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Introduction

The subject of this thesis is the mathematical analysis of linear and quasilinear parabolic
problems with inhomogeneous and nonlinear boundary conditions. We consider static
boundary conditions of Dirichlet, Neumann or Robin type, and further boundary con-
ditions of relaxation type, which include dynamic ones as well as boundary conditions that

arise in the linearization of free boundary problems.

Evolution equations of this type describe a great variety of physical, chemical and biological
phenomena, like reaction-diffusion processes, phase field models, chemotactic behaviour,
population dynamics, phase transitions and the behaviour of two phase fluids, for instance.
In many cases it is necessary to impose nonlinear boundary conditions into a reaction-
diffusion model to capture the dynamics of the phenomenon under investigation. In the
context of free boundary problems nonlinear boundary conditions naturally arise after a

transformation to a fixed domain.

We focus on maximal regularity results in weighted L,-spaces for linear nonautonomous
parabolic problems with inhomogeneous boundary conditions. Compared to the approach
without weights, we are able to reduce the necessary regularity of the initial values, to
incorporate an inherent smoothing effect into the solutions and to avoid compatibility
conditions at the boundary. These properties serve us as a basis for constructing a local
semiflow for the corresponding quasilinear problems in a scale of phase spaces, and for the

investigation of the long-time behaviour of solutions in terms of global attractors.

Our approach to quasilinear problems thus relies on linearization and a good understanding
of the linear problem. This idea goes back at least to Kato [58], Sobolevskii [77] and
Solonnikov [79]. In a semigroup context it was carried out by Grisvard [46], Da Prato &
Grisvard [22], Amann [3, 4, 5, 6, 7|, Da Prato & Lunardi 23|, Lunardi [67] and Priiss [70].
Semilinear problems can be treated in the framework of analytic semigroups, see Henry’s
monograph [51].

Maximal regularity means that there is an isomorphism between the data and the solution
of the linear problem in suitable function spaces. Having established such a sharp regularity
result for the linearization, the corresponding quasilinear problem can be treated by quite
simple tools, like the contraction principle and the implicit function theorem. There are
approaches in spaces of continuous functions (see Angenent [12| and Clément & Simonett
[19]), in Holder spaces (see Lunardi [67]) and in Ly-spaces for p € (1,00) (see Clément
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& Li [17] and Priiss |70]). For more details and other approaches to quasilinear parabolic
problems we refer to the discussion in [10].

The three mentioned maximal regularity settings have advantages and disadvantages. The
continuous setting is quite simple, but strong restrictions on the underlying spaces are
necessary. In the Hoélder setting the nonlinearities are easy to handle and the approach
is also applicable to fully nonlinear problems, but unpleasant compatibility conditions at
the initial time are necessary and a priori estimates in high norms are required to show
global existence of solutions. In the L,-setting powerful tools from vector-valued harmonic
analysis are available (and needed!), but on the other hand geometric assumptions on the
underlying spaces are required and also here one has to work in high norms. For a further
discussion we refer again to [10]. In this thesis we entirely work in an L,-framework.

To decide wether a concrete linear problem enjoys maximal L,-regularity in a suitable
setting is not easy. For linear problems which can be reduced to an abstract equation of
the form

Owu(t) + Au(t) = f(t), t>0, u(0) = wo, (1)

on a Banach space F, where A is a closed and densely defined operator on F, the operator
sum method, as developed by Da Prato & Grisvard [21] and extended by Dore & Venni [31]
and Kalton & Weis [57], is appropriate in many cases. Weis [85] characterized the maximal
L,-regularity properties of an operator in terms of R-sectoriality. If E is a Hilbert space,
then every negative generator of a bounded analytic Cp-semigroup enjoys maximal L,-
regularity. Unfortunately, a Hilbert space setting does often not seem to be suitable for the
applications to quasilinear problems.

To treat second order parabolic differential equations with inhomogeneous or nonlinear
boundary conditions in a maximal L,-regularity approach one typically chooses F = L,,
E = VVp_1 or E as an interpolation space in between as a basic underlying space. If E' is
close to Wp_1 then the boundary conditions are a priori only satisfied in a weak sense, but in
this way the problem can be cast in the form (1) and operator sum methods are available,
in principle. If E is close to L,, then the boundary conditions can be understood in a
pointwise sense, but a formulation in the abstract form (1) does not seem to be possible in
a reasonable way, in general - there is always a 'PDE part’ left to deal with. An advantage

of choosing E close to Ly, is that growth conditions on the nonlinearities can be avoided.

Combining operator sum methods with tools from vector-valued harmonic analysis, Denk,
Hieber & Priiss [24, 25| and Denk, Priiss & Zacher [26] showed maximal Ly-regularity with
L,, as an underlying space for a large class of vector-valued parabolic problems of even order
with inhomogeneous boundary conditions. In [25] problems with boundary conditions of
static type are considered, i.e.,

Ou+ A(t,z, D)u = f(t,x), x € Q, t>0,
Bj(t,z, D)u = g;(t,z), zerT, t >0, j=1,..,m, (2)
u(0,x) = ug(x), x €.
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This includes the linearization of reaction-diffusion systems and of phase field models with
Dirichlet, Neumann and Robin conditions. In [26] the authors study problems with bound-

ary conditions of relaxation type, i.e.,

O+ A(t,z, D)u
atp + BO(tv z, D)U + CO(tv €, DF)P
)

ft,x), x €9, t>0,

= go(t, ), rel, t >0,
Bj(t,z, D)u+Cj(t,x, Dr)p = g;(t, x), zel, t>0, j=1...m, (3)
u(0,2) = ug(x), x €,
p(0,z) = po(z), zel,

which includes dynamic boundary conditions as well as problems arising as linearizations
of free boundary problems that are transformed to a fixed domain. Here 2 C R™ is a
domain with compact smooth boundary I' = 0€). The coefficients of the operators are only
assumed to be pointwise multipliers to the underlying spaces, and the top order coefficients
are required to be bounded and uniformly continuous. These regularity assumptions allow
to apply the linear results to quasilinear problems. Earlier investigations on (2) started at

least with Ladyzhenskaya, Solonnikov & Ural’ceva [64] and include also Weidemaier [84].

A principle shortcoming of the maximal L,-regularity approach to (1), (2) and (3) is that
for fixed p one can solve the equation for initial values only in one single space of relatively
high regularity, and that one does not have the flexibility to work in a scale of spaces.
The Ly-approach to (1) necessarily requires that uy belongs to the real interpolation space
(E, D(A))i-1/pp- For large p, which is necessary to choose in the L,-setting to ensure that
the nonlinearities are well-defined, this space is close to the domain of A. The situation for
(2) and (3) is similar. Thus the long-time behaviour of solutions must be investigated in a
phase space of high regularity.

For second order problems (E, D(A));_1/,, is usually close to sz for large p, but often
the structure of the problems under consideration does not provide enough information
for a priori estimates in such high norms. Such estimates are typically obtained in the
energy space Ha, in Lo, or in a Hélder space C* with small exponent. Thus there is a gap
between the regularities inherent to given problems and the regularities which are necessary
to apply the nonlinear theory based on maximal L,-regularity. Due to the lack of a scale of
phase spaces it is further not clear how to show relative compactness of bounded orbits and
compactness of the solution semiflow without strong a priori bounds. The latter properties
are important in the investigation of the w-limit set of solutions and in the context of global
attractors.

The situation is even worse for the maximal Holder regularity approach. Here it is re-
quired that the initial values belong to the domain of the operator under consideration.
On the other hand, for semilinear problems the domains of fractional powers of opera-
tors serve as a natural scale of phase spaces. The approach to quasilinear problems in
interpolation-extrapolation scales developed by Amann also does not have these shortcom-
ings, but requires that the boundary conditions can be absorbed into the domain of an
operator on a negative order base space.
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To close this regularity gap between theory and applications in the maximal L,-regularity
approach one has introduced temporal weights that vanish at the initial time. In an abstract
setting this was done by Clément & Simonett [19] in the context of continuous maximal
regularity, and by Priiss & Simonett [71] in the Ly-setting. The latter authors proposed to

work in the power weighted spaces

Lyy(RE)={u:Ry — E : PO |y(t) (B dt < oo},
Ry
where u € (1/p,1]. (Note that the weights t"(!=#) helong to the class A,, see Stein [81].)
Functions with worse behaviour at t = 0 belong to L, ,, if one lowers . This approach yields
the solvability of the abstract equation (1) for initial values in (£, D(A)),—1/pp, and thus
allows to reduce the initial regularity up to the underlying space E. For fixed p this further
gives a useful scale of spaces for the initial values. Since the weights t?=#) only have an
effect at ¢ = 0 (on finite time intervals), the maximal regularity approach in the Ly, ,-spaces
also provides an inherent smoothing effect into solutions, as they regularize instantaneously
from (Eo, £1),—1/pp

It was further shown in 71| that the property of maximal L, ,-regularity for a closed and

to (Eo, E1)1-1/p,p, which corresponds to the unweighted case y1 = 1.

densely defined operator is independent of p € (1/p,1]. Hence the operator sum methods
known from the unweighted case are also available in the weighted approach. The results
of [71] were recently used by Kohne, Priiss & Wilke [59] to establish a dynamic theory for
abstract quasilinear problems.

It is the main purpose of the present thesis to extend and combine the results of
[25, 26, 59, 71| described above and to develop the maximal L, ,-regularity approach for
the problem classes (2) and (3). Here we aim at a systematic and comprehensive treatment
of the solution theory as well as of the various prerequisites such as trace and interpolation
properties of the underlying anisotropic function spaces on space-time. Besides the reduc-
tion of the initial regularity and an inherent smoothing effect of solutions, the approach
allows to avoid compatibility conditions at the boundary in linear problems. We apply
our linear theory to quasilinear reaction-diffusion systems with nonlinear boundary condi-
tions, of Robin and of reactive-diffusive-convective type, respectively. For such problems
we investigate local well-posedness in a scale of phase spaces, global existence and global
attractors, employing the flexibility of maximal L, ,-regularity.

We describe the organization of the thesis, the main results and the methods we have
used. In Chapter 1 we investigate the vector-valued L, ,-spaces and the corresponding
anisotropic Sobolev-Slobodetskii spaces in a systematic way, and deduce all the properties
required for the applications to parabolic problems. For instance, spaces of type

WIIZM (R'H LP(F)) N Lpu (R-i-? W;?H(F))a

where x € (0, 1), naturally arise in the Ly-approach to (2) and (3) as the sharp regularity
class of the boundary inhomogeneities. For such spaces we establish an intrinsic norm, var-
ious embeddings via the Newton polygon, the properties of the temporal and the spatial
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traces and mapping properties of pointwise multipliers. Since the multiplication with the
weight is not an isomorphism to the unweighted Sobolev-Slobodetskii spaces most of the
properties cannot be deduced from known results. We mainly employ interpolation tech-
niques, operator sum methods and the representation of the spaces as domains of operators
with a bounded H®-calculus or bounded imaginary powers. Our exposition also gives a
comprehensive account of the unweighted case (1 = 1), which has been treated in the liter-
ature so far only in a scattered way. It turns out that the weighted spaces enjoy analogous
properties as the unweighted spaces, except for the intended reduced regularity of traces at
t = 0, of course. This makes the weighted setting applicable to parabolic problems without
disadvantages.

Certain aspects of weighted fractional order spaces were already investigated by Grisvard
[44], Triebel [82] and Priiss & Simonett [71]. Recently Girardi & Weis [42] showed an
operator-valued Fourier multiplier theorem for the L, ,-spaces.

Building on the properties of the weighted spaces, in Chapters 2 and 3 we generalize to the
L, ,-setting the maximal regularity results by Denk, Hieber & Priiss [25] and Denk, Priiss
& Zacher [26] on vector-valued linear inhomogeneous, nonautonomous initial-boundary
value problems of the form (2) and (3). The unknowns take values in a Banach space of
class H7, which is necessary to apply tools from harmonic analysis, and we impose the
same ellipticity and Lopatinskii-Shapiro conditions on the operators as in the unweighted
case. Again the coefficients of the operators are only required to be pointwise multipliers
on the underlying spaces, with continuous top order coefficients, which allows to apply the
linear theory to quasilinear problems.

The Chapters 2 and 3 are organized analogously. In Sections 2.1 and 3.1 we give a detailed
description of the approach and the involved function spaces, provide examples and for-
mulate the precise assumptions, respectively. The main results are stated in the Theorems
2.1.4 and 3.1.4. Their proofs, which are inspired by the ones in [25, 26], is then carried
out in the rest of the chapters. In the Sections 2.2 and 3.2 the case of full- and half-space
constant coefficient model problems without lower order terms are considered. Here we
employ to a large extent the properties of the weighted spaces derived in Chapter 1. Since
these results enter in all points of the reasoning, we give the long and technical proof in
detail. The rest of the chapters is then devoted to a perturbation and localization proce-
dure to derive the case of a general domain from the model problems. This procedure is
again quite technical, in particular because one has to take care to control the constants in
the various perturbation steps. In Proposition 2.5.1 we also show that boundary operators
related to (2) are surjective on suitable function spaces and have a bounded linear right-
inverse. This result is needed to establish a semiflow for quasilinear problems with Robin

boundary conditions in Chapter 4.

In the Chapters 4 and 5 we then apply our linear theory to quasilinear reaction-diffusion
systems with nonlinear boundary conditions. Intentionally we do not use the full generality
of the linear theory and rather focus from the beginning on some specific problems which
also allow for an investigation of their long-time behaviour. On a bounded domain 2 with
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smooth boundary I' = 02 and outer unit normal field v we consider in Chapter 4 systems
with Robin boundary conditions, i.e, problems of the form

Oy — al(a”(u)(?ju) = f(’LL) in €, t >0,
a;j(u)v;05u = g(u) onI', ¢t>0, (4)
u(0,-) = up in Q.

It is assumed that (a;;) is elliptic and of separated divergence form, and that the non-
linearities are smooth. A dynamic theory for (4) in a scale of Slobodetskii spaces was
established by Amann [6] via extrapolation techniques. Local well-posedness and invariant
manifolds near equilibria for (4) based on the unweighted maximal L,-regularity approach
were obtained by Latushkin, Priiss & Schnaubelt |65, 66].

Our focus lies on the global long-time behaviour in strong norms close to Wp2, where p < oo
is arbitrarily large. We employ maximal L, ,-regularity together with regularity results on
the superposition operators induced by the nonlinearities to construct in Theorem 4.3.6 a
compact local semiflow of solutions for (4) in the scale of nonlinear phase spaces

M= {ug € W;(Q,RN) : a;(uo)vijug = g(ug) on T'},

where p € (n+2,00) and s € (1+n/p,2—2/p|. This high range of regularity is not covered
by Amann’s theory. In Theorem 4.4.2 we then show that a global attractor of (4) in M12,72/p
exists if there is an absorbant set in a Holder space C%*(€2, RY) for some o > 0. The result
requires the full strength of the maximal L, ,-regularity approach for the linearization of
(4) and precise estimates for the nonlinear terms, which can be controlled in terms of
lower norms of the solution (see Lemma 4.2.3). In particular we obtain from Sobolev’s
embeddings that the solutions converge to the attractor with respect to the C'*+#(Q, RV)-
norm, where § € (0,1). In important special cases it suffices to have an absorbant set in
a weaker norm such as the sup-norm. Improving earlier results, we thus have established
that the long-time behaviour of also the spatial gradient of a solution is determined by
the dynamics on the attractor with respect to a sup-norm. The convergence in a higher
norm can be useful to improve error estimates for numerical algorithms when assuming in
a quasi-stationary approximation that parts of a system of partial differential equations
are on a fast time scale.

The above statements about convergence in a norm close to Wg are known for semilinear
problems with linear boundary conditions, but do not seem to exist for quasilinear problems
or nonlinear boundary conditions. Related results rely on the variation of constants formula.
The flexibility of the weights builds a bridge from lower to higher regularities, and thus
maximal L, ,-regularity can be seen as a substitute in the case of quasilinear problems.
In Section 4.5 we apply our results to show convergence to an attractor in higher norms
for concrete models. We consider semilinear reaction-diffusion systems with nonlinear
boundary conditions, as studied by Carvalho, Oliva, Pereira & Rodriguez-Bernal [15], a
chemotaxis model with volume filling effect, introduced by Hillen & Painter [53], and the
Shigesada-Kawasaki-Teramoto cross-diffusion model for population dynamics, introduced
in |76].
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In Chapter 5 we turn to systems with nonlinear dynamic boundary conditions, i.e., prob-
lems of the form

Ou = 0;(a1(uw)du) + az(u)Vu + f(u), in Q, t>0,
Ou + b(-,u)dyu = divp(ci (, u)Vru) + co(+,u)Vru + g(+,u), on T, t>0, (5
u(0,-) = o, in Q.

Here 2 and the coeflicients are as above, and Vr and divy denote the surface gradient and
the surface divergence on the boundary I', respectively. Although they look more nonlinear
at a first glance, such boundary conditions are in fact less nonlinear than the ones in (4).
In fact, the autonomous version of their linearization may be cast in the abstract form (1)
by considering it as an evolution equation on the product space

{(v,or) € Ly(Q,RY) x W;_l/p(F,RN) : trou =wr },

where tro denotes the spatial trace on €2, and one may identify the unknown u with the
pair (u, trou). Consequently one can work in linear phase spaces even for initial regularities
close to WI?.

The system (5) models the behaviour of the quantities undergoing a reaction-diffusion-
convection process in a domain and on its boundary, coupled by the normal flux term
b(+,u)dyu. For b =1, in |43, Section 4| the effect of this coupling is interpreted as sending
concentration waves from I" into an infinitesimal layer near the boundary. Similar dynami-
cal boundary conditions arise in Cahn-Hilliard or Caginalp phase field models if one takes
into account the short-ranged interaction with walls [73|. They also arise in two phase flows
with soluble surfactant [14]. In the literature these boundary conditions are also called gen-
eralized Wentzell boundary conditions [43]. Semilinear versions of (5) with a single equation
were investigated by many researchers, for instance by Favini, J. A. Goldstein, G. R. Gold-
stein & Romanelli [38, 39, 40|, Sprekels & Wu [80] and Vazquez & Vitillaro [83]. Results on
quasilinear versions do not seem to exist. There are further results on quasilinear systems
with dynamic boundary conditions of reactive type, i.e., where tangential derivatives do
not occur. A dynamic theory for such problems was established by Escher [36], based on
Amann’s work. We refer to Constantin & Escher [20] and the references therein for more

recent developments.

We first investigate the linear inhomogeneous, nonautonomous version of (5). Under appro-
priate ellipticity conditions on the coefficients maximal L,, ,-regularity is shown in Theorem
5.2.1. This extends the linear results of [38, 39, 40, 83] to more general problems and to
the L,-case. Next we construct in Theorem 5.3.3 a compact local semiflow of solutions for
(5) in the linear phase space

M :={(v,or) € W5_2/p(Q,RN) X Wg_g/p(F,RN) : trou =wr},

using the linear theory and employing the ideas and results of [59] on abstract quasilinear
evolution equations in L, ,-spaces. Assuming an a priori Holder bound, we are able to show
global existence for a solution of (5) in Theorem 5.4.1. Here again maximal regularity,
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localization techniques in space and time and appropriate nonlinear estimates are the

crucial ingredients. In Section 5.5 we specialize to a semilinear version of (5),

Ou = Au+ f(u) in Q, t >0,
Oyu + Oyu = Aru + g(u) on T, t>0, (6)
u(0,-) = ugp in Q,

and investigate the long-time behaviour of solutions in terms of global attractors. Here Ar
denotes the Laplace-Beltrami operator on the boundary. Under appropriate dissipativity as-
sumptions on the reaction terms f and g we show that the system (6) possesses a Lyapunov
function, and that solutions are bounded in the energy space Wi (Q, RY) x W}H(T,RY).
Employing a Moser-Alikakos iteration procedure, we then deduce global existence. Another
a priori estimate on the equilibria of (6) yields the existence of a connected global attractor,
and that each solution converges to the set of equilibria (see Theorem 5.5.8).

For a single equation it is shown in [80] that each solution of (6) converges to an equilibrium
as time tends to infinity. Our dissipativity conditions differs from the one in [80], and is
rather comparable with the one in [15] for Robin boundary conditions. We may allow for
one component of a reaction term to have an unfavourable sign, provided the corresponding
component of the other reaction term compensates this appropriately in terms of positivity
of a Rayleigh quotient related to (6).

Finally, in the appendix we provide facts from interpolation theory, the theory of sectorial
operators, differential operators on a boundary and about functions spaces that are used
throughout the thesis. We give precise references and also prove some (rather simple)
results for which a reference does not seem to exist.

Notations. We write R} := {(z1,...,2,) € R" : 2, >0} forn € N, and Cy := {z € C :
Rez > 0}. If it holds a < C'b for nonnegative quantities a, b with a generic constant C' > 0
we write a < b. The Lebesgue, Sobolev and Slobodetskii spaces are denoted by Ly, Hj
and W, where p € [1,00] designates integrability and s € R designates differentiability.
For # € (0,1) and p € [1,00] we denote by (-,-)g, and [-,-]p the real and the complex
interpolation functor, respectively. The space of bounded linear operators between two
Banach spaces E, F' is denoted by B(E, F'), where B(E) := B(E, E). If F'is densely and
continuously embedded into E we write F < E, and if F, F coincide as sets and have
equivalent norms we write £ = F. The domain, the spectrum and the resolvent set of a
closed operator A on E are denoted by D(A), o(A) and p(A), respectively. For p € [1, o0]
and s = [s] + s, with [s] € Ny and s, € [0,1) we set Da(s,p) := D(A?%) if s € Ny and
Da(s,p) = {x € D(AF) . Ablz € (B, D(A))s, p} for s ¢ Np.
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Chapter 1

The Spaces L, and Weighted
Anisotropic Spaces

In this chapter we investigate the vector-valued L, ,-spaces and the corresponding weighted
anisotropic Sobolev-Slobodetskii spaces in a systematic way, where we restrict to spaces of
class H7 from the beginning (cf. Appendix A.3). We first consider the Sobolev-Slobodetskii
spaces over the half-line and a finite interval, and derive basic properties. Of particular
importance is here that the derivative with positive and negative sign admits a bounded
‘H°°-calculus on the L, ,-spaces over the half-line, respectively. Next we briefly review the
results from [71] and [42] on abstract maximal L, ,-regularity and operator-valued Fourier-
multipliers in L, ,. Then we turn to anisotropic spaces, and investigate the Newton polygon,
temporal and spatial traces and pointwise multipliers.

Throughout we use the facts on interpolation theory, sectorial operators and function spaces

reviewed in the appendix.

1.1 Basic Properties

Let (E,|-|g) be a complex Banach space of class H7 and let J = Ry = (0,00) or J = (0,7
for some T' > 0. Let further

pe(loo),  pe(/pl].
For u : J — E we denote by t!~#u the function ¢ — t'~#u(t) on J. We define
Lpu(J;E):={u:J — E : ' "ue Ly(J;E)},

which becomes a Banach space when equipped with the norm

1/p
[l L, W2y = 10 Ul (gm) = </Jtp(1_u)|“(t)|% dt) '

Note that ;1 = 1 corresponds to the unweighted case, L, 1 = L, and that the weight tp(1—1)
only has an effect at t = 0 and ¢ = oco. Thus, for T > 0,

L,(0,T;E) — L, ,(0,T; E), Lyu(0,T;E) — Ly(1,T;E), 7€ (0,T),
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but L,(Ry; E) € Ly ,(Ry; E) for p € (1/p,1). For k € Ny we define the corresponding
weighted Sobolev space

WE (L E) = HY (J;E) = {u € W, (];E) : w9 € L, (J;E), j€{0,...k}},

which becomes a Banach space when equipped with the norm

k 4 1/p
’u‘WZﬁM(J;E) = ‘U‘H;;,H(J;E) = (Z ’u(J)‘I[)/pyﬂ(J;E)) :
3=0

For s € Ry\N with s = [s]+ s., where [s] € Ny, s, € (0,1), we define weighted Slobodetskii
and Bessel potential spaces by real and complex interpolation, respectively, i.e.,

W, (J; E) = (WIEfL(J; E), W,Lf‘}jl(J; E))

5*7p,

Hy (T3 E) = [WEL(J; E), W (T B)]

54
By Proposition A.4.2 this definition is consistent with the unweighted case, i.e., we have
W, = W7, and Hy = Hj, for all s > 0. The general properties of real and complex
interpolation spaces (Appendix A.2) imply that for fixed p € (1,00) and u € (1/p, 1] one
has the scale

d d d
Woi, — Hp2 — Wy, — HpA 81> 89 > 83 > 84 > 0. (1.1.1)

In the sequel we will often use that
B(Wy,u(J3 E) N BW, i (J; E)) — BW;,,(J; E)) N B(H;,,(J; E)),

where k € Ny and s € (k,k + 1), which means that it suffices to consider the spaces of
integer order to show that on operator is continuous on the Wy - and Hy -scale .

Before continuing with definitions, we derive a first basic property of L, ,,.

Lemma 1.1.1. Let J = (0,T") be a finite or infinite interval, p € (1,00) and p € (1/p, 1].
Then

_ 1
Lyu(J:E) = Lywe(J:E), 1<¢< —
pu(Ji E) = Lgoc(J; E) Q<1_M+1/p
Consequently, for k € N it holds W;M(J; E) — Wk, .(J;E), and for u € Wzﬁu(J; E) the

1,loc
trace u)(0) € FE exists for j € {0,...,k — 1}.
Proof. For a finite interval J' = (0,7) C J, a function v € L, ,(J; E) and 1 < ¢ < p,
Holder’s inequality yields

T T T (- ?
lu@®)|Ldt = [ ¢t @R (1) ) dt < t ull, oy
0 0 0 L

where the integral on the right-hand side is bounded for % <l,ie,qg<

1
1—p+1/p° =
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In view of Lemma 1.1.1 it makes sense to define
Wk (J,B) = oHY (J; B) := {uc WF (J;E) : u9(0)=0, j€{0,...k —1}}
0 p,,u( ’ ) 0 p,y,( ) ) : u p“u( ) ) S u ( ) y J PRRRS)
for k € N, and for convenience we further set
oW, .(J;E) = oHp ,(J;E) := Ly u(J; E).

For a number s = [s] + s, € R4 \N as above we again define the corresponding fractional
order spaces by interpolation, i.e.,

Wi (T E) = (oWEL(J; B), oW T (T B))

Ssx,p’
0Hy ,(J3 E) = [oWEL(J; B), oWt (J; B)]

Ss

This yields as before a scale of function spaces

d d d
oWy, = oHy3, — oW, — oHpl,, §1 > 89 > 83 > 84 >0, (1.1.2)

and we further have that
oWy (J; E) = W) (J; E), oH,  (J;E) — Hy (J; E), s> 0.

The following fundamental Hardy inequalities are available for the spaces based on van-

ishing initial values.

Lemma 1.1.2. Let J = (0,T) be finite or infinite and p € (1,00). Then the following
holds true.

a) For a € (1/p,00) and a nonnegative function u € Ly joc(R; E) it holds

/0 N |t‘°‘ /0 () dr

b) For p € (1/p,1] and k € Ny it holds

p 1 0 l—au
U< /0 (2 (b)) dt.

[]tp(lﬂk)yu(t)|% dt < Cp |u(’“)\§p’u(J;E) if ue oWy, (J;E).

c) For € (1/p,1] and s > 0 it holds
[]tp(l—u—S)’u(t)\% dt < Cp s ‘u’zW;,M(J;E) if uée OW;M(J; E),
and further

/J O INu()fy dt < sl gy i w € 0Hy (T3 E).



14 The Spaces L,,,, and Weighted Anisotropic Spaces

Proof. The estimate in a) is shown as in [50, Theorem 330]. For b), in the sequel we
identify u € oWk (J; E) and its derivatives with their trivial extensions to R;. Then for
j € {1,....,k} we have ul)) € Ly 0([0,0); E), and, since u9=1(0) = 0, it holds

WD (1)) < / WO (r)|pdr,  teR,.
0

For a > 1/p it thus follows from a) that

/tpo‘]u(jl)(t)]%dt g/ (t a/ [u?) Ed7> dt
J

palu D
S<oz—1/p> /”‘ [ OF de.

Applying this inequality &k times, with oj = p+k —j > 1/p for j € {1,...,k}, we obtain

the asserted estimate in b). To prove c), we set for s > 0
Ly(J =) At B) i={u: J — B : 771 Sy € Ly(J; E)}.
It then follows from b) that
oWE (T3 E) = Ly(J, "0~ M dt; E), k€ N,. (1.1.3)
In [82, Theorem 1.18.5] the identity
(Lp(J, PR qt; B), L, (J,PI = *FD) gt B))p ), = Ly(J, P00 qr, B) - (1.1.4)

is shown, where k¥ € Ng and 6 € (0,1), and (1.1.4) remains true if one replaces (-,-)sp by
the complex interpolation functor [-,-]g. Hence ¢) follows from (1.1.3) by interpolation. M

We use the Hardy inequalities to show that the multiplication with the weight is an iso-
morphism to the unweighted spaces, provided one restricts to vanishing initial values. The

following result is shown in [71, Proposition 2.2| for s =0 and s = 1.

Lemma 1.1.3. Let J = (0,T) be finite or infinite, p € (1,00), u € (1/p,1] and s > 0.
Then the map ®,, given by

(@) (1) = 1 Pu(),

induces an isomorphism between oW, ,(J; E) and (W, (J; E), and between oH, (J; E)
and oH,(J; E). The inverse @;1 is given by (<I>,jlu)(t) =t~ (=1 (t).

Proof. By interpolation we only have to consider the case s = k € Ny.
(I) Clearly @, is an isomorphism in case k = 0. For k € N we take u € OW[’,fu(J; E) and
estimate for j € {1,...,k}, using Lemma 1.1.2,

E 0D <Z [ O S
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Thus ¢, maps 0W£M(J; E) continuously into WZf(J; E). Since u € C*~1(J; E), it holds for
j€A{0,..,k—1}

J J
)Pl S Yt I @) e S YT YT =0, N0,
=0 =0
and this shows (®,u)7)(0) = 0 for all j € {0,....,k — 1}.
(II) Now take u € ¢W}(J; E) and j € {1,...,k}. Then, again by Lemma 1.1.2,

(Tl Z / POt S WO,

which yields that <I>;1 maps OW;"’(J; E) continuously into Wzﬁ“(,]; E). Moreover, for j €
{0,...,k — 1} it holds
J
(@ W)V (O)]e S Dt @) S 71 sup ()]
i—0 7€(0,t)

t
< o1 /0 ‘u(]+1)(7)|EdT < tu—l/p|u(J+l)‘Lp(J;E)7

which converges to zero as t \, 0. Hence (@, Lu)@)(0) = 0 for all j € {0, ...,k — 1}. [ |
We next show basic density results for the weighted spaces.

Lemma 1.1.4. For a finite or infinite interval J = (0,T), p € (1,00), u € (1/p,1] and
s > 0 it holds

— d — d

Proof. By the general density results for interpolation spaces (Appendix A.2), we only
have to consider the case s = k € Ny. Throughout, let € > 0 be given.
(I) For u € OW;M(J; E) it holds ®,u € OWIf(J; E) by the preceding lemma. As in [82,
Theorems 2.9.1, 4.7.1| for the scalar-valued case, one sees that C°(J\{0}; F) is dense in
oWy (J; ) for k € No. Thus there is ¢ € C*(J\{0}; E) with [®yu — ¢lyrsp) < €
Therefore

lu— @ lwr ) S 1Puu — Ylwre) S €

which yields C2(7\{0}; B) <> oW} ,(J; E).

(IT) To show the second asserted density, take u € Wlf’; x(J; E) and choose ¢ € Cg° (J; E)
with @ng)(O) = u)(0) for j € {0,....,k —1}.! By Step I, due to u — 1y € OW;Z#(‘]; E), there
is 19 € C°(J; E) which is e-close to u — 11. Hence 11 + 1) is e-close to u. |

For a finite interval J = (0,7), a linear map € : Lijoc(J; E) — Lijoc(R4; E) is called
extension operator from J to Ry if

(Eu)|s = u, u € Lijoc(J; E),

'For instance, one may take 11 (t) = o(t) 25:0 %um(())tj, where ¢ € C°([0,00) with ¢ =1 on [0, 1]

and ¢ =0 on [2,00).
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i.e., if it is a right-inverse to the restriction of functions on Ry to J.

We construct extension operators for the weighted spaces. In the sequel they are frequently
employed to deduce properties of the weighted spaces on a finite interval from the half-
line case. For s € [0,2] we construct one for W ,(J; E) and oH, ,(J; E) whose norm is
independent of the length of J. We do not consider such an extension for s > 2, since this
case is not needed below for our later applications and the construction would be rather

cumbersome.

Lemma 1.1.5. Let J = (0,T") be a finite interval, p € (1,00), and u € (1/p,1]. Then the
following holds true.

a) Given k € N, there is an extension operator £; from J to Ry with
&y e BW, (J; ), W, ,(Ry; E))NB(H, ,(J; E), Hy ,(Ry; E)), s € [0, k].
b) There is an extension operator £) from J to Ry with
£) € BOW;u(J; E), oWy, (Ry; ) N BloHy ,(J; E) ol (R B)), s €[0,2],
whose operator norm is independent of T.

c) For the above operators it holds £;,E% € B(Loo(J; E), Lo (R4 ; E)), with operator
norms independent of T.

Proof. (I) For £;, let k € N be given. By [1, Theorem 5.19| there is an extension operator
& from R to R that is continuous from Wy (R ; E) to Wy (R; E) for all j € {0, ..., k}, that
satisfies

(Ev)D) =g je{o,.. Kk}, (1.1.5)
where &; is an extension operator that is continuous from Wi(Ry; E) to Wi(R; E) for

all i € {0,....,k — j}. Further £ and &; have the property that for T > 0 the function
S(j)v|(7f/(k+1) 0) is constructed using only U‘(o - We may thus define

Eu)(t) == E(u(—-+D))(~t+T), te (0,T+T/2(k+1)),  u€ Liw(0,T;E).

Then € is an extension operator from (0,T) to (0,(1 + m)T) Due to (1.1.5), and
since the weight only has an effect at ¢ = 0, for all j € {0,...,k} it is continuous from
W3,,(0,T; E) to Wi, (0,(1+ (k+1)) ; E). Choosing a cut-off function ¢ € C°(Ry) that

is equal to 1 on (0, (1 + (k+1)) ) and vanishes on ((1+ (k+1))T 00), we define

£y = k. (1.1.6)

Then it holds &5 € B(W},.(J; E), W .(Ry; E)) for j € {0, ..., k}, which carries over to the
fractional order spaces by interpolation. It follows from the representation of £ in [1] that
E7 admits an Ly,-estimate independent of T

(IT) To show b), for u € OVV;M(J; E) we define

u(t), te(0,7),

(59U)(t) = { 3(¢1_“u)(2T _ t)]l[T,QT] (t) _ 2(1/)1_MU)(3T _ 2t)]l[T,%T] (t), t>1T,



1.1 Basic Properties 17

where (1) = QT;%TZ As above, by interpolation we only have to show that £9 €

B(0W£M(J; E),OW]?;M(RJF;E)) for k = 0,1,2. For k € {1,2} we see that the function

&Y% is continuous on [0, 00). Further, in these cases it holds
(EJu)'(t) = =3('Hu)' (2T — ) p o () + 4(" ") (3T — 2000 spy(t), =T,
and for 7 € J we have
T2=(T — 1)
ey () =201 — p)— e
(10 () = 200 = )
For k = 2 we thus obtain that lims 7(E%u) (t) = «/(T'), and we infer from /(0) = 0 and

u(r)lpm™" S luD)|pr™ = [ (0)g =0,  7\0,

T Hu(r) + T2(“_1)(2T — T)l_“Tl_“u’(T). (1.1.7)

that (£9u)’ is continuous at t = 3T and t = 2T". Therefore (£9u)’ is continuous on [0, 00).
Moreover, in this case it holds for 7 € J that
T2(p—1)

)2
@) (r) = 4(1 — o) — oY (2(5_ T))l T = )
+4(1 - M)T2<M1)(2§:TWT#U’(T) + T2 (o1 — 7) Ry (7). (1.1.8)

(III) We estimate £u and its derivatives in the weighted norms. Using for j = 1,2 the
substitutions 7 = (j + 1)T — jt (i.e., t = (]Hjﬁ), we have
2 j}LivlT
0, P p
Eule, @m S lUlL,,m + Z}
j=

2T ; p(1—p)
j+)T —7)2T — 71 _
Shlf,, o+ 2 [ (BT i
=1

S’ ‘u’ip,u(JQE)’
which yields €9 € B(L, . (J; E), L, (R4 ; E)), with operator norm independent of T'. Sim-
ilarly, for u € OW[},M(J; E) we obtain, using (1.1.7) and Hardy’s inequality (Lemma 1.1.2),

U (! R (G + DT — jt) [ dt

' — /T\P(1—p) — )P
P TP (TP

2 T
0,,\/|P < |q/ P (
[(Eju) Lpu(RysE) ~ |u ‘Lp,H(J;E) + ;/0 Tr(1—p) 2T — )P

+ (27 — 7)p=m) 7p0=n) |u/(7')\%> dt

Moreover, for u € oW u(J; E) we use (1.1.8) and Hardy’s inequality to estimate

2 T
(€)' 1L,  yiey ST, i) T Z/o ((j + )T — rpt=m 2=
j=1

(T —71)% B 1 TP B )
(@ =g "+ G Ol
(T —T1)P

+ (2T — 7)pr

P (r) 4+ (27 — P O ()P

< 1P
~ |u Lpu(J;E)
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where the constants in these estimates are independent of 7. This shows that 89 €
B(0W£M(J; E), 0W£M(R+; E)) for k = 1,2, with operator norm independent of T, respec-
tively. Finally, it follows again from its representation that 59 admits an L..-estimate
independent of T'. |

We now investigate the realization of the derivative J; and its fractional powers on the
weighted spaces. The properties of this operator and its variants are fundamental for all
our further considerations. We first show that 0; generates the family of left translations.

Lemma 1.1.6. For p € (1,00), p € (1/p,1] and s > 0, the family of left translations
{AE}>0, given by
Afw)(r) =u(r+1), 720,

is well-defined and forms a strongly continuous semigroup of contractions on the spaces
WPS#(RJF; E) and H‘;7u(R+; E), respectively. Its generator is the derivative 0y, with domain
W;ﬁl(RJF; E) and Hg;l (R4; E), respectively.

Proof. (I) We write A, = AF for simplicity. For each t; > 0 the operator Ay, maps
L, (R4 E) into itself and is contractive, due to

Ml oy = [ T+ o)
< /0 (r + )" P ulr + o) fydr < Jull o .

This estimate also shows that A, maps Wéf M(R+; E), k € N, into itself and is contractive.
By interpolation, this carries over to W, ,(Ry; E) and Hy ,(Ry; E), for all s > 0. It is
further clear that {A;};>0 forms a semigroup of operators on these spaces. Due to Lemma
1.1.4, the set C2°([0,00); F) is dense in all of the spaces above, and the left translations
act strongly continuous on this set. By [35, Proposition 1.5.3|, this yields that the left
translations are strongly continuous on W (Ry; E) and Hy ,(Ry; E), respectively.

(II) Now let k € Ny. Denoting the generator of {A:} on W;u(RJF;E) by A, we have to
show that 9, = A. To see A C 0;, we take u € D(A). Then ulk) e L1 joc(Ry; E), and for
a,b € Ry with a < b it holds

bl 1 b+h 1 a+h
[ 360 m—u)ar = [T f [ ear
a b a

As h — 0, the left-hand side converges to u(b) — u*)(a) for almost all a,b € R.
The integrand on the right converges to Au®) in L, ,(Ry;E), and thus in Li(a,b; E).
Hence, the right-hand side converges to fab Au®) () dr. This shows u € Wfifgi(RJF;E),
with u* 1) = Au®). Thus D(A) € WFIH(Ry; E) and 9| p(a) = A.

The reverse inclusion now follows from abstract arguments. Since A generates a strongly
continuous semigroup of contractions, it follows from the Hille-Yosida theorem, 35, The-
orem I1.3.5], that 1 — A is invertible. It is further easy to see that 1 — 9 is injective on
WH(Ry; E). From [35, IV.1.21(5)] we thus obtain that 1 — 9, = 1 — A, which yields
o0y = A.
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(III) For s > 0 we concentrate on the W-case, the H-case requires literally the same
arguments. By [35, Proposition 11.2.3] we have that the generator of the left translations
on Wy ,(Ry; E) is the derivative d; as well, with domain

D(0y) ={ue W, ,(Ry; E) : due Wy (Ry; E)}.

It follows from interpolation that W F!(Ry; E) C D(8;). For the converse inclusion, if
u, 0w € W (Ry; E) then (1 — 0p)u € W, ,(Ry; E). Since 1 is contained in the resolvent
set of ¢, Step II and interpolation yield u € W (Ry; E). Therefore 8; with D(8;) =
W§721(R+; E) is the generator of the left translations also in the fractional order case. W

Using a transference principle, we show that the negative generator of the left translations,
—0y, admits a bounded H>-calculus on L, ,(Ry; E). As shown in [71], the realization of
0 with domain on{ 4Ry E) also admits a bounded H>-calculus, although —0; does not
generate a semigroup on L, ,(Ry; E). For a definition and properties of the H*-calculus
of a sectorial operator we refer to Appendix A.3.

Theorem 1.1.7. 2 Let p € (1,00) and p € (1/p,1]. Then on L, ,(Ry; E) the operators
Oy, with domain oW, ,(Ry; E),

and
— Ok, with domain W;H(R_s_; E),

admit a bounded H*-calculus with H>-angle 7 /2, respectively. In particular, both oper-

ators are sectorial of angle m /2.

Proof. (I) The assertion on 9 is proved in [71, Theorem 4.5].

(II) For the operator —d; we employ the vector-valued transference principle, which is due
to Hieber and Priiss [52]. To this end we introduce vector-valued extensions of operators.
Let (€2, 7) be a measure space, and let S be a bounded, positive operator on L,(€,v).? Let
further u; € Ly(£,v) be stepfunctions and z; € E, i = 1,..., N, where N € N. For simple

functions u of the form

N
U= Zuixi, (1.1.9)
i=1

the vector-valued extension of S, denoted by S, is defined as

N
SPu() =) (Sus) ().
i=1
Due to [62, Lemma 10.14], the operator S* extends uniquely to the vector-valued space
Ly(Q,v; E), such that |SZ] 5, .0:) = [1S1B(L, @)
(III) We consider on L, ,(Ry; E) = Ly(Ry,t?171 dt; E) the left translation AP, ¢ > 0.
Obviously AR is a positive operator, and for a simple function u of type (1.1.9) it holds

APy = (AP,

2Here it is for the first time essential that E is of class H7 .
3The operator S is called positive if it leaves the positive cone {u € L,(Q,v): u > 0 v-a.e.} invariant.
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From the density of the simple functions in L, (R, ,t?0~#) dt; E) it follows that Af is the
vector-valued extension of Af, i.e.

AF = (A®)E.

Due to Lemma 1.1.6, the family {AF},>0 forms a strongly continuous semigroup of positive
contractions on Lp(RjL,tp(l*“) dt), and 0O is the generator of its vector-valued extension
{AF}i>0 to Ly(Ry, tP(=H): E). Moreover, d; is injective on L,(Ry, =1 E). Now [52,
Theorem 6| yields that —0; admits a bounded H>-calculus with angle equal to 7/2. W

The invertibility of 1 — 9, and 14 9, yields a useful characterization of the weighted spaces.

Lemma 1.1.8. For a finite or infinite interval J = (0,T) and s = [s] + s, with [s] € Ny,
€ [0,1), it holds

W]f,u<‘]; E) — {u c [fL( ) . u([s}) c W;L(J, E’)}7 (1110)
oW (T3 B) = {u € oWL(J: E) = ol € qWp(J; B}, (L.L11)

where the spaces on the right-hand side are equipped with their canonical norms.* The
norm equivalence constants in (1.1.11) does not depend on the length of J. All these
assertions remain true if one replaces the W-spaces by the H-spaces.

Proof. We only consider the case of W-spaces.
(I) It follows from interpolation that

oF € B(W;,(J: B), W, (J; B)) 0 B(oW;,, (J; E), oWy, (J; E)),

which shows the embeddings from the left to the right in (1.1.10) and (1.1.11), with em-
bedding constants independent of the length of J.

(II) For the converse embedding we first consider the case J = Ry. Since —0; is sectorial
we have that 1 — 0, is invertible. Further, interpolation yields that the operator (1 — 8t)[5]
is an isomorphism Wy ,(Ry; E) — W% (Ry; E). We may therefore estimate

[ulwy, @i S 1= 00 ulwgs, e S Julyia gy + 10 s ),

and thus obtain (1.1.10). Replacing 1 — 9, by 1+ 0y, which is invertible since 0; is sectorial,
we obtain (1.1.11) in the same way.

(III) Now suppose that J is a finite interval. Using the extension operator £; from Lemma
1.1.5 and (1.1.10) for the half-line, we obtain

[ulwg, (7:m) S 1Erulyyid @, gy + |(Eru)™ ED s ysm) S S byt gy 10 Dl s 1.8y,

which shows (1.1.10). Here, the latter inequality follows from the representation (1.1.6) of
Ey. For (1.1.11), note that the operator 1 + 0; is also for a finite interval an isomorphism
OWpl, W E) — Lyu(J;E). In fact, it is obviously injective. Moreover, the solution of
v = —u+f withu(0) =0isfor f € L, ,(Ry; E) given by u = 1|7, where u € OW;M(RJF; E)

*For instance, in (1.1.10) the canonical norm on the right-hand side is (|ul?, . (JE)'HU |P " E)) p
Py ’
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satisfies o' = —?74—]?, and fdenotes the trivial extension of f to R,.. This shows surjectivity,
and further that the operator norm of (14 9;)~! does not depend on the length of .J. Now
the same arguments as in Step II show (1.1.11) for finite J. [ |

We next show general interpolation properties of the weighted spaces.

Lemma 1.1.9. Let J = (0,T) be finite or infinite, p € (1,00), p € (1/p,1], 0 < 51 < 52
and 0 € (0,1). Then for s = (1 — 0)s1 + 0s2 it holds

(H33,(J: B), H33,(J: )y = Hj , (J: ),

and if s ¢ N then

(H,L (T3 E), Hy2 (T, E))ep =W, (J; E). (1.1.12)

Moreover, for s1, s2,s ¢ Ny it holds
(Wi (J; B), W2 (J; E)lg = Wy (J; E),
(W (Js E), Wi (L E))op = Wy (] E).
IfF KA E is a further Banach space of class HT, then it holds for T > 0 and 6 € (0, 1)
(Hy, (R E), Hy (R F))op = Hy (R (E, Fap),

[Hy (R E), Hy ,(Ry; F)lg = H ,(Ry5 [E, Fy).

All these assertions remain true if one replaces the W- and H-spaces by (W - and oH-
spaces, respectively. Restricting to ss < 2 in this case, the norm equivalence constants are
independent of the underlying interval J.

Proof. Throughout this proof we set
A:=1-0, X :=L,,(Ry; E).

(I) We first treat the case J = R,. Considering A as an operator on X, Theorem 1.1.7,
(A.3.1) and (A.3.2) yield that for a € (0,1) it holds D(A%) = Hy', (R; E). Using this,
together with the fact that D(A¥) = H;M(RJF; E) for k € Ny and Lemma 1.1.8, for a > 1
we also obtain that
D(A%) = {u e D(AF) . Alely e p(ae~lely)
={ue H(Ry; E) : ul* e HY, (R} E)} = HS (R4 E).

It therefore follows from (A.3.1) that
[Hp (R ), HyL (Rys E)lg = [D(A™), D(A*)]p = D(A%) = H (R E),

which shows the first asserted equality.
(II) We next show (1.1.12). The operator A®! induces an isomorphism

(Hp o (J5 B), HpZ (5 E))op = (D(A™), D(A™))gp — (X, D(AT))g,p,

e s
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where 7 = s9 — s1. It follows from reiteration that

(X, D(AT))p,p = (D(AT), D(AT)) g,

T0—[7]

1] € (0,1). Further, the operator Al”) induces an isomorphism

with o =

(D(A), D(A™))gpp = (X, D(A™1)) 5 = (X, D(A)) 57— (1) p = WeT (R4 ),

where o (7 — [7]) = 70 — [7] € (0,1). Now the operator A~(1*[) induces an isomorphism

WO (R y; B) — W21 (R E) = Wy, (Ry; B),

provided s ¢ N.

(III) For the third equality we take an integer k > s9, and use the assumption s, s1, s2 ¢ Ny,
(1.1.12), A.2 h), the reflexivity of X and D(A*) and again (1.1.12), to obtain

(Wil (Rys B), W2 (Ry; E)lg = [(X, D(A"))g, sk (X, D(A®))g, 1k )0
= (X, D(A")) k., = Wi (R4 E).

PR

Similar arguments yield the fourth asserted equality, i.e.,

(W;}M(RJH E)a W;,Z(R+; E))@,p = ((X’ D(Ak))s1/k,pv (X7 D(Ak))sg/k,p)e,p
- (X7 D(Ak))s/k,p = W;,M(R-F; E)

(IV) Now let F <, E be a further Banach space of class H7 and 7 > 0. Then the operator

A" is an isomorphism
(H;’“(R% E), H;,H(R% F))G,p - (Lan«(R+; E), LP,M(RJr; F))&p-

Due to [82, Theorem 1.18.4], the latter space equals Ly, ,,(Ry;(E, F)gp), and A™7 maps
this space isomorphically to H} ,(Ry; (E, F)g ). The corresponding assertion on complex
interpolation is shown in the same way.

(V) Replacing the operator A = 1 — 0y by Ag := 1 + 04, the same arguments as above
show the asserted equalities for the ¢W- and the ¢ H-spaces. This finishes the case J = R;..
The case of a finite interval can be deduced from the half-line case, using the extension
operators £y and 59 from Lemma 1.1.5. For instance, one decomposes the identity into &
and the restriction Ry to J and obtains

luligsy, (i), m32,(mye < €70 Ry ) B2, (R EYe S €70, @1E) S Ul (:E)-

The converse embedding is derived in the same way.> The dependence of the norm equiv-
alence constants on the length of J carries over from the properties of the extension oper-
ators. Note that here it is important that the extension operators act on a whole scale of
W- and H-spaces. |

The following result shows that the good properties of 1 — 0y and 1 + J; carry over to the
whole W- and H-scale.

5This is nothing but the retraction-coretraction method from [82, Section 1.2.4]
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Proposition 1.1.10. Let p € (1,00), p € (1/p,1], s >0, a € (0,2), and w > 0. Then the

operators

(w—08)" on Hy (Ry;E), with domain H} *(Ry; E),

(w—=0r)* on W, (Ry; E), with domain W;;'E(X(R+; E), s, 8+ a ¢ Ny,
(w+0)* on oH, ,(Ry; E), with domain (H; % (Ry; E),

(w+ )™ on oW, (R E), with domain OW;tO‘(RJr; E), s, 8+ a ¢ Ny,

are invertible and admit a bounded H>-calculus with H*-angle ar /2, respectively.

Proof. (I) We first consider the case s = 0. Theorem 1.1.7 and [24, Proposition 2.11] imply
that the realization of w — d; on Ly ,(Ry; E) with domain W, ,(Ry; E) admits a bounded
H>-calculus with H*>°-angle equal to 7/2. Lemma A.3.5 yields that also (w — 9;)* admits
a bounded H*°-calculus, with H>-angle ar/2, provided o € (0,2). The same arguments
as in Step I of the proof of Lemma 1.1.9 further show that

D((w—8)%) = Hy ,(Ry; E).

(II) Since w — 0 is invertible, also (w — 0)® is invertible, for all s > 0. It follows
from the definition of the weighted Sobolev spaces that (w — 0;)® is an isomorphism
H;f;s(RJr;E) — H}’;’#(RJF;E) for k € Np, and by interpolation this carries over to an
isomorphism HJ '*(Ry; E) — HJ ,(Ry; E) for all 7 > 0. Since (w — 9;)* and (w — 9;)*
commute, it follows from [24, Proposition 2.11| that (w — 9;)® has a bounded H>-
calculus on Hy ,(Ry; E), still with angle not larger than ar/2, and that its domain equals
Hy (R E).

(IIT) Now let s,s + a ¢ Ny. It then follows from interpolation of the H-case and Lemma
1.1.9 that (w— ;) has a bounded H*-calculus on Wy ,(Ry; E) with H*-angle am/2, and
that its domain is W;’ta (Ry; E). The same arguments as above show the assertions on the
operator w + ;. [ ]

We consider the temporal trace on the W - spaces, and characterizations of the (W -
spaces in terms of its kernel. These results are mainly due to Grisvard [44]. Observe that the
limit number for the existence of a trace is s = 1 —pu+1/p. Therefore, if p runs through the
interval (1/p, 1] this limit number runs through the interval [1/p,1). Of course, for p =1
the limit number s = 1/p for the unweighted case is recovered.

Proposition 1.1.11. Let J = (0,T) be finite or infinite, p € (1,00) and p € (1/p,1].
Then the following holds true.

a) For0<s<1—pu+1/p it holds C*(J\{0}; E) <, W; ,(J; E), and further

Wy (J;E) = oW, (J; E).

5We do not treat the limit cases s = k+1 — pu+ 1/p, k € Ny, since they are quite complicated and not
important for our purposes. For short discussions we refer to [44, Remarque 4.2] and [82, Remark 3.6.3/2].
We also do not consider the corresponding characterizations of the o Hp ,-spaces. They should be correct,
but it seems that their proofs require a greater effort.



24 The Spaces L,,,, and Weighted Anisotropic Spaces

b) Fork+1—pu+1/p<s<k+1+(1—p+1/p) with k € Ny it holds
s . k(7.
W2 (J; B) — BUCH(J; E), (1.1.13)

where here one may replace W , by H, ,, and moreover
I

7/J/,

oW (JE) = {ue W;, (J;E) : W9(0)=0, je{0,..k}}, (1.1.14)
where the latter space is considered as a closed subspace of Wy ,(J; E).

The embedding constants for
oW, ,(J; E) = BUC*(J;E),  oH; ,(J; E) — BUC*(J;E)
where s € [0,2] and k € Ny are as in b), are independent of J, respectively.

Proof. The results in [44] for the W, (Ry; E)-spaces are obtained in the scalar-valued
case, . = C. An inspection of the proofs there shows that, besides basic facts on vector-
valued spaces, they only make use of interpolation theory and the Lemmas 1.1.4 and 1.1.6.
Thus the results of [44] carry over to a general E. Moreover, the case of a finite interval is
obtained from the half-line case by extension and restriction, as in Step IV of the proof of
Lemma 1.1.9. The fact that one may replace W by H as asserted follows from (1.1.1) and
(1.1.2).

Assertion a) is shown in [44, Théoréme 2.1, Théoréme 4.1]. The embedding in b) is for k = 0
proved in [44, Théoréme 5.2|, and the general case k € N is an immediate consequence. For
s <1, (1.1.14) is shown in [44, Théoréme 4.1]. For s > 1, note that by definition it holds
oWy u(Ry E) — W5 (Ry; E).

For the converse embedding in (1.1.14), take u € W, ,(Ry; E) with u)(0) = 0 for j €
{0, ..., k}. Assume first that [s] = k. Then u € OWIL?L(R+;E). From u(*D(0) =0, 1 — p +
1/p <s—|s], (1.1.14) for s — [s] < 1 and with Lemma 1.1.8 we infer

[s]
‘u|0W5’H(R+;E) S |U|0W1£?L(R+;E) + |U |()W;L[S](]R+;E)
[s]
S byl ey F 1w sy S g @am)-
Now assume that [s] = k + 1. Then again u € OWIL?L(R+; E). Since s — [s] <1 —pu+1/p,

it follows from a) that u(ls) W{;;[S] (Ry; EB) = OW;,;[S] (Ry; E), and (1.1.14) follows as
above from Lemma 1.1.8. [ |

We next consider embeddings of Sobolev type into weighted and unweighted spaces.

Proposition 1.1.12. Let J = (0,T) be a finite interval, p € (1,00), u € (1/p,1],s >7 >0
and q € (p,00). Then

s . T . . p(l *:LLJF 1/]9)
WinlJiB) = Wil (JiE) i 5= (1= pt1/p) > 7= 2 52, (1115)

and moreover it holds

Wy (J; B) — W] (J; E) if s—(1—p+1/p)>1—1/q. (1.1.16)
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These embeddings remain true if one replaces the W-spaces by the H-, the ¢W- and the
oH -spaces, respectively. In two latter cases, restricting to s € [0,2], for given Ty > 0 the
embeddings hold with a uniform constant for all 0 < T < T.

Proof. Throughout this proof, let T > 0 be given. Since the inequality signs in (1.1.15)
and (1.1.16) are strict, we may assume that s ¢ N. Again we only have to consider the
W-case due to (1.1.1) and (1.1.2).

(I) We show (1.1.15) for 7 = 0. For s > 1 — pu+ 1/p, the condition is satisfied for all
q € (p, ), and, in fact, Proposition 1.1.11 shows

Wy (3 E) = Loo(J; E) = Lo u(J; E), g € (p,0),

with the asserted behaviour of the embedding constant in the ¢W-case. For s <1—p+1/p
we take n > 1 — p+ 1/p and use again that W}, (J; E) — L, ,(J; E) for r € (p,0), A.2
d), Lemma 1.1.9 and [82, Theorem 1.18.5], to obtain

W;iu(J; E) = (LP7N(J§ E)’ W;?,,u(J; E))s/n,p — (LP7M(J§ E)’ Lr,,u(J; E))s/n,p = Lq,u(J; E)a

which is valid for % = % + si—" Letting r /" oo and n \, 1 — pu — 1/p, we obtain
(1.1.15) for g as asserted. In the ¢W-case, the embedding constant is uniform in 7' < T
for s € [0, 2].

(II) To prove (1.1.15) for 7 > 0, we start with

W;,u(‘]; E) = (W;I;,u(‘]a E)7an,u(‘]7 E))%’pa

which holds by Lemma 1.1.9 for noninteger k < s < 7. Let k € Ny. Using (1.1.15) with
7 =0, we obtain

K . k .
Wp,,u(JuE)‘_)Wq“u(JuE% "£>k+(1_p/Q)(1_:u’+1/p)7

. k+1/ 7.
W (L E) =W (L E),  n>(k+1)+0—-p/g)(1—p+1/p).
Hence for those ¢, x,n it holds

k, S—K
= Wy " " (J; B),

q

Wil B) = (Wo(J3 E), WollH(J5 B)) sz

using that (-, -)g,p < (-, ")o,q for 6 € (0,1) and g € (p, 00). Letting r \, k+(1—2)(1—p+1/p)
and n N\ k+1+(1— %)(1 — o+ 1/p) we obtain (1.1.15) for 7 and ¢ as asserted. For ¢W-
spaces, the dependence on T for s € [0, 2] carries over from Lemma 1.1.9 and (1.1.15) with
T=0.

