type
checking phase of a compiler, must add.

To ease notation we introduce some abbreviations:

• ref r ≡ Val(Ref r)

• null ≡ Val Null

• true ≡ Val(Bool True)

• false ≡ Val(Bool False)

• unit ≡ Val Unit

Programs. The abstract syntax of programs is given by the type def-
initions in Fig. 2.4, where ty is the HOL type of CoreC++ types (see
Sec. 2.3.3).

A CoreC++ program is a list of class declarations. A class decla-
ration consists of the name of the class and the class itself. A class
consists of the list of its direct superclass names (marked Shares or
Repeats), a list of field declarations and a list of method declarations.
A field declaration is a pair of a field name and its type. A method
declaration consists of the method name and the method itself, which
consists of the parameter types, the result type, the parameter names,
and the method body.

Note that CoreC++ (like Java, but unlike C++) does not have global
variables. Method bodies can access only their this-pointer and pa-
rameters, and return a value.

23

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

We refrain from showing the formal definitions (see [61]) of the
predicates like P ` C ≺R D introduced in Sec. 2.3.1 as they are straight-
forward. Instead we introduce one more access function:

class P C : the class (more precisely: class option) associated with C in P

2.3.3. Type System
CoreC++ types are either primitive (Boolean and Integer), class types
Class C , NT (the type of Null), or Void (the type of Unit). The set of
these types (i.e., the corresponding HOL type) is called ty. Function
typeof returns the type of a value (except for references, which return
None):

typeof (Bool b) = bBooleanc, typeof (Int i) = bIntegerc,
typeof (Ref r) = None , typeof Null = bNTc, typeof Void = bUnitc

The first two rules of the subtype relation ≤ are straightforward:

P ` T ≤ T P ` NT ≤ Class C

To relate two classes, we have to take care that we can use an object
of the smaller type wherever an object of the more general type can
occur. This property can be guaranteed by requiring that a static cast
between these two types can be performed, resulting in the premise5:

P ` path C to D unique ≡ ∃ !Cs . (C , Cs) ∈ Subobjs P ∧ last Cs = D

This property ensures that the path from class C leading to class D
exists and is unique (∃ ! is unique existence). This leads to the third
subtyping rule:

P ` path C to D unique
P ` Class C ≤ Class D

The point-wise extension of ≤ to lists is written [≤] .
The core of the type system is the judgment P ,E ` e :: T, , where E

is an environment, i.e., a map from variables to their types. We call T
the static type of e. [::] lifts :: to lists.

Fig. 2.5 shows the typing rules for the imperative constructs of
CoreC++ together with object creation and exception throwing. All

5For more information about static casts, see Sec. 2.4.1.

24

2.3. THE PRESENT SITUATION OF COREC++

WTNew:
is-class P C

P ,E ` new C :: Class C
WTVal:

typeof v = bTc
P ,E ` Val v :: T

WTVar:
E V = bTc

P ,E ` Var V :: T
WTBlock:

is-type P T P ,E (V 7→ T) ` e :: T ′

P ,E ` {V :T ; e} :: T ′

WTBinOp:

P ,E ` e1 :: T1 P ,E ` e2 :: T2

case bop of ==⇒ T1 = T2 ∧ T = Boolean
| +⇒ T1 = Integer ∧ T2 = Integer ∧ T = Integer

P ,E ` e1 �bop� e2 :: T

WTSeq:
P ,E ` e1 :: T1 P ,E ` e2 :: T2

P ,E ` e1;; e2 :: T2

WTCond:
P ,E ` e :: Boolean P ,E ` e1 :: T P ,E ` e2 :: T

P ,E ` if (e) e1 else e2 :: T

WTWhile:
P ,E ` e :: Boolean P ,E ` c :: T

P ,E ` while (e) c :: Void

WTThrow:
P ,E ` e :: Class C

P ,E ` throw e :: Void

WTNil: P ,E ` [] [::] [] WTCons:
P ,E ` e :: T P ,E ` es [::] Ts

P ,E ` e·es [::] T ·Ts

Figure 2.5.: Typing rules for sequential constructs, object creation and
exception throwing

these rules are standard and an exhaustive discussion of them can be
found elsewhere [61, 126]. Note that rule WTVal guarantees via typeof
that references are not typed, since the type system should reject pro-
grams with explicit references. The rules for the remaining expres-
sions can be found in Sec. 2.4.

2.3.4. Semantics

The big step semantics is a (deterministic) relation between an initial
expression-state pair 〈e ,s〉 and a final expression-state pair 〈e ′,s ′〉. The
syntax of the relation is P ,E ` 〈e ,s〉 ⇒ 〈e ′,s ′〉 and we say that e evaluates
to e ′. The need for E will be explained in Sec. 2.4.3. The rules will be
such that final expressions are always values (Val) or thrown excep-
tions (throw), i.e., final expressions are completely evaluated. Again,
[⇒] lifts the evaluation to lists of expressions, e.g. parameter lists.

25

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

state = heap × locals locals = vname ⇀ val
heap = addr ⇀ obj obj = cname × subo set
subo = path × (vname ⇀ val)

Figure 2.6.: The type of CoreC++ program states

We proved that the big step rules are deterministic, i.e., an expres-
sion-state pair always evaluates to the same result.

State. The set of states is defined in Fig. 2.6. A state is a pair of a
heap and a store (locals). A store is a map from variable names to
values. A heap is a map from addresses to objects. An object is a
pair of a class name and its subobjects. A subobject (subo) is a pair of
a path (leading to that subobject) and a field table mapping variable
names to values.

The naming convention is that h is a heap, l is a store (the local
variables), and s a state.

Note that CoreC++, in contrast to C++, does not allow stack-allo-
cated objects: variable values can only be pointers (CoreC++ refer-
ences), but not objects. Objects are only on the heap (as in Java). We do
not expect stack based objects to interfere with multiple inheritance.

Remember further that a reference contains not only an address but
also a path. This path selects the current subobject of an object and is
modified by casts (see below).

Exceptions. CoreC++ supports exceptions. They are essential to
prove type soundness as certain problems can occur at run-time (e.g.,
a failing cast) which we cannot prevent statically. In these cases we
throw an exception so the semantics does not get stuck. Three excep-
tions are predefined in CoreC++: OutOfMemory, if there is no more
space on the heap, ClassCast for a failed cast and NullPointer for null
pointer access. Some semantic rules concerning exception throwing
can be found in Fig. 2.7, the remaining ones are explained in Sec. 2.4.
THROW C is syntactic sugar for throw (Ref (addr-of-sys-xcpt C ,[C])),
where addr-of-sys-xcpt is a fixed address on the heap for each of the
predefined exceptions.

Evaluation. Recall that P ,E ` 〈e ,s〉 ⇒ 〈e ′,s ′〉 is the evaluation judg-
ment, where P denotes the program and E the type environment. For

26

2.3. THE PRESENT SITUATION OF COREC++

NewFail:
new-Addr h = None

P ,E ` 〈new C ,(h , l)〉 ⇒ 〈THROW OutOfMemory,(h , l)〉

BinOpThrow1:
P ,E ` 〈e1,s0〉 ⇒ 〈throw e ,s1〉

P ,E ` 〈e1 �bop� e2,s0〉 ⇒ 〈throw e ,s1〉

BinOpThrow2:
P ,E ` 〈e1,s0〉 ⇒ 〈Val v1,s1〉 P ,E ` 〈e2,s1〉 ⇒ 〈throw e ,s2〉

P ,E ` 〈e1 �bop� e2,s0〉 ⇒ 〈throw e ,s2〉

SeqThrow:
P ,E ` 〈e0,s0〉 ⇒ 〈throw e ,s1〉

P ,E ` 〈e0;; e1,s0〉 ⇒ 〈throw e,s1〉

CondThrow:
P ,E ` 〈e ,s0〉 ⇒ 〈throw e ′,s1〉

P ,E ` 〈if (e) e1 else e2,s0〉 ⇒ 〈throw e ′,s1〉

WhileCondThrow:
P ,E ` 〈e ,s0〉 ⇒ 〈throw e ′,s1〉

P ,E ` 〈while (e) c ,s0〉 ⇒ 〈throw e ′,s1〉

WhileBodyThrow:
P ,E ` 〈e ,s0〉 ⇒ 〈true ,s1〉 P ,E ` 〈c ,s1〉 ⇒ 〈throw e ′,s2〉

P ,E ` 〈while (e) c ,s0〉 ⇒ 〈throw e ′,s2〉

Throw:
P ,E ` 〈e ,s0〉 ⇒ 〈ref r ,s1〉

P ,E ` 〈throw e ,s0〉 ⇒ 〈Throw r ,s1〉

ThrowThrow:
P ,E ` 〈e ,s0〉 ⇒ 〈throw e ′,s1〉

P ,E ` 〈throw e ,s0〉 ⇒ 〈throw e ′,s1〉

ThrowNull:
P ,E ` 〈e ,s0〉 ⇒ 〈null ,s1〉

P ,E ` 〈throw e ,s0〉 ⇒ 〈THROW NullPointer ,s1〉

ConsThrow:
P ,E ` 〈e ,s0〉 ⇒ 〈throw e ′,s1〉

P ,E ` 〈e·es ,s0〉 [⇒] 〈throw e ′·es ,s1〉

Figure 2.7.: Big step rules concerning exception throwing

a better understanding of the evaluation rules it is helpful to realize
that they preserve the following heap invariant: for any object (C , S)
on the heap we have

• S contains exactly the paths starting from C :
{Ds | ∃ fs . (Ds , fs) ∈ S} = {Ds | (C , Ds) ∈ Subobjs P},
• S is a (finite) function: ∀ (Cs ,fs), (Cs ′,fs ′) ∈ S . Cs = Cs ′−→ fs = fs ′

Furthermore, if an expression e evaluates to ref (a , Cs) then the heap
maps a to b(C , S)c such that

• Cs is the path of a subobject in S : (Cs , fs) ∈ S for some fs.

• last Cs is equal to the class of e inferred by the type system.

27

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

New:
new-Addr h = bac h ′= h (a 7→ (C , {(Cs , fs) | init-obj P C (Cs , fs)})

P ,E ` 〈new C ,(h , l)〉 ⇒ 〈ref (a , [C]),(h ′, l)〉

Val: P ,E ` 〈Val v,s〉 ⇒ 〈Val v,s〉

Var:
l V = bvc

P ,E ` 〈Var V ,(h , l)〉 ⇒ 〈Val v,(h , l)〉

BinOp:

P ,E ` 〈e1,s0〉 ⇒ 〈Val v1,s1〉
P ,E ` 〈e2,s1〉 ⇒ 〈Val v2,s2〉 binop (bop , v1, v2) = bvc

P ,E ` 〈e1 �bop� e2,s0〉 ⇒ 〈Val v,s2〉

Block:
P ,E (V 7→ T) ` 〈e0,(h0, l0(V := None))〉 ⇒ 〈e1,(h1, l1)〉

P ,E ` 〈{V :T ; e0},(h0, l0)〉 ⇒ 〈e1,(h1, l1(V := l0 V))〉

Seq:
P ,E ` 〈e0,s0〉 ⇒ 〈Val v,s1〉 P ,E ` 〈e1,s1〉 ⇒ 〈e2,s2〉

P ,E ` 〈e0;; e1,s0〉 ⇒ 〈e2,s2〉

CondT:
P ,E ` 〈e ,s0〉 ⇒ 〈true ,s1〉 P ,E ` 〈e1,s1〉 ⇒ 〈e ′,s2〉

P ,E ` 〈if (e) e1 else e2,s0〉 ⇒ 〈e ′,s2〉

CondF:
P ,E ` 〈e ,s0〉 ⇒ 〈false ,s1〉 P ,E ` 〈e2,s1〉 ⇒ 〈e ′,s2〉

P ,E ` 〈if (e) e1 else e2,s0〉 ⇒ 〈e ′,s2〉

WhileT:

P ,E ` 〈e ,s0〉 ⇒ 〈true ,s1〉
P ,E ` 〈c ,s1〉 ⇒ 〈Val v1,s2〉 P ,E ` 〈while (e) c ,s2〉 ⇒ 〈e3,s3〉

P ,E ` 〈while (e) c ,s0〉 ⇒ 〈e3,s3〉

WhileF:
P ,E ` 〈e ,s0〉 ⇒ 〈false ,s1〉

P ,E ` 〈while (e) c ,s0〉 ⇒ 〈unit ,s1〉
Nil: P ,E ` 〈[],s〉 [⇒] 〈[],s〉

Cons:
P ,E ` 〈e ,s0〉 ⇒ 〈Val v,s1〉 P ,E ` 〈es ,s1〉 [⇒] 〈es ′,s2〉

P ,E ` 〈e·es ,s0〉 [⇒] 〈Val v·es ′,s2〉

Figure 2.8.: Big step rules of sequential constructs and object creation

The imperative subset of the big step semantic rules and the ones for
object creation are presented in Fig. 2.8. In rule New, by using init-obj
we require that all object fields are initialized with default values (see
also Sec. 2.5.2). Note that C++ does not initialize fields. Our desire
for type safety requires us to deviate from C++ in this minor aspect;
for more details, see Sec. 2.5.2. The interested reader can find more
information on these standard rules in [61, 126].

Small Step Semantics Big step rules are easy to understand but
cannot distinguish nontermination from being stuck. Hence we also
have a small step semantics where expression-state pairs are gradu-

28

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

ally reduced. The reduction relation is written P ,E ` 〈e ,s〉 → 〈e ′,s ′〉 and
its transitive reflexive closure is P ,E ` 〈e ,s〉 →∗ 〈e ′,s ′〉. The rules can be
found in appendix A.

We have proven the equivalence of the big and small step semantics
(for well-formed programs, see Sec. 2.4.4):

P ,E ` 〈e ,s〉 ⇒ 〈e ′,s ′〉 = (P ,E ` 〈e ,s〉 →∗ 〈e ′,s ′〉 ∧ final e ′).

2.4 Improving the Semantics towards real C++

In this section, we concentrate on the adaptions to the existing seman-
tics necessary to model C++-like multiple inheritance precisely.

2.4.1. Static and Dynamic Casts

In contrast to Java, casting is a non-trivial operation in C++, as it ad-
justs the object’s this-pointer to reference the actual subobject. This
adjustment is necessary as for field accesses (and even dispatch) it may
be of importance via which path we reached the subobject (e.g., to dis-
tinguish the accessed x variable in the Top subobject in the repeated
diamond Fig. 2.1). Hence, casting in C++ is a frequent source of errors
and obtaining the desired result requires much care and experience.

C++ has three cast operators for traversing class hierarchies, each of
which has significant limitations6. Most commonly used are so-called
C-style casts. C-style casts may be used to cast between arbitrary un-
related types, although some static checking is performed on up-casts
(e.g., a C-style up-cast is statically rejected if the receiver’s static type
does not contain a unique subobject whose static class is the type be-
ing cast to), but no run-time checks. C-style casts cannot be used to
down-cast along a shared inheritance relation, as it is not possible to
“go back” along the indirection pointers in the object. When used in-
correctly, C-style casts may cause run-time errors. We do not model C-
style casts as they are regarded as “old-style” and should be replaced
with the “new-style” casting operators described in the following.

6 The remaining two cast operators in C++, reinterpret_cast and
const_cast are out of scope of this work: the former is inherently non type
safe, as it allows casting even between unrelated pointer types, and the latter
just sets the const attribute of its parameter, i.e., is concerned with mutability
of objects.

29

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

The static_cast operator only performs compile-time checks (e.g.,
to ensure that a unique subobject of the target type exists) and disal-
lows casting between unrelated types. static_cast cannot be used
to down-cast along a shared inheritance relation. When used incor-
rectly, static_cast may cause run-time errors.

The dynamic_cast operator is the recommended cast operator in
C++. It has the desirable property that failing casts result in con-
trolled exceptions (when the target of the cast is a reference) or the
special value NULL (when the target is a pointer). Unlike the previ-
ous two operators, down-casting along shared inheritance relations is
allowed, and dynamic_cast may be used to cast between unrelated
types. However, a subtle limitation exists: A dynamic_cast is stat-
ically incorrect when applied to an expression whose declared type
does not declare virtual methods.

The following examples will be used to elucidate the different be-
haviour of static_cast and dynamic_cast. For this purpose, we
will make use of the repeated and shared diamond as shown in Fig. 2.1
and Fig. 2.2.

Example 1.

Top* t = static_cast<Top*>(new Bottom());
Top* t = dynamic_cast<Top*>(new Bottom());

Both casts fail in the repeated diamond due to two different paths
leading to possible subobjects: [Bottom, Left, Top] and [Bottom,
Right, Top]. So there is no unique path, the cast is ambiguous and
the compiler rejects it. But the same cast in the shared diamond is
possible, as there is only one possible path, namely [Top].

Example 2. Let us assume that we have a field int z in class Left
in the repeated diamond which is initialized with the value 42. Now,
we cast from Bottom via Right to Top:

Top* t = static_cast<Top*>
(static_cast<Right*>(new Bottom()));

A dynamic down-cast to Left and accessing z returns the correct value
42:

Left* l = dynamic_cast<Left*>(t);
l->z; // returns the value 42

30

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

Since a real down-cast from t to a class Left is not possible here, the
dynamic cast builds the new casted object “bottom-up” by casting the
“full” Bottom subobject up to Left.

A static down-cast from t to Left should however not be possi-
ble, as no Left class is in the current subobject path. However, this
program compiles and even accessing field z is allowed, although the
result of the field access is unspecified:
Left* l = static_cast<Left*>(t);
l->z; // can return any value

What happens here is that the C++ implementation just reduces the
this-pointer by the “delta” for Left, resulting in a this-pointer
pointing to an arbitrary point in the object. Of course, this breaks type
safety. Thus, in our semantics, we decided to throw a ClassCast excep-
tion to report that something went wrong, instead of carrying on with
undefined behaviour as C++ does.

Example 3. In any of the two diamonds, a dynamic_cast allows
so called “cross-casts”, casts between classes where one class is not
a (direct or indirect) super class of the other. For static_casts, the
compiler rejects “cross-casts”:
Left* l = static_cast<Left*>(new Bottom());
Right* r = dynamic_cast<Right*>(l); //compiles&executes
Right* r = static_cast<Right*>(l); //compiler rejects

The static_cast is rejected as there is no path between Left and
Right. The dynamic_cast can again work “bottom-up” and cast the
“full” Bottom subobject up to Left. However, as the compiler allows
“cross-casts” for dynamic_cast, it also allows casting between com-
pletely unrelated classes:
Right* r = dynamic_cast<Right*>(new Left()); //compiles

As a Left object has no Right subobject, this cast cannot be performed
at run-time. Thus, dynamic_cast returns the special value NULL.

Example 4. In the last two examples we saw that a dynamic down-
cast can be resolved “bottom-up”, via up-casts on the “full” Bottom

subobject. However, the dynamic_cast does not always work this
way, as we can see in the repeated diamond:
Left* l = static_cast<Left*>(new Bottom());
Top* t = dynamic_cast<Top*>(l);

31

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

WTStaticCast:

P ,E ` e :: Class D is-class P C P ` path D to C unique ∨
P ` C �∗ D ∧ (∀Cs . P ` path C to D via Cs −→ (C , Cs) ∈ SubobjsR P)

P ,E ` stat cast C e :: Class C

StaticUpCast:

P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs),s1〉
P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ,E ` 〈stat cast C e ,s0〉 ⇒ 〈ref (a , Ds),s1〉

StaticDownCast:
P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs @ [C] @ Cs ′),s1〉

P ,E ` 〈stat cast C e ,s0〉 ⇒ 〈ref (a , Cs @ [C]),s1〉

StaticCastNull:
P ,E ` 〈e ,s0〉 ⇒ 〈null ,s1〉

P ,E ` 〈stat cast C e ,s0〉 ⇒ 〈null ,s1〉
StaticCastThrow:

P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs),s1〉 ¬ P ` last Cs �∗ C C /∈ set Cs
P ,E ` 〈stat cast C e ,s0〉 ⇒ 〈THROW ClassCast ,s1〉

Figure 2.9.: Type and semantic rules for static cast

If the dynamic_cast again looked “bottom-up” from the basic Bottom
subobject, it would see two different Top subobjects, one via Right the
other one via Left. Hence, the cast would be ambiguous. However,
the dynamic_cast behaves just like a static_cast and casts to the
Top subobject in the Left subobject. Actually, dynamic_cast always
mimics static_cast, only in cases where the static_cast would be
rejected, the “bottom-up” technique is used.

Remember that any object reference contains a path component iden-
tifying the current subobject which is referenced. A cast changes this
path, thus selects a different subobject. Hence casting must adjust
the path component of the reference. This mechanism corresponds
to Stroustrup’s adjustment of pointers by “delta” values. We consider
this a prime example of the fact that our semantics does not rely on
run-time data structures but on abstract concepts.

The semantics of the cast operator presented in [126] (there called
simply Cast) meets the behaviour of C++’s static_cast; thus, we
use the syntax stat cast in this thesis. To recapitulate, we show
its typing rule and big step semantic rules in Fig. 2.9. (the small step

32

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

rules are completely analogous and can be found in the appendix).
Typing static casts is non-trivial in CoreC++ because the type system
needs to prevent ambiguities at run-time (although it cannot do so
completely). When evaluating stat cast C e, the object that e evalu-
ates to may have multiple subobjects of class C. If it is an up-cast, i.e.,
if P ,E ` e :: Class D and D is a subclass of C, we have to check if there
is a unique path from D to C. For down-casts we need to remember
(cf. Example 2) that we have chosen to model a type safe variant of
static_cast (which means we throw an exception where C++ pro-
duces undefined behaviour), for which C++ has fixed the rules as fol-
lows: down-casts may only involve repeated inheritance. To enforce
this restriction we introduce the predicate

P ` path C to D via Cs ≡ (C , Cs) ∈ Subobjs P ∧ last Cs = D .

Combining the checks for up- and down-casts in one rule while re-
quiring the class to be known we obtain WTStaticCast. Recall that
(C , Cs) ∈ SubobjsR P means that Cs involves only repeated inheritance.

For the semantics, let us first look at the static up-cast rule Static-
UpCast: After evaluating e to a reference with path Cs, that path is
extended (upward) by a (unique, if the cast is well-typed, WTStatic-
Cast) path Cs ′ from the end of Cs up to C, which we get by predicate
path-via. Rule StaticDownCast models the static down-cast which for-
bids down-casts involving shared inheritance. This means that class
C must occur in the path component of the reference, or the cast is
“wrong”. If neither of these two rules applies, the static cast throws a
ClassCast exception (StaticCastThrow).

Let us now concentrate on the dynamic cast operator, written
dyn cast; this cast was not regarded in [126]. Its type and semantic
rules can be found in Fig. 2.10. Dynamic casts are non-trivial opera-
tions at run-time but statically they are quite simple: rule WTDynCast
only requires that the expression is well-typed, the class is known and
not more than one path between the static class and the cast target
class exists (there is either a unique path or none at all). This liberality
is not just admissible (because dynamic casts detect type mismatches
at run-time) but even necessary.

Semantically, if possible, dyn cast tries to behave like the static
cast. Rules StaticUpDynCast and StaticDownDynCast are the ana-
logues of StaticUpCast and StaticDownCast, except that StaticUpDyn-
Cast has the additional premise P ` path last Cs to C unique. This unique-
ness property is not necessary for the type safety proof, but for the de-

33

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

WTDynCast:

P ,E ` e :: Class D is-class P C
P ` path D to C unique ∨ (∀Cs . ¬ P ` path D to C via Cs)

P ,E ` dyn cast C e :: Class C

StaticUpDynCast:

P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs),s1〉 P ` path last Cs to C unique
P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ,E ` 〈dyn cast C e ,s0〉 ⇒ 〈ref (a , Ds),s1〉

StaticDownDynCast:
P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs @ [C] @ Cs ′),s1〉

P ,E ` 〈dyn cast C e ,s0〉 ⇒ 〈ref (a , Cs @ [C]),s1〉
DynCast:

P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs),(h , l)〉
h a = b(D , S)c P ` path D to C via Cs ′ P ` path D to C unique

P ,E ` 〈dyn cast C e ,s0〉 ⇒ 〈ref (a , Cs ′),(h , l)〉

DynCastNull:
P ,E ` 〈e ,s0〉 ⇒ 〈null ,s1〉

P ,E ` 〈dyn cast C e ,s0〉 ⇒ 〈null ,s1〉
DynCastFail:

P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs),(h , l)〉
h a = b(D , S)c ¬ P ` path D to C unique
¬ P ` path last Cs to C unique C /∈ set Cs

P ,E ` 〈dyn cast C e ,s0〉 ⇒ 〈null ,(h , l)〉

Figure 2.10.: Type and semantic rules for dynamic cast

terminism of the semantics. It is also possible that a legal down-cast
cannot be performed by rule StaticDownDynCast because C does not
occur in the path. Assume B is a shared subclass of A. Then a term
which is statically of class A and evaluates to ref (b , [A]) but points
to an object of class B can be cast to ref (b , [B]), but not by Static-
DownDynCast. Both cross-casts and such dynamic down-casts are
performed by rule DynCast. This is the “bottom-up” technique we al-
ready mentioned in the examples: after evaluating e to a reference to
address a, we look up the class D of the object at address a. If D has a
unique C subobject, that is the one the reference must now point to.

As dyn cast allows more casts than stat cast, the premises for
rule DynCastFail for failing casts differ from StaticCastFail. Both have
to assure that class C is not in the current path Cs (otherwise a down-
cast would be possible). While for failing static casts, it is sufficient

34

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

to assure that the static class last Cs is no subclass of C, for failing dy-
namic casts there may not be a unique path between the dynamic class
D and class C (otherwise rule DynCast could be applied). The fourth
premise, denying a unique path between last Cs and C is not needed
for type safety, but for determinism of the semantics. If rule Dyn-
CastFail holds, i.e., dyn cast fails, we return the null pointer, i.e., the
value null. This is exactly how C++ handles failing dynamic_casts.

2.4.2. Dynamic (and Static) Dispatch
Dynamic dispatch in the presence of multiple inheritance is highly
non-trivial. The typing rule WTCall, however, is no source of compli-
cations (cf. Fig. 2.11). The class C of e is used to collect all declarations
of M and select the least one. The set of all definitions of method M
from class C upwards is defined as

MethodDefs P C M ≡ {(Cs , mthd) | (C , Cs) ∈ Subobjs P ∧
(∃Bs fs ms . class P (last Cs) = b(Bs , fs , ms)c ∧map-of ms M = bmthdc)}

This set pairs the method (of type method, see Fig. 2.4) with the path
Cs leading to the defining class. Among all definitions the least one
(w.r.t. the ordering on paths) is selected:

P ` C has least M = mthd via Cs ≡ (Cs , mthd) ∈MethodDefs P C M ∧
(∀ (Cs ′, mthd ′)∈MethodDefs P C M . P ,C ` Cs v Cs ′)

Unfortunately, the absence of static ambiguity of method lookup is
not sufficient to avoid ambiguities at run-time. Even for a well-typed
call, e may evaluate to a class below C from which there is no least
declaration of M. As already observed in [126], the semantic rule for
call presented there is flawed, as it does not take care of these run-
time ambiguities. The following example shows how C++ resolves
such ambiguities by exploiting static types.

Example 1. In the repeated diamond of Fig. 2.1, let us assume that
we have declared a method f() in class Top and execute the following
code:

Left* b = new Bottom(); b->f();

Note that the assignment performs an implicit up-cast to type Left,
and that the method call is statically correct because a single defini-
tion of f() is visible. However, at run-time the dynamic class of the

35

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

subobject (Bottom,[Bottom,Left]) associated with b is used to resolve
the dynamic dispatch. The dynamic class of b is Bottom, and b has
two Top subobjects containing f (and x). As neither definition of f()
dominates the other, the call to b->f() appears to be ambiguous.

Note that the code for f exists only once, but this code will be called
with an ambiguous this-pointer at run-time: is it the one pointing to
the (Bottom,[Bottom.Left.Top]) subobject, or the one pointing to the
(Bottom,[Bottom.Right.Top]) subobject? Each of these subobject has
its own field x, and these x’s may have different values at run-time
when referenced by f(), leading to ambiguous program behaviour.

C++ uses the static type of b to resolve the ambiguity and generate
a unique v-table entry for f(). As b’s static type is Left, the “delta”
part of the v-table entry will cause the dynamic object of type Bottom
(and thus the this-pointer) to be cast to (Bottom,[Bottom.Left.Top]),
and not to (Bottom,[Bottom.Right.Top]).

While this may seem to be a “natural” way to resolve the ambi-
guity, it makes the result of dynamic dispatch—which, intuitively, is
based solely on an object’s dynamic type—additionally dependent on
the object’s static type. During the evolution of our semantics, for a
long time we considered this a flaw in the design of C++, and our first
semantics [133] (for a language then called C+) did not resolve the am-
biguity using the static type, but threw a MemberAmbiguousException
exception instead:

P ` 〈e ,s0〉 ⇒ 〈ref (a ,Cs),s1〉
P ` 〈ps ,s1〉 [⇒] 〈map Val vs ,(h2,l2)〉 h2 a = Some(C ,S)

∀Ts T pns body Cs ′. ¬ P ` C has least M = (Ts ,T ,pns ,body) via Cs ′

P ` 〈e·M (ps),s0〉 ⇒ 〈THROW MemberAmbiguous ,(h2,l2)〉

This viewpoint was inspired by Rossie and Friedman, who also treated
this situation as ambiguous.

As now we want to stick exactly to C++ – even though this makes
the semantics more complex –, we reformulate the semantic rule for
call. The resulting rule Call (cf. Fig. 2.11) is lengthy:

• evaluate e to a reference (a , Cs) and the parameter list ps to a list
of values vs;

• look up the dynamic class C of the object in the heap at a;

36

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

WTCall:

P ,E ` e :: Class C ′

P ` path C ′ to C unique P ` C has least M = (Ts , T , m) via Cs
P ,E ` es [::] Ts ′ P ` Ts ′ [≤] Ts

P ,E ` e .M (es) :: T

Call:

P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs),s1〉 P ,E ` 〈ps ,s1〉 [⇒] 〈map Val vs ,(h2, l2)〉
h2 a = b(C , S)c P ` last Cs has least M = (Ts ′, T ′, pns ′, body ′) via Ds
P ` (C ,Cs @p Ds) selects M = (Ts , T , pns , body) via Cs ′ |vs| = |pns|

P ` Ts Casts vs to vs ′ l′2 = [this 7→ Ref (a , Cs ′), pns [7→] vs ′]
new-body = (case T ′ of Class D ⇒ stat cast D body | -⇒ body)

P ,E (this 7→ Class (last Cs ′), pns [7→] Ts) ` 〈new-body,(h2, l′2)〉 ⇒ 〈e ′,(h3, l3)〉
P ,E ` 〈e .M (ps),s0〉 ⇒ 〈e ′,(h3, l2)〉

Figure 2.11.: Type and semantic rules for (dynamic) method call

• look up the method definition used at type checking time (last
Cs is the static class of e) and note its return type T ′ and the path
Ds from last Cs to this definition;

• select the dynamically appropriate method (see below) and note
its parameter names pns, parameter types Ts, body body, and
path Cs ′ from C to this definition;

• check that there are as many actual as formal parameters;

• cast the parameter values vs up to their static types Ts by using
P ` Ts Casts vs to vs ′, the point-wise extension of casts to lists (see
the next section for details), yielding vs ′;

• evaluate the body (with an up-cast to T ′, if T ′ is a class) in an up-
dated type environment where this has type Class (last Cs ′) (the
class where the dynamically selected method lives) and the for-
mal parameter names have their declared types, and where the
local variables are this and the parameters, suitably initialized.

The need to cast the parameters and the return value of the method
body will be discussed in the next section.

The final store is the one obtained from the evaluation of the pa-
rameters; the one obtained from the evaluation of body is discarded –
remember that CoreC++ does not have global variables.

37

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

class Top { void f(); };
class Right2 : Top { ... };
class Right : virtual Right2 { void f(); };
class Left : Top { void f(); };
class Bottom : Left, Right { ... };

((Right2*)(new Bottom()))->f();

(Bottom,[Bottom,Left,Top])

(Bottom,[Bottom,Left])

(Bottom,[Right2])

(Bottom,[Bottom,Right])

(Bottom,[Bottom])

(Bottom,[Right2,Top])

calling subobject

f()

f()

f()

f()

Figure 2.12.: Example illustrating static resolution of dynamically am-
biguous method calls

Method selection is performed by the judgment P ` (C , Cs) selects
M = mthd via Cs ′ , where (C ,Cs) is the subobject where the method
lives that was used at type checking time. Hence there is at least one
definition of M visible from C. There are two possible cases. If we are
lucky, we can select a unique method definition based solely on C :

P ` C has least M = mthd via Cs ′

P ` (C , Cs) selects M = mthd via Cs ′

Otherwise we need static information to disambiguate the selection
as Example 1 already demonstrated. But before we state the appropri-
ate rule, let us again look at an example:

Example 2. To appreciate the full intricacies of this mechanism, let
us consider the example in Fig. 2.12, where a subobject
(Bottom,[Right2]) calls method f : the path components in MethodDefs
P Bottom f are [Bottom,Left], [Bottom,Left,Top], [Bottom, Right] and
[Right2,Top]. None of these paths is smaller than all of the others, so

38

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

we cannot resolve the method call purely dynamically. So another ap-
proach is taken: we select the minimal paths in MethodDefs P Bottom f ,
which leaves us with [Bottom,Left] and [Bottom,Right]. Now we
have to find out which of these two paths will select the method to
call. This is done by considering the statically selected method call
(i.e., the least one seen from the static class Right2), yielding path
[Right2,Top], which is guaranteed to be unique by the type system.
Now we append this “static” path to the path component of the sub-
object, which results in the path where the dynamic class sees the stat-
ically selected method definition, namely [Right2] @p [Right2,Top]
= [Right2,Top]. Finally we select a path from the above set of min-
imal paths that is smaller than the composed path, which results in
[Bottom,Right]. Well-formedness of the program guarantees the unique-
ness of this path (see Sec. 2.4.4 (iii)).

Abstractly, P ` (C , Cs) selects M = mth via Cs ′ selects that Cs ′ from
the set of minimal paths from C to definitions of M that lies on Cs,
i.e., that lies below the statically selected method definition Cs. The
minimal elements are collected by MinimalMethodDefs,

MinimalMethodDefs P C M ≡ {(Cs , mth) ∈MethodDefs P C M |
(∀ (Cs ′, mth ′) ∈MethodDefs P C M . P ,C ` Cs ′v Cs −→ Cs ′= Cs)}

the ones that override the definition at Cs, i.e., are below Cs, are se-
lected by OverriderMethodDefs,

OverriderMethodDefs P (C , Ds) M ≡
{(Cs , mth) ∈MinimalMethodDefs P C M |
∃Cs ′mth ′. P ` last Ds has least M = mth ′ via Cs ′∧ P ,C ` Cs v Ds @p Cs ′}

and selection of a least overrider is performed as follows:

P ` (C , Ds) has overrider M = mth via Cs ≡
OverriderMethodDefs P (C , Ds) M = {(Cs , mth)}

Note that OverriderMethodDefs returns a singleton set if the program
is well-formed (see Sec. 2.4.4 (iii)). Hence the second defining rule for
selects is

∀mth Cs ′. ¬ P ` C has least M = mth via Cs ′

P ` (C , Cs) has overrider M = mth via Cs ′

P ` (C , Cs) selects M = mth via Cs ′

39

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

WTStaticCall:

P ,E ` e :: Class C ′

P ` path C ′ to C unique P ` C has least M = (Ts , T , m) via Cs
P ,E ` es [::] Ts ′ P ` Ts ′ [≤] Ts

P ,E ` e .C ::M (es) :: T

StaticCall:

P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs),s1〉 P ,E ` 〈ps ,s1〉 [⇒] 〈map Val vs ,(h2, l2)〉
P ` path last Cs to C unique P ` path last Cs to C via Cs ′′

P ` C has least M = (Ts , T , pns , body) via Cs ′

Ds = (Cs @p Cs ′′) @p Cs ′ |vs| = |pns|
P ` Ts Casts vs to vs ′ l′2 = [this 7→ Ref (a , Ds), pns [7→] vs ′]

P ,E (this 7→ Class (last Ds), pns [7→] Ts) ` 〈body,(h2, l′2)〉 ⇒ 〈e ′,(h3, l3)〉
P ,E ` 〈e .C ::M (ps),s0〉 ⇒ 〈e ′,(h3, l2)〉

Figure 2.13.: Type and semantic rules for qualified call

We also allow method calls to be qualified, a feature that was not
present in [126]. A qualified method call e .C ::M (es) states that the
method found in C should be called, a technique often used to dis-
ambiguate between method calls. In this thesis, we also use the term
“static call”, as explicitly given static information is used to disam-
biguate; however, it has nothing to do with methods qualified with
the static modifier in C++.

The typing as well as the semantics rules, which can be found in
Fig. 2.13, differ considerably from those of the standard call. The typ-
ing rule WTStaticCall assures that the static class of the expression C’
has a unique path leading to class C, which qualifies the call. This is
also the class that is used to perform the static method lookup (instead
of the static class of the expression, as would be the case for “normal”
method call).

For the semantic rule StaticCall we again evaluate e to a reference
(a , Cs) and the parameter list ps to a list of values vs. The qualifying
class C is used for the method lookup, thus the result is the same as in
the typing rule. Now, we need to adjust the path to the called subob-
ject. This path is composed of three components, combined with @p:

• Cs, the current subobject path;
• Cs”, the unique path between last Cs and C ;
• Cs’, the path from the method lookup.

40

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

CallObjThrow:
P ,E ` 〈e ,s0〉 ⇒ 〈throw e ′,s1〉

P ,E ` 〈Call e Copt M es ,s0〉 ⇒ 〈throw e ′,s1〉

CallParamsThrow:

P ,E ` 〈e ,s0〉 ⇒ 〈Val v,s1〉
P ,E ` 〈es ,s1〉 [⇒] 〈map Val vs @ throw ex·es ′,s2〉

P ,E ` 〈Call e Copt M es ,s0〉 ⇒ 〈throw ex ,s2〉

CallNull:
P ,E ` 〈e ,s0〉 ⇒ 〈null ,s1〉 P ,E ` 〈es ,s1〉 [⇒] 〈map Val vs ,s2〉

P ,E ` 〈Call e Copt M es ,s0〉 ⇒ 〈THROW NullPointer ,s2〉

Figure 2.14.: Exceptional semantic rules for calls

The premise that requires the uniqueness of the path between last Cs
and C is again not necessary for the type safety proof (as it is also
guaranteed by the typing rule), but for the determinism of the seman-
tics. The remaining premises for StaticCall are completely equivalent
to the ones in Call. The whole problem of dynamic ambiguities does
not occur with qualified calls, as the uniqueness of the method lookup
from the explicitly qualified class is guaranteed from the typing rule,
i.e., the method lookup in type and semantic rule dispatch to the same
target.

The exception throwing rules are the same for both qualified and
unqualified method calls. To this end, we introduce the syntax
Call e Copt M es, where Copt ::cname option is None for the dynamic
call and Some C for the call qualified with C. Fig. 2.14 shows that a
NullPointer exception is thrown if the expression evaluates to null, and
the exception propagation rules.

2.4.3. Covariance and Contravariance

C++ allows method overriding with covariant (i.e., more specific) re-
turn types. Unrestricted covariance can however lead to ambiguities.

Example 1. In the context of the repeated diamond of Fig. 2.1, con-
sider:

class A { Top* f(); };
class B : A { Bottom* f(); }; //not allowed

A* a = new B();
Top* t = a->f();

41

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

Statically, everything seems fine: because the type of a is A, the type
of a->f() is Top. However, if we allowed the redefinition of f(), at
run-time a->f() evaluates to a Bottom object. C++ implicitly casts
to the return type of the statically selected method (which would be
Top); but this cast is ambiguous, as a Bottom object has two different
Top subobjects in the repeated diamond. Hence this redefinition is
statically incorrect. C++ requires unique covariance: if the return type
of the statically selected method is C and the return type of the dy-
namically selected one is D, then there must exist a unique path from
D back to C.

However, in the presence of overridden methods with covariant re-
turn types, special care needs to be exercised (a topic that I was not
aware of in [126]). To illustrate this, we alter Example 1 slightly:

Example 2. Again, we make use of the repeated diamond of Fig. 2.1:

class A { Top* f() {return new Top();} };
class B : A { Left* f() {return new Bottom();} };

A* a = new B();
(a->f())->x = 42;

In a previous version of the semantics [133], we did not perform any
implicit casts. Hence, a->f() evaluated at runtime to a Bottom ob-
ject. Remember that field access and assignment contain path an-
notations from the static type of the referenced object to the static
class that contains the field and is statically seen. In our case, with
(a->f())->x = 42;, this annotation would be Top, since the static
type of a->f() is Top and field x can be found in class Top. Yet, the
last class of the path component of the reference of a->f() is Bottom,
since it evaluated to an (uncasted) Bottom object. This means that the
semantic rules for field access and assignment have to provide a path
to fill this “gap” between the last class of the path component of the
evaluated object and the static class in such cases; this is what we did
in [133]. However, in the above situation, there is no unique path be-
tween class Bottom and Top. Hence, the semantic rule could not fill
the “gap” without introducing nondeterminism; analogously to am-
biguous dynamic dispatch, we threw a MemberAmbiguousException in
such cases.

42

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

But C++ does not require such an exception. To get rid of it and close
the “gap” between the last class of a reference and the class computed
by the type system we extend method call rules with explicit casts to
the static type; this is also what C++ does. In the semantic rule for call,
cf. Fig. 2.11, the 9th premise takes care of this7:

new-body = (case T ′ of Class D ⇒ stat cast D body | -⇒ body)

We statically cast the return value of the method body body to the
return type determined from the method lookup from the static class
(as this is the expected return type for the type system) – this cast is
of course only necessary if no primitive value is returned –, obtaining
the new method body new-body. Because of this explicit cast, the value
dynamically returned from a method call has exactly the type the type
system expects, thus no “gaps” can occur. C++ itself uses so called
“thunks” [41, §2.1.1] to adjust the this-pointer in such cases, which
can only occur in the presence of multiple inheritance.

CoreC++ allows, just as C++, the assignment of values with covari-
ant types to variables and fields. In these cases, the semantic rules
must take care of the implicit casts necessary. These are done via casts
to, whose rules are as follows:

∀C . T 6= Class C
P ` T casts v to v

P ` Class C casts Null to Null

P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ` Class C casts Ref (a , Cs) to Ref (a , Ds)

Let us now look what this means for local assignment. The typ-
ing rule WTLAss, see Fig. 2.15, is completely straightforward as the
expression on the right hand side has to be a subtype of the variable
type on the left hand side, which we get by consulting the typing en-
vironment. The semantics rule LAss then requires an up-cast of the
expression to the static type T of the variable. Hence we need the
environment E to look up T (by E V = bTc). The up-cast is inserted
implicitly by the semantics.

Assignment of values with covariant types is also possible for fields.
For the sake of completeness, we will now not only discuss field as-
signment but also field access.

7Qualified calls are not affected by this, as for them, the static lookup of the type
system and the lookup of the semantic rule agree, as both use the qualified class
as source.

