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3
1. Introdu
tionThe obje
ts of study of theoreti
al parti
le physi
s are the fundamental laws of nature.Its aim is to des
ribe the elementary 
onstituents of matter and their intera
tions withina theoreti
al framework whi
h implies predi
tions for parti
le experiments. All the knowl-edge about the elementary parti
les and for
es in nature is theoreti
ally 
lassi�ed in the so
alled Standard Model (SM) of elementary parti
le physi
s. This SU(3) × SU(2) × U(1)gauge theory of the strong and ele
troweak intera
tions developed by Glashow, Weinbergand Salam starting in 1967 des
ribes almost all experimental results obtained at the ele-mentary parti
le 
olliders until now with remarkable pre
ision. Let me set a short exampleof the power of the Standard Model. Combining the most pre
ise experimental measure-ment of the anomalous magneti
 moment of the ele
tron g/2 = 1.001 159 652 180 85(76) [1℄with high pre
ision 
al
ulation in quantum ele
trodynami
s, the most pre
isely tested partof the Standard Model, one obtains the value α−1

s = 137.035 999 709 (96)[0.70 ppb] [2℄ forthe �ne stru
ture 
onstant, with an amazing theoreti
al pre
ision. Experiments based onatom re
oil methods determine the �ne stru
ture 
onstant independently of the anomalousmagneti
 moment of the ele
tron. The atoms of the 
hemi
al elements Rubidium (Rb)and Caesium (Cs) are the most appropriate ones for the experimental determination ofthe �ne stru
ture 
onstant. Comparing the results α−1(Rb) = 137.035 998 78(91)[6.7 ppb]and α−1(Cs) = 137.036 000 0(11)[8.0 ppb] with the theoreti
al value given above we �nda di�eren
e from −1.0 and +0.3 standard deviations, respe
tively [2℄. That 
omparison isknown as the best test of the validity of the QED. The in
redible theoreti
al and experi-mental a

ura
ies demonstrate the impressive predi
tive power of the Standard Model.However, there are many examples whi
h show the dis
repan
y between the SM predi
-tions and experimental results. Let me mention one of them. The di�eren
e between theSM theoreti
al predi
tion for the anomalous magneti
 moment of the heavier �brother� ofthe ele
tron, the muon, and the experimental measurement for this quantity is more than 3standard deviations. That means, the anomalous magneti
 moment of the muon 
annot beexplained within the Standard Model with a probability of more than 99.6%. The aim of



4 1. Introdu
tionthe theoreti
al physi
ists is to develop a 
onsistent theory with the smallest possible num-ber of free parameters whi
h explains the properties of the parti
les and the fundamentalintera
tions in nature. Despite of its phenomenologi
al su

ess the Standard Model has sev-eral drawba
ks: Some 
ouplings develop Landau poles, the exa
t me
hanism of ele
troweaksymmetry breaking is not understood, the uni�
ation of strong and and ele
troweak inter-a
tions is in
omplete, the hierar
hy between the Plan
k, GUT and the ele
troweak s
aleand the strong CP problem are not addressed. Further, the SM 
annot explain the observeddark matter in the universe nor the preponderan
e of matter over antimatter. One of thefundamental questions unaddressed in the early stages of the SM is the me
hanism howthe fermions obtain their masses. Seven years later, Weinberg and Salam in
orporated theso 
alled Higgs me
hanism [4�6℄ into the ele
troweak theory of Glashow in order to providea theoreti
al explanation of the masses of spin-one-half parti
les and gauge bosons [7,8℄. Infa
t, the SM needs the Higgs me
hanism for its predi
tive power. However, this is the onlypart of the theory whi
h has not been experimentally 
on�rmed yet. The sear
h for theHiggs boson, the theoreti
ally postulated parti
le whi
h gives masses to the fermions andgauge bosons is the most important goal of today's biggest dis
overy ma
hine in the world,the Large Hadron Collider (LHC). Its prime purpose is the investigation of the me
hanismof ele
troweak symmetry breaking and of the dynami
s whi
h stabilises the ele
troweaks
ale. General 
onsiderations of the latter aspe
t suggest New Physi
s (NP) with parti
lemasses around or below 1 TeV. In order to provide a satisfa
tory explanation of di�erentexperimental observations and to solve 
on
eptual problems of the Standard Model manyapproa
hes for in
orporation of the Standard Model into a more general theory have beenproposed. In fa
t, among various possible extensions of the Standard Model by far the mostpopular one is the Supersymmetry (SUSY), in parti
ular, the so 
alled Minimal Supersym-metri
 Standard Model (MSSM). The reason why the MSSM has be
ome the most favouredextension of the Standard Model in the last de
ades is its 
apability to solve a very largespread of theoreti
al problems in
luding gauge 
oupling uni�
ation, to give a rationale fora heavy top and light Higgs, to provide a method of uni�
ation of gravity with other gaugefor
es and �nally to provide a dark matter 
andidate, the lightest supersymmetri
 parti
le.In
reasing the pre
ision of the theoreti
al predi
tions for the masses and other propertiesof the new parti
les in di�erent possible s
enarios of the Supersymmetry is very importantfor the sear
hes of these parti
les at the high-pT experiments of the LHC. One of the mostimportant tasks of theoreti
al parti
le physi
s is therefore to identify and investigate thepro
esses whi
h are highly sensitive to 
ontributions of supersymmetri
 parti
les in order



1. Introdu
tion 5to test the Standard Model and to 
larify where manifestation of Supersymmetry 
an showup and how to distinguish Supersymmetry from other possible theories beyond the Stan-dard Model. Hopefully, in up
oming years the physi
s 
ommunity will un
over the laws ofnature governing the TeV s
ale.In fa
t, Supersymmetry, in parti
ular the minimal supersymmetri
 extension of the SM(MSSM) is the most favoured model of NP 
onsidered to explain the dis
repan
ies betweenSM predi
tions and experiments. The MSSM predi
ts many new parti
les. The postulatedsuperpartners of SM parti
les a�e
t the physi
al pro
esses and 
hange the values of theobservable quantities. The extent to whi
h the theoreti
al predi
tion of a 
ertain pro
ess is
hanged in a given model of NP depends on many parameters of the 
ertain NP model, inparti
ular, 
onsidering the MSSM, on the masses of the supersymmetri
 parti
les involvedin the studied transition amplitude.The predi
tion of the mass spe
trum of the supersymmetri
 parti
les is a very importantissue from phenomenologi
al point of view as well as an essential topi
 in regard to thedire
t sear
h for superparti
les at the LHC. Therefore, the squark mass matri
es have beenthe obje
t of study of numerous analyses in the past. In view of the start of the LHC anyimprovement of the knowledge about the mass spe
trum of the MSSM is important andtimely.The aim of this work is to 
onstrain the parameters of the MSSM by 
onsidering pro
esseswhi
h are highly sensitive to 
ontributions from supersymmetri
 parti
les. Sin
e mesonmixing pro
esses are known with good experimental a

ura
y and have small theoreti
alun
ertainties, they are espe
ially appropriate 
andidates for this purpose. The fo
us is seton generi
 physi
al relations whi
h are mostly independent of boundary 
onditions. Su
ha physi
al relation stems from 
hargino boxes whi
h 
orrelate Bd−Bd mixing and Bs−Bsmixing through the CKMmatrix elements involved in the meson mixing pro
esses. Anothervery important theoreti
al issue is the relation between the left-handed up-type squarkmass matrix and the left handed down-type one M2
u LL = VM2

d LLV
† due to SU(2) gaugesymmetry in the left handed fermion se
tor. Sin
e these mass matri
es are not independent,the only way to avoid �avour o�-diagonal mass insertions in the up and in the downse
tor simultaneously is to 
hoose the up-type and the down-type mass mixing matrixproportional to the unit matrix. This is realised in the naive minimal �avour violatingMSSM. In a more general de�nition of Minimal Flavour Violation (MFV) [64, 65℄ �avour



6 1. Introdu
tionviolation is postulated to stem solely from the Yukawa se
tor, resulting in FCNC transitions(whi
h 
an now also be mediated by gluinos and neutralinos) proportional to produ
ts ofCKM elements and Yukawa 
ouplings. In addition, we take into a

ount the numeri
alrelation between the Bs−Bs mixing and Bd−Bd mixing transition due to the ratio ofthe de
ay 
onstants and the bag parameters in the Bs and Bd system. In almost all theanalyses of this type the Bs−Bs mixing and Bd−Bd mixing are treated independentlyfrom ea
h other. However, these two pro
esses are related to ea
h other through the ratioof the de
ay 
onstants of the Bs and Bd mesons. The numeri
al value of this ratio is knownfrom latti
e 
al
ulations to a mu
h better pre
ision than the quantities in the numeratorand denominator themselves.Studying in detail the experimental data and the analyses of the CKM�tter and Ut�t
ollaborations whi
h estimate the amount of New Physi
s in the meson mixing pro
esses,we derive a general relations between fundamental parameters of the MSSM. Assuming anon diagonal elements in the LL part of the squark mass matri
es the impa
t of the di�erentSUSY 
ontributions to the mixing phase in the Bs and Bd meson systems is investigated.We determine general relations between the masses of the squarks, the mass of the gluinoand the o�-diagonal elements of the squark mass matri
es.Performing an exhausting analysis of the meson mixing pro
esses in the K−K and D−Dsystems, our aim has been to investigate the possible mass splitting between the left-handed squarks. We have 
onsidered di�erent s
enarios given by the 
hoi
e of the formof the up-type and down-type mass mixing matri
es. In 
ontrast to previous analyses inwhi
h the ele
troweak supersymmetri
 
ontributions to the meson mixing pro
esses havebeen negle
ted 
laiming their smallness in 
omparison to the gluino 
ontribution we havefound that this argumentation does not hold for gluino masses bigger then the squarkmasses. In this region of the MSSM parameter spa
e the ele
troweak 
ontributions 
an beeven dominant and they have been in
luded in our 
al
ulation as well.The aim of our numeri
al analysis is to obtain 
onstraints on the δu LL
i3 mass insertions of theup-type squark mass matrix in the general MSSM. For this purpose, we �rst 
onsidered the

Bs−Bs and Bd−Bd mixing pro
esses 
al
ulating the ele
troweak and strong 
ontributionsin general MSSM. In an iterative pro
edure we pass through several 
onstraints and obtainthe allowed values for the mass insertions δu LL
23 and δu LL

33 . We take into a

ount the 
hargedHiggs 
ontribution to the meson mixing box diagrams as well. Sin
e these diagrams do notinvolve squarks their 
ontribution a�e
ts the �avour 
hanging pro
ess only in a MFV way.Yet through the resulting shift in the observable quantities the 
harged Higgs 
ontribu-
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es the �avour 
hanging parameters under study. With the obtained values for
δu 23
LL and δu 13

LL we 
al
ulate the CP violating parameter ǫK whi
h is used as an additional
onstraint on the studied mass insertions. The parameter ǫK whi
h measures the CP viola-tion in mixing in the Kaon system has not been 
onsidered by many analyses in the past.However, the value of the non perturbative parameter B̂K is known from re
ent latti
e
al
ulations with a good enough pre
ision su
h that ǫK be
omes an important quantity forNP sear
hes or analysis whi
h aim is the 
onstraining of o�-diagonal elements of the squarkmass matri
es. Further, we examine whether the bran
hing ratio Br(B → Xsγ) whi
h isvery sensitive to NP e�e
ts satis�es its experimental bounds. In addition, we 
onfront theobtained values for δu 23
LL and δu 13

LL with the D−D transition amplitude.We start with the des
ription of the main theoreti
al formalism in the next 
hapter. Afterthat, we 
on
entrate on the main features of our studies and des
ribe in detail the performedanalyses whi
h aim has been the 
onstraining of the MSSM parameter spa
e, in parti
ular,pla
ing bounds on elements of the mass mixing matri
es. In the last part of this work, we
omment on the results of our analyses before we 
on
lude and give a short outlook.
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9
2. The Effe
tive Hamiltonian formalismTheoreti
al predi
tions of several measurable quantities relevant in meson mixing phe-nomenology are usually studied in some e�e
tive theory obtained by using the so 
alledOperator Produ
t Expansion (OPE). A 
ommon feature of the OPE is the de�nition oflo
al operators of the form (in the 
ase of ∆B = 2 transitions)

Q = Cαβγδ(bαΓqβ)(bγΓqδ) (2.1)where Γ is a general Dira
 matrix a
ting on spinor indi
es, α, β, γ, δ are 
olour indi
esand the 
onstant Cαβγδ is given by either δαβδγδ or δαδδβγ.The obtaining of physi
al amplitudes from the matrix elements of Q goes through thefollowing three steps:1. Mat
hing of the full theory onto the e�e
tive one at some large energy s
ale.2. Renormalisation-group evolution from the high energy s
ale to the low energy s
alesuitable for the 
al
ulation of the hadroni
 matrix elements.3. Cal
ulation of the hadroni
 matrix elements using non-perturbative methods.2.1. General de�nitions and s
heme dependen
eThe matrix elements of the e�e
tive Hamiltonian 
an be written as
Aeff = 〈F |Heff |I〉 =

∑

i

〈F |Qi(µ)|I〉Ci(µ) (2.2)where the 〈Qi(µ)〉 are matrix elements of lo
al operators and the Ci(µ) denote the 
orre-sponding e�e
tive 
ouplings, the so 
alled Wilson 
oe�
ients. In eq. (2.2) µ denotes theenergy s
ale where the mat
hing of the full theory onto the e�e
tive one is performed. Ingeneral, its value 
an be 
hosen arbitrarily. Through the OPE the problem of the 
al
ula-tion of transition amplitudes 
an be separated in two parts. The Wilson 
oe�
ients Ci(µ)



10 2. The E�e
tive Hamiltonian formalismwhi
h 
ontain the short-distan
e (perturbative) e�e
ts are 
al
ulated using perturbationtheory methods. Sin
e the physi
s 
ontributions from energy s
ales higher than µ are 
on-tained in Ci(µ), they are a�e
ted by the heavy parti
les involved in the problem i.e. W ,
Z-bosons and new parti
les of supersymmetri
 extensions of the SM. The 
al
ulation ofthe Wilson 
oe�
ients is performed at the high s
ale de�ned by the masses of the heavyparti
les. On the other hand, for the determination of the matrix elements 〈Qi(µ)〉 whi
hsummarise long-distan
e (non-perturbative) e�e
ts non-perturbative methods i.e. latti
eQCD, QCD sum rules, 
hiral perturbation theory et
. are used. In this 
ase the s
ale µis usually 
hosen to be of the order of the de
aying hadron. Sin
e the mat
hing 
onditionrequires the mat
hing s
ale µ to be the same for the Wilson 
oe�
ients as well as for thehadroni
 matrix elements either the e�e
tive 
ouplings Ci(µ) have to be evolved down tothe s
ale of the matrix elements or vi
e versa. The evolution is done using Renormalisa-tion Group (RG) equations. The transition amplitude A does not depend on the mat
hings
ale µ. Therefore, the µ-dependen
e of the Wilson 
oe�
ients and the µ-dependen
e ofthe hadroni
 matrix elements have to 
an
el ea
h other. For a very 
lear introdu
tory ex-planation of the OPE in the 
ontext of the meson mixing phenomenology as well as ofother important pro
esses sensitive to NP e�e
ts we refer to [9℄.2.2. The Renormalisation Group EvolutionThe today's most pre
ise determinations of the hadroni
 matrix elements are known fromlatti
e gauge theory. These 
al
ulations are performed using so 
alled Regularisation In-dependent renormalisation s
hemes (RI-MOM). However, in pra
ti
al 
al
ulations of theWilson 
oe�
ients in meson mixing pro
esses Minimal Subtra
tion s
hemes (MS, MS)appear to be more 
onvenient. In order to solve the problem with the di�erent s
ales men-tioned above, the Renormalisation Group (RG) evolution has to be performed in a 
ertainrenormalisation s
heme. In the following we 
on
entrate on the RG evolution in 
ontext ofthe di�erent renormalisation s
hemes and show the translation of the main results betweenthe di�erent s
hemes. The important results are summarised and explained. Our dis
ussionis based on the theoreti
al approa
h dis
ussed in ref. [11℄.2.2.1. The Anomalous Dimension MatrixThe Renormalisation Group evolution follows from the requirement that the transitionamplitude is independent of the mat
hing s
ale µ. Adopting a ve
tor notation for the



2.2 The Renormalisation Group Evolution 11Wilson 
oe�
ients and the hadroni
 matrix elements we take the derivative of Aeff in eq.(2.2) with respe
t to µ and obtain
µ2 d

dµ2
〈 ~QT (µ)〉 ~C (µ) + 〈 ~QT (µ)〉µ2d

~C (µ)

dµ2
= 0. (2.3)The relation between the bare and the renormalised operators is given by

〈 ~QB〉 = Ẑ〈 ~Q (µ)〉. (2.4)The matrix Ẑ depends on the 
oupling 
onstant α (µ) and, in the most general renor-malisation s
hemes like the Regularisation Independent (RI) s
heme [10℄, on the gaugeparameter λ as well. On the 
ontrary, the minimal subtra
tion s
hemes MS and MS aregauge independent.Sin
e the bare operators do not depend on µ, it follows by taking the derivative with respe
tto µ of eq.(2.4)
µ2 dẐ

dµ2
〈 ~Q (µ)〉 + Ẑµ2 d

dµ2
〈 ~Q (µ)〉 = 0. (2.5)From the last equation we easily obtain a di�erential equation for the renormalised oper-ators

µ2 d

dµ2
〈 ~Q (µ)〉 = −Ẑ−1µ2 dẐ

dµ2
〈 ~Q (µ)〉 (2.6)and de�ne the anomalous dimension matrix (ADM) γ̂ (α (µ)) as

γ̂ ≡ 2Ẑ−1µ2 dẐ

dµ2
. (2.7)Inserting eq. (2.6) into eq. (2.3) we obtain the RG equation for the Wilson 
oe�
ients

µ2d
~C (µ)

dµ2
=
γ̂T

2
~C (µ) . (2.8)In order to �nd the expression of γ̂ in dimensional regularisation, we de�ne Zg through

α0 = Z2
gα (µ)µ2ǫ (2.9)where α0 is the bare 
oupling and ǫ = (4 − D)/2. Zg is a 
omposite fun
tion of µ, Zg =

Zg (α (µ)).



12 2. The E�e
tive Hamiltonian formalismNext, we apply the derivative operator with respe
t to µ on eq. (2.9). Sin
e the bare
oupling α0 does not depend on the renormalisation point we �nd
dα (µ)

d lnµ2
= −ǫα (µ) − α (µ)

2

Zg

Zg

d lnµ2
. (2.10)With the de�nitions

β (α (µ) , ǫ) ≡ dα (µ)

d lnµ2

β (α (µ)) ≡ −α (µ)
2

Zg

Zg

d lnµ2
(2.11)eq. (2.10) 
an be written in the simple form

β (α (µ) , ǫ) = −ǫα (µ) + β (α (µ)) (2.12)where β (α (µ)) is expanded in α (µ) as
β (α (µ)) = −β0

α2 (µ)

4π
− β1

α3 (µ)

(4π)2
+O

(

α4 (µ)
)

. (2.13)Writing Zg as an expansion in α and ǫ
Zg = 1 +

∞
∑

i=1

i
∑

k=1

( α

4π

)i 1

ǫk
Z

(i)
g,k (2.14)it 
an be shown that the 
oe�
ients in the expansion of β(α(µ)) are related to the ones ofthe expansion of Zg in eq. (2.13) through

βi = −2(i+ 1)Z
(i+1)
g,1 , (2.15)and 
onsequently the bare parameter α0 
an be expressed through

α0 = α

[

1 − α

4π

β0

ǫ
+ O

(

α2
)

]

. (2.16)Analogously, we introdu
e the gauge �xing parameter λ de�ned from the gauge �xingLagrangian
Lgauge fixing = − 1

2λ
(∂µGa

µ)(∂
νGa

ν), (2.17)The gauge �xing parameter λ satis�es the RG equation
λβλ(α(µ)) ≡ µ2 dλ

dµ2
= − α

4π
β0

λ + O
(

α2
)

. (2.18)



2.2 The Renormalisation Group Evolution 13In the following we denote by λ = 0 the Landau gauge and λ = 1 the Feynman gauge.Using eq. (2.18) we �nd the series expansion of λ0 in the 
oupling 
onstant α
λ0 = λ

[

1 − α

4π

β0
λ

ǫ
+ O

(

α2
)

]

. (2.19)Further, we obtain from (2.7) the anomalous dimension matrix γ̂
γ̂ = 2Ẑ−1

[

β(α, ǫ)
∂Ẑ

∂α
+ βλ(α)λ(α)

∂Ẑ

∂λ

]

. (2.20)The renormalisation s
heme in whi
h the strong 
oupling 
onstant α and the gauge param-eter λ are renormalised 
an be 
hosen di�erent from the renormalisation s
heme in whi
hthe operators are renormalised [11℄. In MS s
heme the 
oe�
ients β0
λ, β1 and β0 in theseries expansions eq. (2.13) and eq. (2.19) whi
h depend on the number of 
olours Nc andthe number of e�e
tive �avours nf are given by

β0 =
11Nc

3
− 2nf

3
,

β1 =
34N2

c

3
− 10Ncnf

3
− (N2

c − 1)nf

Nc
(2.21)and

β0
λ = −13Nc

6
+
λNc

2
+

2nf

3
. (2.22)From eq. (2.20) by expanding γ̂ and Ẑ as

γ̂ =
α

4π
γ̂(0) +

( α

4π

)2

γ̂(1), (2.23)
Ẑ = 1 +

α

4π
Ẑ(1) +

( α

4π

)2

Ẑ(2) (2.24)we derive the following relations between the 
oe�
ients γ(i) and Ẑ(i):
γ̂(0) = −2ǫẐ(1), (2.25)
ˆγ(1) = −4ǫẐ(2) − 2β0Ẑ

(1) + 2ǫẐ(1)Ẑ(1) − 2β0
λλ
∂Ẑ(1)

∂λ
. (2.26)Further, Ẑ(1) 
an be expanded in inverse powers of ǫ

Ẑ(i) =
i
∑

j=0

(

1

ǫ

)j

Ẑ
(i)
j . (2.27)



14 2. The E�e
tive Hamiltonian formalismThe requirement that the ADM is �nite as ǫ→ 0 implies (Ẑ(1)
1 is gauge invariant)

4Ẑ
(2)
2 + 2β0Ẑ

(1)
1 − 2Ẑ

(1)
1 Ẑ

(1)
1 = 0. (2.28)In addition, we have

γ̂(0) = −2Ẑ
(1)
1 , (2.29)

γ̂(1) = −4Ẑ
(2)
1 − 2β0Ẑ

(1)
0 + 2

{

Ẑ
(1)
1 , Ẑ

(1)
0

}

− 2β0
λλ
∂Ẑ

(1)
0

∂λ
. (2.30)For the 
omputation of the NLO ADM it is ne
essary to 
al
ulate the pole and �nite partof ˆZ(1), the single pole of Ẑ(2), β0 and β0

λ.In order to determine the matrix elements of the ADM, the result of the 
al
ulation of thebare hadroni
 matrix elements is expanded as
〈 ~QB〉 =

[

1 +
α0

4π

(

Â0 +
Â1

ǫ

)

+
(α0

4π

)2
(

B̂0 +
B̂1

ǫ
+
B̂2

ǫ2

)]

〈 ~Q(0)〉 (2.31)where 〈 ~Q(0)〉 are the tree level matrix elements. For given generi
 renormalisation s
hemethe following relation between the bare and the renormalised matrix elements 
an be writ-ten
〈 ~Q(µ)〉 = Ẑ−1〈 ~QB〉 =

(

1 +
α

4π
r̂
)

〈 ~Q(0)〉. (2.32)The renormalisation s
heme is de�ned by the 
hoi
e of the matrix r̂. The matrix Â1 isgauge and regularisation independent. Â0 
an be written as
Â0(λ0) = Â0(0) + λ0

∂Â0

∂λ0
(2.33)and ∂Â0/∂λ0 is regularisation independent as well. Inserting eq. (2.33) and eq. (2.31) intoeq. (2.32) we 
an obtain a relation between Ẑ and Â0, Â1, B̂0, B̂1 and B̂2

Ẑ
(1)
0 = Â0 − r̂, Ẑ

(1)
1 = Â1, (2.34)