(III) To show (1.1.16), we again first treat the case 7 = 0. As above, for s >1—pu+1/p
the embedding is deduced from Proposition 1.1.11. For s <1 — pu+ 1/p we use

H (;E) = Lo(J; E),  n>1—p+1/p,

and further that
Ly, (J;E) — L.(J; E), l—pu+1/p<1/r
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which follows from Lemma 1.1.1. For 0 < o < 7, Lemma 1.1.9 and A.2 d) and n) thus yield

Hy (J;E) — [Ly(J; E), Leo(J; E)|e = L_r__(J; E).

4
n 1-0/n

Lettingn \\ 1—p+1/p, v / = +1/ , and employing W (J; E) — Hy (J; E) for s > o
we obtain (1.1.16). Replacing W by oW, the embedding constant is uniform in 7.

(IV) The case T > 0 may now be obtained from the case 7 = 0 as in Step II. We omit the
details. |

We derive an intrinsic norm for the W-spaces, on a finite and an infinite interval.

Proposition 1.1.13. Let J = (0,7) with T € (0,00], p € (1,00), u € (1/p,1], and
€ (0,1). Then we have

ulws (1) ~ ulL, . :5) + [Wws , (7:8),

where

[wlyy; i) / / Pl ’ut_7)1(+3pEd dt. (1.1.17)

In case J = R4, the semi-norm [u] W, (J;B) may be replaced by

t p
Wi B

Proof. (I) For J = R, it follows immediately from Lemma 1.1.6 and A.2 k) that

([l

|U’W,, u(

By~ |ulr, (1B T HUHW;M(J;E)a

and a simple substitution shows that [[u]lws (;5) may be replaced by [ulw:s (s:p)-
(I) Now let J = (0,T") be finite. We deduce this case from the half-line case by localization
and extension. We fix a smooth partition of unity {11,9} for [0, 7], such that 1 (¢t) = 0
for ¢ > %T and 1y(t) = 0 for t < % The multiplication with ;, i = 1,2, is continuous
on Ly ,(J; E) and WI}’#(J; E), respectively, hence it is continuous on W ,(J; E) by A.2 i).
This implies

lulws ,(:p) S [rulws | im) + [Y2ulws (8-

(IT) Since the restriction to J is continuous on the whole W, -scale, we may estimate

|¢1U|WSH(J B) S |7/)1u|WSH(]R+;E) S |¢1U|LP,H(R+;E) + WlU]W;u(RﬁE),

identifying tju with its trivial extension to R;. We split the outer t-integral in

[hrulfy (R,.p) at t = T into two summands. For the first summand we estimate, using
Dop )

the mean value theorem for 1,

/ / 1o o Oult) = i (P

(t — 7)1+sp

JE) / / +pr(1= “|u )Pt — )p(l )=l qrdr
,u

[u] pu(JE + ‘U|LP# JE)

AN



1.1 Basic Properties 27

For the second summand we have

r /pwwu ut) = e (P

(t — 7)1+sp

_ [ 0 = ()P P
= /0 Wu(r)|P (/T mdt dr ’u‘Lp,H(J;E)’

since the integral in brackets is bounded independent of 7 € (0, 27).
(III) It follows from A.2 d) that W (J; E) — W (J; E), from which we obtain

[aulws (1im) S [Vaulwsrp) S [W2ulr,p) + [V2ulws:m),

where [~]W§( 7;E) denotes the intrinsic semi-norm in the unweighted case ( cf. (A.4.2)), i.e

1/} p
[oul}, Ws(J3E) — / / v |t—7-|1+(sp) (T)Edet.

We split the inner 7-integral of [wgu]{j‘,s (g AT =1 into two summands. For the first
P k)

summand we have

/ / Ol ~ ) o

S o lut) — ()P
/T/g/T/g 2 sy At

PO 4 g+ ol
T/3 T/3 ()l — T)ltsp TS Wwy (i) T 1L, (38)

For the second summand we estimate in a similar fashion

/ / |1)2(t) T—t)lJr(SP) u(T)] dr dt
ot @) P
/T/g/m D)l (t) ( ol

2(t) — ha(7) P
/T/3 /T/3 (1 —t)l+sp dtdr S [u ]W9 w(J3E) +|U|LW (J;E)

These estimates show ‘U‘W;,M(J;E) S lulp, ,(E) + [U]W;’#(J;E).

(IV) For the converse estimate, note that it trivially holds

|5JU t) — Equlz)l

where £; is the extension operator from Lemma 1.1.5. We thus obtain

\U|LM (J;E) T [u } s W(JiE) < ngU’WG RE) S ’u’W;#(J;E)v
which finishes the proof. |

We next prove Poincaré’s inequality in the weighted spaces. It will be used in later chapters

to obtain smallness of Lipschitz constants by choosing short time intervals.
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Lemma 1.1.14. Let J = (0,T) be finite, p € (1,00), and p € (1/p,1]. Then it holds
lulr, m) ST L, (0m)  if uwe oW, ,(J;E),
and consequently, for s € [0, 1),
lulows (5 + [eloms ey ST lulwy gy i w € oWy, (J5 B).

Proof. For t € J we estimate, using Holder’s inequality,

T P
p(1=p) (/ S—(l—u)sl—u|ul(3)|Ed3)
0

< gpl=w) pU=p Q=p)p/pf /|

P u(t)

IN

PIJ' JE)

Now the first asserted inequality follows after integration over J. For s € [0, 1) the inter-
polation inequality A.2 j) yields

lulows , (7:8) + |uloms ,(:m) S |U|OW1 AL |Lpu (J:E) u€ oW, ,(J;E),

from which the second asserted inequality follows. |

Remark 1.1.15. In applications one deals with superposition and multiplication operators
on the spaces T/V;,f’#(()7 T; E) and OW;’#(O, T; E), equipped with the interpolation norm from
their definition in the beginning of this section. Of course, one would rather like to work
with the intrinsic norms derived in Proposition 1.1.13, since these much more convenient
to work with. At the same time one often assumes that 7" is small, for instance to make
lower order terms small, with Poincaré’s inequality (see Lemma 1.3.13). Such a scenario
arises, for instance, in the proofs of our main Theorems 2.1.4 and 3.1.4 on linear problems,
and also in the proof of Proposition 4.3.2 on local existence for nonlinear problems.

In Proposition 1.1.13 we have shown the equivalence of the interpolation norm and the
intrinsic norm for W}‘;#(O, T; E) using the extension operator £; from Lemma 1.1.5. Thus
the equivalence constants for these norms depend on T', and typically become large as T
becomes small. This might have the effect that lower order terms, for instance, are not
small anymore for small T" after having used the intrinsic norm. The situation is the same
if one works in oW, (0,7 E) equipped with the intrinsic norm.

To overcome this obstacle for short time intervals, in a situation as above one has to work in
oWy M(O, T; F) equipped with the interpolation norm from the beginning. Via the extension
operator 59 and restriction, this space is T-independently connected to oW M(RJF; E). In
this way one can perform the required estimates with the intrinsic norms (1.1.17) or (1.1.18)
on oWy M(RJ,_; E), without receiving unpleasant T-dependent factors. For examples we refer
to the proofs of the Lemmas 1.3.22, 1.3.23 and 4.2.3, for instance. |

1.2 Abstract Properties

1.2.1 Abstract Maximal L, ,-Regularity

We briefly review the results of Priiss & Simonett [71] on abstract maximal L,, ,,-regularity,

and add a few remarks on finite intervals.
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Let A be a closed and densely defined operator on a Banach space F with domain D(A).
Endowed with its graph norm, D(A) becomes a Banach space. Let further p € (1, 00) and
p € (1/p,1]. For a finite or infinite interval J = (0,7") we set

Eo,u(J) :== Ly u(J; E), Eupu(J) = Wpl#(.]; E)N Ly, (J; D(A)).

Due to Lemma 1.1.1, functions in E, ,(J) have a well-defined trace in E at t = 0. We say
that A enjoys maximal L, ,-regularity on J,

Ae MR, (J; E),
if for each f € Eg,(J) there is a unique solution u € E, ,(J) of
u 4+ Au= f(t), ae. telJ, u(0) = 0. (1.2.1)

In other words, it holds A € MR, ,(J; E) if and only if the operator d; + A on Eq ,(J),
with domain

0Eupu(J) = OWI}M(J; E)N Ly, (J; D(A)),

is invertible. For convenience we further set
MRy (J; E) = MRp1(J; E)

in the unweighted case. If A € MR, ,,(J; E), then the open mapping theorem implies that
the solution u of (1.2.1) depends continuously on the right-hand side f, i.e., there is a
constant C' > 0, which does not depend on f, such that

ulk, (1) < C1flEg () (1.2.2)

The following lemma shows that for negative generators of analytic semigroups, maximal
L, ,-regularity is only a matter of regularity, since the solution of (1.2.1) is given by the

convolution with the semigroup.

Lemma 1.2.1. Let J = (0,T) be finite or infinite, p € (1,00), p € (1/p, 1], and let —A be
the generator of an analytic semigroup on E. If u € E,, ,(J) solves (1.2.1) for f € Eg ,(J),
then u is given by

¢
u(t) = / e =941 (s) ds, teld
0
In particular, E, ,(J)-solutions of (1.2.1) are unique.

Proof. By Lemma 1.1.1 it holds L, ,(J; E) < L1 1oc(J; E), and thus the assertion follows
immediately from |30, Theorem 2.1]. [ |

The following fundamental result due to [71] shows that the maximal regularity properties
of A on the half-line are independent of the weight.

Theorem 1.2.2. For p € (1,00) and p € (1/p,1] it holds A € MR, ,(R4; E) if and only
if A € MR,(Ry; E). Moreover, if A € MR,(Jo; E) for some finite or infinite interval
Jo = (0,Tp) then A € MR, ,,(J; E) for all u € (1/p,1] and all finite intervals J = (0,T)
as well, and if A € MR,(Ry; E) then the constant in (1.2.2) is independent of .J.
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Proof. (I) The independence of the class MR, ,,(Ry; E) of p € (1/p,1] is shown in |71,
Theorem 2.4].

(IT) Assume that A € MR, (Jo; E). It then follows from [30, Corollary 5.3] that there
is w > 0 such that A —w € MR,(Ry; E), and thus A —w € MR, ,(R; E) for all
w € (1/p, 1] by the result of [71]. It can now be shown as in the proof of |30, Theorem 3.3]
that A € MR, ,(J; E) for each finite interval J = (0, 7).

(IIT) Finally, suppose that A € MR,(Ry; E), and let J be finite. For f € L, ,(J; E) a
solution u € K, ,,(J) of

u' + Au= f(t), ae tecl u(0) =0,

is given by u = u|;, where u is the solution of the above problem on Ry with trivially
extended right-hand side f. Since — A is the generator of an analytic Cp-semigroup on F by
[30, Corollary 4.2], it follows from Lemma 1.2.1 that this is the only solution. This yields
the estimate

lulg, (7 < [Tlg, &) < C|flg, @) = C | flEo,,. (1)

where C' is the maximal regularity constant of A on R, , which is independent of J. |

We describe some consequences of Theorem 1.2.2 for maximal L, ,-regularity.

If F is of class H7T, then well known sufficient conditions for maximal L,-regularity are
also available for maximal L, ,-regularity, such as that A admits a bounded H*°-calculus
or admits bounded imaginary powers, with angles strictly smaller than 7/2, respectively.
Moreover, combining Theorem 1.2.2 with a result of Weis [85, Theorem 4.2], it holds
Ae MR, ,(Ry; E) if and only if A is R-sectorial.

From [30, Theorem 7.1] it follows that maximal L, ,-regularity is independent of the
exponent p € (1,00), and together with [30, Corollary 4.2] we further obtain that if
A e MR, ,(Ry; E), then —A is the generator of an exponentially stable analytic Co-

semigroup on E.

Now let us consider (1.2.1) with nontrivial initial values, i.e.,
o+ Au=f(t), ae tel u(0) = wp. (1.2.3)

The following result is proved in |71, Theorem 3.2| for J = R,. The case of finite interval
may be deduced from this as in the proof of Theorem 1.2.2.

Theorem 1.2.3. Let p € (1,00), u € (1/p,1], and let J = (0,T) be finite or infinite. If
A e MR,(R4; E) then (1.2.3) has a unique solution u € E,, ,,(J) if and only if f € Eq ,(J)
and ug € Da(p — 1/p,p).” There is a constant C, which is independent of .J, f, and uy,
such that

luli, .7y < O flgo () + [0l DaGu—1/pp))-

"Recall the notation Da(p—1/p,p) = (F, D(A))ufl/p,p-
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1.2.2 Operator-Valued Fourier Multipliers

We now turn our attention to operator-valued Fourier multipliers on L, ,. For Banach
spaces I, F' and an operator-valued function m € L jo.(R; B(E, F')) one obtains an oper-

ator T, by setting
Tpnf :=F 'mFf,  feF 'COR;E),

where F denotes the Fourier transform on R. It is not hard to show that T,, is densely
defined on L, ,,(Ry; E). Now m is called a Fourier-multiplier on Ly, ,,, if the operator T},
admits an estimate

|Tmf|Lp,H(]R+;F) S ’f|Lp,H(]R+;E)7 S f—lCé)O(R’ E)v

i.e., if it extends to a continuous operator from L, ,(Ry; E) to Ly ,(R4; F).
The following result on L, ,-multipliers is available. It is due to Girardi and Weis [42], and

is an extension of Weis’ multiplier theorem [85, Theorem 3.4] in the unweighted case.

Theorem 1.2.4. Let p € (1,00), pn € (1/p, 1], and let E and F' be Banach spaces of class
HT. Assume that m € C*(R\{0}; B(E, F)) satisfies

R{m(\),A\m'(\) : X # 0} < k.
Then T,, € B(LP,M(RJF; E), Ly, (Ry; F)), with norm not exceeding C(p, u, X, Y )k. |

We remark that a corresponding theorem holds true in arbitrary dimensions, and for more

general weights from the class A,,.

Under more restrictive assumptions on m we can give a short proof of Theorem 1.2.4, using
a result of Kreé [60] which is also the basis for the theorem of [42].

Proposition 1.2.5. Under the assumptions of Theorem 1.2.4, let m satisfy in addition
m € C*(R\{0}; B(E, F)), such that

M MlsEr SIAT2 A#0.
Then T, extends to a continuous operator from Ly ,(R4; E) to Ly ,(Ri; F).

Proof. It follows from the operator-valued multiplier theorem in the unweighted case that
T, extends to a bounded operator from L,(Ry; E) to Ly(Ry; F).

Moreover, following the lines of the proof of [81, Lemma VI.4.4.2], the assumptions on
m yield that T, may be represented as a convolution operator, with a kernel k €
C(R\{0}; B(E, F)), satisfying |k(t)|pg,r) S -

It now follows from [60, Théoréme 2| that T), is also bounded from L, ,(R;;E) to
Ly, (R4 F), for all p e (1/p,1]. [ |
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1.3 Weighted Anisotropic Spaces

Let E be a Banach space of class H7, let J = (0,T) be finite or infinite, and let further
Q) C R™ be a domain with compact smooth boundary 92, or 2 € {R", R }. In what follows
we refer to t € J as time variables, and to z € Q0 as space variables. For p, ¢ € [1, 0] and

r > 0 we denote by
Hy(E),  Wi(hE), B, (%E),

the E-valued Bessel potential, Slobodetskii and Besov spaces. Recall that B} ,(€; E) =
W, (§; E) for p € [1,00) and r ¢ No. The corresponding spaces over the boundary J2 are
defined via local charts. We refer to Appendix A.4 for definitions and properties of these
function spaces.

In this section we investigate weighted anisotropic spaces, i.e., intersections of spaces of
the form

Hy (T Hy (5 B)), - Wi, (WG (R E)), Hy (T W (3 E)), - Wy, (W55 B)),
(1.3.1)
where s,7 > 0. We are further concerned with the corresponding spaces over J x 0§2,
and with intersections of spaces where in (1.3.1) Hy , and W, , are replaced by oH, , and
oW?5  respectively. We consider the Newton polygon, temporal and spatial trace theorems,

p7/’L7
and sufficient conditions for pointwise multipliers for these spaces.

We start with two fundamental tools for anisotropic spaces.

The first is a spatial extension operator. Given k € N, there is an extension operator £q
to R™ for functions defined on €, i.e., (Equ)lg = u, such that for all p,q € (1,00) and
r € [0, k] it holds

& € B(B, (% E), By (R E)) N B(H, (Q; E), H)(R™; E)). (1.3.2)

For integer r € [0, k], the proof of |1, Theorems 5.21, 5.22| for the scalar-valued spaces
literally carries over to the vector-valued case. The general case r € [0, k| follows from
interpolation. Applying £q pointwise almost everywhere in time, we obtain a spatial ex-

tension operator for the anisotropic spaces, which we denote by &g again,
& € B(H, ,(J; H) (O E)), Hy (J; HY(R™; E))), s>0, rel0kl. (1.3.3)

Of course, here a H-space may be replaced by a W-space at the first or the second or at
both positions, and this remains true for the oH, ,~ and the W7 -spaces with respect to

time.

Second, we consider operators with bounded imaginary powers (cf. Appendix A.3) on the
weighted anisotropic spaces for the case J x 2 = R, x R™. This class of operators is crucial
for our purposes, in view of the Dore-Venni Theorem A.3.2 and Yagi’s theorem (A.3.1).
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Lemma 1.3.1. Let E be of class HT, p € (1,00), p € (1/p,1], s,r > 0, « € (0,2) and
B >0, let w,w’ > 0 satisfy w + ' # 0 and set

Hy,(Hy) i= Hy (R Hy (R E)), - oHy,(Hy) = ol (R Hy (R E)),

and analogously for the other types of spaces in (1.3.1). Let A,, be the Laplacian on R"™.
Then the following holds true.

a) The pointwise realization of (w — A,)P/? on the spaces

S T . . S r+
H ,(Hy), with domain H} (H 7,

T ; ; r+3
H, (W),  with domain Hp (W;™"), r,r+ ¢ Ny,
S T . . r+
Wy (Hy),  with domain W7 (H, 5,
s r . : T+
Wy . (Wy),  with domain Wp,#(Wp ﬁ), r,r + (3 ¢ No,

is invertible and admits a bounded H*°-calculus with H*°-angle equal to zero. This

remains true if one replaces the Hy ,, W, -spaces by the oH, ,,0W, ,-spaces.

b) On L, ,(L,), the operators (w' — 8;)* and (w' + 8;)® commute with (w — A,,)%/? in
the resolvent sense, respectively.

c) The operator L := (W' — 0;)® + (w — A,)?/2, considered on the spaces

H, (Hp,), with domain HS+°‘(H6) QH;’“(H;"'B),

H, (Wy),  with domain H8+a(WZ?) N H;ju(W£+ﬁ), r,r+ (3 ¢ No,

Wi (H7),  with domain W3it*(HD) N W ,(H*P), 5,5+ a ¢ Ny,
Wy . (Wy),  with domain W8+a(Wp )N W;M(Wg'w), s, s+ a,r,r+ [ ¢ Ny,

is invertible and admits bounded imaginary powers, with power angle not larger than
o /2, respectively. This remains true for the operator Lo := (W' 4 9;)® + (w — A,,)8/?

if one replaces the Hy w Wy u-spaces by the oH,, ,, oWy ,-spaces.

d) For 7 € (0,1] it holds
D(L7) = D((&' = 8)°7) N D((w' — An)"/?),

-DL(T7p) - D(w/—at)a (T7p) N D(w/_An)/@/z (T7p)7

and this remains true if one replaces L by Ly and w' — &; by W' + ;.

Proof. (I) Since E is of class HT, the operator —A,, admits on L,(R™; E') with domain
Hp? (R™; E') a bounded H>°-calculus with H>-angle equal to zero, due to |24, Theorem 5.5],
for instance. This remains valid for (w — A,)?/? with domain HI? (R™; E), due to Lemma
A.3.5 and (A.3.1), and further this operator is invertible.

Using (w — A,)"/? as an isomorphism between Hy(R™; E) and Ly(R"; E), it follows from
[24, Proposition 2.11] that (w—A,,)?/? has the same properties on Hy(R™; E), with domain
H;H; (R™; E), r > 0. By interpolation, these facts remain true if one considers (w — A,,)?/2
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on Wy (R"; E), with domain W;+5(R"; E), provided 7,7 4+ 8 ¢ Ny. Due to Lemma A.3.6,
these properties carry over to its pointwise realizations.

(IT) The explicit representation of the resolvents of w’—d; and w’+9; (see, for instance, [48,
Proposition 8.4.1|) yields that on L, ,(Ly) these operators are resolvent commuting with
w — Ay, respectively. By |7, Lemma I11.4.9.2], this property carries over to the fractional
power case.

(III) Since all the spaces under consideration are of class H7, it follows from Proposition
1.1.10 that (w' — 9¢)® admits a bounded H>-calculus with H>-angle equal to am/2 on
H; (Hy) with domain Hjt*(Hy), and on the corresponding spaces where H is replaced
by W, with the asserted exceptions. Using this fact, together with a) and b), the assertions
on L are a consequence of the Dore-Venni Theorem A.3.2. The same arguments show the
assertion on Ly. Finally, d) is a consequence of the Lemmas A.3.1 and A.3.4. |

1.3.1 The Newton Polygon

With the help of the operators from Lemma 1.3.1 we establish fundamental embeddings
for the anisotropic spaces. The corresponding results for exponentially weighted spaces are
obtained in [27, Lemma 4.3].

Proposition 1.3.2. Let E be of class HT, let J = (0,T) be finite or infinite, p € (1, 00),
w € (1/p,1], and let Q C R™ be a domain with compact smooth boundary 9f), or 2 €
{R™ R }. Let further

s,r >0, a € (0,2), 8 >0, o €10,1],

and set H, ,(Hy) := H;M(J; Hy(©; E)), and analogously for the other anisotropic spaces.
Then it holds
Hyte(Hy) 0 Hy  (Hy ) Hyteo (HyH=o)0), (1.3.4)

and moreover each of the spaces
H i (W) 0 H (WtP), - Wt (Hy) 0 Wi (H ), Wke (Hy) 0 Hy (W),
is continuously embedded in
W;,ZJQ(H;—F(l—J)ﬁ) N H;:;O'(I(Wg'f‘(l—o')ﬁ)’

provided all the occurring W), ,- and W -spaces have a noninteger order of differentiability.

Finally, assuming all orders of differentiability to be noninteger, it holds
s+a T s r+ stoa r+(1—o
Wt (W) N W (W) — wstee (w+1=o8), (1.3.5)

These embeddings remain true if one replaces {2 by its boundary 0f2. They also remain
true if one replaces all the Hy, -, W), ,,- spaces by the oH,, ,,-, W), ;,-spaces. Restricting in
the latter case to s + a < 2, the embedding constants do not depend on the length of J.
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Proof. (I) Using extensions and restrictions, and employing that the spaces over 9f) are
defined via local charts, it suffices to consider the case J x 2 = Ry x R™. The dependence of
the embedding constants on J carries over from the properties of the extension operators.
(IT) For (1.3.4) we consider the operators (1 — d;)® and (1 — A,)?/? on H, (H}), which
were treated in Proposition 1.1.10 and Lemma 1.3.1. Note that to obtain sectoriality of
(1 — 0¢)® we have to restrict to o € (0,2). Due to the invertibility of these operators, for
o € (0,1) it holds that

(1= 07 (1= An) =2 ey

is an equivalent norm on H;jfa(H;Jr(l_U)ﬁ ). Since the sum of these operators is invertible

by Lemma 1.3.1, it further holds that
(1= 80 + (1= An)P2) e oy

is an equivalent norm on Hyt*(Hy) N H;VM(H;JFﬁ). Now (1.3.4) follows from the mixed

derivative theorem, Lemma A.3.3. The same arguments show
O 005 g,
Wi (Hy) AWy (Hy P) s Wthoo (Hy H0=00),

and (1.3.5), with the indicated exceptions. In the following we derive the remaining em-
beddings from (1.3.4) by suitable interpolation arguments, which were indicated in [37,
Remark 5.3] in a more special situation.

(IIT) For Hyt (W) N H;“(W;"JF’B) we suppose that r,7 + 3 ¢ No. We apply the real
interpolation functor (-,-); /9, to the embedding

H;;;a(HgiE) N H;}ﬂ(H;is+ﬁ) SN H;;za(ais/ﬂ) (H;ﬁ’(lfo')ﬁ)’ (1.3.6)

where € > 0 is sufficiently small. By Lemma 1.1.9 the right-hand sides interpolate to
W;}t‘m(H;HI_U)’B ). To interpolate the left-hand sides above we consider the operator

L=(1-09)%+(1—A,)~2
which, due to Lemma 1.3.1, is an isomorphism
Hy i (H2) OV H | (HP) — H | ().
Hence L is an isomorphism between

(L (%) 0 Hy (H ), H 32 (H =) 0V H (G =40))
and (H;M(H;*E),HSW(H]’;*E))%W, and the latter space equals Hy (W), due to Lemma
1.1.9 and Proposition A.4.2. By Lemma 1.3.1, the operator L~! maps Hy (W) isomor-
phically to
+ +8
HES W) 1 3 (W),
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Thus we have shown that the left hand side in (1.3.6) interpolates to Hyt*(W;) N
H;”M(W,fﬂa). For W te(H)) N WI‘;M(H;JFB) we have s, s+ a ¢ Ng. Here we apply (-,-)1/2p
to

H;ie+a(H;) N H;ie(H;—i—’g) AN H;’—;oa(H;—l-ﬁ(l—J:I:e/a))‘
Using the operator L as above yields the asserted embedding in this case.
(IV) For W (Hy) OH;M(W,ﬁﬁ) we have s+, r + 3 ¢ N. This time we apply (-,-)1/2,
to the embeddings

H;Ia(l:ts/ﬂ) (H;) N H;’#(H;-FQ:IE) SN H;’—;O'(X(H;Jr(l—o')ﬁﬂ:s)’

H;Ia(lia/ﬂ)(H;) N H;N(H;-i-ﬁ:l:a) N H;:;a(c:l:a/ﬁ)(H;-i-(l—a)ﬁ).

As above it follows that the right-hand sides interpolate to HSI‘TO‘(W;HPUW ) and
Wpsﬁ‘m(H;Hl_U) p ), respectively. To interpolate the left-hand side, we consider on H,, ,(H})
the operator

L= (1—0,)*0+/B) 4 (1 — A)B+e)/2,

with domain D(L) = Hyt“""/?/(H7) 1 H3,,(Hy 7). Due to the Lemmas 1.1.9, 1.3.1
and Proposition A.4.2 it holds

B—e)/(B+e)y _ pys+a(l—e/B +6—
D(LP=a/Bre)y = prate(=</B)(gry 0 HS  (HIH79),
and the reiteration theorem yields

(DL EH) D(L))1 2 = Dr((1+ (8 =€) /(8 +¢))/2,p).

Finally, the Lemmas 1.1.9, 1.3.1 and Proposition A.4.2 imply that the latter space equals
Wik (Hy) 0 Hy, (W ™).

(V) Starting in Step II with (1 + 9;)® instead of (1 — J;)®, the same arguments as above
show that the asserted embeddings are also true for the oHp - and oW, ,-spaces. [ ]

Remark 1.3.3. The proof shows that for the embeddings where only the mixed deriva-
tive theorem was used the orders of integrability in space and time do not have to coin-
cide. In fact, considering the Laplacian on HC’;(R"; E) for ¢ € (1,00), and realizing it on
H, (J; Hy(R™; E)) for p € (1,00) and p € (1/p, 1], the assertions of Lemma 1.3.1 remain
true. Then as in Step II of the above proof we obtain, for instance,

Hi 3 (Hg) 0 Hy (HP) s Hpe® (g 10)7)

Wyt (Wg)n W;M(W;*ﬂ) — W;;Ja(Wf(l—a)g)’

with noninteger orders of differentiability in the W-case and uniform embeddings in the
oH, - and oW, ,-case. u
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The above embeddings turn out to be extremely useful in the sequel. They can be visualized

by the Newton polygon. Suppose that an anisotropic space X of the form

m
X =) Hy' (J; Hy (% E)),
j=1
where 0 < r; < ... <7y and s; > 0, is given. Consider each space Hy (J; Hy (O F)) as a
point (74, s;) in a space-time-regularity diagram, and draw the convex hull of these points

with respect to the boundary of the positive cone.

S

nontrivial part (bold)

\
. \

® r

Figure 1.1: The Newton polygon

This hull is called the Newton polygon NP for X, and the lines on the hull connecting points
(rj,s;) (including these points) is called the nontrivial part of NP. Proposition 1.3.2 and
trivial embeddings in space and time yield that X embeds into each space H,(J; H}($); E))
for which (r,s) lies inside the Newton polygon. Of course, here one may replace the H-
spaces by the W-spaces according to the above result.

A typical application of Proposition 1.3.2 is the following proof of the mapping behaviour
of the spatial derivative on anisotropic H-spaces. See [24, Lemma 3.8| for the unweighted

case.

Lemma 1.3.4. Let E be a Banach space of class HT , let J = (0,T') be finite or finite, and
let Q C R™ be a domain with compact smooth boundary, or € {R"t,R"}. Let further

s 20, r€[0,1), a € (0,2), 8> 1.
Then the pointwise realization of 0y, i € {1,...,n}, is a continuous map
H;’;rta(H;) N H;,M(H;Z%) - HSIO‘_QM(H;) N H;#(Hg-ﬁ-ﬂ—l)'

Restricting to s + a < 2, and further to OH{;’ZQ— and oHp -spaces in time, its operator

norm is independent of the length of J.

Proof. By extension and restriction it suffices to consider the case J x = Ry x R™.

Clearly the operator 0, maps continuously
Hy 2 (Hy) 0 Hy (™) — Hy (HE 07T,
It further follows from Proposition 1.3.2 that the embedding

Hiy® (Hy) 0 Hy (H7) s HRe=e/ P (H )
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is valid, and thus 0, also maps
Hy 3 (Hy) 0 Hy  (H7) — H e ()

in a continuous way. |

1.3.2 Temporal Traces

We now consider the temporal trace for anisotropic spaces. Using integration by parts, it

is not hard to see that for a Banach space X and u € Wi} _([0,00); X) the representation

o o t

u(0) = (2 — ) (o_(2_“) / o lu(r)dr — (2 - p) / =B / TR (u(t) — u(r)) dr dt)
0 0 0

(1.3.7)

holds true for all o > 0. By A.21), if —A is the generator of an exponentially stable analytic

Co-semigroup then for ¢ € (0, 1) the norm in D (0, p) is equivalent to |- [p ,(g,p)«» Where
e do
p _ p(1-0) —cA_|P
]w|DA(07p)7* _/0 o |Ae x\X—U : (1.3.8)

The representation (1.3.7) is the key to the following abstract trace theorem, whose proof
follows Di Blasio [29].

Lemma 1.3.5. Let X be a Banach space, p € (1,00), u € (1/p, 1], and let the operator A
on X with domain D(A) be invertible and admit bounded imaginary powers with power
angle strictly smaller than 7/2. Let s € (0,1 — u+ 1/p) and a > 0 satisfy s + a €
(1 —p+1/p,1). Then the temporal trace tro, i.e., trou = u(0), maps continuously

Wy (Ry; D(A%) N W, ,(Ry; D(A™)) = Da(2s+a— (1 —p+1/p),p). (1.3.9)
Moreover, trg is for a« € (1 — p+ 1/p, 1] continuous
Wi (R X) N Ly (Ris Da(er,p)) — Dala— (1= p+1/p),p), (1.3.10)
and for s € (0,1 — u+ 1/p) it is continuous
W, (Ry;Dals,p)) N WS, (R D(A) - Da(l+s—(1—p+1/p),p)5  (1.3.11)

Proof. The proofs of (1.3.10) and (1.3.11) are very similar to the Lemmas 11 and 12 of
[29], starting with (1.3.7) and using the representation (1.1.17) of the weighted Slobodetskii
seminorm and Hardy’s inequality (Lemma 1.1.2). We therefore concentrate on (1.3.9).
By assumption and Proposition 1.1.11 it holds

[u(0)x S lulysto®, .pas: u € Wit (Ry; D(A%)).

pip

8The proofs of (1.3.10) and (1.3.11) only require that —A generates an exponentially stable analytic
Coh-semigroup.
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We further use (1.3.7) and (1.3.8) to obtain
> —(284+a—(1— —cA —
|u(0) pDA(Qs-l—a—(l—u—l—l/p),p),* = /0 O.p(l Zeta—(l ,u+1/p))|A€ U(O) 1;(‘7 Ydo
< / a*P@W)( / 1R Ae= oAy (r)] dT)pda (1.3.12)
0 0
00 o t P
+ / (02*“*(2%) / t= 3= / T Aem A (uft) — u(r))| dr dt) dor.
0 0 0
It follows from A.2 i) that for 6 € (0,1) we have
|Ae_UA:E\B(X) < J_1+0\A9:L‘|B(X), x e X. (1.3.13)

Using Hoélder’s inequality, (1.3.13), (1.1.17), Hardy’s inequality (Lemma 1.1.2) and Propo-
sition 1.1.11, we estimate the first summand in (1.3.12) by

/ op(2s+a)</ 717“|A67”Au(7)\d7)pd0
0 0
S/ / Tp(l_“)|Ae_UAu(T)]pap_la_p(25+°‘) dr do
0 0

< /00 /J Tp(l_“)|A5+O‘u(7')]pa_(1+ps) drdo
0 0

S [ (] 7 lo) = D yaergo T dr 0P o) ) dor
0 0

< p
~ ’“‘W;,M(R+;D<As+a)>'

We further use (1.3.13), the Hardy-Young inequality (A.2.1), Holder’s inequality and
(1.1.17) to estimate the second summand in (1.3.12),

o] 4 t
/ (2t / ) / P A A ut) — u(r) drdt) do
0 0 0
] g t
S / (o (era-Gpsn) / (1w / 7 u(t) = () pgasy dr) dt) ' do
0 0 0

5/ U—p(s+a—(1—u+1/p))U—p(2—u)(/ Tl—l‘]u(g)—u(r)|D(As)dr)p0_1do
0 0

< [T by ()P g (Fp(sta)) <l
_/0 /0 T lu(o) u(T)]D(AS)U drdo < [U]W;,ﬁ“(R%D(AS))’

which shows (1.3.9). [ ]

From the above lemma we deduce a general trace theorem for the weighted anisotropic
spaces. We refer to [89, Theorem 3.2.1] for the unweighted case, and to [27, Lemma 4.4]

for anisotropic spaces with exponential weights.

Theorem 1.3.6. Let E be a Banach space of class HT , let J = (0,T') be finite or infinite,
and let @ C R"™ be a bounded domain with smooth boundary, or 1 € {R", Rl }. Assume
r >0, 3> 0, and suppose that k € Ny, s > 0, and o € (0,2) satisfy

k—p+1l/p<s<k+1—p+1/p<s+a.
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Set Hy (Wy) == Hp (J; W, (s E)), and analogously for the other anisotropic spaces.
Throughout, assume that the orders of differentiability of all occurring W, ,,- and W -spaces

are noninteger. Then each of the spaces

Hip (W) OVH (Wt 2), Wil (Hp) N W, (HEP), - Walie (Hy) 0 Hy (W),

(1.3.14)
is continuously embedded into
T npr s—(k+1— «
BUCk (7, Byt AUH s (brlmusl/p)/e) () B)). (1.3.15)
Moreover, for a < 1 it holds
We,(W)) N Ly (Wi tP) — BUC (T, Byt PO Urtl/n)lo) o g)), (1.3.16)
W (W) NWE (With) — BUC (T, Byt Pe=1/m/0=9)(q; B)). (1.3.17)

All these embeddings remain true if one replaces §) by its boundary 0f). Restricting to
s+a < 2 and gHp - resp. oW, ,-spaces in time, the embedding constants are independent
of the length of J.

Proof. (I) Using extensions and restrictions, it again suffices to treat the case J x 2 =
Ry x R™ We only have to consider the case k& = 0, since for £ > 1 it holds, due to
s>k—p+1/p, (1.1.1) and Proposition 1.1.11,

H (H PPy H (W) n Wy (H)P) — BUC* ' (J; H™P),

and the latter space embeds into (1.3.15). We further claim that the proof of the asserted
embedding reduces to show that the temporal trace operator trou = u(0) maps each of the

five spaces under consideration continuously into
Y — B;;/J‘(l-ﬂ-(8—(k+1—u+1/p))/a) (R™ E),

where one has to set s =k =0 for (1.3.16) and k =0, a = 1 — s, for (1.3.17). To see this,
note that for a function u we have

u(t) = troAsu, t>0,

where A; denotes the left translation by ¢. Due to Lemma 1.1.6, the family of left transla-

3 K K
tions forms on each space Wy, Hy

tions. We thus have for ¢ > 7 > 0, assuming that trg is continuous,

k > 0, a strongly continuous semigroup of contrac-

u(t) = u(T)ly S [Ar—ru = uly,

where Y stands for any of the spaces under consideration. This shows uniform continuity
and boundedness of u with values in Y.

(II) We show the asserted continuity of tro on the space spaces in (1.3.14). It follows from
Proposition 1.3.2 that

H;:;O‘(W;) N H;M(W;‘f’ﬁ) N W;‘;(l—s)a(H;—l—aﬂ) N W;IaO‘(H;+(1_E)’6),
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1— 1—
W ) 0 S W) o W00 B 2) W o100,
where € > 0 is sufficiently small. Since it is asserted that the spaces on the left- and the
right-hand side above have the same trace spaces, it suffices to consider trg on

+ +3
Wik () 0 W, (11 9),
Moreover, using again Proposition 1.3.2, the same argument shows that it suffices to con-
sider the case s + o < 1. We apply (1.3.9) with

r—sfB/a 2« r+(1—s)B8/a
X=H Bla A:(I—An)ﬁ/ 7 D(A):Hp+( )B/a

Since the operator 1 — A,, admits a bounded H*°-calculus with H*°-angle equal to zero on
the whole H-scale, it follows from (A.3.1), Lemma A.3.5 and Proposition A.4.2 that

D(A®)=H],  D(A*®)=HI'H
Thus Lemma 1.3.5 implies that trg maps continuously
Wt (H) NWS (HP) — Da(2s+a — (1= p+ 1/p), p) = Byt Hs=(itmpsl/p)/e),

(III) It follows from real interpolation that the operator 1 — A,, has the same properties
on the B-scale as on the H-scale. We may therefore use (1.3.10), applied to
X=05 A=(1-A,)%  D(A) =Bt

p,p’

giving Dy (a—(1—p+1/p),p) = B;f;ﬁ(l_(l_“ﬂ/p)/a), to obtain (1.3.16). Similarly, applying

(1.3.11) with
X — B;;)Sﬁ/(l*é?)7 A=(1- An)ﬂ/Q(lﬂi)7 D(A) = [/V;;ﬁﬂ7
giving Da(1+ s — (1 — p+1/p),p) = By W= /P/IA=9) wields (1.3.17). m

The above theorem can again be visualized by the Newton polygon, cf. Figure 1.3.2. Con-
sider, for instance, the space X = Wy T*(H}) N W;,#(H;Jrﬁ), where s, r, a and 3 are as
above. Then the temporal trace space of X is obtained by intersecting the horizontal line
(1,1—p+1/p), 7 € R, with the nontrivial part of the Newton polygon NP corresponding
to X.

Remark 1.3.7. In the situation of Theorem 1.3.6, one can also consider the case
ki —p+1/p<s<ka+1l—p+1/p<s—+a, 0< ki <ky, ki,koeNp.

This case can be reduced to k; = ko, where the theorem is applicable, using Proposition
1.3.2. Here one has the choice between high temporal and low spatial regularity and vice

versa.

Using arguments as in the proof of [27, Theorem 4.5|, one should be able to show that the
temporal trace is surjective, for all of the spaces under consideration in the Theorem 1.3.6.
At this point we only consider a right-inverse in a special case. We also refer to Lemma
3.2.2, where we consider a right-inverse for the boundary spaces from Chapter 3.
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(1,1 =p+1/p)
%

spatial regularity of the temporal trace

Figure 1.2: The trace space and the Newton polygon

Lemma 1.3.8. Let E be a Banach space, let p € (1,00), u € (1/p,1], and let —A be the
generator of an exponentially stable analytic Cy-semigroup on F, with domain D(A). Let
further « > 1 — pu+1/p with o — (1 — u+ 1/p) ¢ N. Then it holds

9
e AW, (B E) Ly By iDalap)) S 1TIDA(a—(1—pt1/p).p)-

Proof. (I) First let a € N. Using (1.3.8), for x € Da(a — (1 — u + 1/p), p) we obtain

7L, @ sp(am) = [A€TA™ L, L)
S 1A D4 i1 /p) = |2l D 0 (-1 /)
Since Ofe~ 4z = (—A)Fe~ Az for k < a, we further have
) Sle”

A
le” $|Wa (Ry;E $|Lp,H(R+;D(Aa))7

which shows the assertion for integer a.
(IT) We now consider the case 1 —pu+1/p < a < 1, and show e~z € L, ,(Ry; Da(a, p)).

Take © € Dy(a — (1 — p+ 1/p),p). Then it holds |e_'Ax\Lp,M(R+;E) < |z|g, due to the
exponential stability of the semigroup. Moreover we have

dt
—A, p(1—p0) p(1— —(t+s8)A, P
e |Lpu (Rs:Da(cp)) / / 1) p(1—a) |Ae (t+s) x| ds — -

We split the inner integral at s = t and estimate the first summand with some small € > 0

by
00 t
/ / sp=n)p(l=a)) ge=(t+s)A i dsg
o Jo

et (l— B 1 [t dt
< pl=at(=ptl/m)| ge=t Az P (= [ e7P5ds ) —
~Jo EXt ), t

5 [x]%A(CX—(l—H‘Fl/F):p) ’

“Recall that Da(a,p) = D(A®) for a € Ny.
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For the second summand we use the Hardy-Young inequality (A.2.2), to estimate

/ / p(1— u)tpl ) ]Ae (t+s) m‘%dsﬂ
< / > p(1-a) / " i) gmsd e d57) dE
~ 0 E S t

< /oo gP(l—at+(1—p+1/p)) |Ae™ 8A$|P ds
0
— [P
= 121D o1/
We thus obtain for 1 — p+1/p < a < 1 that
‘eiiAx’Lp,u(]Rﬁ_;DA(a,p)) S ’x|DA(af(1fu+1/p),p)' (1'3'18)

Now let @ > 1 with o ¢ N. Then we choose § > 0 such that 1 —p+1/p < a— (<1,
which yields A%z € Dy(a— B — (1 —p+1/p),p) by the reiteration theorem. It now follows
from (1.3.18) that

o™ 2], @ Datep) S leTHA L, @ DA 0-p0)
S |Aﬁx|Lp,u(R+;DA(a—ﬂ—(l—u+1/p),p)) S 211, (R iDa(a—(1-p41/p)p))
and therefore (1.3.18) holds for all a > 1 — p+ 1/p.
(III) For the temporal regularity, observe that
e Ax = (—A)ke Az, keA{0,..,[al},
where z € Dy(a— (1 — p+1/p),p). In view of the exponential stability of the semigroup,
the representations (1.1.18) for the norm of WgﬁM(RJr; E) and A.21) for the norm of D 4(a—
(1 —p+1/p),p) we have

|Ake=Ag [P

k_—A_.|p <[ p(1—p) 1—0p| gk —(t+s)A k_sA,.|p de
WS (RoiE) ~ |A%e ;13|E+//0 s t"P| A% x — A% x|EdsT

k, —A_.p
~ AT alL, R D)
for k = [a] and 6 € (0,1). This yields that for &« > 1 — g+ 1/p with a ¢ N, using (1.1.8)
and the estimates of Step II,

—A

_.A k_—-A [o]
le x’Wgu(R+;E) 52@6 $|LP,H(R+;E)+’at € x‘W;;[a](R+;E)

Sle

2| Ly (B Datep)) S 12D A~ (1-pt1/p) p);
which finishes the proof. |

An immediate application of the above result yields a continuous right-inverse of the tempo-
ral trace for weighted anisotropic spaces arising in the context of maximal L, ,-regularity.
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Lemma 1.3.9. Let E be a Banach space of class HT, p € (1,00), pn € (1/p,1], m € N,
and let 2 C R™ be a domain with compact smooth boundary 0€2. Then a right-inverse for

trg that is continuous
Byt (Q; B) — Wy (R Lp(9 E)) 0 Lpu(Rys W™ (9 E))

is given by

i RRne_t(l_A")mSQuo, up € Bzgg(u—l/p)(g; E).

Here &g is the extension operator to R™ from (1.3.2), and Rgn denotes the restriction from
R™ to Q.

1.3.3 Spatial Traces
We now specialize to weighted anisotropic spaces of the form
Hy2mS(J x Q E) := Hy (J; Lp(Q5 E)) N Ly, (J; H™(Q; E)), (1.3.19)

where m € N and s € (0, 1], and to the corresponding spaces where H is replaced by W.

Our motivation is to investigate the mapping properties of a boundary differential operator
trqV”? with g € Ni and 3] < 2m — 1, where trg and V denote the spatial trace, i.e.,
trou = ulpn, and the euclidian gradient on R™, respectively. The iterative application of

Lemma 1.3.4 implies that V# maps the maximal regularity space
W, (J; Lp( E)) N Ly (J; W™ (4 E))
continuously into
Hy V27 (T Ly (9 B) 0 Ly (T Hy V09 E)),

which is a space as in (1.3.19) with s = 1 — |3|/2m. We are therefore led to investigate the
properties of trg on a space like (1.3.19). We follow the proof of |25, Lemma 3.5|. For the

spatial trace on unweighted anisotropic spaces we also refer to [11, Chapter 4].
For our further considerations we assume that
2ms € N.

It is known that the trace operator trg, which is originally only defined on C°(R"; E),

extends uniquely to a continuous map
2 . 2ms—1 .
H2™(Q; E) — W2ms—1P(0Q; E). (1.3.20)

This can be seen as in [82, Theorems 2.9.3, 4.7.1] for the scalar-valued case. Applied

pointwise almost everywhere in time, trqg extends further to a continuous map
Lpu(J; Hﬁms(Q; E)) — Ly u(J; ngs_l/p(f?Q; E)).
Observe that Proposition 1.3.2 yields the embedding

5,2ms . s—1/2m Ll .
H32M3(] x Q4 E) — Hi /2mp (. Hp/p(Q,E)).
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Although trg is not continuous from H;/p(Q; E) to L,(0; E), this fact suggests that trg
maps Hy 2™ (J x Q; E) into Hy,/*™ (J; Ly(09; E)).

To give a rigorous proof, the following simple density result is useful.

Lemma 1.3.10. Let J = (0,T") be a finite or infinite interval, let E' be a Banach space,
and let D be a dense subset of E. Then the set Step(J; D), consisting step functions of the

form
l

6= ai()pi, ai€C(]), ¢i€D, LEN,

i=1
is dense in Ly, ,,(J; E).

Proof. Since C.(J; E) is dense in Ly, ,(J; E), it suffices to approximate functions from this
set. Let € > 0 be given and take u € C.(J; E), such that suppu C (a,b) for some a,b € J.
Choose numbers a = t1 < ... < tj_1 < t; = b, l € N, with

|u(t) — u(tl)‘E <e€ for t € [ti,ti+1], i=1,..,1L

By assumption, for each ¢ there is ¢; € D such that |u(t;) — ¢;|p < &, where we can take
v1 = ¢y = 0. Now define ¢ € Step(J; D) by

l

) (tig1 — )i + (t — ti) i

= zz; titern £ tiv1 — t; ’ e
Then |u — ¢[r_ (s;p) < 2¢, and thus
lu—olp, (1:m) < 26P07M (b — a)e.
Since a and b only depend on u, the assertion follows. |

Let us now assume that

JxQ =Ry xRL.
For this case we describe an alternative representation of trgn . In the sequel we write
z = (2, y) € RY, ¢ eR" yeR,.

Considering a function v = u(t,2’,y) on Ry x R} as a function of y € Ry with values in
the functions of (¢,2') € Ry x R"~! Fubini’s theorem yields the embedding

1t Ly (Rys HY™(RY E)) < HY™ (R Ly (Ry; Ly(R™™Y E))).

Thus, since 2ms > 1, the trace trg := try—p acts on L, ,(R; HzmT(Ri; E)) viatrgoty, and
maps this space continuously into L, ,(R4; L,(R"™1; E)). For ¢ € Step(R4; C°(R™; E))
it trivially holds trrr ¢ = (tro o t1)¢. Due to the density of Step(Ry; C2°(R"; E)), proved
in Lemma 1.3.10, we obtain that

trgn = tro o 41 on Ly, (Ry; HX™ (R E)). (1.3.21)

This representation allows to prove the temporal regularity for spatial traces of functions

in H,S,jﬁms (R4 x R; E) as suggested above.
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Lemma 1.3.11. Let E be a Banach space of class HT, and let m € N and s € (0,1]
satisfy 2ms € N. Then the trace trgn maps continuously

H;’,ZmS(RJr xR} E) — W;7;1/(2mp),2ms—1/P(R+ x R, E).

Proof. Throughout this proof we set X := L, ,(Ry; L,(R"™1; E)).
(I) Considering a function in L, , (R ; H2™5(R" ; E)) as a function of y € Ry taking values
in the functions of (¢,2') € Ry x R™™! we obtain that

Ly (R Hgms (R E)) — Hng(R+; X).

Moreover, it follows from Hgms(Rﬁ; E) — L,(Ry; Hgms(R”_l; E)) and Fubini’s theorem
that
Lyu(Ry HZ™S (RIS B)) = Ly(Ry; Ly (R, s (R E)).

Fubini’s theorem and interpolation further yield
Hy (Ry; Ly(RY; B)) = Ly(Ry; Hy , (Ry; Ly(R" ™ E))).

By Lemma 1.3.1, the realization of the operator L =1 — 0y + (—A,_1)" on X is invertible
and admits bounded imaginary powers with power angle not exceeding m/2. Hence, by
Lemma A.3.5, for 7 € (0,1] its power L™ has bounded imaginary powers with angle not
larger than 77 /2, and it holds

D(L7) = HY,(Re; Ly(R" E)) ) Ly u(Ra; H2' (R E)). (1.3.22)

Therefore
H;:ims(RJr xR E) — Hgms(R+;X) N Ly(R4; D(L?)).

Denoting the above embedding by 71, equation (1.3.21) implies trrn = tro o1.

(IT) We now claim that the space HY"$(R;X) N Ly(R; D(L*)) embeds continuously into
H;(R;D(Ls_l/Qm)). To see this, we consider the realization of the operators A = 1 +
(—02)*™ and B = L* on Ly(R;X) with domains

D(4) = H2™(®:X) and  D(B) = L,(R; D(L")),

respectively. These operators are invertible, and admit bounded imaginary powers with
power angles equal to zero and sm /2, respectively. Moreover, A and B are resolvent com-
muting on step functions in L,(R;X), which carries over to L,(R;X) by density. Thus the
Dore-Venni Theorem A.3.2 shows that the operator A + B is invertible on L,(R; X') with
domain

D(A+ B) = H)™(R;X) N Ly(R; D(L*)).

Since it holds that |Al/2ms pl=1/2ms .| Ly&:x) and [(A+ B) - | (rx) are equivalent norms
on H)(R; D(L*=/?™)) and D(A + B), respectively, the mixed derivative theorem (Lemma
A.3.3) implies the asserted embedding,.

(III) It follows from restriction and extension that also

H2™(RyiX) N Ly(Ry; D(LY)) — H(Ry; D(L*/2™),
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which implies that the operator L*~1/2" maps continuously
H2™ (R4 X) 0 Ly(Ry: D(LY)) — HYR4:X) 0 Ly (Ry; D(LV™)).

Note that L'/?™ is sectorial of angle at most 7/4m < /2, and thus —L/?™ is the generator
of an exponentially stable analytic Cp-semigroup on X. Due to |7, Theorem II1.4.10.2] we

have
HY(Ry;X) N Ly(Ry; D(LY?™)) «— BUC([0,00); Dy1j2m (1 — 1/p,p)),

and from the reiteration theorem we infer

Dpijem(1—=1/p,p) = Dr((1 = 1/p)/2m, p).

(IV) We now write

trRi = trg L—(s—l/?m) Ls—1/2mz~1

il

where L57Y/2m and its inverse are applied pointwise. By the above considerations, the

operator L5727 maps continuously
Hyo™(Ry x R'}; E) — BUC([0, 00); Dr((1 = 1/p)/2m, p)).

Clearly, trg and L~=~1/2™) commute on BUC([0,00); Dr((1 — 1/p)/2m,p)), and by reit-
eration and Lemma A.3.1, L==1/2™) maps Dy ((1 — 1/p)/2m, p) continuously into

Dp(s —1/2mp,p) = W;’ll/(Qmp)QmS*l/p(RjL x R""1; B).
This shows that the trace trgn maps continuously as asserted. m

Via localization we extend the above result to general domains and finite intervals.

Proposition 1.3.12. Let E be a Banach space of class HT, p € (1,00), p € (1/p, 1], let
m € N and s € (0, 1] be such that 2ms € N, let J = (0,T) be a finite or infinite interval,
and let 2 C R™ be a domain with compact smooth boundary, or Q € {R", R’} }. Then the

spatial trace trq maps continuously
2 —1/2mp,2ms—1
HE2mS(J x Q B) — Wi Y2me2ms=lp (] 90, ).
The operator norm of tro on OH;,’,%mT(J x Q; E) is independent of the length of J.

Proof. (I) Using the extension operators £; and &Y from Lemma 1.1.5, it suffices to
consider the case J = Ri. We describe 02 by a finite number of charts (U;, ;) and a
partition of unity {1;} subordinate to the cover | J, U;. We further denote by ®; the push-
forward with respect to ¢;, i.e., ®;u = uo gpi_l. For a function ¢ € Step(Ry; CX(R™; E))
it holds

tro¢ = Z O (trgn ®i(vig))  on O9. (1.3.23)

(IT) By restriction to 2N U;, Lemma A.4.1 and trivial extension from R’ N ¢;(U;) to R,

for each i we obtain that the ®;(1);-) maps continuously

HE2MS(Ry x O E) — HS2M(Ry x R E).
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Applying Lemma 1.3.11, restricting back to R’} N ¢;(U;) and using again Lemma A.4.1
yields that @;ltrRi maps the latter space continuously into

Wy e 2ms=LUp(R . x 9Q; E).
Thus the operator ), @;l(trRr}r ®;(1);-)) maps continuously
HE2MS (R x Q; B) — Wi t/2me2ms=1p(R | x 90; E).

Since Step(Ry; C°(R™; E)) is dense in Ly, (Ry; H(Q; E)) by Lemma 1.3.10, the re-
presentation (1.3.23) holds for all elements of this space, and in particular for all functions
from Hf,jﬁms(J x ; E). This shows that trq is continuous as asserted. u

Arguing as in 25, Lemma 3.5] one can show that in the situation of the above proposition
the spatial trace is surjective.

We use the results derived so far to estimate differential operators of lower order on spaces
of type (1.3.19).

Lemma 1.3.13. Let E be a Banach space of class HT, p € (1,00) and p € (1/p, 1]. Let
J = (0,T) be a finite interval, and let 2 C R™ be a domain with compact smooth boundary
0Q, or € {R", R} }. Let further the numbers m € N and s € [0,1) be given. Then for
every n > 0 there is Ty > 0 such that for T' < Ty the following holds true.

a) For a € NJ} with s + |a|/2m < 1 it holds

1,2
|vau|0H;:zmS(JXQ;E) S 77 ‘U|Wz}y’3m(JXQ,E) fOI" u < OWp’:um(J X Q, E)

b) For € Ny with s+ |3|/2m + 1/2mp < 1 it holds

B 1,2 .
[troV U|OWS’,3WS(JX89;E) <n ’u‘Wz},ﬁm(Jxaﬂ;E) for u € oW, (J x O E).

Proof. (I) It follows from Lemma 1.3.4 that there is constant Cp, which is independent
of J, such that

e}
VEul s awaspy < Co lul potiaiamanstial o p)-

From the interpolation inequality A.2 j), the assumption s + |a|/2m < 1 and Young’s
inequality we infer

s+|al/2m ‘ ’1 s—lal/2m

<
’u‘oH;;'“V?m(J;Lp(Q;E)) < lu ‘0W1 (J:Lp(%E)) YL, (1L (%E))

S A 40 |u \OW JLp(Q;E))+Cn|U|Lp,M(J;L,,(Q;E))>

where Cj, is a constant that depends on 7. Here it is important that for complex interpola-
tion the constant in the interpolation inequality is equal to 1 and thus independent of the
underlying spaces. It further follows from Poincaré’s inequality (Lemma 1.1.14) that

n
’u‘LP,u(J§Lp(Q§E)) < 400077 |u’WI}7M(J;Lp(Q;E))7
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provided that T" < Ty with sufficiently small Tj. This shows

Ui
‘U|OH;L|"V2M(J;LP(Q;E)) < 2Co |u’W£,u(J;Lp(Q;E))'

In a similar way we estimate

‘U|LP7H(J;H5WS+|0¢\(Q;E)) S 40 ’ |LPH JW2m(Q E)) + C |u’Lp #(J LP(Q E))

| /\

2C (Ju ulg, (w2 2m(Q;E)) T ‘U|W1N(J;LP(Q;E)))-

This shows a).
(II) For b) we obtain as above that for given 77 > 0 it holds

B
’tI'QV u] W23 (1% 904 ) < n‘trgv u\ 1 |5|/2m 12mp2m=\81=1/p 1o 50 F)’

provided that T < Tj is sufficiently small. By Proposition 1.3.12 and Lemma 1.3.4 there
is constant Cp, which does not depend on J, such that

|troV’8U|OW;L\B\/2m—1/2mp,2m—|ﬂ|—1/p(JXaQ;E) < Colulytomsr0p)-
Setting 7 = n/ 6’6, we obtain the asserted estimate. |

We end this section with a useful density result for anisotropic spaces.

Lemma 1.3.14. Let E be a Banach space of class HT, p € (1,00), u € (1/p,1], and let
s=1orse(0,1) with2ms ¢ N and s # 1 — u+ 1/p. Then

CR(Ry; W2MRY E)) <5 oWi2m (R, x R™ E).

Proof. Throughout we set Y := L,(R", E), and Y1 := W™ (R", E).

(I) We first consider the case s = 1, i.e., we show that C2°(R4;Y7) is dense in ()I/I/'I}j,%n"”(}l&r X
R™; E). To this end we first show that the set of functions in OWI},’im (Rt x R™; E) which
are compactly supported in Ry are dense in OW;ﬁm(RJF x R E). Let ¢ > 0 and u €
OWpl”,fm(RJr x R™; E) be given. Choose T > t. > 0 such that the numbers

|]1R+\(ts’Ts)u‘Lp p(Ry;Y0)s |1R+\(ts’TE)u |Lp n(Ry;3Y0)s |1R+\(tsst U|Lpu (Ry5¥1)>

are smaller than e, respectively. Choose further a smooth nonnegative cut-off function a.
on R} with a. <1 and

1, te(te,T:), )
ac(t) =< 0, te(0,t/2), |l 20 S e ol sy ST
€
0, (T:+1,00),
Then it holds
lu — OéeU|LM (R4;Y0) S, U — OésU|Lp,H(R+;Y1) Se

and further that

ju’ — (aau),‘Lp,u(RﬁYo) < v - O‘f‘fu/’Lp,u(R%Yo) + ]a;u!pru(R%yO)

S €+ ’alﬁ?u’LP,u(R-&-%Yo)'
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The properties of o, yield

loculr, ,(evo) S l0culr, (. /2.0.v0) + laulr, (1 s 15v0)- (1.3.24)

To estimate the first summand we use that 1/ <1 JtP for t < t., to obtain
te
t P u(t)ly, dt S e

<
[ “|Lw (te/2, ts,Yo) = tp | |Lw (te/2,te;Y0) ~ /t€/2

for ¢, sufficiently small, since the function ¢P#|uly, belongs to L;1(R4) by Hardy’s inequal-
ity (Lemma 1.1.2). The assumption for /. on (T, 7. +1) implies that the second summand

of (1.3.24) is smaller than a constant multiple of . Hence |alu|r, , (&, vp) S €, and thus
|U - aeu’W;M(RJr;Yo) + ’u - aEu‘LP,M(R+§Y1) ’S &

Therefore the functions a.u, which belong to W,}ﬁm(R+ x R™; F) and are supported in
(te/2,T. + 1), approximate u in Wz}yﬁm(]RJr x R™ F) as e \, 0.

