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Deutsche Zusammenfassung

Der elektronische Transport in nanoskaligen Strukturen wurde in den letzten zehn
Jahren intensiv untersucht. Hierbei hat die Herstellung von Nanokontakten durch
STM (scanning tunneling microscope), Bruchkontakten oder durch die elektrochemische
Abscheidung zu neuen Einblicken in die Physik des Ladungstransports in Quan-
tensystemen sowie zur Entwicklung vielversprechender Ansdtze nanoelektronischer
Bauelemente gefiihrt.  Eine wesentliche Herausforderung bei den Messungen der
molekularen Elektronik besteht in der Kontrolle der Geometrie des Kontaktes und der
Kopplung an mindestens zwei ebenfalls nanoskalige Elektroden. Da jedoch die genaue
Molekiilgeometrie im Experiment nicht kontrollierbar ist, hat auch die strukturelle
Variabilitdt einen wesentlichen Einfluss auf die beobachteten Eigenschaften. Somit
muss in theoretischen Beschreibungen des elektronischen Transports durch Nanos-
trukturen die strukturelle Variabilitat mit effizienten Methoden beriicksichtigt werden
und in die quantenchemischen Berechnungen der elektronischen Eigenschaften einfliefen.

In der vorliegenden Arbeit wurde das Zusammenspiel von Konformation und elek-
tronischen Transporteigenschaften in metallischen und organischen Nanostrukturen
untersucht.  Die Charakterisierung von thermischen, elektrostatischen und durch
Syntheseprozess induzierten strukturellen Einfliissen auf den Leitwert liefert ein
tieferes physikalisches Verstédndnis des Ladungstransports in Nanostrukturen wie nicht-
idealisierte Quantenpunktkontakte, Nanodrdhte und Nanopartikel. Zuséatzlich konnen
dadurch zukiinftige nanoelektronische Bauelement, wie z.B. schaltbare Molekiile, fiir
Anwendungen gefunden und unter Beriicksichtigung von Umgebungseinfliissen optimiert
werden.

Um realistische Konformationen von Nanostrukturen zu simulieren, die experimentell
durch elektrochemische Abscheidung entstehen, wurde ein effizientes Verfahren zur
Simulation des Strukturaufbaus entwickelt und implementiert, das auf klassischen
Wechselwirkungen basiert und Strukturen sowohl von metallischen Systemen als auch
von ausgedehnten organischen Molekiilen simulieren kann. Im Gegensatz zu moleku-
lardynamischen Simulationen (MD) ist es mit dem hier verwendeten stochastischen
Ansatz moglich, Wachstumsprozesse zu simulieren, die auf sehr langen Zeitskalen
(Sekundenbereich) stattfinden. Um die elektrochemischen Transporteigenschaften der
resultierenden ausgedehnten Nanostrukturen berechnen zu koénnen, wurde dariiber
hinaus eine quantenmechanische Methode, basierend auf rekursiven Greenschen Funk-
tionen (RGF) und Model-Hamilton-Operatoren, implementiert. Der Rechenaufwand
dieser Methode skaliert lediglich linear mit der Lénge des untersuchten Systems, so dass
Molekiile mit einer grofen Anzahl von Atomen und ausgedehnte Elektrodenfragmente
in die Berechnung einbezogen werden kénnen. Die entwickelten Methoden wurden auf
die folgenden Systeme und Fragestellungen angewendet:



Statische Unordnung in Metallkontakten:

Als erstes wurde der ballistische Elektronentransport in ideal kristallinen Silbernano-
kontakten mit Hilfe der RGF-Methode untersucht. Bei Abwesenheit von Defekten
und Unordnung und im Grenzfall kleiner Kontaktquerschnittsflichen (wenige Atom-
durchmesser) ist der Leitwert ein ganzzahliges Vielfaches des Leitwertquants Gy, was
in erster Linie auf die chemische s-Konfiguration des Metalls zuriickzufiihren ist. Die
Untersuchungen werden anschliefend durch Variation verschiedener geometrischer
Parameter auf ungeordnete Strukturen verallgemeinert und so der experimentellen
Situation einer nicht-idealisierten Nanostruktur angendhert: Ausgehend von einer
symmetrischen Anordnung der Silber-Punktkontakte ergibt sich fiir eine Verkippung
der Elektroden bis zu 60 Grad ein um 20% niedrigerer Leitwert, wéhrend gezeigt
werden konnte, dass eine Verdrehung (Torsion) der Elektroden nahezu keinen Einfluss
auf den Leitwert hat. Des weiteren wurde die Abschwichung der Leitfihigkeit her-
vorgerufen durch Oberflichenvakanzen statistisch untersucht und eine Verringerung der
Leitfiahigkeit von bis zu 30% gefunden. Nicht nur eine Abweichung vom fece-Kristall,
sondern eine qualitativ andere Atomanordnung tritt in metallischen Nanoclustern auf.
Waihrend auch hier der Leitwert wesentlich von der minimalen Querschnittsfliche des
Systems abhdngt wird die Fluktuationsstirke der Transmissionsfunktion vom Gesamt-
durchmesser des Nanoclusters bestimmt. Somit konnte man mit der Bestimmung der
Transmissionsfunktion in einer Drei-Punktmessung und deren Vergleich mit den hier
berechneten Resultaten auf Clusterdurchmesser und Atomstruktur schlieffen.

Atomarer Transistor:

Als zweite Anwendung der implementierten Methoden wurden mechanische, elektro-
statische und elektronische FEigenschaften von sogenannten Einzelatomtransistoren
untersucht. Beim Experiment zum Einzelatomtransistor werden Silber-Nanokontakte
elektrochemisch hergestellt und ,trainiert”, so dass der Leitwert der so erzeugten
Nanostruktur zwischen ganzzahligen Vielfachen des Leitwertquants schaltbar ist. Fiir
die theoretische Beschreibung dieses Systems wurde eine Multiskalenmethode entwick-
elt, die ein Kontinuum-Modell des Losungsmittels, ein atomistisches (auf klassischen
Kraftfeldern basierend) und ein quantenmechanisches Modell miteinander kombiniert.
Dies ist notig, da in den hier untersuchten Nanokontakten physikalische Prozessen auf
verschiedenen Zeit- und Léngenskalen zusammenwirken. Mit dieser Methode konnte
der zu Grunde liegende Schaltmechanismus der atomaren Transistorkonformationen auf
die bistabile Spitzenrekonstruktion der Silberkontakte zuriickgefiihrt, und das Schalten
zwischen immer wiederkehrenden Leitwertniveaus erklart werden. Diese Niveaus werden
durch bestimmte, materialabhingige Kontaktkonformationen von besonders hoher
Bistabilitat erreicht, analog zur hohen Stabilitit von Metallclustern bei sogenannten
,magischen” Atomzahlen [1|. Speziell im Fall von Silber liegen diese Leitwertlevels
bei ganzzahligen Vielfachen des Leitwertquants Gy. Die Modellrechnungen bestitigen
ebenfalls die experimentelle Beobachtung, dass beim Schalten einer (Silber-) Kontakt-
geometrie mit nicht ganzzahliger Leitfahigkeit stets ein ,Einrasten” in eine Struktur mit
ganzzahligem Leitwert oder eine Zerstorung des Kontaktes (also G = 0) zu beobachten



ist. Eine wichtige Eigenschaft der Einzelatomtransistoren ist ihre stabile Schaltbarkeit
bei Zimmertemperatur iiber eine grofke Anzahl von Schaltzyklen (Grofenordnung
1000). Diese Beobachtung kann mit dem ,Trainingseffekt erkldrt werden, der in
den durchgefiihrten Modellrechnungen bei wiederholtem Schalten des Nano-kontaktes
sichtbar wird und zu einer Verbesserung der Bistabilitdt mit jedem Schaltzyklus fiihrt.
Des weiteren wurde in der vorliegenden Arbeit die Wirkung der dielektrischen Dop-
pelschicht, welche durch den umgebenden Elektrolyten hervorgerufen wird, untersucht
und ein zusatzlich stabilisierender Einflufl der elektrochemischen Umgebung auf den
Schaltvorgang nachgewiesen. Auferdem konnte auch der Mechanismus des Schaltens
zwischen Levels mit endlichem ganzzahligem Leitwert erklirt werden: Das Auftreten
von metastabilen Konformationen bei ganzzahligem Leitwert erzeugt beim Auseinan-
derziehen der Kontakte Plateaus in der Leitwertkurve. Diese Plateaus konnen beim
Inter-Level-Schalten wiederum angesteuert werden. Schwache Leitwertfluktuationen zu
nichtganzzahligen Leitwerten kénnen durch das verwendete multi-skalige Modell auf
thermisch induzierte Hiipfprozesse von einzelnen Atomen zuriickgefiihrt werden.

Strukturelle Unordnung in molekularen Drihten:

Im dritten Teil dieser Arbeit wird die Methode der rekursiven Greenschen Funktionen
in Kombination mit Molekulardynamik und Dichtefunktional-Theorie (DFT) zur Un-
tersuchung von organischen Nanodridhten angewendet. Die Transmissionsfunktion und
der lingenabhiingige Leitwert von Molekiilketten konnte in guter Ubereinstimmung mit
Ergebnissen genauerer (und deutlich aufwendigerer) quantenchemischer Methoden bes-
timmt werden. Dieses Resultat ist nicht selbstverstindlich, da bei dem hier verwendeten
Ansatz der zentrale Streubereich in Schichten mit Néachster-Nachbar-Kopplung zerlegt
wird (oder mathematisch ausgedriickt, die Hamilton-Matrix wird beschnitten), so dass
sich der Rechenaufwand deutlich reduziert. Die somit validierte Methode wurde nun
eingesetzt, um den Einfluss thermisch induzierter Strukturfluktuationen auf die Leit-
fahigkeit molekularer Drihte, zunéchst Oligo-Phenylen, zu untersuchen. Die Trajektorie
der Molekiilgeometrie wurde dabei mit klassischer Molekulardynamik berechnet und an
das beschriebene Elektronentransportmodell gekoppelt, mit dem in jedem Zeitschritt der
Leitwert berechnet wird. Die Simulation zeigt temporire Leitwertfluktuationen um eine
Grofkenordnung (in Einheiten von Gy) und das Auftreten von Molekiilkonformationen
deutlich erhohter Leitfahigkeit, die allerdings bei 7" = 0 durch sterische Abstofung
von Molekiilgruppen unterdriickt werden. Der mittlere Leitwert dieser Konformationen
erklart den experimentell beobachteten Wert sehr gut, da in nahezu allen Messanordnun-
gen fiir den Transport durch Einzelmolekiile die Strukturfluktuationen des kontaktierten
Systems einen starken Einfluss haben. Motiviert durch intensive experimentelle Un-
tersuchungen organischer Nanodrihte und der zahlreichen offenen Fragen auf diesem
Gebiet, wurde anschlielend die Korrelation von Struktur, elektronischen Eigenschaften
und des Ladungstransports in Oligo-Phenyleimine-Molekiilen analysiert. Mit Hilfe von
Dichtefunktional-Theorie wurden die verschiedenen energetischen Barrieren, die bei
der Torsion der Ringeinheiten des molekularen Drahtes auftreten, berechnet. Es zeigt
sich, dass die Energie, die fiir eine vollstdndige Torsion zweier Ringeinheiten benotigt
wird stets niedriger als 16 meV ist, woraus folgt, dass bereits bei Zimmertemperatur



derartige Konformation energetisch erlaubt sind und somit die Konjugationsldnge der
Molekiile reduziert wird. Des weiteren zeigen die quantenchemischen Berechnungen,
dass die Ausdehnung der Molekiilorbitale, die hauptsichlich zum Ladungstransport
beitragen, auf drei bis vier Ringeinheiten beschrankt ist. Dies erklédrt insbesondere auch
die experimentell beobachtete Anderung in der Lingenabhiingigkeit des elektrischen
Widerstandes beim Ubergang von kiirzeren (1-4 Ringeinheiten) zu lingeren (5-10
Ringeinheiten) molekularen Driahten. Der berechnete Dampfungsparameter, der die
Langenabhangigkeit des Leitwertes im Fall kurzer Molekiilketten charakterisiert, konnte
in guter Ubereinstimmung mit dem experimentellen Wert zu 8 = 3.29 nm ' ermittelt
werden. Wegen dem Zusammenhang von Molekiilgeomtrie und Leitwert, bestétigt dies
insbesondere die mit DFT bestimmten Gleichgewichtstorsionswinkel der Molekiilkette.

Wachstumsprozess von Palladium-Nanopartikeln in Proteintemplates:

Der letzte Teil dieser Arbeit beschreibt die theoretische Untersuchung von hybridartigen
Protein-Palladium-Nanopartikeln, welche vielversprechende Anwendungsméglichkeiten,
sowohl in neuartigen, auf Nanotechnologie basierenden Speichern als auch in der
Krebstherapie, besitzen. Nachdem die experimentelle Herstellung von Palladium-Nano-
partikeln unter Verwendung von Proteintemplates gelang, ergaben sich zahlreiche Fragen
zum Ablauf der Strukturbildung, deren Klirung fiir die weitere Verwendbarkeit der
Nanopartikel von grofer Bedeutung ist. In Hinblick auf zukiinftige Anwendungen ist es
wichtig herauszufinden, ob das Nanopartikel, hervorgerufen durch die Gegenwart des
Proteins, als porose Struktur wéchst, sich eventuell im duferen Ringbereich des Proteins
bildet oder zu einem kompakten Cluster wéchst. Des weiteren ist auch der strukturelle
Einfluss des Metallclusters auf das Protein von grofser Bedeutung, da dieser iiber die
anschlieffende Anwendbarkeit des Hybridsystems entscheidet. Mit der Kombination
von Molekulardynamik und Monte-Carlo-Simulationen wurde die Proteinstruktur vor
und nach der Deposition der Palladiumionen berechnet. Die MD-Simulation der
Proteinstruktur unter expliziter Beriicksichtigung der Wassermolekiile der Ldsung
(insgesamt ca. 100.000 Atome) lieferte ein ringformiges Makromolekiil mit einem
duferen Durchmesser von 10 nm aufgebaut aus zahlreichen helikalen Molekiilketten.
Die Abscheidesimulation der Palladiumionen zeigt, dass das Nanopartikel als kompakter
polykristalliener Metallcluster wéachst und iiber die Histidin-Endgruppen an das Protein
bindet. Darauf aufbauend ermoglichen weitere Simulationen die Interpretation der
gemessenen Circulardichroismus-Spektren und es zeigt sich, dass auch nach dem Metall-
clusterwachstum die Proteinstruktur intakt bleibt und somit zusédtzlich funktionalisiert
werden und in biologischen Organismen oder neuartigen Speichern eingesetzt werden
kann.

In der vorliegenden Arbeit wurde gezeigt, dass strukturelle Eigenschaften einen
wesentlichen Einfluss auf den kohédrenten Elektronentransport in nanoskaligen Syste-
men haben. Um Messungen des elektronischen Transports zu erkldren und funktional-
isierte Nanostrukturen zu optimieren erweist es sich in Modellrechnungen als unerlésslich,
eine hinreichend grofse Region des zentralen Streubereiches und eine nicht-idealisierte
(Molekiil-) Konformation zu beriicksichtigen. Untersucht wurde der Einfluss struktureller



Unordnung, welche in realen Systemen stets vorhanden ist und die elektronischen Trans-
porteigenschaften dominieren kann. Dabei liefert das hier entwickelte multi-skalige Model
eine leistungsfiahige Methode, um die auftretenden physikalischen Effekte, die sich auf
verschiedenen Zeit und Léngenskalen abspielen, mit vertretbarem Rechenaufwand zu
kombinieren. Somit besitzt die implementierte Methode grofes Anwendungspotential
auf zahlreiche weitere Fragestellungen der Nanophysik.
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1 Introduction

1.1 Motivation and overview

The invention of the computer has affected all areas of our life’s at work as well
as private life. The key device permitting a computers functionality is the central
processing unit (CPU). When the first CPU’s were built up from three terminal devices
based on vacuum tubes computation machines needed a large amount of space and
had very limited applicability only usable by highly specialized computer scientists.
A revolutionary development, the semiconductor transistor, enabled a tremendous
miniaturization scaling from ,bus-sized” computers to current PC’s with an intuitive
user interface. However, even metal-oxide transistor based CPU’s, fabricated by
lithography, have technical limitations regarding device density and speed. If Moore’s
slaw” |2] is correct this physical limit is reached in the next 10 years, which means that
a completely new technology will be required to continue this trend, calling for a jump
similar to that from vacuum tubes to semi-conductor transistors.

Promising ideas for such a new technology are developed in the field of nano-
electronics, where electronic devices comprised of individual molecules or metallic
nano-wires and clusters have been proposed [3|. Nanoelectronics has the potential to
play an enormous role in enhancing a range of products, including sensors, photovoltaics
and consumer electronics. In this interdisciplinary research computer-scientists and
physicists have to deal with five key issues [4]: basic understanding of the transport
mechanisms; scalability to near molecular dimensions; tolerance of manufacturing
defects; introduction of non-traditional fabrication methods, such as chemically directed
assembly; bridging between device densities potentially achievable at the molecular scale
and those associated with standard lithography; and fabrication simplicity.

One of the most promising nano-scale circuits that have been investigated is the cross-
bar, shown in Fig. 1.1a, which is formed from orthogonal nano-wires having individual
molecular or molecular-scale devices sandwiched within the junctions. This approach
permits intrinsic versatility and is tolerant of manufacturing defects |5], thus both mem-
ory and logic circuits have been demonstrated from molecular electronics and nano-wire
crossbars |6, 7.

For the central molecular-scale bridge (see Fig. 1.1b) of the crossed nano-wires various
molecular switches and molecular transistors have been proposed in past 20 years, but
a comprehensive theoretical description that accounts for their electronic structure
in a realistic structural assembly remains difficult. To date it has remained a big
challenge to engineer orientation and placement of the building blocks into the desired

13



Chapter 1: Introduction

a)
=

Routing and interconnects

A J

Figure 1.1:  (Crossbar architecture of a nanoelectronics molecular memory for novel future
integrated circuits permitting orders of magnitude higher storage density. The left part of the
schematic illustrates the crossbar architecture of nano-wires in combination with demultiplezers
bridging the micron length scale of lithography to nanometer length scale of molecular electronics.
The right part shows the operating molecule (as memory or diode) in between the crossed nano-
wires (The left part of this figure was taken from Ref. [4]).

device architecture in reproducible high yields and at low costs. Recently a pioneer in
nanoelectronics, James R. Heath, claimed that at least three experimental items have
to be improved:  Robustness, robustness and robustness” [8].

In a conventional semiconductor or metal wire the charge transport is ohmic. The use of
nano-scale device systems is based on fundamentally new physics, which deviates com-
pletely from what is observed in traditional conductors. The simplest molecular wire
structure comprises a molecule bonded through a single atom to electrodes at the two
molecular termini. Depending on the strength of the electrode coupling we distinguish
between two different transport mechanisms. If the electronic wavelength becomes com-
parable to the size of the junction, novel quantization effects become important:

In the case of strong electrode-molecule coupling, preferably created by a covalent bond
between electrode and molecule, the electrons move through such a structure by elastic
scattering. In this limit ,conductance is scattering”, as was stressed by Rolf Landauer [4].
For such systems the total conductance is given as a sum over individual transmission
channels, that arise from the orbitals of the scattering molecule. One channel carries
a maximal conductance quantum Gy = 2e¢?/h = 12.8 kQ ! (e is the electron charge, h
is Planck’s constant). The relative transmission of each channel, which varies between
zero and unity, is a complicated function depending on the energy of the incoming elec-
trons, the electrode’s density of states and the molecular orbitals. Its value in such a
complex scatterer is significantly affected by structural disorder and thermally induced
fluctuations of the conformation.

If the molecule is weakly bonded to the electrodes, the electrons are not able to flow
from the left electrode to the right coherently, because the energetic barriers of the
contacts are too high. Induced by either thermal or electrical excitation the electrons
can only jump diffusively from the one electrode onto the molecule and to the other

14



1.2 Outline

electrode. This hopping mechanism proceeds on a longer time scale than the previously
described elastic scattering process, thus the electrons spend more time on the molecule,
similar to charging a capacitor. Therefore electron-electron and electron-phonon effects
play an important role in this regime. This transport mechanism can be described using
Marcus-theory developed by Rudolph A. Marcus who was awarded the Nobel Price in
1992 for this work.

Extending previous theoretical studies of charge transport in nanostructures, which con-
sidered idealised electrode/molecule configurations at zero Kelvin surrounded by vac-
uum [9-11] in the present work we will study the correlation between structural variety
and conductance properties of different molecular or nano-scale systems of high relevance
for applications in future nanoelectronic devices. Using a multi-scale model, which in-
cludes environmental effects, we will focus on the conductance switching mechanisms on
the nanometer scale under the influence of a surrounding thermal bath and ionic solvent.

1.2 Outline

This thesis is organized as follows: We first give a brief introduction to the variety of
the underlying methodological concepts required for the specific investigations presented
in this work. Modeling the interplay of morphologies at the atomic level with the
electronic structure is a central issue of the present work. Therefore, we begin with a
short description of the basic ideas of the simulation techniques describing structural
changes, such as the molecular dynamics and the Monte-Carlo method. Both methods
are based on classical force fields and thus permit simulation of systems containing a
high number of atoms, but cannot describe quantum effects. Next we describe how
we couple such methods to the quantum mechanical level using tight-binding like
model Hamiltonians and density functional theory. On the basis of these descriptions
of atomistic morphology and electronic structure calculations we turn to the study of
electronic charge transport in the coherent limit. We briefly recapitulate the Landauer-
Biittiker scattering formalism [12] and the related concept of treating the semi-infinite
electrodes via self-energies [13|. In the investigations presented in the following we need
to treat extended nano-junctions, containing a large number of atoms, which change
their conformation. Treatment of dynamic processes on the quantum mechanics level
requires an very efficient approach to calculate the conductance. In the final section of
this chapter we derive the recursive Green’s function formalism, which allows treatment
of extended nano-junctions during dynamic processes at the quantum level.

In the third chapter we apply these methods to calculate the coherent conductance of
crystalline silver nano-junctions and examine the dependence of the conductance on the
minimal cross-section. We systematically vary the geometry of the nano-junction to
reflect more complex and more realistic situations by briefly introducing different kinds
of disorder. We investigate the influence of structural displacement and the occurrence
of vacancies, which has been neglected in most previous theoretical studies, but is
always present in experiments. Furthermore we investigate the transmission functions
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Chapter 1: Introduction

of silver nano-clusters of varying size in a scanning tunneling microscope setup and
propose an approach to determine the cluster’s diameter and conformation from the
transmission function. Our results demonstrate the accuracy of the recursive Green’s
function formalism and give first insights into the influence of different types of disorder
on the electronic transport.

In chapter four we investigate a promising experimental approach to realize an ac-
tive nano-electronic building block, the atomic transistor developed by the group of
Prof. Schimmel (KIT, IAP and INT), which present a challenging case study for the
conformational influence on quantum transport. The experiment is based on a silver
quantum point contact fabricated by electrochemical deposition and allows for bistable
switching between integer levels of quantum conductance. We develop a multi-scale
modelling approach for electrochemical three-terminal devices and develop a theory for
the underlying switching mechanism of the atomic transistor that integrates atomistic
dynamics with quantum transport effects. An important feature of the atomic transistor
experiment is the tremendous stability of repeated switching between different quantized
conduction states in particular at room temperature. The results of our model give
new insights into the reasons for this stability. Furthermore we discuss the mechanism
that permits switching between conducting states with integer quantum conductance,
although the details of the levels are material specific. Measurements at high time
resolution yield additional substructures when the conductance is measured as a function
of time. Using our model we explain this observation and trace it back to fluctuations
of single atoms in meta-stable positions. We also discuss the influence of the electrolyte
on electrode deposition and switching of the device. The results of this chapter lead to
better understanding of the atomic transistor experiment, but also give new insights into
the physics of charge transport in non-idealized nano-junctions during conformational
change.

Motivated by recent experimental investigations of charge transport mechanisms in
organic wires, we present in chapter five the results of extensive investigations of
oligo-phenylene and oligo-phenyleneimine molecular wires. We demonstrate that the
recursive Green’s function method yields the correct length dependence of the conduc-
tance and investigate the energetic torsional barriers affecting the total transmission
of the nano-wire. In addition we combine a molecular dynamics simulation of the
wire at room temperature and evaluate the conductance for many snapshots of the
conformation. We find strong thermally induced fluctuations of the conductance,
which are neglected in almost all present-day descriptions of ballistic conductance using
density functional theory. We conclude the chapter with an analysis of transport through
oligo-phenyleneimine molecular wires. Calculating structural, electronic and transport
properties of oligo-phenyleneimines we obtain new insights into the charge transport
mechanisms in organic nano-wires with respect to their strong conformational variability.

In chapter six we assist interpretation of a hybrid protein/palladium nano-particle sys-

tem, with promising applications in future flash-memory devices or in cancer therapy,
by a structural analysis. This study was motivated by a collaboration with the experi-
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1.2 Outline

mental groups of Prof. O. Shoseyov (University of Rehovot, Isreal) and Dr. S. Behrens
(KIT, ITC). Using molecular dynamics simulations we optimize the structure of the pro-
tein and evaluate its stability at room temperature in the presence and absence of the
nanoparticle in the system. To explain the experiment we have developed a method for
the electrochemical palladium nano-particle deposition simulation. The comparison of
structural fluctuations of the protein itself and protein functionalized with the nanoparti-
cle rationalizes the interpretation of the circular dichroism spectra and gives new insights
into the fabrication of metal nano particles by protein templates.

Chapter seven summarizes this thesis and presents the main conclusions of this study.
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2 Numerical methods

In the simulations of nanoscale systems one major goal of the present thesis is to take
a broad variety of effects into account which result from physical processes on different
time and length scales. In this section we will briefly describe the main ideas of the
atomic structure simulation methods, based on classical forcefield, and quantum chem-
istry methods employed in this work. Special emphasis is put on the description of the
coherent transport theory, Landauer-Biittiker formalism, and on the recursive Green’s
function method, in particular, since this algorithm was implemented here for efficient
material specific transport calculations of nano-junctions containing a high number of
atoms.

2.1 Atomic structure calculation

2.1.1 Molecular dynamics

Molecular dynamics (MD) simulation is a technique to compute the equilibrium and
dynamic properties of a classical many-body system, meaning that the basis of the ap-
proach are Newton’s equations of motion and quantum mechanical effects are not taken
into account explicitly. The atom dynamics is treated within the Born-Oppenheimer
approximation [14, 15|, where the electrons are assumed to follow the classical nucleus
instantaneously. Here the influence of the electrons is not treated explicitly, but one
accounts for their average effect by analytical interaction potentials among the nuclei.
Molecular dynamics simulations generate information on the microscopic level, in partic-
ular atomic positions and velocities as a function of time, which has to be translated into
macroscopic observable like pressure, heat capacity, diffusion coefficient, etc. by means
of statistical mechanics.

