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Preface

The theory of quadratic forms is a subject in number theory of the purest sort going
back to Fermat, Euler, Lagrange, Gauß and Minkowski to mention but a few. By a
quadratic form Q in dimension n we mean a function

Q(x) =
n∑

i,j=1

aijxixj

of degree 2 with x := (x1, ..., xn)T ∈ Rn and coefficients aij = aji ∈ R.
An old natural question is to ask which integers are represented over Z by a given form
with integer coefficients and moreover in how many ways they are represented. In some
instances these questions can be answered but there is no general answer. The central
idea is the so called local-global principle, that means we first check if an integer is
represented locally over all Zp and over R.

As is well known, the theory of positive definite quadratic forms provides an alternative
approach for studying lattices. There is a one-to-one correspondence between congru-
ence classes of lattices and equivalence classes of quadratic forms. Therefore other
classical questions as for instance the sphere packing problem or the kissing number
problem can be considered in this context too.

The aim of this thesis is to study a related question, Schmutz Schaller’s conjecture,
that in dimensions 2 to 8 the quadratic forms associated with the lattices with the
best known sphere packings are maximal. We say respectively that these lattices have
maximal lengths. This means that their k-th length is strictly greater than the k-th
length of any other lattice in the same dimension with the same covolume. Here it is
important that we do not count the multiplicities of these lengths.

After we have introduced the basic concepts in Chapter 1 we will see in Chapter 2
that the Schmutz Schaller conjecture does not hold true for dimension 3. Although
the statement holds asymptotically, i.e. if k is big enough, we will explicitly present a
counter-example in Section 2.3. It turns out that only its 6-th length is not dominated
by the corresponding length of the lattice with the best sphere packing (Proposition
2.3.5). However, it seems that there is nothing but this exception: one lattice, where
for one length the conjecture fails. The results of Section 2.3 are published in [Wi].
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2 PREFACE

To support the guess that there is only this counter-example we will discuss the con-
jecture for ternary lattices with bounded multiplicities. Here the main result is, that
the conjecture applies for all these lattices with bounded multiplicities (Theorem 2.5.5).

It may be surprising that the multiplicities of the lengths do not play a role at all.
This is contrary to the usual definition of the length spectrum. But in contrast to the
situation mentioned before the lengths of the complete length spectrum have the same
asymptotic behaviour for all lattices with fixed covolume.
We will use this fact to prove in Chapter 3 that a lattice with maximal complete lengths
does not exist in any dimension n ≥ 2. In particular we will prove that for any lattice
there exists another lattice, arbitrarily close, such that its complete lengths are not
dominated by the complete lengths of the first lattice (Theorem 3.2.4).

It is then natural to ask, whether there exist two lattices at all, such that the complete
lengths of one lattice dominate the complete lengths of the other. It seems that this is
a difficult question in general, but we will answer this question in the negative in the
special case of even unimodular lattices in the last section.

At this place I would like to thank all persons who have contributed to this thesis, in
particular:

PD Dr. Stefan Kühnlein for his guidance and helpful advice throughout the whole time,
Prof. Dr. Frank Herrlich for his support and for kindly agreeing to be Korreferent of
this thesis, Ute Luhm and Lothar Lemp for their careful proofreading.
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Chapter 1

Basic concepts

1.1 Lattices and quadratic forms

A lattice Γ in the Euclidean standard space Rn is a subgroup which is generated by a
basis B = {b1, ..., bn}.

Γ :=

{
n∑

i=1

xibi : xi ∈ Z

}

The volume of the fundamental parallelotope FB := {
n∑

i=1

αibi : 0 ≤ αi < 1} of Γ is called

the covolume of Γ.
As is well known, the theory of quadratic forms offers an alternative language for study-
ing lattices. There is a one-to-one correspondence between congruence classes of lattices
and equivalence classes of quadratic forms.

Definition 1.1.1.

(a) Let Γ be a lattice in Rn with basis B = {b1, ..., bn} and define the matrix MB :=
(b1|...|bn). Then the quadratic form

QΓB
(x) := xT · MT

BMB︸ ︷︷ ︸
=:AΓB

=:(aij)

·x,

x ∈ Zn, is associated with Γ. Obviously, the matrix AΓB
is symmetric and positive

definite. Therefore by a“form”we always mean a positive definite quadratic form.

(b) Furthermore we call a form Q integral if Q(x) ∈ Z for all x ∈ Zn and we call Q
classically integral if aij ∈ Z for all i, j ∈ {1, ..., n}.

(c) Let I be a ring in a field. Two quadratic forms Q and Q′ with matrices A and
A′ are called (I-)equivalent or in the same class if there exists a matrix S ∈ In×n

with det(S) ∈ I∗ such that A = STA′S.
For I = Z two forms are equivalent, if they refer to the same lattice with different
bases.
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6 CHAPTER 1. BASIC CONCEPTS

To put a finer point on that, we exploit that the set of lattices in Rn is GLn(Z)\GLn(R)
and the set of real quadratic forms is GLn(R)/SOn(R). We can thus identify the set
of congruence classes of lattices respectively of Z-equivalence classes of quadratic forms
with

GLn(Z)\GLn(R)/SOn(R).

According to this principle we call a lattice Γ (classically) integral if its associated form
QΓ is (classically) integral, even if QΓ(x) ∈ 2Z for all x ∈ Zn and arithmetic if QΓ is
arithmetic, i.e. there exists a λ ∈ R such that λ · QΓ is integral. As well we define
det(QΓ) := det(AΓ) = (cov(Γ))2.
In the sequel we will switch freely between the language of lattices and the language of
forms.

1.2 Reduction

By “reduction” we mean choosing a representative of a class with nice properties, i.e.
whose coefficients satisfy certain inequalities, depending on the reduction. In this sense
reduction for lattices consists in finding bases so that the scalar products of the elements
satisfy these inequalities.

Definition 1.2.1. A positive definite form Q with matrix A = (aij) is said to be reduced
(in the sense of Minkowski) if for k = 1, ..., n

akk ≤ Q(x)

for all integral vectors x := (x1, ..., xn)T with gcd(xk, ..., xn) = 1,
and if in addition a1j ≥ 0 for j = 2, ..., n.

In every class there exists a reduced form. More precisely we have, cf. [Ca, p.256]:

Theorem 1.2.2. Every positive definite form is equivalent to at least one and at most
finitely many reduced forms.

It is clear that the reduction conditions imply that

a11 ≤ a22 ≤ ... ≤ ann.

An additional consequence is

|2aij| ≤ aii, (1 ≤ i < j ≤ n).

We remark the fact that if n ≥ 3 these consequences are not sufficient for a form to be
reduced. However, these conditions will do all we need.
For an associated lattice with basis {b1, ..., bn} it follows that

|cos(�(bi, bj))| =
|〈bi, bj〉|
|bi| · |bj|

≤
1
2
|bi|2

|bi| · |bi|
=

1

2
(i 6= j).

Hence

−1

2
≤ cos(�(bi, bj)) ≤

1

2
, respectively 0 ≤ cos(�(b1, bj)) ≤

1

2
.
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1.3 Local considerations

An old problem in the theory of quadratic forms is the question of representing integers
by a positive definite integral form. To that end we will use the so called local-global
principle. That means we will first check if an integer m is represented by Q locally,
i.e. whether Q(x) = m with x ∈ Zn

p is solvable at all places p, where p is either a prime
number (for p-power congruences) or ∞ (for the sign, with the usual convention that
Z∞ = R). Unfortunately the very satisfactory local-global theory of forms over Q does
not hold over Z. While two forms are Q-equivalent if and only if they are Qp-equivalent
for all p (Weak Hasse Principle), there exist forms which are Zp-equivalent for all p but
not Z-equivalent, cf. examples in Section 2.4. Therefore we define:

Definition 1.3.1. The genus gen(Q) of an integral form Q is the set of all (integral)
forms that are locally equivalent to Q, i.e. Zp-equivalent at all places p.

Obviously gen(Q) is a disjoint union of classes. Now we get the local-global connection:

Theorem 1.3.2. Let Q be an integral form which represents an integer m locally. Then
m is represented by one form in gen(Q).

A proof can be found for instance in [Ca, Chap.9.5] or [Kn, Satz 22.1].
We make note of the trivial consequence:

Corollary 1.3.3. If the genus of Q has only one class, then m is represented locally by
Q if and only if m is represented by Q.

Hence if an integral form Q has only one class in the genus, all numbers that are not
represented by Q can be described by congruence conditions. From Definition 1.3.1 we
see that for locally equivalent forms Q and Q′ the rational number det(Q)

det(Q′)
is a p-adic

unit for all p, so it must be ±1. Since all forms are assumed to be positive definite (or
with p = ∞) it follows that det(Q) = det(Q′).
Furthermore it is well known that if a prime number p does not divide 2 · det(Q) there
is only one Zp-equivalence class of forms of the same determinant (for simplicity we
assume all forms to be classically integral):

Theorem 1.3.4. Let Q, Q′ be two classically integral forms such that det(Q) = det(Q′)
is a p-adic unit for an odd prime p. Then Q and Q′ are Zp-equivalent.

Sketch of proof. One can show (cf. [Ca, p.116]) that Q is Zp-equivalent to a form

n∑

i,j=1

bijxixj,

where |bii|p ≤ |b11|p and (since p 6= 2) |bij|p ≤ |b11|p. Therefore
bij

b11
∈ Zp for all bij and

we can complete the square. So Q is Zp-equivalent to a form

b11x
2
1 +H(x2, ..., xn)
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for some (n − 1)-dimensional form H. By induction it follows that Q is Zp-equivalent
to a diagonal form b11x

2
1 + ... + bnnx

2
n, where the bii are p-adic units since p ∤ det(Q).

And such a form is integrally equivalent to

x2
1 + x2

2 + ...+ x2
n−1 + det(Q)x2

n.

�

Hence there are only finitely many “critical” p to consider. At this place we will state
(and also prove) a further consequence that will be helpful later on:

Proposition 1.3.5. Let Q be an n-dimensional classically integral form, n ≥ 3 and p
an odd prime not dividing det(Q). Then Q represents all natural numbers m over Zp.

This proposition can be verified with Hensel’s Lemma in its simplest variant:

Lemma 1.3.6 (Hensel). Let f(x) be a polynomial in the single variable x and suppose
that there exists an x0 ∈ Zp such that

|f(x0)|p < |f ′(x0)|2p ,
where f ′(x) denotes the (formal) derivative with respect to x. Then there is a y ∈ Zp

such that f(y) = 0.

For a proof one can refer to [Ca, p.47].

Corollary 1.3.7. Let p be an odd prime and define the integral form Q(x) := a1x
2
1+a2x

2
2

such that a1, a2 6≡ 0 (mod p). Then for all positive integers b 6≡ 0 (mod p) there exists a
y ∈ Z2

p such that a1y
2
1 + a2y

2
2 = b.

Proof. Q is universal in Fp, i.e. it represents all b in Fp, since we have

#{a1x
2
1|x1 ∈ Fp} = #{b− a2x

2
2|x2 ∈ Fp} = p+1

2

⇒ {a1x
2
1|x1 ∈ Fp} ∩ {b− a2x

2
2|x2 ∈ Fp} 6= ∅

⇒ ∃ x̃1, x̃2 ∈ Fp : a1x̃
2
1 = b− a2x̃

2
2.

Let now b 6≡ 0 (mod p) and without loss of generality x̃1 6≡ 0 (mod p), then with f(x) :=
a1x

2 − (b− a2x̃
2
2) it is

|f(x̃1)|p ≤
1

p
< |f ′(x̃1)|2p = |2a1x̃1|2p = 1.

Due to Hensel’s Lemma there exists a y1 ∈ Zp such that a1y
2
1 + a2x̃

2
2 = b.

Proof of Proposition 1.3.5. As in the proof of Theorem 1.3.4 one can assume that Q is
of the form

Q(x) = x2
1 + ...+ x2

n−1 + det(Q)x2
n.

Due to Corollary 1.3.7 the form x2
1+x

2
2 represents all b ≡ −det(Q) (mod p) in Zp. Hence

for all m there exists an x ∈ Zn
p such that Q(x) = m. �

To treat the “critical” prime numbers p later on we need one more fact:
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Proposition 1.3.8. Let Q be an n-dimensional classically integral form, n ≥ 2 and p
a prime. Then Q represents a number m over Zp if and only if Q represents m modulo
pr+1, where pr is the highest power of p dividing 4m.

Proof. Let u = r (if p is odd) or u = r − 2 (if p = 2), where pu is the highest power of
p dividing m and let x ∈ Zn such that

xTAx = m+ pr+1 · l,
where p ∤ l. Clearly xr+1 := x is a representation in Zn

p of m modulo pr+1. Now we will
use an induction argument and define the vector

xr+2 := xr+1 −
1

2
· pr+1 xr+1(x

T
r+1Axr+1)

−1 · l.

Since xr+1 ∈ Zn
p and r + 1 > u it follows that xr+2 ∈ Zn

p too. Then we have (with
xT

r+1Axr+1 = m+ pr+1 · l)

xT
r+2Axr+2 = m+ pr+1l − 1

2
pr+1l − 1

2
pr+1l + 1

4
p2(r+1)l2(xT

r+1Axr+1)
−1

= m+ 1
4
p2(r+1)l2(xT

r+1Axr+1)
−1.

