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1. INTRODUCTION

The objects of study of theoretical particle physics are the fundamental laws of nature.
I[ts aim is to describe the elementary constituents of matter and their interactions within
a theoretical framework which implies predictions for particle experiments. All the knowl-
edge about the elementary particles and forces in nature is theoretically classified in the so
called Standard Model (SM) of elementary particle physics. This SU(3) x SU(2) x U(1)
gauge theory of the strong and electroweak interactions developed by Glashow, Weinberg
and Salam starting in 1967 describes almost all experimental results obtained at the ele-
mentary particle colliders until now with remarkable precision. Let me set a short example
of the power of the Standard Model. Combining the most precise experimental measure-
ment of the anomalous magnetic moment of the electron g/2 = 1.001 159 652 180 85(76) [1]
with high precision calculation in quantum electrodynamics, the most precisely tested part
of the Standard Model, one obtains the value o' = 137.035999 709 (96)[0.70 pph] |2| for
the fine structure constant, with an amazing theoretical precision. Experiments based on
atom recoil methods determine the fine structure constant independently of the anomalous
magnetic moment of the electron. The atoms of the chemical elements Rubidium (Rb)
and Caesium (Cs) are the most appropriate ones for the experimental determination of
the fine structure constant. Comparing the results o' (Rb) = 137.035998 78(91)[6.7 ppb]
and a~!(C's) = 137.036 000 0(11)[8.0 ppb] with the theoretical value given above we find
a difference from —1.0 and +0.3 standard deviations, respectively [2]. That comparison is
known as the best test of the validity of the QED. The incredible theoretical and experi-

mental accuracies demonstrate the impressive predictive power of the Standard Model.

However, there are many examples which show the discrepancy between the SM predic-
tions and experimental results. Let me mention one of them. The difference between the
SM theoretical prediction for the anomalous magnetic moment of the heavier “brother* of
the electron, the muon, and the experimental measurement for this quantity is more than 3
standard deviations. That means, the anomalous magnetic moment of the muon cannot be
explained within the Standard Model with a probability of more than 99.6%. The aim of
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the theoretical physicists is to develop a consistent theory with the smallest possible num-
ber of free parameters which explains the properties of the particles and the fundamental
interactions in nature. Despite of its phenomenological success the Standard Model has sev-
eral drawbacks: Some couplings develop Landau poles, the exact mechanism of electroweak
symmetry breaking is not understood, the unification of strong and and electroweak inter-
actions is incomplete, the hierarchy between the Planck, GUT and the electroweak scale
and the strong CP problem are not addressed. Further, the SM cannot explain the observed
dark matter in the universe nor the preponderance of matter over antimatter. One of the
fundamental questions unaddressed in the early stages of the SM is the mechanism how
the fermions obtain their masses. Seven years later, Weinberg and Salam incorporated the
so called Higgs mechanism [4-6| into the electroweak theory of Glashow in order to provide
a theoretical explanation of the masses of spin-one-half particles and gauge bosons [7,8]. In
fact, the SM needs the Higgs mechanism for its predictive power. However, this is the only
part of the theory which has not been experimentally confirmed yet. The search for the
Higgs boson, the theoretically postulated particle which gives masses to the fermions and
gauge bosons is the most important goal of today’s biggest discovery machine in the world,
the Large Hadron Collider (LHC). Its prime purpose is the investigation of the mechanism
of electroweak symmetry breaking and of the dynamics which stabilises the electroweak
scale. General considerations of the latter aspect suggest New Physics (NP) with particle
masses around or below 1 TeV. In order to provide a satisfactory explanation of different
experimental observations and to solve conceptual problems of the Standard Model many
approaches for incorporation of the Standard Model into a more general theory have been
proposed. In fact, among various possible extensions of the Standard Model by far the most
popular one is the Supersymmetry (SUSY), in particular, the so called Minimal Supersym-
metric Standard Model (MSSM). The reason why the MSSM has become the most favoured
extension of the Standard Model in the last decades is its capability to solve a very large
spread of theoretical problems including gauge coupling unification, to give a rationale for
a heavy top and light Higgs, to provide a method of unification of gravity with other gauge
forces and finally to provide a dark matter candidate, the lightest supersymmetric particle.
Increasing the precision of the theoretical predictions for the masses and other properties
of the new particles in different possible scenarios of the Supersymmetry is very important
for the searches of these particles at the high-pt experiments of the LHC. One of the most
important tasks of theoretical particle physics is therefore to identify and investigate the

processes which are highly sensitive to contributions of supersymmetric particles in order
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to test the Standard Model and to clarify where manifestation of Supersymmetry can show
up and how to distinguish Supersymmetry from other possible theories beyond the Stan-
dard Model. Hopefully, in upcoming years the physics community will uncover the laws of

nature governing the TeV scale.

In fact, Supersymmetry, in particular the minimal supersymmetric extension of the SM
(MSSM) is the most favoured model of NP considered to explain the discrepancies between
SM predictions and experiments. The MSSM predicts many new particles. The postulated
superpartners of SM particles affect the physical processes and change the values of the
observable quantities. The extent to which the theoretical prediction of a certain process is
changed in a given model of NP depends on many parameters of the certain NP model, in
particular, considering the MSSM, on the masses of the supersymmetric particles involved

in the studied transition amplitude.

The prediction of the mass spectrum of the supersymmetric particles is a very important
issue from phenomenological point of view as well as an essential topic in regard to the
direct search for superparticles at the LHC. Therefore, the squark mass matrices have been
the object of study of numerous analyses in the past. In view of the start of the LHC any
improvement of the knowledge about the mass spectrum of the MSSM is important and

timely.

The aim of this work is to constrain the parameters of the MSSM by considering processes
which are highly sensitive to contributions from supersymmetric particles. Since meson
mixing processes are known with good experimental accuracy and have small theoretical
uncertainties, they are especially appropriate candidates for this purpose. The focus is set
on generic physical relations which are mostly independent of boundary conditions. Such
a physical relation stems from chargino boxes which correlate B;— By mixing and B,— B,
mixing through the CKM matrix elements involved in the meson mixing processes. Another
very important theoretical issue is the relation between the left-handed up-type squark
mass matrix and the left handed down-type one M2,, = VM2, VT due to SU(2) gauge
symmetry in the left handed fermion sector. Since these mass matrices are not independent,
the only way to avoid flavour off-diagonal mass insertions in the up and in the down
sector simultaneously is to choose the up-type and the down-type mass mixing matrix
proportional to the unit matrix. This is realised in the naive minimal flavour violating
MSSM. In a more general definition of Minimal Flavour Violation (MFV) [64, 65| flavour
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violation is postulated to stem solely from the Yukawa sector, resulting in FCNC transitions
(which can now also be mediated by gluinos and neutralinos) proportional to products of
CKM elements and Yukawa couplings. In addition, we take into account the numerical
relation between the B, — B, mixing and B;— B, mixing transition due to the ratio of
the decay constants and the bag parameters in the B, and B, system. In almost all the
analyses of this type the B, — B, mixing and B;— B, mixing are treated independently
from each other. However, these two processes are related to each other through the ratio
of the decay constants of the B, and B; mesons. The numerical value of this ratio is known
from lattice calculations to a much better precision than the quantities in the numerator

and denominator themselves.

Studying in detail the experimental data and the analyses of the CKMfitter and Utfit
collaborations which estimate the amount of New Physics in the meson mixing processes,
we derive a general relations between fundamental parameters of the MSSM. Assuming a
non diagonal elements in the LL part of the squark mass matrices the impact of the different
SUSY contributions to the mixing phase in the B; and B; meson systems is investigated.
We determine general relations between the masses of the squarks, the mass of the gluino

and the off-diagonal elements of the squark mass matrices.

Performing an exhausting analysis of the meson mixing processes in the K —K and D—D
systems, our aim has been to investigate the possible mass splitting between the left-
handed squarks. We have considered different scenarios given by the choice of the form
of the up-type and down-type mass mixing matrices. In contrast to previous analyses in
which the electroweak supersymmetric contributions to the meson mixing processes have
been neglected claiming their smallness in comparison to the gluino contribution we have
found that this argumentation does not hold for gluino masses bigger then the squark
masses. In this region of the MSSM parameter space the electroweak contributions can be
even dominant and they have been included in our calculation as well.

The aim of our numerical analysis is to obtain constraints on the §%“* mass insertions of the

up-type squark mass matrix in the general MSSM. For this purpose, we first considered the
B,—B, and B;—B, mixing processes calculating the electroweak and strong contributions
in general MSSM. In an iterative procedure we pass through several constraints and obtain
the allowed values for the mass insertions 64" and 635", We take into account the charged
Higgs contribution to the meson mixing box diagrams as well. Since these diagrams do not
involve squarks their contribution affects the flavour changing process only in a MFV way.

Yet through the resulting shift in the observable quantities the charged Higgs contribu-
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tion influences the flavour changing parameters under study. With the obtained values for
642 and 6%7® we calculate the CP violating parameter ex which is used as an additional
constraint on the studied mass insertions. The parameter € which measures the CP viola-
tion in mixing in the Kaon system has not been considered by many analyses in the past.
However, the value of the non perturbative parameter EK is known from recent lattice
calculations with a good enough precision such that ex becomes an important quantity for
NP searches or analysis which aim is the constraining of off-diagonal elements of the squark
mass matrices. Further, we examine whether the branching ratio Br(B — X,v) which is
very sensitive to NP effects satisfies its experimental bounds. In addition, we confront the

obtained values for 6¥2* and 6%} with the D—D transition amplitude.

We start with the description of the main theoretical formalism in the next chapter. After
that, we concentrate on the main features of our studies and describe in detail the performed
analyses which aim has been the constraining of the MSSM parameter space, in particular,
placing bounds on elements of the mass mixing matrices. In the last part of this work, we

comment on the results of our analyses before we conclude and give a short outlook.
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2. THE EFFECTIVE HAMILTONIAN FORMALISM

Theoretical predictions of several measurable quantities relevant in meson mixing phe-
nomenology are usually studied in some effective theory obtained by using the so called
Operator Product Expansion (OPE). A common feature of the OPE is the definition of

local operators of the form (in the case of AB = 2 transitions)
Q = C*(baTg) (b, 'g5) (2.1)

where I' is a general Dirac matrix acting on spinor indices, «, (3, v, 0 are colour indices
and the constant C*#79 is given by either §%#§7 or §29§%7.
The obtaining of physical amplitudes from the matrix elements of ) goes through the

following three steps:
1. Matching of the full theory onto the effective one at some large energy scale.

2. Renormalisation-group evolution from the high energy scale to the low energy scale

suitable for the calculation of the hadronic matrix elements.

3. Calculation of the hadronic matrix elements using non-perturbative methods.

2.1. General definitions and scheme dependence

The matrix elements of the effective Hamiltonian can be written as

Aut = (F[Hei 1) = D _(FIQu(m)T)Cilp) (2.2)

7

where the (Q;(n)) are matrix elements of local operators and the C;(u) denote the corre-
sponding effective couplings, the so called Wilson coefficients. In eq. (2.2) pu denotes the
energy scale where the matching of the full theory onto the effective one is performed. In
general, its value can be chosen arbitrarily. Through the OPE the problem of the calcula-

tion of transition amplitudes can be separated in two parts. The Wilson coefficients C;(j)
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which contain the short-distance (perturbative) effects are calculated using perturbation
theory methods. Since the physics contributions from energy scales higher than p are con-
tained in C;(p), they are affected by the heavy particles involved in the problem i.e. W,
Z-bosons and new particles of supersymmetric extensions of the SM. The calculation of
the Wilson coefficients is performed at the high scale defined by the masses of the heavy
particles. On the other hand, for the determination of the matrix elements (Q;(x)) which
summarise long-distance (non-perturbative) effects non-perturbative methods i.e. lattice
QCD, QCD sum rules, chiral perturbation theory etc. are used. In this case the scale
is usually chosen to be of the order of the decaying hadron. Since the matching condition
requires the matching scale p to be the same for the Wilson coefficients as well as for the
hadronic matrix elements either the effective couplings C;(u) have to be evolved down to
the scale of the matrix elements or vice versa. The evolution is done using Renormalisa-
tion Group (RG) equations. The transition amplitude A does not depend on the matching
scale u. Therefore, the p-dependence of the Wilson coefficients and the p-dependence of
the hadronic matrix elements have to cancel each other. For a very clear introductory ex-
planation of the OPE in the context of the meson mixing phenomenology as well as of

other important processes sensitive to NP effects we refer to [9].

2.2. The Renormalisation Group Evolution

The today’s most precise determinations of the hadronic matrix elements are known from
lattice gauge theory. These calculations are performed using so called Regularisation In-
dependent renormalisation schemes (RI-MOM). However, in practical calculations of the
Wilson coefficients in meson mixing processes Minimal Subtraction schemes (MS, MS)
appear to be more convenient. In order to solve the problem with the different scales men-
tioned above, the Renormalisation Group (RG) evolution has to be performed in a certain
renormalisation scheme. In the following we concentrate on the RG evolution in context of
the different renormalisation schemes and show the translation of the main results between
the different schemes. The important results are summarised and explained. Our discussion

is based on the theoretical approach discussed in ref. [11].

2.2.1. The Anomalous Dimension Matrix

The Renormalisation Group evolution follows from the requirement that the transition

amplitude is independent of the matching scale p. Adopting a vector notation for the
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Wilson coefficients and the hadronic matrix elements we take the derivative of A.g in eq.

(2.2) with respect to p and obtain

dC (1)
dp?

u§§%<@T<u»C%uy+<@T<ﬂ»u2 0. (2.3)

The relation between the bare and the renormalised operators is given by

(Q7) = 2(Q (w)- (2.4)

The matrix Z depends on the coupling constant « (x) and, in the most general renor-
malisation schemes like the Regularisation Independent (RI) scheme [10], on the gauge
parameter A as well. On the contrary, the minimal subtraction schemes MS and MS are
gauge independent.

Since the bare operators do not depend on p, it follows by taking the derivative with respect
to p of eq.(2.4)

B

d

() + 25 (G ) =0, (25)

QU
=

From the last equation we easily obtain a differential equation for the renormalised oper-

ators

(@ (W) (2.6)

(2.7)

~ L. (2.8)
In order to find the expression of 4 in dimensional regularisation, we define Z, through
o 2 2e
o0 = Z2a (1) (29)

where o is the bare coupling and € = (4 — D)/2. Z, is a composite function of p, Z, =

Zg (a ().
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Next, we apply the derivative operator with respect to g on eq. (2.9). Since the bare

coupling g does not depend on the renormalisation point we find

dov () 2 Zy
_ _ e 2.10
dnjz (1) —a(p) 7, din 2 (2.10)
With the definitions
_ da(p)
ﬁ(a(lu)7€) = dln/,l;
2 7,
= — — 2.11
(e (n) a(p) Z, din 2 (2.11)
eq. (2.10) can be written in the simple form
Bla(p),e) = —ea(p) + 8 (a(p)) (2.12)
where (3 (a(u)) is expanded in « () as
o’ () o (p s
Bla(u)=—Fo—p =~ 5 In)? + 0 (a* (n)) - (2.13)
Writing Z, as an expansion in « and €
N (0 L
Z, = 1+ <E) 280 (2.14)

it can be shown that the coefficients in the expansion of 3(«a(u)) are related to the ones of

the expansion of Z; in eq. (2.13) through
B = —20+1)2%Y, (2.15)
and consequently the bare parameter o can be expressed through
ap =« l—g@—l—O(az) . (2.16)

Analogously, we introduce the gauge fixing parameter A\ defined from the gauge fixing

Lagrangian
1 a 1% a
Egaugo fixing — _ﬁ(ﬁuGﬂ)«? Gy), (217)

The gauge fixing parameter \ satisfies the RG equation

d\
M) = p* g5 = =R+ 0 (o). (2.18)
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In the following we denote by A = 0 the Landau gauge and A = 1 the Feynman gauge.

Using eq. (2.18) we find the series expansion of )¢ in the coupling constant «

)\0:)\{ —436—2+0(a2)]. (2.19)

T €

Further, we obtain from (2.7) the anomalous dimension matrix 4

Ba, e)a—Z + ﬁA(a))\(a)g—i

v =971
" Oa

. (2.20)

The renormalisation scheme in which the strong coupling constant a and the gauge param-
eter \ are renormalised can be chosen different from the renormalisation scheme in which
the operators are renormalised [11]. In MS scheme the coefficients 39, 3, and 3y in the
series expansions eq. (2.13) and eq. (2.19) which depend on the number of colours N, and

the number of effective flavours ny are given by

1IN,  2n;
50 - 3 3 )
34N2 IONcTLf (N2 - l)nf
= CH— — ¢ 2.21
o 3 3 N (2.21)
and
13N, AN, 2
B = 2oy Ate TN (2.22)

6 2 3

From eq. (2.20) by expanding 4 and Z as

o o\ 2
S I () (_> 5 (1) 2.23
ol ) T (2.23)
~ ~ 2 .
- 1+3Z<1>+<3> 7 (2.24)
4 47

we derive the following relations between the coefficients v and Z®:

A0 = _9ezM) (2.25)
AR

AV = 462 — 28,20 4 2e20 70 _ 230\ N

(2.26)

Further, Z® can be expanded in inverse powers of €

. /1N L.
Z70=%" (_) Z0. (2.27)
- €
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The requirement that the ADM is finite as € — 0 implies (Z{l) is gauge invariant)

428 1 28,29 — 220 70 = o, (2.28)
In addition, we have
4O = 27, (2.29)
- 5 (1 ~(1) A1 aZ(l
A0 = a4z 2520 +2{ 2", 2} — 28050 (2.30)

For the computation of the NLO ADM it is necessary to calculate the pole and finite part
of ZW), the single pole of Z® | 3, and 9.

In order to determine the matrix elements of the ADM, the result of the calculation of the

bare hadronic matrix elements is expanded as

~ Al (&%)} 2 ~ Bl B2
1+4_<A0+_>+(E) <BO+_+_>

where <Q(O)) are the tree level matrix elements. For given generic renormalisation scheme

(Qp) = (@) (2.31)

the following relation between the bare and the renormalised matrix elements can be writ-

ten
(@) = 271(@s) = (1+=7) (@), (2.32)

The renormalisation scheme is defined by the choice of the matrix 7. The matrix A is

gauge and regularisation independent. Ag can be written as

DA,

Ag(Ng) = Ag(0) + Ng=t I

(2.33)

and 9A,/9), is regularisation independent as well. Inserting eq. (2.33) and eq. (2.31) into
eq. (2.32) we can obtain a relation between 7 and Ay, Ay, By, By and By

70 = Ay —r, 2V =4, (2.34)
. L . dA

Z}Q) = By — A7 — oA — 5g)\a—;> (2-35)
7P = By — (oA (2.36)

Further, we introduce the regularisation and renormalisation scheme independent quantity

or

o (2.37)

G =4 = [7,49] = 2607 — 280\ =
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The first property is manifest if we rewrite G in terms of the matrices flo, 1211, BO, By and
B,

. A B, 1.+ 1., 04,
= — - — — R — . 2.
G=—4|B -3 {AL A} = Shdo — SN (2.38)
where we have used
4O = 24, (2.39)

The renormalisation scheme independence is immediately proven by the absence of the
matrix 7 in eq. (2.38). The regularisation independence is also guaranteed because the
renormalised operators (and therefore their evolution controlled by 4(M) at fixed gauge
and external states depend uniquely on the 7 matrix which in turn does not depend on the
regularisation.

