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I. Abstract 

Bacteriophages  

Bacteriophages (phages) are viruses that infect and kill bacteria. Hence, they play an important role in 

medicine, ecology, evolution, food production, and many other microbiological applications and 

processes. A few model phages have been investigated in great detail and thousands of completely 

sequenced phage genomes are now available. However, there are hardly any comprehensive, 

functional analyses of phage genomes in the literature although modern methods allow for proteome-

wide investigations. 

In this work I focused on the phages Cp-1 and Dp-1 that infect Streptococcus pneumoniae, a major 

human pathogen, by using genomic and proteomic approaches to get deeper insights into their biology. 

Cp-1 belongs to the Podoviridae family and Dp-1 to the Siphoviridae. Both are rarely isolated S. 

pneumoniae phages that have a virulent (lytic) reproduction cycle and thus are of general interest for 

medical application in phage therapy. However, little is known about their biology and their interplay 

with the host is poorly understood. 

In this work I comprehensively annotate the Dp-1 genome. It is 56,506 bp in length and encodes for 72 

putative proteins. 69 proteins are homologous to known protein sequences in databases. However, by 

using a homology-based annotation strategy only 43 Dp-1 proteins can be functionally annotated. This 

emphasizes that functional predictions by homology comparisons are often limited and that there is an 

urgent need to functionally analyze phage proteomes in a comprehensive manner.  

This work describes the most comprehensive analysis of phage protein interaction networks. To learn 

more about the interplay of all Cp-1 and Dp-1 proteins, I systematically analyzed their proteomes by 

Yeast Two-Hybrid screens. The intra-viral protein-protein interaction (PPI) network of Cp-1 reveals 

17 individual PPIs and that of Dp-1 156 individual PPIs. In this work I demonstrate that the identified 

interactions can be used to model the Cp-1 and Dp-1 virions by linking a significant number of 

uncharacterized phage proteins to virion morphogenesis. 

Bacteriophage reproduction is always dependent on a host cell. A major aim of this project was thus to 

analyze the interactions of phage proteins with the host proteome, given that the phage is absolutely 

dependent on host activities to reproduce. Therefore, I screened all Cp-1 and Dp-1 proteins against a S. 

pneumoniae Yeast Two-Hybrid library to identify binary phage-host PPIs. Such a comprehensive 

analysis has never been done before for any phage. This analysis identified 11 interactions for Cp-1 

proteins and 38 interactions for Dp-1 proteins with S. pneumoniae proteins. Although the Cp-1 and 

Dp-1 interaction patterns are remarkably different, their proteins bind predominantly with host 

proteins that have regulatory roles, that are involved in DNA-related processes, and that are essential 

for the host. The detected PPIs indicate that Cp-1 and Dp-1 are able to modify several host pathways 
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by attacking or recruiting specific key components or to reprogram its gene expression through 

blocking host repressor proteins.  
 

YbeB 

An independent aim of this work was to study the function of Escherichia coli YbeB and its orthologs, 

a conserved hypothetical protein family of hitherto unknown function. YbeB and its orthologs are 

nearly universally conserved from bacteria to man. In this work I show that YbeB family members 

bind in a conserved manner to ribosomal protein L14 in most tested species, including E. coli, 

Treponema pallidum, Synechocystis PCC 6803, Streptococcus pneumoniae as well as human 

mitochondria and Zea mays chloroplasts. This interaction is thus conserved from bacteria to man. The 

human YbeB-ortholog, C7orf30, is targeted exclusively to the mitochondrial compartment and it 

interacts with the mitochondrial L14 in vivo. I show that E. coli L14 is the conserved and specific 

docking site of YbeB on the large ribosomal subunit and that L14´s interaction epitope includes highly 

conserved amino acid residues that normally are involved in contacting the 16S rRNA of the small 

ribosomal subunit. In vivo analyses of an E. coli ybeB gene deletion strain reveal that the knock-out of 

ybeB results in premature reporter protein synthesis. In silico docking of YbeB with L14 supports 

these findings: once YbeB is bound to L14 on the large ribosomal subunit the assembly of the large 

and small ribosomal subunit is blocked by YbeB. The results of this work provide evidence that L14 is 

the primary and specific docking site of YbeB and its orthologs and that YbeB functions as a negative 

modulator of protein translation in vivo. 
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II. Zusammenfassung 

Bakteriophagen 

Bakteriophagen (Phagen) sind Viren, die Bakterien infizieren. Sie spielen deshalb eine wichtige Rolle 

in der Medizin, Ökologie, Evolution, Nahrungsmittelherstellung und vielen anderen mikrobiellen 

Applikationen und Prozessen. Ein paar wenige Modellphagen wurden bereits detailliert charakterisiert 

und tausende komplett-sequenzierte Phagengenome sind mittlerweile bekannt. Jedoch gibt es kaum  

umfangreiche, funktionelle Analysen von Phagengenomen in der bisherigen Literatur, obwohl 

moderne Methoden Proteom-weite Untersuchungen hier ermöglichen würden. 

In dieser Arbeit präsentiere ich Ergebnisse funktionell-genomischer und -proteomischer Analysen der 

Phagen Cp-1 und Dp-1, die Streptococcus pneumoniae, ein human-pathogenes Bakterium, infizieren. 

Cp-1 gehört der Podoviridae- und Dp-1 der Siphoviridae-Familie an. Beide Phagen sind zwei von nur 

wenigen bekannten S. pneumoniae-Phagen, die einen virulenten (lytischen) Reproduktionszyklus 

haben und daher von Interesse für die medizinische Anwendung in der Phagentherapie sind. 

Allerdings ist nur wenig über ihre Biologie und dem Zusammenspiel mit ihrem Wirt bekannt. 

Diese Arbeit zeigt die Ergebnisse einer detaillierten Genomanalyse von Dp-1. Das Genom umfasst 

56,506 bp und kodiert für insgesamt 72 Proteine. 69 Proteine sind homolog zu bekannten 

Proteinsequenzen in Datenbanken. Allerdings können durch eine Homologie-basierte 

Annotationsstrategie nur 43 Dp-1-Proteine funktionell annotiert werden. Dies zeigt, dass funktionelle 

Vorhersagen durch Homologievergleiche oft nur eingeschränkt möglich sind und dass es wichtig ist, 

Phagenproteome experimentell zu analysieren. 

Ich zeige daher die bisher umfangsreichsten Protein-Protein-Interaktions-Netzwerke von Phagen. Um 

mehr über das Zusammenspiel der Cp-1- und Dp-1-Phagenproteine lernen zu können, habe ich die 

kompletten Phagenproteome mittels systematischer Yeast-Two-Hybrid-Screens analysiert. Das intra-

virale PPI-(Protein-Protein-Interaktions)-Netzwerk von Cp-1 besteht aus 17 individuellen PPIs, das 

von Dp-1 aus 156 PPIs. Ich zeige, dass die identifizierten Interaktionen hilfreich sind, um Modelle 

ihrer Virione zu erstellen und dass vermutlich ein umfangreiches Set an Phagenproteinen am 

Morphogeneseprozess involviert ist. 

Die Reproduktion von Bakteriophagen erfolgt immer in Abhängigkeit einer Wirtszelle. Deshalb war 

es eine besondere Bestrebung dieser Arbeit herauszufinden, welche Wirtsprozesse von Cp-1 und Dp-1 

auf der Protein-Interaktionsebene attackiert werden können, da eine Notwendigkeit besteht, den Wirt 

für eine effiziente Reproduktion zu optimieren. Dafür screente ich alle Cp-1- und Dp-1-Proteine gegen 

einen S. pneumoniae-Prey-Array. Solch eine umfangreiche Untersuchung wurde für Phagen bisher 

noch nicht durchgeführt. Die Analyse identifizierte 11 Interaktionen für Cp-1- und 38 Interaktionen 

für Dp-1-Proteine mit S. pneumoniae-Proteinen. Obwohl die Cp-1- und Dp-1-Interaktionsmuster 

auffällig unterschiedlich sind, scheinen ihre Proteine bevorzugt mit Wirtsproteinen zu binden, die eine 
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regulatorische Rolle haben, die in den DNA-Metabolismus involviert sind, oder die essentiell für den 

Wirt sind. Die detektierten PPIs zeigen an, dass Cp-1 und Dp-1 vermutlich mehrere Wirtsprozesse 

modifizieren können, z.B. indem sie spezifisch Schlüsselkomponenten attackieren oder rekrutieren 

oder indem sie die Genexpression durch Blockieren von Repressorproteinen umprogrammieren. 
 

YbeB 

Ein unabhängiges Ziel dieser Arbeit war, die Funktion des Escherichia coli-Proteins YbeB zu 

studieren. Es handelt sich hierbei um ein konserviert-hypothetisches Protein von bisher unbekannter 

Funktion. YbeB und seine Orthologe sind fast universell konserviert, mit Vertretern in Eubakterien bis 

hin zum Menschen. In dieser Arbeit zeige ich, dass YbeB-Familienmitglieder in den meisten 

getesteten Spezies mit dem ribosomalen Protein L14 interagieren, einschließlich E. coli, Treponema 

pallidum, Synechocystis PCC 6803, Streptococcus pneumoniae, humanen Mitochondrien und Zea 

mays-Chloroplasten. Weiterhin zeige ich, dass das humane YbeB-Ortholog C7orf30 exklusiv in 

Mitochondrien lokalisiert und dass es mit mitochondrialem L14 in vivo interagiert. Desweiteren wird 

gezeigt, dass E. coli L14 die konservierte und spezifische Bindungsstelle für YbeB auf der großen 

ribosomalen Untereinheit ist und dass das L14-YbeB-Interaktionsepitop hoch-konservierte 

Aminosäurereste enthält, die normalerweise die Interaktion mit der 16S rRNA der kleinen 

ribosomalen Untereinheit vermitteln. In vivo-Analysen einer E. coli ybeB-Gendeletionsmutante heben 

hervor, dass der Knock-Out von ybeB in der verfrühten Synthese von Reporterproteinen resultiert. In 

silico-Docking unterstützt die experimentellen Befunde: Wenn YbeB über L14 an die große 

ribosomale Untereinheit bindet, dann kommt es zur sterischen Blockade bei der Assemblierung 

zwischen den ribosomalen Untereinheiten. Die Ergebnisse dieser Arbeit beweisen, dass L14 die 

primäre und spezifische Bindungsstelle von YbeB und seinen Orthologen auf der großen ribosomalen 

Untereinheit ist und dass YbeB als negativer Modulator in der Proteintranslation fungiert. 
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1 Introduction 

1.1 Bacteriophages – a brief overview 

Bacteriophages (phages) are estimated to be the most frequent biological entities in the biosphere in 

terms of their particle number and their diversity. Bacteriophages (from Ancient Greek phagein means 

“to eat” bacteria) are viruses that specifically infect and kill bacteria. Like all viruses, phages are 

metabolically inert in their extracellular form and can reproduce themselves only by taking advantage 

of a host cell. Because of their inability to reproduce by themselves they are not defined as living 

organisms although they function as biological entities. The first clear description of the phage 

phenomenon, namely the property of forming plaques, was described by Félix d’Herelle in 1917, a 

French-Canadian microbiologist working at the Pasteur Institute in Paris (d’Herelle, 1917). D’Herelle 

observed what he called an “invisible microbe” that was present in the bacteria-free filtrates of stool 

samples from dysentery patients and surmised the recovery of patients was due to development of 

phages. 

1.1.1 Relevance of phages – what they are (not) good for 

Phages in medicine 

It was quickly realized that phages had the potential to kill bacteria that are causatives of many human, 

animal, and plant diseases without having adverse reactions. In early phage therapy trials, d’Herelle 

applied phage lysates to treat fowl typhoid (Salmonella gallinarum) and diarrhea caused by Shigella 

dysenteriae in animal tests (d’Herelle, 1926a). Moreover, he was able to cure water buffalos in 

Indochina successfully from bovine hemorrhagic septicemia (Pasteurella multocida) (d’Herelle, 

1926b). With evidence for therapeutic effects d´Herelle extended the trials by self-administration. 

Phage therapy was also under investigation to treat cholera in India in the 1920s and 1930s (d’Herelle 

et al., 1929; Summers, 1993). These studies were extended later, sponsored by the World Health 

Organization (WHO) (Marcuk et al., 1971; Monsur et al., 1970). An institute for the study and 

production of phages was founded in the mid 1930s in the Soviet Republic of Georgia (State Serum 

and Vaccine Institute in Tbilisi) and remains active today. During the Second World War Soviets and 

Germans used medical kits based on phage therapy to treat war-wounded. In the Western Hemisphere 

phage therapy has been limited with exiguous commercialization. Its use all but ceased in the 1940s 

with the emergence of penicillin and other antibiotics. Disadvantages like low stability of phage 

preparations, limited action because of high host specificities (in contrast to a broad mode of action of 

antibiotics), development of bacterial resistant strains, as well as immunological answers to phage 

therapy led to the stagnation in this field of research. However, over the last two decades there has 
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been renewed interest in phage therapy, largely due to the growing resistance of many strains of 

bacteria to existing antibiotics. 

In parallel, scientists identified and characterized the factors that are responsible to kill the host cell, 

so-called lytic enzymes, which are encoded by the phage genomes. Pre-medical studies revealed that 

such enzybiotics can kill pathogenic bacteria very efficiently in purified form and might be helpful in 

the future to cure bacterial infections as an alternative treatment strategy to antibiotics (Loeffler et al., 

2001). 
 

Phages in ecology 

Bacteriophages are the most abundant biological entities on earth. Direct counts reveal that there are 

up to 107 phage particles per ml ocean and lake water and up 109 per gram of sediment and top soil 

(Ashelford et al., 2003; Berg et al., 1889). There are approximately five to ten phage particles per 

prokaryotic cell (Wommack and Colwell, 2000). Whitman and colleagues estimated 1030 prokaryotes 

on earth and 1031 free phages (Whitman et al., 1998). They keep the bacterial population in balance. It 

is suggested that marine phages kill about half of the bacterial population every day (Fuhrman and 

Noble, 1995). The dissolved bacterial matter is consumed by heterotrophic bacteria which can be lysed 

again by phages. Thus, phages are responsible for the production of CO2. In the world´s oceans it is 

estimated that phages are accountable for the release of approx. 6 to 26% of photosynthetically fixed 

organic carbon (Wilhelm and Suttle, 1999) and thereby contribute significantly to the carbon cycle as 

well as to the balance of ecological systems. 
 

Their relevance in food production and industrial processes 

In commercial food production bacteriophages are not welcome: as soon as phages emerge in 

sauerkraut, cheese, and yogurt production a single phage particle is able to kill the lactic acid bacteria 

and thus the whole fermentation process (Lu et al., 2003). Moreover, it has been reported that phages 

can interfere with the industrial actetone butanol fermentation process (Jones et al., 2000). To deal 

with this problem the industry is interested in isolation and usage of phage-resistant bacterial strains.  

For instance, for Cheddar cheese making bacteriophage-insensitive Streptococcus cremoris strains 

were isolated (Thunell and Sandine, 1981). 
 

Phages and evolution 

Unlike eukaryotes, which evolve principally through modification of their genetic material, bacteria 

obtained a part of their genetic diversity through annexing of DNA sequences from distantly related 

organisms. Comparison of completely sequenced bacterial genomes revealed a significant amount of 

laterally transferred DNA. For instance,  E. coli K12 contains about 16% of foreign DNA (Ochman et 

al., 2000). Lateral transfer occurs by uptake of naked DNA or by bacterial conjugation. However, 

bacteriophages are potent transducers since they cannot only deliver genetic material to a donor cell 

but also provide DNA integration systems that fuse the donor DNA into the recipient genome. Here 
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phage-encoded integrases, recombinase, and homologous recombination systems play a beneficial role 

(Ochman et al., 2000).  
 

Their relevance in basic research and phage-derived tools used in molecular biology 

Bacteriophages served as model systems in the early stage of molecular biology because they 

represented simple and convenient biological systems. Studies on phages revealed the mechanisms of 

transcription and transcriptional regulation, DNA-related processes, virion reproduction, infection, and 

assembly. Moreover, it was of general interest to understand mechanisms how phages can manipulate 

the host cell and how temperate phages are able to integrate their DNA molecule into the host genome. 

However, with the rise of modern techniques and more general interest in eukaryotic biology, research 

on bacteriophages went astray. Nevertheless, great elementary discoveries were made and modern 

molecular biology still benefits from these findings. Phages are still in focus in system structural 

biology. Completely novel mechanisms are still discovered in phage research. The following tables 

summarize the most important model phages as well as common molecular tools with phage origin: 
 

Tab. 1 Model phages 
ORFs: represents the number of protein-coding open reading frames. Information was taken from NCBI 
webpage. 
 

Model phage Family Host  Lifestyle Genome (size) ORF 

T7 Podoviridae E. coli lytic dsDNA (39.9 kbp) 60 

 Siphoviridae E. coli temperate dsDNA (48.5 kbp) 73 

T4 Myoviridae E. coli lytic dsDNA (168.9 kbp) 278 

29 Podoviridae B. subtilis lytic dsDNA (19.3 kbp) 27 

M13 Inoviridae E. coli non-lytic ssDNA (6.4 kb) 9 

SPP1 Siphoviridae B. subtilis lytic dsDNA (44,0 kb) 101 

 

Tab. 2 Phage-derived tools and methods 
 

Tool/method Description Reference 

-red system Application of -red homologous recombination system (,,exo) for 
construction of gene knock-outs of E. coli genes. 

(Datsenko and Wanner, 2000; 
Murphy, 1998) 

-integrase Site-specific recombination system with -recombinase finds 
commercial application for ORFeome construction with the Gateway® 
System (Invitrogen). 

(Landy, 1989) 

T7 RNA polymerase Usage for standard protein expression in E. coli BL21. High level 
expression of genes. 

(Studier and Moffatt, 1986; 
Studier et al., 1990) 

T4 DNA ligase Commercially available enzyme for cloning reactions by DNA end 
strand ligation reaction/DNA ring closure (blunt or sticky end ligation). 

(Weiss and Richardson, 1967) 

Phage display Exposure of a library-fused coat proteins on virion surface, fishing for 
binding epitopes followed by liquid chromatography. Application in 
antibody-antigen, protein-protein, or protein-DNA interaction 
screening. 

(McCafferty et al., 1990; 
Rebar and Pabo, 1994) 

DNA standards Commercially available DNA ladders of restricted -DNA. - 

M13 DNA M13 genomic ssDNA molecule as shot gun sequencing vector for 
Sanger DNA sequencing method. 

(Messing et al., 1981; Sanger 
and Coulson, 1975) 
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Phages in genomics and proteomics 

Pioneer sequencing studies of whole genome DNA sequences were already published in 1977 for E. 

coli phage X174 by F. Sanger, 1980 for M13, and 1983 for T7 (Dunn and Studier, 1983; Sanger et 

al., 1977; van Wezenbeek et al., 1980). Since that time phage genome sequencing projects increased 

exponentially (Fig. 1). By 2009 577 completely sequenced phage genomes had been submitted to 

NCBI/GenBank. Although conserved genome features like protein encoding ORFs can be and are 

annotated by homology-based functional predictions, there is still no comprehensive phage sequence 

database available online, such as TIGR CMR for bacteria (Davidsen et al., 2010).  

In 2002 the age of viral metagenomics started with sequencing of marine (viral) communities 

(Breitbart et al., 2002). Several studies have been published, e.g., the viral/microbial metagenome 

from human feces (Breitbart et al., 2003). Comparison of different metagenome datasets revealed that 

around 60 to 90% of these sequences have no significant sequence similarities (Edwards and Rohwer, 

2005). It is assumed that most of these unknown sequences are attributed to bacteriophage genomes 

(Daubin and Ochman, 2004) underlining their immense diversity. While phage DNA sequences are 

available in large numbers, only two comprehensive datasets have been published that focused on 

functional aspects: Bartel and colleagues analyzed the T7 interactome by systematic Yeast Two-

Hybrid screens (Bartel et al., 1996) and Qimron and others tested genome-wide effects of E. coli 

ORFs on T7 reproduction efficiency (Qimron et al., 2006) (Fig. 1). However, phage genome 

sequences turned out to be less informative than bacterial genomes. To find functions for the large 

fraction of orphan proteins, comprehensive and genome-wide experiments are urgently needed, e.g., 

transcriptomic and proteomic analyses of the phages and their hosts. 

 

Fig. 1 Comprehensive, functional phage studies are underrepresented compared to phage genome 
sequencing projects 
The graph represents the number of submitted whole genome phage sequences to NCBI from 1977 to 2009. 
Submission dates of some representative bacteriophages are labeled by the phage name. Consider that 
submission and publication dates might differ. Publication year of comprehensive phage studies are given 
1(Bartel et al., 1996) and 2(Qimron et al., 2006) and beginning of phage metagenomics era with 3(Breitbart et al., 
2002) (metagenome sequences are not represented in the graph). 
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1.1.2 Phage systematics 

Bradley initiated the systematic classification of bacteriophages in 1969 by morphological criteria 

(Bradley, 1969). He grouped phages based on capsid/capsomere symmetry (e.g., isahedragonal, 

octahedrogonal) and the kind and length of the tails (contractile/non-contractile, short/long), but also 

on the type of the genome into several basic groups (Tab. 3). Most of the phage families contain a 

dsDNA molecule as genetic material. However, phage genomes are known to consist of ssDNA, 

ssRNA, or dsRNA and the nucleic acid molecules occur in circular or linear forms. Moreover, some 

rare bacteriophage groups contain an internal lipid membrane (Tectiviridae and Coricoviridae). Other 

groups (Lipothrixviridae, Plasmaviridae, and Cystoviridae) are characterized by a lipid outer layer and 

are thus commonly described as enveloped phages.  

Many phage groups have been classified and modern classification by sequence comparisons give a 

detailed view on phage relationships and evolution beyond morphological aspects (Fig. 2). 
 

 
 
Fig. 2 Phage systematics 
(A) Bradley Classification of bacteriophage groups based on general, different morphotypes (Bradley, 1969). 
Kind of genetic material is indicated. Image taken from www.thebacteriophages.org. (B) A modern phage 
proteomic tree (Edwards and Rohwer, 2005). The tree includes 167 phage genomes. Phages in black cannot be 
classified into any clade. Image taken from (Edwards and Rohwer, 2005). 
  

A B
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Tab. 3 Bradley Classification of bacteriophages 
The table here gives the six classified phage groups after Bradley (Bradley, 1969). Modern designations of virus 
families and phage examples were added. 
 

Family Description 
Nucleic 
acid type Example 

Myoviridae Contractile tail dsDNA Enterobacteria phage T4 

Siphoviridae Long non-contractile tail dsDNA Enterobacteria phage 
Podoviridae Short non-contractile tail dsDNA Enterobacteria phage T7 

Bacillus phage 29 
Microviridae Tailless, large capsomer ssDNA Enterobacteria phage X174 
Leviviridae Tailless, small capsomer ssRNA Enterobacteria phage MS2 

Inoviridae Filamentous ssDNA Enterobacteria phage M13 

 
 

1.1.3 A phage´s reproduction cycle 

Beside their systematic classification, bacteriophages can have different lifestyles. However, the 

lifestyle is not a systematic criterion since phages from different groups can have similar lifestyles. 

Both, lytic phages as well as temperate phages, first enter the bacterial host cell (infection). For 

instance,  phage (Siphoviridae) penetrates the E. coli cell with the gpJ protein in its tail tip that binds 

to LamB maltoporin (maltose porin) of the outer membrane (Randall-Hazelbauer and Schwartz, 1973). 

DNA injection is accomplished by only partially understood mechanisms: forces like capsid pressure, 

temperature, DNA length, and non-specific DNA-binding proteins such as HU are known parameters 

that control DNA injection (Lof et al., 2007). By contrast, T4 phage (Myoviridae) penetrates the host 

cell by binding to LPS and porin OmpC (Dawes, 1975; Yu and Mizushima, 1982) and injects its DNA 

by a cascade that actively triggers the contraction of the tail and thus the genome injection (Rossmann 

et al., 2004). Bacillus subtilis phage SPP1 (Siphoviridae) was reported to be absorbed by membrane 

protein YueB and by poly(glycerolphosphate)teichoic acid of the cell wall (Baptista et al., 2008; Sao-

Jose et al., 2004). B. subtilis phage 29 (Podoviridae) phage antireceptor protein was shown to consist 

of a glycosidase domain that might help to degrade the peptidoglycan layer during the penetration as 

an example that degradation events can take place during the infection process (DiMauro et al., 2007). 

Next, they start to amplify their genome (replication) and produce large amounts of structural proteins 

(synthesis). After the virion particles have assembled (assembly) they leave the host cell in a final step 

(lysis) and the daughter virions can start with a new infection cycle (Fig. 3). Lysis factors are lytic 

enzymes, commonly called lysines or cell wall hydrolases. They digest the peptidoglycan layer which 

triggers the burst of the host cell. The lysines can enter the periplasmic or outer space by holins. These 

are phage-encoded transmembrane proteins that assemble in the (inner) membrane and shuttle the 

lysozymes through the membranes (Wang et al., 2000). 

In contrast to lytic phages, temperate phages can also enter a lysogenic pathway. That is, after 

infecting the host cell, they are able to integrate their genome into the host genome. Integrated phage 

genomes are designated as prophages. For many host generations the virus genome is silenced and 
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mostly prophage gene expression is blocked by phage-encoded repressors. This has the advantage that 

the phage genomes are passively copied and spread within a bacterial strain. Notably, beneficial 

transduction effects of prophage-encoded toxins on host pathogenicity were reported by lateral transfer 

(Faruque and Mekalanos, 2003; Wagner et al., 1999; Wagner et al., 2002; Wagner and Waldor, 2002). 

Another possible advantage of the lysogenic state arose from ecological studies of phage populations. 

It was shown that a higher number of pro-phages are detectable over the cool season (Cochran and 

Paul, 1998). Switching into the lysogenic pathway might represent a “survival” strategy of temperate 

phages in regions that undergo seasonal changes. Characteristics for temperate phages are self-

encoded recombination enzymes (e.g., integrases, transposases for site-specific DNA recombination or 

high-efficient homologous recombination systems) that mediate the phage genome integration into the 

host DNA and are absent in genomes of lytic phages. The lysogenic pathway of Enterobacteria 

phage has been intensively studied. The decision between the lytic and lysogenic pathway is 

regulated by six -encoded transcriptional regulators whose actions result in defined circuits that 

trigger the pathway fate by regulating the gene expression or suppression of corresponding -genes 

(Herskowitz and Hagen, 1980).  

The pro-phage is able to reenter the lytic pathway. Factors that induce pro-phage typically cause 

DNA damages. For instance, potent prophage inductors are ultraviolet light, x- or -irradiation, or 

chemical compounds like mitomycin C (Kirby et al., 1967; Roberts and Roberts, 1975; Shinagawa et 

al., 1977). In the case of  phage the cI and host LexA repressors are proteolytically cleaved by host 

RecA due to the host´s SOS response. This triggers the expression of -genes responsible for 

reentering the lytic pathway. -DNA is excised and circulates under the influence of the 

recombinase (Day, 1977; Little, 1984; Roberts et al., 1978).  

 

Fig. 3 Scheme of a lytic and temperate phage´s reproduction cycle 
(A) Phage penetrates host cell and injects its DNA (in red). (B) Integration of phage DNA into host genome (in 
blue) in the lysogenic pathway. (C) In the lytic pathway the phage genome is replicated and structural proteins 
are synthesized. (D) Stepwise self-assembly of daughter virions (e.g., prohead assembly, DNA packaging, tail 
assembly, head-tail assembly). (E) Cell burst: the final lytic step lyses the host cell and daughter virions are 
released. Figure was drawn after general information from textbooks. 
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A third lifestyle is represented by filamentous phages. They are not lethal to the host cell and thus 

have a non-lytic lifestyle. They infect the host cell (in case of filamentous M13 phage) via the host F-

pili receptor TolA (Sun and Webster, 1986). Virion assembly occurs at the inner membrane. However, 

the non-lytic process of DNA uptake and virion release is not fully understood. 

Lifestyles of (bacterial) viruses share all the general steps as illustrated in Fig. 3. However, phages 

from different groups evolved different penetration and release strategies. Adaption of their replication 

systems is another evolutionary strategy, e.g., development of reverse transcriptase for RNA phages. 

Bacteriophages developed as manifold biological mechanisms since they had to find ways to adapt to 

versatile host systems and ecological niches. 
 

1.1.4 Streptococcus pneumoniae – a major human pathogen 

Streptococcus pneumoniae 

S. pneumoniae (formerly also called Pneumococcus and Diplococcus) is a gram-positive, alpha-

hemolytic, aerotolerant but anaerobe eubacterium. S. pneumoniae does not form spores and is non-

motile. The cells are round to ovoid in shape and appear in pairs (diplococci) but also form single cells 

or cell chains (Fig. 1). They are between 0.5 to 1.25 µm in size. They are mesophilic and grow 

optimally between 30 and 35°C. 

Louis Pasteur and George M. Sternberg discovered S. pneumoniae independently in 1881. Frederick 

Griffith demonstrated in 1928 that a harmless Pneumococcus strain can be transformed into a 

pathogenic one. He pre-incubated a heat-inactivated encapsulated strain with a vital non-capsulated 

strain that turned out to become lethal to mice since it developed a capsule (Griffith, 1928). In 1944 

Oswald Avery and co-workers demonstrated that the transforming factor in Griffith's experiment was 

indeed DNA, not protein as it was widely believed at the time (Avery et al., 1944). This work marked 

the birth of the molecular era of genetics.  

S. pneumoniae is pathogenic to humans and causes several diseases including pneumoniae, otitis 

media, meningitis, bacteremia, and sinusitis. S. pneumoniae is one of the deadliest human pathogens. 

It is estimated to be responsible for approx. 14.5 millions infections and causes 826,000 deaths per 

year of children (O'Brien et al., 2009). 

Although infections can be treated by classical antibiotics, resistant strains appeared frequently over 

the last years and became a clinical problem. Penicillin and other -lactam, macrolide, and 

fluoroquinolone resistant strains have been reported (Albrich et al., 2004; Bronzwaer et al., 2002). 

Thus, there is an urgent need to develop novel strategies to control pneumococcal diseases. 
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Fig. 4 Streptococcus pneumoniae cell chains 
Image taken from http://emssolutionsinc.wordpress.com. 
 

 

 

 

S. pneumoniae is a natural part of the upper human respiratory tract but it can become pathogenic 

under certain conditions. The major virulence factor is its capsule (also called murein sacculus) that 

prevents phagocytosis by the host's immune cells. It can reach a thickness of approx. 400 nm in 

contrast to the other peripheral compartments, the membrane (9 nm), peptidoglycan layer (20 nm), and 

cell wall polysaccharides and proteins (20 to 30 nm). It is composed of a complex mixture of 

polysaccharides. More than 90 different serotypes are known. The capsule consists of high-molecular-

weight polymers made up of units of repeating oligosaccharides, which can contain between two and 

eight monosaccharides. Many serotypes possess acidic components (like D-glucuronic acid or 

phosphate groups), ribitol, or arabinitol. In other serotypes phosphorylcholine is a part of the capsular 

polysaccharide. Another important structure is the lipoteichoic acid that is attached to the membrane 

(teichoic acid covalently linked to lipids) (AlonsoDeVelasco et al., 1995). Some other virulence 

factors are the potential to form pili which adhere via adhesins to the host epithelium (Nelson et al., 

2007), the production of H2O2 that damages the lunge epithelium (Duane et al., 1993), and  the release 

of toxic pneumolysin that binds to cholesterol containing host cell membranes and lyses them (Lock et 

al., 1992). 
 

Genome sequencing and strain comparison 

Currently, the TIGR CMR database contains eight complete S. pneumoniae genome sequences from 

different strains. The genome of highly virulent TIGR4 strain (belonging to serotype 4 group) was 

sequenced by Tettelin and colleagues and that of the non-encapsulated laboratory strain R6 by Hoskins 

et al. (Hoskins et al., 2001; Tettelin et al., 2001). The genomes are 2.16 and 2.04 Mbp in length and 

encode for 2,236 and 2,043 putative proteins, respectively for TIGR4 and R6. A characteristic of the 

genomes is the low GC content (39.7% and 40%, respectively) and thus the abundance of several 

amino acids including isoleucine, glutamic acid, valine, and lysine is high (Fraser et al., 2000). For 

TIGR4 64% of its ORFs were assigned to have a biological role based on homology comparisons. 5% 

of the genome sequence contains insertions that could contribute to genomic rearrangements by uptake 

of foreign DNA. Moreover, the TIGR4 strain does not contain any pro-phage in its genomic sequence. 

S. pneumoniae has the widest substrate utilization range for sugars and substituted nitrogen 

compounds of the three completed genomes of near-commensal residents of the human upper 

respiratory tract (H. influenzae, Neisseria meningitidis, and S. pneumoniae). It contains a large set of 

transporters that indicate a wide spectrum of metabolite uptake systems. Genome features suggest that 
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S. pneumoniae possesses pathways for catabolism by the pentose phosphate pathway and is capable to 

metabolize many sugars like cellobiose, glucose, galactose, fructose, and others (consider Fig. 48 in 

the results section). Features like putative extracellular sugar hydrolases indicate the potential to digest 

and mobilize sugar and nitrogen compounds from the extracellular host matrix that could be used for 

biosynthesis of the murein sacculus. Moreover, components of the respiratory chain and the citrate 

cycle are completely absent and correlate with the bacterium´s property to be an anaerobe organism 

(Tettelin et al., 2001).  

A comparison of the TIGR4 and R6 genome revealed that TIGR4 contains a higher number of 

insertion sequences and transposable elements. This indicates a higher genetic flexibility and mutation 

frequency in TIGR4. However, major cellular systems and features of TIGR4 that are notably different 

include the genes involved in amino acid biosynthesis, cell envelope, cellular processes, central 

intermediary metabolism, energy metabolism, and also others. These differences might explain the 

uniqueness of both strains. For instance, pathogenicity due to the murein sacculus of TIGR4 is caused 

by 12 proteins that are involved in biosynthesis of capsular polysaccharides. In contrast, R6 encodes 

only for one such an enzyme (Jothi et al., 2008). 

1.1.5 Bacteriophages of Pneumococci 

Pneumococcal (S. pneumoniae) phages include temperate and lytic phages with dsDNA genomes and 

have a great variability in terms of their morphology (Garcia et al., 1997) (Tab. 4). ssDNA, ssRNA, 

and dsRNA viruses have not been reported yet for S. pneumoniae. 

Temperate phage EJ-1 was isolated after pro-phage induction by mitomycin treatment of S. 

pneumoniae strain 101/87 (Diaz et al., 1992). Bernheimer isolated 49 (partially encapsulated) S. 

pneumoniae strains from 110 pediatric patients that carried several mitomycin inducible pro-phages. 

They were named HB-1 to HB-6 (Bernheimer, 1979). 

Recently in 2009, Romero and colleagues detected by PCR a great number of S. pneumoniae pro-

phages and could induce 48 of them (Romero et al., 2009b). Moreover, they sequenced the genomes of 

10 other temperate S. pneumoniae phages (Romero et al., 2009a). These numbers underline that still 

many novel bacteriophages can be found in S. pneumoniae isolates although the latter ones are all 

temperate. 

Regarding phage therapy, lytic phages are of general interest since they cannot integrate their genome 

into the host genome and thus are lethal to the host cell. But only two lytic phages (Cp-1 and Dp-1) 

have been isolated and were more or less intensively characterized. Thus, it is of general interest to 

isolate novel lytic S. pneumoniae viruses. Recent attempts resulted in two novel lytic Pneumoniae 

phages from human samples taken in Saudi Arabia. They have been named L6B1 and L6B2 and 

belong to the Siphoviridae and Myoviridae family, respectively (Almaghrabi and Clokie, 2010) (data 

unpublished). 
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Host specificity 

Host specificities are only poorly understood, i.e. it remains unclear which Streptococcus strains can 

be infected by a certain phage. 

EJ-1 failed to infect other species of Streptococcus (Diaz et al., 1992). It was shown that Cp-1 and Cp-

7 are the only Pneumococcus phages known so far to infect and replicate in S. oralis which shares the 

same niche with S. pneumoniae. In contrast, Dp-1 failed to propagate in S. oralis (Ronda et al., 1989). 

All other phages listed in Tab. 4 are only known to infect S. pneumoniae. 

Infection assays on four S. pneumoniae reference strains with the temperate HB phages revealed no 

clear pattern of host specificities although differences were found (Bernheimer, 1979). The lytic 

phages L6B1 and L6B2 can infect the capsulated strain D39 but not non-capsulated ones and thus 

are promising candidates for phage therapy (Almaghrabi and Clokie, 2010) (unpublished data). In 

contrast, Cp-1 and Dp-1 can be propagated in non-capsulated R6 but fail to infect the capsulated 

TIGR4 strain (unpublished data, personal communication with Mourad Sabri, Université Laval, 

Québec). 
 

Tab. 4 Formerly isolated Pneumococcal bacteriophages and some properties 
If a phage genome was sequenced, the number of corresponding protein-coding ORFs is given. (-) no or (?) no 
clear information is available in literature. 
 

Family Name Lifestyle 
Genome 

(size/kbp) 
Number 

ORFs References 

Siphoviridae Dp-1 Lytic dsDNA 
(56.5) 

72 This work, 
(Lopez et al., 1977; 

McDonnell et al., 1975) 

Siphoviridae Dp-4 - dsDNA - (Garcia et al., 1979) 

Podoviridae Cp-1 Lytic dsDNA 
(19.3)

28 (Martin et al., 1996b; 
Ronda et al., 1989; 
Ronda et al., 1981) 

Podoviridae? Cp-5,8,9 - dsDNA - (Lopez et al., 1984) 

Podoviridae Cp-7 - dsDNA 
(ca. 17) 

- (Lopez et al., 1984; 
Ronda et al., 1989) 

- w1,2,4,5,6,7,9 - - - (Tiraby et al., 1975) 

Siphoviridae w3, w8 Temperate 
(?) 

dsDNA - (Porter and Guild, 1976; 
Tiraby et al., 1975) 

- HB-1,2,4,5,6 temperate - - (Bernheimer, 1979) 

Siphoviridae HB-3 temperate dsDNA 
(40) 

- (Bernheimer, 1979; 
Garcia et al., 1997; 

Romero et al., 1990) 

Siphoviridae HB-623 
HB-746 

temperate dsDNA - (Romero et al., 1990) 

Siphoviridae MM1 temperate dsDNA 
(40.3) 

53 (Gindreau et al., 2000; 
Obregon et al., 2003) 

Myoviridae EJ-1 temperate dsDNA 
(42.9) 

73 (Diaz et al., 1992; 
Romero et al., 2004) 
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Phage receptors 

In contrast to the vast majority of phages that use mostly outer membrane proteins like porins as main 

receptors and other co-receptors (some examples are given under 1.1.3) the situation of at least one 

Pneumococcus phage is different. For Dp-1 it was shown that the main receptor is the aminoalcohol 

choline which is a component of teichoic acid of the cell wall. When substituted by ethanolamine Dp-

1 adsorption is disrupted (Lopez et al., 1982). Choline containing phage adsorption sites were found at 

the equatorial cell zone and termini of growing Pneumococcus chains (Lopez et al., 1982). However, 

there is no information on the receptors of other S. pneumoniae phages and no protein receptors have 

been described in literature so far. 

 

1.1.6 The lytic phages Cp-1 and Dp-1 

Cp-1 

Cp-1 is the best characterized Pneumococcus phage. It was isolated in 1981 (Ronda et al., 1981). “Cp” 

stands for “complutense”, the name which was given to the Spanish people the phage was isolated 

from. Its virion shows an irregular hexagonal structure with a short, non-contractile tail of 20 nm (Fig. 

5). It belongs to the Podoviridae family. SDS PAGE analysis revealed that its virion is composed of at 

least nine structural proteins. It consists of a linear dsDNA molecule (Ronda et al., 1981). 

 
 

Fig. 5 Cp-1 virion 
(A) Micrograph of a mature Cp-1 
virion. Image was taken from 
http://www.ictvdb.rothamsted.ac.uk. 
(B) Schematic virion structure drawn 
after (Ronda et al., 1981). 
 

 

 

 

 
 

Replication of the linear dsDNA molecule is managed by a protein-primed mechanism which is also 

found in 29 Bacillus phage. A terminal protein (TP) is covalently linked to a 5´-dAMP by the 

hydroxyl group of a threonine residue. The TP-dAMP complex binds to the 3´-ends of the DNA 

molecule that contains 238 bp long inverted terminal repeats. The genome termini are made of three 

sequential thymidine residues. TP-dAMP binds to the third thymidine residue (initiation) and jumps or 

slides back to the first thymidine residue to maintain the length of the daughter strands. Cp-1 DNA 

polymerase recognizes specifically the DNA-bound TP-dAMP as priming complex followed by linear 

extension of the daughter strand (Martin et al., 1996a). Since replication of the Cp-1 genome is 
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dependent of the coupled terminal protein, reconstitution of Cp-1 particles from naked DNA is 

difficult. 

The Cp-1 genome sequence was published in 1996 (Martin et al., 1996b). It is 19.3 kb in length and 

encodes for putative 28 proteins (Fig. 6). Many of them share high sequence similarities with proteins 

from B. subtilis 29 phage revealing a close relationship between these two podoviruses. Furthermore, 

a gene of a putative packaging RNA (pRNA) was identified. It shares high sequence similarity with 

29 pRNA and thus likely functions in DNA packaging. mRNA primer extension analysis revealed a 

transcriptional map of Cp-1. Five early and nine late promoters were found. After host infection four 

early and twelve late transcripts were detected (Martin et al., 1996b). 

A Cp-1-encoded endoprotease (gp13) was characterized that cleaves off the 48 N-terminal amino acid 

residues of the major head protein (Martin et al., 1998b). Its lysis system consists typically of a cell 

wall hydrolase (Cpl1) and a membrane protein (holin, Cph1) (Martin et al., 1998a). An updated 

annotation list of all Cp-1 ORFs is shown in Tab. 5. Here 46% of all proteins can be functionally 

annotated by homology predictions or based on experimental evidences. Although there is a close 

relationship to the well characterized phage 29, the majority of putative gene products are of 

unknown function. 

 

 

Fig. 6 Genome map of Cp-1 and transcriptional organization 
Descriptions of the annotated genes are given in Tab. 5. Explanations for map features are given in the legend 
(structural RNA= packaging RNA). Only the longest transcripts that were identified by Martin et al. by primer 
extension analysis are given as arrows below the ORFs. After (Martin et al., 1996b). 
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Tab. 5 An updated annotation list of Cp-1 gene products 
This updated annotation list was compiled after (Martin et al., 1996b). Protein information was integrated from 
later publications. Hypothetical proteins without experimental or homology-based information are not shown. 
 

ORF id Annotation Comment Reference 

4 Terminal protein (TP) DNA replication by protein 
priming mechanism 

(Martin et al., 1996b) 

5 DNA polymerase DNA polymerase A (Martin et al., 1996b) 

8 Possible scaffolding protein Prohead formation (Martin et al., 1996b) 

9 Major head protein Structural protein, head (Martin et al., 1996b) 

10 Connector protein Structural protein, neck (Martin et al., 1996b) 

11 Lower collar protein Structural protein, collar (Martin et al., 1996b) 

13 Endoprotease of major head protein Virion maturation factor (Martin et al., 1998b) 

17 Tail protein N Homology with N-terminal part 
of 29 tail protein 

(Martin et al., 1996b) 

18 Antireceptor protein, putative Structural protein (Martin et al., 1996b) 

19 Tail protein C Homology with C-terminal part 
of 29 tail protein 

(Martin et al., 1996b) 

20 Encapsidation protein (terminase) DNA packaging (Martin et al., 1996b) 

21 Holin (Cph1) Lysis (Martin et al., 1996b) 

22 Lysozyme (Cpl1) Lysis (Martin et al., 1996b) 

23 Packaging RNA (pRNA), putative DNA packaging (Martin et al., 1996b) 

 

Dp-1 

Dp-1 was the first isolated Pneumococcus phage (McDonnell et al., 1975). It belongs to the 

Siphoviridae and is lytic. Its virion consists of a polyhedral head and a long non-contractile tail. A 

base plate and tail fibers are absent. The head is approx. 67 nm in diameter. An SDS-PAGE analysis 

of virion particles revealed three major structural proteins and some additional, less-prominent 

proteins. Furthermore, it was reported that Dp-1 virions contain a double-layered membrane coat 

around the head. This is a unique characteristic of Dp-1 and was not reported for any other 

siphophage. The membrane lipid composition corresponds to that of the host. Thus, it is assumed to be 

of host origin. In total, Dp-1 particles contain 8.5% lipids of their dry weight. Phospholipids, 

glycolipid A and B, and neutral lipids were identified (Lopez et al., 1977). 

A 4.7 kb fragment of Dp-1 genome was sequenced and published including the genes of the lysis 

cassette (Sheehan et al., 1997). The whole genome was sequenced in 2000 by The Medicines 

Company, Ville St. Laurent, Quebec, Canada and patented (Pelletier et al., 2000). It was partially 

annotated (García et al., 2005) but has never been made available in public genome databases. 

 

Fig. 7 EM micrographs of Dp-1 
virions 
(A) Mature Dp-1 virions and (B) 
proheads.  Images were kindly 
provided by Mourad Sabri and 
Sylvain Moineau, Université Laval, 
Québec. 
  

A B
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Their lytic enzymes 

Of general research interest during the last decade was the isolation and characterization of the lytic 

enzymes of Cp-1 and Dp-1. They consist of two domains: an N-terminal catalytic domain responsible 

for degradation of the peptidoglycan layer and a C-terminal domain that consists of cell wall (choline) 

binding repeats. It was shown that the latter are responsible to target the enzymes to the cell wall, 

necessary in gram-positive bacteria since they lack an outer membrane. Thus, the local concentration 

can be maintained and release into the environment is avoided. The cell wall binding domain binds to 

choline in the cell wall and may help to orientate the catalytic domain correctly (Fischetti, 2010; 

Perez-Dorado et al., 2007). 

The catalytic domains of the lytic enzymes can be distinguished by their substrate specificity: e.g., the 

lytic enzyme from Cp-1 (Cpl1) is defined as lysozyme (old term) or muramidase/glycosidase (later 

terms) since it acts on the carbohydrate backbone of the peptidogylcan. It hydrolyzes the -1,4 linked 

N-Acetylglucosamine and N-Acetylmuramic acid repeats (Garcia et al., 1987). In contrast, the Dp-1 

lytic enzyme Pal is an amidase that breaks down the amide bond that connects covalently the sugar 

and peptide moieties. It cleaves between the acetyl group of the N-acetyl-muramic acid and the L-

alanyl residues as indicated by its name N-acetyl-muramoyl-l-alanine amidase (Garcia et al., 1984; 

Sheehan et al., 1997).  

It turned out that purified Cp-1 lysozyme (Cpl1) and Dp-1 muramidase (Pal) can rapidly kill S. 

pneumoniae in vitro (Loeffler et al., 2003; Loeffler et al., 2001). Non-capsulated, encapsulated as well 

as penicillin resistant strains are killed efficiently. Doses of purified lytic enzymes given to S. 

pneumoniae infected mice (oral, vaginal, and nasal colonization models) were able to cure them 

(Loeffler et al., 2003; Loeffler et al., 2001; Witzenrath et al., 2009). The lytic enzymes act specifically 

against the host, the phage is also able to infect, underlining an evolutionary specification of them 

(Fischetti, 2010; Loeffler et al., 2001). Moreover, phage-derived lytic enzymes are highly efficient. 

For instance, S. pneumoniae lysin (LytC) that cleaves the same glycosidic linkage of pneumococcal 

peptidoglycan as Cpl1 shows 6,000 units per mg versus 100,000 units per mg of purified Cpl1 (Garcia 

et al., 1999). Thus, these zymogens are very promising for medical applications because they act very 

specifically while they have no side-effects on other gram-positives or humans. 

They are also promising since the host might not easily become resistant against lytic enzymes: 

bacteriophages optimized these weapons since millions of years and the host cells had to change the 

integrity of the cell wall which is hard to attain in contrast to acquire an antibiotic resistance gene 

(Fischetti, 2010). 

The Cpl1 protein crystal structure was the only resolved one so far of Cp-1 and Dp-1 proteins (Perez-

Dorado et al., 2007) (Cpl1 3D-structure is shown in the results section Fig. 31D). 
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1.2 Conserved hypothetical proteins: new hints and new puzzles 

Comparative genomics revealed that a substantial number of proteins of hitherto unknown function are 

distributed among organisms from several phylogenetic lineages. Thus, they are annotated commonly 

as “conserved hypothetical proteins” (CHPs). Because they are conserved they are expected to have 

conserved physiological functions. That is an important side-benefit: it is often easier to conduct 

experiments with bacterial than with eukaryotic proteins and functional characterization of microbial 

CHPs may facilitate prediction and subsequent experimental study of their human homologs. In fact, 

most of the highly conserved CHPs are thought to play a role in conserved pathways such as DNA 

metabolism and protein translation (Galperin and Koonin, 2004). However, they are often tough to 

analyze since their gene deletions exhibit no obvious phenotypes or there is no point to start at all 

since functional links are missing. With the availability of many experimental high-throughput 

datasets novel hints can now be found for these tough nuts. 

Koonin and Galparin summarized such highly conserved hypotheticals and proposed the most 

interesting candidates for further experimental investigations which have human orthologs (Galperin 

and Koonin, 2004). They split CHPs into two groups: “unknown unknowns” have no functional 

information at all and “known unknowns” have little known function, e.g., the presence of a known 

domain signature. For instance, E. coli YchF belongs to the “known unknowns” since it is composed 

of a GTPase domain (Teplyakov et al., 2003). Co-expression with peptidyl-tRNA hydrolase makes it 

likely to function in protein translation. However, since 2003 no progress was made on its 

characterization and its exact function is still mysterious. Koonin´s top-10 list of “unknown 

unknowns” is headed by E. coli YbeC. But also in this case no experimental progress was made 

underlining that these proteins are difficult to analyze. 
 

1.2.1 YbeB – a highly conserved ribosome-associated protein 

In other cases “unknown unknowns” changed into “known unknowns”. For instance, E. coli YbeB 

was ranked originally as third protein on the list of “unknown unknowns” by Koonin and Galparin. In 

the meantime several protein-protein datasets and other high-throughput datasets were published that 

found binary protein interaction partners for various YbeB homologs (Kazuta et al., 2008; Parrish et 

al., 2007; Rain et al., 2001; Titz et al., 2008). However, these sets include interaction partners 

belonging to various cellular functions and thus are not really helpful on the raw dataset level. 

One striking finding was done by Jiang and colleagues  (Jiang et al., 2007). They showed that a set of 

E. coli CHPs co-migrate with different ribosome fractions. In the case of YbeB it was shown that it co-

migrates exclusively with the large ribosomal subunit and thus might play a role in translation. Also its 

maize homolog Iojap was shown to bind to the large ribosomal subunit of maize chloroplasts (Han and 

Martienssen, 1995) and large-scale identification of E. coli and yeast protein complexes could detect 
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YbeB in complexes with ribosomal proteins and the large ribosomal subunit again (Butland et al., 

2005; Krogan et al., 2006). 

The loss of maize Iojap leads to a striking phenotype. As soon as its gene is mutated, the chloroplast´s 

ribosomal machinery breaks down and leads to the loss of ribosomes and thus to pattern-striped 

albinism (Jenkins, 1924; Rhoades, 1943) (Fig. 8). While this phenotype was the subject of several 

studies (Byrne and Taylor, 1996; Halter et al., 2004; Zubko and Day, 1998) the effect could not be 

explained up to date and remains mysterious. In E. coli general phenotypes are surprisingly absent 

when ybeB is deleted implying a putative accessory role of YbeB in bacterial translation (Jiang et al., 

2007). Although several studies were able to find a physical association of YbeB with the large 

ribosomal subunit its role in translation is uncertain. 

 

Fig. 8 Iojap-affected maize 
Corn seedlings with albino-striped leaves due to 
the homozygous nuclear mutation of the ij gene 
(Iojap). Images taken from 
http://www.forestryimages.org.  
(P.F. Byrne, Bugwood.org) 
 

 

 

 

1.2.2 A view on the ribosome 

The ribosome is responsible for translating the genetic information from mRNA into a polypeptide 

chain. It is one of the most complex biological nanomachines since many structural proteins, structural 

and catalytic RNAs, transfer RNAs, small molecules, regulatory factors, and enzymes have to play 

together during its biogenesis and to convert the nucleic acid code into functional proteins. The 

ribosome is composed of a large and a small ribonucleoprotein subunit. In prokaryotes the large 

subunit sediments with 50S, the small with 30S and assembled subunits with 70S. The small subunit is 

made of 16S rRNA and 21 ribosomal proteins. The large subunit consists of a 23S rRNA, a 5S rRNA, 

and 33 proteins (Kaczanowska and Ryden-Aulin, 2007) (Fig. 9). 
 

Translation – what we still do not know 

While protein translation is one of the best understood biological processes, there are still many open 

questions. The core components of translation like ribosomal rRNAs and proteins and the translation 

factors are well-known. Also maturation factors that are responsible for ribosome biogenesis are 

mostly characterized. Novel insights into regulatory mechanisms show that there exist manifold 

possibilities to regulate translation initiation. Recent results of large-scale experiments indicate that we 

are far from knowing all factors that play a role protein translation. Kazuta and colleagues checked the 

influences of expressed E. coli ORFs genome-wide in an in vitro translation system. They identified 
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344 proteins to have a beneficial and 159 proteins to have a deleterious effect on translation efficiency. 

Thus, approx. 12% of all E. coli proteins might also be involved in translation in vivo (Kazuta et al., 

2008). It turned out that many enzymes had a positive or negative effect on translation. Also many 

hypothetical proteins affected the translation system. Combination with protein complex data revealed 

that 60 of the 159 effecting proteins interact with minimum one core component of the ribosome 

(ribosomal proteins and translation factors) and thus are physically associated with the ribosome  

(Arifuzzaman et al., 2006; Butland et al., 2005; Kazuta et al., 2008). Other high-throughput interaction 

studies indicate additional interactions of unknown and unexpected proteins from various species with 

the translation core components (for references, see Tab. 7). Medium-scale experiments could also 

classify a large set of novel ribosome-associated proteins. For instance, 10 novel mitochondrial 

ribosomal proteins of yeast and nine of E. coli were identified (Gan et al., 2002; Jiang et al., 2007). 

Consequent characterization of few of such proteins could already determine their functions. For 

instance, E. coli protein YbeY was shown to function as general chaperone for ribosomal proteins 

under high temperature growth conditions (Rasouly et al., 2009). E. coli CgtA and YjeQ were shown 

to function as GTPases in late steps of ribosome biogenesis (Campbell and Brown, 2008; Jiang et al., 

2006). The examples mentioned here underline the impact of proteome-wide experiments for 

unraveling protein functions step by step. Highly conserved and widely evolutionary distributed 

proteins of unknown function might be involved in protein translation but are often tough to analyze 

since phenotypes or other experimental indicators are not detectable. 
 

Ribosome biogenesis (E. coli) 

Ribosome biogenesis is complex and involves stepwise rRNA modification, ordered binding of 

ribosomal proteins and metal ions, and sequential conformational changes. Assembly in vivo takes 

about two minutes (Lindahl, 1975). 

Biogenesis starts in parallel to transcription of the rRNA genes that are encoded by one transcriptional 

unit. Formation of hairpins and other secondary structures in the polygenic RNA leads to binding of 

ribosomal proteins. Cleavage by several RNases as well as chemical base modifications take place 

(Williamson, 2003). Endonuclease RNase III cleavage results in precursors of 23S, 16S, and 5S rRNA 

and some tRNAs. While trimming the 23S rRNA precursor is dependent on RNasIII, RnaseT, and an 

unknown RNase, 16S rRNA termini are shortened by RNaseE and G and an unknown RNase 

(Kaczanowska and Ryden-Aulin, 2007). Production of 5S rRNA requires RnaseP and E (Bothwell et 

al., 1976; Roy et al., 1983). 

Chemical modifications of base and sugar residues take place frequently in rRNAs (as well as in 

tRNAs).  However, in 5S rRNA chemical modifications are unknown. Uridine can be converted to 

pseudouridine orcarbonyl, methyl,amino, or thio groups can be added. The 16S rRNA is known to 

have 11 modified positions, of which 10 are methylations and one is a pseudouridine. 23S rRNA 

contains 25 known modifications. Here, 14 are methylations, nine are pseudouridines, one is a 
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methylated pseudouridine, and one is unknown. Most of the modifications in both the 16S and 23S 

rRNA are clustered in the decoding region and the peptidyl transferase center (Decatur and Fournier, 

2002). Chemical modifications are needed for an increased binding efficiency of tRNAs to the 16S 

rRNA or protein L16 to the 50S particle, and for optimization of rRNA folding (Chelbi-Alix et al., 

1981; Krzyzosiak et al., 1987). Modifications are mediated by maturation enzymes belonging to two 

classes (methyltransferases and pseudouridine synthases). About 27 enzymes are known to be 

responsible to modify a certain rRNA residue. Notably chemical modifications take also place in 

ribosomal proteins. Post-translational modifications have been reported for five and six ribosomal 

proteins of the small and large subunit of E. coli, respectively. Methylation, ethylation, addition of 

glutamic acid residues, and a partial modification with isoaspartate are known (Kaczanowska and 

Ryden-Aulin, 2007). For instance, L11 is polymethylated at nine various positions (Colson et al., 

1979). S6 is modified by six glutamic acid residues (Kang et al., 1989). Although the role of such 

protein modifications in the context of ribosomal proteins is unclear, they may alter and optimize the 

protein specificities. 

Moreover, various RNA helicases, RNA and protein chaperones, and ribosome-dependent GTPases 

are important for the proper ribosome maturation. They guarantee the proper folding of rRNAs at 

certain checkpoints during early, middle, and late phases of ribosome biogenesis (Kaczanowska and 

Ryden-Aulin, 2007). 
 