Hence for some p-adic unit l′ we get

xT
r+2Axr+2 = m+

1

4
p2(r+1)−u · l′ =





m+ pr+2 · l′

4
, p 6= 2

m+ pr+2 · l′, p = 2.

Obviously the sequence xr+s converges to a solution in Zn
p .

A major quantitative result along these lines was given by Siegel [Si] who was the first
one to discover the concrete connection between local and global representability. For
a detailed historical survey see [CoSl1]. His result allows us to think of our local in-
formation as a weighted average of information over the classes in the genus, cf. [Ca,
Chap.9.6], [Ha, p.4]. We shall not have occasion to use it later, but it is hard to resist
the temptation to praise Siegel’s theorem at this place.

In a more general way we look at the representability of forms by forms, i.e. a form M
with matrix B in n′ variables is represented by an n-dimensional form Q with matrix A,
n > 1 and n′ ≤ n, if there exists an X ∈ Zn×n′

such that XTAX = B. Furthermore we
denote by bQ(M) the number of representations of M by Q and by bq(M) the number
of representations of M by Q modulo q = pa. If pb is the highest power of p dividing
(2 · det(M))2 then the number

βp(M) :=





q
n′(n′+1)

2
−nn′ · bq(M), n > n′

1
2
q−

(n−1)n
2 · bq(M), n = n′

is independent of a for all a > b, cf. [Si, Hilfsatz 13]. We call these numbers the local
representation densities of M .
Now we are able to state Siegel’s result [Si, Hauptsatz]:
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Theorem 1.3.9 (Siegel). Let gen(Q) be the (disjoint) union of classes represented by
forms Qi and let ε = 1 if n > n′+1 or n = n′ = 1 and ε = 1

2
if n = n′+1 or n = n′ > 1,

then we have

bgen(Q)(M) :=

∑
Qi

bQi
(M)

bQi
(Qi)∑

Qi

1
bQi

(Qi)

= ε · β∞(M)
∏

p

βp(M),

where β∞ is a constant depending only on n, n′, det(Q) and det(M) and can be seen
as the presumable number of representations of M .

More precisely let M be a neighbourhood of M and let X be the set of matrices X
such that XTAX ∈ M. Consider M and X as subsets of n′(n′+1)

2
- and nn′-dimensional

space respectively, then we define

β∞(M) := lim
M→M

vol(X )

vol(M)
.

The value is

β∞(M) =
π

n′(2n−n′+1)
4

Γ (n−n′+1
2

)Γ (n−n′+2
2

) . . . Γ (n
2
)
· det(Q)−

n′

2 · det(M)
n−n′−1

2

cf. [Si, Hilfssatz 26], here Γ is the Gamma function from analysis.

We have two interesting special cases.
First Q = M gives a formula for the so called weight of the genus W (Q) of the form Q:

W (Q) :=
∑

Qi

1

bQi
(Qi)

=
2Γ (1

2
)Γ (2

2
) . . . Γ (n

2
)det(Q)

n+1
2

π
n(n+1)

4

∏
p

βp(Q)
.

And secondly if n′ = 1, so M is the number m, Siegel’s formula reduces to

bgen(Q)(m) = ε · m
n−2

2 π
n
2

Γ (n
2
) · det(Q)

1
2

∏

p

βp(m).

One additional consequence is that Proposition 1.3.2 follows immediately since the infi-
nite product over the βp(m) converges and all the βp(m) > 0 if m is locally represented,
cf. [Si, Hilfsatz 25].

1.4 Sphere packings

In Conjecture 2.1.1 lattices with the best sphere packings are involved. It is a classical
problem cf. [CoSl4, Chap.1], to find out how densely a large number of identical balls
can be packed together. So the density of a packing can be seen as proportion of the
space that is occupied by these balls. More precisely, see also [NeXi]:
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A packing in Rn is a set P of points such that the Euclidean distance

d(P ) := inf
p1,p2∈P

p1 6=p2

d(p1, p2)

is positive. Let Bn(X) be the n-dimensional ball with radius
√
X. Now we build the

union of all balls with radius d(P )
2

where the points of P are the centers:

U(P ) := {x ∈ Rn : ∃p ∈ P, d(x, p) ≤ d(P )
2

}. Then the density of P is defined by

∆(P ) := lim sup
X→∞

vol(U(P ) ∩Bn(X2))

vol(Bn(X2))
,

where as usual vol(S) denotes the volume of a subset S ⊂ Rn.
Hence for a lattice Γ the density is the proportion of the volume of one sphere (with
radius 1

2
· min

γ∈Γr{0}
|γ|) and the covolume of Γ:

∆(Γ) =

vol(Bn(1
4
· min

x∈Zn
r{0}

QΓ(x)))

cov(Γ)
.

1.5 Root lattices

Root lattices play a crucial role in many questions about lattices, so as in the question
of the best sphere packing or the highest kissing number cf. Remark 3.2.2. By a root

lattice we mean a lattice which is generated by a (reducible) root system. For more
information about root systems one can refer to [Se2]. We use the same notation for
the lattices as the usual one for the root systems. The irreducible root lattices occuring
here are An, Dn, E6, E7 and E8 . These lattices can be characterised by Coxeter graphs
cf. Table 1.1, where all n roots, respectively the basis vectors, have the same length and
the angle between two roots is either π

3
or π

2
depending on whether they are connected

or not.

Table 1.1: Root systems

An ◦ ◦ · · · ◦ ◦ (n ≥ 1)

Dn ◦ ◦ · · · ◦ ◦
◦

iiiii

R
R

R
R

R (n ≥ 4)

E6,7,8 ◦ ◦ ◦
◦

◦ · · · ◦
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1.6 Asymptotic notation

In the following we will characterise the limiting behaviour of real functions when the
argument tends towards infinity with the common O and Ω symbols.
When a function is bounded above respectively dominated by another function asymp-
totically we use the upper and lower case O.

Definition 1.6.1. Let f and g be two functions over the real or natural numbers.

(a) f = O(g) :⇔ 0 ≤ lim sup
x→∞

∣∣∣f(x)
g(x)

∣∣∣ <∞

⇔ ∃ c > 0 ∃ x0 ∀ x > x0 : |f(x)| ≤ c · |g(x)|

(b) f = o(g) :⇔ lim
x→∞

∣∣∣f(x)
g(x)

∣∣∣ = 0

⇔ ∀ c > 0 ∃ x0 ∀ x > x0 : |f(x)| < c · |g(x)|

The Ω is used as negation of o. This means that a function exceeds the comparative
function for infinitely many values. (In computer science, “infinitely many” often is
replaced by “all large”.)

Definition 1.6.2. Let f and g be two real functions, g > 0.

(a) f = Ω(g) :⇔ f 6= o(g)

⇔ lim sup
x→∞

∣∣∣f(x)
g(x)

∣∣∣ > 0

(b) f = Ω+(g) :⇔ lim sup
x→∞

f(x)
g(x)

> 0

(c) f = Ω−(g) :⇔ −f = Ω+(g)

(d) f = Ω±(g) :⇔ f = Ω+(g) ∧ f = Ω−(g)



Chapter 2

Conjecture of Schmutz Schaller

2.1 Introduction

Let Γ be a lattice in the Euclidean space Rn. We sort the lengths of elements of Γ
according to size:

0 = γ0 < γ1 < γ2 < γ3 < γ4 < ...

where γk is called the k-th length of Γ. It is important that we leave out the multiplic-
ities of these lengths.

Paul Schmutz Schaller formulated in [Schm2, p.201] the following conjecture, see also
[Schm1]:

Conjecture 2.1.1 (Schmutz Schaller). In dimensions 2 to 8 the lattices with the best
lattice sphere packings have “maximal lengths”, i.e. for all k > 0 their k-th length is
strictly greater than the k-th length of any other lattice in the same dimension with the
same covolume.

This conjecture was motivated by considerations from hyperbolic geometry. Schmutz
Schaller showed that in certain cases there exist surfaces, such that the lengths of their
closed geodesics (without multiplicities) are maximal among all surfaces in their moduli
space, cf. [Schm1, p.204].

Remark 2.1.2. Hence an alternative formulation of Conjecture 2.1.1 in terms of flat
tori is that the tori corresponding to the special lattices mentioned above are extremal
with respect to the k-th length of closed geodesics among the flat tori of the same
dimension and volume.

The question of the densest sphere packing cf. Section 1.4 has a long history and is still
unsolved for n > 3. In dimension n = 1 it is the trivial lattice Z, for n = 2 the regular
hexagonal lattice has the highest density. Gauß showed in [Ga] that the face-centered
cubic lattice

13
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Σ := α ·


Z




1
0
0


⊕ Z




1/2√
3/2
0


⊕ Z




1/2√
3/6√
6/3




 , α := 6

√
2

has the densest lattice packing. The general statement, that is known as Kepler’s Con-
jecture, was proved by Thomas Hales in 1998. Unfortunately his computer-based proof
has not yet been verified completely. Furthermore for 4 ≤ n ≤ 8 the best (unique) lat-
tice packings are known, cf. [CoSl4, Chap.1.1]. If we consider also nonlattice packings
then the question is still open in these dimensions.

Obviously, for Conjecture 2.1.1 it is sufficient to know the best lattice packings. All
these are irreducible root lattices. With the usual notation we have the following densest
lattice packings in dimensions 1 to 8:

Table 2.1: Lattices with the best lattice sphere packings

n 1 2 3 4 5 6 7 8

2Σ̃n A1 A2 A3 D4 D5 E6 E7 E8

Since in higher dimensions we do not even know the best lattice packings the conjecture
would not make sense for n ≥ 9.

Kühnlein [Kü1, Thm.1] showed the conjecture in dimension 2 for lattices with bounded
multiplicities, cf. Section 2.5. For arithmetic lattices so far only examples are known,
for instance Moree and te Riele [MoRi, Thm.1] proved that the lengths of the regular
hexagonal lattice dominate the lengths of the regular square lattice.

We will see in Section 2.2 that the conjecture is asymptotically true because the lattices
with the best known sphere packings minimize the so called Erdös number. But as a
result of the investigation of the 3-dimensional lattice with the second smallest Erdös
number we will see in Section 2.3 that the conjecture is not true for ternary lattices.
However, it seems that there is only one exception: one lattice, where for one length
the conjecture fails.

2.2 Asymptotics

Theorem 2.2.1. For 2 ≤ n ≤ 8 let Σn be the normalised (covolume 1) n-dimensional
lattice with the best lattice sphere packing and Γn be any normalised lattice in Rn not
congruent to Σn. Then the k-th length of Σn is strictly greater than the k-th length of
Γn if k is big enough.
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Proof. The Erdös number of an n-dimensional lattice Γ is given by

EΓ := FΓ · cov(Γ)
1
n ,

where FΓ for n ≥ 3 is given by

FΓ := lim
X→∞

PΓ(X)
X

.

Here PΓ is the population function of the associated form, i.e. the function that counts
the number of values of the form, that do not exceed X:

PΓ(X) := # {x < X : ∃v ∈ Zn, QΓ(v) = x}
= #

{
x < X : ∃γ ∈ Γ, |γ|2 = x

}
.

For n = 2 this definition must be modified: FΓ := lim
X→∞

PΓ(X)
X

√
logX.

Conway and Sloane [CoSl2] showed that the lattices with minimal Erdös number in
dimensions 3 ≤ n ≤ 8 are (up to a scaling factor) precisely the integral lattices with
minimal covolume. And those are the lattices with the best lattice sphere packings.
The analogous result for binary lattices was obtained in [MoOs, Thm.1].
Now let Γn be any lattice with covolume 1 not congruent to Σn. In case of EΓ = ∞ the
claim is even true for lattices with arbitrary covolume. (In particular the Erdös number

of any non-arithmetic lattice is infinite for n ≥ 3.) In case EΓ = F = lim
X→∞

PΓ(X)
X

< ∞
we have

PΓ(X) = EΓX + o(X) and PΣ(X) = EΣX + o(X).

Since EΣ is minimal, i.e. EΣ < EΓ, the number of lengths of Γn less than
√
X grows

asymptotically faster than the analogous number for Σn. Hence λk < σk if k is big
enough.

Table 2.2: The four ternary lattices with the smallest Erdös numbers

Lattice A3 A2 × A1 A2 × 3A1 Z3

Erdös number 11
24

3
√

4 7
16

3
√

6 5
16

3
√

18 5
6

For n = 3 the minimal Erdös number is EΣ = 11
24

3
√

4. In [CoSl2, p.86] the ternary
lattices with the next smallest Erdös numbers are given as well, cf. Table 2.2. This
means that the reducible root lattice A2×A1 asymptotically dominates all other lattices
not congruent to Σ. Therefore it is interesting to check Conjecture 2.1.1 for this lattice.
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2.3 A counter-example

2.3.1 The face-centered cubic lattice

With the information of Section 1.3 we are able to give the numbers that are represented
by the form QΣ. Therefore we investigate the even values of the form QA3 = Q2eΣ, where

Σ̃ := 1
α
Σ.

Q2eΣ(x) = xT ·




2 1 1
1 2 1
1 1 2


 · x = 2 · (x2

1 + x2
2 + x2

3 + x1x2 + x1x3 + x2x3)

As mentioned in the proof of Theorem 2.2.1, Q2eΣ is up to equivalence the unique clas-
sically integral form with minimal determinant. Hence a form that is locally equivalent
to Q2eΣ is also (globally) equivalent: ⇒ gen(Q2eΣ) has only one class.

