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Abstract

Many goal oriented adaptive methods are based on a characterization of the error with respect to a
user-defined functional. This error can be quantified by means of a dual solution, but depends on
unknown quantities. Different strategies exist to recover the sensitivity information that go along with
the approximation of these unknowns. In this paper a systematical comparison of such evaluation
strategies with respect to the corresponding efficiency and reliability of the computable error estimators
is presented. The investigation is based on two CFD scenarios with analytically known exact solution of
the stationary incompressible Navier-Stokes equations.
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1 Introduction

Many flow problems are influenced by physical structures and processes on a wide range of
scales. For the numerical modelling and simulation of such phenomena, very high resolution of
the mesh is needed to resolve the fine structures, which can yield memory- and CPU-intensive
calculations. For many applications not all of the existing processes can be resolved accurately
even on today’s high-performance computers. Adaptive methods based on a posteriori error
estimators [AO00, Ver96, EEHJ95] can be used to improve the quality of the mesh or the models
to achieve higher accuracy and computational efficiency. In particular, goal oriented adaptive
methods have been developed in the last decade (see [BHR02, BR03, BE03, BR06, HW06, SV07]
and references therein), allowing the determination of those features that should be resolved in
order to compute a given goal functional accurately.

In this work the Dual Weighted Residual (DWR) [EEHJ95, BR03| method is investigated
in more detail. Although the DWR method is already widely established in many fields of
application [BR99, BEGO03, Ste03, HR06, Har08|, the use of this technique in operational software
codes is still rare. One of the main reasons is the highly abstract character of this approach.
The underlying mathematical principles, which are meanwhile well understood, admit a variety of
different strategies to extract and use the sensitivity information in an adequate way. It turns out
that the quality of these techniques and their practicability in the framework of complex and large
problems depend on the deployment strategy the choice of which requires empirical knowledge
in addition to mathematical arguments. In that context the tradeoff between computational cost
and accuracy which needs to be adressed in CFD is still a challenge, where the idiom “the devil
is in the details” applies to the full extent. The goal of this paper is to compare in a systematic
way different deployment strategies of the DWR method for stationary flow problems modelled
with the Navier-Stokes equations.

The outline of this paper is as follows: In Section 2 three variants of an a posteriori error
estimator that are the basis of the considered goal oriented methods are described in an abstract
setting. In Section 3 error estimators are derived for the Navier-Stokes equations, including the
localized error indicators that can be used to control the mesh adaptation. In Section 4 different
strategies to compute these error estimators are presented, which are applied systematically to
two scenarios with analytically known exact solutions of the Navier Stokes equations for several
goal functionals. The results of the adaptive numerical simulations are described in Section 5.
A short summary and outlook is given in Section 6.

2 Goal oriented error estimation

Based on the derivation proposed in [BR03|, we outline the definition of the considered a poste-
riori error estimator for an abstract problem. Let A : V x V — R be a semi-linear functional,
that might be non-linear in the first parameter, and let F': V' — R be a linear functional, defined
on a Hilbert space V. Furthermore, assume the existence of directional derivatives of A up to
the order of three. Consider the variational problem:

Find v € V such that
Aus ) = F(p), Vo eV, (1)

and suppose the existence of a unique solution. For a given goal functional J : V — R, let
J(u) denote the quantity of interest, where u denotes the solution of (1). Further define the
corresponding dual or adjoint problem:
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Find z € V such that
VuA(u; 2) () = Vi (u)(p), Ve €V, (2)

where wu is again the solution of (1). For a discrete conformal finite element space V;, C V
Galerkin approximations for the primal and dual problem are given by:

Find (up, zn) € Vi, x Vp,, such that
Aunson) = Flen), Yo € Vi, (3)
VuA(un; 2n)(en) = Vud(un)(ern), Veon € Vi. (4)

The error in the goal functional .J(u) — .J(up) can be approximated in terms of the solution (u, )
of the variational problems (1) and (2) and the Galerkin approximation (uy, z5) using one of the
following three equalities [BRO3]:

J(u) = J(un) = p(un; 2 —@n) + Ra Vu € Vi,

J(u) = J(up) = pl, (zniu—bn) + Ra Yoy, € Vi, (5)
Tw) = T () = 5 (pluni 2 = on) + pi (e = 90)) + Rs Vipn i € Vi

where p(up;-) and p};, (zx;-) denote the residuals of the primal and the dual problems, respec-
tively:

p(un;-) = F(:)=A(up;-) IV,
Pun(zni) = Vud(un)(-) = VuA(un; 2)(-) in V.
The remainder terms Ro and 7~€2 are quadratic and Rg3 is cubic in the errors e := u — up and
e* .= z — zp. Replacing the unknown solutions u and z by approximations @ ~ v and z = z in

the residual expressions (5) and neglecting the remainder terms yields three a posteriori error
representations for the error J(u) — J(up):

J(u) = J(un) = Ep(un) := p(un; 2 — ¢n),

J(U) — J(uh) %ED(Uh) = pzh(zh;ﬂfl/)h), (6)

1 5 1, .
J(u) — J(up) =~ Epp(up) :== §P(Uh; Z—n)+ §Puh(zh% w— Pp)

for all pp, 1y € V3. Using these a posteriori error representations, the approximate value J(uy,)
of J(u) can be postprocessed and expressed by

Tp(un) := J(un) + Ep(up) (7)

and Jp and Jpp analogously. Until now, the choice of the discrete functions ¢y and v, was
not important since it does not influence the value of the error representations (6) due to the
Galerkin orthogonality. To derive the local contributions of each cell to the total error in J, the
discrete functions are chosen by a suitable interpolation (I, : V — V3,):

on = 1In(2), Pn:=In(P).

Each of the error representations (6) can be written as a sum over all cells K € 7, of the
discretized domain Q = J e, I, where 7}, is the triangulation. Extracting the norms of the
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cell-wise contributions, by the triangle inequality the a posteriori error estimator is given in terms
of so-called error indicators nk,ny > 0 by (Ep and Epp analogously):

aplw) = 3 e, ap(un) = Y mie men(un) = Y0 L (nx i),

KeTy, KeT, KeTy,

where 7 > 0 and 7} > 0 represent the contributions of cell K € 7}, to the error in J.

3 Error estimators for the Navier-Stokes equations

To derive goal oriented error estimators and local indicators for the Navier-Stokes equations, the
residual operators of the corresponding primal and dual problem must be applied to the abstract
framework described in Section 2. Let Q@ C R%, d € {2,3} be a closed domain with sufficiently
smooth boundary I', and let v and p denote the velocity field and the pressure distribution,
respectively. Assuming for simplicity Dirichlet boundary conditions for the velocity field, the
incompressible stationary Navier-Stokes equations have the following form:

1
—vAv + (v-V)v + ;Vp =f in{, (8)
V.-v=0 inQ, 9)
v=vp onl, (10)
/ p=0. (11)
Q

The function f denotes a volume force, the parameter v > 0 the kinematic viscosity and p > 0
the density of the fluid. A variational formulation of the primal problem is given by (see e.g.
[Gal98]):

Find (v,p) € Vl(P) X V2(P) such that

(v VYo, @)g — /1)@, V- oo+ (Vo Voo + (V- d)a = (f0)a (12)

for all (1) € W) x Wi,

where Vl(P) ={ve H (Q)? : v = vp on I'}, VQ(P) = {p e L*(Q) : [,p dz = 0}, Wl(P) =
{v e H(Q)?: v =0o0nT} and W2(P) := L%*(Q). The inner product in L?(2) is denoted by
(a,b)q := [, a-bdz. Given a goal functional .J : H'(Q)? — R, the variational formulation of the
corresponding dual problem described abstractly in Equation (2) is given by:

Find (z,q) € Vl(D) X VQ(D) such that

((30 ’ V)U + (U ’ V)QD, Z)Q (¢a V- Z)Q + V(v@a VZ)Q + (v ) Q)Q = V.](U,p)(cp, ¢) (13)

1
p

for all (p,) € WI(D) X WQ(D).