Ẑ
(2)
1 = B̂1 − Â1r̂ − β0Â0 − β0

λλ
∂Â0

∂λ
, (2.35)

Ẑ
(2)
2 = B̂2 − β0Â1. (2.36)Further, we introdu
e the regularisation and renormalisation s
heme independent quantity

Ĝ = γ̂(1) −
[

r̂, γ̂(0)
]

− 2β0r̂ − 2β0
λλ
∂r̂

∂λ
. (2.37)



2.2 The Renormalisation Group Evolution 15The �rst property is manifest if we rewrite Ĝ in terms of the matri
es Â0, Â1, B̂0, B̂1 and
B̂2

Ĝ = −4

[

B̂1 −
1

2

{

Â1, Â0

}

− 1

2
β0Â0 −

1

2
β0

λλ
∂Â0

∂λ

]

. (2.38)where we have used
γ̂(0) = −2Â1. (2.39)The renormalisation s
heme independen
e is immediately proven by the absen
e of thematrix r̂ in eq. (2.38). The regularisation independen
e is also guaranteed be
ause therenormalised operators (and therefore their evolution 
ontrolled by γ̂(1)) at �xed gaugeand external states depend uniquely on the r̂ matrix whi
h in turn does not depend on theregularisation.The Regularisation Independent (RI) s
heme is de�ned for given external states and �xedgauge λ by the 
ondition

〈 ~Q(µ)〉p2=−µ2,λ = 〈 ~Q〉(0). (2.40)Therefore, in the RI s
heme Ĝ 
oin
ides with the two loop ADM. It is apparent that these
ondition 
an be implemented in any regularisation s
heme and, in parti
ular, in a purelynon-perturbative way.The renormalisation 
ondition for the massless quark propagator is given by
i

4

[

γρ ∂

∂pρ
S(p)−1

R

]

p2=−µ2

= 1. (2.41)The quark wave-fun
tion renormalisation 
onstant 
an be written as
ZRI

q = 1 − α

4π
CFλ

(

1

ǫ
− γ + ln(4π) +

1

2

)

. (2.42)Di�erent 
hoi
es of the wave-fun
tion renormalisation 
orrespond to di�erent 
hoi
es ofthe external quark states in the 
al
ulation of four-point Green fun
tions, and therefore todi�erent de�nitions of the renormalised operators. Even if every 
hoi
e is perfe
tly admis-sible, in the RI s
heme the 
ondition (2.41) guarantees that the ve
tor and axial 
urrentsatisfy automati
ally the Ward identities.Finally, we shortly des
ribe the re
ipe to obtain the NLO ADM in the RI s
heme, γ̂(1)
RI . Indimensional regularisations evanes
ent operators must be in
luded in eq. (2.30). This fa
t
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tive Hamiltonian formalism
ompli
ates the 
al
ulation be
ause produ
ts between the Ẑ matri
es should be performedwith indi
es running over the whole set of physi
al and evanes
ent operators. Only at theend of the 
al
ulation the d → 4 limit 
an be taken. It has been shown in [12℄ that therelation between the NLO ADM and the one-loop and two-loop renormalisation matri
esare valid diagram by diagram. Therefore, a

ording to eq. (2.38) the two basi
 steps of the
omputation are the evaluation of the two-loop bare matrix elements and the subtra
tion ofthe one-loop diagrams 
orresponding to the internal subdiagrams, a

ording to the 
hosenrenormalisation pres
ription. In the RI s
heme it is not ne
essary to isolate the evanes-
ent operators from the four-dimensional basis be
ause the 
ounterterms of the evanes
entand physi
al operators are subtra
ted from the two-loop matrix element with the samenumeri
al 
oe�
ient 1/2 (see the 
ombination Â1Â0 + Â0Â1 of eq. (2.38)). Moreover, inthe subtra
tion pro
edure the double poles 
an
el and thus the proje
tion on the physi
albasis 
annot generate new single poles due to the evanes
ent operators that would alterthe result. More details about the 
al
ulation of the NLO ADM in the RI s
heme 
an befound in [11, 12℄.In order to obtain γ̂(1) in the MS s
heme, it is possible to use eqs. (2.37-2.38) with r̂MS = A0:
γ̂

(1)

MS
= −4

[

B̂1 − A1A0 −
1

2
Ã1Ã0 − β0A0 − β0

λλ
∂A0

∂λ

]

. (2.43)
Ai are the matrix elements restri
ted to the operators of the four-dimensional basis, and
Ãi those 
onne
ting the operators of the four-dimensional basis with the evanes
ent ones.
γ̂

(1)

MS

an be also obtained using eqs. (2.38-2.43) by

γ̂
(1)

RI
= γ̂

(1)

MS
− 2

(

A1A0 − A0A1

)

− 2β0A0 − 2β0
λλ
∂A0

∂λ
. (2.44)2.3. The Evolution MatrixIn this subse
tion we summarise some basi
 aspe
ts of the 
al
ulation of the evolution ma-trix and dis
uss in detail the issues of the regularisation and renormalisation dependen
eof the Wilson 
oe�
ients and of the 
orresponding operators.In order to 
ompute the Wilson 
oe�
ients at a large energy s
ale µ ∼ M , we have to
onsider the full set of 
urrent-
urrent, box and penguin diagrams in the full theory, e.g.with propagating heavy parti
les, in
luding the terms of O(α).



2.3 The Evolution Matrix 17Adopting the notation in [11℄ we write the renormalised amplitude in the full theory as
Afull = 〈 ~Q(0)T 〉

[

~T (0) +
α

4π
~T (1)
]

. (2.45)Equating eqs. (2.2) and (2.45) at the mat
hing s
ale µ = M we obtain
~C(M) = ~T (0) +

α

4π

(

T̂ (1) − r̂T ~T (0)
) (2.46)

~T (1) and r̂T depend on the external states.2.3.1. Solution of the RG equation at LOThe Wilson 
oe�
ients ~C(µ) are expressed in terms of their 
ounter-parts 
omputed atthe large s
ale µ ∼M through the evolution matrix Ŵ (µ,M)

~C(µ) = Ŵ (µ,M) ~C(M). (2.47)The 
oe�
ients ~C(µ) obey the RG equation
[

µ2 ∂

∂µ2
+ β(α)

∂

∂α
+ βλλ

∂

∂λ
− γ̂T (α, λ)

2

]

~C(µ, α(µ), λ(µ)) = 0, (2.48)where the term proportional to βλ 
an
els an identi
al one embedded in γ̂T . In order tosolve the RG equation (2.48), we 
onsider the basis where the ADM γ̂
(0)T
s is diagonal. Inthis basis the Wilson 
oe�
ients are given by a rotation with the matrix V

~C ′ = V ~C, (2.49)where V is the matrix whi
h diagonalises γ̂(0)T
s :

V γ̂(0)T
s V −1 = γ̂D = diag (γD1

, ..., γDn
) . (2.50)Sin
e γ̂(0) does not depend on the gauge parameter λ, at LO eq. (2.48) 
an be written as

β(α)
dC ′

i (µ)

dα (µ)
=
γDi

(α)

2
C ′

i (µ) . (2.51)Applying the method of separation of variables on the equation (2.51), it 
an be integratedin this basis from the lower s
ale µ to the larger s
ale M . We �nd
C′(M)
∫

C′(µ)

dC ′
i

C ′
i

=

α(M)
∫

α(µ)

γDi
(α)

2β (α)
dα. (2.52)



18 2. The E�e
tive Hamiltonian formalismExpanding γ̂ and β(α) in α using eqs. (2.10 - 2.18), we obtain at LO
C′

i(M)
∫

C′
i(µ)

dC ′
i

C ′
i

= −γDi

2β0

α(M)
∫

α(µ)

dα

α
. (2.53)The solution of eq. (2.53) is easily found

C ′
i (µ) =

(

α (M)

α (µ)

)

γDi
2β0

C ′
i (M) . (2.54)Rotating eq. (2.54) to the initial basis, we obtain the following expression for the evolutionmatrix Ŵ (µ,M) at LO

ŴLO (µ,M) = V̂ −1

(

α (M)

α (µ)

)

γ̂Dj
2β0

V̂ . (2.55)2.3.2. Solution of the RG equation at NLONow, we go one step further in perturbation theory. Our goal is to �nd the solution of theRG equation (2.48) at NLO. For this purpose we write
Ŵ (µ,M) = M̂(µ)ŴLO(µ,M)M̂−1(M), (2.56)where ŴLO is the leading order evolution matrix given in eq. (2.55) and the NLO evolutionis en
oded in

M̂(µ) = 1 +
α(µ)

4π
Ĵ(λ(µ)). (2.57)Writting eq. (2.48) as a power expansion in α it takes the form

β0
λ

αβ0

λ
∂ ~C ′

∂λ
+
d ~C ′

dα
= − 1

2αβ0

[

γ̂D +
α

4π

(

Ĝ− β1

β0

γ̂D

)]

~C ′ (2.58)where
Ĝ ≡ V γ̂(1)TV −1. (2.59)For the solution of eq. (2.58) we use the ansatz

~C ′ (µ) =

(

1 +
α (µ)

4π
Ŝ(λ)

)(

α (M)

α (µ)

)

γ̂D
2β0

(

1− α (M)

4π
Ŝ(λ)

)

~C ′ (M) . (2.60)



2.3 The Evolution Matrix 19Inserting eq. (2.60). into eq. (2.58), we �nd after negle
ting terms of O (α(M))

Ŝ +
β0

λ

β0

λ
∂Ŝ

∂λ
−
[

Ŝ,
γ̂D

2β0

]

=
β1

2β2
0

γ̂D − Ĝ

2β0

. (2.61)Rotating ba
k into the initial basis, we obtain from eq. (2.61)
Ĵ +

β0
λ

β0
λ
∂Ĵ

∂λ
−
[

Ĵ ,
γ̂(0)T

2β0

]

=
β1

2β2
0

γ̂(0)T − γ̂(1)T

2β0
. (2.62)where

Ĵ = V −1ŜV. (2.63)The elements of Ŝ are given by
Sij = δij

β1

2β2
0

γDi
− Gij

2β0 + γ
(0)
Di

− γ
(0)
Dj

. (2.64)They be
ome divergent in 
ase 2β0 + γ̂
(0)
Di

− γ̂
(0)
Dj

= 0. In order to �nd a solution for Ŝij welet Ŝ to be α-dependent. In this 
ase one additional term in (2.61) appears, in parti
ular,we �nd
Ŝ −

[

Ŝ,
γ̂

(0)
D

2β0

]

=
γ̂

(0)
D β1

2β2
0

− Ĝ

2β0
− α

dŜ

dα
. (2.65)Setting the denominator 2β0 + γ̂

(0)
di

− γ̂
(0)
dj

= 0 implies i 6= j and from eq. (2.65), we obtain
dSij (α (µ)) = −Gij

2β0

dα

α
. (2.66)Finally, after integration we have

Sij (α (µ)) =
Gij

2β0
ln

(

α (M)

α (µ)

)

+ Sij (α (M)) . (2.67)The generated singularities 
an
el and the physi
al evolution matrix has no divergent en-tries. An expli
it 
al
ulation shows that in pra
ti
e divergen
es appear only in 
ase of 3a
tive �avours [13℄. Sin
e in our 
ase we want to evolve the Wilson 
oe�
ients 
al
ulatedat the SUSY s
ale (MSUSY ∼ 500 GeV) down to the mass of the bottom quark where thematrix elements of the e�e
tive operators are obtained from latti
e 
al
ulations, we workwith at least 5 e�e
tive �avours. Thus, the problem with divergent matrix elements doesnot appear in our 
al
ulation. In general, the problem 
an be avoided by introdu
ing the



20 2. The E�e
tive Hamiltonian formalismgeneral solution of the RG equation. In ref. [13℄ the solution for the evolution matrix forQCD and ele
tromagneti
 renormalisation until O (α) is given. The solution in 
ase of onlyQCD renormalisation has the same form and the problem with the divergen
es does notappear be
ause the solution 
an be written in a form su
h that for divergent denominatorthe numerator vanishes as well. For more details about the expli
it 
al
ulation we referto [13℄.We note that ŴLO is renormalisation and regularisation s
heme independent while λ∂Ĵ/∂λis independent of the regularisation s
heme but not of renormalisation s
heme. For instan
e,it vanishes in any possible MS s
heme.After insertion of the expansion (2.46) in eq. (2.47) it follows
~C(µ) =

(

1 +
α (µ)

4π
Ĵ

)

Û (µ,M)

[

T̂ (0) − α(M)

4π

(

(Ĵ + r̂T )T̂ (0) − T̂ (1)
)

]

. (2.68)The 
ombination ĴRI ≡ Ĵ+ r̂T is renormalisation s
heme independent. Indeed, using (2.38)and (2.62) we derivê
JRI +

β0
λ

β0
λ
∂ĴRI

∂λ
−
[

ĴRI,
γ̂(0)T

2β0

]

=
β1

2β2
0

γ̂(0)T − ĜT

2β0
. (2.69)Sin
e the r.h.s. of (2.69) 
ontains only renormalisation s
heme independent quantities (Ĝand γ̂(0)) the l.h.s. must be also renormalisation s
heme independent whi
h in turn impliesthat ĴRI has to be also independent of the renormalisation s
heme.2.4. Evolution of the ∆B = 2 e�e
tive HamiltonianIn the analysis of the meson mixing pro
esses we 
al
ulate the Wilson 
oe�
ients in theSM as well as the supersymmetri
 
ontributions. In this se
tion we des
ribe the evolutionof the Wilson 
oe�
ients relevant for the meson mixing pro
esses from the SUSY s
aledown to the s
ale at whi
h the hadroni
 matrix elements are 
omputed in latti
e gaugetheory.2.4.1. The operator basisThe relevant operators whi
h enter the e�e
tive Hamiltonian for ∆F = 2 �avour transitionsare given by [62℄

Q1 = qαγµPLb
α qβγµPLb

β,



2.4 Evolution of the ∆B = 2 e�e
tive Hamiltonian 21
Q2 = qαPLb

α qβPLb
β ,

Q3 = qαPLb
β qβPLb

α, (2.70)
Q4 = qαPLb

α qβPRb
β ,

Q5 = qαPLb
β qβPRb

α,together with the operators Q̃1,2,3 whi
h 
an be obtained from the operators Q1,2,3 by theex
hange L ↔ R. The left-handed and right-handed proje
tors are de�ned as PR, L =

(1 ± γ5)/2 while α and β are 
olour indi
es.The ADM of ∆F = 2 �avour transition takes part in several phenomenologi
al appli
ations.Apart from FCNCs in supersymmetri
 extensions of the SM, also the width di�eren
e ∆ΓBsat leading order in 1/mb 
an be written in terms of ∆B = 2 operators [15℄. Corre
tions oforder 1/m3
b to the lifetime of heavy hadrons 
ontaining a b quark 
an be written in termsof four ∆B = 2 operators as well [16℄. Even if they mix with lower dimensional operators,the mixing matrix is triangular and the relevant sub-matrix involves the same 
omputationrequired for the ∆B = 2 ADM.2.4.2. Program for EvolutionWe give the analyti
 formulae for the evolution of the Wilson 
oe�
ients at the s
ale wherethe hadroni
 matrix elements are evaluated as a fun
tion of the initial 
onditions at theSUSY s
ale Ci(MSUSY) and of α(MSUSY). Our 
al
ulation of the evolution matrix is basedon the results given in 
hapter 5 of ref. [11℄ where the matrix elements of the ADM atone and two loop as well as the matrix elements of Ĵ 
al
ulated in Feynman-gauge RIs
heme (FRI s
heme) 
an be found. Furthermore, following the re
ipe for the translationof Ĵ between the FRI s
heme the Landau-gauge renormalisation s
heme (LRI s
heme) andthe MS renormalisation s
heme we 
ould 
ross
he
k the results given in ref. [11℄ with theresults in ref. [17℄ where the ADM is 
al
ulated dire
tly in the MS renormalisation s
heme.The ADMs in ref. [11℄ and ref. [17℄ are obtained in an operator basis di�erent from theone de�ned in eq. (2.70) whi
h is 
ommonly used for 
al
ulations of the Wilson 
oe�
ientsfor meson mixing pro
esses in SUSY. The two basis are related to ea
h other by a Fierztransformation. Therefore, in order to obtain the right form of the matri
es in the SUSYbasis (2.70) we have to apply a Fierz transformation on the matri
es given in refs. [11℄and [17℄. The so 
alled Fierz basis in general form is given by [11℄

Q±
1 =

1

2
(Ψ

i

1γ
µ
LΨi

2)(Ψ
j

3γµLΨj
4) ± (Ψ2 ↔ Ψ4),
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Q±

2 =
1

2
(Ψ

i

1γ
µ
LΨi

2)(Ψ
j

3γµRΨj
4) ± (Ψ2 ↔ Ψ4),

Q±
3 =

1

2
(Ψ

i

1PRΨi
2)(Ψ

j

3PLΨj
4) ± (Ψ2 ↔ Ψ4), (2.71)

Q±
4 =

1

2
(Ψ

i

1PLΨi
2)(Ψ

j

3PLΨj
4) ± (Ψ2 ↔ Ψ4),

Q±
5 =

1

2
(Ψ

i

1σ
µν
L Ψi

2)(Ψ
j

3σµνLΨj
4) ± (Ψ2 ↔ Ψ4)where σµν

K = 1
2
[γµ, γν ]PK , K ∈ {L,R}. The ∆B = 2 operators are obtained from theoperators Q+

i by taking Ψ1 = Ψ3 = b and Ψ2 = Ψ4 = q while the operators Q−
i vanish. Indimensional regularisation Fierz identities 
annot be analyti
ally 
ontinued in D dimen-sions. Therefore, in general evanes
ent operators have to be introdu
ed. They are ne
essaryto make a pre
ise de�nition of the NDR-MS s
heme but 
an be negle
ted in the RI s
hemes.In general, operators 
an mix under renormalisation. However, 
hiral symmetry forbids themixing between some of the operators appearing in the basis (2.71). Therefore, in the Fierzbasis the ADM has the form

γ̂± =

















A± 0 0 0 0

0 B ±C 0 0

0 ±D E 0 0

0 0 0 F± G±

0 0 0 H± I±

















, (2.72)
and there is no mixing between Q− and Q+. In parti
ular, the 
orresponden
e between theoperators of the Fierz basis (2.71) and the SUSY basis (2.70) is given by the transformation

~QSUSY = M̂ ~Q+ (2.73)with the matrix M̂ given by
M̂ =

















1 0 0 0 0

0 0 0 1 0

0 0 0 −1
2

1
8

0 0 1 0 0

0 −1
2

0 0 0

















. (2.74)
The ADM in the SUSY basis (2.70) γ̂SUSY satis�es the relation

γ̂SUSY = M̂γ̂+M̂−1. (2.75)



2.4 Evolution of the ∆B = 2 e�e
tive Hamiltonian 23For the LO ADM γ(0) SUSY whi
h is independent of the regularisation and of the renormal-isation s
heme we �nd after inserting the 
orresponding numeri
al values and performinga rotation from the Fierz basis to the SUSY basis
γ(0) SUSY =

















4 0 0 0 0

0 −28
3

4
3

0 0

0 16
3

32
3

0 0

0 0 0 −16 0

0 0 0 −6 2

















. (2.76)
In order to solve the RG equations, we need to diagonalise the LO ADM γ(0) SUSY. For theentries of the 
orresponding diagonal matrix γD we �nd

γ
(0) SUSY
D = diag (4, −9.68278, 11.0161, −16, 2) . (2.77)The elements of the NLO ADM depend on the renormalisation s
heme and the number ofa
tive �avours. Their analyti
al expressions obtained in the NDR MS s
heme and in theFRI s
heme 
an be found in refs. [17℄ and [11℄, respe
tively. Using the formal approa
hesin the analyses [11℄ and [17℄, we 
ould obtain and translate the relevant matri
es betweenthe di�erent renormalisation s
hemes and have found a full agreement between the results.S
hemati
ally, we show the two possible ways for the determination of the matri
es in thedi�erent renormalisation s
hemes on the example of the matrix Ĵ :

ĴFierz
FRI −→ ĴFierz

LRI −→ ĴSUSY
LRI

ĴFierz
MS

−→ ĴFierz
LRI −→ ĴSUSY

LRI .Starting from the FRI s
heme in the Fierz basis, we translate the matri
es to the LRIs
heme. Then the results are transformed to the SUSY basis a

ording to ref. [11℄. On theother hand, we use the results of the 
al
ulation in MS renormalisation s
heme of ref. [17℄,transform them to the LRI s
heme and then 
hange the operator basis form the Fierz basisto the SUSY basis. Both approa
hes are 
ompletely equivalent.Further, we introdu
e the quantity
η ≡ α(MSUSY)

α(mt)
(2.78)where mt denotes the mass of the top quark, and write every entry in the evolution matrixat NLO as

Ŵ (µ,M)mn =
∑

i

(

b
(mn)
i + ηc

(mn)
i

)

ηai, (2.79)
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tive Hamiltonian formalismwhere bi and ci are the so 
alled �magi
� numbers. In the 
ase of B−B mixing, the
Ci(MSUSY) are evolved down to the hadroni
 s
ale µ = mb at whi
h the hadroni
 matrixelements are 
al
ulated using latti
e QCD methods. StudyingK−K mixing orD−D mixingwe have to go even more lower in the energy s
ale, to µ = 2.0 GeV and to µ = 2.8 GeV,respe
tively. The 
onstants ai in eq. (2.79) are given by

ai =
γ̂

(0)
Di

2β0
= (−1.14286, 0.78687, −0.69163, 0.28571, 0.14286)i. (2.80)By the evolution of the Wilson 
oe�
ients from the s
ale MSUSY down to the s
ale µ thethreshold at mt is passed at whi
h the number of a
tive �avours nf 
hanges by one unitfrom 6 to 5. Therefore, the evolution of the Wilson 
oe�
ients at NLO is performed usingeq. (2.47) in two steps, �rst from MSUSY down until mt where nf = 6, and after this from

mt to µ = mb with 5 a
tive �avours. Sin
e we apply two times (2.47) after ea
h otherterms proportional to α(mt)
2 and α(mb)α(mt) 
an appear whi
h are of O(α2). We haverestri
ted our working pre
ision up to O(α) and have negle
ted the 
ontribution of termsof O(α2) to the matrix elements of the evolution matrix.With the numeri
al input in table (4.1) the magi
 numbers b(mn)

i and c(mn)
i for the non-vanishing matrix elements are the following:

b
(11)
i = (0.868, 0, 0, 0, 0), c

(11)
i = (−0.016, 0, 0, 0, 0),

b
(22)
i = (0, 1.820, 0.012, 0, 0), c

(22)
i = (0, −0.157, −0.003, 0, 0),

b
(23)
i = (0, −0.477, 0.183, 0, 0), c

(23)
i = (0, −0.012, 0.008, 0, 0),

b
(32)
i = (0, −0.050, 0.036, 0, 0), c

(32)
i = (0, 0.010, −0.012, 0, 0),

b
(33)
i = (0, 0.013, 0.549, 0, 0), c

(33)
i = (0, 0.001, 0.030, 0, 0),

b
(44)
i = (0, 0, 0, 2.719, 0), c

(44)
i = (0, 0, 0, −0.377, 0.006),

b
(45)
i = (0, 0, 0, 0.906, −0.235), c

(45)
i = (0, 0, 0, −0.193, −0.006),

b
(54)
i = (0, 0, 0, 0.073, 0), c

(54)
i = (0, 0, 0, 0, −0.017),

b
(55)
i = (0, 0, 0, 0.024, 0.868), c

(55)
i = (0, 0, 0, 0, 0.019).

(2.81)
In order to 
al
ulate the K−K mixing amplitude we have to evolve the Wilson 
oe�
ientsdown to the s
ale µ = 2.0 GeV at whi
h the 
orresponding hadroni
 matrix elements are
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ted from latti
e simulations. In this 
ase we �nd the magi
 numbers:
b
(11)
i = (0.816, 0, 0, 0, 0), c

(11)
i = (−0.015, 0, 0, 0, 0),

b
(22)
i = (0, 2.275, 0.010, 0, 0), c

(22)
i = (0, −0.188, −0.003, 0, 0),

b
(23)
i = (0, −0.596, 0.155, 0, 0), c

(23)
i = (0, −0.015, 0.006, 0, 0),

b
(32)
i = (0, −0.042, 0.029, 0, 0), c

(32)
i = (0, 0.012, −0.010, 0, 0),

b
(33)
i = (0, 0.011, 0.438, 0, 0), c

(33)
i = (0, 0.001, 0.025, 0, , 0),

b
(44)
i = (0, 0, 0, 3.890, 0), c

(44)
i = (0, 0, 0, −0.507, 0.005),

b
(45)
i = (0, 0, 0, 1.297, −0.212), c

(45)
i = (0, 0, 0, −0.259, −0.006),

b
(54)
i = (0, 0, 0, 0.127, 0), c

(54)
i = (0, 0, , 0, 0, −0.016),

b
(55)
i = (0, 0, 0, 0.042, 0.824), c

(55)
i = (0, 0, 0, 0., 0.018).