Due to Proposition 1.3.5 there exist no congruence conditions for primes p 6= 2.
With Proposition 1.3.8 it remains to check the following cases:

(a) If m ≡ 2 (mod 8) or m ≡ 6 (mod 8) there exists an x ∈ Z3 such that Q2eΣ(x) ≡
m (mod 16), because QeΣ represents 1, 3, 5, 7.

(b) If m ≡ 4 (mod 8), then Q2eΣ(x) ≡ m (mod 32) is solvable if and only if m 6≡
28 (mod 32), becauseQeΣ represents 2, 6, 10 but not 14 (so 14 cannot be represented
locally).

(c) If m ≡ 0 (mod 8) it is easy to see that x1, x2 and x3 have to be even.
⇒ Q2eΣ(x) = 4 ·Q2eΣ(x

2
)

⇒ Q2eΣ represents m if and only if Q2eΣ represents m
4
.

Thus we have shown that Q2eΣ represents all positive even integers except those of the
form

4a(32t+ 28), a, t ∈ N0

and represents none of this form. Hence we have:

Lemma 2.3.1. QeΣ represents a positive integer m if and only if

m 6= 4a(16t+ 14) for all a, t ∈ N0.

But this lattice is very particular, so it would be more elegant if we exploit that the
lattice 2Σ̃ = A3 is the even sublattice of Z3 whose coordinates add up to an even num-
ber; 2Σ̃ = {x ∈ Z3 : x1 + x2 + x3 ≡ 0 (mod 2)} = {x ∈ Z3 : |x|2 ≡ 0 (mod 2)}. For the
cubic lattice it is well known that the associated quadratic form represents all numbers
unequal to 4a(8t + 7). Therefore Q2eΣ represents all even numbers that are unequal to
4a(8t+ 7), for all a ∈ N and t ∈ N0.

Now we can estimate the k-th length σk of Σ from below:
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Proposition 2.3.2. For the k-th length σk of Σ (k ≥ 4) we have:

σk ≥ α ·
√

17
16
k − 14

16
.

Proof. For the k-th length of Σ̃ we have: σ̃2
k ≥ k + #{t ∈ N0 : 16t+ 14 ≤ k}.

⇒ σ2
k ≥ α2 · (k + #{t ∈ N0 : 16t+ 14 ≤ k}︸ ︷︷ ︸

=[ k−14
16

+1]≥ k
16

− 14
16

) ≥ α2 · (17
16
k − 14

16
)

2.3.2 The honeycomb lattice

The primitive honeycomb lattice

Λ := β ·


Z




1
0
0


⊕ Z




1/2√
3/2
0


⊕ Z




0
0
1




 , β := 6

√
4
3

has the second smallest Erdös number cf. Chapter 2.2. It is also highly symmetric and
has a small covolume or big normalisation factor β.
Since 1

2
A2 ⊂ Λ̃ := 1

β
Λ and Z2 ⊂ Λ̃, the associated integral form

QeΛ(x) := xT ·




1 1
2

0
1
2

1 0
0 0 1


 · x = x2

1 + x2
2 + x2

3 + x1x2

represents all numbers m which are represented by Q 1
2
A2

and QZ2 . Hence QeΛ certainly

represents those numbers whose prime factors p ≡ 2 (mod 3) all divide the number in
an even power and those numbers whose prime factors p ≡ 3 (mod 4) all divide the
number in an even power. Therefore the first possible exception is 6; it turns out that
in fact 6 is not represented. Hence the sixth length of Λ (with 0 as zeroth length) is

λ6 = β ·
√

7 > 2.77 > 2.75 > α ·
√

6 = σ6.

We see here that Conjecture 2.1.1 does not hold for dimension 3. Now the question
arises how many such exceptional lengths λk there are in Λ.

We could study the congruence conditions as with Σ but it would be more elegant if we
exploit that QeΛ and Q∆3 := x2

1 + 3x2
2 + x2

3 have the same set of lengths. With the same
basis as in the definition of Λ the lattices ∆1 := Zb1⊕Z2b2⊕Zb3, ∆2 := Z2b1⊕Zb2⊕Zb3
and ∆3 := Z(−b1 + b2) ⊕ Z(b1 + b2) ⊕ Zb3 are sublattices of Λ̃ of index 2. Since the

union of the three sublattices is Λ̃ and the associated quadratic forms Q∆1 , Q∆2 and
Q∆3 are all in the same class the three lattices have all the same length spectrum, hence

the same length spectrum as that of Λ̃ itself.
It is well known which numbers are represented by the form Q∆3 =: Q∆. Already
Ramanujan [Ram, p.13] knew the conditions, the formal proof of his result is given in
[Di1, Thm.III]:
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Lemma 2.3.3. Q∆ (and so QeΛ) represents a positive integer m
if and only if

m 6= 9a(9t+ 6) for all a, t ∈ N0.

We prove this lemma with a short calculation:

Proof. First we show that every form Q in the genus of Q∆ is equivalent to Q∆. Q has to
be equivalent to a reduced form with determinant 3. By reference to a table [Ei, p.169]
there are only two such forms Q1(x) = x2

1 +x2
2 +3x3

3 and Q2(x) = x2
1 +2x2

2 +2x3
3−x2x3.

Since Q2 represents 6 it cannot be locally equivalent to Q∆. Hence Q is equivalent to
Q1, which is in turn equivalent to Q∆:

⇒ gen(Q∆) has only one class.

Once again due to Proposition 1.3.5 we have only to consider the primes 2 and 3.

(a) p = 2: For m ≡ 1 (mod 2) or ≡ 2 (mod 4) exists an x ∈ Zn with Q∆(x) ≡
m (mod 23) orQ∆(x) ≡ m (mod 24), becauseQ∆ represents 1, 3, 5 and 2, 22, 10, 14.
If m ≡ 0 (mod 4) we can write m = 4kt, where t 6≡ 0 (mod 4). So there exists
an x0 with Q∆(x0) ≡ t (mod 23) or Q∆(x0) ≡ (mod 24) depending on t is odd or
even. Hence Q∆(2kx0) ≡ 4kt (mod 22k+3) or (mod 22k+4). With Proposition 1.3.8
it follows that Q∆ is universal in Z2.

(b) p = 3: For m ≡ 1 (mod 3), m ≡ 2 (mod 3) or m ≡ 3 (mod 9) there exists an x
with Q∆(x) ≡ m (mod 3) or Q∆(x) ≡ m (mod 32), because Q∆ represents 1, 2 and
3. If m ≡ 0 (mod 9) we see that x1, x2, x3 ≡ 0 (mod 3). So Q∆ represents m if
and only if Q∆ represents m

9
. Since Q∆ does not represent 6 (and so it cannot

represent 6 locally) it follows that Q∆(x) 6≡ 6 (mod 32).

Now we can estimate the length λk from above.

Proposition 2.3.4. For the k-th length λk of Λ we have: λk ≤ β ·
√

840
727
k.

Proof. If 9a · 6 > k for a ∈ N0 we have #{t ∈ N0 : 9a(9t+ 6) ≤ k} = 0, hence

# {(a, t) ∈ N2
0 : 9a(9t+ 6) ≤ k}

=
[log9( k

6
)]∑

a=0

# {t ∈ N0 : 9a(9t+ 6) ≤ k}

=
[log9( k

6
)]∑

a=0

[
k−9a·6
9a·9 + 1

]
≤

[log9( k
6
)]∑

a=0

(
k

9a·9 + 1
3

)

≤ k
9
·

∞∑

a=0

1

9a

︸ ︷︷ ︸
= 1

1− 1
9

+
[log9( k

6
)]∑

a=0

1
3

= 1
8
k + 1

3 ln (9)
ln(k) − ln (6)

3 ln (9)
.
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It is easy to see that 1
ln (9)

ln(k) − ln (6)
ln (9)

≤ 1
35
k for all k ∈ N and this estimate will do all

that we need:

# {(a, t) ∈ N2
0 : 9a(9t+ 6) ≤ k} ≤ 1

8
k + 1

3
· 1

35
k = 113

840
k (∗)

⇒ λ̃2
k ≤ k + #{(a, t) ∈ N2

0 : 9a(9t+ 6) ≤ k + 113
840
k

∞∑
j=0

(113
840

)
j}

≤ k + #{(a, t) ∈ N2
0 : 9a(9t+ 6) ≤ 840

727
k} ≤

(∗)
840
727
k.

The lower bound of σk of Propsition 2.3.2 dominates the upper bound of λk of Propo-
sition 2.3.4 for k ≥ 17. If we compare the first 16 lengths as well, cf. Table 2.3, we
get:

Proposition 2.3.5. Let Σ and Λ be defined as above and k ∈ N, then σk > λk if and
only if k 6= 6.

Table 2.3: Lengths 1-16

k 1 2 3 4 5 6 7 8

σ̃2
k 1 2 3 4 5 6 7 8

σ2
k 1.26 2.5 3.8 5.0 6.3 7.56 8.82 10.1

λ2
k 1.1 2.2 3.3 4.4 5.5 7.70 8.81 9.9

λ̃2
k 1 2 3 4 5 7 8 9

k 9 10 11 12 13 14 15 16

σ̃2
k 9 10 11 12 13 14 15 16

σ2
k 11.3 12.6 13.9 15.1 16.4 18.9 20.2 21.4

λ2
k 11.0 12.1 13.2 14.3 15.4 17.6 18.7 19.8

λ̃2
k 10 11 12 13 14 16 17 18

In some respect the estimates in Proposition 2.3.2 and 2.3.4 are unnecessarily weak.
Instead of estimating the k-th length directly we can also use the population function
from Chapter 2.2 to get sharper bounds:

Proposition 2.3.6. For X > 0 we have: PΣ(X) ≤ 1
α2

15
16
X + 14

16
.
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Proof. We have

PΣ(X) = #{x < X : ∃v ∈ Z3, QeΣ(v) = 1
α2x}

= #{x < 1
α2X : ∃v ∈ Z3, QeΣ(v) = x} = PeΣ( 1

α2X)

and

PeΣ(X) = #{x < X : x ∈ N0 ∧ x 6= 4a(16t+ 14), (a, t) ∈ N2
0}

≤ #{x < X : x ∈ N0 ∧ x 6= (16t+ 14), t ∈ N0}
≤ X −

[
X−14

16
+ 1
]
≤ 15

16
X + 14

16
.

Proposition 2.3.7. For X > 0 we have:

PΛ(X) ≥ 1
β2

7
8
X − 1

3 ln(9)
ln( 1

β2X) + ln (6)
3 ln (9)

− 1.

Proof. As in Proposition 2.3.6 we have

PeΛ(X) = #{x < X : x ∈ N0 ∧ x 6= 9a(9t+ 6), (a, t) ∈ N2
0}

≥ [X] − # {(a, t) ∈ N2
0 : 9a(9t+ 6) ≤ X}

≥ (X − 1) − 1
8
X − 1

3 ln(9)
ln (X) + ln (6)

3 ln (9)
.

If for some X0 > 0 the inequality PΛ(X0) > PΣ(X0) holds, then

σPΣ(X) > λPΛ(X) > λPΣ(X) for all X ≥ X0.

Hence λk < σk for all k ≥ PΣ(X0).
For X0 = 43 we have PΛ(43) ≥ 32.90 and PΣ(43) ≤ 32.87, and so a dominance of the
32-nd length. We can see that for our purpose taking the estimate of the k-th length is
more effective.

2.3.3 Other counter-examples?

With our simple strategy to look at “interesting” lattices, i.e. lattices with a small
Erdös number, small covolume, high multiplicities etc., we were not able to find other
counter-examples.
Reasoning as in Section 2.2 we find that the ternary lattices with the next smallest
Erdös numbers do not contradict Conjecture 2.1.1. For example the form associated
with A2 × 3A1 has the same values as the form x2

1 + 3x2
2 + 3x2

3. Hence it represents an
integer m if and only if m 6= 9a(3t + 2) cf. [Di1, Thm.IV]. With an analogue estimate
we get an upper bound of the k-th length that is dominated by the lower bound of σk

for k ≥ 20. And for the first 19 lengths, σk is strictly greater; though sometimes it is
really “close”, e.g. σ2 ≈ 1.587 and (a2 × 3a1)2 ≈ 1.513.
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For the cubic lattice the associated quadratic form represents all numbersm 6= 4a(8t+7)
and we can see once again that the σk are dominant for all k. The differences between
the first lengths are clearly greater; since the factor α becomes larger and larger it would
not be promising to go further in this direction with the next smallest Erdös numbers.

In higher dimensions this method would not be successful either, because all “inter-
esting” forms become universal, i.e. they represent all positive integers. Therefore
the statement becomes trivial because the lattices with the best known sphere pack-
ings have minimal covolume and so the greatest normalization factor. In dimension 4
the lattices with the first five smallest Erdös numbers are D4, A4, A3 × A1, A2 × A2

and A2 × A1 × A1 cf. [CoSl2, p.87]. For n ≥ 3, Dn are the even sublattices of Zn

whose coordinates add up to an even number (cf. Lemma 2.3.1, D3 = A3), hence
Dn = {x ∈ Z3 : x1 + ...+xn ≡ 0 (mod 2)} = {x ∈ Zn : |x|2 ≡ 0 (mod 2)}. And it is well
known that every number can be written as a sum of four integer squares. Therefore
QD4 represents all even numbers and so Q 1

2
D4

is universal. The universality of the form
associated with A4 can be seen by an easy local calculation, because 14, the first ex-
ception of QeΣ, is represented cf. proof of Lemma 2.3.1. For the other forms we can use
that Q 1

2
A2

has the same lengths as the form x2
1+3x2

2 and Q 1
2
A3

as the form x2
1+x2

2+2x2
3.

