
RISPP: A Run-time Adaptive Reconfigurable
Embedded Processor

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
der Fakultät für Informatik

der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation
von

Lars Bauer

Tag der mündlichen Prüfung: 15. Dezember 2009

Referent: Prof. Dr.-Ing. Jörg Henkel, Universität Karlsruhe (TH), Fakultät für Informatik,
Lehrstuhl für Eingebettete Systeme (CES)

Korreferent: Prof. Dr.-Ing. Jürgen Becker, Universität Karlsruhe (TH), Fakultät für Elektro-
technik und Informationstechnik, Institut für Technik der Informationsverarbei-
tung (ITIV)

Lars Bauer
Adlerstr. 3a
76133 Karlsruhe

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbständig verfasst ha-
be, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die
anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden
Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

 L a r s B a u e r

i

Acknowledgements

I want to thank my advisor Prof. Jörg Henkel for the inspirations, discussions, and opportunities he pro-
vided and shared with me. He managed to guide and to challenge me while giving me all freedom to fol-
low my ideas and interests. Working with him was a nice experience and it definitely had a strong influ-
ence on my independent approach to work.

I also want to thank all colleagues from the Chair for Embedded Systems for the nice discussions and
the good time. In the last two month before submitting my thesis, especially Thomas Ebi and Sebastian
Kobbe provided consistent support by helping me managing the daily workload and by sharing their cof-
fee machines, which I cannot appreciate enough. Additionally, it is especially due to the secretaries and
technicians that we can research in a good working environment and I explicitly want to acknowledge
their work during all the time.

Special thanks go to my colleague and room mate Muhammad Shafique. Without him, the work
would not have been what it became. The technical discussions on application- and architecture-aspects
improved the quality of this work more than once. I also want to thank the Master students that I super-
vised in the scope of this thesis.

It was a nice experience to collaborate with colleagues from the groups (in alphabetical order) of Prof.
Jürgen Becker (ITIV), Prof. Jörg Henkel (CES), and Prof. Wolfgang Karl (CA) from the University of
Karlsruhe in different projects. In particular, I want to thank (in alphabetical order): Waheed AhmedCES,
Mohammad Abdullah Al FaruqueCES, Talal BonnyCES, Rainer BuchtyCA, Thomas EbiCES, Dominic Hillen-
brandCES, Michael HübnerITIV, Florian KaiserCES, Ralf KönigITIV, David KramerCA, Christian SchuckITIV,
Muhammad ShafiqueCES, and Timo StripfITIV.

I had the honor to participate at the (semi-) annual colloquia of the priority programs from the German
Research Foundation (DFG) about Reconfigurable Computing Systems (SPP-1148) and Organic Comput-
ing (SPP-1183). The presentations and the discussion with colleagues from other Universities broadened
my horizon and created contact with many excellent researchers. I want to thank the coordinators of these
priority programs for this great experience (in alphabetical order): Prof. Hartmut Schmeck and Prof. Jür-
gen Teich.

The hardware prototype and simulation environment would not have been possible without support of
various different companies, i.e. (in alphabetical order) ACE bv, Agilent GmbH, Avnet Inc., Digilent Inc.,
Samsung, and Xilinx Inc. I especially want to thank Parimal Patel from Xilinx for his consistent support
and his hints according the Early Access Partial Reconfiguration tools.

Finally, I want to thank my family and in particular my parents Heidrun and Dieter. They all sup-
ported me whenever I needed it. Not only during my Ph.D. study but actually since ever. This strong
foundation certainly helped looking forward.

iii

“In a nutshell, ingenuity combined with very hard work is the
key. Never lean back. Always look forward. Identify and face

new challenges. Be very self-critical. And honest.” Jörg Henkel

Email conversation after DAC’08 acceptance notification, 8th February 2008

List of Own Publications Included in This Thesis

Transactions (blind peer reviewed)

[T.1] L. Bauer, M. Shafique, J. Henkel, “Efficient Resource Utilization for an Extensible Processor
through Dynamic Instruction Set Adaptation”, IEEE Transaction on Very Large Scale Integration
(TVLSI´08), Special Section on Application-Specific Processors, Volume 16, Issue 10, pp. 1295-
1308, October 2008.

Conferences (double-blind peer reviewed)

[C.1] L. Bauer, M. Shafique, J. Henkel, “MinDeg: A Performance-guided Replacement Policy for Run-
time Reconfigurable Accelerators”, IEEE International Conference on Hardware-Software
Codesign and System Synthesis (CODES+ISSS´09), Grenoble, France, pp. 335-342, October
2009.

[C.2] L. Bauer, M. Shafique, J. Henkel, “Cross-Architectural Design Space Exploration Tool for Re-
configurable Processors”, IEEE/ACM 12th Design Automation and Test in Europe Conference
(DATE´09), Nice, France, pp. 958-963, April 2009.

[C.3] L. Bauer, M. Shafique, J. Henkel, “A Computation- and Communication-Infrastructure for Modu-
lar Special Instructions in a Dynamically Reconfigurable Processor”, IEEE 18th International
Conference on Field Programmable Logic and Applications (FPL´08), Heidelberg, Germany, pp.
203-208, September 2008.

[C.4] L. Bauer, M. Shafique, J. Henkel, “Run-time Instruction Set Selection in a Transmutable Embed-
ded Processor”, ACM/IEEE/EDA 45th Design Automation Conference (DAC´08), Anaheim, CA,
USA, pp. 56-61, June 2008.
Received a “European Network of Excellence on High Performance and Embedded Archi-
tecture and Compilation” (HiPEAC) Paper Award

[C.5] L. Bauer, M. Shafique, S. Kreutz, J. Henkel, “Run-time System for an Extensible Embedded
Processor with Dynamic Instruction Set”, IEEE/ACM 11th Design Automation and Test in Europe
Conference (DATE´08), Munich, Germany, pp. 752-757, March 2008.
Received the DATE´08 Best Paper Award for Track D (Design Methods, Tools, Algorithms
and Languages)

[C.6] L. Bauer, M. Shafique, D. Teufel, J. Henkel, “A Self-Adaptive Extensible Embedded Processor”,
IEEE/ACM First International Conference on Self-Adaptive and Self-Organizing Systems
(SASO´07), Boston, MA, USA, pp. 344-347, July 2007.

[C.7] L. Bauer, M. Shafique, S. Kramer, J. Henkel, “RISPP: Rotating Instruction Set Processing Plat-
form”, ACM/IEEE/EDA 44th Design Automation Conference (DAC´07), San Diego, CA, USA,
pp. 791-796, June 2007.

v

List of Own Publications Included in This Thesis

vi

Workshops (double-blind peer reviewed)

[W.1] L. Bauer, M. Shafique, J. Henkel, “Efficient Resource Utilization for an Extensible Processor
through Dynamic Instruction Set Adaptation”, 5th Workshop on Application Specific Processors
(WASP´07), Salzburg, Austria, pp. 39-46, October 2007.

List of Supervised Student Projects that
Contributed to the Simulation and Prototype

Master Thesis (Diplomarbeiten)

[D.1] Frank Birkle “Designing and prototyping a partially reconfigurable processor framework with a
HW/SW Co-Designed run-time system”, August 2009.

[D.2] Roman Sinawski “Design and implementation of an extensible ASIP for an H.264 Video En-
coder”, August 2009.

[D.3] Artjom Grudnitsky “Extending the RISPP Simulator with Floorplan-Aware Special Instruction
Management and Execution”, May 2009.

[D.4] Patrick Koffler “Visualisierung ereignisbasierter interner Abläufe in rekonfigurierbaren Prozesso-
ren”, May 2009.

[D.5] Hongzhang Chen “Extending an application specific processor towards dynamic partial recon-
figuration”, December 2008.

[D.6] Weiwei Cheng “Simulation und Messung des Energieverbrauchs eines Rekonfigurierbaren Ein-
gebetteten Prozessors”, October 2008.

[D.7] Christian Krämer “Design and Implementation of a Reconfigurable Processor with Adaptive Re-
configuration Management”, September 2007.

[D.8] Stephanie Kreutz “Konzeption und Evaluierung einer Methodik zur Rekonfigurationsentschei-
dung eines dynamischen ASIPs”, August 2007.

[D.9] Simon Kramer “Graphenanalyse zur Bestimmung von Vorhersagepunkten für Spezialbefehle”,
January 2007.

[D.10] Francois Blassmann “Implementierung eines Prototypen zur partiellen Laufzeitrekonfiguration”,
May 2006.

[D.11] Dirk Teufel “Entwicklung eines Rekonfigurationsmanagers für einen Applikationsspezifischen
Prozessor”, May 2006.

vii

List of Supervised Student Projects that Contributed to the Simulation and Prototype

viii

Semester Thesis (Studienarbeiten)

[S.1] Jan Micha Borrmann “Entwicklung eines IP-Cores zur Erfassung und Vorverarbeitung von Vi-
deodaten auf einem FPGA”, May 2009.

[S.2] Ekrem Karaman “Untersuchung verschiedener Implementierungen von Spezialbefehlen für dy-
namisch rekonfigurierbare Prozessoren”, July 2008.

[S.3] Artjom Grudnitsky “Designing a customizable framework with exchangeable modules for par-
tially reconfigurable hardware”, May 2008.

[S.4] Roland Sedler “A simulation environment for reconfigurable processor architectures”, April 2008.

[S.5] Christoph Brückner “Evaluierung von Debuggingwerkzeugen für Xilinx FPGAs”, September
2007.

[S.6] Andreas Becker “Messen des Leistungsverbrauches beim partiellen Rekonfigurieren eines
FPGAs”, June 2007.

[S.7] Christian Krämer “Implementierung einer I2C Schnittstelle für ein FPGA Prototyping Board und
Anbindung eines Touch Screen LCDs zur Steuerung von ASIPs”, February 2007.

[S.8] Florian Fetz “Entwicklung eines Designs zur partiellen Selbstrekonfiguration mit PlanAhead”,
December 2006.

Abstract
Reconfigurable embedded processors are a special class of processors comprising an extended instruction
set that is implemented using a reconfigurable fabric. The instruction-set extension is typically application
specific, but it is not required to finalize it when designing the processor. The reconfigurable fabric (e.g. a
field-programmable gate array (FPGA)) allows that the accelerators that are used to implement the in-
struction-set extension may be reconfigured during run time without affecting the functionality of the
working processor. Therefore, the accelerators – and thus the instruction-set extension – may be adapted
according to the requirements of a running application.

State-of-the-art reconfigurable processors require that the application programmer (or compiler) de-
termines during compile time ‘which’ reconfigurations shall be performed and ‘when’ they shall be per-
formed, i.e. which accelerators shall be loaded to a particular part of the reconfigurable fabric at a certain
time. The problem is that it is typically not known during compile time which applications execute at the
same time (i.e. in a multi-tasking environment), demanding the reconfigurable fabric. Additionally, it is
not necessarily known, which accelerators are demanded frequently and which are demanded rather sel-
dom, because this may depend on the input data for the application. Here, it would be desirable that this
information – that is only available during run time – would be used to determine which reconfigurations
should be performed. A further problem is the reconfiguration time, that ranges in the area of milliseconds
for FPGAs (1 ms = 100,000 cycles of a 100 MHz CPU). The reconfiguration time of an accelerator grows
approximately linear with the share of the reconfigurable fabric that needs to be reconfigured. This means,
that an accelerator that exploits more parallelism (and thus demands a larger area) requires a longer recon-
figuration time. Therefore, it becomes usable at a later time (in comparison with a smaller accelerator),
which implies that some potential performance improvement is lost due to longer reconfiguration time.

In this thesis, concepts, strategies, and implementations are presented to solve the discussed problems
of long reconfiguration times and missing run-time adaptivity. As foundation, a novel hierarchical compo-
sition of instruction set extensions was developed that allows to provide the instruction set extensions in
multiple versions. These versions differ according their parallelism and reconfiguration time and allow
switching from one version to another efficiently. ‘Efficiently’ means that it is not required to reconfigure
a new version (e.g. exploiting more parallelism) from scratch. Instead, it may build on top of an existing
version (typically exploiting less parallelism). This makes it possible to replace an existing instruction set
extension by a faster one by reconfiguring the additionally required accelerators. This means, a stepwise
upgrade of the instruction set extension becomes now possible. This addresses the effect of long recon-
figuration time and it allows choosing different implementations of the instruction set extension at differ-
ent points in time, depending on execution frequency of the instruction set extensions and depending on
the available amount of reconfigurable fabric. In comparison with state-of-the art instruction set exten-
sion, the application does not need to be changed to benefit from this novel concept, just the performance
of the instruction set extension changes over time.

To exploit the provided run-time flexibility, multiple algorithms were developed and implemented to
solve the following problems during run time:

• Application requirement analysis (using online monitoring) and prediction of the required instruction
set extensions (i.e. which extension is required how often) to start the corresponding reconfigurations
in time.

• Selecting the specific version of the instruction set extension for a given size of the reconfigurable
fabric (similar to a knapsack problem).

• Scheduling the demanded reconfigurations (this is required because at most one reconfiguration can
be performed at a time).

• Replacing currently available accelerators to be able to reconfigure further accelerators.

ix

Abstract

x

The resulting system was implemented and evaluated using a simulation and an FPGA prototype. Addi-
tionally, it was compared with state-of-the-art processors with a reconfigurable / and a non-reconfigurable
instruction set (so-called application-specific instruction set processors). Due to the run-time adaptivity,
the concept of upgrading instruction set extensions, and the reduced reconfiguration overhead problem,
significant performance improvements were observed for a complex H.264 video encoder application:

• up to 2.38x in comparison with the reconfigurable Molen processor,
• up to 7.19x in comparison with the reconfigurable Proteus processor,
• up to 3.06x in comparison with a non-reconfigurable application-specific processor, and
• up to 25.7x in comparison with a non-reconfigurable general-purpose processor without instruction

set extension.

Zusammenfassung
Rekonfigurierbare Eingebettete Prozessoren sind eine spezielle Klasse von Prozessoren, die über eine Be-
fehlssatzerweiterung verfügen, welche durch rekonfigurierbare Hardware realisiert wird. Die Befehlssatz-
erweiterung ist häufig anwendungsspezifisch, muss aber nicht zur Entwurfszeit des Prozessors festgelegt
werden. Die rekonfigurierbare Hardware (z.B. ein feldprogrammierbares Gatterarray (FPGA)) erlaubt es,
die Beschleunigerschaltkreise, die die Befehlssatzerweiterung implementieren, zur Laufzeit des Systems
auszutauschen, ohne dabei die übrige Funktionalität des arbeitenden Prozessors zu beeinträchtigen. Da-
durch können die Beschleunigerschaltkreise – und somit die Befehlssatzerweiterung – abhängig von den
Bedürfnissen einer laufenden Anwendungen angepasst werden.

Dem Stand der Kunst entsprechende rekonfigurierbare Prozessoren erwarten vom Anwendungspro-
grammierer (bzw. vom Übersetzer), das er zur Übersetzungszeit der Anwendung festlegt, welche Rekon-
figurationen wann ausgeführt werden sollen, sprich: welche Beschleunigerschaltkreise zu welchem Zeit-
punkt an welche Stelle der rekonfigurierbaren Hardware geladen werden sollen. Das Problem daran ist,
dass zur Übersetzungszeit typischerweise nicht bekannt ist, welche Anwendungen gleichzeitig (d.h. im
Zeitscheibenverfahren eines Multi-Tasking Systems) laufen und die rekonfigurierbare Hardware bean-
spruchen. Außerdem ist nicht immer zur Übersetzungszeit bekannt, welche Beschleunigerschaltkreise be-
sonders häufig und welche eher selten benötigt werden, weil das von Eingabedaten der Anwendung ab-
hängen kann. Hier wäre es wünschenswert, wenn diese Informationen – die erst zur Laufzeit der Anwen-
dung bekannt sind – benutzt würden, um zu entscheiden welche Rekonfigurationen durchgeführt werden
sollen. Ein weiteres Problem ist die Rekonfigurationszeit, die sich bei FPGAs im Bereich mehrerer Milli-
sekunden bewegt (1 ms = 100.000 Takte einer 100 MHz CPU). Die Rekonfigurationszeit eines Beschleu-
nigerschaltkreises wächst annäherungsweise linear mit der Fläche, die auf dem FPGA rekonfiguriert wer-
den soll. Das bedeutet, dass ein Beschleuniger der mehr Parallelität ausnutzt (und damit eine größere Flä-
che belegt) eine längere Rekonfigurationszeit hat. Dadurch wird er erst später verfügbar, was dazu führt,
dass ein Teil der erwarteten Beschleunigung (Ausnutzung von mehr Parallelität) durch die längere Rekon-
figurationszeit verloren geht.

In der vorliegenden Arbeit werden Konzepte, Strategien und Implementierungen vorgestellt, um die
beschriebenen Probleme der langen Rekonfigurationszeit und der fehlenden Laufzeitadaptivität zu lösen.
Als Grundlage wurde eine neuartige hierarchische Komposition von Befehlssatzerweiterungen entworfen,
die es ermöglicht, die Befehlssatzerweiterung in mehreren Versionen anzubieten. Diese Versionen unter-
scheiden sich bezüglich ihrer Parallelität und Rekonfigurationszeit und erlauben es, effizient von einer
Version zu einer anderen zu wechseln. Effizient bedeutet hier, dass eine Version die z.B. mehr Parallelität
nutzt nicht komplett neu rekonfiguriert werden muss, sondern auf einer vorhandenen Version (die dann
typischerweise weniger Parallelität nutzt) aufbauen kann. Dadurch ist es möglich, eine vorhandene Be-
fehlssatzerweiterung durch eine schnellere zu ersetzt, wobei nur die zusätzlich benötigten Teile der Be-
schleuniger rekonfiguriert werden müssen, sprich: ein schrittweises Aufrüsten der Befehlssatzerweiterung
wird möglich. Dadurch wird der Effekt der langen Rekonfigurationszeit angegangen und es ist außerdem
möglich, zur Laufzeit zu verschiedenen Zeitpunkten verschiedene Implementierungen der Befehlssatzer-
weiterung auszuwählen, abhängig davon, welche Erweiterung wie häufig benötigt wird und wie viel
Hardware dafür verfügbar ist. Die Anwendung selbst muss dafür nicht angepasst werden, nur die Ausfüh-
rungsgeschwindigkeit der Befehlssatzerweiterung ändert sich.

Zum Erreichen der Laufzeitadaptivität wurden mehrere Algorithmen entworfen und implementiert,
welche die folgenden Problemstellungen zur Laufzeit lösen:

xi

Zusammenfassung

xii

• Bedarfsanalyse der Anwendung und Vorhersage der benötigten Befehlssatzerweiterung (welcher Be-
schleunigerschaltkreis wird wie häufig gebraucht), um frühzeitig mit der Rekonfiguration beginnen zu
können.

• Auswahl von konkreten Versionen der Befehlssatzerweiterungen für eine gegebene Hardwarefläche
(ähnlich dem Rucksackproblem).

• Zeitliche Ablaufplanung der notwendigen Rekonfigurationen (notwendig, da immer nur eine Rekon-
figuration gleichzeitig durchgeführt werden kann, die anstehenden Rekonfigurationen also in eine
Reihenfolge gebracht werden müssen).

• Verdrängung existierender Beschleunigerschaltkreise, um neue zu laden.

Das resultierende Gesamtsystem wurde in einem Simulator und einem FPGA Prototypen implementiert
und evaluiert. Außerdem wurde es mit dem Stand der Kunst entsprechenden Prozessoren mit rekonfigu-
rierbarer Befehlssatzerweiterung, wie auch mit nicht rekonfigurierbarer Befehlssatzerweiterung (sog. an-
wendungsspezifische Prozessoren) verglichen. Durch die Laufzeitadaptivität und die Aufrüstbarkeit der
Befehlssatzerweiterung (und die damit einhergehende Verringerung der Rekonfigurationswartezeit) wur-
den für eine komplexe H.264 Video Encoder Anwendung deutliche Performanzgewinne beobachtet:

• bis zu 2,38x im Vergleich zum rekonfigurierbaren Molen Prozessor,
• bis zu 7,19x im Vergleich zum rekonfigurierbaren Proteus Prozessor,
• bis zu 3,06x im Vergleich zu nicht rekonfigurierbaren anwendungsspezifischen Prozessoren und
• bis zu 25,7x im Vergleich zu nicht rekonfigurierbaren Standardprozessoren ohne Befehlssatzerweite-

rung.

Contents

Acknowledgements .. i

List of Own Publications Included in This Thesis .. v

List of Supervised Student Projects that Contributed to the Simulation and
Prototype .. vii

Abstract .. ix

Zusammenfassung ... xi

Contents ... xiii

List of Figures .. xvii

List of Tables .. xxiii

List of Algorithms .. xxv

Abbreviations .. xxvii

Chapter 1 Introduction .. 1
1.1 Application Specific Instruction Set Processors .. 1
1.2 Reconfigurable Processors ... 2
1.3 Thesis Contribution ... 3
1.4 Thesis Outline .. 5

Chapter 2 Background and Related Work .. 7
2.1 Extensible Processors .. 7
2.2 Reconfigurable Processors ... 8

2.2.1 Granularity of the Reconfigurable Fabric .. 8
2.2.2 Using and Partitioning the Reconfigurable Area 13
2.2.3 Coupling Accelerators and the Processor 16
2.2.4 Reconfigurable Instruction Set Processors 17

2.3 Summary of Related Work .. 20

Chapter 3 Modular Special Instructions ... 21
3.1 Problems of State-of-the-art Monolithic Special Instructions 21
3.2 Hierarchical Special Instruction Composition ... 25
3.3 Example Special Instructions for the ITU-T H.264 Video Encoder

Application ... 31

xiii

Contents

3.4 Formal Representation and Combination of Modular Special
Instructions .. 36

3.5 Summary of Modular Special Instructions ... 39

Chapter 4 The RISPP Run-time System ... 41
4.1 RISPP Architecture Overview .. 41
4.2 Requirement Analysis and Overview ... 43
4.3 Online Monitoring and Special Instruction Forecasting 49

4.3.1 Fine-tuning the Forecast Values .. 52
4.3.2 Evaluation of Forecast Fine-tuning ... 55
4.3.3 Hardware Implementation for Fine-tuning the Forecast Values ... 58

4.4 Molecule Selection .. 60
4.4.1 Problem description for Molecule Selection 61
4.4.2 Parameter Identification for the Profit Function 64
4.4.3 Heuristic Solution for the Molecule Selection 66
4.4.4 Evaluation and Results for the Molecule Selection 69

4.5 Reconfiguration-Sequence Scheduling ... 74
4.5.1 Problem Description for Reconfiguration-Sequence Scheduling . 76
4.5.2 Determining the Molecule Reconfiguration Sequence 78
4.5.3 Evaluation and Results for the Reconfiguration-Sequence

Scheduling ... 82
4.6 Atom Replacement .. 84

4.6.1 Motivation and Problem Description of State-of-the-art
Replacement Policies .. 84

4.6.2 The MinDeg Replacement Policy ... 87
4.6.3 Evaluation and Results .. 89

4.7 Summary of the RISPP Run-time System .. 95

Chapter 5 RISPP Architecture Details.. 97
5.1 Special Instructions as Interface between Hardware and Software 97
5.2 Executing Special Instructions using the core Instruction Set

Architecture (cISA) ... 101
5.3 Data Memory Access for Special Instructions 106
5.4 Atom Infrastructure ... 108

5.4.1 Atom Containers and Bus Connectors .. 111
5.4.2 Load/Store- and Address Generation Units 115

5.5 RISPP Prototype Implementation and Results 119
5.6 Summary of the RISPP Architecture Details .. 127

xiv

Contents

xv

Chapter 6 Benchmarks and Comparisons ... 129
6.1 Benchmarking the RISPP approach for different architectural

parameters .. 129
6.2 Comparing Different Architectures ... 132

6.2.1 Assumptions and Similarities ... 133
6.2.2 Dissimilarities .. 133
6.2.3 Fairness of Comparison.. 134

6.3 Comparing RISPP with Application-Specific Instruction Set
Processors (ASIPs) .. 136

6.4 Comparing RISPP with Reconfigurable Processors 141
6.5 Summary of Benchmarks and Comparisons ... 145

Chapter 7 Conclusion and Outlook .. 147
7.1 Thesis Summary .. 147
7.2 Future Work ... 148

Appendix A RISPP Simulation .. 151

Appendix B RISPP Prototype .. 157

Bibliography ... 161

List of Figures

Figure 2.1: Connecting Coarse-Grained Reconfigurable Functional Units [BBKG07]9
Figure 2.2: Application Specific and Domain Specific CCA Design Examples

[CBC+05] ...10
Figure 2.3: Connecting LUTs as the Basic Building Blocks of Fine-grained

Reconfigurable Logic to Slices and Configurable Logic Blocks [Xil07b]11
Figure 2.4: Two-Dimensional Array of Fine-grained Reconfigurable CLBs that are

Connected With Fine-grained Reconfigurable Switching Matrices
[Xil08b] ..11

Figure 2.5: Example for a General Framework for Partially Reconfigurable Modules
that Comprise Dedicated IP-Cores or Tasks [UHGB04b]13

Figure 2.6: Erlangen Slot Machine (ESM) Architecture Overview [MTAB07]14
Figure 2.7: Different Area Models for Fine-grained Reconfigurable Fabric [SWP04]15
Figure 2.8: 2D Area Model Using a Dynamic Network on Chip Architecture to

Establish Communication [BAM+05] ..16
Figure 2.9: Coupling Reconfigurable Accelerators with the Core Processor [CH02,

TCW+05] ..17
Figure 3.1: Comparing Different Performance vs. Reconfiguration Overhead Trade-

Offs ...24
Figure 3.2: Hierarchical Composition of Special Instructions: Multiple

Implementation Alternatives – So-called Molecules – Exist per Special
Instruction and Demand Atoms for Realization ...25

Figure 3.3: Example for the Modular Special Instruction SATD (Sum of Absolute
(Hadamard-) Transformed Differences), Showing the Details for the
Transform Atom and the SAV (Sum of Absolute Values) Atom27

Figure 3.4: Example Schedule for a Molecule of the SATD Special Instruction, Using
Two Instances of Each Atom ...28

Figure 3.5: H.264 Application Flow, Highlighting the Three Main Computational
Blocks (ME, EE, LF) and their Embedded Kernels ...31

Figure 3.6: Relative Frequency of Intra-Prediction Macroblocks (I-MBs) in a Video
Sequence ...33

Figure 3.7: Example of a Motion Compensation Special Instruction with Three
Different Atoms and the Internal Data Path of the Point Filter Atom
[SBH09a] ..34

Figure 3.8: Special Instruction for In-Loop De-blocking Filter with Example Schedule
and Constituting Atoms for Filtering Conditions and Filtering Operation
[SBH09a] ..34

xvii

List of Figures

Figure 3.9: Example for Union, Intersection, and Determinant Operation on
Molecules ...37

Figure 3.10: Example for Upgrade Operation on Molecules ..37
Figure 3.11: Example for Relation, Supremum, and Infimum of Molecules38
Figure 4.1: Extending a Standard Processor Pipeline toward RISPP42
Figure 4.2: Fix at Design-/Compile Time and Adapt at Run Time ..44
Figure 4.3: Overview of the RISPP Run-time System ...46
Figure 4.4: State-Transition Diagram of the Run-time System ..48
Figure 4.5: Example Control-flow Graph Showing Forecasts and the Corresponding

Special Instruction Executions ...51
Figure 4.6: Execution Sequence of Forecast and Special Instructions with the

Resulting Error Back Propagation and Fine-tuning ...51
Figure 4.7: A Chain of Forecast Blocks, Showing How the Information in a Sliding

Window is Used to Determine a Forecast Error that is Back Propagated52
Figure 4.8: A Chain of Forecast Blocks, Showing How Multiple Previous Forecast

Blocks may be Updated, Depending on Parameter λ ...54
Figure 4.9: Parameter Evaluation for α and γ for λ=0, Showing the Resulting

Application Run Time ..56
Figure 4.10: Evaluation of the Forecast Value for Different Values of α, Showing the

Actual and Predicted SI Execution ...57
Figure 4.11: Accumulated Absolute Forecast Error ...57
Figure 4.12: Pipelined Implementation for Fine-tuning the Forecasts [D.7]58
Figure 4.13: Different Showcase Molecules for Two Special Instructions with the

Corresponding Selection Possibilities for Different Numbers of Available
Atom Containers ...61

Figure 4.14: Atom Sharing, Leading to a Size of the Combined Molecule that is
Smaller than the Accumulated Size of the Two Individual Molecules63

Figure 4.15: Comparing the Reconfiguration Time and the First Execution Time of a
Special Instruction ..65

Figure 4.16: Impact of the Profit-Function Parameters on the Application Execution
Time for Four Atom Containers ...70

Figure 4.17: Detailed Analysis of the Application Execution Time for the Three
Individual Computational Blocks Motion Estimation, Encoding Engine,
and In-Loop De-blocking Filter for Four Atom Containers71

Figure 4.18: Impact of the Profit Function Parameters on the Application Execution
Time for Seven Atom Containers ...72

Figure 4.19: Statistical Analysis of Greedy Selection for Different Numbers of Atom
Containers ...73

xviii

List of Figures

Figure 4.20: Statistical Analysis of Optimal Selection for Different Numbers of Atom
Containers ...74

Figure 4.21: Different Atom Schedules with the Corresponding Molecule Availabilities75
Figure 4.22: Comparing Different Scheduling Methods for Two Selected Molecules of

Different SIs ...78
Figure 4.23: The Problem of Upgrade ‘Gaps’ for the SJF Scheduler81
Figure 4.24: Comparing the Proposed Scheduling Schemes for Different Amount of

Atom Containers ...82
Figure 4.25: Detailed Analysis of the HEF Scheduler for the Motion Estimation and

Encoding Engine, Showing how the SI Latencies (Lines) and Execution
Frequencies (Bars) Change Over Time ..83

Figure 4.26: High-level H.264 Video Encoder Application Flow, Showing a Typical
Use Case and Presenting the Different Replacement Decisions of LRU
and MRU in Detail ...84

Figure 4.27: Examples for Atoms and their Utilization in SIs, Showing Different
Implementation Alternatives (i.e. Molecules) and their Execution
Latencies ...87

Figure 4.28: Comparing the MinDeg Replacement Policy with State-of-the-art Policies
for Different Reconfiguration Bandwidths (a-c) and Size of the
Reconfigurable Fabric (x-axis) ...90

Figure 4.29: Summarizing the Performance Improvement of MinDeg in Comparison
with State-of-the-art Replacement Policies ..92

Figure 4.30: Detailed Replacement Analysis for 20 MB/s Reconfiguration Bandwidth
and 15 ACs ...93

Figure 4.31: Algorithm Execution Time (Accumulated Number of Innermost Loop
Body Executions when Encoding 10 Frames) ...94

Figure 5.1: Using Dual-Ported BlockRAMs to Implement a General Purpose Register
File (GPR) with One Write and Four Read Ports ...98

Figure 5.2: Levels and Contexts to reach the cISA Implementation of an SI102
Figure 5.3: Memory Controller, Connecting the Memory Stage of the Core Pipeline

and Both 128-bit Ports for SIs with the Data Cache and an On-Chip
Scratchpad Memory ...107

Figure 5.4: Overview of the Atom Infrastructure and its Connection to the Core
Pipeline and the Memory Controller ..109

Figure 5.5: Overview of the Non-reconfigurable Modules within the Atom
Infrastructure ..110

Figure 5.6: Internal Composition of a Bus Connector, Showing the Connection to its
Atom Container and the Neighboring Bus Connectors112

xix

List of Figures

Figure 5.7: Atom Infrastructure with three Bus Connectors, Highlighting two
Example Communication Patterns for Typical Atom Computation and
Data Copying ..113

Figure 5.8: Area Requirements per Bus Connector for More Buses and Finer Access
Granularity ..114

Figure 5.9: Latency Changes for Increasing Amount of Buses and Bus Connectors114
Figure 5.10: Internal Composition of a Load/Store Unit, Showing the Connection to the

Memory Port and the Address Generation Units ...115
Figure 5.11: Memory Streams, Described by Base Address, Stride, Span, and Skip117
Figure 5.12: Problems, if one Memory Stream shall be accessed with both LSUs in

Parallel ..117
Figure 5.13: Overview of the MicroBlaze System that Implements the Algorithms of

the Run-time System and Controls the Reconfigurations [D.1]119
Figure 5.14: Floorplan of the RISPP Prototype Implementation, Showing the

Placement of the Different Components on the Xilinx Virtex-4 LX 160
FPGA [D.1] ..122

Figure 5.15: Execution Time Analysis of the RISPP Run-time System’s Algorithms
that Execute on the MicroBlaze Part of the RISPP Prototype [D.1]126

Figure 6.1: Comparing the Impact of the Core Pipeline Operating Frequency and the
Atom Infrastructure Operating Frequency ...130

Figure 6.2: Investigating the Effect of Different Data Memory Connections131
Figure 6.3: Impact of the Reconfiguration Bandwidth and the Number of Atom

Containers ...132
Figure 6.4: Analyzing the Execution Time and the Resource Usage Efficiency Using

Different Area Deployments when Processing 140 Video Frames with an
ASIP ...136

Figure 6.5: Detailed ASIP Utilization Variations for Six Available Atoms137
Figure 6.6: Application Execution Time and Efficiency of Resource Usage for

Encoding 140 Video Frames on ASIP and RISPP ...138
Figure 6.7: Atom Utilization for ASIP and RISPP ...139
Figure 6.8: Detailed Atom Utilization Variations for 4, 5, and 10 Available Atom

Containers (AC), Used by ASIP (AC Content Determined at Design Time)
and RISPP (AC Content Reconfigured at Run Time); Respectively.140

Figure 6.9: Comparison of RISPP and Molen, Showing the Execution Time of the
H.264 Video Encoder Benchmark (Encoding 140 Frames in CIF
Resolution, i.e. 352x288) and the Speedup ..142

Figure 6.10: Problem and Possible Solution when Addressing Reconfigurable
Hardware as Monolithic RFUs ...144

Figure 6.11: Comparing the RISPP Approach with Proteus, Executing an H.264 Video
Encoder and Showing the Impact of RFUs vs. Atom Containers145

xx

List of Figures

xxi

Figure A.1: Internal Composition of the Design Space Exploration Tool, Showing
Module Interactions ..151

Figure A.2: Overview of the RISPP Simulation Visualization: RISPPVis [D.4]153
Figure A.3: RISPPVis Zooming into SI Execution Latency Changes [D.4]153
Figure A.4: RISPPVis SI Latency Diagram [D.4] ...155
Figure A.5: RISPPVis Design Rule Check [D.4] ..155
Figure B.1: Picture of the Avnet Xilinx Virtex-4 LX160 Development Kit with

Periphery for SRAM, SDRAM, Reconfiguration EEPROM, Audio/Video
Module, and (Touch Screen) LCDs ...158

Figure B.2: Schematic of the Four Layers for the PCB for EEPROM, USB, Audio,
Touch-Screen LCD, and General-purpose Connectors that was Developed
in the Scope of this Thesis ..159

Figure B.3: Picture of the Developed PCB ..159

xxiii

List of Tables

Table 3.1: Overview of Different SATD Molecule Alternatives ..28
Table 3.2: Overview of Implemented SIs and their Required Atoms [SBH09a]35
Table 3.3: Overview of High-level Molecule and Special Instruction Properties39
Table 4.1: Hardware Requirements for Monitoring and Forecast Unit60
Table 4.2: Speedup due to HEF Scheduling ..83
Table 4.3: Relevant History-based Replacement Policies, Used for Evaluating the

Performance-guided MinDeg Policy ..88
Table 5.1: SPARC V8 Instruction Formats [SPA] ..99
Table 5.2: SPARC V8 Instruction Format 2 with RISPP Extensions [D.7]99
Table 5.3: SPARC V8 Format 2 Used for UNIMP and Helper Instructions (HIs)100
Table 5.4: Overview of Implemented Helper Instructions [D.7] ..100
Table 5.5: Instruction Format for Special Instructions as Part of SPARC V8

Instruction Format 2 ...101
Table 5.6: Hardware Implementation Results for the RISPP Prototype; all FPGA

Utilization Numbers are Relative to the Used Xilinx Virtex-4 LX 160
FPGA ..123

Table 5.7: Atom Implementation Results ..124
Table 5.8: Individually Constraint Parts of the Critical Path in the Atom

Infrastructure and their Processing Sequence [D.1] ...124
Table 6.1: Investigated Architectural Parameters ..130
Table 6.2: Selected Atoms for ASIPs for the Computational Blocks of H.264 Video

Encoder ...136
Table 6.3: Summary of Comparison of RISPP and ASIP ...139
Table 6.4: Speedup Compared with Molen, a State-of-the-art Reconfigurable

Processor with Monolithic SIs ...143
Table B.1: Resources Provided by the FPGA of the Prototype [Xil07a]157

xxv

List of Algorithms

Algorithm 4.1: Pseudo Code of a Greedy Knapsack Solver ...66
Algorithm 4.2: Pseudo Code of the Molecule Selection ...68
Algorithm 4.3: The Implemented Scheduling Method “Highest Efficiency First” (HEF)80
Algorithm 4.4: The Performance-guided Minimum Degradation (MinDeg) Replacement

Policy ..89
Algorithm 5.1: Trap Handler to Implement Special Instructions with the cISA and the

Support of the Helper Instructions ...104
Algorithm 5.2: Examples for Implicit and Explicit cISA Execution of SIs104

Abbreviations

AC Atom Container: a part of the reconfigurable fabric that can be dynamically reconfigured to
contain an Atom, i.e. an elementary data path

AGU Address Generation Unit

ALU Arithmetic Logic Unit

ASF Avoid Software First: A reconfiguration-sequence scheduling algorithm, as presented in Sec-
tion 4.5

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Set Processor

BC Bus Connector: Connecting an AC to the Atom Infrastructure

BRAM Block RAM: An on-chip memory block that is available on Virtex FPGAs

cISA core Instruction Set Architecture: the part of the instruction set that is implemented using the
(non-reconfigurable) core pipeline; can be used to implement SIs as well, as presented in
Section 5.2

CLB Configurable Logic Block: part of an FPGA, contains multiple LUTs

CPU Central Processing Unit

DCT Discrete Cosine Transformation: a computational kernel that is used in H-264 video encoder

EEPROM Electrically Erasable Programmable Read Only Memory

FB Forecast Block: indicated by an FI, containing a set of SIs with a FV per SI

FI Forecast Instruction: a special HI that indicates an FB

FIFO First-In First-Out buffer

FPGA Field Programmable Gate Array: a reconfigurable device that is composed as an array of
CLBs, BRAMs, and further components

FPS Frames Per Second

FSFR First Select, First Reconfigure: a reconfiguration-sequence scheduling algorithm, as presented
in Section 4.5

FSL Fast Simplex Link: A special communication mechanism for a MicroBlaze processor

FSM Finite State Machine

FV Forecast Value: the expected number of SI executions for the next computational block, part
of the information in an FB

GPP General Purpose Processor

GPR General Purpose Register file

GUI Graphical User Interface

HEF Highest Efficiency First: reconfiguration sequence-scheduling algorithm, as presented in Sec-
tion 4.5

HI Helper Instruction: an assembly instruction that is dedicated to system support (e.g. an FI);
not part of the cISA and not an SI

xxvii

Abbreviations

xxviii

HT Hadamard Transformation: a computational kernel that is used in H-264 video encoder

ISA Instruction Set Architecture

ISS Instruction Set Simulator

IP Intellectual Property

KB Kilo Byte (also KByte): 1024 Byte

LSU Load/Store Unit

LUT Look-Up Table: smallest element in an FPGA, part of a CLB; configurable as logic or
memory

MB Mega Byte (also MByte): 1024 KB

MinDeg Minimum Degradation: an Atom replacement algorithm, as presented in Section 4.6

MUX Multiplexer

NOP No Operation: an assembly instruction that does not perform any visible calculation, memory
access, or register manipulation

NP Non-deterministic Polynomial: A complexity class that contains all decision problems that can
be solved by a non-deterministic Turing machine in polynomial time

OS Operating System

PCB Printed Circuit Board

PRM Partially Reconfigurable Module

PSM Programmable Switching Matrix

RAM Random Access Memory

RISPP Rotating Instruction Set Processing Platform

RFU Reconfigurable Functional Unit: denotes a reconfigurable region that can be reconfigured to-
ward an SI implementation

SI Special Instruction

SJF Shortest Job First: a reconfiguration sequence-scheduling algorithm, as presented in Sec-
tion 4.5

SPARC Scalable Processor Architecture: processor family from Sun Microsystems; used for the
RISPP prototype

VLC Variable Length Coding: a computational kernel that is used in H-264 video encoder

VLCW Very Long Control Word: configuration bits for the coarse-grained reconfigurable Atom Infra-
structure, i.e. determining the operation mode and connection of the ACs, BC, AGUs,
and LSUs

Equation Chapter (Next) Section 1

Chapter 1 Introduction
Embedded processors are the heart of embedded systems. They perform the calculations that are required
to make a set of components eventually appear as a system. For instance, they receive input data from
cameras, microphones, and/or many further sensors, perform the calculations that the user of the embed-
ded system expects (e.g. video compression/transmission, feature extraction, etc., i.e. the actual function-
ality of the system) and present the corresponding results. Therefore, embedded processors are the key
components for rapidly growing application fields ranging from automotive to personal mobile communi-
cation/entertainment etc.

Designing an embedded system typically starts with an analysis of the requirements. Afterwards,
some standard components (e.g. periphery or processors provided as chips or IP cores) may be selected
and combined with some specifically created components to realize the desired system either as a single
chip or as a board with multiple chips. For some tasks that the system shall be able to perform (e.g. decod-
ing a video stream) the question arises whether a general-purpose processor (GPP) or an application-
specific integrated circuit (ASIC) shall perform that task. Choosing a GPP has the advantage that it pro-
vides a very high flexibility, i.e. it is programmable by software. This allows that the GPP can be used to
perform further tasks (when the video decoder is not required at a certain time or in parallel to it, using a
multi-tasking environment). Additionally, it also allows changing the specification of the tasks (e.g. a new
video decoding standard or a bug fix) by changing the software, e.g. via firmware upgrades. The advan-
tage of an ASIC is its efficiency (e.g. ‘performance per area’ or ‘performance per power consumption’)
that it achieves because it is particularly optimized for the specific task. Using an ASIC typically intro-
duces rather high initial cost for creating that ASIC, but the higher efficiency may overcome the initial
monetary drawback. However, an ASIC does not provide flexibility, i.e. it cannot be used to perform any
tasks that were not considered when designing it, and changes of the initial task specifica-
tion/implementation are not possible without a rather costly re-design. Depending on the projected work
area (e.g. selling volume, required possibility for upgrades, reusability for further products etc.), GPPs or
ASICs may be used.

1.1 Application Specific Instruction Set Processors
The term ‘ASIP’ (Application Specific Instruction Set Processor) was introduced in the early 1990s and
denoted then processors that are application specific. They provide an alternative to GPPs and ASICs
when designing an embedded system as they – to some degree – combine both approaches. Designing an
ASIP involves analyzing (e.g. profiling) an application, a set of applications, or even a whole application
domain (e.g. multi-media) and then creating an instruction set that performs very efficient for that applica-
tion domain compared with a GPP. The implementation of this instruction set extension correspond to
ASIC parts that are dedicated to a particular application and that are embedded into to core of a GPP. The
application can use these ASIC parts by so-called Special Instructions (SIs). An ASIP may provide the
same functionality as a GPP, but depending on the optimization targets, also parts of the GPP functionality
(e.g. a floating-point unit) may be removed, thus potentially reducing the flexibility. Altogether, an ASIP
provides a trade-off between GPPs and ASICs. Since the late 1990s / early 2000s, the term ASIP is far
more expanded. Since major vendors like Tensilica [Tena], ARC [ARC], CoWare [CoW], etc. offer their
tool suites and processors cores, the user can now create a very specific instruction set (instead of buy-
ing/licensing a predetermined one) that is tailor-made for a certain application. Typically, these tool suites
come with a whole set of retargetable tools such that code can easily be generated for that specific exten-
sible processor. As a result, extensible processors are more efficient than the first generation of ASIPs.

Nowadays, the landscape of embedded applications is rapidly changing and it can be observed that
today’s embedded applications are far more complex and offer a far wider set of functionality than a dec-
ade ago. This makes it increasingly difficult to estimate a system’s behavior sufficiently accurate at design

- 1 -

Chapter 1 Introduction

time. In fact, after exploration of complex real world embedded applications (most of them from the mul-
timedia domain) it became apparent that it is hard or even impossible to predict the performance and other
criteria accurately during design time. Consequently, the more critical decisions are fixed during design
time, the less flexible an embedded processor can react to non-predictable application behavior. This not
only results in a reduced efficiency but also leads to an unsatisfactory behavior when it comes to the abso-
lute design criteria ‘performance’ and ‘power consumption’. However, the ASIP approach assumes that
customizations are undertaken during design time with little or no adaptation possible during run time.
Additionally, for large applications that feature many diverse computational hot spots and not just a few
exposed ones, current ASIP concepts struggle. According our studies with truly large and inherently di-
verse applications, customization for many hot spots introduces a non-negligible overhead and may sig-
nificantly bloat the initial small processor core, because rather many different SIs need to be provided and
implemented. Then, a designer needs to answer the question whether more powerful processor architec-
tures would not have been the better choice. Since often only one hot spot is executed at a certain time, the
major hardware resources reserved for other hot spots are idling. This indicates an inefficiency that is an
implication of the extensible processor paradigm.

1.2 Reconfigurable Processors
Reconfigurable computing provides adaptivity by using a fabric that can be reconfigured at run time (see
Section 2.2). This reconfigurable fabric can be used to implement application-specific accelerators, similar
to those that are used by ASIPs. Great efforts were spend in investigating how such a reconfigurable fabric
can be connected with a processor and used by an application efficiently. Recent approaches allow cou-
pling the reconfigurable fabric into to the pipeline of the processor as reconfigurable functional units
(RFUs). They allow providing implementations of multiple SIs (like the SIs that are developed and used
for ASIPs), by loading reconfigurable accelerators into the RFUs. However, the RFUs provide the concep-
tual advantage that they can be reconfigured and thus it is not predetermined which SI implementations
shall be available in the RFUs at which time. Therefore, such a reconfigurable processor is no longer spe-
cific for a particular application or application domain. Even after the reconfigurable processor is fabri-
cated and deployed, the reconfigurable accelerators can be modified (similar to the above-discussed firm-
ware update) to support extended application standards and even new application domains. This is done
by providing modified or additional configuration data that is used to reconfigure the RFUs. This in-
creases the flexibility in comparison with ASIPs as now the software and parts of the hardware can be
changed at run time. Additionally, the application-specific reconfigurable accelerators provide the effi-
ciency of an ASIC implementation. Therefore, reconfigurable processors present a promising trade-off
between ASICs and GPPs that goes beyond the concept of ASIPs.

However, the process of reconfiguration also comes with some drawbacks. Performing a reconfigura-
tion is a rather slow process (multiple milliseconds) and thus the potential benefit of run-time reconfigura-
tion may be diminished. If an application requires rather few SIs and all of them fit into the RFUs at the
same time, then the reconfiguration overhead only occurs when the application starts, i.e. all accelerators
are reconfigured into the RFUs once. In this case, the reconfiguration overhead will typically amortize
over time. However, if a more complex application demands more SIs than fit into the RFUs at the same
time, then frequent run-time reconfigurations of the RFUs are required to exploit the performance of a
reconfigurable processor maximally. In such a case, the overall application performance may be affected
by the reconfiguration time. Actually, when an SI implementation provides more parallelism, then this
leads to larger area requirements and the reconfiguration time becomes correspondingly longer. In gen-
eral: a trade-off between provided parallelism and reconfiguration overhead needs to be determined. Here,
the performance of an ASIP is not bound by the parallelism of an SI implementation, but rather its area
efficiency is bound by it, because SI implementations that provide more parallelism leads to a larger ASIP
footprint.

- 2 -

1.3 Thesis Contribution

Another important aspect of reconfigurable processors is that, even though the hardware can be recon-
figured at run time, typically it is determined at compile time ‘what’ shall be reconfigured and ‘when’ the
reconfiguration shall be performed. Certainly, this limits the run-time adaptivity, as the deployment of the
run-time adaptive RFUs is predetermined at compile time. However, run-time adaptivity is important to
use the RFUs most efficiently. For instance, our exploration of real world applications points out that the
execution time of some computational hot spots may highly depend on input data. As this input data (e.g.
an input video from camera) is not known at compile time, it cannot be predicted, which out of multiple
hot spots in an application will be executed for how long? However, this information affects, which appli-
cation-specific accelerators will provide which performance improvement for the overall application exe-
cution. Still, the decision which accelerators shall be reconfigured to the RFUs is determined at compile
time, i.e. without the demanded run-time knowledge. Given that not all accelerators fit to the RFUs at the
same time, the full performance potential cannot be exploited. Especially in multi-tasking scenarios, it is
typical that not all demanded accelerators fit to the RFUs, because they need to be shared among the exe-
cuting tasks. Often it is not even known at compile time, which applications will execute at the same time.
For instance, if a user downloads and starts additional applications on his cell phone or handheld device,
then it is impossible to consider all potential execution scenarios when compiling a particular application.
Therefore, it is not known which share of the RFUs is available for a particular application and thus, the
design and implementation of SIs cannot be optimized for it. A concept and strategy to shift these deci-
sions to a run-time system that is aware of the run-time specific scenario (i.e. which applications execute
and which input data they process) can improve the efficiency of run-time reconfigurable processors sig-
nificantly.

Summary of Reconfigurable Processors:

Performance and efficiency are key targets already for today’s embedded systems and thus in particular
for embedded processors. Reconfigurable processors can be adapted to different applications and applica-
tion domains after fabrication without redesign, which provides a fast time-to-market and reduced non-
recurring engineering cost in comparison with ASIPs. However, their performance may be limited by the
reconfiguration overhead and – due to compile-time determined reconfiguration decisions – they do not
exploit their full potential for run-time adaptivity. Especially compile-time unpredictable scenarios would
benefit from improved adaptivity. For instance, the execution time of a computational hot spot may de-
pend on input data, and the utilization of the RFUs depends on the number and priority of the executing
tasks. These are the major challenges for future embedded processors that have to face rather complex
applications, various application domains, and compile-time unpredictable scenarios, e.g. in cell phones or
handheld devices.

1.3 Thesis Contribution
The aim of this work is to improve the adaptivity and efficiency of state-of-the-art embedded processors
to provide means for challenging and complex next-generation applications. This thesis presents the novel
Rotating Instruction Set Processing Platform (RISPP) that gives origin to an innovative thinking process
and moves traditional design-/compile-time jobs to run time, thus providing adaptivity in order to increase
the efficiency and performance. It uses the available hardware resources efficiently by applying the novel
concept of modular SIs that is proposed in this thesis. Compared with state-of-the-art reconfigurable proc-
essors, this reduces the time until a certain SI is accelerated by the reconfigurable fabric. This is achieved
by the ability to utilize elementary reconfigurable data paths without the constraint to wait until the com-
plete reconfiguration of an SI (composed out of multiple data paths) is completed. In the proposed modu-
lar SI composition, an SI is composed of elementary data paths as a connected module, which is mainly
driven by the idea of a high degree of reusability of data path elements.

- 3 -

Chapter 1 Introduction

In particular, the novel contributions of this thesis are as follows:

• The Novel Concept of Modular Special Instructions: This enables a dynamic and efficient
trade-off between different ‘parallelism vs. reconfiguration overhead’ implementation alterna-
tives, which solves the before-mentioned problem that providing more parallelism may actually
lead to a slower execution time due to increased reconfiguration overhead. ‘Dynamic’ means that
the trade-off can be adapted at run time, depending on the application requirements or the particu-
lar situation in a multi-tasking environment. ‘Efficient’ means that the implementation alternative
can be upgraded incrementally. For instance, if an SI implementation shall be adapted to provide
a more parallel version, then it is not required to load the more parallel version from scratch, but
instead the currently available implementation can be upgraded (i.e. only the additionally required
data paths need to be reconfigured).

• A Novel Run-time System to Determine the Reconfigurations: To utilize the unique features
of modular SIs and to provide a very high adaptivity (as demanded by applications with highly
input-data dependent control flow and by multi-tasking systems with unpredictable user interac-
tions) a run-time system is required to determine the reconfiguration decisions. In particular, this
thesis proposes:

• an SI online monitoring and prediction scheme that is based on an error back-propagation,

• a novel run-time SI implementation selector that chooses an SI implementation dynamically,
considering the trade-off between area and performance (state-of-the-art reconfigurable proc-
essors instead statically offer one SI implementation and predetermine when it shall be recon-
figured),

• a novel run-time data path reconfiguration scheduler that determines a performance-wise ad-
vantageous reconfiguration sequences for data paths and thus determines the SI upgrades, and

• a novel performance-guided replacement policy that is optimized for the requirements of re-
configurable processors that need to replace reconfigurable data paths at run time.

• A Novel Hardware Architecture: This introduces a novel infrastructure for computation and
communication that actually enables the implementation of modular SIs, allows SI upgrading by
stepwise performing further reconfigurations toward a more parallel implementation, and offers
different design-time parameters to match specific requirements.

Furthermore, this thesis provides a formal problem description for modular SIs and for all algorithms of
the run-time system. Detailed analysis and evaluations are presented for the individual algorithms of the
run-time system and the hardware architecture. Additionally, challenging comparisons with state-of-the-
art ASIPs and reconfigurable processors demonstrate the superiority of the presented approach when fac-
ing a complex H.264 video encoder application. In addition to a flexible and parametrizable simulation
framework that was developed in the scope of this thesis, the presented work is also implemented in a
hardware prototype that is based on an FPGA to perform partial run-time reconfigurations in practice.

The adaptive extensible RISPP processor that is proposed in this thesis improves upon state-of-the-art
approaches due to its novel vision of modular SIs and a run-time system that uses the modular SIs to en-
able an adaptive and efficient utilization of the available reconfigurable fabric without statically predeter-
mined reconfiguration decisions. These novel concepts allow utilizing the available hardware resources
efficiently on an as-soon-as-available basis. That means as soon as a data path is reconfigured, it may be
used to compose the functionality of SIs. Over time, the SIs may then be gradually upgraded to full per-

- 4 -

1.4 Thesis Outline

- 5 -

formance. In what specific composition an SI is available at a certain point in time is not known at com-
pile time since it depends on the context during run time.

1.4 Thesis Outline
Before presenting the actual contribution of this thesis, Chapter 2 presents background for extensible
processors and different techniques and approaches for reconfigurable computing before discussing state-
of-the-art related reconfigurable processors.

Chapter 3 analyzes the problems of state-of-the-art reconfigurable processors in detail and then pre-
sents the foundation for the solution that is proposed in this thesis, i.e. modular Special Instructions (SIs).
After discussing how they conceptually diminish or solve the problems of related reconfigurable proces-
sors while furthermore providing extended adaptivity, several real-world examples for modular SIs are
presented and a formal description is introduced together with functions that operate on it. This formal
description is used in the next chapter to describe the tasks of the run-time system and the developed
pseudo codes in a clear and precise manner.

In Chapter 4, the key novel contribution of this thesis is presented in detail, i.e. the run-time system
that eventually exploits the adaptivity potential that is provided by the proposed modular SIs. At first, a
short overview of the developed architecture is given, which is required to describe the run-time system
details. Afterwards, an analysis of the requirements for the run-time system (e.g. which operations need to
be performed at run time and to achieve adaptivity, which may be performed during compile time) is pre-
sented together with a first description of its components. Subsequently, the individual components are
presented in different sections, i.e. online monitoring to predict the SI execution frequency, selecting an SI
implementation, scheduling the corresponding reconfigurations, and deciding the demanded replacements.
Each component is modeled on a formal basis, described in detail (using pseudo codes and examples),
evaluated, and benchmarked (e.g. comparing different parameter settings or algorithmic alternatives).

The hardware architecture to realize the envisioned novel concepts is presented in Chapter 5. After
describing the SI instruction format details and the implementation of a trap handler to realize the SI func-
tionality when the reconfigurations are not completed yet, the data memory access and especially the
novel hardware framework that realizes modular SIs are presented in detail and evaluated for different
parameters. Eventually, the chapter presents the implementation results for the developed and tested
hardware prototype including performance results for the algorithms of the run-time system, executing on
the prototype.

After benchmark results for the run-time system and the hardware implementation were already pre-
sented in Chapter 4 and 5, Chapter 6 presents an evaluation for the entire RISPP approach, facing differ-
ent architectural parameters (e.g. provided reconfigurable fabric and memory bandwidth etc.) and compar-
ing the RISPP approach with state-of-the-art ASIPs and reconfigurable processors from literature.

Eventually, Chapter 7 concludes this thesis and provides an outlook, Appendix A presents the simu-
lation environment that was developed and used in this thesis, and Appendix B shows details for the
FPGA board and the developed printed circuit board (PCB) that were used to implement the RISPP hard-
ware prototype.

Equation Chapter (Next) Section 1

Chapter 2 Background and Related Work
Embedded processors are the key for rapidly growing application fields ranging from automotive to per-
sonal mobile communication, computation, entertainment etc. This thesis envisions an embedded proces-
sor that follows the concepts of extensible processors and uses a reconfigurable fabric to provide applica-
tion-specific accelerators. Even though this work is mainly related to run-time reconfigurable processors,
this chapter presents a short overview about the concepts of extensible processors and provides general
background for reconfigurable computing before reviewing the most prominent work from the area of
reconfigurable processors with a focus on state-of-the-art processors with a run-time reconfigurable in-
struction set.

2.1 Extensible Processors
In the early 1990s, the term ASIP has emerged denoting processors with an application specific instruc-
tion set, i.e. they are specialized toward a certain application domain. They present a far better efficiency
in terms of ‘performance per area’, ‘performance per power’ etc. compared with mainstream processors
and eventually make today’s embedded (and often mobile) devices possible. The term ASIP comprises
nowadays a far larger variety of embedded processors allowing for customization in various ways includ-
ing a) instruction set extensions, b) parameterization, and c) inclusion/exclusion of predefined blocks tai-
lored to specific applications (like, for example, an MPEG-4 decoder) [Hen03]. A generic design flow of
an embedded processor can be described as follows:

1. an application is analyzed/profiled,
2. an extensible instruction set is defined,
3. the extensible instruction set is synthesized together with the core instruction set architecture,
4. retargetable tools for compilation, instruction set simulation etc. are (often automatically) created,
5. the application characteristics (e.g. area, performance etc.) are analyzed, and
6. the process might be iterated several times until design constraints comply.

A general overview of the benefits and challenges of ASIPs is given in [Hen03, KMN02]. Tool suites and
architectural IPs for embedded customizable processors with different flavors are provided by major ven-
dors like Tensilica [Tena], CoWare/LisaTek [CoW], ASIP Solutions [ASI], ARC [ARC], and Target
[Tar]. Additionally, academic approaches like PEAS-III [IHT+00, KMTI03], LISA [HKN+01, ISS], and
Expression [HGG+99] are available.

Using these tools suites, the designer can now implement a specific instruction set that is tailor-made
for a certain set of applications. Typically, these suites come with a whole set of retargetable tools (com-
piler, assembler, simulator, debugger etc.) such that the code can be generated conveniently for a specific
ASIP. As the instruction set definition requires both, application and hardware architecture expertise, ma-
jor research effort was spent in design-space exploration [CAK+07] and automatically detecting and gen-
erating so-called Special Instructions (SIs) from the application code [CZM03, HSM07]. A library of re-
usable functions (manually designed but therefore of high quality) is used in [CHP03], whereas in [API03,
SRRJ03] the authors describe methods to generate SIs from matching profiling patterns. The authors in
[BCA+04] investigate local memories in the functional units, which are then exploited by SIs. An auto-
mated, compiler-directed system for synthesizing accelerators for multiple loops (multi-function loop ac-
celerators) is presented in [FKPM06]. The authors in [BKS04] present an approach to exploit similarities
in data paths by finding the longest common subsequence of multiple data paths to increase their reusabil-
ity. [CPH04] introduces an estimation model for area, overhead, latency, and power consumption under a
wide range of customization parameters. In [BNS+04] an approach for an instruction set description on
architecture level is proposed, which avoids inconsistencies between compiler and instruction set simula-
tor.

- 7 -

Chapter 2 Background and Related Work

However, facing the requirements of modern embedded systems, ASIPs experience a practical limita-
tion. These approaches assume that customizations are undertaken during design time with little or no ad-
aptation possible during run time. Therefore, they may perform poorly when deployed in scenarios that
were not considered during optimizations. The proposed RISPP approach combines the paradigms of ex-
tensible processor design with the paradigm of dynamic reconfiguration in order to address the following
concerns in embedded processing:

1. an application might have many computational hot spots (instead of only a few) and would require a
large additional chip area in order to comprise all customizations necessary and

2. the characteristics of an application may widely vary during run time due to switching to different
operation modes, change in design constraints (systems runs out of energy, for example), or highly
uncorrelated input stimuli patterns.

Additionally, for large applications that feature many hot spots and not just a few exposed ones, current
ASIP concepts struggle. In fact, customization for many hot spots introduces a non-negligible overhead
and may bloat the initial small processor core. Then, a designer needs to answer the question whether
more powerful processor architectures would not have been the better choice. One means to address this
dilemma is reconfigurable computing since resources may be utilized in a time-multiplexed manner (i.e.
reconfigured over time), thus combining the performance and efficiency of dedicated hardware accelera-
tors with a flexibility that goes beyond that of ASIPs and ASICs, respectively.

2.2 Reconfigurable Processors
The Reconfigurable Instruction Set Processing Platform (RISPP) that is proposed in this thesis utilizes the
techniques of reconfigurable computing. Reconfigurable architectures address the challenge of supporting
many hot spots by reusing the available hardware in time-multiplex, i.e. reconfiguring its functionality to
support the currently executed hot spots. In this section, general techniques and concepts will be pre-
sented, before reviewing state-of-the-art projects that are related to the proposed RISPP approach. General
overviews and surveys for reconfigurable computing can be found in [Ama06, BL00, Bob07, CH02,
Har01, HM09, TCW+05, VS07]. They also cover older projects and areas that are of less relevance for the
approach that is presented in this thesis.

2.2.1 Granularity of the Reconfigurable Fabric

Conceptually, reconfigurable architectures can be separated into coarse- and fine-grained [VS07]. The
coarse-grained approach maps word-level computation to a configuration of an array of arithmetic logic
units (ALUs), e.g. using an automatic framework to select the appropriate configurations [HSM07]. The
fine-grained approach instead reconfigures look-up tables (LUTs) on bit level (e.g. field programmable
gate arrays: FPGAs). Therefore, the major difference between fine- and coarse-grained reconfigurable
fabrics is the granularity of the reconfigurable elements. For coarse-grained fabrics, the operation of a
word-level ALU (typically between 16 and 32 bit) can be determined with configuration bits. For fine-
grained fabrics, the operation of a bit-level LUT (typically between 6:11 and 4:1) can be determined with
configuration bits. To implement a control- and/or dataflow, multiple configurable elements (ALUs or
LUTs respectively) are connected (the connections are determined by configuration bits as well). Concep-
tually, word-level computation can be mapped to coarse-grained reconfigurable fabrics rather efficient
and byte or sub-byte-level computation performs more efficient on fine-grained reconfigurable fabrics.
For instance, fine-grained reconfigurable fabrics are well-suited for diverse operations on image pixels
(byte level), implementing state machines (sub-byte level), or calculating conditions (bit level). In addi-
tion to fine- and coarse-grained reconfigurable architectures, also combinations of both kinds were inves-
tigated [ITI, KBS+10, TKB+07].

1 i.e. six bits input and one bit output

- 8 -

2.2 Reconfigurable Processors

Legend:
CGA: Coarse‐Grained Array
CU: Control Unit
DMEM: Data Memory
DRF: Data Register File
FU: Functional Unit
PRF: Predicate Register File
RF: Register File
VLIW: Very Long Instruction

Word

Figure 2.1: Connecting Coarse-Grained Reconfigurable Functional Units [BBKG07]

Figure 2.1 shows a particular instance of the ADRES [MVV+03] coarse-grained reconfigurable fabric.
The array comprises coarse-grained reconfigurable functional units (FUs). In general, an FU may corre-
spond to an ALU, however, typically more complex compositions are used. For instance, it may comprise
multiple ALUs or an ALU and Adder etc. Furthermore, each FU may contain a local register file and also
heterogeneous FUs may be used (e.g. specialized FUs for multiplication). The FUs are connected with
each other. Often a two dimensional arrangement is used and the FUs are connected to their direct
neighbors (sometimes also to farther distant FUs and sometimes – when the data may through the array is
predetermined – only to some neighbors). Different FU compositions, connections, heterogeneity, and
memory connections (local register file and/or data memory) may be used for coarse-grained reconfigur-
able architectures. ADRES investigates different architecture instantiations [BBKG07, MLV+05] with a
special focus on an automatically generated compiler that can map kernels from C Code to the ADRES
array [MVV+02].

