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Deutshe ZusammenfassungDer elektronishe Transport in nanoskaligen Strukturen wurde in den letzten zehnJahren intensiv untersuht. Hierbei hat die Herstellung von Nanokontakten durhSTM (sanning tunneling mirosope), Bruhkontakten oder durh die elektrohemisheAbsheidung zu neuen Einbliken in die Physik des Ladungstransports in Quan-tensystemen sowie zur Entwiklung vielversprehender Ansätze nanoelektronisherBauelemente geführt. Eine wesentlihe Herausforderung bei den Messungen dermolekularen Elektronik besteht in der Kontrolle der Geometrie des Kontaktes und derKopplung an mindestens zwei ebenfalls nanoskalige Elektroden. Da jedoh die genaueMolekülgeometrie im Experiment niht kontrollierbar ist, hat auh die strukturelleVariabilität einen wesentlihen Ein�uss auf die beobahteten Eigenshaften. Somitmuss in theoretishen Beshreibungen des elektronishen Transports durh Nanos-trukturen die strukturelle Variabilität mit e�zienten Methoden berüksihtigt werdenund in die quantenhemishen Berehnungen der elektronishen Eigenshaften ein�ieÿen.In der vorliegenden Arbeit wurde das Zusammenspiel von Konformation und elek-tronishen Transporteigenshaften in metallishen und organishen Nanostrukturenuntersuht. Die Charakterisierung von thermishen, elektrostatishen und durhSyntheseprozess induzierten strukturellen Ein�üssen auf den Leitwert liefert eintieferes physikalishes Verständnis des Ladungstransports in Nanostrukturen wie niht-idealisierte Quantenpunktkontakte, Nanodrähte und Nanopartikel. Zusätzlih könnendadurh zukünftige nanoelektronishe Bauelement, wie z.B. shaltbare Moleküle, fürAnwendungen gefunden und unter Berüksihtigung von Umgebungsein�üssen optimiertwerden.Um realistishe Konformationen von Nanostrukturen zu simulieren, die experimentelldurh elektrohemishe Absheidung entstehen, wurde ein e�zientes Verfahren zurSimulation des Strukturaufbaus entwikelt und implementiert, das auf klassishenWehselwirkungen basiert und Strukturen sowohl von metallishen Systemen als auhvon ausgedehnten organishen Molekülen simulieren kann. Im Gegensatz zu moleku-lardynamishen Simulationen (MD) ist es mit dem hier verwendeten stohastishenAnsatz möglih, Wahstumsprozesse zu simulieren, die auf sehr langen Zeitskalen(Sekundenbereih) statt�nden. Um die elektrohemishen Transporteigenshaften derresultierenden ausgedehnten Nanostrukturen berehnen zu können, wurde darüberhinaus eine quantenmehanishe Methode, basierend auf rekursiven Greenshen Funk-tionen (RGF) und Model-Hamilton-Operatoren, implementiert. Der Rehenaufwanddieser Methode skaliert lediglih linear mit der Länge des untersuhten Systems, so dassMoleküle mit einer groÿen Anzahl von Atomen und ausgedehnte Elektrodenfragmentein die Berehnung einbezogen werden können. Die entwikelten Methoden wurden aufdie folgenden Systeme und Fragestellungen angewendet:
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Statishe Unordnung in Metallkontakten:Als erstes wurde der ballistishe Elektronentransport in ideal kristallinen Silbernano-kontakten mit Hilfe der RGF-Methode untersuht. Bei Abwesenheit von Defektenund Unordnung und im Grenzfall kleiner Kontaktquershnitts�ähen (wenige Atom-durhmesser) ist der Leitwert ein ganzzahliges Vielfahes des Leitwertquants G0, wasin erster Linie auf die hemishe s-Kon�guration des Metalls zurükzuführen ist. DieUntersuhungen werden anshlieÿend durh Variation vershiedener geometrisherParameter auf ungeordnete Strukturen verallgemeinert und so der experimentellenSituation einer niht-idealisierten Nanostruktur angenähert: Ausgehend von einersymmetrishen Anordnung der Silber-Punktkontakte ergibt sih für eine Verkippungder Elektroden bis zu 60 Grad ein um 20% niedrigerer Leitwert, während gezeigtwerden konnte, dass eine Verdrehung (Torsion) der Elektroden nahezu keinen Ein�ussauf den Leitwert hat. Des weiteren wurde die Abshwähung der Leitfähigkeit her-vorgerufen durh Ober�ähenvakanzen statistish untersuht und eine Verringerung derLeitfähigkeit von bis zu 30% gefunden. Niht nur eine Abweihung vom f-Kristall,sondern eine qualitativ andere Atomanordnung tritt in metallishen Nanolustern auf.Während auh hier der Leitwert wesentlih von der minimalen Quershnitts�ähe desSystems abhängt wird die Fluktuationsstärke der Transmissionsfunktion vom Gesamt-durhmesser des Nanolusters bestimmt. Somit könnte man mit der Bestimmung derTransmissionsfunktion in einer Drei-Punktmessung und deren Vergleih mit den hierberehneten Resultaten auf Clusterdurhmesser und Atomstruktur shlieÿen.Atomarer Transistor:Als zweite Anwendung der implementierten Methoden wurden mehanishe, elektro-statishe und elektronishe Eigenshaften von sogenannten Einzelatomtransistorenuntersuht. Beim Experiment zum Einzelatomtransistor werden Silber-Nanokontakteelektrohemish hergestellt und �trainiert�, so dass der Leitwert der so erzeugtenNanostruktur zwishen ganzzahligen Vielfahen des Leitwertquants shaltbar ist. Fürdie theoretishe Beshreibung dieses Systems wurde eine Multiskalenmethode entwik-elt, die ein Kontinuum-Modell des Lösungsmittels, ein atomistishes (auf klassishenKraftfeldern basierend) und ein quantenmehanishes Modell miteinander kombiniert.Dies ist nötig, da in den hier untersuhten Nanokontakten physikalishe Prozessen aufvershiedenen Zeit- und Längenskalen zusammenwirken. Mit dieser Methode konnteder zu Grunde liegende Shaltmehanismus der atomaren Transistorkonformationen aufdie bistabile Spitzenrekonstruktion der Silberkontakte zurükgeführt, und das Shaltenzwishen immer wiederkehrenden Leitwertniveaus erklärt werden. Diese Niveaus werdendurh bestimmte, materialabhängige Kontaktkonformationen von besonders hoherBistabilität erreiht, analog zur hohen Stabilität von Metalllustern bei sogenannten�magishen� Atomzahlen [1℄. Speziell im Fall von Silber liegen diese Leitwertlevelsbei ganzzahligen Vielfahen des Leitwertquants G0. Die Modellrehnungen bestätigenebenfalls die experimentelle Beobahtung, dass beim Shalten einer (Silber-) Kontakt-geometrie mit niht ganzzahliger Leitfähigkeit stets ein �Einrasten� in eine Struktur mitganzzahligem Leitwert oder eine Zerstörung des Kontaktes (also G = 0) zu beobahten4



ist. Eine wihtige Eigenshaft der Einzelatomtransistoren ist ihre stabile Shaltbarkeitbei Zimmertemperatur über eine groÿe Anzahl von Shaltzyklen (Gröÿenordnung1000). Diese Beobahtung kann mit dem �Trainingse�ekt� erklärt werden, der inden durhgeführten Modellrehnungen bei wiederholtem Shalten des Nano-kontaktessihtbar wird und zu einer Verbesserung der Bistabilität mit jedem Shaltzyklus führt.Des weiteren wurde in der vorliegenden Arbeit die Wirkung der dielektrishen Dop-pelshiht, welhe durh den umgebenden Elektrolyten hervorgerufen wird, untersuhtund ein zusätzlih stabilisierender Ein�uÿ der elektrohemishen Umgebung auf denShaltvorgang nahgewiesen. Auÿerdem konnte auh der Mehanismus des Shaltenszwishen Levels mit endlihem ganzzahligem Leitwert erklärt werden: Das Auftretenvon metastabilen Konformationen bei ganzzahligem Leitwert erzeugt beim Auseinan-derziehen der Kontakte Plateaus in der Leitwertkurve. Diese Plateaus können beimInter-Level-Shalten wiederum angesteuert werden. Shwahe Leitwert�uktuationen zunihtganzzahligen Leitwerten können durh das verwendete multi-skalige Modell aufthermish induzierte Hüpfprozesse von einzelnen Atomen zurükgeführt werden.Strukturelle Unordnung in molekularen Drähten:Im dritten Teil dieser Arbeit wird die Methode der rekursiven Greenshen Funktionenin Kombination mit Molekulardynamik und Dihtefunktional-Theorie (DFT) zur Un-tersuhung von organishen Nanodrähten angewendet. Die Transmissionsfunktion undder längenabhängige Leitwert von Molekülketten konnte in guter Übereinstimmung mitErgebnissen genauerer (und deutlih aufwendigerer) quantenhemisher Methoden bes-timmt werden. Dieses Resultat ist niht selbstverständlih, da bei dem hier verwendetenAnsatz der zentrale Streubereih in Shihten mit Nähster-Nahbar-Kopplung zerlegtwird (oder mathematish ausgedrükt, die Hamilton-Matrix wird beshnitten), so dasssih der Rehenaufwand deutlih reduziert. Die somit validierte Methode wurde nuneingesetzt, um den Ein�uss thermish induzierter Struktur�uktuationen auf die Leit-fähigkeit molekularer Drähte, zunähst Oligo-Phenylen, zu untersuhen. Die Trajektorieder Molekülgeometrie wurde dabei mit klassisher Molekulardynamik berehnet und andas beshriebene Elektronentransportmodell gekoppelt, mit dem in jedem Zeitshritt derLeitwert berehnet wird. Die Simulation zeigt temporäre Leitwert�uktuationen um eineGröÿenordnung (in Einheiten von G0) und das Auftreten von Molekülkonformationendeutlih erhöhter Leitfähigkeit, die allerdings bei T = 0 durh sterishe Abstoÿungvon Molekülgruppen unterdrükt werden. Der mittlere Leitwert dieser Konformationenerklärt den experimentell beobahteten Wert sehr gut, da in nahezu allen Messanordnun-gen für den Transport durh Einzelmoleküle die Struktur�uktuationen des kontaktiertenSystems einen starken Ein�uss haben. Motiviert durh intensive experimentelle Un-tersuhungen organisher Nanodrähte und der zahlreihen o�enen Fragen auf diesemGebiet, wurde anshlieÿend die Korrelation von Struktur, elektronishen Eigenshaftenund des Ladungstransports in Oligo-Phenyleimine-Molekülen analysiert. Mit Hilfe vonDihtefunktional-Theorie wurden die vershiedenen energetishen Barrieren, die beider Torsion der Ringeinheiten des molekularen Drahtes auftreten, berehnet. Es zeigtsih, dass die Energie, die für eine vollständige Torsion zweier Ringeinheiten benötigtwird stets niedriger als 16 meV ist, woraus folgt, dass bereits bei Zimmertemperatur5



derartige Konformation energetish erlaubt sind und somit die Konjugationslänge derMoleküle reduziert wird. Des weiteren zeigen die quantenhemishen Berehnungen,dass die Ausdehnung der Molekülorbitale, die hauptsählih zum Ladungstransportbeitragen, auf drei bis vier Ringeinheiten beshränkt ist. Dies erklärt insbesondere auhdie experimentell beobahtete Änderung in der Längenabhängigkeit des elektrishenWiderstandes beim Übergang von kürzeren (1-4 Ringeinheiten) zu längeren (5-10Ringeinheiten) molekularen Drähten. Der berehnete Dämpfungsparameter, der dieLängenabhängigkeit des Leitwertes im Fall kurzer Molekülketten harakterisiert, konntein guter Übereinstimmung mit dem experimentellen Wert zu � = 3:29 nm�1 ermitteltwerden. Wegen dem Zusammenhang von Molekülgeomtrie und Leitwert, bestätigt diesinsbesondere die mit DFT bestimmten Gleihgewihtstorsionswinkel der Molekülkette.Wahstumsprozess von Palladium-Nanopartikeln in Proteintemplates:Der letzte Teil dieser Arbeit beshreibt die theoretishe Untersuhung von hybridartigenProtein-Palladium-Nanopartikeln, welhe vielversprehende Anwendungsmöglihkeiten,sowohl in neuartigen, auf Nanotehnologie basierenden Speihern als auh in derKrebstherapie, besitzen. Nahdem die experimentelle Herstellung von Palladium-Nano-partikeln unter Verwendung von Proteintemplates gelang, ergaben sih zahlreihe Fragenzum Ablauf der Strukturbildung, deren Klärung für die weitere Verwendbarkeit derNanopartikel von groÿer Bedeutung ist. In Hinblik auf zukünftige Anwendungen ist eswihtig herauszu�nden, ob das Nanopartikel, hervorgerufen durh die Gegenwart desProteins, als poröse Struktur wähst, sih eventuell im äuÿeren Ringbereih des Proteinsbildet oder zu einem kompakten Cluster wähst. Des weiteren ist auh der strukturelleEin�uss des Metalllusters auf das Protein von groÿer Bedeutung, da dieser über dieanshlieÿende Anwendbarkeit des Hybridsystems entsheidet. Mit der Kombinationvon Molekulardynamik und Monte-Carlo-Simulationen wurde die Proteinstruktur vorund nah der Deposition der Palladiumionen berehnet. Die MD-Simulation derProteinstruktur unter expliziter Berüksihtigung der Wassermoleküle der Lösung(insgesamt a. 100.000 Atome) lieferte ein ringförmiges Makromolekül mit einemäuÿeren Durhmesser von 10 nm aufgebaut aus zahlreihen helikalen Molekülketten.Die Absheidesimulation der Palladiumionen zeigt, dass das Nanopartikel als kompakterpolykristalliener Metallluster wähst und über die Histidin-Endgruppen an das Proteinbindet. Darauf aufbauend ermöglihen weitere Simulationen die Interpretation dergemessenen Cirulardihroismus-Spektren und es zeigt sih, dass auh nah dem Metall-lusterwahstum die Proteinstruktur intakt bleibt und somit zusätzlih funktionalisiertwerden und in biologishen Organismen oder neuartigen Speihern eingesetzt werdenkann.In der vorliegenden Arbeit wurde gezeigt, dass strukturelle Eigenshaften einenwesentlihen Ein�uss auf den kohärenten Elektronentransport in nanoskaligen Syste-men haben. Um Messungen des elektronishen Transports zu erklären und funktional-isierte Nanostrukturen zu optimieren erweist es sih in Modellrehnungen als unerlässlih,eine hinreihend groÿe Region des zentralen Streubereihes und eine niht-idealisierte(Molekül-)Konformation zu berüksihtigen. Untersuht wurde der Ein�uss struktureller6



Unordnung, welhe in realen Systemen stets vorhanden ist und die elektronishen Trans-porteigenshaften dominieren kann. Dabei liefert das hier entwikelte multi-skaligeModeleine leistungsfähige Methode, um die auftretenden physikalishen E�ekte, die sih aufvershiedenen Zeit und Längenskalen abspielen, mit vertretbarem Rehenaufwand zukombinieren. Somit besitzt die implementierte Methode groÿes Anwendungspotentialauf zahlreihe weitere Fragestellungen der Nanophysik.
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1 Introdution1.1 Motivation and overviewThe invention of the omputer has a�eted all areas of our life's at work as wellas private life. The key devie permitting a omputers funtionality is the entralproessing unit (CPU). When the �rst CPU's were built up from three terminal deviesbased on vauum tubes omputation mahines needed a large amount of spae andhad very limited appliability only usable by highly speialized omputer sientists.A revolutionary development, the semiondutor transistor, enabled a tremendousminiaturization saling from �bus-sized� omputers to urrent PC's with an intuitiveuser interfae. However, even metal-oxide transistor based CPU's, fabriated bylithography, have tehnial limitations regarding devie density and speed. If Moore's�law� [2℄ is orret this physial limit is reahed in the next 10 years, whih means thata ompletely new tehnology will be required to ontinue this trend, alling for a jumpsimilar to that from vauum tubes to semi-ondutor transistors.Promising ideas for suh a new tehnology are developed in the �eld of nano-eletronis, where eletroni devies omprised of individual moleules or metallinano-wires and lusters have been proposed [3℄. Nanoeletronis has the potential toplay an enormous role in enhaning a range of produts, inluding sensors, photovoltaisand onsumer eletronis. In this interdisiplinary researh omputer-sientists andphysiists have to deal with �ve key issues [4℄: basi understanding of the transportmehanisms; salability to near moleular dimensions; tolerane of manufaturingdefets; introdution of non-traditional fabriation methods, suh as hemially diretedassembly; bridging between devie densities potentially ahievable at the moleular saleand those assoiated with standard lithography; and fabriation simpliity.One of the most promising nano-sale iruits that have been investigated is the ross-bar, shown in Fig. 1.1a, whih is formed from orthogonal nano-wires having individualmoleular or moleular-sale devies sandwihed within the juntions. This approahpermits intrinsi versatility and is tolerant of manufaturing defets [5℄, thus both mem-ory and logi iruits have been demonstrated from moleular eletronis and nano-wirerossbars [6, 7℄.For the entral moleular-sale bridge (see Fig. 1.1b) of the rossed nano-wires variousmoleular swithes and moleular transistors have been proposed in past 20 years, buta omprehensive theoretial desription that aounts for their eletroni struturein a realisti strutural assembly remains di�ult. To date it has remained a bighallenge to engineer orientation and plaement of the building bloks into the desired13



Chapter 1: Introdution
!" #"

Figure 1.1: Crossbar arhiteture of a nanoeletronis moleular memory for novel futureintegrated iruits permitting orders of magnitude higher storage density. The left part of theshemati illustrates the rossbar arhiteture of nano-wires in ombination with demultiplexersbridging the miron length sale of lithography to nanometer length sale of moleular eletronis.The right part shows the operating moleule (as memory or diode) in between the rossed nano-wires (The left part of this �gure was taken from Ref. [4℄).devie arhiteture in reproduible high yields and at low osts. Reently a pioneer innanoeletronis, James R. Heath, laimed that at least three experimental items haveto be improved: �Robustness, robustness and robustness� [8℄.In a onventional semiondutor or metal wire the harge transport is ohmi. The use ofnano-sale devie systems is based on fundamentally new physis, whih deviates om-pletely from what is observed in traditional ondutors. The simplest moleular wirestruture omprises a moleule bonded through a single atom to eletrodes at the twomoleular termini. Depending on the strength of the eletrode oupling we distinguishbetween two di�erent transport mehanisms. If the eletroni wavelength beomes om-parable to the size of the juntion, novel quantization e�ets beome important:In the ase of strong eletrode-moleule oupling, preferably reated by a ovalent bondbetween eletrode and moleule, the eletrons move through suh a struture by elastisattering. In this limit �ondutane is sattering�, as was stressed by Rolf Landauer [4℄.For suh systems the total ondutane is given as a sum over individual transmissionhannels, that arise from the orbitals of the sattering moleule. One hannel arriesa maximal ondutane quantum G0 = 2e2=h = 12:8 k
�1 (e is the eletron harge, his Plank's onstant). The relative transmission of eah hannel, whih varies betweenzero and unity, is a ompliated funtion depending on the energy of the inoming ele-trons, the eletrode's density of states and the moleular orbitals. Its value in suh aomplex satterer is signi�antly a�eted by strutural disorder and thermally indued�utuations of the onformation.If the moleule is weakly bonded to the eletrodes, the eletrons are not able to �owfrom the left eletrode to the right oherently, beause the energeti barriers of theontats are too high. Indued by either thermal or eletrial exitation the eletronsan only jump di�usively from the one eletrode onto the moleule and to the other14



1.2 Outlineeletrode. This hopping mehanism proeeds on a longer time sale than the previouslydesribed elasti sattering proess, thus the eletrons spend more time on the moleule,similar to harging a apaitor. Therefore eletron-eletron and eletron-phonon e�etsplay an important role in this regime. This transport mehanism an be desribed usingMarus-theory developed by Rudolph A. Marus who was awarded the Nobel Prie in1992 for this work.Extending previous theoretial studies of harge transport in nanostrutures, whih on-sidered idealised eletrode/moleule on�gurations at zero Kelvin surrounded by va-uum [9�11℄ in the present work we will study the orrelation between strutural varietyand ondutane properties of di�erent moleular or nano-sale systems of high relevanefor appliations in future nanoeletroni devies. Using a multi-sale model, whih in-ludes environmental e�ets, we will fous on the ondutane swithing mehanisms onthe nanometer sale under the in�uene of a surrounding thermal bath and ioni solvent.1.2 OutlineThis thesis is organized as follows: We �rst give a brief introdution to the variety ofthe underlying methodologial onepts required for the spei� investigations presentedin this work. Modeling the interplay of morphologies at the atomi level with theeletroni struture is a entral issue of the present work. Therefore, we begin with ashort desription of the basi ideas of the simulation tehniques desribing struturalhanges, suh as the moleular dynamis and the Monte-Carlo method. Both methodsare based on lassial fore �elds and thus permit simulation of systems ontaining ahigh number of atoms, but annot desribe quantum e�ets. Next we desribe howwe ouple suh methods to the quantum mehanial level using tight-binding likemodel Hamiltonians and density funtional theory. On the basis of these desriptionsof atomisti morphology and eletroni struture alulations we turn to the study ofeletroni harge transport in the oherent limit. We brie�y reapitulate the Landauer-Büttiker sattering formalism [12℄ and the related onept of treating the semi-in�niteeletrodes via self-energies [13℄. In the investigations presented in the following we needto treat extended nano-juntions, ontaining a large number of atoms, whih hangetheir onformation. Treatment of dynami proesses on the quantum mehanis levelrequires an very e�ient approah to alulate the ondutane. In the �nal setion ofthis hapter we derive the reursive Green's funtion formalism, whih allows treatmentof extended nano-juntions during dynami proesses at the quantum level.In the third hapter we apply these methods to alulate the oherent ondutane ofrystalline silver nano-juntions and examine the dependene of the ondutane on theminimal ross-setion. We systematially vary the geometry of the nano-juntion tore�et more omplex and more realisti situations by brie�y introduing di�erent kindsof disorder. We investigate the in�uene of strutural displaement and the ourreneof vaanies, whih has been negleted in most previous theoretial studies, but isalways present in experiments. Furthermore we investigate the transmission funtions15



Chapter 1: Introdutionof silver nano-lusters of varying size in a sanning tunneling mirosope setup andpropose an approah to determine the luster's diameter and onformation from thetransmission funtion. Our results demonstrate the auray of the reursive Green'sfuntion formalism and give �rst insights into the in�uene of di�erent types of disorderon the eletroni transport.In hapter four we investigate a promising experimental approah to realize an a-tive nano-eletroni building blok, the atomi transistor developed by the group ofProf. Shimmel (KIT, IAP and INT), whih present a hallenging ase study for theonformational in�uene on quantum transport. The experiment is based on a silverquantum point ontat fabriated by eletrohemial deposition and allows for bistableswithing between integer levels of quantum ondutane. We develop a multi-salemodelling approah for eletrohemial three-terminal devies and develop a theory forthe underlying swithing mehanism of the atomi transistor that integrates atomistidynamis with quantum transport e�ets. An important feature of the atomi transistorexperiment is the tremendous stability of repeated swithing between di�erent quantizedondution states in partiular at room temperature. The results of our model givenew insights into the reasons for this stability. Furthermore we disuss the mehanismthat permits swithing between onduting states with integer quantum ondutane,although the details of the levels are material spei�. Measurements at high timeresolution yield additional substrutures when the ondutane is measured as a funtionof time. Using our model we explain this observation and trae it bak to �utuationsof single atoms in meta-stable positions. We also disuss the in�uene of the eletrolyteon eletrode deposition and swithing of the devie. The results of this hapter lead tobetter understanding of the atomi transistor experiment, but also give new insights intothe physis of harge transport in non-idealized nano-juntions during onformationalhange.Motivated by reent experimental investigations of harge transport mehanisms inorgani wires, we present in hapter �ve the results of extensive investigations ofoligo-phenylene and oligo-phenyleneimine moleular wires. We demonstrate that thereursive Green's funtion method yields the orret length dependene of the ondu-tane and investigate the energeti torsional barriers a�eting the total transmissionof the nano-wire. In addition we ombine a moleular dynamis simulation of thewire at room temperature and evaluate the ondutane for many snapshots of theonformation. We �nd strong thermally indued �utuations of the ondutane,whih are negleted in almost all present-day desriptions of ballisti ondutane usingdensity funtional theory. We onlude the hapter with an analysis of transport througholigo-phenyleneimine moleular wires. Calulating strutural, eletroni and transportproperties of oligo-phenyleneimines we obtain new insights into the harge transportmehanisms in organi nano-wires with respet to their strong onformational variability.In hapter six we assist interpretation of a hybrid protein/palladium nano-partile sys-tem, with promising appliations in future �ash-memory devies or in aner therapy,by a strutural analysis. This study was motivated by a ollaboration with the experi-16