Hence we know a quaternary diagonal form with the same lengths. The universality
of this diagonal form can be checked simply by a table [Di2] or with use of the re-
markable Conway-Schneeberger Fifteen Theorem, which says that a classically integral
form is universal if and only if it represents all positive integers up to 15 cf. [Bh, Thm.1].

For the binary conjecture the only “interesting” root lattice is the square lattice. For
this lattice Moree and te Riele [MoRi, Thm.1] have shown (by completely different
methods) the stronger statement, that the k-th length of the non-normalised lattice
1
2
A2 is greater than or equal to the k-th length of the square lattice.

Finally we can resume that so far λ6 is the only known length that contradicts the
conjecture.

2.4 Irregular ternary forms

2.4.1 Introduction

The results of Section 2.3 may tempt us to believe that there are similar simple results
for all ternary arithmetic forms, cf. Remark 2.5.3. It appears, however, to be beyond the
reach of present methods to deal with Conjecture 2.1.1 in general because the situation is
very different for forms belonging to a genus with more than one class, or more precisely
for forms missing some integers which are not prohibited by congruence conditions. We
call such a form irregular . There is no known effective way of determining the integers
which are represented by irregular forms. In the following we discuss Conjecture 2.1.1
for two well-studied examples.
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2.4.2 Ramanujan’s form

In [Ram, p.14] Ramanujan investigated the representation of integers by quadratic
forms. In a footnote he discussed among others the irregular ternary form

Q eP (x) := x2
1 + x2

2 + 10x2
3 :

“Again, the even numbers which are not of the form x2 + y2 + 10z2 are the numbers

4λ(16µ+ 6),

while the odd numbers that are not of that form, viz.

3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, . . .

do not seem to obey any simple law.”

This form is often referred to in the literature as Ramanujan’s form. The genus of Q eP
consists of two classes and

Q eP ′(x) := 2x2
1 + 2x2

2 + 3x2
3 − 2x1x3

represents the other class. As a consequence of [DuSP, p.56 Cor.] the set of odd
exceptions is finite, but so far an explicit bound is not known. Besides the elements
in Ramanujan’s list there are two more discovered exceptions: 679 and 2719. Ono and
Soundararajan proved in [OnSo] depending on the validity of the generalized Riemann
Hypotheses that these are actually all exceptions.
However, since the determinant of Q eP is “great enough” we do not need the GRH to
check Conjecture 2.1.1. Similar to Section 2.3.2 we have:

#
{
(a, t) ∈ N2

0 : 4a(16t+ 6) ≤ k
}
≤ 59

528
k. (∗)

If we leave out every odd number ≥ 3 we get the estimate:

ρ̃2
k ≤ (2k − 1) + #{(a, t) ∈ N2

0 : 4a(16t+ 6) ≤ 2(k + 59
528
k

∞∑
j=0

( 59
528

)
j
)}

≤
(∗)

2118
469
k − 1.

The lower bound of σ2
k of Proposition 2.3.2 dominates the upper bound of ρ2

k := 1
3√10

· ρ̃2
k

for k ≥ 3, hence σk > ρk for all k.

2.4.3 The first nontrivial genus

Again we saw in Section 2.4.2 that the determinant of a form is crucial for Conjecture
2.1.1. Therefore we investigate the first irregular ternary example, meaning that the
determinant is smallest, the form

Q eK := x2
1 + x2

2 + 7x2
3
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or Q eK′ := x2
1 +2x2

2 +4x2
3 +2x1x3 which represents the second class respectively. Despite

a long history this first nontrivial case is still not completely understood, cf. [Ka]. To
deal with Conjecture 2.1.1 we first need the congruence conditions:

Lemma 2.4.1. The numbers which are not represented by one form in gen(Q eK) are
those belonging to one of the three classes

49a(49t+ 21), 49a(49t+ 35) or 49a(49t+ 42) for a, t ∈ N0.

Proof. Due to Theorem 1.3.2 it is sufficient to check if an integerm is locally represented
by one form in gen(Q eK). Again with Proposition 1.3.5 we have only to consider the
primes 2 and 7.

(a) p = 2: For m ≡ 1 (mod 2) there exists an x with Q eK(x) ≡ m (mod 23), because
Q eK represents 1, 11, 5, 7. If m ≡ 2 (mod 4) there exists an x with Q eK(x) ≡
m (mod 24), because Q eK represents 2, 38, 10, 30. If m ≡ 0 (mod 4) the proof is
similar to the one of Lemma 2.3.3, hence Q eK is universal in Z2.

(b) p = 7: For m 6≡ 0 (mod 7) there exists an x with Q eK(x) ≡ m (mod 7), because
Q eK represents 1, 2, 10, 4, 5, 13. If m ≡ 7 (mod 49), m ≡ 14 (mod 49) or m ≡
28 (mod 49) there exists an x with Q eK(x) ≡ m (mod 49), because QK represents
7, 63, 28. Since gen(Q eK) does not represent 21, 35 and 42 these numbers cannot
be represented locally by any form in the genus: Q eK(x) 6≡ 21 (mod 72), Q eK(x) 6≡
35 (mod 72) and Q eK(x) 6≡ 42 (mod 72). If m ≡ 0 (mod 49) we see that x2

1 + x2
2 ≡

0 (mod 7). That is if and only if x1 ≡ x2 (mod 7) ≡ 0 (mod 7). So x2
1 + x2

2 ≡
0 (mod 49) and finally x3 ≡ 0 (mod 7). Hence gen(Q eK) represents m if and only
if it represents m

49
.

Again the additional exceptions do not seem to obey a simple law:

3, 6, 14, 19, 22, 31, 51, 55, 66, 94, 139, 142, 147, 154, 159, 166 . . .

Yet with the following proposition from Kaplansky [Ka, Thm.2, Thm.3] we are able to
count out “enough” numbers which are represented by Q eK .

Proposition 2.4.2 (Kaplansky). Let m be a number which is represented by gen(Q eK).
Then we have:

(a) Q eK represents m if m ≡ 0 or 1 (mod 4).

(b) Q eK represents m if m ≡ 2 (mod 3) and m 6= 14t2.

Proposition 2.4.3. For every number m which is represented by Q eK there exist at
most

[
m
2

]
exceptions less than m.
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Proof. Obviously if m is any number greater than 4 there exist at most
[

m
2

]
numbers

less than m which are congruent to 2 or 3 (mod 4). Since 2 is represented by Q eK there
exist at most

[
m
2

]
such numbers for any represented m. Now we show that for every

congruence exception less than m there exists a (different) smaller number r which is
represented by gen(Q eK) such that r ≡ 2 (mod 3), r 6= 14t2 and r 6≡ 0, 1 (mod 4).

Let r′′ be of the form 49a(49t+ 21), then r′′ ≡ t (mod 3).
Define r′ := r′′ − 1, 2 or 3 according to t ≡ 0, 1 or 2 (mod 3). Additionally we define

(a) r := r′ if r′ 6≡ 0 or 1 (mod 4),

(b) r := r′ − 3 if r′ ≡ 1 (mod 4),

(c) r := r′ − 6 if r′ ≡ 0 (mod 4) and t 6≡ 0 (mod 3),

(d) r := r′ − 9 if r′ ≡ 0 (mod 4) and t ≡ 0 (mod 3).

Hence r ≡ 2 (mod 3), r 6≡ 0, 1 (mod 4) and r 6≡ 0 (mod 7), with Lemma 2.4.1 and
Proposition 2.4.2 follows that Q eK represents r with 0 < r < r′′.

We can do this analogously with the numbers of the form r′′2 = 49a(49t + 35) and
r′′3 = 49a(49t+42) but must be careful not to count a number twice. Since the numbers
are congruent to 21, 35 or 42 (mod 49) it is possible that r′′3−8, 9, 10 is equal to r′′2−1, 2, 3.
Therefore we define

(a) r2 := r′2 − 9 if r′2 ≡ 3 (mod 4) and

(b) r2 := r′2 − 3 if r′2 ≡ 2 (mod 4).

The remaining cases are similar as above.
Hence we get for all congruence exceptions different (smaller) numbers which are rep-
resented and not congruent to 0 or 1 (mod 4).

Corollary 2.4.4. The k-th length of QΣ is greater than the k-th length of QK for all
k ∈ N.

Proof. Suppose σ2
k = α2 · σ̃2

k ≤ 1
3√7

· κ̃2
k = κ2

k for one k ∈ N.

⇒ κ̃2
k ≥ α2 3

√
7 · σ̃2

k ≥ α2 3
√

7 · (17
16
k − 14

16
) > 2.56k − 2.11

If k ≤ 3 we have σk > κk, so let be k ≥ 4:

⇒ κ̃2
k > 2k

Hence κ̃2
k is of the form 2k + m with k,m ∈ N and there exist k + m exceptions less

than κ̃2
k. Since

k +m > 2k+m
2

≥
[

eκ2
k

2

]

we have a contradiction to Proposition 2.4.3.
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2.5 Ternaries with bounded multiplicities

2.5.1 Introduction

To support the guess that there exists only one counter-example we discuss Conjecture
2.1.1 for all ternary lattices with bounded multiplicities , i.e. there exists a number
b <∞ such that for all k the multiplicity satisfies

r(γ2
k) := #

{
x ∈ Zn : QΓ(x) = γ2

k

}
≤ b.

Remark 2.5.1. While the multiplicities of a binary form are bounded (from above by
4) if and only if the form is non-arithmetic cf. [Kü1, p.166 Rem.], the ternary case
is not that simple. Obviously a non-arithmetic ternary form that is arithmetic on a
rational plane has unbounded multiplicities. Furthermore Kühnlein has shown in [Kü2,
Cor.4.10] that a ternary form Q that does not admit an arithmetic plane has bounded
multiplicities (from above by 8) if and only if the dimension of the Q-subspace of R
which is generated by the coefficients of Q, denoted by δ(Q), is at least 3.

First we discuss only orthogonal lattices with bounded multiplicities. Without doubt,
orthogonality is a serious restriction, in particular the set of orthogonal lattices is a
nullset in the set of lattices, and we do not really need this special case for the general
one. But the following proof can guide us through the several cases of the general proof.

2.5.2 Orthogonal lattices

For this section, let Γ be an orthogonal ternary lattice with bounded multiplicities and
covolume 1. Hence there exist Q-linearly independent real numbers a, b, c with a·b·c = 1
and 0 < a < b < c such that

QΓ(x) = ax2
1 + bx2

2 + cx2
3.

Lemma 2.5.2. Let b ≤ 2 and c ≤ 4, then we have σk > γk for all k > 0.

Proof. Since a < 1 we have for all x ∈ Z3:

QΓ(x) = ax2
1 + bx2

2 + cx2
3 ≤ x2

1 + 2x2
2 + 4x2

3 =: QΨ(x).

In case that QΓ(x) = QΓ(x′) it follows that x2
i = x′i

2 for i = 1, 2, 3 because a, b, c are
linearly independent, so QΨ(x) = QΨ(x′). Thus the map

γ = QΓ(x) 7−→ ψ = QΨ(x)

is well-defined and surjective. Since QΓ(x) ≤ QΨ(x) for all x ∈ Z3 we have

γk ≤ ψk for all k ≥ 0.
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Furthermore QΨ represents a positive integer m if and only if m 6= 4a(16t+ 14) for all
a, t ∈ N0, cf. [Ram, p.13] resp. [Di1, Thm.V]. Accordingly QΨ represents m if and only
if QeΣ represents m:

⇒ ψk = σ̃k <
6
√

2 · σ̃k = σk for all k > 0.

Remark 2.5.3. Just like QΨ the form x2
1 + x2

2 + 2x2
3 represents an integer m if and

only if QeΣ represents m. Hence we see here two more amusing examples for arithmetic
lattices for which Conjecture 2.1.1 applies.

Proposition 2.5.4. Let Γ be an orthogonal ternary lattice with bounded multiplicities
and covolume 1. Then γk < σk for all k > 0.

Proof. Since a < 1 it follows that a < σ2
1.

If b < σ2
2 we have a+ b < σ2

1 + σ2
2 = σ2

3 and
if b ≥ σ2

2 we have a = 1
bc
< 1

b2
≤ 1

σ4
2
< 0.158, thus a · 4 < 0.632 < σ2

2 and a · 9 < 1.422 <

σ2
3. Altogether:

σk > γk for k = 1, 2, 3. (∗)

Now consider the 2-dimensional sublattice

Γ′ := Z

( √
a

0

)
⊕ Z

(
0√
b

)
.

Obviously γk ≤ γ′k. Kühnlein [Kü1, p.168] showed for the k-th length of an arbitrary
reduced binary lattice with bounded multiplicities

L := Z

(
r
0

)
⊕ Z

(
s
t

)
:

l2k ≤
(4k + 2)

√
( s

r
)2 + ( t

r
)
2

π(1
r
)
2 =

(4k + 2)r
√
s2 + t2

π
.

For Γ′ it follows:

γ′k
2 ≤ 4k + 2

π

√
ab.