(IT) To approximate a function u € OWplﬁm(R+ x R™, E) with compact support in R
by functions in Cg°(Ry;Y1) we have to approximate u in W) (Ry;Yp) and Ly(Ry; Y1)
simultaneously. This can be achieved using a standard mollification method, as in the
proofs of [1, Theorem 2.29, Lemma 3.16]. We omit the details. The assertion of this lemma
for s = 1 follows.

(IIT) Now let s € (0,1). By A.2 a) the dense embedding

d
W™ (R X R E) S (Lyu(Re; Y0), 0 W2 (Ry X R B))p
is valid, and the Lemmas 1.1.9, 1.3.1 and Proposition A.4.2 yield
(Lppu(Ry; Y0), oW (Ry X R™ E))gp = oWt (Ry. x R™ E),

provided 2ms ¢ Nand s # 1 — u+ 1/p. [ |

1.3.4 Pointwise Multipliers

If E, J, and Q are as in Lemma 1.3.4, then the operator V¢, where a € Njj, || < 2m and
m € N, maps continuously

Woi™(J x Q; B) — Hy lel/2m2m=lel( 10 ) 10

Motivated by linear differential operators with variable coefficients, we are looking for
sufficient conditions on a function a = a(t,z) € B(F) to be a pointwise multiplier to
Ly . (J; Lpy(§%; E)), ie., such that the multiplication with it is a continuous map

H;,ﬁmT(J x Q5 E) — Lpu(J; Ly(Q; E)), 7€ (0,1].

We have the following result for coefficients a which belong to an unweighted space.

"“Recall for 7 > 0 the notation H; 2™ (J x G E) = Hy (J; Ly(Q; E)) N Ly, (J; HX™ (93 E)), and
analogously for the W-spaces.
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Lemma 1.3.15. Let E be a Banach space of class HT, let J = (0,T) be finite, and let
Q) C R" be a domain with compact smooth boundary, or let Q € {R",R"} }. Let further
p € (1,00), p€(1/p,1], r,s € [p,o0), and T € (0, 1] satisfy

1—p)+1
p(l —p) L
s 2mr

<T.

Then there is C' > 0 such that
laulr, u(rirp@i) < Cloli L@@ [l gr2me g vom)

is valid for all a € Lg(J; L,(Q; B(E))) and u € Hp7a™ (J x Q; E). Restricting to u €
OH;’,%mT(J x Q; E), for given Ty > 0 the constant C' may be chosen uniformly for all
T <Tp.

Proof. Applying Holder’s inequality twice yields
1—
lauly, @) = /Jtp( Platt, Jult, ), o) 4t

< /J 0tV sl g

< lalz o @sen L, @ @)

where % + 4= % + L = 111 Dye to Proposition 1.3.2, for o € (0, 1) the embedding

1
p

«

T,2mT . T7(l—0o . Ir2mTo ().
HT2m7 (] x Q; E) — Hy G~ (J; HI™(Q; E)),

is valid, and the embedding constant is independent of .J if one restricts to oH) ,-spaces

in time. Sobolev’s embedding yields

2mTo . . —
H" 7 (Q5 E) — Ly (5 E) for o =

mrr
It follows from Proposition 1.1.12 that

T

Hy

2T (J; L (4 E)) < Ly(J; Ly (4 E)) - for T—2n

1 1-— 1
_<1_M+,) . pl—p+l/p)
mr P

S/

)

with an embedding constant as asserted in the gH), ,-case. Since the latter condition is
equivalent to w + 5= < 7, this finishes the proof. [ |

We are also interested in the case where the coefficients belong to a temporally weighted
space. If 2m(u —1/p) > 2m — 1+ n/p, then Theorem 1.3.6 and Sobolev’s embedding yield

1,2m . 7. 2m—1/0.
W2 (] x Q; E) — C(J; BUC*™Y(Q; E)).
Thus V maps for |a| < 2m continuously
1,2m ) T 0.
W2 (] x O E) — BUC(J x ; E),

and the multiplication with a is continuous from BUC(J x Q; E) to Ly ,(J; Ly(S%; E))
if a € Ly, (J; Lp(S2; B(E))). These considerations together with Lemma 1.3.15 yield the
following result for differential operators with variable coefficients.

"Note that 7’ is not the standard dual exponent of r.
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Proposition 1.3.16. Let E be of class HT, p € (1,00) and p € (1/p,1], let J = (0,T)
be a finite interval, and let  C R™ be a domain with compact smooth boundary, or let
Q € {R",R"}}. Assume that for the B(E)-valued coefficient a = a(t,x) of the operator
aV®, where a € N with |a| < 2m, m € N, it holds a € BC(J x Q; B(E)) in case |a| = 2m,

and that in case |a| < 2m one of the following conditions is valid: either
2m(p—1/p) >2m —1+n/p and a€ Ly, (J;L,(Q;B(E))),
ora € L, (J; (Ly, + Loo) (S B(E))) for some numbers sq, 7o € [p,00) with

1-— 1
pl=ptl, n oy Jol
Sa 2mr,, 2m

Then we have
aV* € B(W, 2™ (J x  E), Ly u(J; Lp(Q; E))). |

In the same setting as above, we now consider pointwise multipliers for anisotropic spaces
related to boundary differential operators. Lemma 1.3.4, together with Proposition 1.3.11,
yields that trqV?, where, 5 € N, |a] <2m — 1, maps continuously

Wplﬁm(J X L E) — Wp{;\ﬁ|/2m*1/2mp,2m*\ﬁ|*1/p(t] x 0Q; E).

Thus our aim is to provide sufficient conditions on a B(E)-valued function b such that the
multiplication with it is a bounded linear map

T,2mT . K,2mk .
WA (] x 08 B) — W2 (] x 9Q; E),

where 0 < k < 7 < 2. Moreover, the estimates should be suitable for the localization
procedures in the next chapters. To obtain rather sharp results we use the paraproduct
techniques presented in [74, Section 4.4].

Choose a function ¢ € C°(R™) with the property

YE) =1 [f <1, ¥ =0, [§=3/2

and define the family ¢;, j € Ny, by

w6 =), e© =v(E/2) v, ¢ =pm@7, =2
Then it holds Z;?io ¢j =1 on R", and further

k
supp ¢; C {2771 < [¢] <3277}, JeEN, > pi(&) =v(27%), keN.
=0
Denoting by F the Fourier transform on R", we use this dyadic partition of unity to define

operators S; and S* which cut off dyadic frequencies in the Fourier image,

k
Sj=Flp;F, jeNy, Sh:=>"8;, keNy, S'=8,:=0 leN
j=0
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Observe that for u € S'(R™; E) = B(S(R"), E) it holds u = limj_. S*u in the sense
of distributions.'? The Besov spaces may be characterized with the help of the operators
S;j. By |75, Definition 4.3|, for ¢ > 0, p € [1,00) and ¢ € [1,00] the Littlewood-Paley

representation
By (R E) = {ue SR E) : |ulpg &nip) = (2771 Sul L, (& 1)) jeNo |, < 00}
is valid. Here [, denote the standard sequence spaces, ¢ € [1, 00]. We observe the following.

Lemma 1.3.17. For q € [1, 0], the operator families (S;)jen, and (S¥)ren, are uniformly
bounded on Lq(R"™; E).

Proof. Since ;(€) = $(279€) — w(271¢) for j > 1 and T4 ;(€) = $(27), we
only have to show that the operator norm of the convolution operator F~ 1 (277.)F =
(F~14(277-))* is bounded independent of j € Ng. The convolution inequality shows that
for g € [1, 00] we have

(F270)) * (g @nsmy) < [(F9(277)) |1, @nim)-

Now it is easy to see that (F~14(2779.))(z) = 27"(F 1) (2/z) for z € R™, and further that

(F ) (27 ) ey < 277" F 0|, e )
which yields an estimate independent of j. |

For f € S'(R™;B(E)) N L1 10c(R™; B(E)) and g € S'(R™; E) N Ly joc(R™; E) we formally
decompose the product fg into the paraproducts

Mi(f,9) =Y 8" 2fSkg,  Ta(f,9) =Y (Sk-1f + Skf + Sks1f)Skg
k=2 k=0

3(f,9) =Y SkfS* g,
k=2
so that it holds

whenever the paraproducts exist in the sense of distributions. Observe that for £ € Ny it
holds

k+1

supp F(S* 2 fSkg) U suppF Y S'fSkg U supp F(SpfS"2g) C {I¢| < 2"3}.
I=k—1

The following lemma is the vector-valued version of [74, Proposition 2.3.2/2], and gives a
criterion for the existence of a paraproduct in a Besov space.

12We refer to [75] and [7] for details on vector-valued distributions.
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Lemma 1.3.18. Let E be a Banach space of class HT, o > 0, p,q € (1,00), and let
hi € L,(R™; E), k € Ny, satisfy

supp Fhy, C {|¢] < 2843}, k>0.
If (Qka‘hk’Lp(Rn;E))keNo € Iy then Y72 hy, converges to some h € BJ (R™; E) in the sense
of distributions, and it holds

|Plsg, mnimy S 127 k], (ms ) Do, -

Proof. The support condition implies that S;hy = 0 for j > k + 4. Thus

N N
Si> hi=15; Y mlpe(k), j,NeN.
k=0 k=j—3

(T) We first show that ( SN h’f)NeN
For integer N1 < Ny it holds, using the uniform boundedness of (5});en,,

is convergent in the sense of distributions as N — oc.

N2 N2
_ jo/2| Q.
| Z hk|Bg{fo(Rn;E) = sup 2/ 21, Z hie| L, (rn:)
— ’ J€Ng —
k*Nl k‘—Nl
Na

S sup Z 2(j/27k)02kg|hk‘Lp(R";E)
TENO . max{N1,j—3)
No
<ap Y 2UPRe

TENO k. —max{Ny,j—3}
which is smaller than any given number if N7 < Ny are sufficiently large. Therefore
(Z}ivzo hk)NeN is a Cauchy sequence in Bg’g(R";E), and thus converges in the sense
of distributions to a function h.
(IT) We show that in fact h € By (R"; E). To this end we estimate for N € N

N N
1> bkl gy @y = 1277185 D Prlo,0)(F)| L@y jemol,
k=0 k=j—3

N
S (27 Z [P L [0,00) (B) | L, (R E) ) jemo i,
k—j—3

<Y 1@ Lo 00) (5 + DL, @niE))jeNoli,

1=-3
o0
< Y2702 g1 ey Dkemo 1y S 128 1Pkl £ (res ) Dkemo iy
1=-3

which yields that ( Z,ivzo hk)NeN

to be reflexive the sequence has a weakly convergent subsequence in Bqu(]R"; E), and in

is uniformly bounded in By ,(R"; E). Since E is assumed

particular, this convergence is in the distributional sense. From the uniqueness of distribu-
tional limits we obtain h € By ,(R"; E). [ |

After these preparations we can estimate the Besov norm of a product in a way that is
suitable for our purposes.
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Lemma 1.3.19. Let E be a Banach space of class HT , and let 2 C R™ be a domain with
compact smooth boundary, or 2 € {R", R} }. Let further o > 0, p,q € (1,00), and assume

that r,r', p, p € [p,00], 1, p/ # oo, satisfy + + L = % + % = %. Then it holds

19185 :) S \fLpumonl9le, um + 1B @m)9lL, @)
In this estimate ) # R™ may be replaced by its boundary 0f2.

We remark that of particular interest is here the case p = r’ = co.

Proof. (I) We first consider the case 2 = R™, and estimate the paraproducts for fg given
by (1.3.25). Using Lemma 1.3.18, Holder’s inequality in L,(R"; E') and Lemma 1.3.17 we
estimate for Iy (f, g)

1Y SR FSkglpg @mmy S (257152 FSkglL, e k2,
P

< |(2k0|5k_2f\Lp(Rn;B(E))|Skg|Lp,(Rn;E))k22|zq

< sup |57 f| L, re:8(E)) |(2k0!Sk9|Lp,(Rn;E))k22|zq
J€No

Sy enisey)917, @n:m)-

In a similar way we obtain for Is(f, g), with € {—1,0,1},

1> SkaifSkglsg @rim) S 1251k f |, ey Sk L, (&) ke,
o

< 2% 1Sk f 1L, (mmiB(E)) kMo i, Sup 1Si9lL. . (&n:E)
J€Ng

S | flBg &) 9L, R E)

and for II5(f, g)

1> Sk fS* g1y @nimy S 125 ISk S L, s |S* 2910, meim) k21,
h=2

S |f|B?~,q(R"§B(E))|9|LT/(]R”;E)-

Thus the paraproducts exist in the sense of distributions, with the given estimates. This
yields the assertion for () = R".

(IT) The estimate for general  may be obtained from the full-space case using the ex-
tension operator g from (1.3.2). It is left to show the estimate for Q # R™ replaced by
its boundary. We describe 9 by a finite collection of charts (U, ¢;) and a partition of
unity {¢;} subordinate to the cover | J; U;. For each i we choose an open set W; C R™ with
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supp v; C W; C W; C U; and estimate, using Lemma A 4.1,

[f9lBg ,(00:F) §Z.\f i D900 DBg (piwirnrn-1,)
S Z |f (¢ |LT(¢Z nrre-1:8(E))9(P; )|B, (@i (Wi)Rn— 1)
+ [f (w5 )|B (i Wirrn-1.58(E))9(0; L, (iwinre—1,8)
S Zl |fL, 00:8(E)9(p; )’Bf,ﬂ(cpi(wi)mR"*l;E)
+ 10 e, (o wrrn—1:808) 911, (90:2)-

Now take a function ¢} € C2°(U;) with ¢F =1 on W, to deduce again from Lemma A.4.1
that
* —1 -1
1f9lBg 00:8) S ZZ |f L, 00:8E) Y5 (05 ) g(e; )’B;’,’ (s (Us) R 1, E)
+ 107 (07 D)f (@7 DB, (o wonrn—1:82)) |91, (00:)
S fleroas@n|9lse, 00 + |flBg 000|911, (00:8)- u
We derive a similar result for certain vector-valued Besov spaces on the half-line.

Lemma 1.3.20. Let E be a Banach space of class HT , and let 2 C R™ be a domain with
compact smooth boundary, or 2 € {R", R }. Let further o > 0, p,q € (1,00), and assume

el 1 1,1 _ 1,1 _ 1,1 _1
that r,1',p,p',s,8',0,0" € [p,00], s,0" # 00, satisfy - + = = sty =sta=s+ty=5
Then it holds

[falg L@ S flLo@ Lo @uBm@)l9lBe, @iL, @:m)
+ [f1Bg, Ry Lo@BE)II L, ResL (2 F)).
In this estimate ) # R™ may be replaced by its boundary Of).

Proof. Using extensions and restrictions, we may consider the estimate on R instead of
R . We proceed as in the previous lemma. For I1;(f, g) we obtain, using Holder’s inequality

twice,

’ZSk 2f5k9\Bv ®LyE) S 1251552 fSegln, L, 0:)) k22l

< 12" |S* 2 flr, w80 1SK9I L, (o (2:5)) D21,

< SUp 1S9 Flr,sno:B08)) 12X [SkglL,, iz (0:m) k2,
J€No

S lLe@re @9l Be, L :m):
In a similar way one treats the terms Il (f, g) and II3(f, ¢). As in the proof of Lemma 1.3.19

this implies the asserted estimate. Since for the spatial variables only Hélder’s inequality

was used, one may replace {2 # R" by its boundary in the above arguments. |

We can now prove the desired sufficient conditions for pointwise multipliers on boundaries.
We start with spatial Besov regularity.
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Lemma 1.3.21. Let E be a Banach space of class HT, p € (1,00), p € (1/p,1], let
J = (0,T) be finite, and let Q C R™ be a domain with compact smooth boundary 0f), or
Q =R'. Let further s,r € [p,00), m € N, k € (0,1), 7 € (0,2) and ¥ > 0 satisfy

1-— 1 -1
T > K, 9 > 2mek, p(,u+/p)<<1_n >T.
S Ir

Then it holds
bulr,, ,.(5;:B2m=(00:8)) S 1Pl (sB2mm00:8(E) [Ulwy (71, (00:E) N Ly (182, (005 (1.3.26)
Moreover, for w + 2=1 < there is § € (0, ) such that

bulr, . (7;52mm00:5)) S 10|Lo (1iLa00:8E) [UlWs L (1;L, 0020, . (7;B2mm(00;8))  (1.3.27)
+ ‘b’Ls(J;B%’;}“(('?Q B(E)) |U|W,€ é(JL (0 E)N Ly, (J; BQW(N 6)(8Q;E))'

Restricting to u € oW, ,,, for given Ty > 0 these estimates hold with a uniform constant
for all T < Ty.

Proof. (I) It holds that

1—
’bu’LP M J B2mn(3Q E)) /Jtp( M)‘b(tv )U(t, ) %;%rﬁn(aQ?E)) dtv

and for almost every t € J we use Lemma 1.3.19 to estimate

S [b(t,

[b(t, - )u(t, )| Bzme a0y S 10 -)| L, (00:8(8)) [ult, )|B2;M(an;E)

+[b(t, )| B2 o0:8(E)) Ut )| L, (69;F)

where % +1=14 % = %. Holder’s inequality now yields

1
p

<3

bulr, .82 (00:8)) S Iy sz 008 lulL,,  ; B2 (90 )
+ [bl L, (7B2mm 008 [Ul L, (1L, (00:E)) (1.3.28)

where % + ﬁ = % + % = 1%' To obtain the desired estimates we have to choose these
numbers appropriately.

(IT) We start with the first summand in (1.3.28). If 7 = k we take p = 0 = 00, p = o’ = p,
and obtain the first summand on the right-hand side of (1.3.27).

Now suppose that 7 > k. Then we take 0 = s and ¢/ = s’. The embedding

Ly(J; BX75(09; B(E))) — Ly(J; L, (09 B(E)))

is valid for
1 1 2mk . 1 1 2mk
1e., - < =+ .
o n—-1

p~r n-—-1
We thus need the embedding

(1.3.29)

Wy (J: Lp(T; E)) N Ly, (J; B (Ts E)) < Ly ,(J; B4 (09; E)) (1.3.30)
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for some p that satisfies (1.3.29). Due to Proposition 1.3.2, for given 6 € (0,1) it holds
W, (J; Ly(0% E)) N Ly u(J; BY (09 B)) — WLO7(J; H (09; E)),
where here the embedding constant is independent of J if one restricts to oW), ,,, and further

the Sobolev embedding

- 2mk  n—1
Hy (09 B) — BIi (00 E) - for 0> ==+ P

(1.3.31)

is valid. Therefore, if we choose § > %1, then (1.3.31) holds with some p that satisfies
(1.3.29). From Proposition 1.1.12 we infer

WO (J; B (09 E)) < Ly (J; B (0Q; E))

for (1 —0)7 — (1 —p+ %) > —W, with a uniform embedding constant in the

oWy, u-case. Since it is assumed that W < (1 — "T_Tl)T, the above inequality holds

for all # > %=1 which are sufficiently close to 1. This yields (1.3.30) with some p that
satisfies (1.3.29), and we obtain an estimate of the first summand in (1.3.28) appropriate
for (1.3.26).

(III) To estimate the second summand in (1.3.28) we have to show that
Wy (J: Lp(09; E)) N Ly u(J; BY (09 E)) — Ly ,(J; L (09; E)),

with 7 replaced by x — ¢ and ¥ replaced by 2m(x — ) for (1.3.27), where 6 € (0, k).
Using Proposition 1.3.2, it can be seen as above that this embedding holds if W <
(1 — "19—;1)7', with the respective replacements for (1.3.27) and the dependence on J in the

oWy, u-case as asserted. This yields (1.3.26) and (1.3.27), respectively. [ ]
We next consider temporally weighted Slobodetskii regularity.

Lemma 1.3.22. Let E be a Banach space of class HT, p € (1,00), p € (1/p,1], let
J = (0,T) be finite, and let Q C R™ be a domain with compact smooth boundary 0f), or
Q =R". Let further s,r € [p,00), me N, k € (0,1), ks #1—pu+1/p, 7€ (0,2) and ¥ >0
satisfy

T > K, 9 > 2mek,

p(L—p+1/p) _ (1_ n—1>7,
s vr

and suppose further that

1—p+1 n—1
_lopHl/p

1
T Ur

if k>1—p+1/p. (1.3.32)

Then it holds
bulws ,(1;L,00:8) < 1085 (1. (00:8E)) [Ulws (7L 09:B)NL, (782 00:8) - (1.3.33)

e p(l—p+1/p) | n—1
Moreover, if =———~ 4+ 52— < K and

k—(1—pu+1/p) ¢ <0 ”_1>, (1.3.34)

’ 2mr
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then there is ¢ € (0, k) such that

bulws, (1iL,008) S lLa (i 02388 [Wlwy , (7:1,09:E)NLy (s 827 (00;E))  (1.3.35)
+ [blBs (7L (008(F ‘“|W*”:;‘S(J;Lp(aﬂ;E>>mLp,u<J;B§TZ(““"(aﬂ;E»'

Restricting to u € ¢W), ,,, and assuming that b is defined on a larger interval Jy = (0,Tj),
Ty > 0, these estimates, with J replaced by .Jy in the norms for b, hold with a uniform
constant for all T' < Ty. In this case, and further in the unweighted case y = 1, one can
ignore (1.3.32) and (1.3.34).

Proof. (I) We intend to use Lemma 1.3.20, and thus have to reduce the estimate to the

unweighted case on Ry. If K > 1 — u+ 1/p then it is assumed that 1 — 1—;;7+1/p > ”19—;1. In

this case it follows from the Propositions 1.3.2 and 1.1.11 that
W, (J3 Lp(09; E)) N Ly, u(J; By (0 E)) — BUC(J; L (0 E)), (1.3.36)
such that ug := u(0,-) € L(0€; E) is well defined. Moreover, if K < 1 — p+ 1/p and in
the oW, ,-case we set ug := 0. In both cases we have
bulws ;1 00:1) < 10w = wo)lws, (1:0,60:8)) + [buolws ,(7:1,00:5))- (1.3.37)
In case k > 1 — u + 1/p we use interpolation and (1.3.36) to obtain that for the second
summand in (1.3.37) it holds
buolws  (7iL,00:8) S 1blBs (5L (00:8(8)) vl L, (60;8)
S by (L, 008 [Ulws (1.1, (00:B)NL, u(1:B2, (09:E)),  (1.3.38)

as desired for (1.3.33). Replacing 7 by x and ¥ by 2mk, and noting that the condition on &
is strict, (1.3.38) yields a term as in the second summand of (1.3.35), with some § € (0, x).
(IT) To estimate the first summand in (1.3.37) we set v := u — g, such that

v € oWy, (J; Lp(08 E))

in any case, due to the assumption Kk # 1 — p + 1/p and Proposition 1.1.11. It further
follows from Proposition 1.1.11, Lemma 1.1.3, with the help of the extension operators £;
and 89 from Lemma 1.1.5, and from Lemma 1.3.20, that

bolws iy S 100lows (L 00m) S PE ) oW (11, 00:2))
< |(EEF ) ows(r iz 00:8)) S [(E10)(EFE V) lwp Ry L, (00 2))
S €I L, L, 008 [(EFE ")l (4L, (00:5))

+ €100 Bs (R (002:8(E)) | (ETE ”U)!L,(R+; L,/ (0%E))

S €I L, L, 008 It “Hloms, (1L, 00:8))
+ €16l B Ry 51008 VL, (5L, (092:E)) (1.3.39)
where % + Tl, == —|— , == and s+ / == + p, so that s’, o’ > p, have to be chosen

appropriately. In the OWp#-case assumlng that b is defined on Jy = (0,7p) with T' < Ty,
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in (1.3.39) we can replace J by Jy and £; by &j,, which leads to constants in (1.3.33) and
(1.3.35) as desired.

(IIT) We consider the first summand in (1.3.39). For 7 = k we take p = 0 = 00, p' = 0’ = p,
and deduce from Lemma 1.1.3 and (1.3.36) that

1_
T ol wr (gL, 00:8) S [ulws, (L,00:8) + [wolws (10, 00:8) S lulws, (1;,00:8),

where the constant for this estimate is of course independent of J if ug = 0. This yields
the first summand in (1.3.35) as desired. Further, for 7 > k we take p = r, p’ = 1/, and
estimate for sufficiently small ¢ > 0

1—p
[t lony, (iL00:m) S Vlwsre i, o0m)
) ol\p

< [ulwrreir,o0im) + Holwsre ir, 00:))
S [ulwsre iz, ooimy) + 11w, (10,00 2)0 Ly (7582, 00:2)

with a uniform constant in the ¢W,, ,-case. Observe that

Pt
1 < 1
o 4

BS,(Ry; L (09 B(E))) = Lo(Ry; L (00; B(E))) i +ho (1.3.40)

Since all occurring relations are strict, it thus suffices to show that there exists a o > p,
satisfying (1.3.40), such that

W .(J; Lp(09; E)) N Ly u(J; BT (0); E)) — We (J; Ly (09; E))
holds true. For 6 € (0,1), Proposition 1.3.2 yields
W (T3 Ly(09; E)) N Ly, (J; B (09 E)) < WO (1, B (09; E)),

with a uniform embedding constant in the oW, ,-case. It holds

-1
HY (00 E) — Ly (0% E)  if 6> ”19 : (1.3.41)
T
and moreover it follows from Proposition 1.1.12 that
WO (J; L (09 B)) < W (J5 L (0; E))
if (1 +1/p)
(1—9)7—(1—M+1/p)>/€—]#, (1.3.42)

again with a uniform constant in the oW, ,-case. We can now choose 6 and o > p satisfying

(1.3.40) and (1.3.36) such that (1.3.42) holds, using 22— (1 — 221) 7 So we have

shown the asserted estimates for the first summand in (1.3.39).
(IV) For the second summand in (1.3.39) it holds, as above,

ol, L) S e, in00E) T ulws  (70,00E)NL, (7.8, (09:E))-
Using the Propositions 1.3.2 and 1.1.12, it can be seen as in the previous step that

Wy (J5 Lp(0% E)) N Ly (J; By (093 E)) < Ly ,(J; Ly (09 E))
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is valid if w < (1 - "19—;1)7', with a uniform constant in the ¢W), ,-case. This shows
(1.3.33). For (1.3.35) the same arguments are valid with 7 replaced by x— ¢ and ¥ replaced
by 2m(k — §) with § € (0, k). [ |

It seems that the exceptions (1.3.32) and (1.3.34) are not essential and only due to our
proof. If one had a Littlewood-Paley representation of the spaces Wy ,, as for the un-
weighted Slobodetskii spaces, then one could argue as in Lemma 1.3.20 and also cover the

exceptional values.

The above results on pointwise multiplication are rather sharp, and valueable for low values
of p € (1,00), compared to k. It turns out that if p is sufficiently large then the spaces
W ﬁmH(J x 00)'3 are closed under pointwise multiplications, and then also b may belong

to a temporally weighted space.

Lemma 1.3.23. Let E be of class HT , let J = (0, T) be finite or infinite and let p € (1, 00),
€ (1/p,1] and k € (0,1), 9 € Ry \N. Then it holds

|b“|wgf(JxaQ;E) S [blLo(sx00,8(E)) |“’W,:if(JxaQ;E) + |b‘w,;i;?(Jxasz;B(E)) |l Lo (7x09,B)-

Moreover, if

(1—1_“+1/p)19>"_1, (1.3.43)
K P

then there is an estimate

’bu|W;ﬁ9(J><BQ;E) S ’b’W,;’f(JXBQ;B(E))‘u’W{”’f(Jxaﬁ;E)'

Replacing Wy, f by oWp. }?, these estimates are independent of the length of J. If b is defined
on a larger interval Jy = (0,Ty), T < Ty, and one restricts to a OW]'Z;f—space for u, then

the estimates are uniform in T'.

Proof. Throughout we denote any occurring sup-norm by | - |-
(I) By Lemma 1.3.19 we have for almost all ¢t € J that

[b(t, - )ult, )wo o) S 10(E loolult, )lwo aa;m) + 10(E )lwo (6.5(m)) [u(t; ) loo,

and we obtain the asserted estimate for ]bu|Lp W (JWH (D)) by taking the L, ,-norm. This
estimate is always independent of the length of J. For Wy, (J; L,(0€; E)) we use the
intrinsic norm given by Proposition 1.1.13 to obtain

bulwy, (1iz,00:8) S [bloolulr, .(sL,00:8) (1.3.44)
+ [bloo[ulwy, (1L, (00:m) + Plwy, (7:L,(00:8(2)) [Uoo-
Note that this estimate also holds true for J = Ry.

(IT) Now let b, u € oWy, }19. To get an estimate independent of J we cannot use the intrin-
sic norm for oW, directly (see the discussion in Remark 1.1.15). We therefore take the

"®Recall the notation Wy1Y (J x 9Q; E) = Wy, (J; Lp(092%; E)) N Ly, (J; WY (09 E)).
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extension operator 59 from Proposition 1.1.5, whose norm is independent of the length of
J, and estimate, using Proposition 1.1.11 and (1.3.44) on the half-line,

|bu|0WI§7H(J;Lp(8Q;E)) < |59b89u|W;M(R+;Lp(GQ;E))
< [E7bloclEuly, (o002 + [E70lWy Ry 0955(E)) €1l
S [blooltlgws ;1 00:)) + [Blows , (7;1,(00:8(E))) [Ulso-

These estimates are independent of the length of J. If b is defined on a larger interval
Jo = (0,Tp), then one may replace 59 by £, in the above arguments to obtain an estimate
uniformly in 7" in this case.

(III) Finally, if (1.3.43) is valid then the asserted estimate follows from

K, . T .
Wyl (J x 08 E) — C(J x 0Q; E), (1.3.45)

which is due to Proposition 1.3.2 and Sobolev’s embeddings, and is independent of the
length of J in the OW; ﬁ?—case and independent of T' < Ty if b is defined on Jy. |

We emphasize that for ¥ = 2ms the condition (1.3.43) is equivalent to k > 1—u+1/p+%.

We summarize the above pointwise multiplication results for the coefficients of boundary

differential operators as follows.

Proposition 1.3.24. Let E be a Banach space of class HT, p € (1,00), u € (1/p, 1], let
J = (0,T) be a finite interval, and let Q C R™ be a domain with compact smooth boundary
09, or Q =R". Let further m € N and k € Ng, k < 2m — 1, define the number

Ki=1— —— —— and suppose that k # 1 — pu+ 1/p.

Assume that for the B(E)-valued coefficient b = b(t,x) of the operator btrqV?®, where
B € Ny with || < k, one of the following two conditions is valid: either

n—1 K,22mK .
K> 1—H+1/p+% and b€ Wp,,u (JX 3Q,B(E)), (1346)
or it holds
b€ By, ,(J; L, (09; B(E))) N Ly, (J; BY(09; B(E))), (1.3.47)

with numbers sg,r3 € [p,00) so that

pl—p+1 n-1 k— 16 k—16l

n—1
< 1-— 1 0 .
s * 2mrg o P o (L=n+l1/p)¢ < ’ Qng)

Then in both cases we have
btraVP € B(W 2™ (J x Q; E), W25 (J x 0% E)),
and if |3| = k then

b€ BUC(J x 0Q; B(E)), 18] = my, j=1...,m.
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Proof. It follows from Lemma 1.3.4 and Proposition 1.3.12 that trqV? maps
Wplﬁm(J X Q) — W;’;IBI/Zm—l/Qmp,Zm—Iﬁl—l/p(J x 0S); F)

in a continuous way. Observe that the latter space embeds into W, ;fm“(J x 0Q; F), since
|3| < k. Assume that (1.3.46) holds. Then Lemma 1.3.23 implies that btrqV® maps con-
tinuously as asserted. The continuity of b follows from (1.3.45).

Next assume (1.3.47). Then we can apply the Lemmas 1.3.21 and 1.3.22 with 7 = 1 —
|3]/2m —1/2mp and ¥ = 2m7 to obtain the asserted mapping property of btrqV?. In case
|B| = k it holds

By, p(J: Ly (09 B(E))) N Ly, (J; By (09 B(E))) < C(J x 99; B(E)),

S3,P T3P

which follows from Proposition 1.3.2, the remark thereafter, Proposition 1.1.11 and

Sobolev’s embeddings, and shows that b is a continuous function. |
We finish this section with a technical result on compatible data on the boundary.

Lemma 1.3.25. In the situation of Proposition 1.3.24, for k > 1 — u+ 1/p the sets
D = {(g,u0) € W2 (J x 0; E) x B2m=1P)(Q: E) : b(0, ) troV7ug = g(0,-) on T},

Do:={(g,u0) €D : g € W™ (J x 00 E)},

are well-defined and closed subspaces of Wy2™ (J x 0Q; E) x Biz(“_l/p)(Q;E) and
GWEZTE (T x 0Q; E) x BpnW=HP)(Q: B), respectively.

Proof. If (1.3.46) is valid, then b(0, -) always exists. To obtain this in case (1.3.47), note
that kK > 1 — p+ 1/p in particular yields k > 1/s. Hence D and Dy are well-defined in both
cases.

To show that D is closed in Wy2™(J x 9Q; E) X Bgz(“_l/p)(Q;E) take a sequence
(g%, ub)ren € D, and assume that (g%, uf) converges to (g,up) as k — oo with respect
to the norm of W2 (J x 09Q; E) x Bzfg(“_l/p)(ﬁ; E). It is then a consequence of (1.3.20)
and Theorem 1.3.6 that (¢g¥(0,x),trqV5ub(x))ren converges (up to a subsequence) to
(9(0, ), troVPiug(x)) as k — oo, for almost every x € 9. Moreover, for all k the identity

b(0, z)trqVPul (z) = ¢*(0, z)

is valid for almost every x € 9. Taking the limit, we obtain that b(0,2)trqVPug(z) =
9(0,z) holds true for all x € 9Q which are not contained in a countable union of subsets
of surface measure zero of 9. This yields (g, up) € D. The closedness of Dy follows from
the same arguments. |






Chapter 2

Maximal L, ,-Regularity for Static

Boundary Conditions

In this chapter we develop the maximal L, ,-regularity approach for a general class of
parabolic initial-boundary value problems with inhomogeneous static boundary condi-
tions, generalizing the results of Denk, Hieber & Priiss [25]. In Section 2.1 we describe
the approach and the involved function spaces in detail, provide examples, describe the
advantages compared to the unweighted approach, and give an outline of the strategy how
to obtain the main result of the present chapter, Theorem 2.1.4. The proof of the theorem
is carried out in detail in the Sections 2.2, 2.3, and 2.4, and follows [25]. In Section 2.5 we

show that related boundary operators admit a continuous right-inverse.

2.1 The Problem and the Approach in Weighted Spaces

The Problem

For the unknown u = u(t,x) € E we consider the linear inhomogeneous, nonautonomous

parabolic initial-boundary value problem

du+ A(t,z,D)u= f(t,z), 2€Q, te,
Bj(t,z, D)u = g;(t,z), xel, telJ, j=1,..,m, (2.1.1)
u(0,x) = up(z), z €.

We assume that Q@ C R"™ is a domain with compact smooth boundary I' = 02, that

J = (0,T) is a finite interval, T' > 0, and that E is a complex Banach space of class H7T .

The differential operator A of order 2m, where m € N, is given by

Alt,z,D)= Y ao(t,z)D%,  z€Q, tel

|a|<2m

where D = —iV, and V = (9y,, ..., 03, ) denotes the euclidian gradient on R". The dynamic
equation in the domain is complemented by m boundary conditions of order at most 2m—1.
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The boundary operators B; are of the form

Bi(t,x,D)= Y bjglt,z)troD’,  wel, teld,  j=1,..m,
|B]<m;

where trg denotes the trace on €2, and where the integer m; € {0, ...,2m —1} is the order of
B;. Observe how B; acts on a function u: one first applies the components of the euclidian
gradient and then the spatial trace. We assume that each of the operators B; is nontrivial,
Bj # 0, and write

B:= (81, ,Bm)

The coefficients of the operators take values in the bounded linear operators on F, i.e.,
aq(t,x) € B(E), xr€eN, telJ, la| < 2m,

big € B(E), zel, tel, 18] < my, j=1,...,m.
Finally, the data on the right-hand side is E-valued, and is assumed to be given.

Example 2.1.1. We consider two problems that fit into the above framework. The first

is a linearized reaction-diffusion system, given by

Oou — Au = f(t,x), x € €, tedJ,
dyu = g(t, z), el ted,
u(0,x) = up(x), x €1,

where 0, = v -trqV denotes the derivative with respect to the outer unit normal field v of
I'. Here, the order of A(D) = —A is 2, thus we have m = 1, and the order of the boundary
operator Bi(z,D) = 0, is m; = 1.

A further problem that fits into our framework is a linearized Cahn-Hilliard phase field

model, given by

Opu + A%u — Au = f(t, ), x €, teJ,
—0yAu+ dyu = g1(t, ), x el teJ,
Oyu = ga(t, x), rel, teJ,
u(0,x) = up(z), x € €.
Here A(D) = A? — A is of order 4, which means m = 2, and the dynamic equation in

is complemented by two boundary conditions, with By (z, D) = —9,A + 9,, m; = 3, and
BQ(I‘,D) = 8,,, mo = 1. [ |

The Approach in the L, ,-spaces

We describe the maximal L, ,-regularity approach for (2.1.1). Let

pe(l,00),  pe(l/p1].
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The basis of the approach is that the domain inhomogeneity f and the solution w shall
satisfy
[, u, O, Au€ Eo = Ly, (J; Ly(S5 E)).

These assumptions determine the regularity of u and the other data as follows. Since A is
of order 2m, it should hold

w € By =W, ,(J; Lp(Q4 E)) N Ly (J; W™ (4 E))
for the solution of (2.1.1). For the initial value, Theorem 1.3.6 on temporal traces yields
ug € Xy = B2=UP(Q; ).

For the boundary inhomogeneities, since the operator B; is of order m;, a successive ap-
plication of Lemma 1.3.4 on spatial derivatives, together with Proposition 1.3.12 on the

spatial trace on anisotropic spaces yields
9j € By = Wy (J; Ly(T; B)) 0 Ly o (J; W™ (D E)), - G =1,...,m,

where the number x; € (0, 1) is given by

In the sequel we also write
Fu:=Fi, X ...xFpy,, g="(91,---,9m) € Fy,
and we further put
0By = oWy, (J; Lp(Q; E)) N Ly, (J; W™ (9 E)),
oF;j = oWpi(J; Lp(T; B)) N Ly, (J; W, (T B)), oF, = 0F1,4 X oo X 0Fr e

We also write Eg ,(J) and Eg,(J x ), and similar for the other spaces above, if the
dependence on the underlying interval and domain might not be clear from the context.

As a consequence of the above regularity assumption, (2.1.1) might a priori not be solveable
for all data (f,g,uo). In fact, for k; > 1 — 4+ 1/p, which is equivalent to 2m(pu — 1/p) >
m; + 1/p, it holds

Fju = BUC(T; By /P~ (1; B)),

due to Theorem 1.3.6. In this case, if the boundary equation in (2.1.1) holds for ¢t > 0, by
continuity it necessarily also holds for ¢ = 0, and this yields

B;(0,z, D)uy(z) = g;(0, z), zel, ifk; >1—p+1/p. (2.1.2)

Here Bjug is well-defined for ug € X, , and 2m(p—1/p) > m;+1/p provided the coefficients
of B; are sufficiently smooth.

Thus if k; > 1—p+1/p for some j, then with the above approach (2.1.1) it is not solvable
in E, , for arbitrary data g € F, and ug € X, . In this case the compatibility condition
(2.1.2) on g and wyg is necessary. For short, the boundary equation has to hold up to t =0
if the involved expressions are well defined.
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Example 2.1.2. We reconsider the problems from Example 2.1.1. For the linearized
reaction-diffusion system, the weighted maximal regularity class and the regularity classes

of the data are given by
By = Wy (s Lp(2 B)) 0 Ly u(J; W E)),

Xup = By P (UE), Frpu = Wyl VBT Ly(T5 B)) O Ly, (s W, ™2 (T B)),
ie., k1 =1/2 —1/2p. Compatibility conditions are necessary if 2(u — 1/p) > 1+ 1/p.
For the linearized Cahn-Hilliard model we have

UNTE Wl (JS Lp(Q; E)) N Lp,uU% W;(Q; E)), Xup = B;;z(a“_l/p)(ﬁ E),
as well as k1 = 1/4 — 1/4p, so that
Fupu = Wy~ (J5 Ly(T5 E) 0 Ly (J; Wy~ V2(T5 B)),
and further ko = 3/4 — 1/4p, so that
Fo, = WAV (J; Ly(T5 E)) N Ly (J; WEYP(D3 B)).

Here compatibility conditions in the first and the second boundary equation are necessary
if 4(u—1/p) >3+ 1/p and 4(u — 1/p) > 1+ 1/p, respectively. [ |

We intend to solve (2.1.1) in the following sense.

Definition 2.1.3. We say that the problem (2.1.1) enjoys the property of maximal L, ,-

regularity on the interval J, if the regularity assumptions on the data, i.e.,
f € EO,}L? g e ]F,Un U € Xu,,ua

together with the compatibility conditions (2.1.2), are not only necessary for a unique
solution u € E, ,, of (2.1.1), but also sufficient.

The Assumptions on the Operators

Let P(D) = |, <x PyD” be a differential operator of order k € Ny, with coefficients p.
By the subscript f we denote the principal part of P, i.e.,

D)= Y p,D".
IvI=k

The symbol of P is given by the polynomial expression P(£) = 3°, <), py&7, where { € R".

We describe the assumptions on the coefficients of the operators. It is required that each
summand occurring in A and B; is a continuous operator on the respective underlying
spaces, i.e.,

aa D € B(Ey 4, Eo ), la| < 2m, (2.1.3)

and further
bistroD? € B(Ey ., Fj,.), 18] < mj, j=1,..,m. (2.1.4)

Moreover, the top order coefficients are required to be continuous on J x . The Proposi-
tions 1.3.16 and 1.3.24 show that the following assumptions are sufficient for these purposes.
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(SD) For |a| < 2m one of the following two conditions is valid: either

2m(p—1/p) >2m —1+n/p and aq € Eo,(J x Q; B(E)),

or there are 74, 5o € [p,00) with p(l;’j)ﬂ + g <1— % such that
o € Ly, (J; (Lr, + Loo) (4 B(E))).

For |a| = 2m it holds a, € BUC(J xQ; B(E)), and if  is unbounded then in addition

the limits aq (t, 00) := limy o aa(t, ) exist uniformly in ¢ € .J.

(SB) For j =1,...,m and || < m; one of the following two conditions is valid: either

n—1

> 1 — 1
Kj p+1/p+ 2mp

and  bjz € F; (] x T;B(E)),

or there are 73,53 € [p,00) with

l—p)+1 n—1 mj — mj — n-l
pl—pm+1 < ry =Wl ,Qj+ﬂ|m_(1—u+1/p)¢(0, >
;B 2mr;g 2m 2m 2mrjs

such that

Kj 2mk;
bjg € Bslyp(J; L,y (T; B(E))) N Ly, (J; Br . (s B(E))).

Assuming (SB), Proposition 1.3.24 show that for the top order coefficients of B it holds
bjs € BUC(J x T; B(E)), 8] = m;, j=1,...,m.

Observe that the first conditions in (SD) , where the coefficients belong to the weighted
space F; ,, is made for large p, and will be needed in the applications to quasilinear linear
problems. The second condition, where b belongs to an unweighted space, is made for
lower values of p, and can be useful in the context of a priori estimates for the underlying

problem.

We impose two structural assumptions on the operators. The first is normal ellipticity.

(E) Forallt € J, z € Q and [¢] = 1 it holds o(As(t,x,€)) C Cy := {ReX > 0}. If Q is
unbounded then it holds in addition o (A(t, 00,€)) C Cy for all ¢ € J and [¢] = 1.

The second is a condition of Lopatinskii-Shapiro type. For each z € I" we fix an orthogonal
matrix O,(,) that rotates the outer unit normal v(x) of " at x to (0,...,0,—1) € R", and
define the rotated operators (A”, B¥) by

A (t,z,D) := A(t, x, (’)Z(:E)D), BY(t,x, D) := B(t, x, OZ(:D)D).

We assume the following.
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(LS) For each fixed t € J and x € T, for all A € Cy and & € R"! with || + |¢/| # 0 and
all h € E™ the ordinary initial value problem

Mo(y) + AL (4,€, Dy)v(y) =0,  y >0,
;’ﬁ(t’g,’Dy)Ub:O = h;, j=1,...,m,

has a unique solution v € Cy([0, 00); F).!

If F is finite dimensional, then it is necessary and sufficient for (LS) that the above initial

value problem has for A = 0 only the trivial solution.

The Main Theorem and the Advantages of the Approach

The main result of this chapter reads as follows.

Theorem 2.1.4. Let E be a Banach space of class HT , p € (1,00) and u € (1,p,1]. Let
J = (0,T) be a finite interval, and let Q@ C R™ be a domain with compact smooth boundary
I' = 0Q. Assume that (E), (LS), (SD) and (SB) hold true, and that x; # 1 — u+ 1/p for
7 =1,...,m. Then the problem

ou+ A(t,z, D)u = f(t,x), x € Q, teJ,
Bj(t,x, D)u = g;(t,x), rzel, teJ, ji=1,...,m,
U(O,I‘) = ’U,()(-T), T € Qa

enjoys maximal L, ,-regularity, i.e., it has a unique solution u = L(f, g,uo) € E,, if and

only if
(f,g9,up) € D:= {(f,g,uo) €Eo, xFyx Xy, « forj=1,..,m it holds
Bj(O, -,D)UQ = gj(O, ) onT ifﬁj >1—p— l/p}.

The corresponding solution operator L : D — K, , is continuous. If L is restricted to
Do := {(f,9,uw0) €D : g€ oFu},
for given Ty > 0 its operator norm is uniform for all T < Ty. Finally, if the coefficients
(—1)aq, Jaf <2m,  (=D)Pbs, I8/ <m;, j=1,..,m, (2.1.5)
and the data are real-valued, then also the solution u is real-valued.

Due to Lemma 1.3.25, the spaces of compatible data D and D are well-defined and Banach
spaces when equipped with the norms of Eg , xF,, x X,, , and Eq , x oF, x X, ,,, respectively.
It is important to distinguish between the norms of IF, and ¢FF,. These are equivalent
for k; # 1 — 4+ 1/p, but the norm equivalent constants depend on the length of the
underlying interval J. Our motivation to introduce the space Dy is to obtain estimates
uniform in time for problems with vanishing initial values, as they typically occur in the

!The space C([0, 00); E) consists of the continuous E-valued functions on [0, 00) vanishing at oco.
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context of fixed point arguments (see the discussion in Remark 1.1.15). Observe that for
(f,g9,u0) € Dy it necessarily holds B;(0, -, D)ug = 0 on I' if this expression makes sense,
ie,ifk;>1—p+1/p.

Compared to the unweighted case, the maximal regularity approach in weighted spaces has
the following advantages.

e Flexible initial regularity: We obtain solutions for initial values in B, ,(Q; E), where
s € (0,2m(1 —1/p)].

e Inherent smoothing effect: Away from the initial time, 7 € (0,T'), the solutions belong
to the unweighted space

Eu1(7,T) = Wy (7, T; Lp(Q; E)) N Ly (7, T; W2™(Q; E)) — C(J; nggﬂ—l/p)(fz; E)).

e Control solutions in a strong norm at a later time by a weaker norm at an earlier
time and the data: For s = 2m(u — 1/p) € (0,2m(1 — 1/p)] it holds

(D) gzma-1/) g gy < CDN( f o, + l9lF, + |10l By 1))

e Avoid compatibility conditions: Given p € (1,00), if p is sufficiently close to 1/p then
kj < 1—p+1/p for all j, such that there is a unique solution u € E,,,, for arbitrary
data in Eq , x F, x Xy .

Outline of the Proof

The proof of Theorem 2.1.4 is inspired by the one of Denk, Hieber & Priiss [24, 25| in
the unweighted case. The strategy for a bounded domain €2 is as follows, for unbounded
domains it has to be slightly modified.

One describes the boundary I' of Q by a finite collection of charts (U;, ¢;), i =1, ..., Ny, and
further takes open sets U;, i = N +1, ..., N, such that U; NI = () and Q C UZ]\LFI U;. This
yields local problems, with boundary conditions for ¢ = 1, ..., Ny and without boundary
conditions for i = Ny +1, ..., Np. The problems without boundary conditions are extended
to a full-space problem and the problems with boundary conditions are transformed and
extended to a half-space problem, using the push-forward corresponding to charts ¢;. This
is done in Section 2.4. If the diameter of the U; are sufficiently small then by continuity
the top order coefficients of the resulting operators are of small oscillation, such that, by a
perturbation argument which is based on the contraction principle, one can neglect lower
order terms and assume that the coefficients are constant, see Section 2.3. The resulting
full- and half-space problems are solved in Section 2.2. At the end of Section 2.4, these
solutions are put together to a solution of the original problem, using a partition of unity
for Q subordinate to the cover UZ]\LFl U;.
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2.2 Top Order Constant Coefficient Operators on R" and R"

2.2.1 The Full-Space Case without Boundary Conditions

For constant coefficients a, € B(E) we consider the differential operator

AD)= > a.D".

|a|=2m

Observe that there are no lower order terms so that A(D) is homogeneous of degree 2m.
We show that (E) implies parameter-ellipticity, in the sense of [24, Definition 5.1], with
angle of ellipticity strictly smaller than /2.

Lemma 2.2.1. Assume that A satisfies (E). Then there is ¢ € (0,7/2) such that
o(A(§)) C Xy ={A e C\{0} : |argA[ <o},  [(]=1,  £eR"
Proof. For |{| =1 it holds |£%*| < 1 for all |a| = 2m, and therefore

AQ) sy < Y laalsm),

|a|=2m

which yields that the spectral radius of A(¢) is uniformly bounded in |{| = 1. Thus there
is R > 0, independent of [{| = 1, such that A € p(A(§)) for all A with |[A\| > R or,
by assumption, A € C_. Since the resolvent set is open, it follows from continuity and
compactness that for all A = if with § € [—R, R] there is a neighbourhood Uiy C C of i0
such that Uy C p(A(§)) for all [£] = 1. Again compactness yields a radius r > 0, which
does not depend on 6 € [—R, R], such that B,(i0) C p(A(&)) for all [¢] = 1. We thus obtain
an angle ¢ € (0,7/2) with p(A(¢)) D C\X,. [ |

We have the following maximal L, ,-regularity result for .4 on the half-line.

Proposition 2.2.2. Let E be a Banach space of class HT, p € (1,00), u € (1/p,1], and
assume that A satisfies (E). Then there is a unique solution u = Sp(f,uo) € Ey (R4 xR™)
of

u+ Ou+ A(D)u = f(t, ), x € R, t >0,
u(0,x) = ug(x), r € R", (2.2.1)

if and only if
feEy(Ry xR"), Uy € Xopu(R™).

The corresponding solution operator Sg : Eg ,,(Ry x R™) x X,, ,(R") — E,_, is continuous.

Proof. It follows from Lemma 2.2.1 that A is parameter-elliptic, with angle of ellipticity
strictly smaller than /2. Thus by [24, Theorem 5.5] and the perturbation result [24, Propo-
sition 2.11], the realization of 1+ .4 on L,(R"; E) with domain D(1 + A) = W2™(R"™; E)
is invertible and admits a bounded H*°-calculus with H*>-angle strictly smaller than 7 /2.
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It is now a consequence of (A.3.2) and [85, Theorem 4.2] that 1 4+ A enjoys maximal
Ly-regularity on the half-line, i.e., 1+ A4 € MR, (R+; L,(R™, E)) Since

Xou(RY) = B0 V0 (R B) = (L, (R B), W2"(R™ E))

by Proposition A.4.2, the assertion follows from Theorem 1.2.3 by Priiss & Simonett. H

2.2.2 The Half-Space Case with Boundary Conditions

For constant coefficients aq, bjz € B(E) we now consider the operators

A(D) = Z ao D, BJ(D) = Z bjﬁtrRiDﬁ, 7=1,...,m.

la=2m |Bl=m;

Observe that again there are no lower order terms. We identify the boundary of R} with
R"~!. Now all spaces must be understood over R x R and Ry x R"~ 1, respectively, i.e.,

By = W;},M(R—H LP(RZ—; E))n Lp,u(R—i—S Wme(Rzlr? E)),
Fjp = Woi(Ry; Ly(RY; B)) N Ly u(Rys W, ™ (RY; E)),
Eou = Lpu(Ry; Ly(RY; E)), Xup = Bf;f?(”_l/”) R} E).
The Banach space of compatible data is given by

D ={(f,9,u0) € Eoy x F, x Xy, : for j =1,...,m it holds
Bj(D)U():gj(O,-) on I' iij > 1—,u—|—1/p}.

The main result of this subsection is the following.

Proposition 2.2.3. Let E be a Banach space of class HT, p € (1,00), u € (1/p,1], and
assume that (A, B) satisfies (E) and (LS). Suppose further that x; # 1 — p+ 1/p for all
j =1,...,m. There is a unique solution v = Sy (f, g,uo) € E, , for the problem

u+ 0w+ A(D)u = f(t,z), zr e RY, t >0,
B;j(D)u = gj(t,z), =xeR"'  t>0, j=1,...,m, (2.2.2)
u(0,x) = ug(z), r € RY,

if and only if (f,g,ug) € D. The solution operator Sy : D — E, ,, is continuous.

As explained in Section 2.1, the necessary conditions on the data are a consequence of
the mapping behaviour of spatial derivatives, the spatial trace and the temporal trace on
the weighted anisotropic spaces, derived in Lemma 1.3.4, Proposition 1.3.12 and Theorem
1.3.6. If a solution operator exists, then its continuity follows from

140+ A(D) € B(Ey 4, Eo ), B(D) € B(Eyu,Fu), tri—o € B(Ey, Xup)

and the open mapping theorem.
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Our task is thus to show that for any given (f, g,up) € D the problem (2.2.2) has a unique
solution u € E, . For this we follow the strategy presented in |25, Section 4|. We first
consider (2.2.2) in Lemma 2.2.5 with homogeneous boundary conditions, g = 0, and then
we consider (2.2.2) in Lemma 2.2.6 with f = 0 and up = 0. The general case follows from

a combination of these lemmas and will be shown at the end of this subsection.

As for normal ellipticity, we first show that also (LS) holds in fact on a larger sector than

originally assumed.

Lemma 2.2.4. Let (A, B) satisfy (E) and (LS). Then there is ¢ € (0,7/2) such that for
all A\ € X,y and & € R"! with |A| + |¢'| #0 and all h = (hy, ..., hy,) € E™ the ordinary

initial value problem

M(y) + A€, Dy)v(y) =0, y >0,
Bj(glvDy)v‘yZO = hja Jj=1..,m, (2.2.3)

has a unique solution v € Cy([0,00); E), i.e., the condition (LS) for (A, B) is even valid for
AE EW,¢.
Proof. (I) It follows from Lemma 2.2.1 that .4 has angle of ellipticity ¢4 € (0,7/2). For

A€ S,_y, and & € R"! we rewrite the ordinary differential equation Av+.A(¢', Dy)v =0
of order 2m to a system of 2m first order equations,

Oyu(y) = iAo\ uly), ¥y>0,  v=(v,0y0,...,05" "),

where Ag(A, &) is a B(E)-valued 2m x 2m-matrix. The solutions of the above equation are
of the form v(y) = eyiAO()"fl)go, where v, € E?™.

By [24, Proposition 6.1], the matrix i4g(\,£’) has a spectral gap at the imaginary axis.
We denote the projection onto the stable part of the spectrum by Ps(), &) € B(E*™).
Denoting further by m; : E?™ — E the canonical projection onto the first component, we
define the operator pencil T : Sy, x R"™t — B(Ps(A, &)E*™, E™) by

Ot = (BLE' Dm0y

v)l,—gr 2o € PN\ E)EM™.

For A\ and ¢ from a compact set, the spectral gap for iA(\,¢') is uniform, and P; is
continuous in its arguments. By construction, (2.2.3) is uniquely solveable for A € ¥, _,,
and ¢ € R™ ! if and only if T'(\,¢') is invertible.

(II) Let v be the unique solution of (2.2.3) in Cy([0,00); E) for h € E™. Then for r > 0

the function v also satisfies
M(rg) + A, Dy)o(ry) =0, 7 >0,
B (&', Dy)vly=0 = hy, j=1,..,m.
Since (Dyv)(r+) = r~1Dy(v(r+)), it follows from homogeneity that w := v(r-) is the unique
solution of
r?aw(y) + A(rg, Dyw(y) =0,  y >0,
Bj(r€', Dy)wl|y—o = ™ hj, j=1,...,m.
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Therefore T()\, ¢') is invertible if and only if T'(r?™\, r¢’) is invertible.
(IIT) By (LS), continuity and compactness there is an angle ¢ € (¢4, 7/2) such that
T(A, &) is invertible for all

(A €) e {se™ : s€0,1], 0 € [r/2,7 — o]} x {|¢'| =1},

and further for all

(A &) € (e : e fm/2,m -]} x {I¢] < 1}.

We use this fact and the scaling property from Step II to show that T'(),&’) is invertible
for all A € ¥,_4 and & € R*™! with |\ + |¢/| # 0. We distinguish four cases.

For 1 < |\ < |¢'| =: 71 the operator T(\/r?™ &' /r1) is invertible because |A|/rf™ < 1
and [¢/|/r1 = 1. The scaling property thus shows that T'(\,¢’) is invertible in this case,
and hence it is invertible whenever |A\| = 1. For 1 < |¢/| < |A| =: r3™ the operator
T(\/r3™ €' /ro) is invertible due to |A|/r3™ = 1. So T'(\,¢’) is invertible if ||, |¢'] > 1.
Now for 0 < r3™ := |A| < 1 and arbitrary & we have that T'(\/r3™, ¢ /rs) is invert-
ible because |A|/r3™ = 1. Finally, for 0 < 74 := [¢/| < 1 and arbitrary A the operator
T(\/r3™ €' /ry) is invertible because |¢/|/r4 = 1. [ ]

For homogeneous boundary conditions, weighted maximal regularity follows again from

the unweighted case, since the abstract result of [71] is applicable.