From the genetic code to a protein 

Essentially, three major steps occur during protein translation (described here for E. coli translation 

system):  

Initiation is promoted by three initiation factors (IF1, IF2, IF3). It involves the binding of the Shine-

Dalgano (SD) sequence of mRNAs to the anti-SD sequence of 16S rRNA on the 30S subunit. Then, 

the initiation factors help to accommodate the start codon at the P-site followed by the assembly of 

50S subunit with the initiator complex on the 30S subunit. Initiation is thought to be the rate-limiting 

step. Initiation assembly takes on the order of seconds while elongation occurs at a faster rate with the 

synthesis of ~20 amino acids per second (Rodnina et al., 2007).  

During elongation the polypeptide chain is synthesized (Fig. 9). The initiator tRNA is loaded with 

formylmethionine and located to the P-site while in the A-site a corresponding aminoacylated tRNA is 

loaded corresponding to the second mRNA codon. The latter is brought as ternary complex with 

elongation factor Tu (EF-Tu)-GTP. After GTP hydrolysis, the elongation factor releases the aminoacyl 

end of the A site tRNA. This allows the tRNA to swing into the P-site. As a consequence, aminoacyl 

residues of both tRNAs are positioned at the peptidyl transferase center on the 50S subunit and peptide 

bond formation occurs. This is catalyzed by the 23S rRNA peptidyl transferase center which has a 

ribozyme activity. The deacylated initiator tRNA is moved for release from the P site to the E site. The 

translocation reaction is driven by GTP hydrolysis of EF-G. Repetitions of this step lead to a peptidyl 
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chain that exits the ribosome through a tunnel at the top of the 50S subunit (Kaczanowska and Ryden-

Aulin, 2007). 

Release factor (RF) RF-1 or RF-2 recognize the mRNAs stop codons as soon as they are located in the 

A-site. This triggers termination by the release of the peptide chain from peptidyl-tRNA located in the 

P-site. Afterwards, RF3 binds to RF1 or RF2 and releases them from the A-site. 

The ribosomal particle still contains the empty tRNA in the P-site and the mRNA. Dissociation of the 

subunits is accomplished by ribosome recycling factor (RRF) with EFG. Subsequently, IF-3 removes 

the tRNA from the 30S subunit, allowing the mRNA to dissociate or to undergo new SD/anti-SD 

contacts (Kaczanowska and Ryden-Aulin, 2007). 

 

Fig. 9 A translating ribosome during peptidyl chain elongation 
A ribosomal particle bound with mRNA and tRNAs. The mRNA chain is figuratively extended and a freshly 
synthesized polypeptide chain is indicated. Figure was drawn with Pymol after PDB entry 3i8f and 3i8g (Jenner 
et al., 2010).  
 
Comparison of translational systems 

Each organism has at least one complete ribosomal system for protein synthesis. Eubacteria and 

Archaea contain cytosolic ribosomes. Plants have cytosolic ribosomes and separate systems that act in 

their mitochondria and plastids. Fungi and animals have cytosolic and mitochondrial ribosome 

systems. Although protein translation and the ribosome are well-conserved there are some remarkable 

differences between the major clades. 

Mitochondrial ribosomes and thus the mitochondria are thought to be derived from aerobic -

protobacteria. In contrast, the chloroplast´s origin including its translation system is believed to be of 

cyanobacterial origin (Aravind and Koonin, 2000; Gray, 1989; Gray, 1992). Cytosolic ribosomes of 

Eukaryota are more closely related to Archaea and thus are thought to be of archaeal origin. It was 

shown that archaeal rRNAs and ribosomal proteins are more closely related to eukaryotic ribosomal 
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rRNAs and proteins (Allers and Mevarech, 2005; Bult et al., 1996). However, Archaea frequently 

utilize Shine-Dalgarno sequences to identify translation start codons and use polycistronic mRNAs, 

similar to Eubacteria. Alternatively, Archaea can also initiate translation with leaderless mRNAs, 

similar to initiation of Eukaryotes (Benelli et al., 2003). Another criterion that indicates a closer 

relationship of Archaea and cytosolic eukaryotic translation is the set of initiation factors. Ten are 

known for Archaea while Eubacteria have only three. The archeal factors share a high homology with 

those from Eukaryotes. Similarly, archaea and eukaryote translation initiation makes use of 

methionine while bacteria use formyl-methionine (Allers and Mevarech, 2005; Londei, 2005). 

Moreover, in E. coli many cis- and trans-acting regulatory factors are known to control the speed of 

initiation positively or negatively. For instance, secondary structures in the mRNAs´ 5´-untranslated 

region (5´-UTR) can alter during environmental changes. This phenomenon is also called 

“riboswitch”. Differences in temperature can lead to conformational changes, making the mRNA more 

or less affine to the anti-SD sequence. Moreover, trans-acting factors like small molecules/metabolites, 

short regulatory RNAs, as well as protein ligands can regulate translation initiation through 5´-

UTR/mRNA binding (Marzi et al., 2008). In general, bacteria modulate the accessibility of the 5´-

UTR to control initiation. 

In comparison, eukaryotic and archaeal translation initiation is controlled by a rather low number of 

trans-acting ligands. In eukaryotes, at least 30 initiation factors participate in translation (Sonenberg 

and Hinnebusch, 2009). In principle, initiation factors including eIF-E, A, and G, bind to a mRNA 5´-

cap region and scan for triplets until they find a start codon. Proteins that bind to the 3´-poly-A tail can 

lead to a loop formation with the 5´-cap complex and can stimulate initiation. This occurs on the small 

ribosomal subunit and locates the initiator Met-tRNA to the P-site. Additional factors bound to the 5´-

cap region can trigger the usage of alternative start codons. Other factors can bind to the 3´-UTR poly-

A tail and make the mRNA inaccessible for translation also by loop formation of the mRNA-protein 

complex. Moreover, initiation regulation in eukaryotes includes inactivation of eIF-2 by 

phosphorylation as an example for post-translational modification of regulatory factors. Translational 

regulation is important during environmental changes, virus infection, and during the cell cycle, e.g., 

the negative regulation of translation in G0 phase. Then eIF-2 is phosphorylated and thus inactivated. 

Moreover, miRNAs are known to be highly relevant for translational regulation (Sonenberg and 

Hinnebusch, 2009). In summary, regulation of translation initiation in bacterial and eukaryotic 

translation systems is different since these life forms had to face different issues regarding cell cycle 

control, development, and environmental changes which is more complex in eukaryotes. 
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1.3 Interactome screening with the Yeast Two-Hybrid (Y2H) System 

Shortly after Stanley Fields and Ok-kyu Song invented the Yeast Two-Hybrid System in 1989 and 

demonstrated the system to work for a single protein interaction (Fields and Song, 1989) it was 

adapted for screens of random libraries. Today, matrix-based screens are used primarily for smaller 

and medium size clone collections in combination with automation and cloning techniques that allow 

for reliable and fast interaction screening. Matrix-based Y2H screens are an alternative to library-

based screens. However, intermediary forms are also possible. Recent improvements of matrix screens 

(also called array screens) use various pooling strategies as well as novel vectors that increase its 

efficiency while decreasing false-negative rates and increasing reliability. Since the Y2H system was 

used in this work as elementary method I will introduce it briefly. 

1.3.1 The Yeast Two-Hybrid principle 

Like other variations of the Y2H system matrix-based assays are usually carried out in living yeast 

cells although in theory any other cell could be used. This is a crucial advantage since it represents an 

“in vivo” situation. The proteins of interest are provided as plasmid-encoded recombinant fusion 

proteins (Fig. 10). The bait protein is fused to a DNA-binding domain (DBD) of the yeast GAL4 

transcription factor. The prey protein is tagged by the activation domain (AD) of GAL4. A physical 

contact of the bait and prey protein simulates the reconstitution of the GAL4 transcription factor. Once 

the bait protein binds to its promoter sequence by its DBD the interacting proteins recruit the basal 

yeast transcription machinery and thus activate the expression of a reporter gene.  

For high-throughput screens a HIS3 auxotrophy marker is used routinely. It encodes the essential 

enzyme imidazoleglycerol-phosphate dehydratase which catalyses the sixth step of histidine 

biosynthesis. Hence, yeast growth on minimal medium that lacks histidine can be used to indicate an 

interacting protein pair. In contrast, non-interacting pairs cannot support growth on minimal medium 

sine they cannot activate transcription of the reporter gene. This reporter system is very simple and 

easy to use because the presence of yeast colonies indicates an binary protein interaction. Many other 

reporter genes are conceivable as long as they can be activated by the interacting fusion proteins. 

Before the binary tests are carried out, the bait and prey plasmids must be brought into the same yeast 

cell. This is done conveniently by mating. The bait and prey plasmids are transformed separately into 

haploid yeast cells of different mating types, a and . Mating results in diploid yeast strains that carry 

the genetic material of both haploids including the bait and prey plasmids. 

Alternative reporter genes are LEU2 and URA3. They allow selection on readout medium that lacks 

leucine or uracil. Auxotrophy markers are not the only ones that can be used. The ADE2 reporter 

system changes colony color from red to white on adenine starvation medium when diploids express 

interacting proteins. -galactosidase (lacZ) or GFP (green fluorescent protein) can be used as 
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colorimetric or fluorescence reporters. Finally, transcription-independent two-hybrid systems have 

been developed. The Split-Ubiquitin System is based on the cleavage of one of the interacting fusion 

proteins by the proteasome (Johnsson and Varshavsky, 1994). 

 

Fig. 10 The Y2H principle 
(A) Haploid yeast cells of mating type a are transformed with a bait plasmid and those of mating type  with 
prey plasmids. A single bait strain is mated with a prey library. (B) Resulting diploids (a/) carry the genetic 
material of mated haploids. Interacting fusion proteins activate expression of the HIS3 reporter gene which 
assures survival on minimal medium that lacks histidine (left); diploids with non-interacting fusions cannot grow 
(right). 
 

1.3.2 Applications 

It has become clear that the ability to conveniently perform unbiased library screens is the most 

powerful application of the Y2H system. With whole-genome arrays such unbiased screens can be 

expanded to all proteins of an organism or any subset thereof. Arrays, like traditional Two-Hybrid 

screens, can also be adapted to answer many questions that involve protein-protein or protein-RNA 

interactions (Tab. 6). 
 

Tab. 6 Applications and use of two-hybrid assays besides protein-protein interaction screens 
 

Application Reference 

Identification of mutants that prevent or allow interactions (Schwartz et al., 1998) 

Screening for drugs that affect interactions (Vidal and Endoh, 1999; Vidal and Legrain, 1999) 

Identification of RNA-binding proteins (SenGupta et al., 1996) 

Semi-quantitative determination of binding affinities (Estojak et al., 1995) 

Map interacting domains (Boxem et al., 2008; Rain et al., 2001; Vollert and Uetz, 2004) 

Study protein folding (Raquet et al., 2001) 

Map interactions within protein complexes (Cagney et al., 2001) 
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Recent large-scale projects have been successful in mapping systematically whole or partial proteomes 

of various higher and lower organisms (Tab. 7). In addition to bacteria and eukaryotic genomes, 

several viral proteomes have been mapped, e.g., bacteriophage T7 (Bartel et al., 1996) and several 

herpesviruses (Fossum et al., 2009; Uetz et al., 2006). 

In combination with structural genomics, gene expression data, and metabolic profiling, the enormous 

amount of information in these networks help us to model complex biological phenomena in 

molecular detail or to link unknown proteins to certain pathways. 
 

Tab. 7 Published proteome-scale and comprehensive Y2H projects 
 

Species Reference 

Saccharomyces cerevisiae (Ito et al., 2001; Uetz et al., 2000; Yu et al., 2008) 
Drosophila melanogaster (Giot et al., 2003) 
Caenorhabditis elegans (Li et al., 2004) 
Homo sapiens (Rual et al., 2005; Stelzl et al., 2005) 
Helicobacter pylori (Rain et al., 2001) 
Campylobacter jejuni (Parrish et al., 2007) 
Treponema pallidum (Titz et al., 2008) 
T7 phage (Bartel et al., 1996) 
Herpesvirus EBV, KSHV, mCMV, VZV, HSV-1 (Fossum et al., 2009; Uetz et al., 2006) 

 

1.3.3 Matrix-based Yeast Two-Hybrid Screens (one-on-one)  

“Matrix-” or “array-based” means that preys are organized in a defined array format. For high-

throughput purposes preys can be arranged in 384-format on a single test plate. This was first 

demonstrated on a global scale by Uetz and colleagues (Uetz et al., 2000). Each prey clone maps to an 

individual position. Preys may be organized as individual colonies. An arrangement as duplicate or 

quadruplicate copies helps to ensure reproducibility (Fig. 11). 

The whole array of haploid preys is usually mated with a single bait of the opposite mating type. Thus, 

each potential interaction pair is tested one-on-one (Fig. 11). For high-throughput analyses the usage 

of a replication robot is recommended, typically with a 96- or 384-pin tool (Fig. 11B). It automates the 

procedure by reproducibly stamping up to hundreds of array position in a single step, e.g to transfer 

diploids onto readout plates. 
 

Why matrix-based screens? 

Matrix-based screens are excellent to control experimental background signals. Background can be 

caused by self-activation of certain bait proteins. Self-activation is defined as a detectable bait-

dependent reporter gene activation in the absence of any prey interaction partner. For instance, in yeast 

about 7.5% of 6,000 bait proteins exhibit self-activation and many of the strongly self-activating baits 

have been identified as transcription factors (Titz et al., 2006b). In matrix-based screens, interactions 

of self-activating baits can be identified even if such a background growth occurs. Therefore, prior to 

the Two-Hybrid analyses, the bait yeast strains have to be examined for their self-activation property. 
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Weak to intermediate-strength self-activator baits can be used in Two-Hybrid array screens because 

the corresponding bait-prey interactions confer stronger signals than the self-activation background. If 

the HIS3 reporter is used (not possible with other genetic reporters), the self-activation background 

can be suppressed by adding a bait-specific, minimal inhibitory concentration of 3-AT (3-Amino-

1,2,4-triazole) to the readout medium, a competitive inhibitor of HIS3 (Hilton et al., 1965). 3-AT was 

originally applied as herbicide. 
 

 

Fig. 11 A matrix-based screen 
(A) A prey array mated with a single bait on diploid selective agar medium containing 96 individual preys. 
Single preys are replicated as quadruplicates to check interaction reproducibility. (B) 384-pinning tool of 
replication robot during pinning step of diploids onto readout medium. (C) Diploids on readout medium that 
lacks histidine. Diploids are usually grown on selective medium for one week at 30°C. Activation of the HIS3 
reporter leads to growth on readout medium indicating a pairwise interaction (see quadruplicate position in white 
square). Non-interacting pairs do not support growth on minimal medium (e.g., quadruplicate in dashed square). 
Background signals like randomly growing cells can be tracked easily on the matrix and can be retested (e.g., top 
left). 
 

In a matrix screen of a single bait the signal-to-noise ratio can be easily determined because all protein 

pairs are assayed under equal conditions. Furthermore, background of spontaneously appearing 

colonies caused by mutations or other random effects can be identified (e.g., see Fig. 11C). The 

redundancy of two or more test positions helps to winnow random colonies. 

Another crucial advantage is that interacting preys can be simply identified by their positions. The 

matrix positions can be stored in a list or more comfortably in a database. Thus, identification of the 

interacting prey by sequencing is not required and time and costs can be minimized. 

Finally, the matrix approach helps to distinguish strong from weak and spurious interactions since the 

size of growing yeast colonies is a semi-quantitative measure of binding affinity (Estojak et al., 1995). 
  

selection of yeast diploids selection for interactions

robot with 384-pinning tool

A C

B
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1.3.4 (Mini-) pool screening strategies 

The capacity of matrix-based screens is limited by the size of the clone set to be tested. For instance, a 

small proteome that encodes for 1,000 proteins requires at least 1,0002  individual pairwise tests in a 

comprehensive screen. For large genomes, such as the human, 23,0002 (over half a billion) one-on-one 

tests would be necessary to test all possible combinations. Genome-wide screens face three main 

issues: cost and efficiency (the number of assays and speed), specificity (detecting false-positives), 

and sensitivity (avoiding false-negatives). 

Solutions to make large-scale matrix screens more efficient require pooling (Tab. 8) which may reduce 

the number of individual Y2H tests dramatically as well as the need for sequencing while keeping the 

advantages of matrix-based screens. Smart pooling and arrangements of prey as well as bait clones can 

help to speed up the screening procedure drastically, resulting in interaction detection with (almost) 

the same sensitivity and specificity as in one-on-one Yeast Two-Hybrid screens. Sophisticated pooling 

strategies which are partially based on complicated mathematical background operations have been 

developed (Tab. 8). 
 

Tab. 8 Y2H pooling strategies 
 

Name Description Reference 

Library-prey pool screen Screen 1 bait x whole ORFeome pool of preys e.g., used in (Bartel et al., 
1996) 

Mini-pool screens Matrix-based screen of 1 bait x n preys per array position (in 
case of Rual et al. 1 bait x 188 human prey clones).  

e.g., used in (Rual et al., 2005) 

Two-Phase Mating Mating of 1 prey x bait array followed by mating of positive 
bait x prey array. Identification of interacting bait/prey 
possible just by matrix position. 

(Zhong et al., 2003) 

PI-Deconvolution Screening of 2n baits in 2n pools against a redundant prey 
matrix; interacting bait is identified by an unique tag that 
correlates with preys positives. 

(Jin et al., 2006) 

Smart Pool Array PI-Deconvolution strategy: instead of individual preys, well-
designed prey pools are screened in an array format that 
allows built-in replication and prey-bait deconvolution. 

(Jin et al., 2007) 

Shifted Transversal Design Achievement of an extra large experimental redundancy by a 
shifted transversal prey matrix design. Interacting preys are 
identified by their characteristic matrix pattern. 

(Xin et al., 2009) 

 

 

In matrix-based pooling screens several preys share a position. In a simple case a prey array that 

consists of 960 individual preys can be collapsed into a single 96-well plate with 10 clones in each 

position (Fig. 12). This minimizes the required mating operations with a single bait by 1/10. The 

disadvantage of this strategy is that interacting preys cannot be identified immediately as it is possible 

in one-on-one matrix screens. They must be identified by yeast colony PCR followed by sequencing or 

retesting of individual bait-prey pairs. 
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Fig. 12 Principle of mini-pool screens 
(A) A full-matrix prey array that consists of three plates (I, II, III), each with 96 individual preys. Positions are 
collapsed into a single prey pool plate. Pooling results in mini-pools which consist of three different preys (e.g., 
X, Y, and Z). (B) Mini-pool on readout medium as quadruplicates. Pool B7 exhibits an interaction. Prey X, Y, 
and Z are potential interaction partners. (C) Identification of the interaction partner by a one-on-one retest assay.  
Prey Y is identified as the interaction partner whereas X and Y do not interact. Alternatively the interacting prey 
can be identified by a colony PCR followed by sequencing. 
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1.4 Motivation 

This work was motivated by a major and a minor aim:  
 

Major project: Functional proteomics of the lytic bacteriophages Cp-1 and Dp-1of S. pneumoniae 

The sequencing era of whole phage genomes reached a critical information limitation: 50 up to 90% of 

gene products cannot be annotated at all by homology predictions. To understand the biology of these 

phages, there is an urgent need of comprehensive experiments beyond sequencing. Since systematic, 

functional experiments of bacteriophages have been rare in contrast to bacteria and higher organisms, 

the motivation for me was to push the traditional phage biology into the proteomics era. 

As a starting point, I systematically screened the proteomes of Pneumococcus phage Cp-1 and Dp-1 

against themselves with the expectation to find novel functional protein links for unknown as well as 

annotated proteins. The mentioned phages are of general medical interest since they are among the few 

lytic viruses infecting S. pneumoniae, a major cause of human death caused by bacterial infections. 

Thus, they are promising candidates for phage therapy. Although these two phages are the best 

characterized lytic Pneumococcus phages, we are far from understanding their biology. But exactly 

this is important to create “Frankenstein´s phage”, a synthetic or modified phage that infects the host 

cell efficiently and might be applicable in phage therapy. Systematic approaches are necessary to find 

unexpected phenomena that are usually not found by “bottom up” approaches. 

Moreover, nobody systematically screened any phage for protein-protein interactions with host 

proteins so far. Since viruses do not stand alone but reproduce in dependence of a host cell, their 

biology cannot be regarded in isolation. To get deeper and comprehensive insights into the phage-host 

relationship I carried out proteome-wide screens for virus-host interactions. Since Dp-1 and Cp-1 

belong to completely different families I also addressed the question if interactions can be found that 

indicate similar or different manipulation strategies and thus if these two phages evolved analogous 

mechanisms. 

Finally, there was the task to annotate the Dp-1 genome. Its genome has been sequenced. However, it 

has been only partially annotated and its comprehensively annotated genome was never published.  

By combining results from genomic as well as proteomic data, I addressed the following questions: 
 

 How can a phage hijack the host? 

 Which pathways and which cellular levels are targeted? 

 Evolution: can interactions be found that indicate analogous manipulation/infection strategies? 

 Is the genomic organization of phages reflected by their protein interaction network? 

 And thus, can protein interaction data be valuable to predict functions of orphan proteins? 

 What can we learn about individual proteins and their functions?  
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Minor project: Functional analysis of the conserved hypothetical protein YbeB and its interaction 

with the ribosomal protein L14 

I started to work on conserved hypothetical proteins during my master´s thesis. At that time I screened 

systematically for protein-protein interactions of conserved hypothetical proteins of the Spirochaete 

Treponema pallidum assuming that interactions among conserved proteins might help to get new ideas 

about their physiological function. However, the identified interactions and thus the functional links 

were hard to interpret since nothing or not much was known about these putative proteins except that 

they are conserved. In addition, available low-, medium-, and high-throughput experimental data from 

other species that would have allowed for a comprehensive comparison were rare. 

In the meantime several high-throughput studies have been published. These were very useful to find 

novel functional links on proteins I was working on: here I focused on the functional analysis of the 

conserved hypothetical protein YbeB from E. coli and its orthologous relatives – a widely 

evolutionary distributed group of “Iojap-like” proteins, present from bacteria to man. A recent study 

revealed co-migration of YbeB of E. coli with the large ribosomal subunit and proposed involvement 

of YbeB in protein translation although phenotypes of its gene deletion mutant are absent. To find 

novel hints about its mysterious function I reviewed the existing literature ranging from homologs of 

various species. Furthermore, I examined putative protein-protein interaction links of YbeB 

experimentally that were published from high-throughput experiments. The aim for me was to learn 

more about the function of YbeB because of its high evolutionary distribution. The general questions I 

wanted to answer are: 
 

 Where does YbeB bind on the ribosome? 

 Is this/these interaction(s) conserved and thus YbeB´s function? 

 Can this/these interaction(s) help to find deeper insights into YbeB function? 

 Since there was no phenotype reported so far for E. coli ybeB gene knock-out strains: does the loss 

of YbeB in E. coli result in phenotypes that link it with the translational process in vivo? 

 What is the molecular function of YbeB and its orthologs? 

 Can we learn something about ourselves (or better, can we still find conserved principles in 

bacteria that are relevant to human biology)? 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and enzymes 

Tab. 9 Chemicals 
 

Name Source 

3-AT (3-amino-1,2,4-triazole) Sigma-Aldrich, Taufkirchen 

Acetic acide, glacial Roth, Karlsruhe 

Acrylamide Roth, Karlsruhe 

ADP (adenosine diphosphate) Sigma-Aldrich, Taufkirchen 

Agar agar Roth, Karlsruhe 

Agarose Peqlab, Erlangen 

ATC (anhydrotetracycline) Sigma-Aldrich, Taufkirchen 

Ammonium chloride (NH4Cl) Roth, Karlsruhe 

Ammonium molybdate tetrahydrate ((NH4)6Mo7O24•4H2O) Roth, Karlsruhe 

Ampicillin sodium salt Roth, Karlsruhe 

Amylose resin (E8021) New England Biolabs, Frankfurt 

APS (ammonium persulfate) Roth, Karlsruhe 

ATP (adenosine triphosphate) Sigma-Aldrich, Taufkirchen 

Bacto Yeast Extract Roth, Karlsruhe 

Boric acid (H3BO3) Roth, Karlsruhe 

Bromophenolblue Sigma-Aldrich, Taufkirchen 

BSA (bovine serum albumin) Promega, Mannheim 

Calcium chloride dihydrate (CaCl2•2H2O) Roth, Karlsruhe 

Chloramphenicol Sigma-Aldrich, Taufkirchen 

Cobalt(II) chloride (CoCl2) Roth, Karlsruhe 

Coomassie Brilliant Blue R-250 Sigma-Aldrich, Taufkirchen 

Copper(II) sulfate (CuSO4) Roth, Karlsruhe 

DEPC-Treated Water, UltraPure Invitrogen, Karlsruhe 

DMEM - Dulbecco's Modified Eagle Medium Invitrogen, Karlsruhe 

DMSO (dimethyl sulfoxide) Roth, Karlsruhe 

DNA ladder – 1kB Invitrogen, Karlsruhe 

dNTP mix (10 mM, each dNTP) Sigma-Aldrich, Taufkirchen 

dNTP mix (2.5 mM, each dNTP) Takara Bio Inc., Potsdam 

Donor calf serum (DCS) Invitrogen, Karlsruhe 

DRAQ5 Biostatus, Shepshed, UK 

DTT (dithiothreitol) Roth, Karlsruhe 

EDTA (ethylenediaminetetraacetic acid) Roth, Karlsruhe 

Ethidium bromide Roth, Karlsruhe 

EtOH (ethanol) Roth, Karlsruhe 

FCS (fetal calf serum) Invitrogen, Karlsruhe 

Fungizone (500x) Invitrogen, Karlsruhe 

G418 sulfate PAA Laboratories, Cölbe 

Gel filtration standards Biorad, München 
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Name Source 

Gentamicin Reagent Solution (50 mg⁄ml), liquid   Invitrogen, Karlsruhe 

Gentamycine  Roth, Karlsruhe 

Glucose Roth, Karlsruhe 

Glutaraldehyde Sigma-Aldrich, Taufkirchen 

Glutathione Sepharose 4 Fast Flow GE Healthcare, München 

Glycerol Roth, Karlsruhe 

Glycin Roth, Karlsruhe 

HCl Roth, Karlsruhe 

Imidazole Sigma-Aldrich, Taufkirchen 

IPTG (isopropyl β-D-1-thiogalactopyranoside) Sigma-Aldrich, Taufkirchen 

Isopropanol Roth, Karlsruhe 

Kanamycin sulfate Roth, Karlsruhe 

L-(+)-arabinose Sigma-Aldrich, Taufkirchen 

Leupeptin Sigma-Aldrich, Taufkirchen 

Lithium acetate Roth, Karlsruhe 

Magnesium chloride (MgCl2) Roth, Karlsruhe 

Maltose Sigma-Aldrich, Taufkirchen 

Manganese(II) chloride (MnCl2) Roth, Karlsruhe 

Methanol Roth, Karlsruhe 

Milk powder Saliter, Obergünzburg 

MitoTracker® Green FM Invitrogen, Karlsruhe 

MOPS Roth, Karlsruhe 

Ni-NTA Superflow Qiagen, Hilden 

Non-essential amino acids (NEAA; 100x) Invitrogen, Karlsruhe 

NP-40 (Igepal CA-630) Sigma-Aldrich, Taufkirchen 

ONPG (2-nitrophenyl β-D-galactopyranoside) Sigma-Aldrich, Taufkirchen 

Optimem Invitrogen, Karlsruhe 

PBS 10 x solution Invitrogen, Karlsruhe 

PEG (polyethylenglykole) Sigma-Aldrich, Taufkirchen 

Penicillin/streptomycin (100x) Invitrogen, Karlsruhe 

peqGOLD prestained protein ladder Peqlab, Erlangen 

PMSF (phenylmethylsulfonyl fluoride) Sigma-Aldrich, Taufkirchen 

Potassium sulfate (K2SO4) Roth, Karlsruhe 

PromoFectin Promokine, Germany 

Rifampicin Sigma-Aldrich, Taufkirchen 

Salmon sperm DNA Sigma-Aldrich, Taufkirchen 

Sarkosyl (N-lauroylsarcosine, sodium salt) Sigma-Aldrich, Taufkirchen 

SDS (sodium lauryl (dodecyl) sulfate) Roth, Karlsruhe 

Sodium chloride (NaCl) Roth, Karlsruhe 

Sodium hydroxide Roth, Karlsruhe 

Spectinomycin dihydrochloride pentahydrate Sigma-Aldrich, Taufkirchen 

TEMED (N,N,N′,N′-tetramethylethylenediamine) Sigma-Aldrich, Taufkirchen 

Tetracycline hydrochloride Sigma-Aldrich, Taufkirchen 

Tricine Roth, Karlsruhe 

Tris-Base Roth, Karlsruhe 

Tris-HCl Roth, Karlsruhe 

Triton X-100 Sigma-Aldrich, Taufkirchen 

Trypsin, 0.25% (1 x), liquid Invitrogen, Karlsruhe 
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Name Source 

Tryptone/peptone Roth, Karlsruhe 

Tween-20 Roth, Karlsruhe 

UMP (uridine monophosphate) Sigma-Aldrich, Taufkirchen 

Uridine Sigma-Aldrich, Taufkirchen 

X-Gal (5-Bromo-4-chloro-3-indolyl β-D-galactopyranoside) Sigma-Aldrich, Taufkirchen 

Yeast Nitrogen Base Roth, Karlsruhe 

Zinc sulfate (ZnSO4) Roth, Karlsruhe 

-Mercaptoethanol Roth, Karlsruhe 

 

Tab. 10 Enzymes and antibodies 
 

Name Source 

DNase I, RNase-free Fermentas, St. Leon-Rot 

Exonuclease I Fermentas, St. Leon-Rot 

Gateway® BP Clonase® enzyme mix Invitrogen, Karlsruhe 

Gateway® LR Clonase® enzyme mix Invitrogen, Karlsruhe 

Goat -GST polyclonal antibody Rockland, Gilbertsville, USA 

Goat -mouse/HRP polyclonal antibody Dako, Hamburg 

Goat -rabbit/HRP polyclonal antibody Dako, Hamburg 

Lysozyme, from chicken egg white Sigma-Aldrich, Taufkirchen 

Mouse -MBP monoclonal antibody New England Biolabs, Frankfurt 

PrimeSTAR HS DNA Polymerase Takara Bio Inc., Potsdam  

Rabbit -goat/HRP polyclonal antibody Dako, Hamburg 

Rabbit -HA antibody polyclonal antibody Santa Cruz Biotechnology, CA, USA 

Rabbit -His6 polyclonal antibody Santa Cruz Biotechnology, CA, USA 

Restriction enzymes, various Promega, Mannheim; Fermentas, St. Leon-Rot 

RevertAid™ H Minus Reverse Transcriptase Fermentas, St. Leon-Rot 

RiboLock™ RNase Inhibitor Fermentas, St. Leon-Rot 

SAP (Shrimp Alkaline Phosphatase) Fermentas, St. Leon-Rot 

T4 DNA-ligase Fermentas, St. Leon-Rot 

Taq polymerase Promega, Mannheim 

VentR® DNA Polymerase New England Biolabs, Frankfurt 

Zymolase - Yeast Lytic Enzyme Zymo Resaerch, Orange, CA 
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2.1.2 Instruments, consumable materials, and kits 

Tab. 11 Instruments 
 

Name Source 

AKTA FPLC™ System GE Healthcare, München 

Agarose gel electrophoresis chamber Peqlab, Erlangen 

Bacteria/yeast incubator Heraeus, Stuttgart 

Bacteria/yeast shaker Infors, Bottmingen, Switzerland 

Biomek 2000 laboratory work station (robot) Beckman Coulter, USA 

Biorad Photometer Biorad, München 

Bioruptor Diagenode, Liège 

Centrifuge for corex tubes, Avanti J-20 Beckman Coulter, USA 

Centrifuge, bench top C5403  Eppendorf, Hamburg 

Centrifuge, Labofuge 400R Heraeus, Stuttgart 

Centrifuge, micro (Biofuge Pico) Heraeus, Stuttgart 

Centrifuge, stand allone J2-HS Beckmann, Stuttgart 

Centrifuge, table top 5810R (swing out centrifuge) Eppendorf, Hamburg 

Developing machine Kodak, New Haven, USA 

Eagle eye Stratagene, Heidelberg 

ELx808 96-well plate reader Biotek Instruments, Friedrichshall 

FLUOStar OPTIMA fluorescence reader BMG Labtech, Offenburg 

NanoDrop Peqlab, Erlangen 

PAGE electrophoresis chamber Amersham, Freiburg 

PCR thermocycler PTC-200 MJ Research, Waltham, USA 

pH-Meter Calimatic 766 Knick, Egelsbach 

Semidry blotter Amersham, Freiburg 

Sonifier Cell Disruptor B15 Branson, Boston 

Spectrophotometer Biorad, München 

Thermomixer Eppendorf, Hamburg 

Vortex Genie2 Bender und Hobein, Karlsruhe 

Zeiss LSM 510 Meta confocal laser scanning microscope Zeiss, Germany 

 

 

Tab. 12 Kits and reagents 
 

Name Source 

Bradford reagent Bio-Rad, UK 

PCR clean up innuPREP DOUBLEpure Kit Analytic Jena bio solutions, Jena 

Pierce® ECL Western blotting substrate Thermo Scientific, Schwerte 

Plasmid Maxi Kit Qiagen, Hilden 

QuickLyse Miniprep Kit Qiagen, Hilden 

RNeasy Mini Kit Qiagen, Hilden 
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Tab. 13 Consumable materials 
 

Name Source 

96-well microtiter plates, flat bottom Sarstedt, Nümbrecht 

96-well microtiter plates, round bottom Sarstedt, Nümbrecht 

Bottle top sterile filter Nalge Nunc International, USA 

Cellulose MN 300 DEAE  for TLC, 20 x 20 cm Macherey-Nagel, Düren 

Conical (falcon) tubes, 50 ml and 15 ml GBO, Frickenhausen 

COREX 8445 tubes, 30 ml Corning Glass Works, Corning, N. Y. 

Dialysis membranes Visking, MWG cutoff 14 kDa Roth, Karlsruhe 

Disposable photometer cuvettes Brand, Wertheim 

Eight-well chamber slides Ibidi, Martinsried 

Eppendorf microcentrifuge tubes, 2 ml and 1.5 ml Eppendorf, Hamburg 

MultiScreenHTS 96-well plates Millipore, Billerica 

OmniTray (single well) plates Nalge Nunc International, USA 

PCR tubes, 8-stripes and 96-format Eppendorf, Hamburg 

Petri dishes, 5 and 10 cm Greiner, Nürtingen 

PVDF membrane for low MWG proteins Millipore, Billerica 

Sterile syringe filter Schleicher & Schuell, Dassel 

Super RX films Fujifilm Global, Düsseldorf 

Superose 12 10/300 column GE Healthcare, München 

Whatman paper Bender und Hobein, Karlsruhe 
 

2.1.3 Primers 

Tab. 14 Common primers 
Application: application the oligos were used for: (cPCR) control PCR, (seq) sequencing. Template: 
corresponding PCR template. 
 

Name Sequence (in 5´3´direction) Application Template 

GFPluc_for GGGCGGAAAGATCGCCGTG cPCR pCR3.1-N-eGFPLuc 
MBP_for AGACGCGCAGACTCCCGGT cPCR pCR3.1-N-MBP 
BGH_rev CTAGAAGGCACAGTCGAGGCTG cPCR pCR3.1-N-

eGFPLuc/MBP 
GWY_ B1_for GGGGACAAGTTTGTACAAAAAAGCAGGCT GW cloning 1st round PCR product 

in Gateway® cloning GWY_B2_rev GGGGACCACTTTGTACAAGAAAGCTGGGT GW cloning 
M13_for CGTTGTAAAACGACGGCCAG cPCR, seq pDONR221 
M13_rev GCCAGGAAACAGCTATGACC cPCR, seq 
pDONR207_for TTAACGCTAGCATGGATCTC cPCR, seq pDONR207 
pDONR207_rev CATCAGAGATTTTGAGACAC cPCR, seq 
pGAD_for TTTAATACGACTCACTATAGGGCG cPCR pGADT7g 
pGAD_rev AGATGGTGCACGATGCACAG cPCR 
pGBK_for GTAATACGACTCACTATAGGGCG cPCR pGBKT7g 
pGBKT7_rev TTTTCGTTTTAAAACCTAAGAGTC cPCR 
pDEST32_for GTCAAAGACAGTTGACTGTATCG cPCR pDEST32 
pDEST32_rev ACATTTTATGTTAGCTGGTGGAC cPCR 
pDEST22_for TATAACGCGTTTGGAATCACT cPCR, seq pDEST22 
pDEST22_rev AGCCGACAACCTTGATTGGAGAC cPCR, seq 
pETG_for GGATCGAGATCTCGATCCCG cPCR pETG vectors 
pETG_rev GGGCTTTGTTAGCAGCCGG cPCR 
pBAD24_for AGCGGGACCAAAGCCATGAC cPCR pBAD24HA 
pBAD24_rev CGGCGCGTACGGCGTTTCAC cPCR 
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Tab. 15 Gene-specific primers 
Oligos for ORF cloning and other applications. Gene-specific sequences of oligos used for high-throughput 
Gateway® cloning are not given. Description of the primer design and 12attB terminal sequences are given 
under (2.2.1.1).  
 

Name Sequence (in 5´3´direction) 

b0637_H1+197up CTCCGCAGCCAGACTTTTTCC 

b0637_H2+106down GCTCGAAGGGCATATCTTTCGG 

lacZ_for CATGGTACCCACCATGATTACGGATTCACTGGCC 

lacZ_rev GTAAAGCTTTTTTTGACACCAGACCAACTGGTAATG 

lacZ_for@1518 CCCGGCTGTGCCGAAATGGT 

lacZ_rev@2139 CTGCTGCCAGGCGCTGATGT 

phoA_for@465 GGAAATGGCAAAAGCCGCAGG 

phoA_rev@1294 GTGAATCCTCTTCGGAGTTCCC 

C7orf30_for AAAACTGGCTAGCATGGGGCCGGGCGG 

C7orf30_rev GCCGCGGCCGCTCACAAAGTTCTGAGCAATGG-3 

L14mt_for CTGGCTAGCATGGCTTTCTTTACTGGGCTC 

L14mt_rev GCCGCGGCCGCTCACAAAGTTCTGAGCAATGG 

K114_rev CTGGTGCCAGAGAGATAATTGCCATGAA 

TRIF_for GCAGCAGCAGCAGGGCCGGTAACTCGTGA 

TRIF_rev TGCTGCTGCTGCACCGATAGGCTGCTCGC 

b3310a1_for 12attB1-ATGATCCAAGAACAGACTATGCTGAACG 

b3310a2_rev 12attB2-GAGTACTTCTGGTGCCAGAGAG 
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2.1.4 Plasmids 

Tab. 16 Plasmids 
Plasmid maps can be found in the supplementary information (Fig. 49). 
 

Name Source  Description Application 
pDEST32 Invitrogen, Karlsruhe 

 
Gateway® compatible, N-terminal Gal4-DBD tag, 
bacterial gentR selection marker, yeast LEU2 
selection marker 

Y2H 

pDEST22 Gateway® compatible, N-terminal Gal4-AD tag, 
bacterial ampR selection marker, yeast TRP1 
selection marker 

pGBKT7g Clontech, USA 
(Uetz et al., 2006) 

Gateway® compatible, N-terminal Gal4-DBD tag, 
kanR selection marker, yeast TRP1 selection marker 

pGADT7g Gateway® compatible, N-terminal Gal4-AD tag, 
bacterial ampR selection marker, yeast LEU2 
selection marker 

pETG-30A EMBL, Heidelberg Gateway® compatible, N-terminal GST tag, IPTG 
inducible, ampR selection marker 

BL21(DE3) protein 
expression, pull downs, 
protein purification pETG-40K Gateway® compatible, N-terminal MBP tag, IPTG 

inducible, kanR selection marker 
pNusA Santhera pharmaceuticals, 

Liestal, Switzerland 
Gateway® compatible, N-terminal NusA-His6-tag, 
ATC inducible, ampR selection marker 

pHGWA (Busso et al., 2005) Gateway® compatible, N-terminal His6-tag, IPTG 
inducible, ampR selection marker 

pGEX-4T-1 Amersham, Freiburg IPTG inducible, ampR selection marker, N-terminal 
GST-tag 

pBAD24HA (Guzman et al., 1995) 
(Titz et al., 2007) 

C-terminal HA tag, L-arabinose inducible PBAD 
promoter, ampR selection marker, low copy 

BW25113 protein 
expression 

pBAD-GFP (Albano et al., 1998) L-arabinose inducible PBAD promoter, induction of 
GFP orf,  ampR selection marker, low copy 

pCA24N 
pCA24N-ybeB 

(Kitagawa et al., 2005) N-terminal His6-tag, empty vector or with ybeB 
ORF, IPTG inducible pT5/lac promoter, catR, high 
copy 

pCP20 (Cherepanov and 
Wackernagel, 1995) 

Encodes flipase (FLP), flip-out of FRT flanked 
regions by site-specific recombination, heat 
sensitive ORI, bacterial selection marker ampR and 
camR. 

BW25113 mutant flip-out  

pDONR221 Invitrogen, Karlsruhe Gateway® donor vector for library construction GW cloning 

pDONR207 Gateway® donor vector for library construction 

pcDNA3.1-HA-
mCherry 

(Diefenbacher et al., 2008) pcDNA3.1 backbone, C-terminal mCherry tag protein expression in HeLa 
cells, localization study 

pcDNA3.1(+)-HA-
VN 

(Roder et al., 2010) pcDNA3.1 backbone, C-terminal tag of N-terminal 
Venus fluorescent protein fragment 

protein expression HeLain  
cells, BiFC 

pcDNA3.1(+)-HA-
VC 

pcDNA3.1 backbone, C-terminal tag of C-terminal 
Venus fluorescent protein fragment 

pECFP-mem Clontech, USA Encodes enhanced CFP, labeling of cell membranes protein expression HeLa 
cells 

pCR3.1-N-eGFPLuc (Vizoso Pinto et al., 2009) Both with ampR  and kanR selection marker; GW 
compatible; N-terminal tags, respectively (see 
name) 

LuMPIS 

pCR3.1-N-MBP 
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2.1.5 Strains 

Tab. 17 Bacterial strains 
 

Strain Source Genotype/description Application 
E. coli DB3.1 Invitrogen, 

Karlsruhe 
F- gyrA462 endA1 glnV44 Δ(sr1-recA) mcrB mrr hsdS20(rB

-, 
mB

-) ara14 galK2 lacY1 proA2 rpsL20(Smr) xyl5 Δleu mtl1 
Propagation GW 
pDESTand pDONR  

E. coli 
BL21(DE3) 

Stratagene F– ompT gal dcm lon hsdSB(rB
- mB

-) λ(DE3 (lacI lacUV5-T7 
gene 1 ind1 sam7 nin5)) 

Protein expression 

E. coli TOP10 Invitrogen, 
Karlsruhe 

F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG 
recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 
λ- 

Propagation various 
plasmids 

E. coli BW25113 (Baba et al., 2006) lacI+, rrnBT14, lacZWJ16, hsdR514, araBADAH33, rha,BADLD78 
 

Phenotyping 

E. coli BW25113 
gene KO 
mutants 

According to E. coli BW25113 

 

Tab. 18 Yeast strains and human cell lines 
 

Strain Source Genotype Application 
AH109 (yeast) (James et al., 1996) MATa, trp1-901, leu2-3,112, ura3-52, his3-200, Δgal4, 

Δgal80, LYS2: GAL1UAS GAL1TATA-HIS3, GAL2UAS-
GAL2TATA-ADE2, URA3: MEL1UAS-MEL1TATA-lacZ 

Y2H 

Y187 (yeast) (Harper et al., 1993) MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 
112, Δgal4, met-, Δgal80, URA3: GAL1USA-GAL1TATA-lacZ 

HeLa (human) ECACC No. 930210013 Human cervical epithelial adenocarcinoma cells Protein localization, 
BiFC 

HEK293TT ECACC No. 85120602 Human embryonic kidney cells LuMPIS 

 

Tab. 19 Basic PCR templates for gene-specific amplification 
 

Strain Source Template sample 
E. coli DB3.1 This work Heat inactivated cells (one 

colony boiled for 10 min at 
98°C in 100 µl H20 dist.) 

E. coli BW25113 

Yeast AH109 

Treponema pallidum 
subsp. pallidum 

Kindly provided by Prof. Timothy Palzkill, Baylor College of 
Medicine, Houston,  USA 

Genomic DNA extract 

Streptococcus 
pneumoniae TIGR4 

Kindly Provided by Prof. Daniel Nelson, UMBI, MD, USA Genomic DNA extract 

Synechocystis PCC 6803 Kindly Provided by Prof. Tilman Lamparter, KIT, Karlsruhe, Germany Heat inactivated cells 

Homo sapiens cDNA Kindly Provided by Dr. Olivier Kassel, KIT, Karlsruhe, Germany cDNA from human HeLa cells 

Zea mays cDNA Kindly Provided by PD Frank Hochholdinger, Univerity Tübingen, 
Germany 

cDNA from 4 d old seedlings, 
coleoptile nodes 

Cp-1 phage Kindly Provided by Prof. Sylvain Moineau, Département de Biochimie 
et de Microbiologie, Université Laval, Québec 

Genomic DNA extract 

Dp-1 phage 
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2.2 Methods 

2.2.1 DNA/RNA methods and assays 

2.2.1.1 Primer design 

High-throughput primer design 

For high-throughput oligonucleotide design the Express Primer Tool was used (Yoon et al., 2002) 

(http://tools.bio.anl.gov/bioJAVA/jsp/ExpressPrimerTool/). Gene-specific primer pairs were designed 

using the following parameters: optimal Tm=55°C, maximum Tm difference=3°C, Tm range=3°C, 

minimum allowable primer length (16 nucleotides), maximum allowable primer length (30 

nucleotides). A fasta formatted text file containing the ORF nucleotide sequences of interest was 

uploaded. Forward primers were all designed with the native ORF start codon. For Gateway® cloning 

constant terminal regions were added to the gene-specific sequence to attach a 12 bp region of attB 

attachment sites: forward oligo constant region (12attB1) site (5´-aa aaa gca ggc tta-3´), reverse oligo 

constant region (12attB2) site (5´-a gaa agc tgg gtg tta-3´). Reverse oligos all contained a stop codon 

(TAA). This method was used for cloning the Cp-1 and Dp-1 ORFeome libraries. Primers for 

fragment/domain constructs of ORFs (domains, truncations, etc.) were designed in-frame. Primer pairs 

that failed a successful design using these parameters were designed as described below. 
 

Standard primer design 

Primers were designed with OligoCalc (Kibbe, 2007). Ideally a GC content of 50% was chosen. Gene-

specific oligos were chosen from 15 to 33 nucleotides in length with a maximal Tm difference of 1°C 

per oligo pair. Tm varied from 50 to 65°C depending on the application. Oligos were checked for self-

complementation (http://www.basic.northwestern.edu/biotools/oligocalc.html). 

2.2.1.2 Common protocols for Polymerase Chain Reaction (PCR) 

Taq DNA polymerase PCR 

Taq DNA polymerase (Promega) from Thermus aquaticus was used for control PCR reactions to 

determine correct insert sizes of cloning products. Per reaction the following setup was used in a total 

volume of 25 µl: 

▪ 13.75 µl H2O dist. 
▪ 1 µl dNTP mix (10 mM, each dNTP (Sigma-Aldrich)) 
▪ 2 µl forward primer (10 pmol/µl) 
▪ 2 µl reverse primer (10 pmol/µl) 
▪ 5 µl 5 x Taq buffer (Promega) 
▪ 1 µl template (plasmid DNA ~1:10 in H20 dist. or heat-inactivated cells for colony PCR1) 
▪ 0.25 µl Taq polymerase (Promega, 5 U/µl)  

                                                      
1 For colony PCRs single E. coli colonies were picked with a pipet tip and transferred to PCR tubes loaded with 100 µl H2O dist. Samples 
were boiled for 8 min at 98°C in a thermocycler. 
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The following cycler protocol was used (annealing temperature was calculated as Tm-5°C per oligo 

pair; extension time was calculated for Taq polymerase with a processivity of 1.7 kb/min and adapted 

to the expected PCR product size): 
 

Step Temperature/°C Time/s Cycles 

Initial denaturation 95 30 1 x 

Denaturation 95 30 

30 x Annealing variable 30 

Extension 72 variable 

Final extension 72 30 1 x 

Storage 8 ∞ 1 x 

 

PrimeSTAR DNA polymerase PCR 

DNA insert amplification for cloning application was done with PrimeSTAR® HS DNA Polymerase 

(Takara). This enzyme contains a 3´5´ proofreading activity (error rate is estimated with approx. 50 

mismatches per one million bases) and has a very high primer efficiency resulting in very specific 

product amplification. If not specified anywhere else in this section, the DNA templates were used for 

ORF amplification as given in Tab. 19. The following protocol was used per reaction in a total volume 

of 50 µl: 

▪ 30.5 µl H2O dist. 
▪ 4 µl dNTP mix (2.5 mM, each dNTP, Takara) 
▪ 2 µl forward primer (10 pmol/µl) 
▪ 2 µl reverse primer (10 pmol/µl) 
▪ 10 µl 5 x PrimeSTAR buffer (Takara) 
▪ 1 µl DNA template (plasmid 1:10 to 1:100 (~1 ng) diluted in H20 dist., heat inactivated 

cells, cDNA , or PCR products (Tab. 19)) 
▪ 0.5 µl PrimeSTAR polymerase (Takara, 2.5 U/µl) 

 
 

The following cycler protocol was used (extension time was calculated for PrimeSTAR polymerase 

with a processivity of 1.0 kb/min and adapted to the expected PCR product length; given the 

polymerase´s high primer efficiency, a permanent annealing temperature of 55°C was used): 
 

Step Temperature/°C Time/s Cycles 

Initial denaturation 94 20 1 x 

Denaturation 98 10 30 x 
(dependent on 
application) 

Annealing 55 15 

Extension 72 variable 

Final extension 72 20 1 x 

Storage 8 ∞ 1 x 
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2.2.1.3 Gateway® cloning 

The Gateway® system (Invitrogen) provides an universal technology to clone DNA sequences for 

functional analyses and expression in multiple systems. It is based on the site-specific recombination 

system of bacteriophage  (Landy, 1989). The  recombinase is employed to recombine attachment 

(att) sites from different vectors, which leads to the transfer of a DNA insert from one to the other 

vector. The reaction is conservative (no sequence is added or lost). The advantages are the ligase-

independent PCR product cloning, the directed insertion of ORF sequences, the feasibility of C- and 

N-terminal fusions, parallel transfer into several destination vectors, its high efficiency, and the 

availability of a large number of vectors and clones for this system. However, the costs for the clonase 

reaction mixes are high. 
 

 
Fig. 13 Gateway® technology 
PCR products or cDNA libraries can be 
recombined into donor vectors. This results in an 
entry vector (library). The entry vectors can be 
flexibly recombined with any Gateway® 
compatible destination vector of interest. The 
resulting expression plasmids can be applied 
flexibly. Figure taken from Gateway® manual 
(Invitrogen). 
 

 

 

 

 

 

 

 
 

Gateway® PCR 

The first step to achieve a Gateway® clone is the amplification of a PCR product of the ORF of 

interest that is flanked by attB1 and attB2 attachment sites. Because of cost issues the PCR was 

performed in two steps. 

Oligos were used that contain 12 bp attB1 and attB2 sites plus the gene-specific ORF priming site in 

frame: 

▪ 12attB1 forward oligo: 5´-AA AAA GCA GGC TTA-ORF 3´ 
▪ 12attB2 reverse oligo:   5´-A GAA AGC TGG GTG TTA-ORF 3´ 

 

Note that the 12attB1-site was completed by the 3´-terminal “A” for in-frame cloning resulting in a 

leucine codon.  To the 12attB2-site a terminal stop codon was added (see primer sequence in italic).  

Primer design was done as described in section (2.2.1.1). In a first-round PCR the ORF of interest was 

amplified and thereby the 12attB sites were attached to the PCR product termini. PCR reactions were 
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done with PrimeSTAR DNA polymerase (Takara). Because of cost reasons only ½ volumes of all 

components were used in a total volume of 25 µl as described in (2.2.1.2). Only 8 PCR cycles were 

used to avoid mutagenic effects. 

In a second-round PCR the full attB1 and attB2 sites were attached to the first-round PCR product. 

PCR reactions were done with PrimeSTAR polymerase (2.2.1.2). 30 PCR cycles were made and the 

following oligos were used: 

▪ GWY_ B1_for 5´-g ggg aca agt ttg tac aAA AAA GCA GGC T-3´ 
▪ GWY_B2_rev 5´-ggg gac cac ttt gta caA GAA AGC TGG GT-3´ 

 

The priming regions with the corresponding 12attB sequences are highlighted in capital letters. 

Afterwards the specificity and correctness of PCR products were analyzed by agarose gel 

electrophoresis. If no by-products occurred, the PCR product was purified with innuPREP 

DOUBLEpure Kit (Analytic Jena). If by-products appeared, the whole PCR sample was separated by 

agarose gel electrophoresis and DNA bands with the correct size were excited and cleaned up again 

with innuPREP DOUBLEpure Kit. 
 
 

Gateway® BP reaction 

The purified PCR products from the previous steps were used in a BP reaction to obtain an entry clone 

(Fig. 14). The following protocol was used for the BP reactions: 
 

 1 µl BP clonase II enzyme mix (Invitrogen) 
 1 µl donor vector DNA (pDONR207 or pDONR221, 150 ng/µl) 
 3 µl purified PCR product DNA (ideally 150 ng/µl) 

 

The samples were incubated for 5 to 16 h at 25°C. Reactions were transformed into chemocompetent 

E. coli TOP10 by heat shock and selected on the appropriate LBA selective medium (for pDONR207 

LBA containing 50 µg/ml gentamycine and for pDONR221 LBA with 50 µg/ml kanamycin). Cells 

were selected o/n at 37°C. Since the ccdB product is toxic in TOP10 (blocks gyrase) the non-

recombined donor vectors are deselected automatically. To verify the entry clone, a colony PCR was 

performed and the product size was determined by agarose gel electrophoresis. From positive clones 

the plasmids were isolated by miniprep plasmid isolation and verified by forward and reverse 

sequencing (Qiagen). The entry plasmid specific sequencing oligos are given in Tab. 14.  
 

 

Fig. 14 BP reaction 
Recombination of attB-flanked PCR product into a donor vector results in an entry vector and a by-product. 
Figure taken from Gateway® manual (Invitrogen). 
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Gateway® LR reaction 

The purified entry plasmids were used in a LR reaction to obtain the expression vectors (Fig. 15). The 

following protocol was used for LR reactions: 
 

 1 µl LR clonase II enzyme mix (Invitrogen) 
 1 µl of a Gateway compatible destination plasmid(s) DNA (150 ng/µl or 75 ng/µl when two are 

combined) 
 3 µl purified entry plasmid  DNA (ideally 150 ng/µl) 

 

The samples were incubated for 5 to 16 h at 25°C. Reactions were transformed into chemocompetent 

E. coli TOP10 by heat shock and selected on the appropriate LBA selective medium (plasmid-specific 

selection conditions are described in Tab. 20) 

pENTR221 plasmids contain a kanR resistance and are compatible for recombination with all 

destination vectors that do not contain this selection marker. pENTR207 contains a gentamycine 

marker. Here, recombination is compatible with all GW destination vectors that have been used except 

pDEST32. Reactions were carried out with mixtures of destination vectors to save costs. For instance, 

pENTR207 plasmids were combined with pGBKT7g and pGADT7g, pENTR221 with pDEST32 and 

pDEST22, simultaneously. After plasmid transformation into TOP10 aliquots were plated onto 

appropriate LB selective medium (Tab. 20). 

The pool of non-recombined destination vectors is automatically deselected in TOP10 because they 

still contain ccdB. Due to combination of non-overlapping antibiotic selection markers of entry and 

destination plasmids the pool of non-recombined entry vectors is deselected since selection occurs on 

medium adequate for the expression vector. 

To verify the expression clones, a colony PCR was performed and the product size was determined by 

agarose gel electrophoresis. From positive clones the plasmids were isolated by a plasmid miniprep. 

The vector specific oligos are given in Tab. 14. 
 

 

Fig. 15 LR reaction 
Recombination of attL-flanked entry plasmid with a destination vector that contains attR sites results in an 
expression vector and a by-product. Figure taken from Gateway manual (Invitrogen). 
 

2.2.1.4 Classical cloning by restriction/ligation 

Classical cloning by restriction/ligation was done to obtain the construct pBAD-lacZ-HA and 

constructs for localization and BiFC studies. Common protocols are given here: 

First a PCR was performed with PrimeSTAR polymerase (Takara) according to (2.2.1.2) from 

corresponding templates (see below). PCR product size was determined by agarose gel electrophoresis 

and afterwards cleaned up with innuPREP DOUBLEpure Kit (Analytic Jena). Then the PCR product 

and target vectors were digested with restriction enzymes (see below). Vectors were alternatively 
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dephosphorylated by adding 1 µl SAP (Fermentas, 1 U/µl) to the digestion reaction. Afterwards PCR 

products were cleaned up again with innuPREP DOUBLEpure Kit. Digested vectors were separated 

by agarose gel electrophoresis and then cleaned up with innuPREP DOUBLEpure Kit (Analytic Jena). 

Then the PCR products were ligated with the linearized vectors in a total volume of 20 µl: 

▪ 1 µl T4 DNA ligase (Fermentas, 5 U/µl) 
▪ 2 µl 10 x T4 DNA ligase buffer (Fermentas) 
▪ 300 ng digested PCR product DNA (ideally, 3 x molar excess) 
▪ 100 ng linearized vector DNA 
▪ Fill up to 20 µl with H2O dist. 

 

Ligation reaction occurred in a thermocycler for 1 h at 22 °C. Then the reaction was terminated by 

incubation for 10 min at 65 °C. 5 µl of the sample were transformed into chemocompetent E. coli 

TOP10 or BW25113. Cells were plated on selective LBA medium and incubated o/n at 37°C. Positive 

clones were verified by different methods (see below). 
 