The lower bound of σk of Proposition 2.3.2 dominates this upper bound for all k ≥ 4
if
√
ab ≤ 0.742 or c ≥ 1.817 respectively. Hence together with (∗) the claim follows for

c ≥ 1.817.
If c < 1.817 we can use Lemma 2.5.2 because then b < c < 2.
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2.5.3 General situation

Analogously to Proposition 2.5.4 we have:

Theorem 2.5.5. Let Γ be a ternary lattice with bounded multiplicities and covolume 1.
Then γk < σk for all k > 0.

The proof of this theorem will take the rest of Section 2.5.3. First we will avail ourselves
again of Kühnlein’s binary estimate to show in Lemma 2.5.6 and 2.5.9 that already the
lengths of the binary sublattice

Γ′ := Zb1 ⊕ Zb2

are dominated by Σ if it is “small” enough. Apart from that if Γ′ is “big” then the
diameter of a fundamental parallelotope of Γ is bounded from above. Hence we are able
to use volume arguments (Proposition 2.5.11) for these lattices to get an upper bound
for their lengths. It remains to treat the first few lengths of these lattices with small
diameter. Due to Lemma 2.5.8 it will suffice to consider the case that at least one of the
coefficients a13, a23, a33 is independent from QΓ′ . Then in every of these three cases we
will just “count out” enough lengths that are not contained in the length spectrum of
Γ′. Doubtless we will have to take great pains over this step (especially the last case),
but after all it will close the proof.

Lemma 2.5.6. Let Γ := Zb1 ⊕ Zb2 ⊕ Zb3 be a ternary lattice of covolume 1 given in
a reduced form such that the binary sublattice Γ′ := Zb1 ⊕ Zb2 is non-arithmetic and
|b1| · |b2| ≤ 0.742. Then γk < σk for all k > 0.

Proof. We take the rotated reduced lattice of the class of Γ such that

b1 =




r
0
0


 and b2 =




s
t
0


.

Hence we can use again Kühnlein’s binary estimate as in the orthogonal case.
It remains to treat the first three lengths. Different from the proof of Proposition 2.5.4
we must be careful that we do not count a length twice. Now it is possible that the
three basis vectors all have the same length, because then δ(Q) still can equal 3, cf.
Remark 2.5.1.

Due to |b1| <
√

0.742 < 0.862 < σ1 we have 2 |b1| < 1.723 < σ3 = 6
√

2
√

3.

(a) If now |b1| < |b2| < σ2 and 2 |b1| 6= |b2| all is good. In case of 2 |b1| = |b2| the

length |b1 − b2| ≤
√

|b1|2 + |b2|2 ≤
√

(1
2
σ2)2 + σ2

2 < 1.78 < σ3 and since Γ does

not contain an arithmetic plane |b1 − b2| is not commensurable with |b1| and |b2|.

(b) If |b2| ≥ σ2 then |b1| < 0.742
σ2

< 0.468, hence 2 |b1| < σ2 and 3 |b1| < σ3.
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(c) If |b1| = |b2| we pick out |b1 − b2| ≤
√

2 |b1|2 < σ2 as the second length, since

again a12 and a11 = a22 are incommensurable.

Corollary 2.5.7. Let Γ := Zb1 ⊕ Zb2 ⊕ Zb3 be a ternary lattice of covolume 1 given
in a reduced form such that the binary sublattice Γ′ is non-arithmetic and |b3| ≥

√
2

0.742
.

Then γk < σk for all k > 0.

Proof. With e3 ⊥ b1, b2 we have

1 = cov(Γ) = sin(�(b1, b2)) · cos(�(b3, e3)) |b1| |b2| |b3| .

Denote ω := �(b1, b2). Since the basis is reduced (cf. Section 1.2) it is easy to see that

sin(ω) · cos(�(b3, e3)) ≥ sin(ω) ·
√

3

4
− 1 − cos(ω)

4 · (1 + cos(ω))
≥

√
2

2
.

Similarly in the case, that the multiplicities of the lengths of Γ′ are bounded by 2, it
follows that all lengths of Γ are dominated by those of Σ:

Lemma 2.5.8. Let Γ := Zb1 ⊕Zb2 ⊕Zb3 be a ternary lattice of covolume 1 given in a
reduced form such that the binary sublattice Γ′ is non-arithmetic with δ(QΓ′) = 3. Then
γk < σk for all k > 0.

Proof. If δ(QΓ′) = 3, then obviously the multiplicity of a nonzero length of Γ′ is 2.
Since the coefficients a11, a12, a22 are Q-linearly independent two linearly independent
vectors in Γ′ cannot have the same length. Hence 2PΓ′(X2)−1 is at least the number of
elements in Γ′ of length ≤ X. We will now give the binary estimate for this special case
in more details (for the general calculation see [Kü1, p.167]). First we will estimate the
number 2PΓ′(X2) − 1 from above. To that end let x and y denote the coordinates of
the lattice points with respect to the basis vectors (1, 0)T and ( s

r
, t

r
)T . By solving the

corresponding quadratic equation we have:

2PΓ′(X2) ≥
[X]∑

x=−[X]

(
1 +

2
√

X2(( s
r
)2+( t

r
)2)−x2( t

r
)2

( s
r
)2+( r

t
)2

)
+ 1

≥ 2X + 2√
( s

r
)2+( t

r
)2

[X]∑
x=−[X]

√
X2 − x2

≥ 2X + 2√
( s

r
)2+( t

r
)2

[
X∫

−X

√
X2 − x2 dx−X

]

≥ X2π√
( s

r
)2+( t

r
)2
.
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This gives

γ̃′"
X2π

2·

√
( s

r )2+( t
r )2

# ≤ X

and thus for the normalised k-th length

(γ′k)
2 ≤ 2k + 2

π
r
√
s2 + t2.

Due to the proof of Corollary 2.5.7 and Lemma 2.5.6 we can assume that

|b1| · |b2| ≤
√

2

|b3|
≤

√
2

|b2|
≤

√
2√

0.742
< 1.64.

Hence we have

(γ′k)
2 ≤ 2k + 2

π
· 1.64.

The lower bound of σk dominates this upper bound for all k ≥ 8. Compared to the
exact values of Σ we even have a dominance for k ≥ 5. The first four lengths are
quite simple in this case because two linearly independent elements of Γ′ have different
lengths:
We always have |b1| < σ1, if |b2| < σ2 then |b1 − b2| < σ3 and 2 |b1| < σ4. If |b2| ≥ σ2

we have again due to the proof of Corollary 2.5.7 |b1| ≤
√

2
|b2|·|b3| ≤

√
2

|b2|2
≤

√
2

σ2
2
< 0.561.

Hence 2 |b1| < σ2, 3 |b1| < σ3 and |b2| ≤ |b3| < 1.906 < σ3 < σ4.

In contrast to that the general binary estimate becomes ineffective when |b1| · |b2| grows.
Strictly spoken if |b1| · |b2| > 3

√
2 · 17

16
· π

4
≈ 1.0514 it always dominates the upper bound

of Σ asymptotically. Unfortunately we are not able to estimate the lengths using a
comparison to a nice arithmetic form as in the orthogonal case. But as the first length
grows the complete length spectrum of Γ draws near to the complete length spectrum
of Σ, hence we can use volume arguments cf. Section 3.1. To simplify these matters we
will go a further step with the binary estimate in the next lemma.

Lemma 2.5.9. Let Γ := Zb1⊕Zb2⊕Zb3 be a ternary lattice with bounded multiplicities
and covolume 1 given in a reduced form such that |b1| · |b2| ≤ 1. Then γk < σk for all
k > 0.

Proof. Due to Lemma 2.5.6 and Lemma 2.5.8 we are able to assume for the proof that
|b1| · |b2| > 0.742 and that δ(QΓ′) = 2. Furthermore we claim that one of the lengths |b3|,
|b1 − b3|, |b2 − b3| is not an element of the length spectrum of Γ′. If |b3| is a length of Γ′

then the dimension of the Q-subspace which is generated by a11, a12, a22, a33, denoted by
δ(a11, a12, a22, a33), equals δ(QΓ′) = 2. Since δ(QΓ) ≥ 3 it follows that a13 or a23 cannot
be written as a linear combination of a11, a12, a22. Hence |z1b1 − z3b3| or |z2b2 − z3b3|
is no length of Γ′ for all z1, z2, z3 ∈ Z r {0}. (Without loss of generality we assume
a23 ≥ 0, otherwise replace b3 by −b3.)
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According to that if for a k0 the length |b3| or |b1 − b3| or |b2 − b3| is less than σk0 , then
we have for k ≥ k0

γ2
k ≤ (γ′k−1)

2 ≤ 4k − 2

π
|b1| · |b2| ≤

4k − 2

π
.

This new upper bound is dominated by the bound of Σ for k ≥ 8. If we compare the
bound with the first seven exact values of Σ, cf. Table 2.4, we can see that it remains
to deal with the lengths less than σk0 .

Table 2.4: Lengths 2-7

k 2 3 4 5 6 7

4k−2
π

1.91 3.18 4.46 5.73 7.01 8.28

σ2
k 2.52 3.78 5.03 6.30 7.56 8.82

In any case we can again assume that

|b3| < σ3, |b1 − b3| ≤
√

|b1|2 + |b3|2 ≤
√

3
√

2 + 1.9062 < 2.22 < σ4 and |b2 − b3| ≤√
2 · 1.906 < 2.70 < σ6. To be on the safe side we therefore have to collect five lengths,

again we must keep in mind not to count a length twice:

(a) Let now |b1| < |b2| < σ2 then |b2 − b3| <
√
σ2

2 + 1.9062 < 2.48 < σ5.
If now |b2| 6= |b3| we can take |b3| for the third length and 2 |b1| for the fourth in
case that 2 |b1| does not equal |b2| and |b3|. Otherwise we can choose |b1 − b2| or
|b1 − b3| <

√
1 + 1.9062 < σ4 because Γ does not contain an arithmetic plane.

If on the other side |b2| = |b3|, and so we have already counted this length, then
|b1 − b3| ≤

√
1 + σ2

2 is less than σ3 and if |b2| < 1.374 then also |b2 − b3| <√
2 |b2|2 < 1.9432 < σ3.

And in case of |b2| ≥ 1.374 we have |b1| < 1
1.374

and so we find either 2 |b1| or

|b1 − b2| as the third length. Finally in this case |b2 − b3| <
√

2σ2
2 = σ4.

(b) If |b2| ≥ σ2 then again |b1| < 0.561 hence 2 |b1| < σ2, 3 |b1| < σ3 and 4 |b1| < σ5.
If now |b2| and |b1| are incommensurable then |b2| can be choosen for the fourth
length.
If |b1| and |b2| are commensurable then |b1 − b2| does not equal multiples of |b1|
and is less than σ4. (This holds analogously for |b3|.)

(c) If finally |b1| = |b2|, both lengths |b1 − b3| and |b2 − b3| are less than σ4. For the
second length we pick |b1 − b2| <

√
2σ2

1 and for the third length |b3|,
or in case that we have already previously counted |b3| with |b1| or |b1 − b2| both
lengths |b1 − b3| , |b2 − b3| are already less than σ3.
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Corollary 2.5.10. Let Γ := Zb1 ⊕ Zb2 ⊕ Zb3 be a ternary lattice with bounded multi-
plicities and covolume 1 given in a reduced form such that |b3| ≥

√
2. Then γk < σk for

all k > 0.

Proposition 2.5.11. Let Γ be a ternary lattice with bounded multiplicities and denote
by d the diameter of a fundamental parallelotope and by B(X) the 3-dimensional ball
with radius

√
X. Then we have

PΓ(X) ≥ 1

8
(vol(B((

√
X − d

2
)2)) + 7).

Proof. Since the multiplicities of Γ are bounded by 8 and due to the fact that the
multiplicity of 0 is 1, 8PΓ(X) − 7 is at least the number of elements in Γ of length less
than

√
X. And this number is greater than vol(B((

√
X − d

2
)2)), cf. proof of Theorem

3.1.1.

If for some X0 > 0 the inequality PΓ(X) > PΣ(X) holds for all X ≥ X0, then

σPΣ(X) > γPΓ(X) > γPΣ(X) for all X ≥ X0.

Hence λk < σk for all k ≥ PΣ(X0).
With the bound of Proposition 2.3.6 we get

PΓ(X) − PΣ(X) ≥ π
6

(
X

3
2 − 3d

2
X + 3d

4

2
X

1
2 − d

8

3
+ 21

4π

)
−
(

1
3√2

15
16
X + 14

16

)

= π
6
X

3
2 −

(
1
3√2

15
16

+ π
2
· d

2

)
X + π

2
· d

4

2
X

1
2 − π

6
· d

8

3
.

We take note that PΓ(15.57(d
2
)2) − PΣ(15.57(d

2
)2) > 0 because d ≥

√
3, the minimal

diameter of the cubic lattice.

Now let Γ be such that |b1| · |b2| > 1, cf. Lemma 2.5.9. Hence we get
|b1| · |b2| = (sin(�(b1, b2)) ·cos(�(b3, e3)) · |b3|)−1 ≤

√
2 · 1

|b2| ≤
√

2 and also |b1| · |b3| ≤
√

2,
so

d2 = |b1|2 + |b2|2 + |b3|2 + 2 |b1| · |b2| · cos(�(b1, b2))

+2 |b1| · |b3| · cos(�(b1, b3)) + 2 |b2| · |b3| · cos(�(b2, b3))

≤ |b1|2 + |b1| |b2| + |b1| |b3| + 3 |b3|2 ≤ 3
√

2 + 2
√

2 + 6.