The MD method, which is today exploited in a wide range of applications in fundamental
and applied science, was introduced by Alder and Wainwright in the late 1950’s [16,17]
to study the interaction of hard spheres. The next major advance was in 1964, when
Rahman carried out the first simulation using a realistic potential for liquid argon 18|
followed by the first protein simulations which appeared in 1977 with the simulation of the
bovine pancreatic trypsin inhibitor (BPTI) performed by McCammon et al. [19]. Today
there is a broad literature of molecular dynamics simulation results ranging from atomic
and solid state physics to soft matter applications [20,21] and specialized techniques for
particular problems, including mixed quantum mechanical - classical simulations, have
been developed |22, 23] covering also the length- and time-scale gap of complex fluids
with hybrid simulation techniques, where MD simulations are one of the components.
Newton’s equations of motion are the basic dynamical equations in molecular dynamics.
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Chapter 2: Numerical methods

Assuming a system of N point particles of mass m; (i = 1,..., N) at positions r; and
velocity r; they are given by ,

The occurring forces F; on particle i are obtained from the potential energy U(ry, ...,ry)
with F; = —V,,U. These equations provide a solution containing the complete infor-
mation of a system for particular initial conditions, i.e. at ¢ = 0, r;(0) and ;(0). An
alternative formulation is given by Hamiltonian equations of motion for the generalized
momenta p; and positions r; following from the Hamiltonian

N p?
H=Y» 4+ U(r,.. 2.2
2mi + (rla JrN) ( )
=1
leading to the canonical equations
r;=VpH, p,=-V,H (2.3)
. P: .
—— I; = E, P: = —VriU(I']_, ...,I'N). (24)
(3

An important advantage of this approach is, that the validity of the numerical solution
can be checked by certain conservation laws. l.e. in conservative systems, where the
external potential is time independent, the total energy H is conserved. Moreover, the
systems under consideration are invariant with respect to translation, i.e. » . m;i; =
0 and the equations of motion (2.1) are reversible in time as well and canonical, i.e.
conserving phase space volume. If the equations of motion are solved correctly, the
computer-generated trajectories will also exhibit these properties.

The broad spectrum of macroscopic properties of materials is tightly related to the
forces among their elementary building blocks. Since their properties range from spatial
structure of solids to the secondary and tertiary structure of biological supramolecular
systems, it is desirable to achieve a representation of the actual interactions in terms
of the classical potential energy U(ry,...,ry) as accurate as possible. The potential
energy of N interacting atoms can be divided into terms depending on the coordinates
of individual atoms, pairs, triplets etc.:

Ury,...,ry) = Zul(ri) + ZZU2(ri’ri) + ZZ Z us(ri, rj,rp) + ... . (2.5)

T g>i T J>1t k>5>i0

The first term (uy) represents the effect of an external field on the system, e.g., gravita-
tional force, electric fields, box walls, etc.. Particle interactions are represented by the
remaining terms, where the pair interaction uy is the most important. In many cases the
computational costs to evaluate the higher order terms like us are to high, thus the pair
potential is chosen such that it includes triplet and higher order interactions. Typical
atomic pair potentials are the Hard-sphere potential, the Coulomb potential and the
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2.1 Atomic structure calculation

Lennard-Jones potential

=) (0] oo

with r denoting the distance between two atoms. The potential consists of a steep rising
repulsive wall at short distances (~ 77'?) capturing the non-bonded overlap between
the electron clouds and an attractive tail at large seperations (~ %), essentially due
to correlations between the electron clouds surrounding the atoms (yvan der Waals” or
wLondon” dispersion).

However, to account for all aspects of chemical bonding, particularly in the case of
molecules, including the reactions which form and break bonds would require a quantum
mechanical description. In MD simulations for non-reacting molecules the problem is
solved by accounting for the internal molecular degrees of freedom, i.e. bond length,
bond bending and torsion, in terms of appropriate potential functions. A simple MD
force field for a molecule reads as

U(rl,...,rN)—Z— i—1) +Z 9 —0eq.i) +Z 1+Cos (nipi—:)]+U= +U°.

bonds angles torsion

(2.7)
The covalent bonds are described by the first term with the equilibrium bond length ;.
The second term accounts for restrictions in the bond angle banding due to overlapping
electronic clouds of bond atoms. Similarly, the third term describes the interactions of
the electronic clouds of atoms separated by three bonds (torsion potential). Further apart
atoms in a molecule interact via the non-bonded Lennard-Jones and Coulomb potentials,
similar to unbounded atoms. A number of algorithms have been suggested to integrate

©)

P

Figure 2.1: Internal coordinates occuring in MD force files of molecular systems: atomic
distance v, bond angle 6 and torsion angle ¢.

Newton’s equations of motion. Some of them are more suitable than others. A simple
but very efficient algorithm, which satisfies the important conservation laws is called
velocity Verlet algorithm. It can be derived by Taylor expansion of the coordinates of a
particle at time ¢ and reads as:

1. Initial conditions: positions {r(0)}, velocities {£(0)}, forces {F(0)}
2. Calculation of new positions according to

(t+ h)?

ri(t+h) =r;(0) + (t + h)r;(0) + Sy

F;(0) (2.8)
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Chapter 2: Numerical methods

Calculation of velocities

h
3. Calculation of forces using positions r(t + h)
4. Calculation of velocities
h
ri(t+h) =1;(t+h/2) + 5 .Fi(t—i-h) (2.11)

()

5. Go to the next time step (¢ + 2h) and continue with (2.).

The simulations described so far apply to a closed system with a given number of par-
ticles N in a fixed Volume V' at constant energy E. If we assume that time averages
are equivalent to ensemble averages, then the averages obtained in such a simulation
are equivalent to ensemble averages in the microcanonical ensemble (NV E-ensemble).
However, various physical situations require simulation of other ensembles by inclusion
of the environment into simulation, e.g. via special boundary conditions, thermostat im-
plementations and solvent descriptions at different levels. For these and other technical
details of molecular dynamics the reader is referred to the literature [24-30].

2.1.2 Monte Carlo methods

Monte Carlo methods (MC) tend to be used when it is unfeasible or impossible to com-
pute an exact result with a deterministic algorithm, which happens typically if the clas-
sical or quantum mechanical problem incorporates a vast number coupled degrees of
freedom. Therefore, an observable of a large number of particles or spins is calculated,
e.g. the free energy, which is defined as multidimensional integral (over positions, veloc-
ities or spin states) and an estimate of the integral is obtained by averaging the value
of the observable for a finite number of configurations. In Monte Carlo simulations this
sequence of configurations is stochastic, rather than the deterministic time evolution
of configurations realized in a molecular dynamics simulation. This strategy has been
successfully employed to many different kinds of problems on physics including thermo-
dynamics, structure and dynamics calculations, since the first simulations were employed
by Metropolis et al. in the early 1950’s [31] and due to a constant increasing capacity
and availability of computer power as well as continuing development of specialized algo-
rithms the Monte Carlo methods have become a major tool for physicists and chemists.
As the ’quality’ of the random sampling is a key to an accurate solution provided by a
MC algorithm Metropolis et al. introduced the so called importance sampling, whereas
configurations are generated proportional to their Boltzmann weight. In the following we
will denote the states of a system of N particles or spins, which transitions are examined,

as ¥ = 0 (0 = old) and '™ = n (n = new) and thus for generating a sequence
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2.1 Atomic structure calculation

of states obeying the Boltzmann distribution. State o has a Boltzmann factor given
by exp [-LU(0)] /Q(N,V,T), where U(o) is the potential energy of this configuration,
[ = 1/kgT the prescribed thermal energy and Q(N,V,T') being the classical limit of the
probability density function. In equilibrium there is no net flow between the states o
and n, meaning that in equilibrium the number of accepted trial moves from state o to a
particular state n should be exactly balanced by the number of accepted trial moves from
a particular state n to o. This condition is called detailed balance and can be written as

p(0)T(0 — n) =p(n)T(n — o), (2.12)

where p(«) is the probability to be in state o and T (o — o) denotes the transition
probability to go from a state « to a state . The transition probability itself is a
product of two processes, the creation of a trial move C'(o — n) and the acceptance of
this trial move A(o — n),

T(a— p)=Cla— B)A(a — B). (2.13)

In many Monte Carlo applications the creation of the trial moves is a symmetric process,
i.e. the creation of the forward and backward moves have the same probability and thus
Claa — p) = C(f — «). Using this form, inserting eq. (2.13) in (2.12) and using
Boltzmann weight p(«) = exp[—pU ()] gives,

p(n) _ Ao = n)
plo) A(n— o)

= exp{=pU(n) - U(o)]} (2.14)

The choice for A(o — n) to fulfill this condition is not unique, but one of the most
efficient and most commonly used is the Metropolis rule,

A(o — n) =min(l,exp{-8[U(n) —U(0)]}) (2.15)
In practice a Monte Carlo translational move is performed as follows |23]:
1. select a particle ¢ at random
2. calculate the present energy U;(o) of particle i

3. move particle ¢ randomly
ri(n) =r;(0) + Yrvp - Ar (2.16)

4. calculate new energy U;(n) of particle i
5. accept/reinject the move according to the Metropolis rule

In the scheme above yryp denotes a random number in the interval [—1, 1] and A is the
maximum displacement step, which is typically a tunable parameter of the implementa-
tion. The magnitude of Ar determines the efficiency of the Monte Carlo procedure. If
the parameter is to large, many of the trial steps are rejected, but if the parameter is to

23



Chapter 2: Numerical methods

small phase space is sampled very slowly. A useful choice for Ar is a value such that half
of the trial moves are accepted [23|. For the acceptance decision an additional random
number Oy p in interval [0, 1] is generated and if fznp < p(0)/p(n) the move is realized.
More details on the foundations of MC-algorithms can be found in literature [32-36].

An important extension to the standard MC approach is the so called kinetic Monte
Carlo method (KMC) taking the time scale of the dynamic process into account. If
the parametrized potential gives an accurate description of the atomic forces for the
material being and assuming both that quantum mechanically effects are not important
and that electron-phonon-coupling effects are negligible, then the dynamical evolution
within molecular dynamics would be a very accurate representation of the real physical
system. However, a serious limitation of MD is that accurate integration requires time
steps short enough (~ 107'%s) to achieve a converged solution. Consequently, the total
simulation time is typically limited to less than one microsecond, while processes we
wish to study (e.g., diffusion and annihilation of defects after a cascade event) often take
place on much longer time scales. This so called time-scale problem is partially solved by
the KMC approach, which attempts to overcome this limitation by exploiting the fact
that the long-time dynamics of this kind of systems typically consists of diffusive jumps
from state to state rather than following a trajectory. This pathway of diffusive jumps
is indicated in fig. 2.2. We imagine that for each M escape pathways we have an object
with a length equal to the rate constant £;; for the pathway. We assume these objects
put end to end giving a total length k;,;. One has to choose now a single random position
along the length of this stack of objects, thus the procedure gives a algorithm of choosing
a particular pathway, that is proportional to the rate constant for that pathway. The
average time for the system to escape from a state 7 into a state j is denoted as 7. It is
related with the total escape rate

kot = Z kij (2.17)
J

with £;; being the transition rate form state ¢ into state j. Assuming an exponential time
dependence for the transition probability p;;(t) = k;j exp(—ki;t) leads straight forward
to exponentially distributed random numbers for the escape time ¢. Therefore, we first
choose a random number 7 on the interval [0,1], calculate its negative logarithm and
multiply it with the inverse escape rate 1/k:

t= 1 In(r). (2.18)
k

This strategy permits a rejection free ,residence-time” procedure (visualized in fig. 2.2),
which is often referred to as BKL algorithm, due to the work by Bortz, Kalos and
Lebowitz occurring in 1975 for the simulation of an Ising spin system. It is import to
note, that the transition rates k;; can not be obtained by KMC itself, rather have to be
calculated by other models, e.g. in the case of quantum systems the transition rates can
be obtained from Fokker-Plancks equation. Additional informations on this approach
can be found in [37,38].
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Figure 2.2: Schematic describion of the kinetic Monte Carlo method. Every state transition
occurs with a certain rate k;, thus the total escape rate from a state is the sum ki, which is
equal to the length of the vertical lines.

2.2 Electronic structure calculation

In the previous section we discussed two methods for the calculation of atomic structures
using classical, material specific forcefields. Their main advantage is the description of
systems containing large numbers of atoms at long time-scales (range of seconds), which
would be prohibitively costly for quantum chemistry methods. However, since we are
interested into the correlation between structure and electronic/transport properties, we
will solve the quantum mechanical problem for atomic structures given by our forcefield
methods. In this section we briefly discuss the quantum mechanical methods used here
— semi-empirical model Hamiltonians and density functional theory.

2.2.1 Extended Hiickel Hamiltonian

In the present study we need to develope a model for the electronic structure of nano-
junctions containing more than 800 atoms. In principle this would be also possible with
density functional theory, but due to the fact that the electronic Hamiltonian has to be
inverted for several snapshots of a system during a dynamic process DEF'T or ab initio
methods would be prohibitively costly. Therefore, we decided to use semi-empirical ap-
proximations which where successfully applied to a large variety of nanostructures, e.g.
organic molecules [13|, nanotubes [39] and metallic nanowires |40,41|, and give at least
qualitative predictions of the electronic properties.

One method is based on the so called extended Hiickel approxzimation [42,43], which
is one of the first quantum chemistry methods and was developed in 1963 by Roland
Hoffmann. He generalized the original Hiickel method (which considers only m-orbitals)
and takes also the o-orbitals into account. As usual in quantum chemistry calculations
we decouple the electronic and atomic nuclei Hamiltonian, which is also known as Born-
Oppenheimer approzimation [14,15], based on the ratio of mass myye/meec = 1860, so
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the electrons follow the nuclear movement quasi adiabatically. In the extended Hiickel
method only valence electrons are considered and the inner shell electrons are assimilated
in an effective nuclear core potential. The non-interacting valence electrons are treated
via the single particle Hamiltonian

M M’
HU = — ZEngCi - Z tijC}LCj (219)
i=1 ij=1
Here the index ¢ enumerates all appearing atomic orbitals. If we have N atoms in the
system and n; denotes the number of orbitals in atom k then ¢ = 1+Z§€;11 Mgy ney 22:1 n
enumerates all orbitals of atom [. The diagonal elements of the Hamiltonian ¢; are taken
as the negative of the first ionization energies of the atom corrected by spectroscopic
terms to deal with the situation where the ionization is not removing the orbital in
question. The operator cg (¢;) follows the notation of second quantization and creates
(removes) an electron in orbital i. The off-diagonal matrix elements of the Hamiltonian
are calculated according to the modified Wolfsberg-Helmholtz formula [43] and relates

the diagonal elements €;,¢; and the overlap matrix element S;; as follows:
c
tij = —§(Ei —+ Ej)Sij. (220)

The constant c¢ is also part of the Wolfsberg-Helmholtz approximation and set to an
average value of 1.75 [43|, but in general ¢ is a function of the contributing orbitals ¢ and
j. As usual the overlap matrix element is given by

Sij = /d37’ X; (T —13)x;(T —1y), (2.21)

which is equal to d;; in the case of orthogonal basis functions x;(r). In the present study
we use so called Slater type orbitals (STO) [44,45]

Xoto (150, 0) = Nt Y (0, ) (2.22)

in all calculations combined with the extended Hiickel method. Here NV is a normalization
constant and the parameter ¢ occurring in (2.22) is related to the effective charge of the
nucleus, which is partially screened by inner shell electrons, and the quantum numbers
n,l,m. In the following application of this model to the atomic transistor conformers
(see chapter 4) and molecular wires (see chapter 5), we include the outer s—, p— and
d—orbitals (i.e. 9 orbitals per silver-atom).

Widely used in quantum chemistry calculations are also Gaussian type orbitals (GTO)
[46] defined by:

Xsum (8) = Nl = R1)'(y — Ra)*(z — Rg)fem"R", (2.23)

with a Gaussian type radial part. In general STO’s should be preferred, because they
exhibit the correct behavior of the molecular orbital close to the nuclei (where the wave
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Figure 2.3: Comparison between a normalized 1s-Slater function (radial part) of a hydrogen
atom with the first normalized Gaussian function (radial part). The coefficient 1 = 0.271 of the
Gaussian function is obtained by mazimizing the overlap fd3rRSTORGT0 = maz. The 1s-STO
equals the exact 1s wave function of the hydrogen atom, nevertheless the first Gaussian function
shows strong deviations, in particular at r = 0 and in the decay for larger distances.

function has to have a cusp) and for large distances from the nuclei (where the wave
function has to exponentially decay to zero), at least if a so called ,double zeta”! basis
is used. The disadvantage of Slater functions is, that multi-center electron integrals
lead to very complicate mathematical expressions which are difficult to implement and
particularly expensive to evaluate. The disadvantage of the wrong behavior at r = 0
and for large distances of GTO’s can be compensated by increasing the number of basis
functions to a sufficient large basis set, e.g. with three GTO’s per STO the computational
effort for the integral calculations is still less than using a STO basis set [47]. Additionally
one has to note, that the missing cusp of GTO’s at r = 0 changes the total energy of an
atom or a molecule, but leads to correct energy differences or excitation energies. Also
the intermolecular interactions over large distances are rather conveyed by induction and
dispersion than by electronic overlap. Such processes are described correctly with GTO’s
which is a reason for the success of GTO’s in quantum chemistry. However, if we are
interested in coherent electronic transport in dynamic systems, a high accuracy of overlap
integrals in particular also at larger distances then at equilibrium is desirable.

It is known that in several cases the extended Hiickel methode performs rather poorly at
predicting energy differences between isomers or even correct molecular geomtries [48,49].
Charge differences particularly between atoms of very different electronegativity, can be
grossly exaggerated. The strength of the extended Hiickel model is that it gives a good
qualitative picture of the molecular orbitals, e.g. it was shown that for the occupied
molecular orbitals the corresponding eigenvalues agree reasonably well with experimen-
tally determined ionization energies from photoelectron spectroscopy. In addition it was

LA double zeta function consists of two basis functions per atomic orbital, leading to two parameters
(1, ( for every atomic orbital.
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Figure 2.4: Comparison between the frontier orbitals of benzene. The upper row shows
the extended Hiickel theory (EHT) results using a STO basis set. The row below shows DFT
results obtained with Gaussian orbitals and the BP86 functional for the exchange-correlation
energy, taken from ref [51]. The qualitative shape of the orbitals HOMO-1, HOMO and LUMO
s approximately identically at the different levels of theory, however in the case of LUMO+1
deformations of the EHT orbitals are visible

shown in 1988 in ref. [50|, that this approach is also useful in predicting the first unoccu-
pied levels. The reason for the good performance of extended Hiickel in calculating the
first excitation energies was discussed in [50] and traced back to the fact, that the form
of this model Hamiltonian is derivable from the non-empirical Hartree-Fock-Roothan
method.

2.2.2 Mean field theory and neglect of differential overlap

The extended Hiickel method is a pure single-particle model - no electron-electron in-
teraction is taken into account. A first step towards the inclusion of electron-electron
interaction is to treat the surrounding electron gas of an electron as mean field, which
is the underlying idea of the Hartree-Fock and semi-empirical molecular orbital meth-
ods [23]. Semi-emirical approaches are normally formulated within the same conceptual
framework as ab initio methods, but they neglect many smaller integrals to speed up
the calculations. In order to compensate for the errors caused by these approximations,
empirical parameters are introduced into the remaining integrals and calibrated against
reliable experimental or theoretical reference date. In current practice semi-empirical
methods serve as efficient computational tools which can yield fast quantitative estimates
for a number of properties. Compared with ab initio or density functional methods, semi-
empirical calculations are much faster, typically by several orders of magnitude |52], but
they are also less accurate with errors that are less systematic and thus harder to cor-
rect. Since all semi-empirical models are based on the Hartree-Fock method we will give
a short derivation of this type of mean field Hamiltonian.

Assuming a system of interacting particles described by the Hamiltonian

H = Hy + Vi (2.24)
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= Zsic}ci (2.25)

1nt — Z V;kC Ckcz’ck’ (226)
.4k, k'

with the single electron part Hj and the interaction potential Vj,;. Using Wick’s theorem,
that states that if the particles can be treated as being independent (which is precisely
the mean-field assumption) then the four-term operator can be expressed by all possible
pairings of operators while keeping track of sign changes if two fermions are interchanged:

C}LCZ;Ci/ Cpr =~ C}LCi/<CZ;Ck/>MF + <C;[Ci’>MFC]t;Ck’
+ CICk/<CLCiI>MF + (CZC]C/>MFC]T€Ci/
- (Czci’>MF<CLCk’>MF + (Czck’>MF<CLCi’>MF (227)

where the upper sign is for bosons and the lower sign is for fermions. The expectation
value (-)yr is defined as (Viy) = Zyp Trle PeV, ] and Zyp = Trle #H#ve]. In order to
avoid double counting in (2.27) we have to subtract the averages at the end of (2.27). The
first two terms represent the direct interaction because they give the classical expectation
value between two densities, while the exchange terms represent a quantum mechanical
correction to this. Applying this to the interaction potential (2.26), we obtain on one
hand from the direct interaction term the so called Hartree approximation

1 - 1 - 1 o
‘/Hlilta,rtree — 5 Z ‘/;'kyilklnkklcgc,il + 5 Z ‘/:ik,i’k’nii’czck’ — 5 Z Vik’i’k/nii/nkk/, (228)

and on the other hand from the exchange term the so called Fock term
Vit = Z Vi g Chcir — Z Vi, i €L + 5 Z Vi i g (2.29)

with ny = <CICk>MF- Finally the mean-field operator of the Hartree-Fock method writes
as
HHF — HO 4 VFOCk VHartree (230)

int int

Semi-empirical quantum chemistry methods use (2.30) as starting point and apply ad-
ditional approximations to H"Y. Traditionally there are three levels of integral approx-
imation [53,54] - CNDO (complete neglect of differential overlap), INDO (intermediate
neglect of differential overlap) and NDDO (neglect of diatomic differential overlap) which
is the best (of these three) since it retains the higher multipoles of charge distributions in
the two center interactions (unlike CNDO and INDO which truncate after the monopole).
The NDDO Hamiltonian HNPP© includes only one-center and two-center terms which
accounts much for its computational efficiency. An additional approximation in NDDO
occurs in its eigenvalue problem Y .(H}PPO — Sje;)c,; = 0, where the overlap matrix
is set to Sj = d;x. Conceptually the one-center terms are taken from atomic spectro-
scopic data, with the refinement that slight adjustment are allowed in the optimization
to account for possible differences between free atoms and atoms in a molecule. The one-
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center two-electron integrals derived from atomic spectroscopy data are considerably
smaller than their analytically calculated values, which is (at least partly) attributed to
an average incorporation of electron correlation effects.

2.2.3 Density functional theory

In many cases the EHT or NDDO approach simplifies the considered quantum system
too strongly, e.g. if atoms with considerably different electronegativity are involved or
highly accurate atomic structures are needed. However, a direct solution of the many-
body Schrodinger equation depending on 3N spatial variables, with N being the number
of electrons, seems to be unfeasible since even for small molecules /N is often larger
than 100 or for solids N =~ 10%3. Obviously the solution can not be obtained without
approximations and the many electron wave function is a much too complicated object
to understand or predict material properties. Density functional theory formally reduces
the many electron problem to a single electron problem and uses the electron density
distribution n(r) as the elementary quantity instead of many electron wave functions,
an idea which goes back to Thomas [55] and Fermi [56] and was extended by Hohenberg
and Kohn [57|.

For simplification, we consider a non-relativistic, non-spin-polarized, time-independent
many-electron system at zero temperature, which has a non-degenerated ground state v
described by the Schrodinger equation

_%Zvﬁ D Um) + 3 v (r)| 0(E) = BU(x), (2.31)

Here U(r;,rj) = €?|r; — rj|~" denotes the electron-electron interaction and vey(r;) the
static external potential due to interaction of electrons with the atomic nuclei. The
kinetic energy operator and the interaction potential are universal in the sense that they
are the same for any system, while v,,; is system dependent.

The known Hohenberg-Kohn theorem states that (i) there is a unique mapping from the
external potential to the ground state density and (i7) that the ground-state density
is a uniquely determined functional of the external potential nglves(r)]. The conse-
quence of the first statement is, that since every wavefunction ¢ (not only the ground
state wave function) is trivially a functional ©[ve.((r)] of the external potential, the
wavefunction ©[veg[no(r)]] is also a functional of the ground state density. Thus every
quantum mechanical observable, i.e. every expectation value (¥|O|) is a functional of
the ground-state density. The second statement of the Hohenberg-Kohn theorem is that
a unique functional E[n(r)] of the electron density n(r) exists, which under the condi-
tion [ n(r) d®r = N obtains its minimum for the ground-state density ny(r) and gives
the ground-state energy as Ey = E[ng(r)]. The proof of the Hohenberg-Kohen theorem
for non-degenerate ground states is simple and proceeds by reductio ad absurdum. It is
shown that a contradiction arises if one assumes that two different ground states 1y # v,
arising from two different potentials v # v’ 4 const, lead to the same ground-state density
no(r). The proof is based on Rayleigh-Ritz principle for the ground state energy, which
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2.2 Flectronic structure calculation

is given by Fy = <¢o|ﬁu|¢o> assuming a normalized wavefunction. The complete proof
can be found e.g. in [23].

Unfortunately, for most physical properties it is not known how they can be calculated
directly from the ground state density. Therefore, the second part of the Hohenberg-
Kohen theorem, which is the minimum principle for the ground state energy Fj, is of
particular importance. According to Levy [58] the unique energy functional E[n(r)] can
be defined as the minimum over all wavefunctions, which deliver the density n(r),

Bln(r)] = min(u[T + 0+ Vel (2.32)
and can be written as
Eln(r)] = Fln(r)] + / 0 1(2)vear(r). (2.33)

Here the simple functional dependence on v,y is explicitly displayed. The functional

Fln(r)] = }ﬁnin@/)lTA + Ul) (2.34)
—n
is universal, which means that it does not depend on v.;; and is the same for all systems
described by the Schrodinger equation (2.31). From (2.32) one obtains

Eln(r)] = @7™T + U + Veuly™) > Ey, (2.35)

where ™" is defined as the wavefunction, which delivers the minimum, and where the
inequality follows from the Rayleigh-Ritz minimum principle for the ground state energy
Ey. If the ground state wavefunction vy is used in (2.32) one obtains

Elno(r)] < (to|T + U + Veu|tho) = Eo (2.36)

where it has been used that the ground-state wavefunction delivers the ground-state
energy and where the inequality follows from (2.32), because E[ng(r)] is defined as the
minimum over all wavefunctions, which give the ground-state density ng(r), and one of
these wavefunctions is the ground state wavefunction . Since (2.35) is valid for any
density, it is also valid for the ground state density. This leads to E[ny(r)] > Ep, which
together with (2.36) shows Ey = E[ny(r)] and establishes the minimum principle

E, = mnin Eln(r)]. (2.37)

Here the minimization is over all densities which arise from antisymmetric wavefunctions
for all N electrons. This variational principle can be used to determine the ground-
state density of ng(r) and energy Ey provided that the functional F[n(r)] can be defined
explicitly, which is, however, only possible approximately.