Cloning of pBAD-lacZ-HA 

LacZ ORF was PCR amplified from genomic DNA of E. coli DB3.1 (heat inactivated cells) using the 

primers lacZ_for/lacZ_rev (2.1.3) with Taq polymerase (Promega). Forward primer contained a KpnI 

restriction and reverse primer a HindIII restriction site. pBAD24HA (Guzman et al., 1995; Titz et al., 

2007) and lacZ PCR product were co-digested with FastDigest® KpnI and HindIII (Fermentas). 

Linearized vector was treated additionally with 1 µl SAP (Fermentas) for 1 h at 37°C. Restriction 

products were separated by agarose gel electrophoresis and purified with innuPREP DOUBLEpure Kit 

(Analytic Jena). Linearized vector and PCR product were ligated with T4 DNA ligase (Fermentas) 

(see above) and then transformed into TSS chemocompetent E. coli BW25113. Cells were plated and 

positives identified by Blue-White Screening on LB agar medium containing 100 µg/ml ampicillin, 

0.2% (w/v) L-arabinose (Sigma) for lacZ induction, and 50 µg/ml X-Gal (Carl Roth). Co-digestion 

reactions were done as follows: 

▪ 0.5 µl HindIII (Fermentas, FastDigest®) 
▪ 0.5 µl KpnI (Fermentas, FastDigest®) 
▪ 2  µl 10 x FastDigest® Buffer (Fermentas) 
▪ A corresponding volume of ~1 µg purified lacZ PCR product or pBAD24HA DNA 
▪ Fill up with H2O dist. to 20 µl 

 

Samples were incubated for 1 h at 37°C. After selection, one positive (blue) colony was used for 

plasmid isolation. The vector here is named pBAD24-lacZ-HA. 
 

Cloning of localization and BiFC constructs 

Human C7orf30 and L14mt full-length open reading frames were amplified with PrimeSTAR® HS 

DNA Polymerase (Takara Bio Inc). As templates the corresponding pENTR207 entry plasmids were 

used. C7orf30 was amplified with primer C7orf30_for and C7orf30_rev and L14mt with L14mt_for 

and L14mt_rev (2.1.3). Forward oligos contained NheI and reverse oligos KpnI restriction sites. 

Reverse oligos were designed without a stop codon because of C-terminal fusions. The PCR products 
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were purified with innuPREP DOUBLEpure Kit (Analytic Jena). pcDNA3.1-HA-mCherry 

(Diefenbacher et al., 2008), pcDNA3.1(+)-HA-VN, pcDNA3.1(+)-HA-VC (Roder et al., 2010) and the 

PCR products were digested with NheI/NotI with the MULTI-CORE™ buffer system  (Promega) and 

then separated by agarose gel electrophoresis. Hereby the N-terminal HA tag sequence was removed 

from the source vectors. DNA bands were excised and purified with innuPREP DOUBLEpure Kit. 

L14mt and C7orf30 PCR fragments were ligated with T4 DNA ligase (Fermentas) into all mentioned 

linearized plasmids and then transformed into chemocompetent E. coli TOP10. Selection followed on 

LB agar medium with 100 µg/ml ampicillin at 37°C. From single colonies DNA was isolated with a 

Plasmid Maxi kit (Qiagen). Correctness of clones was verified by NheI/NotI digestion followed by 

insert size determination by agarose gel electrophoresis. Plasmids were verified by sequencing. 

The following co-digestion protocol was used for cloning and for plasmid verification: 
 

▪ 0.5 µl NheI (Promega, 10 U/µl) 
▪ 0.5 µl KpnI (Promega, 10 U/µl) 
▪ 2 µl 10 x MULTI-CORE™ buffer (Promega) 
▪ Corresponding volumes of  1 µg PCR product or plasmid DNA 
▪ Fill up with H2O dist. to 20 µl 

 

Co-digestion samples were incubated for 1 h at 37°C and then 5 µl were checked on a agarose gel. 
 

2.2.1.5 Directed mutagenesis of L14 by fusion PCRs 

As PCR template the entry vector pENTR207 containing the wild-type sequence of E. coli L14 

(b3310) was used. Codons for residue K114 and T97-R98-I99-F100 were substituted by alanine 

codon(s) GCA using mutagenic primers. Therefore, for mutant K(114)A the reverse oligo K114_rev 

was used and for mutant T97-F100 forward oligo (TRIF_for) and reverse oligo (TRIF_rev) (2.1.3). 

Mutations were inserted by a PCR reaction (PrimeSTAR® HS DNA Polymerase (Takara Bio Inc)) 

according to (2.2.1.2). Single steps are illustrated in Fig. 16. 

For mutant construct K114A the reverse oligo K114_rev was combined with the wild-type forward 

oligo b3310a1_for. An initial PCR was made with these oligos (10 cycles) and then attB sites were 

attached as described in the Gateway cloning protocol by a first and second round PCR (2.2.1.3). 

For construction of mutant T97-F100 a fusion PCR was performed. First, the 5´- and 3´-terminal 

regions of b3310 (L14) were amplified separately by using TRIF_for and TRIF_rev oligos in 

combination with b3310a1_for and b3310a2_rev, respectively. 30 cycles were performed. Size of PCR 

products was checked by agarose gel electrophoresis. Next, 0.5 µl of the two reactions were mixed, 

fused, and PCR amplified for 10 cycles with the terminal Gateway oligos in one reaction followed by 

PCR amplification with the attB attachment oligos as described in the Gateway cloning protocol by a 

second round PCR. Entry clones (pDONR207) were obtained by BP reactions and plasmids were 

verified by sequencing. 
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Fig. 16 Illustration of mutagenic fusion PCRs of E. coli L14 mutant constructs 
DNA is shown as a single strand and codons by the amino acid code. (pENTR207-L14wt) primary PCR template 
of L14 (b3310) wild-type DNA sequence. Final PCR products contained the flanking attB termini for the BP 
reaction. (A) PCR strategy to mutate K114 codon to an alanine codon. (B) PCR strategy to mutate the codon 
stretch T97- F100 to four continuous alanine codons. The number of PCR cycles for each step is indicated. 
 

2.2.1.6 PCR product clean up 

PCR products and linearized plasmids were purified with innuPREP DOUBLEpure Kit (Analytic 

Jena). Samples were purified by a direct clean up protocol. Alternatively, samples were separated by 

agarose gel electrophoresis and then DNA bands were excised from the gel and purified according to 

the manufacturer´s instructions. 
 

2.2.1.7 Plasmid isolation and purification 

Large quantities of purified plasmids were achieved with a Plasmid Maxi Kit (Qiagen). Low quantity 

purification of plasmid DNA with designation for sequencing was done with QuickLyse Miniprep Kit 

(Qiagen). Plasmid isolation was done according to the manufacturer´s protocol. For standard low 

quantity plasmid isolation, an isopropanol precipitation method was applied. Buffer P1, P2, and P3 

was used from Qiagen Plasmid Maxi Kit. If not indicated, the protocol step was done at room 

temperature: 

 Pick isolated single bacterial colonies from a LBA plate and inoculate in ~2 ml of LB liquid 
medium with appropriate antibiotic. 

 Incubate o/n with shaking at 37°C. 
 Pellet 1 ml of bacterial sample at 13,000 rpm for 1 min in micro centrifuge (Biofuge, Heraeus). 
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 Discard supernatant and resuspend pellet in 200 µl buffer P1. 
 Add 200 µl P2, mix by inverting the tube, and incubate for lysis 3 min. 
 Add 200 µl P3, mix by inverting the tube. 
 Centrifuge for 10 min at 13,000 rpm in micro centrifuge (Biofuge, Heraeus). 
 Transfer 500 µl to 1.5 ml micro tube. 
 Add an equal volume isopropanol and 1/10 volume of a 3 M pH 5.5 sodium acetate solution. 
 Vortex for 1 min. 
 Centrifuge at 4°C and 13,000 rpm for 20 min in bench top centrifuge (C5403, Eppendorf). 
 Discard supernatant and add 500 µl -20°C cold 80% ethanol. 
 Centrifuge at 4°C and 13,000 rpm for 5 min in bench top centrifuge (C5403, Eppendorf). 
 Discard supernatant and allow plasmid pellet to dry at room temperature for 1 h or longer. 
 Resuspend DNA pellet in 50 µl autoclaved H2O dist. 
 

2.2.1.8 Agarose gel electrophoresis 

The required amount of agarose (final concentration between 1 to 2 % (w/v)) was dissolved in 1 x 

TAE buffer and boiled in a microwave until the agarose dissolved. Ethidium bromide was added at a 

final concentration of 0.3 μg/ml. The molten gel was poured into a horizontal gel chamber (Peqlab). 

Combs with the appropriate number and size of the teeth were used to make the loading slots. After 

the gel had solidified, it was immersed in 1 x TAE buffer, the samples were loaded onto the gel in 

loading buffer. Gels were run at 50-100 V for ~1 h. Afterwards DNA was visualized by 

transillumination with 302 nm ultraviolet radiation. 
 

TAE buffer: 40 mM Tris-Acetate, 1 mM EDTA pH 8.0 

5 x DNA loading buffer: 50% (v/v) glycerol, 0.2% (w/v) SDS, 0.05% (w/v) bromophenolblue in 1 x      

TAE buffer 
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2.2.1.9 RNA isolation 

Isolation of total RNA from E. coli was done with the RNeasy Mini Kit (Qiagen). This method was 

used for the analysis of lacZ reporter mRNA levels at various time points post induction of lacZ. 

Therefore E. coli o/n cultures were grown at 37°C (wild-type BW25113 and flip-out mutant ybeB 

harboring plasmid pBAD24-lacZ-HA) in 10 ml LB medium with 100 µg/ml ampicillin. Pre-cultures 

(50 ml LB + ampicillin) were inoculated 1:25 with o/n cultures and shaken for 80 min into logarithmic 

phase at 37°C. OD600 was determined by photo-spectrometry and cultures were diluted once more to 

a final OD600=0.2 LB medium (100 µg/ml ampicillin). 2 x ONPG (4 mM) L-arabinose (0.00.4% 

(w/v)) stock medium was prepared. 2 x stock medium was prepared with 1 x LB medium containing 

100 µg/ml ampicillin. To 10 ml cultures (OD600=0.2) 10 ml of 2 x ONPG/inductor stock solution was 

added. Then cultures were shaken at 37°C in Erlenmeyer flasks. In intervals of 1 h OD600 was 

determined and a volume saved corresponding to a density of OD600=0.2. Cells were pelleted by 

centrifugation for 1 min at room temperature with a micro centrifuge (Biofuge, Heraeus) and the 

supernatant was discarded. Total mRNA from each cell pellet was isolated as follows: 
 

 Prepare TE-lyso buffer (components, see end of the protocol). 
 Add 10 µl -mercaptoethanol to 1 ml buffer RLT (Qiagen). Prepare an appropriate volume. 
 Resuspend pellets in 100 µl TE-lyso buffer and incubate at room temperature for 5 min. 
 Add 350 µl buffer RLT (prepared with -mercaptoethanol) (Qiagen). Vortex vigorously. 
 Add 250 µl 100% P.A. EtOH. Mix briefly by vortexing. 
 Apply whole sample to an RNeasy mini column. 
 Centrifuge at room temperature at 13,000 rpm for 15 s with micro centrifuge. Discard filtrate. 
 Add 700 µl buffer RW1 (Qiagen) to column and repeat previous step. 
 Transfer column to new 2 ml micro tube. Pipet 500 µl buffer RPE into column. 
 Repeat previous centrifugation step and discard filtrate. 
 Repeat the previous wash step. 
 For removal of buffer traces centrifuge another 2 min at 13,000 rpm. 
 For elution ad 50 µl DEPC H2O to the column. Centrifuge 1 min at 13,000 rpm. 
 Store total RNA samples at -80°C. 
 

TE-lyso buffer(for bacterial lysis): 10 mM Tris-HCl, 1 mM EDTA pH 8.0, 400 µg/ml lysozyme 
 

2.2.1.10 Determination of DNA and RNA concentration 

Determination of nucleic acid concentrations (DNA, RNA) from purified total RNA samples, PCR 

products, plasmids, etc. was done with a NanoDrop (Peqlab). 
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2.2.1.11 Reverse transcription of mRNA, gene-specific 

The total RNA samples from (2.2.1.9) were applied to reverse transcriptase reactions. Thereby mRNA 

of lacZ reporter mRNA and house-keeping mRNA phoA were transcribed with gene-specific primers 

in a first strand synthesis reaction by the enzyme Reverse Transcriptase into a single DNA strand 

(reverse complement of mRNA). Therefore, the total RNA concentration of each sample was 

determined with a Nanodrop. A corresponding volume of 1 µg RNA per sample was transferred into a 

PCR tube and filled up to a final volume of 10 µl with DEPC water. To remove DNA traces the 

samples were treated with DNaseI according to the protocol: 
 

 Prepare an appropriate volume of 2 x DNaseI mastermix (volume per sample): 
 

▪ 1 µl DNaseI (1 U/µl, Fermentas) 
▪ 2 µl 10 x DNaseI buffer (Fermentas) 
▪ 1 µl RNase inhibitor (40 U/µl, RiboLock™ RNase Inhibitor,  Fermentas) 
▪ 6 µl DEPC H20 

 

 Transfer 10 µl of 2 x DNaseI mastermix to 10 µl samples and mix. 
 Incubate samples for 30 min at 37°C. 
 Inactivate DNaseI by adding 2 µl EDTA solution (25 mM, Fermentas); incubate 10 min at 65°C. 
 

Then the RNA samples were applied to the first DNA strand synthesis reaction: 

 Transfer 5 µl of DNaseI treated sample into PCR tube. 
 Add 4 µl DEPC water and 1 µl of the corresponding gene-specific reverse oligo (10 pmol/µl). 
 Incubate 10 min at 70°C and prepare an appropriate volume of 2 x mastermix (volume per sample): 
 

▪ 4 µl 5 x reaction buffer (Fermentas) 
▪ 2 µl dNTP mix (10 mM each dNTP, Sigma) 
▪ 1 µl RT (200 U/µl, RevertAid™ H Minus Reverse Transcriptase, Fermentas) 
▪ 0.5 µl RNase inhibitor (40 U/µl, RiboLock™ RNase Inhibitor) 
▪ 2.5 µl DEPC water 

 

 Add 10 µl of 2 x mastermix to each sample and mix. 
 Incubate in a termocycler using the steps: 
 

▪ 60 min at 42°C (synthesis) 
▪ 10 min at 72°C (inactivation) 

 

 Store first strand DNA samples at -20°C. 
 

Simultaneously, samples were prepared for each RNA isolate according to this protocol but without 

addition of reverse transcriptase. These samples were used as negative controls in the following PCR 

reaction to verify the complete removal of DNA traces. 1 µl of first strand samples and negative 

controls were applied to a standard PCR with Taq polymerase (2.2.1.2) with gene-specific primer pairs 

for lacZ and phoA. Primers lacZ_for@1518 and lacZ_rev@2139 were used for lacZ amplification. 

PhoA_for@465 and phoA_rev@1294 for phoA amplification (Tab. 15). 
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2.2.2 Protein methods and assays 

2.2.2.1 Protein expression 

The following protocol was used for protein expression in E. coli BL21(DE3): 

 Inoculate 5 ml selective LB liquid medium with E. coli BL21(DE3) strain that was transformed 
with a certain protein expression plasmid. Shake pre-culture o/n at 37°C. 

 Prepare a main culture: inoculate 10 ml (for low-quantity protein expression as done for pull down 
assays (pETG-30A, pETG-40K, pNusA, pGEX4T-1)) or 500 ml (for high-quantity protein 
expression as done for protein purification (pHGWA)) selective LB liquid medium with o/n culture 
1:100. Shake for 1 h at 37°C. 

 Induction: add an appropriate volume of inductor (for IPTG use usually 0.1 mM, for ATC 0.2 
µg/ml (f.c.)). In parallel shake a culture w/o inductor. This sample is needed as a negative control 
for SDS PAGE. 

 Shake culture at 37°C for 3 h. 
 Transfer culture depending on its volume into a 15 ml conical tube or a 500 ml centrifuge beaker. 
 Pellet cells by centrifugation at 4°C for 10 min (4,000 rpm with centrifuge 5810R (Eppendorf) or 

6,000 rpm with J2-HS (Beckman, rotor JA-10)). Discard supernatant and store pellet at -80°C. 
 

2.2.2.2 Purification of His6-tagged proteins 

Protein extraction 

 Thaw cell pellet on ice. 
 Determine weight of cell pellet. 
 Chill extraction buffer on ice. 
 Per 1 g cell pellet add 5 ml extraction buffer and resuspend pellet by pipetting. 
 Transfer suspension to a 50 ml conical tube and incubate for lysis for 30 min on ice. 
 Sonicate sample on ice until the lysate becomes clear (Cell Disruptor B15, Branson). 
 Add NP-40 (20% (v/v) stock solution) to finally 0.5% and mix by inversion. 
 Save 5 µl lysate for SDS PAGE analysis (total fraction). 
 Transfer lysate to a 30 ml COREX tube. Centrifuge for 30 min at 4°C and 9,000 rpm (Avanti J-20). 
 Decant supernatant into a new 50 ml conical tube. 
 Save 5 µl lysate for SDS PAGE analysis (soluble fraction) and apply lysate to the next step. 
 

Extraction buffer: 50 mM Tris-HCl pH8.0, 300 mM NaCl, 50 µg/ml lysozyme, 100 µM PMSF. 
Prepare fresh. 

 
 

His6-protein isolation (batch protocol) 

All centrifugation steps here can be done at room temperature with 500 rpm for 5 min (table top 

centrifuge 5810R, Eppendorf). 

 Add imidazole from a 1 M stock solution to finally 10 mM to the soluble fraction of the protein 
lysate (this is done to avoid unspecific protein binding to the beads). 

 Per lysate use up to 1 ml of a 50% slurry Ni-NTA beads (Ni-NTA Superflow, Qiagen). Volume of 
slurry depends on the protein band intensity determined by SDS PAGE. If fat protein bands are 
obvious, use 1 ml. If protein is weakly expressed, use less beads. 

 Transfer beads to a 15 ml conical tube and equilibrate beads by washing them twice with 14 ml 
wash buffer (centrifuge and discard supernatant twice). 

 Protein binding: apply protein lysate to beads and roll tubes for 30 min at room temperature. 
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 Centrifuge beads and discard supernatant by pipetting or decanting. Optionally, save 5 µl 
supernatant for SDS PAGE analysis to check binding efficiency. 

 Wash beads with 14 ml wash buffer, centrifuge, and discard supernatant. Repeat wash step in total 
4 times. 

 Elution: add 500 µl elution buffer and roll the tube at room temperature for 10 min. 
 Centrifuge. 
 Transfer eluate to 1.5 ml tube and store on ice. 
 Repeat the latter three steps twice. 
 Save from all eluates 5 µl for SDS PAGE analysis to examine quality of purified protein sample. 
 

Wash buffer: 50 mM Tris-HCl pH8.0, 300 mM NaCl, 20 mM imidazole. 

Elution buffer: 50 mM Tris-HCl pH8.0, 300 mM NaCl, 250 mM imidazole. 
 

Dialysis 

To remove imidazole from samples the eluate fractions were dialyzed twice against 2 liter 1 x PBS 

with 1% v/v glycerol in dialysis membranes (14 kDa MWG cutoff, Visking, Roth). Dialysis was done 

o/n at 4°C. 100 µl aliquots were transferred to 1.5 ml tubes, frozen in liquid nitrogen and stored at -

80°C. 
 

2.2.2.3 Bradford assay 

The protein amount was determined by Bradford assay. This is a colorimetric method and is based on 

an absorbance shift in the dye coomassie when the previously red form coomassie reagent changes and 

stabilizes into coomassie blue by the binding of protein. A straight calibration line was determined 

with BSA (Promega). Therefore 1 µl of BSA solutions containing 0, 1, 10, 100, and 1,000 ng/µl BSA 

were mixed with 1 ml Bradford reagent (Bio-Rad) and extinction was measured at 595 nm with a 

Biorad photospectrometer. Determination of protein concentrations from samples was done by diluting 

1 µl sample in 1 ml reagent followed by extinction measurement at 595 nm. Protein amount was 

calculated from the BSA calibration line equation. 
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2.2.2.4 Polyacrylamide gel electrophoresis (PAGE) 

Tris-glycine SDS-PAGE 

Components for mini gels are mixed in the following order (5 ml for one stacking, 10 ml for two 

separating gels):  

Component 
Stacking Separation gel 
5%  8% 10% 12 %  18% 

H2O dd. 6.8 ml 4.6 ml 4 ml 3.3 ml 2.2 ml 
30% acrylamide mix 1.7 ml 2.7 ml 3.3 ml 4.0 ml 5.1 ml 
1.0 M Tris-HCl pH 6.8 1.25 ml - - - - 
1.5 M Tris-HCl pH 8.8 - 2.5 ml 2.5 ml 2.5 ml 2.5 ml 
10% (w/v) SDS 0.1 ml 0.1 ml 0.1 ml 0.1 ml 0.1 ml 
20% (w/v) APS 0.05 ml 0.05 ml 0.05 ml 0.05 ml 0.05 ml 
TEMED 0.01 ml 0.006 ml 0.004 ml 0.004 ml 0.004 ml 

 
 

 Pour separating gel (add reagents as indicated above) into gel chamber (so that it fills up 2/3 of the 
chamber) and cover with isopropanol and let solidify. 

 Remove isopropanol and pour stacking gel. Immediately insert the combs and let solidify. 
 Insert gel into gel chamber and fill up lower and upper reservoir with 1 x running buffer. 
 Add to 7.5 µl protein sample 2.5 µl 4 x Laemmli sample buffer, mix, and boil in thermocycler for 5 

min at 95°C. Cool down to room temperature and load with pipet into sample pockets. 
 Separate by electrophoresis at ~120 V until the dye front leaves the gel. 
 

 

Solutions required (prepare all solutions with H2O dd.): 
 

Separating gel buffer (4x) Stacking gel buffer (4x)  20% APS solution 

▪ 18.17 g tris base  ▪ 6.06 g tris base  ▪ 20% (w/v) APS  
▪ 4 ml 10% (w/v) SDS  ▪ 4 ml 10% (w/v) SDS  ▪ Store at -20°C 
▪ Adjust pH to 8.8 with HCl ▪ Adjust pH to 6.8 with HCl  
▪ Add H2O dd. to 100 ml ▪ Add H2O dd. to 100 ml   
▪ Autoclave   ▪ Autoclave   

 
 

4 x SDS sample buffer (Laemmli buffer) SDS-PAGE running buffer 
▪ 250 mM Tris pH 6.8   ▪ 30 g tris base 
▪ 12.5% (w/v) SDS   ▪ 144 g glycine 
▪ 40% (v/v) glycerol   ▪ 100 ml 10% (w/v) SDS 
▪ Few crystals bromphenolblue  ▪ Add H2O dd. to 1 liter 
▪ 20% (v/v) -mercaptoethanol   
▪ Store at -20°C  
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Tricine-PAGE (gradient gel) 

Components are mixed in the order shown below (prepare a total volume of 3 ml each for 5% and 

15% component):  

Component 5% gel 15% gel 

30% acrylamide mix 0.45 ml 1.35 ml 

1 x gel buffer 1 ml 1 ml 

glycerol 0.31 ml 0.31 ml 

H2O dd. 1.223 ml 0.324 ml 

20% (w/v) APS 0.015 ml 0.015 ml 

TEMED 0.0024 ml 0.0012 ml 
 
 

 Place a comb between gel plates. 
 Fill each gel mix into corresponding chambers of a gradient mixer (self-made) and transfer mix 

between glass plates under stirring. Let gel solidify. 
 Protein samples can be prepared with Laemmli sample buffer as described above. 
 Place gel in gel chamber. Fill upper reservoir with 1 x cathode buffer, lower reservoir with 1 x 

anode buffer. 
 Separate samples in electric field with ~120 V until the dye front leaves the gel. 
 
 

Solutions required (prepare all with H20 dd.): 
 

5 x cathode buffer   1 x gel buffer 

▪ 121.1 g tris base   ▪ 1.5 g SDS 
▪ 179.2 g tricine   ▪ 181.65 g tris base 
▪ Dissolve in 800 ml H2O dd.  ▪ Dissolve in 300 ml H2O dd. 
▪ Adjust to pH 8.25 with HCl  ▪ Fill up to 500 ml H2O dd. 
▪ Fill up to 1 liter with in H2O dd.  ▪ Adjust to pH 8.45 with HCl 
▪ Store at room temperature  ▪ Store at 4°C 

 
 

10 x anode buffer 

▪ Dissolve 242.2 g tris base in 800 ml H2O. 
▪ Adjust to pH 8.9 with HCl 
▪ Fill up to 1 liter with H2O dd. 
▪ Store at 4°C 

 
 

2.2.2.5 Coomassie Blue staining of protein gels 

 Transfer polyacrylamide gel into a plastic tray, cover with staining solution, and shake for 45 min. 
 For destaining, the gel is boiled in water in a microwave oven. Change water a couple of times. 
 

Staining Solution: 50% (v/v) methanol, 10% acetic acid (v/v),  

           0.2% (w/v) Coomassie Brilliant Blue R250 
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2.2.2.6 Western Blot (semi-dry) 

 Cut blot paper (8 sheets of Whaman paper per gel) to the size of the gel and equilibrate in transfer 
buffer. 

 Cut PVDF blotting membrane to the size of gel and activate in methanol for 2 min. Then 
equilibrate in transfer buffer. 

 Build up blot (Semi-dry blotter, Amersham): place in this order: 4 x filter paper, membrane, gel, 4 
x filter paper. If necessary, roll out air bubbles with a conical tube. 

 Run 1 mini gel at 110 mA for 1 h. 
 Discard filter paper and briefly wash blot in 1 x PBS to remove SDS. 
 

Transfer buffer: 3.03 g tris base, 14.27 g glycerol, 200 ml methanol, add H2O dd. to 1 liter. 
 

2.2.2.7 Protein immunodetection and ECL (enhanced chemiluminescence) 

 Wash PVDF membrane twice for 10 min in 1 x PBS. 
 Blocking: shake membrane for 45 min in ~30 ml blocking buffer. 
 Transfer membrane onto a plastic foil and seal by heat-sealing. 
 Apply to 6 ml (per membrane) primary antibody solution and invert at room temperature for 1 h. 
 Wash membrane three times in ~30 ml wash buffer for 10 min. 
 Transfer membrane onto a plastic foil and seal by heat-sealing. 
 Apply to 6 ml (per membrane) secondary antibody solution (secondary antibody must be 

conjugated with HRP for ECL detection) and invert at room temperature for 1 h. 
 Wash membrane three times in ~30 ml wash buffer for 10 min. 
 ECL: per membrane mix 500 µl ECL solution I with 500 µl ECL solution II (ECL (Pierce® ECL 

Western blotting substrate, Thermo Scientific). 
 Transfer membrane into a cassette on a thin, transparent plastic foil. 
 Wipe off wash buffer from membrane using a tissue. 
 Pipet ECL mix onto the membrane, disperse allover over membrane, and incubate for 1 min in the 

dark. 
 Wipe off remaining ECL mix from membrane using a tissue. 
 Cover membrane with a thin, transparent plastic foil. 
 Expose membrane in a darkroom for a defined period with a piece of film (Super RX films were 

used, Fuji)) and develop film (Developing machine, Kodak). 
 

Solutions required: 

Wash buffer   

▪ 1 x PBS    
▪ 0.2 % (v/v) Tween-20  

  

Blocking buffer    

▪ 1 x PBS    
▪ 5% (w/v) milk powder 

 

Primary and secondary antibody solution 

▪ Blocking buffer 
▪ 0.2 % (v/v) Tween-20 
▪ Primary or secondary antibody (see below) 
▪ Use per membrane/mini gel a total volume of 6 ml 
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2.2.2.8 Membrane stripping 

 Wash PVDF membrane after ECL detection three times in ~30 ml PBS to remove ECL substrate. 
 Shake for 30 min at room temperature in ~20 ml stripping solution A. 
 Shake for 30 min at room temperature in ~20 ml stripping solution B. 
 Repeat the latter two steps twice. 
 Wash membrane three times in ~30 ml PBS and apply to a second round of protein 

immunodetection. 
 

Solutions required: 

Stripping solution A   Stripping solution B 

▪ 50% (v/v) EtOH    ▪ 50 mM Tris-HCl pH8.0 
▪ 10% (v/v) sodium acetate  ▪ 10% (w/v) SDS 

▪ 10 mM DTT 

2.2.2.9 Protein cross-linking with glutaraldehyde 

Chemical cross-linking of proteins followed by SDS-PAGE analysis can be used to get information 

about the condition and organization of components of interacting proteins and protein complexes. 

Determination of the complex size on a protein gel gives information, e.g., which quaternary structure 

a protein complex consists of. Here, chemical cross-linking of proteins with glutaraldehyde was used. 

Glutaraldehyde cross-links primary amino residues, in the case of proteins lysine residues and the N-

terminal amino group of the initiator methionine residue: 

2 R-NH2 + OHC-(CH2)3-CHO  R-N=CH-(CH2)3-CH=NR + 2 H20 

Glutaraldehyde has a short spacer arm length of 5Å. For glutaraldehyde cross-linking the purified 

proteins have to be dissolved in PBS since buffers like TBS contain Tris that consists of amine 

residues that interfere with the chemical reaction. Thus amino-free phosphate buffer conditions are 

suitable.  

The following protocol was used for chemical protein cross-linking of His6-tagged Udk (SP1208) from 

S. pneumoniae and Cp-1 Cpl1 (lysozyme): 

 Thaw a protein aliquot on ice. 
 Centrifuge at 4°C and 13,000 rpm (bench top centrifuge C5403, Eppendorf). 
 Determine protein concentration by Bradford assay. 
 Transfer 25 or 50 µg of protein to a PCR tube (different proteins solely or as mixed samples). 
 Fill up with PBS to 97.5 µl and mix. 
 Pre-incubate ½ h at room temperature. 
 Add to each sample (but not to loading control sample) 2.5 µl 25% glutaraldehyde stock solution 

(0.1% f.c.) and mix. 
 Incubate for 4 min at room temperature. 
 Terminate reaction by adding 10 µl of 1 M Tris-HCl pH 8.0 and mix. 
 Add a corresponding volume of 4 x Laemmli sample buffer. 
 Boil samples for 5 min at 95°C and let them cool down at room temperature. 
 Load 50 µl on a 5% to 15% tricine-PAGE gradient gel and separate by electrophoresis. 
 Stain proteins by Coomassie Blue staining. 
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2.2.2.10 Uridine kinase (Udk) enzyme assay and thin layer chromatography (TLC) 

Udk enzyme assay 

This protocol describes a competitive Udk (SP1208) enzyme assay to qualitatively determine the 

influence of the Cp-1 phage protein interaction partner Cpl1 (lysozyme) on Udk activity. The assay 

was carried out under the optimal enzyme conditions that were determined for the human uridine-

cytidine kinase-ortholog (Ahmed and Welch, 1979).  

 Thaw a protein aliquot on ice. 
 Centrifuge at 4°C and 13,000 rpm (bench top centrifuge C5403, Eppendorf) to remove putative 

precipitates. 
 Determine protein concentration by Bradford assay. 
 Transfer per sample 20 µl 5 x sample buffer to 1.5 ml microcentrifuge tube. 
 Transfer a corresponding volume of H2O dd. that is needed for a total sample volume of 100 µl. 
 Transfer corresponding volumes of purified proteins at last (negative control w/o proteins). (For 

detailed information of protein concentrations that have been used, refer to results section (3.1.5)). 
 Mix and pre-incubate samples at 37°C for 30 min. 
 Add per sample 4 µl of substrate solution and mix. 
 Incubate at 37°C and transfer after 5, 10, and 30 min 30 µl per sample into a microcentrifuge tube. 
 Incubate sample aliquots immediately for reaction inactivation at 95°C for 10 min and store on ice. 
 Precipitate denatured protein by centrifugation for 10 min at 4°C and 13,000 rpm. 
 Transfer 10 µl per sample to PCR tubes and apply to thin layer chromatography. 
Solutions required (prepare in H2O dd.): 

5 x reaction buffer   Substrate solution 

▪ 1 M Tris HCl pH 7.5   ▪ 500 mM ATP 
▪ 7.5 mM MgCl2   ▪ 500 mM uridine 
▪ 50 mM DTT, add always fresh 

 

Thin layer chromatography (TLC) 

To identify the reaction educts (ATP and uridine) and products (ADP and UMP) a reference 

experiment has to be done in advance by separating nucleotide samples by TLC solely (load per 

nucleotide/nucleoside a corresponding volume of 200 µmol) and proceed as described below. 

Calculate retention factor Rf = a/b (a= running distance of nucleoside or nucleoside; b= running 

distance mobile phase). Rf can be used to identify the nucleotides and nucleosides in the assay: 

 Define start line and label it on DEAE plate with a pencil on the bottom (~2.5 cm above end). 
 Load all samples (10 µl/sample) as 1.5 cm long lines with a glass capillary on DEAE cellulose 

plate (Cellulose MN 300 DEAE, 20 x 20 cm plate, Macherey-Nagel, Düren). 
 Let plate dry on air for 1 h. 
 Use 0.03 N HCl as mobile phase. Fill HCl in chromatography chamber until the bottom is covered 

~1 cm. 
 Transfer TLC plate to chamber and close with lid. 
 Stop TLC when running front of the mobile phase is close to the plate top. Label running front for 

determination of Rf. 
 Dry plate o/n on air. 
 Visualize nucleotides and nucleosides under UV light at 254 nm. Label spots with pencil and 

calculate Rf.  
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2.2.2.11 Protein gel filtration 

Purified His6-tagged Udk from S. pneumoniae and Cp-1 lysozyme (Cpl1) were applied to a protein gel 

filtration assay by FPLC (fast protein liquid chromatography). Therefore, a Superose 12 10/300 

column (GE Healthcare) was used. The AKTA FPLC™ System (GE Healthcare) contained all the 

pumps, conductivity, pH, and absorbance instrumentation in-line. Protein absorbance was measured at 

280 nm. As buffer system 1 x PBS pH 7.4 was used. The column was run at 0.8 ml/min and 0.8 ml 

fractions were collected. 100 µg Udk and Cpl1 were loaded solely or combined with 100 µg of each 

protein. For calibration the following gel filtration standards (Biorad) were used and run under 

identical conditions: thyroglobulin (670 kDa), gamma-globulin (158 kDa), ovalbumin (44 kDa), 

myoglobin (17 kDa) and vitamin B12 (1.35 kDa). 
 

2.2.2.12 Pull downs 

This protocol describes the pull down assays for verification and identification of protein-protein 

interactions among E. coli YbeB-L14, human C7orf30-L14mt, and Zea mays Iojap-RPL14 test pairs: 
 

Entry plasmids were recombined with pNusA (Santhera Pharmaceuticals, Liestal, Switzerland), 

pETG-40A, or pETG-30A (EMBL, Heidelberg, Germany) by Gateway® LR reactions and 

transformed or co-transformed into chemocompetent E. coli BL21(DE3). Specification of tested 

construct pairs is described in the results section. A 20 ml main culture (selective LB) was inoculated 

at a ratio 1:100 with an o/n grown pre-culture. The main culture was shaken for 1 h at 37°C and then 

induced with 100 µM IPTG (isopropyl β-D-1-thiogalactopyranoside) for pETG plasmids or 0.2 µg/ml 

ATC (anhydrotetracycline, Sigma) for pNusA expression plasmids. The cultures were shaken at 37°C 

for 3 h. Cells were harvested by centrifugation at 4°C and supernatant was discarded. Cell pellets were 

treated with 500 µl lysis buffer (50 mM Tris-HCL pH 8.0, 100 mM NaCl, 50 µg/ml chicken egg white 

lysozyme (Sigma), 50 µM PMSF (Sigma)) and incubated for 30 min on ice. Then a corresponding 

volume of a 10%/10% (v/v) sarcosyl/Triton-X 100 solution was added to a final concentration of 

0.1/0.1%. Samples were sonicated for 8 min (Bioruptor, Diagenode) and then centrifuged for 15 min > 

9,000 g at 4°C. Supernatant was saved and 10 µl samples were analyzed for protein expression on a 

12% SDS PAGE gel stained with Coomassie Blue R-250 (Sigma). Lysates were stored at -80°C. For 

pull down experiments total protein amounts of the soluble fractions were determined by Bradford 

assay (Bio-Rad). For co-expressed proteins 50 µg of soluble protein was applied to beads and 50 µg of 

soluble protein was saved as input control. For separately expressed proteins 25 µg of each soluble 

protein fraction were mixed and then applied to the beads. GST fusions were purified in combination 

with MBP preys via 20 µl glutathione beads (GE Healthcare), and MBP baits in combination with 

NusA-tagged preys via 20 µl amylose beads (New England Biolabs). Beads were first equilibrated 

twice with 1 ml wash buffer (50 mM Tris-HCL pH 8.0, 100 mM NaCl, 0.1/0.1% (v/v) sarcosyl/Triton-

X 100). Binding occurred at room temperature for 30 min. Beads were washed four times in 1 ml wash 
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buffer and precipitated by centrifugation (500 rpm, micro centrifuge). Buffer was discarded and beads 

were boiled for 5 min in 50µl 1 x Laemmli buffer. 10 µl of output samples and a corresponding 

volume of input samples were loaded and separated on a 12 % SDS PAGE gel. Proteins were 

transferred onto a PVDF membrane (Amersham) by a semi-dry Western blot. Membranes were 

blocked for 1 h with blocking buffer (5% (w/v) low-fat milk powder in PBS pH 7.4) and then applied 

to immunodetection of recombinant proteins. GST fusions were probed with polyclonal goat -GST 

(1:10,000) (Rockland), MBP fusions with monoclonal mouse -MBP (1:20,000) (New England 

Biolabs), and NusA fusions containing an additional His6 tag with polyclonal rabbit -His6 (1:5,000) 

(Santa Cruz Biotechnology) immunoglobulins in 6 ml blocking buffer with 0.2% (v/v) Tween-20. 

Incubations were done for 1 h at room temperature. Then membranes were washed three times in 

washing buffer (PBS pH 7.4 with 0.2% (v/v) Tween-20) and applied to secondary antibody binding. 

Polyclonal rabbit -goat/HRP (1:5,000), goat -rabbit/HRP (1:2,500) or goat -mouse/HRP 

(1:10,000) (Dako) conjugates were used as secondary antibodies (6 ml/membrane) and incubated at 

room temperature for 1 h. Finally membranes were washed three times in washing buffer and applied 

to ECL (Pierce® ECL Western blotting substrate, Thermo Scientific). Super RX films were used 

(Fuji). 
 

2.2.3 Bacterial methods and assays 

2.2.3.1 Bacterial media 

 

LB (lysogeny broth) medium 

Per 1 liter medium use: 
 

▪ 0.5% (w/v) Bacto Yeast Extract 
▪ 1% (w/v) Tryptone/Peptone 
▪ 1% (w/v) NaCl 

 

The medium was autoclaved and optionally antibiotics were added to the medium after it was cooled 

down to 50°C. The same recipe was used for the LB agar medium (LBA). In addition 2% (w/v) agar-

agar was added before autoclaving. 
 

MOPS minimal medium 

MOPS medium is a minimal medium that contains all essential micronutrients necessary for E. coli 

growth (Neidhardt et al., 1974). Due to the application various carbon sources can be added to it. 

MOPS medium was prepared as follows: 
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Final 1 x MOPS medium contains: 

▪ 10 x MOPS mixture 100 ml 
▪ 0.132 M K2HPO4 10 ml 
▪ H2O dd.  880 ml 

 

 Mix ingredients above and adjust pH to 7.2 with 10 M NaOH. 
 Filter sterilize.  
 Before use add 10 ml 100 x carbon source (e.g., 20% (w/v) sterile glucose solution) 
 

Preparation of 10 x MOPS mixture: 

 Add the following components to ~300 ml H2O dd. in a 1 liter beaker glass with a stir bar: 
▪ MOPS 83.72 g 
▪ Tricine 7.17 g 

 Add 10 M KOH to a final pH of 7.4 (10 to 20 ml). 
 Bring total volume to 440 ml. 
 Make a fresh 0.01 M FeSO4•7H2O solution (10 ml) and add it to the MOPS/Tricine solution. 
 

 Add the following solutions to the MOPS/tricine/FeSO4 solution (see below how to make each of 
these). Mix following solutions: 

▪ 1.9 M NH4Cl 50 ml  ▪    0.276 M K2SO4 10 ml 
▪ 0.02 M CaCl2•2H2O 0.25 ml  ▪    2.5 M MgCl2 2.1 ml 
▪ Micronutrient stock 0.2 ml  ▪    5 M NaCl 100 ml 
▪ Autoclaved H2O dd. 387 ml 

 Filter sterilize. 
 Aliquot into sterile 50 ml conical tubes and freeze at -20°C. 
 

Stock solutions used in 10 x MOPS mixture (store at room temperature): 

▪ NH4Cl 1.9 M  ▪ MgCl2        2.5 M 
▪ K2SO4 0.276 M  ▪ CaCl2•2H2O   0.02 M 
▪ NaCl 5 M 

 

Micronutrient stock (for 50 ml) 

 Mix everything together in 40 ml autoclaved H2O dd., bring up total volume to 50 ml. Store at 
room temperature. 

▪ ammonium molybdate   0.009 g  ▪    CuSO4    0.006 g 
▪ boric acid     0.062 g  ▪    ZnSO4    0.007 g 
▪ CoCl2     0.018 g  ▪    MnCl2    0.040 g 

 

Potassium phosphate K2HPO4 solution: 

 K2HPO4 0.132 M 
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2.2.3.2 Preparation of chemocompetent E. coli cells 

CaCl2-method 

Inoculate 150 ml LB medium with 1 ml bacterial o/n culture. Incubate at 37°C to OD600=0.35 and 

cool bacterial culture on ice for 30 min. Centrifuge for 10 min at 6,000 rpm (Beckmann J2-HS) at 4°C 

and discard supernatant. Wash cells with 30 ml ice-cold 100 mM CaCl2, centrifuge, resuspend in 30 

ml ice-cold 100 mM CaCl2, and incubate for 1 h on ice. Centrifuge again and resuspend in 3 ml ice-

cold 100 mM CaCl2 10% (v/v) glycerol solution. Freeze 100 aliquots in liquid nitrogen and store at -

80°C. Proceed with transformation (2.2.3.3). 
 

TSS-method 

Inoculate a bacterial strain from an o/n culture 1:100 in 50 ml LB medium (with antibiotic(s) for 

transformed strains for co-transformation) and shake at 37°C to OD600 = 0.3-0.4. Transfer culture to 

50 ml conical tube and incubate for 1 h on ice. Centrifuge culture (4,000 rpm for 20 min at 4°C (table 

top centrifuge 5810R, Eppendorf)). Resuspend in 1/10 volume of ice-cold TSS buffer (transformation 

and storage solution). Freeze 100 µl aliquots in liquid nitrogen and store at -80°C. Proceed with 

transformation (2.2.3.3). 
 

TSS buffer: 5 ml DMSO, 10 g PEG 6000 (Sigma), 1 M MgCl2, 90 ml LB medium, sterile filter. 
 

2.2.3.3 Transformation of chemocompetent cells by heat shock 

 Remove a tube of TSS- or CaCl2-competent cells from -80 °C freezer. 
 Thaw the cells on ice. 
 Add the plasmids (usually ~100 ng), swirl to mix and incubate on ice for 20 min. 
 Heat shock: transfer the tubes into a 42°C water both or heat block for 60 s. 
 Rapidly transfer the tubes to ice for 1 to 2 min. 
 Add 900 µl LB medium (without antibiotic) and shake the cultures at 37°C for 1 h. 
 Centrifuge the cells at 6,000 rpm for 2 min in micro centrifuge. 
 Discard 800 µl supernatant and resuspend by pipetting pellet in the remaining 200 µl. 
 Transfer the suspension onto a LBA plate with appropriate antibiotic. 
 Add a couple of autoclaved glass beads and spread suspension by shaking the plates. 
 Remove beads and incubate plates o/n at 37°C. 
 

2.2.3.4 Selection conditions for plasmid-transformed E. coli strains 

For selection of plasmid-transformed E. coli strains antibiotics were added to liquid or agar LB-

medium as given in the following table. Propagation of Gateway® compatible destination and donor 

plasmids was done in media with the corresponding bacterial selection marker plus 34 µg/ml 

chloramphenicol (positive selection of the Gateway® cassette) in ccdB resistant E. coli strain DB3.1. 

All other plasmids were propagated in E. coli TOP10. General selection temperature was 37°C except 

for pCP20 that contains a heat sensitive ori. This plasmid was propagated at 30°C. Co-selection, e.g., 
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for protein co-expression occurred through selecting towards corresponding antibiotics 

simultaneously. 
 

Tab. 20 Plasmid selection conditions in E. coli 
Gateway® compatible destination and donor plasmids are labeled by an asterisk. 
 

Plasmid Antibiotic C (µg/ml) Plasmid Antibiotic C (µg/ml) 
pDEST32* Gentamycine 50 pBAD24HA Ampicillin 100 

pDEST22* Ampicillin 100 pBAD-GFP Ampicillin 100 

pGBKT7g* Kanamycin 50 pCP20 Chloramphenicol 170 

pGADT7g* Ampicillin 100 pDONR221* Kanamycin 50 

pETG-30A* Ampicillin 100 pDONR207* Gentamycine 50 

pETG-40K* Kanamycin 50 pcDNA3.1-HA-mCherry Ampicillin 100 

pNusA* Ampicillin 100 pcDNA3.1(+)-HA-VN Ampicillin 100 

pHGWA* Ampicillin 100 pcDNA3.1(+)-HA-VC Ampicillin 100 

pGEX-4T-1 Ampicillin 100 pECFP-mem Kanamycin 50 

pCR3.1-N-MBP* Ampicillin 100 pCR3.1-N-eGFPLuc* Ampicillin 100 

pCA24N Chloramphenicol 30    

 

2.2.3.5 Flip-out of kanamycin cassette from E. coli gene deletion mutant 

To remove the kanamycin cassette from a E. coli ybeB gene deletion mutant (KEIO collection, (Baba 

et al., 2006)) plasmid pCP20 (Cherepanov and Wackernagel, 1995) was transformed into ybeB TSS 

competent cells by a heat shock method. Because of thermo-sensitive replication of the plasmid the 

culture was incubated after heat shock for 1 h at 30°C. Then cells were plated on LBA plates 

containing chloramphenicol and incubated o/n at 30°C. Colonies were picked and the success of flip-

out was checked by a genotyping colony PCR using an oligo pair that flanks ybeB ORF (primer 

b0637_H1+197up and b0637_H2+106down). A positive colony was streaked on a non-selective LBA 

plate. For pCP20 elimination the plate was incubated o/n at 43°C. To check successful removal of 

pCP20 and kanamycin marker the strain was finally streaked on LBA medium containing ampicillin, 

kanamycin, or chloramphenicol and incubated o/n at 37°C. No colony growth was observable. 
 

2.2.3.6 Determination of OD600 

Standard measurements of OD600 (optical density, light absorption at 600 nm) of bacterial cultures 

were determined with a Biorad photospectrometer with 1 cm disposable cuvettes. 96-well OD600 was 

measured with ELx808 96-well plate reader (Biotek Instruments) at 595 nm. 150 µl samples were 

loaded per well. For standardization OD600 was recalculated with the formula: 

OD600 = 4.3062 · OD595 – 0.0119 

For determination of the standardization formula reference measurements were done with the Biorad 

photometer (1 cm light path (OD600) and ELx808 (150 µl/well (OD595)) with serial dilutions of a 

bacterial suspension. The formula was calculated with MS Excel. 
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2.2.3.7 ybeB phenotyping growth curve assays 

75 µl per well of 2 x concentrated antibiotic stock solutions in 1 x liquid LB medium were transferred 

into a 96-well plate (flat bottom). Bacterial strains were grown o/n in LB medium and then OD600 

was determined from 1:10 dilutions by photo-spectrometry. Cultures were diluted with LB medium to 

OD600=0.02 and then 75 µl were added to the 2 x antibiotic stock solutions. Incubation followed at 

37°C. In intervals of 1 h sample plates were measured at 595 nm (ELx808, Biotek Instruments, 

Friedrichshall) and OD600 was recalculated as described (2.2.3.6). Final concentrations of chemical 

components have been used as given in the following table: 
 

Tab. 21 Chemical components for phenotyping assays 
 

Component Final concentrations 

Chloramphenicol 0, 1, 2, 4 µg/ml 

Gentamycine 0, 1, 2, 4 µg/ml 

Rifampicin 0, 2, 4, 8 µg/ml 

Spectinomycin 0, 1, 2, 4 µg/ml 

Tetracycline 0, 1, 2, 4 µg/ml 
 

2.2.3.8 ybeB phenotyping agar plate assays  

OD600 was determined from ybeB and wild-type BW25113 1:10 diluted o/n cultures grown in LB 

liquid medium. Cultures were serially diluted in LB liquid medium to final OD600 of  0.1, 0.01, 0.001, 

and 0.0001. Then, 5 µl per dilution was plated on non-selective LB agar test plates. Plates were 

incubated at 42°C (high temperature condition, standard LB agar medium) or 37°C (high salt 

condition; LB agar medium with 2, 4, and 8 % (w/v) NaCl) o/n. 
 

2.2.3.9 Competitive fitness assay of ybeB gene deletion mutant 

Minimal MOPS medium was prepared as described in (2.2.3.1). Sterile filtered glucose was added 

from a 20% (w/v) stock solution to finally 0.2% (medium named here as MOPS+G). ybeB and wild-

type BW25113 o/n cultures were grown at 37°C in MOPS+G, diluted 1:10, and OD600 was 

determined. Cultures were diluted with MOPS+G to a final OD600=0.1 in 50 ml. These samples were 

used for the reference growth curve. The cultures were shaken in Erlenmeyer flasks at room 

temperature and the OD600 was monitored hourly. Furthermore cultures were diluted to finally 

OD600=5e-8 (both strains mixed in the same sample) in 50 ml MOPS+G. Sample cultures were 

prepared three times independently and then shaken for 72 h at room temperature in Erlenmeyer 

flasks. From each of the three samples, approx. 500 cells were plated on non-selective LB agar plates. 

Bacteria were grown o/n at 37°C. These samples were applied to a genotyping colony PCR to 

distinguish between wild-type and ybeB colonies. 3 x 93 colonies were randomly picked from each 

sample plate and boiled in 50 µl H2O dist. for 10 min at 95°C. Then a genotyping colony PCR was 
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performed using the primer pair that has been used for ybeB mutant verification (2.2.3.5). PCR 

products were analyzed by agarose gel electrophoresis on a 2% agarose gel. 
 

2.2.3.10 ONPG reporter assay of ybeB gene deletion mutant 

TSS-competent ybeB and wild-type BW25113 were transformed with pBAD24-lacZ-HA and 

selected on LB agar medium with 100 µg/ml ampicillin. Both were grown as o/n cultures in LB liquid 

medium with 100 µg/ml ampicillin. Pre-cultures (50 ml LB + ampicillin) were inoculated 1:25 with 

o/n cultures and shaken for 80 min into logarithmic phase. OD600 was determined by photo-

spectrometry and cultures were diluted once more to an OD600=0.2. 2 x ONPG (4 mM) L-arabinose 

(0, 0.004 or 0.4 % (w/v)) stock solutions were prepared with 1 x LB medium + 100µg/ml ampicillin. 

To 10 ml cultures (OD600=0.2) 10 ml of 2 x ONPG/inductor stock solutions were added. Cultures 

were shaken at 37°C in Erlenmeyer flasks. Every hour 1 ml suspension was saved. Cells were pelleted 

by centrifugation. Supernatant was saved for ONPG turnover measurement. 200 µl were loaded per 

sample on a 96-well plate (flat bottom) and extinction was measured at 415 nm (ELx808, Biotek 

Instruments, Friedrichshall). Cell pellets were washed in 1 ml PBS. The supernatant was discarded and 

pellets stored at -80°C. These samples were used for detection of the -galactosidase level (see 

below). In parallel to ONPG containing samples a reference growth curve (OD600 determined by 

photo-spectrometry) was measured from ybeB and WT, both transformed with pBAD24-lacZ-HA. 

Here, 10 ml OD600=0.2 cultures from above were diluted at a ratio of 1:1 with corresponding 2 x L-

arabinose stock solutions but without ONPG since ONPG treated samples interfered with OD600 

measurement. 
 

2.2.3.11 Rescue assay 

Chemocompetent BW25113 WT and ybeB cells, harboring pBAD24-lacZ-HA, were transformed 

with pCA24N empty vector or pCA24N containing the ybeB ORF (Kitagawa et al., 2005) and selected 

on LB agar medium (+100 µg/ml ampicillin and 30 µg/ml chloramphenicol). Expression of YbeB 

from pCA24N was confirmed by protein expression analysis followed by Coomassie protein gel 

staining. Although pC24N contains lacIq, maximal protein expression was constitutively observable in 

BW25113 w/o inductor (IPTG). An ONPG assay was repeated under equal conditions (2.2.3.10) and 

the lacZ reporter was induced with 0.2%. (w/v) L-arabinose. The assay was carried out in LB medium 

containing 100 µg/ml ampicillin and 30 µg/ml chloramphenicol. 
 

2.2.3.12 Detection of-galactosidase reporter protein levels in ybeB and wild-type cells 

Cell pellets harvested in intervals of 1 h from the ONPG assay (see above) were treated with 200 lysis 

buffer according to the pull down protocol (2.2.2.12). The soluble protein fraction was saved and the 
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total protein amount determined by Bradford assay (2.2.2.3). Protein concentration was adjusted with 

lysis buffer to 400 ng/µl per sample. 4 x Laemmli buffer was added and samples were boiled for 5 min 

at 95°C. 4 µg total soluble protein per sample was loaded on an 8% SDS PAGE gel. Proteins were 

separated, Western blotted, and detected as described for the pull down experiments. Recombinant -

galactosidase was detected with polyclonal rabbit -HA antibody (1:10,000) (Santa Santa Cruz 

Biotechnology) and goat -rabbit/HRP antibody (1:5,000) (Dako). After ECL the PVDF membrane 

was stripped (2.2.2.8). For detection of a loading control the membrane was probed with polyclonal 

goat -GST immunoglobulin (1:10,000) (Rockland) and secondary antibody as described in the pull 

down protocol. 
 

2.2.3.13 GFP fluorescence reporter assay of ybeB gene deletion mutant 

pBAD-GFP was used as reporter construct (kindly provided by Prof. Govind Rao, UMBC) (Albano et 

al., 1998). Plasmid was transformed into TSS-competent ybeB and wild-type BW25113 and selected 

on LB agar medium with 100 µg/ml ampicillin. These strains were diluted from o/n cultures 1:50 in 50 

ml LB liquid medium with 100 µg/ml ampicillin. Cultures were shaken in Erlenmeyer flasks at 37°C 

for 2 h. Then OD600 was determined and finally the cultures diluted to OD600=0.5. 15 ml cultures 

were induced with finally 0, 0.002, and 0.2% (w/v) L-arabinose and shaken at 37°C in Erlenmeyer 

flasks. In ½ h steps 200 µl were transferred into a 96-well plate (flat bottom) and GFP fluorescence 

was determined with FLUOStar OPTIMA fluorescence reader (BMG Labtech) (excitation filter 355 

nm, emission filter 520 nm, gain 1,264). For fluorescence microscopy the assay was repeated as 

described for induction condition with 0.002% (w/v) L-arabinose. ybeB and wild-type cultures were 

inoculated 1 h deferred to guarantee equal conditions for microscopy. 1.5 h post induction 200 µl 

suspension was mixed with 200 µl 40°C LB agar medium (containing 0.002% (w/v) L-arabinose and 

100 µg/ml ampicillin) for cell immobilization. 30 µl were quickly loaded on a microscopy slide and 

covered with a cover slide. Samples were applied to fluorescence microscopy (2.2.4.4). 
 

2.2.4 Cell culture and cell culture related assays 

2.2.4.1 Cultivation 

Cells (HeLa, HEK293TT) were cultured at 6% CO2, 95% humidity, and 37°C in an incubator. 

Manipulation of cells was performed under a sterile hood. Media, buffers, and glassware were 

sterilized before work by autoclaving. Cells were grown in 10% DCS-DMEM medium. 
 

Passaging cells 

After removing the old tissue-culture media trypsin-containing solution (2 ml, 0.25% trypsin) was 

added to the cells and transferred to an incubator for 5 min. Thereafter, 10 ml fresh medium was 
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applied to the detached cells to stop trypsin-dependend digest and mixture was resuspended to separate 

cells. This mixture was administered to new Petri dishes in defined dilutions. 
 

Seeding cells 

After removing the old tissue-culture media, trypsin-containing solution (2 ml, 0.25% trypsin) was 

added to the cells and transferred to an incubator for 5 min. Thereafter, 10 ml fresh medium was 

applied to the detached cells to stop trypsin-dependend digestion and mixture was resuspended to 

separate cells. Cells were collected within a conical tube (15 ml), centrifuged (1,500 rpm, 5 min), and 

the supernatant was removed. The cell pellet was resuspended in 10 ml fresh medium. To count cells, 

10 µl were transferred to a Neubauer counting chamber. Cells were counted by using a brightfield-

microscope. 
 

Freezing and thawing cells 

For freezing, logarithmically growing cells were trypsinized as described above and collected by 

centrifugation. Cells were resuspended in freezing medium (DMEM, 40% FCS, 10% DMSO) and 

transferred into cryo tubes. After incubation on ice for 30 min, cells were slowly frozen at -80°C and 

then transferred to liquid nitrogen. For re-propagation cells were thawed quickly at 37°C and 

transferred to fresh medium. The next day medium was replaced with fresh cell culture medium. 

2.2.4.2 Cell transfection 

Cells were seeded and grown in 250 µl DMEM per well containing 10% Donor calf serum (DCS) 

(Invitrogen) in eight-well chamber slides (Ibidi) and incubated at 37°C. 16 h later cells were 

transfected with 100 ng DNA of single plasmid or 50 ng of plasmid for co-transfection using 

PromoFectin (Promokine). Plasmid DNA was diluted in 10 µl culture medium. For each well 0.5 µl 

PromoFectin solution was diluted in 10 µl culture medium. Then, these two solutions were mixed, 

incubated for 15 min at room temperature, pipetted into the wells, and homogenized by swirling. Cells 

were incubated for 24 h at 37°C.  
 