Hence λk < σk for all k ≥ PΣ(15.57 · 3√2+2
√

2+6
4

), and this number is less than 31. It
remains (the ugly part of the proof) to collect the first 30 lengths.
Therefore we play the same game as in the proof of Lemma 2.5.9, but repeatedly. Again
we keep in mind that we can assume that |b1| · |b2| > 1 and that (due to Lemma 2.5.8)
we are able to exclude that δ(QΓ′) = 3.
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(A) First we consider the case that δ(a11, a12, a22, a33) = 2 and a13 cannot be written
as Q-linear combination of the coefficients of QΓ′ . As already discussed above then for
all z1, z3 ∈ Zr {0} we have |z1b1 + z3b3| 6= |γ′| for all γ′ ∈ Γ′. And for two such lengths
|z1b1 + z3b3| and |z′1b1 + z′3b3| to be equal we necessarily have z1z3 = z′1z

′
3. Therefore

we avoid problems if we always pick out only one length with the given product z1z3.
Table 2.5 gives enough lengths to conclude this case, whereas we use again that Γ is
reduced, for example by the estimate |b1 + b3|2 ≤ |b1|2 + |b3|2 +2 |b1| |b3| cos(�(b1, b3)) <
3
√

2 + 2 +
√

2 < σ4.

Table 2.5: Lengths /∈ Γ′

z1z3 −1 1 −2 2

|b1 − b3| < σ3 |b1 + b3| < σ4 |2b1 − b3| < σ6 |2b1 + b3| < σ8

−3 −4 3 4

|3b1 − b3| < σ11 |2b1 − 2b3| < σ11 |3b1 + b3| < σ14 |2b1 + 2b3| < σ14

−6 −5 6 5

|3b1 − 2b3| < σ15 |5b1 − b3| < σ26 |3b1 + 2b3| < σ26 |5b1 + b3| < σ31

Again |b1| < σ1, |b2| or |b1 − b2| < σ2, and similarly as in previous cases we can choose
either 2 |b1| or 3 |b1| or |2b1 − b2| for the fifth length. With |b1 − b3|, |b1 + b3| and
|2b1 − b3| we have three different lengths that are not in the length spectrum of Γ′ and
that are less than σ3, σ4 and σ6 respectively. Hence for k ≥ 7 we have

γ2
k ≤ (γ′k−3)

2 ≤ 4k − 10

π
|b1| |b2| ≤

4k − 10

π

√
2.

If we compare this new upper bound with the exact values σk we have a dominance for
k ≤ 8. Continuing, the length |2b1 + b3| is less than σ8, hence for k ≥ 9

γ2
k ≤ (γ′k−4)

2 ≤ 4k − 14

π

√
2.

This new upper bound is dominated by the bound of Σ for k ≤ 11. |3b1 − b3| and
|2b1 − 2b3| < σ11, hence for k ≥ 12

γ2
k ≤ (γ′k−6)

2 ≤ 4k − 22

π

√
2.
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This new upper bound is dominated by the bound of Σ for k ≤ 19. The lengths
|3b1 + b3|, |2b1 + 2b3| and |3b1 − 2b3| are less than σ19, hence for k ≥ 20

γ2
k ≤ (γ′k−9)

2 ≤ 4k − 34

π

√
2.

This upper bound finally is dominated by the bound of Σ for k ≤ 30, which concludes
this case.

(B) Next we discuss the case that all lengths |z2b2 − z3b3| are not in the length spec-
trum of Γ′, to be exact that δ(a11, a12, a22, a33) = 2 and δ(a11, a12, a22, a23) = 3. Since
we can only assume that |b2| ≤ |b3| <

√
2 the estimates of these lengths are always

greater. Hence we have to collect more carefully, i.e. we need additional lengths that
are not elements of the length spectrum of Γ′. Due to case (A) we can also assume that
δ(a11, a12, a22, a13) = 2. Hence all lengths |z1b1 + z2b2 + z3b3| with z1, z2, z3 ∈ Zr{0} are
not contained in the length spectrum of Γ′. And such a length only equals z′2b2 + z′3b3

if z2z3 = z′2z
′
3. For z2z3 = 1 we pick |b1 + b2 + b3| <

√
3
√

2 + 2
√

2 + 6 < σ9, but
|b2 + b3| is the only length used with z2z3 = 1. If they were equal it would follow that
a11 + 2a12 + 2a13 = 0 and that contradicts a11 > 0 and a12, a13 ≥ 0. The second ad-

ditional length we need is |b1 + b2 − b3| <
√

3
√

2 + 4 +
√

2 < σ6. If it equals |b2 − b3|
then a11 + 2a12 − 2a13 = 0. Since additionally 2a13 ≤ a11 it follows that 2a13 = a11 and
a12 = 0. If that is the case we pick |b1 − b2 + b3| < σ6, where the conditions would be
2a12 = a11 and a13 = 0.

Furthermore we have the lengths |b2 − b3| < σ4, |b2 + b3| < σ5 and |2b2 − b3| < σ8.
Hence to start the game again we must treat the first three and the seventh length. As
always |b1| < σ1, and if |b1| = |b2| then the estimates are the same as in the first case.
Thus let |b1| 6= |b2|, hence our second length is |b2|. If now |b2| 6= |b3| this is the third
and 2 |b3| < σ7. If |b2| = |b3| then |b1 − b2| 6= |b1| , |b2| is less than σ3 and again we can
surely choose 2 |b3| < σ7.

Hence we get for k ≥ 10

γ2
k ≤ (γ′k−5)

2 ≤ 4k − 18

π
|b1| |b2| ≤

4k − 18

π

√
2.

This new upper bound is dominated by the bound of Σ for k ≤ 15. Continuing, the
lengths |2b2 + b3|, |2b2 − 2b3| and |3b2 − b3| are less than σ15. Hence for k ≥ 16

γ2
k ≤ (γ′k−8)

2 ≤ 4k − 30

π

√
2.

This upper bound now is dominated by the bound of Σ for k ≤ 26. Finally the length
|2b2 + 2b3| is less than σ26. Hence for k ≥ 27 the k-th length of Γ is less than γ′k−9.
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(C) The last case is that already δ(a11, a12, a22, a33) = 3. Here it is easy to find plenty
of lengths that are not lengths of Γ′, but it is not so obvious that they are all different.
Therefore we are not able to avoid some more cases.

At first z · |b3| does not lie in the length spectrum of Γ′ for all z ∈ N. For our game this
always gives us three lengths, less than σ2, σ7 and σ14.

Furthermore we remember Lemma 2.5.8: since |b1| · |b3| ≤
√

2 < 1.64 there is nothing
to show if δ(a11, a13, a33) = 3. Thus let δ(a11, a13, a33) = 2. As assumed in this case a11

and a33 are incommensurable, hence a13 can be uniquely written as

a13 = q1a11 + q3a33, q1, q3 ∈ Q.

Therefore we have

|z1b1 + z3b3|2 = (z2
1 + 2z1z3q1)a11 + (z2

3 + 2z1z3q3)a33.

In case of q1, q3 6= 1
2

the lengths z · |b1 − b3|, z ∈ N, are incommensurable with a11 and
with a33, hence they are not lengths of Γ′ and do not equal z′ · |b3|. This gives three
more lengths, less than σ3, σ11 and σ23 respectively.

Next we look at the sublattice Zb2⊕Zb3. If δ(a22, a23, a33) = 3 we can employ all lengths
|z2b2 + z3b3|, the interesting case is that a23 = q′2a22 + q′3a33. If q′2, q

′
3 6= 1

2
then analo-

gously we can choose the lengths z · |b2 − b3|, less than σ4 and σ13. To avoid still more
cases we consider now q′2 = 1

2
, then |z2b2 + z3b3|2 = (z2

2 + z2z3)a11 + (z2
3 + 2z1z3q3)a33.

Hence we can choose (z2, z3) = (2,−1), (1,−2) if q′33 ≤ 0 and (z2, z3) = (2, 1), (1, 2) if
q′33 > 0 respectively. Then the coefficients of (z2

2 +z2z3) and (z2
3 +2z1z3q3) surely do not

equal zero and are all different. These lengths are less than σ12. Thus we do not make
a mistake with this sublattice if we count two lengths less than σ12 and σ13 (obviously
we can change the roles of q′2 and q′3).

We need at least one more (small) length. If q1, q3 6= −1
2

then also |b1 + b3| is not a
length of Γ′ and is unequal to z·|b3|, but it could equal one of the already counted lengths

z · |b1 − b3|. On the one hand |b1 + b3| < 2.16 and on the other hand z · |b1 − b3| > z
√

3
2
,

thus z = 1 remains the only possibility, hence we exclude now the case q1 = q3 = 0.
Then |b1 + b3| is the next length less than σ4.
In the excluded case of q1 = q3 = 0 we can see by pluging in that |2b1 − b3| is not used
already and do not lie in the length spectrum of Γ′ (remember that a11 and a33 are
incommensurable). Furthermore if q1 = −1

2
(or q3 = −1

2
) then q3 > 0, otherwise a13

would be negative. Hence |2b1 + b3|2 = 2a11 + (1 + 4q3)a33 fulfils all conditions since
1 + 4q3 6= 0 and no used length has a11-part 2. Both of these lengths are less than σ8,
thus in all cases we are able to count one last length which certainly is less than σ8.

Now we have collected 9 lengths and can start the game:
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We simplify matters for the first lengths if we observe that the cases (A) and (B) also
hold for the sublattice Zb1 ⊕ Zb3, hence we can assume that a11 is incommensurable
with a22 too. Then |b1| < σ1, |b2| < σ4 and 2 |b1| < σ5. With analogous arguments as
before one of the lengths |b1 − b2|, |b1 + b2|, |2b1 + b2| is independent from |b1| and |b2|
and all of them are less than σ6. Additionally we have found lengths less than σ2, σ3, σ7

and σ8 that are not in the length spectrum of Γ′. Hence we get a new bound which is
dominated for k ≤ 11. Next we have lengths less than σ11, σ12, σ13 and σ14. Thus we
get a new bound for k ≥ 15 with γk ≤ γ′k−8. This gives a dominance for k ≤ 26 and
finally the 9-th length is less than σ23.

It remains to deal with the case q1 or q3 equals 1
2
. We still can use the lengths z · |b3|

and the lengths from Zb2 ⊕ Zb3. We now start with the first lengths: |b1| < σ1,
|b2| < |b3| < σ2 and 2 |b1| < σ4 (obviously they are different). Furthermore the length
|b1 + b2| either equals 2 |b2| or it is incommensurable with |b1| and with |b2|, hence
we have the fifth length. Similarly we can use |b1 − b3| or |b1 + b3| or in case that
(q1, q3) = (1

2
,−1

2
) we choose |2b1 + b3|2 = 6a11 − a33 as the sixth length, which is not a

length of Γ′. The rest follows as usual, let q1 = 1
2

then

|z1b1 + z3b3|2 = (z2
1 + z1z3)a11 + (z2

3 + 2z1z3q3)a33.

Hence we choose (z1, z3) = (2, 1), (1, 2), (3, 1), or (z1,−z3) if q3 < 0. Since a11 and a33

are incommensurable it is easy to be seen that these lengths are all different and are
either no lengths of Γ′ and that they are not already used. Obviously this holds analo-
gously for q3 = 1

2
. Hence we have four additional lengths that are less than σ6, σ8, σ10

and σ14. Finally in this case we have collected 9 lengths that run through the bounds
as before.

All together we have finished the proof of Theorem 2.5.5.

Remark 2.5.12. Together with Proposition 2.3.5 we get the amusing fact that for all
ternary lattices Γ with bounded multiplicities the sixth length γ6 is less than the sixth
length λ6 of the honeycomb lattice.

2.5.4 Higher dimensions

In contrast to the binary and ternary case we do not know exactly how the lattices with
bounded multiplicities in higher dimensions look like. So the ideas of the ternary proof
will not give us a good approach, but a criterion, when a lattice of a higher dimension
with bounded multiplicities certainly fulfils Conjecture 2.1.1.

For effective results we first need an upper bound for the lengths of Σ3. Here as before
Σn denotes the normalised lattice with the best known sphere packing in dimension
2 ≤ n ≤ 8 cf. Table 2.1 and, if it is clear in which dimension we are, σk its k-th length.

Proposition 2.5.13. For the k-th length σk of Σ3 we have: σk ≤ α ·
√

600
547
k.
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Proof. Following the proof of Proposition 2.3.4 we have
#{t ∈ N0 : 4a(16t+ 14) ≤ k} = 0 if 4a · 14 > k for a ∈ N0, hence

# {(a, t) ∈ N2
0 : 4a(16t+ 14) ≤ k}

=
[log4( k

14
)]∑

a=0

# {t ∈ N0 : 4a(16t+ 14) ≤ k}

=
[log4( k

14
)]∑

a=0

[
k−4a·14
4a·16 + 1

]
≤

[log4( k
14

)]∑
a=0

(
k

4a·16 + 1
8

)

≤ k
16

·
∞∑

a=0

1

4a

︸ ︷︷ ︸
= 1

1− 1
4

+
[log4( k

14
)]∑

a=0

1
8

= 1
12
k + 1

8 ln (4)
ln(k) − ln (14)

8 ln (4)
.

