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3
1. IntrodutionThe objets of study of theoretial partile physis are the fundamental laws of nature.Its aim is to desribe the elementary onstituents of matter and their interations withina theoretial framework whih implies preditions for partile experiments. All the knowl-edge about the elementary partiles and fores in nature is theoretially lassi�ed in the soalled Standard Model (SM) of elementary partile physis. This SU(3) × SU(2) × U(1)gauge theory of the strong and eletroweak interations developed by Glashow, Weinbergand Salam starting in 1967 desribes almost all experimental results obtained at the ele-mentary partile olliders until now with remarkable preision. Let me set a short exampleof the power of the Standard Model. Combining the most preise experimental measure-ment of the anomalous magneti moment of the eletron g/2 = 1.001 159 652 180 85(76) [1℄with high preision alulation in quantum eletrodynamis, the most preisely tested partof the Standard Model, one obtains the value α−1

s = 137.035 999 709 (96)[0.70 ppb] [2℄ forthe �ne struture onstant, with an amazing theoretial preision. Experiments based onatom reoil methods determine the �ne struture onstant independently of the anomalousmagneti moment of the eletron. The atoms of the hemial elements Rubidium (Rb)and Caesium (Cs) are the most appropriate ones for the experimental determination ofthe �ne struture onstant. Comparing the results α−1(Rb) = 137.035 998 78(91)[6.7 ppb]and α−1(Cs) = 137.036 000 0(11)[8.0 ppb] with the theoretial value given above we �nda di�erene from −1.0 and +0.3 standard deviations, respetively [2℄. That omparison isknown as the best test of the validity of the QED. The inredible theoretial and experi-mental auraies demonstrate the impressive preditive power of the Standard Model.However, there are many examples whih show the disrepany between the SM predi-tions and experimental results. Let me mention one of them. The di�erene between theSM theoretial predition for the anomalous magneti moment of the heavier �brother� ofthe eletron, the muon, and the experimental measurement for this quantity is more than 3standard deviations. That means, the anomalous magneti moment of the muon annot beexplained within the Standard Model with a probability of more than 99.6%. The aim of



4 1. Introdutionthe theoretial physiists is to develop a onsistent theory with the smallest possible num-ber of free parameters whih explains the properties of the partiles and the fundamentalinterations in nature. Despite of its phenomenologial suess the Standard Model has sev-eral drawbaks: Some ouplings develop Landau poles, the exat mehanism of eletroweaksymmetry breaking is not understood, the uni�ation of strong and and eletroweak inter-ations is inomplete, the hierarhy between the Plank, GUT and the eletroweak saleand the strong CP problem are not addressed. Further, the SM annot explain the observeddark matter in the universe nor the preponderane of matter over antimatter. One of thefundamental questions unaddressed in the early stages of the SM is the mehanism howthe fermions obtain their masses. Seven years later, Weinberg and Salam inorporated theso alled Higgs mehanism [4�6℄ into the eletroweak theory of Glashow in order to providea theoretial explanation of the masses of spin-one-half partiles and gauge bosons [7,8℄. Infat, the SM needs the Higgs mehanism for its preditive power. However, this is the onlypart of the theory whih has not been experimentally on�rmed yet. The searh for theHiggs boson, the theoretially postulated partile whih gives masses to the fermions andgauge bosons is the most important goal of today's biggest disovery mahine in the world,the Large Hadron Collider (LHC). Its prime purpose is the investigation of the mehanismof eletroweak symmetry breaking and of the dynamis whih stabilises the eletroweaksale. General onsiderations of the latter aspet suggest New Physis (NP) with partilemasses around or below 1 TeV. In order to provide a satisfatory explanation of di�erentexperimental observations and to solve oneptual problems of the Standard Model manyapproahes for inorporation of the Standard Model into a more general theory have beenproposed. In fat, among various possible extensions of the Standard Model by far the mostpopular one is the Supersymmetry (SUSY), in partiular, the so alled Minimal Supersym-metri Standard Model (MSSM). The reason why the MSSM has beome the most favouredextension of the Standard Model in the last deades is its apability to solve a very largespread of theoretial problems inluding gauge oupling uni�ation, to give a rationale fora heavy top and light Higgs, to provide a method of uni�ation of gravity with other gaugefores and �nally to provide a dark matter andidate, the lightest supersymmetri partile.Inreasing the preision of the theoretial preditions for the masses and other propertiesof the new partiles in di�erent possible senarios of the Supersymmetry is very importantfor the searhes of these partiles at the high-pT experiments of the LHC. One of the mostimportant tasks of theoretial partile physis is therefore to identify and investigate theproesses whih are highly sensitive to ontributions of supersymmetri partiles in order



1. Introdution 5to test the Standard Model and to larify where manifestation of Supersymmetry an showup and how to distinguish Supersymmetry from other possible theories beyond the Stan-dard Model. Hopefully, in upoming years the physis ommunity will unover the laws ofnature governing the TeV sale.In fat, Supersymmetry, in partiular the minimal supersymmetri extension of the SM(MSSM) is the most favoured model of NP onsidered to explain the disrepanies betweenSM preditions and experiments. The MSSM predits many new partiles. The postulatedsuperpartners of SM partiles a�et the physial proesses and hange the values of theobservable quantities. The extent to whih the theoretial predition of a ertain proess ishanged in a given model of NP depends on many parameters of the ertain NP model, inpartiular, onsidering the MSSM, on the masses of the supersymmetri partiles involvedin the studied transition amplitude.The predition of the mass spetrum of the supersymmetri partiles is a very importantissue from phenomenologial point of view as well as an essential topi in regard to thediret searh for superpartiles at the LHC. Therefore, the squark mass matries have beenthe objet of study of numerous analyses in the past. In view of the start of the LHC anyimprovement of the knowledge about the mass spetrum of the MSSM is important andtimely.The aim of this work is to onstrain the parameters of the MSSM by onsidering proesseswhih are highly sensitive to ontributions from supersymmetri partiles. Sine mesonmixing proesses are known with good experimental auray and have small theoretialunertainties, they are espeially appropriate andidates for this purpose. The fous is seton generi physial relations whih are mostly independent of boundary onditions. Suha physial relation stems from hargino boxes whih orrelate Bd−Bd mixing and Bs−Bsmixing through the CKMmatrix elements involved in the meson mixing proesses. Anothervery important theoretial issue is the relation between the left-handed up-type squarkmass matrix and the left handed down-type one M2
u LL = VM2

d LLV
† due to SU(2) gaugesymmetry in the left handed fermion setor. Sine these mass matries are not independent,the only way to avoid �avour o�-diagonal mass insertions in the up and in the downsetor simultaneously is to hoose the up-type and the down-type mass mixing matrixproportional to the unit matrix. This is realised in the naive minimal �avour violatingMSSM. In a more general de�nition of Minimal Flavour Violation (MFV) [64, 65℄ �avour



6 1. Introdutionviolation is postulated to stem solely from the Yukawa setor, resulting in FCNC transitions(whih an now also be mediated by gluinos and neutralinos) proportional to produts ofCKM elements and Yukawa ouplings. In addition, we take into aount the numerialrelation between the Bs−Bs mixing and Bd−Bd mixing transition due to the ratio ofthe deay onstants and the bag parameters in the Bs and Bd system. In almost all theanalyses of this type the Bs−Bs mixing and Bd−Bd mixing are treated independentlyfrom eah other. However, these two proesses are related to eah other through the ratioof the deay onstants of the Bs and Bd mesons. The numerial value of this ratio is knownfrom lattie alulations to a muh better preision than the quantities in the numeratorand denominator themselves.Studying in detail the experimental data and the analyses of the CKM�tter and Ut�tollaborations whih estimate the amount of New Physis in the meson mixing proesses,we derive a general relations between fundamental parameters of the MSSM. Assuming anon diagonal elements in the LL part of the squark mass matries the impat of the di�erentSUSY ontributions to the mixing phase in the Bs and Bd meson systems is investigated.We determine general relations between the masses of the squarks, the mass of the gluinoand the o�-diagonal elements of the squark mass matries.Performing an exhausting analysis of the meson mixing proesses in the K−K and D−Dsystems, our aim has been to investigate the possible mass splitting between the left-handed squarks. We have onsidered di�erent senarios given by the hoie of the formof the up-type and down-type mass mixing matries. In ontrast to previous analyses inwhih the eletroweak supersymmetri ontributions to the meson mixing proesses havebeen negleted laiming their smallness in omparison to the gluino ontribution we havefound that this argumentation does not hold for gluino masses bigger then the squarkmasses. In this region of the MSSM parameter spae the eletroweak ontributions an beeven dominant and they have been inluded in our alulation as well.The aim of our numerial analysis is to obtain onstraints on the δu LL
i3 mass insertions of theup-type squark mass matrix in the general MSSM. For this purpose, we �rst onsidered the

Bs−Bs and Bd−Bd mixing proesses alulating the eletroweak and strong ontributionsin general MSSM. In an iterative proedure we pass through several onstraints and obtainthe allowed values for the mass insertions δu LL
23 and δu LL

33 . We take into aount the hargedHiggs ontribution to the meson mixing box diagrams as well. Sine these diagrams do notinvolve squarks their ontribution a�ets the �avour hanging proess only in a MFV way.Yet through the resulting shift in the observable quantities the harged Higgs ontribu-



1. Introdution 7tion in�uenes the �avour hanging parameters under study. With the obtained values for
δu 23
LL and δu 13

LL we alulate the CP violating parameter ǫK whih is used as an additionalonstraint on the studied mass insertions. The parameter ǫK whih measures the CP viola-tion in mixing in the Kaon system has not been onsidered by many analyses in the past.However, the value of the non perturbative parameter B̂K is known from reent lattiealulations with a good enough preision suh that ǫK beomes an important quantity forNP searhes or analysis whih aim is the onstraining of o�-diagonal elements of the squarkmass matries. Further, we examine whether the branhing ratio Br(B → Xsγ) whih isvery sensitive to NP e�ets satis�es its experimental bounds. In addition, we onfront theobtained values for δu 23
LL and δu 13

LL with the D−D transition amplitude.We start with the desription of the main theoretial formalism in the next hapter. Afterthat, we onentrate on the main features of our studies and desribe in detail the performedanalyses whih aim has been the onstraining of the MSSM parameter spae, in partiular,plaing bounds on elements of the mass mixing matries. In the last part of this work, weomment on the results of our analyses before we onlude and give a short outlook.



8 1. Introdution



9
2. The Effetive Hamiltonian formalismTheoretial preditions of several measurable quantities relevant in meson mixing phe-nomenology are usually studied in some e�etive theory obtained by using the so alledOperator Produt Expansion (OPE). A ommon feature of the OPE is the de�nition ofloal operators of the form (in the ase of ∆B = 2 transitions)

Q = Cαβγδ(bαΓqβ)(bγΓqδ) (2.1)where Γ is a general Dira matrix ating on spinor indies, α, β, γ, δ are olour indiesand the onstant Cαβγδ is given by either δαβδγδ or δαδδβγ.The obtaining of physial amplitudes from the matrix elements of Q goes through thefollowing three steps:1. Mathing of the full theory onto the e�etive one at some large energy sale.2. Renormalisation-group evolution from the high energy sale to the low energy salesuitable for the alulation of the hadroni matrix elements.3. Calulation of the hadroni matrix elements using non-perturbative methods.2.1. General de�nitions and sheme dependeneThe matrix elements of the e�etive Hamiltonian an be written as
Aeff = 〈F |Heff |I〉 =

∑

i

〈F |Qi(µ)|I〉Ci(µ) (2.2)where the 〈Qi(µ)〉 are matrix elements of loal operators and the Ci(µ) denote the orre-sponding e�etive ouplings, the so alled Wilson oe�ients. In eq. (2.2) µ denotes theenergy sale where the mathing of the full theory onto the e�etive one is performed. Ingeneral, its value an be hosen arbitrarily. Through the OPE the problem of the alula-tion of transition amplitudes an be separated in two parts. The Wilson oe�ients Ci(µ)



10 2. The E�etive Hamiltonian formalismwhih ontain the short-distane (perturbative) e�ets are alulated using perturbationtheory methods. Sine the physis ontributions from energy sales higher than µ are on-tained in Ci(µ), they are a�eted by the heavy partiles involved in the problem i.e. W ,
Z-bosons and new partiles of supersymmetri extensions of the SM. The alulation ofthe Wilson oe�ients is performed at the high sale de�ned by the masses of the heavypartiles. On the other hand, for the determination of the matrix elements 〈Qi(µ)〉 whihsummarise long-distane (non-perturbative) e�ets non-perturbative methods i.e. lattieQCD, QCD sum rules, hiral perturbation theory et. are used. In this ase the sale µis usually hosen to be of the order of the deaying hadron. Sine the mathing onditionrequires the mathing sale µ to be the same for the Wilson oe�ients as well as for thehadroni matrix elements either the e�etive ouplings Ci(µ) have to be evolved down tothe sale of the matrix elements or vie versa. The evolution is done using Renormalisa-tion Group (RG) equations. The transition amplitude A does not depend on the mathingsale µ. Therefore, the µ-dependene of the Wilson oe�ients and the µ-dependene ofthe hadroni matrix elements have to anel eah other. For a very lear introdutory ex-planation of the OPE in the ontext of the meson mixing phenomenology as well as ofother important proesses sensitive to NP e�ets we refer to [9℄.2.2. The Renormalisation Group EvolutionThe today's most preise determinations of the hadroni matrix elements are known fromlattie gauge theory. These alulations are performed using so alled Regularisation In-dependent renormalisation shemes (RI-MOM). However, in pratial alulations of theWilson oe�ients in meson mixing proesses Minimal Subtration shemes (MS, MS)appear to be more onvenient. In order to solve the problem with the di�erent sales men-tioned above, the Renormalisation Group (RG) evolution has to be performed in a ertainrenormalisation sheme. In the following we onentrate on the RG evolution in ontext ofthe di�erent renormalisation shemes and show the translation of the main results betweenthe di�erent shemes. The important results are summarised and explained. Our disussionis based on the theoretial approah disussed in ref. [11℄.2.2.1. The Anomalous Dimension MatrixThe Renormalisation Group evolution follows from the requirement that the transitionamplitude is independent of the mathing sale µ. Adopting a vetor notation for the



2.2 The Renormalisation Group Evolution 11Wilson oe�ients and the hadroni matrix elements we take the derivative of Aeff in eq.(2.2) with respet to µ and obtain
µ2 d

dµ2
〈 ~QT (µ)〉 ~C (µ) + 〈 ~QT (µ)〉µ2d

~C (µ)

dµ2
= 0. (2.3)The relation between the bare and the renormalised operators is given by

〈 ~QB〉 = Ẑ〈 ~Q (µ)〉. (2.4)The matrix Ẑ depends on the oupling onstant α (µ) and, in the most general renor-malisation shemes like the Regularisation Independent (RI) sheme [10℄, on the gaugeparameter λ as well. On the ontrary, the minimal subtration shemes MS and MS aregauge independent.Sine the bare operators do not depend on µ, it follows by taking the derivative with respetto µ of eq.(2.4)
µ2 dẐ

dµ2
〈 ~Q (µ)〉 + Ẑµ2 d

dµ2
〈 ~Q (µ)〉 = 0. (2.5)From the last equation we easily obtain a di�erential equation for the renormalised oper-ators

µ2 d

dµ2
〈 ~Q (µ)〉 = −Ẑ−1µ2 dẐ

dµ2
〈 ~Q (µ)〉 (2.6)and de�ne the anomalous dimension matrix (ADM) γ̂ (α (µ)) as

γ̂ ≡ 2Ẑ−1µ2 dẐ

dµ2
. (2.7)Inserting eq. (2.6) into eq. (2.3) we obtain the RG equation for the Wilson oe�ients

µ2d
~C (µ)

dµ2
=
γ̂T

2
~C (µ) . (2.8)In order to �nd the expression of γ̂ in dimensional regularisation, we de�ne Zg through

α0 = Z2
gα (µ)µ2ǫ (2.9)where α0 is the bare oupling and ǫ = (4 − D)/2. Zg is a omposite funtion of µ, Zg =

Zg (α (µ)).



12 2. The E�etive Hamiltonian formalismNext, we apply the derivative operator with respet to µ on eq. (2.9). Sine the bareoupling α0 does not depend on the renormalisation point we �nd
dα (µ)

d lnµ2
= −ǫα (µ) − α (µ)

2

Zg

Zg

d lnµ2
. (2.10)With the de�nitions

β (α (µ) , ǫ) ≡ dα (µ)

d lnµ2

β (α (µ)) ≡ −α (µ)
2

Zg

Zg

d lnµ2
(2.11)eq. (2.10) an be written in the simple form

β (α (µ) , ǫ) = −ǫα (µ) + β (α (µ)) (2.12)where β (α (µ)) is expanded in α (µ) as
β (α (µ)) = −β0

α2 (µ)

4π
− β1

α3 (µ)

(4π)2
+O

(

α4 (µ)
)

. (2.13)Writing Zg as an expansion in α and ǫ
Zg = 1 +

∞
∑

i=1

i
∑

k=1

( α

4π

)i 1

ǫk
Z

(i)
g,k (2.14)it an be shown that the oe�ients in the expansion of β(α(µ)) are related to the ones ofthe expansion of Zg in eq. (2.13) through

βi = −2(i+ 1)Z
(i+1)
g,1 , (2.15)and onsequently the bare parameter α0 an be expressed through

α0 = α

[

1 − α

4π

β0

ǫ
+ O

(

α2
)

]

. (2.16)Analogously, we introdue the gauge �xing parameter λ de�ned from the gauge �xingLagrangian
Lgauge fixing = − 1

2λ
(∂µGa

µ)(∂
νGa

ν), (2.17)The gauge �xing parameter λ satis�es the RG equation
λβλ(α(µ)) ≡ µ2 dλ

dµ2
= − α

4π
β0

λ + O
(

α2
)

. (2.18)



2.2 The Renormalisation Group Evolution 13In the following we denote by λ = 0 the Landau gauge and λ = 1 the Feynman gauge.Using eq. (2.18) we �nd the series expansion of λ0 in the oupling onstant α
λ0 = λ

[

1 − α

4π

β0
λ

ǫ
+ O

(

α2
)

]

. (2.19)Further, we obtain from (2.7) the anomalous dimension matrix γ̂
γ̂ = 2Ẑ−1

[

β(α, ǫ)
∂Ẑ

∂α
+ βλ(α)λ(α)

∂Ẑ

∂λ

]

. (2.20)The renormalisation sheme in whih the strong oupling onstant α and the gauge param-eter λ are renormalised an be hosen di�erent from the renormalisation sheme in whihthe operators are renormalised [11℄. In MS sheme the oe�ients β0
λ, β1 and β0 in theseries expansions eq. (2.13) and eq. (2.19) whih depend on the number of olours Nc andthe number of e�etive �avours nf are given by

β0 =
11Nc

3
− 2nf

3
,

β1 =
34N2

c

3
− 10Ncnf

3
− (N2

c − 1)nf

Nc
(2.21)and

β0
λ = −13Nc

6
+
λNc

2
+

2nf

3
. (2.22)From eq. (2.20) by expanding γ̂ and Ẑ as

γ̂ =
α

4π
γ̂(0) +

( α

4π

)2

γ̂(1), (2.23)
Ẑ = 1 +

α

4π
Ẑ(1) +

( α

4π

)2

Ẑ(2) (2.24)we derive the following relations between the oe�ients γ(i) and Ẑ(i):
γ̂(0) = −2ǫẐ(1), (2.25)
ˆγ(1) = −4ǫẐ(2) − 2β0Ẑ

(1) + 2ǫẐ(1)Ẑ(1) − 2β0
λλ
∂Ẑ(1)

∂λ
. (2.26)Further, Ẑ(1) an be expanded in inverse powers of ǫ

Ẑ(i) =
i
∑

j=0

(

1

ǫ

)j

Ẑ
(i)
j . (2.27)



14 2. The E�etive Hamiltonian formalismThe requirement that the ADM is �nite as ǫ→ 0 implies (Ẑ(1)
1 is gauge invariant)

4Ẑ
(2)
2 + 2β0Ẑ

(1)
1 − 2Ẑ

(1)
1 Ẑ

(1)
1 = 0. (2.28)In addition, we have

γ̂(0) = −2Ẑ
(1)
1 , (2.29)

γ̂(1) = −4Ẑ
(2)
1 − 2β0Ẑ

(1)
0 + 2

{

Ẑ
(1)
1 , Ẑ

(1)
0

}

− 2β0
λλ
∂Ẑ

(1)
0

∂λ
. (2.30)For the omputation of the NLO ADM it is neessary to alulate the pole and �nite partof ˆZ(1), the single pole of Ẑ(2), β0 and β0

λ.In order to determine the matrix elements of the ADM, the result of the alulation of thebare hadroni matrix elements is expanded as
〈 ~QB〉 =

[

1 +
α0

4π

(

Â0 +
Â1

ǫ

)

+
(α0

4π

)2
(

B̂0 +
B̂1

ǫ
+
B̂2

ǫ2

)]

〈 ~Q(0)〉 (2.31)where 〈 ~Q(0)〉 are the tree level matrix elements. For given generi renormalisation shemethe following relation between the bare and the renormalised matrix elements an be writ-ten
〈 ~Q(µ)〉 = Ẑ−1〈 ~QB〉 =

(

1 +
α

4π
r̂
)

〈 ~Q(0)〉. (2.32)The renormalisation sheme is de�ned by the hoie of the matrix r̂. The matrix Â1 isgauge and regularisation independent. Â0 an be written as
Â0(λ0) = Â0(0) + λ0

∂Â0

∂λ0
(2.33)and ∂Â0/∂λ0 is regularisation independent as well. Inserting eq. (2.33) and eq. (2.31) intoeq. (2.32) we an obtain a relation between Ẑ and Â0, Â1, B̂0, B̂1 and B̂2

Ẑ
(1)
0 = Â0 − r̂, Ẑ

(1)
1 = Â1, (2.34)

Ẑ
(2)
1 = B̂1 − Â1r̂ − β0Â0 − β0

λλ
∂Â0

∂λ
, (2.35)