43

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

WTLAss:
E V = bTc P ,E ` e :: T ′ P ` T ′≤ T

P ,E ` V := e :: T

LAss:

P ,E ` 〈e ,s0〉 ⇒ 〈Val v,(h , l)〉
E V = bTc P ` T casts v to v ′ l ′= l (V 7→ v ′)

P ,E ` 〈V := e ,s0〉 ⇒ 〈Val v ′,(h , l ′)〉

LAssThrow:
P ,E ` 〈e ,s0〉 ⇒ 〈throw e ′,s1〉

P ,E ` 〈V := e ,s0〉 ⇒ 〈throw e ′,s1〉

Figure 2.15.: Type and semantic rules for local assignment

WTFAcc:
P ,E ` e :: Class C P ` C has least F : T via Cs

P ,E ` e .F{Cs} :: T

WTFAss:

P ,E ` e1 :: Class C
P ` C has least F : T via Cs P ,E ` e2 :: T ′ P ` T ′≤ T

P ,E ` e1.F{Cs} := e2 :: T

FAcc:

P ,E ` 〈e ,s0〉 ⇒ 〈ref (a , Cs ′),(h , l)〉
h a = b(D , S)c Ds = Cs ′@p Cs (Ds , fs) ∈ S fs F = bvc

P ,E ` 〈e .F{Cs},s0〉 ⇒ 〈Val v,(h , l)〉

FAccNull:
P ,E ` 〈e ,s0〉 ⇒ 〈null ,s1〉

P ,E ` 〈e .F{Cs},s0〉 ⇒ 〈THROW NullPointer ,s1〉

FAccThrow:
P ,E ` 〈e ,s0〉 ⇒ 〈throw e ′,s1〉

P ,E ` 〈e .F{Cs},s0〉 ⇒ 〈throw e ′,s1〉

FAss:

P ,E ` 〈e1,s0〉 ⇒ 〈ref (a , Cs ′),s1〉
P ,E ` 〈e2,s1〉 ⇒ 〈Val v,(h2, l2)〉 h2 a = b(D , S)c

P ` last Cs ′ has least F : T via Cs P ` T casts v to v ′

Ds = Cs ′@p Cs (Ds , fs) ∈ S fs ′= fs(F 7→ v ′)
S ′= S − {(Ds , fs)} ∪ {(Ds , fs ′)} h′2 = h2(a 7→ (D , S ′))

P ,E ` 〈e1.F{Cs} := e2,s0〉 ⇒ 〈Val v ′,(h′2, l2)〉

FAssNull:
P ,E ` 〈e1,s0〉 ⇒ 〈,s1〉 P ,E ` 〈e2,s1〉 ⇒ 〈Val v,s2〉

P ,E ` 〈e1.F{Cs} := e2,s0〉 ⇒ 〈THROW NullPointer ,s2〉

FAssThrow1:
P ,E ` 〈e1,s0〉 ⇒ 〈throw e ′,s1〉

P ,E ` 〈e1.F{Cs} := e2,s0〉 ⇒ 〈throw e ′,s1〉

FAssThrow2:
P ,E ` 〈e1,s0〉 ⇒ 〈Val v,s1〉 P ,E ` 〈e2,s1〉 ⇒ 〈throw e ′,s2〉

P ,E ` 〈e1.F{Cs} := e2,s0〉 ⇒ 〈throw e ′,s2〉

Figure 2.16.: Type and semantic rules for field access and assignment

44

2.4. IMPROVING THE SEMANTICS TOWARDS REAL C++

The typing rule for field access WTFAcc (see Fig. 2.16) is straight-
forward. It can either be seen as a rule that takes an expression where
field access is already annotated (by {Cs}), and the rule merely checks
that the annotation is correct. Or it can be seen as a rule for computing
the annotation. The latter interpretation relies on the fact that predi-
cate P ` C has least F : T via Cs can compute T and Cs from P, C and F.
So it remains to explain P ` C has least F : T via Cs: it checks if Cs is the
least (w.r.t. v) path leading from C to a class declaring an F. First we
define the set FieldDecls P C F of all (Cs , T) such that Cs is a valid path
leading to a class with an F of type T :

FieldDecls P C F ≡ {(Cs , T) | (C , Cs) ∈ Subobjs P ∧
(∃Bs fs ms . class P (last Cs) = b(Bs , fs , ms)c ∧map-of fs F = bTc)}

Then we select a least element from that set:

P ` C has least F : T via Cs ≡
(Cs , T) ∈ FieldDecls P C F ∧ (∀ (Cs ′, T ′) ∈ FieldDecls P C F . P ,C ` Cs v Cs ′)

If there is no such least path, field access is ambiguous and hence not
well-typed. We give an example. Once again we concentrate on the re-
peated diamond in Fig. 2.1 and assume that a field x is defined in class
Bottom and class Top. When type checking e .x, where e is of class
Bottom, the path components in FieldDecls P Bottom x are [Bottom],
[Bottom,Left,Top] and [Bottom,Right,Top]. The least element of the
path components in this set is [Bottom], so the x in class Bottom will
be accessed. Note that if no x in Bottom is declared, then there is no el-
ement with a least path in FieldDecls and the field access is ambiguous
and hence illegal.

Field assignment works equally as shown in WTFAss in Fig. 2.16.
For the semantics, let us first look at field access in rule FAcc in

Fig. 2.16. There are two paths involved. Cs is (if the expression is well-
typed, see WTFAcc), the path from the class of e to the class where F
is declared. Cs ′ is the path component of the reference that e evaluates
to. As we have discussed in Sec. 2.3.4, last Cs ′ is equal to the static class
of e. To obtain the complete path leading to the subobject in which F
lives, we just have to concatenate the two paths via @p. The resulting
path Ds is the path to the subobject we are looking for. If e does not
evaluate to a reference, but to a null pointer, we throw a NullPointer
exception, see FAccNull.

45

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

Field assignment (rule FAss, see Fig. 2.16) is similar, except that we
now have to update the heap at a with a new set of subobjects. The
up-cast is inserted implicitly, analogously to LAss. Note that the func-
tional nature of this set is preserved.

C++ does not allow method overriding with contravariant (i.e., less
specific) parameter types; neither does Java, while Jinja [61] allows
them. However, as parameter passing in method calls can be regarded
equivalent to assignment w.r.t. typing, we also need explicit casts, as
we allow values with covariant types in the parameters (cf. WTCall in
Fig. 2.11 and WTStaticCall in Fig. 2.13). As the whole parameter list
needs to be implicitly casted, we lift casts to to lists, obtaining Casts to:

P ` [] Casts [] to []
P ` T casts v to v ′ P ` Ts Casts vs to vs ′

P ` T ·Ts Casts v·vs to v ′·vs ′

In the local variables of the state in which the method body is executed
the formal parameters are now initialized with the values after this
cast.

2.4.4. Well-formed Programs

A well-formed CoreC++ program (wf-C-prog P) must obey all the usual
requirements (every method body is well-typed and of the declared
result type, the class hierarchy is acyclic, etc. — for details see [61]).
Additionally, there are CoreC++-specific conditions concerning
method overriding:

(i) covariance in the result type combined with the uniqueness of
paths from the new result class to all result classes in previous
definitions of the same method (see Example 1 in Sec. 2.4.3).
This requirement is easily formalized by means of the path unique
predicate;

(ii) invariance in the argument types;

(iii) for every method definition a class C sees via path Cs, the cor-
responding subobject (C ,Cs) must have a least overrider as ex-
plained in Sec. 2.4.2 (otherwise the corresponding C++ program
would not be able to construct a unique v-table entry for this
method call and the program would be rejected at compile time).

46

2.5. TYPE SAFETY PROOF

2.5 Type Safety Proof

Type safety, one of the hallmarks of a good language design, means
that the semantics is sound w.r.t. the type system: well-typed expres-
sions cannot go wrong. Going wrong does not mean throwing an ex-
ception but arriving at a genuinely unanticipated situation. The by
now standard formalization of this property [140] requires proving
two properties: progress (well-typed expressions can be reduced w.r.t.
the small step semantics if they are not final yet — the small step se-
mantics does not get stuck) and preservation or subject reduction: reduc-
ing a well-typed expression results in another well-typed expression
whose type is ≤ the original type.

In the remainder, we concentrate on the specific technicalities of the
CoreC++ type safety proof. We do not even sketch the actual proof,
which is routine enough, but all the necessary invariants and notions
without which the proof is very difficult to reconstruct. For a detailed
exposition of the Jinja type safety proof, our starting point, see [61].
For a tutorial introduction to type safety see, for example, [87].

2.5.1. Run-time Type System
The main complication in many type safety proofs is the fact that well-
typedness w.r.t. the static type system is not preserved by the small
step semantics. The fault does not lie with the semantics, but the type
system: for pragmatic reasons it requires properties that are not pre-
served by reduction and are irrelevant for type safety. Thus, a second
type system is needed which is more liberal but closed under reduc-
tion. This is known as the run-time type system [42] and the judgment
is P ,E ,h ` e : T . Please note that there is no type checking at run-time:
this type system is merely the formalization of an invariant which is
not checked but whose preservation we prove. Many of the rules of
the run-time type system are the same as in the static type system. The
ones which differ are shown in Fig. 2.17.

Rule WTrtVal takes care of the fact that small step reduction may
introduce reference values into an expression (although the static type
system forbids them, see Sec. 2.3.3). The premise P ` typeof h v = bTc
expresses that the value is of the right type; if v = Ref (a , Cs), its type
is Class (last Cs) provided h a = b(C ,)c and (C , Cs) ∈ Subobjs P .

The main reason why static typing is not preserved by reduction is
that the type of subexpressions may decrease from a class type to a

47

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

WTrtStaticCast:
P ,E ,h ` e : T is-refT T is-class P C

P ,E ,h ` stat cast C e : Class C

WTrtDynCast:
P ,E ,h ` e : T is-refT T is-class P C

P ,E ,h ` dyn cast C e : Class C

WTrtVal:
P ` typeof h v = bTc

P ,E ,h ` Val v : T

WTrtFAccNT:
P ,E ,h ` e : NT

P ,E ,h ` e .F{Cs} : T

WTrtFAssNT:
P ,E ,h ` e1 : NT P ,E ,h ` e2 : T ′ P ` T ′≤ T

P ,E ,h ` e1.F{Cs} := e2 : T

WTrtCallNT:
P ,E ,h ` e : NT P ,E ,h ` es [:] Ts

P ,E ,h ` Call e Copt M es : T

Figure 2.17.: Run-time type system

null type with reduction. Because of this, both cast rules only require
the expression to cast to have a reference type (is-refT T), which means
either a class or the null type. None of the checks that are needed for
the static cast are important for the run-time type system.

Rule WTrtFAccNT takes care of e .F{Cs} where the type of e has
reduced to NT. Since this is going to throw an exception, and ex-
ceptions can have any type, this expression can have any type, too.
Rules WTrtFAssNT and WTrtCallNT work similarly for field assign-
ment and method call.

We have proved that P ,E ` e :: T implies P ,E ,h ` e : T. Heap h is un-
constrained as the premise implies that e does not contain any refer-
ences.

2.5.2. Conformance and Definite Assignment

Progress and preservation require that all semantic objects conform to
the type constraints imposed by the syntax. We say that a value v
conforms to a type T (written P ,h ` v :≤ T) if the type of v equals type
T or, if T is a class type, v has type NT. A heap conforms to a program
if for every object (C , S) on the heap

48

2.5. TYPE SAFETY PROOF

• if (Cs , fs) ∈ S then (C , Cs) ∈ Subobjs P 8 and if F is a field of type
T declared in class last Cs then fs F = bvc for some v, whose type
(in the sense of rule WTrtVal) conforms to type T.

• if (C , Cs) ∈ Subobjs P then (Cs , fs) ∈ S for exactly one fs.

In this case we write P ` h
√. A store l conforms to a type environment

E iff l V = bvc implies E V = bTc such that v conforms to T. In symbols:
P ,h ` l (:≤)w E . We also need conformance concerning the type envi-
ronment: P ` E

√ states that for every variable that maps to a type in
environment E, the type is a valid type in program P.

P ` E
√ ≡ ∀V T . E V = bTc −→ is-type P T

If P ` h
√, P ,h ` l (:≤)w E and P ` E

√ then we write P ,E ` (h ,l)√ and
say that state (h ,l) conforms to the program and the environment.

For the proof we need another conformance property, which we call
type-conf. It simply describes that given a certain type, an expression
has that type in the run-time type system. However, if this given type
is a class type, the run-time type system may also return the null type
for the expression.

P ,E ,h ` e :NT Class C = P ,E ,h ` e : Class C ∨ P ,E ,h ` e : NT
P ,E ,h ` e :NT Void = P ,E ,h ` e : Void

The rules for Boolean, Integer and NT are analogous to the Void rule.
From Jinja we have inherited the notion of definite assignment, a static

analysis that checks if in an expression every variable is initialized
before it is read. This constraint is essential for proving type safety.
Definite assignment is encoded as a predicate D such that D e A (where
A is a set of variables) asserts the following property: if initially all
variables in A are initialized, then execution of e does not access an
uninitialized variable. For technical reasons A is in fact of type vname
set option. That is, if we want to execute e in the context of a store
l we need to ensure D e bdom lc. Since D is completely orthogonal
to multiple inheritance we have omitted all details and refer to [61]
instead.

In C++, accessing the value of a not previously assigned variable is
unspecified; most compilers just return the contents of the respective
location.

8Cf. the heap invariants presented in Sec. 2.3.4, Evaluation.

49

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

2.5.3. Progress

Progress means that any (run-time) well-typed expression which is
not yet not fully evaluated (i.e., final) can be reduced by a rule of the
small step semantics. To prove this we need to assume that the pro-
gram is well-formed, the heap and the environment conform, and the
expression passes the definite assignment test:

Theorem 2.1 Progress:
If wf-C-prog P and P ,E ,h ` e : T and P ` h

√ and P ` E
√

and D e bdom lc and ¬ final e then ∃ e ′ s ′. P ,E ` 〈e ,(h , l)〉 → 〈e ′,s ′〉.

Proof. This theorem is proved by a quite exhausting rule induction on
the (run-time) typing rules, where most cases consist of several case
distinctions, like e being final or not. So some cases can get quite long
(e.g., the proof for method call has about 150 lines of proof script). ut

2.5.4. Preservation

To achieve type safety we have to show that all of the assumptions in
the Progress theorem above are preserved by the small steps rules.

First, we consider heap conformance:

Lemma 2.2 Heap Conformance:
If wf-C-prog P and P ,E ` 〈e ,(h , l)〉 → 〈e ′,(h ′, l ′)〉 and
P ,E ,h ` e : T and P ` h

√ then P ` h ′
√
.

We proof this by induction on the small step rules. Most cases are
straightforward, the only work lies in the rules which alter the heap,
namely the ones for creation of new objects and field assignment.

Next, we need a similar rule for the conformance of the store. To
prove this, we need to assume that the program is well-formed, the
environment conforms to it and the expression is well typed in the
run-time type system:

Lemma 2.3 Store Conformance:
If wf-C-prog P and P ,E ` 〈e ,(h , l)〉 → 〈e ′,(h ′, l ′)〉 and
P ,E ,h ` e : T and P ,h ` l (:≤)w E and P ` E

√ then P ,h ′ ` l ′ (:≤)w E .

Here, the interesting cases from the small step rule induction are
those that change the locals, namely variable assignment and blocks
with locally declared variables.

50

2.5. TYPE SAFETY PROOF

Furthermore, also definite assignment needs to be preserved by the
semantics. The corresponding lemma is easily proved by induction on
the small step rules:

Lemma 2.4 Definite Assignment Conformance:
If wf-C-prog P and P ,E ` 〈e ,(h , l)〉 → 〈e ′,(h ′, l ′)〉 and D e bdom lc
then D e ′ bdom l ′c.

Finally we have to show that the semantics preserves well-typed-
ness. Preservation of well-typedness here means that the type of the
reduced expression is equal to that of the original expression or, if the
original expression had a class type, the type may reduce to the null
type. This is formalized via the type-conf property from Sec. 2.5.2, hp s
is the heap component of s:

Theorem 2.5 Preservation:
If wf-C-prog P and P ,E ` 〈e ,s〉 → 〈e ′,s ′〉 and P ,E ` s

√ and
P ,E ,hp s ` e : T then P ,E ,hp s ′ ` e ′ :NT T .

Proof. This proof by rule induction is quite lengthy because the most
complicated cases (mostly method call and field assignment) of the 61
small step rules can have up to 80 lines of proof script each. ut

2.5.5. The Type Safety Proof

All the preservation lemmas only work ’one step’. We have to extend
them from→ to→∗, which is done by induction (because of the equiva-
lence of big and small step semantics mentioned in Sec. 2.3.4, all these
lemmas now also hold for the big step rules). Now combining type
preservation with progress yields the main theorem:

Theorem 2.6 Type Safety:
If wf-C-prog P and P ,E ` s

√ and P ,E ` e :: T and D e bdom (lcl s)c
and P ,E ` 〈e ,s〉 →∗ 〈e ′,s ′〉 and @ e ′′ s ′′. P ,E ` 〈e ′,s ′〉 → 〈e ′′,s ′′〉
then (∃v. e ′= Val v ∧ P ,hp s ′ ` v :≤ T) ∨

(∃ r . e ′= Throw r ∧ the-addr (Ref r) ∈ dom (hp s ′)).

If the program is well-formed, state s conforms to it, e has type T
and passes the definite assignment test w.r.t. dom (lcl s) (where lcl s
is the store component of s) and its →-normal form is e ′, then the fol-
lowing property holds: either e ′ is a value of type T (or NT, if T is of

51

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

type class) or an exception Throw r such that the address part of r is a
valid address in the heap.

2.6 Interpreting Real C++ Programs in the Se-
mantics

To further enhance the trust in our formalization, and to narrow the
“formalization gap” between C++ and the semantics, we implemented
a tool called CCCP9, which allows us to evaluate real C++ programs
in the semantics. We implemented this tool as a plugin for the Eclipse
framework10. As the underlying concept is a completely formal se-
mantics, it is an ideal basis for checking if concrete implementations,
e.g. of compilers, are correct.

Fig. 2.18 shows an overview of the tool as a plugin in Eclipse. It
basically shows Eclipse in its C/C++ development view, however, a
new button starting CCCP can be found. Pressing this button triggers
the tool, whose functionality can be divided in two phases, Translation
and Evaluation, which we will now describe in more detail.

2.6.1. Translation

We use the Eclipse C/C++ Development Tooling11 – or short CDT – to
generate an abstract syntax tree of the given program. This syntax tree
is then translated in a program representation in ML that the CoreC++
semantics can understand.

We have seen in the previous sections that the syntax of CoreC++ is
quite restricted, many standard constructs are not supported. Instead
of incorporating them in CoreC++ – and thus bloating the semantics –,
we opted for the parser to translate such constructs into the kernel
language of CoreC++:

Operators: CoreC++ itself supports only addition on integers and
equality checks. Considering them as syntactic sugar, we also parse
the following operators: ++, +=, -=, &&, ||, ?: (the last three using the
functional if provided from CoreC++), and !.

9C++ to CoreC++ Plugin
10www.eclipse.org
11www.eclipse.org/cdt

52

www.eclipse.org
www.eclipse.org/cdt

2.6. INTERPRETING REAL C++ PROGRAMS IN THE SEMANTICS

Figure 2.18.: CCCP in Eclipse, the tool start button is highlighted

Simple for-loops: We translate for-loops into while-loops, which
are supported by CoreC++.

Constructors: CoreC++ only allows object creation with default val-
ues in their fields. However, we can fully handle constructors with pa-
rameters, constructor chains with member variable initialization and
super constructor calls, etc. This is highly non-trivial due to the two
kinds of inheritance, as the constructors of all shared base classes have
to be called (only once!) before the constructors of the other base
classes are called. This guarantees that every subobject is initialized.
We have implemented an algorithm by Frank Tip [118], which emu-
lates correct C++ constructor behaviour using the default constructor
and method calls. The algorithm does the following: in each class C

• a default constructor is introduced,
• the user-defined constructors are replaced with initC_L, a new

method with the same body, and returning this,

53

CHAPTER 2. TYPE SAFE SEMANTICS FOR C++

Figure 2.19.: Result popup

• when the class has virtual base classes (e.g. B), a method
initC_S is introduced, containing qualified calls to the initB_L
methods of each virtual super class B in a left-first, depth-first
manner,

• a method initC is added, calling its initC_S method (if it ex-
ists), then returning the pointer returned from the call to its
initC_L method.

Finally, we replace constructor calls of class C with the result of calling
method initC on its default constructor. This algorithm preserves
C++ constructor calling order. For an example, see appendix B, where
we show a program before and after applying this algorithm.

Note that the translator itself cannot be verified; however, as it only
performs small translation steps, the possibility for introducing errors
can be neglected.

2.6.2. Evaluation

Isabelle enables one to automatically create ML files from theories
(“rapid prototyping”) by using its built-in code generator [15]. We
have done so for the semantics and the type system, hence obtaining
an interpreter for CoreC++ programs given in ML syntax. CCCP now

54

2.6. INTERPRETING REAL C++ PROGRAMS IN THE SEMANTICS

calls Poly/ML12 to run the semantics interpreter on the ML program
representation resulting from the translation phase. This interpreta-
tion of the program in the semantics returns the final value (or excep-
tion) of the evaluation in a popup window, see Fig. 2.19; as CoreC++
is purely functional, direct input and output are not possible.

12www.polyml.org

55

www.polyml.org

Being abstract is something
profoundly different from being
vague... The purpose of abstrac-
tion is not to be vague, but to
create a new semantic level in
which one can be absolutely
precise.

E. W. Dijkstra 3
Correctness of Static

Intraprocedural Slicing

Nowadays, slicing algorithms using dependence graphs are standard
and can be found in various areas of computation [21, 37], even in
safety-critical applications [52]. Hence, it is surprising that correctness
proofs for such slicing algorithms [92, 7, 90, 3] are always restricted
to simple imperative programming languages. Yet, as the idea of slic-
ing is independent of a concrete programming language, a correctness
proof should reflect this property. Furthermore, these proofs consider
each only one specific definition of control dependence. In [90], Ran-
ganath et al. present several control dependence definitions, each cap-
turing a different intuition. The elements in the slice will differ, de-
pending on which control dependence is used. The existing correct-
ness results, inflexible to such changes, need to be reproved, which is
nontrivial.

After introducing slicing and its basic notions in Sec. 3.1, I present a
machine-checked modular framework for intraprocedural slicing
based on CFGs and PDGs (see Sec. 3.2) together with a correctness
proof for static intraprocedural slicing in Sec. 3.3. The framework (see
also [132]) is not restricted to a specific programming language, but
builds on abstract structural and well-formedness properties the CFG
of a program has to fulfil. It is also independent of a specific control
dependence definition, but requires it to have one particular property.
A profitable feature of this structure is the separation of language-
dependent parts from language-independent ones.

As I showed in the previous chapter, formalizing kernels of realistic
high-level programming languages is no longer out of reach. Thus,
the abstractions in the framework pose no insurmountable obstacle

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

for rich language formalizations like CoreC++ [134] or Jinja [61]. In
Sec. 3.4, I present instantiations of the framework with two formaliza-
tions of different languages to show the validity and applicability of
my work. The framework is available online [128], together with the
instantiations presented in this chapter.

3.1 What is Slicing?

Given a certain point in a program, a slice collects all statements that
may influence this point. Slicing proved to be useful for many ap-
plications, e.g. debugging [111], testing [14], reducing specifications
[141, 66], and software security algorithms [52, 109]. Today, commer-
cial slicing tools such as Codesurfer [4] are routinely used for some of
these tasks.

Most slicing tools are based on the program dependence graph
(PDG) [56, 92] which is computed from the control flow graph (CFG).
The PDG reuses the CFG nodes, which correspond to the program
statements, and connects them with data dependences and control depen-
dences. The static intraprocedural backward slice of a given program point
(i.e., a specific PDG node, called the slicing criterion or slicing node) is
defined as the set of all nodes on which the point is transitively data
or control dependent.1 This set conservatively approximates all state-
ments that may influence the slicing node’s statement. Note that for
realistic languages, PDG generation and precise slicing is absolutely
non-trivial. Hundreds of papers on slicing have been published in the
last three decades, for an overview, see the surveys by Tip [117] and
Krinke [64].

3.1.1. Dependences in Program Dependence Graphs

Data Dependence

The data dependence definition is based on Def and Use sets for every
node. All variables defined (e.g. assigned) in a statement are in the Def
set of the respective node, those which are used (e.g. in a calculation
or predicate) in its Use set. A node n ′ is data dependent on a node n, if
there is a variable V in the Def set of n which is also in the Use set of

1Also for dependence relations that do not constitute a PDG, e.g. because they are
not binary, the backward slice is computed this way.

58

3.1. WHAT IS SLICING?

n ′ and there is a CFG path (sequence of edges) from n to n ′ such that V
is not defined in any other node on this path.

Control Dependence

Control dependence captures the effect that nodes can influence
whether the control flow reaches other nodes. The definition by Fer-
rante et al. [44] – one of the first formal definitions – is most widespread
and considered standard.

Nevertheless, this is an area of active research, see Ranganath et
al. [90] for a recent overview. Each control dependence definition
serves a different purpose, so the choice of control dependence affects
the semantics of the slice. In this chapter we focus on three different
kinds of control dependences:

(i) standard control dependence as it has been in use for years,

(ii) weak control dependence as defined by Podgurski and Clarke [88],
and

(iii) weak order dependence as defined by Amtoft [3].

The first two are binary relations, so we get program dependence
graphs with them; for the third one, a ternary relation, this does not
hold.

We now look more closely at each of these three dependence rela-
tions, state their definitions informally and illustrate them using the
CFG in Fig. 3.1, where E denotes the entry and X the exit node. Note
that the subgraph built of nodes 2 to 5 does not describe the control
flow of a structured program; however, it still is a valid CFG in our
framework.

Standard Control Dependence. In the usual understanding, a node
n ′ is control dependent on node n if selecting an outgoing edge of n in
the CFG affects whether n ′ is reached; e.g. all nodes in the branches of
an if-statement are dependent on the node representing the if-predicate.
To define standard control dependence (SCD) we first need to define
postdomination using a unique reachable exit node: a node n ′postdom-
inates node n if every path from n to the exit node contains n ′; the exit
node itself, however, must not be a postdominator for any node. In
the table in Fig. 3.1 we list the postdominators for every node n, i.e.,
the set of all nodes n ′which postdominate n.

59

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

E 1

2

3

4

5

6

7

8

9 X

strong
postdominators postdominators

E {E} {E}
1 {1,9} {1}
2 {2,5,9} {2,5,9}
3 {3,5,9} {3,5,9}
4 {4,5,9} {4,5,9}
5 {5,9} {5,9}
6 {6,8,9} {6}
7 {6,7,8,9} {6,7}
8 {8,9} {8,9}
9 {9} {9}

Figure 3.1.: Example CFG and postdominators

Ferrante et al. [44] defined that a node n ′ is control dependent on a
node n (written n −→scd n ′), if n ′ postdominates all nodes on a path in
the CFG between n and n ′ but not n. However, we consider an equiv-
alent definition (see the lemma in Sec. 3.2.2) by Wolfe [139] as more
suitable for the formalization and the proofs in the framework: a node
n ′ is control dependent on a node n, if n has at least two successors, one
postdominated by n ′, while the other one is not. Thus, the example in
Fig. 3.1 contains the following SCDs:

E −→scd 1, E −→scd 9, 1 −→scd 2, 1 −→scd 5, 1 −→scd 6,
1 −→scd 8, 2 −→scd 3, 2 −→scd 4, 3 −→scd 4, 6 −→scd 7

Weak Control Dependence. Nonterminating loops prevent nodes
after the loop from being executed, a fact that SCD ignores. To capture
this effect, control dependence edges between those nodes and the
loop predicate are often desired; this is the concept of weak control
dependence (WCD). It uses the notion of strong postdomination, where
no loops2 on any path between a node and its postdominator are al-
lowed. Otherwise, there would be an infinite path always running
through the loop but never reaching the postdominator. Therefore, I
define that n ′ strongly postdominates n if n ′postdominates n and there
is no loop on any path between n and n ′.

2Statically, we must assume that any loop may be nonterminating.

60

3.1. WHAT IS SLICING?

WCD itself is then defined analogously to SCD, just replacing post-
domination with strong postdomination in Wolfe’s or Ferrante’s defi-
nition. We write n −→wcd n ′ if n ′ is weakly control dependent on n. In
Fig. 3.1, the following holds:

E −→wcd 1, 1 −→wcd 2, 1 −→wcd 5, 1 −→wcd 6, 1 −→wcd 9,
2 −→wcd 3, 2 −→wcd 4, 3 −→wcd 4, 6 −→wcd 7, 6 −→wcd 8, 6 −→wcd 9

Note that 8 and 9 now depend on nodes other than before. Since
they immediately follow the loop at node 6, they are now dependent
on 6. If we assume that above example does not contain any data de-
pendences, the backward slice of node 8 using SCD would be {E, 1, 8},
for WCD however we get {E, 1, 6, 8}.

Weak Order Dependence. The advantage of weak order depen-
dence (WOD) is that there is no need for a unique reachable end node,
as is the case in e.g. reactive systems. Unlike the former two, WOD
is not a binary relation, but a set of triples of nodes. Intuitively, two
nodes are weak order dependent on another node, if the latter node
controls the order in which the other two nodes are executed (which
includes that one of these nodes may never be executed). However,
the definition is a bit more complicated: we say that two nodes n1

and n2 are weak order dependent on node n (all three nodes distinct),
written n −→wod n1,n2, if

(i) n can reach n1 in the CFG without visiting n2,

(ii) n can reach n2 in the CFG without visiting n1 and

(iii) there exists an immediate successor m of n, such that either
a) m can reach n1 and all paths from m to n2 contain n1 or
b) m can reach n2 and all paths from m to n1 contain n2.

Since there are many WOD triples for the example CFG in Fig. 3.1,
we present them as a set of node pairs which are weak order depen-
dent on the node preceding this set, leaving out all tuples where the
two components are swapped or where one component is the exit
node:

1: {(2, 6), (2, 7), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8), (3, 9),
(4, 6), (4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9),
(6, 9), (7, 9), (8, 9)},

2: {(3, 4), (3, 5), (3, 9), (4, 5), (4, 9)},
3: {(4, 5), (4, 9)},
6: {(7, 8), (7, 9)},

61

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

While the number of node triples that are weak order dependent in
this example is huge compared to the cardinality of the former two
dependence relations, the slice computed using WOD may be smaller.
For example, if we again compute the slice for node 8, the slice is a sin-
gleton set which consists only of the element 8. We may only include
a WOD predecessor in this set, if the pair of its successors would be in
the slice. As only node 8 is in the slice, but neither 2, 3, 4, nor 5, node 1

is not part of the slice; analogously, as 7 is not in the slice, node 6 is not
included either.

Whereas slices w.r.t. SCD and WCD have well understood seman-
tics, this seems not to be the case for WOD. Omitting the exit node
from a slice can result in slices smaller than one would expect. How-
ever, I consider this orthogonal to my work, as the correctness proper-
ties in this thesis still hold.

3.1.2. A Running Example

The program presented in this section, which serves as a running ex-
ample throughout this chapter, is used to clarify the notions intro-
duced in the previous section. Fig. 3.2 on the right shows the program
code; for simplicity, we assume that all variables are initialized to a
default value.

1 y := 7;
2 b := a && d;
3 if (b) {
4 x := 5 + y;

} else {
5 c := 4;

}
6 while (c < 3) {
7 w := w + v;
8 c := c + 1;

}
9 z := 3 * w;

10 z := x + y;

Figure 3.2.: Example code

Fig. 3.3 (a) shows the corresponding
CFG where the node numbers correspond
to the line numbers in the code above. The
corresponding PDG with standard con-
trol dependence is shown in Fig. 3.3 (b).
Solid arrows denote control, dashed ones
data dependence (data dependence edges
are labelled with the variable that trig-
gers this dependence). The nodes corre-
sponding to the then- and else-branches
(4 and 5, resp.) are control dependent on
the node for the if-predicate (3), just like
the nodes that represent the loop body (7
and 8) are control dependent on the node
for the while-predicate (6). All other nodes
that do not explicitly have a control depen-
dence predecessor are control dependent on the entry node E ; to force
this, an edge between E and X is introduced, a standard trick for de-

62

3.1. WHAT IS SLICING?

E

1

2

3

4 5

6

7 8 9

X

10

(a)

E

1 2 3

4 5

6 9 10

7 8

y
x

w

cc
b

y

(b)

E

1 2 3

4 5

6

9 107 8

y
x

w

c
c

b

y

(c)

Figure 3.3.: The CFG and PDGs for the code example

pendence calculation. Hence X is the second successor of E which is
not postdominated by any other node. The data dependences should
be clear from the program code.

The PDG looks different (see Fig. 3.3 (c)) when using weak control
dependence, as now the nodes after the while loop (9 and 10) depend
on this loop, as it is treated as potentially nonterminating. The remain-
ing data and control dependences are the same as before.

As weak order dependence is no binary relation, edges cannot rep-
resent this dependence, so building a PDG is impossible (at least in
the common understanding). Hence, I write the weak order depen-
dence triples for this example as in the section above; however, this
time including pairs containing the exit node X :

63

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

E

1 2 3

4 5

6 9 10

7 8

y
x

w

cc
b

y

(a)

E

1 2 3

4 5

6

9 107 8

y
x

w

c
c

b

y

(b)

Figure 3.4.: The “sliced PDGs” of node 10

E : {(1, X), (2, X), (3, X), (6, X), (9, X), (10, X)}
3: {(4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10), (4, X),

(5, 6), (5, 7), (5, 8), (5, 9), (5, 10), (5, X)},
6: {(7, 8), (7, 9), (7, 10), (7, X), (8, 9), (8, 10), (8, X)}

Computing the slice of a node in the intraprocedural case is a mere
matter of transitive closure: every node on which the slicing node
transitively depends is part of the slice set. Fig. 3.4 (a) and (b) again
show the PDGs for standard and weak control dependence, respec-
tively, but only nodes that contribute to the slice of node 10 are in black,
those not occurring in the slice are grey. As one can immediately see,
the slices differ: the slice for 10 in the PDG using standard control
dependence is BSSCD = {E,1,2,3,4,10}, the one using weak control de-
pendence is BSWCD = {E,1,2,3,4,5,6,8,10}. So taking non-termination of

64

3.2. THE FORMALIZATION

CFG

CFG wf CFGExit

CFGExit wf

PDG

BackwardSlice

Postdomination

StrongPostdomination

StandardControlDependencePDG

WeakControlDependencePDG

Figure 3.5.: Locale hierarchy of the framework

the while loop into account, slicing for node 10 yields a much bigger
slice, even in this small example.

Remember that for weak order dependence, we have a dependence
predecessor and a pair of successors. The predecessor is only included
in the slice, if it contains already both successors. When computing the
slice for node 10, first 10 itself is included. As no other node is part
of the slice, no node can be included due to weak order dependence,
so we first consider data dependences. This leads to nodes 1 and 4

being in the slice. Now, we can add node 3, as (4, 10) is a dependence
successor pair for this node. The next step inserts node 2 in the slice,
as 3 is data dependent on it. No other node can be included, not even
E, as this would require X to be in the slice. Thus, the slice for weak
order dependence is BSWOD = {1,2,3,4,10}

3.2 The Formalization

The framework for slicing presented in this thesis is based on an ab-
stract control flow graph (CFG) containing semantic information. This
abstract CFG is defined using locales (see Sec. 1.4.2), which state cer-
tain structural and well-formedness properties; thus there is no need
for a concrete underlying programming language. Also the concrete
definition of control dependence used in the correctness proof (see
Sec. 3.3) for slicing is not fixed; I merely state one condition this defi-
nition has to fulfil and demonstrate that for three quite distinct control
dependence definitions, which are formalized in Sec. 3.2.2, this condi-
tion holds.

65

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

locale CFG =

fixes valid-edge :: ′edge ⇒ bool
fixes src :: ′edge ⇒ ′node
fixes trg :: ′edge ⇒ ′node
fixes kind :: ′edge ⇒ ′state edge-kind
fixes (-Entry-) :: ′node
assumes Entry-target : valid-edge a =⇒ trg a 6= (-Entry-)
and no-multi-edges :
[[valid-edge a ; valid-edge a ′; src a = src a ′; trg a = trg a ′]] =⇒ a = a ′

locale CFGExit = CFG +

fixes (-Exit-) :: ′node
assumes Exit-source : valid-edge a =⇒ src a 6= (-Exit-)
and Entry-Exit-edge :
∃ a . valid-edge a ∧ src a = (-Entry-) ∧ trg a = (-Exit-) ∧ kind a = (λs . False)√

Figure 3.6.: Locale defining the structure of the abstract CFG

Fig. 3.5 shows the locales present in the framework and their de-
pendences. A locale that extends another one has an arrow pointing
to this locale. All the locales will be explained in the following two
sections.

3.2.1. The Abstract Intraprocedural Control Flow
Graph

The abstract CFG, defined via the locale depicted in Fig. 3.6, consists
of nodes of type ′node and edges of type ′edge. An edge a is in the set
of CFG edges if the predicate valid-edge a holds, a parameter of the in-
stantiating language. In the proof context of the locale, the set of CFG
nodes is defined via its characteristic function valid-node n: n must
be the source or target node of a valid-edge. Formally: valid-node n ≡
∃ a . valid-edge a ∧ (n = src a ∨ n = trg a). Assumed functions src, trg and
kind determine the source node, target node and edge kind of an edge,
respectively.

Edges carry semantic information (thus the abstract CFG is more
like a control flow automata, see [53, Sec. 3.1]), the edge kind states
the action taken when traversing this edge. There are two edge kinds
of type ′state edge-kind , both parameterized with a state type variable
′state: (i) updating the current state with a function f :: ′state ⇒ ′state,
written ⇑f , or (ii) assuring that a predicate Q :: ′state ⇒ bool in the cur-

66

3.2. THE FORMALIZATION

rent state holds, written (Q)√. To traverse edges in a state s, I define
function transfer to update the state accordingly to the edge kind, and
function pred to check that the respective edge kind predicate holds:

transfer ⇑f s ≡ f s , transfer (Q)√ s ≡ s
pred ⇑f s ≡ True , pred (Q)√ s ≡ Q s

I assume an (-Entry-) node, which must not have incoming edges.
Multi-edges are not allowed in the framework, i.e., if the source and
target nodes of two valid edges coincide, so do the two edges.

Edges can also be combined to paths: n −as→∗ n ′ denotes that node
n can reach n ′ via edges as :: ′edge list. Paths are inductively defined by:

valid-node n
n −[]→∗ n

n ′′−as→∗ n ′ valid-edge a src a = n trg a = n ′′

n −a·as→∗ n ′

srcs, trgs and kinds map the respective functions to edge lists using
standard function map. transfer and pred are lifted to lists of edge
kinds via

transfers [] s ≡ s , transfers (e·es) s ≡ transfers es (transfer e s)
preds [] s ≡ True preds (e·es) s ≡ pred e s ∧ preds es (transfer e s)

If a unique end node is required, I assume its existence in locale
CFGExit, call it (-Exit-) and allow only incoming edges. I also assume
a special edge from (-Entry-) to (-Exit-) of kind (λs . False)√, a predicate
that can never be fulfilled. It is needed for control dependences based
on postdomination to behave correctly.

After having defined the structural properties of the CFG, we fur-
thermore need:

(i) the Def and Use sets for the valid nodes, which collect the de-
fined and used variables in this node, respectively,

(ii) some well-formedness properties, which guarantee that the Def
and Use sets in source nodes agree with the semantic informa-
tion in the respective edges, and

(iii) a function state-val s V returning the value currently stored in
variable V in state s.

67

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

locale CFG-wf = CFG +

fixes Def :: ′node ⇒ ′var set
fixes Use :: ′node ⇒ ′var set
fixes state-val :: ′state ⇒ ′var ⇒ ′val
assumes Entry-empty: Def (-Entry-) = {} ∧ Use (-Entry-) = {}
and no-Def-equal : [[valid-edge a ; V /∈ Def (src a)]]
=⇒ state-val (transfer (kind a) s) V = state-val s V

and transfer-only-Use :
[[valid-edge a ; ∀V ∈ Use (src a). state-val s V = state-val s ′V]]

=⇒ ∀V ∈ Def (src a). state-val (transfer (kind a) s) V =

state-val (transfer (kind a) s ′) V
and Uses-pred-equal : [[valid-edge a ; pred (kind a) s ;
∀V ∈ Use (src a). state-val s V = state-val s ′V]] =⇒ pred (kind a) s ′

and deterministic : [[valid-edge a ; valid-edge a ′; src a = src a ′; trg a 6= trg a ′]]
=⇒ ∃Q Q ′. kind a = (Q)√ ∧ kind a ′= (Q ′)√ ∧

(∀ s . (Q s −→ ¬ Q ′ s) ∧ (Q ′ s −→ ¬ Q s))

locale CFGExit-wf = CFGExit + CFG-wf +

assumes Exit-empty: Def (-Exit-) = {} ∧ Use (-Exit-) = {}

Figure 3.7.: Well-formedness properties of the abstract CFG

Variables (or more generally said: locations) are of type ′var, values of
type ′val . The locales that define the well-formedness assumptions are
shown in Fig. 3.7, in words:

• Def and Use sets of (-Entry-) (and (-Exit-), if defined) are empty;
• traversing an edge leaves all variables which are not defined in

its source node unchanged;
• if two states agree on all variables in the Use set of the source

node of an edge, then after traversing this edge the two states
agree on all variables in the Def set of this node; i.e., different
values in the variables not in the Use set cannot influence the
values of the variables in the Def set after the semantic action;
• if two states agree on all variables in the Use set of the source

node of a predicate edge and this predicate is valid in one state,
it is also valid in the other one;
• any two valid edges with the same source, but differing target

nodes, are predicate edges, such that for any state, one of these
predicates holds, the other one does not; thus, there is no non-
deterministic choice.

68

3.2. THE FORMALIZATION

E

1

2

3

4 5

6

7 8 9

X

10

y := 7

(True)

b := a && d

(b) (¬ b)

c := 4x := 5 + y

(c < 3) (c ≥ 3)

w := w + v

c := c + 1

z := 3 * w

z := x + y

√

√ √

√√

(False)
√

n = . . . Def n = . . . Use n = . . .

E {} {}

1 {y} {}

2 {b} {a,d}

3 {} {b}

4 {x} {y}

5 {c} {}

6 {} {c}

7 {w} {w,v}

8 {c} {c}

9 {z} {w}

10 {z} {x,y}

X {} {}

Figure 3.8.: The edge kinds and Def and Use sets in the example CFG

Suppose we also have an operational semantics of the language,
where 〈c ,s〉 ⇒ 〈c ′,s ′〉means that evaluating statement c in state s results
in a residual statement c ′ and state s ′. Mapping nodes to their corre-
sponding statements using ,, we then obtain another well-formedness
property (called semantically well-formed):

n , c 〈c ,s〉 ⇒ 〈c ′,s ′〉
∃n ′ as . n −as→∗ n ′∧ n ′, c ′∧ transfers (kinds as) s = s ′ ∧ preds (kinds as) s

This property states that if the evaluation of statement c in state s re-
sults in a state s ′ and node n corresponds to statement c, then there is
a path in the CFG beginning at n to a node n ′ that corresponds to the
residual statement c ′, on which, taking s as initial state, all predicates
in predicate edges hold and the traversal of the path edge kinds also
yields state s ′.