1.2 Outlinemental groups of Prof. O. Shoseyov (University of Rehovot, Isreal) and Dr. S. Behrens(KIT, ITC). Using moleular dynamis simulations we optimize the struture of the pro-tein and evaluate its stability at room temperature in the presene and absene of thenanopartile in the system. To explain the experiment we have developed a method forthe eletrohemial palladium nano-partile deposition simulation. The omparison ofstrutural �utuations of the protein itself and protein funtionalized with the nanoparti-le rationalizes the interpretation of the irular dihroism spetra and gives new insightsinto the fabriation of metal nano partiles by protein templates.Chapter seven summarizes this thesis and presents the main onlusions of this study.
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2 Numerial methodsIn the simulations of nanosale systems one major goal of the present thesis is to takea broad variety of e�ets into aount whih result from physial proesses on di�erenttime and length sales. In this setion we will brie�y desribe the main ideas of theatomi struture simulation methods, based on lassial fore�eld, and quantum hem-istry methods employed in this work. Speial emphasis is put on the desription of theoherent transport theory, Landauer-Büttiker formalism, and on the reursive Green'sfuntion method, in partiular, sine this algorithm was implemented here for e�ientmaterial spei� transport alulations of nano-juntions ontaining a high number ofatoms.2.1 Atomi struture alulation2.1.1 Moleular dynamisMoleular dynamis (MD) simulation is a tehnique to ompute the equilibrium anddynami properties of a lassial many-body system, meaning that the basis of the ap-proah are Newton's equations of motion and quantum mehanial e�ets are not takeninto aount expliitly. The atom dynamis is treated within the Born-Oppenheimerapproximation [14, 15℄, where the eletrons are assumed to follow the lassial nuleusinstantaneously. Here the in�uene of the eletrons is not treated expliitly, but oneaounts for their average e�et by analytial interation potentials among the nulei.Moleular dynamis simulations generate information on the mirosopi level, in parti-ular atomi positions and veloities as a funtion of time, whih has to be translated intomarosopi observable like pressure, heat apaity, di�usion oe�ient, et. by meansof statistial mehanis.The MD method, whih is today exploited in a wide range of appliations in fundamentaland applied siene, was introdued by Alder and Wainwright in the late 1950's [16, 17℄to study the interation of hard spheres. The next major advane was in 1964, whenRahman arried out the �rst simulation using a realisti potential for liquid argon [18℄followed by the �rst protein simulations whih appeared in 1977 with the simulation of thebovine panreati trypsin inhibitor (BPTI) performed by MCammon et al. [19℄. Todaythere is a broad literature of moleular dynamis simulation results ranging from atomiand solid state physis to soft matter appliations [20,21℄ and speialized tehniques forpartiular problems, inluding mixed quantum mehanial - lassial simulations, havebeen developed [22, 23℄ overing also the length- and time-sale gap of omplex �uidswith hybrid simulation tehniques, where MD simulations are one of the omponents.Newton's equations of motion are the basi dynamial equations in moleular dynamis.19



Chapter 2: Numerial methodsAssuming a system of N point partiles of mass mi (i = 1; :::; N) at positions ri andveloity _ri they are given by mi d2dt2 ri = Fi: (2.1)The ourring fores Fi on partile i are obtained from the potential energy U(r1; :::; rN)with Fi = �rriU . These equations provide a solution ontaining the omplete infor-mation of a system for partiular initial onditions, i.e. at t = 0, ri(0) and _ri(0). Analternative formulation is given by Hamiltonian equations of motion for the generalizedmomenta pi and positions ri following from the HamiltonianH = NXi=1 p2i2mi + U(r1; :::; rN) (2.2)leading to the anonial equations_ri = rpiH; _pi = �rriH (2.3)=) _ri = pimi ; _pi = �rriU(r1; :::; rN): (2.4)An important advantage of this approah is, that the validity of the numerial solutionan be heked by ertain onservation laws. I.e. in onservative systems, where theexternal potential is time independent, the total energy H is onserved. Moreover, thesystems under onsideration are invariant with respet to translation, i.e. Pimi�ri =0 and the equations of motion (2.1) are reversible in time as well and anonial, i.e.onserving phase spae volume. If the equations of motion are solved orretly, theomputer-generated trajetories will also exhibit these properties.The broad spetrum of marosopi properties of materials is tightly related to thefores among their elementary building bloks. Sine their properties range from spatialstruture of solids to the seondary and tertiary struture of biologial supramoleularsystems, it is desirable to ahieve a representation of the atual interations in termsof the lassial potential energy U(r1; :::; rN) as aurate as possible. The potentialenergy of N interating atoms an be divided into terms depending on the oordinatesof individual atoms, pairs, triplets et.:U(r1; :::; rN) =Xi u1(ri) +Xi Xj>i u2(ri; ri) +Xi Xj>i Xk>j>iu3(ri; rj; rk) + ::: : (2.5)The �rst term (u1) represents the e�et of an external �eld on the system, e.g., gravita-tional fore, eletri �elds, box walls, et.. Partile interations are represented by theremaining terms, where the pair interation u2 is the most important. In many ases theomputational osts to evaluate the higher order terms like u3 are to high, thus the pairpotential is hosen suh that it inludes triplet and higher order interations. Typialatomi pair potentials are the Hard-sphere potential, the Coulomb potential and the20



2.1 Atomi struture alulationLennard-Jones potential ULJ(r) = 4� ���r �12 � ��r �6� (2.6)with r denoting the distane between two atoms. The potential onsists of a steep risingrepulsive wall at short distanes (� r�12) apturing the non-bonded overlap betweenthe eletron louds and an attrative tail at large seperations (� r�6), essentially dueto orrelations between the eletron louds surrounding the atoms (�van der Waals� or�London� dispersion).However, to aount for all aspets of hemial bonding, partiularly in the ase ofmoleules, inluding the reations whih form and break bonds would require a quantummehanial desription. In MD simulations for non-reating moleules the problem issolved by aounting for the internal moleular degrees of freedom, i.e. bond length,bond bending and torsion, in terms of appropriate potential funtions. A simple MDfore �eld for a moleule reads asU(r1; :::; rN) = Xbonds kbi2 (ri�li)2+Xangles kai2 (�i��eq;i)2+ Xtorsion kti2 [1+os(ni�i�i)℄+ULJ+UC :(2.7)The ovalent bonds are desribed by the �rst term with the equilibrium bond length li.The seond term aounts for restritions in the bond angle banding due to overlappingeletroni louds of bond atoms. Similarly, the third term desribes the interations ofthe eletroni louds of atoms separated by three bonds (torsion potential). Further apartatoms in a moleule interat via the non-bonded Lennard-Jones and Coulomb potentials,similar to unbounded atoms. A number of algorithms have been suggested to integrate
r

φ

Θ

Figure 2.1: Internal oordinates ouring in MD fore �les of moleular systems: atomidistane r, bond angle � and torsion angle �.Newton's equations of motion. Some of them are more suitable than others. A simplebut very e�ient algorithm, whih satis�es the important onservation laws is alledveloity Verlet algorithm. It an be derived by Taylor expansion of the oordinates of apartile at time t and reads as:1. Initial onditions: positions fr(0)g, veloities f _r(0)g, fores fF(0)g2. Calulation of new positions aording tori(t + h) = ri(0) + (t+ h)_ri(0) + (t+ h)22mi Fi(0) (2.8)21



Chapter 2: Numerial methodsCalulation of veloities _ri(t+ h=2) = _ri(t) + h2miFi(t) (2.9)3. Calulation of fores using positions r(t+ h)Fi(t+ h) = Fi(fr(t+ h)g) (2.10)4. Calulation of veloities_ri(t + h) = _ri(t+ h=2) + h2miFi(t+ h) (2.11)5. Go to the next time step (t + 2h) and ontinue with (2.).The simulations desribed so far apply to a losed system with a given number of par-tiles N in a �xed Volume V at onstant energy E. If we assume that time averagesare equivalent to ensemble averages, then the averages obtained in suh a simulationare equivalent to ensemble averages in the miroanonial ensemble (NV E-ensemble).However, various physial situations require simulation of other ensembles by inlusionof the environment into simulation, e.g. via speial boundary onditions, thermostat im-plementations and solvent desriptions at di�erent levels. For these and other tehnialdetails of moleular dynamis the reader is referred to the literature [24�30℄.2.1.2 Monte Carlo methodsMonte Carlo methods (MC) tend to be used when it is unfeasible or impossible to om-pute an exat result with a deterministi algorithm, whih happens typially if the las-sial or quantum mehanial problem inorporates a vast number oupled degrees offreedom. Therefore, an observable of a large number of partiles or spins is alulated,e.g. the free energy, whih is de�ned as multidimensional integral (over positions, velo-ities or spin states) and an estimate of the integral is obtained by averaging the valueof the observable for a �nite number of on�gurations. In Monte Carlo simulations thissequene of on�gurations is stohasti, rather than the deterministi time evolutionof on�gurations realized in a moleular dynamis simulation. This strategy has beensuessfully employed to many di�erent kinds of problems on physis inluding thermo-dynamis, struture and dynamis alulations, sine the �rst simulations were employedby Metropolis et al. in the early 1950's [31℄ and due to a onstant inreasing apaityand availability of omputer power as well as ontinuing development of speialized algo-rithms the Monte Carlo methods have beome a major tool for physiists and hemists.As the 'quality' of the random sampling is a key to an aurate solution provided by aMC algorithm Metropolis et al. introdued the so alled importane sampling, whereason�gurations are generated proportional to their Boltzmann weight. In the following wewill denote the states of a system of N partiles or spins, whih transitions are examined,as rN = o (o = old) and r0N = n (n = new) and thus for generating a sequene22



2.1 Atomi struture alulationof states obeying the Boltzmann distribution. State o has a Boltzmann fator givenby exp [��U(o)℄ =Q(N; V; T ), where U(o) is the potential energy of this on�guration,� = 1=kBT the presribed thermal energy and Q(N; V; T ) being the lassial limit of theprobability density funtion. In equilibrium there is no net �ow between the states oand n, meaning that in equilibrium the number of aepted trial moves from state o to apartiular state n should be exatly balaned by the number of aepted trial moves froma partiular state n to o. This ondition is alled detailed balane and an be written asp(o)T (o! n) = p(n)T (n! o); (2.12)where p(�) is the probability to be in state � and T (� ! o) denotes the transitionprobability to go from a state � to a state �. The transition probability itself is aprodut of two proesses, the reation of a trial move C(o ! n) and the aeptane ofthis trial move A(o! n), T (�! �) = C(�! �)A(�! �): (2.13)In many Monte Carlo appliations the reation of the trial moves is a symmetri proess,i.e. the reation of the forward and bakward moves have the same probability and thusC(� ! �) = C(� ! �). Using this form, inserting eq. (2.13) in (2.12) and usingBoltzmann weight p(�) = exp[��U(�)℄ gives,p(n)p(o) = A(o! n)A(n! o) = exp f��[U(n)� U(o)℄g (2.14)The hoie for A(o ! n) to ful�ll this ondition is not unique, but one of the moste�ient and most ommonly used is the Metropolis rule,A(o! n) = min(1; exp f��[U(n)� U(o)℄g) (2.15)In pratie a Monte Carlo translational move is performed as follows [23℄:1. selet a partile i at random2. alulate the present energy Ui(o) of partile i3. move partile i randomly ri(n) = ri(o) + RND ��r (2.16)4. alulate new energy Ui(n) of partile i5. aept/reinjet the move aording to the Metropolis ruleIn the sheme above RND denotes a random number in the interval [�1; 1℄ and � is themaximum displaement step, whih is typially a tunable parameter of the implementa-tion. The magnitude of �r determines the e�ieny of the Monte Carlo proedure. Ifthe parameter is to large, many of the trial steps are rejeted, but if the parameter is to23



Chapter 2: Numerial methodssmall phase spae is sampled very slowly. A useful hoie for �r is a value suh that halfof the trial moves are aepted [23℄. For the aeptane deision an additional randomnumber �RND in interval [0; 1℄ is generated and if �RND < p(o)=p(n) the move is realized.More details on the foundations of MC-algorithms an be found in literature [32�36℄.An important extension to the standard MC approah is the so alled kineti MonteCarlo method (KMC) taking the time sale of the dynami proess into aount. Ifthe parametrized potential gives an aurate desription of the atomi fores for thematerial being and assuming both that quantum mehanially e�ets are not importantand that eletron-phonon-oupling e�ets are negligible, then the dynamial evolutionwithin moleular dynamis would be a very aurate representation of the real physialsystem. However, a serious limitation of MD is that aurate integration requires timesteps short enough (� 10�15s) to ahieve a onverged solution. Consequently, the totalsimulation time is typially limited to less than one miroseond, while proesses wewish to study (e.g., di�usion and annihilation of defets after a asade event) often takeplae on muh longer time sales. This so alled time-sale problem is partially solved bythe KMC approah, whih attempts to overome this limitation by exploiting the fatthat the long-time dynamis of this kind of systems typially onsists of di�usive jumpsfrom state to state rather than following a trajetory. This pathway of di�usive jumpsis indiated in �g. 2.2. We imagine that for eah M esape pathways we have an objetwith a length equal to the rate onstant kij for the pathway. We assume these objetsput end to end giving a total length ktot. One has to hoose now a single random positionalong the length of this stak of objets, thus the proedure gives a algorithm of hoosinga partiular pathway, that is proportional to the rate onstant for that pathway. Theaverage time for the system to esape from a state i into a state j is denoted as � . It isrelated with the total esape rate ktot =Xj kij (2.17)with kij being the transition rate form state i into state j. Assuming an exponential timedependene for the transition probability pij(t) = kij exp(�kijt) leads straight forwardto exponentially distributed random numbers for the esape time t. Therefore, we �rsthoose a random number r on the interval [0; 1℄, alulate its negative logarithm andmultiply it with the inverse esape rate 1=k:t = �1k ln(r): (2.18)This strategy permits a rejetion free �residene-time� proedure (visualized in �g. 2.2),whih is often referred to as BKL algorithm, due to the work by Bortz, Kalos andLebowitz ourring in 1975 for the simulation of an Ising spin system. It is import tonote, that the transition rates kij an not be obtained by KMC itself, rather have to bealulated by other models, e.g. in the ase of quantum systems the transition rates anbe obtained from Fokker-Planks equation. Additional informations on this approahan be found in [37, 38℄.24



2.2 Eletroni struture alulation
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&Figure 2.2: Shemati desribion of the kineti Monte Carlo method. Every state transitionours with a ertain rate ki, thus the total esape rate from a state is the sum ktot, whih isequal to the length of the vertial lines.2.2 Eletroni struture alulationIn the previous setion we disussed two methods for the alulation of atomi struturesusing lassial, material spei� fore�elds. Their main advantage is the desription ofsystems ontaining large numbers of atoms at long time-sales (range of seonds), whihwould be prohibitively ostly for quantum hemistry methods. However, sine we areinterested into the orrelation between struture and eletroni/transport properties, wewill solve the quantum mehanial problem for atomi strutures given by our fore�eldmethods. In this setion we brie�y disuss the quantum mehanial methods used here� semi-empirial model Hamiltonians and density funtional theory.2.2.1 Extended Hükel HamiltonianIn the present study we need to develope a model for the eletroni struture of nano-juntions ontaining more than 800 atoms. In priniple this would be also possible withdensity funtional theory, but due to the fat that the eletroni Hamiltonian has to beinverted for several snapshots of a system during a dynami proess DFT or ab initiomethods would be prohibitively ostly. Therefore, we deided to use semi-empirial ap-proximations whih where suessfully applied to a large variety of nanostrutures, e.g.organi moleules [13℄, nanotubes [39℄ and metalli nanowires [40, 41℄, and give at leastqualitative preditions of the eletroni properties.One method is based on the so alled extended Hükel approximation [42, 43℄, whihis one of the �rst quantum hemistry methods and was developed in 1963 by RolandHo�mann. He generalized the original Hükel method (whih onsiders only �-orbitals)and takes also the �-orbitals into aount. As usual in quantum hemistry alulationswe deouple the eletroni and atomi nulei Hamiltonian, whih is also known as Born-Oppenheimer approximation [14, 15℄, based on the ratio of mass mnu=mele � 1860, so25



Chapter 2: Numerial methodsthe eletrons follow the nulear movement quasi adiabatially. In the extended Hükelmethod only valene eletrons are onsidered and the inner shell eletrons are assimilatedin an e�etive nulear ore potential. The non-interating valene eletrons are treatedvia the single partile HamiltonianH0 = � MXi=1 "iyii � MXi;j=10tijyij (2.19)Here the index i enumerates all appearing atomi orbitals. If we have N atoms in thesystem and nk denotes the number of orbitals in atom k then i = 1+Pl�1k=1 nk; :::;Plk=1 nkenumerates all orbitals of atom l. The diagonal elements of the Hamiltonian "i are takenas the negative of the �rst ionization energies of the atom orreted by spetrosopiterms to deal with the situation where the ionization is not removing the orbital inquestion. The operator yi (i) follows the notation of seond quantization and reates(removes) an eletron in orbital i. The o�-diagonal matrix elements of the Hamiltonianare alulated aording to the modi�ed Wolfsberg-Helmholtz formula [43℄ and relatesthe diagonal elements "i; "j and the overlap matrix element Sij as follows:tij = � 2("i + "j)Sij: (2.20)The onstant  is also part of the Wolfsberg-Helmholtz approximation and set to anaverage value of 1:75 [43℄, but in general  is a funtion of the ontributing orbitals i andj. As usual the overlap matrix element is given bySij = Z d3�r ��i (�r� ri)�j(�r� rj); (2.21)whih is equal to Æij in the ase of orthogonal basis funtions �i(�r). In the present studywe use so alled Slater type orbitals (STO) [44, 45℄�STOnlm (r; #; ') = Nrn�1e��rYlm(#; ') (2.22)in all alulations ombined with the extended Hükel method. Here N is a normalizationonstant and the parameter � ourring in (2.22) is related to the e�etive harge of thenuleus, whih is partially sreened by inner shell eletrons, and the quantum numbersn; l;m. In the following appliation of this model to the atomi transistor onformers(see hapter 4) and moleular wires (see hapter 5), we inlude the outer s�, p� andd�orbitals (i.e. 9 orbitals per silver-atom).Widely used in quantum hemistry alulations are also Gaussian type orbitals (GTO)[46℄ de�ned by: �GTOnlm (r) = N�ijk(x� R1)i(y �R2)2(z � R3)ke��(r�R)2 ; (2.23)with a Gaussian type radial part. In general STO's should be preferred, beause theyexhibit the orret behavior of the moleular orbital lose to the nulei (where the wave26
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+,*Figure 2.4: Comparison between the frontier orbitals of benzene. The upper row showsthe extended Hükel theory (EHT) results using a STO basis set. The row below shows DFTresults obtained with Gaussian orbitals and the BP86 funtional for the exhange-orrelationenergy, taken from ref [51℄. The qualitative shape of the orbitals HOMO-1, HOMO and LUMOis approximately identially at the di�erent levels of theory, however in the ase of LUMO+1deformations of the EHT orbitals are visibleshown in 1988 in ref. [50℄, that this approah is also useful in prediting the �rst unou-pied levels. The reason for the good performane of extended Hükel in alulating the�rst exitation energies was disussed in [50℄ and traed bak to the fat, that the formof this model Hamiltonian is derivable from the non-empirial Hartree-Fok-Roothanmethod.2.2.2 Mean �eld theory and neglet of di�erential overlapThe extended Hükel method is a pure single-partile model - no eletron-eletron in-teration is taken into aount. A �rst step towards the inlusion of eletron-eletroninteration is to treat the surrounding eletron gas of an eletron as mean �eld, whihis the underlying idea of the Hartree-Fok and semi-empirial moleular orbital meth-ods [23℄. Semi-emirial approahes are normally formulated within the same oneptualframework as ab initio methods, but they neglet many smaller integrals to speed upthe alulations. In order to ompensate for the errors aused by these approximations,empirial parameters are introdued into the remaining integrals and alibrated againstreliable experimental or theoretial referene date. In urrent pratie semi-empirialmethods serve as e�ient omputational tools whih an yield fast quantitative estimatesfor a number of properties. Compared with ab initio or density funtional methods, semi-empirial alulations are muh faster, typially by several orders of magnitude [52℄, butthey are also less aurate with errors that are less systemati and thus harder to or-ret. Sine all semi-empirial models are based on the Hartree-Fok method we will givea short derivation of this type of mean �eld Hamiltonian.Assuming a system of interating partiles desribed by the HamiltonianH = H0 + Vint (2.24)28



2.2 Eletroni struture alulationH0 =Xi "iyii (2.25)Vint = 12 Xi;i0;k;k0 Vikyiyki0k0 (2.26)with the single eletron part H0 and the interation potential Vint. Using Wik's theorem,that states that if the partiles an be treated as being independent (whih is preiselythe mean-�eld assumption) then the four-term operator an be expressed by all possiblepairings of operators while keeping trak of sign hanges if two fermions are interhanged:yiyki0k0 � yii0hykk0iMF + hyii0iMFykk0� yik0hyki0iMF � hyik0iMFyki0� hyii0iMFhykk0iMF � hyik0iMFhyki0iMF (2.27)where the upper sign is for bosons and the lower sign is for fermions. The expetationvalue h�iMF is de�ned as hVinti = Z�1MFTr[e��HMFVint℄ and ZMF = Tr[e��HMF ℄. In order toavoid double ounting in (2.27) we have to subtrat the averages at the end of (2.27). The�rst two terms represent the diret interation beause they give the lassial expetationvalue between two densities, while the exhange terms represent a quantum mehanialorretion to this. Applying this to the interation potential (2.26), we obtain on onehand from the diret interation term the so alled Hartree approximationV Hartreeint = 12XVik;i0k0�nkk0yii0 + 12XVik;i0k0�nii0ykk0 � 12XVik;i0k0�nii0�nkk0; (2.28)and on the other hand from the exhange term the so alled Fok termV Fokint = �12XVik;i0k0�nik0yki0 � 12XVik;i0k0�nki0yik0 + 12XVik;i0k0�nik0�nki0: (2.29)with �nik = hyikiMF. Finally the mean-�eld operator of the Hartree-Fok method writesas HHF = H0 + V Fokint + V Hartreeint (2.30)Semi-empirial quantum hemistry methods use (2.30) as starting point and apply ad-ditional approximations to HHF. Traditionally there are three levels of integral approx-imation [53, 54℄ - CNDO (omplete neglet of di�erential overlap), INDO (intermediateneglet of di�erential overlap) and NDDO (neglet of diatomi di�erential overlap) whihis the best (of these three) sine it retains the higher multipoles of harge distributions inthe two enter interations (unlike CNDO and INDO whih trunate after the monopole).The NDDO Hamiltonian HNDDO inludes only one-enter and two-enter terms whihaounts muh for its omputational e�ieny. An additional approximation in NDDOours in its eigenvalue problem Pi(HNDDOik � Sik"j)kj = 0, where the overlap matrixis set to Sik = Æik. Coneptually the one-enter terms are taken from atomi spetro-sopi data, with the re�nement that slight adjustment are allowed in the optimizationto aount for possible di�erenes between free atoms and atoms in a moleule. The one-
29



Chapter 2: Numerial methodsenter two-eletron integrals derived from atomi spetrosopy data are onsiderablysmaller than their analytially alulated values, whih is (at least partly) attributed toan average inorporation of eletron orrelation e�ets.2.2.3 Density funtional theoryIn many ases the EHT or NDDO approah simpli�es the onsidered quantum systemtoo strongly, e.g. if atoms with onsiderably di�erent eletronegativity are involved orhighly aurate atomi strutures are needed. However, a diret solution of the many-body Shrödinger equation depending on 3N spatial variables, with N being the numberof eletrons, seems to be unfeasible sine even for small moleules N is often largerthan 100 or for solids N � 1023. Obviously the solution an not be obtained withoutapproximations and the many eletron wave funtion is a muh too ompliated objetto understand or predit material properties. Density funtional theory formally reduesthe many eletron problem to a single eletron problem and uses the eletron densitydistribution n(r) as the elementary quantity instead of many eletron wave funtions,an idea whih goes bak to Thomas [55℄ and Fermi [56℄ and was extended by Hohenbergand Kohn [57℄.For simpli�ation, we onsider a non-relativisti, non-spin-polarized, time-independentmany-eletron system at zero temperature, whih has a non-degenerated ground state  desribed by the Shrödinger equation"� ~22m NXi r2i + NXij U(ri; rj) + NXi vext(ri)# (r) = E (r): (2.31)Here U(ri; rj) = e2jri � rjj�1 denotes the eletron-eletron interation and vext(ri) thestati external potential due to interation of eletrons with the atomi nulei. Thekineti energy operator and the interation potential are universal in the sense that theyare the same for any system, while vext is system dependent.The known Hohenberg-Kohn theorem states that (i) there is a unique mapping from theexternal potential to the ground state density and (ii) that the ground-state densityis a uniquely determined funtional of the external potential n0[vext(r)℄. The onse-quene of the �rst statement is, that sine every wavefuntion  (not only the groundstate wave funtion) is trivially a funtional  [vext((r)℄ of the external potential, thewavefuntion  [vext[n0(r)℄℄ is also a funtional of the ground state density. Thus everyquantum mehanial observable, i.e. every expetation value h jÔj i is a funtional ofthe ground-state density. The seond statement of the Hohenberg-Kohn theorem is thata unique funtional E[n(r)℄ of the eletron density n(r) exists, whih under the ondi-tion R n(r) d3r = N obtains its minimum for the ground-state density n0(r) and givesthe ground-state energy as E0 = E[n0(r)℄. The proof of the Hohenberg-Kohen theoremfor non-degenerate ground states is simple and proeeds by redutio ad absurdum. It isshown that a ontradition arises if one assumes that two di�erent ground states  0 6=  00,arising from two di�erent potentials v 6= v0+onst, lead to the same ground-state densityn0(r). The proof is based on Rayleigh-Ritz priniple for the ground state energy, whih30