Ẑ
(2)
2 = B̂2 − β0Â1. (2.36)Further, we introdue the regularisation and renormalisation sheme independent quantity

Ĝ = γ̂(1) −
[

r̂, γ̂(0)
]

− 2β0r̂ − 2β0
λλ
∂r̂

∂λ
. (2.37)



2.2 The Renormalisation Group Evolution 15The �rst property is manifest if we rewrite Ĝ in terms of the matries Â0, Â1, B̂0, B̂1 and
B̂2

Ĝ = −4

[

B̂1 −
1

2

{

Â1, Â0

}

− 1

2
β0Â0 −

1

2
β0

λλ
∂Â0

∂λ

]

. (2.38)where we have used
γ̂(0) = −2Â1. (2.39)The renormalisation sheme independene is immediately proven by the absene of thematrix r̂ in eq. (2.38). The regularisation independene is also guaranteed beause therenormalised operators (and therefore their evolution ontrolled by γ̂(1)) at �xed gaugeand external states depend uniquely on the r̂ matrix whih in turn does not depend on theregularisation.The Regularisation Independent (RI) sheme is de�ned for given external states and �xedgauge λ by the ondition

〈 ~Q(µ)〉p2=−µ2,λ = 〈 ~Q〉(0). (2.40)Therefore, in the RI sheme Ĝ oinides with the two loop ADM. It is apparent that theseondition an be implemented in any regularisation sheme and, in partiular, in a purelynon-perturbative way.The renormalisation ondition for the massless quark propagator is given by
i

4

[

γρ ∂

∂pρ
S(p)−1

R

]

p2=−µ2

= 1. (2.41)The quark wave-funtion renormalisation onstant an be written as
ZRI

q = 1 − α

4π
CFλ

(

1

ǫ
− γ + ln(4π) +

1

2

)

. (2.42)Di�erent hoies of the wave-funtion renormalisation orrespond to di�erent hoies ofthe external quark states in the alulation of four-point Green funtions, and therefore todi�erent de�nitions of the renormalised operators. Even if every hoie is perfetly admis-sible, in the RI sheme the ondition (2.41) guarantees that the vetor and axial urrentsatisfy automatially the Ward identities.Finally, we shortly desribe the reipe to obtain the NLO ADM in the RI sheme, γ̂(1)
RI . Indimensional regularisations evanesent operators must be inluded in eq. (2.30). This fat



16 2. The E�etive Hamiltonian formalismompliates the alulation beause produts between the Ẑ matries should be performedwith indies running over the whole set of physial and evanesent operators. Only at theend of the alulation the d → 4 limit an be taken. It has been shown in [12℄ that therelation between the NLO ADM and the one-loop and two-loop renormalisation matriesare valid diagram by diagram. Therefore, aording to eq. (2.38) the two basi steps of theomputation are the evaluation of the two-loop bare matrix elements and the subtration ofthe one-loop diagrams orresponding to the internal subdiagrams, aording to the hosenrenormalisation presription. In the RI sheme it is not neessary to isolate the evanes-ent operators from the four-dimensional basis beause the ounterterms of the evanesentand physial operators are subtrated from the two-loop matrix element with the samenumerial oe�ient 1/2 (see the ombination Â1Â0 + Â0Â1 of eq. (2.38)). Moreover, inthe subtration proedure the double poles anel and thus the projetion on the physialbasis annot generate new single poles due to the evanesent operators that would alterthe result. More details about the alulation of the NLO ADM in the RI sheme an befound in [11, 12℄.In order to obtain γ̂(1) in the MS sheme, it is possible to use eqs. (2.37-2.38) with r̂MS = A0:
γ̂

(1)

MS
= −4

[

B̂1 − A1A0 −
1

2
Ã1Ã0 − β0A0 − β0

λλ
∂A0

∂λ

]

. (2.43)
Ai are the matrix elements restrited to the operators of the four-dimensional basis, and
Ãi those onneting the operators of the four-dimensional basis with the evanesent ones.
γ̂

(1)

MS
an be also obtained using eqs. (2.38-2.43) by

γ̂
(1)

RI
= γ̂

(1)

MS
− 2

(

A1A0 − A0A1

)

− 2β0A0 − 2β0
λλ
∂A0

∂λ
. (2.44)2.3. The Evolution MatrixIn this subsetion we summarise some basi aspets of the alulation of the evolution ma-trix and disuss in detail the issues of the regularisation and renormalisation dependeneof the Wilson oe�ients and of the orresponding operators.In order to ompute the Wilson oe�ients at a large energy sale µ ∼ M , we have toonsider the full set of urrent-urrent, box and penguin diagrams in the full theory, e.g.with propagating heavy partiles, inluding the terms of O(α).



2.3 The Evolution Matrix 17Adopting the notation in [11℄ we write the renormalised amplitude in the full theory as
Afull = 〈 ~Q(0)T 〉

[

~T (0) +
α

4π
~T (1)
]

. (2.45)Equating eqs. (2.2) and (2.45) at the mathing sale µ = M we obtain
~C(M) = ~T (0) +

α

4π

(

T̂ (1) − r̂T ~T (0)
) (2.46)

~T (1) and r̂T depend on the external states.2.3.1. Solution of the RG equation at LOThe Wilson oe�ients ~C(µ) are expressed in terms of their ounter-parts omputed atthe large sale µ ∼M through the evolution matrix Ŵ (µ,M)

~C(µ) = Ŵ (µ,M) ~C(M). (2.47)The oe�ients ~C(µ) obey the RG equation
[

µ2 ∂

∂µ2
+ β(α)

∂

∂α
+ βλλ

∂

∂λ
− γ̂T (α, λ)

2

]

~C(µ, α(µ), λ(µ)) = 0, (2.48)where the term proportional to βλ anels an idential one embedded in γ̂T . In order tosolve the RG equation (2.48), we onsider the basis where the ADM γ̂
(0)T
s is diagonal. Inthis basis the Wilson oe�ients are given by a rotation with the matrix V

~C ′ = V ~C, (2.49)where V is the matrix whih diagonalises γ̂(0)T
s :

V γ̂(0)T
s V −1 = γ̂D = diag (γD1

, ..., γDn
) . (2.50)Sine γ̂(0) does not depend on the gauge parameter λ, at LO eq. (2.48) an be written as

β(α)
dC ′

i (µ)

dα (µ)
=
γDi

(α)

2
C ′

i (µ) . (2.51)Applying the method of separation of variables on the equation (2.51), it an be integratedin this basis from the lower sale µ to the larger sale M . We �nd
C′(M)
∫

C′(µ)

dC ′
i

C ′
i

=

α(M)
∫

α(µ)

γDi
(α)

2β (α)
dα. (2.52)



18 2. The E�etive Hamiltonian formalismExpanding γ̂ and β(α) in α using eqs. (2.10 - 2.18), we obtain at LO
C′

i(M)
∫

C′
i(µ)

dC ′
i

C ′
i

= −γDi

2β0

α(M)
∫

α(µ)

dα

α
. (2.53)The solution of eq. (2.53) is easily found

C ′
i (µ) =

(

α (M)

α (µ)

)

γDi
2β0

C ′
i (M) . (2.54)Rotating eq. (2.54) to the initial basis, we obtain the following expression for the evolutionmatrix Ŵ (µ,M) at LO

ŴLO (µ,M) = V̂ −1

(

α (M)

α (µ)

)

γ̂Dj
2β0

V̂ . (2.55)2.3.2. Solution of the RG equation at NLONow, we go one step further in perturbation theory. Our goal is to �nd the solution of theRG equation (2.48) at NLO. For this purpose we write
Ŵ (µ,M) = M̂(µ)ŴLO(µ,M)M̂−1(M), (2.56)where ŴLO is the leading order evolution matrix given in eq. (2.55) and the NLO evolutionis enoded in

M̂(µ) = 1 +
α(µ)

4π
Ĵ(λ(µ)). (2.57)Writting eq. (2.48) as a power expansion in α it takes the form

β0
λ

αβ0

λ
∂ ~C ′

∂λ
+
d ~C ′

dα
= − 1

2αβ0

[

γ̂D +
α

4π

(

Ĝ− β1

β0

γ̂D

)]

~C ′ (2.58)where
Ĝ ≡ V γ̂(1)TV −1. (2.59)For the solution of eq. (2.58) we use the ansatz

~C ′ (µ) =

(

1 +
α (µ)

4π
Ŝ(λ)

)(

α (M)

α (µ)

)

γ̂D
2β0

(

1− α (M)

4π
Ŝ(λ)

)

~C ′ (M) . (2.60)



2.3 The Evolution Matrix 19Inserting eq. (2.60). into eq. (2.58), we �nd after negleting terms of O (α(M))

Ŝ +
β0

λ

β0

λ
∂Ŝ

∂λ
−
[

Ŝ,
γ̂D

2β0

]

=
β1

2β2
0

γ̂D − Ĝ

2β0

. (2.61)Rotating bak into the initial basis, we obtain from eq. (2.61)
Ĵ +

β0
λ

β0
λ
∂Ĵ

∂λ
−
[

Ĵ ,
γ̂(0)T

2β0

]

=
β1

2β2
0

γ̂(0)T − γ̂(1)T

2β0
. (2.62)where

Ĵ = V −1ŜV. (2.63)The elements of Ŝ are given by
Sij = δij

β1

2β2
0

γDi
− Gij

2β0 + γ
(0)
Di

− γ
(0)
Dj

. (2.64)They beome divergent in ase 2β0 + γ̂
(0)
Di

− γ̂
(0)
Dj

= 0. In order to �nd a solution for Ŝij welet Ŝ to be α-dependent. In this ase one additional term in (2.61) appears, in partiular,we �nd
Ŝ −

[

Ŝ,
γ̂

(0)
D

2β0

]

=
γ̂

(0)
D β1

2β2
0

− Ĝ

2β0
− α

dŜ

dα
. (2.65)Setting the denominator 2β0 + γ̂

(0)
di

− γ̂
(0)
dj

= 0 implies i 6= j and from eq. (2.65), we obtain
dSij (α (µ)) = −Gij

2β0

dα

α
. (2.66)Finally, after integration we have

Sij (α (µ)) =
Gij

2β0
ln

(

α (M)

α (µ)

)

+ Sij (α (M)) . (2.67)The generated singularities anel and the physial evolution matrix has no divergent en-tries. An expliit alulation shows that in pratie divergenes appear only in ase of 3ative �avours [13℄. Sine in our ase we want to evolve the Wilson oe�ients alulatedat the SUSY sale (MSUSY ∼ 500 GeV) down to the mass of the bottom quark where thematrix elements of the e�etive operators are obtained from lattie alulations, we workwith at least 5 e�etive �avours. Thus, the problem with divergent matrix elements doesnot appear in our alulation. In general, the problem an be avoided by introduing the



20 2. The E�etive Hamiltonian formalismgeneral solution of the RG equation. In ref. [13℄ the solution for the evolution matrix forQCD and eletromagneti renormalisation until O (α) is given. The solution in ase of onlyQCD renormalisation has the same form and the problem with the divergenes does notappear beause the solution an be written in a form suh that for divergent denominatorthe numerator vanishes as well. For more details about the expliit alulation we referto [13℄.We note that ŴLO is renormalisation and regularisation sheme independent while λ∂Ĵ/∂λis independent of the regularisation sheme but not of renormalisation sheme. For instane,it vanishes in any possible MS sheme.After insertion of the expansion (2.46) in eq. (2.47) it follows
~C(µ) =

(

1 +
α (µ)

4π
Ĵ

)

Û (µ,M)

[

T̂ (0) − α(M)

4π

(

(Ĵ + r̂T )T̂ (0) − T̂ (1)
)

]

. (2.68)The ombination ĴRI ≡ Ĵ+ r̂T is renormalisation sheme independent. Indeed, using (2.38)and (2.62) we derivê
JRI +

β0
λ

β0
λ
∂ĴRI

∂λ
−
[

ĴRI,
γ̂(0)T

2β0

]

=
β1

2β2
0

γ̂(0)T − ĜT

2β0
. (2.69)Sine the r.h.s. of (2.69) ontains only renormalisation sheme independent quantities (Ĝand γ̂(0)) the l.h.s. must be also renormalisation sheme independent whih in turn impliesthat ĴRI has to be also independent of the renormalisation sheme.2.4. Evolution of the ∆B = 2 e�etive HamiltonianIn the analysis of the meson mixing proesses we alulate the Wilson oe�ients in theSM as well as the supersymmetri ontributions. In this setion we desribe the evolutionof the Wilson oe�ients relevant for the meson mixing proesses from the SUSY saledown to the sale at whih the hadroni matrix elements are omputed in lattie gaugetheory.2.4.1. The operator basisThe relevant operators whih enter the e�etive Hamiltonian for ∆F = 2 �avour transitionsare given by [62℄

Q1 = qαγµPLb
α qβγµPLb

β,



2.4 Evolution of the ∆B = 2 e�etive Hamiltonian 21
Q2 = qαPLb

α qβPLb
β ,

Q3 = qαPLb
β qβPLb

α, (2.70)
Q4 = qαPLb

α qβPRb
β ,

Q5 = qαPLb
β qβPRb

α,together with the operators Q̃1,2,3 whih an be obtained from the operators Q1,2,3 by theexhange L ↔ R. The left-handed and right-handed projetors are de�ned as PR, L =

(1 ± γ5)/2 while α and β are olour indies.The ADM of ∆F = 2 �avour transition takes part in several phenomenologial appliations.Apart from FCNCs in supersymmetri extensions of the SM, also the width di�erene ∆ΓBsat leading order in 1/mb an be written in terms of ∆B = 2 operators [15℄. Corretions oforder 1/m3
b to the lifetime of heavy hadrons ontaining a b quark an be written in termsof four ∆B = 2 operators as well [16℄. Even if they mix with lower dimensional operators,the mixing matrix is triangular and the relevant sub-matrix involves the same omputationrequired for the ∆B = 2 ADM.2.4.2. Program for EvolutionWe give the analyti formulae for the evolution of the Wilson oe�ients at the sale wherethe hadroni matrix elements are evaluated as a funtion of the initial onditions at theSUSY sale Ci(MSUSY) and of α(MSUSY). Our alulation of the evolution matrix is basedon the results given in hapter 5 of ref. [11℄ where the matrix elements of the ADM atone and two loop as well as the matrix elements of Ĵ alulated in Feynman-gauge RIsheme (FRI sheme) an be found. Furthermore, following the reipe for the translationof Ĵ between the FRI sheme the Landau-gauge renormalisation sheme (LRI sheme) andthe MS renormalisation sheme we ould rosshek the results given in ref. [11℄ with theresults in ref. [17℄ where the ADM is alulated diretly in the MS renormalisation sheme.The ADMs in ref. [11℄ and ref. [17℄ are obtained in an operator basis di�erent from theone de�ned in eq. (2.70) whih is ommonly used for alulations of the Wilson oe�ientsfor meson mixing proesses in SUSY. The two basis are related to eah other by a Fierztransformation. Therefore, in order to obtain the right form of the matries in the SUSYbasis (2.70) we have to apply a Fierz transformation on the matries given in refs. [11℄and [17℄. The so alled Fierz basis in general form is given by [11℄

Q±
1 =

1

2
(Ψ

i

1γ
µ
LΨi

2)(Ψ
j

3γµLΨj
4) ± (Ψ2 ↔ Ψ4),
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Q±

2 =
1

2
(Ψ

i

1γ
µ
LΨi

2)(Ψ
j

3γµRΨj
4) ± (Ψ2 ↔ Ψ4),

Q±
3 =

1

2
(Ψ

i

1PRΨi
2)(Ψ

j

3PLΨj
4) ± (Ψ2 ↔ Ψ4), (2.71)

Q±
4 =

1

2
(Ψ

i

1PLΨi
2)(Ψ

j

3PLΨj
4) ± (Ψ2 ↔ Ψ4),

Q±
5 =

1

2
(Ψ

i

1σ
µν
L Ψi

2)(Ψ
j

3σµνLΨj
4) ± (Ψ2 ↔ Ψ4)where σµν

K = 1
2
[γµ, γν ]PK , K ∈ {L,R}. The ∆B = 2 operators are obtained from theoperators Q+

i by taking Ψ1 = Ψ3 = b and Ψ2 = Ψ4 = q while the operators Q−
i vanish. Indimensional regularisation Fierz identities annot be analytially ontinued in D dimen-sions. Therefore, in general evanesent operators have to be introdued. They are neessaryto make a preise de�nition of the NDR-MS sheme but an be negleted in the RI shemes.In general, operators an mix under renormalisation. However, hiral symmetry forbids themixing between some of the operators appearing in the basis (2.71). Therefore, in the Fierzbasis the ADM has the form

γ̂± =

















A± 0 0 0 0

0 B ±C 0 0

0 ±D E 0 0

0 0 0 F± G±

0 0 0 H± I±

















, (2.72)
and there is no mixing between Q− and Q+. In partiular, the orrespondene between theoperators of the Fierz basis (2.71) and the SUSY basis (2.70) is given by the transformation

~QSUSY = M̂ ~Q+ (2.73)with the matrix M̂ given by
M̂ =

















1 0 0 0 0

0 0 0 1 0

0 0 0 −1
2

1
8

0 0 1 0 0

0 −1
2

0 0 0

















. (2.74)
The ADM in the SUSY basis (2.70) γ̂SUSY satis�es the relation

γ̂SUSY = M̂γ̂+M̂−1. (2.75)



2.4 Evolution of the ∆B = 2 e�etive Hamiltonian 23For the LO ADM γ(0) SUSY whih is independent of the regularisation and of the renormal-isation sheme we �nd after inserting the orresponding numerial values and performinga rotation from the Fierz basis to the SUSY basis
γ(0) SUSY =

















4 0 0 0 0

0 −28
3

4
3

0 0

0 16
3

32
3

0 0

0 0 0 −16 0

0 0 0 −6 2

















. (2.76)
In order to solve the RG equations, we need to diagonalise the LO ADM γ(0) SUSY. For theentries of the orresponding diagonal matrix γD we �nd

γ
(0) SUSY
D = diag (4, −9.68278, 11.0161, −16, 2) . (2.77)The elements of the NLO ADM depend on the renormalisation sheme and the number ofative �avours. Their analytial expressions obtained in the NDR MS sheme and in theFRI sheme an be found in refs. [17℄ and [11℄, respetively. Using the formal approahesin the analyses [11℄ and [17℄, we ould obtain and translate the relevant matries betweenthe di�erent renormalisation shemes and have found a full agreement between the results.Shematially, we show the two possible ways for the determination of the matries in thedi�erent renormalisation shemes on the example of the matrix Ĵ :

ĴFierz
FRI −→ ĴFierz

LRI −→ ĴSUSY
LRI

ĴFierz
MS

−→ ĴFierz
LRI −→ ĴSUSY

LRI .Starting from the FRI sheme in the Fierz basis, we translate the matries to the LRIsheme. Then the results are transformed to the SUSY basis aording to ref. [11℄. On theother hand, we use the results of the alulation in MS renormalisation sheme of ref. [17℄,transform them to the LRI sheme and then hange the operator basis form the Fierz basisto the SUSY basis. Both approahes are ompletely equivalent.Further, we introdue the quantity
η ≡ α(MSUSY)

α(mt)
(2.78)where mt denotes the mass of the top quark, and write every entry in the evolution matrixat NLO as

Ŵ (µ,M)mn =
∑

i

(

b
(mn)
i + ηc

(mn)
i

)

ηai, (2.79)



24 2. The E�etive Hamiltonian formalismwhere bi and ci are the so alled �magi� numbers. In the ase of B−B mixing, the
Ci(MSUSY) are evolved down to the hadroni sale µ = mb at whih the hadroni matrixelements are alulated using lattie QCD methods. StudyingK−K mixing orD−D mixingwe have to go even more lower in the energy sale, to µ = 2.0 GeV and to µ = 2.8 GeV,respetively. The onstants ai in eq. (2.79) are given by

ai =
γ̂

(0)
Di

2β0
= (−1.14286, 0.78687, −0.69163, 0.28571, 0.14286)i. (2.80)By the evolution of the Wilson oe�ients from the sale MSUSY down to the sale µ thethreshold at mt is passed at whih the number of ative �avours nf hanges by one unitfrom 6 to 5. Therefore, the evolution of the Wilson oe�ients at NLO is performed usingeq. (2.47) in two steps, �rst from MSUSY down until mt where nf = 6, and after this from

mt to µ = mb with 5 ative �avours. Sine we apply two times (2.47) after eah otherterms proportional to α(mt)
2 and α(mb)α(mt) an appear whih are of O(α2). We haverestrited our working preision up to O(α) and have negleted the ontribution of termsof O(α2) to the matrix elements of the evolution matrix.With the numerial input in table (4.1) the magi numbers b(mn)

i and c(mn)
i for the non-vanishing matrix elements are the following:

b
(11)
i = (0.868, 0, 0, 0, 0), c

(11)
i = (−0.016, 0, 0, 0, 0),

b
(22)
i = (0, 1.820, 0.012, 0, 0), c

(22)
i = (0, −0.157, −0.003, 0, 0),

b
(23)
i = (0, −0.477, 0.183, 0, 0), c

(23)
i = (0, −0.012, 0.008, 0, 0),

b
(32)
i = (0, −0.050, 0.036, 0, 0), c

(32)
i = (0, 0.010, −0.012, 0, 0),

b
(33)
i = (0, 0.013, 0.549, 0, 0), c

(33)
i = (0, 0.001, 0.030, 0, 0),

b
(44)
i = (0, 0, 0, 2.719, 0), c

(44)
i = (0, 0, 0, −0.377, 0.006),

b
(45)
i = (0, 0, 0, 0.906, −0.235), c

(45)
i = (0, 0, 0, −0.193, −0.006),

b
(54)
i = (0, 0, 0, 0.073, 0), c

(54)
i = (0, 0, 0, 0, −0.017),

b
(55)
i = (0, 0, 0, 0.024, 0.868), c

(55)
i = (0, 0, 0, 0, 0.019).