The Regularisation Independent (RI) scheme is defined for given external states and fixed

gauge A by the condition

(Q()pr=myizr = (). (2.40)

Therefore, in the RI scheme G coincides with the two loop ADM. It is apparent that these
condition can be implemented in any regularisation scheme and, in particular, in a purely
non-perturbative way.

The renormalisation condition for the massless quark propagator is given by

1 0
— |Y"=—S(p)R = 1. 2.41
A CL (2.41)
The quark wave-function renormalisation constant can be written as
28— 1= Lo (2 -y () + = (2.42)
a ar T\ e 2/ '

Different choices of the wave-function renormalisation correspond to different choices of
the external quark states in the calculation of four-point Green functions, and therefore to
different definitions of the renormalised operators. Even if every choice is perfectly admis-
sible, in the RI scheme the condition (2.41) guarantees that the vector and axial current

satisfy automatically the Ward identities.

Finally, we shortly describe the recipe to obtain the NLO ADM in the RI scheme, ’yg}. In

dimensional regularisations evanescent operators must be included in eq. (2.30). This fact
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complicates the calculation because products between the Z matrices should be performed
with indices running over the whole set of physical and evanescent operators. Only at the
end of the calculation the d — 4 limit can be taken. It has been shown in [12]| that the
relation between the NLO ADM and the one-loop and two-loop renormalisation matrices
are valid diagram by diagram. Therefore, according to eq. (2.38) the two basic steps of the
computation are the evaluation of the two-loop bare matrix elements and the subtraction of
the one-loop diagrams corresponding to the internal subdiagrams, according to the chosen
renormalisation prescription. In the RI scheme it is not necessary to isolate the evanes-
cent operators from the four-dimensional basis because the counterterms of the evanescent
and physical operators are subtracted from the two-loop matrix element with the same
numerical coefficient 1/2 (see the combination Ay Ay + AgA; of eq. (2.38)). Moreover, in
the subtraction procedure the double poles cancel and thus the projection on the physical
basis cannot generate new single poles due to the evanescent operators that would alter
the result. More details about the calculation of the NLO ADM in the RI scheme can be
found in |11,12].

In order to obtain 4" in the MS scheme, it is possible to use eqs. (2.37-2.38) with 755 = Ap:

) L aA
’}/% =—4 Bl — AlAQ ﬁOAO ﬁ =9 . (243)

l\DI}—t

A; are the matrix elements restricted to the operators of the four-dimensional basis, and

A; those connecting the operators of the four-dimensional basis with the evanescent ones.

@ can be also obtained using eqs. (2.38-2.43) by

f

~

w2

Ao

R R 0A
A = AW 9 (A, Ay — ApAy) — 280 Ap — QﬁEA (2.44)

2.3. The Evolution Matrix

In this subsection we summarise some basic aspects of the calculation of the evolution ma-
trix and discuss in detail the issues of the regularisation and renormalisation dependence

of the Wilson coefficients and of the corresponding operators.

In order to compute the Wilson coefficients at a large energy scale y ~ M, we have to
consider the full set of current-current, box and penguin diagrams in the full theory, e.g.

with propagating heavy particles, including the terms of O(a).
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Adopting the notation in [11]| we write the renormalised amplitude in the full theory as
Al = <Q(O)T> [T’(O) + gf(l)} . (2.45)
4m
Equating egs. (2.2) and (2.45) at the matching scale u = M we obtain

G(M) = TO 4 % <T<1> - ATﬁO)) (2.46)

TW and 77 depend on the external states.

2.3.1. Solution of the RG equation at LO

The Wilson coefficients C_"(u) are expressed in terms of their counter-parts computed at

the large scale y ~ M through the evolution matrix W (u, M)

—

C) = W, MYC(M). (2.47)
The coefficients C(p) obey the RG equation

0 ;}/T (Oé, )‘> ~

0 0
’U28—u2 + /G(a)a—a +OhAGT — T C'p; ap), A(p)) =0, (2.48)

where the term proportional to 3, cancels an identical one embedded in 4. In order to

solve the RG equation (2.48), we consider the basis where the ADM %O)T is diagonal. In

this basis the Wilson coefficients are given by a rotation with the matrix V

Cr=vC, (2.49)

where V' is the matrix which diagonalises %O)T:

V’A)/go)TV_l = ’A)/D = dlag (’)/Dl, ey ’)/Dn) . (250)
Since &(0) does not depend on the gauge parameter A, at LO eq. (2.48) can be written as

(a) Cfliz/((j)) _ 7Di2(a) Cz/ (:U/) ) (2.51)

Applying the method of separation of variables on the equation (2.51), it can be integrated
in this basis from the lower scale p to the larger scale M. We find

C'(M a(M)

)
dCz, o 7D, (Oé) o
- / 726(a)d . (2.52)

C'(p) a(p)
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Expanding 4 and ((«) in « using eqs. (2.10 - 2.18), we obtain at LO

Ci(M) a(M)

dcC! D, / da
_ o [ g 2,
/ o~ ] a (2:53)

Ci(w) a(p)

The solution of eq. (2.53) is easily found

O () = (“(M’)% cr(M). (2.54)

a(p)

Rotating eq. (2.54) to the initial basis, we obtain the following expression for the evolution
matrix W (y, M) at LO

D ;

Wio (i, M) = VL (O;fw]\/[))) oy (2.55)

2.3.2. Solution of the RG equation at NLO

Now, we go one step further in perturbation theory. Our goal is to find the solution of the

RG equation (2.48) at NLO. For this purpose we write
W (p, M) = M (p)Wyro(u, M)M (M), (2.56)

where W is the leading order evolution matrix given in eq. (2.55) and the NLO evolution

is encoded in

1) = 1+ 2 ). (2.57)

Writting eq. (2.48) as a power expansion in « it takes the form

3 ac"  dcC’ 1 [, af~ Bi. -
_ X (e 2.
aﬁ())\ oA + do 23 ot T G o || ¢ (2.58)

where
G =vyWTy -1 (2.59)

For the solution of eq. (2.58) we use the ansatz

() = (11 + MS“()\)) (O‘(M));‘% (]1 _ a(M)S“(A)) M), (2.60)

A a (1)
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Inserting eq. (2.60). into eq. (2.58), we find after neglecting terms of O (a(M))

A3,9 {A b ] b 5 G
S+ )\—— y — - 2.61
B 2] 28 2 (261
Rotating back into the initial basis, we obtain from eq. (2.61)
. AT 5T
J+6 {J,V } O o (2.62)
50 200 250 200
where
J=V"'SV. (2.63)
The elements of S are given by
61 Gij
Sij = 0ij J , (2.64)
2087 2y 440 - v
They become divergent in case 23, + % A(O) &](30) = 0. In order to find a solution for Sij we

let S to be a-dependent. In this case one additional term in (2.61) appears, in particular,
we find

S —

S&S)]_*Oﬁl G ds
0) _ 4(0)

Setting the denominator 25, + 7, " — Ya, =0 implies ¢ # 7 and from eq. (2.65), we obtain

G da

dSij (a(p)) = BT (2.66)
Finally, after integration we have
Gij M
() = g2 (28 5, (@ r). (267)

The generated singularities cancel and the physical evolution matrix has no divergent en-
tries. An explicit calculation shows that in practice divergences appear only in case of 3
active flavours [13|. Since in our case we want to evolve the Wilson coefficients calculated
at the SUSY scale (Msysy ~ 500 GeV) down to the mass of the bottom quark where the
matrix elements of the effective operators are obtained from lattice calculations, we work
with at least 5 effective flavours. Thus, the problem with divergent matrix elements does

not appear in our calculation. In general, the problem can be avoided by introducing the
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general solution of the RG equation. In ref. |[13] the solution for the evolution matrix for
QCD and electromagnetic renormalisation until O («) is given. The solution in case of only
QCD renormalisation has the same form and the problem with the divergences does not
appear because the solution can be written in a form such that for divergent denominator
the numerator vanishes as well. For more details about the explicit calculation we refer
to [13].

We note that W, is renormalisation and regularisation scheme independent while )@j/a)\
is independent of the regularisation scheme but not of renormalisation scheme. For instance,
it vanishes in any possible MS scheme.

After insertion of the expansion (2.46) in eq. (2.47) it follows

Clp) = (]1 + %’:)j) U (1, M) [T(O) - O‘Eé\f)

((j + 0T — T(l)ﬂ . (2.68)
The combination Jg; = J+#7 is renormalisation scheme independent. Indeed, using (2.38)
and (2.62) we derive

. 0 9J (ks ar
Jr1 + &)\ - [ RI, 7—] = 5—127(0)T ~5a
Bo OA 200 205 20

Since the r.h.s. of (2.69) contains only renormalisation scheme independent quantities (@

(2.69)

and 4() the 1.h.s. must be also renormalisation scheme independent which in turn implies

that jRI has to be also independent of the renormalisation scheme.

2.4. Evolution of the AB = 2 effective Hamiltonian

In the analysis of the meson mixing processes we calculate the Wilson coefficients in the
SM as well as the supersymmetric contributions. In this section we describe the evolution
of the Wilson coefficients relevant for the meson mixing processes from the SUSY scale
down to the scale at which the hadronic matrix elements are computed in lattice gauge

theory.

2.4.1. The operator basis

The relevant operators which enter the effective Hamiltonian for AF' = 2 flavour transitions

are given by |62]

Q1 = T.Lb” Pt
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Q2 = TP 7P,
Qs = qPL’ g Prb”, (2.70)
Qi = qPLb* 7" Prb”,
Qs = 7P’ 77 Prb®,

together with the operators Q17273 which can be obtained from the operators ()1 23 by the
exchange L < R. The left-handed and right-handed projectors are defined as Pgp =
(1 ++5)/2 while « and 3 are colour indices.

The ADM of AF = 2 flavour transition takes part in several phenomenological applications.
Apart from FCNCs in supersymmetric extensions of the SM, also the width difference Al'p,
at leading order in 1/m;, can be written in terms of AB = 2 operators [15]|. Corrections of
order 1/mj to the lifetime of heavy hadrons containing a b quark can be written in terms
of four AB = 2 operators as well [16]. Even if they mix with lower dimensional operators,

the mixing matrix is triangular and the relevant sub-matrix involves the same computation
required for the AB =2 ADM.

2.4.2. Program for Evolution

We give the analytic formulae for the evolution of the Wilson coefficients at the scale where
the hadronic matrix elements are evaluated as a function of the initial conditions at the
SUSY scale C;(Msysy) and of a(Msysy ). Our calculation of the evolution matrix is based
on the results given in chapter 5 of ref. [11] where the matrix elements of the ADM at
one and two loop as well as the matrix elements of J calculated in Feynman-gauge RI
scheme (FRI scheme) can be found. Furthermore, following the recipe for the translation
of J between the FRI scheme the Landau-gauge renormalisation scheme (LRI scheme) and
the MS renormalisation scheme we could crosscheck the results given in ref. [11] with the
results in ref. [17] where the ADM is calculated directly in the MS renormalisation scheme.
The ADMs in ref. [11] and ref. |17] are obtained in an operator basis different from the
one defined in eq. (2.70) which is commonly used for calculations of the Wilson coefficients
for meson mixing processes in SUSY. The two basis are related to each other by a Fierz
transformation. Therefore, in order to obtain the right form of the matrices in the SUSY
basis (2.70) we have to apply a Fierz transformation on the matrices given in refs. [11]

and [17]. The so called Fierz basis in general form is given by [11]

Qr = 5(‘1’175‘1’2)(‘1’§7qu’31) + (Vs = W),
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Qy = (U (Tamum¥) £ (Vs — Wy),

2

Q5 = (WiPRUY)(WPLWY) & (Vs = W), (2.71)
1 — i\ = '

Qr = §(W1PL‘I’§)(‘I’§PL‘I’1)1(‘I’2‘_”1’4)’

1 — Vi (0 ]
Q5 = 5(@105 U5) (V30,00 0)) £ (Vo = Wy)

where ot = L [y*,7"] Px, K € {L,R}. The AB = 2 operators are obtained from the
operators Q by taking ¥, = W3 = b and ¥y = U, = ¢ while the operators @; vanish. In
dimensional regularisation Fierz identities cannot be analytically continued in D dimen-
sions. Therefore, in general evanescent operators have to be introduced. They are necessary
to make a precise definition of the NDR-MS scheme but can be neglected in the RI schemes.
In general, operators can mix under renormalisation. However, chiral symmetry forbids the
mixing between some of the operators appearing in the basis (2.71). Therefore, in the Fierz
basis the ADM has the form

A 0 0 0 0
0 B £C 0 0
4= 0o b E 0 0 |, (2.72)
0 0 0 Ft Gt
0 0 0 Hf I*

and there is no mixing between )~ and Q™. In particular, the correspondence between the

operators of the Fierz basis (2.71) and the SUSY basis (2.70) is given by the transformation

GSUSY — NIt (2.73)
with the matrix M given by
1 0 0 0 0
0 0 0 1 O
T — 11
M=10 0 0 —35 3 (2.74)
0 0 1 0 O
0 —% 0 0 0

The ADM in the SUSY basis (2.70) 45YSY satisfies the relation

ASUSY = Ny tM (2.75)
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For the LO ADM ~(©SUSY which is independent of the regularisation and of the renormal-
isation scheme we find after inserting the corresponding numerical values and performing

a rotation from the Fierz basis to the SUSY basis

40 0 0 0
0 -2 3 0 0
FOSUSY _ | g 18 32 g g (2.76)
00 0 —16 0
00 0 —6 2

In order to solve the RG equations, we need to diagonalise the LO ADM ~(©SUSY_For the

entries of the corresponding diagonal matrix vp we find
~OISUSY _ diag (4, —9.68278, 11.0161, —16, 2). (2.77)

The elements of the NLO ADM depend on the renormalisation scheme and the number of
active flavours. Their analytical expressions obtained in the NDR MS scheme and in the
FRI scheme can be found in refs. [17] and [11], respectively. Using the formal approaches
in the analyses [11] and [17], we could obtain and translate the relevant matrices between
the different renormalisation schemes and have found a full agreement between the results.
Schematically, we show the two possible ways for the determination of the matrices in the

different renormalisation schemes on the example of the matrix .J:

7Fierz 7Fierz 7SUSY
FRI JLRI JLRI

e, e JSY,
Starting from the FRI scheme in the Fierz basis, we translate the matrices to the LRI
scheme. Then the results are transformed to the SUSY basis according to ref. [11]. On the
other hand, we use the results of the calculation in MS renormalisation scheme of ref. [17],
transform them to the LRI scheme and then change the operator basis form the Fierz basis
to the SUSY basis. Both approaches are completely equivalent.
Further, we introduce the quantity
a(Msusy)

a(my)

n (2.78)

where m; denotes the mass of the top quark, and write every entry in the evolution matrix
at NLO as

W M = (bg’”") + ncg"””) 0, (2.79)

i
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where b; and ¢; are the so called “magic’ numbers. In the case of B — B mixing, the
C;(Msysy) are evolved down to the hadronic scale yu = my, at which the hadronic matrix
elements are calculated using lattice QCD methods. Studying K—K mixing or D—D mixing
we have to go even more lower in the energy scale, to u = 2.0 GeV and to yu = 2.8 GeV,
respectively. The constants a; in eq. (2.79) are given by

+(0)

a; = ’27]3 = (—1.14286, 0.78687, —0.69163, 0.28571, 0.14286);. (2.80)
0

By the evolution of the Wilson coefficients from the scale Mgygy down to the scale u the
threshold at m, is passed at which the number of active flavours n; changes by one unit
from 6 to 5. Therefore, the evolution of the Wilson coefficients at NLO is performed using
eq. (2.47) in two steps, first from Mgygy down until m, where ny = 6, and after this from
my to = my with 5 active flavours. Since we apply two times (2.47) after each other
terms proportional to a(m;)? and a(my)a(m;) can appear which are of O(a?). We have
restricted our working precision up to O(«) and have neglected the contribution of terms

of O(a?) to the matrix elements of the evolution matrix.

(mn)

With the numerical input in table (4.1) the magic numbers bl(-m") and ¢; " for the non-

vanishing matrix elements are the following:

b = (0.868, 0, 0, 0, 0), M = (-0.016, 0, 0, 0, 0),

b<22> = (0, 1.820, 0.012, 0, 0), *) = (0, —0.157, —0.003, 0, 0),

b(23> = (0, —0.477,0.183,0,0), ¢ = (0, —0.012, 0.008, 0, 0),

b* = (0, —0.050, 0.036, 0, 0), ¢ = (0, 0.010, —0.012, 0, 0),

b'*¥ = (0, 0.013, 0.549, 0,0), %) = (0, 0.001, 0.030, 0, 0), (2.81)
B™ = (0, 0,0, 2.719, 0), A =0, 0, 0, —0.377, 0.006),

b(45 (0, 0,0, 0.906, —0.235), A" =0, 0,0, —0.193, —0.006),

b = (0, 0,0, 0.073, 0), = (0,0,0,0, —0.017),

™ = (0, 0,0, 0.024, 0.868), % =0, 0,0, 0, 0.019).

In order to calculate the K—K mixing amplitude we have to evolve the Wilson coefficients

down to the scale = 2.0 GeV at which the corresponding hadronic matrix elements are
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extracted from lattice simulations. In this case we find the magic numbers:

'Y = (0.816, 0, 0, 0, 0), M = (=0.015, 0, 0, 0, 0),

b\*? = (0, 2.275, 0.010, 0, 0), A = (0, —0.188, —0.003, 0, 0),

b§23> = (0, —=0.596, 0.155, 0, 0), ¢ = (0, —0.015, 0.006, 0, 0),

b* = (0, —0.042, 0.029, 0, 0), ¢ = (0, 0.012, —0.010, 0, 0),

'*¥ = (0, 0.011, 0.438, 0, 0), %3 = (0, 0.001, 0.025, 0,,0), (2.82)
" = (0, 0, 0, 3.890, 0), A" = (0, 0, 0, —0.507, 0.005),

B — (0,0, 0, 1.297, ~0212), ™ — (0, 0, 0, —0.259, —0.006),

b = (0, 0, 0, 0.127, 0), A =(0,0,,0,0, —0.016),

" = (0, 0, 0, 0.042, 0.824), % =0, 0,0, 0., 0.018).

The hadronic matrix elements involved in the D—D mixing process are known at the scale
1= 2.8 GeV. Therefore, we evolve the Wilson coefficients to that scale as well. In this case

the magic numbers are given by:

b = (0.838, 0, 0, 0, 0), A = (-0.016, 0, 0, 0, 0),

b* = (0, 2.059, 0.011, 0, 0), *2) = (0, —0.174, —0.003, 0, 0),

b* = (0, —0.540, 0.167, 0, 0), ¢ = (0, —0.013, 0.007, 0, 0),

b* = (0, —0.046, 0.032, 0, 0), ¢ = (0, 0.011, —0.011, 0, 0),

b'*¥ = (0, 0.012, 0.484, 0, 0), %) = (0, 0.001, 0.027, 0,,0), (2.83)
B = (0, 0, 0, 3.315, 0), M = (0, 0, 0, —0.445, 0.006),

B* = (0,0,0,1.105, —0.222), ™ = (0, 0, 0, —0.227, —0.006),

b(54) (0, 0, 0, 0.992, 0), " =(0,0,0,0, —0.017),

" = (0, 0, 0, 0.033, 0.843), A =0, 0,0, 0, 0.019).