A different approach for the coarse-grained reconfigurable computing is the Custom Compute Accel-
erator (CCA) [CBC+05, CKP+04]. The CCA approach is based on coarse-grained reconfigurable ele-
ments and it supports a run-time placement of elementary dataflow graphs. This means, instead of prepar-
ing the configuration of the reconfigurable array at compile time (as done by ADRES), CCA identifies
relevant computational kernels at compile time, but it creates configurations to accelerate them at run
time. This allows that one application may be accelerated by different instantiations of the CCA recon-
figurable array. To simplify the task of run-time placement, CCA is limited to a significantly narrowed
hardware architecture. The reconfigurable array is meant to realize straight word-level data-flow (no ex-
ternal memory access, no internal state registers, and no data feedback, i.e. only acyclic dataflow graphs).
As these straight data flows typically have more input data than produced output data (thus forming a tri-
angular data-flow graph), the authors have organized their coarse-grained elements in a triangular shape
as well. As shown in Figure 2.2, the specific size, shape, and interconnections are determined application-
and domain specific, depending on the occurring data-flow graphs. Placing individual nodes of a data-
flow graph in a CCA can then be accomplished with one pass over the operations in the graph by placing
each node in the highest row that can support the operation while respecting data dependencies. There-
fore, this concept cannot be used for complex data-flow graphs (e.g. with embedded control-flow or ex-
ploiting loop-level parallelism), computations with high memory requirements (typical for multimedia
applications), and multiple parallel executing applications with diverse system requirements (i.e. diverse-
shaped data-flow graphs). A domain-specific optimized CCA reached an average speedup of 2.21x for
small application kernels [CBC+05].

- 9 -

Chapter 2 Background and Related Work

Figure 2.2: Application Specific and Domain Specific CCA Design Examples [CBC+05]

In addition to these approaches, manifold coarse-grained reconfigurable approaches from academia (e.g.
RAW [WTS+97], REMARC [MO99], PipeRench [GSB+00], HoneyComb [TB05]) and industry (e.g.
Montium [HSM03, Rec] and PACT XPP [BEM+03, Tec06]) exist. However, this thesis proposes a novel
concept and architecture using a fine-grained reconfigurable fabric and thus, this chapter will focus on this
type in the following. Before discussing general properties and presenting state-of-the-art reconfigurable
processors, at first an overview of the underlying hardware architecture to realize fine-grained reconfigur-
able architectures will be provided.

Figure 2.3 shows the internal structure of a Xilinx Virtex-II device as an example for a fine-grained
reconfigurable logic. The left side shows the so-called Slice that comprises two 4:1 LUTs and two flip-
flops together with multiplexers and connections. The LUTs can implement any functionality with four
inputs and one output, i.e. all 24=16 values of the corresponding truth table are configurable. To realize
functions with more inputs or outputs, multiple LUTs need to be connected. The right side of the figure
shows the so-called Configurable Logic Block (CLB) that comprises four Slices, i.e. eight LUTs. Here it
becomes visible that some Slices are directly connected with each other, which allows implementing a fast
carry chain that connects multiple LUTs. Figure 2.4 shows the general structure of a fine-grained recon-
figurable fabric that contains CLBs and programmable switching matrices (PSMs). The CLBs and PSMs
are interconnected with dedicated wires. Additionally, the PSMs are build of configurable interconnects,
i.e. it is configurable which PSM input is connected to which PSM output.

These fine-grained reconfigurable fabrics provide a high flexibility, i.e. all hardware descriptions can
be synthesized, placed, and routed for fine-grained reconfigurable fabrics (within their area restrictions).
Bit- and byte-level computation and manipulation can be realized with rather few reconfigurable

- 10 -

2.2 Reconfigurable Processors

Slice Configurable Logic Block (CLB)

Figure 2.3: Connecting LUTs as the Basic Building Blocks of Fine-grained

Reconfigurable Logic to Slices and Configurable Logic Blocks [Xil07b]

Legend:
PSM:
Programmable
Switch Matrix

CLB:
Configurable
Logic Block

Figure 2.4: Two-Dimensional Array of Fine-grained Reconfigurable CLBs that

are Connected With Fine-grained Reconfigurable Switching Matrices [Xil08b]

- 11 -

Chapter 2 Background and Related Work

resources. Additionally, small memories and finite state machines can be implemented using a fine-
grained reconfigurable fabric. In addition, word-level computation can be realized, however, coarse-
grained reconfigurable fabrics are typically more efficient for word-level computation as they are specifi-
cally optimized for them. Due to the high flexibility of fine-grained reconfigurable fabrics, all accelerators
that might be used for an ASIP design can also be used for a fine-grained reconfigurable processor. Fur-
thermore, the tool flow for designing accelerators for ASIPs and for a fine-grained reconfigurable fabric is
the same, i.e. a hardware description language like VHDL or Verilog can be used. Therefore, the related
work for automatic detection and creation for accelerators and so-called Special Instructions (SIs) from
ASIP research can be used for creating reconfigurable SIs as well, which improves usability because no
new tool flow or programming model needs to be introduced, as it is required for coarse-grained recon-
figurable arrays.

Different types of reconfiguration can be distinguished and will be explained. The fine-grained recon-
figurable fabric allows to be reconfigured to implement different hardware designs and the major distinc-
tions according the reconfiguration target the questions ‘when and how often’ a reconfiguration may be
performed and ‘which share’ of the fabric is reconfigured:

Configurable: Denotes a fabric that can be configured one time, e.g. by using fuse/anti-fuse technology
as used in programmable read-only memories (PROMs).

Reconfigurable: The configuration can be erased (e.g. using an UV-light source for EPROM) and a dif-
ferent configuration can be programmed. Often, erasing is a time-consuming operation (e.g. for
EPROM) or demands different operation conditions (e.g. a higher supply voltage for EEPROM).
Thus, it is performed, when the device is not active, similar to a firmware upgrade.

Run-time Reconfigurable/Dynamically Reconfigurable: The reconfiguration is performed while the
system is up and running. This demands a significantly faster reconfiguration time (microseconds to
milliseconds instead of minutes).

Partially Run-time Reconfigurable: Often, not the entire reconfigurable fabric needs to be reconfigured.
Instead, only a certain accelerator shall be reconfigured into a region of it. At the same time, the parts
that are not reconfigured remain functional and active.

In addition to this classification, also the question ‘who triggers the reconfiguration’ leads to different
concepts. However, this decision is often coupled with the above-described categories. For configurable
and reconfigurable systems, typically the user has to initialize and observe the reconfiguration, whereas
for (partially) run-time reconfigurable designs it is common that the design itself triggers the reconfigura-
tion (using an on-chip available access to the configuration memory, e.g. the Internal Configuration Ac-
cess Port (ICAP [Xil09c]) in case of Xilinx Virtex FPGAs). In the following, the discussion will focus on
the class of partially run-time reconfigurable architectures. Nowadays, basically all architectures use the
Xilinx FPGAs and tools [LBM+06] to prototype partial run-time reconfiguration in practice. Especially
here, the reconfiguration time may become an issue because the reconfiguration is performed as part of
the normal operation of the architecture and the application may have to wait until the reconfiguration is
completed, as the reconfigured accelerator is demanded to proceed. The reconfiguration time depends on
a) the amount of configuration bits that need to be transferred and b) the reconfiguration bandwidth. For
fine-grained reconfigurable logic, typically tens to hundreds of kilobyte need to be transferred (depending
on the size of the design and the size of the reconfigurable fabric that shall be reconfigured). To reconfig-
ure an entire FPGA device, even megabytes need to be transferred. The reconfiguration bandwidth can be
as slow as a few MB/s (depending on the performance of the memory that stores the reconfiguration data)
or up to more than 100 MB/s [CMZS07]. The reconfiguration time is typically in the range of millisec-
onds. For instance, the extreme case of reconfiguring 10 KB at 100 MB/s (=100 KB/ms) demands 0.1

- 12 -

2.2 Reconfigurable Processors

ms.2 Vice versa, reconfiguring 100 KB at 1 MB/s demands 100 ms.3 To improve the reconfiguration per-
formance, bitstream compression was suggested to improve the effective transfer rate from off-chip mem-
ory to the on-chip configuration port [HMW04, HUWB04, KT04, LH01]. Under certain circumstances, it
may even be possible to hide the reconfiguration time by starting it before it is needed. [LH02] analyzes
concepts for configuration prefetching such that the reconfigurations are completed (in the best case) be-
fore the accelerators are required. They distinguish between static prefetching (the compiler determines
‘when’ and ‘what’ shall be reconfigure), dynamic prefetching (a run-time systems determines the deci-
sions), and hybrid prefetching (a compiler-guided run-time system determines the decisions). However,
the reconfigurable fabric is typically highly utilized, because typically all computational blocks exploit the
parallelism of the reconfigurable fabric to accelerate their kernels. Therefore, insufficient free space might
be available to start prefetching. Additionally, the time between computational blocks is typically small
compared with the reconfiguration time (otherwise, it would rather be another computational block that
benefits from accelerators). Therefore, prefetching for a computational block after the previously executed
computational block finished, does not hide the reconfiguration time.

2.2.2 Using and Partitioning the Reconfigurable Area

Fine-grained reconfigurable systems can be partitioned into general frameworks and specific processors.
Typically, they differ in the complexity of accelerators that can be reconfigured, i.e. the general frame-
works often envision entire IP-cores or tasks that are provided as hardware implementation, whereas spe-
cific processors typically provide reconfigurable functional units that can be reconfigured to contain an
application-specific accelerator (presented in the next sections), similar to those that are created and used
by non-reconfigurable ASIPs.

Figure 2.5: Example for a General Framework for Partially Reconfigurable Modules

that Comprise Dedicated IP-Cores or Tasks [UHGB04b]

An example for a general framework for reconfigurable IP-cores/tasks is shown in Figure 2.5. It partitions
the reconfigurable fabric into reconfigurable modules and connects them using a bus. An arbiter controls
the communication of the modules with each other and with the run-time system that provides access to
external periphery (e.g. a CAN interface) and manages the reconfiguration of the modules. A different
approach is the Erlangen Slot Machine (ESM, [MTAB07]). As shown in Figure 2.6, it provides different
types of inter-module communication, ranging from dedicated communication to direct neighbors and
shared SRAM to a reconfigurable bus system [ESS+96]. All modules have a dedicated connection to an

2 please note that 10 KB is a rather small amount of configuration data and 100 MB/s is a rather fast reconfiguration

bandwidth, i.e. this indicates a lower limit
3 the other extreme, indicating an upper limit

- 13 -

Chapter 2 Background and Related Work

off-chip crossbar that connects the modules to their external periphery without blocking the on-chip bus
system. In addition, the reconfiguration manager and a PowerPC processor are available off-chip to exe-
cute software, start reconfigurations, and control the system.

Figure 2.6: Erlangen Slot Machine (ESM) Architecture Overview [MTAB07]

It is noticeable that both approaches for general frameworks partition their reconfigurable fabric in mod-
ules (so-called partially reconfigurable modules, PRMs) and provide special interconnect structures for
them. There are multiple technical and conceptual reasons for this composition:

Dedicated Communication Points: Run-time reconfigurable designs come with the conceptual problem
that the synthesis and implementation tools (place & route) never see the entire design. This is be-
cause, in addition to the static parts of the design, some parts (the PRMs) are run-time reconfigurable
and these parts are not necessarily known or fixed when the static part is synthesized and imple-
mented. Therefore, the question arises how data can be exchanged between the static part and the
PRMs. To solve this conceptual problem, dedicated communication interfaces (so-called Bus Macros)
are placed at the borders between the static part and the PRMs. Then, the static design routes all
communications to the Bus Macros, considering the content of the PRMs as a black box. The designs
for the PRMs can be synthesized and implemented independently, connecting their I/Os to the Bus
Macros as well. The conceptual problem of establishing the communication limits the placement of
the PRMs to those places, where Bus Macros are available and connected to the static part of the de-
sign.

Bitstream Relocation: Considering that multiple PRMs are available and multiple IP-cores/tasks shall be
loaded into them, potentially multiple different partial bitstreams (i.e. the configuration bits to config-
ure a PRM) need to be provided for each design that shall be loaded into any particular PRM. In the
worst case, one bitstream needs to be provided for taski that shall be loaded into PRM1, another bit-
stream to load taski into PRM2, PRM3 and so on. This potentially large amount of different bitstreams
can be avoided when all PRMs have the same shape (i.e. outline and resource coverage). In this case,
the concept of bitstream relocation can be used [BLC07, KLPR05]. Then, only one bitstream needs to
be stored for each task and this bitstream can be adapted on the fly to be loaded into any particular
PRM.

- 14 -

2.2 Reconfigurable Processors

Writing the Configuration Data: To reconfigure a PRM, its configuration data needs to be changed.
However, the configuration data is only accessible in so-called frames, i.e. a frame is reconfigured ei-
ther entirely or not at all. For Virtex-II devices, a frame spans the whole height of the device and thus
dictates that entire columns are reconfigured. That is also the reason why the PRMs in Figure 2.5 and
Figure 2.6 correspond to horizontal slots. However, these technical constraints are specific to the par-
ticular FPGA family. For instance, in the Virtex-4 and the Virtex-5 FPGAs, the size of a frame is
changed and it spans a height of 16 and 20 CLBs, respectively.4 Independent of the height of the
frame, a PRM should always be adapted to it, i.e. it should have the same height. It is possible to re-
configure only parts of a frame by first reading the configuration data of the frame, then modifying
the fraction that shall be reconfigured, and writing back the entire frame [HSKB06]. However, that
increases the delay of the reconfiguration process significantly (for Virtex-II devices, the obtained
flexibility may overcome the overhead). Therefore, this technical constraint also limits the shape of
PRMs, namely to rectangular outlines that are aligned at frame and CLB borders.

Summarizing, the conceptual demand for communication points, the support for bitstream relocation, and
the limited access to the reconfiguration data favor certain types of designs, i.e. rectangular PRMs that are
aligned to configuration frames and CLBs that have identical sizes and outlines and that provide dedicated
communication points.

1D Area Model 2D Area Model

Figure 2.7: Different Area Models for Fine-grained Reconfigurable Fabric [SWP04]

In addition to the full-height reconfigurable PRMs (i.e. a 1D placement of the PRMs), also a 2D place-
ment is possible, when using a Virtex-4/5 FPGA or applying the read-modify-write technique from
[HSKB06], as for instance demonstrated in [SKHB08]. Figure 2.7 illustrates the conceptual differences.
The 2D area model is especially beneficial, if the designs that shall run on the reconfigurable fabric corre-
spond to entire tasks (e.g. managed in [LP07]) and their hardware implementations are rather different in
size. In such a scenario, it cannot be predetermined ‘where’ a particular functionality will be placed on the
FPGA. A run-time placement of tasks to an FPGA is presented in [WSP03]. A high fragmentation can
lead to the undesirable situation that a task cannot be placed although there would be sufficient area avail-
able. Therefore, a service that organizes the placement of tasks (in order to avoid such situations) is inves-
tigated. The goals of a fast task placement with a high placement quality are achieved by the management
of the free rectangles with a hash matrix. The hash matrix allows finding a suitable rectangle in constant
time, at the cost of a subsequent updating phase of this data structure. A routing-conscious dynamic
placement for reconfigurable devices is presented in [ABF+07] to reduce the communication latency.
However, the actual implementation of the communication infrastructure is not addressed, i.e. how the
static part can be connected to the task that is loaded into the dynamic part if this task may be placed any-
where in the dynamic part, irrespective of dedicated communication points.

4 multiple frames need to be reconfigured for a CLB column, i.e. the width of a frame does not cover a CLB

- 15 -

Chapter 2 Background and Related Work

Figure 2.8: 2D Area Model Using a Dynamic Network

on Chip Architecture to Establish Communication [BAM+05]

One possibility to establish the communication in a 2D area model is using a Network on Chip (NoC) ar-
chitecture that provides dedicated communication points at various places on the reconfigurable fabric, as
proposed by DyNoC [BAM+05] shown in Figure 2.8. When a PRM is reconfigured and it covers these
communication points, then the corresponding router is disabled and an adaptive routing-strategy is used
to assure that the data packets still arrive at their destination.5 CoNoChi [PKAM09] proposes a NoC ar-
chitecture that allows reconfiguring the structure of the NoC, i.e. it provides a concept and an implementa-
tion approach that allow adding or removing routers during run time. Instead of disabling routers, it allows
to remove routers and change the connection topology of the network. For instance, on the right side of
PRM C2 in Figure 2.8, altogether four routers are placed. That means that each data packet that moves
along that path demands four hops to traverse that distance. The concept of CoNoChi allows removing the
intermediate routers and establishing a direct connection between the routers at the borders to improve the
packet latency.

2.2.3 Coupling Accelerators and the Processor

As discussed in the previous section, the noticeable overhead of a flexible 2D area model is mainly bene-
ficial if the tasks that shall be reconfigured differ in size significantly. NoCs can be used to connect the
different PRMs. However, when targeting application-specific reconfigurable accelerators (similar to
ASIPs), then a NoC is not necessarily the best choice to connect the accelerators with the core processor
as the NoC introduces a non-legible communication latency. Here, different alternatives exist to couple
the core processor with the reconfigurable accelerator. Figure 2.9 shows conceptually different examples
that vary in the amount of required processor modification and provided latency and bandwidth.
Figure 2.9a) shows a rather loose coupling, where the reconfigurable fabric is off-chip, attached via an I/O
interface. The advantage is that it can be coupled to any existing chip that provides access to an I/O inter-
face, however, the communication bandwidth and latency is limited. Therefore, a performance improve-
ment can only be expected if a rather large amount of computation needs to be performed on a small
amount of data, thus diminishing the effects of the limited communication performance. Figure 2.9b)
shows an on-chip connection between the reconfigurable fabric and a core processor. This connection
may use a typical coprocessor interface for connection. The PRM may also be connected after the cache,

5 this requires that around each PRM a ring of routers remains active

- 16 -

2.2 Reconfigurable Processors

depending on the provided interface of the targeted core processor. This also corresponds to the type of
connection that a NoC communication infrastructure would use. The tightest coupling is shown in
Figure 2.9c). The reconfigurable fabric is embedded into the pipeline of the core processor as a recon-
figurable functional unit. To establish this connection, it is required to change the processor-internal struc-
ture. The advantage is the communication bandwidth and latency, because direct connection to the register
file is possible, i.e. multiple words can be read and written per cycle. This corresponds to the coupling that
is used for ASIPs and typically, the amount of read/write ports of the register file is increased to extend
the bandwidth even further. Figure 2.9d) shows a combination that is often used for prototyping but may
also be used as dedicated target architecture. An FPGA device is used as reconfigurable fabric and the
core processor is implemented as non-reconfigurable part within the reconfigurable fabric (either as ‘hard’
core or using the reconfigurable fabric).

a) b)

c) d)

Figure 2.9: Coupling Reconfigurable Accelerators with the Core Processor [CH02, TCW+05]

For the architecture that is proposed in this thesis, the tight coupling of Figure 2.9c) is targeted, however,
for prototyping purpose the type of Figure 2.9d) is used. This tight coupling corresponds to the basic idea
that reconfigurable accelerators shall be provided in a similar way like ASIPs use them. Therefore, the
advantage of a rather simple area model with fixed communication points and similar-sized PRMs out-
paces the rather complex 2D area model with its NoC communication paradigm. Still, a 2D placement of
PRMs is used, but the communication points and PRM placements are fixed.

2.2.4 Reconfigurable Instruction Set Processors

In the scope of this thesis, the focus is placed on extensions of CPUs with reconfigurable functional units
(RFUs) that are tightly coupled to the core pipeline. An overview and classification for this specific area
of reconfigurable computing is given in [BL00]. In this section, state-of-the-art approaches that are related
to the reconfigurable processor that is proposed in this thesis will be presented and discussed.

Employing reconfigurable processors affects the application development in two different ways. First,
the application-specific hardware accelerators need to be designed for the RFUs (typically in a hardware
description language) and afterwards, these accelerators need to be operated efficiently. To obtain a bene-
fit from the hardware accelerators, the application programmer has to insert Special Instructions (SIs) into
the application (e.g. using inline assembly or compiler tools) as a way to access the accelerators.6 In a
way, both steps are comparable to the development process of ASIPs, which allows that their concepts for

6 note that further access possibilities – e.g. memory-mapped interfaces or co-processor ports – may be used as

well, however, for tightly-coupled accelerators, the SIs provide a direct and low-latency interface as it is used by
ASIPs

- 17 -

Chapter 2 Background and Related Work

tool-flows and automatic development environments may be adapted for this class of reconfigurable proc-
essors. However, reconfigurable processors additionally need to determine which accelerators should be
loaded into the RFU at which time during the application execution. This is often accomplished by so-
called prefetching instructions [LH02] that trigger the upcoming reconfigurations.

The difference between ASIPs and reconfigurable processors becomes noticeable when executing SIs.
An ASIP provides all SIs statically, typically using the same fabrication technology like the core pipeline.
A reconfigurable processor instead uses a fine-grained reconfigurable fabric for the SIs. Additionally, a
reconfigurable processor may not have an SI available when it shall execute, e.g. because the process of
reconfiguration has not finished yet. The partitioning of the reconfigurable fabric (e.g. how many SIs can
be provided at the same time) has a high impact on whether or not an SI is available when it is demanded.
Furthermore, architectural parameters (for instance the reconfiguration time) affect the ability to effi-
ciently provide SIs on demand. All these aspects are common for the following state-of-the-art architec-
tures (presented in chronological order), however, they address them using different techniques.

The OneChip project [WC96] and its successor OneChip98 [CC01, JC99] use RFUs within the core pipe-
line to utilize reconfigurable computing in a CPU. The RFUs are accessed by SIs as multi-cycle in-
structions. As their speedup is mainly obtained from streaming applications [CC01] they allow their
RFUs to access the main memory, while the core pipeline continues executing. OneChip is based on
an in-order pipeline, whereas OneChip98 uses an out-of-order superscalar architecture. Therefore,
memory inconsistency problems may occur when an SI that accesses the memory executes on the
RFU and – during the multi-cycle SI execution – load/store instructions execute in the core pipeline.
For instance, the pipeline may load a value from memory, modify it, and write it back. If an SI writes
the same address in between, then the core pipeline overwrites its result. In the scope of the
OneChip98 project, nine different memory inconsistency problems were identified and hardware sup-
port was developed to resolve them automatically. The RFUs provide six configuration contexts and
can switch between them rather fast. To load an RFU configuration into one of these contexts, the ac-
cess to the main memory is used.

The Chimaera project [HFHK97, YMHB00] couples a dynamically scheduled superscalar processor core
with a reconfigurable fabric that may contain multiple SIs. The SIs obtain up to nine inputs and create
one output value directly from/to the register file (i.e. Chimaera uses a tight coupling). To avoid im-
plementing a register file with nine read ports, these nine registers are realized as a partial physical
copy of the register file that is updated when the corresponding registers in the register file are modi-
fied (so-called shadow registers). The register addresses are hard coded within the SI and the com-
piler/application programmer is responsible for placing the expected data in the corresponding regis-
ters. Chimaera uses a customized reconfigurable array that is based upon 4:1 LUTs that can also be
used as two 3:1 LUTs or one 3:1 LUT with additional carry computation. A fast carry logic is shared
among all logic blocks in a row and the routing structure of the array is optimized for arithmetic op-
erations. When an SI demands the reconfigurable array but the required configuration is not available,
then a trap is issued and the trap-handler performs the reconfiguration. Therefore, the application
computation is stalled during the array reconfiguration and in the case of large working sets (i.e. many
SIs within a loop), the problem of thrashing in the configuration array is reported (i.e. frequent recon-
figurations within each loop iteration). Therefore, Chimaera provides a dedicated on-chip configura-
tion cache to diminish the effects of this problem.

The CoMPARE processor [SGS98] provides a reconfigurable fabric that is coupled to the pipeline of the
core processor similar to an ALU. The reconfigurable fabric implements an RFU that takes four in-
puts and returns two results. The RFU does not provide any registers or latches, i.e. it is stateless.
Therefore, no state-machine or data feedback may be implemented. Additionally, the RFU can only
comprise the hardware implementation of a single SI at a time. If more SIs are demanded then the
RFU needs to be reconfigured in between their executions.

- 18 -

2.2 Reconfigurable Processors

The Proteus processor [Dal99, Dal03] extends a processor by a tightly coupled fine-grained reconfigur-
able array that is divided into multiple RFUs, where each RFU may contain one SI implementation at
a time. Proteus concentrates on Operating System support with respect to SI opcode management.
This is especially beneficial when multiple tasks need the same SI, as they can share the same SI im-
plementations without the need that the tasks were compiled such that they use the same opcode for
the SI. However, when multiple tasks exhibit dissimilar processing characteristics, a task may not ob-
tain a sufficient number of RFUs to execute all SIs in hardware. Therefore, some SIs will execute in
software, resulting in steep performance degradation. In addition to SI management, Proteus provides
concepts for task switches that may occur during an SI execution, i.e. the context of the SI that cur-
rently executes needs to be stored, saved, and restored (when the task and thus the SI continues execu-
tion later on).

The XiRisc project [LTC+03, MBTC06] couples a VLIW processor with a reconfigurable gate array. The
instruction set architecture of the VLIW processor is extended to provide two further instructions for
reconfiguring the array and for execution SIs. The SIs have access to the register file and the main
memory and may last multiple cycles. The configuration of an SI is selected out of four different con-
texts and reconfiguration between them can be done in a single cycle. These multiple contexts are
beneficial if small applications fit into them. In [LTC+03] the fastest reported speedup (13.5x) is
achieved for DES and the only context reloading happened when the application was started. How-
ever, in [MBTC06] a relevant MPEG-2 encoder is used for benchmarking. Here, run-time reconfigu-
ration is required (as the accelerators no longer fit into the available contexts) and the achieved
speedup reduced to 5x compared with the corresponding processor without reconfigurable hardware
(i.e. GPP).

The Molen processor [PBV06, PBV07, VWG+04] couples a reconfigurable fabric to a core processor via
a dual port register file and an arbiter for shared memory. The core processor is extended to provide
additional instructions to manage the reconfigurations and SI executions. The instruction set extension
can be parameterized to support only one or multiple SIs at a time, i.e. they provide instructions that
allow to perform partial reconfiguration, but not all Molen instances necessarily use them (i.e. they
may restrict to instructions that reconfigure the entire reconfigurable fabric). The run-time reconfigu-
ration is explicitly predetermined by these control instructions that also allow configuration prefetch-
ing. The compiler/application developer is responsible for deciding which configuration shall be
loaded at which time. All SIs are executed by a generic instruction that obtains the address of the con-
figuration bitstream as parameter to identify the demanded SI. Therefore, the amount of SIs is not lim-
ited by the number of available opcodes of any particular instruction set. To provide parameters to the
SIs, data has to be explicitly moved to dedicated exchange registers that couple the reconfigurable
fabric to the core pipeline.

The Warp processor [LSV06, LV04] automatically detects kernels (using online monitoring) while the
application executes. Then, custom logic for these kernels is generated at run time through on-chip
micro-CAD tools (i.e. synthesis, place, and route). These kernel implementations are then called from
the application. However, as the application does not explicitly contain SIs in the binary (as the kernel
was not determined at compile time yet), Warp proposes a different approach. They replace parts of
the application binary (that correspond to the kernel that shall execute using the reconfigurable fabric)
by a hardware initialization code. This code provides input data to the kernel implementation, starts its
execution, and stalls the processor. After the kernel execution finished, the processor receives an in-
terrupt and continues where it stopped, i.e. in the hardware initialization code. Directly following that
code, a jump instruction is placed to continue the application execution with the code that follows the
kernel. Warp proposes a specialized fine-grained reconfigurable fabric that trades the performance of

- 19 -

Chapter 2 Background and Related Work

- 20 -

the reconfigurable fabric with the computational complexity for the on-chip micro-CAD tools.7 They
focus on the memory requirements of the CAD tools, as this is a limited resource in embedded sys-
tems. Still, the online synthesis incurs a non-negligible computation time and therefore the authors
concentrate on scenarios where one application is executing for a rather long time without significant
variation of the execution pattern. In these scenarios, only one online synthesis is required (i.e. when
the application starts executing) and thus the initial performance degradation amortizes over time.

2.3 Summary of Related Work
Application-specific instruction set processors (ASIPs) allow accelerating applications by providing dedi-
cated hardware accelerators. Their execution is triggered by Special Instructions (SIs). Research in the
scope of fine-grained reconfigurable processors focused on connecting a core processor with an FPGA-
like reconfigurable fabric on which SI implementations are dynamically loaded during run time. The pre-
sented state-of-the-art approaches mainly concentrated on offering and interfacing SIs in their reconfigur-
able fabric. Some of them only provide one SI at a time and some support multiple SIs that are available
on the reconfigurable fabric at the same time. Still, all of the above-discussed approaches potentially in-
crease the utilization of the available hardware resources by reconfiguring parts of it to match the current
requirements of the application (i.e. the currently demanded SIs). However, due to the reconfiguration
time the utilization of the reconfigurable fabric may often be sub-optimal.

All presented approaches only consider one predetermined implementation per SI. The Proteus Re-
configurable Processor additionally offers the execution of an SI with the core Instruction Set Architecture
(cISA), but the operating system predetermines which SI shall be executed with reconfigurable hardware
and which with the cISA. Still, there is at most one hardware implementation per SI. The Warp Processor
could potentially change the SI hardware implementations by performing further online syntheses. How-
ever, due to the implied overhead, synthesizing SI implementations is typically only done once after the
application started, which finally leads to a single SI implementation as well.

Additionally, state-of-the-art fine-grained reconfigurable processors mainly focus on compile-time
predefined reconfiguration decisions. Often, dedicated commands have to be inserted into the application
binary by the compiler (or the application programmer) that explicitly determine ‘when’ the reconfigura-
tion of the hardware implementation of ‘which’ SI shall be started. This is not suitable when computa-
tional requirements or constraints are unpredictable during compile time and change during run time.

These and similar concerns are addressed by the paradigm of the Rotating Instruction Set Processing
Platform (RISPP) that is proposed in this thesis and that fixes some customizations during compile time
and is able to adapt dynamically during run time. Therefore, this thesis proposes the novel concept of
modular SIs that allows providing multiple hardware implementations per SI. A concept plus an infra-
structure for modular SI is developed that provides the feature to upgrade dynamically from one imple-
mentation of an SI to another. This alleviates the problem of long reconfiguration time whenever prefetch-
ing is infeasible and additionally offers high flexibility to adapt to different requirements (e.g. by deciding
which SI shall be upgraded further) that depend on the run-time situation. Furthermore, this thesis pre-
sents a novel run-time system that uses the modular SIs to enable an adaptive and efficient utilization of
the available hardware without statically predetermined reconfiguration decisions. The detailed problems
of state-of-the-art and the concept and basics of modular SIs are explained in Chapter 3, whereas the algo-
rithms of the novel run-time system are presented in Chapter 4. Chapter 5 presents the hardware architec-
ture and its implementation whereas Chapter 6 provides overall benchmarks and comparison with state-
of-the-art approaches, i.e. ASIPs and reconfigurable processors.Equation Chapter (Next) Section 1

7 a more regular reconfigurable fabric with limited interconnect possibilities simplifies place and route at the cost of

reduced SI performance

Chapter 3 Modular Special Instructions
This chapter presents the novel concept of modular Special Instructions (SIs) that provides the potential
for improved adaptivity and efficiency in comparison with state-of-the-art monolithic SIs. The concept of
modular SIs represents the foundation of this thesis that the other chapters build upon. Their potential is
utilized by the novel run-time system that is described in Chapter 4 and they are implemented using a
novel computation and communication infrastructure that is described in Chapter 5.

The first section will analyze state-of-the-art monolithic SIs, identify multiple relevant problems that
limit the performance and adaptivity of reconfigurable processors, and discus them. The next section pre-
sents the concept of modular SIs and it will be shown how they address the beforehand identified prob-
lems and what additional advantages they provide. The third section demonstrates multiple real-world
examples of modular SIs for an H.264 video encoder that will also be used to evaluate the proposed
RISPP architecture and to compare it with state-of-the-art architectures in Chapter 6. The last section pre-
sents a formal model that allows describing modular SIs in a precise and clear way. This model will be
used to describe the tasks of the run-time system and the pseudo codes of the proposed algorithms in
Chapter 4.

3.1 Problems of State-of-the-art Monolithic Special
Instructions

A Special Instruction (SI) is an assembly instruction that implements an application-specific functionality
to accelerate the execution of a particular application or an application domain (see also Section 2.1). The
complexity of SIs reaches from rather small instructions (e.g. Multiply & Accumulate) to rather large ones
(e.g. Discrete Cosine Transformations, as required for many image and video compression standards).
The implementation of an SI is not restricted to the computational hardware that is available in the proces-
sor pipeline. Instead, typically an extra hardware block is designed and added to the processor. The as-
sembler instruction provides an interface between the application and this hardware block.

In state-of-the-art reconfigurable processors (e.g. Molen [VWG+04], Proteus [Dal03], OneChip
[CC01], etc.) an SI corresponds to a hardware block that is implemented using a reconfigurable fabric. To
be able to reconfigure SI implementations at run time, the reconfigurable fabric is partitioned into recon-
figurable regions, so-called Reconfigurable Functional Units (RFUs), that are connected to the processor
pipeline. To be able to load any SI implementation into any RFU, the interface between the RFUs and the
processor pipeline needs to be identical for all RFUs. Note that introducing multiple different RFU types
with different interfaces does not generally solve this limitation, even though it reduces its effects. How-
ever, introducing different RFU types would create a fragmentation problem, e.g. it may not be possible to
load an SI into the reconfigurable fabric even though an RFU is free because the interfaces of SI and RFU
do not match.

Non-reconfigurable extensible processors define during design time which SIs the processor shall
support. As this well-defined set of SIs is fixed after the processor is taped out, it is possible to apply
global optimizations when designing the SI implementation, i.e. a combined hardware module that im-
plements all SIs can be created. This approach allows sharing of common computational parts of the SIs,
i.e. sharing of data paths (e.g. adder, multiplier etc.). For instance, when multiple SIs demand an adder,
then not necessarily multiple adders are needed for their implementation when these SIs never execute in
parallel. However, data path sharing is not always possible for processors with a reconfigurable instruc-
tion set. This sharing problem is due to concepts and properties of run-time reconfiguration (but alterna-
tives exist, as shown afterwards):

- 21 -

Chapter 3 Modular Special Instructions

• On the one hand, it is not necessarily known which SI implementations will be available (i.e. loaded
to the reconfigurable fabric) at the same time during application execution. This highly depends on
the decisions which SI implementations shall be reconfigured at which time. Therefore, it is not
known, which SI implementations might share a common data path (both implementations need to be
loaded at the same time) and which need a dedicated implementation of a potentially common data
path.

• On the other hand, reconfigurable SI implementations demand a fixed implementation interface to be
able to load any SI implementation into any RFU (as described above). Therefore, to support data
path sharing, each possibility to share a data path demands an extension of the general RFU interface
which complicates its design. Vice versa, for a predetermined RFU interface the sharing potential is
limited.

Due to these reasons, all state-of-the-art reconfigurable processors that target reconfigurable SIs, target so-
called monolithic SIs, i.e. each SI is implemented as a dedicated hardware block (no support for sharing)
that is loaded to the reconfigurable fabric either entirely or not at all. During the reconfiguration process –
that can last multiple milliseconds (e.g. in [GVPR04]) – the SI implementation that was previously loaded
into the RFU is no longer usable (parts of it are overwritten) and the SI implementation that is currently
being reconfigured is not usable yet (it is not completely reconfigured yet).

In addition to the potentially increased hardware requirements (as sharing is not supported, redundant
instances of the same data path might be needed), the concept of monolithic SIs – as used by all state-of-
the-art processors with support for reconfigurable SIs – has two further drawbacks that are due to the con-
cept of monolithic SIs. To allow each SI to be loaded into any RFU (as motivated above) all RFUs need to
provide the identical amount of reconfigurable fabric. If the hardware implementation of an SI is rela-
tively small in comparison with an RFU this leads to a noticeable fragmentation problem, because the
share of the RFU that is not required by its loaded SI cannot be used to implement another SI. Similar to
the sharing problem, the fragmentation problem potentially leads to increased area requirements (corre-
sponding to decreased area efficiency).

However, not only the area requirements are affected, also the performance is potentially affected in a
negative way. The noticeably increased performance of (reconfigurable) SIs is based on the increased par-
allelism of their implementations. More parallelism (limited by area constraints and input data bandwidth)
leads to a higher performance. However, more parallelism also demands more hardware and a correspond-
ingly larger SI implementation results in a longer reconfiguration time. Therefore, depending on the re-
configuration frequency,8 a highly parallel implementation might lead to a reduced performance in com-
parison with an SI implementation with limited parallelism, because the reconfiguration overhead prob-
lem diminishes the potential performance to some degree. For instance, if the software implementation of
a computational block demands 10 ms execution time (ET) and a dedicated SI provides a 10x speedup for
this computation but demands 4 ms reconfiguration overhead (RO) until the computation can start, then
the resulting speedup is 10 ms ET / (4 ms RO + 1 ms ET) = 2x. Considering an SI implementation that
leads to 5x speedup but demands only 2 ms reconfiguration overhead, the resulting speedup improves to
10 ms ET / (2 ms RO + 2 ms ET) = 2.5x. This shows that the beneficial amount of parallelism is limited
by the reconfiguration overhead.

Reconfigurable processors typically address the reconfiguration overhead problem by supporting the
following two techniques:

8 if an implementation is reconfigured only once when the application starts, then the reconfiguration overhead will

amortize over time; however, if frequent reconfigurations are demanded, it might not amortize

- 22 -

3.1 Problems of State-of-the-art Monolithic Special Instructions

i) Prefetching SI implementations: Prefetching aims to start the reconfigurations of a demanded SI
implementation as early as possible. The decision which reconfiguration is started and when it is
started is determined at compile time (static prefetching), at run time (dynamic prefetching), or at run
time using compile-time provided information (hybrid prefetching) [LH02].

ii) cISA execution of SIs: Whenever an SI is required to execute but the SI implementation is not avail-
able (e.g. because the reconfiguration is not completed yet), the SI may be executed using the core In-
struction Set Architecture (cISA) of the pipeline. This means that the statically available hardware
(e.g. the ALU in the pipeline) is used by executing instructions from the cISA, similar to the execu-
tion on a general-purpose processor without SIs (see also Section 5.2).

Even though these two techniques potentially reduce the negative effects of the reconfiguration overhead
problem, they are not always effective, as shown later. The cISA execution avoids stalling the pipeline
unnecessarily long.9 However, it executes the functionality of the SIs rather slow (at most as fast as with-
out using SIs) and thus does not lead to a noticeable performance improvement. In addition, prefetching is
only possible when the following two conditions apply:

i) The upcoming SI requirements are known with a good certainty and early enough (multiple millisec-
onds before the actual SI execution).

ii) A sufficiently large reconfigurable fabric is available such that – in addition to the at-that-time re-
quired SIs – some RFUs are available to prefetch the implementation for the upcoming SI require-
ments. Otherwise, some of the still required SIs need to be replaced which would affect the current SI
requirements and thus makes prefetching unbeneficial.

In Figure 3.1, different trade-offs between SI parallelism and reconfiguration overhead are compared,
showing the SI execution pattern for the Motion Estimation (ME) of an H.264 video encoder (see also
Section 3.3). The x-axis shows a time axis (the ME execution starts at time 0) and the y-axis shows how
many SIs finished execution since time 0. Altogether, 31,977 executions of two different SIs are de-
manded for that particular Motion Estimation (depending on the Motion Estimation algorithm and the in-
put video). Line shows the SI execution pattern for a reconfigurable processor that does not support
cISA execution and that uses an SI implementation that finishes reconfiguration 900,000 cycles after the
computational hot spot started execution (corresponds to 9 ms for a 100 MHz clock frequency). There-
fore, in the first 900,000 cycles, the pipeline stalls until the reconfiguration completes. Line introduces
the concept of a cISA execution, leading to a small performance improvement. Instead of stalling the
pipeline, the execution can proceed, even though at a noticeably smaller performance in comparison with
the later hardware execution (visible by the gradients of line before and after the reconfigurations are
completed). Line shows the effect of a different SI implementation that exploits less parallelism and
therefore finishes the demanded reconfiguration earlier. After 500,000 cycles the reconfiguration com-
pletes and the SI implementation switches from the cISA execution to a parallel hardware implementa-
tion. As long as line executes the SIs in cISA, the performance gain of line in comparison with
line increases. However, as soon as line switches from cISA execution to hardware execution, this
initial performance gain decreases (due to a less parallel SI implementation of line). In this particular
example, line leads to the faster execution. However, in Figure 3.1 it becomes visible that this highly
depends on the total amount of SI executions and – for a Motion Estimation algorithm – this typically de-
pends on the input video data. Eventually, line gives an outlook on the SI execution pattern for the Ro-
tating Instruction Set Processing Platform (RISPP) approach that will be explained in the following sec-
tion. It combines the performance improvement of line during the early stage of the execution (and
even outperforms it) with the parallel implementation of line and in the later stage of the execution
by the concept of upgrading the SI implementations (details in Section 3.2).

9 without cISA execution, the pipeline would need to be stalled until the reconfigurations that are demanded to exe-

cute the SI completed

- 23 -

Chapter 3 Modular Special Instructions

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1. No cISA exec.

2. With cISA exec.

3. With cISA exec. & smaller SIs

4. With cISA exec. & upgrades

All SIs that are
required for a fast

Motion Estimation of
one 176x144 Video
Frame are executed

Early performance
benefit through

upgrades

Reconfiguration completed

core In-
struction Set
Architecture

RISPP
approach

Execution Time [K cycles]

#A
cc

um
ul

at
ed

 S
I E

xe
cu

tio
ns

 (i
n

th
ou

sa
nd

s)

Figure 3.1: Comparing Different Performance vs. Reconfiguration Overhead Trade-Offs

Altogether, this thesis has identified and described the following three different problems for state-of-the-
art reconfigurable processors with monolithic SIs:

i) Sharing Problem: sharing of common data paths is only possible under constraints that would sig-
nificantly limit the adaptivity. Thus, state-of-the-art reconfigurable processors do not support sharing.

ii) Fragmentation Problem: To be able to reconfigure SI implementations at run time in a flexible way
and to be able to connect them to the processor pipeline, a certain area budget and connection inter-
face has to be used for each RFU. If an SI implementation is relatively small in comparison with the
provided reconfigurable fabric within the RFU, the remaining resources cannot be used to implement
another SI.

iii) Reconfiguration Overhead Problem: the reconfiguration overhead depends on the amount of paral-
lelism that is exploited in the SI implementation. Therefore, the amount of effectively usable parallel-
ism is limited. Additionally, this effectively usable amount depends on the expected number of SI
executions.

It is noticeable that none of these three problems applies to state-of-the-art extensible processors (see Sec-
tion 2.1). They provide all SIs in a non-reconfigurable implementation. Therefore, each SI may use an
individual interfaces to the processor pipeline and the SIs may share common data paths without affecting
these interfaces. Additionally, no spare area has to be reserved to load potentially larger SI implementa-
tion. Therefore, no fragmentation occurs. Eventually, as all SI implementations are statically available, no
reconfiguration overhead reduces the amount of usable parallelism. However, reconfigurable processors
also have noticeable advantages: they are no longer fixed to a certain set of SIs. Instead, an application
developer can create new SIs (or new implementations of an SI) that can be loaded onto the reconfigur-
able fabric at run time to accelerate further applications or application domains that were not necessarily
considered when designing the reconfigurable processor. In addition to the adaptivity to support new SIs,
reconfigurable processors provide run-time adaptivity. Depending on the application requirements (e.g. SI
execution frequencies) the set of currently available SIs may be dynamically changed by reconfiguring
those SIs that provide the highest benefit at a certain time during application execution.

- 24 -

3.2 Hierarchical Special Instruction Composition

Therefore, the aim is to combine the advantages of state-of-the-art extensible processors and state-of-
the-art reconfigurable processors and even improve upon these. The approach to implement SIs is differ-
ent in comparison with reconfigurable processors. In Section 3.2, this thesis will introduce modular SIs (in
contrast to state-of-the-art monolithic SIs) that are based on a hierarchical SI composition. They provide a
higher adaptivity than state-of-the-art monolithic reconfigurable SIs and they significantly reduce the
three above-discussed problems (sharing, fragmentation, and overhead) that were discussed in this sec-
tion.

3.2 Hierarchical Special Instruction Composition
State-of-the-art processors with a reconfigurable instruction set use so-called monolithic Special Instruc-
tions (SIs) as described in Section 2.2. In the concept of monolithic SIs, each SI is realized by one hard-
ware implementation that can be loaded into an Reconfigurable Functional Unit (RFU) during application
run time. This single SI implementation corresponds to a certain trade-off between parallelism and size
and thus determines the minimal size of an RFU (to be able to load that SI into it) and reconfiguration
overhead.

Figure 3.2: Hierarchical Composition of Special Instructions:

Multiple Implementation Alternatives – So-called Molecules – Exist per
Special Instruction and Demand Atoms for Realization

Instead of providing a single implementation per SI, the presented approach proposes a concept that pro-
vides multiple implementations of an SI that differ in their parallelism/overhead trade-off but that all real-
ize the same functionality. This concept additionally provides an extended level of adaptivity, as it allows
switching from one SI implementation to another during run time, depending on the application require-
ments (e.g., how often the SI is demanded). Furthermore, each SI implementation is not a monolithic
block, but it is a modular composition out of elementary data paths.

Figure 3.2 shows an abstract example of the proposed hierarchical SI composition, consisting of three
levels, namely SIs, Molecules, and Atoms:

Atom: An Atom corresponds to an elementary data path. It is the smallest reconfigurable unit, i.e. an
Atom is either completely reconfigured onto the reconfigurable fabric or not (that is the reason for its
name, i.e. it is considered as indivisible). The reconfigurable fabric is partitioned into so-called Atom
Containers (ACs) and each AC can be dynamically reconfigured to comprise any particular Atom
(similar to RFUs but smaller in size, see Section 3.1). Each AC provides a fixed interface, comprising
two 32-bit inputs, two 32-bit outputs, a clock signal, and a 6-bit control signal that can be used for
Atom-internal configurations, as shown later. This particular interface is not an integral part of the

- 25 -

Chapter 3 Modular Special Instructions

general concept, but it performed well in practice (examples are given below and in Section 3.3). In
the following, Atom type and Atom instance will be distinguished. The Atom type denotes the func-
tionality of the Atom. The Atom instance corresponds to an instantiation of an Atom type. This
means that multiple Atom instances of a certain Atom type can be available at the same time (i.e. re-
configured into different ACs).

Molecule: A Molecule is a combination of multiple Atoms and corresponds to an implementation of a
Special Instruction. Typically, a Molecule is composed of multiple different Atoms types and each
Atom type may be demanded in different quantities. Therefore, a Molecule corresponds to one spe-
cific trade-off between parallelism and reconfiguration overhead. The more Atoms it demands, the
more computations may be performed in parallel (as will be shown later), but also more reconfigura-
tions need to be performed. A Molecule is available (i.e. completely loaded onto the reconfigurable
fabric) if all of its demanded Atoms are available. However, an Atom is not dedicated to any Mole-
cule. Instead, a particular Atom can be used to implement different Molecules (independent whether
or not they belong to the same SI as shown in Figure 3.2) if these Molecules are not executing at the
same time.

Special Instruction: A Special Instruction has the same semantic like in extensible or reconfigurable
processors. It corresponds to an assembly instruction that accelerates the application execution.
Modular SIs are available in multiple different implementations (i.e. Molecules). Therefore, the im-
plementation of a particular SI can be upgraded/downgraded during run time by switching from one
Molecule to another. Essentially, each SI corresponds to an acyclic graph where each node represents
the functionality of an Atom. A Molecule determines a resource constraint for the graph, i.e. which
Atom types are available in which quantities. This affects the implementation of the SI10 and thus it
determines the latency (i.e. the demanded number of cycles) of the SI execution. In addition to the dif-
ferent hardware Molecules, each SI also contains the so-called cISA Molecule that does not demand
any accelerating Atoms but executes the SI functionality using the core Instruction Set Architecture
(cISA) of the processor pipeline (as motivated in Section 3.1).

Figure 3.3 shows an example SI as a graph of connected Atoms. It calculates the Sum of Absolute Ha-
damard-Transformed Differences (SATD), as it is required in the Motion Estimation of an H.264 video
encoder (more examples are presented in Section 3.3). On the left side in Figure 3.3, the input data is pro-
vided to the SI (in this example the input data is loaded from data memory) and on the right side, the re-
sult is returned. The Atoms (nodes of the graph) are connected together to form a combined data path that
calculates the result of the SI. The Atom-internal data path of the Transform Atom and the Sum of Abso-
lute Values (SAV) Atom are shown below the graph. It is noticeable that some operations within an Atom
work in parallel (e.g. the adders and subtractors at the input of the Transform Atom). Other operations
work sequentially within the same cycle (an Atom typically completes operation within one cycle, how-
ever, multi-cycle Atoms are supported as well), using operation chaining. This is called Atom-level paral-
lelism, as a single Atom already provides some degree of parallelism to accelerate the SI execution.

In addition to the Atom-level parallelism, modular SIs exploit the so-called Molecule-level parallel-
ism. The smallest hardware Molecule (regarding the number of Atom instances) utilizes one instance per
Atom type that is used in the SI graph. The smallest hardware Molecule for SATD in Figure 3.3 demands
one instance of QSub, Repack, Transform, and SAV, respectively. These four Atoms are sufficient to real-
ize the functionality of SATD in hardware. In this Molecule, the instance of the Transform Atom is used
eight times to realize the eight different Transform nodes in the SI graph. If two instances of the Trans-
form Atom would be available (corresponding to a larger Molecule), then they may be used in parallel
(i.e. higher Molecule-level parallelism) to expedite the SI execution.

10 this corresponds to a scheduling problem from the domain of high-level synthesis [Tei97]: the data-flow graph

that describes the SI functionality is scheduled considering the resource constraints

- 26 -

3.2 Hierarchical Special Instruction Composition

Figure 3.3: Example for the Modular Special Instruction SATD

(Sum of Absolute (Hadamard-) Transformed Differences), Showing the Details
for the Transform Atom and the SAV (Sum of Absolute Values) Atom

The Molecule-level parallelism is an important feature of modular SIs, because it allows efficient SI up-
grading. For instance, when one instance is available for all demanded Atom types (smallest hardware
Molecule), loading an additional Atom may lead to a faster Molecule. Loading another Atom might im-
prove the performance further, and so on. This means, instead of loading these faster Molecules from
scratch (i.e. not considering the already available Atoms) only one additional Atom needs to be loaded,
which makes the process of upgrading efficient. Table 3.1 provides an overview of different SATD Mole-
cules. In addition to the cISA Molecule (319 cycles per execution), mixed Molecules (explained in next
paragraph) and hardware Molecules exist. The smallest hardware Molecules requires 22 cycles per execu-
tion. When two instances of each Atom type are available, only 18 cycles are required per execution. Note
that a second instance of the QSub Atom does not provide any benefit as the QSub calculation is actually
hidden in the memory access latency and thus parallelizing the QSub calculations does not improve the
performance. The fastest implementation is reached when for all Atom types (except QSub) four instances
are loaded (13 Atoms altogether). This fastest implementation has rather large hardware requirement and
is not necessarily beneficial in all situations. However, the concept of modular SIs allows dynamically
choosing any particular Molecule between cISA execution and the largest hardware Molecule during run
time and it supports gradually upgrading the SI implementation until the selected Molecule is available.

In addition to the hardware Molecules and the cISA Molecule, so-called mixed Molecules may also
implement an SI (see Table 3.1). The term ‘mixed’ denotes that some parts execute in hardware (using the
available Atoms) and some execute in software (using the cISA). A mixed Molecule is a particular cISA
implementation that additionally uses some Atoms that already finished reconfiguration. Its purpose is to
bridge the gap11 between the cISA implementation (319 cycles; 0 Atoms) and the smallest hardware

11 in terms of Molecule performance and Atom requirements

- 27 -

Chapter 3 Modular Special Instructions

Molecule (22 cycles; 4 Atoms). The cISA implementation of the mixed Molecule executes a special as-
sembler instruction that allows utilizing one Atom at a time (i.e. any of the Atoms that are currently avail-
able). This means that no Molecule-level parallelism is exploited (at most one Atom executes at a time),
but it already benefits from the Atom-level parallelism. Section 5.2 provides further details about imple-
menting mixed Molecules.

Molecule
Type

Number of
QSub Atoms

Number of Re-
pack Atoms

Number of Trans-
form Atoms

Number of
SAV Atoms

Molecule La-
tency [cycles]

cISA - - - - 319
Mixed - 1 - - 261
Mixed - 1 1 - 173
Mixed - 1 1 1 93

Hardware 1 1 1 1 22
Hardware 1 1 2 1 21
Hardware 1 2 2 1 20
Hardware 1 2 2 2 18
Hardware 1 4 4 4 16

Table 3.1: Overview of Different SATD Molecule Alternatives

The Transform Atom in Figure 3.3 demonstrates an important feature of the proposed hierarchical SI
composition. In addition to the two 32-bit inputs, it receives three control signals, namely IDCT (inverse
DCT), DCT (Discrete Cosine Transformation), and HT (Hadamard Transformation). These control signals
allow using this Atom for the horizontal Hadamard transformation (left Transform column in the SI graph
in Figure 3.3) as well as the vertical Hadamard transformation (right column) by applying different values
to the HT control bit. In addition to the Hadamard Transformation, the control bits allow using this Atom
to execute the SIs for DCT, inverse DCT, and inverse HT. Therefore, this Atom can be shared between
different SIs and different Molecules of the same SI. This can cut down the actual area requirements, as
potentially fewer Atoms need to be loaded, depending on how many Atoms can be shared. Additionally, it
reduces the reconfiguration overhead. For instance, if one Transform Atom finishes reconfiguration then
not only the SATD SI is expedited (a faster Molecule is available), but potentially further SIs are also up-
graded to faster Molecules. Without Atom sharing, each SI would need to reconfigure its own Atoms to
realize faster Molecules.

Figure 3.4: Example Schedule for a Molecule of the SATD Special Instruction,

Using Two Instances of Each Atom

- 28 -

3.2 Hierarchical Special Instruction Composition

As mentioned beforehand, a Molecule implies resource constraints (type and quantity of available Atoms)
that affect the schedule of the SI graph. To illustrate this aspect further, Figure 3.4 shows an excerpt of a
schedule for the SATD SI (see Figure 3.3) that utilizes two instances of each demanded Atom type. Due
to data dependencies, it is not always possible to utilize the available resources maximally, e.g. cycle 12
and 13 in Figure 3.4. Therefore, intermediate results might need to be stored temporary, depending on the
SI schedule. Additionally, the communications between the Atom instances need to be established to real-
ize the Molecule implementation. To be able to implement Molecules, a computation and communication
infrastructure was developed in the scope of this thesis. It is a non-modifiable structure that provides ACs
and that can be extended by reconfiguring the ACs. This so-called Atom Infrastructure establishes the
demanded communications between the ACs and stores intermediate data from the Atoms. Section 5.4
presents the details for the Atom Infrastructure.

In Section 3.1, this thesis identified three problems that state-of-the-art reconfigurable processors face,
i.e. the Sharing Problem, Fragmentation Problem, and Reconfiguration Overhead Problem (see page 24).
In the following, the impact of the novel concept of modular SIs for these three problems will be ana-
lyzed:

Reduced Sharing Problem: An Atom can be shared between different Molecules of the same SI as well
as between different SIs. This is a significant improvement in comparison with monolithic SIs where
sharing was disadvantageous (see Section 3.1). This improvement is practically usable, as e.g. demon-
strated with the Transform Atom that can be used to accelerate the SIs for (inverse) DCT and (in-
verse) Hadamard Transformation. However, the concept of modular SIs does not completely solve the
sharing problem. Sharing a partial data path within an Atom (i.e. not the entire data path of an Atom)
faces the same challenges as sharing a data path within a monolithic SI. Conceptually, the size of an
Atom (i.e. the amount of logic that it contains) could be reduced to improve the potential for sharing
relatively small data paths. However, this implies an increased overhead12 to connect the Atoms to
compose Molecules. Therefore, it corresponds to a trade-off between sharing potential and implied
overhead. Even though this trade-off is independent of the underlying concept, it was considered,
when designing the SIs, Molecules, and Atoms (see Section 3.3) for later evaluations.

Reduced Fragmentation Problem: Due to the partitioning of relatively large monolithic SIs into rela-
tively small Atoms, the fragmentation problem is reduced correspondingly. In the proposed concept,
the maximal fragmentation is independent of the Molecule size, which is a noticeable improvement.
For instance, the smallest SI that will be used for later evaluation (i.e. the 2x2 pixels’ Hadamard
Transformation, see Section 3.3) demands only one Atom (one Transform instance; only one hard-
ware Molecule exists), whereas the largest Molecule of SATD demands 13 Atoms. In this example,
the fragmentation of a monolithic SI may be as large as the area that corresponds to 12 Atoms. In the
proposed concept, the maximal fragmentation is limited by the size of an Atom Container. If an Atom
would demand only a small fraction of the area that is provided within an AC, then the fragmentation
might be up to the size of the AC. However, an Atom that only uses a small fraction of an AC will
most likely not lead to a noticeably performance improvement. Potentially, the logic of such an Atom
may be incorporated into other Atoms, which would also reduce the reconfiguration overhead.

Reduced Reconfiguration Overhead Problem: Typically, as soon as one Atom finished reconfigura-
tion, a mixed Molecule or hardware Molecule is available to accelerate the SI execution. The recon-
figuration time of one Atom is approximately 1 ms (see Table 5.7 on page 124) for the Atoms that are
implemented for the RISPP hardware prototype (see Section 5.5). The reconfiguration time for the
fastest SATD implementation is approximately one order of magnitude larger (demanding 13 Atoms).
This significantly reduced reconfiguration overhead leads to significant performance improvements,

12 more Atoms would need to interact (because there is less functionality per Atom) and thus the hardware that con-

nects the Atoms would need to be extended to exchange more inter-Atom data in parallel

- 29 -

Chapter 3 Modular Special Instructions

as shown later. Furthermore, whenever an Atom can be shared between multiple SIs executing in the
same hot spot, it only needs to be reconfigured once, which directly reduces the reconfiguration over-
head. Additionally, if an Atom can be shared between the SIs of different hot spots H1 and H2, it
might be already available when H2 demands it, because it was previously reconfigured for H1. This
eliminates the need to reconfigure this particular Atom and thus it significantly reduces the reconfigu-
ration overhead.

Altogether, the concept of modular SIs reduces the negative effects of the sharing problem, the fragmenta-
tion problem, and the reconfiguration overhead problem noticeably in comparison with monolithic SIs. In
comparison with state-of-the-art ASIPs, these three aspects may still affect the performance, but not as
noticeably as state-of-the-art reconfigurable processors are affected. Vice versa, the adaptivity of recon-
figurable processors provides the potential to outperform ASIPs, depending on the application require-
ments. If an application demands relatively few SIs and accelerators and if it demands always the same
accelerators (e.g. because the application is dominated by a single hot spot, like the JPEG encoder or the
ADPCM audio encoder, Rijndael encryption etc.), then the adaptivity of reconfigurable processors might
not provide significant benefit. However, if the application demands rather many SIs in multiple hot spots
or if multiple tasks shall execute and these tasks altogether demand many SIs, then the adaptivity of state-
of-the-art reconfigurable processors may outperform statically optimized ASIPs. In addition to addressing
the problems of reconfigurable processors, the concept of modular SI also provides further advantages
concerning the provided performance and adaptivity:

Efficient SI Upgrades: In addition to solving the reconfiguration overhead problem (i.e. reducing the
reconfiguration time until the SI execution is accelerated), modular SIs also provide the possibility to
upgrade the performance of the SIs further. By continuing reconfiguring Atoms that are beneficial for
a particular SI, faster Molecules of that SI become available one after the other and thus the perform-
ance of the SI is gradually upgraded.

SI Implementation Adaptivity: Providing multiple implementations (i.e. Molecules) per SI provides a
very high level of adaptivity. It is no longer required to determine at compile time, which implementa-
tion shall be used to implement an SI. Instead, this decision can be dynamically adapted at run time,
depending on the requirements of the application and depending on the hardware availability. The
hardware availability might change at run time in a multi tasking scenario. Depending on the amount
of tasks, their priorities, deadlines, and hardware requirements (i.e. how much ACs they demand to be
able to fulfill the performance requirements), the amount of AC that are available for a particular task
might change. Even for a fixed number of ACs, the SI requirements of an application may change.
For instance, it may depend on application input data, which SI is executed how often. If two SIs SI1
and SI2 are executed several times in a hot spot, then – depending on input data – sometimes SI1
might be executing more often and sometimes SI2 (a concrete example for this is shown in Sec-
tion 3.3). Therefore, depending on these SI execution frequencies it may be beneficial to adapt the SI
implementation accordingly, i.e. spend more ACs for SI1 or SI2, respectively.

The concept of modular SIs diminishes the described problems of state-of-the-art reconfigurable proces-
sors and provides further potential and adaptivity. State-of-the-art monolithic SIs are actually a special
case of modular SIs, i.e. they provide exactly one hardware Molecule (with a predetermined perform-
ance/area trade-off) that is implemented using one dedicated rather large Atom. However, to obtain the
full benefits of modular SIs, multiple Molecules per SI – composed of multiple shareable Atoms – need to
be provided. Additionally, a hardware infrastructure is required that allows implementing modular SIs and
furthermore a run-time system is needs to determine which Molecule shall be used to implement an SI at a
particular point in time. After summarizing the developed SIs, Molecules, and SIs in the next section and
providing a formal model of them in Section 3.4, this thesis will present an overview of the RISPP archi-
tecture in Section 4.1 (details in Chapter 5) and then explain and evaluate the RISPP run-time system in
the remainder of Chapter 4.

- 30 -

3.3 Example Special Instructions for the ITU-T H.264 Video Encoder Application

3.3 Example Special Instructions for the ITU-T H.264 Video
Encoder Application

In this section, an overview of the ITU-T H.264 video encoder [ITU05] will be presented together with
the designed SIs and Atoms for acceleration. Additionally, the complexity and the adaptive nature of this
application will be presented that makes it challenging for state-of-the-art application specific processors
(ASIPs) and reconfigurable processors. In subsequent chapters, this application is used to motivate and
evaluate the components of the run-time system and of the entire RISPP approach. The H.264 encoder is
significantly more complex than the applications from the MiBench [GRE+01] and the MediaBench
[LPMS97] benchmark suites, which typically consist of one dedicated kernel13 (e.g. a DCT kernel for the
JPEG encoder, a filtering kernel for edge detection, or a Rijndael kernel for cryptography). If an applica-
tion only contains a single kernel, i.e. only one or few SIs are required and they all execute in the same
inner loop, then an ASIP might provide sufficient performance and efficiency for this particular applica-
tion. In such a single-kernel application, reconfigurable processors only demand a single reconfiguration
when the application starts (or even before it starts) to load the implementations of the SIs. After that re-
configuration, the reconfigurable processor operates similar to an ASIP. The reason for this single recon-
figuration is the time between the SI executions. This is due to the fact, that all SIs are part of the same
kernel and the time between their execution is too small to perform a reconfiguration. Still, many recon-
figurable projects (e.g. Warp [LSV06], Molen [VWG+04], Proteus [Dal03], OneChip [CC01]) use these
applications for evaluation, which diminishes the effects of the reconfiguration overhead, because no re-
configurations during run time are demanded to accelerate single-kernel applications. Even the initial
overhead of an online synthesis (like for the Warp processor) may amortize if the application executes
long enough.

The application scenario becomes more challenging if multiple SIs are demanded in different kernels
or different computational blocks and – due to area constraints or adaptivity aspects – run-time reconfigu-
ration is required to support them. These multiple SIs may be required by one or by multiple applications
(multi-tasking scenario). The H.264 video encoder is such an example that requires multiple SIs. Addi-
tionally, it has a high computational complexity (~10x relative to MPEG-4 simple profile encoding
[OBL+04]) and – when for instance used for video conferencing – challenging timing constraints (33 ms
for 1 frame audio/video en/decoding when targeting 30 frames per second).

