
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)
von der Fakultät für Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe
vorgelegte Dissertation von
Dipl.-Inform.Wirt Holger Michael Lewen.

Facilitating Ontology Reuse Using
User-Based Ontology Evaluation

Holger Michael Lewen

Tag der mündlichen Prüfung: 23.11.2010
Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Christof Weinhardt
2010 Karlsruhe

This document was created on November 26, 2010

Meiner Familie

-2

Acknowledgements

This work would not have been possible without the support I got from many sides.

First of all I would like to thank my adviser, Prof. Dr. Rudi Studer, for providing
this truly unique working environment and all the support over the years. I can hardly
imagine a better place to be as a PhD student. Without the freedom to pursue my
research interests and the funding to go to conferences, this thesis could not have been
written.

Second I would like to thank my co-referent Prof. Dr. Christof Weinhardt for tak-
ing the time to serve on my examination committee. My profound gratitude also
goes to Prof. Dr. Andreas Oberweis, who served as examiner on the committee, and
Prof. Dr. Karl-Heinz Waldmann, who served as chair of the examination committee.

A special thanks goes to my two supervisors Dr. Peter Haase and Dr. Denny Vrandečić
who advised me in my research over the last 5 years, and also proof-read part of my
thesis.

I was blessed enough to work with amazing colleagues over the last years. Thanks to
each and every one of you. Special thanks go to Dr. Markus Krötzsch and Dr. Sebas-
tian Rudolph for helping me formalize the algorithms and check the more mathematical
parts of my thesis. Moreover I want to thank Dr. Elena Simperl, Dr. Andreas Harth,
Dr. Thanh Tran, Dr. Barry Norton, Dr. Sudhir Agarwal and Dr. Natasha F. Noy for
their valuable feedback on my conference submissions.

Moreover I want to thank the members of the NeOn Project, with whom I had the
pleasure of working. Especially Dr. Mathieu d’Aquin, with whom I had the pleasure of
co-authoring several papers. Thanks to Prof. Dr. Enrico Motta for directing the NeOn
project, which funded me for the longest part of my AIFB time, and for providing
valuable advise, both scientifically, but also non-scientifically.

Last, and most importantly, I thank my wonderful wife Bessy for the loving support
and the patience she had with me during the long nights of writing the thesis. A big
thanks to my parents, grand-parents and brother for their support over the years.

Without all those people, this work would not have been possible. Each and every
one deserves my profound gratitude.

Karlsruhe, November 2010.
Holger Lewen

5

Acknowledgements

6

-2

Abstract

Ontology reuse saves costs and improves interoperability between ontologies. Knowing
which ontology to reuse is difficult without having a quality assessment. We provide
a framework that enables this quality assessment in the form of user reviews of on-
tologies, which are ranked based on inter-user trust. Open Rating Systems allow to
collect user reviews, ratings, and information on trust between users, and to exploit
this information for computing a personalized ranking of ontologies. However, in the
traditional Open Rating System model, objects can only be rated as a whole, and
other users can only be trusted globally. Since these limitations hinder the use of an
Open Rating System for applications like ontology rating, we develop an extension,
our Topic-Specific Trust Open Rating System. Our system features topic-specific trust
and multi-faceted ratings. In a simulation, we show that our Topic-Specific Open Rat-
ing System provides a better result than the Open Rating System. In a user study,
we show that having user ratings and result ranking based on our system significantly
facilitates ontology selection for the end user, compared to the state of the art ontology
search engines.

7

Abstract

8

-2

Short Table of Contents

Acknowledgements 5
Abstract 7

I Foundations 11
1 Introduction and Overview 13
2 Definitions 15

II Topic-Specific Trust Open Rating System For Ontology Reuse 43
3 Topic-Specific Trust Open Rating System Model 45
4 TS-ORS Algorithms and Trust Materialization 55
5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations 71
6 Evolution of Ratings 87
7 Initialization of the TS-ORS for Other Applications 91

III Implementation and Application 95
8 Implementation of the Topic-Specific Trust Open Rating System 97
9 Cupboard and TS-ORS Integration 109
10 The Cupboard NeOn Toolkit Plugin 119
11 Exporting Ratings and Trust Information 125

IV Evaluation 129
12 Complexity Analysis and Benchmark 131
13 Agent Simulation 151
14 User Study 175

V Related Work and Conclusions 205
15 Related Work 207
16 Conclusions and Open Questions 213

VI Appendix 215
Bibliography 223
Full Table of Contents 243

9

Short Table of Contents

10

Part I

Foundations

1 Introduction and Overview 13

2 Definitions 15

TABLE OF CONTENTS

12

1

Chapter 1

Introduction and Overview

1.1 Introduction

Ontology reuse is a good practice in ontological engineering, because it reduces costs
and development effort (Simperl et al., 2009). Ontology engineers save time when they
reuse existing ontological content—entire ontologies or parts thereof. In addition, the
use of the same URIs for the same entities across ontologies increases interoperability
and interlinkage between ontologies, since no ontology matching is needed between the
vocabularies of the ontologies.

A typical problem users face today when they try to reuse existing ontological
content is the selection of the most appropriate ontology or ontology axioms for their
task. This is because the assessment of ontologies is a time-consuming and nontrivial
task. Furthermore, there is, so far, no automatic evaluation technique that can judge
the quality of an ontology the way a human expert can. The ability to rely on the
experience of other users can lessen the assessment effort considerably.

In this thesis we investigate how user-based ontology evaluation in the form of
reviews and ratings can be used to facilitate ontology reuse for the end user. Open
Rating Systems provide a way to compute personalized ratings of objects based on user
ratings and information on inter-user trust. In the thesis we analyze the shortcomings
of the current Open Rating System model and provide our solution, the Topic-Specific
Trust Open Rating System. We test our system both in a simulation and a user study.
To facilitate ontology reuse for the end user, we furthermore integrate our solution
into an ontology engineering environment, to provide tool-support for the complete
ontology reuse process.

1.2 Overview

We start the thesis with an introduction to ontology engineering with an emphasis on
the ontology life-cycle and ontology reuse in Chapter 2. Also related work on trust
and Open Rating Systems is presented in this chapter.

In Part II, we introduce the conceptual foundation of this thesis, our Topic-Specific
Trust Open Rating System (TS-ORS). We start with introducing our formal model

13

Chapter 1 Introduction and Overview

in Chapter 3. In Chapter 4 we then present the algorithms needed for computing
review rankings and overall ratings for objects in the TS-ORS. Chapter 5 explains
how the TS-ORS can be adapted for ontology reuse, and provides an example for
the computations performed within the TS-ORS. Chapter 6 discusses possibilities to
deal with ratings on evolving objects, or evolving ratings, while Chapter 7 covers the
initialization of the TS-ORS in other applications.

In Part III we cover the implementation of our system in Chapter 8, and its inte-
gration into our ontology hosting environment and repository Cupboard in Chapter 9.
The integration of the Cupboard system with the ontology engineering environment
NeOn Toolkit can be found in Chapter 10, while Chapter 11 contains information on
data exchange between ontology repositories.

Three different evaluations are presented in Part IV. We start with a complexity
analysis and system benchmark in Chapter 12, followed by an agent simulation com-
paring the Open Rating System with our Topic-Specific Trust Open Rating System
in Chapter 13. We conclude the evaluations with a user study comparing our system
against state of the art in Chapter 14.

The thesis concludes in Part V with a positioning against related work in Chapter 15,
the conclusions in Chapter 16 Section 16.1, and open questions in Chapter 16 Sec-
tion 16.2.

14

2

Chapter 2

Definitions

In this chapter we first define the term ontology in Section 2.1. We then present
the ontology lifecycle in Section 2.2, with a special emphasis on ontology evaluation
(covered in Section 2.3) and ontology reuse (covered in Section 2.4). Then the concept
of trust is introduced alongside trust propagation techniques in Section 2.5. The
chapter concludes with an introduction to Open Rating Systems in Section 2.6.

2.1 Ontology

Studer, Benjamins and Fensel define an ontology based on (Gruber, 1993; Borst, 1997)
as follows:

“An ontology is a formal, explicit specification of a shared conceptualiza-
tion. Conceptualization refers to an abstract model of concepts of some
phenomenon. Explicit means that the type of concepts used, and the con-
straints on their use are explicitly defined. Formal refers to the fact that
the ontology should be machine-readable. Shared reflects the notion that
an ontology captures consensual knowledge, that is, it is not private of
some individual, but accepted by a group.” (Studer et al., 1998)

They stress that ontologies should be machine-readable and the consensual knowledge
of a group.

Even though ideally the knowledge covered by an ontology is language independent,
it needs to be represented in an ontology language. While a number of different
ontology languages have been developed (for a roadmap of such languages see (Corcho
and Gómez-Pérez, 2000)), in this thesis we focus on ontologies represented in one of
the currently relevant ontology languages RDF(S)1 (Brickley and Guha, 10 February
2004), OWL2 (McGuinness and van Harmelen, 10 February 2004), or OWL 2 (W3C
OWL Working Group, 27 October 2009). RDF(S) and OWL are the most important
languages for the Semantic Web (Berners-Lee et al., 2001), or Web of Data, as it is

1http://www.w3.org/RDF/, last checked on 24.11.2010
2http://www.w3.org/2004/OWL/, last checked on 24.11.2010

15

http://www.w3.org/RDF/
http://www.w3.org/2004/OWL/

Chapter 2 Definitions

now also called. The general idea of the Semantic Web (Berners-Lee et al., 2001) is
to extend the current World Wide Web (WWW) so that information can be given
well-defined meaning, in a way that is machine-processable.

Application areas of ontologies

While classically ontologies were used to model the world, this is only one of their
use cases today. There are still ontologies which capture the consensual knowledge of
a particular domain or the world in general. They are usually referred to as domain
ontology in case the ontology is limited to a specific domain, and upper level ontology,
if a more general view of the world is modeled. Prominent examples of upper level
ontologies are SUMO (Niles and Pease, 2001), Cyc (Lenat, 1995), DOLCE (Gangemi
et al., 2002), and BFO (Smith and Grenon, 2004).

The main use case for ontologies nowadays is data/information integration (Blake
and Bult, 2006; Calvanese et al., 2007b; He and Ling, 2006; Ceravolo et al., 2008;
Cruz and Xiao, 2009). Especially with the rise of the World Wide Web and the idea of
the Semantic Web the ability to integrate data from heterogeneous sources is one of the
main benefits ontologies provide. In the biomedical domain, ontologies are mostly used
for data annotation (Groth et al., 2008; Jonquet et al., 2008; Chebotko et al., 2009;
Barrell et al., 2009). The most prominent example is the Gene Ontology (Ashburner
et al., 2000), which is used to annotate gene and gene products. But ontologies can
also support intelligent applications (Masuoka et al., 2003; Fu et al., 2005; Lee and
Wang, 2007; Tan et al., 2008; Ayala, 2009). We propose an exemplary architecture
for such a semantic application in (Tran et al., 2007c), using a personalized knowledge
portal as an example. Another use case is semantic search, where ontologies can be
used to provide structure and background knowledge (Tran et al., 2007a; Bloehdorn
et al., 2008) to better interpret the user’s information need, and improve precision.

In the next section, we present the different stages of the ontology lifecycle, and
show how they can be supported by an ontology engineering tool.

2.2 Ontology Lifecycle

Parts of this section are based on (Tran et al., 2007b). The term ontology lifecycle was
introduced in methodologies for ontology engineering (Gómez-Pérez et al., 2003). The
idea is that during its life, an ontology goes through different phases, ranging from a
requirement analysis to the evaluation of the created ontology. While early ontology
lifecycle models (Uschold and Gruninger, 1996; Fernandez-Lopez et al., 1997; Staab et
al., 2001) focus only on the ontology engineering part of the ontology lifecycle, in (Tran
et al., 2007b) we propose an ontology lifecycle model that also takes ontology usage
into account. Figure 2.1 depicts our ontology lifecycle. In our lifecycle, we distinguish

16

2

2.2 Ontology Lifecycle

Figure 2.1: Our Ontology Lifecycle Model

between ontology engineering (the act of building an ontology) and ontology usage
(the employment of a built ontology within an application).

2.2.1 Ontology Engineering

Even though individual methodologies vary, most agree on the main lifecycle activities,
which are requirement analysis, development, evaluation, and maintenance , in addition
to orthogonal activities. In our lifecycle model, we also include these agreed-upon
activities, and include maintenance in the context of usage-related activities.

Requirement Analysis:

In the requirement analysis step, domain experts and ontology engineers define and
document modeling requirements based on the intended usage scenario of the ontology.
Depending on whether the ontology should be used for retrieval or reasoning tasks,
the modeling has to be adapted.

Development:

Because methodologies vary on what to do in the development step, we present an
aggregation on the different proposals. An important step before starting the ac-
tual development is finding and assessing reusable ontological content. Reuse is a
common best practice that reduces costs and development effort (Simperl et al., 2009;
Simperl et al., 2006; Uschold et al., 1998). We analyze ontology reuse in more depth in
Section 2.4. After reusable ontologies are found and selected, they have to be adapted
according to the results of the requirement analysis phase. Modifications may include
backward and forward engineering of the reusable ontologies. Backward engineering
means, for example, restructuring or modifying the ontologies, while forward engi-
neering means, for instance, extending the ontologies. Depending on the results of

17

Chapter 2 Definitions

the requirement analysis phase, the ontologies are then translated to the target rep-
resentation language, and their degree of axiomatization is tweaked according to the
expressivity and scalability requirements of the intended application.

Collaboration between ontology engineers is an important aspect of ontology de-
velopment. Recent work focuses on the definition of workflows for ontology engineer-
ing (Tudorache et al., 2008; Sebastian et al., 2008; Palma et al., 2008) that are also
supported in tools. Apart from these approaches, (Gangemi et al., 2007) introduced
an ontology-based collaboration method. The DILIGENT methodology focuses on
argumentation-based ontology engineering (Tempich et al., 2007). The idea here is
that reasons for modeling decisions are formalized and discussions can follow a given
structure.

Integration:

Following the componentization encountered in software engineering, recent ontology
development approaches advocate the construction of modularized ontologies, rather
than one monolithic ontology (Wang et al., 2007; Pathak et al., 2009). Via import
declarations and alignment rules, these modules then have to be integrated. In this
step, the resulting linked modules are also integrated with external ontologies if this
is required for interoperability with external applications.

Evaluation:

The result of the integration phase has to be evaluated to find errors or deviations from
the requirements of the requirement analysis phase. Evaluation ranges from simple
checks like finding inconsistencies in the ontology to a more difficult human based
assessment with respect to the defined requirements. We explore ontology evaluation
in more depth in Section 2.3. In case deficiencies are detected in this phase, they are
addressed by moving back in the lifecycle, for example to the development phase.

2.2.2 Ontology Usage

Ontologies are engineered to serve a purpose. That means that after they are engi-
neered, they are used, for example in applications. In our lifecycle model we have
grouped the activities performed with an ontology after its creation under ontology
usage. In comparison to prior lifecycle models which were mainly static, our model
focuses on dynamic aspects. Normally, when an ontology meets the requirements, it
is deployed and the lifecycle continues with ontology evolution or maintenance. In the
evolution phase, when new requirements arise, they are fed back into the loop, which
leads to an update release which is then redeployed. The activities involved in actual
usage of ontologies are however not covered by early lifecycle models. We show how

18

2

2.2 Ontology Lifecycle

based on the presented activities the lifecycle can be dynamic, that means feeding
back into the engineering stage.

Search and Retrieval and Reasoning:

One common use case for ontologies is information access in applications, for example
via search and retrieval functionality. Ontology Information Systems (OIS) typically
involve reasoners to infer implicit knowledge. The schema provided by the ontology can
be combined with instance data to support advanced retrieval inside the application.
Schema knowledge can be exploited for query enhancement (refinement, expansion),
and A-Box reasoning to also retrieve inferred knowledge.

Ontology Population:

In order to populate the knowledge base, either information is loaded automatically
or has to be collected from the user, for example by means of input forms. In order to
reduce the overhead imposed to the user when all instance data is created manually
(semi)-automatic population of the knowledge base can be employed. In this step of
the lifecycle, instances are not only added, but also manipulated and deleted.

Cleansing and Fusion:

Knowledge extracted automatically is often noisy and can therefore not be assumed to
have the necessary quality to be employed in an application directly. Common cleans-
ing tasks include the identification and merging of conceptually identical instances as
well as a fusion on a higher level, for example merging redundant statements.

Both population and fusion steps can lead to inconsistencies which have to be iden-
tified and resolved. Inconsistencies can prevent an application to produce sensible
output at runtime. When inconsistencies are identified, for example by a reasoner or
by a user, the inconsistencies are fed back to the debugging and the development-phase
of the ontology lifecycle. That means that ontology evolution (the loop from usage
back to engineering activities) is not only depending on changes in requirements but
is also a necessity for the runtime usage of ontologies.

2.2.3 Application Support for the Ontology Lifecycle

In order to facilitate the usage of methodologies for the ontology engineers, it is im-
portant to not only provide guidelines, but also to support the lifecycle in the ontology
engineering environment. That means, that there exists tool support for certain activ-
ities performed at certain steps of the ontology lifecycle. In the context of the NeOn
Project3 we have developed several so-called plugins, that support the ontology engi-

3http://www.neon-project.org, last checked on 24.11.2010

19

http://www.neon-project.org

Chapter 2 Definitions

neer in different stages of the ontology lifecycle. Figure 2.2 provides a mapping from
our plugins to the lifecycle activities. The NeOn Toolkit and plugin descriptions can
be found online.4

2.3 Ontology Evaluation

As mentioned in Section 2.2, ontology evaluation is a crucial part of the ontology reuse
process and also of the ontology lifecycle in general. Without being able to assess the
quality of an ontology, it is hard to select the best ontology from a set of potential
candidate ontologies.

Ontology evaluation has been approached from many different angles, ranging from
(semi-)automatic methods to fully manual methods (Brank et al., 2005).

One approach is employing an ontology in an application and evaluating the re-
sults (Porzel and Malaka, 2004). The idea here is that the quality of the ontology is
directly correlated with the outcome of the application. In case the outcome of the
application can then be evaluated, for example against a gold standard, the quality
of the ontology for that task is evaluated as well. This approach is called task-based
evaluation.

Data driven ontology evaluation is presented in (Brewster et al., 2004). Here the on-
tology is compared with a source of data, like a collection of documents, that represents
the domain to be covered by the ontology.

While the former approaches can be performed (semi-)automatically, another line of
research covers human evaluation of ontologies. Here, certain criteria or requirements
are used to assess how well the ontology performs based on these criteria (Tello and
Gómez-Pérez, 2004). A plethora of methods and guidelines on how to evaluate certain
parts of ontologies exist. Some focus on the logical consistency or satisfiability (Parsia
et al., 2005; Gómez-Pérez, 2004). Others check whether a term in an ontology is
properly grounded, meaning whether it is understood by the ontology users (Jakulin
and Mladenić, 2005).

Apart from this coarse categorization, a more fine-grained evaluation framework can
be found in the literature. Gangemi and colleagues (Gangemi et al., 2006) developed a
meta-ontology to provide a framework in which existing ontology evaluation techniques
are grouped. They identify three main dimensions among which ontologies can be
measured: Structural (having a focus on syntax and formal semantics), functional
(having a focus on the intended use and function in a context), and usability-profiling
(focusing on annotations and pragmatics).

In summary, while some aspects of an ontology can be evaluated automatically (like
logical consistency), most evaluation tasks still rely on human involvement. Further-

4http://neon-toolkit.org, last checked on 24.11.2010

20

http://neon-toolkit.org

2

2.3 Ontology Evaluation

O
NT

O
LO

G
Y

EN
G

IN
EE

RI
NG

Re
qu

ire
m

en
t A

na
lys

is
De

ve
lo

pm
en

t
In

te
gr

at
io

n
Ev

al
ua

tio
n

Al
ig

nm
en

t

XM
L

M
ap

pi
ng

La
be

l
Tr

an
sla

to
r

O
ys

te
r-G

UI
W

at
so

n

Ra
DO

N

O
nt

ol
og

y
M

ap
pi

ng

No
n

O
nt

ol
og

ica
l

Re
so

ur
ce

In

te
gr

at
io

n

O
nt

ol
og

y
Lo

ca
liz

at
io

n
O

nt
ol

og
y

Vi
su

al
iza

tio
n

O
nt

ol
og

y
En

ric
hm

en
t

O
nt

ol
og

y
Re

us
e

O
nt

ol
og

y
Se

le
ct

io
n

O
nt

ol
og

y
Do

cu
m

en
ta

tio
n

O
nt

ol
og

y
Fo

rm
al

iza
tio

n
O

nt
ol

og
y

Ev
ol

ut
io

n
O

nt
ol

og
y

Di
ag

no
sis

O
nt

ol
og

y
Re

pa
ir

O
W

LD
ocO

nt
ol

og
y

Ar
gu

m
en

ta
tio

n

Ci
ce

ro

Cu
st

om
iza

-
tio

n

Cy
c

Q
ue

st
io

n
An

sw
er

in
g

Fl
or

G
at

e
W

eb
se

rv
ice

gO
nt

t

I2
O

nt
KC

-V
iz

Ka
li-

m
a

O
DE

-
M

ap
st

er

O
W

L
O

nt
ol

og
y

Vi
su

al
iza

-
tio

n
O

nt
oA

tla
s

O
nt

oC
on

to
O

nt
ol

og
y

M
od

ul
es

Re
as

on
er

Re
la

tio
n-

sh
ip

Br

ow
se

r

SP
AR

Q
L

SA
IQ

L
Se

ar
ch

-
Po

in
t/

W
at

so
n

Se
m

an
tic

El
l

Na
vig

at
or

XD
To

ol
s

O
nt

ol
og

y
Sc

he
du

lin
g

Ev
ol

va

O
nt

ol
og

y
M

od
ul

ar
iza

tio
n

O
nt

ol
og

y
Se

ar
ch

De
ve

lo
pm

en
t

In
te

gr
at

io
nO
NT

O
LO

G
Y

EN
G

IN
EE

RI
NG

Figure 2.2: NeOn plugins providing support for the ontology lifecycle model

21

Chapter 2 Definitions

more one should note that an evaluation of the same ontology can vary depending on
its planned task, and on the person evaluating the ontology.

2.4 Ontology Reuse

In software engineering, reuse is common to save development effort and improve
the quality of the resulting code by reusing high quality software (McIlroy, 1976;
Krueger, 1992). The reuse of preexisting libraries that offer certain functions has
become best practice (Pressman and Ince, 1987), and basic functionality is normally
not reimplemented without a compelling reason.

In the context of ontology engineering, the benefits of ontology reuse have been
stressed in several works (Simperl et al., 2009; Simperl et al., 2006; Uschold et al.,
1998). Yet, reuse happens very scarcely, which hinders the uptake of the semantic
web (Simperl, 2009). We claim that this is partly due to the high level of human effort
required in the different ontology reuse steps.

In general, there is a trade-off between the reusability of an ontology and the speci-
ficity towards a task or application. Upper level ontologies, which try to provide a
layer on top of all domains, aim to be highly reusable by abstracting from specific
problems or applications. An ontology employed and developed for a specific domain
will most of the times provide more domain knowledge than an upper level ontology,
but might require more reengineering during the reuse process.

2.4.1 Ontology Reuse Process

A common ontology reuse process (Simperl, 2009) consists of the following three steps:

• Ontology Discovery: In this step candidate ontologies that are suitable to be
reused are searched. Currently the most common way to find available ontologies
is using conventional search engines,5 Semantic Web search engines (e.g., (Ding
et al., 2004a; d’Aquin et al., 2008d)), or ontology libraries (e.g. (Noy et al., 2009;
Viljanen et al., 2009)). Also standard bodies can be a source of information. In
case enough domain knowledge can be found, an ontology can be constructed
semi-automatically employing ontology learning techniques.

• Ontology Selection: In this step the quality and applicability of the candidate
ontologies has to be assessed. Based on this assessment (the evaluation of the
ontologies, compare also Section 2.3), the best ontology or ontologies are selected
for reuse. This step is the most complicated one, since without reliable automatic
evaluation techniques, the user has no help in the process of selecting the best

5For example http://www.google.com, last checked on 24.11.2010, or http://www.bing.com/, last
checked on 24.11.2010

22

http://www.google.com
http://www.bing.com/

2

2.4 Ontology Reuse

ontology. Manually assessing all candidate ontologies is extremely tedious, if not
impossible. In certain cases, an agreed upon ontology to reuse is available, and
there is no real selection due to the lack of alternatives. This is often encountered
in the biomedical domain, where, for example, the Gene Ontology (Ashburner et
al., 2000) has become the de facto standard to annotate gene and gene product
attributes. Also for other biomedical fields, groups are developing upper level
ontologies they want to push as standards for these fields (Smith et al., 2006). An
exemplary collection of these upper level ontologies can be found in the NCBO
Bioportal.6

• Ontology Integration: After suitable ontologies have been selected, they have
to be integrated with the ontology being developed. Often, this requires re-
engineering of the ontology that should be reused. The matching concepts in
the new ontology and the reused ontology have to be identified to ensure a
proper integration. In case only parts of an ontology are needed, these can be
extracted, for example using state of the art modularization techniques (Pathak
et al., 2009). While ontology integration can be a cumbersome task, the main
problems still lie within the selection step of the ontology reuse process.

Tools and Applications Supporting the Ontology Reuse Process

Currently there are some tools and applications available to support the user during
the ontology reuse process. Based on which step of the ontology reuse process the user
is currently in, varying help is provided.

Ontology Discovery: The first step, ontology discovery, is currently supported by
a plethora of search engines like Google or Bing, semantic web search engines, ontology
libraries, and ontology repositories.

One of the first systems that indexed and exposed ontologies was the Ontokhoj
system (Patel et al., 2003). It is currently not available anymore. Shortly after,
Swoogle7 (Ding et al., 2004a) was developed at the ebiquity group at UMBC univer-
sity. In its current index, it has around 1.8 million error-free Semantic Documents.8

Ontosearch 2 (Thomas et al., 2007) allows both keyword and SPARQL queries against
indexed ontologies. Sindice9 (Tummarello et al., 2007) indexes not only ontologies,
but all semantic web content it can find. It mainly relies on Linked Open Data (Bizer
et al., 2008) and thus interlinked RDF data. VisiNav10 (Harth et al., 2009) follows

6http://bioportal.bioontology.org/, last checked on 24.11.2010
7http://swoogle.umbc.edu/, last checked on 24.11.2010
8http://swoogle.umbc.edu/index.php?option=com_swoogle_stats, last checked on 24.11.2010
9http://sindice.com/, last checked on 24.11.2010

10http://visinav.deri.org/, last checked on 24.11.2010

23

http://bioportal.bioontology.org/
http://swoogle.umbc.edu/
http://swoogle.umbc.edu/index.php?option=com_swoogle_stats
http://sindice.com/
http://visinav.deri.org/

Chapter 2 Definitions

a similar approach as Sindice, also relying on Linked Open Data. Falcons11 (Cheng
et al., 2008) focuses on searching and browsing entities on the Semantic Web. Wat-
son12 (d’Aquin et al., 2008d) provides various interfaces to access its indexed semantic
data. It currently indexes at least 27,000 ontologies.

Ontology libraries (Ding and Fensel, 2001) and repositories (Hartmann et al., 2009)
are still an important place to look for ontologies, especially because many of the
ontologies stored there are of high quality, and often enough there is metadata avail-
able to enable a better search. Currently, NCBO’s BioPortal13 (Noy et al., 2009)
stands out for biomedical ontologies. The Protégé Ontology Library14 provides a list
of ontologies without a search functionality. The Tones ontology repository15 provides
around 200 ontologies. Within the Tones repository, ontologies can be filtered by
DL expressivity and by the number of ontological axioms they contain. Other repos-
itories can be considered legacy since they contain ontologies in outdated ontology
languages not supported by current tools, or are no longer accessible on the Web, like
Onthology (Hartmann et al., 2005; Hartmann, 2006) or KnowledgeZone (Supekar et
al., 2007).

Most of the libraries and repositories have been indexed by one of the aforementioned
ontology search engines, so that search engines might still be the preferred point of
entry for the regular user.

Ontology Selection: In the end, the ontology developer has to decide which ontol-
ogy to select from a set of potential candidate ontologies. In theory, this would require
the developer to assess each candidate ontology individually, which is often unfeasible
due to time constraints. Most ontology search engines thus employ a ranking mecha-
nism, which should assist the developer in the selection process by ranking ontologies
that are more relevant higher in the result list.

The Ontokhoj system (Patel et al., 2003) featured ontology ranking based on con-
nections between the ontologies. The authors used a derivation of the PageRank
algorithm (Page et al., 1998) for ranking ontologies, based on the idea that analyzing
their link graph can derive the importance and quality of ontologies. The creators of
SWOOGLE (Ding et al., 2004a) extended this idea by taking more connection types
into account, and indexing Semantic Web Documents automatically at larger scale.
Ontoselect (Buitelaar et al., 2004) combines a repository with ranking mechanisms
relying on measures. Employed measures are based on coverage and structure of the
ontologies in the repository, and their interlinkage.

11http://ws.nju.edu.cn/falcons/, last checked on 24.11.2010
12http://watson.kmi.open.ac.uk/, last checked on 24.11.2010
13http://bioportal.bioontology.org/, last checked on 24.11.2010
14http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library, last checked on 24.11.2010
15http://owl.cs.manchester.ac.uk/repository/browser, last checked on 24.11.2010

24

http://ws.nju.edu.cn/falcons/
http://watson.kmi.open.ac.uk/
http://bioportal.bioontology.org/
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://owl.cs.manchester.ac.uk/repository/browser

2

2.4 Ontology Reuse

There is, however, one problem faced by all the approaches that rely on links be-
tween ontologies to derive their importance or quality, and use this information for
ontology ranking: The majority of ontologies outside the Linked Open Data initiative
are only sparsely interlinked and the popularity of an ontology does not necessarily cor-
relate with its quality (Alani et al., 2006). Therefore, instead of relying on PageRank
derivations, Alani et al. developed methods to rank ontologies found by search engines
according to a combination of several measures. Their approach, ActiveRank (Alani
et al., 2006), is based on measures like: how well concepts in the ontology match the
search terms, how well the searched concepts are represented in the ontology (number
of subclasses), or how central they are to the ontology. Similar measures are used in
the Ontoselect repository (Buitelaar et al., 2004). Ontosearch2 (Thomas et al., 2007)
allows both keyword and SPARQL queries against indexed ontologies and ranks the
results based on the sum of weightings for object/keyword pairings that matched in
the ontologies.

Since computing complex measures for all ontologies in a result set is resource-
intensive, not all measures can be computed at runtime. This hinders their use in
online search engines, unless results for all potential search keywords are cached.

Lucene16 has become a popular framework for indexing documents and providing
search functionality over them. The ranking of results is based on statistical measures
normally used in information retrieval, such as TF/IDF (Frakes and Baeza-Yates,
1992), not taking into account the special nature of semantic documents. Since Lucene
provides a very scalable indexing mechanism, it is used in large-scale semantic web
repositories, such as Watson (d’Aquin et al., 2008d).

Other search engines focusing on the linked data approach, like Sindice (Tummarello
et al., 2007), or VisiNav (Harth et al., 2009), combine information such as provenance
of the triple (the hostname and external rank of the website hosting the ontology) with
TF/IDF-like measure when ranking their results. Falcons (Cheng et al., 2008) uses a
combination of TF/IDF-like measures and the popularity (in terms of incoming links)
of the ontology.

Another idea is to rely on users to evaluate ontologies and provide ratings on their
quality (Noy et al., 2005). These ratings and inter-user trust can then be used to
compute personalized rankings of ontologies that can help the ontology engineer dur-
ing the selection process (Guha, 2004). We have analyzed this approach, which was
also used in the Knowledge Zone repository (Supekar et al., 2007), and have identified
limitations (which are described in detail in Section 2.6.4). Our approach towards
overcoming identified shortcomings is one of the main contributions of this thesis. We
will describe the basic Open Rating System as used in Knowledge Zone in Section 2.6.
Our extension, the Topic-Specific Trust Open Rating System (TS-ORS) will be pre-
sented in Part II. Because trust and trust propagation are a central aspect of this

16http://lucene.apache.org/, last checked on 24.11.2010

25

http://lucene.apache.org/

Chapter 2 Definitions

approach, we present an introduction to the field in Section 2.5.

Ontology Integration: After an ontology has been selected for reuse, it has to be
integrated into the ontology that is constructed. Depending on its intended usage, it
is necessary to integrate either the complete ontology, ontology modules (i.e., parts
of the ontology), or even only single axioms. In case an ontology is not integrated in
its entirety, a number of modularization techniques exist (Stuckenschmidt et al., 2009;
Pathak et al., 2009) to dissect the ontology. Many modularization techniques are also
implemented within ontology engineering environments. The ontology editor SWOOP,
for example, has logic-based modularization techniques built in (Grau et al., 2009a;
Grau et al., 2009b; Grau et al., 2007). For the NeOn Toolkit, plugins exist to facilitate
ontology integration. The modularization plugin for the NeOn Toolkit (d’Aquin et
al., 2008b; d’Aquin et al., 2008a) allows users to extract,17 partition,18 and compose19

ontologies.
In case there are overlapping concepts, these have to be mapped to ensure a proper

integration. Ontology Alignment techniques (Shvaiko et al., 2009; Euzenat, 2008;
Euzenat et al., 2008) are available to support the user in the task of mapping classes
of the developed ontology and the reused ontology. Within the NeOn Toolkit, the
Alignment Plugin20 (Duc et al., 2008) provides tool assistance to the user.

All of these techniques have no direct integration with the steps of ontology discovery
and ontology selection. To overcome this problem, the Watson Plugin for the NeOn
Toolkit21 (d’Aquin et al., 2008c) integrates tool support for all three phases into one
tool. From within the plugin, users can search Watson by right-clicking an entity in
the ontology and triggering the Watson search (see Figure 2.3). The results of the
search process will then be displayed within the plugin (see Figure 2.4). Users can
browse the list and select the axioms to reuse (see Figure 2.5). By simply clicking an
add button, the axiom is added to the ontology (see Figure 2.6). The use of alignment
technologies is not necessary, since the axiom always connects to the selected entity
in the ontology. If, for example, the class “Human” was used to trigger the search,
all results will contain “Human” at some part of the axiom. In case a user clicks
the add button, the concept “Human” in the developed ontology, and “Human” in
the reused axiom are considered equal. The main limitation of the Watson Plugin
is that the result ranking of Watson is based on Lucene, which uses basic statistical
measures that do not correlate with the quality of an ontology. The ranking of results
within Watson is thus of no big help in the ontology selection process, which is the
most time-consuming part of the whole ontology reuse process. We will show how to

17http://neon-toolkit.org/wiki/Ontology_Module_Extraction, last checked on 24.11.2010
18http://neon-toolkit.org/wiki/Ontology_Module_Partition, last checked on 24.11.2010
19http://neon-toolkit.org/wiki/Ontology_Module_Composition, last checked on 24.11.2010
20http://neon-toolkit.org/wiki/2.3.1/Alignment, last checked on 24.11.2010
21http://watson.kmi.open.ac.uk/editor_plugins.html, last checked on 24.11.2010

26

http://neon-toolkit.org/wiki/Ontology_Module_Extraction
http://neon-toolkit.org/wiki/Ontology_Module_Partition
http://neon-toolkit.org/wiki/Ontology_Module_Composition
http://neon-toolkit.org/wiki/2.3.1/Alignment
http://watson.kmi.open.ac.uk/editor_plugins.html

2

2.5 Trust and Trust Propagation

Figure 2.3: When a user right-clicks an entity, the Watson Search can be triggered
from the context menu.

combine the advantages of the Watson Plugin with the ranking results of our TS-ORS
system in Chapter 9.

2.5 Trust and Trust Propagation

One of the main requirements for a working Open Rating System (see Section 2.6) is
the trust or distrust users place in each other, and the way in which trust and distrust
can be propagated. In this section we will first introduce the relevant notions of trust
in computer science in Section 2.5.1, and then provide an overview of trust propagation
techniques in Section 2.5.2. Parts of this section are based on (Kubias et al., 2007).

2.5.1 Trust in Computer Science

The concept of trust has been explored in many different fields of science, for ex-
ample sociology (Fukuyama, 1996; Coleman, 1994), psychology (Misztal, 1996), or
economics (Berg et al., 1995; Zak et al., 2004). In this thesis we focus on the use of
trust in computer science. While an overview on trust languages and the topic of trust

27

Chapter 2 Definitions

Figure 2.4: On the right hand side, the Watson Results View shows up with a result
list from Watson. The List shows the URIs of the ontologies.

Figure 2.5: By clicking on the arrows next to the URI, axioms from the ontology that
matched the search are displayed.

28

2

2.5 Trust and Trust Propagation

Figure 2.6: When clicking on “Add relation from Human”, the super class “Primate”
is added to the ontology automatically. Note the change in the taxonomy
on the left hand side.

in general can be found in (Kubias et al., 2007), we present in this section the key
findings of our analysis.

In the field of computer science, one can distinguish roughly two general types of
trust, namely reputation-based trust and credential-based trust. Reputation-based
trust (Agarwal, 2007; Zacharia and Maes, 2000) differs from credential-based trust in
that it is based on a user’s experience with another user. Normally an assessment
is based on past interactions or observations, either directly with the entity assessed,
or as recommended by others. In contrast to reputation-based trust, credential-based
trust works with authorized entities giving out credentials based on predefined policies.
A real life example for credential-based trust could be someone completing a university
degree and receiving the official certificate as a credential. In credential-based trust
systems a user can improve trust by obtaining more credentials.

Reputation-based Trust

One of the fundamental ideas of reputation-based trust is that a user’s behavior in
the past can be used to predict future behavior. Let us assume we are interested in
whether user A can be trusted. To determine that, we would look at our personal
experiences with A, and also take the experience of other users interacting with A into
account, to predict future behavior of A. Since most users on the World Wide Web

29

Chapter 2 Definitions

have not met or interacted directly before, reputation mechanisms can provide help
when deciding on whether the information an unknown user provides is correct and
trustworthy. In order to make use of this information computationally, a conceptual
framework is needed.

Conceptual Framework: In (Zhang and Yu, 2004), a conceptual framework for
reputation-based trust is provided alongside a classification scheme for reputation-
based trust functions. The framework described in (Zhang and Yu, 2004) models
a decentralized environment, where different entities interact through transactions.
Transactions are unidirectional, meaning there is always a service-provider and a
service-receiver. Four terms relevant for the framework are defined:

• Trustworthiness gauges the quality of a service an entity provides. In many trust
models, the domain of trustworthiness is assumed to be in the interval [0, 1], with
either discrete or continuous values.

• Feedback is given by the client on the service provider after a transaction has
been completed. The feedback can be multidimensional.

• An opinion is derived from the feedback of multiple transactions and represents
the general impression of a user towards a service provider.

• Source and Destination of Trust Evaluation: If A enquires about the trustwor-
thiness of entity B, A is the source and B the destination of a trust evaluation.

In this framework, trust is modeled as a directed multigraph with a set of vertices
and a set of labeled edges.

Based on above trust framework, (Zhang and Yu, 2004) proposes a classification
scheme for trust functions. It is composed of four dimensions:

• Subjective Trust vs. Objective Trust: The first dimension states that in case
the quality of an entity can be objectively measured (for example providing
information that can also be verified elsewhere), the trust is called objective
trust, and the trust is user-independent, meaning it is independent of the source
of the trust evaluation. In case the quality can not be objectively measured, the
trust is called subjective trust (for example movie recommendations, which are
specific to one’s point of view). Subjective trust can vary considerably depending
on the source of the trust evaluation. The general distinction between subjective
and objective trust corresponds to the classification of trust semantics proposed
in (Jøsang et al., 2007).

• Transaction-Based vs. Opinion-Based: While some trust models rely on the in-
formation gained from individual transactions, other trust models rely on opin-
ions. Opinions are normally based on a user’s experiences with the service

30

2

2.5 Trust and Trust Propagation

provider over the last transactions. In general, transaction-based trust func-
tions need more data to infer an entity’s trustworthiness than opinion-based
trust functions.

• Complete Information vs. Localized Information: In case every entity has ac-
cess to all transaction information or opinions, the trust function is called global
trust, and is based on all information. In case the trust function is only applied
to a subgraph of the complete graph, the trust function is called local or local-
ized. Because with localized trust functions, each entity has access to different
information, a local trust function is also subjective.

• Rank-Based vs. Threshold-Based: This dimension is used to distinguish differ-
ent approaches for deciding whether an entity is to be trusted or not. While
threshold-based functions usually check whether the value is above or below
a certain threshold, regardless of values for other entities, the rank-based ap-
proaches compare the scores for all entities and use this information to provide
a relative trustworthiness score for all entities.

Trust Models: Over the years, different trust models and algorithms have been
proposed. The seminal work on trust in computer science has been (Marsh, 1994). In
his work, Marsh models direct trust between two agents without taking into account
recommendations provided by other agents. He uses knowledge, utility, importance,
risk, and perceived competence for modeling trust between two agents. With his model
he can answer with whom an agent should cooperate, when, and to which extent.
Trust values are expressed as real numbers with range [−1, . . . , 1] using threshold
based decision making. Marsh defined three kinds of trust:

• Dispositional trust is the trust of an agent x independent of a situation or a
specific partner. A high value can be interpreted as a high unconditional trust,
meaning the agent is in general trustworthy.

• General trust is the trust an agent x expresses in an agent y, but independently
of a situation.

• Situational trust is the trust of an agent x in an agent y given a situation z.

The probability that an entity behaves in an improper or bad way (the risk) is cal-
culated based on a comparison of costs and benefits of the considered engagement.
Based on the perceived risk and the competence of a potential interaction partner a
cooperation threshold is computed. In case the computed situational trust is above
the computed cooperation threshold, the cooperation takes place, otherwise not.

Jennifer Golbeck defines a reputation-based trust model called TidalTrust (Golbeck,
2005). It is intended for social networks. Using a discrete scale, Golbeck allows users

31

Chapter 2 Definitions

to state trust on the interval [1, . . . , 10]. The approach is evaluated using a social
network called Filmtrust, which is based around users rating movies. One can rate
friends based on the question on whether in one’s opinion this person shares the movie
taste.

Another approach (Abdul-Rahman and Hailes, 2000) models trust between two
agents based on (Marsh, 1994). In order to determine whether another agent A should
be trusted, the system takes into account both an agent’s direct experience with A
and recommendations of other agents on A.

Most of the aforementioned models rely on rather simple algorithms and mathe-
matical constructs like weighted summation. Mathematically more sophisticated trust
models usually involve aspects of probability theory. In (Jøsang, 2001), elements of be-
lief theory are combined with elements of Bayesian probability theory to form what is
referred to as “subjective logic”. The belief theory constructs allow to take uncertainty
into account.

Linguistically fuzzy concepts can also model trust and reputation. In this case,
membership functions determine to what extent an agent is trustworthy or not trust-
worthy. Reasoning with these fuzzy values is realized with fuzzy logic. Exemplary
approaches relying on fuzzy logic are (Sabater and Sierra, 2002a; Sabater and Sierra,
2002b).

Credential-based Trust

Since credential-based trust is not essential for the approach presented in this thesis,
we will only give a short overview. In general, credential-based trust systems are
used to regulate access to resources. That means the credentials can be used to gain
access to content. The concept of credential-based trust management is thus mainly
concerned with finding ways to verify credentials and control access to resources based
on pre-defined policies. Credentials in this context can be verified either directly or
through a Web of Trust (WOT).

In relation with the World Wide Web, access control and security mechanisms are
increasingly important, not only for businesses. Security related aspects discussed in
literature usually fall into one or more of the following three categories: confidentiality,
integrity, and availability (Bishop, 2003; Samarati and di Vimercati, 2001). Since
acquiring credentials can be bothersome and cost-intensive, many Web-pages use a
simple identity-based authentication, which means that the user must be known to
the service or Web site provider, for instance by a previous registration. In case a
user does not want to disclose his identity, or a reliable authentication is not possible,
“authorization”-based access control of Web services is proposed. Authorization-based
access controls can act as a supporting architecture for credential-based trust systems,
also on the Semantic Web.

Most credential-based trust system need a working public key infrastructure (PKI),

32

2

2.5 Trust and Trust Propagation

which can be provided for example by the Simple Public Key Infrastructure/Simple
Distributed Security Infrastructure (SPKI/SDSI) (Ellison et al., 1999; Clarke et al.,
2001). Pretty Good Privacy (PGP) is the best known PKI infrastructure which was
created by Zimmermann (Zimmermann, 1995). PGP is a software solution that offers
both cryptographic privacy (encryption) and authentification (allowing to sign digital
content). It does not offer a hierarchical certification infrastructure, but relies on a
WOT that is build by users signing digitally the public keys of other users. The idea is
that if enough users sign the key of user A, the signed key is trustworthy and belongs to
user A. In order to avoid attacks, the trusting users should ideally also be trustworthy
themselves.

2.5.2 Propagation of Trust

After giving an overview on common trust models and architectures in computer
science in Section 2.5.1, we now focus on properties of trust and algorithms making
use of trust information.

Properties of Trust

Especially when trust is modeled as a graph, certain assumptions have to be made
about general properties of trust in order to be able to use trust within computa-
tions. Jennifer Golbeck presents four properties of trust that are of central importance,
namely transitivity, composability, personalization, and asymmetry (Golbeck, 2005).

Transitivity: The most basic and most widely accepted property of trust in com-
puter systems is transitivity (Guha, 2004; Guha et al., 2004; Golbeck, 2005). Transitiv-
ity is needed to infer trust relationships between users who are not directly connected.
The general idea is that if A trusts B and B trusts C, A should also trust C to some ex-
tend, unless information to the contrary is known to the system (for example a distrust
statement from A to C). Another general assumption is that trust is decaying when
being propagated. That means that my trust in someone I trust directly is higher than
in someone I do not know directly and trust because of propagated trust. Most systems
working with trust therefore model a decay factor when propagating trust (Guha, 2004;
Guha et al., 2004). The general idea of transitive trust stems from observing human
behavior. It is common to turn to friends one trusts when seeking advice. Let us
assume that we turn to our friend B for advice, but B cannot help us. Nonetheless, B
knows and trusts C, who is then recommended to us. In that scenario, we are likely
to also trust C’s advice, even though we do not know C directly. Bad advice in the
past is likely going to change our attitude towards the recommender, thus penalizing
misuse of trust.

33

Chapter 2 Definitions

Composability: In the real world, entities receiving recommendations or trust from
multiple sources are perceived more trustworthy. The idea is that trust can be com-
posed from several sources. The situation becomes more difficult in case not only
trust, but also distrust statements should be combined towards a common trust score.

Personalization: In most cases, trust is something subjective. Somebody we trust
can be distrusted by others and vice versa. Therefore it is important to allow person-
alized trust. Systems employing a WOT usually allow personalized trust, since it is
possible to store trust scores for each user to user relation. The results of applying
the PageRank algorithm (Page et al., 1998), for example, are not personalized, since
it is a global measure, meaning it will be the same for all users.