2.5. Hadronic Matrix Elements

The matrix elements of the operators in eq. (2.70) can be computed from first principles
only in the framework of the lattice QCD. While the operators in eq. (2.70) have both
parity even and parity odd parts, only the parity even parts contribute to the matrix
elements relevant for the meson mixing processes. The strong interaction preserve parity

and consequently

(M|Qi|M) = (M|Q;|M), i=1,2,3 (2.84)
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where M denotes a B, K or D meson. Usually, one defines the dimensionless B-parameters
as a measure of the deviation of the matrix elements from their expression in the vacuum

insertion approximation (VIA), in particular

o anedm
Bl = a0 (259

The matrix elements in a given renormalisation scheme RS are defined as [19, 62|

(QFS(w)) = by xi f3 M3, B () (2.86)
where
_ 2 5 1 11
3 127127276/
X1 = ]-7
My ]2 .
Xi = for i € [2, 5]. (2.87)
{mq(u) + mag(p)

The matrix elements of all the non-SM operators are chirally enhanced by the ratio of the
meson mass over the sum of the masses of its quark constituents. In order to determine the
numerical values of the B-parameters, numerical simulations of a quenched and unquenched
QCD on the lattice have been performed. The results of recent QCD lattice calculations

are reviewed in ref. [20].

2.5.1. Hadronic Matrix Elements for B—B mixing

In the case of B—B mixing we use the B-parameters obtained in a lattice calculation of
a quenched QCD reported in ref. |[18]. Lattice simulations can be made up to the ¢ quark
mass or some heavier mass but present computational resources do not allow a direct
study of the b quark. The calculation in ref. [18] has been performed in the range of heavy-
light pseudoscalar masses [1.7,2.4] GeV, and then extrapolated to the physical point mp,
guided by Heavy Quark Effective Theory (HQET) scaling laws. The numerical values of

the B-parameters involved in the By— B, and B,— B, mixing amplitudes are given by

Bfe™ = 0.87(4)%5, 0.82(3)(4), 1.02(6)(9), 1.16(3)%3, 1.91(4)¥2?]
B = [0.86(2)15, 0.83(2)(4), 1.03(4)(9), 1.17(2)%3, 1.94(3)*2°] (2.88)

in the LRI scheme [18]. For the determination of the numerical values of the hadronic matrix

elements the knowledge of the By and and By decay constants fp, and fp, is necessary. In
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our calculation we use the averages of lattice QCD inputs for the CKM fits performed by
the CKMfitter collaboration |21]|. According to the CKMfitter group the average value of

the decay constant fp_ is given by
fo. = (228 4+3417) MeV (2.89)

where the first error is statistical and the second systematical. Lattice calculations allow

o Dy 20
de\/@

with much better precision than the decay constants themselves. Furthermore, the decay

the determination of the ratio

constant fp, is determined more precisely than fp,. Therefore, by the calculation of the

B,—B, and B;— B, transition amplitudes we use the ratio of the decay constants

B _ 1199+ 0.008 + 0.023 (2.91)

By

determined from the CKMfitter group [21] by analysing various lattice simulations, and
the decay constant fp_. In eq. (2.91) again the first error is the statistical and the second
the systematical one as before. In ref. |18] the operators are defined without the factor 1/2
in the projectors i.e. Oy = @y*(1 — v5)b" ¢, (1 — 75). Taking this fact into account we
obtain for the hadronic matrix elements with the definition of the operators given in (2.70)

the following mean values at the scale y = 4.6 GeV:

@QP*™y = (0.8593, —0.6809, 0.1690, 1.1518, 0.6366), ,
(QFP™)y = (0.5846, —0.4520, 0.1125, 0.7673, 0.4211), . (2.92)

2.5.2. Hadronic Matrix Elements for K —K mixing

For the calculation of the K —K transition amplitude we use the B-parameters presented
in ref. [20] where the results of many quenched and unquenched lattice simulations with
different lattice spacing are collected and analysed in context of the relevant errors. The
parameter Bf which is involved in the SM K —K mixing amplitude has been computed in
several lattice calculations while a calculation of the B-parameters of the full operator basis
(2.70) has been performed only in three lattice studies until now [95 97|. All of them have

been performed within the quenched approximation. However, the authors of the analysis
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|20] do not recommend to use the number for BEX obtained in the three lattice simulations
mentioned above which determine the B-parameters for all the operators. Instead, they
refer to the result of lattice calculations whose goal has been the computation of B only
which is known more precisely than the other B-parameters. Finally, the average values of
the B-parameters in the RI-MOM scheme at the scale p = 2 GeV are given by |20]

BS® = [0.54(5), 0.7(2), 1.0(4), 0.9(2), 0.6(1)], . (2.93)

(2

Together with the decay constant fx = (155.5 + 0.3 £ 1.9) MeV [21] and (m2 + mB) =
(1354 18) MeV [20| we obtain the following mean values for the hadronic matrix elements

involved in K — K mixing at u = 2GeV:

(QFFhY = (0.00864, —0.09520, 0.02720, 0.14689, 0.03264), . (2.94)

7

2.5.3. Hadronic Matrix Elements for D—D mixing

As stated in ref. [20] in the case of D—D mixing the involved hadronic matrix elements can
be obtained from the lattice results presented in |18] as well. This work provides numerical
results for heavy-light mesons with masses 1.75(9) GeV and 2.02(10) GeV, respectively.
Thus, the B-parameters for the D mesons can be obtained by extrapolating to the physical
point mp between the two sets of results. The authors of ref. [20] add in the final averages
an additional systematic uncertainty of 10%. This decision is motivated by the fact that
the results in ref. |18] are obtained from a single quenched simulation in lattice QCD.
Finally, the B-parameters relevant for D— D mixing in the RI-MOM scheme at the scale
1= 2.8GeV are given by

B> = [0.85(9), 0.82(9), 1.07(12), 1.10(11), 1.37(14)], . (2.95)

With the averages for the decay constant fp, = (246.3 £ 1.1 £ 5.3) MeV and for the ratio
fp./fp = 1.186 + 0.0046 £ 0.01 [21] we find the mean values for the hadronic matrix

elements

(@QP™Y = (0.3398, —0.4402, 0.1149, 0.7087, 0.2942) . (2.96)

)
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3. GENERAL ASPECTS OF MESON MIXING

In this chapter we describe the general formalism of meson mixing. It can be applied to all
cases of meson mixing processes in particular to B—B mixing , K — K mixing or D—D
mixing. In the next chapter we focus on the three meson mixing processes mentioned above
and discuss the specific issues of each one and the main differences between them from phe-
nomenological point of view. For a more detailed description of the phenomenon of meson

mixing we refer to [9], [23,24] and references therein.

The meson-antimeson mixing is a Flavour Changing Nuclear Current (FCNC) process. In
the SM FCNC transitions are forbidden at tree level. At one loop level the flavour chang-
ing W* and G* vertices make FCNC processes possible. The meson mixing is an effect
of fourth order flavour-changing weak interaction which is described in the SM by the
box diagrams shown in fig. 4.2. The charged Higgs vertices have to be taken into account
by performing the calculation in R¢ gauge while they are absent by choosing an unitary
gauge. In following we focus on the time evolution of a meson or antimeson state. The
calculation of the box diagrams in the SM as well as the supersymmetric contributions will
be discussed in chapters 4.1.2 and 4.2.

Meson-antimeson mixing means that a neutral meson state |M) initially created as | M)
or |[M) becomes a superposition of |M) and |M) with time elapsing. Assuming first no
meson-antimeson mixing which is fulfilled in the case of charged mesons the time evolution

of a meson state |M) is described by the Schrodinger equation
d Ly
—|M(t)) = My —i— ) | M 3.1
i) = (M =220 ) ) 3.)

where M), is the mass and 'y, stays for the total decay width of the meson. With |M) we
denote the meson state at the initial time ¢ = 0, |M(0)) = |M). The solution of eq. (3.1)

is given by

M (1) = & D)y (3.2)
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Eq. (3.2) describes the usual exponential time evolution of a stable state with energy
E = M, as well as the process of decaying of the meson following an exponential law.

Thus, the probability the meson not to have decayed at time t is given by
(MM ())[* = et (3-3)

In case of meson-antimeson mixing the time evolution of a meson or an antimeson state
produced at time ¢ = 0 is more complicated. An initially created meson or antimeson is a

quantum superposition of the states |M) and |M) at the time t > 0:
| M(#)) = a(t)|M) + b(t)|M). (3.4)

In the basis {|M), |M)} we can write the two-dimensional Schrédinger equation

d
i | M(t)) = M|M) (3-5)

with the matrix M € C?*2. Further, we use the property of every matrix to be written as

a sum of a hermitian and an antihermitian one and decompose M as

A

M =M — zg (3.6)

where the mass matrix M and the decay matrix [" have been introduced which are both
hermitian. According to the CPT theorem [25-27| the states |M) and |M) have identical
masses and total decay widths. This requirement enforces the equality of the diagonal
elements of M. Then, it follows

Mll = M227 IA111 = IA‘22- (37)

We find the time evolution of the flavour eigenstates |[M(¢)) and |M(t)) starting from the
time evolution of the mass eigenstates |M;(t)) and |My(t)). Because of the special form

of the matrix M with equal diagonal elements we can make the following ansatz for the

Q:(p p). (3.8)
¢ —q

For the inverse matrix Q! it follows

_ 1 q p
Ql:%(q _p)- (3.9)

matrix ) which diagonalises it
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Thus, the mass eigenstates and the flavour eigenstates are related to each other through

|My) = p|M) + q|M),
|My) = p|M) — ¢[M) (3.10)

with |p|? + |¢|*> = 1 and M is diagonalised as

Q_l./\/lediag (]\4]\/[1 —ZF MMQ—ZFMz) (311)

2 2

Since the mass eigenstates do not mix with elapsing time their time evolution is described

by eq. (3.1) which is valid for the time evolution of charged particles. We can write

i) = (M, — 535 ) a0, g€ (1,23, (312

The solution is analogous to the one given in eq. (3.2):

) =< U gy e 2y, (3.13)

Having obtained the time evolution of the mass eigenstates we can transform it to the

flavour eigenstate basis. Inverting eq. (3.10) we find

[M(t)) = o= (IMi(1)) + [Ma(1))

[M(t)) =

1
%
% (M (1)) — | Ma(t))) (3.14)

In order to write the formulae in a more simple form, we adopt the following definitions for
the mass and width differences and the average mass and width of the mass eigenstates:
— M +Mary = Dt

-z 2 (3.15)
A]\4E]\4]\/[2 —MMl, AFEFMl _FMZ'

Further, we define the functions |23,24|

gi(t) = e7ilm=8) [cosh (%t) cos (ATmt) — isinh (%t) sin (ATmt)} :
g_(t) = eilm=8) [—sinh <%t) cos (ATmt) +icosh (%t) sin (ATmt)] (3.16)

Finally, after inserting in eq. (3.14) the time evolution of the mass eigenstates given in
eq. (3.13) considering the definitions in (3.15 - 3.16), the time evolution of the flavour
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eigenstates can be written in a compact form

q J—
(M) = g+ OIM) +g-(B)[M),
P p —
(M) = Z9-OIM) + g+ (6)|M). (3.17)
Since g4 (t) does not vanish for ¢ > 0 if AI' # 0 an initially produced meson |M) will never
transform into a pure antimeson state |[M) or back into a pure |M). The meson-antimeson
oscillation process can be easily illustrated by means of eq. (3.17). The time dependent
probabilities Pyas(t) and Py7(¢) to find a meson or an antimeson when at the initial time

t = 0 a meson has been created are given by

P = lgaf = cost (5t + cos(am )
Py = ' %g_(t)r - %Ft [cosh (%t) — cos (Amt)} . (3.18)

We plot these probabilities in case of By— By, Bs— B, ., and D—D mixing in fig. 3.1. As a
numerical input of the quantities AM,;, Al'y, AM,, Al'y and 75 the values given in table
4.1 have been used. In case of D —D mixing we obtained the relevant quantities taking
into account the input parameters given in table 4.2. In the B,— B, system we see a lot of
oscillations in the shown time interval. On the contrary, the B;— By oscillations happen
much slower. In fact, the first minimum of Pp_p_ is at ¢ = 0.18 ps while the probability
Pp,p, is not minimal until £ = 6.20 ps. The D mesons decay so fast that there is no suffi-

cient time during their lifetime for a creation of an antimeson component.

At this point it is important to clarify which quantities relevant for the meson-antimeson
mixing process are independent of phase conventions and have therefore a physical meaning.
The multiplication of either |M) or |M) by an arbitrary complex phase factor will affect
the phases of the matrix elements Mo, I'15 as well as the phase of ¢/p. In fact, | Mis|, |T'1o]

and their relative phase

¢ = arg (—@) (3.19)

are invariant under phase transformations. These are the physical observables which ap-

peared in our discussion of the meson-antimeson mixing formalism until now.
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Figure 3.1: Time evolution of an initially created meson (left plot) or antimeson (right plot)
for the By— By system (black line), B,— B, system (red line) and D—D system (green

line). In the right plot P,5 coincides with the x-axis.

Our approach for constraining supersymmetric parameters is based on the comparison
between the theoretical estimate of the mass differences in the B; and B, meson systems
and the corresponding measured values of these quantities under the assumption that NP
only enters at the loop level through additional particles running in the loops. For this
reason AF' = 2 transitions which in the SM are mediated by box diagrams can be sensitive
probes of NP. The matrix elements M5 and I'15 are related to the dispersive and absorptive
parts of the AF = 2 transitions. I';s can be written as a product of tree-level AF = 1
amplitudes so that NP is not likely to alter its value. In this sense it is important to find
the relation between AM and the meson mixing amplitude M. For that purpose we turn
back to the eigenvalue problem (3.11) and denote the two eigenvalues of the matrix M by

A1 and Ao. Solving the secular equation
(Mg — A12) — MMy =0 (3.20)
we obtain a relation between the eigenvalues
(M = A2)? = AM 1My, (3.21)

Equating the real and imaginary part of the L.h.s and r.h.s of eq. (3.21) separately leads
to a relation between the mass difference, the total width difference, the decay amplitude
and the total width:

AT ?
(AM)? — <7) = 4| M| — Tl
(AM)(AP) = —4 Re(Mlgl"L) =4 |M12||F12| COS ¢ (322)
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For the B—B system it is experimentally known that AI' < AM. On the other hand, SM
calculations show that I'j5 < AM is valid as well. Therefore, from eq. (3.22) it follows

AM ~ 2|M12|,
AT 2|I"15| cos ¢. (3.23)

12

Equation (3.23) is valid also in the case of K —K mixing, in which AT' > AM, but ¢ =~ 0.
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4. WILSON COEFFICIENTS FOR MESON MIXING
PROCESSES IN THE MSSM

In this chapter we discuss the meson mixing processes in the neutral B, D and Kaon sys-
tems. We explain the specific features of the meson mixing phenomenon in the three cases
mentioned above. We focus on the computation of the Wilson coefficients in the SM as

well as on the supersymmetric contributions.

4.1. SM contribution

Each of the Wilson coefficients corresponding to the operators basis given in eq. (2.70) can

be written as
C, = CZ.SM + CZ.SUSY (4.1)

In eq. (4.1) the first term represents contributions from the SM and the second one sum-
marises the contributions from supersymmetric particles.

The SM contribution to the meson mixing processes is described only by the operator ),
given in eq. (2.70) which corresponds to the situation that all external particles of the
boxes are left-handed. In this section we summarise and discuss the basic results regarding

the B—B, K—K and D—D mixing in the SM. For a more detailed description of the

phenomenon of meson mixing we refer to 9,23, 24| and references therein.

4.1.1. The pure SM CKM matrix

The flavour violation process in the SM is governed by the CKM matrix elements. Since
our goal is to place constraints on parameters of SUSY particles which can affect the me-
son mixing amplitudes, the separation of the pure SM contribution from the contribution

caused by SUSY particles is extremely important. However, the CKM matrix elements are
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measured using processes which cannot be always free of NP effects. Therefore, one has to
find a way to determine the CKM matrix elements involved in the calculation of the SM
part of the Wilson coefficients, if possible without, or with the minimal possible amount

of NP contributions.

Within the SM a great variety of processes characterised by a very different dynamics are
sensitive to the same four independent parameters of the CKM matrix defined in the so

called Standard parametrisation by

0

C12C13 512€13 S13€
_ is is
V= —512C23 — C12523513€ C12C23 — 512523513€ 523C13 (4-2)
1) )
$12823 — C12C23513€" —C12523 — S12C23513€" C23C13

with ¢;; = cost;; and s;; = sin6;;. In the presence of NP this is no longer true even in
minimally flavour violating extensions of the SM. Taking into account the smallness of
s13 &~ O(1073) and sy3 &~ O(1072) which implies ¢;3 = 1 = co3 the four independent,

parameters are given by
si2 = |Vusl,  s13 = [Vip|, 23 =[Vp| and 6. (4.3)

In order to write the results of theoretical calculations in a more transparent form and to
exhibit the experimentally found hierarchy s13 < s93 < s19 < 1 the so called Wolfenstein
parametrisation |28] of the CKM matrix is very usefull. In this parametrisation each element
of the CKM matrix is written as a power series expansion of the small parameter A = |V|.

In particular,

1-& A (p—in) AN
V= - — A AN? +O(\h. (4.4)
(1 —p—in)AN> —AN? 1

The relation between the independent parameters (4.3) in the Standard parametrisation

and the parameters A\, A, p and 7 used in the Wolfenstein parametrisation is given by
S12 — )\, S93 — A>\2, 8136_i6 = A)\g(p — ZT]) (45)

The unitarity relation VZ-]-V;]- = J; creates various relations between the CKM matrix
elements. The most important one follows from the multiplication of the first and the third

column of the CKM matrix. In particular, we find

VaaV, + VeV, + ViaViy = 0. (4.6)

C
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(0,0) (1,0)
Figure 4.1: The unitarity triangle.