69

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

locale Postdomination = CFGExit +

assumes Entry-path : valid-node n =⇒ ∃ as . (-Entry-) −as→∗ n
and Exit-path : valid-node n =⇒ ∃ as . n −as→∗ (-Exit-)

Figure 3.9.: Locale with the constraints for postdomination

The left hand side of Fig. 3.8 shows the CFG from the running ex-
ample in Fig. 3.3, annotated with its edge kinds. I use a simplified
syntax for presentation, e.g. the assignment z := x + y in correct
edge syntax would look like this: ⇑(λs . s(z 7→ s(x) + s(y))). The table
on the right hand side shows for every CFG node its Def and Use set.
This CFG conforms to all the structural and well-formedness proper-
ties proposed in this section.

3.2.2. Formalizing Dependences

This section formalizes data dependence and the three control de-
pendence relations from Sec. 3.1.1, based on the abstract control flow
graph defined in the previous section.

Data Dependence

Formalizing data dependence is a straightforward translation of the
informal definition given in Sec. 3.1.1:

n influences V in n ′≡ ∃ a ′ as ′. V ∈ Def n ∧ V ∈ Use n ′∧ n −a ′·as ′→∗ n ′∧
(∀n ′′∈set (srcs as ′). V /∈ Def n ′′)

Standard Control Dependence

Standard control dependence (SCD) employs the notion of postdom-
ination. A node n ′ postdominates a node n, if n ′ occurs on every path
from n to the exit node. Thus, postdomination only makes sense if
we have such a (unique) exit node and can reach that node from ev-
ery node in the program. Hence, locale Postdomination as shown in
Fig. 3.9 extends locale CFGExit (thus inheriting the notion of a unique
exit node) and fixes the assumption Exit-path which states the latter
requirement. Furthermore, Entry-path formalizes the fact that every
node can be reached from the entry node (i.e., there is no dead code).
In this locale, postdomination is then defined via:

70

3.2. THE FORMALIZATION

n ′ postdominates n ≡ valid-node n ∧ valid-node n ′∧
(∀ as . n −as→∗ (-Exit-) −→ n ′∈ set (srcs as))

postdominates is a partial order, as it is

reflexive for every valid node except (-Exit-):
If valid-node n and n 6= (-Exit-) then n postdominates n

transitive: If n ′ postdominates n ′′ and n ′′ postdominates n
then n ′ postdominates n

antisymmetric: If n ′postdominates n and n postdominates n ′ then n = n ′.

Now, I define standard control dependence as in Sec. 3.1.1 and prove
that this definition is equivalent to the widely used definition from
[44]:

scd n n ′≡ ∃ a a ′ as . n −a·as→∗ n ′∧ n ′ /∈ set(srcs (a·as)) ∧ valid-edge a ′∧
src a = n ∧ n ′ postdominates (trg a) ∧ src a ′= n ∧
¬ n ′ postdominates (trg a ′)

Lemma 3.1 SCD Definition Variant (Ferrante et al.):

scd n n ′= (∃ as . n −as→∗ n ′∧ n 6= n ′∧ ¬ n ′ postdominates n ∧
n ′ /∈ set (srcs as) ∧ (∀n ′′∈set (trgs as). n ′ postdominates n ′′))

Proof. Left to right: Choose as to be the path a·as from the definition
of scd. n ′ cannot postdominate n, otherwise the latter could not have
the successor trg a ′ not postdominated by n ′. n ′ does postdominate
every node on path trgs (a·as), because if it did not, then it could not
postdominate trg a either.

Right to left: We choose a·as to be as from the right hand side, which
has to be nonempty because of n 6= n ′. n ′ has to postdominate the
successor of n on path as from the right hand side, as it postdominates
all nodes on this path except n. To get a second successor of n which n ′

does not postdominate, we obtain a path from n to (-Exit-) which does
not contain n ′ by assumption Exit-path from locale Postdomination and
because ¬ n ′ postdominates n. ut

71

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

locale StrongPostdomination = Postdomination +

assumes successor-set-finite :
valid-node n =⇒ finite {n ′. ∃ a ′. valid-edge a ′∧ src a ′= n ∧ trg a ′= n ′}

Figure 3.10.: Locale with the constraints for strong postdomination

Weak Control Dependence

Weak control dependence (WCD) is termination sensitive, thus we
need a stronger postdomination notion which disallows postdomi-
nation along infinite paths (e.g. the path always running through a
nonterminating loop). For strong postdomination to behave similarly
to postdomination, we have to also disallow infinite branching, i.e.,
for every valid node, the number of target nodes of edges leaving this
node must be finite. Fixing this in the assumption successor-set-finite,
locale StrongPostdomination (see Fig. 3.10) extends locale Postdomina-
tion and defines strong postdomination as:

n ′ strongly-postdominates n ≡ n ′ postdominates n ∧
(∃k ≥ 1. ∀ as nx . n −as→∗ nx ∧ length as ≥ k −→ n ′∈ set (srcs as))

Note that as we assume finite branching, an infinite path exists only if
there is a finite path longer than k for any fixed k (cf. König’s lemma);
if n ′ lies on any path longer than a certain k, this means that there is no
infinite path between the two nodes. If there was a loop between the
two nodes, there would however be an infinite path always traversing
the loop. Hence this definition disallows nodes after a loop to strongly
postdominate nodes before or in the loop.

Also strongly-postdominates constitutes a partial order, as it is prov-
ably reflexive (for all valid nodes except (-Exit-)), transitive and anti-
symmetric.

The definition of WCD is analogous to standard control dependence:

wcd n n ′≡ ∃ a a ′ as . n −a·as→∗ n ′∧ n ′ /∈ set (srcs a·as) ∧ valid-edge a ′∧
src a = n ∧ n ′ strongly-postdominates (trg a) ∧
src a ′= n ∧ ¬ n ′ strongly-postdominates (trg a ′)

Weak Order Dependence

To define weak order dependence (WOD), we neither need a notion
of an exit node nor any further assumptions on the CFG, only paths.

72

3.2. THE FORMALIZATION

locale PDG = CFGExit-wf +

fixes - controls - :: ′node ⇒ ′node ⇒ bool
assumes Exit-not-cdep : n controls n ′=⇒ n ′ 6= (-Exit-)
and control-dependence-path : n controls n ′=⇒ ∃ as . n −as→∗ n ′∧ as 6= []

Figure 3.11.: Locale describing a PDG

Thus, we can include it in the CFG locale:

wod n n1 n2 ≡
n1 6= n2 ∧ (∃ as1. n −as1→∗ n1 ∧ n2 /∈ set (srcs as1)) ∧
(∃ as2. n −as2→∗ n2 ∧ n1 /∈ set (srcs as2)) ∧
(∃ a . valid-edge a ∧ n = src a ∧
((∃ as′1. trg a −as′1→∗ n1 ∧ (∀ as ′. trg a −as ′→∗ n2 −→ n1 ∈ set (srcs as ′))) ∨
((∃ as′2. trg a −as′2→∗ n2 ∧ (∀ as ′. trg a −as ′→∗ n1 −→ n2 ∈ set (srcs as ′)))))

As weak order dependence is not a binary relation, the PDG is no
help in defining the backward slice, it has to be done from scratch:

valid-node nc
nc ∈WOD-BS nc

n influences V in n ′ n ′∈WOD-BS nc
n ∈WOD-BS nc

wod n n1 n2 n1 ∈WOD-BS nc n2 ∈WOD-BS nc
n ∈WOD-BS nc

3.2.3. Program Dependence Graph
For binary control dependences, the backward slice is defined using
a program dependence graph. Thus, we use a locale to define a PDG
(see Fig. 3.11) as “middle layer” between backward slice and control
dependence definition. We extend the CFG well-formedness locale
stipulating (-Exit-), fix a binary control dependence relation controls
and assume that (-Exit-) is not control dependent on anything and that
there exists a nonempty CFG path between control dependent nodes.
Then we define the PDG’s control and data flow edges via:

If n controls n ′ then n −→cd n ′

If n influences V in n ′ then n −V→dd n ′

PDG paths are the reflexive transitive closure of PDG edges and de-
noted n −→d∗ n ′. The backward slice of node nc is then defined straight-
forward via PDG-BS nc ≡ if valid-node nc then {n ′ | n ′−→d∗ nc} else ∅.

73

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

Now it remains to show that standard and weak control depen-
dence are valid instantiations of the PDG locale. To this end, we define
locales StandardControlDependencePDG and WeakControlDependence-
PDG, respectively, the former extending Postdomination and CFG-wf,
the latter StrongPostdomination and CFG-wf. In their proof contexts,
we instantiate locale PDG with the respective control dependence def-
inition by proving that it fulfils the assumptions for controls. This is
easily done by unfolding their definitions and the fact that (-Exit-) is
no source node of a non-empty path.

3.3 The Proof

Following Amtoft [3], I state correctness as a weak simulation prop-
erty between nodes and states in the original and sliced control flow
graph. The proof is based on the abstract control flow graph as shown
above, not restricted to a specific language. It is also independent of
a specific control dependence definition, but requires it to have one
particular property.

Adapting the proof to any particular language just requires to show
that the control flow graph of this language can be embedded into
the abstract one by fulfilling all necessary conditions. In Sec. 3.4, I
sketch this technique for two different languages. Likewise, chang-
ing the control dependence definition reduces to showing that the one
required property holds; I have done so for the three dependence re-
lations from Sec. 3.2.2, see Sec. 3.3.3. Hence, future verifications of
algorithms basing on this correctness proof immediately gain a high
level of robustness.

3.3.1. Weak Simulation

This section sketches the idea of the correctness proof of using a weak
simulation to prove the correctness of static intraprocedural slicing,
following an idea proposed by Amtoft’s group [3, 90]. I define cor-
rectness as a weak simulation property of the observable behavior of the
original and the sliced program, regarding the CFG as a labelled tran-
sition system (LTS); for details see the next section. As I regard nodes
which are part of the slice as observable, an observable move traverses
its outgoing edges.

74

3.3. THE PROOF

(n,s) (nx,sx)

(n',s')

∼

∼

*

τ

(a)

(n,s) (nx,sx)

(n',s')

∼

∼

*

τ

(nx',sx')
(b)

Figure 3.12.: Simulation diagrams

Correctness Property:
If we have two weakly similar LTS states and, starting in the first, an
observable move is possible in the original CFG, then an observable
move is also possible in the sliced CFG starting in the second, and the
resulting LTS states are again weakly similar.

Moves that are not observable are called silent or τ-moves. Fig. 3.12
shows two simulation diagrams for a relation between LTS states with
infix operator ∼. Solid lines denote hypotheses, dashed lines conclu-
sions. If we can prove that these diagrams hold, ∼ is guaranteed to be
a weak simulation; more accurately, it is the weak simulation equiva-
lent of the delay bisimulation as presented in e.g. [120].

The sliced CFG consists of the same nodes and edges as the original
CFG, but all edges whose source node is not in the slice get assigned
no-op edge kinds.

3.3.2. Correctness Proof

To state correctness for static slicing we need:

(i) a formalization of observable sets,

(ii) a formalization of a statically sliced CFG,

(iii) a formalization of moves in the original and sliced graph and

(iv) a weak simulation between start and end points of these moves.

75

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

locale BackwardSlice = CFG-wf +

fixes backward-slice :: ′node ⇒ ′node set
assumes refl : valid-node nc =⇒ nc ∈ backward-slice nc
and dd-closed : [[n ′∈ backward-slice nc; n influences V in n ′]]
=⇒ n ∈ backward-slice nc
and obs-finite : valid-node n =⇒ finite (obs n (backward-slice nc))
and obs-singleton : valid-node n =⇒ card (obs n (backward-slice nc)) ≤ 1

Figure 3.13.: Locale abstracting from a specific backward slice

Observable Sets

The observable set of node n in set S comprises all nodes n ′ in S reach-
able via a CFG path from n such that no other node on this path is
in S :

n −as→∗ n ′ ∀nx ∈ set (srcs as). nx /∈ S n ′∈ S
n ′∈ obs n S

So every node being itself in set S has the singleton observable set
only containing itself. Instantiating S with a backward slice, this set
contains all possible next sources of labelled transitions.

The Statically Sliced Graph

A static (backward) slice for a node nc (the slicing node) determines
which nodes are in the sliced graph. Basically, every node that poten-
tially influences control or data flow to nc is in the backward slice of
nc, so the slice is defined in terms of data and control dependence.

To abstract from a concrete control dependence definition in the
slice, we use a locale named BackwardSlice (see Fig. 3.13) to fix a func-
tion from a node to a set of nodes called backward-slice with properties
that guarantee that the resulting node sets are indeed backward slices
of the parameter node. Hence we formulate four assumptions:

(i) every node is in its own backward-slice,
(ii) if a node n ′ is in backward-slice nc and this node is data depen-

dent on node n, then n must also be in backward-slice nc (i.e.,
backward-slice nc is closed under data dependence),

(iii) the set of observable nodes of any valid node in backward-slice nc
is finite, and

(iv) the cardinality of this set is at most 1.3
3Note that in Isabelle/HOL, infinite sets have a cardinality of 0.

76

3.3. THE PROOF

Only the last two assumptions obs-finite and obs-singleton, which
guarantee that the set of observable nodes in the slice is for every valid
node at most a singleton, are influenced by the control dependence
used in the slice.

By this definition, we regard all nodes having the same set of ob-
servable nodes in set backward-slice nc – being at most a singleton by
assumption from locale BackwardSlice – as ”equal” from the point of
view of the slicing.

As mentioned above, the sliced CFG contains the same edges and
nodes as the original CFG, but the kinds of edges whose source node
is not in the slice are replaced by no-ops via the function slice-kind nc
(nc denotes the slicing node). Analogously to kind, slice-kind nc maps
edges to the effect this edge has on the state, i.e., its edge kind. The
rules can be found in Fig. 3.14 and will be explained in the following: if
the source node of the considered edge is in backward-slice nc, slice-kind
nc behaves just like kind (see rule SK1); if it is not and the edge is an
update edge, slice-kind nc returns the update no-op, which is ⇑id, see
rule SK2.

For predicate edges whose source node is not in the slice, things
are more complicated. There are two different no-ops for predicates,
namely the predicate that always holds (λs . True)√, and the predicate
that never holds (λs . False)√. Just picking one and returning this as
slice-kind can make the graph either non-deterministic or its traversal
impossible; e.g. think of an if whose predicate node is not in the slice
and thus both branches are labelled either (λs . True)√ or (λs . False)√.

To determine which of the predicate no-ops slice-kind returns, we
need more information; the obs information of the source node is a
good starting point. If the obs set is not empty, we make only that edge
traversable, whose target node is closest to the node in obs (remember
that it is guaranteed that obs is at most a singleton). Distance is defined
via

n −as→∗ n ′ |as| = x ∀ as ′. n −as ′→∗ n ′−→ x ≤ |as ′|
distance n n ′ x

Then, trg a is the successor of src a closest to m, iff distance (trg a) m x
and distance (src a) m (x + 1) for some x. To show that this choice is
indeed sensible, consider Fig. 3.15. It shows the sliced CFGs for node
10 for the running example, the left graph is the result of slicing its CFG
with standard control dependence, the right one with weak control
dependence, according to their respective PDGs from Fig. 3.4. Node 6

77

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

src a ∈ backward-slice nc
slice-kind nc a = kind a

SK1
src a /∈ backward-slice nc kind a = ⇑f

slice-kind nc a = ⇑id
SK2

src a /∈ backward-slice nc m ∈ obs (src a) (backward-slice nc)
kind a = (Q)√ distance (trg a) m x distance (src a) m (x + 1)

trg a = (SOME n . ∃ a ′. src a = src a ′∧ distance (trg a ′) m x ∧
valid-edge a ′∧ trg a ′= n)

slice-kind nc a = (λs . True)√
SK3

src a /∈ backward-slice nc m ∈ obs (src a) (backward-slice nc)
kind a = (Q)√ distance (trg a) m x distance (src a) m (x + 1)

trg a 6= (SOME n . ∃ a ′. src a = src a ′∧ distance (trg a ′) m x ∧
valid-edge a ′∧ trg a ′= n)

slice-kind nc a = (λs . False)√
SK4

src a /∈ backward-slice nc m ∈ obs (src a) (backward-slice nc)
kind a = (Q)√ ¬ distance (trg a) m x distance (src a) m (x + 1)

slice-kind nc a = (λs . False)√
SK5

src a /∈ backward-slice nc obs (src a) (backward-slice nc) = ∅
trg a = (SOME n . ∃ a ′. src a = src a ′∧ valid-edge a ′∧ trg a ′= n)

slice-kind nc a = (λs . True)√
SK6

src a /∈ backward-slice nc obs (src a) (backward-slice nc) = ∅
trg a 6= (SOME n . ∃ a ′. src a = src a ′∧ valid-edge a ′∧ trg a ′= n)

slice-kind nc a = (λs . False)√
SK7

Figure 3.14.: Rules for slice-kind nc

is not part of the standard control dependence slice, so we assign no-
ops to its ougoing edges. From its two successors 7 and 9, the latter is
closer to the next observable node, which is 10. Hence, the edge to 9 is
labelled (λs . True)√, the one to 7 (λs . False)√. Thus, we can never enter
the loop body, which is the desirable behaviour.

However, again this does not suffice. Reconsider the left sliced CFG
in Fig. 3.15, but assume that node 4 does not assign x, but z. Then,
neither 4 would be in the slice for 10, nor its control dependence pre-
decessor 3. The next observable node from 3 would then be 10, which
is equidistant for both successors of 3, namely 4 and 5. Thus, both
outgoing edges from 3 would have (λs . True)√ as slice-kind, render-
ing the sliced CFG non-deterministic. To avoid this, rule SK3 always
chooses one closest target node via the SOME operator, Isabelle’s anal-

78

3.3. THE PROOF

E

1

2

3

4 5

6

7 8 9

X

10

y := 7

(True)

b := a && d

(b) (¬ b)

idx := 5 + y

(False) (True)

id

id

id

z := x + y

√

√ √

√√

(False)
√

E

1

2

7 8 9

X

10

y := 7

(True)

b := a && d

(c < 3) (c ≥ 3)

id

c := c + 1

id

z := x + y

√

√√

3

4 5

6

(b) (¬ b)

c := 4x := 5 + y

√ √

(False)
√

Figure 3.15.: Sliced CFGs for the example from Sec. 3.1.2

ogon for Hilbert’s ε-operator, and assigns (λs . True)√ only to the edge
that reaches this selected target node. Note that SOME x . P x always re-
turns the same x that fulfils P. All other edges whose target nodes are
nevertheless closest, but not selected via SOME, are labelled (λs . False)√,
see rule SK4. In [3], Amtoft seems not to be aware of this problem, he
assigns all edges with a closest successor with (λs . True)√. Following
rule SK5, (λs . False)√ is also assigned to all edges whose target node is
not closest to the next observable node.

If the source node’s obs set is empty, we only have to take care that
the sliced graph does not get non-deterministic; again, SOME takes
care of this, see rules SK6 and SK7. Amtoft allows to assign either
(λs . True)√ or (λs . False)√ to any edge whose source node’s observable
set is empty, ignoring the non-determinism problem.

79

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

By defining slice-kind this way, I could prove that the sliced graph is
still deterministic (see the last rule in locale CFG-wf in Fig. 3.7); i.e., it
is valid to replace kind with slice-kind nc in rule deterministic, it would
still hold. Amtoft’s approach to allow more than one (λs . True)√ edge
does not break the proof in the weak simulation sense. Yet, at the end
of this section I will also provide correctness lemmas arguing about
executions, i.e., control flow paths; in this case, the fact that only one
path in the sliced graph can be executed is of great value.

To obtain a sliced CFG in the usual understanding, one would elimi-
nate all no-op edges and the respective nodes, taking care of reachabil-
ity issues. Since the paths in this graph have the same behaviour w.r.t.
preds and transfers as the sliced CFG annotated with slice-kinds, all the
following correctness properties also hold for this reduced graph.

Moves in the Graphs

As mentioned before, I consider the original and the sliced CFG as
labelled transition systems (LTS); however, it is not yet clear what its
states, transitions and labels are. I define an LTS state to be a (node,
state) pair and call the LTS transitions moves. Moves capture the effect
of traversing an edge a in one of the graphs, a τ-move −a→τ starting in
a node not in the slice, whereas the source node of a non-τ-move −a→
is part of the slice. Hence, the LTS labels are the edges whose source
node is in the slice, i.e., whose semantic information is still present in
the sliced CFG.

src a /∈ backward-slice nc
valid-edge a

pred (f a) s transfer (f a) s = s ′

nc,f ` (src a ,s) −a→τ (trg a ,s ′)

src a ∈ backward-slice nc
valid-edge a

pred (f a) s transfer (f a) s = s ′

nc,f ` (src a ,s) −a→ (trg a ,s ′)

The parameter f is replaced with kind if we traverse the original,
with slice-kind nc if we traverse the sliced graph of nc. An observable
move =⇒ then consists of arbitrary many τ-moves (=⇒τ is the reflex-
ive transitive closure of −→τ), followed by a non-τ-move:

nc,f ` (n ,s) =as⇒τ (n ′,s ′) nc,f ` (n ′,s ′) −a→ (n ′′,s ′′)
nc,f ` (n ,s) =as@[a]⇒ (n ′′,s ′′)

Note that the edge kind of a τ-move in the sliced graph is always a
no-op; this is due to the fact that the source node of the respective edge
is not in the slice. Analogously, as edges kinds in =as⇒τ are no-ops.

80

3.3. THE PROOF

The Weak Simulation

I define two (node, state) pairs to be weakly similar (i.e., in relation
WS nc), if both nodes are valid, the observable sets of both nodes w.r.t.
backward-slice nc are equal, and the values of all relevant variables are
equal in both states:

valid-node n valid-node n ′

obs n (backward-slice nc) = obs n ′ (backward-slice nc)
∀V ∈ rv nc n . state-val s V = state-val s ′V

((n ,s),(n ′,s ′)) ∈WS nc

Relevant variables rv nc n are all those variables which are used in
some node being in the backward slice of nc, reachable from n via a
CFG path and not redefined on this path:

n −as→∗ n ′

n ′∈ backward-slice nc V ∈ Use n ′ ∀nx ∈ set (srcs as). V /∈ Def nx
V ∈ rv nc n

To put it simply, only the values of the relevant variables of a node
can influence other nodes in the slice. Thus, at some node n, states that
have equal values in the relevant variables of n are observably equiva-
lent for the slice; in combination with the observable sets being equal,
two (node, state) configuration tuples are in the weak simulation if
they are not distinguishable by the slice.

Via this weak simulation, I prove the correctness of static intraproce-
dural slicing by showing that the correctness property from Sec. 3.3.1
holds for WS nc. The conclusion uses transfer (slice-kind nc (last as)) s2
instead of transfers (map (slice-kind nc) (as ′@(last as))) s2, to highlight that
only traversing last as has any semantic effect; the slice-kinds of the
edges in as ′ are all no-ops, so both executions yield the same result.

Theorem 3.2 Correctness of Static Intraprocedural Slicing:

((n1,s1),(n2,s2)) ∈WS nc nc,kind ` (n1,s1) =as⇒ (n′1,s
′
1)

∃ s′2 as ′. s′2 = transfer (slice-kind nc (last as)) s2) ∧ ((n′1,s
′
1),(n

′
1,s
′
2)) ∈WS nc ∧

nc,slice-kind nc ` (n2,s2) =as ′@(last as)⇒ (n′1,s
′
2)

Proof. The proof of this theorem uses two lemmas, which guarantee
that both simulation diagrams from Fig. 3.12 hold:

(a) The weak simulation is invariant under τ-moves in the original
graph, if the target node of the moves has a non-empty observ-
able set:

81

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

((n1,s1),(n2,s2)) ∈WS nc
nc,kind ` (n1,s1) =as⇒τ (n′1,s

′
1) obs n′1 (backward-slice nc) 6= ∅

((n′1,s
′
1),(n2,s2)) ∈WS nc

I prove this first by an induction on the number of τ-moves, and
second by guaranteeing that the values of the relevant variables
in the target state are again equal to those in the initial state.

(b) To traverse an observable edge a in the original graph yields an
observable move in the sliced graph via a path ending with a,
whose initial similar state is updated as if it had also traversed
just a:

((n1,s1),(n2,s2)) ∈WS nc nc,kind ` (n1,s1) −a→ (n′1,s
′
1)

∃ as s′2. s′2 = transfer (slice-kind nc a) s2 ∧ ((n′1,s
′
1),(n

′
1,s
′
2)) ∈WS nc ∧

nc,slice-kind nc ` (n2,s2) =as@[a]⇒ (n′1,s
′
2) ∈WS nc

The crucial part in this proof is to make sure that the values of
the relevant variables in the states after traversing edge a, both
in the original and the sliced graph, remain equal.

ut

Fundamental Property of Slicing

Whereas the above proof guarantees that the intraprocedural slicing
is indeed correct, its conclusion differs from the usual understanding
of correctness of slicing. Intuitively, the wide-spread informal correct-
ness requirement for slicing can be sketched like this: ”After performing
the slicing algorithm, the observable effects at the slicing node are preserved.”
These effects include which path was taken to reach the slicing node
and which values the variables that are used in this node contain.
Hence, I show another correctness theorem called fundamental property
of slicing, which is stated along the lines of the intuitive description. To
this end, we need a function slice-edges, which filters all edges from a
given path whose source node is in the slice:

slice-edges nc as ≡ [a ← as . src a ∈ backward-slice nc]

The next two facts show that slice-edges on moves behaves as ex-
pected:

nc,f ` (n ,s) =as⇒τ (n ′,s ′)
slice-edges nc as = []

nc,f ` (n ,s) =as⇒ (n ′,s ′)
slice-edges nc as = [last as]

82

3.3. THE PROOF

Now, we can define the alternative correctness property: assume a
path as in the original graph from n to slicing node n ′, whose pred-
icates hold starting from initial state s. Then there exists a path as ′

in the sliced graph of n ′ between those nodes, whose predicates also
hold when starting in s, and who has the same slice-edges, hence vis-
its the same nodes in the slice in the same order as the original path.
Moreover, the values of the variables used in n ′ are the same, no mat-
ter if we traverse as in the original or as ′ in the sliced graph starting
in initial state s. Equality of both paths cannot be guaranteed: con-
sider an if whose predicate and branches are not in the slice. Then
the sliced path can traverse another branch as the original path, if the
no-op predicates in the slice have been chosen unluckily.

Theorem 3.3 Fundamental Property of Slicing:

n −as→∗ n ′ preds (kinds as) s
∃ as ′. n −as ′→∗ n ′∧ preds (slice-kinds n ′ as ′) s ∧

slice-edges n ′ as = slice-edges n ′ as ′∧
(V ∈ Use n ′. state-val (transfers (slice-kinds n ′ as ′) s) V =

state-val (transfers (kinds as) s) V)

Proof. To show the above property, we need the fact that traversing
a path can always be split into several observable moves (one for ev-
ery edge in its slice-edges), followed by τ-moves. Then, a case distinc-
tion determines if slice-edges n ′ as is empty, applying the weak simula-
tion correctness property – lifted to arbitrary sequences of observable
moves – if it is not. ut

For semantically well-formed CFGs, we can lift this theorem from
graphs to the semantics. Instead of a path in the original graph, we as-
sume a semantic evaluation 〈c ,s〉 ⇒ 〈c ′,s ′〉 and identify the nodes n and
n ′ with c and c ′, respectively. The conclusion now states equivalence
of the behaviour of the path traversal in the slice with the result of the
semantic evaluation:

Theorem 3.4 Fundamental Property of Semantics and Slicing:

n , c 〈c ,s〉 ⇒ 〈c ′,s ′〉
∃n ′ as . n −as→∗ n ′∧ preds (slice-kinds n ′ as) s ∧ n ′, c ′∧

(∀V ∈ Use n ′. state-val (transfers (slice-kinds n ′ as) s) V = state-val s ′V)

83

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

3.3.3. Applying Control Dependences

The correctness proof in the previous section was parameterized by
a function from nodes to node sets called backward-slice and certain
constraints. In this section, I show how one can use the three different
control dependences presented in Sec. 3.1.1 to formalize the respective
backward slice and that each of these slices is a valid parameter of the
BackwardSlice locale, i.e, it fulfils its assumption. Showing the cor-
rectness property for any further control dependences is analogously
done by proving these assumptions, so no insight into the concrete
correctness proof formalization is needed.

Standard and weak control dependence uses the PDG locale intro-
duced in Sec. 3.2.3 to define the backward slice PDG-BS. To this end,
all assumptions for controls from this locale have to hold for scd and
wcd as defined in Sec. 3.2.2: (-Exit-) may not be control dependent on
anything and a node must have a nonempty path to all the nodes it
controls. This is easily proven by unfolding the definition of scd and
wcd and the fact that (-Exit-) is no postdominator for any valid node.

Finally, it remains to show that PDG-BS meets the constraints of lo-
cale BackwardSlice from the previous section, regardless if it employs
scd or wcd. Auxiliary lemmas guarantee that the backward slice is
closed under the respective control dependence and that every node
in the observable set of a node is a (strong) postdominator. I prove
by contradiction, that the observable set of every valid node is either
the empty set or a singleton: if a node had two distinct nodes in its
observable set, then only one of them could (strongly) postdominate
this node; yet, the auxiliary lemma states that every node in obs has
to be a (strong) postdominator, contradiction. Together with the fact
that the backward slice of a PDG is closed under data dependence,
this suffices to fulfil the assumptions of BackwardSlice.

Weak order dependence does not use the PDG locale, but defines its
own backward slice WOD-BS, see Sec. 3.2.2. The proof that the observ-
able set w.r.t. WOD-BS is at most a singleton is surprisingly similar to
the proofs above. Instead of arguing over (strong) postdomination a
corresponding argument holds: if a node had two distinct nodes in its
observable set, then the node itself, being a control dependence pre-
decessor, has to be in the slice; however, in this case, the observable
set of this node contains only itself.

84

3.4. INSTANTIATIONS

3.4 Instantiations

Exploiting the above results, proving slicing correct for any language
just boils down to providing a technique to formalize a CFG for any
program in this language and proving that this formalization fulfils
all properties required in the different locales. Thus, instantiating the
correctness proof of slicing with a language requires no insight into the
slicing definitions or proof details; anyone familiar with formalizing
languages can reprove it for a wide variety of languages (imperative
and object-oriented).

In the following, I show how to instantiate the framework with
two different programming languages, a simple While language with-
out procedures (Winskel [138] calls it IMP) and Jinja VM byte code
[61]. Static slicing with weak order dependence is correct for both
languages, as it does not need assumptions additional to those in lo-
cale CFG. However, for the correctness of slicing using standard and
weak control dependence their respective prerequisites from locales
Postdomination and StrongPostdomination (as described in Sec. 3.2.2)
are shown to be valid.

There are also cases in which such an instantiation does not work,
even if a formalized language semantics exist. For example, I con-
sidered instantiating the framework with Simpl [100], a very expres-
sive sequential imperative programming language, formalized in Isa-
belle/HOL. Unfortunately, this language is inherently non-determin-
istic, e.g. the statement Spec r evaluates in some state s to an arbitrary
state t, such that (s ,t) ∈ r. However, my framework allows only deter-
ministic update edges, so this behaviour cannot be simulated. Also,
the formalization of the Def and Use sets of a node representing Spec
is far from trivial, as statically you have to consider all possible execu-
tions at run-time. Hence, I dropped the thought of using Simpl.

3.4.1. A Simple Imperative Language: WHILE

WHILE features two value types Intg ::val and Bool ::val, which repre-
sent integer and boolean (i.e., true and false) values. Expressions con-
sist of constant values, variables and binary operators. The language
supports five different statements of type cmd : the no-op statement
Skip, assignment of expression e to a variable V, written V :=e, sequen-
tial composition of statements ;;, conditionals if (b) c1 else c2 and while
loops while (b) c ′. Defining the state is easy: it is just a simple mapping

85

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

Basic: c ` (-Entry-) −(λs . False)√→ (-Exit-)
c ` (-Entry-) −(λs . True)√→ (- 0 -)

Skip: Skip ` (- 0 -) −⇑id→ (-Exit-)

Ass: V :=e ` (- 0 -) −⇑λs . s(V := [[e]]s)→ (- 1 -)
V :=e ` (- 1 -) −⇑id→ (-Exit-)

Seq:
c1 ` n −et→ (-Exit-) n 6= (-Entry-)

c1;; c2 ` n −et→ (- 0 -) ⊕ #:c1
c1 ` n −et→ n ′ n ′ 6= (-Exit-)

c1;; c2 ` n −et→ n ′
c2 ` n −et→ n ′ n 6= (-Entry-)
c1;; c2 ` n ⊕ #:c1 −et→ n ′⊕ #:c1

If: if (b) c1 else c2 ` (- 0 -) −(λs . [[b]]s = btruec)√→ (- 0 -) ⊕ 1

if (b) c1 else c2 ` (- 0 -) −(λs . [[b]]s = bfalsec)√→ (- 0 -) ⊕ (#:c1 + 1)

c1 ` n −et→ n ′ n 6= (-Entry-)
if (b) c1 else c2 ` n ⊕ 1 −et→ n ′⊕ 1

c2 ` n −et→ n ′ n 6= (-Entry-)
if (b) c1 else c2 ` n ⊕ (#:c1 + 1) −et→ n ′⊕ (#:c1 + 1)

While: while (b) c ′ ` (- 0 -) −(λs . [[b]]s = btruec)√→ (- 0 -) ⊕ 2

while (b) c ′ ` (- 0 -) −(λs . [[b]]s = bfalsec)√→ (- 1 -)
while (b) c ′ ` (- 1 -) −⇑id→ (-Exit-)

c ′ ` n −et→ (-Exit-) n 6= (-Entry-)
while (b) c ′ ` n ⊕ 2 −et→ (- 0 -)

c ′ ` n −et→ n ′ n 6= (-Entry-) n ′ 6= (-Exit-)
while (b) c ′ ` n ⊕ 2 −et→ n ′⊕ 2

Figure 3.16.: Rules for WHILE CFG edges

from variables to values var ⇀ val. The partial function [[e]]s returns bvc,
if expression e evaluates to value v in state s, and None, if e cannot be
evaluated in state s (e.g. in the case of mal-formed programs).

As any graph, the CFG for an arbitrary WHILE program is defined
via its nodes and edges. Nodes are of type w-node, which incorporates
inner nodes (- l -) bearing a label l of type nat, and the special nodes
(-Entry-) and (-Exit-). n ⊕ i adds i to the label number of n and returns
a new node bearing this number as label, if n is an inner node, (-Entry-)
and (-Exit-) are unchanged. #:c denotes the number of inner nodes we
need for a CFG of statement c.

86

3.4. INSTANTIATIONS

WHILE CFG edges have type w-edge = w-node × state edge-kind ×
w-node. A CFG edge valid for program prog is written prog ` n −et→ n ′

and consists of a description of the program prog of type cmd for
which this CFG is generated, a source node n, an edge kind et of
type state edge-kind and a target node n ′. Fig. 3.16 shows the formal
rules: basically, the CFG is constructed via first constructing recur-
sively the CFGs for the sub-statements, then combining these graphs
into a single one, eventually adjusting the labels so that they remain
unique. Also, we add one additional node after every variable assign-
ment node and every while node (reachable via the edge where the
loop predicate is false). These nodes are inserted for semantic well-
formedness: as the semantic reduction of a variable assignment or
while loop with invalid predicate leads to a Skip statement, we also
need a CFG edge from the respective nodes to a node corresponding
to a Skip statement. As the outgoing edge of this node is by construc-
tion of the CFG a no-op edge (function id is applied to the state, see
the second rule for V :=e and the third rule for while (b) c ′ in Fig. 3.16),
this adjustment is valid.

Next, I prove that these definitions fulfil the assumptions made
in locale CFG. Hence, I define src, trg and kind as projections
from w-edge and that a is a valid edge for a program prog iff
prog ` src a −kind a→ trg a holds. The Use set is the set of all variables
in the expression on the right hand side of a variable assignment and
of those occurring in a condition or loop predicate. The Def set con-
tains only the variable that eventually gets assigned. The structural
and well-formedness properties of the WHILE CFG are then easily
shown via rule induction on the CFG edge rules.

To show that the CFG behaviour corresponds to the intended se-
mantics (i.e., the CFG is semantically well-formed, see Sec. 3.2.1), I
formalize a standard semantics for WHILE and a mapping from nodes
bearing a label to the statement they represent. The latter is used to
define a label semantics, a relation between (cmd,state,nat) tuples, which
bridges the gap between the evaluation of the semantics and the tran-
sition system behaviour of the traversal of CFG edges. Using this label
semantics, the proof for semantic well-formedness is quite straightfor-
ward, for details see [131, Sec. 3].

By construction, (i) every CFG node is reachable from the entry
node, (ii) can reach the unique exit node, and (iii) has a finite num-
ber of successors. Together with the proof of the locale assumptions
above, this guarantees the correctness of static intraprocedural using

87

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

(instrs-of P C M)[pc] ∈ {LOAD idx, STORE idx, PUSH val , POP, IADD, CMPEQ}
f = (λs. exec-instr (instrs-of P C M)[pc] P s (length cs) (stkLength P C M pc))

valid-callstack (P ,C 0,Main) ((C , M , pc)·cs)
(P ,C 0,Main) ` (- (C , M , pc)·cs, None -) −⇑f→ (- (C , M , Suc pc)·cs, None -)

Figure 3.17.: Example of Jinja CFG edges for simple instructions

standard and weak control dependence as well as weak order depen-
dence for any WHILE program.

3.4.2. A Sophisticated Object Oriented Byte Code
Language: Jinja VM Byte Code

This instantiation was accomplished by my colleague, Denis Lohner,
thus is no contribution of this theses; yet it is included, as it is an im-
pressive demonstration of the applicability of the slicing framework.

Jinja [61] models a large subset of the Java language, including op-
erational semantics for the source code and the virtual machine byte
code, both with type safety proofs, a compiler from the former to the
latter and a byte code verifier (BCV), both verified. Jinja is fully object-
oriented and features exception throwing and catching. Slicing such
languages is far from trivial. Even though the framework is for in-
traprocedural slicing, it can still be instantiated with a large subset of
Jinja, as non-recursive methods can be sliced by inlining method calls;
for programs without method calls the intraprocedural slice is well-
defined anyway.

Proving slicing correct with the framework requires instantiations
of the locales CFG-wf and (if standard or weak control dependence
shall be used) CFGExit-wf, Postdomination and StrongPostdomination,
which all extend the CFG locale. Hence, again, the first step is to for-
malize an appropriate CFG for Jinja byte code.

The Jinja byte code language is, to put it simply, a goto-language
using a stack machine with a program counter identifying the current
statement in an instruction list. A program P consists of a list of class
declarations, each with its method declarations where the method bod-
ies are the aforementioned instruction lists. Each CFG node is labelled
with a call stack cs storing the call frames that consist of class name
C, method name M and instruction pointer pc; its top element deter-
mines the instruction to execute. Although a call stack is not neces-
sary when methods are inlined, we use them in our formalization, as

88

3.4. INSTANTIATIONS

it makes the adaption to the interprocedural case (see Sec. 5.4.2) much
easier; basically, when we say method inlining, we mean that we in-
clude the method’s CFG edges at all its respective call sites.

The edges are labelled with appropriate predicates, e.g. for method
dispatch and exception handler delegation, or with updates via the
exec-instr function, which simulates Jinja’s exec function appropriately
for our state representation; the latter executes one step of the byte
code semantics in Jinja. Simple instructions like LOAD, IADD, etc.,
have one outgoing edge to a node where the instruction pointer is
increased by one, see Fig. 3.17 (valid-callstack ensures some required
well-formedness properties of the current program point, the use of
None will be explained later). GOTO increases the instruction pointer
with the provided parameter. IFFALSE has two successors, INVOKE
outgoing edges for every statically determinable dispatch target.4 All
instructions that could trigger exceptions, like NEW, PUTFIELD,
CHECKCAST, THROW, have additional edges for exceptional control
flow to exception handlers or, if not provided, to the exit node.

Many instructions (e.g. INVOKE or THROW) can only be modeled
with multiple edges, first predicate ones to determine the target, each
followed by one edge updating the state accordingly; hence we need
additional CFG nodes in between. Such intermediate nodes cannot be
identified by a call frame, as they do not match a concrete instruction.
Hence, they carry in addition to the call frame of their predecessor
node also a continuation, stating the next node to execute; for non-
intermediate nodes, this continuation is obviously None.

Next, the locale CFG-wf has to be instantiated. The problem here
is that Jinja byte code uses a stack machine, thus keeping track of the
variables is a bit tricky. For example, a program could LOAD a value
onto the stack, then do some stack-involving computation where this
variable is not used, and thereafter STORE the value again; then the
STORE must be data dependent on the corresponding LOAD, which
means the same variable must be in the LOAD’s Def set and in the
STORE’s Use set. Therefore, we say every stack position corresponds
to a variable (counted from bottom up); also the local variables are
identified through their index positions. Additionally, to distinguish
variables of different methods, stack and local variables are labelled
with the appropriate call depth available from the CFG node. The
heap is treated as a whole and thus instructions are regarded either to
define or use the complete heap or to not define and use it at all. This

4Using points-to analysis one could narrow this set, hence gaining precision.

89

CHAPTER 3. CORRECTNESS STATIC INTRAPROCEDURAL SLICING

is a conservative approximation, but the properties of CFG-wf are not
violated. One could gain precision here by using a points-to analysis.

The tricky part is to determine the index position of the stack vari-
ables that are defined or used at a given node. However, fixing the
Def and Use set is no problem, if the index of the stack’s top element is
known. Jinja’s BCV, which guarantees the stack length to be the same
at any fixed program point, no matter how one gets there, provides
this index. The state is then defined as a pair of a mapping from the
set of variables to appropriate values and a heap.

By means of these formalizations we are finally able to instantiate
the CFG-wf locale and to show that the assumed properties hold. Ex-
cept for Entry-empty (we simply define the Def and Use set of the entry
node to be empty), these properties are shown by case analysis. Hav-
ing the locale instantiated, we have done all to show slicing correct
for Jinja byte code using weak order dependence. We define a CFG as
valid, if every node reaches the exit node and is reached by the en-
try node. Together with a proof that the CFG is finitely branching, we
were able to instantiate the locales Postdomination and StrongPostdomi-
nation; hence we proved slicing correct for standard and weak control
dependence.

We also proved our formalization of the Jinja byte code CFG to be
semantically equivalent to Jinja’s exec function, which defines the op-
erational semantics of Jinja byte code. Furthermore, we have explicitly
proven state conformance as stated by Jinja’s BCV to be invariant un-
der the transfer function from Sec. 3.2.1 for the CFG.

90

Simplicity is prerequisite for reli-
ability.

E. W. Dijkstra 4
Correctness of Dynamic Slicing

Some slicing algorithms assume that run-time information, e.g. input
values or concrete execution traces, is available. Then, slicing is ap-
plied only in this concrete situation. These approaches can be sub-
sumed under dynamic slicing, and are applied in e.g. debugging [142].