2.2.4.3 Cell preparation for fluorescence microscopy 

24 h post transfection MitoTracker® Green FM for mitochondria staining (Invitrogen) (100 nM f.c.) 

was added to the growing cells for 30 min. Afterwards, the cells were washed 3 x with DMEM 

containing 10% DCS. Finally, DRAQ5 (Biostatus) was diluted 1:2,000 into the growing medium. 

Cells were examined 30 min post DRAQ5 administration by confocal microscopy. 
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2.2.4.4 Fluorescence microscopy 

Fluorescence samples were analyzed using a Zeiss LSM 510 Meta confocal laser scanning 

microscope. Images were acquired using a 63x/1.40 plan apochromat oil objective. Tab. 22 gives the 

used fluorophore-specific excitation and emission filters: 
 

Tab. 22 Fluorophores used in confocal microscopy 
 

Fluorophore Excitation laser/nm Emission filter/nm 

eGFP2 488 510-530 

mCherry 543 560-610 

BiFC Venus (complements) 488 510-530 

eCFP-membrane 458 460-475 

DRAQ5 633 660-690 with META detector set 

MitoTracker® Green FM 488 510-530 
 
(Albano et al., 1998; Crameri et al., 1996) 

2.2.4.5 Co-localization and BiFC (bi-molecular fluorescence complementation) assay  

For co-localization studies, Hela cells were seeded and grown in 250 µl DMEM containing 10% 

Donor calf serum (DCS) (Invitrogen) in eight-well chamber slides (Ibidi, Martinsried Germany). 12 to 

16 h later cells were transfected with 100 ng pECFP-mem and 100 ng C7orf30 fused to mCherry or 

100 ng L14mt fused to mCherry using Promofectin (Promokine, Germany) according to the 

manufacturer´s manual. 24 h afterwards, Mitotracker (100 nM f.c.) was added for 30 min. Thereafter, 

cells were washed 3 x with DMEM containing 10% DCS and finally DRAQ5 (finally diluted 1:2000) 

was added. Cells were examined 30 min post DRAQ5 administration by fluorescence microscopy. 

For BiFC (Hu et al., 2002), Hela cells were seeded and grown in 250 µl DMEM containing 10% 

Donor calf serum (Invitrogen) in eight-well chamber slides (Ibidi, Martinsried, Germany). 12 to 16 h 

later cells were transfected with 100 ng pECFP-Mem (Clontech) and 50 ng of C7orf30 fused to the 

N-terminal part of Venus (VN) together with L14mt fused to the C-terminal part of Venus (VC), 

C7orf30-VC together with L14mt-VN, C7orf30-VC together with C7orf30-VN or L14mt-VN together 

with L14mt-VC using Promofectin (Promokine, Germany). 24 h post transfection, DRAQ5 was added 

(finally diluted 1:2000) and cells were examined 30 min post DRAQ5 administration by fluorescence 

microscopy. 
  

                                                      
2 Enhanced fluorescence activity and shorter chromophore cyclization time of 95 min compared to 4 h of wt GFP (Albano et al., 1998; 
Crameri et al., 1996). 
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2.2.4.6 LuMPIS 

LuMPIS (Luminescence-based MBP pull-down Interaction screening system) is a LUMIER-derived 

pulldown assay (Luminescence-based mammalian interactome mapping). It makes use of vectors with 

N-terminally MBP-tagged baits to capture N-terminally eGFP-luciferase-tagged preys which can be 

co-purified in a pulled down assay via amylose beads. Proteins are expressed in human embryonic 

kidney cells (HEK) and raw protein extracts are used for the assay. The system was used to verify 

phage-host PPIs, detected in the Y2H screens. It was especially developed for expression of low GC 

content ORFs (Vizoso Pinto et al., 2009). The pulled down prey is detected by measurement of the 

luciferase activity. 

ORFs of PPI candidates were transferred from the corresponding Gateway® entry plasmids via LR 

reactions into the expression plasmids: phage ORFs were inserted into pCR3.1-N-eGFPLuc and used 

as preys. S. pneumoniae ORFs were transferred into pCR3.1-N-MBP and used as baits. Plasmids were 

isolated by isopropanol precipitation (2.2.1.7) and applied for cell transfection. Each PPI was 

measured as quadruplicates and compared to a quadruplicate negative control. The empty bait plasmid 

(MBP w/o ORF) was used in combination with the GFPluc preys to determine prey binding to MBP. 
 

The following protocol was used: 

 Chill all buffers needed and solutions on ice (see below). 

 Day 1: Seed 0.5 x 106 HEK293TT per well of a 12-well plate in the morning. ½ h before 
transfection, check that the cells are adherent and change the medium by aspirating the old medium 
and add 500 µl OPTIMEM per well. Transfect cells with 500 ng/total DNA per well (250 ng MBP-
tagged-bait and 250 ng eGFP-Luc-tagged-prey plasmid) (PromoFectin) in the afternoon (after at 
least 6 h). 

 Day 2: Change medium (DMEM added with 10% FCS; 1% penicillin/streptomycin (1:100), 1% 
non essential amino acids (1:100); 1% gentamicine (stock 10 mg/ml), Fungizone (1:500), G418 
(100 µg/ml f.c.). 

 Day 3: Prepare MultiScreenHTS 96-well plates (Millipore): Dispense 100 µl slurry (amylose 
beads, NEB) per well in HTS plate. Equilibrate the beads in LuMPIS buffer (wash 4 x in 200 µl 
using a vacuum device). 

 Wash the transfected cells (in 12 well format) with 500 µl ice cold PBS.  
 Resuspend the cells in lysis buffer supplemented with 0.05 % Tween-20 using 500 µl lysis buffer. 
 Lyse the cells by sonication on ice. Use six bursts at 75 W with a 10 s cooling period between each 

burst (Bandelin Sonorex RK 100). 
 Centrifuge the lysate at 10,000 g for 10 min at 4°C to pellet cellular debris and DNA. Save the 

supernatant. 
 Take 100 µl and dilute it 1:10 with LuMPIS buffer. 
 Apply 150 µl lysate into each well, mix thoroughly by pipetting up and down (approx. ten times). 
 Apply vacuum to wash the column; add 200 µl wash buffer (mix thoroughly each time by pipetting 

up and down) and wash by applying to vacuum. Repeat the washing steps 4 x. 
 Resuspend the beads in 150 µl elution buffer. 
 Pipet 50 µl of each suspension into the wells of a white 96-well plate. Measure luciferase activity 

in Optima FLUOstar Luminometer (BMG LABTech) of the lysates (1:10) and of the beads 
suspensions according to the Promega protocol, using 50 µl reagent. 
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The luciferase luminescence intensity ratio (LIR) is calculated as follows: 

 

Hereby (control+prey) represents the luminescence intensity of a negative control sample determined for 

individual eGFP-luciferase tagged preys. Here, the unspecific binding of a prey was tested against the 

MBP tag only. (bait+prey) represents the sample with the eGFPluciferase tagged preys and MBP-tagged 

baits. 
  

LuMPIS Buffer (column buffer for amylose beads, wash buffer) 

▪ 20 mM Tris-HCl 
▪ 200 mM NaCl 
▪ 1 mM EDTA 

 

Elution buffer 

▪ 10 mM maltose in H2O dist. 
 
 

Lysis Buffer (50 ml) 

 20 µl Leupeptin (Sigma, Stock aliquots: 25 mg/ml; -20°C) (5 µg/ml f.c.) 
 25 µl DNAse I (Sigma, Stock aliquots: 10 mg/ml; -20°C)  (5 µg/ml f.c.) 
 0.125 g BSA     (2.5 mg/ml f.c.) 
 25 µl Tween-20     (0.05 % (v/v) f.c.) 
 Prepare in column buffer 
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2.2.5 Yeast methods and Yeast Two-Hybrid assays 

2.2.5.1 Yeast media 

YEPD medium 

▪ 10 g yeast extract 
▪ 20 g peptone 
▪ 20 g glucose 
▪ (16 g agar agar for solid medium, only) 
▪ add H2O to 1 liter 
▪ Autoclave  
▪ Cool down to approx. 60°C and add 4 ml of 1% adenine solution (1% in 0.1 M NaOH) 

 
5 x medium concentrate  

▪ 8.5 g yeast nitrogen base 
▪ 25 g ammonium sulfate 
▪ 100 g glucose 
▪ 7 g dropout mix (see below) 
▪ add H2O to 1 liter and sterile filter; store at 4°C 

 

Selective plates  

 autoclave 16 g agar in 800 ml water 
 cool medium to 60-70°C 
 add 200 ml 5 x medium concentrate 
 add components as follows: 
 
 

 Plate type                                                  add 

▪ -Trp (w/o Trp)    8.3 ml Leu and 8.3 ml His solution 
▪ -Leu (w/o Leu)   8.3 ml Trp and 8.3 ml His solution 
▪ -Leu-Trp (w/o Trp and Leu)  8.3 ml His solution 
▪ -Leu-Trp-His (w/o Trp, Leu, and His) nothing or 3-AT, only 

 

For -Leu-Trp-His, 3-AT can be added from a 0.5 M stock solution. Approx. 20 ml of the medium is 

then poured into OmniTray plates (Nunc). 
 

Dropout mix (-His, -Leu, -Trp) 

▪ 1 g methionine ▪    5 g glutamic acid ▪    1 g adenine 
▪ 1 g arginine ▪    5 g aspartic acid ▪    1 g uracil 
▪ 2.5 g phenylalanine ▪    7.5 g valine ▪    20 g serine 
▪ 3 g lysine  ▪    10 g threonine ▪    4 g isoleucine 
▪ 3 g tyrosine    

 

Mix all components well and store under dry, sterile conditions. 
 

Amino acid solutions 

▪ Histidine (His): dissolve 4 g of histidine in 1 liter water and sterile filter. 
▪ Leucine (Leu): dissolve 7.2 g of leucine in 1 liter water and sterile filter. 
▪ Tryptophan (Trp): dissolve 4.8 g of tryptophan in 1 liter water and sterile filter. 
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2.2.5.2 Yeast transformation 

This protocol is suitable for 100 yeast transformations and may be scaled up or down as needed.  

Selection of the transformed yeast cells requires leucine or tryptophan-free media (“-Leu” or “-Trp”, 

depending on the selective marker on the plasmid).  
 

 Inoculate 50 ml YEPD liquid medium with one colony of haploid AH109 or Y187 yeast strain in a 
250 ml flask and grow o/n with shaking at 30 ºC (min. 15 h, max. 24 h). 

 Spin down cells in 50 ml conical tube (2,000 rpm, 5 min at room temperature, table top centrifuge 
5810R), pour off supernatant and dissolve the pellet by adding 2 ml LiOAc (0.1 M) and transfer 
resuspended yeast to two 1.5 ml microfuge tubes. Spin out yeast (2,000 rpm, room temperature, 
micro centrifuge) and resuspend in a total volume of 1.8 ml LiOAc (0.1 M). 

 Prepare CT110 solution. 
 Add all the competent yeast cells prepared above and mix vigorously by hand or by vortexing for 1 

min. Pipet immediately 245 µl into each of 96-wells of a 96-well plate. 
 Add ~100 ng of plasmid and positive control (e.g., empty vector) and negative control (only 

CT110). Seal the 96-well plate with plastic or aluminum tape and vortex for 4 min. 
 Incubate at 42°C for 30 min. 
 Spin the 96-well plate for 10 min at 2,000 rpm (Labofuge 400R); discard the supernatant and 

aspirate with 8 channel wand or by tapping on cotton napkin for a couple of times. Add 150 µl of 
sterile water to all 96-wells, resuspend and plate cells on selective agar plates (e.g., standard Petri 
dishes) with -Leu for pGADT7g or -Trp for pGBKT7g selection. 

 Incubate the plates at 30ºC for 3 days. 
 

Carrier DNA (salmon sperm DNA): Dissolve 7.75 mg/ml salmon sperm DNA (Sigma D1626) in  
H20 and store at -20°C following a 15 min 120°C autoclave cycle. 

 

96 PEG solution (100 ml): Mix 45.6 g PEG (Sigma P3640), 6.1 ml of 2 M LiOAc (lithium acetate),  

1.14 ml of 1 M Tris pH 7.5, and 232 µl 0.5 M EDTA; make up to 100 ml with sterile water 

and autoclave. Store at room temperature. 
 

CT110: Mix 20.73 ml 96PEG, 0.58 ml boiled salmon sperm DNA (boil at 95ºC for 5 min) and 2.62 ml  

   DMSO. Add DMSO last and mix quickly after adding by shaking vigorously for 30 s. 
 

2.2.5.3 Setup of a screen array 

Usually preys rather than baits are arranged on an array because the former do not result in self-

activation of transcription. However, screening against a bait array is possible as well but must be 

controlled by screening a prey strain carrying an empty prey vector against the bait matrix. The 

minimal-inhibitory concentration of 3-AT for each bait strain is determined by a self-activation test 

and bait strains with equal minimal-inhibitory concentration are re-arrayed on the same test array 

plates. For creation of prey and bait arrays, the layout of the array is defined first. Each prey and bait 

construct of the proteome is given a specific position of a particular 96-well plate, e.g., position A03 

of prey plate #1 contains the orf3-construct. The wells of these 96-well-plates are loaded with 100 µl 

YEPD medium. Several colonies from a specific prey and bait transformation are combined and 
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manually transferred into the well at the previously defined position. These 96-well plates carrying the 

prey or bait strains are incubated o/n at 30°C and replicated onto Omnitray plates with solid media – at 

least one selective Omnitray plate (-Leu) and one YEPD plate. 50 µl 50% (v/v) glycerol is added to 

the liquid culture plate; the plate is sealed and transferred to -80°C for long term storage. The solid 

prey and bait plates with prey or bait strains in the 96-format can be quadruplicated to the 384-format 

using a robotic procedure (Biomek2000 laboratory robot). For increased throughput duplicates rather 

than quadruplicates from two 96-formatted plates can be combined on one 384-formatted plate. This 

prey or bait array is usually stored on selective plates. Additionally, “Working” copies for Y2H 

screens on solid YEPD medium have to be made. 
 

2.2.5.4 Bait and prey yeast selection conditions 

The following table summarizes the selection conditions for the used vector systems. For instance, 

pDEST Y2H-expression vectors (Invitrogen) contain swapped yeast auxotrophy selection markers in 

contrast to the pGBKT7g/pGADT7g system. Thus, the pDEST and GBK/GAD system is incompatible 

for Y2H analysis (e.g., pDEST32 baits cannot be mated with pGADT7g preys since both contain a 

LEU2 marker). In this work, bait vectors were all transformed into AH109 yeast strain, prey vectors 

into Y187. 
 

Tab. 23 Plasmid selection conditions in yeast 

Plasmid Auxotrophy marker Selective medium 1n yeast strain used 

pDEST32 (bait plasmid) LEU2 -Leu AH109 

pDEST22 (prey plasmid) TRP1 -Trp Y187 

pGBKT7g (bait plasmid) TRP1 -Trp AH109 

pGADT7g (prey plasmid) LEU2 -Leu Y187 
 

2.2.5.5 Bait self-activation test 

The aim of this test is to measure the background reporter activity (here: HIS3) of bait proteins in 

absence of an interacting prey protein. This measurement is used for choosing the selection conditions 

used during the interaction screen and can be achieved by mating individual bait strains with a single 

prey strain that carries the empty prey plasmid. 96 individual bait activation tests can be carried out on 

one plate simultaneously. This test must be done prior to the screen to determine the appropriate 

concentration of 3-AT that has to be added to suppress self-activation of a certain bait: 

 Load a 96-well plate (round bottom) with ~200 µl YEPD liquid medium. 
 Inoculate plate with baits by replicating the 96-format bait plate from solid medium into the 

destination plate by using a sterile 96-pinning tool (Biomek2000). 
 Inoculate the yeast strain Y187 which carries the empty prey vector in 30-50 ml YEPD liquid 

medium. 
 Grow yeast for ~18 h at 30°C (it is not necessary to shake the 96-well plate whereas shaking of the 

prey strain in a flask is recommended). 
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 Pellet yeast in the 96-well plate by centrifugation for 10 min at 2,000 rpm (Labofuge 400R). 
Discard the supernatant and aspirate with 8 channel wand or by tapping on cotton napkin for couple 
of times. 

 Use 96-replication tool (Biomek2000) to pin baits from 96-well source plate onto a YEPD single-
well agar plate as quadruplicates. 

 Pour the yeast strain with the empty prey vector into a single-well plate. 
 Use 384-replication tool (Biomek2000) to pin yeast onto the YEPD single-well agar plate that 

harbors the baits already. 
 Mating occurs at 30°C for min. 1 to max. 2 days. 
 Replicate from mating plate on -Leu-Trp-agar single well plates to select diploids. 
 Incubate for 2 to 3 days at 30°C. 
 Pin diploids on -Leu-Trp-His agar medium in single-well plates with different concentrations of 3-

AT (e.g., 0, 1, 2, 4, 8, ..., 128 mM). 
 Select yeast for 7 days at 30°C. 
 Determine minimal-inhibitory concentration of 3-AT which is needed for each bait to suppress 

self-activation growth for use in the interaction screen. 
 
 

2.2.5.6 Matrix-based Yeast Two-Hybrid screens – one-on-one tests 

Preparations 

 Sterilization steps: sterilize the replication tool by dipping the pins into 20% bleach for 20 s, sterile 
H20 for 1 s, 95% ethanol for 20 s, and sterile H20 again for 1 s. Repeat this sterilization after each 
transfer step.  

 Consideration of automatization: all replication steps can be automated by using a replication robot 
(Biomek2000). This ensures experimental reproducibility and increases the test throughput. 

 Prepare prey array for screening: use the sterile replicator to transfer the yeast prey array (e.g., 384 
format) from selective plates to single-well plates containing solid YEPD medium and grow the 
array o/n in a 30ºC incubator (max. 24 h). Ideally, the template prey array should be kept on 
selective plates. 

 Prepare bait liquid culture (DBD fusion-expressing yeast strain): inoculate 20 to 30 ml of liquid 
YEPD medium in a 50 ml Erlenmeyer flask with a bait strain from plates with selective medium 
and grow o/n in 30ºC shaker for 18 to 22 h. 

 

Mating procedure 

 Add adenine from a 1% (w/v) adenine stock solution (prepare in 0.1 M NaOH) to a final 
concentration of 0.004% into the bait liquid culture. 

 Pour the o/n liquid bait culture into a sterile Omnitray plate. Dip the sterilized pins of the pin-
replicator into the bait liquid culture and place directly onto a fresh single-well (Omnitray) plate 
containing solid YEPD medium. Repeat with the required number of plates. 

 Pick up the prey array yeast colonies with sterilized pins and transfer them directly onto the baits 
pinned onto the YEPD plate, so that each of the 384 bait spots receives different prey yeast strains. 

 Incubate 1 to 2 days at 30ºC to allow mating.  
 

Selection of diploids 

 For the selection and enrichment of diploids, transfer the colonies from YEPD mating plates to 
single-well plates containing -Leu-Trp medium using the sterilized pinning tool. Grow for min. 2 to 
max. 3 days at 30ºC until the colonies are >1 mm in diameter. 
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Interaction selection 

 Transfer the colonies from -Leu-Trp plates to single-well plates containing solid -Leu-Trp-His 
agar, using the sterilized pinning tool. If the baits are self-activating, they have to be transferred to -
Leu-Trp-His + the specific concentration of 3-AT which was determined in the self-activation 
assay. Incubate at 30ºC for 7 days. 

 Afterwards, score the interactions by looking for growing colonies that are significantly above 
background by size and that appear reproducibly as duplicates (or quadruplicates). 

 
 

2.2.5.7 Yeast Two-Hybrid mini-pool screens 

This protocol describes pooling of a prey array that contains 960 different clones resulting in one pool 

plate with 10 individual prey strains per mini pools. The protocol can be adjusted to create larger pools 

than 10. For this the corresponding volumes have to be adjusted. 

 Load 10 96-well plates with ~200 µl liquid YEPD medium per well. 
 Inoculate these plates with preys from the prey array grown on corresponding selective agar 

medium with a sterilized 96-pinning tool. 
 Grow yeast for 18 to 22 h at 30°C. 
 Resuspend yeast in all wells by pipetting with a 12-channel pipette. 
 Transfer from each source plate 20 µl yeast suspension into the destination pooling plate. Pool all 

preys from source positions A1, A2, …, H12. 
 Once the transfer is done mix the wells of the pooling plate by pipetting. 
 Spin the pooling plate for 10 min at 2,000 rpm (Labofuge 400R). 
 Discard the supernatant and aspirate with 8-channel wand or by tapping on cotton napkin a couple 

of times. 
 Pin yeast with a sterile 96-pinning tool (Biomek2000) from the prey pool plate onto YEPD solid 

medium as quadruplicates. 
 

Mating of a single baits and selection steps follow the previous screening protocol. The prey pooling 

plate can be used directly to be mated against 10 different baits. Then the pools are depleted. After 

selection of -Leu-Trp-His medium interacting preys have to be identified by a yeast colony PCR 

followed by sequencing reaction (see below). 
 

2.2.5.8 Yeast colony PCR 

During prey-pooling screens the interacting prey cannot be identified immediately by its matrix 

position as in one-on-one screens. A possibility to identify positives is to amplify the prey ORF from 

the plasmid by a yeast colony PCR followed by sequencing of the prey PCR product: 

 Pick diploid yeast from -Leu-Trp-His selective plates with a sterile pipet tip and transfer into a well 
with 100 µl H20 dist. (96-PCR plate (named as “yeast plate”)). The amount of transferred yeast 
should be low since too many cells lead to a decreased PCR efficiency. 

 Cell lysis: 
▪ Pipet 1 µl of Zymolase (5 U/µl, Zymo Research) per reaction into a new 96-PCR plate 

(“lysis plate”). 
▪ Transfer 7 µl of yeast suspension from “yeast plate” into “lysis plate” and mix. 
▪ Incubate “lysis plate” in a thermocycler for 30 min at 30°C. 
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 Use 1 µl of lysed cells as PCR template and perform a standard colony PCR as described in 
(2.2.1.2) with Taq DNA polymerase (Promega). For the PCR of pDEST22 preys use primer pair 
pDEST22_for/pDEST22_rev. 

 Check 5 µl of PCR product by agarose gel electrophoresis. For proper sequencing no by-products 
should be observable. 

 Prepare PCR samples: 
▪ Transfer 8 µl of PCR samples into a new 96-PCR plate. 
▪ Prepare a corresponding volume of SAP mastermix: per sample use 0.5 µl 10 x SAP 

buffer (Fermentas), 8.95 µl H2O dist., 0.5 µl SAP (1 U/µl; Fermentas); 0.05 µl 
Exonuclease I (20 U/µl, Fermentas). 

▪ Transfer to 8 µl PCR sample 10 µl of SAP mastermix and mix. 
▪ Incubate in a thermocycler for 1 h at 37°C and then for inactivation for 15 min at 72°C. 
▪ Add to each well 3 µl of 3.2 pmol/µl pDEST22_for oligo for forwards sequencing 

reactions. 
 

2.2.5.9 Yeast Two-Hybrid retests 

Testing for reproducibility of interactions greatly increases the reliability of the interaction data. This 

protocol is used for specifically retesting interaction pairs detected in an one-on-one or pooling screen. 
 

 Re-array bait and prey strains or a positively tested prey pool of each interaction pair in a 96-well 
plates. Use an individual 96-well plate for the baits as well as for the preys. For each retested 
interaction fill one well of the bait plate and one corresponding well of the prey plate with ~200 µl 
YEPD. 

 For each retested interaction inoculate the bait strain in a well of the 96-well bait plate and the prey 
strain at the corresponding position of the 96-well prey plate. E.g., bait “X” is transferred at 
positions B1, B2, and B3 of the bait plate. The preys to be tested are arrayed into B1 (prey “Y”), 
B2 (prey “Z”), and the prey strain that carries the empty prey vector into B3 of the prey plate. The 
B3 test position is the control that helps to verify the background/self-activation. 

 Incubate the plates O/N at 30°C. 
 Spin the bait and prey plates for 10 min at 2,000 rpm (Labofuge 400R). 
 Discard the supernatant and aspirate with 8 channel wand or by tapping on cotton napkin a couple 

of times. 
 Pin baits and preys with a sterile 96-pinning tool separately on corresponding selective medium as 

quadruplicates (-Trp or -Leu medium). 
 Allow baits and preys to grow at 30°C for min. 2 to max. 3 days. 
 Mating: First transfer baits with a sterile 384-pinning tool on YEPD mating plates. Then transfer 

preys onto baits. 
 

The rest of the procedure can be done according to the screening protocol (2.2.5.6). For interaction 

retesting diploids are pinned on -Leu-Trp-His selective media plates with different concentration of 3-

AT (e.g., as used in the bait self-activation pretest). The control test position has to be considered 

concerning bait self-activation background signals. Reproducible interactions should show up on 

different concentrations of 3-AT in comparison to the activation control test position. 
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2.2.6 Bioinformatics and statistics 

Multiple alignments 

Multiple sequence alignments were built with protein amino acid sequences using ClustalW2 web 

application tool by using default setting (Larkin et al., 2007). 

 (http://www.ebi.ac.uk/Tools/clustalw2/index.html) 
 

Web logos 

Logos of consensus sequences or the degree of amino acid conservation of multiple aligned protein 

sequences were built with WebLogo V2.8.2 web application tool (Crooks et al., 2004). This was done 

to improve the presentation of multiple sequence alignments since WebLogo highlight also less 

conserved amino acid residues. Therefore, multiple sequence alignments which have been built with 

ClustalW were uploaded using default parameters. 

(http://weblogo.berkeley.edu/logo.cgi) 
 

ConSurf 

To visualize the amino acid residue conservation degree of E. coli L14 projected on its 3D-structure, 

ConSurf Surfer V3.0 web application tool was used (Landau et al., 2005). The ClustalW multiple 

sequence alignment of L14 homologs (Fig. 35) was uploaded for calculation the Consurf conservation 

scores using default parameters. Conservation scores were projected onto PDB entry 2AW4, chain K 

(L14) and then fitted into the 50S subunit 3D-structure (2AW4) (Schuwirth et al., 2005). 3D-structures 

were visualized with PyMol (http://pymol.org). 
 

Protein docking 

For the protein docking simulations, the individual protein structures were collected as follows. The 

L14 protein was taken from 2AWB PDB entry, chain K. Because a crystal structure of E. coli YbeB is 

not available I-TASSER server was used (Roy et al., 2010) to build a computation model of YbeB. 

With its default parameters I-TASSER produced a single model that used both available PDB YbeB 

templates 2ID1_A and 2O5A_A. The server estimated the accuracy of the model as 0.90±0.06 (TM-

score) and 1.6±1.4 Å (RMSD).  

An unconstrained rigid body docking was performed for individual L14 and YbeB structures with 

GRAMM-X (Tovchigrechko and Vakser, 2006). Then coordinates of L14 protein were used to 

superimpose 100 top scored docking models onto the entire 70S unit (PDB entries 2AWB and 2AW7 

taken together). Based on that, each model was evaluated for the presence of the backbone clashes 

between the predicted YbeB position and the rest of 50S subunit. A backbone clash was defined as 

having a distance between any two protein or nucleotide backbone atoms less than 2 Å. This definition 

was chosen in order to tolerate some degree of unknown conformational re-arrangement of the 50S 

components that were not used in docking. Each model was analyzed towards the presence at the 

predicted L14-YbeB interface of the critical residues identified by the directed mutagenesis. The 
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definition of the interface residue was to have at least one non-hydrogen atom within 4.6 Å distance 

from any non-hydrogen atom of the docking partner. The post-docking analysis and graphical output 

were performed with PyMol (http://pymol.org). 
 

Local protein and nucleotide sequence blast 

Identification of homologous protein sequences was done by using blastp function of BioEdit 7.0.9.0 

(Hall, 1999). A local protein sequence database was created against which a set of query protein 

sequences was blasted. Sequenced PCR products from yeast colony PCRs (2.2.5.8) were blasted 

(plastn function) against a local nucleotide database containing all ORF nucleotide sequences of S. 

pneumoniae TIGR4. 
 

Data storage 

Data about clones and arrays positions were stored in FileMaker databases, a relational database 

(FileMaker Pro 8.5). It was used for scoring interactions detected in the Y2H screens and for relational 

calculations. 
 

Sequence-based domain predictions 

Domain information was collected from Pfam and InterPro database (Finn et al., 2010; Hunter et al., 

2009). Pfam provides for prokaryotic protein sequences the most comprehensive dataset while 

InterPro integrates domain information from various primary databases. Pfam uses Hidden Markov 

Models (HMM) that detect conserved sequence signatures. 
 

Annotation of the Dp-1 genome 

The nucleotide sequence of Dp-1 genome was analyzed for the presence of open reading frames 

(ORFs) of a size longer than 30 codons using Genemark.hmm (Borodovsky et al., 2003; Lukashin and 

Borodovsky, 1998), Easygene 1.2 server (Larsen and Krogh, 2003) and NCBI ORF-finder. Identified 

ORFs were checked manually for the presence of a Shine-Dalgarno sequence (ribosome binding sites, 

RBS) located in the 25 nucleotides sequence upstream of putative ORFs. If alternative start codons 

were identified in ORF-finder the closest start-codon to the RBS was selected as the translation start 

site. Genes were searched against genomic databases using BLAST-N (Altschul et al., 1990). Protein 

sequences were blasted against public protein databases (non-redundant protein sequences accessible 

from NCBI BLAST interface, ACLAME (Leplae et al., 2010)  and Uniprot Knowledgebase (Apweiler 

et al., 2004)) by using BLAST-P, Psi-BLAST (Altschul et al., 1990; Altschul and Koonin, 1998) and 

FASTA (Pearson, 2004)). Protein sequences were checked for presence of conserved domains using 

CDD (Marchler-Bauer and Bryant, 2004), InterProScan (Mulder and Apweiler, 2007), SMART HMM 

(Letunic et al., 2009), and Pfam sequence search (Finn et al., 2010). Promoters were identified by 

searching manually for sigma70 -35 box consensus sequences and -10 (TATAA(T)) box sequences 

upstream of putative ORFs. The presence of putative Rho-independent terminators was investigated 

using mFOLD (Zuker, 2003) to identify secondary RNA stem and loop structures and to search for 
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adenine- and thymine-rich regions upstream and downstream of these identified structures (Lesnik et 

al., 2001). The Dp-1 genome was searched for the presence of putative tRNA encoding sequences 

using tRNAscan (Schattner et al., 2005) and for a DnaA-dependent origin of replication by using Ori-

Finder web-based application (Gao and Zhang, 2008). 
 

Dp-1 genome context vs. detected protein-protein interactions 

The number of interactions between various gene classes (predicted functional classes, predicted 

expression timing) was counted for the real intra-viral PPI network of Dp-1 and for randomized 

versions of this network. Randomized versions of the network were generated using a network 

rewiring algorithm, which conserves the node in- and out-degrees of each protein (Maslov and 

Sneppen, 2002). Overrepresentation of a link compared to 10,000 randomized networks was assessed 

by calculating a Z-score 

  

with the number of linking interactions n, its average in 1,000 randomized networks nrand , and its 

standard deviation σrand. A permutation p-value was calculated based on the fraction of randomized 

networks with a number of linking interactions higher (lower) or equal to the number of linking 

interactions in the actual network. A Bonferroni correction was used to control for multiple testing. 
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3 Results 

3.1 Functional proteomics of the lytic bacteriophages Cp-1 and Dp-1 

3.1.1 Functional annotation of the Dp-1 genome 

To learn more about the fundamental biology of Dp-1 I annotated its genome. Work on this chapter 

was done in collaboration with Mourad Sabri (Département de biochimie et de microbiologie, 

Université Laval, Québec). A small section of the Dp-1 genome sequence was already published by 

Sheehan and colleagues (Sheehan et al., 1997). This sequence spans 4,735 bp of the lysis cassette. 

That investigation was done to identify and characterize the Dp-1 lytic enzyme Pal. In the meantime 

the whole Dp-1 genome sequence was determined. Sequencing was done in 2000 by The Medicines 

Company, Ville St. Laurent, Quebec, Canada and patented (Pelletier et al., 2000). However, the 

sequence was never published, submitted to GenBank, or fully annotated. Since Dp-1 is a lytic 

siphovirus with potential for medical applications, it is of general interest to provide a 

comprehensively annotated genome. Moreover, knowledge about the positions of all ORFs and the 

protein composition is required for further characterization and understanding of its biology, e.g., for 

my intention to analyze the Dp-1 interactome. 
 

General characteristics of the Dp-1 genome and open reading frame prediction 

The dsDNA genome of bacteriophage Dp-1 is 56,506 bp in length. The average GC content of Dp-1 

nucleotide sequence is 40.3%, which is close to the 40% GC content of the S. pneumoniae R6 host 

genome. The full genome sequence/Genbank file is attached in the e-supplement (electronic 

supplementary material provided on the CD). 

In total 72 putative protein-encoding ORFs were found that are longer than 30 codons and have a 

detectable Shine-Dalgarno sequence with one exception (see below) which is required for a successful 

non-leaderless translation initiation. Systematical numbers were given to ORFs in the order they occur 

on the DNA molecule (from 1 to 72). Correspondingly, putative gene products are named “gp”, e.g., 

gp1 (Tab. 24). 

63 ORFs are located on the upper strand while a module of nine ORFs (orf27-35) is located on the 

opposite strand. The codon number (stop codons excluded) varies from the smallest ORF, orf20 with 

47 triplets, to the largest ORF, orf54 with 1,230 codons (Fig. 17). 

With the exception of orf46, a ribosome binding site (RBS) was found for each of the putative ORFs 

with 20 of these RBSs presenting the well conserved six bp Shine-Dalgarno consensus sequence 

AGGAGG. The average distance between the putative ORF and end of the RBS is 8 nt. The majority 

of RBSs end 7 bp upstream of the start codon of the respective ORFs. Out of 72 putative genes, 13 

have an alternative start codon closer to the predicted RBS than the canonical ATG start codon (GTG 



RESULTS 

80 

 

(4), TTG (6), ATT (3)). TAA is the most used stop codon (TAA (49%), TAG (31%), TGA (20%)). 

Overall 42% of Dp-1 ORFs are overlapping. The coding capacity of the Dp-1 genome is approx. 94%, 

which is similar to the genome of Pneumococcus bacteriophage Cp-1 (93%) (Martin et al., 1996b). All 

ORF coordinates are given in Tab. 24 and RBS sequences can be found in the e-supplement. 
 

 

Fig. 17 Dp-1 genome map 
Numbers in the ORF symbols correspond to the systematic ORF numbers. Homology-based functions and 
further details for certain ORFs can be looked up in Tab. 24. An assumed general function for each gene product 
is indicated by a color code (see legend). The predicted transcriptional start and termination sites are projected 
below the ORF map. Information was combined from Tab. 24, Tab. 25, and Tab. 26. Putative oris (replication 
origins) are indicated (see below). 
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Homology-based prediction of protein functions 

The translated nucleotide sequences of the 72 predicted ORFs were compared to protein sequences 

from various databases (2.2.6). This was done to identify orthologous proteins and domain signatures 

as functional indicators for putative Dp-1 gene products. Only for three putative proteins no similarity 

matches at all were found (gp8, 9, and 20). These putative proteins are orphans and attributed to Dp-1 

only. For all others homology matches were detected. Significant matches (defined by an e-value <1e-8 

and a query alignment coverage of > 50%) were found for 39 proteins. These proteins represent well-

conserved Dp-1 homologs (Fig. 18A). However, only 16 of them were useful for adoption of a reliable 

functional annotation of the corresponding Dp-1 orthologs since most of the relatives had no 

functional annotation and are mostly described as “hypothetical proteins”. In addition, the Dp-1 

sequences were blasted against several databases to predict homology-based domains, motifs, and 

protein families (Pfam, InterproScan, NCBI conserved domain search (CDS) (2.2.6)) and any 

available information that could be helpful to get ideas about the proteins´ functions was considered. 

Conserved sequence signatures could be detected for 49 Dp-1 proteins. The sequence features were 

compared with the blastp best-best hits. If a significant feature/domain correlated with the annotation 

of a non-significant blastp ortholog this additional information was considered to annotate a protein. 

Also, if sequence feature hits were detectable by independent methods (e.g., hits by Pfam domain and 

Smart domain prediction) the results were taken into account for functional annotation. Thus, 26 Dp-1 

proteins could be functionally annotated in addition. 21 of them were annotated as “putatives”, “like”, 

or defined by the detected domain signature since they differed from canonical homologs, e.g., 

absence of a detectable second co-occurring domain that would have been necessary for a reliable 

prediction (explained for gp16, below) or appearance of a significant domain signature that is clearly 

present, but in the context of the query sequence allows no detailed functional annotation (explained 

for gp39 and gp44 (see below)). 

 

Fig. 18 Homology-based Dp-1 protein annotation 
Absolute numbers of Dp-1 proteins are given in the diagrams. (A) Blastp best-best hit conservation degree: (no 
similarity) no sequence homologs at all were detected, (high similarity) best-best hit with e-value<1e-8 and a 
query sequence alignment coverage of >50%, (low similarity) all other best-best hits. (B) Information content of 
protein functions: (exact) exact function is predicted, (rough) only rough estimation of function is possible, (n/a) 
no functional information at all. (C) Simplified categorization of cellular functions of Dp-1 gene products. 
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Exact functions (e.g., an exact enzymatic function) of Dp-1 proteins could be predicted for 31 

proteins, rough functional assumptions for 12 further proteins (e.g., “helicase function” or “membrane 

protein” based on domain or other feature predictions), and no functional assignments could be made 

for 29 proteins (Fig. 18B). Finally, each classified protein function was simplified and grouped to a 

general cellular function or pathway (Fig. 18C). 

Extended documentation of homology-based function predictions is provided in the e-supplement. 
 

Annotations that need some further explanations 

Although for 31 proteins an exact, reliable annotation was found, some need a brief explanation. 

Gp16 was annotated as putative DNA ligase since domain DNA ligase signatures were detected 

(NAD-dependent DNA ligase adenylation domain (Pfam PF01653) and NAD-dependent DNA ligase 

(COG0272)). A usually co-occurring BRCT domain that mediates the DNA contact is absent in gp16. 

Moreover, blastp hits of lower significance than the best-best hit indicate that gp16 might be a DNA 

ligase. 

Gp23 sequence shows 10 blastp hits with protein sequences from Streptococcus phages all annotated 

as large terminase subunits. Although these hits are not significant (e-values >2) they can hardly occur 

by chance. The aligned region of gp23 spans a central part from residue 18 to 58 and fits to all 

subjected sequences approximately between position 140 to 180. Sequence similarities within these 

regions are high between 31% and 34%. However, this conserved region of gp23 does not match with 

the large terminase subunit of Dp-1 gp37. Gp23 was annotated as “terminase-like” protein since a 

sequence link to phage terminases is present. 

Gp39 has a detectable zinc finger domain (Pfam domain zf-DNA_Pol, e=0.00011, position 17-84). 

Thus, it was annotated as “Zinc finger domain protein, putative” (Fig. 19). It could be involved in 

DNA or RNA binding. Interestingly, the fourth blastp hit aligns with 51% identical residues to an N-

terminal region of transcriptional regulator NrdR from Peptostreptococcus anaerobius 653-L 

(ZP_06424961.1, e=0.088). The zinc finger cysteine residues seem to be well-conserved. Moreover, a 

Pfam signature (e= 0.00046) aligns from position 9 to 143 (Terminase_GpA) and nests the zinc finger 

domain. The signature is annotated as “Phage terminase large subunit (GpA) family”. 

Gp44 contains at its C-terminal sequence region (position 73-111) a Rho termination factor N-

terminal domain signature (Pfam: Rho_N, e=0.00021) (Fig. 19) which is presumably a DNA- or RNA-

binding domain (Skordalakes and Berger, 2003). It matches within the same sequence region with the 

blastp best-best hit which is annotated as transcription termination factor Rho from Chromohalobacter 

salexigens DSM 3043. Since only position 73-111 aligned here, the domain annotation was more 

suitable. In addition, the N-terminus (position 1-25) hits a prokaryotic membrane lipoprotein lipid 

attachment site profile (Prosite PS51257). Because of this signature constellation the protein was 

annotated as a “putative Rho-like domain lipoprotein”. 
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Gp49 shows a high sequence similarity from residue 4-186 to hypothetical protein CLJ_B2521 from 

Clostridium botulinum Ba4 str. 657 (Fig. 19). Notably, its C-terminus is homologous to a wide range 

of internalins from Listeria monocytogenes, including blastp hits with internalin A, F, G with e-values 

< e-4. This region contains the Pfam domain Flg_new (e= 0.00011) from position 221-258. Gp49 was 

annotated according to the domain and blastp hits as “Listeria-Bacteroides repeat domain protein”. 

Gp55-59 sequences were already published (Sheehan et al., 1997). Annotation of the experimentally 

characterized lytic components gp58 (holin) and gp59 (Pal, N-acetylmuramoyl-L-alanine amidase) 

were adopted. Gp55, gp56, and gp57 best-best database hits (namely their own) were ignored and the 

nearest sequence homologs noted in Tab. 24.  

Gp61´s best blast hit is a non-specific serine/threonine protein kinase from Eubacterium eligens ATCC 

27750 (2e-93). However, the protein kinase annotation is probably incorrect due to inferred automated 

annotation. This is indicated by multiple significant blastp hits that follow and that are annotated as 

Superfamily II DNA/RNA helicases belonging to the SNF2 family. Thus, the best-best hit was ignored 

and the second blast hit used in Tab. 24. Domain signatures (InterproScan) that indicate that gp61 is a 

RNA/DNA helicase are the N-terminal DEXDc domain with ATPase function (SMART domain, 1.2e-

5) and the C-terminal helicase signature Helicase_C (Pfam, 4.62e-07). The protein was annotated as 

“Superfamily II DNA/RNA helicases, SNF2 family”. Speculations about its substrate specificity (if it 

unwinds RNA or DNA) are currently not possible. 

 

Fig. 19 Sequence features 
of some Dp-1 proteins 
Sequence features are indi-
cated, e.g., signal peptides 
(SigP), transmembrane heli-
ces (TMH), domain signatu-
res, and repeat motifs. The 
protein length is given to the 
right of each illustration. In 
the illustration of gp49, the 
brackets indicate the blastp 
alignment region with hypo-
thetical protein CLJ_B2521 
of C. botulinum. Further 
explanations can be found in 
the text. 
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Tab. 24 Dp-1 ORFs and gene product annotation 
(Coordinates) gives the genomic coordinates of identified ORFs. Note that orf27 to 35 is encoded by the reverse 
complement. (Protein length) is indicated in the third column by the number of amino acid residues. 
(Annotation) provides the homology-based annotation of Dp-1 gene products. (Best match) blastp best-best hit is 
given. The last column (e|qcov|ident) indicates the e-values (e), the query sequence coverage length in percent 
(qcov), and the percentaged number of identical amino acid residues within this region (ident). As described in 
the text, conserved domain signatures have been considered for protein annotations. These are documented in the 
e-supplement. 
 

ORF Coordinates Length Annotation Best match e|qcov|ident 

1 131..652 173 Queuosine biosynthesis protein 
QueF 

YkvM  Bacillus licheniformis ATCC 14580 (NADPH-
dependent 7-cyano-7-deazaguanine reductase QueF) 

3e-55|80|74 

2 662..1348 228 Queuosine biosynthesis protein 
QueC 

Queuosine biosynthesis protein QueC  Fusobacterium 
sp. D12 

4e-59|97|53 

3 1350..1871 173 Queuosine biosynthesis protein 
QueD 

QueD  Aggregatibacter actinomycetemcomitans D7S-1 
(Queuosine biosynthesis protein QueD) 

6e-22|76|41 

4 1864..2658 264 Queuosine biosynthesis protein 
QueE 

QueE Exiguobacterium sp. AT1b (7-cyano-7-
deazaguanosine (PreQ0) biosynthesis protein QueE ) 

2e-54|90|46 

5 2534..3295 253 Tetrahydrofolate biosynthesis 
protein FolE 

GTP cyclohydrolase I Bacillus coagulans 36D1 3e-60|85|53 

6 3306..3803 165 Queuosine biosynthesis 
intermediate transporter QueT 

hypothetical protein CLORAM_01593 Clostridium 
ramosum DSM 1402 

5e-22|89|36 

7 3793..4728 311 Hypothetical protein gp31 Burkholderia  phage BcepGomr 2e-14|63|30 

8 4852..5025 57 No similarity   

9 5040..5279 79 No similarity   

10 5346..6419 357 DNA polymerase III beta 
subunit DnaN,  putative  

DNA polymerase III subunit beta Bacillus pumilus 
SAFR-032 

3e-06|64|26 

11 6419..7195 258 Cas4 RecB like exonuclease, 
putative 

hypothetical protein EUBELI_10071 Eubacterium 
eligens ATCC 27750 

3e-34|81|39 

12 7192..7683 163 Holliday junction resolvase 
RecU, putative 

hypothetical protein EUBELI_10070 Eubacterium 
eligens ATCC 27750 

3e-09|88|29 

13 7670..8239 189 Hypothetical protein hypothetical protein EUBELI_10068 Eubacterium 
eligens ATCC 27750 

1e-09|70|28 

14 8208..8699 163 dUTPase deoxyuridine 5'-triphosphate nucleotidohydrolase 
family protein Clostridium sp. M62/1 

1e-25|96|45 

15 8699..9859 386 Recombination protein RecA RecA Eubacterium eligens ATCC 27750 3e-54|94|33 

16 9805..10218 137 NAD-dependent DNA ligase, 
putative (Lig) 

hypothetical protein CLJ_0249 Clostridium botulinum 
Ba4 str. 657 

1e-11|48|47 

17 10215..11240 341 DNA polymerase III  
gamma/tau subunit DnaX 

possible DNA-directed DNA polymerase Leuconostoc 
mesenteroides subsp. cremoris ATCC 19254 (possible 
DNA-directed DNA polymerase DnaX) 

4e-61|73|47 

18 11242..12081 279 DNA polymerase III, delta' 
subunit HolB, putative 

DNA-directed DNA polymerase Anaerocellum 
thermophilum DSM 6725 

5e-07|49|31 

19 12074..12967 297 DNA polymerase III  delta 
subunit HolA, putative 

hypothetical protein RUMOBE_04030 Ruminococcus 
obeum ATCC 29174 

4e-08|92|26 

20 13020..13163 47 No similarity   

21 13160..14404 414 Metal-dependent 
phosphohydrolase HD, 
putative 

hypothetical protein BACCAP_00466 Bacteroides 
capillosus ATCC 29799 

1e-35|35|42 

22 14423..14800 125 Hypothetical protein hypothetical protein ISM_09311 Roseovarius 
nubinhibens ISM 

0.25|71|28 

23 14800..15084 94 Terminase-like protein terminase large subunit Streptococcus pneumoniae 
SP19-BS75 

2.3|43|34 

24 15081..15476 131 Sigma factor (region 4), 
putative 

phage protein Streptococcus pneumoniae 
TCH8431/19A 

0.039|35|46 

25 15533..15989 139 Hypothetical protein hypothetical protein EUBELI_10048 Eubacterium 
eligens ATCC 27750 

5e-12|64|41 

26 15973..16284 103 Hypothetical protein hypothetical protein ORF028 Pseudomonas phage 73 2e-04|72|42 

27 16308..16709 133 Hypothetical protein peptidase M56, BlaR1 Planctomyces maris DSM 8797 0.064|83|28 

28 16859..17338 159 Hypothetical protein periplasmic binding protein/LacI transcriptional 
regulator Polaromonas naphthalenivorans CJ2 

0.35|55|27 

29 17521..17715 64 Hypothetical protein sulfite reductase Sulfolobus acidocaldarius DSM 639 0.13|68|39 

30 17712..17891 59 Hypothetical protein hypothetical protein CRC_01648 Cylindrospermopsis 
raciborskii 

2.8|91|39 

31 18026..18778 250 Hypothetical protein PrfB Pantoea ananatis LMG 20103 (Peptide chain 
release factor 2) 

2.0|91|22 

32 18780..19151 123 Hypothetical protein GA19226 Drosophila pseudoobscura pseudoobscura 0.2|61|35 

33 19161..19529 122 Hypothetical protein dynein, axonemal, heavy polypeptide 3 Pan 
troglodytes 

1.4|72|27 

34 19423..19995 190 Hypothetical protein hypothetical protein Dtox_2450 Desulfotomaculum 
acetoxidans DSM 771 

9e-14|92|31 
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35 20094..20411 105 Phosphotransferase 
KptA/Tpt1, putative 

hypothetical protein RUMGNA_00196 Ruminococcus 
gnavus ATCC 29149 

3e-06|85|32 

36 21512..22252 246 Hypothetical protein predicted protein Paenibacillus sp. oral taxon 786 str. 
D14 

0.37|41|27 

37 22230..23621 463 Terminase, large subunit phage terminase, large subunit, PBSX family 
Clostridium lentocellum DSM 5427 

8e-120|94|47 

38 23674..25434 586 Portal protein, SPP1 Gp6-like  hypothetical protein CTC01087 Clostridium tetani E88 8e-74|87|33 

39 25340.. 25777 145 Zinc finger domain protein, 
putative 

hypothetical protein CTC01098 Clostridium tetani E88 0.003|54|33 

40 25743..26738 331 Minor capsid protein, putative conserved hypothetical protein Clostridium botulinum 
E1 str. 'BoNT E Beluga' 

2e-40|92|34 

41 26943..27611 222 Minor capsid protein similar to phage phig1e RORF204 (minor capsid 
protein) Staphylococcus phage phiETA 

4e-10|65|30 

42 27627..28004 125 Hypothetical protein hypothetical protein Plarl_06935 Paenibacillus larvae 
subsp. larvae BRL-230010 

0.9|72|29 

43 28017..29096 359 Major capsid protein phage protein Paenibacillus larvae subsp. larvae BRL-
230010 

4e-73|98|42 

44 29108..29449 113 Rho-like domain lipoprotein, 
putative 

transcription termination factor Rho 
Chromohalobacter salexigens DSM 3043 

1.9|31|50 

45 29451..29768 105 Hypothetical protein hypothetical protein CBO2348 Clostridium botulinum 
A str. ATCC 3502 (Hypothetical phage protein ) 

6e-07|95|34 

46 29765..30154 129 Hypothetical protein hypothetical protein CLJ_B2524 Clostridium 
botulinum Ba4 str. 657 

0.03|79|27 

47 30154..30507 117 Hypothetical protein hypothetical protein Thit_1383 Thermoanaerobacter 
italicus Ab9 

3e-12|85|41 

48 30516..30893 125 Hypothetical protein extracellular solute-binding protein, family 1 
Burkholderia multivorans CGD1 

8.2|68|28 

49 30896..31675 259 Listeria-Bacteroides repeat 
domain protein 

hypothetical protein CLJ_B2521 Clostridium 
botulinum Ba4 str. 657 

8e-41|70|47 

50 31699..32154 151 Hypothetical protein hypothetical protein CLI_3089 Clostridium botulinum 
F str. Langeland 

4e-09|89|29 

51 32120..32341 73 Hypothetical protein hypothetical protein CLD_1510 Clostridium botulinum 
B1 str. Okra 

0.056|72|29 

52 32386..35835 1149 Tail length tape measure 
protein 

phage minor tail protein Enterococcus faecium 
1,231,410 

4e-160|81|37 

53 35847..36686 279 Tail protein, putative cellulose synthase-like family C1 protein Hordeum 
vulgare subsp. vulgare 

0.26|14|47 

54 36698..40390 1230 Antireceptor ORF38 Streptococcus phage 7201 1e-152|64|46 

55 40401..42440 679 Tail protein, putative phage structural protein Streptococcus pneumoniae 
SP18-BS74 

0|100|59 

56 42490..42759 89 Hypothetical protein hypothetical protein CGSSp18BS74_10714 
Streptococcus pneumoniae SP18-BS74 

1e-21|87|66 

57 42774..43202 142 Hypothetical protein hypothetical protein SAG1839 Streptococcus 
agalactiae 2603V/R 

1e-31|95|49 

58 43189..43413 74 Holin holin bacteriophage Dp-1 4e-34|100|100 

59 43413..44303 296 Endolysin Pal endolysin Pal bacteriophage Dp-1 2e-172|100|100 

60 44595..45299 234 Hypothetical protein endonuclease, putative Streptococcus pneumoniae 
SP3-BS71 

0.004|41|28 

61 45350..46987 545 Superfamily II DNA/RNA 
helicases, SNF2 family 

Superfamily II DNA/RNA helicases, SNF2 family 
Eubacterium rectale DSM 17629 

3e-93 |85|41 

62 46956..47201 81 Sigma 70 subunit, putative RNA polymerase, sigma 70 subunit, RpoD family 
Shewanella sp. W3-18-1 

1.9|43|47 

63 47200..47541 113 Resolvase domain protein, 
putative 

Resolvase domain protein Cyanothece sp. PCC 7424 2.0|81|26 

64 47542..47961 139 Hypothetical protein hypothetical protein DET0620 Dehalococcoides 
ethenogenes 195 

0.25|47|25 

65 48082..48561 159 Hypothetical protein unnamed protein product Kluyveromyces lactis 2.8|71|25 

66 48718..49362 214 DNA replication protein DnaC DNA replication protein Eubacterium rectale DSM 
17629 

8e-21|91|31 

67 49624..50961 445 Replicative DNA helicase 
DnaB 

replicative DNA helicase Eubacterium eligens ATCC 
27750 

3e-59|93|38 

68 50955..51974 339 DNA primase DnaG DNA primase Eubacterium eligens ATCC 27750 5e-41|97|31 

69 52033..52647 204 Sporulation sigma factor SigK, 
putative 

sporulation sigma factor SigK Thermoanaerobacter 
pseudethanolicus ATCC 33223 

9e-07|69|26 

70 52762..53490 242 Hypothetical protein hypothetical protein EUBELI_10080 Eubacterium 
eligens ATCC 27750 

6e-20|73|32 

71 53538..55877 779 DNA polymerase I DNA polymerase I-3'-5' exonuclease and polymerase 
domains Eubacterium rectale DSM 17629 

2e-114|80|41 

72 55855..56388 177 Membrane protein, putative hypothetical protein BFZC1_22719 Lysinibacillus 
fusiformis ZC1 

2e-13|93|30 
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tRNAs 

The Dp-1 genome sequence was searched for tRNAs using tRNAscan-SE (Schattner et al., 2005). No 

tRNA genes were detectable, indicating that Dp-1 does not introduce self-encoded tRNAs into the host 

as other phages like coliphage T4 and T5 do (Scherberg and Weiss, 1972). 
 

Genomic context, prediction of gene modules, and a predicted transcriptional map 

Phage genomes are usually organized as gene modules (other terms are operons or gene batteries). 

Inside such a module, ORFs of corresponding gene products that function in a similar cellular process 

are co-localized. From single transcriptional start sites these ORFs are co-expressed as polygenic 

mRNAs. In phages transcription of these batteries is regulated stringently post infection. Shortly after 

infection operons are expressed that encode for proteins responsible for DNA replication which is an 

early event. Later, operons encoding structural phage proteins and maturation factors are expressed. 

Finally, lytic enzymes occur and lead to the cell´s burst. This hierarchic principle of phage gene 

expression allows the definition of functional gene clusters based on the function of known ORF 

products located in a gene battery and also allows a rough prediction when these proteins reach their 

maximal expression levels. Furthermore, if ORFs of unknown gene products are co-localized within a 

certain operon of known function, these ORFs likely function in the same cellular process. 
 

Promoter prediction: To get a first insight into the transcriptional organization of the Dp-1 genome I 

looked for putative transcriptional start sites by using various prediction tools (2.2.6). However, the 

results were not clear due to common problems with prediction of false-positive and -negative nucleic 

acid elements. I looked manually for sigma70 consensus sequences (TATAA(T) -10 box and 

TTGACA -35 box consensus sequences) in the intergenic regions of predicted ORFs. Several -10 box 

elements were identified but surprisingly only one in the context with a conserved -35 consensus 

sequence (promoter 10 (P10)). In total, 12 highly conserved TATA-boxes and thus 12 promoters were 

found upstream of ORFs that indicate the presence of putative transcription start sites (Tab. 25). 

Because of the lack of a common -35 TTGACA consensus sequence I checked for presence of another 

common -35 element. All promoters (except P10) exhibit the consensus sequence “ACAA” in -35 

regions. Presumably, this motif could represent a Dp-1 specific -35 element. Since P10 is the only 

promoter with a conserved -10 and -35 box element Dp-1 genome transcription could be initiated from 

this site by the host sigma70 factor. Interestingly, the downstream module encodes a putative sigma70 

factor that could jump over to activate expression of other Dp-1 operons. However, this is speculative 

and no reliable gene-product indicators are localized within this gene battery that suggest that this 

module can be transcribed in the early phase. 
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Tab. 25 Predicted promoters 
(P) indicates the promoter number. (Pos-35) and (Pos-10) indicate the genomic position of -35 and -10 boxes, 
respectively. (Promoter sequence) element core consensus sequences are labeled in bold. Note, that P10 is the 
only promoter that contains a conserved sigma70 -35 box consensus sequence. Promoter 1 and 6 contain a 
double TATA-box motif. Promoter 6, 9, and 12 exhibit an extended spacer sequence between the predicted -35 
and -10 region. (ORF) indicates the first ORF which is localized downstream the promoter. Based on the 
function of module-encoded gene-products a general module function and expression timing is assumed in the 
last two columns. The weblogo at the tabel´s bottom indicates the conservation degree of the nucleotide 
composition of the putative -35 box (P10 was not considered). Image was made with Weblogo (Crooks et al., 
2004). 
 