2.2 Eletroni struture alulationis given by E0 = h 0jĤvj 0i assuming a normalized wavefuntion. The omplete proofan be found e.g. in [23℄.Unfortunately, for most physial properties it is not known how they an be alulateddiretly from the ground state density. Therefore, the seond part of the Hohenberg-Kohen theorem, whih is the minimum priniple for the ground state energy E0, is ofpartiular importane. Aording to Levy [58℄ the unique energy funtional E[n(r)℄ anbe de�ned as the minimum over all wavefuntions, whih deliver the density n(r),E[n(r)℄ = min !nh jT̂ + Û + V̂extj i (2.32)and an be written as E[n(r)℄ = F [n(r)℄ + Z d3r n(r)vext(r): (2.33)Here the simple funtional dependene on vext is expliitly displayed. The funtionalF [n(r)℄ = min !nh jT̂ + Û j i (2.34)is universal, whih means that it does not depend on vext and is the same for all systemsdesribed by the Shrödinger equation (2.31). From (2.32) one obtainsE[n(r)℄ = h minn jT̂ + Û + V̂extj minn i � E0; (2.35)where  minn is de�ned as the wavefuntion, whih delivers the minimum, and where theinequality follows from the Rayleigh-Ritz minimum priniple for the ground state energyE0. If the ground state wavefuntion  0 is used in (2.32) one obtainsE[n0(r)℄ � h 0jT̂ + Û + V̂extj 0i = E0 (2.36)where it has been used that the ground-state wavefuntion delivers the ground-stateenergy and where the inequality follows from (2.32), beause E[n0(r)℄ is de�ned as theminimum over all wavefuntions, whih give the ground-state density n0(r), and one ofthese wavefuntions is the ground state wavefuntion  0. Sine (2.35) is valid for anydensity, it is also valid for the ground state density. This leads to E[n0(r)℄ � E0, whihtogether with (2.36) shows E0 = E[n0(r)℄ and establishes the minimum prinipleE0 = minn E[n(r)℄: (2.37)Here the minimization is over all densities whih arise from antisymmetri wavefuntionsfor all N eletrons. This variational priniple an be used to determine the ground-state density of n0(r) and energy E0 provided that the funtional F [n(r)℄ an be de�nedexpliitly, whih is, however, only possible approximately.As important as the the Hohenberg-Kohn theorem is the idea of Kohn and Sham [59℄, tointrodue a �titious auxiliary non-interating eletron system with an e�etive externalpotential veff(r). This e�etive potential is onstruted in suh a way that the density31



Chapter 2: Numerial methodsof the auxiliary non-interatig system equals the density of the interating system ofinterest. The Hohenberg-Kohn theorem (applied for U � 0) guarantees the one-to-oneorrespondene between the densities and the e�etive potentials. While the funtionalF [n(r)℄ in (2.33) and (2.34) is universal with respet to the external potential, it evidentlydepends on the interation U . For U � 0 the funtional F [n(r)℄ redues the kinetienergy funtional Ts[n(r)℄ of non-interating eletrons and the total-energy funtionalan be written as Es[n(r)℄ = Ts[n(r)℄ + Z d3r n(r)veff(r): (2.38)The Hohenberg-Kohn variational priniple (2.37) then lead to the Euler-Lagrange equa-tion ÆÆn(r) �Es[n(r)℄ + � �N � Z d3r n(r)�� = ÆTs[n(r)℄Æn(r) + veff(r)� � = 0 (2.39)where a Lagrange parameter � is used to guarantee the harge onservation N =R d3r n(r). Equation 2.39 provides an exat way to alulate the ground-state den-sity n(r) provided that the potential veff(r) is known, sine the funtional Tsn(r) for thekineti energy of the non-interating eletrons an be impliitly onstruted by using thesingle-partile wave-funtions (orbitals) �i(r), whih allow to represent n(r) and Ts inthe formn(r) = oXi j�i(r)j2 and Ts[n(r)℄ = oXi Z d3r ��i (r)�� ~22mr2r��i(r) (2.40)where i denotes both the spatial as well as the spin quantum numbers and where the sumis over the lowest N (oupied) eigenstates to respet the Pauli priniple. The variationof E[n(r)℄ with respet to the orbitals leads to the Kohn-Sham equations�� ~22mr2r + veff (r)� ���i(r) = "i�i(r); (2.41)where the "i represent Lagrange parameters, whih guarantee that the orbitals are nor-malized as h�ij�ii = 1. To apply this sheme, a useful expansion of the e�etive potentialveff must be found. The important ahievement of Kohn and Sham was the suggestionto write equation (2.33) asE[n(r)℄ = Ts[n(r)℄ + Z d3r n(r)vext(r) + e22 Z d3rd3r0 n(r)n(r0)jr� r0j + Ex[n(r)℄: (2.42)Here the last term is the so alled exhange-orrelation energy funtional de�ned asEx[n(r)℄ = F [n(r)℄� Ts[n(r)℄� e22 Z d3rd3r0 n(r)n(r0)jr� r0j (2.43)As before, Ts[n(r)℄ is the kineti energy funtional (2.40) of non-interating eletrons.
32



2.2 Eletroni struture alulationThe variational priniple applied to (2.42) givesÆTs[n(r)℄Æn(r) + vext(r) + e2 Z d3r0 n(r0)jr� r0j + ÆEx[n(r)℄Æn(r) � � = 0: (2.44)This equation is formally idential with the Euler-Lagrange equation (2.39) of the non-interating eletron system with the e�etive potentialveff (r) = vext(r) + e2 Z d3r0 n(r0)jr� r0j + vx[n(r)℄(r) (2.45)where the exhange orrelation potential is de�ned asvx[n(r)℄(r) = ÆEx[n(r)℄Æn(r) : (2.46)
Equations (2.40) and (2.41) are the most famous Kohn-Sham equations, whih are prob-ably the most important equations in density-funtional theory. Sine the e�etive po-tential depends on the density via (2.45) and the density on the e�etive potential via(2.40) and (2.41), these equations must be solved self-onsistently: starting from a trialdensity the e�etive potential is determined by (2.45), for whih (2.40) and (2.41) aresolved to determine the new density. This proess is repeated until the new densityequals the previous one.The density-funtional theory presented above is exatly in priniple, however the densityfuntionals Ex[n(r)℄ and vx[n(r)℄, in whih all ompliations of the many-partile prob-lem are hidden, are not exatly known and must be approximated. The widespread useof density-funtional theory in alulating physial and hemial properties arises fromthe fat, that approximations for Ex and vx have been found, whih are both simple andaurate enough for pratial appliations. A simple but remarkably good approximationis the so alled loal density approximation (LDA), whih approximates the Ex[n(r)℄ atevery point r with the loal exhange-orrelation energy of a homogeneous eletron gas(for details see e.g. [60,61℄) and thus yields good results for systems with slowly varyingeletron densities. An even better approximation for alulating ohesive energies andlattie onstants (i.e. of 3d transition metals) permits the so alled generalized gradi-ent approximation (GGA), whih takes the dependene of the gradient of the densityinto aount [62�64℄. A possibility to improve these exhange-orrelation funtionals hasbeen suggested by Beke [65℄, who onstruted a non-loal hybrid funtional by usinga fration of exat exhange. Additional improvements in the desription on exhangeand orrelation where ahieved by oupling-onstant integration and onstrained DFT,but sine this setion should give only an overview of the methods we refer the reader tospeialized literature [66�70℄. 33



Chapter 2: Numerial methods2.3 Landauer-Büttiker theory of oherent transport2.3.1 IntrodutionIn the limit of strong oupling between eletrodes and entral devie region the so alled�Landauer-Büttiker-approah� [12℄, whih expresses the urrent through a ondutor interms of the probability that an eletron an transmit through it, has proven to be verysuessful [12,71,72℄. It allows for the investigation of the urrent-voltage harateristisof many promising systems of moleular eletronis like metalli point ontats, nano-wires, nano-tubes as well as ovalently oupled omplex moleules (e.g. DNA). Themain idea behind this approah is to desribe the soure-drain eletrodes as ballistiondutors and to treat the devie region of interest as sattering enter for the hargearriers. This sattering proess an be desribed by the sattering matrix of the devie,whih ontains the transmission and re�etion oe�ients of the sattering-hannels.Computing these sattering hannels makes it neessary to use an appropriate methodto desribe the eletroni struture (semi-empirial model Hamiltonian like tight-bindingor density funtional theory) for the moleular orbital alulations, that allows for anaurate eletroni struture treatment at a reasonable level of omputational osts.In the present setion we will brie�y introdue the Landauer-Büttiker formalism of o-herent eletron transport, whih is required for the interpretation of the results obtainedfrom simulations. Firstly we will demonstrate the lose orrelation of transmission andthe experimentally aessible ondutane. For reasons of pratial alulations we willshow how to express the transmission funtion in terms of Green's funtions. This on-ept is also required for introduing the Reursive Green's funtion method in the nextsetion, whih was implemented for material spei� transport alulations and exten-sively used in the present work.2.3.2 Transmission and ondutaneIn order to observe oherent ondutane quantization at least two onditions on thesample size have to be ful�lled: To preserve oherent sattering the devie length shouldbe smaller than the quantum mehanial oherene length of the eletrons and the deviewidth has to be small enough permitting only a few number of harge arrying modes.The �rst experimental validation of ondutane quantization in a two dimensional bal-listi waveguide was reported independently by two di�erent groups in 1988 [73, 74℄.Figure 2.5 shows a shemati of the experimental setup where a semiondutor (GaAs-AlGaAs heterostruture) onneted to soure/drain eletrodes on the left and right and totwo gate eletrodes (split-gate on�guration) of negative potential forming a bottlenekfor the eletron propagation. The gate eletrodes generate �xed boundary onditions iny-diretion leading to quantized transversal modes similar to a 1D-potential pot, wherethe number of oupied modes NC in the entral devie in dependene on the width Wof the pot is given by: NC = Int � W�F=2� (2.47)34
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Figure 2.5: Experimental veri�ation of ondutane quantization in a quantum point ontat.(left) Experimental setup showing the semi-ondutor in the middle onneted to soure/drain(L/R) and onstriting gate eletrodes. (right) Observed ondutane steps as funtion of thegate voltage proving the varring number of perfetly transmitting hannels (Original data by vanWees et al. [73℄)
Here �F denotes the Fermi-wave length of the system. Measuring the ondutane independene on the gate voltage yields the harateristi shape in the urve shown in�gure 2.5: As the width W of the onstrition dereases ontinuously the number ofoupied modes in the ondutor dereases and the ondutane goes down in disretesteps in units of 2e2=h, as the hannels are perfetly transmitting. In the following, wewill understand the e�et of oherent ondutane quantization in a quantitative waybased on the Landauer formalism.To derive the relation between ondutane and transmission for the multi-hannel,noninterating ase, �rst of all it has to lari�ed to whih systems the Landauerformalism is restrited: (i) We onsider only systems without inelasti sattering in theontat/devie region - the transport is assumed to be oherent. (ii) The eletrodes areassumed to be ideal Fermi liquids, i. e. the eletrons entering the devie region fromthe left or right have a distribution aording to the Fermi distribution funtion andthe hemial potentials �L; �R of the orresponding left or right lead, respetively. (iii)Eletrons leaving the devie region into the reservoirs are ompletely absorbed, i. e. theeletrodes are assumed to be re�etionless.Aording to the division of the system into three parts - left eletrode, the en-tral devie region and right eletrode we divide also the orresponding Hamiltonianmatrix into the blok Hamiltonians HL/HR for the left/right lead and HC desribingthe entral devie, respetively. We assume, that there is no diret oupling betweenthe left and the right ontat: 35
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H = 0� HL HLC 0HCL HC HCR0 HRC HR 1A ; with HL = HR = � 12mp2; r? 2 [0;W ℄� [0;W ℄1; otherwise(2.48)Here HXX with X = L;R denotes the oupling between eletrode and entral systemand W is the width of the eletrodes. HL and HR desribe non-interating eletrons ina perfetly ballisti ondutor.Restriting to the inoming and outgoing waves in the leads we now de�ne theso-alled sattering states, whih have an inoming part in one partiular lead statein x-diretion, a transmitted part and a re�eted part. Due to the �nite width of theleads, the inoming wave has a disrete mode number index n and, as we treat an opensystem, a ontinuos varying wave number index k in diretion of the harge �ux. Awave funtion, representing a right moving sattering state (k; k0 > 0) takes the for: nk(x; r?) = � eikx�n(r?) +Pn0 r̂n0ne�ik0x�n0(r?); (x; r?) 2 LPn0 t̂n0ne�ik0x�n0(r?); (x; r?) 2 R : (2.49)The matrix element t̂n0n represents the transmission amplitude for an inoming wave fromthe left in state n to be transmitted into state n0 on the right hand side, whereas r̂n0n isthe respetive re�etion amplitude. �(r?) is the wave funtion omponent in transversediretion r?. As long as we an neglet inelasti sattering, the wavenumbers are �xedby energy onservation, so for the mode energies holds "nk = "n0k0. If we denote t̂0n0n andr̂0n0n as respetive amplitudes in opposition diretion, we an de�ne the energy dependentsattering matrix, whih omprises all ourring amplitudesS(E) = � r̂(E) t̂0(E)t̂(E) r̂0(E) � with r̂(E) = fr̂n0n(E)g (2.50)and maps (if the wave funtions are e. g. expanded in plane waves) the inomingwave oe�ients to the outgoing wave oe�ients. As the urrent is proportional tothe veloity vnk times the square of the wave funtion, j nkj2, we have to resale thetransmission amplitudes, tn0n =r vnvn0 t̂n0n (2.51)in order to retrieve the ommonly used formulation of the Landauer formula. Now jtn0njonstitutes the fration of the in�owing urrent in the left lead whih is transmitted intothe right lead. To derive an expression for the total urrent, we onsider a single trans-verse mode whose +k states are oupied aording to the Fermi distribution funtionfL(E). A uniform eletron gas with N eletrons per unit length moving with a veloity varries a urrent equal to eNv. Sine the eletron density assoiated with a single k-statein a ondutor of length L is (1=L), we an write the urrent IL arried by the +k states36



2.3 Landauer-Büttiker theory of oherent transportin mode n as InL = eLXk;n0 v fL(E) jtn0nj2 = eLXk;n0 1~ �E�k fL(E) jtn0nj2 (2.52)Converting the sum over k into an integral aording to the usual presriptionXk �! 2(for spin)� L2� Z dk (2.53)one obtains InL = 2eh Z dE fL(E)Xn0 jtn0nj2 (2.54)with fL(E) = f(E � �+ eVL) (2.55)Here VL denotes the applied potential to the left eletrode. Summing InL over all modesn arrying right moving waves yieldsIL =Xn InL = 2eh Z dE fL(E)Tr(tty): (2.56)with the energy dependent transmission funtion T (E) = Tr �t(E)ty(E)�. We an evalu-ate a similar expression for the urrent IR arried by the �k states. So the total urrentI is given by I = IL � IR = 2eh Z dE Tr(tty) [fL(E)� fR(E)℄ (2.57)whih is alled Landauer-Büttiker-formula. This equation shows, that the urrent of aoherent non-interating quantum system an be expressed by an energy integral overthe hannel transmission T (E) weighted by the di�erene of the left and right reser-voir Fermi funtion whih de�nes the energy interval of the eletron �ow. So the wholeinformation about the oherent transport properties of the system is given by the trans-mission funtion, whereas fL and fR haraterize the boundary onditions. However, thetransmission T (E) is revoking of experimental observation, but it is diretly related tothe zero bias ondutane: At low bias voltages (VL�VR) we an expand the expression(2.57) for the total urrent I around � leading toI = 2e2h Z dE Tr(tty)�� �f�E� (VL � VR): (2.58)The ondutanes G is given byG = IVL � VR = 2e2h Z dE Tr(tty)�� �f�E� : (2.59)37



Chapter 2: Numerial methodsFurther, we assume low temperatures simplifying the derivative of the Fermi funtion to�f(E)�E � Æ(E � EF ) =) G = G0 T (EF ): (2.60)Equation (2.60) is alled Landauer Formula and states the important result, that theondutane is equal to the transmission in units of the ondutane quantum G0 =2e2=h.2.3.3 Green's funtions in sattering theorySo far we disussed how the oherent transport properties, i. e. the zero bias ondutaneG and the total urrent I, follow from the transmission funtion T (E). In prinipal wean evaluate the matrix elements of (tty) by solving the four equations resulting fromthe ontinuity onditions of the single partile wavefuntion and its derivative on the leftan right interfae, whih is non trivial in general, beause this proedure inludes thealulation of an expliit expression for the wavefuntion.A more onvenient method for alulating the transmission matrix, whih is in prinipalnot essential for oherent transport, is the Green's funtion approah. Unlike thetransmission matrix, whih orrelates only points at the interfaes, the Green's funtionGR(r; r0) desribes the response at any point r due to an exitation at point r0, partiu-larly inside the ondutor. So GR(r; r0) an be interpreted as a generalized transmissionmatrix, whih has several advantages ompared to the transmission matrix:1. The Green's funtion desription permits a formal substitution of the in�nite sizedsystem by a �nite entral transport region inorporating the open boundary on-ditions via so alled self-energies (see hapter 2.3.4) whih provides a onvenientmethod for evaluating the Green's funtion and i. e. the transmission of an opensystem numerially.2. It allows for the relation of sattering theory to other formalisms, e.g. like Kuboformalism, transfer Hamiltonian method and Feynman's path-integral method.3. Interation e�ets like eletron-phonon sattering and eletron-eletron interationourre inside the ondutor and though are not aessible with the transmissionmatrix. However the Green's funtion an take suh e�ets into aount within theso alled Keldish formalism.Propagator of Shrödinger's equationIn quantum mehanis the Green's funtion an be interpreted as propagator ofShrödinger's equation [75℄, so one needs to �nd an operator K(r2; t2; r1; t1) that mapsall ontributions of a wave funtion  (r1; t1) at points r1 at t1 to the wave funtion38



2.3 Landauer-Büttiker theory of oherent transport
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Figure 2.6: Desription of the sattering problem using two di�erent approahes: (left)The transmission matrix orrelates only in�owing wavefuntions with out�owing wavefuntionsde�ned on the olored lines at the interfaes. However the Green's funtion, a generalized trans-mission matrix, orrelates point lying also inside the ondutor. (r2; t2) in point r2 in the past t2: (r2; t2) = Z d3r1K(r2; t2; r1; t1) (r1; t1) (2.61)Using the time evolution operator U(t2; t1) with j (t2)i = U(t2; t1)j (t1)i, ompletenessR d3r1jr1ihr1j = 1 and the restrition t1 < t2 (introduing a theta-funtion), we anidentify K(r2; t2; r1; t1) = �(t2 � t1)hr2jU(t2; t1)jr1i: (2.62)Assuming that the HamiltonianH is not expliitly time dependent, andHj ni = Enj ni,the time evolution operator U an be written asU(t2; t1) =Xn e�iEn(t2�t1)=~j nih nj (2.63)Inserting (2.63) into (2.62) yields an expliit expression for the propagatorK(r2; t2; r1; t1) = �(t2 � t1)Xn  �n(r1) n(r1)e�iEn(t2�t1)=~ (2.64)However, also formulation (2.64) requires the knowledge of the eigenfuntions. To de-termine the propagator without alulating the  n we an derive a partial di�erentialequation de�ning K. Therefore, we apply the operator [i~�t2 �H(r2;r2)℄ orrespondingto Shrödingers equation to (2.64) and obtain[i~�t2 �H(r2;r2)℄K(r2; t2; r1; t1) = i~Æ(t2 � t1)Xn  �n(r1) n(r1)e�iEn(t2�t1)=~ (2.65)The RHS of (2.65) is non-vanishing only if t1 = t2, so the exponential funtion an benegleted and with P �n(r1) n(r2) = Æ(r2 � r1) we obtain �nally[i~�t2 �H(r2;r2)℄K(r2; t2; r1; t1) = i~Æ(t2 � t1)Æ(r2 � r1): (2.66)For a unique solution it is neessary to add the ondition K(r2; t2; r1; t1) = 0; if t1 > t2.39



Chapter 2: Numerial methodsFrom a physial point of view, that means the waves propagating from the surfae t = t1only �radiate� into the future, so (2.66) is alled retarded propagator. Usually a solutionof an equation with a 4-dimensional delta-funtion as inhomogenity is alled Green'sfuntion, so we denote this speial propagator as G in the next setions.In the following we will show how the elements of the transmission matrix t̂n0nan be expressed by the Green's funtion. The neessary formula is alled Fisher-Lee-relation [76℄, whih we derive for a one-dimensional single-mode wire and afterwardsgeneralize it to a two-dimensional multi-mode wire.We restrit the derived di�erential equation 2.66 to one dimension in spae and assumea stati situation (no time dependene). A onstant one-dimensinal potential for theeletrons is denoted as U0. The resulting propagator is alled Green's Operator:G = �E � U0 + ~22m �2�x2 ��1 (2.67)Aording to the ommon onept of Green's funtion method, this operator is appliedto a Green's funtion G(x; x0), resulting in a Æ-funtion.�E � U0 + ~22m �2�x2�G(x; x0) = Æ(x� x0) (2.68)The funtion at the right hand side is often alled soure term, so we an view G(x; x0) asa wavefuntion at x resulting from a unit exitation applied at x0. This loal exitationgives rise to two plane waves traveling outwards from x0 with the amplitudes a� and a+for the left and right traveling part, respetively. Therefore, one solution of (2.68) isGR(x; x0) = � a+eik(x�x0); x > x0a�e�ik(x�x0); x < x0 with k =r2m(E � U0)~2 ; (2.69)whih is alled retarded Green's funtion. Using the ontinuity ondition for GR(x; x0)and �xGR(x; x0) at x = x0 one �nds a� = a+ = �im=~2k, thus ( 2.69) an be simpli�edto GR(x; x0) = � im~2k eikjx�x0j: (2.70)Sine the de�ning equation of G(x; x0) is a seond order di�erential equation, there is anadditional solution GA(x; x0) of (2.68), the advaed Green's funtionGA(x; x0) = + im~2k e�ikjx�x0j (2.71)whih onsists of inoming waves that disappear at point x0 and thus satis�es a di�erentboundary ondition than GR(x; x0) orresponding to outgoing waves. As the retardedGreen's funtion represents the physially relevant solution one inorporates the bound-ary ondition into (2.68) by adding an in�nitesimal imaginary part to the energy, with40



2.3 Landauer-Büttiker theory of oherent transport� > 0: �E + i� � U0 + ~22m �2�x2�G(x; x0) = Æ(x� x0): (2.72)This introdues a positive imaginary part also in the wavenumber k ! k(1 + iÆ).Inserting the transformed wavenumber into the expression for GR(x; x0) and GA(x; x0)shows that the advaned solution diverges for large distanes jx� x0j, in ontrast to theretarded solution. Therefore, in the following disussion of non-interating transport wewill fous on the physially reasonable retarded Green's funtion.Aording to [12℄ we will now disuss, how to express the transmission matrix interms of the Green's funtion. Therefore we onsider a ondutor onneted to a setof leads. We use di�erent oordinate systems in eah lead, e.g. in lead p we haveoordinates (xp; yp) and in lead q the oordinates (xp; yp), respetively (ompare �g.2.7). The interfae of the ondutor at lead p is de�ned by the line xp = 0. As previouslydisussed, the transmission matrix relates only points at the interfaes, so we an restritthe Green's funtion to GRqp(yq; yp) � GR(xq = 0; yq; xp = 0; yp): (2.73)If we neglet the transverse dimension y, we an easily write down the Green's funtionbetween interfae p and interfae q in terms of the transmission matrix. A loal exitationat interfae p would give rise to two plane waves into both diretions: one into ontatp with amplitude a�p and another one whih is sattered at the ondutor is split intoa re�eted omponent with amplitude t+ppa+p and a transmitted omponent t+qpa+p , so the2-point Green's funtion writes asGRqp = Æqpa�p + tqpa+p : (2.74)Sine we know from the previous disussion that the amplitudes a�p are equal to �im=~2kand tqp =pvp=vq t̂qp we obtain for the transmission matrix elementst̂qp = �Æqp + i~p�q�p GRqp (2.75)To generalize the formalism to a multi-mode wire we onsider the Green's funtion of atwo-dimensional region, whih is in�nite in the left and right diretion (�1 � x � +1;)and �nite in transverse diretion (0 � y � yL). Aording to the de�nition of theGreen's funtion (see equation ( 2.64)) G(r; r0) = Pm  m(r) �m(r0) and the fat thatwe an separate the wavefuntion in x- and y-diretion, the Green's funtion takes theform [12℄: GR(x; y; x0; y0) =Xm � i~�m�m(y)�m(y0)eikmjx�x0j: (2.76)The prefator �i=~�m, with �m = ~km=m, is again a onsequene of the ontinuity of GRand �xGR in x = x0. �m(y) denote the transverse mode wavefuntions whih are real,orthogonal and satisfy the equation ��(~2=2m)�2y + U(y)��m(y) = "m;0�m(y). The ex-
41



Chapter 2: Numerial methodsponential fator in (2.76) follows diretly from the previous one-dimensional alulation.To �nd the relation between Green's funtion and transmission for a multi-mode wirewe onsider again a ondutor onneted to a set of leads, e.g. lead p and lead q. Werestrit the Green's funtion to interfaes given by the lines xp = 0 and xq = 0 as in theprevious example. Due to the existene of a sattering region (the ondutor) we have toreplae the unperturbed traveling plane waves in x-diretion in (2.76) by their satteredtransmission/re�etion-amplitudes:� i~�m eikmjxq�xpj 7! Xn � i~p�n�m (Ænm + t̂nm)e�iknxqe+ikmxp (2.77)Hene we obtain for the Green's funtion in the leads (no x-dependene) with satteringe�ets GRqp(yq; yp) =Xm2pXn2q �n(yq) �Ænm + t̂nm��m(yp): (2.78)Solving this equation for t̂nm by using the orthogonality of the transversal wave funtionswe �nd the generalized Fisher-Lee-relation for multi-mode wirest̂nm = �Ænm + i~p�n�m Z Z dyqdyp �n(yq) GRqp(yq; yp) �m(yp): (2.79)We an use the previous equation to derive an expression for the transmission funtionT (E) giving less more physial insights, but is rather important for numerial applia-tions. Therefore we disretize the two-dimensional spae using the Finite Di�erenessheme with a lattie onstant a. The indies i and j enumerate the interfae ontatpoints to lead p and q, respetively (ompare �gure 2.7b). As we assume sattering intodi�erent leads (so n 6= m) we obtain for the disretized version of (2.79)t̂nm = i~p�n�ma Xi;j �(qj)GRqp(j; i)�m(pi): (2.80)Finally the total transmission funtion follows from the summationPn;m jt̂nmj2 over all
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Figure 2.7: Shematis to larify the notation in the derivation of the Fisher-Lee relation. (a)Condutor between two leads p and q with longitudinal oordinate x and transversal oordinate y.(b) Disretized onnetion between lead p (transversal oordinate pi) and a ondutor (transversaloordinate i).42