Asymmetry: Trust does not have to be mutual. Especially in anonymous settings
like the WWW it is important to model trust as unidirectional relations. I can trust
someone without this person knowing me, so it would be counter-intuitive to assume
that trust connections are symmetric by default. Furthermore, only by assuming asym-
metry one is immune against people trying to trust others for their own benefit, for
example to boost their own trustworthiness by having more symmetric trust connec-
tions. While cases of symmetric trust exist (every time two users trust each other),
this should rather be modeled as two unidirectional links than one bidirectional link,
taking into account the formal independence of the trust statements.

Semantics of Trust

In (Guha, 2004), Guha gives two more formal equations of the semantics of trust.

trust(A,B)⇒ (PA(s)� PA(s|believes(B, s))) (2.1)

where trust(A,B) means that A trusts B, PA(s) refers to the a priori probability
assigned by A to statement s, believes(B, s) means B believes that s is true, and
PA(s|believes(B, s)) refers to the probability assigned by A to s based on B stating s
were true.

In other words, people are more likely to believe a statement is true when it is
confirmed by someone they trust. The second equation covers decay of propagated
trust.

trust(A,B)⇒ (PA(s)) = α× PB(s)) (2.2)

where PB(s) is the probability assigned to statement s by B, and α is a decay factor
such that αm ≈ 0 and m being the number of steps trust should decay out in a Web
of Trust.

This equation represents the decay of trust over propagation chains. B assigns a
certain probability to a statement s, and A trusts B. The probability A assigns to the

34

2

2.5 Trust and Trust Propagation

statement s is smaller (by factor α) than the probability B assigns to s.

Propagation of Trust

The seminal work on the propagation of trust and especially also of distrust is (Guha
et al., 2004). Since their work also strongly influenced the algorithms used in this
thesis, we explain their work in more detail. In general, for their paper Guha et al
assume the existence of trust and potentially also distrust information between users.
The challenge is to combine both trust and distrust and try to infer as many new trust
connections as possible from the given data. For that, the basic ideas of transitivity,
composability and decay of trust are used.

Basic Trust Propagation Types: The propagation itself is performed on matrices
storing the trust and distrust. Simple direct trust propagation can be seen as a matrix
multiplication of the trust matrix with itself. In order to get the most information out
of potentially sparse trust data, four basic types of trust propagation are defined (for
a visualization see Figure 2.7):

• Direct propagation: If A trusts B, then someone trusted by B should also be
trusted by A. This type of propagation is based on the basic transitivity as-
sumption.

• Co-citation: If A trusts B and C, then D trusting C should also trust B. This
propagation type is based on the idea that by trusting the same person, A and
D behave similarly and thus are likely to trust the same individuals.

• Transpose trust: If A trusts B, someone trusting B should also trust A. This
propagation type takes the idea of co-citation one step further, assuming that if
two people trust the same person, they should also trust each other.

• Trust coupling: If A and B trust C, someone trusting A should also trust B.
For the final type of trust propagation, the idea is to find people similar to the
people one trusts and assume one should also trust them.

Of course, except for the more or less agreed upon concept of direct propagation,
the other propagation steps are debatable and make bigger assumptions about the
nature of a trust network. For that reason, the four different techniques are combined
using a linear combination into a final propagation matrix, which is then used for the
computation of trust. Depending on how the weights are set, more emphasis can be
put on the less debatable propagation techniques.

35

Chapter 2 Definitions

Trust Coupling

Co-CitationDirect Propagation

Transpose Trust

C

A

B

D

A B

CD

A B C

A

B

C

Figure 2.7: The four basic trust propagation types visualized. Dotted lines indicate
propagated or inferred trust.

Propagation of Distrust: While the propagation of trust is relatively straight
forward, the propagation of distrust is more problematic. Mainly because distrust is
not necessarily transitive. Sometimes we say that your enemy’s enemy is your friend.
This would imply that if A distrusts B, and B distrusts C, A should trust C. Another
possible interpretation is taking trust as a form of evaluation of somebody’s ability to
perform a certain task. In this case, it makes sense to even compose distrust values
over propagation chains. The idea here is that if A distrusts B, and B distrusts C,
A should distrust C more than B. Guha et al solve this dilemma by determining by
means of a user evaluation that the best results can be achieved if distrust is only
propagated one step. We will explain their algorithm in more detail in Chapter 4.

2.6 Open Rating Systems

An Open Rating System (ORS) (Guha, 2004) is a system that allows users to write
reviews and give ratings on arbitrary content. Other users can then trust or distrust
the reviewers. Based on the trust information and the reviews collected, the system can
generate a ranking for both reviews and reviewed content. A key assumption within
an ORS is that users are influenced by opinions from people they trust (Tversky and

36

2

2.6 Open Rating Systems

Kahneman, 1974). A prominent example for an Open Rating System is Epinions,22

which promises “unbiased reviews by real people” about “millions of products and
services”. Epinions allows users to write reviews on any indexed product or service.
Other users can comment on the reviews, and decide to trust or distrust the reviewers.

The concept of ratings and meta-ratings (other users rating the ratings) has found
wide adoption in the e-commerce world. In Amazon,23 users can enter product reviews,
and other users can click whether they find the reviews helpful or not.

For a better understanding on how an ORS works, we explain the ORS model in
the following. One of the key components of the ORS model is the trust users express
towards each other. The Web of Trust (WOT) these user-to-user trust statements form
can be used for both local (user-specific) and global (user-agnostic) trust computation,
as shown in Chapter 4 Section 4.2.

2.6.1 Model

Guha’s ORS model (Guha, 2004) consists of the following components:

1. A set of objects O : {o1, o2, o3, . . .} that can be rated. These can for example be
products, services, or any other entity that can be rated.

2. A set of agents A : {a1, a2, a3, . . .} that participate in the ORS. Normally these
are users, but theoretically machines could participate as well, if they have an
algorithm for automatically evaluating the objects.

3. A set of possible values for ratings of objects D : {d1, d2, . . .}. These values
determine what is the range of ratings on objects. Often, a five star scale is
used, where 1 star means bad and 5 stars mean very good.

4. A set of possible values for trust ratings of agents T : {t1, t2, . . .}. These values
determine the range of trust statements. In many systems only binary decisions,
for example trust or distrust, helpful or not helpful, are allowed.

5. A partial function R : A×O → D corresponding to agent ratings on objects.

6. A partial function W : A×A→ T corresponding to inter-agent trust.

A depiction of the model can be found in Figure 2.8.

22http://www.epinions.com/, last checked on 24.11.2010
23http://www.amazon.com/, last checked on 24.11.2010

37

http://www.epinions.com/
http://www.amazon.com/

Chapter 2 Definitions

Object 1 Object 2 Object 3

Agent 1 Agent 3

Agent 2

d1 d1d3 d5

t1

t1 t2

O: {Object 1, Object 2, Object 3}

A: {Agent 1, Agent 2, Agent 3}

D: {d1,d2, d3, d4, d5}

T: {t1, t2}

R (Agent 1, Object 1) = d1
R (Agent 1, Object 2) = d3
R (Agent 3, Object 2) = d1
R (Agent 3, Object 3) = d5

W (Agent 2, Agent 1) = t1
W (Agent 2, Agent 3) = t2
W (Agent 3, Agent 1) = t1

Figure 2.8: A depiction of Guha’s ORS model.

2.6.2 Rating and Ranking

Within the ORS, two main problems, namely that of rating and ranking have to be
addressed. Rating refers to the task of predicting how an agent A would rate an Object
O, given that the agent has not rated the object yet. Ranking refers to the task of
arranging a set of objects in descending importance in a manner that is personally
optimal for an agent A. Because normally only the top N items are of interest, the
users can state how many objects should appear in their result set.

Guha addresses the task of rating by exploring an agent’s WOT. Let us assume that
the system has to provide a rating for agent Ai on object Oj . The system now checks
the WOT if Ai has trusted users that have rated Oj . If yes, their ratings can be used
to infer a likely rating for Ai. If not, a global measure is used to determine the overall
most trusted agent that has rated Oj .

After studying and presenting several algorithms for computing a global trust mea-
sure, Guha presented two equations which he called TrustRank (see Equation 2.3) and
DistrustRank (see Equation 2.4).

TrustRankN+1(Au) =
∑

v∈Tv

TrustRankN (v)
Nv

(2.3)

where Au is the user whose TrustRank is computed, Tv is the set of users trusting
Au, v ∈ Tv is a user from Tv trusting Au, Nv is the total number of users user v

38

2

2.6 Open Rating Systems

trusts, and N is the number of iterations the algorithm has run. The TrustRank
values can be initialized as 1. Intuitively speaking, TrustRank assigns trust to users
based on how many other users trust them and how trusted the users trusting them
are. Readers familiar with the PageRank algorithm (Page et al., 1998) will note both
the resemblance of the algorithm, but also the absence of a damping factor. Indeed, it
is unclear why Guha has not incorporated a damping factor into the equations, since
without it, the algorithm runs into problems when there are sinks in the graph. These
sinks will acquire almost all of the trust.

DistrustRank(Au) =
∑

v∈Bv

TrustRank(v)
Nv

(2.4)

where Au is the user whose DistrustRank is computed, Bv is the set of users distrusting
Au, v ∈ Bv is a user from Bv distrusting Au, and Nv is the total number of users user
v distrusts. DistrustRank is taking into account who distrusts a user and how high
the TrustRank of the distrusting users are.

Guha proposes to use either TrustRank alone for determining a global rank of users,
or a combination of TrustRank and DistrustRank, depending on the application.

2.6.3 ORS for Ontology Rating

The idea to exploit ORS for ontology ranking dates back to (Noy et al., 2005). The
model is adapted for rating ontologies by taking ontologies as the objects, and users
of the ORS as agents. As a rating scale for the ontologies, the common 5 star rating
scale can be used. KnowledgeZone (Supekar et al., 2007) which focused on biomedical
ontologies, build upon the ORS as well to enable a user rating of ontologies. Knowl-
edgeZone is not available anymore, since it was superseded by the NCBO’s Bioportal,
which also plans to employ a rating system allowing users to contribute to the ontol-
ogy evaluation (Noy et al., 2008). However, the approach presented in (Guha, 2004)
and adapted in (Supekar et al., 2007) has some limitations that hinders its application
without modifications in specialized scenarios like ontology rating. We present the
limitations we found and confirmed by analyzing data in the following.

2.6.4 Limitations of the ORS

The ORS model as presented by Guha in (Guha, 2004) has some limitations when
applied in specialized domains like ontology rating.

First, there is no concept of a multi-faceted rating, that means, it is only possible
to provide an overall rating for an object, and not for the different aspects of an
object (the rating function R corresponds to agents rating entire objects). In case
certain aspects of an object are good, and others are bad, this subtlety is lost. In
the context of ontology evaluation, for example, an ontology can be highly reusable,

39

Chapter 2 Definitions

while only covering a limited part of the intended domain. In this case, reusability
and domain coverage represent aspects that can be reviewed independently. Analyzing
data from Cupboard (Cupboard is our ontology hosting system which is introduced in
Chapter 9), we discovered that indeed many ontologies have a variance in the ratings
on their different aspects. As an example, in the corresponding ontology space24 user
Jérôme rated the biosphere ontology 5 stars on domain coverage, but only 2 stars
on reusability. More generally, in this ontology space we looked for cases where a
reviewer provided reviews for every aspect of an ontology, allowing to compute an
average rating this reviewer might have given in case only an overall rating would
have been allowed. Cases where reviewers only provided a rating for some, but not all
of the five properties were dismissed. The data can be found in Table 2.1. Based on 145
ratings, which would correspond to 29 overall ratings (single faceted reviews) in the
ORS, we computed the average variance between aspects as 0.85. Within the reviews,
variances ranged from 0 to 2.2. In order to keep this information, multi-faceted ratings
have to be allowed.

Second, reviewers do not always write either good or bad reviews, but depending
on the ontology and aspect they review, they can be trusted differently. Indeed, we
observed several users that trust a review from a particular reviewer and distrust
another review from that same reviewer. The easiest way to analyze the problem
here, without sacrificing the privacy of the users, is to compare the ratings of different
users for the same ontology. The idea here is that in case two users give the same
rating, they will trust each other for that rating, and in case the rating differs, they do
not agree and thus do not trust each others rating. In short, we analyze the agreement
of users with respect to their ratings on the same ontology. Problematic for the basic
ORS model are all cases where there are some agreements and some disagreements.
In case the users share a common perception of the quality of an ontology and give
the same ratings, we can assume that the users trust each other for all their ratings.
In case the ratings do all differ, we can assume the users distrust each other. These
both cases can be handled by the basic ORS model, because there are no conflicting
trust statements.

Analyzing the data shown in Table 2.2, we find that indeed there is a heterogeneity
in the rating agreement between the reviewers. In most cases, they agree on some
ratings, but disagree on others. This cannot be modeled in the ORS model, which
only allows one trust value for an agent-to-agent trust connection. The trust function
W corresponds to global trust or distrust (covering all reviews of a user). Even if the
range of possible trust statements were big enough to cover all possible combinations
of trust and distrust, by combining the trust into a single, global value, the information
on which rating was trusted and which not is lost. We argue that this is an unnecessary

24http://cupboard.open.ac.uk:8081/cupboard/Experiment1, last checked on 24.11.2010

40

http://cupboard.open.ac.uk:8081/cupboard/Experiment1

2

2.6 Open Rating Systems

Table 2.1: The data from Cupboard shows the variance in ratings on the different
ontology aspects.

User Ontology Reusa- Correct- Com- Domain Mod- Aver- Vari-
bility ness plexity Coverage eling age ance

1 1 4 5 4 4 4 4.2 0.16
2 1 4 4 3 5 4 4 0.4
1 2 4 4 4 4 4 4 0
1 3 2 5 3 3 3 3.2 0.96
3 3 4 4 4 2 2 3.2 0.96
1 4 2 4 3 3 3 3 0.4
1 5 5 5 5 3 4 4.4 0.64
1 6 4 4 4 2 5 3.8 0.96
2 6 5 4 4 4 5 4.4 0.24
1 7 4 4 5 5 5 4.6 0.24
4 7 2 5 2 5 5 3.8 2.16
1 8 2 4 2 1 1 2 1.2
3 8 3 4 4 2 3 3.2 0.56
6 8 2 4 2 5 3 3.2 1.36
1 9 3 4 2 2 2 2.6 0.64
4 9 3 2 3 1 2 2.2 0.56
1 10 1 4 3 1 2 2.2 1.36
1 11 4 5 5 3 5 4.4 0.64
1 12 2 4 3 1 2 2.4 1.04
6 12 2 4 1 2 1 2 1.2
1 13 4 5 4 2 2 3.4 1.44
5 13 5 2 4 1 4 3.2 2.16
1 14 1 1 1 1 1 1 0
6 14 1 1 1 1 1 1 0
1 15 2 5 3 3 3 3.2 0.96
1 16 2 5 3 3 3 3.2 0.96
1 17 2 3 3 3 1 2.4 0.64
1 18 2 4 3 1 4 2.8 1.36
2 18 1 3 4 1 3 2.4 1.44

constraint and that there is a need for a more fine-grained trust management, including
a way to remember which review was trusted and which was not trusted. Otherwise
either important information about trust, or about distrust is lost.

41

Chapter 2 Definitions

Table 2.2: The data from Cupboard compares the ratings of users who have rated the
same ontology and shows on how many ratings they agreed, and on how
many they disagreed.

User Ontol- Reusa- Correct- Com- Domain Mod- Agree- Disagree-
ogy bility ness plexity Coverage eling ment ment

1 1 4 5 4 4 4 2 3
2 1 4 4 3 5 4 2 3
1 3 2 5 3 3 3 0 5
3 3 4 4 4 2 2 0 5
1 6 4 4 4 2 5 3 2
2 6 5 4 4 4 5 3 2
1 7 4 4 5 5 5 2 3
4 7 2 5 2 5 5 2 3
1 8 2 4 2 1 1 1 4
3 8 3 4 4 2 3 1 4
1 8 2 4 2 1 1 3 2
6 8 2 4 2 5 3 3 2
3 8 3 4 4 2 3 2 3
6 8 2 4 2 5 3 2 3
1 9 3 4 2 2 2 2 3
4 9 3 2 3 1 2 2 3
1 12 2 4 3 1 2 2 3
6 12 2 4 1 2 1 2 3
1 13 4 5 4 2 2 1 4
5 13 5 2 4 1 4 1 4
1 14 1 1 1 1 1 5 0
6 14 1 1 1 1 1 5 0
1 18 2 4 3 1 4 1 4
2 18 1 3 4 1 3 1 4

42

Part II

Topic-Specific Trust Open Rating
System For Ontology Reuse

3 Topic-Specific Trust Open Rating System Model 45

4 TS-ORS Algorithms and Trust Materialization 55

5 Adaptation of TS-ORS for Ontology Reuse and Example Calcula-
tions 71

6 Evolution of Ratings 87

7 Initialization of the TS-ORS for Other Applications 91

TABLE OF CONTENTS

44

3Chapter 3

Topic-Specific Trust Open Rating
System Model

Motivated by the limitations discussed in Chapter 2 Section 2.6.4, we investigated how
the behavior of an Open Rating System can be improved. The two main requirements
for an ORS extension are enabling multi-faceted rating of objects, and a fine-granular
trust management. The trust management has to allow users to trust a user A for some
objects, but distrust A for the rest of the objects. Furthermore, the information which
review was considered trustworthy and which review was considered not trustworthy
should be stored and exploited during the trust computation.

First ideas towards an extension were published in (Lewen, 2005; Lewen et al., 2006).
We have refined the ideas to come up with the extension presented in the following,
the Topic-Specific Trust Open Rating System (TS-ORS), which has been published
at EKAW 2010 (Lewen and d’Aquin, 2010). In contrast to the previously published
ideas, the work presented in this thesis has been implemented in a real-world system
(see Part III) and evaluated in both a simulation and a user study (see Part IV).

In this chapter, we first present the TS-ORS Model in Section 3.1 and the idea
behind meta-trust statements in Section 3.2. We then present possible extensions of
the TS-ORS Model in Sections 3.3 and 3.4. Parts of this chapter are based on (Lewen
and d’Aquin, 2010; Lewen et al., 2006; Lewen, 2005; Sabou et al., 2007).

3.1 TS-ORS Model

In order to make the transition from an existing ORS to the TS-ORS as easy as pos-
sible, we decided to adapt the ORS model only where needed, while keeping the basic
notions. In order to allow multi-faceted ratings, we first introduce rateable aspects of
an object, and then extend the rating function R. We furthermore adapt the trust
function W by changing its signature to allow trust statements at the level of an as-
pect of an object. Since trust is used to connect users in a WOT, it is advisable to
also allow trust statements for aspects of objects a user has not reviewed, because
these trust connections can be used during the trust propagation phase. Classifying
the trust according to the framework of (Zhang and Yu, 2004) presented in Chap-

45

Chapter 3 Topic-Specific Trust Open Rating System Model

ter 2 Section 2.5.1, the trust between users in the TS-ORS is subjective, because there
are no objectively correct ratings, and the same user can be trusted by some users and
distrusted by other users. The users themselves do not have complete information on
the trust network, they only know who they trust and distrust, but not who trusts
them or any other trust relations between users. Furthermore, with the introduction
of topic-specific trust, trust can now be defined in a context (the aspect of an object)
and not only globally (for all objects and aspects).

Compared to the model presented in Chapter 2 Section 2.6.1, for our TS-ORS model
we reuse O, A, D, T , introduce object aspects X and change the signature of R and
W . Our TS-ORS model thus consists of:

1. A set of objects O : {o1, o2, o3, . . .} that can be rated. In our use case, we assume
the objects to be ontologies or parts of ontologies.

2. A set of agents A : {a1, a2, a3, . . .} that can provide ratings and trust statements.
Agents can be both human users or automatic agents.

3. A set of object aspects X : {x1, x2, x3, . . .}. How the aspects are instantiated
in an implementation of the model depends on the intended use case. For Cup-
board, we use reusability, correctness, complexity, domain coverage and modeling
as object aspects (see Chapter 5).

4. A set of possible values for ratings of objects D : {d1, d2, . . .}. We assume that
only interval rating scales are used which allow statistical computations with
the values. We furthermore assume that reviewers will know how to interpret
the rating scale, i.e., know the order of ratings from bad to good. For ontology
rating, we employ the common 5 star rating scale, and assume that the different
star ratings are equidistant and the rating scale is an interval scale (meaning it
is permitted to compute the average of 5 stars and 3 stars as 4 stars).

5. A set of possible values for trust ratings of agents T : {t1, t2, . . .}. While the
algorithms can handle non-discrete values, for Cupboard we just use trust and
distrust.

6. A partial function R : A × O × X → D. R corresponds to the rating of an
agent on one certain aspect of an object. Let BR ⊆ A×O×X denote the set of
all triples for which R is defined, i.e., for which ratings exist. In the context of
Cupboard, R covers ratings from users on one aspect of an ontology, for example
on the complexity of the Gene Ontology.

7. A partial function W : A×A×O×X → T , which corresponds to the trust of an
agent in another agent for a specific object–aspect combination. In Cupboard,
a user can trust another user for example to rate the complexity of the Gene
Ontology, and not more.

46

3

3.2 Meta-trust Statements in the TS-ORS Model

We assume all sets to be finite. In this thesis we use the term user or reviewer to
refer to agents from A. In our model, a reviewer has to justify each rating R with a
textual review explaining the motives for giving that rating. We refer to the textual
justification as the review, and to the actual D value as the rating. A depiction of our
TS-ORS model can be found in Figure 3.1.

We separate the description of the model (found in this chapter) and algorithms
(found in Chapter 4) from our concrete instantiation in Chapter 5. The adaptation
of the TS-ORS for ontology ranking alongside default values for parameters from the
following algorithms can be found in Chapter 5.

Object 1 Object 2 Object 3

Agent 1 Agent 3

Agent 2

d1 d1d3 d5

t1

t1
t2

O: {Object 1, Object 2, Object 3}

A: {Agent 1, Agent 2, Agent 3}

X: {x1, x2, x3}

D: {d1, d2, d3, d4, d5}

T: {t1, t2}

R (Agent 1, Object 1, x1) = d1
R (Agent 1, Object 2, x1) = d3
R (Agent 3, Object 2, x3) = d1
R (Agent 3, Object 3, x2) = d5

W (Agent 2, Agent 1, Object 1, x1) = t1
W (Agent 2, Agent 3, Object 2, x3) = t2
W (Agent 3, Agent 1, Object 2, x1) = t1

x1 x2 x3 x1 x2 x3 x1 x2 x3

Figure 3.1: A depiction of our TS-ORS model.

3.2 Meta-trust Statements in the TS-ORS Model

Per default, users express trust on the level of one reviewer of an aspect of an object
(see definition of W). For the convenience of users, we define and allow the use of
meta-trust statements, which are trust statements covering more than one object–
aspect combination. They can be seen as shortcuts to making many W statements
(see Table 3.1). The intuition here is that it is cumbersome to make several fine
granular trust statements when the decision to trust another user on a coarser level
has been made. Let us assume, a user wants to trust another user for a complete object.

47

Chapter 3 Topic-Specific Trust Open Rating System Model

Table 3.1: Allowed Meta-trust Statements.
Statement Signature Explanation
WO A×A×X → T Statement on a specific aspect of all objects

(for arbitrary objects of O)
WX A×A×O → T Statement on all aspects of a specific object

(for arbitrary aspects of X)
WOX A×A→ T Statement on all aspects of all objects (for

arbitrary aspects of X and objects of O)

This could then be done with one WX meta-trust statement instead of multiple W
statements.

3.3 Domain Extension of the TS-ORS Model

While we use the aforementioned model in our implementation, in other scenarios it can
be required to extend the model to provide additional functionality. In this section,
we present a possible extension for the ontology rating use-case. Even though this
example is tailored towards ontologies, which normally cover a domain of knowledge,
the idea is generalizable to other applications which also allow a categorization of
objects O.

For our extension we assume that the objects can be classified into a taxonomy. An
example of such a classification can be found at online vendors, whose product cata-
logue usually is based on a taxonomy of categories into which products are classified
(e.g., a doll can be classified as a toy). In the use case of ontology rating, we can
assume that an ontology has an associated domain it covers, and that the domains are
arranged in a taxonomy like DMOZ.1

3.3.1 Extended TS-ORS Model

We extend the TS-ORS model to cover domains, a taxonomy of domains, and a relation
linking objects to domains. Apart from the components described in Section 3.1, we
introduce:

• A set of concepts representing domains C : {c1, c2, c3, . . .}. In the case of ontology
rating, the concepts represent possible domains of an ontology. The concepts
should not be confused with concepts within the ontologies, but are elements of
the taxonomy HC .

1http://www.dmoz.org/, last checked on 24.11.2010

48

http://www.dmoz.org/

3

3.3 Domain Extension of the TS-ORS Model

• A taxonomy HC ⊂ C × C, where HC is a directed,2 acyclic,3 irreflexive,4 tran-
sitive5 relation. (Ci, Cj) ∈ HC means that Ci is a subconcept of Cj .

• A relation L ⊆ O×C. This relation corresponds to an n-to-m mapping between
objects and their domains, it can thus be read as a “has domain” relation. In
the case of ontology rating, it is possible for an ontology to cover more than one
domain, and also for a domain to be covered by more than one ontology. Let
L−1 be the inverse relation of L and H−1

C (Cj) be the inverse relation of HC .
Then L−1(H−1

C (Cj)) provide a set of objects, which has as domain either Cj or
any subconcept of Cj .

The information available in the taxonomy can be exploited in the ontology rating
scenario both during a search for ontologies (to filter ontologies covering a specified
domain), or also during the meta-trust assignment. A depiction of the extended TS-
ORS model can be found in Figure 3.2.

3.3.2 Meta-trust Statements Using Domain Information

Apart from the already known meta-trust statements, in the extension we also permit
meta-trust statements that make use of the fact that objects are mapped to domains
via L. For that we introduce WOC

and WXC
as found in Table 3.2. An example would

be that by trusting user A to rate cars (all objects classified under car), one would also
trust A to rate BMW cars. In the case of ontology ratings, trusting a reviewer to rate
ontologies with the domain “body part” would also imply trusting this reviewer to
rate ontologies with domain “arm”, given that “arm” is a subconcept of “body part”.
We assume that in the taxonomy, a subconcept relation between “arm” and “body
part” would exist, either directly or through a chain of subconcept relations.

One could take the taxonomy idea even further and assume that the aspects X are
themselves organized in a taxonomy (Lewen, 2005). In real applications the number of
aspects is normally limited, and a taxonomy of aspects will not provide much benefit. If
needed, however, the model could be simply extended by adding a taxonomy of aspects
and adding meta-trust statements taking the taxonomy of aspects into account.

2Directed means that the relation is asymmetric, i.e., if A is a subconcept of B, B is not automatically
a subconcept of A.

3Acyclic means that cycles like A is a subconcept of B, B is a subconcept of C and C is a subconcept
of A are not allowed.

4Irreflexive means that an element cannot be in relation with itself. A concept cannot be a subconcept
of itself.

5Transitive means that if A is a subconcept of B, and B is a subconcept of C, A is also a subconcept
of C.

49

Chapter 3 Topic-Specific Trust Open Rating System Model

Object 1 Object 2 Object 3

Agent 1 Agent 3

Agent 2

d1 d1d3 d5

t1

t1
t2

O: {Object 1, Object 2, Object 3}

A: {Agent 1, Agent 2, Agent 3}

X: {x1, x2, x3}

D: {d1, d2, d3, d4, d5}

T: {t1, t2}

C: {Domain A, Domain B, Domain C}

H: (Domain B, Domain A)
H: (Domain C, Domain A)

L: (Object 1, Domain B)
L: (Object 2, Domain C)
L: (Object 3, Domain C)

R (Agent 1, Object 1, x1) = d1
R (Agent 1, Object 2, x1) = d3
R (Agent 3, Object 2, x3) = d1
R (Agent 3, Object 3, x2) = d5

W (Agent 2, Agent 1, Object 1, x1) = t1
W (Agent 2, Agent 3, Object 2, x3) = t2
W (Agent 3, Agent 1, Object 2, x1) = t1

x1 x2 x3 x1 x2 x3 x1 x2 x3

Domain B Domain C

Domain A

has domain has domain
has domain

subconcept of subconcept of

Figure 3.2: A depiction of our TS-ORS model with an extension for domains.

50

3

3.4 Evaluation-Context Extension for the TS-ORS Model

Table 3.2: Allowed Meta-trust Statements in an Extended TS-ORS.
Statement Signature Explanation
WOC

A×A× C ×X → T Statement on a specific aspect of all objects
belonging to a domain C

WO A×A×X → T Statement on a specific aspect of all objects
(for arbitrary objects of O)

WX A×A×O → T Statement on all aspects of a specific object
(for arbitrary aspects of X)

WXC
A×A× C → T Statement on all aspects of all objects be-

longing to a domain C (for arbitrary as-
pects of X)

WOX A×A→ T Statement on all aspects of all objects (for
arbitrary aspects of X and objects of O)

3.4 Evaluation-Context Extension for the TS-ORS Model

As mentioned in Section 2.3, ontologies can be evaluated with regard to the task they
are designed for. As there are several potential application scenarios for an ontology
(see Section 2.1), an ontology can be great for one application, but unsuitable for
another. An upper level ontology, for example, will not perform well in an application
that needs specific domain knowledge. Therefore it is clear that all ontologies are eval-
uated according to requirements which are imposed by the context (e.g., application)
in which the ontology is employed. While the context of an evaluation is important
information, it is not modeled explicitly in our TS-ORS model. First, we assume that
each ontology was built with a specific task in mind, and should be evaluated against
its task. While it is possible to evaluate ontologies against tasks which they were not
designed for, namely in cases where an ontology can be applied in more than one task,
we assume that normally an ontology will be evaluated within a specific context.

In our TS-ORS model, each rating is justified with a review. Within the review
text, information such as the context in which or the task against which an ontology
was evaluated can be stated. We assume that users can read the reviews for an
ontology, and then decide whether to trust the reviewer or not, even without explicit
formalization of context. The context would be selected implicitly by users trusting
reviewers that rate ontologies in the same context they intend to employ the ontology
in. Nevertheless, the context of a rating can be formalized and made explicit in the
TS-ORS model.

51

Chapter 3 Topic-Specific Trust Open Rating System Model

3.4.1 Extended TS-ORS Model Including Rating Context

In order to formalize the evaluation context, our model can be extended and feature
the following components:

• A set of objects O : {o1, o2, o3, . . .} that can be rated.

• A set of agents A : {a1, a2, a3, . . .} that can provide ratings and trust statements.
Agents can be both human users or automatic agents.

• A set of object aspects X : {x1, x2, x3, . . .}.

• A set of evaluation contexts E : {e1, e2, e3, . . .}

• A set of possible values for ratings of objects D : {d1, d2, . . .}.

• A set of possible values for trust ratings of agents T : {t1, t2, . . .}.

• A partial function R : A× O ×X × E → D. R corresponds to the rating of an
agent on one certain aspect of an object in a specific evaluation context.

• A partial function W : A × A × O × X × E → T , which corresponds to the
trust of an agent in another agent for a specific aspect–object combination in a
specific evaluation context.

A depiction of the extended TS-ORS model can be found in Figure 3.3.
If necessary, the domains of ontologies can be integrated into the model as presented

in Section 3.3.1 by simply adding C, HC , and L to the components found above.

3.4.2 Meta-trust Statements also Covering Evaluation Context

The meta-trust statements can be adopted by extending given meta-trust statements
to also take evaluation contexts into account as shown in Table 3.3.

52

3

3.4 Evaluation-Context Extension for the TS-ORS Model

Object 1 Object 2 Object 3

Agent 1 Agent 3

Agent 2

d1

d1

d3 d5

t1

t1 t2

O: {Object 1, Object 2, Object 3}

A: {Agent 1, Agent 2, Agent 3}

X: {x1, x2, x3}

E: {e1, e2, e3}

D: {d1, d2, d3, d4, d5}

T: {t1, t2}

R (Agent 1, Object 1, x2, e1) = d1
R (Agent 1, Object 2, x1, e2) = d3
R (Agent 3, Object 2, x3, e3) = d1
R (Agent 3, Object 3, x2, e2) = d5

W (Agent 2, Agent 1, Object 1, x2, e1) = t1
W (Agent 2, Agent 3, Object 2, x3, e3) = t2
W (Agent 3, Agent 1, Object 2, x1, e2) = t1

x1 x2 x3 x1 x2 x3 x1 x2 x3

e1 e2 e3

Context

Figure 3.3: A depiction of our TS-ORS model with an extension for including evalua-
tion contexts.

53

Chapter 3 Topic-Specific Trust Open Rating System Model

Table 3.3: Allowed Meta-trust Statements Taking Into Account Evaluation Contexts.
Statement Signature Explanation
WE A×A×O ×X → T Statement on a specific aspect of a specific

object for all evaluation contexts.
WOE

A×A×X × E → T Statement on a specific aspect of all objects
in a specific evaluation context (for arbi-
trary objects of O)

WXE
A×A×O × E → T Statement on all aspects of a specific ob-

ject in a specific evaluation context (for ar-
bitrary aspects of X)

WO A×A×X → T Statement on a specific aspect of all objects
for all evaluation contexts (for arbitrary ob-
jects of O)

WX A×A×O → T Statement on all aspects of a specific object
for all evaluation contexts (for arbitrary as-
pects of X)

W(OX)E
A×A× E → T Statement on all aspects of all objects in

a specific evaluation context (for arbitrary
aspects of X and objects of O)

WOX A×A→ T Statement on all aspects of all objects in all
evaluation contexts (for arbitrary aspects of
X and objects of O)

54

4

Chapter 4

TS-ORS Algorithms and Trust
Materialization

After presenting the TS-ORS model in Chapter 3, we now present the algorithms that
make use of the data. In this chapter we show how the trust information in W and
the meta-trust statements can be used to provide a ranking of reviews for a given
aspect–object combination, and to compute an overall rating for objects (taking R
into account).

The process starts with the materialization of meta-trust statements to normal trust
statements described in Section 4.1. We then use the trust information to compute
trust values for each user, which can be used to rank reviews (see Section 4.2). Based
on the top ranked reviews (see Section 4.3), we can compute an overall rating of
objects (see Section 4.4). An example of such computations with exemplary data is
given in Chapter 5 Section 5.6. Possible extensions of the algorithms are presented in
Sections 4.5, 4.6, and 4.7. Parts of this chapter are based on (Lewen and d’Aquin, 2010;
Lewen et al., 2006; Lewen, 2005; Sabou et al., 2007).

4.1 Meta-trust Materialization

Since the meta-trust statements are not part of the model, we have to materialize them
to single W statements before the trust computation. The materialization is based on
our intuition that more specific trust statements (those covering a smaller scope) are
more authoritative: W �WO �WX �WOX (”�” meaning more authoritative). The
materialization is performed based on the above order, i.e., starting with all statements
in the form W , then processing all statements in the form WO, then WX , and finally
WOX . For each of the meta-trust statements, their scope is checked and then the value
of the statement is propagated to the object–aspect level. Existing trust information
is not overwritten in this process. For example, if a meta-trust statement has been
made for an object (WX), it is checked which aspects of this object are not covered
by trust statements yet, and the value of the meta-trust statement is used for these
aspects. We refer to the final outcome of the materialization as W ′. Using meta-trust
statements, it is possible for example to distrust another user globally, but to trust

55

Chapter 4 TS-ORS Algorithms and Trust Materialization

him for a certain object on (since the statement on the object is more authoritative
than the global statement, the user will be distrusted for all objects except for on).

4.1.1 Formal Meta-trust Materialization Algorithm

An operationalization of the meta-trust materialization can be found in Algorithm 1.
We explain the algorithm in the following:

• First a partial function trustprop is created, which is initialized with the values
from W .

• Then it is checked for which tuples (agent, agent, aspect) WO is defined. For
each tuple (agent, agent, aspect) for which WO is defined, it is checked for
all objects in the system, whether a trust statement in the form (agent, agent,
object, aspect) is defined in the function trustprop. In case the tuple is defined in
trustprop nothing is done. Otherwise, the value of the meta-trust statement for
that (agent, agent, aspect) combination is taken, and trustprop (agent, agent,
object, aspect) is set to the meta-trust value. This procedure is run until all
tuples for which WO is defined are processed, i.e., until the complete meta-trust
for objects has been materialized.

• To propagate the meta-trust on properties, it is checked for which tuples (agent,
agent, object) WX is defined. For each tuple (agent, agent, object) for which WX

is defined, it is checked for all aspects in the system, whether a trust statement
in the form (agent, agent, object, aspect) is defined in the function trustprop.
In case the tuple is defined in trustprop nothing is done. Otherwise, the value
of the meta-trust statement for that (agent, agent, object) combination is taken,
and trustprop (agent, agent, object, aspect) is set to the meta-trust value. This
procedure runs until all tuples for which WX is defined are processed, i.e., until
the complete meta-trust for aspects has been materialized.

• To propagate global meta-trust statements, it is checked for which tuples (agent,
agent) WOX is defined. For each tuple (agent, agent) for which WOX is defined,
it is checked for all objects-aspect combinations in the system, whether a trust
statement in the form (agent, agent, object, aspect) is defined in the function
trustprop. In case the tuple is defined in trustprop nothing is done. Otherwise,
the value of the meta-trust statement for that (agent, agent) combination is
taken, and trustprop (agent, agent, object, aspect) is set to the meta-trust value.
This procedure is run until all tuples for which WOX is defined are processed,
i.e., until the complete global meta-trust has been materialized.

56

4

4.2 Computing Trust Values for Ranking

Input: W,WX ,WO,WOX , BR

Output: W ′

Create partial function trustprop := W
foreach (ai, aj , xk) ∈ A×A×X such that WO(ai, aj , xk) is defined do

foreach on ∈ O do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WO(ai, aj , xk)
end

end
end
foreach (ai, aj , on) ∈ A×A×O such that WX(ai, aj , on) is defined do

foreach xk ∈ X do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WX(ai, aj , on)
end

end
end
foreach (ai, aj) ∈ A×A such that WOX(ai, aj) is defined do

foreach on ∈ O, xk ∈ X do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WOX(ai, aj)
end

end
end
Create partial function W ′ := trustprop

Algorithm 1: Meta-trust Materialization

4.2 Computing Trust Values for Ranking

After the meta-trust has been materialized, all trust statements are in the form of
W , and trust ranks can be computed. Note that in contrast to the basic ORS (see
Section 2.6), we compute individual trust relationships for every aspect of every object
(every onxk combination for on ∈ O, xk ∈ X). In the following, whenever we use the
subscript onxk for matrices or ranks, it means that they contain the data relevant to
this onxk combination.

For each onxk combination, we define two matrices storing trust and distrust. The
trust matrix T has entries tij ∈ {0, 1}. If tij = 1, user ai trusts aj according to W ′,
otherwise no information is available. Analogously, the distrust matrix D has entries
dij ∈ {0, 1} capturing the distrust (we will explain how to work with continuous tij

57

Chapter 4 TS-ORS Algorithms and Trust Materialization

and dij values in Section 4.5).
Given T and D, we can compute GlobalTrustRank (a relabeled Page-Rank (Page et

al., 1998), see Equation 4.1) and GlobalDistrustRank (from (Guha, 2004), see Equa-
tion 4.2). GlobalTrustRank provides a trust value for each user based on how many
users trust him. GlobalDistrustRank provides a distrust value for each user, based on
how many users distrust him. Using Algorithm 2, which is based on (Guha et al.,
2004), the local trust matrix F and the interpretation matrix I can be computed. F
provides personalized user-to-user trust scores, and I provides, if possible, an inter-
pretation of the scores in F as trust or distrust. We present the algorithms in the
following, while examples can be found in Chapter 5

4.2.1 Global Trust

GlobalTrustRank i+1(au) = (1− d) + d ·
(∑

v∈Tv

GlobalTrustRank i(v)
Nv

)
(4.1)

where au is the user whose GlobalTrustRank is computed, Tv is the set of users trusting
au, v ∈ Tv is a user from Tv trusting au, Nv is the total number of users user v
trusts, d is a damping factor between 0 and 1,1 and i is the number of iterations the
algorithm has run. The GlobalTrustRanks can be initialized as 1. Intuitively speaking,
GlobalTrustRank assigns trust to users based on how many other users trust them and
how trusted the users trusting them are. The algorithm runs iteratively, normally
until the ranks converge, i.e., until a new iteration does not change the computed
GlobalTrustRanks anymore. Another possibility is to run the algorithm for a fixed
number of iterations. The algorithm computes in each iteration the GlobalTrustRank
of a user as the sum of the normalized GlobalTrustRanks of the people who trust that
user. Normalized means that the GlobalTrustRank of a user is divided by the total
number of trust statements he has made. Because of this, the importance of a trust
statement is diminished every time another trust statement is made. Based on the
GlobalTrustRanks, the GlobalDistrustRanks can be computed.

GlobalDistrustRank(au) =
∑

v∈Bv

GlobalTrustRank(v)
Nv

(4.2)

where au is the user whose GlobalDistrustRank is computed, Bv is the set of users
distrusting au, v ∈ Bv is a user from Bv distrusting au, Nv is the total number of users
user v distrusts. GlobalDistrustRank is taking into account who distrusts a user and
how high the GlobalTrustRank of the distrusting users are. The algorithm only runs
one iteration, and is computing the GlobalDistrustRank of a user by summing up the
normalized GlobalTrustRanks of users who distrust him. Normalized in this case again

1Based on (Page et al., 1998), it is usually set to 0.85 for fast convergence of ranks.

58

4

4.2 Computing Trust Values for Ranking

means that the GlobalTrustRank of a user is divided by the total number of distrust
statements he has made. The greater the number of distrust statements, the more the
effect of each single distrust statement is diminished.

4.2.2 Local Trust

We base the computation of personalized user-to-user trust scores (see Algorithm 2)
on the work from Guha et al (Guha et al., 2004), who investigated trust and dis-
trust propagation in a WOT based on real world data. The algorithm uses the 4
different kinds of atomic trust propagation shown in Table 4.1. It employs a com-
bination of these trust propagation techniques to propagate trust within the WOT.
Distrust is only propagated 1 step (statements from distrusted users are discounted),
since the semantics of distrust propagation are not clear (Guha et al., 2004) (see also
Section 2.5.2).

The algorithm (see Algorithm 2) works by combining the 4 different atomic prop-
agation steps to the propagation matrix C using a linear combination. Each atomic
propagation step is weighted with a parameter β, which is used to shift importance
between the different propagation steps.

The final local trust matrix F is computed by adding up the results of each propa-
gation step until trust has been propagated K steps. Within each propagation step,
first a propagation matrix for the correct number of propagation steps is computed.
If trust is propagated 1 step, C remains unchanged. For 2 steps, it is squared, for 3
steps cubed, and so on. In general, C(k) represents the propagation matrix for a k
step propagation.

Then this propagation matrix is multiplied with the difference of the trust matrix
T and the distrust matrix D. This multiplication represents the actual propagation
of trust and distrust. The resulting matrix is then discounted with a parameter γ,
which represents the decay of trust over propagation steps (see Equation 2.2). Once
the matrix has been discounted with γ, it is added to the current F matrix. Since F
is the result of several additions, the trust scores within F keep on growing, they are
not normalized. It is not necessary for values fij to be between 0 and 1.

After F is computed, its values fij have to be interpreted as either trust or distrust (if
possible). The idea of majority rounding (Guha et al., 2004) is that values that result
from the propagation process can be interpreted by looking at values for which the
interpretation is known (the fij for which tij or dij is different from 0). To initialize the
interpretation matrix I, the difference between T and D is computed. The resulting
matrix I will have the entry 1 for all iij for which tij = 1, and iij = −1 for all entries for
which dij = 1. In the interpretation matrix I, 1 is interpreted as trust, -1 as distrust,
and 0 as unknown.

To interpret F, for each row (each row represents the trust scores from one user to
all other users), a sequence is computed that maps all users to exactly one element

59

Chapter 4 TS-ORS Algorithms and Trust Materialization

in the sequence, and furthermore makes sure that the elements in the sequence are
ordered ascending according to the value in F. Basically the sequence gives us a way
to sort a row of F while keeping the correspondence to I. The interpretation as such is
then realized by checking, for each unknown entry in the interpretation matrix, what
the interpretation of the neighboring entries of fij are in the ordered sequence. In case
they are both trust, the value is interpreted as trust. In case they are both distrust,
the interpretation is also distrust. In case the interpretation of surrounding values
differs, it is checked which value is closer to the value that is being interpreted, and
the interpretation of that value is taken.

After all values in a row of F have been interpreted, the interpretations of entries
where fij = 0 are set to unknown. A value of 0 in the final trust matrix means that the
user-to-user combination could not be computed, so it should also not be interpreted.

4.3 Ranking Reviews at the Aspect Level of an Object

When a user requests the reviews for an object–aspect combination, the reviews for
that combination have to be ranked by the TS-ORS to be provided in a user-specific
order. If a user can be identified, we can base the user-specific ranking on the local
trust information. This ranking is also influenced by a parameter α ∈ [0, 1] that
the user can provide to combine global trust (GlobalTrustRank(GTR)) and distrust
(GlobalDistrustRank(GDR)) to a GlobalCombinedRank(GCR). The higher α is, the
more emphasis is put on the GTR. In case a user can be identified, we use Algorithm 3,
in the other case Algorithm 4.