Here v denotes the velocity component of the solution of (12). The spaces are defined as VI(D) =
{ve HY(Q)¢:v=0o0nT}, V2(D) ={pe L*(Q): [,pde =0} and Wl(P) = {v e HY(Q)P)
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v = 0on I}, W:,(P) := L?(Q). For Galerkin approximations, conforming finite-dimensional
spaces Vif,};) - VZ»(P), Vif,?) - VZ-(D), Wi(yl,j) - Wi(P) and Wz'(,j}:;) - Wi(D) (i = 1,2) that fulfill the
Ladyschenskaja-Babugska-Brezzi (LBB) condition [Bre74] are chosen. For approximate solutions
(Vs Dhs 2hs Qn) € V1<P) X VQ(P) X Vl(D) X VQ(D) the error representations (6) have the form

Ep(vn,pn) = p(Un,pn; 2 — In(2), G — 1n(q))
Ep(Vn,pr) = Plop pn) 2o @ns © — 1n(p), 0 — In(p)) (14)
1 1
Epp(vn,pr) = §EP(Uh7ph) + §ED (U, pn)
As already mentioned in Section 2, the functions © =~ v, p ~ p, Z ~ z and ¢ = ¢ denote some
approximations of the exact solutions. Several strategies to compute these approximations will

be specified in Section 4. Introducing for brevity the quantities Z := z—1I,(2) and Q := §—I,(q),
the contribution to the primal residual from a cell K is given by:

1
pr = ([, Z)k — ((vn - V)on, Z)k + ;(ph, V-Z2)k —v(Von,VZ)k — (V- up, Q) k
1 1
= (f—=(vn-V)u, — ;Vph +vAv, Z)k + (V- un, Q) k + (—v0nuy + ;phn, Z)oK-

On the boundary v := 0K’ N OK between each pair of two neighboring cells K" and K there are
two contributions to the residual given by the following two integrals over ~:

1 1 A
(—vOpv}, + ;pﬁln’, Z"), and (—v0y0n + ;ﬁhﬁ, Z)~,

where w’ and @ denotes the values of w on the cells K’ and K , respectively. Since Z is a

globally continuous functions, Z := 7’ = Z holds on ~. Furthermore, the normal unit vectors
are antiparallel, i.e. n :=n’ = —f so that the residual contribution corresponding to v is given
by

1 . 1. . 4 . 1 .
(*Van’U;z + 7p;ln/’ Zl)w + (—v0u0n + —pai, Z)'y = 71/(8711}2 — OnOnp, Z)’Y + 7((17;1 — Dn)n, Z)%
p p —_— P
::[8nvh] =:[ph}
(15)
where [0, vp,] denotes the jump of the normal derivative and [py] the jump of the pressure at the
common cell boundary. For cell K and cell boundary =y, we can introduce the cell residual resC

and the boundary residual resB defined by:

1
resCig = [ — (vn - V)up — ;Vph + vAuvy,

B . —%y[ﬁnvh] + %p[ph]n , if v is an inter-cell boundary
resBly = —vO,vp, + %phn , if v C 09

The contribution of cell K € 7}, to the primal residual can be written as
PK ‘= (’T’GSC, Z)K + (v 'UhaQ)K + (TeSB,Z)aK- (16)

To describe the contribution of each cell to the dual residual, the goal functional J(v,p) is
assumed to be of the form

J(U7p) = (j(U)av)Q + (j(p)ap)ﬂa
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where j(¥) € L2(Q)? and j € L?(Q). Introducing the quantities V := @ — I;,(0) and P :=
p — I (p) for clarity, the contribution of cell K € 7}, to the dual residual is given by:

pic =" V)i + (", Pk
((V V)Uh + (Uh V)V Zh)K + - (P AV Zh) — l/(V‘/, Vzh)K — (V . V,qh)K
== (j(v), V)|K + (j(p),P)|K - ((Vl)h) Zh — (Uh . V)Zh - (V . Uh)zh - th - VAZh, V)K

1
+ ;(V “zn P ) — ((vp - n) - 2 + v0pzn + qun, V) ok -

The contribution corresponding to cell K and cell boundary -+ to the dual residual is denoted by
the dual cell residual resC* and the dual boundary residual resB*:

resq*K = (V) (Vo) Tz, + (v, - V)2, + (V- vp) 2, + Van + vAzy,

resBF —%V[anzh} - %[qh]n , if v is an inter-cell boundary
Iy~ —(vp - n)zp — VOpzp — qun, if y C O

On inter-cell boundaries the term —(vy, - n)z, is zero, since v, and zj are globally continuous.
The contribution of cell K € 7}, to the dual residual can be written compactly as

phc i= (resC*, V) g + (G + V zh, P)k + (resB*, V) gk

The computable a posteriori error representations defined via the cell-wise contributions for the
three variants are

Z pr + Prc|-

KGTh

Ep(up) Epp(up) = (17)

ZpKa

KeTy,

ZPK

KeTy,

The corresponding a posteriori error estimators defined in terms of error indicators are

1 X
yi= > pxl mp(un) = Y lokl, npp(un) = > 3lPK + Pkl (18)

KET}L KETh KETh

where the cell-wise error indicators are defined as nx := 3|px| and 0} = |pj|.

4 Strategies of evaluation

The a posteriori error representations (17), error indicators and related error estimators (18)
require the evaluation of residual expressions p(up; Z — I(2)) and py, (zn; @ — In(w)), where uy,
and zj, denote Galerkin approximations characterized by (3) and (4). I : V — V}, denotes
the nodal interpolation operator. % and Z represent the exact solutions of the primal and dual
problems (1) and (2), which are unknown in general. The question is how to calculate these
approximations @ and z to get reliable estimates without increasing computational cost in an
intractable way. To the opinion of the authors, this key issue represents the true challenge of using
the DWR method in CFD. In the following three strategies of evaluating the error estimators,
i.e. the needed approximations, are investigated.
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4.1 Higher-order finite element solution

Let Vi, C V denote the finite element space corresponding to the Galerkin approximations wuy,
and zp. The solutions u, z € V are replaced by finite element solutions iy, 2, € Vh, where Vh is
a finite element space of higher-order (V;, C V3,). The residuals that need to be evaluated for the
a posteriori error representation (17) and error indicators (18) are

p(un; 2o — In(2n)), Py, (203 n — In(tn)).