2.3 Landauer-Büttiker theory of oherent transporttransversal modes n and mTqp = ~2�n�ma2 Xi;j;i0;j0 �n(qj)GR(j; i)�m(pi) �n(qj0)GA(i0; j 0)�m(pi0) (2.81)with the advaned Green's funtion GA(i0; j 0) = �GR(i0; j 0)�y. Furthermore we intro-due the oupling matries �p desribing the onnetion strength between eletrode andondutor �p(i; i0) =Xm2p�m(pi)~�ma �m(pi0): (2.82)We will disuss their physial meaning and an e�ient way to alulate them in nextsubsetion in relation with the so alled self-energies. With oupling matrix we obtain�nally a simple expression for the transmission funtion whih is of high relevane forappliations: Tqp = Xi;j;j0;i0 �q(j 0; j)GR(j; i)�p(i; i0)GA(i0; j 0) (2.83)= Tr ��qGR�pGA� (2.84)
2.3.4 Self-energySo far we desribed how the total urrent arried by oherent, non-interating eletronsan be traed bak to the transmission funtion and the eletrode Fermi funtions usingthe Landauer Büttiker formula. Furthermore we derived an expression for the trans-mission whih permits e�ient numerial implementation based on Green's funtions.However it is not obvious, how to handle the Green's funtion or even the Hamiltonianmatrix H of an open quantum system. The Hamiltonian of an in�nite hain of atomshas in�nite dimensions by de�nition and sine the Green's funtion is proportional to theinverse of H (see (2.67)) it is neessary to divide the system of interest into two semi-in�nite lead- and a entral devie region. Additionally, the algorithm should exploit thetranslation invariane of the ontats and permit an aurate treatment of the entraldevie region, whih determines basially the transport properties of the system.To map the in�nite dimensional Hamiltonian to a �nite matrix, suitable for numerialmethods, we onsider a system onsisting of only one lead onneted to a ondutor.Formally we separate the full Green's funtion G of the total system into the semi-in�nite blok matrix of the lead GL and the �nite blok matrix of the entral regionGC : � GL GLCGCL GC � � � (E � i�)1�HL �L� yL E1�HC ��1 (2.85)Here �L(E) = (E � i�) � HLC denotes an overlap matrix between the two subsystems.Generating the identity matrix on the LHS of equation (2.85) and omparing the matrix43



Chapter 2: Numerial methodselements left and right we obtain two linear equation for GLC and GC :[(E � i�)1�HL℄GLC + [�L℄GC = 0 (2.86)[E1�HC ℄GC + h� yLiGLC = 1 (2.87)Solving for the overlap matrix GLC leads to GLC = �gRL �LGC with the retarded Green'sfuntion of the ontat gRL = [(E � i�)1�HL℄�1, whih an be omputed using aniterative sheme to be disussed at a later setion. Plugging the result into the equationfor GC yields GC = h(E � i�)1�HC � � yLgRL �Li�1 : (2.88)This is the �nite dimensional Green's funtion of the entral region taking the in�uene ofthe lead into aount by the so alled self energy �L = � yLgRL �L of the ontat. In generalthe ondutor is onneted to a number of leads. For this ase we an straight forwardextend the upper formalism to the total self-energy term � =PX � yXgRX�X , leading toGC = [(E � i�)1�HC � �℄�1 : (2.89)Introduing the self-energy � has ertain onsequenes for the eigenstates of the investi-gated system. Many ommon quantum systems an be treated as losed systems, whoseeigenstates are found by diagonalizing the Hamiltonian HC with HC �0 = "�0 �0. How-ever, in the present study we are interested in open systems, i.e. a mirosopi struturestrongly oupled to leads. This gives rise to a self-energy �R leading to an perturbedHamiltonian [HC + �R℄. Therefore, the eigenvalue problem hanges to�HC + �R� � = "� �: (2.90)The most important di�erene to the unperturbed problem is, that the eigenvalues "�are omplex, due to the non-hermitiity of the self-energy �R. Using the derivative ofthe dispersion relation �m = ~�1�k"m(k) and the de�nition (2.82) one an show [77℄ thatthe oupling matries � are proportional to the imaginary part of the self-energy �R� = i[�R � �A℄: (2.91)If the oupling � vanishes, the imaginary part of �R vanishes and [HC + �R℄ would behermiti, whih would lead non-omplex eigenvalues. However, in an open system theeigenvalues are in general omplex"� = "�0 ��� � i(�=2) (2.92)with "�0 denoting the eigenvalues of the isolated ondutor orresponding to the Hamil-tonian HC . The shift on the real axis �� an be interpreted as modi�ation of thedynamis of the eletrons inside the ondutor and the shift on the imaginary axis �=2re�ets the possibility that eletrons an disappear into the ontats. This eigenvalue-shift indued by the self-energies (i.e. by the ontats) hanges also the life-time of theeigenvalues: Moving from an isolated to an open system, the time dependene of the44



2.3 Landauer-Büttiker theory of oherent transporteigenstates transforms asexp [�i"�0t=~℄ ! exp [�i("�0 ���)t=~℄ exp [��t=2~℄: (2.93)The squared amplitude of the wave funtion yields the probability j �j2 exp(��t=~)with the onstant ~=�, whih represents the average time an eletron remains in state �before it esapes out into the leads. The ase � = 0 orresponds to a vanishing oupling� = 0 leading to an in�nite �live time� ~=�.2.3.5 Eletrode surfae Green's funtions and deimationtehniqueIn order to desribe the e�ets of the semi-in�nite ontats on the devie, we alulate theself-energy matrixes �X (X = l; r), whih arise formally out of partitioning an in�nitesystem and projeting out the ontat Hamiltonians. As already disussed, we an �nallyalulate the eletrode self-energy expliitly from the surfae Green's funtions disussedin the present setion.We follow the deimation tehnique presented in [13℄. The in-plane (xy-plane) lattieperiodiity of an empty metalli surfae suggests the alulation of the surfae Greensfuntion in k-spae. Therefore we hoose a k-point mesh de�ned byk(n;m) = 2�mM k1 + 2�nN k2; with m = �M � 12 ; :::; M � 12 and n analog, (2.94)where k1 and k2 denote the basis vetors and (m;n) speify one single point of the k-mesh. In the ase of a f-[111℄ layer the basis vetors in real spae are r1 = a(1; 0; 0)and r2 = a(12 ; p32 ; 0). In reiproal spae, whih is de�ned by ri � kj = 2� � Æij, this leadsto k1 = 2�a (1;� 1p3 ; 0) and k2 = 2�a (0; 2p3 ; 0).A f-lattie in [111℄ diretion onsists of metalli layers of the staking order ABCABC.... In a single-partile desription the knowledge of the Hamiltonian Ha of one �ABC�unit is su�ient to build up the Hamiltonian of the full semi-in�nit eletrode due totranslational invariane. One the matrix elements of the real-spae Hamiltonian ha;ijand overlap matrix elements sa;ij are given (e.g. from a tight-binding model), we performa Fourier transformation on the established set of k-pointsHa(k) =Xj ha;ij e�ik(ri�rj); Sa(k) =Xj sa;ij e�ik(ri�rj): (2.95)Due to lattie symmetry in xy-plane, we an keep i = 1 �xed (arbitrarily hosen) and letj run over all atom indies of one �prinipal layer� (i.e. ABC-unit). Similarly, we de�neHb(k) and Sb(k) (see Fig. 2.8), but with j numbering only atoms of the nearest neighborprinipal layers. In order to write the surfae Green's funtion in a ompat manner,we introdue the matrixes �(k) and �(k) orresponding to the intra- and inter-layeroupling, respetively.�(k) := (E + i�0+)Sa(k)�Ha(k); �(k) := (E + i�0+)Sb(k)�Hb(k) (2.96)45
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Figure 2.8: Lead onsisting of �prinipal layers�, whereas every layer an be desribed withthe real spae single-partile Hamiltonian Ha and the orresponding overlapp matrix Sa resultingfrom the non-orthogonal basis set. The eletroni overlap between two neighboring prinipallayers is given by Hb and Sb, repetivly
The in�nitesimal positive omplex number i� was introdued to ensure the onvergeneof the Fourier transformation and an be interpreted as extration of the eletrons fromthe ontat. Using these de�nitions the Green's funtion of an semi-in�nite lead an bewritten as follows:Glead(k) = 0BBB��(k) �(k) 0 � � ��y(k) �(k) �(k)0 �y(k) �(k) . . .... . . . . . .

1CCCA�1 != 0BBB�gs(k) � � �... . . . 1CCCA (2.97)Sine we are only interested in the Green's funtion gs(k) on the surfae of the lead, wean solve (2.97) for the matrix element (1; 1) of the RHS, whih leads to the reursiverelation gs(k) = ��(k)� �(k) gs(k) �y(k)��1 (2.98)�(k) and �(k) are expliitly known matries, so we an either solve this equation analyt-ially (if �(k) and �(k) are one dimensional) or by iteration starting from a reasonableguess for gs(k), e.g. the Green's funtion g0s(k) of a single isolated prinipal layer. Solvingthe RHS of (2.98) with gs = g(0)s (k) leads to an improved version of gs. Repeating thisproedure reursively leads to a onverged surfae Green's funtion in k-spae. Trans-forming gs(k) bak to real spaegs(ri � rj) = 1NM Xm;n eik(n;m)(ri�rj)gs(k(n;m)) (2.99)gives us the surfae Green's funtion, whih is now ompatible with the Hamiltonian ofthe entral devie region.Reently, Kletsov and Dahnovsky ould extend this method to a non-reursive shemewith an in�nite number of prinipal layers [78℄ as well es interating lead eletrons [79℄.46



2.3 Landauer-Büttiker theory of oherent transport2.3.6 Spetral funtion and loal density of statesThe spetral funtion is an important onept to haraterize the eletroni struture ofan open quantum system and an be interpreted as a generalized loal density of states.It is de�ned as the anti-hermitian part of the Green's funtion:A(E) := i �GR(E)�GA(E)� : (2.100)In order to get more insights into the physial meaning of this quantity, we have to plugin the eigenfuntion expansion of the Green's funtionGR(r; r0; E) =X�  �(r)���(r0)E � "� (2.101)into equation (2.100). From a mathematial point of view (2.101) is just the spetralrepresentation of the propagator (2.89). However one has to note, that the ourrene of ���� is due to the fat, that the  � with �HC + �R� � = E� � do not form a ompleteorthonormal set. To ahieve a orthogonality one needs the eigenfuntions �� de�nedby �HC + �A��� = E���� following from the adjoint self energy �A as well. It an beshown (e.g. [80℄) that the ombination of these sets of eigenfuntions ful�lls the propertyR d3r ��(r) ��(r) = Æ��.Using the de�nition of A(E) and the expansion (2.101) the spetral funtion reads asA(r; r0; E) =X�  �(r)���(r0) �(E � "�0 +��)2 + (�=2)2 : (2.102)Assuming that the eigenfuntions f �; ��g and eigenvalues "� depend weakly on theenergy E the spetral funtion versus E onsists of Lorenzian urves with peaks atenergies orresponding to the eigenvalues of the isolated ondutor. Due to eletrodeoupling these peaks are shifted by the above introdued parameter �� and broadenedby �.The diagonal elements of the spetral funtion ontain the loal density of states�(r; E) = 12�A(r; r; E) = � 1�= �GR(r; r; E)� : (2.103)whih provides insights into the spatial variation of states on a surfae or a ondutor.In the limit of � ! 0 the loal density of states (2.103) yields the usual expression forisolated systems �(r; E) =P� Æ(E�"�0)j �(r)j2. With the advent of sanning tunnelingmirosopy (STM) it has beome feasible to probe the loal density of states on an atomisale thus making this onept helpful from an experimental point of view.The trae of the spetral funtion orreted by the overlap matrix S represents the totaldensity of states: D(E) = 12�Tr [A(E) � S℄ : (2.104)Also D(E) onverges in the limit of vanishing oupling (� ! 0) to the result of theisolated system D(E) =P� Æ(E � "�0). However, (2.104) provides a general expression47



Chapter 2: Numerial methodsfor the density of states that an be used even when eigenstates have �nite lifetime.2.4 Reursive Green's funtion methodIn the upper setion (2.2.1) we have shown how the omputational e�ort for the alu-lation of eletroni struture an be signi�antly redued, if the system is desribablewith a short range eletroni Hamiltonian. The division of the system into prinipallayers allows for a fast evaluation of an approximate Green's funtion of every blokHamiltonian. In the following we disuss an iterative algorithm alled reursive Green'sfuntion method [81℄ for alulating the layer Green's funtion reursively and reduingthe system size needed for the ondutane alulation to a minimal set of atoms.The transport experiments investigated in this work operate in the limit of low bias volt-ages, so the system an be treated in the framework of linear response theory. However,an eletri potential pro�le has to be assumed, whih is in our ase a simple stepwisepotential between layer 0 and layer 1 (ompare �g. 2.9). First of all we have to de�nethe position operator, whih is given byx = Xi2L(k>0) yii; (2.105)where yi reates an eletron in orbital i (with i restrited to the layers of the devieregion; k is the layer index as indiated in �g. 2.9). H0 should denote the equilibriumtight binding like Hamiltonian of the entral devie region. With the position operatorx we an de�ne also the perturbing Hamiltonian H1 withH1 = �eV os(!t)x; and H = H0 +H1 (2.106)inluding a simple osine time dependene. The perturbation produes transitions amongstationary eigenstates of the system leading to a time dependent urrent. The total hargeat the devie region is given byQ = �e Xi2L(k>0) yii = �e x: (2.107)With equation (2.107) we an alulate the harge traversing the sample per unit timeusing the equation of motion for the urrent operator I:i~I = [H;Q℄ = �e[H; x℄ = �ei~vx (2.108)Applying the expliit expression for the Hamiltonian H = H0 + H1 and the positionoperator x we obtain an expression for the veloity of the eletrons passing the lefteletrode-devie interfaei~vx = � Xi2L(1);j2L(j) hij(yij � yji) and I = �evx: (2.109)
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2.4 Reursive Green's funtion method

!"#!#$ %%%%%%&'()*+Figure 2.9: Two phenyle rings onneted via sulfur atoms to two gold eletrodes. The ring unitsnaturally presribe a layer division of the system. The enumeration of the layers is shown belowthe juntion geometry: Note that the �rst eletrode layer of the left (right) ontat is denoted as0 (N + 1) and the �entral devie region� onsists of the layers 1 to N .with the overlap matrix element hij. So in the ase of a �small� perturbation potentialV the knowledge of the harge �ux between the left lead and the sample is su�ient toevaluate the total urrent through the system. This important result is of ourse relatedto �ux onservation along the whole system.Let us in the following denote as layer 0 and N + 1 the entire left and right eletrodefragment, respetively (see Fig. 1(b)). The omputation of the Green's funtion starts atthe rightmost layer of the entral region of the system, ontaining the rightmost devielayer N and the semi-in�nite right lead layer N + 1. Its eletroni struture is re�etedin the retarded Green's funtion matrixGrN;N+1 = � ESN �HN ESN;N+1 �HN;N+1ESN+1;N �HN+1;N ESN+1 �HN+1 ��1; (2.110)whih is more onveniently expressed in terms of the layer-self-energies �r. The self-energy �rN of the right ontat an be omputed from the retarded surfae Green'sfuntion gr(E) [81℄ as�rN = (ESN+1;N �HN+1;N)(ESN+1 �HN+1)�1�(ESN;N+1 �HN;N+1) (2.111)� �N+1;N(E) grN+1(E) � yN+1;N(E) (2.112)Here �ij denotes the oupling matrix of the layers i and j. The numerial sheme toprojet the in�uene of the semi-in�nite ontats to the lead surfae atoms has beenalready desribed in more detail in setion 2.3.5. We an alulate the Green's funtionand self-energy of every prinipal layer k reursively, using the relations:grk(E) = (ESk �Hk � �rk(E))�1 (2.113)�rk�1(E) = �k�1;k(E) grk(E) � yk�1;k(E) (2.114)with k = N; :::; 2: 49



Chapter 2: Numerial methodsIn a layered system, we have hosen the interfae suh that the veloity operator hasnon-vanishing terms only for orbitals onneting the left-most eletrode layer (layer 0)with orbitals in layer 1. To ompute the Green's funtion ourring in the Landauerformula for the transmission (2.60) we thus need only the retarded Green's funtion ofthe system omprising layer 0 and layer 1Gr(E) = [ES01 �H01 � �r0(E)� �r1(E)℄�1; (2.115)whih is easily omputed from the right- and left-lead self energies �ri (i = 0; 1). In orderto exploit the simpliity of the veloity operator in this ontext, we use a formulationof Landauer formula for ondutane ( 2.60) whih is derivable from linear responsetheory [77℄ in the limes ! ! 0 and whih is equivalent with ( 2.60):G(E) = 2e2h Tr [(i~vz)Im G(E) (i~vz)Im G(E)℄ (2.116)The main di�erene to this an the previous representation of the ondutane (or trans-mission funtion) is the appearane of the veloity operator, whih an be understoodif we onsider the de�nition of the oupling matrixes (2.82) showing the proportionality�p � ~v. For a detailed derivation of (2.60) from Kubo's formula for ondutane thereader is referred to [77℄. The ourring imaginary part of the Green's funtion an bealulated easily with the use of the advaned Green's funtion GaIm G(E) = 12i [Gr(E)� Ga(E)℄ with Ga(E) = [Gr(E)℄y (2.117)It is well known that the ondutane is very sensitive to interferene e�ets that ariseform small atomi displaement [40,41℄. These e�ets lead to weak osillations in the totaltransmission at T = 0 whih are averaged out in most quantum transport measurementsat higher temperature. To aount for this phenomenon we average G(E) over a smallinterval [EF ��; EF +�℄ around the Fermi energy EF ,hG(EF )i = 12� Z EF+�EF�� d" G(E) (2.118)whereas � = 50 meV � 2kBT to obtain a representative value of the zero-bias ondu-tane for omparison with experimental data.2.4.1 Trunation of the Extended Hükel HamiltonianAn aim of the present study is to alulate the ondutane of nano-juntions onsist-ing of up to 600 atoms during a dynami proess with varying onformation. To keepthe omputational e�ort feasible, we divide the quasi one-dimensional system into Nprinipal layers perpendiular to urrent �ow diretion. Every prinipal layer k withk = 1; :::; N is desribed with one blok Hamiltonian matrix. Sine the Hamiltonian ofthe entral devie region is diagonal dominant, we take only the overlap matrixes betweennearest neighboring bloks (or prinipal layers) into aount. Thus, an atom of layer k50



2.4 Reursive Green's funtion methodhas non-vanishing orbital overlap with other atoms in layer k and k� 1, but the overlapmatrix elements to atoms in layer k � 2 are set to zero. So far, the layer thikness wis a parameter of the simulation whih has to be hosen appropriately: is w too small,too many overlap matrix elements are negleted and the resulting ondutane wouldunderestimate the true value; on the other hand is w hosen to large, the omputationale�ort omes lose to the full devie alulation, whih should be avoided. However, if areasonable thikness parameter d was found, we an exploit the advantage of the presentlayer-approximatimation: the linear saling of the omputational e�ort with the systemlength.
H layers0 = 0BBBBBB�H10 �21 0 � � � 0�12 H20 �32 . . . ...0 �23 H30 . . . 0... . . . . . . . . . �l;l�10 � � � 0 �l�1;l H l0

1CCCCCCA(2.119)Figure 2.10: (left) Division of the entral devie region into a set of prinipal layers. Everyprinipal layer ontains a few number of e.g. bulk layers. (right) Corresponding trunation ofthe full devie Hamiltonian. The resulting matrix onsists of blok Hamiltonians orrespondingthe prinipal layers and nearest neighbor overlap between every blok.2.4.2 Convergene-test of the layer approximationMetalli nanowires have been among the �rst and most widely studied systems in moleu-lar eletronis [40,41,82,83℄. Metalli systems are often most hallenging for linear-salingeletroni struture methods, beause the eletroni wave funtions are extended. To pro-vide a stringent test for our �loal� approximation, we have investigated the onvergeneof the layer approximation for two representative examples, namely gold- and silver-wiresrespetively.We begin the investigation by dividing silver and gold model juntions into a set of�prinipal layers� with inreasing thikness w. In order to establish the onvergene ofthe method for large systems, the test geometry has to be of su�ient length. Herewe investigate juntions of 45.2 Å length in z-diretion, ontaining 388 silver or goldatoms with a nearest neighbor distane of 2.88 Å in both metals [84,85℄. We prepare theeletrodes as perfet f-lusters, whih narrow towards the enter to form a single-atompoint ontat at their tips, generating a dimer struture whih permits a urrent �ow inthe rystallographi [111℄ diretion. The extended moleule region and the layer divisions51



Chapter 2: Numerial methodsare illustrated in Fig. 2.11a. The bulk eletrodes are designated by the two larger layerson eah side of the system.We alulate the ondutane for varying widths w = 1; : : : ; 18 d[111℄ of the �prinipallayers� (Fig. 2.11a), i.e. the full length of the extended moleule region. Figure 2.11bshows that the ondutane of the silver and gold model juntion as a funtion of theprinipal layer thikness w onverges rapidly to the experimental value. The same holdstrue for the juntion onformations labeled Ag 1 - Ag 4 and Au 1 - Au 4, whih havea minimum ross setion of 1-4 atoms, respetively. Furthermore, we alulated theonvergene of the ondutane for longer wire geometries (Fig. 2.11), onstruted bysequentially introduing additional atoms into the point ontat at the minimum rosssetion. Thereby we obtain silver and gold juntions of 20, 24, 28 and 32 atomi layersin the z-diretion.
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Figure 2.11: Convergene test of the ondutane depending on the �prinipal layer�-thiknessfor several nano-juntions. (a) Model nanojuntion of 45.2 Å length and minimal ross setionof one atom allowing for several di�erent prinipal layer divisions, indiated by the marked linesbelow the onformation. On the right hand side the thikness of the prinipal layers of theatual division is indiated, respetively. w is given in units of the [111℄ atomi layer distaned[111℄ = 2:35Å (b) Corresponding ondutane values for the upper desribed sets of �prinipallayers� for a silver and a gold ontat, respetively. The dependene of the ondutane on thelayer division is also shown for similar metalli juntions with a minimal ross setion of 2, 3and 4 atoms, respetively. () Metal quantum wires with one ondutane quantum, but withinreasing length between 20 and 32 atomi layers show the same rapid onvergene behaviourwith inreasing prinipal layer thikness.52



2.4 Reursive Green's funtion methodFor w = 1 the ondutane is signi�antly underestimated to approximately 0.5 G0 forboth metals, indiating that hopping proesses aross distanes larger than the inter-atomi distane are important. For all hoies of the layer thikness with w > 1 theondutane has onverged to nearly the experimental values. For w = 3 the layer divi-sion retains the symmetry of the [111℄ rystal staking order �ABCABC...� in f-laties.We investigate the onvergene in more detail at the level of the transmission in Fig 2.12,whih shows the total transmission funtion �(E) of the geometry shown in Fig. 2.11aover an energy interval [EF � 6 eV; EF + 6 eV℄. Again we �nd that all urves for w > 2agree well with one-another.In order to demonstrate the e�ieny of this method we ompare the omputation timeof the transmission urves shown in Fig 2. With a resolution of �E = 10 meV thetransmission of the system divided into 1, ..., 18 layers required 1368, 594, 429, 336, and294 seonds, respetively. Using this approximation, e. g. with 6 prinipal layers, thattakes 31% of the time of the �full-devie� alulation, while inreasing only a negletableloss of auray.
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3 Struture and ondutane insilver point ontats3.1 Idealized silver eletrodesDue to their interesting physial properties and potential tehnologial perspetives,metalli quantum wires and atomi-sale ontats are an objet of intensive experimen-tal [86�94℄ and theoretial investigations [72,82,95,96℄. As the size of these onstritionsis smaller than the sattering length of the ondution eletrons, transport through suhontats is ballisti, and as the width of the ontats is on the length sale of the eletronwavelength, the quantum nature of the eletrons is diretly observable. The eletrialondutane of suh quantum strutures is given by the previously introdued Landauerformula G = G0��n(EF ), where G0 = 2e2=h is the ondutane quantum. �n givesthe transmission probability of the n-th hannel and depends ruially on the orbitalstruture of the onduting atoms [88℄ and also on the atomi struture, in partiular onsattering at defets and boundaries [95℄, as well as internal stress [72℄.In pratie, most ondutane measurements of point ontats, even for simple metals,yield non-integer multiples of the ondutane quantum G0. Suh deviations from theideal behavior an stem from material-spei� properties of the juntion or from defetsthat result from the fabriation proess. Espeially in experiments based on atomi-sale ontat fabriation by mehanial deformation (e.g., break juntions or sanningtunneling mirosopy setups [86�88℄), there is very limited ontrol of the growth andproperties of the atomi-sale ontats. In these experiments long-term stable and defet-free ontats with ondutane at integer multiples of the ondutane quantum G0 aredi�ult to realize in pratie as the fabriation proess is essentially onneted with theformation of atomi-sale defets suh as disloations.To produe well-ordered ontats, a tehnique of nearly defet-free growth by slow quasi-equilibrium deposition is required, whih an be provided by eletrohemial depositionmethods [89�93℄. In addition, tehniques of eletrohemial annealing provide the possi-bility of healing atomi-sale defets in ontats even after fabriation (see below). Due toits high eletrohemial exhange urrent density [97℄, silver is a promising andidate fore�iently applying eletrohemial annealing tehniques. Here we investigate the oher-ent transport of eletrohemially deposited and annealed silver quantum point ontatsthat yield nearly ideal integer multiples of G0 and explain their properties by ompari-son with ondutane alulations for seleted near rystalline juntion geometries witha preseleted number of ontat atoms.In this hapter we present alulations for various idealized silver nanojuntion geome-tries of integer quantum ondutane an analyze the orrelation between struture (and55