Figure 3.5: H.264 Application Flow, Highlighting the Three Main
Computational Blocks (ME, EE, LF) and their Embedded Kernels

13 please note that this thesis distinguishes between a computational block (e.g. the Motion Estimation of an H.264

video encoder) and a kernel (a part of a computational block, e.g. Sum of Absolute Differences (SAD) and Sum of
Absolute Transformed Differences (SATD) for the Motion Estimation); typically, a computational block corre-
sponds to the outer loop of a computation and the kernel corresponds to the inner loops

- 31 -

Chapter 3 Modular Special Instructions

Figure 3.5 provides an overview of the H.264 video encoder application flow. It consists of three compu-
tational blocks that are executed subsequently for each video frame. All three internally iterate over all
MacroBlocks (MBs, 16x16 pixel blocks) of the frame. The first computational block performs the Motion
Estimation (ME) to exploit temporal redundancies in two consecutive video frames, i.e. for each MB of
the current frame it tries to find a similar MB in the previous frame. If such a matching MB is found, en-
coding the MB in the current frame can be done by storing a motion vector and the differences of this MB
to the MB in the previous frame to which the motion vector points. After the Motion Estimation, the Rate
Distortion Optimization (RDO) decides which MB prediction type and which corresponding mode shall
be used for later encoding (considering the expected quality (i.e. distortion) and bit rate of the resulting
video). For instance for each MB one out of two fundamentally different MB prediction types (intra-frame
and inter-frame) is chosen. The inter-frame prediction uses a motion vector to predict the content of an
MB in the current frame (so-called P-MB) from an MB in the previous frame. The intra-frame prediction
uses some of the surrounding pixels of the MB in the current frame (so-called I-MB) to predict its content.
For the I-MB, the mode also decides which surrounding pixels shall be considered in which way.

The Encoding Engine (EE) is the second computational block. It performs the actual prediction (de-
cided by ME and RDO) and encoding for all MBs, depending on their MB types, i.e. P-MB or I-MB (see
‘then’ and ‘else’ path in Figure 3.5). The encoding comprises computing a Discrete Cosine Transforma-
tion (DCT), a Hadamard Transformation (HT, depending on the MB-type), and Quantizing the result. Af-
terwards, the mode decisions and encoded data are processed using a context-adaptive variable-length
encoding (CAVLC, a lossless entropy coding) in order to generate an encoded bitstream. At the encoder
side, the encoded frame additionally needs to be decoded in order to generate a reconstructed frame (so-
called reference frame) for the ME of subsequent input video frames (i.e. for P-MBs). Moreover, for I-MB
prediction, the prediction data is generated from the pixels of neighboring reconstructed MBs. Creating
this reconstructed data at the encoder side is required to be able to successfully decode the data at the de-
coder side. The reason is that the decoder has no knowledge of the input video frame to the encoder and
only the pixel difference between current MB and the prediction data (e.g. reference MBs of the previous
frame in case of P-MB) is available in the encoded bitstream (which is transmitted to the decoding side).
To decode a P-MB, the pixel difference is added to the reference MB of the previous frame. If the decoder
uses different data for the reference MB than the encoder did, then the decoded result will differ. As the
decoded MBs will be used as reference to decode the next video frame, this difference increases from
frame to frame. Therefore, to assure that the encoder and decoder use the same reference data, the encoder
has to use the reconstructed video data (i.e. decoded) as reference instead of the original input video frame
(i.e. not encoded). For this reason, a partial decoder is embedded in the encoder that generates the recon-
structed pixel data similar to a decoder generating the decoded pixel data. Since CAVLC is lossless, it is
not required to decode it at the encoder side. Instead, the input data to CAVLC is used to generate the re-
constructed data by inversing the Quantization, HT, and DCT, as shown in Figure 3.5. Afterwards, the
third computational block – the In-Loop De-blocking Filter (LF) – iterates over the MBs of the frame. As
encoding works on (sub-) MB level (down to 4x4 pixels) and – depending on the quantization – a predic-
tion error might lead to noticeable blocking artifacts at the borders of the (sub-) MBs. LF aims to
smoothen these borders to improve the prediction and visual quality. After this last step is performed, the
reconstructed frame is obtained and can be used as reference for performing ME on the next frame.

One remarkable property of this video encoding process is the fact that the computational require-
ments may differ significantly during run time. This is because various different encoding modes and
types exist for the MBs and it depends on certain properties – that are not known at compile time – which
MB type and mode will be chosen for a frame. In particular, it depends on input video characteristics, the
targeted bit rate, and quality. Figure 3.6 shows an analysis of a video sequence after its encoding was per-
formed. The relative number of I-MBs (in percent) is shown for each frame. The relative number of P-
MBs varies directly opposed to the curve. In the first 200 frames, only around 10% of the MBs (in this
video resolution 40 MBs) are encoded as I-MBs. This is because the video sequence was showing a rela-
tively smooth scene where the Motion Estimation was able to detect good reference MBs, i.e. the P-MBs

- 32 -

3.3 Example Special Instructions for the ITU-T H.264 Video Encoder Application

where more beneficial. Between 250 and 350 frames the scenes contains rather hectic motion that makes
it hard for the Motion Estimation to find a corresponding MB in the previous frame. Therefore, the distri-
bution of I-/P-MBs change, as the intra-frame prediction became more beneficial and thus the relative
number of I-MBs increases. This distribution of I-/P-MBs is not generally predictable during compile time
if the input video sequence is not known in advance. As shown in Figure 3.5, the computational require-
ments for I-MBs and P-MBs are very different. Therefore, for changing I-/P-MB distribution, the corre-
sponding kernels (motion compensation, intra prediction etc.) will be demanded in different frequencies.
Thus, it is very hard to predetermine which share of the available hardware shall be used to accelerate the
kernels for I-MB encoding and which shall be used for the P-MBs. Both, ASIPs and state-of-the-art recon-
figurable processors have to make a compromise here (i.e. provide a statically determined share of the
fabric to I-MB and P-MB, respectively). ASIPs make this decision at design time and reconfigurable
processors at compile time. During a run-time phase where – for instance – most encoding is performed
with P-MBs, the accelerators for the I-MB are rather idle and do not contribute to the performance or the
efficiency of the encoding in a positive way. This is one of the examples (as motivated in Section 3.2)
where the extended SI implementation adaptivity of the RISPP approach can be used to adapt the avail-
able reconfigurable fabric to the demanded kernels.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

I-
M

B
s

pe
r

fr
am

e
[%

]

Frame Number

Distribution of
I-MBs [%] in a CIF

(352x288: 396 MBs)
Video Scence

Figure 3.6: Relative Frequency of Intra-Prediction Macroblocks (I-MBs) in a Video Sequence

To accelerate the kernels in Figure 3.5 multiple modular SI were implemented, for instance the SATD
example in Figure 3.3 accelerates the Motion Estimation. Figure 3.7 shows the SI for the Motion Com-
pensation (used to encode P-MBs) together with the Point Filter Atom and the Clip3 Atom. The Point Fil-
ter implements a data paths that performs eight 8-bit multiplications in parallel and accumulates all re-
sults. The Clip3 Atom modifies the input values and implements a control flow that restricts the values to
fixed upper and lower limits. This shows that Atoms may implement data flow, control flow, as well as
combined operations.

Figure 3.8 shows a Loop Filter SI. The operation contains a condition calculation and a filtering op-
eration that is based on the determined conditions. The SI is composed of four independent Condition-
Filter pairs as shown in Figure 3.8 a). Part b) of the figure shows a schedule for the Molecule that com-
prises two instances of the Condition Atom and two instances of the Filter Atom. As shown in part a), a

- 33 -

Chapter 3 Modular Special Instructions

Figure 3.7: Example of a Motion Compensation Special Instruction with Three Different Atoms

and the Internal Data Path of the Point Filter Atom [SBH09a]

c) Condition Atom for Loop Filter

a) LF_BS4 Special Instruction b) Example Molecule Schedule

P1α

Q1β

UV BS

X1

X2

P1

Q1

P1'

Q1'

P2α

Q2β

UV BS
11

X3

X4

P2

Q2

P2'

Q2'

P3α

Q3β

UV BS

X5

X6

P3

Q3

P3'

Q3'

P4α

Q4β

UV BS

X7

X8

P4

Q4

P4'

Q4'

q0

- ABSp0

-p0

p1

-q0

q1

ABS

ABS

<

α

<
β

<
>> 1

α
+

2

<
-p2

p0

-q2

q0

ABS

ABS <
β

<
β

UV

Ba

Bb

X1

X2

BS

BS

+ << 1+
2

+ + + >> 3

p0

p1

q0

+
p2

+p3 << 1

>> 2

+ +
2

>> 3

q1

p0
'

p1
'

p2
'

p3
'

+ << 1+
2

+ + + >> 3

q0

q1

p0

+
q2

+q3 << 1

>> 2

+ +
2

>> 3

p1

q0
'

q1
'

q2
'

q3
'

+
p1

q1

+
+

p0
'

p1
'

p2
'

p3
'

q0
'

q1
'

q2
'

q3
'

>> 2

>> 2
q1

q2

q3

p1
p2
p3

X1

X2

p0
'

p1
'

p2
'

p3
'

q0
'

q1
'

q2
'

q3
'

Q
32

32
P

1
X1

1
X2

P'

32
Q'

32

Loop
Filter

Interface:

LOAD P,
Pα, Q, Qβ

LOAD P,
Pα, Q, Qβ

STORE
P’. Q’

STORE
P’. Q’

Cycles 1 2 3 4 5 6 7 8

LOAD P,
Pα, Q, Qβ

LOAD P,
Pα, Q, Qβ

STORE
P’. Q’

STORE
P’. Q’

LEGEND:
LF_Condition

LF_Filter

Pi 4 Pixels left side
Qi 4 Pixels right side
Piα/Qiβ Threshold values packed

with 3 pixel values
UV/BS Control Signals for Luma/

Chroma and Boundary
Strength

INPUT
OUTPUT OUTPUT

INPUT

d) Filter Atom with Parallel Processing
of Luma and Chroma Paths

Figure 3.8: Special Instruction for In-Loop De-blocking Filter with Example Schedule

and Constituting Atoms for Filtering Conditions and Filtering Operation [SBH09a]

- 34 -

3.3 Example Special Instructions for the ITU-T H.264 Video Encoder Application

Condition-Filter pair obtains two 32-bit pixel values that shall be filtered and two 32-bit threshold values
to determine the conditions (additionally, control signals are applied that for instance allow to reuse the
Condition Atom for Luma (brightness component) and Chroma (color component) of a frame). Alto-
gether, one Condition-Filter pair obtains 128 bit input data (in addition to the static control signals) that
may be loaded from data memory in a single access if a memory port with 128 bit is available. For the
RISPP approach, two 128-bit data memory ports are used that access fast on-chip memory (like Tensilica
ASIPs support it [Tenb]) as mentioned in Section 4.1 and explained more detailed in Section 5.3. Corre-
spondingly, the input data for two Condition-Filter pairs can be loaded in parallel, as shown in part b) of
the figure. When additionally considering that fast on-chip memory is used that guarantees a memory ac-
cess latency of two cycles, the load and store operations of four Condition-Filter pairs can be efficiently
interleaved such that the full available data memory bandwidth is exploited. This explains why it is bene-
ficial to combine these four independent Condition-Filter pairs into the same SI instead of offering a sin-
gle pair as SI. It demonstrates that the SI design – to some degree – depends on the underlying architec-
ture. If only one 128-bit port would be available, then only two pairs within one SI would already exploit
the maximally available bandwidth.

Part c) and d) of Figure 3.8 show the internal composition of the Condition- and Filter-Atom of the
Loop filter SI. It is especially noticeable that very fine-grained (i.e. sub-byte to bit level) computations are
performed. For instance, the operations in the Condition Atom go down to elementary AND gates. In addi-
tion to various byte and sub-word operations, the Filter Atom also comprises multiple shift operations
with a constant shift amount. Therefore, the operation is not realized as an actual shifting but as a simple
bit-level rewiring (e.g. input_biti becomes output_biti+1).

Functional
Component

Special
Instruction

Description of
Special Instructions Utilized Atoms

Motion Estimation
SAD Sum of Absolute Differences

of a 16x16 MacroBlock SADrow

SATD Sum of Absolute (Hadamard-) Transformed
Differences of a 4x4 sub-block

QSub, Transform, Repack,
SAV

Motion Compensation MC_Hz_4 Motion Compensated Interpolation
for Horizontal case for 4 Pixels PointFilter, Repack, Clip3

Intra Prediction
IPred_HDC 16x16 Intra Prediction for Horizontal and DC CollapseAdd, Repack
IPred_VDC 16x16 Intra Prediction for Vertical and DC CollapseAdd, Repack

(Inverse) Transform

(I)DCT Residue calculation and (Inverse) Discrete
Cosine Transform for 4x4 sub-block Transform, Repack, (QSub)

(I)HT_2x2 2x2 (Inverse) Hadamard Transform
of Chroma DC coefficients Transform

(I)HT_4x4 4x4 (Inverse) Hadamard Transform
of Intra DC coefficients Transform, Repack

In-loop De-
blocking Filter LF_BS4 4-Pixel Edge Filtering for in-loop De-

blocking Filter with Boundary Strength 4 Cond, LF_4

Table 3.2: Overview of Implemented SIs and their Required Atoms [SBH09a]

In addition to the above-described SIs, multiple further SIs are used to accelerate the kernels of the H.264
video encoder. Table 3.2 summarizes all of these SIs. In addition to the name and the computational block
where the SI is used, a short description for the SI is provided as well as a list of demanded Atom types.
Each SI (except HT_2x2 that only requires one instance of one Atom) comprises multiple mixed and
hardware Molecules. It becomes noticeable that some Atoms (especially Repack and Transform) are used
to implement different SI types. This indicates the increased potential of the RISPP approach to share data
paths as motivated in Section 3.2.

- 35 -

Chapter 3 Modular Special Instructions

Note: The SIs and Atoms that are used in this work for motivating and explaining the concepts as
well as evaluating and benchmarking them are all designed manually. Additionally, they are not a contri-
bution of this thesis, but they are developed and published by my colleague Muhammad Shafique
[SBH09a]. They are used for a proof of concept of the core components of this thesis, i.e. the RISPP ar-
chitecture and the RISPP run-time system. An automatic SI detection is not targeted in this work. How-
ever, automatic SI detection and synthesis is an established research field in the context of ASIPs (see
Section 2.1). To automatically partition an SI into reusable Atoms, techniques like data path sharing may
be used. Recently, the new research project KAHRISMA [ITI, KBS+10] started, which – to some degree
– builds upon the results of this thesis. As a part of this project, the automatic detection and partitioning of
modular SIs will be investigated further.

3.4 Formal Representation and Combination of Modular
Special Instructions

In this section, this thesis explains the hierarchical SI composition on a formal basis to present the Mole-
cule / Atom interdependencies and to simplify and clarify expressions in the pseudo code in Chapter 4
later on. Let us define a data structure (, , where contains all Molecules and n is the num-
ber of all defined Atoms types. A Special Instruction is represented as a set of Molecules. For expediency,
consider as Molecules with 0 1n

 ,)∪ ∩`

 (,m m

n n

nG G G

`

)m, , m o p∈` ..., −=
G where i describes the desired number of

instances of Atom type i

m
A to implement the Molecule (similarly for oG and pG). The operators ∪ and ∩

are used to combine two Molecules and create a so-called Meta-Molecule (i.e. a combination of Atoms
that does not necessarily correspond to an implementation of an SI). The operator ∪ (see Eq. 3.1) de-
scribes a Meta-Molecule that contains the Atoms that are required to implement both Molecules of its in-
put. The operator (see Eq. ∩

`

3.2) describes a Meta-Molecule that contains the Atoms that are demanded
by both Molecules of its input (i.e. that can be shared by both Molecules). Since the operator is com-
mutative and associative with the neutral element (0, …, 0), therefore is an Abelian semi-group.
The same is true for with the neutral element (maxInt, …, maxInt). The determinant of a Mole-
cule is defined as the number of Atoms it comprises (see Eq.

∪
(,) ∪n`

(, n ∩)
3.3). Figure 3.9 provides an example for

these three operators. To simplify the visualization, let us restrict (i.e. the number of different Atom
types) to two. The figure shows two example Molecules

n
oG (left upper circle) and pG (right lower triangle)

with their corresponding Atom requirements that is indicated by the correspondingly colored rectangles.
For instance the orange rectangle (for) reaches from (0, 0) to (1, 4) and covers all potential Atom com-
binations that are available if the Atoms for

oG

oG are available. This means that any other Molecule within
the orange rectangle is physically available (i.e. all of its Atoms are reconfigured) if is available. oG

 : : ; : max ; i io p m m o p∪ × → ∪ = = { , }n n n
i

G G G

, }i

` ` `
: : ; : min{ ;n n n o p m m o p∩ × → ∩ = =

 (3.1)

 i i
G G G` ` ` (3.2)

1n

n
−

0
: :; i

i
m m

=

→ = ∑G` ` (3.3)

 (3.4)
- , - 0

: ; : ; :
 0,

i i i in n n
i

p o if p o
o p m m

else
≥⎧

× → = = ⎨
⎩

G G G� ` ` ` �

 : ; :n n n p o o p× → =
G G G G` ` ` � (3.5)

In addition to these elementary operations, further functions that allow representing the concept of Mole-
cule upgrading (as introduced in Section 3.2) are defined. For instance, some of the later-described algo-
rithms need to know which Atoms are additionally required to realize a Molecule pG when the Atoms of
Molecule are already available. The upgrade operator is used to represent these additionally required
Atoms (see Eq.

oG G�
3.4). Figure 3.10 provides two examples for this operator. To upgrade from to 1o pG one

- 36 -

3.4 Formal Representation and Combination of Modular Special Instructions

instance of Atom A0 and two instances of Atom A1 are demanded. This is denoted by the grey box going
from 1 to oG pG p. The resulting Meta-Molecule that represents 1oG G� corresponds to the position of pG in
the grey box (i.e. the upper right corner) if the position of 1oG in the box (i.e. the lower left corner) is trans-
posed to the origin (0, 0) as indicated in the figure. The second example – upgrading from 2oG to pG –
shows that the upgrade destination does not necessarily demand more Atom instances for all Atom types.
In this case, the box may degenerate to a line or even a point if no additional Atoms are required. A varia-
tion of the upgrade operator is the relative complement calculation (i.e. difference). It can be used to de-
termine which Atoms are left ‘without’ the Atoms of a Molecule oG if the Atoms of pGG are available. It
becomes apparent, that this operation directly corresponds to an upgrade from to o pG (see Eq. 3.5). For
instance, if the Atoms for Molecule pG in Figure 3.10 are available and the Atoms for shall be removed
(i.e.

1oG

pG without), then exactly the Atoms 1oG 1o pG G� (indicated by the grey box) remain.

()1, 4
5

o
o
=
=

G
G

()5, 2
7

p
p
=
=

G
G

()1, 2
3

x o p
x
= ∩ =
=

G G G
G

()5, 4p =
9

y o
y
= ∪
=

G G G
G

Figure 3.9: Example for Union, Intersection, and Determinant Operation on Molecules

()1 3, 2o =
G

()4, 4p =
G

()1, 2o p =
G G�1

()4, 4p =
G

()2 1oG 6,=

()2 0, 3o p =
G G�

Figure 3.10: Example for Upgrade Operation on Molecules

In addition to combining Molecules – using the introduced operators – compare them is required. There-
fore, let us define the relation as shown in Eq. o p≤

G G
n ≤ n⊂

3.6. As the relation is reflexive, anti-symmetric, and
transitive, is a partially ordered set. For a set of Molecules , a supremum and an in-
fimum is defined as shown in Eq.

(,)` M `
3.7 and 3.8, respectively. The supremum from M is a Meta-Molecule

with the meaning of declaring all Atoms that are needed to implement any of the Molecules in M , i.e.
 The infimum is correspondingly defined to contain those Atoms that are collec-

tively needed for all Molecules of
 : supm ≤

G G (m M M∀ ∈).
.M As any non-empty subset ∅ ≠ has a well-defined supre-

mum and infimum, is a complete lattice.
nM ⊂ `

(,n`)≤
{

Figure 3.11 provides an example for the relations of six
different Molecules }1 6...,,M o=

G oG including their supremum and infimum. The ‘relation’ lines that con-

- 37 -

Chapter 3 Modular Special Instructions

nect the supremum and infimum are omitted for clarity. It is noticeable that not all Molecules are in rela-
tion to each other, for instance is only in relation to the supremum and infimum. In comparison with

 it is not smaller or equal than (i.e.
6o
oG

G
G

4o 6 6o o≤ 4
G G), because it has more instances of Atom A1. Vice versa,

4 has more instances of AoG 0 than 6 , thus oG 4 6o oG
≤

G . Furthermore, it is noticeable, that neither the supre-
mum nor the infimum are a member of M , therefore it is clear that this relation does not always have a
maximum (i.e. sup()M M∈) or a minimum (i.e. inf()M M∈).

,] : io pif [1,

, else
i n

: itrue
false

o p
∀ ∈ ≤⎧

⎨
⎩

G
≤ =

G
 (3.6)

() ()sup :M m: ; supn n→
m M∈G

=
G` ` ∪P (3.7)

() ()in :M m=f : ; infn n→
m M∈G

G` ` ∩P (3.8)

{ }()1 2 3 4 5 6sup , , , , ,o o o o o oG G G G G G

{ }()1 2 3 4 5 6inf , , , , ,o o o o o oG G G G G G

6oG

5oG

4oG

1oG

2oG 3oG

Figure 3.11: Example for Relation, Supremum, and Infimum of Molecules

To obtain an explicit access to individual Atoms and their quantity in a Molecule, let us write a Molecule
as a multiset, i.e. a set that may contain an element multiple times. Eq. 3.9 shows how the vector notation
of a Molecule can be transformed into a multiset notation m where the elements correspond to Atoms

i

mG �
A with quantity To be able to apply the previously defined operators on these elements (i.e. the At-
oms), let us define a convenience transformation T (see Eq.

.im
3.10) that allows us to convert an Atom into

a vector representation (i.e. a Molecule that contains exactly one instance of this Atom). The operator for
addition (see Eq. 3.11) allows us to combine multiple transformed Atom instances to be able to represent
a Molecule as a linear combination of its composing Atoms. Eq. 3.12 shows such a linear combination for
Molecule , where all Atom instances are transformed into a vector representation, summed up in the
corresponding quantity (inner loop), and then added to the corresponding sums of all Atom types (outer
loop), eventually leading to the vector representation

m�

mG .

 { }
0 1

0 0
0 1

1,...,(,..., ,..., ...,) ,:
n

n
n n

m m

A Amm m Am 1A
−

−
−= =→ � ��	�
G −��	�

{

 (3.9)

} () ()
thi entry
����

: : ; : ;n n n o p m m o p+ × → + = =

: ; T : 0,...,0, 0,...,01,n
i iT A A→ =`

.
 (3.10)

G G G` ` ` + ii i (3.11)

- 38 -

3.5 Summary of Modular Special Instructions

 { } ()
0 1

0 0 1 1

0 0

,..., ,..., ,...,
i

n

n n
i

i jm m

A A A Am
−

− −

= =

= → ∑∑
1 mn

m T A
−

=
G� ��	�
 ��	�
 (3.12)

In addition to the formal model for Atoms and Molecules, the algorithms of the run-time system (see
Chapter 4) demand extra information that is not specific to the hierarchical SI composition. For instance,
it is important to know how fast a certain Molecule is executed (i.e. its latency) irrespective of which At-
oms are demanded to implement that Molecule or whether these Atoms may be shared with other Mole-
cules. To provide this information dedicated functions are used that can be ‘called’ for a particular Mole-
cule or SI and that provide these specific parameters. The syntax is oriented at the widely spread object
oriented programming style, i.e. a Molecule can be seen as an object and the function is called for that
particular object, potentially providing parameters to guide the function. For instance, “ ”
would provide the execution latency for Molecule

. (m getLatency)G

mG . Table 3.3 provides an overview of all these high-
level properties (i.e. not directly related to Atom/Molecule composition) with their syntax and an explana-
tion.

Operator for Molecule or mG

Special Instruction s Description

int . ()l m getLatency=
G

A Molecule has certain execution latency (in cycles). For some of the
later-described algorithms this is an important information that can be
obtained using this function

. ()s m getSI=
G

Some information is specific to an SI (i.e. they are identical to all Mole-
cules of that SI) and thus are maintained as part of the SI. This function
allows to get access to the SI of a Molecule and thus to the correspond-
ing information. Note, for a so-called Meta-Molecule (i.e. a vector of
Atoms that does not directly implement any particular SI) the value
NULL is returned.

. (m s getCISAMolecule=
G) (0,...,0)m

Returns that Molecule of the SI that uses the cISA to execute the SI, i.e.
=

G
, providing access to the cISA latency.

.m s getFastestAvailableMolecule a=
G G()

This function is a convenience function for the following operation:
{ }: . () min . () | . ()m m getLatency o getLatency o getSI s o a= = ∧ ≤

G G G G G G

It returns the Molecule mG that provides the fastest latency for SI s and
that can be implemented with the Atoms described by the Meta-
Molecule .aG

int . ()f s getExpectedExecutions=

To execute a certain computational block, its SIs are executed in a cer-
tain frequency. This frequency might depend upon input data as moti-
vated in Section 3.3. This function provide an estimation on the expected
execution frequency of a particular SI. This frequency is estimated by an
online-monitoring approach (see Section 4.3) and used to determine
which Molecule shall be reconfigured to execute an SI (see Section 4.4).

Table 3.3: Overview of High-level Molecule and Special Instruction Properties

3.5 Summary of Modular Special Instructions
This chapter has identified and discussed three major problems of state-of-the-art reconfigurable proces-
sors that offer their Special Instructions (SIs) as monolithic blocks, i.e. the sharing problem, fragmentation
problem, and reconfiguration overhead problem. Afterwards, this thesis has proposed a novel hierarchical
SI composition that allows providing novel modular SIs that are based on Atoms and Molecules. These
modular SIs target the three identified problems and additionally provide efficient SI upgrading and ex-
tended SI implementation adaptivity. Therefore, the proposed modular SIs provide a high potential for
adaptivity and efficiency. This potential is exploited by the novel RISPP run-time system (presented in the
next chapter) to provide a high performance. An H.264 video encoder example application with multiple

- 39 -

Chapter 3 Modular Special Instructions

- 40 -

SIs and their composing Atoms and Molecules was presented in this chapter. It demonstrates the feasibil-
ity of the novel concept of modular SIs applied to real-world applications and will be used for later
evaluation of the proposed concept and for comparisons of the RISPP approach with state-of-the-art proc-
essors. To put the proposed concept on a solid base, this thesis has developed a formal model that allows
describing SIs, Molecules, and Atoms. This model allows combining Molecules (using the defined opera-
tors) to describe the tasks of the run-time system and pseudo codes of the proposed algorithms in
Chapter 4 in a more clear and precise way.

Equation Chapter (Next) Section 1

Chapter 4 The RISPP Run-time System
This chapter presents the novel run-time system of the RISPP architecture. It exploits the novel concept of
modular Special Instructions (SIs), as described in Chapter 3. The first section will present a short over-
view of the RISPP architecture. The focus of that section is placed on describing those parts of the archi-
tecture that are required to understand the run-time system. The entire RISPP architecture including the
novel computation and communication infrastructure is described in Chapter 5. The second section analy-
ses the requirements of the run-time system, provides a first overview of its tasks, and describes how these
tasks interact, using a state-transition diagram.

Modular SIs provide different implementation alternatives for SIs (i.e. Molecules) that are composed
out of Atoms. The run-time system needs to determine which SIs are demanded for a computational block
to provide SI implementations for its acceleration. Section 4.3 describes, how online monitoring and a
lightweight error back propagation scheme are used to predict which SIs are demanded and how often
they are expected to be executed. Section 4.4 describes how this information is used to determine a Mole-
cule for each SI that is predicted to be executed in the upcoming computational block, such that the Atoms
that are required to implement all Molecules fit to the available reconfigurable fabric. Afterwards, Sec-
tion 4.5 presents how the Atom reconfiguration sequence is determined, i.e. which Atom shall be recon-
figured first etc. Whenever a new reconfiguration shall be started, an existing Atom might need to be re-
placed and in Section 4.6 the replacement policy that is proposed in this thesis is presented.

4.1 RISPP Architecture Overview
After introducing the novel concept of modular SIs in Chapter 3, this section will provide an overview of
the RISPP hardware architecture. Modular SIs provide the potential for a high adaptivity and for reducing
the effects of the reconfiguration overhead, as it was motivated in Chapter 3 and as will be evaluated in
the following sections and in Chapter 6. However, to exploit the potential of modular SIs an enabling
hardware architecture and a supporting run-time system is demanded that – among others – decides,
which Molecule shall be provided at which point in time and in which sequence the demanded Atoms
shall be reconfigured. Before specifying the actual tasks of the run-time system in Section 4.2 and present-
ing the details in the following sections, this section will provide an overview of the underlying hardware
architecture. In this section, the focus is placed on those parts of the RISPP architecture that are required
to explain the run-time system afterwards. The full implementation details and prototyping results are
given in Chapter 5.

Figure 4.1 provides an overview of a particular instance of the RISPP architecture. The RISPP con-
cept can be embedded into different pipeline-based processors and is not limited to a specific one. In this
thesis, simulations, implementations, and experiments were performed on two different pipeline proces-
sors, i.e. a DLX processor from ASIPMeister [ASI] and the Leon2 processor (implementing the Sparc-V8
instruction set architecture) from Gaisler [Aer]. Figure 4.1 shows a simplified 5-stage pipeline structure,
comprising Instruction Fetch, Instruction Decode, Instruction Execute, Memory Access, and Register
Write Back stages. The required processor extensions to support modular SIs conglomerate in the Execute
stage (see orange boxes in Figure 4.1) and will be explained in the following.

The Atom Infrastructure is connected to the Execution stage as a functional unit (like the ALU). It
is a fixed (i.e. not reconfigurable) part of the RISPP architecture. However, it contains partially recon-
figurable regions – so-called Atom Containers (ACs, see rectangles inside the Atom Infrastructure in
Figure 4.1) – that can be dynamically reconfigured (reconfiguration time of one AC is approximately 1
ms, see Table 5.7 on page 124) to contain any particular Atom without affecting the Atom Infrastructure
or other ACs during reconfiguration. Therefore, the Atom Infrastructure itself is non-modifiable, but it is

- 41 -

Chapter 4 The RISPP Run-time System

Figure 4.1: Extending a Standard Processor Pipeline toward RISPP

extensible by loading Atoms into the ACs. The ACs are coupled by an interconnect structure (multiple
segmented busses, details are explained in Section 5.4), which allows that multiple Atoms interact to real-
ize a Molecule, i.e. to implement the functionality of an SI. When the demanded Atoms to implement an
SI are not available, then the functionality of the SI is implemented using the core Instruction Set Archi-
tecture (cISA, as motivated in Chapter 3). This cISA implementation is triggered by a trap and the corre-
sponding trap handler has to identify which SI shall execute and which input data shall be provided via the
register file. To assist this initial data acquisition, the Temporary Storage for cISA Execution (see
Figure 4.1) automatically stores this information and provides it to the trap handler (details are explained
in Section 5.2).

In general, the input data for an SI is provided by the register file or data memory and the computa-
tional results of an SI are written to data memory or transferred to the register file via the Write Back
stage of the pipeline. The register file is extended to provide four read ports and two write ports to provide
sufficient input/output data for the SI (details are explained in Section 5.1). The register file input can also
be used to provide memory addresses (e.g. bases address and strides of vectors; see Section 5.4.2) to be
able to process larger amount of data in an SI (as e.g. demanded for the SI examples in Figure 3.3,
Figure 3.7, and Figure 3.8). A Data Memory Access unit realizes access to the data memory hierarchy
(shared memory), providing two independent data memory access ports with 128 bit access width each.
The Arbiter decides whether the Memory stage of the pipeline or the Data Memory Access unit for the
SIs is allowed to access the data memory whenever a conflicting access occurs, i.e. when both demand
access at the same time.

When the Memory stage accesses an address during the execution of an SI that also accesses the same
address, then a potential memory inconsistency problem may occur. For instance, this problem was inves-
tigated in [CC01] and even though they provide a significant amount of hardware support to resolve all
nine identified memory inconsistency problem automatically, only a minor performance improvement was
reported. Therefore, RISPP stalls the pipeline during the execution of an SI. This minimizes the potential

- 42 -

4.2 Requirement Analysis and Overview

memory inconsistency problems and simplifies the Arbiter implementation (details are explained in Sec-
tion 5.3).

The Run-time System (see Figure 4.1) is controlling the Atom Infrastructure in two different ways.
One the one hand it is determining the reconfiguration decisions and on the other hand it is controlling the
SI executions. Determining the reconfiguration decisions directly affects the content of the Atom Contain-
ers in the Atom Infrastructure and thus it determines which Molecules will be available for the different
SIs. Controlling the SI executions depends on the available Molecule, for instance, a trap may be triggered
if the demanded Atoms to implement an SI are not available or the interconnect structure in the Atom In-
frastructure needs to be controlled to connect the available Atoms in such a way that they realize the
Molecule’s functionality.

Summary of the RISPP Architecture Overview:

This section showed the fundamentals of the RISPP architecture (that allow realizing modular SIs) and
presented an architecture overview (details are given in Chapter 5) that allows explaining the run-time
system in the following sections. Without this run-time system, the major advantages of the novel modu-
lar SIs (i.e. adaptivity by changing the hardware overhead/performance trade-off at run time and upgrad-
ing the SI implementation to diminish the reconfiguration overhead) could not be utilized in an efficient
and adaptive manner.

4.2 Requirement Analysis and Overview
Chapter 3 introduced the novel concepts of modular Special Instructions (SIs) and discussed their poten-
tial advantages in comparison with state-of-the-art approaches. Section 4.1 provided an overview of the
RISPP architecture that allows realizing modular SIs without going into implementation details (provided
in Chapter 5). This section will analyze which decisions are determined at design- and compile time, and
which decisions need to be done during application run time. The basic idea is that only run-time deci-
sions allow run-time adaptivity with its potential benefits. However, they also introduce a certain over-
head that is demanded to determine the decisions. Therefore, a careful investigation is required to deter-
mine which decisions may be made at design and compile time and which decisions need to be made dur-
ing run time. Afterwards, an overview of the run-time system is given, showing how it is connected to the
RISPP architecture. Then, the tasks of the run-time system are described in more detail. The actual formal
problem descriptions, implementation alternatives, and pseudo codes for the individual tasks of the run-
time system are given in the following sections.

The concept of modular SIs provides an improved potential for adaptivity according to different SI
implementation alternatives. However, neither the core pipeline of the architecture, nor the basic SI inter-
face is affected by this concept, as the concept mainly targets the SI-internal composition. Therefore, simi-
lar to state-of-the-art reconfigurable processors, relatively large parts of the core pipeline may be fixed at
design time (i.e. when the architecture is synthesized, placed & routed, and – in case of an ASIC design –
taped out). For instance, the core pipeline including the number of pipeline stages, core Instruction Set
Architecture (cISA), arithmetic and logic unit, and register file can be fixed at design time. The RISPP
approach is not limited to any particular core pipeline (e.g. simulations and prototyping was performed for
a DLX-based [HP96] and a SPARC-based [SPA] core pipeline), however, at design time one particular
core pipeline needs to be determined and fixed. Similarly, some parts of the SIs need to be determined at
design time. To be able to provide application-specific SIs after designing the CPU, not all parts of the SIs
need to be fixed, for instance, it should be possible to add new SIs with new functionalities after design
time. However, the instruction format, the input and output parameters of the SI,14 and potential opcodes

14 for instance depending on the number of ports of the register file

- 43 -

Chapter 4 The RISPP Run-time System

for the SIs can be fixed.15 Similarly, the data memory access (number of ports and bit widths per port) for
SIs can be fixed (see also Figure 4.1 in the previous section). To some degree, these decisions may limit
the SI, for instance, some SIs may benefit from a larger data memory access whereas others would get
along with a smaller data memory access than the chosen one. However, these decisions correspond to a
typical design-space exploration which feature set promises a certain performance at reasonable cost (e.g.
area wise). The RISPP approach does not affect this design-space exploration significantly, i.e. modular
SIs are functional with a relatively small data memory bandwidth as well as with a relatively large data
memory bandwidth (though providing more performance at a higher memory bandwidth). However, due
to the concept of reconfigurable modular SIs, further parameters need to be decided during design time.
For instance the size of the reconfigurable fabric (i.e. how many Atoms may be available at the same
time) is one of these parameters. In general, all parameters according the implementation of the Atom In-
frastructure (see Section 4.1 and Section 5.4) need to be determined. Furthermore, the implementation of
the run-time system needs to be determined to some degree (some parts may be left parametrizable as
shown later).

Figure 4.2: Fix at Design-/Compile Time and Adapt at Run Time

Figure 4.2 provides an overview of the steps to be done at design-, compile-, and run time. After the archi-
tectural parameters are determined at design time, the main compile-time decisions are specific to the SIs.
At first, application specific SIs need to be determined and corresponding Atoms need to be designed.
Defining the SIs comprises assigning an opcode (out of the design-time reserved opcodes), providing a
cISA implementation and creating an SI graph (nodes are Atoms and edges represent the data flow) to
define the SI functionality. Additionally, the SI needs to be used in the application16 and the assembler
needs to be extended17 to obtain the binary. The SI graph can be used to prepare the different Molecules
for the SI. Preparing the Molecules corresponds to applying different resource constraints to the SI graph
and then scheduling the execution of the Atoms accordingly (as shown in Figure 3.4, page 28). Actually,
the Molecule information is not demanded at compile time and it could also be created at run time. How-
ever, it is possible to prepare the Molecules at compile time because they do not change during run time
(note: which Molecule is used to implement an SI typically changes during run time, but the individual
Molecule schedules are not affected). As the amount of information demanded to store the individual
Molecule schedules is relatively small, Molecule schedules can be prepared during compile time. In con-
trary to the manually designed SIs and Atoms (see Section 3.3) a tool was developed in the scope of this

15 It does not need to be determining yet which opcode shall correspond to which SI; just opcodes for SIs need to be

reserved
16 e.g. by calling the SI using inline assembly or by modifying the compiler to automatically use it
17 i.e. the tool that creates binary code out of assembly code needs to know which instruction format and opcode

shall be used for an SI that occurs in the assembly code

- 44 -

4.2 Requirement Analysis and Overview

thesis that automatically creates all Molecules for a given SI graph because the number of Molecules is
rather large in comparison with the number of SIs and Atoms and thus a manual Molecule creation would
be very time consuming. The resulting Molecule schedules are saved and the information is provided to
the run-time system. This corresponds to a particular trade-off between run-time computation effort and
run-time storage requirements that may be changed, depending on the constraints of the target system.

One further step needs to be done at compile time: the run-time system needs to be triggered to start
the reconfigurations. As a run-time reconfigurable fabric is used to provide SI implementations on de-
mand, some information must be used to trigger the run time system to start these reconfigurations. One
possibility would be to wait until an SI shall execute and to start the corresponding reconfiguration then.
However, as the reconfiguration time is rather long (approximately 1 ms for one Atom, see Table 5.7 on
page 124) this would be rather inefficient. Instead, the concept of prefetching is typically used to start the
reconfiguration before the SI is actually demanded [LH02]. In the scope of this thesis, a hybrid prefetch-
ing approach is used that combines compile-time knowledge with run-time adaptivity (as explained in
detail in Section 4.3). At compile time, it is decided when the run-time system shall start prefetching by
placing so-called Forecast Instructions (FI) in the binary. An FI is an assembly instructions that informs
the run-time system that one or multiple SIs are expected to be executed in the next time (and thus pre-
fetching for them would be beneficial). However, it is left to the run-time system to eventually decide
whether or not some Molecules shall be reconfigured (i.e. their composing Atoms) for these SIs and
which Molecules shall be used for a particular SI.

The compile-time task focuses on a) determining a place in the applications control-flow graph
(where the FI shall be placed) and b) performing an offline profiling to predict how often an SI is ex-
pected to execute (the so-called Forecast Value of an FI). On the one hand, the FI should execute early
enough to provide sufficient time to complete the reconfigurations (in best case). On the other hand, if it is
too early then the chance increases that between the FI and the targeted SIs other SIs demand the recon-
figurable fabric and their hardware is not loaded or even replaced by that too early FI. For instance, when
considering the H.264 video encoder flow from Figure 3.5 (page 31) the SI for the In-Loop De-blocking
Filter (LF) could be forecasted during the execution of the Motion Estimation (ME). Certainly, that would
provide sufficient time to reconfigure the SIs for LF. However, as the Encoding Engine (EE) executes
between ME and LF, the SI for LF would allocate Atom Containers (ACs) on the reconfigurable fabric
without providing actual benefit for the upcoming SI executions (i.e. for the SIs from EE), that means the
FI for LF was too early. For the application flow of the H.264 video encoder, the FIs were placed between
the three major computational blocks ME, EE, and LF and performed a compile-time profiling to deter-
mine the corresponding Forecast Values that predict the expected SI execution frequency. Placing the FIs
inside the computational blocks before the actual SI executions would lead to frequent reconfigurations
and replacements within each computational block. This is not beneficial due to the relatively long recon-
figuration time of one Atom (approximately 1 ms per Atom, see Table 5.7 on page 124) and the relatively
short execution time (30 frames per second corresponds to 33 ms per frame, i.e. sufficient time to recon-
figure approximately 33 Atoms per frame).

After the design-time and compile-time decisions determined certain architecture settings and pre-
pared the application, the task for the run-time system is to provide adaptivity considering the SI imple-
mentation alternatives and their reconfigurations. Recalling the SI execution frequency analysis in
Figure 3.6 (page 33), it may depend on input data which SI is demanded how often. Therefore, a compile-
time profiling (to determine the Forecast Values) is not sufficient. Instead, the Forecast Value needs to be
updated at run time to reflect recent SI execution frequencies. An online monitoring and an online predic-
tion scheme is used to update the expected SI execution frequencies dynamically. Figure 4.3 provides an
overview of the run-time system, showing the monitoring and prediction. The Decoder of the run-time
system observes the instruction stream and triggers subsequent modules of the run-time system when de-
tecting SIs or FIs. When an SI is observed, the Execution Control manages how it shall be handled (us-
ing the cISA or a hardware Molecule that uses the Atom Infrastructure). The Online Monitoring counts

- 45 -

Chapter 4 The RISPP Run-time System

the number of executed SIs. Later, the Prediction determines the difference between the initial FI predic-
tions (i.e. the Forecast Values) and compares it with the observed SI executions from the monitoring (de-
tails are explained in Section 4.3). This difference is used to update the Forecast Value for the next execu-
tion (in the H.264 example this means for the next video frame).

S
pe

ci
al

 In
st

ru
ct

io
ns

&

Fo
re

ca
st

 In
st

ru
ct

io
ns

Figure 4.3: Overview of the RISPP Run-time System

The updated SI execution frequency prediction is used in the Selection to determine which Molecules
shall be loaded (details are explained in Section 4.4). In addition to the execution frequency, the amount
of available ACs is used as input for the Molecule Selection, as the availability of reconfigurable fabric
may change during run time (depending on changing number and priorities of tasks), as motivated in Sec-
tion 3.2. Depending on the selected Molecules, certain Atoms need to be reconfigured. As the Atom Infra-
structure only provides one reconfiguration port (i.e. only one Atom after the other may be reconfigured;
not multiple at the same time), the Scheduling determines the sequence in which the Atoms shall be
loaded to the reconfigurable fabric (details are explained in Section 4.5). As the Molecule Selection is per-
formed during run time, the Atom Reconfiguration Scheduling cannot be prepared at compile time and
needs to be executed at run time as well. Whenever a new Atom shall be reconfigured and the Atom Infra-
structure is full (i.e. no Atom Container is available), the Replacement decides which Atom shall be re-
placed to load the new Atom (details are explained in Section 4.6).

SI Execution Frequency Prediction, Molecule Selection, Atom Reconfiguration Scheduling, and Atom
Replacement are the main algorithms of RISPP’s run-time system. Before explaining them in detail in the
subsequent sections, this section presents an overview in Figure 4.4 and discusses how these algorithms
interact with each other using state transitions. The initial state (Decode) triggers the execution of sub-
state machines that are executed in parallel with the Decode state. Note that a state does not necessarily
correspond to a single clock cycle. Some subsequent states are executed in the same cycle (or pipelined),
whereas other states require multiple cycles. SIs or FIs trigger the components of the run-time system, as
shown in Figure 4.4. On the implementation side, the run-time system can be partitioned into two parts: A
synchronous part running in the clock domain of the core pipeline and an asynchronous part that may
run in a different clock domain (although the core pipeline triggers its execution). The synchronous part
comprises fine-tuning the Forecast Values (green box) and all parts that are triggered by SIs (blue boxes).
These parts have to be synchronous to the core pipeline, as they are tightly coupled to it (e.g. sending con-
trol signals or receiving status information). While adding the synchronous part to RISPP’s hardware pro-

- 46 -

4.2 Requirement Analysis and Overview

totype, high effort was spent to make sure that the critical path of the core pipeline is not affected. The
asynchronous part of the run-time system comprises all Atom re-loading decisions (see yellow box).

Execute the Special Instruction: When an SI shall execute, it depends on the available Atoms, which
Molecule will be used to implement it. As this condition changes relatively seldom,18 a small memory
stores for each SI the information which Molecule shall be used to implement it. If insufficient Atoms
for a hardware implementation are available, then a trap is send to the CPU and the trap handler will
execute the SI with the core Instruction Set Architecture (cISA) as motivated in Chapter 3 and ex-
plained more detailed in Section 5.2. However, if sufficient Atoms are available, then the core pipe-
line is stalled (as explained in Section 4.1) and the Atoms are used to execute the SI. Therefore, the
Atoms need to be connected correspondingly to realize the SI execution, as motivated by the SI
schedule in Figure 3.4 (page 28) and explained in detail in Section 5.4.

Update the monitoring value: The run-time system uses an online monitoring approach for fine-tuning
the Forecast Values, which are one of the main inputs to the run-time system (besides #ACs and stati-
cally provided information about SIs, Atoms, etc). Whenever an SI executes, an SI-specific counter is
increased until a hardware-specific upper limit is reached (to prevent an overflow). This counter re-
flects the execution count of the SI for the computational block. At the end of its execution, these
counter values are used to fine-tune the forecast values, as shown below.

Synchronize Forecast and Special Instruction: If a Forecast Value fine-tuning (see next paragraph) is
running and an SI shall execute at the same time, then the core pipeline is stalled and the SI execution
is delayed until the fine-tuning is completed. The reason is that fine-tuning and online monitoring
(triggered by SI executions) read and write the monitoring data and inconsistencies may occur if both
access this memory in an interleaved way. For instance, if the monitoring increments a counter value
(i.e. read, increment, and write) and the fine-tuning aims to reset that value to zero in between, then
this ‘reset’ would be discarded if the monitoring writes back the old (incremented) value afterwards.
Note that this pipeline stalling does not lead to a noticeable performance loss, as the fine-tuning is
only performed after a computational block finished its execution, i.e. rather seldom in comparison
with the number of SI executions within a computational block. Even the worst-case situation (i.e. an
SI execution right after the fine-tuning started) only leads to a loss of few cycles (depending on how
many forecast values needs to be updated) per computational block (and therefore also per video
frame).

Fine-tune the Forecast Values: The process of fine-tuning is triggered by a Forecast Instruction (FI).
Such an FI predicts that some SIs are expected to be executed soon. Additionally, the FI is used to end
previous predictions. For instance, when the Encoding Engine in the H.264 video encoder is about to
execute, then an FI predicts the SIs for EE and at the same time informs, that the SI for the Motion Es-
timation (ME, i.e. the previously executed computational block, see Figure 3.5, page 31) are no longer
demanded. When such an ending FI information for an SI, e.g. SAD for ME, is reached then fine-
tuning its Forecast Value starts. The difference between the previous Forecast Value of SAD (used in
the FI before ME) and its monitoring value (i.e. the actual execution count) is used to calculate a
modified Forecast Value for the FI that is placed before ME. The details about different scaling fac-
tors to weight and back-propagate the error are examined in Section 4.3. In the case that a fine-tuning
operation is still processing when an ending FI is reached (which would start another fine-tuning), the
process needs to wait until the preceding fine-tuning is finished. The reason is that the counter values
from online monitoring would not be reset for the not-yet processed Forecast Values, which then
would lead to wrong counter values in the next loop iteration. The same is true if an SI executes while
a fine-tuning operation is currently running (see “Synchronize Forecast and Special Instruction” in
Figure 4.4 and in the previous paragraph).

18 at least one Atom needs to be loaded which lasts approximately 1 ms

- 47 -

Chapter 4 The RISPP Run-time System

Figure 4.4: State-Transition Diagram of the Run-time System

- 48 -

4.3 Online Monitoring and Special Instruction Forecasting

Determine the Atom re-loadings: The asynchronous part of the run-time system comprises the Atom re-
loading decisions. Although this part is triggered by an FI, it can execute independently after it was
started. In contrast to fine-tuning the Forecast Values, a previously started execution of this part may
be aborted, as the SIs of the preceding FI are generally obsolete when a new one arrives (otherwise,
they will be predicted again in the new FI). The Forecast Values are used together with (at compile-
time determined) information of the different SI implementations to select implementations for all re-
quested SIs. As this decision has to be made at run time, the computational overhead is critical and
therefore, a greedy heuristic is deployed (see Section 4.4). This heuristic iterates over all Molecules of
the forecasted SIs and determines a profit value for each one. The locally best Molecule is selected
and the same procedure is repeated for the remaining SIs. As soon as the first reconfiguration is
started (after the first Molecule is selected), more time may be spent in determining further decisions,
as it is then done in parallel to the reconfiguration. For the selected Molecules, the Atoms need to be
loaded sequentially.19 Determining a specific reconfiguration sequence may have a high impact on the
application execution time. For instance, multiple SIs might be required for the upcoming computa-
tional block and some of them might be executed significantly more often than others. In this case, it
might be beneficial to reconfigure the Atoms for the more often required SIs at first, depending on the
performance differences of the corresponding Molecules. In the scope of this thesis, an approach is
used that locally selects those Atoms that lead to the locally best performance improvement due to a
better Molecule (see Section 4.5). Finally, some currently available Atoms may need to be replaced to
offer new Molecules. If nearly all Atoms are going to be replaced, then the decision which Atoms
shall be kept has only a small performance impact. However, in situations where only relative few
Atoms are going to be replaced (e.g. due to insufficient reconfiguration time), it is beneficial to keep
those Atoms that will be required again soon. As the upcoming requirements are not known before-
hand, those Atoms are replaced that lead to locally smallest performance degradation of all required
SIs of the application (see Section 4.6).

Summary of the Requirement Analysis and Overview:

In this section, it was analyzed which degree of flexibility is needed in the architecture to exploit the adap-
tivity and performance that is offered by the novel concept of modular Special Instructions (SIs). The de-
cisions were partitioned into three time domains, i.e. design time, compile time, and run time. Afterwards,
this section discussed which decisions can be fixed at design time (e.g. defining the data memory band-
width, size of reconfigurable fabric, SI interface etc.), which can be fixed at compile time (e.g. defining
SIs / Molecules / Atoms, using the Forecast Instructions etc.), and which decision need to be left to the
run-time system (e.g. deciding which Molecule shall be used to implement an SI etc.). Then, a first over-
view of the novel run-time system was given, showing which components it demands and how they are
connected. Afterwards, the tasks of these components and their interactions were presented and in the fol-
lowing sections, the developed solutions for these components, component-specific analysis, algorithmic
alternatives, and implementation results will be presented.

4.3 Online Monitoring and Special Instruction Forecasting
The concept of modular SIs allows us to decide dynamically which Molecule shall be used to implement
an SI. This allows us to distribute the available reconfigurable fabric (i.e. the number of Atom Containers)
to the SIs, depending on the application requirements that may change during run time (as motivated in
Section 3.3). However, to be able to determine a good distribution of the reconfigurable fabric (i.e. reflect-
ing the application requirements), the information ‘how often’ each SI is demanded is needed. An offline
profiling is used to obtain this information for a particular application run. As the SI execution frequency

19 typically only one reconfiguration port is available

- 49 -

Chapter 4 The RISPP Run-time System

may change at run time, online monitoring and a so-called fine-tuning is used to reflect these changes and
to forecast the expected SI execution frequencies.

Forecast Value (FV): A FV is a number that predicts the expected execution frequency of a particular
SI, i.e. an FV is specific for an SI. The prediction is placed into the application binary using Forecast
Blocks and Forecast Instructions (see below). During application run time, the value of the prediction
may be changed, however, the place in the binary is fixed.

Forecast Block (FB): A FB is a set of predictions, i.e. multiple SIs are predicted with individual FVs at
the same time. Combining multiple forecasts to one block is important, as the occurrence of a forecast
triggers the run-time system to perform the corresponding reconfigurations. For instance, multiple
forecasts would be treated as individual events, then the last forecast would invalidate the previous
ones and thus only the last forecast would be considered by the run-time system (see also Figure 4.4
on page 48).

Forecast Instruction (FI): A FI is an assembly instruction that is used to notify the occurrence of an FB
to the run-time system. A FB may be realized by multiple FI calls, where each FI forecasts a particu-
lar SI (i.e. provides the SI opcode and the FV). However, for the implementation, an FB is realized as
a single FI that points to a dedicated forecast memory (using starting address and length) that contains
all forecast information. This approach comes with the advantages that less instructions are needed in
the application binary and the pipeline (fewer cycles needed to execute an FB) and that – to be able to
modify the FVs – it does not depend on writable instruction memory (i.e. read-only instruction mem-
ory is sufficient). Additionally, providing the forecast information (i.e. SI opcode and FV) is inde-
pendent of the length of the instruction words (typically 32-bit instructions). Only a new assembly in-
struction needs to be developed that provides a start address and length in the forecast memory (see
Section 5.1 for the instruction format), but the forecast memory may contain more data than would fit
into a 32-bit instruction word. For instance, in addition to the FV, the Molecules Selection (see Sec-
tion 4.4) demands additional information that is provided during offline profiling but not updated dur-
ing run time.

Figure 4.5 shows a typical application scenario that allows us to explain the fundamental idea of fine-
tuning the FVs in Figure 4.6. The example contains two Forecast Blocks FB1 and FB2 (note, an FB does
not necessarily have to be an individual base block, as – for simplicity – indicated in the figure). FB1 pre-
dicts the execution of an SI of an execution kernel (inner loop) and FB2 informs that the kernel finished
execution and the SI is no longer demanded. In this example, the SI corresponds to SATD that was intro-
duced in Figure 3.3 (page 27) and the execution kernel could represent the Motion Estimation (actually, it
would additionally demand the SAD SI). The ‘potentially other inner loops’ after FB2 could correspond-
ingly represent the Encoding Engine and the In-Loop De-blocking Filter of the H.264 video encoder, as
introduced in Figure 3.5 (page 31) and the outer loop would iterate over the video frames. This shows how
the actual SI execution is encapsulated into two FBs.

Figure 4.6 presents a time axis that shows the execution flow of the control-flow graph in Figure 4.5
for two iterations of the outer loop. It becomes apparent how the SATD executions are encapsulated be-
tween FB1 and FB2. Whenever FB2 is reached, the initial expectation from FB1 (i.e. the prediction how
often SATD will be executed) is compared with the actual execution count from the online monitoring.
The resulting error is back-propagated, i.e. the initial expectation from FB1 is fine-tuned. A technique that
uses differences between distinct points in time is called Temporal-Difference (TD) scheme [Sut88] and in
the scope of this thesis, it is used for SI Forecasting. The TD scheme is based on the Markov property, this
means that the conditional property to reach a specific FB and to count a specific number of SI executions
between the last FB and the reached FB must only depend on the previous FB and not on the chain of pre-
ceding FBs. Sutton and Barto explain that this Markov property cannot be guaranteed in real-world prob-
lems, but that experiments suggest, that the TD scheme nevertheless achieves good results in practice

- 50 -

4.3 Online Monitoring and Special Instruction Forecasting

[SB98]. Therefore, the Markov property is mainly used to derive the TD scheme and to prove its conver-
gence. However, convergence is less important for the presented approach, as the SI execution frequency
varies and thus convergence is not the target, but adaptation is (as also noted by Sherwood et al. [SSC03]).

Figure 4.5: Example Control-flow Graph Showing Forecasts

and the Corresponding Special Instruction Executions

Figure 4.6: Execution Sequence of Forecast and Special Instructions

with the Resulting Error Back Propagation and Fine-tuning

The example from Figure 4.6 demonstrated that any control-flow graph can eventually be represented as a
linear chain of FBs that are connected in their execution sequence. Figure 4.7 shows such a chain of FBs.
Note that the FBs are labeled according to their execution time: FBt+1 is executed right after FBt, i.e. there
are no other FBs in between but potentially many SIs and instructions from the core Instruction Set Archi-
tecture (cISA) that are omitted for clarity. The representation as linear execution sequence implies that
any two different Forecast Blocks FBx, FBy, x ≠ y in this chain may eventually correspond to the same FB
in the application binary, just at different points in time during the application execution. For instance, in
Figure 4.6 FBt and FBt+2 correspond to FB1, whereas FBt+1 and FBt+3 correspond to FB2. As an extreme
case, the application may only contain one FB in its binary that is executed several times and thus all en-
tries in the chain correspond to the same FB. However, for fine-tuning the FVs, only the sequence of FB
executions needs to be known, independent of their mapping to point in the application binary. In particu-
lar, only the directly preceding Forecast Block FBt needs to be known when reaching FBt+1 to be able to

- 51 -

Chapter 4 The RISPP Run-time System

update the FV at FBt. This is indicated by the sliding window in Figure 4.7 and will be explained in the
following.

4.3.1 Fine-tuning the Forecast Values

The processes of fine-tuning the Forecast Values at FBt when reaching FBt+1 for a particular SI is ex-
plained in detail, using the illustration in Figure 4.7. This means that all FBs in this figure correspond to
forecasts for that particular SI.20 Note that the same description holds for any SI and fine-tuning the FVs
for multiple SIs is done independent of each other. The monitoring counts the executions of that SI be-
tween two subsequent Forecast Blocks FBt and FBt+1 as M(FBt+1). In the hardware implementation, this
corresponds to a memory location that is reset to zero after the fine-tuning process at FBt+1 is completed
(to count the subsequent SI executions in the same memory location afterwards). This monitoring value is
compared with the FV from FBt. The difference between FV(FBt) and the monitoring value M(FBt+1) cor-
responds to an error of the FV, i.e. FBt predicted a certain amount of SI executions but M(FBt+1) execu-
tions were monitored. In general, the Forecast Block FBt+1 may also predict some executions of that SI,
i.e. FBt predicted a certain amount of SI executions, M(FBt+1) SI executions were monitored so far, and
FV(FBt+1) executions are predicted to come soon. Therefore, the FV of FBt+1 needs to be considered in
addition to FV(FBt) to calculate the error E(FBt+1).

Figure 4.7: A Chain of Forecast Blocks, Showing How the Information in a

Sliding Window is Used to Determine a Forecast Error that is Back Propagated

 () () () ()1 1: –t t t 1tE FB M FB FV FB FV FBγ+ += +

(
+ (4.1)

) () ()1:t t tFV FB FV FB E FBα += + (4.2)

Eq. 4.1 shows how the error is calculated. The parameter [0,1]γ ∈ is used to adjust how strong the FV of
FBt+1 should contribute to the error. A relatively large value for γ would consider the prediction of FBt+1
to a large degree. This is potentially problematic for the following two reasons:

1. The prediction of FBt+1 is used to calculate the error, i.e. the error is no longer actually observed but it
is mixed with expectations about the future. If these expectations are not correct, then the quality of
the calculated error is affected in a negative way.

20 note: in general, the FBs may additionally contain forecasts for further SIs

- 52 -

4.3 Online Monitoring and Special Instruction Forecasting

2. The calculated error is used to fine-tune the previous forecast. Considering the prediction of FBt+1 to
update the FVs of earlier FBs will eventually shift the prediction of FBt+1 to an earlier point in time
(i.e. to FBt). In the next iteration of the loop, this information may be shifted backwards to FBt-1 and
so on. As motivated in Section 4.1, predicting an SI execution too early may lead to a reduced per-
formance, as the run-time system is advised to provide hardware accelerators for that SI although it is
not needed yet. This affects the availability of reconfigurable hardware for SIs that are actually de-
manded.

After calculating the error, it is back propagated to the preceding FB. The strength of this back propaga-
tion is adjusted with the parameter [0,1]α ∈ , see Eq. 4.2. This parameter allows to avoid thrashing (i.e.
rapid alternation between two extreme values). For instance consider the following situation: if the execu-
tion of an SI in a computational block alternates between 0 and 100 executions for subsequent executions
of that block (i.e. 0, 100, 0, 100, …), the computational block is encapsulated by FB1 and FB2 (like in
Figure 4.5), FV(FB1) is initialized with 100, FV(FB2) is constant 0, and α and γ are set to 1 and 0 respec-
tively, then the following fine tunings of FB1 will occur:

1st fine tuning: old FV(FB1)=100, M(FB2)=0, calculated error E(FB2) = 0-100 = -100
 new FV(FB1)=100 + 1*(-100)=0.

2nd fine tuning: old FV(FB1)=0, M(FB2)=100, calculated error E(FB2) = 100-0 = 100
 new FV(FB1)=0 + 1*(100)=100.

3rd fine tuning: old FV(FB1)=100, M(FB2)=0, calculated error E(FB2) = 0-100 = -100
 new FV(FB1)=100 + 1*(-100)=0.

4th fine tuning: …

This shows, that the monitoring value may completely overwrite the previous forecasts and in this particu-
lar situation, the forecast value is always the actual opposite of the actual SI execution frequency. Note
that FV(FB2)=0 is constant, because the SI is not executed between FB2 and FB1, therefore the monitor-
ing value is M(FB1)=0, therefore the calculated error is E(FB1)=0, and therefore the initial FV stays un-
changed. To avoid the observed thrashing in the FV, a more moderate value of e.g. α=0.5 can be used
which would lead to the following fine tunings:

1st fine tuning: old FV(FB1)=100, M(FB2)=0, calculated error E(FB2) = 0-100 = -100
 new FV(FB1)=100 + 0.5*(-100)=50.

2nd fine tuning: old FV(FB1)=50, M(FB2)=100, calculated error E(FB2) = 100-50 = 50
 new FV(FB1)=50 + 0.5*(50)=75.

3rd fine tuning: old FV(FB1)=75, M(FB2)=0, calculated error E(FB2) = 0-75 = -75
 new FV(FB1)=75 + 0.5*(-75)=37.5.

4th fine tuning: old FV(FB1)=37.5, M(FB2)=100, calculated error E(FB2) = 100-37.5 = 62.5
 new FV(FB1)=37.5 + 0.5*(62.5)=68.75.

5th fine tuning: old FV(FB1)=68.75, M(FB2)=0, calculated error E(FB2) = 0-68.75 = -68.75
 new FV(FB1)=68.75 + 0.5*(-68.75)=34.375.

6th fine tuning: …

It is apparent, that the prediction is still not correct (which is not surprising, considering the extreme alter-
nation), however, with a moderate α value, the changes in the prediction are less rapid and most notably
the accumulated absolute error is smaller (i.e. the FV was closer to reality). In the extreme case of α=0,
the calculated error would not be back propagated at all, which means that the initial FV (determined from
offline profiling) would be constant. This shows that the so-called static prefetching (i.e. the values are not
updated during run time [LH02]) is a special case of this model.

- 53 -

Chapter 4 The RISPP Run-time System

Figure 4.8: A Chain of Forecast Blocks, Showing How Multiple Previous

Forecast Blocks may be Updated, Depending on Parameter λ

 () () () ()10 : : 1t i t ti FV FB FV FB E FBλ λ α− −∀ ≥ = + −

1, 0i
1

i
+ (4.3)

 () ()0 1 1 0 0
0, 0

i i

i
λ λ λ

=⎧
= → − = − = ⎨ >⎩

 (4.4)

In addition to back propagating the calculated error to the directly preceding FB, it is also possible to
propagate it back to multiple FBs. This can potentially increase the adaptation rate, as FBs that are not
predecessors for a particular FB can be affected by the monitored SI executions in a direct way. If only the
directly preceding FBs are updated, a modified information will also propagate back to earlier FBs, how-
ever, it demands multiple iterations of an outer loop until this eventually happens. Figure 4.8 visualizes
this back propagation to potentially all previously executed FBs. The strength of the back-propagation to
the farther away FBs is diminished by the parameter [0,1]λ∈ to assure that the prediction of the moni-
tored SI execution count is used in a rather local scale. The factors shown in the figure are multiplied with
the weighted error as it was calculated in Eq. 4.2, altogether leading to the back propagation shown in
Eq. 4.3. In the extreme case of λ=0, the back propagation of Eq. 4.3 corresponds to the one in Eq. 4.2 (i.e.
Eq. 4.2 is a special case), because for FBt (i.e. 0i =) the new factor (1) iλ λ− i evaluates to 1, whereas
for all other FBs (i.e.) it evaluates to 0 (see Eq. 0i > 4.4) and thus the FV of these FB remains unchanged.