Lemma 2.2.5. Let E be a Banach space of class HT , p € (1,00), u € (1/p, 1], and assume
that (A, B) satisfies (E) and (LS). Then for all f € Eo, and uy € X, there is a unique
solution u € E, ,, of

u+ 0w+ A(D)u = f(t,z), xz € RY, t>0,
B;j(D)u = 0, zeR"  t>0, j=1,..,m, (2.2.4)
u(0, ) = uo(z), z € RY.

Denoting by Ap the realization of the operator A on L,(R'}; E), with domain
D(Ap) = {u e W}™(R; E) : Bu=0},

the operator 14+ Ap generates an exponentially stable analytic Cy-semigroup, and 1+ Ap €
MRy (Ry; Ly(RY E)).

Proof. Due to the Lemmas 2.2.1 and 2.2.4, the operator A is parameter elliptic with
angle of ellipticity ¢4 < 7/2, and for ¢ € (¢4, ) it holds that (A, B) satisfies (LS) for all
A € B,_4. Thus, by [24, Theorem 7.4] and the perturbation result [24, Proposition 2.11|,
1 + Ap is invertible, and admits a bounded H*°-calculus with H*-angle strictly smaller
than 7/2. It follows from (A.3.2), [85, Theorem 4.2] and Theorem 1.2.3 that 1+ Ap €
MRy, (Ry; Ly (RY 5 E)). Since

Xup = (Lp(RY; E), W™ (R™ E)), o
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by Proposition A.4.2 we obtain the unique solvability of (2.2.4) in E,, ,, for f € Eq , and
ug € Xy, In particular, 1 + Ag is the generator of an analytic semigroup. |

It seems not possible to absorb inhomogeneous boundary conditions, g # 0, into the domain
of a reasonable operator on L, ,(R4;E). Hence in this case we cannot reduce maximal
Ly, ,,-regularity to the unweighted problem via the abstract result of Theorem 1.2.3.

To treat the inhomogeneous boundary conditions, we first consider an elliptic problem
corresponding to (2.2.2). The following result is a combination of the Lemmas 4.3 and 4.4
in [25].

Lemma 2.2.6. Let E be a Banach space of class HT , p € (1,00) and assume that (A, B)
satisfies (E) and (LS). Then for A € C;\{0} and g; € W;m'{j (R*"LE), j=1,..,m, the
problem

v+ A(D)v =0, xz € RY,
Bi(D)v =gj(z), =xeR™Y  j=1,..m, (2.2.5)

has a unique solution v(X\) € W2™(R"; E). This solution may be represented in the form

m

v(A) = 8i(Ngj,

j=1
for operators Sj(\) € B(WQmH] (R*1 E), W2™(R"; E)) given by

S;(\) = T;(ANLY ™™,

. 1/2m
Here Ly := A+ (—A,_1)™, and the extension operator £, = e X maps g; €

szmnj (R"~Y E) to the function (z',7y) e*yLi/ngj(:c’), with ' € R"! and y > 0.
Moreover, for o > 0 and |a| < 2m it holds D*T;(o + i-) € C*(R\{0}; B(L,(R":; E))), and
{Al_iDaT (N), )\2_%%DO‘T()\) : A=o0+i0 € C\{0}, |a|]<2m, j=1,..,m}

is an R-bounded set of operators in B(L,(R’; E)).

With the above result the time-dependent problem with inhomogeneous boundary con-
ditions can now be solved via Fourier transform with respect to time, using the above
representation of the solutions of the corresponding stationary problems. Recall the nota-
tion
0E1, = oW, (R Ly(R; E)) N Ly u(Ry; W™ (RY; E)),
; _ 2mk; o
oy = OW;L(R% Ly(R" 13 E)) N Lpu(Ry; WPMH] (R" 1; E)),
OFM = OFLM X ... X O}Fm#.

Lemma 2.2.7. Let E be a Banach space of class HT , p € (1,00), i € (1/p, 1], and assume
that (A, B) satisfies (E), (LS). Then for g € oI, there is a unique solution u € o, of

u+ ou+ AD)u=0 r € RY, t>0,
B;(D)u = gj(t,z), x€R"'  t>0, j=1,...m, (2.2.6)
u(0,2) =0 r e RY.
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Proof. Throughout we write z = (2/,y) € R with 2/ € R""! and y > 0.
(I) It follows from Lemma 2.2.5 that solutions u € oE,, of (2.2.6) are unique. For the

existence of a solution we are going to construct a solution operator
L:CPRyWIMR™H E)N™ = 0By,
and show that it admits the estimate
1L9lz.,. S lalor,, 9 € CERWIMRH E))™ (2:2.7)
By Lemma 1.3.14, the set C2°(R4; ng(Rn_l; E))™is dense in oF,, (note that 2mx; ¢ Ny).
Hence, if (2.2.7) holds, then £ extends to a continuous operator oF,, — oE, ,. Since
1+ 0+ A(D) € B(oEu,u; Eo ), B(D) € B(oEu,u; 0F ),

the function u = Lg is then the unique solution of (2.2.6) for g € oF,,.

(II) To construct the solution operator L, let g € C°(Ry; szm (R"=1: E))™. In the sequel
we identify such a function with its trivial temporal extension to R. Applying the Fourier
transform F; with respect to ¢t € R to (2.2.6), and denoting the covariable by 6 € R, we
arrive for each 6 at the stationary problem

(1+1i0)v + A(D)v =0, x € RY,
B;j(D)v = (Fig;)(0,2"), 2 eR™'  j=1,..m. (2.2.8)
By Lemma 2.2.6, the unique solution v(6) € ng(Rﬁr; E) of (2.2.8) is given by
= . 1-m;/2m
v(0) = YT +10)Ly " " €14 Filg) (0),
j=1

where L9 =141+ (—A,,—1)™, and where for 6 € R the extension operator &;4;. is for
h € Ly, (Ry; Ly(R" 1 E)) defined by
1/2m

(E1pigh)(t, 2 y) i= e ¥E%0 h(t,2)),  teR,  (2/,y) € R

Due to [24, Corollary 1.9], for § € R and y > 0 we have the representation

. 1/2
Ll—m]/QmefyLlfri;" _ 1 Zl—m]-/Qme—yz

1+i0 o7 =

1/2m

(Z — L1+19)_1 dz,

where Z = (00, §]e™/2 U §ell37/2=37/2 U [§, 00)e ™7/ for some sufficiently small § > 0.
Thus for each y > 0 the B(L,(R"!; E))-valued function

—m; /2m
Ly /el peR,

is smooth and all of its derivatives are bounded. Since 6 — F;(g;)(6) is rapidly decreasing
and 7;(1+1i-) is by Lemma 2.2.6 a uniformly bounded family of operators, it holds that the
solution v of (2.2.8) is rapidly decreasing in . We may therefore apply the inverse Fourier
transform to v, and obtain that

u=Lg:= th‘lTj(l + i')L;Tj/2m51+i~ﬂgj
=



78 Maximal L, ,-Regularity for Static Boundary Conditions

solves the differential equations in (2.2.6). To show u(0) = 0, we first observe that u(0) €
D(Ap) holds since u is smooth in ¢ with values in W;m(R’}r; E) and satisfies the equations.

Hence the function
U =u— e (1H48)y(0)

satisfies w(0) = @/(0) = 0, which yields
ug € C'(R; Ly(R; E)) N C(R; W™ (R E))

for the trivial extension ug of @ to R. Further, as the semigroup generated by 1 + Ag is
exponentially stable, the functions u and @’ are rapidly decreasing on R;.. Thus (Fug)(6)
solves (2.2.8) for each 6§ € R. By uniqueness it holds Fu = Fiu, and therefore v = 7,
which yields «(0) = 0.

(ITI) To show the estimate (2.2.7) we derive another representation for £. We have seen

above that for g; € C°(R; W2™(R"™!; E)) the function 0 — LL:;J/%I Ly Fig; be-

longs to the Schwartz class. Hence Fourier inversion holds, and we may write

Z Ti(1+i)F) (F L P60 FD) g

On S(R; W2™(R"™%; E)) it holds F; ' Ly4i9 = LF; ', with
L:=1+0+ (—Ap-1)™.
Moreover, by Lemma 1.3.1 the realization of L on L, ,(Ry; L,(R"™!; E)) with domain
D(L) = oW, (Ry; Ly(R™™Y; ) 1 Ly (R WP (RPL; E))

is invertible and sectorial of angle not larger than 7/2. Using [24, Corollary 1.9] for L9
and L, we obtain for y > 0 and g; € CZ°(R; W2™(R"; E))

. 1/2m m
ft_lLl m]/zme_yL”l Figj = / tomafam eyt (2 L)_lft_lftgj dz
— Ll m]/Zme—yLl/ngj'
Denoting by £ the extension operator

(ER)(t, 2 y) == e ¥ E P h(t,a!), >0, (¢y) €RY,  h€ L (Ry; LR E)),

we arrive at the representation
=Y (AL +i)R)LITPEg for g€ CR(Ry; W™ (R E))™
=1

(IV) Due to Lemma 1.3.8, the operator £ maps continuously

OFj,u = l)Ll/2m (2m —my; = 1/pap) - LP(R+a DLl/Qm(2m - mjvp))7
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and Li—mi/2m — (L1/2m)2m7mj is continuous
LP(R+§ DL1/2m(2m - mj,p)) - LP(R—H Lp,u(R+§ Lp(Rn_l; E))) = EO,M'

Further, due to Lemma 2.2.6 and Theorem 1.2.4, for each j = 1,...,m and |a| < 2m the
B(Ly(R"; E))-valued symbol D*7T;(1 + i-) is a Fourier multiplier on L, ,. Therefore the

operator F; 'T;(1 +i-)F; is continuous?

Eopu — Lpu(Ry; ng(mﬁ E)).

Finally, it follows from the equation dyu = —(1 4+ A(D))u that the E,, ,-norm of u can be
controlled by its Ly ,(Ry; W2 (R'}; E))-norm, which shows (2.2.7). ]

The existence of a unique solution of (2.2.2) for given (f, g,up) € D is now a consequence
of the Lemmas 2.2.5 and 2.2.7, as follows. Denote by u; € E, , the solution of

w+ dw+ AD)w = f(t,z), xeR], t>0,
Bj(D)w = 0, reR™,  t>0, j=1,..,m,
’LU(O,.T) = 0(.1‘), TE bef—a

which exists by Lemma 2.2.5. Since B;(D)ug = g;|i=o for ; > 1 —p+1/p, it follows from
Proposition 1.1.11 and x; # 1 — p+ 1/p that?

g5 — Bj(D)uy € oF; 4, j=1,..,m.

If we denote by us € E, , the solution of

w + dyw + A(D)w = 0, reRY, t >0,
Bj(D)w = g;(t,z) — Bj(D)ui(t, x), ze R t>0, j=1,...,m,
w(0,z) =0, r € RY,

which exists by Lemma 2.2.7, then u = u; + ug solves (2.2.2). The uniqueness of this
solution follows from the uniqueness of solutions of (2.2.4). Finally, the continuity of the
solution operator Sg of (2.2.2) is a consequence of the fact that D is a Banach space and
the open mapping theorem. Thus Proposition 2.2.3 is established. [ |

2.3 Top Order Coefficients having Small Oscillation
From now on we restrict our considerations to a finite time interval

J=(0,T), T3>0

?Proceeding as in the proof of [25, Lemma 4.4], one can show that for j=1,..,mand |of < 2m it
holds D*T;(1 +i-) € C*(R; B(L,(R}; E))), and that |92 D*T;(1 +i0)| < 2. Hence also Proposition 1.2.5
applies.

3 At this point we have to exclude the value r; = 1 — p + 1/p.
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We first consider the half-space case, and write
Eupu(J) =Eypu(J xRE),  Fu(J) =F,(J x R*™1),
and so on. Let the operators A and Bj, j = 1,...,m, be given by

Alt,z,D)= >  ao(t,z)D*, telJ, zeRY,

la|<2m

and
Bj(t,z,D) = Y big(t,x)trgn D’,  telJ, weR™L
|8]<m;
Observe that, in contrast to the previous section, the operators may have lower order terms,
and the B(E)-valued coefficients a, and b;g are allowed to depend on (¢, z).
The top order coefficients of the boundary operators are assumed to be of the form

ao(t,z) = ad + au(t, ), la] = 2m, (2.3.1)

big(t,x) =005 + big(t,x),  |Bl=my, j=1..m, (2.3.2)

where a?, bgﬁ € B(FE) do not depend on (¢, x). Using them we define auxiliary top order
constant coefficient operators (A%, B°) by

AYD):= > alDY,  BY(D):i= Y WstrenD’ j=1,..,m. (2.3.3)

la[=2m |Bl=m;

Assuming (SD) and (SB) for the coefficients of A — A° and B— B°, the Propositions 1.3.16
and 1.3.24 ensure that

A€ B(Ey,u(J),Eopu(J)), B e B(E,.(J),Fu(J)). (2.3.4)
Moreover, (SD) and (SB) imply
G € BUC(J x R™; B(E)), la] = 2m,

bjp € BUC(J xR L B(E)),  |Bl=mj,  j=1,.,m.

For an interval J' = (0,7”) with 77 > 0 the set of compatible data is given by

D(J") = {(f,9,u0) € Eou(J)xFu(J') x Xy, ¢ for j =1,...,m it holds
B;(0,-, D)ug = g;(0,-) on R* 1 if ;> 1 — pu+ 1/p},

and we also consider
Do(J") = {(f,g9,uw0) € D(J') : g€ oFu(J)}.

Due to Lemma 1.3.25, these are Banach spaces as closed subspaces of Eq ,(J") x F,,(J") X
X and Eq ,(J') x oF,(J) x Xy, respectively. We have the following result for the
half-space.
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Proposition 2.3.1. Let E be a Banach space of class HT, p € (1,00), and pu € (1/p,1].
Assume that (A°, B°) satisfies (E) and (LS), and that the coefficients of (A — A°, B — B°)
satisfy (SD) and (SB). Suppose further that x; # 1 — p+1/p for j =1,...,m. Then there
are a time Ty € (0,7T) and a number € > 0 such that if

sup laa(t, T)|pE) <€, la| = 2m, (2.3.5)
(t,x)€[0,To] xR
and

sup bj5(t, ) s < e, Bl=m;, j=1,..m, 250
(t,x)€[0,Tp] xRn—1

then for each interval J' = (0,7") with T € (0,Tp] there is a unique solution u =
Si(f,9,u0) € Eypu(J') of

Owu+ A(t,z, D)u = f(t,z), r €R™, teJ,
Bj(tvan)u = g](tam)7 T € Rn_l) te J,a .] = 17 ey T, (237)
u(0,z) = up(x), z € RY,

if and only if (f, g,up) € D(J'). The solution operator
SF":D(J") = Ey u(J)
is continuous. Restricted to Dy(J'), its operator norm is independent of T" € (0, Tp].

Proof. Throughout this proof, let 0 < 7" < Ty < T, and set Jy = (0, Tp).

(I) We first consider the necessity part. Let u € E, ,(J’) be a solution of (2.3.7). Then
(2.3.4) yields f € Eg,(J') and g € F,(J'), and Theorem 1.3.6 implies ug € X, ,. Hence
(f,g,u0) € D(J') is necessary to obtain a solution u € E,, ,(J").

(IT) Now suppose that for each T" € (0, Tp] it holds that for all (f,g,up) € D(J') there is
a unique solution u € E, ,(J') of (2.3.7), i.e., there is a solution operator Sj* for (2.3.7).
Then S3* is continuous due to (2.3.4) and the open mapping theorem. From this abstract
argument its operator norm depends on T € (0,7p] (our construction below does not
remove this dependence, see (2.3.10)).

For (f,g,uo) € Do(J’) we may extend f € Eg,(J') and g € oF,(J') to % f € Egu(Ry)
and 59,9 € oF,(Ry), respectively, using the extension operator 59/ from Lemma 1.1.5,
whose norm is independent of T”. Of course, then it holds (€Y% f|,,E% 4|1y, w0) € D(Jo),
and it follows from the assumed uniqueness of solutions of (2.3.7) that

SE(f, 9,u0) = SHEY fl a6+ €910, w0) |-

We therefore obtain

IS (f, 9, w0) e, (1) S |53/f|1E0,H(R+) + |53/Q|OFM(R+) + |uolx,.,,

S fleo ) +19lor, () + w0l x,,

where the constants in this estimate only depend on Ty, but not on 7" € (0, Tp].
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(IIT) It remains to find a unique solution u € E, ,(J’) of (2.3.7) for given (f, g,uo) € D(J').
We define
Zuy (') :={v €Eyp(J') : v(0,-) =up},

which is a nonempty closed subspace of E,, ,(J’) due to Lemma 1.3.9. For given v € Z,,(J’)

we consider the problem

w+ w + A'w = f+ (A — A+ 1)v in J' x RY,
B = g+ (B° — B)v on J' x R, (2.3.8)

w(0,-) = ug in RY},

where the top order constant coefficient operators A° and B° are given by (2.3.3). Due to
Lemma 1.2.1, solutions of (2.3.8) are unique in E,, ,(J') for v € Z,,(J’), since by Lemma
2.2.5 the realization of 1 +.AOBO on L,(R"; ) is the generator of an analytic Cop-semigroup.
To find a solution w = S(v) € E, ,(J') of (2.3.8) we consider the problem

o+ 0w+ A% =f  onR, xR,
B'w =73 on Ry x R 1, (2.3.9)
w(0,-) = wy on R .
Since (A%, BY) are assumed to satisfy (E) and (LS), Proposition 2.2.3 yields a continuous

solution operator
St Dpo(Ry) — By u(Ry)

for (2.3.9), where Dpo(R,) denotes the space of compatible data with respect to B°. Since
g and ug are compatible with respect to B, it follows that

(En(f + (A” = A+ 1)v), Epr(g + (B° = B)v), ug) € Do(R+),
where £ is the extension operator from J' to R, , see Lemma 1.1.5. Therefore
w=38) =8u(Ey(f+ (A= A+1)v),Ep(g+ (B° — B)v),up)| s (2.3.10)

is the unique solution of (2.3.8). Observe that a function u € E,, ,(J’) solves (2.3.7) if and
only if it is a fixed point of S in Z,,(J’).

(IV) We show that S has a unique fixed point in Z,,(J’) via the contraction principle,
provided Ty and thus the length of J’ are sufficiently small. Clearly S maps Z,,(J’) into
itself. For vy, ve € Z,,(J'), the difference S(vy) — S(v2) solves

w4 Oyw + A'w = (A% — A+ 1)(vy — vo) on J' x RY,
B%w = (B% — B)(v1 —v2) on J' x R"71, (2.3.11)
w(0,-) =0 on R .

From (v — v2)(0,-) = 0 we infer that (B° — B)(v1 — va) € oF,(J’). We thus may extend
the data T"-independently to R, using 59, from Lemma 1.1.5. Since the restriction of the
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solution of the half-line problem

W+ 0w + AW = 9 (A — A+ 1)(v1 —v2)  on Ry x R%,
B'w = £9,(B° — B)(v1 — v2) on Ry x R"™1,
w(0,:) =0 on R,

to J’ solves (2.3.11), it follows from the uniqueness of solutions of (2.3.11) that
S(’Ul) — S(Ug) = SH (59/(./40 - .A+ 1)(1}1 — UQ), 59/(80 — B)(Ul — 'UQ),O) ’J/.
The continuity of Sy and 59, now yield

S(v1) = S(v2) [g, (1) < [Sa (EF (A — A+ 1)(v1 — ), £5,(B” = B)(v1 — v2),0)[g, , (=)
SIEN(AY = A+ 1) (01 — v2)[g, ) + 1E3(B® = B)(v1 — v2)] 4k, ,.(r2)
S A = A+ 1)(01 = v2) |y, (1) + |(BY = B)(v1 — va)lyr, 0y (23.12)

where the constant in this estimate is independent of Tj.

(V) It holds

I(A° — A+ 1)(vy — U2)|Eo,u(J/) < Z |ao D (v1 — UQ)hEo,u(J’)

|a|=2m

+ > JaaD (w1 — v2)lgy () + 101 = va2lg, (1)
la]<2m

For the first summand assumption (2.3.5) yields

> a@aD*(v1 = v2)lg, 0 S €lor = valg,,(1):

|a|=2m

For the second summand and |a| < 2m, suppose that the second condition in (SD) holds.

Then we take § € (p(l_sg)—H + QTZLTQ, — %) and apply Lemma 1.3.15 on pointwise mul-
tipliers, to obtain
D laaD¥(v1 = v2)lg,, (1)
|a|<2m
< |aq| : n. |D*(v1 — v2)| g5 (gr1. (7 - 1 F2ms (R1 ) -
S | Log (J;Lrg (R B(E))) 1= V2)[gH3 , (J; Ly (R E) Ly, (J HZS (R E))
laj<2m

It follows from (v; — v2)(0,-) = 0 and Lemma 1.3.13 that for given n > 0 we have

o
[D*(v1r = v2)lom3 (LR ENAL (775 H2mS (R B)) < 1|01 = V2]R, (7))

provided Ty is sufficiently small. If the lower order coefficients satisfy the first condition
in (SD) one obtains this estimate for 3, o, laaD%(v1 — v2)|g, () in a similar way. For

the third summand we have

01 = valg, () < V1L = 02le, (-
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Combining these inequalities, we arrive at

[(A? — A+ 1) (v1 — v2) gy (0 S (+ )01 — valg, (1)

(VI) We now estimate the boundary terms in (2.3.12). For j = 1,...,m it holds

(B} = Bj)(01 = v)lomy ) < D Tbip trey D7 (vr = va)log, () (2:3.13)
|Bl=m;
+ Z ’bjgtrRiDﬁ('Ul_UQ)lon,‘u(Jl)'
|B|<m;

For || = m; we use (SB), the Lemmas 1.3.21, 1.3.22, 1.3.23 and (2.3.6), to estimate with
0 € (0, K]j)
|bj5 trRiDﬁ(’Ul — U2)|0Fj,#u/) <e |tI’R1 Dﬂ(vl — v2)|0Fj7M(J/) (2.3.14)
b n DB (v —
+ |bJ5|Y(J)|trR+D (v1 U2)’0W£}ﬁm6(J'XR1;E))'
Here Y(J) = Fj . (J x R B(E)) or Y(J) = Bely p(Ly,5) N LW(BEQT;; ), according to the
two conditions in (SB). If the first condition in (SB) is valid one further has to use the

embedding
W2md(J' x R E)) < BUC(J' x R"; E)

to deduce (2.3.14) from Lemma 1.3.23, which is valid for some § € (0,x;) if K; > 1 — p+
1/p+ %. Note also that (2.3.14) is uniform in 7" < Tj due to (v1 — v2)(0,-) = 0. For the
first summand, we infer from Proposition 1.3.12, Lemma 1.3.4 and that |5jg|y( 7y are fixed

numbers
|trgn D (v1 — v2)| o, (o) S |1 — v2lg, ()

where this estimate is again uniform in |J'| < Tj. For the second summand we use Lemma

1.3.13 to obtain for given n

[bjalv (| trrn DP (v1 — v2)l w2 2m (gxrnmy) S 11V V2l (0);

provided Ty is sufficiently small. This yields

> [bjs tren D (01 = va)lor, 0 S (€ +m)or — valg, (1)
|Bl=m;

for the first summand in (2.3.13). For the second summand in (2.3.13) and |B| < m; we
use in a similar way (SB) and the Lemmas 1.3.13, 1.3.21, 1.3.23 and 1.3.22, to obtain

> Ibjgtren DP(v1 = va)l gk, (o) < o1 — valg,, (1)
18]<m;

for sufficiently small Tp. It is thus shown that

|(B§) - Bj)(vl — U2)|0]Fj,u(J’) 5 (5 =+ 77) |U1 - U2|]Eu,u(‘],)'
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(VII) Comparing with (2.3.12) and choosing ¢ and 7, i.e., Ty, sufficiently small, we obtain
that S is a strict contraction, and therefore has a unique fixed point in Z,,(J’). [ |

We now turn to the full space problem, and write
Euu(J) =Eyu(J x RY), Eo,u(J) = Eou(J x R"), Xup = Xupu®R").
We consider the operator A on R™ with B(E)-valued variable coefficients a,, given by

Alt,z,D)= > ao(t,z)D*,  (t,x) €JxR".

la|<2m
We have the following result.

Proposition 2.3.2. Let E be a Banach space of class HT, p € (1,00), and p € (1/p,1].
Assume that A satisfies (E) and (SD). Then there are a time Ty € (0,7 and number e > 0
such that if

sup laa(t; ) — aa(0,0)|pE) <&, la] = 2m, (2.3.15)
(t,2)€[0,To] xR

then for each interval J' = (0,7") with T € (0,Tp] there is a unique solution u =
S3(f,uo) € Ey u(J') of

owu + A(t,z, D)u = f(t,x), rz e R", telJ, (2.3.16)
U(O,ZL‘) = UO(I'), T e Rn?

if and only if (f,uo) € Eo,,(J") x Xy . The solution operator
St Eou(J') X Xy — Eupu(J)
is continuous, and its operator norm is independent of T" € (0, Tp).

Proof. The proof is completely analogous to the half-space case. We let 0 < T < Ty < T.
As in the proof of Proposition 2.3.1 we obtain the necessary conditions on the data. To
show that for (f,ug) € Eo,(J') x Xy, a unique solution of (2.3.16) exists, we consider the
space

Zuy(T') = {v € B (J') : 0(0,) = o},

and for v € Z,,(J’) the problem

w+ 0w+ Aw=f+ (A -~A+1)v  onJ xR, (2.3.17)

w(0,-) = ug on R™.

Here the operator A” is given by A° := >_|aj=2m @a(0,0)D®. The unique solution of (2.3.17)
is given by

w = S(U) = SF(ggz(f + (.AO - A+ 1)”)7“0) ’J’a

where Sp : Eg ,(R4) x Xy, — Ey u(Ry) is the continuous solution operator for (2.3.17)
on Ry x R™ from Proposition 2.2.2. As in the proof of Proposition 2.3.1 one can show
that S is a strict contraction on Z,,(J’), provided € and Ty are sufficiently small. The
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resulting unique fixed point u € E, ,(J') of S is the unique solution of (2.3.16). Using
that u = Sp (€9, (f + (A°— A+ 1)u),uo)|, and employing the continuity of Sp we obtain
that the norm of the solution operator SP* is independent of 7", since the norm of 59, is

independent of it. |

2.4 The General Case on a Domain

In this section we finally prove Theorem 2.1.4. Let E be a Banach space of class H7, let
J = (0,T) be a finite interval, and let  C R™ be a domain with compact smooth boundary
I' = 0. Now we write

Eupy =Eyu(J xQ), F,=TF,(J xTI),
and so on. We consider the problem
ou+ A(t,z, D)u = f(t,x), x € Q, teJ,

Bj(t,x, D)u = g;(t,x), zel, teJ, ji=1,...,m, (2.4.1)
u(0,x) = up(z), x €,

where the differential operators A and Bj, j = 1,...,m, are given by

A(t,z, D) = Z aq(t, z)D*, teJ, x €,

|| <2m

Bj(t,x,D) = Z bis(t, JI)tI'QD’B, teJ, zel, m; € {0,...,2m — 1}.
[B]<m;

The B(E)-valued coefficients a, and b;g are assumed to satisfy (SD) and (SB). In this case
the Propositions 1.3.16 and 1.3.24 ensure that

A€ B(Eyu, Eop), B e B(Ey,;,F,). (2.4.2)

Moreover, it is included in resp. follows from these assumptions that the top order coeffi-

cients satisfy
ao € BUC(J x Q; B(E)), |oo| = 2m,

bjﬁ S BUC(j X F7B(E)), ’ﬁ‘ = m;, j=1,...,m.
The set of compatible data is given by
D= {(f,g,uo) € Eo,u xFyxX,, : for j=1,...,m it holds
B;(0,-,D)ug = g;(0,-) on T if k; >1—p+1/p},

and further

Dy = {(fvg7u0) €D : geO]F,LL}'

The following localization procedure is very long, elaborate, and looks sophisticated, but
after all it is nothing but a sequence of simple principles, and a lot of notation. For an

outline we refer to the end of Section 2.1.
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Proof of Theorem 2.1.4.

(I) The necessary conditions on the data follow as in Section 2.1 from (2.4.2) and Theorem
1.3.6. If the solution operator L exists, then its continuity and its dependence on the length
of J can be shown as in Step II of the proof of Proposition 2.3.1.

If the coefficients of the operators are as in (2.1.5) and if the data is real-valued, then we
have that if v € E, , solves (2.4.1), then also Reu € E, ,, solves (2.4.1). Hence u = Reu if
one assumes uniqueness, i.e., the solution is real-valued in this case.

(IT) Given (f,g,u0) € D, we have to show that there exists a unique solution v € E, ,, of
(2.4.1). We first show that it suffices to obtain this under the assumption that 7' = |J| is
sufficiently small.

Using the extension operator £; from Lemma 1.1.5 we may assume that the coefficients of
A and B are defined on [0, 27]. Suppose that for each T, € [0,27") we can find a (small)
time 77, € (0,27 — T)) such that the problem

flt,z), =zeQ, te (T, T+ 1),
g(t,x), el te (T, Ti + 7r,), (2.4.3)

uo(x), x € Q,

Ou+ A(t,z, D)u
B(t,z, D)u
u(Ty, x

has a unique solution u € E, (7%, Ty + 7r,) for all
fe€Rou (T, Tu+71), GEF(T,Tat71r), o€ Xup,
which satisfy the compatibility condition
B;(T,-, D)ug = g;(0, ), on I, if k; >1—p+1/p, j=1,..,m.

In this case we can solve (2.4.1) uniquely for given (f,g,ug) € D(J) as follows. Using £
we may assume that also f and g are defined on (0,27"). The solution intervals for (2.4.3)
yield an open cover of [ry, T}, from which we choose a finite subcover |Jr—, (Th, Tx + 7%)
with

T < 79, T <Tp_1+ 11 forl< k<K, T < Ty + 7.

Let u® € E,,(0,79) be the unique solution of (2.4.3) on (0,7) with data

f= f|(0,70)a g= g|(o,ro), Uy = uog-

Since Ty < 79, u®(Ty) € Xy, ¢ and the compatibility condition holds, there is a unique
solution u! € Euu(T1,T1 4+ 11) of (2.4.3) on (T1,T1 + 71) with data

f:f‘(T1,T1+T1)7 §:g|(T17T1+7'1)7 a():uo(j-i?.)'

Since we assume that solutions of (2.4.3) are unique for all initial times T, € [0,27),
it follows that u® and u' coincide on (T}, 7). Iterating this argument yields functions
ub € By (Ti, Ti +7k), k = 1, ..., K, such that u” satisfies (2.4.3) on (Tk, T), +7%) with data

f = f’(Tk,Tk+Tk)7 g = g|(Tk,Tk+Tk)7 aO == Ukil(Tk, '),

*In fact, due to the inherent smoothing effect of the weighted spaces it even holds u’(T1) € X, 1.
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k+1

and such that v* and u coincide on (Tgy1, Tk + 7%). Since the weight only has an effect

at the initial times T}, it holds

k+1|

k _
Wy Tt = @ Tt € But (Te1, Th + 7).

Hence we may put together the functions u*, k = 0, ..., K, to a function u € Euu(0, T +
Tr ), that solves (2.4.1) on J = (0,7"). Our assumption also implies that this solution is
unique.

Observe that the restriction of (A, B) to any subinterval of J = (0,7) is still subject to
(E), (LS), (SD) and (SB). Therefore, due to the above considerations, our objective is to
show the unique solvability of (2.4.1) for all (f,g,uo) € D(J), under the assumption that
T = |J| is sufficiently small.

(III) We intend to use the Propositions 2.3.1 and 2.3.2 to show unique solvability. To this
end we have to localize (2.4.1) also in space. If Q is unbounded we choose a large number
R > 0 with T" € Br(0) and set

Zo 1= 00, Uy := Q\Br(0).

We define on J x R™ extended top order coefficients a2 = a2 (¢, z), |a| = 2m, by

aq(t, ), x € Uy,
ab(t,x) =< aa(t, RQﬁ), x € Br(0)\{0}, (2.4.4)
aq(t, o), r =0,

and further on J x R™ extended lower order coefficients a® = a2 (¢, z), |a| < 2m, by

(e} t? b 77
ag(t,x) _ aq(t,x), x €Uy
0, x € BR(O)

Using these coefficients we define the differential operator

A%(t,z, D) = Z al (t,z)D°.
|| <2m

0

o are continuous extensions of the a, to R",

Observe that for |a| = 2m the functions a
which only use values of a, |y, . Therefore A° satisfies (E), since this is a pointwise condition.
Moreover, by assumption (SD), the limit a(t, 00) = lim;| o aa(t, ) exists uniformly in
t € J, |a| = 2m. Thus, given € > 0, if R is sufficiently large and 7' is sufficiently small then
by continuity it holds

sup  |aa(t,2) — aa(0,z0)|gE) <&,  |a] =2m.
teJ,zeUy

By construction, this carries over to the extended top order coefficients,

sup \ag(t,x) - a’g(ov O)IB(E) <¢g, ‘a’ =2m.
teT, z€Rn

Hence, due to Proposition 2.3.2, if R is large and T is small then for all J' = (0,7") with
T’ < T there is a continuous solution operator

SIY By (' X RY) X Xy u(R?) — By (J x R,
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for the full-space problem

o + A%t z, D)v = fO(t, x), x eR"” telJ, (2.4.5)
v(0,2) = ub(z), x € R".

(IV) Now, if © is unbounded, take a point z, € Q\Up = QN Bg(0), and if  is bounded,
take a point z, € . In both cases we construct a differential operator A** on R™ as above.
Choose a radius r,, > 0 with

By, (&) NT =0,

and put
Uz, == By, ().

We define extended top order coefficients a%* = a*(t, z), |a| = 2m, by

aq(t, ), xeU,,,
T x t = * 246
o ( ,l') { aa(tal'* + r2 Lt )7 x ¢ Um*a ( )

T To—a.]?

extended lower order coefficients a** = a2+ (¢, ), |a| < 2m, by

- aq(t,z), = €U,
ar(t,x) = { 0 v U (2.4.7)

and we finally set

A" (t,z,D) = Y al(t,z)D"

la|<2m

As above, the operator A®* satisfies (E), and if r,, and T are sufficiently small, then

Proposition 2.3.2 yields that for all 77 €< T there is a continuous solution operator
SV B (X R™) x Xy (R™) — By (J x R,
where J' = (0,7"), for the full-space problem

O + A% (t,x,D)v = f*(t,x), z €R"” teJ, (2.4.8)
v(0,2) = uy(x), x € R".

(V) For a point z, € I' = 9Q we choose an open neighbourhood [790* of z, in R™ such
that there are smooth diffeomorphisms ¢, : U,, — R™ and a radius r,, > 0 with the

properties

Pz, (24) =0, Pz, (Uz,) = By, (0), 9020* () = Ou(m*)v

02 (Up. NQ) CRY, o, (U, NT) Cc R* L 2.4.9
+

Note that we identify R"~! with R"~! x {0} C R™. Further O, (z,) is the orthogonal matrix
fixed in assumption (LS) that rotates the outer unit normal v(z,) to (0, ...,0,—1) € R™. By

Lemma A.1.1, a chart (U,,, ¢,,) with the above properties always exists. We may assume
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that the sup-norms of any derivative of ¢,, and gp;*l are uniformly bounded for r,, < 1.
We further set

Ux* = SO:E*I (BTZ* (0))7

and denote by ®,, the push-forward operator corresponding to ¢, , i.e., @, v =vo 90;*1.
Now we define the differential operator A%+ for functions v : R? N B,, (0) — E by

A% (t, 2, D) i= (@, A(t, -, D)®, 10)(x), teJ, zeRINB, (0),
and the boundary operators B;I)z*, j=1,....,m, by
BY™ (t,x, D)v = (4, B;(t,-, D)®; ) (x), te€J, xzeR"'NB, (0), j=1,...m.
For v € E, (R N By, (0)) and 1 < |a| < 2m it holds

DY@, v)(t,2) = Z dory () (D7) (L, s, (), ted, € QNU,,,
1<y|<]ef

where ¢+ are real-valued bounded smooth functions in x, depending on the partial deriva-
tives of the components of ¢, (see |69, Section 1.1.7]). Thus the pushed operators are

again of the form
AP (t,z, D)= Y ale(t,x)D,

la|<2m
Dy, Py, Jé] .
B; (t,z, D) Z b txtarD j=1,..,m,
|8]<m;

where trgn denotes the spatial trace operator for R’f. Lemma A.1.2 implies that the prin-
cipal parts of (A%, B®) are given by

A;Pi (t,x, D) = Ay(t, 2,0}, D), B;I%- (t,x, D) = By(t, 2,0}, D). (2.4.10)

Due to Lemma A.4.1, and since the functions g, are smooth and bounded, the coefficients
as™ satisty (SD), formulated for J x (R} N By, (0)), and the coefficients bfg* satisfy (SB)
on J x (R*"1 N B,, (0)).

(VI) We now extend the top order coefficients of A% from R% N B, (0) to R by
reflection as in (2.4.6), and the lower order coefficients of A®=+ trivially from R N B, (0)
to @ as in (2.4.7). Denoting the extended coefficients by aZ*, this yields an operator

A" (t,z, D)= Y alr(t,x)D*, telJ  zeRL

jaj<2m

We further define the top order constant coefficient operator A**? by

Ar*’o( ) :=.A"(0,0,D) Z a“”*’ODO‘ af;*’o = a2 (0,0) = an (0, z4).

|a|=2m

It follows from (2.4.10) that for & € R™ it holds

AT0(E) = Ay (0,20, O, ).
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Since A satisfies (E) we thus obtain that A% satisfies (E) as well. We write the top order
coefficients of A** in the form

ag(t,z) = ag”’ +ag (t,2), o] =2m,

where %+ (t, z) = a%* (t, ) —a%", as required for (2.3.1). By construction, the coefficients of
A% — A%=0 gatisfy (SD). Given ¢ > 0, if T, 7, and the diameter of U, are sufficiently small,
then the coefficients ap"* have oscillation less than & around ag** (0,0) on Jx (R%NB;, (0))

for all || = 2m. By construction we have

sup |ag [pr) <e, la = 2m,
JxRi

for the top order coefficients of A% as well. To extend the top order coefficients of B}bi

from R"™1 N B,, (0) to R"™! to coefficients b;cé we fix a nonnegative cut-off function
x € C*(R™1) with

x(@) =1, |z[<1,  x(@)=0, [¢]>2,  x(z)€[0,l], zeR",
and set for [3| =m; and j =1,....,m

* ‘bx* Dy, - _
bfﬂ(t,x) b (0,0)+X(x/2rm)( ],3 “(t, x(x/re,)x) — b (0, O)) ted, zeR"L
(2.4.11)
The lower order coefficients of B;-I)i are extended on R"~! to coefficients b‘;g by setting

b;ﬁ 1= Ern-1nB,, bz, Bl <my, j=1,..m, (2.4.12)

where Egpn-1np, (o) denotes the spatial extension operator from R"1 N B,, (0) to R"™1,
given by (1.3.3). These extended coefficients yield boundary operators

Bi*(t,x, D) Z b”* t xtrRiDﬁ, ted, re RV ji=1,..,m.
\B|§m]

T 5,0

We define the top order constant coefficient operator B0 = (Bf*’o, ey B ) by

*70 o — *70 *70 PR * — s
BIO(D):= Y b5y trpa D, b5 = 005(0,0) = big(0,2.),  j=1,..,m.
|B|=m;

Due to (2.4.10), for ¢ € R"~! we have that
AI*7O(§/7Dy) :Aﬁ(ovx*a yx*)(é. D )) Bxho(é-/?Dy) :Bﬁ(ovx*v yx*)(§ D ))
Now we see that the assumption (LS) for (A,B) on Q is just made that (A%0 B%+0)
satisfies (LS) on R’}. We write the top order coefficients of B** in the form
bfé = b;cg’ b%, 18] = mj, j=1,..,m,

as required for (2.3.2). By construction we have that the coefficients of B** — B%*0 satisfy
(SB). As for the top order coefficients of A*, for given ¢, if T', r,, and the diameter of U,,
are sufficiently small then it follows from continuity that

_sup \b sleE) <e 6] = m;, ji=1,..,m.
JxRn—1
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Therefore (A®+, B**) satisfies all the assumptions of Proposition 2.3.1, and if £ and T are
small, then for all J' = (0,7”) with 77 < T there is a continuous solution operator

Sy i Dgee (J') = By (J)

for the half-space problem

v + A" (t,x, D)v = f*(t,z), z e R, telJ,
Byw=gi(t,x), weR, teJ, j=1,..,m, (2.4.13)
v(0,2) = uy(x), xr € RY.

Here, Dp=. (J') denotes the set of compatible data (f*, g%, uf) with respect to B*.

(VII) The sets U,,, together with Uy if Q is unbounded, yield an open cover of Q. If
Q) is bounded it follows from compactness that there are finitely many points z; € €,
1 =1,..., Np for some Nr € N, and finitely many points z; € I', i = Ngp + 1, ..., Ny for
some Ny > Np, such that the union of the corresponding sets

U, :=Uy,, i1=1,...,Ng,

covers Q. If Q is unbounded, we obtain in the same way a finite cover for the compact set
Q\Uy. Setting Uy := 0 if Q is bounded, we thus obtain in any case a finite cover

Np Ny
aclJuu | wu, (2.4.14)
i=0 i=Np+1
together with corresponding points z;, operators A’ for i = 0,..., Np and (A%, B?) for

it=Np+1,..,Ng. If ¢ and T are small, then there are solution operators

S™. i=0,..,Np, and S,  i=Np+1,.,Npg,

for the finitely many full- and half-space problems (2.4.8) and (2.4.13) on J = (0,7),
corresponding to A’ and (A%, BY), respectively.

(VIII) If Q is bounded there exists a partition of unity {¢;}i=1__n, for Q, subordinate
to the cover (2.4.14). In the unbounded case there is such a partition for the compact set
OQ\Up. Thus we set in addition 9y := 0 in the bounded case, and

Ny
Yo i=1-Y 1
i=1

in the unbounded case, such that {t;}i—o,. n, is in any case a partition of unity for €,
subordinate to (2.4.14).

Now take compatible data (f,g,ug) € D(J) for (A, B), and consider the problem (2.4.1),
for which we have to show unique solvability. Suppose that u € E,, ,(J x ) solves (2.4.1).
Then u solves the localized problems

8t(¢zu) + A(¢1U) = ¢1f + [./4, wl]u in QN Ui, t e J,
B(viu) = g + [B, ¥i]u on I'NU;, ted, (2.4.15)
(¥iu)(0,-) = Yiug in QN U,
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for each i = 0, ..., Ng. Here [+, -] denotes the commutator bracket, e.g.,
[A, ilu = A(Yiu) — ¢ Au.

Observe that [A, ¢;] and [B;, ;] are differential operators of lower order, i.e., less or equal
than 2m — 1 and m; — 1, respectively. For ¢ = 0, ..., N it holds QN U; = Uj;, so that there
are no boundary conditions involved in (2.4.15) in this case. By the considerations in Step
IV, the function v;u is the unique solution of the initial-value problem

ow + Al(t,z, D)v = fi(t, ), x € R", ted,

v(0,2) = u%](m)? z € R,
where we have set
fi = ¢Zf+[“4awl]uv U%) = wiu(h i:O,...,NF,

and where we identify functions with compact support with their trivial extension to R™.
It therefore holds
wiu:S;m’Z(fi,ué;uﬂUi, 1=0,..., Np.
Here the notation S}m’i(fi, ub;u) indicates that f* is defined with respect to u.
For i = Np +1,...,Ng we have ' N U; # 0, so that boundary conditions are involved in

(2.4.15) in this case. We transform (2.4.15) to a flat boundary, using the push forward ®;
corresponding to ;. Then v = ®;(y;u) satisfies

O + A'(t,z, D)v = f'(t, ), xr € RY, teJ,
Bi(t,z,D)v = ¢'(t,z), ze RV tedJ,
v(0,2) = u%(:ﬁ), xr € RY,

where this time we have set, for i = Np + 1, ..., Np,

fro= @i f + [A, ¥s]u), g'(t,x) = ®i(vig + (B, i]u), uly == ®;(Yiup),

identifying functions with their trivial extension to R’} as above. By the considerations in
Step V and uniqueness it holds

piu = 07 (S (7, 9" uy; u)‘R:‘_ﬁB”(O))a i=Np+1,.., Ny,

where again the notation Slsqm’i(fi, g',ub; u) indicates that f?, g* are defined with respect to
u. Note here that (f?, g, u}) is compatible with respect to B, since (f, g, uo) is compatible
with respect to the original boundary operator B.

(IX) We choose scalar-valued functions ¢; € C°(R"), i =0, ..., N, such that

¢; =1 onsuppyp;,  supp¢; C U
Then Zfi% i =1 on Q. For (f,g,u0) € D(J) we consider the Banach space

Zuo(J) = {u € Eypu(J x Q) : u(0,) =uo},
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which is nonempty by Lemma 1.3.9, and define on Z,,(J) the map G by
Np ‘
Grguo(u) = Z@S;m’z(fljuoa No; + Z $i®; (S (f 9", ub; w)lr B, (0)):
=0 i=Np—+1

where f, g' and u}) are defined as above with respect to u, respectively. By the considera-
tions in the last step, for a solution v € E, ,(J) of (2.4.1) it holds

Np
Grguo(u) = Z oiviu = u.
1=0

Thus a solution of (2.4.1) has to be a fixed point of G¢ 4., in Zy,,(J).

Using the contraction principle we show that Gy 4., has a unique fixed point in Z,,(J)
for all compatible data (f, g,up) € D(J), provided T is sufficiently small. By construction,
Gf.g.u0 1s a self mapping on Zy,(J). For i =0, ..., Np and uy,us € Z,,(J), the function

v = S s ) — S F2, )
is the unique solution of

o + Al(t,z, D)v = [A, ] (ur — ug) in R", teJ,
v(0,-) =0 in R",

where [A, ¢;](u; —u2) is identified with its trivial spatial extension to R™. It therefore holds

v = SP™ ([A, i) (w1 — u2),0).

smz

By Proposition 2.3.2, the operator norm of S is independent of T'. Given 1 > 0, we use
this fact, that [A, ;] is of lower order, that the coefficients of A are subject to (SD), and
that (u1 — u2)(0,-) = 0, to deduce from Lemma 1.3.13 the estimate

[$iSE (F4 s wn) — iSE™ (F72, ubs u2) s, (7x0)
SISE ([A, il (w1 — us), 0)[E, . (JxR")
S A il (ur — u2)[g, , (7x0)

<nlur —uzlg, ,(7x0);
provided T is sufficiently small. Similarly, for i = Ng + 1, ..., Ny the function
v =S g ubun) = S (P g i wa)
is the unique solution of

v + .AZ(t x D) (I)l([.A, ¢Z](U1 — UQ)) in RZL_, teJ,
Bi(t,z, D)v = &;([B, ;] (u1 — us)) on R"1, tedJ,
v(0,-) =0 in RY,
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where we again identify the right-hand sides with their trivial extensions to R’} and R 1
respectively. Note here that the required compatibility condition at ¢ = 0 holds, due to
(u1 — u2)(0,-) = 0. Therefore

v =Sy (i([A, i) (ur — uz)), Bi([B, il (u1 — u2)),0).

By Proposition 2.3.1, the operator norm of Szm’i restricted to vanishing initial values is
uniform in T smaller than a given length. Using the same tools as above, together with
the Lemmas 1.3.21, 1.3.22 and 1.3.23 about pointwise multiplication on the boundary, we

obtain for given 7

¢ (S5 (£ g™ s wn) lry o, ) — Sy (P72, 97 uls u2) Ry, ) B x0)
SIS (@i([A, i) (ur — u2)), ®i([B, ¥il (w1 — u2)),0)[g, ,(sxrn)
S A il (ur — u2)lg, , (7xe) + 1B, il (w1 — u2)|or, (sx1)

<nlur —u2lg, ,(1x0);

provided 7' is sufficiently small. Hence for small 7" the map Gy 4 4, is a strict contraction on
Zuo(J) and has a unique fixed point in there. Since this holds true for all (f, g, ug) € D(J),
this fact already implies that solutions of (2.4.1) are unique. We further obtain a linear

fixed point map

Q:D(J) = Zuy(J), Q(f,9:u0) = Gr,gu0 (LS, 9, u0))-

We define the space
Doo(J) == {(f,9,0) € Do(J)},

and use the above estimates and the continuity of the solution operators S;m’i and S;Im’i

to obtain

1Q(f,9,0)|E, .1y <1G7.60(Q(f:9,0)) = Grg00)le, 1) + 197,900k, (1)
S 7]|Q(f7 g, O)‘Eu”u(J) + |(f7 9, 0)|’D0(J)

for (f,9,0) € Doo(J), where 7 is small. Hence the operator norm of Q : Dyo(J) — Zy(J) is
uniform in 7" smaller than a given length. Note that, due to the nonempty intersections of
the Uj;, the function Q(f, g, ug) does not solve (2.4.1) with right-hand side (f, g, uo) € D(J),
in general.

(X) We construct a solution for (2.4.1) by finding for given (f, g,uo) € D(J) the appropri-
ate (f*,g*,uyy) € D(J) for which Q(f*, g*,uf) solves (2.4.1). In other words, overlappings
in the sum in the definition of G £*,g* ugy coming from nonempty intersections of the U; have
to cancel in the right way. As Q maps into Z,,(.J) it is clear that we must have u§ = uy.
So let (f,g,up) € D(J) be given. For (f*, g*,up) € D(J) we use that Q(f*, g*,up) is the
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fixed point of Gy« g+ 4, to obtain

(0 +A)Q(f*, g% u0) = Y (9 + )i (F*,ub; QF*, 97, uo))lo,
1=0

Ng
4 Z (at 4 A)¢iq)i—1(8;{m,l(f*,’b,g*,’b,ulo; Q(f*’g*auo))‘RimBri(O)))
i=Np—+1

Ng
= K50 + ) ¢l A i QU g% wo),
=0

with the correction term

Ki(f*,9%) =Y A ilSE™" (' ub; Q(f*, g% wo)lu,
1=0

Ng
+ Z [‘A’qbi]q);l(s;m’l(f*’z,g*’l,u6§Q(f*,g*,UO)MRTﬁOBri(O))'
i=Np+1

Note that, since {1;} is a partition of unity for  and ¢; = 1 on supp 1;, it holds

Ny
Z sz[A, wl]Q(f*a g*a UO) = [A’ 1] Q(f*, g*a UO) = 0.
=0

Similarly, on the boundary we have

BQ(f*’g*v UO) = g* + /Cg(f*,g*),

with the correction term

Ng
Ka(f*, %) = Z B, (;Si](b;l(szm,z(f*,z’g*,z’u%; Q(f*,g*,UO)”RiﬁBri(O))'
i=Np+1

Here the terms involving S;m’i do not appear since the functions ¢; vanish on T for i =
0,..., Np. It follows that the desired (f*, ¢*) is a solution of the equation

(f%9%) + (K1, Ka)(f,9%) = (f,9)- (2.4.16)

Since Q(f*, g%, uo)|t=0 = uo for k; > 1 — p+1/p it holds

NH NH
Ka(f* g")jl=0=">_ [Bj(0,-,D),¢lvhiuo = Y _ [B;(0,-, D), 1aysug = 0.
i=Np+1 i=Np+1

Therefore ICy maps into ¢F,(J). In order to solve (2.4.16) we thus consider the equation
(fba gb) + (’Clv ICQ)(fbagb) = 7(IC17 ICQ)(fa g) (2417)
for (f°,¢”) € Eou(J) x oF (). If we can find a solution (f°,¢’) of (2.4.17) then

(fg) ="+ f.g +g)
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solves (2.4.16) and satisfies (f*, g*,ug) € D(J), which finishes the proof.
(XI) We show that (2.4.17) has a unique solution (f, ¢”) € Eq ,(J) x oF,(J), using once

more the contraction principle. We have already seen that

(£.9") = (K1, K2)(f.9) = (K1, K2) (£, 9") (2.4.18)
is a self map on Eq ,(J) x oF,(J). To show that it is a contraction, take (f3,43), (f5,953) €
Eo,.(J) % oF . (J), put

ur = Q(ff g1 uo),  ua = Q(f3, 65, o),

and consider

(K1, Ka2) (f7, 97)— (K1, K2)(f3, gg)hEO,H(J)XO]FH(J) (2.4.19)
= K1 (f1,9%) — K1(f3, 9|50 (o) + [K2(f1, 97) — Ka(f3, 9) o)

For the first summand we use that [A, ¢;] is of lower order, to obtain with Lemma 1.3.13
for given n > 0

Np
7‘ b7' ] b
|K:1(f1bvgli) - Kl(fgvgg)‘Eoyu(JXQ) < 772 |S;"mz(f1 l,UB;Ul) — Sst(f2 Z7UO,UQ)‘EH# (JxRm)
=0
+n Z SACR gh s ug) — SE(f g aU07U2)|Eu,H(JxR1)a (2.4.20)

= NF+1

provided T is sufficiently small. We Concentrate on the second sum in (2.4.20). For i =
Ng +1,..., Ny the function v = Ssml(f1 ,g1 ,uo,ul) Ssrm(f2 ,92 ,uo,u2) solves

O+ A'v = @i (0i(f] — f5) + [A i) (w1 —u2)) iR, ted,
v =0 (i(g) — ) + [B, il (ur —uz))  omR™L el
v(0,-) =0 in R" .

We may thus estimate

fssmz(f} ,91 ,UO,U1) Ssml(fz 792 vuO’u2)|]Eu,H(J><IR{1)
S - f2|1Eo,u(JxQ) + |[A, il (w1 — u2) |k, , (7x0)
+191 = 93lor, (<) + 1B, i (ur — u2) |y, (7xT)
S = Blro . (xa) + 191 — Blor,(oxry) + QU — 3,91 — 93, O)l&,,,, (7 xR
S = Bl (x) + 190 — 93l (7x1)
uniformly in 7', using that the operator norm of Szm’i on the oIF,-spaces, of Q : Dyo(J) —

Zy(J), of the spatial trace and the spatial derivatives are uniform in 7', respectively. Sim-
ilarly one estimates the first sum in (2.4.20) uniformly in 7', to obtain for given 7

K1(£7.97) — K1(£3, 93) |k, (7x) < 01(f1,90) = (3. 93) |k (7% 0) xF, (I D)

provided T is sufficiently small. In the same way one shows the corresponding estimate for
the term in (2.4.19) where Ky is involved. Thus the map (2.4.18) is a strict contraction
on Eq,(J) x oF,(J), and the resulting fixed point is the unique solution of (2.4.17). This
finally proves Theorem 2.1.4. |
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2.5 A Right-Inverse for the Boundary Operator

In this section we construct a right-inverse for a class of autonomous boundary operators

related to (2.4.1). Let us explain the setting. We specialize to the finite dimensional case
E=CV, N eN.
Let Q C R™ be a domain with compact smooth boundary I' = 0€2, or 2 = R, and let

p€ (n,00),  pe(1l/p1].
For m € N we consider the linear boundary operator B = (By, ..., By,), given by

Bj(xz,D) = Z bjﬁ(x)trQDB, zeT, m; € {0, ...,2m — 1}, j=1,..,m.
[B1<m;

As in Section 2.1 we define the corresponding numbers x; € (0, 1) by
ki =1—m;/2m —1/2mp, ji=1,...,m.

Throughout this section it is assumed that

2m(kj — (1 —p+1/p)) > (n—-1)/p, j=1,..,m. (2.5.1)
The coefficients b;z of the boundary operator B; are supposed to satisfy

bjg € Bon iUt (p BNy, j=1,..m. (2.5.2)
Due to (2.5.1) and Sobolev’s embedding it holds

pamtss ==t p BNy — (T, B(CN)). (2.5.3)

Thus Lemma 1.3.19 and the continuity properties of the spatial trace trg (1.3.20) guarantee

that B maps continuously
m
Bz,ng(u—l/p) (Q, (CN) N H ngl(’fj*(lfﬂJrl/p)) (F, CN)
j=1
We further assume that there is a linear autonomous differential operator A of the form
A, D)= > aa(x)D*, zEQ,
|a|=2m

with coefficients

ae € BUC(Q, B(CN)), (2.5.4)

such that (A, B) satisfies the ellipticity conditions (E) and (LS) from Section 2.1.

Such a situation arises in Chapter 4, where (A, B) is the linearization of a quasilinear
problem at some ug € Bgz(”_l/p)(ﬁ, B(CY)). There terms of the form trgDPug, |8] < m;

enter into the linearization, which leads to coefficients as in (2.5.2).
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In Proposition 4.3.4 we use maximal L, ,-regularity and the implicit function theorem to
show continuous dependence on the initial data for quasilinear problems. Due to a nonlinear
phase space it is there required that for all p € (1/p, 1] satisfying (2.5.1) an operator B
as above has a bounded linear right-inverse NV, i.e., it holds BN, = id and N, maps

continuously
m

H 2m (kj—(1— /J«+1/P))(F7(CN) N Bg?(“fl/p)(Q,CN).

For the unweighted case, 1 = 1, the existence of a right-inverse is shown in [65, Proposition
5]. The proof there makes use of the corresponding parabolic problem and the fact the L,-
spaces on the half-line are invariant under right translations. Since this is not the case for
the L, ,-spaces, i € (1/p, 1), the proof from [65] does not carry over to the weighted case.

It is the purpose of this section to construct a right-inverse N, also for € (1/p,1). The
difficulty is that for v € W2™(Q;CY) it always holds Bjv € Wzmﬁj (T, CY), which is a

2mis;~(~et1/) (P o)

smaller space than me . Thus the right-inverse cannot directly be

constructed as the solution of the elliptic problem
Az, Dyv=0, z€Q, B(xz,D)v = (g1,-.-s Gm), xel,

if A is realized on L, (€, CV). The idea is now to shift the functions (gi, ..., gm) to a higher
regularity class with an appropriate isomorphism, to solve the above problem and finally to
shift the solution back. Since a suitable isomorphism only seems to be available on spaces
over R, we have to localize the problem of finding the right-inverse to R"~!, analogously
to the proof of Theorem 2.1.4 in the last section.

For clarity reasons, several assertions from the following proof are postponed in a series of

lemmas afterwards. Throughout the rest of this section we set

i 2m(k;—(1—p+1
X, (Q) = B2, V), v,@) =[] B o).
j=1

Proposition 2.5.1. Let 2 C R" be a domain with compact smooth boundary I' = 02, or
Q=R%, let p € (n,00) and p € (1/p, 1] satisfy (2.5.1) and assume that (A, B) are subject
to (E), (LS), (2.5.2) and (2.5.4). Then B has a bounded linear right-inverse

N, HBQm(n] (1- ,u+1/p))(r CN) Bzz(“’l/p)(Q,CN).

Proof. (I) For each z, € T the constant coefficient operator (A(z., D), By(z, D))? is

subject to the pointwise conditions (E) and (LS). We construct a continuous right-inverse
NP Y, (R"1) — X, (R?) for By(z., D) as follows. Let g = (g1, ..., gm) € Y, (R"™!) be

given. Then we have

hj = S_lgj ew," @R EN), j=1,..,m,

"Recall that Bjy(z., D) = > 181=m, bis(z JtroD? denotes the principal part of B; for j = 1,...,m, and
that By := (Biy, ..., Bmg)-
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where the operator S on LP(R””, CN) is given by
S = (14 (=A,_)™)trti/r,

It follows from Lemma 2.2.6 that for all A > 0 the unique solution v € ng(Rﬁr,CN ) of

the elliptic problem

v + Az, D)v

0 on R,
Bjs(xs, D)v = h;j on R" 71, ji=1,..,m,

is of the form v = 377" | S;(A\)h;, with operators
Si(\) € B(wy™ (R V), w2m(RE,CY)),  j=1,..,m.