Chapter 3: Struture and ondutane in silver point ontatsminimum ross setion) and transmission funtion. Seondly we investigate the in�ueneof distortion on the ondutane by varying geometrial parameters. We then extendthe study of the disorder in�uene by a statistial analysis of the ondutane of silverjuntions with randomly distributed surfae vaanies similar to a dissoluting nanowirein eletrolyte. Finally we examine the transmission funtions of silver nano-partilesontated with an metalli eletrode tip (similar to STM transport measurements). Thissystem is interesting beause small metalli nano-partiles are from a strutural pointof view an intermediate ase between an ideal f-lattie and a disordered system - theyhave a spei� geometri struture with symmetries strongly depending on the numberof atoms, whih might in�uene the eletroni transmission.3.1.1 Model point ontatsIn order to test the implementation of the previously desribed transport formalismand to get insights into the possible strutures of metalli point ontats, permittinga ondutane of an integer multiple of G0, we alulated the oherent ondutane ofideal rystalline silver nanojuntions (see Fig. 3.1). The geometries were generated byassuming two f eletrode lusters, whih are onneted at their tips by a small numberof Ag-Ag-bridges in the rystallographi [111℄ diretion with a Ag-Ag nearest neighbourdistane of 2.88 Å.The zero-bias quantum ondutane of a given juntion geometry was omputed withthe Landauer formula (2.57). The eletroni struture was desribed using an extendedHükel model [40, 42℄ inluding s-, p- and d-orbitals for eah silver atom (around 3600orbitals per juntion). To take the in�uene of the semi-in�nite leads into aount,we employed the deimation tehnique (see hapter 2) to alulate the material-spei�surfae Green's funtions [13℄ using the same type of model Hamiltonian and parameterset for the eletroni struture as already used for the entral devie region. To redue thein�uene of interferene e�ets, we averaged the transmission T (E) over a small interval[EF ��; EF +�℄ around the Fermi energy (with � = 50 meV), whih is omparable tothe temperature smearing in measurements at room-temperature.As indiated in Fig. 3.1, we �nd nearly integer ondutane of the idealized geometriesfor ontat geometries 1-5: 0.97 G0, 1.95 G0, 2.89 G0, 3.95 G0, 4.91 G0, respetively,with deviations from integer multiples of G0 of about 0.1 G0 whih is in the range ofthe auray of our numerial method. We observe a orrelation between the numberof silver atoms at the point of minimal ross setion, whih aids in the onstrution ofgeometries with a partiular value of the ondutane. This proportionality �ondutaneG � G0 � N number of atoms in the minimal ross setion� may result from to theeletron on�guration of silver [Kr℄ 4d10 5s1. The s-band dominates the loal density ofstates [98℄ of silver at the Fermi edge, permitting one open transmission hannel per Ag-atom. So this is a material spei� property of silver unlikely to be enountered in othermaterials. It appears to hold only for a small number N of atoms in the minimal rosssetion, beause it was shown in Landauer's sattering theory that the total transmissionof a mirosopi juntion is given by the number of transversal modes, whih dependsprimarily on the diameter of the juntion.Figure 3.2 shows the alulated total transmission as a funtion of the eletron energy56



3.1 Idealized silver eletrodeswithin the energy interval [EF�6eV; EF+6eV ℄ for the �ve silver point ontat geometries(1-5) given in Fig. 3.1. The ondutane that is experimentally relevant orrespondsto the transmission at the Fermi energy indiated by the vertial line in the �gure.The transmission urve osillations are sensitive to the atomi positions. Therefore, anaverage of the transmission around the Fermi energy yields a more representative valueof the ondutane G, taking e�etively into aount the atomi vibrations during themeasurement.In order to study to whih extent the ondutane values hange due to geometrialhanges in the interatomi distane of the ontating atoms and the relative angle be-tween the ontating rystals, we introdued �nite hanges in ontat geometry: Wealulated the eletrode distane and twist-angle dependene of the zero bias ondu-tane. Inreasing the eletrode distane to twie the Ag-Ag bond length leads to aderease by 86.7 % in the ondutane, while twisting the eletrodes by 60Æ against eahother leads to a derease of ondutane of 22 % .The results show that for silver, as a representative of a simple s-type metal, if defets anddisorder in the ontat area are avoided, the ondutane in atomi-sale point ontatstypially is an integer multiple of the ondutane quantum G0, for a small number Nof atoms in the minimal ross setion. On the other hand, if strong deviations fromthe rystallographi symmetry are indued, non-integer multiples of the ondutanequantum are observed, whih an be attributed to sattering due to defets and disorderwithin the ontat area. These alulations are on�rmed by measurements based onthe method of ombined eletrohemial deposition and eletrohemial annealing ofpoint ontats, whih yield integer multiples of the ondutane quantum in ideal modelgeometries of ontating silver nanorystals. As soon as annealing is omitted, drastideviations from integer quantum ondutane are obtained [99℄.
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Chapter 3: Struture and ondutane in silver point ontats

Figure 3.1: Comparison of experimental ondutane data of eletrohemially annealed silverpoint ontats with alulations assuming idealized geometries. (a) Quantum ondutane of �vedi�erent annealed atomi-sale ontats at 1G0, 2G0, 3G0, 4G0, and 5G0, respetively (with 1G0= 2e2/h), whih were reversibly opened and losed. (b) Idealized geometries of silver point on-tats with prede�ned numbers of ontating atoms. Condutane alulations performed within aLandauer approah result in near-integer multiples of G0 for eah of the �ve ontat geometries(1-5). For the onformations shown above, the axis of symmetry of the juntion orresponds tothe rystallographi [111℄ diretion.
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3.1 Idealized silver eletrodes3.1.2 Condutane of deformed silver eletrodesThe previously investigated silver nano-juntions are arti�ial in a sense that we haveonsidered idealized metal luster geometries of f lattie struture and highly symmet-ri eletrode tip onformations. In a realisti experimental situation, in partiular atroom temperature, suh assumptions are unlikely to be met, beause in break-juntionexperiments as well as in STM arrangements there is always a non-vanishing tilt andtwinning angle between the ontating eletrodes also a�eting the oherent satteringof eletrons tunneling through the juntion. In order to investigate the in�uene of suhkind of disorder ompared to the previously studied idealized onformations we havevaried di�erent strutural parameters starting from a ontat with f lattie symmetryand alulated the resulting ondutane.
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Chapter 3: Struture and ondutane in silver point ontatsbelow the auray of the method. That means that twinning the ontat onformationaround a single Ag-Ag bond leaves the ondutane nearly onstant.
3.2 Condutane of silver eletrodes with vaaniesWhen an eletrode is manufatured in a break juntion or generated by ontating thetip of an AFM/STM, it is also very unlikely that the perfet lattie geometries with per-fet surfaes along the rystalline axis, assumed in nearly all theoretial investigations,are realized in pratie. Aording to all models of eletroni transport, eah surfaedefet reates an additional sattering enter that may impede oherent ballisti trans-port through the juntion. Imperfetions in the geometry of the eletrode tips will thusin�uene the ballisti transport. On the other hand, we have seen in the previous setion,in agreement with many prior studies [40,41,82,83℄, that the ondutane of the juntionis mostly determined by its most narrow region [99℄.In order to estimate the signi�ane of tip disorder we have therefore prepared a perfetjuntion as above and then randomly removed atoms from the surfae of the eletrode inthe viinity of the ontat point. The number of silver atoms in the extended moleuleregion is systematially dereased by removing 28 atoms at randomly hosen surfaepositions. To maintain oherent transport, the two entral atoms were never removed.Every juntion geometry with n � 28 vaanies (n = 1; :::; 5) was generated 500 times,with randomly hosen vaany positions. For eah onformation we omputed and subse-quently averaged the ondutane. In order to inrease the e�ieny of the ondutanealulations we employed the reursive Green's funtion algorithm (see hapter 2.4) witha prinipal layer thikness parameter w = 3.Samples of the resulting juntion onformations are shown in Fig. 3.4 (left) with theorresponding averaged ondutane value in units of G0, respetively. In addition, thetotal number of surfae vaanies on the urrent juntion geometry is given below theondutane values. At a number of vaanies below 28 the zero-bias ondutane is losethe ideal value of a perfet Ag dimer juntion of 1:0G0. The systematially inreasingamount of surfae vaanies leads to a dereasing ondutane in steps of � 0:1G0.Figure 3.4 (right) shows the sloping of the ondutane values averaged over onforma-tions with equal number of surfae impurities. Creating 140 vaanies, whih is halfof the initial number of atoms, redues the total ondutane by 40% in average. Therapidly inreasing size of the error-bars indiates that the hange in the ondutanedepends strongly on their positions.60



3.3 Silver nanolusters
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Figure 3.4: (left) Representative examples of the generated onformations of silver nanojun-tion with an inreasing number of surfae vaanies. The presene of defets leads to a dereaseof the ondutane by up to 30%, indiated by the orresponding ondutane values below thegeometries. The number of vaanies in onformation is given in brakets. (right) Condutanevalues averaged over onformations with equal number of surfae impurities. The error-barsindiates that the hange in the ondutane depends less on the number of defets, but more ontheir positions.3.3 Silver nanolustersReent experiments of silver juntions [92, 99℄ suggest a strong stability of the observedzero-bias ondutane in eletrohemially grown silver juntions. While this e�et wasloally explained [100℄ by the seletion of spei� ontat geometries, the overall shapeof the silver ontats is likely to vary strongly from one realization of the next. To assessthe e�et of these large-sale geometri di�erenes, we have prepared loally similar, butglobally di�erent juntion geometries by plaing silver lusters of various size in di�erentorientations on a perfet surfae and then ontating the tip of the luster with an �ideal�juntion. For this purpose we use the optimized luster geometries from Ref. [1, 101℄,whih where generated by Monte Carlo minimization and the modi�ed dynami lattiesearh method. Figure 3.5a shows the top view of the studied silver lusters with 5,7, 180, 220, and 260 atoms and deahedron (m-Dh) ore symmetry [102℄. Suh kindof lusters onsist of two pentagonal pyramids sharing a ommon basis and a �vefoldaxis. They are formed by �ve tetrahedra sharing a ommon edge along the �vefold axis.When �ve regular tetrahedra are paked, gaps remain, whih are �lled by distorting thetetrahedra, thus introduing some strain, whih might also e�et the oherent transportproperties in suh a metalli luster. As illustrated in Fig. 3.5b we onsider the metallusters attahed to a silver substrate layer of the rystallographi [111℄ diretion. Theseond eletrode is realized by a pyramidal tip on top of the nano-luster similar to aSTM-setup.We optimized the position of the silver nano-luster on the substrate using a MetropolisMonte-Carlo tehnique ombined with the semi-empirial Gupta potential for the silveratoms as desribed above. During the simulation the silver luster is treated as a rigidbody, so only translations and rotations of the luster are allowed - strutural rearrange-ments insight the luster are forbidden. The metal luster surfae onsists of a set of61



Chapter 3: Struture and ondutane in silver point ontats[111℄, [110℄ and [100℄ faets. The minimum of the potential energy is reahed, if the sys-tem is arranged suh that the largest [111℄ faet (whih is always the largest subsurfae inthe present ases) and the [111℄ substrate layer are faing eah other. The top eletrodeis assumed to point diretly on one arbitrarily hosen silver atom on the luster surfae.Figure 3.5 shows the total transmission funtion of the lusters Ag5, ... ,Ag260. Theondutane of the systems is given by the average of the transmission over a smallinterval around the Fermi energy [Ef � �; Ef + �℄ with � = 50 meV. For the lusterswith 5, 7, 180, 220, and 260 atoms we �nd ondutane values of 1.10, 1.08, 1.15, 1.17,and 1.17 G0, respetively, whih means, that the ondutane is less e�eted by the sizeof the nano-luster and depends more on the point ontat to the seond eletrode. Thisobservation may explain the observed stability of the experiment: While reonstrutionof the juntion geometry assures the seletion of a spei� loal geometry, the overallondutane depends only very little on the global shape of the lusters forming theontat.
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Figure 3.5: Transmission of silver nano-lusters. (a) Shows the top view on the examinednano-luster onformations with 5, 7, 180, 220, and 260 atoms. (b) Cluster onformations en-ergetially optimized on a silver substrate layer with a pyramidal eletrode on top. () Calulatedtransmission funtion of the juntion onformations shown in b. The vertial line indiates theFermi energy.62



3.3 Silver nanolustersWe also note that an irregular �utuation of the transmission as a funtion of energy,whih inreases with the luster size. Suh �utuations an be oneptually explainedby the interferene of the inident eletron waves with waves sattered repeatedly in theextended moleule region ontaining the sliver nano-luster and the eletrode tip. Ananalysis of the average energy spaing of the extrema of the transmission (whih may bemeasured by applying a gate voltage) an help to estimate the size of the baksatteringregion.3.3.1 ConlusionsTo onlude, the �rst results of the ballisti transport alulation of rystal symmetrisilver nanojuntions, using a reursive layer Green's funtion approah, demonstrate thatfor silver as a representative of a simple s-type metal, if defets and disorder in the ontatarea are avoided, the ondutane is an integer multiple of the ondutane quantum G0(at least for small diameters of the ontat region).These results where on�rmed by experiments of ombined eletrohemial depositionand eletrohemial annealing of point ontats, whih have proven to be a very e�ienttehnique to generate suh well-ordered ontats. On the other hand, if annealing isomitted, non-integer multiples of the ondutane quantum are observed, whih anbe attributed to sattering due to defets and disorder within the ontat area. Assoon as disorder or loal distortions of the atomi lattie within the ontat area areintrodued in the model geometry, drasti deviations from integer quantum ondutaneare obtained. Most experimental realizations of nanosale juntions will ontain somedegree of strutural disorder, whih is di�ult to assess in situ experimentally.As idealized eletrode onformations are unlikely obtained in several other fabriationtehniques we also investigated the in�uene of imperfet ontat geometries on theondutane by studying many di�erent possible realizations of silver. Using a f-lattie symmetri silver eletrode ontat as starting point we varied two haraterististrutural parameters of the juntion. Tilting the juntion eletrodes up to 60 degreesredues the ondutane by 20%, while twinning the eletrodes leaves the ondutanenearly unhanged. We found that the introdution of up to 50% surfae vaanies leadsto only small variates of the ballisti transport properties of silver ontats, as long as theimmediate viinity narrowest point of the juntion was not a�eted. This analysis wassupported by a study of the e�ets of global onformational hange in silver juntionsfor loally onserved juntion geometries. Here we �nd that variations in the globalluster geometry ranging from 5-260 atoms have only a weak e�et on the zero-biasondution of juntions with loally onserved geometry. The obtained ondutaes ofsilver nanolusters on�rm the results of the transport properties of idealized f ontatgeometries, where we already found a strong dependene of the total ondutane on thediameter of the minimal ross setion.
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4 Simulation of the atomitransistorControlling the eletroni ondutivity on the quantum level will impat the develop-ment of future nanosale eletroni iruits with ultralow power onsumption. Fasi-nating physial properties and tehnologial perspetives have motivated intense theo-retial and experimental investigation of atomi-sale metalli point ontats in reentyears [86, 88, 93, 99, 103�108℄. The quantum nature of the eletron is diretly observ-able, beause the width of the ontats is omparable to the eletron wavelength andondutane is quantized in multiples of 2e2=h in ideal juntions. In real metalli pointontats, whih have been fabriated by mehanially ontrolled deformation of thinmetalli juntions [82,103,109,110℄ and eletrohemial fabriation tehniques [107℄, theondutane depends on the hemial valene [88℄. Two-terminal ondutane-swithingdevies based on quantum point ontats were developed with an STM-like setup [104℄and eletrohemial methods [105℄. Reently, quantized magnetoresistane in atomi-sizeontats was swithed between two quantized ondutane levels by rotating the pointontats in a magneti �eld [106℄.The investigations of the present hapter were motivated by an earlier experimentalstudy (Ref. [92℄), whih reports on the fabriation and operation of the �rst single atomtransistor, a three-terminal devie based on the bistable movement of a small group ofbridging silver atoms, swithing a urrent between integer values of the ondutanequantum.After a brief introdution into the experimental onditions we will desribe a multi-saleapproah to model the struture, dynamis and eletroni transport properties of theatomi transistor. With the help of the simulations we will disuss the underlying tipreonstrution proess and explain several e�ets observed in the ondutane measure-ments like the long-time stability of the repeated swithing and intermediate levels atnon-integer ondutane. Speial attention is given to the in�uene of the eletrolyteon the eletrode deposition and swithing proess - we desribe the extension of ourapproah by a ontinuum model of the solvent and disuss the results of the simulationresults.4.1 Experimental MotivationReferene [92℄ reports on the developed of a three-terminal gate-ontrolled atomi quan-tum swith with a silver quantum point ontat in an eletrohemial ell, working asan atomi-sale relay. It is based on the ontrol of individual atoms in a quantum pointontat by an independent gate eletrode, whih allows for a reproduible swithing of65



Chapter 4: Simulation of the atomi transistorthe ontat between a quantized onduting on-state and an insulating o�-state. The de-vie operates stable for long sequenes of eletrohemially ontrolled swithing betweenthe nononduting o�-state and the quantized onduting on-state, where the quantumondutane of the swith follows the gate potential, as ommonly observed in transistors.Figure 4.1a shows the experimental setup: Two gold eletrodes (thikness approximately100 nm) serve as eletrohemial working eletrodes and are overed with an insulatingpolymer oating exept for the immediate ontat area. A silver wire of 0.25 mm diam-eter was used for the ountereletrode and the quasi-referene eletrode. The eletrolytesolution onsists of 1mM AgNO3 + 0.1 M HNO3 in bi-distilled water. The bias voltagebetween the two gold eletrodes for the ondutane measurements was kept at 12.9 V.The hange of the eletrohemial potential di�erene between the referene eletrodeand the gold working eletrodes was performed by varying the ontrol potential. Theeletrohemial potential of 10-40 mV between the referene eletrode and the two goldeletrodes permits the formation of silver islands on the two gold eletrodes whih �nallymeet eah other by forming an atomi-sale ontat. If suh a ontat is formed, thefollowing proedure was performed in order to on�gure an atomi-sale swith. After anupper threshold (0.94 G0 in ase of a �1 G0-swith�) near the desired ondutane value forthe on state is exeeded, deposition is stopped and a omputer ontrolled eletrohemialyling proess starts, that applies a dissolution potential until the ondutane dropsbelow a lower threshold (0.05 G0). Now the deposition starts one more until the on-dutane exeeds the upper threshold and so on. At the �rst suh dissolution-depositionyles of eah fresh formed ontat, ondutane values still vary from yle to yle.After repeated yling an abrupt hange is observed from this irregular variation of theondutane values to a ontrolled and reproduible gate-voltage indued swithing be-tween two levels. Single atom swithes fabriated by this tehnique operate stable overthousands of swithing yles at room temperature for swithing between 0-1G0 up toswithing between 0-20G0 - examples of the gate-voltage indued ondutane swithingare show in �gure 4.1b and  for swithing between 0 and 1 G0 and swithing between 0and 18 G0, respetively.When the gate potential is set to an intermediate hold level between the on and theo� potentials, the urrently existing state of the atomi swith remains stable, and nofurther swithing takes plae. This is demonstrated in �gure 4.1d both for the on-state ofthe swith (left arrow) and for the o�-state of the swith (right arrow). Thus, the swithan be reproduibly operated by the use of three values indued by the gate potentialfor swithing on, swithing o�, and hold. This provides the basis for atomi-sale logialgates and atomi-sale digital eletronis.Nevertheless, to understand and optimize this promising experimental method, it is ne-essary to investigate ertain questions regarding the underlying strutural and eletroniproperties of the employed silver nano-juntions. For swithing in the range of low on-dutanes (below 5 G0) it seems to be possible, that the swithing mehanism is based onthe reproduible rearrangement of a small silver luster, onsisting only of a few atoms(� 13), between the left an the right ontat. The fat that the experiment sueededalso for swithing between up to 0 and 20 G0 suggests an other explanation of the un-derlying mehanism, beause the gate-potential indued energy would not be su�ientto rearrange a single silver luster that would allow for swithing between 0 and 20 G0.66



4.2 Atomisti model of the quantum swith
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Figure 4.1: Swithing urrent by eletrohemial, gate-ontrolled atomi movement. (a)Shemati of the experimental setup: A silver point ontat is deposited eletrohemially in anarrow gap between two gold eletrodes on a glass substrate. Repeated omputer-ontrolled ele-trohemial yling permits fabriation of bistable atomi-sale quantum ondutane swithes.(b) Experimental realization of swithing urrent reproduibly with a single silver atom pointontat between a onduting on-state at 1G0(1G0 = 2e2=h) and a non-onduting o�-state.The soure-drain ondutane (GSD) of the atomi swith (lower diagram) is diretly ontrolledby the gate potential (UG) (upper diagram). () Similar demonstration an atomi transistoronformation permitting bistable swithing between 0 and 18G0 (d) Demonstration of quantumondutane swithing between a non-onduting �o�-state� and a preseleted quantized �on-state� at 4G0. A ondutane level an be kept stable, if UG is kept at a �hold� level (seearrows).4.2 Atomisti model of the quantum swithWhile we an understand the ondutane properties of suh juntions on the basis ofatomisti ondutane alulations [99℄, the physial proess underlying the swithingmehanism remained unlear. Reproduible swithing between quantum ondutanelevels over many yles annot be explained by onventional atom-by-atom depositionbut requires a olletive swithing mehanism. Our previous alulations have shownthat only well-ordered juntion geometries result in integer multiples of the ondutanequantum. Neither partial dissolution of the juntion nor its ontrolled rupture yieldsthe neessary atomi-sale memory e�et. A more detailed model of the strutural [82,109, 111℄ and ondutane [88, 112℄ properties of suh juntions is therefore required. Inorder to larify the open questions regarding the swithing mehanism of the atomi67



Chapter 4: Simulation of the atomi transistortransistor and to examine several e�ets ourring in the measured ondutane urveswe have developed a multi-sale algorithm ontaining a quantum mehanial treatmentof the eletroni struture to alulate transport properties, a lassial fore �eld methodbased Monte Carlo treatment of the atomi struture and a ontinuum model to takeeletrostatis into aount.We assume a simulation box with an edge length of 24.0 � 24.0 � 40.0 Å3 in x-, y- and z-diretion, respetively. As start onformation for the simulation of the deposition proesswe onsider two hexagonal silver layers in rystallographi (111) diretion onsisting of144 atoms with a nearest neighbor distane of 2.88 Å. To inrease the growth probabilitytowards eah other we assume additional silver tips at the planes onsisting of 10 atomson eah layer.Starting from the previous system we simulate the deposition proess in the followingway: At eah eletrode deposition yle we insert one silver ion at a random positionbetween the left and right silver luster. Afterwards a relaxation of the ion position intoa loal energy minimum on the eletrodes takes plae. For the eletrohemial depositionwe use a simulated annealing routine that is based on a lassial Metropolis Monte-Carloalgorithm [31℄. It was already suessfully applied to the simulation of the growth proessof thin amorphous �lms [113℄. One simulated annealing yle onsists of a high numberof trail steps into a random diretion (and objet rotations of random axis and angle, isase of deposition of extended moleules). A trial step moving the ion from the positionr to r0 is aepted within the Metropolis probability riterionP (r; r0) := (exp(�� [E(r)� E(r0)℄); if E(r) < E(r0)1; else : (4.1)In the present simulation we use four simulated annealing yles per ion deposition,with eah yle onsisting of 15000 steps. The temperature T , whih plays the role of aparameter in arbitrary units, reahes from 250 at the beginning to 0.001 at the end ofthe annealing proess.The total energy plays the entral role in this algorithm. In the �rst period of the iondeposition, in the unbounded situation, the ion is exposed to the oulomb potentialgoverned by the surrounding soure/drain eletrodes whih are set to -34 meV and -46meV, respetively. To inlude their in�uene and to treat the eletrostati �eld we usea �nite di�erenes sheme [114℄, i.e., we introdue a lattie with 1.0 Å mesh spaingand oupy every mesh point with the potential -34 meV (-46 meV) if the mesh point issurrounded by at least one Ag atom of the left (right) eletrode. So we an use the givenpotential distribution in the eletrodes as Dirihlet boundary onditions (in z-diretion)for the Poisson problem to alulate the potential between the ontats. In x- and y- weuse periodi boundary onditions and after solving Poisson's equation for the eletrostatipotential �(r) the energy of the ion in this �eld is given by E(r) = q � �(r), with q beingthe harge of the Ag+ ion. As soon as the silver ion attahes the left or the right eletrode,the potential energy surfae is desribed by the empirial Gupta potential [115℄, whihaounts for the interations among the atoms in the luster. It is based on the seondmoment approximation of the eletron density of states in the tight-binding theory andan be parametrised as follows:68