P Pos-35 Pos-10 
Promoter sequence 
     -35 box             -10 box 

ORF Module function 
Expression 
timing 

1 43 64 AACAAAA- N15 -TATAATATAAG 1 Queuosine related early 

2 4778 4811 TACAAAA- N27 -TATAAT  8 DNA replication related early 

3 12967 12998 AACAAAT- N25 -TATAAG  20 Virion - DNA packaging  middle 

4 21454 21431 TACAATT- N17 -TATAAT 35 Unknown unknown 

5 21474 21493 TACAATG- N12 -TATAAA 36 Virion - DNA packaging middle 

6 23587 23647 TACAAAT- N53 -TATAATATAAG 38 Virion - capsid late 

7 29660 29688 AACAAAT- N22 -TATAAG 46 Virion - tail late 

8 35762 35782 AACAATG- N29 -TATAAT 53 Virion - antireceptor late 

9 43059 43107 TACAACT- N39 -TATAAG  58 Lysis late 

10 44524 44557 TTGACAA- N16 -TATAAT 60 Unknown unknown 

11 48600 48621 TACAAAA- N15 -TATAAT 66 DNA replication related early 

12 52693 52745 GACAAAC- N45 -TATAAA 70 DNA replication related early 

 

                               -35 box consensus 

 
 

Terminator prediction: In bacteria transcriptional termination is mediated by two mechanisms, namely 

Rho-dependent and Rho-independent (intrinsic) termination. Rho-independent termination is achieved 

by hairpin structures that fold in parallel to RNA synthesis on the RNA strand and lead to the stall of 

the RNA polymerase on its substrate. These sites are predictable (Lesnik et al., 2001). Remarkably, in 

S. pneumoniae (and few bacterial species else) no Rho factor homolog is present while it is highly 

conserved in most bacterial species (Washburn et al., 2001). Rho is the key factor for Rho-dependent 

termination. The absence of an ortholog in S. pneumoniae suggests that this bacterium deals with 

transcriptional termination exclusively by the intrinsic strategy. However, termination/anti-termination 

factors NusA, B, and G orthologs are present in the S. pneumoniae genome (Fraser et al., 2000). The 

Dp-1 genome also does not encode for a well-conserved Rho homolog (except gp44, a lipoprotein 

with a partial Rho factor domain, see above), making it likely that the phage uses exclusively Rho-

independent transcription termination. 

Regarding these findings I screened the Dp-1 genome for intrinsic terminators in silico. Each ORF was 

checked towards the presence of short hairpin structures (loop length cutoff was chosen as 3 to 10 nt in 

length and the stem 4 to 18 bp in length) with mFold (Zuker, 2003) 20 bases up- and 180 bp 

downstream of ORF stop codons. Putative candidates were checked with the Tm Server (Zuker, 2003) 
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and hairpins were considered with G<-4 kcal/mol and a melting temperature >70°C. Furthermore, I 

checked for the presence of an 11 base 5´-A rich and 12 base 3´T(U)-rich region which flank the 

hairpins of Rho-independent termination sites (Lesnik et al., 2001). In total, 11 putative Rho-

independent termination sites were retrieved in the Dp-1 genome (Tab. 26, Fig. 17). All of them 

contain the T-regions. However, in some cases the A-regions contain less adenosine as suggested for 

termination sites of E. coli (Lesnik et al., 2001). 

In most cases the predicted terminators fit well with the promoter context, e.g., the queuosine cluster 

that is embraced by a single promoter and terminator (Fig. 17). In other cases the predicted terminators 

disrupt expected transcriptional read-throughs, e.g., downstream orf40 or orf35 (Fig. 17). These could 

be over-read by transcriptional anti-termination. Experimental evidence comes from the 

Pneumococcus phage Cp-1. Martín and colleagues predicted hairpins and determined transcripts 

experimentally (Martin et al., 1996b). Mostly, the transcripts that were detected interfered with 

predicted terminator positions. This indicates that a read-through must occur at certain termination 

sites, although the anti-termination mechanism is unknown. The authors did not focus on this issue. 

Moreover, in the Dp-1 genome some intrinsic terminators are unexpectedly absent, e.g., directly 

downstream the large terminase subunit (gp37) (Fig. 17). Putative hairpins were also detectable in 

such cases but were clearly below the threshold. 

 
Tab. 26 Predicted Rho-independent termination sites 
(ORF) and (ORF end) the next ORF upstream the predicted terminator and genomic position of its stop codon. 
(Terminator position) indicates the genomic positions of the terminator. The fourth column shows the terminator 
sequence. The letter format given in the headline corresponds to the base residues. These are separated by “-“. 
The mRNA sequence is given. A 3´-spacer region can be 0, 1, or 2 bases in length. The last two columns list the 
calculated free energies (G) and melting temperatures (Tm) for the corresponding stem stretches. Note, that the 
termination site after orf45 contains a double hairpin structure surrounded by an A- and T-region.  
 

ORF 
ORF 
end 

Terminator 
position 

A region        hairpin                                                 T region                      n    
A region-stemloopstem-spacer-T box proximal-T box distal-extra T box 

ΔG 
kcal/mol 

Tm 
°C 

7 4728 4719..4760 ACUAUUUUAGA-UAAGAGCUUUUCGCUCUUA--UUUUU-UUUA-AAA -8.2 81.9 

26 16284 16272..16313 GCAAAAUAAAU-AGACCUAUUUCUAGGUCU-A-UUUUU-AUUA-UUG -7.7 80.7 

40 26738 26728..26770 AAAGUUAUUAG-GCUCGGUUCAAUACCGAGU-C-UUUUU-GUCU-AUA -6.2 80.3 

45 29768 29880..29954 AAAAGGAUAAA-GCGAAUGAAGUCGUAGCAGACGACCUUGUUUGU 
-U-UAGUUGAUAAUUCAACUG--UUCCU-GACC-UUU 

-19.0 84.0 

57 43202 43316..43355 CCAUUGCACUU-CUUGCAACUUUUGCAGG--UACUG-UUCU-AGG -6.2 74.1 

59 44303 44300..44341 UUAAAAUAUAG-AGAGGAGGAAGCUCUUUU-C-UUAAU-AUUG-UUU -4.9 70.5 

70 53490 53483..53521 GAUUCUAACAU-GAGGGCGCGAGCCCUC--UUUAU-UAUU-GAU -12.4 100.6 

72 56388 56434..56474 UUGAAAAAGUA-GUCAGGAAAAUUCCUGAU--UAUUU-UUUU-UAC -8.1 79.7 

27 16308 16311..16270 AUAAUAAAAAU-AGACCUAGAAAUAGGUCU-A-UUUAU-UUUG-CUU -10.4 94.6 

28 16859 16856..16828 GCUAAACUAAA-AGCUCUAUUAUUAGGGCU--UUUUA-UUUU-CAA -7.1 79.6 

35 20094 20167..19986 CGAGUGACGAA-GAGGGGCAAACUGCCCUUC--UUAUG-GCUC-AAA -11.6 90.6 

 
  



RESULTS 

89 

 

3.1.2 Some remarks on Dp-1 protein systems 

Homology-based annotation of the Dp-1 proteome was suitable to identify certain functions for many 

putative gene products. Here, some general remarks about Dp-1 protein systems are made. 
 

Queuosine biosynthesis enzymes 

A surprising finding was that Dp-1 encodes for a wide and highly conserved set of Que enzymes that 

are involved in the synthesis of queuosin (Q). Q is a hypermodified nucleoside derivative of guanosine 

(7-deazaguanosine) occupying the anti-codon wobble position of the tRNAs specific for Asp, Asn, 

His, and Tyr. It is present in these tRNAs in bacteria and eukaryotes and represents the most complex 

nucleotidyl modification that is known (Iwata-Reuyl, 2003; Morris and Elliott, 2001). Eukaryotes get 

Q from their diet or intestinal flora but in prokaryotes Q is synthesized de novo from GTP via a 

complex series of reactions that are not fully understood. The consequence of Q in the mentioned 

tRNAs is to improve codon/anti-codon base pairing and thus the accuracy and efficiency of translation 

(Meier et al., 1985). 

A bacteriophage specific BLAST search on ACLAME database V0.4 (Leplae et al., 2010) was done 

using as query the protein sequences of the queuosine biosynthesis cluster of bacteriophage Dp-1 (gp1 

to gp7). Numerous bacteriophages infecting diverse bacterial hosts encode genes needed to produce 

enzymes for queuosine biosynthesis (Tab. 27) but none of these bacteriophages seems to contain a 

complete queuosine-synthesis cluster. The queuosine cluster of Dp-1 is apparently the most complete 

of bacteriophage queuosine clusters even if it lacks the putative gene encoding the protein QueA (see 

below). The bacteriophage Dp-1 contains the genes of queuosine precursor transporter QueT (orf6), 

four genes for QueF, QueE, QueC, and QueD, (orfs 1, 2, 3, 4) needed for the synthesis of the 

queuosine precursors preQ0 and preQ1 and a putative tRNA-guanine-transglycosylase (TGT, gp7) 

needed for the replacement of guanine at the wobble position of tRNA with the queuosine precursor 

preQ1. TGT was detectable in a PSI-BLAST in the third iteration with the best-best hit of Ignicoccus 

hospitalis KIN4/I TGT (e-value=3e-12). Regarding the operon context gp7 might represent a TGT 

homolog with low sequence conservation compared to annotated TGT homologs. Thus, gp7 was not 

considered in the previous sections as TGT and was annotated as hypothetical protein. 

Dp-1 lacks the S-adenosylmethionine/tRNA ribosyltransferase-isomerase QueA which is required for 

the transformation of the tRNA associated preQ1 into epoxy-queuosine (epoxyQ). However, QueA as 

well as others Q-related enzymes (Tab. 27) are encoded by S. pneumoniae which on the other hand 

lacks QueC, D, E, and T homologs and has a TGT showing no similarity to the Dp-1 encoded TGT.   

The presence of the queuosine cluster is thus possible due to two related reasons: the need for tRNA 

modification to ensure the accuracy of bacteriophage translation and a possible use of a bacteriophage 

specific queuosine-tRNA modification system to monopolize the tRNAs specific for Asp, Asn, His, 

and Tyr and divert these tRNAs from the host protein synthesis. 
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Fig. 20 Q biosynthesis 
A simplified queuosine biosynthesis pathway is given. Responsible enzymes and cofactors for the corresponding 
synthesis steps are indicated. Question marks label the participation of putative unknown enzymes. The figure 
was drawn after (Iwata-Reuyl, 2003). 
 

Tab. 27 Que synthesis enzymes of Dp-1 
Presence or absence of Dp-1 homologs are given by the gp number in the first column, S. pneumoniae (SPN) Q 
enzymes are indicated in the last column. The second column lists the number of ACLAME blast hits of phage-
related Que enzymes. In the fourth column the putative function of the corresponding enzyme is given. 
Descriptions were adopted from corresponding E. coli homologs provided by ECOCYC database 
(http://ecocyc.org/). 
 

Dp-1 
gp  

Number Dp-1 
ACLAME hits  Q biosynthesis protein Putative function in queuosine biosynthesis  

SPN 
homolog 

1 1 QueF  NADPH-dependent nitrile oxidoreductase activity, forming 
a primary amine, catalyzes a later step of queuosine 
biosynthesis, the formation of preQ1 from preQ0. Also 
known as 7-cyano-7-deazaguanine reductase. 

SP1777 

2 19 QueC   Biosynthesis in the step(s) leading from GTP to the 
formation of preQ0 

- 

3 7 QueD   Converts 7,8-dihydroneopterin triphosphate (H2NTP) to 6-
carboxy-5,6,7,8-tetrahydropterin (CPH4), CPH4 is likely 
an intermediate in the pathway of queuosine biosynthesis 

- 

4 12 QueE  Exact function unknown, involved in the biosynthesis of 
preQ0 with QueD and QueC 

- 

5 11 Tetrahydrofolate 
biosynthesis protein 
FolE  

GTP cyclohydrolase I is an allosteric enzyme that catalyzes 
the first step in the biosynthesis of tetrahydrofolate. A folE 
deletion mutant lacks the queuosine ribonucleoside in 
tRNAs, indicating that folE is required for preQ0 
biosynthesis from GTP 

SP0291 

6 0 Queuosine intermediate 
transporter QueT  

Membrane transporter for preQ0 precursors - 

7 1 tRNA-guanine 
transglycosylase (TGT), 
putative  

Multimeric enzyme ensuring the replacement of tRNA 
guanine at the position 34 with the queuosine precursor 
preQ1 

SP2058 

-  S-adenosylmethionine 
tRNA ribosyltrans-
ferase-isomerase QueA 

The queA gene encodes an S-adenosylmethionine:tRNA 
ribosyltransferase-isomerase, which catalyzes formation of 
the 2,3-epoxy-4,5-dihydroxycyclopentane ring of 
epoxyqueuosine (oQ) 

SP1416 

  

QueE

TGT QueA ?

tRNA AdoMet B12

QueC

QueD

QueF

FolE

?
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DNA replication and recombination systems 

The Dp-1 genome encodes for a wide set of proteins that are involved in DNA replication and 

recombination: 
 

DNA polymerase I: DNA polymerase I is encoded by orf71. It is highly similar to DNA polymerase I 

from Eubacterium rectale (Tab. 24). It consists of the C-terminal 5´-3´polymerase domain. However, 

this signature is interrupted between position 609 to 680. The 3´-5´ proofreading exonuclease domain 

is present at the N-terminus (Fig. 19). E. coli DNA polymerase I is involved in DNA repair and 

usually functions in filling up nucleotide lesions on DNA molecules. It acts in nucleotide excision by 

removing UvrABC nuclease complex (Orren et al., 1992), MutHLS-mediated base excision, 

replacement of tymidine dimers (Dorson et al., 1978), and in post-replicational repair of gaps that 

occur in RNA priming regions (replication is done by DNA polymerase III) and double strand breaks 

(Sharma and Smith, 1987). Thus, Dp-1 DNA polymerase I might function as repair DNA polymerase 

also during Dp-1 genome replication. Efficient DNA replication could be facilitated by DNA 

polymerase III. 
 

DNA polymerase III: Several homologs of DNA polymerase III subunit were detected in the Dp-1 

genome (Fig. 21B and C). Notably the core polymerase subunits are not present. This suggests that the 

host core subunits might be used while Dp-1 encodes its own clamp loader subunits. As a 

consequence, a hybrid DNA polymerase III complex could manage Dp-1 genome replication. 

However, neither in Dp-1 nor in S. pneumoniae TIGR4 homologs are present for the subunit theta 

(holE), psi (holD), and chi (holC). Absence of these subunits in the TIGR4 genome might be 

substituted by homologs with low sequence conservation. Other factors that are necessary for DNA 

polymerase III dependent replication are given in Fig. 21B. Five of them are encoded by the virus and 

the host genome. In contrast, the Dp-1 genome does not encode for an RNaseH homolog (removes 

RNA primers), DnaA (initiates replication), and Ssb (binds and stabilizes ssDNA strands). While Dp-1 

self-encoded proteins could be involved in Dp-1 genome replication, the uniquely encoded S. 

pneumoniae replication proteins might be used additionally for creation of a functional and processive 

DNA polymerase III system. 
 

Origin of replication: The genome sequence region around bp 20,695 exhibits a very low G+C content 

of 15% and is of particular interest because a putative origin of replication is detectable between bp 

20,663 and 21,223 (Fig. 17, ori1). Here, three degenerated DnaA boxes (TTATCCACA consensus, 

with two mismatches per box) are present at positions 20,793, 20,805, and 20,837 (Ori-Finder web-

based application (Gao and Zhang, 2008)). The first DnaA-box locates in the reverse strand which 

coincides with a non-coding region of the reverse transcribed genomic cluster. Interestingly, another 

potential origin of replication has been previously reported in the Dp-1 genome by García et al. 

between the positions 56,348 and 56,464 bp where two perfectly identical direct repeats have been 
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found (TTA TCT TGC AGT CAA TTG CTT CGA GAT ATT TGA AAA AGT AGT CAG GAA 

AAT TCC TGA TTA T  with a TTAT overlap) (García et al., 2005) (Fig. 17, ori2). It is noteworthy 

that no DnaA box is detectable in this region. It is possible that both putative origins are functional and 

that their presence reflects an unknown aspect of Dp-1 genome replication. 
 

 
 

Fig. 21 Comparison of the DNA polymerase III system of Dp-1 and its host 
(A) Illustration of a canonical DNA polymerase III system. Image taken from KEGG database (reference 
pathway entry “DNA replication”). (B) Subunit composition of DNA polymerase III system of Dp-1 and S. 
pneumoniae (after KEGG database, see above). The core and holoenzyme subunits are given. Additional factors 
that play a role are given below. Different colors indicate the genomes the subunits are encoded by. S. 
pneumoniae TIGR4 genome was used as host reference strain. (C) Homology-annotated Dp-1 proteins that 
might participate in DNA polymerase III-dependent DNA replication. Column “gp” indicates the systematic gp 
number. DNA pol I is shown since it is involved in removing RNA primers from the lagging strand by its 
exonuclease function after the action of RnaseH onto RNA primers (Ogawa and Okazaki, 1984). 
 

DNA recombination: Four putative recombination protein homologs were detected in the Dp-1 

genome. Since Dp-1 is a lytic phage and does not undergo the integration of its DNA molecule into 

the host genome the reason for the presence of these proteins is uncertain. Gp11, gp12, gp15, gp63 

encode fur putative recombination proteins (Cas4/RecB-like exonuclease, Holliday junction resolvase 

RecU, RecA, and a resolvase domain protein, respectively). Presence of these proteins eventually 

underline that homologous recombination could be an important process for Dp-1. This could take 

place during or after replication of the Dp-1 genome since here intermediary structures are known, 

e.g., from T4 phage to appear on the concatemeric DNA that necessarily had to be resolved prior to 

the DNA packaging event (see below). In parallel homologous recombination could be necessary for 

DNA repair and to restart stalled replication forks. Moreover, the need for DNA-recombination 
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gp Name Description

10 DnaN DNA polymerase III beta subunit ,  putative 

16 Lig NAD-dependent DNA ligase, putative

17 DnaX DNA polymerase III  gamma/tau subunit

18 HolB DNA polymerase III, delta' subunit, putative

19 HolA DNA polymerase III  delta subunit, putative

66 DnaC DNA replication protein

67 DnaB DNA replicative helicase

68 DnaG DNA primase

71 DNA pol I DNA polymerase I with 3'-5' exonuclease domain
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systems might be due to Dp-1 making use of a recombination dependent replication model 

alternatively to the ori-dependent model. T4 makes use of such a replication model: essentially, a 

ssDNA 3´ genome end is invaded into a homologous dsDNA region forming a D-loop. From here the 

D-loop is converted into a replication fork while the ssDNA 3´end is used as primer for leading and 

the opposite strand for lagging strand synthesis. This results in intermediary DNA structures at the 

initiation site that have to be resolved (Kreuzer, 2000; Martinez-Jimenez et al., 2005; Mosig et al., 

2001). 

No integrase homolog, the indicator for temperate phages, was detected in the Dp-1 genome in 

agreement with the findings that Dp-1 is exclusively lytic (Lopez et al., 1977). 
 

Structural components of Dp-1 

The Dp-1 genome encodes for a large set of putative structural protein homologs (details can be found 

in Tab. 24). Homologous head proteins were found: the major head protein (gp43) is the major 

structural head component. The portal protein gp38 belongs to the SPP1 portal protein family. A portal 

protein complex normally appears at one vertex of the capsid and forms a hole through which DNA is 

packed and the contacts with tail components are mediated. Homologs of minor head proteins (gp40, 

gp41) could function as minor structural components of the capsid or as scaffolding proteins during 

head assembly. Several tail proteins were found including putative structural components like gp53 

and gp55. The tail length tape measure protein gp52 could act as the tail length ruler during tail 

assembly. The tail tip antireceptor gp54 presumably mediates the attachment to the host cell. It 

consists of an N-terminal putative antireceptor domain and several collagen G-X-Y triple motifs (Fig. 

19). Antireceptor proteins from Siphoviridae phages infecting low-GC-content gram-positive bacteria 

usually contain repeated G-X-Y motifs at their C-termini (Lucchini et al., 1998). Dp-1 antireceptor is 

supposed to bind to phosphatidyl-choline in the lipoteichoic acid. This motif appears to be 

characteristic of tropocollagen molecules and its biological function is to provide elasticity. The large 

terminase subunit is encoded by orf37 and mediates the DNA translocation into the pro-capsid during 

DNA packaging. A Dp-1 homolog of a small terminase subunit is notably absent. 
 

Dp-1 DNA transcription 

Many phages encode their own RNA polymerase. For instance, T7 phage uses the host RNA 

polymerase early after infection and later its own more processive polymerase while inhibiting the 

host RNA polymerase (Nechaev and Severinov, 1999). In the Dp-1 genome no homologs of RNA 

polymerases or RNA polymerase core subunits could be detected. Presumably, Dp-1 transcription is 

dependent on the S. pneumoniae host RNA polymerase system. However, three sigma factor homologs 

were identified. Gp24 contains a sigma factor 4 region which is known to mediate contacts with the -

35 promoter box of sigma 70-like sigma factors (Campbell et al., 2002). Gp62 is another putative 

sigma 70 factor and gp69 is a homolog of the sporulation sigma factor (SigK) group. All three ORFs 

are localized in different gene modules. No transcriptional repressor homologs have been detected for 
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Dp-1. This indicates that Dp-1 might regulate its transcription just by its sigma factors using the host 

RNA polymerase. 
 

Lytic cluster 

The Dp-1 genome encodes for the two components that are needed for the lytic step: the membrane 

protein holin is encoded by orf58. It contains a predicted signal peptide and two transmembrane 

regions (Fig. 19). Holins with two transmembrane helices are classified as S21 family holins in contrast 

to the second holin family S whose members consist of three transmembrane regions (Wang et al., 

2000). The lytic enzyme is the amidase Pal (gp59). It has an N-terminal amidase domain and C-

terminal choline cell wall binding repeats (Fig. 19). More detailed explanations about Pal can be found 

in the introduction section. 
 

Other notable gene products 

These are membrane-associated proteins of unknown function: orf72 encodes for an unknown 

membrane protein containing six putative transmembrane helices (Fig. 19). Gp44 contains a predicted 

lipoprotein membrane anchor signature (Fig. 19). Since Dp-1 contains lipids as structural components 

in its head (Lopez et al., 1977), membrane proteins might be necessary to mediate the integration of 

the host membrane during head assembly. While orf44 is localized in the gene module that encodes 

for structural head proteins, orf72 is co-localized with the DNA polymerase I gene. Here, the 

functional link is missing on the genomic level and gp72 might be responsible for any other task than 

virion assembly. 
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3.1.3 Intra-viral protein-protein interaction networks of Cp-1 and Dp-1 

The sum of all PPIs of an organism (interactome) helps to functionally link proteins to certain cellular 

pathways. In this section I describe the intra-viral protein-protein interaction (PPI) networks of the 

lytic bacteriophage Cp-1 and Dp-1 that infect S. pneumoniae. Phage PPI networks are strongly 

underrepresented in the literature and since publication of the intra-viral T7 interactome in 1996 

(Bartel et al., 1996) no phage interactome has been explored. These results help not only to extent and 

establish bacteriophages in interactomics but also give novel insights into the interplay of individual 

proteins of these phages. 
 

To screen towards the Cp-1 and Dp-1 interactome, the Yeast Two-Hybrid- (Y2H) system was used 

since it is an excellent method to screen an organism´s proteome reliably and quickly. Therefore, I first 

cloned all ORFs as full-length ORF constructs of both phages into an entry vector library based on the 

site-specific Gateway® recombination system (Invitrogen) (2.2.1.3). For the screens I used two 

different Y2H expression vector systems (pDEST32/pDEST22 (Invitrogen) and pGBKT7g/pGADT7g 

(Clontech)) since it was shown already that the application of alternative expression vector systems 

can clearly increase the screen sensitivity and thus the number of detected PPIs (Rajagopala et al., 

2009). The individual phage baits were screened in one-on-one Y2H matrix tests against their 

corresponding prey array by using a robot-supported workstation (Biomek2000, Beckman Coulter) 

(2.2.5.6). 
 
 

The binary Dp-1 interactome 

The primary screens detected a total of 232 redundant interactions among the 72 Dp-1 proteins: 99 

were identified with the pDEST32/22 and 133 with the pGBK/GADT7g expression vector system. I 

retested all these interactions by Y2H retest experiments (2.2.5.9) and reproduced a total of 69 

(69.7%) of the pDEST32/22 and 109 (82.0%) of the pGBK/GADT7g protein pairs (Fig. 22). In total 

156 unique, non-redundant3 intra-viral protein-protein interactions were reproducible. On average each 

Dp-1 protein binds ~2.2 interaction partners and 57 proteins exhibit at least one interaction. Thus, a 

large fraction of 79.2% of the proteome participates in the interaction network (Fig. 23). The full list 

of identified intra-viral Dp-1 PPI data is given in the Tab. 35 in the supplement; a full list of redundant 

PPIs can be found in the e-supplement. 

The pDEST32/22 system identified 49 (31.4%) and the pGBKT7g/pGADT7g system identified 92 

(59.0%) unique interactions of the 156 non-redundant interactions. Surprisingly, only 15 interactions 

overlapped between both vector systems (9.6%). This number confirms the findings of Rajagopala and 

colleagues although the overlap found in this study is about three times larger (Rajagopala et al., 

2009). With the pGBKT/GADT7g expression system I obtained nearly twice as many unique 
                                                      
3 “non-redundant” means that (i) positively tested protein pairs are counted as one interaction while they can appear in both vector systems or 
(ii) they can appear among their different fusion proteins since the proteins are tested twice in one vector system as DBD- and AD-fusions. 
This can lead to a redundant interaction if a test pair binds as DBD- as well as AD-tagged protein with a certain counterpart 
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interactions (Fig. 22A). However, with the pDEST system the more specific interactions were 

detected. The pDEST32/22 interaction network consists of 51 nodes connected by 64 edges. This 

corresponds to an average node degree of 1.26 (the node degree is the number of interactions a certain 

protein has). In contrast the pGBKT7g/GADT7g network contains 46 proteins connected via 107 

interactions. Here, a protein binds to 2.33 partners in average. Although the pDEST system detected 

fewer PPIs, it included five additional proteins in the network and thus may be more specific. It is 

unknown why such great differences in the interaction patterns occur with the usage of alternative 

Y2H expression vector systems. It is assumed that the plasmid copy number has an impact on the final 

protein level (2µ ori produces high copy numbers in pGBKT7g/pGADT7g compared to a low copy 

number of centromeric ori in the pDEST plasmids) or variations in the DBD- and AD-linker regions 

could lead to differed steric properties of the fusions (Rajagopala et al., 2009).  

In the retest experiments I tested yeast against various concentrations of 3-AT in the readout medium 

(0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, and 50 mM) and introduced a scoring scheme that helps to compare 

the quality and stability of the PPIs within this dataset. 3-AT is a competitive inhibitor of the reporter 

gene product HIS3 (Hilton et al., 1965) and thus allows to semi-quantify the interaction strength. 

Correlation between interaction affinities in vitro and yeast growth on readout medium was 

demonstrated by Estojak and colleagues for lacZ and LEU2 reporter genes (Estojak et al., 1995). I 

determined the highest concentration 3-AT for each interaction pair on which yeast growth was 

observable and used this value to define an interaction-specific 3-AT score. For self-activating baits I 

calculated the score as follows: 3AT score = 3ATmax-3ATbackground  

 

Fig. 22 Dp-1 PPI and 
net-work properties 
(A) Absolute and relative 
number of detected PPIs 
and the applied Y2H 
expression vector systems. 
(B) Number of detected 
inter-actions (node degree) 
plotted against the number 
of proteins with a certain 
number of interaction 
partners. (C) Rank order 
plot of 3-AT scores of 
individual PPIs. The pie 
charts summarize the 
relative number of PPI 3-
AT scores split into groups 
of suggested weak, medium, 
and strong interaction 
signals.   
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3-ATmax represents the highest concentration of 3-AT where colonies appeared on the readout medium 

test plate. 3ATbackground is the minimal inhibitory concentration of 3-AT that is needed to suppress self-

activation growth of a certain bait. This test was carried out in parallel. For simplification the PPIs 

were grouped as being of weak (<1 mM), medium (>1 mM and <10 mM) or strong binding (>10 mM) 

(see. Fig. 22C). Interestingly, the pDEST32/22 vector system resulted in stronger interactions (40.6%) 

compared to pGBKT7g/GADT7g (16.5%) that shows in general more medium and weak interactions. 

 

Fig. 23 Intra-viral Dp-1 PPI network connects most of the Dp-1 proteins 
(A) Full PPI network. The nodes represent proteins and the edges represent the protein interactions. Properties 
are given in the figure legend. The interaction signal strength is indicated by the edge width and was determined 
by 3-AT titration (explained in the text). “+” labels interactions that were detectable on the highest tested 
concentration of 3-AT (50 mM). Figure was drawn with Cytoscape (Shannon et al., 2003). (B) Network is 
simplified by interactions among and between different gene product groups with an assumed general function 
(refer to Fig. 17C). Numbers of interacting proteins of a certain group and their interaction are summarized. The 
number in the group node represents the PPI number that occurs within this group, number in brackets indicate 
the number of proteins in a group. Numbers on the edges correspond to the interactions that occur between 
certain functional protein groups.  
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As it can be seen from Fig. 22B the network includes 30 proteins of unknown cellular function and 

links them on the interaction level to various protein groups. The two interacting sigma factors seem to 

play a central role in the network taken by their high interaction frequency with other protein groups 

although they may function primarily in transcription. Especially SigK (gp69) acts as a hub protein 

and shows the highest PPI number with 22 interactions. The average PPI number within a same group 

is never higher than 1 except for proteins of unknown function. For instance, DNA replication proteins 

interact on average with one interaction partner of their own functional class but undergo on average 

1.9 PPIs with unknowns. This means that unknowns have the highest impact on the network in terms 

of their interaction number. Since most of them undergo binding with proteins of different functions in 

parallel an interpretation is difficult. I analyzed the network´s functional properties considering the 

genomic context by a sophisticated statistical model (Fig. 25). 
 

The binary Cp-1 interactome 

The primary Y2H screens detected 34 redundant PPIs, 20 by the pDEST32/22 and 14 by the 

pGBKT7g/pGADT7g system. In Y2H retest experiments 10 PPIs (50%) were reproduced in 

pDEST32/22 and 12 (70.6%) in the pGBKT7g/pGADT7g expression vector system. Ignoring the 

AD/DBD fusion direction and the vector systems a total of 17 unique PPIs were identified (Fig. 24, 

see also Fig. 26A). 15 Cp-1 proteins occur in the network and thus a minimum of 53.6% of the Cp-1 

proteins undergo protein-protein contacts. Since the absolute interaction number is low, I did not focus 

on network and PPI properties in detail as for the Dp-1 intra-viral PPI network. However, the same 

tendency regarding the different vector systems and 3-AT scores are obvious (Fig. 24). A full list of 

identified intra-viral Cp-1 PPIs is given in Tab. 28 (full documentation is given in the e-supplement). 

The small number of intra-viral PPIs does not mean that more interactions failed to be detected since 

the Cp-1 genome encodes for only 28 proteins in contrast to Dp-1 with 72. The Dp-1 proteome has 

2,628 unique interaction possibilities while Cp-1 has maximally 378. Based on the detected PPI 

number, Dp-1 uses 5.9% of its PPI spectrum while Cp-1 uses 4.5%, respectively.  

 

Fig. 24 Cp-1 PPI properties 
(A) Absolute and relative number of detected PPIs and the applied Y2H expression vector systems. The numbers 
indicate the absolute and relative PPI numbers. (B) Rank order plot of 3-AT scores of individual PPIs. The pie 
charts summarize the relative number of PPI 3-AT scores split into groups of suggested weak, medium, and 
strong interaction signals.   
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Tab. 28 Intra-viral PPIs of Cp-1 
The table represents a non-redundant list of Cp-1 intra-viral PPIs that were reproducible in Y2H retest 
experiments. DBD-/AD- (bait/prey) interaction direction and the vector system the PPIs were detected with are 
combined. (VS) indicates the positively tested vector system ((D) pDEST32/22 or (G) pGBKT7g/pGADT7g). 
The 3-AT score represents the concentration range of 3-AT in the readout medium where yeast growth was 
visible compared to self-activation background growth of that bait. “+” indicates that yeast grew still on the 
highest tested concentration (50 mM 3-AT). 
 
Protein A Protein B VS 3-AT score/mM 

Gp5 DNA polymerase Gp6 Hypothetical protein D 25 

Gp8 Possible scaffolding protein Gp10 Connector protein D 49.5+ 

Gp8 Possible scaffolding protein Gp13 Endoprotease of major head protein D 2 

Gp8 Possible scaffolding protein Gp6 Hypothetical protein G 1.5 

Gp8 Possible scaffolding protein Gp8 Possible scaffolding protein D|G 49.5|25+ 

Gp8 Possible scaffolding protein Gp9 Major head protein D|D|G|G 49.5+|49+|50+|25+ 

Gp9 Major head protein Gp14 Hypothetical protein G 5 

Gpc Hypothetical protein Gpc Hypothetical protein G 5 

Gp10 Connector protein Gp10 Connector protein G 1 

Gp11 Lower collar protein Gp11 Lower collar protein G 4.75 

Gp12 Hypothetical protein Gp15 Hypothetical protein D 50+ 

Gp14 Hypothetical protein Gp14 Hypothetical protein D 1 

Gp16 Hypothetical protein Gp15 Hypothetical protein D|G 0.1|50+ 

Gp17 Tail protein N Gp11 Lower collar protein G 0 

Gp19 Tail protein C Gp11 Lower collar protein G 0 

Gp19 Tail protein C Gp17 Tail protein N G 0.5 

Gp20 Terminase Gp20 Terminase D 5 

 

Comparison of the genomic contexts and the intra-viral PPI networks reveals a modular 

organization of phage interactomes 

Expression of phage genes is stringently regulated after the phage has entered the host cell. Phage 

genes are organized in gene clusters (operons) encoding proteins involved in similar functional 

processes and having a close similar timing of transcription (e.g., (Martin et al., 1996b)).  

Thus, I investigated for Dp-1 whether the detected protein-protein interactions correlate with their 

putative gene cluster function (Fig. 25). Therefore, I assumed that a module (operon) ranges from a 

predicted promoter start site to the next promoter. This was done since the predicted termination sites 

were not adequate to define a clear operon in some cases.  

The number of PPIs that occur within the same functional cluster was counted, e.g., interactions 

among proteins involved in DNA replication are defined as “in function” interactions whereas PPIs 

between different functional gene batteries are “out of function”. As expected, the majority of 

interactions (64.6%) appear to be “in function” (only interactions from gene clusters with a predicted 

known function were considered for this calculation). Nevertheless, there are still 35.4% PPIs that are 

“out” due to binding between proteins from different functional clusters, indicating that there is active 

cross-talk between different functional modules. For instance, proteins encoded by expression units for 
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structural components show 27 intra-functional interactions. Proteins encoded by gene clusters 

involved in DNA replication undergo 29 intra-functional interactions. These two groups cross-

communicate via 27 additional interactions and might reflect a close connection between replication 

and virion assembly. Most of the intra-functional interactions within the same group are significantly 

overrepresented (Fig. 25B).  

The same tendency becomes obvious if the putative expression timing is considered (Fig. 25C). I 

grouped the predicted transcriptional units into four co-regulated functional classes that are putatively 

expressed in an early, middle, late, and an unknown stage. Here, 59.4% of the interactions are “in 

time” whereas 40.6% interact “out of time” (only interactions from gene clusters with a predicted 

expression timing were considered for this calculation). “In-time” interactions among all different 

groups (except unknowns) are statistically overrepresented significantly (Fig. 25C). PPIs that are “in” 

could underline their in vivo relevance since simultaneous protein presence is the requirement for 

physical binding. For “out” interactions the in vivo relevance is unclear, e. g. DNA replication proteins 

that bind with structural proteins. However, gene expression is a dynamic process and remnants of 

proteins that are present already in the early phase might have a regulatory relevance (or vice versa) on 

gene products that are predominantly present in the middle or late phase.  

Some examples for “in time” and “in function” interactions are illustrated in Fig. 25D. Probably co-

expressed queuosine biosynthesis proteins QueD and QueE undergo protein contacts and thus might 

reflect the reconstitution of a heteromeric enzyme complex necessary for synthesis of preQ0. Also 

DNA polymerase III subunits interact among each other. Here gp17, gp18, and gp19 genes are 

genomic neighbors and associate also on the protein level. Gp71 (DNA polymerase I) which is 

encoded by a terminally located gene battery binds gp68 (primase) as well as gp10 DNA polymerase 

III patch clamp (DNA pol. III beta subunit). The latter is encoded by a different module. Here, it 

becomes clear that proteins involved in similar cellular processes can cross-communicate also beyond 

the genetic organization. In case of gp71 and gp10 the DNA polymerase I might function in 

recognition of stalled DNA polymerase III by gp10 binding to remove RNA primers from the 

heteroduplex DNA. I will focus on the modular genome organization and PPI properties in more detail 

in the discussion section and will give some comments on “out of time” and “out of function” PPIs. 

  



RESULTS 

101 

 

 

Fig. 25 Relationship of the Dp-1 genome context and the intra-viral PPI network 
(A) Dp-1 whole genome matrix plotted against the identified PPIs. Detected PPIs are indicated as black boxes. 
Putative gene battery borders are highlighted by dashed lines and the putative transcriptional organization is 
indicated at the top. The color codes are explained in detail in the legend. (B,C) Simplified, collapsed genome 
matrices. All predicted modules of a certain general function (B) or of a certain expression timing (C) have been 
combined (e.g., all operons of the function “structure and morphogenesis” or of expected expression timing 
“early” are summarized as one class, respectively). Letters surrounding the matrices indicate a certain group. For 
abbreviations see legend. The number of interactions between various gene classes was counted for the real 
intra-viral PPI network of Dp-1 and for randomized versions of this network. Overrepresentation of a link 
compared to 10,000 randomized networks was assessed by calculating a Z-score. The Z-score color gradient (see 
upper legend) indicates over- or underrepresentation of the PPI number within a certain gene class or between 
different gene classes. The numbers in the various matrix quadrants represent the absolute PPI number of the real 
network. Statistical significance for over- or underrepresented PPI numbers among certain gene classes is 
indicated in the corresponding quadrants by an asterisk (p<0.01). Statistics were done in collaboration with 
Björn Titz, Crump Institute for Molecular Imaging, Los Angeles. (D) Some PPIs that occur within a certain gene 
class, here “in time” and “in function”. The examples indicate interactions among DNA replication proteins and 
Q enzymes. Nodes represent the proteins and edges the interactions between protein pairs. The interaction 
strength is indicated by the edge width which was determined by 3-AT titration (see main text). “+” labels the 
interactions that were still detectable on the highest tested concentration of 3-AT. Figure was drawn with 
Cytoscape (Shannon et al., 2003). Interaction and protein properties are indicated in the legend. 
 

The small Cp-1 PPI network (Fig. 26A) does not allow for a statistical comparison of the genome 

organization with interactome properties as done for Dp-1. However, the tendency becomes obvious 

that modularity of the genome can be recovered on the PPI level. Nearly all PPIs occur “in function”. 

Compared to Dp-1 that exhibits also an agile cross-communication among different gene classes, Cp-1 
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seems to be organized even more modular on the PPI level. This suggests that more complex 

biological systems exhibit more cross-talk on the protein level. 

In the genome matrix quadrant II (Fig. 26B), representing the module where genes of structural 

proteins are accommodated, 13 interactions can be found, e.g., among the tail proteins N and C and the 

lower collar protein. Another partial reconstitution of the virion is represented by the interaction of the 

scaffolding protein with the major head protein (MHP) and connector protein. Represented by 

quadrant I (Fig. 26B) a PPI was detected among the Cp-1 DNA polymerase and the hypothetical 

protein gp6 which is encoded by the same gene module. Although the function of gp6 is unknown the 

interaction links gp6 to the DNA polymerase and thus might function in Cp-1 DNA synthesis. Only 

one PPI occurs “out of function”: gp6 binds to the scaffolding protein gp8 and links replication with 

virion morphogenesis. However, the physiological meaning here is unclear. Some expected PPIs were 

not detected in the screens for Cp-1 (e.g., MHP protease with MHP or tail proteins with the 

antireceptor) as well as others for Dp-1. Putative false-negative PPIs will be discussed later (4.1.1).  

 

Fig. 26 Intra-viral PPI network of Cp-1 and relationship to its genomic context 
(A) All identified intra-viral PPIs presented as interaction network. Nodes represent the proteins and edges 
represent the interactions between protein pairs. Roman numbers and boxes indicate PPIs that occur among the 
corresponding, simplified transcriptional units given in (B). The properties in (A) are explained in the legend. 
The interaction signal is indicated by the edge width which was determined by 3-AT titration (explained in the 
main text). “+” labels the interactions that were detectable at the highest tested concentration of 3-AT. Figure 
was drawn with Cytoscape (Shannon et al., 2003). (B) Cp-1 genome matrix vs. identified PPIs. Detected PPIs 
are highlighted by black boxes. Operon borders are highlighted by dashed lines and were drawn after Fig. 6. 
Roman numbers in the quadrants correspond to those in the boxes given in (A). Corresponding expression units 
are illustrated at the bottom. Properties of (B) are explained in the legend.  
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3.1.4 Protein-protein interactions of Cp-1 and Dp-1 with their host S. pneumoniae 

In the previous section I identified systematically intra-viral PPIs of Cp-1 and Dp-1. However, the 

phages´ reproduction is dependent on their host. Thus, phages cannot be regarded as isolated 

biological entities. After they have entered the host cell they use the host cell to produce large 

quantities of phage proteins by using the host´s translation machinery.  

The phage-host dependence can be tested on different cellular levels. For instance, Qimron and 

colleagues searched genome-wide for genetic links between E. coli and T7 affecting phage 

reproduction. Surprisingly, only a small number of E. coli ORFs turned out to affect T7 growth. Four 

genes had a deleterious effect when over-expressed. Another 11 host genes were essential for T7 

growth once they were knocked out (Qimron et al., 2006). This indicates that in fact a small subset of 

host proteins has a significant influence on T7 growth. However, the methodology of this study 

focused on genetic links and might not have been sensitive enough to find all host links, e.g., those 

that fine-tune and optimize phage reproduction or that are not examinable at all since the host genes 

are essential for the host itself.  

Alternatively, the exploration of the PPI level provides the advantage to unravel other virus-host 

relationships, e.g., such host factors that do not have a significant impact on phage reproduction under 

laboratory conditions. 

A physical association among phage-host protein pairs can specifically imply which host pathways 

could be manipulated, e.g., a virus protein might neutralize a toxic host protein by binding or vice 

versa. Alternatively, the phage might be capable to recruit host proteins towards phage-related 

processes by binding to fill up its “genomics gaps” by host proteins. 

The aim of this project was to screen proteome-wide for phage-host PPIs. This has never been done 

before. Such studies are critical to understand the phage-host relationship on a global level since PPIs 

can indicate which host pathways are relevant for a phage and thus necessarily might by modified, 

disrupted, or stimulated by the phage.    
 

Proteome-wide identification of phage-host PPIs by Y2H screens 

To identify proteome-wide phage-host PPIs I screened with the Y2H system all individual Cp-1 as 

well as Dp-1 baits as pDEST32-DBD fusions against an S. pneumoniae TIGR4 strain prey array, 

kindly provided by Seesandra V. Rajagopala (JCVI). The host prey array contained 1,705 individual 

pDEST22-AD preys which represent 76% of the S. pneunmoniae genome. Due to the large size of the 

prey array and to speed up the screening procedure I decided to perform the screens by a mini-prey 

pooling strategy (2.2.5.7). I therefore collapsed the 18 individual 96-format prey array plates into a 

single plate resulting in prey pools containing 18 individual prey clones per test position. These were 

mated against individual phage baits. Positives were identified by a yeast colony PCR followed by 

sequencing of the PCR product (2.2.5.8). The primary pooling screens detected a total of 130 phage-

host interaction pairs (a full list is given in the e-supplement). Since pooling screens are known to 
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produce a higher false-negative rate I screened in addition 25 Cp-1 and five Dp-1 baits against the S. 

pneumoniae full-prey matrix array as one-on-one tests resulting in the detection of 63 PPIs. Combined, 

this resulted in a total of 186 individually detected interaction candidates. I subsequently retested 170 

of them in Y2H retest experiments. 49 interactions were clearly reproducible. 121 were not 

reproducible and mostly caused by high experimental background of a few bait proteins (randomly 

appearing colonies). The baits that have been screened by both strategies revealed 12 reproducible 

interactions. 7 of them were detected by both methods, 5 only with one-on-one screens, and none in 

addition with the pooling strategy. This implies that the one-on-one tests were more sensitive and that 

the intrinsic false-negative error rate of the pooling screens is about 42%. Although I adjusted nearly 

equal cell numbers of the preys by pipetting during the preparation of the pooling plate, some preys 

might have been over- or underrepresented (Fig. 27). This could explain the calculated higher false-

negative rate. The screens were done only as phage-DBD  host protein-AD direction and not vice 

versa due to the immense working effort. Moreover, a second vector system was not considered, e.g., 

as for the intra-viral screens the pGBKT7g/pGADT7g system. Thus, the 49 detected phage-host 

interactions might represent only a small subset of all possible interactions and I expect that more PPIs 

among phage and host proteins take place in vivo. 

However, these results represent the most comprehensive dataset among phage-host PPIs. In 

summary, the retests revealed 49 unique virus-host PPIs, of which 11 are attributed to Cp-1 and 38 to 

Dp-1. This involves 36 uniquely binding S. pneumoniae proteins, seven Cp-1 and 19 Dp-1 proteins. 

All detected interactions are listed in Tab. 29 and shown in Fig. 28. 
 

 
 

Fig. 27 A screen and retest example 
(A) Y2H screen of Dp-1 gp32 bait against S. pneumoniae mini-pool array consisting of 18-prey pools per test 
position. The -Leu-Trp-His readout medium plate contained 5 mM 3-AT to suppress gp32-DBD self-activation 
and was incubated for 7d at 30°C. Tests were done as quadruplicates. (B) One-on-one Y2H retests of gp32 in 
quadruplicate format. Note, that the SP1915 interaction was also found in another screen. Gp32 self-activated up 
to 2.5 mM 3-AT in the readout medium. Representatively, plates containing the minimal inhibitory (5 mM) and 
the highest tested 3-AT concentrations (50 mM) are shown. Dp-1 gp32 is a protein of unknown function. 
Interacting host proteins are (SP0194) conserved hypothetical protein, (SP0259) Holliday junction DNA helicase 
RuvB, (SP1540) single-strand DNA binding protein, (SP1669) MutT/nudix family protein, and (SP1915) 
hypothetical protein. Although yeast growth on the SP0259 screen test position was weak, the retest results were 
clear. This was probably caused by underrepresentation of the SP0259 prey cell number in the pool. 
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Tab. 29 Phage-host PPIs detected by Y2H screens and verified by Y2H retests 
The table lists all identified interactions between Cp-1/Dp-1 and S. pneumoniae protein pairs, verified by Y2H 
retest experiments. The last column represents the 3-AT score, the concentration range of 3-AT/mM in the 
readout medium where yeast growth was visible compared to self-activation background growth of a certain bait.  
“+” indicates that yeast grew still on the highest tested concentration (50 mM 3-AT). 
 

Phage Protein Phage protein description 
Host 

protein Host protein description 
3-AT 
score 

Cp-1 Gp10 Connector protein SP1354 ribosomal protein L7/L12 2.5 

Cp-1 Gp10 Connector protein SP1881 glutamate racemase MurI 50+ 

Cp-1 Gp16 Hypothetical protein SP0259 Holliday junction DNA helicase RuvB 1 

Cp-1 Gp17 Tail protein N SP0979 oligoendopeptidase F 50+ 

Cp-1 Gp22 Lysozyme (Cpl1) SP1208 uridine/cytidine monophosphokinaseUdk 47.5+ 

Cp-1 Gp6 Hypothetical protein SP1713 transcriptional regulator, NrdR family 50+ 

Cp-1 Gpb Hypothetical protein SP0859 membrane protein (DUF979) 25 

Cp-1 Gpb Hypothetical protein SP1213 conserved domain protein (DUF2130) 50+ 

Cp-1 Gpb Hypothetical protein SP1980 cmp-binding-factor 1 Cbf1 25 

Cp-1 Gpb Hypothetical protein SP2168 putative fucose operon repressor FcsR 2.5 

Cp-1 Gpc Hypothetical protein SP0979 oligoendopeptidase F 2 

Dp-1 Gp12 Holliday junction resolvase RecU, putative SP2168 putative fucose operon repressor FcsR 0.1 

Dp-1 Gp14 dUTPase SP2125 conserved hypothetical protein (DUF59) 50+ 

Dp-1 Gp16 NAD-dependent DNA ligase, putative SP0259 Holliday junction DNA helicase RuvB 50+ 

Dp-1 Gp18 DNA polymerase III, delta' subunit HolB, 
putative 

SP1584 GTP-sensing transcriptional pleiotropic repressor 
CodY 

24.5 

Dp-1 Gp29 Hypothetical protein SP2012 glyceraldehyde 3-phosphate dehydrogenase (Gap) 0.25 

Dp-1 Gp31 Hypothetical protein SP0259 Holliday junction DNA helicase RuvB 0.5 

Dp-1 Gp31 Hypothetical protein SP1153 hypothetical protein 0.25 

Dp-1 Gp31 Hypothetical protein SP2168 putative fucose operon repressor FcsR 0.2 

Dp-1 Gp32 Hypothetical protein SP0194 conserved hypothetical protein (DUF1292) 47.5+ 

Dp-1 Gp32 Hypothetical protein SP0259 Holliday junction DNA helicase RuvB 47.5+ 

Dp-1 Gp32 Hypothetical protein SP1540 single-strand DNA binding protein 47.5+ 

Dp-1 Gp32 Hypothetical protein SP1669 MutT/nudix family protein 47.5+ 

Dp-1 Gp32 Hypothetical protein SP1915 hypothetical protein (LytTr DNA-binding domain) 47.5+ 

Dp-1 Gp33 Hypothetical protein SP1088 DNA repair protein RadC 0.5 

Dp-1 Gp34 Hypothetical protein SP0446 acetolactate synthase, small subunit IlvN 9 

Dp-1 Gp34 Hypothetical protein SP2157 alcohol dehydrogenase, Fe-containing (ADH) 2 

Dp-1 Gp39 Zinc finger domain protein, putative SP0259 Holliday junction DNA helicase RuvB 50+ 

Dp-1 Gp4 Queuosine biosynthesis protein QueE SP2036 PTS system, IIA component (PTS EIIA2) 25 

Dp-1 Gp44 Rho-like domain lipoprotein, putative SP0446 acetolactate synthase, small subunit IlvN 9.75 

Dp-1 Gp44 Rho-like domain lipoprotein, putative SP1050 putative transcriptional regulator (HTH domain) 4.75 

Dp-1 Gp44 Rho-like domain lipoprotein, putative SP1536 conserved hypothetical protein (methyl transferase 
domain) 

4.75 

Dp-1 Gp44 Rho-like domain lipoprotein, putative SP1575 conserved hypothetical protein (DnaB/D domain) 9.75 

Dp-1 Gp44 Rho-like domain lipoprotein, putative SP1725 sucrose operon repressor ScrR 2.25 

Dp-1 Gp44 Rho-like domain lipoprotein, putative SP2157 alcohol dehydrogenase, Fe-containing (ADH) 2.25 

Dp-1 Gp47 Hypothetical protein SP0687 ABC transporter, ATP-binding protein 49+ 

Dp-1 Gp48 Hypothetical protein SP1746 conserved hypothetical protein (HD 
phosphohydrolase domain) 

2.5 

Dp-1 Gp48 Hypothetical protein SP2168 putative fucose operon repressor FcsR 0.5 

Dp-1 Gp51 Hypothetical protein SP1672 recombination protein RecR 0.5 

Dp-1 Gp58 Holin SP1505 membrane protein (DUF20) 1 

Dp-1 Gp58 Holin SP1606 glycosyl transferase, family 2 25 

Dp-1 Gp58 Holin SP1731 conserved hypothetical protein (DUF1212) 2.5 

Dp-1 Gp58 Holin SP1751 putative transporter, CorA family 25 

Dp-1 Gp60 Hypothetical protein SP2024 PTS system, IIA component (PTS IIA) 10 

Dp-1 Gp72 Membrane protein, putative SP1606 glycosyl transferase, family 2 50+ 

Dp-1 Gp9 No similarity SP0259 Holliday junction DNA helicase RuvB 50+ 

Dp-1 Gp9 No similarity SP1395 putative phosphate transport system regulatory 
protein PhoU 

50+ 

Dp-1 Gp9 No similarity SP1504 TPR domain protein 0.5 

Dp-1 Gp9 No similarity SP2168 putative fucose operon repressor FcsR 50+ 
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Dp-1 and Cp-1 attack the host interaction network mainly at different positions 

The detected phage-host interactions reveal that Dp-1 and Cp-1 attack the host mainly by different 

PPIs (Fig. 28). Since both phages are remarkably different and belong to different phage families, 

these results were expected. The findings might indicate that both phages evolved different strategies 

to manipulate the host system by attacking or recruiting different protein binding partners.  
 

 
 
Fig. 28 Dp-1 and Cp-1 interactions with the host PPI network 
(A) The phages´ intra-viral networks are combined with a S. pneumoniae PPI network. The host network was 
constructed based on Y2H interaction data, kindly provided by Seesandra V. Rajagopala (JCVI, Rockville, MD) 
and Russ Finley (CMMG, Wayne State University School of Medicine, Detroit, MI). Nodes symbolize the 
proteins and edges the PPIs. Figure was drawn with Cytoscape (Shannon et al., 2003). (B) The network from (A) 
is simplified and the detected phage-host PPIs are highlighted. Numbers in the nodes correspond to the 
systematic ORF numbers of the corresponding species. Properties are given in the legend. Gene product 
descriptions (if available) are given in the figure. The intra-species node degree of certain proteins is indicated 
by the node size (number of interactions of a protein that can be counted in the intra-viral or intra-host PPI 
network). Expected expression timing of phage proteins post infection is indicated by different edge properties 
as given in the legend. Expression timing of Dp-1 proteins is based on predictions (3.1.1) and of Cp-1 used from 
(Martin et al., 1996b). Essential host proteins that bind phage proteins are labeled by †. Information about 
essential host proteins was integrated from several studies done with S. pneumoniae (Lee et al., 1999; Song et al., 
2005; Thanassi et al., 2002; van Opijnen et al., 2009; Zalacain et al., 2003). 
 

Interestingly, Cp-1 and Dp-1 gene products show overlapping interactions with two host proteins. On 

the one hand, this is the Holliday junction DNA helicase RuvB (SP0259) which is bound by five 

different Dp-1 proteins and gp16 (hypothetical protein) of Cp-1. This suggests that the host´s 

homologous recombination system might be critical for both phages. On the other hand, a putative 
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fucose operon repressor (SP2168) is bound by four different Dp-1 proteins and the Cp-1 protein gpC. 

This could mean that reprogramming of the fucose operon gene expression by SP2168 blockage might 

be an important event for both phages. While the latter two mentioned host proteins are the only ones 

attacked by both phages, there are other host proteins that have more than one phage interaction 

partner of the same phage species. These cases are included in Fig. 28B. For instance, the host 

oligoendopeptidase F (SP0979) is bound by Cp-1 Tail N protein (gp17) and gpC of unknown function. 

GpC was shown to be expressed early post infection whereas gp17 is expressed late (Martin et al., 

1996b). This indicates that there could be a need for the phage to block this enzyme, e.g., to prevent 

degradation of phage proteins all over the time the phage is present the host. This could be facilitated 

through targeting the same host protein by various phage proteins that are maximally expressed at 

different time points. 
 

Comparison of host and phage PPI network properties 

An unpublished S. pneumoniae Y2H interactome is available (references are given in the text of Fig. 

28). I compared various network properties to check whether the intra-viral networks differ in certain 

aspects from the host network. 
 

Interaction specificities: In Fig. 29A I plotted the intra-host network protein node degree against the 

number of host proteins that mediate interactions with the tested phage proteins. Surprisingly, nine 

host proteins undergo interactions with phage proteins but are not present in the host network. This 

indicates that phage proteins are capable to bind host targets that do not undergo necessarily physical 

contacts with other host proteins. Thus, phages can very specifically attack host proteins, e.g., Cp-1 

gp6 of unknown function binds to the NrdR host repressor that usually blocks expression of 

ribonucleotide reductase genes and primarily binds to its DNA repressor binding site (discussed later 

in more detail) (Torrents et al., 2007). On the other hand, phage proteins also bind to host hub 

proteins. Hubs are thought to play an important physiological role while having a high binding 

frequency (Dosztanyi et al., 2006). For instance, the conserved hypothetical protein SP0194, 

conserved in 99 bacterial species (COG3606) (von Mering et al., 2007), interacts with 38 various host 

proteins and with one phage protein (hypothetical protein gp32 of Dp-1). In summary, the majority of 

31 phage PPIs are mediated by host proteins with an intra-host node degree <10 indicating specific 

phage-host PPIs in contrast to 18 phage-PPIs that involve host hub proteins (node degree >10). This 

underlines that the phages can specifically attack proteins that do not undergo PPIs in the host as well 

as hub proteins. In the latter case the phage-host interaction is very specific since only a single phage 

protein binds to a single host hub protein. 
 

Cp-1 and Dp-1 attack frequently essential host proteins: Five previously published studies determined 

the essentiality of 480 S. pneumoniae genes which is approx. 20% of the genome (Lee et al., 1999; 

Song et al., 2005; Thanassi et al., 2002; van Opijnen et al., 2009; Zalacain et al., 2003). I used this 



RESULTS 

108 

 

information to check how often the phage proteins bind to essential host proteins. Therefore, the ratio 

of interacting essential and interacting non-essential host proteins (or the number of interactions, 

respectively) of different PPI datasets was calculated (Fig. 29B). Surprisingly, proteins of both phages 

bind more often to essentials than the host proteins themselves. Dp-1 shows 24.1% and Cp-1 even 

200.3% more targeted essential host proteins than the host itself. Cp-1 exhibits as many interactions 

with essential host proteins as with non-essentials (see also Fig. 28B). This finding becomes more 

dramatic if the relative interaction number is considered: Dp-1 shows 66.5% and Cp-1 284.3% more 

interactions with essential host proteins compared to the host-host PPIs. This is because the same 

essential host proteins can be multiply bound by various phage proteins. The calculations indicate that 

both phages bind frequently to essential host proteins and thus might target predominantly essential 

host processes. 
 