When considering a hardware implementation for the Temporal Difference (TD) scheme, allowing
λ>0 implies a significant overhead. Relatively large amounts of FBs have to be traced for a particular SI
as they will be updated when a new FB for that SI is reached. It has to be noted, that the sequence of the
FB executions is important for the updates, as visible in Figure 4.8. Therefore, the history of FB execu-
tions that have to be traced for potential fine tunings is only bound by the application execution time, but
not by the statically known number of FBs in the application binary. However, for an implementation the
number of maximally traceable FBs for a particular SI is actually bound by the amount of memory that is
provided for storing that execution sequence. Additionally, the number of preceding FBs that have to be
fine-tuned also determines the processing time for the fine-tuning process. Therefore, only an approxima-
tion for the TD scheme can be implemented in hardware. If the parameter λ would be fixed to zero, then
the hardware implementation cost and algorithm execution time for the TD scheme would reduce signifi-
cantly. For each SI only the last FB that forecasted this SI needs to be memorized and fine-tuned. Note,
that this would not violate the general TD scheme, which allows to choose the parameter λ from [0,1].
However, it affects the behavior of the fine-tuning process. In particular, it may lead to a slower back-
propagation. Consider a code region that executes FB1, FB2, and FB3 sequentially, all of them forecasting
a particular SI. For λ=0, a forecast error that is computed for FB3 would only be back propagated to the
directly preceding FB2, but FB1 would not be affected by this error. At a later execution of the same three
FBs, the error that was already back propagated to FB2 would now (to some degree, i.e. in a weighted
form) be back propagated to FB1. Therefore, it takes two iterations to move information from FB3 to FB1.
For λ>0, a forecast error at FB3 would directly affect FB1, i.e. the information is back propagated in a

- 54 -

4.3 Online Monitoring and Special Instruction Forecasting

faster way. In the simulation environment, the TD scheme is implemented with adjustable parameters for
α, γ, and λ to evaluate the performance impact for the application execution time (due to different FV fine-
tuning and the corresponding reconfigurations) when restricting λ to zero. For λ=0.6 an application
speedup between 1.01x and 1.10x is observed in comparison with λ=0. Averaged over different applica-
tion sequences and different sizes of reconfigurable fabric, an application speedup of 1.05x is obtained.
The peak performance improvement of 1.44x was observed for λ=1, however, in a different application
sequence the performance degraded to 0.91x and in average 1.08x is observed in comparison with λ=0. As
an average application speedup of less than 10% does not justify significantly increased hardware re-
quirements, the value for λ is restricted to zero in the hardware prototype.

As the parameters α and γ do not affect the hardware requirements significantly21 both parameters are
provided in an adjustable manner (i.e. they can be configured by the application) in the prototype instead
of hardwiring them. Additionally, the feature to explicitly forbid fine-tunings for particular FVs is pro-
vided (as indicated by the “Updating allowed” control edge in Figure 4.4, page 48). This can be beneficial
if the application programmer knows the application well and wants to avoid potentially misleading fine-
tuning operations on selected FVs. Typically, the FBs that inform that SIs are no longer demanded are
declared to be non-updatable, to assure that the FVs stay zero. The reason is that the application pro-
grammer knows that – for instance – the time between the end of the Motion Estimation (ME) and the
start of the ME for the next frame is relatively long. Therefore, it is not beneficial to reserve parts of the
reconfigurable fabric for these SIs. To assure this, an FV of zero is demanded for the ME SIs after ME is
completed. However, depending on the parameters α and γ, the FVs in the FB that indicates the end of the
ME may gradually increase. When the FB right before ME is reached, then the FB right after ME (of the
previous frame) will be fine tuned (because all other FBs in between target different SIs). The FB after
ME predicted zero executions and also zero executions were monitored since then. However, depending
on the value of γ, the prediction of the FB before ME will be considered for calculating the error and de-
pending on the value of α, this error will be back propagated, leading to an FV that is larger than zero. To
avoid this, either γ can be configured to zero or the FB after ME can be declared to be non-updatable (both
possibilities are provided in the system).

4.3.2 Evaluation of Forecast Fine-tuning

The impact of the parameters α and γ will be evaluated before looking into the actual forecast adaptation
details. Figure 4.9 shows the impact of different parameter values on the overall application execution
time. It becomes noticeable that the execution time is dominated by the parameter α. Setting α to zero cor-
responds to static prefetching, i.e. the calculated error is not back propagated (see Eq. 4.2) and α=1 corre-
sponds to a rapid adaptation to varying situations. This leads on average (over the γ values) to a 1.24x
faster execution time than using α=0.

The changes of the FVs will be analyzed in detail, i.e. in addition to presenting the application execu-
tion time for different settings for α the changes of FVs over time will be examined. This will unveil how
they adapt to the monitored SI execution frequencies, which eventually affects the overall application
execution time, as the FVs are used as main input for the Molecule selection (see Figure 4.4 on page 48).
For benchmarking, the video sequence was applied that was already used in Section 3.3 to motivate the
need for adaptation when facing changing ratios of I-MBs and P-MBs (see Figure 3.6 on page 33).
Figure 4.10 presents an excerpt of this video sequence (frames 150-525 where the adaptation is especially
visible), showing the actually demanded number of I-MBs in comparison with the predicted number of I-
MBs for different values of α. Note that in this particular example the value of γ does not change the re-
sults. The reason is that the application only contains two FBs (FBstart and FBend) for the SIs that encode I-
MB and P-MBs, FBstart predicts their occurrence with the corresponding FVs and FBend denotes that these
SIs are no longer used in this frame. To assure that the FVs of FBend stay zero, it is declared as ‘not up-

21 both demand a multiplication

- 55 -

Chapter 4 The RISPP Run-time System

datable’, as described above. Therefore, when back propagating from FBstart to FBend (executed in the pre-
vious frame), the value of FBend is not affected (independent of γ) and when back propagating from FBend
to FBstart, the FV of FBend (which is weighted by γ) is always zero.

0
0,2

0,4
0,6

0,8
1

0,1
0,3

0,5
0,7

0,9
28

30

32

34

36

38

40

42

γ values

α values

Application execution
time [MCycles]

Figure 4.9: Parameter Evaluation for α and γ for λ=0,

Showing the Resulting Application Run Time

The effect of the different α values becomes noticeable in Figure 4.10. At first, it can be noticed that all
different forecasts follow the curve of actual SI executions. However, they all face a certain offset, i.e. the
predicted curve appears to be shifted to the right (on the time axis) in comparison with the actual execu-
tions. This is because the back propagation requires some time until it adapts to a changed situation. Here,
a smaller value of α leads to a distinctive averaging/smoothing of the curve, i.e. the high peaks of the ac-
tual SI executions are not reflected in the predicted curve (as motivated in the thrashing example above).
This averaging offers advantages during rapidly changing scenes. This becomes noticeable when analyz-
ing the predicted curve for α=0.6 in the hectic scene between frames 260 and 340. Whenever the actual
execution faces a high peak of I-MBs, the curve follows that peak shortly afterwards. However, at the
time when the curve actually follows, the peak already ended and thus the prediction is wrong again. This
corresponds to the initially motivated example of thrashing. In the same scene, the curve for α=0.1 only
follows the actual SI executions to some degree. It raises the expected amount of I-MBs to a noticeably
higher level than it was before, but it does not follow individual peaks and therefore leads to a better pre-
diction. However, at larger changes of the average amount of I-MBs (i.e. when the offset around which the
fluctuations appear changes) – for instance when entering the hectic scene (around frame 250) or when
leaving it (around frame 350) – the curve for α=0.1 is hardly able to follow that change. Here, the predic-
tion error is noticeably bigger than for larger α values.

In Figure 4.11 the accumulated absolute forecast error is investigated further, i.e. for each frame the
difference between the initially predicted number of I-MBs and the actually executed number of I-MBs is
calculated and then the absolute values of these errors are accumulated.22 For each frame, the figure
shows the accumulated absolute error since the first frame. At the beginning, the curve for α=0.1 leads to
the worst accumulated absolute error until a local maximum at frame 250. In this beginning, the stronger
adaptation leads to a noticeably better prediction. However, as soon as the hectic scene starts, the curve
for

22 the fine-tuning actually works on the number of SI executions and not on the number of MBs that are shown here

for simplicity

- 56 -

4.3 Online Monitoring and Special Instruction Forecasting

0

20

40

60

80

100

120

140

160

180

200

150 200 250 300 350 400 450 500

Fo
re

ca
st

 V
al

ue
 (e

xp
ec

te
d

am
ou

nt
 o

f I
-M

B
s)

Frame Number

Actually Executed I-MBs

Predicted I-MBs for α = 0.6

Predicted I-MBs for α = 0.3

Predicted I-MBs for α = 0.1

Figure 4.10: Evaluation of the Forecast Value for Different Values of α,

Showing the Actual and Predicted SI Execution

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Ac
cu
m
ul
at
ed

 A
bs
ol
ut
e
Er
ro
r

Frame Number

accumulated absolute
error, α = 0.6

accumulated absolute
error, α = 0.3

accumulated absolute
error, α = 0.1

Figure 4.11: Accumulated Absolute Forecast Error

- 57 -

Chapter 4 The RISPP Run-time System

α=0.1 performs noticeably better and is even able to close the initial gap. Actually, between frames 310
and 340 α=0.1 even leads to a smaller accumulated absolute error than α=0.6 (coming close to α=0.3), i.e.
the initially worse performance was more than compensated. Actually, α=0.6 appears to be the worst strat-
egy during that time, giving away the initially gained advantage. However, right after the hectic scene
ends (around frame 350), α=0.1 immediately looses its advantage and becomes the worst overall strategy
again (with a widening gap in comparison with the other parameter settings). From frame 489 onwards,
α=0.6 again leads to the best (i.e. smallest) accumulated absolute error in comparison with the other
strategies. This shows that α=0.1 only provides advantages in certain rapidly changing situations whereas
α=0.6 may lead to the best overall forecast and α=0.3 corresponds to a kind of compromise. Therefore, the
parameters are kept flexible in the hardware prototype, i.e. a so-called Helper Instruction is offered (see
Section 5.1) that allows the application to set and change these parameters.

4.3.3 Hardware Implementation for Fine-tuning the Forecast Values

For the prototype, a hardware implementation for the presented forecasting scheme is implemented.
Figure 4.12 shows the pipelined implementation of it, which will be explained in the following. The in-
struction decoder triggers the Forecasting Unit when a Forecast Instruction (FI, indicating an FB) is exe-
cuted. Afterwards, the Forecast Unit runs in parallel to the processor pipeline unless a second FI is exe-
cuted. As discussed in Section 4.1, the processor pipeline needs to stall when an SI or an FI is about to
execute during the fine-tuning operation of the Forecast Unit (see also Figure 4.4 on page 48). As an SI
execution increments the monitoring value for that SI and the Forecast Unit resets the monitoring values
for those SIs that are forecasted by an FB, inconsistencies may occur if an SI executes in parallel to a fine-
tuning process of the Forecasting Unit. As an extreme case, resetting the FV could be prevented in the
following scenario: i) the Monitoring Unit reads the current monitoring value (to increment it), ii) the
Forecast Unit resets the monitoring value, iii) the Monitoring Unit writes back the incremented value,
overwriting the reset activity.

Figure 4.12: Pipelined Implementation for Fine-tuning the Forecasts [D.7]

The FI that triggers the execution of the Forecasting Unit provides the information which FB shall actu-
ally execute and how many different SIs are forecasted in this FB (i.e. how many different FVs it con-
tains). A dedicated Forecast RAM is provided that contains the data for all FBs. The FI determines a re-
gion in this Forecast RAM by providing a base address and the number of entries that belong to this FB

- 58 -

4.3 Online Monitoring and Special Instruction Forecasting

(for detailed FI instruction format see Section 5.1). This separation of FI (actually a trigger) and the Fore-
cast RAM (containing the real data) provides the advantages that i) only one instruction has to execute in
the processor pipeline to trigger the fine-tuning, ii) more information can be provided (considering the
number of bits) per FV than would fit into an FI, and iii) the FV can be changed without the need to up-
date the instruction memory. In addition to the Forecast RAM, two further buffers are demanded. The de-
tails for the three buffers and the four pipeline stages as they appear in Figure 4.12 will be explained:

Forecast RAM: The Forecast RAM contains the actual FVs together with the information which SI is
forecasted by a particular FV. Additionally, it contains an ‘update’ bit for each FV, to determine
whether an FV is constant or may be updated. This RAM is initialized during compile time, depend-
ing on the FIs and FBs of the application.

Address & Update Buffer: This Buffer contains one entry per SI.23 Each entry corresponds to a certain
address (pointing to the Forecast RAM) and a copy of the corresponding update bit at that address.
This memory is used to remember for each SI, which FB was executed last for that SI and in particu-
lar, at which address in the Forecast RAM the corresponding FV can be found. This address informa-
tion is used to determine whether the FB shall be updated when another FB predicts the same SI.

Forecast Buffer: Similar to the ‘Address & Update Buffer’, this buffer contains one entry per SI. This
entry corresponds to the FV that is stored in the Forecast RAM for the address that is stored in the
‘Address & Update Buffer’ for the same SI. This means that these two Buffers can provide the ad-
dress and the FV for the last executed FB of any SI. These values – together with the FV of the recent
FB – are important to calculate the updated FV and to know the address to which it shall be written.

Read Forecast Values stage: This stage waits for a Forecast Instructions (FI) from the Decoder. It sets
the address to read the Forecast RAM according to the information of the FI. In the subsequent cycles
it increases the address according to the FB size (i.e. how many Forecast Values (FVs) correspond to
the current Forecast Block (FB)) given by the FI. This stage reads the Forecast RAM and provides the
FVs (corresponding to 1 in Eq. (tFV FB +)

)

4.1) for the next pipeline stage. The Forecast RAM addi-
tionally provides the SI identifier for the FV. This identifier is used to access the ‘Address & Update
Buffer’ and the Forecast Buffer in the next stage. When all FVs of the current FB are processed, this
stage waits for the next FI.

Read Monitoring and Buffers stage: This stage acquires the current execution counter for the forecasted
SI from the Monitoring Unit (corresponding to 1(tM FB + in Eq. 4.1). It also reads the FV of the pre-
vious Forecast Block tFB from the Forecast Buffer (corresponding to (t)FV FB in Eq. 4.1). Addi-
tionally, it reads the address (for the Forecast RAM) and update status of that previous FB from the
‘Address & Update Buffer’. This information is used to decide whether the FV of the previous FB
shall be updated and – if yes – to which address in the Forecast RAM the updated FV shall be written
in the Output 2 stage.

Output 1 stage: This stage resets the SI execution counter in the online monitoring and updates the ‘Ad-
dress & Update Buffer’ with the information of the currently processed FV (information provided
from ‘Read Forecast Value stage’). This buffered information will be used to update the currently
processed 1tFB + when the next FB 2tFB + for the same SI is reached later. This stage also calculates
the error 1 according to Eq. (tE FB +) 4.1. It uses the gathered information ()tFV FB , 1(tFV FB)+ , and

1t from the previous stages. In the prototype, the multiplication with the parameter γ is real-
ized as fixed-point arithmetic and accomplished by using a dedicated Virtex-4 hardware multiplier.

(M FB +)

23 altogether 1024 entries are reserved for all possible SI opcodes, see Section 5.1

- 59 -

Chapter 4 The RISPP Run-time System

Output 2 stage: This stage calculates the update value for the previous Forecast Block tFB , according to
Eq. 4.2. A dedicated Virtex-4 hardware multiplier is used to multiply the parameter α. The updated
FV for the previous FB is written to the Forecast RAM (depending on the update bit, i.e. whether or
not updating is allowed), using the address previously read from the ‘Address & Update Buffer’. Ad-
ditionally, the FV of the current FB (i.e. 1(tFV FB)+) is written to the Forecast Buffer using the id of
the SI as address. Actually, this value was read from Forecast RAM and is now copied to the Forecast
Buffer. From there it will be used to calculate the update when another FB for the same SI is exe-
cuted. Providing the Forecast Buffer as a dedicated and redundant memory is a performance optimiza-
tion. The Forecast Buffer could be omitted and the data could be read from the Forecast RAM using
the address of the previous FB provided by the ‘Address & Update Buffer’. However, then either the
Forecast RAM would need a third port (for providing the data) or the pipeline needs to be stalled to
redirect one of the two ports for that operation. Eventually, this stage provides the information of the
current FB to a FIFO that passes the information to the Molecule Selection (described in Section 4.4).

The described pipeline and buffers are implemented in VHDL and integrated it into the prototype.
Table 4.1 provides the implementation results for the Monitoring and the Forecast Unit. The logic re-
quirements are moderate even though the implementation was optimized for throughput. The two DSP48
blocks correspond to the multiplications with the parameters α and γ and the RAMB16 BlockRAMs are
used to realize the buffers of the Forecast Unit and the online monitoring.

Slices Flip Flops LUTs DSP48 RAMB16
420 258 688 2 9
Table 4.1: Hardware Requirements for Monitoring and Forecast Unit

Summary of the Online Monitoring and SI Forecasting:

The concept of SI forecasting is used to predict which SIs are expected to be needed in the next computa-
tional block. This allows starting necessary reconfigurations in time, which is important as the reconfigu-
rations demand relatively long (in the range of milliseconds). An online monitoring and an error back-
propagation scheme are used to update the predictions according to observed SI execution requirements.
This allows adapting the reconfigurations to changing SI requirements, i.e. if an SI is predicted to be exe-
cuted more often (compared with previous executions of that computational block), then the novel con-
cept of modular SIs allows choosing a faster Molecule to execute it.24 The foundation of the prediction
that was described is based on the Temporal Difference scheme and a pipelined hardware implementation
was presented and evaluated for it. The next section will describe how he expected SI execution frequen-
cies are used as input for the so-called Molecule Selection to determine which Molecules shall be recon-
figured to implement the predicted SIs.

4.4 Molecule Selection
The previous section described how online monitoring and back-propagation are used to predict the
amount of SI executions for an upcoming computational block. This allows adapting the reconfigurable
fabric toward changing SI requirements, as motivated in Figure 3.6 (page 33). The actual adaptation is
performed by the so-called Molecule Selection, which is described in this section. As presented in the
overview of the run-time system in Figure 4.3 (page 46) the Molecule Selection is triggered by the Predic-
tion, i.e. after a so-called Forecast Instruction (see Section 4.3) executed. The information provided by the
Prediction to the Molecule Selection comprises a) which SIs are expected to execute in the next computa-
tional block, and b) how often are the SIs expected to execute. The task of the Molecule Selection is to
determine exactly one Molecule for each requested SI.

24 typically at the cost of slower Molecules for other SIs executing in the same hot spot

- 60 -

4.4 Molecule Selection

Figure 4.13 shows a simplified selection scenario with two different SIs (SIo, SIp) and their corre-
sponding Molecules The table on the right side of (,).i io pG G

G

Figure 4.13 shows the selection possibilities for
different numbers of available Atom Containers (ACs), i.e. for different numbers of Atoms that may be
reconfigured at the same time. For example, if seven ACs are available, the Molecules 6 and 3o pG may be
implemented (two instances of Atom A0 and five instances of Atom A1). However, using the same num-
ber of ACs the Molecules 2o and 6

G pG may be implemented as well, which may be beneficial if the ex-
pected execution frequency of SIp is higher than that of SIo. Later, it will be analyzed in more detail in
which situations which Molecule Selection may be more beneficial than another selection. The dashed
green arrows in Figure 4.13 show all four Pareto-optimal selections for both SIs, given seven ACs to im-
plement the demanded Atoms. The term ‘Pareto-optimal’ here determines that only the largest Molecules
(i.e. demanding the most Atoms) are shown, because the larger Molecules are typically also the faster
Molecules (exploiting higher parallelism than smaller Molecules). For instance, the Molecules 1oG and 1pG
may be selected if at least two ACs are available. However, when seven ACs are available, larger (and
thus potentially faster) Molecules are preferable.

1oG

Atom
Containers Pareto-optimal fitting Molecules

2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

Potential Molecule Selections for
different No. of Atom Containers

2oG
3oG 4oG

5oG
6oG 7oG

10oG

1pG 2pG
3pG 4pG 5pG 6pG

7pG 8pG

8oG 9oG
joG

jpG

{ }1 1, o pG G

{ }2 1, o pG G { }1 2, o pG G

{ }3 1, o pG G { }2 3, o pG G

{ }4 3, o pG G { }2 4, o pG G

{ }9 7, o pG G { }5 8, o pG G

{ }10 7, o pG G { }9 8, o pG G

{ }8 5, o pG G { }5 7, o pG G { }4 8, o pG G
{ }7 4, o pG G { }5 5, o pG G { }4 7, o pG G

{ }5 3, o pG G { }4 4, o pG G { }2 5, o pG G

{ }6 3, o pG G { }5 4, o pG G { }4 5, o pG G { }2 6, o pG G

Figure 4.13: Different Showcase Molecules for Two Special Instructions with the Corresponding

Selection Possibilities for Different Numbers of Available Atom Containers

The amount of available ACs might potentially change during run time, for instance, when the available
reconfigurable fabric is has to be partitioned among multiple tasks (as motivated for the ‘SI Implementa-
tion Adaptivity’ in Section 3.2). This leads to the selection alternatives shown in the table in Figure 4.13.
The problem space of determining the Molecule Selection grows even larger when more than two SIs are
required within one computational block (which is the typical case, e.g. six SIs for the Encoding Engine of
the H.264 benchmark, see Table 3.2 on page 35). There, it is no longer beneficial to pre-determine the
selection at compile time. Instead, an intelligent run-time scheme is demanded to adapt the Molecule Se-
lection to the changing numbers of available ACs and the SI execution frequencies efficiently.

4.4.1 Problem description for Molecule Selection
The input to the selection is the number of available ACs N and a forecast F, which is a set of tuples

{ }(, ,)i i iF M f t= where each tuple contains

• a forecasted Special Instructions SIi (represented by a set of its Molecules iM as shown in Eq. 4.5),
• the expected execution frequency if of that SI (dynamically fine-tuned during run time),
• and the remaining time until the first execution of this SI (statically provided by offline profiling). it

- 61 -

Chapter 4 The RISPP Run-time System

 { : . ()i j j }iM m m getSI SI=
G

=
G

 (4.5)

The task of the Molecule Selection is to determine a set of Molecules that has to fulfill certain condi-
tions, described in the following. At first, it is important that the number of Atoms that are demanded to
implement the selected Molecules do not exceed the number of available ACs, see Eq.

S

4.6. Additionally,
it is required that for each forecasted SI exactly one Molecule is selected to implement it, see Eq. 4.7. As
all SIs can be executed using the cISA (see Section 3.2) and the cISA execution does not demand any At-
oms (i.e.), it is always possible to determine a valid Molecule Selection, even if no ACs are pro-
vided. The two conditions in Eq.

(0,...,0)
4.6 and 4.7 describe a valid selection, but they do not consider the prop-

erties of a good selection yet. For instance, selecting the cISA execution for all forecasted SIs would al-
ways lead to a valid selection without accelerating any SI execution. The main target of a good selection
is to minimize the execution time of the upcoming computational block. Each accelerating Molecule may
contribute to an execution-time reduction due to its speedup compared with the cISA execution. However,
considering the available ACs, the Molecules of different SIs need to be traded-off by evaluating their
individual speedup and the expected SI execution frequency. In general, a profit is determined for each
Molecule and the aim is to maximize the overall profit of the selected Molecules, as shown in Eq. 4.8.

o S

o N
∈

≤G
G∪ (4.6)

 : ii S M∀ ∩ =1 (4.7)

(), ,
with :

maximize (, ,)
i i i

i

i i
M f t F

o S M

profit o f t
∈

= ∩

∑
G

G
 (4.8)

The details of the profit function are discussed in Section 4.4.2, after a complexity analysis in the remain-
der of this section. Considering the conditions and optimization goal described above, the Selection Prob-
lem has strong similarities to the Knapsack Problem that is known to be NP-complete [MT90]. However,
some specific differences have to be examined. A Knapsack Problem consists of a knapsack with a given
capacity and elements C { }iE e= with weights and profits ()iw e ()ip e . The problem is to fill the knap-
sack with a subset of elements E E′ ⊆ that maximize the total profit (see Eq. 4.9) without violating the
capacity of the knapsack (see Eq. 4.10). The major difference between the Knapsack Problem and the Se-
lection Problem is the way in which the weight for a set of selected elements is determined (for the capac-
ity constraint). In the Knapsack Problem, this weight is given by the sum of the weights of the selected
elements (see Eq. 4.10). However, Molecules may share some Atoms (i.e. 0)o p∩ ≠

G G and thus, the com-
bined weight of two or more Molecules is in general not equal to the sum of the weights of the individual
Molecules (i.e.)o p+

G Go p∪ ≠
G G . Figure 4.14 provides an example to demonstrate this difference.

 maximize ()
i

ie E
p e′∈∑ (4.9)

()iw e C
ie E′∈

≤∑ (4.10)

To proof that the Selection Problem is NP-hard, a polynomial reduction [GJ90] of the Knapsack Problem
to the Selection Problem will be given, as this will show that the Selection Problem is a generalization of
the Knapsack Problem. Correspondingly, each instance of a Knapsack problem can be solved, using a
solver for the Selection Problem and therefore, the Selection Problem must be at least as hard as the
Knapsack Problem, i.e. NP-hard. It starts with an instance of the Knapsack Problem as described above
that is transformed into a Selection Problem. In the first step, the elements ie is converted into Molecules
by defining one dedicated Special Instruction iM per element that consists of exactly two Molecules, i.e.

{ , }i i iM x y=
G G . The Molecule ixG represents the cISA implementation without accelerating Atoms (i.e.

 and thus, it has a zero weight. If the cISA Molecule is selected, then it corresponds to the

(0,...,0))

- 62 -

4.4 Molecule Selection

()1, 4 ; 5o o= =
G G

()5, 2 ; 7p p= =
G G

()5, 4

9 12

o p

o p o p

∪ =

∪ = + =

G G

G G G G
≠

Figure 4.14: Atom Sharing, Leading to a Size of the Combined Molecule that is

Smaller than the Accumulated Size of the Two Individual Molecules

decision that the SI shall not be accelerated. For the Knapsack Problem this corresponds to the decision
not to pack the particular element into the knapsack (see Eq. 4.11). The iyG Molecule of iM corresponds
to the decision to pack the element into the knapsack. It uses a specific Atom type Ai multiple times and
all other Atom types are not used (see Eq. 4.12). This means that an individual Atom type is used for each
element of the original knapsack problem. Therefore, Molecules that correspond to different elements do
not share any Atoms (see Eq. 4.13). The quantity of instances of Atom type Ai corresponds to the weight
of the element i , i.e. e ()i iy w e=

G . Altogether, for each element of the original knapsack problem, a dedi-
cated SI is provided that consists of two Molecules that represent the decision whether or not the element
is packed into the knapsack. The Molecule that corresponds to the decision that the element is packed into
the knapsack, uses a dedicated Atom type that is not used by any other Molecule and that models the
weight of the element by using that Atom type in the corresponding quantity.

 i i

i i

x S e E
y S e E

′∈ ⇒ ∉
′∈ ⇒ ∈

G
G

(0,...,0, (),0,...,y w

 (4.11)

 (4.12)
0) e=

G

i i

iAtom A
����

 i ji j y y 0≠ ⇔ ∩ =
G G

 (4.13)

In addition to the capacity constraint, the profit of the elements has to be considered such that they can
serve as input for Eq. 4.8. Therefore, the profit of each Molecule is defined as shown in Eq. 4.14 (note that
the input parameters if and are not needed here). it

0,

(, ,)
(),

i
i i

i i

o x
profit o f t

p e o y
=⎧

= ⎨ =⎩

G G
G

G G (4.14)

After solving the Selection Problem according to the constraints in Eq. 4.6 and 4.7 with N=C available
ACs, the selected Molecules directly determine the elements that shall be packed into the knapsack, i.e.
all elements ie for which the Molecule i

S
yG was selected. Eq. 4.15 shows that the capacity of the knapsack

is not violated by the selection and Eq. 4.14, 4.11, and 4.8 assure that the profit is maximized. As the
above described transformation can be done in polynomial time (linear in number of elements i) this
shows that the Selection Problem is a generalization of the Knapsack Problem and thus it is NP-hard.

e

- 63 -

Chapter 4 The RISPP Run-time System

m S

m N C
∈

≤ =
G

G∪ , see Eq. 4.6

(4.15)

 ⇔
m S

m C
∈

≤∑G
G

, using Eq. 4.13

 ⇔
, x x S⎧ ⎫∈
,

i i

i i i

C
y y S∀

⎪ ⎪ ≤⎨ ⎬∈⎪ ⎪⎩ ⎭
∑ G G

G G
, using Eq. 4.7 and definition for iM

 ⇔
0,

(),
i

i i i

x S
C

w e y S∀

∈⎧ ⎫
≤⎨ ∈⎩ ⎭

∑ G ⎬
G

, using Eq. 4.12 and definition for ixG

 ⇔
0,

(),
i

i i i

e E
C

w e e E∀

′∉⎧ ⎫
≤⎨ ′∈⎩ ⎭

∑ ⎬ , using Eq. 4.11

 ⇔ ()
i

i
e E

w e C
′∀ ∈

≤∑
,

4.4.2 Parameter Identification for the Profit Function

The profit function needs to be chosen very carefully as it finally determines the quality of the resulting
selection. Optimally solving the Selection Problem guarantees the best achievable profit but it does not
guarantee the best achievable application execution time due to external constraints. For instance, the ac-
tual execution time depends on the exact SI execution frequency and the SI execution sequence. The SI
execution frequency is provided as estimated parameter to the Molecule Selection, but as it is only a pre-
diction, it comes with a certain error (see Section 4.3), which affects the relation between optimally solv-
ing the Molecule Selection and achieving best performance. Additionally, the performance also depends
on further algorithms, e.g. the reconfiguration sequence of the Atoms (see Section 4.5) and the Atom re-
placement (see Section 4.6). Nevertheless, as the Molecule Selection has a significant impact on the over-
all performance, the profit function should consider typical parameters and scenarios that may affect the
application execution time. These parameters will be discussed for a given Molecule i that imple-
ments SI

m M∈
G

i. The first parameter that should be considered by the profit function is the so-called Latency
Improvement of , i.e. the number of cycles that mG mG is faster compared with the execution of the same SI
using the cISA execution, see Eq. 4.16.

() . (). (). -: () . ()
m getSI getCISAMolecule getLatencyImprovement m Latency m getLatency= −

GG G

(). -a getLatenc

 (4.16)

 (4.17) () . ()., : () . ()
m getSI getFastestAvailableMoleculeyImprovement m a Latency m getLatency= −

G GG G G

() . (). (). (): . (
m getSI getCISAMolecule getLatencyspeedup m m getLatency=)
GG G (4.18)

As an alternative parameter one might consider the latency improvement in comparison with the fastest
Molecule that can be implemented with the currently available25 Atoms aG (see Eq. 4.17). The advantage
is that this parameter would consider the available Atoms, i.e. a Molecule would have a high profit only if
it is faster than available Molecules for the same SI. Therefore, if a Molecule candidate is only slightly
faster than the currently fastest Molecule, its profit would be small, potentially giving priority to other
Molecules of other SIs. However, this parameter would make it complicated to explicitly select a Mole-

25 i.e. those Atoms that are currently loaded into an Atom Container

- 64 -

4.4 Molecule Selection

cule that is smaller (i.e. using less Atoms) than the fastest currently existing Molecule for the same SI,
because all these Molecules would have a negative profit value (as they are slower than the available
Molecule). This can cause suboptimal selections, as less Atom Containers are left to implement other (po-
tentially more beneficial) SIs. Another alternative would be to use the speedup (see Eq. 4.18) for the profit
computation, but that may lead to disadvantages when comparing the profit values of different SIs. The
cISA implementations for these different SIs may differ significantly, which is important as the compari-
son of the speedup is relative to the cISA execution. For instance, consider the following example, show-
ing two Molecules (and oG pG) of two different SIs:

• SI1: 1; () 10; . (). (). () 50
(50 / 5 ; () 50 10 40 cycles

o M o Late o getSI getCISAMolecule getLatency
speedup o x LatencyImprovement o
∈ =

= − =
G G

2 ; () 100; . (). (). () 50p M p tLat p getSI getCISAMolecule getLatency∈ =
G G G

.
)
get

.
)
ge

10
ncy

= =

/10
ency

=
G G G

=• SI2: 0
(500 0 5 ; () 500 100 400 cyclesspeedup p x LatencyImprovement p= = = − =
G G

This example shows that two Molecules might have the same speedup (5x in the example) even though
they differ significantly in their respective cycle savings per execution (40 cycles vs. 400 cycles per SI
execution in the example). Here it becomes noticeable that the latency improvement has a direct impact
on the SI execution performance and thus the application performance. Therefore, Eq. 4.16 is considered
as relevant parameter for the profit function.

()reconf it m t−G

() :reconft mG

:it

Figure 4.15: Comparing the Reconfiguration Time and the

First Execution Time of a Special Instruction

Another important parameter concerns the size of a Molecule and the related reconfiguration time. Bigger
Molecules (i.e. those with more Atoms) typically exploit more parallelism and therefore may achieve a
faster SI execution. This comes at the cost of longer reconfiguration time, which may reduce the overall
performance of the application. To consider this scenario, the so-called Reconfiguration Delay is com-
puted as the remaining cycles of reconfiguration at the time when the first SI executes, i.e. how many cy-
cles the reconfiguration finishes too late to be useful for the first SI execution, as it is illustrated in
Figure 4.15. The starting point (i.e. all times are relative to this point) is the Forecast Instruction from
which the Molecule Selection is triggered. In the case of a relatively large Molecule where multiple At-
oms need to be reconfigured, the first SI executions may be missed, as shown in the figure. In such a case,
reducing the overall profit of the Molecule should be considered, because it will not be available for all SI
executions and thus it will be less beneficial. In case the reconfiguration is finished in time, the profit
should be neither decreased nor increase. By bounding the Reconfiguration Delay to be greater or equal to
zero, this property is assured, see Eq. 4.19.

 { }max 0, () ; reconf i it m t m M− ∈
G G

 (4.19)

() : ; currently avaliable Atomsreco AtomReconfa m t a= × =
G G G G�nft m (4.20)

As already described in Section 4.4.1, the parameter it is obtained from offline profiling. Unlike the ex-
pected SI execution frequency if , the parameter is not fine-tuned during run time. The parameter it

- 65 -

Chapter 4 The RISPP Run-time System

()reconft mG determines the minimal26 possible reconfiguration time, i.e. the number of additionally required
Atoms (based on the currently available Atoms aG) multiplied by the reconfiguration time of an Atom, as
shown in Eq. 4.20.

In addition to the two described parameters Latency Improvement and Reconfiguration Delay, the ex-
pected execution frequency of the SIs needs to be considered, which is independent from the particular
Molecules of an SI. For instance, the Molecules of an SI that is executed significantly more often than
another SI should have a higher profit value, because a better implementation27 of that SI has a larger im-
pact on the overall application. The resulting profit of a Molecule mG for SIi is given in Eq. 4.21, where
the input parameters if and it denote the expected SI execution frequency and the expected time until the
first SI execution, respectively. The Latency Improvement and the Reconfiguration Delay are scaled by
parameters L and R, respectively. After describing the implementation for the Molecule Selection, it will
be evaluated with respect to these parameters in Section 4.4.3.

 (4.21) ()
(

)
(){ }

 . (). ()
, , : . ()

max 0
i i i

reconf i

L m get getCISAMolecule getLatency
profit m f t f m g Latency

m t

⎛ ⎞⋅
⎜ ⎟= ⋅ −
⎜ ⎟− ⋅ −⎝ ⎠

G G
G

().

,

SI
et

R t

G

4.4.3 Heuristic Solution for the Molecule Selection

1. // Input: Capacity constraint and elements C { }iE e= with weights and profits ()iw e

 ()ip e see Section 4.4.1.
2. // Output: subset of elements E E′ ⊆ that maximize the profit (see Eq. 4.9 on

 page 63) without violating the capacity of the knapsack (see Eq. 4.10)
3. {ie E ∀ ∈

4. ()() ;()
i

i
i

p eb e w e← // calculate the so-called benefit as ‘profit per weight’

5. }

6. // sort the elements according their benefit (decreasing) (, () ;sort E b)
7. // initializes the result ;E′ ←∅
8. 0;totalWeight ←
9. // iterate according the benefit sorting {ie E∀ ∈

10. ()if () {itotalWeight w e C+ ≤

11. { }iE E e′ ′← ∪ ;

12. to (iw e);talWeight totalWeight← +
13. }
14. }
15. return ;E′

Algorithm 4.1: Pseudo Code of a Greedy Knapsack Solver

26 the actual reconfiguration time might be longer if the Atoms of another SI are loaded in between (see Section 4.5)
27 considering Latency Improvement and Reconfiguration Delay

- 66 -

4.4 Molecule Selection

Due to the complexity of the NP-hard Molecule Selection, a heuristic is used to solve it. Greedy imple-
mentations are a common choice for the class of Knapsack problems [Hro01]. The corresponding pseudo
code for the greedy approach is shown in Algorithm 4.1. The computational complexity of the greedy
Knapsack Solver is dominated by sorting the elements (see line 6), i.e. it is for (log)n nO n E=

2

. The
space requirement is determined by calculating and storing the benefit values (see line 4) that are used for
sorting the elements, i.e. it is . ()nO

The greedy implementation for the Molecule Selection is different from the greedy implementation
for the Knapsack Solver, which selects the elements in descending order from a sorted list based on ini-
tially calculated ‘benefit’ values (i.e. profit per weight). Instead of initially sorting all elements, the im-
plementation determines the Molecule with the best profit by linearly examining all candidates and then
selects it. After this first selection, the remaining Molecule candidates are cleaned, i.e. some of them
might no longer fit to the available ACs (considering the already selected Molecules) and some other
Molecules might already be implicitly available (i.e. all Atoms that are needed to implement them are al-
ready available due to the Atom requirements of the explicitly selected Molecules). This algorithmic al-
ternative provides benefits for this scenario even though it increases the computational complexity as dis-
cussed after presenting the algorithm. Another difference to the Knapsack Solver is that exactly one Mole-
cule has to be selected per SI (see Eq. 4.7). By implicitly selecting the cISA Molecule for each SI where
no other Molecule was selected, that condition can be relaxed toward selecting at most one Molecule per
SI. After a Molecule was selected, this property is assured by explicitly removing all Molecules of that SI
from the candidate list.

Algorithm 4.2 shows the pseudo code of the greedy realization of the Molecule Selection. After some
initializations (e.g. removing the cISA Molecules in lines 4-6) it enters the main loop (line 10). The algo-
rithm computes the profits for all Molecules that may be selected (i.e. that are not too big and not yet
available, lines 11-24). Removing the Molecules that are already available due to the Atoms of the so-far
selected Molecules (see lines 14-17) is an optimization that reduces the number of profit calculations. To
assure that these implicitly available Molecules (i.e. not explicitly selected) can be used, for each SI the
fastest Molecule that can be implemented with the selected Atoms28 is determined after the selection
completed. This will also select the cISA Molecule if no faster Molecule is available for a particular SI.
After the profit values are calculated for each remaining Molecule, the algorithm selects the best candidate
(lines 26-27), and cleans the remaining candidates (lines 28-33).

The required approach to re-compute the profit values in the main loop (to consider the Atoms of the
already selected Molecules) increases the complexity from to where n is the number of
Molecule candidates. However, the advantage of the implementation is a reduced memory footprint,
which is important when considering a hardware implementation. The memory requirements are inde-
pendent from the number of forecasted SIs and their implementing Molecules as only the (profit-wise)
best Molecule with its profit value has to be memorized (lines

(log)n nO ()nO

20 and 21), i.e. the memory requirements
reduces from to . Additionally, the first selected Molecule is determined after calcula-
tions of the profit function and thus can start the time-consuming reconfiguration earlier (in comparison
with O profit function calculations for the greedy Knapsack solver). In parallel to this reconfigu-
ration, the Molecule Selection processes further decisions, i.e. the time for the calculations is hidden by
the reconfiguration time. Altogether, the conceptual drawback of the worsened complexity turns into a
performance advantage of the practical implementation.

()nO

)n

(1)O ()nO

(logn

28 i.e. the Atoms of the explicitly selected Molecules

- 67 -

Chapter 4 The RISPP Run-time System

1. // Input: number of available Atom Containers N and the set of forecasted SIs with
 the expected execution frequency and the time until the first execution:
 { }(, ,)i i iF M f t= ; see Section 4.4.1.

2. // Output: set of selected Molecules , i.e. at most one Molecule per forecasted SI (if no S
 Molecule is explicitly selected, then the fastest Molecule that can be implemented with
 the Atoms of the explicitly selected Molecules (may be the cISA Molecule) will be used

3. // initializes potential Molecule candidates ;M ←∅
4. (, ,) {i i iM f t F ∀ ∈ // remove cISA Molecules (is chosen implicitly if no faster

 Molecule is selected)
5. , 0 : {im M m M M m∀ ∈ > ← ∪

G G };G
6. }
7. // represents the Atoms of the selected Molecules aG

8. a (0,...,0);←
G

9. S ;←∅
10. // exit condition is checked in line ()while true { 25
11. minInt;bestProfit ←
12. p (0,...,0);←

G
13. {m M ∀ ∈

G

14. // Remove the Molecules that are too big or implicitly available by the
 so far selected Atoms

15. ()if a m > or m a {N∪ ≤
G G G G

16. \ { };M M m←
G

17. } e lse {
18. // see Eq. (, , ;i iprof profit m f t=

G) 4.21

19. ()if {prof > bestProfit
20. ;bestProfit prof←
21. ;p m←

G G
22. }
23. }
24. }
25. ()if break;p (0,...,0)=

G // no Molecule left
26. { }S S p← ∪

G ;
27. ;a a p← ∪

G G G

28. // Remove all Molecules from the same SI as the currently selected Molecule
29. {m M∀ ∈

G

30. ()if . () . () {m getSI p getSI=
G G

31. \ { };M M m←
G

32. }
33. }
34. }
35. return ;S

Algorithm 4.2: Pseudo Code of the Molecule Selection

- 68 -

4.4 Molecule Selection

4.4.4 Evaluation and Results for the Molecule Selection

A detailed analysis of the two scaling factors for the Latency Improvement L and the Reconfiguration De-
lay R will be presented (see Section 4.4.2 and Eq. 4.21), using the H.264 video encoder benchmark pre-
sented in Section 3.3. To determine relevant value ranges for the scaling factors the application and the
utilized SIs and Molecules were analyzed. The smallest Latency Improvement is 20 cycles (avg. 148.25)
and the corresponding Atom loading time (indicating the potential Reconfiguration Delay) is 94,953 cy-
cles29 [BSKH07], which corresponds to nearly 1 ms at 100 MHz pipeline frequency. As these values are
four orders of magnitude different from each other, they have to be normalized to make them comparable
in the profit function. Without this normalization, the impact of the Reconfiguration Delay would domi-
nate the Latency Improvement because its value is significantly larger. The Latency Improvement and the
Atom loading time are normalized to 100 cycles respectively. For the Latency Improvement this corre-
sponds to a multiplication by 5 and values for the Latency Improvement scaling factor L are examined
accordingly (i.e. 1, 2, …, 10). For the Reconfiguration Delay the normalization corresponds to a multipli-
cation with 0.001 and values for R are examined accordingly (i.e. 0.0001, 0.0002, …, 0.0025). Figure 4.16
shows the application execution time as a surface plot using a representative subset of the evaluated value
ranges. Figure 4.16 a) shows the results for the greedy Molecule Selection and b) for the optimal Mole-
cule Selection, using a reconfigurable fabric with space for four ACs. The optimal Molecule Selection is
obtained by exhaustively testing all selection combinations and choosing the one that maximizes the
profit.

It is noticeable that the greedy selection nearly always reaches the performance of the optimal selec-
tion. The major difference is found in the region R1, shown in Figure 4.16 a) and b). While this region is
achieving the best performance for the optimal selection, the greedy selection is not able to cover this case
(same for region R2). However, the greedy selection is achieving the same performance as the optimal
selection in regions R3 and R4. Altogether, the greedy implementation is just lacking 11.9% performance
compared with the best performance of the optimal implementation (comparing R3 and R4 of the greedy
selection with R1 and R2 of the optimal selection). It is noticeable that in R5 the greedy implementation is
providing a better performance than the optimal implementation. This appears to be surprising, as a heu-
ristic should not outperform an optimal solution. However, it actually demonstrates that solving the Selec-
tion Problem optimally does not automatically lead to the best performance. For instance, the input for the
Selection Problem comprises predictions about the upcoming SI execution frequencies. If this prediction
turns out to be wrong30 then an optimal selection may be outperformed by a non-optimal solution. Addi-
tionally, after solving the Selection Problem, further algorithms execute to eventually determine the actual
Atom reconfigurations (e.g. Reconfiguration-Sequence Scheduling and Atom Replacement, see Sec-
tions 4.5 and 4.6). A similar argumentation holds for the parameters of the profit function. The quality of
the result depends on the parameters that where considered to determine the profit of a Molecule. The
Molecule Selection only aims to maximize that profit. However, the greedy Selection only outperforms
the optimal Selection in a small region of parameter settings that is not relevant (because it leads to the
slowest application execution in comparison with other parameter settings). Altogether, it can be observed
that different settings for the two parameters lead to a relatively smooth surface, i.e. small parameter
changes typically do not lead to significant result changes, especially the marked regions R1-R5 show that
behavior.31

As shown in Figure 3.5 (page 31), the H.264 benchmark application comprises three different compu-
tational blocks, i.e. three different Molecule Selections need to be performed per frame. Therefore, the
computation time of the individual blocks is analyzed in more detail. Figure 4.17 shows these results as
comparison between greedy selection (left side) and optimal selection (right side). It becomes apparent

29 the smallest Reconfiguration Delay is not used here, because it is 0 if the reconfiguration finishes in time
30 this is the typical case, however, the error of the prediction is typically small
31 the shape of R1-R4 continues when examining larger values of the parameters

- 69 -

Chapter 4 The RISPP Run-time System

1 2 3 4 5 6 7 8 9 10

0
30
60
90

120
150
180
210
240
270
300

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

Region R3
Region R1

Region R4

Region R2Region R5

a) Greedy Molecule Selection for 4 Atom Containers

1 2 3 4 5 6 7 8 9 10

0
30
60
90

120
150
180
210
240
270
300

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

Region R4

Region R2Region R5

Region R1Region R3

b) Optimal Molecule Selection for 4 Atom Containers

Figure 4.16: Impact of the Profit-Function Parameters on the
Application Execution Time for Four Atom Containers

- 70 -

4.4 Molecule Selection

Greedy Molecule Selection Optimal Molecule Selection

1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

a) Execution Time for Motion Estimation

1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

b) Execution Time for Encoding Engine

1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

c) Execution Time for In-Loop De-blocking Filter

Figure 4.17: Detailed Analysis of the Application Execution Time for the Three
Individual Computational Blocks Motion Estimation, Encoding Engine, and

In-Loop De-blocking Filter for Four Atom Containers

- 71 -

Chapter 4 The RISPP Run-time System

1 2 3 4 5 6 7 8 9 10

0
30
60
90

120
150
180
210
240
270
300

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

Region R3 Region R1

Region R4

Region R2

Region R5

a) Greedy Molecule Selection for 7 Atom Containers

1 2 3 4 5 6 7 8 9 10

0
30
60
90

120
150
180
210
240
270
300

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

Region R3 Region R1

Region R4

Region R2

Region R5

b) Optimal Molecule Selection for 7 Atom Containers

Figure 4.18: Impact of the Profit Function Parameters on the
Application Execution Time for Seven Atom Containers

- 72 -

4.4 Molecule Selection

that the main difference between greedy and optimal selection is based on the selection results for the Mo-
tion Estimation (see Figure 4.17a), which is also the computationally dominating part of the video en-
coder. The Encoding Engine unveils only two small differences in region R1 and R2. The In-Loop De-
blocking Filter actually leads to the above-described effect that the optimal selection may result in a worse
performance than the greedy selection.

After analyzing the detailed impact of the profit-function parameters on the execution time of the dif-
ferent computational blocks for 4 Atom Containers (ACs), the question arises how these results are af-
fected by changing number of ACs. Potentially, the surface (i.e. values of application execution time) for
different parameters might loose the property of being smooth or different parameter settings are more
preferable for different number of ACs. Figure 4.18 shows the results for seven ACs, comparing greedy
and optimal Molecule Selection. The surface is still smooth, however, region R1 is no longer significantly
different between greedy and optimal selection (as it was for four ACs, see Figure 4.16). Actually, the
greedy selection find exactly the same solution that the optimal selection for the Motion Estimation. How-
ever, the differences that became visible for Encoding Engine and In-Loop De-blocking Filter (comparing
greedy and optimal) remain. The same pattern of the surface plot repeats for other numbers of available
ACs. Therefore, region R3 is used for benchmarking as it provides the best solution for smaller number of
ACs (see Figure 4.16) and larger number of ACs (see Figure 4.18). For larger number of ACs, region R1
actually leads to the fastest execution time for greedy, however, it performs badly for a small number of
ACs (R3 is 1.46x faster than R1 for five ACs). For the example of seven ACs, region R1 is 1.08x faster
than region R3 (only 1.05x for eight ACs).

0
50

100
150
200

250
300
350
400

2 3 4 5 6 7 8 9 10

100%‐Quartile
75%‐Quartile
50%‐Quartile
25%‐Quartile
0%‐Quartile

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

#Atom Containers

100%‐Quartile
(Maximum)

75%‐Quartile (75%
of the values
are smaller)

50%‐Quartile
(Median)

25%‐Quartile (25%
of the values
are smaller)

0%‐Quartile
(Minimum)

Figure 4.19: Statistical Analysis of Greedy Selection for Different Numbers of Atom Containers

To summarize the surface plots for other AC numbers, Figure 4.19 gives a statistical analysis by means of
box plots. Each surface plot is characterized by five values that are drawn as continuous lines for different
numbers of ACs in Figure 4.19. Each line corresponds to a so-called “x percent”-Quartile. The Quartiles
denote certain values from the surface such that x percent of the surface values are smaller or equal to this
value. In Figure 4.19 it is noticeable that the (shaded) region between the 25%- and 75%-Quartile is a)
very small and b) very close to the minimum value of the surface. Both properties indicate certain robust-
ness against changing parameter settings. Just the maximum values of the surface are outliers (i.e. signifi-
cantly bigger than 75% of the values) that have to be avoided by setting the parameters accordingly (i.e. to
avoid region R5). The performance for more than 5 ACs shows only small improvements (due to Am-
dahl’s law, i.e. the performance improvement is limited by the available parallelism and the available data
memory bandwidth), but still the (shaded) region between the 25%- and 75%-Quartile gets tighter.

- 73 -

Chapter 4 The RISPP Run-time System

0
50

100
150
200
250
300
350
400

2 3 4 5 6 7 8 9 10 11 12 13

100%‐Quartile 75%‐Quartile
50%‐Quartile 25%‐Quartile
0%‐Quartile

Ex
ec
ut
io
n
Ti
m
e
[M

Cy
cl
es
]

#Atom Containers
Figure 4.20: Statistical Analysis of Optimal Selection for Different Numbers of Atom Containers

Figure 4.20 shows the box plots for the optimal selection. It becomes apparent that the fastest execution
(0%-quartile) is not significantly different compared with the greedy selection, but the slowest execution
(100% quartile) is noticeable different. For small number of ACs, the slowest execution is significantly
worse (in comparison with the slowest greedy selection). However, in some cases, the slowest execution
is faster in comparison with the greedy selection (e.g. for 9 ACs and 12 onwards). This is based on a dif-
ferent selection for the In-Loop De-blocking Filter as indicated in Figure 4.17 c. Another noticeable dif-
ference is that the shaded region between the 25%- and 75%-Quartile is even tighter in comparison with
the greedy selection. This indicates that the optimal selection is more robust against ‘bad’ parameter set-
tings.

Summary of the Molecule Selection:

The Molecule Selection is triggered for each computational block by Forecast Instructions. It determines
Molecules to implement the forecasted SIs such that all these Molecules fit to the reconfigurable hardware
and a profit function – considering the SI execution frequency and the latency improvement and recon-
figuration delay of a Molecule – is maximized. The Molecule Selection is NP-hard and thus an optimized
greedy approach was developed to solve it. This is particularly important, as the Molecule Selection has to
be calculated during application run time to be able to adapt on changing SI execution frequencies and
changing availability of reconfigurable fabric. Evaluating the parameter settings of the profit function
showed that it is rather stable to changing scenarios and provides a good application performance in most
of the cases. The comparison with an optimally solved Molecule Selection shows that the proposed greedy
approach performs reasonable well and in many cases even finds the same solution than the optimal selec-
tion. After Molecules are selected for the forecasted SIs, the Atoms that are needed to implement them
need to be reconfigured. As only one reconfiguration may be performed at a time, the sequence of the re-
configurations has to be determined, as will be presented in the next section.

4.5 Reconfiguration-Sequence Scheduling
After the Molecule Selection (see Section 4.4) has determined which Molecules shall be reconfigured to
implement the forecasted SIs (see Section 4.3), the reconfigurations of the demanded Atoms need to be
started. A constraint of all existing FPGA platforms is that at most one reconfiguration can be performed
at a time and therefore, the demanded Atom reconfigurations need to be scheduled, i.e. a reconfiguration
sequence needs to be determined. Future FPGA families may potentially allow performing two or more

- 74 -

4.5 Reconfiguration-Sequence Scheduling

reconfigurations in parallel, however, this comes with significant conceptual drawbacks. The reconfigura-
tion time depends on the amount of configuration bits that have to be written (the so-called bitstream) and
the memory bandwidth to access the reconfiguration data memory, i.e. [] [] /reconft ms Bitstream KB=

 [/]ReconfBandwidth KB ms . (note: [/]x KB ms directly correspond to [/]x MB s). When using a given
reconfiguration bandwidth to perform two reconfigurations then it is not beneficial to perform them in
parallel (assuming that two reconfiguration ports would be available) as the available bandwidth needs to
be shared between both reconfigurations. Partitioning the available bandwidth between multiple recon-
figuration ports does not affect the duration until all reconfigurations are completed. However, using the
full available bandwidth to perform one reconfiguration after the other leads to the advantage that the first
reconfiguration is completed as early as possible (considering the given bandwidth) and therefore some
Atoms may be used rather early. Then the question arises, which Atom shall be reconfigured first etc., i.e.
the reconfiguration sequence.

The importance of a good Reconfiguration-Sequence Scheduling is motivated by a simple example in
Figure 4.21. The figure shows three different Molecules imG that implement the same SI. The Molecule
Selection determined that the Molecule 3mG shall be used to implement the SI. A good schedule should
exploit the potential for upgrading from one Molecule to a faster one until the selected Molecule is finally
composed. Without this upgrading, the SI cannot utilize the accelerating Atoms for a noticeable longer
time and has to use the rather slow cISA execution instead (see Section 5.2). Figure 4.21 shows two dif-
ferent schedules that perform six reconfigurations to eventually implement the selected Molecule 3mG . The
schedule that is indicated by the green continuous line first loads all instances of Atom A0 and afterwards
all instances of Atom A1. After four reconfigurations the point (3,1) is reached (i.e. three instances of
Atom A0 and one instance of Atom A1), which is not sufficient to implement any of the available Mole-
cules. After the fifth reconfiguration, 2 becomes available and thus the SI implementation is upgraded
from the cISA execution to a hardware execution using the Atoms. Note that also 1 becomes available
after the fifth reconfiguration, however, as it exploits less parallelism (using less Atoms) it is slower than

2 and thus 2 is preferred. The schedule that is indicated by the dark red dashed line exploits the poten-
tial to SI upgrades. At first, the Atoms that are needed to implement 1

mG G

G G

m

m m
mG are reconfigured and thus already

after three reconfigurations the SI implementation is upgraded and the slow cISA execution is not de-
manded anymore. Afterwards, the schedule upgrades to 2mG and eventually to 3mG .

3mG

2mG

Instances of
Atom A1

1 2 3

1

2

3

Molecules that
are upgrade
candidates

Selected
Molecule

Instances
of Atom Ao

1mG

recon-
figured
Atoms

fastest available
Molecule

1

2

3

4

5

6

1mG

2mG

3mG
2mG 2mG

3mG

Note: all Molecules
implement the same SI

imG

Figure 4.21: Different Atom Schedules with the Corresponding Molecule Availabilities

This schedule cannot be determined at compile time because it highly depends on run-time properties. For
instance, the starting point of the schedule (which Atoms are currently available) and the ending point

- 75 -

Chapter 4 The RISPP Run-time System

(which Molecule is selected depending on the amount of available Atom Containers and the predicted SI
execution frequency) depend on the run-time situation. Typically, multiple SIs are predicted for one com-
putational block (see for instance Figure 3.5 on page 31) and thus the scheduler has to decide which SI to
upgrade first. Additionally, these different SIs may demand multiple different Atom types (not only two
as shown in the example in Figure 4.21) and Molecules of different SIs may share some Atoms, which
enlarges the problem space of determining the Atom loading sequence. A too simplistic Reconfiguration-
Sequence Scheduling will not exploit the full performance potential of the RISPP system, as shown later.

4.5.1 Problem Description for Reconfiguration-Sequence Scheduling

The input to the Reconfiguration-Sequence Scheduling is a set { }iM m=
G of all Molecules that

are selected for implementation. The Meta-Molecule
n

im ∈
G `

 sup ()M (see Eq. 3.7 and Figure 3.11) contains all
Atoms that are needed to implement the selected Molecules. The number of instances of the ith Atom of

 sup ()M is named as “ ix ” (see Eq. 4.22). NA is defined as the number of Atoms that are needed to im-
plement all selected Molecules (see Eq. 4.23). The previously executed Molecule Selection guarantees
that these Atoms fit to the available Atom Containers (ACs), i.e. #NA ACs≤ .

 (4.22) () ()1 2
#Demanded instances of Atom
to implement the selected Moleculessup , ,..., ; : i

n i
AM x x x x= =

1n−

 ()
0

: sup i
i

NA M x
=

= = ∑ (4.23)

With these definitions, a loading sequence for Atoms can be defined as a scheduling function SF as shown
in Eq. 4.24. The interval [1 hereby represents k consecutive moments where in the moment ,]k [1,]j k∈
the reconfiguration of the Atom SF()iA j= is started. The variable k determines the amount of demanded
reconfigurations and thus depends on the currently available Atoms aG and the selected Molecules M
(see Eq. 4.25). The scheduling function for the schedule that is indicated by the dark red dashed line in
Figure 4.21 is 1SF(1) A= , 1SF(2) A= SF(3), 0A= , 0SF(4) A= , SF 1(5) A= , 0SF(6) A= .

 [] { }0SF : 1, ,..., nk A A −→ 1 (4.24)

(): supk a M=
G � (4.25)

[] (){ }0, 1 : | ii n j SF j A ix∀ ∈ − = = (4.26)

 (4.27) ()() (
1

SF sup
j

T j M
=

=∑)
k

To make sure that exactly those Atoms are loaded which are needed to implement the requested Mole-
cules (i.e. sup ()M) an additional condition needs to be defined that restricts the general scheduling func-
tion of Eq. 4.24. The condition in Eq. 4.26 ascertains, that SF considers each Atom iA in the correct mul-
tiplicity ix . The variable i makes sure that all Atom types iA are considered and the variable j examines
all k reconfigurations whether Atom iA is reconfigured during that moment. All these moments are col-
lected in a set and the determinant of that set has to equal the demand number of instances for Atom iA .
Altogether this guarantees the property shown in Eq. 4.27. The scheduling function in Eq. 4.24 with the
condition in Eq. 4.26 describes a valid schedule. The properties of a good schedule have to be discussed.
The main goal is to reduce the number of cycles that are required to execute the upcoming computational
block (for which the Molecule Selection determined the Molecules that shall be reconfigured). Therefore,
it is essential to exploit the architectural feature of stepwise upgrading from slower to faster Molecules
until all selected Molecules are available. An optimal schedule would require a precise future knowledge
(e.g. which SI will be executed when) to determine the schedule that leads to the fastest execution. For a
realistic scheduler implementation, less exhaustive future knowledge needs to be assumed. Based on the

- 76 -

4.5 Reconfiguration-Sequence Scheduling

online monitoring (see Section 4.3) an estimate, which SI is more important (in terms of expected execu-
tions) than another one is available, i.e. the expected SI execution frequency is obtained as additional in-
put.

As shown in the example in Figure 4.21, major performance changes occur then, when an SI can up-
grade from an available Molecule to a faster one. Therefore, the problem of scheduling Atoms is reduced
to the problem of scheduling Molecules. This strategy not only reduces the scheduling complexity (each
scheduled Molecule requires at least one additional Atom) but it also allows for a clear expression which
SI shall be upgraded next. Out of a Molecule reconfiguration sequence, the Atom reconfiguration se-
quence has to be determined. When denotes the available (or already scheduled) Atoms and aG mG denotes
the Molecule that shall be scheduled next, the Atoms in the Meta Molecule a mG G

|G G

G

� need to be reconfigured
in the next steps. When Atom reconfigurations were already determined, then
scheduling function need to fulfill the condition from Eq.

| a m�

aG �

[0, 1]i k∈ −
4.28. The sequence in which the Atoms from the

Meta Molecule shall be reconfigured is not explicitly expressed here, because this sequence is not
important to upgrade the targeted SI toward the envisioned Molecule

m
mG .

 ()() [
1

T SF , 0, 1
a m

j
i j a m i k

=
]+ = ∈∑

!G G� G G� −

G

 (4.28)

Not all Molecules are allowed to be scheduled in that way, only the Molecules that are upgrade candi-
dates to the Molecules that are determined by the Molecule Selection shall be considered here. If a Mole-
cule that is not such an upgrade candidate would be scheduled, then potentially Eq.

m

4.27 (and thus the ac-
tual condition from Eq. 4.26) would be violated. Instead, the focus has to be placed on those Molecules
that are upgrade candidates for the selected Molecules of the predicted SI. To make use of stepwise up-
grading from slower to faster Molecules, at first all smaller Molecules M ′ that implement the same SIs as
the selected Molecules M need to be determined (see Eq. 4.2932).

 { }: . () .
m M

()M o o m o getSI m getSI
∈

′ = ≤ ∧ =
G∪

G G G G G
 (4.29)

The Molecules in M ′ are all possible intermediate steps that might be considered on a schedule that even-
tually reaches sup () sup ()M M ′= . However, some further optimizations have to be considered. A sched-
ule candidate (i.e. a Molecule) might be already available (i.e. m∈

G M ′ m aG
≤

G) although it has not been
explicitly scheduled. This depends on the Atoms in aG that were a) initially available in the Atom Contain-
ers or b) Atoms of those Molecules that are already scheduled. Such a Molecule does not need to be
scheduled explicitly, because it would not trigger any Atom reconfigurations, i.e. it would not change the
scheduling function . Furthermore, a currently unavailable MoleculeSF 33 is not necessarily faster than the
currently fastest available (or scheduler) Molecule for the same SI. For example Figure 4.21 may contain
a third upgrade candidate 4 with a worse latency(1,m =

G 3) 34 than 2 (2,2)m =
G but a faster latency than

1 . After 2 is composed by the schedule with the dashed line (see (1,2)m =

aG

G GmG Figure 4.21), 4 is still un-
available and it does not offer a latency improvement. Therefore, such a Molecule is not scheduled explic-
itly. However, such a Molecule may be beneficial in certain scenarios, depending on the initially available
Atoms . In

m

Figure 4.21, it is assumed that initially no Atom is available, but – as discussed in the con-
text of the figure – the available Atoms depend on the reconfigurations for the previously executed com-
putational blocks. In this example, 4 may be beneficial if mG () ()4 2 a m a m≤

G G G G� � , e.g. for (0,3)a =
G . In

this example, is an upgrade candidate, because it can be reached with one reconfiguration and leads to 4mG

32 please note that the union operator in Eq. 4.29 is a set union, not a Molecule union, i.e. M ′ is a set of Molecules

not a Meta Molecule
33 i.e. not all demanded Atoms are available
34 i.e. demanded number of cycles for one execution of the Molecule

- 77 -

Chapter 4 The RISPP Run-time System

a faster latency than 1 . Therefore, it cannot be assumed that Molecules like 4mG mG are removed at compile
time, as they may be beneficial depending on the currently available Atoms. Instead, the list of Molecule
candidates from M ′ is cleaned by removing those Molecules that are already available (as discussed
above) and those Atoms that do not lead to a performance improvement in comparison with the currently
fastest Molecule of the same SI (see Eq. 4.30).

 ()
0 . ()

. (). .getLatenc (): a m m getLatency
m getSI getFastestAvailableMolecule a yM m M > ∧ <⎧ ⎫⎛ ⎞′′ ′⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

G G G�G G= ∈
G

 (4.30)

′From the Molecules in M ′ one particular Molecule is chosen (different policies are presented in Sec-
tion 4.5.2) and the scheduling function to reconfigure the additionally demanded Atoms is defined. After-
wards, the remaining scheduling candidates are cleaned according to Eq. 4.30 (using M ′′ as input for
Eq. 4.30 instead of M ′ that was used as input for the initial cleaning).