Algorithm 3 ranks reviews based on the information who is trusted and who is
distrusted, and the local trust value from F. Given we want to get the ranking for user
ai, we first identify all existing reviews for the object-aspect combination which should
be ranked. Then, for all reviews, we assign a triple consisting of the interpretation
of the local trust score for the reviewer, the local trust score for the reviewer, and
the GlobalCombinedRank of the reviewer. The GlobalCombinedRank is computed as a
linear combination of GlobalTrustRank(GTR) and GlobalDistrustRank(GDR). Once
all reviews are assigned triples, the reviews can be sorted. Based on the triples, reviews
are sorted in descending lexicographic order (meaning columns are sorted descending,
starting with iij and then considering fij to sort entries where the iij value is identical,
and then considering GCR(aj) if both values for iij and fij are identical). The result of
the ranking process is a ranking order which starts with the review from the reviewer
with the highest local trust score which was interpreted as trust, and goes on with
all reviewers whose local trust scores were identified as trust in a descending order.
When all reviewers which have been interpreted as trusted in I have been ranked,

60

4

4.3 Ranking Reviews at the Aspect Level of an Object

Input: Trust Matrix T, Distrust Matrix D
Output: Local Trust Matrix F, Interpretation Matrix I
C := β1 ·T + β2 ·TᵀT + β3 ·Tᵀ + β4 ·TTᵀ

F :=
∑K

k=1 γ
k · (C(k) · (T−D))

Initialize I:=T−D
foreach j ∈ A do

Compute a sequence a(1), a(2), . . . , a(|A|) such that:
– for all a ∈ A there is exactly one i ∈ {1, . . . , |A|} such that a(i) = a
– for all i ∈ {1, . . . , |A| − 1} we find that fja(i) 6 fja(i+1)

To simplify notation, we use ija(0) and ija(|A|+1) to denote 0. Small letters
with subscripts denote entries in the matrices.
repeat

foreach m ∈ A do
if ija(m) = 0 then

ija(m) := 1

if
(

(ija(m−1) + ija(m+1) ≤ −1) ∨
(
(ija(m−1) = −1 ∧ ija(m+1) = 1)

∧ ((fja(m+1) − fja(m)) > (fja(m) − fja(m−1)))
)
∨
(
(ija(m−1) = 1

∧ ija(m+1) = −1) ∧ ((fja(m+1) − fja(m)) < (fja(m) − fja(m−1)))
))

then
ija(m) := −1

end
if ija(m−1) = ija(m+1) = 0 then

ija(m) := 0
end

end
end

until no further changes occur in I ;
foreach m do

if fja(m) = tja(m) = dja(m) = 0 then
ija(m) := 0

end
end

end

Algorithm 2: Local Trust Computation

the following ranks are filled with reviewers for which no local trust score could be
computed. Their reviews are sorted based on the GlobalCombinedRank in descending
order. Ultimately, reviews from reviewers whose local trust score was interpreted as

61

Chapter 4 TS-ORS Algorithms and Trust Materialization

Table 4.1: Atomic Trust Propagation according to Guha et al.
Propagation Operator Description
Direct Propagation T If A trusts B, someone trusted by B should

also be trusted by A
Co-Citation Tᵀ ·T If A trusts B and C, someone trusting C

should also trust B
Transpose Trust Tᵀ If A trusts B, someone trusting B should also

trust A
Trust Coupling T ·Tᵀ If A and B trust C, someone trusting A should

also trust B

Input: on ∈ O, xk ∈ X,GTRonxk
,GDRonxk

,Fonxk
, Ionxk

, αi ∈ [0, 1], ai ∈ A
Output: Sorted Reviews
foreach (aj , on, xk) ∈ BR do

GCR(aj) := αi ·GTRonxk
(aj)− ((1− αi) ·GDRonxk

(aj))
Assign to the review (aj , on, xk) ∈ BR a triple (iij , fij , GCR(aj))

end
Based on these triples, reviews are sorted in descending lexicographic order
(meaning columns are sorted descending, starting with iij and then considering
fij to sort entries where the iij value is identical, and then considering GCR(aj)
if both values for iij and fij are identical)

Algorithm 3: Review Ranking if the User Can be Identified

distrust are sorted from the least distrusted reviewer (the one with the highest local
trust score) to the most distrusted reviewer (the one with the lowest local trust score).
Since the results take into account a user’s WOT, they are personalized.

Input: on ∈ O, xk ∈ X,GTRonxk
,GDRonxk

, α ∈ [0, 1]
Output: Sorted Reviews
foreach (aj , on, xk) ∈ BR do

GCR(aj) := α ·GTRonxk
(aj)− ((1− α) ·GDRonxk

, (aj))
Assign to the review (aj , on, xk) ∈ BR a value GCR(aj)

end
Based on these values, reviews are sorted starting with the highest value.

Algorithm 4: Review Ranking if the User Cannot be Identified

Algorithm 4 can only rank based on the GCR values, since the user is unknown.

62

4

4.4 Computing an Overall Rating of an Object

Thus its ranking cannot be personalized. The algorithm works by first identify-
ing all existing reviews for the object-aspect combination which should be ranked.
Then, for all reviews, the GlobalCombinedRank value of its reviewer is assigned. The
GlobalCombinedRank is computed as a linear combination of GlobalTrustRank(GTR)
and GlobalDistrustRank(GDR). Once all reviews are assigned the values, the re-
views can be sorted in a descending order according to the GlobalCombinedRank
values. The result of the ranking process is a ranking of reviews according to the
GlobalCombinedRank of the reviewers who wrote them. Depending on how the pa-
rameter α is chosen, this ranking can change. Since the user requesting the ranking is
not know to the system, the results cannot be based on the WOT, and thus they are
the same for all anonymous users, namely based on global trust.

4.4 Computing an Overall Rating of an Object

Each object in the TS-ORS has aspects xk ∈ X it can be reviewed on. The user
can choose how to weigh each aspect for computing the overall rating of an object by
specifying a weight µk ≥ 0 for each aspect xk ∈ X. In case no rating exists for an
aspect, we distribute its weight evenly to the remaining aspects. The user can also
decide on how many top-ranked ratings per aspect the computation is based. This is
done with the parameter N ≥ 1. N = 3 means, for example, that the top-3-ranked
ratings are considered. Another parameter ν ∈ (0, 1] can be specified that determines
how the top-N-ranked ratings are combined. The closer ν is to 0, the more emphasis
is put on the top-ranked ratings, if ν = 1 a linear combination is computed.

We use Algorithm 5 to compute the overall rating. The ranking of reviews is de-
termined by Algorithm 3 or 4, based on whether a user is identifiable or not. The
algorithm first processes the aspects one after another. For each aspect, it is first
made sure that parameter N is not greater than the number of ranked reviews. In
case no reviews exist for an aspect, the rating for this aspect and the weight for the as-
pect are set to 0. In case ratings exist, the top N ratings are combined using a weighted
combination based on parameters N and ν. Once the combined top-N-ratings exist
for all aspects, the weights µ are normalized and, in the process, weights for aspects
which do not have ratings are redistributed. In the final step, the overall rating of the
object is computed as a weighted linear combination of the combined top-N-ratings
for all aspects, taking into account the user’s preferences as defined via the µk weights.

In contrast to Guha’s ORS model, it is now possible to compose an overall rating
using ratings on different aspects and based on topic-specific trust statements.

63

Chapter 4 TS-ORS Algorithms and Trust Materialization

Input: on ∈ O, ranked sets of reviews
Bonxk

= {(aj1, on, xk), · · · , (ajm, on, xk)} ⊆ BR for each xk ∈ X,
ν ∈ (0, 1], N > 1, µk for each xk ∈ X

Output: Rating Don

For a given onxk combination, we use the notation (aji, on, xk) ∈ Bonxk
to refer to

the i-th ranked result.
foreach xk ∈ X do

N := min(N, |Bonxk
|)

if N = 0 then
Donxk

:= 0
µk := 0

else

Donxk
:=
∑N

i=1

(
(νi/

∑N
s=1 ν

s) ·R(aji, on, xk)
)

end
end
foreach k = 1, · · · , |X| with µk 6= 0 do

µk := µk/
|X|∑
l=1

µl

end
Don :=

∑
xk∈X

µk ·Donxk

Algorithm 5: Computation of an Overall Rating

4.5 Extending the Algorithms for Continuous Trust
Values

Even though many systems facilitate a user’s trust decision to trust or distrust, it is
possible to allow different trust values. The only important assumption is that trust
and distrust can be distinguished. In this section we present how the algorithms can
be extended to handle more precise trust and distrust statements. In this example,
we assume that both trust and distrust can be expressed on a scale from 1 to 10.

Algorithm 1 can remain unchanged, since no assumptions are made on the trust
scale. The trust or distrust value given is just used as such during the materialization
process.

In contrast to the regular version, the trust matrix T now has entries tij ∈ [0, 1]. We
compute the entries tij by dividing the respective trust values by 10, because we have 10
values on the scale. As a result, the entries in T can now express the level of trust, and
not only the existence. Analogously, the distrust matrix D has now entries dij ∈ [0, 1]
capturing the distrust. We compute the entries dij by dividing the respective trust

64

4

4.6 Extending the Algorithms to Deal with Domains

values by 10. The computation of GlobalTrustRank and GlobalDistrustRank have to
be modified to make use of the more fine granular trust values. The adapted versions
can be found in Equation 4.3 and Equation 4.4.

WeightedGTRi+1(au) = (1− d) + d ·
(∑

v∈Tv

tvu ·WeightedGTRi(v)
Nv

)
(4.3)

where au is the user whose WeightedGTR is computed, Tv is the set of users trusting
au, v ∈ Tv is a user from Tv trusting au, tvu is the entry from T with the trust assigned
by user v to user u, Nv is the sum of all of user v’s trust statements (the sum of user
v’s row in T), d is a damping factor between 0 and 1,2 and i is the number of iterations
the algorithm has run. The WeightedGTRs can be initialized as 1. By introducing
the trust value into the computation, the strength of a trust statement is taken into
account when computing the global trust values. Based on the WeightedGTRs, the
WeightedGlobalDistrustRanks can be computed.

WeightedGlobalDistrustRank(au) =
∑

v∈Bv

dvu ·WeightedGTR(v)
Nv

(4.4)

where au is the user whose WeightedGlobalDistrustRank is computed, Bv is the set of
users distrusting au, v ∈ Bv is a user from Bv distrusting au, dvu is the entry from D
with the distrust assigned by user v in user u, Nv is the sum of all of user v’s distrust
statements (the sum of user v’s row in D).

For Algorithm 2, the only change would be in the initialization of I. Now, iij is set
to 1 if tij > 0 or to −1 if dij > 0. In the rest of cases, i.e., if no trust or distrust for
the i,j combination exists, the interpretation is kept as 0.

With these adaptations to the algorithms, the system can deal with more detailed
trust and distrust statements.

4.6 Extending the Algorithms to Deal with Domains

The only algorithm that has to be adapted to enable use of domains as described
in Section 3.3.1 is the meta-trust materialization. We have to include the additional
meta-trust statements WOC

, WXC
into the meta-trust materialization algorithm. The

order of authoritativeness of meta-trust statements is now W �WOC
�WO �WX �

WXC
� WOX . The adapted meta-trust materialization algorithm can be found in

Algorithm 6. Once all meta-trust has been materialized, the rest of the computation
steps is as in the standard case presented in this chapter.

2Based on (Page et al., 1998), it is usually set to 0.85 for fast convergence of ranks.

65

Chapter 4 TS-ORS Algorithms and Trust Materialization

4.7 Extending the Algorithms to Deal with Evaluation
Contexts

The first algorithm that has to be adapted to enable the use of evaluation contexts as
described in Section 3.4.1 is again the meta-trust materialization. We have to include
the additional meta-trust statements WE ,WXE

,WOE
,W(OX)E

into the meta-trust ma-
terialization algorithm. The order of authoritativeness of meta-trust statements is now
W � WE � WOE

� WXE
� WO � WX � W(OX)E

� WOX . The adapted meta-trust
materialization algorithm can be found in Algorithms 7 and 8.

For the rest of the computations, the algorithms can remain unchanged, but the
trust computations have to be performed for each onxk combination for each evaluation
context em ∈ E. During runtime, a user would then specify which evaluation context
should be used, and only the relevant data is taken into account for the ranking and
computation of overall ratings. It can be seen as selecting one value from E, and then
working with a view on the data for that value.

66

4

4.7 Extending the Algorithms to Deal with Evaluation Contexts

Input: W,WX ,WO,WOX ,WOC
,WXC

, BR, L,HC

Output: W ′

Create partial function trustprop := W
foreach (ai, aj , cm, xk) ∈ A×A× C ×X such that WOC

(ai, aj , cm, xk) is defined
do

foreach on ∈ L−1(H−1
C (cm)) do

if trustprop(ai, aj , on, xk) is undefined then
trustprop(ai, aj , on, xk) := WO:C(ai, aj , cm, xk)

end
end

end
foreach (ai, aj , xk) ∈ A×A×X such that WO(ai, aj , xk) is defined do

foreach on ∈ O do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WO(ai, aj , xk)
end

end
end
foreach (ai, aj , on) ∈ A×A×O such that WX(ai, aj , on) is defined do

foreach xk ∈ X do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WX(ai, aj , on)
end

end
end
foreach (ai, aj , cm) ∈ A×A× C such that WXC

(ai, aj , cm) is defined do
foreach on ∈ L−1(H−1

C (cm)), xk ∈ X do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WXC
(ai, aj , cm)

end
end

end
foreach (ai, aj) ∈ A×A such that WOX(ai, aj) is defined do

foreach on ∈ O, xk ∈ X do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WOX(ai, aj)
end

end
end
Create partial function W ′ := trustprop

Algorithm 6: Meta-trust Materialization including Domains

67

Chapter 4 TS-ORS Algorithms and Trust Materialization

Input: W,WE ,WOE
,WXE

,WO,WX ,W(OX)E
,WOX , BR

Output: W ′

Create partial function trustprop := W
foreach (ai, aj , on, xk) ∈ A×A×O×X such that WE(ai, aj , on, xk) is defined do

foreach em ∈ E do
if trustprop(ai, aj , on, xk, em) is undefined then

trustprop(ai, aj , on, xk, en) := WE(ai, aj , on, xk)
end

end
end
foreach (ai, aj , xk, em) ∈ A×A×X × E such that WOE

(ai, aj , xk, em) is defined
do

foreach on ∈ O do
if trustprop(ai, aj , on, xk, em) is undefined then

trustprop(ai, aj , on, xk, en) := WOE
(ai, aj , xk, em)

end
end

end
foreach (ai, aj , on, em) ∈ A×A×O × E such that WXE

(ai, aj , on, em) is defined
do

foreach xk ∈ X do
if trustprop(ai, aj , on, xk, em) is undefined then

trustprop(ai, aj , on, xk, en) := WXE
(ai, aj , on, em)

end
end

end
...

Algorithm 7: Meta-trust Materialization including Evaluation Contexts Part 1

68

4

4.7 Extending the Algorithms to Deal with Evaluation Contexts

...
foreach (ai, aj , xk) ∈ A×A×X such that WO(ai, aj , xk) is defined do

foreach on ∈ O do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WO(ai, aj , xk)
end

end
end
foreach (ai, aj , on) ∈ A×A×O such that WX(ai, aj , on) is defined do

foreach xk ∈ X do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WX(ai, aj , on)
end

end
end
foreach (ai, aj , em) ∈ A×A× E such that W(OX)E

(ai, aj , em) is defined do
foreach on inO, xk ∈ X, em ∈ E do

if trustprop(ai, aj , on, xk, em) is undefined then
trustprop(ai, aj , on, xk, en) := W(OX)E

(ai, aj , em)
end

end
end
foreach (ai, aj) ∈ A×A such that WOX(ai, aj) is defined do

foreach on ∈ O, xk ∈ X do
if trustprop(ai, aj , on, xk) is undefined then

trustprop(ai, aj , on, xk) := WOX(ai, aj)
end

end
end
Create partial function W ′ := trustprop

Algorithm 8: Meta-trust Materialization including Evaluation Contexts Part 2

69

Chapter 4 TS-ORS Algorithms and Trust Materialization

70

5

Chapter 5

Adaptation of TS-ORS for Ontology
Reuse and Example Calculations

In this chapter, we start by explaining the history of using Open Rating Systems
for ontology evaluation in Section 5.1. We then show how the TS-ORS model can be
initialized for a use case in Section 5.2. Default parameters for the TS-ORS algorithms
are provided in Section 5.3. Section 5.4 explains how the TS-ORS can be employed to
facilitate ontology reuse. The incorporation of automatic evaluation techniques into
the TS-ORS is discussed in Section 5.5. The chapter concludes with an exemplary
computation of trust values and rankings in Section 5.6. Parts of this chapter are
based on (Lewen and d’Aquin, 2010; Lewen et al., 2006; Lewen, 2005; Sabou et al.,
2007).

5.1 History of Open Rating Systems for Ontology
Evaluation

As already stated in Section 2.6, the idea of employing user ratings for ontology eval-
uation has first been proposed by Noy et al. (Noy et al., 2005) in 2005. Guha’s ORS
was employed in the ontology portal Knowledge Zone (Supekar et al., 2007) for the
biomedical domain. Knowledge Zone has since been taken off the Web and been re-
placed by the NCBO’s Bioportal, which also plans to include a user rating system of
ontologies (Noy et al., 2008). After our initial idea on how to extend an Open Rating
System for enabling topic-specific trust has been published in (Lewen et al., 2006), it
has been picked up by Hartmann et al. and included in their proposed Generic Ontol-
ogy Repository Framework architecture (Hartmann et al., 2009). They suggest that
every ontology repository should include the rating functionality offered by our Topic-
Specific Trust Open Rating System. TS-ORS has been implemented and included
inside the Cupboard system, which we will present in detail in Section 9.

71

Chapter 5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations

5.2 Initialization of TS-ORS Model

Whenever the generic TS-ORS Model is employed in a certain context, the model has
to be instantiated based on the requirements imposed by the desired use case. In the
following, we discuss the adaptations needed for use of the TS-ORS for ontology rating
and ranking. In the context of ontology evaluation and rating, the set of objects O can
contain complete ontologies, parts of an ontology (ontology modules), or even URIs
of classes. Internally, an implementation will likely just store an URI which can be
used to access the object, and an ID for internal reference. So when a rating is made,
we assume it covers all axioms that can be found under the URI of the rated object.
While it might be possible to develop a user interface which allows the users to give
a rating on only a selected part of the object, i.e., only some axioms of all axioms of
the ontology, we follow a different approach. Whenever a user feels that only parts of
the ontology should be rated, the user should extract these parts (for example using
state of the art modularization techniques (Pathak et al., 2009)) and upload them in
whatever form deemed most useful to the system. Then the uploaded subset of the
original ontology can be rated. This way, it is always clear that a displayed rating
score is valid for the complete ontology, and not only for parts of it. Since the Linked
Data Initiative is also interested in promoting the best URIs for certain entities, there
is no restriction on how big an ontology in the system has to be. It is thus also possible
to upload an ontology only consisting of one concept with its URI, and then rate it.

Initializing the aspects in X is a lot harder when the objects in the TS-ORS are
heterogeneous in nature. Imagine a vendor with a huge variety of products. It is likely
that there is no common set of aspects all products share. When focusing on ontology
rating, all objects in the system are some kind of ontology. They all share the same
aspects. How the aspects are instantiated is up to the provider of the TS-ORS. As
mentioned in Section 2.3, there are different works identifying aspects of ontologies that
can be evaluated. In our TS-ORS implementation within Cupboard, we instantiate
the aspects X based on Gangemi’s work on ontology evaluation (Gangemi et al., 2006),
using: reusability, correctness, complexity, domain coverage, and modeling.

The agents in A are the registered users of the system. Both, users participating
actively in uploading and reviewing, and users only expressing trust in other users to
receive a better personalized ontology ranking.

The possible rating values in D in Cupboard are 1 star, 2 stars, 3 stars, 4 stars
and 5 stars, and we assume the distance between the star ratings is the same. That
means, the perceived difference between 1 star and 2 stars is the same as the perceived
distance between 4 stars and 5 stars. Since for the algorithms the number of elements
in D does not matter, it is easy to use a different rating scale, for example a 7 point
rating scale, or introduce half star ratings in the 5 star rating scale. We chose to
use the 5 star rating scale, because it has become the most used rating scale on the
Web, and people are likely familiar with it, for example from Amazon.com, iTunes, or

72

5

5.3 Initialization of the TS-ORS Algorithms with Default Parameters

Epinions.1

For T , we chose T = {trust , distrust}, since most other rating sites also refrain from
using more complicated trust scores. In case a more detailed trust scale is needed, the
TS-ORS algorithms can be extended as detailed in Section 4.5.

The rating and trust functions R and W are realized as database tables which store
the relevant data.

5.3 Initialization of the TS-ORS Algorithms with Default
Parameters

The algorithms presented in Chapter 4 are highly customizable because they contain
many parameters that can be changed to achieve different results. We are aware
that providing highly customizable algorithms with many different parameters can
confuse users, since knowing which parameter has which effect on the result is not
trivial. It is important to note that many parameters have to be chosen only once
when instantiating the system, and thereafter are normally not changed. Moreover,
providing reasonable default values allows users to interact with the system without
providing their own values, while still enabling expert users to take full advantage of
the flexibility of the system.

In the following we explain the parameters and provide default values we use for
Cupboard:

• Parameter d from Equation 4.1 defines how big the minimal GlobalTrustRank of
each user is. The parameter was introduced in the original PageRank algorithm
to represent the probability that a surfer would randomly jump to another page,
not following the link structure. The parameter is important, since it ensures
that trust sinks cannot acquire all the trust. Based on the best practices reported
by (Page et al., 1998), we also use d = 0.85 as default, since it ensures a fast
convergence of ranks.

• Parameters β1, β2, β3, β4 from Algorithm 2 are used to compute the propagation
matrix C. Each parameter is the weight for one of the four basic propagation
types (see Table 4.1). β1 weighs direct propagation, β2 co-citation, β3 transpose
trust, and β4 trust coupling. Based on the results of the user study in (Guha et
al., 2004) we also use β1 = 0.4, β2 = 0.4, β3 = 0.1, β4 = 0.1 in Cupboard.

• Parameter γ from Algorithm 2 is the decay factor for trust. The lower γ is, the
more trust is lost with each propagation step. Also based on (Guha et al., 2004)
we use γ = 0.9.

1http://www.epinions.com, last checked on 24.11.2010

73

http://www.epinions.com

Chapter 5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations

• Parameter K from Algorithm 2 sets the number of propagation steps. The
higher K is, the more steps trust is propagated in the Web of Trust. For K it is
important to note that each increase of K leads to at least 2 more matrix multi-
plications, making it cost intensive to set K too high. If it is set too low, on the
other hand, the trust matrix might still be sparse. Also the decay factor has to
be considered when choosing K. For large K, the impact of the last propagation
steps is diminished considerably by γk. In Cupboard, we decided to propagate
trust 7 steps (K = 7 based on the idea of 6 degrees of separation (Milgram,
1967)).

• Parameter α from Algorithms 3 and 4 defines how GlobalTrustRank can be
combined with GlobalDistrustRank to compute the GlobalCombinedRank . The
bigger α is, the more emphasis is put on GlobalTrustRank . In case that α = 1,
GlobalDistrustRank is discarded completely, while for α = 0, GlobalTrustRank is
not taken into account. For users who do not specify this value, we use α = 0.7
as default value.

• With parameter N from Algorithm 5 the user can choose on how many of the
top-N-ranked reviews per aspect the overall rating should be based. In case there
are few reviews in the system, or we know that there are only very few of good
quality, it is advisable to set N = 1, that is, only taking the top review for each
aspect into account. In Cupboard we set N = 1 if the user does not specify N .

• With parameter ν from Algorithm 5 the user can choose how the top-N-ranked
ratings should be combined towards an overall rating. The closer ν is to 0, the
more emphasis is put on the top-ranked rating, while ν = 1 computes a linear
combination. In Cupboard we set the value to ν = 0.80 if not specified differently,
even though the default parameter N = 1 would not require combining reviews.
Nevertheless we provide a default value, since the user might provide a different
N value which would then require a value for ν.

• With parameter µk from Algorithm 5, each ontology aspect can be given a weight.
The weights for the different aspects are an important means by which the user
can personalize the algorithm. Depending on the use case, a user might want to
only focus on reusability, leaving the other aspects aside. This can be achieved
by setting the respective µk = 1. Also any other weighting of aspects can be
realized by choosing adequate values for µk. In Cupboard, in case a user does
not specify values for µk, we assume that all µk are equal, i.e., the user does not
put more importance on a special ontology aspect. We thus set µk = 1/|X| as
the default value.

74

5

5.4 Facilitating Ontology Reuse using TS-ORS

5.4 Facilitating Ontology Reuse using TS-ORS

As laid out in Section 2.4, the common ontology reuse process consists of the steps on-
tology discovery, ontology selection, and ontology integration. Furthermore we stated
that the ontology discovery and ontology integration phase are decently covered by
ontology search engines and ontology engineering environments.

The main problem of current tools for ontology selection is that they often try to
compute the quality or suitability for a task automatically, since this is the only way to
scale up to millions of ontologies. The methods used can best be described as heuristics
and metrics, but they can never replace the evaluation performed by a human user
(apart from clearly objective measures like statistics on the ontology or correctness
according to a reasoner). Furthermore, most techniques require much computation
that cannot be performed at runtime. In the TS-ORS, we overcome these problems
by relying on the evaluation of human users. Furthermore the data in the system
is stored in databases, and ontologies are not processed at runtime. Since the more
complex computations can be performed offline, the TS-ORS can provide fast ratings
for ontologies at runtime (see Chapter 12). So the ranking of ontologies can be based
on the rating they receive from the most trusted users. We have implemented this
solution within the Cupboard Plugin, which we present in Chapter 9. By providing
help during the most difficult part of the reuse process, the perceived difficulty of the
selection task can be decreased (see Chapter 14). Of course this approach also has the
problem that it relies on human evaluations, which are not always easy to get and do
not scale up the same way automatic evolutions do. In the following section, we show
how automatic evaluation techniques can be integrated into the TS-ORS framework.

5.5 Automatic Evaluation Techniques and the TS-ORS

A key requirement for integrating an automatic evaluation technique into the TS-
ORS is the possibility to interpret the output of the automatic evaluation technique
in terms of the 5 star rating scale. In theory one would expect that such a mapping
is possible, since, in the end, the output of an automatic evaluation technique has
to be interpretable to be useful. If the mapping to the 5 star scale can be provided,
for example by the creator of the evaluation technique, the integration is very easy.
One can create one user per automatic evaluation technique, and run the technique
on all ontologies that qualify for this evaluation method. The output of the evaluation
technique would then be added as the review (the textual explanation of the rating),
and the interpreted output (based on the given mapping to a 5 star rating scale) is
added as the ontology rating. Users can then choose to trust or distrust an evaluation
technique, just as they would trust or distrust human users. For the TS-ORS algo-
rithms, it does not matter if a rating comes from a human user or from an automatic

75

Chapter 5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations

evaluation technique. The rating of an automatic technique is treated the same as
any other rating according to the trust issued by users. This way, the overall rating of
an ontology could be partly based on reviews and ratings from human users, but also
partly on ratings from automatic evaluation techniques. By allowing the integration
of automatic techniques within the TS-ORS, we can ensure that the system can scale
at least as well as the automatic evaluation techniques that are integrated. Because of
the trust information the system has available on the ratings, the TS-ORS has an edge
over regular evaluation techniques. Within the TS-ORS, the best review and rating
can be chosen to compute an overall rating from a number of potential ratings and
reviews.

Obviously, finding a mapping for the output of an automatic evaluation technique
to the 5 star scale is the most difficult part of the integration. The easiest mapping
can be established in case the output is a number which does not have any relation to
other objects being evaluated. For approaches like (Burton-Jones et al., 2005), where
the input of the automatic evaluation technique is an ontology, and the output a value
that can be normalized to a value between 0 and 1, one can find 5 intervals to represent
the star ratings. One example could be mapping a value between 0 and 0.2 to 1 star,
0.21 to 0.4 to 2 stars and so on, until finally 0.81 to 1 maps to 5 stars. In the end
the mapping has to be chosen in a way that ensures that the equidistance of the star
ratings is preserved.

Another important point is that the results of the automatic evaluation technique
have to be in the system before an actual query is posed to the system. That means,
that the automatic evaluation techniques cannot be applied at runtime.

For automatic evaluation techniques that just provide a ranking of ontologies as
an output, one approach is to determine a ranking of all ontologies, and group the
ontologies into 5 buckets, according to their rank. The top 20% would receive a 5 stars
rating, the next 20% a 4 stars rating and so on, until the bottom 20% would be rated
1 star.

Figure 5.1 provides a depiction of our proposed process. First it has to be deter-
mined which kind of aspects or ontologies can sensibly be evaluated with the automatic
evaluation technique. Then, the technique can be run on all aspects and/or ontologies
for which it can provide sensible results. The results of the automatic evaluation tech-
niques alongside the mapped 5 star rating are then inserted into the TS-ORS. All data
is entered under a user name which is unique to a specific evaluation technique. This
enables a user to know directly which technique was used to provide the automated
rating, and furthermore it facilitates trust management. A user might want to trust a
given evaluation technique globally because it represents exactly the kind of evaluation
needed for the task the ontology is intended for, or, in general, distrust an evaluation
technique that does not provide the desired ratings.

76

5

5.5 Automatic Evaluation Techniques and the TS-ORS

Figure 5.1: A depiction of how automatic evaluation techniques can be integrated
within the TS-ORS.

77

Chapter 5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations

5.6 Exemplary Computation

In order to provide a better understanding on how the algorithms presented in Chap-
ter 4 work, we now present an exemplary calculation. We will give data needed for
each algorithm in advance and then show the results of the computation as detailed
as necessary. For the sake of space, we will not provide a giant example with all data
needed, but will at some points rely on results from algorithms that we have already
discussed, but that were run again on additional data. For example, the computation
of the trust ranks and trust matrices has to be performed for each onxk combination,
but we will only show the computation for one combination and then rely on the
results from running the algorithms for the rest of the combinations.

5.6.1 Data used for Computations

For the following examples, let us assume we have the following trust matrix and
distrust matrix extracted from our trust data for combination o1x1:

To1x1 =

1 1 0 0 1
0 1 1 0 0
1 0 1 0 0
1 0 0 1 0
0 0 1 0 1

Do1x1 =

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

5.6.2 Computation of GlobalTrustRank and GlobalDistrustRank

We start the computation of GlobalTrustRank(GTR) defined in Equation 4.1 with
d = 0.85. All ranks are initialized with 1.

GTR0 =

1
1
1
1
1

GTR1 =

(1− 0.85) + 0.85 ∗ (1/3 + 1/2 + 1/2)

(1− 0.85) + 0.85 ∗ (1/3 + 1/2)
(1− 0.85) + 0.85 ∗ (1/2 + 1/2 + 1/2)

(1− 0.85) + 0.85 ∗ (1/2)
(1− 0.85) + 0.85 ∗ (1/3 + 1/2)

 =

1.283
0.858
1.425
0.575
0.858

GTR2 =

(1− 0.85) + 0.85 ∗ (1.283/3 + 1.425/2 + 0.575/2)

(1− 0.85) + 0.85 ∗ (1.283/3 + 0.858/2)
(1− 0.85) + 0.85 ∗ (0.858/2 + 1.425/2 + 0.858/2)

(1− 0.85) + 0.85 ∗ (0.575/2)
(1− 0.85) + 0.85 ∗ (1.283/3 + 0.858/2)

 =

1.364
0.878
1.485
0.394
0.878

78

5

5.6 Exemplary Computation

GTR3 =

(1− 0.85) + 0.85 ∗ (1.364/3 + 1.485 + 0.394/2)

(1− 0.85) + 0.85 ∗ (1.364/3 + 0.878/2)
(1− 0.85) + 0.85 ∗ (0.878/2 + 1.485/2 + 0.878/2)

(1− 0.85) + 0.85 ∗ (0.394/2)
(1− 0.85) + 0.85 ∗ (1.364/3 + 0.878/2)

 =

1.335
0.910
1.528
0.318
0.910

...

GTR10 =

(1− 0.85) + 0.85 ∗ (1.316/3 + 1.604/2 + 0.261/2)

(1− 0.85) + 0.85 ∗ (1.316/3 + 0.909/2)
(1− 0.85) + 0.85 ∗ (0.909/2 + 1.604/2 + 0.909/2)

(1− 0.85) + 0.85 ∗ (0.261/2)
(1− 0.85) + 0.85 ∗ (1.316/3 + 0.909/2)

 =

1.316
0.909
1.605
0.261
0.909

GTR11 =

(1− 0.85) + 0.85 ∗ (1.316/3 + 1.605/2 + 0.261/2)

(1− 0.85) + 0.85 ∗ (1.316/3 + 0.909/2)
(1− 0.85) + 0.85 ∗ (0.909/2 + 1.605/2 + 0.909/2)

(1− 0.85) + 0.85 ∗ (0.261/2)
(1− 0.85) + 0.85 ∗ (1.316/3 + 0.909/2)

 =

1.316
0.909
1.605
0.261
0.909

After 10 iterations in our example, the GlobalTrustRanks have converged and are

stable, i.e., they do not change with additional iterations. When this state is achieved,
the algorithm can terminate.

Next GlobalDistrustRank(GDR) as defined in Equation 4.2 is computed.

GDR =

0.909/1

0
0
0

0.261/1

 =

0.909

0
0
0

0.261

5.6.3 Computation of Trust Matrix F and Interpretation Matrix I

Then F and I are computed based on Algorithm 2, with β1 = 0.4, β2 = 0.4, β3 = 0.1,
β4 = 0.1, γ = 0.9, K = 7

To1x1 =

1 1 0 0 1
0 1 1 0 0
1 0 1 0 0
1 0 0 1 0
0 0 1 0 1

Tᵀ
o1x1

=

1 0 1 1 0
1 1 0 0 0
0 1 1 0 1
0 0 0 1 0
1 0 0 0 1

79

Chapter 5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations

TᵀTo1x1 =

3 1 1 1 1
1 2 1 0 1
1 1 3 0 1
1 0 0 1 0
1 1 1 0 2

TTᵀ
o1x1

=

3 1 1 1 1
1 2 1 0 1
1 1 2 1 1
1 0 1 2 0
1 1 1 0 2

(T−D)o1x1 =

1 1 0 0 1
−1 1 1 0 0
1 0 1 0 0
1 0 0 1 −1
0 0 1 0 1

Co1x1 =

(0.4 ∗ 1 + 0.4 ∗ 3 + 0.1 ∗ 1 + 0.1 ∗ 3) = 2 · · · = 0.9 0.6 0.6 0.9

(0.4 ∗ 1 + 0.4 ∗ 1 + 0.1 ∗ 1 + 0.1 ∗ 1) = 0.6 · · · = 1.5 0.9 0 0.5
(0.4 ∗ 1 + 0.4 ∗ 1 + 0.1 ∗ 0 + 0.1 ∗ 1) = 0.9 · · · = 0.6 1.9 0.1 0.6
(0.4 ∗ 1 + 0.4 ∗ 1 + 0.1 ∗ 0 + 0.1 ∗ 1) = 0.9 · · · = 0 0.1 1.1 0
(0.4 ∗ 0 + 0.4 ∗ 1 + 0.1 ∗ 1 + 0.1 ∗ 1) = 0.6 · · · = 0.5 0.9 0 1.5

(C · (T−D))o1x1 =

2.300 2.900 2.400 0.600 2.300
0.000 2.100 2.900 0.000 1.100
2.300 1.500 3.100 0.100 1.400
2.100 0.900 0.100 1.100 −0.200
1.000 1.100 2.900 0.000 2.100

C2
o1x1

=

6.160 3.960 4.020 1.920 3.960
3.210 3.580 3.870 0.450 2.580
4.320 3.150 5.240 0.840 3.150
2.880 0.870 0.840 1.760 0.870
3.210 2.580 3.870 0.450 3.580

(C2 · (T−D))o1x1 =

8.140 10.120 11.94 1.92 8.200
3.950 6.790 10.03 0.45 5.340
7.250 7.470 11.54 0.84 6.630
4.610 3.750 2.58 1.76 1.990
4.950 5.790 10.03 0.45 6.340

C3
o1x1

=

22.418 15.876 18.654 6.210 15.876
14.004 11.871 14.868 2.808 10.871
17.892 13.332 18.302 4.040 13.332
9.144 4.836 5.066 3.748 4.836
14.004 10.871 14.868 2.808 11.871

80

5

5.6 Exemplary Computation

(C3 · (T−D))o1x1 =

31.406 38.294 50.406 6.210 32.084
19.809 25.875 37.610 2.808 22.067
26.902 31.224 44.966 4.040 27.184
13.122 13.980 14.738 3.748 10.232
20.809 24.875 37.610 2.808 23.067

C4
o1x1

=

86.265 63.121 78.091 22.147 63.121
57.562 44.766 57.400 12.978 43.766
71.890 53.748 69.911 17.009 53.748
32.024 20.941 24.191 10.116 20.941
57.562 43.766 57.400 12.978 44.766

(C4 · (T−D))o1x1 =

123.383 149.385 204.3324 22.1472 127.238
83.173 102.328 145.933 12.978 88.350
105.062 125.638 177.4066 17.0094 108.629
45.390 52.965 66.0738 10.1158 42.849
84.173 101.328 145.933 12.978 89.350

C5
o1x1

=

338.489 250.734 315.964 83.930 250.734
231.583 175.278 224.575 54.553 174.278
286.506 214.144 274.412 68.836 214.144
120.054 85.219 103.884 32.761 85.219
231.583 174.278 224.575 54.553 175.278

(C5 · (T−D))o1x1 =

487.649 589.223 817.432 83.930 505.293
335.432 406.862 574.131 54.553 351.309
415.610 500.650 702.699 68.836 431.814
171.479 205.272 274.321 32.761 172.511
336.432 405.862 574.131 54.553 352.309

C6
o1x1

=

1337.763 995.687 1263.139 327.013 995.687
924.115 693.226 885.698 221.415 692.226
1138.907 850.789 1085.628 275.064 850.789
465.349 340.816 426.081 118.457 340.816
924.115 692.226 885.698 221.415 693.226

(C6 · (T−D))o1x1 =

1932.229 2333.450 3254.513172 327.012636 2006.438
1338.002 1617.342 2271.151036 221.41548 1394.926
1648.809 1989.696 2787.206444 275.063832 1714.632
669.072 806.165 1107.712164 118.45736 687.708
1339.002 1616.342 2271.151036 221.41548 1395.926

81

Chapter 5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations

C7
o1x1

=

5301.488 3953.244 5027.561 1288.686 3953.244
3675.904 2749.076 3506.345 886.596 2748.076
4523.383 3377.971 4304.964 1094.477 3377.971
1829.762 1356.094 1714.077 452.121 1356.094
3675.904 2748.076 3506.345 886.596 2749.076

(C7 · (T−D))o1x1 =

7664.490 9254.732 12934.049 1288.686 7966.046
5319.770 6424.980 9003.496 886.596 5537.384
6544.852 7901.354 11060.907 1094.477 6806.877
2639.866 3185.856 4426.266 452.121 2733.736
5320.770 6423.980 9003.496 886.596 5538.384

Values fij are then computed by using the decay factor and the results of the previous
propagation steps. For example, f11 = 0.9 ∗ 2.3 + 0.81 ∗ 8.14 + 0.729 ∗ 31.406 + 0.656 ∗
123.383 + 0.590 ∗ 487.649 + 0.531 ∗ 1932.229 + 0.478 ∗ 7664.490 = 5093.229.

Fo1x1 =

5093.229 6151.266 8581.223 860.875 5290.391
3525.778 4266.208 5986.244 584.865 3676.648
4348.526 5244.822 7347.884 725.187 4519.635
1764.439 2122.215 2924.012 310.331 1811.884
3530.474 4261.512 5986.244 584.865 3681.343

For the interpretation of the computed values in F the matrix I is initialized with
the difference of T and D. We explain the so called majority rounding for the first
user. The process starts by computing a sequence. Let us refer to the users in A
as 1, 2, 3, 4, 5, according to their position in the matrices. In our example, the
sequence for user 1 is a(1) = 4, a(2) = 1, a(3) = 5, a(4) = 2, a(5) = 3. So far, the
interpretation of a(2), a(3), a(4) are known to be trust. The interpretation sequence
is thus ?,+,+,+, ?. Because the neighboring entries are trust, the unknown values
are also interpreted as trust. The interpretation then has to be written at the correct
position in the interpretation matrix.

For user 2 the sequence is a(1) = 4, a(2) = 1, a(3) = 5, a(4) = 2, a(5) = 3.
Originally, the interpretation of a(2) is known to be distrust, and a(4), a(5) are known
to be trust. The interpretation sequence thus is ?,−, ?,+,+. Because the closest
neighbor of a(1) is known to be distrust, the interpretation for a(1) is also distrust.
For a(3), there are two neighbors in the sequence, one interpreted as distrust and one
as trust. Since the fij value of a(3) is closer to a(2) which is known to be distrust,
a(3) is also interpreted as distrust.

82

5

5.6 Exemplary Computation

Io1x1 =

1 1 1 1 1
−1 1 1 −1 −1
1 1 1 1 1
1 −1 1 1 −1
1 1 1 1 1

5.6.4 Sorting the Ratings

For Algorithms 3 and 4 we assume that user 1 has rated o1x1 with 1 star, user 2
with 2 stars, user 3 with 3 stars, user 4 with 4 stars, and user 5 with 5 stars. For
the computation, we use α = 0.7. For both algorithms, we first need to compute the
GlobalCombinedRank(GCR).

GlobalCombinedRank(GCR) =

0.7 ∗ 1.316− 0.3 ∗ 0.909

0.7 ∗ 0.909− 0.3 ∗ 0
0.7 ∗ 1.605− 0.3 ∗ 0
0.7 ∗ 0.261− 0.3 ∗ 0

0.7 ∗ 0.909− 0.3 ∗ 0.261

 =

0.6485
0.6363
1.1235
0.1827
0.558

With that, we first compute the sorted ratings using Algorithm 3 for user 2. For

sake of presentation, we will present the triples alongside the rating as a vector with
entries (iij , fij , GCR(aj), R(aj , on, xk)).

Unsorted list for user 2:

−1, 3525.778, 0.6485, 1
1, 4266.208, 0.6363, 2
1, 5986.244, 1.1235, 3
−1, 584.865, 0.1827, 4
−1, 3676.648, 0.558, 5

Sorted list for user 2:

1, 5986.244, 1.1235, 3
1, 4266.208, 0.6363, 2
−1, 3676.648, 0.558, 5
−1, 3525.778, 0.6485, 1
−1, 584.865, 0.1827, 4

The resulting ranking of ratings is 3, 2, 5, 1, 4. When computing the sorted ratings

using Algorithm 4, the order changes:

83

Chapter 5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations

Unsorted list:

0.6485, 1
0.6363, 2
1.1235, 3
0.1827, 4
0.558, 5

Sorted list:

1.1235, 3
0.6485, 1
0.6363, 2
0.558, 5
0.1827, 4

If only global trust can be used, the resulting ranking of ratings is 3, 1, 2, 5, 4.

5.6.5 Computation of an Overall Rating

For the computation of the overall rating, we assume that we compute the result for
user 2, and the ranking of ratings for o1x1 is 3, 2, 5, 1, 4 (as shown above), for o1x2 is
2, 2, 3, 4, 5, for o1x3 is 2, 3, 4, 4, 1, and for o1x4 is 5, 5, 3, 1, 4. We furthermore assume
that for o1x5 no ratings are available, and that the following user parameters are used:
ν = 0.85, µ1 = 2, µ2 = 3, µ3 = 1, µ4 = 0, µ5 = 3, N = 2. The algorithm then iterates
through all aspects from X and computes the rating for each aspect:

Do1x1 := (0.54 ∗ 3 + 0.46 ∗ 2) = 2.54
Do1x2 := (0.54 ∗ 2 + 0.46 ∗ 2) = 2
Do1x3 := (0.54 ∗ 2 + 0.46 ∗ 3) = 2.46
Do1x4 := (0.54 ∗ 5 + 0.46 ∗ 5) = 5
Do1x5 := 0 (because there were no ratings, the value was automatically set to 0)

After the ratings for the different aspects have been computed, the weights µ have to
be computed.

µ1 := 2/(2 + 3 + 1 + 0) = 0.33
µ2 := 3/(2 + 3 + 1 + 0) = 0.5
µ3 := 1/(2 + 3 + 1 + 0) = 0.17
µ4 := 0
µ5 := 0

The overall rating for o1 for user 2 can then be computed as:

Do1 := 0.33 ∗ 2.54 + 0.5 ∗ 2 + 0.17 ∗ 2.46 + 0 ∗ 5 + 0 ∗ 0 = 2.256

84

5

5.6 Exemplary Computation

In this example we have demonstrated how the trust information together with the
rating data can be used to compute a personalized overall rating of an object. In order
to compare multiple objects, the overall rating for all objects is computed, and the
results are then ordered in descending order.

85

Chapter 5 Adaptation of TS-ORS for Ontology Reuse and Example Calculations

86

6

Chapter 6

Evolution of Ratings

A very important and difficult question is how to deal with ratings that have been
made on an object that has since changed, and whether users should be allowed to
change their rating if they change their mind. We discuss how ratings can be changed
or corrected in Section 6.1. Section 6.2 discusses how ratings for evolving objects
should be treated.

6.1 Changing Ratings and Correcting Reviews

Everybody can make mistakes, for example have a typo in the review or click on 4
stars instead of 5 stars when selecting the rating. In case this mishap is discovered
after hitting the send button, it is important that it still can be corrected. Internet
forums normally have some minutes grace period in which a submitted post can be
edited without this edit showing in the system. This feature was included exactly for
the case of correcting typos. An alternative strategy is to allow changes while nobody
has seen the post.

When looking at reviews and ratings in the TS-ORS, some potential problems come
to mind when thinking about the possibility to change made reviews or ratings. Imag-
ine one could, without limits, edit reviews or change ratings, whenever desired. This
would open the door for attacks, where malicious users first gain trust by providing
high quality reviews, and then, later, change the ratings once they gained sufficient
trust statements. The result would be that good objects could be demoted, or bad
objects could be promoted. While it still should be possible to correct typos, changing
the rating, or even the review text too much could have a bad impact on the system.
There are several possible solutions to the problem:

• One allows any change for 2 minutes after the review was originally posted. In
case a reviewer spots a typo in his review, or any other error, this error can be
corrected right away.

• One allows the review text to be changed at any time, but the rating itself not. In
the end, what influences the rating results and computed scores provided by the
algorithms is the rating, and not the review. The review is primarily provided as

87

Chapter 6 Evolution of Ratings

an explanation of the rating to be understood by human users. While it might
be the case that a user would not have trusted a reviewer for an aspect–object
combination if the review explaining the rating would have been different, the
rating value does not change, and therefore the effect of the change is limited.
One could also consider to have all changes to a review text reviewed by dedicated
administrators of the TS-ORS.

• One could think about allowing a reviewer to also update his rating at a later
point, because the perception of what rating is deserved might change. In this
case, users who are somehow connected to the changed rating, either by trust
for the specific aspect–object combination or by meta-trust, should receive a
notification which informs them about the change. Ideally, this notification
should also provide the possibility to change one’s trust towards the changed
rating. If there is a dedicated trust statement for this aspect–object connection,
and not only a meta-trust statement, this trust statement should not be taken
into account until the user has confirmed the change.

• Another possibility would be to only allow deletion of a review, but no change
of the review as such. Also trust statements made for this aspect–object com-
bination would then have to be deleted. In case a new review is made by the
same reviewer covering the same aspect–object combination, each user who is
connected to the reviewer by meta-trust should be notified about the added re-
view. This way, users can check whether they agree with the new review, or
whether they want to distrust the reviewer from now on.

No matter which of the proposed solutions is implemented by the administrator of
a TS-ORS, it is important that the integrity of the TS-ORS is preserved, i.e., that
it is not possible for malicious users to attack the system by first gaining trust and
then using the trust to manipulate rankings and scores by afterwards changing their
ratings.

6.2 Ratings for Objects which Evolve

Depending on the objects in a TS-ORS it might be difficult to see that an object has
changed. Imagine a good restaurant changing the cook. The address and location
stay the same, but the taste and possibly selection of food will likely change. In case
the owner of the restaurant does not publish this change, and notify the provider of a
TS-ORS, the knowledge that the reviewed object has evolved is not represented in the
system. Reviews and ratings made after a change happened might improve or worsen,
but the reviews that were made before the change still exist and are not marked as
such. Especially if the ratings change after an object has evolved, this is problematic.