(2.82)
The hadroni
 matrix elements involved in the D−D mixing pro
ess are known at the s
ale
µ = 2.8 GeV. Therefore, we evolve the Wilson 
oe�
ients to that s
ale as well. In this 
asethe magi
 numbers are given by:

b
(11)
i = (0.838, 0, 0, 0, 0), c

(11)
i = (−0.016, 0, 0, 0, 0),

b
(22)
i = (0, 2.059, 0.011, 0, 0), c

(22)
i = (0, −0.174, −0.003, 0, 0),

b
(23)
i = (0, −0.540, 0.167, 0, 0), c

(23)
i = (0, −0.013, 0.007, 0, 0),

b
(32)
i = (0, −0.046, 0.032, 0, 0), c

(32)
i = (0, 0.011, −0.011, 0, 0),

b
(33)
i = (0, 0.012, 0.484, 0, 0), c

(33)
i = (0, 0.001, 0.027, 0, , 0),

b
(44)
i = (0, 0, 0, 3.315, 0), c

(44)
i = (0, 0, 0, −0.445, 0.006),

b
(45)
i = (0, 0, 0, 1.105, −0.222), c

(45)
i = (0, 0, 0, −0.227, −0.006),

b
(54)
i = (0, 0, 0, 0.992, 0), c

(54)
i = (0, 0, 0, 0, −0.017),

b
(55)
i = (0, 0, 0, 0.033, 0.843), c

(55)
i = (0, 0, 0, 0, 0.019).

(2.83)
2.5. Hadroni
 Matrix ElementsThe matrix elements of the operators in eq. (2.70) 
an be 
omputed from �rst prin
iplesonly in the framework of the latti
e QCD. While the operators in eq. (2.70) have bothparity even and parity odd parts, only the parity even parts 
ontribute to the matrixelements relevant for the meson mixing pro
esses. The strong intera
tion preserve parityand 
onsequently

〈M |Qi|M〉 = 〈M |Q̃i|M〉, i = 1, 2, 3 (2.84)
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tive Hamiltonian formalismwhereM denotes a B, K or D meson. Usually, one de�nes the dimensionless B-parametersas a measure of the deviation of the matrix elements from their expression in the va
uuminsertion approximation (VIA), in parti
ular
Bi(µ) =

〈M |Qi|M〉
〈M |Qi|M〉VIA

. (2.85)The matrix elements in a given renormalisation s
heme RS are de�ned as [19, 62℄
〈QRS

i (µ)〉 = bi χi f
2
M M2

M BM, RS
i (µ) (2.86)where

bi =

(

2

3
, − 5

12
,

1

12
,

1

2
,

1

6

)

i

,

χ1 = 1,

χi =

[

MM

mq(µ) +mq(µ)

]2

for i ∈ [2, 5] . (2.87)The matrix elements of all the non-SM operators are 
hirally enhan
ed by the ratio of themeson mass over the sum of the masses of its quark 
onstituents. In order to determine thenumeri
al values of the B-parameters, numeri
al simulations of a quen
hed and unquen
hedQCD on the latti
e have been performed. The results of re
ent QCD latti
e 
al
ulationsare reviewed in ref. [20℄.2.5.1. Hadroni
 Matrix Elements for B−B mixingIn the 
ase of B−B mixing we use the B-parameters obtained in a latti
e 
al
ulation ofa quen
hed QCD reported in ref. [18℄. Latti
e simulations 
an be made up to the c quarkmass or some heavier mass but present 
omputational resour
es do not allow a dire
tstudy of the b quark. The 
al
ulation in ref. [18℄ has been performed in the range of heavy-light pseudos
alar masses [1.7, 2.4] GeV, and then extrapolated to the physi
al point mBdguided by Heavy Quark E�e
tive Theory (HQET) s
aling laws. The numeri
al values ofthe B-parameters involved in the Bd−Bd and Bs−Bs mixing amplitudes are given by
BBd,RI

i =
[

0.87(4)+5
−4, 0.82(3)(4), 1.02(6)(9), 1.16(3)+5

−7, 1.91(4)+22
−7

]

i
,

BBs,RI
i =

[

0.86(2)+5
−4, 0.83(2)(4), 1.03(4)(9), 1.17(2)+5

−7, 1.94(3)+23
−7

]

i
(2.88)in the LRI s
heme [18℄. For the determination of the numeri
al values of the hadroni
 matrixelements the knowledge of the Bd and and Bs de
ay 
onstants fBd

and fBs
is ne
essary. In
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 Matrix Elements 27our 
al
ulation we use the averages of latti
e QCD inputs for the CKM �ts performed bythe CKM�tter 
ollaboration [21℄. A

ording to the CKM�tter group the average value ofthe de
ay 
onstant fBs
is given by

fBs
= (228 ± 3 ± 17) MeV (2.89)where the �rst error is statisti
al and the se
ond systemati
al. Latti
e 
al
ulations allowthe determination of the ratio
ξ =

fBs

√

BBs

1

fBd

√

BBd

1

(2.90)with mu
h better pre
ision than the de
ay 
onstants themselves. Furthermore, the de
ay
onstant fBs
is determined more pre
isely than fBd

. Therefore, by the 
al
ulation of the
Bs−Bs and Bd−Bd transition amplitudes we use the ratio of the de
ay 
onstants

fBs

fBd

= 1.199 ± 0.008 ± 0.023 (2.91)determined from the CKM�tter group [21℄ by analysing various latti
e simulations, andthe de
ay 
onstant fBs
. In eq. (2.91) again the �rst error is the statisti
al and the se
ondthe systemati
al one as before. In ref. [18℄ the operators are de�ned without the fa
tor 1/2in the proje
tors i.e. O1 = qiγµ(1 − γ5)b

i qjγµ(1 − γ5)b
j . Taking this fa
t into a

ount weobtain for the hadroni
 matrix elements with the de�nition of the operators given in (2.70)the following mean values at the s
ale µ = 4.6 GeV:

〈QBd, RI
i 〉 = (0.8593, −0.6809, 0.1690, 1.1518, 0.6366)i ,

〈QBs, RI
i 〉 = (0.5846, −0.4520, 0.1125, 0.7673, 0.4211)i . (2.92)2.5.2. Hadroni
 Matrix Elements for K−K mixingFor the 
al
ulation of the K−K transition amplitude we use the B-parameters presentedin ref. [20℄ where the results of many quen
hed and unquen
hed latti
e simulations withdi�erent latti
e spa
ing are 
olle
ted and analysed in 
ontext of the relevant errors. Theparameter BK

1 whi
h is involved in the SM K−K mixing amplitude has been 
omputed inseveral latti
e 
al
ulations while a 
al
ulation of the B-parameters of the full operator basis(2.70) has been performed only in three latti
e studies until now [95�97℄. All of them havebeen performed within the quen
hed approximation. However, the authors of the analysis
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tive Hamiltonian formalism[20℄ do not re
ommend to use the number for BK
1 obtained in the three latti
e simulationsmentioned above whi
h determine the B-parameters for all the operators. Instead, theyrefer to the result of latti
e 
al
ulations whose goal has been the 
omputation of BK

1 onlywhi
h is known more pre
isely than the other B-parameters. Finally, the average values ofthe B-parameters in the RI-MOM s
heme at the s
ale µ = 2 GeV are given by [20℄
BK,RI

i = [0.54(5), 0.7(2), 1.0(4), 0.9(2), 0.6(1)]i . (2.93)Together with the de
ay 
onstant fK = (155.5 ± 0.3 ± 1.9) MeV [21℄ and (mRI
s + mRI

d ) =

(135± 18) MeV [20℄ we obtain the following mean values for the hadroni
 matrix elementsinvolved in K−K mixing at µ = 2 GeV:
〈QK,RI

i 〉 = (0.00864,−0.09520, 0.02720, 0.14689, 0.03264)i . (2.94)2.5.3. Hadroni
 Matrix Elements for D−D mixingAs stated in ref. [20℄ in the 
ase of D−D mixing the involved hadroni
 matrix elements 
anbe obtained from the latti
e results presented in [18℄ as well. This work provides numeri
alresults for heavy-light mesons with masses 1.75(9) GeV and 2.02(10) GeV, respe
tively.Thus, the B-parameters for the D mesons 
an be obtained by extrapolating to the physi
alpoint mD between the two sets of results. The authors of ref. [20℄ add in the �nal averagesan additional systemati
 un
ertainty of 10%. This de
ision is motivated by the fa
t thatthe results in ref. [18℄ are obtained from a single quen
hed simulation in latti
e QCD.Finally, the B-parameters relevant for D−D mixing in the RI-MOM s
heme at the s
ale
µ = 2.8 GeV are given by

BD,RI
i = [0.85(9), 0.82(9), 1.07(12), 1.10(11), 1.37(14)]i . (2.95)With the averages for the de
ay 
onstant fDs

= (246.3 ± 1.1 ± 5.3) MeV and for the ratio
fDs

/fD = 1.186 ± 0.0046 ± 0.01 [21℄ we �nd the mean values for the hadroni
 matrixelements
〈QD,RI

i 〉 = (0.3398, −0.4402, 0.1149, 0.7087, 0.2942) . (2.96)
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3. General aspe
ts of meson mixingIn this 
hapter we des
ribe the general formalism of meson mixing. It 
an be applied to all
ases of meson mixing pro
esses in parti
ular to B−B mixing , K−K mixing or D−Dmixing. In the next 
hapter we fo
us on the three meson mixing pro
esses mentioned aboveand dis
uss the spe
i�
 issues of ea
h one and the main di�eren
es between them from phe-nomenologi
al point of view. For a more detailed des
ription of the phenomenon of mesonmixing we refer to [9℄, [23, 24℄ and referen
es therein.The meson-antimeson mixing is a Flavour Changing Nu
lear Current (FCNC) pro
ess. Inthe SM FCNC transitions are forbidden at tree level. At one loop level the �avour 
hang-ing W± and G± verti
es make FCNC pro
esses possible. The meson mixing is an e�e
tof fourth order �avour-
hanging weak intera
tion whi
h is des
ribed in the SM by thebox diagrams shown in �g. 4.2. The 
harged Higgs verti
es have to be taken into a

ountby performing the 
al
ulation in Rξ gauge while they are absent by 
hoosing an unitarygauge. In following we fo
us on the time evolution of a meson or antimeson state. The
al
ulation of the box diagrams in the SM as well as the supersymmetri
 
ontributions willbe dis
ussed in 
hapters 4.1.2 and 4.2.Meson-antimeson mixing means that a neutral meson state |M〉 initially 
reated as |M〉or |M〉 be
omes a superposition of |M〉 and |M〉 with time elapsing. Assuming �rst nomeson-antimeson mixing whi
h is ful�lled in the 
ase of 
harged mesons the time evolutionof a meson state |M〉 is des
ribed by the S
hrödinger equation

i
d

dt
|M(t)〉 =

(

MM − i
ΓM

2

)

|M〉 (3.1)where MM is the mass and ΓM stays for the total de
ay width of the meson. With |M〉 wedenote the meson state at the initial time t = 0, |M(0)〉 = |M〉. The solution of eq. (3.1)is given by
|M(t)〉 = e

i
“

MM−i
ΓM
2

”

t|M〉 (3.2)
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ts of meson mixingEq. (3.2) des
ribes the usual exponential time evolution of a stable state with energy
E = MM as well as the pro
ess of de
aying of the meson following an exponential law.Thus, the probability the meson not to have de
ayed at time t is given by

|〈M |M(t)〉|2 = e−ΓM t. (3.3)In 
ase of meson-antimeson mixing the time evolution of a meson or an antimeson stateprodu
ed at time t = 0 is more 
ompli
ated. An initially 
reated meson or antimeson is aquantum superposition of the states |M〉 and |M〉 at the time t > 0:
|M(t)〉 = a(t)|M〉 + b(t)|M〉. (3.4)In the basis {|M〉, |M〉

} we 
an write the two-dimensional S
hrödinger equation
i
d

dt
|M(t)〉 = M|M〉 (3.5)with the matrix M ∈ C2×2. Further, we use the property of every matrix to be written asa sum of a hermitian and an antihermitian one and de
ompose M as
M = M̂ − i

Γ̂

2
(3.6)where the mass matrix M̂ and the de
ay matrix Γ̂ have been introdu
ed whi
h are bothhermitian. A

ording to the CPT theorem [25�27℄ the states |M〉 and |M〉 have identi
almasses and total de
ay widths. This requirement enfor
es the equality of the diagonalelements of M. Then, it followŝ

M11 = M̂22, Γ̂11 = Γ̂22. (3.7)We �nd the time evolution of the �avour eigenstates |M(t)〉 and |M(t)〉 starting from thetime evolution of the mass eigenstates |M1(t)〉 and |M2(t)〉. Be
ause of the spe
ial formof the matrix M with equal diagonal elements we 
an make the following ansatz for thematrix Q whi
h diagonalises it
Q =

(

p p

q −q

)

. (3.8)For the inverse matrix Q−1 it follows
Q−1 =

1

2pq

(

q p

q −p

)

. (3.9)
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ts of meson mixing 31Thus, the mass eigenstates and the �avour eigenstates are related to ea
h other through
|M1〉 = p|M〉 + q|M〉,
|M2〉 = p|M〉 − q|M〉 (3.10)with |p|2 + |q|2 = 1 and M is diagonalised as

Q−1 MQ = diag

(

MM1
− i

ΓM1

2
, MM2

− i
ΓM2

2

)

. (3.11)Sin
e the mass eigenstates do not mix with elapsing time their time evolution is des
ribedby eq. (3.1) whi
h is valid for the time evolution of 
harged parti
les. We 
an write
i
d

dt
|Mj(t)〉 =

(

MMj
− i

ΓMj

2

)

|Mj(t)〉, j ∈ {1, 2} . (3.12)The solution is analogous to the one given in eq. (3.2):
|Mj(t)〉 = e

i

„

MMj
−i

ΓMj
2

«

t|Mj〉, j ∈ {1, 2} . (3.13)Having obtained the time evolution of the mass eigenstates we 
an transform it to the�avour eigenstate basis. Inverting eq. (3.10) we �nd
|M(t)〉 =

1

2p
(|M1(t)〉 + |M2(t)〉) ,

|M(t)〉 =
1

2q
(|M1(t)〉 − |M2(t)〉) . (3.14)In order to write the formulae in a more simple form, we adopt the following de�nitions forthe mass and width di�eren
es and the average mass and width of the mass eigenstates:

m ≡ MM1
+MM2

2
, Γ ≡ ΓM1

+ΓM2

2
,

∆M ≡MM2
−MM1

, ∆Γ ≡ ΓM1
− ΓM2

. (3.15)Further, we de�ne the fun
tions [23, 24℄
g+(t) = e−i(m−Γ

2 )
[

cosh

(

∆Γ

4
t

)

cos

(

∆m

2
t

)

− i sinh

(

∆Γ

4
t

)

sin

(

∆m

2
t

)]

,

g−(t) = e−i(m−Γ
2 )
[

−sinh

(

∆Γ

4
t

)

cos

(

∆m

2
t

)

+ i cosh

(

∆Γ

4
t

)

sin

(

∆m

2
t

)]

.(3.16)Finally, after inserting in eq. (3.14) the time evolution of the mass eigenstates given ineq. (3.13) 
onsidering the de�nitions in (3.15 - 3.16), the time evolution of the �avour
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ts of meson mixingeigenstates 
an be written in a 
ompa
t form
|M(t)〉 = g+(t)|M〉 +

q

p
g−(t)|M〉,

|M(t)〉 =
p

q
g−(t)|M〉 + g+(t)|M〉. (3.17)Sin
e g±(t) does not vanish for t > 0 if ∆Γ 6= 0 an initially produ
ed meson |M〉 will nevertransform into a pure antimeson state |M〉 or ba
k into a pure |M〉. The meson-antimesonos
illation pro
ess 
an be easily illustrated by means of eq. (3.17). The time dependentprobabilities PMM(t) and PMM(t) to �nd a meson or an antimeson when at the initial time

t = 0 a meson has been 
reated are given by
PMM = |g+(t)|2 =

e−Γt

2

[

cosh

(

∆Γ

2
t

)

+ cos (∆mt)

]

,

PMM =

∣

∣

∣

∣

q

p
g−(t)

∣

∣

∣

∣

2

=
e−Γt

2

[

cosh

(

∆Γ

2
t

)

− cos (∆mt)

]

. (3.18)We plot these probabilities in 
ase of Bd−Bd , Bs−Bs , and D−D mixing in �g. 3.1. As anumeri
al input of the quantities ∆Md, ∆Γd, ∆Ms, ∆Γs and τB the values given in table4.1 have been used. In 
ase of D−D mixing we obtained the relevant quantities takinginto a

ount the input parameters given in table 4.2. In the Bs−Bs system we see a lot ofos
illations in the shown time interval. On the 
ontrary, the Bd−Bd os
illations happenmu
h slower. In fa
t, the �rst minimum of PBsBs
is at t = 0.18 ps while the probability

PBdBd
is not minimal until t = 6.20 ps. The D mesons de
ay so fast that there is no su�-
ient time during their lifetime for a 
reation of an antimeson 
omponent.At this point it is important to 
larify whi
h quantities relevant for the meson-antimesonmixing pro
ess are independent of phase 
onventions and have therefore a physi
al meaning.The multipli
ation of either |M〉 or |M〉 by an arbitrary 
omplex phase fa
tor will a�e
tthe phases of the matrix elements M12, Γ12 as well as the phase of q/p. In fa
t, |M12|, |Γ12|and their relative phase

φ = arg

(

−M12

Γ12

) (3.19)are invariant under phase transformations. These are the physi
al observables whi
h ap-peared in our dis
ussion of the meson-antimeson mixing formalism until now.
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Figure 3.1: Time evolution of an initially 
reated meson (left plot) or antimeson (right plot)for the Bd−Bd system (bla
k line), Bs−Bs system (red line) and D−D system (greenline). In the right plot PDD 
oin
ides with the x-axis.Our approa
h for 
onstraining supersymmetri
 parameters is based on the 
omparisonbetween the theoreti
al estimate of the mass di�eren
es in the Bd and Bs meson systemsand the 
orresponding measured values of these quantities under the assumption that NPonly enters at the loop level through additional parti
les running in the loops. For thisreason ∆F = 2 transitions whi
h in the SM are mediated by box diagrams 
an be sensitiveprobes of NP. The matrix elementsM12 and Γ12 are related to the dispersive and absorptiveparts of the ∆F = 2 transitions. Γ12 
an be written as a produ
t of tree-level ∆F = 1amplitudes so that NP is not likely to alter its value. In this sense it is important to �ndthe relation between ∆M and the meson mixing amplitudeM12. For that purpose we turnba
k to the eigenvalue problem (3.11) and denote the two eigenvalues of the matrix M by
λ1 and λ2. Solving the se
ular equation

(M11 − λ1,2) −M12M21 = 0 (3.20)we obtain a relation between the eigenvalues
(λ1 − λ2)

2 = 4M12M21. (3.21)Equating the real and imaginary part of the l.h.s and r.h.s of eq. (3.21) separately leadsto a relation between the mass di�eren
e, the total width di�eren
e, the de
ay amplitudeand the total width:
(∆M)2 −

(

∆Γ

2

)2

= 4|M12|2 − |Γ12|2,

(∆M)(∆Γ) = −4 Re(M12Γ
∗
12) = 4 |M12||Γ12| cosφ. (3.22)
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ts of meson mixingFor the B−B system it is experimentally known that ∆Γ ≪ ∆M . On the other hand, SM
al
ulations show that Γ12 ≪ ∆M is valid as well. Therefore, from eq. (3.22) it follows
∆M ≃ 2|M12|,
∆Γ ≃ 2|Γ12| cosφ. (3.23)Equation (3.23) is valid also in the 
ase of K−K mixing, in whi
h ∆Γ > ∆M , but φ ≈ 0.
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4. Wilson 
oeffi
ients for meson mixingpro
esses in the MSSMIn this 
hapter we dis
uss the meson mixing pro
esses in the neutral B, D and Kaon sys-tems. We explain the spe
i�
 features of the meson mixing phenomenon in the three 
asesmentioned above. We fo
us on the 
omputation of the Wilson 
oe�
ients in the SM aswell as on the supersymmetri
 
ontributions.
4.1. SM 
ontributionEa
h of the Wilson 
oe�
ients 
orresponding to the operators basis given in eq. (2.70) 
anbe written as

Ci = CSM
i + CSUSY

i (4.1)In eq. (4.1) the �rst term represents 
ontributions from the SM and the se
ond one sum-marises the 
ontributions from supersymmetri
 parti
les.The SM 
ontribution to the meson mixing pro
esses is des
ribed only by the operator Q1given in eq. (2.70) whi
h 
orresponds to the situation that all external parti
les of theboxes are left-handed. In this se
tion we summarise and dis
uss the basi
 results regardingthe B−B , K−K and D−D mixing in the SM. For a more detailed des
ription of thephenomenon of meson mixing we refer to [9, 23, 24℄ and referen
es therein.4.1.1. The pure SM CKM matrixThe �avour violation pro
ess in the SM is governed by the CKM matrix elements. Sin
eour goal is to pla
e 
onstraints on parameters of SUSY parti
les whi
h 
an a�e
t the me-son mixing amplitudes, the separation of the pure SM 
ontribution from the 
ontribution
aused by SUSY parti
les is extremely important. However, the CKM matrix elements are
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oe�
ients for meson mixing pro
esses in the MSSMmeasured using pro
esses whi
h 
annot be always free of NP e�e
ts. Therefore, one has to�nd a way to determine the CKM matrix elements involved in the 
al
ulation of the SMpart of the Wilson 
oe�
ients, if possible without, or with the minimal possible amountof NP 
ontributions.Within the SM a great variety of pro
esses 
hara
terised by a very di�erent dynami
s aresensitive to the same four independent parameters of the CKM matrix de�ned in the so
alled Standard parametrisation by
V =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






(4.2)with cij = cos θij and sij = sin θij . In the presen
e of NP this is no longer true even inminimally �avour violating extensions of the SM. Taking into a

ount the smallness of

s13 ≈ O(10−3) and s23 ≈ O(10−2) whi
h implies c13 = 1 = c23 the four independentparameters are given by
s12 = |Vus|, s13 = |Vub|, s23 = |Vcb| and δ. (4.3)In order to write the results of theoreti
al 
al
ulations in a more transparent form and toexhibit the experimentally found hierar
hy s13 ≪ s23 ≪ s12 ≪ 1 the so 
alled Wolfensteinparametrisation [28℄ of the CKMmatrix is very usefull. In this parametrisation ea
h elementof the CKM matrix is written as a power series expansion of the small parameter λ = |Vus|.In parti
ular,

V =







1 − λ2

2
λ (ρ− iη)Aλ3

−λ 1 − λ2

2
Aλ2

(1 − ρ− iη)Aλ3 −Aλ2 1






+ O(λ4). (4.4)The relation between the independent parameters (4.3) in the Standard parametrisationand the parameters λ, A, ρ and η used in the Wolfenstein parametrisation is given by

s12 = λ, s23 = Aλ2, s13e
−iδ = Aλ3(ρ− iη). (4.5)The unitarity relation VijV

∗
kj = δik 
reates various relations between the CKM matrixelements. The most important one follows from the multipli
ation of the �rst and the third
olumn of the CKM matrix. In parti
ular, we �nd
VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (4.6)
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Figure 4.1: The unitarity triangle.This equation involves the only two 
omplex elements in the expansion until O(λ4) in theWolfenstein parametrisation. The representation of eq. (4.6) in the 
omplex (ρ, η)-planeshown in �g. 4.1 where the axis are de�ned as [98℄
ρ = ρ

(

1 − λ2

2

)