This equation involves the only two complex elements in the expansion until O(\*) in the
Wolfenstein parametrisation. The representation of eq. (4.6) in the complex (p,7)-plane

shown in fig. 4.1 where the axis are defined as [98|

ﬁ=p<1—%2), ﬁzn(l—g) (4.7)

is the so called unitarity triangle (UT). With

L ViV
= b 48
P+ ViV (4.8)
we obtain form eq. (4.6)
[(p+) + (=1) + (1 =P — )] (4.9)

which is shown in fig. 4.1. Since eq. (4.9) is invariant under phase transformations, the
sides and angles of the UT are physical observables.
The sides and angles of the UT can be expressed using trigonometric relations through the

Wolfenstein parameters as follows:

21 (° + p* — D)

infie) = @*+7) [(1-p)° + 7]
g _210=7)

) (1-p)*+7*
sin(29) = 2L

P
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VudViy o —
Rb = d _2 + 7] )
V cb
ViV
R, = (1-— 4.10
; VAV =/( (4.10)
We insert the parameters
p = o3 cosd, 1N = "B ing (4.11)
512523 812523

which we easily derive from (4.5) in the equation for sin(2v) and find v = §. To an excellent
accuracy the angles 0 and « of the UT are directly linked to the phases of the complex
elements V;z and V. We find the relations

Vi = |Vile™ = RAN e,
Vub = |Vub|6_w:RbA)\36_m. (4.12)

For all predictions within the SM we assume unitarity of the CKM matrix and calculate

all CKM elements from the four parameters
Vasl,  [Veols [Vl - (4.13)

The numerical input values are given in table 4.1. This set of parameters can be determined
entirely from tree level decays and are consequently independent of NP contributions. Our
strategy to extract v without NP contributions includes the combination of the informa-
tions from B — J/9¥Kg and B — 77w~ decays. These transitions can be affected by NP
in the electromagnetic penguins only which is a very unlikely scenario. We discard this
possibility and assume that decays to be completely governed by the SM. Both decays
provide information about the mixing induced CP asymmetry AR, The relevant relations

are

Gp (B — J/¢Ks) = —sin(¢g)
SX(B — pp) = sin(2y + ¢4) (4.14)

where ¢4 is the By — By mixing phase. In the SM the B;— B, mixing phase ¢4 = 23 but
in the presence of NP it can be affected by an additional phase ¢Y*. In this case we can

write

Ga =20+ ¢)". (4.15)
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o (dir. meas.) 89.0°T430 [22] V| (41.17193%) - 1073 [22]
3 (dir. meas.) 21.15°70:350 [22] |Vis| (3.5170145) - 1072 [22]
Vis) = A =512 | 0.22544 +0.00095 [22] | a,(My) 0.119 4 0.003
Gr 1.16637 - 107° GeV 2 a(My) 1/127.9
Mg, (5.2794 + 0.0005) GeV [85] | Mp, (5.3696 + 0.0024) GeV [85]
my (77) (4.248 £0.051) GeV [86] | m(y) | (165.02 4+ 1.16 £ 0.11) GeV [22]
My (80.423 £ 0.039) GeV Sw v0.2397
AMP (0.507 £ 0.005) ps~ [85] | AME® | (17.77 £0.10 £ 0.07) ps~* [90,91]
m (228 £3+17) MeV [21] | fB/ B (1.199 4+ 0.008 + 0.023) |21]
h (212 £ 14) MeV |20] h 155.5 + 0.3 + 1.9 MeV |21]
AT 26.7128 .10~ ps~! |69 AT® 0.088 £ 0.017 ps~" [69]

Table 4.1: Values of the experimental and theoretical quantities used as an input parameters.

Using the unitarity relation v = m — a — 3 and the experimental information about the
the measured quantities %P = [ 4+ ¢4/2 and a®™P = a — ¢4/2 we can determine v from

the equation
v=7—a%P — %P, (4.16)

In eq. (4.16) the the NP phase ¢)¥ cancels because it affects the measured quantities 3P

and a®P with opposite sign. With the numbers given in table 4.1 we find
7= 123018101000 (710705 (4.17)
which is the pure SM value of the angle 7.

4.1.2. The mixing of neutral B mesons in the SM

For the mixing of the neutral B mesons in the SM we consider the box diagrams shown
in fig. 4.2. In case of B;— B,; mixing the incoming and outgoing quarks are b and d
while for B, — B, mixing the d quark is replaced by a s quark. Choosing an unitary
gauge the particles running in the loop are represented by two W bosons and two up-type
quarks. Performing the calculation in a general R gauge the contribution of the charged

Pseudo-Goldstone bosons has to be taken into account as well. Our goal is to calculate
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di(u;) dj(uy) d;i(u;) d;(u;)

W:t

T e

i (uj) i(ui)

Figure 4.2: The box diagrams describing meson-antimeson mixing in the SM in the unitary

dj(uy) d;(u;)

gauge. In case of B— B and K — K mixing the incoming and outgoing quarks are of
down-type and up-type quarks are involved in the loop. For D— D mixing the situation
is the opposite - incoming and outgoing up-type quarks and down-type quarks running in
the loop. In R, gauge additional box diagrams involving charged Pseudo-Goldstone bosons

have to be considered.

the mass differences AM, and AM, for the B,— B, and B;— B, system, respectively.
It has been already pointed out that in the calculation procedure of meson-antimeson
transition amplitudes we have to deal with low energy QCD which makes the application
of perturbative methods impossible. In order to solve this problem, we have to extract
the SM Wilson coefficient C?™ by matching the transition amplitude calculated in the
full theory onto the one calculated in the effective theory. Then, the multiplication of the
effective coupling C¥™ by the corresponding hadronic matrix element (By|Q1|Bqs) at the
same scale gives the transition amplitude. At this point it should be mentioned that the
fact whether the CKM matrix elements and/or the mass of the W boson belong to the
Wilson coefficient or not is a question of convention. In our treatment all factors which
multiply the effective operator (); are contained in the corresponding Wilson coefficient
s

In the calculation of the transition amplitude one has to take the sum over all box diagrams
which involve all possible combinations of two up-type quarks running in the loop. Thus,

the transition amplitude can be written as

A=Y VWi VieVi, Aij(m3, m3) (4.18)

1,J=u,c,t

where A;; is the contribution if a certain box diagram which involves up quarks with flavours
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i and j. A;; is a symmetric function in the quark masses m; and m;. The calculation of
the box diagrams in the full theory involves an integration over the loop momentum.
The loop integral is finite. It can be written as a sum of master integrals using partial
fraction decomposition. The master integrals contain divergences which are regularised by
the method of dimensional regularisation and the divergent terms cancel in the sum. In
general we encounter no problems with divergences by performing the integration. Further,
using the relation

> ViV =0 (4.19)

i=u,c,t
which follows from the unitarity of the CKM matrix i.e. with j = u the expression for
the transition amplitude can be simplified. In particular, eq. (4.19) implies vanishing tran-
sition amplitude A in case of equal quark masses. The vanishing of FCNC in the limit
of equal quark masses as a consequence of the unitarity of the CKM matrix is known as
Glashow-Iliopoulos-Maiani (GIM) suppression [29]. In the meson-antimeson mixing pro-
cesses we encounter once more the GIM mechanism which has successfully explained the
small branching ratio of the decay channel K° — 77~ predicting the existence of the
charm quark.
Further, we neglect the contributions of the u-quark loops treating the u quark as a massless
particle and find for the Wilson coefficient at LO

4
g
ClsM — m |:>\§q450(xt) + >\cq)\tq450(x67'rt)] ) (420)

with the well known Inami-Lim-functions [30]

) —112? + 4z, 3x}Inmy,

SO(It) - 4(1} _ 1)2 _l_ 2(1’,‘, _ 1)3? (421)
31’? hlll't 3xt o

_ ot 4.22

So(e, wt) Le ( 4wy — 1) - 4z — 1) in xc) ’ (422

and the definitions z; = m7 /My, Nig = ViyVii for i € {u,c¢,t}. In order to describe the
mixing of neutral B; mesons one has to make the choice ¢ = d while in case of B, — B,
mixing ¢ is identified with the s quark. Because of the small ratio z. = O(107%) the
contribution of the second term in eq. (4.20) proportional to Sy(z.,z:) = O(x.) is very
tiny in comparison to the contribution of two top quarks in the loop and can be neglected.
Finally, with the Fermi constant G = ¢2/4v/2M32,, the Wilson coefficient C™ can be
written as

GEMyy

Ar?

cM = AZSo(xy). (4.23)
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In order to check the result of the calculation we have obtained the Wilson coefficient CF™
performing the calculation in the unitary gauge as well as in the R, gauge. We found a
full agreement between the results of the calculations in the different gauges and a full
agreement with the results in the literature. Note that the Wilson coefficient given in eq.
(4.23) is four times bigger than the one given in egs. (3.17) and (3.19) in ref. [9]. The reason
for this difference is the definition of the operators in ref. |9]. In particular, the projectors
Pr, are defined without the factor 1/2. The factor 4 included in the definition of the
hadronic matrix elements is compensated by the factor 1/4 in the Wilson coefficients such
that there is no difference between the transition amplitudes calculated in this work and

the ones given in ref. [9] and other previous works.

Now we turn back to the problem described in Ch. 2, namely, the different scales of the
Wilson coefficient and the hadronic matrix elements. We have to take care about the fact
that the Wilson coefficient CP™ is extracted at the scale y = My, while the hadronic
matrix elements are obtained from lattice calculations at the scale u = my. In order to
calculate the transition amplitude it is necessary to perform an RG evolution of either the
Wilson coefficient CPM down to the scale g = my, or of the corresponding hadronic matrix
element up to the scale of the W boson mass u = My,. In contrast to the evolution of the
Wilson coefficients in the case of the supersymmetric contributions to the meson mixing
processes which is performed in the RI-MOM renormalisation scheme, we follow for the SM
contribution to the B—B mixing process the established treatment in the literature in the
MS renormalisation scheme. Since the operator ; does not mix with other operators under
renormalisation, the evolution of the Wilson coefficient is described by a single factor. One

usually writes
CPM(my) = fpCP™ (M) (4.24)

where 7)p is obtained from NLO calculation and can be written as a product of two factors,
N = nebp(my) [31]. In this way the heavy scale and the low scale are separated. The scale
dependence of the factor bg(my,) cancels in the product with the hadronic matrix element
which depends on m; as well. Numerically, it is found Az = 0.837 in the MS-NDR scheme.
More details on this topic can be found in |31] and [32].

Finally, writing the |AB| = 2 Hamiltonian as

_ G .
H'AB_z‘ = 4—7;Mgv(‘/tb‘/;;)2 T]Ql (mb) -+ h.c. (425)
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we obtain for the transition amplitude MSM taking into account the parametrisation of the

hadronic matrix elements given in eq. (2.86) the expression

= G2 R
MM = (B|H!AP=2|B) = 6—7TF2MV2V)\quO(xt)nM§q 5, Bi(my). (4.26)

4.1.3. Indirect CP violation in K —K mixing

The case of the mixing of neutral K mesons can be theoretically treated in analogous way
as the mixing in the B meson system. However, in the K—K mixing some specific features
appear which will be the main subject of the following discussion.

The Kaon mixing is described by the operator (); with incoming and outgoing d and s
quarks. The K — K transition is a |AS| = 2 process. Because of the different external
states compared to the ones in the case of B;— B, and B, — B, mixing, we encounter
different combinations of CKM matrix elements by the computation of all the box diagrams
involving the up-type quarks of the three generations in the loop. In contrast to the B—B
mixing process where the top contribution is dominant, now the function S(z;) is highly
suppressed by factor (Vi,V;5)? &~ O(A'9). On the contrary, even if the corresponding loop
functions of the charm-charm and charm-top contributions are small, they are multiplied
only by a CKM factor of O()\). Therefore, the top quark loop becomes comparable in size
with the ones with two charm quarks and with one charm quark and one top quark. Thus,
the latter cannot be neglected as this has been the case in the neutral B meson system.

The effective |AS| = 2 Hamiltonian can be written as [31]

= G * *
o™= = 75 My [(VesVia)* e e + (ViaVi)? e o)+

2V Vo Vis Vi e So(e, 2¢)] b (mi) Q1 + h.c. (4.27)

with the coefficients ny, 1. and 7. which describe short-distance QCD effects. At NLO
the QCD coefficients are given by |31,33-35|

1.3GeV ) L

(¢

N = 0.A4740.05, (4.28)

oo = (1.44i0.35)<
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For the K — K transition amplitude one obtains

—MX%V f{ BK mg [(VCSVCZ)Q Nee Te + (WthZ)2 et So(x¢) +
2‘/03 cfj%s‘/ttl et SO (3707 xt)] (429)

with the definition of the hadronic matrix elements given in eq. (2.86) and the renormalisa-
tion group invariant factor BK = Bk b(mg). In contrast to the situation in B—B mixing,
the K meson decay constant fgx is well known from experiments. The factor By is de-
termined by lattice calculations (see Ch. 2.5.2). Calculating AMM = 2|MM| with the
usual effective field theory methods, the obtained result differs from the experimentally
measured value of the same quantity by roughly 30%. In fact, eq. (4.29) contains only the
so called short distance contributions to the K — K transition amplitude. However, the
K — K mixing can occur through two |AS| = 1 transitions as well. This so called long
distance contribution cannot be calculated from first principles.

In our analysis we constrain MSSM parameters through their effects on the indirect CP vio-
lation in the neutral Kaon system. In particular, the supersymmetric particles contributing
with new box diagrams to the K — K transition amplitude affect the quantity ex which
measures the CP violation in mixing in the K —K mixing process. CP violation in mixing
of neutral mesons arises from the fact that the CP eigenstates are different from the mass
eigenstates. Following the general analysis of the meson-antimeson mixing in Ch. (3), we
replace the mass eigenstates in eq. (3.10) |M;) and |Ms) with |Kg) and |Kp), respectively.
The indices "L = long™ and ”S = short” have been chosen in the past according to the
decay of neutral Kaons to 777~ or 7°7% A K meson state |K) is a quantum superposition

of the lighter mass eigenstate |Kg) and the heavier mass eigenstate |Kp). Defining

1+
p
eq. (3.10) can be written as
1+€ 1—-¢ —o
Ko)= —° g% -~ —° K%,
s = e e
I+€ 1-¢ —o
|Kp) = ———|K°) + |K7). (4.31)

21+ |€e|? 2¢/1+ |e]?
With the CP transformation C'P|K?) = —|FO), CP|FO> = —|K°) we introduce the CP-
even and CP-odd eigenstates |K,) and |K_) as

= (1K) &%),

‘K—i—) = \/5
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R
V2

Expressing the mass eigenstates through the CP eigenstates we obtain

K (|K°> + |F°>) . (4.32)

_KL) HER) _ KO +ERY)
VI+[? V1+]eP?

Equation (4.33) shows in explicit way that the mass eigenstates are an admixture of the

| Ks) 1K) (4.33)

CP eigenstates. The limit of CP conservation is given by € = 0 and in this case |Kg)
becomes the CP-odd eigenstate and |K ) the CP-even one. Considering the decay of a
neutral Kaon to a CP even final state represented by two pions or to a CP odd final state
combination of three pions one realises that under the assumption of CP conservation the
decays Kj, — 7m and Kg — mrm are forbidden. Since the ratio |¢/p| ~ 1 in the B—B and
K —K systems the phase dependent quantity € is small. Therefore, | K1) is “almost* a CP
odd eigenstate and |Kg) "almost* a CP even one. This is the reason for the big difference
in the lifetimes of the mass eigenstates. However, since € # 0 the mass eigentates |Kp) and
|Kg) can decay CP violating to two or three pion states, respectively. The CP violation in
mixing is described by the parameter
e — A(Kp — (7m)1=0)
A(Kg — (m7)1=0)

(4.34)

where I denotes the strong isospin. This quantity can be expressed entirely through the
mass difference AMg, Al' and ¢ which are physical observables. The result reads up to
corrections of O(¢?) [23,24]

2AM ,
ex=2 K el (4.35)
2 /(BN + (L1 )
with the phase ¢, of ex given by
AM
¢. = arctan AFKK ~ 43°. (4.36)
Expressing eq. (4.34) in terms of M, one finds
Il’IlMlg
=2 —= 4.37
6 =2 (Same +6x) (4.37)
where & is introduced as
1 Im[A[K° _

2 Re[A[K° — (77)—]]
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defined in the CKM phase convention with V,, V,4 real. Numerically, it has been found
£ =~ —1.7-107*|36|. Equation (4.36) implies

2AM
sin ¢, = K : (4.39)
V(AMg)? + (AT )?
and finally, inserting this result in eq. (4.35), we obtain
Im M ) ;
€ = (Wﬁg}; +§K) sin ¢, e'%. (4.40)

Because of the experimental observation 2 AMyg ~ AI'x the phase of e is very close to
45°. In fact, the measured value is ¢, = 43.52° £ 0.05° [37|. The impact of the ratio {x on
the result of e is of O(5%) |36]. With the result for the K —K transition amplitude given
in eq. (4.29) one finds [36]

et = Ce [|[Val* (1 = 5) e So(@e) + 1t So(we, ) — Tee e (4.41)
with the factor C, given by

G2 f2 M2, my ke B X272 |Vig |2
6v2 72 AMy

C. = (4.42)

where p, 77 are the Wolfenstein parameters introduced in eq. (4.4). The constant k. =
0.924+0.02 parametrises the suppression effect caused by £x. More details about the explicit
derivation of these results as well as on the meson mixing of neutral K mesons in general
can be found in [9,23,24,36] and references therein.

4.1.4. Main aspects on the mixing of neutral D mesons

The D—D mixing is a AC = 2 FCNC process. It is described by the same box diagrams
as in the case of meson mixing in the B or K sector, but, in contrast to the situation with
the mixing of neutral B and K mesons, the incoming and outgoing quarks are the up-type
quarks v and ¢ and the quarks involved in the loop are the ones of the down-type quark
sector. Because of the absence of a heavy quark in the loop as this is the case in B—B
and K —K mixing due to the top quark contribution, the GIM cancellation works much
more efficiently. The D— D transition amplitude in the SM is very small, and therefore,
highly sensitive to NP effects. NP contributions can be of the same order of magnitude
or even larger than the SM one which makes the mixing of neutral D mesons a very in-

teresting process regarding the indirect search of physics beyond the SM. However, the
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large long distance effects which have been mentioned in the analysis of the K —K mixing
appear in the D sector as well. Since these effects given by K, 7 intermediate states have
non-perturbative nature and cannot be calculated by analytical methods the distinguishing
of the SM contributions from the pure NP ones is hardly possible. The poor control over

the long distance contributions impairs an effective use of D—D mixing as a test of the SM.

The third family contribution which would be enhanced by the large mass my, is suppressed
by a very small CKM factor resulting in a relative box contribution of O(107%) and in a

correspondingly suppressed amount of CP violation in the SM. Therefore,

2 212
SM (ms — md)
with a GIM suppression ~ (m? —m?)/M3, and an additional suppression ~ (m? —m2)/m?

which comes from the fact that the external momentum of O(m..) is communicated to the
light quarks in the loops. Usually, in the description of D — D mixing in addition to the
phase ¢ defined in eq. (3.19) the physical quantities

2 M12 Flg
= — 4.44
T ) Y12 T ) ( )

T1o =

are introduced. The relation between these parameters and the experimentally measured

quantities
my —me  AMp r,-1I7 ATl
* T r > Y= 7or or (4.45)
is given by
) ztcos® ¢ + y*sin? ¢
Tig =

22 cos? ¢ — y2sin? ¢’

2 22 2 2

. (x* + y*)? cos® psin” ¢
sin = . 4.46
¢12 1 cos? ¢ + yisin? ¢ (4.46)

From the values of the D — D mixing parameters z, y, and ¢ obtained by the Heavy
Flavour Averaging Group (HFAG) [38| by fitting the present experimental data, we obtain
the numerical value of |Mis|. Expanding 15 given in eq. (4.46) in the presumably small
parameter ¢, we find

(l.2+y2) 2

e 8% + 0("). (4.47)
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Parameter lo 95% CL

T (0.98%93¢) - 1072 [0.46,1.44] - 1072
y (0.83 4+ 0.16) - 1072 [0.51,1.14] - 1072
) (—8.5°7700) [—22.1°,6.3°]

| M| (11.957373) ps~! [5.61,17.56] ps~*

AMp (2.3970:43) - 1072 ps~! | [1.12,3.51] - 1072 ps~!