88

6

6.2 Ratings for Objects which Evolve

6.2.1 Identifying when Objects Change

Luckily, for many objects changes can be easily identified, for example when a book is
published in a different revision, or the identification of an object somehow differs after
the evolution. In our use case of ontology rating, it is very easy to distinguish different
versions of ontologies, for example using hashes of ontologies to see whether something
has changed. Many ontologies come with information on the current version number,
which can be used to identify different versions of the same ontology. To check whether
a change occurred, a crawler can periodically check the URIs of ontologies in the
system and check whether a new version has been made available. For objects where
it cannot be automatically checked whether the object that was rated has evolved, the
users should be able to somehow contact the administrator of the TS-ORS to inform
about a potential change concerning the reviewed object. In our example with the
restaurant changing the chef, in case users inform the administrators of the TS-ORS
about a change, the administrators could create two versions of the object, one before
the change, and one after. When searching for the object, the user can be presented
with a disambiguation page, similar to the ones in Wikipedia,1 showing all versions of
an object. In the case of the restaurant, the date of the personal change could be used
for disambiguation, for example titling one object “Restaurant until 11.05.2010”, and
another “Restaurant after 11.05.2010”. In case there are multiple changes, the dates
can be stated as “from” and “until” in the title.

6.2.2 Managing Reviews and Ratings for Different Versions of an
Object

In case an evolution of the rated object was identified, and several versions of an
object exist in the system, the question is whether reviews for the former version of
an object are also valid for the new version. In theory, an object could change in
many different ways, potentially leaving certain aspects unchanged. Let us take the
restaurant example again. Let us assume, that the object aspects of a restaurant
would include location, food, pricing. In case the cook of the restaurant changes, this
does not influence the location of the restaurant. In theory, ratings that were made
on the location before the change of the cook, should remain valid.

In practice, judging whether some aspects of an object are not affected by the
evolution is very difficult. While it might be possible for TS-ORS administrators to
manually decide which of the former reviews should remain valid for the new version,
this approach does not work in case frequent updates occur. We thus promote a
different approach, which also works for ontology rating. In general, ratings should
always stay with the version of the object that was reviewed. That means, that there
is no automatic propagation of old reviews to the updated object. What should be

1http://en.wikipedia.org/wiki/Wikipedia:Disambiguation, last checked on 24.11.2010

89

http://en.wikipedia.org/wiki/Wikipedia:Disambiguation

Chapter 6 Evolution of Ratings

done, though, is first providing a link to the old reviews, in case users want to decide
for themselves whether an old review can still provide a benefit. Then, all users who
provided reviews for that evolved object are notified by the system, informing them
that there is a new version of an object they reviewed available, and allowing them to
quickly either copy the old review to the current version, or enter an edited version
of the old review for the current version of the object. In case a users confirms that
his rating and review are still valid for the current version of the object, the review is
copied and linked immediately. From that moment on, other users can see it, and it
can be used in computations. This way, we avoid showing reviews to the users that
are not valid for a newer version of an object and also allow reviewers to copy or adapt
their review with as little effort as possible.

Especially for complicated objects like ontologies, there is no other way. While it
might be possible to determine for some aspects automatically if an old review still
holds, the potential for error is too big, so we rely on the reviewers to keep control
over their reviews. Since reviewers who have reviewed the object once have shown
that they are willing to invest some time to publicize their opinion about the object,
it is not unlikely that they will cooperate and update their review, also to stay visible
for other users.

90

7

Chapter 7

Initialization of the TS-ORS for Other
Applications

We have shown how the TS-ORS can be adapted and initialized for ontology rating
and reuse in Chapter 5. Since the model and algorithms we describe in Chapters 3
and 4 are generic in nature, the system can be used in many different contexts and with
a variety of objects. The system can be employed whenever a personalized ranking
of reviews or objects is needed. In this chapter, we first show how a legacy ORS
can be updated to the TS-ORS in Section 7.1, and then show which steps have to
be performed when initializing and installing the TS-ORS for a specific use case in
Section 7.2. The chapter concludes with a discussion on how users can be motivated
to provide ratings in Section 7.3.

7.1 Upgrading an Existing ORS to a TS-ORS

When an ORS exists in a given system, and the plan is to extend it to a TS-ORS,
some design decisions have to be taken. First, it has to be checked whether the objects
in the ORS are of homogeneous or heterogeneous nature. In case the objects are
homogeneous, the case is simpler, because they all share the same aspects. Finding the
right aspects in X also requires consideration, since the aspects will likely not change
afterwards. As a rule of thumb, the most important requirement is that aspects have
to be chosen that are reviewable. Also, the user will have to put a weight on each
of the aspects when computing an overall rating. It is thus important, that the user
can somehow link the different aspects to certain characteristics of an object that are
needed for a given purpose. For example, in order to find a domain ontology, the
user will put much importance and thus a high weight on the aspect domain coverage.
Once the aspects have been chosen, it has to be decided how to handle existing ratings
which cover the complete object. One possibility is to have a special aspect that only
contains legacy ratings on the complete objects, and that users cannot edit or write
to. After it is possible to review aspects of an object, users should not make ratings
on the complete object anymore. Even if users wanted to give an overall rating, it is
preferable that instead they try to think how the complete rating can be decomposed

91

Chapter 7 Initialization of the TS-ORS for Other Applications

to the different aspects. The main benefit from this approach is that while reviewers
have a certain weighting of the different aspects in their head when they give an overall
rating, users might have a different use case requiring a different weighting. If only
an overall rating is available, this is not possible. Still, keeping the legacy overall
ratings is better than starting without any reviews, because until ratings on aspects
are available, the system can provide a ranking based on the legacy ratings.

Apart from that, existing trust connections between users have to changed to overall
meta-trust statements. Once this change has been made, the TS-ORS is ready for
use. In the simplest case, which is keeping the overall ratings as one object aspect,
and converting all trust statements to overall trust statements, the ranking and rating
output of the algorithms would not change. This means the ranking results are still
at least as good as in the ORS. But once the TS-ORS has been introduced, the users
can provide more detailed reviews and more detailed trust statements, enabling the
system to improve its ranking and rating computation with each additional rating or
trust statement made.

Of course, the users also have to be informed about the changes and new possibilities
in the system, ideally with examples and a detailed description on how to use the new
features, and what changes in the user interface have occurred.

The situation is a little bit more complicated if the objects are heterogeneous in
nature, and common aspects they all share cannot be found. In this case, a user
cannot simply search over all objects and specify a weighting for the search. Ideally,
objects can be clustered according to their aspects, meaning that objects that share
the same aspects can later be searched together. In a system, there has to a mechanism
which can keep track which aspects belong to which objects, and during the execution
of the algorithms, only onxk combinations for which xk is an aspect of on have to be
taken into account.

7.2 Initializing a TS-ORS from scratch

When choosing to use a TS-ORS for one’s application, it is also important to think
about the kinds of objects that will be rated in the system, and the best object aspects
they can be reviewed on. Once this crucial decision has been made, the user interface
has to ensure that all functionality of the system is easily accessible and usable. We
present an example of such a user interface in Chapter 9 which covers the Cupboard
system, which uses the TS-ORS for ontology rating. Once the TS-ORS has been
integrated into the application, it is time to fill the system with objects. Depending
on the type of object that is going to be rated in the TS-ORS, either catalogues or
lists exist that can be used for reference, or one can start by filling in some objects
and letting users add the rest. In general it is a good idea to allow users to add
objects to the system. With respect to the reviews, if possible it is a good idea to

92

7

7.3 Incentives to Review and Rate Objects in the TS-ORS

write some reviews, and ask other people to also review objects, so the system gets
filled with some data. If possible and permitted, data from other rating systems can
be imported. Since the reviews and ratings are a crucial part in any rating systems, it
has to be made sure that incentives exist for user to write reviews and use the system.
We provide some possibilities in the next section.

7.3 Incentives to Review and Rate Objects in the
TS-ORS

Given that many rating systems give no monetary or material benefit for contributing
to their system by means of reviews and ratings, some might find it surprising to still
find many reviews, for example for products on Amazon.com. The survey provided
in (Jøsang et al., 2007) presents a detailed overview of different websites soliciting user
ratings and feedback, and also explains which incentives users have to participate. The
reasons differ based on the nature of the systems. In systems like Ebay, where it pays
off to have a good reputation as a seller, the incentive is to maintain that reputation
by continuing to provide good service and also providing ratings on buyers, which
in turn will rate the seller. On e-commerce sites like Amazon.com, it pays to be in
the top list of reviewers, because these are interesting for the industry and might be
provided with free product samples from time to time. Some do not need financial or
material rewards, but are helpful in nature and like to contribute to the community, for
example by providing ratings which help the other users. Some like the competition,
and want to become the number one reviewer, or be the most trusted reviewer. While
motivations for users to contribute can differ and are still not fully understood, the key
message is that in general user reviewing works; people do provide ratings in online
rating systems.

Concrete incentives for providing ratings within the TS-ORS can be:

• Monetary or material. Especially in the beginning, when ratings are needed to
get the momentum of a website going, it might be wise to invest part of the
budget to either hire professionals to review the objects, or develop an incentive
mechanism where users get paid if other users found their reviews helpful and
trust them. In case there is real business value in having the ratings available,
companies might be willing to sponsor or pay money to keep the incentives alive
and the ratings coming in.

• Reputation or immaterial. One can have statistics in the system, for example
who provided the most reviews, who provided the most helpful reviews, who is
the most trusted reviewer and so on. One can also give out a title like “reviewer
of the month”. Smith proposes to count ontology reviews as journal publications,
thus providing an incentive for academics to invest their time to evaluate and

93

Chapter 7 Initialization of the TS-ORS for Other Applications

review ontologies (Smith, 2008). Having the reputation to be a good reviewer
can also lead to good opportunities in the industry, like being offered a job as
ontology engineer or product tester.

• Entertainment. Luis von Ahn describes ways to turn tasks into games, thus
making them more interesting for the participants (von Ahn, 2006). Depending
on the type of object that should be rated, adapting the idea of product rating
as a game is possible to some extent, even though this is not one of the typical
tasks to be turned into a game. For some people it might even become a free
time activity to review objects as a way to enjoy themselves and relax.

• Altruism. Some reviewers contribute with ratings because they want to help
other users in making the same decisions. Also, once a user is able to provide
a review of an object, the review only has to be written. The harder part of
evaluating the object is usually done at this point.

Which kind of incentive works for a TS-ORS will always depend on the kind of
object that is reviewed and the kind of resources available to promote the system. For
ontology rating, the number of people available that are qualified to provide reviews
is smaller than for reviewing microwave food. Also the number of people interested
in ontologies is much smaller than for other domains. But, the advantage of having
ontology ratings available is high in the industrial context. In case users are not
willing to provide reviews, a combination of reputation or material incentives can be
employed.

94

Part III

Implementation and Application

8 Implementation of the Topic-Specific Trust Open Rating System 97

9 Cupboard and TS-ORS Integration 109

10 The Cupboard NeOn Toolkit Plugin 119

11 Exporting Ratings and Trust Information 125

TABLE OF CONTENTS

96

8

Chapter 8

Implementation of the Topic-Specific
Trust Open Rating System

In this chapter, we first lay out the design decisions made in the process of implement-
ing the TS-ORS in Section 8.1. We then present the architecture in Section 8.2 and
the UML-Diagrams of our system in Section 8.3. The chapter concludes with a Sec-
tion on optimization techniques we applied to improve performance (see Section 8.4).
Parts of this chapter are based on (Lewen, 2009b; Lewen, 2009c; Sabou et al., 2009;
Angeletou et al., 2010).

8.1 Design Decisions

We implemented the TS-ORS for integration with the Cupboard system (see Chap-
ter 9). The required functionality was storing and serving TS-ORS related data (such
as ratings, trust, or meta-trust) and providing review rankings or overall ratings. Our
implementation is an instantiation of the model presented in Chapter 3 and the algo-
rithms presented in Chapter 4. We did not implement the possible extensions, since
they were not needed within Cupboard.

When interacting with external applications, the TS-ORS takes care of mediating
between external and internal identifiers. It takes as input URIs as identifiers for on-
tologies and is flexible in terms of user identification. It has its own MySQL database to
store reviews, users, ontologies and trust information. The application is implemented
in JAVA, and servlets are used for interacting within Cupboard and with other pro-
grams. At the moment, REST services are offered that provide the results either as
JSON, XML or HTML, based on content negotiation using the HTTP header.

8.2 Architecture

The architecture of the TS-ORS consists of a java application which connects to a
MySQL database. We have optimized both the database schemata and the program
code to achieve good performance at runtime (see Chapter 12 Section 12.2).

97

Chapter 8 Implementation of the Topic-Specific Trust Open Rating System

8.2.1 Database Schema

One of the foremost concerns when using databases in an application is developing a
database schema that ensures data integrity but does not sacrifice performance. In
order to optimize performance, enough memory has to be allocated for the database to
allow for fast processing and also caching results. In our case we decided to store the
most basic information, like users, ontology aspects, ontologies, ratings, trust between
users, and meta-trust in dedicated tables (see Fig. 8.1). We use MySQL as a database
with MyISAM storage engine for better performance. The different tables used to
store and access the data are:

Figure 8.1: The TS-ORS Database Schema.

• Users: This table stores the user data. Each user can be uniquely identified
with the user ID (uid).

98

8

8.2 Architecture

• Ontologies: This table stores the names and the URIs of ontologies in the
system. Each ontology can be uniquely identified with the ontology ID (oid).

• Properties: This table stores aspects (also called properties) of ontologies. Each
aspect can be uniquely identified with the aspect ID (xid).

• Rating: This table stores the rating data from R. For each rating, the user,
ontology, aspect are stored together with the textual review (dext) and the rating
(dstar). Each rating is uniquely identified by the rating ID (rid).

• Trust: This table stores the trust information from W . Each trust statement
is uniquely identified by the trust ID (tid). Trust and distrust are stored in
different columns.

• Metatrust: This table stores all meta-trust statements. Each meta-trust state-
ment is uniquely identified by the meta-trust ID (mtid). We allow the three
meta-trust statements WX ,WO,WOX within our TS-ORS implementation (see
Table 3.1).

• Runtimetemp: This table is only available after the trust computations have
been performed at least one time, since it is the result of renaming a table used
during the computation. During the initial computation of the TrustRank and
DistrustRank (which are stored in globaltrust), and the local trust matrix F and
interpretation matrix I (which are stored in localtrust), a table called temp is
created. The table temp is the result of joining the trust and rating tables and
adding database indices. The table is used to store the materialized meta-trust
and constantly queried during the trust computations. After the computation
has been completed, the temp table is renamed to runtimetemp. When a new
round of computations is triggered, the system can continue to work with the
runtimetemp table while running the computations on the temp table.

• Globaltrust: This table stores the TrustRank and DistrustRank of users for
a given oid , xid combination. To improve runtime-performance, also the rating
dstar and rating ID rid of a review are stored in this table. During the initial
computation, a table named tempglobaltrust with an identical database schema is
used, which is renamed to globaltrust once the computations are complete. The
distinguishing between table that is used at runtime and a temporary table that
is used during computations is necessary to ensure that the system can continue
to work while the trust is re-computed.

• Localtrust: This tables stores the local trust matrix F and interpretation ma-
trix I, which are the result of the local trust computation. To improve runtime-
performance, also the rating dstar and rating ID rid of a review are stored in

99

Chapter 8 Implementation of the Topic-Specific Trust Open Rating System

this table. During the initial computation, a table named templocaltrust with
an identical database schema is used, which is renamed to localtrust once the
computations are complete.

8.3 UML-Diagram

We partitioned the functionality into methods belonging to one of several classes. UML
class diagrams of the classes and methods can be found in Figures 8.2, 8.3, 8.4, 8.5.
We now describe the functionality of each class and important methods.

• Metatrust: This class contains methods that are needed to set and retrieve
meta-trust statements. The method setEigentrust is used to ensure that every
reviewer trusts himself. The propagateMetaTrustandDistrust method is responsi-
ble for materializing the meta-trust statements. A complete UML class diagram
can be found in Figure 8.2.

• Computations: This class contains the methods that compute TrustRank ,
DistrustRank , and the local trust matrix F with its interpretation matrix I. It
furthermore contains methods responsible for retrieving the ranking of reviews,
and for computing the overall ratings of an ontology. Methods that contain
the string “global” are used when the user is unknown, otherwise the “local”
methods are used. Methods that carry the string “update” in their name work
on the tables that are used at runtime, while the normal computations are per-
formed on the temporary tables. A complete UML class diagram can be found
in Figure 8.2.

• Matrix (JAMA): This class is an extension of the matrix class from the JAMA
matrix package.1 We have extended the code to allow a multi-threaded execution
of the operations. Methods that have the integer numThreads as parameter have
been extended and can be run on multiple threads. The number of threads can
be specified using the numThread parameter. A complete UML class diagram
can be found in Figure 8.2.

• DBConnection: This class contains methods used to establish a database con-
nection from within the java program. For improved performance, we use the
nanopool2 connection pool. The connection itself is created using the MySQL
Java connector. A complete UML class diagram can be found in Figure 8.3.

• DBQuery: This class contains the method used to pose a query against the
database and retrieve the results. A complete UML class diagram can be found
in Figure 8.3.

1http://math.nist.gov/javanumerics/jama/, last checked on 24.11.2010
2http://www.ohloh.net/p/nanopool, last checked on 24.11.2010

100

http://math.nist.gov/javanumerics/jama/
http://www.ohloh.net/p/nanopool

8

8.3 UML-Diagram

• DBManipulateData: This class contains methods used to insert data into the
database, or update existing data within the database. A complete UML class
diagram can be found in Figure 8.3.

• DBInteraction: This class contains methods that provide access to the database
for methods from other classes. Most methods encapsulate SQL queries or up-
date statements and simply fill in their parameters into SQL statements. Among
other tasks, the class contains the methods used to read the trust and distrust
matrices from the database, and also to store results. A complete UML class
diagram can be found in Figure 8.3.

• Setup: This class contains methods that can be used to create and delete
database tables and indices. A complete UML class diagram can be found in
Figure 8.4.

• Settings: This class contains variables that are read by different methods. It
is the main place to change settings of the application. A complete UML class
diagram can be found in Figure 8.4.

• CachedObjects: This class contains objects that cache information from the
database, so that database interactions can be minimized. A complete UML
class diagram can be found in Figure 8.5.

• Caching: This class contains methods that are responsible for caching data
that is likely retrieved at runtime. If a user logs in, for example, data he might
request can be cached to improve performance. A complete UML class diagram
can be found in Figure 8.5.

• Updates: This class contains methods that are used to alter and refresh data
in the system. The method recomputeEverything is the main method that re-
freshes runtime data based on the information of the database tables. Since not
all changes can be directly computed at runtime, it is important to call this
method at fixed points in time (when exactly can be based on size of the system
and frequency of changes). For example, while a regular trust statement only
affects one ontology–aspect combination, for which the trust data can be quickly
recomputed at runtime, a global meta-trust statement affects all ontology–aspect
combination. In case such a meta-trust statement is made, it is stored in the
database, but the change is not visible in the application until the runtime data
has been recomputed. A complete UML class diagram can be found in Figure 8.5.

101

Chapter 8 Implementation of the Topic-Specific Trust Open Rating System

+ computeFandTrustRanks (oid : int, xid : int)
+ updateComputeFandTrustRanks (oid : int, xid : int)
+ getOntologyRatingBasedOnGlobalTopNReviews (oid : int, alpha : double, N : int, muXid : double, nu : double) : double
+ getGlobalTopNStarratings (oid : int, xid : int, alpha : double, N : int) : int
+ getTopNStarratings (oid : int, xid : int, uid : int, alpha : double, N : int) : ArrayList
+ getOntologyRatingBasedOnTopNReviews (oid : int, uid : int, alpha : double, N : int, muXid : double, nu : double) : double
+ returnGlobalReviews (oid : int, xid : int, alpha : double) : String
+ returnLocalReviews (oid : int, xid : int, uid : int, alpha : double) : String
+ getTrustStatforReview (rid : int) : int

Computations

+ constructWithCopy (A : double) : Matrix
+ copy () : Matrix
+ copy (numThreads : int) : Matrix
+ clone () : Object
+ clone (numThreads : int) : Object
+ getArray () : double
+ getArrayCopy () : double
+ getRowDimension () : int
+ getColumnDimension () : int
+ get (i : int, j : int) : double
+ getMatrix (i0 : int, i1 : int, j0 : int, j1 : int) : Matrix
+ getMatrix (r : int, c : int) : Matrix
+ getMatrix (i0 : int, i1 : int, c : int) : Matrix
+ getMatrix (r : int, j0 : int, j1 : int) : Matrix
+ set (i : int, j : int, s : double)
+ setMatrix (i0 : int, i1 : int, j0 : int, j1 : int, X : Matrix)
+ setMatrix (r : int, c : int, X : Matrix)
+ setMatrix (r : int, j0 : int, j1 : int, X : Matrix)
+ setMatrix (i0 : int, i1 : int, c : int, X : Matrix)
+ transpose () : Matrix
+ transpose (numThreads : int) : Matrix
+ plus (B : Matrix) : Matrix
+ plusEquals (B : Matrix) : Matrix
+ minus (B : Matrix) : Matrix
+ minusEquals (B : Matrix) : Matrix
+ arrayTimes (B : Matrix) : Matrix
+ arrayTimesEquals (B : Matrix) : Matrix
+ times (s : double) : Matrix
+ timesEquals (s : double) : Matrix
+ times (B : Matrix) : Matrix
+ plusEquals (B : Matrix, numThreads : int) : Matrix
+ plus (B : Matrix, numThreads : int) : Matrix
+ minus (B : Matrix, numThreads : int) : Matrix
+ minusEquals (B : Matrix, numThreads : int) : Matrix
+ timesEquals (s : double, numThreads : int) : Matrix
+ times (s : double, numThreads : int) : Matrix
+ constructWithCopy (A : double, numThreads : int) : Matrix
+ timesMultcore (B : Matrix, numThreads : int) : Matrix
- checkMatrixDimensions (B : Matrix)

- serialVersionUID :long -A :double -m :int -n :int
Matrix (JAMA)

+ setMetaTrustOrDistrustOID (uid1 : int, uid2 : int, oid : int, ontology : int)
+ getMetaTrustorDistrustOID (uid1 : int, uid2 : int, oid : int) : int
+ setMetaTrustorDistrustXID (uid1 : int, uid2 : int, xid : int, property : int)
+ setEigentrust ()
+ getMetaTrustorDistrustXID (uid1 : int, uid2 : int, xid : int) : int
+ setMetaTrustorDistrustUID (uid1 : int, uid2 : int, global : int)
+ getMetaTrustorDistrustUID (uid1 : int, uid2 : int) : int
+ propagateMetaTrustandDistrust ()
+ t1empty () : boolean

Metatrust

Figure 8.2: UML class diagram of classes needed for computation and meta-trust prop-
agation.

102

8

8.3 UML-Diagram

+ query (sql : String) : ResultSet

+ stmt :Statement
+ con :Connection
+ dsrc :DataSource

DBQuery

+ getXIDs () : int
+ getRIDs () : int
+ getUIDs () : int
+ getOIDs () : int
+ getNumberOfUsersfromUsers () : int
+ getNumberOfRatingsfromRating () : int
+ getOptimizedTrustandDistrustMatrix (oid : int, xid : int)
+ updateGetOptimizedTrustandDistrustMatrix (oid : int, xid : int)
+ getEmptyMatrix (size : int) : double
+ materializeTempDatabase ()
+ initializeTempGlobaltrustDatabase ()
+ initializeTempLocaltrustDatabase ()
+ optimizedFlushGlobalTrustRanksToDatabase (oid : int, xid : int, trust : double, distrust : double)
+ updateOptimizedFlushGlobalTrustRanksToDatabase (oid : int, xid : int, trust : double, distrust : double)
+ getTrustorDistrust (uid2 : int, rid : int) : int
+ addTrustorDistrust (uid1 : int, rid : int, trust : int, distrust : int)
+ getRid (uid : int, oid : int, xid : int) : int
+ getUidfromOpenID (openID : String) : int
+ getOidfromURI (uri : String) : int
+ getNumberConnectedUsers (oid : int, xid : int) : int
+ updateGetNumberConnectedUsers (oid : int, xid : int) : int
+ mapConnectedUsers (oid : int, xid : int, n : int)
+ updateMapConnectedUsers (oid : int, xid : int, n : int)
+ isEmptyTempTrust (rid : int, uid1 : int) : boolean
+ initializeTables ()
+ loadOpenIDsFromDatabase () : String
+ loadReviewsFromDatabase () : String
+ addReview (uid : int, oid : int, xid : int, dext : String, dstar : int)
+ addUser (username : String, password : String, firstname : String, lastname : String, email : String)
+ addUser (openId : String)
+ addOntology (uri : String, name : String)
+ addOntology (uri : String)
+ getOntologyID (uri : String) : int
+ existsTrustOrDistrust (uid : int, rid : int) : boolean

+ TrustTemp : double
+ DistrustTemp : double
+ rid :int
+ dstar :int
+ fromUID : Hashtable
+ toUID : Hashtable

DBInteraction

+ get_DataSource_Obj () : DataSource
- createDataSource () : MysqlConnectionPoolDataSource
+ get_Object () : DBConnection

+ pds :DataSource
DBConnection

+ insert (sql : String) : boolean
+ update (sql : String) : boolean

+ stmt :Statement
+ con :Connection
+ dsrc :DataSource
+ tmp : tsors.DBConnection

DBManipulateData

Figure 8.3: UML class diagram of classes needed for database interaction.

103

Chapter 8 Implementation of the Topic-Specific Trust Open Rating System

+ c1 : double
+ c2 : double
+ c3 : double
+ c4 : double
+ gamma :double
+ k :int
+ d :double
+ maxiterations :int
+ maxerrorTrustRank :double
+ DBName :String
+ redistributeWeightsWhenReviewsAreMissing : boolean
+ noThreadsUsedforComputations :int
+ maxConnections :int
+ CacheMuXid : double
+ CacheAlpha :double
+ CacheN : int
+ CacheNu :double
+ maxStatementSize :int

Settings

+ createTabletemplocaltrust ()
+ dropTabletemplocaltrust ()
+ dropTabletempglobaltrust ()
+ createTabletempglobaltrust ()
+ addIndextempglobaltrust ()
+ addIndexTempLocaltrust ()
+ dropTableglobaltrust ()
+ createTableusers ()
+ dropTableusers ()
+ createTableontologies ()
+ dropTableontologies ()
+ createTableproperties ()
+ dropTableproperties ()
+ createTablerating ()
+ addIndexrating ()
+ dropTablerating ()
+ createTabletrust ()
+ addIndextrust ()
+ dropTabletrust ()
+ createTablemetatrust ()
+ addIndexMetatrust ()
+ dropTablemetatrust ()

Setup

Figure 8.4: UML class diagram of classes needed for initializing the TS-ORS and stor-
ing settings.

104

8

8.3 UML-Diagram

+ updateReview (oid : int, xid : int, uid : int, dstar : int, text : String)
+ updateReview (oid : int, xid : int, uid : int, dstar : int)
+ updateReview (oid : int, xid : int, uid : int, text : String)
+ updateReview (rid : int, dstar : int, text : String)
+ updateReview (rid : int, text : String)
+ updateReview (rid : int, dstar : int)
+ updateDstarInTemp (rid : int, dstar : int)
+ updateDstarInTemp (oid : int, xid : int, uid : int, dstar : int)
+ updateTrustComputations (oid : int, xid : int)
+ updateTrustOrDistrust (uid1 : int, uid2 : int, oid : int, xid : int, trust : int, distrust : int)
+ updateTrustOrDistrust (uid1 : int, rid : int, trust : int, distrust : int)
+ updateaddTrustOrDistrust (uid1 : int, uid2 : int, oid : int, xid : int, trust : int, distrust : int)
+ updateaddTrustOrDistrust (uid1 : int, rid : int, trust : int, distrust : int)
+ updateAddReview (uid : int, oid : int, xid : int, dext : String, dstar : int)
+ updateCachedUsernames ()
+ updateCachedReviews ()
+ recomputeEverything ()
+ switchtables ()
+ updateUIDaddUser (uid : int, username : String, password : String, firstname : String, lastname : String, email : String)
+ updateUIDaddUser (uid : int, openId : String)
+ deleteUser (uid : int)
+ deleteReview (rid : int)
+ deleteOntology (oid : int) + deleteFromMetatrustGlobal (uid1 : int, uid2 : int)
+ deleteFromMetatrustOntology (uid1 : int, uid2 : int, oid : int)
+ deleteFromMetatrustProperty (uid1 : int, uid2 : int, xid : int)

Updates

+ cacheOntologyGlobal (oid : int)
+ cacheOntologyReviewsGlobal (oid : int)
+ cacheOntologyGlobal (oid : int)
+ cacheOntologyReviewsGlobal (oid: int)
+ cacheOntologyLocal (oid : int, uid : int)
+ cacheOntologyReviewsLocal (oid : int, uid : int)
+ cacheOntologyLocal (oid : int, uid : int)
+ cacheOntologyReviewsLocal (oid : int, uid : int)
+ cacheOntologyLocal (oid : int, uid : int)
+ cacheOntologyReviewsLocal (oid : int, uid : int)
+ cacheOntologyLocal (oid : int, uid : int)
+ cacheOntologyReviewsLocal (oid : int, uid : int)
+ cacheOntologyReviewsLocal (uid : int)
+ cacheAllOntologiesGlobal ()
+ cacheAllOntologyReviewsGlobal ()
+ cacheAllOntologiesLocal ()
+ cacheAllOntologyReviewsLocal ()
+ cacheAllOntologies ()
+ cacheAllReviews ()
+ cacheAll ()

Caching

+ initializeCache ()

+ usernames :String
+ reviews :String

CachedObjects

Figure 8.5: UML class diagram of classes needed for caching results and updating data
in the system.

105

Chapter 8 Implementation of the Topic-Specific Trust Open Rating System

8.4 Employed Optimization Techniques

Over the years, we have run benchmarks to identify bottlenecks in the application and
optimize it further.

8.4.1 Minimizing Database Interaction

One of the main bottlenecks of the application is its database interaction. Since
database access requires hard-disk access (unless the query results are cached), it is
much slower than computations done within the application, which use data from
the main memory. One important technique to minimize the overhead of database
interactions, is not initializing a connection each time access is needed, but to keep a
couple of connections ready at all time. This is achieved using a connection pool. It is
also preferable to collect data that should be written to the database and then make a
large insert, instead of inserting parts of the data regularly. For this reason, whenever
possible we keep data in main memory until enough data is gathered to actually write
to the database. For example, during the computation of the local trust matrix F, the
results are interpreted as trust or distrust row-wise. Instead of writing the result to the
database row-by-row, we wait until all rows have been interpreted before writing the
result to the database. In case the resulting database insert statement would be too big
to be handled correctly by the database, we break it into smaller insert statements.
The same way, when querying data, we try to bundle queries when possible. We
prefer storing the result of a query that will be needed for later computations in main
memory over accessing the database multiple times. Another crucial point is using
database indices to speed up the response time of the database. Finding out which
indices are needed can be achieved by analyzing each SQL statement, for example
using the explain construct of the MySQL language. When the result of the explain
query indicates that no index can be used for a query, it should be checked whether
an index is needed to speed up the results.

Our database optimizations can be summarized as minimizing access to the database,
and maximizing the data transferred on each access, while ensuring that indices are
used whenever possible.

8.4.2 Only Processing Relevant Data

We first analyzed which of the data generated by the computations is really needed in
the database. For example, trust scores for users who have not provided a rating for
an ontology–aspect combination do not have to be stored, since they are never used
for further computation at runtime. We thus check whether a rating exist before we
write the local trust score and its interpretation to the database. We furthermore only
store results that we cannot deduct quickly by another query. This way, we limit the

106

8

8.4 Employed Optimization Techniques

size of the data.
Another observation we made is that users that are not connected to the WOT,

because they have not made a rating for an ontology-aspect combination, or have
not made a trust statement, do not influence the computation of trust scores for the
rest of the users. We thus run the computation only for users for which we can later
deduct new results. In a naive approach, for 100, 000 users, one might initialize the
trust matrix as a 100, 0002 matrix. However, this would not be possible in most
systems due to the memory consumption. Instead, one would look for all users who
are connected to the WOT and then initialize a smaller matrix. Of course, this only
works if there are unconnected users.

8.4.3 Parallelizing Computations

Many of the algorithms we use can be run in a parallelized manner. Java allows to write
applications using multi-threading, enabling the different threads to be distributed
among CPU cores. We have implemented the algorithms to use multi-threading when-
ever possible to achieve a speedup. A performance improvement can be seen in systems
with multi-core processors (see Chapter 12).

Since the computations for each ontology–aspect combination are independent of
each other, they can also be distributed to different machines, thus parallelizing the
computations even further.

8.4.4 Using Fast Hardware

Because our implementation relies on a database, a fast hard-disk can reduce the
runtime of the different algorithms. This, together with a fast multi-core CPU and
sufficient main memory provides a significant speedup compared to less powerful sys-
tems, like laptops. Furthermore, a cluster of servers can be used if extremely fast
computation of trust scores is needed, since then the computation of trust scores can
be performed in parallel on many machines. This, however, will likely only be needed
for big e-commerce sites.

8.4.5 Reviewing the Source Code

Often, there are many ways to implement an algorithm. In order to minimize execution
time, it is advisable to check for edge cases in the code, which might lead to a shortcut
in computation. For example, if the weight for an ontology aspect is set to 0 during the
computation of an overall rating, it is not necessary to retrieve the top-ranked ratings
for that aspect. Finding these shortcuts can help to further improve the runtime of
the application.

107

Chapter 8 Implementation of the Topic-Specific Trust Open Rating System

108

9

Chapter 9

Cupboard and TS-ORS Integration

We build the Cupboard system1 (d’Aquin and Lewen, 2009; d’Aquin et al., 2009)
to tackle the ontology reuse problem. As motivated before, ontology search engines
rarely provide help selecting ontologies from their result set. We argue that one factor
inhibiting ontology reuse is the lack of support for ontology practitioners to find, assess,
and exploit existing ontologies. Furthermore, it is difficult for ontology engineers to
effectively deploy and expose their ontologies for use and reuse. Most ontology search
engines lack mechanisms for assessing ontologies, for providing rich ontology metadata,
or providing alignments between ontologies.

To tackle the problem of providing help for the selection step of ontology reuse, we
combine Watson2 (d’Aquin et al., 2008d) technology with the TS-ORS, allowing users
to review and rate ontologies and the system to use this data for result ranking. We
furthermore include Oyster (Palma et al., 2006), a peer-to-peer ontology sharing sys-
tem which relies on rich metadata for ontologies, using the OMV format (Hartmann et
al., 2005). The alignment server (Euzenat, 2004) is integrated into Cupboard to allow
the creation, management and evaluation of ontology alignments from within Cup-
board. The emphasis of the Cupboard system lies on ontology publishing, sharing and
reuse. Because for many ontology engineers, setting up their own server infrastruc-
ture, generating search indices and setting up SPARQL-endpoints is a cumbersome
task, Cupboard provides a simple solution to these problems. Cupboard does not only
allow users to add their ontologies in a personal ontology space, but actually indexes
them (using the Watson engine), provides a mechanism to link them (using the Align-
ment Server), hosts them and exposes them through APIs and SPARQL. It enables
the ontology engineer to deploy ontologies with minimal effort. Moreover, Cupboard
is designed to be a community tool, helping ontology users and practitioners in finding
and reusing ontologies, through the use of rich ontology metadata (thanks to Oyster
and OMV), and to advanced ontology review mechanisms (using the TS-ORS system).

More detailed information on Cupboard and a user manual can be found in (Lewen
et al., 2009; Lewen et al., 2010).

The chapter starts with an overview on Cupboard in Section 9.1. We then present
1http://cupboard.open.ac.uk/, last checked on 24.11.2010
2http://watson.kmi.open.ac.uk/, last checked on 24.11.2010

109

http://cupboard.open.ac.uk/
http://watson.kmi.open.ac.uk/

Chapter 9 Cupboard and TS-ORS Integration

the Cupboard Architecture in Section 9.2. Section 9.3 explains how different com-
ponents can be integrated with Cupboard, while versioning is covered in Section 9.4.
Parts of this section are based on (Lewen et al., 2009; Lewen et al., 2010; d’Aquin and
Lewen, 2009; d’Aquin et al., 2009).

9.1 Overview

Cupboard differs from classical ontology repository systems since it does not provide
a single space in which ontologies are exposed. On the contrary, it allows each user
to create his own ontology space, containing added or selected ontologies. The main
advantage in relying on the idea of ontology spaces is that each ontology space virtually
implements a complete infrastructure for building semantic applications.

The uploaded ontologies are automatically indexed using the Watson engine. Fur-
thermore, using the Watson APIs or SPARQL, also access to the ontology is provided
using Watson technology. In Cupboard, each ontology space is like a little Watson,
which enables developers to easily build semantic applications using the exposed on-
tologies from Cupboard.

Within an ontology space, the user can link ontologies with alignments. Alignments
can be either downloaded from the Alignment server, if available, or computed locally.

The metadata of ontologies is stored in the OMV format and managed in the Oyster
system. Users can enter metadata themselves, or rely on metadata found online in the
Oyster peer-to-peer system. The metadata can be used for ontology search, as they
provide an additional way to filter the results of a query. Let us assume that a user
wanted to find all ontologies build using a certain methodology. Since the ontology
itself does not carry this information, the only way to find the matching ontologies is
to query the metadata.

Most importantly, Cupboard contains a TS-ORS to handle ontology ratings and
ranking functionality. All users can check the different ontology spaces, and review
ontologies in the spaces. In case an ontology is reviewed in one space, but exists in more
ontology spaces, the review for this ontology becomes visible in all ontology spaces,
regardless of the ontology space in which it was reviewed. Users can also state trust
or distrust towards other users, enabling the TS-ORS to provide them a personalized
ranking of reviews and computation of overall ratings.

A screenshot of an ontology space can be found in Figure 9.1. Figure 9.2 shows the
ratings and reviews for an ontology within Cupboard.

110

9

9.1 Overview

Figure 9.1: A screenshot of an ontology space in Cupboard. Ontologies with some sta-
tistical information, the key concept visualization and rating information
can be seen.

111

Chapter 9 Cupboard and TS-ORS Integration

Figure 9.2: Rating information within Cupboard for an ontology.

112

9

9.2 Architecture

9.2 Architecture

While the different technologies we combined in Cupboard have been described and
implemented before, this is the first application that combines them and exposes this
broader and more comprehensive set of functionalities to ontology engineers and users
alike. The main challenges of such an integration are defining suitable interfaces be-
tween the components, optimizing the performance and generating an intuitive Web
interface. The user experience with the technologies within Cupboard is thus com-
pletely different from using the technologies separately.

The Cupboard architecture can be found in Figure 9.3. The central component
of Cupboard is called the Cupboard Core, which is in charge of orchestrating the
interaction between all components, external applications and users. It relies heavily
on the Watson engine to provide basic functionalities such as storing and indexing
the ontologies, validating them and exposing them to applications using APIs. The
TS-ORS, Oyster, and the Alignment Server each provide specific functionalities to the
system. These functionalities are federated and exposed in a homogeneous way to the
Cupboard Web interface and APIs, through the Cupboard Core.

9.3 Implementation Details and Integration of
Components

As visible in Figure 9.3, the architecture of Cupboard is centered around the “core”
component, to which all the other components are connected. In the current im-
plementation, the components that have been integrated are: Watson, Oyster, the
TS-ORS, Key-Concept Visualization, and the Alignment Server.

9.3.1 The Cupboard Core

The role of the Cupboard Core component is twofold:

• It provides the interfaces to integrate components in the system and to federate
them, in order to offer a complete set of functionalities.

• It provides the interfaces to the external world, in particular user interfaces, to
access the functionalities offered by the other components in a homogeneous way.

As such, the Cupboard Core is the only part of the development of Cupboard which is
entirely new and which does not rely on the reuse of previously existing components. In
the following, whenever we talk about integration of components, this relates to their
implementation within the Cupboard Core, which enables the interaction with the
integrated components. Concretely, the Cupboard Core is implemented as a Java Web

113

Chapter 9 Cupboard and TS-ORS Integration

Cupboard API

Ontology
Indices Alignment Base

Ontology
Metadata
Registry

Review and
Trust

information

Watson
Indexer

Watson
Services

Alignment
Server Oyster TS-ORS

Cupboard Web Interface

Watson Search Interface Watson API

Cupboard Core Component

Align API

OMV (meta)reviewsAlignmentsOntologies Ontologies

Figure 9.3: The Cupboard Architecture.

114

9

9.3 Implementation Details and Integration of Components

application (i.e., a set of servlets, enhanced with Javascript based interface elements).
It provides a set of Graphical User Interfaces (GUIs) for the functions provided by
Cupboard and also the back-end operations. It also provides a complete API to build
applications on top of exposed ontology spaces.

9.3.2 Integration of Watson

The Watson system can be seen as a search engine for the Semantic Web. It supports
users and applications in finding, selecting and (re)using ontologies that are available
online, through search and exploration mechanisms. Its role in Cupboard is to index
the ontologies that are uploaded, in order to provide the same search and exploration
mechanisms available in Watson. Only this time ontologies are not crawled automat-
ically from the Web, but only when uploaded to an ontology space within Cupboard.
As such, the integration is realized by deploying a dedicated Watson engine within
the Cupboard server, comprising both the Watson indexer and the Watson services.
Concretely, this means that Cupboard relies on its own local indices for uploaded
ontologies, which are produced, accessed and exploited through a local (i.e., on the
Cupboard server) instantiation of the Watson engine.

In practice, the Watson engine is then used to provide the following functionalities:

• Retrieving all the ontologies contained in a given ontology space (one of the core
functionalities of Cupboard).

• Analyzing the content of ontologies to automatically extract basic metadata (e.g.,
label, comment, URI, imported ontologies, etc.), which are then passed on to
Oyster.

• Exploring the content of ontologies, by providing navigation functionality to
investigate the relation between ontological entities.

• Searching for semantic content exposed through Cupboard, to find ontologies or
ontological entities to be reused.

In addition, elements of the Watson Web interface are also reused within Cupboard
(e.g., the search interface), and simply re-branded to appear as a homogeneous part
of the Cupboard graphical user interface (GUI).

9.3.3 Integration of Oyster

Oyster is a distributed registry that exploits semantic web techniques in order to pro-
vide a solution for exchanging and re-using ontologies and related entities. As an
ontology registry, it provides services for storage, cataloging, discovery, management,

115

Chapter 9 Cupboard and TS-ORS Integration

and retrieval of ontology metadata definitions. To achieve these goals, Oyster im-
plements the OMV3 metadata standard to describe ontologies and related entities,
supporting advanced searches of the registered objects and providing services to sup-
port the management and evolution of ontologies in distributed environments.

The role of Oyster in Cupboard is the management of OMV metadata for the
ontologies exposed within ontology spaces in order to facilitate their discovery by
supporting metadata-based searches. Hence, the integration is realized by deploying
an Oyster peer within the Cupboard server that is populated by metadata about
every ontology uploaded into the system. Concretely, a local Oyster peer running in
server mode is accessed by the Cupboard system via its API. Consequently, ontologies
exposed within Cupboard also become available to the whole Oyster network.

In practice, it provides the following functionalities:

• Storing OMV metadata for ontologies exposed within ontology spaces.

• Retrieving OMV metadata for displaying ontology details.

• Searching for ontologies using metadata-based restrictions.

• Extracting metadata information from uploaded ontologies that is then comple-
mented with metadata extracted by Watson.

9.3.4 Integration of the TS-ORS

The TS-ORS provides users the possibility to review ontologies within Cupboard. For
each of the aspects of the ontologies, users can provide a 5 star rating and a textual
explanation of their rating.

Users can express their trust or distrust towards other users. Based on the web of
trust, the reviews can be ranked in a user-specific way and also overall ratings of the
ontologies can be computed according to a users needs and preferences.

The role of TS-ORS in Cupboard is to add user-based evaluation to the ontolo-
gies. Without quality information, it is hard for users to judge which ontology is
good enough to be reused in an application or another ontology. Because evaluat-
ing the ontologies can take some time, user like to rely on existing evaluations. The
quality information provided by the community can then be used to order reviews
of the ontologies, and also the ontologies themselves based on user-specific trust and
parameters.

The TS-ORS’s functionality is exposed through servlets, which are called by the
Cupboard core. It can be seen as a REST-like API. The results are provided as
HTML, XML or JSON, based on content negotiation between the Cupboard core and
the TS-ORS (based on the HTTP-request header).

3http://sourceforge.net/projects/omv2/, last checked on 24.11.2010

116

http://sourceforge.net/projects/omv2/

9

9.4 Versioning In Cupboard

In practice, the TS-ORS provides the following functionalities:

• Storing user reviews.

• Exposing user reviews in a personalized (if the user is identifiable) order.

• Calculating overall ratings for ontologies based on their ratings taking into ac-
count user-specific parameters and inter-user trust.

• Managing trust and meta-trust between users.

9.3.5 Integration of the Key Concept Visualization

Using the approach for identifying key concepts in an ontology, through the integration
of cognitive principles with statistical and topological measures (Peroni et al., 2008),
a method was developed to visualize found key concepts. The method takes as input
the ontology and renders the results of the key concept analysis as an image which is
then displayed in the ontology space. The component is integrated via the Cupboard
core.

9.3.6 Integration of the Alignment Server

The users can choose to add and load alignments for ontologies in their Cupboard
space. They can furthermore set alignments as selected. This functionality is for use
with the Cupboard APIs, it does not affect the ontology space as such. The integration
itself is realized via the Cupboard core.

9.4 Versioning In Cupboard

Versioning is an important aspect to be considered in a system like Cupboard, espe-
cially when dealing with changing content that has been reviewed. First, each ontology
in Cupboard is identified internally through a hash-code that ensures that the same
ontology is not indexed more than once. This also ensures that all reviews entered in
one of the ontology spaces can be seen in the rest of the ontology spaces. In addition,
users have the possibility to submit new versions of ontologies already uploaded in
their ontology spaces. The existence of a previous version of an ontology is detected
by comparing the URIs, base namespaces, initial locations and, ultimately, the content
of the ontologies. Once a user has validated the versioning link between the two con-
sidered ontologies, the new version is indexed in the same way as the original version
was, also keeping track of the link between them within the metadata of the ontologies.

This allows the system to always display or provide the latest version of an ontology,
while keeping a complete history of its evolution accessible to the user. In relation with

117

Chapter 9 Cupboard and TS-ORS Integration

this versioning mechanism, an important design decision in the system concerns the
propagation of reviews between versions of the same ontologies. Indeed, user reviews
provided for one version of an ontology might not be valid for a later version, but at
the same time, the effort deployed by the users in reviewing ontologies should not need
to be repeated if the changes introduced in the new version do not affect the quality
of the ontology. Therefore, users can chose to be alerted of the appearance of new
versions of the ontologies they have reviewed. They are then shown the differences
between the versions and can decide to propagate their reviews for the new version or
to modify them to take these changes into account.

118

10

Chapter 10

The Cupboard NeOn Toolkit Plugin

The Cupboard Plugin for the NeOn Toolkit connects the NeOn Toolkit ontology en-
gineering environment with the Cupboard system. The plugin is build on the code
basis of the Watson Plugin for the Neon Toolkit.

We start the chapter by presenting the Watson plugin for the NeOn Toolkit in
Section 10.1. The Cupboard plugin is presented in Section 10.2. We then show how
the functionality of the Cupboard plugin was incorporated in an updated version of
the Watson plugin in Section 10.3.