, η = η

(

1 − λ2

2

) (4.7)is the so 
alled unitarity triangle (UT). With
ρ+ iη = −VudV

∗
ub

VcdV ∗
cb

(4.8)we obtain form eq. (4.6)
[(ρ+ iη) + (−1) + (1 − ρ− iη)] (4.9)whi
h is shown in �g. 4.1. Sin
e eq. (4.9) is invariant under phase transformations, thesides and angles of the UT are physi
al observables.The sides and angles of the UT 
an be expressed using trigonometri
 relations through theWolfenstein parameters as follows:

sin(2α) =
2η (η2 + ρ2 − ρ)

(ρ2 + η2)
[

(1 − ρ)2 + η2
] ,

sin(2β) =
2η (1 − ρ)

(1 − ρ)2 + η2
,

sin(2γ) =
2ρη

ρ2 + η2 ,
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Rb =

∣

∣

∣

∣

VudV
∗
ub

VcdV ∗
cb

∣

∣

∣

∣

=
√

ρ2 + η2,

Rt =

∣

∣

∣

∣

VtdV
∗
tb

VcdV ∗
cb

∣

∣

∣

∣

=

√

(1 − ρ)2 + η2. (4.10)We insert the parameters
ρ =

s13

s12s23
cos δ, η =

s13

s12s23
sin δ (4.11)whi
h we easily derive from (4.5) in the equation for sin(2γ) and �nd γ = δ. To an ex
ellenta

ura
y the angles β and γ of the UT are dire
tly linked to the phases of the 
omplexelements Vtd and Vub. We �nd the relations

Vtd = |Vtd|e−iβ = RtAλ
3e−iβ,

Vub = |Vub|e−iγ = RbAλ
3e−iγ . (4.12)For all predi
tions within the SM we assume unitarity of the CKM matrix and 
al
ulateall CKM elements from the four parameters

|Vus|, |Vcb|, |Vub|, γ. (4.13)The numeri
al input values are given in table 4.1. This set of parameters 
an be determinedentirely from tree level de
ays and are 
onsequently independent of NP 
ontributions. Ourstrategy to extra
t γ without NP 
ontributions in
ludes the 
ombination of the informa-tions from B → J/ψKS and B → π+π− de
ays. These transitions 
an be a�e
ted by NPin the ele
tromagneti
 penguins only whi
h is a very unlikely s
enario. We dis
ard thispossibility and assume that de
ays to be 
ompletely governed by the SM. Both de
aysprovide information about the mixing indu
ed CP asymmetry Amix
CP . The relevant relationsare

Amix
CP (B → J/ψKS) = − sin(φd)

Amix
CP (B → ρρ) = sin(2γ + φd) (4.14)where φd is the Bd − Bd mixing phase. In the SM the Bd−Bd mixing phase φd = 2β butin the presen
e of NP it 
an be a�e
ted by an additional phase φNP

d . In this 
ase we 
anwrite
φd = 2β + φNP

d . (4.15)
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α (dir. meas.) 89.0◦+4.4◦

−4.2◦ [22℄ |Vcb| (41.17+0.38
−1.17) · 10−3 [22℄

β (dir. meas.) 21.15◦+0.90◦

−0.88◦ [22℄ |Vub| (3.51+0.14
−0.16) · 10−3 [22℄

|Vus| = λ = s12 0.22544 ± 0.00095 [22℄ αs(MZ) 0.119 ± 0.003

GF 1.16637 · 10−5 GeV−2 α(MZ) 1/127.9
MBd

(5.2794 ± 0.0005) GeV [85℄ MBs
(5.3696 ± 0.0024) GeV [85℄

mb(mb) (4.248 ± 0.051) GeV [86℄ mt(mt) (165.02 ± 1.16 ± 0.11) GeV [22℄
MW (80.423 ± 0.039) GeV sW

√
0.2397

∆M exp
Bd

(0.507 ± 0.005) ps−1 [85℄ ∆M exp
Bs

(17.77 ± 0.10 ± 0.07) ps−1 [90, 91℄
f th

Bs
(228 ± 3 ± 17) MeV [21℄ f th

Bs
/f th

Bd
(1.199 ± 0.008 ± 0.023) [21℄

f th
D (212 ± 14) MeV [20℄ f th

K 155.5 ± 0.3 ± 1.9 MeV [21℄
∆Γth

Bd
26.7+5.8

−6.5 · 10−4 ps−1 [69℄ ∆Γth
Bs

0.088 ± 0.017 ps−1 [69℄Table 4.1: Values of the experimental and theoreti
al quantities used as an input parameters.Using the unitarity relation γ = π − α − β and the experimental information about thethe measured quantities βexp = β + φd/2 and αexp = α − φd/2 we 
an determine γ fromthe equation
γ = π − αexp − βexp. (4.16)In eq. (4.16) the the NP phase φNP
d 
an
els be
ause it a�e
ts the measured quantities βexpand αexp with opposite sign. With the numbers given in table 4.1 we �nd

γ = 1.23918+0.10996
−0.12566

(

71.0◦+6.3◦

−7.2◦

) (4.17)whi
h is the pure SM value of the angle γ.4.1.2. The mixing of neutral B mesons in the SMFor the mixing of the neutral B mesons in the SM we 
onsider the box diagrams shownin �g. 4.2. In 
ase of Bd −Bd mixing the in
oming and outgoing quarks are b and dwhile for Bs −Bs mixing the d quark is repla
ed by a s quark. Choosing an unitarygauge the parti
les running in the loop are represented by two W bosons and two up-typequarks. Performing the 
al
ulation in a general Rξ gauge the 
ontribution of the 
hargedPseudo-Goldstone bosons has to be taken into a

ount as well. Our goal is to 
al
ulate
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di(ui) dj(uj)

dj(uj) di(ui)

W
±

W
±

uk(dk)

ul(dl)

di(ui) dj(uj)

dj(uj) di(ui)

W
±

W
±

uk(dk) ul(dl)

Figure 4.2: The box diagrams des
ribing meson-antimeson mixing in the SM in the unitarygauge. In 
ase of B−B and K−K mixing the in
oming and outgoing quarks are ofdown-type and up-type quarks are involved in the loop. For D−D mixing the situationis the opposite - in
oming and outgoing up-type quarks and down-type quarks running inthe loop. In Rξ gauge additional box diagrams involving 
harged Pseudo-Goldstone bosonshave to be 
onsidered.the mass di�eren
es ∆Ms and ∆Md for the Bs−Bs and Bd−Bd system, respe
tively.It has been already pointed out that in the 
al
ulation pro
edure of meson-antimesontransition amplitudes we have to deal with low energy QCD whi
h makes the appli
ationof perturbative methods impossible. In order to solve this problem, we have to extra
tthe SM Wilson 
oe�
ient CSM
1 by mat
hing the transition amplitude 
al
ulated in thefull theory onto the one 
al
ulated in the e�e
tive theory. Then, the multipli
ation of thee�e
tive 
oupling CSM

1 by the 
orresponding hadroni
 matrix element 〈Bd,s|Q1|Bd,s〉 at thesame s
ale gives the transition amplitude. At this point it should be mentioned that thefa
t whether the CKM matrix elements and/or the mass of the W boson belong to theWilson 
oe�
ient or not is a question of 
onvention. In our treatment all fa
tors whi
hmultiply the e�e
tive operator Q1 are 
ontained in the 
orresponding Wilson 
oe�
ient
CSM

1 .In the 
al
ulation of the transition amplitude one has to take the sum over all box diagramswhi
h involve all possible 
ombinations of two up-type quarks running in the loop. Thus,the transition amplitude 
an be written as
A =

∑

i,j=u,c,t

VjbV
∗
jqVkbV

∗
kq Aij(m

2
i , m

2
j) (4.18)where Aij is the 
ontribution if a 
ertain box diagramwhi
h involves up quarks with �avours
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i and j. Aij is a symmetri
 fun
tion in the quark masses mi and mj . The 
al
ulation ofthe box diagrams in the full theory involves an integration over the loop momentum.The loop integral is �nite. It 
an be written as a sum of master integrals using partialfra
tion de
omposition. The master integrals 
ontain divergen
es whi
h are regularised bythe method of dimensional regularisation and the divergent terms 
an
el in the sum. Ingeneral we en
ounter no problems with divergen
es by performing the integration. Further,using the relation

∑

i=u,c,t

VjbV
∗
jq = 0 (4.19)whi
h follows from the unitarity of the CKM matrix i.e. with j = u the expression forthe transition amplitude 
an be simpli�ed. In parti
ular, eq. (4.19) implies vanishing tran-sition amplitude A in 
ase of equal quark masses. The vanishing of FCNC in the limitof equal quark masses as a 
onsequen
e of the unitarity of the CKM matrix is known asGlashow-Iliopoulos-Maiani (GIM) suppression [29℄. In the meson-antimeson mixing pro-
esses we en
ounter on
e more the GIM me
hanism whi
h has su

essfully explained thesmall bran
hing ratio of the de
ay 
hannel K0 → π+π− predi
ting the existen
e of the
harm quark.Further, we negle
t the 
ontributions of the u-quark loops treating the u quark as a masslessparti
le and �nd for the Wilson 
oe�
ient at LO

CSM
1 =

g4
2

(16π)2M2
W

[

λ2
tq4S0(xt) + λcqλtq4S0(xc, xt)

]

, (4.20)with the well known Inami-Lim-fun
tions [30℄
S0(xt) =

x3
t − 11x2

t + 4xt

4(xt − 1)2
+

3x3
t ln xt

2(xt − 1)3
, (4.21)

S0(xc, xt) = xc

(

− 3x2
t ln xt

4(xt − 1)2
+

3xt

4(xt − 1)
+ ln

xt

xc

)

, (4.22)and the de�nitions xi = m2
i /M

2
W , λiq = VibV

∗
iq for i ∈ {u, c, t}. In order to des
ribe themixing of neutral Bd mesons one has to make the 
hoi
e q = d while in 
ase of Bs−Bsmixing q is identi�ed with the s quark. Be
ause of the small ratio xc = O(10−4) the
ontribution of the se
ond term in eq. (4.20) proportional to S0(xc, xt) = O(xc) is verytiny in 
omparison to the 
ontribution of two top quarks in the loop and 
an be negle
ted.Finally, with the Fermi 
onstant GF = g2

2/4
√

2M2
W , the Wilson 
oe�
ient CSM

1 
an bewritten as
CSM

1 =
G2

FM
2
W

4π2
λ2

qtS0(xt). (4.23)
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oe�
ients for meson mixing pro
esses in the MSSMIn order to 
he
k the result of the 
al
ulation we have obtained the Wilson 
oe�
ient CSM
1performing the 
al
ulation in the unitary gauge as well as in the Rξ gauge. We found afull agreement between the results of the 
al
ulations in the di�erent gauges and a fullagreement with the results in the literature. Note that the Wilson 
oe�
ient given in eq.(4.23) is four times bigger than the one given in eqs. (3.17) and (3.19) in ref. [9℄. The reasonfor this di�eren
e is the de�nition of the operators in ref. [9℄. In parti
ular, the proje
tors

PR,L are de�ned without the fa
tor 1/2. The fa
tor 4 in
luded in the de�nition of thehadroni
 matrix elements is 
ompensated by the fa
tor 1/4 in the Wilson 
oe�
ients su
hthat there is no di�eren
e between the transition amplitudes 
al
ulated in this work andthe ones given in ref. [9℄ and other previous works.Now we turn ba
k to the problem des
ribed in Ch. 2, namely, the di�erent s
ales of theWilson 
oe�
ient and the hadroni
 matrix elements. We have to take 
are about the fa
tthat the Wilson 
oe�
ient CSM
1 is extra
ted at the s
ale µ = MW while the hadroni
matrix elements are obtained from latti
e 
al
ulations at the s
ale µ = mb. In order to
al
ulate the transition amplitude it is ne
essary to perform an RG evolution of either theWilson 
oe�
ient CSM

1 down to the s
ale µ = mb or of the 
orresponding hadroni
 matrixelement up to the s
ale of the W boson mass µ = MW . In 
ontrast to the evolution of theWilson 
oe�
ients in the 
ase of the supersymmetri
 
ontributions to the meson mixingpro
esses whi
h is performed in the RI-MOM renormalisation s
heme, we follow for the SM
ontribution to the B−B mixing pro
ess the established treatment in the literature in the
MS renormalisation s
heme. Sin
e the operatorQ1 does not mix with other operators underrenormalisation, the evolution of the Wilson 
oe�
ient is des
ribed by a single fa
tor. Oneusually writes

CSM
1 (mb) = η̂BC

SM
1 (MW ) (4.24)where η̂B is obtained from NLO 
al
ulation and 
an be written as a produ
t of two fa
tors,

η̂B = ηBbB(mb) [31℄. In this way the heavy s
ale and the low s
ale are separated. The s
aledependen
e of the fa
tor bB(mb) 
an
els in the produ
t with the hadroni
 matrix elementwhi
h depends on mb as well. Numeri
ally, it is found η̂B = 0.837 in the MS-NDR s
heme.More details on this topi
 
an be found in [31℄ and [32℄.Finally, writing the |∆B| = 2 Hamiltonian as
H|∆B=2| =

GF

4π2
M2

W (VtbV
∗
tq)

2 η̂ Q1(mb) + h.c. (4.25)
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ontribution 43we obtain for the transition amplitudeMSM
12 taking into a

ount the parametrisation of thehadroni
 matrix elements given in eq. (2.86) the expression

MSM
12 = 〈B|H|∆B=2||B〉 =

G2
F

6π2
M2

Wλ
2
tqS0(xt)η̂M

2
Bq
f 2

Bq
B1(mb). (4.26)

4.1.3. Indire
t CP violation in K−K mixingThe 
ase of the mixing of neutral K mesons 
an be theoreti
ally treated in analogous wayas the mixing in the B meson system. However, in the K−K mixing some spe
i�
 featuresappear whi
h will be the main subje
t of the following dis
ussion.The Kaon mixing is des
ribed by the operator Q1 with in
oming and outgoing d and squarks. The K−K transition is a |∆S| = 2 pro
ess. Be
ause of the di�erent externalstates 
ompared to the ones in the 
ase of Bd−Bd and Bs−Bs mixing, we en
ounterdi�erent 
ombinations of CKM matrix elements by the 
omputation of all the box diagramsinvolving the up-type quarks of the three generations in the loop. In 
ontrast to the B−Bmixing pro
ess where the top 
ontribution is dominant, now the fun
tion S(xt) is highlysuppressed by fa
tor (VtsV
∗
td)

2 ≈ O(λ10). On the 
ontrary, even if the 
orresponding loopfun
tions of the 
harm-
harm and 
harm-top 
ontributions are small, they are multipliedonly by a CKM fa
tor of O(λ). Therefore, the top quark loop be
omes 
omparable in sizewith the ones with two 
harm quarks and with one 
harm quark and one top quark. Thus,the latter 
annot be negle
ted as this has been the 
ase in the neutral B meson system.The e�e
tive |∆S| = 2 Hamiltonian 
an be written as [31℄
H|∆S|=2

eff =
GF

4π2
M2

W

[

(VcsV
∗
cd)

2 ηcc xc + (VtsV
∗
td)

2 ηtt S0(xt)+

2VcsV
∗
cdVtsV

∗
td ηct S0(xc, xt)] bK(mK)Q1 + h.c. (4.27)with the 
oe�
ients ηtt, ηct and ηcc whi
h des
ribe short-distan
e QCD e�e
ts. At NLOthe QCD 
oe�
ients are given by [31, 33�35℄

ηcc = (1.44 ± 0.35)

(

1.3 GeV

mc

)1.1

,

ηct = 0.47 ± 0.05, (4.28)
ηtt = 0.57 ± 0.01.
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esses in the MSSMFor the K−K transition amplitude one obtains
MSM

12 =
GF

4π2
M2

W f 2
K B̂K mK

[

(VcsV
∗
cd)

2 ηcc xc + (VtsV
∗
td)

2 ηtt S0(xt) +

2VcsV
∗
cdVtsV

∗
td ηct S0(xc, xt)] (4.29)with the de�nition of the hadroni
 matrix elements given in eq. (2.86) and the renormalisa-tion group invariant fa
tor B̂K = BK b(mK). In 
ontrast to the situation in B−B mixing,the K meson de
ay 
onstant fK is well known from experiments. The fa
tor B̂K is de-termined by latti
e 
al
ulations (see Ch. 2.5.2). Cal
ulating ∆MSM

K = 2|MSM
12 | with theusual e�e
tive �eld theory methods, the obtained result di�ers from the experimentallymeasured value of the same quantity by roughly 30%. In fa
t, eq. (4.29) 
ontains only theso 
alled short distan
e 
ontributions to the K−K transition amplitude. However, the

K−K mixing 
an o

ur through two |∆S| = 1 transitions as well. This so 
alled longdistan
e 
ontribution 
annot be 
al
ulated from �rst prin
iples.In our analysis we 
onstrain MSSM parameters through their e�e
ts on the indire
t CP vio-lation in the neutral Kaon system. In parti
ular, the supersymmetri
 parti
les 
ontributingwith new box diagrams to the K−K transition amplitude a�e
t the quantity ǫK whi
hmeasures the CP violation in mixing in the K−K mixing pro
ess. CP violation in mixingof neutral mesons arises from the fa
t that the CP eigenstates are di�erent from the masseigenstates. Following the general analysis of the meson-antimeson mixing in Ch. (3), werepla
e the mass eigenstates in eq. (3.10) |M1〉 and |M2〉 with |KS〉 and |KL〉, respe
tively.The indi
es �L = long� and �S = short� have been 
hosen in the past a

ording to thede
ay of neutral Kaons to π+π− or π0π0. A K meson state |K〉 is a quantum superpositionof the lighter mass eigenstate |KS〉 and the heavier mass eigenstate |KL〉. De�ning
ǫ =

1 + q
p

1 − q
p

(4.30)eq. (3.10) 
an be written as
|KS〉 =

1 + ǫ

2
√

1 + |ǫ|2
|K0〉 − 1 − ǫ

2
√

1 + |ǫ|2
|K0〉,

|KL〉 =
1 + ǫ

2
√

1 + |ǫ|2
|K0〉 +

1 − ǫ

2
√

1 + |ǫ|2
|K0〉. (4.31)With the CP transformation CP |K0〉 = −|K0〉, CP |K0〉 = −|K0〉 we introdu
e the CP-even and CP-odd eigenstates |K+〉 and |K−〉 as

|K+〉 =
1√
2

(

|K0〉 − |K0〉
)

,
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|K−〉 =

1√
2

(

|K0〉 + |K0〉
)

. (4.32)Expressing the mass eigenstates through the CP eigenstates we obtain
|KS〉 =

|K+〉 + ǫ|K−〉
√

1 + |ǫ|2
, |KL〉 =

|K−〉 + ǫ|K+〉
√

1 + |ǫ|2
. (4.33)Equation (4.33) shows in expli
it way that the mass eigenstates are an admixture of theCP eigenstates. The limit of CP 
onservation is given by ǫ = 0 and in this 
ase |KS〉be
omes the CP-odd eigenstate and |KL〉 the CP-even one. Considering the de
ay of aneutral Kaon to a CP even �nal state represented by two pions or to a CP odd �nal state
ombination of three pions one realises that under the assumption of CP 
onservation thede
ays KL → ππ and KS → πππ are forbidden. Sin
e the ratio |q/p| ≈ 1 in the B−B and

K−K systems the phase dependent quantity ǫ is small. Therefore, |KL〉 is �almost� a CPodd eigenstate and |KS〉 �almost� a CP even one. This is the reason for the big di�eren
ein the lifetimes of the mass eigenstates. However, sin
e ǫ 6= 0 the mass eigentates |KL〉 and
|KS〉 
an de
ay CP violating to two or three pion states, respe
tively. The CP violation inmixing is des
ribed by the parameter

ǫK =
A (KL → (ππ)I=0)

A (KS → (ππ)I=0)
(4.34)where I denotes the strong isospin. This quantity 
an be expressed entirely through themass di�eren
e ∆MK , ∆ΓK and φ whi
h are physi
al observables. The result reads up to
orre
tions of O(φ2) [23, 24℄

ǫK =
φ

2

2 ∆MK
√

(∆MK)2 + (∆ΓK)2
eiφǫ (4.35)with the phase φǫ of ǫK given by

φǫ = arctan
2 ∆MK

∆ΓK

≈ 43◦. (4.36)Expressing eq. (4.34) in terms of M12 one �nds
φ = 2

(

ImM12

∆M exp
K

+ ξK

) (4.37)where ξK is introdu
ed as
ξK =

1

2

Im [A [K0 → (ππ)I=0]]

Re [A [K0 → (ππ)I=0]]
(4.38)
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oe�
ients for meson mixing pro
esses in the MSSMde�ned in the CKM phase 
onvention with Vus, Vud real. Numeri
ally, it has been found
ξK ≈ −1.7 · 10−4 [36℄. Equation (4.36) implies

sin φǫ =
2 ∆MK

√

(∆MK)2 + (∆ΓK)2
, (4.39)and �nally, inserting this result in eq. (4.35), we obtain

ǫK =

(

ImM12

∆Mexp
K

+ ξK

)

sin φǫ e
iφǫ. (4.40)Be
ause of the experimental observation 2 ∆MK ≈ ∆ΓK the phase of ǫK is very 
lose to

45◦. In fa
t, the measured value is φǫ = 43.52◦ ± 0.05◦ [37℄. The impa
t of the ratio ξK onthe result of ǫK is of O(5%) [36℄. With the result for the K−K transition amplitude givenin eq. (4.29) one �nds [36℄
∣

∣ǫSM
K

∣

∣ = Cǫ

[

|Vcb|2 (1 − ρ) ηtt S0(xt) + ηct S0(xc, xt) − ηcc xc

] (4.41)with the fa
tor Cǫ given by
Cǫ =

G2
F f

2
K M2

W mK κǫ B̂K λ2 η2 |Vcb|2
6
√

2π2 ∆MK

(4.42)where ρ, η are the Wolfenstein parameters introdu
ed in eq. (4.4). The 
onstant κǫ =

0.92±0.02 parametrises the suppression e�e
t 
aused by ξK . More details about the expli
itderivation of these results as well as on the meson mixing of neutral K mesons in general
an be found in [9, 23, 24, 36℄ and referen
es therein.4.1.4. Main aspe
ts on the mixing of neutral D mesonsThe D−D mixing is a ∆C = 2 FCNC pro
ess. It is des
ribed by the same box diagramsas in the 
ase of meson mixing in the B or K se
tor, but, in 
ontrast to the situation withthe mixing of neutral B and K mesons, the in
oming and outgoing quarks are the up-typequarks u and c and the quarks involved in the loop are the ones of the down-type quarkse
tor. Be
ause of the absen
e of a heavy quark in the loop as this is the 
ase in B−Band K−K mixing due to the top quark 
ontribution, the GIM 
an
ellation works mu
hmore e�
iently. The D−D transition amplitude in the SM is very small, and therefore,highly sensitive to NP e�e
ts. NP 
ontributions 
an be of the same order of magnitudeor even larger than the SM one whi
h makes the mixing of neutral D mesons a very in-teresting pro
ess regarding the indire
t sear
h of physi
s beyond the SM. However, the
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ontribution 47large long distan
e e�e
ts whi
h have been mentioned in the analysis of the K−K mixingappear in the D se
tor as well. Sin
e these e�e
ts given by K, π intermediate states havenon-perturbative nature and 
annot be 
al
ulated by analyti
al methods the distinguishingof the SM 
ontributions from the pure NP ones is hardly possible. The poor 
ontrol overthe long distan
e 
ontributions impairs an e�e
tive use of D−D mixing as a test of the SM.The third family 
ontribution whi
h would be enhan
ed by the large mass mb is suppressedby a very small CKM fa
tor resulting in a relative box 
ontribution of O(10−3) and in a
orrespondingly suppressed amount of CP violation in the SM. Therefore,
∆MSM