As important as the the Hohenberg-Kohn theorem is the idea of Kohn and Sham [59], to
introduce a fictitious auxiliary non-interacting electron system with an effective external
potential vess(r). This effective potential is constructed in such a way that the density
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of the auxiliary non-interactig system equals the density of the interacting system of
interest. The Hohenberg-Kohn theorem (applied for U = 0) guarantees the one-to-one
correspondence between the densities and the effective potentials. While the functional
Fin(r)]in (2.33) and (2.34) is universal with respect to the external potential, it evidently
depends on the interaction U. For U = 0 the functional F[n(r)] reduces the kinetic
energy functional Ti[n(r)] of non-interacting electrons and the total-energy functional
can be written as

Eun(r)] = T[n(r)] + / A n(r)ves(r). (2.38)

The Hohenberg-Kohn variational principle (2.37) then lead to the Euler-Lagrange equa-
tion

6n5(r) {Es[n(r)] + 4 [N - / d&’r n(r)} } = %}Lf;)] tepp(r) —p=0 (2:39)

where a Lagrange parameter p is used to guarantee the charge conservation N =
[ @r n(r). Equation 2.39 provides an exact way to calculate the ground-state den-
sity n(r) provided that the potential v.rs(r) is known, since the functional Tsn(r) for the
kinetic energy of the non-interacting electrons can be implicitly constructed by using the
single-particle wave-functions (orbitals) ¢;(r), which allow to represent n(r) and 7T in
the form

occ occ

= e and Tint 1—§;ﬁm¢ <——V>Mﬂ (2.40)

where ¢ denotes both the spatial as well as the spin quantum numbers and where the sum
is over the lowest N (occupied) eigenstates to respect the Pauli principle. The variation
of E[n(r)] with respect to the orbitals leads to the Kohn-Sham equations

2m

h2
gV gy (6) = ] ) = i) (2.4
where the ¢; represent Lagrange parameters, which guarantee that the orbitals are nor-
malized as (¢;|¢;) = 1. To apply this scheme, a useful expansion of the effective potential

vers must be found. The important achievement of Kohn and Sham was the suggestion
to write equation (2.33) as

Eln(r)] = Ts[n(r)] —I—/d3r n(r) ezt (T) + < /d3rd3r' M + E.e[n(r)].  (2.42)

2 r —r|

Here the last term is the so called exchange-correlation energy functional defined as
e [ 3 3, no)n(r)
Ey[n(r)] = Fn(r)] — Ts[n(r)] — — [ &rd’r" ———= (2.43)

As before, Ts[n(r)] is the kinetic energy functional (2.40) of non-interacting electrons.
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The variational principle applied to (2.42) gives

OT[n(x)] o [y ) 0Ew[n(r)]
T e [ G S e e

This equation is formally identical with the Euler-Lagrange equation (2.39) of the non-
interacting electron system with the effective potential

2 5 n(r)
Veff(r) = Ve (r) +€° [ d°r T + vge[n(r)](r) (2.45)
where the exchange correlation potential is defined as
dEye[n(r)]
St 2.4
(@) = e (2.46)

Equations (2.40) and (2.41) are the most famous Kohn-Sham equations, which are prob-
ably the most important equations in density-functional theory. Since the effective po-
tential depends on the density via (2.45) and the density on the effective potential via
(2.40) and (2.41), these equations must be solved self-consistently: starting from a trial
density the effective potential is determined by (2.45), for which (2.40) and (2.41) are
solved to determine the new density. This process is repeated until the new density
equals the previous one.

The density-functional theory presented above is exactly in principle, however the density
functionals E,.[n(r)] and v,:[n(r)], in which all complications of the many-particle prob-
lem are hidden, are not exactly known and must be approximated. The widespread use
of density-functional theory in calculating physical and chemical properties arises from
the fact, that approximations for E,. and v,. have been found, which are both simple and
accurate enough for practical applications. A simple but remarkably good approximation
is the so called local density approximation (LDA), which approximates the E,.[n(r)] at
every point r with the local exchange-correlation energy of a homogeneous electron gas
(for details see e.g. [60,61]) and thus yields good results for systems with slowly varying
electron densities. An even better approximation for calculating cohesive energies and
lattice constants (i.e. of 3d transition metals) permits the so called generalized gradi-
ent approximation (GGA), which takes the dependence of the gradient of the density
into account [62-64]. A possibility to improve these exchange-correlation functionals has
been suggested by Becke |65], who constructed a non-local hybrid functional by using
a fraction of exact exchange. Additional improvements in the description on exchange
and correlation where achieved by coupling-constant integration and constrained DFT,
but since this section should give only an overview of the methods we refer the reader to
specialized literature [66-70].
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2.3 Landauer-Biittiker theory of coherent transport

2.3.1 Introduction

In the limit of strong coupling between electrodes and central device region the so called
w<Landauer-Biittiker-approach” [12|, which expresses the current through a conductor in
terms of the probability that an electron can transmit through it, has proven to be very
successful [12,71,72]. It allows for the investigation of the current-voltage characteristics
of many promising systems of molecular electronics like metallic point contacts, nano-
wires, nano-tubes as well as covalently coupled complex molecules (e.g. DNA). The
main idea behind this approach is to describe the source-drain electrodes as ballistic
conductors and to treat the device region of interest as scattering center for the charge
carriers. This scattering process can be described by the scattering matrix of the device,
which contains the transmission and reflection coefficients of the scattering-channels.
Computing these scattering channels makes it necessary to use an appropriate method
to describe the electronic structure (semi-empirical model Hamiltonian like tight-binding
or density functional theory) for the molecular orbital calculations, that allows for an
accurate electronic structure treatment at a reasonable level of computational costs.

In the present section we will briefly introduce the Landauer-Biittiker formalism of co-
herent electron transport, which is required for the interpretation of the results obtained
from simulations. Firstly we will demonstrate the close correlation of transmission and
the experimentally accessible conductance. For reasons of practical calculations we will
show how to express the transmission function in terms of Green’s functions. This con-
cept is also required for introducing the Recursive Green’s function method in the next
section, which was implemented for material specific transport calculations and exten-
sively used in the present work.

2.3.2 Transmission and conductance

In order to observe coherent conductance quantization at least two conditions on the
sample size have to be fulfilled: To preserve coherent scattering the device length should
be smaller than the quantum mechanical coherence length of the electrons and the device
width has to be small enough permitting only a few number of charge carrying modes.
The first experimental validation of conductance quantization in a two dimensional bal-
listic waveguide was reported independently by two different groups in 1988 |73, 74].
Figure 2.5 shows a schematic of the experimental setup where a semiconductor (GaAs-
AlGaAs heterostructure) connected to source/drain electrodes on the left and right and to
two gate electrodes (split-gate configuration) of negative potential forming a bottleneck
for the electron propagation. The gate electrodes generate fixed boundary conditions in
y-direction leading to quantized transversal modes similar to a 1D-potential pot, where
the number of occupied modes N¢ in the central device in dependence on the width W
of the pot is given by:

N¢ = Int [ ;2;2] (2.47)
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Figure 2.5: Ezperimental verification of conductance quantization in o quantum point contact.
(left) Experimental setup showing the semi-conductor in the middle connected to source/drain
(L/R) and constricting gate electrodes. (right) Observed conductance steps as function of the
gate voltage proving the varring number of perfectly transmitting channels (Original data by van

Wees et al. [73])

Here Ap denotes the Fermi-wave length of the system. Measuring the conductance in
dependence on the gate voltage yields the characteristic shape in the curve shown in
figure 2.5: As the width W of the constriction decreases continuously the number of
occupied modes in the conductor decreases and the conductance goes down in discrete
steps in units of 2¢2/h, as the channels are perfectly transmitting. In the following, we
will understand the effect of coherent conductance quantization in a quantitative way
based on the Landauer formalism.

To derive the relation between conductance and transmission for the multi-channel,
noninteracting case, first of all it has to clarified to which systems the Landauer
formalism is restricted: (i) We consider only systems without inelastic scattering in the
contact /device region - the transport is assumed to be coherent. (ii) The electrodes are
assumed to be ideal Fermi liquids, i. e. the electrons entering the device region from
the left or right have a distribution according to the Fermi distribution function and
the chemical potentials py, pg of the corresponding left or right lead, respectively. (ii7)
Electrons leaving the device region into the reservoirs are completely absorbed, i. e. the
electrodes are assumed to be reflectionless.

According to the division of the system into three parts - left electrode, the cen-
tral device region and right electrode we divide also the corresponding Hamiltonian
matrix into the block Hamiltonians Hy/Hpg for the left/right lead and H¢ describing
the central device, respectively. We assume, that there is no direct coupling between
the left and the right contact:
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H;, Hie 0

12
H=| Hecy, He Her |, with Hp=Hgp= { é?;p el Wl)él(gg;vlfs/e]
0 Hge Hrg ’
(2.48)

Here Hxx with X = L, R denotes the coupling between electrode and central system
and W is the width of the electrodes. Hy and Hg describe non-interacting electrons in
a perfectly ballistic conductor.

Restricting to the incoming and outgoing waves in the leads we now define the
so-called scattering states, which have an incoming part in one particular lead state
in z-direction, a transmitted part and a reflected part. Due to the finite width of the
leads, the incoming wave has a discrete mode number index n and, as we treat an open
system, a continuos varying wave number index k in direction of the charge flux. A
wave function, representing a right moving scattering state (k, k' > 0) takes the for:

eReyn(ry) + >0 P e Ty (ry), (z,ry) €L
nk(T,TL) = AN " ro . 2.49
Yuk(,TL) { S e O (1), (#,r1) € R (2.49)

The matrix element ¢, represents the transmission amplitude for an incoming wave from
the left in state n to be transmitted into state n’ on the right hand side, whereas 7, is
the respective reflection amplitude. y(r, ) is the wave function component in transverse
direction r ;. As long as we can neglect inelastic scattering, the wavenumbers are fixed
by energy conservation, so for the mode energies holds €, = €,x. If we denote f;l,n and
7., as respective amplitudes in opposition direction, we can define the energy dependent
scattering matrix, which comprises all occurring amplitudes

E) t'(E L )

E E; f'E E; ) with #(E) = {in(E)} (2.50)
and maps (if the wave functions are e. g. expanded in plane waves) the incoming
wave coefficients to the outgoing wave coefficients. As the current is proportional to
the velocity v, times the square of the wave function, [¢,1]%, we have to rescale the

transmission amplitudes,

Un »
lyrp = — tyin (251)

Un!

in order to retrieve the commonly used formulation of the Landauer formula. Now |t,,|
constitutes the fraction of the inflowing current in the left lead which is transmitted into
the right lead. To derive an expression for the total current, we consider a single trans-
verse mode whose +k states are occupied according to the Fermi distribution function
fr(E). A uniform electron gas with N electrons per unit length moving with a velocity v
carries a current equal to e/Nv. Since the electron density associated with a single k-state
in a conductor of length L is (1/L), we can write the current I, carried by the +k states
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in mode n as

10FE
£ 20 UE) ol = T3 g SuE) (2.52)

k n' k,n'

Converting the sum over £ into an integral according to the usual prescription

L
2(f — | dk 2.
E —  2(for spin) x 27r/ (2.53)
one obtains
Ly = ¢ dE fL(E) Y [t (2.54)
nL — h L , n'n .
with  fL(E) = f(E—p+eVy) (2.55)

Here V;, denotes the applied potential to the left electrode. Summing I, over all modes
n carrying right moving waves yields

I = ZIRL = | dE f (E)Tr(tt"). (2.56)

with the energy dependent transmission function 7'(F) = Tr [t(E)t!(E)]. We can evalu-
ate a similar expression for the current Ir carried by the —k states. So the total current
I is given by

I=1y— Iy =" [ 4B Te(6t) [fu(B)  fulB) (2.57)

which is called Landauer-Biittiker-formula. This equation shows, that the current of a
coherent non-interacting quantum system can be expressed by an energy integral over
the channel transmission 7'(E) weighted by the difference of the left and right reser-
voir Fermi function which defines the energy interval of the electron flow. So the whole
information about the coherent transport properties of the system is given by the trans-
mission function, whereas f;, and fz characterize the boundary conditions. However, the
transmission 7T'(E) is revoking of experimental observation, but it is directly related to
the zero bias conductance: At low bias voltages (V,, — Vg) we can expand the expression
(2.57) for the total current I around p leading to

I= 2; dE Tr(ttT)< gg) (Vi — V). (2.58)

The conductances G is given by

1 27 of
- E Tr(tt! 2.
G il ol K (tt)< 8E> (2.59)
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Further, we assume low temperatures simplifying the derivative of the Fermi function to

0f(E)

Equation (2.60) is called Landauer Formula and states the important result, that the
conductance is equal to the transmission in units of the conductance quantum G, =
2¢?/h.

2.3.3 Green’s functions in scattering theory

So far we discussed how the coherent transport properties, i. e. the zero bias conductance
G and the total current I, follow from the transmission function 7'(E). In principal we
can evaluate the matrix elements of (tt') by solving the four equations resulting from
the continuity conditions of the single particle wavefunction and its derivative on the left
an right interface, which is non trivial in general, because this procedure includes the
calculation of an explicit expression for the wavefunction.

A more convenient method for calculating the transmission matrix, which is in principal
not essential for coherent transport, is the Green’s function approach. Unlike the
transmission matrix, which correlates only points at the interfaces, the Green’s function
G*(r,r") describes the response at any point 7 due to an excitation at point 7', particu-
larly inside the conductor. So G®(r,r') can be interpreted as a generalized transmission
matrix, which has several advantages compared to the transmission matrix:

1. The Green’s function description permits a formal substitution of the infinite sized
system by a finite central transport region incorporating the open boundary con-
ditions via so called self-energies (see chapter 2.3.4) which provides a convenient
method for evaluating the Green’s function and i. e. the transmission of an open
system numerically.

2. It allows for the relation of scattering theory to other formalisms, e.g. like Kubo
formalism, transfer Hamiltonian method and Feynman’s path-integral method.

3. Interaction effects like electron-phonon scattering and electron-electron interaction
occurre inside the conductor and though are not accessible with the transmission
matrix. However the Green’s function can take such effects into account within the
so called Keldish formalism.

Propagator of Schrédinger’s equation
In quantum mechanics the Green’s function can be interpreted as propagator of

Schrodinger’s equation [75], so one needs to find an operator K(ro,ts;r1,%;) that maps
all contributions of a wave function (ry,t;) at points ry at ¢; to the wave function
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T-matrix Green's function

Conductor Conductor

Figure 2.6:  Description of the scattering problem using two different approaches: (left)
The transmission matriz correlates only inflowing wavefunctions with outflowing wavefunctions
defined on the colored lines at the interfaces. However the Green’s function, a generalized trans-
mission matriz, correlates point lying also inside the conductor.

1 (ra, t2) in point ry in the past to:

'Lp(rg,tg) = /d3r1K(r2,t2;rl,tl)z/)(rl,tl) (261)
Using the time evolution operator U(ty,t;) with [¢(ty)) = U(ts, t1)|t0(t1)), completeness
[ d®ri|r1)(r;] = 1 and the restriction ¢; < ¢, (introducing a theta-function), we can
identify

K(I‘Q, t2, ry, t1> = g(tg - t1)<r2|U(t2, t1)|r1>. (262)

Assuming that the Hamiltonian H is not explicitly time dependent, and H|v,) = E,|¢y,),
the time evolution operator U can be written as

Ulta,tr) = Y em =My ) (4, (2.63)

n

Inserting (2.63) into (2.62) yields an explicit expression for the propagator

K(I’Q, tg, ry, tl) = g(tz - tl) Z w:;(I‘l)'g/}n(l‘l)eiiEn(tzitl)/h (264)

However, also formulation (2.64) requires the knowledge of the eigenfunctions. To de-
termine the propagator without calculating the 1, we can derive a partial differential
equation defining K. Therefore, we apply the operator [ih0;, — H(ry, V3)| corresponding
to Schrodingers equation to (2.64) and obtain

[ih8t2 — H(I’Q, Vz)] K(I’Q, tg, ry, tl) = Zhé(tz - tl) Z w;(I‘l)'g/)n(rl)e_iE”(t2_tl)/h (265)

The RHS of (2.65) is non-vanishing only if ¢; = ¢, so the exponential function can be
neglected and with ) ¢ (r1), (r2) = 0(ry — ry) we obtain finally

[ih8t2 - H(I‘Q, VQ)] K(I‘Q, tg, ry, tl) = Zh&(tQ - tl)é(rg - 1'1). (266)

For a unique solution it is necessary to add the condition K (ry,to;r1,t1) =0, if t; > to.
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From a physical point of view, that means the waves propagating from the surface t = t;
only ,radiate” into the future, so (2.66) is called retarded propagator. Usually a solution
of an equation with a 4-dimensional delta-function as inhomogenity is called Green’s
function, so we denote this special propagator as G in the next sections.

In the following we will show how the elements of the transmission matrix torm
can be expressed by the Green’s function. The necessary formula is called Fisher-Lee-
relation |76], which we derive for a one-dimensional single-mode wire and afterwards
generalize it to a two-dimensional multi-mode wire.

We restrict the derived differential equation 2.66 to one dimension in space and assume
a static situation (no time dependence). A constant one-dimensinal potential for the
electrons is denoted as Uy. The resulting propagator is called Green’s Operator:

i

According to the common concept of Green’s function method, this operator is applied
to a Green’s function G(z, '), resulting in a J-function.

h2 62

<E — Uy + %%) G(r,2") = 6(x — o) (2.68)

The function at the right hand side is often called source term, so we can view G(z, 2') as
a wavefunction at x resulting from a unit excitation applied at x'. This local excitation
gives rise to two plane waves traveling outwards from 2’ with the amplitudes ¢~ and a™
for the left and right traveling part, respectively. Therefore, one solution of (2.68) is

GR(z,2") =

+ ik(z—x') / 'm(E — U
{ ate , T > m( 0) (2.69)

a—e—ik(x—x’)7 r <z with k= 72 )
which is called retarded Green’s function. Using the continuity condition for G¥(z, z")
and 0,G"(x,2') at x = 2’ one finds a~ = a* = —im/h*k, thus ( 2.69) can be simplified
to ]
im
2k
Since the defining equation of G(z, ') is a second order differential equation, there is an
additional solution G*(x, z') of (2.68), the advaced Green’s function

Gz, 1) = — etkle=a'l, (2.70)

m ; ’
Gz, 2') = +—— e o= 2.71
(5,2) = +20 (271)
which consists of incoming waves that disappear at point 2’ and thus satisfies a different
boundary condition than G¥(z,z') corresponding to outgoing waves. As the retarded
Green’s function represents the physically relevant solution one incorporates the bound-
ary condition into (2.68) by adding an infinitesimal imaginary part to the energy, with
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n > 0:
n? o 0°
(E +in—Uy+ — ) G(z,2') =0z — ). (2.72)

2m Ox?
This introduces a positive imaginary part also in the wavenumber k£ — k(1 + id).
Inserting the transformed wavenumber into the expression for G¥(z,2') and G*(x,z")
shows that the advanced solution diverges for large distances |z — 2’|, in contrast to the
retarded solution. Therefore, in the following discussion of non-interacting transport we
will focus on the physically reasonable retarded Green’s function.

According to [12] we will now discuss, how to express the transmission matrix in
terms of the Green’s function. Therefore we consider a conductor connected to a set
of leads. We use different coordinate systems in each lead, e.g. in lead p we have
coordinates (z,,y,) and in lead ¢ the coordinates (x,,y,), respectively (compare fig.
2.7). The interface of the conductor at lead p is defined by the line x, = 0. As previously
discussed, the transmission matrix relates only points at the interfaces, so we can restrict
the Green’s function to

Gl (e yp) = G aq = 0,yg52, = 0,y,). (2.73)

If we neglect the transverse dimension y, we can easily write down the Green’s function
between interface p and interface ¢ in terms of the transmission matrix. A local excitation
at interface p would give rise to two plane waves into both directions: one into contact
p with amplitude a, and another one which is scattered at the conductor is split into
a reflected component with amplitude ¢/ a and a transmitted component t} a., so the
2-point Green’s function writes as

R _

Gy = Ogptty, + topts . (2.74)

Since we know from the previous discussion that the amplitudes a;t are equal to —imn /h*k
and t,, = \/v,/v, t, We obtain for the transmission matrix elements

tgp = —04p + ihy/vv, G (2.75)

To generalize the formalism to a multi-mode wire we consider the Green’s function of a
two-dimensional region, which is infinite in the left and right direction (—oo < z < +00,)
and finite in transverse direction (0 < y < y;). According to the definition of the
Green’s function (see equation ( 2.64)) G(r,r') = Y, ¥ (r)Y)(r') and the fact that
we can separate the wavefunction in z- and y-direction, the Green’s function takes the
form [12]:

Gy, 7,1) = Y =X ()X (). (2.76)

hv,,
m

The prefactor —i/hv,,, with v, = lik,,/m, is again a consequence of the continuity of G
and 9,G" in © = 2'. x,,(y) denote the transverse mode wavefunctions which are real,
orthogonal and satisfy the equation [—(7?/2m)d2 + U(y)] xm(y) = emoXm(y). The ex-
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ponential factor in (2.76) follows directly from the previous one-dimensional calculation.
To find the relation between Green’s function and transmission for a multi-mode wire
we consider again a conductor connected to a set of leads, e.g. lead p and lead q. We
restrict the Green’s function to interfaces given by the lines z, = 0 and z, = 0 as in the
previous example. Due to the existence of a scattering region (the conductor) we have to
replace the unperturbed traveling plane waves in z-direction in (2.76) by their scattered
transmission /reflection-amplitudes:

_Leikm|$q*$p|

1
hv,, ~ ; N (Onm

~

+ )€ e g tikmy (2.77)

Hence we obtain for the Green’s function in the leads (no z-dependence) with scattering

effects
yq7 yp Z Z Xn yq nm t m] Xm(yp) (278)

mep neq

Solving this equation for £,,, by using the orthogonality of the transversal wave functions
we find the generalized Fisher-Lee-relation for multi-mode wires

tAnm = —0pm + ihy Van//dyqdyp Xn(yq) G(ﬁ)(yqayp) Xm(yp)- (279)

We can use the previous equation to derive an expression for the transmission function
T(FE) giving less more physical insights, but is rather important for numerical applica-
tions. Therefore we discretize the two-dimensional space using the Finite Differences
scheme with a lattice constant a. The indices ¢ and j enumerate the interface contact
points to lead p and ¢, respectively (compare figure 2.7b). As we assume scattering into
different leads (so n # m) we obtain for the discretized version of (2.79)

b = IRV S X (07 gy (3, 1) X () (2.:80)

Finally the total transmission function follows from the summation Y |t,.|* over all

a) | . b)
p.
AL Conductor ‘y Lead p ! | Gonductor
p | 79
l_ o J \
Xp Xq

Figure 2.7: Schematics to clarify the notation in the derivation of the Fisher-Lee relation. (a)
Conductor between two leads p and q with longitudinal coordinate x and transversal coordinate y.
(b) Discretized connection between lead p (transversal coordinate p;) and a conductor (transversal
coordinate ).
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transversal modes n and m

h2 vy U, o o
Ty = 5 D xal@)G" (. )xn (i) Xl G 5 xmlpr)  (281)
i,j,i/,j/
with the advanced Green’s function GA(z",j’) — [GR(Z'IL]'/)]T‘ Furthermore we intro-

duce the coupling matrices I', describing the connection strength between electrode and
conductor

hv,
r i,i, = Xm\Pi —me Dir)- 2.82
p(1,7) n% (i) = =xm (pir) (2.82)
We will discuss their physical meaning and an efficient way to calculate them in next
subsection in relation with the so called self-energies. With coupling matrix we obtain
finally a simple expression for the transmission function which is of high relevance for
applications:

T = Y TG )G" G0, 301G, 1) (2.83)
1,5,9" ¢
= Tr[[,G"T,G7] (2.84)

2.3.4 Self-energy

So far we described how the total current carried by coherent, non-interacting electrons
can be traced back to the transmission function and the electrode Fermi functions using
the Landauer Biittiker formula. Furthermore we derived an expression for the trans-
mission which permits efficient numerical implementation based on Green’s functions.
However it is not obvious, how to handle the Green’s function or even the Hamiltonian
matrix H of an open quantum system. The Hamiltonian of an infinite chain of atoms
has infinite dimensions by definition and since the Green’s function is proportional to the
inverse of H (see (2.67)) it is necessary to divide the system of interest into two semi-
infinite lead- and a central device region. Additionally, the algorithm should exploit the
translation invariance of the contacts and permit an accurate treatment of the central
device region, which determines basically the transport properties of the system.

To map the infinite dimensional Hamiltonian to a finite matrix, suitable for numerical
methods, we consider a system consisting of only one lead connected to a conductor.
Formally we separate the full Green’s function G of the total system into the semi-
infinite block matrix of the lead G and the finite block matrix of the central region

Gci L
Gr G\ _ ( (E—inl-Hg TL - (2.85)
Ger, Ge ) 7 FE1 - H¢ '
Here 7, (F) = (E — in) — Hyc denotes an overlap matrix between the two subsystems.
Generating the identity matrix on the LHS of equation (2.85) and comparing the matrix

43



Chapter 2: Numerical methods

elements left and right we obtain two linear equation for Gy and G¢:

[(E - 277)]1 — HL] GLC + [TL] GC =0 (286)

[E1— He]Ge + [r}] Gre = 1 (2.87)

Solving for the overlap matrix G ¢ leads to Gpc = —¢f7,G¢ with the retarded Green’s
function of the contact gf = [(E —in)1l — Hy] ', which can be computed using an

iterative scheme to be discussed at a later section. Plugging the result into the equation

for G¢ yields
-1

Ge = |(E—in)l —He —1)glr,| . (2.88)

This is the finite dimensional Green’s function of the central region taking the influence of
the lead into account by the so called self energy X, = ngfTL of the contact. In general
the conductor is connected to a number of leads. For this case we can straight forward
extend the upper formalism to the total self-energy term ¥ =) T;(g)l:éTx, leading to

Ge=[(E—inl —He—%]". (2.89)

Introducing the self-energy 3 has certain consequences for the eigenstates of the investi-
gated system. Many common quantum systems can be treated as closed systems, whose
eigenstates are found by diagonalizing the Hamiltonian H¢e with Hctong = £00®ao. How-
ever, in the present study we are interested in open systems, i.e. a microscopic structure
strongly coupled to leads. This gives rise to a self-energy L% leading to an perturbed
Hamiltonian [H¢ + X%]. Therefore, the eigenvalue problem changes to

[He + 2] tho = 0tfa. (2.90)

The most important difference to the unperturbed problem is, that the eigenvalues ¢,
are complex, due to the non-hermiticity of the self-energy X%. Using the derivative of
the dispersion relation v, = h~ !0k, (k) and the definition (2.82) one can show [77] that
the coupling matrices I' are proportional to the imaginary part of the self-energy %

I =[xt -4, (2.91)

If the coupling I" vanishes, the imaginary part of X% vanishes and [Ho + %] would be
hermitic, which would lead non-complex eigenvalues. However, in an open system the
eigenvalues are in general complex

Ea = Ea0 — Ao — 1(Va/2) (2.92)

with £,9 denoting the eigenvalues of the isolated conductor corresponding to the Hamil-
tonian Ho. The shift on the real axis A, can be interpreted as modification of the
dynamics of the electrons inside the conductor and the shift on the imaginary axis v,/2
reflects the possibility that electrons can disappear into the contacts. This eigenvalue-
shift induced by the self-energies (i.e. by the contacts) changes also the life-time of the
eigenvalues: Moving from an isolated to an open system, the time dependence of the
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2.3 Landauer-Biittiker theory of coherent transport

eigenstates transforms as
exp [—icaot/B] — exp|—i(cao — Au)t/h] exp[—7at/20)]. (2.93)

The squared amplitude of the wave function yields the probability [14|? exp(—7at/h)
with the constant 7/7,, which represents the average time an electron remains in state «
before it escapes out into the leads. The case 7y, = 0 corresponds to a vanishing coupling
[' = 0 leading to an infinite ,live time” fi/,.