4.2 Atomisti model of the quantum swith
EGupta(r) = UN2 NXi=1 0�A NXj 6=i e�p~rij �vuut NXj 6=i e�2q~rij 1A with ~rij = jri � rjjr0 � 1: (4.2)Aording to Ref. [115℄ the parameters fUN ; A; p; q; r0g were hosen as { 1, 0.09944,10.12, 3.37, 2.88 }. The �rst term in equation (4.2) represents a pairwise Born-Mayerrepulsion energy and the seond models aN -body attrative ontribution. For an e�ientevaluation of the potential we save adjaent atoms in linked lists and apply the linkedell algorithm [30℄ with a uto� radius of 4:0a (a = 2:88Å).In order to speed up the alulation we keep all atomi positions of the silver lusters�xed, if a new silver ion enters the simulation box and treat the potential given by theluster atoms as external �eld for the ion. An additional redution of omputational ostsis ahieved by storing all luster atoms on a grid. Here we us a grid spaing of 10 Å. Everygrid point is related to a linked list of objets ontaining the information of the atomiposition, harge and pointers to the neighboring list elements. To evaluate the totalenergy now only these luster atoms are taken into aount whih belong to grid pointsin the diret surrounding of the added silver ion (often alled Linked-Cell-approximationin literature [30℄).The ion deposition yle is repeated until a prede�ned number n of paths from the leftto the right eletrode exists (see �g. 4.2a, upper row). Otherwise the urrent eletrodeonformer is used again as start geometry, where all atomi oordinates are �xed andanother Ag+-ion is brought into the simulation box. We deposit up to 800 atoms in thejuntion until a prede�ned number of non-overlapping pathways onnet the left andright eletrode. As a non-overlapping pathway, we de�ne a unique set of touhing atomsthat extend from one eletrode to the other, whih permits us to identify the minimalross-setion of the juntion.Next, we simulate the swithing proess (see �g. 4.2a, lower row): The hange in theeletrohemial potential indues a hange in the interfae tension of the liquid-metalinterfae, making possible a deformation of the juntion geometry parallel to the jun-tion axis. It is well-known that hanges in the eletrohemial potential modulate theinterfaial tension of the whole eletrode [116�118℄, whih results in a mehanial strainon the juntion. We simulate the opening/losing yle of a juntion by evolving theatoms of a entral luster under the in�uene of the eletrohemial pressure. Duringthe opening/losing proess the silver lusters are displaed in steps of 0.15 Å. For eahluster displaement we perform 10000 simulated annealing steps, where the temperature-parameter is redued from 300 to 3 (arbit. units). We assume that only the atoms inthis region move in the swithing proess, while most of the bulk material remains un-hanged. The entral luster omprises the atoms of the minimal ross-setion onnetingthe two eletrodes and all atoms within a radius of 9.0 Å around this entral bottlenek.While the eletrodes gradually move apart/loser together, all atoms of the entral lus-ter relax in simulated annealing simulations generating a quasi-adiabati path betweenthe open and the losed onformation. We probe the strutural bi-stability by om-paring the atomi positions of the onformer before and after one swith operation. If69



Chapter 4: Simulation of the atomi transistor�rmax := maxfjrbeforei � rafteri jg is smaller than 0:2a (0:3a) for n = 1; 2 (3; 4; 5) the on-former is saved as �strutural bi-stable�. This seems to be a rough approah, but wewill see in the results setion, that after several swithing steps the strutural bi-stabilityfurther inreases. We assume a sphere around the �rst ontat atom with the radiusr = 3:0Å and de�ne all atoms outside of the sphere as �xed. To simulate one �on-o�-on�-proedure of the swith, we move the �xed left (right) eletrode atoms 3 Å to theleft (right) in the ase of n = 1. For n = 2; 3; 4; 5 we used larger displaements dueto stronger strutural rearrangements in the tip region. As desribed above, we de�nenow the atual onformer as �strutural bi-stable�, if the deviation between the atomipositions before an after the swithing step is small.In the atomi swith experiment explained in [92℄ the bi-stability is observed in ondu-tane values. Using the quantum transport method desribed in the previous hapter 2.4(the reursive Green's funtion method), we selet now these atomi swith onformers,that show bi-stable and integer quantum ondutane. We alulate the ondutaneof a �strutural bi-stable� onformation before and after one swithing operation; is thedeviation �G � 0:1G0 and in the ase of an integer ondutane value � m �G0 (m 2 N)the onformer is aepted as bistable quantum swith struture.Not surprisingly, the juntion rips apart at some �nite displaement from the equilibrium,an e�et also seen in break-juntion experiments. For most juntions, this proess isaompanied by a surfae reorganization on at least one, but often both, tips of theeletrode(s). When we reverse the proess, some juntions snap into the original atomistionformation (see Figure 4.3b) with subatomi preision. At the end of the swithingsimulation, we ompare the �nal and the starting geometry. If after the �rst swithing

Figure 4.2: Simply�ed �ow hart of the simulation sript inluding the eletrode deposition,the bistability test and the ondutane alulation.70



4.2 Atomisti model of the quantum swith

a)
b)Figure 4.3: Simulation of atomi point ontat growth and swithing proess. (a) Snap-shots of the deposition simulation. Upper row: The growth proess starts with two disonnetedAg (111) layers and stops, when a non-overlapping pathway with a prede�ned number of silveratoms onnets the eletrodes. Lower row: Simulation of the swithing proess reveals a bistabletip-reonstrution proess as the mehanism underlying the reproduible swithing of the on-dutane. During the simulation, we kept the gray marked silver atoms at their positions atthe end of the deposition and permitted the entral luster to evolve (blue and red atoms) underthe in�uene of the eletrohemial pressure. The entral silver atoms (red) de�ne the minimalross-setion (see Figure 4.4, right olumn). These atoms return with sub-Angstrom preision totheir original positions at the end of the swithing yle. (b) Snapshots of the tip reonstrutionof a 4 G0 swith onformation. The red marked silver atoms form a bridging ontat similar totwo sissors pulled into eah other.yle the juntion has returned to the same geometry, that means in the present asethat all atoms return to their original positions to within 0.28 Å, we onsider the juntionswithable and perform further swithing yle simulations to test stability. Otherwise,we disard the juntion ompletely and start from srath.We then ompute the zero-bias ondutane [71, 119, 120℄ of the entire juntion usinga material-spei�, single partile Hamiltonian and realisti eletrode Green's funtions(see hapter 2.3.5). We use the reursive Greens funtion method [81, 121℄, whih mapsthe problem of omputing the full devie Greens funtion to the alulation of prinipallayer Greens funtions, whih drastially redues the omputational e�ort but maintainsthe auray. The eletroni struture is desribed using an extended Hükel model in-luding s-, p-, and d-orbitals for eah silver atom (7200 orbitals per juntion) [122℄ inthe standard minimal basis set of non-orthogonal Slater type orbitals. The extended71



Chapter 4: Simulation of the atomi transistorHükel method was previously shown to give reasonable preditions [40, 41, 115, 123℄ forthe ondutane of metal nanowires (ontaining about 800 atoms) where DFT-like meth-ods [109℄ would be prohibitively ostly. We take the in�uene of the leads into aount,by assuming a semi-in�nite f lattie for the left and the right reservoir. We omputethe material-spei� surfae Green's funtions by applying a deimation tehnique thatexploits the translational symmetry of the semi-in�nite ontats [13℄.In total we have performed 15280 full deposition simulations generating Nonf = 17,8, 3, 17, and 6 juntions with n = 1,..., 5 ondutane quanta, respetively. Mostdeposition simulations fail to generate a swithable juntion, beause the aeptaneriterion for swithability was very strit. We note that the same holds true for mostontrol simulations starting from the perfet onformations of [99℄, indiating that simplerupture of even nearly ideal juntions annot be the basis of the swithing mehanism.We �nd that the retained juntion onformations (typially omprising 500-800 atoms)have a preseleted integer multiple (n) of G0 in lose agreement with the experiment.Beause these observations result from ompletely unbiased simulations of juntion de-position and swithing, they explain the observed reversible swithing on the basis ofthe
theoretical predicted
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Figure 4.4: Relation between the strutures of atomi point ontats and their ondutane.(a) Quantum ondutane swithing between a nononduting o�-state and a preseleted quan-tized on-state at 1G0; 2G0; 3G0; 4G0; and 5G0, respetively (note individual time axis). (b) Rep-resentative onformations of simulated juntions, omputed zero-bias ondution, and numberof juntions with the spei�ed ondutane. () Representative minimal ross-setions for eahondutane level. The minimal ross-setions are harateristi for eah group of the swithonformers and determine their quantized ondutane.72



4.3 Condutane during swithinggeneration of bistable ontat geometries during the deposition yle. If we onsider thetip-atoms at eah side of the eletrodes in the open juntion, the equilibrium geometryof both lusters depends on their environment. In the open juntion, this environmentis de�ned by the remaining eletrode atoms on one side, while in the losed juntion,the tip-luster of the other eletrode is also present. The simulations demonstrate theexistene of two stable geometries for eah luster in both environmental onditions,respetively. Reversible swithing over many yles is thus explained by reversible tipreorganization under the in�uene of the gate potential, similar to indued surfae reor-ganization [124�126℄. While the overall struture di�ers between juntions with the sameondutane quantum from one realization to the next (see Figure 4.4, middle olumn,for representative examples), the minimal ross-setion that determines the ondutaneis largely onserved (Figure 4.4, right olumn). The diret omparison of our atomisti,quantum ondutane alulations, using the unaltered onformations from the depo-sition/swithing simulations, with the experimental ondutane measurements o�ers astrong validation of the geometries generated in our deposition protool. The observedagreement between omputed and measured ondutane is impressive, beause the on-dutane of metalli wires is well-known to be strongly dependent on the geometry.Figure 4.5 shows the probability distribution to obtain a bistable 1 G0, ..., 5 G0 swithonformation at a deposition simulation as performed in this study. Every probabilitywas alulated by the fration of number deposition proesses ntrys divided by the numberof obtained bistable point ontats nsuess. With inreasing number of bridging atomsthe number of atoms whih are involved into the tip-reonstrution inreases. If manyatoms partiipate in the tip reonstrution it beomes likely that the bi-stable rearrange-ment fails at some point, so the probability to obtain an atomi transistor onformationswithing between high ondutane di�erenes dereases exponentially.
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4.4 Snapping into onformation with integer quantum ondutaneontat of the juntion yields a non-integer ondutane value. In this setion we willexamine, whether the assumption of gate-potential indued eletrode displaement, asunderlying mehanism for the swithing proess, also allows for an explanation of thesnapping of the eletrodes from a onformation with non-integer to a onformation withinteger ondutane.Here we employ a silver point ontat with only one bridging silver atom but an initialondutane of 1:68G0. The additional ontribution above the ondutane quantumis aused by the orbital overlap of silver atoms in the surrounding of the red markedbridging atom, whih is an entity of the partiular juntion onformation, visible in theleftmost inset of �gure 4.7. In the following simulations we open the point ontat by3.0 Å in steps of 0.15 Å leading to nearly zero transmission. The eletrode displaementindues now a tip rearrangement, where the bridging (red marked) silver atom takesan energetially more stable position exatly in between the left and right eletrode tip(see third inset of �gure 4.7). The inversion of the eletrode displaement loses theontat again, whih has now a more stable geometry at a ondutane of 1.1 G0. Theondutane alulation over an additional swithing proess shows that the obtainedeletrode on�guration reprodues its ondutane in the losed state and so allows forbistable swithing.

openclosed closed closedopenFigure 4.7: Snapping into a bistable onformation of integer quantum ondutane. Twoswithing proesses were simulated starting from a eletrode onformation with a non-integerondutane of 1.68 G0. The �rst swithing yle indues a strutural rearrangement into amore stable eletrode geometry, with permits bistable ondutane swithing at the integer levels1 G0 and 0 G0. 75



Chapter 4: Simulation of the atomi transistor4.5 Eletrode training-e�etSo far in the urrent alulations a swithable juntion was alled bistable, if the ontatreprodues its ondutane value after one swithing yle. However, it is not evident thatthe juntion would yield the same transmission after a seond or third opening/losingproess, beause also thermal �utuation e�ets are inorporated into the struture sim-ulations, whih might destabilize the tip reonstrution.Therefore we have repeated this proess up to 20 times for �ve di�erent ontat ge-ometries with an �on-state�-ondutane of 1, ..., 5 G0. After every swithing yle, in�on-state�-onformation, we have alulated the average strutural deviation from theprevious �on-state�-onformation as�R = 1N NXk=1 jr(i�1)k � r(i)k j (4.3)with r(i)k denoting the position vetor of atom k in onformation number i. N is thenumber of atoms ontained in the �exible part of the ontat region (blue and red markedatoms). In addition we evaluated the total ondutane di�erene of the juntion inonformation (i� 1) and onformation (i):�G = jG(i�1) �G(i)j: (4.4)The results are shown in �g. 4.8: The left graphs demonstrate that the strutural dif-ferenes (in units of the Ag-Ag bond length a=2.88Å) of the �on-state�-onformationsdrastially dereases form 0.03 Å to 10�3 Å, i.e., that the bistable tip reonstrutionproess beomes even more stable with every swithing yle. Sine the oherent trans-mission is diretly oupled to the eletroni and atomi struture this behavior is also
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4.6 Interlevel swithingvisible in the ondutane of the ontat: Figure 4.8 (right) shows the ondutanedeviation �G after every opening/losing proess. This di�erene dereases also froman already small value of 0.1 G0 to 10�3 G0 after 12 swithing yles.The observed deay of �R and �G an be interpreted as �training e�et�, in whihthe juntion geometries beome inreasingly stable, alternating between two bistableonformations.4.6 Interlevel swithing

Figure 4.9: Experimental demonstration of a multi-level atomi-sale transistor swithingbetween an �o�-state� and two di�erent �on-states�.In order to explain the multilevel ondutane swithing desribed above, we ombineatomi struture simulations of opening/losing proesses in silver nanojuntions withzero bias ondutane alulations. We generate non-idealized silver eletrode geometriesby simulation of the deposition proess: Starting from distant Ag(111) layers we evolveindividual atoms in a material-spei� potential for silver. By depositing one ion at atime, we generate juntions with a prede�ned integer ondutane quantum as previouslydesribed. Figure 4.10a (left) and (right) shows two �nal, representative silver nano-juntions onsisting of 508 and 561 Ag atoms with 3 and 5 atoms in the minimal ross-setion (marked red), respetivelyWe then simulate many swithing yles for eah juntion. Experimental modi�ationof the eletrohemial potential modulates the interfaial tension of the embedded silvereletrodes whih results in a mehanial strain on the juntion. We simulate the open-ing/losing yle of a juntion by evolving the atoms of a �entral� luster under thein�uene of the eletrohemial pressure. While the eletrodes gradually move apart orloser together, all atoms of the entral luster relax in a quasi-adiabati path betweenthe open and the losed onformation. The silver nano-juntions in Fig. 4.10a allow forbistable ondutane swithing between 0 and 3 G0 (left) or 0 and 5 G0 (right). In our77



Chapter 4: Simulation of the atomi transistorsimulations, we �nd a reproduible bistable eletrode reonstrution of the entral lusterof atoms, allowing for the bistable swithing between prede�ned ondutane values.The alulation of ondutane for eah eletrode displaement step is shown in Fig.4.10b for these geometries. The leftmost ondutane minima (at step 18 for the leftjuntion, at step 37 for the right juntion) are related to a omplete rupture of the on-tat yielding 0 G0 for both onformations. In this ase the amplitude of the eletrodedisplaement is 8.55 Å (11.4 Å) for the left (right) silver ontat geometry. Using ap-proximate experimental values, we derease the eletrode displaement to 2.85 Å (8.30Å) for the left (right) eletrode in subsequent swithing yles. The redution of thedisplaement amplitude results in long-term reproduible, bistable swithing betweenondutane levels of 1 G0 and 3 G0 (left panel) and of 3 G0 and 5 G0 (right panel).Close inspetion of the intermediate geometries of the juntion explains this surpris-ing result, whih does not our for every juntion: Some bistable juntions exhibitondutane plateaus, whih are haraterized not by one, but by a whole ensemble ofstruturally related onformations. Detailed analysis of this ensemble reveals the meha-nism of the multilevel swithing whih was observed in the experiments desribed above:For the juntion on the left of Fig. 4.10a, a single silver atom rolls over a �nite displae-ment range over the two other bridging atoms to its left (see insets of Fig. 4.10b, left)before �nally disonneting. Choosing the orret displaement amplitude, this induesmulti-level swithing, beause not only the terminal geometries, but also the forma-tion/dissoiation pathways are onserved in the swithing proess. When we repeat theswithing yle for multiple times for both juntions (Fig. 4.10) we �nd a lok-in e�etwith a ondutane variation below 0.11 G0. This lok-in e�et is also in agreement withour experimental observations.To explain the orrelation between atomi struture, energy and ondutane we alulatethe potential energy surfae (PES) and the zero-bias ondutane for juntion geometriesgenerated by independently varying the eletrode-eletrode distane d and a reationoordinate r (see Fig. 4.11a) of one spei� bridging atom hosen to orrelate linearlywith d along the observed reation path (r = 0.56 d). We �nd the global energy minimumat the losed and unperturbed state of the ontat (Fig. 4.11b). We �nd parallel valleys onboth the ondutane and energy surfae, whih explain the stability of the ondutaneplateaus at 1 G0 and 2 G0 during the swithing proess.
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4.6 Interlevel swithing
!"#

!$#

!%#

!"#

!$#

!%#
&'()*"%+,+-./(.+)/

0
1
2
/!
3
+
3
45
#

6

7

3

8

9

:

6 3: :6 ;: 766 73:

&'()*"%+,+-./(.+)
0
1
2
!3
+
3
45
#

6

7

3

8

9

:

:6 766 7:6 366 3:6 866 8:6

&'()*"%+,+-./(.+)

6

7

3

8

9

:

&'()*"%+,+-./(.+)

6

7

3

8

9

:

0
1
2
/!
3
+
3
45
#

6 76 36 86 96 :6 <6 ;6

0
1
2
!3
+
3
45
#

:6 766 7:6 366Figure 4.10: Computer simulations of multi-level-swithing onformations swithing between1 G0 and 3 G0 (left) and 3 G0 and 5 G0 (right): (a) Initial nano-juntion onformations intheir �on-state� with a ondutane of 3 G0 (left) and 5 G0 (right). The bridging silver atomsof the minimal ross setions are marked in red. (b) Condutane during two swithing yleswith the orresponding tip geometries shown as insets. () Subsequent swithing yles followthe sequenes shown in (b), demonstrating repeated interlevel swithing. The simulation veri�esthe reproduible bistability of the silver ontats, in perfet agreement with the experimentalobservations.

79



Chapter 4: Simulation of the atomi transistor
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4.7 Environmental e�ets on the atomi transistor
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Chapter 4: Simulation of the atomi transistorand atoms inside luster (no surfae atoms) lose their harge. In this de�nition n denotesthe surfae normal on the surfae A and the nabla operator is disretized by standard�nite di�erenes approximation. After that we onsider a sphere (radius R = 3 Å) aroundthe attahed ion and optimize the atomi positions of all atoms inside the sphere usingsame Metropolis Monte Carlo method as in the previous simulation. The on�gurationspae turns out to be su�iently sampled if we apply 3 numerial simulated annealingyles with eah yle onsisting of 15000 trial steps.As a result we �nd that the stable nearest neighbor distane of the luster surfae atomsinrease in average from 2.88 Å to 3.02 Å, as new balane of the interplay between theattrating Gupta potential and the repulsive Coulomb potential. Due to the repulsivee�et of the Coulomb interation we expet a weak destabilization of the bistable tipreonstrution during the swithing proess. However, all atomi swith onformationswe identi�ed as bistable in the previous approah remain bistable, if we inlude the loalrelaxation e�ets.4.7.2 Eletrolyte model of Gouy-ChapmanA harged surfae in ontat with an eletrolyte attrats nearby ounter ions and repelsits oions present in the solution (Figure 4.13). The surfae harge and the attratedounter ions represent the so alled Eletrial Double Layer (EDL). Suh a ounter ionloud is likely to reat to the applied eletri �eld and an signi�antly hange theeletrial properties of the solid surfae. In mirosopi systems those e�ets beomeeven more important beause in this regime the applied eletri �elds an be very strongdue to the very small dimension and radius of urvature.The Gouy-Chapman (GC) ontinuum model assumes that the EDL onsists of two layersof harge: On one hand the surfae eletrons of the metal and on the other hand thelayer of the attrated ions, whih are able to move in solution and so the eletrostatiinterations are in ompetition with Brownian motion. This leads to a region lose tothe eletrode surfae ontaining an exess of one type of ion and an exponential potentialdrop over the region alled di�usive layer (see �g 4.13). Extending the ideas from Gouyand Chapman, Stern assumed an additional so alled �ompat layer�, i.e., a regionof maximal ounter ion density at the metalli surfae sreening the metal potential�0 to an e�etive value �0 � �, with the shift � being determined from eletrokinetismeasurements.The phenomenon of the exponential deay of the surfae potential assumed in the GCrepresentation is diretly predited by Poisson-Boltzmann theory. This approah is basedon the following assumptions:� Ions embedded in the solution are supposed to be pointlike harges.� The ioni soluion is supposed to be a dilute solution, thus the ions do not interatwith eah other.� The solvent water is onsidered as a ontinuum dieletri of permitivity " = "0"r.82



4.7 Environmental e�ets on the atomi transistor
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Chapter 4: Simulation of the atomi transistorWith previous approximations we an diretly solve for the eletrostati potential andobtain �(x) = �oe�x� with � =r2z2e21"kT : (4.12)The harateristi length ��1 is alled Debye length and is widely used to estimate theEDL thikness, beause its simple formula depends only on the eletrolyte harateristis.
Idealized geometriesBefore we address the more ompliated Poisson-Boltzmann potential in atomi transis-tor onformations we want to brie�y disuss three simple one-dimensional situations (see�g. 4.14), but already in a parameter spae hosen aording to the experimental ondi-tions of the bistable silver point ontats of interest. In the following we always onsiderthe ase of an aqueous eletrolyte ("r = 78:5) at ambient temperature (T = 298K). Thebulk onentration is hosen to be 1 = 0:1M and the harge number is z = 1. Wesolved in all three ases of �g. 4.14 the linearized GC equation �00(x) = �2�(x) obtaining�(x) = Ae�x +Be��x.In ase (a) the surfae potential on the left, where a metal is assumed, is hosen to�L = 43meV and on the right the solution should ful�ll the ondition of �(1) = 0. Thuswe obtain the plotted solution �(x) = �Le��x. The thikness of the present eletrialdouble layer is de�ned by the distane d where the potential �(x) dereased to the value�L=e so d = ��1. Note that the thikness of the eletrohemial double layer does notdepend on the value of the �L, only on the harge z, the onentration 1 and thetemperature T of the eletrolyte.In ase (b) and () the parameters of the general solution �(x) = Ae�x+Be��x have theform A = �R � �Le�se��s � e�s and B = e��s�R � �Le��s � e�s (4.13)with s denoting the distane of the eletrodes. In (b) the eletrode distane s was assumedto be 50 nm aording to the initial eletrode distane of atomi transistor onformationsbefore the ion deposition starts. Sine the gap between the eletrodes is large omparedto the thikness of EDL and the eletrostati potential in in�nity is set to �(1) = 0 bythe third gate eletrode the potential is nearly equal to zero in the region between theeletrodes. If the eletrode distane is drastially redued to 7.6 Å, whih equals threetimes the Ag-Ag distane of 2.88 Å, the EDL of the left and the right ontat overlapsigni�antly and thus the potential �(x) gets lose to the linear solution of the vauumsituation.84
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Chapter 4: Simulation of the atomi transistorFigure 4.15 shows a shemati representation of the eletrohemial double layers sreen-ing the eletrostati potential of eletrons of the two silver tips in a metalli point ontat.Sine there is only a mirosopi gap between both eletrodes the double layers of thik-ness d overlap in the ontat region.The full three dimensional omplexity of the atomi swith onformation is taken intoaount in �g. 4.16: Here we plot the eletrostati potential in a single atom transistoronformation projeted to a setional plane in parallel to harge �ux diretion. In ase(a) the silver lusters are surrounded by vauum and we use �xed Dirihelet boundaryonditions at the lead surfae with the experimentally applied eletrode potentials43 meV and 30 meV at the left and right ontat, respetively. The four remainingboundaries of the simulation box (40 � 30 � 30 Å3) were assumed to be of von Neumanntype, i.e., the derivative of the potential perpendiular to the simulation box surfaehas to vanish. In vauum the potential varies within the boundaries given by theeletrode potentials �L < �P (r) < �R. However, in the ase of an embedding eletrolyte(�g. 4.16b) the potential varies between �L < �PB(r) < 0, due to the presene ofsreening ions. As expeted the potentials in a) and b) agree in loser surrounding ofthe eletrodes. Nevertheless, far away from the eletrodes, in partiular on the top andbottom of the setional planes in a) and b) we observe a huge quantitative di�ereneof �P and �PB. In absene of the eletrolyte (a) there is a monotonous behavior of�P (r) along the edges (y; z) = (0; 0) and (y; z) = (H; 0). The sreening e�et of theeletrolyte ions dominates the potential �PB(r) at this region in ase (b) so we observeloal extremes at (x; y; z) = (L=2; 0; 0) and (x; y; z) = (L=2; H; 0). Aording to theexperimental onditions of eletrolyte onentration and temperature we �nd ��1 = 10Å. However, we have to remark that the assumptions made in the GC-approah [127℄may lead to an overestimation of ��1 of the order of 30%, depending on the bias voltage.
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Figure 4.16: Potential distribution mapped to a setional plane along the harge �ux diretionin atomi transistor onformations. (a) Potential of single atom swith in vauum. (b) Potentialof single atom swith sreened by ions of the eletrolyte. ��1 denotes the thikness of theeletrolyti double layer.86