10.1 Watson Plugin

The Watson plugin for the NeOn Toolkit1 (d’Aquin et al., 2008c) uses the Watson
client API to connect to Watson and enable interaction with Watson from within the
ontology engineering environment. As mentioned in Section 2.4.1, with few steps a
user can search ontologies from within the NeOn Toolkit (see Figure 2.3), and later
browse the results (see Figures 2.4 and 2.5) and integrate them with one click (see
Figure 2.6). As mentioned before, the major shortcoming of the Watson Plugin is
its result ranking, which is based on Lucene, and thus does not mirror the quality
of the ontologies. For that reason, we extended the Watson Plugin to integrate with
Cupboard, displaying ontology ratings alongside the results, and basing the ranking
upon overall rating scores for the ontologies, and not Lucene.

10.2 Cupboard Plugin

The Cupboard plugin for the NeOn Toolkit has a configuration page, where the ontol-
ogy space to which the plugin should connect can be specified (see Figure 10.1). The
plugin itself uses first Lucene to check which ontologies match the query, and then
retrieves the overall ratings for these ontologies from the TS-ORS. The ontologies are
then ranked in the result list according to the overall ratings. The overall rating can
be seen in brackets, while we also display its value in terms of stars. A sample result

1http://watson.kmi.open.ac.uk/editor_plugins.html, last checked on 24.11.2010

119

http://watson.kmi.open.ac.uk/editor_plugins.html

Chapter 10 The Cupboard NeOn Toolkit Plugin

list with the stars and overall ratings can be seen in Figure 10.2. The initial version
of the Cupboard Plugin, which was also used in our user experiment (see Chapter 14)
also provided an additional feature when adding axioms from ontologies in Cupboard.
It allowed the user to import multiple axioms at once by choosing either to add all
super-classes of a class, or to add the whole sub-branch of a class. We thought this
shortcut can save time because some users otherwise keep on navigating the hierarchy
with the plugin to add the remaining super-classes or subclasses one by one.

Figure 10.1: The Preference Panel of the Cupboard NeOn Toolkit Plugin.

10.3 Updated Watson Plugin

The latest version of the Watson Plugin is build as a hybrid plugin, which can either
connect to Watson or to Cupboard. In the preference panel (see Figure 10.3) the user

120

10

10.3 Updated Watson Plugin

Figure 10.2: The Result View of the Cupboard NeOn Toolkit Plugin.

can choose whether to use Watson or Cupboard as a source of ontologies. In case
Cupboard is chosen, the user can further specify whether results should be restricted
to a special ontology space, or all ontology spaces should be searched (which is the
default behavior if no ontology space is provided).

The result view of the updated Watson Plugin (see Figure 10.4) is similar to the
Cupboard Plugin, but does not allow to add more than one axiom at a time. We are
currently still investigating whether this feature should be included in future versions
of the plugin or not. We are working on an extended version allowing bidirectional
communication with Cupboard, meaning ontologies can also be added or reviewed
from within the NeOn Toolkit.

121

Chapter 10 The Cupboard NeOn Toolkit Plugin

Figure 10.3: The Watson Plugin’s Preference Panel.

122

10

10.3 Updated Watson Plugin

Figure 10.4: A result list within the Watson Plugin’s.

123

Chapter 10 The Cupboard NeOn Toolkit Plugin

124

11

Chapter 11

Exporting Ratings and Trust
Information

Since reviews are public in the TS-ORS, they can be crawled by other repositories. To
make crawling unnecessary and to facilitate collaboration between repositories, it is
important that data from the repositories can be exchanged. In order for collaboration
to work it is important that repositories can agree on a format for data exchange. In
this chapter we want to discuss possible ways of exchanging rating and trust infor-
mation between ontology repositories. We start by discussing the importance of user
privacy in Section 11.1. The requirements for the export of data are defined in Sec-
tion 11.2. The chapter concludes with an overview of ontologies for exporting ratings
and trust information in Section 11.3.

11.1 User Privacy

An important aspect to take into account when offering data to other applications is
user privacy. Some of the data in the system is not visible and has been entered only
for internal use. One example is the email address of a user, which normally is not
displayed to avoid email spam. Trust information is also private. Also users should
only see trust statements they made, and not trust statements other users have made.
That means, that if user A trusts user B, this trust statement is visible to user A, but
whether user B trusts another user or A should not be disclosed to user A. User A
should not gain information on who trusts or distrusts him.

Within a system, a verified email address or an openID1 are possible ways to identify
a user. Also, an email address or openID can be the same among multiple repositories,
while the user name could already be taken in another repository. Therefore, when
exchanging review information, the email address or openID can be used to identify a
user. Given that the email address can be considered private information, we suggest
instead using a secure-hash (e.g., SHA-512 (NIST, 2002)) of the email address for
data exchange. While the email address cannot be inferred from the hash, a system

1http://openid.net/developers/specs/, last checked on 24.11.2010

125

http://openid.net/developers/specs/

Chapter 11 Exporting Ratings and Trust Information

also having the email address in the database can compare the hash against hashes of
email addresses in the system. FOAF (Brickley and Miller, 09 August 2010) allows to
specify agents by the sha1sum of their email address, or by openID.

In terms of trust, a logged in user should be allowed to export the trust information
he entered into the system for use within another system. Within the export, users
can be identified using a secure hash of either their email address or openID.

11.2 Requirements for Data Export

If a rating should be exchanged, the minimal data needed is the URI of the ontology,
the name of the aspect of the ontology, the identity of the user who has made the
rating, the rating value and the review explaining the rating.

For the trust export, the identity of the two users affected by the trust statement
have to be known, and the scope of the trust statement (in case of a regular trust
statement the URI of the ontology and the name of the aspect covered by the trust
statement). In case a meta-trust statement is exported, the type of the meta-trust
statement and its scope have to be contained.

11.3 Ontologies for Exporting Ratings and Trust
Information

The rating ontology2 (Longo and Sciuto, 2007) provides a good basis for formalizing
ratings. It provides enough expressivity to serve as a container for reviews from the old
ORS-Model. The rating ontology reuses the FOAF definition of an agent, it is thus
possible to protect user privacy by exclusively using sha1sum hashes of their email
address.

The ontology currently does not allow to add reviews for certain aspects of a re-
source, only for the complete resource. This functionality can easily be added by
extending the rating ontology by adding a class Aspect which has the different aspects
as individuals. It is important to then also link the review to the aspect as well, this
can be done by adding an object property coversAspect with domain Review and range
Aspect .

This small change is sufficient to express TS-ORS ratings using the rating ontology.

2http://purl.org/stuff/rev, last checked on 24.11.2010

126

http://purl.org/stuff/rev

11

11.3 Ontologies for Exporting Ratings and Trust Information

11.3.1 Example Review

Let’s assume we want to export the reviews of Enrico on the AKTPortal ontology from
Cupboard3 (see Figure 9.2) using the extended rating ontology. First, we would create
an individual of type foaf:person with data property assertion accountName Enrico and
an object property assertion mboxsha1sum4 with the sha1 hash of the email address.
Then we would create an instance of http: // www. w3. org/ 2000/ 01/ rdf-schema#
Resource with the URI of the ontology covered by the rating, in our case http:
//kmi-web06.open.ac.uk:8081/cupboard/ontology/enrico/AKTPortal. Then we
could create five instances of http://purl.org/stuff/rev#Review, one for each re-
view (all five aspects are reviewed). Then the reviews have to be filled with data. For
that, for each review an object property assertion reviewer and coversAspect have to
be added. The rating value is then added to the review using a data property asser-
tion rating and the review text can be added using the data property assertion text.
Additionally, the created reviews have to be linked to the ontology. Therefore, for the
AKTPortal ontology, 5 object property assertions has review are created linking to
the reviews.

11.3.2 Trust Exchange

Jennifer Golbeck has created a small trust ontology5 which provides an example of how
trust can be modeled. The information we have to represent in a trust ontology are
the two agents (which we can identify as foaf:person with the mboxsha1sum property
assertion), the rating value and the scope of the trust statement. For that, the type of
trust statement, i.e., W , WO, WX , and WXO have to be linked with a trust statement.
Depending on the signature of the meta-trust statements, the trust assertions also
have to be linked to the URI of the ontology and the aspect they cover. The trust
exchange can be realized as a separate ontology or integrated into the rating ontology.

As we said, a user should have the possibility to retrieve personal trust statements
from the repository after being logged in, for use in other repositories. The export
should not contain information not entered into the system by the user.

11.3.3 Exchange Between Ontology Repositories

While it is not necessary to use ontologies to exchange data, they can provide a schema
that repositories can agree upon. When relying on the schema, data can be exchanged
between ontology repositories.

3http://kmi-web06.open.ac.uk:8081/cupboard/fullreviews?ontouri=http://kmi-web06.open.

ac.uk:8081/cupboard/ontology/enrico/AKTPortal, last checked on 24.11.2010
4The correct value here would be 28a0f82609671f47d811e6bee865afb23abfb8db
5http://trust.mindswap.org/trustOnt.shtml, last checked on 24.11.2010

127

http://www.w3.org/2000/01/rdf-schema#Resource
http://www.w3.org/2000/01/rdf-schema#Resource
http://kmi-web06.open.ac.uk:8081/cupboard/ontology/enrico/AKTPortal
http://kmi-web06.open.ac.uk:8081/cupboard/ontology/enrico/AKTPortal
http://purl.org/stuff/rev#Review
http://kmi-web06.open.ac.uk:8081/cupboard/fullreviews?ontouri=http://kmi-web06.open.ac.uk:8081/cupboard/ontology/enrico/AKTPortal
http://kmi-web06.open.ac.uk:8081/cupboard/fullreviews?ontouri=http://kmi-web06.open.ac.uk:8081/cupboard/ontology/enrico/AKTPortal
http://trust.mindswap.org/trustOnt.shtml

Chapter 11 Exporting Ratings and Trust Information

Often, when exchanging data, the receiving repository will not be able to map all
users or ontologies to data in their system. In these cases the data can be stored for
future reference. For example, let us assume the sha1 hash of an email address cannot
be found in the database of an importing repository. Then, the provided accountName
can be displayed, and the hash used for internal reference. In case a reviewer with
an email address matching the hash later registers, the reviews can automatically be
associated correctly.

Ontology repositories should also contain the possibility to import trust data that
has been exported from other repositories. In case the system can identify the trusted
users using the sha1 hashes of their email address, a trust relationship can be added
to the system. Otherwise, the trust statement can be added when the trusted user
registers with the repository.

128

Part IV

Evaluation

12 Complexity Analysis and Benchmark 131

13 Agent Simulation 151

14 User Study 175

TABLE OF CONTENTS

130

12

Chapter 12

Complexity Analysis and Benchmark

In this chapter we first present a complexity analysis of our TS-ORS in Section 12.1,
followed by a performance benchmark in Section 12.2. Parts of this chapter are based
on (Lewen, 2009b; Lewen, 2009c; Sabou et al., 2009; Angeletou et al., 2010).

12.1 Complexity Analysis

In order to understand how the runtime of an algorithm changes with increasing input
data, it is important to analyze the algorithm’s complexity. The Big-O notation (Bach-
mann, 1894; Knuth, 1976) has become a standard way to express the complexity of
algorithms. In the Big-O notation, the complexity class is determined by the term
with the highest growth rate. Constants and factors are omitted. For example, let
us assume that f(x) = 4 ∗ x4 + x3 + 4. Then O(f) = x4. In case an algorithm em-
ploys several types of computations algorithms, the one with the highest complexity
will determine the overall complexity of the algorithm. For our algorithms, we can
therefore analyze each operation of the algorithms separately and then see in which
complexity class the combined results lie. Since constants are irrelevant for the com-
plexity analysis, we do not try to provide the exact number of times an operation is
performed, but concentrate on the complexity of the operation performed. Usually
one input parameter is chosen for the complexity analysis, since the result is easier to
understand than trying to combine all variables.

In our system, we have a number of variables. The number of ontologies, the number
of aspects, the number of users, the number of reviews, and the number of trust
statements. We will consider the number of users as our input parameter, since it is
the one having the largest impact on the complexity.

We distinguish between so called offline computations, i.e., computations that are
not required at runtime (they do not depend on user input), and can be triggered at
fixed points in time, and runtime computations, which have to be constantly executed
at runtime and depend on user parameters.

131

Chapter 12 Complexity Analysis and Benchmark

12.1.1 Offline Computation Complexity

It is important to understand that the offline computations (computation of TrustRank ,
DistrustRank and the local trust matrix F with its interpretation matrix I) have to
be performed for each ontology–aspect combination, that means they are performed
exactly #ontologies ∗#aspects times. The symbol # stands for “number of”.

During the offline computations, the following operations are used:

• Matrix addition (in O(n2))

• Matrix subtraction (in O(n2))

• Matrix transposition (in O(n2))

• Matrix multiplication (in O(n3))1

• Matrix scalar multiplication (in O(n2))

• The majority rounding (in O(n3)) which consists of n times the following:

– Sorting (in O(n ∗ log n))
– Interpreting Values from F (in O(n2))

• TrustRank computation (in O(n2))

• DistrustRank computation (in O(n2))

Since the performed database operations all have a complexity below O(n3), the overall
complexity of the computations is in O(n3). As long as there are not too many users,
there is no problem computing the trust scores for every ontology–aspect combination
separately. If the time taken to compute the trust scores is too long for the needs of the
application, the number of times the computations are performed can be reduced by
grouping the available trust information and only performing the computations where
they provide the most benefit. Possible groupings could for example be by aspect or
by ontologies of a special area.

The optimization technique we propose involves only computing the trust scores
for users who are connected to the WOT for a given ontology–aspect combination. In
most cases, the number of users should be only the upper bound for n, with real values
being much lower. Imagine for example Amazon.com with its millions of users. For
a given product, the number of people having reviewed or trusting reviewers are way
smaller than the total number of users. The computations would thus not include the
majority of users who will not affect the computation outcome, but focus on the users
who said whether they trust or distrust a reviewer, or, in the case of Amazon.com,
who said whether for them a review was helpful or not.

1We are aware that other methods for matrix multiplication exist that have a lower complexity, but
their overhead is too big to employ them in our application.

132

12

12.2 System Benchmarking

12.1.2 Runtime Complexity

For the runtime complexity we have to distinguish two tasks the TS-ORS performs at
runtime: Ranking the reviews for a given ontology–aspect combination, and computing
an overall rating for an ontology. We also have to distinguish the cases that the user is
identified (and local trust can be used), and the case where the user is unknown (and
global trust has to be used).

Ranking of Reviews

For this task the system is given as input parameters the ontology and aspect for
which the reviews have to be ranked, and the user who is requesting the information
(if available). Also the combination of trust and distrust can be influenced by a
parameter. For the result based on the global reviews, the method basically just
performs one database query and then provides the ordered reviews as output. Its
runtime is dependent on the number of reviews that exist for this ontology-aspect
combination. Within the database query, the results are ordered. So with n being
the number of reviews, the complexity of the retrieval is in O(n ∗ log n) which is
mainly due to the sorting needed. In case the user is known, more database queries
are performed, but the complexity stays in O(n ∗ log n) with n being the number of
existing reviews. Since there cannot be more than 1 review per user for each ontology–
aspect combination, the number of users is an upper bound for the number of reviews.
Most of the times, the number of reviews will be far smaller than the number of users.

Overall Rating of Ontologies

In case the overall rating of an ontology has to be computed, the complexity is the
same as for the ranking of the reviews, since for all aspects of an ontology, the top-n
reviews have to be retrieved. Since during this process the results are sorted in the
database, the complexity is O(n∗ log n) for both retrieval based on global and on local
trust, with n being the number of reviews. Since the number of aspects is a constant
factor in any installation of the system, it does not influence the complexity. Again,
the number of users is an upper bound for n.

12.2 System Benchmarking

Because the TS-ORS delivers overall ratings for ontologies to Cupboard which are then
used to rank ontologies in a result set, time is crucial. Users nowadays are accustomed
to receive search results within a fraction of a second, thanks to Google. In order to
see how quickly our system can deliver the needed results, we have decided to run a
benchmark with synthetic data. Within the benchmark, we did not only check how

133

Chapter 12 Complexity Analysis and Benchmark

the system handles an increasing number of users, reviews and trust statement, but
also how parallelizing the offline computations affects the computation time. For all
of the following benchmarks, we set the number of ontologies to 4 and the number of
aspects to 5. Therefore, all results reported below are not normalized to represent the
execution time for one ontology or one ontology-aspect combination, but are reported
as the combined time for all 20 ontology–aspect combinations. We chose to use 5
aspects because in Cupboard we also use 5 aspects. As for the ontologies we could
have used just one ontology, since the number of ontologies affects the execution time
linearly, but we chose to use 4 to get a more balanced results.

12.2.1 Setup

We created a java application that automatically runs all the benchmarks, and writes
the results into text files. The results of the benchmark can be replicated using the
code we used to run the benchmark.2

The application contains apart from the classes covered in Chapter 8 a method called
Evaluation, which is responsible for coordinating the benchmarking. The method
works by first filling the user , ontologies, ratings, trust , and metatrust tables in the
database with randomly generated data, based on passed-on parameters. We adapt
parameters to generate different scenarios. Adapted parameters include the number
of users, ontologies, reviews per ontology–aspect combination, trust and meta-trust
statements as well as the percentage of trust statement versus distrust statement. It
is ensured that no duplicate/contradictory data is generated during the process.

After the data is created, the offline computations are run to materialize the meta-
trust, compute the TrustRank , DistrustRank and the local trust matrix F with its
interpretation matrix I for all 20 ontology–aspect combinations. These computations
also have to be performed from time to time in running applications to ensure that
the application is working with the most current data for the ranking and overall
rating computation. When running the offline computations, the following steps are
executed:

1. Materialization of the temp database to allow faster access.

2. Creating global reflexive meta-trust statements for every user (thus ensuring
every reviewer trusts his own review).

3. Materialization of meta-trust and meta-distrust statements based on Algorithm 1.

4. Computation of TrustRank , DistrustRank and the local trust matrix F with
its interpretation matrix I for all ontology–aspect combinations in the database

2The files needed can be found at: http://people.aifb.kit.edu/hle/thesis/benchmark/, last
checked on 24.11.2010.

134

http://people.aifb.kit.edu/hle/thesis/benchmark/

12

12.2 System Benchmarking

(since these tasks rely more on CPU power than on database interaction, the
computations are implemented to allow making use of multi-threading, which is
beneficial in case the CPU has more than one core).

5. Indices are added to the tempglobaltrust and templocaltrust tables.

6. The tables are renamed: temp becomes runtimetemp, tempglobaltrust becomes
globaltrust , templocaltrust becomes localtrust . This way, the system can stay
operational while the trust scores are re-computed.

Once this data is computed, the runtime tests are performed. We measure how long
it takes to retrieve an overall rating for all 4 ontologies, both using global (based on
tempglobaltrust and templocaltrust) and local (primarily based on F and I) trust. Each
overall rating is retrieved 500 times based on a varying number of reviews (using only
the top review, the top 3 reviews, and all reviews). We measure the duration of each
execution and report the minimum, maximum and average duration. It is important
to see how database caches can be exploited to minimize the latency at runtime. The
maximum time can be usually measured when the rating is first retrieved and no result
are cached, while for the rest of the runs the results of the database queries should
still be cached. We can exploit the query result cache for short response time during
runtime by querying all ontologies in the system once after re-computation using the
default parameters, so that results are cached and runtime database access can be
minimized.

We also measure how long it takes to retrieve all reviews for the 20 ontology–aspect
combinations based on both global trust ranking and local trust ranking.

12.2.2 Execution

We have performed the benchmark on a 2.40 GHz Intel Core 2 Quad Q6600 processor
with 8GB 800 MHz DDR2 SDRAM running Ubuntu 10.04.1 LTS with Ubuntu Kernel
2.6.32-24 x86 64. The hard disk used is a Samsung HD103UJ (1TB, 7200 RPM,
32MB Cache, avg. seek time 8.9). The java version used was OpenJDK Runtime
Environment (IcedTea6 1.8.1) 6b18-1.8.1-0ubuntu11. We used the MySQL 5.1.49-
linux x86 64-GLIBC23 database and the MySQL J-Connector version 5.1.13.

In order to receive a detailled result, we did not only vary the number of users (100,
250, 500, 1000, 2500), but also the amount of reviews and trust statements available,
resulting in 15 different benchmark configurations. During the generation of the test
data, for each different user group size, we had one setting which had 10% of the
users review each ontology–aspect combination and 10% of the users then trusting
or distrusting the reviewer for these reviews, one with a 50%–50% distribution and a
worst case scenario (100%–100%). Worst case means that every users reviews every
ontology–aspect combination, and also every user then states their trust or distrust

135

Chapter 12 Complexity Analysis and Benchmark

on every other user for every ontology–aspect combination. In a realistic setting, the
distribution is likely way less than 10%–10%. We furthermore assumed that the trust
to distrust ration was 70% to 30%, meaning 70% of the trust data in the system are
trust statements, and 30% are distrust statements. For the meta-trust generation, we
have fixed the percentage of WOX , WO and WX meta-trust statements to 20% per
user for all runs, that means each users makes meta-trust statements covering 20% of
the other users. The test data was regenerated between all runs, to prevent caching
effects in between runs.

To get an idea of the size of the data handled during the benchmark, we explain
our distribution idea once again, this time with an example. Let us look at the
2500 user scenario with 100% rating and trust coverage. For our 20 ontology–aspect
combinations, the rating table produced has #users ∗#ontologies ∗#aspects = |U | ∗
|O| ∗ |X| = 2500 ∗ 4 ∗ 5 = 50, 000 entries. Since every user states trust or distrust
to all other users for all ontology–aspect combination, the trust table produced has
#users ∗#users ∗#ontologies ∗#aspects = |U | ∗ |U | ∗ |O| ∗ |X| = 2500 ∗ 2500 ∗ 4 ∗ 5 =
125, 000, 000 entries (we assume users trust themselves for their reviews). The resulting
runtimetemp table has a data length of 2.44 GB and an index length of 4.44 GB.

In general, one can compute the number of entries created as such: Let m be the
percentage of users rating an ontology, and n be the percentage of users then trusting
the reviewers for their respective reviews. Then the number of entries in rating can be
computed as #users ∗m∗#ontologies ∗#aspects = |U |∗m∗|O|∗|X|. For 100 users and
10% ratings, the number of entries thus would be 100∗0.1∗4∗5 = 200. The number of
entries in trust can be computed as #users ∗m∗#ontologies ∗#aspects ∗#users ∗n =
|U | ∗m ∗ |O| ∗ |X| ∗ |U | ∗ n. For 100 users, 10% ratings, and 10% trust, the number of
entries in trust would be 100 ∗ 0.1 ∗ 4 ∗ 5 ∗ 100 ∗ 0.1 = 2000.

For the meta-trust statement, we always use 20%, so the resulting number of meta-
trust statements can be computed as #users ∗#users ∗0.2∗3 = |U | ∗ |U | ∗0.2∗3. The
factor 3 represents the meta-trust statements of form WO, WX , and WOX . For each
of the meta-trust statements, we take each user and then randomly select 20% of the
other users to trust or distrust. In case the statement covers ontologies or aspects, the
ontology or aspect covered is randomly chosen from O or X.

12.2.3 Results

The results of the meta-trust materialization benchmark can be found in Figure 12.1.
One the x-axis, the three different benchmark scenarios can be found ((10%/50%/100%)
of ontologies rated by each user, (10%/50%/100%) of reviewers trusted by each user,
and 20% of other users meta-trusted by each user), each with 100, 250, 500, 1000, and
2500 users. The total time taken for each meta-trust materialization is broken down
into the time for materializing WO, WX , and WOX . It is important to note that the
y-axis has a logarithmic scale, that means that the relation between the duration of

136

12

12.2 System Benchmarking

each of the 3 steps is easily misinterpreted when looking at the graph. For that reason
we show the absolute execution time inside the graph as well.

The results of the trust computation benchmarks can be found in Figures 12.2
(for the 10%10%20% scenario), 12.3 (for the 50%50%20% scenario), and 12.4 (for
the 100%100%20% scenario). The total time taken for the computation is broken
down into duration of the TrustRank computation, the DistrustRank computation,
the computation of F and I and the database input/output (IO). The y-axis also has
a logarithmic scale. In order to get a better feeling for how the time is distributed
among the different parts of the computation, Figure 12.5 provides the distribution of
time in percent for the results also found in Figure 12.4.

The result of the overall rating benchmarks can be found in Figures 12.6 (based on
the top review), 12.7 (based on the top 3 reviews), and 12.8 (based on all reviews).
The y-axis has a logarithmic scale, the time is shown in milliseconds for these graphs.
Each figure contains one graph for the overall rating benchmark based on global trust,
and one graph for the benchmark based on local trust. For each configuration, the
maximum duration, the minimum duration and the average duration over the 500 runs
are shown. The results are the combined time for retrieving the overall ratings for 4
ontologies.

The result of the review ranking benchmark can be found in Figure 12.9. The y-axis
has a logarithmic scale and the time is shown in milliseconds. There are two figures,
one for the benchmark results based on global trust, and one for the benchmark
results based on local trust. For each configuration, the maximum duration, the
minimum duration and the average duration over the 500 runs are shown. The results
are the combined time for retrieving the review ranking for all 20 ontology–aspect
combinations.

12.2.4 Result Analysis

We will now analyze the results of the benchmarks and try to explain the system
behavior.

137

Chapter 12 Complexity Analysis and Benchmark

Figure 12.1: Result of Meta-trust Materialization Benchmark.
138

12

12.2 System Benchmarking

Figure 12.2: Result of Trust Computation for the 10%10%20% Scenario.
139

Chapter 12 Complexity Analysis and Benchmark

Figure 12.3: Result of Trust Computation for the 50%50%20% Scenario.
140

12

12.2 System Benchmarking

Figure 12.4: Result of Trust Computation for the 100%100%20% Scenario.
141

Chapter 12 Complexity Analysis and Benchmark

Figure 12.5: Distribution of Time to Different Tasks in the 100%100%20% Scenario.
142

12

12.2 System Benchmarking

Figure 12.6: Result of Overall Rating Benchmark (Top Review) with 500 runs.
143

Chapter 12 Complexity Analysis and Benchmark

Figure 12.7: Result of Overall Rating Benchmark (Top 3 Reviews) with 500 runs.
144

12

12.2 System Benchmarking

Figure 12.8: Result of Overall Rating Benchmark (All Reviews) with 500 runs.
145

Chapter 12 Complexity Analysis and Benchmark

Figure 12.9: Result of Review Ranking Benchmark with 500 runs.
146

12

12.2 System Benchmarking

Meta-trust Materialization

While the general algorithm of meta-trust materialization is described in Algorithm 1,
we now focus more on the implementational details. In order to implement the ma-
terialization as fast as possible, the materialization is entirely performed within the
database. For each type of meta-trust statement, the respective statements from the
database are retrieved and stored in a temporary table, already with their potential
scope. For example, if a global meta-trust statement is materialized, the temporary
table contains trust statements for all ontologies and aspects. Then we delete from
the temporary table all entries for which a trust or distrust statement between these
users for this ontology–aspect combination already exists. The remaining values are
then added to the temp database which stores the trust information used for the com-
putations. This way it is ensured, that no more specific trust statement is overwritten
by a more general meta-trust statement.

Since each WO statement covers all 4 ontologies, and each WX statement covers all
5 aspects in our benchmarking setting, a WX statement takes longer to materialize
than a WO statement. In case the setting were different, for example having more
ontologies than aspects, the materialization of WO statements would take longer.

The results found in Figure 12.1 indicate what was expected, namely that the du-
ration increases if more reviews are in the system, and also if the number of users
increases. Since this method almost solely relies on database operations, it can profit
from a fast hard disk. The decrease in execution time for the 100%100%20% scenario
can be explained by the fact that in this scenario, no meta-trust can be materialized,
because all possible combinations are already covered by regular trust statements.
The algorithms stop execution when they find that the temporary table is empty after
removing entries for which a trust statement already existed. Therefore, the time seen
for the 100%100%20% scenario is the time needed to delete the data from the table
and realize there is no meta-trust left to materialize.

Given that the execution time is below a minute for the more realistic scenarios, the
meta-trust propagation should not take too much processing time in an application.

Trust Computation

The results found in Figures 12.2, 12.3, and 12.4 reflect what we anticipated in the
complexity analysis in Section 12.1. Because the computation of DistrustRank only
takes one iteration, it takes virtually no time compared to the overall duration of the
computations. The computation of TrustRank also is very quick in comparison to the
overall duration, since in the execution we limit the number of iterations to 1000 in
case the results have not converged before that (which they normally do). While the
database interaction amounts for a big part of the total duration of the computations,
for an increasing number of users, the percentage of the total time needed for database

147

Chapter 12 Complexity Analysis and Benchmark

IO is decreasing. We did only measure database IO for the one thread setting, and
then used the value for the remaining computations with 2, 3, and 4 threads, since the
number of threads does not influence the database IO, and we wanted to concentrate
on changes in the computation time, not potential fluctuations in database IO time.

The biggest factor in the trust computation are the matrix multiplications needed
to compute the local trust matrix F. Therefore, the computation of F and I take the
longest of all the computations, especially when the number of user increases. For
a large amount of users, the duration of the F and I computation is larger than the
duration of database IO.

The graphs do not only show how the time needed for computation increases with
the number of users, but also that the multi-threading approach can save execution
time. Because our CPU had 4 cores, in the 4 thread setting each core could process
one thread, leading to a complete utilization of available processing power. The com-
putations should thus be parallelized using a number of threads equal to the number
of cores in the CPU.

Another finding from the figures is that our optimization technique of only running
the computations for users who are connected to the WOT saves time. This is visible
when comparing the execution time of the algorithms with the same number of users,
but different rating and trust density. In the case of less dense trust, the size of the
matrix is smaller, directly affecting the computation time.

In order to get the execution time for one single ontology–aspect combination, the
reported execution time has to be divided by 20. For a realistic setting, the total
duration of the computation per ontology–aspect combination is still very fast, i.e.,
below a second for 100 users and a fully meshed WOT. Even for 500 users, the time
taken per ontology–aspect combination is below 6 seconds for a fully meshed WOT.
If the number of users connected to the WOT is around 500 users, there is barely any
delay in processing updates to the trust data. The changes can directly be presented
in the application during runtime. Only meta-trust statements, which affect possibly
all ontology–aspect combinations should not be processed directly at runtime.

For that reason, the trust computations should be performed at fixed points in time
to ensure the system is working with the most recent data. How often a re-computation
is needed depends on the system and the frequency of changes.

Overall Computation

In order to see how the different parameters influence the time for retrieving the over-
all rating for an ontology, we have based the computation on only the top review (see
Figure 12.6), the top 3 reviews (see Figure 12.7), and all reviews (just for worst-case
considerations, see Figure 12.8). For each of these settings, we base the computation
on both local trust (Algorithm 5 together with Algorithm 3), and global trust (Al-
gorithm 5 together with Algorithm 4). In order to receive an accurate average, we

148

12

12.2 System Benchmarking

ran each computation 500 times. We measured the execution time for each of the 500
runs, and present the maximum time as well as average and minimum time needed for
providing the result. It is intended to make use of the databases caching techniques,
since they can also be exploited in real systems, for example by caching results when
a user logs in.

The overall computation is one of the most important features of the TS-ORS since
it is performed constantly at runtime. So here a quick response time is far more
important than for the larger computations which are performed offline and only at
dedicated time-points.

The results indicate that while the maximal time in case of a cache miss or for other
system-specific reasons can be up to half a second per ontology for local trust based
computation with many users and ratings, the more significant average is relatively
independent of the amount of users or the number of reviews in the system.

For both local and global trust based computation, the average time needed for
computing an overall ontology rating is around 3 milliseconds. Because the costly
part of the overall rating computation is the ranking of reviews and ratings within the
database, the number of reviews considered for the computation does not influence
execution time too much. In all cases, the reviews have to be sorted, and this takes
much longer than later using the rating in the computation.

Review Retrieval

When a user wants to browse reviews for an ontology–aspect combinations, it is im-
portant to rank the reviews a personalized order, according to the trust information
available. So when a user is logged in, the reviews are ranked in an order based on local
trust of this user, otherwise they are ordered according to global trust. In our bench-
mark, we have retrieved a ranking of reviews for all 20 ontology–aspect combinations,
both based on local trust and on global trust.

Each ranking is retrieved 500 times, to ensure an accurate average. In Figure 12.9
the results of the benchmark can be found, both for local and global trust.

The ranking of reviews is also a task which is often needed at runtime when a user is
browsing different ontology–aspect combinations. For a realistic setting, the ranking
can on average be retrieved in around 2 milliseconds. The worst execution time was
around 1 second for an ontology–aspect combination, which is still acceptable. The
execution time increases with the number of reviews that have to be sorted.

12.2.5 Lessons Learnt from the Benchmark

The execution time can be improved when investing in fast computer hardware. A
fast multi-core CPU and sufficient RAM in combination with a fast hard-disk can
speed up the execution. Over the years, we have optimized the code several times, to

149

Chapter 12 Complexity Analysis and Benchmark

achieve these good results. We believe that the system as such should not produce a
bottleneck in a Web-Application. When a multi-core CPU is available, all available
CPU cores should be used for TS-ORS computations by enabling the multi-threading
functionality within the TS-ORS code.

Depending on how important it is to take the latest user data into account, the
frequency of overall re-computation can be increased or decreased. Amazon.com, for
example, takes 24 hours to take a trust statement into account. In case a really
fast re-computation is needed, the computation can be distributed among different
machines, each containing a database filled with only the necessary information. Since
the computation of trust is independent for all ontology–aspect combinations, in the
most extreme case, one could use one machine per combination and later merge the
results.

Whenever possible, a large database cache should be used to cache results and speed
up the execution. Our TS-ORS implementation provides a method for caching results,
which can be used to initialize the database cache with results. In case a user logs-in,
for example, results could be cached for that user.

150

13

Chapter 13

Agent Simulation

Running a simulation to evaluate a system is a common form of evaluation. Using
synthetic data to test the system behavior has several advantages over purely analyzing
real world data. While it is important to see whether the algorithms function with real
world data as well, it is difficult to check the system behavior in edge cases without
generating the data.

Furthermore, there is no control over user behavior in real world test data. That
means, it is not possible to check how an increase or decrease in user errors affect the
results of the algorithms. Therefore we decided to run a simulation for our TS-ORS
analyzing the behavior of the algorithms and comparing our TS-ORS against Guha’s
ORS.

The main purpose of the simulation is to check the system behavior in a controlled
environment and to draw conclusions for its use in real world systems. In order to
achieve this, we have run the same task (computing overall ratings for objects based
on the trust and rating information in the system) several times, altering parameters
in order to see how different coverage or errors made by the agents affect the outcome.
In the remainder of this chapter, our simulation setup is presented in Section 13.1,
while the results and the interpretation of the results can be found in Section 13.2.
The chapter ends with a conclusion in Section 13.3. Parts of this chapter are based
on (Lewen, 2009d; Angeletou et al., 2010).

13.1 Setup

For the execution of the simulation we used the TS-ORS code also deployed within
Cupboard, and used for the benchmark in Chapter 12.

13.1.1 Goal of the Simulation

One of our main motivations for developing the TS-ORS were overcoming the lim-
itations in the way trust can be assigned in the ORS. For that, in the simulation
we compared the TS-ORS against the ORS in exactly the situation we encountered:

151

Chapter 13 Agent Simulation

Reviewers write on the one hand helpful (good), but on the other hand also not help-
ful (bad) reviews. While in the ORS trust can only be assigned globally (equal to
WOX -meta-trust statements in our model), the TS-ORS allows fine-grained trust as-
signment (W and the meta-trust statements discussed in Table 3.1). Furthermore,
we want to analyze the behavior of the algorithms in general, namely their ability to
provide user-specific rankings, and their robustness against spammers.

13.1.2 Approach

In order to see if users with a taste different from the mainstream could receive per-
sonalized ratings representing their taste, and to see how malicious users can influence
the ranking results, we distinguish three types of agents in our simulation.

Different Types of Agents

We created 60 regular (good) agents, 20 special agents, and 20 spammers. The taste
of regular agents represents the mainstream, while the taste of special agents differs
from the mainstream. We chose to have more than one agent in each group, to even
out randomness and to get a more accurate result. While the distribution of agents
in the system influences some of the results (we will mention which results later in
the analysis), we felt that in a normal TS-ORS, most users should qualify as regular
users, while some have special taste, and some might try to promote spam.

Different Types of Objects

We defined rules to represent agent taste, based on which the agents each rated 25
good objects, 10 special objects (these objects polarize agents in contrast to the good
objects), and 20 bad objects (that spammers want to promote). Agents only trust
other agents from their group. This means, e.g., that special agents only trust special
agents.

Creating the Gold Standard by Defining Rules for Rating Objects

Regular (good) agents rate good objects 5 stars, bad objects 1 star, and special objects
half of the time 2 stars, the other half 4 stars. Special agents rate good objects 4 stars,
special objects 5 stars, and bad objects 1 star. Spammers rate bad objects 5 stars and
the rest 1 star. These rules are applied for all 5 aspects of each object and act as a
gold standard against which simulation results are compared.

Scenarios to Compare TS-ORS Against ORS

We defined 3 scenarios which allow a comparison between TS-ORS and ORS:

152

13

13.1 Setup

• In scenario 1, agents rate all aspects of an object according to rules we defined,
while trust can only be assigned globally.

• Scenario 2 assumes that the agents only have expertise to review one of the five
aspects of an object correctly, but still review all of them. In case they write a
review for an aspect for which they have no expertise, we mimic a bad review
by inverting the rating defined by the rule. For example, a special agent making
a bad review would rate a special object 1 star instead of 5 stars (this does not
apply to the spammers, who will automatically rate bad objects 5 stars and the
rest 1 star). Trust in this scenario can also only be assigned globally.

• In scenario 3, we use the same rating data as in scenario 2, but allow topic-
specific trust statements. Agents in scenario 3 trust the reviews for aspects for
which the agents have expertise, and distrust the reviews for which the agents
don’t have expertise.

Scenario 1 simulates the behavior of the ORS in the case all agents write either only
good or bad reviews. Scenario 2 simulates the behavior encountered in the ORS when
some reviews of a reviewer are good and others are bad, but trust can only be assigned
globally. Scenario 3 simulates the behavior of the TS-ORS given the same data as used
in scenario 2, but topic-specific trust statements.

Simulating Data Sparsity and Agent Mistakes

To include an analysis of the effects of data sparsity and agent mistakes, for each of
the three scenarios we ran the simulations with varying data densities (100%, 50%,
10%, and 5%) and percentage of agent errors (0%, 10%, and 20%), leading to a total
of 36 simulation settings.

Data Sparsity: The varying data density simulates the problem of data sparsity,
which is encountered in many real-word systems which rely on data to provide recom-
mendations or computations (Herlocker et al., 2004). 100% data density means that
each agent rates all object-aspect combinations in the system, and states trust to all
other agents. 10% data density means that each agent randomly selects 10% of the
objects in the system, and then rates all of the aspects for each of the selected objects.
Trust is only stated to 10% of the other agents, which again are chosen randomly.

User Mistakes: In the real world, users make mistakes and do not always act
rationally. We simulated user errors as well in the system, where 0% means that users
make no mistakes, and 10% means each user makes an error in 10% of the cases when
giving a trust statement. For example, a special agent will trust another special agent,

153

Chapter 13 Agent Simulation

unless he makes an error, in which case he will distrust the other special agent. In the
scenarios with errors, all three agent types make mistakes.

Result Computation

For each of the 36 simulation settings, we computed the trust ranks for the agents,
and an overall rating for all agents on all objects, both based on global trust and on
local trust. We then averaged the computed overall ratings over all objects in a specific
group for all agents in a specific group. The result was compared to the gold standard.
For example, if the computed average for all 25 good objects for all 60 regular agents
based on local trust equals to 5 stars, that means that each agent received the correct
5 stars rating according to our rules for the 25 good objects. The computations were
performed using the default parameters introduced in Section 5.3. In addition to the
average ratings for each group based on local and global trust, we also computed the
average over all ratings for all objects within a group to compare to.

In order to interpret the results, it is important to remember that global trust is
influenced by the largest agent group in the system. Global trust can be seen as a
majority vote, which is not personalized. Local trust can only be used in case an agent
is connected to the WOT.

13.2 Results

In this section we will present and analyze the outcomes of the 36 simulation runs.
The simulation results can be reproduced by running our code.1

13.2.1 Scenario 1

As mentioned before, each scenario consists of 12 runs total, 4 different data density
settings, and 3 different error settings. In the figures one can find the results for the
different data density settings side-by-side in one diagram. The different error settings
can be found in separate figures.

0% Error

The 0% error setting of scenario 1 is the ideal scenario to be encountered in an ORS.
No agent makes mistakes, and all agents only provide either good or bad reviews. If
we look at the results shown in Figure 13.1, it can be seen that given perfect coverage
(all objects are reviewed, and all agents state their trust towards each other), the
algorithms indeed can replicate the gold standard we defined in Section 13.1.2 for the

1The files needed can be found online at: http://people.aifb.kit.edu/hle/thesis/simulation/,
last checked on 24.11.2010.

154

http://people.aifb.kit.edu/hle/thesis/simulation/

13

13.2 Results

results which are based on local trust. As expected, the average rating for regular
(good) agents for good objects is 5 stars, the same holds true for special agents and
special objects. Furthermore, the average rating for bad objects is 1 star, both for good
and special agents. This shows, that the local trust-based results are not influenced
by the rating of agents to which no trust connection exists in the WOT. The global
results, which are not personalized, are influenced by the largest group, in this case
the regular (good) agents. As the data density goes down (objects have less reviews,
and less agents express trust towards each other), the results change towards majority
taste. The is due to the size of the test data we have used and will be explained further
in Section 13.2.4. Basically the problem is that not all agents are connected to the
WOT, and when they are not connected, the global trust metric has to be consulted
for trust information. In the scenarios with high data sparsity, the rating results based
only on the top review is closer to the gold standard than the results based on the
top 3 reviews. This can be explained by the lack of trusted reviews. If there are not
3 locally trusted reviews, globally trusted reviews also have to be factored into the
rating computation, thus affecting the computation result. As a general observation,
global trust based results are closer to our gold standard than the simple average, and
local trust based results are closer to the gold standard than global trust based results.
In general, the results based on the top rating are closer to the gold standard than the
ratings based on the top 3 ratings.

10% Error

The results for our 10% error setting can be found in Figure 13.2. One main observation
is that when agents trust agents they should not be trusting, or distrust agents they
should be trusting (i.e., when they make an error), the largest agent group dominates
the results. When trust or distrust is placed mistakenly, a connection between two
groups is created, which then is used during the trust propagation. This leads to the
largest group with inter-group links accumulating more trust, and being ranked higher
in the reviewer ranking. The regular agent group is the biggest in our experiment,
therefore dominating the results of the special agents and spammers.

Unlike in the setting with no errors, the special agent and spammer group cannot
retrieve a review from their peers as top review, since once one agent from these group
trusts an agent from the regular agent group, this agent will receive enough trust to
become the predominant reviewer. The gold standard can only be met for the cases
where it coincides with the gold standard for the regular agent group. The difference
in results for the different coverage levels can be explained with a lack of connectedness
to the WOT.

155

Chapter 13 Agent Simulation

Figure 13.1: First Scenario with 0% Error, results based on global trust are marked
gt, results based on local trust lt.

156

13

13.2 Results

Figure 13.2: First Scenario with 10% Error, results based on global trust are marked
gt, results based on local trust lt.

157

Chapter 13 Agent Simulation

20% Error

In a setting with 20% error (see Figure 13.3), the results resemble very much the
results of the 10% setting. The effects described above are just more visible. There is
not much difference between making errors in 10% or 20% of the cases.

13.2.2 Scenario 2

Scenario 2 represents the case where agents write both bad and good reviews, but
other agents can only choose to trust or distrust them globally (equivalent to WXO

statements in the TS-ORS). In our setting we decided that only one of the 5 aspects
could be reviewed correctly, leading to 80% of the reviews being bad reviews. Choosing
a different value here (for example deciding that 3 out of 5 aspects can be reviewed cor-
rectly) affects the outcome, but what was important for us was to determine whether
there is a difference in ranking results, and for that reason we chose this setting. In
order to at least get good results for the aspects that agents can provide good reviews
for, agents have to still trust members of their group, even though most of their re-
views are bad. The alternative of not trusting other agents at all (since 80% of the
reviews are bad) is no real alternative, since otherwise the overall rating would have
to completely rely on global trust, which would then favor spammers, who would trust
each other by default.

0% Error

In this setting, as expected, results significantly differ from our gold standard (see
Figure 13.4). The good objects receive the lowest overall ratings and the bad objects
the highest. This is the result of agents having to trust bad reviews. Similar to scenario
1, also in scenario 2, it can be seen that the overall rating results move towards the
results which are based on global trust when data density decreases and less agents
are connected to the WOT.

10% and 20% Error

Here the same observations can be made as in the 10% and 20% error cases of scenario
1, i.e., the biggest agent group affects the ratings of the other groups. The results can
be found in Figures 13.5 and 13.6.

158

13

13.2 Results

Figure 13.3: First Scenario with 20% Error, results based on global trust are marked
gt, results based on local trust lt.

159

Chapter 13 Agent Simulation

Figure 13.4: Second Scenario with 0% Error, results based on global trust are marked
gt, results based on local trust lt.

160

13

13.2 Results

Figure 13.5: Second Scenario with 10% Error, results based on global trust are marked
gt, results based on local trust lt.

161

Chapter 13 Agent Simulation

Figure 13.6: Second Scenario with 20% Error, results based on global trust are marked
gt, results based on local trust lt.

162

13

13.2 Results

13.2.3 Scenario 3

Scenario 3 reuses the review and rating data from scenario 2, but in this scenario, we
allow topic-specific trust statements. In the setup, reviewers are only trusted for the
aspects for which they can provide good reviews, and distrusted for the rest.

0% Error

As Figure 13.7 shows, using topic-specific trust, the result matches our gold standard.
With the topic-specific trust statement, it is possible to only trust good reviews. The
total number of bad reviews has not changed, as can be seen by looking at the basic
average of ratings for the objects, which are the same as for scenario 2. It is only
that now agents have the possibility to issue more specific trust statements and do not
have to decide whether to trust another agent globally or not. So even though there
are 80% bad reviews in the system, the algorithms still produce the desired outcome
(namely match our gold standard), based on accurate trust assignment and sufficient
connectivity. With decreasing coverage we can once again see how the increasing lack
of connectivity to the WOT blends local trust ratings and global trust ratings.

10% and 20% Error

Also in scenario 3 we can find the described effect of the predominant group influ-
encing the rating results of the other subgroups (see Figures 13.8 and 13.9). Still it
is noteworthy that even with 20% of all trust statements being wrong, the average
rating is outperformed. In other words, even if not all trust information is correct, it
is better to employ trust-based algorithms for ranking than relying on basic arithmetic
measures like average.

13.2.4 Comparison of a 5% Coverage Scenario once with 100 Agents
and once with 1000 Agents (0% Error)

As mentioned before, the difference from the gold standard at smaller coverage levels
(with few reviews and inter-agent trust statements) is due to the missing connectedness
of agents to the WOT. After all, a 5% coverage (data density) equals to only two
reviews and 5 trust statements per agent in the 100 agent setting. We have investigated
the effect of increasing the number of agents in the simulation while keeping the number
of objects and level of data density constant. The results can be found in Figure 13.10.