This strategy leads to accurate approximations of the unknown quantities in the error represen-
tations, but the related computational effort is considerably high. A drawback is that although
higher-order approximations of the primal and dual solutions are calculated, still the estimations
characterize the solution of the lower-order approximation u; only.

4.2 Block strategy

The block strategy represents a compromise with respect to computational cost and accuracy
between calculation of finite element approximations in higher-order finite element spaces and
methods of pure interpolation. Instead of solving the globally coupled problem, local auxiliary
problems are examined. This has sucessfully been applied to Poisson’s problem in the framework
of error estimators for global error norms [BW85, Ver96]. We propose in that context the solution
of local Dirichlet problems embedded in defect correction steps associated to the considered
higher-order finite element discretization. A solution of the dual problem is approximated in a
conforming higher-order finite element space Vl(yl,z) X IA/Q(f) C Vl(D) X V2(D). Due to the linear
character of the dual problem and the divergence-free condition the linear system to be solved

has the following saddle point structure:

PR

This problem is solved using a preconditioned Richardson iteration of the following form:
Zi+1 24 —1| Res?
= + wC [ 19
[fml] [Q] [Resﬁ] 1)

with relaxation parameter w. The block triangular preconditioning matrix C and the defect are
defined by:

-l
[Rd=[w ][5 T o

where the matrix I denotes the identity. A has the same entries as A, except for each index
n that corresponds to a degree of freedom (DOF) of the velocity on any cell’s boundary (see
accentuated DOFs in Figure 1):

0 , if n corresponds to a DOF on cell boundary, n # m
Apom = 1 , if n corresponds to a DOF on cell boundary, n = m
Anm , else.
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Fig. 1: Degrees of freedom on initial and higher-order FE space; highlighted DOFs on cell bound-
ary

The discrete dual solution (zp,pp) € Vl(fl)) X \/2(71,:;) is supposed to be known. The starting point

(z0,p0) € Vl(,j,:z) X \72(71,:;) of the iteration (19) can be calculated by the General Transfer Operator
[Sch00]

B VD) X VD) 0 5 D),

which is a change of basis in the case of subspaces (Vl(jz) X Vz(yl,z) c V) x \72(’5)). Hence the

1,h
starting point is defined by
(20,P0) = In(zn; qn)-

In Figure 1 a cell with the degrees of freedom of the initial finite element space (left) and the
degrees of freedom of the higher-order finite element space (middle) are plotted. The iteration
(19) converges, if the spectral radius of the iteration matrix I —wC~!A is smaller than one.

In the preconditioning step, due to the definition of A, all degrees of freedom corresponding
to the velocity variable on any cell’s boundary are fixed. Hence the number of unknowns are
smaller compared to the original problem. Further the couplings range over DOFs within single
cells only. Hence the correction quantity (Corr?, C’orr?)T can be calculated indepently and in
parallel. The matrix A can be reordered such that it consists of independent blocks, where each
block corresponds to one cell. Each cell-wise problem has the form (cell K € 7y, iteration i)

- 1
AK B}; Resf( . C’or;( .
)t = )t 22
w [ 0 Ig ] [ Resfc ; Cores | (22)

and represents a Dirichlet problem for cell K. Such local problems can be solved very efficiently
in parallel. Only the computation of the residual is a global operation which takes into account
the global couplings of the problem. But this is in general not very computational expensive
in the overall solution procedure and its computation has good parallelization potential. The
numerical tests described in Section 5 show, that even one or two numbers of iteration yield
reliable a posteriori error estimates.

The application of this procedure is denoted by the operator B : \/1(71,?) X Vz(i)) — f/l(’l,z) X Ykz(’l,z),
i.e. the approximation of the exact solution is given by (23, qn) := B(zn,qn). The primal residual
that is evaluated for the error estimation has the following form

p((Vns pr); B(zns an) — In(B(zn, qn)))-

Approximate solutions (1, p;L) of the primal problem can analogously be calculated by prin-
ciple. In this case, the local matrices within the Richardson iteration (19) represent linearizations
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Fig. 2: Four small cells form one bigger cell with higher finite element ansatz

of the non-linear system and depend on the iteration step, i.e. A = fl’K Still, the calculation
of the correction term can be done independently for each cell in parallel. A big advantage of
this iterative procedure lies in the possibility to control the computational costs and accuracy
by determining the number of iterations.

4.3 Higher-order interpolation

The main drawback of the methods described previously is related to the comparatively high
computational costs associated to the higher-order elements, even if only needed locally as pro-
posed in Section 4.2. In practice, a commonly used approach relies on extrapolation techniques
taking advantage of patch structure of the considered mesh. Theoretically, theses techniques are
only valid under strong regularity assumption both with respect to the mesh and the solution.
However these methods are used in a much wider setup, since they rely on the definition of an
adequate interpolation operator, which is usually computationally quite cheap. To the knowledge
of the authors the impact of the associated error on the quality of the error estimation is at least
theoretically still an open question.

The considered interpolation scheme can be applied very efficiently to meshes that consist
of patches. This means that the mesh can be coarsened such that four neighboring cells form
one cell in the coarsened mesh (see Figure 2). For ease of presentation we assume Taylor-Hood
elements |[BF91| for the discretization. The idea of higher-order interpolation as described in
IBRO3]| is to interpret the finite elements in a patch consisting of four cells (in 2D) as one finite
element in the common father cell. Therefore the degrees of freedom of the four cells with finite
element ansatz Qn, n € {1,2}, are used as degrees of freedom in the father cell which has finite
element ansatz Qm, where m = 2n. By Qm-interpolation on the patch cell it is easy to calculate
the values for the degrees of freedom that correspond to an @m ansatz on each of the four initial
cells such that the higher-order interpolation is given by an Qm ansatz on each cell, what might
be technically convenient as the interpolated solution can be represented on the same cells as
the initial finite element solution.In Figure 2 for the case of @1 and Q2 cells, a patch of four
cells (left) and the corresponding patch cell (middle) is shown. The patch of higher-order cells
(right) show the cells with higher-order finite elements which is just an other representation
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of the same interpolated solution (change of basis). Degrees of freedom that correspond to
the particular finite element ansatz are indicated by points. In meshes that don’t have patch
structure, for each cell a virtual patch cell can be defined and used for the interpolation, which
is computationally more expensive. We refer e.g. to [CHO8| for more details.

As Ih(fgh(uh)) = uy, and Ih(fgh(zh)) = z;, in this special situation, no extra interpolation
needs to be calculated. The residuals that are evaluated for the error characterizations have the
form

P(Uh;th(Zh) — Zn), PZh(Zh;fzh(Uh) — Up,).

5 Numerical simulation

In the following the presented goal oriented adaptive techniques are applied to scenarios with
known analytical solution in order to quantify the reliability and efficiency of the error estimators
based on the different strategies to approximate the exact primal and dual solution, presented in
Section 4. All scenarios have been chosen to be related to configurations and setups which are
associated to problems occuring in meteorology and climate research. For each scenario and each
goal functional, the reference solution was evaluated using the computer algebra system Maple™
[MGH*05]. For the discretization with finite elements the domain Q C R? is partitioned into
quadrilaterals. Taylor-Hood elements are used, which are globally continuous and piecewise bi-
quadratic for the velocity components and piecewise bi-linear for the pressure component in the
simplest case. The global form functions have for degree ¢ the following form:

Vin = {Uh € HOI(Q)2 P Uh g € Qf(K) VK € Ty, v, =0 on F},

V27h = {ph S L2(Q) CPhi € Q¢_1(K) VK € 771,/ prdx = 0}.