We now define the operator Ny (\) by

m

N (N)g =8> Si(N)S'g;. (2.5.5)

j=1

Here S acts on the first n — 1 variables as a pointwise realization on Lp(Rﬁ,CN ) =
Ly(Ry; L,(R™ CN)). It is shown in Lemma 2.5.4 below that A**(\) maps continu-
ously Y, (R"™!) — X, (R7). Further Ng’x* (A) is in fact a right-inverse for By(x,, D), since
the realization of S on L,(R"?,CY) commutes with By(z., D).

(IT) For all z, € T we choose a neighbourhood ﬁx* C R™ of x,, a smooth diffeomorphism
P, - ﬁx* — R™ and a radius 75, > 0 with

Pz, (T+) = 0, P (ﬁx*) = Byy,, (0), ‘Px*(ﬁm* nQ) CRY, Py (ﬁx* nr) C R

For given € > 0, if the diameter of ﬁx* is sufficiently small, then by continuity the top

order coefficients of B; satisfy

sup  [bjg(zs) — bjg(z)| <e, |B] = mj, j=1..,m.
zel'NUg,

Setting
Ug, = 90;*1 (BT:):* (0))a z, €T,

we obtain an open cover Ux* er Uz, for T', from which we may choose a finite subcover
\U; Us corresponding to points x; € I' and chart maps ¢;. There further exists a smooth
partition of unity {1;} of I, subordinate to (J,; U;.

(ITI) Now let g = (g1, ..., 9m) € Yu(I") be given. If u € X,(£2) solves

Bu=g on T, (2.5.6)
then for each 4 the function v = v;u solves®

Bv =g+ [B,¢ilu  on I'NU;. (2.5.7)

Recall that [-,-] denotes the commutator bracket, i.e., [B,;]u = B(w;u) — 1 Bu.
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Denoting by ®; the push forward operator corresponding to ;, i.e., ®;u = u o gpi_l, we
have that ¥;u solves (2.5.7) if and only if w = ®;(1);u) satisfies

B*w = ®;(Yig + [B,¢i]u) = h*  on RN B, (0). (2.5.8)
Here B® (z, D) := (CI%-B(-, D)@;l)(x) denotes the transformed boundary operator,
BE: (x, D)w = (B(~,D)(w o gpl)) o go;l(z:), reR"IN By, (0),

and the transformed data h' = (h},..., k) is identified with its trivial extension to R"~1
so that it belongs to Y, (R"™1).

As in Step V of the proof of Theorem 2.1.4 we obtain that the coefficients of B®¢, which
are denoted by b;bé, satisfy

b% € By ReL A B (0),€Y), |8l <my,  j=1..m.

We denote by Egn-1np, (9) the continuous extension operator from R* 1N B,.(0) to R* 1,
given by (1.3.3), and extend the lower order coefficients of B®" to R"~! by setting
. ®, .
bz = an_lﬁBri(O)bjﬁv 18] < my, ji=1,..,m.

The top order coefficients are extended to
i — p® @, @, n—1 _ -

where Y € C°(R" 1) is an appropriate cut-off function. We denote the operator with
extended coefficients bé. 5 by B'. Now, if a function w € X,,(R") solves

Biw = h' on R, (2.5.9)

then w|gn-1np, (o) solves (2.5.8).
(IV) To solve (2.5.9) we consider the top order constant coefficient operators

A(D) = (®iAy(, D) ") [a=0,  BO(D):=B4(0,D) = Y b75(0)trgn D
|8]=m;

Since (A, B) satisfies (E) and (LS), it follows that (A“?, B*Y) satisfies these conditions as
well. A function w solves (2.5.9) if and only if it satisfies

BN (D)yw = hi(z) + B**™(x, D)w, reR"L (2.5.10)
Here the operator B“*™ is given by

Bo*™(z, D) = BY(D) — B'(z, D), reR"L
and the coefficients of B**™ are denoted by b;;m By construction it holds

b;’;m c Biz(nj—(l—ﬂ+1/P))(Rn—1’CN)’ 18] < my, J=1..,m,
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and we further have that for given ¢

sup |b;7§m(x)| <g, |ﬁ| = my, J=1..m,
zeR—1

provided the diameter of the neighbourhoods U; is chosen sufficiently small from the be-
ginning. Due to the considerations in Step I, a continuous right-inverse Ng’i()\) for B0
may be constructed as in (2.5.5), for all A > 0. Hence for a function w € X,(R"}) to solve
(2.5.10) it suffices that w satisfies

(id = NP (AN)B*™w = NP (AR' in RY.

Lemma 2.5.5 shows that if € is sufficiently small and A is sufficiently large then this equation

is solvable by means of a Neumann series, i.e.,
i i - i i,sm 0,3 ki
NIORT =" NPHA) (BY N A)) R (2.5.11)
k=0

This yields for each i a continuous solution operator
NZ,()\) : Yu(Rn_l) — Xu(RY)
for (2.5.9). Therefore 1;u solves (2.5.7) if ¥;u satisfies
Piu = 0 (NL(N)Ri(1ig + [B, ¥i]u)) &2 B, (0)- (2.5.12)
(V) For each i we choose a function ¢; € C°(U;) with
¢; =1  on supp?.
Using them, we define the operator Ki(A) : Y, (I') — X, (2) by
KiNg = 6i®; (NN 2itig)lrrng, 0 9 € YulD),
and we further define the operator Ko : X,,(2) — X, () by
Ka(Mu := ZZ $i®; (NG (N ®i[B, dilw)gns,, 0w € Xu(Q).
Due to the considerations in the last step, a solution u of (2.5.6) is a solution of the equation
(id = Ka(N))u = K1(N)g™, (2.5.13)

where ¢g* € Y, (I') must be appropriately chosen such that error terms from nonempty
intersections of the U; cancel when summing up in K7 and o. Lemma 2.5.6 shows that
there is a bounded linear solution operator Q(\) for (2.5.13) if A is sufficiently large, which
is again constructed by means of a Neumann series.

To find the appropriate ¢* for which Q(\)g* solves (2.5.6), note that due to (2.5.13),
(2.5.12) and (2.5.7) it holds

BO\)g* = B(Ki(\)g* + Ka(\)Q(N\)g*)
= 0i(vig" + [B, 4] QN)g") — Ks(A)g"
= (id = K3(N)) g7,
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where the correction operator IC3(\) : Y, (I") — Y, (I") comes from commuting B with ¢; in
(2.5.12), i.e.,

Ks(Ah = Zi[¢i,B]@;1(N,i()\)q’i[¢ih + [B, i) Q] [r2 15, (0): h €Y, (T).

Lemma 2.5.7 shows that for sufficiently large A there is a continuous solution operator
R(A) : Y, (I') — X,(I') for the equation

(id— Ks(N)g* =g, g€ V(D) (2.5.14)
It then follows that the continuous operator N, : Y,(I') — X,(Q2), defined by

Nug == QN)R(N)g, g e Y, (),
for some sufficiently large A, is a right-inverse for B5. [ |

We still have to prove several assertions claimed in the proof above.

Lemma 2.5.2. Let p € (1,00), and assume that o € [0, 1] and s > 0 satisfy s — 2ma > 0.
Then the pointwise realization of (1 + (—A,—1)™)® on Ly(R%,CY) maps continuously

H(R?,CN) — HS2m(R7, CN). (2.5.15)

Restricting to p € [2,00), for o € [0,2m(p— 1/p)] the pointwise realization of the operator
S =1+ (=An_1)™' P on L,(R?,CN) maps continuously

W2 (R, CV) — Bamnln) o (R, CY),

Proof. Using extensions and restrictions, it suffices to show the assertion for R” instead
of R} . For k € Ny it follows from Fubini’s theorem that

HEY(R™,CN) — HF(R; L,(R"™1,CN)) N Ly(R; Hy (R"~1,CN)). (2.5.16)
The operators (1 — 85)’“/2 and (14 (—A,_1)™)*/?™ on L,(R; L,(R"~!,CV)) with domains
Hy (R; Ly(R*™1,CY)) - and Ly (R; Hy (R, CY)),

commute in the resolvent sense and admit bounded imaginary powers with power an-
gle equal to zero, respectively, Therefore, interpolating the embedding (2.5.16) with
Ly(Ry; L,(R*1 CY)) by the complex method, using Lemma A.3.4 and A.2 m) we ob-

tain
H3(R™,CV) — H3(R; LR, CV)) N Ly(R; H3(R™ 1, CV)),  5>0.

Using the mixed derivative theorem (Lemma A.3.3) with the operators from above we thus
have for s > 0 that

s(mn N s(1-6 . 17sf (mn—1 N
H(R™,CN) — HO(R; (R, CY)), 0 €o,1].
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Hence for s > 2ma the operator (1+ (—Ap,_1)™))* maps H5(R™,C") continuously into
HO®; B 2@, ), 6 € 2may/s, 1.

Now suppose that s — 2ma € Ny. In this case, if 8 is such that s6 — 2ma = k € Ny then it
also holds s(1 — ) = s — 2ma — k € Ny. Thus, by Fubini’s theorem,

m H;(I—G) (R; H;0—2ma(Rn—1’ CN)) _ H;—Qma(Rn’(cN)’
0c2ma/s,1],s6—2maeNg

which yields that (2.5.15) holds for s —2ma € Ny. The general case follows from the integer
case by complex interpolation.

The asserted mapping property for S follows from (2.5.15) by real interpolation in case
2m — o ¢ N. For 2m — o € N it follows from complex interpolation and the embedding

HiRY,CN) — Bs (R, CY),  s>0, (2.5.17)
which is valid for p > 2 due to [82, Theorem 2.3.2]. |
We next consider the mapping properties of an extension operator to R} .

Lemma 2.5.3. Let p € (1,00). Consider for Re\ > 1 the operator Li/zm = A+
L1/2m

(=An_1)™)/?™ and the corresponding extension operator £ = e~ 13" from R*! to
R" . There is a constant C' > 0, which does not depend on A, such that

(2.5.18)

p(RpsWp 7 (RP=1,CN))

—1
’5)\5 h’L 2m—m; <C ’h’Biz(nji(liqul/p))(R"_I,CN)7

where S is defined in Lemma 2.5.2, and further
’g/\h‘Lp(Ri,(CN) < C)\il/Zmp ’h’Lp(Rn71’CN).

Proof. (I) First observe that the function

U+ /2
S 19+(A+£)1/2m’ 2 € Trjam = {w € C\{0} : |argw| < 7/4m},

is bounded independent of ReA > 1 and, say, U € Xg;/3. Using that —A,_; admits on
Lp(Rnfl,(CN ) a bounded H*°-calculus with H*>-angle equal to zero, this yields that the
operator family

(9 4+ (D0 )Y2) (0 + A+ (D)™™ 7 ReA>1, 9 € So,

is uniformly bounded on L,(R™~!, CY). Since further the operator (—A,,_1)'/? is sectorial
with angle of sectoriality equal to zero, it follows that the resolvent estimate

[0+ LY*™) Mg, @erovy SCWITYL 0 € Sanps,
is valid with a constant C' independent of A and ¢. This fact implies

|€—yLi/2m| < C |L _yLi/2m| < C _1 (2 5 19)
B(Lp(R"=1,CN)) = &> A€ B(LyRn—1cN)y) S CY 0.
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for y > 0, with a constant C' independent of Re A > 1, since for a generator of an analytic
semigroup the constants in these estimates only depend on the sector contained in the re-
solvent set and on the resolvent estimate for the generator (see the proof of |67, Proposition
2.1.1 (iii)], for instance).
Using (1 — A,_1)%? as an isomorphism between H;(R”_l,CN) and L,(R"~1 CY)) that
commutes with L}\/ Qm, we obtain from interpolation that (2.5.19) remains valid if one
replaces B(L,(R"~*, CN)) by B(W;(R"™,CN)) for s > 0.
(II) In this step we follow the proof of [68, Proposition 6.2]. Take v € Wimﬂj (RP=1 CN)
and let v =a+b with a € Wmefmj*l(Rnfl, CN)and b € ngfmj (R"=1,CY). Using that
the operator (1 — An_l)l/ 2L;1/ 2 s uniformly bounded in Re A > 1, and using further
(2.5.19), we obtain for y > 0 that

‘eiyLAU‘Wim_mj @ omy SC ‘L’\eiyLAa‘Wsm_m"_l(Rnfl,cN

) + C ’b’W;mimJ (Rnfl’(cN).

—yLx
) 1Bl s oy

S Cyil‘a|W§mimjil(Rn717CN

Taking the infimum over a and b on the right-hand side leads to

‘e—nyv‘ng_m_ <C y_lK(y, v, W;m_mj_l (R (CN)v Wz?m_mj (R™, CN))
3

J (Rn717CN)
for y > 0, where K denotes the K-functional from real interpolation theory (see [68]). It
now follows from the definition of the real interpolation functor (-,-);_1/,, that

—-Ly
e v —m < Clul 2mx.
| ’LP<R+,W§m " (Rr-1,CN)) = | |BPTZ"](RR*1,<CN>’

with a constant C' independent of A. The estimate (2.5.18) is now a consequence of the

fact that S = (14 (—A,_1)™)!"#+t1/P is an isomorphism between B,%Zfﬁj (R*=1, CN) and

B,%Z;?(”j“l‘““/”” (R*-1,CN).

(IIT) The function z +— exp (y()\l/Qm — (A + Zm)l/Qm)) is holomorphic and bounded on
Y /am, independent of y > 0 and ReA > 1. Using again the bounded H°-calculus of
—A,_1 we obtain that there is a constant C' > 0, independent of y and A, such that

_ 1/2m _a)\1/2m _ N
|€ vly h‘Lp(R”—l,(CN) <Ce vA |h|Lp(Rn—l7(CN), h € Lp(Rn 1, C )
Taking the L,(R1) norm with respect to y shows the second asserted estimate. u

In dependence on X\ we consider the continuity properties of the right-inverses N, S’x* (A\) on
the half-space, defined in (2.5.5).

Lemma 2.5.4. In the setting of the proof of Proposition 2.5.1, consider for x, € I' the
operator

m

NPT (N)g =8> 8;(NS7g;,  g=1(g1,.,9m) € Vu(R").

j=1
Then for oy € [0, — 1/p] we have

0,2+ _ .
’Nﬂx ()\)g’BTQ):’;(M—I/p—Ul)(R:L(CN) < A% max (’gj‘BiT;(nj—(l—u-kl/p)) (2.5.20)

j:17“~7m (Rn—17(CN)

n )\_(1—u+1/p)—1/2mp)\1—%\gj!L,,(Rnfl,(CN))’
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and, for oy € [0,2m — 1/p),

0, —(1—02/2m) 1—74)
N OVl o SN (N3l oo (2:5.21)
1—p+1/p+1/2
+ AlTHFL/p /mplgj|Bin;<~j—<1—u+1/p>>(Rnflch))

Moreover, for o3 € [0,; — (1 — p+1/p)) and B € Nij with |3| < mj; it holds

m;—|B]
|trR1DﬁNB’m* ()‘)Q‘BQW(’%‘*(1*u+1/p)*03) <A m max (2.5.22)

Pp (Rn=1,CN) ™ I=1,....m
m

n )\_(1—u+1/p)—1/2mp)\1_ﬁ|gz|LP(Rn—1,<CN))’

(|gl |BZTZ<NZ7<17#+1/p>>(Rn717CN)

and further
(1181 _m
‘tr]R'i _D*BNS»"E* ()\)g’LP(Rnfl,(CN) 5 A (1 2m) l:HllaXm ()\1 2m |gl‘Lp(Rn71,CN) (2523)

1—pt1/py1/2
FALREL/PAL mp’gl’BZm(f@z—(l—u-&-l/p))(Rn_l CN))-
p,p )

Proof. (I) Due to Lemma 2.2.6, for j = 1, ...,m the operator S;(\) is of the form

S;(N) = TV)LY ™My,

1/2m

where 7;(\) € B(LP(RZLL,(CN),WZ?"‘(R?F,(CN)), Ly =X+ (=A,_1)™ and &, = e~

Q)T iformly bounded f D
N e eI 1s uniformly bounded Ifor, say, z € w/4m>

and the properties of 7;(\) stated in Lemma 2.2.6 we may rewrite S;(\) to

Using that the function z —

2m—mj

S0 =T (=800 ™5 + 275 ) 6,
where i}(A) has for A > 0 and j = 1, ..., m the property
|ﬁ(A)U\B§$_S(Ri’CN) SATMolL @ ovy, s €[0,2m], g€[lo0].  (2.5.24)

The proof of [25, Lemma 4.3 shows that 7;(\) is a convolution operator with respect to
z € R"1. Therefore —A,,_; commutes with 7;()), and thus also with 7;(\). Now it follows
from |7, Lemma I11.4.9.2| that S commutes with ’j}()\) Together with (2.5.24) we obtain

1ST;(A)] S AN S0, o, (2.5.25)

ng(ufl/P*"’l) (R17CN)

(II) To show (2.5.20), first observe that
0,24
’N,u (A)g’Bgz(ufl/p*ﬁ)(RZLHCN)

—~ 2m7'mj _
S max [STi(A)(—An—1)” 2 &S 19j|B§7Z(“—1/p_”1>(R1,(CN)

Jj=1,..m

F 1-o4 -1,

+ max [STA)NTEENST il pemtut/-on) g oy
Hence for each j we have to estimate these two summands. For the first summand we use
(2.5.24) and the Lemmas 2.5.2 and 2.5.3 to obtain

2m—m;

~ smomy -1 -
|S7}()\)(_An—1) 2 E\S gj‘Bzz(Mfl/pfo'l)(Ri#cN) S)\ Jl‘gj|B§z(mj*(17u+1/p))(Rn_17CN).
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Using in addition (2.5.25), we have for the second summand

= R
‘S,Z;O‘)/\ am E)S gJ’Bgfz(”fl/pf"l)(Ri,CN)

B 1 _ _my
S AN e D2 AL 20 g5 1 e o)

(III) For (2.5.21) we first estimate, as in the last step,

Tx it omTmy _
|/\/’3’ ()‘)g|B;(f'+”2(Ri,cN)§ max [ST(A)(—Ap_1)” 2 &S lgj|B;,/f’+02(Ri’CN)

j=1,...m

N M e
+ max |STA)A T ES 191|B;f1’7+”2(R1,CN)'

7j=1,....m

Using (2.5.24), we obtain for the first summand

2m—m

|S%j(/\)(—An—l)TJ&S_lgj\Bl/fm
p,

< )\7(170‘2/2772))\lf/yHrl/erl/Qmp‘gj

(R? V)

|B§Z<~j—<1—u+1/m) ROV’

and for the second summand
\Sf}()\))\l_ﬁ&s_lgj|B;/1P+UQ(R1’CN) S AT M S g5 1 et oy
(IV) For (2.5.22) we estimate

|trRi DﬁNB’I* ()\)g‘BQm(n]-—(l—u+1/p)—U3)

p,p

< IV (Mgl m; 1]
v B ) (g oy

(Rn— 1 7(CN

and thus (2.5.22) follows from (2.5.20). In (2.5.23), the trace operator meets the L,-norm.

For this we use that tTR1 is continuous
BIP(RY,CN) — Ly(R"1,CV),
see [82, Theorem 2.9.3]. Then
|tren DN (N)gl, mn-1,cv) S WS"C*(A)QIB;,/F\B\(MCN),
and (2.5.23) follows from (2.5.21). [ |

We next prove the convergence of the Neumann series in (2.5.11).

Lemma 2.5.5. In the setting of the proof of Proposition 2.5.1, for each i the series

NI = 3N (BP N ()
k=0

exists in B(Y#(Rnfl),Bf)j;(“_l/p_al)(Rﬁ,CN)), provided ¢ is sufficiently small and \ is
sufficiently large. For o1 € [0, — 1/p] it holds

|Nﬁ(A)9\B§$<M—1/p—a1> @y ey SA (1gly,@n-1) (2.5.26)

4+ A~ (=p+1/p)=1/2mp Z )\17% |9j‘Lp(Rn*1,<CN))‘
7j=1
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Moreover, for o9 € [0,2m — 1/p) we have

|N,ﬁ()\) < C)\—(l—og/Qm)()\l—u+1/p+1/2mp|g|YH(Rn_1) (2.5.27)

9l g2/p+or gy o)
m
oy
+ ) AT gl reet o)
=1

Proof. (I) It follows from (2.5.20) that for k£ € Ny it holds

|./\/;5)’Z (A) (Bi’sm/\/’g’i()\))k9|322(u—1/10—01)(Ri’CN) (2.5.28)

S A1 max (’((Bivsmj\fgvi()\))kg)j|B2m(nj—(1—u+1/P))(
PP

j=1,....m Rn—1,CN)

o AT A 2L | (BN (N) g s o))

and further, due to (2.5.21),

NN (B NE(N)) g B/ g o) (2.5.29)
—(1—02/2m 1—p+1 1/2m i,sm A 0,0 k
<A (1—a2/ )j:Hllfi,‘i(m ()\ p+1/p+1/ PI((B /\/'H (\) g)j|Bi"n;(nj—(1—u+l/p))(Rn717cN)

+ AT (BY N (V) )1, 1 0))-

(II) For each j we consider the summands in (2.5.28). For the first summand we have

‘7 07‘ .
(BN (N)g); |B§TZ(“J"“*"“/F”(Rn—l,cN) (2.5.30)
2,SM B A0,
S Sax. 075" trrr DPN, (>\)9|B§j;<~j—(1—u+1/p>>(Rn71M)-

Applying Lemma 1.3.19 and using (2.5.3) for each 3 we obtain for small § > 0 that
\b}’émtrmDﬂNS’i()\)9|B§jz(nj—<1—u+1/p)>(Rn,lycN)

< O B35 | Lo (-1, ey [ty DPNR (W) g] omie; -1/

p,p

+ Celtrry DN (N)gl s~ i)
p;p

(Rn717CN)

(Rn—lv(CN)
=11+ 5.

The estimate (2.5.22) yields

—1/2m
I < (Ce+ CA ) 1 73.‘.)7(m(’gl|B;Tz(nl*(1fu+1/z7))(Rn—l,(CN)
o B _my

+ AT/ 2me N g g | et o)

where C' is independent of € and C. is independent of \. In the same way we obtain

-5
I, <C: A ax (Ige] 2me; -a-/n

D (Rn—l#CN)

gooe

+ AU 2 A5 g o).



2.5 A Right-Inverse for the Boundary Operator 109

Combining these estimates with (2.5.30) leads to
" 0’ i .
[(B™ N (N)g); !Bizmj—u—wl/p))(R,L,l’(cN)

-4
< (051' + 062‘)‘ ) l:I{l,a),(m (|gl‘Wﬁm('@l—(l—#“'l/P))(RnA7((:1\1)

4+ A~ (=p+1/p) N =1/2mp 1= 5L |gz\L,,(Rn*1,<CN))'

Note that for g = (Bi’sm/\/ﬁ’i()\))k_lﬁ the right-hand side above is of the same type as the
right-hand side in (2.5.28) with k — 1 instead of k and the additional factor (Ce 4+ C-\"%).
For the second summand in (2.5.28) we have, using (2.5.23),

7,8 7 i,8m _(1=181
(BN (N g); |, ot vy < C 6™ e vy A~ (7 H0)

1—p+1/p+1/2mp -1
l:r?f.,m ()\ ’91|B§z(~p<1w+1/p))(Rn_lﬁj\;) + A |91|Lp(Rn—1,cN)),

which yields

AT (Ams /P \ =1 2me A= | (BEM N (A))Fg)51 L, (-1 o)
< (Ce 4 C A7) max (|((Bi’sm/\f£’i()\))k‘1g)l| 2m (g — (1—p+1/p))
=1,....m Bpp

=1,...

(R=1,CN)

- AT O 2m XL | (BN (V) il v o)) -

Again, the right-hand side is of the same type as the right-hand side in (2.5.28), with &
replaced by k — 1 and the additional factor Ce + C.A~1/2m,
(III) Iterating the above estimates yields for k € Ny that

|N87i()‘)(BiysmN,L?J()‘))kg|3127’;(“*1/p701)(RQL_,(CN < (06 + CE)\_T)k

) ~

Y 1 —1/9m, _my
A 1(|9|Y#(R”*1)+>\ (=pt1/p)=1/2 pzl/\l 2m ’gj|Lp(R"—1,(CN)>a
]:

with some 7 > 0. This implies that A7 ()) exists in B(Y, (R*), By #~/P~7) (R, CN))
and admits the asserted estimate (2.5.26), provided we first choose ¢ sufficiently small and
then A sufficiently large.

(IV) Starting in Step II with (2.5.29) instead of (2.5.28) one obtains (2.5.27) in a similar

fashion, using the estimates from Lemma 2.5.4. |
The next lemma shows the unique solvability equation (2.5.13).
Lemma 2.5.6. In the setting of Proposition 2.5.1, consider the operators

Ki(N)g = ZZ $i®; (N (N ®ivig)lrn s, o), 9 € Yau(D),

Ko(Nu = Zl $i®; (NAN®i[B, bilu)|gn s, 0 U € Xu(Q).

For each g € Y,(I') the equation (id — Ka(A\))u = K1(\)g has a unique solution u :=
Q(N)g € X,.(2), provided X is sufficiently large. For o1 € [0, u — 1/p] the solution operator
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satisfies

‘Q()\)g‘Bi?(#*l/P*"'l)(Q,CN) (2531)

SN (Igly, (ry + AR N AR g o),
j=1

and for o € [0,2m — 1/p) we further have
‘Q(A)Q‘B;’/II""‘UQ (Q,(CN) (2532)
< )~ (1=02/2m) ()\l—u+1/p+1/2mp|g|YH(F) + Z Al_%|9j|Lp(r,<cN))-
j=1

Proof. (I) We concentrate on (2.5.31), similar arguments lead to (2.5.32). We intend to
show the absolute convergence of the Neumann series

Q) =Y Ka(NFKi(N)
k=0

in B(Y,,(T), By~ /P=71)(Q, CN)). 1t follows from (2.5.26) that
"CQ()\)U|B127:’Z(N*1/p*01)(Q7(CN) < m?,x ‘M‘bi[Bv %]“!Bgfzw—wwv(RQ,CN)

< A%t max (’(I)l[[)’, wi]u‘Y#(Rnfl)
(i1 /0)—1/2m _my
—+ A (1 1 1/p) 1/2 P Z )\1 2m |@’L[Bj7 ¢Z]U|LP(R"*1,(CN)> .
j=1
If m; = 0 for some j then [B;,1;] = 0, thus we assume that m; > 1 for each j =1,...,m
in the sequel. As [Bj, ;] is of order at most m; — 1 we have for each 4 that

|®’L[BJ ¢i]U|YM(R"*1) 5 ‘[B7wi]u‘YM(FﬁUi) S |u’B£’TZ(H*1/P)*1(97cN)7

and further, for each j =1,...,m,

|q>7f[B]7 wi]u’LP(Rn_l,CN) S ‘U|B;’/lp+mj71(Qch)'

This yields
‘ICQ()\)U‘Bzz(ufl/pfaﬂ((z’(:]\;) g A 91 (‘U|Bgz(“71/p)71(Q,CN) (2.5.33)

m
—(1=p—1/p)—1/2mp 1-51
+)\ Z)\ 2 |U‘lej’/1p+m‘771

st (Q,CN))'

Moreover, (2.5.27) implies

—1/2m\ —(1— L) (y1—p+1/p+1/2
(Nl g1 g oy S AN (NP ] oy vy

N Y]
» Q,CN)

m
1—-
+ ; A 2m |u’B;!/1p+ml71(Q’(cN)).
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Iterating the above estimates we obtain for k € N

k=1
|IC2()‘)ku|312)jz(u*1/p*01>(Q7CN) S(CA) 2 A7 (|U’Bg$(u*1/m*1(97@1\1) (2.5.34)

m
o B _my
+)\ (1 1% 1/]7) 1/2mp E Al 2m ’u‘ 1/P+7nj—
BPJ

1
),
= @c™)

where the constant C' is independent of \.
(II) We now estimate K1(A). From (2.5.26) we infer

‘ICI (A)g|B§TZ(“_1/p)_1(Q,(CN) N m?X |M¢i¢i9|3§$(u—l/p)—1(R17CN)

m

. L L/om _my

SN (gly, ) + ATUTHEYRILEIR Y TN gy 0 o))
j=1

and further, from (2.5.27),

< am1/2my=(1=52) (-t /zmeyg)
m

"Cl()\)g‘B;/lp+mj71(Q’CN) ~

m
_my
+ > AT gl wen))
=1

for j = 1,...,m. Using these estimates for v = KC;(\)g in (2.5.34) we obtain for k € Ny that

K2 (N)F K (/\)9|Bgz<u—1/p—al>(Q7CN) < (CN) TP (Jgly, oy

+ A~ (=p+1/p)=1/2mp Z )\1_% |gj\Lp(F,<CN))'
j=1

This yields the absolute convergence of the Neumann series and the estimate for Q(\) as
asserted, provided A is sufficiently large. |

Last but not least we consider the equation (2.5.14).

Lemma 2.5.7. In the setting of Proposition 2.5.1, consider the operator

Ks(Wh = (6 B®; (VN ®i[wih + [B, 4] Q)R] [rr s, 0 b € YD),

If X is sufficiently large then for each g € Y,(I') there is a unique solution h = R(\)g €
Y, (T) of (id — K3)h = g. The solution operator R(\) is continuous on Y, (I").

Proof. We show the absolute convergence of the Neumann series Y 70  K3(A)* in B(Y,(T')).
We assume that m; > 1 for j = 1,...,m in the sequel, otherwise the corresponding com-
mutators vanish. Using (2.5.26) and that the commutators [¢;, B;] are of lower order we
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obtain

Ks(N)gly, ) S max NN ®i[ehig + (B, Yl QN gzmee1/m=1 gy o,

< A1/2m max (1i[1ig + [B, i) QN dlly,, mn-1)

+ A (Amptl/p)=1/2mp Z A" mm | D [aig; + [Bj, i) QNI L, (mn-1,cNy)

=1

< A-1/2m max (|gly, (r) + |18, ¥i]Q(N)gly, r)

+ AT N N30 (g5 ey + 1B il QgL r.ov))-
j=1

We further infer from (2.5.31) that

1B, ¢i] Qgly, ) S A_I/Qm(|9|yu(r) + )\—(l—u+1/p)—1/2mpz Al_ﬁ’ﬂﬂLp(F,(CN))a
=1

and from (2.5.32) that

185, 9@l .cv) % 19N rmemy 1 o

= AL/2m A (= g0) ()\1_#+1/p+1/2mp|9|yu(r) + Z )‘1_;%|gl|Lp(F,(CN))a
=1

which yields

_1/2m (1 oy e (1L
IK3(Ngly, ) S A 1/2 (Igly,ry + A (1=pt1/p)=1/2 pz)\l o g1l r.cn))-
=1

Using (2.5.27), we also obtain for [ = 1,...,m that

[(Ks(N)g)il L, r,cm
< A~ L/2m oy~ (1—%) (Al_“+1/p+1/2mp(|g|yu(r) + |[B,1/Ji]Q()\)9’YH(F))

m

£ AT (gl em) + 1By QI rem) )
j=1

Hence we have for k € Ng, with a constant C' that is independent of A,
—k/2m —(1— —1/29m “ _my
"CS()‘)kg|YM(F) <(CXN) k/2 (|9’YH(F) + A (=p+1/p)=1/2 pZAI 2m|gl|Lp(F,(CN))'
I=1

This yields the convergence of Y 3%, K3(A\)* in B(Y,,(I')) and the continuity of the solution
operator R(A), provided A is sufficiently large. [ |



Chapter 3

Maximal L, ,-Regularity for
Boundary Conditions of Relaxation

Type

In this chapter we show maximal L, ,-regularity for vector-valued parabolic initial-
boundary value problems of relaxation type, generalizing the results of by Denk, Priiss, &
Zacher [26]. The approach is analogous to that in Chapter 2 for the case of static bound-
ary conditions. Thus sometimes we are brief, but also repeat some arguments from the
last chapter for transparency. We first describe the approach and the involved anisotropic
function spaces in detail, and then prove the main result, Theorem 3.1.4, by solving the
half-space problem and performing a perturbation and localization procedure. For the ge-
ometry of the boundary of a domain and differential operators defined on them we refer to
the Appendecies A.1 and A.5.

3.1 The Problem and the Approach in Weighted Spaces

The Problem

For the unknown vector-valued functions
u=u(t,x) € E, p=p(t,x) € F,

we consider linear inhomogeneous, non-autonomous, parabolic initial-boundary value prob-

lems of relaxation type, i.e.,

ou + A(t,z, D)u = f(t,x), reN, teJ,
Op + Bo(t,x, D)u+ Co(t,z, Dr)p = go(t, ), zel, teld
Bj(t,x,D)u+ Cj(t,z,Dr)p = g;(t, x), zel, tel, j=1,...m, (3.1.1)
u(0,x) = up(x), x € Q,
0,z)

p(0,

, zel.
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Here Q C R"™ is assumed to be a domain with compact smooth boundary I' = 99, J =
(0,7) is a finite interval, T > 0, and F, F' are Banach spaces of class H7 . The unknown u
lives on J x €, while the unknown p lives on J x I, i.e., it is only present on the boundary
I'. It is assumed that the dynamic equation for u and the static boundary equations take
place in E, and that the dynamic equation for p takes place in F'. Consequently, the right-
hand sides f, g1, ..., gm, and the initial value ug take values in E, while gg and pgy take

values in F'.

Formally one obtains the problem (2.1.1) with static boundary conditions by setting p =0
and dropping the second dynamic equation.

The differential operator A is given by

Alt,z,D)= > an(t,z)D*, x€Q, tel

|a| <2m

where m € N and D = —iV, with the euclidian gradient V = (0, ..., 0z,) on R", and
coeflicients aq(t,z) € B(E). Hence the order of A is 2m. The boundary operators B; are
of the form

Bj(t,z,D) = Z big(t, z)troDP, zeT, teJ, j=0,...,m,
[B]<m;

where m; € {0, ...,2m — 1} is the order of B;, and the coefficients satisfy
bog(t,l’) EB(E,F), bjg(t,l“) EB(E), j=1,...,m.

Observe that B = (By, ..., By,) only acts on u, in a way that first the euclidian derivatives,
and then the spatial trace trq is applied.

The operators C = (Cy, ..., Cy,) only act on p, in the following way. For (almost every) ¢t € J
it is assumed that C;(¢, -, Dr) is a linear map

CP(5F) — Ly(I F),
such that for all 7 = 0,...,m, all local coordinates g for I and all p € C*°(I'; F') it holds

(C;(t,-, Dr)p) o g(x) = Z ¢} (t,x)D;_y(pog)(z), recg (TNU), ted
IyI<k;

where U C R" is the domain of the chart corresponding to g. Here we have D,y = —iV,,_1,
with the euclidian gradient V,—1 = (9sy, ..., 0z, ;) on R"™1 and k; € Ny is the order of
g

Cj. The local coefficients i that may depend on the coordinates g, are assumed to satisfy

cgv(t,m) € B(F), c%(t,az) €B(F,E), j=1,...,m.
We do not assume that an operator C; has global coefficients, in the sense that there are

functions c;j, on I' satisfying c% = ¢jy 0 g in all coordinates g. In contrast to that, the
coefficients of B are globally defined on I'. We write Cj(Dr) with Dr = —iVr, since for C;
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we think of an operator in terms of the surface gradient V. We refer to Appendix A.5 for
more informations on the surface gradient and general differential operators on a boundary
acting on vector-valued functions.

Finally, it is assumed that each of the operators B; and at least one operator C; are

nontrivial. If an operator C; is trivial, i.e., C; = 0, then we set k; := —oo for its order.

We consider three problems that fit into the above framework. Further examples are listed
in |26, Section 3|.

Example 3.1.1. A linearized reaction-diffusion system with surface diffusion,

Ou — Au = f(t,x), x €, t>0,
O + Opu — Aru = g(t, x), el t>0, (3.1.2)
u(0,z) = up(z), x €,

where 9, = v(x) - trqVgq denotes the outer normal derivative and —Arp is the Laplace-
Beltrami operator on I'. The latter is in local coordinates g given by

n—1
> s, (V1GIeM0n, (p 0 ),

1
Arp)og= ——
(are) VIG k,1=1

where G is the first fundamental form corresponding to g and g* are the components of
G™!, cf. Appendix A.1. The problem (3.1.2) can be cast in the form (3.1.1) as follows,

ou — Au = f(t,x), x €, t>0,

Op + Oyu — App = g(t, x), xel, t>0,

trou —p =0, el t>0,
u(0,x) = up(z), x €,

p(0,z) = trquo(z), xzel.

Hence the unknown p is simply the trace of w on I'. The operator A(D) = —A is of order
2, thus m = 1. We further have By(z, D) = 9,, Co(x, Dr) = —Ar, By = trg, C; = —id,
such that mg =1, kg = 2, and m; = k1 = 0.

Neglecting the Laplace-Beltrami operator, we obtain

Ou — Au = f(t,z), x € Q, t>0,
Ou+ dyu = g(t, x), xel, t>0, (3.1.3)
u(0,x) = ug(z), x €.

As above, this problem can be cast in the form (3.1.1) by taking trqu = p as static boundary
condition. The only difference to (3.1.2) is that Cy = 0, hence kg = —c0.



116 Maximal L, ,-Regularity for Boundary Conditions of Relaxation Type

Transforming the Stefan problem with surface tension to a fixed domain, the linearization
of the resulting problem is of the form

Ou — Au = f(t,x), x €, t>0,
atp+auu:.90(t7$)v zel, t>0,

u+ Arp = q1(t, z), zel, t>0, (3.1.4)
u(0,z) = uo(z), T €€,
( ) - pO(x)v zel.

Here the graph of p(t,-) over I' describes the free boundary at time ¢. The maximal L,-
regularity for (3.1.4) is the basic tool in [37] to show analyticity of the free boundary.
This problem structurally differs from (3.1.2) and (3.1.3), since p is not simply the trace
of u, and the static coupling of these unknowns is nontrivial. It holds By = trq, m; = 0,
Ci(z,Dr) = Ar, k1 = 2, and further mg = 1 and ko = —oc. [ |

The Approach in the L, ,-Spaces

The maximal L, ,-regularity approach for (3.1.1) is as follows. Let
pe(l00),  pe(l/pl]
We look for solutions (u, p) so that the first component u satisfies
w € Buy =W, ,,(J; Lp(Q5 E)) N Ly u(J; W™ (5 E)).

As in the static case, the results of Section 1.3 show that this regularity assumption on u

necessarily implies
fe€Boyu = Lyu(Js (G E)),  up € Xy = B2y B),
and further that
g0 € Fo = WS, (J; Lp(T; F)) N Ly, (J; W™ (T F)),

and
9j € By = Wy (J; Ly(T; B)) 0 Ly o (J; W™ (D E)), G =1,...,m,

where we set

For convenience we write

]F,u = ]F07N X ... X Fm7u, g = (907 7gm) € ]F,u’

Therefore, in (3.1.1) the dynamic equation for u takes place in Eg ,, the dynamic equation
for p in Fo ,,, and the static boundary conditions in F; ,, j = 1,...,m, respectively.
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Looking for optimal regularity, the space E,, for p should now be such that, assuming
smoothness of the coefficients, all the summands in the terms in (3.1.1) where p is involved
belong to the space where the respective equation takes place. It can be seen as in [26,
Section 2| that

Eppu =W, "0 (J5 Lp(T; F)) N Ly (J; Wl+2m”°(F'F))
NWL,(J; W2 (D3 F)) 0 (1) Wy (J; Wy (T; F))
jeT

satisfies these requirements. Here we have used the abbreviations

j:: {jE{O,...,m} : kjaé—oo}, lj == kj —mj + mo, l:= 'HéaX l;.
7=0,...m
Observe that J just collects the indices j for which an operator C; is nontrivial, and that
with the above notations it holds

ki +2mk; = l; + 2mko < 1+ 2mko.

Proposition 1.3.2 shows that there is redundancy in the above definition of E, ,, depending
on the relation of [ and 2m. There are three possible qualitative shapes of the Newton
polygon associated to E, , (see Section 1.3.1). The points (0,1 + o) and (I + 2mkg,0)
are always vertices of the Newton polygon. The line through the points (0,1 + o) and
(2mko, 1) intersects (2m + 2mko,0), so that Wz},u(‘]; WpZm’iO (T'; F)) is redundant for [ >
2m, and the points (k;, x;) determine the remaining vertices of the nontrivial part of the
polygon. Moreover, the lines through the points (k;, x;) and (k; +2m#k;,0) are parallel for
Jj =0,...,m. Thus for [ < 2m the spaces corresponding to the points (k;, x;) are redundant,

and (2mko, 1) is a vertex if [ < 2m. Below we give the precise nonredundant description
of E, .-

In each case, Theorem 1.3.6 yields the temporal trace space of p at t = 0, which is denoted
by
Xpu = tri—oKy u,

and, if it exists, of dp at t = 0, which is denoted by
Xatp,u = trtzoatEp,,ua Ko >1—p+ 1/p.

In the Newton polygon, these spaces can be obtained by intersecting the horizontal lines
(a,1—p+1/p) and (a, 1+(1—p+ 1/p)), a € R, with its nontrivial part. More precisely,
Theorem 1.3.6 is applied to the intersection of the spaces that determine the edges these

horizontal lines intersect, respectively (cf. Figure 1.3.2).
The description of the spaces below follows the presentation in [26].
The nonredundant description of the spaces E, ,, X,, and Xj,, .

Case 1: I = 2m. One has

Epp = Wo i (J; Lp(T'; F)) N Ly, (J; W2mTR0(T; F)),
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and therefore
Xy = BEnsot =D FY - Xy, = BEso= (=t DN D F) if kg > 1— p+1/p.
Case 2: I < 2m. One has

Eppu = Wph(J; Lp(Ls F)) N Ly u(J; Wy 2700 (03 F)) N W, (J; W0 (T F)),
and this yields similar trace spaces as in Case 1,
Xy = BEmeot =D/ F), X, = B2 U=ntUDNDy ) if ko > 1— i+ 1/p.
Case 3: I > 2m. This is the most complicated case. One has

Eppu = Wat™(J; Ly(Ts F)) 0 Lpu(J; W20 (T3 F)) 0 () Wil (s W3 (T3 F)),
JjeT

where J = {j1, -, Jgmax } C J, gmax € N, contains those indices j € J so that (kj,K~5)
belongs to the nontrivial part of the Newton polygon, i.e., the points

Py = (0, 1+ Iio), P = (k?jl,lijl), ey P,

Gmax — (kamax ’ K/jlhnax )’

are the vertices of its nontrivial part. Note that it necessarily holds [;, > 2m for j, € J.
It is assumed that J is arranged in a way such that

kj,, <kj,, and k. > Kj, for q1 < qo.
For later considerations we define
k_1:=0, k_1:= 1+ Ky, m_q := mgy — 2m, l_1:=2m.

We further denote the edge in the Newton polygon connecting the points P, and P,y by
NPy, q=0,..., gmax, and define

qu = {jEjU{—].} : ( j j :P} q:Oa"-)Qmam
j2q+1 = {] EJU{ 1} ( ENP} qzoa"'aqmax-

The temporal trace space of 9;p is obtained by Theorem 1.3.6 from the spaces corresponding
to Py = (0,14 ko) and P = (kj,, K, ), L€,

_Bku(ﬁo (1=p41/p))/(1+r0— H“)(F F)

Xatpu if H0>1—M+1/p.

Note that Theorem 1.3.6 does not directly apply if kj, < 1— g+ 1/p. In this case one first
has to use Proposition 1.3.2 and then apply Theorem 1.3.6 to the spaces corresponding to
the points (0,1 + ko) and (kj, ko/(1 + ko — Kj,), 1), cf. Remark 1.3.7.

For X, , one has to distinguish three more cases.
Case 3(i): If kj > 1 —p+1/pfor all j € J, then

X,, = Bl+2m(no (1- u+1/p))(F;F).
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Case 3(ii): Denote by j,, € J be the smallest index with Kjg, > 1—p+ 1/p, and by
Jg» € J the largest index with x;,, <1 — p+1/p. Then

*igy ~Figy
gy + (5, —(1—pit1/p)) 22— 200

K

Xpu = Bpp i I F).
Case 3(iii): If k; <1 —p+1/p for all j € J, then
X — B;ijz% (’{0+“_1/p)/(1+’€0_’{j1)(1—\;F)' H

Pk
It can be seen from the Newton polygon that in each of the Cases 1, 2 and 3 it holds
Xou = Xo,pp- (3.1.5)

We now consider compatibility conditions at the boundary at ¢ = 0, which are necessary
for the solvability of (3.1.1). For the dynamic equation on the boundary, if ko > 1—pu+1/p
then by Theorem 1.3.6 it holds

Fo,. — C(J; ngl(ffo—(l—ﬂ'i‘l/p))(n F)),

so that this equation has to hold up to t = 0 by continuity, provided the coefficients of By

and Cy are sufficiently smooth. In this case it is therefore necessary that
90(0,-) — By (0, -, D)ug — Co(0, -, Dr)po € Xowpp ifko>1—pu+1/p, (3.1.6)

since otherwise it is for all p € £, , impossible to satisfy the dynamic equation for the data
90, uo, po. Moreover, if k; > 1 — 4 1/p for some j = 1,...,m, then it holds as above

Fj, — C(T; Boy 0 # PNy ),

and also the corresponding static boundary equations must be valid up to ¢ = 0 by conti-

nuity. Hence the data necessarily satisfies
B;(0,-, D)ug 4+ C;(0,-,Dr)po = gj(0,-) onTl ifk; >1—p+1/p, j=1,...,m, (3.1.7)

if (3.1.1) has a solution (u, p) € E, 4, xE, ., provided the coefficients are sufficiently smooth.

We illustrate the spaces E, ;,, X, i, X, ,, and the compatibility conditions by reconsidering
the problems from Example 3.1.1.

Example 3.1.2. Problem (3.1.2) belongs to Case 1, since | = [y = 2. We have
Epp = ngilﬂp(c]; Ly (82 E)N LZLM(J; ngl/p(QQ E)),
and for the trace spaces

X, = Bzflﬁi—l/p)+1—1/p(p;p)7 Xopp = B;(;—l/}?)—l—l/p(r;p)’
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where the trace of the derivative only exists if 2(u—1/p) > 14+1/p. Concerning the compat-
ibility condition (3.1.6), note that the trace space of Fo , equals X3, ,, for Ko > 1—p+1/p.
Further, the operators 9, and —Ar map X, , and X, , into Xp,,,, respectively. Hence
(3.1.6) is always satisfied. The condition (3.1.7) requires troug = po if these expressions

exist, which is natural for dynamic boundary conditions.

The problem (3.1.3) belongs to Case 2, since here [ =3 = 1 < 2. Therefore
By = Wit~ V25 Ly(% B)) 0 Ly (J; W3~ (5 B)) O W, (1 Wy ™2 (T5 ),
and further
X,, = (u Up)+1=1/p(1; ), Xouppu = B2(u 1) =1=1/p(p; F),

where the latter trace only exists if 2(u — 1/p) > 1+ 1/p. As above (3.1.6) and (3.1.7) are
naturally satisfied.

Finally, the problem (3.1.4) belongs to Case 3, due to Il =13 = 3 > 2. Since ky = —o0 it
holds

E,, = W22 (J; Ly(T; F)) N Ly (J; WP (T5 F)) AW VP (T, W2(T F)).
The trace space of dyp, which exists for 2(u — 1/p) > 1+ 1/p, is given by
Xowpu = Bz%,(ﬁ_l/p)_z_z/p(n F).
For the trace space of p, if > 3/2p then we are in Case 3(i) and obtain
Xpp = Byl VP2 e(r; R,
and if g < 3/2p then we are in Case 3(iii) with
Xpp = B;f;,(ﬁil/p)ﬁﬁ/p(r; F).

This shows that the initial regularity for p can change drastically if yu varies. The Case
3(ii) cannot occur in this example, since there is only one nontrivial vertex in the Newton
polygon. For u > 1/2+3/2p, i.e., 2(u—1/p) > 1+ 1/p, the condition (3.1.6) is not always
satisfied, since for go € Fo, it holds, in general, go(0,-) € Bgfﬁ_l/p)_l_l/p(F;F), and the
latter space has always a lower regularity than Xp,, . Finally, for (3.1.7) the data must
satisfy uo(-) + Arpo(-) = g1(0,-) if > 3/2p. L

We intend to solve (3.1.1) in the following sense.

Definition 3.1.3. We say that (3.1.1) enjoys the property of maximal Ly, ,-regularity on
the interval J = (0,T) if the regularity assumptions on the data, i.e.,

fe ]EO,/J,a g < FM’ ug € Xu”u, po € Xp#,

together with the compatibility conditions (3.1.6) and (3.1.7), are not only necessary for a
unique solution (u, p) € Ey , x E,, of (3.1.1), but also sufficient.
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The Assumptions on the Operators

In the sequel, the subscript § denotes the principle part of a differential operator, with an
important exception for the C;, for which we set

Cip:=0 ifj¢J.

Hence only the principle parts of the operators C; corresponding to a point on the nontrivial
part of the Newton polygon for E,,, are considered.

First, the coefficients of the operators are required to be such that each summand occurring
in A, B and C is a continuous operator on the respective underlying spaces. Moreover, for
localization purposes it is required that the top order coefficients of the operators are
bounded and uniformly continuous. As in the static case, the Propositions 1.3.15 and
1.3.24 show that for the coefficients of A and B the following is sufficient for our purposes,
respectively.

(SD) For |a| < 2m one of the following two conditions is valid: either

2m(p—1/p) >2m —1+n/p and aq € Eo,(J x Q; B(F)),

(1

or there are 74, S € [p,00) with £ 5)“ + g <1-— % such that

o € Lo, (J; (Lry + Loo) (2 B(E))).

For |a| = 2m it holds a, € BUC(J x$; B(E)), and if  is unbounded then in addition

the limits aq (t, 00) := limyy|_o aa(t, ) exist uniformly in t € J.

(SB) Let & = B(E,F), and & = B(E) for j =1,...,m. For j =0,...,m and |3| < m; one

of the following two conditions is valid: either
n—1
/sj>17,u+1/p+% and bz € Fj ,,

b b .
or there are rjg, sl € [p, 00) with

1-— +1 n-1 m; — m; — n—1
o l;u) +2 < Kj+j2|m, Hj+32|m—(1—ﬂ+1/p) ¢ (0, 2b>,
513 mrig m m mrig
such that

bis € B (Ji Ly (T:€)) N Ly (J; B (I5€7)).
Sip iB JB

Y Tj57p

For the local coefficients of C, the following conditions are sufficient, as Lemma 3.2.4 shows.!

!As the proof of Lemma 3.2.4 shows, the regularity assumptions in (SC) are not as sharp as the
corresponding ones in (SB). Depending on the relation between the spaces E, , and F,, the coefficients
could be less regular in the Cases 2 and 3. For the sake of a unified presentation we do not distinguish
between the three cases.



122 Maximal L, ,-Regularity for Boundary Conditions of Relaxation Type

(SC) Let Fo = B(F) and F; = B(F,E) for j = 1,...,m, and let g : V. — I' be any
coordinates for I'. For j = 0,...,m and |y| < k; one of following two conditions is
valid: either

n—1

/ﬁ?j>1—u+1/p+ o

and c;g-v eF; (J xV;Fj),

or there are {55 € [p, 00) that satisfy
1-— 1 -1 ki —
8¢, (2mk; + kj — [vDrs, k;

and, in case k; > 1 —p+1/p,

1—M+1/p n—1
K n kg;]|’Y|(1 + Ko — Kj) (2ml€j + kij — |’)/|>7’3?,y7

1—

such that
A Py ) o . p2mK; R
Cjy € Bsfw’p(t], LT]c,V(V,}"J)) N LS%(J, BT%’;(V,J-—J)).

Note that the second condition on the top order coefficients is equivalent to p(l;ﬁ +

a7
n=1 < kj, which is the same as in (SB). Proposition 1.3.24 and Lemma 3.2.4 show that

2mrS

(SB) and (SC) imply the continuity of the (local) top order coefficients, i.e.,

bjs € BUC(J xT;&;), |3l =mj, c;g-vGBUC(ij;}"j), vl =k, j=0,..,m.

We next describe the structural assumptions on (A, 5,C). As in the static case, for A we

assume normal ellipticity.

(E) Forallt € J, z € Q and |¢| =1 it holds o(Ay(¢,,£)) C C4. If Q is unbounded then
it holds in addition o(Ay(t,00,£)) C C4 for all t € J and [¢| = 1.

Also conditions of Lopatinskii-Shapiro type are required. We call local coordinates g asso-
ciated to x € I if the corresponding chart (U, ¢) satisfies

o) =0, @) =0,4, eUNQCRY,  UNT)CR"" x{0},

where O, is a fixed orthogonal matrix that rotates v(z) to (0,...,0,—1) € R". Such a

chart (U, ¢) exists by Lemma A.1.1. For such coordinates we define the rotated operators

A” and BY by
Ay(t, Z, D) = A(t, xZ, OZ(I)D)7 By(t, X, D) = B(t, xZ, OZ(I)D)
Moreover, we define the local operator CY with respect to g by
Cf(t xz, anl) = Z C?»y(h g_l(x))D'Z_la ] = 07 -y MY,

[vI<k;

where C% are the local coefficients of C;. With these notations, in each of the Cases 1, 2

and 3 we assume the following.? Recall that ngﬁ =0forj ¢ J.

2The reader should not be terrified of the Lopatinskii-Shapiro conditions. It is not too hard to verify
them in applications, cf. [26, Section 3] and Section 5.2.
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(LS) For each fixed z € T, choose coordinates g associated to x. Then for all ¢ € J, all
A€ Cy and ¢ e R™ ! with |\ +[¢/| #0,all hg € Fand all hj € E, j = 1,...,m, the
ordinary initial value problem

(A+ AL (t, 2,8, Dy))v(y) = 0,  y>0,
B(I;ﬁ(ta T, 5/7 Dy)v‘yzo + ()‘ + C(%ﬁ(t7 Z, 5/))0- = h07
B;'/ﬁ(t733>£,7Dy)v’y=0 + C;gﬁ(ta IE,gl)O' = h]7 .] = ]-7 ey TN,

has a unique solution (v,0) € Cy([0,00); E) x F.

For problems from Case 2 and 3, in addition the following asymptotic Lopatinskii-Shapiro
conditions (LS,) and (LS}) are required, respectively.

(LS_,) Let I < 2m. For each fixed x € I', choose coordinates g associated to . Then for
all t € J, all hg € F, all hj € E,j=1,...,m,and all A\ € C,, & € R* ! with
|Al 4+ |€'| # 0, the ordinary initial value problem

A+ A2, Dy))oly) = 0, y>0,
]yﬁ(ta-rv&/aDy)ULy:O = h]v ] = 1a"'am7
and for all A € Cy and |¢/| = 1 the problem
Af(t, 2, &, Dy)v(y) = 0, y>0,
Bgﬁ(ta 'Tvé-/a Dy)v|y:0 + ()\ + Cgﬁ(t,x,f,))d = hy,
B}'jﬁ(tﬁv»f/,Dy)U’y:O =+ C]gjj(ta I’,f,)(f = h]7 J=1..m,

has a unique solution (v,0) € Cy([0,00); E) x F, respectively.

(LSi‘o) Let [ > 2m. For each fixed x € I', choose coordinates g associated to . Then for all
teJ,allhg € F,all hj € E,j=1,..,m, and all A\ € C; and ¢ € R"1\{0}, the
ordinary initial value problem

A+ AL (t 2, €, Dy))o(y) = 0,
B;‘/ti(t’%gl’ Dy)v|y:0 + 5',qumax+1C§ﬂ(ta $7€,)U = hj, 7=0,...,m,
and further for all A € C;\{0}, |¢'| =1 and q = 1, ..., 2gmax, the problem

y >0,

(A + ALt 2,0,Dy))v(y) = 0,  y>0,
Bgﬁ(t, x, 0, Dy)v‘y:() + (571,\7(1)\(7 + (507qu§11(75, z, f/)a = hg,

BYy(t, 2,0, Dy)vly=o + 05, 7,C5(t,x.§ )0 = h;,  j=1,...m,

has a unique solution (v, o) € Cy([0,00); E) x F, respectively. Here §; 7. = 1if j € T,
and 9d;, 7, = 0 otherwise.

If F and F' are finite dimensional, it suffices to show that the above problems with h; = 0,
j = 0,...,m, admit only the trivial solutions, respectively. In [26] it is shown that these
conditions are necessary for uniform maximal L,-regularity of (3.1.1) on finite intervals. The
Lopatinskii-Shapiro conditions are verified in |26, Section 3| for the problems of Example
3.1.1. We also refer to Section 5.2, where we verify (LS) for a more general version of
(3.1.2).



124 Maximal L, ,-Regularity for Boundary Conditions of Relaxation Type

The Main Theorem
We state the main result of this chapter.

Theorem 3.1.4. Let E and F be Banach spaces of class HT , p € (1,00) and pu € (1/p, 1].
Let J = (0,T) be a finite interval, T > 0, and let  C R"™ be a domain with compact
smooth boundary I' = 0§). Assume that (A, B,C) satisfies (E), (LS), (SD), (SB) and (SC),
and, in addition, for | < 2m condition (LSZ,), and for | > 2m condition (LS})). Assume
further that k; # 1 — p+1/p for j = 0,...,m. Then the problem

o+ A(t,z, D)u = f(t,x), reN, teJ,
Op + Bo(t,x, D)u + Co(t,x, Dr)p = go(t, x), zel, telJ,
Bj(t,z, D)u+Cj(t,x, Dr)p = g;(t, x), zel, teJ, j=1,..m, (3.1.8)
u(0, ) = up(z), x €Q,
p(0,2) = pola), €T,

enjoys maximal Ly, ,-regularity, i.e., (3.1.8) has a unique solution (u,p) € E, , x E,, if
and only if (f, g,ug, po) € D, where

D = {(f,9,u0, p0) € Eou x Fy x Xy X X+ for j=1,...,m it holds
BJ(Oa '7D)u0 +CJ(07 '7DF):00 = g]((): ) on I If’%j >1—p+ 1/p7
90(0,-) — By (0, -, D)ug — Co(0, -, Dr)po € Xowpp if kg>1—p+ 1/p}.

The corresponding solution operator L : D — K, , x E, , is continuous. Restricting L to
Dy := {(f)gau[)apO) €D :g¢e O]F,u}a
for given Ty > 0 its operator norm is uniform in T' < Ty. Finally, if the coefficients
(—)aa, Jol <2m, (=), 181 <my, (<P, W <ky =0,
and the data are real-valued, then also the solution is real-valued.