2.3.5 Electrode surface Green’s functions and decimation
technique

In order to describe the effects of the semi-infinite contacts on the device, we calculate the
self-energy matrixes Xy (X = [,r), which arise formally out of partitioning an infinite
system and projecting out the contact Hamiltonians. As already discussed, we can finally
calculate the electrode self-energy explicitly from the surface Green’s functions discussed
in the present section.

We follow the decimation technique presented in [13]. The in-plane (xy-plane) lattice
periodicity of an empty metallic surface suggests the calculation of the surface Greens
function in k-space. Therefore we choose a k-point mesh defined by

2 2 M—1 M—-1
ﬂmkl"‘ﬂkg, with m = — ) g

k —

and n analog, (2.94)

where k; and ko denote the basis vectors and (m,n) specify one single point of the k-
mesh. In the case of a fce-[111] layer the basis vectors in real space are r; = a(1,0,0)
and ry = a(%, ?, 0). In reciprocal space, which is defined by r; - k; = 27 - §;;, this leads
to k; = 27(1, —%,0) and ky = 25(0, %,0).

A fec-lattice in [111] direction consists of metallic layers of the stacking order ABCABC...
. In a single-particle description the knowledge of the Hamiltonian H, of one ,ABC”
unit is sufficient to build up the Hamiltonian of the full semi-infinit electrode due to
translational invariance. Once the matrix elements of the real-space Hamiltonian A, ;;
and overlap matrix elements s, ;; are given (e.g. from a tight-binding model), we perform

a Fourier transformation on the established set of k-points

HY(K) =) hgj e ™M), S4K) =) s, e ), (2.95)
J J

Due to lattice symmetry in zy-plane, we can keep ¢ = 1 fixed (arbitrarily chosen) and let

j run over all atom indices of one ,principal layer” (i.e. ABC-unit). Similarly, we define
H®(k) and S®(k) (see Fig. 2.8), but with j numbering only atoms of the nearest neighbor
principal layers. In order to write the surface Green’s function in a compact manner,
we introduce the matrixes «(k) and B(k) corresponding to the intra- and inter-layer
coupling, respectively.

a(k) == (E +in0")S*(k) — H*(k), pB(k):= (E+in0*)S’k) — H*(k) (2.96)
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X
4
Y N A
S, S, ...

Figure 2.8: Lead consisting of ,principal layers”, whereas every layer can be described with
the real space single-particle Hamiltonian H, and the corresponding overlapp matriz S, resulting
from the non-orthogonal basis set. The electronic overlap between two neighboring principal
layers is given by Hy and Sy, repectivly

The infinitesimal positive complex number in was introduced to ensure the convergence
of the Fourier transformation and can be interpreted as extraction of the electrons from
the contact. Using these definitions the Green’s function of an semi-infinite lead can be
written as follows:

ak) pk) 0 -\ gs(K)
Glead(k) — ) . = - (297)

Since we are only interested in the Green’s function gs(k) on the surface of the lead, we
can solve (2.97) for the matrix element (1,1) of the RHS, which leads to the recursive
relation

9:(k) = [a(k) — (k) g,(k) 5 ()] (2.98)
a(k) and (k) are explicitly known matrices, so we can either solve this equation analyt-
ically (if a(k) and S(k) are one dimensional) or by iteration starting from a reasonable
guess for gs(k), e.g. the Green’s function ¢?(k) of a single isolated principal layer. Solving
the RHS of (2.98) with g, = ggo)(k) leads to an improved version of g;. Repeating this
procedure recursively leads to a converged surface Green’s function in k-space. Trans-
forming g,(k) back to real space

1 ik(n,m)(r;—r;
gs(ri —xj) = 5z Y g, (K (n, m)) (2.99)

gives us the surface Green’s function, which is now compatible with the Hamiltonian of
the central device region.

Recently, Kletsov and Dahnovsky could extend this method to a non-recursive scheme
with an infinite number of principal layers 78| as well es interacting lead electrons [79].
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2.3 Landauer-Biittiker theory of coherent transport

2.3.6 Spectral function and local density of states

The spectral function is an important concept to characterize the electronic structure of
an open quantum system and can be interpreted as a generalized local density of states.
It is defined as the anti-hermitian part of the Green’s function:

A(E) =i [GME) - GYE)]. (2.100)

In order to get more insights into the physical meaning of this quantity, we have to plug
in the eigenfunction expansion of the Green’s function

G(r, v, E) =) %@;(r’) (2.101)

[0}

into equation (2.100). From a mathematical point of view (2.101) is just the spectral
representation of the propagator (2.89). However one has to note, that the occurrence of
Vo @r, s due to the fact, that the v, with [HC + ER] Yo = E41, do not form a complete
orthonormal set. To achieve a orthogonality one needs the eigenfunctions ¢, defined
by [Hc + EA] $o = E*¢, following from the adjoint self energy ¥4 as well. It can be
shown (e.g. [80]) that the combination of these sets of eigenfunctions fulfills the property
[ & 6u(®)5(x) = us.

Using the definition of A(E) and the expansion (2.101) the spectral function reads as

Alr, ' E) =) tha(r)g)(r) Ty ZZ)? T (2.102)

Assuming that the eigenfunctions {¢, ¢,} and eigenvalues ¢, depend weakly on the
energy F the spectral function versus E consists of Lorenzian curves with peaks at
energies corresponding to the eigenvalues of the isolated conductor. Due to electrode
coupling these peaks are shifted by the above introduced parameter A, and broadened

by Ya-
The diagonal elements of the spectral function contain the local density of states

p(t,B) = “A(r,1, E) = — 23 [G(r,r, B)] . (2.103)
2m T

which provides insights into the spatial variation of states on a surface or a conductor.
In the limit of v, — 0 the local density of states (2.103) yields the usual expression for
isolated systems p(r, E) = Y 0(E —¢cq0) [t (r)[?. With the advent of scanning tunneling
microscopy (STM) it has become feasible to probe the local density of states on an atomic
scale thus making this concept helpful from an experimental point of view.
The trace of the spectral function corrected by the overlap matrix S represents the total

density of states:

D(E) = %Tr A(E) - 5]. (2.104)

Also D(FE) converges in the limit of vanishing coupling (7, — 0) to the result of the
isolated system D(E) =) 0(E —eq0). However, (2.104) provides a general expression
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for the density of states that can be used even when eigenstates have finite lifetime.

2.4 Recursive Green's function method

In the upper section (2.2.1) we have shown how the computational effort for the calcu-
lation of electronic structure can be significantly reduced, if the system is describable
with a short range electronic Hamiltonian. The division of the system into principal
layers allows for a fast evaluation of an approximate Green’s function of every block
Hamiltonian. In the following we discuss an iterative algorithm called recursive Green’s
function method |81] for calculating the layer Green’s function recursively and reducing
the system size needed for the conductance calculation to a minimal set of atoms.

The transport experiments investigated in this work operate in the limit of low bias volt-
ages, so the system can be treated in the framework of linear response theory. However,
an electric potential profile has to be assumed, which is in our case a simple stepwise
potential between layer 0 and layer 1 (compare fig. 2.9). First of all we have to define
the position operator, which is given by

r= Y da, (2.105)

i€ L(k>0)

where ¢ creates an electron in orbital i (with 7 restricted to the layers of the device

region; k is the layer index as indicated in fig. 2.9). Hj should denote the equilibrium
tight binding like Hamiltonian of the central device region. With the position operator
x we can define also the perturbing Hamiltonian H; with

H, = —eV cos(wt)z, and H = Hy+ H, (2.106)

including a simple cosine time dependence. The perturbation produces transitions among
stationary eigenstates of the system leading to a time dependent current. The total charge
at the device region is given by

Q=—e Z cle; = —e . (2.107)

i€ L(k>0)

With equation (2.107) we can calculate the charge traversing the sample per unit time
using the equation of motion for the current operator I:

ihl = [H,Q] = —e[H, z| = —eihv, (2.108)

Applying the explicit expression for the Hamiltonian H = Hy + H; and the position
operator x we obtain an expression for the velocity of the electrons passing the left
electrode-device interface

ihv, = — Z hij(cle; — cle;) and T = —eu,. (2.109)

J
ieL(1);5€L(7)
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Figure 2.9: Two phenyle rings connected via sulfur atoms to two gold electrodes. The ring units
naturally prescribe o layer division of the system. The enumeration of the layers is shown below
the junction geometry: Note that the first electrode layer of the left (right) contact is denoted as
0 (N + 1) and the ,central device region” consists of the layers 1 to N.

with the overlap matrix element h;;. So in the case of a "small” perturbation potential
V' the knowledge of the charge flux between the left lead and the sample is sufficient to
evaluate the total current through the system. This important result is of course related
to flux conservation along the whole system.

Let us in the following denote as layer 0 and N + 1 the entire left and right electrode
fragment, respectively (see Fig. 1(b)). The computation of the Green’s function starts at
the rightmost layer of the central region of the system, containing the rightmost device
layer NV and the semi-infinite right lead layer N + 1. Its electronic structure is reflected
in the retarded Green’s function matrix

-1
r - ( ESy — Hy ESy N1 — HN,N+1>
NN41 = ;

2.110
ESyii vy —Hyinv ESyii — Hy ( )

which is more conveniently expressed in terms of the layer-self-energies ¥". The self-
energy X7 of the right contact can be computed from the retarded surface Green'’s
function ¢"(E) [81] as

Sy = (ESviin — Hypn)(ESyi — Hya) !
X(ESN,N-l—l — HN,N+1) (2111)

~ v (B) Gy (B) mhpn (B) (2.112)

Here 7;; denotes the coupling matrix of the layers 7 and j. The numerical scheme to
project the influence of the semi-infinite contacts to the lead surface atoms has been
already described in more detail in section 2.3.5. We can calculate the Green’s function
and self-energy of every principal layer k£ recursively, using the relations:

gi(E) = (ESy — Hy—Xi(E)™ (2.113)
Sia(B) = meak(B) gi(E) 1 4(B) (2.114)
with k=N, ..., 2.
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In a layered system, we have chosen the interface such that the velocity operator has
non-vanishing terms only for orbitals connecting the left-most electrode layer (layer 0)
with orbitals in layer 1. To compute the Green’s function occurring in the Landauer
formula for the transmission (2.60) we thus need only the retarded Green’s function of
the system comprising layer 0 and layer 1

G"(E) =[ESy, — Hy — 34(E) — X(E)] 1, (2.115)

which is easily computed from the right- and left-lead self energies 7 (i =0, 1). In order
to exploit the simplicity of the velocity operator in this context, we use a formulation
of Landauer formula for conductance ( 2.60) which is derivable from linear response
theory [77] in the limes w — 0 and which is equivalent with ( 2.60):

2¢?

G(F) = TTr [(ihw,)Im G(E) (ihw,)Im G(E)] (2.116)

The main difference to this an the previous representation of the conductance (or trans-
mission function) is the appearance of the velocity operator, which can be understood
if we consider the definition of the coupling matrixes (2.82) showing the proportionality
I, ~ hv. For a detailed derivation of (2.60) from Kubo’s formula for conductance the
reader is referred to [77]. The occurring imaginary part of the Green’s function can be
calculated easily with the use of the advanced Green’s function G*

tm G(F) = o [6"(B) - G"(B)]  with G"(E) = [¢" (B)] (2.117)

It is well known that the conductance is very sensitive to interference effects that arise
form small atomic displacement [40,41]. These effects lead to weak oscillations in the total
transmission at 7' = 0 which are averaged out in most quantum transport measurements
at higher temperature. To account for this phenomenon we average G(E) over a small
interval [Ep — A, Er + A] around the Fermi energy Ep,

1 EF+A

(G(Ep)) = ﬁ/ de G(E) (2.118)

Ep—A

whereas A = 50 meV = 2kgT to obtain a representative value of the zero-bias conduc-
tance for comparison with experimental data.

2.4.1 Truncation of the Extended Hiickel Hamiltonian

An aim of the present study is to calculate the conductance of nano-junctions consist-
ing of up to 600 atoms during a dynamic process with varying conformation. To keep
the computational effort feasible, we divide the quasi one-dimensional system into N
principal layers perpendicular to current flow direction. Every principal layer k& with
k =1,...,N is described with one block Hamiltonian matrix. Since the Hamiltonian of
the central device region is diagonal dominant, we take only the overlap matrixes between
nearest neighboring blocks (or principal layers) into account. Thus, an atom of layer k
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2.4 Recursive Green’s function method

has non-vanishing orbital overlap with other atoms in layer k£ and k 1, but the overlap
matrix elements to atoms in layer k & 2 are set to zero. So far, the layer thickness w
is a parameter of the simulation which has to be chosen appropriately: is w too small,
too many overlap matrix elements are neglected and the resulting conductance would
underestimate the true value; on the other hand is w chosen to large, the computational
effort comes close to the full device calculation, which should be avoided. However, if a
reasonable thickness parameter d was found, we can exploit the advantage of the present
layer-approximatimation: the linear scaling of the computational effort with the system
length.

Hf 77 0 - 0
R eee o T2 Hi Tao :
H(l)a,}’ers =0 n B - 0
: e Tii—1
0 -+ 0 7y H]
T Toz Ty (2.119)

Figure 2.10: (left) Division of the central device region into a set of principal layers. Every
principal layer contains a few number of e.g. bulk layers. (right) Corresponding truncation of
the full device Hamiltonian. The resulting matriz consists of block Hamiltonians corresponding
the principal layers and nearest neighbor overlap between every block.

2.4.2 Convergence-test of the layer approximation

Metallic nanowires have been among the first and most widely studied systems in molecu-
lar electronics [40,41,82,83]. Metallic systems are often most challenging for linear-scaling
electronic structure methods, because the electronic wave functions are extended. To pro-
vide a stringent test for our ,local” approximation, we have investigated the convergence
of the layer approximation for two representative examples, namely gold- and silver-wires
respectively.

We begin the investigation by dividing silver and gold model junctions into a set of
yprincipal layers” with increasing thickness w. In order to establish the convergence of
the method for large systems, the test geometry has to be of sufficient length. Here
we investigate junctions of 45.2 A length in z-direction, containing 388 silver or gold
atoms with a nearest neighbor distance of 2.88 A in both metals |84,85]. We prepare the
electrodes as perfect fce-clusters, which narrow towards the center to form a single-atom
point contact at their tips, generating a dimer structure which permits a current flow in
the crystallographic [111] direction. The extended molecule region and the layer divisions
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are illustrated in Fig. 2.11a. The bulk electrodes are designated by the two larger layers
on each side of the system.

We calculate the conductance for varying widths w = 1,...,18 dyj1y) of the ,principal
layers” (Fig. 2.11a), i.e. the full length of the extended molecule region. Figure 2.11b
shows that the conductance of the silver and gold model junction as a function of the
principal layer thickness w converges rapidly to the experimental value. The same holds
true for the junction conformations labeled Ag 1 - Ag 4 and Au 1 - Au 4, which have
a minimum cross section of 1-4 atoms, respectively. Furthermore, we calculated the
convergence of the conductance for longer wire geometries (Fig. 2.11c), constructed by
sequentially introducing additional atoms into the point contact at the minimum cross
section. Thereby we obtain silver and gold junctions of 20, 24, 28 and 32 atomic layers
in the z-direction.
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Figure 2.11: Convergence test of the conductance depending on the ,principal layer”-thickness
for several nano-junctions. (a) Model nanojunction of 45.2 A length and minimal cross section
of one atom allowing for several different principal layer divisions, indicated by the marked lines
below the conformation. On the right hand side the thickness of the principal layers of the
actual division is indicated, respectively. w is given in units of the [111] atomic layer distance
diin) = 2.354 (b) Corresponding conductance values for the upper described sets of ,principal
layers” for a silver and a gold contact, respectively. The dependence of the conductance on the
layer division is also shown for similar metallic junctions with a minimal cross section of 2, 8
and 4 atoms, respectively. (c) Metal quantum wires with one conductance quantum, but with
increasing length between 20 and 32 atomic layers show the same rapid convergence behaviour
with increasing principal layer thickness.
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2.4 Recursive Green’s function method

For w = 1 the conductance is significantly underestimated to approximately 0.5 Gy for
both metals, indicating that hopping processes across distances larger than the inter-
atomic distance are important. For all choices of the layer thickness with w > 1 the
conductance has converged to nearly the experimental values. For w = 3 the layer divi-
sion retains the symmetry of the [111] crystal stacking order "ABCABC...” in fcc-latices.
We investigate the convergence in more detail at the level of the transmission in Fig 2.12,
which shows the total transmission function 7(E) of the geometry shown in Fig. 2.11a
over an energy interval [Ep — 6 eV, Er + 6 eV]. Again we find that all curves for w > 2
agree well with one-another.

In order to demonstrate the efficiency of this method we compare the computation time
of the transmission curves shown in Fig 2. With a resolution of AE = 10 meV the
transmission of the system divided into 1, ..., 18 layers required 1368, 594, 429, 336, and
294 seconds, respectively. Using this approximation, e. g. with 6 principal layers, that
takes 31% of the time of the full-device” calculation, while increasing only a neglectable
loss of accuracy.
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Figure 2.12: The total transmission 7(F) of the model silver junction shown in Fig la, in
the different levels of approzimation, i.e. a changing number of ,principal layers”. Convergence
with respect to the principal layer thickness is achieved as soon as w becomes is larger than 2.

23






3 Structure and conductance In
silver point contacts

3.1 Ildealized silver electrodes

Due to their interesting physical properties and potential technological perspectives,
metallic quantum wires and atomic-scale contacts are an object of intensive experimen-
tal [86-94] and theoretical investigations [72,82,95,96]. As the size of these constrictions
is smaller than the scattering length of the conduction electrons, transport through such
contacts is ballistic, and as the width of the contacts is on the length scale of the electron
wavelength, the quantum nature of the electrons is directly observable. The electrical
conductance of such quantum structures is given by the previously introduced Landauer
formula G = GyX7,(Er), where Gy = 2¢%/h is the conductance quantum. 7, gives
the transmission probability of the n-th channel and depends crucially on the orbital
structure of the conducting atoms [88] and also on the atomic structure, in particular on
scattering at defects and boundaries [95], as well as internal stress [72].

In practice, most conductance measurements of point contacts, even for simple metals,
yield non-integer multiples of the conductance quantum Gy. Such deviations from the
ideal behavior can stem from material-specific properties of the junction or from defects
that result from the fabrication process. Especially in experiments based on atomic-
scale contact fabrication by mechanical deformation (e.g., break junctions or scanning
tunneling microscopy setups [86-88|), there is very limited control of the growth and
properties of the atomic-scale contacts. In these experiments long-term stable and defect-
free contacts with conductance at integer multiples of the conductance quantum Gy are
difficult to realize in practice as the fabrication process is essentially connected with the
formation of atomic-scale defects such as dislocations.

To produce well-ordered contacts, a technique of nearly defect-free growth by slow quasi-
equilibrium deposition is required, which can be provided by electrochemical deposition
methods [89-93]. In addition, techniques of electrochemical annealing provide the possi-
bility of healing atomic-scale defects in contacts even after fabrication (see below). Due to
its high electrochemical exchange current density [97], silver is a promising candidate for
efficiently applying electrochemical annealing techniques. Here we investigate the coher-
ent transport of electrochemically deposited and annealed silver quantum point contacts
that yield nearly ideal integer multiples of Gy and explain their properties by compari-
son with conductance calculations for selected near crystalline junction geometries with
a preselected number of contact atoms.

In this chapter we present calculations for various idealized silver nanojunction geome-
tries of integer quantum conductance an analyze the correlation between structure (and
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minimum cross section) and transmission function. Secondly we investigate the influence
of distortion on the conductance by varying geometrical parameters. We then extend
the study of the disorder influence by a statistical analysis of the conductance of silver
junctions with randomly distributed surface vacancies similar to a dissoluting nanowire
in electrolyte. Finally we examine the transmission functions of silver nano-particles
contacted with an metallic electrode tip (similar to STM transport measurements). This
system is interesting because small metallic nano-particles are from a structural point
of view an intermediate case between an ideal fcc-lattice and a disordered system - they
have a specific geometric structure with symmetries strongly depending on the number
of atoms, which might influence the electronic transmission.

3.1.1 Model point contacts

In order to test the implementation of the previously described transport formalism
and to get insights into the possible structures of metallic point contacts, permitting
a conductance of an integer multiple of Gy, we calculated the coherent conductance of
ideal crystalline silver nanojunctions (see Fig. 3.1). The geometries were generated by
assuming two fcc electrode clusters, which are connected at their tips by a small number
of Ag-Ag-bridges in the crystallographic [111] direction with a Ag-Ag nearest neighbour
distance of 2.88 A.

The zero-bias quantum conductance of a given junction geometry was computed with
the Landauer formula (2.57). The electronic structure was described using an extended
Hiickel model [40, 42| including s-, p- and d-orbitals for each silver atom (around 3600
orbitals per junction). To take the influence of the semi-infinite leads into account,
we employed the decimation technique (see chapter 2) to calculate the material-specific
surface Green’s functions [13| using the same type of model Hamiltonian and parameter
set, for the electronic structure as already used for the central device region. To reduce the
influence of interference effects, we averaged the transmission 7'(E) over a small interval
[Ep — A, Ep + A] around the Fermi energy (with A = 50 meV), which is comparable to
the temperature smearing in measurements at room-temperature.

As indicated in Fig. 3.1, we find nearly integer conductance of the idealized geometries
for contact geometries 1-5: 0.97 Gg, 1.95 Gy, 2.89 Gy, 3.95 Gy, 4.91 Gy, respectively,
with deviations from integer multiples of Gy of about 0.1 Gy which is in the range of
the accuracy of our numerical method. We observe a correlation between the number
of silver atoms at the point of minimal cross section, which aids in the construction of
geometries with a particular value of the conductance. This proportionality ,conductance
G ~ Gy - N number of atoms in the minimal cross section” may result from to the
electron configuration of silver |[Kr| 4d'° 5s'. The s-band dominates the local density of
states |98] of silver at the Fermi edge, permitting one open transmission channel per Ag-
atom. So this is a material specific property of silver unlikely to be encountered in other
materials. It appears to hold only for a small number N of atoms in the minimal cross
section, because it was shown in Landauer’s scattering theory that the total transmission
of a microscopic junction is given by the number of transversal modes, which depends
primarily on the diameter of the junction.

Figure 3.2 shows the calculated total transmission as a function of the electron energy
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within the energy interval [Er —6eV, Er+6eV] for the five silver point contact geometries
(1-5) given in Fig. 3.1. The conductance that is experimentally relevant corresponds
to the transmission at the Fermi energy indicated by the vertical line in the figure.
The transmission curve oscillations are sensitive to the atomic positions. Therefore, an
average of the transmission around the Fermi energy yields a more representative value
of the conductance G, taking effectively into account the atomic vibrations during the
measurement.

In order to study to which extent the conductance values change due to geometrical
changes in the interatomic distance of the contacting atoms and the relative angle be-
tween the contacting crystals, we introduced finite changes in contact geometry: We
calculated the electrode distance and twist-angle dependence of the zero bias conduc-
tance. Increasing the electrode distance to twice the Ag-Ag bond length leads to a
decrease by 86.7 % in the conductance, while twisting the electrodes by 60° against each
other leads to a decrease of conductance of 22 % .

The results show that for silver, as a representative of a simple s-type metal, if defects and
disorder in the contact area are avoided, the conductance in atomic-scale point contacts
typically is an integer multiple of the conductance quantum Gy, for a small number N
of atoms in the minimal cross section. On the other hand, if strong deviations from
the crystallographic symmetry are induced, non-integer multiples of the conductance
quantum are observed, which can be attributed to scattering due to defects and disorder
within the contact area. These calculations are confirmed by measurements based on
the method of combined electrochemical deposition and electrochemical annealing of
point contacts, which yield integer multiples of the conductance quantum in ideal model
geometries of contacting silver nanocrystals. As soon as annealing is omitted, drastic
deviations from integer quantum conductance are obtained [99].
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Conductance (2e2/h)

Figure 3.1: Comparison of ezperimental conductance data of electrochemically annealed silver
point contacts with calculations assuming idealized geometries. (a) Quantum conductance of five
different annealed atomic-scale contacts at 1Gy, 2Gy, 3Gy, 4Gy, and 5Gy, respectively (with 1Gy
= 2¢? /h), which were reversibly opened and closed. (b) Idealized geometries of silver point con-
tacts with predefined numbers of contacting atoms. Conductance calculations performed within a
Landauer approach result in near-integer multiples of Gy for each of the five contact geometries
(1-5). For the conformations shown above, the axis of symmetry of the junction corresponds to

the crystallographic [111] direction.
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Figure 3.2:  Calculations of the trans-
mission as a function of the electron en-
ergy for the five different silver contacts
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vant values correspond to the conductance
at the Fermi energy indicated by the verti-
cal line in the figure.