Q
Here Q;(K) denotes the polynomials with maximal degree of i in each variable defined on cell
K, that is in two space dimensions

Qi(K) =< u(z,y) = Z cseyt, (z,y) € K

0<s,t<i

It can be shown that for i > 2 these elements fulfill the LBB-condition [Bre74] and therefore are
stable [BF91]. Taylor-Hood elements with polynomial degree 2 for the velocity are called Q2Q1
elements and are the default finite element space of the primal and dual problem in the following
numerical simulations. In the following QnQm denotes Taylor-Hood elements, where n and m
denote the polynomial degree of the velocity components and pressure field, respectively. In h-
adapted meshes consisting of quadrilateral cells only, so-called hanging nodes exist that have to be
treated in a way such that global conformity is guaranteed, which is a global continuity condition
in the case of H!'-conforming spaces. We consider the approach presented in [HS07, HRO3].

In the following, the adaptive method is described. For each adaptation cycle, first the discrete
primal and dual solutions are calculated. Then based on different strategies the error quantities
(17) can be evaluated and for each cell the local error contribution can be estimated in terms
of the local indicators nx and 7. Many mesh adaptation strategies aim to iterate towards an
equally distributed error contribution of each cell K € 7;. Hence, cells are marked for refinement
or coarsening that have too large or too small error indication with respect to some criterion. We
used for all adaptive numerical simulations the same mesh refinement strategy. For a parameter
0 < a <1 and the maximal error indicator 7,4, = maxke7, {7x} in the current mesh, the set

A= {KE,];LIHK Zanmam}
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Fig. 3: Taylor-Green vortex: Velocity field, colored by vorticity

contains the cells that should be refined. For symmetrical scenarios, this strategy allows the same
treatment of cells with identical error indication leading to symmetrical meshes. The parameter
a is chosen as 1/16.

All numerical simulations were performed using the multi-purpose finite element library Hi-
Flow® [AAB*10]. The visualizations of the solutions and weight functions were generated using
the visualization platform HiVision |[BHO06|. The evaluation of the reference values of the goals
for the scenarios were calculated using Maple™ [MGH*05].

5.1 Taylor-Green vortex

The first configuration is the well-known Taylor-Green vortex [Cho68]. The velocity and pressure
distribution that fulfills the Navier-Stokes equations is given by

v1(z,y) := —e~ 2 cos(z) sin(y),

vg(z,y) := e % sin(z) cos(y),

p(z,y) = —6_4(cos(2:13) + cos(2y))/4,

defined in the domain 2 = [%TF; gw]2. Figure 3 shows the velocity field consisting of four vor-
tices. The glyphs represent the velocity field and the coloring is based on the vorticity, where
blue regions mark clock-wise and red regions mark counter-clock-wise vortical structures. The
corresponding right-hand side of the Navier-Stokes equations with kinematic viscosity v = 1 and
density p =1 is

fl (l‘a y) = _2672 COS(LC) Sin(y)a

fa(z,y) = 2e 2 sin(z) cos(y).

5.1.1 Scenario 1: Point value of velocity

Given a point & € €, the quantity of interest is defined as the x-component of the velocity at
this point:

Ji(v,p) =01 () = v1(x) d.

|B(Z, )| B(&,¢)

10
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FeeE

Dual Velocity
0.320

0.160

3.19e-05

Fig. 4: Point value of velocity, scenario 1: (left) dual velocity and (right) optimized mesh

Here B(#,€) is a ball with radius € > 0, centered at & and |B(Z,€)]| is its surface. The radius
is defined as € := €(hmin) := hmin/4, where hpp = minge7, {diam K} is the smallest cell
diameter in the mesh. For point & = (6.2, 3.8) the reference value is

J1(v, p) =~ 0.082519625992351.

5.1.2 Scenario 2: Weighted integral of vorticity (I)

For the weight function

the weighted integral of the vorticity
Ja(v,p) = / wy(x) -V x v(z) de ~ 0.422120125202319
Q
is chosen as goal functional.

5.1.3 Scenario 3: Weighted integral of vorticity (1)
For point & = (3.0,4.0), the weight function with small support close to Z is defined by

1 1 . -
wa(x) = { exp ((z1—i1)2—1 + (Z2—572)2—1> , if lz -3, <1 .

0, else

The goal functional is defined as the weighted integral of vorticity

J3(v,p) == / wo(x) -V X v(x) dr ~ 0.029422745464403.
Q
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5 Numerical simulation
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Fig. 5: Weight function w; related to scenario 2 (left), weight function ws related to scenario 3
(right)
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Fig. 6: Weighted integral of vorticity (I), scenario 2: (left) dual velocity and (right) optimized

mesh
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Fig. 7. Weighted integral of vorticity (II), scenario 3: (left) dual velocity and (right) optimized
mesh
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5 Numerical simulation

Velocity
4.04

0.000404

Fig. 8: Single vortex: Velocity field, colored by norm of velocity

5.2 Single vortex

The second configuration contains a monopolar vortex with smooth vorticity profile and az-
imuthal velocity, called Gaussian vortex, as used e.g. by Scheck et al. [SJJ11] to describe
idealised tropical cyclones. The exact solution is defined by the following velocity and pressure
distribution in the domain Q := [—1,1]*:

224y
Y v
Ul(xay) =€ 0o,
7o
22402
13 (.’L‘ )— _E '6_ 2”‘8
2\, Y) = 2 ’
o
 a24y?
(2,y) = —Lo e 73
p\x,y): 92
To

The radius parameters is rg = 0.15, the kinematic viscosity is ¥ = 1 and the density is p = 1.
The corresponding right-hand side of the Navier-Stokes equations is defined as

vy(4rg — 2% — y? —aliy?
fl(may): ( . 6 )'6 25 3
To
va(dr? — 2 — 42 224y
fa(zy) = - trg G y)_e i

7o

and corresponds to effects of viscosity as (v1,v2,p) is a solution of the Euler equations with
homogeneous right-hand side.

5.2.1 Scenario 4: Point value of vorticity
For point 2y = (0.35,0.45) the vorticity at that point

1

—— V x v(x)dx
|B(.’E0,6)| B(xo,€)

Ja(v,p) =V xv(zo) ~
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5 Numerical simulation

Dual Velocity
0.306

0.153

3.05e-05

Fig. 9: Point value of vorticity, scenario 3: (left) dual velocity and (right) optimized mesh

is of interest in this investigaation. Again B(xzg,¢€) is a ball with radius ¢ > 0, centered at xg
and |B(xo, €)| its surface and € := €(hmin) := hmin/4, where Ry, = minger, {diam K} is the
smallest cell diameter in the current mesh. The vorticity at point xg can be evaluated to be

Ji(v, p) &~ 0.403851534372451.