4.5.2 Determining the Molecule Reconfiguration Sequence

Different strategies to determine the Molecule Reconfiguration Sequence will be presented and their ad-
vantages and disadvantages will be discussed. The examples shown in Figure 4.22 will be used to explain
the strategies. The figure shows two SIs (circles for SI1 and squares for SI2) with multiple Molecules per
SI. To ease the explanation, the discussion is restricted to Molecules that only use two different Atom
types (A0 and A1). The two dark-filled Molecules (1mG and 2mG) are the Molecules that are selected to im-
plement to two SIs. The lighter-filled Molecules are intermediate upgrade possibilities for the SIs. It is
considered, that initially no Atoms are available (i.e. (0,...,0)a =

G). The target of the scheduling strategy is
to load those Atoms that both selected Molecules are available, i.e. that { }()1, m m2sup G G is reached.

()1 2

1 2

sup { , }
= ∪

G G
G G

m m
m m

1mG

2mG

Figure 4.22: Comparing Different Scheduling Methods for Two Selected Molecules of Different SIs

First Select First Reconfigure (FSFR): As the possibility to upgrade from one Molecule to a faster one
can lead to a significant improved execution time (as shown in Figure 4.21), FSFR mainly concen-
trates on exploiting this feature. In general, multiple SIs are required to accelerate a computational
block. FSFR concentrates on first upgrading the most important SI until it reaches the selected Mole-
cule, before starting the second most important SI. The term “important” denotes the sequence in
which the Molecule Selection (see Section 4.4) decides which Molecule shall be used to implement an

- 78 -

4.5 Reconfiguration-Sequence Scheduling

SI. The selection algorithm calculates a profit value for each Molecule of all demanded SIs and selects
the Molecule with the highest profit first. This iterates until for all SIs a Molecule is selected, i.e. there
is a sequence in which the SI implementations are selected and this sequence reflects the result of the
profit function. By performing the SI upgrades in the same sequence, the parameters that are used to
determine the profit of the Molecule that is selected first are considered. However, this strategy up-
grades one SI after the other (up to the selected Molecule, respectively). It is not possible to upgrade
one SI to some degree (not up to the selected Molecule), then upgrade another SI, and eventually con-
tinue upgrading the first SI.

Avoid Software First (ASF): One potential problem of the FSFR schedule in Figure 4.22 is that SI2 is
not accelerated by a Molecule until SI1 is upgraded up to the selected Molecule. Typically, the first
upgrade steps that move from the cISA execution to a hardware execution lead to the highest latency
improvement, whereas later upgrade steps sometimes only lead to a Molecule latency reduction of a
few cycles. Therefore, after a reasonable fast hardware Molecule for SI1 is available, upgrading it fur-
ther does not necessarily lead to an overall application performance improvement, because SI2 is sill
executed in the relatively slow cISA implementation which dominates the execution time. Therefore,
the ASF scheduler concentrates on first loading an accelerating Molecule for all SIs to avoid the rela-
tively slow cISA execution (first phase). Again, it uses the sequence that was determined by the
Molecule Selection to upgrade all SIs that still use the cISA execution. After no cISA execution is
demanded any more, the remaining Molecule updates are performed using the FSFR algorithm, i.e.
one SI after the other is upgraded up to the selected Molecule (second phase).

Smallest Job First (SJF): Continuing the idea of loading small Molecules first, leads to the SJF sched-
ule. It starts with the same strategy like the ASF algorithm, i.e. it assures that no SI demands the cISA
Molecule for execution any more (first phase). Afterwards, instead of following the FSFR approach,
for all remaining Molecule candidates the number of additionally required Atoms is determined and
the Molecule with the minimal additional Atoms is selected, i.e. the additionally demanded Atoms are
scheduled (second phase). If two or more Molecules require the same minimal number of additional
Atoms, then the Molecule with the bigger performance improvement (i.e. latency reduction) is sched-
uled first. For instance, in Figure 4.22, after the SJF schedule established a hardware Molecule for
both SIs (i.e. at position (2,1)), two possibilities exist to upgrade an SI implementation by just loading
one further Atom. If A0 is reconfigured then SI2 is upgraded, if A1 is reconfigured then SI1 is up-
graded. Depending on the latency improvement (not shown in the figure), SJF decides to upgrade SI1
first.

Highest Efficiency First (HEF): All three presented schedulers bear certain drawbacks. Either they con-
centrate on upgrading one SI after the other (FSFR, ASF in the first and second phase, SJF in the first
phase) or they concentrate on selecting the locally smallest upgrade step (SJF in the second phase).
What is needed is a scheme that situation-dependent determines, whether it is more beneficial to con-
tinue upgrading a certain SI or to switch to a different SI and later on continue the previous SI. For in-
stance, consider the SJF strategy for SIo and SIp in the example shown in Figure 4.23. After reconfig-
uring one Molecule (to avoid the cISA execution) for both SIs (i.e. reaching Molecule 1pG), SJF con-
siders the smallest upgrade step. As SIo has a gap in its upgrade chain (i.e. there is one upgrade Mole-
cule that demands two or more additional Atoms) SJF concentrates on SIp first. However, SIo might
be very often executed and thus become a performance bottleneck if it is not upgraded early. Even if
SIo would not have such an upgrade gap, it still depends only on the latency improvement of the next
upgrade step, which Molecule SJF will choose. For instance, if SIo offers another Molecule 5 (1,1)o =

G
but this Molecule only provides minor (or even none) latency improvement in comparison with 1oG ,
then SJF would not choose it. However, this upgrade step might enable further upgrades (i.e. 2oG etc.)
that then only need one additional Atom and that might provide major performance improvements.
Therefore, a metric is needed that considers these situations and that determines the upgrade

- 79 -

Chapter 4 The RISPP Run-time System

1. // Input: set of selected Molecules { }M m=
G and predicted SI execution frequencies

 []if SI from online monitoring.

2. // Output: Sorted list of Molecules ,scheduledList i.e. Molecule schedule.
3. // Consider all smaller Molecules, see Eq. 4.29
4. ;M ′ ←∅
5. {m M∀ ∈

G

6. : . () .o o m o getSI m getSI∀ ≤ ∧ =
G G GG G () {

7. { };M M o′ ′← ∪
G

8. }
9. }
10. // Initialize the array for all forecasted SIs bestLatency
11. currentlyAvailableAtoms;a ←

G

12. {m M∀ ∈
G

13. [] (). () . (). . ();bestLatency m getSI m getSI getFastestAvailableMolecule a getLatency←
G G G

14. }
15. // Schedule the Molecule candidates
16. . ();scheduledList clear
17. () while M ′ ≠ ∅ {
18. // Clean Molecule candidates, see Eq. 4.30
19. {m M ′∀ ∈

G

20. []()if . () . ()m a m getLatency bestLatency m getSI≤ ∨ ≥
G G G G

21. \ { };M M m′ ′←
G

22. }
23. ()if ;M break′ = ∅ // no more upgrade candidates unavailable or

 (latency-wise) beneficial
24. 0;bestBenefit ←
25. {o M ′∀ ∈

G

26. []()
. (). ()

;
. () . ()

o getSI getExpectedExecutions
benefit

bestLatency o getSI o getLatency a o

∗
←

−

G
G G G � G

27. ()if {benefit bestBenefit>
28. ;bestBenefit benefit←
29. m o ;←

G G

30. }
31. }
32. // Schedule the chosen Molecule
33. (). ;scheduledList push mG
34. ;a a m← ∪

G G G

35. []. () . ();bestLatency m getSI m getLatency←
G G

36. }
37. return ;scheduledList

Algorithm 4.3: The Implemented Scheduling Method “Highest Efficiency First” (HEF)

- 80 -

4.5 Reconfiguration-Sequence Scheduling

Molecules that are the most beneficial ones on a scheduling path up to sup ().M This metric needs to
consider the latency improvement, the SI execution frequency, and the amount of additionally de-
manded Atoms. Note that – unlike the latency improvement that is used for the Molecule Selection
(see Eq. 4.16 in Section 4.4.2) – the latency improvement relative to the currently fastest Molecule of
that SI is considered (considering the already scheduled Atoms) instead of the latency improvement
relative to the cISA execution.

()4 4

4 4

sup { , p }o
o p= ∪

GG
G G

1pG 2pG 3pG1oG

2oG

3oG

4pG

4oG

Figure 4.23: The Problem of Upgrade ‘Gaps’ for the SJF Scheduler

Algorithm 4.3 shows the pseudo code of the proposed “Highest Efficiency First” (HEF) scheduling algo-
rithm. At first, it collects all upgrade candidates (lines 4-9, as explained in Eq. 4.29) and initializes an in-
ternal data structure that maintains the fastest SI execution latency considering the currently available At-
oms (lines 11-14). Later, this data structure will be upgraded after a Molecule is scheduled (line 35). In the
main loop (lines 17-36) the upgrade candidates are cleaned (according to Eq. 4.30, see lines 19-22) and
the Molecules with the highest benefit is determined (lines 24-31). The benefit computation for the Mole-
cule candidates is shown in line 26. The performance improvement compared with the currently fastest
available/scheduled Molecule for the same SI is weighted with the number of expected SI executions and
the number of additionally required Atoms. Eventually, the Molecule with the highest benefit is pushed to
the scheduledList (the result of the algorithm) and the data structures are updated (lines 33-35).

The scheduledList (the result of the HEF algorithm in Algorithm 4.3) contains the Molecules in the
sequence as they shall be reconfigured. However, this sequence may contain gaps, i.e. HEF does not as-
sure that all possible upgrade steps are considered. Instead, HEF determines milestones that should be tar-
geted, not specifying how these milestones shall be reached. To fill these potential gaps between the mile-
stones further upgrade Molecules are inserted into the HEF schedule. Whenever the HEF scheduler de-
cided that Molecule should be reconfigured next, then all upgrade candidates of the same SI

 that are not yet available (|
m

())

G G G
G G o m≤

(. () .o getSI m getSI= | 0)a m >
G G� are inserted into the scheduledList. This

basically corresponds to the FSFR policy, because only one SI is upgraded. From this extended sched-
uledList the scheduling function SF is generated by scheduling those Atoms that are additionally de-
manded to implement the next Molecule of the scheduledList (iterating over all Molecules of the sched-
uledList).

- 81 -

Chapter 4 The RISPP Run-time System

4.5.3 Evaluation and Results for the Reconfiguration-Sequence Scheduling

The four different proposed scheduling algorithms are benchmarked using the H.264 video encoder and
SIs from Section 3.3 for encoding 140 frames of a CIF35 video sequence with different Atom Container
(AC) quantities. The results for 0 to 4 ACs are omitted for clarity, because their execution time is signifi-
cantly longer36 and the impact of the chosen scheduling algorithm does not become apparent if such few
Atom reconfigurations need to be scheduled. Instead, a noticeable situation can be seen when seven ACs
are available. The performance for the FSFR (First Select First Reconfigure), ASF (Avoid Software First),
and later also SJF (Smallest Job First) scheduler degrades when more ACs are added. This is due to the
fact, that bigger Molecules (i.e. Molecules with more Atoms) shall be reconfigured (determined by the
Molecule Selection from Section 4.4 as more space is available) and this increases the reconfiguration
time until the selected Molecules are finally available. Therefore, although these bigger Molecules offer
the potential for a faster execution, this potential has to be made available by a more sophisticated sched-
uling scheme. Especially FSFR fails here, as it strictly upgrades one SI after the other. However, from 17
ACs on, FSFR outperforms ASF, as ASF initially spends some time to accelerate all SIs, even though
some of them are significantly less often executed than others are. The HEF (Highest Efficiency First)
scheduling does not underlie such drawbacks, as it is able to weight the importance of the Molecules in-
dependently. Therefore, it always leads to the best performance in comparison with the other scheduling
schemes. The more ACs are available, the clearer the differences between the scheduling methods become
apparent.

200

300

400

500

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ex
ec

ut
io

n
Ti

m
e

[M
ill

io
n

C
yc

le
s]

Amount of Reconfigurable Hardware [#AtomContainers]

Avoid Software First (ASF)
First Select First Reconfigure (FSFR)
Smallest Job First (SJF)
Highest Efficiency First (HEF)

Figure 4.24: Comparing the Proposed Scheduling Schemes for

Different Amount of Atom Containers

Figure 4.24 focuses on showing the differences between the schedulers and therefore a zoom on the x-axis
is provided (i.e. the x-axis does not start at zero). To provide a relative comparison of the different sched-
ulers, Table 4.2 shows the speedup of the HEF scheduler in comparison with the FSFR, ASF, and SJF
scheduler for different amount of Atom Containers. In comparison with FSFR, HEF provides up to 1.38x
speedup (for 18 ACs), in average 1.17x for all 20 AC quantities (5-24 ACs) and in average 1.26x for 15-
24 ACs. In comparison with ASF, HEF provides up to 1.52x speedup (for 20 and 24 ACs), in average
1.23x for all 20 AC quantities and in average 1.40x for 15-24 ACs. In comparison with SJF, HEF provides

35 Common Intermediate Format, i.e. 352 x 288 pixels
36 slowest execution speed for zero ACs (corresponds to a general-purpose processor): 7,403 million cycles

- 82 -

4.5 Reconfiguration-Sequence Scheduling

up to 1.19x speedup (for 18 and 24 ACs), in average 1.08x for all 20 AC quantities and in average 1.13x
for 15-24 ACs. This shows that the impact of a good scheduling decision is higher when more ACs are
available.

The detailed scheduling behavior of HEF will be analyzed by illustrating the direct scheduling deci-
sions and the resulting performance changes. Figure 4.25 shows the first two computational blocks of the
H.264 video encoder (i.e. Motion Estimation and Encoding Engine as illustrated in Figure 3.5 on page 31)
executed for one frame using 10 Atom Containers. The x-axis shows a time axis from 0 to 2.4 million cy-
cles after the application started. The lines show the latencies for four SIs on a logarithmic scale (see left
y-axis) and thus the immediate scheduler decision. Whenever a latency line decreases, the Atoms to up-
grade the Molecule just finished loading. The bars show the resulting SI execution frequency for periods
of 100,000 cycles (see right y-axis), thus showing the performance improvement due to the scheduling.

#Atom Containers 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

HEF vs. FSFR 1.01 1.03 1.03 1.06 1.06 1.09 1.10 1.10 1.17 1.18 1.25 1.26 1.32 1.38 1.28 1.31 1.23 1.21 1.071.29

HEF vs. ASF 1.00 1.04 1.04 1.06 1.05 1.08 1.06 1.06 1.13 1.18 1.21 1.26 1.36 1.48 1.45 1.52 1.51 1.39 1.261.52

HEF vs. SJF 1.01 1.01 1.02 1.02 1.03 1.04 1.04 1.04 1.08 1.12 1.09 1.13 1.04 1.19 1.13 1.14 1.11 1.17 1.091.19

Table 4.2: Speedup due to HEF Scheduling

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0

1
10

10
0

1,
00

0
10

,0
00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

DCT Execution MC Execution SATD Execution SAD Execution

SAD Latency SATD Latency MC Latency DCT Latency

L
in

es
: S

I L
at

en
cy

 [C
yc

le
s]

 (L
og

 S
ca

le
)

B
ar

s:
 #

 o
f S

I E
xe

cu
tio

ns
 p

er
 1

00
,0

00
 C

yc
le

s

Execution Time [Million Cycles]

Latency of SAD
is decreasing

Latency of SATD
is decreasing

Figure 4.25: Detailed Analysis of the HEF Scheduler for the Motion Estimation and Encoding En-
gine, Showing how the SI Latencies (Lines) and Execution Frequencies (Bars) Change Over Time

The first scheduling decision upgrades SAD, which improves the performance significantly from 4,673
cycles (cISA execution) to 68 cycles (smallest hardware Molecule). Afterwards the HEF scheduler up-
grades SATD multiple times, and then performs one more upgrade for SAD and eventually two minor
upgrades for SATD. At the beginning of the execution, rather few SAD and SATD SI are executed per
100,000 cycles (i.e. the bars are rather short). During the SI upgrades, more SIs get executed and after all
upgrades completed, the SI execution frequencies stabilize at a relatively high value. After the Motion
Estimation completed, the SIs for MC and DCT are upgraded. Again, it becomes visible how the HEF

- 83 -

Chapter 4 The RISPP Run-time System

scheduler switches between the SIs, depending on which upgrade step seems more beneficial. During the
upgrades for MC and DCT, the latency for SAD and SATD gets worse, i.e. they are downgraded. This is
because free Atom Containers are demanded to upgrade MC and DCT and thus some Atoms for SAD and
SATD are replaced (see Section 4.6).

Summary of the Reconfiguration-Sequence Scheduling:

The Reconfiguration-Sequence Scheduling determines the sequence in which Atoms shall be reconfig-
ured. It is triggered after the Molecule Selection, i.e. when new Molecules shall be reconfigured for an
upcoming computational block. This sequence is performance-wise important as a) at most one Atom can
be reconfigured at the same time and b) the Atom reconfiguration sequence determines which Molecules
are available and thus whether or not the feature of Molecule upgrading is exploited. The task of deter-
mining the Atom reconfiguration sequence is reduced to the task of determining the next Molecule up-
grade and presented four different strategies to solve this problem. The Highest Efficiency First (HEF)
scheduler performed better in all scenarios in comparison with the other algorithms. It considers the SI
latency improvement, the SI execution frequency, and the amount of additionally demanded Atoms to
determine the next Molecule upgrade. To reconfigure a new Atom, a free Atom Container (AC) is needed
for it. If no ACs are free, some Atoms need to be replaced, as will be presented in the next section.

4.6 Atom Replacement
4.6.1 Motivation and Problem Description of State-of-the-art Replacement

Policies

Encoding Engine (EE)Motion Estimation (ME)
Loop
Filter
(LF)

~ 55% ~ 35%

Computational
Blocks

Typical Time
Budget

Demanded
Special
Instructions

~ 10%

Critical re-
placement

decision point

Policy Replaced Atoms when prefetching for LF Demanded for SIs
LRU SADrow and SAV: Parallel Difference Computation and Accumulation SAD, SATD

MRU Transform DCT, HT, SATD

Note: • Execution time of LF is rather short not all Atoms are replaced
• ME and EE share Atoms (e.g. Hadamard Transf. for SATD and HT)
• It is crucial to avoid replacing the Atoms demanded by ME when prefetching for LF

• SAD: Sum of Absolute
Differences

• SATD: Sum of Absolute
(Hadamard‐) Transformed
Differences

• DCT: Discrete Cosine Transformation
• HT: Hadamard Transformation
• Intra‐Frame Prediction
•Motion Compensation for Inter‐
Frame Prediction

Problem of state-of-the-art replacement policies when prefetching for LF:
both LRU and MRU would replace Atoms that are demanded right after the completion of the
relatively short LF execution, which can significantly affect the overall performance

Figure 4.26: High-level H.264 Video Encoder Application Flow, Showing a Typical Use Case and

Presenting the Different Replacement Decisions of LRU and MRU in Detail

- 84 -

4.6 Atom Replacement

Whenever an Atom shall be reconfigured and no free Atom Container (AC) is available, then one Atom
has to be replaced. Free ACs might be available after the application started and did not reconfigure all
ACs, yet. Depending on the AC requirements of the application, all free ACs are used (i.e. reconfigured to
contain an Atom) after the first forecasts. Before presenting the developed replacement policy, an example
for a typical replacement situation will be presented and discussed to show how state-of-the-art replace-
ment policies would perform.

Figure 4.26 shows a high-level application flow of an H.264 video encoder (see also Section 3.3) that
consists of three major computational blocks, namely Motion Estimation (ME), Encoding Engine (EE),
and In-Loop De-blocking Filter (LF). They execute subsequently per video frame and use multiple com-
putationally intensive Special Instructions (SIs), e.g. SAD, SATD, DCT, and HT. A time budget of 33 ms
per frame (targeting 30 frames per second) allows multiple reconfigurations per frame. After the SIs of
ME finished execution, the reconfigurations for the SIs of EE may start. This may demand replacements
of available Atoms from the reconfigurable fabric. Note, that the typical execution time of a computa-
tional block and the hardware requirements of its SIs differ for ME, EE, and LF (as indicated in
Figure 4.26). For instance, LF typically has neither the time window37 nor the hardware requirements to
reconfigure large parts of the reconfigurable fabric. Therefore, some of the available38 Atoms remain in
the reconfigurable fabric. When these Atoms are demanded again, they can be used without additional
reconfiguration. Here, the replacement policy has to decide which Atoms shall remain available in the
reconfigurable fabric for potential future use.

There are noticeable differences between the replacement requirements for Reconfigurable Processors and
for cache lines and memory pages:

• Cache and page replacement policies [Tan07] aim at exploiting the locality of memory accesses. In
Reconfigurable Processors, the locality of SI executions – and thus, the requirements of the corre-
sponding Atoms – is predetermined by the prefetching mechanism (see Section 4.3), independent of
whether prefetching is decided upon statically or dynamically [LH02]. This means that prefetching
predicts which SIs39 and Atoms40 are most beneficial for a computational block, and which are most
likely not demanded (those are replacement candidates).

• Furthermore, the Belady replacement policy [Bel66] (optimal for cache and page replacement but
demanding future knowledge) is not necessarily advantageous for Reconfigurable Processors. This
policy necessitates knowledge about the upcoming memory accesses and replaces those cache lines
that are not needed for the longest time into the future. As future knowledge is typically not available,
this policy is not practically implementable, but it determines the optimal replacement policy for
cache and page replacements. However, for Reconfigurable Processors the situation is different. An
access to a memory page that is currently not loaded has to be stalled until that page is swapped in. In-
stead, Atoms are not necessarily required for application execution. For instance, a reconfigurable
processor that executes an SI can still perform by using the rather slow core Instruction Set Architec-
ture (cISA, see Section 5.2) to implement the SI, i.e. even though the supporting Atoms are unavail-
able. Therefore, there is no clear notion when an Atom is needed but rather when it may be beneficial.

Due to these differences, state-of-the-art LRU-based (Least Recently Used) replacement policies may not
be able to determine good replacement decisions for reconfigurable processors. Figure 4.26 shows the
LRU behavior for the critical replacement decision when prefetching Atoms for LF. When prefetching for
LF starts, the Atoms for ME are the least recently used ones. Therefore, according the LRU policy, they
will be replaced first. Actually, this is a disadvantageous replacement decision, as these Atoms are most

37 i.e. the computations are completed before all demanded Atoms are reconfigured
38 i.e. already loaded to the reconfigurable fabric
39 determined by SI Forecasting (see Section 4.3)
40 determined by Molecule Selection (see Section 4.4)

- 85 -

Chapter 4 The RISPP Run-time System

likely going to be reconfigured soon again, because they lead to a noticeable performance improvement
for the upcoming ME execution. The reason for LRU’s disadvantageous replacement decision is the fact
that the access locality of Atoms is already considered by the prefetching and should no longer be an op-
timization goal for the replacement policy.

As the least recently used Atoms have a high chance of being used again (considering an iterative
execution of the computational blocks in an application), the Atoms that were used most recently (MRU)
might be good replacement candidates. MRU replaces those Atoms that were used by the directly preced-
ing computational block. For instance, Figure 4.26 shows that the Atoms for the Discrete Cosine Trans-
formation (DCT) and the Hadamard Transformation (HT) are replaced when the prefetching for LF starts.
However, MRU does not consider that two different computational blocks might share Atoms, e.g. some
Atoms for HT are also demanded for the Sum of Absolute Hadamard-Transformed Differences (SATD)
SI in ME. Again, the replacement decision is disadvantageous, as some beneficial Atoms for the directly
succeeding computational block are replaced. The new replacement policy – called MinDeg – overcomes
the drawbacks from LRU and MRU in these situations, as it will be shown in Section 4.6.2.

Many Reconfigurable Processors like Molen [VWG+04] or OneChip [JC99] consider LRU-based re-
placement policies. Additionally, these processors allow a compiler-determined replacement decision
[JC99, PBV07], which may be beneficial if good knowledge on the application control flow and the size
of the available reconfigurable fabric is available at compile time. However, if the application control
flow depends on the input data or the reconfigurable fabric has to be shared among multiple tasks (thus,
the available fabric per task is not fixed), then a compiler-determined replacement policy cannot provide
adaptivity and an LRU-based replacement might fail to determine good replacement decisions, as moti-
vated in Figure 4.26.

Compton [CLC+02] extends LRU to additionally consider the reconfiguration delay of reconfigurable
accelerators. A credit value is assigned to each accelerator and it is set to the accelerator’s size (e.g. con-
sidering look-up tables or gate equivalents) when it is reconfigured or demanded. Whenever an accelera-
tor needs to be replaced, the accelerator with the smallest credit value is selected and the credit values of
all other accelerators are decreased. Therefore, a larger accelerator has a higher chance to remain in the
reconfigurable fabric even if it is not used for a certain time but it can eventually be replaced if it is not
demanded for a longer time. However, the potential performance improvement of an accelerator is not
considered, e.g., two similar-sized accelerators might have a noticeably different performance impact (de-
pending on their availability when they are demanded) and even a rather small accelerator might lead to a
bigger performance improvement than a rather large accelerator. Furthermore, relevant architectures (like
presented in Section 2.2.4) consider similar-sized accelerators for practicability reasons, e.g. to achieve a
regular partitioning of the reconfigurable fabric and to provide dedicated communication points between
the reconfigurable and the non-reconfigurable fabric. Similar-sized accelerators result in similar recon-
figuration delays for the accelerators and thus the approach degenerates to LRU.

Besides reconfigurable accelerators, some approaches considered implementing tasks or subtasks in
reconfigurable hardware. Ahmadinia [ABK+04] used an LRU strategy to replace tasks from a task graph.
Resano [RM04] proposed an adaptation of the Belady replacement [Bel66]. They exploit the property that
their system can predetermine a schedule for the subtask execution sequence, as they assume that the task-
graph control flow and the subtask execution time are fixed. Therefore, knowledge about the near future
of the subtasks execution sequence is available which is then used to determine the replacement decision.
However, this approach is only possible if the execution sequence of the subtasks can be predetermined
and is not suitable for replacing accelerators, as the control flow is often input-data dependent and the
execution sequence and execution time cannot be predetermined at compile time.

Instead of adapting existing replacement policies for cache and page replacement, limiting the sce-
nario to predetermined execution sequences (to obtain future knowledge), or focusing on the reconfigura-

- 86 -

4.6 Atom Replacement

tion delay, directly considering the performance impact of the reconfigurable Atoms is required to fully
exploit the potential of reconfigurable processors. Figure 4.27 shows an example for the SIs SATD and
HT that were introduced in Figure 4.26. An excerpt of the Molecules is given along with the correspond-
ing latencies of a Molecule execution. The fastest currently available Molecule of an SI is determined by
the available Atoms. For instance, when the Atoms (0,2,1,1)a =

G are available (i.e. two instances of ‘Sum
of Absolute Values (SAV)’, one instance of ‘Repack’, and one instance of ‘Transform’), then the latencies
of the fastest Molecules in Figure 4.27 for SATD, 4x4 HT and 2x2 HT are 93, 16, and 2 cycles, respec-
tively. When the ‘Transform’ Atom would be replaced (leading to (0,2,1,0)a′ =G) the latencies would slow
down to 216, 174, and 67 cycles, respectively. Here, all three SIs are affected in a negative way because
this Atom is beneficial for all of them alike, i.e. it is shared among the SIs. Instead, replacing one of the
two SAV instances (leading to) would not affect the latencies at all. This is the key observa-
tion toward a performance-guided replacement, i.e. instead of considering the utilization history of the
Atoms (like LRU and MRU do), determining the performance impact for the SIs when replacing an Atom.

(0,1,1,1)a =′′
G

QSub SAV: Sum of
Absolute Values Repack TransformAtoms:

SIs: SATD: Sum of
Absolute

Hadamard‐Trans‐
formed Differences

4x4 Hadamard
Transformation

2x2 Hadamard
Transformation

Molecules:
(0,0,0,0) 319 cycles
(0,0,1,0) 261 cycles
(0,0,1,1) 173 cycles
(0,1,1,1) 93 cycles
(1,1,1,1) 22 cycles
(1,2,2,2) 18 cycles
…

(0,0,0,0) 201 cycles
(0,0,1,0) 174 cycles
(0,0,1,1) 15 cycles
(0,0,2,2) 10 cycles
…

(0,0,0,0) 67 cycles
(0,0,0,1) 1 cycles

demands
(multiple)

has
(multiple)

This notation describes the Atom requirements of the different
Molecules as vectors of Atoms (in the sequence QSub, SAV, Repack,
Transform) with the resulting SI execution latency of the Molecules.

Figure 4.27: Examples for Atoms and their Utilization in SIs, Showing Different

Implementation Alternatives (i.e. Molecules) and their Execution Latencies

4.6.2 The MinDeg Replacement Policy

Whenever a prefetching operation is about to start a new reconfiguration and no free space (i.e. not yet
occupied parts of the reconfigurable fabric) is available, then an existing Atom has to be replaced. At first,
potential replacement candidates have to be determined out of which the replacement policy can choose
one Atom. These candidates assure that no Atom is replaced which is actually demanded by SIs of the
computational block (e.g. LF) for which the prefetching started. The currently available Atoms are de-
noted as and the demanded Atoms (determined by Molecule Selection, see Section aG 4.4) as sG . Some of
the Atoms that are demanded by sG might be already available and shall not be replaced. The replacement
candidates are given by Eq. 4.31. Altogether, the Atoms in the Meta-Molecule will be reconfig-
ured

cG a s�G G

|G

41 and demand at most | replacements. The general replacement function R (see Eq. a � sG 4.32) is
specified to determine which Atom Ai shall be replaced for the first reconfiguration (i.e. R(1)), the second
reconfiguration (i.e. R(2)) and so on.

41 if all planed reconfigurations finish before the next forecast

- 87 -

Chapter 4 The RISPP Run-time System

 : \c a s=
G G G

 (4.31)

{ } 0 1: 1, ..., nR a A A − ,s⎡ ⎤ →⎣ ⎦
G G� (4.32)

The input- and output- sets of this general Replacement Function R are specified, but it is not yet defined
which Atoms (output of R) shall be replaced and when (input of R). This actually depends on the chosen
policy. However, independent of the policy, all definitions of R have to assure an essential property. To
formulate this property, the convenience function T from Eq. 3.10 is needed (see Section 3.4) to transform
an Atom into a Molecule that comprises only that Atom. The essential property of R that has to be true for
all replacement policies is that the sum of all Atoms that R selects for replacement has to match the initial
Meta-Molecule of replacement candidates cG (see Eq.4.31). For instance, if cG contains two instances of
the Atom Ai then there have to be exactly two different replacement times x, y, x ≠ y with R(x) = R(y) = Ai
and there must not be any third time z, x ≠ z ≠ y with R(z) = Ai.

 ()()
1

a c

i
T R i c

=

=∑
�G G

G
 (4.33)

The performance-guided Minimum Degradation (MinDeg) replacement policy will be presented in detail.
To assure that it complies with the essential property from Eq. 4.33 the Meta-Molecule of replacement
candidates is iteratively updated. This means that the algorithm starts with the initial replacement candi-
dates in (determined once after the prefetching is decided) and after each replacement decision, the re-
placement candidates are updated accordingly. Additionally, not all replacement decisions are calculated
in advance, but only on demand, i.e. when a new reconfiguration shall be performed. This is beneficial,
when the computational block does not run long enough to perform all reconfigurations.

cG

Despite of these general properties, the main difference of the proposed MinDeg replacement policy
compared with the established cache/page replacement policies (as discussed) is its main replacement ob-
jective. Current state-of-the-art replacement policies [Tan07] are history based, i.e. they consider past
events like ‘when was it used’, ‘how often was it used’, or ‘when was it reconfigured’ (see Table 4.3). The
MinDeg replacement policy is instead performance guided, i.e. for each replacement candidate (i.e. an
Atom) it examines the performance of all SIs after a potential replacement of that Atom.

Policy Description Examined Infor-
mation

LRU Least Recently Used When was it used?MRU Most Recently Used
LFU Least Frequently Used How often was it

used? MFU Most Frequently Used
FIFO First In First Out

When was
it reconfigured?

LIFO Last In First Out
Second
Chance

/
Clock

Extension of FIFO: Each Atom in the queue has a flag that is set when it is
used. When an Atom shall be replaced (according the FIFO policy) but the flag
is set, it gets a second chance, i.e. its flag is cleared and it is moved to the end
of the FIFO queue. ‘Clock’ is a different implementation of the same policy.
Table 4.3: Relevant History-based Replacement Policies, Used for

Evaluating the Performance-guided MinDeg Policy

Algorithm 4.4 presents the pseudo-code of the MinDeg replacement policy. The lines 4 to 16 correspond
to the outer loop that examines all replacement candidates. The inner loop from line 7 to 11 iterates over
all SIs and determines the latency of the fastest Molecule for this SI assuming the current replacement
candidate of the outer loop would actually be replaced. These latencies are accumulated in line 10 and in
lines 12 to 15 the locally best replacement candidate (i.e. leading to the fastest accumulated latencies of all
SIs) is memorized. After the replacement decision is determined, the list of candidates is updated in

- 88 -

4.6 Atom Replacement

line 17 for the next replacement. Note, that the vector aG of available Atoms is not updated for the next
replacement because it is also affected by the prefetching, i.e. the decision which Atoms shall be recon-
figured next. Therefore, the accurate information for aG is expected as updated input for each replacement,
whereas the replacement candidates are provided as input for the first replacement after a forecast and is
then updated internally.

1. // Input: available Atoms and replacement candidates aG cG
2. // Output: The Atom rA that is to be replaced next
3. : maxInt;smallestOverallLatency =

4. : () {i iA T A c∀ ≤
G

5. (): \ it a T A= ; // contains the remaining Atoms, assuming At
G

i would be replaced
G G

6. : 0;overallLatency =

7. jSpecialInstructions SI∀ {

8. // see Table 3.3 (page 39) for a definition of the following functions
9. (): . . ();jSILatency SI getFastestAvailableMolecule t getLatency=

G

10. += ;overallLatency SILatency
11. }
12. ()if {overallLatency smallestOverallLatency<
13. : ;smallestOverallLatency overallLatency=
14. : ;r iA A=
15. }
16. }

17. // Update for next replacement (): \ rc c T A=
G G ;

18. return ;rA
Algorithm 4.4: The Performance-guided Minimum Degradation (MinDeg) Replacement Policy

(The computational complexity of MinDeg is)# - # #Atom types SIs MoleculesPerSI× ×O . The term
#MoleculesPerSI corresponds to line 9 in Algorithm 4.4 that determines the fastest implementation of an
SI – considering a given Meta-Molecule t

G
 of Atoms – by examining all Molecules of that SI. However, a

property from can be exploited to reduce the amount of loop iterations. The vector is created from
the currently available Atoms by removing one of them. Therefore,

t
G

t
G

taG
G

 cannot provide a faster imple-
mentation of any SI j than does. Instead, the fastest available implementation in a might no longer
be available in . Let us assume a list j of Molecules from j (sorted by increasing latencies) would
be available with the constraint that all Atoms demanded by these Molecules are available in

SI aG G

SI
a

t
G

L G . Then, it
is no longer required to iterate over all Molecules of o determine the fastest one after a potential re-
placement. Instead, the first Molecule in j with

jSI t
m tmG L ≤

GG is the fastest available Molecule. j is initial-
ized once when the application starts and then incrementally update it after each replacement and recon-
figuration activity, i.e. further available Molecules after a reconfiguration are inserted and no-longer-
available Molecules are removed after a replacement.

L

4.6.3 Evaluation and Results

The results of the performance-guided MinDeg replacement policy will be analyzed. To determine the
replacement quality, the execution time of an H.264 video encoder (like motivated in Section 3.3) is com-
pared between MinDeg and state-of-the-art replacement policies. Due to its challenging computational
requirements, the H.264 encoder demands multiple reconfigurations and replacements per video frame
and thus clearly exposes the quality of the replacement policy. In addition, detailed insight into the actual

- 89 -

Chapter 4 The RISPP Run-time System

replacement decisions is presented. Note that the MinDeg replacement policy is by no means specific to
H.264. Instead, it aims to maintain a good overall SI performance and is thus generalized for any SI exe-
cution sequence rather than a specific one.

0

5

10

15

20

25

30

35

6 8 10 12 14 16 18 20 22 24

0

5

10

15

20

25

30

35

40

45

6 8 10 12 14 16 18 20 22 24

0

10

20

30

40

50

60

70

6 8 10 12 14 16 18 20 22 24

Ex
ec
ut
io
n
Ti
m
e
[M

ill
io
n
Cy

cl
es
]

LIFO FIFO
LFU MFU
LRU MRU
2nd Chance Our MinDeg

Size of reconfigurable fabric (#ACs)

a) Reconfiguration Bandwidth: 10 MB/s b) Reconfiguration Bandwidth: 20 MB/s

c) Reconfiguration Bandwidth: 40 MB/s

For 12 ACs or more, our MinDeg
results in the fastest application

execution time

Only between 10 and 12
ACs LIFO, MFU, and LRU are

faster than MinDeg

Here, our MinDeg achieves up
to 1.61x speedup in comparison

to the closest competitor

Size of reconfigurable fabric (# ACs)

Size of reconfigurable fabric (#ACs)

Figure 4.28: Comparing the MinDeg Replacement Policy with State-of-the-art Policies for
Different Reconfiguration Bandwidths (a-c) and Size of the Reconfigurable Fabric (x-axis)

- 90 -

4.6 Atom Replacement

In addition to the initially motivated LRU/MRU example, also LFU/MFU, LIFO/FIFO, and Second
Chance (see Table 4.3) [Tan07] are benchmarked. Figure 4.28 shows the results of the comparison for
reasonable reconfiguration bandwidths (a: 10 MB/s, b: 20 MB/s, and c: 40 MB/s) and different-sized re-
configurable fabrics (x-axis). The reconfiguration bandwidth determines the time to load new configura-
tion data into the reconfigurable fabric. The performance penalty when replacing performance-wise im-
portant Atoms is higher when the reconfiguration bandwidth is rather low. The reconfiguration bandwidth
is limited by two major factors: 1) the bandwidth of the reconfiguration port and 2) the bandwidth at
which the reconfiguration data can be streamed from memory to this port. The bandwidth of the Internal
Configuration Access Port (ICAP, [Xil07b, Xil09c]) of the Xilinx Virtex Family has made noticeable im-
provements. The Virtex-II is specified to support 50 MB/s (8 Bit at 50 MHz, but typically also working at
a higher frequency) and for Virtex-4 it is extended to 400 MB/s (32 Bit at 100 MHz). However, delivering
the reconfiguration data at that speed implies certain drawbacks. On the one hand, the configuration data
could be stored on a dedicated external memory (e.g. SRAM with 32 Bit data port at 100 MHz), but this
implies extra cost for a fast external memory and dedicated I/O pads. On the other hand, the data could be
stored in the normal system memory that is also used to provide instruction- and data-memory for the ap-
plication. However, the reduced memory bandwidth that is available to the application during a reconfigu-
ration might noticeably affect the application’s execution time. Therefore, even though the configuration
port is no longer the bottleneck in recent FPGA generations, a good performance for a restricted recon-
figuration bandwidth is very important for overall system cost and performance.

The size of the reconfigurable fabric (x-axis in Figure 4.28) determines how many Atoms can be
available at the same time. For a rather small reconfigurable fabric, typically all Atoms will be replaced,
thus alleviating the effects of a bad replacement decision. When more Atom Containers (ACs) are avail-
able, then more reconfigurations/replacements are performed and some Atoms might not need to be re-
placed. For a rather large reconfigurable fabric, the amount of reconfigurations (and thus replacement de-
cisions) might reduce; in the trivial case, all ever-demanded Atoms will fit onto the reconfigurable fabric.

The comparison in Figure 4.28 shows that MinDeg is superior in most of the scenarios. Especially for
20 and 40 MB/s reconfiguration bandwidths, it consistently leads to the fastest application execution for
reconfigurable fabrics with at least 13 ACs. For 10 MB/s and 13 ACs, an overall application speedup of
up to 1.61x in comparison with the closest competitor at that point (i.e. LIFO) is achieved. In all scenarios
where MinDeg does not achieve the highest performance, its results are comparable or (in rare cases)
down to 0.89x to the closest competitor.

To analyze the distribution of the performance results further, Figure 4.29 presents Box Plots to sum-
marize the speedup results for different reconfiguration bandwidths (5, 10, 15, …, 40 MB/s) and recon-
figurable fabric sizes (5-25) in comparison with relevant replacement policies (see Table 4.3). The fact
that the ‘boxes’ (representing the middle 50% of the speedup values) are always above 1.0x speedup
shows, that the MinDeg policy is generally beneficial. Actually, for 90.31% of all 1176 benchmark com-
parisons, MinDeg reaches at least the same application performance and achieves up to 2.26x faster appli-
cation execution (MFU, 5 MB/s, 15 ACs) in comparison with relevant replacement policies. In the re-
maining 9.69%, MinDeg never leads to an application performance less than 0.89x (LIFO, 15 MB/s, 10
ACs).

The fact that the boxes are relatively small (especially in comparison with the maximal and minimal
speedup) shows, that MinDeg provides relatively stable performance improvements for a wide range of
comparison scenarios. Altogether (summarizing the results of all 1176 comparisons in the ‘Overall’ box),
MinDeg provides an application speedup between 1.05x and 1.23x for the middle 50% of all comparison
benchmarks (in average 1.16x for all benchmarks). In comparison with LRU, MinDeg provides up to
1.74x speedup (10 MB/s, 13 ACs) and in average leads to a 1.18x faster application execution time.

- 91 -

Chapter 4 The RISPP Run-time System

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

LFU FIFO LIFO LRU MRU MFU Second
Chance

Overall

Sp
ee
du

p
of
 M

in
D
eg

(r
el
. t
o
co
m
pa

ris
on

 re
pl
.)

Comparison Replacement Policies

Peak: MinDeg
is up to 2.26x
faster than

MFU

Highest Speedup

Average Speedup (diamond)

Lowest Speedup

3rd Quartile (75% of the
values are smaller)

Median (50% of the
values are smaller)

1st Quartile (25% of the
values are smaller)

The ‘box’ contains the
middle 50% of the values,
i.e. 25% of the values are
bigger and 25% of the
values are smaller

Up to 1.74x
faster than LRU

Overall

Figure 4.29: Summarizing the Performance Improvement of MinDeg
in Comparison with State-of-the-art Replacement Policies

Before evaluating implementation details and the overhead that is required to achieve these performance
improvement, a detailed replacement analysis will be presented, i.e. showing a specific run-time scenario
and analyzing which Atoms were replaced along with the resulting performance impact. In Figure 4.30,
the run-time details for the H.264 encoder with 20 MB/s reconfiguration bandwidth and a reconfigurable
fabric that provides 15 ACs are shown. The execution details are compared for a) the MinDeg policy, b)
LRU, and c) MRU between 6 and 12 million cycles after the application started encoding (initial recon-
figurations are performed and further reconfigurations demand replacement). The x-axis furthermore
shows when prefetching for a computational block (ME: Motion Estimation, EE: Encoding Engine, LF:
Loop Filter) starts (the computational block itself starts right afterwards) and thus, the replacement policy
is triggered. The y-axis shows the SI latencies in cycles on a logarithmic scale and the different lines in
the figure correspond to different SIs. Thus, the replacement decisions and especially their performance
impact are directly visible as the changing SI performance and the actual performance when an SI is de-
manded. For clarity, not all SIs were plotted. Instead, it focuses on the relevant SIs for ME (SAD and
SATD), EE (HT2x2 and HT4x4), and LF to show the performance-wise relevant differences of the re-
placement policies. The omitted SIs for EE are also important for the overall execution time, but the re-
placement decisions for these SIs do not provide further insight to the differences between various re-
placement policies.

In Figure 4.30a) it can be seen that prefetching for LF starts at 6.35 million cycles. Right afterwards,
an Atom for SATD (and later also HT4x4) is replaced and affects the performance of these SIs. Therefore,
the LF SI is accelerated (latency improves from 414 to 10 cycles per loop iteration of the SI) and right
afterwards, the computational block completes. At 6.66 million cycles, prefetching for ME starts and the
recently replaced Atom for SATD (demanded by ME) are reconfigured again. It gives the impression that
MinDeg should not have replaced the Atoms for SATD a short time before they are demanded, but it is
important to note that SATD was still in a fast hardware implementation (30 instead of 26 cycles per SI
execution) and the performance of SAD (also demanded for ME) was not affected at all.

- 92 -

4.6 Atom Replacement

SI
 L
at
en

cy
 [C

yc
le
s]

SI
 La

te
nc
y
[C
yc
le
s]

1

2

4

8

16

32

64

128

256

512

1024

2048

6 7 8 9 10 11 12

Time [Million Cycles]

SAD HT2x2

HT4x4 LF

SATD

1

2

4

8

16

32

64

128

256

512

1024

2048

6 7 8 9 10 11 1

Time [Million Cycles]

2

1

2

4

8

16

32

64

128

256

512

1024

2048

6 7 8 9 10 11 12

Time [Million Cycles]

a) MinDeg Replacement Details

b) LRU Replacement Details c) MRU Replacement Details

LF ME EE LF ME EE LF

LF ME EE LF ME ME EELF LF ME EE

Dashed lines show when
prefetching for a compu‐

tational block starts

SAD is replaced (to cISA
execution) when

prefetching for LF starts

SATD and HT are
replaced when pre‐
fetching for LF starts

SI
 La

te
nc
y
[C
yc
le
s]

Figure 4.30: Detailed Replacement Analysis for 20 MB/s Reconfiguration Bandwidth and 15 ACs

The major difference of the LRU replacement in Figure 4.30b) in comparison with MinDeg replacement
in Figure 4.31a) is that the Atoms for SAD are replaced such that this SI has to execute using the cISA
(2348 instead of 41 cycles per loop iteration) when ME starts. The reason is that the Atoms for SAD have
not been demanded for the longest time when LF prefetching starts. Some Atoms for SATD were used in
EE as well, so they are replaced later. The slow SAD performance and the relatively long time to achieve
a hardware Molecule again are the main reasons for the performance loss of LRU compared with
MinDeg. The difference to the MRU policy in Figure 4.30c) becomes immediately visible when compar-
ing the LF latency changes. At the beginning of ME prefetching, the previously used LF SI is replaced
again. This is actually a good decision. However, the replacement decisions when prefetching for LF itself
lead to the overall performance degradation compared with MinDeg replacement. The most recently used
Atoms at that time are those demanded by ME, especially the Atom for the Hadamard transformation.
Replacing these Atoms leads to noticeable performance degradation for HT2x2, HT4x4, and SATD (169
instead of 31 cycles per SI execution), which affects the ME performance in a negative way. The MinDeg

- 93 -

Chapter 4 The RISPP Run-time System

policy avoids replacement decisions that would lead to a noticeable performance degradation of any SI.
Therefore, it maintains the relevant SIs SA(T)D and HT in a relatively fast implementation.

5
10
15
20
25
30
35
40

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

5 7 9 11 13 15 17 19 21 23 25

#E
xe
cu
tio

ns
 o
f t
he

 in
ne

rm
os
t l
oo

p
bo

dy
 o
f t
he

 M
in
De

g
al
go

rit
hm

Peak overhead: 9,729 innermost
loop body executions (demanding 1
cycle using hardware support). At

the same time a saving of 3,222,726
cycles (1.14x speedup) is obtained
compared to LRU due to MinDeg’s
advanced replacement decision.

Figure 4.31: Algorithm Execution Time (Accumulated Number of Innermost

Loop Body Executions when Encoding 10 Frames)

The previous sections have presented and analyzed the performance improvements that are achieved due
to the proposed performance-guided MinDeg replacement policy. However, a certain overhead to execute
the algorithm of the proposed replacement policy is required to obtain the application speedup. Now,
MinDeg’s overhead and complexity will be analyzed. The innermost loop body is in average executed
57.21 times per replacement decision. The innermost loop is inside the function to find the fastest avail-
able Molecule, i.e. . (). ()jSI getFastestAvailableMolecule t getLatency

G
 (see line 9 in Algorithm 4.4). Each

iteration of the getFastestAvailableMolecule loop body (see Table 3.3 on page 39) needs to determine
whether a Molecule (that implements SIj) is smaller or equal than the Meta-Molecule t

G
 and the complex-

ity of an iteration is bound by the number of Atom types. With hardware support, such an inner loop itera-
tion can be performed in a single cycle (using one comparator per Atom type). The amount of inner loop
executions depends on the computational block for which the reconfigurations are preformed (e.g., LF
demands fewer Atoms and therefore, more replacement candidates are available). Additionally, it depends
on the size of the reconfigurable fabric. For instance, for 5 and 25 ACs, the innermost loop body is on av-
erage executed 31.22 and 62.13 times per replacement decision, respectively. However, the absolute in-
troduced overhead does not only depend on the complexity per replacement decision, but it additionally
depends on the amount of replacement decisions that are performed (depending upon the size of the re-
configurable fabric and the reconfiguration bandwidth). Figure 4.31 presents a surface plot that shows the
absolute introduced overhead (i.e. accumulated over all replacement decisions) when encoding 10 frames
with the H.264 video encoder application, depending on the reconfiguration bandwidth and the size of the
reconfigurable fabric. The peak overhead is observed for 35 MB/s and 15 ACs. Here, the innermost loop
body is executed 9,729 times altogether. This represents the demanded overhead that is needed to calcu-
late MinDeg’s advanced replacement decision, which – in this scenario – leads to a saving of 3,222,726
cycles (compared with LRU), corresponding to a 1.14x application speedup.

- 94 -

4.7 Summary of the RISPP Run-time System

- 95 -

Summary of the Atom Replacement:

Reconfiguring Atoms at run time also demands replacing currently available Atoms as the space of the
reconfigurable fabric is limited. It was motivated and benchmarked, why state-of-the-art replacement
policies (as used for cache and page replacement) are not necessarily beneficial for this purpose. The ma-
jor difference is that cache and page replacement policies aim to exploit the access locality to cache lines
or memory pages. However, for reconfigurable processors the access locality is already considered by the
prefetching mechanism, because the reconfiguration time is rather long in comparison with loading a
cache line or memory page. Therefore, the novel Minimum Degradation replacement policy MinDeg was
developed that considers the potential performance degradation for SIs when replacing an Atom and then
replaces that Atom that leads to the smallest performance degradation for the SIs. This policy does not
rely on future knowledge or on analysis of previous execution patterns, instead, it aims to maintain all SIs
in a good performance. It exploits the fact that modular SIs are upgradeable and correspondingly searches
for the downgrade step with the smallest performance impact.

4.7 Summary of the RISPP Run-time System
Using a run-time system to determine which Atoms shall be reconfigured and when these reconfigurations
shall be performed is essential to provide high adaptivity to changing situations and requirements and thus
to exploit the full potential of run-time reconfigurable processors. In particular, it allows reacting on
changing amount of reconfigurable fabric (e.g. due to multiple tasks sharing the reconfigurable fabric) and
changing SI execution frequency (e.g. due to input-data based changing application control flow) adap-
tively. An online monitoring is used together with an error back-propagation scheme to obtain a forecast
of the upcoming SI requirements together with the expected execution frequencies of these SIs. This in-
formation triggers RISPP’s novel run-time system to select a Molecule for each SI that is forecasted for
the upcoming computational block. Afterwards, reconfiguring the Atoms that are needed to implement
these selected Molecules is started. The Highest Efficiency First scheduler HEF determines the sequence
in which these Atoms shall be loaded by exploiting Molecule upgrades and considering the predicted SI
execution frequencies. Whenever an Atom shall be reconfigured, a currently existing Atom may need to
be replaced. The Minimum Degradation replacement policy MinDeg examines the performance impact
for all replacement candidates and chooses the Atom that leads to the smallest performance degradation
for the SIs (i.e. the latency-wise smallest Molecule downgrade).

The novel algorithms for forecast fine-tuning, Molecule selection, reconfiguration sequence schedul-
ing, and Atom replacement are described on a formal basis and they are implemented and benchmarked.
For forecast fine-tuning and Molecule selection, different parameters exist that allow changing the fine-
tuning behavior and the Molecule profit function respectively. The meaning of these parameters is de-
scribed and their effect on the algorithms is benchmarked in the corresponding Sections 4.3 and 4.4.4. For
the reconfiguration-sequence scheduling, this thesis presents different algorithms and benchmarks them
for different availability of Atom Containers in Section 4.5.3. The Atom replacement policy was com-
pared with state-of-the-art replacement policies (as they are used for cache and page replacement) in Sec-
tion 4.6.3. In addition to benchmarking the algorithms, the RISPP approach is compared with state-of-the-
art reconfigurable processors and non-reconfigurable ASIPs and the results are presented in Chapter 6. As
the forecast fine-tuning is tightly coupled to the core pipeline and needs to decode SI and count SI execu-
tions, it is realized as a hardware implementation that is presented and evaluated in Section 4.3.3. The al-
gorithms for Molecule selection, reconfiguration-sequence scheduling, and Atom replacement are trig-
gered by Forecast Instructions and thus their coupling to the core pipeline is not that tight. Therefore, they
may be implemented as hardware and/or software. For the hardware prototype, they are implemented as
software, running on a Microblaze soft core, as shown in Section 5.5.

Equation Chapter (Next) Section 1

Chapter 5 RISPP Architecture Details
The novel modular Special Instructions (SI) are described in Chapter 3 and the novel run-time system that
dynamically determines the reconfiguration decisions to exploit the features of modular SIs is described in
Chapter 4. To implement modular SIs, connect them to the core pipeline, and allow a run-time system to
determine reconfiguration decision, a specialized processor architecture is needed to support these fea-
tures, i.e. the RISPP architecture. In Section 4.1 and in particular in Figure 4.1 (page 42) a first overview
of the RISPP architecture was given. There, it was already pointed out that it is not intended to define a
completely new processor architecture. Instead, RISPP builds upon an existing architecture that is ex-
tended toward the RISPP requirements. In particular, in the scope of this thesis a DLX core processor
(created with ASIP Meister [ASI]) and later a SPARC V8 core processor (Leon2 [Aer]) were examined.
This chapter will focus on the implementation details of the Leon2 prototype, although the general con-
cepts are applicable to other architectures as well.

The first section describes how the instruction set architecture of the core processor is extended to
support SIs and which parameters they may obtain (e.g. registers etc.). The second section describes how
an SI can be executed using the core instruction set architecture (when not all required Atoms are avail-
able yet) and Section 5.3 describes the data memory access and its realization that is provided for SIs.
Section 5.4 presents the novel Atom Infrastructure that allows implementing modular SIs. It provides a
computation and communication infrastructure that assures that i) Atoms can be reconfigured without af-
fecting the computation of other components, ii) SIs can be upgraded by providing means to support
rather small and rather large Molecules, and iii) SIs may exploit the provided data memory bandwidth
maximally. Section 5.5 presents implementation results for the entire RISPP prototype, including the
floorplan of the design, area requirements, frequency, and execution performance of the implemented run-
time system. The RISPP prototype is implemented on an FPGA-based system shown in Appendix B.

5.1 Special Instructions as Interface between Hardware and
Software

For processor architectures, the instruction set architecture (ISA) is an interface between hardware and
software. It describes a set of assembly instructions and defines their behavior without specifying their
implementation. For instance, the ISA does not define whether the processor that implements it chooses
an out-of-order superscalar implementation or an in-order pipeline for realization. Therefore, an applica-
tion programmer (or compiler) can rely on the ISA without knowing all details of their implementation.
The same is true for Special Instructions (SIs), which correspond to an instruction set extension. The con-
cept of modular SIs (see Chapter 3) extends this concept by changing the implementation of the SIs dur-
ing run time while maintaining the SI interface and the SI behavior to the application programmer (i.e.
only the SI latency changes). This section will describe the interface to the application programmer for the
proposed SIs, e.g. which instruction formats were chosen for SIs and which parameters they may obtain as
input and/or output. These decisions are fixed at design time and thus should be carefully considered.

As SIs aim to achieve better performance by exploiting parallelism, it is important to provide suffi-
cient input data to the SI such that independent computations can be performed in parallel. Therefore, the
general-purpose register file (GPR) is extended to provide four read ports and two store ports. Addition-
ally a high bandwidth data memory connection is provided for the SIs (see Section 4.1), however that is
independent of the SI ISA except the fact that the 4 input registers are used to determine which addresses
in the data memory shall be read (see Section 5.4.2). As the RISPP prototype is based on a Xilinx Virtex
FPGA,42 the available BRAMs (on-chip memory blocks) are used to implement the GPR. Each BRAM is

42 early work was done on an Virtex-II 3000 and 6000, whereas the final prototype runs on an Virtex-4 LX 160

- 97 -

Chapter 5 RISPP Architecture Details

2 KB43 large, can be configured to support different aspect ratios (e.g. 1x16K, 8x2K, 16x1K etc.), and
provides two truly independent access ports (i.e. independent address lines, data lines, clock frequencies,
and aspect ratios) [Xil08c]. Figure 5.1 shows how four BRAMs are combined to realize a GPR with four
read ports and one write port. For each BRAM, one port is a dedicated write port and each write access is
written to all four BRAMs simultaneously, i.e. they always contain the same data. Therefore, the second
ports of the four BRAMs can be used to provide four independent read ports. However, this concept can-
not be used to provide a second write port. Instead, a small finite state machine (FSM) is added to the
write-back stage of the core processor that stalls the stage for one cycle and performs both write accesses
sequentially. Even though it seems that this concept does not provide any performance improvement, it
allows providing SIs that demand two write backs. For instance, the computation of division and modulo
of two numbers (i.e. both shall be computed together in one assembly instruction) is typically a multi-
cycle instruction (i.e. the execute stage of the core processor is stalled until the computation completed)
and creates two results. Without a second write port, two independent instructions need to be executed
(one for division and one for modulo). As both instructions would stall the core pipeline, the concept of
providing two (sequential) write ports actually leads to a performance improvement (if the execute stage
is stalled for more than one cycle per instruction) as then only one instruction stalls the execute stage.

1
W
rit
e
Po

rt

4
Re

ad
 P
or
ts

Figure 5.1: Using Dual-Ported BlockRAMs to Implement a General Purpose

Register File (GPR) with One Write and Four Read Ports

The SIs may use the extended GPR. Therefore, they have to provide up to six potentially different ad-
dresses (four read and two write). As the Leon2 provides 32 registers,44 5 bits are needed to address a par-
ticular register. Addressing six registers with 5 bits each would demand 30 bits. As the SPARC ISA uses
32-bit instructions, only 2 bits would be left for further information, e.g. that the instruction corresponds
to an SI and which particular SI it denotes. This would allow distinguishing at most three different SIs and
therefore it is clear, that not all six registers can be addressed independently. As the other extreme, no reg-
ister might be encoded explicitly, but the SI opcode might determine the demanded registers implicitly.
For instance, Chimaera [HFHK97, YMHB00] allows reading nine registers for an SI execution, but for a
given SI it is predetermined, which registers will be read. The compiler has to provide the demanded SI
input in these registers, i.e. the hardware is rather inflexible here, and the compiler has to compensate this
irregularity. In this work, a compromise is chosen. Up to four different registers shall be addressable,
whereas any of these four may be read (utilizing all available read ports) and up to two of the same regis-
ters may be written. If an SI only demands that two registers are read and two are written, then all regis-
ters may be addressed independently. However, if an SI demands four input registers and two output reg-

43 actually, each Byte is equipped with an extra parity bit that is user specific but cannot be initialized with the FPGA

bitstream; thus, each BRAM provides 18 KBit
44 actually, the Leon 2 implements register windows, however, at most 32 registers are visible (and thus addressable)

at the same time

- 98 -

5.1 Special Instructions as Interface between Hardware and Software

isters, then the outputs will actually overwrite two of the input registers, as they share the addresses. In
these cases, there is still an irregularity in the extended ISA for SIs, i.e. the compiler has to create copies
for the input registers if their lifetime exceeds the point in time of the SI execution. Additionally, it should
be possible to provide immediate values to the SIs, e.g. a flag or a small constant.45

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rd op3 rs1 opf
op rd op3 rs1
op rd op3 rs1

op disp30

simm13
asi rs2

bit#

bit#

Format 1 (op=1): Call

Format 2 (op=0): SETHI & Branches

op a op2
op rd op2

disp22
imm22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0bit#
cond

Format 3 (op=2 or 3): Remaining Instructions

rs2
i=1
i=0

Table 5.1: SPARC V8 Instruction Formats [SPA]

Table 5.1 shows the different instructions formats for the SPARC core ISA. The field op determines one
of the three instruction formats. Formats 2 and 3 are subdivided further, i.e. they provide the field op2 and
op3 respectively. Table 5.2 shows the usage of different op2 values for Format 2 in Table 5.1. It contains
three unused values (1, 3, and 5) that can be used to extend the ISA to provide SIs. Additionally, value 0
is only used to explicitly trigger an ‘unimplemented instruction’ trap (UNIMP). Due to these freely avail-
able opcode values for op2, Format 2 is used for RISPP extensions of the SPARC ISA. As discussed be-
forehand, up to two registers may be written back to the GPR. The three ‘unused’ values in op2 are used
to encode the three different possibilities for SIs, i.e. writing two registers, one register, or no register at
all. This determines the interpretation of the registers that are explicitly addressed in the remaining bits of
Format 2 as will be shown later. In addition to the SIs, also so-called Helper Instructions (HIs) are needed
to support the RISPP concept (e.g. for Forecast Instructions (FIs), see Section 4.3). They are packed into
the op2=0 field that is also used to trigger the UNIMP trap. To assure that the normal UNIMP functionally
is still operational, one specific opcode value is reserved for it. Table 5.3 shows, how the bits 25-29 are
used to distinguish between the UNIMP trap and different HI opcodes.

Value for op2 SPARC V8 Allocation RISPP Extension
0 UNIMP HI instruction group
1 unused SI without register write back
2 branch on integer condition code
3 unused SI with one register write back
4 set register high 22 bits; NOP
5 unused SI with two register write back
6 branch on floating-point condition code
7 branch on coprocessor condition code

Table 5.2: SPARC V8 Instruction Format 2 with RISPP Extensions [D.7]

45 constant during compile time and run time but not during SI design time (otherwise it could be hard coded within

the SI)

- 99 -

Chapter 5 RISPP Architecture Details

Table 5.3: SPARC V8 Format 2 Used for UNIMP and Helper Instructions (HIs)

The HI-specific information shown in Table 5.3 depends on the HI that the hi_op field specifies. Table 5.4
provides an overview of the HIs that are implemented to support the RISPP concept. Most of them accel-
erate the SI execution with the core ISA (cISA) and will be explained in Section 5.2. The HIs RMVAR,
SIGRP, and FI will be explained in the following.

Table 5.4: Overview of Implemented Helper Instructions [D.7]

RMVAR: Some parts of the run-time system may be configured by parameters. For instance, the forecast
fine-tuning (see Section 4.3) has two parameters (α and γ) to configure the strength of the error back-
propagation. In addition, the Molecule Selection (see Section 4.4) has two parameters. This HI allows
the user application (or an OS service) to adapt these parameters, i.e. it allows setting a variable in the
run-time system (RMVar).46 The imm5 value (see Table 5.4) specifies which parameter shall be set
and the rs4 register contains the new value of this variable.

SIGRP: As shown in Table 5.5, 5 bits are reserved in the SI instruction format to define the SI opcode.
This allows distinguishing 32 different SI. Even though this amount of SIs is expected to be sufficient
for one application, more SIs will be demanded when multiple application shall be sup-
ported/accelerated. Therefore, a 10-bit SI opcode is used to be able to provide up to 1024 different
SIs. However, only 5 bits of it are determined in the instruction word. The remaining 5 bits are real-
ized as a dedicated register in the decode stage that is concatenated with the 5 bits in the instruction
word to derive the 10 bits of the SI opcode. This concept groups the SIs to clusters of 32 different SIs
that share the same value of the dedicated register. This way, every application may use its own SI
group that is changed as a part of the context switch. This HI allows setting the 5 bits in the dedicated
register, i.e. to change the SI group.

46 note, ‘RM’ stands for Rotation Manager, indicating RISPP’s run-time system

- 100 -

5.2 Executing Special Instructions using the core Instruction Set Architecture (cISA)

FI: This HI corresponds to the Forecast Instruction (FI) that is used to predict the SI execution frequency
of an upcoming computational block (see Section 4.3). The actual information is embedded into the
imm22 field and is not further evaluated by the decode stage of the core pipeline. Instead, this infor-
mation is forwarded to the hardware for fine-tuning the SI execution frequencies that extracts the in-
formation, which Forecast Block is addressed, i.e. start address and length are embedded into the im-
mediate.

Let us look at the instruction formats for the SIs. As discussed above, up to four registers need to be ad-
dressed for reading (in some cases immediate values are preferable), up to two registers for writing, and
32 different SI opcodes need to be distinguished within the instruction word (leading to 1024 different SIs
in combination with the dedicated register for the SI group). Table 5.5 shows the different instruction
formats for SIs. They use Format 2 of the SPARC V8 instruction formats (see Table 5.1), i.e. the value for
the op field is always “00”. The op2 field determines how many registers shall be written back (see
Table 5.2) and thereby implicitly determines which fields address them (rd and/or rs5). Independent of the
written registers, the registers that are addressed by rd and rs5 are always read. Additionally, the registers
that are addressed by the fields rs2 and rs4 may be read or the values of these fields are used to compose
immediate values (determined by the imm field). Eventually, the si_op field determines which SI – within
the currently active SI group – shall be executed. For instance, if an SI demands two register inputs and
creates two registers as output, then the combination op2=“001” and imm=“00” configures rs2 and rs4 as
inputs and rd and rs5 as outputs. In this example, all four registers can be addressed independently. How-
ever, if further input data is demanded (e.g. immediate values or more registers) then the registers that are
addressed by rs5 and rd are also read (in addition to rs2 and rs4 that are used as registers or immediate
values) and will potentially be overwritten by the SI.