(2.81)
In order to alulate the K−K mixing amplitude we have to evolve the Wilson oe�ientsdown to the sale µ = 2.0 GeV at whih the orresponding hadroni matrix elements are



2.5 Hadroni Matrix Elements 25extrated from lattie simulations. In this ase we �nd the magi numbers:
b
(11)
i = (0.816, 0, 0, 0, 0), c

(11)
i = (−0.015, 0, 0, 0, 0),

b
(22)
i = (0, 2.275, 0.010, 0, 0), c

(22)
i = (0, −0.188, −0.003, 0, 0),

b
(23)
i = (0, −0.596, 0.155, 0, 0), c

(23)
i = (0, −0.015, 0.006, 0, 0),

b
(32)
i = (0, −0.042, 0.029, 0, 0), c

(32)
i = (0, 0.012, −0.010, 0, 0),

b
(33)
i = (0, 0.011, 0.438, 0, 0), c

(33)
i = (0, 0.001, 0.025, 0, , 0),

b
(44)
i = (0, 0, 0, 3.890, 0), c

(44)
i = (0, 0, 0, −0.507, 0.005),

b
(45)
i = (0, 0, 0, 1.297, −0.212), c

(45)
i = (0, 0, 0, −0.259, −0.006),

b
(54)
i = (0, 0, 0, 0.127, 0), c

(54)
i = (0, 0, , 0, 0, −0.016),

b
(55)
i = (0, 0, 0, 0.042, 0.824), c

(55)
i = (0, 0, 0, 0., 0.018).

(2.82)
The hadroni matrix elements involved in the D−D mixing proess are known at the sale
µ = 2.8 GeV. Therefore, we evolve the Wilson oe�ients to that sale as well. In this asethe magi numbers are given by:

b
(11)
i = (0.838, 0, 0, 0, 0), c

(11)
i = (−0.016, 0, 0, 0, 0),

b
(22)
i = (0, 2.059, 0.011, 0, 0), c

(22)
i = (0, −0.174, −0.003, 0, 0),

b
(23)
i = (0, −0.540, 0.167, 0, 0), c

(23)
i = (0, −0.013, 0.007, 0, 0),

b
(32)
i = (0, −0.046, 0.032, 0, 0), c

(32)
i = (0, 0.011, −0.011, 0, 0),

b
(33)
i = (0, 0.012, 0.484, 0, 0), c

(33)
i = (0, 0.001, 0.027, 0, , 0),

b
(44)
i = (0, 0, 0, 3.315, 0), c

(44)
i = (0, 0, 0, −0.445, 0.006),

b
(45)
i = (0, 0, 0, 1.105, −0.222), c

(45)
i = (0, 0, 0, −0.227, −0.006),

b
(54)
i = (0, 0, 0, 0.992, 0), c

(54)
i = (0, 0, 0, 0, −0.017),

b
(55)
i = (0, 0, 0, 0.033, 0.843), c

(55)
i = (0, 0, 0, 0, 0.019).

(2.83)
2.5. Hadroni Matrix ElementsThe matrix elements of the operators in eq. (2.70) an be omputed from �rst priniplesonly in the framework of the lattie QCD. While the operators in eq. (2.70) have bothparity even and parity odd parts, only the parity even parts ontribute to the matrixelements relevant for the meson mixing proesses. The strong interation preserve parityand onsequently

〈M |Qi|M〉 = 〈M |Q̃i|M〉, i = 1, 2, 3 (2.84)



26 2. The E�etive Hamiltonian formalismwhereM denotes a B, K or D meson. Usually, one de�nes the dimensionless B-parametersas a measure of the deviation of the matrix elements from their expression in the vauuminsertion approximation (VIA), in partiular
Bi(µ) =

〈M |Qi|M〉
〈M |Qi|M〉VIA

. (2.85)The matrix elements in a given renormalisation sheme RS are de�ned as [19, 62℄
〈QRS

i (µ)〉 = bi χi f
2
M M2

M BM, RS
i (µ) (2.86)where

bi =

(

2

3
, − 5

12
,

1

12
,

1

2
,

1

6

)

i

,

χ1 = 1,

χi =

[

MM

mq(µ) +mq(µ)

]2

for i ∈ [2, 5] . (2.87)The matrix elements of all the non-SM operators are hirally enhaned by the ratio of themeson mass over the sum of the masses of its quark onstituents. In order to determine thenumerial values of the B-parameters, numerial simulations of a quenhed and unquenhedQCD on the lattie have been performed. The results of reent QCD lattie alulationsare reviewed in ref. [20℄.2.5.1. Hadroni Matrix Elements for B−B mixingIn the ase of B−B mixing we use the B-parameters obtained in a lattie alulation ofa quenhed QCD reported in ref. [18℄. Lattie simulations an be made up to the c quarkmass or some heavier mass but present omputational resoures do not allow a diretstudy of the b quark. The alulation in ref. [18℄ has been performed in the range of heavy-light pseudosalar masses [1.7, 2.4] GeV, and then extrapolated to the physial point mBdguided by Heavy Quark E�etive Theory (HQET) saling laws. The numerial values ofthe B-parameters involved in the Bd−Bd and Bs−Bs mixing amplitudes are given by
BBd,RI

i =
[

0.87(4)+5
−4, 0.82(3)(4), 1.02(6)(9), 1.16(3)+5

−7, 1.91(4)+22
−7

]

i
,

BBs,RI
i =

[

0.86(2)+5
−4, 0.83(2)(4), 1.03(4)(9), 1.17(2)+5

−7, 1.94(3)+23
−7

]

i
(2.88)in the LRI sheme [18℄. For the determination of the numerial values of the hadroni matrixelements the knowledge of the Bd and and Bs deay onstants fBd

and fBs
is neessary. In



2.5 Hadroni Matrix Elements 27our alulation we use the averages of lattie QCD inputs for the CKM �ts performed bythe CKM�tter ollaboration [21℄. Aording to the CKM�tter group the average value ofthe deay onstant fBs
is given by

fBs
= (228 ± 3 ± 17) MeV (2.89)where the �rst error is statistial and the seond systematial. Lattie alulations allowthe determination of the ratio
ξ =

fBs

√

BBs

1

fBd

√

BBd

1

(2.90)with muh better preision than the deay onstants themselves. Furthermore, the deayonstant fBs
is determined more preisely than fBd

. Therefore, by the alulation of the
Bs−Bs and Bd−Bd transition amplitudes we use the ratio of the deay onstants

fBs

fBd

= 1.199 ± 0.008 ± 0.023 (2.91)determined from the CKM�tter group [21℄ by analysing various lattie simulations, andthe deay onstant fBs
. In eq. (2.91) again the �rst error is the statistial and the seondthe systematial one as before. In ref. [18℄ the operators are de�ned without the fator 1/2in the projetors i.e. O1 = qiγµ(1 − γ5)b

i qjγµ(1 − γ5)b
j . Taking this fat into aount weobtain for the hadroni matrix elements with the de�nition of the operators given in (2.70)the following mean values at the sale µ = 4.6 GeV:

〈QBd, RI
i 〉 = (0.8593, −0.6809, 0.1690, 1.1518, 0.6366)i ,

〈QBs, RI
i 〉 = (0.5846, −0.4520, 0.1125, 0.7673, 0.4211)i . (2.92)2.5.2. Hadroni Matrix Elements for K−K mixingFor the alulation of the K−K transition amplitude we use the B-parameters presentedin ref. [20℄ where the results of many quenhed and unquenhed lattie simulations withdi�erent lattie spaing are olleted and analysed in ontext of the relevant errors. Theparameter BK

1 whih is involved in the SM K−K mixing amplitude has been omputed inseveral lattie alulations while a alulation of the B-parameters of the full operator basis(2.70) has been performed only in three lattie studies until now [95�97℄. All of them havebeen performed within the quenhed approximation. However, the authors of the analysis



28 2. The E�etive Hamiltonian formalism[20℄ do not reommend to use the number for BK
1 obtained in the three lattie simulationsmentioned above whih determine the B-parameters for all the operators. Instead, theyrefer to the result of lattie alulations whose goal has been the omputation of BK

1 onlywhih is known more preisely than the other B-parameters. Finally, the average values ofthe B-parameters in the RI-MOM sheme at the sale µ = 2 GeV are given by [20℄
BK,RI

i = [0.54(5), 0.7(2), 1.0(4), 0.9(2), 0.6(1)]i . (2.93)Together with the deay onstant fK = (155.5 ± 0.3 ± 1.9) MeV [21℄ and (mRI
s + mRI

d ) =

(135± 18) MeV [20℄ we obtain the following mean values for the hadroni matrix elementsinvolved in K−K mixing at µ = 2 GeV:
〈QK,RI

i 〉 = (0.00864,−0.09520, 0.02720, 0.14689, 0.03264)i . (2.94)2.5.3. Hadroni Matrix Elements for D−D mixingAs stated in ref. [20℄ in the ase of D−D mixing the involved hadroni matrix elements anbe obtained from the lattie results presented in [18℄ as well. This work provides numerialresults for heavy-light mesons with masses 1.75(9) GeV and 2.02(10) GeV, respetively.Thus, the B-parameters for the D mesons an be obtained by extrapolating to the physialpoint mD between the two sets of results. The authors of ref. [20℄ add in the �nal averagesan additional systemati unertainty of 10%. This deision is motivated by the fat thatthe results in ref. [18℄ are obtained from a single quenhed simulation in lattie QCD.Finally, the B-parameters relevant for D−D mixing in the RI-MOM sheme at the sale
µ = 2.8 GeV are given by

BD,RI
i = [0.85(9), 0.82(9), 1.07(12), 1.10(11), 1.37(14)]i . (2.95)With the averages for the deay onstant fDs

= (246.3 ± 1.1 ± 5.3) MeV and for the ratio
fDs

/fD = 1.186 ± 0.0046 ± 0.01 [21℄ we �nd the mean values for the hadroni matrixelements
〈QD,RI

i 〉 = (0.3398, −0.4402, 0.1149, 0.7087, 0.2942) . (2.96)



29
3. General aspets of meson mixingIn this hapter we desribe the general formalism of meson mixing. It an be applied to allases of meson mixing proesses in partiular to B−B mixing , K−K mixing or D−Dmixing. In the next hapter we fous on the three meson mixing proesses mentioned aboveand disuss the spei� issues of eah one and the main di�erenes between them from phe-nomenologial point of view. For a more detailed desription of the phenomenon of mesonmixing we refer to [9℄, [23, 24℄ and referenes therein.The meson-antimeson mixing is a Flavour Changing Nulear Current (FCNC) proess. Inthe SM FCNC transitions are forbidden at tree level. At one loop level the �avour hang-ing W± and G± verties make FCNC proesses possible. The meson mixing is an e�etof fourth order �avour-hanging weak interation whih is desribed in the SM by thebox diagrams shown in �g. 4.2. The harged Higgs verties have to be taken into aountby performing the alulation in Rξ gauge while they are absent by hoosing an unitarygauge. In following we fous on the time evolution of a meson or antimeson state. Thealulation of the box diagrams in the SM as well as the supersymmetri ontributions willbe disussed in hapters 4.1.2 and 4.2.Meson-antimeson mixing means that a neutral meson state |M〉 initially reated as |M〉or |M〉 beomes a superposition of |M〉 and |M〉 with time elapsing. Assuming �rst nomeson-antimeson mixing whih is ful�lled in the ase of harged mesons the time evolutionof a meson state |M〉 is desribed by the Shrödinger equation

i
d

dt
|M(t)〉 =

(

MM − i
ΓM

2

)

|M〉 (3.1)where MM is the mass and ΓM stays for the total deay width of the meson. With |M〉 wedenote the meson state at the initial time t = 0, |M(0)〉 = |M〉. The solution of eq. (3.1)is given by
|M(t)〉 = e

i
“

MM−i
ΓM
2

”

t|M〉 (3.2)



30 3. General aspets of meson mixingEq. (3.2) desribes the usual exponential time evolution of a stable state with energy
E = MM as well as the proess of deaying of the meson following an exponential law.Thus, the probability the meson not to have deayed at time t is given by

|〈M |M(t)〉|2 = e−ΓM t. (3.3)In ase of meson-antimeson mixing the time evolution of a meson or an antimeson stateprodued at time t = 0 is more ompliated. An initially reated meson or antimeson is aquantum superposition of the states |M〉 and |M〉 at the time t > 0:
|M(t)〉 = a(t)|M〉 + b(t)|M〉. (3.4)In the basis {|M〉, |M〉

} we an write the two-dimensional Shrödinger equation
i
d

dt
|M(t)〉 = M|M〉 (3.5)with the matrix M ∈ C2×2. Further, we use the property of every matrix to be written asa sum of a hermitian and an antihermitian one and deompose M as
M = M̂ − i

Γ̂

2
(3.6)where the mass matrix M̂ and the deay matrix Γ̂ have been introdued whih are bothhermitian. Aording to the CPT theorem [25�27℄ the states |M〉 and |M〉 have identialmasses and total deay widths. This requirement enfores the equality of the diagonalelements of M. Then, it followŝ

M11 = M̂22, Γ̂11 = Γ̂22. (3.7)We �nd the time evolution of the �avour eigenstates |M(t)〉 and |M(t)〉 starting from thetime evolution of the mass eigenstates |M1(t)〉 and |M2(t)〉. Beause of the speial formof the matrix M with equal diagonal elements we an make the following ansatz for thematrix Q whih diagonalises it
Q =

(

p p

q −q

)

. (3.8)For the inverse matrix Q−1 it follows
Q−1 =

1

2pq

(

q p

q −p

)

. (3.9)



3. General aspets of meson mixing 31Thus, the mass eigenstates and the �avour eigenstates are related to eah other through
|M1〉 = p|M〉 + q|M〉,
|M2〉 = p|M〉 − q|M〉 (3.10)with |p|2 + |q|2 = 1 and M is diagonalised as

Q−1 MQ = diag

(

MM1
− i

ΓM1

2
, MM2

− i
ΓM2

2

)

. (3.11)Sine the mass eigenstates do not mix with elapsing time their time evolution is desribedby eq. (3.1) whih is valid for the time evolution of harged partiles. We an write
i
d

dt
|Mj(t)〉 =

(

MMj
− i

ΓMj

2

)

|Mj(t)〉, j ∈ {1, 2} . (3.12)The solution is analogous to the one given in eq. (3.2):
|Mj(t)〉 = e

i

„

MMj
−i

ΓMj
2

«

t|Mj〉, j ∈ {1, 2} . (3.13)Having obtained the time evolution of the mass eigenstates we an transform it to the�avour eigenstate basis. Inverting eq. (3.10) we �nd
|M(t)〉 =

1

2p
(|M1(t)〉 + |M2(t)〉) ,

|M(t)〉 =
1

2q
(|M1(t)〉 − |M2(t)〉) . (3.14)In order to write the formulae in a more simple form, we adopt the following de�nitions forthe mass and width di�erenes and the average mass and width of the mass eigenstates:

m ≡ MM1
+MM2

2
, Γ ≡ ΓM1

+ΓM2

2
,

∆M ≡MM2
−MM1

, ∆Γ ≡ ΓM1
− ΓM2

. (3.15)Further, we de�ne the funtions [23, 24℄
g+(t) = e−i(m−Γ

2 )
[

cosh

(

∆Γ

4
t

)

cos

(

∆m

2
t

)

− i sinh

(

∆Γ

4
t

)

sin

(

∆m

2
t

)]

,

g−(t) = e−i(m−Γ
2 )
[

−sinh

(

∆Γ

4
t

)

cos

(

∆m

2
t

)

+ i cosh

(

∆Γ

4
t

)

sin

(

∆m

2
t

)]

.(3.16)Finally, after inserting in eq. (3.14) the time evolution of the mass eigenstates given ineq. (3.13) onsidering the de�nitions in (3.15 - 3.16), the time evolution of the �avour



32 3. General aspets of meson mixingeigenstates an be written in a ompat form
|M(t)〉 = g+(t)|M〉 +

q

p
g−(t)|M〉,

|M(t)〉 =
p

q
g−(t)|M〉 + g+(t)|M〉. (3.17)Sine g±(t) does not vanish for t > 0 if ∆Γ 6= 0 an initially produed meson |M〉 will nevertransform into a pure antimeson state |M〉 or bak into a pure |M〉. The meson-antimesonosillation proess an be easily illustrated by means of eq. (3.17). The time dependentprobabilities PMM(t) and PMM(t) to �nd a meson or an antimeson when at the initial time

t = 0 a meson has been reated are given by
PMM = |g+(t)|2 =

e−Γt

2

[

cosh

(

∆Γ

2
t

)

+ cos (∆mt)

]

,

PMM =

∣

∣

∣

∣

q

p
g−(t)

∣

∣

∣

∣

2

=
e−Γt

2

[

cosh

(

∆Γ

2
t

)

− cos (∆mt)

]

. (3.18)We plot these probabilities in ase of Bd−Bd , Bs−Bs , and D−D mixing in �g. 3.1. As anumerial input of the quantities ∆Md, ∆Γd, ∆Ms, ∆Γs and τB the values given in table4.1 have been used. In ase of D−D mixing we obtained the relevant quantities takinginto aount the input parameters given in table 4.2. In the Bs−Bs system we see a lot ofosillations in the shown time interval. On the ontrary, the Bd−Bd osillations happenmuh slower. In fat, the �rst minimum of PBsBs
is at t = 0.18 ps while the probability

PBdBd
is not minimal until t = 6.20 ps. The D mesons deay so fast that there is no su�-ient time during their lifetime for a reation of an antimeson omponent.At this point it is important to larify whih quantities relevant for the meson-antimesonmixing proess are independent of phase onventions and have therefore a physial meaning.The multipliation of either |M〉 or |M〉 by an arbitrary omplex phase fator will a�etthe phases of the matrix elements M12, Γ12 as well as the phase of q/p. In fat, |M12|, |Γ12|and their relative phase

φ = arg

(

−M12

Γ12

) (3.19)are invariant under phase transformations. These are the physial observables whih ap-peared in our disussion of the meson-antimeson mixing formalism until now.
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Figure 3.1: Time evolution of an initially reated meson (left plot) or antimeson (right plot)for the Bd−Bd system (blak line), Bs−Bs system (red line) and D−D system (greenline). In the right plot PDD oinides with the x-axis.Our approah for onstraining supersymmetri parameters is based on the omparisonbetween the theoretial estimate of the mass di�erenes in the Bd and Bs meson systemsand the orresponding measured values of these quantities under the assumption that NPonly enters at the loop level through additional partiles running in the loops. For thisreason ∆F = 2 transitions whih in the SM are mediated by box diagrams an be sensitiveprobes of NP. The matrix elementsM12 and Γ12 are related to the dispersive and absorptiveparts of the ∆F = 2 transitions. Γ12 an be written as a produt of tree-level ∆F = 1amplitudes so that NP is not likely to alter its value. In this sense it is important to �ndthe relation between ∆M and the meson mixing amplitudeM12. For that purpose we turnbak to the eigenvalue problem (3.11) and denote the two eigenvalues of the matrix M by
λ1 and λ2. Solving the seular equation

(M11 − λ1,2) −M12M21 = 0 (3.20)we obtain a relation between the eigenvalues
(λ1 − λ2)

2 = 4M12M21. (3.21)Equating the real and imaginary part of the l.h.s and r.h.s of eq. (3.21) separately leadsto a relation between the mass di�erene, the total width di�erene, the deay amplitudeand the total width:
(∆M)2 −

(

∆Γ

2

)2

= 4|M12|2 − |Γ12|2,

(∆M)(∆Γ) = −4 Re(M12Γ
∗
12) = 4 |M12||Γ12| cosφ. (3.22)



34 3. General aspets of meson mixingFor the B−B system it is experimentally known that ∆Γ ≪ ∆M . On the other hand, SMalulations show that Γ12 ≪ ∆M is valid as well. Therefore, from eq. (3.22) it follows
∆M ≃ 2|M12|,
∆Γ ≃ 2|Γ12| cosφ. (3.23)Equation (3.23) is valid also in the ase of K−K mixing, in whih ∆Γ > ∆M , but φ ≈ 0.