5.2.2 Scenario 5: Kinetic energy
The goal functional is defined as the kinetic energy in the domain 2:
Js(v9) = ol = (0. 0)a = [ ofa) o) do
Q
Because this functional is non-linear, the right-hand side of the dual problem is its linearization,

see Equation (13):

1 Js(v+ A ) —J, v,
Vo Js(v,p)(p) = lim 5 w;) 5(v,p)

o1
= lim S [(0+ Ap, v+ Ao — (0,0)a)

1

= lim + [(v,0)0 + 2X\(v, ¥)a + X (¢, p)a — (v, 0)q]
=2(v,9)a.

The integrated kinetic energy approximately is

Js(v, p) = 3.141592653589793.

5.3 Description of the adaptive numerical simulations

In order to better quantify the quality of the different variants of the error estimators, we consider
for each scenario and estimator variant sequences of globally, i.e. regular, and adaptively refined

14



5 Numerical simulation

Dual Velocity
0.0630

Fig. 10: Kinetic Energy, scenario 5: (left) dual velocity and (right) optimized mesh

meshes. On globally refined meshes the number of degrees of freedom is common for all variants
which allows a comparison of the efficiency of the error estimators in a common context. For
this investigation the efficiency index is introduced:

E(up,)

T = TG | -

Ig:= '

and should optimally be close to one, i.e. the estimated error is close to the true error. Here
E(up,) denotes the estimated error for the variants Ep, Ep and Epp as defined by (6). For all
simulations, the finite element solutions are Q2Q1 functions. The finite element spaces for the
approximations of the exact primal and dual problem are:

| Strategy | Elements |
Higher-order finite element approximation Q3Q2
Block strategy Q3Q2
Higher-order interpolation Q4Q2

In the following the results of the numerical simulations are described in a sequence of tabulars
and plots. The tabulars describe the efficiency index, the estimated error E(uy), the true error
in J — defined as difference between reference value and the approximate value J(uy) — and the
error of the improved value J(uy), see Equation (7). The plots include the efficiency indicator
I.g and true error in J of the adaptive and corresponding globally refined runs to investigate the
relation between accuracy and number of unknowns.

15



5 Numerical simulation

5.3.1 Point-value of velocity

| # DOFs | |J(u) — J(un)| | |E(un)|

[ Lea | [J(u) = J(up)| |

659 4.84.107% 2.78-1079% [ 0.57 | 2.06- 1074
2467 4.85-1079 2.77-107% [ 0.57 | 2.07-107%
9539 4.28 -10796 2.51-1079 [ 0.59 | 1.76 - 10796
37507 6.95- 10797 3.70-10797 | 0.53 | 3.24-10°°7
148739 | 4.94.1078 2.91-107°8 [ 0.59 | 2.03-10708

Tab. 1: Scenario 1, D, analytical solution of primal problem, interpolation

# DOFs | |J(u) — J(up)| | |E(un)]

| Lex | |T(w) — J(un)] |

659 4.84-107% 2.71-107%4 [ 0.56 | 2.13-107¢
2467 4.85-1079 2.67-107% [ 0.55 | 2.18- 107 %
9539 4.28 -1079 2.61-1079 [ 0.61 | 1.66- 1079
37507 6.95- 10797 3.67-10797 [ 0.53 | 3.27-107°7
148739 | 4.94-10 %8 2.95-1079% [ 0.60 | 1.99-1008

Tab. 2: Scenario 1, P, higher-order finite element solution

# DOFs ‘ |J(u) — J(up)| ‘ |E(up,)|

[ Leg [ 1J(u) = J(un)| |

659 4.84-107% 2.81-107%% [ 0.58 [ 2.03-1077¢
2467 4.85-1079 2.73-107% [ 0.56 | 2.12-10795
9539 4.28-10°96 2.57-1079 | 0.60 | 1.70-1006
37507 6.95- 10797 3.70-10797 [ 0.53 | 3.25-107°7
148739 | 4.94-10708 2.93-10798 [ 0.59 | 2.01-10708

Tab. 3: Scenario 1, PD, higher-order finite element solution

# DOBS | |J(u) — J(up)| [ |E(up)l

| L | 1J(u) — J(un)] |

659 4.84-107%4 4.61-1079 [ 0.10 | 4.38-107 04
2467 4.85-107% 1.86-1079 [ 0.38 | 2.99 .10~
9539 4281096 2.87-10 96 [ 0.67 | 7.15-10 06
37507 6.95- 1007 2.30-10797 1 0.33 | 9.25- 1077
148739 4.94-1098 4.26-10"98 1 0.86 | 9.20-10 98

Tab. 4: Scenario 1, P, higher-order interpolation

# DOBs | [J(u) — J(un)| | |E(un)l

[ Teg [ 17 (w) — J(up)| |

659 4.84.107% 1.82-107%* [ 0.38 | 3.02-107%¢
2467 4.85-1079 2.45-1079 | 0.51 | 2.40-1079°
9539 4.28 10706 2.25-10797 [ 0.05 | 4.50- 10706
37507 6.95- 10797 6.77-10798 | 0.10 | 6.27-107°07
148739 | 4.94-10708 6.88-10799 [ 0.14 | 5.63-10708

Tab. 5: Scenario 1, PD, higher-order interpolation
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5 Numerical simulation

[ #DOFs | [J(u) — J(up)| | [E(un)] [ Leg [ [J(u) — J(un)| |
659 4.84-107% 14310794 1 0.29 | 3.42-107%4
2467 4.85-1079 1.47-107% [ 0.30 | 3.38-1079°
9539 428 .10796 5.92-10797 [ 0.14 | 3.68 1076

37507 6.95- 10797 1.79-10797 [ 0.26 | 5.16 - 10797
148739 4.94.10708 1.33-1079% [ 0.27 | 3.61-10708

Tab. 6: Scenario 1, P, block strategy, one update step, w = 0.2

| # DOFs [ [J(u) — J(un)| | |E(up)] | Leg | [J(u) — J(un)l |
659 4.84-107% 1.61-1079% ] 0.33 [ 3.23-107%4
2467 4.85-107% 1.65-1079 [ 0.34 | 3.20-10~%
9539 4.28 10796 9.11-10°97 [ 0.21 | 3.37-10°9

37507 6.95- 10797 1.82-10797 [ 0.26 | 5.13-10797
148739 4.94.10708 1.71-1079 [ 0.35 | 3.23.10708

Tab. 7: Scenario 1, P, block strategy, two update steps, w = 0.2

B D07 [
3
o 10»4 vereern: sme mscmmrrr: oo N ARG SRR R AT AU RS SRR SR SRR SR ]
i
3 o awwen sepermansen asveyses NG Neas asviey seprer iwsguy abuereanien ssveven spvsvorveress il s
~ 10
2
. 10—6 Lo b T T e LN N e e
|| = Global Refinement
107 | — Analytical, E,
sl Finite Element, E,
1071 Finite Element, E,,
9 —— HO-Interpolation, E,
107F HO-Interpolation, Ep,
10| | —— Defect Correction, Ep, 1
107 i
— —  Defect Correction, E,, 2 : :
-11 ! I I
10
10 10° 10* 10°

Number of DOFs for primal solution

Fig. 11: Error and efficiency plots for scenario 1
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5 Numerical simulation

5.3.2 Weighted integral of vorticity (1)

’ # DOFs ‘ |J(u) — J(up)| ‘ |E(up)| ‘ Leg ‘ |J(u) — J(up)| ‘
659 3.16-10794 3.16-107%4 | 1.00 | 5.68 10798
2467 1.95-10"% 1.95-107% [ 1.00 | 7.67-10"1°
9539 1.22-107% 1.22-107% | 1.00 | 1.38 - 10~ !¢