163

Chapter 13 Agent Simulation

Figure 13.7: Third Scenario with 0% Error, results based on global trust are marked
gt, results based on local trust lt.

164

13

13.2 Results

Figure 13.8: Third Scenario with 10% Error, results based on global trust are marked
gt, results based on local trust lt.

165

Chapter 13 Agent Simulation

Figure 13.9: Third Scenario with 20% Error, results based on global trust are marked
gt, results based on local trust lt.

166

13

13.2 Results

Figure 13.10: Comparison of Results For Scenario 1 With 0% Error

167

Chapter 13 Agent Simulation

We furthermore analyzed the setting with 1000 agents in more detail, to find out how
the derivations from the expected outcome can occur. As discussed in Section 13.2.5,
the theoretical lower boundary for a setting that matches the gold standard for our
setup lies with 3 ratings per object (one for each group), and one trusted peer agent
for each object per agent. That amounts to 3% coverage in reviews and 1% coverage
in trust per object (in a 100 agent setting). Since we have employed randomization
for the simulation, the reviews and trust were not assigned optimally, but randomly
based on the rules explained above. This could lead to settings where agents are not
connected to the WOT, and therefore for them, no local trust information can be
used to compute the overall rating. In order to see how many agents are disconnected
for each object (since for all these agents, in our experiment setup their trust results
would be based on global trust), we ran an analysis. For the setup 100 agents, 5%
coverage and 0% error, the results can be found in Figure 13.11. The x-axis represents
10% buckets, where 0-10% means that only 0-10% of the agents of a group are not
connected to the WOT for an object. The y-axis shows the number of objects in
each bucket. As is evident from Figure 13.11, for several objects a large percentage of
agents was not connected to the WOT, in some cases even more than 90%. Therefore
it is not surprising that the average ratings based on local trust deviate towards the
ratings based on global trust, since when agents are not connected to the WOT, the
ranking algorithm has to rely on global trust. In the rest of the cases, the correct
review is retrieved based on local trust and is blended into the results. This is why the
results always deviate in direction of the result based on global trust. Given a setting
of 1000 agents, 5% coverage and 0% error, there are almost no agents disconnected
from the WOT, as can be seen in Figure 13.12. If we remember that the minimal
setting for achieving the expected results is only partially dependent on the agent size
(the number of reviews required is independent from the number of agents, but is
based on the number of objects), we are not surprised to see improved results in the
setting with more agents (since the 5% here equal to 10 times more reviews and trust
statements than in the 100 agent setting). As a conclusion of the comparison we note
that the number of reviews and trust statement in total is not as important as having
the right ones (the ones described in Section 13.2.5).

13.2.5 Minimal Setting Matching the Gold Standard

As discussed above, most of the problems with results deviating from the gold standard
are due to agents that are not connected to the WOT, which causes the system to use
global trust. So the more agents are not connected to the WOT, the more the local
trust based results resemble global trust based results. A minimum setting matching
the gold standard would be having at least one agent from each of the three groups

168

13

13.2 Results

Figure 13.11: For this graph, we have checked for each object in the investigated group,
which percentage of the agents in the group investigated has no local
trust information for this object. The findings were sorted into 10%
buckets. The computations were performed with 100 agents, 5% cover-
age and 0% error.

169

Chapter 13 Agent Simulation

Figure 13.12: For this graph, we have checked for each object in the investigated group,
which percentage of the agents in the group investigated has no local
trust information for this object. The findings were sorted into 10%
buckets. The computations were performed with 1000 agents, 5% cov-
erage and 0% error.

170

13

13.3 Conclusion

reviewing all objects, and then having the rest of the agents in each group trusting
this agent completely, and distrusting the 2 other reviewing agents. This setup results
in all agents being connected to the WOT, and the having their reviewer provide the
top-ranked rating for the objects. Of course, if only one good review exists for each
group, the results have to rely on the top review, and not the top three reviews.

13.3 Conclusion

In the concluding section we want to revise what we have learned from the simulations,
and how this can help to improve the accuracy of ranking in real world systems like
Cupboard.

13.3.1 Validity of Simulation Results for Real World Systems

We think that the simulation we ran on the one hand shows that the algorithms do
work in a perfect scenario, but also show how derivations from the ideal scenario can
influence the results. We purposely chose to employ randomness when generating data
for the less dense scenarios and those that contained errors, because randomness is the
worst case scenario for the TS-ORS. In real life, it is more likely that users will not
trust or distrust random users, but users whose reviews they read. This would lead to
a scenario with more specific trust data and will thus be closer to what we described
as the minimal setting with expected behavior. We created the simulation this way to
ensure that deviations in the results are visible on the graph. Another way to analyze
the algorithms would have been to just check for each agent whether the top ranked
review came from an agent from the same group. In the end, a perfect personalized
rating can only be computed if the right agents are trusted beforehand. The outcome
of the TS-ORS algorithms can only be as good as the quality of the data they operate
on. Since in (Guha et al., 2004) the authors already performed an analysis of the
trust propagation algorithms on a large real-word data set (namely the Epinions data
set), we focused in the thesis on this simulation to better understand the algorithms
behavior in certain scenarios.

13.3.2 Attacks on the System

The simulation results show that spammers cannot affect the overall ratings which are
based on local trust, if no agent outside the spammer group trusts a spammer. In case
the spammers are only a small group in relation to the overall group, they cannot even
influence the ranking result too much in case they are accidentally trusted. Only when
spammers are the largest group in a system, and they are trusted by a non-spammer,
can they influence the local trust based results of other agents.

171

Chapter 13 Agent Simulation

Of course, global trust based ratings and simple average ratings can be affected
(compare to linkfarms (Wu and Davison, 2005) on the web trying to increase their
Google Page-Rank), but these are only used for users who cannot be identified or
are not connected to the WOT. Now one can argue that the spammers could try to
gain the trust of regular users by acting like a regular user in, e.g., 90% of the cases,
and then rate objects maliciously in the rest of the cases. Even this attack is not
easy to pull off, since we compute the WOT separately for each of the object–aspect
combinations. That means that the spammer, under normal circumstances, would
only be trusted in the cases where he is acting like a regular user, and not in the other
cases. The only way for the spammer to draw an advantage of such behavior would be
by convincing a user to issue a global meta-trust statement, also covering potentially
malicious reviews. Even if the spammer manages to convince a regular user A to issue
a meta-trust statement, this would primarily affect the A’s ratings and the ratings of
other users that trust A. Only in case all other users have to trust each other globally
can the scores of many other users be affected easily. In order to prevent being a victim
of a spammer, users should be very cautious to use WOX meta-trust statements.

13.3.3 Condensed Simulation Results

We have condensed the most important findings of our simulation in one graph, which
can be found in Figure 13.13. The figure displays the averaged overall ratings for
each agent-group and object combination for each of the three simulation scenarios
given perfect data coverage. This figure comprises the main findings of the simulation,
namely that the gold standard cannot be matched in case only global trust can be
expressed and reviewers write both good and bad reviews. Using topic-specific trust
data, on the other hand, even with a smaller number of good reviews, the gold standard
can be matched perfectly. We therefore argue that the simulation was successful in
showing in which scenarios the TS-ORS provides more accurate rankings and overall
ratings than the ORS.

13.3.4 Lessons Learned

The main lessons learned from the simulation are that it is very important for users
to express their trust towards other users in an ORS or TS-ORS. Only when a user is
connected to the WOT, can the rankings and overall ratings provided by the system
be personalized. Otherwise, a user’s experience will be the same as for users who are
not identifiable or not connected to the WOT because of missing trust statements.
Therefore there is an incentive for users to register with the TS-ORS, log-in before
using it and state their trust and distrust towards other users. Also users should use
meta-trust statements carefully when they do not know another user.

172

13

13.3 Conclusion

Figure 13.13: The Results of the Three Simulation Scenarios for 100% Data Coverage
and 0% Error Side-by-side the Gold Standard.

173

Chapter 13 Agent Simulation

Because reviewers can have different areas of expertise, in which they can provide
qualified reviews, our trust model extension in the TS-ORS allows to trust and distrust
selectively. Even if spammers in general cannot easily affect the local trust based
results of other users, it is advisable to ban them from the system as soon as they are
identified, so that the rest of the users have a better usage experience and global trust
based results cannot be affected. For that purpose, a button can be introduced which
users can use to inform the system operators of potential spammers. After confirming
that a user is indeed a spammer, the user can then be removed from the system.
Some systems also require administrators to manually clear new user registrations to
increase the barrier for spammers to join the system.

174

14

Chapter 14

User Study

Even though good performance and theoretical ranking accuracy is important for real-
word system, the most important gauge is user acceptance. We therefore decided to
perform a user experiment in which we compared our Cupboard Plugin for the NeOn
Toolkit (see Section 10.2) against both the Watson Plugin for the NeOn Toolkit (see
Section 10.1) and systems found on the World Wide Web for the task of ontology
reuse.

In particular, we wanted to examine both how the integration of a tool supporting
ontology reuse with the ontology engineering environment on the one hand, and quality
information on the ontologies on the other hand can facilitate the reuse of ontological
resources.

For the experiment we found 20 researchers from the Semantic Web community
willing to participate. The participants came from 6 different academic institutions.
While some of the participants worked on the NeOn project1, the majority of the
participants were not members of the NeOn project.

We partitioned the users into three different groups, each with different tools at
their disposal. All participants were using the NeOn Toolkit2 as ontology engineering
environment, and had an Internet browser at their disposal. The task all participants
should complete was extending an ontology solely containing the concept “Fish” to an
ontology representing the fish domain, by only reusing ontological content found on
the Internet or in special ontology search engines or repositories.

It was left up to the participants to decide for which concrete use case the ontology
was modeled (i.e., the participant could decide on which aspects or parts of the fish
domain to focus, and how to model them within the ontology).

One group (group 2) had the Watson Plugin at their disposal, allowing them to
query Watson and integrate results directly from within the NeOn Toolkit. Group 3
had the Cupboard Plugin at their disposal, which allowed them to query Cupboard,
receive a result ranking based on overall ratings for the ontologies as provided by the
TS-ORS, and integrate the results from within the NeOn Toolkit.

1http://www.neon-project.org/, last checked on 24.11.2010
2http://www.neon-toolkit.org/, last checked on 24.11.2010

175

http://www.neon-project.org/
http://www.neon-toolkit.org/

Chapter 14 User Study

Group 1 was the control group. Participants did not have a tool to support ontology
reuse integrated in the ontology engineering environment. Furthermore, they had to
create all ontology statements they wanted to reuse by hand in the NeOn Toolkit, and
could only turn to the Internet browser to find results.

After the experiment was completed, the participants filled out a questionnaire.
In the following, we will first explain the experiment setup in Section 14.1. We then

describe the execution of the experiment in Section 14.2 and the results of the experi-
ment in Section 14.3. The results are analyzed in Sections 14.4 and 14.5. The chapter
ends with a conclusion in Section 14.6. Parts of this chapter are based on (Lewen,
2009a; Garćıa-Castro et al., 2008; Dzbor et al., 2009; Dzbor et al., 2010).

14.1 Experiment Setup

In this section, we describe the setup and execution of the user experiment.

14.1.1 Goal of the Experiment

As mentioned before, the goal of the experiment was to evaluate empirically how
ontology reuse can be facilitated by both tool integration and quality information
on the ontologies. Facilitating ontology reuse means both allowing the user to reuse
content more easily (offering help during the different steps of the reuse process), and
also to produce an ontology with reused knowledge in a shorter time-frame. Since
it is difficult to measure objectively if ontology reuse has been facilitated for a user,
we asked the users directly in the experiment questionnaire (to get their subjective
opinions).

The motivation to limit the time participants had available for performing the task
to 20 minutes was twofold. On the hand hand, it is important to see how much time
can be saved during the reuse process, and on the other hand, people were more likely
to participate in the experiment if the duration was known beforehand and acceptable.
In theory, given enough time, each user could evaluate each ontology by hand and only
import the best parts by hand. Since this would take too long, we wanted to see what
an ontology engineer could achieve in 20 minutes, given the tool support they had in
the different groups.

14.1.2 Technology Used in the Experiment

The four technologies used in the experiment are the NeOn Toolkit, an Internet
browser, the Watson plugin for the NeOn Toolkit, and the Cupboard plugin for the
NeOn Toolkit.

176

14

14.1 Experiment Setup

NeOn Toolkit

The NeOn Toolkit3 (Haase et al., 2008) is an ontology engineering environment which
is based on Eclipse and allows an easy integration of plugins through the Eclipse Plugin
Framework.

Internet Browser

The users were given access to the Internet and provided a list of semantic web search
engines4 as a starting point (the page was set as the homepage of the browser).

Watson Plugin

The Watson plugin for the NeOn Toolkit (see also Section 10.1) allows the users to
directly access the Watson Semantic Web gateway from within the NeOn Toolkit.
Results presented within the plugin are ranked based on Lucene. That means that
users have to browse the result list to find suitable ontologies to reuse, because the
ranking does not reflect the quality of the ontologies. A screenshot of the result view
within the Watson plugin can be found in Figure 14.1.

Cupboard Plugin

The Cupboard plugin for the NeOn Toolkit (also see Section 10.2) is an extension of
the Watson plugin, but connects to a specified ontology space within Cupboard.5 We
have loaded the ontology space with ontologies we found on the web and in Watson,
as well as with some other ontologies we created. The ontologies were then reviewed
by members of the NeOn Project. A special feature of the Cupboard plugin is that
it can retrieve the overall ratings for each of the ontologies in the result-set, and rank
the results accordingly (see Figure 10.2). During the course of the experiment, we
relied on global trust ratings, that means the identity of the user was unknown to
the system, and thus all users were presented with the same ranking order. Another
feature we added to the Cupboard plugin was the ability to add multiple super-classes
(all super-classes from found concept to the root) and sub-classes (all classes below the
concept) with one-click. This functionality is currently not available in the Watson
plugin, since without knowing anything about the quality of the ontology, we felt that
it would be too risky to allow adding too many statements blindly. Since the user

3http://www.neon-toolkit.org/, last checked on 24.11.2010
4http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/

SemanticWebSearchEngines, last checked on 24.11.2010
5The ontology space can be found at: http://cupboard.open.ac.uk:8081/cupboard/Experiment1,

last checked on 24.11.2010

177

http://www.neon-toolkit.org/
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://cupboard.open.ac.uk:8081/cupboard/Experiment1

Chapter 14 User Study

Figure 14.1: This screenshot shows the Watson plugin displaying results within the
NeOn Toolkit

178

14

14.1 Experiment Setup

is presented with quality information on the ontologies in the Cupboard plugin, we
tested the feature to also see whether users like it.

14.1.3 Tasks to be Executed

Each user was given a task description (see Figure 14.2) explaining the task to be
executed. The task was to extend an ontology containing only the concept “Fish”
with ontological content found on the web. The ontology should be extended both
with super-classes (ideally aligning the ontology to an upper level ontology) and with
sub-classes. A facilitator was present at all times to provide individual help and answer
questions related to handling the tools. Questions potentially affecting the outcome of
the study (e.g., “which ontology should I reuse”) were not answered. The participants
were assigned alternating to one of three groups, each having different tool-support
at their disposal. Each group was provided an adapted version of the NeOn ontology
reuse methodology (del Carmen Suárez-Figueroa et al., 2008), mentioning the tools (if
available for that group) that could help in each step. All participants had at most
20 minutes to complete the task, but could stop earlier if they felt the ontology they
created was satisfactory for them. We will now explain the distinctions between the
three groups.

Group 1

The participants in group one act as a control group. Participants in the control
group were not allowed to use the Watson- or Cupboard plugin for NeOn Toolkit.
The participants therefore had to create the axioms they wanted to reuse manually
within the NeOn Toolkit. They also had to search for content to reuse using the
Internet browser. The methodological guidelines (see Figure 14.3) provided a sort of
best practice for ontology statement reuse.

Group 2

The second group also had access to the Internet, and in addition the Watson plu-
gin for NeOn Toolkit. The plugin allowed the users to search Watson directly from
within the NeOn Toolkit and also to import statements by the click of a button (see
Figure 14.1). Only content not available within Watson had to be added manually.
The methodological guidelines (see Figure 14.4) were adapted to mention the Watson
plugin in the steps that could benefit from it.

179

Chapter 14 User Study

NeOn Ontology Reuse Experiment 
 

Please read all the provided material carefully before beginning the experiment. 
In case you have questions, please ask the person running the experiment. 

 

Scenario: You want to build an ontology about fish. As a starting point, you create a 
new project and ontology within the NeOn Toolkit, which consists of the class „Fish“.  

 

Task: Now you should extend the ontology by reusing existing ontological knowledge. 
You can add new superclasses or subclasses, new relations, new labels, anything that 
you like to add from existing resources can be added to the ontology.  

Please use the methodological guidelines handed to you. They contain hints on where 
you can search for ontologies or statements on the web, and also explain which tools can 
assist you in your task. Once you have read everything and have created the project with 
the ontology containing the class “Fish”, you have 20 minutes to complete.  

 

Goal: Your goal is to come up with an ontology that you consider represents 
(conceptually models) the fish domain, including superclasses that help classifying 
what a fish is (like the SUMO upper level ontology) and fishsubclasses (i.e. Salmon 
subclass of Fish).  

 

After the twenty minutes passed, please save the ontology and complete the 
questionnaire we will send to you by email. 

 

 

Figure 14.2: This document was given to all participants of the experiments. It lays
out the task they were asked to do.

180

14

14.1 Experiment Setup

Ontology Statement Reuse Experiment 

Methodological Guidelines 
Group 1 

 

Allowed tools: Internet, NeOn Toolkit w/o additional plugins except for RaDON. 

 

Step 1: Ontology Statement Search 
In  this  step,  you  search  the  Internet  for  candidate  ontology  statements  that  can  be 
reused in the ontology you want to build (e.g. search in Watson for “fish”). 

A list of ontology search engines can be found here:  

http://tinyurl.com/ontose 

Please  note  that  semantic  web  gateways  like  Watson  allow  direct  search  on  the 
statement level, including information about subclasses and superclasses.  

 

Step 2: Ontology Statement Assessment 
In this step you decide which of the ontology statement is useful or not for the ontology 
being developed or extended. Some criteria to be considered are: 

• Does the statement belong to an ontology that covers the same or a similar scope 
like the ontology being developed 

• Check whether the purpose of the statement in the original ontology is similar to 
the purpose of the ontology developed 

• Check the clarity of the ontology statement  
• Check the information content of the statement 
• Assess the correctness of the statement from a formal modeling perspective 

Step 3: Ontology Statement Selection 
Select the best statements of the statements found for reuse. 

 

Step 4: Ontology Statement Integration 
Integrate the selected statement into the ontology being developed.  

Step 5: Check Local Inconsistencies 
In the last step the ontology has to be checked for inconsistencies. You can either try to 
do this manually, or use the RaDON plugin (if unsure how to use it, ask the facilitator). 

Figure 14.3: The methodological guidelines for group 1.

181

Chapter 14 User Study

Ontology Statement Reuse Experiment 

Methodological Guidelines 
Group 2 

 

Allowed tools: Internet, NeOn Toolkit w/o additional plugins except for RaDON and the 
Watson plugin. 

 

In  order  to  help  you  with  the  process,  you  can  use  the  Watson  plugin  to  search  for 
statements to reuse and add them to the ontology.  

 

Step 1: Ontology Statement Search 
In  this  step,  you  search  the  Internet  for  candidate  ontology  statements  that  can  be 
reused in the ontology you want to build (e.g. search in Watson for “fish”).  

A list of ontology search engines can be found here:  

http://tinyurl.com/ontose 

Please  note  that  semantic  web  gateways  like  Watson  allow  direct  search  on  the 
statement level, including information about subclasses and superclasses.  

You can query Watson directly from within the NeOn Toolkit using the Watson plugin. 

Step 2: Ontology Statement Assessment 
In this step you decide which of the ontology statement is useful or not for the ontology 
being developed or extended. Some criteria to be considered are: 

• Does the statement belong to an ontology that covers the same or a similar scope 
like the ontology being developed 

• Check whether the purpose of the statement in the original ontology is similar to 
the purpose of the ontology developed 

• Check the clarity of the ontology statement  
• Check the information content of the statement 
• Assess the correctness of the statement from a formal modeling perspective 

Step 3: Ontology Statement Selection 
Select the best statements of the statements found for reuse. 

Step 4: Ontology Statement Integration 
Integrate the selected statement into the ontology being developed.  

When using the Watson Plugin, statements can be integrated by clicking the add button. 

Step 5: Check Local Inconsistencies 
In the last step the ontology has to be checked for inconsistencies. You can either try to 
do this manually, or use the RaDON plugin (if unsure how to use it, ask the facilitator). 

 

Figure 14.4: The methodological guidelines for group 2.

182

14

14.2 Running the Experiment

Group 3

The third group had access to the Internet, and in addition to the Cupboard plu-
gin. The Watson plugin was not available. The Cupboard plugin allows to search for
ontologies within Cupboard, and to import statements (or multiple statements) with
one click. Furthermore, an overall rating is displayed for the ontologies based on re-
views written within Cupboard. The ontologies are ordered based on that rating (see
Figure 10.2). In the alpha version of the plugin used for the experiment, advanced fea-
tures such as local trust based ratings or displaying the reviews from within the plugin
were not available. The methodological guidelines (see Figure 14.5) were adapted to
mention the Cupboard plugin in the steps that could benefit from it.

14.1.4 Role of the Facilitator

The facilitator was given guidelines (see Figures 14.6 and 14.7), explaining how to
conduct the experiment. The facilitator’s role was to find participants and assign
them to one of the three groups. Furthermore, the facilitator handed out a printed
version of the experiment’s task description and of the methodological guidelines. The
hardware was also set up by the facilitator. The facilitator was responsible to take
care of screen-capturing and saving the ontologies. During the experiment, questions
regarding the handling of the tools were also answered by the facilitator. After the
experiment ended, the facilitator gave a demonstration of the Cupboard plugin to
participants from groups 1 and 2. Ultimately, the facilitator was also responsible for
sending the questionnaire to the participants and collecting them afterwards.

14.2 Running the Experiment

When a participant was found and assigned to one of the three groups, the facilitator
handed out the task description and the methodological guidelines for the respective
group. After the participant had read the two documents, the initial step was creating
an ontology with the concept “Fish” using the NeOn Toolkit. The creation of the
ontology and concept were not part of the experiment, but rather an initial step
to ensure the user could work with the NeOn Toolkit (e.g., create classes). After
this initial step was finished and the participant was ready, the screen-capturing was
started, and time was measured. After 20 minutes (users could stop earlier if they felt
the task was completed) the ontology was saved and the screen-capturing stopped.
Users from group 1 or 2 were given a quick demonstration of the Cupboard plugin
after they finished the task. Afterwards the questionnaire was sent to the participants
to gather feedback.

183

Chapter 14 User Study

Ontology Statement Reuse Experiment 

Methodological Guidelines 
Group 3 

 

Allowed tools: Internet, NeOn Toolkit w/o additional plugins except for RaDON and the 
Cupboard plugin 

In  order  to  help  you  with  the  process,  you  can  use  the  Cupboard  plugin  to  search  for 
statements to reuse and add them to the ontology. Cupboard will rank the ontologies based 
on trust and reviews added by members of  the NeOn team. You can also use the “add all 
subclasses” or “add all superclasses” features of the plugin. 

Step 1: Ontology Statement Search 
In  this  step,  you  search  the  Internet  for  candidate  ontology  statements  that  can  be 
reused in the ontology you want to build (e.g. search in Watson for “fish”).  

A list of ontology search engines can be found here: http://tinyurl.com/ontose 

Using the Cupboard plugin, you can search  for statements directly  from within the NeOn 
Toolkit.  

Step 2: Ontology Statement Assessment 
In this step you decide which of the ontology statement is useful or not for the ontology 
being developed or extended. Some criteria to be considered are: 

• Does the statement belong to an ontology that covers the same or a similar scope 
like the ontology being developed 

• Check whether the purpose of the statement in the original ontology is similar to 
the purpose of the ontology developed 

• Check the clarity of the ontology statement  
• Check the information content of the statement 
• Assess the correctness of the statement from a formal modeling perspective 

Please note  that when using  the Cupboard plugin,  the  ontologies  come  ranked based  on 
reviews  from NeOn members.  They  have  reviewed  the  ontologies  fort  he  task  of  reusing 
them in the fish domain. In case you want to see the reviews, you can look here: http://kmi
web06.open.ac.uk:8081/cupboard/Experiment1 

Step 3: Ontology Statement Selection 
Select the best statements of the statements found for reuse. 

When using the Cupboard plugin, the ontology statements are ranked based on the reviews 
on  the  ontologies  they  are  contained  in.  Statements  from  better  ontologies  are  ranked 
higher.  

Step 4: Ontology Statement Integration 
Integrate the selected statement into the ontology being developed.  

When  using  the  Cupboad  plugin,  the  statements  can  be  included  by  simply  clicking  a 
button. It is also possible to add all sublasses or all superclasses at the click of one button, 
to avoid adding all subclasses and searching for them again to find more subclasses. 

Step 5: Check Local Inconsistencies 
In the last step the ontology has to be checked for inconsistencies. You can either try to 
do this manually, or use the RaDON plugin (if unsure how to use it, ask the facilitator). 

 

Figure 14.5: The methodological guidelines for group 3.

184

14

14.2 Running the Experiment

Guidance for Facilitators Running the NeOn Reuse Experiment 
 

First of all, thank you for volunteering to participate in the NeOn Reuse Experiment. 

 

Please make sure that you find at least three people in your institution to participate in 
the experiment and group them in three groups. The different groups will have different 
tools at their disposal to complete the task given. Timeslot per participant roughly 30‐40 
minutes. 

 

Group 1: 

• Methodological Guidelines for Group 1 
• Description of Task to be performed 
• A computer with the latest version of the NeOn Toolkit and the RaDON Plugin 

installed 
• Access to the internet 
• A sheet of paper to take notes 

Group 2: 

• Methodological Guidelines for Group 2 
• Description of Task to be performed 
• A computer with the latest version of the NeOn Toolkit and the RaDON Plugin 

installed 
• The Watson Plugin for the NeOn toolkit installed 
• Access to the internet 
• A sheet of paper to take notes 

Group 3: 

• Methodological Guidelines for Group 3 
• Description of Task to be performed 
• A computer with the latest version of the NeOn Toolkit and the RaDON Plugin 

installed 
• The Cupboard Plugin for the NeOn toolkit installed 
• Access to the internet 
• A sheet of paper to take notes 

Preparation: Depending on the platform you want to run the experiment on, please 
download the latest version of the NeOn Toolkit and install the RaDON Plugin using the 
update mechanism. Be sure that for the different groups, users do not have access to the 
Watson plugin or Cupboard plugin unless specifically mentioned in the instructions 
above. 

Running the experiment: 

Figure 14.6: First page of the facilitator guidelines.

185

Chapter 14 User Study

Please	 prepare	 the	 computer	 beforehand	 and	 ensure	 that	 all	 needed	 materials	 are	
available.	 Please	 also	 make	 sure	 recording	 software	 is	 available	 to	 capture	 the	 screen	
during	 the	 experiments.	 	

Once	 the	 participant	 has	 been	 given	 the	 material	 (based	 on	 the	 group	 you	 assigned	 them	
to),	 make	 sure	 he	 or	 she	 reads	 it	 and	 understands	 what	 to	 do.	 You	 are	 to	 provide	 help	 if	
needed.	 Once	 the	 participant	 is	 ready,	 the	 ontology	 project	 with	 the	 ontology	 containing	
the	 class	 fish	 has	 to	 be	 created.	 In	 case	 the	 user	 does	 not	 know	 how	 to	 use	 the	 NeOn	
Toolkit,	 you	 should	 briefly	 explain	 the	 functionality,	 since	 usability	 of	 the	 NTK	 is	 not	
tested	 in	 the	 experiment.	 You	 can	 guide	 the	 user	 through	 the	 process	 of	 creating	 the	
initial	 ontology.	 For	 users	 in	 group	 2	 and	 3,	 you	 should	 also	 tell	 them	 that	 the	 Watson	 or	
Cupboard	 plugin	 can	 be	 invoked	 using	 a	 right-‐click	 on	 the	 concept	 und	 selecting	 the	
search	 functionality	 from	 the	 context	 menu.	

	

Once	 the	 participant	 indicates	 that	 he	 or	 she	 is	 ready,	 turn	 on	 the	 screen	 capturing.	
During	 the	 next	 20	 minutes,	 the	 participant	 should	 perform	 the	 experiment,	 i.e.	
searching	 for	 reusable	 content	 and	 reusing	 it.	 If	 the	 user	 says	 he	 is	 finished,	 you	 can	 stop	
the	 experiment	 before	 20	 minutes	 are	 finished.	 After	 20	 minutes,	 the	 current	 state	 of	 the	
ontology	 should	 be	 saved	 (using	 as	 filename	 “Group-‐X-‐INST-‐User-‐Y”,	 where	 X	 is	 the	 user	
group	 (1-‐3),	 INST	 is	 your	 institution	 code,	 like	 OU	 or	 UKARL	 and	 Y	 an	 incremented	
number	 (e.g.	 2nd	 user	 in	 this	 group))	 and	 the	 screen	 capturing	 stopped.	 	

For	 users	 of	 group	 1	 and	 group	 2,	 please	 show	 them	 quickly	 the	 Cupboard	 Plugin	 and	
which	 functionality	 it	 offers	 (1-‐2	 minutes).	

After	 that,	 please	 send	 the	 questionnaire	 by	 email	 to	 the	 participant	 including	 the	
filename	 (Group-‐X-‐INST-‐User-‐Y)	 as	 reference.	 	

	

After	 all	 experiments	 are	 conducted,	 please	 make	 the	 results	 available	 to	 Holger	 Lewen	
(hle@aifb.uni-‐karlsruhe.de).	 You	 can	 also	 note	 comments	 and	 impressions	 you	 had	
during	 the	 experiment.	

	

Thank	 you	 very	 much	 for	 your	 help!	 	

	

	

	

	

	

Figure 14.7: Second page of the facilitator guidelines.

186

14

14.2 Running the Experiment

14.2.1 Questionnaire

The questionnaire was sent to all participants with the purpose of finding out basic
information about the participants (e.g., their level of expertise, understanding of
the task) and gathering feedback on the experiment. The questions can be found in
Figures 14.8, 14.9, and 14.10. Because the answers are all subjective statements, they
provide a good insight on how well the tool was received by the participants, and
make sure the participants understood the task given to them. In addition to the
results from the questionnaire, we analyzed the videos and ontologies created by each
participant.

14.2.2 Preparation of Cupboard for the Experiment

Since gathering reviews for all ontologies in Watson was unrealistic in the time available
for preparing the user study, we decided to focus on a limited subset of the Watson
corpus. We therefore searched Watson for all ontologies containing the concept “fish”
and uploaded them to a specific Cupboard space called “Experiment1”. We then asked
qualified members of the NeOn project to review these ontologies. The ontologies with
their reviews can be found in the Experiment1 Cupboard space.6

The reviewers could also add trust or distrust statements to other reviewers. For the
experiment we decided to use the average over the five aspects (meaning all weights
µk were given the same value) based on global trust to compute the overall rating for
each ontology. This had the advantage that the ranking order and results was the
same for all users, which allowed for a better comparison between users of the three
groups.

14.2.3 Hardware and Software Used

The experiments were conducted on a 15.4 inch MacBook Pro running MacOS X
Leopard. All groups were using the NeOn Toolkit version 1.2.2 B904 extended for
Mac. This NeOn Toolkit version was the latest available release at the time of the
experiment. Since the functionality used for the experiments did not change in newer
versions of the NeOn Toolkit, the results still hold for the current version of the NeOn
Toolkit.

Group 2 already had the Watson plugin for NeOn Toolkit installed, and group 3
had the Cupboard plugin for NeOn Toolkit installed.

6http://cupboard.open.ac.uk:8081/cupboard/Experiment1, last checked on 24.11.2010

187

http://cupboard.open.ac.uk:8081/cupboard/Experiment1

Chapter 14 User Study

NeOn Reuse Experiment Questionnaire 
 

1. How would you rate your previous experience with the tools used in the test?

Beginner Moderate Expert NA/DK

2. How would you rate your previous experience in ontology engineering?

Beginner Moderate Expert NA/DK

3. Please indicate how you perceived the amount of time needed to execute the tasks of the experiment:

Low Average High NA/DK

4. Your understanding of the tasks comprised in the experiment was:

Low Average High NA/DK

5. How did you find the support provided by the facilitator?

Inadequate Adequate Excellent NA/DK

6. How would you rate the difficulty of the task you executed?

Low Average High NA/DK

7. Did you use the NeOn Toolkit before?

Yes No

8. Did you have trouble finding ontology statements to reuse?

Yes No

9. Did you have trouble selecting ontology statements to reuse?

Yes No

Figure 14.8: First page of the experiment questionnaire.

188

14

14.2 Running the Experiment

10. Did you have trouble integrating ontology statements to reuse?

Yes No

11. How useful did you find using the NeOn reuse methodology as a guideline to perform the task?

Not very Reasonably Very NA/DK

 This part only if you used the Cupboard Plugin during the experiment. If not, go to question 17.

12. How useful did you find the possibility to search for statements to reuse from within the NeOn Toolkit?

Not very Reasonably Very NA/DK

13. How useful did you find the ranking of the statements based on reviews by NeOn members?

Not very Reasonably Very NA/DK

14. How useful did you find the possibility to add statements directly from within the plugin?

Not very Reasonably Very NA/DK

15. How useful did you find the possibility to add multiple superclasses / subclasses with the click of a
single button?

Not very Reasonably Very NA/DK

16. Did the ranking provided by the trust engine help you decide which statement to reuse?

Yes No

- Please go to question 19.

 This part only if the Cupboard Plugin was not used in the experiment, but shown afterwards

17. Would you have liked to have used the Cupboard Plugin during the experiment?

Yes No

18. How helpful do you think the Cupboard Plugin is when performing a reuse task as executed in the
experiment?

Not very Reasonably Very NA/DK

Figure 14.9: Second page of the experiment questionnaire.

189

Chapter 14 User Study

19. What functionalities would you like to see in next versions of the Cupboard Plugin?

20. Please, add any critical comments or positive suggestions on how the system might be improved.

21. Finally, could you add any comments, criticisms or suggestions about any aspect of the system not
covered in the above questions? Thanks for your cooperation in this.

 

Figure 14.10: Third page of the experiment questionnaire.

190

14

14.3 Results

14.3 Results

In this section we present the results of the experiment, with the analysis following
in the next section. We will both provide a table displaying information about the
ontologies produced, and tables summarizing the results of the questionnaires. In order
to keep the evaluation transparent, the videos, ontologies and questionnaires can be
found online.7

14.3.1 Ontologies

In order to somehow quantify the ontologies produced by the different groups, we
took a look at both the number of axioms and the quality of the ontology with respect
to good engineering practices. Table 14.1 presents a table with information on the
ontologies engineered during the experiment. In the table, “different sources used”
refers to the number of ontologies from which statements were reused. “Self-Created
Axioms” refers to axioms which were not found in another ontology, but created from
scratch or based on knowledge acquired from other non-ontological sources.

14.3.2 Questionnaire Results

To gather demographic data about our users and get feedback, each participant had
to fill out a questionnaire after the experiment was finished. As can be seen in Fig-
ures 14.8, 14.9, and 14.10, some questions are group specific (only for participants in
group 3, or only for participants not in group 3).

We have created tables for the questionnaire results, each also containing the distri-
bution within a group and over all groups in percent. Table 14.2 provides the responses
for questions 1 through 7, while Table 14.3 covers questions 8 through 11. Questions
12 through 16 were only answered by group 3. The results for these questions can be
found in Table 14.4. The remaining 2 questions were only answered by groups 1 and
2, and the results can be found in Table 14.5.

14.4 Analysis

In order to draw conclusions from the experiment, we analysed both the questionnaire
and the ontologies produced. We will start by giving some basic information about our

7The resulting files can be found at: http://people.aifb.kit.edu/hle/thesis/user-experiment/,
last checked on 24.11.2010.

191

http://people.aifb.kit.edu/hle/thesis/user-experiment/

Chapter 14 User Study

Table 14.1: Quantitative information on the ontologies created in the experiment.
Group User Class Object SubClass Equivalent Different Self-

in Count Property Count Class Sources Created
Group Count Count Used Axioms

1 1 7 3 5 0 5 2
1 2 6 0 2 1 4 1
1 3 10 1 8 0 2 7
1 4 14 1 12 0 1 12
1 5 5 0 2 2 3 0
1 6 11 0 8 2 3 0
2 1 49 1 45 0 7 6
2 2 141 0 140 0 10 0
2 3 16 1 13 0 2 3
2 4 131 0 132 0 4 0
2 5 76 0 75 0 8 0
2 6 24 0 23 0 14 0
2 7 20 0 19 0 5 0
3 1 1429 0 1431 0 3 0
3 2 581 0 582 0 3 0
3 3 591 0 593 0 2 0
3 4 863 0 877 0 3 0
3 5 591 0 293 0 2 0
3 6 592 0 594 0 2 1
3 7 591 0 593 0 3 0

192

14

14.4 Analysis

Table 14.2: Questionnaire Results Questions 1 – 7
Q1: How would you rate your previous experience with the tools
used in the test?

Group 1 Group 2 Group 3 Overall
Beginner 3 (50%) 4 (57%) 5 (71%) 12 (60%)
Moderate 2 (33%) 3 (43%) 2 (29%) 7 (35%)
Expert 1 (17%) 0 (0%) 0 (0%) 1 (5%)
Q2: How would you rate your previous experience in ontology
engineering?

Group 1 Group 2 Group 3 Overall
Beginner 1 (17%) 2 (29%) 2 (29%) 5 (25%)
Moderate 1 (17%) 5 (71%) 5 (71%) 11 (55%)
Expert 4 (67%) 0 (0%) 0 (0%) 4 (20%)
Q3: Please indicate how you perceived the amount of time needed
to execute the tasks of the experiment

Group 1 Group 2 Group 3 Overall
Low 2 (33%) 2 (29%) 6 (86%) 10 (50%)
Average 3 (50%) 3 (43%) 1 (14%) 7 (35%)
High 1 (17%) 2 (29%) 0 (0%) 3 (15%)
Q4: Your understanding of the tasks comprised in the experiment
was?

Group 1 Group 2 Group 3 Overall
Low 0 (0%) 1 (14%) 0 (0%) 1 (5%)
Average 3 (50%) 0 (0%) 0 (0%) 3 (15%)
High 3 (50%) 6 (86%) 7 (100%) 16 (80%)
Q5: How did you find the support provided by the facilitator?

Group 1 Group 2 Group 3 Overall
Inadequate 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Adequate 1 (17%) 3 (43%) 1 (14%) 5 (25%)
Excellent 5 (83%) 4 (57%) 6 (86%) 15 (75%)
Q6: How would you rate the difficulty of the task you executed?

Group 1 Group 2 Group 3 Overall
Low 2 (33%) 4 (57%) 4 (57%) 10 (50%)
Average 2 (33%) 3 (43%) 2 (29%) 7 (35%)
High 2 (33%) 0 (0%) 1 (14%) 3 (15%)
Q7: Did you use the NeOn Toolkit before

Group 1 Group 2 Group 3 Overall
Yes 3 (50%) 4 (57%) 4 (57%) 11 (55%)
No 3 (50%) 3 (43%) 3 (43%) 9 (45%)

193

Chapter 14 User Study

Table 14.3: Questionnaire Results Questions 8 – 11
Q8: Did you have trouble finding ontology statements to reuse?

Group 1 Group 2 Group 3 Overall
Yes 6 (100%) 1 (14%) 1 (14%) 8 (40%)
No 0 (0%) 6 (86%) 6 (86%) 12 (60%)
Q9: Did you have trouble selecting ontology statements to reuse?

Group 1 Group 2 Group 3 Overall
Yes 5 (83%) 5 (71%) 0 (0%) 10 (50%)
No 1 (17%) 2 (29%) 7 (100%) 10 (50%)
Q10: Did you have trouble integrating ontology statements to
reuse?

Group 1 Group 2 Group 3 Overall
Yes 5 (83%) 1 (14%) 0 (0%) 6 (30%)
No 1 (17%) 6 (86%) 7 (100%) 14 (70%)
Q11: How useful did you find using the NeOn reuse methodology
to perform the task?

Group 1 Group 2 Group 3 Overall
Not very 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Reasonably 1 (17%) 4 (57%) 1 (14%) 6 (30%)
Very 2 (33%) 6 (86%) 6 (86%) 11 (55%)
NA/DK 3 (50%) 6 (86%) 0 (0%) 3 (15%)

194

14

14.4 Analysis

Table 14.4: Questionnaire Results Questions 12 – 16 (only for Group 3)
Q12: How useful did you find the possibility to search for state-
ments to reuse from within the NeOn Toolkit?

Group 3
Not very 0 (0%)
Reasonably 0 (0%)
Very 7 (100%)
Q13: How useful did you find the ranking of the statements to
reuse based on reviews by NeOn members?

Group 3
Not very 0 (0%)
Reasonably 4 (57%)
Very 3 (43%)
Q14: How useful did you find the possibility to add statements
directly from within the plugin?

Group 3
Not very 0 (0%)
Reasonably 0 (0%)
Very 7 (100%)
Q15: How useful did you find the possibility to add multiple su-
perclasses / subclasses with the click of a single button?

Group 3
Not very 0 (0%)
Reasonably 0 (0%)
Very 7 (100%)
Q16: Did the ranking provided by the trust engine help you decide
which statements to reuse?

Group 3
Yes 6 (86%)
No 1 (14%)

195

Chapter 14 User Study

Table 14.5: Questionnaire Results Questions 17 – 18 (only for Groups 1 & 2)
Q17: Would you have liked to have used the Cupboard Plugin during
the experiment?

Group 1 Group 2 Overall
Yes 6 (100%) 7 (100%) 13 (100%)
No 0 (0%) 0 (0%) 0 (0%)
Q18: How helpful do you think the Cupboard Plugin is when performing
a reuse task as executed in the experiment?

Group 1 Group 2 Overall
Not very 0 (0%) 0 (0%) 0 (0%)
Reasonably 0 (0%) 0 (0%) 0 (0%)
Very 6 (100%) 7 (100%) 13 (100%)

participants. We had a total of 20 participants from 6 different academic institutions.
Most of the participants were PhD students, but we also had 2 postdocs and 1 professor
participating. We selected people both from within the NeOn project (4 participants)
and outside the NeOn project (16 participants). The idea was to have a heterogeneous
group and not to be biased in the selection of participants. As can be seen in Table 14.2,
more than half of the total participants gauged their experience with the NeOn Toolkit
and other tools as beginner (Question 1). Also more than half of the total participants
thought of themselves as beginners with regard to ontology engineering (Question
2). Nevertheless, the vast majority of the users had no trouble understanding the
task (Question 3), regardless of whether they were ontology engineering experts or
beginners. We will now analyze the results group by group and then relate the different
groups to each other.

14.4.1 Group 1

Since group 1 is our control group without tool support, it is supposed to serve as
a baseline for how ontology engineers nowadays can reuse ontological content on the
Internet without having tool support within the ontology engineering environment. Of
the six participants in group 1, four are ontology engineering experts, one is a beginner
and one has moderate ontology engineering experience (see Table 14.2 Question 2).

Analysis of the Videos

While analysing the video, it was surprising to see that even expert users had trouble
finding ontological statements to reuse and to integrate them into their ontology in the
NeOn Toolkit. Most had problems using the ontology search engines on the Internet,
despite trying out several different ones. Most of the tools had usability issues, leading

196

14

14.4 Analysis

to situations were the participants expected a certain action and triggered another.
This can be seen in the videos when a user clicks somewhere, only to immediately
go back and click another button until the desired outcome is obtained. Most of the
participants gave up searching for content to reuse, and started modeling the ontology
directly from within the toolkit. Some where using their own knowledge about the
fish domain, some were consulting Google8 or Wikipedia9. Most participants did give
up on the idea of reusing existing ontological knowledge after trying to find adequate
content at the beginning and reverted back to creating the content from scratch.

Analysis of the Questionnaire Results

Analyzing the videos, we got the impression that the participants had trouble finding
and integrating statements to reuse. The impression was confirmed by the question-
naire answers of the participants. All of the participants in group 1 said they had
trouble finding statements to reuse (see Table 14.3 Question 8) and all but one had
trouble integrating found statements (Question 10). Also, all but one participant had
problems selecting ontology statements to reuse from the statements found during the
search (Question 9). Regarding the methodology, which was presented as a guideline
to facilitate the reuse process, half of the participants found it at least reasonably
useful, while the other half did not respond (Question 11). Since group 1 contained
mainly expert users, these might already have their own methodology internalized,
and not rely on the one presented in the experiment.

Analysis of the Resulting Ontologies

When checking the metrics for ontologies produced by group 1 (see Table 14.1), it
becomes evident that all of the resulting ontologies are small in size (ranging from 7 to
14 classes). While all participants from group 1 tried to reuse at least some ontology
statements they found on the web, the majority started to add their own axioms at
some point in the experiment (compare the self-created axioms column). In the Linked
Data spirit, 3 participants linked the reused classes to the original class either using the
equivalent class axiom, or directly reusing the URI for the reused class. One problem
that we also observed mainly with participants in group 2 was the reuse of super-classes
from different (upper level) ontologies. For example, in one ontology “Fish” was both
a subclass of “Vertebrate” (this statement comes from CYC) and “ColdBloodedVer-
tebrate” (this statement comes from SUMO), with “ColdBloodedVertebrate” being
a subclass of “Vertebrate” (coming from SUMO). Here the participant should have
corrected the taxonomy by removing the superclass “Vertebrate” from “Fish”. Other

8http://www.google.com/search?hl=en&q=fish&btnG=Suche&meta=, last checked on 24.11.2010
9http://en.wikipedia.org/wiki/Fish, last checked on 24.11.2010

197

http://www.google.com/search?hl=en&q=fish&btnG=Suche&meta=
http://en.wikipedia.org/wiki/Fish

Chapter 14 User Study

participants created ontologies that contained only references to the concept “Fish”
in other ontologies.

For most of the ontologies created, their purpose was not clear and the requirements
from the task description were not fulfilled. It was evident that all participants had
problems both finding content to reuse and also assessing and integrating found content
into their ontology. This is why most participants started modeling without reusing
ontological content. The resulting ontologies can be found online.10 It is important
to note that some of the axioms found in these ontologies were created manually and
not reused (the videos show which axioms were reused and which created by hand).

14.4.2 Group 2

More than half of the users in group 2 judged themselves beginners with respect to
the NeOn Toolkit and Watson plugin (see Table 14.2 Question 1), but most of them
have moderate ontology engineering experience (Question 2).