A question that now naturally arises is: is the framework presented
in the previous chapter also applicable for dynamic slicing? As it turns
out, most of the framework can be reused for this task, with only some
minor changes in connotation such as dynamic dependences and dy-
namic dependence graphs, see the next section. Dynamic slicing itself
only considers a specific trace in an initial state instead of the whole
CFG, but again replaces semantic information of non-slice edges with
no-ops, via a bit vector as shown in Sec. 4.2. I prove in Sec. 4.3 the
correctness of dynamic slicing, along the lines of the “Fundamental
Property of Slicing” as introduced in Sec. 3.3.2. As no graph is sliced,
but only a specific trace, i.e., a certain path in the program, I use the
notion path slicing for this special kind of dynamic slicing.

4.1 Framework Adaptions

A path in the abstract CFG of the framework in the previous section is
equivalent to an execution trace. However, as the framework is purely
intraprocedural, we assume that in the respective CFG the bodies of
all procedure calls are inlined; this is exactly what you can see when
examining a trace. In the presence of unrestricted recursion this may
lead to infinite paths in the CFG and thus, to an infinite CFG. How-
ever, this poses no problem for the framework, as we claim nowhere

CHAPTER 4. CORRECTNESS OF DYNAMIC SLICING

that the set of nodes or edges has to be finite. Yet, for programs with
recursion, this approach of dynamic slicing is of course questionable.

We call a CFG where all method calls are inlined and whose paths
are considered traces trace control flow graph (short: TCFG). Apart from
that, we reuse all the locales and definitions presented in Sec. 3.2.1,
they are also valid for TCFGs.

As we only want to slice given traces, we are no longer interested
in arbitrary dependences in the CFG, but focus on those which occur
along the path under consideration. To capture this in the dependence
definitions, we need an additional parameter for the path, see the fol-
lowing definition of dynamic data dependence:

n influences V in n ′ via as ≡ V ∈ Def n ∧ V ∈ Use n ′∧ n −as→∗ n ′∧
(∃ a ′ as ′. as = a ′·as ′∧ (∀n ′′∈set (srcs as ′). V /∈ Def n ′′))

It holds that n influences V in n ′= (∃ as . n influences V in n ′ via as).
It is not clear how to define weak order dependence on traces. A

naive lifting of a ternary relation to two binary relations may intro-
duce spurious dependences. Consider again the weak order triples
in the example in Sec. 3.1.2. If we assume a control dependence be-
tween a node and any node that occurs in one of its successor pairs, we
could come up with a huge amount of dependences; e.g. node 3 would
have control dependences leading to every node except 1, 2 and E, of
which many are spurious. Hence, dynamic slicing in this framework
restricts to binary control dependences and a (dynamic) program de-
pendence graph can be used, parameterized with a dynamic binary
control dependence n controls n ′ via as. To this end, I defined a locale
DynPDG analogous to locale PDG (see Fig. 3.11), all occurrences of the
static dependences (influences in and controls) replaced with their dy-
namic counterparts (influences in via and controls via). Therefore, the
edges of the dynamic PDG as well as their reflexive transitive closure
(n −as→d∗ n ′) now carry the respective path information:

If n controls n ′ via as then n −as→cd n ′

If n influences V in n ′ via as then n −{V}as→dd n ′

The dynamic PDG can be instantiated with the dynamic variants of
standard and weak control dependence; their definitions are straight-
forward. Yet, in dynamic slicing, control dependences are often omit-
ted: as we only consider one trace in a certain initial state, the informa-
tion which node controls which is sometimes unnecessary. In fact, the

92

4.2. DYNAMIC BACKWARD SLICING

dynamic PDG can be instantiated with the empty control dependence
relation, so that we only perform a data slice, and still the correctness
property shown in Sec. 4.3 holds. Moreover, because of this, it can be
instantiated with any control dependence, as a nonempty control de-
pendence yields a slice containing more nodes, i.e., more edges keep
their original semantics.

4.2 Dynamic Backward Slicing

The only relevant information the slice of a path has to provide is if a
certain edge gets included in it or not; this determines if the semantic
information of the edge is kept or replaced with a no-op. Thus, I mod-
eled a path slice via a bit vector, i.e., a bool list, of the same length as
the edge list as of the path, being True at position i iff the edge at po-
sition i of edge list as is part of the slice. An edge is in the path slice if
its source node has a PDG path to the slicing node n ′with an edge list
corresponding to the appropriate suffix of as. The function slice-path
as computes this bit vector by traversing the edge list as. Note that
the last node of the reduced path being the slicing node n ′ is invariant
throughout this computation:

slice-path [] ≡ []

slice-path (a·as) ≡ let n ′= last (trgs (a·as)) in
(src a −a·as→d∗ n ′)·slice-path as

The relation �b compares bit vectors: bs �b bs ′ holds if they agree in
length and bs ′ is True at least at those elements where bs is True. The
maximal element w.r.t. �b is True in every entry.

Combining the bit vector and the initial path yields the edge kind
list of the sliced path. To do so, we need some machinery. The function
no-op et returns for every edge kind et the respective no-op:

no-op ⇑f ≡ ⇑id no-op (Q)√ ≡ (λs . True)√

The function select-edge-kinds filters from an edge list as all its edge
kinds as indicated via the bit vector bs; the edge kinds that are not
kept are replaced with no-ops:

select-edge-kinds [] [] ≡ []

select-edge-kinds (a·as) (b ·bs) ≡ (if b then kind a else no-op (kind a))

93

CHAPTER 4. CORRECTNESS OF DYNAMIC SLICING

1 2 3 4 6 9 10
y:=7 b:=a&&d (b) x:=5+y (c≥3) z:=3*w√ √ z:=x+y

Bit vector: [True , True , True , True , False , False]
Sliced path edge kind list: [y:=7, b:=a&&d, (b)√, x:=5+y, (True)√, id]

Figure 4.1.: A trace, its bit vector and sliced path for node 10

I define slice-kinds as as a shortcut for select-edge-kinds as (slice-path as).
See Fig. 4.1 for an example of a trace – a path in simplified syntax,

again taken from the running example from Sec. 3.1.2 –, the bit vector
representing its sliced path (using dynamic standard control depen-
dence) and the edge kind list of the respective sliced path.

4.3 Correctness Proof

Analogous to the “Fundamental Property of Slicing” (see Sec. 3.3.2), I
call the correctness property of dynamic slicing “Fundamental Prop-
erty of Dynamic Path Slicing”. It states that traversing the edge kinds
in the sliced path yields in the final state the same values for the vari-
ables used in the slicing node as traversing those on the original path,
both starting in the same initial state, and that if all predicates on the
original path are satisfiable, so are they in the sliced path.

A property about paths is naturally proved by induction, however,
dynamic dependences begin and end in discrete points in the path; of
course, induction cannot preserve such properties. Hence, we need an
induction invariant that captures the effect of dependences, but also
holds in intermediate points on the path. The function dep-live-vars n as
collects all variables that can affect the value of a variable used in
node n, the slicing node. Intuitively, dep-live-vars computes a kind
of Live Variables Analysis as described in [80], restricted to only one
path and ignoring those nodes, on which the parameter node is not
(transitively) dependent.

Basically, dependent live variables serve the same purpose as the
relevant variables as introduced in Sec. 3.3.2. However, in the dy-
namic case, just collecting the variables does not suffice. The analy-
sis also has to provide information via which TCFG path we reach the
node where this variable was used, such that no other node in the path
redefines the variable; remember that this node must have a transitive
dependence path to the slicing node. As a variable can be used multi-

94

4.3. CORRECTNESS PROOF

ncur … n' … n

V ∈ Use n'V Def n∉ ? *
d

⎭ ⎪ ⎬ ⎫⎪

⎭ ⎪ ⎬ ⎫⎪⎪⎪⎪ ⎪ ⎪

as
as'

Figure 4.2.: Visualization of (V , as ′) ∈ dep-live-vars n as

1 2 3 4 6 9 10
y:=7 b:=a&&d (b) x:=5+y (c≥3) z:=3*w√ √

a a1 2 a a3 4 a a5 6

z:=x+y

step as = . . . elements in dep-live-vars 10
1 [] {(x,[]),(y,[])}
2 [a6] {(x,[a6]),(y,[a6])}
3 [a5,a6] {(x,[a5,a6]),(y,[a5,a6])}
4 [a4,a5,a6] {(y,[a4,a5,a6]),(y,[])}
5 [a3,a4,a5,a6] {(y,[a3,a4,a5,a6]),(y,[a3]),(b,[])}
6 [a2,a3,a4,a5,a6] {(y,[a2,a3,a4,a5,a6]),(y,[a2,a3])}
7 [a1,a2,a3,a4,a5,a6] {}

Figure 4.3.: Calculation of dep-live-vars for node 10

ple times without being redefined in between, more than one path can
satisfy this condition. Hence, dep-live-vars returns a (variable, edge
list) pair set; i.e., a variable can be in this set multiple times if its reach-
ing path component differs. dep-live-vars carries two parameters, first
the node n for which this calculation is made, and second the edge
list as, which denotes the executed sub-path from the current node
to n (note that dep-live-vars traverses the path from right to left). An
example: (V , as ′) ∈ dep-live-vars n as states that our current position is
the node that reaches n via path as and that a node where V is used
can be reached via edges as ′, on which no node redefines V ; this node
has dependences leading to n. Fig. 4.2 visualizes this construction. By
definition, as ′ is always a prefix of as.

Instead of discussing its concrete rules, Fig. 4.3 shows an example
computation on a trace of the running example. The path edges carry
a label ai, where i ∈ 1. . . 6, and its edge kind in the simplified syntax
as introduced in Fig. 3.8. We assume dependences as depicted in the
PDG in Fig. 3.3 (b), which uses standard control dependence. The

95

CHAPTER 4. CORRECTNESS OF DYNAMIC SLICING

V ∈ Use n ′

(V , []) ∈ dep-live-vars n ′ []

V ∈ Use (src a) src a −a·as ′→cd n ′′ n ′′−as ′′→d∗ n ′

(V , []) ∈ dep-live-vars n ′ (a·(as ′@ as ′′))

(V , as ′) ∈ dep-live-vars n ′ as V ′∈ Use (src a)
n ′= last (trgs (a·as)) src a −{V}a·as ′→dd last(trgs (a·as ′))

(V ′, []) ∈ dep-live-vars n ′ (a·as)

(V , as ′) ∈ dep-live-vars n ′ as
n ′= last (trgs (a·as)) ¬ src a −{V}a·as ′→dd last(trgs (a·as ′))

(V , a·as ′) ∈ dep-live-vars n ′ (a·as)

Figure 4.4.: Formal rules for dep-live-vars

table at the bottom shows the computation step-by-step, traversing
the path right to left. In the first step, we include both variables in
the Use set of node 10, x and y, in the set, each with an empty path
component. This component is prolonged in the next steps 2 and 3, no
new pair is added to the set, as neither node 9 not 6 has a dependence
path leading to 10. Step 4 eliminates all pairs with variable x from the
set but adds a new pair (y,[]), as x is defined and y used in node 4,
which has a data dependence to node 10. Node 3 adds b to the set in
step 5, as this node controls node 4 – hence, due to node 4’s outgoing
data dependence edge there is a dependence path to node 10 – and
uses b. Step 6 eliminates b again, since it is defined in node 2 , which
has a data dependence to node 3. In steps 4 to 6, we kept the y-pairs,
only adjusted the path components, because y was not defined in any
of the visited nodes. Eventually, y is defined in the last step in node 1,
eliminating the last pairs and thus returning the empty set. If you are
interested in the concrete realization, the formal rules for dep-live-vars
can be found in Fig. 4.4.

The induction of the correctness proof needs a relation between de-
pendent live variables and dynamic dependences: as the sliced path
only keeps those edges whose source node has a dynamic dependence
path to the slicing node, the induction invariant dep-live-vars must be
able to determine if such a path exists or not at the current position in
the path. Or short: when do dependent live variables give rise to de-
pendence paths? Suppose we have a pair (V , as ′) in dep-live-vars n as

96

4.3. CORRECTNESS PROOF

and a TCFG path from the target node of a valid edge a leading to n
via edges as. If now V gets defined at the source node of edge a, there
is a dynamic PDG path from src a via edges a·as to n with a leading
data dependence edge for variable V :

Lemma 4.1 Relating Dependent Live Variables and Dependences:

(V , as ′) ∈ dep-live-vars n as
valid-edge a V ∈ Def (src a) trg a −as→∗ n

∃nx as ′′. as = as ′@as ′′∧ src a −{V}a·as ′→dd nx ∧ nx −as ′′→d∗ n

I omit the proof of this lemma, the interested reader can find a proof
sketch in [131], all the details can be found in [128].

This lemma is the key to prove a generalized version of the desired
correctness result: assume a TCFG path n −as→∗ n ′and two bit vectors
bs �b bs ′ the first one the result of slice-path as. Applying slice-path as
to both of them yields edge kind lists es and es ′, respectively. Further-
more we have two states s and s ′ which agree on all variables in the
dep-live-vars set of the slicing node n ′ on edge list as. If while travers-
ing es ′ from initial state s ′ all predicates hold, so do all predicates on
traversing es in initial state s and the values of all used variables in n ′

agree in the final states yielded by both traversals.

Lemma 4.2 Generalized Correctness:
n −as→∗ n ′

bs �b bs ′ slice-path as = bs select-edge-kinds as bs = es
select-edge-kinds as bs ′= es ′ preds es ′ s ′

∀V as ′. (V , as ′) ∈ dep-live-vars n ′ as −→ state-val s V = state-val s ′V
preds es s ∧

(∀V∈Use n ′. state-val (transfers es s) V = state-val (transfers es ′ s ′) V)

Proof. We prove this lemma by induction on bs, where the base case
(bs = [] and thus bs ′ = []) is trivial. In the induction step we know that
since bs is nonempty, path as consists of a (valid) leading edge a ′ and
the tail list as ′. The proof then does the following case analysis: if
traversing edge list as changes one of the values in the Use set of n ′

w.r.t. traversing just the tail edge list as ′, the source node n of the lead-
ing edge a ′ has to define a variable in the dependent live variables set
of n ′, which is reached via as ′ – otherwise no such influence would be
possible. This implies – by Lem. 4.1 above – that there is a PDG path
from n to n ′, hence edge a ′ must be part of the slice, i.e., the first ele-
ment of bs (and thus bs ′, by definition of �b) must be True. If however
traversing edge list as yields the same values in the Use set of n ′w.r.t.

97

CHAPTER 4. CORRECTNESS OF DYNAMIC SLICING

traversing just the tail edge list as ′, the semantic effect of traversing
the leading edge a ′ is irrelevant for the variables used in slicing node
n ′. This proposition, combined with the induction hypothesis and the
well-formedness properties of the TCFG, concludes the proof of this
lemma. ut

Replacing bs ′ with the maximal bit vector w.r.t. �b of the match-
ing size, using the definition of slice-kinds and instantiating s and s ′

with the same state s, the fundamental property is now an easy conse-
quence:

Theorem 4.3 Fundamental Property of Dynamic Path Slicing:

n −as→∗ n ′ preds (kinds as) s
(∀V ∈ Use n ′. state-val (transfers (slice-kinds as) s) V =

state-val (transfers (kinds as) s) V) ∧ preds (slice-kinds as) s

In contrast to the Fundamental Property of Static Slicing (Thm. 3.3),
the original and the sliced path are equal in dynamic slicing – this
comes as no surprise, as we only consider one trace –, whereas in static
slicing, we cannot guarantee both paths being equal.

Provided that the TCFG is also semantically well-formed, Thm. 4.3
can be carried over to the semantics: a statement c evaluated in state s
returns statement c ′ and state s ′. Then there exists a path between the
corresponding nodes of the statements, such that, after traversing the
sliced version of this path, all variables used in the target node have
the same values as in the final state of the semantic evaluation.

Theorem 4.4 Fundamental Property of Semantics and Dynamic Slicing:

n , c 〈c ,s〉 ⇒ 〈c ′,s ′〉
∃n ′ as . n −as→∗ n ′∧ preds (slice-kinds as) s ∧ n ′, c ′∧

(∀V ∈ Use n ′. state-val (transfers (slice-kinds as) s) V = state-val s ′V)

98

Controlling complexity is the
essence of computer program-
ming.

B. Kernigan 5
Correctness of Static

Interprocedural Slicing

In static interprocedural slicing, procedure calls introduce a large num-
ber of new dependences for passing control flow and parameters.
These new kinds of dependences make interprocedural slicing much
more sophisticated than intraprocedural slicing. Two factors are cru-
cial for an interprocedural slice: (i) it should again be as small as pos-
sible, but still correct, and (ii) its computation should be as fast as
possible. Today, the slicing algorithm by Horwitz, Reps, and Binkley
[57] using dependence graphs is the quasi standard for interprocedu-
ral slicing, as (i) it is context-sensitive, i.e., eliminates many spurious
nodes, and (ii) summary edges keep its runtime acceptable. The lat-
ter can be computed efficiently via an improvement by Reps et al. [91].
Evaluation [62, 23, 65, 22] shows that a context-sensitive slice collapses
to half its size, and, thanks to summary edges, computation takes less
than half of the time.

Though the Horwitz-Reps-Binkley algorithm for slicing is widely
used and its correctness was never questioned, there is no formal cor-
rectness proof, neither on paper nor in a proof assistant. Surprisingly,
the literature lacks correctness results for any kind of interprocedural
slicing algorithm which is based on dependence graphs; I remedy this
shortcoming with the work described in the following.

In this chapter, I augment the slicing framework from the previous
chapters with a formalization of system dependence graphs (SDGs)
with summary edges and the slicing algorithm by Horwitz, Reps, and
Binkley (HRB). I show that this slice definition is precise, i.e., every
node in the slice lies on a context-sensitive SDG path from the pro-
gram entry to the slicing node. Furthermore, I provide the first formal

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

proof that HRB slicing is indeed correct. To this end, I lift the weak
simulation property as introduced in Sec. 3.3.2 to the interprocedural
case and show that this new weak simulation property agrees with
the usual understanding of the correctness of interprocedural slicing.
All proofs are again machine-checked, the proof scripts are available
online [129].

5.1 The Slicer of Horwitz, Reps, and Binkley

The algorithm by Horwitz, Reps, and Binkley is based on the interpro-
cedural analogue of the PDG, the system dependence graph (SDG). The
SDG adds the following elements to the PDG:

(i) parameter nodes, which represent the formal and actual in- and
out-parameters of method calls,

(ii) call edges, and

(iii) parameter-in and parameter-out edges, which take care of the
parameter passing.

Parameter-in edges connect the actual parameter nodes of a call site
with the respective formal-in parameter nodes of the called procedure,
parameter-out edges the formal-out parameter nodes of the called pro-
cedure with the actual-out parameter nodes of the call site.

In the intraprocedural case, backward slicing is merely a reachabil-
ity analysis on the PDG. One could easily carry this idea over to SDGs;
however, the resulting slice would contain many spurious nodes, i.e.,
nodes that cannot influence the slicing node. Consider the example
SDG in Fig. 5.1(a): the nodes in the main procedure carry numbers,
the entry node is labelled E. In the called procedure, the nodes carry
Roman numbers, the entry node is labelled e. The small nodes on
the left and the right of nodes 2 and 6 denote the actual-in and -out
parameters of the procedure call, respectively. Analogously, the ones
next to e denote the procedure’s formal parameters; hence, the proce-
dure has exactly one in- and one out-parameter. Solid arrows denote
control, dashed ones data dependences. The dotted arrows identify
call and parameter edges. If we regard node 7 as slicing node and just
perform a reachability analysis, the resulting set would contain all the
nodes that are not greyed out in the SDG in Fig. 5.1(b). This would
mean that we consider that nodes 1 and 2 can possibly influence node

100

5.1. THE SLICER OF HORWITZ, REPS, AND BINKLEY

E

3 4

5
e

i ii

iii iv v

vi

2

6

71

(a) SDG

E

3 4

5
e

i

iii iv v

vi

6

71

ii

2

(b) Reachability analysis

Figure 5.1.: Example SDG and nodes that reach node 7

7. However, the computations in these nodes are irrelevant for the
slicing node, as no information from the procedure call in 2 can prop-
agate to any node after the call. As a mere reachability analysis does
not distinguish between different call contexts, we get these spurious
nodes in the slice.

The slicing algorithm of Horwitz, Reps, and Binkley (HRB algo-
rithm) [57] is context sensitive, i.e., it eliminates such nodes. It makes
sure that the backward traversal in the SDG uses only realizable paths;
on such paths, each called procedure must be left via edges that return
to the previously visited call site. Consider again Fig. 5.1(a) and let
fip be an abbreviation for formal-in, fop for formal-out, aip for actual-
in and aop for actual-out parameter nodes in the following: the path
[3, 4, 6, e, ii, v, vi, fop e, aop 6, 7] is realizable, whereas [1, aip 2, fip e, i,
ii, v, vi, fop e, aop 6, 7] is not; in the latter case, the path enters the
procedure at the call site of 2, but leaves it at the call site of 6.

Summary edges are the key to efficiently compute an interprocedu-
ral, context-sensitive slice. Such an edge connects an actual-in param-
eter node to an actual-out, if there is a realizable dependence path
between the corresponding formal-in and formal-out parameter node
in the called procedure. A summary edge can therefore be seen as a
“shortcut” of the dependence path without descending in the called
procedure.

101

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

3 4

E

5
e

i

iii iv v

vi

2 71

ii

6

Figure 5.2.: Example of a Horwitz-Reps-Binkley slice

The HRB algorithm computes the slice in two phases:

Phase 1: all nodes that reach the slicing node via data and control de-
pendences, summary, call and parameter-in edges (not parameter-
out edges) are added to the slice;

Phase 2: all nodes that reach an actual-out parameter node, which
has been included in the slice in the first phase, via data and
control dependences, summary and parameter-out edges (not
call or parameter-in edges) are inserted in the slice.

This slice is called Horwitz-Reps-Binkley slice, or HRB slice for short.
Since we never descend to a caller in Phase 1 (as we may not follow
parameter-out edges) nor ascend to a callee in Phase 2 (as we may not
follow call or parameter-in edges), we cannot return to a wrong call
site. Summary edges make sure that nodes prior to a call are inserted
in the slice, if necessary.

See Fig. 5.2 for the HRB slice of node 7 in our example SDG. The bold
edge between the aip and aop of node 6 is the necessary summary
edge, as the fip and fop of e in the called procedure are connected
via the dependence path [fip e, i, ii, v, vi, fop e]. Note that a summary
edge also connects the actual parameter nodes of 2 for the same reason;
however, as this edge is not traversed in the algorithm, it is greyed out.
The summary edge at 6 takes care that node 5 is correctly inserted in
the slice. As desired, nodes 1 and 2 are no longer part of the slice.

102

5.2. THE FORMALIZATION

5.2 The Formalization

This section shows the formalization of the required graph structures
for HRB slicing as well as the formalization of HRB slicing itself. As
in the static intraprocedural and dynamic case, the interprocedural
framework again builds on the formalization of an abstract CFG. It
extends the framework from the previous chapters, thus, I only mark
explicit changes and addenda.

5.2.1. The Abstract Interprocedural Control Flow
Graph

In the interprocedural framework, it is not possible to leave the type
of the state completely arbitrary as in the intraprocedural case (where
it was of type ′state). Instead, it has to reflect the fact that called proce-
dures have their own call frame, which stores the value of local vari-
ables and remembers where to return. Thus, in a call frame, a mapping
from variables (or locations) to values should suffice for the local vari-
ables, whereas the type of the return information is left arbitrary via
type variable ′ret. Hence, I define the state as a call stack, i.e., as a list
of call frames:

(′var , ′val) local-vars = ′var ⇀ ′val
(′var , ′val , ′ret) call-frame = (′var , ′val) local-vars × ′ret

(′var , ′val , ′ret) state = (′var , ′val , ′ret) call-frame list

Rather than just two, we now have four different edge kinds:

⇑f : updating the current local variables in the call frame with a func-
tion f,

(Q)√: assuring that a predicate Q holds in the call frame,

Q:r ↪→pfs: calling procedure p if Q holds in the current call frame,
thereby remembering return information r and generating the
new call frame via a list of functions fs (one for each parameter),
and

Q←↩pf : returning from procedure p if Q holds in the current call frame,
with f taking care of the call stack and assigning return values.

The first two denote intraprocedural edges, written intra-kind (kind a).
Note that their functions and predicates no longer take states but call

103

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

locale CFG =

. . .

fixes kind :: ′edge ⇒ (′var , ′val , ′ret , ′pname) edge-kind
fixes get-proc :: ′node ⇒ ′pname
fixes get-return-edges :: ′edge ⇒ ′edge set
fixes procs :: (′pname × ′var list × ′var list) list
fixes Main :: ′pname
. . .

Figure 5.3.: Changes in the locale for the interprocedural abstract CFG

frames as parameters. The predicate of the call edge can model e.g. dy-
namic dispatch, the one of the return edge takes care that the edge
returns to the correct call site – usually with the help of the return
information in the call frame.

Fig. 5.3 and 5.4 depicts the changes from the intra- to the interpro-
cedural CFG locale, keeping all the fixes and assumes from before. The
type of kind has changed due to the new state type. The locale intro-
duces four new elements:

• a function get-proc, which returns for a given node the procedure
of type ′pname lies in;

• a function get-return-edges, which returns for a call edge the set
of return edges that return to its call site;

• an associative list of triples procs, where each triple identifies a
procedure with its name and its in- and out-parameters;

• a special procedure Main, in which program execution starts.

I adopt a standard trick and introduce an additional return node for
every call in the CFG. Hence, each call site consists of a call and corre-
sponding return node; e.g. the source of a call edge a and the targets
of all edges contained in get-return-edges a constitute such a call site
node pair.

As you can see in Fig. 5.4, we need a good deal of structural proper-
ties to achieve what we intuitively consider a standard interprocedu-
ral CFG. In the following, we will look at these rules one by one:

• get-proc-Entry and Entry-no-call state that the program entry is in
the Main method and not the source of a procedure call;

• the Main procedure may neither be called nor returned from, see
Main-no-call-target and Main-no-return-source;

104

5.2. THE FORMALIZATION

. . .

assumes get-proc-Entry: get-proc (-Entry-) = Main
and Entry-no-call : [[valid-edge a ; kind a = Q :r ↪→pfs ; src a = (-Entry-)]]
=⇒ False

and Main-no-call-target : [[valid-edge a ; kind a = Q :r ↪→Mainfs]] =⇒ False
and Main-no-return-source : [[valid-edge a ; kind a = Q←↩Mainf]] =⇒ False
and callee-in-procs :
[[valid-edge a ; kind a = Q :r ↪→pfs]] =⇒ ∃ ins outs . (p , ins , outs) ∈ set procs

and get-proc-intra :
[[valid-edge a ; intra-kind (kind a)]] =⇒ get-proc (src a) = get-proc (trg a)

and get-proc-call : [[valid-edge a ; kind a = Q :r ↪→pfs]] =⇒ get-proc (trg a) = p
and get-proc-return : [[valid-edge a ; kind a = Q←↩pf]] =⇒ get-proc (src a) = p
and call-edges-only: [[valid-edge a ; kind a = Q :r ↪→pfs]] =⇒
∀ a ′. valid-edge a ′∧ trg a ′= trg a −→ (∃Q ′ r ′ fs ′. kind a ′= Q ′:r ′↪→pfs ′)

and return-edges-only: [[valid-edge a ; kind a = Q←↩pf]] =⇒
∀ a ′. valid-edge a ′∧ src a ′= src a −→ (∃Q ′ f ′. kind a ′= Q ′←↩pf ′)

and gre-call : [[valid-edge a ; kind a = Q :r ↪→pfs]] =⇒ get-return-edges a 6= ∅
and only-call-gre :
[[valid-edge a ; a ′∈ get-return-edges a]] =⇒ ∃Q r p fs . kind a = Q :r ↪→pfs

and gre-valid : [[valid-edge a ; a ′∈ get-return-edges a]] =⇒ valid-edge a ′

and call-return-edges : [[valid-edge a ; kind a = Q :r ↪→pfs ;
a ′∈ get-return-edges a]] =⇒ ∃Q ′ f . kind a ′= Q ′←↩pf

and return-needs-call : [[valid-edge a ; kind a = Q←↩pf]] =⇒
∃ !a ′. valid-edge a ′∧ (∃Q ′ r fs . kind a ′= Q ′:r ↪→pfs) ∧ a ∈ get-return-edges a ′

and intra-proc-additional-edge : [[valid-edge a ; a ′∈ get-return-edges a]]
=⇒ ∃ a ′′. valid-edge a ′′∧ src a ′′= trg a ∧ trg a ′′= src a ′∧

kind a ′′= (λcf . False)√
and call-return-node-edge : [[valid-edge a ; a ′∈ get-return-edges a]]
=⇒ ∃ a ′′. valid-edge a ′′∧ src a ′′= src a ∧ trg a ′′= trg a ′∧

kind a ′′= (λcf . False)√
and call-only-one-intra-edge : [[valid-edge a ; kind a = Q ↪→pfs]]
=⇒ ∃ !a ′. valid-edge a ′∧ src a ′= src a ∧ intra-kind (kind a ′)

and return-only-one-intra-edge : [[valid-edge a ; kind a = Q←↩pf]]
=⇒ ∃ !a ′. valid-edge a ′∧ trg a ′= trg a ∧ intra-kind (kind a ′)

and call-unique-target : [[valid-edge a ; valid-edge a ′; kind a = Q1↪→pfs1;
kind a ′= Q2↪→pfs2]] =⇒ trg a = trg a ′

and unique-callers : distinct (map fst procs)
and distinct-formal-ins : (p ,ins ,outs) ∈ set procs =⇒ distinct ins
and distinct-formal-outs : (p ,ins ,outs) ∈ set procs =⇒ distinct outs

Figure 5.4.: Changes in the locale for the interprocedural abstract CFG

105

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

• callee-in-procs guarantees that every call edge calls a procedure
that is present in the procedure list procs;

• get-proc-intra states that source and target node of an intrapro-
cedural edge are in the same procedure. Conversely the target
node of a call edge as well as the source node of a return edge
lie in the respective called or left procedure, see get-proc-call and
get-proc-return;

• rules call-edges-only and return-edges-only guarantee that the tar-
get of a call is reached only by call edges, and that the source of
a return can only be left by other return edges;

• gre-call and only-call-gre state that call edges must and only call
edges can have a nonempty get-return-edges set;

• according to gre-valid and call-return-edges, this set contains only
valid return edges, whose procedure parameter agrees to the re-
spective call;

• return-needs-call guarantees that every return edge matches ex-
actly one valid call edge;

• according to intra-proc-additional-edge and call-return-node-edge,
there exist edges with an unsatisfiable predicate between a pro-
cedure entry and exit as well as between a call and its matching
return node; the former is necessary for control dependences,
remember the required (-Entry-)–(-Exit-) edge from the intrapro-
cedural CFG locale;

• rules call - and return-only-one-intra-edge guarantee that the above
assumed (λcf . False)√-edge which connects call and return node
is the only intraprocedural edge leaving a call node or entering
a return node;

• according to call-unique-target, all calls to the same procedure
reach the same target node;

• unique-callers, distinct-formal-ins and distinct-formal-outs, the re-
maining three rules, state that no procedure occurs twice in the
procedure list, and that the formal-in and -out parameters of ev-
ery procedure are distinct .

Whereas it is not explicit in the abstract CFG, these rules implicitly
define a structure on it, i.e., they define the interplay of the procedures.
Main is the special procedure in which program execution starts; the

106

5.2. THE FORMALIZATION

global entry as well as the global exit are in this method. Procedure en-
tries and exits are implicitly defined as target nodes of call and source
nodes of return edges, respectively. Every node is associated to a pro-
cedure via get-proc.

After defining the structure of the abstract CFG, we will now take
a closer look on its semantics. Function params defined in locale CFG
takes care of the parameter instantiation. It applies a list of functions
fs of type ((′var , ′val) local-vars ⇀ ′val) list as given in a call edge to the
local variables of a call frame, which returns a list with the values of
the instantiated parameters after the call:

params fs lv ≡map (λf . f lv) fs

Functions transfer and pred now work on the new call stack state. If
it is empty, the rules are straightforward:

transfer et [] ≡ [] pred et [] ≡ False

The rules for update and predicate edges are as in the intraproce-
dural case, except that they check and alter only the local variables of
the top call frame instead of the whole state. Call and return edges are
treated as follows:

transfer (Q ↪→pfs) (cf ·cfs) ≡ (empty(ins [:=] params fs cf))·cf ·cfs,
if (p ,ins ,outs) ∈ set procs

transfer (Q←↩pf) (cf ·cfs) ≡ case cfs of []⇒ [] | cf ′·cfs ′⇒ (f cf cf ′)·cfs ′

pred (Q ↪→pfs) (cf ·cfs) ≡ Q cf
pred (Q←↩pf) (cf ·cfs) ≡ Q cf ∧ cfs 6= []

empty(ins [:=] params fs cf) creates a new call frame by assigning
the formal-in parameters ins the values of the parameter instantiation.
Note that the predicates of the call and return edge take the whole
call frame as parameter – not only the local variables as do predicate
edges –, since they also may take the return information into account.
Note also that function f of the return edges is still unspecified; a well-
formedness property will take care of this. The lifting to edge kind
lists, i.e., transfers and preds is straightforward.

In locale CFGExit (see Fig. 5.5), only two rules have to be added,
which mirror the (-Entry-) rules shown above for (-Exit-): get-proc-Exit
and Exit-no-return state that the program exit is in the Main method
and may not be the direct target of a return edge.

107

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

locale CFGExit =

assumes get-proc-Exit : get-proc (-Exit-) = Main
and Exit-no-return : [[valid-edge a ; kind a = Q←↩pf ; trg a = (-Exit-)]] =⇒ False

Figure 5.5.: Changes in locale CFGExit

We also need to extend the well-formedness properties of locale
CFG-wf. We keep those from the intraprocedural case as shown in
Fig. 3.7, but require that in rules no-Def-equal and transfer-only-use, the
edge a under consideration is intraprocedural, i.e., intra-kind (kind a).
Furthermore, instead of states, all rules are adapted to work on call
frames.

Besides Def and Use, locale CFG-wf now also defines two more sets,
ParamDefs and ParamUses, see Fig. 5.6. ParamUses collects all locations
that are used in argument passing at call nodes; intuitively, think of
it as a list of Use sets, one for each argument expression. ParamDefs
consists of the actual-out parameters for return nodes, i.e., the loca-
tions in which the return values are to be stored. Most of the new
well-formedness rules that are shown in Fig. 5.6 reason about these
sets. Note that now state-val s V is instantiated with (fst (hd s)) V, i.e.,
it returns the value of a location V in the local variables in the top call
frame of state s. These are the well-formedness rules:

• the length of the ParamUses of a call node agrees to the length of
the formal-in parameters of the called procedure, see PU-length ;

• the length of the ParamDefs of a return node agrees to the length
of the formal-out parameters of the left procedure, see PD-length ;

• PD-in-Def guarantees that every location in the ParamDefs set of
a node is also in its Def set;

• ins-in-Def states that the formal-in parameters of a procedure are
in the Def set of the target node of a call edge (i.e., the procedure
entry), whereas the Def set of its source node is empty according
to call-Def-empty;

• PU-in-Use requires all locations in any of the sets in ParamUses of
a node to be in the node’s Use set;

• all out-parameters of a procedure are in the Use set of its proce-
dure exit nodes according to outs-in-Use;

• call-length states that the length of the function list of a call edge
and the length of the procedure’s in-parameters agree;

108

5.2. THE FORMALIZATION

locale CFG-wf =

. . .

fixes ParamDefs :: ′node ⇒ ′var list
fixes ParamUses :: ′node ⇒ ′var set list
assumes PU-length : [[valid-edge a ; kind a = Q ↪→pfs ; (p ,ins ,outs) ∈ set procs]]
=⇒ |ParamUses (src a)| = |ins|

and distinct-PD : valid-node n =⇒ distinct (ParamDefs n)

and PD-length : [[valid-edge a ; kind a = Q←↩pf ′; (p ,ins ,outs) ∈ set procs]]
=⇒ |ParamDefs (trg a)| = |outs|

and PD-in-Def : valid-node n =⇒ set (ParamDefs n) ⊆ Def n
and ins-in-Def : [[valid-edge a ; kind a = Q ↪→pfs ; (p ,ins ,outs) ∈ set procs]]
=⇒ set ins ⊆ Def (trg a)

and call-Def-empty: [[valid-edge a ; kind a = Q ↪→pfs]] =⇒ Def (src a) = {}
and PU-in-Use : valid-node n =⇒

⋃
set (ParamUses n) ⊆ Use n

and outs-in-Use : [[valid-edge a ; kind a = Q←↩pf ; (p ,ins ,outs) ∈ set procs]]
=⇒ set outs ⊆ Use (src a)

and call-length :

[[valid-edge a ; kind a = Q ↪→pfs ; (p ,ins ,outs) ∈ set procs]] =⇒ |fs| = |ins|
and call-determ : [[valid-edge a ; valid-edge a ′; src a = src a ′;

kind a = Q ↪→pfs ; kind a ′= Q ′↪→p ′fs
′; pred (kind a) s ; pred (kind a ′) s]]

=⇒ a = a ′

and call-params : [[valid-edge a ; kind a = Q ↪→pfs ; i < |ins|;
(p ,ins ,outs) ∈ set procs ; pred (kind a) s ; pred (kind a) s ′;
∀V ∈ (ParamUses (src a))[i]. (hd s) V = (hd s ′) V]]

=⇒ (params fs (fst (hd s)))[i] = (params fs (fst (hd s ′)))[i]
and return-fun : [[valid-edge a ; kind a = Q←↩f ′p; (p ,ins ,outs) ∈ set procs]]
=⇒ f ′ lv lv ′= lv ′(ParamDefs (trg a) [:=] map lv outs)

Figure 5.6.: Changes in locale CFG-wf

• predicates of all call edges from the same call node do not over-
lap, see equal-Use-equal-Call ;
• call-params guarantees that for two states which fulfil the predi-

cate of a call edge and which agree on the values of all variables
in the ParamUses of the call node for an index i, the value as-
signed to the i th parameter also agrees for both top call frame of
those states;
• return-fun requires that the function of a return edge passes the

return values to the call frame before the call, i.e., it updates the
locations where these values are to be stored with the value of
the respective out-parameter in the top call frame within the pro-
cedure. This construction avoids cyclic dependences: defining

109

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

the effect of return function f directly in transfer in locale CFG
would require the notion of ParamDefs, which is not introduced
until in CFG ’s sublocale CFG-wf, whose assumptions however
require the definition of transfer.

5.2.2. Valid Control Flow Paths
Again, locale CFG defines the notion of paths in the CFG. In the in-
traprocedural case, paths were a mere concatenation of matching edges.
The interprocedural CFG needs more specific definitions for:

(i) intraprocedural paths,

(ii) valid paths, i.e., paths that can actually be taken in a program
run,

(iii) same level paths, i.e., valid paths that may only ascend in called
procedures and return to the procedure in which they started.

Intraprocedural Paths

Defining intraprocedural paths, for which we write −→i∗, is easy: ev-
ery edge in the path must be intraprocedural.

n −as→i∗ n ′≡ n −as→∗ n ′∧ (∀ a ∈ set as . intra-kind (kind a))

Every subpath of an intraprocedural path is again intraprocedural.
Two lemmas guarantee that intraprocedural paths may be appended
and that its source and target node reside in the same procedure:

n −as→i∗ n ′′ n ′′−as ′→i∗ n ′

n −as@as ′→i∗ n ′
n −as→i∗ n ′

get-proc n = get-proc n ′

Valid Paths

Valid paths capture the effect of context-sensitivity: called procedures
must return to its previously visited call site. Therefore, if there is a
return edge in a valid path, it must match the call edge taken to enter
this procedure in the prefix of the path, if such a call edge is present
(i.e., a valid path is allowed to return from procedures that have not
been entered in the path before). Fig. 5.7 shows some examples of
paths that are valid. As only valid paths correspond to actual program

110

5.2. THE FORMALIZATION

(a) Path example

(b) Ascending paths

(c) Descending paths

(d) “Bracket” path

(e) “V-shaped” path

Figure 5.7.: Examples of valid paths

executions, they will be of utmost importance in the interprocedural
fundamental property of slicing.

While the structure of valid paths seems to be related to bracket
grammars, I refrained from defining them in this manner. Instead, I
use a predicate valid-path that identifies suffixes of valid paths using a
stack of call edges. As this predicate is defined by primitive recursion
on the edge list followed by a case distinction on the edge kind of the
first edge, it works well with the usual list induction as commonly
used in proofs.

valid-path cs as states that if the traversal of a path prefix resulted in
a stack of call edges cs, i.e., calls to procedures that have not yet been
left, and the path suffix is as, the whole path is valid. Basically, we
push leading call edges onto the call edge stack and check for return
edges if they match the top element of the call edge stack. The formal
rules for valid-path can be found in Fig. 5.8.

111

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

valid-path cs []

intra-kind (kind a) valid-path cs as

valid-path cs (a·as)

kind a = Q ↪→pfs valid-path (a·cs) as

valid-path cs (a·as)

kind a = Q←↩pf
valid-path [] as

valid-path [] (a·as)

kind a = Q←↩pf
a ∈ get-return-edges c ′ valid-path cs ′ as

valid-path (c ′·cs ′) (a·as)

Figure 5.8.: Recursive rules for valid paths

A path is a valid path, written −→√∗, if the following holds:

n −as→√∗ n ′≡ n −as→∗ n ′∧ valid-path [] as

Contrary to intraprocedural paths, valid paths may not be appended
arbitrarily, as appending an ascending and a descending path could
violate context-sensitivity; however, splitting a valid path results only
in valid paths.

Same Level Paths

Same level paths are context-sensitive CFG paths that begin and end
in the same initial procedure, which is never left in between. Hence,
same level paths form a subset of valid paths; the only same level path
in Fig. 5.7 is the “bracket” path in subfigure (d).

Again, a predicate same-level-path defines same level paths. Its rules
agree to the ones of valid-path as shown above, without the return rule
with an empty stack of call edges, since it is not allowed to return
from the initial procedure. While same-level-path guarantees the lat-
ter and that the path is context-sensitive, it cannot make sure that the
path returns again to the procedure in which it started, e.g. see Fig. 5.7
(b). This would be the case if the call edge stack has been processed
completely. Hence, I define a function upd-cs which takes a call edge
stack and a path as parameters and returns the final call edge stack
which mirrors all the changes applied in the traversal of the path. So,
if upd-cs [] as = [] holds, we know that traversing path as ended in the
same procedure in which it began. Finally, we can define same level
paths, for which we write −→sl∗, as:

n −as→sl∗ n ′≡ n −as→∗ n ′∧ same-level-path [] as ∧ upd-cs [] as = []

112

5.2. THE FORMALIZATION

Appending same level paths leads again to same level paths; yet,
splitting them does not result in same level paths. Source and target
node of a same level path lie in the same procedure.

n −as→sl∗ n ′′ n ′′−as ′→sl∗ n ′

n −as@as ′→sl∗ n ′
n −as→sl∗ n ′

get-proc n = get-proc n ′

Relations between Paths

These three kinds of paths are related like this:

n −as→i∗ n ′=⇒ n −as→sl∗ n ′=⇒ n −as→√∗ n ′

Naturally, the converse directions do not hold. However, as we can
shortcut every procedure call with the intraprocedural edge required
by rule call-return-node-edge in locale CFG, we can prove that for every
same level path there is an intraprocedural path which connects the
same nodes using a subset of the former’s edges:

Lemma 5.1 From Same Level Paths to Intraprocedural Paths:
n −as→sl∗ n ′

∃ as ′. n −as ′→i∗ n ′∧ set (srcs as ′) ⊆ set (srcs as)

While valid paths may not be appended, we may however append
a same level path as a prefix or suffix to a valid path and receive again
a valid path:

n −as→sl∗ n ′′ n ′′−as ′→√∗ n ′

n −as@as ′→√∗ n ′
n −as→√∗ n ′′ n ′′−as ′→sl∗ n ′

n −as@as ′→√∗ n ′

Finally, using the above lemmas and several more, we can prove
that every valid path beginning in (-Entry-) gives rise to an ascending
path, i.e., a path which contains only intraprocedural and call edges,
between the same nodes. Analogously, for every valid path which
ends in (-Exit-) there exists a descending path with only intraprocedu-
ral and return edges:

(-Entry-) −as→√∗ n

∃ as ′. (-Entry-) −as ′→√∗ n ∧ set(srcs as ′) ⊆ set(srcs as) ∧
(∀ a ′∈ set as ′. intra-kind (kind a ′) ∨ (∃Q r fs p . kind a ′= Q :r ↪→pfs))

n −as→√∗ (-Exit-)

∃ as ′. n −as ′→√∗ (-Exit-) ∧ set(srcs as ′) ⊆ set(srcs as)
(∀ a ′∈ set as ′. intra-kind (kind a ′) ∨ (∃Q f p . kind a ′= Q←↩pf))

113

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

5.2.3. System Dependence Graph
Instead of constructing a PDG for every procedure and connecting
them with call and parameter edges to obtain the SDG, I construct the
SDG itself immediately; since we have a CFG for the complete pro-
gram, not one for each separate procedure, this is a natural approach.