AT'p (4.0440.07) - 1072 ps~! | [2.49,5.56] - 1072 ps~*

Table 4.2: The final results for the D— D mixing parameters | M|, AMp and AT'p ob-
tained from the parameters x, y and ¢ allowing for CP violation (HFAG) [38|. For the
determination of AMp and AT'p the D° mean life time 7po = (410.1 4+ 1.5) - 1073 ps [85]

has been used.

We calculate | M| using the D life time 7po = I';p = 410.1 - 1072 ps [85] and neglecting
the term proportional to ¢? whose contribution is of O(1%) and therefore much smaller
then the experimental accuracy. The result as well as the numerical values of the input
parameters are given in table (4.2). For more phenomenological details about the mixing
of neutral D mesons we refer to [39,40] and references therein.

In our numerical analysis of the flavour violating supersymmetric parameters we will calcu-
late the contributions of supersymmetric particles to box diagrams in case of D—D mixing.
Since the spectrum of the MSSM contains heavy particles the calculation can be performed
by neglecting the momenta of the external quarks. Unfortunately, this is not true in the SM
where the momenta of the incoming and outgoing quarks can be comparable with masses
of the light quarks in the loop and, therefore, have to be taken into account. Comparing
the pure supersymmetric result for |Mj,| with the experimentally obtained value given in
table (4.2) we can estimate to which extent the measured value of |Ms| can be explained
through the contribution from the MSSM.

4.2. The SUSY contributions to the meson mixing processes

If nature has chosen Supersymmetry as the right extension of the SM, box diagrams with
supersymmetric particles will be involved in meson mixing as well (see fig. 4.3). In particu-
lar, the Wilson coefficients corresponding to all the operators given in eq. (2.70) would be

different from zero in general. The Wilson coefficient CPYSY in eq. (4.1) can be written as



4.2 The SUSY contributions to the meson mixing processes 49

N— N

\ A

AN --.--

Figure 4.3: Feynman diagrams describing meson-antimeson oscillations in the MSSM. The
crossed diagrams (second row) are needed only if the fermion in the loop is a Majorana

particle.

a sum of the Wilson coefficients stemming from box diagrams where the FCNC transition

is mediated by supersymmetric particles:
CSVSY — of* 4 oX 4 07 4 0 4+ X (4.48)

The additional contributions arise from boxes with charged Higgs and up-type quarks
(C’Z-Hi), charginos and up-type squarks (Cfi), gluinos and down-type squarks (C’f), mixed
gluino, neutralino and down-type squarks (C’f’xo), and neutralinos and down-type squarks
(C’ZXO). The complete list of the Feynman rules for the MSSM vertices and their derivation
from the Lagrangian can be found in [41 43]. Note that for the derivation of the MSSM
Feynman rules different conventions are adopted in the literature. For the calculation of
the Wilson coefficients in the MSSM C?YSY in this work the Feynman rules given in the
appendix have been used. In following we present the convention which we have used in
our analysis of the MSSM with R-parity and softly broken SUSY.

The squark superfield matter multiplets contain scalar and fermionic superpartners given
by

QI: {( JI )L’ (dI )L}7 UcI: {(ﬂg%)*’ (ui)0}7 Dg: {(CZ{%)*, (di)c} (4.49)

In the SM flavour violation appears through the non-diagonal Yukawa matrices. The U(3) x
U(3) xU(3) global symmetry of the quark gauge sector allows the diagonalisation of the the

up and down Yukawa matrices by performing a rotation of the quark fields in the flavour
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space. For the diagonalisation of the two Yukawa matrices by a biunitary transformations
four unitary matrices are necessary but according to the [U(3)]3 symmetry of the quark
gauge sector only three matrices are available. This fact arises in the appearance of the
CKM matrix which contains all the flavour violation in the SM in the basis in which both
the up and down Yukawa matrices are diagonal. Applying the same transformations on
the superfields in the MSSM one obtains the so called Super-CKM (SCKM) basis. In the
SCKM basis the squark mass matrices still have off-diagonal entries. The unitary matrices

acting on the superfield to diagonalise the quark mass matrices are
Qi = Vol @i, Ul = ViU, D — Vi DY, (4.50)

After performing this transformations one obtains the following relation between the diag-

onal Yukawa and quark mass matrices

A V2 o U1 ¢

Py = ~2V,. g = L7 451
Vo =Y (4:51)

The mass mixing matrices for the up-type and down-type squarks are given by

M = (M) 11 +m2 — 2B (MZ — AME)L (M) Lr — pucot Bmy,
. (M)} — i cot fm, (M) re + 2 + 2252072 6in2 gy )
(4.52)
M (M3)pr +m2 — =SB (M2 +2M3)1 (M?) g — ptan fmyg
’ (MZ)] 5 — 1* tan Bmy (M) + m2 — <28 M2 sin? By

where Oy, is the Weinberg angle and the flavour changing entries are contained in the 3 x 3

matrices in the flavour space

(Mg = VomgVy,. (M) rr=Vemi Vi, (M{)rr = Vo,mdVy
(M3, = Vszévgz, (M%)RR:VDmZUV[T), (M%)LR:VleéV[T,. (4.53)

The hermiticity of the squark mass matrices implies M%LL = MgfLL, Mém = MC?;RL and
Mém = Mgm. Then, in order to have the squark mass matrices in diagonal form a second
redefinition of the up-type and down-type squark fields is necessary. We transform the

squark fields from the flavour-chirality basis to the mass eigenstates basis by the rotations

iy, = (Zh)*U, I, = (Z))*D*,

» . ~. . (4.54)
iy = (Z[T])(z—i-?ﬁ)kUk’ d% _ (ZTD)(Z+3)ka>
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where the index ¢ = 1,2,3 and k£ = 1,...,6. This relations define the unitary matrices
Zg € €6 which diagonalise the mass mixing matrices Mé Using the transformation

given in eq. (4.54) we obtain
(M2YP = zpM2 7Y, (ME)P = ZyMEZ], (4.55)

where (MZ)P and (M3)P are the diagonal up-type and down-type squark mass matrices.
In the MSSM there is a nontrivial mixing between the charged gauginos, the winos, and
the charged higgsinos as well as between the neutral gauginos, the bino and the photino,
and the neutral higgsinos. For this reason the charginos and neutralinos are the mass
eigentates obtained by the diagonalisation of the so called chargino and neutralino mass
mixing matrices. The charginos are two Dirac fermions )ZfQ whose masses are the two

eigenvalues of the chargino mass matrix:

M. 0 - M- 2M, N
W — 0t 2 V2Mwss )y (4.56)
0 MX;_L V2Myycg I

Since the chargino mixing matrix is not necessarily hermitian, it is diagonalised by a biuni-
tary transformation with the unitary matrices U, V € C?*2, The higgsino mass parameter
1 and the gaugino mass parameter My which appear in the soft SUSY breaking part of the
supersymmetric Lagrangian are free parameters of the model. In the interaction eigenstate
basis the charged higgsino components of the chargino fields couple to squarks and quarks
with the Yukawa couplings which are proportional to m,/My . Because of the smallness of
the quark masses in comparison to the mass of the W boson which is true for all quarks
except for the mass of the top quark the dominant contribution arises through the squark-
quark-wino weak interaction and through the squark-top-higgsino Yukawa interaction. All
other Yukawa couplings are negligible due to their proportionality to the mass of the cor-

responding light quark.

Neutralinos are four Majorana fermions x{ , with a symmetric mass matrix which is

diagonalised as

M 0 —Ccg Swm SgSwm
My, 0 1 8 Sw Mz 8Sw Mz
! ~ 0 Mg CgCy My —SgCw Mz ~
—CcgSwmz  CgCw Mg 0 —
O M)ZO
4 Sgswmyz  —SgCw My — 0
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where the angle (§ is defined through the ratio of the vacuum expectation values i.e.
B = arctan(v,/vq). In eq. (4.57) the abbreviations ¢z = cos 3, sz = sin 3, ¢y = cos Oy,
and sy = sinfy have been used as well. The matrix Zy is a unitary complex matrix,
Zy € C*4 The quantity tan 3 = v, /v, is a free parameter in the MSSM.

In the MSSM an additional contribution to the flavour changing processes can occur
through the charged Higgs bosons in the box diagrams. The reason for this fact is that the
Higgs sector of the MSSM is extended by an additional Higgs doublet. In the SM there are
two possibilities to write Lorentz-invariant fermion mass terms in the Lagrangian - these are
the so called Dirac and Majorana mass terms. Unfortunately, these terms are not invariant
under transformations according to the electroweak gauge group SU(2), xU(1)y. Including
such terms in the SM Lagrangian leads to an explicit breaking of the local SU(2), x U(1)y
symmetry of the SM Lagrangian density. Moreover, mass terms for the gauge fields are
not allowed by the gauge symmetry as well. However, in nature fermions and the gauge
bosons of the weak interaction are massive particles and the SM Lagrangian has to be
properly modified in order to describe these obvious experimental founds. The solution to
this problem is given by the spontaneous symmetry breaking of the SU(2), x U(1)y gauge
group to the electromagnetic gauge group U(1).,, by introducing of a scalar field, the so
called Higgs field. The Higgs field is a SU(2), dublet and has a specially chosen potential
such that its vacuum expectation value is different from zero. In this way one finds in the
Lagrangian of the SM mass terms for the gauge bosons proportional to the positive vacuum
expectation value of the Higgs field. The masses of the fermions arise through Yukawa-type
interaction between the left handed lepton and quark doublets, their right-handed singlet
partners and the Higgs field. In a special choice of the gauge, the so called unitary gauge
which is realised by performing a local SU(2) transformation on the Higgs doublet, three
of the four scalar fields in the Higgs doublet can be removed. These are the nonphysical
Pseudo-Goldstone bosons which appear by the spontaneous breaking of the electroweak
gauge symmetry to the electromagnetic gauge symmetry. The Pseudo-Goldstone bosons
become the third, longitudinal degree of freedom of the massive vector bosons after the
spontaneous symmetry breaking. One field remains, this is the SM Higgs field. However, in
the MSSM the situation is more complicated. The MSSM is an extension of the so called
two Higgs doublet models. That means, at least two Higgs doublets have to be introduced
in order to have gauge invariant mass terms of the fermions and gauge bosons in the su-

persymmetric Lagrangian. The introduction of two Higgs doublets is necessary because of
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a special property - the holomorphy - of the superpotential. The two Higgs doublets ensure
the cancellation of anomalies related to the Higgsinos in the model as well. We will not
go further into details on this topic and refer for a more comprehensive explanation of
the Higgs sector of the MSSM to [41,92 94| and references therein. In the MSSM the two
Higgs doublets comprise eight additional degrees of freedom. After spontaneous symmetry
breaking five of them appear as physical Higgs bosons. Three of the physical Higgses are

neutral particles while the remaining two carry an electric charge.

The charged Higgs bosons H;" and H, which affect the processes on which we focus in

this work are related to the initial Higgs fields by the transformation

%* ]—.’—
=7 . 4.57
( H? ) " ( Hy (457

1 v —
Ty= e | T (4.58)
2 2
\/ Uy T U Vg Uy

where v, and vy are the vacuum expectation values. With the ratio tanf = v, /v, the

The matrix Zy is given by

matrix Zg in eq. (4.58) can be written in a more convenient form

[ sinf8 —cosp
i = ( cos sinf3 ) ' (4:59)

Finally, the masses of the two physical charged Higgs scalars H* are given by
Mgli = My, +my, +myy, + 2|l (4.60)

where m%,u and m%d are soft terms for the corresponding Higgs doublets. The gaugino
masses M o are assumed real as well as the Higgs sector parameter p. In fact, if one allows
non-trivial phases in M; o, they are communicated to the gaugino diagonalisation matrices,
which in turn enter the Feynman rules for charginos and neutralinos. One would then have
new sources of CP violation. The same argument applies to the Higgs sector parameter .
The strong, electroweak and charged Higgs vertices involved in the box diagrams given in

fig. 4.3 can be found in the appendix.
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5. THE INCLUSIVE DECAY B — Xy

The inclusive radiative decay B — X, is a rare loop mediated process which involves the
third quark generation. Therefore, these transitions are very sensitive to NP contributions
and play a crucial role in the indirect searches for NP. The theoretical SM prediction is
known up to NNLO precision in QCD [44]. The branching ratio of the B — X, decay has
been experimentally measured by CLEO, BaBar and Belle collaborations [45-51|. Thus,
the comparison of the experimental data with the theoretical prediction by including the
supersymmetric contributions to the SM result is a powerful strategy for constraining the
parameter space of various extensions of the SM [53 55| and, in particular, the supersym-

metric parameter space.

5.1. B — Xy in the SM

The B — Xy transition is a |[AF| = 1 process which is governed by the so called magnetic
penguins shown in the Feynman diagram in fig. 5. In the SM where the b — s quark
transition is mediated by a W boson a crucial role plays the magnetic y-penguin. In the
loop the top quark contribution is the dominant one. The effective Hamiltonian in the SM
at the scale © = my is can be written as

AG R

8
Hop = W%:thzci(ﬂ)Qi(ﬂ)' (5.1)
i—1

To an excellent accuracy the relevant operators are given by

Q2 = 3y, Ppc” @y, Prb’,

em

Qr = 167TZ§%WFWPRba, (5.2)
g mb—OL 124 a

Qs = 1367r25 0, G T2 Pb’.

The contribution of the other operators is suppressed and can be neglected. ()5 is the dom-

inant current-current operator while the operators ()7 and Qg correspond to the magnetic
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Figure 5.1: |AF| = 1 penguin diagram relevant for the B — Xy process. In the SM
(in unitary gauge) up-type quarks and W bosons are involved in the loop. In the MSSM
additional contributions stemming from gluinos or neutralinos and down-type squarks,

charginos and up-type squarks and charged Higgs bosons and up-type quarks are present.

~v-penguin and to the magnetic gluon-penguin shown in fig. 5, respectively. The calculation
of the branching fraction Br(B — X v) in the SM is done by first evaluating the corre-
sponding Wilson coefficients at the higher scale y ~ My, m; by matching of the effective
theory result onto the one obtained in the full theory calculation. Furthermore, consid-
ering the operator mixing under renormalisation, the RG equations are derived in order
to perform an evolution of the Wilson coefficients down to the low energy scale p ~ my.
In the last step the on-shell B — X,y amplitudes are evaluated [44|. The obtained SM
value for the branching ratio of the inclusive B — X, process is given by Br(B — X v)
= (3.154+0.23) - 107%. The indicated error has been obtained by adding in quadrature the
non-perturbative (5%), parametric (3%), higher-order perturbative (3%), and the interpo-
lation ambiguity (3%) uncertainties. For more details about the calculation of the B — Xy
branching ratio at NLO we refer to |[52|. Details about the NNLO SM contribution can be
found in |44].

5.2. B — Xy in the MSSM

Considering the possible interactions and the particle content of the MSSM we find a new

contributions to the b — sv process. In particular, they stem from exchange of up-type
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quarks and a charged Higgs boson, of down-type squarks and a gluino or neutralino, and of
up-type squark and a chargino. The SUSY contributions are described by |[AB| = |AS| =1
effective magnetic and chromomagnetic operators as well as by new four quark opera-
tors. Considering operators up to dimension six allows the matching of the charged Higgs,
chargino and neutralino penguins onto the SM magnetic and chromomagnetic operators
Q7 and Qg given in eq. (5.2), and onto their counterparts

€mb_a

Q; = 62 O P Prb
m,
Q, = 9136 7T;’g%—,u,G;;WT;BPLbﬁ (5.3)

which are obtained from )7 and Qg by replacing Pr — Pp. In supersymmetric scenarios
which do not assume extremely large values for tan the contributions to the Wilson
coefficients corresponding to the operators given in eq. (5.3) from charged Higgs bosons
and charginos are small in comparison to C7; and Cyg and vanish in the limit of massless
strange quark. The neutralino contributions to all Wilson coefficients involve the same
elements of the down-type squark mass matrix as the gluino contribution. However, the
gluinos couple with the strong coupling constant gs while the neutralino vertices involve
the weak coupling constant g,. Thus, the gluino contribution which is proportional to g3
dominates the neutralino contribution which is proportional to g3 by far. In fact, compared
to the other contributions stemming from SUSY particles the neutralino contribution turns
out to be inessential |56].
The gluino contribution is described by the effective Hamiltonian [56]

Hip =Y Cog)Qigl) + > > Cli(mQi5(n) (5.4)

i i q=u,..b

The second term in eq. (5.4) includes four-quark scalar, vector and tensor operators Q‘ig.
At one loop level the scalar and tensor operators mix into the magnetic and chromomag-
netic operators of dimension six [57,58| and, therefore, have to be taken into account by
performing the calculation. However, the mixing mentioned above turns out to be numer-
ically small. Thus, the contribution of the operators Q‘ig can be neglected |[56|. The dipole
operators (Q; 5 in which the chirality flip is induced by the b-quark mass are given by

Q7b7§ = €G3 ,u) mb(:u) gaUuVFHVPRbaa
) (1)

Qg = €g3(p) M) 5%, F* PLb", (5.5)
sbg = 9g5(p)My(p) s, G TYs Prb”,
Q ) (1) 50, GL T P
QISb,g = gg’(,u) mb(:u) gaguuGguTgﬁPLbﬁ-
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There are also gluino-induced operators where the chiralitiy violation is signalled by the
charm quark mass. These operators are obtained from the ones given in eq. (5.5) by re-
placing (1) by m.(p). The operators where the chirality flip is induced by the gluino

mass read

Qry5 = egs(n) 50 P PLY", (5.6)
Qsig = 93(1) 50 G T Prb’,
Q55 = gg(M)EO‘OWGﬁ”T"ﬁPLbﬁ.

In our calculation we use the Wilson coefficients obtained in the model independent analysis
of B — Xyv based on a leading-log QCD calculation in the MSSM [56]. The Wilson
coefficients for all the supersymmetric contributions mentioned above can be found in the

appendix of [56].
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6. METHOD AND GENERAL FEATURES OF THE
ANALYSIS

In the past many analyses have been done in order to constrain off-diagonal elements of
the squark mass matrix. In the first studies |60, 62, 80| the framework of the so called
mass insertion approximation (MIA) |63] has been used. The main advantage of the mass
insertion method is given by the fact that the full diagonalisation of the sfermion mass
matrices is not necessary. It is enough to compute only ratios of the off-diagonal over
diagonal elements of the sfermion mass matrices in order to test the SUSY model under
consideration in the FCNC sector. Usually, the off-diagonal elements of the mass mixing
matrix are written as an expansion in off-diagonal mass insertions

§XY
Aij ~o 1

55T = (31Y), = — M= ; (M7, (6.1)

where AZ-XY are off-diagonal elements of the mass mixing matrices and the indices
q € {u, d} and X, Y € {L, R} denote the up-type and down-type mass mixing ma-
trix and the certain 3 x 3 blocks defined in eq. (4.53), respectively. Adopting the MIA the
mechanism of flavour violation mediated by soft SUSY breaking terms is linearised. With
this technique the results can be written in a more transparent and manageable form.
However, the MIA is valid only under the assumption that the off-diagonal entries in the
squark mass matrices are small compared to the diagonal ones. In this work we use results
in MIA only for the purpose of clear explanation and better understanding of general rela-
tions. The numerical analysis is performed by an exact diagonalisation of the squark mass

matrix.