Here the sets of compatible data D and Dy are endowed with the norms

[(f: 9, u0, po) D =1 flRo,, + |9lF, + [uolx,, + lpolx,,
+190(0, ) = Bo(0, -, D)uo — Co(0, -, Dr)polxs,, .»

and

|(f’g) U’O?:OO)|DO = |f|E0,u + |g|0Fp, + ‘UO|X’U.,[J. + |p0‘Xp,,u
+190(0,-) = Bo(0, -, D)ug — Co(0, -, Dr)polxs,, ,.»

respectively. The continuity of £ must be understood with respect to these norms. Again it
is important to distinguish between the norms of F,, and ¢F,, (see Remark 1.1.15). Arguing
as in the proof of Lemma 1.3.25, one can show that (D, |- |p) and (Do, | - |p,) are Banach

spaces.
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We have seen in Example 3.1.2 that it is possible that the condition
90(0,-) = Bo(0, -, D)ug — Co(0, -, Dr)po € Xo,p,p

is always satisfied. In this case we may consider D and Dy as closed subspaces of Eg , X
F, x Xy, xX,, and Eq, x oF, x Xy, x X, ,, respectively.

The proof of Theorem 3.1.4 follows [26] and is based on a localization and perturbation
procedure, analogously to the proof of Theorem 2.1.4. For a general outline we refer to the
end of Section 2.1. The main difficulty is the half-space case on the half-line, with vanishing
initial value and vanishing domain inhomogeneity. Since there are no boundary conditions
involved in the full space problem, this case is already covered by the Propositions 2.2.2
and 2.3.2.

3.2 Half-Space Problems with Boundary Conditions

3.2.1 Constant Coefficients

On the half-space 2 = R"} with boundary I' = R"~! we consider the homogeneous differ-

ential operator

AD)= > anD

|a|=2m

together with the homogeneous boundary operators

BJ(D) = Z bjgtl“RiDﬁ, Cj(anl) = Z Cj’yDg_l 7=0,...,m.
|Bl=m; Iy|=k;

The coefficients of the operators are assumed to be constant, respectively,
aa,bjg € B(E), c¢jy € B(F,E), j=1,...m, byg€B(E,F), coy€B(F).

In this section, if nothing else is indicated, all spaces have to be understood over R, x R} |
or over Ry x R~ We set

OFZM = OW;L(RJH Lp(Rn_l; E)) N LP7M(R+; szmmj (Rn_l; E))’ J=1..m,
and analogously for the spaces ¢Fo , 0F,, 0Eqy,u, and OEPW?’

We first consider inhomogeneous boundary conditions. The proof follows |26, Section 4.3].

Lemma 3.2.1. Let E and F be Banach spaces of class HT, p € (1,00), p € (1/p,1],
and assume that (A, B,C) satisfies (E) and (LS), and, in addition, for | < 2m condition

3More precisely, each W, u.-space in the nonredundant description of o, , must be equipped with a
left subscript 0.
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(LS

[e.9]

(’LL, p) € OEU,# X OEP’H of

), and for | > 2m condition (LSY). Then for g € (F,, there is a unique solution

u+ Ou+ A(D)u

) 07 RS Rﬁ_, t> 0,
p+ 0+ Bo(D)u+ Co(Dn-1)p
)

= go(t,x), reR"™L t>0,
Bj(D)u+Ci(Dy-1)p = gj(t,z), xR t>0, j=1,...,m, (3.2.1)
u(0,2) =0, xr € RY,
p(0,z) =0, reR"L

Proof. (I) We first show uniqueness for (3.2.1). On the space L,(R; E) x W;(R"‘l; F),

. kji K . .
where s = 2mkg in the Cases 1 and 2, and s = Hljoli_: in Case 3, we consider the
J1

operator A, defined by
A(u, p) == ((1 4+ A)u, Bou+ (1 + Co)p), (u,p) € D(A),
with domain

D(A) == {(u, p) € WZ™R; E) x WMo R F)
Biu+(1+Cj)p=0, j=1,....,m; Bou+Cop€ WyR" 1 F)}.

By (the proof of) [26, Theorem 2.2|, A generates an analytic Cp-semigroup, and it thus
follows from Lemma 1.2.1 that solutions of (3.2.1) are unique in the maximal L, ,-regularity

space for A, i.e., in
Euu(Ry) x (W, (R WS (R"™ F)) N Ly, (Ry; Wm0 (R F))).

Since gE, ;, x oE, , embeds into this space, it follows that solutions of (3.2.1) are unique
in gEy , X oEp -
(II) The rest of this proof is concerned with the existence of solutions of (3.2.1). We first
suppose that

9 =190y, 9m) € CF (R+; ng(Rnfl;F X Em))

We apply the Fourier transform F; in time to (3.2.1), with covariable § € R, to arrive at

the stationary problem

(1+i0)v+ A(D)v =0, r € RY,
(1+1i0)o + Bo(D)v + Co(Dy—1)o = (Frg0)(0), xR, (3.2.2)
Bj(D)v+Cj(Dp-1)o = (Fg;)(0), zeR" ' j=1,.m

In [26, Section 4.3] it is shown that (3.2.2) has for each § € R a unique solution

(v(0),0(0)) € W2™(R; E) x Wi2meo(R*1 F),

4The number s is determined by the intersection of the nontrivial part of the Newton polygon of Ep .
with the vertical line (a, 1), a € R. The number j; € J was defined in Section 3.1.
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which may be represented as follows. We write = (2/,y) € R} with 2’ € R™ 1 and
y > 0, and denote by F,/ the partial Fourier transform with respect to x’, with covariable
¢ € R"!. We further define the symbols

! ! 1+10
9= (1+16 /|2y L/ 2m b::u :zg— =
( +1 +|€‘ ) ) ,'97 C |§/|7 a 1927’)’), Y
and the so-called boundary symbol s(6,&’) by
s(0,¢) =140 + |¢'|! in the Cases 1 and 2,

5(0,) :=1+10 + Z &’ |Figmo—mi in Case 3.
JjeTJ
Setting (0, &) = (97 (Fur Figo) (0, '), oo, 0™ (For Fogm) (0, €))) € F x E™ it holds

v(0,2',y) = first component of F;leﬁiAO(bC’“)yPs(bC,a)MS(b, ¢,9)h(0,-)
o(0,2',y) = F ' s(-,0) 9" MO (b, ¢, 9)h(6, ).
Here we have
Ag:C" 1 x C— B(E*™),  P,:C"!'xC— B(E*™),
M) : Dy x D¢ x £ — B(F x E™ E*™), M) : Dy x D¢ x & — B(F x E™, F),
with open sets
(By12(1/2))*™ c DycC,  {¢eR"':|¢(|=1}CD;cC",

and a sector ¥ = {z € C\{0} : l|argz| < ¢}, where ¢ € (w/4m, ). The maps Ao, Pk,
MY and Mg are holomorphic in their complex arguments. The spectrum of 14y (b¢, a) has
a gap at the imaginary axis, and Ps(b(, a) is the spectral projection corresponding to the
stable part of the spectrum. The functions M? and MS have the property that

{l€'1*1Dg M2(D,¢,9) - o/ €{0,1}"7!, € #£0, 0€R, beDy, Y€} (3.23)
is an R-bounded set of operators in B(F x E™, E*™)  and that
{1€1*1Dg MOD,¢,9) : o/ €{0,1}"7Y, € #0, R, be Dy, YT}  (3.24)

is an R-bounded set of operators in B(F' x E™, F).

The representation of the solution is obtained in [26] by applying F,/ to (3.2.2), which
yields an ordinary initial value problem. By (LS), this problem has a unique decaying
solution, from which the solution of (3.2.2) is obtained by applying .7-";1. The asymptotic
Lopatinskii-Shapiro conditions (LSZ)) and (LSZL) are required to show the R-boundedness
of these sets, due to the unboundedness of . For I = 2m, the symbols MY and Mg do not
depend on ¥, so that in this case asymptotic conditions are not needed. We refer to |26,
Section 4.3] for details.
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(IIT) We derive another representation of the solution operator for (3.2.2). For a function
h € S(R* ! E™) we calculate for 2/ € R""! and y > 0, neglecting the arguments of A
and P,

(]_-Qleonypsﬁ) (z') = (]:—1 iﬁAO(y+@PS€*§ﬁﬁ) (wl)!gzo (3.2.5)

:—/ O5(F el 40w+ p =000 (2') dy
0

:/OO (}“x M9Ao(y+z7)p g 1A0192m fyﬂh)(l,/) dy
0

oo A i~ »
= /0 (7, e MW p, ﬁzml 2) # (LoSoFy 1) (1) () d7

Here the operator Lg, which corresponds to the symbol 92, is defined by
Ly:=1+10+ (—A,—1)™,

and the extension operator &, which corresponds to y — e ¥, is for f € Lp(Rnfl;E)
given by

1/2m

(Eof) (@ y)=evE " f@!), ' eR™L y>0.

In the last line of (3.2.5) we have used that
Fl0?me=Vh = Loy & F'h,  he SR™LEM),

which is a consequence of the uniqueness of the H*-calculus for —A,_1 on L,(R""!; E)
(see [62, Example 10.2|). For § € R and f € L,(R'}; E*™) we thus define the operator 7 (6)
by

(T(0)f)(a,y) := first component of /0 (7! A0+ p, 19217111410) « f(-,9) (=) dy.

The proofs of the Lemmas 4.3 and 4.4 in |25] show
T € C'(R; B(L,(R"; E*™), W2™ (R} E))),

and that

{D*T(0), Q%Da%(e) : 0 R, |al <2m} (3.2.6)
is an R-bounded set of operators in B(L,(R'; E*™), L,(R"; E)). Using further that
9N Fy = FoLy "

v(0) of the solution of (3.2.2) we therefore arrive at the representation

for j = 0,...,m, which can be seen as above, for the component

v(0) = T(0) Lo (Fi' Mu(b, ¢, 0) Fr) (L ™" Frgi (0)) o o

=U,...,

Similarly, the second component o(f) may be represented by

o(0) = S, Ly (F MO(b, ¢, 9)For) (L ;mﬂ?mftg](e)) s

9eecy

where the operator Sy, that corresponds to the boundary symbol s(6,¢’), is given by

Spi=1+i0+ (—A,_1)"? in the Cases 1 and 2,



3.2 Half-Space Problems with Boundary Conditions 129

Sp:=1+i0+ Z(—An,l)kf/QLémo_mj)/zm in Case 3.
JjeT
(IV) It follows from the boundedness of (3.2.6) that the map 6 — 7 (6) is bounded. It was
further shown in Step II of the proof of Lemma 2.2.7 that 0 — Ly&p is bounded. Moreover,
the R-boundedness of (3.2.3) and (3.2.4), the operator-valued Fourier multiplier theorem
in n— 1 dimensions (|24, Theorem 3.25], see also |62, Theorem 4.13]) and real interpolation
yield that also the maps

01— fglMS(bu C’ﬁ)fa:’ S B(Wg(Rnil, F x Em)7 W;(Rnfl, E2m))7

0 F ' MJ(b,¢,0)Fy € BWS(R" L F x E™), Wi (R*™ F)),

are bounded for § € R. Hence for g € C° (R+; szm(R”_l; F x Em)) we may apply the
inverse Fourier transform to (v(#),o(6)) and obtain that the solution (u,p) of (3.2.1) is
given by

w=Lug:=F;T(0) Lo & (F " MUb,C.0)Fur) (L™ """ Fogy) o

—1 a—17mo/2m — —m;/2m
p=Logi=F 1Sy Ly P (F MO, ¢ 90) Fur) (L™ " Figy) o

.....

Now as in Step III of the proof of Lemma 2.2.7 we may rewrite these solution operators to

Lug = (FIT(0)F) LE (F F MO(b, ¢, 0) Fu ) (L™i/2mg;)

§=0,...,m’

ﬁpg — S*le0/2m (ft—lf;;lMpO(b’ 47 ﬂ)fm’ft) (L*m]/ng])

§=0,...,m’

with the operators
L:=140+ (—Ap—1)™, &= ef'Ll/Qm,

S:=1+0;+ (—An_l)l/2 in the Cases 1 and 2,

Si=1+0 + Z(—An,l)kj/QL(mO_mj)mm in Case 3,
JjeJ
that correspond to Ly, & and Sy, respectively. Since C°(Ry; ng(R”_l; F x E™))is a

dense subset of oIF, by Lemma 1.3.14, the task is now to show that there is an estimate
|LuglE,, +1Lo9lE,, S 19l6F, g€ CPRy WM R F x E™)), (3.2.7)

since then the solution operator

L:=(Ly, L))

extends continuously to oF,, and this yields the solution of (3.2.1).
(V) By Lemma 1.3.1, the realization of L on the space Ly ,(Ry; L,(R"™1; E)) is invertible,
sectorial of angle not larger than 7/2, and for s € (0, 1] we have

Di(s,p) = oW, (R LR B)) 1 Ly (Ry s W2 (R B)).
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Therefore L~"%/2™ maps for j = 1,...,m the space oF; . = Dr(k;,p) continuously into

oYg = Dr(1—1/2mp,p) =W, "> (Ry; L(R"™; E))
N Ly (Ry; W2 PR B)).
The same arguments show that L~—mo/2m maps oo, continuously into ¢¥Yp, which is

defined as ¢Yg with F replaced by F
(VI) We next show that the operator

MO = F MO, ¢ 9) Fo F,
with symbol M?: Dy x D¢ x ¥ — B(F x E™, E*™ x F) given by
MO(b,¢,9) = (M(b,¢,9), My (b,¢, 9)),

extends continuously to an element of B(OYF X oY, OY%” X OYF). To this end we consider
the approximating operators

MO = FUFIMO (b, C,0)(L+9) S FpF, e €(0,1).

Cauchy’s formula yields the representation

1

O _ _ _—
M 472

/ FAFIMO(b, ¢, 0) (1 +9) "5 (b — b) 10 — 9) " Fp Fr dbdd,

E9 JE

with Zy = (—o00,0]e™'%* U [0, 00)e!?* for some ¢, € (7/4m,$), and where Z, is a closed
curve in Dy surrounding (§1/2(1/2))1/2m. Since ¢ = £'/|¢| is independent of 6, we may
rewrite this to

1 o o= 1/3  p1/2my—1 4510
= 47T2//f MO(b, ¢, 9)Fo (14 9)~(b— B)"1(9 — LY2m)~L dbdd,

where B := (—=A,_1)Y2L71/?™ corresponds to the symbol b = ‘%. The realization of
B on Ly, (Ry;L,(R"™ E)) is a bounded operator, and its spectrum is contained in
(§1/2(1/2))1/2m. This can be seen using the joint functional calculus for 9; and (—A,—1)™
|57, Theorem 4.5].

As above it follows from the R-boundedness of the sets (3.2.3) and (3.2.4), and the operator-
valued Fourier-multiplier theorem in R™~! that the operators

MY (b, 0) == FAMO(b, -, 0) For, beD, DeEX,

extend continuously to elements of B(W]‘f (R Fx E™), W, (R—1; B2m % F)), s > 0, with
uniformly bounded operators norms. Since M? is holomorphic, also M! is holomorphic in
its arguments. By canonical pointwise extension we thus obtain that

]W1 : Db X X — B(OYF X 0Ym,0Y2Em X OYF)
is bounded and holomorphic. Hence we may rewrite M%¢ into

MO = — 1 2/ / MY, 9)(1+0)%(b— B)~"'(J — LY/*™)~ 1 dbdd,
78
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where the curve integrals are now in B(OYF X OY}Z},OY%’” X OYF). Using LI-1/2mp ag
an isomorphism ¢Yg — Ly, (Ry; L,(R"™1; E)) that commutes with B, we see that the
spectrum of the realization of B on (Y x oY% is also contained in (§1/2(1/2))1/2m. Now
the Dunford calculus for B yields

1

T 2mi

MO,e / M2(1§)(1 + 5)75(5_ L1/2m)71 d1f9v,
Ey

with a bounded holomorphic map
M2 Y — B(OYF X 0y7£7oy2Em X OYF)-

Since the realization of L/?™ on L, (R ; L,(R"!; E)) is sectorial with angle not larger
than 7 /4m, it follows from [18, Corollary 1] that L'/?™ admits an operator-valued bounded
H>-calculus with H>-angle not larger than m/4m on the real interpolation spaces oY%
and oY'%. From this fact and the boundedness of M 2 on ¥ we infer

0 2,3 TN —
M| B Y oY 0 V2 X0 Y F) S ;up (M=) (1 +9) " (v pxovmovzmxeyy) < O (3:2.8)
ex

where C does not depend on € € (0,1). Due to [24, Proposition 2.2|, for h € D(L?) the map

e+ (1 + LY?™)*h is continuous with values in Dp(1 — 1/2mp, p). Together with (3.2.8),
this fact yields

0 : 0 1/2
|M h|0Y2Em><OYF 5 hlglj(l]lp ’M 75’B(OYF><QY7E",0Y2EWLXOYF) |(1 + L / m)8h|OYF><OY7£

S 1hloy pxovry-

Since D(L?) is dense in Dp(1 — 1/2mp,p), we obtain that M extends to an element of
B(OYF X OY’;},OY%"‘ X OYF), as asserted.

(VII) Now we can show the required estimate for £,, i.e.,

1Luglen, Slglor., 9 € CERL W™ (RYHF x E™)), (3.2.9)

_.r1/2 .
L™ maps continuously

By Lemma 1.3.8, the extension operator £ = e
Dr(1 - 1/2mp,p) = Dy*"(2m —1/p,p) = Ly(R; D(L)),
and L maps the space L,(R4; D(L)) continuously into
Ly(Ry; Lyu(Ry; Ly(R" ™ E))) = Ly u(Ry; Ly(RY; E)).
Of course, here E¥ may be replaced by F. Thus L £ maps continuously
oYZ" x oYr — Ly (Ry; Ly(R%; ™ x F)).

The R-boundedness of (3.2.6) and the operator-valued Fourier multiplier theorem in L, ,
(Theorem 1.2.4) show that ft_l'f F: extends to a continuous operator

Lpu(Ry; Ly(RE; E*™)) — Ly (R ng(m; E)).5

®As in the static case, following the methods of the proof of [25, Lemma 4.4], one can show that for
la| < 2m it holds DT € C*(R; B(L,(R%; E>™ x F)), and that 83| D*T;(8)| < 2. Hence also Proposition
1.2.5 yields that D7 is a Fourier multiplier on L, .
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Now the equation for u shows that the E,, norm of u can be controlled by its
Ly u(Ry; W2™(R'; E))-norm, and this yields (3.2.9).
(VIII) We finally consider the estimate for £,

As above we obtain that the operator L™0/2™ maps continuously
oYr = Dr(1—1/p,p) — Dr(ko,p) = oFou.

It is thus left to show that S is an isomorphism ¢E,, — oFo,. Using that J; admits
a bounded H*>-calculus on Ly, (R4; L,(R"™%; F)) with domain oW, (Ry; Ly(R* 1 F))
(Theorem 1.1.7), this can be done literally in the same way as in |26, Section 4.2|. [ |

Before we turn to the general half-space case we consider a right-inverse for the temporal
trace on £, ;.

Lemma 3.2.2. Let F' be a Banach space of class HT, p € (1,00), p € (1/p, 1], and let
2 C R" be a domain with compact smooth boundary I' = 02, or 2 = R"}. Assume that
ko #1—p+1/p, and let pg € X, ,,(I") and further p; € Xp,, ,(I') in case kg > 1 —pu+1/p
be given. Then there is p € E, ,(Ry x I') with

pli=o = po, and Opli=o = p1 if Ko >1—p+1/p.

Proof. (I) We set

p1:=0 for Ko <1—p+1/p.
First suppose that I' = R"~!. Let By and B; be negative generators of exponentially stable
analytic Cp-semigroups on L,(R"~1; F'). Then we define p by

p(t) — (2€—tBo _ e—QtB())pO + (e—tBl _ e_QtBl)Bflply t> 0’
so that we have
pli=0 = po, Opli=0 = p1.

We choose B; = (1 — A,_1)%/?, with exponents s; > 0 as in [26, Section 4.1] according
to the Cases 1, 2 and 3. Using Lemma 1.3.8 and arguing as in [26] one can show that
p €E, (Ry x R"1) as desired.

(ITI) In the general case, we describe I' by a finite collection of charts (U;, ;) and a
corresponding partition of unity v; for I', and denote by ®; the push-forward with respect
to s, i.e., ®ipg = po o ; *. We further take cut-off functions ¢; € C°(R" 1) with

¢; =1 on supp ®;v;, supp ¢; C ;(Us).

It follows from Lemma A.4.1 that ®;(¢ip0) € X,,(R"1), and also ®;(¢ip1) €
Xo,p.u(R"™1) in case ko > 1 — p+ 1/p. We define

p(t) = Zz q)i—1¢i<(2€—t30 _ e—QtBo)(I,i(wipO) + (e—tBl o 6_2tBl)Bf1‘I’i(wip1)), t>0,
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where By and By are chosen as above according to the Cases 1, 2 and 3. Then pli—g = po
and 0ypli—o = p1, and further p € E, ,(Ry xI') by Lemma A.4.1. [ |

We now consider the general half-space case with constant coefficients. The Banach space
of compatible data is here given by

D = {(f,9,u0,p0) € Eou X Fyy x Xy x Xy, ¢ for j =1,...,m it holds
Bj(D)uo(-) +Cj(Dp-1)po(-) = g;(0,-) on R™™ if k; >1—pu+1/p;
90(0,+) = Bo(D)ug — Co(Dp—1)po € Xopppu if ko >1—p+1/p},

and it is equipped with the norm

|(f, 9,10, po)lD =|flE,, + |9
+190(0, -) = Bo(D)uo — Co(Dn-1)pol xs,), .-

F, + |uolx,, +polx,,

Proposition 3.2.3. Let E and F' be Banach spaces of class HT, p € (1,00), p € (1/p, 1],
and assume that (A, B,C) satisfies (E) and (LS), and, in addition, for I < 2m condition
(LS%), and for I > 2m condition (LSL). Let further k; # 1 — pu+1/p for j = 0,...,m
Then there is a unique solution (u, p) € E, , x E, ,, of

u+ 0w+ A(D)u = f(t, ), reRY, t>0,

)
p+ip+ Bo(D)u+ Co(Dnr)p = go(t,z), xR, >0,
Bj(D)u+Cj(Dy—1)p=g;(t,x), xR t>0, j=1,...,m, (3.2.10)
( ,l’) :fUJO(x) .fERZ’_,
( 7'7;) :p0($ l’ERn_l?

if and only if the data satisfies (f,g,ug,po) € D. The corresponding solution operator
Sy :D — E,, xE,, is continuous.

Proof. The necessary conditions on the data were derived in Section 3.1. If a solution
operator exists, then it is continuous due to the open mapping theorem.

Uniqueness of solutions of (3.2.10) follows from Lemma 3.2.1. We are going to reduce
the existence of a solution of the full problem (3.2.10) to the problem (3.2.1). Let the
data (f,g,u0,po) € D be given. We extend f and wug to SRif € Epu(Ry x R™) and
Ern uo € Xu,u(R™), using the extension operator Egn from (1.3.3). Proposition 2.2.2 yields
a solution v € E,, , (R4 x R™) of the full-space problem

v+ 9w+ A(D)v = (&rn (L, ), x € R, t >0,
v(0,z) = (Ery uo) (), x e R",

which we use to define u := lei € E, . Moreover, the compatibility condition for j = 0
and (3.1.5) imply

golt=0 — (po + Bo(D)ug + Co(Dn-1)po) € Xoppu if ko >1—p+1/p.
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It thus follows from Lemma 3.2.2 that there is p € E, ,, with pli—o = po and
O0ipli=0 = goli=o0 — (po + Bo(D)uo + Co(Dp—-1)po) if ko >1—p+1/p.
Using the function p, we define
96 = 9o — (p+ 0tp + Bo(D)u + Co(Dn-1)p) € oFou,
and further
g; =g — (Bj(D)ﬂ+Cj(Dn71)ﬁ) € o u, j=1..,m.
Note that the equality gﬂtzo =0 in case k; > 1 — p+ 1/p follows from the compatibility
condition for j = 1,...,m.® Now Lemma 3.2.1 yields a pair (u*, p*) € oE, ,, X oE, , satisfying
u* + ot + A(D)u* =0, reRY, t>0,
pF+ 3tp* + BO(D)'U/* + C(](Dn_l)p = ga( ) WS Rn_l, t >0,
B;(D)u* + Cj(Dp—1)p* = g;(t,x), reR"L >0, j=1,...,m,

u*(0,z) =0, r eRY,
p*(0,2) =0, reR"L
Thus (u,p) = (u* +u, p* +p) € E, , x E, , solves (3.2.10) by construction. [ |

3.2.2 Top Order Coefficients having Small Oscillation

We investigate the case of operators on a half-space with top order coefficients having small

oscillation, and restrict our considerations to a finite interval
J=1(0,T), T>0.

Now the anisotropic spaces are understood over J x R’ or J x R™ . We consider the

differential operator

Alt,z,D)= Y ao(t,z)D* xR},  tel

|| <2m

and the boundary operators

Bj(t,xz,D) Z big(t :c)tarDﬂ re RV ted, j=0,..,m,
|ﬁ|§mJ

Ci(t,z,Dp_1) = Z cjy(t,z)D] 4 reR"L tedJ, j=0,...m.
IyI<k;

The top order coefficients of the operators are assumed to be of the form

aq(t,z) = ag + aq(t, ), la| = 2m,

SHere it is necessary to exclude the values kj =1—pu+1/p, j =0,...,m, since otherwise it is not

guaranteed that g; € oFo, .
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big(t,x) = blg+bislt,x),  |Bl=my,  j=0,..m, (3.2.11)

cjy(t, x) :C?'y'i_’c\jjfy(t,l‘), |v| = m;, j=0,..,m,
where a?, b?ﬁ and c(;-,y do not depend on ¢ and z. Using these constant coefficients, we
define auxiliary operators (A%, B, C°) by

AYD):= Y alD", (3.2.12)
|a|=2m
BY(D):= Y Wgtrga D’ C)(Dp1):= > &,D) 4, j=0,..,m.
1B]=m; l=k;

Assuming (SD) and (SB) for the coefficients of A — A° and B— B°, the Propositions 1.3.16
and 1.3.24 yield

A € B(Eyu(J),Eo,u(J)), B € B(Euu(J),Fu(J))

We now show that the assumption (SC) is sufficient for the required continuity properties
of C.

Lemma 3.2.4. Let F' be of class HT, let 2 C R™ be a domain with compact smooth
boundary I' = 0L, or Q = R, and let for almost every t € J the differential operator

C(t,-,Dr) = (Co(t,-, Dr),...,Cn(t,-,Dr)) : C°(I; F) — L1(I'; F x E™)
be given. Assume that for j € {0,...,m} and |y| < k; the local coefficients C?v of C; with
respect to coordinates g : V — I satisfy c% € Y;(J), where either

n—1
ki >1—p+1/p+ — and Y (J) =F; . (J x V;Fj),
2mp
or it holds
Yy (J) = Bel, p (3 Ly, (V3 7)) O Ly, (5 Br 3 (V3 7))
with numbers 1., s, € [p,o0) as in (SC).” Then for |y| < k; there is a small number § > 0
with
g Y g
€53 Dn1PlE; u0xv) S 16551y, ) |p|W;jf0*“(J;L,,(V;F))mLp,u(J;W,ﬂ“mo*‘s(v;F))'
Moreover, for the top order coefficients, |y| = k;, it holds c;g-v € BUC(J x V; F;) and there
is a small § > 0 with
‘C%szlm&#(h\/) S ‘C§7|BUC(7><V;]-‘J-)|p|Ep7M(J><V)
g
1 N Pl i, (vmyaL, w20 i)

In particular, under the assumptions of (SC) the operator C extends to
C € B(E,,(J xT),Fu(J xT)).

Restricting to p € oK, ,, and assuming that the coefficients are defined on a larger time
interval Jy = (0,T}y) for Ty > 0, the above estimates, with J replaced by Jy in the norms
for the coefficients, hold with a uniform constant for T < Tj.

"Recall that Fy = B(F), and F; = B(F, E) for j = 1, ...,m.
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Proof. For both cases the boundedness and the continuity of the top order coeflicients
follows from Proposition 1.3.24. Let j € {0,...,m} and a multiindex ~ be given. We have
that

Epu(J X V) o WO (T3 Ly (V5 F)) A Wik (J5 Hy? (V5 F)) 0 Ly (J; W20 (v F)),

and Proposition 1.3.2 and the fact that [ + 2mko > kj + 2mk; yield for all j that®

k—
L e L e
7T D HD VS F)) A Ly (3 W (v ),

ko —
Ki+ — (14+K0—K;) e

b DLV ) 0 L (W0 v ),
with uniform norm in the o, ,-case, and the latter space embeds into IF; ,(J x V). In case
ki >1—p+1/p+ % and Y;y(J) = F; . (J x V; F;) the asserted estimates follow from
Lemma 1.3.23. In the other case we can apply the Lemmas 1.3.21 and 1.3.22, with

ki — |7
k;

T =K+ (14 ko — Ky), U =2mk;+k;j —|v|. [ |

For an interval J' = (0,7”) with 77 > 0 the Banach space of compatible data is given by

D(J") = {(f, 9,u0, po) € Eou(J) x Fu(J) x Xy x X, ¢ for j =1,...,m it holds
B;(0,-, D)ug + C;(0,+, Dp—1)po = g;(0,) on R™™ if x; >1— pu+1/p;
90(0,-) = Bo(0, -, D)ug — Co(0, -, Dp—1)po € Xo,pp if ko >1—p+1/p},

and we also consider the space

Do(J'") = {(f,9,u0,p0) €D(J') : g€ oFu(J)}.
We have the following result.

Proposition 3.2.5. Let E and F' be Banach spaces of class HT, p € (1,00), p € (1/p, 1],
and assume that (A%, B°,C°) satisfy (E), (LS), and, in addition, for | < 2m condition
(LSy,) and for | > 2m condition (LSZT)). Suppose further that the coefficients of (A —
A% B — B9, C — (% satisfy (SD), (SB), (SC), and that k; =1 — u+1/p for j =0, ...,m.
Then there are a time Ty € (0,T] and number € > 0 such that if

sup aa(t, )|pE) < e, la| = 2m, (3.2.13)
(t,)€[0,To] xR
sup ’b]ﬂ(t?x)‘gj +’E}’Y(t’$)|}—j <ég, |ﬁ‘ = my, |/7| :kja J :Oa-“amag

(t,x)E[O,To] xRn—1

8Using the detailed shape of the Newton polygon according to the Cases 1, 2 and 3, here one could

obtain a sharper result.
“Recall that & = B(E, F), Fo = B(F), and further £ = B(E) and F; = B(F, E) for j = 1,...,m.
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then for all intervals J = (0,7") with T" < Ty there is a unique solution (u,p) =
S]Sl[m(fvgau0)p0) € Eu,u(‘]/) X EP,,LL(J/) Of

ou + A(t,z, D)u = f(t,x), xr € RY, telJ,
Op + Bo(t,x, D)u+ Co(t,x, Dp—1)p = go(t, ), z e RV telJ, (3.2.14)
Bj(t,x,D)u+Cj(t,z, Dp—1)p = gj(t, ), re R telJ, j=1,..,m,
u(0,x) = ug(z), xz € RY,
p(0,2) = po(), zeR"

if and only if (f, g,uo, po) € D(J'). The corresponding solution operator
S D(J') = Eypu(J) X E, u(J)
is continuous. The operator norm of S5 restricted to Dy(J") is uniform in T" < Tj.

Proof. The proof is completely analogous to the static case, Proposition 2.3.1. Throughout,
let 0 < T" <Tp < T. The necessity part and the dependence of the solution operator S
on J' can be obtained in the same way as in the proof of Proposition 2.3.1. Thus we only
have to show unique solvability of (3.2.14) for sufficiently small T and e.

For (f,g,up,p) € D(J') we set

Zugpo(J') = {1, p) € Bupu(J) X Epu(J') = u(0,-) = uo, p(0,-) = po},

which is a nonempty set due to the Lemmas 1.3.9 and 3.2.2, and is further a closed subspace
of Ey,(J') x E,u(J") by Theorem 1.3.6. For given (u,p) € Zy,p,(J') we consider the
problem

v+ 0w+ A% = f+ (A% — A+ 1)u inR?, telJ,
o+ 00+ BYv+Clo=go+ (By —Bo)u+ (C) —Co+1)p on R*™, te.J, (3.2.15)
B})v + CJQO' =g;+ (B;-) — Bj)u+ (C? —Cj)p on R telJ, j=1,..m,
v(0,-) = ug in R},
a(0,-) = po, on R"1,

where (A% B°,C°) is defined in (3.2.12). Since (u,p) € Zug,p(J'), the right-hand sides of
the boundary equations in (3.2.15) belong to Dpo_co(J’), the space of compatible data for
(A% BY.C%). Tt can be seen as in Step I of the proof of Lemma 3.2.1 that for each (u, p)
solutions of (3.2.15) are unique in E, ,(J") x E, ,(J'). The solution (v,0) = S(u,p) €
Eypu(J) x E,,(J') of (3.2.15) is given by

S(u,p) = Sir (€5 (f+ (A~ A+ 1)), E(g-+ (B~ B)ut(C*—C-+1)p), o, po) - (3:2:16)

Here Spr : Do co(Ry) — By p(Ry) x E, (R ) is the solution operator for (3.2.15) on the
half-line, which is given by Proposition 3.2.3 and defined on Dgo co(Ry). Further, £y is
the extension operator from J’ to R, given by Lemma 1.1.5.

Using the Lemmas 1.3.21, 1.3.22 and 1.3.23, one can show as in the proof of Proposition
2.3.1 that S has a unique fixed point (u, p) € Zy, p,(J’), provided Ty and e are sufficiently
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small. Note that to show the contraction property of S the continuity of Sy is only employed
for vanishing initial values and boundary data from (F,. By construction, this fixed point
is the unique solution of (3.2.14) in E, ,(J") x E, ,(J'). |

3.3 The General Case on a Domain

We can now prove the main result of this chapter, Theorem 3.1.4, employing a localization
procedure analogously to the proof of Theorem 2.1.4. For an outline of the proof we refer
to the end of Section 2.1.

To set the scene, let E and F' be Banach spaces of class H7, let J = (0,7) be a finite
interval, and let 2 C R™ be a domain with compact smooth boundary I' = 9. We consider

the problem

ou+ A(t,z, D)u = f(t,x), e, teJ,
Op + Bo(t,x, D)u + Co(t,x, Dr)p = go(t, x), zel, teJ,
Bj(t,x,D)u+ Cj(t,z,Dr)p = g;(t, x), zel, tel, j=1,...m, (3.3.1)
u(0,x) = up(z), x € ),
p(0, ) = po(z), z €T,

where the differential operators A and B = (By, ..., B,,) are given by
Alt,z,D)= Y ao(t,z)D%  telJ, zeQ,

|| <2m

Bj(t,x,D) = Z bis(t, .T)tI‘QD'B, teJ, rzel, m; € {0, ...,2m — 1},
[B1<m;

and where the operators C = (Co, ..., Cy,) are in local coordinates g given by

C;‘;(t,x,Dp) = Z c%v(t,a:)DZ_l, teJ, kj € No, j=0,..,m.
IvI<k;

Assuming that the coefficients aq, bjg, and ¢} satisfy (SD), (SB) and (SC), it follows from
the Propositions 1.3.16, 1.3.24 and Lemma 3.2.4 that

A€ B(Eyu, Eop), B e B(Ey,;,FLu), CeB(E,,F,).

For the top order coefficients, it is assumed in resp. follows from (SD), (SB) and (SC) that
ao € BUC(J x Q; B(E)), la| = 2m, (3.3.2)
bjg € BUC(J xT;&;), |B| =m;, ¢ € BUC(J xT'; F;), |yl = kj, j=0,..,m,
where &; and F; are defined in (SC). The Banach space of compatible data is given by
D = {(f,9,u0,p0) € Eoyu X Fy x Xy X X, ¢ for j =1,...,m it holds
B;(0,-, D)uy 4+ C;(0,-,Dr)po = g;(0,-) on I' if k; >1—p+1/p;

90(0,-) = Bo(0,-, D)ug — Co(0, -, Dr)po € Xo,p,  if ko >1— p+1/p},

and we also consider the space

Do = {(f,g,u0,p0) €D : g€ oF,}.
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Proof of Theorem 3.1.4.

The arguments of the Steps I and II of the proof of Theorem 2.1.4 concerning the necessary
conditions, continuity of the solution operator, real solutions and causality carry over to
the present situation. We thus only have to show that for (f, g, uo, po) € D there exists a
unique solution (u, p) € E, , x E, , of (3.3.1), where we may assume that T is sufficiently
small.

(I) We localize in space, and use Proposition 2.3.2 to treat the local problems without
boundary conditions, and Proposition 3.2.5 for the local problems with boundary condi-

tions. As in the proof of Theorem 2.1.4 we take a finite number of points

1‘166, 1=1,...,Ng,
together with xg := oo if 2 is unbounded, and corresponding open neighbourhoods U; C R™
of these points (where Uy = ) if  is bounded) satisfying

Ny
QclJu, U;Nr'=0, i=0,..,Np, UNT#0, i=Np+1, . Ny
=0

Further, the boundary I C Ui]ilvaH U, is described by charts (ﬁl, i), i=Np+1,.., Ny,
having properties as in (2.4.9), i.e.,

pi(xi) =0, ¢i(Ui) = Bay,(0), ©i(xi) = Oy,
901((71 N Q) C R:b-a 90([71 N F) C Rn_l: Ui = (Pi_l(BTi(O))'

Here we have r; > 0, and O, is the orthogonal matrix rotating v(z;) to (0,...,0,—1) €
R, which we have fixed for the formulation of the Lopatinskii-Shapiro conditions.
(IT) For i = 0, ..., Ng we define extended coefficients a’, on J x R™, || < 2m, such that

ap| 7xv; = a;
as in (2.4.4), (2.4.6) and (2.4.7), respectively. This yields operators

Al(t,z, D) ==Y al(t,x)D"

la|<2m

which satisfy (E), and whose coefficients satisfy (SD), respectively. If the diameters of the
U; are sufficiently small, by Proposition 2.3.2 there is for all sufficiently small 7' = |J| a

continuous solution operator
S B u(J X R™) x Xy u(R™) — By (J x RY)
for the full-space problem

o + Al(t,x, D)v = fi(t,x), x € R", teJ, (3.3.3)

v(0,z) = ug(x), x € R".
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(II1) For i = Np 4+ 1,..., Ny we denote by ®; the push-forward operator with respect to
@i, 1e., Piu=wuo ! "and define the transformed operators A% and B® by

A%i(t,x, D) = (®;A(t,, D)®; ) (x), teJ,  xeRLNB,(0),

(2

B*(t,z,D) = (®;B(t,-,D)®; ') (z), teJ,  xeR"'NB,(0).

(2

Denoting by g; the local parametrization of I' corresponding to (U;, ;), we further define
the localized operator C& = (Cg', ...,Cpt) by

CE(t,w, Dpr) = Y E(ta)D)_,,  teld, wzeRINBL0), j=0,.,m.
Iv|<k;

Here c denote the coefficients from the local representatlon of C; with respect to g;.
The coefﬁments of A%i are extended to coefficients af, on J x R as in (2.4. 6) and (2.4.7).
Moreover, the coefficients of B®¢ and C& are extended to coefficients b% i and c - on JxR*1
as in (2.4.11) and (2.4.12).

These extended coefficients yield operators (A?, B?,C?) on the half-space. We define top
order constant coefficient operators (A*?, B9, C%0) by

A(D Z at’D*, at0 = ! (0, z;),
|a|=2m
Z blﬁtarD bl0 = bzﬁ(O x;), j=0,..,m,
|B|=m;
C;’O(anl) = Z ClODZ 1> ;3 = cjg-;i/(O,a:i), j=0,..,m.
181=k;

It follows from Lemma A.1.2 that for & € R"~! it holds

A€, Dy) = 40,21, 05, ) (€, Dy),  B(€,Dy) = By(0,21, OF ) (€, Dy))-
Hence, by assumption, we have that A“C satisfies (E), and (A%, B*0 C*Y) satisfies the
Lopatinskii-Shapiro conditions on R’f. The coefficients of (A" — A0 BE — B0 ¢t — i)
satisfy (SD), (SB) and (SC) by construction. Given € > 0, if T, r; and the diameter of U;
are sufficiently small, then the top order coefficients of (A* — A0 Bt — BHY C? — C%0) have
¢ oscillation.

Therefore (A, B?,C?) satisfies for all i = Np + 1,..., Ny the assumptions of Proposition
3.2.5, and there are continuous solution operators

Slsﬂlm’i : Dpi ci(J) = Eupu(J xRY) X Ep (] x RY)
for the problems
o + Al(t,z, D)v = fi(t, ), xr € RY, teJ,
oo + Bi(t,z, D)v + Ci(t,z, Dy_1)o = g4(t, z), reR" tel (3.3.4)
Bj(t, D)v JrCl(t x,Dp_1)o gj(t,x), reR™L tel j=1,...,m,
v(0,z) = ugy(x), xr € RY,
6 , z e R
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provided T', 7; and the diameter of U; are sufficiently small, respectively. Here Dgi ¢i(J)
denotes the space of compatible data for (A*, B!, C?).
(IV) Denoting by {t;}i=o.. n, the partition of unity for Q subordinate to the cover
Ufi% Ui, as constructed in Step VIII of the proof of Theorem 2.1.4, we take ¢; € C°(R™),
i=0,.., Ny, with

¢i =1 on supp 9, supp ¢; C U;.
As in the proof of Theorem 2.1.4 it then holds that if (u,p) € E,, x E,, solves (3.3.1)
with data (f, g, uo, po) € D, then (u, p) is a fixed point of the map Gy g 4, ., defined by

Np
G gumpo(tp) =D (S (7, s w)|v;, 0)
=0

Ny
+ Z qbiq);l(‘s?{m,l(fl?gzauz)ap%);u’p)hRiﬁBri(O)))
i=Np+1

on the Banach space

ZUOvPO(J) = {(U,P) € EU,/J« X ]EP,IJ« : U(O, ) = U, ;0(07 ) = ;00}>

which is nontrivial due to the Lemmas 1.3.9 and 3.2.2. Here for i = 0, ..., Np we have set
o= if + [A i, uh = iug,
and further, for : = Np +1,..., Ny,
fro=@i(if + [Adilu),  g' = @i(vig + [B,dilu+ [C,ilp),

up = i(Yiuo),  ph = Pi(thipo),

and the notations S}m’i(fi,ué;u) and S;Im’i(fi,gi,ué,pé;u, p) indicate that f?, g%, uf and
po are defined with respect to the functions u and p, respectively. Moreover, [-,-] denotes
the commutator bracket.

Using that the commutators are of lower order, as in Step IX of the proof of Theorem 2.1.4
one can show that for all (f, g,uo,po) € D(J) the map Gy 4.4, has a unique fixed point
in Zyyp0(J), provided T is sufficiently small. Note here that the required compatibility
conditions for S;m’i at the boundary are trivially satisfied, since g¢|;—q, if it exists, is
independent of (u, p) € Zy, 4, (J). This yields a fixed point map

Q : D(J) - Zuo,po(J)7 Q(f7ga U, PO) — gf,g,uo,po(Q(fug7uO)pO))7

with the property that
Q : {(fvg7070) € DO(J)} - ZO,O(J)

is continuous with operator norm uniform in 7" smaller than a given length.
(V) As in the Steps X and XI of the proof of Theorem 2.1.4, for given (f,g,uo,po) €
D(J) one can now find the appropriate data (f*,g*,ug,po) € D(J) such that (u,p) =



142 Maximal L, ,-Regularity for Boundary Conditions of Relaxation Type

Q(f*, g*,ug, po) solves (3.3.1) with data (f, g, uo, po) by solving one more fixed point equa-
tion. Writing Q@ = Q(f*, g*,uo, po), here one obtains for the dynamic equation on the
boundary

(Bo, 0y + Cop) - Z ¢:®; 1 (®:(Bo, 0 + Co)®; 1) - S;Im’i (£, g ub; Q) [&" "B, (0)
1= NF+1

+ Z [(Bo, Co), ¢i] - @7 Sy (17, 9™ uty; Q) [k sy, (0)
= NF+1
Ny

:984- Z (ﬁz[(B,C),"L/JZ]Q—i-/Cg(f*,g*),

i=Np—+1

where the correction term KC9(f*, g*) is given by

Ny
K3(f*,9%) == D [(Bo,Co), ¢il - @7 S (1, 9, iy Q) I s, (0)-
i=Np+1

Here all the terms containing S;m’i vanish, since the functions ¢; vanish on I' for ¢ =
0,..., Np. Moreover, as {1;} is a partition of unity for I' and ¢; = 1 on supp1); it holds

that
Ny

> #il(B,0),v]Q = [(B,C),1]Q =0.

i=Np+1
Similarly, in case kg > 1 — p+ 1/p, due to Q(f*, g*, w0, po)|t=0 = (w0, po) wWe have

Ny

K:g(f*,g*)’lfio = Z [(80(07 '7D)7CO(07 '7DF))7¢i] '¢i<u07p0) = 07

i=Np+1

which yields that K9 maps into ¢Fg ,(J). Defining the correction terms K; for the dynamic
equation in © and (K3, ..., KZ?) for the static boundary equations as in Step X of the proof
of Theorem 2.1.4, respectively, and setting Ko = (K9, ...,K5"), the appropriate (f*,g*) is
the solution of

(f*ag*) + (K:bié?)(f*?g*) = (fa g)'

This equation can be rewritten to a fixed point problem on Eq ,(J) x oF,(J), and can be
solved via the contraction principle as in Step XI of the proof of Theorem 2.1.4. |



Chapter 4

Attractors in Stronger Norms for
Robin Boundary Conditions

4.1 Introduction

In this chapter we are concerned with the long-time behaviour of semilinear and quasilinear
reaction-diffusion systems in separated divergence form with Robin boundary conditions.
For the unknown u = u(t,z) € RY, where N € N, we consider the problem!

O — 8l(alj(u)8]u) = f(’LL) in €, t >0,
a;j(u)v;05u = g(u) on T, t>0, (4.1.1)
u(0,-) = ugp in Q.

Here 2 C R" is a bounded domain with smooth boundary I' = 92, n > 2, and the outer
normal unit field on I is denoted by v = (v1, ...17,). It is assumed that (4.1.1) is of separated

divergence form, i.e.,
aij(u) = a(u) ay; € BRY),  i,j€{1,..,n},

where a : RN — B(RY) and where the a;; € R are constants, i, j € {1,...,n}. We impose
the following structural conditions on these coeflicients.

(0ij)ij=1,..n is symmetric and uniformly positive definite, } (4.12)

o(a(¢)) € C4 = {Rez > 0}, ¢ € RV,

We further assume throughout that a and the reaction terms f, g : RY — R¥ are smooth.
Note that the above assumptions allow to rewrite the boundary condition into the equiv-
alent form

aivi0ju = a”* (u)g(u) on T, t>0.

Thus for g = 0 and «;; = J;5, the Kronecker symbol, one obtains homogeneous Neumann

boundary conditions.

"We use sum convention, i.e., it is understood that one sums over double indices. For instance,
0i(a;;(w)d;u) must be read as >~ ., 9i(a;;(u)d;u).

4,j=1
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Parabolic systems of type (4.1.1) model many different phenomena in physics, chemistry
and biology. For a = id and «;; = d;; one obtains a reaction diffusion system with nonlin-
ear boundary conditions. Also the Keller-Segel model for chemotaxis and the Shigesada-
Kawasaki-Teramoto cross-diffusion model for population dynamics can be cast in the form
(4.1.1), cf. Section 4.5.

Local well-posedness in a scale of Slobodetskii spaces for problems of type (4.1.1) is well
known and was established by Amann [4, 5, 6]. Being precise, Theorem 14.4 and Corollary
14.7 of [6] yield the following.

Theorem 4.1.1. Let p € (n,00) and s € (n/p,1+ 1/p). Assume that (4.1.2) holds, and
further that g(u) = g(u)u with a smooth function g : RV — B(RN). Then for ug €
W, (82, RN) there is a unique maximal solution

u(-,ug) € C([0,¢ (ug)); Wi (Q,RY)) N C™((0,t (ug)) x &, RY)

of (4.1.1), where t*(ug) > 0 denotes the maximal existence time. The solution map ug

u(-,up) defines a compact local semiflow on W;(Q,RN).

We refer to the beginning of Section 4.3 for the notion of a compact local semiflow. For a
general boundary reaction term g the system (4.1.1) is still locally well-posed in the above

scale, but then smoothness of the solutions is a more delicate issue, in general, cf. [6].

Criteria for global existence of solutions, ¢t (ug) = 400, were also established by Amann
[4]. Roughly speaking, an a priori Holder bound is sufficient for a solution to exist globally,
as Theorem 15.3 of [6] shows. In many special cases, like triangular systems, it suffices to
find an Loo-bound [6, Theorem 15.4], or even weaker bounds.

Once global existence is established, one is interested in the long-time behaviour of solu-
tions, especially in the convergence to equilibria or the existence of a global attractor. Let
p € (1,00), s > 0 and M; be a subset of W;(Q,RN). A nonempty compact set A C M
is called a global attractor of (4.1.1) if (4.1.1) generates a semiflow of global solutions in
M, if A is invariant under the semiflow (u(t,.A) C A for all t > 0) and if it attracts every
bounded subset M of M3, i.e., it holds
du(u(t, M), A) == sup inf |ug —vo|lwsry) — 0 as t— +oo,
uo€u(t,M) vo€A P
with respect to the Hausdorff distance dg. In this sense the flow on the attractor, if it exists,

determines the long-time behaviour of solutions. It is further known that an attractor is
unique, and that in M7 it holds

A = the union of the w-limit sets of all bounded sets
= the union of all bounded complete orbits
= the maximal bounded invariant set

= the minimal bounded set that attracts all bounded sets.
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We refer to [16, 49, 63| for more informations. Note that .4 contains in particular all equi-
libria, all periodic solutions and all heteroclinic orbits of (4.1.1). If A has finite Hausdorff
dimension, then the global dynamics of (4.1.1) reduce to a finite dimensional process, which
is of essentially less complexity than the original, infinite dimensional one. It is therefore
desireable to have an attractor in a norm as strong as possible, since although the solutions
contained in A might be smooth, the solutions approach the attractor only with respect
to the norm in Mj where A was established.

Assume that an attractor A exists in Wy* for some s, € (0,2) in the semilinear case, i.e.,
if a does not depend on u, and for linear boundary conditions. It is then a consequence of
the variation of constants formula that the solutions approach A in the Wy -norm for all
s € (84,2) and that A is independent of s, cf. [16, Section 4.3]. Thus one automatically has

convergence to A in stronger norms.

It is the purpose of this chapter to show that a corresponding result for attractors in
stronger norms is valid also in the quasilinear case with nonlinear boundary conditions, i.e.,
for the full problem (4.1.1). The key to the semiflow in higher norms and the substitute for
the variation of constants formula is the maximal L, ,-regularity result given by Theorem
2.1.4.

Let us consider the results in detail. We first show in Section 4.3 that (4.1.1) generates a

compact local semiflow in the scale of nonlinear phase spaces
M= {ug € W;(Q,RN) : ai;(uo)viOjug = g(ug) on T'},

where p € (n 4 2,00) and s € (1 4+ n/p,2 — 2/p]. This range of regularity is not covered
by Amann’s theory. For each ¢ € (0,¢%(ug)) the solutions belong to the weighted maximal

regularity class
Eupu(0,7) := W, (0,75 Ly(2,RY)) N Ly, (0,73 W, RY))

where the weight p € (1/p,1] is such that s = 2(u — 1/p). Our result is based on the
regularity properties of the nonlinear superposition operators corresponding to f and g,
which are investigated in Section 4.2, and on maximal L, ,-regularity for the linearized
problem, Theorem 2.1.4. Our arguments can also be used to establish a local semiflow in
a scale of nonlinear phase spaces as above for much more general systems than (4.1.1), as
treated in [65] for s = 2 — 2/p without weights.

In Section 4.4 we then use maximal L, ,-regularity and the inherent smoothing effect of the
weighted spaces to show that if (4.1.1) has an absorbant set in a Holder space C%(€2, RY),
a > 0, i.e., there is C > 0 such that each solution satisfies

lim sup |u(t,uo)|Ca(§RN) < C, (4.1.3)
t—t+ (uo) '

then (4.1.1) has a global attractor in the phase space M. Since s > 1 + n/p, this in
particular yields the convergence to the attractor in the C'-norm, and as a result A also
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determines the long-time behaviour of the spatial gradient of solutions with respect to the
sup-norm.

We also consider special cases where the above result remains true if one replaces the
C%-norm in (4.1.3) by a weaker norm, like semilinear problems, cross-diffusion models and
single equations.

In Section 4.5 we illustrate these results in obtaining an attractor in stronger norms for
semilinear reaction-diffusion systems with nonlinear boundary conditions, for a chemotaxis

model with volume filling effect, and for a population model with cross-diffusion.
Besides the maximal regularity class
Euu(J) = Wy (J: Lp(RY)) 0 Ly (J; W (Q,RY)),
throughout this chapter we work with the weighted space
Eo,u(J) := Lp,u(J; Lp(Q, RY)),

where J = (0,7) is a finite interval, p € (1,00) and u € (1/p,1]. Since the boundary
operator in (4.1.1) is of order 1, the space for the boundary equation is

Fou(J) = W22 (T, Ly(D,RN)) O Ly, (J; W70, RY)).
It follows from Theorem 1.3.6 that
Eyu(J) = C(J; By~ /P (@, RY)),

and therefore Sobolev’s embeddings yield

Eupu(J) — C(T;CHOLRY))  if 2(u—1/p) > 1 +n/p. (4.1.4)
Similarly, it holds

F(J) = C(J; B2u=t/n=1=p(0 RV)) if 2(u—1/p) > 1+ 1/p,
so that we have
F.(J) — C(J;C(T,RN))  if 2(u—1/p) >1+n/p. (4.1.5)

Restricting to g, - and oF ,-spaces, the constants for the above embeddings are indepen-
dent of the underlying interval J.
4.2 Superposition Operators
For our purposes it is convenient to rewrite (4.1.1) into the abstract form

Oru + A(u) in Q, t>0,
B(u) on T, t>0,
u(0,-) = ugp in Q,

=0
=0
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where the nonlinear differential operators A and B are for v € E, ,(J) given by
Au) == —(8(ai;(u)d5u) + f(u)), B(u) := ajjuitrgdju — a” trqu)g(trou).

The purpose of this section is to investigate the regularity properties of A and B. We start

with some uniform estimates for nonlinear functions.

Lemma 4.2.1. Let 1) : R™ — RM be smooth for m, M € N, and let BRr(0) C R™ be a
fixed closed ball around the origin with radius R. In the sequel we denote by € a continuous
function ¢ : [0,00) — [0, 00) with (0) = 0.

a) There is a function ¢ as above with

(& +n) — (&) =¥ (E)nl < eIl for all &n e Br(0).

b) Define ¢ : R™ x R™ — RM by ¢(&,n) := (& +n) — (&) — ' (€)n. Then there is ¢

as above with

[6(82,m2) — d(&1,m)| < ellml + [mal) (In2 — mu| + Im[1€2 — &)

for all &1,&2,m,m2 € Br(0).

c) Define ¢ : R™ x R™ — RM by (€,1) := (€ +n) —1p(€). Then there are ¢ as above
and a constant C' > 0 with

[0(&2,m2) — (&1, m)| < e(In2])€2 — &l + C'lma — m|

for all &1, &2,m,m2 € Br(0).

Proof. (I) Since ¢ is smooth, for & € Bpr(0) there is a function e¢, as above such that

[¥(80 + 1) — (&) = ¥'(Co)nl <eg (D, n € Br(0). (4.2.1)

By continuity and compactness, (4.2.1) holds true with &y replaced by £ for all £ in a small
neighbourhood of £). By compactness we find finitely many &; such that these neighbour-
hoods cover ER(O), with corresponding functions &;. Now ¢ := max; ¢; satisfies the asserted
inequality in a) for all &, € Bg(0).

(IT) To show b), we estimate with the mean value theorem

|9(&2,m2) — A(&1,m)| < sup |9ep(s2 + (1 — s)&1,m)| &2 — &1

s€[0,1]

+ St[z)p” 0pd (&2, 5m2 + (1 = s)m)| |[n2 — m|. (4.2.2)
se|0,

For &,m € Bg(0), n # 0, the terms

10e¢(&m)/Inl = [¥"(€ +n) — &'(&) = &' (E)nl/In|

and

|0gd (&) = 1/ (€ +n) — ¥/ (&)
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tend to zero as |n| — 0 uniformly in &, by a) and the uniform continuity of 1’ on Br(0).
Applying this to (4.2.2) shows b). Assertion c) is shown in a similar way. [ |

We now consider the properties of the map
A(u) = —(9i(ai;(w)0ju) + f(w),  u € Eypu(J).

Lemma 4.2.2. Let J = (0,7T) be finite, and let p € (n + 2,00) and pu € (1/p,1] be such
that 2(u — 1/p) > 1+ n/p. Then A € CY(E, .(J),Eo,u(J)), and for u € E,, ,,(J) we have

Al(u)h = —(&(aij(u)ajh + a;j(u)ajuh) + f’(u)h), h e E,,.(J).

Moreover, let Ty, R > 0 be given. Then there is a continuous function ¢ : [0, 00) — [0, 00)
with €(0) = 0 such that for T' < Ty it holds

|A(u+h) — A(u) — A'(u)hlg, ) < e(hlg, ) |PE,.0) (4.2.3)
for all u,h € E,, ,(J) with
h(0,-) =0, luleF.or@ryy)s [UlE, (), [RlE, ) < R (4.2.4)

Proof. Throughout we set

=" le@cr@rvy:-

| - ‘O,oo = ‘C(j;C(ﬁ,RN))’ -

(T) Tt is easy to see that the estimate

lvwlwiory) < lo@rymywliw @ryy + [vlwi@ry<v)|wlo@ry (4.2.5)
is valid for all v € W (Q,RY*N) and w € W}(Q,RY), provided p > n. We use this fact
and the embedding (4.1.4) to estimate for u, h € E,, ,(J)

|A(u+h) — A(u) — A'(u )h|E0 o)

SIfw+h) = f(u) = f(whlg, ) + a' (W)0shhlL, ,(rwi@ryy)
+ [ (@ij(u + h) a;j(u) — aj;(u)h)d;(u + h)\Lp,u(J;Wpl(Q,RN))
S1f(u+h) = fu) = f'(uhloeo + lai;(u)x, ) (4.2.6)
+ la;j (u + h) — aij(u) — ai;(u)hl1 oo )

Note that for A(0) = 0 these estimates are uniform in 7" < Tp. For the first summand in

(4.2.6) we have, using Lemma 4.2.1 and again (4.1.4),

|fu+h) = f(u) = f'(u)hloco < e(|h]ooo) oo < e(|hlr, . ()PE,..)- (4.2.7)

In case (4.2.4), the images of u and h are contained in a compact subset of RY which
yields that € is uniform in 7" < Tj and R. Further, the second summand in (4.2.6) may
be estimated by e(|hlg, ,(7))|lE,, (1), Where € is again uniform for (4.2.4). For the third

2It is understood that one takes the maximum over single indices.
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summand we have that the second factor there is bounded, and it is uniformly bounded in
case (4.2.4). For the first factor there, we denote by V the gradient on R™ and write the
| - 1,00 nOrM as | - [p.00 + |V * |0,00- The |- 0,00 part may be estimated as in (4.2.7). For the
|V - 0,00 pPart we have, estimating again as in (4.2.7) and using (4.1.4),

IV (aij(u+h) — ai(u) = ai;(w)h)loco
< laj;(u)Vhhloeo + lai;(u + h) = aj;(u) = aj;(w)hloeo(|tle0 + [Al100)
< L (@loselbl, () + e(Blosc)lblose
<e(lhlg, )Pl .0
with the asserted dependence on T in case (4.2.4). This shows the uniform estimate (4.2.3),
and further that A is differentiable in each u € E, ,(J) with derivative A(u).