3.1 Idealized silver electrodes

3.1.2 Conductance of deformed silver electrodes

The previously investigated silver nano-junctions are artificial in a sense that we have
considered idealized metal cluster geometries of fcc lattice structure and highly symmet-
ric electrode tip conformations. In a realistic experimental situation, in particular at
room temperature, such assumptions are unlikely to be met, because in break-junction
experiments as well as in STM arrangements there is always a non-vanishing tilt and
twinning angle between the contacting electrodes also affecting the coherent scattering
of electrons tunneling through the junction. In order to investigate the influence of such
kind of disorder compared to the previously studied idealized conformations we have
varied different structural parameters starting from a contact with fcc lattice symmetry
and calculated the resulting conductance.

Q) s T ‘ ‘ ‘ ‘ ———— D) iomsp T ‘ T
~ 110 -
g | & rmer |
© o
o
g 105 - 1 3
g 1 £ 10734 -
=
S =
g 100 - — §
10732 |- -
095 ) v T ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 0 0 20 30 40 50 60
angle o (deg.) angle B (deg.)
Figure 3.3:  The tilt- and twinning-angle dependence of the conductance of a silver point

contact. (a) Only a moderate change of (G) is observed during tilting the electrodes up to 70
degrees. (b) The twinning of the electrodes between 0 and 60 degrees results in a nearly constant
conductance.

There are two obvious parameters which define the junction geometry with respect to
the electrodes that are presently not under experimental control: The tilt and twinning
angles of the two electrode fragments with respect to one another. In order to investigate
the dependence of the conductance on these parameters, we have prepared an ideal fcc-
silver junction with 224 atoms, as conformation 1 in the previous section, and varied the
tilt angle o = 0, ..., 70 deg. and twinning angle 5 = 0, ..., 60 deg., as shown in the insets
of Fig. 3.3. Now we increase stepwise the angles o and [ and calculate the zero-bias
conductance for the obtained contact conformation using the tight-binding-like method
and the Landauer formula.

Increasing the tilt-angle a from 0 to 20 degrees leads to a slight increase of the conduc-
tance by circa 0.05 Gy which can be explained by the influence of interference effects,
which strongly depend on small changes of the atomic positions. A further increase of «
from 20 to 70 degrees results in a decreasing conductance by 0.15 Gy, which corresponds
to the loss of crystal symmetry across the junction. An additional anisotropic effect might
result from an changing overlap of d-orbitals. In contrast, twinning the electrode from 0
to 60 degrees leads only to a minor change in the conductance of 4 - 10~* Gy, which is
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Chapter 3: Structure and conductance in silver point contacts

below the accuracy of the method. That means that twinning the contact conformation
around a single Ag-Ag bond leaves the conductance nearly constant.

3.2 Conductance of silver electrodes with vacancies

When an electrode is manufactured in a break junction or generated by contacting the
tip of an AFM/STM, it is also very unlikely that the perfect lattice geometries with per-
fect surfaces along the crystalline axis, assumed in nearly all theoretical investigations,
are realized in practice. According to all models of electronic transport, each surface
defect creates an additional scattering center that may impede coherent ballistic trans-
port through the junction. Imperfections in the geometry of the electrode tips will thus
influence the ballistic transport. On the other hand, we have seen in the previous section,
in agreement with many prior studies [40,41,82,83], that the conductance of the junction
is mostly determined by its most narrow region [99].

In order to estimate the significance of tip disorder we have therefore prepared a perfect
junction as above and then randomly removed atoms from the surface of the electrode in
the vicinity of the contact point. The number of silver atoms in the extended molecule
region is systematically decreased by removing 28 atoms at randomly chosen surface
positions. To maintain coherent transport, the two central atoms were never removed.
Every junction geometry with n - 28 vacancies (n = 1,...,5) was generated 500 times,
with randomly chosen vacancy positions. For each conformation we computed and subse-
quently averaged the conductance. In order to increase the efficiency of the conductance
calculations we employed the recursive Green’s function algorithm (see chapter 2.4) with
a principal layer thickness parameter w = 3.

Samples of the resulting junction conformations are shown in Fig. 3.4 (left) with the
corresponding averaged conductance value in units of Gy, respectively. In addition, the
total number of surface vacancies on the current junction geometry is given below the
conductance values. At a number of vacancies below 28 the zero-bias conductance is close
the ideal value of a perfect Ag dimer junction of 1.0Gy. The systematically increasing
amount of surface vacancies leads to a decreasing conductance in steps of ~ 0.1G).

Figure 3.4 (right) shows the sloping of the conductance values averaged over conforma-
tions with equal number of surface impurities. Creating 140 vacancies, which is half
of the initial number of atoms, reduces the total conductance by 40% in average. The
rapidly increasing size of the error-bars indicates that the change in the conductance
depends strongly on their positions.
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Figure 3.4: (left) Representative examples of the generated conformations of silver nanojunc-
tion with an increasing number of surface vacancies. The presence of defects leads to a decrease
of the conductance by up to 30%, indicated by the corresponding conductance values below the
geometries. The number of vacancies in conformation is given in brackets. (right) Conductance
values averaged over conformations with equal number of surface impurities. The error-bars
indicates that the change in the conductance depends less on the number of defects, but more on
their positions.

3.3 Silver nanoclusters

Recent experiments of silver junctions [92,99] suggest a strong stability of the observed
zero-bias conductance in electrochemically grown silver junctions. While this effect was
locally explained [100] by the selection of specific contact geometries, the overall shape
of the silver contacts is likely to vary strongly from one realization of the next. To assess
the effect of these large-scale geometric differences, we have prepared locally similar, but
globally different junction geometries by placing silver clusters of various size in different
orientations on a perfect surface and then contacting the tip of the cluster with an ,jideal”
junction. For this purpose we use the optimized cluster geometries from Ref. |1, 101],
which where generated by Monte Carlo minimization and the modified dynamic lattice
search method. Figure 3.5a shows the top view of the studied silver clusters with 5,
7, 180, 220, and 260 atoms and decahedron (m-Dh) core symmetry [102]. Such kind
of clusters consist of two pentagonal pyramids sharing a common basis and a fivefold
axis. They are formed by five tetrahedra sharing a common edge along the fivefold axis.
When five regular tetrahedra are packed, gaps remain, which are filled by distorting the
tetrahedra, thus introducing some strain, which might also effect the coherent transport
properties in such a metallic cluster. As illustrated in Fig. 3.5b we consider the metal
clusters attached to a silver substrate layer of the crystallographic |[111] direction. The
second electrode is realized by a pyramidal tip on top of the nano-cluster similar to a
STM-setup.

We optimized the position of the silver nano-cluster on the substrate using a Metropolis
Monte-Carlo technique combined with the semi-empirical Gupta potential for the silver
atoms as described above. During the simulation the silver cluster is treated as a rigid
body, so only translations and rotations of the cluster are allowed - structural rearrange-
ments insight the cluster are forbidden. The metal cluster surface consists of a set of
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[111], [110] and [100] facets. The minimum of the potential energy is reached, if the sys-
tem is arranged such that the largest [111] facet (which is always the largest subsurface in
the present cases) and the [111] substrate layer are facing each other. The top electrode
is assumed to point directly on one arbitrarily chosen silver atom on the cluster surface.

Figure 3.5¢ shows the total transmission function of the clusters Ags, ... ,Agsgo. The
conductance of the systems is given by the average of the transmission over a small
interval around the Fermi energy [Ey — A, Ey + A] with A = 50 meV. For the clusters
with 5, 7, 180, 220, and 260 atoms we find conductance values of 1.10, 1.08, 1.15, 1.17,
and 1.17 Gy, respectively, which means, that the conductance is less effected by the size
of the nano-cluster and depends more on the point contact to the second electrode. This
observation may explain the observed stability of the experiment: While reconstruction
of the junction geometry assures the selection of a specific local geometry, the overall
conductance depends only very little on the global shape of the clusters forming the
contact.

(a)

(b)

©

transmission

energy E - E(eV)

Figure 3.5:  Transmission of silver nano-clusters. (a) Shows the top view on the examined
nano-cluster conformations with 5, 7, 180, 220, and 260 atoms. (b) Cluster conformations en-
ergetically optimized on a silver substrate layer with a pyramidal electrode on top. (c) Calculated
transmission function of the junction conformations shown in b. The vertical line indicates the
Fermi energy.
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We also note that an irregular fluctuation of the transmission as a function of energy,
which increases with the cluster size. Such fluctuations can be conceptually explained
by the interference of the incident electron waves with waves scattered repeatedly in the
extended molecule region containing the sliver nano-cluster and the electrode tip. An
analysis of the average energy spacing of the extrema of the transmission (which may be
measured by applying a gate voltage) can help to estimate the size of the backscattering
region.

3.3.1 Conclusions

To conclude, the first results of the ballistic transport calculation of crystal symmetric
silver nanojunctions, using a recursive layer Green’s function approach, demonstrate that
for silver as a representative of a simple s-type metal, if defects and disorder in the contact
area are avoided, the conductance is an integer multiple of the conductance quantum Gy
(at least for small diameters of the contact region).

These results where confirmed by experiments of combined electrochemical deposition
and electrochemical annealing of point contacts, which have proven to be a very efficient
technique to generate such well-ordered contacts. On the other hand, if annealing is
omitted, non-integer multiples of the conductance quantum are observed, which can
be attributed to scattering due to defects and disorder within the contact area. As
soon as disorder or local distortions of the atomic lattice within the contact area are
introduced in the model geometry, drastic deviations from integer quantum conductance
are obtained. Most experimental realizations of nanoscale junctions will contain some
degree of structural disorder, which is difficult to assess in situ experimentally.

As idealized electrode conformations are unlikely obtained in several other fabrication
techniques we also investigated the influence of imperfect contact geometries on the
conductance by studying many different possible realizations of silver. Using a fcc-
lattice symmetric silver electrode contact as starting point we varied two characteristic
structural parameters of the junction. Tilting the junction electrodes up to 60 degrees
reduces the conductance by 20%, while twinning the electrodes leaves the conductance
nearly unchanged. We found that the introduction of up to 50% surface vacancies leads
to only small variates of the ballistic transport properties of silver contacts, as long as the
immediate vicinity narrowest point of the junction was not affected. This analysis was
supported by a study of the effects of global conformational change in silver junctions
for locally conserved junction geometries. Here we find that variations in the global
cluster geometry ranging from 5-260 atoms have only a weak effect on the zero-bias
conduction of junctions with locally conserved geometry. The obtained conductaces of
silver nanoclusters confirm the results of the transport properties of idealized fcc contact
geometries, where we already found a strong dependence of the total conductance on the
diameter of the minimal cross section.
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4 Simulation of the atomic
transistor

Controlling the electronic conductivity on the quantum level will impact the develop-
ment of future nanoscale electronic circuits with ultralow power consumption. Fasci-
nating physical properties and technological perspectives have motivated intense theo-
retical and experimental investigation of atomic-scale metallic point contacts in recent
years [86,88,93,99,103-108]. The quantum nature of the electron is directly observ-
able, because the width of the contacts is comparable to the electron wavelength and
conductance is quantized in multiples of 2¢?/h in ideal junctions. In real metallic point
contacts, which have been fabricated by mechanically controlled deformation of thin
metallic junctions [82,103,109,110] and electrochemical fabrication techniques [107], the
conductance depends on the chemical valence [88]. Two-terminal conductance-switching
devices based on quantum point contacts were developed with an STM-like setup [104]
and electrochemical methods [105|. Recently, quantized magnetoresistance in atomic-size
contacts was switched between two quantized conductance levels by rotating the point
contacts in a magnetic field [106].

The investigations of the present chapter were motivated by an earlier experimental
study (Ref. [92]), which reports on the fabrication and operation of the first single atom
transistor, a three-terminal device based on the bistable movement of a small group of
bridging silver atoms, switching a current between integer values of the conductance
quantum.

After a brief introduction into the experimental conditions we will describe a multi-scale
approach to model the structure, dynamics and electronic transport properties of the
atomic transistor. With the help of the simulations we will discuss the underlying tip
reconstruction process and explain several effects observed in the conductance measure-
ments like the long-time stability of the repeated switching and intermediate levels at
non-integer conductance. Special attention is given to the influence of the electrolyte
on the electrode deposition and switching process - we describe the extension of our
approach by a continuum model of the solvent and discuss the results of the simulation
results.

4.1 Experimental Motivation

Reference |92| reports on the developed of a three-terminal gate-controlled atomic quan-
tum switch with a silver quantum point contact in an electrochemical cell, working as
an atomic-scale relay. It is based on the control of individual atoms in a quantum point
contact by an independent gate electrode, which allows for a reproducible switching of
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the contact between a quantized conducting on-state and an insulating off-state. The de-
vice operates stable for long sequences of electrochemically controlled switching between
the nonconducting off-state and the quantized conducting on-state, where the quantum
conductance of the switch follows the gate potential, as commonly observed in transistors.
Figure 4.1a shows the experimental setup: Two gold electrodes (thickness approximately
100 nm) serve as electrochemical working electrodes and are covered with an insulating
polymer coating except for the immediate contact area. A silver wire of 0.25 mm diam-
eter was used for the counterelectrode and the quasi-reference electrode. The electrolyte
solution consists of 1mM AgNOj; + 0.1 M HNOj in bi-distilled water. The bias voltage
between the two gold electrodes for the conductance measurements was kept at 12.9 V.
The change of the electrochemical potential difference between the reference electrode
and the gold working electrodes was performed by varying the control potential. The
electrochemical potential of 10-40 mV between the reference electrode and the two gold
electrodes permits the formation of silver islands on the two gold electrodes which finally
meet each other by forming an atomic-scale contact. If such a contact is formed, the
following procedure was performed in order to configure an atomic-scale switch. After an
upper threshold (0.94 G in case of a1 Gg-switch”) near the desired conductance value for
the on state is exceeded, deposition is stopped and a computer controlled electrochemical
cycling process starts, that applies a dissolution potential until the conductance drops
below a lower threshold (0.05 Gy). Now the deposition starts once more until the con-
ductance exceeds the upper threshold and so on. At the first such dissolution-deposition
cycles of each fresh formed contact, conductance values still vary from cycle to cycle.
After repeated cycling an abrupt change is observed from this irregular variation of the
conductance values to a controlled and reproducible gate-voltage induced switching be-
tween two levels. Single atom switches fabricated by this technique operate stable over
thousands of switching cycles at room temperature for switching between 0-1Gy up to
switching between 0-20Gg - examples of the gate-voltage induced conductance switching
are show in figure 4.1b and c for switching between 0 and 1 Gy and switching between 0
and 18 Gy, respectively.

When the gate potential is set to an intermediate hold level between the on and the
off potentials, the currently existing state of the atomic switch remains stable, and no
further switching takes place. This is demonstrated in figure 4.1d both for the on-state of
the switch (left arrow) and for the off-state of the switch (right arrow). Thus, the switch
can be reproducibly operated by the use of three values induced by the gate potential
for switching on, switching off, and hold. This provides the basis for atomic-scale logical
gates and atomic-scale digital electronics.

Nevertheless, to understand and optimize this promising experimental method, it is nec-
essary to investigate certain questions regarding the underlying structural and electronic
properties of the employed silver nano-junctions. For switching in the range of low con-
ductances (below 5 Gg) it seems to be possible, that the switching mechanism is based on
the reproducible rearrangement of a small silver cluster, consisting only of a few atoms
(< 13), between the left an the right contact. The fact that the experiment succeeded
also for switching between up to 0 and 20 Gy suggests an other explanation of the un-
derlying mechanism, because the gate-potential induced energy would not be sufficient
to rearrange a single silver cluster that would allow for switching between 0 and 20 Gy.
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Figure 4.1: Switching current by electrochemical, gate-controlled atomic movement. (a)
Schematic of the experimental setup: A silver point contact is deposited electrochemically in a
narrow gap between two gold electrodes on a glass substrate. Repeated computer-controlled elec-
trochemical cycling permits fabrication of bistable atomic-scale quantum conductance switches.
(b) Ezperimental realization of switching current reproducibly with a single silver atom point
contact between a conducting on-state at 1Go(1Gy = 2¢/h) and a non-conducting off-state.
The source-drain conductance (Gsp) of the atomic switch (lower diagram) is directly controlled
by the gate potential (Ug) (upper diagram). (c) Similar demonstration an atomic transistor
conformation permitting bistable switching between 0 and 18Gqy (d) Demonstration of quantum
conductance switching between a non-conducting ,off-state” and a preselected quantized ,on-
state” at 4Gy. A conductance level can be kept stable, if Ug is kept at a ,hold” level (see
arrows).

4.2 Atomistic model of the quantum switch

While we can understand the conductance properties of such junctions on the basis of
atomistic conductance calculations |99], the physical process underlying the switching
mechanism remained unclear. Reproducible switching between quantum conductance
levels over many cycles cannot be explained by conventional atom-by-atom deposition
but requires a collective switching mechanism. Our previous calculations have shown
that only well-ordered junction geometries result in integer multiples of the conductance
quantum. Neither partial dissolution of the junction nor its controlled rupture yields
the necessary atomic-scale memory effect. A more detailed model of the structural |82,
109,111] and conductance [88,112] properties of such junctions is therefore required. In
order to clarify the open questions regarding the switching mechanism of the atomic
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transistor and to examine several effects occurring in the measured conductance curves
we have developed a multi-scale algorithm containing a quantum mechanical treatment
of the electronic structure to calculate transport properties, a classical force field method
based Monte Carlo treatment of the atomic structure and a continuum model to take
electrostatics into account.

We assume a simulation box with an edge length of 24.0 x 24.0 x 40.0 A3 in 2-, y- and 2-
direction, respectively. As start conformation for the simulation of the deposition process
we consider two hexagonal silver layers in crystallographic (111) direction consisting of
144 atoms with a nearest neighbor distance of 2.88 A. To increase the growth probability
towards each other we assume additional silver tips at the planes consisting of 10 atoms
on each layer.

Starting from the previous system we simulate the deposition process in the following
way: At each electrode deposition cycle we insert one silver ion at a random position
between the left and right silver cluster. Afterwards a relaxation of the ion position into
a local energy minimum on the electrodes takes place. For the electrochemical deposition
we use a simulated annealing routine that is based on a classical Metropolis Monte-Carlo
algorithm [31]. It was already successfully applied to the simulation of the growth process
of thin amorphous films [113]. One simulated annealing cycle consists of a high number
of trail steps into a random direction (and object rotations of random axis and angle, is
case of deposition of extended molecules). A trial step moving the ion from the position
r to r' is accepted within the Metropolis probability criterion

(4.1)
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In the present simulation we use four simulated annealing cycles per ion deposition,
with each cycle consisting of 15000 steps. The temperature 7', which plays the role of a
parameter in arbitrary units, reaches from 250 at the beginning to 0.001 at the end of
the annealing process.

The total energy plays the central role in this algorithm. In the first period of the ion
deposition, in the unbounded situation, the ion is exposed to the coulomb potential
governed by the surrounding source/drain electrodes which are set to -34 meV and -46
meV, respectively. To include their influence and to treat the electrostatic field we use
a finite differences scheme [114], i.e., we introduce a lattice with 1.0 A mesh spacing
and occupy every mesh point with the potential -34 meV (-46 meV) if the mesh point is
surrounded by at least one Ag atom of the left (right) electrode. So we can use the given
potential distribution in the electrodes as Dirichlet boundary conditions (in z-direction)
for the Poisson problem to calculate the potential between the contacts. In x- and y- we
use periodic boundary conditions and after solving Poisson’s equation for the electrostatic
potential ¢(r) the energy of the ion in this field is given by E(r) = ¢ - ¢(r), with ¢ being
the charge of the Ag™ ion. As soon as the silver ion attaches the left or the right electrode,
the potential energy surface is described by the empirical Gupta potential |115], which
accounts for the interactions among the atoms in the cluster. It is based on the second
moment approximation of the electron density of states in the tight-binding theory and
can be parametrised as follows:
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According to Ref. [115| the parameters {Uy, A,p,q, 70} were chosen as { 1, 0.09944,
10.12, 3.37, 2.88 }. The first term in equation (4.2) represents a pairwise Born-Mayer
repulsion energy and the second models a N-body attractive contribution. For an efficient
evaluation of the potential we save adjacent atoms in linked lists and apply the linked
cell algorithm [30] with a cutoff radius of 4.0a (a = 2.88A).

In order to speed up the calculation we keep all atomic positions of the silver clusters
fixed, if a new silver ion enters the simulation box and treat the potential given by the
cluster atoms as external field for the ion. An additional reduction of computational costs
is achieved by storing all cluster atoms on a grid. Here we us a grid spacing of 10 A. Every
grid point is related to a linked list of objects containing the information of the atomic
position, charge and pointers to the neighboring list elements. To evaluate the total
energy now only these cluster atoms are taken into account which belong to grid points
in the direct surrounding of the added silver ion (often called Linked-Cell-approzimation
in literature [30]).

The ion deposition cycle is repeated until a predefined number n of paths from the left
to the right electrode exists (see fig. 4.2a, upper row). Otherwise the current electrode
conformer is used again as start geometry, where all atomic coordinates are fixed and
another Ag™-ion is brought into the simulation box. We deposit up to 800 atoms in the
junction until a predefined number of non-overlapping pathways connect the left and
right electrode. As a non-overlapping pathway, we define a unique set of touching atoms
that extend from one electrode to the other, which permits us to identify the minimal
cross-section of the junction.

Next, we simulate the switching process (see fig. 4.2a, lower row): The change in the
electrochemical potential induces a change in the interface tension of the liquid-metal
interface, making possible a deformation of the junction geometry parallel to the junc-
tion axis. It is well-known that changes in the electrochemical potential modulate the
interfacial tension of the whole electrode [116-118|, which results in a mechanical strain
on the junction. We simulate the opening/closing cycle of a junction by evolving the
atoms of a central cluster under the influence of the electrochemical pressure. During
the opening/closing process the silver clusters are displaced in steps of 0.15 A. For each
cluster displacement we perform 10000 simulated annealing steps, where the temperature-
parameter is reduced from 300 to 3 (arbit. units). We assume that only the atoms in
this region move in the switching process, while most of the bulk material remains un-
changed. The central cluster comprises the atoms of the minimal cross-section connecting
the two electrodes and all atoms within a radius of 9.0 A around this central bottleneck.
While the electrodes gradually move apart/closer together, all atoms of the central clus-
ter relax in simulated annealing simulations generating a quasi-adiabatic path between
the open and the closed conformation. We probe the structural bi-stability by com-
paring the atomic positions of the conformer before and after one switch operation. If
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Arpax := max{|rPeore — pafter|b jg smaller than 0.2a (0.3a) for n = 1,2 (3,4,5) the con-
former is saved as ,structural bi-stable”. This seems to be a rough approach, but we
will see in the results section, that after several switching steps the structural bi-stability
further increases. We assume a sphere around the first contact atom with the radius
r = 3.0A and define all atoms outside of the sphere as fixed. To simulate one ,on-off-
on”-procedure of the switch, we move the fixed left (right) electrode atoms 3 A to the
left (right) in the case of n = 1. For n = 2,3,4,5 we used larger displacements due
to stronger structural rearrangements in the tip region. As described above, we define
now the actual conformer as ,structural bi-stable”, if the deviation between the atomic

positions before an after the switching step is small.

In the atomic switch experiment explained in [92] the bi-stability is observed in conduc-
tance values. Using the quantum transport method described in the previous chapter 2.4
(the recursive Green’s function method), we select now these atomic switch conformers,
that show bi-stable and integer quantum conductance. We calculate the conductance
of a ,structural bi-stable” conformation before and after one switching operation; is the
deviation AG < 0.1Gj and in the case of an integer conductance value =~ m -G, (m € N)
the conformer is accepted as bistable quantum switch structure.

Not surprisingly, the junction rips apart at some finite displacement from the equilibrium,
an effect also seen in break-junction experiments. For most junctions, this process is
accompanied by a surface reorganization on at least one, but often both, tips of the
electrode(s). When we reverse the process, some junctions snap into the original atomistic
conformation (see Figure 4.3b) with subatomic precision. At the end of the switching
simulation, we compare the final and the starting geometry. If after the first switching
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Figure 4.2: Simplyfied flow chart of the simulation script including the electrode deposition,
the bistability test and the conductance calculation.
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4.2 Atomistic model of the quantum switch

%)
, )’
>
C /J
NIAAA ¢)¢ ) SAAAA ¢J J

JV
LY

b)

Figure 4.3:  Simulation of atomic point contact growth and switching process. (a) Snap-
shots of the deposition simulation. Upper row: The growth process starts with two disconnected
Ag (111) layers and stops, when a non-overlapping pathway with a predefined number of silver
atoms connects the electrodes. Lower row: Simulation of the switching process reveals a bistable
tip-reconstruction process as the mechanism underlying the reproducible switching of the con-
ductance. During the simulation, we kept the gray marked silver atoms at their positions at
the end of the deposition and permitted the central cluster to evolve (blue and red atoms) under
the influence of the electrochemical pressure. The central silver atoms (red) define the minimal
cross-section (see Figure 4.4, right column). These atoms return with sub-Angstrom precision to
their original positions at the end of the switching cycle. (b) Snapshots of the tip reconstruction
of a 4 Gy switch conformation. The red marked silver atoms form a bridging contact similar to
two scissors pulled into each other.

cycle the junction has returned to the same geometry, that means in the present case
that all atoms return to their original positions to within 0.28 A, we consider the junction
switchable and perform further switching cycle simulations to test stability. Otherwise,
we discard the junction completely and start from scratch.

We then compute the zero-bias conductance [71,119,120] of the entire junction using
a material-specific, single particle Hamiltonian and realistic electrode Green’s functions
(see chapter 2.3.5). We use the recursive Greens function method [81,121], which maps
the problem of computing the full device Greens function to the calculation of principal
layer Greens functions, which drastically reduces the computational effort but maintains
the accuracy. The electronic structure is described using an extended Hiickel model in-
cluding s-, p-, and d-orbitals for each silver atom (7200 orbitals per junction) [122] in
the standard minimal basis set of non-orthogonal Slater type orbitals. The extended
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Chapter 4: Simulation of the atomic transistor

Hiickel method was previously shown to give reasonable predictions [40,41,115,123] for
the conductance of metal nanowires (containing about 800 atoms) where DFT-like meth-
ods [109] would be prohibitively costly. We take the influence of the leads into account,
by assuming a semi-infinite fcc lattice for the left and the right reservoir. We compute
the material-specific surface Green’s functions by applying a decimation technique that
exploits the translational symmetry of the semi-infinite contacts [13].