The definitions in this section are all subsumed in locale SDG, which
extends locales CFGExit-wf and Postdomination. CFGExit-wf is again
the bottom locale of the CFG locales diamond as in the intraprocedural
case, cf. Fig. 3.5. Postdomination agrees to the intraprocedural locale as
shown in Fig. 3.9, except that now a postdominator for a node lies on
all intraprocedural paths from this node to the procedure exit, not the
global exit. SDG also provides the context in which the precision and
correctness proofs (see Sec. 5.3) are carried out.

SDG nodes

The SDG reuses the nodes of the CFG, but also introduces new nodes
for actual and formal in- and out-parameters. The former are prefixed
with CFG-node, the latter carry a tuple parameter (m ,x), where m de-
notes the corresponding CFG call or return node and x is a numerical
index to distinguish between parameters for calls with multiple in-
and/or out-parameters. Actual-in nodes belong to call, Actual-out to
return nodes, Formal-in to procedure entry and Formal-out to proce-
dure exit nodes.

For every SDG node n, bncCFG returns the “parent” CFG node, i.e.,
for lifted CFG nodes just the “unlifted node”, and for parameter nodes
the CFG node which they carry as parameter.

Analogously to valid-node, there is a predicate valid-SDG-node that
guarantees that the respective SDG node is indeed valid. Effectively,
it checks for every parameter node that the numerical index is smaller
than the number of the respective formal-in or -out parameters; more-
over, for all nodes the parent node has to be a valid CFG node.

Dependences

The edges of the SDG can be divided in two subclasses: edges that
occur only within procedures and edges between procedures. Control
and data dependence edges fall into the former category; they will be
the focus of this section. For the respective intraprocedural definitions
see Sec. 3.2.2.

114

5.2. THE FORMALIZATION

In the SDG, locations are also defined and used at call sites due to
argument passing. Hence, we need analogous notions of Def and Use
sets for SDG nodes; I call them Def SDG and UseSDG. For a CFG-node,
these sets contain the same elements as the Def and Use sets of its
parent node.

Parameter nodes have to take care that the parameters are defined
and used where necessary. Each formal parameter is either defined
in its respective formal-in or used in its formal-out parameter node.
The i th actual-in parameter node uses all locations in its i th ParamUses
entry, while every actual-out node defines the respective element of its
ParamDefs list.

Data dependence is basically defined as in the intraprocedural case,
but connects SDG instead of CFG nodes: a node n ′ is data dependent
on node n, if location V is defined in n and used in n ′ and the par-
ent nodes of n and n ′ are connected via an intraprocedural CFG path,
such that no other valid node n ′′whose parent node is on the path re-
defines V. As dependences between parameter nodes and their parent
nodes are allowed, we drop the requirement that this path has to be
nonempty; regrettably, along with the explicit conversion from SDG
to CFG nodes, this makes the formal definition harder to read:

n influences V in n ′≡
∃ as . V ∈ Def SDG n ∧ V ∈ UseSDG n ′∧ bncCFG −as→i∗ bn ′cCFG ∧
(∀n ′′. valid-SDG-node n ′′∧ bn ′′cCFG ∈ set (srcs (tl as)) −→ V /∈ Def SDG n ′′)

Parameter nodes are not affected by control dependences. As they
are not part of the CFG, their execution can neither influence the exe-
cution of other nodes nor are they directly influenced by the execution
other nodes. In the latter case, they are only executed if their corre-
sponding parent CFG node is executed. Hence, it suffices to define
control dependence on CFG nodes. I define standard control depen-
dence as in the intraprocedural case:

n controls n ′≡ ∃ a a ′ as . n −a·as→i∗ n ′∧ n ′ /∈ set (srcs (a·as)) ∧
intra-kind (kind a) ∧ n ′ postdominates trg a ∧ valid-edge a ′∧
intra-kind (kind a ′) ∧ ¬ n ′ postdominates trg a ′∧ src a ′= n

Contrary to the intraprocedural case, I had to pin down the con-
trol dependence definition in the SDG, as other control dependence
definitions either lead to non-local additions of dependences, or their

115

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

interprocedural meaning is not quite clear. Termination sensitive con-
trol dependences like weak control dependence by Podgurski and Clarke
[88] would render all nodes after the return node of a possibly non-
terminating procedure – due to endless recursion or loops – control
dependent on the return node of this procedure. Thus, the frame-
work cannot be modularized for control dependence as easily as in
the intraprocedural case, so I refrained from integrating such control
dependences; integration would be possible with some changes to the
framework, yet yielding a different SDG formalization. Adapting the
interprocedural framework for non-binary control dependences such
as weak order dependence by Amtoft [3] requires more insight into what
such dependences mean in the presence of procedures. Other works
define interprocedural control dependences across procedure bound-
aries, e.g. see [106]; however, as this approach is not context-sensitive
at all, it is not applicable for HRB slicing.

SDG edges

As the definition of summary edges requires dependence paths, I first
define an SDG with just the usual dependence edges. Thereafter, the
notions of matched and realizable paths in this SDG are introduced,
which finally help in defining a complete SDG with summary edges.

Fig. 5.9 shows the formal rules for the SDG edges, they define the
following edges:

• data dependence n −V→dd n ′, if n influences V in n ′;
• control dependence n −→cd n ′, if (i) n and n ′ are lifted CFG nodes

and bncCFG controls bn ′cCFG holds, or (ii) n ′ is a parameter node
attached to n, or (iii) n is the entry and n ′ the exit node of the
same procedure;
• call n −p→call n ′, if n is a call node and n ′ the corresponding entry

node of procedure p;
• return n −p→ret n ′, if n is the exit node of procedure p and n ′ the

return node at a matching call site of p;
• parameter-in n −p :V→in n ′, if V is the i th formal-in parameter, n

the i th actual-in and n ′ the i th formal-in parameter node of the
respective call of p;
• parameter-out n −p :V→out n ′, if V is the i th formal-out parame-

ter, n the i th formal-out and n ′ the i th actual-out parameter node
of the respective return from p.

116

5.2. THE FORMALIZATION

n influences V in n ′

n −V→dd n ′
dd

m controls m ′

CFG-node m −→cd CFG-node m ′ cd(i)

valid-SDG-node n ′ n = CFG-node bn ′cCFG n 6= n ′

n −→cd n ′
cd(ii)

valid-edge a kind a = Q :r ↪→pfs a ′∈ get-return-edges a

CFG-node (trg a) −→cd CFG-node (src a ′)
cd(iii)

valid-edge a kind a = Q :r ↪→pfs

CFG-node (src a) −p→call CFG-node (trg a)
call

valid-edge a kind a = Q←↩pf

CFG-node (src a) −p→ret CFG-node (trg a)
ret

valid-edge a
kind a = Q :r ↪→pfs (p , ins , outs) ∈ set procs V = ins[x]

Actual-in (src a ,x) −p :V→in Formal-in (trg a ,x)
in

valid-edge a
kind a = Q←↩pf (p , ins , outs) ∈ set procs V = outs[x]

Formal-out (src a ,x) −p :V→out Actual-out (trg a ,x)
out

Figure 5.9.: Formal rules for edges in the SDG

SDG paths

The dependence edges can now be assembled into various depen-
dence paths. For example n i−ns→d∗ n ′denotes an intraprocedural de-
pendence path, i.e., which uses only data and control dependences, or
n cc−ns→d∗ n ′ represents a dependence path which uses only (SDG)
call and control dependence edges; ns in both paths collects all nodes1

visited on these paths. One important lemma concerning these paths
shows that (-Entry-) reaches every valid SDG node via a call-control-
dependence path:

valid-SDG-node n parent-node n 6= (-Exit-)

∃ns . CFG-node (-Entry-) cc−ns→d∗ n

1In CFG paths, we collect edges as we are interested in their semantic effect. In
SDG paths, we are merely interested in reachability properties, hence collecting
nodes is sufficient.

117

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

valid-SDG-node n
matched n [] n

M1
matched n ns n ′′ n ′′ i−ns ′→d∗ n ′

matched n (ns @ ns ′) n ′
M2

matched n0 ns n1 n1 −p→call n2 matched n2 ns ′ n3

n3 −p→ret n4 ∨ n3 −p :V→out n4 call-of-return-node bn4cCFG bn1cCFG

matched n0 (ns @ [n1] @ ns ′@ [n3]) n4

M3
matched n0 ns n1 n1 −p :V→in n2 matched n2 ns ′ n3

n3 −p :V ′→out n4 call-of-return-node bn4cCFG bn1cCFG

matched n0 (ns @ [n1] @ ns ′@ [n3]) n4

M4

matched n ns n ′

realizable n ns n ′
R1

realizable n0 ns n1

n1 −p→call n2 ∨ n1 −p :V→in n2

matched n2 ns ′ n3

realizable n0 (ns @ n1·ns ′) n3

R2

Figure 5.10.: Formal rules for matched and realizable

To determine the summary edges, which are indispensable for ef-
ficient context-sensitive interprocedural slicing, we need to formalize
realizable paths in the SDG, i.e., paths on which a finished procedure
call always returns to the site of the most recently executed unmatched
call. Analogously to [91], where this is done using a grammar, we
define a predicate matched describing same-level realizable SDG paths.
matched n ns n ′ states that there is a context-sensitive SDG path from
node n to n ′, visiting nodes ns on its way; it can be viewed as the
SDG analogue to same-level paths in the CFG. The formal rules for
matched are shown in Fig. 5.10. Rules M3 and M4 are mostly identical,
they describe a matched path via a call edge and a parameter-in edge,
resp. Predicate call-of-return-node n n ′ determines for a return node n
its matching call node n ′; basically, it uses get-return-edges to determine
this. The predicate realizable describes general realizable paths and is
easily defined using matched, see rules R1 and R2 in Fig. 5.10.

Fig. 5.11 (a) depicts a variation of the example SDG from the begin-
ning, but how it would be formalized in the framework: nodes 2 and
6 are split in a call and return node each, the latter are labeled with an
additional ′ and reached from return edges that originate in the newly
introduced method exit node x of the called procedure. The actual-out
parameter nodes are now attached to the new return nodes instead of

118

5.2. THE FORMALIZATION

E

3 4

5

e

i ii

iii iv v

vi

2

6

71 2'

6'

x

(a) Adapted SDG example

E

3 4

5

e

i ii

iii iv v

vi

2

6

71 2'

6'

x

(b) A matched path

E

3 4

5

e

i ii

iii iv v

vi

2

6

71 2'

6'

x

(c) A realizable path

Figure 5.11.: Examples for a matched and a realizable path

the call nodes. The only semantical change is an additional data de-
pendence edge between the actual-out parameter node at return node
2 ′ and node 3. Subfigures (b) and (c) now show a matched and a real-
izable path example in this graph. Both include a complete traversal
of the called procedure, but whereas the former starts and ends in the
Main method, the latter calls the procedure again.

Summary edges

Now, we have the means to define the SDG with summary edges
−p→sum. They are drawn in two cases at a call site of procedure p:
(i) connecting the call node and its respective return node, and (ii) con-
necting an Actual-in with an Actual-out parameter node, if the match-
ing Formal-in and Formal-out parameter nodes in procedure p are con-
nected via a matched path. The formal rules can be found in Fig. 5.12.

valid-edge a kind a = Q ↪→pfs a ′∈ get-return-edges a

CFG-node (src a) −p→sum CFG-node (trg a ′)
sum(i)

valid-edge a kind a = Q ↪→pfs a ′∈ get-return-edges a
matched (Formal-in (trg a ,x)) ns (Formal-out (src a ′,x ′))

(p ,ins ,outs) ∈ set procs x < |ins| x ′< |outs|
Actual-in (src a ,x) −p→sum Actual-out (trg a ′,x ′)

sum(ii)

Figure 5.12.: Formal rules for summary edges in the SDG

119

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

5.2.4. Formalizing the Horwitz-Reps-Binkley Slicer

As already mentioned in Sec. 5.1, the slicing algorithm by Horwitz,
Reps, and Binkley works in two phases: First, beginning at the slic-
ing node n, we traverse backwards all intraprocedural dependence,
call, parameter-in and summary edges, but no return or parameter-
out edges, and insert all visited nodes into the slice. Second, begin-
ning at all actual-out and return nodes visited in Phase 1, we traverse
all intraprocedural dependence, return, parameter-out and summary
edges, but no call or parameter-in edges, and again include all visited
nodes in the slice. This approach guarantees a context-sensitive slice;
for more details see [57, 91].

In Isabelle, I use two sets sum-SDG-slice1 n and sum-SDG-slice2 n to
formalize this. They collect the nodes of the transitive hull of the edges
traversed in Phase 1 and 2, respectively, beginning at node n. The fol-
lowing definitions are not pure Isabelle, but simpler and more intu-
itive:

sum-SDG-slice1 n = {n ′. n ′−→{cd ,dd ,call ,in,sum}∗ n}
sum-SDG-slice2 n = {n ′. n ′−→{cd ,dd ,ret ,out ,sum}∗ n}

The slice of node n is the set HRB-slice n, defined via the following
rules:

n ′∈ sum-SDG-slice1 n
n ′∈ HRB-slice n

n ′′∈ sum-SDG-slice1 n
n ′′′−p→ret CFG-node bn ′′cCFG n ′∈ sum-SDG-slice2 n ′′

n ′∈ HRB-slice n

Each of these rules takes care of one phase, i.e., that all of the nodes
collected in this phase are actually included in the slice. Note that the
premise n ′′′−p→ret CFG-node bn ′′cCFG guarantees that CFG-node bn ′′cCFG

is an SDG return node, so n ′′ is either itself the return node or one of
its Actual-out parameter nodes.

5.3 The Proofs

I verified the above formalization of the Horwitz-Reps-Binkley slicing
algorithm in two respects: precision and correctness.

120

5.3. THE PROOFS

5.3.1. Precision
A slicing algorithm is precise, if the computed slice indeed contains
exactly the nodes that should be included in it. Or, as Reps et al. put
it in [91]: ”An interprocedural-slicing algorithm is precise up to realizable
paths if, for a given vertex v, it determines the set of vertices that lie on
some realizable path from the entry vertex of the main procedure to v.” Note
that this does not consider possible influence; this will be looked at
in the correctness proof. Formalizing this in Isabelle/HOL we get the
following:

Theorem 5.2 Precision of the Horwitz-Reps-Binkley Slicing Algorithm:

valid-SDG-node n ′ n 6= n ′

(n ∈ HRB-slice n ′) = (∃ns . realizable (CFG-node (-Entry-)) ns n ′∧ n ∈ set ns)

Proof. I show the implication from left-to-right via a case distinction
on the derivation of n ∈HRB-slice n ′. Each case identifies one algorithm
phase and uses two auxiliary lemmas:

(i) n ∈ sum-SDG-slice1 n ′ induces a path from CFG-node (-Entry-) to
n ′, which only contains the edges traversed in Phase 1 (written
ics−ns→d∗) and visits n, and from this path a realizable path be-
tween the same nodes follows, which visits at least all the nodes
in ns:

n ∈ sum-SDG-slice1 n ′ n 6= n ′

∃ns . CFG-node (-Entry-) ics−ns→d∗ n ′∧ n ∈ set ns

n ics−ns→d∗ n ′

∃ns ′. realizable n ns ′ n ′∧ set ns ⊆ set ns ′

(ii) sum-SDG-slice2 n ′ is indeed the transitive closure of the edges tra-
versed in Phase 2, and the respective path (written irs−ns→d∗)
from a node n in this set induces a realizable path from CFG-node
(-Entry-) to n ′, on which n lies:

n ∈ sum-SDG-slice2 n ′ valid-SDG-node n ′

∃ns . n irs−ns→d∗ n ′

n irs−ns→d∗ n ′ n 6= n ′

∃ns ′. realizable (CFG-node (-Entry-)) ns ′ n ′∧ n ∈ set ns ′

121

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

1 int main() {
2 a := 13;
3 b := f(5);
4 c := g(a);
5 print c;
6 }

7 int f(int v) {
8 int w := g(v);
9 return 2*w;

10 }

11 int g(int x) {
12 int y := x + 7;
13 return y;
14 }

11

12

7 8 8' 9

2 3 3' 4 4' 51main

f

g

6

13

Figure 5.13.: Example exhibiting problems when determining silent
moves

In contrast, the implication from right-to-left is merely an easy in-
duction on the rules of realizable:

realizable n ns n ′ n ′′∈ set ns
n ′′∈ HRB-slice n ′

Combining both directions concludes the proof of the precision theo-
rem. ut

5.3.2. Correctness
Amtoft’s approach to showing slicing correct via a simulation prop-
erty of two labelled transition systems (LTS, cf. Sec. 3.3.1) seems not to
be restricted to the intraprocedural case; yet, I am not aware of prior
approaches that use it for interprocedural evidence. In the remainder
of this section, I will show how I lifted the weak simulation so that cor-
rectness can again be proved, and which adaptions to the definitions
from Sec. 3.3.2 are necessary for that.

Naively, we could consider to again use a (node, state) pair for
the LTS states as in the intraprocedural case and use edges, whose
source nodes are in the slice, as labels. But, in the interprocedural
case, just determining if the source node of an edge is in the slice is
not sufficient to distinguish between a silent and observable move.
We rather have to take the whole call history into account, the exam-
ple in Fig. 5.13 shows why. At the top, we see the source code of a

122

5.3. THE PROOFS

simple program, below its CFG. The nodes that are greyed out are not
part of the slice for the print c; statement in the main procedure,
whose corresponding node 5 is shown in black. The question is now:
Is traversing the outgoing edge of the grey node 12 – i.e., statement
int y := x + 7; in procedure g – a silent move or not? According
to the intraprocedural definitions, this traversal would be observable.
This means that the sliced graph has to traverse this edge whenever
the original graph does. However, look at the bold arrow depicting a
valid path in the original CFG: it reaches procedure g via procedure
f, whose call node 3 is not part of the slice, though. Hence, the corre-
sponding path in the sliced graph would never descend in procedure
f, but remain in main, so the sliced graph can not simulate traversing
the outgoing edge of node 12 in this case. However, when visiting the
grey node the second time, after main having directly called g, this
call in node 4 is part of the slice, hence both traversals in the original
and the sliced CFG have to include the edge after the grey node – this
time, this move has to be observable.

Hence, the moves as well as the weak simulation itself use a node
list instead of just one node. Analogously to a call stack, every node
in this node stack identifies the call site visited at that point. We will
return to this topic in the next subsection.

Observable Sets

Recall that an observable set collects all elements which can be the
source of the next observable transition. Interprocedurally, the pa-
rameter as well as the elements in the set are now node stacks. We
first define obs-intra analogously to obs in the intraprocedural case
(see Sec. 3.3.2): obs-intra n S collects for a node n all nodes n ′ reach-
able from n via an intraprocedural path, such that n ′ is in a set S, but
no other node on this path.

The observable set of a node stack n·ns, i.e., obs (n·ns) S, is then de-
termined recursively on this list: if obs-intra of n is empty or there is
at least one node in ns, such that the respective node of the call site
is not in S, we calculate obs recursively on the remainder of the list.
Otherwise, the observable sets consists of all call stacks n ′·ns where n ′

is in obs-intra n S.
In the previous subsection, I introduced node stacks which collect

call sites, but did not give a complete definition. As a call site in
the CFG can be identified by either the call or the return node, we

123

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

7 8 9

3 4' 6

1 2' XE

54

2

Figure 5.14.: A CFG example for observable set computation

have to decide which of the two suits best to be collected in the node
stack. Intuitively, the call node seems a good choice. However, this
would result in observable sets that are not only counter-intuitive, but
will be obstructive in the definition of the weak simulation. Consider
Fig. 5.14: all nodes that are not greyed out are in the slice S of the black
node 8; this includes both call nodes 2 and 4, but not the return nodes
2 ′ and 4 ′. The observable set of the grey node 5 in the slice in this call
context would then be determined via obs (5·[2]) S, which yields {2}. As
5 cannot even reach node 2, this seems strange; moreover, as 5 lies be-
hind slicing node 8, we would expect an empty observable set. Thus,
collecting call nodes in the node stack is not the right choice.

However, if we determine that the return nodes of a call site identify
the call site, we do not run into these problems. In the above exam-
ple, the observable set of 5 in this calling context is obs (5·[2 ′]) S, which
yields the empty set as desired, as 2 ′ is not in slice S.

Whenever a return node is in a slice, its matching call node is also
included; the converse does not hold, as we have just seen in the ex-
ample. Hence, choosing return nodes is the right option, thus a node
stack consists – except for the top node – of the return nodes of the call
sites just visited. Predicate return-node identifies return nodes; recall
that predicate call-of-return-node n n ′determines for a return node n its
call node n ′.

As the interprocedural framework features only standard control
dependence, I do not assume that the observable set in the slice for
every node is at most a singleton, but prove it directly. Lifting b cCFG to
node sets such that it returns for every SDG node set the set of its CFG
“parent” nodes, the first lemma concerns observable nodes within a
procedure (the proof is along the lines of the proof for standard control
dependence as sketched in Sec. 3.3.3):

124

5.3. THE PROOFS

valid-node n

(∃n ′. obs-intra n bHRB-slice nccCFG = {n ′}) ∨ obs-intra n bHRB-slice nccCFG = ∅

Then, proving an equivalent lemma for obs is easy: we just have to
make sure that the node stack – without the top node – consists of
return nodes as illustrated above:

ns ′∈ obs ns bHRB-slice nccCFG ∀n ∈ set (tl ns). return-node n

obs ns bHRB-slice nccCFG = {ns ′}

The Statically Sliced Graph

Analogously to the intraprocedural case, the sliced CFG consists of the
same nodes and edges as the original CFG, but a new mapping from
edges to their semantic effect via slice-kind is introduced.

As in rule SK1 in Fig. 3.14 in Sec. 3.3.2, I keep both intraprocedural
edge kinds in the sliced CFG if their respective source node is in the
slice. Moreover, I still replace update edges with ⇑id if it is not, as
it is done in rule SK2. The rules for replacing predicate edges with a
no-op, however, need to be adjusted: if the source node of the edge
has no observable node in this procedure, it is no longer sufficient to
arbitrarily determine one of its outgoing edges to hold in the sliced
CFG, whereas all other edges do not hold. We now have to make
sure that, even in such cases, there is a path to the procedure exit in
the sliced CFG, which can be traversed in any state. To this end, I keep
rules SK3-5, just replacing obs with obs-intra, but replace rules SK6 and
SK7 from Fig. 3.14 by new rules SK6-8 as shown in Fig. 5.15: they
mirror the effect of rules SK3-5, but instead of the shortest distance
to the next node in the observable set – which is now empty –, they
take the distance to the procedure exit of the current procedure into
account. Procedure exits and the global exit are identified by predicate
method-exit.

For call and return edges, we need new rules altogether. If the source
node of an edge is not in the slice, we replace the edge kind with a no-
op effect. The no-op for call looks as follows: (λcf . False):r ↪→pfs, we
just replace the predicate with one that is never satisfiable. For return
edges, the sliced edge kind is equally simple: (λcf . True)←↩p(λcf cf ′. cf ′),
with a predicate that is always satisfiable (making the proofs much
easier than the unsatisfiable λcf . False) and a function that discards the
call frame of the procedure, hence restores the state before the call.

125

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

src a /∈ bHRB-slice nccCFG obs-intra (src a) bHRB-slice nccCFG = ∅
kind a = (Q)√ method-exit mex get-proc (src a) = get-proc mex

distance (trg a) mex x distance (src a) mex (x + 1)

trg a = (SOME n . ∃ a ′. src a = src a ′∧ distance (trg a ′) mex x ∧
valid-edge a ′∧ intra-kind (kind a ′) ∧ trg a ′= n)

slice-kind nc a = (λs . True)√
SK6

src a /∈ bHRB-slice nccCFG obs-intra (src a) bHRB-slice nccCFG = ∅
kind a = (Q)√ method-exit mex get-proc (src a) = get-proc mex

distance (trg a) mex x distance (src a) mex (x + 1)

trg a 6= (SOME n . ∃ a ′. src a = src a ′∧ distance (trg a ′) mex x ∧
valid-edge a ′∧ intra-kind (kind a ′) ∧ trg a ′= n)

slice-kind nc a = (λs . False)√
SK7

src a /∈ bHRB-slice nccCFG obs-intra (src a) bHRB-slice nccCFG = ∅
kind a = (Q)√ method-exit mex get-proc (src a) = get-proc mex

¬ distance (trg a) mex x distance (src a) mex (x + 1)

slice-kind nc a = (λs . False)√
SK8

Figure 5.15.: New rules for the slice-kind nc of predicate edges with
empty obs-intra

If the source node of a call or return edge is in the slice, it may
nonetheless be necessary to adapt its edge kind, if one or more of its
corresponding parameter nodes are not in the slice. With call edges,
only those formal parameters whose Formal-in is in the slice get as-
signed the passed argument value in the new call frame; otherwise,
the parameter is not initialized. Similarly with return edges, only
those return variables whose Actual-out is in the slice get assigned
the return value, the other variables keep the value from before the
call. The auxiliary functions cspp (for “call slice parameter passing”)
and rspp (for “return slice parameter passing”) modify the parameter
passing functions of call and return edges to take care of this.

Fig. 5.16 shows the formal rules for the slice-kind of call and return
edges. Instead of the concrete definitions for cspp and rspp, I present
some lemmas that clarify their behaviour at the top. Together with the
new rules for predicate edges, these rules guarantee that “slicing out”
a call node makes the intraprocedural “shortcut” to the return node
traversable in any state:

126

5.3. THE PROOFS

x < |fs| Formal-in (m ,x) /∈ S

(cspp m S fs)[x] = empty

x < |fs| Formal-in (m ,x) ∈ S

(cspp m S fs)[x] = fs[x]

x < |Param-Defs (trg a)|
valid-edge a |Param-Defs (trg a)| = |xs| Actual-out (trg a ,x) ∈ S

(rspp (trg a) S xs f g) ((Param-Defs (trg a))[x]) = g(xs[x])

x < |Param-Defs (trg a)|
valid-edge a |Param-Defs (trg a)| = |xs| Actual-out (trg a ,x) /∈ S

(rspp (trg a) S xs f g) ((Param-Defs (trg a))[x]) = f ((Param-Defs (trg a))[x])

src a /∈ bHRB-slice nccCFG kind a = Q :r ↪→pfs

slice-kind a = (λcf . False):r ↪→pfs

src a ∈ bHRB-slice nccCFG kind a = Q :r ↪→pfs

slice-kind a = Q :r ↪→p(cspp (trg a) (HRB-slice nc) fs)

src a /∈ bHRB-slice nccCFG kind a = Q←↩pf

(λcf . True)←↩p(λcf cf ′. cf ′)

src a ∈ bHRB-slice nccCFG

kind a = Q←↩pf valid-edge a (p ,ins ,outs) ∈ set procs

Q ←↩p(λcf cf ′. rspp (trg a) (HRB-slice nc) outs cf ′ cf)

Figure 5.16.: Formal rules for the slice-kinds of call and return edges

src a /∈ bHRB-slice nccCFG valid-edge a intra-kind (kind a)
valid-edge a ′ kind a ′= Q :r ↪→pfs src a = src a ′

slice-kind nc a = (λs . True)√

The rules above also guarantee that the sliced CFG is still determinis-
tic.

Moves in the Graphs

Moves in the interprocedural case are relations between (node stack,
state) tuples, which traverse either an edge or an edge list. Travers-
ing some edge kinds (i.e., call and return) alters the node stack, while
other (intraprocedural ones) only change its top element, if any.

Generally, a move is a non-τ-move iff the top node as well as the
corresponding call nodes of the remaining nodes in the node stack

127

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

(which are all return nodes) are in the slice. However, for return edges,
it suffices that the corresponding call nodes of the nodes in the tail
stack are in the slice, regardless of the top node being in the slice. Why
do we need this special treatment of return edges? Revisit Fig. 5.14,
where the slicing node is not in the Main procedure. If we consider
traversals across the slicing node, e.g. complete program runs to the
program exit X, we have to descend to the Main procedure in both
the original and the sliced graph. To this end, both traverse the same
return edges (in Fig. 5.14 edges 9-4 ′ and 6-2 ′), hence it is valid to make
them non-τ-moves. This scenario can only be the case if the top node
of the stack is not in the slice whereas the corresponding call nodes of
the remaining nodes are; e.g. the node stack for traversing return edge
9-4 ′ is [9, 4 ′, 2 ′], where 9 is not in the slice, but 4 and 2 are. Remember
that the top node of the node stack when traversing a return edge is
a procedure exit. If this node is not in the slice, as is node 9 in the
example, the return node of its call site, i.e., node 4 ′, cannot be part
of it either. If its matching call node is not in the slice, above rule
for return edges does not apply; hence we have a silent τ-move. If,
however, the call node is in the slice, as is node 4 in the example, while
the return node is not, we know that the slicing node must lie either
in the procedure which is called at this site or in a procedure called
recursively in it. Hence, in this case, the procedure exit of the called
procedure has to occur after the slicing node, just as node 9 in the
example in Fig. 5.14 occurs after slicing node 8.

Fig. 5.17 shows the formal rules for the non-τ-moves. Apart from
the requirement discussed above, which guarantees that the move is
indeed a non-τ-move, the rules need some more assumptions:

• the traversed edge is valid, its predicate has to hold in the initial
state and its traversal in the initial state yields the final state,

• the top node of the initial node stack is the source node of the
traversed edge, the top node of the final call stack its target node,

• all nodes in the node stack except the top node are return nodes,

• node stack and state – remember that a state is a stack of call
frames – have the same length in the initial tuple,

• an intraprocedural edge leaves the tails of node and call stack
unchanged,

128

5.3. THE PROOFS

valid-edge a
pred (f a) s transfer (f a) s = s ′ intra-kind (kind a)

∀nx ∈ set ns . ∃nx ′. call-of-return-node nx nx ′∧ nx ′∈ bHRB-slice nccCFG

src a ∈ bHRB-slice nccCFG ∀nx ∈ set ns . return-node nx
|s| = |ns| + 1 |s ′| = |s|

nc,f ` ((src a)·ns ,s) −a→ ((trg a)·ns ,s ′)

valid-edge a pred (f a) s
transfer (f a) s = s ′ kind a = Q :r ↪→pfs a ′∈ get-return-edges a
∀nx ∈ set ns . ∃nx ′. call-of-return-node nx nx ′∧ nx ′∈ bHRB-slice nccCFG

src a ∈ bHRB-slice nccCFG ∀nx ∈ set ns . return-node nx
|s| = |ns| + 1 |s ′| = |s| + 1

nc,f ` ((src a)·ns ,s) −a→ ((trg a)·(trg a ′)·ns ,s ′)

valid-edge a pred (f a) s transfer (f a) s = s ′ kind a = Q←↩pf
∀nx ∈ set ns . ∃nx ′. call-of-return-node nx nx ′∧ nx ′∈ bHRB-slice nccCFG

∀nx ∈ set ns . return-node nx hd ns = trg a
|s| = |ns| + 1 |s ′| + 1 = |s| s ′ 6= []

nc,f ` ((src a)·ns ,s) −a→ (ns ,s ′)

Figure 5.17.: Formal rules for the non-τ-moves

• a call edge pushes its matching return node and the procedure
entry on the node stack, and the final state extends the initial by
one call frame, and

• a return edge removes the top elements from the node and call
stacks, but only if this does not result in empty stacks.

As in the intraprocedural case, the rules carry a parameter f, which is
replaced with kind when traversing the original CFG, with slice-kind nc

when traversing the sliced CFG of nc.
The rules for τ-moves, see Fig. 5.18, require that the matching call

node of one node in the tail of the node stack is not in the slice; for
intraprocedural and call edges, it is also sufficient that the top node
of the node stack is not in the slice. This is just the negation of the
respective assumptions in the τ-move rules, as we know that every
return node has exactly one matching call node. All other assumptions
are kept.

= ⇒τ again denotes the reflexive transitive closure of τ-moves, an
observable move = ⇒ consists of such an arbitrary sequence of silent
moves, followed by a non-τ-move.

129

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

valid-edge a
pred (f a) s transfer (f a) s = s ′ intra-kind (kind a)

(∃nx ∈ set ns . ∃nx ′. call-of-return-node nx nx ′∧ nx ′ /∈ bHRB-slice nccCFG) ∨
src a /∈ bHRB-slice nccCFG ∀nx ∈ set ns . return-node nx

|s| = |ns| + 1 |s ′| = |s|
nc,f ` ((src a)·ns ,s) −a→τ ((trg a)·ns ,s ′)

valid-edge a pred (f a) s
transfer (f a) s = s ′ kind a = Q :r ↪→pfs a ′∈ get-return-edges a

(∃nx ∈ set ns . ∃nx ′. call-of-return-node nx nx ′∧ nx ′ /∈ bHRB-slice nccCFG) ∨
src a /∈ bHRB-slice nccCFG ∀nx ∈ set ns . return-node nx

|s| = |ns| + 1 |s ′| = |s| + 1

nc,f ` ((src a)·ns ,s) −a→τ ((trg a)·(trg a ′)·ns ,s ′)

valid-edge a pred (f a) s transfer (f a) s = s ′ kind a = Q←↩pf
∃nx ∈ set ns . ∃nx ′. call-of-return-node nx nx ′∧ nx ′ /∈ bHRB-slice nccCFG

∀nx ∈ set ns . return-node nx hd ns = trg a
|s| = |ns| + 1 |s ′| + 1 = |s| s ′ 6= []

nc,f ` ((src a)·ns ,s) −a→τ (ns ,s ′)

Figure 5.18.: Formal rules for the τ-moves

The following results show that silent moves preserve observable
sets:

Lemma 5.3 Silent Moves Preserve Observable Sets:

nc,kind ` (ns ,s) =as⇒τ (ns ′,s ′)
nsx ∈ obs ns ′ bHRB-slice nccCFG ∀n ∈ set (tl ns ′). return-node n

nsx ∈ obs ns bHRB-slice nccCFG ∧ (∀n ∈ set (tl ns). return-node n)

nc,f ` (ns ,s) =as⇒τ (ns ′,s ′)
obs ns ′ bHRB-slice nccCFG = sasymemptyset

obs ns bHRB-slice nccCFG = sasymemptyset

If the intraprocedural observable set of node n contains a node n ′,
then there exist silent moves in the sliced CFG from a node stack with
n at the top to one with n ′ at the top, its tails equal, where the initial
and final state agree. If the intraprocedural observable set is empty,
the same holds with n ′ being the procedure exit of n’s procedure:

130

5.3. THE PROOFS

∀n ∈ set ns . valid-node n ∀n ′∈ set ns ′. valid-node n ′

∀n ∈ set (tl ns). return-node n |ns| = |s| |ns ′| = |s ′| s 6= []

s ′ 6= [] ns = nsx @ nx·tl ns ′ get-proc nx = get-proc (hd ns ′)
∀n ∈ (tl ns ′). ∃n ′. call-of-return-node n n ′∧ n ′∈ bHRB-slice nccCFG

nsx 6= [] −→ (∃nx ′. call-of-return-node nx nx ′∧ nx ′ /∈ bHRB-slice nccCFG)

obs ns bHRB-slice nccCFG = obs ns ′ bHRB-slice nccCFG

∀ i < |ns ′|. snd s[|nsx| + i] = snd s ′[i]
∀ i < |ns ′|. ∀V ∈ rv nc (CFG-node (nx·tl ns ′)[i]). (fst s[|nsx| + i]) V = (fst s ′[i]) V

((ns ,s),(ns ′,s ′)) ∈WS nc

Figure 5.19.: The formal definition of the interprocedural WS nc

Lemma 5.4 Observable Sets and Silent Moves in the Sliced CFG:

m ′∈ obs-intra n bHRB-slice nccCFG

|s| = |n·nsx ′| ∀n ∈ set nsx ′. return-node n

∃ as . nc,slice-kind nc ` (n·nsx ′,s) =as ′⇒τ (n ′·nsx ′,s)

obs-intra n bHRB-slice nccCFG = ∅
method-exit n ′ get-proc n = get-proc n ′

valid-node n |s| = |n·nsx ′| ∀n ∈ set nsx ′. return-node n

∃ as . nc,slice-kind nc ` (n·nsx ′,s) =as ′⇒τ (n ′·nsx ′,s)

The Weak Simulation

The relevant variables rv are defined analogously to the intraprocedu-
ral case. V ∈ rv nc n holds if in the HRB slice of nc there is a SDG node
n ′ which uses V and whose parent CFG node is reachable from the
parent CFG node of n via an intraprocedural path, such that no other
SDG node, whose parent node is on this path, redefines V :

bncCFG −as→i∗ bn ′cCFG n ′∈ HRB-slice nc V ∈ UseSDG n ′

∀n ′′. valid-SDG-node n ′′∧ bn ′′cCFG ∈ set (srcs as) −→ V /∈ Def SDG n ′′

V ∈ rv nc n

Yet, the definition of the weak simulation WS nc is considerably
more complex than in the intraprocedural case, see Fig. 5.19. It is a
relation between (node stack, state) pairs (ns ,s) and (ns ′,s ′), denoting
the positions in the original and sliced graph, respectively, such that

131

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

1E

3

2

4 5

6 7 13

14 15

12

8 9 1110

16 ...

⎧

⎩

⎨
⎪

⎪

5.4. INSTANTIATIONS

∀n ∈ set ns. valid-node n ∀n � ∈ set ns �. valid-node n �

∀n ∈ set (tl ns). return-node n |ns| = |s| |ns �| = |s �|
s �= [] s � �= [] ns = nsx @ nx·tl ns � get-proc nx = get-proc (hd ns �)

∀n ∈ (tl ns �). ∃n �. call-of-return-node n n � ∧ n � ∈ �HRB-slice nc�CFG

nsx �= [] −→ (∃nx �. call-of-return-node nx nx � ∧ nx � /∈ �HRB-slice nc�CFG)

obs ns �HRB-slice nc�CFG = obs ns � �HRB-slice nc�CFG

∀ i < |ns �|. snd s[|nsx| + i] = snd s �[i]
∀ i < |ns �|. ∀V ∈ rv nc (CFG-node (nx·tl ns �)[i]). (fst s[|nsx| + i]) V = (fst s �[i]) V

((n,s),(n �,s �)) ∈ WS nc

Figure 5.17: The formal definition of the interprocedural WS nc

• the observable sets of ns and ns � are equal,

• the return information (the snd part of every call frame) is equal in
the bottom |ns �|-many call frames of s and s �, and

• the local variables (the fst part) of these call frames agree in the values
of the relevant variables, calculated w.r.t. the nodes in the ns node
stack which conform to these call frames.

This definition captures the effect that traversing the original graph de-
scended into a procedure whose call site is not in the slice, whereas the
traversal in the sliced graph did not descend into this procedure.

5.4 Instantiations

5.4.1 Proc

5.4.2 Jinja VM

127

5.4. INSTANTIATIONS

∀n ∈ set ns. valid-node n ∀n � ∈ set ns �. valid-node n �

∀n ∈ set (tl ns). return-node n |ns| = |s| |ns �| = |s �|
s �= [] s � �= [] ns = nsx @ nx·tl ns � get-proc nx = get-proc (hd ns �)

∀n ∈ (tl ns �). ∃n �. call-of-return-node n n � ∧ n � ∈ �HRB-slice nc�CFG

nsx �= [] −→ (∃nx �. call-of-return-node nx nx � ∧ nx � /∈ �HRB-slice nc�CFG)

obs ns �HRB-slice nc�CFG = obs ns � �HRB-slice nc�CFG

∀ i < |ns �|. snd s[|nsx| + i] = snd s �[i]
∀ i < |ns �|. ∀V ∈ rv nc (CFG-node (nx·tl ns �)[i]). (fst s[|nsx| + i]) V = (fst s �[i]) V

((n,s),(n �,s �)) ∈ WS nc

Figure 5.17: The formal definition of the interprocedural WS nc

• the observable sets of ns and ns � are equal,

• the return information (the snd part of every call frame) is equal in
the bottom |ns �|-many call frames of s and s �, and

• the local variables (the fst part) of these call frames agree in the values
of the relevant variables, calculated w.r.t. the nodes in the ns node
stack which conform to these call frames.

This definition captures the effect that traversing the original graph de-
scended into a procedure whose call site is not in the slice, whereas the
traversal in the sliced graph did not descend into this procedure.

5.4 Instantiations

5.4.1 Proc

5.4.2 Jinja VM

127

⎫

⎭

⎬

⎫

⎭
⎬

5.4. INSTANTIATIONS

∀n ∈ set ns. valid-node n ∀n � ∈ set ns �. valid-node n �

∀n ∈ set (tl ns). return-node n |ns| = |s| |ns �| = |s �|
s �= [] s � �= [] ns = nsx @ nx·tl ns � get-proc nx = get-proc (hd ns �)

∀n ∈ (tl ns �). ∃n �. call-of-return-node n n � ∧ n � ∈ �HRB-slice nc�CFG

nsx �= [] −→ (∃nx �. call-of-return-node nx nx � ∧ nx � /∈ �HRB-slice nc�CFG)

obs ns �HRB-slice nc�CFG = obs ns � �HRB-slice nc�CFG

∀ i < |ns �|. snd s[|nsx| + i] = snd s �[i]
∀ i < |ns �|. ∀V ∈ rv nc (CFG-node (nx·tl ns �)[i]). (fst s[|nsx| + i]) V = (fst s �[i]) V

((n,s),(n �,s �)) ∈ WS nc

Figure 5.17: The formal definition of the interprocedural WS nc

• the observable sets of ns and ns � are equal,

• the return information (the snd part of every call frame) is equal in
the bottom |ns �|-many call frames of s and s �, and

• the local variables (the fst part) of these call frames agree in the values
of the relevant variables, calculated w.r.t. the nodes in the ns node
stack which conform to these call frames.