It is easy to see that 1
ln (4)

ln(k)− ln (14)
ln (4)

≤ 1
25
k for all k ∈ N and this estimate will do all

that we need:

# {(a, t) ∈ N2
0 : 4a(16t+ 14) ≤ k} ≤ 1

12
k + 1

8
· 1

25
= 53

600
k (∗)

⇒ λ̃2
k ≤ k + #{(a, t) ∈ N2

0 : 4a(16t+ 14) ≤ k + 53
600
k

∞∑
j=0

( 53
600

)
j}

≤ k + #{(a, t) ∈ N2
0 : 4a(16t+ 14) ≤ 1 53

547
k} ≤

(∗)
1 53

547
k.

Corollary 2.5.14. Let Γ be a quaternary lattice with covolume 1 such that there exists a
ternary sublattice Γ′ of Γ with bounded multiplicities and cov(Γ′)2 ≤

√
2(547

600
)3 ≈ 1.0716.

Then the lengths of Σ4 dominate the lengths of Γ.

Proof. The form QeΣ4
is universal and its determinant is 1

4
, hence σ2

k =
√

2k. With
Theorem 2.5.5 and Proposition 2.5.13 follows

γ2
k ≤ (γ′k)

2 < 3
√

cov(Γ′)2 · α2 · 600

547
k ≤ 6

√
2 · 547

600
· 3
√

2 · 600

547
k =

√
2k.

Obviously we can give this criterion in a more general way:

Corollary 2.5.15. Let Ξ̃ be an integral universal n-dimensional lattice, n ≥ 4, Γ an n-
dimensional lattice of covolume 1 with a ternary sublattice Γ′ with bounded multiplicities
such that

cov(Γ′)2 ≤
(

1

α2
· 547

600
· cov(Ξ̃)−

2
n

)3

.

Then the lengths of the normalised lattice Ξ dominate the lengths of Γ.



2.5. TERNARIES WITH BOUNDED MULTIPLICITIES 37

Proof. Similar to Corollary 2.5.14 we have

γ2
k ≤ (γ′k)

2 < 3
√

cov(Γ′)2 · α2 · 600

547
k ≤ cov(Ξ̃)−

2
n · k = ξk.

With regard to Conjecture 2.1.1 the bounds of the covolume of Γ′ for Σn (4 ≤ n ≤ 8)
are given in Table 2.6.

Table 2.6: Bounds of cov(Γ′)

n 4 5 6 7 8

cov(Σ̃n)2 1
4

1
8

3
64

1
64

1
256

cov(Γ′)2 ≤ 1.0715 1.3192 1.7498 2.2519 3.0308





Chapter 3

Complete length spectrum

3.1 Introduction

It may be surprising that in Chapter 2 the multiplicities of the lengths do not play a
role at all. This is contrary to the usual definition of the length spectrum of a surface.
But Schmutz Schaller showed in [Schm1, p.202] that in the hyperbolic case the existence
of a surface with maximal (complete) length spectrum is excluded. More precisely he
showed that for all surfaces M of genus g ≥ 2 there exists a surface M ′ in a small
neighbourhood of M in the moduli space of surfaces of genus g, such that at least one
of the closed geodesics is longer in M ′ than in M .

In this chapter we discuss the corresponding Euclidean results. Therefore once again
we sort the lengths of the elements of a lattice Γ in Rn according to size, but now
considering the multiplicities of these lengths:

0 = γ
(c)
0 < γ

(c)
1 ≤ γ

(c)
2 ≤ γ

(c)
3 ≤ γ

(c)
4 ≤ ...

where in the sequel γ
(c)
k denotes the k-th complete length of Γ.

Since for all lattices with the same covolume the number of lattice points whose lengths
do not exceed X behave asymptotically similar, we cannot even expect an asymptotical
dominance as in Section 2.2. Crude volume arguments give:

Theorem 3.1.1. Let Γ be a lattice with basis {b1, ..., bn} and Bn(X) the n-dimensional
ball with radius

√
X. Then we have

(a) SΓ(X) := #(Γ ∩Bn(X)) = 1
cov(Γ)

vol(Bn(X)) + O(X
n−1

2 )

(b) SΓ(X) = 1
cov(Γ)

vol(Bn(X)) + Ω(X
n
2
−1), if Γ is arithmetic.

Proof. At this place we give a brief proof, for further information see [Fr] and the
historical remarks given therein.

(a) We consider for every lattice point γ =
n∑

i=1

γibi ∈ Γ the parallelotope

ϑ(γ) := {x ∈ Rn : ∀i = 1, ..., n : γi −
1

2
|bi| ≤ xi ≤ γi +

1

2
|bi|}

39
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and build the polyhedron

P (X) :=
⋃

γ∈Bn(X)

ϑ(γ)

with vol(P (X)) = cov(Γ)SΓ(X). For this polyhedron we have the inclusions
(assume

√
X > d

2
)

Bn((
√
X − d

2
)2) ⊂ P (X) ⊂ Bn((

√
X +

d

2
)2),

where d again is the diameter of a fundamental parallelotope. Now, if we compare
the volumes we obtain

vol(Bn((
√
X − d

2
)2)) ≤ vol(P (X)) ≤ vol(Bn((

√
X + d

2
)2)),

π
n
2

Γ (n
2
+1)

(
√
X − d

2
)n ≤ cov(Γ)SΓ(X) ≤ π

n
2

Γ (n
2
+1)

(
√
X + d

2
)n,

here Γ is the Gamma function.

(b) Assume for an integral lattice Γ (for simplicity let cov(Γ) = 1)

lim
X→∞

cov(Γ)SΓ(X) − vol(Bn(X))

X
n
2
−1

= 0.

Since SΓ(X) = SΓ([X]) we have for N ∈ N

vol(Bn(N + 1
2
)) − vol(Bn(N))

N
n
2
−1

=
SΓ(N) − vol(Bn(N))

N
n
2
−1

− SΓ(N + 1
2
) − vol(Bn(N + 1

2
))

(N + 1
2
)

n
2
−1

· (1 +
1

2N
)

n
2
−1.

This contradicts vol(Bn(N + 1
2
)) − vol(Bn(N)) = Ω(N

n
2
−1).

Although we can prove that a lattice with maximal complete lengths does not exist for
any dimension n ≥ 2, let us first consider the case 2 ≤ n ≤ 8 to point out the essential
difference between the knowledge in the first eight and in higher dimensions.
Then in the following section we discuss the next natural question, if there exist two
lattices at all such that the complete lengths of one lattice dominate the complete
lengths of the other.
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3.2 Maximal complete lengths

3.2.1 Dimensions 2 to 8

Theorem 3.2.1. In dimensions 2 to 8 a lattice with “maximal complete lengths” does
not exist, i.e. there is no lattice such that for all k ≥ 0 its k-th complete length is greater
or equal than the k-th complete length of any other lattice in the same dimension with
the same covolume.

Proof. Since a lattice with maximal complete length spectrum must have a maximal
first length the only possible lattices are the lattices with the best known sphere pack-
ings of Table 2.1. We know their first length and especially the multiplicity of this
length. Therefore we can easily give a lattice that is not dominated by Σn. Although
we could try any lattice (and probably we would succeed sooner or later) we will give
a more general example:

Therefore let σ1 be the first length of the normalised lattice Σn with the best known
sphere packings in dimension n ∈ {2, ..., 8} and r(σ2

1) its multiplicity cf. Section 2.5.1.

Remark 3.2.2. Once again we touch an old problem here, closely related to the packing
problem: finding the maximum of the so called kissing numbers in any dimension, i.e.
the number of spheres of a packing that touch one sphere. Since for lattice packings the
kissing number is the same for every sphere it is equal to the multiplicity of the first
length. Among lattices the optimal kissing numbers are known in dimension 1 to 8 and
24. It is less surprising that the lattices with the best known sphere packings realize
these numbers for n ≤ 8. Therefore r(σ2

1) is optimal among all lattices.
The general kissing number problem is only known in dimensions 1, 2, 3, 8 and 24, but
in no other dimension cf. [CoSl4, Chap.1.2].

Table 3.1 gives the first length and the kissing number of Σn cf. [NeSl].

Table 3.1: Kissing numbers of the best known sphere packings

n 2 3 4 5 6 7 8

σ2
1

q
4
3

3
√

2 4
√

4 5
√

8 6

q
64
3

7
√

64 2

≈ 1.15 ≈ 1.26 ≈ 1.41 ≈ 1.52 ≈ 1.67 ≈ 1.81 2

r(σ2
1) 6 12 24 40 72 126 240

n

s„
r(σ2

1
)

2

«2

3 ≈ 3.30 ≈ 3.46 ≈ 3.31 ≈ 3.30 ≈ 3.26 ≈ 3.31
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Hence we are able to choose ε with 0 < ε < n

√(
r(σ2

1)

2

)2

−σ2
1. Furthermore for 2 ≤ n ≤ 8

we define the orthogonal quadratic form

QΓn,ε
(x) := xT ·




a 0 · · · 0

0
n−1
√
a−1 . . .

...
...

. . . . . . 0

0 · · · 0
n−1
√
a−1


 · x, with a :=

σ2
1+ε„

r(σ2
1)

2

«2 .

By choice of ε we have
n−1
√
a−1 > σ2

1 + ε. And since QΓn,ε
is given in a reduced form,

the r(σ2
1)-th complete length of Γ is

r(σ2
1)·√a

2
and therefore strictly greater than σ

(c)

r(σ2
1)

:

(γ
(c)

r(σ2
1)

)2 =

(
r(σ2

1)

2

)2
σ2

1 + ε
(

r(σ2
1)

2

)2 = σ2
1 + ε > σ2

1 = (σ
(c)

r(σ2
1)

)2.

This proves Theorem 3.2.1.

3.2.2 General situation

Now we want to show the analogous result in any arbitrary dimension n ≥ 2 but in
contrast to Section 3.2.1 we do not know the biggest possible first length or its multi-
plicity. Nevertheless we are able to give the stronger result that even locally, i.e. in any
small region around a given lattice, a lattice with maximal complete lengths does not
exist.

For this purpose we use the well known fact that two different norms on Rn are equiv-
alent:

Lemma 3.2.3. Let Q be a positive definite form in Rn and denote the ordinary Eu-
clidean length by | · |. Then Q(x) ≥ cQ |x|2 for all real vectors x, where cQ > 0 is the
lower bound of Q(x) with |x| = 1.

Proof. Q(x) is continuous and so attains the lower bound cQ on the compact set |x| = 1.
Since Q is positive definite cQ > 0.

Theorem 3.2.4. Let Γ be a lattice in Rn with n ≥ 2. Then there exists a lattice Γ′

arbitrarily close to Γ such that the complete lengths of Γ do not dominate the complete
lengths of Γ′.

Proof. Let Γ be a lattice with a reduced basis B = {b1, b2, . . . , bn}. For 0 < ε < 1
we define the lattice Γ′ := Γε by its basis Bε := {εb1, b2, . . . , bn−1,

1
ε
bn}. Obviously Γε

has the same covolume as Γ and |εb1| < |b2| ≤ . . . ≤ |bn−1| <
∣∣1

ε
bn
∣∣, while Γε is not

necessarily reduced.
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As usual aij are the entries of the matrix AΓB
of the associated form. We have for all

x ∈ Zn:
dε(x) := QΓ(x) −QΓε

(x)

= (1 − ε2)a11x
2
1 + (1 − 1

ε2
)annx

2
n + 2(1 − ε)

n−1∑

j=2

a1jx1xj + 2(1 − 1

ε
)

n−1∑

j=2

anjxnxj.

For all real x with |x| = 1 we have |xj| ≤ 1 for j = 1, . . . , n and so

|dε(x)| ≤ (1 − ε2)a11 + (1 − 1

ε2
)ann + 2(1 − ε)

n−1∑

j=2

|a1j| + 2(1 − 1

ε
)

n−1∑

j=2

|anj| .

Therefore we can choose ε ∈ I := (bδ, 1) with bδ 6= 1 such that for all x with |x| = 1:

|dε(x)| ≤ δ < cQΓ
with fixed δ 6= 0.

If cQΓ
≥ cQΓε

due to Lemma 3.2.3 there exists a |x0| = 1 with
dε(x0) = cQΓ

− QΓε
(x0) ≥ cQΓ

− cQΓε
> 0. Analogously if cQΓ

< cQΓε
we have

dε(x
′
0) ≥ cQΓε

− cQΓ
> 0.

Hence:
∣∣cQΓε

− cQΓ

∣∣ ≤ δ for all ε ∈ I ⇒ cQΓε
≥ cQΓ

− δ > 0 for all ε ∈ I. From Lemma
3.2.3 we know that for all x

QΓε
(x) ≥ cQΓε

|x|2 ≥ (cQΓ
− δ) |x|2 . (∗)

Now assume that the complete lengths of Γ dominate the complete lengths of Γε for all
ε ∈ I. According by

#(Γ ∩Bn(X)) ≤ #(Γε ∩Bn(X))

for all X. But by choice of Γε we have dε(en) < 0, where en denotes the n-th standard
basis vector. Hence there exists an x0 ∈ Zn such that on the one hand

QΓε
(x0) ≤ QΓ(en) = |bn|2 (∗∗)

and on the other hand
|bn|2 < QΓ(x0). (∗ ∗ ∗)

⇒ For all ε ∈ I there exists an x0 ∈ Zn such that

(cQΓ
− δ) |x0|2 ≤

(∗)
QΓε

(x0) ≤
(∗∗)

|bn|2 <
(∗∗∗)

min
{
QΓ(x) > |bn|2

}
≤QΓ(x0).

⇒ For all ε ∈ I there exists an x0 ∈ Zn such that

|x0|2 ≤
1

cQΓ
− δ

|bn|2 and |dε(x0)| ≥ min
{
QΓ(x) > |bn|2

}
− |bn|2 = const > 0.