In the next sections we first investigate analytically the correlation between the By — B,
and B,;— B, mixing processes in the general MSSM. Our aim is to create general relations
between the SUSY contributions to the meson mixing processes and to explore their impact

on the By— B, and B;— B, mixing phases. Then we concentrate on the main features of
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our numerical analysis which has been performed to constrain off-diagonal elements of the

up-type mass-mixing matrix, in particular the mass insertions 64> and §i5%.

6.1. General correlations between B,— B, and B;— B, mixing

In the SM we can write the B—B mixing transition amplitude neglecting the small charm-

quark contribution as
MM = CySol) (Vi Vig)? (6.2)

where we combine all the couplings and factors coming from non-perturbative QCD in the
constant C' and Sy(x) is the well-known Inami-Lim-function introduced in eq. (4.22). The
ratio of the B,— B, and B;— B, transition amplitudes is given by
sSM 0\ 2 2

i (T2) € ~ e ™ ~ ot 03
where R, = |Vig|/A|Vip| and € is the ratio defined in eq. (2.90). We neglect the small
By— B, mixing phase 23, = 2n\? + O(\*) originating from the phase of the CKM element
Vis. Equation (6.3) shows that in the SM the By— By transition amplitude is suppressed

roughly by a factor 40 compared with the B,— B, transition amplitude.
We define of the ratio of the NP contributions to the SM contribution

Ac = Mz
NP — q SM

(6.4)

where MEM and ML are understood as the pure SM result and the sum of the different
SUSY contributions i.e. originating from chargino box diagrams, gluino box diagrams etc.,

respectively. Thus, the NP contribution to M{, can be parametrised as |69]
1+ |ALp| efe = |A1] 5 (6.5)

The difference between the phase of the SM amplitude and the phase of the NP contribution

arises as ¢ p in eq. (6.5). From eq. (6.5 ) it follows

|AqNP| sin ¢IZIP

tan ¢} = . 6.6
9a |ALp| cos pp + 1 (6.6)
Expressing the NP phase as a function of the complex parameter A? we obtain
|A?| sin ¢}
tan ¢%p = A (6.7)

|A9] cos g — 17
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Figure 6.1: The absolute value and the phase of A? for different values of ¢3p starting from
the left with ¢fp = —180° and increasing it in steps of 10° to the right until ¢%, = 0°.

In fig. 6.1 we graphically show the relation between the absolute value and the phase of

A1 for different values of ¢¥p.

Through the chargino boxes there is a generic correlation between the NP contribution to
the B,— B, and By— B, mixing processes. This can be demonstrated in a simple way by
considering a simple chargino box diagram. If we allow a huge NP contribution to B,— B,
mixing coming from additional flavour violation caused from the mass insertion 0% the

chargino box diagram can be expressed as

+ )2

M:(lz2x ~ f)Zi (mf’ m§> mi’ m?)(ég?:LL)z (thch> (6'8)
with the loop function fg=(m7,m?, mg, m7) depending on the masses of the involved par-
ticles in the loop. The ratio of the NP contribution to the B,— B, and By— B, mixing

process reads now

Msfci 0\ 2 2
- (32) e-% (6.9
Mis cd
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and is of the same order as in the SM. With the definition in eq. (6.4) we obtain the relation

d)zi Sxi 6_2i5
ANP = ANP R2
t

(6.10)

which let us conclude that a big NP contribution in the B,— B, system implies a big NP
contribution in the By—B, system as well. However, the opposite statement is not true. If
we allow a large NP effect in the B;— By mixing induced through the mass insertion §i4/-

the NP contribution is given by

+ ” %\ 2
M112X ~ ff(i (m?>m?>mz>ml2)(513LL)2 (V;bvuq) (611)

Thus, one finds for the ratio of the NP contribution to the B,— B, and B;— B, mixing

process
MS )Zi VJS 2
o (32) e - e (612
Mis Vi
With this result we obtain
AT = ALY R2N28, (6.13)

Equation (6.13) demonstrates that a big NP effect in By— B, mixing does not imply an

effect of the same order in the B;— B, system as well.

The CKMfitter collaboration has performed an analysis in order to constrain the param-
eters A* and A? in the B,— B, and B;— B, meson systems |70]. The plot obtained for
By— By mixing is shown in fig. 6.2. We extract the allowed 68.3% CL, 95.45% CL and
99.73% CL regions for the NP phases ¢% and ¢% which can be found in table 6.1. While
the NP phase ¢4 cannot exceed —20.0° even for the 99.73% CL region for the NP phase
¢\ all negative values are allowed. This fact leads to the conclusion that the NP contri-
bution in the By— By system is much more constrained then the NP contribution to the
By— B, system. Since eq. (6.10) relates the SUSY contributions in the neutral B, and B,
meson systems assuming that the box diagrams are affected only by additional exchange
of charginos in the loops we can translate the 1o and 20 regions from the Im A — Re A?

plot to the corresponding one valid in the case of B; mesons. From eq. (6.10) it follows

ASXT =14 (Adii — 1) RZe*P. (6.14)
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Figure 6.2: Constraints on NP in By— By system from the CKMfitter collaboration [70].

We parametrise the 68.3% CL, 95.45% CL and 99.73% CL contours in the plot in fig. 6.2
and depict them according to eq. (6.14) in the original Im A® — Re A® plot obtained from
the CKMfitter collaboration. The result of this procedure is shown in fig. 6.3. The outer
black dashed line corresponds to the 99.73% CL region while the inner solid line represents
the 95.45% CL and cross-hatched area corresponds to the 68.3% CL region in fig. 6.2. One
can see that the 95.45% CL and the 99.73% CL regions obtained by translating the allowed
95.45% CL and the 99.73% CL regions in the Im A? — Re A? plot overlaps with the 99.73%
CL regions in the Im A® — Re A® plot. However, there is no intersection between the 68.3%
CL regions. The black hammed areas in fig. 6.3 show the region in which the NP in the
B,— B, mixing mixing process can be explained through a supersymmetric chargino con-
tribution. However, looking at fig. 6.3 we realise how small is that region. It covers only the
upper part of the 95.45% CL and 99.73% CL regions. We find that the maximal negative
value of the phase ¢% which can be caused by a chargino contribution is —20.4° at 99.73%
CL. For all points in the Im A® — Re A® plot which are outside the back hammed regions
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68.3% CL 95.45% CL
o5 | [-67.2°, —27.0°] U [-150.2°, —108.1°] | [-86.7°, —11.1°] U [~165.4°, —91.3°]
o4 [—16.1°, —5.9°] [—18.2°,0.0°]
99.73% CL
o [—182.0°,5.9°]
4 [4.6°, —20.0°]

Table 6.1: The allowed regions at 68.3% CL, 95.45% CL and 99.73% CL for the NP phases
¢% and ¢4 extracted from the analysis of the CKMfitter collaboration [70).

an additional source of flavour violation is necessary.

Until now we have not considered the gluino contribution. Because of the SU(2) gauge
symmetry in the left handed fermion sector in general the gluino contribution is present as
well. If we assume a very heavy gluino the gluino contribution becomes very small. That
is the case on which we focused in our discussion so far. In this case although the gluino
contribution is present it is highly suppressed and can be neglected. In following we will
concentrate on the situation when the gluino contribution affects the meson mixing pro-

cesses as well.

Since the quark-squark-gluino vertices do not involve CKM elements a non-diagonal entries
in the down-type squark mass matrix are the only source of flavour violation there. Because
of the SU(2) gauge symmetry of the left handed fermion fields the up-type and the down-

type squark mass matrices are related to each other by the equation
M2, =VIM2,, V. (6.15)

Assuming only the mass insertions d5%“" and §%/% to be different from zero and the mass
insertions 04LL and 64LF in the down sector which induce a gluino contribution to the
By— B, and B,— B, meson mixing processes are related to the mass insertions in the up

sector by the equations

5dLL Z(MSLL)ZZV ‘l‘ 6uLLV'th (5uLL) V'cbv + 5ULLV;bV (5uLL) V tz

(6.16)
5dLL Z(MELLL)“V _l_(;uLLV;bV* (5uLL) chb‘/;; +5uLL‘/th* (5uLL) Vub‘/t:

i
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Figure 6.3: Constraints on NP in B,— B, system from the CKMfitter collaboration [70)].

The black regions correspond to the 68.3% CL, 95.45% CL and 99.73% CL regions in
fig. 6.2 according to eq. (6.14).

If M2, is diagonal the flavour changing in the chargino box diagram is from MFV type. In
this case the dominant NP contribution comes from the gluino box diagrams. The gluino

mediated transition amplitudes can be written as
g 2 2 2\ (sd LL\2

where we combine all the constants and non-perturbative QCD factors in the constant
K and fg(mg, m?, m?) is the sum of the loop functions multiplied by the corresponding

factors. Taking into account the unitarity of the CKM matrix we obtain from eq. (6.16):

SILL . _\guLL g gy3 {Rte"ﬁ {(Mﬁu):i:‘a = (MLQLLL)11:| B {(Mgu)m = (MLQLLL)11:|}

M2 M2
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2 2 4 2 2
dLL _  sulLlL o [ (Mgpp)oe — (Mypp)ss | AXN (Mg pp)ee — (Myp)u
where we have used the Wolfenstein parametrisation of the CKM matrix given in eq. (4.4)
and M? is the average squark mass defined in eq. (6.1). Relating the gluino contributions
to the By and B, system to each other gives

ME 1’
Mf2g:§ 5‘213LL (6.19)

Inserting the expressions given in eq. (6.18) in eq. (6.19) by requiring the same mass for the
first two diagonal elements in the up-type squark mass matrix and expanding the result in
the Wolfenstein parameter A we obtain
My N
g e

2AN (Rye® — 1) (M2}, )55 — (M
( tLeL )(JWULL)?,?,~ (M) —1—(’)()\4) , (6.20)
033 M?

With this result considering the ratio of B;—B,; and B,—B, mixing amplitudes in the SM
given in eq. (6.3) we find

. _ e~ 2ip
A =AZE
NP — —NP 2

R

2 2 a2
. 2AN (Rie® — 1) (M )33 - (M p)n (6.21)
(55)* M?

Then, we obtain the following relation between the NP contribution in the By and By

sector stemming from chargino and gluino box diagrams:

-t ~ 6_2i5 svE sq 214)\2 i (Mi )33 - (Mi )11
PN QN T {AN}g + A T (Rpe™® — 1) Ll Ve LL (6.22)
23

If the diagonal elements of M?;; are equal or the difference (M2, ;)33 — (M2 ;)11 is small
and its contribution can be neglected we obtain the same relation as in case of the pure

chargino contribution given in eq. (6.10):

dg sg € 200
AL = AW i (6.23)
t
In this case eq. (6.22) leads to
dx* dg sxE 5§ e 2
Axp +Axp = <ANP + ANP) R2 (6.24)
t

From eq. (6.18) it follows that the mass insertion 04" induced through the SU(2) relation

eq. (6.15) and the mass insertion 6%* have the same imaginary part. Their real parts differ

in case of an up-type squark mass matrix with not equal diagonal elements.
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Considering eq. (6.17) we realise that ¢35 = 2 arg 64/ —20,. With ¢SN>§:i = 2arg 04t — 20,
and neglecting the small phase (5 we obtain from eq. (6.18)

S)Z:E
Sg 6uLL : ¢NP
tan ¢gp - 05" | sin (6.25)

O L A
|05 | cos =3~ + % (M7 11 )22 — (M7 )33

Equation (6.25) demonstrates the relation between the difference of the diagonal elements
of (M?,,) and the phases gbiff;i and ¢3%. If the diagonal elements of the up-type mass
mixing matrix are equal the NP phases of the chargino and gluino contributions are equal
as well.

Equation (6.24) shows that if the up-type squark mass matrix contains equal diagonal
elements it is not possible to explain the points outside the black hatched region in fig. 6.3
through the flavour violating effects induced by the mass insertion §%* only. In this case
eq. (6.14) holds for the chargino and gluino contribution separately as well as for their
sum and each point from the Im A? — Re A? plot is translated according to eq. (6.14) to
the Im A% — Re A® plot as it is shown for the the 68.3% CL, 95.45% CL and 99.73% CL
regions in fig. 6.3. However, looking at the general relation eq. (6.22) we see that the black
hatched region in the Im A®* — Re A® plane can be enlarged if there is a mass difference
between the diagonal elements of the up-type squark mass matrix. In this case a phase
difference between the gluino and chargino contribution appears as well (see eq. (6.25)). If
the mass difference between the diagonal elements of M2, ; is not sufficient to provide the
necessary amount of flavour violation in order to explain a certain point in fig. 6.3 the black
hatched region can be enlarged further by choosing in addition the mass insertion 6%%-L to
be non-zero. The LR sectors of the squark mass matrices are not related to each other as
this is the case for the LL sectors due to SU(2) gauge symmetry. Allowing matrix elements
of the LR sectors to contribute to the flavour violation in the meson mixing processes the
black hatched region could cover any desired region in Im A® — Re A® plot.

In our numerical analysis assuming a non diagonal M?;; with equal diagonal elements the
entries of the down-type squark mass matrix generated through the SU(2) relation have a

simple form
gzt = 0t + 0N,
S = AR+ O(N). (6.26)

As already discussed, in this case the phases of the mass insertions in the down-type squark

sector are to a very good approximation equal to the phases of the mass insertions in the
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5 0.4

Figure 6.4: Relation between the gluino mass and the mass insertion 0%'F for B, — B,
mixing. |83F| is limited to 0.52 by the choice of the minimal squark mass eigenstate
bigger than 350 GeV. ¢, = —30°, fp, = 0.228 GeV.

up-type squark sector and eq. (6.6) creates a relation between the gluino mass, the mass
insertion 044" and the phase ¢. In fig. 6.4 we show the surfaces in a 3-dimensional plot
for Abs(6%EE), Arg(04EE) and my on which this condition is satisfied in B, — B, mixing.
The plot contains not only the gluino contribution but the chargino and charged Higgs
contributions as well. All diagonal elements of M2, are set to (500 GeV)?. The range
of 0% is chosen such that the minimal squark mass eigenstate is bigger than 350 GeV.
Since ‘A;gp ulLL

depends on the gluino mass, the absolute value of the mass insertion |03
and on the squark masses one can obtain an upper limit on gluino mass m; from the

for a given value of the mass insertion and a given set of squark

maximal value of ‘Af\f{,

masses. We choose all squark masses to be equal and show the relation between ‘Aig,

and my for a certain squark mass and different |65%-"| in fig. A.3 and for a certain }AI‘;‘%

and different squark masses in fig. A.2 in the appendix. In all plots we see that the gluino
contribution vanishes for m; ~ 1.5m; where m; is the value of all diagonal elements in

the up-type squark mass matrix. The reason for this effect is the cancellation between the
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crossed and uncrossed box diagrams in fig. 4.3. This is an important issue which has not
been taken into account by most analyses, which have disregarded the electroweak SUSY
contributions, claiming that they are suppressed by the factor g3 /g5 in comparison to the
gluino contribution. However, from the plots shown in fig. A.2 and fig. A.3 we see that this
statement is true only for gluino masses smaller than the squark masses. In the opposite
case, the electroweak contributions can be dominant and their omission is not justified.
We will examine this topic in detail in the next chapter where we concentrate on the mass

splitting between left-handed squarks.

6.2. Constraints on the mass splitting of left-handed squarks

The squark mass matrices in the down sector and in the up sector provide with their off-
diagonal elements additional sources of flavour violation. In order to satisfy the bounds
from FCNCs it has been noted already in very early analyses of the MSSM that a super
GIM mechanism is necessary [76]. If the up-type squark mass matrix of the left-handed
squarks contains big off-diagonal elements a flavour off-diagonal entries of the same order
are generated through the SU(2) relation eq. (6.15) in the down-type squark mass ma-
trix. The same statement is true for the reversed situation assuming down-type squark LL
mass mixing matrix containing big off-diagonal elements. As we have shown in the previ-
ous section the off-diagonal matrix elements induced through the SU(2) gauge symmetry
in the left handed fermion sector are proportional to the mass difference between the diag-
onal elements in the squark mass matrices. Therefore, in order to avoid off-diagonal entries
which would spoil the experimental bounds on observables involving FCNC effects usually
the left-handed squarks are assumed to be with degenerate masses. We have examined the
mass splitting between the left-handed squarks by imposing constraints from D—D and
K — K mixing . In following we explain the main features of our approach. The complete
analysis with all the results for different values of the relevant MSSM parameters can be
found in [77].

The D—D and K—K mixing are FCNC processes which are highly sensitive to transitions
between the first two squark generations in the up-type and down-type squark sector.
The neutral Kaon system probes NP in the down-type squark sector while the mixing of
neutral D mesons is affected by flavour changing parameters in the up-type squark sector.

Considering the SUSY contributions to the D—D and K —K mixing processes we can
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place constraints on the involved flavour changing SUSY parameters.

The K — K mass difference AMy and the indirect CP violation parameter ex are both
small and in agreement with their SM predictions. In the SM the K —K transition ampli-
tude is suppressed due to the rather precise GIM mechanism and the additional suppres-
sion of the top quark contribution by small CKM factors. Therefore, the meson mixing
in the Kaon system is appropriate for testing NP models and obtaining bounds on NP
parameters especially in the MSSM. This statement is true for the mixing of neutral D
mesons as well. D—D mixing was experimentally discovered in 2007 by the BaBar |66] and
Belle |67, 68| collaborations. Short-distance SM effects are strongly CKM suppressed and
the long-distance contributions cannot be calculated perturbatively. Therefore, conserva-
tive estimates assume for the SM contribution a range up to the absolute measured value
of the mass difference. However, due to the small measured mass difference D—D mixing
still limits NP contributions in a stringent way. Furthermore, a CP phase in the neutral D

system can directly be attributed to NP.

In the most analysis which have been performed in order to constrain MSSM parameters
the neutralino and chargino contributions to the box digrams shown in fig. 4.3 have been
neglected |62,79-84|. The main argument for considering only the gluino contribution is the
smallness of the weak coupling constant which is involved in the chargino and neutralino
vertices in comparison with the strong coupling constant. In fact, the contribution to the
box diagrams due to the weak interaction is suppressed by a factor g3/g3 compared to
the gluino contribution. However, the off-diagonal elements in the LL block of the squark
mass matrices cause an enhancement of the flavour changing effects induced by the quark-
squark-chargino and quark-squark-neutralino vertices. Moreover, for certain configuration
of the MSSM parameters, especially if the gluino is heavier then the squarks, the gluino
contribution can be suppressed due to the cancellation between the crossed and uncrossed
box diagrams. This effect cannot occur in box diagrams involving charginos because they
are Dirac fermions and the crossed box diagrams are not present. Because of the reasons
mentioned above, we can conclude that the neglecting of the electroweak contributions is
a good approximation only for light gluinos and cannot be justified in regions where the

gluinos are heavier than the squarks.