35
4. Wilson oeffiients for meson mixingproesses in the MSSMIn this hapter we disuss the meson mixing proesses in the neutral B, D and Kaon sys-tems. We explain the spei� features of the meson mixing phenomenon in the three asesmentioned above. We fous on the omputation of the Wilson oe�ients in the SM aswell as on the supersymmetri ontributions.
4.1. SM ontributionEah of the Wilson oe�ients orresponding to the operators basis given in eq. (2.70) anbe written as

Ci = CSM
i + CSUSY

i (4.1)In eq. (4.1) the �rst term represents ontributions from the SM and the seond one sum-marises the ontributions from supersymmetri partiles.The SM ontribution to the meson mixing proesses is desribed only by the operator Q1given in eq. (2.70) whih orresponds to the situation that all external partiles of theboxes are left-handed. In this setion we summarise and disuss the basi results regardingthe B−B , K−K and D−D mixing in the SM. For a more detailed desription of thephenomenon of meson mixing we refer to [9, 23, 24℄ and referenes therein.4.1.1. The pure SM CKM matrixThe �avour violation proess in the SM is governed by the CKM matrix elements. Sineour goal is to plae onstraints on parameters of SUSY partiles whih an a�et the me-son mixing amplitudes, the separation of the pure SM ontribution from the ontributionaused by SUSY partiles is extremely important. However, the CKM matrix elements are



36 4. Wilson oe�ients for meson mixing proesses in the MSSMmeasured using proesses whih annot be always free of NP e�ets. Therefore, one has to�nd a way to determine the CKM matrix elements involved in the alulation of the SMpart of the Wilson oe�ients, if possible without, or with the minimal possible amountof NP ontributions.Within the SM a great variety of proesses haraterised by a very di�erent dynamis aresensitive to the same four independent parameters of the CKM matrix de�ned in the soalled Standard parametrisation by
V =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






(4.2)with cij = cos θij and sij = sin θij . In the presene of NP this is no longer true even inminimally �avour violating extensions of the SM. Taking into aount the smallness of

s13 ≈ O(10−3) and s23 ≈ O(10−2) whih implies c13 = 1 = c23 the four independentparameters are given by
s12 = |Vus|, s13 = |Vub|, s23 = |Vcb| and δ. (4.3)In order to write the results of theoretial alulations in a more transparent form and toexhibit the experimentally found hierarhy s13 ≪ s23 ≪ s12 ≪ 1 the so alled Wolfensteinparametrisation [28℄ of the CKMmatrix is very usefull. In this parametrisation eah elementof the CKM matrix is written as a power series expansion of the small parameter λ = |Vus|.In partiular,

V =







1 − λ2

2
λ (ρ− iη)Aλ3

−λ 1 − λ2

2
Aλ2

(1 − ρ− iη)Aλ3 −Aλ2 1






+ O(λ4). (4.4)The relation between the independent parameters (4.3) in the Standard parametrisationand the parameters λ, A, ρ and η used in the Wolfenstein parametrisation is given by

s12 = λ, s23 = Aλ2, s13e
−iδ = Aλ3(ρ− iη). (4.5)The unitarity relation VijV

∗
kj = δik reates various relations between the CKM matrixelements. The most important one follows from the multipliation of the �rst and the thirdolumn of the CKM matrix. In partiular, we �nd
VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (4.6)
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Figure 4.1: The unitarity triangle.This equation involves the only two omplex elements in the expansion until O(λ4) in theWolfenstein parametrisation. The representation of eq. (4.6) in the omplex (ρ, η)-planeshown in �g. 4.1 where the axis are de�ned as [98℄
ρ = ρ

(

1 − λ2

2

)

, η = η

(

1 − λ2

2

) (4.7)is the so alled unitarity triangle (UT). With
ρ+ iη = −VudV

∗
ub

VcdV ∗
cb

(4.8)we obtain form eq. (4.6)
[(ρ+ iη) + (−1) + (1 − ρ− iη)] (4.9)whih is shown in �g. 4.1. Sine eq. (4.9) is invariant under phase transformations, thesides and angles of the UT are physial observables.The sides and angles of the UT an be expressed using trigonometri relations through theWolfenstein parameters as follows:

sin(2α) =
2η (η2 + ρ2 − ρ)

(ρ2 + η2)
[

(1 − ρ)2 + η2
] ,

sin(2β) =
2η (1 − ρ)

(1 − ρ)2 + η2
,

sin(2γ) =
2ρη

ρ2 + η2 ,
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Rb =

∣

∣

∣

∣

VudV
∗
ub

VcdV ∗
cb

∣

∣

∣

∣

=
√

ρ2 + η2,

Rt =

∣

∣

∣

∣

VtdV
∗
tb

VcdV ∗
cb

∣

∣

∣

∣

=

√

(1 − ρ)2 + η2. (4.10)We insert the parameters
ρ =

s13

s12s23
cos δ, η =

s13

s12s23
sin δ (4.11)whih we easily derive from (4.5) in the equation for sin(2γ) and �nd γ = δ. To an exellentauray the angles β and γ of the UT are diretly linked to the phases of the omplexelements Vtd and Vub. We �nd the relations

Vtd = |Vtd|e−iβ = RtAλ
3e−iβ,

Vub = |Vub|e−iγ = RbAλ
3e−iγ . (4.12)For all preditions within the SM we assume unitarity of the CKM matrix and alulateall CKM elements from the four parameters

|Vus|, |Vcb|, |Vub|, γ. (4.13)The numerial input values are given in table 4.1. This set of parameters an be determinedentirely from tree level deays and are onsequently independent of NP ontributions. Ourstrategy to extrat γ without NP ontributions inludes the ombination of the informa-tions from B → J/ψKS and B → π+π− deays. These transitions an be a�eted by NPin the eletromagneti penguins only whih is a very unlikely senario. We disard thispossibility and assume that deays to be ompletely governed by the SM. Both deaysprovide information about the mixing indued CP asymmetry Amix
CP . The relevant relationsare

Amix
CP (B → J/ψKS) = − sin(φd)

Amix
CP (B → ρρ) = sin(2γ + φd) (4.14)where φd is the Bd − Bd mixing phase. In the SM the Bd−Bd mixing phase φd = 2β butin the presene of NP it an be a�eted by an additional phase φNP

d . In this ase we anwrite
φd = 2β + φNP

d . (4.15)
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α (dir. meas.) 89.0◦+4.4◦

−4.2◦ [22℄ |Vcb| (41.17+0.38
−1.17) · 10−3 [22℄

β (dir. meas.) 21.15◦+0.90◦

−0.88◦ [22℄ |Vub| (3.51+0.14
−0.16) · 10−3 [22℄

|Vus| = λ = s12 0.22544 ± 0.00095 [22℄ αs(MZ) 0.119 ± 0.003

GF 1.16637 · 10−5 GeV−2 α(MZ) 1/127.9
MBd

(5.2794 ± 0.0005) GeV [85℄ MBs
(5.3696 ± 0.0024) GeV [85℄

mb(mb) (4.248 ± 0.051) GeV [86℄ mt(mt) (165.02 ± 1.16 ± 0.11) GeV [22℄
MW (80.423 ± 0.039) GeV sW

√
0.2397

∆M exp
Bd

(0.507 ± 0.005) ps−1 [85℄ ∆M exp
Bs

(17.77 ± 0.10 ± 0.07) ps−1 [90, 91℄
f th

Bs
(228 ± 3 ± 17) MeV [21℄ f th

Bs
/f th

Bd
(1.199 ± 0.008 ± 0.023) [21℄

f th
D (212 ± 14) MeV [20℄ f th

K 155.5 ± 0.3 ± 1.9 MeV [21℄
∆Γth

Bd
26.7+5.8

−6.5 · 10−4 ps−1 [69℄ ∆Γth
Bs

0.088 ± 0.017 ps−1 [69℄Table 4.1: Values of the experimental and theoretial quantities used as an input parameters.Using the unitarity relation γ = π − α − β and the experimental information about thethe measured quantities βexp = β + φd/2 and αexp = α − φd/2 we an determine γ fromthe equation
γ = π − αexp − βexp. (4.16)In eq. (4.16) the the NP phase φNP
d anels beause it a�ets the measured quantities βexpand αexp with opposite sign. With the numbers given in table 4.1 we �nd

γ = 1.23918+0.10996
−0.12566

(

71.0◦+6.3◦

−7.2◦

) (4.17)whih is the pure SM value of the angle γ.4.1.2. The mixing of neutral B mesons in the SMFor the mixing of the neutral B mesons in the SM we onsider the box diagrams shownin �g. 4.2. In ase of Bd −Bd mixing the inoming and outgoing quarks are b and dwhile for Bs −Bs mixing the d quark is replaed by a s quark. Choosing an unitarygauge the partiles running in the loop are represented by two W bosons and two up-typequarks. Performing the alulation in a general Rξ gauge the ontribution of the hargedPseudo-Goldstone bosons has to be taken into aount as well. Our goal is to alulate



40 4. Wilson oe�ients for meson mixing proesses in the MSSM
di(ui) dj(uj)

dj(uj) di(ui)

W
±

W
±

uk(dk)

ul(dl)

di(ui) dj(uj)

dj(uj) di(ui)

W
±

W
±

uk(dk) ul(dl)

Figure 4.2: The box diagrams desribing meson-antimeson mixing in the SM in the unitarygauge. In ase of B−B and K−K mixing the inoming and outgoing quarks are ofdown-type and up-type quarks are involved in the loop. For D−D mixing the situationis the opposite - inoming and outgoing up-type quarks and down-type quarks running inthe loop. In Rξ gauge additional box diagrams involving harged Pseudo-Goldstone bosonshave to be onsidered.the mass di�erenes ∆Ms and ∆Md for the Bs−Bs and Bd−Bd system, respetively.It has been already pointed out that in the alulation proedure of meson-antimesontransition amplitudes we have to deal with low energy QCD whih makes the appliationof perturbative methods impossible. In order to solve this problem, we have to extratthe SM Wilson oe�ient CSM
1 by mathing the transition amplitude alulated in thefull theory onto the one alulated in the e�etive theory. Then, the multipliation of thee�etive oupling CSM

1 by the orresponding hadroni matrix element 〈Bd,s|Q1|Bd,s〉 at thesame sale gives the transition amplitude. At this point it should be mentioned that thefat whether the CKM matrix elements and/or the mass of the W boson belong to theWilson oe�ient or not is a question of onvention. In our treatment all fators whihmultiply the e�etive operator Q1 are ontained in the orresponding Wilson oe�ient
CSM

1 .In the alulation of the transition amplitude one has to take the sum over all box diagramswhih involve all possible ombinations of two up-type quarks running in the loop. Thus,the transition amplitude an be written as
A =

∑

i,j=u,c,t

VjbV
∗
jqVkbV

∗
kq Aij(m

2
i , m

2
j) (4.18)where Aij is the ontribution if a ertain box diagramwhih involves up quarks with �avours
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i and j. Aij is a symmetri funtion in the quark masses mi and mj . The alulation ofthe box diagrams in the full theory involves an integration over the loop momentum.The loop integral is �nite. It an be written as a sum of master integrals using partialfration deomposition. The master integrals ontain divergenes whih are regularised bythe method of dimensional regularisation and the divergent terms anel in the sum. Ingeneral we enounter no problems with divergenes by performing the integration. Further,using the relation

∑

i=u,c,t

VjbV
∗
jq = 0 (4.19)whih follows from the unitarity of the CKM matrix i.e. with j = u the expression forthe transition amplitude an be simpli�ed. In partiular, eq. (4.19) implies vanishing tran-sition amplitude A in ase of equal quark masses. The vanishing of FCNC in the limitof equal quark masses as a onsequene of the unitarity of the CKM matrix is known asGlashow-Iliopoulos-Maiani (GIM) suppression [29℄. In the meson-antimeson mixing pro-esses we enounter one more the GIM mehanism whih has suessfully explained thesmall branhing ratio of the deay hannel K0 → π+π− prediting the existene of theharm quark.Further, we neglet the ontributions of the u-quark loops treating the u quark as a masslesspartile and �nd for the Wilson oe�ient at LO

CSM
1 =

g4
2

(16π)2M2
W

[

λ2
tq4S0(xt) + λcqλtq4S0(xc, xt)

]

, (4.20)with the well known Inami-Lim-funtions [30℄
S0(xt) =

x3
t − 11x2

t + 4xt

4(xt − 1)2
+

3x3
t ln xt

2(xt − 1)3
, (4.21)

S0(xc, xt) = xc

(

− 3x2
t ln xt

4(xt − 1)2
+

3xt

4(xt − 1)
+ ln

xt

xc

)

, (4.22)and the de�nitions xi = m2
i /M

2
W , λiq = VibV

∗
iq for i ∈ {u, c, t}. In order to desribe themixing of neutral Bd mesons one has to make the hoie q = d while in ase of Bs−Bsmixing q is identi�ed with the s quark. Beause of the small ratio xc = O(10−4) theontribution of the seond term in eq. (4.20) proportional to S0(xc, xt) = O(xc) is verytiny in omparison to the ontribution of two top quarks in the loop and an be negleted.Finally, with the Fermi onstant GF = g2

2/4
√

2M2
W , the Wilson oe�ient CSM

1 an bewritten as
CSM

1 =
G2

FM
2
W

4π2
λ2

qtS0(xt). (4.23)



42 4. Wilson oe�ients for meson mixing proesses in the MSSMIn order to hek the result of the alulation we have obtained the Wilson oe�ient CSM
1performing the alulation in the unitary gauge as well as in the Rξ gauge. We found afull agreement between the results of the alulations in the di�erent gauges and a fullagreement with the results in the literature. Note that the Wilson oe�ient given in eq.(4.23) is four times bigger than the one given in eqs. (3.17) and (3.19) in ref. [9℄. The reasonfor this di�erene is the de�nition of the operators in ref. [9℄. In partiular, the projetors

PR,L are de�ned without the fator 1/2. The fator 4 inluded in the de�nition of thehadroni matrix elements is ompensated by the fator 1/4 in the Wilson oe�ients suhthat there is no di�erene between the transition amplitudes alulated in this work andthe ones given in ref. [9℄ and other previous works.Now we turn bak to the problem desribed in Ch. 2, namely, the di�erent sales of theWilson oe�ient and the hadroni matrix elements. We have to take are about the fatthat the Wilson oe�ient CSM
1 is extrated at the sale µ = MW while the hadronimatrix elements are obtained from lattie alulations at the sale µ = mb. In order toalulate the transition amplitude it is neessary to perform an RG evolution of either theWilson oe�ient CSM

1 down to the sale µ = mb or of the orresponding hadroni matrixelement up to the sale of the W boson mass µ = MW . In ontrast to the evolution of theWilson oe�ients in the ase of the supersymmetri ontributions to the meson mixingproesses whih is performed in the RI-MOM renormalisation sheme, we follow for the SMontribution to the B−B mixing proess the established treatment in the literature in the
MS renormalisation sheme. Sine the operatorQ1 does not mix with other operators underrenormalisation, the evolution of the Wilson oe�ient is desribed by a single fator. Oneusually writes

CSM
1 (mb) = η̂BC

SM
1 (MW ) (4.24)where η̂B is obtained from NLO alulation and an be written as a produt of two fators,

η̂B = ηBbB(mb) [31℄. In this way the heavy sale and the low sale are separated. The saledependene of the fator bB(mb) anels in the produt with the hadroni matrix elementwhih depends on mb as well. Numerially, it is found η̂B = 0.837 in the MS-NDR sheme.More details on this topi an be found in [31℄ and [32℄.Finally, writing the |∆B| = 2 Hamiltonian as
H|∆B=2| =

GF

4π2
M2

W (VtbV
∗
tq)

2 η̂ Q1(mb) + h.c. (4.25)



4.1 SM ontribution 43we obtain for the transition amplitudeMSM
12 taking into aount the parametrisation of thehadroni matrix elements given in eq. (2.86) the expression

MSM
12 = 〈B|H|∆B=2||B〉 =

G2
F

6π2
M2

Wλ
2
tqS0(xt)η̂M

2
Bq
f 2

Bq
B1(mb). (4.26)

4.1.3. Indiret CP violation in K−K mixingThe ase of the mixing of neutral K mesons an be theoretially treated in analogous wayas the mixing in the B meson system. However, in the K−K mixing some spei� featuresappear whih will be the main subjet of the following disussion.The Kaon mixing is desribed by the operator Q1 with inoming and outgoing d and squarks. The K−K transition is a |∆S| = 2 proess. Beause of the di�erent externalstates ompared to the ones in the ase of Bd−Bd and Bs−Bs mixing, we enounterdi�erent ombinations of CKM matrix elements by the omputation of all the box diagramsinvolving the up-type quarks of the three generations in the loop. In ontrast to the B−Bmixing proess where the top ontribution is dominant, now the funtion S(xt) is highlysuppressed by fator (VtsV
∗
td)

2 ≈ O(λ10). On the ontrary, even if the orresponding loopfuntions of the harm-harm and harm-top ontributions are small, they are multipliedonly by a CKM fator of O(λ). Therefore, the top quark loop beomes omparable in sizewith the ones with two harm quarks and with one harm quark and one top quark. Thus,the latter annot be negleted as this has been the ase in the neutral B meson system.The e�etive |∆S| = 2 Hamiltonian an be written as [31℄
H|∆S|=2

eff =
GF

4π2
M2

W

[

(VcsV
∗
cd)

2 ηcc xc + (VtsV
∗
td)

2 ηtt S0(xt)+

2VcsV
∗
cdVtsV

∗
td ηct S0(xc, xt)] bK(mK)Q1 + h.c. (4.27)with the oe�ients ηtt, ηct and ηcc whih desribe short-distane QCD e�ets. At NLOthe QCD oe�ients are given by [31, 33�35℄

ηcc = (1.44 ± 0.35)

(

1.3 GeV

mc

)1.1

,

ηct = 0.47 ± 0.05, (4.28)
ηtt = 0.57 ± 0.01.
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MSM

12 =
GF

4π2
M2

W f 2
K B̂K mK

[

(VcsV
∗
cd)

2 ηcc xc + (VtsV
∗
td)

2 ηtt S0(xt) +

2VcsV
∗
cdVtsV

∗
td ηct S0(xc, xt)] (4.29)with the de�nition of the hadroni matrix elements given in eq. (2.86) and the renormalisa-tion group invariant fator B̂K = BK b(mK). In ontrast to the situation in B−B mixing,the K meson deay onstant fK is well known from experiments. The fator B̂K is de-termined by lattie alulations (see Ch. 2.5.2). Calulating ∆MSM

K = 2|MSM
12 | with theusual e�etive �eld theory methods, the obtained result di�ers from the experimentallymeasured value of the same quantity by roughly 30%. In fat, eq. (4.29) ontains only theso alled short distane ontributions to the K−K transition amplitude. However, the

K−K mixing an our through two |∆S| = 1 transitions as well. This so alled longdistane ontribution annot be alulated from �rst priniples.In our analysis we onstrain MSSM parameters through their e�ets on the indiret CP vio-lation in the neutral Kaon system. In partiular, the supersymmetri partiles ontributingwith new box diagrams to the K−K transition amplitude a�et the quantity ǫK whihmeasures the CP violation in mixing in the K−K mixing proess. CP violation in mixingof neutral mesons arises from the fat that the CP eigenstates are di�erent from the masseigenstates. Following the general analysis of the meson-antimeson mixing in Ch. (3), wereplae the mass eigenstates in eq. (3.10) |M1〉 and |M2〉 with |KS〉 and |KL〉, respetively.The indies �L = long� and �S = short� have been hosen in the past aording to thedeay of neutral Kaons to π+π− or π0π0. A K meson state |K〉 is a quantum superpositionof the lighter mass eigenstate |KS〉 and the heavier mass eigenstate |KL〉. De�ning
ǫ =

1 + q
p

1 − q
p

(4.30)eq. (3.10) an be written as
|KS〉 =

1 + ǫ

2
√

1 + |ǫ|2
|K0〉 − 1 − ǫ

2
√

1 + |ǫ|2
|K0〉,

|KL〉 =
1 + ǫ

2
√

1 + |ǫ|2
|K0〉 +

1 − ǫ

2
√

1 + |ǫ|2
|K0〉. (4.31)With the CP transformation CP |K0〉 = −|K0〉, CP |K0〉 = −|K0〉 we introdue the CP-even and CP-odd eigenstates |K+〉 and |K−〉 as

|K+〉 =
1√
2

(

|K0〉 − |K0〉
)

,
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|K−〉 =

1√
2

(

|K0〉 + |K0〉
)

. (4.32)Expressing the mass eigenstates through the CP eigenstates we obtain
|KS〉 =

|K+〉 + ǫ|K−〉
√

1 + |ǫ|2
, |KL〉 =

|K−〉 + ǫ|K+〉
√

1 + |ǫ|2
. (4.33)Equation (4.33) shows in expliit way that the mass eigenstates are an admixture of theCP eigenstates. The limit of CP onservation is given by ǫ = 0 and in this ase |KS〉beomes the CP-odd eigenstate and |KL〉 the CP-even one. Considering the deay of aneutral Kaon to a CP even �nal state represented by two pions or to a CP odd �nal stateombination of three pions one realises that under the assumption of CP onservation thedeays KL → ππ and KS → πππ are forbidden. Sine the ratio |q/p| ≈ 1 in the B−B and

K−K systems the phase dependent quantity ǫ is small. Therefore, |KL〉 is �almost� a CPodd eigenstate and |KS〉 �almost� a CP even one. This is the reason for the big di�erenein the lifetimes of the mass eigenstates. However, sine ǫ 6= 0 the mass eigentates |KL〉 and
|KS〉 an deay CP violating to two or three pion states, respetively. The CP violation inmixing is desribed by the parameter

ǫK =
A (KL → (ππ)I=0)

A (KS → (ππ)I=0)
(4.34)where I denotes the strong isospin. This quantity an be expressed entirely through themass di�erene ∆MK , ∆ΓK and φ whih are physial observables. The result reads up toorretions of O(φ2) [23, 24℄

ǫK =
φ

2

2 ∆MK
√

(∆MK)2 + (∆ΓK)2
eiφǫ (4.35)with the phase φǫ of ǫK given by

φǫ = arctan
2 ∆MK

∆ΓK

≈ 43◦. (4.36)Expressing eq. (4.34) in terms of M12 one �nds
φ = 2

(

ImM12

∆M exp
K

+ ξK

) (4.37)where ξK is introdued as
ξK =

1

2

Im [A [K0 → (ππ)I=0]]

Re [A [K0 → (ππ)I=0]]
(4.38)



46 4. Wilson oe�ients for meson mixing proesses in the MSSMde�ned in the CKM phase onvention with Vus, Vud real. Numerially, it has been found
ξK ≈ −1.7 · 10−4 [36℄. Equation (4.36) implies

sin φǫ =
2 ∆MK

√

(∆MK)2 + (∆ΓK)2
, (4.39)and �nally, inserting this result in eq. (4.35), we obtain

ǫK =

(

ImM12

∆Mexp
K

+ ξK

)

sin φǫ e
iφǫ. (4.40)Beause of the experimental observation 2 ∆MK ≈ ∆ΓK the phase of ǫK is very lose to

45◦. In fat, the measured value is φǫ = 43.52◦ ± 0.05◦ [37℄. The impat of the ratio ξK onthe result of ǫK is of O(5%) [36℄. With the result for the K−K transition amplitude givenin eq. (4.29) one �nds [36℄
∣

∣ǫSM
K

∣

∣ = Cǫ

[

|Vcb|2 (1 − ρ) ηtt S0(xt) + ηct S0(xc, xt) − ηcc xc

] (4.41)with the fator Cǫ given by
Cǫ =

G2
F f

2
K M2

W mK κǫ B̂K λ2 η2 |Vcb|2
6
√

2π2 ∆MK

(4.42)where ρ, η are the Wolfenstein parameters introdued in eq. (4.4). The onstant κǫ =