4.7 Environmental e�ets on the atomi transistorDuring the eletrode deposition proess the left eletrode luster grows under the in-�uene of the eletrostati �eld of the right eletrode luster and vie versa. As aneletrolyte ontains harged ions the eletrostati �eld of the eletrodes is sreened bythe overing solvent, whih may lead to a systemati hange of the juntion geometryduring the eletrode growth proess, due to the presene of the eletrolyte. Thereforewe performed 50 eletrode growth alulations in vauum and with an embedding ele-trolyte, using the same atom-by-atom deposition simulation protool as in the previousalulations [100℄ and ompared the eletrode onformations grown under the di�erentonditions.
Figure 4.17a shows a shemati of the harateristi shape of the silver juntion grown invauum (solid line) and under onsideration of the eletrolyte sreening (doted line). Atthe beginning of the simulation there is still a gap of the order of 30 Å between the leftand right eletrode, so the silver lusters are well separated and if we take the eletrolyteinto aount, the sreening e�et dominates the growth proess. So far away from theontat region the eletrodes grow nearly una�eted by eah other, if an eletrolytesreens the eletrostati potential. However, in vauum the growth proess towards eahother starts earlier at the beginning of the deposition, leading to learly visible thinnerontat geometries than in the eletrolyte. This e�et is demonstrated in �g. 4.17b and�g. 4.17, where we show two representative examples of atomi transistor geometriesgrown in vauum and in eletrolyte, respetively.
The diagram in �g. 4.17d shows the number of atoms ni per f layer i averaged over the50 grown nano-juntions. Aording to the examples shown it turns out that nvai of thejuntion in vauum is about 15 smaller than nelei of the juntions taking the eletrolyteinto aount for i = 1; :::; 9. If the gap between the lusters gets smaller (d < 7:0Å) theeletrolyte in�uene on the eletrode tips is redued and so the di�erene between nvaiand nelei dereases. As the oherent ondutane of suh atomi transistor onformationsis mainly dominated by the minimal ross setion [99,121℄ we an exlude an in�uene ofthe di�erent eletrode shapes on the ondutane of the juntion. However, the thikerbakbone of the eletrodes may help to stabilize the tip reonstrution proess in theminimal ross setion during swithing. 87



Chapter 4: Simulation of the atomi transistor

Figure 4.17: Eletrolyte in�uene on the growth struture of silver point ontats. (a)Shemati of the eletrolyte in�uene on the ontat region of a nano-juntion. (b) Simulatedexample of silver point ontat onformation in vauum and with eletrolyte (). (d) Number ofatoms per metal layer with and without eletrolyte.4.8 Intermediate levels at non-integer ondutaneHigh time resolution measurements of the ondutane during the ontat losing proesspermit the observation of additional harateristi ondutane �utuations during theontat losing proess of the atomi transistor onformation. Figure 4.18 shows threeexamples of non-integer ondutane �utuations measured at di�erent losing proessesof the same single point ontat onformation. From the ondutane measurement ofmultiple swithing yles it turned out, that this e�et ours asymmetrially only atswithing from �o�� to �on� state and not at the inverse proess, where the swithing isapproximately instantaneous. The reason for the non-integer ondutane states at thelosing proess remains unlear, however there are at least two possible explanations ofthis e�et: (i) Additional moleules, e.g. H2, H2O, NH2, in the eletrolyte solution mightform a bridge between the two eletrode lusters and lead to a non-integer ondutane or(ii) single atoms of the eletrode tip region ould hop between the left and right ontatindued by thermal energy. This strutural �utuation of the ontat geometry ouldindue the observed ondutane variations. The nature of this e�et will be examinedin the following.
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4.8 Intermediate levels at non-integer ondutane
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Chapter 4: Simulation of the atomi transistorIn the ondutane graphs of �g. 4.19 we �nd weakly visible plateaus at about 0.3 G0and 0.8 G0 ourring typially at step 14 and step 18.In addition �g. 6.2 (left) shows a histogram olleting all ondutane values of theprevious �ve ondutane urves (see �g. 4.19). Here we use histogram spaing of 0.08G0 for the olumns of the y-axis. The histogram representation again on�rms weakplateaus at about 0.3 G0 and 0.8 G0, however, the distribution at these values is ratherbroad.Nevertheless, the omparison with the experimental histogram �g. 6.2 (right) showsqualitatively the same features. As we do not take additional moleules or ions intoaount in the simulations, thus we an onlude, that their disturbing in�uene inexperiment does not lead to ondutane �utuation in the losing proess of the ontat.From the simulations we �nd that the ondutane noise in this ase is due to single Ag-atom mobility: As illustrated in �g. 4.21 the potential energy surfae (here illustratedin two dimensions) has a barrier between the loal energy minimum at the left and theright ontat. Approahing the silver ontats stepwise dereases the energeti heightof the barrier. At the ritial height E = kBT the thermal energy enables the silveratoms to hop from the left energeti minimum to the right and vie versa leading to smallondutane �utuations until the minimum is unique at the losed state of the ontat.
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4.9 Summary and outlook4.9 Summary and outlookIn the present hapter we have developed a multi-sale simulation protool to investigatevarious properties of the single atom transistor. The approah ombines a physial anal-ysis on three di�erent length sales: (i) Eletroni properties were treated within the ma-terial spei� extend Hükel model Hamiltonian and are used as input for the Landauer-Büttiker sattering theory. (ii) The geometri struture of the nano-juntion was al-ulated with atomisti resolution using the (lassial) many-body Gupta-potential. (iii)Eletrostati properties inluding the e�et of the eletrolyte was taken into aountemploying a ontinuum model - the well established Poisson-Boltzmann theory.Using this approah we �nd that the bistable reon�guration of the eletrode tips isthe underlying mehanism of the formation of nano-juntions with prede�ned levels ofquantum ondutane. These levels are determined by the physially realizable bistablejuntion onformations, similar to magi numbers for metal lusters [126℄, that are mostlikely material-spei�. For silver, the observed quantum ondutane levels appear tooinide with integer multiples of the ondutane quantum.In agreement with the experiment we �nd, that at halting the deposition proess at anon-integer multiple of G0, subsequent swithing yles either onverge to an integerondutane at a nearby level or destroy the juntion. By snapping into bistable onfor-mations, juntions are mehanially and thermally stable at room temperature for longsequenes of swithing yles. We an explain this experimental observation with theobtained eletrode �training-e�et� at repeated swithing of the eletrode onformation,whih inreases the bistability of the tip reonstrution at every swithing yle. In addi-tion we ould explain the measured interlevel swithing with the ourrene of metastableontat onformations with integer quantum ondutane giving rise to plateaus in theondutane urve at a omplete rupture of the ontat. Besides these plateaus we ouldalso �gure out the reason for the observed weak ondutane �utuations at non-integerondutane values. Aording to our model they an be traed bak to single atomhopping between two neighboring stable energy minima indued by temperature. Fur-thermore we have analyzed the in�uene of the dieletri double layer in atomi transistoronformations generated by the eletrolyte and �nd, that this sreening eletrohemialenvironment leads to an additional stabilization of the swithing proess.In future suh devies may be manufatured using onventional, abundant, inexpensive,and nontoxi materials and possess extremely nonlinear urrent voltage harateristis,desirable in many appliations. Their eletrode arrays an be deposited with lithogra-phy, making devies ompatible with existing eletronis. Beause the swithing proessis ahieved with very small gate potential (mV), the power onsumption of suh de-vies may be orders of magnitude lower than that of onventional semiondutor-basedeletronis. Integrated iruits based on this novel priniple of operation represent aompletely new lass of quantum eletroni devies, also opening intriguing tehnolog-ial perspetives. Figure 4.22 demonstrates the operation of two atomi transistors inparallel. Using the previously desribed multi-sale model we an ontribute to the devieoptimization and determine boundaries for the minimal atomi transistor distane wheretwo bistable onformations still an operate and optimize the eletrostati onditionstaking the eletrolyte into aount. 91



Chapter 4: Simulation of the atomi transistor
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Figure 4.22: Parallel and independent operation of two atomi transistors grown on one andthe same substrate hip in a ommon eletrolyte.
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5 Condutane of organi wiresIn reent years, several experimental groups have reported measurements of the trans-port harateristis of individual or small numbers of moleules. Even three terminalmeasurements showing evidene of transistor ation has been reported using arbon nan-otubes [129, 130℄ as well as self-assembled monolayers of onjugated polymers [131, 132℄.A fundamental property of a moleular wire is the saling of the ondutane with thewire length, a behavior whih is a diret onsequene of the harge transport meh-anism. For short moleules (< 3 nm) onneted between metalli ontats it is wellaepted that the ondutane deays exponentially with the system length. However,measurements of the ondutane of short moleules in dependene of their length arehallenging, beause of the strong variation of the ontat geometry. Additionally, inprevious experimental works it has been di�ult to systematially examine the hoppingregime in onjugated moleular wires onneted to metalli ontats, beause of the rel-atively large range of moleular lengths required (spanning many nanometers) and theomplexity of adsorbing long moleules to metal surfaes while ontrolling orientation.Eletrial transport measurements on moleules up to 18 nm in length have been re-ported [133℄, and harge hopping in moleular juntions has been observed [134�136℄,but systemati length dependene of ondution has not been a prinipal fous.In the present work so far we have disussed only mono-nulear extended moleule re-gions, but it is well known that the presene of metal-organi interfaes ompliateseletroni struture and, as a result, eletroni transport alulations. After a short ex-perimental motivation of the topi we perform benhmark alulations on the oherenttransport properties of oligo-phenylene wires in order to validate the RGM for organiwires. In addition we examine the in�uene of thermally indued strutural disorder onthe ondutane of these moleules. Finally we investigate the relation between stru-tural, eletroni and transport properties of oligo-phenyleneimine wires and disuss theresults in omparison with experimental observations.5.1 Experimental motivationReently Choi et al. (Siene 320, 1482 (2008)) performed measurements whih providediret evidene for a hange in transport mehanism from tunneling to hopping in mole-ular juntions based on onjugated oligo-phenyleneimine (OPI) wires of varying length(1.5 - 7.3 nm). The moleules were deposited on a gold substrate (forming the bottomeletrode) and ontated via an atomi fore mirosope (AFM) tip to reate the seondontat (see �g. 5.1). They ould show that near 4 nm in length, the mehanism oftransport in the wires hanges abruptly, as evidened by striking hanges in the length,temperature, and eletri �eld dependene of the urrent-voltage (I�V ) harateristis.93



Chapter 5: Condutane of organi wires
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Figure 5.1: Experimental setup for the investigation of harge transport harateristis(i. e. length dependene) in organi wires [132℄ (a) A self-assembled monolayer of moleularhains is fabriated on a gold substrate, whih forms the �rst eletrode. The seond eletrode isintrodued by ontating the monolayer with an AFM-tip from the top. (b) The self-assemblemonolayers onsist of oligo-phenyleneimine (OPI) wires ranging in length from 1.5 to 7.3 nm.They ovalently bond to the substrate via sulphur.OPI moleular wires were grown on the gold substrate by immersing gold into 1 mM4-aminobenzenethiol in absolute ethanol, followed by a stepwise growth proess with al-ternate addition of benzene-1,4-diarboxaldehyde and benzene-1,4-diamine. Eah wireterminated with -NH2 or -CHO groups was end apped with benzaldehyde or aniline,respetively to provide a onsistent terminal group throughout the OPI series that fa-ilitates reproduible eletrial haraterization. Afterwards they extensively examinedthe obtained monolayer by ellipsometry, x-ray photoeletron spetrosopy (XPS), re�e-tion absorption Fourier transform infrared spetrosopy (RAIRS) and yli voltammetry(CV). In addition to other strutural information they ould onlude that the OPI wiresare tilted with an angle inreasing from 20 deg. to 45 deg. with respet to the surfaenormal as the wire length inreases.After the preparation and haraterization of the monolayer they performed the inves-tigation of the transport harateristis using the already mentioned onduting probe(CP) AFM (�g. 5.1a). The results regarding resistane R versus moleular length L areshown in �g. 5.2: Eah data point in the semi-logarithmi plot represents the averageof 10 I � V traes. They observe a lear transition of the length dependene of theresistane near 4 nm, whih orresponds to the length of OPI5, indiating that the on-dution mehanism is di�erent in short (OPI1 to 4) and long (OPI6 to 10) wires. In thease of short wires the linear �t in �g. 5.2 indiates that the data are well desribed bythe exponential resistane dependeneR(L) = R0e�L (5.1)for non-resonant tunneling, whereas the orresponding � value was found to be 3 nm�1.The extremely small � in the ase of long OPI wires suggests that the prinipal transportmehanism is hopping. The inset of �g. 5.2 shows a non-logarithmi plot of R versus L,whih indiates a linear resistane inrease in the ase of long wires. This is onsistentwith the assumption of hopping transport in this regime, thus equation (5.1) does not94



5.2 Reursive Green's funtion method applied to organi systems

Figure 5.2: Length-dependent resistane plot of oligophenyleneimine wires taken fromref. [132℄. Sine the resistane of OPI 1-4 inreases exponentially the underlying transportmehanism is expeted to be non-resonant tunneling. The urrent through wires longer thanOPI5 is based on eletron/hole hopping proesses, dedued from the linear length dependene ofthe resistane in this ase.hold for OPI6 to 10. Performing additional measurements of the temperature dependeneof the resistane they ould validate the di�erent transport mehanisms [132℄.Nevertheless, several questions remained regarding the nature of the hopping sites in longwires. Choi et al. found an ativation energy for the hopping proess of 0.28 eV, whihmight be the energy barrier for the eletroni hopping proess or the energy requiredto hange the dihedral angles of the moleular ring units to �atten the wire and thusextend the �-onjugation. Understanding the origin of this value would lead to a betteroverall understanding of the transport mehanism in suh kind of organi wires. Usingultraviolet-visible absorption spetrosopy the authors demonstrate that the onjugationdoes not extend over the entire wire, but rather eletroni deloalization is limited to3 repeating ring units. Comparing these results with eletroni struture and transportalulations an give insights into the distribution of the atual ourring dihedral anglesin the moleular wire.5.2 Reursive Green's funtion method applied toorgani systems5.2.1 Transmission of benzene wiresApplying the RGM method to silver and gold quantum point ontats has already shownthe reliability of the method in the ase of metalli devies. Before investigating the95



Chapter 5: Condutane of organi wiresondutane properties of OPI wires it is neessary to hek the reliability of our RGMimplementation in the ase of well studied organi systems. We have therefore studied theoherent ondutane of phenyle-di-thiol (PDT), a �drosophila� of moleular eletronis.Beause this moleule was studied extensively in the past [11, 137�143℄, it allows for aomparison of the RGM approah with experiment and various other levels of theory.We investigate the transmission of oligophenylene moleules of varying lengths, whihlend themselves niely to an investigation of the layer approximation in an organi, semi-onduting system. The struture of the moleules suggests a natural introdution oflayers in terms of single phenyl-ring units, similar to the layers introdued by base-pairsin DNA [122℄.
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5.2 Reursive Green's funtion method applied to organi systemsIn Fig. 5.4b the total transmission is shown as a funtion of energy for the moleularjuntions above, one with (dashed line) and one without the layer approximation (solidline). Due to the neglet of several overlap matrix elements the transmission and on-dutane obtained with the layer approximation is below the full devie transmission.The measured ondutanes of oligophenylene wires with amine end groups indiate evenlower ondutane values whih may arise from the di�erenes in the oupling to the ele-trodes. With inreasing length of the phenyl wire the transmission gap dereases from3.89 eV to 2.56 eV. The equidistant transmission at the Fermi energy of the di�erentmoleular wires indiates the orret exponential derease of the ondutane with linearinreasing wire length [131, 146�148℄.
!"#$#%& !"#$#%' !"#$#%( !"#$#%)

*+

,+

!" !# $ # " % & '(((((((()

*(!(*
+
(,-./

#-!$)

#-!$'

$0$$$#

$0$$#

$0$#

$0#

#

12
3
4
56
75
57
8
4

9:!;!<#

9:!;!<"

9:!;!<%

9:!;!<&Figure 5.4: Con�gurations of the organi moleular wires studied in this work. (a)Oligophenylene moleules ovalently bond to Au19 lusters along the ristallographi [111℄ axis.One phenylene ring unit represents one prinipal layer. (b) Total transmission as a funtion ofthe energy of the shown oligophenylens with (dashed line) and without (solid line) the prinipallayer approximation in good qualitative agreement with the DFT results of Ref. [149℄. In thelayer approxiation one prinipal layer ontains a single phenyle ring unit. The vertial lineindiates the Fermi energy. 97



Chapter 5: Condutane of organi wires5.2.2 Length dependene of the ondutaneThe proportionality of the ondutane deay G=G0 � e��N of the oligophenylene wires,one with and one without the layer approximation, is shown in Fig. 5.5. In both aseswe obtain a deay oe�ient � = 1:47 whih is lose to the experimental value �exp: = 1:5reported in [148℄ for amine end groups. Nevertheless, the omparison between theoryand experiment remains di�ult beause of the di�erent end groups used.
1 2 3 4

# phenyl rings N

10
-4

10
-3

10
-2

10
-1

co
nd

uc
ta

nc
e 

G
 (

G
0) with layer appr.

no layer appr.

β = 1.47

Figure 5.5: Length dependene of the ondutane of the oligophenylene wires. The ondu-tane dereases exponentially with the number of the phenyle rings in the wire in good agreementwith experimental data.5.3 Condutane �utuations of oligo-phenylene wiresNext we investigate the in�uene of thermally indued moleular vibrations on the o-herent transport properties of an Au-h-R4 wire. For the simulation of the dynamis ofthe system we use of the AMBER 8 moleular dynamis pakage [150℄, whih employsthe well established GAFF-fore�eld and a Langevin thermostat method to model tem-perature. Assuming �xed gold atoms of the eletrodes we simulate the evolution of thesystem at 300 K for 10 ps in time steps of 2 fs. Every 10-th time step a snapshot ofthe onformation is taken as input for the ondutane alulation generating 500 on-formations for analysis. For eah onformation we alulate the zero-bias ondutane.Within the simulation period we �nd repeated ondutane �utuations by more thanan order of magnitude.Reent investigations have already foused on the in�uene of intramoleular vibrationson the ondutane [100℄. Here, we �nd an interesting model system where thermal �u-tuations indue large-sale onformational hange. The ondutane of a onformationorrelates highly with its �planarity�, beause the fully planar onformation leads to astrong overlap of the �-orbitals, whih in turn inreases the transmission. However, suhplanar on�gurations are forbidden at zero temperature beause of steri repulsion ofthe hydrogen atoms emanating from the rings. Figure 6.5a shows the �utuation of thetorsion angles �1, �2 and �3 between the ring-units ourring in Au-h-R4, respetively.All three torsion angles �utuate strongly around an equilibrium average of 31.9 degrees,whih agrees well with the experimentally observed equilibrium value of 34 degrees. The98



5.3 Condutane �utuations of oligo-phenylene wireshistogram Fig. 6.5b shows that the outer torsion angles �1 and �3 have slightly broaderdistributions than �2, whih may be aused by the lower potential energy barrier atthe eletrodes. The average ondutane over 10 ps arises as an average of strongly�utuating instantaneous values, as illustrated in Figure 6.5.In the ourse of the the 10 ps simulation we �nd 6 "near-planar" on�gurations of adjaentrings and 2 "near-planar" onformations of all three rings. To haraterize this geometrifeature we ompute the average of the absolute torsion angles �� = 13(j�1j + j�2j + j�3j),whih has 4 minima (with �� < 20 deg.) and 3 maxima (with �� > 45 deg.) in theobservation period. As illustrated in Fig 8 the ondutane has assoiated minima where�� is maximal, e. g. at 2.2, 4.3, and 9.4 ps. Correspondingly the highest ondutanevalues are obtained, if �� is small, e. g. at 4.6, 5.5, and 9.8 ps. This e�et is also illustratedin Fig. 6.5d, whih gives a higher time-resolution of the grey regions of Fig. 6.5a and 6.5.This analysis shows that the experimentally relevant ondutane at room temperaturearises as an average of thermally exited high-ondutane onformations, whih areforbidden at zero temperature.
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Chapter 5: Condutane of organi wires5.4 Oligo-phenyleneimine wiresStarting from benhmark alulations assuming an experimentally and theoretially wellinvestigated organi system - oligo-phenylene wires - we ould show, that the reursiveGreen's funtion approximation is able to predit the ondutane within a reasonableauray. Choosing the prinipal layer thikness parameter d to 4.4 Å allows for a orretreprodution of the length dependene of the ondutane ompared to experiments andhigher levels theory results. After ensuring the reliability of the method in alulationof the transmission funtion of organi systems, we want to investigate the struturaland eletroni properties of OPI wires. The nature of the transition from oherent toinoherent transport should be lari�ed onsidering the in�uene of dihedral angles andthe extension of the frontier orbitals.5.4.1 Strutural propertiesCompared to the previously disussed oligophenylene wires, the oligo-phenyleneimines(OPI) onsist also of stringing phenylene ring units and of a thiol group at one end.However the main strutural di�erenes are the laking seond thiol group at the otherend of the wire and the way how the phenylene ring units are onneted. In the aseof the OP wires the onnetion is formed diretly between two C atoms of the ring(�C6H4-C6H4�), however OPI wires onsist of an additional �N=CH� unit between everyphenylene ring unit. For reasons of the synthesis of these moleular wires always two Natoms point towards the C6H4 ring or away from it. Thus the whole wire is built up bythe sheme S-C6H4-(-N=CH-C6H4-CH=N-C6H4-)n-N=CH-C6H5 for n=oddS-C6H4-(-N=CH-C6H4-CH=N-C 6H4-)n-N=CH-C6H4-CH=N-C6H5 for n=even.First of all we have optimized the geometries of OPI1-OPI5 using the density funtionaltheory (see hapter 2.2.3) implementationTurbomole [144℄. Here we apply generalizedgradient approximation (BP86), a Gaussian type orbital basis set as well as e�etive orepotentials to desribe the in�uene of the nulei plus inner shell eletrons. In order toobtain the equilibrium onformation of the moleules we use density funtional moleularmehanis under the ondition ��E=�Rk = 0, with Rk being the nulear oordinates.The so alled Hellmann-Feynman-Theorem [151,152℄ states that� �E�Rk = h j �H�Rk j i (5.2)= Z d3rn(r)Zke2(r�Rk)jr�Rkj +Xk<l ZkZle2(Rk �Rl)jRk �Rlj ; (5.3)similar to the predition of eletrostatis. The urrent atomi arrangement is stable ifthe eletroni and the ioni part of the Hellmann-Feynman fores vanish, whih an besimulated using a onjugate gradient method like implemented in Turbomole.For the ourring C-C single bonds we obtained a length of 1.41 Å on average, for the100



5.4 Oligo-phenyleneimine wires
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Figure 5.7: (top) Conformation of the OPI1 moleular wire pointing out the torsional angle�1 and �1. (left) Total energy depending on �1 showing an energy barrier of 5.5 meV. (right)Total energy depending on �1 showing an energy barrier of 15.5 meV.double bonds C=C a length of 1.47 Å and for the N=C bond 1.29 Å. The total moleularlength, whih is the terminal H to S distane for OPI1-5 amounts to 1.45, 2.11, 2.76,3.41 and 4.06 nm, omparing well with the experimental �ndings of 2.1, 2,8 and 3.4 nmfor OPI2-4 [132℄, respetively. Additional strutural parameters are the dihedral angles� and � between the N-C and C-C bond shown in �g. 5.7 for the ase of OPI1. Inontrast to �, whih is equal to zero, the average value of � is 31.9 deg. due to thesteari repulsion of the hydrogen atoms pointing towards eah other (see �g. 5.7). Thegraphs below the onformations show the total energy of the wire during twisting thewire by � = 0,...,90 deg. or � = 0,...,90 deg., respetively. It turns out that the energybarrier for a full rotation for � is �E� = 5:5 meV and � the barrier is �E� = 15:5 meV.In omparison to the thermal energy kBT = 25 meV at room temperature, the rotationalenergy barriers of the OPI wires are learly lower, thus strong thermal �utuations ofthe �-onjugation of the moleules an be expeted.5.4.2 Eletroni propertiesCoherent as well as inoherent harge transport properties mainly depend on the distri-bution of the orbitals over the moleule, so after investigating the geometri strutureof the OPI wires we examine their eletroni properties. The DFT alulations on theequilibrium geometries of OPI yield also the eletroni struture. In the present work wealulate the so alled Kohn-Sham-gap de�ned asEKSg = "LUMO � "HOMO: (5.4)101