D ∼ (m2
s −m2

d)
2

m2
c

(4.43)with a GIM suppression ∼ (m2
s −m2

d)/M
2
W and an additional suppression ∼ (m2

s −m2
d)/m

2
cwhi
h 
omes from the fa
t that the external momentum of O(mc) is 
ommuni
ated to thelight quarks in the loops. Usually, in the des
ription of D−D mixing in addition to thephase φ de�ned in eq. (3.19) the physi
al quantities

x12 ≡
2M12

Γ
, y12 =

Γ12

Γ
, (4.44)are introdu
ed. The relation between these parameters and the experimentally measuredquantities

x ≡ m1 −m2

Γ
=

∆MD

Γ
, y ≡ Γ2 − Γ1

2Γ
=

∆Γ

2Γ
(4.45)is given by

x2
12 =

x4 cos2 φ+ y4 sin2 φ

x2 cos2 φ− y2 sin2 φ
,

sin2 φ12 =
(x2 + y2)2 cos2 φ sin2 φ

x4 cos2 φ+ y4 sin2 φ
. (4.46)From the values of the D−D mixing parameters x, y, and φ obtained by the HeavyFlavour Averaging Group (HFAG) [38℄ by �tting the present experimental data, we obtainthe numeri
al value of |M12|. Expanding x12 given in eq. (4.46) in the presumably smallparameter φ, we �nd

x12 = x+
(x2 + y2)y2

2x3
φ2 + O(φ4). (4.47)
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oe�
ients for meson mixing pro
esses in the MSSMParameter 1σ 95% CL
x

(

0.98+0.24
−0.26

)

· 10−2 [0.46, 1.44] · 10−2

y (0.83 ± 0.16) · 10−2 [0.51, 1.14] · 10−2

φ
(

−8.5◦+7.4◦

−7.0◦

)

[−22.1◦, 6.3◦]

|M12|
(

11.95+2.93
−3.17

)

ps−1 [5.61, 17.56] ps−1

∆MD

(

2.39+0.59
−0.63

)

· 10−2 ps−1 [1.12, 3.51] · 10−2 ps−1

∆ΓD (4.04 ± 0.07) · 10−2 ps−1 [2.49, 5.56] · 10−2 ps−1Table 4.2: The �nal results for the D−D mixing parameters |M12|, ∆MD and ∆ΓD ob-tained from the parameters x, y and φ allowing for CP violation (HFAG) [38℄. For thedetermination of ∆MD and ∆ΓD the D0 mean life time τD0 = (410.1 ± 1.5) · 10−3 ps [85℄has been used.We 
al
ulate |M12| using the D0 life time τD0 = Γ−1
D0 = 410.1 · 10−3 ps [85℄ and negle
tingthe term proportional to φ2 whose 
ontribution is of O(1%) and therefore mu
h smallerthen the experimental a

ura
y. The result as well as the numeri
al values of the inputparameters are given in table (4.2). For more phenomenologi
al details about the mixingof neutral D mesons we refer to [39, 40℄ and referen
es therein.In our numeri
al analysis of the �avour violating supersymmetri
 parameters we will 
al
u-late the 
ontributions of supersymmetri
 parti
les to box diagrams in 
ase of D−D mixing.Sin
e the spe
trum of the MSSM 
ontains heavy parti
les the 
al
ulation 
an be performedby negle
ting the momenta of the external quarks. Unfortunately, this is not true in the SMwhere the momenta of the in
oming and outgoing quarks 
an be 
omparable with massesof the light quarks in the loop and, therefore, have to be taken into a

ount. Comparingthe pure supersymmetri
 result for |M12| with the experimentally obtained value given intable (4.2) we 
an estimate to whi
h extent the measured value of |M12| 
an be explainedthrough the 
ontribution from the MSSM.4.2. The SUSY 
ontributions to the meson mixing pro
essesIf nature has 
hosen Supersymmetry as the right extension of the SM, box diagrams withsupersymmetri
 parti
les will be involved in meson mixing as well (see �g. 4.3). In parti
u-lar, the Wilson 
oe�
ients 
orresponding to all the operators given in eq. (2.70) would bedi�erent from zero in general. The Wilson 
oe�
ient CSUSY

i in eq. (4.1) 
an be written as
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Figure 4.3: Feynman diagrams des
ribing meson-antimeson os
illations in the MSSM. The
rossed diagrams (se
ond row) are needed only if the fermion in the loop is a Majoranaparti
le.a sum of the Wilson 
oe�
ients stemming from box diagrams where the FCNC transitionis mediated by supersymmetri
 parti
les:
CSUSY

i = CH±

i + C χ̃±

i + C g̃
i + C g̃χ̃0

i + C χ̃0

i . (4.48)The additional 
ontributions arise from boxes with 
harged Higgs and up-type quarks(CH±

i ), 
harginos and up-type squarks (C χ̃±

i ), gluinos and down-type squarks (C g̃
i ), mixedgluino, neutralino and down-type squarks (C g̃χ0

i ), and neutralinos and down-type squarks(C χ̃0

i ). The 
omplete list of the Feynman rules for the MSSM verti
es and their derivationfrom the Lagrangian 
an be found in [41�43℄. Note that for the derivation of the MSSMFeynman rules di�erent 
onventions are adopted in the literature. For the 
al
ulation ofthe Wilson 
oe�
ients in the MSSM CSUSY
i in this work the Feynman rules given in theappendix have been used. In following we present the 
onvention whi
h we have used inour analysis of the MSSM with R-parity and softly broken SUSY.The squark super�eld matter multiplets 
ontain s
alar and fermioni
 superpartners givenby

QI =

{(

ũI

d̃I

)

L

,

(

uI

dI

)

L

}

, U I
c =

{

(ũI
R)∗, (uI

L)c
}

, DI
c =

{

(d̃I
R)∗, (dI

L)c
}

. (4.49)In the SM �avour violation appears through the non-diagonal Yukawa matri
es. The U(3)×
U(3)×U(3) global symmetry of the quark gauge se
tor allows the diagonalisation of the theup and down Yukawa matri
es by performing a rotation of the quark �elds in the �avour
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oe�
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esses in the MSSMspa
e. For the diagonalisation of the two Yukawa matri
es by a biunitary transformationsfour unitary matri
es are ne
essary but a

ording to the [U(3)]3 symmetry of the quarkgauge se
tor only three matri
es are available. This fa
t arises in the appearan
e of theCKM matrix whi
h 
ontains all the �avour violation in the SM in the basis in whi
h boththe up and down Yukawa matri
es are diagonal. Applying the same transformations onthe super�elds in the MSSM one obtains the so 
alled Super-CKM (SCKM) basis. In theSCKM basis the squark mass matri
es still have o�-diagonal entries. The unitary matri
esa
ting on the super�eld to diagonalise the quark mass matri
es are
QI

i → V IJ
Qi
QJ

i , U
I
c → V ∗IJ

U UJ
c , D

I
c → V ∗IJ

D DJ
c . (4.50)After performing this transformations one obtains the following relation between the diag-onal Yukawa and quark mass matri
es

m̂u =
v2√
2
Ŷu, m̂d =

v1√
2
Ŷd. (4.51)The mass mixing matri
es for the up-type and down-type squarks are given by

M2
U =

(

(M2
U)LL +m2

u − cos 2β
6

(M2
Z − 4M2

W )1 (M2
U)LR − µ cotβmu

(M2
U)†LR − µ∗ cot βmu (M2

U)RR +m2
u + 2 cos 2β

3
M2

Z sin2 θW

)

,(4.52)
M2

D =

(

(M2
D)LL +m2

d − cos 2β
6

(M2
Z + 2M2

W )1 (M2
D)LR − µ tanβmd

(M2
D)†LR − µ∗ tan βmd (M2

D)RR +m2
d − cos 2β

3
M2

Z sin2 θW

)where θW is the Weinberg angle and the �avour 
hanging entries are 
ontained in the 3×3matri
es in the �avour spa
e
(M2

U)LL = VQ1
m2

QV
†
Q1
, (M2

U )RR = VUm
2
UV

†
U , (M2

U)LR = VQ1
m2

QV
†
U

(M2
D)LL = VQ2

m2
QV

†
Q2
, (M2

D)RR = VDm
2
UV

†
D, (M2

D)LR = VQ1
m2

QV
†
D. (4.53)The hermiti
ity of the squark mass matri
es implies M2

QLL
= M2†

QLL
, M2

QLR
= M2†

QRL
and

M2
QRR

= M2†
QRR

. Then, in order to have the squark mass matri
es in diagonal form a se
ondrede�nition of the up-type and down-type squark �elds is ne
essary. We transform thesquark �elds from the �avour-
hirality basis to the mass eigenstates basis by the rotations
ũi

L = (Z†
U)ikUk, d̃i

L = (Z†
D)ikDk,

ũi
R = (Z†

U)(i+3)kUk, d̃i
R = (Z†

D)(i+3)kDk,
(4.54)
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esses 51where the index i = 1, 2, 3 and k = 1, ..., 6. This relations de�ne the unitary matri
es
ZQ ∈ C6×6 whi
h diagonalise the mass mixing matri
es M2

Q. Using the transformationgiven in eq. (4.54) we obtain
(M2

D)D = ZDM
2
DZ

†
D, (M2

U)D = ZUM
2
UZ

†
U , (4.55)where (M2

U)D and (M2
D)D are the diagonal up-type and down-type squark mass matri
es.In the MSSM there is a nontrivial mixing between the 
harged gauginos, the winos, andthe 
harged higgsinos as well as between the neutral gauginos, the bino and the photino,and the neutral higgsinos. For this reason the 
harginos and neutralinos are the masseigentates obtained by the diagonalisation of the so 
alled 
hargino and neutralino massmixing matri
es. The 
harginos are two Dira
 fermions χ̃±

1,2 whose masses are the twoeigenvalues of the 
hargino mass matrix:
(

Mχ̃±

1
0

0 Mχ̃±

2

)

= Û †

(

M2

√
2MWsβ√

2MW cβ µ

)

V̂ (4.56)Sin
e the 
hargino mixing matrix is not ne
essarily hermitian, it is diagonalised by a biuni-tary transformation with the unitary matri
es Û , V̂ ∈ C2×2. The higgsino mass parameter
µ and the gaugino mass parameterM2 whi
h appear in the soft SUSY breaking part of thesupersymmetri
 Lagrangian are free parameters of the model. In the intera
tion eigenstatebasis the 
harged higgsino 
omponents of the 
hargino �elds 
ouple to squarks and quarkswith the Yukawa 
ouplings whi
h are proportional to mq/MW . Be
ause of the smallness ofthe quark masses in 
omparison to the mass of the W boson whi
h is true for all quarksex
ept for the mass of the top quark the dominant 
ontribution arises through the squark-quark-wino weak intera
tion and through the squark-top-higgsino Yukawa intera
tion. Allother Yukawa 
ouplings are negligible due to their proportionality to the mass of the 
or-responding light quark.Neutralinos are four Majorana fermions χ̃0

1,...,4 with a symmetri
 mass matrix whi
h isdiagonalised as








Mχ̃0
1

0. . .
0 Mχ̃0

4









= ẐN

†













M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0













ẐN
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oe�
ients for meson mixing pro
esses in the MSSMwhere the angle β is de�ned through the ratio of the va
uum expe
tation values i.e.
β = arctan(vu/vd). In eq. (4.57) the abbreviations cβ = cosβ, sβ = sin β, cW = cos θW ,and sW = sin θW have been used as well. The matrix ẐN is a unitary 
omplex matrix,
ẐN ∈ C4×4. The quantity tanβ = vu/vd is a free parameter in the MSSM.In the MSSM an additional 
ontribution to the �avour 
hanging pro
esses 
an o

urthrough the 
harged Higgs bosons in the box diagrams. The reason for this fa
t is that theHiggs se
tor of the MSSM is extended by an additional Higgs doublet. In the SM there aretwo possibilities to write Lorentz-invariant fermion mass terms in the Lagrangian - these arethe so 
alled Dira
 and Majorana mass terms. Unfortunately, these terms are not invariantunder transformations a

ording to the ele
troweak gauge group SU(2)L×U(1)Y . In
ludingsu
h terms in the SM Lagrangian leads to an expli
it breaking of the lo
al SU(2)L×U(1)Ysymmetry of the SM Lagrangian density. Moreover, mass terms for the gauge �elds arenot allowed by the gauge symmetry as well. However, in nature fermions and the gaugebosons of the weak intera
tion are massive parti
les and the SM Lagrangian has to beproperly modi�ed in order to des
ribe these obvious experimental founds. The solution tothis problem is given by the spontaneous symmetry breaking of the SU(2)L×U(1)Y gaugegroup to the ele
tromagneti
 gauge group U(1)em by introdu
ing of a s
alar �eld, the so
alled Higgs �eld. The Higgs �eld is a SU(2)L dublet and has a spe
ially 
hosen potentialsu
h that its va
uum expe
tation value is di�erent from zero. In this way one �nds in theLagrangian of the SM mass terms for the gauge bosons proportional to the positive va
uumexpe
tation value of the Higgs �eld. The masses of the fermions arise through Yukawa-typeintera
tion between the left handed lepton and quark doublets, their right-handed singletpartners and the Higgs �eld. In a spe
ial 
hoi
e of the gauge, the so 
alled unitary gaugewhi
h is realised by performing a lo
al SU(2) transformation on the Higgs doublet, threeof the four s
alar �elds in the Higgs doublet 
an be removed. These are the nonphysi
alPseudo-Goldstone bosons whi
h appear by the spontaneous breaking of the ele
troweakgauge symmetry to the ele
tromagneti
 gauge symmetry. The Pseudo-Goldstone bosonsbe
ome the third, longitudinal degree of freedom of the massive ve
tor bosons after thespontaneous symmetry breaking. One �eld remains, this is the SM Higgs �eld. However, inthe MSSM the situation is more 
ompli
ated. The MSSM is an extension of the so 
alledtwo Higgs doublet models. That means, at least two Higgs doublets have to be introdu
edin order to have gauge invariant mass terms of the fermions and gauge bosons in the su-persymmetri
 Lagrangian. The introdu
tion of two Higgs doublets is ne
essary be
ause of
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esses 53a spe
ial property - the holomorphy - of the superpotential. The two Higgs doublets ensurethe 
an
ellation of anomalies related to the Higgsinos in the model as well. We will notgo further into details on this topi
 and refer for a more 
omprehensive explanation ofthe Higgs se
tor of the MSSM to [41,92�94℄ and referen
es therein. In the MSSM the twoHiggs doublets 
omprise eight additional degrees of freedom. After spontaneous symmetrybreaking �ve of them appear as physi
al Higgs bosons. Three of the physi
al Higgses areneutral parti
les while the remaining two 
arry an ele
tri
 
harge.The 
harged Higgs bosons H+
1 and H+

2 whi
h a�e
t the pro
esses on whi
h we fo
us inthis work are related to the initial Higgs �elds by the transformation
(

H1∗
2

H2
1

)

= ZH

(

H+
1

H+
2

)

. (4.57)The matrix ZH is given by
ZH =

1
√

v2
u + v2

d

(

vu −vd

vd vu

) (4.58)where vu and vd are the va
uum expe
tation values. With the ratio tanβ = vu/vd thematrix ZH in eq. (4.58) 
an be written in a more 
onvenient form
ZH =

(

sin β − cosβ

cosβ sin β

)

. (4.59)Finally, the masses of the two physi
al 
harged Higgs s
alars H± are given by
M2

H±

1

= M2
W +m2

Hu
+m2

Hd
+ 2|µ|2. (4.60)where m2

Hu
and m2

Hd
are soft terms for the 
orresponding Higgs doublets. The gauginomasses M1,2 are assumed real as well as the Higgs se
tor parameter µ. In fa
t, if one allowsnon-trivial phases inM1,2, they are 
ommuni
ated to the gaugino diagonalisation matri
es,whi
h in turn enter the Feynman rules for 
harginos and neutralinos. One would then havenew sour
es of CP violation. The same argument applies to the Higgs se
tor parameter µ.The strong, ele
troweak and 
harged Higgs verti
es involved in the box diagrams given in�g. 4.3 
an be found in the appendix.
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55
5. The in
lusive de
ay B → XsγThe in
lusive radiative de
ay B → Xsγ is a rare loop mediated pro
ess whi
h involves thethird quark generation. Therefore, these transitions are very sensitive to NP 
ontributionsand play a 
ru
ial role in the indire
t sear
hes for NP. The theoreti
al SM predi
tion isknown up to NNLO pre
ision in QCD [44℄. The bran
hing ratio of the B → Xsγ de
ay hasbeen experimentally measured by CLEO, BaBar and Belle 
ollaborations [45�51℄. Thus,the 
omparison of the experimental data with the theoreti
al predi
tion by in
luding thesupersymmetri
 
ontributions to the SM result is a powerful strategy for 
onstraining theparameter spa
e of various extensions of the SM [53�55℄ and, in parti
ular, the supersym-metri
 parameter spa
e.5.1. B → Xsγ in the SMThe B → Xsγ transition is a |∆F | = 1 pro
ess whi
h is governed by the so 
alled magneti
penguins shown in the Feynman diagram in �g. 5. In the SM where the b → s quarktransition is mediated by a W boson a 
ru
ial role plays the magneti
 γ-penguin. In theloop the top quark 
ontribution is the dominant one. The e�e
tive Hamiltonian in the SMat the s
ale µ = mb is 
an be written as

HSM
eff = −4GF√

2
V ∗

tsVtb

8
∑

i=1

Ci(µ)Qi(µ). (5.1)To an ex
ellent a

ura
y the relevant operators are given by
Q2 = sαγµPLc

α cβγµPLb
β ,

Q7 =
emb

16π2
sασµνF

µνPRb
α, (5.2)

Q8 =
g3mb

16π2
sασµνG

µν
a T a

αβPRb
β.The 
ontribution of the other operators is suppressed and 
an be negle
ted. Q2 is the dom-inant 
urrent-
urrent operator while the operators Q7 and Q8 
orrespond to the magneti
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Figure 5.1: |∆F | = 1 penguin diagram relevant for the B → Xsγ pro
ess. In the SM(in unitary gauge) up-type quarks and W bosons are involved in the loop. In the MSSMadditional 
ontributions stemming from gluinos or neutralinos and down-type squarks,
harginos and up-type squarks and 
harged Higgs bosons and up-type quarks are present.
γ-penguin and to the magneti
 gluon-penguin shown in �g. 5, respe
tively. The 
al
ulationof the bran
hing fra
tion Br(B → Xsγ) in the SM is done by �rst evaluating the 
orre-sponding Wilson 
oe�
ients at the higher s
ale µ ≈ MW , mt by mat
hing of the e�e
tivetheory result onto the one obtained in the full theory 
al
ulation. Furthermore, 
onsid-ering the operator mixing under renormalisation, the RG equations are derived in orderto perform an evolution of the Wilson 
oe�
ients down to the low energy s
ale µ ≈ mb.In the last step the on-shell B → Xsγ amplitudes are evaluated [44℄. The obtained SMvalue for the bran
hing ratio of the in
lusive B → Xsγ pro
ess is given by Br(B → Xsγ)
= (3.15± 0.23) · 10−4. The indi
ated error has been obtained by adding in quadrature thenon-perturbative (5%), parametri
 (3%), higher-order perturbative (3%), and the interpo-lation ambiguity (3%) un
ertainties. For more details about the 
al
ulation of the B → Xsγbran
hing ratio at NLO we refer to [52℄. Details about the NNLO SM 
ontribution 
an befound in [44℄.5.2. B → Xsγ in the MSSMConsidering the possible intera
tions and the parti
le 
ontent of the MSSM we �nd a new
ontributions to the b → sγ pro
ess. In parti
ular, they stem from ex
hange of up-type



5.2 B → Xsγ in the MSSM 57quarks and a 
harged Higgs boson, of down-type squarks and a gluino or neutralino, and ofup-type squark and a 
hargino. The SUSY 
ontributions are des
ribed by |∆B| = |∆S| = 1e�e
tive magneti
 and 
hromomagneti
 operators as well as by new four quark opera-tors. Considering operators up to dimension six allows the mat
hing of the 
harged Higgs,
hargino and neutralino penguins onto the SM magneti
 and 
hromomagneti
 operators
Q7 and Q8 given in eq. (5.2), and onto their 
ounterparts

Q′
7 =

emb

16π2
sασµνF

µνPLb
α

Q′
8 =

g3mb

16π2
sασµνG

µν
a T a

αβPLb
β (5.3)whi
h are obtained from Q7 and Q8 by repla
ing PR → PL. In supersymmetri
 s
enarioswhi
h do not assume extremely large values for tan β the 
ontributions to the Wilson
oe�
ients 
orresponding to the operators given in eq. (5.3) from 
harged Higgs bosonsand 
harginos are small in 
omparison to C7 and C8 and vanish in the limit of masslessstrange quark. The neutralino 
ontributions to all Wilson 
oe�
ients involve the sameelements of the down-type squark mass matrix as the gluino 
ontribution. However, thegluinos 
ouple with the strong 
oupling 
onstant g3 while the neutralino verti
es involvethe weak 
oupling 
onstant g2. Thus, the gluino 
ontribution whi
h is proportional to g2

3dominates the neutralino 
ontribution whi
h is proportional to g2
2 by far. In fa
t, 
omparedto the other 
ontributions stemming from SUSY parti
les the neutralino 
ontribution turnsout to be inessential [56℄.The gluino 
ontribution is des
ribed by the e�e
tive Hamiltonian [56℄

Hg̃
eff =

∑

i

Ci,g̃(µ)Qi,g̃(µ) +
∑

i

∑

q=u,...,b

Cq
i,g̃(µ)Qq

i,g̃(µ) (5.4)The se
ond term in eq. (5.4) in
ludes four-quark s
alar, ve
tor and tensor operators Qq
i,g̃.At one loop level the s
alar and tensor operators mix into the magneti
 and 
hromomag-neti
 operators of dimension six [57, 58℄ and, therefore, have to be taken into a

ount byperforming the 
al
ulation. However, the mixing mentioned above turns out to be numer-i
ally small. Thus, the 
ontribution of the operators Qq

i,g̃ 
an be negle
ted [56℄. The dipoleoperators Qi,g̃ in whi
h the 
hirality �ip is indu
ed by the b-quark mass are given by
Q7b,g̃ = eg2

3(µ)mb(µ) sασµνF
µνPRb

α,

Q′
7b,g̃ = eg2

3(µ)mb(µ) sασµνF
µνPLb

α, (5.5)
Q8b,g̃ = g3

3(µ)mb(µ) sασµνG
µν
a T a

αβPRb
β ,

Q′
8b,g̃ = g3

3(µ)mb(µ) sασµνG
µν
a T a

αβPLb
β .



58 5. The in
lusive de
ay B → XsγThere are also gluino-indu
ed operators where the 
hiralitiy violation is signalled by the
harm quark mass. These operators are obtained from the ones given in eq. (5.5) by re-pla
ing mb(µ) by mc(µ). The operators where the 
hirality �ip is indu
ed by the gluinomass read
Q7g̃,g̃ = eg2

3(µ) sασµνF
µνPRb

α,

Q′
7g̃,g̃ = eg2

3(µ) sασµνF
µνPLb

α, (5.6)
Q8g̃,g̃ = g3

3(µ) sασµνG
µν
a T a

αβPRb
β,

Q′
8g̃,g̃ = g3

3(µ) sασµνG
µν
a T a

αβPLb
β .In our 
al
ulation we use the Wilson 
oe�
ients obtained in the model independent analysisof B → Xsγ based on a leading-log QCD 
al
ulation in the MSSM [56℄. The Wilson
oe�
ients for all the supersymmetri
 
ontributions mentioned above 
an be found in theappendix of [56℄.