37507 7.61-10708 7.61-10798 | 1.00 | 2.39-10712

148739 4.75-1079%9 4.76-1079 | 1.00 | 2.10- 10712

Tab. 8: Scenario 2, D, analytical solution of primal problem, interpolation
[ DOFs [ [J(w) —J )] [ [BCun)]| [ o | 1) — ()] |
659 3.16- 10~ 2.24-107% | 0.71 [ 9.25-107%°
2467 1.95-10-% 1.40-1079 | 0.72 | 5.53 109
9539 1.22-107% 8.74-10797 [ 0.72 | 3.44-1077

37507 7.61-10708 5.45-1079 | 0.72 | 2.16- 10798

148739 4.75-107% 3.40-107% [ 0.72 | 1.35-107%

Tab. 9: Scenario 2, P, higher-order finite element solution

| # DOFs | |J(u) = J(up)]| | |E(up)] | e | [J(w) = J(un)
659 3.16- 10794 2.85-10794 1 0.90 | 3.18-107%
2467 1.95-10~% 1.77-1079 [ 091 | 1.85-1079
9539 1.22.107% 1.10-1079 | 0.91 | 1.15- 10797

37507 7.61-10708 6.89-10798 | 0.91 | 7.18- 1099

148739 4.75-1099 4.31-10799 ] 0.91 | 4.48-10" 10

Tab. 10: Scenario 2, PD, higher-order finite element solution

| # DOFs | [J(u) — J(up)| [ |1E(un)| [ Lo [ () — J(un)| ]
659 3.16-107%* 1.89-107%% ] 0.60 | 1.27-107¢
2467 1.95-10~% 1.34-107% [ 0.68 | 6.16- 1079
9539 1.22-1079 8.66-10797 | 0.71 | 3.52-10°7

37507 7.61-10708 5.45-1079 | 0.72 | 2.16- 10798

148739 4.75-10799 3.41-1079 [ 0.72 | 1.35-107%9

Tab. 11: Scenario 2, P, higher-order interpolation

| # DOFs | |J(u) = J(un)| | |E(un)] | Leg | () = J(un)| |
659 3.16- 10~ 2.61-1079* [ 0.82 | 5.57-107%
2467 1.95-10~% 1.66-1079 | 0.85 | 2.93-1079
9539 1.22.107% 1.04-1079 [ 0.86 | 1.74- 10707

37507 7.61-10 08 6.53-10°98 | 0.86 | 1.08-10 98

148739 4.75-107%9 4.08-107% | 0.86 | 6.72-10710

Tab. 12: Scenario 2, PD, higher-order interpolation
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5 Numerical simulation

Error, Efficiency

| #DOFs | [J(u) — J(up)| | [E(un)| [ Leg [ [J(w) — J(un)| ]
659 3.16-107%4 9.86-1079 [ 0.31 [ 2.18-107%*
2467 1.95-1079 6.19-10796 [ 0.32 | 1.34-10%
9539 1.22-10796 3.82-10797 | 0.31 | 837-10797

37507 7.61-10798 2.36-1079 | 0.31 | 5.25-107%8
148739 4.75-10799 1.47-10799 [ 0.31 | 3.29-10799

Tab. 13: Scenario 2, P, block strategy, one update step, w = 0.2

| # DOFs | [J(u) — J(up)| | [E(un)| [ Leg [ [J(w) — J(un)| ]
659 3.16-107%4 1.16-1079% [ 0.37 [ 2.00-107%*
2467 1.95-1079 7.14-1079 [ 0.37 | 1.24-107%
9539 1.22-1079 4.40-10797 [ 0.36 | 7.78 10797

37507 7.61-10798 2.73-10798 [ 0.36 | 4.88-10708
148739 4.75-10799 1.70-10799 [ 0.36 | 3.06 - 10~99

Tab. 14: Scenario 2, P, block strategy, two update steps, w = 0.2

6| .
10 = Global Refinement
10-7 || — Analytical, £,
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10-8 - Finite Element, Epp e ......................
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10°F HO-Interpolation, E,, |- i o o Y ol
10| | — Defect Correction, Ep, 1 : :
102 - - Defect Correction, B [
10-11 T I I
10° 10’ 10* 10°

Number of DOFs for primal solution

Fig. 12: Error and efficiency plots for scenario 2
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5 Numerical simulation

5.3.3 Weighted integral of vorticity (1)

’ # DOFs ‘ |J(u) — J(up)| ‘ |E(up)]| ‘ Teog ‘ |J(u) — J(up)] ‘

659 2.44 -107% 2.95-107% | 1.21 | 5.03-1079
2467 2.39.10706 8.56-10797 [ 0.36 | 3.24-1070C
9539 1.33.10797 3.62-10798 [ 0.27 | 9.70- 10708
37507 3.07-10799 3.92.-107%99 | 1.28 | 8.47-10"10
148739 9.07-10~11 7.96-10~11 [ 0.88 | 1.11-10~11
Tab. 15: Scenario 3, D, analytical solution of primal problem, interpolation

| # DOFs | [J(u) — J(up)| | |E(un)]|

‘ Ieff ‘ |J(u)—J(uh)| ‘

659 2.44.10~% 3.14-107% [ 1.29 | 7.01-107096
2467 2.39-1006 829-10°9710.35 | 3.22-10° 06
9539 1.33-107Y97 3.23-10798 [ 0.24 | 1.01-107Y7
37507 3.07-10799 3.70-107%9 | 1.21 | 6.36-10"10
148739 | 9.07-10~11 6.54-10~11 [ 0.72 | 2.53- 10711

Tab. 16: Scenario 3, P, higher-order finite element solution

# DOFs | [J(u) — J(up)| | |E(us)]

| T | [(u) = J(un)] |

659 2.44 .10~ 3.09-107% | 1.26 | 6.43-10706
2467 2.39 .10 06 8.67-10797 1 0.36 | 3.26-109
9539 1.33-107Y7 3.47-10798 1 0.26 | 9.86- 10708
37507 3.07-10709 3.86-10799 | 1.26 | 7.87-10~10
148739 9.07-10" 11 748107 [ 0.83 | 1.58 - 10!

Tab. 17: Scenario 3, PD, higher-order finite element solution

# DOFs | [J(u) — J(up)| [ [E(up)]

[ Lea | [J(u) — J(up)| |

659 2.44 -107% 7.52-107% | 0.31 | 1.69-1079
2467 2.39-10~06 1.19-1079 [ 0.50 | 1.19- 10776
9539 1.33.10797 2.95-1079 [ 022 | 1.04-107°7
37507 3.07-107%9 2.23-10799 [ 0.72 | 8.44-10719
148739 | 9.07-10~ 1! 2.32-10710 | 2,56 | 1.41-10719
Tab. 18: Scenario 3, P, higher-order interpolation
| # DOFs | [J(u) = J(un)| | |E(un)] | Leg | |J(u) = J(un)| |
659 2.44 .10 % 1.94-1079 [ 0.79 | 5.01-1096
2467 2.39-10796 1.49-10797 [ 0.06 | 2.24-10796
9539 1.33-10797 3.26-10798 [ 0.24 | 1.01-107°7
37507 3.07-107%9 3.07-10799 | 1.00 | 5.43-10" "2
148739 9.07-10~11 1.55-10~19 | 1.71 | 6.47-10~1!