Chapter 5: Condutane of organi wires
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5.4 Oligo-phenyleneimine wiresalulate also the Hartree-Fok HOMO-LUMO gap energies leading to 5.20 eV, 4.35 eV,3.87 eV, 3.64 eV and 3.58 eV for OPI1-5, respetively. The dereasing gap energy withinreasing the wire length was also observed in experiment [132℄, however the absolutevalue of the gap energy in the ases for OPI3-5 is underestimated by 36% in ase ofDFT and overestimated by 32% in ase of HF ompared to the experimental resultsfrom Choi et al. measuring an gap of 2.6 eV. While the underestimation of gap energiesin DFT was already disussed, the failure of the absolute HF-gap is due to the lak ofeletron-eletron orrelation. In DFT hybrid funtionals these errors rather anel eahother than being formally orreted.Figure 5.8 shows iso-surfae plots of the partial harge density distributions of the HOMOand LUMO of OPI1-5, with the real and imaginary part of the wave funtion markedred and blue, respetively. The harge density is plotted at an iso-value of 0.1 a.u. BothHOMO as well as LUMO have a p-like deloalized spatial distribution, but they learlydi�er in symmetry. The bonding HOMO has nearly E1g=A0 symmetry at the phenylenerings (meaning that there is one single node plan perpendiular to the ring) and the anti-bonding LUMO has E2u=A0 symmetry at the ring units (meaning that there are nodeplanes perpendiular to the ring). In addition �g. 5.8 shows that the HOMO is ratherloalized at the thiol group end than equally distributed over the moleular wire, due tothe strong eletron a�nity of the sulfur atom. However for longer wires the LUMO ismainly loalized at the enter of the hain. Qualitatively, �g. 5.8 on�rms that at OPI4(and even more at OPI5) the partial harge densities of the frontier orbitals, whih areof major importane for the oherent urrent �ow, signi�antly inreases at the rightmost phenylene ring unit. In addition the LUMO shows the same e�et also at thethiol group of the OPI4 and OPI5 wire, reduing the probability for oherent tunnelingdramatially. Thus, the eletroni struture alulations on OPI moleular wires anexplain the transition from tunneling to hopping transport at a ritial wire length of 7.3nm by the spatial distribution of the frontier orbitals. However, one has to note that thealulations above neglet the in�uene of the metalli eletrodes on the partial hargedensities, but sine the left and right eletrode material onsists of the same metal (andthus provides the same eletron a�nity), we assume that their in�uene on the orbitaldistribution ompensates mutually.5.4.3 Coherent ondutaneFinally we investigate the oherent transport properties of OPI1-5 wires using the pre-viously desribed reursive Green's funtion method. In ontrast to the oligo-phenylenewires OPI1-5 have only one single thiol group at one end and a hydrogen atom at theother end. Therefore also the eletrode oupling is asymmetri: One the �left� end (om-pare �g. 5.9) we introdue a gold luster onsisting of 25 atoms and assume the sulfuratom of the moleule to bind in a hollow position to the luster assuming the well knownAu-S bond length of 2.36 Å [153℄. On the right end of the wire we use a diretly op-posed gold luster onsisting of 26 atoms with an equilibrium H� � �Au distane of 1.6 Åtaken from ref. [154℄. In ontrast to the �left� ontat, whih is formed by a ovalentAu-S bond, the right ontat is based on weaker van-der-Waals interation between thewire and the metal luster. The weak interation between moleule and eletrode on the103



Chapter 5: Condutane of organi wires�right� end of the system enables a large variety of the ontat geometry in experimentdue to thermally indued moleule and gold atom mobility, whih might be a soure ofdisagreement between experimental and theoretial results.To utilize the advantages of the RGM we divided the OPI wires into layers by introduinga setional plane through every C=N double bond ourring in the OPI wire, leadingto N prinipal layers with N being the number of phenylene ring units in the wire. Inanalogy to the previous alulations on oligo-phenylene wires, we use a material spei�extended Hükel Hamiltonian to desribe the eletroni struture and embed the two left-and rightmost metalli layers of the extended moleule into semi-in�nite bulk eletrodesdesribed with already stored self-energy matrixes �rL=R(E).The lower left part of �g. 5.9 shows an exerpt of the total transmission funtion T (E)of OPI1-5, whih was alulated in an interval of �2 eV around the Fermi energy. Sinethe eletrode oupling at the right end of the wire is experimentally not uniquely de�ned,but the alulations are restrited to one speial geometry, we expet deviations betweenthe experimental and alulated transmission, however the relative ordering and distanebetween T (E) of the OPI wires should be una�eted by this unertainty. The alulatedtransmission gap of OPI1-5 amounts 2.38, 1.87, 1.84, 1.85 and 1.84 eV, respetively.This proofs the experimental observation of an dereasing HOMO-LUMO gap of OPI1-3and nearly onstant gap size of OPI3-5. The transmissions at the Fermi edge of OPI1-5, whih determines the ondutane of eah wire, is nearly equidistant in the urrentlogarithmi representation and amounts 3:1534 � 10�3; 2:5459 � 10�4; 2:0 � 10�5; 1:1 � 10�6and 6:0 � 10�8, respetively. This exponential deay of the transmission is harateristifor (o�-resonant) oherent tunneling. The lower right part of �g. 5.9 shows in detail theondutane depending on the wire length. Sine an exponential deaying behavior isexpeted we use G(L) = � e��L (5.5)as �t-funtion. The length-dependene parameter � = 3.29 nm�1 ompares well with theexperimental result � = 3 nm�1 of ref. [132℄. The parameter � = 0.24 G0 is more di�ultto interpret in relation to the measurements, beause in experiment the urrent througha whole set of OPI wires with the same length is measured, thus the total ondutaneof the SAM is expeted to be an unknown multiple of �e��L.5.5 ConlusionIn the present hapter we have probed the performane of the reursive Green's funtionapproah, whih divides the extended moleule region into prinipal layers with nearestneighbor oupling, alulating tunneling transport properties of the well studied oligo-phenylene wires. We obtained reasonable agreement with results of higher level theories(e.g., DFT) for the total transmission funtion as well as for length-dependene of theondutane. In addition to the validation of the method with oligo-phenylene wireswe have investigated the impat of thermally indued large-sale geometri hange onthe ondutane. Averaging the ondutane over 500 onformations obtained from a10 ps moleular dynamis simulation at room temperature, we �nd temporal ondu-104



5.5 Conlusion
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Chapter 5: Condutane of organi wiresiment permitting a slightly stronger �-orbital overlap, beause in this ase the moleulesare embedded into a self-assambled monolayer. Additional alulations on the hoppingtransport properties ombined with quantum hemistry methods ould give insights intothe behaviour of longer wires.
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6 Protein embedded nanopartiledepositionReently, there has been great interest in self-assembled biostrutures as a tool for theontrolled fabriation of one-, two-, or three-dimensional ordered nanomaterials and de-vies [155℄. Numerous proteins self-assemble into well-de�ned superstrutures (sheets,wires, tubes, or apsids) and have been used to template partile arrays and nanowiresof inorgani materials [156�161℄, providing unique inorgani-biomoleule hybrids withproperties derived from both the inorgani (of magneti, eletri, or optial nature) andthe biologial (spei� reognition apabilities) material. Stress-related proteins mayoverome the di�ulties of the sensitivity of proteins to the �unnatural� reation on-ditions, for example, towards variation of the pH, higher temperatures (>37.8ÆC), andthe presene of non-native hemials, beause of their robustness and tolerane of a vari-ety of unnatural onditions [162�164℄. Moreover, their potential for appliation has justreently been demonstrated for Flash-memory-devie fabriation based on haperonin-derived nanorystal assemblies [165℄.Motivated by the experimental work of the group of Silke Behrens (Institute of TehnialChemistry, KIT, Campus North) in the present study we will analyse the possibility ofmetalli nanopartile growth using an extended protein as template. Therefore, �rstly weoptimize the protein struture without any metalli extension in aqueous solution undernormal ambient onditions. Seondly we generate a set of palladium atoms bonded tothe protein, serving as nulei for the Pd2+-ion deposition. Assuming this start onforma-tion we simulate the deposition of the nanopartile and end up as soon as the number ofmetal atoms has reahed the measured value. In the following we will answer the ques-tion, whether the introdued nanopartile qualitatively hanges the seondary proteinstruture or stabilizes the entire maro-moleule, whih was partially investigated usingirular dihroism (CD) spetrosopy, but remained not ompletely understood.6.1 Experimental motivationIn their reent work the group of Silke Behrens developed a tehnique of size-onstrainedsynthesis of atalytially ative metal partiles using a genetially modi�ed stable protein(SP1) [166,167℄. SP1 is a ring-shaped homododeamer (12 mer), 11 nm in diameter, witha entral, 2-3 nm inner pore and a width of 4-5 nm. The protein has an extremely highthermal and hemial stability, for example, it exhibits a melting temperature of 107ÆCand resistane to detergents, suh as sodium dodeyl sulfate (SDS), and to proteases [168℄.The experimentalists genetially fused a histidine (His) tag to the N-terminus of SP1(6hisSP1), thus obtaining a variant with additional His residues faing the inner-pore of107



Chapter 6: Protein embedded nanopartile depositionthe ring struture [169℄. Histidine is a typial metal-binding site in proteins due to thepresene of the deprotonated N atom in the imidazole ring, analogous to the N atom ofguanine or adenine [170, 171℄.When the 6hisSP1 mutant was treated with Na2PdCl4 (typially 720 Pd atoms per dode-amer) for 2 h at room temperature, a homogenous pale-yellow solution resulted. ExessPd was removed by dialysis. The Pd2+ ions were subsequently redued by a redutionbath ontaining dimethylamine borane (DMAB), resulting in a lear-brown olloidal so-lution, whih was stable for several months. Transmission eletron mirosopy (TEM)imaging of the preipitate revealed aggregated, 3.4-nm-sized partiles. The partiulatetexture and size suggest that the wild-type template also in�uenes initial partile nu-leation.Cirular Dihroism (CD) spetrosopy was used to analyze the seondary struture of6HisSP1 before and after the metallization proedure. Figure 6.1 ompares the measuredCD spetra of the 6hisSP1 mutant and the Pd-6hisSP1 nanobioonjugate. The 6hisSP1mutant displays the typial CD bands of a protein, whih has a signi�ant �-helialfration with a maximum around 192 nm and two minima at 208 and 221 nm, respetively.After metallization and binding of Pd nanopartiles to 6hisSP1 the maximum weaklyshifts to 193 nm and the negative bands approah eah other slightly, leading to a steepershape of the �trough� between the minima.

Figure 6.1: Cirular Dihroism spetra of the SP1 protein with and without the depositedpalladium nanoluster allowing for the haraterization of the seundary struture of the protein.The mean residue elliptiities also show minor intensity hanges. In order to deidewhether the protein denaturates by the metal luster deposition or whether the mainproperties of its seondary struture remain una�eted we simulate the protein struturein the framework of moleular dynamis in the ases before and after the metallizationand analyze geometrial features. The question whether the proteins seondary strutureis onserved (also after metallization) is important, beause it deides whether this newhybrid system remains ompatible to biologial organisms (e.g. in aner therapy). Inaddition we will analyze the growth shape of the nanopartile, whih determines its �eldstehnologial of appliations.108



6.2 Protein simulation6.2 Protein simulationAfter generating a moleular struture of the start geometry of SP1, that onsists of 19di�erent types of amino aids, we onsider a ubi box of 11 nm edge length as simulationbox for the total energy minimization using the AMBER moleular dynamis pakage.We use the GAFF fore �eld and periodi boundary onditions in a NPT ensemble.Thus we onsidered the temperature to be �xed at 300 K modeled by the so alledNose-Hoover-thermostat and assume a pressure of 1 atm. For the solvent treatment weemployed a all-atom desription of the water moleules in the MD optimization that runs5 ns.

!" #"Figure 6.2: Donut-shaped protein serving as template for palladium nanopartile deposition:(a) Cartoon representation of the protein's seondary struture. Note the important histidineresidues (pointed out by the red arrow) serving as anhoring group for the palladium ions. (b)Three dimensional sketh of an isolated histidine moleule.Figure 6.2a shows the resulting protein geometry in seondary/quaternary struture rep-resentation. The energy minimized struture has about 10.0 nm outer diameter and 3.5nm inner diameter. The ring onsists of numerous �-helixes arranged in nearly radialdiretion stabilizing the overall struture of the protein. In the enter of the moleule�g. 6.2a shows a smaller inner irle onsisting of histidine residues required later for thepalladium-protein interfae.6.3 Deposition simulationStarting from the obtained protein struture we add one single palladium atom at eahhistidine at the experimentally observed position to the free nitrogen atom of the ringunit (see �g. 6.2b). We have to introdue these ovalent bonds �by hand�, beause109



Chapter 6: Protein embedded nanopartile depositionovalent binding an not be predited by the applied fore �eld based models, however,the ourring histidine-metal oupling was well haraterized experimentally [170, 171℄.For the metal luster deposition we employed a reently developed protool for simulationof nanosale-struture formation on long time sales [113℄. Our simulations omprise twoparts: In the �rst part, we �grow� the nanopartile, one atom at a time in moleular-mehanis simulations. We observe the nuleation of several palladium nanorystalsemanating from the unprotonated side-hain His N atoms (�g. 6.3, left), whih oaleseinto a single multidomain Pd-nanopartile that spans the entire pore (�g. 6.3, right).We deposited up to 800 Pd2+ ions, one ion at a time, using a kineti Monte-CarloMethod. In eah simulation the Pd2+ ion is plaed at a random position outside theprotein and evolved for 30000 steps in the eletrostati potential generated from theprotein (AMBER harges) and the partially formed Pd-luster using also a short-rangeGupta-potential [115℄ for Pd. The protein is taken into aount as external Lennard-Jones potential. When the Pd2+ ion attahes to an existing luster it is redued. Theobtained palladium nanopartile has a ompat nearly spherial shape with a diameterof 3.5 nm.
!!"!#$% !!"!&$% !!"!'$% !!"!($%!!"!$%Figure 6.3: Snapshots of palladium (yellow atoms) nanopartile deposition using an extendedprotein as template. The 96 atoms shown in the left-most frame serve as adsorption nulei forthe partile growth proess. After deposition of about 800 palladium atoms a ball-shaped metalluster has formed in the enter of the protein ring.

6.4 In�uene of the palladium lusterUsing the generated nanopartile/protein omplex, we an analyze the �utuations ofthe protein with and without nanopartile in moleular-dynamis simulations using theAssisted Model Building and Energy Re�nement (AMBER) [150℄ fore�ld. We �nd thatthe protein alone equilibrates into a onformational ensemble with approximately 2.5 ÅRMSD (root mean square deviation) from the starting struture, and the presene of themetal nanopartile onstrains the onformational ensemble to within 1.1 Å RMSD of thestarting onformation.110



6.4 In�uene of the palladium luster

Figure 6.4: Arbitrarily hosen �-helix segment of the SP1 protein to study the thermallyindued �utuations of the atomi position (in terms of the rmsd) of C�;GLN and the distanebetween C�;GLN and C�;LEU at both ends of the hain in the two ases with and without thenanopartile.
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Figure 6.5: Flutuation of a single C�;GLN atom (in Gln-23, bottom urves) in a helial regionand of the end-to-end distane of helix C�;GLN23-C�;LEU37 (top urves) in the MD trajetorieswith (blue) and without (blak) the nanopartile. The nanopartiles-indued redution in the�utuations explains the observed inrease in the CD signal without a hange in the fration ofhelial ontent in the protein.Figure 6.4 shows the examined helial length (i.e., distane of C�;Gln-C�;Leu) we havealulated during evolving the system in time at 300 K one with and one withoutthe metal nanopartile. In agreement with the experimental observations, the overall111



Chapter 6: Protein embedded nanopartile depositionseondary-struture and tertiary arrangement is less in�uened by the presene of thenanopartiles. However, we �nd the strutural �utuations of the protein in omplex withthe nanopartiles are redued by approximately 28% (�g. 6.5), when ompared to the�utuations of the protein alone. The observed redution of �utuations in the omplex,akin to a redued temperature, is ommensurate with the observed inrease in CD signal.The hange in the CD signal an thus be understood as a result of redued �utuationsin the protein due to the onstraints imposed by the presene of the nanopartile, andnot by an atual inrease of helial ontent in the seondary struture.6.5 SummaryUsing ombined moleular dynamis plus Monte-Carlo simulations we ould demonstratein agreement with experimental results that the SP1 protein is an template for thesynthesis of mono-disperse metal partiles of various natures, and the generated partilesprovide a mortar to onstrut novel geometrial arhitetures of hybrid nanopartile-protein omplexes.We have analyzed the protein struture before and after the palladium ion depositionby evaluating geometrial parameters during the time evolution of the hybrid systemin solution under normal ambient onditions. With this information we ould interpretthe measured CD-spetra and onluded that the protein struture remained intat afterpartile deposition and, thus, may be further funtionalized by geneti engineering witha�nity reagents for site-spei� targeting.The high relevane of suh kind of systems was also shown in reent experiments, w.t.SP1 aumulates in tumors and shows no signi�ant immune response after repeatedinjetion, indiating that it may indeed be used to target ative nanopartiles to solidtumors for both imaging and therapy. Suh biofuntional, protein-nanopartile hybridswill thus be interesting for diverse future appliations, suh as in biosensing, targetedreagent delivery, site-spei� tumor imaging, therapy, and biomedial diagnosis. Multi-sale simulations permit an appealing tool to over the full range of the various time-and length-sales playing a role for hybrid nanopartile-protein systems to predit theiromplex behavior and optimize them for appliations.

112



7 ConlusionsEletroni transport through nano-sale strutures has been intensively studied duringthe last deade. The fabriation of nano-juntions by sanning tunneling mirosopy,break-juntions or eletrohemial deposition enabled measurements leading to newinsights into the physis of eletroni transport in quantum systems and to thedevelopment of new promising devies for nano-eletronis. In moleular eletronismeasurements one major hallenge is the ontrol of the moleular geometry arrangedbetween two or three mirosopi eletrodes. The di�ulty of ontating a moleuleinreases dramatially with dereasing the size of the satterer to a few atoms. In thease of large hybrid nano-partiles funtionalization for printable eletronis is obtainedonly for systems ontaining ten-thousands of atoms. Theoretial investigations onidealized strutures gave understanding of fundamental priniples, but sine the ontrolof the moleular geometry is experimentally to di�ult onformational variability playsan important role. To understand the physis behind their funtionality these systemshave to be treated on the lassial atomisti as well as on the quantum mehanis levelpermitting the investigation of eletroni transport in more realisti systems inludingdisorder and onformational ensembles.In the present thesis we have studied the interplay of onformational and eletronitransport properties in metalli and organi nano-strutures. Charaterization of thein�uene of thermal, eletrostati or fabriation-indued strutural rearrangement onthe ondutane harateristis gives new insights into the funtionality of nano-salesystems, suh as quantum point ontats, nano-wires and nano-partiles. With thedeveloped theoretial approah nano-eletronial building bloks, e.g., swithablemoleules, an be identi�ed and optimized for new promising tehnologial appliations.In order to simulate realisti onformations of nano-strutures arising from (eletrohem-ial) fabriation tehniques we have developed and implemented a deposition model,whih is based on lassial interations, and an be used in simulations of metallisystems, as well as extended organi moleules. In ontrast to moleular dynamissimulations our stohasti approah is able simulate growth proesses ourring on verylong time sales (seonds) whih is prohibitively ostly for deterministi methods likeMD. To study the oherent transport properties of large systems we have implementeda reursive Green's funtion formalism that employs tight-binding like model Hamilto-nians. The linear saling behavior of the omputational e�ort with the devie lengthpermits the treatment of large sattering systems taking extended eletrode fragmentsinto aount. The developed and validated methods were employed in the following keyappliations:
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Chapter 7: ConlusionsStati disorder in metalli juntions:First we have studied the ballisti transport properties of ideally rystalline silvernano-juntions using our implementation of the RGF method. In the absene of defetsand disorder the ondutane is an integer multiple of the ondutane quantum G0for small minimal ross setions of the nano-ontat, whih most likely results fromthe eletroni s-on�guration of the metal. Generalizing the onformations to morerealisti strutures omparable to experimental situations we investigated the in�ueneof imperfet ontat geometries on the ondutane by studying many di�erent possiblerealizations of silver nano-juntions: Starting from a symmetri silver eletrode ontatwe found that tilting the juntion eletrodes up to 60 degrees redues the ondutaneby 20%, while twinning the eletrodes leaves the ondutane nearly unhanged. Fur-thermore we found that introduing a large amount of surfae vaanies leads to weakvariations of the ondutane of silver ontats. In the next step we have investigatedthe transport properties of non-f strutured silver juntions, silver nano-lustersranging from 5-260 atoms. Here we found ondutane values that on�rmed the resultsof the transport alulations of idealized f ontat geometries, where we alreadyfound a strong dependene of the total ondutane on the diameter of the minimalross setion. We notied that analyzing their transmission funtion in a three-terminalmeasurement an be used to estimate the size of the nano-partile, beause �utuationsstrength of the transmission funtion is diretly proportional to the lusters diameter.Atomi Transistor:Seondly, we have investigated mehanial, eletrostati and eletroni properties ofan �atomi transistor� nano-juntion in ollaboration with an experimental group. Inthis experiment a silver nano-juntion is eletrohemially deposited and �trained� toreproduibly swith between integer values of quantum ondutane. In partiular, thequestion of the underlying swithing mehanism was not onlusively answered at thestart of this investigations. We therefore developed a multi-sale approah ombiningontinuum, atomisti and quantum mehanial methods beause of the many di�erenttime and length sales playing a role in this experiment. Applying this approah wefound that the bistable reon�guration of the eletrode tips is the underlying mehanismof the formation of nano-juntions with prede�ned levels of quantum ondutane. Itturns out that these levels are determined by spei�, material dependent bistablejuntion onformations, similar to magi numbers for metal lusters [126℄. For silver,the observed quantum ondutane levels appear to oinide with integer multiplesof the ondutane quantum. With our model we ould on�rm the experimentalobservation, that at halting the deposition proess at a non-integer multiple of G0,subsequent swithing yles either onverge to an integer ondutane at a nearby levelor destroy the juntion. Furthermore the experimentalists found that by snappinginto bistable onformations, juntions are mehanially and thermally stable at roomtemperature for long sequenes of swithing yles. We an explain this e�et with the�eletrode-training-e�et� ourring in our model at repeated swithing of the eletrodeonformation, whih inreases the bistability of the tip reonstrution with every swith-114



ing yle. We have also analyzed the in�uene of the dieletri double layer in atomitransistor onformations generated by the eletrolyte and �nd, that this eletrohemialenvironment leads to an additional stabilization of the swithing proess. Anothere�et we ould explain is the observed swithing between levels of �nite ondutane:The ourrene of metastable ontat onformations at integer quantum ondutanegives rise to plateaus in the ondutane urve at a omplete rupture of the ontat.These plateaus are seleted during inter-level swithing. Furthermore, using our modelalulations we an relate the weak ondutane �utuations at non-integer ondutanevalues observed in the experiment to thermally indued single atom hopping betweentwo neighboring stable energy-minima.Conformational disorder in organi wires:In the third part of this thesis we have applied the reursive Green's funtion teh-nique to study organi nano-wires and obtained reasonable agreement with results ofhigher level theories for the total transmission funtion as well as for length-dependeneof the ondutane. Sine we divide the extended moleule region into prinipal layerswith nearest neighbor oupling (or mathematially spoken, we trunate the Hamiltonmatrix) this result is not obvious. Furthermore we have investigated the impat of ther-mally indued large-sale geometri hange on the ondutane. We ombined lassialmoleular dynamis alulations at room temperature with a quantum model Hamil-tonian approah to alulate the ondutane of the nano-wire. During the simulationwe �nd temporal ondutane �utuations of more than an order of magnitude, leadingto high-ondutivity onformations that are sterially unfavorable at zero temperature.The average ondutane of these onformations explains the experimentally observedvalue very well, beause disorder e�ets on the ondutane of moleular wires play animportant role in almost all experimental realizations.The extensive experimental e�ort direted towards harge transport in organi nano-wires, and the versatile amount of open questions in that area, have motivated ourstudies of the relation between strutural, eletroni and transport properties of oligo-phenyleneimine wires. Using density funtional theory we found that, in ontrast to theoligo-phenylene wires, the two types of energy barriers of the dihedral angle rotations arelower than 16 meV, thus we an onlude that room temperature is already su�ient toindue full rotations of the moleular ring units. Furthermore we ould dedue from ouralulations that the harge arrying frontier orbitals are not extend over the entire wire- the eletroni deloalization is limited to 3-4 repeating ring units, whih explains theexperimentally observed disruption of the oherent transport in longer wires. In additionwe �nd for the length dependene of the ondutane the harateristi exponential deaywith a deay parameter � = 3.29 nm�1, whih agrees well with the experimental �ndingsand on�rms, that the moleular geometry obtained from density funtional theory, inpartiular dihedral angles, is lose to the true struture.
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Chapter 7: ConlusionsGrowth of palladium nano-partiles in protein templates:The last part of this work desribes our investigations of hybrid protein-palladiumnano-partiles whih may have promising appliations in novel nano-tehnology based�ash-memory devies as well as in aner therapy. After the experimental suess ofthe palladium nanopartile synthesis using funtionalized protein templates severalquestions arose. From the perspetive of appliations it is important to know whetherthe nanopartile grows into a porous struture indued by the presene of the proteinor forms on the outside of the protein and an grow into a ompat luster. Inaddition, it was unlear how the presene of the palladium luster a�ets the strutureof the protein SP1, whih is essential for future appliations of suh a hybrid system.Using ombined moleular dynamis plus Monte-Carlo simulations we have analyzedthe protein struture before and after the palladium ion deposition. Simulating theprotein's struture in expliit water moleules (in total about 100.000 atoms), withmoleular dynamis we obtain a ring-shaped maro-moleule with an outer diameter of10 nm with helial substrutures. Our nanopartile growth simulation of the palladiumsuggest that the nanopartile grows as a a ompat polyrystalline metal lusteroupling via histidine residues to the protein. On this basis additional simulationspermitted the interpretation of the measured CD-spetra: We ould onlude thatthe protein struture remained intat after partile deposition and, thus, may be fur-ther funtionalized by geneti engineering with a�nity reagents for site-spei� targeting.The present work showed, that onformational properties signi�antly a�et oherentquantum ondutane. To explain transport measurements and optimize funtionalizednano-strutures it is indispensable to onsider su�iently large extended moleule regionsin realisti arrangement. In this work we disussed the in�uene of disorder e�ets,whih de�nitely our in realisti systems and an, in ertain appliations, dominate theondutivity. For this purpose the multi-sale approah pursued here provides a powerfulmethod to onsider the physis of various time and length sales at a reasonable amountof omputational osts, whih will permit treatment of many further appliations in thegrowing �eld of nanosiene.
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