In total we have performed 15280 full deposition simulations generating Neo,r — 17,
8, 3, 17, and 6 junctions with n = 1,..., 5 conductance quanta, respectively. Most
deposition simulations fail to generate a switchable junction, because the acceptance
criterion for switchability was very strict. We note that the same holds true for most
control simulations starting from the perfect conformations of |99], indicating that simple
rupture of even nearly ideal junctions cannot be the basis of the switching mechanism.
We find that the retained junction conformations (typically comprising 500-800 atoms)
have a preselected integer multiple (n) of Gy in close agreement with the experiment.
Because these observations result from completely unbiased simulations of junction de-
position and switching, they explain the observed reversible switching on the basis of
the
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Figure 4.4: Relation between the structures of atomic point contacts and their conductance.
(a) Quantum conductance switching between a nonconducting off-state and a preselected quan-
tized on-state at 1Gy,2Gy, 3G, 4Gy, and 5Gy, respectively (note individual time azis). (b) Rep-
resentative conformations of simulated junctions, computed zero-bias conduction, and number
of junctions with the specified conductance. (c¢) Representative minimal cross-sections for each
conductance level. The minimal cross-sections are characteristic for each group of the switch
conformers and determine their quantized conductance.
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4.3 Conductance during switching

generation of bistable contact geometries during the deposition cycle. If we consider the
tip-atoms at each side of the electrodes in the open junction, the equilibrium geometry
of both clusters depends on their environment. In the open junction, this environment
is defined by the remaining electrode atoms on one side, while in the closed junction,
the tip-cluster of the other electrode is also present. The simulations demonstrate the
existence of two stable geometries for each cluster in both environmental conditions,
respectively. Reversible switching over many cycles is thus explained by reversible tip
reorganization under the influence of the gate potential, similar to induced surface reor-
ganization [124-126]. While the overall structure differs between junctions with the same
conductance quantum from one realization to the next (see Figure 4.4, middle column,
for representative examples), the minimal cross-section that determines the conductance
is largely conserved (Figure 4.4, right column). The direct comparison of our atomistic,
quantum conductance calculations, using the unaltered conformations from the depo-
sition/switching simulations, with the experimental conductance measurements offers a
strong validation of the geometries generated in our deposition protocol. The observed
agreement between computed and measured conductance is impressive, because the con-
ductance of metallic wires is well-known to be strongly dependent on the geometry.
Figure 4.5 shows the probability distribution to obtain a bistable 1 Gy, ..., 5 Gy switch
conformation at a deposition simulation as performed in this study. Every probability
was calculated by the fraction of number deposition processes ny,,s divided by the number
of obtained bistable point contacts nguccess- With increasing number of bridging atoms
the number of atoms which are involved into the tip-reconstruction increases. If many
atoms participate in the tip reconstruction it becomes likely that the bi-stable rearrange-
ment fails at some point, so the probability to obtain an atomic transistor conformation
switching between high conductance differences decreases exponentially.
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Figure 4.5: Diagram of the exponentially decaying distribution of the propability to obtain an
atomic transistor conformation allowing for bistable tip reconstruction with quantized conduc-
tance.

4.3 Conductance during switching

During one opening/closing process in a bistable electrode configuration the electrode
geometry allows for one and the same conductance value at the closed state of the
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Figure 4.6:  Variation of the computed conductance of a 4 Gy and a 5 Gy switch during
one open/close process. In agreement with the experimental observations, we find asymmetric
plateaus in the conductance curve, if the switch is opened or closed. This can be traced back to
the existence of several low-energy path ways connecting the open and closed state.

nano-junction, however the atomic positions not necessarily pass the same path in the
configuration space at rupture and at closing the contact. Slightly different trajectories
in the configuration space would lead also to asymmetries in the time dependent con-
ductance during one switching process. Experimental results of conductance curves at
high time resolutions (1us) indicate such an asymmetry effect, where the switching form
,off” to ,,on” shows several intermediate conductance levels while switching the contact
from ,,on” to ,off” seems to occur instantaneously.

To examine whether this hysteresis like behavior can be traced back to the existence of
several path ways in the configuration space connecting the ,,on” and the ,off” state, we
compute the conductance of a 4 Gy and a 5 Gy switch during one open/close process.
Figure 4.6 shows the resulting conductance over step number, while the junction was
pulled apart in steps of 0.15 A. Opening the junction results in conductance plateaus
close to 3.0 Gy and 2.0 Gy and closing the contact shows plateaus at 1.5 and 2.0 Gy.
Particularly int the case of the 5 G switch it is visible that the plateaus on the right hand
side of the minimum are more distinctive then the plateaus on the left hand side.Since
the atomic structure calculation proceeds in the adiabatic regime, the simulation shows
that there are different trajectories in configuration space connecting the open and closed
geometry of the silver nano-junction.

4.4 Snapping into conformation with integer
quantum conductance

In the experiment bistable silver contact conformations are produced by a protocol that
generates a junction that switches between 0 Gy and a random (also non-integer) con-
ductance value lower than 20 Gy during the first switching cycles. After repeated cycling
the contact snaps into a bistable geometry, allowing for switching between integer con-
ductance values. In contrast the structure growth simulation starts from scratch, if the
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4.4 Snapping into conformation with integer quantum conductance

contact of the junction yields a non-integer conductance value. In this section we will
examine, whether the assumption of gate-potential induced electrode displacement, as
underlying mechanism for the switching process, also allows for an explanation of the
snapping of the electrodes from a conformation with non-integer to a conformation with
integer conductance.

Here we employ a silver point contact with only one bridging silver atom but an initial
conductance of 1.68G,. The additional contribution above the conductance quantum
is caused by the orbital overlap of silver atoms in the surrounding of the red marked
bridging atom, which is an entity of the particular junction conformation, visible in the
leftmost inset of figure 4.7. In the following simulations we open the point contact by
3.0 A in steps of 0.15 A leading to nearly zero transmission. The electrode displacement
induces now a tip rearrangement, where the bridging (red marked) silver atom takes
an energetically more stable position exactly in between the left and right electrode tip
(see third inset of figure 4.7). The inversion of the electrode displacement closes the
contact again, which has now a more stable geometry at a conductance of 1.1 Gy. The
conductance calculation over an additional switching process shows that the obtained
electrode configuration reproduces its conductance in the closed state and so allows for
bistable switching.
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Figure 4.7:  Snapping into a bistable conformation of integer quantum conductance. Two
switching processes were simulated starting from a electrode conformation with a non-integer
conductance of 1.68 Gy. The first switching cycle induces a structural rearrangement into a
more stable electrode geometry, witch permits bistable conductance switching at the integer levels

1 GU and 0 Go.
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Chapter 4: Simulation of the atomic transistor

4.5 Electrode training-effect

So far in the current calculations a switchable junction was called bistable, if the contact
reproduces its conductance value after one switching cycle. However, it is not evident that
the junction would yield the same transmission after a second or third opening/closing
process, because also thermal fluctuation effects are incorporated into the structure sim-
ulations, which might destabilize the tip reconstruction.

Therefore we have repeated this process up to 20 times for five different contact ge-
ometries with an ,on-state’-conductance of 1, ..., 5 Gg. After every switching cycle, in
,on-state”-conformation, we have calculated the average structural deviation from the
previous ,on-state”-conformation as

1 - ;
AR= =3 "™ =] (4.3)

with r,(;) denoting the position vector of atom k£ in conformation number ¢. N is the
number of atoms contained in the flexible part of the contact region (blue and red marked
atoms). In addition we evaluated the total conductance difference of the junction in
conformation (i — 1) and conformation ():

AG = |GY — g, (4.4)

The results are shown in fig. 4.8: The left graphs demonstrate that the structural dif-
ferences (in units of the Ag-Ag bond length a=2.88A) of the ,on-state’-conformations
drastically decreases form 0.03 A to 1073 A, i.e., that the bistable tip reconstruction
process becomes even more stable with every switching cycle. Since the coherent trans-
mission is directly coupled to the electronic and atomic structure this behavior is also
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Figure 4.8: Difference in the computed structure parameter AR (left) and the conductance
AG (right) between subsequent ,on-state”™conformations as a function of the switching cycle
for selected junctions of 1 Go, 2 Gy, 8 Go, 4 Go, and 5 Gy, respectively. Junctions switch
reproducibly for over 20 cycles between increasingly stable on and off conformations (training

effect).
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4.6 Interlevel switching

visible in the conductance of the contact: Figure 4.8 (right) shows the conductance
deviation AG after every opening/closing process. This difference decreases also from
an already small value of 0.1 Gy to 1073 Gg after 12 switching cycles.

The observed decay of AR and AG can be interpreted as ,training effect”, in which
the junction geometries become increasingly stable, alternating between two bistable
conformations.

4.6 Interlevel switching

2
G,(26%/h)

Figure 4.9:  Ezperimental demonstration of a multi-level atomic-scale transistor switching
between an “off-state” and two different “on-states”.

In order to explain the multilevel conductance switching described above, we combine
atomic structure simulations of opening/closing processes in silver nanojunctions with
zero bias conductance calculations. We generate non-idealized silver electrode geometries
by simulation of the deposition process: Starting from distant Ag(111) layers we evolve
individual atoms in a material-specific potential for silver. By depositing one ion at a
time, we generate junctions with a predefined integer conductance quantum as previously
described. Figure 4.10a (left) and (right) shows two final, representative silver nano-
junctions consisting of 508 and 561 Ag atoms with 3 and 5 atoms in the minimal cross-
section (marked red), respectively

We then simulate many switching cycles for each junction. Experimental modification
of the electrochemical potential modulates the interfacial tension of the embedded silver
electrodes which results in a mechanical strain on the junction. We simulate the open-
ing/closing cycle of a junction by evolving the atoms of a “central” cluster under the
influence of the electrochemical pressure. While the electrodes gradually move apart or
closer together, all atoms of the central cluster relax in a quasi-adiabatic path between
the open and the closed conformation. The silver nano-junctions in Fig. 4.10a allow for
bistable conductance switching between 0 and 3 Gg (left) or 0 and 5 Gy (right). In our
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Chapter 4: Simulation of the atomic transistor

simulations, we find a reproducible bistable electrode reconstruction of the central cluster
of atoms, allowing for the bistable switching between predefined conductance values.
The calculation of conductance for each electrode displacement step is shown in Fig.
4.10b for these geometries. The leftmost conductance minima (at step 18 for the left
junction, at step 37 for the right junction) are related to a complete rupture of the con-
tact yielding 0 Gy for both conformations. In this case the amplitude of the electrode
displacement is 8.55 A (11.4 A) for the left (right) silver contact geometry. Using ap-
proximate experimental values, we decrease the electrode displacement to 2.85 A (8.30
A) for the left (right) electrode in subsequent switching cycles. The reduction of the
displacement amplitude results in long-term reproducible, bistable switching between
conductance levels of 1 Gy and 3 Gy (left panel) and of 3 Gy and 5 Gy (right panel).
Close inspection of the intermediate geometries of the junction explains this surpris-
ing result, which does not occur for every junction: Some bistable junctions exhibit
conductance plateaus, which are characterized not by one, but by a whole ensemble of
structurally related conformations. Detailed analysis of this ensemble reveals the mecha-
nism of the multilevel switching which was observed in the experiments described above:
For the junction on the left of Fig. 4.10a, a single silver atom rolls over a finite displace-
ment range over the two other bridging atoms to its left (see insets of Fig. 4.10b, left)
before finally disconnecting. Choosing the correct displacement amplitude, this induces
multi-level switching, because not only the terminal geometries, but also the forma-
tion/dissociation pathways are conserved in the switching process. When we repeat the
switching cycle for multiple times for both junctions (Fig. 4.10c) we find a lock-in effect
with a conductance variation below 0.11 Gy. This lock-in effect is also in agreement with
our experimental observations.

To explain the correlation between atomic structure, energy and conductance we calculate
the potential energy surface (PES) and the zero-bias conductance for junction geometries
generated by independently varying the electrode-electrode distance d and a reaction
coordinate r (see Fig. 4.11a) of one specific bridging atom chosen to correlate linearly
with d along the observed reaction path (r = 0.56 d). We find the global energy minimum
at the closed and unperturbed state of the contact (Fig. 4.11b). We find parallel valleys on
both the conductance and energy surface, which explain the stability of the conductance
plateaus at 1 Gy and 2 G during the switching process.
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Figure 4.10: Computer simulations of multi-level-switching conformations switching between
1 Gy and 8 Gy (left) and 8 Gy and 5 Gy (right): (a) Initial nano-junction conformations in
their ,on-state” with a conductance of 3 Gy (left) and 5 Gy (right). The bridging silver atoms
of the minimal cross sections are marked in red. (b) Conductance during two switching cycles
with the corresponding tip geometries shown as insets. (c¢) Subsequent switching cycles follow
the sequences shown in (b), demonstrating repeated interlevel switching. The simulation verifies
the reproducible bistability of the silver contacts, in perfect agreement with the experimental
observations.

79



Chapter 4: Simulation of the atomic transistor

-28.30 |

-28.35
-28.40
-28.45

-28.50

total energy E [eV]

-28.55

ectrode distance d (Al

el

Figure 4.11: Relation between structure, total energy and conductance of a multi-level point
contact: (top) potential energy surface as a function of the electrode distance d and the reaction
coordinate r (inset), (bottom) independently computed contour plot of the conductance projected
to the bottom of the diagram. The regions indicated by red arrows on the bottom surface indi-
cate parallel valleys on the energy and conductance surfaces. As long as the switching process
alternates between points on these two valleys on the energy surface reproducible switching will
be observed (Inset) Schematic of the path of the bridging silver atom during the opening process
characterized by the reaction coordinate r.

4.7 Environmental effects on the atomic transistor

The silver ions of the deposition simulations, described in the section above, are exposed
to a semi-empirical metal cluster potential (Gupta-potential) and an electrostatic poten-
tial, defined by the applied bias potentials and the actual electrode geometry. Figure
4.12 shows a schematic of the circuit including the corresponding potentials of the source,
drain and gate electrodes, respectively. The applied voltage of the silver ion deposition
is -30.0 mV and the voltage for the transport measurement of the point contact is set to
12.9 mV.

So far we assumed fixed atomic positions as soon as the attached silver ion found its
potential energy minimum. However, the applied bias potential leads to a non-vanishing
surface charge on the electrodes, which might effect the structural stability of the Ag
atoms forming the outer electrode layers.

To estimate the strength of this effect we compare the Ag-Ag binding energy with the
electrostatic repulsion energy of the charged surface atoms: Assuming the Gupta poten-
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Figure 4.12:  (left) Simplified circuit of the electrodes atomic in the transistor experiment
including the applied potentials. (right) The table shows the different electrode potentials during
the deposition and switching process of the atomic transistor.

tial for the metallic binding energy we obtain 2.95 eV for two silver atoms in equilibrium
distance of 2.88 A. If we apply e.g. 1.0 V to a metallic surface, the surface charge per atom
is 0.1 - 0.2 e [127], which yields a Coulomb repulsion energy of 0.2 eV for Ag atoms in
equilibrium distance. This demonstrates that the influence of the destabilizing coulomb
repulsion is at least one order of magnitude lower than the attracting metal-metal in-
teraction. Nevertheless, small changes of the potential energy surface might effect the
overall structure of the grown electrodes and the tip reconstruction during the switch-
ing process. An additional electrostatic effect in atomic transistor configurations is the
screening of the electric field by ions of the electrolyte solvent embedding the electrodes.
The presence of ions between the silver contact leads to a decrease of the electrostatic
coupling of the electrodes.

Therefore we generalize the model for the structure simulations: In the first step we
optimize also the atomic positions in the surrounding of an attached silver ion during the
deposition process, to take the rearrangement caused by the charged electrode surface into
account. The second step replaces the vacuum between the silver contacts by a continuum
description of the embedding electrolyte based on Poisson-Boltzmanns equation. We
expect, that both improvements of the model do not change the results of section 4.3-4.6
qualitatively but permit a more realistic treatment of the system and give more insights
into environmental effects.

4.7.1 Local relaxation approach

In the ion deposition simulations, described previously, we assumed the atomic positions
of the silver cluster ions to be fixed. Only the Ag™ ion going to be adsorbed was allowed
to move. Since the attached ion leads to a charge redistribution on the cluster surface
the approximation of frozen cluster atom positions may be imprecise.

Therefore, we extend the deposition protocol in the following way: As soon as the inserted
ion has attached to the cluster surface and diffused to a stable energy minimum, we
reinitialize the point charges of the cluster surface, i.e., the ,new” surface atoms charge
is approximated by @ ~ 2ma? - o with the surface charge density

o(r) =en(r) Ved(r)| ey (4.5)
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and atoms inside cluster (no surface atoms) lose their charge. In this definition n denotes
the surface normal on the surface A and the nabla operator is discretized by standard
finite differences approximation. After that we consider a sphere (radius R = 3 A) around
the attached ion and optimize the atomic positions of all atoms inside the sphere using
same Metropolis Monte Carlo method as in the previous simulation. The configuration
space turns out to be sufficiently sampled if we apply 3 numerical simulated annealing
cycles with each cycle consisting of 15000 trial steps.

As a result we find that the stable nearest neighbor distance of the cluster surface atoms
increase in average from 2.88 A to 3.02 A, as new balance of the interplay between the
attracting Gupta potential and the repulsive Coulomb potential. Due to the repulsive
effect of the Coulomb interaction we expect a weak destabilization of the bistable tip
reconstruction during the switching process. However, all atomic switch conformations
we identified as bistable in the previous approach remain bistable, if we include the local
relaxation effects.

4.7.2 Electrolyte model of Gouy-Chapman

A charged surface in contact with an electrolyte attracts nearby counter ions and repels
its coions present in the solution (Figure 4.13). The surface charge and the attracted
counter ions represent the so called Electrical Double Layer (EDL). Such a counter ion
cloud is likely to react to the applied electric field and can significantly change the
electrical properties of the solid surface. In microscopic systems those effects become
even more important because in this regime the applied electric fields can be very strong
due to the very small dimension and radius of curvature.

The Gouy-Chapman (GC) continuum model assumes that the EDL consists of two layers
of charge: On one hand the surface electrons of the metal and on the other hand the
layer of the attracted ions, which are able to move in solution and so the electrostatic
interactions are in competition with Brownian motion. This leads to a region close to
the electrode surface containing an excess of one type of ion and an exponential potential
drop over the region called diffusive layer (see fig 4.13). Extending the ideas from Gouy
and Chapman, Stern assumed an additional so called ,compact layer”, i.e., a region
of maximal counter ion density at the metallic surface screening the metal potential
oo to an effective value ¢y — ¢, with the shift ¢ being determined from electrokinetics
measurements.

The phenomenon of the exponential decay of the surface potential assumed in the GC
representation is directly predicted by Poisson-Boltzmann theory. This approach is based
on the following assumptions:

e lons embedded in the solution are supposed to be pointlike charges.

e The ionic soluion is supposed to be a dilute solution, thus the ions do not interact
with each other.

e The solvent water is considered as a continuum dielectric of permitivity € = gye,.
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Figure 4.13: Schematic of a electrical double layer occurring at the metal/electrolyte interface.
The region of the exponential potential drop due to the interplay of attracting screening forces
and repealing Brownian motion is called ,diffusive layer”.

The electrostatic potential ¢(r) in the solution is induced by the metallic surface and
acts on each ion concentration ¢;, which is given by Boltzmann distribution function

_zed
¢ = ¢ ¥ with ¢ = n;c™. (4.6)

Here ¢° denotes the ion 7 concentration in bulk, n; is the number of ions 7, ¢* denotes the
bulk concentration and z; is the ion i charge number. Equation (4.6) directly points out
the interplay between electrostatic z;e¢ and thermal energy kg1'. The ion distribution
c; is related to the charge distribution ¢; via

q; = Z;€C;. (47)
Thus we obtain the total charge density to be

q= Z(h = Zzieci- (4.8)

According to standard electrostatics the resulting potential ¢(r) is given by Poissons
equation V [-eV¢(r)] = ¢. Using the actual charge density (4.8) we obtain

[—eVo(r Z ziec; 200 S5 (4.9)

We can simplify the previous equation in the particular case of a binary symmetric
electrolyte with 2z = |z_| = z and ¢ = ¢® = ¢*°. Thus we obtain from the Poisson-
Boltzmann equation (4.9) the so called Gouy-Chapman equation [128] :

V [-eVe(r)] = —2zec™ sinh (zefj&r)) (4.10)
The situation simplifies even more, if the thermal energy can be assumed as large com-
pared to the electrostaic energy ze¢p < k7', which is typically fulfilled at room tempera-
ture. In this regime we can linearize equation (4.10) to

22 ), (4.11)

V [-evo(r)] = -
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With previous approximations we can directly solve for the electrostatic potential and
obtain ¢(x) = ¢.e** with

222e2¢
=/ — 4.12
" ekT (4.12)

The characteristic length ! is called Debye length and is widely used to estimate the

EDL thickness, because its simple formula depends only on the electrolyte characteristics.

Idealized geometries

Before we address the more complicated Poisson-Boltzmann potential in atomic transis-
tor conformations we want to briefly discuss three simple one-dimensional situations (see
fig. 4.14), but already in a parameter space chosen according to the experimental condi-
tions of the bistable silver point contacts of interest. In the following we always consider
the case of an aqueous electrolyte (¢, = 78.5) at ambient temperature (I" = 298K). The
bulk concentration is chosen to be ¢* = 0.1M and the charge number is z = 1. We
solved in all three cases of fig. 4.14 the linearized GC equation ¢"(x) = k*¢(x) obtaining
P(x) = Ae"™ + Be "*.

In case (a) the surface potential on the left, where a metal is assumed, is chosen to
¢r, = 43meV and on the right the solution should fulfill the condition of ¢(co) = 0. Thus
we obtain the plotted solution ¢(x) = ¢re . The thickness of the present electrical
double layer is defined by the distance d where the potential ¢(x) decreased to the value
¢r/e so d = k!, Note that the thickness of the electrochemical double layer does not
depend on the value of the ¢r, only on the charge z, the concentration ¢* and the
temperature 1" of the electrolyte.

In case (b) and (c) the parameters of the general solution ¢(x) = Ae®* + Be "* have the
form

A:¢R—¢L€ and B:€7_¢R_¢L

e—I‘CS i 6/‘65 e RS __ eKS

(4.13)

with s denoting the distance of the electrodes. In (b) the electrode distance s was assumed
to be 50 nm according to the initial electrode distance of atomic transistor conformations
before the ion deposition starts. Since the gap between the electrodes is large compared
to the thickness of EDL and the electrostatic potential in infinity is set to ¢(oco) = 0 by
the third gate electrode the potential is nearly equal to zero in the region between the
electrodes. If the electrode distance is drastically reduced to 7.6 A, which equals three
times the Ag-Ag distance of 2.88 A, the EDL of the left and the right contact overlap
significantly and thus the potential ¢(z) gets close to the linear solution of the vacuum
situation.
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Figure 4.14:  Examples of one-dimensional Poisson-Boltzmann problems at different cases of
boundary conditions. Below the geometry the solution ¢(x) of the Poisson-Boltzmann equation
is shown: (a) Electrolyte in front of a metallic wall. (b) Electrolyte between two well separated
metallic walls at different potentials. (c) Electrolyte in a narrow gap between two metallic
electrodes.

4.7.3 Electrical double layer in atomic transistor conformations

In the previous discussion of the Poisson-Boltzmann approximation to the electrolyte
influence we have restricted the situation to simple and intuitive one dimensional
problems. In longitudinal charge transport direction of atomic switch conformations
occurs the same situation of a one-dimensional Poisson-Boltzmann problem with two
fixed boundary potentials. However, in this device there are two additional dimensions
perpendicular to the transport direction and an irregularly formed electrode surface
leading to a more complex situation.

Figure 4.15: Schematic representation of the overlapping electrochemical double layer sur-
rounding the silver point contact in atomic transistor conformations.
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Chapter 4: Simulation of the atomic transistor

Figure 4.15 shows a schematic representation of the electrochemical double layers screen-
ing the electrostatic potential of electrons of the two silver tips in a metallic point contact.
Since there is only a microscopic gap between both electrodes the double layers of thick-
ness d overlap in the contact region.

The full three dimensional complexity of the atomic switch conformation is taken into
account in fig. 4.16: Here we plot the electrostatic potential in a single atom transistor
conformation projected to a sectional plane in parallel to charge flux direction. In case
(a) the silver clusters are surrounded by vacuum and we use fixed Dirichelet boundary
conditions at the lead surface with the experimentally applied electrode potentials
43 meV and 30 meV at the left and right contact, respectively. The four remaining
boundaries of the simulation box (40 x 30 x 30 A3) were assumed to be of von Neumann
type, i.e., the derivative of the potential perpendicular to the simulation box surface
has to vanish. In vacuum the potential varies within the boundaries given by the
electrode potentials ¢, < ¢p(r) < ¢r. However, in the case of an embedding electrolyte
(fig. 4.16b) the potential varies between ¢ < ¢pp(r) < 0, due to the presence of
screening ions. As expected the potentials in a) and b) agree in closer surrounding of
the electrodes. Nevertheless, far away from the electrodes, in particular on the top and
bottom of the sectional planes in a) and b) we observe a huge quantitative difference
of ¢p and ¢pp. In absence of the electrolyte (a) there is a monotonous behavior of
¢p(r) along the edges (y,z) = (0,0) and (y,2) = (H,0). The screening effect of the
electrolyte ions dominates the potential ¢ppp(r) at this region in case (b) so we observe
local extremes at (x,y,z) = (L/2,0,0) and (x,y,2) = (L/2,H,0). According to the
experimental conditions of electrolyte concentration and temperature we find ! — 10
A. However, we have to remark that the assumptions made in the GC-approach [127]
may lead to an overestimation of k! of the order of 30%, depending on the bias voltage.
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Figure 4.16: Potential distribution mapped to a sectional plane along the charge flux direction
in atomic transistor conformations. (a) Potential of single atom switch in vacuum. (b) Potential
of single atom switch screened by ions of the electrolyte. =" denotes the thickness of the
electrolytic double layer.
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4.7 Environmental effects on the atomic transistor

During the electrode deposition process the left electrode cluster grows under the in-
fluence of the electrostatic field of the right electrode cluster and vice versa. As an
electrolyte contains charged ions the electrostatic field of the electrodes is screened by
the covering solvent, which may lead to a systematic change of the junction geometry
during the electrode growth process, due to the presence of the electrolyte. Therefore
we performed 50 electrode growth calculations in vacuum and with an embedding elec-
trolyte, using the same atom-by-atom deposition simulation protocol as in the previous
calculations [100] and compared the electrode conformations grown under the different
conditions.

Figure 4.17a shows a schematic of the characteristic shape of the silver junction grown in
vacuum (solid line) and under consideration of the electrolyte screening (doted line). At
the beginning of the simulation there is still a gap of the order of 30 A between the left
and right electrode, so the silver clusters are well separated and if we take the electrolyte
into account, the screening effect dominates the growth process. So far away from the
contact region the electrodes grow nearly unaffected by each other, if an electrolyte
screens the electrostatic potential. However, in vacuum the growth process towards each
other starts earlier at the beginning of the deposition, leading to clearly visible thinner
contact geometries than in the electrolyte. This effect is demonstrated in fig. 4.17b and
fig. 4.17c, where we show two representative examples of atomic transistor geometries
grown in vacuum and in electrolyte, respectively.