Tab. 19: Scenario 3, PD, higher-order interpolation




5 Numerical simulation

Error, Efficiency

| # DOFs | |J(u) — J(un)| | |E(up)]

[ Lea | [J(u) — J(un)| |

659 2.44-1079 1.51-107% [ 0.62 | 9.31-10796
2467 2.39.1079 413-10797 [ 0.17 | 2.80- 10796
9539 1.33-10°°7 1.42-107% [ 0.11 | 1.19-107°7
37507 3.07-107%9 1.62-107%9 | 0.53 | 1.45-107%
148739 | 9.07-10~ 1T 2931071 [ 0.32 | 6.13-10~1¢

Tab. 20: Scenario 3, P, block strategy, one update step, w = 0.2

| # DOFs | |J(u) — J(un)| | |E(up)]

[ Lea | [J(u) — J(un)| |

659 2.44-1079 1.71-107% [ 0.70 | 7.29 - 10796
2467 2.39.1079 4.54-10797 1 0.19 | 2.84-10796
9539 1.33-10°°7 1.65-107% [ 0.12 | 1.17-107°7
37507 3.07-107%9 1.88-107% | 0.61 | 1.19-107%
148739 | 9.07-10~1T 3.40-10~11 [ 0.37 | 5.67-10~1T

Tab. 21: Scenario 3, P, block strategy, two update steps, w = 0.2
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Fig. 13: Error and efficiency plots for scenario 3
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5 Numerical simulation

5.3.4 Point-value of vorticity

| # DOBs | [J(u) = J(un)| [ |E(up)l

| L | 1J(u) = J(un)] |

2467 4.04-10794 2.29-107%4 [ 0.57 [ 1.74-107%4
9539 8.56 - 1079 4.19-1079 | 0.49 | 4.36-1079°
37507 1.34-10° % 8.47-10796 [ 0.63 | 4.91-10 96
148739 | 8.18-10797 1.87-10797 [ 0.23 | 6.32- 10707

Tab. 22: Scenario 4, D, analytical solution of primal problem, interpolation

’ # DOFs ‘ |J(u) — J(up)| ‘ |E(up,)|

[ Leg [ 1J(u) = J(un)| |

2467 4.04-107%4 1.48-107%% [ 0.37 | 2.56- 10794
9539 8.56 - 10705 4.34-107% [ 0.51 | 4.22-10795
37507 1.34-107% 8.49-10796 | 0.63 | 4.89 106
148739 | 8.18-107°7 1.86-107°7 [ 0.23 | 6.32-107°7

Tab. 23: Scenario 4, P, higher-order finite element solution

# DOFs | [J(u) — J(up)| | |E(w)]

[ Lew | [J(u) = J(up)| |

2467 4.04-107% 1.48-1079% [ 0.37 | 2.56- 10794
9539 8.56 - 1079 4.34-1079 | 0.51 | 4.22-107%
37507 1.34-10% 8.49-1079 [ 0.63 | 4.89.100C
148739 | 8.18-10797 1.86-10797 [ 0.23 | 6.32-107°7

Tab. 24: Scenario 4, PD, higher-order finite element solution

# DOFs [ |J(u) — J(un)| | |E(un)|

| L | 1J(u) — J(un)] |

2467 4.04-10704 5.60-10792 1139 [ 9.64- 1094
9539 8.56- 10~ 7.58 10796 [ 0.09 | 7.80- 105
37507 1.34-10705 5.22-10796 [ 0.39 | 8.16- 10706
148739 8.18-10° 07 5.77-10°97 1 0.71 | 1.40-1006

Tab. 25: Scenario 4, P, higher-order interpolation

# DOFs | |J(u) = J(up)| | |E(un)]

[ Leg | [J(u) = J(up)| |

2467 4.04-107%4 3.98-107%% 1 0.99 | 8.02.107%¢
9539 8.56- 10705 2.70-1079 [ 0.32 | 5.86-10~%
37507 1.34-107% 6.89-10796 | 0.51 | 6.50 10796
148739 | 8.18 - 10797 1.95-10797 [ 0.24 | 1.01-10796

Tab. 26: Scenario 4, PD, higher-order interpolation




5 Numerical simulation

| # DOFs | |J(u) — J(un)| | |E(up)]

[ Lea | [J(u) — J(un)| |

2467 4.04-107%4 4.96-107%4 [ 1.23 [ 8.99.10~%*
9539 8.56 - 10795 5.79-107% [ 0.68 | 2.77-10%°
37507 1.34-1079 1.34-107% | 1.00 | 1.77-10798
148739 | 8.18-107°7 2.12-10797 [ 0.26 | 1.03-10796

Tab. 27: Scenario 4, P, block strategy, one update step, w = 0.6

| # DOFs | [J(u) = J(up)| | [Blup)l | Leg [ |J(u) = J(un)] |

2467 4.04-10704 2321079 [ 0.57 | 1.72-10774
9539 8.56 - 10795 1.12-107% | 0.13 | 7.44-1079
37507 1.34-107% 8.65-1079 [ 0.65 | 2.20-10%°
148739 | 8.18-10797 7.18-10797 | 0.88 | 1.00- 10707

Tab. 28: Scenario 4, P, block strategy, two update steps, w = 0.6
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Fig. 14: Error and efficiency plots for scenario 4
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5 Numerical simulation

5.3.5 Kinetic energy

[ # DOFs [ [J(u) = J(un)| [ ()] [T [ |J(w) = J(un)| |

2467 4.35-10793 4.34-1079 1 1.00 | 1.16 - 1079
9539 2.55- 10704 2.56-1079% | 1.00 | 1.17-10796
37507 1.55-10"% 1.56-10"9 | 1.00 | 1.89-10 08
148739 | 9.65-10707 9.65-10797 [ 1.00 | 2.94-10~10

Tab. 29: Scenario 5, D, analytical solution of primal problem, interpolation

’ # DOFs ‘ |J(u) — J(up)| ‘ |E(up,)|

[ Leg [ 1J(u) = J(un)| |

2467 4.35-10793 4.17-1079 [ 0.96 | 1.83-107%
9539 2.55-107%4 2.52-107%4 [ 0.99 | 2.98-1079
37507 1.55-10=% 1.55-1079 | 1.00 | 5.01-10798
148739 | 9.65-107°7 9.64-107°7 [ 1.00 | 8.03-10"10

Tab. 30: Scenario 5, P, higher-order finite element solution

# DOFs | [J(u) — J(up)| | |E(w)]

[ Lew | [J(u) = J(up)| |

2467 4.35-10793 417-1079 [ 0.96 | 1.83-107%
9539 2.55-107%4 2.52-107°1 1 0.99 | 2.98.10706
37507 1.55-10"% 1.55-107% [ 1.00 | 5.01-10798
148739 | 9.65-107°7 9.64-10797 [ 1.00 | 8.03-1010