In our analysis we consider the strong as well as the electroweak SUSY contributions to
the K —K and D—D mixing processes in the general MSSM. In particular, we calculate

the gluino, gluino-neutralino, neutralino and chargino contributions. Our aim is to obtain
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constraints on the mass-splitting between the first two generations of left-handed squarks.
As already discussed in the previous section the SU(2) gauge symmetry of the left-handed
fermion sector creates a relation between the up-type and down-type squark mass matrices,
in particular M?2,, = VM2, V1.

Both squark mass matrices can be simultaneously diagonal only if they are proportional to
the unit matrix. This is realised in the naive minimal flavour violating MSSM. In case one of
the squark mass matrices does not contain only equal diagonal elements, the SU(2) relation
eq. (6.15) generates off-diagonal elements in the other one. These entries are proportional
to the off-diagonal elements in the squark mass matrix on which the CKM rotation is
performed and on the difference between the diagonal elements. In this analysis we are
interested in the mass insertions 6% and 6%“* which cause flavour violation between the
first two generations in the up-type and in the down-type squark sector, respectively, and
therefore can sizeably affect the D—D and K —K mixing processes. Assuming a diagonal
down-type squark mass matrix with non-degenerate diagonal elements, we obtain for the

mass insertion §%5“F from the SU(2) relation

(M7pp)2 — (M7 )
Mz

(6.27)

M? — (M?
Surl = v, v [ ( dLL)33M2( dLL)11:| .

| v

In the opposite case of a diagonal up-type squark mass matrix the mass insertion §¢1*

induced through the SU(2) relation is given by

c[(MZ )2 — (M2 )0 (M2 )ss —
5(112LL — ‘/cs o [ LL M2 LL + ‘/ts ' LL M2

(MiLL)”} . (6.28)

The CKM matrix elements in eq. (6.27) and eq. (6.28) can be expressed through the
parameters A, A, p and 7 of the Wolfenstein parametrisation eq. (4.4). We find

u NN [(MZ )22 — (M3 )n
Sl =\ (1 — ?) { aLL = aLL } +0 (N, (6.29)
respectively
NN (M pp)ee — (M2 pn
SUFE — ) (1 — 7) { LL — LL } +0(N). (6.30)

The generated mass insertions mostly depend on the mass difference between the first two
generations in the up or down sector and differ from each other only by their overall sign.
If we choose the squark mass matrices to be proportional to the unit matrix we find that

all MSSM Wilson coefficients are complex numbers with negligible phase: the imaginary
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Figure 6.5: Size of the real part of the Wilson coefficients of the different SUSY contributions
to the D—D or K—K mixing process normalised to the chargino contribution. CYVSY is

the sum of all considered contributions from SUSY particles. Plots for squark masses of
1000 GeV can be found in [77].

part is several orders of magnitude smaller then the real part for large regions of the MSSM
parameter space. In fig. 6.5 we show the real part of the SUSY Wilson-Coefficients Cf‘i,
C’f‘o, 9, C{}XO contributing to the K —K or D— D mixing process as a function of the
gluino mass. All Wilson coefficients are normalised to C’{Zi. For light gluino masses the
gluino contribution dominates over the other ones by far. However, C{’ decreases fast with
increasing gluino mass. For heavy gluino masses the most important contribution originates
always from chargino boxes. Further, we notice that for some configuration of the MSSM
parameters, i.e. in case of heavy gluino and light squark masses around and below 500 GeV,
and big values of M, around 400 GeV and more, the mixed gluino-neutralino contribution
becomes the second dominant one after the chargino contribution. In almost all regions
of the MSSM parameter space the contribution to the FCNC meson mixing process due
to the neutralino-neutralino boxes is negligible compared to the ones of the other SUSY

particles involved in the box diagrams.

In recent analyses |79,84] NP has been constrained by requiring that the NP contribution to
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the mass difference of neutral Kaons and D mesons has to be smaller then the corresponding
experimental values AMy /My = (7.014+0.01)107% |85] and AMp/Mp = (8.6+2.1)1071
[86]. CP violation in mixing stemming from NP phenomena is restricted through the pa-
rameter et < 0.6¢" [79]. Thus, the following upper bounds on the Wilson coefficients
CE and CP have been obtained |79]:

A
K| < 10-13 NP
ICf| < 8.8-10 (Ge\/) :
A 2
icP| < 59-10—13<G2{’/) : (6.31)
A 2
Ky < 10-15 NP
I (CX) < 3310 (Gev) ,
A 2
D < 0- -13 NP
n (CP) < 1.0-10 (Gev)

where Ayp is the scale of NP. We use the constraints in eq. (6.31) in order to obtain
constraints on the mass splitting between the first two generations of left handed down-
type squarks from K — K mixing and on left handed up-type squarks from the meson
mixing in the neutral D meson system.

We first analyse the two extreme cases with diagonal up-type squark or diagonal down-
type squark mass matrix and set (M2 | )ag = (M2} )33, respectively (M2, )ae = (M2 )33.
The constraints obtained for these two scenarios correspond to the green and red area in
fig. 6.6 where we show the gluino mass and the squark mass of the first generation in a
two dimensional region plot. The plot shows that large regions in the MSSM parameter
space with non-degenerate squarks are allowed from K —K and D— D mixing . While
the red and green regions correspond to completely alignment either in the up sector or
in the down sector either by choosing M2, diagonal and obtaining the constraints from
the Kaon system or by requiring a diagonal form of M?,, and obtaining the constraints
from D — D mixing , the yellow region describing the maximally allowed mass splitting
is obtained in case of intermediate alignment of the up-type and down-type squark mass
matrices in the up and down sector. In this case neither M2, nor M?,, is diagonal.
Following the approach in |[79] we perform a rotation of the diagonal squark mass matrices
by the matrix 79|

cosf; sinf; O
Viy=1 —sinf; cosb; 0 |. (6.32)
0 0 1
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Figure 6.6: Allowed regions in the (mg,, mg)-plane for mg, = mg, = 500 GeV and M, =
200 GeV, 400 GeV according to eq. (6.31). The green region is the allowed range assuming
a diagonal up squark mass matrix. The red region is obtained in case of diagonal down
squark mass matrix. The yellow (lightest) area corresponds to the maximally allowed mass
splitting assuming intermediate alignment of the squark mass matrices in the up and down
LL squark sector. The blue (darkest) area is the minimal region allowed for mass splitting
between the left-handed squarks corresponding to a scenario with equal diagonal entries

in the down squark mass matrix and an off-diagonal element carrying a maximal phase.
Plots for squark masses of 1000 GeV can be found in [77].

The angle 6, is defined through

K
exp

CD

sin 20,
tan 20, = . (6.33)

ck
1+ /|

exp

cos 20,

where 6, denotes the Cabibbo angle. With the numerical constraints given in eq. (6.31) one
finds inserting the maximal values of |C{| and |CP| in eq. (6.33) 6, = 6.9°. Departing from
the exact alignment of the LL squark mass matrices either in the up or in the down sector
through the rotation by the matrix Vj; additional real off-diagonal elements are generated.
Looking at the plots in fig. 6.6 one realises that a lot of points in the MSSM parameter

space can be found which allow for an even larger mass splitting compared to the cases with
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diagonal up-type or down-type squark mass matrix. For a proper value of that off-diagonal
elements which in our case of study is given by choosing a value for the angle 8; = 6.9° in
Vy the allowed mass splitting can be maximised [79].

The blue region in fig. 6.6 shows the minimal region for mass splitting between the left-
handed squarks obtained under the assumption that the down squark mass matrix is pro-
portional to the unit matrix and contains an imaginary off-diagonal element carrying a
complex phase such that the imaginary part of the Wilson coefficient Cf is maximal. The
imaginary matrix element of M3, is an additional source of CP violation in the Kaon
system. Using the CP violation parameter ex as a constraint, i.e. the constraint on the
imaginary part of the Wilson coefficient Cf given in eq. (6.31) we obtain the most stringent
bound on the mass splitting between the left-handed squarks of the first two generations

with the maximal amount of CP violation stemming from NP.

Our analysis on the mass splitting between the first two generations of left-handed squarks
shows that there are large regions in the MSSM parameter space allowed from K—K and D—
D meson mixing processes where the squarks are not degenerate and for certain scenarios
even a large mass splitting of 100% and more is possible. In fact, the most benchmark
analysis of the SUSY parameters are performed under the assumption of degenerate squark
masses [87,88|. However, in case of different diagonal elements of the mass mixing matrices
interesting consequences on the branching ratios can occur [89]. The analysis of the K—K
and D—D mixing processes shows that the up-type and down-type squark mass matrices

do not need to be necessarily proportional to the unit matrix at some high scale.
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7. NUMERICAL ANALYSIS OF 64" AND §4tt

In this chapter we describe the numerical analysis which has been performed in order to
constrain the off-diagonal elements 6% % M? and 64 2 M? of the up-type squark mass ma-
trix. We start with an overview of the main features of the standart analyses of this type.
Further, we explain our approach to place bounds on the mass insertions involved in the

FCNC processes studied in this work.

As already mentioned at the beginning of Ch. 6, in the past many analyses have been
performed in order to constrain off-diagonal elements of the squark mass matrix. The first
studies have used the mass insertion approximation (see Ch. 6) while in more recent pa-
pers the up-type or down-type squark mass matrices have been fully diagonalised. In order
to obtain the most conservative bounds on mass insertions it has been assumed that the
flavour changing processes are induced by one mass insertion only. The bounds on the
mass insertions are extracted by comparison with the experimental results imposing that
the quantities which are calculated taking into account the SUSY contribution to the cer-
tain process under study do not exceed the corresponding measured values. In order to
perform a test of different SUSY models and to constrain different off-diagonal entries in
the squark mass matrices the analyses have been extended and have become more complex
and extensive. In previous works on this topic the main focus has been set on |AF| = 2
meson mixing processes like K — K mixing , B— B mixing and AF = 1 processes like
B — Xy, B — XTI, l; — ljy as well as on the CP constraints (see i.e. [71-73], [74]
and references therein). Recently, also |AF| = 0 processes, in particular the electric dipole
moments (EDMs) of quarks and leptons and the anomalous magnetic moment of the muon
have been analysed using scatter plot methods |74|. Since the SM predicts very small val-
ues for the EDMs they are extremely sensitive to NP contributions. Although the EDMs
arise as a result of flavour conserving processes they can be generated by two |AF| = 1
transitions. Assuming that SUSY particles are involved in these flavour violating |[AF| =1

transitions it is possible to place constraints on the mass insertions. In the most recent
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analysis |74| the usually considered set of processes has been extended by rare B decays,
D — D mixing and time dependent CP asymmetries. By including the full set of SUSY
particles which can contribute to the FCNC processes, the charged Higgs, the gluino, the
chargino and the neutralino, all theoretically relevant one loop contributions have been
taken into account. In |[74] bounds on mass insertions are determined in the context of
different SUSY models such as the MSSM with minimal flavour violation where the flavour
violation even beyond the SM is described by the CKM matrix, a flavour blind MSSM,

SUSY models based on abelian and non-abelian flavour symmetries.

Performing an updated analysis of the bounds on the flavour violating terms in the SUSY
soft sector in the general MSSM is emphasised as one of the novelties in the most recent
work on this subject [74]. The theoretical treatment of the quantities under study is done
indeed in the context of the general MSSM. However, for the numerical analysis a spectrum
of the so-called constrained MSSM (CMSSM) is assumed. In fact, among various possi-
ble sets of boundary conditions which can be imposed on the multidimensional parameter
space of the MSSM by far the most popular choice is the CMSSM. In this model at the
GUT scale all the sleptons, squarks and Higgs bosons have a common scalar mass my,
all the gauginos unify at the common gaugino mass M, /5, and so all the tri-linear terms
assume a common tri-linear mass parameter Ay. In addition, at the electroweak scale one
selects the ratio of Higgs vacuum expectation values tan 3 and sign (u), where p is the

higgsino mass parameter of the superpotential.

The aim of our numerical analysis is to obtain constraints on the mass insertions 5%,

1 = 1,2 of the up-type squark mass matrix in the general MSSM. We focus on generic
relations which are mostly independent on boundary conditions. Such a physical relation
stems from chargino boxes which correlate B;—B,; mixing and B;—B, mixing through the
CKM elements involved in the meson mixing processes. Another very important theoretical
issue is the relation between the left-handed up-type squark mass matrix and the left-
handed down-type one M?,, = VM32,, VT due to SU(2) gauge symmetry in the left
handed fermion sector. Since these mass matrices are not independent the only way to
avoid flavour off-diagonal mass insertions in the up and in the down sector simultaneously
is to choose M3 or M? proportional to the unit matrix. This is realised in the naive minimal
flavour violating MSSM. In a more general definition of MFV [64,65] flavour violation due

to NP is postulated to stem solely from the Yukawa sector resulting in FCNC transitions
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(which can now also be mediated by gluinos and neutralinos) proportional to products of
CKM elements and Yukawa couplings. In our approach we assume M2, ; containing flavour
changing non-diagonal entries and calculate the elements of M3, ; using the SU(2) relation.
In addition, we take into account the numerical relation between the B,— B, mixing and
By—B, mixing transition due to ratio of the decay constants and the bag parameters in the
B, and By systems. In almost all previous analyses the B,—B, mixing and B;—B,; mixing
were treated independently from each other. However, these two processes are related to
each other through the ratio £ defined in eq. (2.90). In order to obtain the most conservative
bounds on mass insertions we assume that the flavour changing processes are induced by
one mass insertion only. The bounds on the mass insertions are extracted by comparison
with the experimental results imposing that the quantities which are calculated taking
into account the SUSY contribution to the certain process under study do not exceed
their measured values. In the numerical analysis we consider the chargino, gluino and
the charged Higgs contribution to the box diagrams. The box diagrams involving these
particles dominate over the ones with a neutralino running in the loop by far. For this
reason the neutralino contribution has been neglected in the numerical calculations. Since
the box diagrams with charged Higgses do no involve squarks their contribution to the
FCNC process of meson-antimeson mixing is not proportional to off-diagonal elements of
the squark mass matrix. By exchanging one of the two or both W bosons in the SM box
diagrams by a charged Higgs boson the additional contribution to the meson-antimeson
decay amplitude depend only on two MSSM parameters, the mass of the charged Higgs
boson my+ and tan (3. For tan3 < 7 the charged Higgs contributions are positive for
all allowed values of the charged Higgs mass [59]. They reach small negative values for
tan = 10 for very light Higgs bosons (see i.e. Ch. 5.2, iv, fig. 7 in [59]). Therefore, the
meson-antimeson transition mediated by H* summarised in the Wilson coefficients CH*
appears as a small constant shift of the sum of the other Wilson coefficients which is
given by the choice of the MSSM parameters my+ and tan 3. Yet through the resulting
shift in the observable quantities the charged Higgs contribution indirectly influences the
flavour changing parameters under study. Further, we calculate with the obtained values
of 0423 and 613 the CP violating parameter |ex| which is used as an additional constraint
on the studied mass insertions. The constraint from the CP violation in the mixing of
neutral Kaons has not been considered by many analyses in the past. However, the value
of the non-perturbative parameter By is known from recent lattice calculations with a

good enough precision such that |ex| becomes an important quantity for NP searches.
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Further, we examine considering the allowed values for the mass insertions 647* and 4%}

from B, — B, and B;— B, mixing whether the branching ratio Br(B — X,y) which is
very sensitive to NP effects satisfies its experimental bounds. In addition, we are using the

obtained values for 6¢23 and §%13 for the calculation of the D—D transition amplitude. Since

the D—D transition amplitude is proportional to the product §¢#3§%13 we tested whether
it is possible to obtain an additional constraint on the product of the mass insertions we

are studying from the D—D system.

7.1. The calculation procedure

In the calculation procedure we first investigate the case in which the SM calculation sat-
isfies the experimental observables inside their 20 bounds. We take the values of all the
input quantities to be in their 20 experimental regions such that the SM is not experi-
mentally excluded up to 20 for all observables under study. In this case NP contribution
to the calculated quantities is necessary only if their theoretical value has to be equal to
a certain value i.e. in the 1o region, in particular, the central value. The opposite scenario
which we investigate under the assumption that the SM is maximally excluded allows us
to obtain the maximum amount of NP contribution which is needed in order to satisfy the
requirement that the studied observables do not exceed their 20 experimental bounds. In
the maximum NP regime we calculate the entries of the CKM matrix using the values of
|Vep| and |V,,| obtained from inclusive semileptonic B decays. In these processes the quark
transition b — ¢l respectively b — ul1y, is realised. Determinations of | V| from inclusive
decays are currently below 2% relative uncertainty [75]. At present, the inclusive decays
provide the most precise determination of |V,,|. Unfortunately, the measurement of the
total decay rate of B — X,l7; decay is a very challenging task for experimentalists due
to the large background from CKM favoured B — X, 7 transitions. Taking into account
the uncertainty in my, as well, the total uncertainty on |V,;| is at the 10% level [75]. The

maximal value of the angle § corresponds to a = 7/2. Thus, we obtain (cf. fig. 4.1)
Bmax = arcsin Ry, (7.1)

where the side of the unitarity triangle Ry is given by
A2\ 1| Vi
Ry=11—— )~ .
' ( 2 ) A Ve
With the numerical values V1 = (4.12 4+ 0.43) - 1073 and V<! = (41.6 £ 0.6) - 1073 we

find the maximal value (., = 28.34° using the upper and lower 1o bounds on Vigd and

(7.2)
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Vine respectively.
We consider the processes of By—B,; mixing, B,—B, mixing, K—K mixing, D—D mixing
as well as the inclusive decay B — X,v. For all these transitions we calculate the SUSY

contributions from the charged Higgses, gluinos and charginos in the loop diagrams.