Phage proteins undergo more homomeric interactions than host proteins: Homomeric interactions 

play a crucial role in many protein functions, e.g., constitution of homomeric, quaternary enzyme 

complexes, or structural protein complexes. Dp-1 homomers occur 2.1 times and Cp-1 homomers 6.1 

times more frequently than homomeric interactions among S. pneumoniae proteins (Fig. 29C). Thus, 

the smaller a biological system is the more important self-interactions could be. Especially in the case 

of the bacteriophages, protein homomerization seems to play an important biological role in virion 

assembly. For instance, I detected various homomerization PPIs among structural components of Cp-1 

and Dp-1 (see above). Also three out of six proteins of the Que gene cluster of Dp-1 undergo 

detectable self-interactions as an example for assembly of homomeric enzyme complexes. 
 

Phage-interactions with functional host protein classes: To check whether certain host protein groups 

are preferentially bound or not bound by phage proteins I used the TIGR CMR cellular main role 

classification of S. pneumoniae proteins (Davidsen et al., 2010) and counted the number of interacting 

host proteins. As shown in Fig. 29D there are certain host protein groups that are targeted by both 

phages, e.g., proteins of DNA metabolism, proteins that have regulatory functions or that are involved 

in cell envelope biogenesis. This could mean that manipulation of these certain processes is important 

for both phages although host binding partners can differ. Other groups are targeted only by one 

phage, e.g., four interacting host proteins involved in transport and binding were detected for Dp-1 but 

none for Cp-1 proteins. As a consequence, taking advantage of host take-up systems by Dp-1 might 

represent a special property of this phage whereas Cp-1 might have no effect on this process. 



RESULTS 

109 

 

 
 

Fig. 29 Comparison of host-phage PPI network properties 
(A) The number of PPIs (node degree) among S. pneumoniae proteins compared to the number of host proteins 
that interact with phage proteins. The intra-host protein node degree is sorted by ascending values (X-axis). The 
Y-axis to the left represents the number of host proteins (in green) with a certain node degree (a node degree of 0 
was considered). The X-axis to the right represents the number of detected phage-host PPIs of a host protein (in 
purple) with a certain intra-host node degree (attack frequency) and indicates the interaction specificity of phage-
protein interacting host proteins. The section labeled in grey highlights the area including specifically interacting 
host proteins (defined by a node degree <10). Proteins with node degrees >10 were considered as hub proteins. 
(B) Bacteriophages bind essential host proteins more frequently than the host itself. PPI datasets are compared 
regarding the essentiality of productive host proteins (productive means that a host protein exhibits minimum 
one PPI in a dataset). PPI datasets are the intra-host network (SPN), Dp-1-host PPIs (Dp-1), Cp-1-host PPIs (Cp-
1), and the combined phage-host PPIs of Cp-1 and Dp-1 (Dp-1 + Cp-1). Bars in black represent the number of 
interacting essential host proteins divided by the number of interacting non-essential host proteins. Bars in grey 
indicate the number of PPIs that are mediated by interacting essential host proteins divided by the number of 
interactions that are mediated by non-essentials. (C) The phage PPI modules exhibit a higher number of 
homomeric interactions than the host. The different datasets represent intra-species networks. The number of 
homomeric interactions per dataset was counted and divided by the number of all PPIs of the network including 
homomeric and heteromeric PPIs. (D) Absolute number of detected phage-host PPIs differentiated by the main 
role of host proteins (TIGR cellular main role, (Davidsen et al., 2010)). (E) Host protein classes that interact 
more frequently with other host proteins than with phage proteins or vice versa: the sum of interactions among a 
certain host protein group (class node degree) was counted and divided by the number of all interactions of the 
intra-host network (the sum of all class node degrees). These were subtracted from the following ratio: the 
number of PPIs that a certain host protein class mediates with phage proteins was counted and divided by the 
sum of all phage-host PPIs counted for Cp-1 or Dp-1. A protein class with a negative value indicates that this 
class binds relatively more frequently with any other host proteins than with Cp-1 or Dp-1 proteins; groups with 
positive values indicate that they bind relatively more frequently with Cp-1 or Dp-1 proteins than with other host 
proteins. 
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I wondered whether certain host protein classes interact relatively more frequently with other host 

proteins or with phage proteins (and thus, if phage-host protein interactions preferentially are 

overrepresented in certain classes or vice versa) (Fig. 29E). Some host protein classes seem to be 

ignored by the phages: e.g., while “hypotheticals” interact frequently in the host PPI network they 

relatively do not exhibit many PPIs with phage proteins. Note, that in Fig. 29D this protein group 

shows the highest absolute PPI number with phage proteins. But given the fact that in the host network 

these proteins are involved in mediating 987 links, the absolute number of seven PPIs with phage 

proteins in this class is negligible. On the other hand, host proteins involved in DNA metabolism and 

regulatory functions do not mediate as many interactions in the S. pneumoniae network but undergo a 

relatively higher interaction number with phage proteins. This indicates that the phages interact with 

these certain classes relatively more frequently than the host itself. 
 

Comparison of T7 phage genetic host links with Dp-1 and Cp-1 virus-host PPIs  

The detected Cp-1/Dp-1-host PPIs were compared to the available genetic T7 phage-host links 

identified by Qimron and colleagues (Qimron et al., 2006). This was done to check whether there are 

overlaps among the detected PPIs and the genetic information available from T7 and thus if proteins 

from different hosts might be important for phage reproduction in general. 

As already mentioned, T7 growth is dependent on the presence of 11 non-essential E. coli genes, 

including proteins involved in LPS biosynthesis (not relevant for phages infecting gram-positives) and 

a thioredoxin. T7 growth is inhibited by over-expression of four host genes (dGTP triphosphatase, the 

hsdR subunit of the EcoKI restriction enzyme, the rcsA activator of capsule synthesis genes, and 

uridine-cytidine kinase). From these 15 host genes that have an effect on T7 reproduction 7  have 22 

orthologous proteins in S. pneumoniae (cluster of orthologous groups (COGs) (von Mering et al., 

2007)). The latter number results from paralogs present in S. pneumoniae. Surprisingly, one out of 

these 22 proteins undergoes direct binding with a phage protein identified in this study: the Cp-1 

lysozyme Cpl1 binds the S. pneumoniae uridine-cytidine kinase (Udk) which was shown by Qimron et 

al. to have a deleterious effect on T7 growth when it is over-expressed. Since Cp-1 is a T7-like virus, 

this overlap might indicate that Udk could be of general relevance for podovirus reproduction. 
 

Verification of phage-host PPIs by LuMPIS pull down assays 

The Y2H system is known to be one of the most sensitive methods to screen for PPIs (Braun et al., 

2009; Chen et al., 2010; Venkatesan et al., 2009). Nevertheless, there are often doubts left about the 

quality of Y2H interaction datasets since it is thought that many interactions pass the screen (false-

negatives) and many interactions are spurious (false-positives). The latter can be caused by randomly 

appearing yeast colonies, a heterologous experimental situation (e.g., expression of alien proteins in 

yeast), or by misfolded proteins that lead to sticky interaction. Random effects can be excluded by 

systematic Y2H retesting (as done here). Sticky interactions can be efficiently filtered from large PPI 

datasets since an unusual high protein node degree indicates a sticky behaviour. However, since the 
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Cp-1 and Dp-1 genomes have tiny gene numbers compared to other organisms such a simple filtering 

approach was not adequate. Thus, the data validation was done experimentally. 

First, I started to express a set of recombinant proteins from Cp-1, Dp-1, and S. pneumoniae in E. coli 

with the aim to use the lysates in classical pull down assays and to purify proteins for in vitro 

experiments. However, the majority of expression tests resulted in exiguous protein amounts 

indicating that the phage and S. pneumoniae proteins act either toxic in E. coli or cannot be expressed 

well because of the ORFs´ low GC-content. Regarding the latter two reasons I decided to check the 

interactions in a heterologous system: LuMPIS, a luminescence-based MBP pull-down interaction 

screening system (Vizoso Pinto et al., 2009), is a variation of the LUMIER system (luminescence-

based mammalian interactome mapping system) (Barrios-Rodiles et al., 2005) and can be applied in a 

96-format. It makes use of an MBP-tagged bait to pull down GFP-luciferase-tagged prey proteins that 

can be detected by luminescence readout. It was shown to function particularly well for the expression 

of ORFs with a low GC-content in mammalian cells (Vizoso Pinto et al., 2009). This technology 

allowed to test the interactions while avoiding problems related to protein expression in bacteria. Here, 

the aim was to validate the identified PPIs dataset by an alternative method that differs from the 

initially used Y2H method (genetic reporter in an “in vivo”-like situation in contrast to direct “in vitro” 

binding). 

I checked systematically a subset of the interactions that were identified in this work, namely the 49 

individual phage-host PPIs. Host proteins were consequently used as MBP-tagged baits and phage 

proteins as GFP-luciferase-tagged preys (GFP-luc).  

37 PPIs (75.5%) were above the cutoff of the luminescence intensity ratio (sample relative compared 

to MBP negative control) LIR>3 (Fig. 30). The results indicate that the dataset is of high quality 

including a wide range of PPIs that are reproducible by this alternative methodology. A conservative 

threshold of LIR=3 is commonly used for LUMIER/LuMPIS assays (Barrios-Rodiles et al., 2005; 

Vizoso Pinto et al., 2009). The remaining interactions that were below the threshold might be false-

positives due to their non-reproducibility. This leads to the assumption that the subset tested includes 

~1/4 false-positives. Since there were no crucial methodical differences compared to the intra-viral 

PPIs this number is probably similar for the Cp-1 and Dp-1 intra-viral PPI datasets. However, it was 

shown that many interactions which are not detectable by one method can be detected by others 

(Braun et al., 2009). This means that the interactions below the LIR threshold may be reproducible by 

other methods and represent LuMPIS false-negatives. 

In Fig. 30A/B I aligned the 3-AT scores of the Y2H retest experiments with decreasing LIR values. 

This was done to see if the signal intensities correlate or if there are general differences between Y2H 

and LuMPIS signal intensities. A linear correlation between LIR and the 3-AT score was expected. As 

shown in Fig. 30D the 3-AT and LIR values correlate weakly but positively. In general, high 3-AT 

scores are connected to high LIR values and vice versa. However, there are many exceptions 
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underlining that certain interactions exhibit preferentially higher signals in Y2H or by LuMPIS. This is 

not unexpected since the methods differ substantially. 

 

Fig. 30 LuMPIS verification of phage-host PPIs identified in the Y2H screens 
(A, B) LuMPIS assay results for Dp-1- and Cp-1-host protein interactions. Test pairs are sorted by decreasing 
LIR mean values. Tests were done as quadruplicates and thereof the LIR mean value was calculated. The dashed 
lines flag the LIR threshold (=3). (p) indicates the mean error probability between an MBP negative control and 
a single test pair calculated by a T-test. Significant p-values are symbolized as follows: (***) p<0.001; (**) 
0.001<p>0.01, (*) 0.05<p>0.01. Furthermore, the LIR mean value of each individual PPI is compared with the 
3-AT score determined by 3-AT titration in the Y2H retests (see above). A color gradient indicates the signal 
intensity of LuMPIS and Y2H (see Fig. legend above Tab. A). () labels additionally tested phage-phage PPIs. 
The Dp-1 gp16-gp10 PPI was identified in the previous intra-viral Y2H screen by both vector systems and 
reciprocally as AD/DBD-fusion proteins. Thus, the interaction was assumed as very reliable and used as a 
positive control. The Cp-1 PPI Cpl1-Cpl1 was detected by Y2H screens but could not be clearly reproduced in 
the Y2H retest. However, based on protein cross-link assays (see below) a homomerization interaction was 
expected and thus tested by this alternative method. (C) Two test examples presented as histograms. GFP-luc 
tagged phage preys were tested against MBP only (negative control) and a set of MBP-tagged host preys. Error 
bars indicate the standard errors of the LIR mean values. Asterisks indicate significant low error probabilities as 
given under in (A) and (B). (D) Regression analysis of LIR mean values of individual PPIs plotted against their 
corresponding 3-AT scores. LuMPIS assays were done in collaboration with Maria Guadalupe Vizoso, Max von 
Pettenkofer Institute, München. 
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3.1.5 Characterization of the Cp-1 lysozyme - host uridine-cytidine kinase interaction 

In the Y2H screens an unexpected interaction was detected: the Cp-1 lysozyme binds with S. 

pneumoniae uridine-cytidine kinase (Udk), an enzyme involved in the pyrimidine salvage pathway 

(Parks and Agarwal, 1973). It transfers the -phosphoryl group from ATP or GTP onto uridine or 

cytidine resulting in UMP or CMP, and ADP or GTP (Ahmed and Welch, 1979) (Fig. 33Fig. 33A). 

Udk is a non-essential enzyme. As already mentioned above, a genetic link between T7 phage and E. 

coli Udk was found by Qimron and colleagues (Qimron et al., 2006) indicating that this enzyme might 

play a general role in podovirus reproduction. Thus, I focused on analysis of this particular PPI. The 

interaction is “unexpected” since the lysozymes are in fact known to be responsible for the lysis step 

by hydrolyzing the peptidoglycan layer whereas a secondary extra-lytic function would be surprising.  
 

The Cpl1 cell wall binding module mediates the interaction with Udk 

The Cpl1 structure itself has been solved (Hermoso et al., 2003). It consists of three domains that can 

be divided into two functional modules (Fig. 31D): the N-terminal hydrolase domain is responsible for 

peptidoglycan degradation. It is connected via a short acidic linker to the C-terminal cell wall binding 

module that consists of cell wall binding domain cI and cII. The latter bind to choline in the 

peptidoglycan and are thought to orientate the enzymatic domain correctly. 

In order to map the domains involved in this PPI, I tested by Y2H experiments several Cpl1 truncation 

constructs. I systematically truncated Cpl1 into nine fragments by cloning (Fig. 31D) and tested them 

against the Udk full-length construct. Udk is a globular single-domain protein (Fig. 32C) and thus not 

useful to generate truncated constructs since this might have destroyed the protein´s integrity. 

No positives were detected for constructs that contained the catalytic domain indicating that it is not 

involved in contacting Udk (except the full-length clone). However, constructs that carried the 

hydrolase domain were self-activators. Consequently, the catalytic domain is responsible for the Y2H 

self-activation property.  

Surprisingly, four truncations involving the cell wall binding module were tested positively. The 

smallest construct that was still able to maintain the PPI represents a minimal construct of cell wall 

binding domain cI (residue 200-281). In contrast, when the cII minimal construct (282-339) was 

tested, the interaction was lost, indicating that cI is the interacting subdomain of the cell wall binding 

module.  

In comparison, the T7 lysozyme only consists of a catalytic domain (no cell wall binding domain is 

present given the difference between gram+ and gram- hosts). This is interesting since Cpl1 mediates 

the contact via the cI domain which is not present in the T7 lysozyme. This could indicate that Cp-1 

and T7 might have evolved different, analogous strategies either to bind to the host Udk or to affect it 

by a completely different mechanism. There exists no information if the T7 lysozyme can bind on the 

protein level to Udk. Furthermore, the Dp-1 cell wall hydrolase PalI that contains homologous cell 

wall binding repeats was tested negatively with Udk (Fig. 31C, consider also Fig. 19) indicating that 
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the PPI with Udk is a species specific property of Cp-1 and might be not relevant for siphoviruses. 

Moreover, I also checked for Udk if it is able to bind with itself since this was expected from literature 

information of the human Udk homolog (Suzuki et al., 2004). This was confirmed (Fig. 31B, last test 

position).  

 

Fig. 31 Domain interaction mapping of Cpl1-Udk PPI 
Cpl1-Udk interaction mapping by Y2H experiments. (A) Several Cpl1 truncation constructs tested as baits 
against the Udk prey. The figure shows images taken from diploid yeast on –His readout medium after 7 d 
growth at 30°C on varying concentrations 3-AT. Pairs were tested in the pDEST32/22 expression vector system 
as quadruplicates. Given numbers indicate the amino acid range of certain constructs (D). (FLP) Cpl1 full-length 
construct. (C) Self-activation control with empty pDEST22 prey plasmid and the bait construct. Asterisks 
indicate positively tested constructs on the corresponding concentration of 3-AT. Asterisks in brackets label 
weakly appearing colonies which are clearly above the background. (B) The same test constellation but bait-prey 
tag direction is interchanged. A homomerization PPI of Udk itself was detected (Udk/Udk). (C) reciprocal test of 
Dp-1 cell wall hydrolase (PalI, gp59) with Udk. (D) 3D-structure of Cpl1 and illustration of the linear Cpl1 
domain composition. Colors are the same in the linear and 3D-image. Bars below indicate the tested Cpl1 
constructs and their amino acid residue range. Asterisks highlight positively tested constructs that interact as 
fragments with Udk. 3D-structure was drawn with Pymol after (Hermoso et al., 2003) (PDB entry 1H09). 
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Cpl1 binds to Udk in vitro 

The Cpl1-Udk interaction was detected in the Y2H screens and was reproducible in a Y2H retest 

experiment. Furthermore, it was confirmed alternatively by LuMPIS (Fig. 30C) indicating that the 

interaction is also stable in vitro.  

To learn more about this PPI, I purified Cpl1 and Udk as N-terminally His6-tagged proteins for 

biochemical assays. This was done since the human Udk ortholog is known to function as a tetrameric 

complex (Suzuki et al., 2004). I wanted to check whether Cpl1 has an influence on the quaternary state 

of S. pneumoniae Udk and thus if it can destroy the enzyme´s function just by interfering with the 

integrity of its quaternary structure. 

To determine the quaternary structures of Cpl1 and S. pneumoniae Udk I chemically cross-linked the 

proteins with glutaraldehyde either individually or in a mix of both proteins (Fig. 32A) (2.2.2.9). The 

Udk sample showed a main band between 100 and 130 kDa. This band is in agreement with the size of 

a tetra-homomeric complex. The molecular weight (MWG) of a monomer is approx. 28.8 kDa and of 

a tetramer 115.2 kDa and fits between the corresponding marker bands. Some less intense smaller 

bands occurred, that could represent free homo-, di-, and trimers. In contrast, cross-linked Cpl1 

(MWG of homomer is approx. 42.0 kDa) led to a ladder-like pattern indicating that self-interaction 

also occurs here while the vast majority of the protein forms high molecular weight aggregates. When 

Cpl1 and Udk were combined all Udk bands disappeared indicating that the Udk complexes are 

incorporated into the Cpl1 aggregates. However, Udk mono- to tetramers seem to be mainly cross-

linked with the dominant high MWG aggregates of Cpl1 and thus no novel heteromeric bands 

appeared on the gel running below 170 kDa. In summary, these results show that (i) Udk of S. 

pneumoniae is preferentially organized as a tetramer similar to the human homolog, (ii) that it interacts 

with Cpl1, (iii) and that it is incorporated into the Cpl1 oligomeric complexes. Thus, Cpl1 might have 

no direct influence onto the homotetrameric structure of Udk and vice versa. 

Because of this finding I applied the purified proteins to gel filtration since the ladder-like pattern of 

Cpl1 could have been also attributed to the cross-link in vitro situation. As shown in Fig. 32B the 

majority of Cpl1 migrates as a monomer and only a small portion as a high-MWG complex. Thus, the 

ladder-like pattern was probably an artifact of the cross-linking condition. The main peak of the Udk 

sample appeared later than Cpl1 and likely represents the tetramer. The large intensity differences 

between Udk and Cpl1 are because Udk contains less aromatic amino acid residues compared to Cpl1 

(Cpl1 has thus a stronger absorption). When Udk and Cpl1 were mixed stoichiometrically, approx. 

half of Cpl1 and Udk was converted into high-MWG complexes, supporting the results of the cross-

linking assay. 

In summary, both proteins show homomerization interactions but do also bind to each other when they 

are mixed in vitro or tested by Y2H or LuMPIS assays. These results show that Cpl1 is able to convert 

Udk into high-MWG aggregates. However, it remains unclear what the functional consequences of 
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this interaction is. It is likely that the Udk tetramer is converted or incorporated into Cpl1 oligomers in 

vitro and thus that the tetramers are maintained. 

 

Fig. 32 Effects of Cpl1 onto the quaternary structure of Udk 
(A) Cpl1/Udk protein cross-link assay with glutaraldehyde (GA). Purified, N-terminally His6-tagged proteins 
were chemically cross-linked with GA and then separated on a tricine-SDS-PAGE gradient gel, stained 
afterwards with Coomassie Brilliant Blue R-250. (LC) loading controls of non-GA-treated protein samples, (M) 
protein marker. The quaternary protein states are labeled (e.g., by 1n, 2n, …). The assay was repeated 3 x with 
the same result. (B) Gel filtration of Udk and Cpl1. The experiment was done under neutral pH conditions (PBS 
pH7.4). Equal protein amounts of 100 µg were applied to the column individually or in combination. Expected 
quaternary structures are indicated in the corresponding colors. Gel filtration was done in collaboration with 
Daniel Nelson and Caren Stark, UMBI, Rockville, MD. (C) Quaternary 3D-structure of human Udk ortholog 
(UCK). The figure shows UCK in a ligand unbound state. Different subunits are indicated by different colors. 
Figure was drawn with PyMOL after (Suzuki et al., 2004) (PDB entry 1UFQ). 
 

Cpl1 does not affect the Udk enzyme activity in vitro 

Although the gel filtration and cross-linking experiments demonstrated that the integrity of the 

functional Udk tetramer might be not influenced by Cpl1, I tested if the Cpl1 interaction has an effect 

on Udk´s enzymatic activity. For instance, it is possible that Cpl1 blocks the substrate binding pocket 

directly or allosterically. If so, differences should have been measurable by testing the enzymatic 

activity of Udk in the presence of Cpl1. Qimron and colleagues already assumed that the genetic link 

of T7 with E. coli Udk might be an indicator that at least T7 could manipulate the pyrimidine salvage 

pathway although it is uncertain which T7 component might be responsible (Qimron et al., 2006). 

I applied the purified proteins to an enzymatic assay by using an experimental setup established for the 

human uridine-cytidine kinase (Ahmed and Welch, 1979) (Fig. 33). The products/educts were 

determined qualitatively by thin layer chromatography assuming that Cpl1 affects Udk activity 

drastically. While the S. pneumoniae Udk is able to convert uridine to UMP (shown for the first time), 

Cpl1 itself had no crucial effect on Udk activity after several time points even when tested in a 10 fold 

molar excess. At least under in vitro conditions, no effects are detectable. This leads to the conclusion 

that (i) Cpl1 does not block Udk activity in vitro, (ii) and thus the pyrimidine salvage pathway might 

not be influenced in vivo, (iii) although the interaction was demonstrated to occur in vitro, the binding 

epitope is likely to be outside the Udk-homomerization sites and the active center. I conclude that 
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Cpl1 does not destroy the Udk tetramers since the tetrameric integrity is essential to maintain its 

enzymatic activity (Suzuki et al., 2004). Thus, Cpl1 has no effect onto the quaternary structure and the 

enzymatic activity. Although this interaction is reproducible by several independent methods the 

physiological relevance might be not to manipulate the host´s pyrimidine salvage pathway. 
 

 

Fig. 33 Competitive Udk enzyme assay 
(A) Udk reaction. Udk transfers the gamma-phosphoryl group from ATP onto uridine resulting in 
UMP and ADP. (B) Competitive enzyme assay. Purified proteins (N-terminally His6-tagged) were 
used individually or combined while keeping a constant Udk concentration. Cpl1 was applied with an 
equal molar concentration and a 10 fold molar excess or depletion. Samples were taken after 5, 10, and 
30 min and separated by thin layer chromatography on DEAE cellulose with 0.03 N HCl mobile 
phase. The educts and products were visualized under UV light (254 nm). The educt/product bands are 
indicated for the 5 min samples, respectively. The single images were compressed 50% in height.
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3.2 Functional analysis of the conserved hypothetical protein YbeB  

E. coli protein YbeB and its orthologs such as plant Iojap are proteins of hitherto unknown function 

that are nearly universally conserved from bacteria to human. Here, I show that YbeB family members 

bind to ribosomal protein L14 in most tested species, including E. coli, Treponema pallidum, 

Synechocystis PCC 6803, Streptococcus pneumoniae as well as human mitochondria, and Zea mays 

chloroplasts. 

Although an E. coli YbeB knock-out has no obvious phenotype, GFP and -galactosidase reporter 

proteins get translated more rapidly than in wild-type cells. Thus, YbeB appears to be a negative 

regulator of translation in vivo by inhibiting ribosomal subunit assembly, given its association with 

L14 on the 50S-30S interface. 

Most proteins of wide phylogenetic distribution are well-characterized. However, a small group of 

highly conserved hypothetical proteins remain uncharacterized, usually because they have no obvious 

phenotypes when mutated. Unfortunately, even a thousand completely sequenced genomes have not 

helped to annotate some of these highly conserved genes (Kazuta et al., 2008). 

Escherichia coli YbeB (b0637) is a conserved hypothetical protein that belongs to cluster of 

orthologous genes (COG0799) and can be found from bacteria to man. Galperin and Koonin ranked 

YbeB and its orthologs third among uncharacterized proteins for further experimental studies 

(Galperin, 2001). However, a few clues as to YbeB’s function have emerged over the years. Most 

importantly, it was shown to co-migrate exclusively with the mature E. coli large ribosomal subunit 

and several studies identified interaction partners of YbeB orthologs in various species  (Butland et al., 

2005; Gavin et al., 2006; Jiang et al., 2007; Parrish et al., 2007; Rain et al., 2001; Titz et al., 2008). 

However, no study has followed up on these preliminary observations.  

3.2.1 High evolutionary distribution of YbeB homologs by low sequence conservation  

YbeB orthologs are widely distributed: The cluster of orthologous group COG0799 currently includes 

at least 506 YbeB-related protein sequences in 505 species (STRING 8.2) (von Mering et al., 2007). 

HMM signatures are more sensitive and are able to detect the YbeB/DUF143 signature (Pfam entry 

PF02410, Pfam V24.0) in 1,497 individual protein sequences distributed among 834 species (Finn et 

al., 2010). E. coli YbeB is a core representative of this family since it consists almost exclusively of 

the DUF143 domain (105 amino acids, (Tab. 30)). Given that YbeB interacts with L14 (L14p/L23e, 

Pfam entry PF00238) (this has to be mentioned here in advance) I wondered whether the 

DUF143/YbeB family members are as widespread as this ribosomal protein and projected both 

DUF143 and L14 HMM signatures onto the iTol tree of life (Hunter et al., 2009; Letunic and Bork, 

2007) (Fig. 34). 

While L14 is virtually universally present (with only one possible exception, namely the unicellular 

eukaryote Thalassiosira pseudonana), YbeB is only slightly more restricted: in Eubacteria DUF143 
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orthologs are present in nearly all species except Mycoplasma, Clostridia, and Buchnera and very few 

other exceptions. In Eukaryota DUF143 signatures are present in nearly all representative species in 

the tree. The signature is conspicuously absent in Archaea. Pfam HMMs are highly sensitive for 

detection of conserved sequence patterns. Since YbeB homologs exhibit overall a low sequence 

conservation (see below), there might be still the chance that the species that lack YbeB/DUF143 

homologs contain such a “homolog” with an extra low sequence conservation but with a conserved 

3D-structure and failed a detection by the HMM. 
 

YbeB orthologs are less conserved on the sequence level: While YbeB´s DUF143 signature shows 

nearly evolutionary omnipresence, its amino acid sequence is surprisingly not as well-conserved as in 

ribosomal proteins (Fig. 35A). The DUF143 core sequence exhibits only three amino acid residues 

which are absolutely conserved in all sequences. In contrast, an alignment of L14 from the same 

species reveals 10 absolutely conserved residues (Fig. 35B). While the strict conservation of L14 can 

be explained by its functional necessity to undergo conserved interactions with ribosomal protein L19 

as well as 23S and 16S rRNA, the functions of the few residues that are conserved in YbeB remain 

unknown. This suggests that YbeB function requires fewer conserved sites. Interestingly, the sequence 

length of YbeB homologs (105-612 amino acids) is much more flexible than that of L14 (122-145 

amino acids) (Tab. 30). Eukaryotic DUF143 orthologs typically contain an N-terminal signal peptide 

and thus have variable N-termini. The C-terminus of DUF143 proteins is also flexible in length. For 

example, the human ortholog C7orf30 has 40 additional residues that are not covered by the DUF143 

signature. The main exception is the yeast ortholog ATP25 which contains 366 C-terminal residues. Its 

precursor polypeptide is cleaved after residue 292 by an unknown mechanism as soon as it has been 

imported into the mitochondria, resulting in two cleavage products: the C-terminal fragment 

specifically stabilizes mRNA of ATPase subunit C (Oli1) while the function of the DUF143 

containing product is unclear (Zeng et al., 2008). 
 

Eukaryotic YbeB orthologs localize to organelles of eubacterial origin: Given the conservation of 

YbeB/DUF143 in Eubacteria, I wondered whether this protein family would be localized to plastids 

and mitochondria in Eukaryotes. I used WoLF PSort to predict the subcellular localization of all 

known eukaryotic proteins containing a DUF143 and found an overall high support for localization in 

eukaryotic organelles of eubacterial origin: 82% of the eukaryotic family members were predicted to 

be localized to mitochondria or chloroplasts (Horton et al., 2007). For the yeast ortholog ATP25, the 

localization to mitochondria was also experimentally confirmed (Zeng et al., 2008) and the Zea maize 

ortholog, Iojap, was found in chloroplast fractions (Han and Martienssen, 1995). 
 

YbeB orthologs appear mainly as single-domain proteins: In Tab. 31 I summarized representative 

proteins which contain the DUF143 domain in combination with other domains or motifs. In the vast 

majority of 1,874 cases (99.2%), DUF143 signatures occur as single domain proteins as in E. coli 
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YbeB. Interestingly, in nine bacterial homologs the DUF143 domain co-occurs with an N-terminal 

cytidylyltransferase domain. Most of these proteins are annotated as putative nicotinate 

(Nicotinamide) nucleotide adenylyltransferase (nadD), a key enzyme for synthesis of NAD+. 

However, there is no experimental evidence that links DUF143 to this pathway. Whether the 

remaining domain fusions shown in Tab. 31 are functional proteins or evolutionary artifacts remains to 

be seen, although the occasional fusion to nucleic acid-binding domain is suggestive of a DNA- or 

RNA-related function.  

 

 
 

Fig. 34 YbeB/DUF143 orthologs are widely distributed but absent in a few clades 
Presence of an YbeB ortholog in a species is labeled in blue, L14 in red. Only a few groups seem to lack 
YbeB/DUF143, most notably the archaeal, Clostridium, and Mycoplasma clades (highlighted by their names in 
the figure). DUF143 (Iojap-related) and L14 signatures were projected onto the iTol tree of life (V1.7) (Letunic 
and Bork, 2007) using entries IPR004394 and IPR000218 from Interpro V26.0 (Hunter et al., 2009). 
Phylogenetic analysis was done in collaboration with Björn Titz, Crump Institute for Molecular Imaging, Los 
Angeles. 
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Tab. 30 Study-related YbeB and L14 orthologs 
(Architecture) illustrates the domain architecture (including predicted signal peptides indicated by rectangles) 
while Pfam DUF143 is the position of the HMM signature. (PDB entries) known 3D-structures. (SigP) indicates 
predicted signal peptides. (Total protein length) in amino acid (aa) residues. Information is based on Uniprot 
entries. Protein descriptions are completed with information from species-specific databases (SGD, EcoCYC, 
EMBL). References for localization and signal peptides: (1) experimental evidence in vivo (this work), (2) 
experimental (Ishihama et al., 2008), (3) experimental evidence by chloroplast fractionating, Zea mays (Han and 
Martienssen, 1995), (4) experimentally by mitochondrion isolation/LC-MS in yeast (Reinders et al., 2006), (5) by 
plastide genome sequence, plastid-encoded (Markmann-Mulisch and Subramanian, 1988); predicted signal 
peptides (6) by SignalP 3.0 (Emanuelsson et al., 2007); (7) by TargetP 1.1 Server (Emanuelsson et al., 2007), 
predicted to localize to chloroplasts by PSORT II (Nakai and Horton, 1999).  
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Tab. 31 DUF143/Iojap signatures appear mainly as single-domain proteins 
Signatures based on domain information from Interpro 26.0 (Hunter et al., 2009). (Frequency) gives the number 
of proteins with this domain architecture. (Domain architecture) numbers indicate the sequence range of the 
corresponding domain. NA binding „X“ (last column) indicates that one co-occurring domain is known to bind 
to nucleic acids. 
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SYN 24 APATEHLVWTIAQAAEERKAGDLVILKVTDVS--------YLADYFVICTGFSRTQ-VRAIADN----------------
BHA 1 -MSNQELLQLAVNAVDDKKAEQVVALNMKGIS--------LIADFFLICHGNSEKQ-VQAIAHE----------------
ECO 1 -MQGKALQDFVIDKIDDLKGQDIIALDVQGKS--------SITDCMIICTGTSSRH-VMSIADH----------------
CVI 1 -MEIQEISKLAIEALEDIKGKDIIELDTSKLT--------SLFQRMIVATGDSNRQ-VKALANS----------------
SPN 1 -MNEKELLELVVKAADEKRAEDILALDVQDLT--------SVTDYLVITSSMNSRQ-LDAIAAN----------------
ZMA 110 DAECLSFAVSLAKAASEIKATDIRVLCVRRLV--------YWTRFFIILTAFSNAQ-IDAISSK----------------
CJE 1 ---MQERIDLIVKILDEKKAENIKTIDMSEQE--------YFVKYVIIAATLGERH-ALSLIDE----------------
HSA 87 HTGPKFDIDMMVSLLRQENARDICVIQVPPEM--------RYTDYFVIVSGTSTRH-LHAMAFY----------------
TPA 1 -MSANGAASAVAEALCDARAEDVCVFDVSARC--------GWADFAVVATVPGLLHGTHRLVCE----------------
SCE 98 KTSPNSLRKIADLLTGKLGLDDFLVFDLRKKSPNSVSAVNKLGDFMVICTARSTKHCHKSFLELNKFLKHEFCSSAYVEG
Con .    :.  :                    ::    .  :    :                   

SYN --------------IEKQ--VELVHGQLPTHTEGNSESIWVLQD--FGDVLVHTFMPEEREFYKLEAFWGHAQEQTLADIATAIGVAYNAPTSP 154 154 
BHA --------------LKK---VAQEQGIEIKRLEGYEQARWVLID--LGDVVVHVFHKDERAYYNLEKLWGDAPTVELEGVIS------------ 117  117 
ECO --------------VVQ---ESRAAGLLPLGVEGENSADWIVVD--LGDVIVHVMQEESRRLYELEKLWS------------------------ 105  105 
CVI --------------VQV---KLKEAGVDIVGSEGHESGEWVLVD--AGDVVVHVMLPAVRDYYDIEALWGGQKPSFAVGAAKPWSAV------- 122  122 
SPN --------------IRE---KVAQAGFKGSHVEGDAAGGWVLLD--LGAVVVHIFSEEMRAHYNLEKLWHEANSVDISEALA------------ 117  117 
ZMA --------------MRD----IGEKQFSKVASGDTKPNSWTLLD--FGDVVVHIFLPQQRAFYNLEEFYGNATPIELPFDTQRQ---------- 228  228 
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SCE NFNERQESRRKRRLARKSNLSKLLGRSSECSAKDLNSEAWYMIDCRVDGIFVNILTQRRRNELNLEELYAPENEKSKFQNIDSGNVPTISGVNE 271……612 
Con .     *   *   . :.:: :    *   .:: :                          
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Fig. 35 YbeB orthologs exhibit a low sequence conservation degree 
Multiple sequence alignments of representative YbeB and L14 orthologs. (A) YbeB orthologs: protein sequences 
from YbeB orthologs with experimental evidence for binary L14 interactions and additionally yeast and two 
orthologs from species with available 3D-structures are aligned. (B) Multiple alignment of corresponding L14 
protein sequences. Amino acid residues in blue boxes in the E. coli sequence are contact sites of L14 with 16S 
rRNA of the small ribosomal subunit (Gao et al., 2003). Residues labeled in red are residues that disrupt 
interaction with YbeB when mutated (Fig. 41). Amino acids in bold indicate sequence sections of the 
corresponding HMM core (Tab. 30). Consensus sequences at the top of each alignment were constructed with 
WebLogo V2.8.2 (Crooks et al., 2004). Multiple alignments were made with ClustalW2 (Larkin et al., 2007).
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3.2.2 Systematic examination of conserved docking sites of YbeB on the large 

ribosomal subunit 

As already mentioned above, recent large scale studies revealed many PPI partners of YbeB homologs 

from various organisms. However, no clear link of YbeB function could be indicated since the PPI 

partners play a role in various cellular processes. All known PPIs for YbeB homologs are listed in 

Tab. 37. A previous study could show that E. coli YbeB co-migrates exclusively with the large 

ribosomal subunit and thus might functionally participate in protein translation (Jiang et al., 2007). 

Since the 50S subunit surface offers many possibilities at many positions for factors to bind, I wanted 

to know where YbeB is able to bind exactly. The expected results could limit YbeB´s mode of action 

on the 50S subunit, e.g., if it might behave as a common chaperone, if interacting with various 

ribosomal proteins or if it has a specific function at a certain 3D-site on the 50S. To get deeper insights 

I checked systematically for putative binding sites of YbeB by testing several PPIs known from high-

throughput experiments that link YbeB with the translational but also other processes. 
 

Interaction partners of YbeB in T. pallidum: which translational components interact with YbeB? 

Initially, I screened the YbeB homolog TP0738 of Treponema palidum, the Syphilis spirochete, for 

potential binding partners by using a proteome-wide Yeast Two-Hybrid screen as described previously 

(Titz et al., 2008). This screen detected a total of 62 interaction partners (see suppl. Tab. 36 for a 

complete list). Next, I retested all 10 interactions that involved translation-related proteins (based on 

TIGR CMR cellular main role, (Davidsen et al., 2010)). Nine proteins tested positives (Fig. 36A): 

proteins of the large ribosomal subunit (L9, L14, L29, and L32), InfA (translation initiation factor 1), 

Def (peptide deformylase), ThiI (tRNA 4-thiouridine synthase), GatC (glu-tRNA amidotransferase, 

subunit C), and RimM (putative 16S rRNA processing protein). The interaction with L14 was by far 

the most stable when measured by the concentration of 3-AT, a competitive inhibitor of the reporter 

gene, HIS3 (Fig. 36A, left). The other interactions were relatively weak, with none of them detectable 

at more than 1 mM 3-AT as opposed to 50 mM for L14. Furthermore, the L14-YbeB interaction was 

the only one that was detectable in a reciprocal screen, that is both proteins could be used as bait or 

prey fusion. Thus, the L14-YbeB interaction is the most stable one in this tested set while all others 

might be transient interactions which may be physiologically irrelevant. 
 

Which interaction is conserved?  

I wondered if any interactions determined in T. pallidum as well as others from various published 

datasets are conserved in other species. Since YbeB is evolutionary widely distributed/conserved I 

expected that some of its interaction partners have to undergo a conserved interaction with YbeB. To 

identify these cases I tested by another Yeast Two-Hybrid experiment interologous pairs (“interologs” 

means conserved pairs) of E. coli, except GatC since E. coli lacks a homolog. Moreover, I tested eight 

putative interaction partners that have been identified in a protein complex together with E. coli YbeB 
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and L14 by Butland and colleagues (Butland et al., 2005) and four orthologous pairs detected by Y2H 

screens in Campylobacter jejuni (Parrish et al., 2007). Surprisingly, only the interaction with L14 

turned out to be conserved, again detectable as AD/DBD reciprocal pairs and up to 50 mM 3-AT (Fig. 

36B). All other tested pairs were negative and are summarized in Tab. 32. Thus, I concluded that L14 

is the primary and conserved binding target of YbeB on the 50S ribosomal subunit. 

 
 

Fig. 36 Mapping of conserved protein docking sites of YbeB with ribosome-related proteins  
Panels show Y2H tests with various concentrations of 3-AT (mM) in quadruplicate tests. “C” control (self-
activation test with empty prey vector). Expression vectors pGBKT7g/pGADT7g were used. (A) Interactions of 
T. pallidum YbeB (TP0738) with proteins involved in translation. YbeB binds specifically to L14 but also 
weakly to other ribosomal proteins in Y2H tests. Only YbeB-L14 shows a signal above 0.5 mM 3AT. 
Interologous tests of (B) E. coli L14/YbeB. See also Tab. 32. (C) Synechocystis PCC 6803. (D) Streptococcus 
pneumoniae TIGR4. (E) Human YbeB homolog C7orf30 and mitochondrial L14mt as full-length (FLP) and N-
terminally truncated constructs (numbers indicate the range of amino acids and are illustrated to the right of (E)).
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Tab. 32 Interactions of YbeB that are not conserved in E. coli 
Here, all putative interaction partners are listed which have been tested negatively with E. coli orthologs by Y2H 
experiments. Orthologs from T. pallidum and C. jejuni were selected by MBGD orthologous protein groups 
(Uchiyama et al., 2010). Gene product descriptions were taken from Uniprot entries of E. coli homologs. The 
reference set gives the source of YbeB orthologous interactions they were primarily described in. The 
interactions listed from Butland et al. are proteins that have been co-purified as protein complex of E. coli YbeB. 
 

Name 
E. coli  

locus tag 
Reference 

species 
Locus tag 
ortholog Gene product description 

Reference 
interaction set 

MiaB b0661 

C. jejuni 

Cj1454c tRNA-i(6)A37 methylthiotransferase 

(Parrish et al., 2007) 
SerS b0893 Cj0389 Seryl-tRNA synthetase 

HemA b1210 Cj0542 Glutamyl-tRNA reductase 

S10 b3321 Cj1708c 30S ribosomal protein S10 

DhaK b1200 

E. coli 

- Dihydroxyacetone kinase, N-terminal domain 

(Butland et al., 2005) 

YehL b2119 - Uncharacterized protein yehL 

YehQ b2122 - predicted protein 

L19 b2606 - 50S ribosomal subunit protein L19 

Cca b3056 - Multifunctional CCA protein 

L4 b3319 - 50S ribosomal protein L4 

YihU b3882 - Uncharacterized oxidoreductase yihU 

L7/L12 b3986 - 50S ribosomal subunit protein L7/L12 

ThiI b0423 

T. pallidum 

TP0559 tRNA sulfurtransferase 

(Titz et al., 2008), 
this work 

InfA b0884 TP0097 Translation initiation factor IF-1 

L32 b1089 TP0807 50S ribosomal protein L32 

RimM b2608 TP0907 Ribosome maturation factor RimM 

Def b3287 TP0757 Peptide deformylase 

L29 b3312 TP0197 50S ribosomal protein L29 

L9 b4203 TP0060 50S ribosomal protein L9 

 

Given the wide phylogenetic presence of both YbeB and L14, I wanted to know if the YbeB-L14 

interaction is conserved ubiquitously. Therefore, I tested in addition the pair in one Gram-positive 

bacterium (Streptococcus pneumoniae TIGR4) and a Cyanobacterium (Synechocystis PCC 6803) (Fig. 

36C,D). While the S. pneumoniae pair was detectable reciprocally again, the Synechocystis interaction 

was only found in the combination of DBD-L14/AD-YbeB. In both species, however, the interaction 

seemed to be strong, detectable at up to 50 mM 3-AT again. 

Finally, I wondered if these interactions are conserved in human and maize. Both, human and plant 

YbeB-homologs (C7orf30 and Iojap) contain a C-terminal DUF143 signature, hence their full-length 

ORFs were cloned as well as N-terminally truncated fragments excluding a predicted signal peptide. 

Since human C7orf30 is predicted to have a mitochondrial signal peptide (Tab. 30) I chose to test the 

mitochondrial L14 homolog, L14mt. I also tested a full-length clone and a construct (residues 20 to 

145) that excludes a mitochondrial signal peptide (Tab. 30). Both ORFs are encoded by the nuclear 

genome (Venter et al., 2001). No clear Y2H signal was detectable between L14mt and C7orf30 (Fig. 

36E) although this interaction could be verified in a pull down experiment and by BiFC in vivo (see 

below). Notably, weak signals were detected among L14mt constructs indicating a homomerization of 

L14mt. Certain C7orf30 constructs appeared to dimerize as well (Fig. 36E). 
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The YbeB-homolog of Zea mays (Iojap) carries the DUF143 signature also near its C-terminus. The 

ORF was tested as full-length construct and as three N-terminally truncated constructs that exclude a 

plastidal localization sequence (Tab. 30) (residues 63-228 and 77-228) and a DUF143 core fragment 

(residues 114-228). Iojap is encoded by the ij gene in the nuclear genome (Han et al., 1992). Because 

Iojap was isolated from plastidal fractions (Han and Martienssen, 1995), I tested the corresponding 

plastidal L14-homolog RPL14 as full-length clone. RPL14 is encoded by the plastid genome and thus 

has no signal peptide (Markmann-Mulisch and Subramanian, 1988). However, no positives were 

detectable (data not shown) since the Iojap constructs self-activated still in presence of 200 mM 3-AT 

(that is, Iojap baits were able to activate transcription of the HIS3 reporter without preys present). 
 

Cross-species interactions indicate a high L14-YbeB interaction co-conservation 

The L14-YbeB interaction appears to be conserved in many if not most species. Because the structures 

of both L14 and YbeB are known, inter-species interactions may shed additional light on conserved 

residues or structural features that mediate these interactions (see below). Therefore, I also tested 

cross-species interactions using Y2H assays with full-length constructs. Indeed, cross-species positives 

were found in nearly all possible species combinations (13 out of 15 possible combinations) (Fig. 37). 

While the intra-species pairs of Zea mays and human failed to bind again, they surprisingly did exhibit 

interactions with several prokaryotic counterparts. For instance, the maize Iojap prey bound to all 

bacterial L14 baits. DBD-C7orf30 interacted with the prey of T. pallidum and S. pneumoniae L14. 

These results are remarkable because YbeB is not all that well-conserved on the sequence level but 

still seems to retain its binding specificity. 

 

Fig. 37 Y2H cross-species interactions of Ybeb and L14 orthologs 
(A) Matrix representation. Various YbeB orthologs interact with L14 from other species and vice versa. For 
example, E. coli YbeB interacts with T. pallidum L14. Reciprocal means both proteins interact as prey and bait. 
Unidirectional interactions are positive only in one combination, indicated as bait-prey pair, e.g., LY = L14 as 
bait and YbeB as prey. (B) Alternative representation as mini-network. The direction of an arrow indicates the 
fusion protein interaction in bait  prey direction. Figure was drawn with Cytoscape (Shannon et al., 2003). 
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The YbeB-L14 interaction is conserved in man and plants 

Human and maize proteins either did not interact in the Yeast Two-Hybrid tests or were not useful 

because of auto-activation, so I tested these interactions by pull down experiments (Fig. 38). Human 

and Zea mays proteins were expressed as NusA or MBP fusions. Furthermore, I verified the E. coli 

interaction as GST (YbeB) and MBP fusions (L14). While the E. coli pair worked well in co-

expression (nearly equal protein levels could be achieved when co-expressed), the human and maize 

constructs were expressed separately and then the lysates were combined since the MBP fusions were 

expressed at much higher levels than the NusA constructs. In the pull down experiment I could 

confirm the E. coli interaction and the interactions among maize Iojap/RPL14 and human 

C7orf30/L14mt. 

 
 

Fig. 38 E. coli, maize, and human YbeB-L14 pairs interact in vitro 
(A) Pull down of E. coli YbeB and L14 as GST and MBP fusions, respectively. Constructs were co-expressed in 
E. coli BL21(DE3) and then GST-YbeB was used as bait and isolated by glutathione beads. Proteins were 
separated by SDS PAGE and detected with -GST or -MBP antibodies. (B, C) Pull down of human 
C7orf30/L14mt and maize Iojap/RPL14 complexes. YbeB orthologs were expressed as NusA fusions and L14 
orthologs as MBP fusions and protein lysates were combined. MBP fusions were used as baits and isolated with 
amylose beads. Samples were separated by SDS-PAGE and detected after Western blotting with -MBP and -
His6 antibodies. (i) input samples, (o) output samples. Constructs included the amino acid ranges shown on the 
right. Note that signal sequences were deleted in human L14 (B) and maize Iojap (C). 
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The human YbeB/L14 orthologs co-localize into mitochondria and interact in vivo 

In order to investigate the in vivo relevance of the C7orf30/L14mt interaction, I tried to detect both 

proteins in human mitochondria. C7orf30 and L14mt were both cloned as full-length ORFs into 

pcDNA3.1-HA-mCherry (Diefenbacher et al., 2008) with native N-termini. C-terminally the ORFs 

were tagged by mCherry fluorescenting protein. The plasmids were transfected into HeLa cells and 

then localization was observed by confocal microscopy (Fig. 39). As expected, L14mt localized to the 

mitochondrial compartment as indicated by MitoTracker mitochondrial staining. C7orf30 also 

localized to mitochondria exclusively. The overlap of MitoTracker and mCherry signals show clearly 

that mitochondrial L14 specifically co-localizes with C7orf30 into mitochondria. 

  

Fig. 39 Human C7orf30 and L14mt co-localize in vivo into the mitochondrial compartment  
(A) Reporter constructs used for protein localization. Rectangles indicate predicted signal petides. (B) 
Localization experiment of C7orf30 and L14mt in HeLa cells, respectively. (From left to right) Membranes 
stained by CFP-membrane (pECFP-Mem, Clontech), mitochondria with MitoTracker® Green FM (Invitrogen), 
protein localization by mCherry fusions, nuclear staining with DRAQ5, and overlay. Images were acquired by 
using a confocal laser scanning microscope (Zeiss LSM 510 Meta). Images are 630 x enlarged, blow-ups are a 
zoomed parts of the indicated cell. The assay was done in collaboration with Markus Diefenbacher, ITG, KIT, 
Karlsruhe.  
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Next, I wondered if C7orf30 and L14mt are also capable to interact in mitochondria. Both full-length 

ORFs were cloned into the vectors pcDNA3.1(+)-HA-VN and pcDNA3.1(+)-HA-VC (Roder et al., 

2010) with their native N-termini and C-terminal Venus fluorescenting protein moieties (Fig. 40A). 

After co-transfection C7orf30 and L14mt showed reciprocal complementation (Fig. 40B). Note that in 

the controls L14mt also interacted with itself while C7orf30 showed no dimerization signal. This partly 

contradicts the Y2H data which indicated homomerization of both proteins. This difference may be 

explained by different conditions (yeast nuclei vs. human mitochondria) or by the use of different 

fusion constructs that may either permit or inhibit an interaction (N-terminal tags used in Y2H while 

C-terminal tags used in this assay). 

 

 

Fig. 40 C7orf30 and L14mt interact in vivo  
(A) Constructs used for bi-molecular fluorescence complementation (BiFC). Rectangles indicate predicted signal 
peptides. (B) BiFC in HeLa cells. Overlay images represent BiFC, DRAQ5, and CFP-membrane stained cells. 
The corresponding BiFC constructs that were combined (co-transfected) for the complementation assay are 
indicated in the figure. Images show cells at 630 x magnification. The assay was done in collaboration with 
Markus Diefenbacher, ITG, KIT, Karlsruhe. 
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Mapping the YbeB binding site on E. coli L14 – YbeB caps conserved and critical L14 amino acid 

residues  

L14 is a nucleoprotein that is localized at the large ribosomal subunit on the of 50S-30S interface (Fig. 

41A). L14 was shown to mediate bridges with the 16S rRNA of the 30S subunit during assembly of 

the functional ribosome. Only three other 50S proteins undergo (beside rRNA-rRNA contacts) such 

30S contacts (Gao et al., 2003). Since the protein-interaction of YbeB with L14 turned out to be highly 

conserved, I wondered if also the amino acid residues that mediate the interaction are conserved as the 

logical consequence. First, I probed purified recombinant E. coli YbeB as GST- and MBP-fusion 

against an L14 peptide array with linear 15-mer peptides as described in (Titz et al., 2006a). However, 

I could not identify any interacting peptide (data not shown). Then I tried to identify critical residues 

by random mutagenesis of L14 and YbeB followed by a reverse two-hybrid assay. L14 and YbeB 

baits self-activated the URA3 reporter making it not possible for negative selection on 5-FOA 

containing medium (data not shown). Thus, I finally mutated L14 by site-directed mutagenesis. 

Therefore, I had to select a few less amino acid residue candidates. Based on the 50S 3D-structure 

(PDB id: 2AW4) (Schuwirth et al., 2005) I focused on amino acids that (i) were highly conserved (Fig. 

35B) and (ii) that were located on the L14 surface that is exposed towards the 30S small subunit 

interface. These criteria identified two adequate regions: K114 and a stretch of four continuous 

residues (T97, R98, I100, F101) (Fig. 35B and Fig. 41A,B).  

K114 was substituted by a single alanine codon while the T97-F101 stretch was replaced by four 

alanine codons. Then the constructs were tested again by a Y2H experiment (Fig. 41B). The 

interaction was lost in both cases, confirming that the interaction must involve the mutated conserved 

residues. Interestingly, T97 and R98 are supposed to be involved in bridge B8 between the 50S and 

30S subunits (Gao et al., 2003) (Fig. 41A). Consequently, YbeB could prevent this interaction on the 

3D-level. The highly conserved residue K114 is not known to mediate 16S rRNA contacts but its 

positively charged residue is exposed on the L14 surface (Fig. 41A). An explanation for the necessity 

for its conservation might be to specifically mediate and maintain the interaction with YbeB. 

Both identified epitopes are non-linear but are located in close three-dimensional proximity (Fig. 41A, 

Fig. 35B). This could explain the unsuccessful peptide array experiment since here linear peptides are 

tested: the integrity of the L14 structure may be needed to bind YbeB and thus linear peptides may not 

be sufficient for an interaction. The L14 mutant with the stretch T97-F101 replacement could lead to 

deleterious effects onto the 3D-integrity of L14. However, when wild-type and both mutants (K114 

and T97-F101) were expressed in E. coli as MBP fusions, no differences were visible regarding the 

solubility of the mutanted versions compared to wild-type L14 (wild-type L14 is hardly soluble as 

GST but as MBP fusion under the applied buffer conditions, data not shown). This indicates that the 

T97-F101 substitution does not destroy the 3D-integrity. 
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Fig. 41 Conserved amino acids mediate the interaction of L14 with YbeB 
(A) L14 in the context of the 50S ribosomal subunit (PDB: 2AW4) (Schuwirth et al., 2005). (I) The large 
ribosomal subunit. rRNAs are in grey, ribosomal proteins in color. (II-IV) The exposed surface of L14. (II) 
Conservation of L14 amino acids are highlighted in magenta (highly conserved), grey (moderately conserved), 
and turquoise (little or no conservation). Conservation scores were determined by ConSurf Surfer (Landau et al., 
2005). (III) Amino acid residues substituted by alanine. Mutated residues are highlighted: K114 and T97 to 
F100. (IV) Critical residues of L14 that contact 16S rRNA as determined by (Gao et al., 2003): L14 amino acid 
residues involved in bridge B5 are shown in red (E45 – G50) and B8 in yellow (N13) and green (T97, R98). 
Figures were drawn with PyMOL. (B) Mutated L14 does not interact with YbeB. L14wt: wild-type L14; T98-
F100: L14 with T98 to F100 replaced by four alanine residues; K114A: L14 with K114 replaced by alanine. “C” 
control (self-activation test with empty prey vector). Y2H tests were done reciprocally in both fusion protein 
directions. The image shows quadruplicate testes. Diploid yeast was incubated for 7 d on readout medium. 
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3.2.3 YbeB functions as a negative modulator of translation in vivo 

Gene knock-outs of translation-related proteins often cause growth defects under certain conditions or 

are lethal regarding the physiological significance of the translational process. In the existing literature 

there exists no experimental evidence that YbeB orthologs function indeed in translation. To find a 

YbeB-translation link also in vivo, I checked an E. coli ybeB knock-out strain by phenotyping and 

reporter assays. 
 

Absence of YbeB causes a growth defect under competitive conditions 

Given its near universal phyogenetic presence, YbeB was expected to be an essential gene. However, 

its gene knock-out in E. coli has no consequence on mutant growth under certain conditions (Baba et 

al., 2006; Jin et al., 2007). YbeB ORF is located at the first position in an operon including four more 

ORFs, rmlH, mrdB, mrdA, and rplA (Mendoza-Vargas et al., 2009). To exclude indirect effects onto 

the downstream ORFs, I flipped-out the kanamycin cassette that substituted the ybeB ORF. This 

resulted in a truncated ybeB ORF encoding a truncated 34 amino acid peptide (Baba et al., 2006). 

I tested the mutant towards general stress factors like high salt and high temperature in an agar plate 

assay but no growth defect was detectable compared to the wild-type (Suppl. Fig. 50). I did not check 

towards a cold sensitivity phenotype since this was already negatively tested for ybeB (Jiang et al., 

2007). Moreover, the deletion strain demonstrated growth similar – although consistently slightly 

impaired – to the wild-type strain under standard conditions (consider reference growth curves in  Fig. 

42B, Fig. 43A, and suppl. Fig. 51). Reduced growth under optimal conditions, cold, or heat 

sensitivities are typical for KOs of accessory proteins of translation and can result in degenerated 

ribosome and polysome profiles, e.g., as demonstrated by (Jiang et al., 2007; Rasouly et al., 2009). In 

contrast, gene knock-outs of the ribosomal core components are lethal (Baba et al., 2006). A paralog 

that could complement YbeB function is not present in the E. coli genome (Blattner et al., 1997). I was 

surprised about the absence of such basic phenotypes in the ybeB KO strain, given its conservation and 

strong association with 50S/L14. In addition, I tested the mutant towards sensitivity against chemical 

compounds that interfere with translation elongation (spectinomycin, chloramphenicol, gentamycine, 

and tetracycline) and transcription (rifampicin) in a growth curve assay (Suppl. Fig. 51). However, no 

clear growth differences were detectable in the ybeB strain. 