0.92±0.02 parametrises the suppression e�et aused by ξK . More details about the expliitderivation of these results as well as on the meson mixing of neutral K mesons in generalan be found in [9, 23, 24, 36℄ and referenes therein.4.1.4. Main aspets on the mixing of neutral D mesonsThe D−D mixing is a ∆C = 2 FCNC proess. It is desribed by the same box diagramsas in the ase of meson mixing in the B or K setor, but, in ontrast to the situation withthe mixing of neutral B and K mesons, the inoming and outgoing quarks are the up-typequarks u and c and the quarks involved in the loop are the ones of the down-type quarksetor. Beause of the absene of a heavy quark in the loop as this is the ase in B−Band K−K mixing due to the top quark ontribution, the GIM anellation works muhmore e�iently. The D−D transition amplitude in the SM is very small, and therefore,highly sensitive to NP e�ets. NP ontributions an be of the same order of magnitudeor even larger than the SM one whih makes the mixing of neutral D mesons a very in-teresting proess regarding the indiret searh of physis beyond the SM. However, the



4.1 SM ontribution 47large long distane e�ets whih have been mentioned in the analysis of the K−K mixingappear in the D setor as well. Sine these e�ets given by K, π intermediate states havenon-perturbative nature and annot be alulated by analytial methods the distinguishingof the SM ontributions from the pure NP ones is hardly possible. The poor ontrol overthe long distane ontributions impairs an e�etive use of D−D mixing as a test of the SM.The third family ontribution whih would be enhaned by the large mass mb is suppressedby a very small CKM fator resulting in a relative box ontribution of O(10−3) and in aorrespondingly suppressed amount of CP violation in the SM. Therefore,
∆MSM

D ∼ (m2
s −m2

d)
2

m2
c

(4.43)with a GIM suppression ∼ (m2
s −m2

d)/M
2
W and an additional suppression ∼ (m2

s −m2
d)/m

2
cwhih omes from the fat that the external momentum of O(mc) is ommuniated to thelight quarks in the loops. Usually, in the desription of D−D mixing in addition to thephase φ de�ned in eq. (3.19) the physial quantities

x12 ≡
2M12

Γ
, y12 =

Γ12

Γ
, (4.44)are introdued. The relation between these parameters and the experimentally measuredquantities

x ≡ m1 −m2

Γ
=

∆MD

Γ
, y ≡ Γ2 − Γ1

2Γ
=

∆Γ

2Γ
(4.45)is given by

x2
12 =

x4 cos2 φ+ y4 sin2 φ

x2 cos2 φ− y2 sin2 φ
,

sin2 φ12 =
(x2 + y2)2 cos2 φ sin2 φ

x4 cos2 φ+ y4 sin2 φ
. (4.46)From the values of the D−D mixing parameters x, y, and φ obtained by the HeavyFlavour Averaging Group (HFAG) [38℄ by �tting the present experimental data, we obtainthe numerial value of |M12|. Expanding x12 given in eq. (4.46) in the presumably smallparameter φ, we �nd

x12 = x+
(x2 + y2)y2

2x3
φ2 + O(φ4). (4.47)
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x

(

0.98+0.24
−0.26

)

· 10−2 [0.46, 1.44] · 10−2

y (0.83 ± 0.16) · 10−2 [0.51, 1.14] · 10−2

φ
(

−8.5◦+7.4◦

−7.0◦

)

[−22.1◦, 6.3◦]

|M12|
(

11.95+2.93
−3.17

)

ps−1 [5.61, 17.56] ps−1

∆MD

(

2.39+0.59
−0.63

)

· 10−2 ps−1 [1.12, 3.51] · 10−2 ps−1

∆ΓD (4.04 ± 0.07) · 10−2 ps−1 [2.49, 5.56] · 10−2 ps−1Table 4.2: The �nal results for the D−D mixing parameters |M12|, ∆MD and ∆ΓD ob-tained from the parameters x, y and φ allowing for CP violation (HFAG) [38℄. For thedetermination of ∆MD and ∆ΓD the D0 mean life time τD0 = (410.1 ± 1.5) · 10−3 ps [85℄has been used.We alulate |M12| using the D0 life time τD0 = Γ−1
D0 = 410.1 · 10−3 ps [85℄ and negletingthe term proportional to φ2 whose ontribution is of O(1%) and therefore muh smallerthen the experimental auray. The result as well as the numerial values of the inputparameters are given in table (4.2). For more phenomenologial details about the mixingof neutral D mesons we refer to [39, 40℄ and referenes therein.In our numerial analysis of the �avour violating supersymmetri parameters we will alu-late the ontributions of supersymmetri partiles to box diagrams in ase of D−D mixing.Sine the spetrum of the MSSM ontains heavy partiles the alulation an be performedby negleting the momenta of the external quarks. Unfortunately, this is not true in the SMwhere the momenta of the inoming and outgoing quarks an be omparable with massesof the light quarks in the loop and, therefore, have to be taken into aount. Comparingthe pure supersymmetri result for |M12| with the experimentally obtained value given intable (4.2) we an estimate to whih extent the measured value of |M12| an be explainedthrough the ontribution from the MSSM.4.2. The SUSY ontributions to the meson mixing proessesIf nature has hosen Supersymmetry as the right extension of the SM, box diagrams withsupersymmetri partiles will be involved in meson mixing as well (see �g. 4.3). In partiu-lar, the Wilson oe�ients orresponding to all the operators given in eq. (2.70) would bedi�erent from zero in general. The Wilson oe�ient CSUSY

i in eq. (4.1) an be written as
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Figure 4.3: Feynman diagrams desribing meson-antimeson osillations in the MSSM. Therossed diagrams (seond row) are needed only if the fermion in the loop is a Majoranapartile.a sum of the Wilson oe�ients stemming from box diagrams where the FCNC transitionis mediated by supersymmetri partiles:
CSUSY

i = CH±

i + C χ̃±

i + C g̃
i + C g̃χ̃0

i + C χ̃0

i . (4.48)The additional ontributions arise from boxes with harged Higgs and up-type quarks(CH±

i ), harginos and up-type squarks (C χ̃±

i ), gluinos and down-type squarks (C g̃
i ), mixedgluino, neutralino and down-type squarks (C g̃χ0

i ), and neutralinos and down-type squarks(C χ̃0

i ). The omplete list of the Feynman rules for the MSSM verties and their derivationfrom the Lagrangian an be found in [41�43℄. Note that for the derivation of the MSSMFeynman rules di�erent onventions are adopted in the literature. For the alulation ofthe Wilson oe�ients in the MSSM CSUSY
i in this work the Feynman rules given in theappendix have been used. In following we present the onvention whih we have used inour analysis of the MSSM with R-parity and softly broken SUSY.The squark super�eld matter multiplets ontain salar and fermioni superpartners givenby

QI =

{(

ũI

d̃I

)

L

,

(

uI

dI

)

L

}

, U I
c =

{

(ũI
R)∗, (uI

L)c
}

, DI
c =

{

(d̃I
R)∗, (dI

L)c
}

. (4.49)In the SM �avour violation appears through the non-diagonal Yukawa matries. The U(3)×
U(3)×U(3) global symmetry of the quark gauge setor allows the diagonalisation of the theup and down Yukawa matries by performing a rotation of the quark �elds in the �avour



50 4. Wilson oe�ients for meson mixing proesses in the MSSMspae. For the diagonalisation of the two Yukawa matries by a biunitary transformationsfour unitary matries are neessary but aording to the [U(3)]3 symmetry of the quarkgauge setor only three matries are available. This fat arises in the appearane of theCKM matrix whih ontains all the �avour violation in the SM in the basis in whih boththe up and down Yukawa matries are diagonal. Applying the same transformations onthe super�elds in the MSSM one obtains the so alled Super-CKM (SCKM) basis. In theSCKM basis the squark mass matries still have o�-diagonal entries. The unitary matriesating on the super�eld to diagonalise the quark mass matries are
QI

i → V IJ
Qi
QJ

i , U
I
c → V ∗IJ

U UJ
c , D

I
c → V ∗IJ

D DJ
c . (4.50)After performing this transformations one obtains the following relation between the diag-onal Yukawa and quark mass matries

m̂u =
v2√
2
Ŷu, m̂d =

v1√
2
Ŷd. (4.51)The mass mixing matries for the up-type and down-type squarks are given by

M2
U =

(

(M2
U)LL +m2

u − cos 2β
6

(M2
Z − 4M2

W )1 (M2
U)LR − µ cotβmu

(M2
U)†LR − µ∗ cot βmu (M2

U)RR +m2
u + 2 cos 2β

3
M2

Z sin2 θW

)

,(4.52)
M2

D =

(

(M2
D)LL +m2

d − cos 2β
6

(M2
Z + 2M2

W )1 (M2
D)LR − µ tanβmd

(M2
D)†LR − µ∗ tan βmd (M2

D)RR +m2
d − cos 2β

3
M2

Z sin2 θW

)where θW is the Weinberg angle and the �avour hanging entries are ontained in the 3×3matries in the �avour spae
(M2

U)LL = VQ1
m2

QV
†
Q1
, (M2

U )RR = VUm
2
UV

†
U , (M2

U)LR = VQ1
m2

QV
†
U

(M2
D)LL = VQ2

m2
QV

†
Q2
, (M2

D)RR = VDm
2
UV

†
D, (M2

D)LR = VQ1
m2

QV
†
D. (4.53)The hermitiity of the squark mass matries implies M2

QLL
= M2†

QLL
, M2

QLR
= M2†

QRL
and

M2
QRR

= M2†
QRR

. Then, in order to have the squark mass matries in diagonal form a seondrede�nition of the up-type and down-type squark �elds is neessary. We transform thesquark �elds from the �avour-hirality basis to the mass eigenstates basis by the rotations
ũi

L = (Z†
U)ikUk, d̃i

L = (Z†
D)ikDk,

ũi
R = (Z†

U)(i+3)kUk, d̃i
R = (Z†

D)(i+3)kDk,
(4.54)



4.2 The SUSY ontributions to the meson mixing proesses 51where the index i = 1, 2, 3 and k = 1, ..., 6. This relations de�ne the unitary matries
ZQ ∈ C6×6 whih diagonalise the mass mixing matries M2

Q. Using the transformationgiven in eq. (4.54) we obtain
(M2

D)D = ZDM
2
DZ

†
D, (M2

U)D = ZUM
2
UZ

†
U , (4.55)where (M2

U)D and (M2
D)D are the diagonal up-type and down-type squark mass matries.In the MSSM there is a nontrivial mixing between the harged gauginos, the winos, andthe harged higgsinos as well as between the neutral gauginos, the bino and the photino,and the neutral higgsinos. For this reason the harginos and neutralinos are the masseigentates obtained by the diagonalisation of the so alled hargino and neutralino massmixing matries. The harginos are two Dira fermions χ̃±

1,2 whose masses are the twoeigenvalues of the hargino mass matrix:
(

Mχ̃±

1
0

0 Mχ̃±

2

)

= Û †

(

M2

√
2MWsβ√

2MW cβ µ

)

V̂ (4.56)Sine the hargino mixing matrix is not neessarily hermitian, it is diagonalised by a biuni-tary transformation with the unitary matries Û , V̂ ∈ C2×2. The higgsino mass parameter
µ and the gaugino mass parameterM2 whih appear in the soft SUSY breaking part of thesupersymmetri Lagrangian are free parameters of the model. In the interation eigenstatebasis the harged higgsino omponents of the hargino �elds ouple to squarks and quarkswith the Yukawa ouplings whih are proportional to mq/MW . Beause of the smallness ofthe quark masses in omparison to the mass of the W boson whih is true for all quarksexept for the mass of the top quark the dominant ontribution arises through the squark-quark-wino weak interation and through the squark-top-higgsino Yukawa interation. Allother Yukawa ouplings are negligible due to their proportionality to the mass of the or-responding light quark.Neutralinos are four Majorana fermions χ̃0

1,...,4 with a symmetri mass matrix whih isdiagonalised as
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ẐN



52 4. Wilson oe�ients for meson mixing proesses in the MSSMwhere the angle β is de�ned through the ratio of the vauum expetation values i.e.
β = arctan(vu/vd). In eq. (4.57) the abbreviations cβ = cosβ, sβ = sin β, cW = cos θW ,and sW = sin θW have been used as well. The matrix ẐN is a unitary omplex matrix,
ẐN ∈ C4×4. The quantity tanβ = vu/vd is a free parameter in the MSSM.In the MSSM an additional ontribution to the �avour hanging proesses an ourthrough the harged Higgs bosons in the box diagrams. The reason for this fat is that theHiggs setor of the MSSM is extended by an additional Higgs doublet. In the SM there aretwo possibilities to write Lorentz-invariant fermion mass terms in the Lagrangian - these arethe so alled Dira and Majorana mass terms. Unfortunately, these terms are not invariantunder transformations aording to the eletroweak gauge group SU(2)L×U(1)Y . Inludingsuh terms in the SM Lagrangian leads to an expliit breaking of the loal SU(2)L×U(1)Ysymmetry of the SM Lagrangian density. Moreover, mass terms for the gauge �elds arenot allowed by the gauge symmetry as well. However, in nature fermions and the gaugebosons of the weak interation are massive partiles and the SM Lagrangian has to beproperly modi�ed in order to desribe these obvious experimental founds. The solution tothis problem is given by the spontaneous symmetry breaking of the SU(2)L×U(1)Y gaugegroup to the eletromagneti gauge group U(1)em by introduing of a salar �eld, the soalled Higgs �eld. The Higgs �eld is a SU(2)L dublet and has a speially hosen potentialsuh that its vauum expetation value is di�erent from zero. In this way one �nds in theLagrangian of the SM mass terms for the gauge bosons proportional to the positive vauumexpetation value of the Higgs �eld. The masses of the fermions arise through Yukawa-typeinteration between the left handed lepton and quark doublets, their right-handed singletpartners and the Higgs �eld. In a speial hoie of the gauge, the so alled unitary gaugewhih is realised by performing a loal SU(2) transformation on the Higgs doublet, threeof the four salar �elds in the Higgs doublet an be removed. These are the nonphysialPseudo-Goldstone bosons whih appear by the spontaneous breaking of the eletroweakgauge symmetry to the eletromagneti gauge symmetry. The Pseudo-Goldstone bosonsbeome the third, longitudinal degree of freedom of the massive vetor bosons after thespontaneous symmetry breaking. One �eld remains, this is the SM Higgs �eld. However, inthe MSSM the situation is more ompliated. The MSSM is an extension of the so alledtwo Higgs doublet models. That means, at least two Higgs doublets have to be introduedin order to have gauge invariant mass terms of the fermions and gauge bosons in the su-persymmetri Lagrangian. The introdution of two Higgs doublets is neessary beause of



4.2 The SUSY ontributions to the meson mixing proesses 53a speial property - the holomorphy - of the superpotential. The two Higgs doublets ensurethe anellation of anomalies related to the Higgsinos in the model as well. We will notgo further into details on this topi and refer for a more omprehensive explanation ofthe Higgs setor of the MSSM to [41,92�94℄ and referenes therein. In the MSSM the twoHiggs doublets omprise eight additional degrees of freedom. After spontaneous symmetrybreaking �ve of them appear as physial Higgs bosons. Three of the physial Higgses areneutral partiles while the remaining two arry an eletri harge.The harged Higgs bosons H+
1 and H+

2 whih a�et the proesses on whih we fous inthis work are related to the initial Higgs �elds by the transformation
(

H1∗
2

H2
1

)

= ZH

(

H+
1

H+
2

)

. (4.57)The matrix ZH is given by
ZH =

1
√

v2
u + v2

d

(

vu −vd

vd vu

) (4.58)where vu and vd are the vauum expetation values. With the ratio tanβ = vu/vd thematrix ZH in eq. (4.58) an be written in a more onvenient form
ZH =

(

sin β − cosβ

cosβ sin β

)

. (4.59)Finally, the masses of the two physial harged Higgs salars H± are given by
M2

H±

1

= M2
W +m2

Hu
+m2

Hd
+ 2|µ|2. (4.60)where m2

Hu
and m2

Hd
are soft terms for the orresponding Higgs doublets. The gauginomasses M1,2 are assumed real as well as the Higgs setor parameter µ. In fat, if one allowsnon-trivial phases inM1,2, they are ommuniated to the gaugino diagonalisation matries,whih in turn enter the Feynman rules for harginos and neutralinos. One would then havenew soures of CP violation. The same argument applies to the Higgs setor parameter µ.The strong, eletroweak and harged Higgs verties involved in the box diagrams given in�g. 4.3 an be found in the appendix.
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55
5. The inlusive deay B → XsγThe inlusive radiative deay B → Xsγ is a rare loop mediated proess whih involves thethird quark generation. Therefore, these transitions are very sensitive to NP ontributionsand play a ruial role in the indiret searhes for NP. The theoretial SM predition isknown up to NNLO preision in QCD [44℄. The branhing ratio of the B → Xsγ deay hasbeen experimentally measured by CLEO, BaBar and Belle ollaborations [45�51℄. Thus,the omparison of the experimental data with the theoretial predition by inluding thesupersymmetri ontributions to the SM result is a powerful strategy for onstraining theparameter spae of various extensions of the SM [53�55℄ and, in partiular, the supersym-metri parameter spae.5.1. B → Xsγ in the SMThe B → Xsγ transition is a |∆F | = 1 proess whih is governed by the so alled magnetipenguins shown in the Feynman diagram in �g. 5. In the SM where the b → s quarktransition is mediated by a W boson a ruial role plays the magneti γ-penguin. In theloop the top quark ontribution is the dominant one. The e�etive Hamiltonian in the SMat the sale µ = mb is an be written as

HSM
eff = −4GF√

2
V ∗

tsVtb

8
∑

i=1

Ci(µ)Qi(µ). (5.1)To an exellent auray the relevant operators are given by
Q2 = sαγµPLc

α cβγµPLb
β ,

Q7 =
emb

16π2
sασµνF

µνPRb
α, (5.2)

Q8 =
g3mb

16π2
sασµνG

µν
a T a

αβPRb
β.The ontribution of the other operators is suppressed and an be negleted. Q2 is the dom-inant urrent-urrent operator while the operators Q7 and Q8 orrespond to the magneti
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Figure 5.1: |∆F | = 1 penguin diagram relevant for the B → Xsγ proess. In the SM(in unitary gauge) up-type quarks and W bosons are involved in the loop. In the MSSMadditional ontributions stemming from gluinos or neutralinos and down-type squarks,harginos and up-type squarks and harged Higgs bosons and up-type quarks are present.
γ-penguin and to the magneti gluon-penguin shown in �g. 5, respetively. The alulationof the branhing fration Br(B → Xsγ) in the SM is done by �rst evaluating the orre-sponding Wilson oe�ients at the higher sale µ ≈ MW , mt by mathing of the e�etivetheory result onto the one obtained in the full theory alulation. Furthermore, onsid-ering the operator mixing under renormalisation, the RG equations are derived in orderto perform an evolution of the Wilson oe�ients down to the low energy sale µ ≈ mb.In the last step the on-shell B → Xsγ amplitudes are evaluated [44℄. The obtained SMvalue for the branhing ratio of the inlusive B → Xsγ proess is given by Br(B → Xsγ)
= (3.15± 0.23) · 10−4. The indiated error has been obtained by adding in quadrature thenon-perturbative (5%), parametri (3%), higher-order perturbative (3%), and the interpo-lation ambiguity (3%) unertainties. For more details about the alulation of the B → Xsγbranhing ratio at NLO we refer to [52℄. Details about the NNLO SM ontribution an befound in [44℄.5.2. B → Xsγ in the MSSMConsidering the possible interations and the partile ontent of the MSSM we �nd a newontributions to the b → sγ proess. In partiular, they stem from exhange of up-type



5.2 B → Xsγ in the MSSM 57quarks and a harged Higgs boson, of down-type squarks and a gluino or neutralino, and ofup-type squark and a hargino. The SUSY ontributions are desribed by |∆B| = |∆S| = 1e�etive magneti and hromomagneti operators as well as by new four quark opera-tors. Considering operators up to dimension six allows the mathing of the harged Higgs,hargino and neutralino penguins onto the SM magneti and hromomagneti operators
Q7 and Q8 given in eq. (5.2), and onto their ounterparts

Q′
7 =

emb

16π2
sασµνF

µνPLb
α

Q′
8 =

g3mb

16π2
sασµνG

µν
a T a

αβPLb
β (5.3)whih are obtained from Q7 and Q8 by replaing PR → PL. In supersymmetri senarioswhih do not assume extremely large values for tan β the ontributions to the Wilsonoe�ients orresponding to the operators given in eq. (5.3) from harged Higgs bosonsand harginos are small in omparison to C7 and C8 and vanish in the limit of masslessstrange quark. The neutralino ontributions to all Wilson oe�ients involve the sameelements of the down-type squark mass matrix as the gluino ontribution. However, thegluinos ouple with the strong oupling onstant g3 while the neutralino verties involvethe weak oupling onstant g2. Thus, the gluino ontribution whih is proportional to g2

3dominates the neutralino ontribution whih is proportional to g2
2 by far. In fat, omparedto the other ontributions stemming from SUSY partiles the neutralino ontribution turnsout to be inessential [56℄.The gluino ontribution is desribed by the e�etive Hamiltonian [56℄

Hg̃
eff =

∑

i

Ci,g̃(µ)Qi,g̃(µ) +
∑

i

∑

q=u,...,b

Cq
i,g̃(µ)Qq

i,g̃(µ) (5.4)The seond term in eq. (5.4) inludes four-quark salar, vetor and tensor operators Qq
i,g̃.At one loop level the salar and tensor operators mix into the magneti and hromomag-neti operators of dimension six [57, 58℄ and, therefore, have to be taken into aount byperforming the alulation. However, the mixing mentioned above turns out to be numer-ially small. Thus, the ontribution of the operators Qq

i,g̃ an be negleted [56℄. The dipoleoperators Qi,g̃ in whih the hirality �ip is indued by the b-quark mass are given by
Q7b,g̃ = eg2

3(µ)mb(µ) sασµνF
µνPRb

α,

Q′
7b,g̃ = eg2

3(µ)mb(µ) sασµνF
µνPLb

α, (5.5)
Q8b,g̃ = g3

3(µ)mb(µ) sασµνG
µν
a T a

αβPRb
β ,

Q′
8b,g̃ = g3

3(µ)mb(µ) sασµνG
µν
a T a

αβPLb
β .