Analysis of the Videos

While the user interface of the Watson plugin is simple and straight forward to use
(see Figure 14.1), most participants had problems selecting the best statements to
reuse from the list of results. They browsed the list of results, and then started adding
statements from all over the list. It seems that many participants did not take the time
to actually assess the found statements and check whether they integrate well into the
current ontology (e.g., the statement serves a similar purpose in the original ontology).
They rather started adding statements from as many sources as possible. Also people
started to look for statements related to reused statements (doing a Watson search
on parts of axioms they imported from Watson), not necessarily focusing on the fish
domain. In two cases, the participants started to create classes themselves, not using
the plugin.

Analysis of the Questionnaire Results

As we expected after analysing the videos, all but 1 participant had no trouble finding
potential statements to reuse (see Table 14.3 Question 8), but most had trouble se-
lecting the ontology statement from the list of found statements (Question 9). While
triggering the search (and thereby receiving results from Watson) from within the
NeOn Toolkit is easy, selecting the best statements from this list is not. Since the
ranking of results in Watson (and therefore also in the Watson plugin) is mainly based
on the Lucene engine, the quality of the ontologies is not factored into the ranking.

10http://people.aifb.kit.edu/hle/thesis/user-experiment/ontologies/, last checked on
24.11.2010

198

http://people.aifb.kit.edu/hle/thesis/user-experiment/ontologies/

14

14.4 Analysis

Therefore a user had to look at all found statements to know which were good and
which not. The integration of found axioms was then easy (Question 10), since axioms
could be integrated with the click of a button. All users found the provided methodol-
ogy at least reasonably useful (Question 11). Note that the methodology was adapted
for group 2 to explain in which steps the Watson plugin can be used.

Analysis of the Resulting Ontologies

First of all, all ontologies produced by group 2 (see Table 14.1), are larger in size than
those produced by group 1. Also, on average, twice as many different sources were
used by participants of group 2 compared to group 1 (7.1 different sources on average
in group 2 compared to 3 different sources on average in group 1). The increased size
of the ontology, and the bigger number of reused content can easily be explained by
the very nature of the Watson plugin. When using the Watson plugin, many results
are presented from which statements can then easily be reused.

The problem with the resulting ontologies is that users often blindly reused state-
ments without checking whether they need them in their ontology. Most ontologies
found on the Internet were build with a specific use case in mind, so the way the
world or a domain is modeled varies based on the use case requirements. Sometimes
the taxonomy is very fine grained, while in other cases only relevant information
is included. When reusing blindly from too many sources, the resulting ontologies
face quality problems. In one ontology for example, “Fish” is a subclass of “An-
imalFoods”, “AquaticOrganism” and “Seafood”. In another ontology “Fish” is a
subclass of “AquaticOrganism”, “MarineAnimal”, “Organic”, “Seafood” and “Ver-
tebrate”. Normally one would expect that these super-classes would themselves be in
some sort of hierarchy, if they were at all needed within one ontology. As said before,
there are good reasons to have each of them as a superclass in one ontology, depending
on the purpose of the ontology, but when combined, the hierarchy does not make much
sense anymore. In another ontology, which described fish dishes, “Fish” is a subclass
of “NonHuman”. It is unclear why this statement would be needed in this context.
Most of the ontologies created face similar problems. The users reused content from
various sources, but without assessing which statements they might need. So one can
say that reusing is easy with the Watson plugin, but knowing what to reuse is still
hard.

14.4.3 Group 3

Most of the users in group 3 judged themselves beginners with respect to the NeOn
Toolkit and the Cupboard plugin (see Table 14.2 Question 1), but the majority of
them has moderate ontology engineering experience (Question 2).

199

Chapter 14 User Study

Analysis of the Videos

Most of the users finished the task very quickly, reusing mostly two or more of the first
four ontologies in the result list. The users also heavily used the “add all superclasses”
and “add whole sub-branch” feature. This feature was added to the Cupboard plugin,
since the ontologies in Cupboard can be reviewed, and the ratings seen from within
the plugin. We felt it was more secure if a user knew an ontology was rated 4 stars
and then chose to add more content based on a single statement than in the case of
the Watson plugin. Since the user can only see one axiom in both Cupboard and the
Watson plugin, a certain trust should be placed in the ontology before blindly reusing
statements. This was offered in the form of ontology reviews and ratings from NeOn
members. These reviews and ratings also influenced the ranking of the results within
the plugin.

Analysis of the Questionnaire Results

The questionnaire answers confirmed (as we anticipated from analyzing the videos)
that neither finding, nor selecting or integrating ontology statements posed a problem
for participants of group 3. All but one participant said they did not have trouble
finding ontology statements to reuse (see Table 14.3 Question 8), and none had trouble
selecting it (Question 9), or integrating it (Question 10) into their ontology. All but
one users found the provided methodology very useful (Question 11). Note that the
methodology was adapted for group 3 to explain where the Cupboard plugin can be
used.

Also the time needed to execute the task of the experiment was perceived low by
all but one participant (see Table 14.2 Question 3), in contrast to participants from
groups 1 and 2. Group 3 had some specific questions related to the functionality offered
by the Cupboard plugin. All of the participants found the possibility to search for
statements to reuse from within the NeOn Toolkit, and adding them (and potentially
multiple super- and subclasses) directly very useful (see Table 14.4 Question 12, 14,
and 15). All participants found the ranking of the statements based on the reviews at
least reasonably useful, 3 found it very useful (Question 13). All but one participant
said that the ranking helped in the selection process of the statements (Question 16).

Analysis of the Resulting Ontologies

All ontologies produced by group 3 (see Table 14.1) are big in size, which is mainly
due to the possibility of adding multiple statements with one click and the size and
structure of the ontologies available in Cupboard. All participants reused at most
3 ontologies, mostly SUMO as upper level ontology, and two ontologies containing
information about different fish type and species. Except for one participant, all par-
ticipants used only SUMO as upper level ontology, and not CYC. One user decided to

200

14

14.5 Statistical Analysis of Questionnaire Results

use both. 2 users used the scientific classification of fish, one together with the infor-
mation on fish types from another ontology, and one only the scientific classification.
The rest chose to only reuse information on the different fish type. In general only
ontologies rated highly were reused by the participants, so there is no obvious quality
problem with the resulting ontology. In comparison to participants using the Watson
plugin, participants using the Cupboard plugin did not blindly add statements from
all ontologies, but focused on the best rated ones.

14.4.4 Relation Between Groups

As discussed in the group analysis before, one could say that group 1 had the hardest
time finding, selecting and integrating ontology statements to reuse in their ontology.
The participants did not manage to produce a suitable ontology satisfying the task
requirements given the 20 minutes time limit. Participants of group 2 had no trouble
finding and integrating ontology statements thanks to the Watson plugin, but did not
know which statements to reuse. This often led to ontologies containing statements
from many different ontologies, resulting in serious modeling issues. The last group
completed the task very quickly, based on the quality information provided through
the Cupboard plugin. After the recording was stopped, all participants of group 1
and 2 were given a quick demonstration of the Cupboard plugin. In the questionnaire,
they unanimously stated they thought the plugin was very helpful for the reuse task
performed in the experiment (see Table 14.5 Question 18) and that they would have
liked to use it during the experiment (Question 19).

14.4.5 Remarks on Linked Data

As stated before, some participants in group 1 manually took care of linking the
ontology created the ontology they reused, be it by reusing the URI (which can be
problematic) or creating equivalent classes. Both the Watson and the Cupboard plugin
offer the functionality to automatically create equivalent classes for each statement that
is imported. We have disabled this feature for the experiments, since the equivalent
classes show up in the ontology (which results in the user seeing two classes with the
same name, one of which is the local class and the other is the equivalent class with the
URI), which can confuse the user and hinder usability. For future versions, we plan
to automatically provide mapping files linking the created ontology to the ontologies
from which statements were reused.

14.5 Statistical Analysis of Questionnaire Results

We have discussed the results of the user experiment without using a statistical analysis
of the data up to this point. In this section we employ statistical techniques to verify

201

Chapter 14 User Study

Table 14.6: P values for pairwise group comparison using Fisher’s exact test with
Yate’s continuity correction.

Q8: Did you have trouble finding ontology statements to reuse?
Gr.1 Gr.2 Gr.3 p Gr.1 vs Gr 2. p Gr.1 vs Gr.3 p Gr.2 vs Gr.3

Yes 6 1 1
0.0047 0.0047 1

No 0 6 6
Q9: Did you have trouble selecting ontology statements to reuse?
Gr.1 Gr.2 Gr.3 p Gr.1 vs Gr 2. p Gr.1 vs Gr.3 p Gr.2 vs Gr.3

Yes 5 5 0
1 0.0047 0.021

No 1 2 7
Q10: Did you have trouble integrating ontology statements to reuse?

Gr.1 Gr.2 Gr.3 p Gr.1 vs Gr 2. p Gr.1 vs Gr.3 p Gr.2 vs Gr.3
Yes 5 1 0

0.0291 0.0047 1
No 1 6 7

the validity of our findings.

The three most important questions in the questionnaire where questions 8 through
10, which were designed to cover the three basic steps of the ontology reuse process.
Question 8 covers search, question 9 selection, and question 10 integration. Table 14.6
provides two-sided p values for pairwise group comparison based on Fisher’s exact
test (Fisher, 1922) with Yate’s continuity correction (Yates, 1934) for Questions 8–10.
Fisher’s exact test measures the statistical significance in small contingency tables,
and is an exact test, meaning the deviation from the null hypothesis can be computed
exactly. Yate’s continuity correction is used to prevent overestimation of p-values for
our small sample size. The null hypothesis for Fisher’s exact test is that there is no
difference between the two groups, which is rejected for small p values. As is evident
from the table, users using either the Watson or the Cupboard plugin had neither
trouble finding nor integrating ontological content, compared to users who only could
use ontology search engines on the Internet (based on p values, the findings are highly
significant for p = 0.0047 and significant for p=0.0291). Group 3, which had the
results ranked based on user ratings, stated they had no problem selecting ontology
statements compared to both the Watson group (whose result ranking was based on
Lucene), or group 1 which was using a plethora of Semantic Web search engines on the
Internet. This result is statistically significant and shows that users have less problems
selecting content when offered TS-ORS ranking and scores compared to the current
state of the art.

202

14

14.6 Conclusion

14.6 Conclusion

In the course of the experiment we could see what problems also experienced ontology
engineers face when trying to reuse ontological content. The main three problems are
finding the statements to reuse, then assessing them and lastly integrating them. The
problem of finding statements to reuse is nowadays addressed by many ontology search
engines.11 However, most of them simply store all RDF, OWL, or FOAF documents
they find on the Internet without prior quality checks. Also their user interface is still
confusing users, and when statements have been found and the decision has been made
which statements to reuse, users still have to manually add them to their ontologies.
Participants from group 1 faced all these problems, since they had no integrated tool
support for search, selection or integration.

The Watson plugin addresses the problems of search and integration, since it uses
the Watson API to expose the search functionality directly in the NeOn Toolkit as
a plugin, and also allows for easy integration of found statements. But it does not
offer quality information on the indexed ontologies, thus leaving the selection process
entirely to the user. As seen in the experiment, users could create larger ontologies
more easily with the Watson plugin, but still had trouble deciding which statements
to reuse. One can say that with the Watson plugin it is easy to reuse ontological
content, but it is also easy to create an ontology that does not adhere to good ontology
engineering practice.

Cupboard offers users the possibility to review ontologies and trusting reviewers.
The TS-ORS computes ratings on each ontology based on weights for each ontology
aspect and the best reviews for each ontology–aspect combination. The best reviews
are determined by algorithms that compute both local (user-specific) trust and global
(not user-specific) trust. The Cupboard plugin uses these ratings to produce a ranking
of the results, and also displays the overall rating as stars and numerically. This feature
was welcomed by the users and facilitated the selection process. Overall the ranking
must have been quite accurate, since the users only reused statements from one of
the top four ranked ontologies, even though they checked the statements in the lower
ranked ontologies as well. In comparison users of the Watson plugin reused statements
from all over the result-list, since the list had no quality specific order.

Of course the quality of an ontology resulting only from reuse can only be as good as
the ontologies available to the search engine. And in most of the cases ontologies will
have to be adapted for a specific application or use case, and thus differ from existing
ontologies. It is thus unfeasible to create them only reusing content. There are many
cases, however, where a small ontology can quickly be populated with existing axioms,
which can then later be extended, moved, re-factored or deleted. For our experiment

11http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/

SemanticWebSearchEngines, last checked on 24.11.2010

203

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines

Chapter 14 User Study

in the fish domain, it was not too difficult finding ontologies with which we populated
Cupboard or to find people reviewing them. We believe that taking the extra effort
of reviewing the ontologies beforehand goes a long way in facilitating and encouraging
reuse. For the participants of group 3, building an initial ontology about fish which
they could then later extend and re-engineer was a matter of a few minutes. Compared
to the results of the other two groups, we feel confident to say that we have shown that
the Cupboard Plugin facilitates reuse by solving all problems normally encountered
by the users, namely finding, selecting and integrating existing ontological content.
We have also shown that having the quality information and ranking of the TS-ORS
available significantly facilitated the reuse process for the participants of our study
(see Section 14.5).

204

Part V

Related Work and Conclusions

15 Related Work 207

16 Conclusions and Open Questions 213

TABLE OF CONTENTS

206

15

Chapter 15

Related Work

While most of the related work has been introduced and referenced in Chapter 2, we
summarize the differences between our TS-ORS and related work in this chapter. We
start by discussing additional related work in ontology evaluation in Section 15.1. We
then cover other trust networks and trust propagation techniques in Section 15.2. The
TS-ORS is compared to recommender systems in Section 15.3 and to Open Rating
Systems in Section 15.4.

15.1 Related Work in Ontology Evaluation

Apart from the already mentioned evaluation techniques, sometimes a gold standard
exists, against which an ontology can be compared automatically by using similarity
measures (Maedche and Staab, 2002; Dellschaft and Staab, 2006). This approach is
encountered mostly in the area of ontology learning, where the learning procedure
is evaluated by comparing the produced ontology against a known or created gold
standard. For the case of ontology reuse, this approach is not relevant, since if the
gold standard is known, there is no need to find other ontologies.

Vrandecic extended Gangemi’s framework (Vrandecic, 2010) for ontology evaluation.
He identifies eight criteria according to which ontologies can be evaluated:

• Accuracy: States whether the knowledge about a domain is modeled accurately
by the axioms of an ontology.

• Adaptability: Measures how well an ontology can be adapted to fit its intended
usage. For example, it should be possible to extend an ontology monotonically,
i.e., without the need to remove axioms.

• Clarity: Measures how well an ontology communicates its intended meaning in
terms of its defined terms. Ideally, definitions are objective and context inde-
pendent. Difficult axioms should be documented.

• Completeness: Measures whether the domain of interest is covered appropriately,
that means, whether all questions an ontology should be able to answer can be

207

Chapter 15 Related Work

answered. The different aspects of completeness are completeness with regards
to the language, the domain, or the applications requirements.

• Computational efficiency: Measures the ability of employed tools and applica-
tions to work with an ontology. This covers required reasoning time for fulfilling
required tasks. Related to the reasoning time is the use of certain type of axioms,
that can slow down certain reasoners.

• Conciseness: States if an ontology includes irrelevant axioms that are not needed
for its intended usage. For example, if only a certain domain should be covered,
axioms covering other domains are irrelevant and make the ontology less concise.

• Consistency: Describes whether an ontology allows for contradictions. Logi-
cal consistency is one aspect, alongside the consistency of formal and informal
descriptions in an ontology. For consistency, also the compliance with other prin-
ciples can be tested. One example is an taxonomy’s adherence to the OntoClean
constraints (Guarino and Welty, 2002; Guarino and Welty, 2004).

• Organizational fitness: This criteria describes how easily an ontology can be
deployed within an organization. Deployment can be facilitated by providing
sufficient meta-data on the ontology, for example on used methodologies or com-
patible tools. Also the alignment of an ontology to an upper level ontology like
DOLCE (Gangemi et al., 2002) can facilitate organizational fitness, for example
if all ontologies in an organization share the same upper level ontology.

Since the development of Cupboard preceded Vrandecic’s framework, we could not use
his framework in our system. His framework is more accurate than the 5 aspects we
use, but it has to be kept in mind that an increase of aspects X in the TS-ORS has a
direct effect on the computation time needed. The trust computations are performed
for each ontology–aspect combination separately, and each increase in X increases the
amount of computations necessary by at least the number of ontologies in the system.

In general our approach is different than other ontology evaluation approaches in
that we rely on users to provide the evaluations, and not on automatic techniques.
Still, automatic techniques can be incorporated into the TS-ORS if their results can
be interpreted on the five star rating scale.

15.2 Related Work in Trust Networks and Trust
Propagation

Parts of this section are based on (Kubias et al., 2007). There are several reputa-
tion systems relying on trust and trust propagation. Normally, trust or reputation is
computed by transitively propagating trust over multiple iterations through looped or

208

15

15.2 Related Work in Trust Networks and Trust Propagation

arbitrary long chains. Models following this procedure are often called “flow models”.
Some flow models, like Advogato’s reputation scheme (Levien, 2003) and Google’s
PageRank (Page et al., 1998) assume a constant reputation weight for the entire com-
munity, and the value is divided among all the members. In these systems, a user
can only increase reputation at the cost of others. Other flow models do not require a
constant sum of the reputation scores. The EigenTrust model (Kamvar et al., 2003)
computes reputations scores based on repeated and iterative multiplication and aggre-
gation of scores along transitive chains until all scores converge to stable values.

Reputation-based trust systems are used for example in Peer-to-Peer (P2P) net-
works, in Web environments and also on the Semantic Web.

In P2P networks, reputation-based trust is used to tackle the problem of data quality.
In contrast to the classical Web infrastructure, a user is both server and client at the
same time. Since there are no quality control mechanisms to hinder putting malicious
files on the network, trust systems have to be used to act as a quality control and
protect the users from loading unreliable content. The idea is that a well-reputed
user would not jeopardize his reputation by putting malicious content on the network.
Concrete systems for P2P networks have been proposed by (Aberer and Despotovic,
2001; Cornelli et al., 2002; Damiani et al., 2002; Kamvar et al., 2003; Fahrenholtz and
Lamersdorf, 2002; Liau et al., 2003; Gupta et al., 2003). Some the systems derive
their ranking algorithms from the PageRank (Page et al., 1998) algorithm, like the
EigenTrust algorithm (Kamvar et al., 2003) or the P2PRep system (Cornelli et al.,
2002). In these systems, the global reputation score for each agent represents the
perceived upload quality of a peer. The upload quality sometimes is measured by
simply counting the number of successful uploads. Aberer’s approach (Aberer and
Despotovic, 2001) uses statistical analysis to characterize trust, leading to a more
scalable system, since no performance history has to be maintained. With the XRep
protocol, (Damiani et al., 2002) uses a method for reputation management that allows
an automatic vote using users’ feedback on the best host for a given resource. A survey
of common problems of reputation-based systems with possible solutions is provided
in (Jøsang et al., 2007).

In Web environments trust is usually modeled transitive, meaning that trusting one
site or information requires trusting associated sites or information. In general, in
Web environments reputation is defined as a measure of trust. A so called “web of
trust” (WOT) is created by the reputation information each entity has recorded on
another entity. How trust is transferred between hyperlinks on the Web is examined
in (Stewart, 1999; Stewart and Zhang, 2003). A similar approach is used in (Gyöngyi
et al., 2004) to combat Web spam. Given a set of user assignments on Web pages
which state whether a users consider a page spam, their approach TrustRank uses the
link structure between Web pages to derive which other Web pages are spam. For
this approach to work on Web links, which are by default untyped, the assumption in
accordance with (Page et al., 1998) is that all Web links are positive endorsements and

209

Chapter 15 Related Work

thus indications of trust. Since this general assumption does not always hold, (Massa
and Hayes, 2005) proposes an HTML extension that allows the authors of Web pages
to specify whether a link should be interpreted as positive, negative or neutral. One
problem with most models is that they do not consider context and thus do not
differentiate between “topic-specific” and referral trust. Methods that do distinguish
between the domain of knowledge (i.e., the context) and referral trust, can be found
in (Ding et al., 2004b; Ding et al., 2003).

Ideas on how to use trust on the Semantic Web to verify knowledge encoded in the
triples can be found in (Bizer and Oldakowski, 2004). As a proof of concept, (Bizer et
al., 2005), provides a browser able of filtering content based on a user-defined policy.
In (Ding et al., 2003), agents can use both context and reputation to decide which
information on the Semantic Web can be trusted. Referral trust is used to collect
reputation, but the context is determined using semantic technologies. Ontologies are
used to express trust and reputation information in (Golbeck and Hendler, 2004a;
Golbeck and Hendler, 2004b). In (Golbeck, 2006a), the Semantic Web is used to-
gether with “provenance” to infer trust relations. Provenance in this case refers
to details about the source and origin of information that can be used to evaluate
trust. Examples are author, citations, or publisher. The provenance relates people
with information, and the Semantic Web contains the social network data needed
for trust score computation. Another method using provenance and computations
over a WOT for information sources selection can be found in (Ding et al., 2005).
Here, information about determined provenance is used to find more trusted sources,
while taking the concept of ignorance, i.e., not having any trust information, into
account. Other key works also taking distrust and robustness to noise into account
when computing trust transitively for Web applications are (Richardson et al., 2003;
Guha et al., 2004). How to deal with controversial users, i.e., users who are trusted
by some and distrusted by others is examined in (Massa and Avesani, 2005).

Jennifer Golbeck (Golbeck, 2005) presents the TidalTrust algorithm that allows
to propagate trust inside a social network. She uses 10 discrete values to express
trust based on the claim that discrete values are easier to handle for humans than a
continuous trust scale. The algorithm is centered around the idea of neighborhood
exploration. The concept of distrust however is not covered, meaning it is not possible
to explicitly state one does not want to trust another user.

Surveys on trust and also trust propagation can be found in (Ziegler and Lausen,
2005; Golbeck, 2006b; Artz and Gil, 2007).

The approach we use from (Guha et al., 2004) differs from other approaches in that
it can handle distrust statements between users. Furthermore, trust in the TS-ORS
is subjective, therefore different to credential based approaches which rely objective
trust. In peer-to-peer systems, for example, it is easy to verify whether an uploaded
file is genuine or not, while a review in the TS-ORS can be helpful for some users, and
not helpful for others. Recent work (Leskovec et al., 2010) has investigated the use

210

15

15.3 Relation to Recommender Systems

of machine-learning techniques for predicting whether another user should be trusted
or distrusted. Their results seem promising within their evaluation scenario, but their
technique is not usable for our algorithms. Within the TS-ORS, we do not only need
to know who is trusted by a given user, but we also need trust scores that allow us to
rank reviewers. Just knowing who is likely trusted and who is likely distrusted does
not suffice, since a ranking of reviewers is needed for the algorithms.

15.3 Relation to Recommender Systems

First of all, it is important to compare the TS-ORS to classical recommender sys-
tems (Resnick and Varian, 1997). Recommender systems try to group users into
clusters with similar taste and then recommend items also favored by their closest
neighbors. Most recommender systems rely on a user’s behavior in the past to provide
recommendations, without explicitly asking the user for data that might be needed to
make good recommendations. First of all, this approach differs from the TS-ORS in
that we work exclusively on data explicitly entered by the users, and do not rely on
assumptions. For example, a recommender system might deduce that two users are
similar when they rate many ontologies in a similar way. The recommender system
then would use this relationship in the recommendation process. In the TS-ORS, we
rely on explicit trust statements made by the users. In a recommender system, a user
cannot simply state that he wants to receive recommendations based on the behavior of
another user, but the system tries to infer these relations automatically. Furthermore,
recommender systems can easily be attacked by malicious users just copying a users
ratings for all objects to be the most similar user, and then rate a bad object highly
so it gets recommended to the copied user. For that reason, (Massa and Avesani,
2009) investigated how explicit trust can be incorporated into recommender systems
instead of relying only on an analysis of existing data. They conclude that trust can
significantly improve recommendations since malicious users can be avoided, and the
cold start problem of collaborative filtering can also be circumvented. Furthermore,
classical recommender systems do not incorporate the notion of distrust. We could
however employ a recommender systems within the TS-ORS to provide recommenda-
tions on who a user might want to trust. A user can then choose to take a closer look
at the recommended user and then decide whether to trust or distrust this user.

15.4 Relation to Open Rating Systems

Our closest related work is Guha’s work on Open Rating Systems (Guha, 2004), and
trust propagation (Guha et al., 2004). To overcome limitations of ORS, we have
extended the model with ratings on aspects of objects, and provided a comprehensive
framework for fine grained topic-specific trust and meta-trust statements. In contrast

211

Chapter 15 Related Work

to Guha, we present a full algorithmic description and complete framework for the
computation of personalized ratings based on ratings on aspects of objects and fine-
grained user trust.

212

16

Chapter 16

Conclusions and Open Questions

The conclusions of this thesis are presented in Section 16.1. The chapter ends with
open questions in Section 16.2.

16.1 Conclusions

When first thinking about how to facilitate ontology reuse for the user, we quickly came
to the conclusion that of the three general phases of the ontology reuse process—
ontology discovery, ontology selection, and ontology integration—ontology selection
posed the most difficulties to the end user. Many existing tools provide help in dis-
covering or integrating ontologies. Still, the ontology selection step has not been
supported well. Many approaches tried to apply metrics to automatically determine
the suitability of an ontology for a given task, but none could compete with the re-
view of a human expert. Therefore, we decided to investigate how best to incorporate
user-based ontology reviews into the ontology reuse process.

Open Rating Systems offer mechanisms to compute rankings for ontology reviews
and ratings. However, state of the art Open Rating Systems had two major limitations,
namely only allowing to review and rate an object in its entirety, and only allowing
users to trust each other globally.

In this thesis, we presented our extension of the state of the art Open Rating System
model, the Topic-Specific Trust Open Rating System. The TS-ORS allows both multi-
aspect object review and fine-granular trust management, including topic-specific trust
and meta-trust. We furthermore adapted the TS-ORS for ontology evaluation and
reuse, and implemented it in an online ontology repository named Cupboard. Cup-
board here acts as a platform where users can upload ontologies and enter reviews on
aspects of the ontologies. Furthermore users can express trust towards other users.
Our performance benchmark shows that the system is fast enough to be employed
at runtime in an ontology repository. Our simulation has shown how the TS-ORS
provides more accurate overall ratings for objects, and a better review ranking than
the ORS in our motivating scenario.

With the Cupboard plugin for the ontology engineering environment NeOn Toolkit,
we provide tool support for all three steps of the ontology reuse process. Users can

213

Chapter 16 Conclusions and Open Questions

discover ontologies directly from within their ontology engineering environment. The
result list from Cupboard is ranked based on overall ratings of the ontologies, thus
reflecting their quality according to a user-based evaluation. The overall rating of
an ontology is displayed next to the ontology, and facilitates the selection process for
the user. Result integration is also as simple as clicking a button. The Cupboard
plugin thus provides tool support for the complete ontology reuse process, and our
user study has shown that it facilitates ontology reuse for the end user compared to
other systems. When using the Cupboard Plugin, which relies on our TS-ORS for
result ranking, users had significantly less problems finding, selecting, and integrating
ontologies to reuse.

16.2 Open Questions

In the future it will be important to monitor whether users participate in Cupboard,
and which incentives can be provided to reward reviews. We have already provided first
ideas in Chapter 7 Section 7.3 on which incentives can be provided to ensure sufficient
review data is in the system to attract users. Whether one of these incentives, or a
combination of them will provide the best outcome, remains to be seen.

Another open question remains how the TS-ORS performs against recommender
systems within explicit systems, and whether a hybrid solution provides most benefit.

We have presented our TS-ORS and its adaptation for the use case of ontology
reuse. We expect that other areas can adapt the idea of rating to solve problems in
diverse areas, the rating of services being just one example. Determining for which
application areas the TS-ORS can be employed, remains another open question.

214

Part VI

Appendix

Bibliography 223

Full Table of Contents 243

TABLE OF CONTENTS

216

17

List of Tables

2.1 The data from Cupboard shows the variance in ratings on the different
ontology aspects. 41

2.2 The data from Cupboard compares the ratings of users who have rated
the same ontology and shows on how many ratings they agreed, and on
how many they disagreed. 42

3.1 Allowed Meta-trust Statements. 48
3.2 Allowed Meta-trust Statements in an Extended TS-ORS. 51
3.3 Allowed Meta-trust Statements Taking Into Account Evaluation Contexts. 54

4.1 Atomic Trust Propagation according to Guha et al. 62

14.1 Quantitative information on the ontologies created in the experiment. 192
14.2 Questionnaire Results Questions 1 – 7 193
14.3 Questionnaire Results Questions 8 – 11 194
14.4 Questionnaire Results Questions 12 – 16 (only for Group 3) 195
14.5 Questionnaire Results Questions 17 – 18 (only for Groups 1 & 2) . . . 196
14.6 P values for pairwise group comparison using Fisher’s exact test with

Yate’s continuity correction. 202

217

List of Tables

218

17

List of Figures

2.1 Our Ontology Lifecycle Model . 17
2.2 NeOn plugins providing support for the ontology lifecycle model . . . 21
2.3 When a user right-clicks an entity, the Watson Search can be triggered

from the context menu. 27
2.4 On the right hand side, the Watson Results View shows up with a result

list from Watson. The List shows the URIs of the ontologies. 28
2.5 By clicking on the arrows next to the URI, axioms from the ontology

that matched the search are displayed. 28
2.6 When clicking on “Add relation from Human”, the super class “Pri-

mate” is added to the ontology automatically. Note the change in the
taxonomy on the left hand side. 29

2.7 The four basic trust propagation types visualized. Dotted lines indicate
propagated or inferred trust. 36

2.8 A depiction of Guha’s ORS model. 38

3.1 A depiction of our TS-ORS model. 47
3.2 A depiction of our TS-ORS model with an extension for domains. . . . 50
3.3 A depiction of our TS-ORS model with an extension for including eval-

uation contexts. 53

5.1 A depiction of how automatic evaluation techniques can be integrated
within the TS-ORS. 77

8.1 The TS-ORS Database Schema. 98
8.2 UML class diagram of classes needed for computation and meta-trust

propagation. 102
8.3 UML class diagram of classes needed for database interaction. 103
8.4 UML class diagram of classes needed for initializing the TS-ORS and

storing settings. 104
8.5 UML class diagram of classes needed for caching results and updating

data in the system. 105

219

List of Figures

9.1 A screenshot of an ontology space in Cupboard. Ontologies with some
statistical information, the key concept visualization and rating infor-
mation can be seen. 111

9.2 Rating information within Cupboard for an ontology. 112
9.3 The Cupboard Architecture. 114

10.1 The Preference Panel of the Cupboard NeOn Toolkit Plugin. 120
10.2 The Result View of the Cupboard NeOn Toolkit Plugin. 121
10.3 The Watson Plugin’s Preference Panel. 122
10.4 A result list within the Watson Plugin’s. 123

12.1 Result of Meta-trust Materialization Benchmark. 138
12.2 Result of Trust Computation for the 10%10%20% Scenario. 139
12.3 Result of Trust Computation for the 50%50%20% Scenario. 140
12.4 Result of Trust Computation for the 100%100%20% Scenario. 141
12.5 Distribution of Time to Different Tasks in the 100%100%20% Scenario. 142
12.6 Result of Overall Rating Benchmark (Top Review) with 500 runs. . . 143
12.7 Result of Overall Rating Benchmark (Top 3 Reviews) with 500 runs. . 144
12.8 Result of Overall Rating Benchmark (All Reviews) with 500 runs. . . 145
12.9 Result of Review Ranking Benchmark with 500 runs. 146

13.1 First Scenario with 0% Error, results based on global trust are marked
gt, results based on local trust lt. 156

13.2 First Scenario with 10% Error, results based on global trust are marked
gt, results based on local trust lt. 157

13.3 First Scenario with 20% Error, results based on global trust are marked
gt, results based on local trust lt. 159

13.4 Second Scenario with 0% Error, results based on global trust are marked
gt, results based on local trust lt. 160

13.5 Second Scenario with 10% Error, results based on global trust are
marked gt, results based on local trust lt. 161

13.6 Second Scenario with 20% Error, results based on global trust are
marked gt, results based on local trust lt. 162

13.7 Third Scenario with 0% Error, results based on global trust are marked
gt, results based on local trust lt. 164

13.8 Third Scenario with 10% Error, results based on global trust are marked
gt, results based on local trust lt. 165

13.9 Third Scenario with 20% Error, results based on global trust are marked
gt, results based on local trust lt. 166

13.10Comparison of Results For Scenario 1 With 0% Error 167

220

17

List of Figures

13.11For this graph, we have checked for each object in the investigated
group, which percentage of the agents in the group investigated has no
local trust information for this object. The findings were sorted into
10% buckets. The computations were performed with 100 agents, 5%
coverage and 0% error. 169

13.12For this graph, we have checked for each object in the investigated
group, which percentage of the agents in the group investigated has no
local trust information for this object. The findings were sorted into
10% buckets. The computations were performed with 1000 agents, 5%
coverage and 0% error. 170

13.13The Results of the Three Simulation Scenarios for 100% Data Coverage
and 0% Error Side-by-side the Gold Standard. 173

14.1 This screenshot shows the Watson plugin displaying results within the
NeOn Toolkit . 178

14.2 This document was given to all participants of the experiments. It lays
out the task they were asked to do. 180

14.3 The methodological guidelines for group 1. 181
14.4 The methodological guidelines for group 2. 182
14.5 The methodological guidelines for group 3. 184
14.6 First page of the facilitator guidelines. 185
14.7 Second page of the facilitator guidelines. 186
14.8 First page of the experiment questionnaire. 188
14.9 Second page of the experiment questionnaire. 189
14.10Third page of the experiment questionnaire. 190

221

List of Figures

222

17

Bibliography

Alfarez Abdul-Rahman and Stephen Hailes. Supporting Trust in Virtual Communities.
In HICSS, 2000.

Karl Aberer and Zoran Despotovic. Managing Trust in a Peer-2-Peer Information
System. In Proceedings of the 2001 ACM CIKM International Conference on
Information and Knowledge Management, Atlanta, Georgia, USA, November 5-
10, 2001, pages 310–317. ACM, 2001.

Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee,
Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro
Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors. The Seman-
tic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web
Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007,
volume 4825 of Lecture Notes in Computer Science. Springer, 2007.

Sudhir Agarwal. Formal Description of Web Services for Expressive Matchmaking.
PhD thesis, Fakultät für Wirtschaftswissenschaften, Universität Karlsruhe (TH),
May 2007.

Harith Alani, Christopher Brewster, and Nigel Shadbolt. Ranking Ontologies with
AKTiveRank. In Proc. of the 5th Int. Semantic Web Conference (ISWC 2006),
volume 4273 of Lecture Notes in Computer Science, pages 1–15. Springer, 2006.

Sofia Angeletou, Holger Lewen, and Boris Villazó n Terrazas. D2.2.4 Final version of
methods for re-engineering and evaluation. Technical Report D2.2.4, Knowledge
Media Institute, the Open University, January 2010.

Lora Aroyo, Paolo Traverso, Fabio Ciravegna, Philipp Cimiano, Tom Heath, Eero
Hyvönen, Riichiro Mizoguchi, Eyal Oren, Marta Sabou, and Elena Paslaru Bontas
Simperl, editors. The Semantic Web: Research and Applications, 6th European
Semantic Web Conference, ESWC 2009, Heraklion, Crete, Greece, May 31-June
4, 2009, Proceedings, volume 5554 of Lecture Notes in Computer Science. Springer,
2009.

Donovan Artz and Yolanda Gil. A Survey of Trust in Computer Science and the
Semantic Web. Journal of Web Semantics, 5(2):58–71, 2007.

223

BIBLIOGRAPHY

Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather But-
ler, J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T.
Eppig, Midori A. Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis,
Suzanna Lewis, John C. Matese, Joel E. Richardson, Martin Ringwald, Gerald. M.
Rubin, and Gavin Sherlock. Gene Ontology: tool for the unification of biology.
Nature Genetics, 25(1):25–29, May 2000.

Vijayalakshmi Atluri, editor. Proceedings of the 9th ACM Conference on Computer
and Communications Security, CCS 2002, Washingtion, DC, USA, November
18-22, 2002. ACM, 2002.

Alejandro Peña Ayala. Ontology Agents and Their Applications in the Web-Based
Education Systems: Towards an Adaptive and Intelligent Service. In Nguyen and
Jain (2009), pages 249–278.

Paul Gustav Heinrich Bachmann. Die analytische Zahlentheorie / dargestellt von Paul
Bachmann. Teubner, 1894.

Amos Bairoch, Sarah Cohen Boulakia, and Christine Froidevaux, editors. Data In-
tegration in the Life Sciences, 5th International Workshop, DILS 2008, Evry,
France, June 25-27, 2008. Proceedings, volume 5109 of Lecture Notes in Com-
puter Science. Springer, 2008.

Daniel Barrell, Emily Dimmer, Rachael P. Huntley, David Binns, Claire O’Donovan,
and Rolf Apweiler. The GOA database in 2009 - an integrated Gene Ontology
Annotation resource. Nucleic Acids Research, 37(Database-Issue):396–403, 2009.

Kurt Bauknecht, A. Min Tjoa, and Gerald Quirchmayr, editors. E-Commerce and Web
Technologies, Third International Conference, EC-Web 2002, Aix-en-Provence,
France, September 2-6, 2002, Proceedings, volume 2455 of Lecture Notes in Com-
puter Science. Springer, 2002.

Joyce Berg, John Dickhaut, and Kevin McCabe. Trust, Reciprocity, and Social His-
tory. Games and Economic Behavior, 10(1):122–142, 1995.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 284(5):34–43, May 2001.

Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard,
Enrico Motta, and Krishnaprasad Thirunarayan, editors. The Semantic Web -
ISWC 2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly,
VA, USA, October 25-29, 2009. Proceedings, volume 5823 of Lecture Notes in
Computer Science. Springer, 2009.

224

17

BIBLIOGRAPHY

Matt Bishop. Computer Security: Art and Science. Addison-Wesley, 2003.

Christian Bizer and Radoslaw Oldakowski. Using Context- and Content-Based Trust
Policies on the Semantic Web. In Feldman et al. (2004a), pages 228–229.

Christian Bizer, Richard Cyganiak, Tobias Gauss, and Oliver Maresch. The TriQL.P
browser: Filtering Information using Context-, Content- and Rating-Based Trust
Policies. In Proceedings of the Semantic Web and Policy Workshop, held in con-
junction with the 4th International Semantic Web Conference, volume 7, pages
12–20. Citeseer, 2005.

Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked Data on
the Web (LDOW2008). In Huai et al. (2008), pages 1265–1266.

Judith A. Blake and Carol J. Bult. Beyond the data deluge: Data integration and
bio-ontologies. Journal of Biomedical Informatics, 39(3):314–320, 2006.

Stephan Bloehdorn, Marko Grobelnik, Peter Mika, and Duc Thanh Tran, editors.
Proceedings of the Workshop on Semantic Search (SemSearch 2008) at the 5th
European Semantic Web Conference (ESWC 2008), Tenerife, Spain, June 2nd,
2008, volume 334 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

Willem Nico Borst. Construction of Engineering Ontologies for Knowledge Sharing
and Reuse. PhD thesis, University of Enschede, Enschede, The Netherlands, 1997.

Janez Brank, Marko Grobelnik, and Dunja Mladenić. A Survey of Ontology Evaluation
Techniques. In In In Proceedings of the Conference on Data Mining and Data
Warehouses (SiKDD 2005, 2005.

Christopher Brewster, Harith Alani, Srinandan Dasmahapatra, and Yorick Wilks.
Data Driven Ontology Evaluation. In Proceedings of the 4th International Con-
ference on Language Resources and Evaluation (LREC), pages 164–168, Lisbon,
Portugal, 2004. European Language Resources Association.

Dan Brickley and Ramanathan V. Guha, editors. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C Recommendation, 10 February 2004. Available
at http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

Dan Brickley and Libby Miller, editors. FOAF Vocabulary Specification 0.98. Names-
pace Document, 09 August 2010. Available at http://xmlns.com/foaf/spec/
20100809.html.

Paul Buitelaar, Thomas Eigner, and Thierry Declerck. OntoSelect: A Dynamic On-
tology Library with Support for Ontology Selection. In Proceedings of the Demo
Session at the International Semantic Web Conference, 2004.

225

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://xmlns.com/foaf/spec/20100809.html
http://xmlns.com/foaf/spec/20100809.html

BIBLIOGRAPHY

Andrew Burton-Jones, Veda C. Storey, Vijayan Sugumaran, and Punit Ahluwalia. A
semiotic metrics suite for assessing the quality of ontologies. Data and Knowledge
Engineering, 55(1):84–102, October 2005.

Diego Calvanese, Enrico Franconi, Volker Haarslev, Domenico Lembo, Boris Motik,
Anni-Yasmin Turhan, and Sergio Tessaris, editors. Proceedings of the 2007 In-
ternational Workshop on Description Logics (DL2007), Brixen-Bressanone, near
Bozen-Bolzano, Italy, 8-10 June, 2007, volume 250 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2007.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Domenico Lembo, An-
tonella Poggi, and Riccardo Rosati. MASTRO-I: Efficient Integration of Rela-
tional Data through DL Ontologies. In Calvanese et al. (2007a).

Les Carr, David De Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin,
editors. Proceedings of the 15th international conference on World Wide Web,
WWW 2006, Edinburgh, Scotland, UK, May 23-26, 2006. ACM, 2006.

Paolo Ceravolo, Zhan Cui, Ernesto Damiani, Alex Gusmini, and Marcello Leida.
ODDI: Ontology-Driven Data Integration. In Lovrek et al. (2008), pages 517–
524.

Artem Chebotko, Shiyong Lu, Farshad Fotouhi, and Anthony Aristar. Ontology-
Based Annotation of Multimedia Language Data for the Semantic Web. CoRR,
abs/0902.3027, 2009.

Gong Cheng, Weiyi Ge, and Yuzhong Qu. Falcons: Searching and Browsing Entities
on the Semantic Web. In Proc. of the 17th Int. Conf. on World Wide Web (WWW
2008), pages 1101–1102. ACM, 2008.

Roger H. L. Chiang, Alberto H. F. Laender, and Ee-Peng Lim, editors. Fifth
ACM CIKM International Workshop on Web Information and Data Manage-
ment (WIDM 2003), New Orleans, Louisiana, USA, November 7-8, 2003. ACM,
2003.

Chin-Wan Chung, Chong kwon Kim, Won Kim, Tok Wang Ling, and Kwan Ho Song,
editors. Web Communication Technologies and Internet-Related Social Issues -
HSI 2003, Second International Conference on Human Society@Internet, Seoul,
Korea, June 18-20, 2003, Proceedings, volume 2713 of Lecture Notes in Computer
Science. Springer, 2003.

Philipp Cimiano and Sofia Pinto, editors. Knowledge Engineering and Management
by the Masses, 17th International Conference, EKAW 2010, Lisbon, Portugal,
October 2010, Proceedings, volume 6317 of Lecture Notes in Computer Science.
Springer, 2010.

226

17

BIBLIOGRAPHY

Dwaine E. Clarke, Jean-Emile Elien, Carl M. Ellison, Matt Fredette, Alexander Mor-
cos, and Ronald L. Rivest. Certificate Chain Discovery in SPKI/SDSI. Journal
of Computer Security, 9(4):285–322, 2001.

James Suamuel Coleman. Foundations of social theory. Belknap Press, 1994.

Óscar Corcho and Asunción Gómez-Pérez. A Roadmap to Ontology Specification
Languages. In Dieng and Corby (2000), pages 80–96.

Fabrizio Cornelli, Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Para-
boschi, and Pierangela Samarati. Choosing reputable servents in a P2P network.
In WWW, pages 376–386, 2002.

Isabel F. Cruz and Huiyong Xiao. Ontology Driven Data Integration in Heterogeneous
Networks. In Tolk and Jain (2009), pages 75–98.

Isabel F. Cruz, Stefan Decker, Jérôme Euzenat, and Deborah L. McGuinness, editors.
Proceedings of SWWS’01, The first Semantic Web Working Symposium, Stanford
University, California, USA, July 30 - August 1, 2001, 2001.

Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter
Mika, Michael Uschold, and Lora Aroyo, editors. The Semantic Web - ISWC 2006,
5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA,
November 5-9, 2006, Proceedings, volume 4273 of Lecture Notes in Computer
Science. Springer, 2006.

Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, Pierangela
Samarati, and Fabio Violante. A Reputation-Based Approach for Choosing Reli-
able Resources in Peer-to-Peer Networks. In Atluri (2002), pages 207–216.

Mathieu d’Aquin and Holger Lewen. Cupboard - A Place to Expose Your Ontologies
to Applications and the Community. In Aroyo et al. (2009), pages 913–918.

Mathieu d’Aquin, Peter Haase, Chan Le Duc, and Antoine Zimmermann. D1.1.4
NeOn Formalism for Modularization: Implementation and Evaluation. Technical
Report D1.1.4, Knowledge Media Institute, the Open University, October 2008.

Mathieu d’Aquin, Peter Haase, Sebastian Rudolph, Jérôme Euzenat, Antoine Zim-
mermann, Martin Dzbor, Marta Iglesias, Yves Jacques, Caterina Caracciolo, Car-
los Buil Aranda, and Jose Manuel Gomez. D1.1.3 NeOn Formalisms for Modular-
ization: Syntax, Semantics, Algebra. Technical Report D1.1.3, Knowledge Media
Institute, the Open University, February 2008.

Mathieu d’Aquin, Enrico Motta, Martin Dzbor, Laurian Gridinoc, Tom Heath, and
Marta Sabou. Collaborative Semantic Authoring. IEEE Intelligent Systems,
23(3):80–83, 2008.

227

BIBLIOGRAPHY

Mathieu d’Aquin, Enrico Motta, Marta Sabou, Sofia Angeletou, Laurian Gridinoc,
Vanessa Lopez, and Davide Guidi. Toward a New Generation of Semantic Web
Applications. IEEE Intelligent Systems, 23(3):20–28, 2008.

Mathieu d’Aquin, Jérôme Euzenat, Chan Le Duc, and Holger Lewen. Sharing and
Reusing Aligned Ontologies with Cupboard. In Gil and Noy (2009), pages 179–
180.

Mari del Carmen Suárez-Figueroa, Guadalupe Aguado de Cea, Carlos Buil, Klaas
Dellschaft, Mariano Fernández-López, Andrés Garćıa, Asunción Gómez-Pérez,
German Herrero, Elena Montiel-Ponsoda, Marta Sabou, Boris Villazon-Terrazas,
and Zheng Yufei. D5.4.1 NeOn Methodology for Building Contextualized On-
tology Networks. Technical Report D5.4.1, Universidad Politécnica de Madrid,
February 2008.

Klaas Dellschaft and Steffen Staab. On How to Perform a Gold Standard Based
Evaluation of Ontology Learning. In Cruz et al. (2006), pages 228–241.

Rose Dieng and Olivier Corby, editors. Knowledge Acquisition, Modeling and Manage-
ment, 12th International Conference, EKAW 2000, Juan-les-Pins, France, Octo-
ber 2-6, 2000, Proceedings, volume 1937 of Lecture Notes in Computer Science.
Springer, 2000.

Ying Ding and Dieter Fensel. Ontology Library Systems: The key to successful On-
tology Reuse. In Cruz et al. (2001), pages 93–112.