The diagram in fig. 4.17d shows the number of atoms n; per fcc layer ¢ averaged over the
50 grown nano-junctions. According to the examples shown it turns out that ny* of the
junction in vacuum is about 15 smaller than n¢°® of the junctions taking the electrolyte
into account for i = 1,...,9. If the gap between the clusters gets smaller (d < 7.0A) the
electrolyte influence on the electrode tips is reduced and so the difference between ny*
and ng¢'® decreases. As the coherent conductance of such atomic transistor conformations
is mainly dominated by the minimal cross section [99,121| we can exclude an influence of
the different electrode shapes on the conductance of the junction. However, the thicker
backbone of the electrodes may help to stabilize the tip reconstruction process in the

minimal cross section during switching.
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Figure 4.17: Electrolyte influence on the growth structure of silver point contacts. (a)
Schematic of the electrolyte influence on the contact region of a nano-junction. (b) Simulated
example of silver point contact conformation in vacuum and with electrolyte (c). (d) Number of
atoms per metal layer with and without electrolyte.

4.8 Intermediate levels at non-integer conductance

High time resolution measurements of the conductance during the contact closing process
permit the observation of additional characteristic conductance fluctuations during the
contact closing process of the atomic transistor conformation. Figure 4.18 shows three
examples of non-integer conductance fluctuations measured at different closing processes
of the same single point contact conformation. From the conductance measurement of
multiple switching cycles it turned out, that this effect occurs asymmetrically only at
switching from ,,0ff” to ,on” state and not at the inverse process, where the switching is
approximately instantaneous. The reason for the non-integer conductance states at the
closing process remains unclear, however there are at least two possible explanations of
this effect: (i) Additional molecules, e.g. Hy, H,O, NHy, in the electrolyte solution might
form a bridge between the two electrode clusters and lead to a non-integer conductance or
(ii) single atoms of the electrode tip region could hop between the left and right contact
induced by thermal energy. This structural fluctuation of the contact geometry could
induce the observed conductance variations. The nature of this effect will be examined
in the following.
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Figure 4.18: Three ezamples of conductance fluctuations during the closing process of the
same atomic point contact.

88



4.8 Intermediate levels at non-integer conductance

o
)

conductance (GO)
o o
o

e
to

e
=

§ 10 12 14 16 18 20 22
displacement step
Figure 4.19: Total conductance of five different single atom transistor conformations during

a contact closing process. All five bistable conformations show weak plateaus at non-integer
conductance values.

We have calculated the conductance of five representative single atom switch conforma-
tions during the closing process with high resolution of the displacement steps. Additional
molecules or ions in the solution are not explicitely represented in the present simulation.
With these calculations we want to investigate the nature of the conductance fluctuations
during the electrode closing process and clarify whether this effect is due to additional
molecules in between the contacts or caused by single atom fluctuations of the bridging
atom.

Figure 4.19 shows the calculated conductance curves of single atom switch conformation
1-5 consisting of 634, 622, 631, 649 and 625 atoms, respectively. Similar to the previous
simulations we have obtained the underlying contact geometries using the electrode de-
position protocol based on Monte-Carlo employing a material specific Gupta-potential
as well as electrostatics to describe the Ag-Ag interaction. When we choose a small dis-
placement step size of 0.1 A, such that the whole contact closing from the displacement
of 2.9 A t0 0.0 A consists of 29 steps, we observe weak plateaus in the conductance curve.
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Figure 4.20: Conductance histograms: (left) Calculated histogram based on the conductance
curves shown in the previous figure. (right) Measured conductance histogram showing local
mazima at non-integer conductance values. (Note: The height of the peaks at 0.0 Gy and 1.0
Go has no physical meaning, because the number of counts at these values depend only on the
number of ,time™-steps of the open and closed contact situation, which is arbitrarily chosen.)
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Chapter 4: Simulation of the atomic transistor

In the conductance graphs of fig. 4.19 we find weakly visible plateaus at about 0.3 Gy
and 0.8 Gy occurring typically at step 14 and step 18.

In addition fig. 6.2 (left) shows a histogram collecting all conductance values of the
previous five conductance curves (see fig. 4.19). Here we use histogram spacing of 0.08
Gg for the columns of the y-axis. The histogram representation again confirms weak
plateaus at about 0.3 Gy and 0.8 Gy, however, the distribution at these values is rather
broad.

Nevertheless, the comparison with the experimental histogram fig. 6.2 (right) shows
qualitatively the same features. As we do not take additional molecules or ions into
account in the simulations, thus we can conclude, that their disturbing influence in
experiment does not lead to conductance fluctuation in the closing process of the contact.
From the simulations we find that the conductance noise in this case is due to single Ag-
atom mobility: As illustrated in fig. 4.21 the potential energy surface (here illustrated
in two dimensions) has a barrier between the local energy minimum at the left and the
right contact. Approaching the silver contacts stepwise decreases the energetic height
of the barrier. At the critical height E. = kgT the thermal energy enables the silver
atoms to hop from the left energetic minimum to the right and vice versa leading to small
conductance fluctuations until the minimum is unique at the closed state of the contact.
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Figure 4.21: (a) Point contact conformation with a silver atom (red) in a meta-stable state
leading to conductance fluctuations during the switching process. (b) Formation of a potential
barrier between the stable positions at the left and right contact. With decreasing electrode
distance d the temperature induced conductance fluctuations vanish again.
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4.9 Summary and outlook

In the present chapter we have developed a multi-scale simulation protocol to investigate
various properties of the single atom transistor. The approach combines a physical anal-
ysis on three different length scales: (i) Electronic properties were treated within the ma-
terial specific extend Hiickel model Hamiltonian and are used as input for the Landauer-
Biittiker scattering theory. (ii) The geometric structure of the nano-junction was cal-
culated with atomistic resolution using the (classical) many-body Gupta-potential. (iii)
Electrostatic properties including the effect of the electrolyte was taken into account
employing a continuum model - the well established Poisson-Boltzmann theory.

Using this approach we find that the bistable reconfiguration of the electrode tips is
the underlying mechanism of the formation of nano-junctions with predefined levels of
quantum conductance. These levels are determined by the physically realizable bistable
junction conformations, similar to magic numbers for metal clusters [126], that are most
likely material-specific. For silver, the observed quantum conductance levels appear to
coincide with integer multiples of the conductance quantum.

In agreement with the experiment we find, that at halting the deposition process at a
non-integer multiple of Gy, subsequent switching cycles either converge to an integer
conductance at a nearby level or destroy the junction. By snapping into bistable confor-
mations, junctions are mechanically and thermally stable at room temperature for long
sequences of switching cycles. We can explain this experimental observation with the
obtained electrode ,training-effect” at repeated switching of the electrode conformation,
which increases the bistability of the tip reconstruction at every switching cycle. In addi-
tion we could explain the measured interlevel switching with the occurrence of metastable
contact conformations with integer quantum conductance giving rise to plateaus in the
conductance curve at a complete rupture of the contact. Besides these plateaus we could
also figure out the reason for the observed weak conductance fluctuations at non-integer
conductance values. According to our model they can be traced back to single atom
hopping between two neighboring stable energy minima induced by temperature. Fur-
thermore we have analyzed the influence of the dielectric double layer in atomic transistor
conformations generated by the electrolyte and find, that this screening electrochemical
environment leads to an additional stabilization of the switching process.

In future such devices may be manufactured using conventional, abundant, inexpensive,
and nontoxic materials and possess extremely nonlinear current voltage characteristics,
desirable in many applications. Their electrode arrays can be deposited with lithogra-
phy, making devices compatible with existing electronics. Because the switching process
is achieved with very small gate potential (mV), the power consumption of such de-
vices may be orders of magnitude lower than that of conventional semiconductor-based
electronics. Integrated circuits based on this novel principle of operation represent a
completely new class of quantum electronic devices, also opening intriguing technolog-
ical perspectives. Figure 4.22 demonstrates the operation of two atomic transistors in
parallel. Using the previously described multi-scale model we can contribute to the device
optimization and determine boundaries for the minimal atomic transistor distance where
two bistable conformations still can operate and optimize the electrostatic conditions
taking the electrolyte into account.
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Figure 4.22: Parallel and independent operation of two atomic transistors grown on one and
the same substrate chip in a common electrolyte.
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5 Conductance of organic wires

In recent years, several experimental groups have reported measurements of the trans-
port characteristics of individual or small numbers of molecules. Even three terminal
measurements showing evidence of transistor action has been reported using carbon nan-
otubes [129,130] as well as self-assembled monolayers of conjugated polymers [131,132].
A fundamental property of a molecular wire is the scaling of the conductance with the
wire length, a behavior which is a direct consequence of the charge transport mech-
anism. For short molecules (< 3 nm) connected between metallic contacts it is well
accepted that the conductance decays exponentially with the system length. However,
measurements of the conductance of short molecules in dependence of their length are
challenging, because of the strong variation of the contact geometry. Additionally, in
previous experimental works it has been difficult to systematically examine the hopping
regime in conjugated molecular wires connected to metallic contacts, because of the rel-
atively large range of molecular lengths required (spanning many nanometers) and the
complexity of adsorbing long molecules to metal surfaces while controlling orientation.
Electrical transport measurements on molecules up to 18 nm in length have been re-
ported [133], and charge hopping in molecular junctions has been observed [134-136],
but systematic length dependence of conduction has not been a principal focus.

In the present work so far we have discussed only mono-nuclear extended molecule re-
gions, but it is well known that the presence of metal-organic interfaces complicates
electronic structure and, as a result, electronic transport calculations. After a short ex-
perimental motivation of the topic we perform benchmark calculations on the coherent
transport properties of oligo-phenylene wires in order to validate the RGM for organic
wires. In addition we examine the influence of thermally induced structural disorder on
the conductance of these molecules. Finally we investigate the relation between struc-
tural, electronic and transport properties of oligo-phenyleneimine wires and discuss the
results in comparison with experimental observations.

5.1 Experimental motivation

Recently Choi et al. (Science 320, 1482 (2008)) performed measurements which provide
direct evidence for a change in transport mechanism from tunneling to hopping in molec-
ular junctions based on conjugated oligo-phenyleneimine (OPI) wires of varying length
(1.5 - 7.3 nm). The molecules were deposited on a gold substrate (forming the bottom
electrode) and contacted via an atomic force microscope (AFM) tip to create the second
contact (see fig. 5.1). They could show that near 4 nm in length, the mechanism of
transport in the wires changes abruptly, as evidenced by striking changes in the length,
temperature, and electric field dependence of the current-voltage (I — V') characteristics.
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Figure 5.1: Experimental setup for the investigation of charge transport characteristics
(i. e. length dependence) in organic wires [132] (a) A self-assembled monolayer of molecular
chains is fabricated on a gold substrate, which forms the first electrode. The second electrode is
introduced by contacting the monolayer with an AFM-tip from the top. (b) The self-assemble
monolayers consist of oligo-phenyleneimine (OPI) wires ranging in length from 1.5 to 7.3 nm.
They covalently bond to the substrate via sulphur.

OPI molecular wires were grown on the gold substrate by immersing gold into 1 mM
4-aminobenzenethiol in absolute ethanol, followed by a stepwise growth process with al-
ternate addition of benzene-1,4-dicarboxaldehyde and benzene-1,4-diamine. Each wire
terminated with -NHy or -CHO groups was end capped with benzaldehyde or aniline,
respectively to provide a consistent terminal group throughout the OPI series that fa-
cilitates reproducible electrical characterization. Afterwards they extensively examined
the obtained monolayer by ellipsometry, x-ray photoelectron spectroscopy (XPS), reflec-
tion absorption Fourier transform infrared spectroscopy (RAIRS) and cyclic voltammetry
(CV). In addition to other structural information they could conclude that the OPI wires
are tilted with an angle increasing from 20 deg. to 45 deg. with respect to the surface
normal as the wire length increases.

After the preparation and characterization of the monolayer they performed the inves-
tigation of the transport characteristics using the already mentioned conducting probe
(CP) AFM (fig. 5.1a). The results regarding resistance R versus molecular length L are
shown in fig. 5.2: Each data point in the semi-logarithmic plot represents the average
of 10 I — V traces. They observe a clear transition of the length dependence of the
resistance near 4 nm, which corresponds to the length of OPI5, indicating that the con-
duction mechanism is different in short (OPI1 to 4) and long (OPI6 to 10) wires. In the
case of short wires the linear fit in fig. 5.2 indicates that the data are well described by
the exponential resistance dependence

R(L) = Ryet (5.1)
for non-resonant tunneling, whereas the corresponding 3 value was found to be 3 nm~!.
The extremely small 5 in the case of long OPI wires suggests that the principal transport
mechanism is hopping. The inset of fig. 5.2 shows a non-logarithmic plot of R versus L,
which indicates a linear resistance increase in the case of long wires. This is consistent
with the assumption of hopping transport in this regime, thus equation (5.1) does not
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Figure 5.2: Length-dependent resistance plot of oligophenyleneimine wires taken from

ref. [132]. Since the resistance of OPI 1-4 increases exponentially the underlying transport
mechanism is expected to be non-resonant tunneling. The current through wires longer than
OPI5 is based on electron/hole hopping processes, deduced from the linear length dependence of
the resistance in this case.

hold for OPI6 to 10. Performing additional measurements of the temperature dependence
of the resistance they could validate the different transport mechanisms [132].
Nevertheless, several questions remained regarding the nature of the hopping sites in long
wires. Choi et al. found an activation energy for the hopping process of 0.28 eV, which
might be the energy barrier for the electronic hopping process or the energy required
to change the dihedral angles of the molecular ring units to flatten the wire and thus
extend the m-conjugation. Understanding the origin of this value would lead to a better
overall understanding of the transport mechanism in such kind of organic wires. Using
ultraviolet-visible absorption spectroscopy the authors demonstrate that the conjugation
does not extend over the entire wire, but rather electronic delocalization is limited to
3 repeating ring units. Comparing these results with electronic structure and transport
calculations can give insights into the distribution of the actual occurring dihedral angles
in the molecular wire.

5.2 Recursive Green’s function method applied to
organic systems

5.2.1 Transmission of benzene wires

Applying the RGM method to silver and gold quantum point contacts has already shown
the reliability of the method in the case of metallic devices. Before investigating the
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conductance properties of OPI wires it is necessary to check the reliability of our RGM
implementation in the case of well studied organic systems. We have therefore studied the
coherent conductance of phenyle-di-thiol (PDT), a ,drosophila” of molecular electronics.
Because this molecule was studied extensively in the past [11,137-143|, it allows for a
comparison of the RGM approach with experiment and various other levels of theory.
We investigate the transmission of oligophenylene molecules of varying lengths, which
lend themselves nicely to an investigation of the layer approximation in an organic, semi-
conducting system. The structure of the molecules suggests a natural introduction of
layers in terms of single phenyl-ring units, similar to the layers introduced by base-pairs
in DNA [122].
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Figure 5.3: Schematic representation of the different regions of a single molecule junction
in the Landauer approach. (a) Definition of the extended molecule including a fraction of the
electrodes. This permits the natural charge transfer dn and screening effects as an organic
system is attached to a metal surface. (b) Realization of a molecular junction by a phenyl-
ring-based wire coupled via sulphur atoms to the [111]-layers of gold leads. The semi-infinite
leads are represented by their surface Green’s function defined on the atoms of the blue colored
area. Horizontal lines indicate a possible division into a left and and a right part of the system.
(c) Representative division of the system into principal layers to illustrate the recursive Green’s
function approach.

Figure 5.4a illustrates the oligiphenylene molecules covalently bound to Aujg-clusters,
using the same notation as for the conformations in Ref. |98]. The molecule is connected
to the Au electrodes at both sides by a symmetric covalent bond of a sulfur atom to
three Au atoms. In the literature this bonding situation is referred to as the hollow
position [98]|. The electrode clusters where constructed from fec lattices as above, while
the geometry of the phenyle wires was optimized using density functional theory (DFT)
in the local density approximation (LDA) [98,144,145|. As can be seen in Fig. 5.4a there
is a non-vanishing tilt-angle between the phenylene-rings, which varies between 33.7 and
34.5 degrees due to the interplay of steric repulsion and 7-conjugation of adjacent rings.
A detailed investigation of the influence of (conjugation induced) tilting on the coherent
transport, properties in biphenyle-derived dithiols was recently given in Ref. [51].
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In Fig. 5.4b the total transmission is shown as a function of energy for the molecular
junctions above, once with (dashed line) and once without the layer approximation (solid
line). Due to the neglect of several overlap matrix elements the transmission and con-
ductance obtained with the layer approximation is below the full device transmission.
The measured conductances of oligophenylene wires with amine end groups indicate even
lower conductance values which may arise from the differences in the coupling to the elec-
trodes. With increasing length of the phenyl wire the transmission gap decreases from
3.89 eV to 2.56 eV. The equidistant transmission at the Fermi energy of the different
molecular wires indicates the correct exponential decrease of the conductance with linear
increasing wire length [131,146-148|.
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Figure 5.4: Configurations of the organic molecular wires studied in this work. (a)
Oligophenylene molecules covalently bond to Auyg clusters along the cristallographic [111] axis.
One phenylene ring unit represents one principal layer. (b) Total transmission as a function of
the energy of the shown oligophenylens with (dashed line) and without (solid line) the principal
layer approzimation in good qualitative agreement with the DFT results of Ref. [149]. In the
layer approxiation one principal layer contains a single phenyle ring unit. The vertical line
indicates the Fermi energy.
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5.2.2 Length dependence of the conductance

The proportionality of the conductance decay G /Gy ~ e™?Y of the oligophenylene wires,
once with and once without the layer approximation, is shown in Fig. 5.5. In both cases
we obtain a decay coefficient 5 = 1.47 which is close to the experimental value 3¢, = 1.5
reported in [148] for amine end groups. Nevertheless, the comparison between theory
and experiment remains difficult because of the different end groups used.
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Figure 5.5: Length dependence of the conductance of the oligophenylene wires. The conduc-
tance decreases exponentially with the number of the phenyle rings in the wire in good agreement
with experimental data.

5.3 Conductance fluctuations of oligo-phenylene wires

Next we investigate the influence of thermally induced molecular vibrations on the co-
herent transport properties of an Au-h-R4 wire. For the simulation of the dynamics of
the system we use of the AMBER 8 molecular dynamics package [150], which employs
the well established GAFF-forcefield and a Langevin thermostat method to model tem-
perature. Assuming fixed gold atoms of the electrodes we simulate the evolution of the
system at 300 K for 10 ps in time steps of 2 fs. Every 10-th time step a snapshot of
the conformation is taken as input for the conductance calculation generating 500 con-
formations for analysis. For each conformation we calculate the zero-bias conductance.
Within the simulation period we find repeated conductance fluctuations by more than
an order of magnitude.

Recent investigations have already focused on the influence of intramolecular vibrations
on the conductance [100]. Here, we find an interesting model system where thermal fluc-
tuations induce large-scale conformational change. The conductance of a conformation
correlates highly with its ,planarity”, because the fully planar conformation leads to a
strong overlap of the m-orbitals, which in turn increases the transmission. However, such
planar configurations are forbidden at zero temperature because of steric repulsion of
the hydrogen atoms emanating from the rings. Figure 6.5a shows the fluctuation of the
torsion angles ¢, ¢o and ¢3 between the ring-units occurring in Au-h-R4, respectively.
All three torsion angles fluctuate strongly around an equilibrium average of 31.9 degrees,
which agrees well with the experimentally observed equilibrium value of 34 degrees. The
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5.3 Conductance fluctuations of oligo-phenylene wires

histogram Fig. 6.5b shows that the outer torsion angles ¢; and ¢3 have slightly broader
distributions than ¢, which may be caused by the lower potential energy barrier at
the electrodes. The average conductance over 10 ps arises as an average of strongly
fluctuating instantaneous values, as illustrated in Figure 6.5¢c.

In the course of the the 10 ps simulation we find 6 "near-planar" configurations of adjacent
rings and 2 "near-planar" conformations of all three rings. To characterize this geometric
feature we compute the average of the absolute torsion angles ¢ = 1(|¢1| + |da] + |@3]),
which has 4 minima (with ¢ < 20 deg.) and 3 maxima (with ¢ > 45 deg.) in the
observation period. As illustrated in Fig 8c the conductance has associated minima where
¢ is maximal, e. g. at 2.2, 4.3, and 9.4 ps. Correspondingly the highest conductance
values are obtained, if ¢ is small, e. g. at 4.6, 5.5, and 9.8 ps. This effect is also illustrated
in Fig. 6.5d, which gives a higher time-resolution of the grey regions of Fig. 6.5a and 6.5c.
This analysis shows that the experimentally relevant conductance at room temperature
arises as an average of thermally excited high-conductance conformations, which are
forbidden at zero temperature.
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Figure 5.6: Thermal influence on the conductance of a molecular wire at 300 K. (a) Fluctua-
tion of the torsion angles ¢1, ¢2 and ¢3 between the ring-units occuring in Au-h-R4, respectiviely.
(b) Distribution histogram of the frequency of occurrence of a particular torsion angle. (¢) Cor-
responding conductance (black) and average torsion angle ¢ (turquoise) at the fluctiation process
durring 10 ps simulation time. (d) Zoom into the 4ps-5ps range, which shows that a short-time
increase of the torsion angles (red, green and blue curve, left azis) leads to a strong decay of the
total transmission (black curve, right azis) of the nano wire.
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Chapter 5: Conductance of organic wires

5.4 Oligo-phenyleneimine wires

Starting from benchmark calculations assuming an experimentally and theoretically well
investigated organic system - oligo-phenylene wires - we could show, that the recursive
Green’s function approximation is able to predict the conductance within a reasonable
accuracy. Choosing the principal layer thickness parameter d to 4.4 A allows for a correct
reproduction of the length dependence of the conductance compared to experiments and
higher levels theory results. After ensuring the reliability of the method in calculation
of the transmission function of organic systems, we want to investigate the structural
and electronic properties of OPI wires. The nature of the transition from coherent to
incoherent transport should be clarified considering the influence of dihedral angles and
the extension of the frontier orbitals.

5.4.1 Structural properties

Compared to the previously discussed oligophenylene wires, the oligo-phenyleneimines
(OPI) consist also of stringing phenylene ring units and of a thiol group at one end.
However the main structural differences are the lacking second thiol group at the other
end of the wire and the way how the phenylene ring units are connected. In the case
of the OP wires the connection is formed directly between two C atoms of the ring
(-C¢H4-CgHy-), however OPI wires consist of an additional -N—CH- unit between every
phenylene ring unit. For reasons of the synthesis of these molecular wires always two N
atoms point towards the CgHy ring or away from it. Thus the whole wire is built up by
the scheme

S—CGH4—(—N:CH—C6H4—CH:N—CGH4—)R-N:CH—CGH5 for n—odd
S—CGH4—(—N:CH—C6H4—CH:N—C 6H4—)n—N:CH—CGH4—CH:N—CGH5 for n—even.

First of all we have optimized the geometries of OPI1-OPI5 using the density functional
theory (see chapter 2.2.3) implementation TURBOMOLE |144|. Here we apply generalized
gradient approximation (BP86), a Gaussian type orbital basis set as well as effective core
potentials to describe the influence of the nuclei plus inner shell electrons. In order to
obtain the equilibrium conformation of the molecules we use density functional molecular
mechanics under the condition —0FE/0Ry; = 0, with Ry being the nuclear coordinates.
The so called Hellmann-Feynman-Theorem [151,152] states that

oE

OH
R, <1/)|8—Rk|1/)> (5.2)

Zk€2(1‘ — Rk) ZkZlBZ(Rk — Rl)
= d3rn r—m——————— + , 5.3
/ () r — Ryl kzd IRt — Ry (5:3)

similar to the prediction of electrostatics. The current atomic arrangement is stable if
the electronic and the ionic part of the Hellmann-Feynman forces vanish, which can be
simulated using a conjugate gradient method like implemented in Turbomole.

For the occurring C-C single bonds we obtained a length of 1.41 A on average, for the
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Figure 5.7: (top) Conformation of the OPI1 molecular wire pointing out the torsional angle
ay and By1. (left) Total energy depending on oy showing an energy barrier of 5.5 meV. (right)
Total energy depending on B1 showing an energy barrier of 15.5 meV.

double bonds C=C a length of 1.47 A and for the N=C bond 1.29 A. The total molecular
length, which is the terminal H to S distance for OPI1-5 amounts to 1.45, 2.11, 2.76,
3.41 and 4.06 nm, comparing well with the experimental findings of 2.1, 2,8 and 3.4 nm
for OPI2-4 |132], respectively. Additional structural parameters are the dihedral angles
a and B between the N-C and C-C bond shown in fig. 5.7 for the case of OPI1l. In
contrast to [, which is equal to zero, the average value of a is 31.9 deg. due to the
stearic repulsion of the hydrogen atoms pointing towards each other (see fig. 5.7). The
graphs below the conformations show the total energy of the wire during twisting the
wire by a = 0,...,90 deg. or g = 0,...,90 deg., respectively. It turns out that the energy
barrier for a full rotation for o is AE, = 5.5 meV and [ the barrier is AE, = 15.5 meV.
In comparison to the thermal energy kT = 25 meV at room temperature, the rotational
energy barriers of the OPI wires are clearly lower, thus strong thermal fluctuations of
the m-conjugation of the molecules can be expected.

5.4.2 Electronic properties

Coherent as well as incoherent charge transport properties mainly depend on the distri-
bution of the orbitals over the molecule, so after investigating the geometric structure
of the OPI wires we examine their electronic properties. The DFT calculations on the
equilibrium geometries of OPI yield also the electronic structure. In the present work we
calculate the so called Kohn-Sham-gap defined as

Ey® = eLumo — €nomo- (5.4)
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Figure 5.8: Iso-surface plots of the frontier orbitals of OPI1-5 at an iso-value of partial charge
density of 0.01 a.u. The color code red and blue corresponds to the real and imaginary part of
the wave function, respectively. The distribution of the partial charge densities of the HOMO
and LUMO permits insights into conjugation length of the molecular wire, which is crucial for
the dominant charge transport mechanism.

It is known that in local density or generalized gradient approximation E;° underesti-
mates the experimental value significantly by about 40%. This absolute value is par-
tially improvable using hybrid functionals for the exchange correlation approximation
(like PBEO or B3LYP). However, in the present study we are interested in the relative
change in the gap energy with increasing molecular length. For OPI1-5 we obtain the
Kohn-Sham-gap Ex° of 2.38 ¢V, 1.99 ¢V, 1.78 ¢V, 1.67 ¢V and 1.63 eV. For comparison we
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5.4 Oligo-phenyleneimine wires

calculate also the Hartree-Fock HOMO-LUMO gap energies leading to 5.20 eV, 4.35 eV,
3.87 eV, 3.64 eV and 3.58 eV for OPI1-5, respectively. The decreasing gap energy with
increasing the wire length was also observed in experiment [132], however the absolute
value of the gap energy in the cases for OPI3-5 is underestimated by 36% in case of
DET and overestimated by 32% in case of HF compared to the experimental results
from Choi et al. measuring an gap of 2.6 eV. While the underestimation of gap energies
in DFT was already discussed, the failure of the absolute HF-gap is due to the lack of
electron-electron correlation. In DFT hybrid functionals these errors rather cancel each
other than being formally corrected.