(IT) It remains to show that A" : E, ,(J) — B(Eqy, . (J), Eou(J)) is continuous. For this we
take u,v,h € By, (J) with |h|g, () < 1. Then it follows from (4.2.5) and (4.1.4) that

(A (u) = A'(0)) R, , ()
< \(f/(u) - f/(U))thU,M(J) + [(aij(u) — aij(v))ajh’Lp,,L(J;WI}(Q,RN))
+1(ai; (u)0;
(

— ai;(V)OV)hlL, (w1 @rN))

S () = f1(0)]o,00 + laij(u) = aij(v)|1,00 + lag; (w)dju — ag;(v)05v]0,00
+ |aj; (u) (D5u — 0; )L, JWEHQRNxN)) F |(az;(u) — (U))aﬂ’)\LP,M(J;W,}(Q,RNW))
SF () = f'(v)lo, 7 (1w) = aij(v) 1,00 + |ag; (w)dju — aj;(v)djv]o,00

+ lag; (u) (95u — 950) 1,00 + |(ai; (1) — aj;(0))0;0)]1,00,
and this converges to zero as u — v in E, ,(J) due to (4.1.4). [ |

We next investigate the regularity of superposition operators on the boundary. The estimate
in a) is useful for low values of ¢ and p.

Lemma 4.2.3. For a finite interval J = (0,T) and a smooth function g : RY — R the
following holds true.

a) Let g € (1,00), p € (1/q,1], and k, 7 € (0,1). Then

’9(“)|W;;Z(JxF,RN) S CSUE 19'() ’u\wgg(JxF,RN) + ’g(u)|c(jxp7RN)

u

for allu € Wi (J x T,R¥)YNC(J x I, RY), where B, is a ball with u(J x I') C B,,.

b) Let now p € (n+ 2,00) and pu € (1/p, 1] satisfy 2(u — 1/p) > 1+ n/p. Then for the
superposition operator G, given by G(u) := g(trqu), we have

G € CY(Eyu(J),Fu(])), G'(u) = ¢'(trqu)trq.

c) In the situation of b), let Ty, R > 0 be given. Then there is a continuous function
g :[0,00) — [0,00) with £(0) = 0 such that for T < Ty it holds

lg(u+h) = g(u) = ¢ (Whlgr, ) < (hle, . )IE, )
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for all u,h € E, ,(J) satisfying

h(0,) =0, Juleg.ormrnyy: 1By () (1000, ) yp20m1/m g vy 1R, () < B
(4.2.8)

Proof. (I) To show a), take u € Wy (J x I',RY) N C(J x T, RY). Then it holds

lg(u )\LM(J iLg(T,RN)) < lg(u )|c(jxr,RN)-

For the intrinsic seminorm of the weighted Slobodetskii spaces, given by Proposition 1.1.13,

we estimate with the mean value theorem

(1-p)
5y iy = [ / o) ~ gttt do(e) ar s

< sup |¢'(¢

.y 1 Tl (72,0 %))

(II) To estimate |g(u) ]Lq’u(J;WqT(F’RN)) we describe I" by a finite collection of charts (U;, ¢;),
choose a partition of unity {1;} for I' subordinate to | J; U; and set W; := supp; C Uj;.

Then for almost every ¢t € J we have
lg(u(t, Dlwrrryy S Z [¥i(p 0 Dlwg (awi) mY):
For each ¢ it holds, as above
iy ) 9(ult, 07 Ly ouwi ) S 19| oFer zvy-
For the seminorm corresponding to W, (¢i(W;), RYN), cf. (A.4.2), we estimate

[1/%(@{1)9(“(75, wil))]%g(@i(Wi)RN)
P A BT Pl Y

|(E— |n 1+7q

u(t, o7 ' (x)) — ult, ;' ()|
< sup ’9 ’q// W2 |z — y|n1t7d dzdy + ‘g(u)’g(jxr,ﬁw)
S sup 19" (O [ult, )]WT(FRN +lg(u )|q(j><F,RN)’

where we have used Lemma A.4.1 in the last line. Summing over 4, using the above estimates

and taking the L, ,-norm leads to
|g(u)|Lq,u(J;Wg(F,]RN)) S ESGUEI{) |9/(§)|’U|Lq,M(J;W(;(F,RN)) + |g(u)’0(j><1“,RN)’

which implies a).
(ITI) We next show differentiability of G. For u € E, ,(J) it follows from 2(u — 1/p) >
1+ n/p, p>n and Theorem 1.3.6 that

trou € W, , /22 1P (] x I,RN) — C(J x T,RN) N Ly, ,(J; CH(T, RY)).

Hence a) implies ¢'(trqu) € F,(J)NC(J x T,RY), and Lemma 1.3.23 yields ¢’ (trqu)trg €
B(Ey u(J),Fu(J)). To show the differentiability of G at uw € E, ,(J), take h € E, ,(J).
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Arguing as in Step I of the proof of Lemma 4.2.2 we obtain that there is ¢ : [0, 00) — [0, 00)
with £(0) = 0, which is uniform in R for (4.2.8), such that?

lg(u(t, ) + h(t,-) — g(u(t,-)) — g'(ult, ) h(t, )1 rm
< e(|hlt, e i) Rt et gy

is valid for almost all ¢t € J. Taking the L, ,-norm and using C*(I',RY) — Wpl_l/p(f‘, RM)
and (4.1.4) we obtain

lg(u+h) — g(u) — 9/(u)h|LP’#(J;WZ}fl/p(F,RN)) < 5(|h|c(j;cl(F,RN)))|h|C(j;ol(F,RN))
S e(|blg,, ()IhlE, .-

Observe that these estimates are always uniform in 7' < T and R if (4.2.8) holds.
(IV) For the intrinsic seminorm of Wplf*l/ 2 (J, Lp,(T,RY)), which is given by Proposition
1.1.13, we set

E(t,x) = g(u(t, =) + h(t, 7)) — g(ult, z)) — g'(u(t, 2))(t, 7)

and estimate, using Lemma 4.2.1,

loCu+ 1) = g(w) = g W 12ssan 5y o)

p(1—p) _
/ / / s —t)1+(1/2- 1/2p)p‘“(s’$)_:(t7m)’pd‘7<$) dtds

p

,;iu(J;Lp(r,RN)))
S e(|blg, ) PlE, . (0)- (4.2.9)

<e(lhle JxrRN))([h]vw (L) TG Gz [

Note that these estimates are also valid on R,. Together with the estimates of Step
III, we obtain that G is differentiable at each u € E, ,(J). But since we have used
the intrinsic norm over J, (4.2.9) does not yield an estimate uniformly in 7" in the
OW;{?*U%(J; Ly(T,RN))-case for (4.2.8) (see also the discussion in Remark 1.1.15).

To overcome this obstacle, let u, h € E, ,(J) be as in (4.2.8). Due to Lemma 1.3.9 there is
us € By, (Ry) with

u*(07 ) = u(O, ')7 ‘u*|Eu,#(R+) S |u(0’ ')|W§(H*1/P)(Q7RN)’
Using this function we define
U= E%u—w) +us €Byp(Ry),  hi=E% € g, u(Ry),

where 59 is the extension operator from Lemma 1.1.5 whose norm is independent of T
Observe that

‘a|BC([O’oo)><§7RN) rg |a|Eu,M(R+) 5 R + |u(07 ')’W]?(Mil/p)(Q,RN)’

3In the sequel we neglect the spatial trace trg for better readability.
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and, due to h(0) =0,

‘%‘BC([O,OO)XQ) < Jhlgy ®y) S Pl ) < R,

where these estimates are independent of T'. Therefore, if we apply Lemma 4.2.1 to g with
arguments from the images u(Ry x Q) and h(Ry x ), then the resulting functions e
W2=1/P) (o gV Y but not on T < Ty. Thus, using
Proposition 1.1.11 and (4.2.9) on the half-line, we may estimate

will depend on a multiple of R + |u(0,-)]

lg(u+h) —g(u) - g/(u)h|OWI}Y/MQ*U%(J;LP(F,RN))
<|g(@+h) - g(@) — g,(ﬁ)mowz}’/ifl/%(R+;Lp(F,RN))
S lg(u+ %) —g(u) — 9/(a)mwz}f—l/%(R+;LP(F,RN))
< 5(|E|BC’([O,00)><F,RN))([E]WZ},{LQ—l/QP(R_,_;Lp(F,RN))
+ ‘E|BC([0,oo)><F,RN)[T/’]W;/E*UQP(R+;LP(R]RN)))

S e(lhlg, ()0

where the function ¢ is uniform in 7' < Ty and R. This shows c).
(V) For b) it is left to show that G’ : Ey ,(J) — B(Eqy,u(J),Fu(J)) is continuous. To this
end take u, v, h € By, (J) with |h[g, ,(s) < 1. Then we estimate, using Lemma 1.3.23,

E.. () (R4 |u(0) !W3<u—1/p> (QvRN))v

(6 (0) ~ 3/ @)y S 16'0) — o O ezergencon +18'@) — o Oy .y pgeny
/ /
Tl () =g (Ol g e oy
As u — v in E, ,(J), the first summand converges to zero. For the second summand we
use Lemma 4.2.1 and estimate
[g,<u) - g,(v)]W;’/f—l/QP(J;Lp(F’RNxN)) S 6(’“’ - v’C(ij,RN))[v]W;é‘Q—l/Qp(J;Lp(F’RN))

+ |u — |

1

Wil ™M (L (DRN))

Here the right-hand side converges to zero as u — v. Using C'(I', RY) < Wpl_l/p(F, RN),
we obtain the same for the third summand. Thus b) is finally proved. |

For the nonlinear boundary operator
B(u) = ajvitrodju — a”(trqu)g(trgu)
the above lemma yields the following.

Lemma 4.2.4. Let J = (0,T) be finite, and let p € (n + 2,00) and pu € (1/p,1] be such
that 2(u — 1/p) > 1+ n/p. Then B € CY(E,,(J),F,(J)), with derivative

B'(u) = a;jVitrd; — (a_lg)/(trgu)trg, ueE,,(J).

Further, let Ty, R > 0 be given. Then there is a continuous function ¢ : [0,00) — [0, 00)
with £(0) = 0, such that for T < Ty it holds

|B(u+ h) — B(u) — B'(w)h| g, 5y < e(|hlg, (1) |lE. (1)
for all u,h € By ,(J) as in (4.2.8).
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4.3 The Local Semiflow

For p € (1,00) and s € (1 4+ n/p,2 — 2/p] recall the nonlinear phase space
M3 = {ug € W3 (Q,RY) : B(ug) =0},

which is equipped with the metric from W (€2, RM). We say that (4.1.1) generates a com-
pact local semiflow of E, ,-solutions on My if the following three conditions are satisfied.

1. For all ug € Mj there is t*(up) > 0 such that (4.1.1) has a unique maximal
solution u(-,ug) € C([0,t7 (ug)); W (€, RY)) which belongs to E,,(0,7) for all
T E (0,t+(u0)).

2. For all ug € M3 and 7 € (0,t%(up)) there is 7 > 0 such that t*(vg) > 7 for all

vo € By(ug) N M, and the map u(r,-) : Br(ug) N M; — M; is continuous.

3. If for a bounded set M C M there is 7 > 0 such that t*(vg) > 7 for all vg € M,
then u(7, M) is relatively compact in M.

To verify the first condition for (4.1.1) we consider the linear initial-boundary value problem
associated to (A'(u), B'(u)), and show that it enjoys maximal L, ,-regularity for each
uek,,(J]).

Lemma 4.3.1. Let J = (0,T) be a finite interval, and let p € (n+ 2,00) and p € (1/p, 1]
be such that

s:=2(p—1/p) >1+n/p.
Assume further that (4.1.2) is valid, and let the function u € E,, ,,(J) be given. Denote by

Du(J) = {(,5.70) € Bou(J) x Fu(J) x WS(,RY) : B'(u(0,-))7 =g on T}

the space of compatible data with respect to (A'(u), B'(u)). Then there exists a bounded
linear solution operator L : Dy(J) — Ey ,(J) for

O + A(u(t,z))v = f(t, ), x €, ted,
B'(u(t,z))v = g(t, z), zel, teJ,
v(0,z) = vo(x), x el

Given Ty > 0, the operator norm of L restricted to
Dy(J) = {(f,5.70) € Du(J) : G € oF,u(J)}
is uniform in T < Tj.

Proof. We check that (A'(u), B'(u)) satisfies the assumptions of Theorem 2.1.4. Since
u € C(J;CHQ,RY)) by (4.1.4), the top order coefficients of A’(u) belong to BUC(J x
Q,RV*N) The lower order coefficients belong to Eq,,(J; RY*Y). Moreover, Lemma 4.2.3
implies that the coefficients of B’(u) belong to F,(J;RY*Y). Since the condition 1/2 —
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1/2p > 1—pu+1/p+ ”2—;1 is equivalent to 2(x — 1/p) > 1 + n/p, we obtain that the
coefficients satisfy the first conditions in (SD) and (SB), respectively.

It remains to check the ellipticity conditions. To this end consider the pair (A(u), B), given
by

A(u)v := 9 (aij(u)d;v), Bv := a;jvitrqd;v, v € Eypu(J).

It is shown in [5, Theorem 4.4] that (4.1.2) implies (E) and (LS) for (A(¢),B), ¢ € RV,
Since these conditions are independent of the lower order terms it follows that (A’(u), B'(u))
satisfies (E) and (LS) as well. Thus all the assumptions of Theorem 2.1.4 are satisfied, and

the assertion follows. [ |

Now we can prove local existence and uniqueness for solutions of (4.1.1). Our proof is based
on maximal L, ,-regularity for the linearized problem and the contraction principle, and
follows [90] (see also [59, 65]).

Proposition 4.3.2. Let p € (n+2,00) and p € (1/p, 1] be such that s = 2(u — 1/p) >
1+n/p, and assume that (4.1.2) is valid. Then for each initial value ug € W (€2, RY) with

a;j(uo)vi0jug = g(uo) on T’ (4.3.1)
the system (4.1.1) has a unique maximal solution
u(-,up) € C([0,¢ (ug)); Wi(Q,RY)),
which belongs to E,, ,,(0,7) for all 7 € (0, (uo)).
Proof. We rewrite (4.1.1) into the equivalent form

Ou+ A(u) =0 in Q, t>0,
B(u) =0 onT, t>0, (4.3.2)
u(0,-) = up in Q,

where A and B were defined in the beginning of the previous section. Note that the
condition (4.3.1) on up is equivalent to B(ug) = 0. Throughout the proof we fix u, €
Ey u(Ry) with (0, ) = ug, which exists by Lemma 1.3.9.

(I) We consider the linear problem

Ow + A'(u)w = A (uy)us — Aus) in Q, t>0,
B'(us)w = B (u)us — B(uy) onl', ¢t>0, (4.3.3)
w(0,-) = ug in .

Due to the Lemmas 4.2.2 and 4.2.4 it holds
A (us)us — Aluy) € Eg,,(0,1), B'(u)us — B(us) € F,(0,1),
and since B(ug) = 0 the compatibility condition

B'(uo)ug = B'(uo)uop — B(up) ~ on T
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is trivially satisfied. Thus Lemma 4.3.1 yields a unique solution w, € E, ,(0,1) of (4.3.3).
Using wy, we define for o, 7 € (0, 1]

Y(o,7) = {u €Eyu(0,7) ¢ |u— w*|Eu7M <o, u(0,:)= uo}.
The set ¥(o, 7) is closed in E, (0, 7). Moreover, (4.1.4) implies

|U’o([0,f];cl(§,RN)), |u(0, ')|W5<u71/p>(Q7RN)’ [ulg, . 0,r) S 1+ |wslg, ,.01); (4.3.4)

uniformly in u € ¥(o,7) and 0,7 € (0, 1]. For v € ¥(o, T) we next consider

Oyw + A'(us)w = A (us)u — A(u) in Q x (0,7),
B'(ux)w = B'(us)u — B(u) onI' x (0,7), (4.3.5)
w(0,-) = ug in Q.

As above, for all 7 € (0,1] there is a unique solution w = S(u) € E, (0, 7) of (4.3.5) due
to Lemma 4.3.1. This defines a map

S:X(o,7) = Eqy ,(0,7).

Observe that u € (o, 7) solves (4.3.2) on (0,7) if and only if it is a fixed point of S
in ¥(o, 7). Since for given o each solution of (4.3.2) in E, ,(0,7) belongs to ¥(o,7) for
sufficiently small 7, our task is thus to show that the map S has a unique fixed point
in ¥(o,7), provided that ¢ and 7 are sufficiently small. To this end we use the con-
traction principle. The existence of a maximal existence time and a maximal solution
in C([0,t" (uo)); W (Q, R™)) then follows from standard arguments.

(II) First we show that S is a self map on X(o, 7) for small o and 7. For u € ¥(o, 7) the

difference z = S(u) — w, solves

Oz + Al(uw)z = A(uy) — A(u) — A (ws) (us — u) in Q x (0,7),
B'(uy)z = B(us) — B(u) — B'(u) (usx — ) on I' x (0,7),
2(0,-) =0 in Q.

Note that the right-hand side of the boundary equation belongs to ¢F,(0,7). Thus by
Lemma 4.3.1 there is a constant Cj, independent of 7, such that

S(u) — wilg, 0, < Co(lA(us) — Au) = A (us) (us — )5, , 0,7)
F1B(u) — B(w) - B'(w) (e — wlyg,00).  (43.6)
As above it holds
s — ulg, ,07) S0+ W — uilg, ,0,1) (4.3.7)

uniformly in v € ¥(o,7) and 7 € (0,1]. Using this fact together with Lemma 4.2.2 we
obtain that the first summand in (4.3.6) may be estimated by

[ Au) — Alu) = A'(u) (e — )|, 0,r) < (e =l 0,0) [t — tlg, (0m)

< 5(‘“* — w*’Eu,#(O,T) + G)(|u* - w*|Eu,u(OvT) + U)’
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where ¢ : [0,00) — [0,00) is a continuous function with £(0) = 0, which is independent of
o,7 € (0,1]. We first choose o with £(20) < 1/4C and then 7 such that the fixed functions
uy and wy satisfy |u, — w*|Eu,H(O,T) < ¢. Then we obtain

A() = AQw) = A () (. = W)s, , 0.) < 7/2Ch.
Similarly, using (4.3.7) and Lemma 4.2.4 we obtain for the second summand in (4.3.6) that
Bu) = B(w) = B'(w)(we — 0]z, 0) < 7/2Co

as well, provided ¢ and 7 are sufficiently small. This shows that S is a self mapping on
Y(o,7) if o and 7 are appropriately chosen.
(IIT) We show that S is a strict contraction on (o, 7). For u,v € ¥(o, 7) we have as above

|S(w) = S)lg, .0 < Co(|A (w)u — A(u) — A'(u)v + A(v)[g, . (0,7) (4.3.8)
+|B'(us)u — B(u) = B'(us)v + B(v)| g, 0,7))-
Using (4.3.4), (4.3.7) and Lemma 4.2.2, we estimate the first summand in (4.3.8) by
| A (ue)u — A(u) — A'(ue)v + A(v) g, (0,7)
< [A(v) = A(u) = A'(w) (v = u)lg, ,0m) + [ (A'(u) = A'(w)) (w = v)|g , (0,7)
(=(
(=(

where ¢ is a function as above, independent of o, 7 € (0, 1]. Thus if o and 7 are sufficiently

v —ulg, ,0.m) + A (w) = A (W) |B(E, . (0,7) B0 0,)) [V — UlE, . 0,7)

<
< (e(20) + (0 + |ws — U*\Eu,u(o,r))) v = ulg, ,0,7)

small we obtain
| A (ue)u — Au) = A'(ua)v + A(0)lgy ,(0,r) < 1/4C0|v = ulz, ,0.0)-
Using Lemma 4.2.4, in the same way we obtain for the second summand in (4.3.8) that
| B (us)u — B(u) = B'(w)v + B(v) |, (0,r) < 1/4C0[v = ulg, ,(0,r)-
This shows that S is a strict contraction on ¥(o,7) if o and 7 are sufficiently small. H

Before we treat the continuous dependence on the initial values we need another prepara-
tory result on the boundary operator B.

Lemma 4.3.3. Let p € (n+2,00) and p € (1/p, 1] satisfy 2(u—1/p) > 1+n/p. Then we
have
Be Cl(Wg(u—l/p)(Q’RN)’ W;(u—l/p)—l—l/p(F’RN)),

with derivative
B (ug) = a;jvitra0; — (a_lg)/(trguo)trg for ug € Wg(“_l/p)(Q,RN).

Further, if (4.1.2) is valid, then for each uy the map B'(ug) is surjective with bounded

linear right-inverse.
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Proof. By Lemma 1.3.9, for all uy € Wz(“_l/p)(Q,RN) there is u, € E,,(0,1) with
u%(0,+) = wp, which depends smoothly on wg. It thus follows from B(ug) = troB(us),
Lemma 4.2.4 and Theorem 1.3.6 that B is C!, with derivative as asserted.

For the right-inverse of B’(ug) we intend to use Proposition 2.5.1. Consider the operators

A= Ozijaiaj, B:= Ozijvitrgaj.

Then (4.1.2) and [5, Theorem 4.4] yield that (A, B) satisfies (E) and (LS), and thus also
(A, B'(ug)) satisfies (E) and (LS). For the regularity of the coefficients of B’(ug), one can
show as in Step II of the proof of Lemma 4.2.3 that

(a_lg)/(trguo) c Wg(u—l/p)—l/p(nRNxN) SN Wg(n—(l—qul/p))(p’RNxN),

where k = 1/2 —1/2p. Thus B’(ug) satisfies the assumptions of Proposition 2.5.1, and the
existence of a continuous right-inverse follows. It is clear that for real-valued ug, a and g

this right-inverse maps into a space of real-valued functions. |

The following result on the continuous dependence of solutions on the initial data is based
on a combination of maximal L, ,-regularity and the implicit function theorem. We follow
the proof of |65, Theorem 14].

Proposition 4.3.4. In the setting of Proposition 4.3.2, let u = u(-,ug) be the maximal
solution of (4.1.1) with initial value ug € M. Then for all T € (0, (ug)) there is a ball
B (ug) in W3 (€, RM), 7 > 0, and a continuous map

O : By (ug) N ./\/lf, — E, ,(0,7), D (ug) = u,
such that ®(vo) is the solution of (4.1.1) on (0,7) with initial value vo € B;(ug) N M.

Proof. (I) Take p € (n + 2,00) and pu € (1/p,1] with s = 2(u — 1/p), such that u €
Ew,.(0,7). We consider the linear problem

flt,z), =xze€Q, te(0,7),
g(t, ), rel, te(0,71), (4.3.9)

wo(z), x €,

Oz + A'(u(t, r)
B'(u(t, x)
z(0,x

)z
)

Ny
Il

~—

and denote by
S :Dy(0,7) = Ey (0, 7)

the bounded linear solution operator corresponding to (4.3.9) from Lemma 4.3.1. We have
that v € Ey ,(0,7) solves (4.1.1) (and the rewritten problem (4.3.2)) with initial value
vo € Mj if and only if

v=u+S8(F(v—u),Gv—u),vo—uo), (4.3.10)
where the nonlinear functions F' and G are given by

F(w) := —(A(u +w) — A(u) — A'(v)w), G(w) := —(B(u+ w) — B(u) — B'(v)w).
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Due to the Lemmas 4.2.2 and 4.2.4 it holds
F e CHEyupu(0,7),Epu(0,7)),  GeCHEyu(0,7),FL(0,7)).
(IT) We define the tangential space of M, at ug by
TueM;, = {20 € W;(Q,RN) : B'(uo)zo = 0}.

This is the kernel of the bounded linear operator B'(ug) in W3 (€2, RY), and thus a Banach
space. We further consider the nonlinear map

F TuO_/\/l; X Ey ,(0,7) = Eqy (0, 7),
defined by
F(z0,w) == w — 8( (w), G(w), 2o —i—]\fstroG(w)).

Here N, € B(W,~ - 1/p(F RN), W5 (Q,RY)) denotes the continuous right-inverse of B’ (u)
from Lemma 4.3.3, and trg is the temporal trace at t = 0, i.e., trow = w(0, -). The map F

is well defined, since due to
B'(ug) (20 + NstroG(w))) = troG(w)

only compatible data are inserted into S. It further holds F(0,0) = 0 and that F is
continuously differentiable. The derivative of F with respect to the second argument at

(z0,w) = (0,0) is given by
02 F(0,0)
— S(A -+ w) — A'(u), B'(u+w) — B'(u), Natro(B'(u+ w) — B' (1)) o = id,

and is therefore invertible. Thus we can solve the nonlinear equation F(zp, w) = 0 locally
around (0,0) uniquely by w = ®,(z0) with a C'-function @, : B,(0) — E, ,(0,7), where
B,(0) C Tyy M, and 7 > 0 is small.

(III) Now let vg € M, be given, and define

20 = (id —NSB/(U()>)(UO — UO) S Tuo./\/l;.

By continuity of id —N;B'(ug), if vo is close to ug in M3 then the norm of 2 in W3 (€, RM)
is small, such that w = ®,(29) € E, ,(J) is well-defined and satisfies

w=S8(F(w),G(w),vo — ug — Ny(B'(ug)(vo — uo) — troG(w))).

Due to troG(w) = —B(ug +w(0,-)) + B (ug)(w(0, -)), the continuity of Ns, B(vg) = 0 and
Lemma 4.3.3 yield

w(0,-) = (vo — uo)lws (@.rN)
= [Ns(B(uo + w(0,-)) — B'(uo)(w(0, ) = (vo — u0)))lws@rv)
S 1B(uo +w(0,)) = B(vo) — B'(vo) (w(0, ) = (vo = u0)) |y e-1-1/1, vy
+ [ (B'(vo) = B'(ug)) (w(0,-) — (vo — u0))lyys-1-1/2 () vy

e(Jw(0,-) = (vo — uo) lws (@.rn) + [v0 — ol (@rn) ) [w(0, ) = (vo — uo) lws (@.rN),
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with £(0) = 0. Since ®, is continuous and satisfies ®,(0) = 0, if vy tends to ugp then
lw(0, ‘)|W;(Q,RN) tends to zero. Thus for vy sufficiently close to ug the above inequality is
only possible if w(0,-) = vg — ug. This implies that the function v = u 4+ w € E, ,(0,7)
solves (4.3.10), and therefore (4.1.1) with initial value vg. Now

®(vp) = u + @, ((id — N B (up)) (v — up))

is the asserted continuous solution map for (4.1.1) on By (ug) N M;,. [ |

The above result in particular shows that (4.1.1) satisfies also the second condition for a
compact local semiflow. We now prove the required compactness property of the solution
map, employing the inherent smoothing effect of the L, ,-spaces. Our arguments are similar
to those in Section 3 of the recent paper [59].

Proposition 4.3.5. In the setting of Proposition 4.3.2, let the bounded set M C M, and
7 > 0 satisfy t*(vg) > 7 for all vo € M. Then u(r, M) is relatively compact in M.

Proof. (I) It follows from the compactness of the embedding I/Vp1 (QRYN) — Ly(Q,RY), cf.
|1, Theorem 6.3], and the interpolation result in |7, Section 1.2.7] that for s, € (14+n/p,s)
the embedding

s N S N
Wy (Q,RY) — Wy (€, R™)

is compact. Therefore M is relatively compact in W;*(Q,RN ). Take w, € (1/p, 1] with
S« = 2(ps« — 1/p). Due to Proposition 4.3.4, for each vg € M there is a ball B,(vg) in
Wy (€, RYM) and a continuous map

P . BT(UO) N M;* - Eu,u* (07 T)

such that w = ®(wp) € Ey ., (0,7) solves (4.1.1) with initial value wy € B;(vo) N Myx.
This yields an open cover of M in W (2, RM), and thus, by compactness, there are finitely
many balls By, and maps ®; with the above property such that | J, By covers M.

(IT) Each ®;, maps the relatively compact set By, N M continuously into E,, ,, (0, 7), with

P (wo) = u(-, wo)l(0,r): wo € By N M.
Since the temporal trace
try : By, (0,7) — W]?—?/P(Q,RN), trrw = w(T,-),
is continuous, we obtain that

u(r, M) :UtrTOCI)k(BkﬂM)
k

is relatively compact in W (£2, R™M), as a continuous image of a relatively compact set. W

We summarize the above considerations to the main result of this section.
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Theorem 4.3.6. Let p € (n+ 2,00), s € (1 +n/p,2 —2/p| and p € (1/p,1] satisfy
s =2(u —1/p), and assume that (4.1.2) holds true. Then the system

Oru — 8Z(azj(u)6]u) = f(u) in Q, t >0,
a;j(u)v0ju = g(u) onT, t>0,
u(0,-) = ug in Q,

generates a compact local semiflow of E,, ,,-solutions on the phase space Mj,.

Remark 4.3.7. The methods in this section are independent of the concrete form of the
nonlinear operators A and B, as long as they are C'' and Theorem 2.1.4 is applicable to
the corresponding linearized problem. Thus a compact local semiflow in a scale of nonlin-
ear phase spaces can be obtain for much more general parabolic systems with nonlinear
boundary conditions, as treated in |65], for instance.

4.4 Global Attractors in Stronger Norms

We now fix p € (n+2, 00) and investigate the long-time behaviour of solutions of (4.1.1) for
initial values from szz/ P Using the full strength of maximal Ly, ,-regularity we estimate
solutions of (4.1.1) at a later time in a strong norm by the solution at an earlier time in
a weaker norm. This builds the bridge from lower to higher regularity, and is the key to
global attractors in stronger norms.

Lemma 4.4.1. Let ug € M?)_Q/p, and denote by u(-,ug) the maximal solution of (4.1.1).
Let g € (1,p], p € (1/¢,1], set

o:=2(p—1/q) € (0,2 —2/q|,

and assume that o ¢ {1,14+1/q}. Let further 7 > 0,0 < Ty < T < tT(ug) and 7 = To—T}.
Then for a > 0 there is a constant C' = C(7, o, |u(:, “0)|C([T1 T],Co @ ]RN))) with

[w(To, o)y 2210, vy < C (14 [w(Th, w0) lwg @ ) ) (4.4.1)
In the semilinear case, i.e., if (a;;) does not depend on u, one may take o = 0.

Proof. Throughout we set J := (0, 7). The spaces Eg ,,, E, , and F,, must now be under-
stood with respect to g, e.g., Eo ,(J) = Lg u(J; Le(Q,RY)).
(I) Define the function v € WI}(J; Lp(Q,RN)) N Ly (J; WPQ(Q;RN)) by

v(t) == u(t + Th,up), teJ.

Since the weight only has an effect at t = 0, we have

(T3, 40) ya-270 gy = [0z S [Vl (4.4:2)
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in dependence on 7. Moreover, the function v solves the nonautonomous, inhomogeneous

linear problem

dew — aij(v)D05w = ag;(v)dwdjv + f(v)  in €, t e,
avi0jw = a”t(v)g(v) on T, teJ,
w(0,-) = u(T1,uo) in Q.

It follows from Theorem 2.1.4, localization arguments similar to those in the proof of
Proposition 2.3.1 and compactness that there is a constant C', which is uniform in
|ulc (i ) < ryy @nd 7, such that

|U|EU,H(J) < C(‘a;j(v)aivajMEo,#(J)“"f(v)|Eo,u(J)+’a_l(v)g(Uﬂ]FH(J)""u(TlaUO)|Wg(Q,]RN))'
(4.4.3)
(II) Using Holder’s inequality we estimate for the first summand in (4.4.3)

jaf; () d0dj0lg, 0005015, ()

<
J) ~luleqry myxarN)
< HaZ»v]qu(QRN)yajv\L%(Q’RN)!qu’u(J) < /th(l—u)’v( )’Wl (Q.RN) dt.
By the Gagliardo-Nirenberg inequality (Proposition A.6.2) we have for all ¢ € J that
VOB sy S 10Ol 11O v,

for r € (1,00) and ¥,7 > 0, provided 1 — 3 < Tr—-2)+i(w- E) For given « it holds

CQ,RYN) — WT(Q,RYN) for 7 € (0,a) and r € (1,00). Thus if ¥ < 2 is sufficiently close
to 2 and 7 is large we obtain from the interpolation inequality and Young’s inequality
’ ( )’ Q]RN ~ |U( )|?/V(}9(Q,RN) ’v(t”qca(ﬁ’RN)
q _
N|“|C([T1,Tg];ca<ﬁ,RN)) elu(t) W2(Q,RN) + CE|U‘C([T1,T2]><97RN)’
where ¢ > 0 may be chosen arbitrary small. We therefore have
/
|aij(v)5¢v3jv|1@o,“(‘]) fslulc([Tl,TQ];ca(ﬁ,RN)) €|U|]Eu’u((]) + Ck.

Observe that this term does not occur in the semilinear case.
(III) For the second summand in (4.4.3) it is easily seen that

|f(v)’]E0,u(J) S |f(u)‘c([T17T2]xﬁ,RN)‘

For the third summand, Lemma 4.2.3, the interpolation inequality and Young’s inequality
yield

’Q(U)hm(J)

where ¢ is arbitrary. If we combine the above estimates with (4.4.3) and choose ¢ sufficiently

SJ‘U|C'([T1VTQ];C(E,RN)) 1+ ‘U’]FM(J) = E|U‘EH,M(J) + s,

small, then we may subtract 5|U|ETW( 7) on both sides of the inequality, to obtain

vlE,..(7) L+ Ju(Ty, uo)lwe o rN)-

<
~lulogry myco@rny)
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Together with (4.4.2) this yields the asserted estimate. In the semilinear case the constant
does not depend on the Holder norm of the solution, since then only the terms | f(v) |EO’#( 7)
and |g(v)|g,(s) in (4.4.3) are estimated. [ |

We use the above estimate to give a sufficient condition for the existence of a global
attractor of (4.1.1) in the phase space MIQJ_Q/ ?in terms of lower norms. This is the main
result of this chapter.

Theorem 4.4.2. Suppose that there are o, C' > 0 such that for each solution u(-,ug) of
(4.1.1) with initial value uy € M?pr it holds

limsup [u(t, uo)|ce@py) < C-
t—t+ (ug) '

Then (4.1.1) has a global attractor in M}Q)—Q/p.

Proof. We first show that ¢t*(ug) = +oo for all ug € /\/112,_2/ P Assume the contrary,
ie., t*(ug) < +oo. Then Lemma 4.4.1 and the embedding C*(Q,RY) — W7 (Q,RY) for
o € (0,a) yield

sup  |u(t, ug)]|. 22 S1+ 0 sup ult,uo)lce@rnys

te[0,t+ (up)) Wy QRN te[0,t+(uo)/2) O (SLRY)
which means that the orbit {u(t,uo)}ie(o,¢+ (o)) 18 Pounded in ngZ/p(Q,]RN). It thus
has a convergent subsequence in W;(Q,RN) for s € (1 +n/p,2 —2/p), which leads to a
contradiction to the maximal existence time, and therefore t*(ug) = +o00. Now another
application of Lemma 4.4.1 yields that there is Cy > 0 with

lim sup |u(t, uo)| < Cy

t—o0

W2=2/P(QRN)

for all ug € M?fw P Therefore the global semiflow generated by (4.1.1) has an absorbant
ball in MI%*Q/ P Since the semiflow is also compact by Theorem 4.3.6, the existence of a
global attractor follows from [16, Corollary 1.1.6]. [ |

We consider special cases of (4.1.1), where an absorbing set in a weaker norm is sufficient for

an attractor in My. We start with the semilinear case with nonlinear boundary conditions.

Corollary 4.4.3. Assume that (a;;) does not depend on u, and suppose that there are
q € (1,00), 0 € (0,2 —2/q] and a constant C > 0 such that for each solution u(-,ug) of
(4.1.1) with ug € M2~*/? it holds

lim sup |u(t,uo)]WU(QRN)me@,RN) < C.
t—t+(ug) 4

Then (4.1.1) has a global attractor in M§_2/p.

Proof. Lemma 4.4.1 yields a constant Cj such that

lim sup |u(t, ug)]
t—st+ (uo)

we-2agg gy < Co (4.4.4)
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for all ug € MZ_Q/ P We employ a bootstrapping procedure to show that (4.4.4) remains
true if one replaces Wq2_2/q(Q, RM) by C*(Q, RY) with some o > 0, and Cy by a possibly
larger constant. It then follows from Theorem 4.4.2 that (4.1.1) has a global attractor in
M?,_z/ P as asserted. Sobolev’s embedding yields

2—-2 N aro N
W229(Q,RN) — c*(Q,RY)

for some o« > 0 if ¢ > n/2 + 1, and we are done in this case. Otherwise, in case ¢ €
(1,n/2 4+ 1), we employ
2-2 N N
W2 ?9(Q,RY) — Wy (Q,RY),

which is valid for some small 7 > 0 if g1 € (g, #’I_Qq). Note here that #‘I_Qq > q
for all n and ¢ € (1,n/2 + 1). Another application of Lemma 4.4.1 yields (4.4.4) with
VVq2 -2/ 1(Q,RN) replaced by WqQ;Q/ 2(Q,RN). Iteratively, this yields a strictly increasing

=) q for small § > 0

> 1, the sequence g becomes larger than n/2 + 1

sequence of numbers g as long as g, < n/2+ 1. But since g > (

as long as g, < n/2+1 and 5.
after finitely many steps. Thus (4.4.4) holds true with a Hélder norm, and this finishes the

proof. |

For N = 2 we next consider for the unknown u = (uj,u2) quasilinear cross-diffusion

systems of the form

Opuq = div(P(u)Vul + R(u)Vuz) + fi(u) in Q, t>0,

Oty = diV(Q(’LLQ)V’UQ) + fa(u) in €, t >0,
Oyu=0 onT, t>0, (4.4.5)
u(0,-) = ug in Q.
P R
This problem fits into our setting with a(u) = éu) Q((u)) >, a;j = 0;5 and g = 0.
U2

We can use the results of Kuiper & Dung [61] to weaken the norm for the absorbing ball
considerably. We assume the following on the coefficients of (4.4.5). There are nonnegative
continuous functions ®;, ®3 and constants C,d > 0 such that for all ¢ = (¢1,{2) € R? it
holds

P(¢) >d(1+¢1), ¢G>0, |R(C)| < ®1(¢2)C, Q(C2) > d;

the partial derivatives of P, R are majorized by some powers of (i, (;
FOI < @)1+, 9O < @a(G)(L+ ), forall ¢, 20, > 0.

Corollary 4.4.4. Under the above assumptions, let the solutions of (4.4.5) be nonnegative
for nonnegative initial data. Suppose that there are r > n/2 and C > 0 such that for all
ug € M7 it holds

limsup |ug (¢, uo) 1, (or2) + [u2(t, o)l L. (r2) < C.

t—o00

Then (4.4.5) has a global attractor in Mf,_Q/p. If () does not depend on us one can take
r=1.
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Proof. It is shown in the Theorems 7 and 8 of [61] that (4.4.5) has a global attractor in
WI}(Q,RQ) for all p € (n + 2,00), from which the existence of an absorbant set in a C“-
norm follows from Sobolev’s embedding. The assertion is thus a consequence of Theorem
4.4.2. |

In case of a single equation, N = 1, the norm for the absorbant set can be weakend up to
L1, using estimates of De Giorgi - Nash - Moser type.

Corollary 4.4.5. Consider for u(t,z) € R the problem

Ou = div(a(u)Vu) + f(u) in €, t >0,
Oyu = g(u) on T, t>0, (4.4.6)

where a, f and g are assumed to be bounded and that there exists 6 > 0 with a(¢) > 0 for
all ( € R. If there is a constant C' > 0 such that for each uy € MZQ;_WP the solution u(-, up)
of (4.4.6) satisfies

lim sup |u(t, uo)|r, @) < C,
t—tt (uo)

then (4.4.6) has a global attractor in M22f2/p.

Proof. It is shown in [33, Theorem 1| that the existence of an absorbant ball in L;(2)
implies the existence of an absorbant ball in L (€2). This in turn yields an absorbant ball
in a Holder norm, see |28, Theorem III.1.3| or [34, Corollary 4.2], and the assertion follows
from Theorem 4.4.2. |

4.5 Applications

We apply the results of the last section to show convergence to attractors in stronger norms
for concrete models.

4.5.1 Reaction-Diffusion Systems with Nonlinear Boundary Conditions

In a series of papers, Carvalho et. al. [15] considered global attractors for semilinear
reaction-diffusion systems with nonlinear boundary conditions of the form

Ou — Au = f(u) in Q, t>0,
Oyu = g(u) on I, t>0, (4.5.1)
u(0,-) = ug in Q.

Here the smooth nonlinearities f, ¢ : RN — R are dissipative in the sense that there are

real numbers ¢; and d; with

lim sup fil§) < ¢, lim sup 9:(&)

&l —oo & &l —oo &

< d;,
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such that the first eigenvalue A\g of the linear elliptic problem

—Av—cv= v in €,
oyv—dv=0 on I,

is positive, where ¢ = (e1,...,cn) and d = (di,...,dy). The discussion in [15, Section 6]
shows that the first eigenvalue of the above problem can be positive although ¢; or d; has the
‘wrong'‘ sign, i.e., is positive. In this sense f can compensate a possible nondissipativeness
of g, and vice versa.

In [15, Theorem 4.1] it is shown that under the above assumptions (4.5.1) has a global
attractor in the phase space W, (Q,RY) N C(Q, RY). Corollary 4.4.3 improves this result

as follows.

Theorem 4.5.1. Under the above assumptions, for p € (n+2,00) the semiflow generated
by (4.5.1) has a global attractor in the nonlinear phase space

{uo € W5_2/p(Q,RN) 2 Oyug = g(up) on F}.

4.5.2 A Chemotaxis Model with Volume-Filling Effect

For u(t,x),v(t,x) € R the following chemotaxis model with volume-filling effect was intro-
duced by Hillen & Painter [53],

Oyu = d1Au — div(ug(u)x(v) Vo) + uf(u) in Q, t>0,

0w = doAv + g1(u) — vga(v) in Q, t>0,
opu=30,v=0 on I, t>0,
u(0,-) = ug, v(0,-) =wg in Q, (4.5.2)

This model may be cast in the form (4.4.5) and is thus of separated divergence form. It is

assumed that ¢ is given by
q(u) =1—u/Uyp, Um >0,
and further that dq,ds > 0 for the diffusion coefficients and

f|(U1\4,oo) < 07 91, g2 > 07 gl(o) = O) lim ’(}QQ(U) — 400,

V—00

for the smooth reaction terms f, g1 and gs. Besides smoothness there is no structural
assumption the sensitivity function x. It may even change its sign. Wrozsek [87, 88] showed
that under these assumptions (4.5.2) possesses a global attractor in the phase spaces

{(UO,UO)EW;i(Q,R?) :0<ug < Uy, 0<uwp}, p € (n,00),

and further that the w-limit set of each solution orbit consists entirely of equilibria which
satisfy a certain nonlocal problem. Jiang & Zhang |56] showed that in fact every solution of
(4.5.2) converges to an equilibrium. It is well known that for Up; = oo blow-up of solutions
may occur if the initial mass of ug is too large, cf. the survey article [54]. For Uy; < oo the
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chemotactic term in the first equation becomes becomes small if « is close to Ups, which
prevents solutions from blow-up.
Using Lemma 4.4.1, the same arguments as in the proof of Theorem 4.4.2 yield the following

improvement of the result of [87].

Theorem 4.5.2. Under the above assumptions, for p € (n + 2,00) the chemotaxis model
(4.5.2) has a global attractor in the phase space

{(uo,v0) € W22/P(QR?) : 0<upg < Uy, 0< o)

4.5.3 A Population Model with Cross-Diffusion

Our last example is the Shigesada-Kawasaki-Teramoto cross-diffusion model for population
dynamics, introduced in [76], which is for u(¢, z), v(¢,z) € R given by

ou = A(d1 + a1+ algv)u) + u(ay — byu — c1v) in Q, t>0,
O = A(dg + aoru + aggv)v) + v(ag — bau — cv) in Q, t>0,
Oyu=0,v=0 on I, t>0,

u(0,-) = up, v(0,-) =wp in Q. (4.5.3)

Again this model may be cast in the form (4.4.5). Here the constants a;, b;, ¢;, d;, i = 1,2,
are positive, and the constants «;j, ¢ = 1,2, are nonnegative. In [61, Theorem 2| it is shown
that (4.5.3) has a global attractor as a dynamical system in W, (€, R?) for p € (n,0),
provided o9 = 0. For n = 2 this remains true also for agg > 0. Theorem 4.4.2 improves
this as follows.

Theorem 4.5.3. Under the above assumptions, for p € (n + 2,00) the population model
(4.5.3) has a global attractor in the phase space Wg_z/p(Q, R2).



Chapter 5

Boundary Conditions of
Reactive-Diffusive-Convective Type

5.1 Introduction

In this chapter we investigate linear and quasilinear parabolic systems with dynamical
boundary conditions of reactive-diffusive-convective type. For the unknown u = u(t,x) €
RY, where N € N, we consider the problem!

Ou = 0i(a1(uw)Oju) + az(w)Vu + f(u) in Q, t>0,
Opu + b(-,u)0,u = divp(e1 (-, u)Vru) + co(-, u)Vru + g(-, u) on T, t>0,
u(0,-) = ug in Q. (5.1.1)

It is assumed that Q C R" is a bounded domain with smooth boundary I' = 0f2, where
n > 2. The outer normal unit field and the normal derivative on I' are denoted by v and
0, = vtrqV, respectively. The spatial trace on 2 is designated by trg. Further, Vr and
divp are the surface gradient and the surface divergence on I', respectively. We assume
that the coefficients are smooth, and that for all z € T' and ¢ € RY it holds

a1(¢),b(z,¢) € BRY),  c(x,¢) € RY,

as(C), ea(x,¢) € BRY™,RN),  f(¢), g9(x,¢) € RY.

The term divp(eq (-, u)Vru) is meant in way that its k-th component is given by
diVF(q(-, u)Vru)k = diVF(CIf(-, u)Vpuk), k= 1, ceuy N.

The system (5.1.1) consists of two dynamic equation, coupled in a possibly nonlinear way
by the flux term b(-, u)9d,u. The term divr(cq (-, w)Vru) takes into account surface diffusion
effects on the boundary, where the tangential flux vector JE = —ck(-,u)Vruy of uj, may
depend nonlinearly on the surface gradient of ug. For ¢; = 1 one obtains the Laplace-
Beltrami operator Ar = divpVr on I'. Further, the term ca(-, u)Vru describes nonlinear

surface convection on the boundary.

"We use again sum convention.
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We explain the differential operators on the boundary. Via the directional derivative at
z € I' a function v € C*°(I") induces an element of the dual space of T,I". The surface
gradient Vrv(z) € RN of v at x is then the unique corresponding element of T,I" given
by the Riesz isomorphism, if one considers T,I" as a Hilbert space with the scalar product
induced from R™. In local coordinates g for I', with fundamental form G = (g;;) and
inverse G™1 = (g%), the components of the surface gradient with respect to the basis
{018, ...,0n_1g} of the tangential space are given by the components of G™1V,,_1(vog)T,

ie.,
n—1

Vivog= Z g70;(v o g)0;g.
ij=1
For a tangential vector field w € C*(I',R"), i.e., w(z) € T,I' for x € T', the function
divpw € C*°(I") is in coordinates g given by

divfwo g = IGlw'og),

T

where w' are the components of w with respect to the basis {dig,...,0,_1g}. For the
components of the surface diffusion term in (5.1.1) we thus have

n—1
. 1 i
divp(c1(-,u)Vru)p o g = ﬁ Z 8,~(c’f(-,u) og+/|Glg”9;(uk 0 g)), k=1,..,N.
i,j=1
These are well defined differential operators on I' (cf. Appendix A.5), with principal parts
equal to c’pr, respectively.

We impose the following structural conditions on a1, b and ¢y, where § > 0 is independent
of z € T and ¢ € RY. By A** we denote the k-th diagonal entry of a matrix A.

a1(¢),b(z,¢) are upper triangular matrices, cf(z,¢) >48, k=1,...,N; (5.1.2)
at*(¢) > 6, and either b**(x,¢) > § or b**(z,¢) < -6, k=1,...,N. o

We emphasize that the sign of the diagonal entries of b may change from line to line.
Let us describe the results and the organization of this chapter. For p € (1, 00) we let
Xo = Ly(Q,RY) x Wi HP(I,RY),
X1 ={(v,ur) € Wg(Q,RN) X Wg_l/p(F,RN) : trqu =or},
and look for solutions w in the maximal regularity class
Eu(J) = W, (J; Xo) N Ly(J; X1),

where J = (0,7) is a finite time interval, T > 0. Identifying a function v with the pair
(u, trqu), here we write u € E,(J), with a slight abuse of notation. In Section 5.2 we first
consider the linear inhomogeneous, nonautonomous version of (5.1.1) and show that it
enjoys the property of maximal L, ,-regularity on finite intervals, verifying the conditions
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of Theorem 3.1.4. We then turn in Section 5.3 to the quasilinear case and show that for
each initial value ug = (ug, trqug) from the linear phase space

M ={(v,vr) € Wg_z/p(Q,RN) X W;’_?’/I’(F,RN) : trou =ur}

there is a unique maximal solution wu(-,ug) € C’(O,t+(uo);/\/l) of (5.1.1), provided p €
(n+2,00). Here t*(ug) > 0 denotes the maximal existence time. We obtain strong solutions,
in the sense that

u(-,up) € Eyu(0,7) for all 7€ (0,7 (up)).

Moreover, the map ug — u(-,ug) defines a compact local semiflow on M, which has the
property that bounded orbits are relatively compact. These results are based on maximal
L,-regularity for the linearization of (5.1.1), the regularity properties of the superposition
operators occurring in (5.1.1) and the recent results of [59] on abstract quasilinear problems
in L, ,-spaces. Besides the structural conditions (5.1.2) we do not have to impose any
restrictions on the nonlinearities to obtain the local semiflow. In particular, we do not have
to impose any growth conditions.

We then turn to global issues and show in Section 5.4 that an a priori Holder bound for a
solution of (5.1.1) implies that it exists globally in time. We obtain this result by localizing
(5.1.1) in space and time, employing again that the linearization of (5.1.1) has maximal
Ly-regularity, and by performing appropriate estimates of the resulting nonlinear error
terms. In Section 5.5 we specialize to a semilinear version of (5.1.1),

Ou = Au+ f(u) in Q, t>0,
Owu+0yu=Aru+g(u) onl, ¢t>0, (5.1.3)

u(0,-) = ugp in .

Under appropriate dissipativity conditions on the reaction terms f and g we obtain a
Lyapunov function for (5.1.3), that already appeared in [80], and a priori estimates in the
energy spaces W4 (Q,RY) and W}H(T, RY). By a Moser-Alikakos iteration procedure we can
show that this implies an a priori Ly-bound, which in turn leads to global existence for
the solutions of (5.1.3). The Lyapunov function, together with another a priori estimate
for the equilibria of (5.1.3), yields the existence of a global attractor in M, and that each

solution converges to the set of equilibria as ¢t — oo.

Problems related to (5.1.1) and (5.1.3) were considered, for instance, in [38, 39, 40, 80, 83|.
We refer to the introduction of this thesis for more informations.

5.2 Maximal L, -Regularity for the Linearized Problem

In this section we show that the linearized version of (5.1.1) enjoys maximal L, ,-regularity
by verifying the normal ellipticity condition (E) and the Lopatinskii-Shapiro condition (LS)
and using Theorem 3.1.4. Besides the interest in its own, this linear result is the basis for
our investigation of the quasilinear problems.
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For the unknown u = u(t,z) € RY we consider linear inhomogeneous, nonautonomous

parabolic systems of the form

Ou = A1Au+ AsVu + Asu+ f inQ, teJ
owu + Boyu = C1Aru+ CoVru + Csu+ g onl, telJ, (5.2.1)
u(0, ) = ug in Q,
trou(0,-) = uor on T

A simplified version of (5.2.1) was considered in Example 3.1.1. Here the coefficients may
depend on t and x, and are of the form

Aq(t,x), As(t,z), B(t,z),C1(t,z), C3(t,z) € BRY), As(t,x),Ca(t,z) € BRY " RN).

We further impose the following structural conditions on the coefficients, which are similar
to (5.1.2). The number 6 > 0 is independent of ¢ and z.

Ai(t,z), B(t,z),C1(t,x) are upper triangular matrices; for k =1,..., N:
AYR(t, x), CY%(t,x) > 0, and either B*(z,{) > § or B"(z,() < —4.

We may cast (5.2.1) in the form (3.1.1) by setting
A(t,z,D) = —(Al(t, T)A + As(t, )V + As(t, x)), By(t,x, D) = B(t,z)v(z)trqV,

Co(t,x,Dr) = —(C1(t, z)Ar + Ca(t, z)Vr + Cs(t, 1)), By = trq, C,=-1

For p € (1,00) the nontrivial part of the Newton polygon associated to (5.2.1), cf. Section
3.1, is the line through to the points (0,3/2—1/2p) and (3—1/p, 0). The point (2,1/2—1/2p)
corresponding to the operator Cy lies on this line, the point (0,1 — 1/2p) corresponding to
C1 does not.

To verify (E), note that the principal symbol of A is given by
Ay(t, z,€) = A1(t,2)|€)?, € €R™, (t,x) € J x Q.

Since Aj(t,) is assumed to be positive definite, the spectrum of A;(t,z) € B(RY) is
contained in the right-half plane. Hence (E) is valid.

Problem (5.2.1) belongs to Case 1, hence we do not have to consider asymptotic Lopatinskii-
Shapiro conditions. Since further the unknown u takes values in a finite dimensional space,
we only have to consider (LS) with trivial right-hand sides.

Let (t,7) € J xT, and take coordinates g associated to z, cf. Lemma A.1.1. Then the chart
(U, ) corresponding to g satisfies ¢'(z) = Oy(x), where O, ;) is an orthogonal matrix that
rotates v(z) to (0, ...,0,—1) € R™. For ¢ € R"! and D, = —id, we thus have

Ag (tv z, OZ(J:)(EC Dy)) = Al(t7x)(|£,|2 - 65)7 BOﬁ (ta z, Os(x)(glv ay)) = —B(t,ﬂ})ay-
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Since (p~1)/(z) = C’):;F(z) it holds G(x) = id,,—1 for the fundamental form G corresponding to
g, i.e., the coordinates g are orthonormal at x, and the Laplace-Beltrami operator reduces
to Aru(z) = Ap_1(uog)og™!(x). This yields

Cgﬁ(t,x,g’) = Cy(t,z)|¢']?, ¢ e R

By convention we further have Ciy = 0, since the point (0,1 — 1/2p) corresponding to Cy
does not lie on the nontrivial part of the Newton polygon.

We thus have to show that for all A € C;\{0} and ¢ € R"™! with A + |¢/| # 0 the only
solution (v, o) of the ordinary initial value problem

A+ A€ =a))vly) = 0,  y>0,
—B(t,7)0,v(0) + (A + C1(t,2)|¢'P)0 = 0, (5.2.3)
v(0) = 0,

where v is decaying as y — oo is the trivial one, i.e., (v,0) = (0,0). So let (v,0) solve
(5.2.3) and let v be decaying. We write v = (vy, ..., vn) and 0 = (071, ...,on). We now make
use of the triangular structure of Ay, B and Cj. Denoting by AN (¢,z) > 0 the diagonal
entry of Aj(t,z) in the N-th row, we obtain that vy solves

(MA@t 2) + €)= 02)on =0, y>0,  wn(0)=0,

which implies vy = 0. Consequently —B™V(¢,2)9,vx(0) = 0, which shows that the sign
of BM™(t,) has no influence on the validity of (LS). We thus obtain that oy satisfies
(A + OV (t,2)|¢'|?)on = 0. Since we assume C]N(¢,z) > 0 and that A and ¢ do not
vanish simultaneously, it follows that oy = 0. Iterating these arguments and using the
diagonal structure we obtain that each component of v and o vanishes. Here again the sign
of the diagonal entries of B has no influence. This verifies (LS) for (5.2.3).

For the solvability of (5.2.1) the compatibility condition

g(oa ) + B(O) ')al/u()) _Cl (07 ')AFUO,F
— (0, ) Vrug,r — C5(0, Jug,r € B2U—1/P)=1=1/p(0 RY)

must be satisfied if 2(x — 1/p) > 1 + 1/p. Since the trace space of F, equals

Bf,,(ﬁfl/p)*l*l/p(F,RN) it suffices, for instance, if

B(0,-), C1(0,-), C2(0,-), C3(0,-) are pointwise multipliers on Bzf;‘_l/p)_l_l/p(F,RN).
(5.2.4)
Note that if in case 2(u—1/p) > 1+n/p, which is relevant for the treatment of quasilinear
problems, the coefficients satisfy the first condition in (SB) and (SC), i.e.,

B7017027C3 S FM(‘L‘F>7

where F stands for B(RY) or B(RV*" RY), then (5.2.4) is valid by Lemma 1.3.19 and
Sobolev’s embeddings.
The above considerations, Theorem 3.1.4 and [26, Theorem 2.2] yield the following result.
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Theorem 5.2.1. Let J = (0,T) be a finite interval, p € (1,00) and u € (1/p, 1]. Assume
that the coefficients of (5.2.1) satisfy (5.2.2), (SD), (SB) and (SC), and further (5.2.4) if
2(u—1/p) > 1+ 1/p. Then (5.2.1) has a unique solution u satisfying

w €W, ,(J; Ly(QRY)) N Ly (J; WEH(Q,RY))
trqu € W2 2P (J; Ly (T, RN)) N Ly, (J; W~ /2(0, RY)),
if and only if the data is subject to
f € Ly u(J; Ly(Q,RY)), up € B2=1/P (Q,RY), uor € BARYPTI=1/p(p RN,
g€ Wplf_l/zp(t]% Ly(T,RY)) N Ly u(J; Wpl_l/p(F,RN)),

and it holds trqug = wo if 2(n—1/p) > 1/p. In the autonomous case, i.e., if the coefficients
do not depend on t, the realization of the operator

A ALA + AoV + A 0
N —Bd, C1Ar + CyVp + Cs

on Ly(9,RY) x Wpl_l/p(F,RN) with domain
D(A) = {(v,vr) € W2(QRY) x W3~ RY) : trqu = vr}

is the generator of an analytic Cy-semigroup. |

Remark 5.2.2. a) The theorem is the basis for our investigations of quasilinear problems.
b) It should be possible to verify (LS) for (5.2.1) under more general structural assumptions
on the coefficients.

c) Having verified (E) and (LS), in the autonomous case the maximal L, ,-regularity
result also follows from the result in the unweighted case [26, Theorem 2.1| combined with
Theorem 1.2.2 on the independence of maximal L, ,-regularity of pn € (1/p,1].

d) If p is sufficiently small such that the spatial trace of ug does not necessarily exist there
must be no relation between the initial values ug and wug .

e) The sign of the diagonal entries of B can change from row to row. The reason is that
B0, is of lower order with respect to C1Ar. The fact that the sign has no influence can
also be seen in the verification of the Lopatinskii-Shapiro Condition above.

f) The theorem gives partial answers to the open questions posed in [83]. In this paper the
problem

Oru = Au in 2, t>0,
ou — Oyu = Aru on T, t>0, (5.2.5)
u(0, ) = ug in Q,
is studied, and it is shown that (5.2.5) generates an analytic quasi-contractive semigroup
in the energy space

H = {(v,vr) € W3 (Q) x Wi(T) : trgv = ur}.