7.2. The logical structure of the program

For the extraction of the mass insertions 0%}* we have used the procedure which logical
structure is shown as a flowchart in fig. A.2. In the following we describe the routine. The
By— B, and B;— B, transition amplitudes M3,, M, the K —K CP-violating parameter
exc as well as the B — X,y Wilson coefficients Cy, C, Cg and Cy are calculated at previous
stages of the program and depend now only on the unknown variables §%;* and 6473, The
transition amplitudes M7, and M, are functions of the B, and By decay constants fg_,

respectively fp., as well. We start with B, — B, mixing and our first goal is the deter-

mination of the allowed values for §¥%3 by scanning over its real and imaginary part and
the extraction of the corresponding allowed mass insertion %1% from the B;— B, mixing

process. For this purpose the squark mass eigenvalues are calculated for each value of §%23

during the scanning process assuming first §% 13 = 0. For the following calculation we con-
sider only points in the (Red%#3, Tm 6¥#3)-plane for which the numerically smallest squark
mass eigenstate is bigger then a certain lower bound which has been chosen to be 350 GeV.
When such a point is found during the scanning process it is inserted into the B, — B,
mass difference AM. Requiring AM; to be equal to the mean value of the experimentally
measured mass difference AMS™P = 17.77 ps~! we find the value of the B, decay constant
fB.. In case the obtained fp, satisfies the allowed region 208 MeV < fp < 248 MeV (see
table 4.1) the procedure continues with the calculation of the NP phase ¢%. Further, we
require the NP phase ¢ to be inside of the 20 range extracted from the analysis of the
CKMfitter group (see table 6.1). In the next step, the decay constant fp, is determined
using the ratio between the decay constants in the By and B, systems given in eq. (2.91)
which is known from lattice calculations with a precision up to 4%. Having inserted the
found value of fp, in the B,—B, mass difference, the mass insertion §%13 remains the only
unknown parameter in the By— B, transition amplitude M¢%. Then, taking into account
the SM B;— By transition amplitude M1?5M as well as the measured B;— B, mass dif-

ference AM;™ and mixing phase 23°® the matrix element §¥}?® is calculated by requiring
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the theoretical value of the B;— B, transition amplitude to be equal to the experimental
one. Since the mass insertion §%1% is a complex quantity, the calculation of its absolute
value and phase is performed in an iterative way by starting with a proper value for the
phase and solving the equation for the absolute value and then inserting the latter again
in M{iQSM and extracting the phase once more. This iterative procedure is repeated many
times until the calculated values for the absolute value and the phase of 6% are stable.
After the determination of §%1% it is inserted in the up-type mass mixing matrix which is
diagonalised and the check whether the smallest squark mass eigenstate is bigger than the
lower bound of 350 GeV has to be passed again. If this is the case the transition amplitude
M, is calculated by inserting the obtained value of 6%} once more in order to be ensured
that the equation M% = M%™ indeed holds. This check is the last confirmation that
the mass insertion §%13 has been correctly calculated. Then, the whole procedure can be
repeated iteratively by using the obtained value of 6%} as an input in AM, together with
6423, The decay constant fp, is determined from the new value of AM, and the procedure
continues with the further steps described above. After a certain number of iterations is
successfully completed the numerical values of the quantities ex, Br(B — X v) and ‘M@

is calculated with the extracted values of 0423 and §%}3.

In order to ensure that the routine described above will work for different scenarios and
choices of the MSSM input parameters a lot of additional subroutines and checks have been
included in the numerical procedure which logical structure has been explained above. In
particular, possible divergences in case of equal eigenstates of the squark mass matrices
have to be avoided. For special choices of the gluino mass and the mass of the charged Higgs
bosons, such that they become accidentally very similar to squark mass eigenstates during
the scan over the real and imaginary part of the mass insertion %23, certain loop functions
can diverge as well. In order to ensure the stability of the program it has been necessary
to distinguish between several subcases. The analytical diagonalisation of the squark mass
mixing turned out to be a difficult and time consuming task for the software Mathematica
which has been used in the calculation procedure. In particular, after applying the SU(2)
relation in eq. (6.15) to obtain the entries of the down-type squark mass matrix from those
of the up-type squark mass matrix its elements become a complex polynomial function of
the mass insertions 6¥#% and 6%}3. From a mathematical point of view the diagonalisation
of a complex unitary matrix fails, if its determinant vanishes which means that the inverse

matrix does not exist. It turned out that even in the case of a complex unitary 3 x 3
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matrix as an input the calculation of the eigenvectors is not possible with the standard
tools of Mathematica in case of matrix elements which are complex polynomial functions
of one variable. In our case of study the problem has been easily solved because of the
special kind of the transformation defined by the SU(2) relation eq. (6.15), namely, it is an
unitary transformation. According to the Sylvester’s theorem (which is a special case of the
lemma on matrix determinants) lemma the up-type and down-type squark mass matrix
have the same characteristic polynomial and therefore the same eigenvalues as well. The
eigenvectors are related to each other through the CKM matrix. With the definitions in
eq. (4.55) we find

(ME)” = (MZ)°,  Zp=ZyV. (7.3)

However, for obtaining the eigenvectors of a general complex matrix which elements are
not given as explicit numbers but as complex polynomial functions the standard tools of
the software Mathematica cannot be applied in general.

For reason of clarity and a better understanding of the main logic of our procedure for nu-
merical determination of the mass insertions, the additional checks and subroutines which
have been included in order to improve the routine concerning the speed, the maintenance
of different problems with divergences occurring in special cases and ensuring the correct-

ness of the numerical results have not been explicitly shown on the flowchart in fig. A.2.

7.3. Results of the numerical analysis

The determination of the mass insertions 6% and §%;® in the numerical analysis is based
on the correlation between the B,—B, and By—B,; mixing processes. Then, we place addi-
tional constraints on these parameters considering the other processes which involve these
off-diagonal elements of the up-type squark mass matrix, in particular, the CP violation
parameter €, the branching ratio Br(B — X,v) and the D—D transition amplitude }MIDQ .
Taking into account the experimental bounds on these quantities we investigate which val-
ues of the mass insertions are excluded from the processes mentioned above even if they
are allowed from B—B mixing. This analysis is performed for the region of the (p,7)-plane
compatible with the SM as well as in scenarios in which the NP contribution is maximal.
The results are shown as plots of all the combinations of the real part and imaginary part
of the mass insertions §%#% and §%?3 in fig. A.5 in the appendix. For the figures we use the

following setup of supersymmetric parameters: My = 500 GeV, p = 200 GeV, tan 3 = 7,
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my+ = 500 GeV, mz = 500 GeV, all diagonal elements in the up-squark mass matrix are

set to 500 GeV as well. In following we will comment on the results shown in the plots.

We plot the absolute value of the D—D transition amplitude }M@} as a function of the
absolute value of the mass insertion d%“" in fig. A.2. The plot shows that in our scenario
with two-step flavour transition é;, — f; — @, not even the lower 20 experimental bound
of the D—D transition amplitude can be reached. In order to explain the D—D mixing
amplitude as a pure supersymmetric effect the mass insertion %5 and/or additional mass
insertion in the LR sector would be necessary. As one can see on the plot in fig. A.2 this
conclusion is true in the maximal NP regime as well.

In fig. A.5 we show the plots for all the combinations of the real part and imaginary part of
the mass insertions 0423 and §*2% in the SM regime. These simulations have been performed
with a CKM elements obtained from a point in (p,7)-plane such that all observables are
compatible with the SM in their 20 regions. The plots show the regions allowed from
lex| and Br(B — Xyv) with different colours. The points for which the 20 regions of
these parameters are not violated lie within the intervals —0.01 < Re (6%}3) < 0.025 and
—0.03 < Im (6%}?) < 0.01. These regions correspond to —0.08 < Re (§¥2%) < 0.180 and
—0.325 < Im (6¥7*) < 0.125. In the maximal NP regime we use the CKM matrix elements
Vi and V,, determined from inclusive B decays. This leads to an increase of the angle 3
of the unitarity triangle. In addition, we decrease the experimental value P to its lower
20 bound in order to create a bigger tension with the SM. The plots obtained in this way
in the maximal NP regime are shown in fig. A.7.

In addition, we show in fig. A.2 the maximal value of the B,— B, mixing phase ¢% corre-
sponding to a certain allowed value of the mass insertion % " for different gluino masses
in the maximum NP regime. From this plot we can conclude that in case of small gluino
masses when the gluino contribution to the B, — B, mixing becomes big the value of the
negative mixing phase increases. The reason for this is that the gluino contribution directly
involves the phase of the mass insertion 6%-L (see i.e. eqs. (6.17) and (6.26)). The mini-
mum of the curve arises due to cancellation between the crossed and uncrossed gluino box
diagrams. This fact has been discussed previously in Ch. 6.1 and illustrated in fig. A.2 and

fig. A.3.
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With the start of the LHC not only the search for the one only missing particle in the
SM, the Higgs boson, but also the direct search for physics beyond the SM has begun. The
biggest discovery machine ever built is especially designed for exploring the TeV scale, the
region where the masses of the new elementary particles postulated by the most favoured
model for manifestation of NP, the minimal supersymmetric extension of the SM, are ex-
pected to be. The postulated superpartners of SM particles affect the physical processes
and change the values of the observable quantities. The extent to which the theoretical
prediction of a certain process is changed under the consideration of the NP particles de-
pends on many parameters of the certain NP model, in particular, considering the MSSM,
on the masses of the supersymmetric particles involved in the certain transition or decay
process. Unfortunately, these parameters cannot be theoretically predicted from the NP
model itself. The prediction of the mass spectrum of the supersymmetric particles is a very
important issue from phenomenological point of view as well as an essential topic in regard
to the direct search for superparticles at the LHC. Thus, the squark mass matrices have

been the object of study of numerous analyses in the past.

With this work we have done a contribution to the understanding of the flavour violation
in the MSSM and the consraining of the MSSM parameter space from processes which
are well known in the SM but very sensitive to contributions of supersymmetric particles
with masses of the weak scale. The aim of this study has been the analysis and the con-
straint of parameters closely related to the mass spectrum of the MSSM. In particular,
the impact of flavour changing elements in the LL sector of the squark mass matrices on
FCNC processes has been investigated in detail. The supersymmetric contributions at one
loop to the meson mixing processes have been calculated. For the evolution of the Wilson
coefficients for the AF = 2 meson mixing processes the so called magic numbers from the
two loop anomalous dimension matrix in the regularisation independent renormalisation

scheme have been calculated using loop results from the literature.
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Considering the recent analysis of the CKMfitter collaboration with A. Lenz and U. Nierste
concerning the possible amount of NP contribution to the B;— B, and B,— B, mixing
processes, we could obtain a relation between the allowed regions for the parameters which
measure the NP contribution in the B; and B; sector. We have found that a big chargino
contribution to the By — B, mixing process caused by a transition between the second
and third squark generation implies an effect of the same order in the By— By system
as well. However, the opposite statement is not true. If large flavour violation mediated
by charginos between the first and the third squark generation sizeably enhances B;— By
mixing, the effect on the B;— B, system is at the per mille level. Taking into account the
fact that the NP contribution to the B;—B, sector characterised by the complex parameter
Ay is much better constrained than the corresponding parameter A, in the B,—B, sector,
we could link the allowed regions (at 68.3% CL, 95.45% CL and 99.73 CL) in the A, plane
to the A, plane provided that the mass insertion 6% is the source of flavour violation.
We found that only a small region of the plot related to the B, — B, is covered in case of
an up-type squark mass matrix with equal diagonal elements. However, that region can be
enlarged by allowing a mass difference between the diagonal elements of the LL block of
the mass mixing matrix or an additional flavour violation stemming from the LR sector.
The measurement of the experimental quantities involved in the NP analysis in the B—B
system of the CKMfitter group is one of the main goals of the LHCb experiment. In future,
it will provide data with sufficiently small experimental uncertainty such that the allowed
regions for NP would shrink. This would allow the constraining of the difference between

die diagonal elements of the LL blocks of the squark mass matrices.

The next topic which has been investigated is the estimation of the maximal possible mass
splitting of left handed squarks considering the experimental bounds from the meson mix-
ing process in the neutral K—K and D—D systems. We analysed four different scenarios
taking into account the gluino contribution and the electroweak contributions stemming
from neutralino and chargino as well as the mixed neutralino-gluino exchange in the box
diagrams. In all MSSM analysis the main focus has been set on gluino contributions. The
contributions caused by electroweak interaction effects has been neglected claiming that
they are suppressed by a factor gj/gi in the box diagrams. In fact, in our analysis we
found that the gluino contribution is indeed dominant for small gluino masses. However,

in the opposite case it can be suppressed because of the cancellation between the crossed
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and uncrossed box diagrams. Thus, the usual argument provided by previous analyses that
the electroweak contributions can be neglected considering their smallness in comparison
to the gluino contribution does not hold anymore in the region where the gluino mass is
bigger than the relevant squark mass in the loop function. In the scenario with complete
alignment in the up sector the up squark mass matrix is chosen to be diagonal. In the
opposite case where the down mass mixing matrix is diagonal there is a complete align-
ment in the down sector. Further, we obtained the maximal possible mass splitting in a
situation with intermediate alignment in the up and down sector where neither the up
nor the down mass matrix is diagonal. In the last scenario we have chosen equal diagonal
elements and one off-diagonal element with a complex phase which maximises the indirect
CP violation in the Kaon system. In this case we obtain the most stringent bound on the
mass splitting from K — K mixing process. For light gluino masses strong constraints on
the mass splitting have been found. However, if the gluino is heavier then the squarks large
regions in the MSSM parameter space are allowed from K —K and D—D mixing where
the masses of the left-handed squarks can be highly non-degenerate. This fact can have
interesting consequences for LHC benchmark scenarios which usually assume that squarks

of the first two generations have the same masses.

The next part of this work has been the numerical analysis on the LI part of the squark
mass matrices which aim has been the determination of bounds on the flavour changing
parameters %5“F and 6%F~. The simulation is performed in the general MSSM and is mostly
independent of boundary conditions. The SUSY contributions from charged Higgs bosons,
charginos and gluinos are considered. The inclusion of electroweak contributions to the
box diagrams which have been neglected in almost all previous analyses of this type is
important especially for the regions in the MSSM parameter space where the gluino mass
is bigger than the squark masses. As we have shown, in this regions the gluino contribution
suffers from the fact that it is a Majorana particle and a second, crossed box diagram
occurs: A cancellation between these two kinds of boxes can appear. Because of this fact
the consideration of only strong SUSY contributions to the meson mixing is not justified
in general.

Starting with the B, — B, mixing process and assuming first §%L% = 0 a scan over the
real and imaginary parts of §3" has been performed. The value determined for 6% is
subsequently used as a new input in order to determine a stable value in an iterative way.

In many previous analyses the mass insertion approximation has been used in order to
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avoid complications which can occur in case of exact diagonalisation of the squark mass
matrices. However, the mass insertion approximation is not valid for large off-diagonal
elements. We perform the analysis with exact diagonalisation of the squark mass matrices.
This has the advantage that we are not restricted to a small mass insertions only but our
approach is valid when during the scan over the real part and imaginary part of 533“
the calculation is done with big values of this flavour-changing parameter as well. The
By— Bgand B,— B, mixing are very suitable processes for NP searches and constraints
on parameters of different NP scenarios because they belong to the rare processes which
are very sensitive to NP effects and are experimentally known to a good accuracy as well.
Therefore, the mixing of neutral B mesons have been the object of study of many analyses
on MSSM parameter space. However, usually the processes of meson mixing in the By
and B, system have been treated independently from each other. In our analysis we have
taken into account the correlation between the B,—B, and B;—B, mixing processes given
by the ratio of the corresponding decay constants. This is an additional constraint in the
analysis. Another advantage of our approach is given by the fact that the ratio of the decay
constants is determined by calculations on the lattice to a much better precision than the

decay constants themselves.

We investigate two cases, the SM regime where the numerical values of all observables have
been taken to be in their 20 experimental regions such that the SM is not excluded as well
as the maximal NP regime. In the last the experimental values of the input parameters are
chosen in such a way that the maximal tension between the experimental observables and
their SM predictions occur. In addition, we test whether the values for the studied mass
insertions which are allowed from B,—B, and B;—By mixing satisfy the bounds from the
branching ratio of the inclusive B — X v decay as well as the bounds from the parameter
ex which measures the indirect CP violation in the neutral Kaon system. The indirect CP
violation parameter || was not considered by many analyses in the past. However, consid-
ering recent lattice calculations allow the determination of the non-perturbative part of the
K — K mixing amplitude with a good enough precision such that |ex| becomes an impor-
tant quantity for NP searches or placing constraints on MSSM parameters. Furthermore,
we check the size of the SUSY contribution governed by the determined flavour-changing
parameters 6%-L and 04 to the D—D mixing process. For the chosen point in the MSSM
parameter space we find that the 20 regions of the experimental observables are not vi-
olated if the real and imaginary parts of the mass insertions do not exceed the intervals
—0.010 < Re (6%}?) < 0.025, —0.03 < Im (6%}?) < 0.01, —0.08 < Re (6¥#) < 0.18 and
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—0.325 < Im (6¥7%) < 0.125 for my = 500 GeV and m; = 500 GeV. It is found that for the
studied points in the MSSM parameter space the flavour violation in the D meson system
caused by the product of the mass insertions 63" and §%/* is not sufficient to explain the
current experimental bounds on the D—D transition amplitude. In order to explain the
mixing of neutral D mesons as a pure supersymmetric effect the flavour violation has to
be enhanced through the mass insertion §%“* and/or additional mass insertion in the LR

sector of the squark mass matrix.

In the future the numerical analysis can be extended to the LR sector of the squark
mass matrices. While the LL parts of the up-type and down-type squark mass matrices are
related to each other because of the SU(2) gauge symmetry of the left-handed fermion sector
their LR blocks are completely independent. If the LI part of the up-type squark mass
matrix is not proportional to the unit matrix in the LL part of the down-type squark mass
matrix off-diagonal elements are generated which are flavour violating and induce a gluino
contribution to the B— B meson mixing processes. Practically, a non minimal chargino
contribution necessarily leads to a gluino contribution in the B — B mixing. However,
because of the absent relation between the LR blocks of the squark mass matrices we have
the freedom to choose their elements independently. In this way one has better control
on the different SUSY contributions to the meson mixing processes and can investigate
the limits given by only chargino contribution to the box diagrams and absent gluino
ones or vice versa. It would be interesting to investigate the more general case with a
flavour violation caused by off diagonal elements in the LL or LR block of the mass mixing
matrices in the presence of diagonal elements in the LR block as well. Even if these elements
do not affect directly the flavour changing process they allow an additional chirality flip
inside the same squark generation. Through the change of the squark mass eigenstates
by the presence of these additional flavour-conserving but chirality-changing squark mass
matrix elements all supersymmetric contributions to the meson mixing processes would
be affected. Furthermore, the obtained bounds on the mass insertions affect single top

production processes which is an important topic for the LHC.
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A. APPENDIX

A.1. The Feynman rules for MSSM

In following we write the Feynman rules which have been used in the calculation of the
supersymmetric contributions to the considered processes in the MSSM. For the Feynman
rules listed below we use the conventions for diagonalising the mass mixing matrices for
squarks and gauginos given in Ch. 4.2. The obtained results of the calculation of the Wilson
coefficients for the meson mixing processes are in full agreement with the results given in
the appendix of [59]. Note that the authors of [59] use the convention of [43].

A.1.1. Quark-squark-gluino vertices
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A.1.2. Quark-squark-chargino vertices
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A.1.3. Quark-squark-neutralino vertices
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A.1.4. Quark-quark-charged Higgs vertices
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The Yukawa couplings K% and K7 used in the Feynman rules listed above are given by

I I
I my I my,

Kp=—-"%——, K= —"
b V2Myy cos 3 v \/EMWsinﬁ

where mCIl and m{t are the masses of the down-type quarks and up-type quarks of the

generation [ = 1,2, 3, respectively.

A.2. Plots

In this section we show the flowchart of the program for numerical analysis of 6%} and

§%23 and all the plots which have been described in previous chapters of this work.
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of the mass insertion 03“*|. From left to right: [6%| = 0.05 (red), 03| = 0.1 (green),
|65 = 0.2 (blue), |63*| = 0.3 (brown), |6%"| = 0.4 (magenta), |65*| = 0.5 (black);
fB, = 0.228 GeV.
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