58 5. The inlusive deay B → XsγThere are also gluino-indued operators where the hiralitiy violation is signalled by theharm quark mass. These operators are obtained from the ones given in eq. (5.5) by re-plaing mb(µ) by mc(µ). The operators where the hirality �ip is indued by the gluinomass read
Q7g̃,g̃ = eg2

3(µ) sασµνF
µνPRb

α,

Q′
7g̃,g̃ = eg2

3(µ) sασµνF
µνPLb

α, (5.6)
Q8g̃,g̃ = g3

3(µ) sασµνG
µν
a T a

αβPRb
β,

Q′
8g̃,g̃ = g3

3(µ) sασµνG
µν
a T a

αβPLb
β .In our alulation we use the Wilson oe�ients obtained in the model independent analysisof B → Xsγ based on a leading-log QCD alulation in the MSSM [56℄. The Wilsonoe�ients for all the supersymmetri ontributions mentioned above an be found in theappendix of [56℄.



59
6. Method and general features of theanalysisIn the past many analyses have been done in order to onstrain o�-diagonal elements ofthe squark mass matrix. In the �rst studies [60, 62, 80℄ the framework of the so alledmass insertion approximation (MIA) [63℄ has been used. The main advantage of the massinsertion method is given by the fat that the full diagonalisation of the sfermion massmatries is not neessary. It is enough to ompute only ratios of the o�-diagonal overdiagonal elements of the sfermion mass matries in order to test the SUSY model underonsideration in the FCNC setor. Usually, the o�-diagonal elements of the mass mixingmatrix are written as an expansion in o�-diagonal mass insertions

δq XY
ij =

(

δq Y X
)∗

ji
=

∆q̃ XY
ij

M̃2
, M̃2 ≡ 1

6

∑

k

[

M2
q̃

]

kk
. (6.1)where ∆q̃ XY

ij are o�-diagonal elements of the mass mixing matries and the indies
q ∈ {u, d} and X, Y ∈ {L, R} denote the up-type and down-type mass mixing ma-trix and the ertain 3× 3 bloks de�ned in eq. (4.53), respetively. Adopting the MIA themehanism of �avour violation mediated by soft SUSY breaking terms is linearised. Withthis tehnique the results an be written in a more transparent and manageable form.However, the MIA is valid only under the assumption that the o�-diagonal entries in thesquark mass matries are small ompared to the diagonal ones. In this work we use resultsin MIA only for the purpose of lear explanation and better understanding of general rela-tions. The numerial analysis is performed by an exat diagonalisation of the squark massmatrix.In the next setions we �rst investigate analytially the orrelation between the Bs−Bsand Bd−Bd mixing proesses in the general MSSM. Our aim is to reate general relationsbetween the SUSY ontributions to the meson mixing proesses and to explore their impaton the Bs−Bs and Bd−Bd mixing phases. Then we onentrate on the main features of



60 6. Method and general features of the analysisour numerial analysis whih has been performed to onstrain o�-diagonal elements of theup-type mass-mixing matrix, in partiular the mass insertions δu LL
23 and δu LL

13 .6.1. General orrelations between Bs−Bs and Bd−Bd mixingIn the SM we an write the B−B mixing transition amplitude negleting the small harm-quark ontribution as
M q SM

12 = CqS0(xt)(VtbV
∗
tq)

2 (6.2)where we ombine all the ouplings and fators oming from non-perturbative QCD in theonstant C and S0(xt) is the well-known Inami-Lim-funtion introdued in eq. (4.22). Theratio of the Bs−Bs and Bd−Bd transition amplitudes is given by
Ms SM

12

Md SM
12

=

(

VtbV
∗
ts

VtbV ∗
td

)2

ξ2 ≈ ξ2

λ2R2
t

e−2iβ ≈ O(40)e−2iβ (6.3)where Rt = |Vtd|/λ|Vcb| and ξ is the ratio de�ned in eq. (2.90). We neglet the small
Bs−Bs mixing phase 2βs = 2ηλ2 +O(λ4) originating from the phase of the CKM element
Vts. Equation (6.3) shows that in the SM the Bd−Bd transition amplitude is suppressedroughly by a fator 40 ompared with the Bs−Bs transition amplitude.We de�ne of the ratio of the NP ontributions to the SM ontribution

∆q
NP ≡ M q NP

12

M q SM
12

(6.4)where M q SM
12 and M q NP

12 are understood as the pure SM result and the sum of the di�erentSUSY ontributions i.e. originating from hargino box diagrams, gluino box diagrams et.,respetively. Thus, the NP ontribution to M q
12 an be parametrised as [69℄

1 + |∆q
NP| eiφq

NP = |∆q| eiφq
∆ (6.5)The di�erene between the phase of the SM amplitude and the phase of the NP ontributionarises as φq

NP in eq. (6.5). From eq. (6.5 ) it follows
tanφq

∆ =
|∆q

NP| sin φq
NP

|∆q
NP| cos φq

NP + 1
. (6.6)Expressing the NP phase as a funtion of the omplex parameter ∆q we obtain

tanφq
NP =

|∆q| sinφq
∆

|∆q| cosφq
∆ − 1

. (6.7)
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Figure 6.1: The absolute value and the phase of ∆q for di�erent values of φq
NP starting fromthe left with φq

NP = −180◦ and inreasing it in steps of 10◦ to the right until φq
NP = 0◦.In �g. 6.1 we graphially show the relation between the absolute value and the phase of

∆q for di�erent values of φq
NP.Through the hargino boxes there is a generi orrelation between the NP ontribution tothe Bs−Bs and Bd−Bd mixing proesses. This an be demonstrated in a simple way byonsidering a simple hargino box diagram. If we allow a huge NP ontribution to Bs−Bsmixing oming from additional �avour violation aused from the mass insertion δu LL

23 thehargino box diagram an be expressed as
M q χ̃±

12 ∼ fχ̃±(m2
i , m

2
j , m

2
k, m

2
l )(δ

u LL
23 )2

(

VtbV
∗
cq

)2 (6.8)with the loop funtion fχ̃±(m2
i , m

2
j , m

2
k, m

2
l ) depending on the masses of the involved par-tiles in the loop. The ratio of the NP ontribution to the Bs−Bs and Bd−Bd mixingproess reads now

Ms χ̃±

12

Md χ̃±

12

=

(

V ∗
cs

V ∗
cd

)2

ξ2 =
ξ2

λ2
(6.9)



62 6. Method and general features of the analysisand is of the same order as in the SM. With the de�nition in eq. (6.4) we obtain the relation
∆d χ̃±

NP = ∆s χ̃±

NP

e−2iβ

R2
t

(6.10)whih let us onlude that a big NP ontribution in the Bs−Bs system implies a big NPontribution in the Bd−Bd system as well. However, the opposite statement is not true. Ifwe allow a large NP e�et in the Bd−Bd mixing indued through the mass insertion δu LL
13the NP ontribution is given by

M q χ̃±

12 ∼ fχ̃±(m2
i , m

2
j , m

2
k, m

2
l )(δ

u LL
13 )2

(

VtbV
∗
uq

)2 (6.11)Thus, one �nds for the ratio of the NP ontribution to the Bs−Bs and Bd−Bd mixingproess
Ms χ̃±

12

Md χ̃±

12

=

(

V ∗
us

V ∗
ud

)2

ξ2 = λ2ξ2. (6.12)With this result we obtain
∆s χ̃±

NP = ∆d χ̃±

NP R2
tλ

4e2iβ. (6.13)Equation (6.13) demonstrates that a big NP e�et in Bd−Bd mixing does not imply ane�et of the same order in the Bs−Bs system as well.The CKM�tter ollaboration has performed an analysis in order to onstrain the param-eters ∆s and ∆d in the Bs−Bs and Bd−Bd meson systems [70℄. The plot obtained for
Bd−Bd mixing is shown in �g. 6.2. We extrat the allowed 68.3% CL, 95.45% CL and99.73% CL regions for the NP phases φs

∆ and φd
∆ whih an be found in table 6.1. Whilethe NP phase φd

∆ annot exeed −20.0◦ even for the 99.73% CL region for the NP phase
φs

∆ all negative values are allowed. This fat leads to the onlusion that the NP ontri-bution in the Bd−Bd system is muh more onstrained then the NP ontribution to the
Bs−Bs system. Sine eq. (6.10) relates the SUSY ontributions in the neutral Bd and Bsmeson systems assuming that the box diagrams are a�eted only by additional exhangeof harginos in the loops we an translate the 1σ and 2σ regions from the Im ∆d − Re ∆dplot to the orresponding one valid in the ase of Bs mesons. From eq. (6.10) it follows

∆s χ̃±

= 1 +
(

∆d χ̃± − 1
)

R2
t e

2iβ . (6.14)
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Figure 6.2: Constraints on NP in Bd−Bd system from the CKM�tter ollaboration [70℄.We parametrise the 68.3% CL, 95.45% CL and 99.73% CL ontours in the plot in �g. 6.2and depit them aording to eq. (6.14) in the original Im ∆s − Re ∆s plot obtained fromthe CKM�tter ollaboration. The result of this proedure is shown in �g. 6.3. The outerblak dashed line orresponds to the 99.73% CL region while the inner solid line representsthe 95.45% CL and ross-hathed area orresponds to the 68.3% CL region in �g. 6.2. Onean see that the 95.45% CL and the 99.73% CL regions obtained by translating the allowed95.45% CL and the 99.73% CL regions in the Im ∆d−Re ∆d plot overlaps with the 99.73%CL regions in the Im ∆s −Re ∆s plot. However, there is no intersetion between the 68.3%CL regions. The blak hammed areas in �g. 6.3 show the region in whih the NP in the
Bs−Bs mixing mixing proess an be explained through a supersymmetri hargino on-tribution. However, looking at �g. 6.3 we realise how small is that region. It overs only theupper part of the 95.45% CL and 99.73% CL regions. We �nd that the maximal negativevalue of the phase φs

∆ whih an be aused by a hargino ontribution is −20.4◦ at 99.73%CL. For all points in the Im ∆s − Re ∆s plot whih are outside the bak hammed regions
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68.3% CL 95.45% CL

φs
∆ [−67.2◦,−27.0◦] ∪ [−150.2◦,−108.1◦] [−86.7◦,−11.1◦] ∪ [−165.4◦,−91.3◦]

φd
∆ [−16.1◦,−5.9◦] [−18.2◦, 0.0◦]

99.73% CL

φs
∆ [−182.0◦, 5.9◦]

φd
∆ [4.6◦,−20.0◦]Table 6.1: The allowed regions at 68.3% CL, 95.45% CL and 99.73% CL for the NP phases

φs
∆ and φd

∆ extrated from the analysis of the CKM�tter ollaboration [70℄.an additional soure of �avour violation is neessary.Until now we have not onsidered the gluino ontribution. Beause of the SU(2) gaugesymmetry in the left handed fermion setor in general the gluino ontribution is present aswell. If we assume a very heavy gluino the gluino ontribution beomes very small. Thatis the ase on whih we foused in our disussion so far. In this ase although the gluinoontribution is present it is highly suppressed and an be negleted. In following we willonentrate on the situation when the gluino ontribution a�ets the meson mixing pro-esses as well.Sine the quark-squark-gluino verties do not involve CKM elements a non-diagonal entriesin the down-type squark mass matrix are the only soure of �avour violation there. Beauseof the SU(2) gauge symmetry of the left handed fermion �elds the up-type and the down-type squark mass matries are related to eah other by the equation
M2

d LL = V †M2
u LLV. (6.15)Assuming only the mass insertions δu LL

23 and δu LL
13 to be di�erent from zero and the massinsertions δd LL

23 and δd LL
13 in the down setor whih indue a gluino ontribution to the

Bd−Bd and Bs−Bs meson mixing proesses are related to the mass insertions in the upsetor by the equations
δd LL
13 =

∑

i

(M2
u LL)iiVi3V

∗
i1 + δu LL

23 VtbV
∗
cd + (δu LL

23 )∗VcbV
∗
td + δu LL

13 VtbV
∗
ud + (δu LL

13 )∗VubV
∗
td(6.16)

δd LL
23 =

∑

i

(M2
u LL)iiVi3V

∗
i2 + δu LL

23 VtbV
∗
cs + (δu LL

23 )∗VcbV
∗
ts + δu LL

13 VtbV
∗
us + (δu LL

13 )∗VubV
∗
ts.
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Figure 6.3: Constraints on NP in Bs−Bs system from the CKM�tter ollaboration [70℄.The blak regions orrespond to the 68.3% CL, 95.45% CL and 99.73% CL regions in�g. 6.2 aording to eq. (6.14).IfM2
u LL is diagonal the �avour hanging in the hargino box diagram is from MFV type. Inthis ase the dominant NP ontribution omes from the gluino box diagrams. The gluinomediated transition amplitudes an be written as

M q g̃
12 = Kfg̃(m

2
g̃, m

2
i , m

2
j )
(

δd LL
q3

)2 (6.17)where we ombine all the onstants and non-perturbative QCD fators in the onstant
K and fg̃(m

2
g̃, m

2
i , m

2
j ) is the sum of the loop funtions multiplied by the orrespondingfators. Taking into aount the unitarity of the CKM matrix we obtain from eq. (6.16):

δd LL
13 = −λδu LL

23 + Aλ3

{

Rte
iβ

[

(M2
u LL)33 − (M2

u LL)11

M̃2

]

−
[

(M2
u LL)22 − (M2

u LL)11

M̃2

]}
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δd LL
23 = δu LL

23 + Aλ2

[

(M2
u LL)22 − (M2

u LL)33

M̃2

]

− Aλ4

2

[

(M2
u LL)22 − (M2

u LL)11

M̃2

] (6.18)where we have used the Wolfenstein parametrisation of the CKM matrix given in eq. (4.4)and M̃2 is the average squark mass de�ned in eq. (6.1). Relating the gluino ontributionsto the Bd and Bs system to eah other gives
Md g̃

12

Ms g̃
12

=
1

ξ2

(

δd LL
13

δd LL
23

)2 (6.19)Inserting the expressions given in eq. (6.18) in eq. (6.19) by requiring the same mass for the�rst two diagonal elements in the up-type squark mass matrix and expanding the result inthe Wolfenstein parameter λ we obtain
Md g̃

12

Ms g̃
12

=
λ2

ξ2

[

1 +
2Aλ2

(

Rte
iβ − 1

)

δu LL
23

(M2
u LL)33 − (M2

u LL)11

M̃2
+ O

(

λ4
)

]

. (6.20)With this result onsidering the ratio of Bd−Bd and Bs−Bs mixing amplitudes in the SMgiven in eq. (6.3) we �nd
∆d g̃

NP = ∆s g̃
NP

e−2iβ

R2
t

[

1 +
2Aλ2

(δu LL
23 )

2

(

Rte
iβ − 1

) (M2
u LL)33 − (M2

u LL)11

M̃2

] (6.21)Then, we obtain the following relation between the NP ontribution in the Bd and Bssetor stemming from hargino and gluino box diagrams:
∆d χ̃±

NP + ∆d g̃
NP =

e−2iβ

R2
t

{

∆s χ̃±

NP + ∆s g̃
NP

2Aλ2

(δu LL
23 )

2

(

Rte
iβ − 1

) (M2
u LL)33 − (M2

u LL)11

M̃2

} (6.22)If the diagonal elements of M2
u LL are equal or the di�erene (M2

u LL)33 − (M2
u LL)11 is smalland its ontribution an be negleted we obtain the same relation as in ase of the purehargino ontribution given in eq. (6.10):

∆d g̃
NP = ∆s g̃

NP

e−2iβ

R2
t

(6.23)In this ase eq. (6.22) leads to
∆d χ̃±

NP + ∆d g̃
NP =

(

∆s χ̃±

NP + ∆s g̃
NP

) e−2iβ

R2
t

(6.24)From eq. (6.18) it follows that the mass insertion δd LL
23 indued through the SU(2) relationeq. (6.15) and the mass insertion δu LL

23 have the same imaginary part. Their real parts di�erin ase of an up-type squark mass matrix with not equal diagonal elements.
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NP = 2 arg δd LL

23 −2βs. With φs χ̃±

NP = 2 arg δu LL
23 −2βsand negleting the small phase βs we obtain from eq. (6.18)

tan
φs g̃

NP

2
=

∣

∣δu LL
23

∣

∣ sin
φs χ̃±

NP

2

|δu LL
23 | cos

φs χ̃±

NP

2
+ Aλ2

M̃2
[(M2

u LL)22 − (M2
u LL)33]

(6.25)Equation (6.25) demonstrates the relation between the di�erene of the diagonal elementsof (M2
u LL) and the phases φs χ̃±

NP and φs g̃
NP. If the diagonal elements of the up-type massmixing matrix are equal the NP phases of the hargino and gluino ontributions are equalas well.Equation (6.24) shows that if the up-type squark mass matrix ontains equal diagonalelements it is not possible to explain the points outside the blak hathed region in �g. 6.3through the �avour violating e�ets indued by the mass insertion δu LL

23 only. In this aseeq. (6.14) holds for the hargino and gluino ontribution separately as well as for theirsum and eah point from the Im ∆d − Re∆d plot is translated aording to eq. (6.14) tothe Im ∆s − Re ∆s plot as it is shown for the the 68.3% CL, 95.45% CL and 99.73% CLregions in �g. 6.3. However, looking at the general relation eq. (6.22) we see that the blakhathed region in the Im ∆s − Re ∆s plane an be enlarged if there is a mass di�erenebetween the diagonal elements of the up-type squark mass matrix. In this ase a phasedi�erene between the gluino and hargino ontribution appears as well (see eq. (6.25)). Ifthe mass di�erene between the diagonal elements of M2
u LL is not su�ient to provide theneessary amount of �avour violation in order to explain a ertain point in �g. 6.3 the blakhathed region an be enlarged further by hoosing in addition the mass insertion δu LL

13 tobe non-zero. The LR setors of the squark mass matries are not related to eah other asthis is the ase for the LL setors due to SU(2) gauge symmetry. Allowing matrix elementsof the LR setors to ontribute to the �avour violation in the meson mixing proesses theblak hathed region ould over any desired region in Im ∆s − Re∆s plot.In our numerial analysis assuming a non diagonalM2
u LL with equal diagonal elements theentries of the down-type squark mass matrix generated through the SU(2) relation have asimple form

δd LL
23 = δu LL

23 + O(λ2),

δd LL
13 = −λδu LL

23 + O(λ5). (6.26)As already disussed, in this ase the phases of the mass insertions in the down-type squarksetor are to a very good approximation equal to the phases of the mass insertions in the
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Figure 6.4: Relation between the gluino mass and the mass insertion δu LL
23 for Bs−Bsmixing. ∣∣δu LL

23

∣

∣ is limited to 0.52 by the hoie of the minimal squark mass eigenstatebigger than 350 GeV. φs
∆ = −30◦, fBs

= 0.228 GeV.up-type squark setor and eq. (6.6) reates a relation between the gluino mass, the massinsertion δd LL
23 and the phase φq

∆. In �g. 6.4 we show the surfaes in a 3-dimensional plotfor Abs(δu LL
23 ), Arg(δu LL

23 ) and mg̃ on whih this ondition is satis�ed in Bs−Bs mixing.The plot ontains not only the gluino ontribution but the hargino and harged Higgsontributions as well. All diagonal elements of M2
u LL are set to (500 GeV)2. The rangeof δu LL

23 is hosen suh that the minimal squark mass eigenstate is bigger than 350 GeV.Sine ∣∣
∣
∆s g̃

NP

∣

∣

∣
depends on the gluino mass, the absolute value of the mass insertion |δu LL

23 |and on the squark masses one an obtain an upper limit on gluino mass mg̃ from themaximal value of ∣∣
∣
∆s g̃

NP

∣

∣

∣
for a given value of the mass insertion and a given set of squarkmasses. We hoose all squark masses to be equal and show the relation between ∣∣

∣
∆s g̃

NP

∣

∣

∣and mg̃ for a ertain squark mass and di�erent |δu LL
23 | in �g. A.3 and for a ertain ∣∣

∣
∆s g̃

NP

∣

∣

∣and di�erent squark masses in �g. A.2 in the appendix. In all plots we see that the gluinoontribution vanishes for mg̃ ≈ 1.5mq̃ where mq̃ is the value of all diagonal elements inthe up-type squark mass matrix. The reason for this e�et is the anellation between the



6.2 Constraints on the mass splitting of left-handed squarks 69rossed and unrossed box diagrams in �g. 4.3. This is an important issue whih has notbeen taken into aount by most analyses, whih have disregarded the eletroweak SUSYontributions, laiming that they are suppressed by the fator g4
2/g

4
3 in omparison to thegluino ontribution. However, from the plots shown in �g. A.2 and �g. A.3 we see that thisstatement is true only for gluino masses smaller than the squark masses. In the oppositease, the eletroweak ontributions an be dominant and their omission is not justi�ed.We will examine this topi in detail in the next hapter where we onentrate on the masssplitting between left-handed squarks.6.2. Constraints on the mass splitting of left-handed squarksThe squark mass matries in the down setor and in the up setor provide with their o�-diagonal elements additional soures of �avour violation. In order to satisfy the boundsfrom FCNCs it has been noted already in very early analyses of the MSSM that a superGIM mehanism is neessary [76℄. If the up-type squark mass matrix of the left-handedsquarks ontains big o�-diagonal elements a �avour o�-diagonal entries of the same orderare generated through the SU(2) relation eq. (6.15) in the down-type squark mass ma-trix.The same statement is true for the reversed situation assuming down-type squark LLmass mixing matrix ontaining big o�-diagonal elements. As we have shown in the previ-ous setion the o�-diagonal matrix elements indued through the SU(2) gauge symmetryin the left handed fermion setor are proportional to the mass di�erene between the diag-onal elements in the squark mass matries. Therefore, in order to avoid o�-diagonal entrieswhih would spoil the experimental bounds on observables involving FCNC e�ets usuallythe left-handed squarks are assumed to be with degenerate masses. We have examined themass splitting between the left-handed squarks by imposing onstraints from D−D and