This definition captures the effect that traversing the original graph de-
scended into a procedure whose call site is not in the slice, whereas the
traversal in the sliced graph did not descend into this procedure.

5.4 Instantiations

5.4.1 Proc

5.4.2 Jinja VM

127

⎪
⎪
⎪

⎪
⎪
⎪

5.3. THE PROOFS

1E

3

2

4 5

6 7 13

14 15

12

8 9 1110

16 ...

!

"
#

!

"

#
$

$
5.4. INSTANTIATIONS

∀n ∈ set ns. valid-node n ∀n � ∈ set ns �. valid-node n �

∀n ∈ set (tl ns). return-node n |ns| = |s| |ns �| = |s �|
s �= [] s � �= [] ns = nsx @ nx·tl ns � get-proc nx = get-proc (hd ns �)

∀n ∈ (tl ns �). ∃n �. call-of-return-node n n � ∧ n � ∈ �HRB-slice nc�CFG

nsx �= [] −→ (∃nx �. call-of-return-node nx nx � ∧ nx � /∈ �HRB-slice nc�CFG)

obs ns �HRB-slice nc�CFG = obs ns � �HRB-slice nc�CFG

∀ i < |ns �|. snd s[|nsx| + i] = snd s �[i]
∀ i < |ns �|. ∀V ∈ rv nc (CFG-node (nx·tl ns �)[i]). (fst s[|nsx| + i]) V = (fst s �[i]) V

((n,s),(n �,s �)) ∈ WS nc

Figure 5.17: The formal definition of the interprocedural WS nc

• the observable sets of ns and ns � are equal,

• the return information (the snd part of every call frame) is equal in
the bottom |ns �|-many call frames of s and s �, and

• the local variables (the fst part) of these call frames agree in the values
of the relevant variables, calculated w.r.t. the nodes in the ns node
stack which conform to these call frames.

This definition captures the effect that traversing the original graph de-
scended into a procedure whose call site is not in the slice, whereas the
traversal in the sliced graph did not descend into this procedure.

5.4 Instantiations

5.4.1 Proc

5.4.2 Jinja VM

127

5.4. INSTANTIATIONS

∀n ∈ set ns. valid-node n ∀n � ∈ set ns �. valid-node n �

∀n ∈ set (tl ns). return-node n |ns| = |s| |ns �| = |s �|
s �= [] s � �= [] ns = nsx @ nx·tl ns � get-proc nx = get-proc (hd ns �)

∀n ∈ (tl ns �). ∃n �. call-of-return-node n n � ∧ n � ∈ �HRB-slice nc�CFG

nsx �= [] −→ (∃nx �. call-of-return-node nx nx � ∧ nx � /∈ �HRB-slice nc�CFG)

obs ns �HRB-slice nc�CFG = obs ns � �HRB-slice nc�CFG

∀ i < |ns �|. snd s[|nsx| + i] = snd s �[i]
∀ i < |ns �|. ∀V ∈ rv nc (CFG-node (nx·tl ns �)[i]). (fst s[|nsx| + i]) V = (fst s �[i]) V

((n,s),(n �,s �)) ∈ WS nc

Figure 5.17: The formal definition of the interprocedural WS nc

• the observable sets of ns and ns � are equal,

• the return information (the snd part of every call frame) is equal in
the bottom |ns �|-many call frames of s and s �, and

• the local variables (the fst part) of these call frames agree in the values
of the relevant variables, calculated w.r.t. the nodes in the ns node
stack which conform to these call frames.

This definition captures the effect that traversing the original graph de-
scended into a procedure whose call site is not in the slice, whereas the
traversal in the sliced graph did not descend into this procedure.

5.4 Instantiations

5.4.1 Proc

5.4.2 Jinja VM

127

5.4. INSTANTIATIONS

∀n ∈ set ns. valid-node n ∀n � ∈ set ns �. valid-node n �

∀n ∈ set (tl ns). return-node n |ns| = |s| |ns �| = |s �|
s �= [] s � �= [] ns = nsx @ nx·tl ns � get-proc nx = get-proc (hd ns �)

∀n ∈ (tl ns �). ∃n �. call-of-return-node n n � ∧ n � ∈ �HRB-slice nc�CFG

nsx �= [] −→ (∃nx �. call-of-return-node nx nx � ∧ nx � /∈ �HRB-slice nc�CFG)

obs ns �HRB-slice nc�CFG = obs ns � �HRB-slice nc�CFG

∀ i < |ns �|. snd s[|nsx| + i] = snd s �[i]
∀ i < |ns �|. ∀V ∈ rv nc (CFG-node (nx·tl ns �)[i]). (fst s[|nsx| + i]) V = (fst s �[i]) V

((n,s),(n �,s �)) ∈ WS nc

Figure 5.17: The formal definition of the interprocedural WS nc

• the observable sets of ns and ns � are equal,

• the return information (the snd part of every call frame) is equal in
the bottom |ns �|-many call frames of s and s �, and

• the local variables (the fst part) of these call frames agree in the values
of the relevant variables, calculated w.r.t. the nodes in the ns node
stack which conform to these call frames.

This definition captures the effect that traversing the original graph de-
scended into a procedure whose call site is not in the slice, whereas the
traversal in the sliced graph did not descend into this procedure.

5.4 Instantiations

5.4.1 Proc

5.4.2 Jinja VM

127

Figure 5.18: Example of weak simular node stacks

• all nodes in ns and ns � are valid,

• all nodes in ns except its top node are return nodes,

• the lengths of ns and s as well as those of ns � and s � (all nonempty)
agree,

• ns is of the form nsx @ nx·tl ns �, i.e. it has the second node stack,
without its top node, as suffix,

• both nodes nx and hd ns � lie in the same procedure,

• the matching return nodes to all return nodes in the common suffix
tl ns � of both node stacks are in the slice,

• if nsx is not empty, nx’s matching call node is not in the slice,

• the observable sets of ns and ns � are equal,

• the return information (the snd part of every call frame) is equal in
the bottom |ns �|-many call frames of s and s �, and

• the local variables (the fst part) of these call frames agree in the values
of the relevant variables, calculated w.r.t. the nodes in the ns node
stack which conform to these call frames.

For an example, see Fig. 5.18. It depicts a CFG, where all the dark grey
nodes are not in the slice. Hence, while an traversal the original CFG may
descend in the procedurse in which the light grey nodes lie, in the sliced
CFG it must remain in the procedure of the dark grey nodes. So e.g. the
node stacks ns = [9,12] @ 14·[16] in the original and ns � = [5,16] in the sliced
CFG are (tupled with adequate states) weakly similar; all node stacks of
the light grey nodes are related this way to the node stacks of the dark grey
nodes. Note that the observable set of all these node stacks is {[15,16]}.

127

Figure 5.20.: Example of weak similar node stacks

• all nodes in ns and ns ′ are valid,

• all nodes in ns except its top node are return nodes,

• the lengths of ns and s as well as those of ns ′and s ′ (all nonempty)
agree,

• ns is of the form nsx @ nx·tl ns ′, i.e., it has the second node stack,
without its top node, as suffix,

• both nodes nx and hd ns ′ lie in the same procedure,

• the matching call nodes to all return nodes in the common suffix
tl ns ′ of both node stacks are in the slice,

• if nsx is not empty, nx’s matching call node is not in the slice,

• the observable sets of ns and ns ′ are equal,

• the return information (the snd part of every call frame) is equal
in the bottom |ns ′|-many call frames of s and s ′, and

• the local variables (the fst part) of these call frames agree in the
values of the relevant variables, calculated w.r.t. the nodes in the
ns node stack which conform to these call frames.

For an example, see Fig. 5.20. It depicts a CFG, where all the black
nodes are not in the slice. Hence, a traversal in the original CFG may
descend in the procedure in which the grey nodes lie, whereas in the
sliced CFG it must remain in the procedure of the black nodes. So
e.g. the node stacks ns = [9,12] @ 14·[16] in the original and ns ′ = [5,16]

in the sliced CFG are (tupled with adequate states) weakly similar; all
node stacks of the grey nodes are related this way to the node stacks of
the black nodes. Note that the observable set of all these node stacks
is {[15,16]}.

132

5.3. THE PROOFS

The correctness theorem then looks as in the intraprocedural case
(see Thm. 3.2), except that instead of nodes, we now argue about node
stacks:

Theorem 5.5 Correctness of Horwitz-Reps-Binkley Slicing:

((ns1,s1),(ns2,s2)) ∈WS nc nc,kind ` (ns1,s1) =as⇒ (ns′1,s
′
1)

∃ s′2 as ′. s′2 = transfer (slice-kind nc (last as)) s2) ∧ ((ns′1,s
′
1),(ns′1,s

′
2)) ∈WS nc ∧

nc,slice-kind nc ` (ns2,s2) =as ′@(last as)⇒ (ns′1,s
′
2)

Proof. Again, the key to prove this theorem is to show that the simula-
tion diagrams from Fig. 3.12 hold.

(a) To prove the lemma that the first diagram holds does not require
the observable set to be empty any more; basically, this is due to
the new rules for determining the no-op for “sliced-out” predi-
cate edges.

((ns1,s1),(ns2,s2)) ∈WS nc nc,kind ` (ns1,s1) =as⇒τ (ns′1,s
′
1)

((ns′1,s
′
1),(ns2,s2)) ∈WS nc

The proof of the one-step variant of this lemma – by case dis-
tinction on the τ-move – is tedious, as all the assumptions of the
weak simulation have to hold again after the move. In each case
there is another case distinction if the weakly similar node stacks
are in the same procedure, i.e., if nsx is empty. If it is, we have to
prove that the values of the relevant variables after the step are
as required, which is quite trivial if it is not. The lemma above is
just a simple lifting of this result.

(b) The lemma for the second diagram is exactly the same as in the
intraprocedural case, except for node stacks instead of nodes:

((ns1,s1),(ns2,s2)) ∈WS nc nc,kind ` (ns1,s1) −a→ (ns′1,s
′
1)

∃ as s′2. s′2 = transfer (slice-kind nc a) s2 ∧ ((ns′1,s
′
1),(ns′1,s

′
2)) ∈WS nc ∧

nc,slice-kind nc ` (ns2,s2) =as@[a]⇒ (ns′1,s
′
2) ∈WS nc

I prove this by case distinction on the non-τ-move. In each
case, I show that the weakly similar node stacks identify
nodes in the same procedure, i.e., nsx is empty. Hence,
the tails of the node stacks ns1 and ns2 are equal. As also

133

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

hd ns1 ∈ obs-intra (hd ns2) bHRB-slice nccCFG can be derived, we
can apply Lem. 5.4, which gives rise to silent moves in the sliced
CFG between these node stacks. Together with the non-τ-move
in the sliced graph, which simulates the assumed non-τ-move of
the original graph, we obtain an observable move in the sliced
graph. To guarantee that the weak simulation still holds after
this move, we need to show all its conditions; again, the one
concerning the relevant variables is the most tedious.

ut

Fundamental Property of Horwitz-Reps-Binkley Slicing

As before, I use Thm. 5.5 to derive the fundamental property for the
slicing algorithm of Horwitz, Reps, and Binkley, namely that the ob-
servable effects at the slicing node are preserved. However, contrary
to the intraprocedural case, program executions do not match arbi-
trary CFG paths, but only valid ones. Hence, we need lemmas which
relate moves with the latter:

Lemma 5.6 Moves and Valid Paths:
nc,f ` (n·ns ,s) =as⇒τ (n ′·ns ′,s ′)
valid-node n ns = trgs rs

∀ i < |rs|. rs[i] ∈ get-return-edges cs[i]
valid-return-list rs n |rs| = |cs|

n −as→∗ n ′∧ valid-path cs as

nc,f ` (n·ns ,s) −a→ (n ′·ns ′,s ′)
valid-node n ns = trgs rs

∀ i < |rs|. rs[i] ∈ get-return-edges cs[i]
valid-return-list rs n |rs| = |cs|

n −[a]→∗ n ′∧ valid-path cs [a]

The key issue in both lemmas is how to relate the call edge stack
cs of the valid-path predicate with the node stack ns of the moves. To
this end, we determine a stack of return edges rs, which (i) match the
call edges in the stack one-by-one, and (ii) whose target nodes are the
return nodes collected in the node stack ns. Predicate valid-return-list
guarantees that its first parameter is indeed a list of return edges which
descends from the procedure in which its second parameter, a node,
lies, such that each return edge leaves the procedure which was the
target of the return edges directly above it in the stack. Many aux-
iliary lemmas guarantee that these premises relating call and return
edge stacks are preserved by the different moves.

The following lemmas relate silent moves and same level paths:
(i) silent moves whose node stack tails – or more accurately, the call
nodes matching them – are in the slice induce a same level path be-
tween their top nodes, and thus the node stack tails are in fact equal;

134

5.3. THE PROOFS

(ii) if we have silent moves and a same level path between the top
nodes of its node stacks, we know that their tails are equal:

Lemma 5.7 Silent Moves and Same Level Paths:

nc,f ` (n·ns ,s) =as⇒τ (n ′·ns ′,s ′) valid-node n
∀nx ∈ set ns . ∃nx ′. call-of-return-node nx nx ′∧ nx ′∈ bHRB-slice nccCFG

∀nx ∈ set ns ′. ∃nx ′. call-of-return-node nx nx ′∧ nx ′∈ bHRB-slice nccCFG

n −as→sl∗ n ′∧ ns = ns ′

nc,f ` (n·ns ,s) =as⇒τ (n ′·ns ′,s ′) n −as→sl∗ n ′

ns = ns ′

In the intraprocedural case, slice-edges is a simple filter which keeps
only those edges of a list whose source node is in the slice. Hence,
the edge list of silent moves was empty after applying this filter. For
an observable move, only the last edge (which corresponds to the
only non-τ-move) remained. In the interprocedural case, this filter
approach does not work, as we again have to take the call context into
account. So, I first define slice-edge which determines for a given call
edge stack cs if an edge a – or more accurately its edge kind – affects
the slice. This is the case if the source nodes of all call edges in cs as
well as the source node of a are in the slice; the latter need not hold for
return edges (cf. non-τ -moves Fig. 5.17):

slice-edge nc cs a ≡ (∀ c ∈ set cs . src c ∈ bHRB-slice nccCFG) ∧
(case (kind a) of Q←↩pf ⇒ True | -⇒ src a ∈ bHRB-slice nccCFG)

slice-edges lifts this to an edge lists by traversing it from left to right:
it keeps an edge a if slice-edge nc (upd-cs cs as ′) a holds, where as ′ is the
prefix on as before visiting a, otherwise the edge is discarded. This
definition fulfills the desired properties (if the call and node stacks
agree):

nc,f ` (ns ,s) =as⇒τ (ns ′,s ′) tl ns = trgs rs
|rs| = |cs| ∀ i < |cs|. call-of-return-node (tl ns)[i] (src cs[i])

slice-edges nc cs as = []

nc,f ` (ns ,s) =as⇒ (ns ′,s ′) tl ns = trgs rs
|rs| = |cs| ∀ i < |cs|. call-of-return-node (tl ns)[i] (src cs[i])

slice-edges nc cs as = [last as]

The following key lemma guarantees that a valid path whose pred-
icates hold in initial state s gives rise to another valid path connecting

135

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

the same nodes, whose traversal can be split into a series of observ-
able moves (= ⇒∗ is the reflexive transitive closure of = ⇒) followed
by silent moves such that their slice-edges agree. As we argue “within”
a valid path, the remaining conditions take care that the various edge
and node stacks conform (valid-call-list ensures that cs is a call edge
stack whose edges constitute a call chain to n):

Lemma 5.8 Splitting Valid Paths into Moves:

valid-path cs as n −as→∗ n ′ preds (kinds as) s
valid-call-list cs n ∀ i < |rs|. rs[i] ∈ get-return-edges cs[i]

valid-return-list rs n |rs| = |cs| |s | = |cs| + 1

∃ns ns ′ ns ′′ s ′′ as ′ as ′′. valid-path cs (as ′′@ as ′) ∧ n −as ′′@ as ′→∗ n ′∧
nc,kind ` (n·ns ,s) =slice-edges nc cs as⇒∗ (ns ′′,s ′′) ∧
nc,kind ` (ns ′′,s ′′) =as ′⇒τ (n ′·ns ′,s ′) ∧ ns = trgs rs ∧
|ns| = |cs| ∧ slice-edges nc cs as = slice-edges nc cs as ′′∧
∀ i < |cs|. call-of-return-node ns[i] (src cs[i])

Proof. I prove this by induction on the rules which define valid-path,
followed by a case distinction in each case, if all the call nodes which
correspond to the return nodes in the initial node stack ns are in the
slice. The lemmas relating moves and valid paths are applied where
necessary. ut

Now, we have all the means to tackle the proof of the fundamental
property theorem. Note that this theorem only concerns valid paths
starting in the Main procedure, as the initial state and node stack con-
sist of only one element. This framework is not powerful enough to
state a similar theorem where the valid path in the original graph may
start in an arbitrary node. This would require to derive from the re-
turn information present in the initial call stack the necessary initial
node stack for the moves. Hence, either the return information would
have to be fixed to be a node (or the like) instead of the current ar-
bitrary type ′ret, or a new function need to be assumed in one of the
locales, which is able to perform this derivation.

Theorem 5.9 Fundamental Property of Horwitz-Reps-Binkley Slicing:

n −as→√∗ n ′ preds (kinds as) [cf]
∃ as ′. n −as ′→√∗ n ′∧ preds (slice-kinds (CFG-node n ′) as ′) [cf] ∧

slice-edges (CFG-node n ′) [] as = slice-edges (CFG-node n ′) [] as ′∧
(V ∈ Use n ′. state-val (transfers (slice-kinds (CFG-node n ′) as ′) [cf]) V =

state-val (transfers (kinds as) [cf]) V)

136

5.3. THE PROOFS

Proof. First, using Lem. 5.8, we obtain from the valid path a series of
observable moves, one for each slice edge, followed by silent moves,
which traverse a valid path whose slice-edges agree to those of the
assumed valid path in the original CFG. Then, we do a case distinction
if these slice-edges are actually empty:

If slice-edges (CFG-node n ′) [] as = [], the traversal consists only of
silent moves with final node stack n ′·ns ′. As n ′ is the slicing node, the
call nodes corresponding to any node stack leading to it must always
be in the slice. With Lem. 5.7, we know that ns ′ must then be empty
and n and n ′ connected via a same level path. As showed in Lem. 5.1,
such a path gives rise to an intraprocedural path between the same
nodes; moreover, traversing the latter in the sliced CFG yields the
same result as traversing the former. As the slice-edges are empty, and
thus all edge kinds replaced with no-ops, this result is [cf]. With the
help of a weak simulation we also know that the values of the relevant
variables of n ′ are equal, regardless if we take their value in the initial
state [cf] or of the final state after traversing the edges in the original
graph. As the variables used in n ′ are also relevant variables, and due
to the results for the sliced CFG, we obtain the conclusion.

If slice-edges (CFG-node n ′) [] as 6= [], we apply Thm. 5.5 lifted to arbi-
trary sequences of observable moves, taking ([n],[cf]) as initial similar
configurations in both CFGs. With the result of this and the lemma
which we proved for Thm. 5.5(a), we know from the weak simulation
property that the values of the relevant variables for n ′ (and thus, its
used variables) agree, regardless if we take the final state of traversing
as in the original or its slice-edges in the sliced CFG. A lifted version
of Lem. 5.6 guarantees that due to the observable moves, there exists
a valid path between n and n ′′ – the top node of the final node stack
of these moves – so that traversing this path in the sliced CFG yields
the same result as just traversing its slice-edges. The silent moves are
treated very similarly to the first case, hence obtaining a same level
path between n ′′ and n ′, which is combined with the valid path be-
tween n and n ′′ into one valid path. It just remains to show that
traversing the edges of this combined path in the sliced CFG yields
the same as traversing just its sliced edges, and that the sliced edges
of this combined path and the sliced edges of path as are equal; with
the result above about the used variables in n ′, we obtain the result.

ut

137

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

If we can prove that the CFG agrees to an operational semantics,
i.e., the CFG is semantically well-formed, we get another fundamental
property: analogous to the intraprocedural Thm. 3.4, it considers the
effect of HRB-slicing to the semantics:

Theorem 5.10 Fundamental Property of Semantics and HRB Slicing:
n , c 〈c ,s〉 ⇒ 〈c ′,s ′〉

∃n ′ as . n −as→√∗ n ′∧ preds (slice-kinds (CFG-node n ′) as) s ∧ n ′, c ′∧
(∀V ∈ Use n ′. state-val (transfers (slice-kinds (CFG-node n ′) as ′) s) V =

state-val s ′V)

Note that also in this fundamental property, evaluation has to start
in the Main procedure, i.e., the initial state consists of only one call
frame.

5.4 Instantiations

In Sec. 3.4, I showed how the intraprocedural framework can be in-
stantiated with two different languages. This section presents the in-
stantiation of the interprocedural framework with two different lan-
guages: a simple While language with procedures, and the object ori-
ented byte code language of Jinja.

5.4.1. WHILE with Procedures: PROC

Basically, PROC describes the same language as WHILE does, but it
features a new calling statement: Call p es rets dispatches to procedure
p with argument expressions es and variables rets to store the return
values. The procedures that exist in a program are collected in a list
procs, it contains a quadruple for each procedure, which comprises its
name, formal-in and -out parameters and method body.

The CFG of a program is built in two phases: first, construct the in-
traprocedural CFG of any procedure as if it was a WHILE program; i.e.,
the nodes except Entry and Exit bear a label which uniquely identifies
them in the graph, the edges are written IEdge et , et being the respec-
tive edge kind. The subgraph of a Call statement connects a call and
the subsequent return node (which is basically an additional node cor-
responding to a Skip statement) with a dummy intraprocedural edge,
written CEdge, which just stores the procedure and parameter infor-
mation of the call statement. The syntax for edges in a procedure CFG
is prog ` n −x→i n ′, where x is either a IEdge or CEdge.

138

5.4. INSTANTIATIONS

The second phase joins all these graphs together in one big interpro-
cedural CFG (the “real” CFG). Its nodes consists of the intraprocedural
nodes, tupled with the procedure name in which they lie. The edges,
which now also carry the program’s procedure list as a parameter, are
written prog ,procs ` (p , n) −et→ (p ′, n ′) . The formal rules to construct
the edges shows Fig. 5.21, we will take a closer look on them in the
following.

Rules I1, C1, R1 and F1 concern edges whose source and/or target
node is in the Main procedure of the program. Rule I1 lifts an intrapro-
cedural IEdge to the CFG by just taking its parameter as edge kind and
tupling its nodes with procedure Main.

A CEdge gives rise to three CFG edges: a call edge (see rule C1),
a return edge (see rule R1) and the (λs . False)√ between call and re-
turn node (see rule F1). Since PROC has no late binding or the like,
the predicate of the call edge kind has to hold for any call frame. It
also saves the return node of the CEdge (in procedure Main) as return
information. Finally, the function list for argument passing is real-
ized by mapping the expression evaluation function [[]] on the list of
arguments. The target node of a call to procedure p is its entry node
(p ,(-Entry-)).

The predicate of the return edge kind checks if the top call frame
contains the target node of the CEdge (again in procedure Main) as
return information, which is then the target node of the CFG edge. Its
source node is the procedure exit. The function specified in the edge
kind has to take care that the return values are stored in the respective
values while popping the call stack. Hence, it restores the call frame
from before the call, but updates all variables which are declared as
return variables with the value of the respective out parameter in the
call frame of the procedure. The remaining assumptions of rules C1,
R1 and F1 are just simple checks that the length of certain lists agree
and that the specified return variables are distinct.

Rules I2, C2, R2 and F2 match the rules above, but describe the
respective situation within a called procedure. To this end, I use pred-
icate containsCall procs prog ps p, which guarantees that procedure p
is called via the list of procedures ps that must be called from Main
to reach procedure p. The remaining assumptions mirror those of the
Main rules or take care that procedure p is in the procedure list procs.

I define get-return-edges to collect all edges whose target node agrees
with the return information specified in the parameter call edge; if the
parameter is no call edge, I return the empty set. Every call edge has

139

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

prog ` n −IEdge et→i n ′

prog ,procs ` (Main ,n) −et→ (Main ,n ′)
I1

prog ` (-l-) −CEdge (p ,es ,rets)→i n ′ (p ,ins ,outs ,c) ∈ set procs
et = (λcf . True):(Main ,n ′)↪→pmap (λe cf . [[e]]cf) es

prog ,procs ` (Main ,(-l-)) −et→ (p ,(-Entry-))
C1

prog ` (-l-) −CEdge (p ,es ,rets)→i (-l ′-) (p ,ins ,outs ,c) ∈ set procs
et = (λcf . snd cf = (Main ,(-l ′-))←↩p(λcf cf ′. cf ′(rets [:=] map cf outs))

prog ,procs ` (p ,(-Exit-)) −et→ (Main ,(-l ′-))
R1

prog ` n −CEdge (p ,es ,rets)→i n ′

prog ,procs ` (Main ,n) −(λs . False)√→ (Main ,n ′)
F1

c ` n −IEdge et→i n ′

(p ,ins ,outs ,c) ∈ set procs containsCall procs prog ps p

prog ,procs ` (p ,n) −et→ (p ,n ′)
I2

c ` (-l-) −CEdge (p ′,es ′,rets ′)→i (-l ′-) (p ′,ins ′,outs ′,c ′) ∈ set procs
(p ,ins ,outs ,c) ∈ set procs containsCall procs prog ps p

et = (λcf . True):(p ,(-l ′-))↪→p ′map (λe cf . [[e]]cf) es ′

prog ,procs ` (p ,(-l-)) −et→ (p ′,(-Entry-))
C2

c ` (-l-) −CEdge (p ′,es ′,rets ′)→i (-l ′-) (p ′,ins ′,outs ′,c ′) ∈ set procs
(p ,ins ,outs ,c) ∈ set procs containsCall procs prog ps p

et = (λcf . snd cf = (p ,(-l ′-))←↩p ′(λcf cf ′. cf ′(rets ′ [:=] map cf outs ′))

prog ,procs ` (p ′,(-Exit-)) −et→ (p ,(-l ′-))
R2

c ` n −CEdge (p ′,es ′,rets ′)→i n ′

(p ,ins ,outs ,c) ∈ set procs containsCall procs prog ps p

prog ,procs ` (p ,n) −(λs . False)√→ (p ,n ′)
F2

Figure 5.21.: The formal rules to create the interprocedural CFG from
the procedure CFGs

140

5.4. INSTANTIATIONS

only one matching return edge, so get-return-edges for a call edge is a
singleton.

The call frame consists (i) of a mapping from variables to values,
and (ii) of the return information, i.e., the return node of the respective
call. Variables that get assigned are in the Def, those used in assign-
ment statements or predicates in the Use set. ParamUses is a list of sets,
nonempty for call nodes, where the entry for a parameter contains all
the variables that are used in the argument expression corresponding
to the parameter position in the call. ParamDefs is a list of the variables
which get assigned the return values.

Before we can instantiate the locales, we have to make sure that the
program (and its procedure list) fulfils some well-formedness proper-
ties:

• the formal-in parameters of every procedure quadruple in procs
have to be distinct, as do the formal-out parameters;

• the Main procedure must not occur in procs;

• all procedure names in proc’s quadruples are distinct;

• the return variables provided in a call have to be distinct;

• for every procedure call in the program the lengths of the ac-
tual parameters agree to the lengths of the formal parameters as
given in the matching procedure quadruple in procs.

Subsuming all these properties in a predicate wf, I regard a program
prog and its procedure list procs as well-formed, if wf prog procs holds.

To instantiate the locales, I regard the CFG edges as valid-edges; src,
kind and trg are defined straightforwardly on them. get-proc applied
to a CFG node – remember that these nodes are tuples of a proce-
dure and a unique label – just returns its first element. The global
entry and exit nodes are the procedure entry and exit nodes of Main.
lift-procs agrees to the procedure list procs, but eliminates the fourth
tuple entry, i.e., the procedure body, from every element in the list.
These definitions, together with the ones above, i.e., get-return-edges,
Def, Use, ParamDefs and ParamUses, are now used as parameters for
the locale instantiations. The proofs that the required properties hold
are easy but tedious, and done mostly by case distinction on the CFG
generation rules.

141

CHAPTER 5. CORRECTNESS STATIC INTERPROCEDURAL SLICING

(λs.NPE)√ (λs.NPE)√

(λs.¬NPE)√

X

⇑ (λs.set exc-flag)

Call

(λs.False)√

Return

(λs.¬exc-flag)√

(λ
s.

ex
c-

fl
ag

∧@
H
an
dl
er
)
√

†
Handler
for NPE

Handler
for Exc1

Handler
for Exc2

*

*

*

†

†

†

*: (λs.exc-flag ∧ exc-flag is of type � Exc-Type�)√

†: ⇑ (λs.prepare stack for handler)

Figure 5.22.: Subgraph resulting from a single INVOKE instruction

5.4.2. Jinja VM Byte Code Interprocedural

Again, this instantiation was performed by my colleague Denis Loh-
ner. In this subsection, I shortly sketch the differences from the in-
traprocedural one (see Sec. 3.4.2).

The CFG nodes are no longer identified by a call stack, which was
essential for method inlining, but by a triple consisting of class name,
method name – these two determine a procedure – and its position in
the method’s instruction list. Thus, every instruction in the program
forms a node of the CFG. Still, we have to insert additional nodes (and
edges) for instructions that throw exceptions (like GETFIELD) as they
fork the control flow and update the state at the same time.

The changes to the CFG edges themselves are relatively small, with
the exception of the INVOKE instruction, of course. Instead of formal
rules, we use Fig. 5.22 to show the new interprocedural CFG edges of
a call, i.e., a single INVOKE. This instruction may throw an exception
either because the receiver object is null or the callee throws an ex-
ception. The upper black node in the figure corresponds to the entry
point of an INVOKE, the lower black node to the subsequent instruc-
tion in the method’s instruction list; grey nodes are entry points for
exception handlers, the node labeled with X is the exit node of the
method. Predicate edges are given as (λs.P)√ where P is a predicate
over the method-local state s, and update edges are given as ⇑ (λs.f)
where f is a function over s. Late binding is modeled by call edges to
all statically potential call targets, using the call edge’s predicate to re-

142

5.4. INSTANTIATIONS

solve the dynamic target. Adding a points-to analysis, the number of
call edges could be reduced and thus precision gained; future work
will tackle this task. The return information contained in the call edges
is the label of the call node. If the INVOKE instruction is guarded by
a handler for the NullPointerException (NPE), the dashed nodes
and edges are added to the CFG, otherwise the dotted ones. For ev-
ery other exception handler guarding the INVOKE instruction there
are edges from the return node to the handlers’ entry points. If IN-
VOKE returns in an exceptional state for which no handler is present
in the current method, the exception is propagated to the method’s
exit node. An exceptional state contains a special flag which signals
that an exception has occurred.

The actual-in parameters of a method with n parameters are always
the top n + 1 elements of the local stack (including the callee’s this
pointer), formal-in parameters are local variables. The actual- and
formal-out parameter of a method is the top element of the stack (note
that in Jinja, as in Java, methods can return only one value and that a
void method returns the dummy element Unit). Besides these param-
eters, every method also has an implicit in- and out-parameter for the
heap as well as an out-parameter which signals an exception.

From this, we know that ParamUses must be a list of singleton sets
of the form [{Heap}, {this}, {Stack (top − n + 1)}, . . . , {Stack top}], if top
denotes the index of the topmost element in the stack. Note that at
every INVOKE, this is at position Stack (top − n). ParamDefs is a list of
the form [Heap , Stack (top − n), Exception].

As Jinja byte code is a stack based language, we have to map stack
positions to locations. This is done using the byte code verifier, as
it guarantees for a given program point the height of the stack to be
the same, regardless of the path taken. Then, the Def and Use sets
are rather simple to compute, as for every instruction it is statically
known which stack positions are involved. Further locations in the Def
and Use sets are the heap (treated as a whole), local variables and the
exception flag. Using the exception flag as location and out parameter,
there is no need for multiple return edges. Thus, as in PROC, every call
edge has a uniquely matching return edge.

As Jinja lacks static methods, we enrich the CFG with an artificial
main method that just “calls” the actual main method. However, the
this pointer of that method is set to null.

Most of the proofs for instantiating the locales are done by case dis-
tinction, some require an induction on the CFG’s structure.

143

Better be despised for too anx-
ious apprehensions, than ruined
by too confident security.

E. Burke 6
Information Flow Control via

Verified Slicing

In this chapter, I present a proof that slicing can guarantee informa-
tion flow noninterference. Noninterference is a standard notion in
information flow control (IFC), which describes the fact that secret
information in a program does not leak to public output. The most
wide-spread approach for information flow noninterference are IFC
type systems, e.g. see [122, 10, 58].

This noninterference proof is based on the correctness of slicing,
thus reuses the results from the previous chapters. This exemplifies
that the work presented here is not limited to the scope of this the-
sis: it forms an ideal basis to verify algorithms which use slicing as an
underlying program analysis. As the proof builds on the modular slic-
ing framework, it immediately inherits its language-independence. It
holds for any language that instantiates the framework, hence we ob-
tain a noninterference algorithm for any such language; e.g. by the
results of this thesis, for a While language as well as for Jinja byte
code.

I constructed a noninterference proof for both the static intra- and
interprocedural case. As the proof structure is identical in both cases
(yet, the proofs of the interprocedural case are much more substantial,
of course), I will only show noninterference based on Horwitz-Reps-
Binkley slicing in the following. Details on the intraprocedural case
can be found in [132], the theories are available online [130].

CHAPTER 6. INFORMATION FLOW CONTROL VIA VERIFIED SLICING

6.1 Information Flow Noninterference

Language-based IFC analyzes the program source to discover secu-
rity leaks, and usually aims to establish noninterference. Informally,
noninterference demands that a variation in secret variables will not
result in variations of public output, thus guaranteeing confidential-
ity. This work employs the most fundamental noninterference defi-
nition which I call classical noninterference; yet, other names like low-
deterministic security [73] or batch-job termination-insensitive noninterfer-
ence (BTINI) [5] are also common.

Let H and L be the secret (high) and public (low) confidentiality
levels. For a program statement c, [[c]] denotes the state transforma-
tion induced by executing c in the sense of denotational semantics.
Two states s and s ′ are low-equal, written s ≈L s ′, if they coincide on
variables with confidentiality level L. Classical noninterference then
demands that ∀ s s ′. s ≈L s ′−→ [[c]]s ≈L [[c]]s ′. Note that this definition
only talks about the initial and final program states; classical nonin-
terference cannot express security-relevant properties of intermediate
states.

The correctness theorem proposed in this thesis can be stated as fol-
low: if the backward slice of all low variables does not contain high
variables, then classical noninterference is satisfied and hence the pro-
gram is secure. In fact, it is enough to require that backward slices of
final low variables do not contain initial high values, ignoring interme-
diate states and variables.

The converse of the theorem does not hold, because all implemen-
tations of noninterference based on program analysis, including our
own, are conservative approximations; that is, they can generate
false alarms. The more precise an analysis is, the less false alarms it
will generate. To illustrate precision, consider the following program,
which uses call-by-reference:

procedure swap (int x, int y) {
int temp := y; y := x; x := temp;

}
swap (h1, h2);
swap (l1, l2);

It swaps two H values as well as two L values using the same auxiliary
method. The program is perfectly secure in the sense of noninterfer-
ence, but a context-insensitive analysis will generate a false alarm, as

146

6.2. THE PROOF

it does not distinguish the two calling contexts and thus erroneously
reports that a H value may be assigned (i.e., leaked) to an L variable.
Furthermore, most systems require an annotation for temp with either
H or L, which generates another false alarm. Being context-sensitive,
Horwitz-Reps-Binkley slicing can guarantee that this programm is in-
deed noninterferent. Hence, the approach presented in the following
has truely additional benefit compared to standard IFC type systems,
which cannot validate noninterference in this example.

Due to being flow-sensitive, slicing can prove programs like
l := h; l := 0; noninterferent. Most type systems would reject it
as unsecure as it assigns a high variable to a low variable; however,
flow types as proposed from Hunt and Sands [58] eliminate this draw-
back. Still, while classical noninterference based on slicing produces
fewer false alarms, 100% precision is impossible due to decidability
problems.

6.2 The Proof

In the definitions and lemmas of this section, I sometimes abuse no-
tation to not wear out the reader. For example, I omit conversions
between CFG and SDG nodes and node sets as well as between states
whose call frames contain return information and those that do not,
that initial states in the noninterference theorems consist of only one
call frame, etc.

6.2.1. The Assumptions

Classical IFC noninterference, a special case of a noninterference def-
inition using partial equivalence relations (PER) [97], partitions the
variables (i.e., locations) into security levels. Usually, only two levels,
H for secret or high and L for public or low variables, are used. Basi-
cally, a program that is noninterferent has to fulfil one basic property:
executing the program in two different initial states that may differ
in the values of their H -variables yields two final states that again
only differ in the values of their H -variables; thus the values of the
H -variables did not influence those of the L -variables. We will now
show how slicing à la Horwitz, Reps, and Binkley can guarantee that
a program is noninterferent.

147

CHAPTER 6. INFORMATION FLOW CONTROL VIA VERIFIED SLICING

locale NonInterferenceGraph = SDG +

fixes H :: ′var set
fixes L :: ′var set
fixes (-High-) :: ′node
fixes (-Low-) :: ′node
assumes HighLowDistinct : H ∩ L = {}
and HighLowUNIV : H ∪ L = UNIV
and Entry-edge-Exit-or-High : [[valid-edge a ; src a = (-Entry-)]]

=⇒ trg a = (-Exit-) ∨ trg a = (-High-)
and High-target-Entry-edge : ∃ a . valid-edge a ∧ src a = (-Entry-) ∧

trg a = (-High-) ∧ kind a = (λs . True)√
and Entry-predecessor-of-High :

[[valid-edge a ; trg a = (-High-)]] =⇒ src a = (-Entry-)
and Exit-edge-Entry-or-Low : [[valid-edge a ; trg a = (-Exit-)]]

=⇒ src a = (-Entry-) ∨ src a = (-Low-)
and Low-source-Exit-edge : ∃ a . valid-edge a ∧ src a = (-Low-) ∧
trg a = (-Exit-) ∧ kind a = (λs . True)√

and Exit-successor-of-Low :

[[valid-edge a ; src a = (-Low-)]] =⇒ trg a = (-Exit-)
and DefHigh : Def (-High-) = H
and UseHigh : Use (-High-) = H
and UseLow : Use (-Low-) = L

Figure 6.1.: Locale fixing the assumptions for IFC noninterference by
slicing

Classical noninterference makes certain assumptions: (i) all H -vari-
ables are defined at the beginning of the program, (ii) all L -variables
are observed (or used in our terms) at the end and (iii) every vari-
able is either H or L. This security label is fixed for a variable and can
not be altered during a program run. Thus, we have to extend the
prerequisites of our framework accordingly in a new locale NonInter-
ferenceGraph, see Fig. 6.1.

To fulfil the third assumption, we assume two variable sets H and
L that partition the set of all variables; HighLowDistinct and High-
LowUNIV make sure this holds. A naive approach to guarantee that
assumptions (i) and (ii) hold would require (-Entry-) to have all H -
variables in its Def set and (-Exit-) to have all L -variables in its Use
set. Yet, remember that our framework requires that the Def and Use
sets of both nodes are empty. Hence, we assume two special nodes,
(-High-) and (-Low-), where the former is the only immediate succes-

148

6.2. THE PROOF

sor of (-Entry-)1, the latter the only immediate predecessor of (-Exit-);
both connecting edges are labelled with no-op (λs . True)√, hence both
(-Low-) and (-High-) are in procedure Main. All H -variables are con-
tained in the Def set of (-High-) (for conformance reasons, they also
have to be in its Use set), all L -variables in the Use set of (-Low-).

6.2.2. Low Equality
In classical noninterference, an external observer can only see pub-
lic values, in our case the L -variables; moreover, he can only observe
them at the beginning and end of program execution. If two states
agree in the values of all L -variables, these states are indistinguish-
able for him. Low equality groups those states in an equivalence class
using the relation ≈L:

s ≈L s ′≡ ∀V ∈ L . state-val s V = state-val s ′V

The next lemma builds a bridge between low equal states as needed
in the noninterference proof and the relevant variables of the weak
simulation in the slicing correctness proof: if we have two low equal
states and (-High-) is not in the HRB slice of nc, then the values of the
relevant variables of (-Entry-) are equal in both states:

Lemma 6.1 Relating Low-Equality and Relevant Variables:

s ≈L s ′ (-High-) /∈ HRB-slice nc
∀V ∈ rv nc (-Entry-). state-val s V = state-val s ′V

6.2.3. Slicing Guarantees Noninterference
Assume a program and two low equal initial states s ≈L s ′ whose exe-
cution yields two final states that are not low equal. A different value
in a L -variable in the final states can only occur due to a different
value in a H -variable in s or s ′, as traversing a CFG is deterministic.
Hence, we know that at least one initial H -variable influenced a result
L -variable. As (-Low-) uses all L -variables and (-High-) defines all H -
variables, there is a valid path in the SDG between them due to this
interference (this correlation is an implication from the correctness re-
sult in the previous chapter). Thus, the HRB slice computed for (-Low-)
contains (-High-). So, to guarantee that there is no such influence, there

1This of course only holds with the exception of the special (-Entry-)-(-Exit-) edge.

149

CHAPTER 6. INFORMATION FLOW CONTROL VIA VERIFIED SLICING

may not be a valid SDG path, hence (-High-) /∈ HRB-slice (-Low-) has to
hold.