59
6. Method and general features of theanalysisIn the past many analyses have been done in order to 
onstrain o�-diagonal elements ofthe squark mass matrix. In the �rst studies [60, 62, 80℄ the framework of the so 
alledmass insertion approximation (MIA) [63℄ has been used. The main advantage of the massinsertion method is given by the fa
t that the full diagonalisation of the sfermion massmatri
es is not ne
essary. It is enough to 
ompute only ratios of the o�-diagonal overdiagonal elements of the sfermion mass matri
es in order to test the SUSY model under
onsideration in the FCNC se
tor. Usually, the o�-diagonal elements of the mass mixingmatrix are written as an expansion in o�-diagonal mass insertions

δq XY
ij =

(

δq Y X
)∗

ji
=

∆q̃ XY
ij

M̃2
, M̃2 ≡ 1

6

∑

k

[

M2
q̃

]

kk
. (6.1)where ∆q̃ XY

ij are o�-diagonal elements of the mass mixing matri
es and the indi
es
q ∈ {u, d} and X, Y ∈ {L, R} denote the up-type and down-type mass mixing ma-trix and the 
ertain 3× 3 blo
ks de�ned in eq. (4.53), respe
tively. Adopting the MIA theme
hanism of �avour violation mediated by soft SUSY breaking terms is linearised. Withthis te
hnique the results 
an be written in a more transparent and manageable form.However, the MIA is valid only under the assumption that the o�-diagonal entries in thesquark mass matri
es are small 
ompared to the diagonal ones. In this work we use resultsin MIA only for the purpose of 
lear explanation and better understanding of general rela-tions. The numeri
al analysis is performed by an exa
t diagonalisation of the squark massmatrix.In the next se
tions we �rst investigate analyti
ally the 
orrelation between the Bs−Bsand Bd−Bd mixing pro
esses in the general MSSM. Our aim is to 
reate general relationsbetween the SUSY 
ontributions to the meson mixing pro
esses and to explore their impa
ton the Bs−Bs and Bd−Bd mixing phases. Then we 
on
entrate on the main features of



60 6. Method and general features of the analysisour numeri
al analysis whi
h has been performed to 
onstrain o�-diagonal elements of theup-type mass-mixing matrix, in parti
ular the mass insertions δu LL
23 and δu LL

13 .6.1. General 
orrelations between Bs−Bs and Bd−Bd mixingIn the SM we 
an write the B−B mixing transition amplitude negle
ting the small 
harm-quark 
ontribution as
M q SM

12 = CqS0(xt)(VtbV
∗
tq)

2 (6.2)where we 
ombine all the 
ouplings and fa
tors 
oming from non-perturbative QCD in the
onstant C and S0(xt) is the well-known Inami-Lim-fun
tion introdu
ed in eq. (4.22). Theratio of the Bs−Bs and Bd−Bd transition amplitudes is given by
Ms SM

12

Md SM
12

=

(

VtbV
∗
ts

VtbV ∗
td

)2

ξ2 ≈ ξ2

λ2R2
t

e−2iβ ≈ O(40)e−2iβ (6.3)where Rt = |Vtd|/λ|Vcb| and ξ is the ratio de�ned in eq. (2.90). We negle
t the small
Bs−Bs mixing phase 2βs = 2ηλ2 +O(λ4) originating from the phase of the CKM element
Vts. Equation (6.3) shows that in the SM the Bd−Bd transition amplitude is suppressedroughly by a fa
tor 40 
ompared with the Bs−Bs transition amplitude.We de�ne of the ratio of the NP 
ontributions to the SM 
ontribution

∆q
NP ≡ M q NP

12

M q SM
12

(6.4)where M q SM
12 and M q NP

12 are understood as the pure SM result and the sum of the di�erentSUSY 
ontributions i.e. originating from 
hargino box diagrams, gluino box diagrams et
.,respe
tively. Thus, the NP 
ontribution to M q
12 
an be parametrised as [69℄

1 + |∆q
NP| eiφq

NP = |∆q| eiφq
∆ (6.5)The di�eren
e between the phase of the SM amplitude and the phase of the NP 
ontributionarises as φq

NP in eq. (6.5). From eq. (6.5 ) it follows
tanφq

∆ =
|∆q

NP| sin φq
NP

|∆q
NP| cos φq

NP + 1
. (6.6)Expressing the NP phase as a fun
tion of the 
omplex parameter ∆q we obtain

tanφq
NP =

|∆q| sinφq
∆

|∆q| cosφq
∆ − 1

. (6.7)
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Figure 6.1: The absolute value and the phase of ∆q for di�erent values of φq
NP starting fromthe left with φq

NP = −180◦ and in
reasing it in steps of 10◦ to the right until φq
NP = 0◦.In �g. 6.1 we graphi
ally show the relation between the absolute value and the phase of

∆q for di�erent values of φq
NP.Through the 
hargino boxes there is a generi
 
orrelation between the NP 
ontribution tothe Bs−Bs and Bd−Bd mixing pro
esses. This 
an be demonstrated in a simple way by
onsidering a simple 
hargino box diagram. If we allow a huge NP 
ontribution to Bs−Bsmixing 
oming from additional �avour violation 
aused from the mass insertion δu LL

23 the
hargino box diagram 
an be expressed as
M q χ̃±

12 ∼ fχ̃±(m2
i , m

2
j , m

2
k, m

2
l )(δ

u LL
23 )2

(

VtbV
∗
cq

)2 (6.8)with the loop fun
tion fχ̃±(m2
i , m

2
j , m

2
k, m

2
l ) depending on the masses of the involved par-ti
les in the loop. The ratio of the NP 
ontribution to the Bs−Bs and Bd−Bd mixingpro
ess reads now

Ms χ̃±

12

Md χ̃±

12

=

(

V ∗
cs

V ∗
cd

)2

ξ2 =
ξ2

λ2
(6.9)



62 6. Method and general features of the analysisand is of the same order as in the SM. With the de�nition in eq. (6.4) we obtain the relation
∆d χ̃±

NP = ∆s χ̃±

NP

e−2iβ

R2
t

(6.10)whi
h let us 
on
lude that a big NP 
ontribution in the Bs−Bs system implies a big NP
ontribution in the Bd−Bd system as well. However, the opposite statement is not true. Ifwe allow a large NP e�e
t in the Bd−Bd mixing indu
ed through the mass insertion δu LL
13the NP 
ontribution is given by

M q χ̃±

12 ∼ fχ̃±(m2
i , m

2
j , m

2
k, m

2
l )(δ

u LL
13 )2

(

VtbV
∗
uq

)2 (6.11)Thus, one �nds for the ratio of the NP 
ontribution to the Bs−Bs and Bd−Bd mixingpro
ess
Ms χ̃±

12

Md χ̃±

12

=

(

V ∗
us

V ∗
ud

)2

ξ2 = λ2ξ2. (6.12)With this result we obtain
∆s χ̃±

NP = ∆d χ̃±

NP R2
tλ

4e2iβ. (6.13)Equation (6.13) demonstrates that a big NP e�e
t in Bd−Bd mixing does not imply ane�e
t of the same order in the Bs−Bs system as well.The CKM�tter 
ollaboration has performed an analysis in order to 
onstrain the param-eters ∆s and ∆d in the Bs−Bs and Bd−Bd meson systems [70℄. The plot obtained for
Bd−Bd mixing is shown in �g. 6.2. We extra
t the allowed 68.3% CL, 95.45% CL and99.73% CL regions for the NP phases φs

∆ and φd
∆ whi
h 
an be found in table 6.1. Whilethe NP phase φd

∆ 
annot ex
eed −20.0◦ even for the 99.73% CL region for the NP phase
φs

∆ all negative values are allowed. This fa
t leads to the 
on
lusion that the NP 
ontri-bution in the Bd−Bd system is mu
h more 
onstrained then the NP 
ontribution to the
Bs−Bs system. Sin
e eq. (6.10) relates the SUSY 
ontributions in the neutral Bd and Bsmeson systems assuming that the box diagrams are a�e
ted only by additional ex
hangeof 
harginos in the loops we 
an translate the 1σ and 2σ regions from the Im ∆d − Re ∆dplot to the 
orresponding one valid in the 
ase of Bs mesons. From eq. (6.10) it follows

∆s χ̃±

= 1 +
(

∆d χ̃± − 1
)

R2
t e

2iβ . (6.14)
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Figure 6.2: Constraints on NP in Bd−Bd system from the CKM�tter 
ollaboration [70℄.We parametrise the 68.3% CL, 95.45% CL and 99.73% CL 
ontours in the plot in �g. 6.2and depi
t them a

ording to eq. (6.14) in the original Im ∆s − Re ∆s plot obtained fromthe CKM�tter 
ollaboration. The result of this pro
edure is shown in �g. 6.3. The outerbla
k dashed line 
orresponds to the 99.73% CL region while the inner solid line representsthe 95.45% CL and 
ross-hat
hed area 
orresponds to the 68.3% CL region in �g. 6.2. One
an see that the 95.45% CL and the 99.73% CL regions obtained by translating the allowed95.45% CL and the 99.73% CL regions in the Im ∆d−Re ∆d plot overlaps with the 99.73%CL regions in the Im ∆s −Re ∆s plot. However, there is no interse
tion between the 68.3%CL regions. The bla
k hammed areas in �g. 6.3 show the region in whi
h the NP in the
Bs−Bs mixing mixing pro
ess 
an be explained through a supersymmetri
 
hargino 
on-tribution. However, looking at �g. 6.3 we realise how small is that region. It 
overs only theupper part of the 95.45% CL and 99.73% CL regions. We �nd that the maximal negativevalue of the phase φs

∆ whi
h 
an be 
aused by a 
hargino 
ontribution is −20.4◦ at 99.73%CL. For all points in the Im ∆s − Re ∆s plot whi
h are outside the ba
k hammed regions



64 6. Method and general features of the analysis
68.3% CL 95.45% CL

φs
∆ [−67.2◦,−27.0◦] ∪ [−150.2◦,−108.1◦] [−86.7◦,−11.1◦] ∪ [−165.4◦,−91.3◦]

φd
∆ [−16.1◦,−5.9◦] [−18.2◦, 0.0◦]

99.73% CL

φs
∆ [−182.0◦, 5.9◦]

φd
∆ [4.6◦,−20.0◦]Table 6.1: The allowed regions at 68.3% CL, 95.45% CL and 99.73% CL for the NP phases

φs
∆ and φd

∆ extra
ted from the analysis of the CKM�tter 
ollaboration [70℄.an additional sour
e of �avour violation is ne
essary.Until now we have not 
onsidered the gluino 
ontribution. Be
ause of the SU(2) gaugesymmetry in the left handed fermion se
tor in general the gluino 
ontribution is present aswell. If we assume a very heavy gluino the gluino 
ontribution be
omes very small. Thatis the 
ase on whi
h we fo
used in our dis
ussion so far. In this 
ase although the gluino
ontribution is present it is highly suppressed and 
an be negle
ted. In following we will
on
entrate on the situation when the gluino 
ontribution a�e
ts the meson mixing pro-
esses as well.Sin
e the quark-squark-gluino verti
es do not involve CKM elements a non-diagonal entriesin the down-type squark mass matrix are the only sour
e of �avour violation there. Be
auseof the SU(2) gauge symmetry of the left handed fermion �elds the up-type and the down-type squark mass matri
es are related to ea
h other by the equation
M2

d LL = V †M2
u LLV. (6.15)Assuming only the mass insertions δu LL

23 and δu LL
13 to be di�erent from zero and the massinsertions δd LL

23 and δd LL
13 in the down se
tor whi
h indu
e a gluino 
ontribution to the

Bd−Bd and Bs−Bs meson mixing pro
esses are related to the mass insertions in the upse
tor by the equations
δd LL
13 =

∑

i

(M2
u LL)iiVi3V

∗
i1 + δu LL

23 VtbV
∗
cd + (δu LL

23 )∗VcbV
∗
td + δu LL

13 VtbV
∗
ud + (δu LL

13 )∗VubV
∗
td(6.16)

δd LL
23 =

∑

i

(M2
u LL)iiVi3V

∗
i2 + δu LL

23 VtbV
∗
cs + (δu LL

23 )∗VcbV
∗
ts + δu LL

13 VtbV
∗
us + (δu LL

13 )∗VubV
∗
ts.
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Figure 6.3: Constraints on NP in Bs−Bs system from the CKM�tter 
ollaboration [70℄.The bla
k regions 
orrespond to the 68.3% CL, 95.45% CL and 99.73% CL regions in�g. 6.2 a

ording to eq. (6.14).IfM2
u LL is diagonal the �avour 
hanging in the 
hargino box diagram is from MFV type. Inthis 
ase the dominant NP 
ontribution 
omes from the gluino box diagrams. The gluinomediated transition amplitudes 
an be written as

M q g̃
12 = Kfg̃(m

2
g̃, m

2
i , m

2
j )
(

δd LL
q3

)2 (6.17)where we 
ombine all the 
onstants and non-perturbative QCD fa
tors in the 
onstant
K and fg̃(m

2
g̃, m

2
i , m

2
j ) is the sum of the loop fun
tions multiplied by the 
orrespondingfa
tors. Taking into a

ount the unitarity of the CKM matrix we obtain from eq. (6.16):

δd LL
13 = −λδu LL

23 + Aλ3

{

Rte
iβ

[

(M2
u LL)33 − (M2

u LL)11

M̃2

]

−
[

(M2
u LL)22 − (M2

u LL)11

M̃2

]}
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δd LL
23 = δu LL

23 + Aλ2

[

(M2
u LL)22 − (M2

u LL)33

M̃2

]

− Aλ4

2

[

(M2
u LL)22 − (M2

u LL)11

M̃2

] (6.18)where we have used the Wolfenstein parametrisation of the CKM matrix given in eq. (4.4)and M̃2 is the average squark mass de�ned in eq. (6.1). Relating the gluino 
ontributionsto the Bd and Bs system to ea
h other gives
Md g̃

12

Ms g̃
12

=
1

ξ2

(

δd LL
13

δd LL
23

)2 (6.19)Inserting the expressions given in eq. (6.18) in eq. (6.19) by requiring the same mass for the�rst two diagonal elements in the up-type squark mass matrix and expanding the result inthe Wolfenstein parameter λ we obtain
Md g̃

12

Ms g̃
12

=
λ2

ξ2

[

1 +
2Aλ2

(

Rte
iβ − 1

)

δu LL
23

(M2
u LL)33 − (M2

u LL)11

M̃2
+ O

(

λ4
)

]

. (6.20)With this result 
onsidering the ratio of Bd−Bd and Bs−Bs mixing amplitudes in the SMgiven in eq. (6.3) we �nd
∆d g̃

NP = ∆s g̃
NP

e−2iβ

R2
t

[

1 +
2Aλ2

(δu LL
23 )

2

(

Rte
iβ − 1

) (M2
u LL)33 − (M2

u LL)11

M̃2

] (6.21)Then, we obtain the following relation between the NP 
ontribution in the Bd and Bsse
tor stemming from 
hargino and gluino box diagrams:
∆d χ̃±

NP + ∆d g̃
NP =

e−2iβ

R2
t

{

∆s χ̃±

NP + ∆s g̃
NP

2Aλ2

(δu LL
23 )

2

(

Rte
iβ − 1

) (M2
u LL)33 − (M2

u LL)11

M̃2

} (6.22)If the diagonal elements of M2
u LL are equal or the di�eren
e (M2

u LL)33 − (M2
u LL)11 is smalland its 
ontribution 
an be negle
ted we obtain the same relation as in 
ase of the pure
hargino 
ontribution given in eq. (6.10):

∆d g̃
NP = ∆s g̃

NP

e−2iβ

R2
t

(6.23)In this 
ase eq. (6.22) leads to
∆d χ̃±

NP + ∆d g̃
NP =

(

∆s χ̃±

NP + ∆s g̃
NP

) e−2iβ

R2
t

(6.24)From eq. (6.18) it follows that the mass insertion δd LL
23 indu
ed through the SU(2) relationeq. (6.15) and the mass insertion δu LL

23 have the same imaginary part. Their real parts di�erin 
ase of an up-type squark mass matrix with not equal diagonal elements.
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NP = 2 arg δd LL

23 −2βs. With φs χ̃±

NP = 2 arg δu LL
23 −2βsand negle
ting the small phase βs we obtain from eq. (6.18)

tan
φs g̃

NP

2
=

∣

∣δu LL
23

∣

∣ sin
φs χ̃±

NP

2

|δu LL
23 | cos

φs χ̃±

NP

2
+ Aλ2

M̃2
[(M2

u LL)22 − (M2
u LL)33]

(6.25)Equation (6.25) demonstrates the relation between the di�eren
e of the diagonal elementsof (M2
u LL) and the phases φs χ̃±

NP and φs g̃
NP. If the diagonal elements of the up-type massmixing matrix are equal the NP phases of the 
hargino and gluino 
ontributions are equalas well.Equation (6.24) shows that if the up-type squark mass matrix 
ontains equal diagonalelements it is not possible to explain the points outside the bla
k hat
hed region in �g. 6.3through the �avour violating e�e
ts indu
ed by the mass insertion δu LL

23 only. In this 
aseeq. (6.14) holds for the 
hargino and gluino 
ontribution separately as well as for theirsum and ea
h point from the Im ∆d − Re∆d plot is translated a

ording to eq. (6.14) tothe Im ∆s − Re ∆s plot as it is shown for the the 68.3% CL, 95.45% CL and 99.73% CLregions in �g. 6.3. However, looking at the general relation eq. (6.22) we see that the bla
khat
hed region in the Im ∆s − Re ∆s plane 
an be enlarged if there is a mass di�eren
ebetween the diagonal elements of the up-type squark mass matrix. In this 
ase a phasedi�eren
e between the gluino and 
hargino 
ontribution appears as well (see eq. (6.25)). Ifthe mass di�eren
e between the diagonal elements of M2
u LL is not su�
ient to provide thene
essary amount of �avour violation in order to explain a 
ertain point in �g. 6.3 the bla
khat
hed region 
an be enlarged further by 
hoosing in addition the mass insertion δu LL

13 tobe non-zero. The LR se
tors of the squark mass matri
es are not related to ea
h other asthis is the 
ase for the LL se
tors due to SU(2) gauge symmetry. Allowing matrix elementsof the LR se
tors to 
ontribute to the �avour violation in the meson mixing pro
esses thebla
k hat
hed region 
ould 
over any desired region in Im ∆s − Re∆s plot.In our numeri
al analysis assuming a non diagonalM2
u LL with equal diagonal elements theentries of the down-type squark mass matrix generated through the SU(2) relation have asimple form

δd LL
23 = δu LL

23 + O(λ2),

δd LL
13 = −λδu LL

23 + O(λ5). (6.26)As already dis
ussed, in this 
ase the phases of the mass insertions in the down-type squarkse
tor are to a very good approximation equal to the phases of the mass insertions in the
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Figure 6.4: Relation between the gluino mass and the mass insertion δu LL
23 for Bs−Bsmixing. ∣∣δu LL

23

∣

∣ is limited to 0.52 by the 
hoi
e of the minimal squark mass eigenstatebigger than 350 GeV. φs
∆ = −30◦, fBs

= 0.228 GeV.up-type squark se
tor and eq. (6.6) 
reates a relation between the gluino mass, the massinsertion δd LL
23 and the phase φq

∆. In �g. 6.4 we show the surfa
es in a 3-dimensional plotfor Abs(δu LL
23 ), Arg(δu LL

23 ) and mg̃ on whi
h this 
ondition is satis�ed in Bs−Bs mixing.The plot 
ontains not only the gluino 
ontribution but the 
hargino and 
harged Higgs
ontributions as well. All diagonal elements of M2
u LL are set to (500 GeV)2. The rangeof δu LL

23 is 
hosen su
h that the minimal squark mass eigenstate is bigger than 350 GeV.Sin
e ∣∣
∣
∆s g̃

NP

∣

∣

∣
depends on the gluino mass, the absolute value of the mass insertion |δu LL

23 |and on the squark masses one 
an obtain an upper limit on gluino mass mg̃ from themaximal value of ∣∣
∣
∆s g̃

NP

∣

∣

∣
for a given value of the mass insertion and a given set of squarkmasses. We 
hoose all squark masses to be equal and show the relation between ∣∣

∣
∆s g̃

NP

∣

∣

∣and mg̃ for a 
ertain squark mass and di�erent |δu LL
23 | in �g. A.3 and for a 
ertain ∣∣

∣
∆s g̃

NP

∣

∣

∣and di�erent squark masses in �g. A.2 in the appendix. In all plots we see that the gluino
ontribution vanishes for mg̃ ≈ 1.5mq̃ where mq̃ is the value of all diagonal elements inthe up-type squark mass matrix. The reason for this e�e
t is the 
an
ellation between the
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rossed and un
rossed box diagrams in �g. 4.3. This is an important issue whi
h has notbeen taken into a

ount by most analyses, whi
h have disregarded the ele
troweak SUSY
ontributions, 
laiming that they are suppressed by the fa
tor g4
2/g

4
3 in 
omparison to thegluino 
ontribution. However, from the plots shown in �g. A.2 and �g. A.3 we see that thisstatement is true only for gluino masses smaller than the squark masses. In the opposite
ase, the ele
troweak 
ontributions 
an be dominant and their omission is not justi�ed.We will examine this topi
 in detail in the next 
hapter where we 
on
entrate on the masssplitting between left-handed squarks.6.2. Constraints on the mass splitting of left-handed squarksThe squark mass matri
es in the down se
tor and in the up se
tor provide with their o�-diagonal elements additional sour
es of �avour violation. In order to satisfy the boundsfrom FCNCs it has been noted already in very early analyses of the MSSM that a superGIM me
hanism is ne
essary [76℄. If the up-type squark mass matrix of the left-handedsquarks 
ontains big o�-diagonal elements a �avour o�-diagonal entries of the same orderare generated through the SU(2) relation eq. (6.15) in the down-type squark mass ma-trix.The same statement is true for the reversed situation assuming down-type squark LLmass mixing matrix 
ontaining big o�-diagonal elements. As we have shown in the previ-ous se
tion the o�-diagonal matrix elements indu
ed through the SU(2) gauge symmetryin the left handed fermion se
tor are proportional to the mass di�eren
e between the diag-onal elements in the squark mass matri
es. Therefore, in order to avoid o�-diagonal entrieswhi
h would spoil the experimental bounds on observables involving FCNC e�e
ts usuallythe left-handed squarks are assumed to be with degenerate masses. We have examined themass splitting between the left-handed squarks by imposing 
onstraints from D−D and

K−K mixing . In following we explain the main features of our approa
h. The 
ompleteanalysis with all the results for di�erent values of the relevant MSSM parameters 
an befound in [77℄.The D−D and K−K mixing are FCNC pro
esses whi
h are highly sensitive to transitionsbetween the �rst two squark generations in the up-type and down-type squark se
tor.The neutral Kaon system probes NP in the down-type squark se
tor while the mixing ofneutral D mesons is a�e
ted by �avour 
hanging parameters in the up-type squark se
tor.Considering the SUSY 
ontributions to the D−D and K−K mixing pro
esses we 
an
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e 
onstraints on the involved �avour 
hanging SUSY parameters.The K−K mass di�eren
e ∆MK and the indire
t CP violation parameter ǫK are bothsmall and in agreement with their SM predi
tions. In the SM the K−K transition ampli-tude is suppressed due to the rather pre
ise GIM me
hanism and the additional suppres-sion of the top quark 
ontribution by small CKM fa
tors. Therefore, the meson mixingin the Kaon system is appropriate for testing NP models and obtaining bounds on NPparameters espe
ially in the MSSM. This statement is true for the mixing of neutral Dmesons as well. D−D mixing was experimentally dis
overed in 2007 by the BaBar [66℄ andBelle [67, 68℄ 
ollaborations. Short-distan
e SM e�e
ts are strongly CKM suppressed andthe long-distan
e 
ontributions 
annot be 
al
ulated perturbatively. Therefore, 
onserva-tive estimates assume for the SM 
ontribution a range up to the absolute measured valueof the mass di�eren
e. However, due to the small measured mass di�eren
e D−D mixingstill limits NP 
ontributions in a stringent way. Furthermore, a CP phase in the neutral Dsystem 
an dire
tly be attributed to NP.In the most analysis whi
h have been performed in order to 
onstrain MSSM parametersthe neutralino and 
hargino 
ontributions to the box digrams shown in �g. 4.3 have beennegle
ted [62,79�84℄. The main argument for 
onsidering only the gluino 
ontribution is thesmallness of the weak 
oupling 
onstant whi
h is involved in the 
hargino and neutralinoverti
es in 
omparison with the strong 
oupling 
onstant. In fa
t, the 
ontribution to thebox diagrams due to the weak intera
tion is suppressed by a fa
tor g4
2/g