Li Ding, Lina Zhou, and Timothy W. Finin. Trust Based Knowledge Outsourcing for
Semantic Web Agents. In 2003 IEEE / WIC International Conference on Web
Intelligence, (WI 2003), 13-17 October 2003, Halifax, Canada, pages 379–387.
IEEE Computer Society, 2003.

Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng,
Pavan Reddivari, Vishal Doshi, and Joel Sachs. Swoogle: A Search and Metadata
Engine for the Semantic Web. In Grossman et al. (2004), pages 652–659.

Li Ding, Pranam Kolari, Shashidhara Ganjugunte, Tim Finin, and Anupam Joshi.
Modeling and Evaluating Trust Network Inference. In Seventh International
Workshop on Trust in Agent Societies at AAMAS 2004. Citeseer, 2004.

Li Ding, Pranam Kolari, Tim Finin, Anupam Joshi, Yun Peng, and Yelena Yesha.
On Homeland Security and the Semantic Web: A Provenance and Trust Aware
Inference Framework. In Proceedings of the AAAI Spring Symposium on AI Tech-
nologies for Homeland Security, 2005.

228

17

BIBLIOGRAPHY

John Domingue and Chutiporn Anutariya, editors. The Semantic Web, 3rd Asian Se-
mantic Web Conference, ASWC 2008, Bangkok, Thailand, December 8-11, 2008.
Proceedings, volume 5367 of Lecture Notes in Computer Science. Springer, 2008.

Chan Le Duc, Mathieu d’Aquin, Jesus Barrase, Jérôme David, Jérôme Euzenat, Raúl
Palma, Rosario Plaza, Marta Sabou, and Boris Villazón-Terrezas. D3.3.2 Match-
ing ontologies for context: The Alignment plug-in. Technical Report D3.3.2,
INRIA, February 2008.

Martin Dzbor, Mari del Carmen Suárez-Figueroa, Eva Blomqvist, Holger Lewen,
Mauricio Espinoza, Asunción Gómez-Pérez, and Raul Palma. D5.6.2 Experi-
mentation and Evaluation of the NeOn Methodology. Technical Report D5.6.2,
Knowledge Media Institute, the Open University, February 2009.

Martin Dzbor, Holger Lewen, and Mari del Carmen Suárez-Figueroa. D5.6.3 Exper-
imentation and Evaluation of the NeOn Methodology. Technical Report D5.6.3,
Knowledge Media Institute, the Open University, January 2010.

Allan Ellis and Tatsuya Hagino, editors. Proceedings of the 14th international confer-
ence on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005. ACM,
2005.

Allan Ellis and Tatsuya Hagino, editors. Proceedings of the 14th international confer-
ence on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005 - Special
interest tracks and posters. ACM, 2005.

Carl M. Ellison, Bill Frantz, Butler Lampson, Ron L. Rivest, Brian M Thomas Tatu,
and Ylönen. SPKI Certificate Theory, 1999.

Carola Eschenbach and Michael Grüninger, editors. Formal Ontology in Informa-
tion Systems, Proceedings of the Fifth International Conference, FOIS 2008,
Saarbrücken, Germany, October 31st - November 3rd, 2008, volume 183 of Fron-
tiers in Artificial Intelligence and Applications. IOS Press, 2008.

Jérôme Euzenat, Adrian Mocan, and François Scharffe. Ontology Alignments. In Hepp
et al. (2008), pages 177–206.

Jérôme Euzenat. An API for Ontology Alignment. In McIlraith et al. (2004), pages
698–712.

Jérôme Euzenat. Algebras of Ontology Alignment Relations. In Sheth et al. (2008),
pages 387–402.

Dietrich Fahrenholtz and Winfried Lamersdorf. Transactional Security for a Dis-
tributed Reputation Management System. In Bauknecht et al. (2002), pages
214–223.

229

BIBLIOGRAPHY

Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors. Proceedings
of the 13th international conference on World Wide Web - Alternate Track Papers
& Posters, WWW 2004, New York, NY, USA, May 17-20, 2004. ACM, 2004.

Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors. Proceedings
of the 13th international conference on World Wide Web, WWW 2004, New York,
NY, USA, May 17-20, 2004. ACM, 2004.

Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors. The Semantic Web
- ISWC 2003, Second International Semantic Web Conference, Sanibel Island,
FL, USA, October 20-23, 2003, Proceedings, volume 2870 of Lecture Notes in
Computer Science. Springer, 2003.

Mariano Fernandez-Lopez, Asuncion Gomez-Perez, and Natalia Juristo. METHON-
TOLOGY: from Ontological Art towards Ontological Engineering. In Proceedings
of the AAAI97 Spring Symposium, pages 33–40, Stanford, USA, March 1997.

RA Fisher. On the Interpretation of χ 2 from Contingency Tables, and the Calculation
of P. Journal of the Royal Statistical Society, 85(1):87–94, 1922.

William B. Frakes and Ricardo A. Baeza-Yates, editors. Information Retrieval: Data
Structures & Algorithms. Prentice-Hall, 1992.

Gaihua Fu, Christopher B. Jones, and Alia I. Abdelmoty. Building a Geographical
Ontology for Intelligent Spatial Search on the Web. In Hamza (2005), pages
167–172.

Francis Fukuyama. Trust: The Social Virtues and the Creation of Prosperity. Free
Press, 1996.

Aldo Gangemi and Jérôme Euzenat, editors. Knowledge Engineering: Practice and
Patterns, 16th International Conference, EKAW 2008, Acitrezza, Italy, September
29 - October 2, 2008. Proceedings, volume 5268 of Lecture Notes in Computer
Science. Springer, 2008.

Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and Luc
Schneider. Sweetening Ontologies with DOLCE. In Gómez-Pérez and Benjamins
(2002), pages 166–181.

Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann. Mod-
elling Ontology Evaluation and Validation. In Sure and Domingue (2006), pages
140–154.

Aldo Gangemi, Jos Lehmann, Valentina Presutti, Malvina Nissim, and Carola Cate-
nacci. C-ODO: an OWL Meta-model for Collaborative Ontology Design. In Noy
et al. (2007).

230

17

BIBLIOGRAPHY

Raúl Garćıa-Castro, Mari del Carmen Suárez-Figueroa, Mauricio Espinoza,
Margherita Sini, Holger Lewen, and Eva Blomqvist. D5.6.1Experimentation with
the NeOn methodologies and methods. Technical Report D5.6.1, Universidad
Politécnica de Madrid, March 2008.

Yolanda Gil and Natasha Fridman Noy, editors. Proceedings of the 5th International
Conference on Knowledge Capture (K-CAP 2009), September 1-4, 2009, Redondo
Beach, California, USA. ACM, 2009.

Jennifer Golbeck and James A. Hendler. Accuracy of Metrics for Inferring Trust and
Reputation in Semantic Web-Based Social Networks. In Motta et al. (2004), pages
116–131.

Jennifer Golbeck and Jim Hendler. Inferring Reputation on the Semantic Web. In
Proceedings of the 13th International World Wide Web Conference, volume 316.
Citeseer, 2004.

Jennifer Golbeck, Piero A. Bonatti, Wolfgang Nejdl, Daniel Olmedilla, and Marianne
Winslett, editors. Proceedings of the ISWC*04 Workshop on Trust, Security, and
Reputation on the Semantic Web, Hiroshima, Japan, November 7, 2004, volume
127 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

Jennifer Golbeck. Computing and Applying Trust in Web-based Social Networks. PhD
thesis, University of Maryland. College Park, MD, 2005.

Jennifer Golbeck. Combining Provenance with Trust in Social Networks for Semantic
Web Content Filtering. In Moreau and Foster (2006), pages 101–108.

Jennifer Golbeck. Trust on the World Wide Web: A Survey. Foundations and Trends
in Web Science, 1(2):131–197, 2006.

Christine Golbreich, Aditya Kalyanpur, and Bijan Parsia, editors. Proceedings of
the OWLED 2007 Workshop on OWL: Experiences and Directions, Innsbruck,
Austria, June 6-7, 2007, volume 258 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

Asunción Gómez-Pérez and V. Richard Benjamins, editors. Knowledge Engineering
and Knowledge Management. Ontologies and the Semantic Web, 13th Interna-
tional Conference, EKAW 2002, Siguenza, Spain, October 1-4, 2002, Proceedings,
volume 2473 of Lecture Notes in Computer Science. Springer, 2002.

Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontological
Engineering. Advanced Information and Knowlege Processing. Springer, 2003.

231

BIBLIOGRAPHY

Asunción Gómez-Pérez. Ontology Evaluation. In Steffen Staab and Rudi Studer, edi-
tors, Handbook on Ontologies, First Edition, chapter 13, pages 251–274. Springer,
2004.

Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A Logical
Framework for Modularity of Ontologies. In Veloso (2007), pages 298–303.

Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Extract-
ing Modules from Ontologies: A Logic-Based Approach. In Stuckenschmidt et al.
(2009), pages 159–186.

Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Ontology Integration Using
epsilon-Connections. In Stuckenschmidt et al. (2009), pages 293–320.

David A. Grossman, Luis Gravano, ChengXiang Zhai, Otthein Herzog, and David A.
Evans, editors. Proceedings of the 2004 ACM CIKM International Conference
on Information and Knowledge Management, Washington, DC, USA, November
8-13, 2004. ACM, 2004.

Detlef Groth, Stefanie Hartmann, Georgia Panopoulou, Albert J. Poustka, and Steffen
Hennig. GOblet: Annotation of anonymous sequence data with Gene Ontology
and Pathway terms. J. Integrative Bioinformatics, 5(2), 2008.

Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

Nicola Guarino and Christopher A. Welty. Evaluating ontological decisions with On-
toClean. Commun. ACM, 45(2):61–65, 2002.

Nicola Guarino and Christopher A. Welty. An Overview of OntoClean. In Staab and
Studer (2004), pages 151–172.

Ramanathan V. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins.
Propagation of Trust and Distrust. In Feldman et al. (2004b), pages 403–412.

Ramanathan Guha. Open Rating Systems. In 1st Workshop on Friend of a Friend,
Social Networking and the Semantic Web, 2004.

Minaxi Gupta, Paul Judge, and Mostafa H. Ammar. A Reputation System for Peer-
to-Peer Networks. In Papadopoulos and Almeroth (2003), pages 144–152.

Zoltán Gyöngyi, Hector Garcia-Molina, and Jan O. Pedersen. Combating Web Spam
with TrustRank. In Nascimento et al. (2004), pages 576–587.

232

17

BIBLIOGRAPHY

Peter Haase, Holger Lewen, Rudi Studer, Duc Thanh Tran, Michael Erdmann, Math-
ieu d’Aquin, and Enrico Motta. The NeOn Ontology Engineering Toolkit. In
WWW 2008 Developers Track, April 2008.

M. H. Hamza, editor. IASTED International Conference on Databases and Appli-
cations, part of the 23rd Multi-Conference on Applied Informatics, Innsbruck,
Austria, February 14-16, 2005. IASTED/ACTA Press, 2005.

Andreas Harth, Sheila Kinsella, and Stefan Decker. Using Naming Authority to Rank
Data and Ontologies for Web Search. In Bernstein et al. (2009), pages 277–292.

Jens Hartmann, Raúl Palma, York Sure, Maŕıa del Carmen Suárez-Figueroa, Peter
Haase, Asunción Gómez-Pérez, and Rudi Studer. Ontology Metadata Vocabulary
and Applications. In Meersman et al. (2005), pages 906–915.

Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez. Ontology Repositories.
In Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, International
Handbooks Information System, pages 551–571. Springer Berlin Heidelberg, 2009.

Jens Hartmann. ONTHOLOGY. An Ontology Metadata Repository. Demo and Poster
Proceedings of ESWC, 2006.

Qi He and Tok Wang Ling. An ontology based approach to the integration of entity-
relationship schemas. Data Knowl. Eng., 58(3):299–326, 2006.

Martin Hepp, Pieter De Leenheer, Aldo de Moor, and York Sure, editors. Ontol-
ogy Management, Semantic Web, Semantic Web Services, and Business Applica-
tions, volume 7 of Semantic Web And Beyond Computing for Human Experience.
Springer, 2008.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John Riedl. Eval-
uating Collaborative Filtering Recommender Systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew
Tomkins, and Xiaodong Zhang, editors. Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008.
ACM, 2008.

Aleks Jakulin and Dunja Mladenić. Ontology Grounding. In Proceedings of 8th Inter-
national multi-conference Information Society IS-2005, pages 170–173, 2005.

Clement Jonquet, Mark A. Musen, and Nigam Shah. A System for Ontology-Based
Annotation of Biomedical Data. In Bairoch et al. (2008), pages 144–152.

233

BIBLIOGRAPHY

Audun Jøsang, Roslan Ismail, and Colin Boyd. A Survey of Trust and Reputation
Systems for Online Service Provision. Decision Support Systems, 43(2):618–644,
2007.

Audun Jøsang. A Logic for Uncertain Probabilities. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 9(3):279–212, 2001.

Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The Eigentrust
algorithm for reputation management in P2P networks. In WWW, pages 640–651,
2003.

Donald E. Knuth. Big Omicron and big Omega and big Theta. SIGACT News,
8(2):18–24, 1976.

Charles W. Krueger. Software Reuse. ACM Computing Surveys, 24(2):131–183, 1992.

Alexander Kubias, Marko Babic, Holger Lewen, Martin Dzbor, Klaas Dellschaft, and
Jose Manuel Gómez-Pérez. D4.3.1 Review of Trust Models as a Criterion for
Ontology Customization. Technical Report D4.3.1, University of Koblenz-Landau,
October 2007.

Chang-Shing Lee and Mei-Hui Wang. Ontology-based intelligent healthcare agent and
its application to respiratory waveform recognition. Expert Syst. Appl., 33(3):606–
619, 2007.

Douglas B. Lenat. CYC: A Large-Scale Investment in Knowledge Infrastructure. Com-
munications of the ACM, 38(11):33–38, 1995.

Jure Leskovec, Daniel P. Huttenlocher, and Jon M. Kleinberg. Predicting Positive and
Negative Links in Online Social Networks. In Rappa et al. (2010), pages 641–650.

Ralph Levien. Attack Resistant Trust Metrics. PhD thesis, UC Berkeley, USA, 2003.

Holger Lewen and Mathieu d’Aquin. Extending Open Rating Systems for Ontology
Ranking and Reuse. In Cimiano and Pinto (2010), pages 441–450.

Holger Lewen, Kaustubh Supekar, Natalya F. Noy, and Mark A. Musen. Topic-Specific
Trust and Open Rating Systems: An Approach for Ontology Evaluation. In Proc.
of the 4th Int. Workshop on Evaluation of Ontologies for the Web (EON), 15th
Int. World Wide Web Conference), Edinburgh, UK, MAY 2006.

Holger Lewen, Mathieu d’Aquin, Jérôme Euzenat, Chan Le Duc, and Raúl Palma.
D1.4.3 Cupboard—Supporting Ontology Reuse by Combining a Semantic Web
Gateway, Ontology Registry and Open Ratings Systems. Technical Report D1.4.3,
Universität Karlsruhe (TH), February 2009.

234

17

BIBLIOGRAPHY

Holger Lewen, Mathieu d’Aquin, and Salman Elahi. D1.4.6 Cupboard–Supporting
Ontology Reuse by Combining a Semantic Web Gateway, Ontology Registry and
Open Ratings Systems – Improved and Final Version. Technical Report D1.4.6,
Universität Karlsruhe (TH), February 2010.

Holger Lewen. Introducing Topic-Specific Trust in Open Rating Systems. Diplomar-
beit, Institute AIFB, Universität Karlsruhe (TH), December 2005.

Holger Lewen. Facilitating Ontology Reuse with a Topic-Specific Trust Open Rat-
ing System. Technical report, Universität Karlsruhe (TH), JUN 2009. http:
//people.aifb.kit.edu/hle/paper/TR3.pdf.

Holger Lewen. Implementation and Performance Evaluation of the Topic-Specific Trust
Open Rating System. Technical report, Universität Karlsruhe (TH), JUN 2009.
http://people.aifb.kit.edu/hle/paper/TR1.pdf.

Holger Lewen. Optimization and New Performance Evaluation of the Topic-Specific
Trust Open Rating System. Technical report, Institut AIFB, KIT, DEC 2009.
http://people.aifb.kit.edu/hle/paper/TR4.pdf.

Holger Lewen. Simulation-based Evaluation of the Topic-Specific Trust Open Rat-
ing System. Technical report, Universität Karlsruhe (TH), JUN 2009. http:
//people.aifb.kit.edu/hle/paper/TR2.pdf.

Chu Yee Liau, Xuan Zhou, Stéphane Bressan, and Kian-Lee Tan. Efficient Distributed
Reputation Scheme for Peer-to-Peer Systems. In Chung et al. (2003), pages 54–63.

Cristiano Longo and Lorenzo Sciuto. A Lightweight Ontology for Rating Assessments.
In Semeraro et al. (2008).

Ignac Lovrek, Robert J. Howlett, and Lakhmi C. Jain, editors. Knowledge-Based
Intelligent Information and Engineering Systems, 12th International Conference,
KES 2008, Zagreb, Croatia, September 3-5, 2008, Proceedings, Part I, volume
5177 of Lecture Notes in Computer Science. Springer, 2008.

Alexander Maedche and Steffen Staab. Measuring Similarity between Ontologies. In
Gómez-Pérez and Benjamins (2002), pages 251–263.

Massimo Marchiori, Jeff Z. Pan, and Christian de Sainte Marie, editors. Web Reasoning
and Rule Systems, First International Conference, RR 2007, Innsbruck , Austria,
June 7-8, 2007, Proceedings, volume 4524 of Lecture Notes in Computer Science.
Springer, 2007.

Stephen Paul Marsh. Formalising Trust as a Computational Concept. PhD thesis,
University of Stirling, 1994.

235

http://people.aifb.kit.edu/hle/paper/TR3.pdf
http://people.aifb.kit.edu/hle/paper/TR3.pdf
http://people.aifb.kit.edu/hle/paper/TR1.pdf
http://people.aifb.kit.edu/hle/paper/TR4.pdf
http://people.aifb.kit.edu/hle/paper/TR2.pdf
http://people.aifb.kit.edu/hle/paper/TR2.pdf

BIBLIOGRAPHY

Paolo Massa and Paolo Avesani. Controversial Users Demand Local Trust Metrics: An
Experimental Study on Epinions.com Community. In Veloso and Kambhampati
(2005), pages 121–126.

Paolo Massa and Paolo Avesani. Trust Metrics in Recommender Systems. In Com-
puting with Social Trust, HCI Series, pages 259–285. Springer London, 2009.

Paolo Massa and Conor Hayes. Page-reRank: Using Trusted Links to Re-Rank Au-
thority. In Skowron et al. (2005), pages 614–617.

Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Evren Sirin. Ontology-Enabled
Pervasive Computing Applications. IEEE Intelligent Systems, 18(5):68–72, 2003.

Deborah L. McGuinness and Frank van Harmelen, editors. OWL Web Ontology
Language Overview. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors. The
Semantic Web - ISWC 2004: Third International Semantic Web Confer-
ence,Hiroshima, Japan, November 7-11, 2004. Proceedings, volume 3298 of Lecture
Notes in Computer Science. Springer, 2004.

Doug M. McIlroy. Mass produced software components. In John Buxton, Peter Naur,
and Brian Randell, editors, Software Engineering Concepts and Techniques (Proc.
1968 NATO Conf. on Software Engineering), pages 88–98. Van Nostrand Rein-
hold, 1976.

Robert Meersman, Zahir Tari, Pilar Herrero, Gonzalo Méndez, Lawrence Cavedon,
David Martin, Annika Hinze, George Buchanan, Maŕıa S. Pérez, Vı́ctor Robles,
Jan Humble, Antonia Albani, Jan L. G. Dietz, Hervé Panetto, Monica Scanna-
pieco, Terry A. Halpin, Peter Spyns, Johannes Maria Zaha, Esteban Zimányi, Em-
manuel Stefanakis, Tharam S. Dillon, Ling Feng, Mustafa Jarrar, Jos Lehmann,
Aldo de Moor, Erik Duval, and Lora Aroyo, editors. On the Move to Meaning-
ful Internet Systems 2005: OTM 2005 Workshops, OTM Confederated Interna-
tional Workshops and Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP,
ORM, PhDS, SeBGIS, SWWS, and WOSE 2005, Agia Napa, Cyprus, October
31 - November 4, 2005, Proceedings, volume 3762 of Lecture Notes in Computer
Science. Springer, 2005.

Stanley Milgram. The Small World Problem. Psychology today, 2(1):60–67, 1967.

Barbara A. Misztal. Trust in Modern Societies: The Search for the Bases of Social
Order. Polity Press, 1996.

236

17

BIBLIOGRAPHY

Luc Moreau and Ian T. Foster, editors. Provenance and Annotation of Data, Inter-
national Provenance and Annotation Workshop, IPAW 2006, Chicago, IL, USA,
May 3-5, 2006, Revised Selected Papers, volume 4145 of Lecture Notes in Com-
puter Science. Springer, 2006.

Enrico Motta, Nigel Shadbolt, Arthur Stutt, and Nicholas Gibbins, editors. Engineer-
ing Knowledge in the Age of the Semantic Web, 14th International Conference,
EKAW 2004, Whittlebury Hall, UK, October 5-8, 2004, Proceedings, volume 3257
of Lecture Notes in Computer Science. Springer, 2004.

Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A.
Blakeley, and K. Bernhard Schiefer, editors. (e)Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases, Toronto, Canada, August 31
- September 3 2004. Morgan Kaufmann, 2004.

Ngoc Thanh Nguyen and Lakhmi C. Jain, editors. Intelligent Agents in the Evolution
of Web and Applications, volume 167 of Studies in Computational Intelligence.
Springer, 2009.

Ian Niles and Adam Pease. Towards a Standard Upper Ontology. In Proceedings of
the international conference on Formal Ontology in Information Systems-Volume
2001, pages 2–9, 2001.

NIST. Secure Hash Standard, Federal Information Processing Standards Publication
180-2. US Department of Commerce, National Institute of Standards and Tech-
nology (NIST), 2002.

Natalya F. Noy, Ramanathan Guha, and Mark A. Musen. User ratings of ontologies:
Who will rate the raters. In Proceedings of the AAAI 2005 Spring Symposium on
Knowledge Collection from Volunteer Contributors, 2005.

Natalya Fridman Noy, Harith Alani, Gerd Stumme, Peter Mika, York Sure, and Denny
Vrandecic, editors. Proceedings of the Workshop on Social and Collaborative Con-
struction of Structured Knowledge (CKC 2007) at the 16th International World
Wide Web Conference (WWW2007) Banff, Canada, May 8, 2007, volume 273 of
CEUR Workshop Proceedings. CEUR-WS.org, 2007.

Natalya Fridman Noy, Nicholas Griffith, and Mark A. Musen. Collecting Community-
Based Mappings in an Ontology Repository. In Sheth et al. (2008), pages 371–386.

Natalya F. Noy, Nigam H. Shah, Patricia L. Whetzel, Benjamin Dai, Michael Dorf,
Nicholas Griffith, Clement Jonquet, Daniel L. Rubin, Margaret-Anne A. Storey,
Christopher G. Chute, and Mark A. Musen. BioPortal: ontologies and integrated
data resources at the click of a mouse. Nucleic acids research, 37(Web Server
issue):W170–173, July 2009.

237

BIBLIOGRAPHY

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical report, Stanford
University, CA, USA, 1998.

Raúl Palma, Peter Haase, and Asunción Gómez-Pérez. Oyster – Sharing and Re-using
Ontologies in a Peer-to-Peer Community. In Carr et al. (2006), pages 1009–1010.

Raúl Palma, Peter Haase, Óscar Corcho, Asunción Gómez-Pérez, and Qiu Ji. An
Editorial Workflow Approach For Collaborative Ontology Development. In Proc.
of the 3rd Asian Semantic Web Conference (ASWC 2008), volume 5367 of LNCS,
pages 227–241. Springer, 2008.

Christos Papadopoulos and Kevin C. Almeroth, editors. Network and Operating Sys-
tem Support for Digital Audio and Video, 13th International Workshop, NOSS-
DAV 2003, Monterey, CA, USA, June 1-3, 2003, Proceedings. ACM, 2003.

Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL Ontologies. In
Ellis and Hagino (2005a), pages 633–640.

Chintan Patel, Kaustubh Supekar, Yugyung Lee, and E. K. Park. OntoKhoj: A
Semantic Web Portal for Ontology Searching, Ranking and Classification. In
Chiang et al. (2003), pages 58–61.

Jyotishman Pathak, Thomas M. Johnson, and Christopher G. Chute. Survey of Modu-
lar Ontology Techniques and their Applications in the Biomedical Domain. Integr.
Comput.-Aided Eng., 16(3):225–242, 2009.

Silvio Peroni, Enrico Motta, and Mathieu d’Aquin. Identifying Key Concepts in an
Ontology, through the Integration of Cognitive Principles with Statistical and
Topological Measures. In Domingue and Anutariya (2008), pages 242–256.

Robert Porzel and Rainer Malaka. A Task-based Approach for Ontology Evaluation. In
ECAI Workshop on Ontology Learning and Population, Valencia, Spain. Citeseer,
2004.

Roger S. Pressman and Darrel Ince. Software Engineering: A Practitioner’s Approach.
McGraw-Hill New York, 1987.

Michael Rappa, Paul Jones, Juliana Freire, and Soumen Chakrabarti, editors. Pro-
ceedings of the 19th International Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010. ACM, 2010.

Paul Resnick and Hal R. Varian. Recommender Systems - Introduction to the Special
Section. Commun. ACM, 40(3):56–58, 1997.

238

17

BIBLIOGRAPHY

Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust Management for
the Semantic Web. In Fensel et al. (2003), pages 351–368.

Jordi Sabater and Carles Sierra. Reputation and Social Network Analysis in Multi-
Agent Systems. In The First International Joint Conference on Autonomous
Agents & Multiagent Systems, AAMAS 2002, July 15-19, 2002, Bologna, Italy,
Proceedings, pages 475–482. ACM, 2002.

Jordi Sabater and Carles Sierra. Social ReGreT, a reputation model based on social
relations. SIGecom Exchanges, 3(1):44–56, 2002.

Marta Sabou, Sofia Angeletou, Mathieu d’Aquin, Jesus Barrasa, Klaas Dellschaft,
Aldo Gangemi, Jos Lehmann, Holger Lewen, Diana Maynard, Dunja Mladenic,
Malvina Nissim, Wim Peters, Valentina Presutti, and Boris Villazon. D2.2.1
Methods for Selection and Integration of Reusable Components from Formal or
Informal User Specifications. Technical Report D2.2.1, Knowledge Media Insti-
tute, the Open University, May 2007.

Marta Sabou, Guadalupe Aguado de Cea, Mathieu d’Aquin, Enrico Daga, Holger
Lewen, Elena Montiel, Valentina Presutti, and Mari del Carmen Suárez-Figueroa.
D2.2.3 Methods and Tools for the Evaluation and Selection of Knowledge Compo-
nents. Technical Report D2.2.3, Knowledge Media Institute, the Open University,
February 2009.

Norman M. Sadeh, Mary Jo Dively, Robert J. Kauffman, Yannis Labrou, Onn Shehory,
Rahul Telang, and Lorrie Faith Cranor, editors. Proceedings of the 5th Interna-
tional Conference on Electronic Commerce, ICEC 2003, Pittsburgh, Pennsylva-
nia, USA, September 30 - October 03, 2003, volume 50 of ACM International
Conference Proceeding Series. ACM, 2003.

Pierangela Samarati and Sabrina De Capitani di Vimercati. Access Control: Policies,
Models, and Mechanisms. Foundations of Security Analysis and Design, pages
137–196, 2001.

Abraham Sebastian, Natalya Fridman Noy, Tania Tudorache, and Mark A. Musen.
A Generic Ontology for Collaborative Ontology-Development Workflows. In
Gangemi and Euzenat (2008), pages 318–328.

Giovanni Semeraro, Eugenio Di Sciascio, Christian Morbidoni, and Heiko Stoermer,
editors. Proceedings of the 4th Italian Semantic Web Workshop, Dipartimento
di Informatica - Universita’ degli Studi di Bari - Italy, 18-20 December, 2007,
volume 314 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

239

BIBLIOGRAPHY

Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Tim-
othy W. Finin, and Krishnaprasad Thirunarayan, editors. The Semantic Web
- ISWC 2008, 7th International Semantic Web Conference, ISWC 2008, Karl-
sruhe, Germany, October 26-30, 2008. Proceedings, volume 5318 of Lecture Notes
in Computer Science. Springer, 2008.

Pavel Shvaiko, Jérôme Euzenat, Fausto Giunchiglia, Heiner Stuckenschmidt, Na-
talya Fridman Noy, and Arnon Rosenthal, editors. Proceedings of the 4th In-
ternational Workshop on Ontology Matching (OM-2009) collocated with the 8th
International Semantic Web Conference (ISWC-2009) Chantilly, USA, October
25, 2009, volume 551 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

Elena Paslaru Bontas Simperl, Christoph Tempich, and York Sure. ONTOCOM: A
Cost Estimation Model for Ontology Engineering. In Cruz et al. (2006), pages
625–639.

Elena Paslaru Bontas Simperl, Igor O. Popov, and Tobias Bürger. ONTOCOM Re-
visited: Towards Accurate Cost Predictions for Ontology Development Projects.
In Aroyo et al. (2009), pages 248–262.

Elena Paslaru Bontas Simperl. Reusing ontologies on the Semantic Web: A feasibility
study. Data Knowl. Eng., 68(10):905–925, 2009.

Andrzej Skowron, Rakesh Agrawal, Michael Luck, Takahira Yamaguchi, Pierre
Morizet-Mahoudeaux, Jiming Liu, and Ning Zhong, editors. 2005 IEEE / WIC /
ACM International Conference on Web Intelligence (WI 2005), 19-22 September
2005, Compiegne, France. IEEE Computer Society, 2005.

Barry Smith and Pierre Grenon. The Cornucopia of Formal-Ontological Relations.
Dialectica, 58(3):279–296, 2004.

Barry Smith, Waclaw Kusnierczyk, Daniel Schober, and Werner Ceusters. Towards a
Reference Terminology for Ontology Research and Development in the Biomedical
Domain. In Proceedings of KR-MED, volume 2006, pages 57–65. Citeseer, 2006.

Barry Smith. Ontology (Science). In Eschenbach and Grüninger (2008), pages 21–35.

Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. International Hand-
books on Information Systems. Springer, 2004.

Steffen Staab, Rudi Studer, Hans-Peter Schnurr, and York Sure. Knowledge Processes
and Ontologies. IEEE Intelligent Systems, 16(1):26–34, 2001.

Katherine J. Stewart and Yali Zhang. Effects of Hypertext Links on Trust Transfer.
In Sadeh et al. (2003), pages 235–239.

240

17

BIBLIOGRAPHY

Katherine J. Stewart. Transference as a means of building trust in World Wide Web
sites. In ICIS, pages 459–464, 1999.

Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors. Modular
Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,
volume 5445 of Lecture Notes in Computer Science. Springer, 2009.

Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge Engineering: Prin-
ciples and Methods. Data Knowl. Eng., 25(1-2):161–197, 1998.

Kaustubh Supekar, Daniel Rubin, Natalya F. Noy, and Mark A. Musen. Knowledge
Zone: A Public Repository of Peer-Reviewed Biomedical Ontologies. Studies in
health technology and informatics, 129(1):812, 2007.

York Sure and John Domingue, editors. The Semantic Web: Research and Applica-
tions, 3rd European Semantic Web Conference, ESWC 2006, Budva, Montenegro,
June 11-14, 2006, Proceedings, volume 4011 of Lecture Notes in Computer Sci-
ence. Springer, 2006.

Zhihong Tan, Weiling Liu, Libing Liu, and Zeqing Yang. The Application of Ontology
Model in Intelligent Tutoring System. In International Conference on Computer
Science and Software Engineering, CSSE 2008, Volume 5: E-learning and Knowl-
edge Management / Socially Informed and Instructinal Design / Learning Systems
Platforms and Architectures / Modeling and Representation / Other Applications
, December 12-14, 2008, Wuhan, China, pages 1176–1179. IEEE Computer Soci-
ety, 2008.

Adolfo Lozano Tello and Asunción Gómez-Pérez. ONTOMETRIC: A Method to
Choose the Appropriate Ontology. J. Database Manag., 15(2):1–18, 2004.

Christoph Tempich, Elena Paslaru Bontas Simperl, Markus Luczak, Rudi Studer, and
Helena Sofia Pinto. Argumentation-Based Ontology Engineering. IEEE Intelligent
Systems, 22(6):52–59, 2007.

Edward Thomas, Jeff Z. Pan, and Derek H. Sleeman. ONTOSEARCH2: Searching
Ontologies Semantically. In Golbreich et al. (2007).

Andreas Tolk and Lakhmi C. Jain, editors. Complex Systems in Knowledge-based
Environments: Theory, Models and Applications, volume 168 of Studies in Com-
putational Intelligence. Springer, 2009.

Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer. Ontology-Based
Interpretation of Keywords for Semantic Search. In Aberer et al. (2007), pages
523–536.

241

BIBLIOGRAPHY

Thanh Tran, Peter Haase, Holger Lewen, Óscar Muñoz-Garćıa, Asunción Gómez-
Pérez, and Rudi Studer. Lifecycle-Support in Architectures for Ontology-Based
Information Systems. In Aberer et al. (2007), pages 508–522.

Thanh Tran, Holger Lewen, and Peter Haase. On the Role and Application of Ontolo-
gies in Information Systems. In 2007 IEEE International Conference on Research,
Innovation and Vision for the Future in Computing & Communication Technolo-
gies, RIVF 2007, Hanoi, Vietnam, 5-9 March 2007, pages 14–21. IEEE, 2007.

Tania Tudorache, Natalya Fridman Noy, Samson W. Tu, and Mark A. Musen. Sup-
porting Collaborative Ontology Development in Protégé. In Sheth et al. (2008),
pages 17–32.

Giovanni Tummarello, Renaud Delbru, and Eyal Oren. Sindice.com: Weaving the
Open Linked Data. In Proc. of the 6th Int. Semantic Web Conference, 2nd Asian
Semantic Web Conference, volume 4825 of LNCS, pages 552–565. Springer, 2007.

Amos Tversky and Daniel Kahneman. Judgment under Uncertainty: Heuristics and
Biases. Science, 185(4157):1124–1131, 1974.

Mike Uschold and Michael Gruninger. Ontologies: Principles, methods and applica-
tions. The Knowledge Engineering Review, 11(02):93–136, 1996.

Mike Uschold, Mike Healy, Keith Williamson, Peter Clark, and Steven Woods. Ontol-
ogy Reuse and Application. In Proc. of the International Conference on Formal
Ontology and Information Systems FOIS’98, pages 179–192, 1998.

Manuela M. Veloso and Subbarao Kambhampati, editors. Proceedings, The Twenti-
eth National Conference on Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA. AAAI Press / The MIT Press, 2005.

Manuela M. Veloso, editor. IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, 2007.

Kim Viljanen, Jouni Tuominen, and Eero Hyvönen. Ontology Libraries for Production
Use: The Finnish Ontology Library Service ONKI. In Aroyo et al. (2009), pages
781–795.

Luis von Ahn. Games with a Purpose. IEEE Computer, 39(6):92–94, 2006.

Zdenko Vrandecic. Ontology evaluation. PhD thesis, Fakultät für Wirtschaftswis-
senschaften, Universität Karlsruhe (TH), 2010.

242

17

BIBLIOGRAPHY

W3C OWL Working Group, editor. OWL 2 Web Ontology Language Document
Overview. W3C Recommendation, 27 October 2009. Available at http://www.
w3.org/TR/owl2-overview/.

Yimin Wang, Jie Bao, Peter Haase, and Guilin Qi. Evaluating Formalisms for Modular
Ontologies in Distributed Information Systems. In Marchiori et al. (2007), pages
178–193.

Baoning Wu and Brian D. Davison. Identifying Link Farm Spam Pages. In Ellis and
Hagino (2005b), pages 820–829.

Frank Yates. Contingency Tables Involving Small Numbers and the χ 2 Test. Supple-
ment to the Journal of the Royal Statistical Society, pages 217–235, 1934.

Giorgos Zacharia and Pattie Maes. Trust Management through Reputation Mecha-
nisms. Applied Artificial Intelligence, 14(9):881–907, 2000.

Paul J. Zak, Robert Kurzban, and William T. Matzner. The Neurobiology of Trust.
Annals of the New York Academy of Sciences, 1032(Biobehavioral Stress Re-
sponse: Protective and Damaging Effects):224–227, 2004.

Qing Zhang and Ting Yu. A Classification Scheme for Trust Functions in Reputation-
Based Trust Management. In Golbeck et al. (2004).

Cai-Nicolas Ziegler and Georg Lausen. Propagation Models for Trust and Distrust in
Social Networks. Information Systems Frontiers, 7(4-5):337–358, 2005.

Philip R. Zimmermann. The ¿fficial PGP User’s Guide, 1995.

243

BIBLIOGRAPHY

244

17

Full Table of Contents

Acknowledgements 5

Abstract 7

I Foundations 11

1 Introduction and Overview 13
1.1 Introduction . 13
1.2 Overview . 13

2 Definitions 15
2.1 Ontology . 15

Application areas of ontologies 16
2.2 Ontology Lifecycle . 16

2.2.1 Ontology Engineering . 17
Requirement Analysis: . 17
Development: . 17
Integration: . 18
Evaluation: . 18

2.2.2 Ontology Usage . 18
Search and Retrieval and Reasoning: 19
Ontology Population: . 19
Cleansing and Fusion: . 19

2.2.3 Application Support for the Ontology Lifecycle 19
2.3 Ontology Evaluation . 20
2.4 Ontology Reuse . 22

2.4.1 Ontology Reuse Process . 22
Tools and Applications Supporting the Ontology Reuse Process 23

Ontology Discovery: . 23
Ontology Selection: . 24
Ontology Integration: 26

2.5 Trust and Trust Propagation . 27
2.5.1 Trust in Computer Science . 27

Reputation-based Trust . 29

245

Full Table of Contents

Conceptual Framework: 30
Trust Models: . 31

Credential-based Trust . 32
2.5.2 Propagation of Trust . 33

Properties of Trust . 33
Transitivity: . 33
Composability: . 34
Personalization: . 34
Asymmetry: . 34

Semantics of Trust . 34
Propagation of Trust . 35

Basic Trust Propagation Types: 35
Propagation of Distrust: 36

2.6 Open Rating Systems . 36
2.6.1 Model . 37
2.6.2 Rating and Ranking . 38
2.6.3 ORS for Ontology Rating . 39
2.6.4 Limitations of the ORS . 39

II Topic-Specific Trust Open Rating System For Ontology Reuse 43

3 Topic-Specific Trust Open Rating System Model 45
3.1 TS-ORS Model . 45
3.2 Meta-trust Statements in the TS-ORS Model 47
3.3 Domain Extension of the TS-ORS Model 48

3.3.1 Extended TS-ORS Model . 48
3.3.2 Meta-trust Statements Using Domain Information 49

3.4 Evaluation-Context Extension for the TS-ORS Model 51
3.4.1 Extended TS-ORS Model Including Rating Context 52
3.4.2 Meta-trust Statements also Covering Evaluation Context . . . 52

4 TS-ORS Algorithms and Trust Materialization 55
4.1 Meta-trust Materialization . 55

4.1.1 Formal Meta-trust Materialization Algorithm 56
4.2 Computing Trust Values for Ranking 57

4.2.1 Global Trust . 58
4.2.2 Local Trust . 59

4.3 Ranking Reviews at the Aspect Level of an Object 60
4.4 Computing an Overall Rating of an Object 63
4.5 Extending the Algorithms for Continuous Trust Values 64

246

17

Full Table of Contents

4.6 Extending the Algorithms to Deal with Domains 65
4.7 Extending the Algorithms to Deal with Evaluation Contexts 66

5 Adaptation of TS-ORS for Ontology Reuse and Example Calcula-
tions 71
5.1 History of Open Rating Systems for Ontology Evaluation 71
5.2 Initialization of TS-ORS Model . 72
5.3 Initialization of the TS-ORS Algorithms with Default Parameters . . . 73
5.4 Facilitating Ontology Reuse using TS-ORS 75
5.5 Automatic Evaluation Techniques and the TS-ORS 75
5.6 Exemplary Computation . 78

5.6.1 Data used for Computations 78
5.6.2 Computation of GlobalTrustRank and GlobalDistrustRank . . 78
5.6.3 Computation of Trust Matrix F and Interpretation Matrix I . . 79
5.6.4 Sorting the Ratings . 83
5.6.5 Computation of an Overall Rating 84

6 Evolution of Ratings 87
6.1 Changing Ratings and Correcting Reviews 87
6.2 Ratings for Objects which Evolve . 88

6.2.1 Identifying when Objects Change 89
6.2.2 Managing Reviews and Ratings for Different Versions of an Object 89

7 Initialization of the TS-ORS for Other Applications 91
7.1 Upgrading an Existing ORS to a TS-ORS 91
7.2 Initializing a TS-ORS from scratch . 92
7.3 Incentives to Review and Rate Objects in the TS-ORS 93

III Implementation and Application 95

8 Implementation of the Topic-Specific Trust Open Rating System 97
8.1 Design Decisions . 97
8.2 Architecture . 97

8.2.1 Database Schema . 98
8.3 UML-Diagram . 100
8.4 Employed Optimization Techniques . 106

8.4.1 Minimizing Database Interaction 106
8.4.2 Only Processing Relevant Data 106
8.4.3 Parallelizing Computations . 107
8.4.4 Using Fast Hardware . 107
8.4.5 Reviewing the Source Code . 107

247

Full Table of Contents

9 Cupboard and TS-ORS Integration 109
9.1 Overview . 110
9.2 Architecture . 113
9.3 Implementation Details and Integration of Components 113

9.3.1 The Cupboard Core . 113
9.3.2 Integration of Watson . 115
9.3.3 Integration of Oyster . 115
9.3.4 Integration of the TS-ORS . 116
9.3.5 Integration of the Key Concept Visualization 117
9.3.6 Integration of the Alignment Server 117

9.4 Versioning In Cupboard . 117

10 The Cupboard NeOn Toolkit Plugin 119
10.1 Watson Plugin . 119
10.2 Cupboard Plugin . 119
10.3 Updated Watson Plugin . 120

11 Exporting Ratings and Trust Information 125
11.1 User Privacy . 125
11.2 Requirements for Data Export . 126
11.3 Ontologies for Exporting Ratings and Trust Information 126

11.3.1 Example Review . 127
11.3.2 Trust Exchange . 127
11.3.3 Exchange Between Ontology Repositories 127

IV Evaluation 129

12 Complexity Analysis and Benchmark 131
12.1 Complexity Analysis . 131

12.1.1 Offline Computation Complexity 132
12.1.2 Runtime Complexity . 133

Ranking of Reviews . 133
Overall Rating of Ontologies 133

12.2 System Benchmarking . 133
12.2.1 Setup . 134
12.2.2 Execution . 135
12.2.3 Results . 136
12.2.4 Result Analysis . 137

Meta-trust Materialization . 147
Trust Computation . 147

248

17

Full Table of Contents

Overall Computation . 148
Review Retrieval . 149

12.2.5 Lessons Learnt from the Benchmark 149

13 Agent Simulation 151
13.1 Setup . 151

13.1.1 Goal of the Simulation . 151
13.1.2 Approach . 152

Different Types of Agents . 152
Different Types of Objects . 152
Creating the Gold Standard by Defining Rules for Rating Ob-

jects . 152
Scenarios to Compare TS-ORS Against ORS 152
Simulating Data Sparsity and Agent Mistakes 153

Data Sparsity: . 153
User Mistakes: . 153

Result Computation . 154
13.2 Results . 154

13.2.1 Scenario 1 . 154
0% Error . 154
10% Error . 155
20% Error . 158

13.2.2 Scenario 2 . 158
0% Error . 158
10% and 20% Error . 158

13.2.3 Scenario 3 . 163
0% Error . 163
10% and 20% Error . 163

13.2.4 Comparison of a 5% Coverage Scenario once with 100 Agents
and once with 1000 Agents (0% Error) 163

13.2.5 Minimal Setting Matching the Gold Standard 168
13.3 Conclusion . 171

13.3.1 Validity of Simulation Results for Real World Systems 171
13.3.2 Attacks on the System . 171
13.3.3 Condensed Simulation Results 172
13.3.4 Lessons Learned . 172

14 User Study 175
14.1 Experiment Setup . 176

14.1.1 Goal of the Experiment . 176
14.1.2 Technology Used in the Experiment 176

249

Full Table of Contents

NeOn Toolkit . 177
Internet Browser . 177
Watson Plugin . 177
Cupboard Plugin . 177

14.1.3 Tasks to be Executed . 179
Group 1 . 179
Group 2 . 179
Group 3 . 183

14.1.4 Role of the Facilitator . 183
14.2 Running the Experiment . 183

14.2.1 Questionnaire . 187
14.2.2 Preparation of Cupboard for the Experiment 187
14.2.3 Hardware and Software Used 187

14.3 Results . 191
14.3.1 Ontologies . 191
14.3.2 Questionnaire Results . 191

14.4 Analysis . 191
14.4.1 Group 1 . 196

Analysis of the Videos . 196
Analysis of the Questionnaire Results 197
Analysis of the Resulting Ontologies 197

14.4.2 Group 2 . 198
Analysis of the Videos . 198
Analysis of the Questionnaire Results 198
Analysis of the Resulting Ontologies 199

14.4.3 Group 3 . 199
Analysis of the Videos . 200
Analysis of the Questionnaire Results 200
Analysis of the Resulting Ontologies 200

14.4.4 Relation Between Groups . 201
14.4.5 Remarks on Linked Data . 201

14.5 Statistical Analysis of Questionnaire Results 201
14.6 Conclusion . 203

V Related Work and Conclusions 205

15 Related Work 207
15.1 Related Work in Ontology Evaluation 207
15.2 Related Work in Trust Networks and Trust Propagation 208
15.3 Relation to Recommender Systems . 211

250

17

Full Table of Contents

15.4 Relation to Open Rating Systems . 211

16 Conclusions and Open Questions 213
16.1 Conclusions . 213
16.2 Open Questions . 214

VI Appendix 215

Bibliography 223

Full Table of Contents 243

251

	Acknowledgements
	Abstract
	Foundations
	Introduction and Overview
	Definitions

	Topic-Specific Trust Open Rating System For Ontology Reuse
	Topic-Specific Trust Open Rating System Model
	TS-ORS Algorithms and Trust Materialization
	Adaptation of TS-ORS for Ontology Reuse and Example Calculations
	Evolution of Ratings
	Initialization of the TS-ORS for Other Applications

	Implementation and Application
	Implementation of the Topic-Specific Trust Open Rating System
	Cupboard and TS-ORS Integration
	The Cupboard NeOn Toolkit Plugin
	Exporting Ratings and Trust Information

	Evaluation
	Complexity Analysis and Benchmark
	Agent Simulation
	User Study

	Related Work and Conclusions
	Related Work
	Conclusions and Open Questions

	Appendix
	Bibliography
	Full Table of Contents