Table 5.5: Instruction Format for Special Instructions

as Part of SPARC V8 Instruction Format 2

5.2 Executing Special Instructions using the core Instruction
Set Architecture (cISA)

In the scope of reconfigurable processors, it may happen that an SI shall execute but the hardware imple-
mentation of that SI is not yet reconfigured. Many early reconfigurable processor projects (e.g. [HFHK97,
LTC+03, RS94, WC96, WH95]) stalled the core processor until the corresponding reconfiguration com-
pleted. This reduces the potential performance in comparison with architectures (e.g. [Dal03]) that provide
an SI implementation using the core ISA (cISA) as demonstrated in Figure 3.1 (page 24). Additionally,
architectures without a cISA alternative for SIs may face the problem of configuration thrashing [Dal99].
For instance, consider a reconfigurable processor with a reconfigurable fabric that provides space for one
SI implementation. If an application demands two SIs in an alternating way in an inner loop (i.e. SI1, SI2,
SI1, SI2, …), then each execution of SI1 replaces the SI implementation of SI2 (and vice versa) such that

- 101 -

Chapter 5 RISPP Architecture Details

for each SI execution the corresponding implementation has to be reconfigured first. This leads to a sig-
nificantly reduced performance, even when comparing with a conventional software implementation (i.e.
without SIs and hardware acceleration). In this example, the fastest application execution demands chang-
ing the application to use only one SI (either SI1 or SI2, depending on their execution frequencies etc.).
However, in a multitasking environment this is not feasible, as it is not known at application compile time,
how many reconfigurable fabric is available for a particular application (i.e. how many SIs can be loaded
into the reconfigurable fabric in parallel). In an extreme case, an application might not obtain any recon-
figurable fabric and thus would need to stall upon an SI execution until some reconfigurable fabric is as-
signed to it. The concept of executing an SI using the cISA conceptually solves these problems and the
remainder of this section will present how it is realized in the scope of RISPP.

The concept of executing an instruction using the cISA is not specific to reconfigurable processors.
For instance, many ISAs contain instructions for multiplication, division, or floating point operations that
are not implemented on all processors that aim to implement that ISA. Therefore, they often provide a
synchronous trap (typically called ‘unimplemented instruction’) that is automatically triggered if the ap-
plication executes an instruction that a particular processor does not implement in hardware. This mecha-
nism is used to realize the SI cISA implementation. A dedicated memory is provided that contains for
each SI the information, which implementation is the fastest one that is currently available. This memory
is updated by the run-time system when the fastest implementation of an SI changes. Whenever the appli-
cation executes an SI, the decode stage consider the information in this memory to determine whether an
‘unimplemented instruction’ trap has to be triggered or not.

Application

Trap Table

Trap Handler

SI cISA impl.

SI shall execute but hardware is
not available trigger trap

restore
identify

trap type

identify
SI

time
Figure 5.2: Levels and Contexts to reach the cISA Implementation of an SI

Figure 5.2 provides an overview of the different levels of the cISA implementation of an SI. After the trap
was triggered, the execution continues at the trap table (identified through the trap base registers) that
provides space for four instructions per trap. The trap base register together with the trap type determine
the exact position in the trap table. From the trap table, the application jumps to the trap-type specific trap
handler that is shown afterwards. For the cISA implementation, the trap handler has to identify which SI
shall be executed, which parameters were provided to this SI, and to which registers the results shall be
written. Afterwards it calls an SI-specific cISA implementation that calculates the result of the SI for the
provided input data and returns the computed results. The trap handler writes these results to the expected
registers and afterwards the execution continues with the instruction that follows the SI that caused the
trap. In particular, the following operations are performed:

- 102 -

5.2 Executing Special Instructions using the core Instruction Set Architecture (cISA)

1. Jump to the trap table
2. Jump to the ‘unimplemented instruction’ handler code
3. Save the processor state
4. Identify the instruction that caused the trap
5. Acquire source data
6. Jump to the code that executes the identified SI
7. Calculate result(s) of the SI
8. Write back result(s)
9. Restore the processor state and return

Steps 4, 5, and 8 imply a significant performance overhead when executed with the cISA, as they heavily
rely on accessing and parsing the 32-bit instruction word of the SI that caused the trap. For instance, to
identify which SI caused that trap, the SI instruction needs to be loaded from instruction memory to a reg-
ister (using the trap return address that points to the instruction after the SI that triggered the trap) and
then this SI needs to be decoded by software to extract the SI opcode and register addresses. On the con-
trary, these steps correspond to simple operations when implemented with dedicated hardware. Therefore,
Helper Instructions are added (HIs, see Section 5.1) to accelerate these parts. Step 4 applies a mask and a
constant shift to extract the SI opcode. In hardware, this corresponds to a simple rewiring (i.e. extracting
the bits of the SI opcode) and the result are saved in a dedicated register. This register can be read using
the SIID HI (i.e. this HI copies the value of the special register into a general purpose register). Step 5 ac-
cesses the data from the register file and the immediate values that are provided from the decode stage.
This data is also temporarily stored in dedicated registers when an SI executes and afterwards it can be
read using the REGMOV1, REGMOV2, IMOV5, and IMOV10 HIs (see Table 5.4). REGMOV1 copies
the content of the SI input parameters rd and rs2 (i.e. the content of the addressed registers) to the speci-
fied general-purpose registers (using the fact that the extended GPR has two write ports). Similarly,
REGMOV2 copies rs4/rs5, IMOV5 copies the two 5-bit immediate values and IMOV10 the 10-bit imme-
diate value. Step 8 copies the calculated results of the SI to its final destination registers. The information
to which registers the results shall be written, is extracted from the decode stage and temporarily stored.
After the actual cISA implementation completed, this information is used to write the created results to
these registers, using the REGSAV HI. This HI receives up to two results (rs2 and rs4) as input and the
content of the register that is addressed by rs5 decides, whether one or two results shall actually be written
back.

Algorithm 5.1 shows the resulting code for the trap handler, using optimized inline assembly code to
execute the HIs. For simplicity, the inline assembly part directly accesses the C-Code variables by stating
their names instead of declaring specific input/output names, as the actual GCC inline-assembly syntax
demands it [Ric]. The switch-case statement in lines 13-23 is a placeholder for the actual cISA implemen-
tation. In addition to the SI computation, it sets the amount of register write-backs by means of the reg-
save variable. In total, an overhead of 38-39 cycles (depending on the number of register write-backs, see
Section 5.1) is applied to the actual SI cISA execution with. For instance, SATD in Figure 3.3 (page 27)
requires 319 cycles plus 38 cycles for the trap overhead. This corresponds to an 11.9% increased SI exe-
cution time for the cISA implementation, which is acceptable according the above-discussed conceptual
problems that this approach solves. However, other implementation alternatives exist that also realize a
cISA implementation. The advantage of the trap-handler methods is that the application programmer does
not have to consider which implementation is used for an SI when writing it to the application code. Al-
ternatively, the application programmer could explicitly write a conditional branch in front of each SI as
indicated in Algorithm 5.2.

- 103 -

Chapter 5 RISPP Architecture Details

1. void unimp_handler() {
2. int si_id, regsav, g1, psr, rd1, rd2;
3. int rs1, rs2, rs4, rs5, imm10, imm5_1, imm5_2;
4.
5. asm(“mov %g1, g1” // save %g1 register
6. “mov %psr, psr” // save CPU status register
7. “siid si_id” // load SI identifier
8. “regmov1 rs1, rs2” // load input registers rs1 and rs2
9. “regmov2 rs4, rs5” // load input registers rs3 and rs4
10. “imov5 imm5_1, imm5_2” // load the two 5-bit immediate values
11. “imov10 imm10” // load the 10-bit immediate value
12.);
13. switch (si_id) { // jump to cISA execution
14. case 0x2A: // one showcase SI opcode
15. regsav = 1; // set amount of write-backs
16. rd1 = ... // here comes cISA execution
17. break;
18. case …
19. break;
20. default:
21. regsav = 0; // set amount of write-backs
22. break;
23. }
24. asm(“mov psr, %psr” // restore CPU status register
25. “mov g1, %g1” // restore %g1 register
26. “nop”
27. “regsav rd1, rd2, regsave” // SI register WB
28. “restore” // restore register window
29. “jmpl %l2, %g0” // set jump target (the instruction after the SI)
30. “rett %l2 + 0x4” // and return from handler
31.);
32. }

Algorithm 5.1: Trap Handler to Implement Special Instructions
with the cISA and the Support of the Helper Instructions

1. // implicit cISA execution if the SI hardware is unavailable (using trap)
2. int a=42, b=23, result; // prepare SI input registers
3. asm(“mySI result, a, b”);
4.
5. // explicit cISA execution if the SI hardware is unavailable (using conditional branch)
6. int x=42, y=23;
7. if (is_hardware_available(MY_SI)) { // MY_SI is the constant SI opcode
8. asm(“mySI result, x, y”);
9. } else {
10. result = … // here comes cISA execution
11. }

Algorithm 5.2: Examples for Implicit and Explicit cISA Execution of SIs

- 104 -

5.2 Executing Special Instructions using the core Instruction Set Architecture (cISA)

The explicit cISA execution in Algorithm 5.2 has certain advantages and disadvantages. One disadvantage
is that the application programmer has to encapsulate each SI manually with a conditional branch, as
shown in the example. Additionally, this conditional branch reduces the SI execution performance in the
case that the SI hardware implementation is available because the condition needs to be calculated and a
branch needs to be performed. However, in case that SI implementation is not available, it increases the
performance in comparison with the implicit (i.e. trap-based) cISA execution. For instance, the overhead
of the trap and extracting the SI opcode and parameters are not further required. Additionally, the com-
piler might perform global optimizations on the code, for instance, constant propagation may be applied in
the example in Algorithm 5.2 for the parameters x and y. Instead, the constants for parameters a and b (for
the implicit cISA execution) need to be loaded to registers to pass them to the SI, which – if the trap-
handler executes it – are extracted again and copied to other registers. Summarizing, the implicit cISA
execution allows for an overhead free implementation of the SI if the hardware implementation is avail-
able at the cost of 38-39 cycles trap overhead if the cISA implementation shall be used. The explicit cISA
implementation minimizes the cISA overhead at the cost of a reduced SI performance if the hardware im-
plementation is available. As the cISA implementation can be considered as an interim implementation,
whereas the majority of the SI executions should use a hardware implementation, the implicit cISA execu-
tion is chosen. However, the explicit cISA execution or combinations of both are also feasible.

If a trap for a certain SI is triggered, it means that not all required Atoms are available in hardware.
Still, some of the Atoms might be available. For instance, the SATD SI (see Figure 3.3 on page 27) is
composed of multiple instances of four different Atom types, i.e. QSub, Repack, Transform, and SAV.
Even if not all Atoms are available in hardware with at least one instance, it might be beneficial to use
some of the available Atoms and to compute the remaining parts using the cISA. If the QSub, Repack, and
Transform Atom are available with at least one instance, then their functionality might be used to acceler-
ate the SI execution even though not all demanded Atoms are available for a full hardware implementa-
tion. The access to a single Atom is realized as a so-called elementary SI, i.e. it corresponds to an SI with
two inputs and two outputs that are directly connected to the inputs and outputs of the Atom. This imple-
mentation corresponds to the so-called mixed Molecules as introduced in Section 3.2. At most one Atom
is used at a time, thus the Molecule-level parallelism is not used. Still, these mixed Molecules provide a
performance improvement in comparison with the pure cISA execution, as the Atom-level parallelism is
exploited.

As some parts of a mixed Molecule demand the cISA, also the ‘unimplemented instruction’ trap is
used to trigger their execution. Within the trap handler, software might be used that reflects the data flow
of the SI and decides locally for each Atom whether it shall execute using the cISA or whether it may use
an elementary SI, i.e. whether that Atom is available in the reconfigurable fabric. However, this leads to
potential performance problems, as shown below. Instead of this, the trap handler for a certain SI probes
once, which Atoms are available, by using the SIV Helper Instruction (see Table 5.4) to determine the ‘SI
version’, i.e. which mixed Molecule shall execute the SI. For each mixed Molecule, a dedicated imple-
mentation is provided as part of the trap handler. The advantage of offering multiple SI implementations
inside the trap handler (one for each mixed Molecule and one for the pure cISA Molecule) is that, for each
implementation, the compiler statically knows which parts use the cISA (i.e. which Atoms are not avail-
able) and can optimize them correspondingly. For instance, in the SATD example in Figure 3.3, QSub and
Repack execute subsequently and Repack obtains the result from QSub as input. If QSub and Repack
would both be executed using the cISA, then the compiler may perform common sub-expression elimina-
tion for the combined QSub/Repack software. Alternatively, just one code that is used for all Mixed
Molecules and the cISA Molecule together might be provided. In such a case, it needs to be determined
within that software, whether an Atom is available or not, using a conditional branch that executes either
the Atom or the cISA code that corresponds to the Atom functionality. In this example, if QSub and Re-
pack would both execute using the cISA, then still the two conditional branches would encapsulate the
cISA implementations of QSub and Repack, respectively. As the condition for the branches is not known
at compile time, the compiler cannot optimize the code across the boundaries of Atoms. Additionally, not

- 105 -

Chapter 5 RISPP Architecture Details

necessarily all combinations of Atom availabilities are beneficial. For instance, if Repack is available but
Transform is not, then it is typically not beneficial to use the Repack Atom, because Repack is used in this
SI to organize the data in such a way that it is suitable for the Transform Atom. If the Transform Atom is
not available, then this data reorganization is not necessarily required.

5.3 Data Memory Access for Special Instructions
To exploit the performance potential of hardware-accelerated calculations by Atom-level parallelism and
Molecule-level parallelism (see Section 3.2), the SIs need sufficient input data. For instance, the SATD SI
(see Figure 3.3 on page 27) requires eight 32-bit inputs, some other SIs like SAD require even more.
However, the instruction format for SIs and the register file only provide up to four different 32-bit regis-
ters as input (see Section 5.1). Therefore, additional data memory access is provided for the SIs, as indi-
cated in Figure 4.1 (page 42). Obviously, a larger memory bandwidth increases the potentially available
parallelism that may be exploited by SIs. However, it also increases the costs of the system. As a com-
promise, exactly the same memory connection is provided as Tensilica [Tena] offers them for their Xtensa
LX2 ASIP [Tenb], i.e. two independent ports with 128 bits (quadword) each. Similar to Tensilica, the
RISPP prototype uses on-chip memory to realize this data bandwidth and thus the memory capacity is
limited. Using off-chip memory would imply a rather large amount of I/O pads to connect both ports to
the chip.

The on-chip memory corresponds to a scratchpad memory that is shared between the core pipeline
and the reconfigurable fabric because SIs may execute either on the core pipeline (cISA execution, see
Section 5.2) or on the reconfigurable fabric (in case sufficient Atoms are available) and need to be able to
access the memory. As it is typical for shared memory, potential memory inconsistency problems may
occur if an SI that accesses the memory executes on the reconfigurable fabric and – during the multi-cycle
SI execution – load/store instructions execute in the core pipeline. For instance, the pipeline may load a
value from memory, modify it, and write it back. If an SI on the reconfigurable fabric writes the same ad-
dress in between, then the core pipeline overwrites its result. In the scope of the OneChip98 project
[JC99], Carillo identified nine different memory inconsistency problems for which hardware support was
developed to resolve them [CC01]. Only one application (JPEG encode/decode) of their four benchmarks
actually took advantage from the ability to execute the core pipeline in parallel to the SIs. As the perform-
ance improvement was rather small (1.72%), Carillo concluded that “simply making the CPU stall when
any memory access occurs while the RFU47 is executing, will not degrade performance significantly on
the types of benchmarks studied” [CC01]. This rather small performance improvement is not surprising.
The SIs are designed to cover the most prominent computational blocks of the application in parallel
hardware. Additionally executing the computationally less important parts on the core pipeline in parallel
to the SI execution should not affect the overall performance significantly. Based on these general consid-
erations and on Carillo’s investigation, the core pipeline is stalled during the SI execution. However, the
proposed concept of modular SI does not imply a conceptual necessity to stall the pipeline. If it appears to
be promising for any particular application scenario, the prototype may be extended accordingly.

Even though the core pipeline is stalled during an SI execution, there is still one potential memory in-
consistency problem left. If a load/store instruction precedes an SI (i.e. it enters the pipeline one cycle ear-
lier), it reaches the memory stage when the SI reaches the execute stage of the pipeline. If the SI immedi-
ately issues a memory access, then the access from the load/store instruction and the SI are issued in the
same cycle. However, solving this problem is rather simple. As the load/store instruction was issued be-
fore the SI, it should also be allowed to access the memory before the SI. Therefore, an arbiter that sched-
ules the memory accesses from the memory stage and the SIs is provided and it gives priority to the mem-
ory stage statically.

47 Reconfigurable Functional Unit; corresponds to a reconfigurable region into which an SI implementation may be

loaded

- 106 -

5.3 Data Memory Access for Special Instructions

Memory
Controller

Reconfigu‐
rable Fabric

Co
re
 P
ip
el
in
e

Data Cache

Off‐Chip
Memory

Scratchpad

IF

ID

MEM

WB

EXE

128128

32 32

32

128

128

Figure 5.3: Memory Controller, Connecting the Memory Stage of the Core Pipeline and Both 128-

bit Ports for SIs with the Data Cache and an On-Chip Scratchpad Memory

As two different types of memory (on-chip cache and on-chip scratchpad) with different ports are avail-
able and as additionally two different processing resources (core pipeline and reconfigurable fabric for SI
implementation) are available that access both memory types, a memory controller is developed to con-
nect them. Figure 5.3 gives an overview, how the memory controller is connected to the system. The core
pipeline as a 32-bit port from the memory stage and the reconfigurable fabric has two independent 128-bit
ports. The cache has a 32-bit port while the scratchpad has two 128-bit ports. The core pipeline may also
access the scratchpad, using 32-bit data. The scratchpad provides byte enable signals that allow writing
the particular 32-bit word (or even a single byte). The core pipeline may access words (i.e. 4 bytes) at ad-
dresses that are word aligned (i.e. the address is dividable by four without remainder). However, these
addresses are typically not quad-word aligned as demanded by the scratchpad. Therefore, the memory
controller creates the corresponding quad-word address and provides the 32-bit data at the expected bit
positions. If an SI accesses the data cache from the reconfigurable fabric, then the memory controller seri-
alizes the accesses. The SI may request up to 256 bits at the same time, which corresponds to eight differ-
ent word accesses. If an SI performs a 128-bit access to the scratchpad that is not quad-word aligned, then
the memory controller automatically creates up to two subsequent quad-word accesses to realize them.
For instance, if a quad-word access to address 0b00001048 is requested (each byte has an individual ad-
dress), then this address is not quad-word aligned (the last 4 bits are not zero) and just cannot be directly
passed to the memory. Instead, the memory controller issues to accesses at addresses 0b000000 and
0b010000. Each one loads 16 bytes and the memory controller combines these 32 bytes to return the re-
quested 16 bytes from address 0b000010 to 0b010001. However, if afterwards the subsequent 16 bytes are
requested (i.e. 0b010010) then the memory controller only issues one additional access to address
0b100000 and combines that data with the 16 byte from the last request, i.e. the last request is buffered.
Therefore, in a sequence of 128-bit accesses that are not quad-word aligned, only the first request de-
mands two memory accesses.

In the FPGA prototype, the scratchpad is partitioned into a general-purpose scratchpad and an applica-
tion specific video memory. This partitioning is not a part of the general RISPP concept, but it is a part of
the periphery of the surrounding system. For benchmarking, an H.264 video encoder is investigated (see
Section 3.3) and the FPGA prototyping platform is equipped with an audio/video periphery module that is
connected to the RISPP processor. To access the video input data with a high bandwidth, special video

48 for simplicity, only six bit addresses are written and the last four bits (indicating which byte of a quad-word shall

be accessed) are underlined

- 107 -

Chapter 5 RISPP Architecture Details

buffers that are connected to the prototype like the scratchpad memory are implemented. The address de-
cides whether an access goes to the general-purpose scratchpad or to the video buffers. Altogether, three
different video buffers are implemented. One buffer stores the current frame that shall be encoded, the
second buffer stores the decoded previous frame (as demanded by video encoders with intra-frame predic-
tion), and the third one stores the next frame that is read from the video camera during the current frame is
encoded. In addition, the general-purpose scratchpad is used, for instance to store the temporary results of
the DCT calculation. For encoding, the motion estimation compares the current frame with the decoded
version of the previous frame (SAD and SATD SIs) accessing both video buffers with one 128-bit port
respectively. After encoding, the frame is decoded to serve as a comparison frame for the next frame. This
decoded data overwrites the current frame, using both ports on that buffer. One port of the buffer that con-
tains the previous frame is connected to a VGA output periphery module. This is possible, as no SI de-
mands accessing the previous frame with both ports. After encoding and decoding are completed and a
new frame is available from the video camera, the buffers rotate their role, i.e. the input frame from the
camera becomes the current frame, the current frame becomes the previous frame, and the next frame that
comes from the camera overwrites the old previous frame. This rotation is performed in hardware by
changing the connections of the buffers. This simplifies the software development, as the current frame
can always be accessed at one particular address, independent of which of the three video buffers cur-
rently contains the current frame. The video core that performs this buffer rotation is memory mapped to
the processor to control when such a rotation shall take place.

5.4 Atom Infrastructure
The previous section described how the SIs are embedded into the instruction format of the core pipeline,
how they are executed using the cISA, and how they maintain sufficient input data. However, to execute
an SI using the reconfigurable Atoms, a special infrastructure – the so-called Atom Infrastructure – is de-
manded that fulfills the following requirements:

1. Offer small reconfigurable regions (so-called Atom Containers, ACs) such that each of them can be
reconfigured to accommodate one Atom at a time, without affecting the other regions during recon-
figuration.

2. Provide a communication infrastructure that allows connecting the ACs to implement Molecules. To
be able to implement Molecules with a rather high Molecule-level parallelism (i.e. where multiple At-
oms execute in parallel, see Section 3.2), the communication infrastructure needs to provide sufficient
parallel communication channels.

3. Provide local storage to save the temporary computation results from Atoms. This allows using tem-
porary calculated results at a later point in time, which is especially important for Molecules with a
rather low Molecule-level parallelism. In such a Molecule, the Atoms execute in a rather sequential
way and thus the results are typically not demanded immediately but they are demanded at a later
point in time.

All three points are important to provide modular SIs that support upgrading the SI implementations. In
literature, general approaches exist, that aim to provide a flexible infrastructure to allow interaction and
dynamic communication between different reconfigurable modules. The Erlangen Slot Machine (ESM)
[BMA+05, MTAB07] provides a flexible platform that provides multiple reconfigurable regions with dif-
ferent communication mechanisms. However, the ESM cannot be used to solve the specific problem of
implementing modular SIs, because the provided inter-module communication does not fulfill the re-
quirements: the ESM provides sufficient communication between adjacent modules, but non-adjacent
modules communicate either via a Reconfigurable Multiple Bus (RMB) [ESS+96] or (in rare cases) via
the external crossbar. The external crossbar comes with the drawback of sending the data off-chip, which
limits the achievable latency and bandwidth. The RMB instead is not suitable for rapidly changing com-
munication patterns (required for modular SIs as indicated for the SATD example in Figure 3.4 (page 28),
as a communication path first has to be established in a wormhole fashion before it can be used efficiently.

- 108 -

5.4 Atom Infrastructure

The DyNoC approach [BA05, BAM+05] proposes an interconnection network that supports a 2D tempo-
ral placement of reconfigurable modules and provides scalability. It would deliver the bandwidth, but the
average communication latency is high and thus not suitable to implement Molecules efficiently. Ullmann
uses a bus [UHGB04a] and thus provides low latency but the design does not provide high simultaneous
communications between multiple modules, as required.

Figure 5.4 provides a first overview of the Atom Infrastructure that is proposed in this thesis to im-
plement modular SIs (details in Section 5.4.1). The ACs are connected with each other in a linear chain
using interconnect boxes. In addition to the ACs, some non-reconfigurable modules are connected to the
chain as well. Among others, these non-reconfigurable parts are used to establish the data memory access,
as shown later. This linear chain of ACs and non-reconfigurable Modules is connected to the general-
purpose register file of the core pipeline. To be able to receive four 32-bit inputs from the register file in
parallel, the interconnect boxes need to provide a sufficiently large communication channel. However, the
interface of the Atoms (and thus the AC) is independent of the general input/output of the Atom Infra-
structure. In the proposed implementation, the Atoms receive two 32-bit inputs and provide two 32-bit
outputs.49 Additionally, each Atom has a 6-bit input for control signals (e.g. reset or to choose some op-
eration mode as DCT vs. inverse DCT) and an 8-bit output (notifying the system which Atom is currently
loaded into a particular AC). The interconnect boxes establishing the linear communication chain and
provide access to the ACs. All ACs implement the same interface to assure that any Atom can be recon-
figured into any AC. However, the non-reconfigurable modules are not limited to any particular interface
and thus they can implement specific connections to the Atom infrastructure, depending on their commu-
nication requirements. In the concept of the RISPP architecture, only the ACs need to be implemented
using a reconfigurable fabric. Although the prototype is realized using an FPGA (i.e. every part is imple-
mented using a reconfigurable fabric), the core pipeline, memory controller, Atom Infrastructure etc. will
never be reconfigured during run time.

Memory
Controller

C
or

e
P

ip
el

in
e

IF

ID

MEM

WB

EXE

At
om

C

on
ta

in
er

Inter-
con-
nect

At
om

C

on
ta

in
er

Inter-
con-
nect

At
om

C

on
ta

in
er

Inter-
con-
nect

At
om

C

on
ta

in
er

Inter-
con-
nect

…

…

4 registers
input

2 registers
output N

on
-re

co
n-

fig
ur

ab
le

M
od

ul
es

Inter-
con-
nect

Figure 5.4: Overview of the Atom Infrastructure and its Connection

to the Core Pipeline and the Memory Controller

The interconnect boxes need to be reconfigured to determine which ACs should be connected with each
other. Additionally, the 6-bit control signal of each Atom needs to be configured and also the non-
reconfigurable modules demand some control signals. These configurations correspond to a coarse-
grained reconfiguration of the Atom infrastructure and it determines the calculations and operations (e.g.
memory access) that shall be performed in a particular cycle. Therefore, it is required to change that con-

49 note that Atoms do not necessarily use all inputs and outputs

- 109 -

Chapter 5 RISPP Architecture Details

figuration fast, i.e. from one cycle to another. Instead of using a fine-grained reconfigurable fabric to de-
termine these configurations (because the reconfiguration time of these fabrics is rather long), a so-called
Very Long Control Word (VLCW) is used to determine the configuration at a particular cycle. This means
that the Atom Infrastructure corresponds to a coarse-grained reconfigurable design and a VLCW corre-
sponds to a particular configuration context that can be reconfigured in one cycle. An SI execution typi-
cally demands multiple cycles and in each cycle potentially different ACs need to communicate with each
other, as shown in the SATD example in Figure 3.4 (page 28). Therefore, an SI execution demands multi-
ple VLCWs, typically one per execution cycle. In the RISPP prototype, 1024-bit VLCWs are used that are
stored in a 64 KB large context memory (1024 Bit/VLCW x 512 VLCWs, implemented with 32 on-chip
BlockRAMs). One 1024-bit read port of the VLCW context memory is dedicated to the Atom Infrastruc-
ture to be able to load a complete VLCW per cycle. A 32-bit write port is connected to the run-time sys-
tem to be able to change the content of the VLCW context memory. The execution of an SI in hardware50
is determined by a start address that points to an entry in the context memory and the amount of subse-
quent VLCWs that shall be provided to the Atom Infrastructure (typically one per cycle). This coarse-
grained reconfigurable Atom Infrastructure provides the flexibility to establish any communication pattern
that the provided hardware supports (presented in Section 5.4.1). The execution of an SI using the cISA
Molecule or a Mixed Molecule (see Section 5.2) does not require any entries in the VLCW context mem-
ory. However, the Mixed Molecules demand elementary SIs (using exactly one Atom for one calculation)
which require one VLCW entry per elementary SI.

Memory Controller

…

…

At
om

Co

nt
ai
ne

r

Inter‐
con‐
nect

Legend:
AGU:Address Generation Unit
LSU: Load/Store Unit

AG
U
 0

Inter‐
con‐
nect

LS
U
 0

Inter‐
con‐
nect

AG
U
 1

Inter‐
con‐
nect

Re
pa
ck

Inter‐
con‐
nect

AG
U
 2

Inter‐
con‐
nect

LS
U
 1

Inter‐
con‐
nect

AG
U
 3

Inter‐
con‐
nect

Re
pa
ck

Inter‐
con‐
nect

Figure 5.5: Overview of the Non-reconfigurable Modules within the Atom Infrastructure

Before investigating the architecture for the interconnect boxes and the ACs in Section 5.4.1, an overview
of the non-reconfigurable modules that are connected to the Atom Infrastructure is given in Figure 5.5.
Three different types of non-reconfigurable modules are used:

1. Load/Store Unit (LSU): Two LSUs are used to access two independent memory addresses in paral-
lel (using the two independent memory ports as described in Section 5.3). Each LSU may load or
store 128 bits at the same time. The address for the memory access can be obtained from the intercon-
nect chain (e.g. as result of an Atom computation or as input from the general-purpose register file
from the core pipeline) or from a dedicated address generation unit. The details of the LSU will be de-
scribed in more detail in Section 5.4.2.

50 despite providing the input from and writing back the results to the general-purpose register file

- 110 -

5.4 Atom Infrastructure

2. Address Generation Unit (AGU): The AGUs are used to provide addresses to the LSUs. Each AGU
can be initialized by values from the communication infrastructure, e.g. provided by the general-
purpose register file from the core pipeline. They can provide address sequences that describe certain
patterns in the memory. For instance, a two-dimensional sub-array of a larger two-dimensional array
(e.g. a MacroBlock in a video frame) can be accessed. Altogether, four independent AGUs are pro-
vided. They can be used to provide two load streams and two store stream (or four load streams etc.).
Section 5.4.2 provides the details for the AGUs.

3. Repack Atom: In addition to the LSUs and AGUs, also two instances of the Repack Atom are pro-
vided as non-reconfigurable modules. They implement different byte rearrangement operations and
the simulations suggest that these Atoms are seldom replaced, as their functionalities are demanded by
many SIs. Therefore, it is not necessarily beneficial to provide them as reconfigurable Atoms. Instead,
they are implemented as non-reconfigurable modules, which allows changing the interface. Four in-
puts and four outputs are provided (instead of two for reconfigurable Atoms) to perform more opera-
tions in parallel or to perform more complex repacking operations that demand more inputs. Repack-
ing does not perform any calculation, but it rearranges data from an input source. For instance, the
four lowest Bytes of four different 32-bit words may be concatenated to form on output word. Such
operations are demanded to prepare data for subsequent Atom operations, i.e. they enable the calcula-
tions for the other Atoms (e.g. a transformation). Even though no calculation is performed, executing
such operations using the cISA corresponds to a rather long sequence of masking (‘and’ operation),
shifting, and combining (‘or’ operation) instructions. Additionally, the Repack Atom has the smallest
hardware requirements in comparison with other Atoms, i.e. the amount of reconfigurable fabric
within an AC would not be utilized efficiently when offering the repack functionality as reconfigur-
able Atom. Providing the Repack Atom statically increases the area efficiency correspondingly. In
addition to the repacking operations, also an adder is included within the Repack Atom, as some SIs
demand accumulation of temporary results, which can be done using the non-reconfigurable adder.

5.4.1 Atom Containers and Bus Connectors

The Atom Infrastructure is partitioned into so-called Atom Containers (ACs) and Bus Connectors (BCs).
The BCs correspond to the Interconnect boxes in Figure 5.4. Each AC is connected to a dedicated BC via
so-called Bus Macros [Xil05b] to establish communication between the partially reconfigurable AC and
the non-reconfigurable BC. A Bus Macro is a relatively51 placed & routed IP core that provides a dedi-
cated communication point. This is important for partially reconfigurable designs, as the static part and
the reconfigurable parts of the design are implemented after each other. When implementing the static
part, only a free space for an AC is reserved and the communication interface is fixed (using the Bus Mac-
ros). Afterwards, multiple different Atoms can be implemented for a particular AC, using the Bus Macros
to communicate with the BC. The Bus Macros provide a communication interface to which the BS design
can route its communication wires. Without Bus Macros, this routing point would depend on the Atoms
that can be reconfigured into an AC and in their specific implementation (not known during implementa-
tion of the static design).

For technical reasons, the reconfigurable regions have a rectangular shape. The smallest reconfigur-
able element in a Xilinx Virtex FPGA is a so-called frame [Xil05b], i.e. a frame is an individually ad-
dressable part of the configuration bits that determine the FPGA functionality. Multiple frames need to be
reconfigured to reconfigure a Configurable Logic Block (CLB). In Virtex-II devices, a frame covers the
whole height of an FPGA. Therefore, the smallest meaningful52 reconfigurable region is a CLB column

51 this means that all components within the IP core are placed and routed relative to each other, but the IP core itself

can be placed at different (not necessarily all) places on the FPGA without affecting the IP-core internal composi-
tion

52 when only minor changes need to be reconfigured, then reconfiguring a single frame might be sufficient (e.g. to
change a value in a LUT), however, reconfigurable modules typically cover CLB sub arrays as smallest entity

- 111 -

Chapter 5 RISPP Architecture Details

that spans the full FPGA height. However, it is possible to create reconfigurable modules that do not span
the full FPGA height. Still the entire CLB column will be reconfigured although only a part of it will
change its content. The other parts will obtain the very same configuration data that was loaded into them
statically. Therefore, technically they are reconfigured (which also demands time) but practically they
never change their content.53,54 It is also possible to place multiple reconfigurable regions in the same col-
umn, using a read-modify-write strategy to perform the so-called 2D-partial reconfiguration [HSKB06,
SKHB08]. Before a reconfiguration, the configuration bits of the corresponding frames are read, the parts
of the configuration bits that contain the reconfigurable region are modified, and the frames are written
back. This assures that the static part and all other reconfigurable parts within the frames maintain their
previous configuration. The Virtex-4 (and later) devices provide frames that no longer span the full FPGA
height, i.e. they naturally support multiple reconfigurable regions within the same CLB column.

Atom
Container

Bus Connector

Figure 5.6: Internal Composition of a Bus Connector, Showing the Connection

to its Atom Container and the Neighboring Bus Connectors

Multiple AC-BC pairs are connected to collectively build the Atom Infrastructure. The partitioning into
ACs and BCs makes sure that the BC functionality is available even during the reconfiguration of the AC.
The BC has input and output connections to the adjacent BCs and to its AC. Figure 5.6 shows the internal
composition of a BC in detail. Each BC contains two small local storages (one per Atom output) with one
write port, two read ports, and the capacity to store four temporary Atom results. The inputs to the AC can
be received from any of the BC inputs (four from each left and right adjacent BC) or from any port of the
two local storages. Both AC inputs have the same possibilities from where the input shall come and both
decide independently about their source using two independent multiplexers. A transparent latch is placed

53 the Xilinx Virtex series provides the feature of a so-called glitchless reconfiguration, i.e. if a configuration bit

after its reconfiguration has the same value like before its reconfiguration, then it is guaranteed that this bit does
not glitch in between (the Xilinx Spartan series does not provide this feature)

54 actually, the configuration is reset to the configuration of the static bitstream which might have changed since its
initial configuration as a normal part of operation if for instance the configuration bits were used as memory using
the so-called ‘distributed RAM’ IP core [Xil05a]

- 112 -

5.4 Atom Infrastructure

between the multiplexer and the AC input. This allows disconnecting the Atom inside the AC from exter-
nal inputs when it is not demanded and thus avoids unnecessary toggles and power consumption of the
Atoms. The AC output is written to the local storage, however, the input data to the ACs may also be writ-
ten to the local storage directly (i.e. without passing through the Atom). This allows copying data from a
local storage to another one, which is required in case the provided size of the local storage is too small
for a particular Molecule execution. The output of the local storage can drive any output of the BC. The
computing results may reside in the local storage for multiple cycles. This is required to implement Mole-
cules that consist of a small amount of Atoms. These Molecules do not exploit parallelism exhaustively
and therefore need to store intermediate results temporarily.

One of the main requirements of the communication infrastructure is to provide low communication
latency while at the same time achieving high communication bandwidth (e.g. the evaluated SATD Mole-
cule in Figure 3.4 (page 28) requires up to 256 bits per cycle, e.g. 8*32 bit in cycle 11, 14, and 15). Thus,
segmented busses were implemented to connect the BCs in order to achieve a single cycle communication
(i.e. no registers on a path from local storage to AC) and to use the available bus lines efficiently
[MSCL06]. Therefore, each bus can be used to establish multiple communications if the communication
patterns do not intersect. For instance, in a linear chain of BCs (BC1, BC2, …) a communication from
BC1 to BC3 and another communication from BC3 to BC4 can be realized on the same segmented bus. To
allow a parallel communication, unidirectional busses are used, i.e. multiple segmented busses are pro-
vided for communications from left to right, and the same amount of segmented busses are provided for
the other direction. The achieved communication bandwidth allows implementing Molecules that consist
of many Atoms and thus exploiting the Molecule-level parallelism. Together with the local storage, small
and big Molecules can be implemented, thus enabling SI upgrades.

Atom
Container 1

Atom
Container 0

Bus Connector 1Bus Connector 0 Bus Connector 2

Figure 5.7: Atom Infrastructure with three Bus Connectors, Highlighting two Example

Communication Patterns for Typical Atom Computation and Data Copying

Figure 5.7 shows how multiple BCs are connected to a linear chain and shows two highlighted communi-
cation examples to demonstrate the functionality. From the local storages in BC2, two previously com-
puted results are transferred to BC1, pass the latches, and enter AC1. The result of the Atom in AC1 is
stored in the local storage of BC1. At the same time, a result from the local storage in BC0 is transferred
via BC1 to BC2, bypasses the AC and is directly stored in the local storage, i.e. it is copied from BC0 to
BC2.

Relevant parameters for the Atom Infrastructure – according to size and latency – are the number of
buses and the bus granularity (e.g. 16-bit or 32-bit buses). For instance, if a 16-bit bus granularity is used,

- 113 -

Chapter 5 RISPP Architecture Details

the Repack Atom for SATD in Figure 3.4 (page 28) is no longer required for implementation. For this SI,
the Repack Atom is rearranging data on 16-bit level. When a 16-bit bus granularity would be used, this
rearrangement could directly be implemented with the multiplexers that determine the Atom input data
(see Figure 5.6). However, a 16-bit bus granularity comes at higher hardware cost and still the Repack
Atom is required for 8-bit data rearrangement for other SIs.

0

500

1,000

1,500

2,000

2,500

2 3 4 5 6 7 8

A
re

a
[S

lic
es

]

#Buses (per direction)

2*16-Bit Buses

32-Bit Buses

Figure 5.8: Area Requirements per Bus Connector for More Buses and Finer Access Granularity

Here, the Atom Infrastructure that is proposed in this thesis will be evaluated for different parameter val-
ues and present detailed results of the implemented and tested FPGA implementation. The most relevant
parameters are the amount of buses with their granularity and the quantity of BCs. A tool was developed
that automatically generates the Atom Infrastructure (including the BCs and a constraint file for the Bus
Macro placement) for different parameter settings to explore different design points.

Figure 5.8 shows the impact of the bus granularity on the hardware requirements (y-axis) for increas-
ing amount of buses (x-axis). Thereby, n 32-bit buses are compared with 2n 16-bit busses to make sure
that the compared bus systems provide the same bit width. As stated beforehand, offering a finer bus
granularity may potentially avoid the repacking of data. However, even for a moderate amount of four
segmented buses, the hardware costs of 16-bit granularity are 1.58x bigger than that of 32-bit granularity
(resulting in 492 additionally required slices per BC) and the gap increases further. Therefore, 32-bit
granularity is selected for implementation.

10

12

14

16

18

20

22

24

2 3 4 5 6 7 8

C
ri

tic
al

 P
at

h
[n

s]

32-Bit Buses (per direction)

8 ACs & BCs
6 ACs & BCs
4 ACs & BCs

Atom Containers
(ACs) and Bus

Connectors (BCs)

Figure 5.9: Latency Changes for Increasing Amount of Buses and Bus Connectors

- 114 -

5.4 Atom Infrastructure

Figure 5.9 analyzes the impact of different quantities of buses and BCs on the critical path. The amount of
buses (x-axis) only affects the critical path (y-axis) slightly, but each additional BC in the bus length (dif-
ferent lines in the figure) increases it by approximately 1 ns. The critical path was analyzed for all shown
measurements. In all cases, the critical path started reading data from the local storage of the rightmost
BC, passing it to the leftmost BC (communication), through the leftmost Atom (computation), and storing
the results in the corresponding local storage. For this analysis, the Atom with the longest Atom-internal
critical path (i.e. the Transform Atom that is also used by SATD) was placed in all ACs to provoke this
worst-case behavior.

5.4.2 Load/Store- and Address Generation Units

As explained in Section 5.3 two independent 128-bit data memory ports are provided to obtain sufficient
input data to exploit parallelism. Figure 5.5 showed how two independent Load/Store Units (LSUs) are
connected to the Atom Infrastructure to access the memory and provide the data to the Atoms. Figure 5.10
shows the internal composition of an LSU. It is connected to the same segmented busses as the Bus Con-
nectors (BCs) of the Atom Infrastructure. However, in comparison with the BCs the LSU contain four
local storages (providing space for four different 32-bit words). The reason is that the LSU connects to a
128-bit (quad-word) memory port. In order to be able to store a quad word in one cycle, local storage with
sufficient bit width need to be provided. As the segmented busses are 32 bit wide, four local storages real-
ize a good interface between the segmented busses and the quad-word memory port.

M U X
MUX

Den
Q

MUX

MUX fr
om

 A
G

U
s

Load/Store Unit

Figure 5.10: Internal Composition of a Load/Store Unit, Showing the Connection

to the Memory Port and the Address Generation Units

- 115 -

Chapter 5 RISPP Architecture Details

When loading a quad-word from memory, the data is stored in the local storage. Each local storage is
connected to all four words of the quad-word, i.e. it is not predetermined which word of a quad-word is
stored in which local storage. Additionally, the write port of a local storage can receive data from any of
the segmented busses to copy data from other parts of the Atom Infrastructure to the LSU. When writing a
quad word to memory, then for each word of the quad word, the following possibilities exist from where
the data may come. Either, the data comes from any of the segmented busses (using the same multiplexer
that is used for copying data from the busses into the local storage), or the data comes from one dedicated
local storage. However, when using data from local storage for writing, then it is predetermined which
local storage can be used for a particular word of the quad word, i.e. not all local storages are connected to
any word of the quad word at the memory write port. This was not needed, as the data that is written to the
local storages has all flexibilities to be written to that local storage that corresponds to the later write posi-
tion. Whenever a load or store access is performed, then the address may be obtained from the segmented
busses or from the Address Generation Units (AGUs). Each AGU provides two addresses, which is im-
portant to utilize both LSUs as shown later. In addition to the shown signals in Figure 5.10, also a Byte
select signal is send to the memory port. It chooses which of the 16 Bytes in the quad word shall be ac-
cessed, which is especially important for write accesses.

The AGUs are used to calculate addresses in a certain pattern, i.e. they describe a so-called memory
stream. For describing a memory stream, a base address is used in addition to the parameters stride, span,
and skip, as described in [CEL+03, LLC06]. Figure 5.11 shows an example of a memory stream and how
it can be described using these parameters. The example shows a 2-D array of data that contains a 2-D
sub-array that shall be read by the LSU. In memory, the 2-D array is stored in a linear fashion, i.e. the
rows of the array are stored sequentially after each other. The base address points to the first value of the
sub-array and the stride describes the increment to obtain the next element. In this example, the 2-D sub-
array is dense, i.e. there are no gaps in between, and thus the second element is directly following the first
one (i.e. the stride is 1). The parameter for the span describes the size of a row, i.e. how many elements
shall be accessed by adding the stride to reach the next element. After an entire row is read, the skip de-
scribes how the first element of the next row can be reached from the last element of the current row.
From there, the span determines how many elements shall be read before the skip needs to be applied
again. These parameters also allow traversing the 2-D sub-array in a vertical manner, i.e. reading it col-
umn-wise. Therefore, the stride describes how to come from the ith element of a row to the ith element of
the next row. The span describes the number of rows and the skip resets the address to the next element of
the next column.

With the four independent AGUs (see Figure 5.5), four independent memory streams that can be used
to load and/or store data can be described. However, what happens if an SI only demands one memory
stream, but still wants to utilize both LSUs to access data from this stream in parallel? Figure 5.12 shows
the stream that was already used in Figure 5.11, using a color-coding to indicate which element is ad-
dressed by which AGU (i.e. different colors correspond to different AGUs). Obviously at least two AGUs
need to be utilized to provide two different addresses in parallel. In the first attempt in Figure 5.12a), two
AGUs are used and the elements are colored alternating red and green to indicate that the addresses of two
successive elements are available at the same time. However, the resulting pattern for the red and green-
colored elements can no longer be described using the stride, span, and skip parameters, respectively. The
problem is that an odd number of elements belong together in a group and thus two different kinds of
groups are obtained, i.e. one with two red elements and one with two green elements. Therefore,
Figure 5.12b) shows the second attempt that uses all four AGUs to describe one memory stream. Two
AGUs are used to describe the group with the two red elements, and the other two AGUs are used to de-
scribe the other group (with two blue elements). Figure 5.12c) shows the resulting AGU to LSU mappings
over time, i.e. at which time, which AGU provides an address to which LSU.

- 116 -

5.4 Atom Infrastructure

Base Address

… …

2‐D Array of data

2‐D Sub‐array of
demanded data

Representation of
data in memory

stride=1

span=3

skip=6

… …

stride=8

skip=‐15span=3

Alternative: process the data vertical first

Figure 5.11: Memory Streams, Described by Base Address, Stride, Span, and Skip

… …

… …

4 independent AGUs are needed to access to elements of only
one stream with two LSUs in parallel

It is not possible to describe the red elements with only
one AGU; same for the green elements

LSU1:
LSU2:

time

Trying to access one memory stream with two LSUs in parallel,
i.e. two addresses are needed at the same time:

Colors of boxes correspond to the AGU
that delivers the address for the LSU

a)

b)

c)

Figure 5.12: Problems, if one Memory Stream shall be accessed with both LSUs in Parallel

- 117 -

Chapter 5 RISPP Architecture Details

If an SI needs one input stream and one output stream and want to use both LSUs to read the input data,
then all four AGUs are busy to create the addresses for the input stream. Therefore, the output stream can-
not be written until all input data is read. This situation requires a rather large amount of temporary stor-
age to buffer the input and/or output data until the input stream is processed entirely. Depending on the
available amount of local storage, it might even be impossible to execute the SI using both LSUs. For in-
stance, if 256 quad words shall be read and for each 16 quad words one result is written back to memory,
then the local storage would need to buffer at least 256*4 words = 4 KB (noticeably larger than the local
storage that is provided in the Atom Infrastructure). And even if sufficient buffer would be available, still
the parallelism is limited, as the store operations may not start until all load operations are completed
(even though results that shall be stored are already available). The reason is that at least one AGU needs
to be reinitialized to provide the addresses for the store stream. In order to provide a more efficient solu-
tion for this situation, this thesis proposes to extend the AGUs to provide two addresses in parallel. This
means, that each AGU calculates the next two addresses of its stream in two subsequent cycles and offers
both in two address output registers. If only one address is requested, then only one new address is calcu-
lated. If both LSUs request an address, then it demands two cycles until the AGU has calculated the next
two addresses. As the LSU access to memory demands at least55 two cycles (one to request the data and
one to acknowledge its reception and store it in the local storage), the AGU finishes calculating the next
two addresses in time, i.e. the LSU can immediately start the next access.

The AGUs are also connected to the segmented busses of the Atom Infrastructure (see Figure 5.5).
However, the AGU never writes to them but only reads their values to initialize the base address, stride,
span, and skip. As four AGUs are provided but only four registers may be read from the general-purpose
register file from the core pipeline, it would only be possible to initialize four independent base addresses
if all four AGUs are used. Therefore, dedicated extra bits are reserved in the Very Long Control Word
(VLCW) to determine the configuration of the Atom Infrastructure (see Section 5.4). The VLCW contains
11 bits per AGU that can be used – in addition to the values that come from the segmented busses – to
initialize the parameters, stride, span, and skip. Six additional bits per AGU are used to determine which
combination of the above-mentioned 11 bits and the input from the segmented busses shall determine the
stride, span, and skip. However, these bits in the VLCW are constant, i.e. they are determined when the SI
is designed at compile time. The input from the segmented busses typically comes from the GPR and thus
it can be changed at run time.

Summary of the Atom Infrastructure:

The Atom Infrastructure connects the core pipeline with the run-time reconfigurable Atoms and provides
a communication and computation infrastructure that allows implementing different Molecules. This the-
sis proposes to use segmented busses for a high-bandwidth communication and to use local storage to
save intermediate results. This allows implementing Molecules with rather small Molecule-level parallel-
ism (demanding more local storage) and with rather high Molecule-level parallelism (demanding more
communication). Two Load/Store Units and four Address Generation Units are connected to the seg-
mented Busses. They allow accessing the main memory and an on-chip scratchpad with two independent
128-bit ports and provide a high flexibility in describing the memory streams that shall be accessed. Addi-
tionally, this thesis proposes to provide a data repacking functionality as non-reconfigurable unit within
the Atom Infrastructure. A design-space exploration suggested that offering the segmented busses at the
access granularity of 16 bits would result in a noticeable hardware overhead. Therefore, the functionality
of data repacking is required. Simulations showed that corresponding Repack Atoms were seldom re-
placed and thus they can be provided in non-reconfigurable logic. The Atom Containers (ACs) in the
Atom Infrastructure provide a fine-grained run-time reconfigurable fabric that can be reconfigured to con-

55 in case of an unaligned access it might take longer, same if the LSU accesses the main memory instead of the on-

chip scratchpad memory

- 118 -

5.5 RISPP Prototype Implementation and Results

tain an Atom. A Very Long Control Word (VLCW) configured the Atom Framework for each cycle of an
SI execution. This corresponds to a coarse-grained reconfiguration of the Atom Framework that deter-
mines how the fine-grained reconfigurable ACs shall be connected to implement the functionality of a
Molecule.

5.5 RISPP Prototype Implementation and Results
The RISPP prototype is implemented on a Xilinx Virtex-4 LX 160 FPGA, using a Board from Sil-
ica/Avnet (see Appendix B for details on the FPGA board and the developed PCB). The Early Access Par-
tial Reconfiguration (EAPR, [Xil08a]) tool flow is used with ISE 9.1.02i_PR10 and PlanAhead 10.1. The
Leon2 processor [Aer] was used as core pipeline. The online monitoring, forecast fine-tuning (see Sec-
tion 4.3), the Special Instruction (SI) and Helper Instruction opcodes/formats (see Section 5.1), the Atom
Infrastructure (see Section 5.4), and a special IP core for performing partial reconfiguration via the Inter-
nal Configuration Access Port (ICAP, [Xil09c]) are implemented in hardware. The algorithms for Mole-
cule Selection (see Section 4.4), Reconfiguration-Sequence Scheduling (see Section 4.5), and Atom Re-
placement (see Section 4.6) are implemented in software, using a MicroBlaze [Xil09b] soft-core processor
that is connected to the system. As already indicated in Figure 4.4 (page 48), these algorithms only need
to be triggered by the core pipeline and then can execute in parallel to it without frequent synchronization.
Implementing these algorithms in software provides the advantage that it is relatively easy (in comparison
with a hardware implementation) to modify them and to obtain debugging and status information. This
allows examining different alternatives in a rather short time.

Figure 5.13: Overview of the MicroBlaze System that Implements the

Algorithms of the Run-time System and Controls the Reconfigurations [D.1]

Figure 5.13 provides an overview of the part of the run-time system that is controlled by the MicroBlaze.
In addition to the typical periphery modules for external RAM, Debugging, and peripherals, it was ex-
tended to provide RISPP-specific interfaces. The connection to the core pipeline allows that the Micro-

- 119 -

Chapter 5 RISPP Architecture Details

Blaze can access the Forecast Values whenever a new Forecast Block executes, i.e. the execution of the
algorithms that run on the MicroBlaze can be triggered (more details on their execution time is given be-
low). Additionally, this interface allows activating new Molecules, i.e., the decode stage of the core pipe-
line contains a small lookup table that contains the information which Molecule shall be used to imple-
ment an SI and the MicroBlaze can write this information, e.g. after an Atom finished reconfiguration or
was replaced. Before a new Molecule can be activated, the corresponding VLCWs for its implementation
need to be written to the dedicated VLCW context memory. To achieve a low latency and high bandwidth
write access from the MicroBlaze to the VLCW context memory, the Fast Simplex Link (FSL, [Xil09a])
interface is used to send data to the context memory.

To be able to reconfigure an Atom, a dedicated IP core was developed that is connected to the Micro-
Blaze and that reads the partial bitstreams from an external EEPROM from Samsung [Sam05], buffers a
part of the data in a FIFO, and streams the data to the ICAP port for reconfiguration. The KFG5616 One-
NAND that was used in this thesis provides 32 MB of data56 that is partitioned into 512 blocks, compris-
ing 64 pages with 1 KB per page. Although the partial bitstreams for the Atoms are smaller than 64 KB, a
64 KB block is dedicated to a particular partial bitstream (altogether allowing to store 512 different partial
bitstreams in the 512 blocks) to simplify data management. A PCB was designed to connect the One-
NAND EEPROM (in addition to further peripherals) to the RISPP FPGA prototype (see Appendix B).
The IP core that was developed in this thesis controls the OneNAND EEPROM and is connected to the
MicroBlaze. The MicroBlaze can start a reconfiguration by providing the information, which Atom shall
be loaded into which AC (this corresponds to a particular address in the EEPROM) and the information
about the length of the bitstream. The IP core performs the reconfiguration in parallel to the MicroBlaze
execution and returns a checksum of the reconfigured bitstream. The EEPROM provides access to a dou-
ble-buffer SRAM interface, i.e. during reading the content of a buffer from the EEPROM (temporarily
stored in an on-FPGA FIFO), the EEPROM can be instructed to automatically load the other SRAM
buffer with data from the EEPROM-internal NAND-array.57 However, after reading the content from one
SRAM buffer, the process has to wait until the other SRAM buffer is filled with data, which limits the
overall reconfiguration bandwidth. The ICAP is operated at 50 MHz (same frequency as for the core pipe-
line and the MicroBlaze), but the average58 EEPROM read performance limits the achieved reconfigura-
tion bandwidth. After the MicroBlaze triggered a reconfiguration, the FIFO is filled with data from the
EEPROM. When the FIFO contains sufficient data to assure a continuous 50 MB/s burst to the ICAP, data
is sent from the FIFO to the ICAP port. The EEPROM delivers the remaining parts to the FIFO in parallel
to the running reconfiguration. Due to the initial buffering (until sufficient data is available to perform a
continuous 50 MB/s burst afterwards), the effective reconfiguration bandwidth for the whole process is 36
MB/s.

Figure 5.14 presents the floorplan of the RISPP prototype after place & route, showing all modules
including the Leon2 core pipeline (bottom), the Run-time System (MicroBlaze on left side), and the Atom
Infrastructure (Atom Containers as empty boxes; Bus Connectors are between them). Most of the modules
use a contiguous region. However, in some cases they are partitioned. For instance, most parts of the
Leon2 are placed in lower edge of the FPGA, but some parts are placed in between the ICAP Controller
and the I2C Periphery. In early attempts, the design was floorplaned manually, by defining rectangular
boxes for the modules. However, these attempts typically did not fulfill the timing constraints (50 MHz
for core pipeline and MicroBlaze, and individual constraints for the paths of the Atom Infrastructure). Af-
ter allowing an automatic placement of the non-reconfigurable modules, these small regions that are dis-
connected from the majority of the other components of the same module (like in the case of Leon2), al-
low that the timing constraints are met.

56 additionally, a spare memory area is available that is used to mask EEPROM-internal errors of memory cells
57 a special flash memory type (which is a special EEPROM type) that provides faster access time and a smaller

footprint in comparison to a NOR-array, but does not offer a random access on the data
58 considering the average time to read an SRAM buffer and wait until the other buffer is filled

- 120 -

5.5 RISPP Prototype Implementation and Results

The Atom Containers (ACs) are shown as empty rectangular regions in Figure 5.14. Their height cor-
responds to one Virtex-4 frame (i.e. 16 CLBs) and they are nine CLBs wide, providing 576 slices per AC.
They appear to be empty, because only the placed logic of the static design is shown. However, even in
the static design the ACs are not empty, as the static design may use routing resources (not shown in the
figure) of the AC to establish communication between different parts of the static design. Due to these
already used routing resources, the bitstreams of the Atoms that are placed and routed for different ACs
have different sizes, as shown later. The Bus Macros – connecting the ACs with the Atom Infrastructure –
are also not directly visible in the floorplan. However, they become apparent as small white gaps in the
floorplan, directly adjacent to the ACs. In the shown floorplan, the ACs are partitioned into two columns,
where each column is interrupted between the second and third AC. In early attempts, the two AC col-
umns were connected and the Bus Connectors (BCs) were placed in between. However, as the Virtex-4
FPGA provides the BlockRAMs only on the left and right side of the device, rather many routing re-
sources are required to provide the VLCWs from the BlockRAMs to the BCs. The connected AC columns
acted like a barrier to between the BCs and the BlockRAMs and thus the tools had problems in routing it
(either not routable or timing constraints failed). Therefore, the AC columns are disconnected such that
the BC can be placed closer to the VLCW context memory to assure routability and timing.

Table 5.6 shows the hardware implementation results for the static design. The hardware requirements
of the run-time system are moderate (dominated by the MicroBlaze that is used for development and de-
bugging purpose). However, the Atom Infrastructure implies a noticeable overhead in comparison with
the core pipeline. At the same time, the RISPP concept provides a noticeable performance improvement in
comparison with state-of-the-art reconfigurable and non-reconfigurable processors, as will be evaluated in
Chapter 6. The multiplexers that are used to connect the modules with segmented busses (i.e. the BCs and
the multiplexers in the static Repack Atom and the Load/Store unit) dominate the size of the Atom Infra-
structure. Here, it has to be recalled, that the RISPP architecture is envisioned to be an ASIC design with
an embedded FPGA (like presented and analyzed in [NvSBN08, SNBN06]) and for prototyping purpose
all parts are implemented on an FPGA. Ehliar and Liu analyzed the hardware implementation cost for
multiplexers, comparing FPGA targets with an ASIC target [EL09]. They compared the implementation
cost for a 32-bit 16:1 multiplexer (MUX) with a 32-bit adder and presented the area requirements of the
MUX relative to the adder requirements of the same technology. For Xilinx FPGAs, the MUX is between
5.0x (Virtex-5) and 8.0x (Spartan-359) larger than the adder. However, for 130 nm ASICs, the MUX only
demands between 0.48x and 0.57x of the adder area, i.e. the multiplexers of the Atom Infrastructure will
benefit significantly from an ASIC implementation, diminishing the reported area overhead. However, as
no embedded FPGA design is available, in the scope of this thesis no synthesis and implementation results
could be obtained to compare an ASIC implementation of the RISPP architecture with an ASIC imple-
mentation of the Leon.

The ACs – shown in Figure 5.14 – can be reconfigured at run time to contain Atoms. Table 5.7 shows
the implementation results of the Atoms that are implemented for the H.264 video encoder example that
are used for benchmarking and comparisons. The largest Atoms are the Clip3 Atom (as it is extended to
support various different data clipping operations) and the PointFilter (as it demands multiple 8-bit multi-
pliers that are implemented with slices). The smallest Atoms are QSub and CollapseAdd that perform
rather simple addition and subtraction operations. The utilization of an AC is rather moderate (Clip3 uses
56% of the available slices), thus it would be possible to reduce the size of an AC. However, the design
shall not be optimized toward a specific application and its requirements, instead it should be flexible to
support other SIs and Atoms after the static design implemented successfully. In Table 5.7, it is noticeable
that the bitstream sizes vary for a given Atom that is implemented for different ACs. These differences
reflect the utilization of the ACs for non-reconfigurable routing, i.e. communications between two non-

59 no comparisons with Virtex-4 are presented, but the Spartan-3 provides the same LUT structure than the Virtex-4

(i.e. 4-input LUTs), whereas the Virtex-5 uses a redesigned structure (6-input LUTs); thus the Spartan-3 results
are considered to be more significant for the presented Virtex-4 results

- 121 -

Chapter 5 RISPP Architecture Details

Leon2 core

Atom
Containers

 Video‐
In and Video‐
Out.

 I2C

ICAP
Controller:

Memory
Controller

Bus Connectors

Repack Atoms;

Atom
Infrastructure

MicroBlaze

Instruction Set
Architecture

Periphery IP‐
Core for

 Additi‐
onally

providing video
buffers and
memory‐
mapped

interface to
access the
buffers

Periphery IP‐
Core for
(touch‐screen

LCD)

external

EEPROM
FIFO ICAP

and static

parts of the

(for
Selection,

Scheduling and
Replacement)
and Peripherals

Load/Store
Unit 1

Load/Store
Unit 0

Address
Generation

Units

Bus Macros

Figure 5.14: Floorplan of the RISPP Prototype Implementation, Showing the

Placement of the Different Components on the Xilinx Virtex-4 LX 160 FPGA [D.1]

- 122 -

5.5 RISPP Prototype Implementation and Results

I/

O
 P

in
s

SD
-R

A
M

(5
7)

,
U

A
R

T
(2

)

– – – – – –

D
D

R
-R

A
M

(1
07

),
U

A
R

T(
2)

–

EE
PR

O
M

(4
0)

D
D

R
-R

A
M

(1
07

),
U

A
R

T

(2
),

E
E

PR
O

M
 (4

0)

– –

To
uc

hs
cr

ee
n

LC

D
 (1

5)

SR
A

M
(6

7)
, V

id
eo

Ex

te
ns

io
n

B
oa

rd
 (4

1)

T
ab

le
 5

.6
:

H
ar

dw
ar

e
Im

pl
em

en
ta

tio
n

R
es

ul
ts

 fo
r

th
e

R
IS

PP
 P

ro
to

ty
pe

; a
ll

FP
G

A

U
til

iz
at

io
n

N
um

be
rs

 a
re

 R
el

at
iv

e
to

 th
e

U
se

d
X

ili
nx

 V
ir

te
x-

4
L

X
 1

60
 F

PG
A

a : m

ul
tip

le
 in

st
an

ce
s a

re
 re

qu
ire

d

D
SP

 B
lo

ck
s /

FP

G
A

 U
til

iz
at

io
n

– – – – – – –

3
/ 3

%

2
/ 2

%

–

5
/ 5

%

– – –

4
/ 4

%

B
lo

ck
R

A
M

s /

FP
G

A
 U

til
iz

at
io

n

13
 /

5%

– – – –

32
 /

11
%

32
 /

11
%

10
 /

3%

10
 /

3%

16
 /

6%

36
 /

13
%

–

16
 /

6%

3
/ 1

%

10
2

/ 3
5%

FF
s /

 F
PG

A

U
til

iz
at

io
n

2,
16

0
/ 2

%

12
8

/ <
1%

64
 /

<1
%

12
4

/ <
1%

65
 /

<1
%

90
 /

<1
%

1,
74

0
/ 1

%

4,
73

4
/ 4

%

92
2

/ <
1%

60
8

/ <
1%

6,
26

4
/ 5

%

2,
21

1
/ 2

%

–

86
0

/ <
1%

68
0

/ <
1%

L
U

T
s /

 F
PG

A

U
til

iz
at

io
n

7,
15

7
/ 5

%

3,
28

4
/ 2

%

1,
70

4
/ 1

%

65
5

/ <
1%

3,
13

2
/ 2

%

2
/ <

1%

32
,4

98
 /

24
%

7,
18

4
/ 5

%

1,
05

3
/ <

1%

88
5

/ 1
%

9,
12

2
/ 7

%

9,
72

3
/ 8

%

–

1,
41

6
/ 1

%

7,
16

4
/ 5

%

Sl
ic

es
 /

FP
G

A

U
til

iz
at

io
n

4,
36

6
/ 6

%

2,
00

4
/ 2

%

1,
04

0
/ 2

%

40
0

/ <
1%

1,
91

2
/ 2

%

56
 /

<1
%

19
,8

80
 /

29
%

4,
38

4
/ 6

%

64
0

/ 1
%

54
0

/ 1
%

5,
56

4
/ 8

%

6,
30

8
/ 9

%

–

86
4

/ 1
%

4,
37

2
/ 6

%

M
od

ul
e

L
eo

n2

R
ep

ac
k

A
to

m
a

B
us

 C
on

ne
ct

or
a

A
dd

re
ss

 G
en

er
at

io
n

U
ni

ta

Lo
ad

/S
to

re
 U

ni
ta

V
LC

W
 c

on
te

xt

m

em
or

y

T
ot

al
 A

to
m

In

fr
as

tr
uc

tu
re

M
ic

ro
B

la
ze

M
on

ito
rin

g,
 F

in
e-

tu
ni

ng
,

an
d

FI
 to

 M
B

 in
te

rf
ac

e

IC
A

P
C

on
tro

lle
r

T
ot

al
 R

un
-t

im
e

Sy

st
em

M
em

or
y

C
on

tro
lle

r

Sc
ra

tc
hp

ad

I2 C
 P

er
ip

he
ry

V
id

eo
 M

od
ul

e

Pe
rip

he
ry

- 123 -

Chapter 5 RISPP Architecture Details

reconfigurable parts may use routing resources inside an AC (the EAPR tool flow assures that the com-
munication between the non-reconfigurable parts is not affected by run-time reconfiguration of the AC
[LBM+06]).