In order to be more sensitive, I then measured growth of ybeB in a competitive time-course assay 

(Fig. 42). When the KO strain was mixed with wild-type cells at equal cell numbers only 9% of the 

colonies turned out to be ybeB. This clearly shows that absence of YbeB causes a deleterious growth 

defect under competitive, more natural conditions, which is difficult to detect by a standard growth 

assay. 
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Fig. 42 The E. coli ybeB KO leads to reduced fitness 
(A) Number of wild-type and mutant colonies after 72 h of competitive growth at room temperature (as 
determined by genotyping PCR of 3 x 93 randomly selected colonies, see (2.2.3.9) for details). (B) Growth of 
ybeB deletion mutant and wild-type cells are similar when grown separately in 1 x MOPS minimal medium 
containing 0.2 % glucose. 
 

The loss of YbeB results in premature protein synthesis in vivo  

Since no phenotype of ybeB KO strain was detectable that indicates a growth defect under non-

competitive conditions, I used reporter gene constructs to test whether the absence of YbeB has an 

effect on translation in vivo. E. coli lacZ (encoding for -galactosidase) was cloned under control of an 

arabinose inducible promoter into plasmid pBAD24 (Guzman et al., 1995). This enzymatic reporter 

was chosen because of its high sensitivity. Wild-type and ybeB strains that harbor this construct were 

induced with low and high levels of inductor (0.002 and 0.2% w/v L-arabinose) in presence of 2 mM 

ONPG (2-Nitrophenyl-β-D-galactopyranoside). Then the ONPG turnover of growing cultures at 37°C 

was measured hourly.  

Unexpectedly, the mutant exhibited an earlier ONPG turnover compared to WT in presence of 0.002 

and 0.2 % inductor (Fig. 43A) suggesting YbeB having a deleterious effect in vivo on protein 

translation. Maximum ratios of ybeB/WT occurred already in the early phase, 2 h after induction in 

the presence of 0.002% (ratio 8.17) and after 1 h with 0.2 % arabinose (ratio 7.35) indicating that 

proteins are produced earlier or faster in the mutant. The plateau and decline of the ONPG curves at 

later stages might be due to formation of inactivated reporter protein or inclusion bodies. In the control 

experiment without arabinose there was still but a strongly delayed signal for WT and ybeB 

detectable with no striking difference between WT and mutant. LacZ expression was probably caused 

by leakiness of the arabinose-inducible promoter in combination with the high sensitivity of the 

reporter enzyme. In addition, a control mutant hrpA (Baba et al., 2006) was assayed in parallel. HrpA 

is a mRNA helicase which was shown to have strong beneficial effect on translation in vitro (Kazuta 

et al., 2008). However, there was no deleterious effect obtainable at all in vivo. The ONPG turnover 

curve corresponded exactly to that of the wild-type indicating that there is no effect of hrpA in vivo 

0

20

40

60

80

100

co
lo

n
y

n
um

b
e

r

0

0,1

0,2

0,3

0,4

0,5

0,6

0 2 4 6 8WT ybeB

WT
ybeB

t/h

O
D

60
0

A B



RESULTS 

135 

 

on translation but underlining that the specific effect is attributed to ybeB in this assay (data not 

shown). 

This phenotype can be rescued (Fig. 43B) as soon as YbeB is expressed from a plasmid. This leads to 

a delayed translational signal, confirming the findings that loss of YbeB causes a more rapid onset of 

protein translation (see below). 

To verify these findings and to exclude the indirect effects of enzymatic outputs, the saved cells of 

these samples were analyzed by Western blotting to visualize -galactosidase protein levels directly 

(Fig. 43C). Under non-induced conditions no reporter protein was detectable indicating presence of 

highly active but cryptic enzyme levels (data not shown). When induced with 0.002 % arabinose, 

ybeB already showed clear detectable reporter protein after 2 h while the wild-type did not; induction 

with 0.2 % arabinose resulted in detectable protein levels in both cases already after 1 h. The mutant 

strain again produced somewhat higher protein levels already after 1 and 2 h. For later time points 

protein levels were nearly equal. At early time points the -galactosidase protein levels correlate with 

the enzymatic turnover indicating that absence of YbeB leads to production of premature protein 

levels. 

To see whether the differences in resulting protein levels are caused by a translation effect or possibly 

might be due to different mRNA levels, I checked the presence of lacZ reporter mRNA by an RT-PCR 

(Fig. 43D). Therefore, the reporter strains were grown again under the same conditions and induced 

with 0.002% arabinose since here the clearest differences were found in the enzymatic readout as well 

in the -Gal immonodetection experiment. In the non-induced samples little PCR product was 

detectable underlining the leakiness of the promoter. However, tests of later time points revealed that 

there is no difference of mRNA levels visible between WT and ybeB. These results underline that the 

production of premature protein levels in ybeB is specifically based on a translational effect and not 

caused indirectly on the transcriptional level. 

Finally, I verified these observations using a GFP-based reporter assay (Albano et al., 1998) (Fig. 

43E). In concordance with the lacZ reporter system, the ybeB deletion mutant showed a more rapid 

increase in protein (GFP) levels compared to the wild-type strain. The maximum signal ratio between 

ybeB and WT was again observed in the early phase (after 1 ½ hours): a ratio of 2.00 for induction 

with 0.002 % L-arabinose and a ratio of 1.29 for induction with 0.2 % L-arabinose. The strikingly 

higher GFP fluorescence intensity of ybeB at the early time point is clearly visible by fluorescence 

microscopy (Fig. 43F).  

Taken together, by using these reporter assays I was able to demonstrate that ybeB deletion results in a 

more rapid onset of protein translation in vivo and thus strongly suggest a functional role of YbeB in 

protein translation as a negative modulator– possibly, in early translational processes such as 50S/30S 

ribosome complex assembly. 
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Fig. 43 The loss of YbeB results in a more rapid onset of protein translation 
(A) A -galactosidase reporter gene was induced with arabinose in the WT and the ybeB gene deletion strain 
and its activity measured as ONPG turnover for varying inductor concentrations. Solid lines represents ONPG 
turnover, dashed lines OD600 reference growth curves determined in a separate experiment under identical 
conditions but without ONPG. The assay was repeated several times independently with the same result. In 
addition, a control gene deletion mutant (hrpA) was assayed and showed ONPG turnover identical to the wild-
type, further supporting that a YbeB specific effect is observed (data not shown). (B) Rescue assay: the curves 
show ONPG turnover assays equally done as in (A). LacZ reporter was induced with 0.2% L-arabinose. YbeB 
was constitutively expressed from pCA24N (Kitagawa et al., 2005). “V” represents the control measurements 
(strains transformed with pCA24N empty vector). Note, that YbeB-overexpression causes in the WT as well in 
the ybeB strain a delayed signal. (C) -galactosidase levels, measured by Western blotting using a rabbit -HA 
antibody. The lacZ reporter ORF was 3´-terminally tagged with a hemagglutinine tag. LC: loading control. The 
stripped PVDF membrane was hybridized with polyclonal goat -GST antibody that binds to an unknown E. 
coli protein with a MWG of approx.72 kDa, here used as loading control. (D) lacZ mRNA level as determined 
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by RT-PCR. Total RNA was extracted from samples that had been induced with 0.002% L-arabinose and were 
obtained under the same experimental conditions as in the reference growth curves from (A). 5 µl PCR products 
were separated on a 2% agarose gel and stained with ethidium bromide. (-RT) Negative controls are shown 
(DNaseI treated samples w/o reverse transcriptase). As loading control (LC) E. coli alkaline phospatase phoA 
mRNA was assayed. (E) Translation of a GFP reporter expressed from plasmid pBAD-GFP (Albano et al., 1998) 
results also in a premature protein level in ybeB. In this assay the GFP reporter protein production is measured 
by its GFP fluorescence in growing E. coli cultures. A maximal ybeB/WT GFP fluorescence signal ratio is 
observed 1 ½ hours post induction with 0.002% arabinose. This experiment was repeated several times 
independently with the same result. (F) This difference can also be directly observed by fluorescence 
microscopy: while ybeB shows already a bright GFP fluorescence after 1 ½ h post induction with 0.002% L-
arabinose the wild-type GFP signal is still weak. Images show cells 400 x magnified. 
 

3.2.4 In silico-protein docking of YbeB/L14 reveals that YbeB interferes with 50S-30S 

assembly on the 3D-level 

Because the crystal structures of both YbeB and L14 are known (2.2.6), as is the fact that L14 is 

associated with the 50S subunit (Jiang et al., 2007), I docked YbeB to the area of L14 that is accessible 

in the context of the 50S particle. This was done to prove on the 3D-level which consequence this 

interaction could have on the ribosomal subunit assembly. A completely unconstrained docking of L14 

and YbeB produced a list of putative conformations (“models”) sorted by the docking scoring 

potential (see Methods). Model #17 was the first one where YbeB had no backbone clashes with other 

parts of 50S.  

Remarkably, that model also involved the representatives from the two sets of highly conserved L14 

residues that have been shown as critical for the interaction based on the direct mutagenesis 

experiments (Fig. 41). Specifically, the interface contains residue K114 (shown to destroy the 

interaction when mutated alone) and residues T97, R98 (the mutagenesis has only been done for a 

group mutation 97-100 and has been shown to interrupt the interaction). T97 and R98 also belong to 

the bridge B8 with the 16S RNA. 

As it can be seen from the Fig. 44, binding of YbeB to 50S at this position would overlap substantially 

with 16S RNA contacts of L14 in the assembled 70S unit. Thus, the predicted binding of YbeB would 

prevent the assembly of 70S from 50S and 30S, supporting the hypothesis that YbeB functions as a 

negative regulator of ribosomal translation. 
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Fig. 44 YbeB interferes with 50S-30S assembly on the 3D-level 
A docking model of YbeB against L14 on the 50S subunit of E. coli. Full views on 70S (left) and close-ups 
(right) in different presentations. Critical residues that mediate YbeB interaction on L14 or are involved in 
contacting 16S rRNA are stained according the color code from Fig. 41. When YbeB is docked onto L14 on the 
50S subunit, the 30S subunit cannot bind to 50S anymore in the L14 region. This suggests that binding of YbeB 
is transient and may be regulated by an unknown mechanism. In silico docking was done in collaboration with 
Andrey Tovchigrechko, JCVI, Rockville, MD, USA. The coordinate files are attached to the e-supplement. 
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4 Discussion 

4.1 Intra-viral PPIs of Dp-1 and Cp-1 and interactions with their host S. 

pneumoniae  

4.1.1 PPI data quality – the problem with false-negatives and false-positives  

Each PPI detection method is prone to false-negative and false-positive interactions (Braun et al., 

2009; Venkatesan et al., 2009). Since no PPI dataset determined by high-throughput methods is ever 

perfect, it is of general interest to determine or estimate the number of PPIs that failed to be detected 

or that might be false. This can be done experimentally, by bioinformatical analysis, e.g., comparison 

of conserved interactions from various datasets (Titz et al., 2008), or by comparing literature curated 

PPI datasets (Rajagopala et al., 2009). 
 

False-positives: I verified the phage-host PPI dataset by LuMPIS pull down assays and could 

reproduce 75.5% by using this alternative method. The remaining interactions were below the 

threshold indicating that ~ ¼ of the PPIs for the phage-host and intra-viral dataset could be false-

positives, at least in this system. However, this assumption takes into account the non-reproducible 

PPIs only. As shown by several studies, it is not surprising that PPIs detected by a primary method 

pass the successful detection by an alternative method (Braun et al., 2009; Venkatesan et al., 2009). 

This might be due to the application of different fusion tags, expression systems, or the experimental 

situation (in vivo vs. in vitro). However, if a PPI is reproducible by different methods, this supports its 

validity and makes it attractive for further experimental investigation. 

False-positives may be PPIs that take place in vivo but without having any physiological effect. 

Alternatively, certain bait or prey proteins may allow the yeast cells to grow without an underlying 

interaction. In my case, I cannot estimate the total number of false-positive PPIs detected in this study. 

Usually large PPI datasets can be filtered to exclude sticky proteins that exhibit an abnormally high 

PPI number. Using such a filtering strategy was not reasonable for my datasets since the phage 

genomes and thus the interaction spectrum is too small to define a clear threshold. 

Recent attempts estimated the number of Y2H false-positives by using a negative gold-standard set of 

92 literature-curated human PPI pairs (Braun et al., 2009). This negative set was recently tested also 

with the Y2H expression vector systems that have been used in this work (Chen et al., 2010). Chen 

and colleagues determined a false-positive rate of 6.5% for the pGBKT7g/GADT7g vector system and 

5.4% for the pDEST32/22 system. If both vector systems are combined, an overall false-positive rate 

of 10.9% can be assumed for the intra-viral PPI network which is clearly lower than the estimated 

false-positive rate determined by the LuMPIS assays.  
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False-negatives: Determination of PPIs that are missed by Y2H or other assays is not a trivial task 

since these PPIs are “invisible”. False-negatives can be caused by applying recombinant proteins 

(steric hindrance caused by the tags) or by the absence of protein modifications (e.g., proteolysis for 

structural proteins, discussed below). 

Attempts were also done to estimate this invisible PPI fraction by using a positive gold-standard set of 

92 literature-curated human interaction pairs (Braun et al., 2009). It has also been tested with the 

expression vector systems that were used in this study (Chen et al., 2010). A total of 48.9% PPIs were 

not detectable by the pGBKT7g/pGADT7g system and 66.3% failed the detection once tested with the 

pDEST32/22 system. When both vector systems were used in parallel, the false-negative rate was 

lowered to 37%. It is unclear why these two expression vector systems lead to large non-overlapping 

PPI patterns. For instance, I detected in the intra-viral screens of Dp-1 and Cp-1 an overlapping 

fraction of 9.6% and 17.6%, respectively (Fig. 22A, Fig. 24A). As already mentioned, it is suggested 

that differences in the plasmid copy number or the fusion protein linker regions cause such differences 

(Rajagopala et al., 2009). However, 37% false-negatives can be estimated for the intra-viral PPI 

datasets since I screened the phage proteins with both vector systems under the same conditions. This 

confirms that the application of alternative systems can clearly help to enhance the screen sensitivity. 

In the case of the phage host-PPIs this number of putative false-negatives is presumably higher since 

(i) only the pDEST32/22 system was applied, (ii) the S. pneumoniae array covered only 76.3% of its 

proteome, (iii) the pooling-strategy caused another number of intrinsic false-negatives of approx. 43%, 

and (iv) the fusions were screened only in one tag-direction (as phage-DBD  host-AD fusions). Only 

about ~1% of all interactions can be found when bait and prey fusions are inverted (Titz et al., 2008). 

Considering all these factors, I estimate the false-negative rate of the phage-host PPI dataset to be 

>90% with an absolute number of ~440 missing PPIs. However, this immense number might be too 

high considering the fact that approx. 20% of the host proteome had to interact with phage proteins 

(and this would result in an abnormal high in average node degree for phage proteins). In that case the 

false-negative rate might be presumably lower than calculated. 

Finally, I summarized putative false-negatives that failed the detection but which I expect to bind in 

vivo based on homologous and analogous PPIs known from other phages (Tab. 33) (highlighted also in 

Fig. 45C and Fig. 46A). For instance, some expected PPIs were absent among structural Dp-1 and Cp-

1 proteins. For instance, I observed no interaction involving the Dp-1 portal protein gp38. In many 

other phages, portal proteins undergo a homomeric interaction by building dodecameric rings (Doan 

and Dokland, 2007; Driedonks et al., 1981; Kochan et al., 1984). In coliphage T4 the portal protein 

was found interacting with the major capsid protein and the large terminase subunit (Fokine et al., 

2004; Malys et al., 2002). In Bacillus phage SPP1 the portal protein connects the capsid with the tail 

(Lhuillier et al., 2009). A possible reason for the absence of detected interaction is that some phage 

proteins undergo post-translational cleavage as demonstrated for T4 major and minor capsid proteins 

and Cp-1 major head protein (Laemmli, 1970; Martin et al., 1998b). Such cleavage processes occur in 
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a sequential manner during the stepwise coordination of the virion assembly in vivo but cannot be 

simulated in pairwise interaction tests. 

On the other hand, I expected the Dp-1 sigma subunits to interact with the host RNA polymerase and 

the Dp-1 DNA polymerase III system to bind to host DNA polymerase III core subunits since these 

components are not encoded by the Dp-1 genome. Although such PPIs were not identified, it might be 

necessary to recruit these factors to successfully drive Dp-1 transcription and DNA replication. 
 

 

Tab. 33 Putative false-negatives that failed detection in the screens 
The table lists published PPIs from other phages (PPI is expected to occur in Dp-1 or Cp-1), direct references for 
Cp-1 and Dp-1, and a logical interpretation of the dataset. Methods were included that do not demonstrate direct 
physical binding (e.g., electron microscopy (EM)) but suggest that a PPI must occur between proteins. 
 

PPI Comment Method Reference 

Cp-1 terminal protein (TP) with Cp-1 DNA 
polymerase 

DNA pol. makes use of TP-dependent 
protein priming mechanism while binding to 
TP. Demonstrated with 29 homologs. 

Co-purification (Martin et al., 
1996a) 

Cp-1 MHP protease with MHP No direct physical PPI was demonstrated. 
Leads to cleavage of MHP precursor. 

Co-expression (Martin et al., 
1998b) 

Cp-1 and Dp-1 MHP (homomerization) Information considered from T7 and 29 Yeast Two-
Hybrid, EM 

(Bartel et al., 1996; 
Tao et al., 1998) 

Cp-1 lower collar protein with antireceptor Expected (discussed in the reference);  29 - (Martin et al., 
1996b; Tao et al., 
1998) 

Cp-1 connector with MHP Information considered from 29 EM (Tao et al., 1998) 

Cp-1 lower collar protein with connector Information considered from 29 EM (Tao et al., 1998) 

Cp-1 terminase (encapsidation ATPase) 
with connector 

Suggested. No direct binding was 
demonstrated in 29. 

DNA packaging 
assays 

(Grimes and 
Anderson, 1997; 
Guo et al., 1986) 

Dp-1 large terminase subunit 
(homomerization) 

Information considered from T4 Peptide display (Malys et al., 
2002) 

Dp-1 portal protein (homomerization) Information considered from SPP1 EM (Dube et al., 1993) 

Dp-1 tape measure protein with major tail 
protein 

Information considered from SPP1 EM (Plisson et al., 
2007) 

Dp-1 portal protein with major head protein Information considered from T4 EM (Fokine et al., 
2004) 

Dp- 1 portal protein with large terminase 
subunit 

Information considered from T4 Peptide display (Malys et al., 
2002) 

A Dp-1 sigma subunit with a host RNA 
polymerase core subunit 

Is expected since Dp-1 does not encode for 
an own RNA polymerase but for sigma 
factors. 

Interpretation - 

A Dp-1 DNA pol. III subunit with the host 
DNA pol. III core enzyme. 

Is expected since Dp-1 does not encode for 
own DNA polymerase III core components. 

Interpretation - 
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4.1.2 Virion models: functional protein linkage maps of virion associated proteins of 

Dp-1 and Cp-1 implicate expected and unexpected proteins to function in virion 

assembly - a comparative view 

Partial and whole virion 3D-structures have been solved successfully and provide detailed information 

about the composition and arrangements of structural proteins of phages such as T4, SSP1, 29, N4, 

and P22 (Chang et al., 2006; Choi et al., 2008; Dube et al., 1993; Fokine et al., 2004; Leiman et al., 

2003; Plisson et al., 2007; Tao et al., 1998; Xiang et al., 2006). These studies were mainly done by 

using cryo-electron microscopy in combination with protein crystallography under static conditions. 

Since virion assembly is a highly dynamic process and no structural information is available for the 

Cp-1 and Dp-1 particles, I used a data integration strategy to develop virion models for these two 

phages: these models have the advantage that the applied Y2H system is adequate to identify also 

transient PPIs that could play a role during virion morphogenesis and are normally not detectable by 

other methods. I used the identified Y2H PPIs, homology-based protein annotation, information from 

literature, and mass spectrometry results for Dp-1 proteins to propose functional virion linkage maps 

that highlight which expected and unexpected proteins could play a role in this process. The models 

are especially helpful to get novel hints about the functions of unknown proteins. 
 

A Dp-1 virion model 

Structural proteins and putative maturation factors: In order to develop a model of the Dp-1 virion, I 

integrated genome annotation, binary interactions, and LC-MS/MS data of whole Dp-1 particles 

(unpublished LC-MS/MS data was kindly provided by Mourad Sabri, Université Laval, Québec) (Fig. 

45). LC-MS/MS identified 8 proteins in purified Dp-1 particles, primarily known structural proteins 

and one hypothetical protein (gp42) (red proteins in Fig. 45). Another three proteins (gp40, gp41, and 

gp53) could be linked by functional annotation as well as by binary protein-protein interactions and 

might function as morphogenetic factors such as chaperones dissociating from the mature virion since 

they were not detected by LC-MS/MS. For example, the major capsid protein gp43 interacts with gp41 

which is a homolog of the minor structural protein gp20 of Staphylococcus phage ETA. Gp41 could 

be the Dp-1 capsid scaffolding protein since it interacts specifically with gp43, but does not appear to 

be a major structural component as determined by LC-MS/MS. Finally, 10 hypothetical gene-products 

from the structural gene clusters including such whose annotation do not clearly link them to the virion 

process could be linked to the virion by Y2H interactions (blue proteins in Fig. 45AB). Also, these 

candidates were not detected by LC-MS/MS indicating that their role in virion assembly is presumably 

transient. Several known or predicted structural proteins were not detected by LC-MS/MS but found to 

interact in Y2H screens as homomers such as gp56. Another hypothetical protein, gp33, is encoded by 

the reverse transcribed module and links head and tail proteins. Finally, gp42, gp45, and gp49 were 

detected by LC-MS/MS but binary PPIs were not found that link them directly with other structural 
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components. As a consequence, by combining mass spectrometry data with Y2H data, I could 

physically associate 21 proteins that are encoded by the morphological/structural module including 

several hypothetical proteins. 
 

Unexpected interactions with other virion components: Seven out of eight proteins identified by LC-

MS/MS were expected structural proteins since they are homologous to known virion proteins. In 

addition I found 12 non-structural related gene products that interact with the structural core (Fig. 

45D), e.g., unexpected PPIs between enzymes involved in queuosine metabolism (QueD, QueE, QueF, 

QueT) with the proteins that are presumably involved in virion assembly. One possible explanation is 

that these interactions may function in vivo as feedback signals for protein translation. Proteins such as 

gp44, gp33, or gp55 could block the Que enzymes when a critical level of structural phage proteins is 

reached, thus saving energy spent on translation and queuosine biosynthesis. Ten additional 

interactions were also detected that involved the putative RNA polymerase sigma factor gp69. 

As mentioned already (3.1.3), there is an additional active cross-talk among structural components and 

replication proteins. For example, the DNA polymerase I (gp71), DNA polymerase III subunit  

(gp10), DNA ligase (gp16), and DNA primase (gp68) interacted with proteins likely involved in DNA 

packaging (Fig. 45D). The transfer of DNA into the pro-capsid must be coordinated with replication 

and the observed interactions associate terminase assembly, DNA packaging, and other processes. 

Holliday structure intermediates that occur during T4 DNA replication have a negative effect on DNA 

packaging but can be resolved by a T4-encoded endonuclease that binds the portal protein (Kemper 

and Brown, 1976; Luftig et al., 1971). The fact that DNA replication/repair enzymes like T4 DNA 

ligase are needed in vivo for efficient packaging suggests a close local association of DNA packaging 

and DNA replication/repair processes (Zachary and Black, 1981). In Dp-1 the interaction of gp23 with 

gp16 (DNA ligase) indicates that the ligase could close DNA nicks during packaging. Recruitment of 

Dp-1 gp71 (DNA polymerase I) via gp22/gp23 interaction could also initiate DNA repair or primase 

primer displacement in parallel to packaging. Interestingly, gp23 of Dp-1 interacts in addition with the 

DNA polymerase III -clamp subunit (gp10), while in T4 the large terminase subunit was shown to 

interact with the T4 -clamp subunit (Malys et al., 2002). This suggests a role of the -clamp/DNA 

polymerase III in DNA packaging while distant phages developed analogous interactions to target the 

-clamp. 
 

DNA packaging and terminase: In many tailed phages which use a headful packaging mechanism, 

efficient DNA encapsidation requires an active portal protein embedded in the procapsid portal vertex 

as well as an interacting terminase complex (Chai et al., 1994; Droge and Tavares, 2000; Isidro et al., 

2004a; Isidro et al., 2004b). Although I could not detect any interaction of the Dp-1 terminase (gp37) 

with the portal protein, I discovered several interactions (Fig. 45B) that link terminase-associated 

proteins to capsid components: gp39, gp23, and gp33 bind to gp43 (major capsid protein), gp22 to 

gp41 (minor capsid component), and gp33 to gp44 (predicted lipoprotein). These interactions could 
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mediate the terminase assembly in a cooperative manner with the portal vertex. The terminase 

associated gp23 contains a partial low level similarity to large terminase subunits from other phages 

and seems to act as a hub by binding virion associated proteins (gp49, gp22, gp48, gp39). Gp23 thus 

could be important for recruiting additional protein factors to the terminase complex that stimulate the 

packaging process. It is interesting that the gp23 sequence does not contain a HTH motif which is a 

key feature for the small terminase subunit in phage  and important for cooperative DNA-binding and 

DNA packaging (de Beer et al., 2002). Thus, gp23 cannot be viewed as a canonical small terminase 

subunit, but it could rather function as an adaptor protein. However, the hypothetical protein gp39 

contains a DNA-binding motif (DNA polymerase alpha zinc finger, (Pfam PF08996)) and associates 

via gp36 with the large terminase subunit. Thus Gp39 could be a key component of the terminase 

complex by binding the DNA substrate. Notably, in genomes of other long tailed pneumococcal 

phages like EJ-1 and MM1 a canonical small terminase subunit also appears to be missing (Obregon et 

al., 2003; Romero et al., 2004). All these phages may thus use untypical packaging machines. 
 

How do the lipids become an integral part of the head? It was previously reported that mature Dp-1 

particles contain lipids that originate from the host cell (Lopez et al., 1977). This rare combination has 

not been reported so far for any other phages of the Caudovirales order (Ackermann, 2006) but 

membranes were found in Pseudoalteromonas phage PM2 (Corticoviridae family), Pseudomonas 

phage 6 (Cystoviridae), and for enterobacterial phages of the PRD1 group (Tectiviridae) (Bamford et 

al., 1981; Franklin et al., 1969; Vidaver et al., 1973). In the non-tailed dsRNA phage 6 the lipids 

surround the capsid and contain additional envelope proteins and lipoproteins (Bamford et al., 1976; 

Sinclair et al., 1975). Members of Corticoviridae contain a lipid vesicle between the outer and inner 

layer of their capsid, while Tectiviridae contain a lipid bilayer inside their capsid. The exact location 

of the lipids in Dp-1 is unknown (Bamford et al., 1990; Lopez et al., 1977). However, Lopez and 

colleagues supposed the lipids to be arranged as a double-layer membrane that surrounds the capsid.  

As described above, the hypothetical protein gp44 of Dp-1 carries an N-terminal signal peptide and is 

predicted to be a lipoprotein by its homology to a lipoprotein domain (PROSITE PS51257). I found it 

to interact with the major capsid protein gp43. It is tempting to speculate that gp44 is inserted via its 

N-terminal signal peptide into the host cell membrane during intracellular phage replication. Its 

interaction with the major capsid protein may indicate that the pro-head assembly is localized to the 

membrane. Interestingly, phage T4 pro-heads assembly is also localized at the inner side of the 

cytoplasmic membrane, at which a membrane-spanning initiator complex forms consisting of T4 

portal protein and T4 gp40. After the release of the pro-head into the cytoplasm, gp40 is not 

interacting with assembled capsids anymore (Hsiao and Black, 1978). An analogous situation might be 

present in Dp-1. The lipoprotein gp44 was not found by LC-MS/MS, and a membrane-dependent pro-

capsid assembly could be initiated by the gp43/gp44 interaction rather than by the portal protein. Gp44 

could be the key component and could therefore explain how the host membrane becomes an integral 
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part of the mature virion. It is possible that the pro-head assembly at the membrane site might result in 

a membrane bulb structure due to membrane ex- or invagination. This may be observable by electron 

microscopy. It is noteworthy that gp44 additionally binds to the host protein SP1575 (Fig. 45E), an 

essential conserved hypothetical protein that contains a replication initiation and membrane 

attachment protein (DnaB) signature (Pfam PF07261). DnaB from B. subtilis is essential for both 

replication initiation and membrane attachment of the ori region of the chromosome and plasmid 

pUB110 (Hoshino et al., 1987). Thus, SP1575 might be an additional membrane-associated factor but 

which is provided by the host and might be involved in building a complex together with 

gp44/gp43/gp41 supporting the membrane-associated capsid assembly. 

It has been suggested that such a membrane uncommon in siphophages provides resistance for Dp-1 

virions against H2O2 which is produced by the host (Duane et al., 1993). 
 

Tail: LC-MS/MS analysis confirmed gp52 (tail length tape measure protein), gp54 (antireceptor), and 

gp55 (minor structural protein) as structural proteins. The latter one carries a Pfam HMM signature 

(DUF859) which is found in 44 protein sequences, mainly in Streptococcus phage proteins. DUF859 

proteins are annotated as “structural” or “minor tail proteins”. Protein gp55 is probably the major 

component of the Dp-1 tail and its homomeric interaction confirms its ability to polymerize. In 

addition, gp55 interacts with the receptor-binding protein gp54 (Fig. 45B). No binary contact was 

found with the tail length tape measure protein that acts as ruler of the tail length (Katsura and 

Hendrix, 1984), possibly because it requires cooperative binding to assembled gp55 and/or other 

chaperone proteins. 
 

Structural components that interact with host proteins: As demonstrated in Fig. 45D many Dp-1 

proteins involved in DNA replication/recombination bind to structural components and imply that 

virion morphogenesis/DNA packaging and DNA replication are physically co-located or co-regulated. 

It is noteworthy that also some host proteins involved in various DNA repair pathways bind to the 

proposed morphogenesis factors (Fig. 45E). A putative role of gp44/DnaB interaction was already 

suggested above. The terminase-associated protein gp39 binds to the host RuvB Holliday junction 

helicase and could function in recognition of Holliday intermediates on the synthesized Dp-1 DNA, 

thus leading to its disaggregation and efficient DNA packaging. On the other hand, it might be 

possible that these structural components have an extra function beyond morphogenesis and could 

affect the DNA repair pathways to block DNA repair of the host. Note, that coliphage T4 packaging 

operates quite independent of host components thus suggesting terminase phage protein interactions 

may predominate (Rao and Black, 2005). In contrast, efficient  DNA packaging was shown to be 

dependent on DNA-binding host factors IHF and HU (Catalano et al., 1995; Mendelson et al., 1991).
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A Cp-1 virion model 

As for Dp-1, I created for Cp-1 a virion linkage map to highlight which structural proteins and 

morphogenesis factors might participate in virion assembly. As already shown in the results section 

(3.1.3), most of detected intra-viral PPIs of Cp-1 were found among structural proteins underlining the 

stringent association of the structural proteins on the genomic and interaction level. 

Nine different structural Cp-1 proteins have been originally identified by SDS-PAGE analysis (Ronda 

et al., 1981). Since a genome sequence was not available at the time the exact structural gene products 

were unknown. The Cp-1 structural gene module encodes for 13 proteins (Martin et al., 1996b). 

However, not all of these proteins are static virion features but might be morphogenesis factors which 

need to be absent after the maturation process from the mature virion. I used this information to model 

a Cp-1 virion protein-linkage map and integrated the detected binary PPIs. Since no further 

experimental information is available about the Cp-1 particle structure, I used the 3D-virion 

information from B. subtilis podophage 29 (Xiang et al., 2006) which is related to Cp-1. 

Notably, all proteins encoded by the 13 ORFs of the structural module could be included in the model 

(Fig. 46A). They highlight which PPIs take place in the virion and provide a model for the poorly 

understood virion particle. Three of these proteins are known to play a role during morphogenesis and 

function in pro-capsid assembly (gp8), post-translational cleavage of the major head protein (gp13), 

and DNA-packaging (gp20) (Martin et al., 1996b; Martin et al., 1998b).  

Most of the PPIs were expected. For instance, the major head protein (gp9, MHP) binds with the 

scaffolding protein (gp8) and the latter with connector protein (gp10). Also PPIs among tail and collar 

components were expected (Fig. 46B). Some expected interactions were not detectable in the Y2H 

screens and probably represent false-negatives. These are the homomerization PPI of the the MHP, the 

missing link of the terminase to the connector, a connector-base plate interaction, an interaction of the 

tail proteins gp17 or gp19 with the antireceptor gp18, and the MHP endoprotease (gp13) with the 

MHP (Fig. 46B). In the latter case it was shown that gp13 is a maturation factor which is responsible 

for cleaving an N-terminal peptide from MHP (Martin et al., 1998b). Failure of the detection of this 

PPI could be due to protease-substrate interactions that are not examinable by Y2H at all. This could 

also explain the missing self-interaction of the MHP because it is processed and only full-length ORF 

constructs were tested in the screen experiments. However, I detected a PPI of gp13 with the 

scaffolding protein (gp8). This interaction could indicate that cleavage of the MHP by gp13 might take 

place during the pro-head assembly and that gp13 uses the scaffolding protein as an adaptor to 

coordinate the cleavage of the MHP in a cooperative manner. 

Hypothetical protein gp14 shows no homology to any other protein sequences in various databases. I 

propose it as head fiber protein since it interacts exclusively with the MHP. 

The tail proteins N and C (gp17 and 19) were shown to have different sequence homology regions 

with the tail protein of 29 phage. While gp17 is homologous to the N-terminal part of the 29 tail 
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protein, gp19 aligns with the C-terminal part (Martin et al., 1996b). Interestingly, in Cp-1 the gp17 and 

gp19 tail proteins interact while in 29 the homologs were fused into one polypeptide chain during 

evolution. This phenomenon is also known as the Rosetta Stone principle (Marcotte et al., 1999) and 

underlines that in 29 the strong physical association of these two proteins lead presumably to the 

ORF fusion. 

Finally, I highlighted unexpected interactions among structural proteins with host proteins and virion 

unrelated Cp-1 proteins in Fig. 46C. For instance, a single PPI was identified between the scaffolding 

protein gp8 and hypothetical protein gp6 that also binds the co-expressed DNA polymerase (gp5). In 

addition, some structural proteins undergo PPIs with host proteins whose annotations do not imply 

them directly to be relevant for Cp-1 morphogenesis. It is more likely that the interacting phage 

proteins evolved dual functions, a structural one and e.g., a regulatory one, while additionally affecting 

host proteins. In the case of the connector (gp10) that interacts with the essential glutamate-racemase 

MurI this interaction might block MurI and thus cell wall biosynthesis (this PPI is discussed below). 
 

 

Fig. 46 A Cp-1 virion PPI linkage map 
Schematic representation of the Cp-1 virion. Cp-1 EM virion structure information (Fig. 5) and 3D-information 
of  29  was combined in this model (Tao et al., 1998). (A)  A list of all proteins for which binary PPIs were 
detected in this study, that were included in the model, and that are encoded by the structural gene module (gp8 
to gp20). Orf23 encodes for a putative RNA involved in packaging (pRNA) (Martin et al., 1996b). Structural 
components are labeled in red font, morphogenesis factors in blue font, and unknown components in black font 
(valid also for B and C). (B) Interactions among structural components and maturation factors projected onto a 
schematic Cp-1 particle. Identified interactions are indicated by blue edges (arrows) that connect the 
corresponding proteins. Red edges (arrows) connect proteins that are known to undergo binding based on 
information from phage 29 (Tao et al., 1998; Xiang et al., 2006) and (Martin et al., 1998b) but failed the 
detection in the Y2H screens. The left part of Fig. B indicates proteins and PPIs that presumably play a role 
during pro-capsid morphogenesis. The right part represents the model of the Cp-1 mature capsid. (C) 
Unexpected PPIs of structural proteins with host proteins and other Cp-1 proteins that were identified. 
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4.1.3 How can a bacteriophage hijack its host? A comparative view 

Bacteriophages are the most common biological entities on earth. Although their genomic features 

reveal them to function as compact functional entities, it is clear that each phage had to adapt to its 

specific host to maintain its efficient reproduction while optimizing, modifying, or blocking certain 

host pathways. A survey of published bacteriophage-host interactions reveals that the targeted host 

proteins are inhibited, activated or redirected to another function by specific phage proteins. In this 

discussion section I will propose putative mechanisms how phages can hijack the host by interpreting 

their genomic features and the detected phage-host PPIs of Cp-1 and Dp-1 while comparing them to 

known strategies from other bacteriophages. 
 

Phage proteins can optimize the host cell 

Optimizing protein translation: It is thought that phages can optimize their reproduction environment 

by simply expressing their proteins in the host cell. As shown in the results section (3.1.1), the Dp-1 

genome encodes for a wide set of queuosine (Q) biosynthesis enzymes. Since Q is known to optimize 

codon/anti-codon base pairing of tRNAs including Asp, Asn, His, and Tyr (Iwata-Reuyl, 2003), Dp-1 

could improve the protein translation process through modifying the host tRNAs by its Q enzymes, 

thus gaining translation efficiency and specificity. As shown already above (3.1.2), other phages also 

encode for such Q enzymes but notably Dp-1 seems to have the most complete set. Other phages 

provide alternative strategies to optimize protein translation. For instance, T4 and T5 are known to 

introduce their own tRNAs (Scherberg and Weiss, 1972). The phage tRNAs were shown to prefer 

alternative codons and are able to use a degenerated genetic code. For instance, in the case of T4 the 

tRNA specific for isoleucine prefers the AUA codon while E. coli Ile-tRNA binds with AUU 

(Scherberg and Weiss, 1972). Scherberg and Weiss demonstrated that the amino acid incorporation 

into polypeptides is approximately two fold higher when certain T4 tRNAs/mRNAs are used 

compared to corresponding host tRNAs. This highlights that Dp-1 might also use a degenerated 

genetic code in certain codon cases and optimizes protein translation by modifying the host tRNAs by 

its Q enzymes while other phages encode code-optimized tRNAs. 
 

Optimizing nucleotide levels: Dp-1 encodes for a dUTPase (gp14, deoxyuridine triphosphatase), an 

enzyme that catalyzes the hydrolysis of pyrophosphate from dUTP, maintaining a low intracellular 

concentration of dUTP so that uracil cannot be incorporated into DNA (Shlomai and Kornberg, 1978). 

This makes sense since gp14 is presumably co-expressed in a Dp-1 gene cluster encoding for a wide 

set of DNA replication/repair-related proteins (Fig. 17). Consequently, the intra-cellular levels of 

dUTP could be lowered during Dp-1 DNA replication and the frequency of mutagenic events through 

dUTP incorporation into the Dp-1 DNA could be avoided. dUTPases are also encoded by various 

other phages, e.g., by E. coli siphophage T5 (Wang et al., 2005). In fact, it is known that other 

bacteriophages can introduce various nucleotide-related enzymes to optimize nucleotide levels during 
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DNA replication. In case of myophage T4, the genome encodes for a dCTPase (gp56), thymidine 

kinase (Tk), dNMP kinase (gp1), dCMP deaminase (Cd), and dTMP (thymidylate) synthase (Miller et 

al., 2003) indicating that T4 can globally modify nucleotide levels. However, T4 seems to be an 

extreme example and most other phages are known to encode only few or none nucleotide-related 

enzymes. Moreover, other bacteriophages are able to optimize dNTP levels by encoding their own 

ribonucleotide (NDP) reductases (discussed below). 

Genetic studies of T7-host and more recently also of -host interactions revealed that several host 

enzymes involved in nucleotide synthesis pathways are important during the growth of these phages 

(Maynard et al., 2010; Qimron et al., 2006). Overexpression of E. coli uridine-kinase (UdK) and dGTP 

triphosphatase (Dgt) affected T7 growth showing that high levels of UMP/CMP and low levels of 

dGTP or their downstream products have adverse effects on phage reproduction. Absence of the 

CMP/dCMP kinase (Cmk) causes a T7 growth defect, thus indicating that higher levels of CDP/dCTP 

are of advantage. Similarly, it was shown for  that the host CMP/dCMP kinase (Cmk) and 

thymidylate synthetase (ThyA) is required for efficient phage reproduction. In all these cases the 

effects suppose that the mentioned phages cannot compensate or neutralize adverse effects caused by 

these nucleotide-related host enzymes, e.g., by introducing self-encoded enzymes and thus, are 

dependent on natural levels of these host enzymes and the nucleotides they produce. 
 

Inducing host virulence: For a wide range of mainly temperate bacteriophages it is known that they 

modify the host cell so that they gain or increase their virulence during the lysogenic state (Wagner 

and Waldor, 2002). The phages benefit from the altered bacterial host since the gained virulence helps 

their host to adapt to its environment and thus increases its survival. In general, phages introduce 

factors that stimulate the bacterial invasion, adhesion, and colonization, the main criteria that make a 

bacterium virulent to humans. For instance, the -encoded lom gene promotes host adhesion to buccal 

epithelial cells (Barondess and Beckwith, 1990), Streptococcus pyogenes phage H4489A introduces a 

hyaluronidase and stimulates bacterial host invasion (Hynes and Ferretti, 1989), and Vibrio cholera 

phage CTX laterally transfers a cholera toxin gene and stimulates toxin production (Waldor and 

Mekalanos, 1996). 

In the case of Dp-1 gp49 I identified by homology predictions an interesting protein that might be 

involved in improving the S. pneumoniae adhesion. Although an N-terminal signal peptide is not 

predictable, Gp49´s C-terminus is homologous to a wide range of internalins (A, F, and G) from 

Listeria monocytogenes. This sequence region contains the Pfam signature “Listeria-Bacteroides 

repeat domain” (Fig. 19). Adhesion of S. pneumoniae cells to nasopharyngeal and oral mucosa cells is 

usually mediated by adhesins (RrgA, RrgB and RrgC) that are located on the adhesion pili (Nelson et 

al., 2007). For S. pneumoniae no internalins are known. However, in nine other Streptococcus species 

proteins are present that contain the Pfam Listeria-Bacteroides repeat domain (Finn et al., 2010). In 

Listeria internalins play a critical role in invasion and internalization of mammalian cells via 
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contacting cadherins (Hamon et al., 2006). Streptococci are not internalized, thus suggesting that 

internalin-related proteins rather play a role in adhesion or invasion. The presence of this internalin-

related domain in gp49 indicates that the host cell adhesion to epithelial cells might be improved by 

Dp-1 or altered so that S. pneumoniae can colonize a different epithelial tissue than mediated by the 

endogenous S. pneumoniae adhesins.  
 

Do virulent (lytic) bacteriophages kill the host prior to the lytic step? 

Virulent phages as Cp-1 and Dp-1 do not integrate their genomes into the host genome, in contrast to 

temperate phages. Thus, there is no need for them to take care of the host cell because they kill it 

anyway in the final lytic step. Because of this final “egoistic” behavior, it is supposable that the phages 

could be able to reprogram the host physiology prior to lysis to such a drastic extent that it is virtually 

“killed in advance”. Since phages, as soon as they entered the lytic pathway, have to produce large 

amounts of DNA and structural proteins, they presumably send the host cell into a hyperenergetic state 

through mobilizing large amounts of energy equivalents. In parallel they could block certain host 

pathways that are essential for the host but not for the phage. 

In the results section I could show that Cp-1 and Dp-1 proteins bind frequently with many essential 

host proteins. For instance, the Cp-1 connector protein (gp10) binds with the essential host glutamate 

racemase (MurI). This homodimeric enzyme catalyzes the racemization of L-glutamate to D-glutamate 

and the latter amino acid is an essential component of the cell wall peptide cross-linkers (Doublet et 

al., 1993; Doublet et al., 1992). Since the connector protein is known to function as structural 

component of the virion (Martin et al., 1996b), its interaction with MurI suggests that it has evolved 

additional functions. The PPI with MurI could result in inhibition of the enzymatic function of the host 

enzyme resulting in lower levels of D-glutamate. This would help the phage to lyse its host and thus 

increase its reproductive success. Since the cell wall maintenance/biosynthesis might not be essential 

for Cp-1 reproduction at least in the late phase, namely then when gp10 is maximally expressed 

(Martin et al., 1996b), Cp-1 could save energy from the host which was normally “wasted” on 

peptidoglycane synthesis while supporting indirectly the final lytic step. 

Interestingly, it was shown for the ssDNA coliphage X174 that its lytic protein E has an inhibitory 

effect on MraY function, an essential host protein which catalyzes the formation of the first lipid-

linked intermediate in cell wall biosynthesis (Bernhardt et al., 2000; Zheng et al., 2008). E is a small 

membrane protein that has no catalytic activity. Its influence on MraY leads to a penicillin-like effect 

resulting in lysis, thereby preventing the construction of novel peptide cross-links during cell growth. 

Although dsDNA phages use the substantially different holin-lysine strategy, the detected PPI of Cp-1 

gp10 with MurI indicates that also dsDNA phages might inhibit cell wall biosynthesis and thus 

combine the X174 penicillin-like lysis strategy with their highly efficient lytic enzymes. 

For the lytic T4 and T-even phages it was shown that they degrade the host DNA by endonucleases 

(Parson and Snustad, 1975). T4 endonucleases can discriminate T4 DNA because 
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hydroxymethylcytosine rather than cytosine is used in the T4 DNA. This underlines that at least in this 

phage, the host is killed prior to the lytic step since destruction of the host genome consequently 

results in the death of the host cell. Thus, it is supposable that also other essential host pathways can 

be blocked, e.g., in the case of Cp-1 the cell wall biogenesis by the gp10/MurI interaction. 

Moreover, it was shown for that its protein P blocks host DNA replication through affecting host 

DnaA (see below) (Datta et al., 2005). Blocking of the host DNA replication seems to play also a 

general role for other phages. For instance, it was demonstrated that the host sliding clamp DnaN of 

Staphylococcus aureus is blocked through binding with two proteins from phage Twort and G1. 

Consequently, the sliding clamp-DNA loading event is inhibited and the host replication is arrested 

(Belley et al., 2006). Hence, these phages can redirect the pool of free dNTPs to use it especially for 

phage genome synthesis. 
 

Phages fill up their “genomic gaps” through recruitment of host protein  

An alternative virus strategy was to recruit host proteins to certain phage-related pathways. This 

strategy could be applied when proteins are not encoded by the phage itself but whose physical 

association is necessary to assure the proper function of a molecular system. 
  

DNA replication: As already shown in the results section (Fig. 21) Dp-1 encodes for a wide set of 

DNA polymerase III subunits except the core subunits , , and  and replication initiator DnaA. 

Thus, it is supposable that the Dp-1 clamp loader complex has to utilize these proteins from the host to 

create a functional replisome. Unfortunately, I could not detect any interaction that supports this 

hypothesis. While most other dsDNA phages use complete sets of DNA polymerase (Weigel and 

Seitz, 2006), some phages like  seem to be completely dependent on the presence of a full set of 

replisomal host proteins. In the case of  it was shown that  protein B recruits E. coli DNA 

polymerase III through DnaB interaction to the -replication origin (Mallory et al., 1990) while 

protein B is surprisingly capable to inhibit the host genome replication by blocking the DnaA function  

(Datta et al., 2005).  

In contrast, T4 introduces a full set of 10 DNA replication proteins which makes it virtually 

independent of the host replication system (Nossal, 1992). The T7 replisome is simple. It includes only 

a small number of proteins encoded by T7 itself (DNA polymerase gp5, DNA helicase/primase gp4, 

and SsB gp2.5) (Lee et al., 2006) but also recruits the host thioredoxin which interacts directly with 

the DNA polymerase gp5 as an accessory protein to bestow processivity on the polymerizing reaction 

(Tabor et al., 1987). 

In the Y2H screens I detected some interesting interactions among Dp-1 proteins with host proteins 

that are involved in DNA replication/repair. For instance, hypothetical protein gp32 binds to the 

essential S. pneumoniae SsB which is not encoded by Dp-1 but is present in many other phage 

genomes. Since SsB is important for DNA-related processes (such as phage and host DNA replication 

and repair; it stabilizes ssDNA strands), this interaction indicates that Dp-1 might recruit this host 
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protein by protein binding (a blockage of the host SsB makes no sense at that point since Dp-1 does 

not introduce an own SsB). Although orf32 is not localized in a DNA-replication operon, its 

interactions with the Dp-1 primase (DnaG), DNA polymerase I (gp71), and DNA ligase (gp16) 

portend a role in Dp-1 DNA replication. 

On one hand, these examples underline that phages employ very different DNA replication systems. 

On the other hand, phages are dependent on the host replisome and for some phages it is even known 

that they block host DNA replication (see above). While some phages require a full set of replisomal 

host proteins, others recruit specific factors by protein interactions and in turn others introduce partial 

or full sets of replicational proteins into the host, thus amplifying their genomes more or less 

autonomously. 
 

DNA packaging: As already mentioned above, the T4 DNA-packaging process is known to function 

relatively independent of host proteins (Rao and Black, 2005). In contrast,  recruits the DNA-binding 

proteins HU and IHF from the host that stimulates the DNA packaging process (Mendelson et al., 

1991). The integration host factor (IHF) is a site-specific DNA binding protein that introduces a 180° 

bend into duplex DNA. In vitro DNA packaging is lowered by 4-fold in the absence of IHF (Rice et 

al., 1996; Yang and Catalano, 2003). It was shown to bind to the cos-region (the DNA site where the 

terminase finally cleaves concatemeric  DNA) supporting the cooperative DNA-binding of the small 

terminase subunit (Rice et al., 1996). However, direct protein-protein contacts with terminase 

components are not described for IHF.  

In the case of Dp-1 I was able to detect a surprisingly large number of PPIs with DNA replication 

proteins as well as S. pneumoniae proteins. This indicates that Dp-1 might use a wide set of its own as 

well as host accessory proteins that are recruited to the terminase complex and thus might function in 

DNA-packaging (Fig. 45). 
 

Transcription: The idea that Dp-1 and Cp-1 mobilize the S. pneumoniae RNA polymerase core 

(subunits , , ´) was not confirmed by PPIs but might be the logical consequence since Dp-1 and 

Cp-1 do not introduce their own RNA polymerase homologs except for three sigma factors in the case 

of Dp-1.  

Other phages introduce complete RNA polymerase systems. For instance, T7 uses initially the 

multimeric host RNA polymerase for early transcription which is replaced in the middle and late phase 

by the highly efficient monomeric T7 RNA polymerase. Moreover, it was shown that in the middle 

and late phase the host RNA polymerase is inhibited by T7 gp2 that binds the ´ subunit and thus 

triggers an effect similar to rifampicin through blocking promoter clearance (Nechaev and Severinov, 

1999). However, T7 transcription initiation in the early phase is dependent on the host 70 factor 

whereas T7 RNA polymerase is specific for its own promoters, a conserved 23 bp sequence (Dunn and 

Studier, 1983; Nechaev and Severinov, 1999). Involvement of other host  factors than 70 in phage 
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gene expression is only known for the siphophage YuA of Pseudomonas aeruginosa. It was shown 

that YuA late gene expression is dependent on host 54 that usually regulates nitrogen-related host 

operons (Ceyssens et al., 2008).  

By contrast,phage consequently uses the host RNA polymerase but regulates its transcription, e.g., 

decision of the lytic and lysogenic pathway, mainly through its own repressors and transcription 

antitermination (Dodd et al., 2005). For instance,  antitermination protein N was shown to bind to 

host NusA and thereby recruits NusABE to regulate gene expression of early and middle  genes (Das 

and Wolska, 1984; Schauer et al., 1987). 

Phage 29 uses the B. subtilis RNA polymerase but regulates its early and late transcription by two 

own transcriptional activators (p4 and p6) cooperatively (Camacho and Salas, 2001). P4 recruits the 

host RNA polymerase to the promoters by interaction with the RNA polymerase  subunit C-terminal 

domain (Mencia et al., 1996). Since Cp-1 is closely related to 29 it could make use of a similar 

transcriptional strategy although sequence homologs of 29 p4 and p6 are not present and might be 

substituted by Cp-1 specific proteins. Late and middle Dp-1 transcription initiation could be managed 

by its own  factors (gp24, gp62, and gp69) while recruiting the multimeric host RNA polymerase.  

I detected various PPIs among Cp-1 and Dp-1 proteins with host repressors. It is uncertain that these 

repressors regulate Cp-1 or Dp-1 gene expression because normally (as in the case of and other 

temperate phages) phages use their own repressors to regulate their gene expression.  
 

Global reprogramming of the host´s gene expression by attacking regulatory host proteins 

A simple but efficient strategy to manipulate the host system was to attack it on the level of its gene 

expression. This could result in consequent reprogramming of whole host pathways since they could 

be easily switched on or off by just targeting single host regulatory proteins. Repression and 

expression of transcription in bacteria is mostly regulated by repressor proteins that block transcription 

through binding to certain operator sites, thus inhibiting transcription initiation. In many cases small 

molecules bind to the repressors and thus regulate DNA-binding and transcription (Fig. 47A). For 

instance, in the case of the well investigated E. coli lactose operon the lac-repressor LacI blocks the 

expression of genes needed for metabolizing this disaccharide in absence of the catabolite allolactose 

but presence of the inductor leads to the dissociation of the repressor and expression of the lac-operon 

genes (Oehler et al., 1990; Wanner et al., 1977). Although expression initiation is also dependent on 

transcriptional activators, a possible mechanism to reprogram the host´s gene expression is to attack 

such repressor proteins by phage antirepressor proteins that consequently results in an inductor-like 

state, e.g., by mimicking the inductor or inhibiting the repressors homomerization (Fig. 47C). 

Only few reports describe how phage repressors have a direct influence on negative regulation on host 

gene expression. Chen and colleagues reported that  cI repressors shut down the expression of the 

pckA gene during lysogeny of several temperate phages (Chen et al., 2005). pckA, encoding for 
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phosphoenol carboxykinase is the first gene involved in gluconeogenesis. Its downregulation suggests 

an adaptive phage response to growth on energy-poor environments and could lead to an increased 

lysogen fitness (Chen et al., 2005) (Fig. 47B).  

However, this latter case provides evidence for the principle that temperate phages can downregulate 

the host gene expression by self-encoded repressors. Surprisingly, it was never reported that phages 

indeed can block host repressors through binding with phage encoded antirepressors. In my work I 

identified certain interactions among Cp-1 and Dp-1 proteins with host repressor proteins: Cp-1 

proteins bind two host repressors (NrdR, FcsR) and Dp-1 proteins bind four host repressors (FcsR, 

ScrR, SP1050, CodY) (Fig. 47C). These proteins could have a regulatory effect on the host repressors 

and might especially function as anti-repressors. As shown in Fig. 29E, regulatory host proteins are 

relatively bound more frequently by phage proteins than by other host proteins. This makes sense on 

the basis that small molecules act mainly as natural anti-repressors/inductors and thus there is no need 

for host repressors to undergo regulatory interactions with other host proteins. This regulatory effect 

could be mimicked similarly by the interacting phage proteins, e.g., preventing binding of the 

repressor to the DNA through inhibiting their homomerization, binding to their DNA-binding domain, 

or mimicking the inductor interaction. Consequently, the host gene expression must be activated and 

the operon gene expression could be switched on. In Fig. 47C I summarized all relevant PPIs that have 

been identified in this work and that support the hypothesis.  
 

Sugar metabolism: Interactions with repressors of sugar metabolism such as FcsR (SP2168) and ScrR 

(SP1725) could result in higher levels of the corresponding metabolic gene products while stimulating 

the metabolism of sugars like saccharose and fucose. Finally, this may provide higher levels of energy 

equivalents during phage reproduction. However, this would depend on the presence of the 

corresponding carbohydrates and might only be relevant if S. pneumoniae grows, e.g., under 

saccharose-rich growth conditions. The S. pneumoniae fcsR gene is located upstream of the fucose-

related operon which contains 10 genes. Expression induction is triggered by fucose and galactose and 

the operon´s gene products represent fucose metabolizing enzymes and PTS components 

(phosphotransferase phosphoenolpyruvate sugar transport system) (Chan et al., 2003). The role of 

fucose in pneumococcal metabolism is unclear since S. pneumoniae is unable to grow either in L- or 

D-fucose when provided as sole carbon source in minimal medium. However, it was reported that L-

fucose is a minor component of the capsular polysaccharides (Jedrzejas, 2004). 
 

Reprogramming whole regulons: Another interesting interaction was found with the Dp-1 DNA 

polymerase III ' subunit (HolB, gp18) and the host CodY (SP1584), a transcriptional pleiotropic 

repressor. S. pneumoniae CodY was shown to regulate expression of more than 60 genes belonging to 

the CodY-regulon (Hendriksen et al., 2008). While other bacteria like B. subtilis sense the GTP level 

via CodY and thereby regulate growth transition from the logarithmic to stationary phase (Molle et al., 

2003), S. pneumoniae CodY was shown to sense only the nutritional state via branched chain amino 
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acids (BCAAs) like Ile, Leu, and Val. BCAAs bind to the N-terminal dimerization domain of CodY 

that enhances its DNA-binding, thus blocking gene expression. It was shown that S. pneumoniae 

CodY suppresses in presence of BCAAs the expression of genes that are mainly involved in amino 

acid metabolism. Furthermore, the S. pneumoniae CodY regulates gene expression important for cell 

adherence to lungs and nasopharyngeal cells (Hendriksen et al., 2008). Binding of the Dp-1 ' subunit 

could consequently result in blocking of CodY function and thus expression activation of the whole 

CodY-regulon could be managed (consider also Fig. 48). The ' subunit is primarily expected to 

function in Dp-1 DNA replication but its PPI with CodY suggests an extra-replicational and regulatory 

function. 
 

How do viruses become independent from the host dNTP level? dsDNA viruses have to face a main 

problem during replication of their genome, namely that a reasonable pool of dNTPs must be available 

to ensure the efficient DNA amplification. dNTP levels of the host are well regulated but might not be 

perfect for the virus. 