K−K mixing . In following we explain the main features of our approah. The ompleteanalysis with all the results for di�erent values of the relevant MSSM parameters an befound in [77℄.The D−D and K−K mixing are FCNC proesses whih are highly sensitive to transitionsbetween the �rst two squark generations in the up-type and down-type squark setor.The neutral Kaon system probes NP in the down-type squark setor while the mixing ofneutral D mesons is a�eted by �avour hanging parameters in the up-type squark setor.Considering the SUSY ontributions to the D−D and K−K mixing proesses we an



70 6. Method and general features of the analysisplae onstraints on the involved �avour hanging SUSY parameters.The K−K mass di�erene ∆MK and the indiret CP violation parameter ǫK are bothsmall and in agreement with their SM preditions. In the SM the K−K transition ampli-tude is suppressed due to the rather preise GIM mehanism and the additional suppres-sion of the top quark ontribution by small CKM fators. Therefore, the meson mixingin the Kaon system is appropriate for testing NP models and obtaining bounds on NPparameters espeially in the MSSM. This statement is true for the mixing of neutral Dmesons as well. D−D mixing was experimentally disovered in 2007 by the BaBar [66℄ andBelle [67, 68℄ ollaborations. Short-distane SM e�ets are strongly CKM suppressed andthe long-distane ontributions annot be alulated perturbatively. Therefore, onserva-tive estimates assume for the SM ontribution a range up to the absolute measured valueof the mass di�erene. However, due to the small measured mass di�erene D−D mixingstill limits NP ontributions in a stringent way. Furthermore, a CP phase in the neutral Dsystem an diretly be attributed to NP.In the most analysis whih have been performed in order to onstrain MSSM parametersthe neutralino and hargino ontributions to the box digrams shown in �g. 4.3 have beennegleted [62,79�84℄. The main argument for onsidering only the gluino ontribution is thesmallness of the weak oupling onstant whih is involved in the hargino and neutralinoverties in omparison with the strong oupling onstant. In fat, the ontribution to thebox diagrams due to the weak interation is suppressed by a fator g4
2/g

4
3 ompared tothe gluino ontribution. However, the o�-diagonal elements in the LL blok of the squarkmass matries ause an enhanement of the �avour hanging e�ets indued by the quark-squark-hargino and quark-squark-neutralino verties. Moreover, for ertain on�gurationof the MSSM parameters, espeially if the gluino is heavier then the squarks, the gluinoontribution an be suppressed due to the anellation between the rossed and unrossedbox diagrams. This e�et annot our in box diagrams involving harginos beause theyare Dira fermions and the rossed box diagrams are not present. Beause of the reasonsmentioned above, we an onlude that the negleting of the eletroweak ontributions isa good approximation only for light gluinos and annot be justi�ed in regions where thegluinos are heavier than the squarks.In our analysis we onsider the strong as well as the eletroweak SUSY ontributions tothe K−K and D−D mixing proesses in the general MSSM. In partiular, we alulatethe gluino, gluino-neutralino, neutralino and hargino ontributions. Our aim is to obtain



6.2 Constraints on the mass splitting of left-handed squarks 71onstraints on the mass-splitting between the �rst two generations of left-handed squarks.As already disussed in the previous setion the SU(2) gauge symmetry of the left-handedfermion setor reates a relation between the up-type and down-type squark mass matries,in partiular M2
u LL = VM2

d LLV
†.Both squark mass matries an be simultaneously diagonal only if they are proportional tothe unit matrix. This is realised in the naive minimal �avour violating MSSM. In ase one ofthe squark mass matries does not ontain only equal diagonal elements, the SU(2) relationeq. (6.15) generates o�-diagonal elements in the other one. These entries are proportionalto the o�-diagonal elements in the squark mass matrix on whih the CKM rotation isperformed and on the di�erene between the diagonal elements. In this analysis we areinterested in the mass insertions δu LL

12 and δd LL
12 whih ause �avour violation between the�rst two generations in the up-type and in the down-type squark setor, respetively, andtherefore an sizeably a�et the D−D and K−K mixing proesses. Assuming a diagonaldown-type squark mass matrix with non-degenerate diagonal elements, we obtain for themass insertion δu LL

12 from the SU(2) relation
δu LL
12 = VusV

∗
cs

[

(M2
d LL)22 − (M2

d LL)11

M̃2

]

+ VubV
∗
cb

[

(M2
d LL)33 − (M2

d LL)11

M̃2

]

. (6.27)In the opposite ase of a diagonal up-type squark mass matrix the mass insertion δd LL
12indued through the SU(2) relation is given by

δd LL
12 = VcsV

∗
cd

[

(M2
u LL)22 − (M2

u LL)11

M̃2

]

+ VtsV
∗
td

[

(M2
u LL)33 − (M2

u LL)11

M̃2

]

. (6.28)The CKM matrix elements in eq. (6.27) and eq. (6.28) an be expressed through theparameters A, λ, ρ and η of the Wolfenstein parametrisation eq. (4.4). We �nd
δu LL
12 = λ

(

1 − λ2

2

)[

(M2
d LL)22 − (M2

d LL)11

M̃2

]

+ O
(

λ5
)

, (6.29)respetively
δd LL
12 = −λ

(

1 − λ2

2

)[

(M2
u LL)22 − (M2

u LL)11

M̃2

]

+ O
(

λ5
)

. (6.30)The generated mass insertions mostly depend on the mass di�erene between the �rst twogenerations in the up or down setor and di�er from eah other only by their overall sign.If we hoose the squark mass matries to be proportional to the unit matrix we �nd thatall MSSM Wilson oe�ients are omplex numbers with negligible phase: the imaginary
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Figure 6.5: Size of the real part of the Wilson oe�ients of the di�erent SUSY ontributionsto the D−D or K−K mixing proess normalised to the hargino ontribution. CSUSY
1 isthe sum of all onsidered ontributions from SUSY partiles. Plots for squark masses of

1000 GeV an be found in [77℄.part is several orders of magnitude smaller then the real part for large regions of the MSSMparameter spae. In �g. 6.5 we show the real part of the SUSY Wilson-Coe�ients C χ̃±

1 ,
C χ̃0

1 , C g̃
1 , C g̃χ̃0

1 ontributing to the K−K or D−D mixing proess as a funtion of thegluino mass. All Wilson oe�ients are normalised to C χ̃±

1 . For light gluino masses thegluino ontribution dominates over the other ones by far. However, C g̃
1 dereases fast withinreasing gluino mass. For heavy gluino masses the most important ontribution originatesalways from hargino boxes. Further, we notie that for some on�guration of the MSSMparameters, i.e. in ase of heavy gluino and light squark masses around and below 500 GeV,and big values of M2 around 400 GeV and more, the mixed gluino-neutralino ontributionbeomes the seond dominant one after the hargino ontribution. In almost all regionsof the MSSM parameter spae the ontribution to the FCNC meson mixing proess dueto the neutralino-neutralino boxes is negligible ompared to the ones of the other SUSYpartiles involved in the box diagrams.In reent analyses [79,84℄ NP has been onstrained by requiring that the NP ontribution to



6.2 Constraints on the mass splitting of left-handed squarks 73the mass di�erene of neutral Kaons andD mesons has to be smaller then the orrespondingexperimental values ∆MK/MK = (7.01±0.01)10−15 [85℄ and ∆MD/MD = (8.6±2.1)10−15[86℄. CP violation in mixing stemming from NP phenomena is restrited through the pa-rameter ǫNP
K ≤ 0.6ǫexp

K [79℄. Thus, the following upper bounds on the Wilson oe�ients
CK

1 and CD
1 have been obtained [79℄:

∣

∣CK
1

∣

∣ ≤ 8.8 · 10−13

(

ΛNP

GeV

)2

,

∣

∣CD
1

∣

∣ ≤ 5.9 · 10−13

(

ΛNP

GeV

)2

, (6.31)
Im
(

CK
1

)

≤ 3.3 · 10−15

(

ΛNP

GeV

)2

,

Im
(

CD
1

)

≤ 1.0 · 10−13

(

ΛNP

GeV

)2where ΛNP is the sale of NP. We use the onstraints in eq. (6.31) in order to obtainonstraints on the mass splitting between the �rst two generations of left handed down-type squarks from K−K mixing and on left handed up-type squarks from the mesonmixing in the neutral D meson system.We �rst analyse the two extreme ases with diagonal up-type squark or diagonal down-type squark mass matrix and set (M2
u LL)22 = (M2

u LL)33, respetively (M2
d LL)22 = (M2

d LL)33.The onstraints obtained for these two senarios orrespond to the green and red area in�g. 6.6 where we show the gluino mass and the squark mass of the �rst generation in atwo dimensional region plot. The plot shows that large regions in the MSSM parameterspae with non-degenerate squarks are allowed from K−K and D−D mixing . Whilethe red and green regions orrespond to ompletely alignment either in the up setor orin the down setor either by hoosing M2
u LL diagonal and obtaining the onstraints fromthe Kaon system or by requiring a diagonal form of M2

d LL and obtaining the onstraintsfrom D−D mixing , the yellow region desribing the maximally allowed mass splittingis obtained in ase of intermediate alignment of the up-type and down-type squark massmatries in the up and down setor. In this ase neither M2
u LL nor M2

d LL is diagonal.Following the approah in [79℄ we perform a rotation of the diagonal squark mass matriesby the matrix [79℄
Vd =







cos θd sin θd 0

− sin θd cos θd 0

0 0 1






. (6.32)
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Figure 6.6: Allowed regions in the (mq̃1
, mg̃)-plane for mq̃2

= mq̃3
= 500 GeV and M2 =

200 GeV, 400 GeV aording to eq. (6.31). The green region is the allowed range assuminga diagonal up squark mass matrix. The red region is obtained in ase of diagonal downsquark mass matrix. The yellow (lightest) area orresponds to the maximally allowed masssplitting assuming intermediate alignment of the squark mass matries in the up and downLL squark setor. The blue (darkest) area is the minimal region allowed for mass splittingbetween the left-handed squarks orresponding to a senario with equal diagonal entriesin the down squark mass matrix and an o�-diagonal element arrying a maximal phase.Plots for squark masses of 1000 GeV an be found in [77℄.The angle θd is de�ned through
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(6.33)where θc denotes the Cabibbo angle. With the numerial onstraints given in eq. (6.31) one�nds inserting the maximal values of |CK
1 | and |CD

1 | in eq. (6.33) θd = 6.9◦. Departing fromthe exat alignment of the LL squark mass matries either in the up or in the down setorthrough the rotation by the matrix Vd additional real o�-diagonal elements are generated.Looking at the plots in �g. 6.6 one realises that a lot of points in the MSSM parameterspae an be found whih allow for an even larger mass splitting ompared to the ases with



6.2 Constraints on the mass splitting of left-handed squarks 75diagonal up-type or down-type squark mass matrix. For a proper value of that o�-diagonalelements whih in our ase of study is given by hoosing a value for the angle θd = 6.9◦ in
Vd the allowed mass splitting an be maximised [79℄.The blue region in �g. 6.6 shows the minimal region for mass splitting between the left-handed squarks obtained under the assumption that the down squark mass matrix is pro-portional to the unit matrix and ontains an imaginary o�-diagonal element arrying aomplex phase suh that the imaginary part of the Wilson oe�ient CK

1 is maximal. Theimaginary matrix element of M2
d LL is an additional soure of CP violation in the Kaonsystem. Using the CP violation parameter ǫK as a onstraint, i.e. the onstraint on theimaginary part of the Wilson oe�ient CK

1 given in eq. (6.31) we obtain the most stringentbound on the mass splitting between the left-handed squarks of the �rst two generationswith the maximal amount of CP violation stemming from NP.Our analysis on the mass splitting between the �rst two generations of left-handed squarksshows that there are large regions in the MSSM parameter spae allowed fromK−K andD−
D meson mixing proesses where the squarks are not degenerate and for ertain senarioseven a large mass splitting of 100% and more is possible. In fat, the most benhmarkanalysis of the SUSY parameters are performed under the assumption of degenerate squarkmasses [87,88℄. However, in ase of di�erent diagonal elements of the mass mixing matriesinteresting onsequenes on the branhing ratios an our [89℄. The analysis of the K−Kand D−D mixing proesses shows that the up-type and down-type squark mass matriesdo not need to be neessarily proportional to the unit matrix at some high sale.
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7. Numerial analysis of δuLL23 and δuLL13In this hapter we desribe the numerial analysis whih has been performed in order toonstrain the o�-diagonal elements δu LL

23 M̃2 and δu LL
13 M̃2 of the up-type squark mass ma-trix. We start with an overview of the main features of the standart analyses of this type.Further, we explain our approah to plae bounds on the mass insertions involved in theFCNC proesses studied in this work.As already mentioned at the beginning of Ch. 6, in the past many analyses have beenperformed in order to onstrain o�-diagonal elements of the squark mass matrix. The �rststudies have used the mass insertion approximation (see Ch. 6) while in more reent pa-pers the up-type or down-type squark mass matries have been fully diagonalised. In orderto obtain the most onservative bounds on mass insertions it has been assumed that the�avour hanging proesses are indued by one mass insertion only. The bounds on themass insertions are extrated by omparison with the experimental results imposing thatthe quantities whih are alulated taking into aount the SUSY ontribution to the er-tain proess under study do not exeed the orresponding measured values. In order toperform a test of di�erent SUSY models and to onstrain di�erent o�-diagonal entries inthe squark mass matries the analyses have been extended and have beome more omplexand extensive. In previous works on this topi the main fous has been set on |∆F | = 2meson mixing proesses like K−K mixing , B−B mixing and ∆F = 1 proesses like

B → Xsγ, B → Xsl
+l−, li → ljγ as well as on the CP onstraints (see i.e. [71�73℄, [74℄and referenes therein). Reently, also |∆F | = 0 proesses, in partiular the eletri dipolemoments (EDMs) of quarks and leptons and the anomalous magneti moment of the muonhave been analysed using satter plot methods [74℄. Sine the SM predits very small val-ues for the EDMs they are extremely sensitive to NP ontributions. Although the EDMsarise as a result of �avour onserving proesses they an be generated by two |∆F | = 1transitions. Assuming that SUSY partiles are involved in these �avour violating |∆F | = 1transitions it is possible to plae onstraints on the mass insertions. In the most reent
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13analysis [74℄ the usually onsidered set of proesses has been extended by rare B deays,
D−D mixing and time dependent CP asymmetries. By inluding the full set of SUSYpartiles whih an ontribute to the FCNC proesses, the harged Higgs, the gluino, thehargino and the neutralino, all theoretially relevant one loop ontributions have beentaken into aount. In [74℄ bounds on mass insertions are determined in the ontext ofdi�erent SUSY models suh as the MSSM with minimal �avour violation where the �avourviolation even beyond the SM is desribed by the CKM matrix, a �avour blind MSSM,SUSY models based on abelian and non-abelian �avour symmetries.Performing an updated analysis of the bounds on the �avour violating terms in the SUSYsoft setor in the general MSSM is emphasised as one of the novelties in the most reentwork on this subjet [74℄. The theoretial treatment of the quantities under study is doneindeed in the ontext of the general MSSM. However, for the numerial analysis a spetrumof the so-alled onstrained MSSM (CMSSM) is assumed. In fat, among various possi-ble sets of boundary onditions whih an be imposed on the multidimensional parameterspae of the MSSM by far the most popular hoie is the CMSSM. In this model at theGUT sale all the sleptons, squarks and Higgs bosons have a ommon salar mass m0,all the gauginos unify at the ommon gaugino mass M1/2, and so all the tri-linear termsassume a ommon tri-linear mass parameter A0. In addition, at the eletroweak sale oneselets the ratio of Higgs vauum expetation values tan β and sign (µ), where µ is thehiggsino mass parameter of the superpotential.The aim of our numerial analysis is to obtain onstraints on the mass insertions δu LL

i3 ,
i = 1, 2 of the up-type squark mass matrix in the general MSSM. We fous on generirelations whih are mostly independent on boundary onditions. Suh a physial relationstems from hargino boxes whih orrelate Bd−Bd mixing and Bs−Bs mixing through theCKM elements involved in the meson mixing proesses. Another very important theoretialissue is the relation between the left-handed up-type squark mass matrix and the left-handed down-type one M2

u LL = VM2
d LLV

† due to SU(2) gauge symmetry in the lefthanded fermion setor. Sine these mass matries are not independent the only way toavoid �avour o�-diagonal mass insertions in the up and in the down setor simultaneouslyis to hooseM2
d orM2

u proportional to the unit matrix. This is realised in the naive minimal�avour violating MSSM. In a more general de�nition of MFV [64,65℄ �avour violation dueto NP is postulated to stem solely from the Yukawa setor resulting in FCNC transitions
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13 79(whih an now also be mediated by gluinos and neutralinos) proportional to produts ofCKM elements and Yukawa ouplings. In our approah we assumeM2
u LL ontaining �avourhanging non-diagonal entries and alulate the elements ofM2

d LL using the SU(2) relation.In addition, we take into aount the numerial relation between the Bs−Bs mixing and
Bd−Bd mixing transition due to ratio of the deay onstants and the bag parameters in the
Bs and Bd systems. In almost all previous analyses the Bs−Bs mixing and Bd−Bd mixingwere treated independently from eah other. However, these two proesses are related toeah other through the ratio ξ de�ned in eq. (2.90). In order to obtain the most onservativebounds on mass insertions we assume that the �avour hanging proesses are indued byone mass insertion only. The bounds on the mass insertions are extrated by omparisonwith the experimental results imposing that the quantities whih are alulated takinginto aount the SUSY ontribution to the ertain proess under study do not exeedtheir measured values. In the numerial analysis we onsider the hargino, gluino andthe harged Higgs ontribution to the box diagrams. The box diagrams involving thesepartiles dominate over the ones with a neutralino running in the loop by far. For thisreason the neutralino ontribution has been negleted in the numerial alulations. Sinethe box diagrams with harged Higgses do no involve squarks their ontribution to theFCNC proess of meson-antimeson mixing is not proportional to o�-diagonal elements ofthe squark mass matrix. By exhanging one of the two or both W bosons in the SM boxdiagrams by a harged Higgs boson the additional ontribution to the meson-antimesondeay amplitude depend only on two MSSM parameters, the mass of the harged Higgsboson mH± and tanβ. For tanβ ≤ 7 the harged Higgs ontributions are positive forall allowed values of the harged Higgs mass [59℄. They reah small negative values for
tan β = 10 for very light Higgs bosons (see i.e. Ch. 5.2, iv, �g. 7 in [59℄). Therefore, themeson-antimeson transition mediated by H± summarised in the Wilson oe�ients CH±

iappears as a small onstant shift of the sum of the other Wilson oe�ients whih isgiven by the hoie of the MSSM parameters mH± and tanβ. Yet through the resultingshift in the observable quantities the harged Higgs ontribution indiretly in�uenes the�avour hanging parameters under study. Further, we alulate with the obtained valuesof δu 23
LL and δu 13

LL the CP violating parameter |ǫK | whih is used as an additional onstrainton the studied mass insertions. The onstraint from the CP violation in the mixing ofneutral Kaons has not been onsidered by many analyses in the past. However, the valueof the non-perturbative parameter B̂K is known from reent lattie alulations with agood enough preision suh that |ǫK | beomes an important quantity for NP searhes.
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13Further, we examine onsidering the allowed values for the mass insertions δu 23
LL and δu 13

LLfrom Bs−Bs and Bd−Bd mixing whether the branhing ratio Br(B → Xsγ) whih isvery sensitive to NP e�ets satis�es its experimental bounds. In addition, we are using theobtained values for δu 23
LL and δu 13

LL for the alulation of theD−D transition amplitude. Sinethe D−D transition amplitude is proportional to the produt δu 23
LL δ

u 13
LL we tested whetherit is possible to obtain an additional onstraint on the produt of the mass insertions weare studying from the D−D system.7.1. The alulation proedureIn the alulation proedure we �rst investigate the ase in whih the SM alulation sat-is�es the experimental observables inside their 2σ bounds. We take the values of all theinput quantities to be in their 2σ experimental regions suh that the SM is not experi-mentally exluded up to 2σ for all observables under study. In this ase NP ontributionto the alulated quantities is neessary only if their theoretial value has to be equal toa ertain value i.e. in the 1σ region, in partiular, the entral value. The opposite senariowhih we investigate under the assumption that the SM is maximally exluded allows usto obtain the maximum amount of NP ontribution whih is needed in order to satisfy therequirement that the studied observables do not exeed their 2σ experimental bounds. Inthe maximum NP regime we alulate the entries of the CKM matrix using the values of

|Vcb| and |Vub| obtained from inlusive semileptoni B deays. In these proesses the quarktransition b→ clνl, respetively b → ulνl, is realised. Determinations of |Vcb| from inlusivedeays are urrently below 2% relative unertainty [75℄. At present, the inlusive deaysprovide the most preise determination of |Vub|. Unfortunately, the measurement of thetotal deay rate of B → Xulνl deay is a very hallenging task for experimentalists dueto the large bakground from CKM favoured B → Xclνl transitions. Taking into aountthe unertainty in mb as well, the total unertainty on |Vub| is at the 10% level [75℄. Themaximal value of the angle β orresponds to α = π/2. Thus, we obtain (f. �g. 4.1)
βmax = arcsinRb (7.1)where the side of the unitarity triangle Rb is given by

Rb =

(

1 − λ2

2

)

1

λ

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

. (7.2)With the numerial values V incl
ub = (4.12 ± 0.43) · 10−3 and V incl

cb = (41.6 ± 0.6) · 10−3 we�nd the maximal value βmax = 28.34◦ using the upper and lower 1σ bounds on V incl
ub and
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V incl

ub , respetively.We onsider the proesses of Bd−Bd mixing, Bs−Bs mixing, K−K mixing, D−D mixingas well as the inlusive deay B → Xsγ. For all these transitions we alulate the SUSYontributions from the harged Higgses, gluinos and harginos in the loop diagrams.
7.2. The logial struture of the programFor the extration of the mass insertions δu 13

LL we have used the proedure whih logialstruture is shown as a �owhart in �g. A.2. In the following we desribe the routine. The
Bs−Bs and Bd−Bd transition amplitudes Ms