4
3 
ompared tothe gluino 
ontribution. However, the o�-diagonal elements in the LL blo
k of the squarkmass matri
es 
ause an enhan
ement of the �avour 
hanging e�e
ts indu
ed by the quark-squark-
hargino and quark-squark-neutralino verti
es. Moreover, for 
ertain 
on�gurationof the MSSM parameters, espe
ially if the gluino is heavier then the squarks, the gluino
ontribution 
an be suppressed due to the 
an
ellation between the 
rossed and un
rossedbox diagrams. This e�e
t 
annot o

ur in box diagrams involving 
harginos be
ause theyare Dira
 fermions and the 
rossed box diagrams are not present. Be
ause of the reasonsmentioned above, we 
an 
on
lude that the negle
ting of the ele
troweak 
ontributions isa good approximation only for light gluinos and 
annot be justi�ed in regions where thegluinos are heavier than the squarks.In our analysis we 
onsider the strong as well as the ele
troweak SUSY 
ontributions tothe K−K and D−D mixing pro
esses in the general MSSM. In parti
ular, we 
al
ulatethe gluino, gluino-neutralino, neutralino and 
hargino 
ontributions. Our aim is to obtain
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onstraints on the mass-splitting between the �rst two generations of left-handed squarks.As already dis
ussed in the previous se
tion the SU(2) gauge symmetry of the left-handedfermion se
tor 
reates a relation between the up-type and down-type squark mass matri
es,in parti
ular M2
u LL = VM2

d LLV
†.Both squark mass matri
es 
an be simultaneously diagonal only if they are proportional tothe unit matrix. This is realised in the naive minimal �avour violating MSSM. In 
ase one ofthe squark mass matri
es does not 
ontain only equal diagonal elements, the SU(2) relationeq. (6.15) generates o�-diagonal elements in the other one. These entries are proportionalto the o�-diagonal elements in the squark mass matrix on whi
h the CKM rotation isperformed and on the di�eren
e between the diagonal elements. In this analysis we areinterested in the mass insertions δu LL

12 and δd LL
12 whi
h 
ause �avour violation between the�rst two generations in the up-type and in the down-type squark se
tor, respe
tively, andtherefore 
an sizeably a�e
t the D−D and K−K mixing pro
esses. Assuming a diagonaldown-type squark mass matrix with non-degenerate diagonal elements, we obtain for themass insertion δu LL

12 from the SU(2) relation
δu LL
12 = VusV

∗
cs

[

(M2
d LL)22 − (M2

d LL)11

M̃2

]

+ VubV
∗
cb

[

(M2
d LL)33 − (M2

d LL)11

M̃2

]

. (6.27)In the opposite 
ase of a diagonal up-type squark mass matrix the mass insertion δd LL
12indu
ed through the SU(2) relation is given by

δd LL
12 = VcsV

∗
cd

[

(M2
u LL)22 − (M2

u LL)11

M̃2

]

+ VtsV
∗
td

[

(M2
u LL)33 − (M2

u LL)11

M̃2

]

. (6.28)The CKM matrix elements in eq. (6.27) and eq. (6.28) 
an be expressed through theparameters A, λ, ρ and η of the Wolfenstein parametrisation eq. (4.4). We �nd
δu LL
12 = λ

(

1 − λ2

2

)[

(M2
d LL)22 − (M2

d LL)11

M̃2

]

+ O
(

λ5
)

, (6.29)respe
tively
δd LL
12 = −λ

(

1 − λ2

2

)[

(M2
u LL)22 − (M2

u LL)11

M̃2

]

+ O
(

λ5
)

. (6.30)The generated mass insertions mostly depend on the mass di�eren
e between the �rst twogenerations in the up or down se
tor and di�er from ea
h other only by their overall sign.If we 
hoose the squark mass matri
es to be proportional to the unit matrix we �nd thatall MSSM Wilson 
oe�
ients are 
omplex numbers with negligible phase: the imaginary
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Figure 6.5: Size of the real part of the Wilson 
oe�
ients of the di�erent SUSY 
ontributionsto the D−D or K−K mixing pro
ess normalised to the 
hargino 
ontribution. CSUSY
1 isthe sum of all 
onsidered 
ontributions from SUSY parti
les. Plots for squark masses of

1000 GeV 
an be found in [77℄.part is several orders of magnitude smaller then the real part for large regions of the MSSMparameter spa
e. In �g. 6.5 we show the real part of the SUSY Wilson-Coe�
ients C χ̃±

1 ,
C χ̃0

1 , C g̃
1 , C g̃χ̃0

1 
ontributing to the K−K or D−D mixing pro
ess as a fun
tion of thegluino mass. All Wilson 
oe�
ients are normalised to C χ̃±

1 . For light gluino masses thegluino 
ontribution dominates over the other ones by far. However, C g̃
1 de
reases fast within
reasing gluino mass. For heavy gluino masses the most important 
ontribution originatesalways from 
hargino boxes. Further, we noti
e that for some 
on�guration of the MSSMparameters, i.e. in 
ase of heavy gluino and light squark masses around and below 500 GeV,and big values of M2 around 400 GeV and more, the mixed gluino-neutralino 
ontributionbe
omes the se
ond dominant one after the 
hargino 
ontribution. In almost all regionsof the MSSM parameter spa
e the 
ontribution to the FCNC meson mixing pro
ess dueto the neutralino-neutralino boxes is negligible 
ompared to the ones of the other SUSYparti
les involved in the box diagrams.In re
ent analyses [79,84℄ NP has been 
onstrained by requiring that the NP 
ontribution to
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e of neutral Kaons andD mesons has to be smaller then the 
orrespondingexperimental values ∆MK/MK = (7.01±0.01)10−15 [85℄ and ∆MD/MD = (8.6±2.1)10−15[86℄. CP violation in mixing stemming from NP phenomena is restri
ted through the pa-rameter ǫNP
K ≤ 0.6ǫexp

K [79℄. Thus, the following upper bounds on the Wilson 
oe�
ients
CK

1 and CD
1 have been obtained [79℄:

∣

∣CK
1

∣

∣ ≤ 8.8 · 10−13

(

ΛNP

GeV

)2

,

∣

∣CD
1

∣

∣ ≤ 5.9 · 10−13

(

ΛNP

GeV

)2

, (6.31)
Im
(

CK
1

)

≤ 3.3 · 10−15

(

ΛNP

GeV

)2

,

Im
(

CD
1

)

≤ 1.0 · 10−13

(

ΛNP

GeV

)2where ΛNP is the s
ale of NP. We use the 
onstraints in eq. (6.31) in order to obtain
onstraints on the mass splitting between the �rst two generations of left handed down-type squarks from K−K mixing and on left handed up-type squarks from the mesonmixing in the neutral D meson system.We �rst analyse the two extreme 
ases with diagonal up-type squark or diagonal down-type squark mass matrix and set (M2
u LL)22 = (M2

u LL)33, respe
tively (M2
d LL)22 = (M2

d LL)33.The 
onstraints obtained for these two s
enarios 
orrespond to the green and red area in�g. 6.6 where we show the gluino mass and the squark mass of the �rst generation in atwo dimensional region plot. The plot shows that large regions in the MSSM parameterspa
e with non-degenerate squarks are allowed from K−K and D−D mixing . Whilethe red and green regions 
orrespond to 
ompletely alignment either in the up se
tor orin the down se
tor either by 
hoosing M2
u LL diagonal and obtaining the 
onstraints fromthe Kaon system or by requiring a diagonal form of M2

d LL and obtaining the 
onstraintsfrom D−D mixing , the yellow region des
ribing the maximally allowed mass splittingis obtained in 
ase of intermediate alignment of the up-type and down-type squark massmatri
es in the up and down se
tor. In this 
ase neither M2
u LL nor M2

d LL is diagonal.Following the approa
h in [79℄ we perform a rotation of the diagonal squark mass matri
esby the matrix [79℄
Vd =







cos θd sin θd 0

− sin θd cos θd 0

0 0 1






. (6.32)
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Figure 6.6: Allowed regions in the (mq̃1
, mg̃)-plane for mq̃2

= mq̃3
= 500 GeV and M2 =

200 GeV, 400 GeV a

ording to eq. (6.31). The green region is the allowed range assuminga diagonal up squark mass matrix. The red region is obtained in 
ase of diagonal downsquark mass matrix. The yellow (lightest) area 
orresponds to the maximally allowed masssplitting assuming intermediate alignment of the squark mass matri
es in the up and downLL squark se
tor. The blue (darkest) area is the minimal region allowed for mass splittingbetween the left-handed squarks 
orresponding to a s
enario with equal diagonal entriesin the down squark mass matrix and an o�-diagonal element 
arrying a maximal phase.Plots for squark masses of 1000 GeV 
an be found in [77℄.The angle θd is de�ned through
tan 2θd =

√

∣

∣

∣

CK
exp

CD
exp

∣

∣

∣
sin 2θc

1 +

√

∣

∣

∣

CK
exp

CD
exp

∣

∣

∣
cos 2θc

(6.33)where θc denotes the Cabibbo angle. With the numeri
al 
onstraints given in eq. (6.31) one�nds inserting the maximal values of |CK
1 | and |CD

1 | in eq. (6.33) θd = 6.9◦. Departing fromthe exa
t alignment of the LL squark mass matri
es either in the up or in the down se
torthrough the rotation by the matrix Vd additional real o�-diagonal elements are generated.Looking at the plots in �g. 6.6 one realises that a lot of points in the MSSM parameterspa
e 
an be found whi
h allow for an even larger mass splitting 
ompared to the 
ases with



6.2 Constraints on the mass splitting of left-handed squarks 75diagonal up-type or down-type squark mass matrix. For a proper value of that o�-diagonalelements whi
h in our 
ase of study is given by 
hoosing a value for the angle θd = 6.9◦ in
Vd the allowed mass splitting 
an be maximised [79℄.The blue region in �g. 6.6 shows the minimal region for mass splitting between the left-handed squarks obtained under the assumption that the down squark mass matrix is pro-portional to the unit matrix and 
ontains an imaginary o�-diagonal element 
arrying a
omplex phase su
h that the imaginary part of the Wilson 
oe�
ient CK

1 is maximal. Theimaginary matrix element of M2
d LL is an additional sour
e of CP violation in the Kaonsystem. Using the CP violation parameter ǫK as a 
onstraint, i.e. the 
onstraint on theimaginary part of the Wilson 
oe�
ient CK

1 given in eq. (6.31) we obtain the most stringentbound on the mass splitting between the left-handed squarks of the �rst two generationswith the maximal amount of CP violation stemming from NP.Our analysis on the mass splitting between the �rst two generations of left-handed squarksshows that there are large regions in the MSSM parameter spa
e allowed fromK−K andD−
D meson mixing pro
esses where the squarks are not degenerate and for 
ertain s
enarioseven a large mass splitting of 100% and more is possible. In fa
t, the most ben
hmarkanalysis of the SUSY parameters are performed under the assumption of degenerate squarkmasses [87,88℄. However, in 
ase of di�erent diagonal elements of the mass mixing matri
esinteresting 
onsequen
es on the bran
hing ratios 
an o

ur [89℄. The analysis of the K−Kand D−D mixing pro
esses shows that the up-type and down-type squark mass matri
esdo not need to be ne
essarily proportional to the unit matrix at some high s
ale.
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77
7. Numeri
al analysis of δuLL23 and δuLL13In this 
hapter we des
ribe the numeri
al analysis whi
h has been performed in order to
onstrain the o�-diagonal elements δu LL

23 M̃2 and δu LL
13 M̃2 of the up-type squark mass ma-trix. We start with an overview of the main features of the standart analyses of this type.Further, we explain our approa
h to pla
e bounds on the mass insertions involved in theFCNC pro
esses studied in this work.As already mentioned at the beginning of Ch. 6, in the past many analyses have beenperformed in order to 
onstrain o�-diagonal elements of the squark mass matrix. The �rststudies have used the mass insertion approximation (see Ch. 6) while in more re
ent pa-pers the up-type or down-type squark mass matri
es have been fully diagonalised. In orderto obtain the most 
onservative bounds on mass insertions it has been assumed that the�avour 
hanging pro
esses are indu
ed by one mass insertion only. The bounds on themass insertions are extra
ted by 
omparison with the experimental results imposing thatthe quantities whi
h are 
al
ulated taking into a

ount the SUSY 
ontribution to the 
er-tain pro
ess under study do not ex
eed the 
orresponding measured values. In order toperform a test of di�erent SUSY models and to 
onstrain di�erent o�-diagonal entries inthe squark mass matri
es the analyses have been extended and have be
ome more 
omplexand extensive. In previous works on this topi
 the main fo
us has been set on |∆F | = 2meson mixing pro
esses like K−K mixing , B−B mixing and ∆F = 1 pro
esses like

B → Xsγ, B → Xsl
+l−, li → ljγ as well as on the CP 
onstraints (see i.e. [71�73℄, [74℄and referen
es therein). Re
ently, also |∆F | = 0 pro
esses, in parti
ular the ele
tri
 dipolemoments (EDMs) of quarks and leptons and the anomalous magneti
 moment of the muonhave been analysed using s
atter plot methods [74℄. Sin
e the SM predi
ts very small val-ues for the EDMs they are extremely sensitive to NP 
ontributions. Although the EDMsarise as a result of �avour 
onserving pro
esses they 
an be generated by two |∆F | = 1transitions. Assuming that SUSY parti
les are involved in these �avour violating |∆F | = 1transitions it is possible to pla
e 
onstraints on the mass insertions. In the most re
ent
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al analysis of δu LL
23 and δu LL

13analysis [74℄ the usually 
onsidered set of pro
esses has been extended by rare B de
ays,
D−D mixing and time dependent CP asymmetries. By in
luding the full set of SUSYparti
les whi
h 
an 
ontribute to the FCNC pro
esses, the 
harged Higgs, the gluino, the
hargino and the neutralino, all theoreti
ally relevant one loop 
ontributions have beentaken into a

ount. In [74℄ bounds on mass insertions are determined in the 
ontext ofdi�erent SUSY models su
h as the MSSM with minimal �avour violation where the �avourviolation even beyond the SM is des
ribed by the CKM matrix, a �avour blind MSSM,SUSY models based on abelian and non-abelian �avour symmetries.Performing an updated analysis of the bounds on the �avour violating terms in the SUSYsoft se
tor in the general MSSM is emphasised as one of the novelties in the most re
entwork on this subje
t [74℄. The theoreti
al treatment of the quantities under study is doneindeed in the 
ontext of the general MSSM. However, for the numeri
al analysis a spe
trumof the so-
alled 
onstrained MSSM (CMSSM) is assumed. In fa
t, among various possi-ble sets of boundary 
onditions whi
h 
an be imposed on the multidimensional parameterspa
e of the MSSM by far the most popular 
hoi
e is the CMSSM. In this model at theGUT s
ale all the sleptons, squarks and Higgs bosons have a 
ommon s
alar mass m0,all the gauginos unify at the 
ommon gaugino mass M1/2, and so all the tri-linear termsassume a 
ommon tri-linear mass parameter A0. In addition, at the ele
troweak s
ale onesele
ts the ratio of Higgs va
uum expe
tation values tan β and sign (µ), where µ is thehiggsino mass parameter of the superpotential.The aim of our numeri
al analysis is to obtain 
onstraints on the mass insertions δu LL

i3 ,
i = 1, 2 of the up-type squark mass matrix in the general MSSM. We fo
us on generi
relations whi
h are mostly independent on boundary 
onditions. Su
h a physi
al relationstems from 
hargino boxes whi
h 
orrelate Bd−Bd mixing and Bs−Bs mixing through theCKM elements involved in the meson mixing pro
esses. Another very important theoreti
alissue is the relation between the left-handed up-type squark mass matrix and the left-handed down-type one M2

u LL = VM2
d LLV

† due to SU(2) gauge symmetry in the lefthanded fermion se
tor. Sin
e these mass matri
es are not independent the only way toavoid �avour o�-diagonal mass insertions in the up and in the down se
tor simultaneouslyis to 
hooseM2
d orM2

u proportional to the unit matrix. This is realised in the naive minimal�avour violating MSSM. In a more general de�nition of MFV [64,65℄ �avour violation dueto NP is postulated to stem solely from the Yukawa se
tor resulting in FCNC transitions
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al analysis of δu LL
23 and δu LL

13 79(whi
h 
an now also be mediated by gluinos and neutralinos) proportional to produ
ts ofCKM elements and Yukawa 
ouplings. In our approa
h we assumeM2
u LL 
ontaining �avour
hanging non-diagonal entries and 
al
ulate the elements ofM2

d LL using the SU(2) relation.In addition, we take into a

ount the numeri
al relation between the Bs−Bs mixing and
Bd−Bd mixing transition due to ratio of the de
ay 
onstants and the bag parameters in the
Bs and Bd systems. In almost all previous analyses the Bs−Bs mixing and Bd−Bd mixingwere treated independently from ea
h other. However, these two pro
esses are related toea
h other through the ratio ξ de�ned in eq. (2.90). In order to obtain the most 
onservativebounds on mass insertions we assume that the �avour 
hanging pro
esses are indu
ed byone mass insertion only. The bounds on the mass insertions are extra
ted by 
omparisonwith the experimental results imposing that the quantities whi
h are 
al
ulated takinginto a

ount the SUSY 
ontribution to the 
ertain pro
ess under study do not ex
eedtheir measured values. In the numeri
al analysis we 
onsider the 
hargino, gluino andthe 
harged Higgs 
ontribution to the box diagrams. The box diagrams involving theseparti
les dominate over the ones with a neutralino running in the loop by far. For thisreason the neutralino 
ontribution has been negle
ted in the numeri
al 
al
ulations. Sin
ethe box diagrams with 
harged Higgses do no involve squarks their 
ontribution to theFCNC pro
ess of meson-antimeson mixing is not proportional to o�-diagonal elements ofthe squark mass matrix. By ex
hanging one of the two or both W bosons in the SM boxdiagrams by a 
harged Higgs boson the additional 
ontribution to the meson-antimesonde
ay amplitude depend only on two MSSM parameters, the mass of the 
harged Higgsboson mH± and tanβ. For tanβ ≤ 7 the 
harged Higgs 
ontributions are positive forall allowed values of the 
harged Higgs mass [59℄. They rea
h small negative values for
tan β = 10 for very light Higgs bosons (see i.e. Ch. 5.2, iv, �g. 7 in [59℄). Therefore, themeson-antimeson transition mediated by H± summarised in the Wilson 
oe�
ients CH±

iappears as a small 
onstant shift of the sum of the other Wilson 
oe�
ients whi
h isgiven by the 
hoi
e of the MSSM parameters mH± and tanβ. Yet through the resultingshift in the observable quantities the 
harged Higgs 
ontribution indire
tly in�uen
es the�avour 
hanging parameters under study. Further, we 
al
ulate with the obtained valuesof δu 23
LL and δu 13

LL the CP violating parameter |ǫK | whi
h is used as an additional 
onstrainton the studied mass insertions. The 
onstraint from the CP violation in the mixing ofneutral Kaons has not been 
onsidered by many analyses in the past. However, the valueof the non-perturbative parameter B̂K is known from re
ent latti
e 
al
ulations with agood enough pre
ision su
h that |ǫK | be
omes an important quantity for NP sear
hes.
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13Further, we examine 
onsidering the allowed values for the mass insertions δu 23
LL and δu 13

LLfrom Bs−Bs and Bd−Bd mixing whether the bran
hing ratio Br(B → Xsγ) whi
h isvery sensitive to NP e�e
ts satis�es its experimental bounds. In addition, we are using theobtained values for δu 23
LL and δu 13

LL for the 
al
ulation of theD−D transition amplitude. Sin
ethe D−D transition amplitude is proportional to the produ
t δu 23
LL δ

u 13
LL we tested whetherit is possible to obtain an additional 
onstraint on the produ
t of the mass insertions weare studying from the D−D system.7.1. The 
al
ulation pro
edureIn the 
al
ulation pro
edure we �rst investigate the 
ase in whi
h the SM 
al
ulation sat-is�es the experimental observables inside their 2σ bounds. We take the values of all theinput quantities to be in their 2σ experimental regions su
h that the SM is not experi-mentally ex
luded up to 2σ for all observables under study. In this 
ase NP 
ontributionto the 
al
ulated quantities is ne
essary only if their theoreti
al value has to be equal toa 
ertain value i.e. in the 1σ region, in parti
ular, the 
entral value. The opposite s
enariowhi
h we investigate under the assumption that the SM is maximally ex
luded allows usto obtain the maximum amount of NP 
ontribution whi
h is needed in order to satisfy therequirement that the studied observables do not ex
eed their 2σ experimental bounds. Inthe maximum NP regime we 
al
ulate the entries of the CKM matrix using the values of

|Vcb| and |Vub| obtained from in
lusive semileptoni
 B de
ays. In these pro
esses the quarktransition b→ clνl, respe
tively b → ulνl, is realised. Determinations of |Vcb| from in
lusivede
ays are 
urrently below 2% relative un
ertainty [75℄. At present, the in
lusive de
aysprovide the most pre
ise determination of |Vub|. Unfortunately, the measurement of thetotal de
ay rate of B → Xulνl de
ay is a very 
hallenging task for experimentalists dueto the large ba
kground from CKM favoured B → Xclνl transitions. Taking into a

ountthe un
ertainty in mb as well, the total un
ertainty on |Vub| is at the 10% level [75℄. Themaximal value of the angle β 
orresponds to α = π/2. Thus, we obtain (
f. �g. 4.1)
βmax = arcsinRb (7.1)where the side of the unitarity triangle Rb is given by

Rb =

(

1 − λ2

2

)

1

λ

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

. (7.2)With the numeri
al values V incl
ub = (4.12 ± 0.43) · 10−3 and V incl

cb = (41.6 ± 0.6) · 10−3 we�nd the maximal value βmax = 28.34◦ using the upper and lower 1σ bounds on V incl
ub and



7.2 The logi
al stru
ture of the program 81
V incl

ub , respe
tively.We 
onsider the pro
esses of Bd−Bd mixing, Bs−Bs mixing, K−K mixing, D−D mixingas well as the in
lusive de
ay B → Xsγ. For all these transitions we 
al
ulate the SUSY
ontributions from the 
harged Higgses, gluinos and 
harginos in the loop diagrams.
7.2. The logi
al stru
ture of the programFor the extra
tion of the mass insertions δu 13

LL we have used the pro
edure whi
h logi
alstru
ture is shown as a �ow
hart in �g. A.2. In the following we des
ribe the routine. The
Bs−Bs and Bd−Bd transition amplitudes Ms

12, Md
12, the K−K CP-violating parameter

ǫK as well as the B → Xsγ Wilson 
oe�
ients C7, C ′

7, C8 and C ′

8 are 
al
ulated at previousstages of the program and depend now only on the unknown variables δu 13
LL and δu 23

LL . Thetransition amplitudes Ms
12 and Md

12 are fun
tions of the Bs and Bd de
ay 
onstants fBs
,respe
tively fBd

, as well. We start with Bs−Bs mixing and our �rst goal is the deter-mination of the allowed values for δu 23
LL by s
anning over its real and imaginary part andthe extra
tion of the 
orresponding allowed mass insertion δu 13

LL from the Bd−Bd mixingpro
ess. For this purpose the squark mass eigenvalues are 
al
ulated for ea
h value of δu 23
LLduring the s
anning pro
ess assuming �rst δu 13

LL = 0. For the following 
al
ulation we 
on-sider only points in the (Re δu 23
LL , Im δu 23

LL )-plane for whi
h the numeri
ally smallest squarkmass eigenstate is bigger then a 
ertain lower bound whi
h has been 
hosen to be 350 GeV.When su
h a point is found during the s
anning pro
ess it is inserted into the Bs−Bsmass di�eren
e ∆Ms. Requiring ∆Ms to be equal to the mean value of the experimentallymeasured mass di�eren
e ∆M exp
s = 17.77 ps−1 we �nd the value of the Bs de
ay 
onstant

fBs
. In 
ase the obtained fBs

satis�es the allowed region 208 MeV ≤ fBs
≤ 248 MeV (seetable 4.1) the pro
edure 
ontinues with the 
al
ulation of the NP phase φs

∆. Further, werequire the NP phase φs
∆ to be inside of the 2σ range extra
ted from the analysis of theCKM�tter group (see table 6.1). In the next step, the de
ay 
onstant fBd

is determinedusing the ratio between the de
ay 
onstants in the Bs and Bd systems given in eq. (2.91)whi
h is known from latti
e 
al
ulations with a pre
ision up to 4%. Having inserted thefound value of fBd
in the Bd−Bd mass di�eren
e, the mass insertion δu 13

LL remains the onlyunknown parameter in the Bd−Bd transition amplitude Md
12. Then, taking into a

ountthe SM Bd−Bd transition amplitude M12 SM

d as well as the measured Bd−Bd mass dif-feren
e ∆M exp
d and mixing phase 2βexp the matrix element δu 13

LL is 
al
ulated by requiring
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13the theoreti
al value of the Bd−Bd transition amplitude to be equal to the experimentalone. Sin
e the mass insertion δu 13
LL is a 
omplex quantity, the 
al
ulation of its absolutevalue and phase is performed in an iterative way by starting with a proper value for thephase and solving the equation for the absolute value and then inserting the latter againin Md SM

12 and extra
ting the phase on
e more. This iterative pro
edure is repeated manytimes until the 
al
ulated values for the absolute value and the phase of δu 13
LL are stable.After the determination of δu 13