For the host cells it is important to maintain a constant DNA/cell mass ratio and a complicated system 

of control and feedback mechanisms are applied to sense the initiation and rate of DNA replication 

(Herrick and Sclavi, 2007). Initiation is mainly controlled through DnaA (Kaguni, 2006) whereas the 

elongation rate is mainly regulated by the ribonucleotide reductase (RNR, also known as 

ribonucleoside diphosphate reductase), a heterodimeric enzyme that converts NDPs to dNDPs 

(Nordlund and Reichard, 2006). It is the rate-limiting enzyme and ensures a balanced pool of dNTPs 

during replication since too high levels increase the mutation frequency and a too low levels would 

result in the stall of replication forks (Herrick and Sclavi, 2007). Its activity itself is controlled by a 

substrate/product feedback mechanism (Nordlund and Reichard, 2006). Furthermore, in bacteria RNR 

activity is indirectly controlled by its gene expression which reaches a peak around the initiation time 

point but decreases to basic levels afterwards (Sun and Fuchs, 1992). Hereby the bacterial NrdR 

repressor regulates the expression of RNR operons together with DnaA (Grinberg et al., 2006; Herrick 

and Sclavi, 2007). NrdR consist of a conserved N-terminal DNA-binding domain as well a C-terminal 

ATP-cone dimerization domain. It was shown to sense nucleotide levels since its ATP-cone domain 

binds dATP/ATP (Grinberg et al., 2006). A high level of ATP results in its dissociation and a high 

level of dATP to its association to its repressor binding site. By this means, the expression of the RNR 

genes are gained or repressed (Grinberg et al., 2009). Hence, NrdR would provide an excellent target 

for bacterial viruses to increase dNTP levels. 

A wide range of phages as well as mammalian viruses solve the dNTP problem by introducing 

complete RNR systems into the host, like phage T4, T5, and herpesviruses (Berglund et al., 1969; 

Eriksson and Berglund, 1974; Fossum et al., 2009; Miller et al., 2003). This provides the advantage 

that they can optimize the dNTP level independently. However, various phage genomes do not encode 

for RNR homologs including Cp-1 and Dp-1.  
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I already proposed for Dp-1 a replication model where it had to recruit host DNA pol. III subunits 

since it does not encode for the core subunits as well as DnaA (remember also the DnaA boxes in the 

predicted replication origin). Hence, the native host dNTP level might be enough for efficient Dp-1 

genome synthesis because its own replication machinery is presumably coupled with the host 

replication machinery anyway. In contrast, Cp-1 replicates via a simple strategy through linear 

genome replication (Martin et al., 1996a) that is independent of host replisomal proteins. Surprisingly, 

I identified an interaction of the hypothetical Cp-1 protein gp6 with the host NrdR repressor. I predict 

that this interaction could consequently result in gaining expression of S. pneumoniae RNR genes, thus 

increasing the dNTP concentration which supports the Cp-1 genome replication. If confirmed, this 

strategy would represent a novel principle for phages that do not encode their own RNR. Moreover, 

gp6 is the only protein in my dataset that binds with the Cp-1 DNA polymerase gp5. I predict that gp6 

could function as gp5-sensing protein – as soon as gp5 stalls during replication due to a low dNTP 

level, gp6 could trigger its effect on NrdR as antirepressor with the consequence of an increasing RNR 

and thus dNTP level. 
  

Isolating the host from environmental signals: Other targets to modulate host gene expression are its 

two-component systems (TCS). In bacteria these signal transduction systems are involved in 

transduction of various environmental signals. The response is mainly differential gene expression. 

The principle of TCS is illustrated in Fig. 47D. I detected one PPI that indicates that phages could also 

be able to neutralize environmental signal transduction. Dp-1 Gp44 binds to S. pneumoniae LyTr 

(SP1915), a protein that contains a DNA-binding domain which is unique to TCS response regulator 

proteins of the AlgR/AgrA/LytR family (Nikolskaya and Galperin, 2002). Although for some S. 

pneumoniae response regulators the exact role has been determined, e.g., involvement in toxin 

production and competence (Knutsen et al., 2004), the function for SP1915 is unclear. However, the 

LyTr family members seem to be mainly involved in gene expression regulation of virulence-related 

genes (Fig. 47D) (Nikolskaya and Galperin, 2002). Consequently, the interaction with gp44 could 

result in transduction disruption and down-regulation of virulence related operons (Fig. 47D). The 

existing literature does not describe any single case whereupon phages interfere with two-component 

signaling. But their disruption could provide an efficient strategy for phages to prevent its host from 

responding to certain environmental signals that could interfere with phage reproduction.  
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Fig. 47 Putative effects on host gene expression mediated by phage-host PPIs 
(A) Host repressor-mediated host gene regulation. Binding of an inductor leads to the dissociation of the host 
repressor. Note, that small molecules can also function as regulators, that lead to the association of host 
repressors to their DNA-binding site, e.g., as described in the main text for the CodY repressor. (B) Negative 
regulation of the host pckA gene expression by  cI as suggested by (Chen et al., 2005). (C) Suggested effects of 
putative Cp-1 and Dp-1 anti-repressors on host gene expression. Putative repressor-anti-repressor systems are 
listed to the right and the suggested gene expression effects are indicated. These binary PPIs among Cp-1 and 
Dp-1 proteins with S. pneumoniae repressor proteins were detected in this work. (D) Principle of a two-
component system and proposed effect of Dp-1 gp44-LyTr interaction: a sensory transduction histidine kinase 
receives an environmental stimulus (chemical or physical) via its extracellular/periplasmic sensor domain. This 
leads to its autophosphorylation (P) of histidyl residues. The phosphoryl group then is transferred onto a 
response regulator that is activated. The response regulator acts mainly as transcriptional activator (or 
alternatively as repressor; not illustrated) causing differential gene expression as response on environmental 
changes. Gp44 could act as anti-response regulator through binding with LyTr, thereby neutralizing the signal 
transduction. Illustrations are simplified. 
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Specific reprogramming of the host metabolism by protein-binding 

I already mentioned above several individual examples how phages can attack certain pathways 

through specific protein-protein interactions, e.g., blocking of the host´s genome replication. While 

attacking host gene expression would provide the advantage to reprogram whole pathways, another 

strategy was to disrupt a single key component of a pathway, e.g., a metabolic enzyme that 

consequently causes the disruption or modification of the whole pathway. 

Fig. 48 Putative targets of Cp-1 and Dp-1 in the central host metabolism and its uptake systems 
A simplified scheme of S. pneumoniae TIGR4 metabolic pathways and uptake systems. Putative targets specific 
to Cp-1 are highlighted in blue, those of Dp-1 in red. Encircled host proteins are directly bound by a Cp-1 or Dp-
1 protein; underlined host proteins might be regulated on the gene expression level as described in the previous 
section. Experimentally determined S. pneumoniae genes regulated by CodY were considered as given by 
(Hendriksen et al., 2008). Note, that SP2012 (glyceraldehyde 3-phosphate dehydrogenase) is bound by two Dp-1 
proteins but is also under expression control of CodY. Image was modified from the original image, taken from 
(Tettelin et al., 2001). 
 

In Fig. 48 I highlighted identified interactions that could have a regulatory effect on metabolic 

pathways of the host. For instance, Dp-1 could modify PTS systems (PPIs with IIA components), 

alcohol dehydrogenase activity (ADH, SP2157), phosphate uptake (PhoU, SP1395), or glycolysis via 
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glyceraldehyde 3-phosphate dehydrogenase (Gap, SP2012) interactions. The latter one would result in 

modification of glycolysis. However, the proposed effect of phage proteins on transcriptional 

regulators would clearly result in a more dramatic reprogramming of the metabolic pathways since 

more metabolic enzymes and uptake systems are under transcriptional control (Fig. 47 and Fig. 48). 

Surprisingly, phage PPIs with metabolic enzymes are only known in one case. Roucourt and 

colleagues recently identified an interaction among an early protein of Pseudomonas aeruginosa 

infecting podophage KMV with the malate synthase G which is involved in pyruvate metabolism  

(Roucourt et al., 2009). The authors expect the interaction to have a regulatory effect on the enzyme´s 

activity. 
 

The physiological meaning of the Cp-1 lysozyme-host uridine-cytidine kinase interaction 

Originally, I hypothesized that the identified interaction of Cp-1 lysozyme (Cpl1) with the S. 

pneumoniae uridine-cytidine kinase (Udk) results in the inhibition of the enzymatic function of Udk. 

Since the Udk products CMP and UMP and their downstream products are important for mRNA 

synthesis and host capsule synthesis (as indicated for Udk (SP1208) in Fig. 48) the inhibitory effect of 

Cpl1 on Udk could result in controlling or lowering the levels of pyrimidine nucleotides and thus 

mRNA and capsule synthesis. Maximal Cpl1 protein levels are expected in the very late infection 

phase, namely then when the lytic step takes place. Although low expression of cpl1 is expected to 

occur also at earlier periods, low levels of this protein might have no impact on Udk, depending on the 

protein level of Udk itself. It was shown in this study by several independent methods that Udk binds 

with Cpl1 (Y2H, LuMPIS, Y2H domain mapping, gel filtration, and protein cross-linking) (3.1.5). 

However, I could clearly demonstrate that Cpl1 has neither an effect on the natural homotetrameric 

Udk structure nor on its enzymatic activity under in vitro conditions.  

Nevertheless, these findings do not exclude the possibility of Cpl1 to bind to Udk in vivo. Here, the 

PPI could alternatively function to retain Cpl1 by Udk while making it inaccessible to the holin-

mediated extracellular transport and to lyse the host cell. Thus, lysis could be regulated through this 

PPI in dependence on the Udk protein level. Therefore, the actual protein level of Udk would function 

as a Cpl1-specific “protein buffer system”. Quimron and colleagues found that T7 growth is restricted 

as soon as E. coli Udk is overexpressed (Qimron et al., 2006). Although no experimental evidence is 

available yet that demonstrates direct binding of T7 lysozyme with E. coli Udk, the inhibitory effect of 

Udk at high levels could be explained by its proposed regulatory effect on the lysozyme. In any case, 

the genetic link for T7 and the direct PPI between the Cp-1 lysozyme and the S. pneumoniae Udk 

suggests a conserved role of Udk in siphophage reproduction. 
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4.2 Functional and conserved association of the YbeB protein family with 

the large ribosomal subunit and protein translation 

The evolutionary distribution of YbeB orthologs link it to the eubacterial origin 

The YbeB protein family has a broad evolutionary distribution and is present in eukaryotes and 

Eubacteria while it is absent in Archaea. Transcription and translation in Archaea is more similar to 

that of eukaryotes, e.g., the usage of methionine as initiator amino acid in contrast to N-formyl-

methionine, the higher complexity of translation factor systems, and components such as rRNAs are of 

eukaryotic origin (Allers and Mevarech, 2005; Dennis, 1997). This indicates that YbeB is associated 

with an eubacterial process. Consequently, YbeB orthologs in Eukaryota might rather function in 

eubacterial derivatives such as plastids and mitochondria than in the cytosolic compartment: In fact, 

eukariotic YbeB homologs localize to chloroplasts in Zea mays and mitochondria in baker´s yeast 

(Han and Martienssen, 1995; Reinders et al., 2006). Moreover, I found out that the human YbeB 

orthologs C7orf30 is targeted exclusively to mitochondria as well. These results indicate also on the 

localization level that YbeB orthologs are linked to the eubakterial origin. 
 

L14 recruits YbeB to an important 50S-30S interface region on the large ribosomal subunit 

High-throughput screens have identified many interaction partners of YbeB orthologs in various 

organisms (see supplementary Tab. 37 for a detailed list). In Tab. 34 I summarized all available 

interactions that link YbeB orthologs with L14 and/or ribosomal subunits. Previous studies have found 

YbeB orthologs to be associated with the large ribosomal. This strongly suggests that the YbeB 

function is linked in a conserved manner with the large subunit. 

Jiang and colleagues (Jiang et al., 2007) showed that E. coli YbeB co-migrates exclusively with the 

50S particle and is absent from 70S, polysomes, and the small ribosomal subunit fraction. In addition, 

co-migration with 50S progenitors has been ruled out, indicating that YbeB does not play a role in 50S 

biogenesis. However, previous studies of ribosomal protein complexes could not resolve the key 

binding site for YbeB, e.g., if there are many docking sites, specific docking sites or even where these 

putative binding sites are localized on the ribosomal surface. 

In Campylobacter jejuni YbeB has been recently identified by Parrish and colleagues to bind to L14, 

among other proteins (Parrish et al., 2007). Moreover, I identified many interaction partners of T. 

pallidum YbeB including L14 (Titz et al., 2008). This overlap motivated me to search systematically 

for conserved interactions of E. coli YbeB - the interaction with L14 turned out to be the only 

conserved one. No other interaction originally identified in T. pallidum and C. jejuni turned out to be 

conserved across multiple species, indicating that they are either species specific or unspecific 

altogether. 
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L14 is localized on the 50S subunit facing the 30S subunit and critical in contacting the latter. Besides 

L14, only L2, L5, and L19 are located on the inter-subunit surface of 50S, forming additional protein-

16S rRNA bridges with the small subunit (Gao et al., 2003). During transition from an initiation-like  

 
Tab. 34 Interactions of YbeB orthologs with L14 and the large ribosomal subunit 
All known interactions including co-purifications with ribosomes from this and other studies. L14 interactions 
from binary interaction assays are shaded in light grey. Co-purifications with complexes are highlighted in dark 
grey. 
 

Species 

Ortholog (locus tag) 

Description interaction partner Method Reference YbeB L14/50S 

Escherichia coli b0637 

50S 
subunit 

50S large ribosomal subunit 
iTRAQ, pull 
down 

(Jiang et al., 2007) 

b3310 50S ribosomal subunit protein L14  
Y2H, pull down this work 

LC-MS (Butland et al., 2005) 

Treponema pallidum TP0738 TP0199 50S ribosomal protein L14 Y2H 
(Titz et al., 2008), 
this work 

Campylobacter jejuni Cj1405 Cj1697c 50S ribosomal protein L14 Y2H (Parrish et al., 2007) 

S. pneumoniae 
TIGR4 

SP1744 SP0219 50S ribosomal protein L14 Y2H this work 

Synechocystis PCC 
6803 

slr1886 sll1806 50S ribosomal protein L14 Y2H this work 

Homo sapiens C7orf30 L14mt 
39S ribosomal protein L14, 
mitochondrial 

BiFC, pull down this work 

Zea mays Ij (Iojap) 
rpl14 

50S ribosomal protein L14, 
chloroplastic 

Pull down this work 

50S 
subunit 

50S chloroplast ribosomal subunit IP 
(Han and Martienssen, 
1995) 

Saccharomyces 
cerevisiae 

YMR098C 
54S 
subunit 

Mitochondrial  large subunit 
MALDI-TOF 
MS 

(Gavin et al., 2006) 

 

to EF-G.GTP bound state, the 50S and 30S subunit undergo a ratchet-like motion relative to each 

other. While the rRNAs show only little conformational changes, L2, L5, and L14 undergo large local 

movements and trigger the ratchet-like motion. Especially L14 is highly dynamic and rotates by 14° 

but maintains the contact to 16S rRNA via the B5 and B8 bridge (Gao et al., 2003). However, little is 

known about the structural dynamics of the ribosome during 50S-30S assembly. I could show that 

YbeB binds to critical residues of L14 that are involved in bridge B8. Because of these findings, YbeB 

may function as a specific L14 capping protein that prevents assembly of 50S and 30S subunits in a 

regulated fashion. 

Such a regulatory, rather than a structural role, is also suggested by the stoichiometry of YbeB which 

is only present at one copy per 10 assembled ribosomes (Ishihama et al., 2008) which may be similar 

to the number of free ribosomal subunits. By contrast, Jing and colleagues demonstrated that most of 

YbeB protein migrates at the top of a density gradient, thus representing free protein. However, YbeB 

was also shown to clearly associate with the 50S particle (Jiang et al., 2007). This suggests that either 

there is an excess of YbeB compared to ribosomes or that YbeB does not stoichiometrically bind to 

50S subunits. In any case, it is likely that YbeB binding to 50S subunits must be regulated, given its 

role in translation, and yet unknown regulatory mechanisms may determine its stoichiometry. 
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Although I examined the interactions by binary detection methods, there is no doubt that YbeB acts on 

L14 on the 50S particle in contrast to the possibility to bind only with free L14. This is explainable by 

the findings of Jiang et al., especially since YbeB has been co-purified with ribosomal protein 

complexes and 50S particles (Tab. 34). Moreover, ribosomal proteins might be quickly incorporated 

into rRNA during ribosome biogenesis and removed from the free pool. It is supposable that YbeB 

and L14 are also capable to bind in vivo binarily under “real”, non-experimental conditions in absence 

of the ribosome since my results indicate that a binary contact definitely occurs. Extra-ribosomal 

functions have been described for certain bacterial ribosomal proteins: S1 functions in RNA 

polymerase regulation and S10, S4, L3, L4, and L13 function in transcriptional antitermination 

(Greive et al., 2005; Sukhodolets and Garges, 2003; Torres et al., 2001). Moreover, S8 was shown to 

retro-regulate the stability of spc operon mRNA encoding for more than 10 ribosomal proteins. S8 

takes influence on the mRNA stability by binding to the L5 gene, the third gene in this operon, and 

thus blocks translation of it (Dean et al., 1981). The rplN gene encoding for L14 is localized as the 

first ORF in the spc operon. It was demonstrated that rplN plays a role in retroregulation and stability 

of spc as well (Liang et al., 1999), but a direct link with L14 protein itself is missing. If L14 would 

play a role in retroregulation of spc, freely available YbeB protein could function as sensor of the pool 

of free L14. If an access of free L14 was available, L14 could take negative influence on spc stability. 

But since YbeB orthologs associate also in eukaryotes with the large ribosomal subunit and 

transcriptional regulation is remarkably different to bacteria, an universal extra-ribosomal YbeB 

function is not plausible. Also the interaction epitope mapping experiments imply YbeB function with 

the ribosomal particle since YbeB binds to the surface region of L14 that faces the 30S interface. A 

more general chaperone function of YbeB can be excluded since the ybeB gene deletion mutant 

exhibits no chaperone-related phenotype. 
 

YbeB – physiological function 

The exact role and molecular function of YbeB in translation remains mysterious and might be only 

indirect due to altered assembly of ribosomal subunits. Functional studies are also impaired by the lack 

of easily detected phenotypes in YbeB mutants. The knock-out has no deleterious effect under optimal 

growth conditions nor does treatment of the mutant with various antibiotics that interfere with 

translation affect this process. Similarly, no sensitivity to osmotic, heat, or cold stress is detectable in 

the mutant. In the competitive time-course assay, however, the ybeB KO strain was clearly 

outcompeted by wild-type cells after several generations. This clearly shows that ybeB mutants have a 

selective disadvantage. By contrast, a homozygous nuclear mutation in the Zea mays ortholog ij 

(Iojap) gene leads to irregular albino striped patterns on maize leafs (Fig. 8), germless seeds, and 

albino seedlings caused by a failure of proplastids to differentiate into chloroplasts (Jenkins, 1924; 

Rhoades, 1943). The defective plastids contain few internal membranes and no ribosomes while the 

plastids maintain a normal genome (Jenkins, 1924; Shumway and Weier, 1967; Thompson et al., 
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1983). Besides loss of ribosomal particles, affected cells were also free from plastid-encoded 

polypeptides while transcripts were detectable (although their amount and processing was altered) 

(Han et al., 1993). This already indicated that translation in plastids breaks down while transcripts are 

still present. However, as soon as the ribosomes are lost in Iojap-deficient plastids they cannot be 

resynthesized (Zubko and Day, 1998). It remains unclear how the ij mutation leads to the breakdown 

of the translational machinery. Han and Martienssen were able to demonstrate the binding of Iojap to 

the plastidal large ribosomal subunit and hypothesized Iojap to be a regulatory factor of plastid 

translation (Han and Martienssen, 1995). The failure to synthesize ribosomal proteins might explain 

the loss of ribosomes and imply that in maize the YbeB homolog is essential, at least in maintenance 

of the plastid translation system. 

In contrast, in yeast mutations in the nuclear gene of the mitochondrial YbeB ortholog ATP25 

(YMR098C) lead to pleiotropic phenotypes, e.g., decreased acid resistance, decrease of glycogen 

level, heat sensitivity, but also decreased competitive fitness (Deutschbauer et al., 2005; Mira et al., 

2009; Sinha et al., 2008; Wilson et al., 2002). Moreover, Zeng and colleagues detected a growth defect 

under respiratory conditions in presence of glycerol/ethanol coupled with high-temperature conditions 

(Zeng et al., 2008). In yeast the situation is more complicated than in bacteria since mitochondrial 

ATP25 is cleaved in into two halves. The C-terminal half was shown to specifically stabilize the 

mRNA of mitochondrial F1F0-ATPase subunit C. This sequence region shows only homology towards 

protein sequences in few budding and filamentous fungi (Zeng et al., 2008). However, restoration of 

Atp9p (OLI1) subunit needs also presence of the N-terminal half of ATP25 that carries the DUF143 

signature (Zeng et al., 2008). Zeng et al. proposed the N-terminal half to function as factor that helps 

to assemble the Atp9p ring of F1F0-ATPase since Atp9p was still freshly synthesized in a mutant, 

expressing only the C-terminal half of ATP25. But an assembly of Atp9p ring was not observable. 

Notably, the ATP25 null mutation in yeast does not lead to the breakdown of translational machinery 

in mitochondria as in the case of Iojap-affected maize plastids. In vivo labeling revealed that ATP25 

mutants are capable to translate all mitochondrial gene products except Atp9p (Zeng et al., 2008). I 

tried to find experimental evidence also for ATP25 to bind to mitochondrial L14 of yeast. However, 

the baits and preys turned out to be toxic when transfected into yeast and thus could not be examined 

by Y2H (data not shown). Nevertheless, ATP25 was found by Gavin and colleagues as an 

“attachment” of the mitochondrial large ribosomal subunit, even though such “attachments” were 

considered to be rather loosely associated as opposed to “core” or “modular” components (Gavin et 

al., 2006). This also indicates that ATP25 could play a general role in mitochondrial translation 

although the direct L14-binding evidence is still missing. While the pleiotropic phenotypes can be 

explained by the role of both ATP25 halves in maintenance of the F1F0-ATPase system, the role of the 

N-terminal half of ATP25 in translation is rather circumstantial. The E. coli YbeB mutant did not 

exhibit a growth deficiency under respiratory conditions when grown in minimal medium containing 

glucose as carbon source. This makes it unlikely that YbeB is responsible for maintenance of the 
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ATPase subunit C in E. coli. Furthermore, organisms which do not encode for YbeB orthologs but for 

F1F0-ATPase subunit C like Mycoplasma, Buchnera, or Archaea (COG0636) could indicate that the 

relevance of this specific functional link is a non-conserved finding and a specific property of yeast 

ATP25. 

Kazuta et al. recently examined the effects of nearly all E. coli ORFs on translation in vitro (Kazuta et 

al., 2008). They found YbeB to have a slightly positive effect (rank 217 of 344 beneficial factors) 

although the effect was quite mild. They analyzed samples after 3 h post induction of a GFP reporter 

in vitro by a single experimental snapshot. In my experiments -galactosidase reporter protein levels 

had already adopted nearly to wild-type levels at this point (Fig. 43C). This delayed measurement 

could explain the contradictory findings, given that I already found peak effects after 1 to 2 h. 

Finally, the hypothesis that YbeB functions as a negative modulator in protein translation is supported 

by the in silico-protein docking results (Fig. 44): as soon as YbeB is bound to L14 on a 50S particle, it 

interferes sterically with the contacts that form between L14 and 16S rRNA in the assembled 70S 

complex. Consequently, YbeB interferes with the assembly of the functional ribosome. 
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5 Conclusions and outlook 

Cp-1 and Dp-1 

This work provides a fully and comprehensively annotated genome of the lytic siphophage Dp-1. The 

results help to understand its proteomic composition and the arrangement of the Dp-1 genome. 

However, this was a first step and further experiments will be necessary to understand the exact 

function/regulation of hypothetical proteins and the predicted operons. The genome annotation 

revealed that Dp-1 seems to be capable to optimize its reproduction environment, e.g., through 

introducing queuosine enzymes that presumably optimize protein translation. 

The protein-interaction maps of Cp-1 and Dp-1 represent the most comprehensive networks for phages 

so far. They are helpful to link hypothetical proteins to certain cellular processes, e.g., as demonstrated 

in great detail for the virion morphogenesis of Cp-1 and Dp-1. Combination of homology-based gene 

product annotation with Y2H data and mass spectrometry data help to get a better understanding how 

these virions are assembled and which gene products could participate in this process. This first level 

analysis is helpful to get novel ideas about the function of individual phage proteins and whole virion-

related pathways. 

The identified PPIs are helpful to get a broad overview which host proteins are presumably attacked 

by phage proteins and thus which host pathways could be important for Cp-1 and Dp-1 reproduction.  

Proteome/genome-wide analyses detect unexpected phenomena since tests are done comprehensively 

and without hypothesis-driven bias. Thus, they often raise more questions than they can answer. Such 

experiments provide a lot of experimental data and are mainly helpful to generate hypotheses. The 

major challenge will be to verify them by detailed experiments. 

The next step will be to check the physiological relevance of the phage-host PPIs in vivo. This will be 

done by testing host gene knock-outs strains for phage reproduction efficiency as it was already 

demonstrated for model phage T7 (Qimron et al., 2006). However, this will be not a trivial task since 

S. pneumoniae and Cp-1 and Dp-1 are not as easy to manipulate as E. coli and its phages. It would be 

also interesting to know which S. pneumoniae genes are up- or down-regulated during phage 

reproduction by using transcriptomic analyses. This could confirm the proposed phage-interaction 

effects on host repressor proteins on the gene expression level, e.g., the predicted upregulation of 

RNR-related operons in the case of the Cp-1 gp6/NrdR PPI and the CodY regulon in the case of Dp-1 

gp19/CodY PPI. Furthermore, biochemical assays will be done to investigate the effects of phage 

proteins on host protein functions in vitro. Of special interest is the Holliday junction helicase RuvB 

that turned out to bind to several Dp-1 proteins and a Cp-1 protein. Effects of the interacting phage 

proteins onto RuvB/RuvA helicase activity will be tested by competitive branch migration assays of 

Holliday intermediates in vitro.  
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YbeB 

The results of this work could demonstrate for the first time that YbeB of E. coli functions in protein 

translation in vivo and that its exact docking region on the ribosome is on L14. However, the exact 

function of YbeB and its orthologs in translation remains unclear. In different systems this protein 

group seems to affect translation but to a different extent. In E. coli protein levels prematurely increase 

in the absence of YbeB. Nonetheless, these effects are not dramatic. They could explain why there is 

no general growth defect since the speed of protein translation is usually not critical. Nevertheless, 

these effects are detectable and imply YbeB in translation as a negative regulator in vivo. 

Taken all information, I propose YbeB´s general role in translation as an accessory protein that 

specifically caps L14. YbeB might stabilize free 50S particles or prevent them from unproductive 

assembly with 30S particles. Thus, YbeB might have a dynamic effect on translation initiation or 

ribosome recycling. The existing literature does not describe that any ribosome-associated proteins 

function as capping proteins that hide other critical 50S-30S interface proteins, e.g., L2 and L5 or 

ribosomal RNA surfaces. A related question is how the dissociation of YbeB from 50S is regulated. 

Ribosome gradients of ybeB of E. coli do not exhibit differences of 50S, 30S, 70S, or polysome 

compositions (Jiang et al., 2007). They were examined under continuous growth conditions. It would 

be helpful to examine ribosome profiles of ybeB under changing conditions since I could show that 

the induction of reporter genes lead to a faster translational output in ybeB mutant cells.  

Nothing was known about where YbeB binds on the 50S subunit prior to this work. My results now 

link YbeB and all its orthologs specifically to L14. This information is very helpful to identify its 

exact, molecular function since it limits its mode of action on the ribosome. Open questions are, e.g., 

which signal leads to the dissociation or association of YbeB from the 50S subunit, are there any 

factors else involved, does YbeB also interact with rRNA and thus can modify it? This will be tough 

to answer since the YbeB protein family is unique on the structural and sequence level. For other 

ribosome associated factors their function was easier to resolve since they often contain a GTPase or 

transferase signature implying their enzymatic mode of action. This is not the case for YbeB. YbeB 

could mediate additional rRNA or even tRNA contacts. The latter could lead during initiation to 

dissociation of YbeB.  

Nonetheless, my results show that the data from high-throughput experiments are very valuable once 

followed up with experiments and combined with any existing information from other datasets. They 

help to get detailed ideas about the function of conserved hypothetical proteins, even if they are tough 

to analyze. A great finding of this work was that even the human YbeB-homolog, C7orf30, undergoes 

the interaction with mitochondrial L14. This highlights that we still can transfer conserved findings 

from bacterial research to human biology. 
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Fig. 49 Vector maps 
References are given under Tab. 16.  
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Fig. 50 General stress conditions tested for ybeB KO strain by agar plate assays 
(A) Growth under high-temperature growth conditions (42°C). (B) High-salt condition including 2, 4, and 8% 
(w/v) sodium chloride in LB agar medium. Plates were grown at 37 °C. Pictures show serially diluted cells that 
were gown o/n at the indicated temperatures. 
 
 

 

Fig. 51 Phenotyping of E. coli ybeB by growth curve assays – test on chemical compounds that 
interfere with translation 
Given are the control growth curves (no additives) and the curves when chemical compounds were added. Here 
only the corresponding curves for corresponding concentration (in µM, see number in legends) are represented 
that had a reasonable effect on bacterial growth. Note, that rifampicin blocks transcription. 
  

WT

ybeB

A B
2% NaCl 4% NaCl 8% NaCl

WT

ybeB

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10 12

O
D

60
0

time/h

Spectinomycin

WT 0

WT 4

ybeB 0

ybeB 4

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10 12

O
D

60
0

time/h

Gentamycin

WT 0

WT 1

ybeB 0

ybeB 1

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10 12

O
D

60
0

time/h

Tetracyclin

WT 0

WT 1

ybeB 0

ybeB 1

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10 12

O
D

60
0

time/h

Rifampicin

WT 0

WT 8

ybeB 0

ybeB 8

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10 12

O
D

60
0

time/h

Chloramphenicol

WT 0

WT 4

ybeB 0

ybeB 4

e



SUPPLEMENTARY INFORMATION 

 

184 

 

 
  

0

2

4

6

8

10

12

14

16
gp10

0

2

4

6

8

10

12

14

16
gp32

0

100

200

300

400

500

600
gp4

0

5

10

15

20

25

30
gp9

0

1

2

gp12

0

10

20

30

40

50

60
gp14

0

10

20

30

40

50
gp16

0

1

2

3

4

5

6

7
gp18

0

1

2

3

4

gp29

L
IR

0

1

2

3

4

5

6

7 gp31

L
IR

0

1

2

3

gp33

0

5

10

15

20

25

30

35

40
gp34

0

2

4

6

8

10

12

14
gp39

0

2

4

6

8

10

12

14

16

18
gp44

0

1

2

3

4

5

6
gp47

0

1

2

3

4
gp48

0

1

2

3

4

5

6

7
gp51

L
IR

A

0

1

2

3

4

5

6

7
gp58

L
IR

L
IR

0

1

2

3

4

5

6
gp60

0

10

20

30

40

50

60

gp72



SUPPLEMENTARY INFORMATION 

 

185 

 

 
Fig. 52 Verification of phage-host PPIs by LuMPIS 
(A) All tests for Dp-1-host PPIs and (B) for Cp-1 identified by the Y2H screens. Single histograms 
represent the LIR mean values for single GFP-luc tagged phage prey proteins tested against as single 
or a set of MBP-tagged host prey proteins. Tests were done in quadruplicates and the corresponding 
standard deviation of the mean is indicated by error bars. MBP is the negative control (MBP w/o a 
tagged ORF).  
 
  

0

1

2

3

4

5

6

7

8

9 Cpl1

L
IR

0

2

4

6

8

10

12

14

16
gp10

0

1

2

3

4

5

6

7

8
gp6

0

2

4

6

8

10

12

14
gp16

0

2

4

6

8

10

12

14

16
gp17

0

1

2

3

4
gpC

0

50

100

150

200

250

300

MBP SP2168SP0859SP1980SP1213

gpB

0

1

2

3

L
IR

B



SUPPLEMENTARY INFORMATION 

 

186 

 

Supplementary tables 

Tab. 35 Intra-viral PPIs of Dp-1 
The table represents a non-redundant list of Dp-1 intra-viral PPIs that were reproducible in Y2H retest 
experiments. DBD-/AD- (bait/prey) interaction direction and the vector system the PPIs were detected with are 
combined. (VS) indicates the positive tested vector system ((D) pDEST32/22 or (G) pGBKT7g/pGADT7g). The 
3-AT score represents the concentration range of 3-AT in the readout medium were yeast growth was visible 
compared to self-activation background growth of this bait. A “+” indicates that yeast grew still on the highest 
tested concentration (50 mM 3-AT). 
 

Protein A Protein B VS 3-AT score/mM 

Gp10 DNA polymerase III beta subunit 

DnaN,  putative 

Gp10 DNA polymerase III beta subunit DnaN,  

putative 

D 0.5 

Gp10 DNA polymerase III beta subunit 

DnaN,  putative 

Gp15 Recombination protein RecA D 50+ 

Gp10 DNA polymerase III beta subunit 

DnaN,  putative 

Gp16 NAD-dependent DNA ligase, putative D|G|D 50+|50+|50+ 

Gp10 DNA polymerase III beta subunit 

DnaN,  putative 

Gp23 Terminase-like protein D 2 

Gp10 DNA polymerase III beta subunit 

DnaN,  putative 

Gp71 DNA polymerase I D|G|D 2.5|50+|50+ 

Gp11 Cas4 RecB like exonuclease, putative Gp11 Cas4 RecB like exonuclease, putative D 2.5 

Gp44 Rho-like domain lipoprotein, putative Gp11 Cas4 RecB like exonuclease, putative D 2.25 

Gp11 Cas4 RecB like exonuclease, putative Gp69 Sporulation sigma factor SigK, putative G 0 

Gp13 Hypothetical protein Gp13 Hypothetical protein D 5 

Gp18 DNA polymerase III, delta' subunit 

HolB, putative 

Gp13 Hypothetical protein D 0.1 

Gp31 Hypothetical protein Gp13 Hypothetical protein D 2.5 

Gp32 Hypothetical protein Gp13 Hypothetical protein D 7.5 

Gp33 Hypothetical protein Gp13 Hypothetical protein D 0.1 

Gp45 Hypothetical protein Gp13 Hypothetical protein D 0 

Gp53 Tail protein, putative Gp13 Hypothetical protein D 0 

Gp68 DNA primase DnaG Gp13 Hypothetical protein D 47.5+ 

Gp13 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 0.1 

Gp13 Hypothetical protein Gp70 Hypothetical protein D|D 2.5|25 

Gp8 No similarity Gp13 Hypothetical protein D 0.25 

Gp9 No similarity Gp13 Hypothetical protein D 2.5 

Gp15 Recombination protein RecA Gp25 Hypothetical protein D|G 50+|50+ 

Gp15 Recombination protein RecA Gp31 Hypothetical protein G 0.1 

Gp21 Metal-dependent phosphohydrolase HD, 

putative 

Gp16 NAD-dependent DNA ligase, putative G 2.5 

Gp16 NAD-dependent DNA ligase, putative Gp23 Terminase-like protein D 50+ 

Gp32 Hypothetical protein Gp16 NAD-dependent DNA ligase, putative G 1 

Gp70 Hypothetical protein Gp16 NAD-dependent DNA ligase, putative G 2.5 

Gp17 DNA polymerase III  gamma/tau 

subunit DnaX 

Gp17 DNA polymerase III  gamma/tau subunit 

DnaX 

D|G 10|49.75+ 

Gp17 DNA polymerase III  gamma/tau 

subunit DnaX 

Gp18 DNA polymerase III, delta' subunit HolB, 

putative 

D|G|D 25|49.75+|50+ 

Gp19 DNA polymerase III  delta subunit 

HolA, putative 

Gp17 DNA polymerase III  gamma/tau subunit 

DnaX 

D 5 
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Protein A Protein B VS 3-AT score/mM 

Gp17 DNA polymerase III  gamma/tau 

subunit DnaX 

Gp31 Hypothetical protein G 9.75 

Gp17 DNA polymerase III  gamma/tau 

subunit DnaX 

Gp69 Sporulation sigma factor SigK, putative G 2.25 

Gp17 DNA polymerase III  gamma/tau 

subunit DnaX 

Gp70 Hypothetical protein G 2.25 

Gp18 DNA polymerase III, delta' subunit 

HolB, putative 

Gp27 Hypothetical protein D 2.5 

Gp18 DNA polymerase III, delta' subunit 

HolB, putative 

Gp69 Sporulation sigma factor SigK, putative G 9.75 

Gp1 Queuosine biosynthesis protein QueF Gp1 Queuosine biosynthesis protein QueF D 50+ 

Gp44 Rho-like domain lipoprotein, putative Gp1 Queuosine biosynthesis protein QueF D 0.75 

Gp21 Metal-dependent phosphohydrolase HD, 

putative 

Gp21 Metal-dependent phosphohydrolase HD, 

putative 

D 1 

Gp21 Metal-dependent phosphohydrolase HD, 

putative 

Gp61 Superfamily II DNA/RNA helicases, 

SNF2 family 

G 2.5 

Gp22 Hypothetical protein Gp23 Terminase-like protein G 9.75 

Gp22 Hypothetical protein Gp41 Minor capsid protein G 2.25 

Gp22 Hypothetical protein Gp71 DNA polymerase I G 2.25 

Gp28 Hypothetical protein Gp23 Terminase-like protein G 0.1 

Gp33 Hypothetical protein Gp23 Terminase-like protein G 0.1 

Gp39 Zinc finger domain protein, putative Gp23 Terminase-like protein G 0.25 

Gp43 Major capsid protein Gp23 Terminase-like protein G 2.5 

Gp48 Hypothetical protein Gp23 Terminase-like protein G 4.75 

Gp49 Listeria-Bacteroides repeat domain 

protein 

Gp23 Terminase-like protein G 4.75 

Gp53 Tail protein, putative Gp23 Terminase-like protein G 0.25 

Gp71 DNA polymerase I Gp23 Terminase-like protein D 50+ 

Gp24 Sigma factor (region 4), putative Gp24 Sigma factor (region 4), putative D|G 2.5|1 

Gp24 Sigma factor (region 4), putative Gp31 Hypothetical protein G 0.1 

Gp24 Sigma factor (region 4), putative Gp69 Sporulation sigma factor SigK, putative G 1 

Gp24 Sigma factor (region 4), putative Gp70 Hypothetical protein G 1 

Gp25 Hypothetical protein Gp25 Hypothetical protein D 25 

Gp32 Hypothetical protein Gp25 Hypothetical protein G 1 

Gp31 Hypothetical protein Gp27 Hypothetical protein D 2.5 

Gp32 Hypothetical protein Gp27 Hypothetical protein D 24 

Gp34 Hypothetical protein Gp27 Hypothetical protein D 0.75 

Gp39 Zinc finger domain protein, putative Gp27 Hypothetical protein D 1 

Gp44 Rho-like domain lipoprotein, putative Gp27 Hypothetical protein D 2.25 

Gp48 Hypothetical protein Gp27 Hypothetical protein G 2.25 

Gp27 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 0.25 

Gp9 No similarity Gp27 Hypothetical protein D 0.25 

Gp28 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 0.1 

Gp28 Hypothetical protein Gp7 Hypothetical protein G 0.1 

Gp28 Hypothetical protein Gp8 No similarity G 0.1 
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Protein A Protein B VS 3-AT score/mM 

Gp9 No similarity Gp28 Hypothetical protein D 0.25 

Gp29 Hypothetical protein Gp29 Hypothetical protein D 1 

Gp2 Queuosine biosynthesis protein QueC Gp2 Queuosine biosynthesis protein QueC D 47.5+ 

Gp2 Queuosine biosynthesis protein QueC Gp27 Hypothetical protein D 47.5+ 

Gp31 Hypothetical protein Gp31 Hypothetical protein D|G 0.25|0.25 

Gp33 Hypothetical protein Gp31 Hypothetical protein G 0.25 

Gp39 Zinc finger domain protein, putative Gp31 Hypothetical protein G 1 

Gp31 Hypothetical protein Gp40 Minor capsid protein, putative G|D 1|0.25 

Gp48 Hypothetical protein Gp31 Hypothetical protein G 4.75 

Gp53 Tail protein, putative Gp31 Hypothetical protein G 0.5 

Gp54 Antireceptor Gp31 Hypothetical protein G 4 

Gp59 Endolysin Pal Gp31 Hypothetical protein G 2.25 

Gp64 Hypothetical protein Gp31 Hypothetical protein G 1 

Gp68 DNA primase DnaG Gp31 Hypothetical protein G 2.5 

Gp31 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 1 

Gp31 Hypothetical protein Gp70 Hypothetical protein D|G|G 0.25|0.25|25 

Gp71 DNA polymerase I Gp31 Hypothetical protein G 25 

Gp32 Hypothetical protein Gp47 Hypothetical protein G 1 

Gp32 Hypothetical protein Gp68 DNA primase DnaG G 2.5 

Gp32 Hypothetical protein Gp7 Hypothetical protein G 2.5 

Gp32 Hypothetical protein Gp70 Hypothetical protein G 1 

Gp32 Hypothetical protein Gp71 DNA polymerase I G 1 

Gp32 Hypothetical protein Gp8 No similarity G 1 

Gp32 Hypothetical protein Gp9 No similarity G 1 

Gp33 Hypothetical protein Gp33 Hypothetical protein G 0.25 

Gp33 Hypothetical protein Gp4 Queuosine biosynthesis protein QueE D 1 

Gp33 Hypothetical protein Gp39 Zinc finger domain protein, putative G 2.5 

Gp33 Hypothetical protein Gp44 Rho-like domain lipoprotein, putative G 50+ 

Gp48 Hypothetical protein Gp33 Hypothetical protein G 0.75 

Gp53 Tail protein, putative Gp33 Hypothetical protein G 0.25 

Gp33 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 1 

Gp36 Hypothetical protein Gp36 Hypothetical protein D 49+ 

Gp37 Terminase, large subunit Gp36 Hypothetical protein D 50+ 

Gp39 Zinc finger domain protein, putative Gp36 Hypothetical protein D 25 

Gp63 Resolvase domain protein, putative Gp36 Hypothetical protein D|G 50+|25 

Gp33 Hypothetical protein Gp3 Queuosine biosynthesis protein QueD D 1 

Gp4 Queuosine biosynthesis protein QueE Gp3 Queuosine biosynthesis protein QueD D 50+ 

Gp39 Zinc finger domain protein, putative Gp40 Minor capsid protein, putative G 10 

Gp39 Zinc finger domain protein, putative Gp43 Major capsid protein G|G 2.5|10 

Gp39 Zinc finger domain protein, putative Gp68 DNA primase DnaG G 10 

Gp39 Zinc finger domain protein, putative Gp69 Sporulation sigma factor SigK, putative G 1 

Gp39 Zinc finger domain protein, putative Gp7 Hypothetical protein G 0.25 

Gp39 Zinc finger domain protein, putative Gp70 Hypothetical protein G 1 
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Protein A Protein B VS 3-AT score/mM 

Gp39 Zinc finger domain protein, putative Gp8 No similarity G 0.25 

Gp43 Major capsid protein Gp41 Minor capsid protein D|G 50+|25 

Gp42 Hypothetical protein Gp42 Hypothetical protein D 1 

Gp43 Major capsid protein Gp44 Rho-like domain lipoprotein, putative D|G 25|50+ 

Gp43 Major capsid protein Gp69 Sporulation sigma factor SigK, putative G 2.5 

Gp43 Major capsid protein Gp70 Hypothetical protein G 1 

Gp45 Hypothetical protein Gp45 Hypothetical protein D 0.5 

Gp45 Hypothetical protein Gp46 Hypothetical protein G 2.25 

Gp45 Hypothetical protein Gp58 Holin G 4.75 

Gp45 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 2.25 

Gp45 Hypothetical protein Gp70 Hypothetical protein G 2.25 

Gp48 Hypothetical protein Gp46 Hypothetical protein G 0.75 

Gp48 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 24.75 

Gp48 Hypothetical protein Gp70 Hypothetical protein G 9.75 

Gp4 Queuosine biosynthesis protein QueE Gp4 Queuosine biosynthesis protein QueE D 50+ 

Gp49 Listeria-Bacteroides repeat domain 

protein 

Gp69 Sporulation sigma factor SigK, putative G 24.75 

Gp49 Listeria-Bacteroides repeat domain 

protein 

Gp70 Hypothetical protein G 9.75 

Gp50 Hypothetical protein Gp50 Hypothetical protein D 50+ 

Gp53 Tail protein, putative Gp51 Hypothetical protein G 10 

Gp55 Tail protein, putative Gp51 Hypothetical protein G 1.5 

Gp53 Tail protein, putative Gp69 Sporulation sigma factor SigK, putative G 5 

Gp53 Tail protein, putative Gp70 Hypothetical protein G 2.5 

Gp54 Antireceptor Gp55 Tail protein, putative D|G 1|49+ 

Gp54 Antireceptor Gp69 Sporulation sigma factor SigK, putative G 9 

Gp54 Antireceptor Gp70 Hypothetical protein G 4 

Gp55 Tail protein, putative Gp55 Tail protein, putative D|G 0.5|24 

Gp6 Queuosine biosynthesis intermediate 

transporter QueT 

Gp55 Tail protein, putative G 0.1 

Gp56 Hypothetical protein Gp56 Hypothetical protein D|G 50+|25 

Gp59 Endolysin Pal Gp59 Endolysin Pal D 50+ 

Gp59 Endolysin Pal Gp69 Sporulation sigma factor SigK, putative G 2.25 

Gp59 Endolysin Pal Gp70 Hypothetical protein G 2.25 

Gp60 Hypothetical protein Gp64 Sporulation sigma factor SigK, putative D|D 25|0.25 

Gp63 Resolvase domain protein, putative Gp69 Sporulation sigma factor SigK, putative G 0.25 

Gp63 Resolvase domain protein, putative Gp70 Hypothetical protein G 0.1 

Gp64 Hypothetical protein Gp64 Hypothetical protein D 5 

Gp64 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 0.5 

Gp67 Replicative DNA helicase DnaB Gp67 Replicative DNA helicase DnaB D 1 

Gp68 DNA primase DnaG Gp68 DNA primase DnaG G 25 

Gp68 DNA primase DnaG Gp69 Sporulation sigma factor SigK, putative G 2.5 

Gp70 Hypothetical protein Gp68 DNA primase DnaG G 1 

Gp68 DNA primase DnaG Gp71 DNA polymerase I G 2.5 
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Protein A Protein B VS 3-AT score/mM 

Gp70 Hypothetical protein Gp69 Sporulation sigma factor SigK, putative G 50 

Gp71 DNA polymerase I Gp69 Sporulation sigma factor SigK, putative G 1 

Gp71 DNA polymerase I Gp70 Hypothetical protein G 0.5 

Gp9 No similarity Gp70 Hypothetical protein D 1 

Gp7 Hypothetical protein Gp7 Hypothetical protein G 0.1 

Gp7 Hypothetical protein Gp8 No similarity G 0.1 

 

Tab. 36 All TP0738 (YbeB) interactions (non-redundant) identified in T. pallidum Y2H screens 
Refereces (1) this work, (2) (Titz et al., 2008) dataset pc50. 
 

Locus tag Description Ref. Locus tag Description Ref. 

TP0024 conserved hypothetical protein  2 TP0519 response regulatory protein (atoC)  2 

TP0048 conserved hypothetical protein  1, 2 TP0530 V-type ATPase, subunit E, putative  2 

TP0060 ribosomal protein L9 1 TP0552 hypothetical protein 2 

TP0067 conserved hypothetical protein  2 TP0554 phosphoglycolate phosphatase (gph)  1, 2 

TP0078 spore coat polysaccharide biosynthesis 
protein (spsC)  

2 TP0559 conserved hypothetical protein 1 

TP0080 quinoline 2-oxidoreductase  2 TP0569 aminopeptidase P  2 

TP0095 hypothetical protein 2 TP0587 hypothetical protein 2 

TP0097 translation initiation factor 1 (infA)  2 TP0607 hypothetical protein 2 

TP0113 Lambda CII stability-governing protein 
(hflK)  

2 TP0618 hypothetical protein 2 

TP0197 ribosomal protein L29 (rpmC)  1, 2 TP0626 exonuclease, putative  2 

TP0199 ribosomal protein L14 (rplN)  1 TP0661 hypothetical protein 1 

TP0233 anti-sigma F factor antagonist, putative  1, 2 TP0664 flagellar filament outer layer protein (flaA)  2 

TP0247 N-acetylmuramoyl-L-alanine amidase 
(amiA)  

2 TP0684 methylgalactoside ABC transporter, 
periplasmic galactose-binding protein 

1 

TP0255 ribosomal protein L31 (rpmE)  2 TP0704 single-stranded-DNA-specific exonuclease 
(recJ)  

2 

TP0257 glycerophosphodiester 
phosphodiesterase (glpQ)  

2 TP0711 conserved hypothetical protein  2 

TP0258 conserved hypothetical protein 1 TP0738 conserved hypothetical protein 1 

TP0286 conserved hypothetical protein  2 TP0757 polypeptide deformylase (def)  1, 2 

TP0297 conserved hypothetical protein  2 TP0773 periplasmic serine protease DO (htrA)  2 

TP0334 conserved hypothetical protein  2 TP0807 ribosomal protein L32 1 

TP0341 UDP-N-acetylmuramate--alanine ligase 
(murC)  

2 TP0833 hypothetical protein 2 

TP0354 thymidylate kinase (tmk)  2 TP0907 conserved hypothetical protein 1 

TP0359 hypothetical protein 2 TP0943 flagellar protein (fliS)  1, 2 

TP0375 hypothetical protein 2 TP0945 ribulose-phosphate 3-epimerase (cfxE)  1, 2 

TP0393 smf protein (smf)  2 TP0946 glucose-inhibited division protein B (gidB)  2 

TP0397 flagellar basal-body rod protein (flgC)  2 TP0965 membrane fusion protein, putative  2 

TP0408 hypothetical protein 2 TP0974 hypothetical protein 1, 2 

TP0412 conserved hypothetical protein  2 TP0981 sensory transduction histidine kinase, 
putative  

2 

TP0443 conserved hypothetical protein  2 TP0997 protease IV (sppA)  2 

TP0445 4-methyl-5(b-hydroxyethyl)-thiazole 
monophosphate biosynthesis enzyme 
(thiJ)  

2 TP1005 DNA polymerase III, subunits gamma and 
tau (dnaH)  

2 

TP0461 hypothetical protein 1 TP1019 glu-tRNA amidotransferase, subunit C 1 

TP0465 hypothetical protein 2 TP1023 recX protein (recX)  1, 2 
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Tab. 37 All known protein-protein interactions of YbeB orthologs 
 

Species 
YbeB 
ortholog 

Binding 
partner Description interaction partner Method Reference 

E. coli b0637 50S subunit large ribosomal subunit pull down and 
iTRAQ 

(Jiang et al., 
2007) 

b3310 50S ribosomal subunit protein L14  Y2H, pull down this work 

b1200 dihydroxyacetone kinase, N-terminal 
domain 

LC-MS (Butland et al., 
2005) 

b2119 predicted transporter subunit: ATP-
binding component of ABC superfamily 

b2122 predicted protein 

b2606 50S ribosomal subunit protein L19 

b3056 fused tRNA nucleotidyl transferase -!- 
2'3'-cyclic phosphodiesterase and 
2'nucleotidase and phosphatase CCA 

b3310 50S ribosomal subunit protein L14 

b3319 50S ribosomal subunit protein L4 

b3882 predicted oxidoreductase with NAD(P)-
binding Rossmann-fold domain 

b3986 50S ribosomal subunit protein L7/L12 

b4066 conserved protein 

Treponema 
pallidum 

TP0738 TP0060 ribosomal protein L9 Y2H (Titz et al., 
2008), this work 

TP0097 translation initiation factor 1 InfA 

TP0197 ribosomal protein L29 

TP0199 ribosomal protein L14 

TP0255 ribosomal protein L31 

TP0559 Probable tRNA sulfurtransferase, tRNA 
4-thiouridine synthase ThiI 

TP0757 peptide deformylase Def 

TP0807 50S ribosomal protein L32 

TP0907 Ribosome maturation factor RimM 

TP1019 Glutamyl-tRNA(Gln) amidotransferase 
subunit C GatC 

TP0530 V-type ATPase, subunit E, putative 

various others various other interactions known (Tab. 
36) 

Campylobacter 
jejuni 

Cj1405 Cj1708c 30S ribosomal protein S10 Y2H (Parrish et al., 
2007) 

Cj1697c 50S ribosomal protein L14 

Cj0670 RNA polymerase sigma-54 factor RpoN 

Cj0307 Adenosylmethionine-8-amino-7-
oxononanoate aminotransferase BioA 

Cj0542 Glutamyl-tRNA reductase HemA 

Cj1454c Ribosomal protein S12 
methylthiotransferase RimO 

Cj0389 Seryl-tRNA synthetase SerS 

Helicobacter 
pylori 

HP1414 HP0187 Putative uncharacterized protein  Y2H (Rain et al., 
2001) 

HP0025 Outer membrane protein (Omp2) 

HP0060 Putative uncharacterized protein 

HP0205 Putative uncharacterized protein 

HP0281 Queuine tRNA-ribosyltransferase tgt 

HP0522 Cag pathogenicity island protein (Cag3) 

HP0655 Protective surface antigen D15  

HP1124 Putative uncharacterized protein 
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Species 
YbeB 
ortholog 

Binding 
partner Description interaction partner Method Reference 

S. pneumoniae 
TIGR4 

SP1744 SP0219 50S ribosomal protein L14 Y2H this work 

Synechocystis 
PCC 6803 

slr1886 sll1806 50S ribosomal protein L14 Y2H this work 

Homo sapiens C7orf30 MRPL14 39S ribosomal protein L14, 
mitochondrial 

BiFC, pull down this work 

UBE2V2 Enterocyte differentiation-associated 
factor EDAF-1, Enterocyte 
differentiation-promoting factor 1 

Y2H (Markson et al., 
2009) 

Zea mays IJ (Iojap) rpl14 50S ribosomal protein L14, 
chloroplastic 

Pull down this work 

50S subunit 50S chloroplast ribosomal subunit IP (Han and 
Martienssen, 
1995) 

Saccharomyces 
cerevisiae 

YMR098C 54S subunit Mitochondrial mitochondrial large 
subunit 

MALDI-TOF 
MS 

(Gavin et al., 
2006) 

YLR189C UDP-glucose:sterol glucosyltransferase, 
conserved enzyme involved in synthesis 
of sterol glucoside membrane lipids 

(Krogan et al., 
2006) 

YCR046C 

54S ribosomal protein IMG1, 
mitochondrial IMG1; Pfam domain: 
Ribosomal_L19 

YGR220C 54S ribosomal protein L9, mitochondrial

Various others   MALDI-TOF 
MS; LC-MS/MS 

Drosophila 
melanogaster 

FBgn0029514 FBgn0036029 no description; contains DUF1042 
signature; 
GO:0007498(NAS)=mesoderm 
development  

Y2H (Giot et al., 
2003) 
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List of abbreviations 
3-AT 3-Amino-1,2,4-triazole 
AD Activation domain 
ADP Adenosine diphosphate 
APS Ammonium persulfate 
ATC Anhydrotetracycline 
ATP Adenosine triphosphate 
BCAA Branched chain amino acids 
bp Baise pair 
BSA Bovine serum albumin 
CFP Cyan fluorescent protein 
CHP Conserved hypothetical protein 
Da Dalton 
DBD DNA-binding domain 
DCS Donor calf serum 
DMEM Dulbecco's Modified Eagle Medium 
DMSO Dimethyl sulfoxide 
DTT Dithiothreitol 
ECL Enhanced chemiluminescence 
EDTA Ethylenediaminetetraacetic acid 
EtOH Ethanol 
FCS Fetal calf serum 
FPLC Fast protein liquid chromatography 
GFP Green fluorescent protein 
GST Glutathione S-transferase 
GW Gateway® 
H2O dd. Water, double distilled 
H2O dist. Water, distilled 
HMM Hidden Markov Model 
HRP Horse radish peroxidase 
IPTG Isopropyl β-D-1-thiogalactopyranoside 
ITR Inverted terminal repeats 
kbp Kilo baise pairs 
kDa Kilo Dalton 
KO Knock-out 
LB Lysogeny broth 
LIR Luminescence intensity ratio 
LPS Lipopolysaccharide 
LUMIER Luminescence-based mammalian interactome mapping 
LuMPIS Luminescence-based MBP pull-down Interaction screening system 
mAU Milliabsorbance units 
MBP Maltose binding protein 
MCS Multiple cloning site 
MHP Major head protein 
MWG Molecular weight 
OD Optical density 
ONPG 2-Nitrophenyl β-D-galactopyranoside 
ORF Open reading frame 
ORFeome Library collection of all open reading frames of a genome 
ori Origin of replication 
P.A. Pro analysis 
PAGE Polyacrylamide gel electrophoresis 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PEG Polyethylenglykole 
PMSF Phenylmethylsulfonyl fluoride 
PPI Protein-protein interaction 
PTS (Phosphoenolpyruvate sugar) phosphotransferase system 
Q Queuosine 
RBS Ribosome binding site 
Rf Retention factor 
RNR Ribonucleotide reductase 
rpm Rotations per minute 
RT Reverse transcription/reverse transcriptase 
SAP Shrimp alkaline phosphatase 
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SDS Sodium lauryl (dodecyl) sulfate 
TCS Two-component system 
TEMED N,N,N′,N′-Tetramethylethylenediamine 
TLC Thin layer chromatography 
Tm Melting termperature 
TSS Transformation and storage solution 
U Enzyme unit 
UMP Uridine monophosphate 
WT Wild-type 
X-Gal 5-Bromo-4-chloro-3-indolyl β-D-galactopyranoside 
Y2H Yeast Two-Hybrid 
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