Atom Slices / AC
Utilizationa

LUTs / AC
Utilizationa Critical Pathb [ns] Bitstream sizec [Byte] Reconfiguration

Timed [ms]
Clip3 252 / 56% 413 / 46% 9.8 30,335 – 33,370 0.91

CollapseAdd 36 / 8% 58 / 6% 7.4 18,940 – 25,709 0.70
LF_4 144 / 32% 236 / 26% 11.6 26,243 – 29,447 0.80
Cond 82 / 18% 132 / 15% 8.1 21,932 – 28,860 0.78

PointFilter 184 / 41% 300 / 33% 15.1 27,658 – 31,798 0.86
QSub 20 / 4% 32 / 4% 3.2 16,340 – 25,724 0.70

SADrow 104 / 25% 185 / 20% 13.0 24,337 – 29,057 0.79
SAV 58 / 13% 93 / 10% 8.4 22,912 – 28,928 0.78

Transform 124 / 30% 217 / 24% 7.5 25,454 – 30,242 0.82
Table 5.7: Atom Implementation Results

a: all AC utilizations are relative to the 9x16 CLBs large ACs that provide 576 Slices
and 1152 LUTs

b: the Atom-internal critical path is constrained for each Atom individually, however,
independent from any particular AC

c: the bitstream sizes are different, depending on the AC for which they are created
d: for the largest bitstream size of that AC, using 36 MB/s reconfiguration bandwidth

Except QSub (demanding 3.2 ns), the critical path of different Atoms ranges from 7.4 ns to 15.1 ns (see
Table 5.7). As the core pipeline is constrained to operate at 50 MHz (20 ns) in the RISPP prototype, it be-
comes obvious that not all operations in the Atom Infrastructure may be single cycle operations. A typical
operation was shown in Figure 5.7 (page 113), i.e. reading data from the local storage, sending that data
over the segmented busses to the target BC, performing the computation within the AC and storing the
result in the local storage. Actually, the critical path even starts earlier, as the VLCW that determines
which address from the local storage shall be read, needs to be provided from the VLCW context memory
to the corresponding BC. Table 5.8 shows the individual parts of the overall critical path of the Atom In-
frastructure in the sequence in which the parts are accessed. All these parts are constrained by individual
timing constraints, which is necessary in partially reconfigurable designs if the critical path passes a re-
configurable region without registers in the Bus Macros. During implementation of the static design, the
tools do not know, which Atoms might be loaded into the reconfigurable parts during run time and thus
they cannot consider the actual critical path. Actually, the tools are not even aware, that the AC input is
connected to the AC output, as the ACs are just handled as a black box during implementation.

Step Source Destination Min. latency [ns] Max. latency [ns]
1 VLCW context memory Bus Connector 5.0 5.0
2 BC-internal local Storage AC input at target BC 12.0 22.5
3 AC input AC output 3.2 15.1
4 AC output Local Storage 3.0 3.3

Sum – – 23.2 45.9
Table 5.8: Individually Constraint Parts of the Critical Path in the

Atom Infrastructure and their Processing Sequence [D.1]

The latencies in Table 5.8 correspond to the individual timing constraints, i.e. the reported minimum and
maximum latencies do not correspond to the results of a particular implementation run, but they are guar-
anteed for any implementation run (unless a timing error is reported). Step 1 is constrained to 5 ns for any
BC that is driven by the VLCW. Step 2 depends on the distance of the two BCs that communicate with
each other, 12 ns for directly neighbored BCs and 22.5 for the most distinct BCs. In general, it requires
approximately 1 ns to send the data from one BC to the neighbor BC. Step 3 corresponds to the Atom
computation (see Table 5.7) and Step 4 saves the computed results into the local storage (3.0 ns for most

- 124 -

5.5 RISPP Prototype Implementation and Results

BC, but for some BCs the constraint had to be relaxed to 3.3 ns). The shortest path demands 23.2 ns and
thus is longer than the critical path of the core pipeline. This means, that all operations in the Atom Infra-
structure are multi-cycle operations. The longest path even demands 45.9 ns, however, nearly all combina-
tions of operations require two cycles. Multi-cycle operations are realized by applying a particular VLCW
for two (in rare cases three) cycles, i.e. the Atom Infrastructure keeps a certain VLCW configurations to
assure that all operations are completed.

In addition to the hardware area- and timing results, the algorithm execution time of the run-time sys-
tem are also benchmarked executing on the MicroBlaze. All algorithms described in Chapter 4 are imple-
mented on the MicroBlaze, except the online monitoring and forecast fine-tuning (see Section 4.3) that are
implemented in hardware. As visible in Figure 4.4 (page 48), the algorithms on the MicroBlaze (yellow
box in that figure) are triggered by a forecast instruction. Afterwards, the Molecule Selection, Reconfigu-
ration-Sequence Scheduling, and Atom Replacement execute sequentially. However, in order to start the
first Atom reconfiguration, not all Atom reconfigurations need to be determined in advance. For instance,
the Molecule Selection determines the first Molecule after one iteration of its outer loop and reconfiguring
Atoms for that Molecule can already be started even though the other Molecules are not selected yet. Ac-
tually, the Reconfiguration-Sequence Scheduling might prefer loading Atoms for another Molecule first,
however, waiting until the Molecule Selection determined all Molecules before starting the Scheduling,
Replacement, and finally the first reconfiguration is not necessarily beneficial. Therefore, the algorithms
for Selection and Scheduling are partitioned into two runs: the first run determines one Molecule and
schedules the Atoms for that Molecule. Afterwards, the replacement determines the replacement candidate
and the reconfiguration can be started. The algorithm for replacement determines one replacement deci-
sion at a time, i.e. there is no need to partition it as well. After the first reconfigurations are started, the
second run is started that determines all further Molecule Selections and schedules the additionally de-
manded Atoms of all selected Molecules. The algorithm execution time for the second run is hidden (to
some degree) by the reconfigurations that are started by the first run. In the best case, only the algorithm
execution time before starting the first reconfiguration appears as overhead of the run-time system, i.e.
delaying the first reconfiguration. During the reconfiguration, the run-time system checks for new fore-
casts and aborts the running selection etc. in case a new forecast appears.

In Figure 5.15, a detailed algorithm execution time analysis is presented that was measured on the
RISPP prototype (using performance counters that were added to the MicroBlaze) executing the three
computational blocks Motion Estimation, Encoding Engine, and In-Loop De-blocking Filter of an H.264
video encoder (see Section 3.3). The x-axis represents different points in time by showing each execution
of the outer loop of the run-time system as one bar. Note that this does not correspond to a linear time
axis, as these outer loop iterations have different execution times. One iteration of that outer loop typically
determines one reconfiguration decision. For instance, the first run of the Selection, Scheduling, and Re-
placement (as described above) corresponds to one iteration of the outer loop. If the Molecule that was
selected in the first run demands multiple reconfigurations, then performing these reconfigurations (in-
cluding a replacement decision beforehand) corresponds to the next iterations of the outer loop. After all
these Atoms are reconfigured, the second run of Selection and Scheduling is executed and the subsequent
reconfigurations correspond to the following iterations of the outer loop. However, in case the first run
selects a Molecule that does not require any reconfiguration (i.e. all demanded Atoms are already avail-
able), then this iteration of the outer loop does not trigger any reconfiguration and the next iteration di-
rectly corresponds to the second run of the Selection and Scheduling.

For each iteration of the outer loop, Figure 5.15 shows the execution time of the different algorithms
of the run-time system (that execute during that iteration) as stacked bars on the y-axis. The sequence of
bars – from bottom to top – directly corresponds to their execution sequence in the iteration of the outer
loop. The first iteration of the outer loop starts (from bottom up) by executing the first run of Selection
and Scheduling and afterwards performs one replacement decision, selects an AC (hardly visible in the

- 125 -

Chapter 5 RISPP Architecture Details

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A
lg

o
ri

th
m

 E
x

e
cu

ti
o

n
 T

im
e

 [
T

h
o

u
sa

n
d

 C
yc

le
s]

ith Iteration of the Outer Loop of the Run-time System

Trigger reconfiguration
Update SIs before replacement
Select Atom Container
Atom Replacement
Reconfiguration Scheduling, 2nd run
Molecule Selection, 2nd run
Reconfiguration Scheduling, 1st run
Molecule Selection, 1st run
Write VLCW context memory
Update SIs after reconfiguration

Motion Estimation (ME) Encoding Engine Loop
Filter ME

Second Run of Selection
and Scheduling

Subsequent
Replacements and
Reconfigurations

Figure 5.15: Execution Time Analysis of the RISPP Run-time System’s Algorithms

that Execute on the MicroBlaze Part of the RISPP Prototype [D.1]

stacked bars), updates the elementary SIs, and triggers the first reconfiguration. The Replacement deter-
mines, which Atom type shall be replaced, but in case multiple instance of the Atom type that shall be
replaced are available, it does not determine which instance (i.e. in which AC) shall be replaced. ‘Select
AC’ simply iterates over all ACs and chooses the first one that contains the corresponding type. The func-
tion ‘update SI before replacement’ assures that all Molecules demanding the Atom in the AC that is go-
ing to be replaced are no longer executed, by writing the corresponding information into the memory in
the decode stage of the core pipeline that determines for each SI the Molecule that shall be used for im-
plementation. Right afterwards the reconfiguration is triggered. The first iteration of the outer loop re-
quired less than 20,000 cycles running on the MicroBlaze at 50 MHz, i.e. the latency to start the first re-
configuration corresponds to approximately a half Atom reconfiguration time. As shown in Table 5.7, the
partial bitstreams of an Atom are between 18.5 KB and 32.5 KB large. For the reconfiguration bandwidth
of 36 MB/s that the external EEPROM can provide, the reconfiguration time is as follows:

• Longest reconfiguration time:
33,370 B / (36*1024*1024 B/s) / 20E-9 s/cycle = 44,201 cycles at 50 MHz

• Shortest reconfiguration time:
18,940 B / (36*1024*1024 B/s) / 20E-9 s/cycle = 25,087 cycles at 50 MHz

• Average reconfiguration time (averaged over all Atoms in all ACs):
27,682 B / (36*1024*1024 B/s) / 20E-9 s/cycle = 36,667 cycles at 50 MHz

Right after the first loop iteration in Figure 5.15 triggered the first reconfiguration, the second loop itera-
tion starts in parallel to the reconfiguration. As visible, that loop iteration represents the peak algorithm
execution time of all shown loop iterations that cannot be hidden by the Atom reconfiguration time. The

- 126 -

5.6 Summary of the RISPP Architecture Details

dominating parts correspond to writing the VLCW context memory and performing the second run of Se-
lection and Scheduling. Writing the VLCW context memory is required to activate the Molecules that be-
come executable due to the Atom that was reconfigured. Figure 5.15 shows the start of the application
execution and thus no usable Atom is available when the first execution of the Motion Estimation starts.
Therefore, the first few Atoms that are reconfigured lead to Molecules with a rather slow execution time
(their performance is upgraded when more Atoms finish reconfiguration). For rather slow Molecules,
many entries need to be written to the VLCW memory, as one 1024-bit VLCW entry is demanded per
cycle of the Molecule execution time. For the second execution of the Motion Estimation (writing the
VLCW context memory starts in iteration 20), some Atoms are already available and thus faster Mole-
cules are available immediately. Therefore, the time for writing the VLCW memory is significantly
shorter (less entries need to be written). For the same reason, the execution time of the Scheduling in itera-
tion 20 is shorter, as the algorithm does not need to calculate a schedule that starts at an empty system (i.e.
no Atoms are available), but – as some usable Atoms are available – less reconfigurations need to be
scheduled.

The subsequent outer loop iterations of the run-time system (3-8) correspond to the reconfigurations
that were planed by the second run (iteration 2). It is noticeable that none of these loop iterations demands
more than 24,146 cycles, i.e. all of them are hidden by the reconfiguration, even if the smallest partial bit-
stream is reconfigured (25,087 cycles). For the subsequent loop iteration, the first loop iteration of a new
forecast (i.e. a new computational block at iterations 9, 16, and 19) are not hidden by concept (they trigger
the first reconfiguration for that computational block). Additionally, the loop iterations 11, 12, and 20 are
not hidden if the smallest partial bitstream is reconfigured. However, in case the largest partial bitstream is
reconfigured they are all hidden as well. This shows, that the algorithm execution time of the run-time
system does not affect the overall reconfiguration time significantly. Besides the start of the application
(where no Atoms are available), the execution time overhead of the run-time system corresponds to ap-
proximately half of the reconfiguration time of an Atom. This overhead appears for the ‘first run’ outer
loop iteration of a new computational block and delays the start of the first reconfiguration.

5.6 Summary of the RISPP Architecture Details
Implementing the RISPP architecture started with an existing core pipeline (here the Leon2, but the con-
cept is not limited to a particular core pipeline) and extended the instruction format to support Special In-
structions (SIs) and Helper Instructions (HIs, accelerating parts of the RISPP concept and providing ac-
cess to RISPP parameters). If the hardware for an SI is not reconfigured when the SI shall execute, then a
trap handler executes the SI using the core Instruction Set Architecture (cISA). The cISA execution of SIs
is one example that is accelerated by HIs. The register file is extended and a special memory access to an
on-chip scratchpad memory is provided to obtain sufficient input data to exploit the Molecule-level paral-
lelism of SIs. To execute SIs in hardware, a special Atom Infrastructure was developed in this thesis to
provide a communication and computation infrastructure that supports Molecule upgrades, i.e. it supports
Molecules with rather few and with rather large Molecule-level parallelism. The Atom Infrastructure con-
tains two Load/Store Units (LSUs) that have access to two independent 128-bit memory ports of on-chip
scratchpad and it contains four Address Generation Units that can describe four independent memory
streams where each stream may be accessed in parallel by both LSUs. Additionally, the Atom Infrastruc-
ture contains Atom Containers (ACs) that can be reconfigured to load Atoms and that are connected to
Bus Connectors (BCs). These BCs are connected with each other using four independent segmented bus-
ses (per direction) in a linear chain to establish communication between the ACs. In the scope of this the-
sis, the entire RISPP architecture was implemented as a prototype (using the FPGA board shown in
Appendix B), whereas the algorithms of the run-time system are implemented using a MicroBlaze soft-
core processor. The hardware implementation results, area requirements of the individual components,
critical paths of the Atom Infrastructure, algorithm execution time, and overhead of the run-time system
are analyzed in detail. Altogether, the prototype implementation of the RISPP architecture demonstrates
that the concept of modular SI is feasible and can be realized in practice.

- 127 -

Chapter 5 RISPP Architecture Details

- 128 -

Equation Chapter (Next) Section 1

Chapter 6 Benchmarks and Comparisons
In this chapter, the RISPP approach is benchmarked. The benchmark results for the individual parts of the
run-time system and prototyping results for the RISPP architecture are already presented in Chapter 4 and
in Section 5.5, respectively. The first section will provide benchmarks for the entire RISPP approach for
different architectural parameters. Additionally, the RISPP approach will be compared with state-of-the-
art approaches. There are two different types of state-of-the-art approaches that need to be considered:

1. non-reconfigurable application-specific processors (ASIPs, comparison in Section 6.3) and

2. reconfigurable processors with monolithic SIs (comparison in Section 6.4).

Both approaches use Special Instructions (SIs) and provide accelerators for their execution. In addition to
these comparisons, this thesis provides a comparison with a general-purpose processor (GPP). A GPP is
not considered as state-of-the-art approach in comparison with ASIPs and reconfigurable processors (that
use the same core pipeline as the GPP and extend it with accelerators). However, related work often pro-
vides a comparison only with GPP and therefore this thesis presents these numbers to allow for later com-
parison.

For benchmarking, an in-depth analysis of an H.264 video encoder is performed as a detailed case
study for different parameters instead of summarizing the results of multiple applications from MiBench
[GRE+01] or MediaBench [LPMS97]. Note that many of the applications in these suites demand only one
computational kernel (e.g. performing either DCT or SAD, or VLC).60 Many of these kernels are compo-
nents of the H.264 encoder (H.264 demands further kernels like the Hadamard Transformation that is not
present in MiBench or MediaBench) and all of them are needed to be accelerated to expedite the entire
video encoding process. However, when targeting applications that comprise only one kernel, then the
concept of non-reconfigurable ASIPs typically provides the best performance and performance per area,
as it can be tightly optimized for a specific kernel. Reconfigurable processors – as well as RISPP – mainly
introduce flexibility in such a single-kernel scenario, i.e. they are also able to accelerate further applica-
tion (e.g. in a multi-tasking environment), whereas the ASIP is dedicated to a single application. However,
for a rather large and complex application as the H.264 video encoder, the concept of reconfigurable proc-
essors may perform better than the ASIP because the hardware can be reconfigured for the individual ker-
nels of the application during run time. This is the reason, why this thesis focuses on a detailed analysis of
that challenging application, i.e. instead of benchmarking scenarios where reasonable solutions already
exist in industry (e.g. [ARC, ASI, CoW, Tena]), a domain that is problematic for programmable solutions
(i.e. embedded processors) is investigated.

6.1 Benchmarking the RISPP approach for different
architectural parameters

All benchmarks that are presented in this chapter are obtained from the simulation environment that was
developed in the scope of this thesis (see Appendix A). It is parameterized using the implementation re-
sults from the hardware prototype (e.g. the Atom reconfiguration time) and allows to investigate different
processor types (ASIPs and different reconfigurable processors) and different architectural parameters.
Table 6.1 summarizes the architectural parameters that were investigated for the RISPP approach and that
will be presented in the following.

60 i.e. Discrete Cosine Transformation, Sum of Absolute Differences, and Variable Length Coding

- 129 -

Chapter 6 Benchmarks and Comparisons

Parameter Symbol Physical Unit
Frequency of the core Pipeline fcore [MHz]

Frequency of the Atom Infrastructure fAtom [MHz]
Reconfiguration bandwidth R [MB/s]
Number of memory ports P N/A

Bit width per memory port W [Bits]
Table 6.1: Investigated Architectural Parameters

Figure 6.1 shows the execution time of the H.264 video encoder (processing 20 frames in QCIF resolu-
tion, i.e. 176x144 pixels) for different AC quantities. The impact of different frequencies will be investi-
gated here, providing the two memory ports with 128 bit each and a 66 MB/s reconfiguration bandwidth
to ensure that the frequency results are not affected by a limit memory- and reconfiguration bandwidth. It
requires 10.6 seconds (i.e. 1.89 fps61) to execute the application on the corresponding GPP (i.e. a Leon2
without hardware accelerators) at 100 MHz and 2.1 seconds (i.e. 9.52 fps) at 500 MHz. When targeting 30
fps, then the encoding time requires being faster than 0.67 seconds to fulfill the time constraints. It is no-
ticeable in the figure that there is a significant change in the performance improvement after five ACs are
provided to the system. The reason is that for four or less ACs, not all SIs can be implemented with hard-
ware support because insufficient ACs are available. Averaging over all frequencies, shown in Figure 6.1,
there is a 2.00x speedup when providing five ACs instead of four, but only a 1.20x speedup when provid-
ing six ACs instead of five. Therefore, the amount of five ACs corresponds to a critical amount. However,
providing 15 ACs instead of five still leads to a 1.47x speedup and providing 25 ACs instead of five leads
to 1.77x. In comparison with the GPP (averaged over all three core pipeline frequencies), a speedup of
15.91x and 23.56x is noted with 5 and 25 ACs, respectively.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25

core Pipeline=100 MHz, Atom Infrastructure=50 MHz
core Pipeline=100 MHz, Atom Infrastructure=100 MHz
core Pipeline=200 MHz, Atom Infrastructure=50 MHz
core Pipeline=200 MHz, Atom Infrastructure=100 MHz
core Pipeline=500 MHz, Atom Infrastructure=50 MHz
core Pipeline=500 MHz, Atom Infrastructure=100 MHz

E
xe

cu
tio

n
Ti

m
e

[s
]

100 MHz core Pipeline
200 MHz core Pipeline
500 MHz core Pipeline

100 MHz Atom Infrastructure
50 MHz Atom Infrastructure

Each with 50 (top
line) and 100 (bottom
line) MHz FPGA

Available Reconfigurable Hardware [Atom Containers]

Critical AC
amount

Figure 6.1: Comparing the Impact of the Core Pipeline Operating

Frequency and the Atom Infrastructure Operating Frequency

When less ACs than the critical amount are provided, then the core pipeline frequency has a noticeable
impact on the overall execution time and for a sufficient amount of ACs, the Atom Infrastructure has the
larger impact. For instance, for fAtom=100 MHZ, changing fcore from 100 to 500 MHz results in 3.28x per-

61 frames per second

- 130 -

6.1 Benchmarking the RISPP approach for different architectural parameters

formance improvement when utilizing three ACs but only 1.23x for 20 ACs. Instead, for fcore=500 MHz,
changing fAtom from 50 to 100 MHz results in 1.09x for 3 ACs, but 1.86x for 20 ACs. As long as not all
major SIs are covered by a hardware implementation, some SIs use the cISA execution, i.e. they are exe-
cuted rather sequential on the core pipeline. Therefore, the frequency of the core pipeline has the larger
impact. When more than the critical amount of ACs are available, then the SIs are executed in a parallel
manner in the Atom Infrastructure and therefore the Atom frequency becomes more relevant.

For ease of discussion, all following results will be presented for 100 MHz core pipeline and 100
MHz Atom Infrastructure, i.e. all execution time results can be presented in ‘cycles’ instead of ‘seconds’
(only demanded when comparing different frequencies). However, as demonstrated in Figure 6.1, a faster
core pipeline (e.g. 200 or 500 MHz as it can be expected in a non-reconfigurable ASIC implementation of
the core pipeline) would not change the results significantly when at least the critical amount of ACs is
provided.

Now, the impact of different data memory bandwidths (that is determined by the amount of independ-
ent memory access ports and the bit width per port) will be evaluated. In Figure 6.2 it is noticeable that the
settings with two ports (e.g. 2*32 bits) always outperform the corresponding single-port settings (e.g.
1*64, i.e. providing same total bit width). Improving from 1*32 to 2*32 results in a 1.68x average
speedup, but improving from 2*64 to 2*128 only achieves 1.15x. Providing two independent ports has the
advantage that data streaming can be performed by reading (new input data) and writing (results of previ-
ous computations) in parallel. With one port, these operations have to be performed sequentially. It is also
noticeable that the number of provided ACs restricts the performance when less than the critical amount
of ACs (i.e. five) are available. Even when only one 32-bit port is available, the amount of ACs limits the
potential parallelism that can be provided by this amount of input/output data. After the critical amount of
ACs is available, the input data bandwidth limits the potential parallelism.

0

10

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10

One 32‐Bit Port Two 32‐Bit Ports

One 64‐Bit Port Two 64‐Bit Ports

One 128‐Bit Port Two 128‐Bit Ports

E
xe

cu
tio

n
Ti

m
e

[M
ill

io
n

C
yc

le
s]

Available Reconfigurable Hardware [Atom Containers]
Figure 6.2: Investigating the Effect of Different Data Memory Connections

Finally, the impact of different reconfiguration bandwidths on the overall performance will be investi-
gated. Figure 6.3 shows how the execution time decreases for increased bandwidth. For clarity, the read-
ings for less than five ACs (i.e. the critical amount) are omitted, because in this configuration, perform-
ance is bound by the number of ACs and the reconfiguration has minimal or no impact. Instead, the im-
portance of the bandwidth when all other bottlenecks (e.g. insufficient input data or insufficient ACs etc.)

- 131 -

Chapter 6 Benchmarks and Comparisons

are removed (i.e. two 128-bit ports are used here) shall be investigated. As can be seen in the figure, rather
slow reconfiguration bandwidth (1-15 MB/s) can be compensated by a higher amount of ACs. As extreme
case, if sufficient ACs would be available such that all SIs can be implemented in their largest Molecule
in parallel, then no further reconfigurations would be demanded and thus the reconfiguration bandwidth
would not be relevant any more. Vice versa, a low amount of ACs (5-15) can be compensated by a faster
reconfiguration bandwidth. As extreme, if the reconfiguration of an Atom would only demand one cycle,
then an AC could be reconfigured in between two subsequent SI executions and thus the maximum num-
ber of ACs required will be the same as required by the largest SI. However, both extremes are unrealistic,
but they explain the reason why the number of ACs and the reconfiguration bandwidth may be traded
against each other for a given performance constraint. For 25 ACs, increasing the bandwidth from 25
MB/s to 66 MB/s only leads to a speedup of 1.06x. However, for 10 ACs a speedup of 1.26x can be ob-
tained when increasing to 66 MB/s.

5 7 9 11 13 15 17 19

0
20
40
60
80

100
120
140
160
180
200

135791113151719212325

Ex
ec

ut
io

n
Ti

m
e

[M
ill

io
n

C
yc

le
s] #ACs and reconfigu-

ration bandwidth limit
the performance
inside this region

Figure 6.3: Impact of the Reconfiguration Bandwidth and the Number of Atom Containers

6.2 Comparing Different Architectures
It is not always straightforward to compare different architectures with each other, especially in the case
of different concepts and different technologies. This section will discuss how the performance compari-
sons of ASIPs (chooses an implementation alternative during design time) and reconfigurable processors
with monolithic SIs (chooses an implementation alternative at compile time) with RISPP (chooses an im-
plementation alternative at run time) are performed, before presenting and analyzing the respective results
in Sections 6.3 and 6.4 in detail. The proposed RISPP architecture is meant to be an ASIC (for the core
pipeline, run-time system, and Atom Infrastructure) with an embedded FPGA (eFPGA) [NvSBN08,
SNBN06] for the reconfigurable ACs, whereas an ASIP is completely implemented in ASIC technology.
As there are fundamental differences between a hardwired ASIC and an eFPGA (i.e. an ASIC that imple-
ments reconfigurable logic), care has to be take while comparing both approaches. Now, the assumptions
and similarities will be enumerate and the differences of all three architecture types (ASIP, reconfigurable
processor with monolithic SIs, and RISPP) will be highlight before discussing the fairness of comparison.

- 132 -

6.2 Comparing Different Architectures

6.2.1 Assumptions and Similarities

i. The same core pipeline is used for all architecture types running at the same frequency (100 MHz)
along with same hardware resources (e.g. register file, read/write ports, memory accesses, periph-
ery etc.).

ii. The same benchmark application is used and all architecture types could choose from the same SIs,
Molecules (i.e. SI implementations), and Atoms to accelerate its execution time. Each Atom takes
one cycle for execution and the execution time for the different Molecules is determined accord-
ingly.

iii. RISPP and reconfigurable processors with monolithic SIs additionally use an embedded FPGA that
can be reconfigured to contain different Atoms or SIs, respectively. For the reconfiguration time of
an Atom, the implementation results of the FPGA-based prototype (0.70 to 0.91 ms, see Table 5.7
on page 124) are considered and the reconfiguration time of a Molecule corresponds to the accu-
mulated reconfiguration times of the demanded Atoms.

iv. The Atoms are considered as basic area unit, i.e. the provided area is represented as the number of
Atoms/Atom Containers. This allows a more general comparison that is not implementation spe-
cific. For instance, in an early Virtex-II62 based prototype, the Atom Containers had significantly
different outlines due to technical constraints63 of that FPGA family, which lead to different area
requirements in comparison with the current Virtex-4 prototype (implementing the same Atoms).
For the Virtex-5 family the technical constraints64 changed again, affecting the area requirements
of Atoms and ACs again. Therefore, different prototype platforms suggest different area require-
ment, however, this is technology specific and not concept specific. Instead, using Atoms and ACs
as elementary area units abstracts from these technology-specific details and allows providing a
more general comparison.

6.2.2 Dissimilarities

v. ASIPs may achieve a higher clock frequency in comparison with reconfigurable processors and
RISPP, because the core pipeline and the Atoms are both implemented in ASIC technology. This is
also the case for the core pipeline, the run-time system, and the Atom Infrastructure of RISPP, but
the Atoms for RISPP and reconfigurable processors are implemented in a potentially slower recon-
figurable fabric. However, the major bottleneck for the SI execution is not the frequency, but the
limited memory bandwidth (e.g. the SATD SI in Figure 3.3 (page 27) requires eight 32-bit inputs
and SAD in Table 3.2 (page 35) demands 64 32-bit inputs). For instance, at 100 MHz frequency a
single-cycle memory access is possible, whereas at higher frequencies the memory access latency
(in number of cycles) increases. Additionally, the benefit of data caches (that might diminish in-
creased memory access latency) is limited, because the data is typically not needed again. This is
due to the streaming nature and the non-linear access pattern of e.g. the SAD computation (i.e. a 2-
D sub-array is read and each data word is typically just used once). Therefore, the performance of
the SIs, (and thus the major computational kernels) does not linearly scale with increase in fre-
quency. Rather, the sequentially executed code that runs on the core pipeline is expected to benefit
from an increased frequency, but as the SIs cover all major computational kernels, these parts do
not contribute to the overall application execution time significantly.

vi. As the Atoms for the ASIP are implemented in ASIC technology, they will require less area than
those implemented in a reconfigurable fabric. However, the use of embedded FPGAs (e.g.
[NvSBN08, SNBN06]), optimized for the proposed ACs, leads to smaller implementations com-
pared with the current prototype (see also Assumption iv), i.e. this effect will diminish. The proto-
type FPGA is not designed for implementing ACs with their interconnections. Typically, the rout-

62 a Virtex-II 3000 and 6000 were used to develop the first RISPP prototypes; however, this thesis only presents the

results for the final prototype that uses a Virtex-4 LX 160
63 the smallest run-time reconfigurable element – a frame – spans the full FPGA height for Virtex-II devices
64 the LUTs have six inputs instead of four (Virtex-II and Virtex-4) and a frame spans 20 CLBs (16 for Virtex-4)

- 133 -

Chapter 6 Benchmarks and Comparisons

ing resources of the FPGA become a prototype-specific bottleneck. This is because many of the
potentially available routing resources in the area of an AC cannot be used to implement an Atom,
as they are leaving/entering the AC (instead of staying inside) and may be used by the static design
that routes ‘through’ the AC [LBM+06]. For an optimized ASIC for RISPP (as it also has to be
created for an ASIP), the ACs would be designed in a more tailor-made way, thus closing the im-
plementation gap to ASIP.

vii. As the ASIP Atoms are implemented in ASIC technology, they cannot be reused for different op-
erations and thus they typically cannot be used for other than the initially targeted application.
Therefore, the ASIP has to offer Atoms for all considered applications statically to accelerate all of
them. For an increased amount of applications, the size of the ASIP may grow continuously. For
instance, the presented H.264 video encoder is just one part of the H.324 video conferencing appli-
cation (video en/decoder, audio en/decoder, multiplexer and de-multiplexer, remote control, and
modem interface) that executes besides other applications like encryption or base band processing.
Additionally, the highest achievable frequency of the ASIP may be reduced due to the increased
distance between the large amount of Atoms and the core pipeline. Instead, RISPP and reconfigur-
able processors can restrict to a smaller amount of reconfigurable containers (for Atoms in case of
RISPP and for SIs in case of reconfigurable processors) and then reconfigure them toward the op-
erations that are required at a specific point in time.

viii. For benchmarking, the SI implementations (and thus the Atoms) are selected in an optimal way
(considering the performance) for ASIP and for reconfigurable processor with monolithic SIs, i.e.
it was made sure that they get those Atoms that lead to the best performance according to their ar-
chitecture. This does not only comprise exact knowledge of the application, but also exact knowl-
edge of the input video sequence and thus the resulting SI execution frequencies. For (I)HT_4x4,
MC_Hz_4, IPred_VDC, and IPred_HDC (see Table 3.2 on page 35) the SI execution frequency
depends on the control flow (see the ‘then’ and ‘else’ part in Figure 3.5 on page 31). As in real-
world scenarios the motion in the input data cannot be predetermined, ASIP and reconfigurable
processor may not have the optimal Atoms available for a particular frame (however, the best
combination for the overall video sequence is provided), but it will have to encode that frame with
a suboptimal set of Atoms and thus with suboptimal performance. Instead, RISPP dynamically
adapts the SI implementation to cover the current type of motion in the input video sequence (us-
ing the online monitoring, forecasting, and Molecule selection of its run-time system).

ix. The RISPP architecture demands a run-time system (see Chapter 4) to determine the reconfigura-
tion decisions. Even though this achieves dynamic adaptation, it comes at the cost of a static area
overhead. Implementing the synchronous part of the run-time system (online monitoring and fore-
casting, see Section 4.3) does not affect the area requirements significantly (see Table 4.1 on
page 60). However, implementing the asynchronous part of it results in additional area require-
ments. For prototyping, that part is implemented using a dedicated processor (see Section 5.5).
Note, in a final ASIC with eFPGA implementation the algorithms of the run-time system should be
implemented in an optimized non-reconfigurable design and thus the area requirements will benefit
from ASIC technology.

6.2.3 Fairness of Comparison

The fairness of the cross-architecture comparison between ASIPs and reconfigurable processors with
monolithic SIs and RISPP will be discussed. On one hand the ASIPs seems to be underestimated, as the
Atoms could be implemented in better technology (see v, vi) and they do not need a run-time system (see
ix). On the other hand, RISPP and reconfigurable processors seem to be underestimated as well, as they
facilitate a significantly higher flexibility to support different applications. Additionally, in comparison
with reconfigurable processors with monolithic SIs, RISPP provides further flexibility without demanding
the predetermined knowledge of which applications will be executed on which input data pattern (see vii,
viii). Depending on the actual requirements and targets objective, some of these points might dominate the
others. For instance, if the target application demands few and small SIs, then an ASIP may be privileged.

- 134 -

6.2 Comparing Different Architectures

The comparison partner of the ASIP in this case should actually be a dedicated ASIC implementation and
not RISPP or a reconfigurable processor. However, consider for instance a target system like a mobile
device, where multiple applications have to be executed (over time and in multitasking) and the owner of
the device can download and execute further applications on demand. In these cases, the provided flexibil-
ity and dynamic adaptivity of the RISPP architecture will dominate the advantages of a tailor-made ASIP
implementation, which can only cover a certain subset of the applications. This is because the ASIP does
not scale with an increasing amount of target applications and it cannot address (at design time) unknown
applications at all. Such a multi-tasking scenario is also a critical situation for reconfigurable processors
with monolithic SIs. As it is not known during compile time (when these architectures decide about their
SI implementation) which tasks will execute together, it is also not known, how much reconfigurable fab-
ric is available for a particular SI of an application (as the fabric needs to be shared with other applica-
tions). If insufficient fabric is available to reconfigure an SI implementation, then the reconfigurable proc-
essor with monolithic SIs has to use the cISA execution for that SI for the entire application execution
(until some other tasks release some parts of the reconfigurable fabric), which leads to significant per-
formance degradation.

A processor that is fabricated according to the RISPP architecture does not need to be re-fabricated
when facing different applications, i.e. the RISPP approach is more applicable to different applications
and requirement-scenarios. When targeting three different applications (e.g. video encoding, encryption,
and communication) then three different ASIPs needed to be fabricated, on the contrary, one fabricated
RISPP architecture might handle all of them. Therefore, RISPP provides reduced non-recurring engineer-
ing cost in comparison with ASIPs, which might be invested into an improved fabrication technology.
Thus, the potential area- and frequency advantages of ASIC-implemented Atoms for ASIPs (see v, vi)
might diminish (depending on the budget and expected selling volume). A reconfigurable processor with
monolithic SIs could be retargeted toward all above-mentioned three different applications. However, if
they shall execute in a multi-tasking environment that comes with uncertainty, which applications will
execute at which time, and that demands frequent reconfigurations, then the reconfigurable processor can-
not retarget the SI implementations without a re-compilation/re-synthesis to efficiently support changing
requirements.

Summary of comparing different Architectures:

For the core pipeline, RISPP and reconfigurable processors may use the same fabrication technology as
the ASIP and the main difference comes in the Atoms. It will result in a different Atom performance for
ASIPs and RISPP, but this highly depends on which ASIP and RISPP technologies are benchmarked and
thus it depends on the specific system requirements. Therefore, the aim is to achieve a neutral (and thus
general) comparison by considering the cycle-count and the Atoms as performance and area measurement
unit, respectively. In general, when the particular application or application domain is well known during
design time and hardware requirements to accelerate it are moderate, then an ASIP may perform reason-
able. If the application domain is not fixed but it is known at compile time which share of the reconfigur-
able fabric is available for an application (e.g. because only one application shall execute and thus it re-
ceives the entire reconfigurable fabric), then a reconfigurable processor with monolithic SIs may be used.
However, if a rather large amount of SIs demand frequent reconfigurations or more flexibility is required,
e.g. because the computation requirements of the application changes depending on input data or because
the reconfigurable fabric is shared among multiple applications, then the superior flexibility of the RISPP
approach outperforms state-of-the-art approaches.

- 135 -

Chapter 6 Benchmarks and Comparisons

6.3 Comparing RISPP with Application-Specific Instruction
Set Processors (ASIPs)

At first, the performance and execution behavior of an ASIP is analyzed. Figure 6.4 shows the execution
time (bars) of the H.264 video encoder for different quantities of deployed Atoms. Additionally, the effi-
ciency of the Atom usages is analyzed, i.e. the speedup per available Atom, where the speedup is relative
to the execution time of the core pipeline without any hardware accelerators (requiring 7.4 billion cycles
to encode 140 video frames with an H.264 encoder), see Eq. 6.1.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

500

1,000

1,500

2,000

2,500

3,000

3,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Execution Time

Efficiency of Resource Usage

B
ar

s:
 E

xe
cu

tio
n

Ti
m

e
[M

ill
io

n
C

yc
le

s]

Li
ne

: E
ffi

ci
en

cy
 o

f R
es

ou
rc

e
U

sa
ge

Available Reconfigurable Fabric (decided at design time) [Atom Containers]

ASIPs: Application Execution Time
and Efficiency of Resource Usage

*

*

relative to Execution Time
without Atoms

SpeedupEfficiency :=
#Atoms

Figure 6.4: Analyzing the Execution Time and the Resource Usage Efficiency Using

Different Area Deployments when Processing 140 Video Frames with an ASIP

*

*

relative to the execution time without Atoms

SpeedupEfficiency :=
#Atoms (6.1)

Number of used Atoms Selected Atoms

1 SADrow

2 SADrow, HT Transform

3 SADrow, HT Transform, Cond

4 SADrow, HT Transform, Repack, QSub

5 SADrow, HT Transform, Repack, QSub, SAV

6 SADrow, HT Transform, Repack, QSub, SAV, DCT Transform

7 SADrow, HT Transform, Repack, QSub, SAV, DCT Transform, Cond
Table 6.2: Selected Atoms for ASIPs for the Computational Blocks of H.264 Video Encoder

Table 6.2 shows the selected Atoms for the first seven readings in Figure 6.4. Note that some of the se-
lected Atoms are reused to implement different SIs, e.g. HT Transform is used by SATD and (I)HT_4x4.
One interesting situation can be seen when moving from three to four Atoms in Table 6.2. While in each
other increment step, the previously selected Atoms are extended by an additional Atom, in this step the
previously selected Cond Atom is discarded and two new Atoms are selected instead. This is because Re-
pack and QSub are required together to achieve a noticeable performance improvement of SATD,
whereas LF_BS4 can be accelerated even if Cond is the only available Atom.

- 136 -

6.3 Comparing RISPP with Application-Specific Instruction Set Processors (ASIPs)

An SI can be implemented with a subset of its required Atoms, e.g. the SATD SI can be accelerated
(with a smaller speedup) even if only the HT Transform Atom is available (the remaining computation is
performed without hardware accelerators). Therefore, the speedup for the first added Atom is already
2.4x, which results in a good efficiency (see the efficiency-line in Figure 6.4). However, to achieve a bet-
ter performance, more Atoms have to be added. This leads to a significant efficiency decrease, as e.g.
doubling the number of Atoms does not double the speedup. This is because only few SIs benefit from the
small amount of Atoms. To obtain a good compromise between execution time and efficiency in
Figure 6.4, at least ten Atoms have to be used. After adding 13 Atoms, the efficiency is again decreasing,
as the speedup is limited by the sequential part of the application. The result of this analysis is that up to a
certain quantity of Atoms, the resource utilization of an ASIP is inefficient, thus limiting the potential
speedup. A rather large amount of Atoms need to be added to match the required performance. This is a
significant problem considering large applications like H.324 video conferencing (the H.264 video en-
coder is one component of H.324) or even multiple applications in a multitasking environment.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25
Timeframe [250 KCycles]

L
in

e:
U

til
iz

at
io

n
of

 A
to

m
s [

%
]

0

1

2

3

4

5

6

7

8

9

10

Utilization

Average Utilization

SADrow QSub
Repack

HT Transform
SATD DCT Transform

Atoms:

Each bar shows which Atoms were utilized in a Timeframe (i.e. a period of 250 KCycles).
Note: the bars are not related to the percent values on the axis, which is used for the lines.

The continuous line shows the utilization per Timeframe (i.e. indicating how often the
Atoms were used) and the dashed line shows the average utilization for all 27 Timeframes.

Motion Estimation Encoding Engine In-Loop De-Blocking Filter

Figure 6.5: Detailed ASIP Utilization Variations for Six Available Atoms

To understand the underlying reason of this inefficient resource utilization, the SI execution pattern and
the corresponding Atom usages is examined. Figure 6.5 illustrates the problem by showing the detailed
Atom utilization for timeframes of 250K cycles (X-axis) for six available Atoms (corresponding to the
Atoms shown in Table 6.2). The Atom utilization is defined as shown in Eq. 6.2. This definition is based
on the observation that in the best case each SI execution in a timeframe could make use of all available
Atoms, which then corresponds to 100% utilization according to the definition. The bars in Figure 6.5
show, which Atoms were actually used per timeframe (for clarity it is not shown how often they were
used). The drawn-through line corresponds to the Atom utilization and the dashed line shows the average
Atom utilization for the whole execution. The maximum number of available Atoms is only used in time-
frame 5. In this timeframe, the processing flow changes from Motion Estimation (using five Atoms) to
Encoding Engine (using three Atoms), i.e. not all six Atoms are used for the same computational block. It
can be seen that the Repack, QSub, and HT Transform Atoms are used for both computational blocks,
thereby increasing the average utilization and thus the overall efficiency. Except these three, all other At-
oms are dedicated to a specific computational block and therefore they are not utilized efficiently. In time-
frames 16 to 26 (execution of In-Loop De-blocking Filter) not even one of the available Atoms can be

- 137 -

Chapter 6 Benchmarks and Comparisons

used, which results in a disadvantageous average utilization of 17.7%. This is because no Atom was se-
lected for the Loop Filter SI when at most six Atoms may be available. Instead, to achieve the best overall
performance, all six available Atoms were given to the Motion Estimation and Encoding Engine.

#ExecutedSIs #AvailableAtomsAtomUtilization :

#ActuallyUsedAtoms
×

= (6.2)

This analysis shows that the efficiency of ASIPs is rather moderate when only a few Atoms are provided.
However, to reach a good operation point with a high efficiency, many Atoms would need to be added.
The small speedup when only a few accelerating Atoms are provided is due to an inefficient utilization of
the available hardware resources. If the efficiency of the hardware usage can be improved, then a good
performance can be achieved with fewer Atoms. Thus, area would be saved (and costs, static power con-
sumption, etc.) or the area could be used for other components, e.g. caches. This problem is tackled by the
RISPP approach that uses the available hardware for Atoms in a time-multiplexed way to implement
modular SIs. When the processing of one computational block is completed, the Atoms are re-allocated to
the SIs of the subsequent computational block.

0

1

2

3

4

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Application Execution Time and Efficiency
of Resource Usage for 140 Frames

ASIP Execution Time

RISPP Execution Time

ASIP Efficiency

RISPP Efficiency

B
ar

s:
 E

xe
cu

tio
n

Ti
m

e
[M

ill
io

n
C

yc
le

s]

Available Reconfigurable Fabric [Atom Containers]

High efficiency gain for the relevant mid-
range region of available data path containers

break-even
point

Li
ne

: E
ff

ic
ie

nc
y

(S
pe

ed
up

 p
er

 D
at

a
Pa

th
)

*

*

relative to Execution Time
without Atoms

SpeedupEfficiency :=
#Atoms

Figure 6.6: Application Execution Time and Efficiency of Resource

Usage for Encoding 140 Video Frames on ASIP and RISPP

Figure 6.6 depicts the comparison of an ASIP and RISPP for different amounts of ACs (reconfigurable for
RISPP and non-reconfigurable for ASIP), respectively. This analysis shows the execution time (bars: left
Y-axis) and efficiency (lines: right Y-axis) of the benchmark application for ASIP and RISPP. RISPP is
up to 25.7 (avg. 17.6) times faster than the GPP (General Purpose Processor; using no hardware accelera-
tors) and up to 3.1 (avg. 1.4) times faster than the ASIP (all executing at 100 MHz as discussed in Sec-
tion 6.2). The execution time of the application using a GPP without hardware accelerators is 7.4 billion
cycles. It can be noticed from the figure that for five ACs, RISPP has the maximum efficiency of 3.6 (this
is 3.0 times better than that of ASIP using the same amount of ACs) as it can already execute all SIs in
hardware (due to the time-multiplexed hardware usage, i.e. reconfiguration). The execution time of the
application in that case is 416.67 million cycles, i.e. 17.8 times better performance than the GPP.

- 138 -

6.3 Comparing RISPP with Application-Specific Instruction Set Processors (ASIPs)

When using up to nine ACs, the performance of RISPP is better than that of the ASIP. This point is
called “break-even point”, as both architectures have nearly the same efficiency and execution time be-
cause all SIs are executed completely in hardware. Beyond the break-even point (i.e., when providing
more ACs), the reconfiguration delay dominates the performance gain of faster hardware implementations
of SIs. ASIP starts winning beyond the break-even point, but after some further addition, performance
saturation is reached (due to the available parallelism in the application, i.e. Amdahl’s law). RISPP in-
stead achieves already a good performance with a high efficiency for a rather small number of ACs.
Table 6.3 summarizes the important attributes of the comparison of RISPP and ASIP. In comparison with
a GPP, the ASIP achieves the higher maximum speedup (33.6x in comparison with 25.7x for RISPP, both
using 15 ACs). The reason is that – given a rather large amount of Atoms to the ASIP – all SIs can be ac-
celerated in hardware even without reconfigurations. In this scenario, the ASIP achieves its highest
speedup, however, at significant hardware cost. The comparison of the ‘efficiency’ (i.e. speedup per
Atom) in Table 6.3 reflects these hardware costs. The minimum, average, and maximum efficiency of
RISPP is better compared with the ASIP. In addition, the minimum and average speedup of RISPP in
comparison with GPP is better than comparing ASIP with GPP. The ASIP only achieves the better maxi-
mal speedup, if a large amount of Atoms is available. When directly comparing RISPP with the ASIP,
then the ASIP peak performance corresponds to a performance loss of 0.75 for RISPP. However, as
RISPP provides the better performance for the majority of benchmark situations (i.e. availability of ACs),
RISPP’s average speedup in comparison with the ASIP is 1.38 and even 3.06x speedup is reached for five
ACs. When focusing on moderate area extension by providing one up to nine ACs (the break-even point),
then the minimum and average speedup of RISPP in comparison with the ASIP improve to 1.05x and
1.75x respectively (see Table 6.3).

ASIP RISPP

min avg max min avg max

Execution Time [MCycles] 220.6 999.6 3126 288.3 715.1 2734

Speedup in comparison with GPP 2.4 16.8 33.6 2.7 17.6 25.7

Efficiency 1.0 1.9 2.5 1.7 2.3 3.6

Speedup in comparison with ASIP – – – 0.75 1.38 3.06

Speedup in comparison with ASIP
when focusing on 1-9 ACs – – – 1.05 1.75 3.06

Table 6.3: Summary of Comparison of RISPP and ASIP

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RISPP AC Utilization

ASIP AC Utilization

Label A: RISPP Best Case: 4 Atom
Containers are used by most of the SIs

Label C: For both ASIP and
RISPP all SIs are supported in HW

Label B: ASIP Worst Case: 5 Atom
Containers mostly for 1 hot spot

Legend:

Available Reconfigurable Fabric [Atom Containers]

A
to

m
 C

on
ta

in
er

 U
til

iz
at

io
n

Figure 6.7: Atom Utilization for ASIP and RISPP

- 139 -

Chapter 6 Benchmarks and Comparisons

 ASIP: all Atoms are added statically
to the core pipeline at design time.

RISPP: only the amount of Atom Containers to
load Atoms at run time is fixed at design time.

a)

4
A

to
m

 C
on

ta
in

er

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50
Timeframe [250 KCycles]

L
in

e:
U

til
iz

at
io

n
of

 A
to

m
s [

%
] SADrow QSub Repack

HT Transform Utilization Average Utilization

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50
Timeframe [250 KCycles]

L
in

e:
U

til
iz

at
io

n
of

 A
to

m
s [

%
]

SADrow QSub Repack
HT Transform DCT Transform PointFilter
Clip3 Cond LF_4
Utilization Average Utilization

b)

5
A

to
m

 C
on

ta
in

er

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35
Timeframe [250 KCycles]

L
in

e:
U

til
iz

at
io

n
of

 A
to

m
s [

%
] SADrow QSub

Repack HT Transform
SAV Utilization
Average Utilization

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35
Timeframe [250 KCycles]

L
in

e:
U

til
iz

at
io

n
of

 A
to

m
s [

%
]

SADrow QSub Repack
HT Transform SAV DCT Transform
PointFilter Clip3 Cond
LF_4 UtilizationAverage Utilization

c)

10
 A

to
m

 C
on

ta
in

er

10
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 2 3 4 5 6 7 8 9
Timeframe [250 KCycles]

Li
ne

:U
til

iz
at

io
n

of
 A

to
m

s [
%

]

SADrow QSub Repack
HT Transform SAV DCT Transform
PointFilter Clip3 Cond
LF_4 Utilization Average Utilization

10
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 2 3 4 5 6 7 8 9
Timeframe [250 KCycles]

L
in

e:
U

til
iz

at
io

n
of

 A
to

m
s [

%
]

SADrow QSub Repack
HT Transform SAV DCT Transform
PointFilter Clip3 Cond
LF_4 Utilization Average Utilization

Figure 6.8: Detailed Atom Utilization Variations for 4, 5, and 10 Available
Atom Containers (AC), Used by ASIP (AC Content Determined at Design Time)

and RISPP (AC Content Reconfigured at Run Time); Respectively.
All figures show the encoding of one video frame. The X-axis shows the timeframes
of 250K cycles, the left Y-axis denotes the overall and average utilization (drawn as
lines), whereas the bars indicate which Atoms were used in the current timeframe.

The length of the X-axis corresponds to the maximum encoding time (for one frame)
from ASIP or RISPP (partially showing the beginning of the second frame).

- 140 -

6.4 Comparing RISPP with Reconfigurable Processors

Figure 6.7 demonstrates the resource utilization (see Eq. 6.2) of RISPP and ASIP. The figure shows that
the resource utilization of RISPP is much better than that of an ASIP when few ACs are available due to
the time-multiplexed utilization of the hardware resources (i.e. run-time reconfiguration). Three signifi-
cant points (see the labels in Figure 6.7) will be analyzed with the help of a corresponding run-time analy-
sis (shown in Figure 6.8) in detail. Label A in Figure 6.7 represents the best case of resource utilization
(57.4%) corresponding to four ACs for RISPP. Figure 6.8a shows the detailed Atom utilization for this
case. In the first computational block (i.e. Motion Estimation (ME); see Figure 3.5 on page 31) all four
ACs are used. After ME completed execution, RISPP reconfigures the ACs for the next computational
block (i.e. Encoding Engine), as it can be seen at the temporary drop of the resource utilization (an AC
cannot be used during its reconfiguration). In timeframe 23, RISPP uses more than four Atoms, as in the
beginning of this timeframe the Atoms for the ME are still available and used, where at the end of this
timeframe the Atoms for the Encoding Engine are already loaded and used. However, at no time more
than four Atoms are used together as only four ACs are available. In timeframe 29 and 30 the ACs are
reconfigured toward the third computational block (i.e. In-Loop De-blocking Filter), before the execution
of the three computational blocks restarts for the next input frame (not shown for clarity). It is noticeable
that the ASIP instead spends all four Atoms for the ME (see Figure 6.8a left side), as this enables the best
performance for the overall encoding. In timeframe 34 (within the Encoding Engine), the ASIP reuses the
HT Transform and Repack Atoms to encode some MacroBlocks using intra-frame prediction (I-MBs).
RISPP instead reconfigures the ACs to support the more frequent P-MBs and accepts using the cISA exe-
cution to encode the I-MBs. By doing so, RISPP achieves an encoding time that is significantly faster than
that of the ASIP. RISPP executes ME slightly slower than the ASIP due to the initial reconfiguration
overhead, but the Encoding Engine and Loop Filter overcome this initial shortfall.

Label B in Figure 6.7 portrays the worst-case resource utilization (11%) for the ASIP, when it uses
five Atoms. This is because – in addition to the Atoms that were also used when at most four Atoms were
available – the ASIP additionally offers the SAV Atom (see Figure 6.8b) that is only beneficial for the
SATD SI. This leads to the best performance (6 instead of 23 timeframes for ME), but the Encoding En-
gine and Loop Filter do not benefit at all and dominate the execution time. At Label C in Figure 6.7, the
Atom utilization between RISPP and ASIP is similar. Also for the ASIP all three computational blocks are
covered with hardware accelerated SIs (although not with the fastest implementations).

Figure 6.8c shows that the RISPP architecture is already affected by the reconfiguration time. The
first four timeframes are spent in reconfiguring all selected Atoms for the ME computational block, which
does not only have a negative impact to the utilization, but also to the performance. The same is true for
the Encoding Engine and partially for the In-Loop De-blocking Filter. Therefore, only in timeframe 10, all
provided ACs are actually used. Finally, the better SI implementations that RISPP selected no longer
overcome the reconfiguration overhead. An improved reconfiguration time would attenuate this effect and
improve the performance and Atom utilization of the RISPP architecture even further.

6.4 Comparing RISPP with Reconfigurable Processors
In addition to the comparison with GPPs and ASIPs, this thesis also presents a comparison of RISPP with
state-of-the-art reconfigurable processors with monolithic SIs. In Section 2.2.4, e.g. Molen [VWG+04]
and OneChip [WC96] were identified as state-of-the-art approaches and described accordingly. Even
though there are differences in the architecture details between RISPP and them, they represent the class
of processors with reconfigurable monolithic SI. For instance, Molen does not call the SIs directly, but
data transfer is managed by so-called exchange registers. Additionally, Molen performs static prefetching
to reconfigure the SIs, i.e. at compile time it is predetermined which implementations shall be loaded. To
simulate static prefetching with the simulation environment (see Appendix A), the fine-tuning operations
for Forecast Values are turned off by setting α to zero (see Section 4.3.1). This assures that always the
same reconfiguration decisions are derived. Additionally, only one implementation is provided per SI,
which represents the fact that Molen statically provides one reconfigurable accelerators at compile time

- 141 -

Chapter 6 Benchmarks and Comparisons

(when they are synthesized). To assure a fair comparison, the same SIs, Molecules, and Atoms are pro-
vided to Molen (see discussion in Section 6.2). For each size of the reconfigurable fabric (i.e. number of
available ACs), those Molecules were selected that together lead to the best performance according to the
exact SI execution frequencies (i.e. the profiling results for the video sequence were used to determine the
implementation, although the actual video sequence is typically not known when compiling the applica-
tion). Therefore, this comparison corresponds to a conservative comparison, as it uses information that is
typically not available to optimize statically for the targeted video sequence.

As Molen provides exactly one dedicated implementation per SI, the simulation assured that the At-
oms that are used for a particular SI may not be used to implement any other SI, i.e. Atom sharing – one
of the novel concepts of the RISPP architecture – is not available for Molen. However, when a new SI
shall be loaded for Molen, it is reconfigured at the basis of Atoms, i.e. the area unit that is used for com-
parison. If none of the demanded Atoms are available, then the reconfiguration time corresponds to the
reconfiguration time of a monolithic SI. However, it may happen that some of the demanded Atoms are
available before the reconfigurations start, because only one Atom is replaced, if a new one shall be
loaded. In case of monolithic SIs, either the entire SI implementation is replaced or none of it, whereas in
the simulation only the fraction of the SI implementation (i.e. the Atom) that is actually overwritten is no
longer available. All other Atoms stay available and do not need to be reconfigured for the next time this
SI is demanded. Molen actually does not provide this performance-increasing feature and thus, providing
it to Molen leads to a conservative comparison again. Additionally, the simulation allows that the imple-
mentations of different SIs differ in their size, i.e. an SI may be implemented with rather few Atoms
whereas another SI is implemented with rather many Atoms. However, for monolithic SIs – as used by
Molen – the reconfigurable fabric is typically partitioned into identical-sized regions into which SI im-
plementations can be loaded. This is done to allow any SI implementation to be loaded into any of these
slots (same reasons, why ACs have all the same size and shape). Eventually, the simulation assures that
the Molen simulation does not used Forecast fine-tuning, adaptive Molecule selection, SI upgrading, and
Atom sharing, which are dedicated features of the novel RISPP approach that is presented in this thesis.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0

500

1,000

1,500

2,000

2,500

3,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

RISPP

Molen

Speedup of RISPP in
Comparison with Molen

Available Reconfigurable Fabric [Atom Containers]

B
ar

s:
 E

xe
cu

tio
n

Ti
m

e
[M

ill
io

n
C

yc
le

s]

Li
ne

: S
pe

ed
up

Figure 6.9: Comparison of RISPP and Molen, Showing the Execution Time of the H.264 Video

Encoder Benchmark (Encoding 140 Frames in CIF Resolution, i.e. 352x288) and the Speedup

Figure 6.9 shows the comparison of RISPP and Molen for different sizes of the reconfigurable fabric. The
bars compare the corresponding application execution times and the line shows the resulting speedup of
RISPP in comparison with Molen. RISPP achieves up to 2.38x (for 24 ACs) speedup. In average, RISPP

- 142 -

6.4 Comparing RISPP with Reconfigurable Processors

achieves 1.69x speedup compared with Molen and it is noteworthy that it never performed slower than
Molen (see Table 6.4. This shows that the RISPP concept is superior to state-of-the-art reconfigurable
processors where Special Instructions (SIs) are determined at compile time and are fixed at run time,
whereas RISPP can gradually upgrade depending on the state of the system. It is noticeable, that Molen
performs reasonably well, when rather few ACs are available. A small reconfigurable fabric leads to cor-
respondingly small SI implementations (i.e. consisting of few Atoms) and thus the reconfiguration time is
not a major issue here. However, when a larger reconfigurable fabric is available, then the reconfiguration
overhead affects the performance significantly (as also discussed when comparing RISPP with ASIPs in
Section 6.3). RISPP’s concept of modular SIs diminishes this affect, as it becomes visible in Figure 6.9. It
is interesting to see that for nine ACs, the performance of Molen is viewable worse than for eight ACs
(due to reconfiguration overhead).65 A reconfigurable fabric with nine ACs corresponds to the break-even
point where the ASIP afterwards (i.e. for ten ACs) started providing a faster performance in comparison
with RISPP (see Figure 6.6 on page 138). The same effect (reconfiguration overhead) affects RISPP and
Molen, but RISPP handles the situation much better (leading to a better performance) due to its novel
concept of modular SIs. Therefore, in Table 6.4 also the speedup of RISPP for a relatively large recon-
figurable fabric of 10-30 ACs is presented (i.e. after the break-even point). After 22 ACs, the performance
of Molen recovers primarily because in the Molen simulation, the Atoms that are not explicitly replaced
but they remain loaded in the reconfigurable fabric, even though the monolithic SIs is replaced. As dis-
cussed beforehand, Molen actually does not provide this feature, but to use the ACs as area unit that fea-
ture is provided to Molen as well to maintain a conservative comparison.

 Minimum Average Maximum

Speedup of RISPP in comparison with Molen 1.00 1.69 2.38

Speedup of RISPP in comparison with Molen
when focusing on 10-30 ACs 1.31 1.94 2.38

Table 6.4: Speedup Compared with Molen, a
State-of-the-art Reconfigurable Processor with Monolithic SIs

Up to now, the benchmarks are performed for situations where it is clear at compile time which amount of
reconfigurable fabric (i.e. number of ACs) is available to execute the SIs that the application demands,
and the SI implementations are optimally selected according to this information by considering the SI
execution frequencies. However, the size of the reconfigurable fabric may be neither known (at compile
time) nor constant (during run time). For instance, in case of a multi tasking system where multiple tasks
may demand a share of the reconfigurable fabric, the amount of ACs that may be assigned to a particular
application may change (e.g., when new applications are started or the priorities of the applications
change). Proteus [Dal03] is a state-of-the-art reconfigurable processor that uses monolithic SIs and inves-
tigated scenarios with explicit support for operating systems. Therefore, RISPP is compared with Proteus,
when facing the effects of run-time changing availability of reconfigurable fabric.

Proteus uses multiple Reconfigurable Functional Units (RFUs) and may reconfigure them to contain
entire SI implementations. As up to four Atoms are demanded to implement one SI in the smallest hard-
ware implementation (SATD, see Figure 3.3 on page 27), one RFU is represented as four ACs for simula-
tions. Figure 6.10 provides an example that shows the conceptual problem when statically deciding about
the SI implementations. Figure 6.10a) shows the Proteus, using monolithic SIs and providing three RFUs.
Note, that only those RFUs are shown that are assigned to the application, potentially further RFUs might

65 Please note that the SI implementations for Molen were selected optimally, considering how the reconfigurable

fabric should be shared among the SIs (that are demanded in the computational blocks of the benchmark applica-
tion) and considering the actual SI execution frequencies, but not considering ‘when’ and ‘how often’ Molen
might reconfigure the SIs. When provided with nine ACs, a Molen compiler may decide to use only eight of them,
however, still Molen’s performance does not improve beyond six ACs, whereas RISPP achieves noticeably better
performance when equipped with more ACs, providing up to 1.94x speedup in comparison to Molen’s fastest
execution time.

- 143 -

Chapter 6 Benchmarks and Comparisons

be available in the system. In the example, three SIs from the Encoding Engine computational block of an
H.264 video encoder are loaded into the RFUs. If the Operating System (OS) re-assigns a fraction of the
reconfigurable fabric that was previously assigned to the video encoder, then the smallest unit that can be
re-assigned is a RFU. Therefore, only two SIs of the Encoding Engine are accelerated by hardware, which
results in a significant performance degradation. Here, it would be better to re-partition the reconfigurable
fabric that is assigned to the application to provide three smaller RFUs. Then, all three SIs could still be
accelerated by hardware (though exploiting less parallelism compared with the SI implementations for the
larger RFUs) which removes the major performance bottleneck, i.e. executing HT4x4 using the cISA as
shown in Figure 6.10a. The RISPP approach shows multiple advantages here due to the concept of modu-
lar SIs and ACs. At first, the smaller ACs provide the opportunity for the OS to distribute the available
reconfigurable fabric at a finer granularity. Furthermore, even if the same amount of reconfigurable fabric
is re-assigned (corresponding to four ACs as shown in Figure 6.10b) still all SIs can be implemented using
hardware accelerators, i.e. Atoms. Additionally, multiple alternatives exist how the ACs can be used to
implement the SIs, whereas it is also possible that some Atoms that are loaded into the ACs are shared by
different SI implementations (not shown in the figure).