12, Md
12, the K−K CP-violating parameter

ǫK as well as the B → Xsγ Wilson oe�ients C7, C ′

7, C8 and C ′

8 are alulated at previousstages of the program and depend now only on the unknown variables δu 13
LL and δu 23

LL . Thetransition amplitudes Ms
12 and Md

12 are funtions of the Bs and Bd deay onstants fBs
,respetively fBd

, as well. We start with Bs−Bs mixing and our �rst goal is the deter-mination of the allowed values for δu 23
LL by sanning over its real and imaginary part andthe extration of the orresponding allowed mass insertion δu 13

LL from the Bd−Bd mixingproess. For this purpose the squark mass eigenvalues are alulated for eah value of δu 23
LLduring the sanning proess assuming �rst δu 13

LL = 0. For the following alulation we on-sider only points in the (Re δu 23
LL , Im δu 23

LL )-plane for whih the numerially smallest squarkmass eigenstate is bigger then a ertain lower bound whih has been hosen to be 350 GeV.When suh a point is found during the sanning proess it is inserted into the Bs−Bsmass di�erene ∆Ms. Requiring ∆Ms to be equal to the mean value of the experimentallymeasured mass di�erene ∆M exp
s = 17.77 ps−1 we �nd the value of the Bs deay onstant

fBs
. In ase the obtained fBs

satis�es the allowed region 208 MeV ≤ fBs
≤ 248 MeV (seetable 4.1) the proedure ontinues with the alulation of the NP phase φs

∆. Further, werequire the NP phase φs
∆ to be inside of the 2σ range extrated from the analysis of theCKM�tter group (see table 6.1). In the next step, the deay onstant fBd

is determinedusing the ratio between the deay onstants in the Bs and Bd systems given in eq. (2.91)whih is known from lattie alulations with a preision up to 4%. Having inserted thefound value of fBd
in the Bd−Bd mass di�erene, the mass insertion δu 13

LL remains the onlyunknown parameter in the Bd−Bd transition amplitude Md
12. Then, taking into aountthe SM Bd−Bd transition amplitude M12 SM

d as well as the measured Bd−Bd mass dif-ferene ∆M exp
d and mixing phase 2βexp the matrix element δu 13

LL is alulated by requiring
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13the theoretial value of the Bd−Bd transition amplitude to be equal to the experimentalone. Sine the mass insertion δu 13
LL is a omplex quantity, the alulation of its absolutevalue and phase is performed in an iterative way by starting with a proper value for thephase and solving the equation for the absolute value and then inserting the latter againin Md SM

12 and extrating the phase one more. This iterative proedure is repeated manytimes until the alulated values for the absolute value and the phase of δu 13
LL are stable.After the determination of δu 13

LL it is inserted in the up-type mass mixing matrix whih isdiagonalised and the hek whether the smallest squark mass eigenstate is bigger than thelower bound of 350 GeV has to be passed again. If this is the ase the transition amplitude
Md

12 is alulated by inserting the obtained value of δu 13
LL one more in order to be ensuredthat the equation Md

12 = Md,exp
12 indeed holds. This hek is the last on�rmation thatthe mass insertion δu 13

LL has been orretly alulated. Then, the whole proedure an berepeated iteratively by using the obtained value of δu 13
LL as an input in ∆Ms together with

δu 23
LL . The deay onstant fBs

is determined from the new value of ∆Ms and the proedureontinues with the further steps desribed above. After a ertain number of iterations issuessfully ompleted the numerial values of the quantities ǫK , Br(B → Xsγ) and ∣∣MD
12

∣

∣is alulated with the extrated values of δu 23
LL and δu 13

LL .In order to ensure that the routine desribed above will work for di�erent senarios andhoies of the MSSM input parameters a lot of additional subroutines and heks have beeninluded in the numerial proedure whih logial struture has been explained above. Inpartiular, possible divergenes in ase of equal eigenstates of the squark mass matrieshave to be avoided. For speial hoies of the gluino mass and the mass of the harged Higgsbosons, suh that they beome aidentally very similar to squark mass eigenstates duringthe san over the real and imaginary part of the mass insertion δu 23
LL , ertain loop funtionsan diverge as well. In order to ensure the stability of the program it has been neessaryto distinguish between several subases. The analytial diagonalisation of the squark massmixing turned out to be a di�ult and time onsuming task for the software Mathematiawhih has been used in the alulation proedure. In partiular, after applying the SU(2)relation in eq. (6.15) to obtain the entries of the down-type squark mass matrix from thoseof the up-type squark mass matrix its elements beome a omplex polynomial funtion ofthe mass insertions δu 23

LL and δu 13
LL . From a mathematial point of view the diagonalisationof a omplex unitary matrix fails, if its determinant vanishes whih means that the inversematrix does not exist. It turned out that even in the ase of a omplex unitary 3 × 3



7.3 Results of the numerial analysis 83matrix as an input the alulation of the eigenvetors is not possible with the standardtools of Mathematia in ase of matrix elements whih are omplex polynomial funtionsof one variable. In our ase of study the problem has been easily solved beause of thespeial kind of the transformation de�ned by the SU(2) relation eq. (6.15), namely, it is anunitary transformation. Aording to the Sylvester's theorem (whih is a speial ase of thelemma on matrix determinants) lemma the up-type and down-type squark mass matrixhave the same harateristi polynomial and therefore the same eigenvalues as well. Theeigenvetors are related to eah other through the CKM matrix. With the de�nitions ineq. (4.55) we �nd
(M2

D̃
)D = (M2

Ũ
)D, ZD = ZUV. (7.3)However, for obtaining the eigenvetors of a general omplex matrix whih elements arenot given as expliit numbers but as omplex polynomial funtions the standard tools ofthe software Mathematia annot be applied in general.For reason of larity and a better understanding of the main logi of our proedure for nu-merial determination of the mass insertions, the additional heks and subroutines whihhave been inluded in order to improve the routine onerning the speed, the maintenaneof di�erent problems with divergenes ourring in speial ases and ensuring the orret-ness of the numerial results have not been expliitly shown on the �owhart in �g. A.2.7.3. Results of the numerial analysisThe determination of the mass insertions δu 23

LL and δu 13
LL in the numerial analysis is basedon the orrelation between the Bs−Bs and Bd−Bd mixing proesses. Then, we plae addi-tional onstraints on these parameters onsidering the other proesses whih involve theseo�-diagonal elements of the up-type squark mass matrix, in partiular, the CP violationparameter ǫK , the branhing ratio Br(B → Xsγ) and the D−D transition amplitude ∣∣MD

12

∣

∣.Taking into aount the experimental bounds on these quantities we investigate whih val-ues of the mass insertions are exluded from the proesses mentioned above even if theyare allowed from B−B mixing. This analysis is performed for the region of the (ρ, η)-planeompatible with the SM as well as in senarios in whih the NP ontribution is maximal.The results are shown as plots of all the ombinations of the real part and imaginary partof the mass insertions δu 23
LL and δu 23

LL in �g. A.5 in the appendix. For the �gures we use thefollowing setup of supersymmetri parameters: M2 = 500 GeV, µ = 200 GeV, tanβ = 7,
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mH± = 500 GeV, mg̃ = 500 GeV, all diagonal elements in the up-squark mass matrix areset to 500 GeV as well. In following we will omment on the results shown in the plots.We plot the absolute value of the D−D transition amplitude ∣∣MD
12

∣

∣ as a funtion of theabsolute value of the mass insertion δu LL
23 in �g. A.2. The plot shows that in our senariowith two-step �avour transition c̃L → t̃L → ũL not even the lower 2σ experimental boundof the D−D transition amplitude an be reahed. In order to explain the D−D mixingamplitude as a pure supersymmetri e�et the mass insertion δu LL

12 and/or additional massinsertion in the LR setor would be neessary. As one an see on the plot in �g. A.2 thisonlusion is true in the maximal NP regime as well.In �g. A.5 we show the plots for all the ombinations of the real part and imaginary part ofthe mass insertions δu 23
LL and δu 23

LL in the SM regime. These simulations have been performedwith a CKM elements obtained from a point in (ρ, η)-plane suh that all observables areompatible with the SM in their 2σ regions. The plots show the regions allowed from
|ǫK | and Br(B → Xsγ) with di�erent olours. The points for whih the 2σ regions ofthese parameters are not violated lie within the intervals −0.01 < Re (δu 13

LL ) < 0.025 and
−0.03 < Im (δu 13

LL ) < 0.01. These regions orrespond to −0.08 < Re (δu 23
LL ) < 0.180 and

−0.325 < Im (δu 23
LL ) < 0.125. In the maximal NP regime we use the CKM matrix elements

Vub and Vcb determined from inlusive B deays. This leads to an inrease of the angle βof the unitarity triangle. In addition, we derease the experimental value βexp to its lower
2σ bound in order to reate a bigger tension with the SM. The plots obtained in this wayin the maximal NP regime are shown in �g. A.7.In addition, we show in �g. A.2 the maximal value of the Bs−Bs mixing phase φs

∆ orre-sponding to a ertain allowed value of the mass insertion δu LL
23 for di�erent gluino massesin the maximum NP regime. From this plot we an onlude that in ase of small gluinomasses when the gluino ontribution to the Bs−Bs mixing beomes big the value of thenegative mixing phase inreases. The reason for this is that the gluino ontribution diretlyinvolves the phase of the mass insertion δu LL

23 (see i.e. eqs. (6.17) and (6.26)). The mini-mum of the urve arises due to anellation between the rossed and unrossed gluino boxdiagrams. This fat has been disussed previously in Ch. 6.1 and illustrated in �g. A.2 and�g. A.3.
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8. Summary and outlookWith the start of the LHC not only the searh for the one only missing partile in theSM, the Higgs boson, but also the diret searh for physis beyond the SM has begun. Thebiggest disovery mahine ever built is espeially designed for exploring the TeV sale, theregion where the masses of the new elementary partiles postulated by the most favouredmodel for manifestation of NP, the minimal supersymmetri extension of the SM, are ex-peted to be. The postulated superpartners of SM partiles a�et the physial proessesand hange the values of the observable quantities. The extent to whih the theoretialpredition of a ertain proess is hanged under the onsideration of the NP partiles de-pends on many parameters of the ertain NP model, in partiular, onsidering the MSSM,on the masses of the supersymmetri partiles involved in the ertain transition or deayproess. Unfortunately, these parameters annot be theoretially predited from the NPmodel itself. The predition of the mass spetrum of the supersymmetri partiles is a veryimportant issue from phenomenologial point of view as well as an essential topi in regardto the diret searh for superpartiles at the LHC. Thus, the squark mass matries havebeen the objet of study of numerous analyses in the past.With this work we have done a ontribution to the understanding of the �avour violationin the MSSM and the onsraining of the MSSM parameter spae from proesses whihare well known in the SM but very sensitive to ontributions of supersymmetri partileswith masses of the weak sale. The aim of this study has been the analysis and the on-straint of parameters losely related to the mass spetrum of the MSSM. In partiular,the impat of �avour hanging elements in the LL setor of the squark mass matries onFCNC proesses has been investigated in detail. The supersymmetri ontributions at oneloop to the meson mixing proesses have been alulated. For the evolution of the Wilsonoe�ients for the ∆F = 2 meson mixing proesses the so alled magi numbers from thetwo loop anomalous dimension matrix in the regularisation independent renormalisationsheme have been alulated using loop results from the literature.
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Considering the reent analysis of the CKM�tter ollaboration with A. Lenz and U. Niersteonerning the possible amount of NP ontribution to the Bd−Bd and Bs−Bs mixingproesses, we ould obtain a relation between the allowed regions for the parameters whihmeasure the NP ontribution in the Bd and Bs setor. We have found that a big harginoontribution to the Bs−Bs mixing proess aused by a transition between the seondand third squark generation implies an e�et of the same order in the Bd−Bd systemas well. However, the opposite statement is not true. If large �avour violation mediatedby harginos between the �rst and the third squark generation sizeably enhanes Bd−Bdmixing, the e�et on the Bs−Bs system is at the per mille level. Taking into aount thefat that the NP ontribution to the Bd−Bd setor haraterised by the omplex parameter
∆d is muh better onstrained than the orresponding parameter ∆s in the Bs−Bs setor,we ould link the allowed regions (at 68.3% CL, 95.45% CL and 99.73 CL) in the ∆d planeto the ∆s plane provided that the mass insertion δu LL

23 is the soure of �avour violation.We found that only a small region of the plot related to the Bs−Bs is overed in ase ofan up-type squark mass matrix with equal diagonal elements. However, that region an beenlarged by allowing a mass di�erene between the diagonal elements of the LL blok ofthe mass mixing matrix or an additional �avour violation stemming from the LR setor.The measurement of the experimental quantities involved in the NP analysis in the B−Bsystem of the CKM�tter group is one of the main goals of the LHCb experiment. In future,it will provide data with su�iently small experimental unertainty suh that the allowedregions for NP would shrink. This would allow the onstraining of the di�erene betweendie diagonal elements of the LL bloks of the squark mass matries.The next topi whih has been investigated is the estimation of the maximal possible masssplitting of left handed squarks onsidering the experimental bounds from the meson mix-ing proess in the neutral K−K and D−D systems. We analysed four di�erent senariostaking into aount the gluino ontribution and the eletroweak ontributions stemmingfrom neutralino and hargino as well as the mixed neutralino-gluino exhange in the boxdiagrams. In all MSSM analysis the main fous has been set on gluino ontributions. Theontributions aused by eletroweak interation e�ets has been negleted laiming thatthey are suppressed by a fator g4
2/g

4
3 in the box diagrams. In fat, in our analysis wefound that the gluino ontribution is indeed dominant for small gluino masses. However,in the opposite ase it an be suppressed beause of the anellation between the rossed



8. Summary and outlook 87and unrossed box diagrams. Thus, the usual argument provided by previous analyses thatthe eletroweak ontributions an be negleted onsidering their smallness in omparisonto the gluino ontribution does not hold anymore in the region where the gluino mass isbigger than the relevant squark mass in the loop funtion. In the senario with ompletealignment in the up setor the up squark mass matrix is hosen to be diagonal. In theopposite ase where the down mass mixing matrix is diagonal there is a omplete align-ment in the down setor. Further, we obtained the maximal possible mass splitting in asituation with intermediate alignment in the up and down setor where neither the upnor the down mass matrix is diagonal. In the last senario we have hosen equal diagonalelements and one o�-diagonal element with a omplex phase whih maximises the indiretCP violation in the Kaon system. In this ase we obtain the most stringent bound on themass splitting from K−K mixing proess. For light gluino masses strong onstraints onthe mass splitting have been found. However, if the gluino is heavier then the squarks largeregions in the MSSM parameter spae are allowed from K−K and D−D mixing wherethe masses of the left-handed squarks an be highly non-degenerate. This fat an haveinteresting onsequenes for LHC benhmark senarios whih usually assume that squarksof the �rst two generations have the same masses.The next part of this work has been the numerial analysis on the LL part of the squarkmass matries whih aim has been the determination of bounds on the �avour hangingparameters δu LL
13 and δu LL

23 . The simulation is performed in the general MSSM and is mostlyindependent of boundary onditions. The SUSY ontributions from harged Higgs bosons,harginos and gluinos are onsidered. The inlusion of eletroweak ontributions to thebox diagrams whih have been negleted in almost all previous analyses of this type isimportant espeially for the regions in the MSSM parameter spae where the gluino massis bigger than the squark masses. As we have shown, in this regions the gluino ontributionsu�ers from the fat that it is a Majorana partile and a seond, rossed box diagramours: A anellation between these two kinds of boxes an appear. Beause of this fatthe onsideration of only strong SUSY ontributions to the meson mixing is not justi�edin general.Starting with the Bs−Bs mixing proess and assuming �rst δu LL
13 = 0 a san over thereal and imaginary parts of δu LL

23 has been performed. The value determined for δu LL
13 issubsequently used as a new input in order to determine a stable value in an iterative way.In many previous analyses the mass insertion approximation has been used in order to



88 8. Summary and outlookavoid ompliations whih an our in ase of exat diagonalisation of the squark massmatries. However, the mass insertion approximation is not valid for large o�-diagonalelements. We perform the analysis with exat diagonalisation of the squark mass matries.This has the advantage that we are not restrited to a small mass insertions only but ourapproah is valid when during the san over the real part and imaginary part of δu LL
23the alulation is done with big values of this �avour-hanging parameter as well. The

Bd−Bd and Bs−Bs mixing are very suitable proesses for NP searhes and onstraintson parameters of di�erent NP senarios beause they belong to the rare proesses whihare very sensitive to NP e�ets and are experimentally known to a good auray as well.Therefore, the mixing of neutral B mesons have been the objet of study of many analyseson MSSM parameter spae. However, usually the proesses of meson mixing in the Bsand Bd system have been treated independently from eah other. In our analysis we havetaken into aount the orrelation between the Bs−Bs and Bd−Bd mixing proesses givenby the ratio of the orresponding deay onstants. This is an additional onstraint in theanalysis. Another advantage of our approah is given by the fat that the ratio of the deayonstants is determined by alulations on the lattie to a muh better preision than thedeay onstants themselves.We investigate two ases, the SM regime where the numerial values of all observables havebeen taken to be in their 2σ experimental regions suh that the SM is not exluded as wellas the maximal NP regime. In the last the experimental values of the input parameters arehosen in suh a way that the maximal tension between the experimental observables andtheir SM preditions our. In addition, we test whether the values for the studied massinsertions whih are allowed from Bs−Bs and Bd−Bd mixing satisfy the bounds from thebranhing ratio of the inlusive B → Xsγ deay as well as the bounds from the parameter
ǫK whih measures the indiret CP violation in the neutral Kaon system. The indiret CPviolation parameter |ǫK | was not onsidered by many analyses in the past. However, onsid-ering reent lattie alulations allow the determination of the non-perturbative part of the
K−K mixing amplitude with a good enough preision suh that |ǫK | beomes an impor-tant quantity for NP searhes or plaing onstraints on MSSM parameters. Furthermore,we hek the size of the SUSY ontribution governed by the determined �avour-hangingparameters δu LL

23 and δu LL
13 to the D−D mixing proess. For the hosen point in the MSSMparameter spae we �nd that the 2σ regions of the experimental observables are not vi-olated if the real and imaginary parts of the mass insertions do not exeed the intervals

−0.010 < Re (δu 13
LL ) < 0.025, −0.03 < Im (δu 13

LL ) < 0.01, −0.08 < Re (δu 23
LL ) < 0.18 and
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−0.325 < Im (δu 23

LL ) < 0.125 for mg̃ = 500 GeV and mq̃ = 500 GeV. It is found that for thestudied points in the MSSM parameter spae the �avour violation in the D meson systemaused by the produt of the mass insertions δu LL
23 and δu LL

13 is not su�ient to explain theurrent experimental bounds on the D−D transition amplitude. In order to explain themixing of neutral D mesons as a pure supersymmetri e�et the �avour violation has tobe enhaned through the mass insertion δu LL
12 and/or additional mass insertion in the LRsetor of the squark mass matrix.In the future the numerial analysis an be extended to the LR setor of the squarkmass matries. While the LL parts of the up-type and down-type squark mass matries arerelated to eah other beause of the SU(2) gauge symmetry of the left-handed fermion setortheir LR bloks are ompletely independent. If the LL part of the up-type squark massmatrix is not proportional to the unit matrix in the LL part of the down-type squark massmatrix o�-diagonal elements are generated whih are �avour violating and indue a gluinoontribution to the B−B meson mixing proesses. Pratially, a non minimal harginoontribution neessarily leads to a gluino ontribution in the B−B mixing. However,beause of the absent relation between the LR bloks of the squark mass matries we havethe freedom to hoose their elements independently. In this way one has better ontrolon the di�erent SUSY ontributions to the meson mixing proesses and an investigatethe limits given by only hargino ontribution to the box diagrams and absent gluinoones or vie versa. It would be interesting to investigate the more general ase with a�avour violation aused by o� diagonal elements in the LL or LR blok of the mass mixingmatries in the presene of diagonal elements in the LR blok as well. Even if these elementsdo not a�et diretly the �avour hanging proess they allow an additional hirality �ipinside the same squark generation. Through the hange of the squark mass eigenstatesby the presene of these additional �avour-onserving but hirality-hanging squark massmatrix elements all supersymmetri ontributions to the meson mixing proesses wouldbe a�eted. Furthermore, the obtained bounds on the mass insertions a�et single topprodution proesses whih is an important topi for the LHC.



90 8. Summary and outlook



91
A. Appendix
A.1. The Feynman rules for MSSMIn following we write the Feynman rules whih have been used in the alulation of thesupersymmetri ontributions to the onsidered proesses in the MSSM. For the Feynmanrules listed below we use the onventions for diagonalising the mass mixing matries forsquarks and gauginos given in Ch. 4.2. The obtained results of the alulation of the Wilsonoe�ients for the meson mixing proesses are in full agreement with the results given inthe appendix of [59℄. Note that the authors of [59℄ use the onvention of [43℄.
A.1.1. Quark-squark-gluino verties
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92 A. AppendixA.1.2. Quark-squark-hargino verties
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KJIδmnA.1.3. Quark-squark-neutralino verties
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A.1.4. Quark-quark-harged Higgs verties
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The Yukawa ouplings KI
D and KI

U used in the Feynman rules listed above are given by
KI

D =
mI

d√
2MW cosβ

, KI
U =

mI
u√

2MW sin βwhere mI
d and mI

u are the masses of the down-type quarks and up-type quarks of thegeneration I = 1, 2, 3, respetively.A.2. PlotsIn this setion we show the �owhart of the program for numerial analysis of δu 13
LL and

δu 23
LL and all the plots whih have been desribed in previous hapters of this work.
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Figure A.1: Logial struture of the program for alulating the matrix elements δu LL
13 from

δu LL
23 (we skip the index "u" in δu LL

ij )
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Figure A.7: Bounds on the real part, imaginary part, absolute value of δu LL
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φs in the maximum NP regime from B−B mixing (all points), K−K (red), B → Xsγ(green). The blak region is allowed from all proesses.
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