The next lemma is the key to show this; its proof takes up the ma-
jority of the whole theory. It looks at the values of the variables used
in (-Low-), which is also the slicing node, after traversing paths in the
sliced graph. Assume we have two paths as and as ′ between n, a node
in the Main procedure, and (-Low-). Both paths fulfill all their predi-
cates in the sliced graph of (-Low-) with initial states s and s ′, respec-
tively. These two states agree on the values of all relevant variables of
n in this sliced graph. Then the final states after traversing as and as ′

in the sliced CFG agree in the values of the used variables in (-Low-):

Lemma 6.2 Relating Relevant and Used Variables:

n −as→√∗ (-Low-) preds (slice-kinds (-Low-) as) s
n −as ′→√∗ (-Low-) preds (slice-kinds (-Low-) as ′) s ′

get-proc n = Main ∀V ∈ rv (-Low-) n . state-val s V = state-val s ′V

∀V ∈ Use (-Low-). state-val (transfers (slice-kinds (-Low-) as) s) V =

state-val (transfers (slice-kinds (-Low-) as ′) s ′) V

Proof. Both n and (-Low-) are in Main, so as and as ′ are same level
paths, remember their definition in Sec. 5.2.2. The above lemma is
a corollary of a more general one, which draws the same conclusion
but only requires suffixes of same level paths with an appropriate call
edge stack. The latter can be proved by induction on same-level-path,
where in each nonempty case we have to make sure that the following
conditions on the path suffixes from the assumptions hold: (i) their
lengths are equal, (ii) the leading edge of both paths is the same, and
(iii) for all relevant variables in the target node of the leading edge, the
values after traversing the leading edge in states s and s ′agree. For call
and return edges, to prove that the leading edges agree is quite simple,
for an intraprocedural edge we need that the sliced graph is determin-
istic. Combining these conditions with the induction hypotheses, the
conclusion follows directly. ut

For the original CFG, the final state of executing a program in an ini-
tial state s is transfers (kinds as) s, if as is the corresponding valid path
between (-Entry-) and (-Exit-) in the CFG and preds (kinds as) s holds.
Following the argumentation from above, assuring that HRB-slice of
(-Low-) does not contain (-High-) suffices in proving noninterference
of a program. Thus, we state the noninterference theorem for HRB
slicing as follows:

150

6.2. THE PROOF

Theorem 6.3 Path Noninterference Theorem for HRB Slicing:

s ≈L s ′ (-Entry-) −as→√∗ (-Exit-)
(-Entry-) −as ′→√∗ (-Exit-) (-High-) /∈ HRB-slice (-Low-)

preds (kinds as) s preds (kinds as ′) s ′

transfers (kinds as) s ≈L transfers (kinds as ′) s ′

Proof. The trick to prove this theorem is to argue in the sliced graph of
(-Low-). First, we split the paths as and as ′ into paths from (-Entry-)
to (-Low-) and the no-op edges between (-Low-) and (-Exit-). Then,
we apply the Fundamental Property of HRB Slicing Thm. 5.9 to both
trimmed paths. Thus, the values of all variables that are used in (-Low-)
are equal, regardless if we traversed the original or the sliced graph;
this holds for both trimmed paths. Using Lem. 6.1 and Lem. 6.2, the
first two premises and the paths from (-Entry-) to (-Low-), we know that
these values also agree for both traversals of the sliced graph. Thus,
the values of (-Low-)’s used variables also agree in the final states after
traversing the paths in the original graph. Since traversing the edges
between (-Low-) and (-Exit-) has no influence on the states, we know
that the same holds for the final states after executing the whole pro-
gram. As the variables used in (-Low-) are exactly the L -variables, we
obtain the conclusion. ut

If we have a semantically well-formed CFG, i.e., the CFG conforms
to an operational semantic, we obtain a theorem that connects HRB
slicing to the standard semantic definition for noninterference as a
corollary from Thm. 6.3 after the following considerations.

As mentioned in Sec. 6.1, classical noninterference just considers a
complete program execution, starting in the initial statement c that
describes the program. However, the framework argues about paths,
so we need to identify the initial node of program execution, i.e., the
first node after (-Entry-) and (-High-). A naive approach would as-
sume a predicate over statements initial, which guarantees that its pa-
rameter is indeed the initial statement, and then identify the corre-
sponding node via ,. Though, this does not lead to the desired ini-
tial node. Consider program c = skip; while (true) skip. All
standard small step semantics evaluate this statement in two steps
to skip; while (true) skip again (by unfolding the loop body).
Hence, this statement is identified by two different nodes, only one of
them being the initial one.

151

CHAPTER 6. INFORMATION FLOW CONTROL VIA VERIFIED SLICING

E

H L H L

E

Figure 6.2.: Slicing shows the swap example noninterferent

However, there is a solution for this dilemma: let n be the imme-
diate successor node of (-High-); since (-Entry-) and (-High-) are mere
auxiliary nodes without a corresponding statement, this is the initial
node that starts the program; we write this as initial n. If n identifies
c, written n , c, c is the statement describing this program. Analo-
gously, predicate final holds only for the node which is the immediate
predecessor of (-Low-). The statement that it identifies is thus the fully
evaluated statement. While this approach “pollutes” a semantic proof
with CFG notions, it seems the only satisfying solution, since arguing
solely on statements cannot work, as showed above. Then, we can lift
low-deterministic correctness as follows:

Theorem 6.4 Noninterference Theorem for HRB slicing:

s1 ≈L s2 (-High-) /∈ HRB-slice (-Low-) initial n
n , c final n ′ n ′, c ′ 〈c ,s1〉 ⇒ 〈c ′,s′1〉 〈c ,s2〉 ⇒ 〈c ′,s′2〉

s′1 ≈L s′2

Reconsider the swap example from Sec. 6.1. The graph on the left
in Fig. 6.2 shows the SDG for this example with the necessary (-High-)
and (-Low-) added, which are labelled H and L, respectively2. Note
that x and y are in- as well as out-parameters for procedure swap. The
HRB slice of node L includes only those nodes not greyed out in the
graph on the right. As H is greyed out, it is not part of the slice and
thus, no information can flow from H to L, which proves the program
to be noninterferent.

2As usual, solid arrows denote control, dashed arrows data, dotted arrows call and
parameter and bold arrows summary edges.

152

6.3. LIFTING ARBITRARY FRAMEWORK GRAPHS

6.3 Lifting Arbitrary Framework Graphs

In general, only few CFGs that are valid in the framework will ful-
fil the assumptions from locale NonInterferenceGraph, as they do not
have the required (-High-) and (-Low-) nodes. However, we can lift
any arbitrary CFG from the framework such that the above require-
ments hold. Note that the partition in H - and L -variables must still be
provided from the outside.

First, relabel the (-Entry-) node to (-High-) and the (-Exit-) node to
(-Low-). Next, adapt its Def and Use set, so that (-High-) defines and
uses all H -variables, (-Low-) uses all L -variables. Add two additional
nodes, NewEntry and NewExit, the new entry and exit nodes of the
lifted CFG, with empty Def and Use sets. They have to connect to
(-High-) and (-Low-) with the required intraprocedural no-op edges.
Moreover, every function assumed and defined in the original locales
has to be lifted. Finally, I proved that this lifted graph instantiates lo-
cale NonInterferenceGraph, which contains the correctness results
Thm. 6.3 and 6.4, if its original graph is a valid CFG in the slicing
framework.

153

Science is supposedly the
method by which we stand on
the shoulders of those who came
before us. In computer science,
we all are standing on each
others’ feet.

G. Popek 7
Discussion and Related Work

In this chapter I first review the formalizations in this thesis in terms
of their sizes. While it may not be too important if some formalization
is some lines longer than another, comparing the sizes leads to some
interesting insights. The subsequent sections discuss related work. We
distinguish several categories:

• works concerning semantics and type safety proofs for object-
oriented languages as well as multiple inheritance,

• works on the correctness of slicing,

• some works that address similar formalization and verification
issues in proof assistants, and

• works which formalize and verify information flow noninterfer-
ence in proof assistants.

7.1 Formalization Sizes

Both formalizations, the CoreC++ semantics as well as the slicing
framework, are substantial developments and belong to the large-scale
projects in theorem provers. Fig. 7.1, Fig. 7.2, and Fig. 7.3 show the

LoC Lemmas Definitions Locales
14,727 505 82 0

Figure 7.1.: CoreC++ formalization numbers

CHAPTER 7. DISCUSSION AND RELATED WORK

LoC Lemmas Definitions Locales
Framework

Common subset 1,836 72 12 7
Dynamic slicing 1,653 48 8 4
Static intrapr. slicing 3,383 89 23 5

Instantiations
WHILE 2,319 40 14 0
+ semantic well-form. 3,177 51 17 0
Jinja 2,884 57 24 0
+ semantic well-form. 5,517 100 27 0

IFC Noninterference
Proof 558 15 2 2
CFG lifting 1,470 12 3 0

Total 14,103 333 86 18
+ semantic well-form. 17,594 387 92 18

Figure 7.2.: Dynamic and static intraprocedural slicing

size of the formalizations in terms of lines of code, lemmas, defini-
tions (which also includes recursive and inductive ones) and locales.
In the following, I focus on some interesting details.

Consider the sizes of the frameworks in Fig. 7.2 and Fig. 7.3. Al-
though I could reuse some parts of the static intraprocedural work
(i.e., common subset + static intraprocedural slicing), the size of the
interprocedural framework grew by a factor of 4. This is mainly due to
the complicated formalizations of SDGs with summary edges and the
algorithm of Horwitz, Reps, and Binkley, as well as the new precision
proof and the lifting of the correctness proof to the interprocedural
case.

The proof that slicing can guarantee noninterference grew from
intra- to interprocedural slicing by a factor of 3, the lifting only by
30%. In both cases, the proof is quite short compared to the frame-
work size. Hopefully, the correctness results of the framework turn
out to be a benefit in proving other slicing related issues, similar to
IFC noninterference as shown here.

As for the instantiations, some surprising facts can be seen. Remem-
ber that PROC is essentially WHILE plus procedures. Adding proce-
dures to WHILE – thus gaining PROC – resulted in an instantiation size
increase by factor 2.8. However, for Jinja the migration from intra- to

156

7.2. TYPE SAFE SEMANTICS FOR C++

LoC Lemmas Definitions Locales
Framework 18,988 579 104 12
Instantiations
(w/o semantic well-form.)

PROC 6,758 127 29 0
Jinja 3,429 64 30 0

IFC Noninterference
Proof 1,502 20 2 2
CFG lifting 2,025 8 10 0

Total 32,702 798 175 14

Figure 7.3.: Static interprocedural slicing

interprocedural led to an increase of the instantiation size of only 1
6 .

This is likely due to the fact that byte code languages reflect the corre-
sponding CFG structure very well in the sense that nodes correspond
to instruction positions in a rather natural way.

Is the approach of using a language independent framework to
prove the correctness of slicing actually wise? In the intraprocedu-
ral case, each instantiation we showed (While and Jinja) took about
50% of the size of the framework. Now, in the interprocedural case,
we were able to push this factor down to 1

3 for PROC and even to 1
5

for Jinja; hence, instantiating the framework with a new language is
indeed much easier than redoing the whole proof.

7.2 Type Safe Semantics for C++

There is a wealth of material on formal semantics of object-oriented
languages, but to our knowledge, a formal semantics for a language
with C++-style multiple inheritance with type safety proof has not yet
been presented. An impressive piece of work is the C++ semantics of
Norrish [83], which formalizes the C++ standard [116] and sticks very
close to the language implementation. While not providing a type
safety proof, Norrish can handle concepts this thesis ignores, such as
namespaces, templates, explicit pointers and the like.

157

CHAPTER 7. DISCUSSION AND RELATED WORK

7.2.1. Type Safety Proofs for Object-Oriented
Languages

Java formed a primary target for research in semantics and type safety
because of its rich and well documented type system. The work of
Drossopoulou and Eisenbach [42] can be considered ground-breaking
in this area: they were the first to prove an substantial object-oriented
subset of Java to be type safe.

Jinja [61] was a big achievement for showing type safety of object-
oriented programs, it was the first type safety proof of a relevant sub-
set of a widely-used OO language in a theorem prover. As this project
also showed type safety for Jinja byte code, verified a byte code ver-
ifier and a compiler, the whole compilation chain down to byte code
has been proved correct.

In his thesis [45], Fruja showed type safety of C# and its byte code
representation, the .NET CLR. The language under consideration is
again a subset, however very sophisticated, as it features structs, del-
egates, ref- and out-parameters, and boxing and unboxing. C# uses,
like Java, single inheritance, thus many of the problems considered in
this thesis do not show up. To prove type safety, Fruja provides the
semantics of the languages through an abstract interpreter, which is
defined as an abstract state machine model. He shows that its execu-
tion according to the semantics of legal and well-typed methods does
not lead to run-time type violations and leaves the program in a good
state. To this end, the complex definite assignment analysis of vari-
ables is proved to be sound, just like the CLR byte code verifier. Yet,
all proofs were done manually, they are not machine-checked.

Bruce et al. define an object-oriented language called PolyTOIL [30]
and its byproduct LOOM [29]. The requirement for both languages
was to be type safe by design. They achieve this by three design deci-
sions: (i) classes are not types but values, (ii) a special type MyType for
the this-Pointer, and (iii) a matching relation replacing the standard
subtyping relation. This enables them to handle contravariant param-
eter types, parameterized types and (match-bounded) polymorphism.
With the aid of a subject reduction theorem, they prove their lan-
guages type safe. However, this approach differs considerably from
the object-oriented understanding used in wide-spread languages like
Java and C++. Yet they were able to carry over their results to Java;
the resulting language is called LOOJ [28].

158

7.2. TYPE SAFE SEMANTICS FOR C++

7.2.2. Semantics of Multiple Inheritance

Cardelli [32] presents a formal semantics for a form of multiple in-
heritance based on structural subtyping of record types, which also
extends to function types. Another early paper from Breazu-Tannen
et al. [27] claims to give a semantics to multiple inheritance for a lan-
guage (PCF++) with record types. It is difficult to relate the language
constructs used in each of these to the multiple inheritance model of
C++.

The work by Attali et al. [6] is similar to ours in spirit but treats Eiffel
rather than C++, whose multiple inheritance model differs consider-
ably. Eiffel uses shared inheritance by default; repeated inheritance
is not possible, instead repeated members must be uniquely renamed
when inherited.

CZ as proposed by Malayeri and Aldrich [72] tackles the problem of
diamonds in multiple inheritance class hierarchies. They only regard
shared inheritance, as this is “the desirable semantics” [72, Sec. 2] for
multiple inheritance. Instead of the repeated inheritance problem of
field copies, diamonds using shared inheritance require careful han-
dling when initializing objects; the constructor of a shared superclass
may only be called once, cf. Sec. 2.6.1. CZ tackles a well-known prob-
lem: it separates subclassing (for which it uses the keyword extends)
from subtyping, indicated by requires. Subclassing diamonds are
then prohibited, but subtyping diamonds are allowed. A class A that
requires class B should not call B’s constructor; however, all con-
crete subclasses of A have to extend B.

Scala [84] provides a mechanism for symmetrical mixin inheritance
as introduced by Bracha and Cook [26], in which a class can inherit
members from multiple superclasses. If members are inherited from
two mixin classes, the inheriting class has to resolve the conflict by
providing an explicit overriding definition. Scala side-steps the issue
of shared vs. repeated multiple inheritance by simply disallowing a
class to (indirectly) inherit from a class that encapsulates state more
than once (multiply inheriting from abstract classes that do not en-
capsulate state – called traits – is allowed, however). The semantic
foundations of Scala, including a type system and soundness proof
can be found in [85].

159

CHAPTER 7. DISCUSSION AND RELATED WORK

7.2.3. C++ Multiple Inheritance

Wallace [124] presents an informal discussion of the semantics of many
C++ constructs, but avoids all the crucial issues. The natural semantics
for C++ presented by Seligman [102] does not include multiple inher-
itance nor covariant return types. Most closely related to our work is
[55], where some basic C++ data types (including structs but exclud-
ing pointers) are specified in PVS; an object model is “in preparation”.

The complexities introduced by C++-style multiple inheritance are
manifold, and have to our knowledge never been formalized ade-
quately or completely. In the C++ standard [116], the semantics of op-
erations such as method calls and casts that involve class hierarchies
are defined informally, while several other works (see, e.g., Strous-
trup [114]) discuss the implementation of these operations in terms of
compiler data structures such as virtual function pointer tables (“v-
tables”). Rossie and Friedman [93] were the first to formalize the se-
mantics of operations on C++ class hierarchies in the form of a calculus
of subobjects. This work forms the basis for the semantics presented
in this thesis and previous work [126].

Ramalingam and Srinivasan [89] observe that a direct implemen-
tation of Rossie and Friedman’s definition of member lookup can be
inefficient because the size of a subobject graph may be exponential in
the size of the corresponding class hierarchy graph. They present an
efficient member lookup algorithm for C++ that operates directly on
the class hierarchy graph. Still, like Rossie and Friedman, their defini-
tion does not follow C++ precisely in cases where static information is
used to resolve ambiguities.

7.3 Correctness of Slicing

In this section, I present some key works which address the correct-
ness of slicing, grouped in static and dynamic approaches.

7.3.1. Static Slicing

While dependence graphs are a quasi standard in slicing, it is surpris-
ing that there is no work on the correctness of interprocedural slicing
based on dependence graphs; all contributions shown in the following
that use this technique are intraprocedural.

160

7.3. CORRECTNESS OF SLICING

Reps and Yang [92] were the first to prove static intraprocedural
slicing correct using CFGs and PDGs. This work is restricted to a
simple While language without procedures and standard control de-
pendence. The correctness proof by Ball and Horwitz [7] uses a sim-
ilar language and the same control dependence, but allows also non-
structural control flow, e.g. jumps. While these proofs were ground-
breaking, they suffer from their limited application area, e.g. for vary-
ing languages or control dependence relations.

Ranganath et al. [90] and Amtoft [3] define correctness of slicing us-
ing a weak simulation, an approach that is also used in this thesis. The
former focuses on defining and using various control dependences,
the latter concentrates on weak order dependence and the presenta-
tion of the correctness proof. In spite of its limitations, Amtoft’s work
turned out to be ideal for the slicing framework of this thesis as

(i) his code map conforms to applying the functions kind and trans-
fer to the corresponding CFG edges in the framework, and

(ii) in the intraprocedural case, the characteristics of weak order de-
pendence are just needed in exactly one lemma where Amtoft
proves that the observable set for any node is at most a singleton;
if one can show this property for another control dependence,
the whole proof still holds for this new control dependence.

The work presented here goes well beyond Amtoft’s work as I elim-
inated the concrete language as well as, in the intraprocedural case,
the concrete control dependence definition. Moreover, I lifted it to the
interprocedural case and to the sophisticated slicing definition of Hor-
witz, Reps, and Binkley [57].

In [125], Ward and Zedan model slicing as a program transforma-
tion, thereby abstracting from specific representations. In their sense,
a program transformation is any operation on a program which gener-
ates a semantically equivalent program. The aim of their work, which
concerns intra- and interprocedural slicing, is to provide a unified
mathematical framework for sequential programs. However, it devi-
ates considerably from the wide-spread dependence graph based slic-
ing approach as formalized in this thesis; moreover, it relies on pen-
and-paper proofs whereas my framework is fully machine-checked.

161

CHAPTER 7. DISCUSSION AND RELATED WORK

7.3.2. Dynamic Slicing
The approach for dynamic slicing as presented in this thesis relates to
the work by Agrawal and Horgan [1], primarily to Approach 3, since
nodes can occur multiple times in paths (e.g. in loops), my equiva-
lent to their execution history. From such an execution history, they
build the Dynamic Dependence Graph, but this graph does not corre-
spond to the dynamic PDG computed here as the latter contains all
paths, not only a selected one. Although data dependence can be
computed for a single path in isolation, we need this additional in-
formation about all possible paths for computing the control depen-
dence relation. Agrawal and Horgan also use (in their case static) PDG
information to determine the control dependences in their execution
history. Having all possible traces in a TCFG is only a formalization
trick that is of course not applicable in algorithms really computing
dynamic slices because TCFGs are potentially infinite.

The approach of Gouranton and Le Métayer [49] is similar to mine
as they present a language independent framework and use it to show
the correctness of dynamic slicing. Instead of graph structures, they
base their work on natural semantics. The slicing itself uses annota-
tions where program points with annotation False are treated as Skip,
the same strategy I pursue with the notion of bit vectors. They also
present the embedding of three different languages in their frame-
work: an imperative, a logic programming and a functional one. As
my framework is based on CFGs, instantiating it with a logic or func-
tional language is far from trivial, but for the latter the results by Shiv-
ers [103] suggest that it may nevertheless be possible – at least for the
dynamic and static intraprocedural framework.

7.4 Working with Proof Assistants

This section subsumes various areas directly associated with work-
ing in a proof assistant. It concerns (i) structuring and abstracting
proofs via modularization, (ii) the formalization of flow graphs, and
(iii) some results on the verification of program analyses.

7.4.1. Modularized Proofs
The ability to modularize proofs is not unique to locales in Isabelle,
other theorem provers provide comparable tools, cf. parametric theo-

162

7.4. WORKING WITH PROOF ASSISTANTS

ries in PVS [86] and modules in Coq [35]. Similar to my work, other
approaches use these means to prove properties abstracting from con-
crete program instances.

The Coq part in the tool KRAKATOA by Marché et al. [74] – a tool for
verifying that a Java program meets its JML specification – uses the
module concept to abstract from a concrete Java program. KRAKA-
TOA ensures that the properties proven for the abstract instance, i.e.,
a signature representing the class structure of an arbitrary Java pro-
gram, also hold for any concrete program.

7.4.2. Flow Graphs in Proof Assistants
Various works on verification in theorem provers use a notion of con-
trol flow graphs, e.g. see Leroy [68] and Blech et al. [24]. In most cases,
they define control flow implicitly, i.e., as a relation, not as a real graph
structure.

Lammich and Müller-Olm [67] define a parallel flow graph similar
in structure to my control flow graph (but they also formalize paral-
lelism), which is not restricted to a certain language either. While my
work uses flow graphs to construct dependence graphs and to prove
certain properties of them, they focus on the correctness of analyses
on the flow level.

7.4.3. Machine Checked Verification of Program
Analyses

Using theorem provers to verify program analyses has gained wide-
spread acceptance, mainly for basic analyses like Kildall’s workflow
algorithm [60, 38, 99, 69], simple compiler optimizations [24, 119], etc.
Bertot et al. [19] go one step further and provide a framework in Coq
[18] for compiler optimizations such as dead code elimination and
common subexpression elimination. Results for sophisticated inter-
procedural analyses as the one presented in this paper are rare, excep-
tions being the verification of a Java byte code verifier [61, 17] and a
data race analyzer based on a context sensitive points-to analysis by
Dabrowski and Pichardie [39].

An interesting idea is presented by Chang et al. in [34]: they intro-
duce certified program analyses, whose implementation is accompanied
by a checkable proof for soundness, in the sense of proof-carrying
code [79]. Their approach employs code extraction from Coq, while

163

CHAPTER 7. DISCUSSION AND RELATED WORK

trying to preserve the implementation structure as close as possible.
Also Cachera et al. [31] use code extraction from Coq to achieve a ver-
ified dataflow analyzer in OCaml.

7.5 IFC Noninterference in Proof Assistants

Most works that formalize information flow noninterference in a proof
assistant that we are aware of are information flow type systems [96].
This comes as no surprise because how to prove properties of type
systems in proof assistants is well-known. However, we also discuss
two other approaches: (i) formalizations of Goguen/Meseguer style
noninterference, and (ii) noninterference via dynamic logic.

7.5.1. Verification of Information Flow Type Systems

Noninterference in type systems is usually defined analogously to
the notion of classical noninterference of this thesis. Some IFC type
systems also allow more general PER noninterference models as de-
scribed in [97] by Sabelfeld and Sands. We distinguish between intra-
and interprocedural approaches in the following.

Intraprocedural Type Systems

Barthe and Nieto [11] formalize an information flow type system for a
concurrent while language as defined by Boudol and Castellani [25],
which is an extension of the Volpano/Smith system [107]. Using Isa-
belle/HOL, they define a bisimulation (which allows stuttering) over
the semantic rules to show noninterference. Furthermore, they also
verify noninterference for scheduling programs. The sequential sub-
set of the Volpano/Smith system was also formalized in Isabelle/HOL
by Snelting and Wasserrab [110], together with a proof that it pre-
serves classical noninterference.

Kammüller developed a framework for using the byte code verifier
of a Java-like language to show non-interference [59]. His work re-
lates to this thesis as he uses the module concept of Coq to abstract
from a specific language syntax. His framework restricts to byte code
languages, whereas the framework presented here can handle source
as well as byte code languages. Due to Coq, his proofs are executable
as programs, i.e., they can actually run their non-interference check.

164

7.5. IFC NONINTERFERENCE IN PROOF ASSISTANTS

The underlying type system is not given explicitly, but seems inspired
by the work of Barthe et al. [10]. The paper does not clearly state if the
noninterference analysis is intra- or interprocedural, the instructions
shown do not display any call or invoke rule.

Interprocedural Type Systems

The type system of Banerjee and Naumann [9] covers the sequential
core of Java. They prove their system sound via simulation and in-
distinguishability of states. This work (omitting access control) has
been formalized in theorem provers: in PVS by Naumann [78] and in
Isabelle/HOL by Strecker [113].

Using Isabelle/HOL, Beringer and Hofmann [16] formalize and
prove correct different type systems, starting with the Volpano-Smith-
Irvine type system [122] for a while language, which they extended
with an additional simple call rule to procedures without parameters.
They augment this type system with Hunt’s and Sand’s flow types
[58] and objects as covered by Barthe and Rezk in [13]. Instead of the
usual noninterference definition, which compares two program runs,
they use a security property which captures noninterference formally
with only a single execution.

In [12], Barthe, Pichardie, and Rezk define a noninterference byte
code verifier for a Java-like language. They build on an existing for-
malization of a Java-like byte code language in Coq, called Bicolano
[36], which is quite similar to the one formalized in Jinja, but fea-
tures all byte code instructions. The noninterference verifier consists
of three parts: (i) a pre-analyzer which computes information to re-
duce the control flow graph, (ii) an analyzer for control dependence
regions, and (iii) the actual information flow analyzer, which lever-
ages Kildall’s dataflow algorithm to compute for every program point
its security environment. The latter two are proved correct in Coq,
whereas the correctness of the pre-analyzer is assumed; integrating a
machine-checked correctness proof for it, for which parts already exist
[20], is left for future work.

7.5.2. Formalization of Goguen/Meseguer

In his work on noninterference, Rushby [95] focuses on security poli-
cies whose interference relation is intransitive. He formalizes the core
of the Goguen/Meseguer approach to provide an “unwinding lemma”,

165

CHAPTER 7. DISCUSSION AND RELATED WORK

using notation that differs considerably from the original. The theo-
rem prover EHDM, a predecessor of PVS, is used for this task.

Von Oheimb [123] uses Isabelle/HOL to extend this work with non-
determinism. Furthermore, he adds a concept for confidentiality sim-
ilar to IFC, called nonleakage. If a program is nonleaking, data from the
initial states should not be leaked, whereas Goguen/Meseguer non-
interference says that the occurrence of certain events should not be
observable. The combination of both, noninfluence, is also formalized.

7.5.3. Noninterference via Dynamic Logic
In [40], Darvas et al. formalize noninterference in dynamic logic and
include it in the theorem prover KeY [2]. Noninterference is en-
coded in two formulas, first a formalization of classical noninterfer-
ence as presented in this thesis, and second, an equivalent formula
∀l. ∃r. ∀h. 〈p〉r .

= l. This formula states that “when starting (the
terminating program) p with arbitrary values l, then the value r af-
ter executing p is independent of the choice of h.” Then, they were
able to prove programs like l = h; l = l− h; or if (false) l = h; se-
cure, which are rejected by type systems and even by slicing based
approaches. They present extensions for proving insecurity and han-
dling exceptions and (forms of) declassification. However, the exam-
ples presented in this work are very small, the authors themselves ex-
pect that this approach scales poorly to more complex programs with
several high and low variables.

166

We can only see a short distance
ahead, but we can see plenty
there that needs to be done.

A. Turing 8
Future Work

While the work in this thesis is self-contained, there are many areas in
which future research is desirable or even necessary. I will focus on a
few interesting problems, although there may still be other directions
which could be worth some more consideration.

8.1 Extending the CoreC++ Semantics

When discussing the results of [134], I was often asked if I planned
formalizing C++ templates [121]. Templates are the C++ mechanism
for generic programming, but are much more powerful than Java’s
generics [76]. This is because they work by mere textual replacement.
However, this hinders seperate type checking of templates indepen-
dently from their uses, which is possible with Java generics.

Formalizing templates and showing their type safety should be re-
alizable in the CoreC++ semantics presented in this thesis. There is
already a formalization of C++ templates in Isabelle [104], however,
the language presented there lacks statements and all of the object-
oriented features. As these were the main focus of my work, it remains
to see if this work could serve as a basis for extending the semantics.

Recent reasearch proposed means to tackle the problem of seperate
type checking of templates via concepts [50]. It would be interesting to
see how this idea works in the area of the formal CoreC++ semantics
and how it would affect the type safety proof.

There is also room for extending the framework with new concepts.
This has been done for arrays and threads in Jinja [70, 71], I would not
expect many new insights from reimplementing such extensions.

CHAPTER 8. FUTURE WORK

8.2 Extending the Slicing Framework

The work in this thesis considers static intra- and interprocedural as
well as dynamic slicing based on graph structures. I do not expect
the framework to be adaptable for slicing algorithms that do not use
dependence graphs as their basis (an example for such an algorithm
is Weiser’s initial slicing algorithm [136]). Hence, all of the following
adaptions take dependence graphs as a basis.

Slice for a set of nodes. In slicing, it is sometimes necessary to
compute the slice for a set of nodes, not just for a single slicing node.
While many definitions (e.g. backward slice, slice-kind, the moves and
the weak simulation) take the slicing node as parameter, it should be
easy to adapt these definitions to a set of node: e.g. the backward slice
of a set of node is basically just the union of the slices of all nodes in
this set. The correctness proofs themselves should then be just a lifting
of the existing ones.

Control dependences. Changing the dependence definitions should
not pose a problem, when we restrict ourselves to the intraprocedural
case. In Sec. 3.3.3, I showed how the framework can already be in-
stantiated with different control dependence definitions; also chang-
ing the definition of data dependence or even incorporating new de-
pendences like def-def should be straightforward.

In the interprocedural case, this may be not that easy. As already
mentioned in Sec. 5.2.3, incorporating new control dependences in
the framework can lead to non procedure-local changes: e.g. a ter-
mination sensitive dependence gives rise to new dependences in the
procedure which calls this procedure, as all nodes after the call of a
procedure which contains a (possibly non-terminating) loop should
be control dependent on this call. Hence, incorporating new depen-
dences in the interprocedural framework will not be as easy as in the
intraprocedural case.

Concurrency. Algorithms for slicing of concurrent programs exist
[63, 77, 46], so future extensions could try to include concurreny in
the framework. The adaptions on the framework will be substantial,
though, e.g. interference edges have to be introduced. Moreover, there

168

8.3. EXTRACTING A VERIFIED SLICER

are to my knowledge no correctness proofs, neither formal nor infor-
mal, for concurrent slicing. Hence, extending the framework to con-
currency is no aim for the near future, but should be kept in mind as
a vision.

8.3 Extracting a Verified Slicer

This thesis presents the formalization and verification of slicing algo-
rithms in a functional style language. Naturally, the question arises if
this formalization can be used to generate a verified slicer. Isabelle’s
recently improved code generator [51] (which replaces [15]) extracts
code for the functional languages ML, Haskell, and OCaml from Isa-
belle theories. However, isolated code extraction from the CFG locales
seems not practicable, as the graph representation is too abstract. A
possible approach would be to generate code from a concrete CFG
definition of an instantiating language, which restates all definition of
the framework’s abstract CFG; an equivalence proof then has to guar-
antee that these definitions coincide. This means that code extraction
– even for the language-independent framework – needs to be redone
for every instantiated language. Also, it remains to see if substantial
code generator parts, e.g. for inductive predicates, actually work as
expected in locales.

8.4 Language Instantiations

Of course, further instantiations would still increase the credibility of
the framework. An instantiation with CoreC++ [134] would underline
the applicability of the framework for non-trivial languages; however,
as the special features in this language (i.e., multiple inheritance) are
completely orthogonal to slicing, I do not expect any new basic in-
sights from such an instantiation. Perhaps it would be more worth-
wile to instantiate the framework with a language whose structure
(or even paradigm) differs considerably from the languages already
inverstigated. For example, I would expect many insights from an in-
stantiation with a functional language (CFGs for such languages can
be built, according to Shivers [103]); however, such an instantiation
will be extremely extensive and tedious.

169

CHAPTER 8. FUTURE WORK

But also in the existing instantiations there is room for improve-
ment, e.g. in the area of precision. In the Jinja byte code instantia-
tion (see Sec. 3.4.2 and Sec. 5.4.2), the slice size would shrink signif-
icantly if we added a points-to analysis. Some formalizations of pow-
erful points-to analyses in theorem provers already exist, see e.g. the
work of Dabrowski and Pichardie [39]. Perhaps, the instantiation can
even be modularized w.r.t. a concrete points-to analysis using a locale.
Then, different analyses can be “plugged-in”, from the trivial that is
already present (i.e., all objects on the heap are aliased) to far more so-
phisticated ones. One of the missions of our project “Quis custodiet”
is the verification of the information flow algorithm in [52], which in-
corporates a points-to analysis. Hence, this area will be one central
point in future work.

8.5 Information Flow Control
The work in this thesis is only the first step of our project “Quis cus-
todiet”, which aims for the verification of sophisticated information
flow algorithms that use slicing. In Chap. 6, I present a first result
which shows that slicing can guarantee classical noninterference.
However, the slicing algorithms on which we focus (e.g. [52]) are
stronger w.r.t. information flow control than can be expressed in clas-
sical noninterference.

Remember that classical noninterference only allows secret values
that are fixed at the beginning of the program. It also assumes an at-
tacker who can only view public outputs at the beginning and the end
of the program run. Sophisticated noninterference algorithms, how-
ever, allow arbitrary annotations of program points as secret or public;
this would not be possible in approaches that require a fixed assign-
ment from variables to security level. Via these annotations, noninter-
ference algorithms allow arbitrary intermediate in- and output, both
secret and public. Moreover, the notion of the attacker is stronger,
as he can also observe intermediate public outputs. However, classi-
cal noninterference as presented in this thesis is not strong enough to
handle such annotations. Hence, before we attempt to verify those in-
formation flow algorithms, we have to find a notion of what we mean
by noninterferent in their case. Actually, our group is already working
on a more general noninterference definition, which can handle such
arbitrary annotations, but still incorporates classical noninterference
as a special case.

170

Beware of bugs in the above
code; I have only proved it cor-
rect, not tried it.

D. Knuth 9
Conclusion

This thesis presented two substantial formalizations in the proof as-
sistant Isabelle/HOL:

(i) a formal semantics and type safety proof for multiple inheri-
tance in C++, called CoreC++, and

(ii) a language-independent modular framework for slicing based
on dependence graphs with correctness proofs.

The CoreC++ formalization not only exhibited the first formal proof
that C++-like multiple inheritance does not compromise type safety.
It also showed that modern proof assistants nowadays are capable
to handle formalizations and proofs of substantial size; an experi-
ence which increased my confidence that I could manage the subtle
proofs I had in mind for the second formalization, i.e., showing a com-
plex context-sensitive interprocedural slicing algorithm correct, using
a proof assistant.

Proving slicing correct was the first step towards the objective of the
“Quis custodiet” project, which aims at verifying sophisticated infor-
mation flow algorithms based on slicing. While proofs for intraproce-
dural slicing had already existed, I detached the correctness property
from a concrete language and control dependence definition. More-
over, being machine-checked, my proofs gain increased confidence
compared to the existing pen-and-paper approaches.

Whereas the context-sensitive algorithm of Horwitz, Reps, and Bink-
ley is the quasi-standard for interprocedural slicing – and its correct-
ness beyond doubt for twenty years –, no correctness results had ex-
isted. Hence, this thesis presented the first formal proof of its correct-
ness, be it machine-checked or on paper.

CHAPTER 9. CONCLUSION

I presented two language instantiations for the slicing framework to
show that I chose the abstractions and requirements in the framework
sensibly. With the two languages being a simple imperative and a
sophisticated object-oriented, as well as a source and a byte code one,
I demonstrated the flexibility of the framework.

The correctness proof of slicing in this thesis is not only a result
in itself, but can also be leveraged for further verifications. I reused
it to show how slicing can safely guarantee classical noninterference.
Hence, this thesis lays the ground for the upcoming verification issues
in the “Quis custodiet” project.

172

A
Small Step Rules for CoreC++

new-Addr h = bac h ′= h (a 7→ (C , {(Cs , fs) | init-obj P C (Cs , fs)})
P ,E ` 〈new C ,(h , l)〉 → 〈ref (a , [C]),(h ′, l)〉

new-Addr h = None
P ,E ` 〈new C ,(h , l)〉 → 〈THROW OutOfMemory,(h , l)〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈stat cast C e ,s〉 → 〈stat cast C e ′,s ′〉

P ,E ` 〈stat cast C null ,s〉 → 〈null ,s〉
P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ,E ` 〈stat cast C (ref (a , Cs)),s〉 → 〈ref (a , Ds),s〉
P ,E ` 〈stat cast C (ref (a , Cs @ [C] @ Cs ′)),s〉 → 〈ref (a , Cs @ [C]),s〉

C /∈ set Cs ¬ P ` last Cs �∗ C
P ,E ` 〈stat cast C (ref (a , Cs)),s〉 → 〈THROW ClassCast ,s〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈dyn cast C e ,s〉 → 〈dyn cast C e ′,s ′〉

P ,E ` 〈dyn cast C null ,s〉 → 〈null ,s〉
P ` path last Cs to C unique

P ` path last Cs to C via Cs ′ Ds = Cs @p Cs ′

P ,E ` 〈dyn cast C (ref (a , Cs)),s〉 → 〈ref (a , Ds),s〉
P ,E ` 〈dyn cast C (ref (a , Cs @ [C] @ Cs ′)),s〉 → 〈ref (a , Cs @ [C]),s〉

hp s a = b(D , S)c P ` path D to C via Cs ′ P ` path D to C unique
P ,E ` 〈dyn cast C (ref (a , Cs)),s〉 → 〈ref (a , Cs ′),s〉

APPENDIX A. SMALL STEP RULES FOR COREC++

hp s a = b(D , S)c ¬ P ` path D to C unique
¬ P ` path last Cs to C unique C /∈ set Cs

P ,E ` 〈dyn cast C (ref (a , Cs)),s〉 → 〈null ,s〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈e �bop� e2,s〉 → 〈e ′ �bop� e2,s ′〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈Val v1 �bop� e ,s〉 → 〈Val v1 �bop� e ′,s ′〉

binop (bop , v1, v2) = bvc
P ,E ` 〈Val v1 �bop� Val v2,s〉 → 〈Val v,s〉

l V = bvc
P ,E ` 〈Var V ,s〉 → 〈Val v,(h , l)〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈V := e ,s〉 → 〈V := e ′,s ′〉

E V = bTc P ` T casts v to v ′

P ,E ` 〈V := Val v,(h , l)〉 → 〈Val v ′,(h , l (V 7→ v ′))〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈e .F{Cs},s〉 → 〈e ′.F{Cs},s ′〉

h a = b(D , S)c Ds = Cs ′@p Cs (Ds , fs) ∈ S fs F = bvc
P ,E ` 〈ref (a , Cs ′).F{Cs},s〉 → 〈Val v,(h , l)〉

P ,E ` 〈null .F{Cs},s〉 → 〈THROW NullPointer ,s〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈e .F{Cs} := e2,s〉 → 〈e ′.F{Cs} := e2,s ′〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈Val v.F{Cs} := e ,s〉 → 〈Val v.F{Cs} := e ′,s ′〉

h a = b(D , S)c P ` last Cs ′ has least F : T via Cs
P ` T casts v to v ′ Ds = Cs ′@p Cs (Ds , fs) ∈ S

P ,E ` 〈ref (a , Cs ′).F{Cs} := Val v,(h , l)〉 →
〈Val v ′,(h (a 7→ (D , {(Ds , fs(F 7→ v ′))} ∪ (S − {(Ds , fs)}))), l)〉

P ,E ` 〈.F{Cs} := Val v,s〉 → 〈THROW NullPointer ,s〉

174

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈Copt e M es ,s〉 → 〈Copt e ′M es ,s ′〉

P ,E ` 〈es ,s〉 [→] 〈es ′,s ′〉
P ,E ` 〈Copt (Val v) M es ,s〉 → 〈Copt (Val v) M es ′,s ′〉

h a = b(C , S)c P ` last Cs has least M = (Ts ′, T ′, pns ′, body ′) via Ds
P ` (C ,Cs @p Ds) selects M = (Ts , T , pns , body) via Cs ′

|vs| = |pns| |Ts| = |pns|
bs = blocks (this·pns , Class (last Cs ′)·Ts , Ref (a , Cs ′)·vs , body)
new-body = (case T ′ of Class D ⇒ stat cast D bs | -⇒ bs)
P ,E ` 〈(ref (a , Cs)).M (map Val vs),(h , l)〉 → 〈new-body,s〉

P ` path last Cs to C unique P ` path last Cs to C via Cs ′′

P ` C has least M = (Ts , T , pns , body) via Cs ′

Ds = (Cs @p Cs ′′) @p Cs ′ |vs| = |pns| |Ts | = |pns|
P ,E ` 〈(ref (a , Cs)).C ::M (map Val vs),s〉 →

〈blocks (this·pns , Class (last Ds)·Ts , Ref (a , Ds)·vs , body),s〉
P ,E ` 〈Copt null M (map Val vs),s〉 → 〈THROW NullPointer ,s〉

blocks (V ·Vs , T ·Ts , v ·vs , e) = {V :T ; V := Val v; blocks (V , T , v, e)}
blocks ([], [], [], e) = e

P ,E (V 7→ T) ` 〈e ,(h , l (V := None))〉 → 〈e ′,(h ′, l ′)〉
l ′V = None ¬ assigned V e

P ,E ` 〈{V :T ; e},(h , l)〉 → 〈{V :T ; e ′},(h ′, l ′(V := l V))〉

P ,E (V 7→ T) ` 〈e ,(h , l (V := None))〉 → 〈e ′,(h ′, l ′)〉
l ′V = bvc ¬ assigned V e

P ,E ` 〈{V :T ; e},(h , l)〉 → 〈{V :T ; V := Val v; e ′},(h ′, l ′(V := l V))〉

P ,E (V 7→ T) ` 〈e ,(h , l (V 7→ v ′))〉 → 〈e ′,(h ′, l ′)〉
l ′V = bv ′′c P ` T casts v to v ′

P ,E ` 〈{V :T ; V := Val v; e},(h , l)〉 → 〈{V :T ; V := Val v ′′; e ′},(h ′, l ′(V := l V))〉
P ,E ` 〈{V :T ; Val u},s〉 → 〈Val u ,s〉

P ` T casts v to v ′

P ,E ` 〈{V :T ; V := Val v; Val u},s〉 → 〈Val u ,s〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈e; e2,s〉 → 〈e ′; e2,s ′〉

P ,E ` 〈Val v; e2,s〉 → 〈e2,s〉

175

APPENDIX A. SMALL STEP RULES FOR COREC++

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈if (e) e1 else e2,s〉 → 〈if (e ′) e1 else e2,s ′〉

P ,E ` 〈if (true) e1 else e2,s〉 → 〈e1,s〉
P ,E ` 〈if (false) e1 else e2,s〉 → 〈e2,s〉

P ,E ` 〈while (b) c ,s〉 → 〈if (b) (c; while (b) c) else unit ,s〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈throw e ,s〉 → 〈throw e ′,s ′〉

P ,E ` 〈throw null ,s〉 → 〈THROW NullPointer ,s〉

P ,E ` 〈e ,s〉 → 〈e ′,s ′〉
P ,E ` 〈e·es ,s〉 [→] 〈e ′·es ,s ′〉

P ,E ` 〈es ,s〉 [→] 〈es ′,s ′〉
P ,E ` 〈Val v·es ,s〉 [→] 〈Val v·es ′,s ′〉

P ,E ` 〈dyn cast C (Throw r),s〉 → 〈Throw r ,s〉
P ,E ` 〈stat cast C (Throw r),s〉 → 〈Throw r ,s〉

P ,E ` 〈Throw r �bop� e2,s〉 → 〈Throw r ,s〉
P ,E ` 〈Val v1 �bop� Throw r ,s〉 → 〈Throw r ,s〉

P ,E ` 〈V := Throw r ,s〉 → 〈Throw r ,s〉
P ,E ` 〈Throw r .F{Cs},s〉 → 〈Throw r ,s〉

P ,E ` 〈Throw r .F{Cs} := e2,s〉 → 〈Throw r ,s〉
P ,E ` 〈Val v.F{Cs} := Throw r ,s〉 → 〈Throw r ,s〉

P ,E ` 〈Copt (Throw r) M es ,s〉 → 〈Throw r ,s〉
es = map Val vs @ Throw r·es ′

P ,E ` 〈Copt (Val v) M es ,s〉 → 〈Throw r ,s〉
P ,E ` 〈{V :T ; Throw r},s〉 → 〈Throw r ,s〉

P ` T casts v to v ′

P ,E ` 〈{V :T ; V := Val v; Throw r},s〉 → 〈Throw r ,s〉
P ,E ` 〈Throw r; e2,s〉 → 〈Throw r ,s〉

P ,E ` 〈if (Throw r) e1 else e2,s〉 → 〈Throw r ,s〉
P ,E ` 〈throw (Throw r),s〉 → 〈Throw r ,s〉

176

B
Constructor Eliminating

Algorithm Example

A B C

D

E F

G

Class hierarchy of the example program

Original program:
class A {
public:

int xa;
A() {xa = 0;}
virtual int f() {

return xa;
}

};

Program with eliminated constructors:
class A {
public:

int xa;
A() {};
A* initA_L() {

xa = 0; return this;
}
A* initA() {return initA_L();}
virtual int f() {return xa;}

};

APPENDIX B. CONSTRUCTOR ELIMINATING ALGORITHM EXAMPLE

class B {
public:

int xb;
B() {xb = 0;}

};

class B {
public:

int xb;
B() {}
B* initB_L() {

xb = 0; return this;
}
B* initB() {return initB_L();}

};

class C {
public:

int xc;
C() {xc = 0;}

};

class C {
public:

int xc;
C() {}
C* initC_L() {

xc = 0; return this;
}
C* initC() {return initC_L();}

};

class D: public A,
public virtual B {

public:
int xd;
D() {xd = 0;}

};

class D: public A,
public virtual B {

public:
int xd;
D() {}
void initD_S() {D::initB_L();}
D* initD_L() {

initA_L(); xd = 0; return this;
}
D* initD() {

initD_S(); return initD_L();
}

};

178

class E: public C,
public virtual D {

public:
int xe;
E() {xe = 0; f();}
virtual int f() {

return xe;
}

};

class E: public C,
public virtual D {

public:
int xe;
E() {}
void initE_S() {

D::initB_L(); E::initD_L();
}
E* initE_L() {

initC_L(); xe = 0;
E::f(); return this;

}
E* initE() {

initE_S(); return initE_L();
}
virtual int f() {return xe;}

};

class F:
public virtual C {

public:
int xf;
F() {xf = 0;}

};

class F: public virtual C {
public:

int xf;
F() {}
void initF_S() {F::initC_L();}
F* initF_L() {

xf = 0; return this;
}
F* initF() {return initF_L();}

};

179

APPENDIX B. CONSTRUCTOR ELIMINATING ALGORITHM EXAMPLE

class G: public E,
public F {

public:
int xg;
G() {xg = 0; f();}
virtual int f() {

return xg;
}

};

class G: public E,
public F {

public:
int xg;
void initG_S(){

D::initB_L(); E::initD_L();
F::initC_L();

}
G* initG_L(){

initE_L(); initF_L();
xg = 0; G::f(); return this;}

G* initG() {
initG_S(); return initG_L();

}
virtual int f() {return xg;}

};

int main(){
G* g = new G();

}

int main(){
G* g = (new G())->initG();

}

180

Bibliography

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slic-
ing. In Proceedings of the ACM SIGPLAN 1990 conference on Pro-
gramming language design and implementation (PLDI), pages 246–
256. ACM, 1990.