Figure 5.8 shows iso-surface plots of the partial charge density distributions of the HOMO
and LUMO of OPI1-5, with the real and imaginary part of the wave function marked
red and blue, respectively. The charge density is plotted at an iso-value of 0.1 a.u. Both
HOMO as well as LUMO have a p-like delocalized spatial distribution, but they clearly
differ in symmetry. The bonding HOMO has nearly E;,/A’ symmetry at the phenylene
rings (meaning that there is one single node plan perpendicular to the ring) and the anti-
bonding LUMO has E,,/A’ symmetry at the ring units (meaning that there are node
planes perpendicular to the ring). In addition fig. 5.8 shows that the HOMO is rather
localized at the thiol group end than equally distributed over the molecular wire, due to
the strong electron affinity of the sulfur atom. However for longer wires the LUMO is
mainly localized at the center of the chain. Qualitatively, fig. 5.8 confirms that at OPI14
(and even more at OPI5) the partial charge densities of the frontier orbitals, which are
of major importance for the coherent current flow, significantly increases at the right
most phenylene ring unit. In addition the LUMO shows the same effect also at the
thiol group of the OPI4 and OPI5 wire, reducing the probability for coherent tunneling
dramatically. Thus, the electronic structure calculations on OPI molecular wires can
explain the transition from tunneling to hopping transport at a critical wire length of 7.3
nm by the spatial distribution of the frontier orbitals. However, one has to note that the
calculations above neglect the influence of the metallic electrodes on the partial charge
densities, but since the left and right electrode material consists of the same metal (and
thus provides the same electron affinity), we assume that their influence on the orbital
distribution compensates mutually.

5.4.3 Coherent conductance

Finally we investigate the coherent transport properties of OPI1-5 wires using the pre-
viously described recursive Green’s function method. In contrast to the oligo-phenylene
wires OPI1-5 have only one single thiol group at one end and a hydrogen atom at the
other end. Therefore also the electrode coupling is asymmetric: One the left” end (com-
pare fig. 5.9) we introduce a gold cluster consisting of 25 atoms and assume the sulfur
atom of the molecule to bind in a hollow position to the cluster assuming the well known
Au-S bond length of 2.36 A [153]. On the right end of the wire we use a directly op-
posed gold cluster consisting of 26 atoms with an equilibrium H- - - Au distance of 1.6 A
taken from ref. [154]. In contrast to the left” contact, which is formed by a covalent
Au-S bond, the right contact is based on weaker van-der-Waals interaction between the
wire and the metal cluster. The weak interaction between molecule and electrode on the
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,right” end of the system enables a large variety of the contact geometry in experiment
due to thermally induced molecule and gold atom mobility, which might be a source of
disagreement between experimental and theoretical results.

To utilize the advantages of the RGM we divided the OPI wires into layers by introducing
a sectional plane through every C=N double bond occurring in the OPI wire, leading
to N principal layers with /N being the number of phenylene ring units in the wire. In
analogy to the previous calculations on oligo-phenylene wires, we use a material specific
extended Hiickel Hamiltonian to describe the electronic structure and embed the two left-
and rightmost metallic layers of the extended molecule into semi-infinite bulk electrodes
described with already stored self-energy matrixes 37 . (E).

The lower left part of fig. 5.9 shows an excerpt of the total transmission function T'(F)
of OPI1-5, which was calculated in an interval of +2 eV around the Fermi energy. Since
the electrode coupling at the right end of the wire is experimentally not uniquely defined,
but the calculations are restricted to one special geometry, we expect deviations between
the experimental and calculated transmission, however the relative ordering and distance
between T'(F) of the OPI wires should be unaffected by this uncertainty. The calculated
transmission gap of OPI1-5 amounts 2.38, 1.87, 1.84, 1.85 and 1.84 €V, respectively.
This proofs the experimental observation of an decreasing HOMO-LUMO gap of OPI1-3
and nearly constant gap size of OPI3-5. The transmissions at the Fermi edge of OPI1-
5, which determines the conductance of each wire, is nearly equidistant in the current
logarithmic representation and amounts 3.1534 - 1073, 2.5459 - 10=4,2.0 - 107°,1.1 - 1075
and 6.0 - 1078, respectively. This exponential decay of the transmission is characteristic
for (off-resonant) coherent tunneling. The lower right part of fig. 5.9 shows in detail the
conductance depending on the wire length. Since an exponential decaying behavior is

expected we use
G(L) =ae Pk (5.5)

as fit-function. The length-dependence parameter 8 — 3.29 nm~! compares well with the
experimental result 3 = 3 nm™" of ref. [132]. The parameter o = 0.24 Gy is more difficult
to interpret in relation to the measurements, because in experiment the current through
a whole set of OPI wires with the same length is measured, thus the total conductance
of the SAM is expected to be an unknown multiple of ce™?~.

5.5 Conclusion

In the present chapter we have probed the performance of the recursive Green’s function
approach, which divides the extended molecule region into principal layers with nearest
neighbor coupling, calculating tunneling transport properties of the well studied oligo-
phenylene wires. We obtained reasonable agreement with results of higher level theories
(e.g., DFT) for the total transmission function as well as for length-dependence of the
conductance. In addition to the validation of the method with oligo-phenylene wires
we have investigated the impact of thermally induced large-scale geometric change on
the conductance. Averaging the conductance over 500 conformations obtained from a
10 ps molecular dynamics simulation at room temperature, we find temporal conduc-
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Figure 5.9: (top) Central device region for calculating the conductance of OPI wires. As an
example the OPI5 wire is shown as well as the gold electrode fragments consiting of 25 atoms.
Since the molecule contains only one thiol group end there is an asymetry of the left and right
electrode coupling. (left) Total transmision function of OPI1-5 close to the Fermi energy. (right)
Length-dependence of the conductance of OPI11-5. The conductance decreases exponentially with
the molecular wirer length with the given characteristic decay parameter (.

tance fluctuations of more than an order of magnitude. The average conductance, which
agrees well with the experimentally observed value [131], results from high-conductivity
conformations that are sterically unfavorable at zero temperature. The advances in the
modeling approach thus permit the detailed characterization of disorder effects, which is
present in almost all experimental realizations, on the conductance of molecular wires.

Motivated by an experimental study [132] we have investigated the correlation of struc-
tural, electronic and transport properties of oligo-phenyleneimine wires. We observed
that the two types of energy barriers of the dihedral angle rotations are lower than
16 meV, which is lower than kg7 at room temperature. The measured activation energy
for the hopping process of 0.28 eV [132] is one order of magnitude higher than the rota-
tional barriers and thus can not be explained by the energy necessary for flattening the
molecule to improve the m-conjugation. The electronic structure calculations confirmed
the observation that the charge carrying frontier orbitals do not extend over the entire
wire - the electronic delocalization is limited to 3-4 repeating ring units. The total trans-
mission functions of the OPI molecules show the characteristic exponential decay with
the wire length and the obtained decay parameter [ agrees well with the experimental
value [132]. The small deviation may be caused by a flatter molecule geometry in exper-
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iment permitting a slightly stronger m-orbital overlap, because in this case the molecules
are embedded into a self-assambled monolayer. Additional calculations on the hopping
transport properties combined with quantum chemistry methods could give insights into
the behaviour of longer wires.
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6 Protein embedded nanoparticle
deposition

Recently, there has been great interest in self-assembled biostructures as a tool for the
controlled fabrication of one-, two-, or three-dimensional ordered nanomaterials and de-
vices [155]. Numerous proteins self-assemble into well-defined superstructures (sheets,
wires, tubes, or capsids) and have been used to template particle arrays and nanowires
of inorganic materials [156-161|, providing unique inorganic-biomolecule hybrids with
properties derived from both the inorganic (of magnetic, electric, or optical nature) and
the biological (specific recognition capabilities) material. Stress-related proteins may
overcome the difficulties of the sensitivity of proteins to the ,unnatural” reaction con-
ditions, for example, towards variation of the pH, higher temperatures (>37.8°C), and
the presence of non-native chemicals, because of their robustness and tolerance of a vari-
ety of unnatural conditions |162-164|. Moreover, their potential for application has just
recently been demonstrated for Flash-memory-device fabrication based on chaperonin-
derived nanocrystal assemblies [165].

Motivated by the experimental work of the group of Silke Behrens (Institute of Technical
Chemistry, KIT, Campus North) in the present study we will analyse the possibility of
metallic nanoparticle growth using an extended protein as template. Therefore, firstly we
optimize the protein structure without any metallic extension in aqueous solution under
normal ambient conditions. Secondly we generate a set of palladium atoms bonded to
the protein, serving as nuclei for the Pd?*-ion deposition. Assuming this start conforma-
tion we simulate the deposition of the nanoparticle and end up as soon as the number of
metal atoms has reached the measured value. In the following we will answer the ques-
tion, whether the introduced nanoparticle qualitatively changes the secondary protein
structure or stabilizes the entire macro-molecule, which was partially investigated using
circular dichroism (CD) spectroscopy, but remained not completely understood.

6.1 Experimental motivation

In their recent work the group of Silke Behrens developed a technique of size-constrained
synthesis of catalytically active metal particles using a genetically modified stable protein
(SP1) [166,167]. SP1 is a ring-shaped homododecamer (12 mer), 11 nm in diameter, with
a central, 2-3 nm inner pore and a width of 4-5 nm. The protein has an extremely high
thermal and chemical stability, for example, it exhibits a melting temperature of 107°C
and resistance to detergents, such as sodium dodecyl sulfate (SDS), and to proteases [168|.
The experimentalists genetically fused a histidine (His) tag to the N-terminus of SP1
(6hisSP1), thus obtaining a variant with additional His residues facing the inner-pore of
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the ring structure |[169|. Histidine is a typical metal-binding site in proteins due to the
presence of the deprotonated N atom in the imidazole ring, analogous to the N atom of
guanine or adenine [170,171].

When the 6hisSP1 mutant was treated with NayPdCly (typically 720 Pd atoms per dode-
camer) for 2 h at room temperature, a homogenous pale-yellow solution resulted. Excess
Pd was removed by dialysis. The Pd?* ions were subsequently reduced by a reduction
bath containing dimethylamine borane (DMAB), resulting in a clear-brown colloidal so-
lution, which was stable for several months. Transmission electron microscopy (TEM)
imaging of the precipitate revealed aggregated, 3.4-nm-sized particles. The particulate
texture and size suggest that the wild-type template also influences initial particle nu-
cleation.

Circular Dichroism (CD) spectroscopy was used to analyze the secondary structure of
6HisSP1 before and after the metallization procedure. Figure 6.1 compares the measured
CD spectra of the 6hisSP1 mutant and the Pd-6hisSP1 nanobioconjugate. The 6hisSP1
mutant displays the typical CD bands of a protein, which has a significant a-helical
fraction with a maximum around 192 nm and two minima at 208 and 221 nm, respectively.
After metallization and binding of Pd nanoparticles to 6hisSP1 the maximum weakly
shifts to 193 nm and the negative bands approach each other slightly, leading to a steeper
shape of the ,trough” between the minima.
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Figure 6.1:  Clircular Dichroism spectra of the SP1 protein with and without the deposited
palladium nanocluster allowing for the characterization of the secundary structure of the protein.

The mean residue ellipticities also show minor intensity changes. In order to decide
whether the protein denaturates by the metal cluster deposition or whether the main
properties of its secondary structure remain unaffected we simulate the protein structure
in the framework of molecular dynamics in the cases before and after the metallization
and analyze geometrical features. The question whether the proteins secondary structure
is conserved (also after metallization) is important, because it decides whether this new
hybrid system remains compatible to biological organisms (e.g. in cancer therapy). In
addition we will analyze the growth shape of the nanoparticle, which determines its fields
technological of applications.
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6.2 Protein simulation

6.2 Protein simulation

After generating a molecular structure of the start geometry of SP1, that consists of 19
different types of amino acids, we consider a cubic box of 11 nm edge length as simulation
box for the total energy minimization using the AMBER molecular dynamics package.
We use the GAFF force field and periodic boundary conditions in a NPT ensemble.
Thus we considered the temperature to be fixed at 300 K modeled by the so called
Nose-Hoover-thermostat and assume a pressure of 1 atm. For the solvent treatment we
employed a all-atom description of the water molecules in the MD optimization that runs
O ns.

Figure 6.2: Donut-shaped protein serving as template for palladium nanoparticle deposition:
(a) Cartoon representation of the protein’s secondary structure. Note the important histidine
residues (pointed out by the red arrow) serving as anchoring group for the palladium ions. (b)
Three dimensional sketch of an isolated histidine molecule.

Figure 6.2a shows the resulting protein geometry in secondary/quaternary structure rep-
resentation. The energy minimized structure has about 10.0 nm outer diameter and 3.5
nm inner diameter. The ring consists of numerous «-helixes arranged in nearly radial
direction stabilizing the overall structure of the protein. In the center of the molecule
fig. 6.2a shows a smaller inner circle consisting of histidine residues required later for the
palladium-protein interface.

6.3 Deposition simulation

Starting from the obtained protein structure we add one single palladium atom at each
histidine at the experimentally observed position to the free nitrogen atom of the ring
unit (see fig. 6.2b). We have to introduce these covalent bonds ,by hand”, because
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covalent binding can not be predicted by the applied force field based models, however,
the occurring histidine-metal coupling was well characterized experimentally [170,171].

For the metal cluster deposition we employed a recently developed protocol for simulation
of nanoscale-structure formation on long time scales [113]. Our simulations comprise two
parts: In the first part, we ,grow” the nanoparticle, one atom at a time in molecular-
mechanics simulations. We observe the nucleation of several palladium nanocrystals
emanating from the unprotonated side-chain His N atoms (fig. 6.3, left), which coalesce
into a single multidomain Pd-nanoparticle that spans the entire pore (fig. 6.3, right).
We deposited up to 800 Pd?" ions, one ion at a time, using a kinetic Monte-Carlo
Method. In each simulation the Pd?* ion is placed at a random position outside the
protein and evolved for 30000 steps in the electrostatic potential generated from the
protein (AMBER charges) and the partially formed Pd-cluster using also a short-range
Gupta-potential [115] for Pd. The protein is taken into account as external Lennard-
Jones potential. When the Pd?" ion attaches to an existing cluster it is reduced. The
obtained palladium nanoparticle has a compact nearly spherical shape with a diameter
of 3.5 nm.

Figure 6.3: Snapshots of palladium (yellow atoms) nanoparticle deposition using an extended
protein as template. The 96 atoms shown in the left-most frame serve as adsorption nucler for
the particle growth process. After deposition of about 800 palladium atoms a ball-shaped metal
cluster has formed in the center of the protein ring.

6.4 Influence of the palladium cluster

Using the generated nanoparticle/protein complex, we can analyze the fluctuations of
the protein with and without nanoparticle in molecular-dynamics simulations using the
Assisted Model Building and Energy Refinement (AMBER) [150] forcefild. We find that
the protein alone equilibrates into a conformational ensemble with approximately 2.5 A
RMSD (root mean square deviation) from the starting structure, and the presence of the
metal nanoparticle constrains the conformational ensemble to within 1.1 A RMSD of the
starting conformation.
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Figure 6.4:  Arbitrarily chosen a-heliz segment of the SP1 protein to study the thermally
induced fluctuations of the atomic position (in terms of the rmsd) of Coqrn and the distance
between Copqrn and Copeu at both ends of the chain in the two cases with and without the
nanoparticle.
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Figure 6.5: Fluctuation of a single Co arn atom (in Gln-23, bottom curves) in a helical region
and of the end-to-end distance of heliz Co Grn23-Ca,Lrust (top curves) in the MD trajectories
with (blue) and without (black) the nanoparticle. The nanoparticles-induced reduction in the
fluctuations explains the observed increase in the CD signal without a change in the fraction of
helical content in the protein.

Figure 6.4 shows the examined helical length (i.e., distance of C, G1u-Cpres) We have

calculated during evolving the system in time at 300 K once with and once without
the metal nanoparticle. In agreement with the experimental observations, the overall
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secondary-structure and tertiary arrangement is less influenced by the presence of the
nanoparticles. However, we find the structural fluctuations of the protein in complex with
the nanoparticles are reduced by approximately 28% (fig. 6.5), when compared to the
fluctuations of the protein alone. The observed reduction of fluctuations in the complex,
akin to a reduced temperature, is commensurate with the observed increase in CD signal.
The change in the CD signal can thus be understood as a result of reduced fluctuations
in the protein due to the constraints imposed by the presence of the nanoparticle, and
not by an actual increase of helical content in the secondary structure.

6.5 Summary

Using combined molecular dynamics plus Monte-Carlo simulations we could demonstrate
in agreement with experimental results that the SP1 protein is an template for the
synthesis of mono-disperse metal particles of various natures, and the generated particles
provide a mortar to construct novel geometrical architectures of hybrid nanoparticle-
protein complexes.

We have analyzed the protein structure before and after the palladium ion deposition
by evaluating geometrical parameters during the time evolution of the hybrid system
in solution under normal ambient conditions. With this information we could interpret
the measured CD-spectra and concluded that the protein structure remained intact after
particle deposition and, thus, may be further functionalized by genetic engineering with
affinity reagents for site-specific targeting.

The high relevance of such kind of systems was also shown in recent experiments, w.t.
SP1 accumulates in tumors and shows no significant immune response after repeated
injection, indicating that it may indeed be used to target active nanoparticles to solid
tumors for both imaging and therapy. Such biofunctional, protein-nanoparticle hybrids
will thus be interesting for diverse future applications, such as in biosensing, targeted
reagent delivery, site-specific tumor imaging, therapy, and biomedical diagnosis. Multi-
scale simulations permit an appealing tool to cover the full range of the various time-
and length-scales playing a role for hybrid nanoparticle-protein systems to predict their
complex behavior and optimize them for applications.
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7 Conclusions

Electronic transport through nano-scale structures has been intensively studied during
the last decade. The fabrication of nano-junctions by scanning tunneling microscopy,
break-junctions or electrochemical deposition enabled measurements leading to new
insights into the physics of electronic transport in quantum systems and to the
development of new promising devices for nano-electronics. In molecular electronics
measurements one major challenge is the control of the molecular geometry arranged
between two or three microscopic electrodes. The difficulty of contacting a molecule
increases dramatically with decreasing the size of the scatterer to a few atoms. In the
case of large hybrid nano-particles functionalization for printable electronics is obtained
only for systems containing ten-thousands of atoms. Theoretical investigations on
idealized structures gave understanding of fundamental principles, but since the control
of the molecular geometry is experimentally to difficult conformational variability plays
an important role. To understand the physics behind their functionality these systems
have to be treated on the classical atomistic as well as on the quantum mechanics level
permitting the investigation of electronic transport in more realistic systems including
disorder and conformational ensembles.

In the present thesis we have studied the interplay of conformational and electronic
transport properties in metallic and organic nano-structures. Characterization of the
influence of thermal, electrostatic or fabrication-induced structural rearrangement on
the conductance characteristics gives new insights into the functionality of nano-scale
systems, such as quantum point contacts, nano-wires and nano-particles. With the
developed theoretical approach nano-electronical building blocks, e.g., switchable
molecules, can be identified and optimized for new promising technological applications.

In order to simulate realistic conformations of nano-structures arising from (electrochem-
ical) fabrication techniques we have developed and implemented a deposition model,
which is based on classical interactions, and can be used in simulations of metallic
systems, as well as extended organic molecules. In contrast to molecular dynamics
simulations our stochastic approach is able simulate growth processes occurring on very
long time scales (seconds) which is prohibitively costly for deterministic methods like
MD. To study the coherent transport properties of large systems we have implemented
a recursive Green’s function formalism that employs tight-binding like model Hamilto-
nians. The linear scaling behavior of the computational effort with the device length
permits the treatment of large scattering systems taking extended electrode fragments
into account. The developed and validated methods were employed in the following key
applications:
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Chapter 7: Conclusions

Static disorder in metallic junctions:

First we have studied the ballistic transport properties of ideally crystalline silver
nano-junctions using our implementation of the RGF method. In the absence of defects
and disorder the conductance is an integer multiple of the conductance quantum Gy
for small minimal cross sections of the nano-contact, which most likely results from
the electronic s-configuration of the metal. Generalizing the conformations to more
realistic structures comparable to experimental situations we investigated the influence
of imperfect contact geometries on the conductance by studying many different possible
realizations of silver nano-junctions: Starting from a symmetric silver electrode contact
we found that tilting the junction electrodes up to 60 degrees reduces the conductance
by 20%, while twinning the electrodes leaves the conductance nearly unchanged. Fur-
thermore we found that introducing a large amount of surface vacancies leads to weak
variations of the conductance of silver contacts. In the next step we have investigated
the transport properties of non-fcc structured silver junctions, silver nano-clusters
ranging from 5-260 atoms. Here we found conductance values that confirmed the results
of the transport calculations of idealized fcc contact geometries, where we already
found a strong dependence of the total conductance on the diameter of the minimal
cross section. We noticed that analyzing their transmission function in a three-terminal
measurement can be used to estimate the size of the nano-particle, because fluctuations
strength of the transmission function is directly proportional to the clusters diameter.

Atomic Transistor:

Secondly, we have investigated mechanical, electrostatic and electronic properties of
an ,atomic transistor” nano-junction in collaboration with an experimental group. In
this experiment a silver nano-junction is electrochemically deposited and ,trained” to
reproducibly switch between integer values of quantum conductance. In particular, the
question of the underlying switching mechanism was not conclusively answered at the
start of this investigations. We therefore developed a multi-scale approach combining
continuum, atomistic and quantum mechanical methods because of the many different
time and length scales playing a role in this experiment. Applying this approach we
found that the bistable reconfiguration of the electrode tips is the underlying mechanism
of the formation of nano-junctions with predefined levels of quantum conductance. It
turns out that these levels are determined by specific, material dependent bistable
junction conformations, similar to magic numbers for metal clusters [126]. For silver,
the observed quantum conductance levels appear to coincide with integer multiples
of the conductance quantum. With our model we could confirm the experimental
observation, that at halting the deposition process at a non-integer multiple of G,
subsequent switching cycles either converge to an integer conductance at a nearby level
or destroy the junction. Furthermore the experimentalists found that by snapping
into bistable conformations, junctions are mechanically and thermally stable at room
temperature for long sequences of switching cycles. We can explain this effect with the
selectrode-training-effect” occurring in our model at repeated switching of the electrode
conformation, which increases the bistability of the tip reconstruction with every switch-
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ing cycle. We have also analyzed the influence of the dielectric double layer in atomic
transistor conformations generated by the electrolyte and find, that this electrochemical
environment leads to an additional stabilization of the switching process. Another
effect we could explain is the observed switching between levels of finite conductance:
The occurrence of metastable contact conformations at integer quantum conductance
gives rise to plateaus in the conductance curve at a complete rupture of the contact.
These plateaus are selected during inter-level switching. Furthermore, using our model
calculations we can relate the weak conductance fluctuations at non-integer conductance
values observed in the experiment to thermally induced single atom hopping between
two neighboring stable energy-minima.

Conformational disorder in organic wires:

In the third part of this thesis we have applied the recursive Green’s function tech-
nique to study organic nano-wires and obtained reasonable agreement with results of
higher level theories for the total transmission function as well as for length-dependence
of the conductance. Since we divide the extended molecule region into principal layers
with nearest neighbor coupling (or mathematically spoken, we truncate the Hamilton
matrix) this result is not obvious. Furthermore we have investigated the impact of ther-
mally induced large-scale geometric change on the conductance. We combined classical
molecular dynamics calculations at room temperature with a quantum model Hamil-
tonian approach to calculate the conductance of the nano-wire. During the simulation
we find temporal conductance fluctuations of more than an order of magnitude, leading
to high-conductivity conformations that are sterically unfavorable at zero temperature.
The average conductance of these conformations explains the experimentally observed
value very well, because disorder effects on the conductance of molecular wires play an
important role in almost all experimental realizations.

The extensive experimental effort directed towards charge transport in organic nano-
wires, and the versatile amount of open questions in that area, have motivated our
studies of the relation between structural, electronic and transport properties of oligo-
phenyleneimine wires. Using density functional theory we found that, in contrast to the
oligo-phenylene wires, the two types of energy barriers of the dihedral angle rotations are
lower than 16 meV, thus we can conclude that room temperature is already sufficient to
induce full rotations of the molecular ring units. Furthermore we could deduce from our
calculations that the charge carrying frontier orbitals are not extend over the entire wire
- the electronic delocalization is limited to 3-4 repeating ring units, which explains the
experimentally observed disruption of the coherent transport in longer wires. In addition
we find for the length dependence of the conductance the characteristic exponential decay
with a decay parameter 3 — 3.29 nm !, which agrees well with the experimental findings
and confirms, that the molecular geometry obtained from density functional theory, in
particular dihedral angles, is close to the true structure.
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Chapter 7: Conclusions

Growth of palladium nano-particles in protein templates:

The last part of this work describes our investigations of hybrid protein-palladium
nano-particles which may have promising applications in novel nano-technology based
flash-memory devices as well as in cancer therapy. After the experimental success of
the palladium nanoparticle synthesis using functionalized protein templates several
questions arose. From the perspective of applications it is important to know whether
the nanoparticle grows into a porous structure induced by the presence of the protein
or forms on the outside of the protein and can grow into a compact cluster. In
addition, it was unclear how the presence of the palladium cluster affects the structure
of the protein SP1, which is essential for future applications of such a hybrid system.
Using combined molecular dynamics plus Monte-Carlo simulations we have analyzed
the protein structure before and after the palladium ion deposition. Simulating the
protein’s structure in explicit water molecules (in total about 100.000 atoms), with
molecular dynamics we obtain a ring-shaped macro-molecule with an outer diameter of
10 nm with helical substructures. Our nanoparticle growth simulation of the palladium
suggest that the nanoparticle grows as a a compact polycrystalline metal cluster
coupling via histidine residues to the protein. On this basis additional simulations
permitted the interpretation of the measured CD-spectra: We could conclude that
the protein structure remained intact after particle deposition and, thus, may be fur-
ther functionalized by genetic engineering with affinity reagents for site-specific targeting.

The present work showed, that conformational properties significantly affect coherent
quantum conductance. To explain transport measurements and optimize functionalized
nano-structures it is indispensable to consider sufficiently large extended molecule regions
in realistic arrangement. In this work we discussed the influence of disorder effects,
which definitely occur in realistic systems and can, in certain applications, dominate the
conductivity. For this purpose the multi-scale approach pursued here provides a powerful
method to consider the physics of various time and length scales at a reasonable amount
of computational costs, which will permit treatment of many further applications in the
growing field of nanoscience.
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