Tab. 31: Scenario 5, PD, higher-order finite element solution

# DOBS | [J(u) — J(up)| [ |ECun)] [ Lew | |J(u) — J(un)] |

2467 4.35-10703 3.57-10793 [ 0.82 [ 7.81-10~%
9539 2.55-10~" 2.52-107°4 1099 | 3.03-10706
37507 1.55-10~% 1.57-107% | 1.01 | 1.23-10797
148739 | 9.65-107°7 9.67-10797 [ 1.00 | 2.07-107%9

Tab. 32: Scenario 5, P, higher-order interpolation

# DOBs | [J(u) = J(un)| [ [EQun)] | Leg [ |J(w) = J(un)| |

2467 4.35-10703 3.35-107%3 [ 0.77 | 1.01-10703
9539 2.55- 10794 2.51-107%% [ 0.98 | 4.25.10796
37507 1.55-10-% 1.56-107% [ 1.01 | 1.01- 10797
148739 | 9.65-10707 9.67-10797 [ 1.00 | 1.72-10799

Tab. 33: Scenario 5, PD, higher-order interpolation




5 Numerical simulation

| # DOFs | [J(u) — J(un)| | [E(un)l

| Len | |J(w) — J(un)| |

2467 4.35-10793 4.67-1079 | 1.07 | 3.16-10794
9539 2.55- 10704 3.03-107%% [ 1.19 | 4.77-107 %5
37507 1.55-107%° 1.92-107% [ 1.23 [ 3.63-1079°
148739 | 9.65-107°7 1.20-1079 [ 1.24 | 2.36- 10797

Error, Efficiency

Tab. 34: Scenario 5, P, block strategy, one update step, w = 0.7

| # DOFs | [J(u) — J(un)| | [E(u)]

| Lew | 1J(u) — J(un)] |

2467 4.35-10703 5.26-1079 [ 1.21 [ 9.61-10793
9539 2.55-10~%4 3.01-107%* | 1.18 | 5.57-107%
37507 1.55-107% 1.83-107% | 1.18 | 3.39-1079°
148739 | 9.65-107°7 1.14-1079 | 1.18 | 2.10- 10796

Tab. 35: Scenario 5, P, block strategy, two update steps, w = 0.7
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Fig. 15: Error and efficiency plots for scenario 5

5.4 Summary of results

Based on the presented numerical results, the performance of different variants of the error
estimator can be quantified with respect to the efficiency of the error estimators evaluated on
uniform and locally refined meshes. For this purpose, the mean relative deviation (MRD) of the
efficiency indicator is introduced to investigate the difference between the estimated error and
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5 Numerical simulation

’ ‘ D anal. ‘ P ho-fe ‘ PD ho-fe ‘ P ho-int ‘ PD ho-int ‘ P block, 1 ‘ P block, 2 ‘

Scenario 1 0.75 0.76 0.75 2.76 7.22 3.30 2.47
Scenario 2 0.00 0.40 0.11 0.47 0.18 2.20 1.76
Scenario 3 1.02 1.18 1.07 1.74 3.82 3.35 2.81
Scenario 4 1.44 1.67 1.67 3.17 1.58 0.89 2.02
Scenario 5 0.00 0.01 0.01 0.06 0.08 0.19 0.19

Avg. 0.64 0.8 0.72 1.64 2.58 1.99 1.85

Tab. 36: Mean relative deviation, global refinement

’ ‘ D anal. ‘ P ho-fe ‘ PD ho-fe ‘ P ho-int ‘ PD ho-int ‘ P block, 1 ‘ P block, 2 ‘

Scenario 1 0.77 1.82 29.35 13.24 15.31 4.66 7.19
Scenario 2 0.00 3.91 28.81 1.57 1.14 8.64 5.91
Scenario 3 0.66 5.15 0.58 4.56 26.94 8.88 6.74
Scenario 4 0.51 0.18 0.17 1.74 0.84 1.26 2.72
Scenario 5 0.34 0.11 0.15 0.21 0.24 0.41 0.65

Avg. 0.46 2.23 11.81 4.26 8.89 4.77 4.64

Tab. 37: Mean relative deviation, local refinement

the real error in J:

MRD = ~ 3 (i), Loy 1= et
C N ; rel(z)v rel -— min(l,leff) .

The two tables contain the averaged MRD values of sequences of simulations for each scenario
based on uniform meshes (Tab. 36) and locally refined meshes (Tab. 37). It can be seen that
the error estimator variant that makes use of the analytical solution of the primal problem has
the lowest MRD. Although this variant cannot be used for general applications since the exact
solution is unknown, it can serve as a reference for the current investigation. The ordering of
the evaluation strategies with respect to the averaged MRD values roughly reflects the compu-
tational costs associated with the evaluation of the error estimators. The estimators that make
use of higher-order finite element solutions are the most efficient ones, but are computationally
expensive. The estimators based on higher-order interpolation show higher MRD but are com-
parably cheap to compute. The block strategy leads to estimators that have MRD in between
those of the aforementioned strategies.

The economy of the adaptive methods can be quantified in terms of the ratio of error in .J
and number of unknowns of the discrete system. In the error plots it can be seen that except
for scenario 2 the error estimators lead to economic meshes on which the evaluated values that
are of interest could be approximated better compared to solutions on uniform meshes with the
same number of degrees of freedom. Although the strategies based on higher-order interpolation
showed good properties, it can be observed that the block strategy leads to more economical
meshes for the considered scenarios.

The improved goal value .J(uy), see Equation (7), is a better approximation of the exact
value J(u) than the canonical approximation .J(uy) for the majority of the performed numerical
simulations. The error |.J(up) — J(u)| is up to one order of magnitude lower than |.J(up) — J (u)]
for most cases, and for scenarios 2 and 5, the enhancement is significantly higher. Hence, the
so-called improved goal value is actually an improvement in this investigation.
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6 Conclusion

We investigated different strategies for approximating the exact solutions of the primal and dual
problem in the context of a posteriori error estimators for certain goal functionals. Several
variants of a posteriori error representations and local error indicators have been presented and
in particular, we have proposed a new block strategy based on the solution of cell-wise Dirichlet
problems, nested in a global defect-correction iteration. The strategies have been compared in a
systematical way for five scenarios with different goal functionals and analytically known exact
solutions. The efficiency of the error estimators has been analyzed for uniformly and locally
refined meshes and the economy of the unterlying adaptive methods has been evaluated. In four
of the five scenarios the adaptive methods lead to optimized meshes on which the quantity of
interest could be approximated with a significantly smaller number of unknowns than on the
uniform meshes. The computational costs of the different strategies reflected roughly the quality
in the sense of efficiency of the estimator and the economy of the adaptive method. The block
strategy offers the ability to control the quality of the approximation and the computational
effort by changing the number of iterations, and furthermore has good parallelization properties.
Similar approaches bases on the solution of local Neumann problems should be investigated in
the future.

In many applications of environmental sciences, the underlying phenomena have a time-
varying structure that can be modelled by instationary PDEs. In such situations goal oriented
error estimators and mesh adaptation strategies can be very costly, as the dual problem is also
time-dependent and posed backwards in time. Efficient calculation of error estimates and local
indicators for temporal and spatial mesh adaptation in this context is challenging, but can help to
understand complex physical processes that can hardly be modelled and calculated using today’s
high-performance computers.
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