[2] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel, Woj-
ciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H.
Schmitt. The KeY tool – integrating object oriented design and
formal verification. Software and Systems Modeling, 4(1):32–54,
2005.

[3] Torben Amtoft. Slicing for modern program structures: a theory
for eliminating irrelevant loops. Information Processing Letters,
106(2):45–51, 2008.

[4] Paul Anderson, Thomas Reps, and Tim Teitelbaum. Design and
implementation of a fine-grained software inspection tool. IEEE
Transactions on Software Engineering, 29(8):721–733, 2003.

[5] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David
Sands. Termination-insensitive noninterference leaks more than
just a bit. In Computer Security – ESORICS 2008, volume 5283 of
LNCS, pages 333–348. Springer, 2008.

[6] Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. A natu-
ral semantics for Eiffel dynamic binding. ACM Transactions on
Programming Languages and Systems, 18(6):711–729, 1996.

[7] Thomas Ball and Susan Horwitz. Slicing programs with arbi-
trary control-flow. In Automated and Algorithmic Debugging –
AADEBUG 1993, volume 749 of LNCS, pages 206–222. Springer,
1993.

[8] Clemens Ballarin. Locales and locale expressions in Is-
abelle/Isar. In Stefano Berardi, Mario Coppo, and Ferruccio
Damiani, editors, Types for Proofs and Programs – TYPES 2003,
volume 3085 of LNCS, pages 34–50. Springer, 2004.

BIBLIOGRAPHY

[9] Anindya Banerjee and David A. Naumann. Secure information
flow and pointer confinement in a Java-like language. In Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop
(CSFW), pages 239–253. IEEE, 2002.

[10] Gilles Barthe, Amitabh Basu, and Tamara Rezk. Security types
preserving compilation. In Verification, Model Checking, and Ab-
stract Interpretation – VMCAI 2004, volume 2937 of LNCS, pages
2–15. Springer, 2004.

[11] Gilles Barthe and Leonor Prensa Nieto. Secure information flow
for a concurrent language with scheduling. Journal of Computer
Security, 15(6):647–689, 2007.

[12] Gilles Barthe, David Pichardie, and Tamara Rezk. A certified
lightweight non-interference Java bytecode verifier. In 16th Eu-
ropean Symposium on Programming – ESOP 2007, volume 4421 of
LNCS, pages 125–140. Springer, 2007.

[13] Gilles Barthe and Tamara Rezk. Non-interference for a JVM-like
language. In Proceedings of the 2005 ACM SIGPLAN international
workshop on Types in languages design and implementation (TLDI),
pages 103–112. ACM, 2005.

[14] Samuel Bates and Susan Horwitz. Incremental program testing
using program dependence graphs. In Proceedings of the 20th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL), pages 384–396. ACM, 1993.

[15] Stefan Berghofer and Tobias Nipkow. Executing Higher Order
Logic. In P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, edi-
tors, Types for Proofs and Programs – TYPES 2000, volume 2277 of
LNCS, pages 24–40. Springer, 2002.

[16] Lennart Beringer and Martin Hofmann. Secure information
flow and program logics. In Proceedings of the 20th IEEE
Computer Security Foundations Symposium (CSF), pages 133–148.
IEEE, 2007.

[17] Yves Bertot. Formalizing a JVML verifier for initialization in
a theorem prover. In Computer Aided Verification – CAV 2001,
volume 2102 of LNCS, pages 14–24. Springer, 2001.

182

BIBLIOGRAPHY

[18] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive Con-
structions. Springer, 2004.

[19] Yves Bertot, Benjamin Grégoire, and Xavier Leroy. A structured
aproach to proving compiler optimizations based on dataflow
analysis. In Types for Proofs and Programs – TYPES 2004, volume
3839 of LNCS, pages 66–81. Springer, 2006.

[20] Frédéric Besson, Thomas Jensen, and David Pichardie. Proof-
carrying code from certified abstract interpretation and fixpoint
compression. Theoretical Computer Science, 364(3):273–291, 2006.

[21] David Binkley. Semantics guided regression test cost reduction.
IEEE Transactions on Software Engineering, 23(8):498–516, 1997.

[22] David Binkley, Nicolas Gold, and Mark Harman. An empirical
study of static program slice size. ACM Transactions on Software
Engineering and Methodology, 16(2):8, 2007.

[23] David Binkley and Mark Harman. A large-scale empirical study
of forward and backward static slice size and context sensitivity.
In Proceedings of the International Conference on Software Mainte-
nance (ICSM), page 44. IEEE, 2003.

[24] Jan Olaf Blech, Lars Gesellensetter, and Sabine Glesner. Formal
verification of dead code elimination in Isabelle/HOL. In Pro-
ceedings of the 3rd IEEE International Conference on Software Engi-
neerings and Formal Methods (SEFM), pages 200–209. IEEE, 2005.

[25] Gérard Boudol and Ilaria Castellani. Noninterference for con-
current programs and thread systems. Theoretical Computer Sci-
ence, 281(1-2):109–130, 2002.

[26] Gilad Bracha and William Cook. Mixin-based inheritance. In
Proceedings of the European conference on object-oriented program-
ming on Object-oriented programming systems, languages, and ap-
plications (OOPSLA/ECOOP), pages 303–311, 1990.

[27] Val Breazu-Tannen, Carl A. Gunter, and Andre Scedrov. Com-
puting with coercions. In Proceedings of the 1990 ACM conference
on LISP and functional programming (LFP), pages 44–60. ACM,
1990.

183

BIBLIOGRAPHY

[28] Kim B. Bruce and J. Nathan Foster. LOOJ : Weaving LOOM
into Java. In ECOOP 2004 – Object-Oriented Programming, vol-
ume 3086 of LNCS, pages 390–414, 2004.

[29] Kim B. Bruce, Leaf Petersen, and Adrian Fiech. Subtyping is not
a good “match” for object-oriented languages. In ECOOP 1997 –
Object-Oriented Programming, volume 1241 of LNCS, pages 104–
127. Springer, 1997.

[30] Kim B. Bruce, Angela Schuett, Robert van Gent, and Adrian
Fiech. PolyTOIL: A type-safe polymorphic object-oriented lan-
guage. ACM Transactions on Programming Languages and Systems,
25(2):225–290, 2003.

[31] David Cachera, Thomas Jensen, David Pichardie, and Vlad
Rusu. Extracting a data flow analyser in constructive logic. In
Programming Languages and Systems – ESOP 2004, volume 2986
of LNCS, pages 385–400. Springer, 2004.

[32] Luca Cardelli. A semantics of multiple inheritance. Information
and Computation, 76(2-3):138–164, 1988.

[33] Luca Cardelli. The Computer Science and Engineering Handbook,
chapter Type Systems, pages 2208–2236. CRC Press, 2nd edition,
2004.

[34] Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula. A
framework for certified program analysis and its applications to
mobile-code safety. In Verification, Model Checking, and Abstract
Interpretation – VMCAI 2006, volume 3855 of LNCS, pages 174–
189. Springer, 2006.

[35] Jacek Chrzaszcz. Implementing Modules in the Coq System.
In David Basin and Burkhart Wolff, editors, Theorem Proving in
Higher Order Logics – TPHOLs 2003, volume 2758 of LNCS, pages
270–286. Springer, 2003.

[36] Mobius Consortium. Deliverable 3.1: Bytecode specification
language and program logic, 2006. Available online from http:
//mobius.inria.fr.

[37] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn
Laubach, Corina S. Păsăreanu, Robby, and Hongjun Zheng.

184

http://mobius.inria.fr
http://mobius.inria.fr

BIBLIOGRAPHY

Bandera: extracting finite-state models from Java source code.
In Proceedings of the 22nd international conference on Software engi-
neering (ICSE), pages 439–448. ACM, 2000.

[38] Solange Coupet-Grimal and William Delobel. A uniform and
certified approach for two static analyses. In Types for Proofs and
Programs – TYPES 2004, volume 3839 of LNCS, pages 115–137.
Springer, 2006.

[39] Frédéric Dabrowski and David Pichardie. A certified data race
analysis for a Java-like language. In Theorem Proving in Higher
Order Logics – TPHOLs 2009, volume 5674 of LNCS, pages 212–
227. Springer, 2009.

[40] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem
proving approach to analysis of secure information flow. In Se-
curity in Pervasive Computing – SPC 2005, volume 3450 of LNCS,
pages 193–209. Springer, 2005.

[41] Karl Driesen and Urs Hölzle. The direct cost of virtual function
calls in C++. In Proceedings of the 11th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and
applications (OOPSLA), pages 306–323. ACM, 1996.

[42] Sophia Drossopoulou and Susan Eisenbach. Java is type safe —
probably. In ECOOP 1997 – Object-Oriented Programming, vol-
ume 1241 of LNCS, pages 389–418. Springer, 1997.

[43] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren.
Context-sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementa-
tion (PLDI), pages 242–256. ACM, 1994.

[44] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The
program dependence graph and its use in optimization. ACM
Transactions on Programming Languages and Systems, 9(3):319–
349, 1987.

[45] Nicu G. Fruja. Type Safety of C# and .NET CLR. PhD thesis, ETH
Zurich, 2006.

185

BIBLIOGRAPHY

[46] Dennis Giffhorn and Christian Hammer. Precise slicing of con-
current programs - an evaluation of static slicing algorithms for
concurrent programs. Journal of Automated Software Engineering,
16(2):197–234, 2009.

[47] Michael J. C. Gordon. Mechanizing programming logics in higher
order logic, pages 387–439. Springer, 1989.

[48] Michael J. C. Gordon and Tom F. Melham, editors. Introduction
to HOL: a theorem proving environment for higher order logic. Cam-
bridge University Press, 1993.

[49] Valerie Gouranton and Daniel Le Métayer. Dynamic slicing: a
generic analysis based on a natural semantics format. Journal of
Logic and Computation, 9(6):835–871, 1999.

[50] Douglas Gregor, Jaako Järvi, Jeremy Siek, Bjarne Stroustrup,
Gabriel Dos Reis, and Andrew Lumsdaine. Concepts: linguis-
tic support for generic programming in C++. In Proceedings of
the 21st annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications (OOPSLA), pages
291–310. ACM, 2006.

[51] Florian Haftmann. Code Generation from Specifications in Higher
Order Logic. PhD thesis, Institut für Informatik, Technische Uni-
versität München, 2009.

[52] Christian Hammer and Gregor Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow control
based on program dependence graphs. International Journal of
Information Security, 8(6):399–422, December 2009.

[53] Thomas A. Henzinger, George C. Necula, Ranjit Jhala, Grégoire
Sutre, Rupak Majumdar, and Westley Weimer. Temporal-safety
proofs for systems code. In Computer Aided Verification – CAV
2002, volume 2404 of LNCS, pages 382–399. Springer, 2002.

[54] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[55] Michael Hohmuth and Hendrik Tews. The semantics of C++
data types: Towards verifying low-level system components. In
D. Basin and B. Wolff, editors, Theorem Proving in Higher Order

186

BIBLIOGRAPHY

Logics: Emerging Trends – TPHOLs 2003, pages 127–144, 2003.
Tech. Rep. 187.

[56] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating non-
interfering versions of programs. In Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages (POPL), pages 133–145. ACM, 1988.

[57] Susan Horwitz, Thomas Reps, and David Binkley. Interproce-
dural slicing using dependence graphs. ACM Transactions on
Programming Languages and Systems, 12(1):26–60, 1990.

[58] Sebastian Hunt and David Sands. On flow-sensitive security
types. In Proceedings of the 33rd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages (POPL), pages 79–90.
ACM, 2006.

[59] Florian Kammüller. Formalizing non-interference for a sim-
ple bytecode language in Coq. Formal Aspects of Computing,
20(3):259–275, 2008.

[60] Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers.
Theoretical Computer Science, 298(3):583–626, 2003.

[61] Gerwin Klein and Tobias Nipkow. A machine-checked model
for a Java-like language, virtual machine and compiler. ACM
Transactions on Programming Languages and Systems, 28(4):619–
695, 2006.

[62] Jens Krinke. Evaluating context-sensitive slicing and chopping.
In Proceedings of the International Conference on Software Mainte-
nance (ICSM), page 22. IEEE, 2002.

[63] Jens Krinke. Context-sensitive slicing of concurrent pro-
grams. ACM SIGSOFT Software Engineering Notes, 28(5):178–187,
September 2003.

[64] Jens Krinke. Handbook of Software Engineering and Knowledge En-
gineering, Vol. 3: Recent Advances, chapter Program Slicing, pages
307–332. World Scientific Publishing, 2005.

[65] Jens Krinke. Effects of context on program slicing. Journal of
Systems and Software, 79(9):1249–1260, 2006.

187

BIBLIOGRAPHY

[66] Sébastien Labbé and Jean-Pierre Gallois. Slicing communicat-
ing automata specifications: polynomial algorithms for model
reduction. Formal Aspects of Computing, 20(6):563–595, 2008.

[67] Peter Lammich and Markus Müller-Olm. Precise fixpoint-based
analysis of programs with thread-creation and procedures. In
L. Caires and V T. Vasconcelos, editors, Concurrency Theory –
CONCUR 2007, volume 4703 of LNCS, pages 287–302. Springer,
2007.

[68] Xavier Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In Proceedings of
the 33rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL), pages 42–54. ACM, 2006.

[69] Xavier Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009.

[70] Andreas Lochbihler. Type safe nondeterminism – a formal se-
mantics of Java threads. In International Workshop on Foundations
of Object-Oriented Languages (FOOL), 2008.

[71] Andreas Lochbihler. Verifying a compiler for Java threads. In
European Symposium on Programming (ESOP’10), volume 6012 of
LNCS, pages 427–447. Springer, 2010.

[72] Donna Malayeri and Jonathan Aldrich. CZ: multiple inheritance
without diamonds. In Proceeding of the 24th ACM SIGPLAN con-
ference on Object-oriented programming systems languages and ap-
plications (OOPSLA), pages 21–40, 2009.

[73] Heiko Mantel, Henning Sudbrock, and Tina Kraußer. Combin-
ing different proof techniques for verifying information flow
security. In Logic-Based Program Synthesis and Transformation –
LOPSTR 2006, volume 4407 of LNCS, pages 94–110, 2006.

[74] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain.
The KRAKATOA tool for certification of Java/JavaCard programs
annotated in JML. Journal of Logic and Algebraic Programming,
58:89–106, 2004.

[75] Andrew C. Myers. JFlow: practical mostly-static information
flow control. In Proceedings of the 26th ACM SIGPLAN-SIGACT

188

BIBLIOGRAPHY

symposium on Principles of programming languages (POPL), pages
228–241. ACM, 1999.

[76] Maurice Naftalin and Philip Wadler. Java generics and collections.
O’Reilly, 2006.

[77] Mangala Gowri Nanda and S. Ramesh. Interprocedural slic-
ing of multithreaded programs with applications to Java. ACM
Transactions on Programming Languages and Systems, 28(6):1088–
1144, 2006.

[78] David A. Naumann. Verifying a secure information flow ana-
lyzer. In Theorem Proving in Higher Order Logics – TPHOLs 2005,
volume 3603 of LNCS, pages 211–226. Springer, 2005.

[79] George C. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL), pages 106–119. ACM, 1997.

[80] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Prin-
ciples of Program Analysis. Springer, 1999.

[81] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isa-
belle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

[82] Michael Norrish. C formalised in HOL. Technical Report
UCAM-CL-TR-453, University of Cambridge, 1998.

[83] Michael Norrish. A formal semantics for C++. Technical report,
NICTA, 2008.

[84] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov,
Michel Schinz, Erik Stenman, and Matthias Zenger. An
overview of the Scala programming language. Technical Re-
port LAMP-REPORT-2006-001, École Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, 2004.

[85] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias
Zenger. A nominal theory of objects with dependent types.
In ECOOP 2003 – Object-Oriented Programming, volume 2743 of
LNCS, pages 201–224. Springer, 2003.

189

BIBLIOGRAPHY

[86] Sam Owre and Natarajan Shankar. Theory Interpretation in
PVS. Technical Report SRI-CSL-01-01, SRI International, April
2001.

[87] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 2002.

[88] Andy Podgurski and Lori A. Clarke. A formal model of pro-
gram dependences and its implications for software testing, de-
bugging, and maintenance. IEEE Transactions on Software Engi-
neering, 16(9):965–979, 1990.

[89] G. Ramalingam and Harini Srinivasan. A member lookup al-
gorithm for C++. In Proceedings of the ACM SIGPLAN 1997 con-
ference on Programming language design and implementation (1997),
pages 18–30. ACM, 1997.

[90] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Baner-
jee, John Hatcliff, and Matthew B. Dwyer. A new foundation
for control dependence and slicing for modern program struc-
tures. ACM Transactions on Programming Languages and Systems,
29(5):27, 2007.

[91] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve
Rosay. Speeding up slicing. In Proceedings of the 2nd ACM
SIGSOFT symposium on Foundations of software engineering (SIG-
SOFT), pages 11–20. ACM, 1994.

[92] Thomas W. Reps and Wuu Yang. The semantics of program slic-
ing and program integration. In Josep Dı́az and Fernando Ore-
jas, editors, TAPSOFT 1989, volume 352 of LNCS, pages 360–374.
Springer, 1989.

[93] Jonathan G. Rossie, Jr. and Daniel P. Friedman. An algebraic
semantics of subobjects. In Proceedings of the tenth annual confer-
ence on Object-oriented programming systems, languages, and appli-
cations (OOPSLA), pages 187–199. ACM, 1995.

[94] Jonathan G. Rossie, Jr., Daniel P. Friedman, and Mitchell Wand.
Modeling subobject-based inheritance. In ECOOP 1996 – Object-
Oriented Programming, volume 1098 of LNCS, pages 248–274.
Springer, 1996.

190

BIBLIOGRAPHY

[95] John Rushby. Noninterference, transitivity, and channel-control
security policies. Technical Report CSL-92-02, SRI International,
1992.

[96] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. Journal on Selected Areas in Commu-
nications, 21(1):5–19, 2003.

[97] Andrei Sabelfeld and David Sands. A PER model of secure in-
formation flow in sequential programs. Higher Order Symbolic
Computation, 14(1):59–91, 2001.

[98] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric
shape analysis via 3-valued logic. ACM Transactions on Program-
ming Languages and Systems, 24(3):217–298, 2002.

[99] Alexandru Sălcianu and Konstantine Arkoudas. Machine-
checkable correctness proofs for intra-procedural dataflow anal-
yses. In Proceedings of the Fourth International Workshop on Com-
piler Optimization meets Compiler Verification (COCV), pages 53–
68. Elsevier, 2005.

[100] Nobert Schirmer. Verification of Sequential Imperative Programs
in Isabelle/HOL. PhD thesis, Technische Universität München,
2006.

[101] Fred B. Schneider and Greg Morrisett. A language-based ap-
proach to security. In Reinhard Wilhelm, editor, Informatics, vol-
ume 2000 of LNCS, pages 86–101. Springer, 2001.

[102] Adam Seligman. FACTS: A formal analysis for C++. Master’s
thesis, Williams College, 1995. Undergraduate thesis.

[103] Olin Shivers. Control-flow analysis of higher-order languages :–or
Taming Lambda. PhD thesis, Carnegie Mellon University, May
1991.

[104] Jeremy Siek and Walid Taha. A semantic analysis of C++ tem-
plates. In ECOOP 2006 – Object-Oriented Programming, volume
4067 of LNCS, pages 304 – 327. Springer, 2006.

[105] Vincent Simonet. Flow Caml in a nutshell. In Proceedings of the
first APPSEM-II workshop, pages 152–165, 2003.

191

BIBLIOGRAPHY

[106] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. Inter-
procedural control dependence. ACM Transactions on Software
Engineering and Methodology, 10(2):209–254, 2001.

[107] Geoffrey Smith and Dennis Volpano. Secure information flow in
a multi-threaded imperative language. In Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming
language (POPL), pages 355–364. ACM, 1998.

[108] Gregor Snelting. Combining slicing and constraint solving for
validation of measurement software. In Proceedings of the Third
International Symposium on Static Analysis (SAS), volume 1145 of
LNCS, pages 332–348. Springer, 1996.

[109] Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient
Path Conditions in Dependence Graphs for Software Safety
Analysis. ACM Transactions on Software Engineering and Method-
ology, 15(4):410–457, 2006.

[110] Gregor Snelting and Daniel Wasserrab. A correctness proof
for the Volpano/Smith security typing system. In Ger-
win Klein, Tobias Nipkow, and Lawrence Paulson, editors,
The Archive of Formal Proofs. http://afp.sf.net/entries/
VolpanoSmith.shtml, September 2008. Formal proof devel-
opment.

[111] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slic-
ing. In Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation (PLDI), pages 112–
122. ACM, 2007.

[112] Bjarne Steensgaard. Points-to analysis in almost linear time.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL), pages 32–41. ACM,
1996.

[113] Martin Strecker. Formal analysis of an information flow type
system for MicroJava (extended version). Technical report, Tech-
nische Universität München, July 2003.

[114] Bjarne Stroustrup. Multiple inheritance for C++. Computing Sys-
tems, 2(4):367–395, 1989.

192

http://afp.sf.net/entries/VolpanoSmith.shtml
http://afp.sf.net/entries/VolpanoSmith.shtml

BIBLIOGRAPHY

[115] Bjarne Stroustrup. The Design and Evolution of C++. Addison
Wesley, 1994.

[116] Bjarne Stroustrup. The C++ Standard: Incorporating Technical Cor-
rigendum No. 1. John Wiley, 2nd edition, 2003.

[117] Frank Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[118] Frank Tip. Personal communication, August 2005.

[119] Jean-Baptiste Tristan and Xavier Leroy. Verified validation of
lazy code motion. In Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation
(PLDI), pages 316–326. ACM, 2009.

[120] Rob J. van Glabbeek. Branching bisimulation as a tool in the
analysis of weak bisimulation. Available at ftp://boole.
stanford.edu/pub/DVI/tool.dvi.gz.

[121] David Vandevoorde and Nikolai M. Josuttis. C++ Templates: The
Complete Guide. Addison-Wesley, 2003.

[122] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound
type system for secure flow analysis. Journal of Computer Secu-
rity, 4(2-3):167–187, 1996.

[123] David von Oheimb. Information flow control revisited: Nonin-
fluence = Noninterference + Nonleakage. In P. Samarati, P. Ryan,
D. Gollmann, and R. Molva, editors, Computer Security – ES-
ORICS 2004, volume 3193 of LNCS, pages 225–243. Springer,
2004.

[124] Charles Wallace. The semantics of the C++ programming lan-
guage. Specification and Validation Methods, pages 131–164, 1995.

[125] Martin Ward and Hussein Zedan. Slicing as a program trans-
formation. ACM Transactions on Programming Languages and Sys-
tems, 29(2):7, 2007.

[126] Daniel Wasserrab. Formale Semantik einer C++-ähnlichen
Sprache mit Fokussierung auf Mehrfachvererbung. Master’s
thesis, Technische Universität München, 2004. In german.

193

ftp://boole.stanford.edu/pub/DVI/tool.dvi.gz
ftp://boole.stanford.edu/pub/DVI/tool.dvi.gz

BIBLIOGRAPHY

[127] Daniel Wasserrab. CoreC++. In Gerwin Klein, Tobias Nipkow,
and Lawrence Paulson, editors, The Archive of Formal Proofs.
http://afp.sf.net/entries/CoreC++.shtml, Septem-
ber 2006. Formal proof development.

[128] Daniel Wasserrab. Towards certified slicing. In Gerwin Klein,
Tobias Nipkow, and Lawrence Paulson, editors, The Archive
of Formal Proofs. http://afp.sf.net/entries/Slicing.
shtml, September 2008. Formal proof development.

[129] Daniel Wasserrab. Backing up slicing: Verifying the inter-
procedural two-phase Horwitz-Reps-Binkley slicer. In Ger-
win Klein, Tobias Nipkow, and Lawrence Paulson, editors,
The Archive of Formal Proofs. http://afp.sf.net/entries/
HRB-Slicing.shtml, September 2009. Formal proof devel-
opment.

[130] Daniel Wasserrab. Information flow noninterference via slic-
ing. In Gerwin Klein, Tobias Nipkow, and Lawrence Paulson,
editors, The Archive of Formal Proofs. http://afp.sf.net/
entries/InformationFlowSlicing.shtml, March 2010.
Formal proof development.

[131] Daniel Wasserrab and Andreas Lochbihler. Formalizing a
framework for dynamic slicing of program dependence graphs
in Isabelle/HOL. In Outmane Ait Mohamed, César Muñoz, and
Sofiène Tahar, editors, Theorem Proving in Higher Order Logics –
TPHOLs 2008, volume 5170 of LNCS, pages 294–309. Springer,
2008.

[132] Daniel Wasserrab, Denis Lohner, and Gregor Snelting. On PDG-
based noninterference and its modular proof. In Proceedings of
the 4th Workshop on Programming Languages and Analysis for Secu-
rity (PLAS), pages 31–44. ACM, June 2009.

[133] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank
Tip. An operational semantics and type safety proof for C++-
like multiple inheritance. Technical Report RC23709, IBM, 2005.

[134] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank
Tip. An operational semantics and type safety proof for mul-
tiple inheritance in C++. In Proceedings of the 21st annual ACM

194

http://afp.sf.net/entries/CoreC++.shtml
http://afp.sf.net/entries/Slicing.shtml
http://afp.sf.net/entries/Slicing.shtml
http://afp.sf.net/entries/HRB-Slicing.shtml
http://afp.sf.net/entries/HRB-Slicing.shtml
http://afp.sf.net/entries/InformationFlowSlicing.shtml
http://afp.sf.net/entries/InformationFlowSlicing.shtml

BIBLIOGRAPHY

SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications (OOPSLA), pages 345–362. ACM, 2006.

[135] Mark Weiser. Program slices: formal, psychological, and practical in-
vestigations of an automatic program abstraction method. PhD thesis,
University of Michigan, 1979.

[136] Mark Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

[137] Markus Wenzel. Isabelle/Isar — A Versatile Environment for
Human-Readable Formal Proof Documents. PhD thesis, Institut für
Informatik, Technische Universität München, 2002.

[138] Glynn Winskel. The Formal Semantics of Programming Languages.
An Introduction. MIT Press, 1993.

[139] Michael Joseph Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, 1995.

[140] Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundness. Information and Computation, 115(1):38–94,
1994.

[141] Fangjun Wu and Tong Yi. Slicing Z specifications. SIGPLAN
Notices, 39(8):39–48, 2004.

[142] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. A study of
effectiveness of dynamic slicing in locating real faults. Empirical
Software Engineering, 12(2):143–160, 2007.

195

Index

∅, 7
| |, 7
⊕, 86
′a, 7
′edge, 66
′node, 66
′pname, 104
′ret, 103
′state, 66
′val, 68
′var, 68
{ : ; }, 22

semantic rule
normal, 28

type rule, 25
(,), 7
()√, 67
(- -), 86
+

locales, 8
, ` 〈 , 〉 → 〈 , 〉, 28

rules, 173–176
, ` 〈 , 〉 →∗ 〈 , 〉, 28
⇀, 8
: ↪→ , 103
←↩, 103
(7→), 8
([7→]), 8
−→cd

interprocedural, 116
intraprocedural, 73

−→call, 116
−→ret, 116
−→d∗, 73
−→cd, 92

−→dd
interprocedural, 116
intraprocedural, 73

−→sum, 119
− :→in, 116
− :→out, 116
−{ } →dd, 92
−→∗, 67
−→√∗, 112
−→d∗, 92
−→i∗, 110
−→sl∗, 113
cc−→d∗, 117
i−→d∗, 117
ics−→d∗, 121
irs−→d∗, 121
` − →

WHILE CFG edge, 87
` − →i

PROC CFG edge
intraprocedural, 138

, ` (,) −→ (,)

PROC CFG edge
interprocedural, 139

non-τ-move
interprocedural, 129
intraprocedural, 80

, ` (,) −→τ (,)

interprocedural, 129
intraprocedural, 80

⇒, 7
〈 , 〉 ⇒ 〈 , 〉, 69
, ` 〈 , 〉 ⇒ 〈 , 〉, 25

rules, 27, 28, 32, 34, 37, 40, 41,
44

INDEX

, ` 〈 , 〉 [⇒] 〈 , 〉
rules, 27, 28

, ` 〈 , 〉 [⇒] 〈 , 〉, 25
⇑, 66
, ` (,) =⇒ (,), 80, 129
, ` (,) =⇒τ (,), 80, 129
, ` (,) =⇒∗ (,), 136
. { } :=, 22

semantic rule
exceptional, 44
normal, 44

type rule, 44
. { }, 22

semantic rule
exceptional, 44
normal, 44

type rule, 44
. :: (), 22

exceptional, 41
semantic rule

normal, 40
type rule, 40

. (), 22
semantic rule

exceptional, 41
normal, 37

type rule, 37
·, 7
` √, 49
, , ` :, 47
::, 7
, ` [::], 24

rules, 25
, ` ::, 24

rules, 25, 32, 34, 37, 40, 44
([:=]), 7
(:=), 7
:=, 22

semantic rule
exceptional, 44

normal, 44
type rule, 44

, , ` :NT, 49
;;, 22

semantic rule
exceptional, 27
normal, 28

type rule, 25
` ≤, 24
, ` :≤, 48
` [≤], 24
, ` (:≤)w, 49
�b, 93
` ≺R, 19
` ≺S, 19
` �∗, 19
` @1, 21
` v, 21
� �, 22

semantic rule
exceptional, 27
normal, 28

type rule, 25
≈L

formal, 149
informal, 146

,, 69
@p, 20
@, 7
b c, 7
b cCFG

node, 114
node set, 124

[← .], 7
[]

empty list, 7
[[]]

expression evaluation, 86
semantic state transformation,

146

198

INDEX

-[i], 7

Actual-in, 114
Actual-out, 114
assumes, 8

backward-slice, 76
BackwardSlice locale, 76
base, 23
Bool, 22
bool, 7
butlast, 7

call stack, 103
call-frame, 103
call-of-return-node, 118
card, 7
case of ⇒ | ⇒, 7
cast

dynamic cast, see dyn cast

static cast, see stat cast

` Casts to, 46
` casts to, 43
cdecl, 23
CEdge, 138
CFG, see control flow graph
CFG locale, 66

interprocedural extensions, 104,
105

CFG-node, 114
CFG-wf locale, 67

interprocedural extensions, 109
CFGExit locale, 66

interprocedural extensions, 107
CFGExit-wf locale, 67
class, 23, 24
ClassCast, 26
cname, 19
containsCall, 139
contravariance, 46
control dependence

informal, 59
interprocedural, see standard con-

trol dependence
standard control dependence, see

standard control dependence
weak control dependence, see

weak control dependence
weak order dependence, see weak

order dependence
control flow graph, 58

interprocedural formalization,
103

intraprocedural formalization,
66

controls via, 92
controls, 73
correctness theorem

static interprocedural slicing, 133
static intraprocedural slicing, 81

covariance, 41
assignment, 43
call, 43

example, 41
cspp, 127

D, 49
data dependence

formalization
dynamic, 92
interprocedural, 115
intraprocedural, 70

informal, 58
Def, 67
Def SDG, 115
delay bisimulation, 75
dep-live-vars, 94
dependent live variables, 94
distance, 77
distinct, 106
dynamic dependence, 92

199

INDEX

dynamic PDG, see dynamic program
dependence graph

dynamic program dependence graph,
92

dynamic slicing, 91
fundamental property, 94
path slicing, 91

dyn cast, 22
examples, 30
semantic rule

exceptional, 34
normal, 34

type rule, 34

ε, 79
edge-kind, 66
empty, 8
(-Entry-), 67
(-Exit-), 67
expr, 22

false, 23
fdecl, 23
FieldDecls, 45
final, 152
finite, 7
fixes, 8
Formal-in, 114
Formal-out, 114
fst, 7

get-proc, 104
get-return-edges, 104

H, 146
` has least : via, 45
` has least = via, 35
` has overrider = via, 39
hd, 7
heap, 26
(-High-), 148
Horwitz-Reps-Binkley slice, 102

fundamental property, 134
HRB slice, see Horwitz-Reps-Binkley

slice
HRB-slice, 120

IEdge, 138
if else, 22

semantic rule
exceptional, 27
normal, 28

type rule, 25
IFC, see Information Flow Control
influences in via, 92
influences in

interprocedural, 115
intraprocedural, 70

information flow control, 145
initial, 152
int, 7
Intg, 22
intra-kind, 103
is-class, 19
is-refT, 48
is-type, 49

kind, 66
kinds, 67

L, 146
Language Based Security, 2
last, 7
LBS, see Language Based Security
list, 7
local-vars, 103
locale, 8
locales, 8
locals, 26
(-Low-), 148
low equality

formal, 149
informal, 146

200

INDEX

Main, 104
map, 7
map-of, 8
matched, 118
mdecl, 23
MemberAmbiguousException

call, 36
field access and assignment, 42

method, 23
method-exit, 125
MethodDefs, 35
MinimalMethodDefs, 39
mname, 21
move

non-τ-move
interprocedural, 129
intraprocedural, 80

silent move
interprocedural, 129
intraprocedural, 80

τ-move
interprocedural, 129
intraprocedural, 80

nat, 7
new, 22

semantic rule
exceptional, 27
normal, 28

type rule, 25
no-op, 93
node stack, 123
None, 7
noninterference, 146

formal, 146
theorem

paths, 151
semantics, 152

Null, 22
null, 23

NullPointer, 26

obj, 26
obs

interprocedural, 123
intraprocedural, 76

obs-intra, 123
observable set

interprocedural, 123
intraprocedural, 76

option, 7
OutOfMemory, 26
OverriderMethodDefs, 39

path
CFG path, 67

intraprocedural, 110
same level, 112
valid, 110

class path, 19
SDG path

realizable, 118
same level realizable, 118

path, 19
path slicing, 91
` path unique, 24
` path via, 33
PDG, see program dependence graph
PDG locale, 73
PDG-BS, 73
postdominates, 71
postdomination

example, 60
formalization, 71
informal, 59
strong postdomination, see strong

postdomination
Postdomination locale, 70
precision

of interprocedural slicing
definition, 121

201

INDEX

theorem, 121
pred, 67

interprocedural, 107
preds, 67
preservation, 50
procs, 104
program dependence graph, 58

formalization, 73
progress, 50

realizable, 118
Ref, 22
ref, 23
reference, 21
relevant variables

interprocedural, 131
intraprocedural, 81

repeated diamond, 12
examples, 21, 29, 30, 41, 45

Repeats, 23
return-node, 124
rspp, 127
running example

slicing, 62
rv

interprocedural, 131
intraprocedural, 81

same-level-path, 112
SCD, see standard control depen-

dence
scd, 71
SDG, see system dependence graph
select-edge-kinds, 94
` selects = via, 38
semantically well-formed, 69
set, 7
shared diamond, 13

examples, 16, 30
Shares, 23
simulation, see weak simulation

slice-edge, 135
slice-edges

interprocedural, 135
intraprocedural, 82

slice-kind
interprocedural, 125
intraprocedural, 78

slice-kinds, 94
slice-path, 93
slicing

correctness property, 75
dynamic, see dynamic slicing
fundamental property

dynamic, 98
interprocedural, 134
intraprocedural, 82

introduction, 58
running example, 62

snd, 7
SOME, 78
Some, 7
src, 66
srcs, 67
standard control dependence

formalization, 70
informal, 59
interprocedural, 115

state, 26, 103
state-val, 67

interprocedural, 108
stat cast, 22

examples, 30
semantic rule

exceptional, 32
normal, 32

type rule, 32
strong postdomination

example, 60
formalization, 72
informal, 60

202

INDEX

strongly-postdominates, 72
StrongPostdomination locale, 72
subo, 26
subobject

formalization, 20
introduction, 11
Rossie-Friedman, 14

Subobjs, 20
SubobjsR, 20
sum-SDG-slice1, 120
sum-SDG-slice2, 120
system dependence graph, 100

TCFG, see trace control flow graph
THROW, 26
throw, 22

semantic rule
normal, 27

type rule, 25
tl, 7
trace CFG, see trace control flow

graph
trace control flow graph, 92
transfer, 67

interprocedural, 107
transfers, 67
trg, 66
trgs, 67
true, 23
ty, 24
` typeof =, 47
typeof, 24

Unit, 22
unit, 23
upd-cs, 112
Use, 67
UseSDG, 115

Val, 22
semantic rule

normal, 28
type rule, 25

valid-call-list, 136
valid-edge, 66
valid-node, 66
valid-path, 111
valid-return-list, 134
valid-SDG-node, 114
Var, 22

semantic rule, 28
type rule, 25

vname, 21

WCD, see weak control dependence
wcd, 72
weak control dependence

formalization, 72
informal, 60

weak order dependence
formalization, 72
informal, 61

weak simulation, 74
formalization

interprocedural, 131
intraprocedural, 81

simulation diagrams, 75
wf-C-prog, 46
while, 22

semantic rule
exceptional, 27
normal, 28

type rule, 25
WOD, see weak order dependence
wod, 73
WOD-BS, 73
WS

interprocedural, 131
intraprocedural, 81

203

	Introduction
	Context
	State of the Art
	Formal Semantics
	Program Analysis and Information Flow Control

	Contributions
	Isabelle
	Notation
	Locales

	Type Safe Semantics for C++
	The Story so far...
	Multiple Inheritance in C++
	An Intuitive Introduction to Subobjects
	The Rossie-Friedman Subobject Model
	Examples

	The Present Situation of CoreC++
	Formalization
	Abstract Syntax of CoreC++
	Type System
	Semantics

	Improving the Semantics towards real C++
	Static and Dynamic Casts
	Dynamic (and Static) Dispatch
	Covariance and Contravariance
	Well-formed Programs

	Type Safety Proof
	Run-time Type System
	Conformance and Definite Assignment
	Progress
	Preservation
	The Type Safety Proof

	Interpreting Real C++ Programs in the Semantics
	Translation
	Evaluation

	Correctness Static Intraprocedural Slicing
	What is Slicing?
	Dependences in Program Dependence Graphs
	A Running Example

	The Formalization
	The Abstract Intraprocedural Control Flow Graph
	Formalizing Dependences
	Program Dependence Graph

	The Proof
	Weak Simulation
	Correctness Proof
	Applying Control Dependences

	Instantiations
	A Simple Imperative Language: While
	A Sophisticated Object Oriented Byte Code Language: Jinja VM Byte Code

	Correctness of Dynamic Slicing
	Framework Adaptions
	Dynamic Backward Slicing
	Correctness Proof

	Correctness Static Interprocedural Slicing
	The Slicer of Horwitz, Reps, and Binkley
	The Formalization
	The Abstract Interprocedural Control Flow Graph
	Valid Control Flow Paths
	System Dependence Graph
	Formalizing the Horwitz-Reps-Binkley Slicer

	The Proofs
	Precision
	Correctness

	Instantiations
	While with Procedures: Proc
	Jinja VM Byte Code Interprocedural

	Information Flow Control via Verified Slicing
	Information Flow Noninterference
	The Proof
	The Assumptions
	Low Equality
	Slicing Guarantees Noninterference

	Lifting Arbitrary Framework Graphs

	Discussion and Related Work
	Formalization Sizes
	Type Safe Semantics for C++
	Type Safety Proofs for Object-Oriented Languages
	Semantics of Multiple Inheritance
	C++ Multiple Inheritance

	Correctness of Slicing
	Static Slicing
	Dynamic Slicing

	Working with Proof Assistants
	Modularized Proofs
	Flow Graphs in Proof Assistants
	Machine Checked Verification of Program Analyses

	IFC Noninterference in Proof Assistants
	Verification of Information Flow Type Systems
	Formalization of Goguen/Meseguer
	Noninterference via Dynamic Logic

	Future Work
	Extending the CoreC++ Semantics
	Extending the Slicing Framework
	Extracting a Verified Slicer
	Language Instantiations
	Information Flow Control

	Conclusion
	Small Step Rules for CoreC++
	Constructor Eliminating Algorithm Example
	Bibliography
	Index