Figure 6.10: Problem and Possible Solution when Addressing

Reconfigurable Hardware as Monolithic RFUs

In Figure 6.11, the performance of RISPP and Proteus is compared. It is worth to note that the perform-
ance improvement (when providing more reconfigurable fabric) for Proteus is discontinuous. The reason
is that the system is optimized to RFUs that correspond to an area equivalent of four ACs (as four Atoms
are demanded to implement SATD as discussed beforehand). This decision was done at compile time
without knowing how many RFUs would be available at run time (due to multi tasking). For the compari-
son with Molen, the SI implementations were optimized specifically for the amount of ACs that were
available at run time (as Molen does not target multi-tasking systems). For Proteus the RFU size is de-
cided once and then has to be used for all different scenarios, i.e. number of available RFUs. If bigger
RFUs had been used, then the above discussed effect of ‘discontinuous performance changes’ would in-
crease, i.e. reassigning the area equivalent of one AC to another task might lead to even larger perform-
ance changes. If smaller RFUs had been used then not all important SIs could be offered in hardware at all
(independent of how much reconfigurable fabric is available). In contrast to this, the RISPP approach uses
the hardware resources efficiently and gives a consistent performance improvement for each additional
AC. Labels A and B in Figure 6.11 highlight two prominent groups as they correspond to zero and one

- 144 -

6.5 Summary of Benchmarks and Comparisons

RFU respectively. Altogether, RISPP is up to 7.19x (on average 3.63x) faster than Proteus. In group B,
RISPP is on average 6.14x faster. After group B, the difference is rather less, as both RISPP and Proteus
are offering the most frequent SIs in hardware. However, consider that the available reconfigurable fabric
has to be shared between multiple tasks and the figure only shows, which share of the reconfigurable fab-
ric may be used for this particular application.

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8 9 10

Proteus

RISPP

1,029
B

A Performance of Proteus changes discontinuously,
while RISPP is giving a consistent performance gain

Available Reconfigurable Fabric [Atom Containers]

Ba
rs
: E
xe
cu
tio

n
Ti
m
e
[M

ill
io
n
Cy
cl
es
]

1 Programmable
Functional Unit

 �
4 Atom

Containers

Figure 6.11: Comparing the RISPP Approach with Proteus, Executing an

H.264 Video Encoder and Showing the Impact of RFUs vs. Atom Containers

6.5 Summary of Benchmarks and Comparisons
This chapter benchmarked the novel RISPP approach that is presented in this thesis, using different sce-
narios.66 The impact of different frequencies was investigated for the core pipeline and the Atom Infra-
structure (containing the reconfigurable fabric), depending on the amount of available Atom Containers
(ACs). Additionally, the RISPP approach was investigated for different memory bandwidths (number of
ports and bit width per port) and reconfiguration bandwidth. The results show, that the parameters interact
with each other and the impact of setting a parameter to a certain value, also depends on the settings of the
other parameters. For instance, the frequency of the core pipeline is very important if a relatively small
amount of reconfigurable fabric is available, whereas it has a small impact when many ACs are available.
This is because if sufficient number of ACs are available, then large fraction of computation is performed
using them. In such a case, the impact of the data memory bandwidth is important to exploit the parallel-
ism, whereas its importance is limited if rather few ACs are available that could exploit the potential par-
allelism of a large data memory bandwidth. Similarly, the importance of the reconfiguration bandwidth
depends on the amount of available ACs. If relatively few of them are available, then they need to be re-
configured more frequently and thus the reconfiguration bandwidth determines when they can be used
(i.e. when they finish the reconfiguration). However, if rather many ACs are available, then some of them

66 please note that specific benchmark results for the individual components of the RISPP run-time system and the

RISPP architecture prototype are presented in Chapter 4 and Section 5.5, respectively

- 145 -

Chapter 6 Benchmarks and Comparisons

- 146 -

may retain their Atoms, i.e. they are not reconfigured even though the computational block finished exe-
cution. Therefore, these Atoms will already be available next time when the computational block is exe-
cuted and less additional reconfigurations are demanded. Thus, the impact of the reconfiguration band-
width is not that important as for the case where frequent reconfigurations occur.

In addition to these benchmarks, this thesis also compares the proposed approach with state-of-the-art
non-reconfigurable application-specific processors (ASIPs) and with state-of-the-art reconfigurable proc-
essors. When comparing with ASIPs it becomes apparent that they provide relatively bad efficiency when
rather few Atoms67 are available. This is because the Atoms are dedicated to a specific functionality and
have to address all requirements (i.e. SIs) of the application. As they cannot be reconfigured when the
execution moves from one computational block to another, some of them are not used for a significant
amount of time (e.g. the execution time of a computational block). Therefore, RISPP achieves an up to
3.06 better performance (1.75x in average) than that of an ASIP that is statically optimized for the specific
application and input data. When rather many Atoms are available, then an ASPI may also perform better
than RISPP (up to 1.33x) due to RISPP’s reconfiguration overhead (even though the RISPP approach di-
minishes this effect). However, RISPP provides significantly increased adaptivity in comparison with an
ASIP, i.e. it is not optimized for any particular application. Therefore, in scenarios where it is not known
beforehand which applications will execute (e.g. because the user can download and start further applica-
tions), the ASIP might perform as bad as a GPP, whereas RISPP can reconfigure toward the demanded
application dynamically. In comparison with a GPP, RISPP provides up to 25.7x faster application execu-
tion time.

When comparing with state-of-the-art reconfigurable processors, the performance was analyzed for
situations where the availability of reconfigurable fabric (i.e. the number of ACs) is known at compile
time (as it is typical in single-tasking scenarios) and where it is not known (as it is typical in multi-tasking
scenarios). For the known number of ACs, comparison with Molen [VWG+04] is provided, using stati-
cally optimized SI implementations for Molen, targeting the particular scenario. Still, RISPP is able to
perform up to 2.38x faster than Molen (in average 1.69x and never slower than Molen) which shows the
superiority of the RISPP approach and its modular SIs. Especially when rather many ACs are available,
RISPP performs better due to its diminished reconfiguration overhead and adaptivity. For run-time chang-
ing availability of reconfigurable fabric, the extended adaptivity of RISPP leads to even larger perform-
ance improvements. In comparison with Proteus [Dal03], which explicitly targets multi-tasking scenarios,
RISPP achieves up to 7.19x better performance (in average 3.63x and never slower than Proteus), because
RISPP can dynamically select the SI implementations depending on the availability of ACs, whereas Pro-
teus has to use a compile-time determined decision independent of the amount of ACs that are available
during run time.

Altogether, these benchmarks and comparisons demonstrate RISPP’s superiority in scenarios where
rather many SIs demand acceleration, the SI execution frequency depends on input data, or the availability
of ACs is not fixed, i.e. in scenarios where a high adaptivity is beneficial. The novel concept of modular
SIs and the algorithms of the run-time system that dynamically select SI implementations and determine
reconfigurations, improve the provided adaptivity in comparison with ASIPs and state-of-the-art recon-
figurable processors, and additionally diminish the reconfiguration overhead.

67 actually, their non-reconfigurable counterparts used by the ASIPs

Chapter 7 Conclusion and Outlook
7.1 Thesis Summary
This thesis presents a novel approach to increase the adaptivity and efficiency of embedded processors,
i.e. it presents RISPP, the Rotating Instruction Set Processing Platform. RISPP combines the aspects of
application specific instruction set processors (ASIPs) and reconfigurable processors by providing Special
Instructions (SIs) that may be reconfigured during run time, i.e. a run-time adaptive instruction set. The
contribution of RISPP is based on the novel concept of modular SIs. Instead of providing an SI implemen-
tation as a monolithic block, modular SIs provide multiple different implementations of an SI. An SI is
partitioned into multiple elementary data paths, the so-called Atoms. These Atoms are the basic unit that
may be reconfigured to the reconfigurable fabric. The different implementations of an SI vary in their
amount of provided Atoms and thus correspond to a certain ‘performance per area’ trade-off. Addition-
ally, Atoms are not necessarily dedicated to a particular SI but their functionality might be used by differ-
ent SIs and their implementations, i.e. an Atom can be shared.

In addition to the novel concept of modular SIs, this thesis proposes a novel run-time system that ex-
ploits the potential adaptivity and performance benefits. Based on online monitoring and a lightweight
prediction scheme, the run-time system determines which implementation of an SI shall be used to accel-
erate a computational block of an application. This selection provides adaptivity for changing application
control flow and changing multi-tasking scenarios. If the application control-flow changes during run time
(e.g. because it depends on input data), then the execution frequency of some SIs might change. In such a
situation, the run-time system can provide more Atoms to accelerate the corresponding SIs, i.e. it adapts to
the compile-time unpredictable situation. In multi-tasking scenarios, the available reconfigurable fabric
needs to be shared among all tasks that shall be accelerated. Depending on the number of tasks and their
priorities or deadlines, the amount of available reconfigurable fabric that is dedicated to a particular task is
not predetermined. Again, the run-time system allows adapting to these changing multi-tasking scenarios
by selecting correspondingly smaller or larger implementations for the demanded SIs.

The novel run-time system also determines the Atom loading sequence, as at most one Atom can be
loaded at a time. Reconfiguring another Atom may allow that – together with the already available Atoms
– a faster implementation of a particular SI becomes available, i.e. the SI is upgraded. To exploit the per-
formance of modular SIs, these SI upgrades need to be considered carefully, which is achieved by the
Highest Efficiency First Scheduler of the presented run-time system. Additionally, whenever an Atom is
reconfigured, another Atom might need to be replaced, which is performed by the novel Minimum Degra-
dation replacement policy, developed in this thesis. The novel feature of stepwise upgrading the imple-
mentation of an SI diminishes the conceptual reconfiguration overhead problem of state-of-the-art recon-
figurable processors that provide monolithic SI implementations. The reconfiguration time of these mono-
lithic SIs becomes longer if the SI implementation exploits more parallelism (because a larger implemen-
tation leads to more configuration data that needs to be transferred). Therefore, the reconfiguration over-
head limits the amount of parallelism that can be exploited by monolithic SIs. In extreme case, the recon-
figuration could demand more time than the execution of the kernel without hardware acceleration. How-
ever, the concept of modular SIs as presented in this thesis allows exploiting the maximally available par-
allelism, because the SI implementations can be upgraded until the most parallel versions are available. In
between, ‘smaller’ implementations (i.e. demanding less Atoms and exploiting less parallelism) are avail-
able to accelerate the application. To implement modular SIs in practice, this thesis proposes a novel
computation and communication infrastructure that supports SI upgrading. It is coupled to the pipeline of
the core processor like a functional unit and has access to the data memory.

All proposed algorithms for the novel run-time system are described on a formal basis and evaluated
for different parameter settings or algorithmic versions. The entire RISPP approach, including the run-

- 147 -

Chapter 7 Conclusion and Outlook

time system and the Atom Infrastructure is implemented on an FPGA-based prototype to allow partial
run-time reconfiguration. A challenging H.264 video encoder application is used to benchmark RISPP and
evaluate the performance impact of different parameters, i.e. amount of available reconfigurable fabric,
frequency of the core pipeline, frequency of the Atom Infrastructure, available data memory bandwidth,
and available reconfiguration bandwidth. Additionally, this thesis provides a comparison of RISPP with a
general-purpose processor (GPP), a state-of-the-art ASIP, and state-of-the-art reconfigurable processors
(Molen [VWG+04] and Proteus [Dal03]). In comparison with a GPP, RISPP provides up to 25.7x faster
application execution time, running at the same frequency. RISPP achieves an up to 3.06 better perform-
ance (1.75x in average) than that of an ASIP that is statically optimized for the specific application and
input data. It is noticeable that RISPP achieves this performance improvement for a rather small recon-
figurable fabric as its concept of dynamically reconfiguring modular SIs uses the provided hardware more
efficient. When a rather large amount of hardware is available, then the ASIP may potentially implement
all SIs in their most parallel version. In this case, the ASIP is 1.33x faster than RISPP, however, at the
cost of an explicit specialization for a particular application and a large area footprint. Instead, RISPP may
reconfigure the Atoms to support different applications as well, i.e. it is not optimized for any particular
application, but it is flexible. Therefore, in scenarios where it is not known beforehand which applications
will execute (e.g. because the user can download and start further applications), the ASIP might perform
as bad as a GPP, whereas RISPP can reconfigure toward the demanded application dynamically.

Comparing with Molen, RISPP achieves a performance improvement up to 2.38x (in average 1.69x
and never slower than Molen), which is due to the concept of modular SIs that i) diminishes the recon-
figuration overhead when exploiting SI implementations with a high degree of parallelism and that ii)
provide adaptivity when facing input-data dependent SI execution frequencies. These significant im-
provements are obtained even though Molen was statically optimized for the particular input data that was
used for benchmarking (which is not possible in real-world scenarios), whereas RISPP was adapting to the
SI execution frequencies dynamically over time. When facing multi-tasking scenarios with changing
availability of the reconfigurable fabric (because it is shared among multiple tasks) then the extended
adaptivity of RISPP improves the performance further. In comparison with Proteus [Dal03], which explic-
itly targets multi-tasking scenarios, RISPP achieves up to 7.19x better performance (in average 3.63x and
never slower than Proteus), because RISPP can dynamically select the SI implementations depending on
the availability of ACs, whereas Proteus has to use a compile-time determined decision independent of the
amount of ACs that are available during run time.

Altogether, these benchmarks and comparisons demonstrate RISPP’s superiority in scenarios where
rather many SIs demand acceleration, the SI execution frequency depends on input data, or the availability
of ACs is not fixed, i.e. in scenarios where a high adaptivity is beneficial. The novel concept of modular
SIs and the algorithms of the run-time system that dynamically select SI implementations and determine
reconfigurations, improve the provided adaptivity in comparison with ASIPs and state-of-the-art recon-
figurable processors, and additionally diminish the reconfiguration overhead.

7.2 Future Work
The conceptual benefits, the various benchmark results, and the comparison with state-of-the-art embed-
ded processors provided in this thesis demonstrate that adaptivity makes it possible to improve the per-
formance and efficiency of today’s embedded processors and thus embedded systems. These promising
results enable further research efforts that may focus on compile-time automation, broadened run-time
adaptivity, and improved design efficiency:

Compile-time Automation: In the scope of this thesis, the Special Instructions (SIs), Molecules, and At-
oms where manually created, as stated in Section 3.3 and presented in [SBH09a]. As the design meth-
odology and tool flow for the application designer and the instruction-set architecture are related to

- 148 -

7.2 Future Work

ASIP design, the tools and algorithms of that research domain may be adapted to create SIs for RISPP
automatically. However, SIs for state-of-the-art ASIPs and reconfigurable processors are monolithic,
i.e. they are not partitioned into elementary data paths, i.e. Atoms. Therefore, variations of graph par-
titioning algorithms may be investigated to transform monolithic SI graphs into modular SIs and to
determine, which properties modular SIs demand. This can be used to modify the ‘pruning’ step in
state-of-the-art automatic SI detection (see for instance [SRRJ04, VBI07]). To exploit the feature to
share Atoms between different SIs, techniques like data-path merging [BKS04] may be adapted to
identify reusable Atoms. Recently, the new research project KAHRISMA [ITI, KBS+10] started,
which – to some degree – builds upon the results of this thesis. As a part of this project, the automatic
detection and partitioning of modular SIs will be investigated further.

Broadened Run-time Adaptivity: Even though a large adaptivity is already exploited by the approach
presented in this thesis, further potential is available when considering energy efficiency. Up to now,
RISPP aims to transfer the available conceptual advantages into pure performance. However, given
certain deadlines, i.e. performance constraints, the question arises whether the conceptual advantages
can be used to fulfill the performance constraints while optimizing for low energy consumption. For
instance, upgrading SIs provides improved performance but costs reconfiguration energy. Recent
work started investigating this matter [SBH09b], using the developed RISPP approach, simulator, and
hardware prototype (to perform power measurements for the partial run-time reconfiguration) as ba-
sis. Additionally, the provided adaptivity can also be extended toward multi-tasking environments. As
already indicated in the results of this thesis, the RISPP approach provides significant benefits for run-
time changing availability of reconfigurable fabric for a particular task. However, assigning recon-
figurable fabric to a particular task is a challenging research-relevant issue that may exploit the bene-
fits that the provided RISPP architecture offers. Additionally, if multiple tasks demand a reconfigura-
tion, then the question arises, which task may perform its reconfiguration first, i.e. an extended sched-
uling problem for resource-management aspects of the reconfiguration port. These questions will be
investigated –among others– in the new research project on Invasive Computing [Tra].

Improved Design Efficiency: When analyzing the utilization of the reconfigurable fabric (i.e. execution
of Atoms) then it becomes noticeable that it is not fully utilized, as only SI executions actually use it.
Even though the SI execution typically corresponds to a large share of the application execution time
(as they are designed to cover the major kernels), not all SI executions use the reconfigurable fabric,
e.g. when the reconfigurations of the demanded Atoms are not yet completed. Therefore, additional
performance potential is available in the reconfigurable fabric that is not utilized yet. Here, a Multi-
core RISPP system may increase the efficient utilization of the reconfigurable fabric by connecting
multiple independent cores to it, i.e. the fabric can be shared among multiple cores. Ideally, when one
core executes an SI using the reconfigurable fabric, the other cores execute code on their core pipe-
line, i.e. all cores have the impression that they may use their assigned share of the reconfigurable fab-
ric exclusively (similar to a virtualization). Actually, when two or more cores aim to access the recon-
figurable fabric at the same time, then at least one of them will face performance degradation. How-
ever, in comparison with a single-core RISPP system with multi-tasking, this concept may increase
the performance significantly by utilizing the reconfigurable fabric efficiently. Additionally, the re-
configurable fabric could be optimized toward the requirements of actual Atoms and SIs, using an
embedded FPGA architecture (e.g. [NvSBN08, SNBN06]). This would allow to trade-off the features
of the reconfigurable fabric with its area footprint and logic delay. Certainly, the reconfigurable fabric
that is used for prototyping (Xilinx Virtex-4) is overdesigned for implementing Atoms, as e.g. a no-
ticeable amount of routing resources crosses the border of the partially reconfigurable regions, and
thus they cannot be used. In addition to a fine-grained reconfigurable fabric, also coarse-grained re-
configurable elements may be used. Especially for computation on word level, they may provide bet-
ter performance and area efficiency than fine-grained reconfigurable fabrics. A combination of both
types would not only improve the area efficiency, but also the performance, as then both byte/sub-
byte computations and word-level computations are supported with specialized fabrics. The recently

- 149 -

Chapter 7 Conclusion and Outlook

- 150 -

launched KAHRISMA project started investigating this matter and published a first promising case
study [ITI, KBS+10].

Appendix A RISPP Simulation
To be able to investigate concepts, different algorithms, and different parameters for RISPP before im-
plementing the prototype, a simulation environment was developed that allows a fast design-space explo-
ration. It is not the intend to explore the design space automatically, but rather an accurate and configur-
able simulator with a corresponding tool chain was implemented in this thesis, that allows investigating
different run-time algorithms, comparing reconfigurable processors on a fair basis, and investigating the
impact of diverse architectural parameters. Figure A.1 visualizes the major components and interactions
of the simulation environment as an UML class diagram. It is partitioned into three major parts: the core
pipeline and run-time system (managing the application execution and reconfigurations), the SIs (repre-
senting their implementations, execution times, etc.), and the FPGA (managing the AC content, reconfigu-
ration times etc.).

The SIs comprise at least two Molecules: one uses the Atoms and one uses the core Instruction Set
Architecture (cISA). The SIs and their Molecules are determined by an external XML file that defines all
required information like the name of the SI, the instruction format and opcode (to be able to decode it out
of the application binary), and the available Molecules with the latency and Atom requirements. Further-
more, the Atoms contain the information on the bitstream size to determine the reconfiguration time. For
different data memory ports and bit widths, different XML files exist. They are semi-automatically cre-
ated as part of the tool chain, taking the actual data-flow graph of the SI (the Atoms correspond to the
nodes in the graph) and then scheduling it, i.e. determining a starting time for each Atom. This schedule is
automatically performed for all possible resource constraints (i.e. the amount of instances of a certain
Atom that may be used at the same time) to obtain all Molecules.

Figure A.1: Internal Composition of the Design Space

Exploration Tool, Showing Module Interactions

The simulation of the pipeline receives the application binary and information about the cISA (for which
the binary was created) as input. When the simulation starts, the cISA is automatically extended by the SI
information from the XML file to be able to decode all instructions from the application binary. The cISA
instructions are actually not executed by the pipeline. Instead, a branch trace (containing all taken
branches in their actually executed sequence) is provided to mimic the exact application control flow. An
entry in the branch trace correspond to the information at which address the corresponding branch instruc-
tions is placed (in the application binary) and to which address the control-flow branches. This informa-
tion is represented as binary values and a run-length compression is used to reduce the size of the branch

- 151 -

trace. To simulate the execution of the application, the instruction at address zero is provided as first in-
struction to the instruction fetch stage. If the stage is not stalled (described below), the subsequent instruc-
tion are provided in the next cycle etc. This continues linearly, until the address of the first entry in the
branch trace is reached (i.e. the first taken branch). Afterwards (considering delay slots etc.), the address
of the branch target is provided to the instruction fetch stage and from there on, sequentially providing the
next addresses (that follow the branch target) continues until the next taken branch is reached etc. By do-
ing so, the exact application control flow can be simulated without simulating the semantic of the instruc-
tions to determine whether a branch instruction is taken. This allows abstracting the simulation environ-
ment from the actual cISA68 and reduces the simulation time, as investigating architectural parameters and
run-time algorithms for a particular branch trace is the goal. The branch trace is derived from an instruc-
tion set simulator (ISS). For MIPS and SPARC-V8, DLXSim [HM94] and ArchC [ARB+05] are used,
respectively. It was assured that the execution in the simulator matches the actual execution. Therefore,
the pipeline is modeled including its stages in the simulator and the information which instruction requires
how many cycles in which pipeline stage (e.g., the mult instruction stalls the execution stage) is available.
However, the register file and data memory accesses are not simulated, thus, although at any time it is
known which instruction is currently executed in which pipeline stage, the current content of the register
file or the actual data memory accesses cannot be determined. To simulate the exact data memory ac-
cesses (e.g. to attach a cache simulator), an additional data memory access trace would be needed. Cur-
rently, each load/store instruction is configured to require two cycles. When the pipeline issues these
memory accesses then the cycle time corresponds to the CPU frequency. When a Molecule that executes
on the Atom Infrastructure issues them, they correspond to the FPGA frequency. For the access to the on-
chip Scratchpad (see Section 5.3), this corresponds to the results of the hardware prototype. For accesses
to the off-chip memory, this mimics the scenario that all accesses to the instruction memory and stack are
cache hits. This allows investigating the differences of parameters and algorithms without affecting the
results by cache effects.

When the instruction decode stage recognizes an SI, the SI Execution Unit is triggered, examines
which Molecule shall be used to execute the SI, and stalls the execute stage accordingly. When a Forecast
Instruction is recognized, then the Prefetching Unit is triggered and the pipeline continues executing the
next instructions. The Prefetching Unit implements the algorithms of the run-time system, i.e. it corre-
sponds to the MicroBlaze in the hardware prototype. It receives the expected SI execution frequencies as
input from the Online Monitoring, determines which Atoms shall be reconfigured into which ACs, and
writes this information into the Atom Loading Queue. The Online Monitoring in Figure A.1 is initialized
with offline profiling data that is derived from the ISS and that is fine-tuned at run time.

The simulator creates a detailed log file containing information about the current system state, the de-
cisions made, and intermediate results of the run-time algorithms. The planned reconfigurations are
printed along with the current state of the FPGA and the information which Atoms and which Molecules
are currently available. Furthermore, statistics on the SI executions are shown, e.g. which Molecules were
executed since simulation start or in the recent time. This log file can be used for analyzing the results by
extracting the required information from it. In addition to the textual log file, also a visual representation
was developed in the scope of this thesis. During the simulation run, a special binary version of the log
file is created and after the simulation finished, this log file is parsed by RISPPVis, the RISPP visualiza-
tion. Figure A.2 provides a first overview of the RISPPVis graphical user interface (GUI) that is based on
QT and OpenGL. RISPPVis provides a timeline (see) that provides an overview of the entire applica-
tion execution time and highlights forecasts (red lines) and completed Atom reconfigurations (blue lines).
It shows the execution flow of an H.264 video encoder. The first forecast corresponds to the Motion Esti-
mation (ME), the second one to the Encoding Engine (EE), and the third one to the In-Loop De-blocking
Filter (LF). The fourth forecast (short after the third one) corresponds to ME of the next frame.

68 it is currently prepared for MIPS and SPARC-V8; the SI instruction format and opcode for both ISAs are pro-

vided in the XML file

- 152 -

Appendix A RISPP Simulation

1

2
3

4

Figure A.2: Overview of the RISPP Simulation Visualization: RISPPVis [D.4]

1

2

Figure A.3: RISPPVis Zooming into SI Execution Latency Changes [D.4]

- 153 -

Label in Figure A.2 indicates the main widget that provides a detailed view of the major events and the
SI executions. The events are visible in the upper half of the widget and all SIs have a dedicated row in
the lower half that indicates their executions. Depending on the zoom level, multiple executions of the
same SI may be summarized as one block, however, when zooming into the simulation time, then the in-
dividual SI executions are printed as individual blocks. Figure A.3 shows such a zoom (see Label , the
zoom slider), where the individual SI executions become apparent. Additionally, the SI execution latency
is written into the blocks (see Label). The black line below Label in Figure A.2 shows the point in
time for which all status information is printed. RISPPVis provides a playback feature (i.e. it can run the
simulation) and all status information are refreshed accordingly. Label in the figure shows the Atom
Infrastructure that is automatically adjusted to the parameters that were used for the particular simulation,
i.e. it shows the number of ACs that were used in the simulation. In the shown example, the Atom Infra-
structure consists of two Load/Store Units (the Address Generation Units are not printed for clarity) and
six reconfigurable Atom Containers (ACs). The Atom that is currently loaded into an AC is written into
its box. AC6 in Figure A.2 is currently reconfigured, as indicated by the partial color filling of the AC that
corresponds to the degree to that the reconfiguration is complete (25% as written below the AC number).
The text in the box indicates which Atom was loaded into this AC beforehand and which Atom is cur-
rently reconfigured. The colors of the ACs correspond to the percentage value that is written at the bottom
of each AC (0% is blue and 100% is red). These values show, how often the AC was used in the recent
time, i.e. it shows its utilization. Label shows the swap-in queue, indicating which Atoms already fin-
ished reconfiguration for the currently executed computational block and which will be reconfigured next.

In addition to this information, many different statistics about the SIs and Molecules can be plotted as
diagrams, e.g. showing all Molecules of an SI and indicating which Molecule was executed how often.
Figure A.4 provides an example for such a diagram. Here, the main widget shows the changes of the SI
latencies over time, indicating the Molecule Selection (how fast does the implementation of a particular SI
become), the Atom Scheduling (in which sequence are the SIs upgraded) and the Atom Replacement.
Similar types of graphs were used when describing the Atom Scheduling (Figure 4.25 on page 83) and
Atom Replacement (Figure 4.30 on page 93) and RISPPVis can create this type of graph automatically,
which improves the understanding of the run-time system decisions significantly.

Furthermore, RISPPVis provides an SQL database that contains all information and events that are
provided by the RISPP simulation. This allows searching for specific conditions that are then shown on
the time axis in RISPPVis. The SQL database is used to implement a design rule checker to assure that
certain impossible situations (e.g. two reconfigurations happening at the same time, two SIs executing at
the same time, a Molecule executes even though not all required Atoms are available etc.) never occur.
This feature is mainly used to assure basic properties of the RISPP architecture, which is especially bene-
ficial after changing the RISPP simulator e.g. after adding a new feature. Figure A.5 shows an example of
the design rule check. The output is printed to the console in the RISPPVis GUI. At Label , an interest-
ing event is reported: “Atom atom_Cond immediately swapped out @ cycle 2777585”. This means that an
Atom that just finished reconfiguration was immediately replaced, i.e. the Atom was never used. This in-
dicates potential for further improvement, for instance, it might be more efficient to avoid starting a new
reconfiguration when the computational block is nearly completed. At Label , this situation already
starts. This information reports that during a running reconfiguration, a new forecast arrives. Actually, two
forecasts arrive: the first one is informing that the LF computational block completed and the second one
informs that ME starts, i.e. another frame is to be encoded. Short time after this forecast, the running re-
configuration completed and leads to the message at Label (note, the messages are not sorted by cycles
but they are printed one rule after the other). The report at Label indicates that the number of started
reconfigurations does not match the number of completed reconfigurations, because one reconfiguration
was still running, when the application execution finished.

- 154 -

Appendix A RISPP Simulation

Figure A.4: RISPPVis SI Latency Diagram [D.4]

2

1
3

Figure A.5: RISPPVis Design Rule Check [D.4]

- 155 -

Appendix B RISPP Prototype
The hardware implementation of the RISPP prototype (see Section 5.5) is developed and tested for an
Avnet Xilinx Virtex-4 LX160 Development Kit (“ADS-XLX-V4LX-DEV160-G”, [Avn09]). This board
comprises a Xilinx Virtex-4 XC4VLX160-FF1513 FPGA [Xil08c] that provides the resources shown in
Table B.1.

Device CLBa Array:
Row x Column

Logic
Cells Slices Max. Distributed

RAM (Kbit)
Xtreme

DSPb Slices
18 Kb
Blocks

Max. Block
RAM (Kbit) DCMsc PMCDsd Total I/O

Banks
Max.

User I/O

XC4VLX160 192 x 88 152,064 67,584 1,056 96 288 5,184 12 8 17 960

Table B.1: Resources Provided by the FPGA of the Prototype [Xil07a]
a: Configurable Logic Block
b: Digital Signal Processing
c: Digital Clock Managers
d: Phase-Matched Clock Dividers

Figure B.1 shows an overview of the board with all connected peripherals. The FPGA is placed below the
heat-sink at Label . The board features different types of memory, i.e. 128 MB DDR RAM (at the bot-
tom side, basically below Label), 64 MB SDRAM (Label), two SRAM modules with 1 MB per
module (Label), a 16 MB Flash EEPROM (Label) for configuring the FPGA (full bitstreams), and a
32 MB fast Flash EEPROM (Label) for configuring the ACs (partial bitstreams). The DDR RAM is
connected to the MicroBlaze processor (although it currently does not require it), the SD RAM is used as
main memory for the Leon2 processor, and one SRAM Module is used as video buffer for the video IP
core (to create a progressive frame out of two subsequent interleaved frames, as received from the video
input). The EEPROM for the partial bitstreams is placed on a printed circuit board (PCB) that was devel-
oped in the scope of this thesis for the prototype and is described below. In addition to the EEPROM, this
PCB also provides access to further peripherals, e.g. USB/UART and a 320x240 Touch-Screen LCD
[ELE] (Label). Additionally, this PCB provides general purpose I/O that complies the Digilent
PMOD69 connector and allows connecting further peripherals, e.g. a 16x2 character display, SD-Card slot,
push buttons, and a two-axis joystick (Label). The FPGA Board also comprises a breakout board that
provides Mictor Connectors for debugging and logging purpose (Label). The video module that is con-
nected to the board provides video input via an S-Video connector (Label) and video output via an
VGA connector (Label).

To be able to store the partial bitstreams for reconfiguring the Atom Containers on a non-volatile
memory (i.e. they do not need to be re-uploaded after power-on), a PCB was developed in the scope of
this thesis to connect the fast OneNAND Flash EEPROM from Samsung [Sam05] to the FPGA board.
Figure B.2 shows the four layers of the PCB and Figure B.3 shows a picture of the PCB board with the
connected peripherals. Label in Figure B.2 indicates the 140-pin AvBus connector that establishes the
connection to the FPGA board and Label shows the placement of the EEPROM right on top of the
connector. The AvBus connector provides Gnd, 3.3V, and 5V in addition to user-I/O pins and four differ-
ent layers are demanded to provide the required connections to the peripherals. The color codes for the
layers in Figure B.2 are (from top to bottom) blue (data), brown (Vcc), green (Gnd), and red (data). Ex-
cept the AvBus connector (that is placed on the bottom side of the PCB), all components are placed on the
top side. Label shows the connectors for a fuse and a capacitor for 3.3V Vcc and at Label , the Vcc
connection to the EEPROM is connected to precision resistors to measure the power consumption. La-
bel shows the fuse and capacitor for the 5V Vcc which is used for the PMOD connectors (Label) and
the background light for the touch-screen LCD (Label).

69 http://www.digilentinc.com/Products/Catalog.cfm?NavPath=2,401&Cat=9

- 157 -

Fi
gu

re
 B

.1
:

Pi
ct

ur
e

of
 th

e
A

vn
et

 X
ili

nx
 V

ir
te

x-
4

L
X

16
0

D
ev

el
op

m
en

t K
it

w
ith

 P
er

ip
he

ry
 fo

r
SR

A
M

,
SD

R
A

M
, R

ec
on

fig
ur

at
io

n
E

E
PR

O
M

, A
ud

io
/V

id
eo

 M
od

ul
e,

 a
nd

 (T
ou

ch
 S

cr
ee

n)
 L

C
D

s

- 158 -

Appendix B RISPP Prototype

2

1

3

5

4

6

7

Figure B.2: Schematic of the Four Layers for the PCB for EEPROM, USB, Audio, Touch-Screen

LCD, and General-purpose Connectors that was Developed in the Scope of this Thesis

Figure B.3: Picture of the Developed PCB

- 159 -

Bibliography

[ABF+07] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. C. van der Veen, “Optimal free-
space management and routing-conscious dynamic placement for reconfigurable devices”,
IEEE Transactions Computers (TC), vol. 56, no. 5, pp. 673–680, May 2007.

[ABK+04] A. Ahmadinia, C. Bobda, D. Koch, M. Majer, and J. Teich, “Task scheduling for heteroge-
neous reconfigurable computers”, in Proceedings of the 17th symposium on Integrated cir-
cuits and system design (SBCCI). ACM, September 2004, pp. 22–27.

[Aer] Aeroflex Gaisler, “Homepage of the Leon processor”, http://www.gaisler.com/-
leonmain.html.

[Ama06] H. Amano, “A survey on dynamically reconfigurable processors”, IEICE Transaction on
Communication, vol. E89-B, no. 12, pp. 3179–3187, December 2006.

[API03] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific instruction-set extensions
under microarchitectural constraints”, in Proceedings of the 40th annual Conference on De-
sign Automation (DAC), June 2003, pp. 256–261.

[ARB+05] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo, C. Araujo, and E. Barros, “The ArchC
architecture description language and tools”, International Journal of Parallel Program-
ming, vol. 33, no. 5, pp. 453–484, October 2005.

[ARC] ARC International, “ARCtangent processor”, http://www.arc.com/configurables/.

[ASI] ASIP Solutions, Inc., “Homepage of ASIP Meister”, http://asip-solutions.com/.

[Avn09] Avnet, Inc., “Avnet electronics marketing”, http://avnetexpress.avnet.com, 2009.

[BA05] C. Bobda and A. Ahmadinia, “Dynamic interconnection of reconfigurable modules on re-
configurable devices”, IEEE Design & Test, vol. 22, no. 5, pp. 443–451, Septem-
ber/October 2005.

[BAM+05] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, and J. van der Veen, “DyNoC: A
dynamic infrastructure for communication in dynamically reconfigurable devices”, in In-
ternational Conference on Field Programmable Logic and Applications (FPL), August
2005, pp. 153–158.

[BBKG07] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, “Architectural exploration of
the ADRES coarse-grained reconfigurable array”, in Reconfigurable Computing: Architec-
tures, Tools and Applications (ARC), March 2007, pp. 1–13.

[BCA+04] P. Biswas, V. Choudhary, K. Atasu, L. Pozzi, P. Ienne, and N. Dutt, “Introduction of local
memory elements in instruction set extensions”, in Proceedings of the 41st annual Confer-
ence on Design Automation (DAC), June 2004, pp. 729–734.

[Bel66] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer”, IBM Sys-
tems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[BEM+03] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt, “PACT
XPP—a self-reconfigurable data processing architecture”, Journal of Supercomputing,
vol. 26, no. 2, pp. 167–184, September 2003.

[BKS04] P. Brisk, A. Kaplan, and M. Sarrafzadeh, “Area-efficient instruction set synthesis for recon-
figurable system-on-chip designs”, in Proceedings of the 41st annual Conference on Design
automation (DAC), June 2004, pp. 395–400.

- 161 -

[BL00] F. Barat and R. Lauwereins, “Reconfigurable instruction set processors: A survey”, in Pro-
ceedings of the 11th IEEE International Workshop on Rapid System Prototyping (RSP),
June 2000, pp. 168–173.

[BLC07] T. Becker, W. Luk, and P. Y. K. Cheung, “Enhancing relocatability of partial bitstreams for
run-time reconfiguration”, in Proceedings of the 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2007, pp. 35–44.

[BMA+05] C. Bobda, A. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich, “The Erlangen Slot
Machine: a highly flexible FPGA-based reconfigurable platform”, in 13th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM), April 2005,
pp. 319–320.

[BNS+04] G. Braun, A. Nohl, W. Sheng, J. Ceng, M. Hohenauer, H. Scharwächter, R. Leupers, and
H. Meyr, “A novel approach for flexible and consistent ADL-driven ASIP design”, in Pro-
ceedings of the 41st annual Design Automation Conference (DAC), June 2004, pp. 717–
722.

[Bob07] C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms, and Ap-
plications. Springer Publishing Company, Incorporated, June 2007.

[BSKH07] L. Bauer, M. Shafique, S. Kramer, and J. Henkel, “RISPP: Rotating Instruction Set Process-
ing Platform”, in Proceedings of the 44th annual Conference on Design Automation (DAC),
June 2007, pp. 791–796.

[CAK+07] A. Chattopadhyay, W. Ahmed, K. Karuri, D. Kammler, R. Leupers, G. Ascheid, and
H. Meyr, “Design space exploration of partially re-configurable embedded processors”, in
Proceedings of the conference on Design, Automation and Test in Europe (DATE), April
2007, pp. 319–324.

[CBC+05] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, “An architecture frame-
work for transparent instruction set customization in embedded processors”, in Proceedings
of the 32nd International Symposium onComputer Architecture (ISCA), June 2005, pp.
272–283.

[CC01] J. E. Carrillo and P. Chow, “The effect of reconfigurable units in superscalar processors”, in
Proceedings of the ACM/SIGDA eighth international symposium on Field Programmable
Gate Arrays (FPGA), February 2001, pp. 141–150.

[CEL+03] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, and A. Saidi,
“The reconfigurable streaming vector processor (RSVPTM)”, in Proceedings of the 36th
annual IEEE/ACM International Symposium on Microarchitecture (MICRO), December
2003, pp. 141–150.

[CH02] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and software”,
ACM Computing Surveys (CSUR), vol. 34, no. 2, pp. 171–210, June 2002.

[CHP03] N. Cheung, J. Henkel, and S. Parameswaran, “Rapid configuration and instruction selection
for an ASIP: a case study”, in IEEE/ACM Proceedings of Design Automation and Test in
Europe (DATE), March 2003, pp. 802–807.

[CKP+04] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-specific processing
on a general-purpose core via transparent instruction set customization”, in Proceedings of
the 37th annual IEEE/ACM International Symposium on Microarchitecture (MICRO), De-
cember 2004, pp. 30–40.

[CLC+02] K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck, “Configuration relocation and de-
fragmentation for run-time reconfigurable computing”, IEEE Transactions on Very Large
Scale Integration systems (TVLSI), vol. 10, no. 3, pp. 209–220, June 2002.

- 162 -

Bibliography

[CMZS07] C. Claus, F. Müller, J. Zeppenfeld, and W. Stechele, “A new framework to accelerate
Virtex-II Pro dynamic partial self-reconfiguration”, in IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), March 2007, pp. 1–7.

[CoW] CoWare Inc., “LISATek”, http://www.coware.com/.

[CPH04] N. Cheung, S. Parameswarani, and J. Henkel, “A quantitative study and estimation models
for extensible instructions in embedded processors”, in Proceedings of the IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), November 2004, pp. 183–
189.

[CZM03] N. Clark, H. Zhong, and S. Mahlke, “Processor acceleration through automated instruction
set customization”, in Proceedings of the 36th annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), December 2003, pp. 129–140.

[Dal99] M. Dales, “The Proteus processor – a conventional cpu with reconfigurable functionality”,
in Proceedings of the 9th International Workshop on Field-Programmable Logic and Ap-
plications (FPL), August 1999, pp. 431–437.

[Dal03] M. Dales, “Managing a reconfigurable processor in a general purpose workstation environ-
ment”, in Design, Automation and Test in Europe Conference and Exhibition (DATE),
March 2003, pp. 980–985.

[EL09] A. Ehliar and D. Liu, “An ASIC perspective on FPGA optimizations”, in Proceedings of
the 19th International Conference on Field-Programmable Logic and Applications (FPL),
August/September 2009, pp. 218–223.

[ELE] ELECTRONIC ASSEMBLY GmbH, “eDIP embedded LCD-display”, http://www.lcd-
module.com/eng/pdf/grafik/edip320-8e.pdf.

[ESS+96] H. ElGindy, A. K. Somani, H. Schroder, H. Schmeck, and A. Spray, “RMB – a reconfigur-
able multiple bus network”, in Proceedings of the 2nd IEEE Symposium on High-
Performance Computer Architecture (HPCA), February 1996, pp. 108–117.

[FKPM06] K. Fan, M. Kudlur, H. Park, and S. Mahlke, “Increasing hardware efficiency with multi-
function loop accelerators”, in Proceedings of the 4th international conference on Hard-
ware/software Codesign and System Synthesis (CODES+ISSS), October 2006, pp. 276–281.

[GJ90] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of
NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[GRE+01] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown, “MiBench: A
free, commercially representative embedded benchmark suite”, in Annual IEEE Interna-
tional Workshop Workload Characterization (WWC), December 2001, pp. 3–14.

[GSB+00] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor, “Piperench:
A reconfigurable architecture and compiler”, Computer, vol. 33, no. 4, pp. 70–77, April
2000.

[GVPR04] B. Griese, E. Vonnahme, M. Porrmann, and U. Rückert, “Hardware support for dynamic
reconfiguration in reconfigurable soc architectures”, in Proceedings of the 14th Interna-
tional Conference on Field-Programmable Logic and Applications (FPL), Au-
gust/September 2004, pp. 842–846.

[Har01] R. Hartenstein, “A decade of reconfigurable computing: a visionary retrospective”, in Pro-
ceedings of the conference on Design, Automation and Test in Europe (DATE), March
2001, pp. 642–649.

[Hen03] J. Henkel, “Closing the SoC design gap”, Computer, vol. 36, no. 9, pp. 119–121, September
2003.

- 163 -

[HFHK97] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The Chimaera reconfigurable functional
unit”, in Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Ma-
chines (FCCM), April 1997, pp. 87–96.

[HGG+99] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau, “EXPRESSION: a
language for architecture exploration through compiler/simulator retargetability”, in Pro-
ceedings of the conference on Design, automation and test in Europe (DATE), March 1999,
pp. 485–490.

[HKN+01] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink, and
H. Meyr, “A novel methodology for the design of application-specific instruction-set proc-
essors (ASIPs) using a machine description language”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 20, no. 11, pp. 1338–1354,
November 2001.

[HM94] L. B. Hostetler and B. Mirtich, “DLXsim – a simulator for DLX”, http://-
heather.cs.ucdavis.edu/~matloff/DLX/Report.html, 1994.

[HM09] H. P. Huynh and T. Mitra, “Runtime adaptive extensible embedded processors – a survey”,
in Proceedings of the 9th International Workshop on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS), July 2009, pp. 215–225.

[HMW04] L. He, T. Mitra, and W.-F. Wong, “Configuration bitstream compression for dynamically
reconfigurable fpgas”, in Proceedings of the IEEE/ACM International Conference on Com-
puter-Aided Design (ICCAD), November 2004, pp. 766–773.

[HP96] J. L. Hennessy and D. A. Patterson, Computer Architecture – A Quantitative Approach,
2nd ed. Morgan Kaufmann Publishers, Inc., 1996.

[Hro01] J. Hromkovic, Algorithmics for Hard Problems: Introduction to Combinatorial Optimiza-
tion, Randomization, Approximation, and Heuristics. New York, NY, USA: Springer-
Verlag New York, Inc., 2001.

[HSKB06] M. Hübner, C. Schuck, M. Kühnle, and J. Becker, “New 2-dimensional partial dynamic
reconfiguration techniques for real-time adaptive microelectronic circuits”, in Proceedings
of the IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Ar-
chitectures (ISVLSI), August/September 2006, pp. 97–102.

[HSM03] P. Heysters, G. Smit, and E. Molenkamp, “A flexible and energy-efficient coarse-grained
reconfigurable architecture for mobile systems”, Journal of Supercomputing, vol. 26, no. 3,
pp. 283–308, November 2003.

[HSM07] H. P. Huynh, J. E. Sim, and T. Mitra, “An efficient framework for dynamic reconfiguration
of instruction-set customization”, in Proceedings of the international conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems (CASES), September/October
2007, pp. 135–144.

[HUWB04] M. Hübner, M. Ullmann, F. Weissel, and J. Becker, “Real-time configuration code decom-
pression for dynamic FPGA self-reconfiguration”, in Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS), April 2004, pp. 138–143.

[IHT+00] M. Itoh, S. Higaki, Y. Takeuchi, A. Kitajima, M. Imai, J. Sato, and A. Shiomi, “PEAS-III:
An ASIP design environment”, in International Conference on Computer Design (ICCD),
September 2000, pp. 430–436.

[ISS] ISS LISA Team, “LISA–language for instruction set architectures”, http://www.iss.rwth-
aachen.de/Projekte/Tools/lisa/index.html.

[ITI] ITIV & CES, “KAHRISMA: KArlsruhe’s Hypermorphic Reconfigurable-Instruction-Set
Multi-grained-Array processor”, http://www.kahrisma.org/.

- 164 -

Bibliography

[ITU05] ITU-T Rec. H.264 and ISO/IEC 14496-10:2005 (E) (MPEG-4 AVC), “Advanced video
coding for generic audiovisual services”, 2005.

[JC99] J. A. Jacob and P. Chow, “Memory interfacing and instruction specification for reconfigur-
able processors”, in Proceedings of the ACM/SIGDA 7th international symposium on Field
Programmable Gate Arrays (FPGA), February 1999, pp. 145–154.

[KBS+10] R. König, L. Bauer, T. Stripf, M. Shafique, W. Ahmed, J. Becker, and J. Henkel,
“KAHRISMA: A novel hypermorphic reconfigurable-instruction-set multi-grained-array
architecture”, in Proceedings of the conference on Design, Automation and Test in Europe
(DATE), March 2010, pp. 819–824.

[KLPR05] H. Kalte, G. Lee, M. Porrmann, and U. Rückert, “REPLICA: A bitstream manipulation fil-
ter for module relocation in partial reconfigurable systems”, in Reconfigurable Architec-
tures Workshop (RAW), Proceedings of the 19th IEEE International Parallel and Distrib-
uted Processing Symposium (IPDPS), April 2005, p. 151.2.

[KMN02] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC to ASIP: The next design discontinu-
ity”, in International Conference on Computer Design (ICCD). IEEE Computer Society,
September 2002, pp. 84–90.

[KMTI03] S. Kobayashi, K. Mita, Y. Takeuchi, and M. Imai, “Rapid prototyping of JPEG encoder
using the ASIP development system: PEAS-III”, in Proceedings of the International Con-
ference on Multimedia and Expo (ICME), April 2003, pp. 149–152.

[KT04] D. Koch and J. Teich, “Platform-independent methodology for partial reconfiguration”, in
Proceedings of the 1st conference on Computing Frontiers (CF), April 2004, pp. 398–403.

[LBM+06] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Enhanced architectures,
design methodologies and CAD tools for dynamic reconfiguration of Xilinx FPGAs”, in
Proceedings of the 16th International Conference on Field-Programmable Logic and Ap-
plications (FPL), August 2006, pp. 1–6.

[LH01] Z. Li and S. Hauck, “Configuration compression for Virtex FPGAs”, in Proceedings of the
the 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), April/May 2001, pp. 147–159.

[LH02] Z. Li and S. Hauck, “Configuration prefetching techniques for partial reconfigurable co-
processor with relocation and defragmentation”, in Proceedings of 8th international sympo-
sium on Field Programmable Gate Arrays (FPGA), February 2002, pp. 187–195.

[LLC06] A. Lopez-Lagunas and S. M. Chai, “Compiler manipulation of stream descriptors for data
access optimization”, in Proceedings of the International Conference Workshops on Paral-
lel Processing (ICPPW), August 2006, pp. 337–344.

[LP07] E. Lübbers and M. Platzner, “ReconOS: An RTOS supporting hard- and software threads”,
in International Conference on Field Programmable Logic and Applications (FPL), August
2007, pp. 441–446.

[LPMS97] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for evaluating and
synthesizing multimedia and communications systems”, in Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), December 1997, pp.
330–335.

[LSV06] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors”, ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 11, no. 3, pp. 659–681, June 2006.

[LTC+03] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. Guerrieri, “A VLIW proc-
essor with reconfigurable instruction set for embedded applications”, IEEE Journal of
Solid-State Circuits (JSSC), vol. 38, no. 11, pp. 1876–1886, November 2003.

- 165 -

[LV04] R. Lysecky and F. Vahid, “A configurable logic architecture for dynamic hard-
ware/software partitioning”, in Proceedings of the conference on Design, Automation and
Test in Europe (DATE), February 2004, p. 10480.

[MBTC06] C. Mucci, M. Bocchi, M. Toma, and F. Campi, “A case-study on multimedia applications
for the XiRisc reconfigurable processor”, in Proceedings of the International Symposium on
Circuits and Systems (ISCAS), May 2006, pp. 4859–4862.

[MLV+05] B. Mei, A. Lambrechts, D. Verkest, J.-Y. Mignolet, and R. Lauwereins, “Architecture ex-
ploration for a reconfigurable architecture template”, IEEE Design & Test, vol. 22, no. 2,
pp. 90–101, March/April 2005.

[MO99] T. Miyamori and K. Olukotun, “REMARC: Reconfigurable multimedia array coprocessor”,
IEICE Transactions on Information and Systems, vol. E82-D, no. 2, pp. 389–397, February
1999.

[MSCL06] T. Mak, P. Sedcole, P. Cheung, and W. Luk, “On-FPGA communication architectures and
design factors”, in International Conference on Field Programmable Logic and Applica-
tions (FPL), August 2006, pp. 1–8.

[MT90] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations.
New York, NY, USA: John Wiley & Sons, 1990.

[MTAB07] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The Erlangen Slot Machine: A dynami-
cally reconfigurable FPGA-based computer”, Journal of VLSI Signal Processing Systems,
vol. 47, no. 1, pp. 15–31, April 2007.

[MVV+02] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “DRESC: a retargetable
compiler for coarse-grained reconfigurable architectures”, in Proceedings of the IEEE In-
ternational Conference on Field-Programmable Technology (FPT), December 2002, pp.
166–173.

[MVV+03] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “ADRES: An architecture
with tightly coupled VLIW processor and coarse-grained reconfigurable matrix”, in Pro-
ceedings of the 13th International Conference on Field-Programmable Logic and Applica-
tions (FPL), September 2003, pp. 61–70.

[NvSBN08] B. Neumann, T. von Sydow, H. Blume, and T. G. Noll, “Design flow for embedded FPGAs
based on a flexible architecture template”, in Proceedings of the conference on Design,
automation and test in Europe (DATE), March 2008, pp. 56–61.

[OBL+04] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer,
and T. Wedi, “Video coding with H.264/AVC: Tools, performance, and complexity”, IEEE
Circuits and Systems Magazine, vol. 4, no. 1, pp. 7–28, 2004.

[PBV06] E. M. Panainte, K. Bertels, and S. Vassiliadis, “Compiler-driven FPGA-area allocation for
reconfigurable computing”, in Proceedings of the conference on Design, Automation and
Test in Europe (DATE), March 2006, pp. 369–374.

[PBV07] E. M. Panainte, K. Bertels, and S. Vassiliadis, “The Molen compiler for reconfigurable
processors”, ACM Transactions on Embedded Computing Systems (TECS), vol. 6, no. 1,
February 2007.

[PKAM09] T. Pionteck, R. Koch, C. Albrecht, and E. Mähle, “A design technique for adapting number
and boundaries of reconfigurable modules at runtime”, International Journal of Recon-
figurable Computing (IJRC), vol. 2009, no. 942930, 2009.

[Rec] Recore Systems, “Montium tile processor”, http://www.recoresystems.com/.

- 166 -

Bibliography

[Ric] Richard M. Stallman and the GCC Developer Community, “Using the GNU compiler col-
lection”, http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc.pdf.

[RM04] J. Resano and D. Mozos, “Specific scheduling support to minimize the reconfiguration
overhead of dynamically reconfigurable hardware”, in Proceedings of the 41st annual De-
sign Automation Conference (DAC), June 2004, pp. 119–124.

[RS94] R. Razdan and M. D. Smith, “A high-performance microarchitecture with hardware-
programmable functional units”, in Proceedings of the 27th annual international sympo-
sium on Microarchitecture (MICRO), November/December 1994, pp. 172–180.

[Sam05] Samsung Electronics Company, Ltd, “OneNAND specification”, http://-
origin2.samsung.com/global/system/business/semiconductor/product/2007/6/11/-
OneNAND/256Mbit/KFG5616Q1A/ds_kfg5616x1a_66mhz_rev12.pdf, 2005.

[SB98] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, B. Book, Ed. MIT
Press, 1998.

[SBH09a] M. Shafique, L. Bauer, and J. Henkel, “Optimizing the H.264/AVC video encoder applica-
tion structure for reconfigurable and application-specific platforms”, Journal of Signal
Processing Systems (JSPS), vol. 60, no. 2, pp. 183–210, 2009.

[SBH09b] M. Shafique, L. Bauer, and J. Henkel, “REMiS: Run-time energy minimization scheme in a
reconfigurable processor with dynamic power-gated instruction set”, in 27th International
Conference on Computer-Aided Design (ICCAD), November 2009, pp. 55–62.

[SGS98] S. Sawitzki, A. Gratz, and R. G. Spallek, “CoMPARE: A simple reconfigurable processor
architecture exploiting instruction level parallelism”, in 5th Australasian Conference on
Parallel and Real-Time Systems (PART), September 1998, pp. 213–224.

[SKHB08] C. Schuck, M. Kühnle, M. Hübner, and J. Becker, “A framework for dynamic 2D place-
ment on FPGAs”, in Proceedings of 18th International Parallel and Distributed Processing
Symposium (IPDPS), April 2008, pp. 1–7.

[SNBN06] T. v. Sydow, B. Neumann, H. Blume, and T. G. Noll, “Quantitative analysis of embedded
FPGA-architectures for arithmetic”, in Proceedings of the IEEE 17th International Confer-
ence on Application-specific Systems, Architectures and Processors (ASAP), September
2006, pp. 125–131.

[SPA] SPARC International, Inc., “The SPARC architecture manual, version 8”, http://-
www.sparc.org/specificationsDocuments.html#V8, http://gaisler.com/doc/sparcv8.pdf.

[SRRJ03] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “A scalable application-specific processor
synthesis methodology”, in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), November 2003, pp. 283–290.

[SRRJ04] F. Sun, S. Ravi, A. Raghunathan, and N. Jha, “Custom-instruction synthesis for extensible-
processor platforms”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 23, no. 2, pp. 216–228, February 2004.

[SSC03] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction”, in 30th Annual Inter-
national Symposium on Computer Architecture (ISCA), June 2003, pp. 336–347.

[Sut88] R. S. Sutton, “Learning to predict by the methods of temporal differences”, Machine Learn-
ing, vol. 3, no. 1, pp. 9–44, August 1988.

[SWP04] C. Steiger, H. Walder, and M. Platzner, “Operating systems for reconfigurable embedded
platforms: Online scheduling of real-time tasks”, IEEE Transactions on Computers (TC),
vol. 53, no. 11, pp. 1393–1407, November 2004.

[Tan07] A. S. Tanenbaum, Modern Operating Systems. Prentice Hall Press, 2007.

- 167 -

[Tar] Target Compiler Technologies NV, “Target Compiler”, http://www.retarget.com/.

[TB05] A. Thomas and J. Becker, “Multi-grained reconfigurable datapath structures for online-
adaptive reconfigurable hardware architectures”, in Proceedings of the IEEE Computer So-
ciety Annual Symposium on VLSI (ISVLSI), May 2005, pp. 118–123.

[TCW+05] T. Todman, G. Constantinides, S. Wilton, O. Mencer, W. Luk, and P. Cheung, “Recon-
figurable computing: architectures and design methods”, IEE Proceedings Computers &
Digital Techniques, vol. 152, no. 2, pp. 193–207, March 2005.

[Tec06] P. X. Technologies, “XPP-III Processor Overview (White Paper), v2.0.1”, \http://-
www.pactxpp.com/main/download/XPP-III_overview_WP.pdf, July 2006.

[Tei97] J. Teich, Digitale Hardware/Software-Systeme: Synthese und Optimierung. Springer-
Verlag, 1997.

[Tena] Tensilica Inc., “Tensilica: Customizable processor cores for the dataplane”, http://-
www.tensilica.com/.

[Tenb] Tensilica Inc., “Xtensa LX2 I/O Bandwidth”, http://www.tensilica.com/products/-
io_bandwidth.htm.

[TKB+07] F. Thoma, M. Kuhnle, P. Bonnot, E. Panainte, K. Bertels, S. Goller, A. Schneider,
S. Guyetant, E. Schuler, K. Muller-Glaser, and J. Becker, “MORPHEUS: Heterogeneous
reconfigurable computing”, in International Conference on Field Programmable Logic and
Applications (FPL), August 2007, pp. 409–414.

[Tra] Transregional Collaborative Research Centre 89, “Invasive computing”, http://invasic.de.

[UHGB04a] M. Ullmann, M. Hübner, B. Grimm, and J. Becker, “An FPGA run-time system for dy-
namical on-demand reconfiguration”, in Proceedings of 18th International Parallel and
Distributed Processing Symposium (IPDPS), April 2004, pp. 135–142.

[UHGB04b] M. Ullmann, M. Hübner, B. Grimm, and J. Becker, “On-demand FPGA run-time system for
dynamical reconfiguration with adaptive priorities”, in International Conference on Field
Programmable Logic and Applications (FPL), August 2004, pp. 454–463.

[VBI07] A. K. Verma, P. Brisk, and P. Ienne, “Rethinking custom ISE identification: a new proces-
sor-agnostic method”, in Proceedings of the international conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (CASES), September/October 2007, pp. 125–
134.

[VS07] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfigurable Computing.
Springer Publishing Company, Incorporated, 2007.

[VWG+04] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. Panainte, “The
MOLEN polymorphic processor”, IEEE Transactions on Computers (TC), vol. 53, no. 11,
pp. 1363–1375, November 2004.

[WC96] R. Wittig and P. Chow, “OneChip: an FPGA processor with reconfigurable logic”, in IEEE
Symposium on FPGAs for Custom Computing Machines, April 1996, pp. 126–135.

[WH95] M. Wirthlin and B. Hutchings, “A dynamic instruction set computer”, in Proceedings of the
IEEE Symposium on FPGAs for Custom Computing Machines (FCCM), April 1995, pp.
99–107.

[WSP03] H. Walder, C. Steiger, and M. Platzner, “Fast online task placement on FPGAs: free space
partitioning and 2D-hashing”, in Reconfigurable Architectures Workshop (RAW), Proceed-
ings of the International Parallel and Distributed Processing Symposium (IPDPS), April
2003, pp. 178–185.

- 168 -

Bibliography

- 169 -

[WTS+97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, S. Babb, J. Amarasinghe, and A. Agarwal, “Baring it all to software:
Raw machines”, Computer, vol. 30, no. 9, pp. 86–93, September 1997.

[Xil05a] Xilinx, Inc., “Using look-up tables as distributed RAM in Spartan-3 generation FPGAs,
v2.0”, http://www.xilinx.com/support/documentation/application_notes/xapp464.pdf,
March 2005.

[Xil05b] Xilinx, Inc., “Xilinx development system: Partial reconfiguration”, http://-
toolbox.xilinx.com/docsan/xilinx8/de/dev/partial.pdf, April 2005.

[Xil07a] Xilinx Inc., “Virtex-4 family overview, v3.0”, http://www.xilinx.com/support/-
documentation/data_sheets/ds112.pdf, September 2007.

[Xil07b] Xilinx, Inc., “Virtex-II platform FPGA user guide, v2.2”, http://www.xilinx.com/support/-
documentation/user_guides/ug002.pdf, November 2007.

[Xil08a] Xilinx, Inc., “Partial reconfiguration - PlanAhead flow FAQ”, http://www.xilinx.com/-
support/answers/25018.htm, 2008.

[Xil08b] Xilinx, Inc., “Spartan and Spartan-XL FPGA families data sheet, v1.8”, http://-
www.xilinx.com/support/documentation/data_sheets/ds060.pdf, June 2008.

[Xil08c] Xilinx Inc., “Virtex-4 FPGA user guide, v2.6”, http://www.xilinx.com/support/-
documentation/user_guides/ug070.pdf, December 2008.

[Xil09a] Xilinx, Inc., “Fast simplex link (FSL) bus, v2.11b”, http://www.xilinx.com/support/-
documentation/ip_documentation/fsl_v20.pdf, June 2009.

[Xil09b] Xilinx, Inc., “MicroBlaze Soft Processor Core”, http://www.xilinx.com/tools/-
microblaze.htm, 2009.

[Xil09c] Xilinx, Inc., “Virtex-4 FPGA configuration user guide, v1.11”, http://www.xilinx.com/-
support/documentation/user_guides/ug071.pdf, June 2009.

[YMHB00] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: a high-performance ar-
chitecture with a tightly-coupled reconfigurable functional unit”, in Proceedings of the 27th
annual International Symposium on Computer Architecture (ISCA), June 2000, pp. 225–
235.

	Acknowledgements
	List of Own Publications Included in This Thesis
	List of Supervised Student Projects that Contributed to the Simulation and Prototype
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Chapter 1 Introduction
	1.1 Application Specific Instruction Set Processors
	1.2 Reconfigurable Processors
	1.3 Thesis Contribution
	1.4 Thesis Outline

	Chapter 2 Background and Related Work
	2.1 Extensible Processors
	2.2 Reconfigurable Processors
	2.2.1 Granularity of the Reconfigurable Fabric
	2.2.2 Using and Partitioning the Reconfigurable Area
	2.2.3 Coupling Accelerators and the Processor
	2.2.4 Reconfigurable Instruction Set Processors

	2.3 Summary of Related Work

	Chapter 3 Modular Special Instructions
	3.1 Problems of State-of-the-art Monolithic Special Instructions
	3.2 Hierarchical Special Instruction Composition
	3.3 Example Special Instructions for the ITU-T H.264 Video Encoder Application
	3.4 Formal Representation and Combination of Modular Special Instructions
	3.5 Summary of Modular Special Instructions

	Chapter 4 The RISPP Run-time System
	4.1 RISPP Architecture Overview
	4.2 Requirement Analysis and Overview
	4.3 Online Monitoring and Special Instruction Forecasting
	4.3.1 Fine-tuning the Forecast Values
	4.3.2 Evaluation of Forecast Fine-tuning
	4.3.3 Hardware Implementation for Fine-tuning the Forecast Values

	4.4 Molecule Selection
	4.4.1 Problem description for Molecule Selection
	4.4.2 Parameter Identification for the Profit Function
	4.4.3 Heuristic Solution for the Molecule Selection
	4.4.4 Evaluation and Results for the Molecule Selection

	4.5 Reconfiguration-Sequence Scheduling
	4.5.1 Problem Description for Reconfiguration-Sequence Scheduling
	4.5.2 Determining the Molecule Reconfiguration Sequence
	4.5.3 Evaluation and Results for the Reconfiguration-Sequence Scheduling

	4.6 Atom Replacement
	4.6.1 Motivation and Problem Description of State-of-the-art Replacement Policies
	4.6.2 The MinDeg Replacement Policy
	4.6.3 Evaluation and Results

	4.7 Summary of the RISPP Run-time System

	Chapter 5 RISPP Architecture Details
	5.1 Special Instructions as Interface between Hardware and Software
	5.2 Executing Special Instructions using the core Instruction Set Architecture (cISA)
	5.3 Data Memory Access for Special Instructions
	5.4 Atom Infrastructure
	5.4.1 Atom Containers and Bus Connectors
	5.4.2 Load/Store- and Address Generation Units

	5.5 RISPP Prototype Implementation and Results
	5.6 Summary of the RISPP Architecture Details

	Chapter 6 Benchmarks and Comparisons
	6.1 Benchmarking the RISPP approach for different architectural parameters
	6.2 Comparing Different Architectures
	6.2.1 Assumptions and Similarities
	6.2.2 Dissimilarities
	6.2.3 Fairness of Comparison

	6.3 Comparing RISPP with Application-Specific Instruction Set Processors (ASIPs)
	6.4 Comparing RISPP with Reconfigurable Processors
	6.5 Summary of Benchmarks and Comparisons

	Chapter 7 Conclusion and Outlook
	7.1 Thesis Summary
	7.2 Future Work
	Appendix A RISPP Simulation
	Appendix B RISPP Prototype

	Bibliography