Since 1
cQΓ

−δ
|bn|2 does not depend on the choice of ε ∈ I the set of all possible x0 is

finite. This is in contradiction to lim
ε→1

dε(x) = 0 for fixed x.

Remark 3.2.5. Since in the proofs of Theorem 3.2.1 and 3.2.4 a rational ε can be
choosen as well, even among the set of arithmetic lattices the existence of a lattice with
maximal complete lengths is excluded.
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3.3 Further questions

3.3.1 Dominating complete lengths

In this section we will discuss the question if any lattice can dominate another arbitrary
lattice, particularly we can ask:

Question 3.3.1. If Γ and Γ′ are two lattices with the same covolume such that the
complete lengths of Γ dominate the complete lengths of Γ′, do then all lengths of Γ and
Γ′ have to be equal?

Remark 3.3.2. It is long known that 2-dimensional lattices with the same length
spectrum are congruent. In higher dimensions this fact holds no longer true. The first
pair of non-congruent lattices with the same (complete) lengths in dimension 4 was
found by Schiemann [Schi1] in 1990. These examples have been generalized in [CoSl3].
Therefore we can easily give examples in every higher dimension simply by direct sums of
lattices. In dimension 3 the problem was open till 1993. In his thesis [Schi2] Schiemann
showed that a ternary integral lattice is determined by its theta function cf. Definition
3.3.4. Here it would be nice to find another proof that does not rely on a computer.
Nevertheless, this means for Question 3.3.1 that in dimensions 1 to 3 the two lattices Γ
and Γ′ would be congruent.

In contrast to PΓ(X) the number SΓ(X) grows “uniformly”. Hence if in dimension n
we could answer Question 3.3.1 in the affirmative, it holds also true in every other
dimension less than n:

Proposition 3.3.3. If there exist n-dimensional lattices Γ and Γ′ with the same covol-
ume such that γ

(c)
k ≥ γ

′(c)
k for all k ≥ 0 and γ

(c)
k0

> γ
′(c)
k0

for at least one k0 ∈ N, then
there exist lattices with the same properties in every higher dimension.

Proof. Let Γn and Γ′
n be such n-dimensional lattices. There exists a bijective map ϕn :

Zn → Zn such that QΓn
(x) ≥ QΓ′

n
(ϕn(x)) for all x ∈ Zn and QΓn

(x0) > QΓ′
n
(ϕn(x0))

for one x0.
Define the (n + 1)-dimensional lattices Γn+1 := Γn ⊥ Z resp. Γ′

n+1 := Γ′
n ⊥ Z and the

bijective map ϕn+1 : Zn+1 → Zn+1, x 7→ (ϕn(x1, . . . , xn), xn+1).
Since QΓn+1(x) = QΓn

(x1, . . . , xn) + x2
n+1 resp. QΓ′

n+1
(x) = QΓ′

n
(x1, . . . , xn) + x2

n+1 we

haveQΓn+1(x) ≥ QΓ′
n+1

(ϕn+1(x)) for all x ∈ Zn+1 andQΓn+1(x0, 0) > QΓ′
n+1

(ϕn+1(x0, 0)).
Hence the complete lengths of Γn+1 are dominant and the length spectra are not
equal.

3.3.2 Theta functions and modular forms

A useful approach to understand a sequence of numbers is to think of them as coefficients
of some series. For our purpose we are interested in the multiplicities rΓ(m) of the
appearing lengths in a lattice, i.e. the number of elements x ∈ Zn such that QΓ(x) =
m, cf. Section 2.5.1. Since in this context non-arithmetic lattices have not really
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a meaningful series we consider in this section only arithmetic respectively integral
lattices. Due to Theorem 3.1.1 rΓ(m) is bounded by a polynomial in m. Thus one can
define a function for every lattice on the upper half plane H:

Definition 3.3.4. The function

ΘΓ(z) :=
∞∑

m=0

rΓ(m)qm, where q = e2πiz

is called the theta function of Γ. It converges for |q| < 1, hence it is holomorphic on H.

In particular theta functions are examples of “modular forms”.

Let the full modular group SL2(Z) act on H as usual

A =

(
a b
c d

)
7−→ az + b

cz + d
=: A(z).

For a meromorphic function f this renders the operator |
k

for all k ∈ Z

f |
k
A(z) := (cz + d)−kf

(
az + b

cz + d

)
.

Furthermore denote the following congruence subgroup of SL2(Z) for N ∈ N

Γ0(N) :=

{
A =

(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Definition 3.3.5. A holomorphic function f : H −→ C is called a modular form of
weight k ∈ 1

2
Z, level N for some character χ on Z/NZ if

f |
k
A(z) = χ(d)f(z) for all A ∈ Γ0(N)

and f |
k
M(z) is bounded for Im(z) → ∞ for all M ∈ SL2(Z).

If furthermore f vanishes at all cusps, i.e. lim
t→∞

f |
k
M(it) = 0 for all M ∈ SL2(Z), it is

called a cusp form.

Since

(
1 1
0 1

)
∈ Γ0(N), we see that f(z) = f(z + 1). A modular form is thus given

by a Fourier expansion

f(z) =
∞∑

m=0

a(m)qm =
∞∑

m=0

a(m)e2πimz

with Fourier coefficients a(m) ∈ C.

Now we have to put it more precisely, cf. [An, Thm.2.2.2]:
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Theorem 3.3.6. Let Γ be an even n-dimensional lattice. Then ΘΓ is a modular form
(with integral Fourier coefficients) of weight n

2
, level NΓ, where NΓ is the least positive

integer such that the matrix NΓA
−1
Γ is even. And the character χΓ only depends on n

and det(QΓ).

Hence for integral lattices Γ and Γ′ with the same covolume

ΘΓ′Γ(z) =
∞∑

m=0

rΓ′Γ(m)qm := ΘΓ′(z) − ΘΓ(z)

is a modular form of level NΓ′Γ (the least common multiple of NΓ′ and NΓ) with integral
Fourier coefficients. If now the lengths of Γ dominate we have for all X in N

X∑

m=0

rΓ′(m) ≥
X∑

m=0

rΓ(m),

and respectively
X∑

m=0

rΓ′Γ(m) ≥ 0.

Thus for integral lattices we can also state Question 3.3.1 in more general in terms of
modular forms:

Question 3.3.7. Do there exist two different modular forms

f(z) =
∞∑

m=0

a(m)qm and f ′(z) =
∞∑

m=0

a′(m)qm (with integral coefficients) of the same

weight and level such that for all X ∈ N

X∑

m=0

(a′(m) − a(m)) ≥ 0 ?

It seems that this is a difficult question in general, but we are able to answer in the
negative in the (very) special case of even unimodular lattices.

3.3.3 Even unimodular lattices

Obviously the level of the theta function ΘΓ of an even unimodular lattice Γ is 1. Hence
ΘΓ is a modular form for the full SL2(Z) with rΓ(0) = 1 (and so rΓ′Γ(0) = 0). Fur-
thermore it is not difficult to see that the dimension of Γ must be divisible by 8 [Se1,
p.109]. Therefore ΘΓ′Γ is a cusp form for SL2(Z) of integral weight. The coefficients of
integral weight cusp forms are well studied:

Estimates for the coefficients of cusp forms

Let f be a cusp form of integral weight k. We are interested in the growth of the
coefficients a(m). A first bound is

a(m) = O(m
k
2 ).
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This bound is often referred to as the trivial bound for cusp forms. The exponent k
2

can be improved. Deligne has shown in [De, p.302] that

a(m) = O(m
k
2
− 1

2 · #{d ∈ N : d|m}).

This clearly implies that

a(m) = O(m
k
2
− 1

2
+ε) for every ε > 0.

To achieve the end that we have in view estimates for sums of coefficients of cusp forms
are useful. Due to Deligne [De] we know that

X∑

m=0

a(m) = O(X
k
2
− 1

6
+ε) for every ε > 0.

In the other direction Walfisz showed [Wa, p.76]

X∑

m=0

a(m) = Ω(X
k
2
− 1

4 ).

This estimate has been improved by a number of authors, see [Ran] and the references
specified therein. For example Hafner and Ivić [HaIv, Thm.3] have shown that, for some
positive constant D,

X∑

m=0

a(m) = Ω±

(
X

k
2
− 1

4 · exp

(
D · (log log(X))

1
4

(log log log(X))
3
4

))
.

Hence for ε > 0 there exist positive c1 and c2 such that for infinitely many X,X ′ ∈ N

X∑

m=0

a(m) ≥ c1X
k
2
− 1

4
−ε and

X′∑

m=0

a(m) ≤ −c2X ′ k
2
− 1

4
−ε.

Additionally since a(X) is at most of order X
k
2
− 1

2
+ε we know that there are infinitely

many partial sums between these two orders. However, in particular it follows that the
partial sums change sign infinitely often, and that is all we need to answer Question
3.3.1 for even unimodular lattices.

Corollary 3.3.8. Let Γ and Γ′ be two even unimodular lattices in the same dimension
with different theta functions. Then infinitely many complete lengths of Γ are greater
and infinitely many complete lengths are less than the complete lengths of Γ′.

Hence we see that even an asymptotical dominance is excluded. This motivates the
guess that Question 3.3.1 has to be answered in the affirmative for all lattices, but
mind, unimodular and even are serious restrictions. However, there are some (nice)
examples.
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Examples

In dimension 8 the only even unimodular lattice is E8, so there is nothing to examine
here. In dimension 16 we have the two non-equivalent lattices E8 × E8 and D16, but
they have the same theta function.

The first interesting examples are in dimension 24. There exist 24 even unimodular
lattices, listed by Niemeier [Ni], 23 with minimal norm 2, and one, the Leech lattice
Λ24, with minimal norm 4. The space of modular forms of weight 12 is of dimension 2.
Thus the theta function of an even unimodular 24-dimensional lattice Γ can be written
by a combination of 2 basis functions. For the coefficients rΓ(2m) of ΘΓ we have:

rΓ(2m) =
65520

691
· σ11(m) + cΓ · τ(m),

where σj(m) :=
∑
d|m

dj is the sum of the j-th powers of positive divisors of m and τ(m)

is the m-th coefficient of the cusp form given by

T (z) = q ·
∞∏

m=1

(1 − qm)24 =:
∞∑

m=1

τ(m) · qm.

The function m 7→ τ(m) is called the Ramanujan τ -function. The lattice constant cΓ
is determined by

cΓ = rΓ(1) − 65520

691
,

for more information see [Se1, Chap.6.6.]. Hence the multiplicities rΓ(m) and rΓ′(m) of
two such lattices Γ and Γ′ just differ in a factor of the τ -function. Since T (z) is a cusp
form, the summatory τ -function

Στ : X 7→
X∑

m=1

τ(m)

changes sign infinitely often. Obviously these changes of sign indicate where the domi-
nance of lengths is changing:

X∑

m=1

rΓ′Γ(2m) ≥ 0 ⇔
X∑

m=1

(cΓ′ − cΓ) · τ(m) ≥ 0.

Assume cΓ′ > cΓ, if now Στ(X − 1) < 0 and Στ(X) > 0 then there exists a number

k such that
√

2X = γ
(c)
k > γ′

(c)
k . And further if there is no change of sign at X and

Στ(X) > 0, then γ
(c)
k ≥ γ′

(c)
k for all k with γ

(c)
k =

√
2X.

The first values of Στ are:
1, −23, 229, −1243, 3587, −2461, −19205, 65275, −48368, −164288, 370324, −620, −578358, −176502,

1040658, 2027794, −4878140, −2150708, 8510712, 1400952, −2818536, −15649224, 2994048, 24283008,
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−1216217, 12649495, −60629585, −35982417, 92424213, 63212373, 10369205, −186337099, −51614875,

114127541, 33254021, 200536517, 18323203, −237550877, −383140853, 24897547, 333017989, ...

Hence the first changes of sign of Στ are at:
X= 2, 3, 4, 5, 6, 8, 9, 11, 12, 15, 17, 19, 21, 23, 25, 26, 27, 29, 32, 34, 38, 40, 44, 47, 49, 50, 51, 55,

59, 61, 67, 70, 76, 79, 83, 88, 93, 97, 99, 100, 103, 108, 113, 119, 125, 131, 136, 141, 144, 145, 149, 153,

160, 167, 173, 179, 187, 193, 201, 206, 208, 209, 211, 212, 216, 223, 229, 232, 233, 236, 245, 251, 252,

253, 256, 257, 262, 269, 277, 286, 287, 288, 295, 303, 313, 319, 324, 325, 331, 333, 334, 338, ...

Since the Leech lattice Λ24 is the only one of the 24 lattices mentioned above, which
does not represent 2, it has the smallest factor cΛ = −65520

691
.

Hence we know certainly that its k-th length λ
(c)
k is greater than or equal to the k-th

length of all other even unimodular 24-dimensional lattices if

(λ
(c)
k

)2 = 32, 40, 48, 60, 62, 70, 72, 74, 82, 84, 86, 96, 112, 114, 116, 124, ...

and less or equal if

(λ
(c)
k

)2 = 14, 20, 26, 28, 36, 44, 56, 66, 78, 90, 92, 104, 106, 108, 120, 136, ...

This holds similarly for other lattices, for example for E8 × E8 × E8 and D24, since
cE3

8
= 432000

691
< 697344

691
= cD24 .
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