LL it is inserted in the up-type mass mixing matrix whi
h isdiagonalised and the 
he
k whether the smallest squark mass eigenstate is bigger than thelower bound of 350 GeV has to be passed again. If this is the 
ase the transition amplitude
Md

12 is 
al
ulated by inserting the obtained value of δu 13
LL on
e more in order to be ensuredthat the equation Md

12 = Md,exp
12 indeed holds. This 
he
k is the last 
on�rmation thatthe mass insertion δu 13

LL has been 
orre
tly 
al
ulated. Then, the whole pro
edure 
an berepeated iteratively by using the obtained value of δu 13
LL as an input in ∆Ms together with

δu 23
LL . The de
ay 
onstant fBs

is determined from the new value of ∆Ms and the pro
edure
ontinues with the further steps des
ribed above. After a 
ertain number of iterations issu

essfully 
ompleted the numeri
al values of the quantities ǫK , Br(B → Xsγ) and ∣∣MD
12

∣

∣is 
al
ulated with the extra
ted values of δu 23
LL and δu 13

LL .In order to ensure that the routine des
ribed above will work for di�erent s
enarios and
hoi
es of the MSSM input parameters a lot of additional subroutines and 
he
ks have beenin
luded in the numeri
al pro
edure whi
h logi
al stru
ture has been explained above. Inparti
ular, possible divergen
es in 
ase of equal eigenstates of the squark mass matri
eshave to be avoided. For spe
ial 
hoi
es of the gluino mass and the mass of the 
harged Higgsbosons, su
h that they be
ome a

identally very similar to squark mass eigenstates duringthe s
an over the real and imaginary part of the mass insertion δu 23
LL , 
ertain loop fun
tions
an diverge as well. In order to ensure the stability of the program it has been ne
essaryto distinguish between several sub
ases. The analyti
al diagonalisation of the squark massmixing turned out to be a di�
ult and time 
onsuming task for the software Mathemati
awhi
h has been used in the 
al
ulation pro
edure. In parti
ular, after applying the SU(2)relation in eq. (6.15) to obtain the entries of the down-type squark mass matrix from thoseof the up-type squark mass matrix its elements be
ome a 
omplex polynomial fun
tion ofthe mass insertions δu 23

LL and δu 13
LL . From a mathemati
al point of view the diagonalisationof a 
omplex unitary matrix fails, if its determinant vanishes whi
h means that the inversematrix does not exist. It turned out that even in the 
ase of a 
omplex unitary 3 × 3
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al analysis 83matrix as an input the 
al
ulation of the eigenve
tors is not possible with the standardtools of Mathemati
a in 
ase of matrix elements whi
h are 
omplex polynomial fun
tionsof one variable. In our 
ase of study the problem has been easily solved be
ause of thespe
ial kind of the transformation de�ned by the SU(2) relation eq. (6.15), namely, it is anunitary transformation. A

ording to the Sylvester's theorem (whi
h is a spe
ial 
ase of thelemma on matrix determinants) lemma the up-type and down-type squark mass matrixhave the same 
hara
teristi
 polynomial and therefore the same eigenvalues as well. Theeigenve
tors are related to ea
h other through the CKM matrix. With the de�nitions ineq. (4.55) we �nd
(M2

D̃
)D = (M2

Ũ
)D, ZD = ZUV. (7.3)However, for obtaining the eigenve
tors of a general 
omplex matrix whi
h elements arenot given as expli
it numbers but as 
omplex polynomial fun
tions the standard tools ofthe software Mathemati
a 
annot be applied in general.For reason of 
larity and a better understanding of the main logi
 of our pro
edure for nu-meri
al determination of the mass insertions, the additional 
he
ks and subroutines whi
hhave been in
luded in order to improve the routine 
on
erning the speed, the maintenan
eof di�erent problems with divergen
es o

urring in spe
ial 
ases and ensuring the 
orre
t-ness of the numeri
al results have not been expli
itly shown on the �ow
hart in �g. A.2.7.3. Results of the numeri
al analysisThe determination of the mass insertions δu 23

LL and δu 13
LL in the numeri
al analysis is basedon the 
orrelation between the Bs−Bs and Bd−Bd mixing pro
esses. Then, we pla
e addi-tional 
onstraints on these parameters 
onsidering the other pro
esses whi
h involve theseo�-diagonal elements of the up-type squark mass matrix, in parti
ular, the CP violationparameter ǫK , the bran
hing ratio Br(B → Xsγ) and the D−D transition amplitude ∣∣MD

12

∣

∣.Taking into a

ount the experimental bounds on these quantities we investigate whi
h val-ues of the mass insertions are ex
luded from the pro
esses mentioned above even if theyare allowed from B−B mixing. This analysis is performed for the region of the (ρ, η)-plane
ompatible with the SM as well as in s
enarios in whi
h the NP 
ontribution is maximal.The results are shown as plots of all the 
ombinations of the real part and imaginary partof the mass insertions δu 23
LL and δu 23

LL in �g. A.5 in the appendix. For the �gures we use thefollowing setup of supersymmetri
 parameters: M2 = 500 GeV, µ = 200 GeV, tanβ = 7,
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13

mH± = 500 GeV, mg̃ = 500 GeV, all diagonal elements in the up-squark mass matrix areset to 500 GeV as well. In following we will 
omment on the results shown in the plots.We plot the absolute value of the D−D transition amplitude ∣∣MD
12

∣

∣ as a fun
tion of theabsolute value of the mass insertion δu LL
23 in �g. A.2. The plot shows that in our s
enariowith two-step �avour transition c̃L → t̃L → ũL not even the lower 2σ experimental boundof the D−D transition amplitude 
an be rea
hed. In order to explain the D−D mixingamplitude as a pure supersymmetri
 e�e
t the mass insertion δu LL

12 and/or additional massinsertion in the LR se
tor would be ne
essary. As one 
an see on the plot in �g. A.2 this
on
lusion is true in the maximal NP regime as well.In �g. A.5 we show the plots for all the 
ombinations of the real part and imaginary part ofthe mass insertions δu 23
LL and δu 23

LL in the SM regime. These simulations have been performedwith a CKM elements obtained from a point in (ρ, η)-plane su
h that all observables are
ompatible with the SM in their 2σ regions. The plots show the regions allowed from
|ǫK | and Br(B → Xsγ) with di�erent 
olours. The points for whi
h the 2σ regions ofthese parameters are not violated lie within the intervals −0.01 < Re (δu 13

LL ) < 0.025 and
−0.03 < Im (δu 13

LL ) < 0.01. These regions 
orrespond to −0.08 < Re (δu 23
LL ) < 0.180 and

−0.325 < Im (δu 23
LL ) < 0.125. In the maximal NP regime we use the CKM matrix elements

Vub and Vcb determined from in
lusive B de
ays. This leads to an in
rease of the angle βof the unitarity triangle. In addition, we de
rease the experimental value βexp to its lower
2σ bound in order to 
reate a bigger tension with the SM. The plots obtained in this wayin the maximal NP regime are shown in �g. A.7.In addition, we show in �g. A.2 the maximal value of the Bs−Bs mixing phase φs

∆ 
orre-sponding to a 
ertain allowed value of the mass insertion δu LL
23 for di�erent gluino massesin the maximum NP regime. From this plot we 
an 
on
lude that in 
ase of small gluinomasses when the gluino 
ontribution to the Bs−Bs mixing be
omes big the value of thenegative mixing phase in
reases. The reason for this is that the gluino 
ontribution dire
tlyinvolves the phase of the mass insertion δu LL

23 (see i.e. eqs. (6.17) and (6.26)). The mini-mum of the 
urve arises due to 
an
ellation between the 
rossed and un
rossed gluino boxdiagrams. This fa
t has been dis
ussed previously in Ch. 6.1 and illustrated in �g. A.2 and�g. A.3.



85
8. Summary and outlookWith the start of the LHC not only the sear
h for the one only missing parti
le in theSM, the Higgs boson, but also the dire
t sear
h for physi
s beyond the SM has begun. Thebiggest dis
overy ma
hine ever built is espe
ially designed for exploring the TeV s
ale, theregion where the masses of the new elementary parti
les postulated by the most favouredmodel for manifestation of NP, the minimal supersymmetri
 extension of the SM, are ex-pe
ted to be. The postulated superpartners of SM parti
les a�e
t the physi
al pro
essesand 
hange the values of the observable quantities. The extent to whi
h the theoreti
alpredi
tion of a 
ertain pro
ess is 
hanged under the 
onsideration of the NP parti
les de-pends on many parameters of the 
ertain NP model, in parti
ular, 
onsidering the MSSM,on the masses of the supersymmetri
 parti
les involved in the 
ertain transition or de
aypro
ess. Unfortunately, these parameters 
annot be theoreti
ally predi
ted from the NPmodel itself. The predi
tion of the mass spe
trum of the supersymmetri
 parti
les is a veryimportant issue from phenomenologi
al point of view as well as an essential topi
 in regardto the dire
t sear
h for superparti
les at the LHC. Thus, the squark mass matri
es havebeen the obje
t of study of numerous analyses in the past.With this work we have done a 
ontribution to the understanding of the �avour violationin the MSSM and the 
onsraining of the MSSM parameter spa
e from pro
esses whi
hare well known in the SM but very sensitive to 
ontributions of supersymmetri
 parti
leswith masses of the weak s
ale. The aim of this study has been the analysis and the 
on-straint of parameters 
losely related to the mass spe
trum of the MSSM. In parti
ular,the impa
t of �avour 
hanging elements in the LL se
tor of the squark mass matri
es onFCNC pro
esses has been investigated in detail. The supersymmetri
 
ontributions at oneloop to the meson mixing pro
esses have been 
al
ulated. For the evolution of the Wilson
oe�
ients for the ∆F = 2 meson mixing pro
esses the so 
alled magi
 numbers from thetwo loop anomalous dimension matrix in the regularisation independent renormalisations
heme have been 
al
ulated using loop results from the literature.
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Considering the re
ent analysis of the CKM�tter 
ollaboration with A. Lenz and U. Nierste
on
erning the possible amount of NP 
ontribution to the Bd−Bd and Bs−Bs mixingpro
esses, we 
ould obtain a relation between the allowed regions for the parameters whi
hmeasure the NP 
ontribution in the Bd and Bs se
tor. We have found that a big 
hargino
ontribution to the Bs−Bs mixing pro
ess 
aused by a transition between the se
ondand third squark generation implies an e�e
t of the same order in the Bd−Bd systemas well. However, the opposite statement is not true. If large �avour violation mediatedby 
harginos between the �rst and the third squark generation sizeably enhan
es Bd−Bdmixing, the e�e
t on the Bs−Bs system is at the per mille level. Taking into a

ount thefa
t that the NP 
ontribution to the Bd−Bd se
tor 
hara
terised by the 
omplex parameter
∆d is mu
h better 
onstrained than the 
orresponding parameter ∆s in the Bs−Bs se
tor,we 
ould link the allowed regions (at 68.3% CL, 95.45% CL and 99.73 CL) in the ∆d planeto the ∆s plane provided that the mass insertion δu LL

23 is the sour
e of �avour violation.We found that only a small region of the plot related to the Bs−Bs is 
overed in 
ase ofan up-type squark mass matrix with equal diagonal elements. However, that region 
an beenlarged by allowing a mass di�eren
e between the diagonal elements of the LL blo
k ofthe mass mixing matrix or an additional �avour violation stemming from the LR se
tor.The measurement of the experimental quantities involved in the NP analysis in the B−Bsystem of the CKM�tter group is one of the main goals of the LHCb experiment. In future,it will provide data with su�
iently small experimental un
ertainty su
h that the allowedregions for NP would shrink. This would allow the 
onstraining of the di�eren
e betweendie diagonal elements of the LL blo
ks of the squark mass matri
es.The next topi
 whi
h has been investigated is the estimation of the maximal possible masssplitting of left handed squarks 
onsidering the experimental bounds from the meson mix-ing pro
ess in the neutral K−K and D−D systems. We analysed four di�erent s
enariostaking into a

ount the gluino 
ontribution and the ele
troweak 
ontributions stemmingfrom neutralino and 
hargino as well as the mixed neutralino-gluino ex
hange in the boxdiagrams. In all MSSM analysis the main fo
us has been set on gluino 
ontributions. The
ontributions 
aused by ele
troweak intera
tion e�e
ts has been negle
ted 
laiming thatthey are suppressed by a fa
tor g4
2/g

4
3 in the box diagrams. In fa
t, in our analysis wefound that the gluino 
ontribution is indeed dominant for small gluino masses. However,in the opposite 
ase it 
an be suppressed be
ause of the 
an
ellation between the 
rossed
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rossed box diagrams. Thus, the usual argument provided by previous analyses thatthe ele
troweak 
ontributions 
an be negle
ted 
onsidering their smallness in 
omparisonto the gluino 
ontribution does not hold anymore in the region where the gluino mass isbigger than the relevant squark mass in the loop fun
tion. In the s
enario with 
ompletealignment in the up se
tor the up squark mass matrix is 
hosen to be diagonal. In theopposite 
ase where the down mass mixing matrix is diagonal there is a 
omplete align-ment in the down se
tor. Further, we obtained the maximal possible mass splitting in asituation with intermediate alignment in the up and down se
tor where neither the upnor the down mass matrix is diagonal. In the last s
enario we have 
hosen equal diagonalelements and one o�-diagonal element with a 
omplex phase whi
h maximises the indire
tCP violation in the Kaon system. In this 
ase we obtain the most stringent bound on themass splitting from K−K mixing pro
ess. For light gluino masses strong 
onstraints onthe mass splitting have been found. However, if the gluino is heavier then the squarks largeregions in the MSSM parameter spa
e are allowed from K−K and D−D mixing wherethe masses of the left-handed squarks 
an be highly non-degenerate. This fa
t 
an haveinteresting 
onsequen
es for LHC ben
hmark s
enarios whi
h usually assume that squarksof the �rst two generations have the same masses.The next part of this work has been the numeri
al analysis on the LL part of the squarkmass matri
es whi
h aim has been the determination of bounds on the �avour 
hangingparameters δu LL
13 and δu LL

23 . The simulation is performed in the general MSSM and is mostlyindependent of boundary 
onditions. The SUSY 
ontributions from 
harged Higgs bosons,
harginos and gluinos are 
onsidered. The in
lusion of ele
troweak 
ontributions to thebox diagrams whi
h have been negle
ted in almost all previous analyses of this type isimportant espe
ially for the regions in the MSSM parameter spa
e where the gluino massis bigger than the squark masses. As we have shown, in this regions the gluino 
ontributionsu�ers from the fa
t that it is a Majorana parti
le and a se
ond, 
rossed box diagramo

urs: A 
an
ellation between these two kinds of boxes 
an appear. Be
ause of this fa
tthe 
onsideration of only strong SUSY 
ontributions to the meson mixing is not justi�edin general.Starting with the Bs−Bs mixing pro
ess and assuming �rst δu LL
13 = 0 a s
an over thereal and imaginary parts of δu LL

23 has been performed. The value determined for δu LL
13 issubsequently used as a new input in order to determine a stable value in an iterative way.In many previous analyses the mass insertion approximation has been used in order to
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ompli
ations whi
h 
an o

ur in 
ase of exa
t diagonalisation of the squark massmatri
es. However, the mass insertion approximation is not valid for large o�-diagonalelements. We perform the analysis with exa
t diagonalisation of the squark mass matri
es.This has the advantage that we are not restri
ted to a small mass insertions only but ourapproa
h is valid when during the s
an over the real part and imaginary part of δu LL
23the 
al
ulation is done with big values of this �avour-
hanging parameter as well. The

Bd−Bd and Bs−Bs mixing are very suitable pro
esses for NP sear
hes and 
onstraintson parameters of di�erent NP s
enarios be
ause they belong to the rare pro
esses whi
hare very sensitive to NP e�e
ts and are experimentally known to a good a

ura
y as well.Therefore, the mixing of neutral B mesons have been the obje
t of study of many analyseson MSSM parameter spa
e. However, usually the pro
esses of meson mixing in the Bsand Bd system have been treated independently from ea
h other. In our analysis we havetaken into a

ount the 
orrelation between the Bs−Bs and Bd−Bd mixing pro
esses givenby the ratio of the 
orresponding de
ay 
onstants. This is an additional 
onstraint in theanalysis. Another advantage of our approa
h is given by the fa
t that the ratio of the de
ay
onstants is determined by 
al
ulations on the latti
e to a mu
h better pre
ision than thede
ay 
onstants themselves.We investigate two 
ases, the SM regime where the numeri
al values of all observables havebeen taken to be in their 2σ experimental regions su
h that the SM is not ex
luded as wellas the maximal NP regime. In the last the experimental values of the input parameters are
hosen in su
h a way that the maximal tension between the experimental observables andtheir SM predi
tions o

ur. In addition, we test whether the values for the studied massinsertions whi
h are allowed from Bs−Bs and Bd−Bd mixing satisfy the bounds from thebran
hing ratio of the in
lusive B → Xsγ de
ay as well as the bounds from the parameter
ǫK whi
h measures the indire
t CP violation in the neutral Kaon system. The indire
t CPviolation parameter |ǫK | was not 
onsidered by many analyses in the past. However, 
onsid-ering re
ent latti
e 
al
ulations allow the determination of the non-perturbative part of the
K−K mixing amplitude with a good enough pre
ision su
h that |ǫK | be
omes an impor-tant quantity for NP sear
hes or pla
ing 
onstraints on MSSM parameters. Furthermore,we 
he
k the size of the SUSY 
ontribution governed by the determined �avour-
hangingparameters δu LL

23 and δu LL
13 to the D−D mixing pro
ess. For the 
hosen point in the MSSMparameter spa
e we �nd that the 2σ regions of the experimental observables are not vi-olated if the real and imaginary parts of the mass insertions do not ex
eed the intervals

−0.010 < Re (δu 13
LL ) < 0.025, −0.03 < Im (δu 13

LL ) < 0.01, −0.08 < Re (δu 23
LL ) < 0.18 and
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−0.325 < Im (δu 23

LL ) < 0.125 for mg̃ = 500 GeV and mq̃ = 500 GeV. It is found that for thestudied points in the MSSM parameter spa
e the �avour violation in the D meson system
aused by the produ
t of the mass insertions δu LL
23 and δu LL

13 is not su�
ient to explain the
urrent experimental bounds on the D−D transition amplitude. In order to explain themixing of neutral D mesons as a pure supersymmetri
 e�e
t the �avour violation has tobe enhan
ed through the mass insertion δu LL
12 and/or additional mass insertion in the LRse
tor of the squark mass matrix.In the future the numeri
al analysis 
an be extended to the LR se
tor of the squarkmass matri
es. While the LL parts of the up-type and down-type squark mass matri
es arerelated to ea
h other be
ause of the SU(2) gauge symmetry of the left-handed fermion se
tortheir LR blo
ks are 
ompletely independent. If the LL part of the up-type squark massmatrix is not proportional to the unit matrix in the LL part of the down-type squark massmatrix o�-diagonal elements are generated whi
h are �avour violating and indu
e a gluino
ontribution to the B−B meson mixing pro
esses. Pra
ti
ally, a non minimal 
hargino
ontribution ne
essarily leads to a gluino 
ontribution in the B−B mixing. However,be
ause of the absent relation between the LR blo
ks of the squark mass matri
es we havethe freedom to 
hoose their elements independently. In this way one has better 
ontrolon the di�erent SUSY 
ontributions to the meson mixing pro
esses and 
an investigatethe limits given by only 
hargino 
ontribution to the box diagrams and absent gluinoones or vi
e versa. It would be interesting to investigate the more general 
ase with a�avour violation 
aused by o� diagonal elements in the LL or LR blo
k of the mass mixingmatri
es in the presen
e of diagonal elements in the LR blo
k as well. Even if these elementsdo not a�e
t dire
tly the �avour 
hanging pro
ess they allow an additional 
hirality �ipinside the same squark generation. Through the 
hange of the squark mass eigenstatesby the presen
e of these additional �avour-
onserving but 
hirality-
hanging squark massmatrix elements all supersymmetri
 
ontributions to the meson mixing pro
esses wouldbe a�e
ted. Furthermore, the obtained bounds on the mass insertions a�e
t single topprodu
tion pro
esses whi
h is an important topi
 for the LHC.
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A.1. The Feynman rules for MSSMIn following we write the Feynman rules whi
h have been used in the 
al
ulation of thesupersymmetri
 
ontributions to the 
onsidered pro
esses in the MSSM. For the Feynmanrules listed below we use the 
onventions for diagonalising the mass mixing matri
es forsquarks and gauginos given in Ch. 4.2. The obtained results of the 
al
ulation of the Wilson
oe�
ients for the meson mixing pro
esses are in full agreement with the results given inthe appendix of [59℄. Note that the authors of [59℄ use the 
onvention of [43℄.
A.1.1. Quark-squark-gluino verti
es

un
I (dn

I )

Um
i (Dm

i ) Λa
G

= −i
√

2gY a
mn

[

(ZU(D))
iIPL − (ZU(D))

i(I+3)PR

]

um
I (dm

I )

Un
i (Dn

i ) Λa
G

= −i
√

2gY a
mn

[

(Z†
U(D))

IiPR − (Z†
U(D))

(I+3)iPL

]



92 A. AppendixA.1.2. Quark-squark-
hargino verti
es
dn

I

Um
i χ̃−

j

= i
e

sW

3
∑

J=1

[

(−Z†Ji
U Vj1 + Z

†(J+3)i
U Vj2K

J
U)PR+

+Z†Ji
U U †

2jK
I
DPL

]

K†IJδmn

un
I

Dm
i χ̃+

j

= i
e

sW

3
∑

J=1

[

(−Z†Ji
D Uj1 + Z

†(J+3)i
D Uj2K

J
D)PR+

+Z†Ji
D V †

2jK
I
UPL

]

KIJδmn

dn
I

Um
i χ̃−

j

= i
e

sW

3
∑

J=1

[

(−Z iJ
U V

†
1j + Z

i(J+3)
U V †

2jK
J
U)PL+

+Z iJ
U Uj2K

I
DPR

]

KJIδmn

dn
I

Um
i χ̃−

j

= i
e

sW

3
∑

J=1

[

(−Z iJ
U V

†
1j + Z

i(J+3)
U V †

2jK
J
U)PL+

+Z iJ
U Uj2K

I
DPR

]

KJIδmnA.1.3. Quark-squark-neutralino verti
es
dn

I

Um
i χ̃0

j

= i
e

sW

{[(

−
√

2(Qd +
1

2
) tan θWZ

j1
N +

1

2
Zj2

N

)

Z†Ii
D − Z

†(I+3)i
D Zj4

N K
I
D

]

PL

+
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2QdZ
†1j
N tan θWZ

†(I+3)i
U − Z†Ii

D Z†4j
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D

)

PR
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un

I

Um
i χ̃0

j
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e

sW

{[(

−
√

2(Qu −
1

2
) tan θWZ

j1
N − 1

2
Zj2

N
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U Zj4
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−
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A.1.4. Quark-quark-
harged Higgs verti
es
un

J

dm
I H+

= i
e

sW

(

Z1i
HK

I
DPL + Z2i

HK
I
UPR

)

K†IJδmn
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un

J

dm
I H+

= i
e

sW

(

Z†i1
H KI

DPR + Z†i2
H KI

UPL

)

KJIδmn

The Yukawa 
ouplings KI
D and KI

U used in the Feynman rules listed above are given by
KI

D =
mI

d√
2MW cosβ

, KI
U =

mI
u√

2MW sin βwhere mI
d and mI

u are the masses of the down-type quarks and up-type quarks of thegeneration I = 1, 2, 3, respe
tively.A.2. PlotsIn this se
tion we show the �ow
hart of the program for numeri
al analysis of δu 13
LL and

δu 23
LL and all the plots whi
h have been des
ribed in previous 
hapters of this work.
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Figure A.1: Logi
al stru
ture of the program for 
al
ulating the matrix elements δu LL
13 from

δu LL
23 (we skip the index "u" in δu LL

ij )
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Figure A.6: |MD
12| 
al
ulated with the δu LL

23 and δu LL
13 allowed from B−B mixing in theMaximum NP regime. Green (upper) line: lower bound 1σ level; Red (lower) line: lowerbound 2σ level.
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φs in the maximum NP regime from B−B mixing (all points), K−K (red), B → Xsγ(green). The bla
k region is allowed from all pro
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