Our setting differs from the one in [83|. For p = 2 Theorem 5.2.1 yields a semigroup in
Ly(9) x Wa/(T) for (5.2.5).
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5.3 The Local Semiflow for Quasilinear Problems

The functional analytical setting for the solutions of (5.1.1) is as follows. For p € (3/2,00)

we consider the Banach spaces
Xo = Ly(Q,RY) x WaV/P(D,RY),  Eo(J) := Ly(J; Xo),
X1 == {(v,vr) € WPQ(Q,]RN) X Wg_l/”(F,RN) : trou =r},
Eu(J) :== W, (J; X0) N Lyp(J; X1),
and we write v = (v,vr) € E,(J). Recall further the phase space
M = {(v,or) € W2P(QRYN) x W3=3P(D,RY) : trqu = vr},

which we consider as a closed subspace of Wg —2/p (Q,RN) x Wg —3/p (I, R™). Denoting by
(+,+)s,p the real interpolation functor, s € (0, 1), we have the following characterization of

M.
Lemma 5.3.1. For p € (3/2,00) it holds that M = (Xo, X1)1-1/pp-

Proof. Define on X the operator A by Au = (—Au,d,u — Arur), where v = (u,ur) €
D(A) := X;. Combining Example 3.2 and Theorem 2.2 of [26] we obtain A € MR,(0, 1)
for all p € (1, 00), which implies that the Cauchy Problem

Ou+Au=0, te(0,1), u(0) = up,

has a unique solution u € E,(0,1) if and only if up € (Xo, X1)1-1/p,p- It further follows
from Lemma 1.3.5 that the temporal trace maps E, (0, 1) continuously into (Xo, X1)1-1/p,p-
On the other hand it is shown in [26, Corollary 2.3] that the above Cauchy problem has
a unique solution in E, (0, 1) if and only if ug € M, provided p € (3/2,0), and Theorem
1.3.6 yields that the temporal trace maps

E,(0,1) < W (0,1; Xo) N Ly(0, 1; W2A(Q,RY) x W2=1/P(,RY))

continuously into W5_2/p(§2, RM) x W5_3/p(F,RN). Therefore M and (Xo, X1)1-1/pp co-
incide as sets, and the maximal regularity estimates implied by Theorem 2.2, Corollary 2.3
of [26] and the continuity of the traces yield

|u0|(X0,X1)1_1/p’p S |u|IEu(0,1) S.z |u0’W§72/p(Q,RN) + |UO‘W§*3/P(F7RN)’
and vice versa. [

We define the maps A : M — B(Xi,Xp) and F : M — X, by

—81(@1 (u)&v) 0
A = , e M, € Xy,
(U)U ( b(-, ur)é?,,v —diVF(Cl(', uF)VF’UF) “ v !

o az(u)Vu + f(u) "
F(u) = ( ex(eoup) Ve 4 g(-rur) ) , € M.
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As an abstract quasilinear evolution equation, the system (5.1.1) takes the form
Ou(t) + A(u(t))u(t) = F(u(t)), t>0, u(0) = up.

We show that the maps A and F are locally Lipschitz continuous for sufficiently large p.
Recall the Sobolev embeddings

2-2 N 1o N 3-3 N 2 N
WP, RY) — CY@Q,RY), WP, RY) < CHI,RY), p>n+2. (53.1)
Lemma 5.3.2. Forp € (n+ 2,00) the functions
A:M—>B(X1,X0), FZ./\/l—>X0,

are Lipschitz continuous on bounded subsets of M. Moreover, under the structural condi-
tions (5.1.2) we have that for all ug € M and all finite intervals J = (0,T") the operator
A(ug) on Xo with domain X enjoys maximal L,-regularity on J.

Proof. (I) The embeddings (5.3.1) show that A(u) € B(Xi,Xp) and F(u) € Xo for
u € M. For the regularity of A, we estimate for u,v € M and w € X; with |w|x, <1

S Z |(a1(u) = a1(v))dswlwy@myy + 10, ur) = b( vr))dvwly1-1/m gy
+(er(yur) = el vr)) Vrwr| go-im gy
S lax(u) — al(“)’cl(ﬁ,RNxN)
+ [b(-sur) = b(, vr)|cr(prvxny + [e (s ur) — e (, or) |2 rry.-
It is not hard to show that the superposition operators
U'—>a1(u), UFHb(HUF)v ur ’—>01(‘,UF)7
are Lipschitz continuous on bounded sets as maps
CH(Q,RY) — CH(@Q, RV, oY, RY) — CH(D,RVY), (D, RY) — C*(T,RY),

respectively. Now (5.3.1) yields that A is Lipschitz continuous on bounded subsets of M.
Similar arguments show the asserted regularity of F'.

(II) Let ugp € M be given. The embeddings (5.3.1) yield that for uy € M the coefficients of
A(up) are continuous on  and continuously differentiable on T, respectively. Thus (SD),
(SB), (SC) and (5.2.4) are valid. The conditions (5.1.2) and Theorem 5.2.1 thus yield that
the realization of A(ugp) on Xy with domain X; enjoys maximal L,-regularity on finite time
intervals. |

After these preparations we obtain local well-posedness for (5.1.1) from the results in [59].
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Theorem 5.3.3. Assume that the coefficients of (5.1.1) are smooth, and that they satisfy
the structural conditions (5.1.2). Let further p € (n + 2,00). Then for all initial values
ug € M the problem (5.1.1) has a unique maximal solution

u(+,up) € C([O, tT(ug)); M),

such that u(-,ug) € E1(0,7) for all 7 € (0,t%(up)), where t"(ug) > 0 denotes the
maximal existence time. The solution map ug +— u(-,ug) is a local semiflow? on M. If
{u(-;u0) befo,t+ (uo)) I8 bounded in M, then t*(ug) = 400 and the corresponding orbit is

relatively compact in M.

Proof. Due to Lemma 5.3.2 we may apply the Theorems 2.1, 3.1 and Remark 2.3 of [59]

to the abstract quasilinear problem
ou(t) + A(u(t))u(t) = F(u(t)), t>0, u(0) =up € M,

which is equivalent to (5.1.1). Hence all assertions follow, except the compactness property
of the solution map. Using [59, Theorem 2.1|, the proof of this fact is completely analogous
to the proof of Proposition 4.3.5. |

5.4 A Priori Holder Bounds imply Global Existence

We show how maximal L,-regularity can be used to reduce the question of global existence

of solutions to the boundedness in a Holder norm.

Theorem 5.4.1. Under the assumptions of Theorem 5.3.3, let u(-, ug) be the maximal solu-
tion of (5.1.1) with initial value ug € M. Ifu(-,uo) is uniformly continuous in [0, t" (ug)) x
and it holds

sup |u(t, uo)| e ryy < +00
te[0,t1 (uo))

for some o > 0, then u(-,ug) exists globally, t*(ug) = +oo, provided p is sufficiently large.

Proof. The plan is to show that if t*(ug) < +o0o then the orbit is bounded in M, provided
p is sufficiently large. This leads to a contradiction to Theorem 5.3.3, and shows that ¢ (ug)
cannot be finite. Assume that ¢ (ug) < 400, and denote by u = u(-,ug) the solution of
(5.1.1). We will show that for sufficiently small 7 > 0 the quantity |ulg,, 1), Where

ty == t+(u0) -,

is bounded by a constant independent of T' € (¢;, " (uo)). Then suppejg ¢+ (uo)) [(T)|a is
finite, and we are done.

(I) We localize the problem in space. Due to its uniform continuity on [0, " (ug)) we may
continue u = u(-,ug) to a bounded uniformly continuous function on [0, ¢ (ug)] x Q. Thus
for given ¢ > 0 there are n,d > 0 with

lu(t, ) —u(s,y)| <e for |x—y|<d, [t—s|<n, x,y€Q, t,s€l0,t"(u)]. (5.4.1)

2We refer to Section 4.3 for a precise definition of a local semiflow.
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For § > 0 we choose a finite number of points z; € Q such that |J, Bs(z;) covers €, and a
partition of unity {v;} for Q subordinate to this cover. Given § > 0 we obtain

|ulg, (t,1) < Zz [rulg, t,1)- (5.4.2)

The function u solves the linear nonautonomous problem?

as(w)Vu+ f(u) =: f1 in Q x (t,,T),
co(,u)Vru+g(-,u) =:g1 onT x (t,,T),

u(ty, ) in .

O — 0; (al(u)(‘?iv)
O + b(+, u)0,v — divp(c1 (-, u) Vo)
U(tr]a )

Thus for each [ the function w := yu satisfies

Byw — 95 (a1 (w)Diw) = i fr — [95(a1 (w)dy), ¥lu
::wlﬁ-i-fz in Q x (t,,T),
w4 b(-, u)Oyw — divr(c1 (-, u) Vrw) = g1 + b(-,u) [0y, Yr]u — [divr(e1 (-, u) V), ¥ilu
=:Y1g1 + G2 on I' x (t,,T),
w(ty, ) = Yu(ty,-) in Q.

Localizing in space and time, we obtain that w satisfies

0w — ay (u(ty, 20))Aw = V1 fi + fo + 0 (a1 (w) — a1 (u(ty, z1))) dw
= Wfi+ ot fz in Qx(t,T),
Oyw + b(xy, u(ty, 1)) 0w — c1(xy, ulty, x;)) Arw
=Yigr + g2 + (b(-, w) — blzy, ulty, 1)) Opw
+ din((cl(', u) — cr(zyu(ty, xl)))pr)
=g +g2+g3s onT x(t,T),
w(ty, ) = Yulty,-) in Q.
By the maximal regularity Theorem 1.2.3 there is a constant C, which does not depend
on T, n and ¢, such that

Wi, (1) < C(I(Wfr + fo+ f3. 0G0 + G + 33) lgg 6,7y + [0ultn, Nm). (5.4.3)

A compactness argument further yields that C' is uniform in |u] BO(0,4+ (uo)] xRN Our

objective is now to show that for given ¢ > 0 an estimate of the form

\(ifi + fa + fa,0iG1 + G2 + 3) B0ty ) < OlulE, 1,),1) (5.4.4)
+ C(’U(W UO)|Bc([o,t+(u0);ca(§,RN))7 0,1, U)
is valid. If we then combine (5.4.3) with (5.4.2) and choose ¢ sufficiently small we may

subtract %|u!E1(tmT) on both sides of (5.4.2) to obtain the boundedness of |u|g, (;, 7) inde-

pendent of T'. Throughout we write | - | for any occurring sup-norm.

3Throughout we neglect the subscript T' if u is considered on the boundary.
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(II) The functions Yuf1, fo and f3 must be estimated in the Ly(ty, T Ly(Q, RY))-norm.
We start with the term

difi = i (az(u)Vu + f(u)).

For the first summand we have for given o > 0, using the interpolation inequality and

Young’s inequality,

[hia(w)Vulp, i, mi,rN)) < Clule) VUl @, 1, rN*n)) < olulg, ¢,1) + C(|U]s, o).

The next term is easily estimated by

[ f (WL, ¢, 1in,@rN)) < Cllu]oo)-
We now consider the commutator term fo = [9;(a1(u)d;),1]u. For each i it holds
[0i(a1(u)0s), Yrlu = [a} (u)0;udy, ilu + a1 (u)0;0;, Yi]u.
As above we have that
@) (u)Diudi, ¢1]U’Lp(tn,T;Lp(Q,RN)) = |Dithial (U)Uaz'u\Lp(tn,T;Lp(Q,RN))

< C(luloo, O)[ul, 1, 7w (rN))

< U|”|]E1(t,,,T) + C(|u|007 57 U)a

and further
a1 (w0505, Ylul L, 1, 7.1, YY) < Cllulos, O)ulr, @, Tw1@RN))

< olulg, t,,1) + C(luloo, 0, 0).

We next consider the term f3 = 9; (a1(uw) — a1 (u(ty, 21)))0;(¢yu). For each i we have
0; (al(u) — al(u(tn,ml)))ﬁi(wlu) = (al(u) —ay (u(tn,xl)))ﬁi@-(wlu)

+ Opbyaly (w)udpu + yal (u) dud;u.

For the first summand we use (5.4.1) to obtain
[(a1(w) = ax (u(ty, 21))) 0i0i (ru) | 1, (1, 7L, (RN
< (a1 (w) = a1 (ulty, 1)) DOl (1, 751, (0 By (21) BY))

+ C(|ufoo, 5)|“’LP(tW,T;W}}(Q,RN))

S U‘U|E1( T) +C(’u|007570-)7

ty,

provided § and n are sufficiently small. We further have, as before,
|0ithiay (wyudiul g, ¢, i1, RN Y) < Olulg, (1, 1) + C(|t]oo, 3, 0).

For the next term we observe that, by Holder’s inequality,

T
()00l 1 ey < Cllale) [T, e

tn
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The Gagliardo-Nirenberg inequality (Proposition A.6.2) yields a number s € (0,2), close
to 2, such that

WO any < ClO s [0 gy € (st (w0).

Therefore, again by the interpolation inequality and Young’s inequality,

Wlall(U)aiuaiu|Lp(t,,,T;Lp(Q,RN)) < C(‘U|BC([0¢+(uo));ca(ﬁ,RN)))’u‘Lp(tn,T;WIf(Q,RN))
< olulg, (1, 1) + Cul po(o,+ (uo) ;e @RNY)» O)-
We have thus estimated the terms 1/1;?1, ]?2 and f;; as desired for (5.4.4).

(ITT) We next treat the terms 1;g1, go and g3 in the L,(t,, T} Wl}fl/p(F,RN))—norm. It
follows from Lemma 1.3.20 that

’SO(M 1 1/1"(1" RN) ~ ‘(p‘oo‘(b‘wz}—l/p(F’RN) + ‘(p‘W;_l/P(F’RN)’¢’OO (545)

for all p € Wplfl/p(I’,B(]RN)) and ¢ € W;fl/p(I‘,RN). It can further be shown as in the
proof of Lemma 4.2.3 that for a smooth function A : T' x RY — R¥ it holds

‘h(7 ¢)‘W5*1/P(F7RN) S C(’(p‘oo)(l + ‘¢| 1 1/P(F ]RN)) (546)

We start with
Yig1 = i (c2(w)Vru + g(-, u)).
For the first summand we have, using (5.4.5) and (5.4.6),

|17Z}l62( )VFU’| tn,T Wl 1/p(FIRN)) S 0(6)|C2( )VFU| tTI’T Wl I/P(F RNXn))

< O(Juloo, O)ul, Vrule

ooz ey F OOl (g yaeye ey,

< O-’uhEl(tn,T) + C(|u‘005 67 U) + C(‘u|007 5)(1 + |u‘Lp(tn,T;Wz,171/p(F,RN)))|vFu’OO'

For sufficiently small 7 > 0 the Gagliardo-Nirenberg inequality yields

0 —0
‘u(t)|WI}+(n—1)/P+T(F,RN) SJ |u(t)‘W§>—3/p(F7RN)|u(t) éa(ﬁ’RNy

provided 0 € (0 1) satisfies 1 < 6(3 — "+2) + (1 — 0)cv. This inequality can be fulfilled by
some ¢ < = 1 i/ provided p is sufficiently large compared to . We use this fact together
with the embedding Eq(t,,T) — Loo(ty,T; M) to obtain

IVrulee <C ‘U|Lm(tn,T;W;“”’l)/p”(FJRN))

6
< Cllulpeoi opco@rmplUly_ . raa-sm gy,
< O(Jul oo e+ (uoyyica @rn )y MIUlE, 1, 1) (5.4.7)

for some 0 < By Young’s inequality we thus have

31/

C([uloo, 6)|Vruloo < olulg, (1, ) + C(|“|BC([0,t+(uO));Ca(§,RN))> 6,1,0).
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The interpolation inequality implies that

1-1/p

‘“‘Lp(t,,,T;W,}‘l/”(r,RN)) < C(Julo) ’U\fél 1t/;2T) (5.4.8)

Combining this estimate with (5.4.7), we obtain

Clluloes O)ul, - ay-1/op gy VTl
< olulg, t,1) + C(|“|BC([O,t+(u0));(Ja(ﬁ,RN))’ 4,n,0),

which finishes the estimates for the first summand of +;g;. Using (5.4.5) and (5.4.6), the
second summand of ;g7 is estimated by

‘wlg('au)’Lp(tmT;W;—l/P(F’RN)) < C(‘u’0076)( +’u‘ ot T W l/p(FRN)))

< O—‘uhﬁll(tn,T) + C(’u‘oov 6) U)'
We continue with the commutator term

g2 = b(-,uw) [0y, Yi]u — [divr(c1 (-, w) V), ¥r]u.

For the first summand we use again (5.4.5) and (5.4.6) to obtain

‘b(.’u)[aV’wl]u’Lp(tn,T;W;_l/p(I‘,RN)) < C’((S)]b(,u)u!L (tn,T-Wl_l/p(F,RN))

< C(|u’0075)(1 + ‘U‘ o (tn,T; Wl I/P(F RN)))

< olulg,, 1) + C(lulso, 5, 7).
For the second summand of g5 we have

[dive(er () V), dalul, o pr-vm g, (5.4.9)
S [(Aryr)en (s, u)U‘Lp(tn’T;Wplfl/P(FyRN)) + 101('7U)VFMVFU\Lp(tmT;Wz}fl/p(F,RN))
+ [(Vrer(,u) + duer (- u) Veu) (Ve () + WV G i1 ey

Here the first and the second summand may be treated as above. For the third summand
we concentrate on the term involving V(¢u). We estimate

|VFCI( )VF(@Z)!U” tnTWI 1/P(F ]RN))
S C(|U‘OO)|VF(¢IU)|Lp(tmT;W;*1/P(F7RN><n))
OO [uly -1 g govy) V0 (1)

SC(’“‘OO’ )‘U| tnTW2 1/P(FRN))

+ 0(6)( + ’u‘Lp(tmT;W;_l/p(F,RN)))’u‘LOO(tTlvT?Wolo(F?RN)).
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Note that the first summand is of lower order. Using (5.4.7) and (5.4.8) we obtain that
also the second term is of lower order. We further have

[Oucr () VeuVe()l o pgpi-1/e 0 vy,
< Clluloo) M+ fuly o qypa=1/m gy I VruVE (i) oo

+ C(”U/‘OO) |VFUVF(¢1U) ’Lp(tn,T;W;_l/p(F,RNX”))

< C(|u|007 5)(1 + |u‘Lp(tn,T;W1_l/p(F RN)) )|u‘%m(tn,T;Wolo(F,RN))

+C(|U\ma5)|u|Lm(tn,T;W1 (D,RN)) |u| ot T;W2" /P (D RN))

Since 6 < 3711 75 1t follows from (5.4.7), (5.4.8) and Young’s inequality that here the first
term may be estimated as desired. Moreover, the interpolation inequality yields

2-1/p

< O(Juloo)ulg, /”

‘U|Lp(tn7T§ngl/p(FaRN)) By (2, T)

Combining this with (5.4.7) we obtain the desired estimate also for the second term of go,
and this finishes the estimates for this term. We finally consider

93 = (b(-,u) — by, ulty, 1)) 9y (hru) + dive ((c1(-, u) — e (@, ulty, 1)) Vr ().

For the first summand, choosing ¢ and 7 sufficiently small and using (5.4.1), (5.4.5), (5.4.7)
and (5.4.8) we obtain

(b, @) = b, ultn, 2))) 0 (Pl () pgpt=11o gy,
< O (b, w) = bla, ultn, 20))locl Ol  pyp1-1/m gy
+ C(lufos, 0)(1 + |u‘Lp(tmT;Wplfl/P(F,RN)))|U‘Loo(tn,T;W§o(I‘,RN))
< olulg, t,,1) + Cllul popo,et (wo))ioe @rN ) 0:0)-

We further have

[dive((e1 (- w) = ea(@y, ulty, 2))) Vo))l o rypi-1m e gy,
< ’(cl<'7u) - Cl(xlvu<t777xl)>)AF(¢lu)’L ot T-Wl_l/p(l",]RN))

+ |(VF61(',U) + Gucl( )Vpu)Vr(wlu)\ (T Wl l/p(F RNY)"

Choosing § and 7 sufficiently small, using (5.4.1), (5.4.5) and the treating lower order terms
as before, here the first term may be estimated as desired. The second term is of the same
type is the one in (5.4.9). This finishes the proof. |

It is now natural to ask for sufficient conditions on the nonlinearities in (5.1.1) that guar-

antee an a priori Holder bound of solutions. This will be subject to future work.

5.5 The Global Attractor for Semilinear Dissipative Systems

We now fix
€ (n+2,00)
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and investigate the long-time behaviour of the following semilinear version of (5.1.1),

Ou = Au+ f(u) on , t >0,
Oru + Oyu = Aru + g(u) onT, t>0, (5.5.1)

u(0,-) = ugp on Q,

where the reaction terms f, g : R — R are assumed to be smooth. Theorem 5.3.3 implies

that (5.5.1) generates a compact local semiflow of solutions in the phase space
M = {(v,vr) € Wgﬂ/p(Q,RN) X W;’f‘g’/p(lj,]RN) L trqu = or},

However, due to [26, Theorem 2.2], the realization of the operator

on Xo = Ly(Q,RY) x Wy /P(, RY) with domain
D(A) = X1 = {(v,vr) € W2(Q,RY) x W3™V/P(D,RY) : trqu = vr}

enjoys maximal L,-regularity on each finite interval J = (0,7"), and —A generates an ana-
lytic Cp-semigroup on Xy. Thus local well-posedness of (5.5.1) also follows from semilinear
theory [51, Chapter 3]. It is now a simple consequence of the variation of constants formula
that for ug € M the corresponding maximal solution u(-,up) of (5.5.1) has the additional

regularity properties
u(-, uo) € C(O, t+(UQ); Xl) N Cl (O, t+(u0); ./\/l), (5.5.2)

see [16, Corollary 2.3.1]. Interested in the long-time behaviour of solutions, we may thus
assume that ug € X; for the initial values of (5.5.1).

For g € (1,00) and s > 0 with s # 1/q we introduce the Banach spaces

MS = B;q(Q,RN) X B;:gl_l/q(F>RN)v s < 1/(],
q {(u,ur) € B ,(QRY) x BZ:Zl_l/q(P7RN) D trou=ur}, s>1/q,

equipped with the norm of B] (€2, RM) x B;;l_l/q(f‘, RM), respectively. Observe that

M= M2,

Using the maximal L, ,-regularity Theorem 5.2.1 for A, one can argue in the same way as
in the proof of Lemma 4.4.1 to obtain the following result. It shows that the solution in a

strong norm can be controlled by the solution in weaker norm.

Lemma 5.5.1. Let g € (1,p] and p € (1/q,1], set s =2(n—1/q) € (0,2—2/q|, and assume
that s ¢ {1/q,14+1/q}. Then for T > 0 there is a constant C' = CUU("u0)|C([T1,T2]><§,RN)’ T)
such that

\u(Tg,uo)\ 2*2/(1 < C(l + |u(T1,u0)\M3)

M
is valid for all 0 < Ty < Ty < +o0o with 7 = Ty — Ty and all ug € Xy with t*(ug) < Tb,
where u(-,up) denotes the corresponding solution of (5.5.1).
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As a consequence we have the following sufficient conditions for global existence and rela-
tively compact orbits.

Proposition 5.5.2. Let ug € X, and suppose that the corresponding solution of (5.5.1)
satisfies u(-,ug) € BC([0,t%(ug)) x Q,RY). Then t*(ug) = +oo. If it additionally holds
that {u(t,uo) }se(0,00) 15 bounded in M, for some s > 0, then {u(t,uo) }1co,0) is relatively
compact in M.

Proof. (I) Suppose that ¢ (ug) < oco. It then follows from Lemma 5.5.1 that

(T, uo)lm S sup (14 [u(t, uo)lam)
te[0,t% (uo)/2)
for all T € (¢t (ug)/2,t" (ug)). Thus the orbit is bounded in M, which contradicts Theorem
5.3.3 and yields tT (ug) = +o0.
(IT) Now suppose in addition that {u(t,uo)}ic[,00) 18 bounded in M7 for some s > 0.
Then another application of Lemma 5.5.1 yields

[w(T + 1,u0)|pm S 1+ u(T, uo) s

for all 7' > 1. Thus {u(t, uo) }e[1,00) is bounded in M, and the relative compactness of the

orbit follows again from Theorem 5.3.3. |

We next want to establish an Lo, a priori estimate for (5.5.1) for a class of reaction terms
f,g: RN — RN We first show that if

CfQ)<Ca+ie?), Q) sca+c?), (eRY, (5.5.3)

is valid for a constant C' > 0, then the Lo,-norm of a solution can be controlled by its
Li-norm. Observe that (5.5.3) is a sign condition for large |¢|. We further derive an Loo-
estimate for the equilibria of (5.5.1) under the above assumption. Note that due to (5.5.2),
each equilibrium of (5.5.1) must belong to X1 < W2(2,RN) x Wy~ /P(1, RY).

Lemma 5.5.3. Assume that (5.5.3) holds true. Then for each uy € X there is a constant
C1 such that the corresponding solution u(-,ug) of (5.5.1) satisfies

(-, 10) | oo 1+ (uo )y x ey < C1 max {|u(-, w0) | Bo((o,6+ (uo)) Ly (URN) x Ly (T RN )5 1}

Moreover, there is a constant Cy > 0 such that for each equilibrium vy € X; of (5.5.1) it
holds

|uo| pogravy < C2 max { |uol L, (&)<, (0 r): 1}-

Proof. We use a Moser-Alikakos iteration procedure, presented in [16, Section 9.3] for
scalar problems with static boundary conditions. Given ¢ € (0,¢"(ug)) and k € N, the
plan is to find an upper bound for the Lok (£, RY) x Lox (I, RV )-norm of u(t, ug), which is
independent of ¢ and k. With a slight abuse of notation we write u = u(t, ug) for fixed t.
Recall that it holds u € X; by (5.5.2).
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(I) We take the scalar product in R of the domain equation dyu = Au + f(u) at time ¢
with |u|2k_2u, integrate over €2, and integrate by parts, to obtain

oF dt/| |2kdm—/Au |u|2 ud1:+/f \Qk “2udz
/ZVUZ |u\2 dx+/8 u- \u|2 2udo(x /f \u|2k 2udz.

This manipulation is justified due to u € X;. Now suppose that & > 2. For the integrand

of the first summand we have

ZVUZ \u|2 2y Zza u;0; |u]2 “2u;)

=1 j=1
n k n k
= (2" =2) )l T opu u + > ul* 3 |0uf?
i=1 j=1
n n
2" —2) S [l 05wl + 3 [ul? 0l ul (cos(9yu, u))?
j=1 j=1

=(2F—1) zn: 2" 400 - uf?.
j=1
On the other hand it holds
(@ul )2 = 125 T 205 wf? = 2252 0w
so that we obtain

/ ol de < — (2% — 1) 22 / V2 d

+2k/8u |u]2 2udo(x +2k/f |2k 2uda.

Note that this estimate is also true for k = 1, with |V|u|2ki1 2 replaced by |Vu|?. Similarly,
taking the scalar product in R of the boundary equation d;u = Aru — 0,u+ g(u) at time
t with |u|2k_2u and applying the surface divergence theorem on I" yields

/ [l do(r) < —(28 — 1) 2> /F Va2 do(x)
—2"”/F&,U- ]qu_Quda(x)+2kAg(u)~\u!zk_zuda(x).

Again this is justified due to u € X;. Adding these estimates and observing that for each
k it holds —(2% — 1) 227% < —2 we infer

d k k k-1 k-1
a(’u‘%2k(Q,RN) + ‘U@Qk(r,RN)) < =O(IVIul* [ qmny + [Volul ], pey))  (5:54)

+ 2k/ fu) - |u|2k_2udx + Qk/g(u) . |u|2k_2u do(z).
0 r
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(II) Using the sign condition (5.5.3) and that IC]2 72 < |¢]2" + 1 for ¢ € RV, we estimate
the integral terms in (5.5.4) by a constant multiple of

k 2k 2k k
2 (|u|L2k(Q,RN) + |U|L2k(F,RN)) + 2%

It follows from the Gagliardo-Nirenberg inequality (Proposition A.6.1) and Young’s in-
equality that for € € (0,1) it holds

n
10| Ly rN) < C|U|§/+12QRN |U|L1 ary) < €lvlwgory) + Ce™ ||, (orN)-

From this inequality we obtain

1—¢
2 2 —n/2—1),,2
IVl @my) < ol @an) + Ce P, py.
Note that this estimate remains valid if one replaces €2 by I' and n by n — 1, respectively.
Using that e~ (»=1/2-1 < ¢=n/2-1 for ¢ € (0,1) we may estimate the gradient terms in
(5.5.4) by

fn/Qfl(Hqu*l 2

2k 2k=1,9
(| uf?’ oy Tl oryy) +Ce 2o +l® 12 )

We therefore obtain from (5.5.4) that

d k k
EOU’%Q,Q(Q,RN) + ’U‘%Qk(r,RN)) <C <_

+C 27|yl

1—c¢

2k 2"
) (‘u|L2k(Q,RN) + ‘“’LQk(RRN))

9k—1

k—1
1y Ul 12, ) + O 2%

Now we choose € = § 27 with small § > 0 such that

C (1_5+2’“> < 9k,
g

We further observe that

k—1 k—1 2k
HU’Q \%1(9) + HU|2 ’%l(r) < (\U|L2k_1(Q,RN) + ’U\LQk_l(r,RN)) .
Therefore, setting

my = sup [ul ~y + |ul ), k € No,
tE[O,tJr(uo))( Lan (.RT) Lo (TR ))

we arrive at the estimate
d 2k
o (|u] ary) T |u’L2k(F7RN))
k k k
< 2" (Julf, @mn) T ulZ,, ) +C @)V ImEL + O 2. (5.5.5)
(III) Now suppose that my is finite. Then the Gronwall’s lemma yields, inductively,

2k 2k 2k 2k 2
(|u|L2k(Q,RN) + |u|L2k(F,RN)) < € max {|UO|L2k QRN T |UO|L2k(F,RN) 2k /2, 1 + 1}
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and in particular that each number my, is finite. Taking the 2¥-th roots on both sides and
the supremum over ¢ on the left-hand side we obtain

k k 1/2k
mi <2 su ul? + 2
£ tG[O,HI()uO)) (’ |L2k(Q»RN) | |L2k(F,RN))

k k k
<C max{|u0|L2k(Q7RN) + |u0’L2k (T,RNY (2 n/2mi—1 + 1)1/2 } :
There is a constant C', independent of k, such that
|UO‘LZ"C (QRN) + ’fu’0|LZ’c (T,RN) <C |UO‘BC(§,RN)‘
Thus the sequence (my)ren satisfies the recursive estimate
my < C max {1, (222" | 4 1)1/2k} :

with C' > 1, and is therefore dominated by the sequence (zy)ren, defined by

g = Cmax{mo, 1}, T = (2kn/2)1/2k Th—1, k e N.
Since -
lim 2, = Cxg H(Zk"/g)l/gk = C'2" max{my, 1},
k—o0
k=1
we obtain

[ul, wo)l Bo(o,+ (uo)) xaRN) = QIiznsupmk < C'max{myg, 1}.
—0Q0

This shows the asserted estimate for an arbitrary initial value ug € X;.
(IV) Now suppose that up € X; is an equilibrium of (5.1.1). Using (5.5.5) directly yields

mg < C’(2k”/2m%k_1 + 1)1/2k < C'max {2kn/2k+1mk,1, 1},
where now simply my, = |UO‘L2IC(Q7RN) + ‘U0|L2k (r,rN)- As above we conclude that
[uol pog gy < Camax {|uolp, o, + [0l (rrm), 1},
and () is independent of ug since the constant arising in (5.5.5) is independent of it. W

The above lemma and Proposition 5.5.2 show that for the global existence of a solution of
(5.5.1) it suffices to find an a priori Ly bound, provided the reaction terms satisfy (5.5.3).
We now consider a class of reaction terms where such an L; bound can in particular be

obtained.
We assume that (5.5.1) is conservative, i.e., there are potentials F, G : RN — R with
—VF =f, -VG =y, F(0) =G(0) =0.

We further assume that (5.5.1) is dissipative, in the following sense. There are numbers
c,d; € R, i=1,...,N, such that

lim sup fil©) < ¢, lim sup 9(9)

Giloe G (Gil o0 Gi

<d;, i=1,..,N, (5.5.6)
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and there is 7 > 0 such that for ¢ = 1,..., N it holds

|v¢’L2 QRN xn) + |VF’¢|L2 RN xn) 201|1/)|L2 (Q,RN) Qdiwjﬁq(nRN) > 0

(5.5.7)
Y1, ommy T 1¥0 0 R

for all ¢» € W3 (Q,RY) nWHT,RY). Observe that (5.5.7) is always satisfied for ¢;, d; < 0.
But it may happen that (5.5.7) is valid although ¢; > 0 and d; < 0, or vice versa. In
this sense the interplay between the reaction terms in 2 and on I' determines if (5.5.1) is
dissipative, and the non-dissipativeness of one reaction term can be compensated by the
other. This is analogous to the dissipativity condition in [15] for nonlinear Robin boundary

conditions.

We record some simple consequences of the above assumptions.

Lemma 5.5.4. Assume that f and g are conservative and dissipative. Then there is a
constant ¢y € R such that

filQG < e+, g(QG < i +co,  i=1,..,N.

In particular, f and g satisfy (5.5.3). Moreover, for ¢ € RY it holds

N o N d
1 2
_;24’5'_]\]007 ZE NC(]
1= :

Proof. The first assertion is clear. For ¢ € RY we set ¢/ = (0, (s, ..., (w) and calculate

1
FIQ = PO = [ A6 G t)G ds 2 PO = 5 = co

Iterating this argument with the remaining N — 1 variables yields second assertion. |

The assumption that f and g are conservative allow to construct a Lyapunov function for
(5.5.1), which already appeared in [80]. We define V : M — R by

:;/Q|V¢]2dx+/ F(¢)dx + = /|Vr¢!2da /G ¢)do(x

Note that V is well-defined and continuous, due to
M = WHQ,RY) n W (T, RY) n BO(Q,RV).

Let u = u(-,up) be the solution of (5.5.1) with initial value ug € M, and ¢ € (0,t" (up)).
Since u(t) € X; we may integrate by by parts to obtain

V) =- /Q<Au<t> + f(u(®)) - hu(t) de

- /F (Aru(t) — Bult) + g(u(t))) - Bpu(t) do(z)
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Hence V is nonincreasing along solutions of (5.5.1), and it is constant only along equilibria.
Therefore V is a strict Lyapunov function for (5.5.1).4

Lemma 5.5.4 and assumption (5.5.7) also allow to obtain an energy estimate for (5.5.1),
as follows. From (5.5.8) we obtain that for ug € M and t € (0,t"(up)) it holds V(u(t)) <
V(up), and further the estimate

N
V() 2 Y (IVSI7, qmvem + V001, mveny — 261017, @ any — 2dil8[7,rrv))
=1

+ |v¢‘%2(Q7RN><n) + |VI‘¢|%2(F’RN><71) -1
2 2
R el @ ryy T 190wy rm) — 1
holds true. The above considerations may be summarized as follows.

Lemma 5.5.5. Suppose that (5.5.1) is conservative and dissipative, and let p € (n+2, 00).
Then V : M — R is a strict Lyapunov function for (5.5.1), and there is C' > 0 such that
for each uy € M the solution u(-,ug) of (5.5.1) satisfies
sup fu(t, u0) [y o,z (rryy < € (14 V(uo)).
te[0,t+ (uo)) 2 2
We use the above a priori estimate to show that (5.5.1) generates a compact global semiflow

in M, with relatively compact orbits.

Proposition 5.5.6. Suppose that (5.5.1) is conservative and dissipative, and let p € (n+
2,00). Then for uy € M the corresponding solution u(-,ug) exists globally, t*(ug) = +oo,
and the orbit {u(t,uo)}se(0,00) 1s relatively compact in M. Moreover, for each t > 0 the

solution map u(t,-) : M — M is compact.

Proof. (I) The Lemmas 5.5.3 and 5.5.5 yield that u(-,ug) is bounded in BC'(Q,RY), and
thus Proposition 5.5.2 yields ¢t*(ug) = +o0o. The compactness of the time-t-map u(t, ) :
M — M for all t > 0 follows from Theorem 5.3.3.

(IT) For the relative compactness of orbits we also want to apply Proposition 5.5.2, and
therefore have to show that {u(t,u0)}ic[0,00) 18 bounded in M, for some s > 0. Due to
Sobolev’s embeddings it holds

Wf(Q,RN)HW;(Q,RN) for 0—225—2, o>s, r>q,
r q

and this remains true if one replaces {2 by I' and n by n — 1, respectively. By Lemma 5.5.5
the solution is bounded in the energy spaces W3 (€2, RY) and W (I',RY). We therefore

obtain the boundedness in
Wi(QRY), s=1-n/2+n/q, and W;TYID,RY), s=1/2-n/2+n/q,
where g < % Thus for these ¢ there is a small s > 0 such that the orbit is bounded in

s __ s N s+1—1 N
M =W (QRY) n W=, RY).

4In the literature it is sometimes required that a Lyapunov function is bounded from below. In the
context of compact semiflows this property is not necessary, cf. [16, Remark 1.1.4].
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By Lemma 5.5.1, the orbit is therefore bounded in ./\/li_z/q. If ¢ > 5 + 1 then Sobolev’s
embeddings yield M?,‘Q/ e M for some s > 0, and we are done. Otherwise we iterate
the application of Sobolev’s embeddings and Lemma 5.5.5 as in the proof of Proposition
4.4.2, to obtain the boundedness of the orbit in M} for some s > 0 after finitely many
steps. |

The last step towards the global attractor for (5.5.1) is the boundedness of the set of its
equilibria.

Lemma 5.5.7. Suppose that (5.5.1) is conservative and dissipative, and let p € (1,00).
Then the set of its equilibria is bounded in X;.

Proof. (I) An equilibrium v € X; — W2(Q,RY) N W;’*l/p(F,RN) of (5.5.1) solves

Av+ f(v) =0 in Q,
Arv —0,v+g(v) =0 on I

Multiplying the domain equation with v, integrating over €, integrating by parts and using
Lemma 5.5.4 we obtain

N

]VU]%Q(Q’RNM) - /F(?Vv -vdo(z) — Zcﬂvi]%Q(Q’RN) — Ne¢p <0.
i=1

Employing the boundary equation yields in a similar way that

N
|VF’U‘%2(F7RN><7L) + /F Oyv -vdo(x) — Zdﬂvi]%?(F’RN) — Nc¢g < 0.
i=1

Adding these estimates we obtain, using (5.5.7),
2Nco > | Vo[, vy + V0L, p o = D (Ci|’”i‘%g(9,w) + di‘vi|i2(F,RN)>
i=1
2 2
2 |U‘W21(Q,RN) + ’”’Wg(r,RN)'

This estimate, together with Lemma 5.5.3, leads to

sup{|v|gopyy © v € X1 is equilibrium of (5.5.1)} < oco. (5.5.9)
(IT) We have seen that the realization of

—A = A 0 ) D(_A) :X17
-0, Ar

on Xo = Ly(,RY) x I/Vp1 —i/p (T, RY) is the generator of an analytic Cp-semigroup. In
particular, there is A > 0 such that A + X is an isomorphism X; — Xg. For an equilibrium
v of (5.5.1) we may therefore estimate

olx, = 1A+ X) 71 (f(v) + A, g(v) + M) x,
5 |f(’l)) —+ )\U’LP(Q’RN) + ‘g('l}) + )\U‘Wl}_l/p(F,RN)



5.5 The Global Attractor for Semilinear Dissipative Systems 189

It follows from (5.4.6) that

|g(v)|Wpl*1/P(F7RN) S C(’/U|BC(§’RN)) (]- + |U|WZ}*1/P(F7RN))‘

Using (5.5.9), the interpolation inequality and Young’s inequality we thus obtain
|U|X1 rg 1 + ’U|WZ}*1/P(F7RN) é €|U|WZ?*1/P(F7RN) + CE?

where € > 0 is arbitrary. Choosing £ appropriately, we may subtract %|’U|W371 /p on
p

(I',RN)
both sides of the above inequality, which yields a universal Xi-bound for the equilibria of

(5.5.1). m

The considerations in this section, together with [63, Theorem 2.3|, yield the following

result on the long-time behaviour of (5.5.1).

Theorem 5.5.8. Suppose that (5.5.1) is conservative and dissipative. Then it generates a
compact global semiflow of solutions in the phase space M, and the set £ of its equilibria
is nonempty. The semiflow possesses a connected global attractor A C X1, the w-limit set
of each orbit is contained in £, and also the a-limit set of each complete orbit is contained
in €. If £ is discrete, then A consists precisely of equilibria and complete orbits connecting
them. If in addition f and g do not have a common zero, then (5.5.1) has at least one

nonconstant equilibrium, and each solution converges in M to such a pattern.
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Appendix

A.1 Boundaries of Domains in R"

Let Q C R™ be a domain with boundary 92, n > 2. We say that 02 is smooth, if for each
x € 0N there are a bounded open set U C R™ with x € U and a smooth diffeomorphism
w: U — R" with

e(UNQ) CRY,  pUNIN) CR" x {0} 2R

The pair (U, ¢) is called a chart for 9Q around x. The parametrization g : R"~1 N p(U) —
00 of 9 around x with respect to (U, ¢), also called local coordinates, is defined by

gy) =9 '(y.0), yeR"NeU).

It holds that g : R* 1N (U) — 92 N U is a homeomorphism, and that the derivative
g’ (y) € B(R" !, R") has maximal rank n — 1 for each y € R" 1 N ().

The tangential space T,,002 on 9 in x is given by the image of the matrix g’(¢(x)), and it
has the dimension n—1. It becomes a Hilbert space when considering it as a closed subspace
of R™. A canonical basis of T,,0() is given by {01g(¢(x)), ..., On—18(¢(x))}. The outer unit
normal v(z) € R"™ on 0N at = is given a normalized element of the orthogonal complement
of T,00 in R™. The tangential spaces and the outer unit normals are independent of the
chart and the corresponding parametrization, and the outer unit normal field is smooth.

The fundamental form G = (gz‘j)z‘,jzl,...,n—l with respect to (U, ¢) is defined by

glj = Zgajgv iaj:]-a"'anilv
where the scalar product is taken in R”, and G(y) is for all y € R""1 N (U) a symmetric
positive definite matrix. Its inverse G l.= (gij )i,jzlv__,n_l is also symmetric and positive

definite. The determinant |G| of G is called the Gramian determinant.

It is useful to have charts and parametrizations with the following special properties.
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Lemma A.1.1. Let Q € RY have a smooth boundary 02, let z, € 0, r > 0 and let
O, (z,) be any orthogonal matrix that rotates v(z.) to (0,...,0,—1) € R". Then there is a
chart (U, ) for 0 around x, with the properties

() =0, ¢ (2) =0y, »U)=B(0), oUNQ)CRL, @UNIN) CR",

and the corresponding first fundamental form satisfies G(x,) = idgn-1. The coordinates g

to such a chart are called associated to the point x, € 9€).

Proof. The diffeomorphism x +— O,,,)(r — x.) translates z, into the origin and rotates
T 0 to R™~ ! x {0}. The implicit function theorem implies that O,,,)(0Q—z,) may locally
around the origin be represented as a graph of smooth function h : U — R with VA(0) = 0,
where U C R"! is open, such that 99 lies locally in the set {y = (¥, yn) : yn = h(y)}.
Setting y = Op(y.)(* — 2«), we obtain that ¢(x) := (¥, yn — h(y')) defines a chart for 9Q
around ., which has the desired properties after restriction to the preimage of B,(0). W

If £ is a Banach space and (U, ¢) a chart for 9§ one defines the push-forward operator ®
for functions u : QNU — E by

Qu R} Np(U) — E, du:=uop L.
Similarly, one defines the pull-back operator ®~! for functions v : R? Np(U) — E by
. QNU - E, oy =vog.

It is shown in [86, Thm. 10.3| that the principal part of a differential operator fortunately

transforms in a simple way.

Lemma A.1.2. Let E be a Banach space, let P(x, V) = 3, < Pa(2)V® be a differential
operator of order k € Ng on Q with p,(x) € B(E), and let (U, ) be a chart for 0X2. Then
for the principal part of the transformed operator P®, which is for v : R NpU) — E
given by

P2 (2, Vv = (PP(-, V)2 1v) (), z e R Ne(U),

it holds Pf’(ac, V) =Pyl Hz), ¢ (z)TV). [ |
Finally, assume that 0 is compact. Then there is finite collection of charts (U;, ;) with

There is further a smooth partition of unity {v;} for 0Q subordinate to the cover |J, U;,
i.e., suppv; C Uj; for all i.

A.2 Interpolation Theory

d
Let (Eo,| - |g,) and (E1,|- |g,) be Banach spaces with E; — FEy. For 6 € (0,1) and
p € [1,00] the real interpolation spaces (Ey, E1)g, and the complex interpolation spaces
[Eo, E1]g are defined and investigated in |13, 68, 82]. We list some well-known properties of
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these spaces. Recall that by the equality of Banach spaces we mean they coincide as sets

and have equivalent norms.

Throughout, let

0<6<1, 0<b < <1, p € [1,00].

Then the following holds true.

a)

b)

c)

d)

f)

g)

h)

j)

d d d
For 1 <p; < py < oo Ey — (Eg, E1)gp, — (Eo, E1)gp, — Fo, see |68, Prop. 1.3,
1.17).

E1 < (B, Erlg, <% [Eo, Erls, <> Eo, see [82, Thm. 1.9.3].
For ¢ € [1,00] (see [13, Thm. 4.2.1, 4.7.1]):

d d d
(Eo, E1)gyp — (Fo, E1)61.9,  (Fo, E1)a,p = [0, Erle,,  [Fo, E1le, — (Eo, E1)e, p-

If F7 is a Banach space with F; ci Fi ci FEy:

(Eo, B1)gp — (Eo, F1)g,ps [Eo, Erlg — [Eo, F1lp.

For ¢1,¢2 € [1,00] (see [13, Thm. 3.5.3|):
((E07 E1)917q17 (E07 E1)927q2)97p = (EOa El)(1—9)91+992,p‘

[[E(]v E1]917 [E07 EI]OQ]G - [E(]v El](l—9)01+9927
and this assertion remains valid if [Ey, E1]g, is replaced by Ey and 6; = 0 or [Ey, F1],

is replaced by Fj and 03 = 0 (see [82, Rem. 1.9.3/1]).

([Eo, Erlo, ; [Eo, Erloy )y, = (Eo, E1) (1-0)61-+002,-
and this assertion remains valid for 6; = 0 or f3 = 0 as in e) (see [82, Thm. 1.10.3/2]).

If Ey and E; are reflexive (see [82, Rem. 1.10.3/2|):

[(EUv E1)917P7 (EOa E1>92,P]9 = (E()? El)(179)91+992,p'

If Fy A Fy with Fy 4, Ei, Fy <, Ey, are Banach spaces (see [68, Thm. 1.6, 2.6]):
B(Ey, Fo) N B(E1, F1) — B((Eo, F0)o,p, (E1, F1)ap) N B([Eo, Folg, [E1, Filg)-

More precisely, for A € B(Ey, Fo) N B(E1, F1) it holds

—0
|A|B((Eo,Fo)gm,(El,Fl)g’p) < |A|}3(EO7FO) |A‘%’(E17F1)7

and analogously for |A|p((g,, s, [E1,F1le)-

By the interpolation inequality (see [68, Cor. 1.7, 2.8]):

—9 0 -0 0
2|5, 51, < CO Dl 2y, |2l 0, < l2l5° 2|5, 2 € By
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k) If (A, D(A)) is the generator of a bounded Cy-semigroup {T'(t)}+>¢ on Ey, and D(A)
is equipped with the graph norm (see [68, Prop. 5.7]):

< dt
(EO,D(A))G’p = {u € Ey : [uff :—/O 0P| T (t)u — u’%‘)? < oo},

where the space on the right-hand side is equipped with the norm |u|g, + [u].

1) If (A, D(A)) is the generator of a bounded analytic Cy-semigroup {T'(t)}+>0 on Ey,
and D(A) is equipped with the graph norm (see [82, Thm. 1.14.5]):

dt

_ . _ [ pa-o) p dt
(Bo. D(A)),, = {w € Bo = [ull = [~ #9010l 5 < oo},

where the space on the right-hand side is equipped with the norm |u|g, + [t].. In
[u]« one may restrict the integration over ¢ to (0,d), d > 0. If {T'(¢) }+>0 is in addition
exponentially stable then it suffices to take [u].. as a norm.

m) If (2, v) is a o-finite measure space and 6 € (0,1), p € [1,00) (see [82, Thm. 1.18.4]):
(Lp(; Eo), Ly(9; El))gm = Ly (% (Eo, E1)op),
[Lp(%; Eo), Lp(Q; E1)]y = Ly (% [Eo, Erlp).
n) If (2,v) is a o-finite measure space and 1 < p; < py < oo (see [82, Thm. 1.18.4]):
1_1-0

L, (G E), L, (QGE), =L, E), where — = )
(L0 (% B), Ly (% B)] = Ly(5 ) =

Here one interpolates in fact between an interpolation couple, cf. [13, 68, 82].

The following Hardy-Young inequalities are useful for interpolation theory. It holds

[ttt fert o
[ ([ o) =5 ) wword 22

for all nonnegative measurable functions u : (0,7) — R, T' € (0,00], all @« > 0 and all
p € [1,00), cf. [50, p. 245-246].
A.3 Sectorial Operators

For detailed informations on the concepts described in this section we refer to |7, 24, 48,
55, 62, 68, 82| and the references therein. Throughout, let E be a complex Banach space.

The space E is said to be of class H7 if the Hilbert transform on Lo(R; E) is bounded,
i.e., if the densely defined operator H, given by

1 —t
(He)(s) := lim — M dt, p e SR E),
e—0 T |t|>e t
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may uniquely be extended to Lo(R; E). This property is equivalent to the boundedness of
the operator corresponding to the symbol —isign. It is further equivalent for E to have
the property of unconditional martingale differences, an important concept in stochastic
analysis. Therefore spaces of class H7 are also called UMD-spaces in the literature. Since

we have a purely analytic point of view in this work, we prefer the first notion.

Banach spaces of class H7 are always reflexive. Many spaces in applications are of class
‘HT, like finite dimensional spaces, Hilbert spaces, and further L,-, Sobolev, Slobodetskii,
Besov and Bessel potential spaces in the reflexive range, provided they take values in a
space of class H7 (see Appendix A.4). Li-, Lo, and C*-spaces are not of class H7. The
‘HT -property is stable under real and complex interpolation. For more information and
proofs we refer to |7, Sections I11.4.3-4.5] and |55, Chapters 6-8|.

A family of bounded operators 7 C B(FEy, E1) between Banach spaces Ey, E; is called
R-bounded if there is C' > 0 such that, for all 1T1,...,T,, € T and 1, ...,z € Fy with
m € N, it holds

m m
‘ Z T"Tnx"{LQ(o,hEl) <cC | Z rnxn’@(o,h};g)’
n=1

n=1
where 7,(t) := sign sin(2"7t) denote the Rademacher functions on [0, 1]. We stress that
the norms are outside the sums. If Ey, F/; are Hilbert spaces this notion is equivalent to
the uniform boundedness of 7. The infimum of all C satisfying the above estimate is called
the R-bound of T and is denoted by R(7). We refer to |24, Chapter 3|, [62, Chapter 2]
and [55, Chapter 4] for detailed informations.

Roughly speaking, spaces of class H7 and the concept of R-boundedness can be used to
show the boundedness of operators for which standard norm estimates do actually not
lead to boundedness. The advantage is that one can avoid the application of the triangle
inequality at certain points, and ’leave the norm outside a sum’ while estimating. Besides
the interest in their own, the combination of these concepts leads to important results for
the applications to partial differential equations, like the operator-valued Fourier-multiplier
theorem due to Weis [85], the joint functional calculus due to Kalton and Weis [62], the
characterization of maximal L,-regularity (85|, the Dore-Venni theorem |31], and many
more (see below for more details on the latter two results).

Let A be an operator on E with domain D(A). We call A sectorial if A is closed, densely
defined, has dense range and if it holds (—o0,0) C p(A) with the resolvent estimate

t(t+ A) g < C, t>0,
for some C > 0. Define the open sector
Sp:={A € C\{0} : |arg)| < 6}.

If A is sectorial, then the resolvent estimate and a Neumann series yield an angle ¢ € [0, )
such that ¥;_4 C p(—A). One may thus define the spectral angle of A by

pa=inf {pe[0,m) : By Cp(—A), sup |AA+A) < oo}
)\EEW,(p
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A sectorial operator A is the generator of a bounded analytic Cp-semigroup if and only
if p4 < 7w/2 (|35, Theorem 11.4.6]). For ¢4 = m/2 the operator A does not necessarily
generate a semigroup. Note that sometimes in the literature only generators of analytic

semigroups are called sectorial.
The operator A is called R-sectorial if it is sectorial and if the family of operators
{tt+A4)7" : t>0}
is R-bounded in B(E). As above one may define the R-angle ¢} of A by
X =inf{¢ € (pa,m) : RIMA+A) ' : Ne X4} < oo}

It is clear from the definitions that ¢4 < gbZ}. The importance of this concept lies in the
fact that on a Banach space of class H7 the generator of an exponentially stable Cj-
semigroup A is R-sectorial with ¢7§ < /2 if and only if it enjoys the property of maximal
L-regularity on the half line for p € (1, 00), i.e., if for each f € L,(R; E) there is a unique
solution u € W) (Ry; E) N Ly(Ry; D(A)) of the problem

u +Au=f, t>0, u(0) = 0.

This result is due to Weis [85]. For more informations on (R-)sectorial operators we refer
to [24, 62|, and to [30] for a survey on maximal L,-regularity (see also Section 1.2.1).

We now consider the functional calculus for sectorial operators. For ¢ € (0, 7) one defines

the function algebras
H(E4) :={f: 3¢ — C : f is holomorphic},

H> () :={f:8y — C : f is holomorphic and bounded},

Ho(S4) :={f € H(Zy) : there are a, 3 > 0 with sup [A"*f(A)| + sup INFN] < oo},
A<l AI>1

Hi(3g) := {f € H(Zy) : there are , 3 € R with sup [A\"*f(A)| + sup NN < 0o}
<1 A>1

Now fix a sectorial operator A, and let ¢ € (¢4, 7]. For a curve I' = (00, 0]e!¥ U [0, 0o)e ¥
with ¢ € (¢4, ¢) the map

1
27

BaiHo(S0) = BE)  F(A) 1= 0alf) = 5 [ OO+ A7

defines a functional calculus for A, i.e., an algebra homomorphism. If there are ¢ € (¢4, 7)
and a constant Ky such that

If(A)lE) < Kglfloo, [ €Ho(Xy),

then the functional calculus for A may uniquely be extended from Ho(X4) to H(Xs). In
this case A is said to admit a bounded H*°-calculus, and the H*°-angle ¢ of A is defined

as the infimum of all ¢ € (¢4, 7) that admit an estimate as above.
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For f € Hi(5g) and ()) := 12z, choose k € N such that ¢¥f € Ho(X4). Then the

operator

FA) = w(A) T W )(A),  D(f(A)={re E : (W f)(A)z e DA")nRA"},

is closed and densely defined on E, and it is independent of the chosen number k. The map
f — f(A) is called the extended functional calculus for A. We refer to [24, 48] for proofs

and more informations on the functional calculus for sectorial operators.

For z € C the extended functional calculus in particular allows to define the fractional
powers A” of a sectorial operator A. In general, A* is a closed and densely defined operator
on X, and the domains satisfy

DA™Y <L D(A=) <L E,  Rez > Rez >0,

when equipped with the graph norm, cf. [24, Thm. 2.1|, |68, Lem. 4.11] and [7, Thm.
I11.4.6.5]. If A is invertible then A is a bounded operator for Re z < 0, and for Re z, Rew >
0 the operator A% is an isomorphism

D(A*¥) — D(A¥), D(A*) - E,

see again |7, Thm. I11.4.6.5|. For p € (1,00) and 6, Re z > 0 with §+Re z < 1, the operator

AZ# is further an isomorphism

(Ev D(A))Rez-i-e,p - (E> D(A))G,pa

cf. [82, Thm. 1.15.2]. The reiteration theorem [48, Prop. 6.6.7| states that for 6 € (0, 1)
and p € (1,00) it holds

(B, D(A™))prez, = (E, D(A%))gp, 0 < Rezz < Rezy,

Rezq?

and moreover

(E,D(Azl))(l_e)gew foRezz = (D(A®), D(A*))g p, 0 < Rew < Rezp < Rez.
ez ezy’

For s =k +60 >0 with k € Ny, p € [1,00] and 0 € [0,1) it is convenient to define
Da(s,p) := D(A%) if se Ny,

Da(s,p) :=={z € D(A*) : A¥x € (E,D(A))gp} if s¢ Ny,

where these spaces are equipped with the norm ||z, + [A*z| (g p(a))
E = (E,D(A))op)-

0.0 TESpectively (with

There are rules analogously to the ones for powers of scalars. It holds that

APAY C A D(A) N D(A™H) = D(A*A¥),  zweC,
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see [48, Prop. 3.2.1], and for Rez,Rew > 0 we have A*A“ = A*™¢ by [48, Prop. 3.1.1].
For @ € R with |a| < /¢4 the operator A® is sectorial, and it holds ¢ 4o = |a|p4 and

(Aoc)z = A%, z €C,
cf. |48, Prop. 3.1.4, Cor. 3.1.5].

Closed linear operators A, B on E are called resolvent commuting if there are A € p(A),
i € p(B) such that

(A= A) M= B) ™ = (u— B) (A — 4).
For such operators real interpolation commutes with the intersection of the domains [47].

Lemma A.3.1. Let A and B be resolvent commuting sectorial operators on a Banach
space E. Then for 6 € (0,1) and p € (1,00) it holds

(B, D(A) N D(B))op = (E, D(A))gp N (E, D(B))g,p-

A sectorial operator A is said to admit bounded imaginary powers if A'* € B(E) for all
s € R and if there are ¢ > 0 and C' > 0 with |Ai5|B(E) < O for |s| < e. In this case {4} R

forms a Cy-group of bounded operators on E, and the growth bound 64 of this group, i.e.,
. 1 i
04 = limsup — log |A"|g(E),

|s]—o0 |S|

is called the power angle of A.

Operators with bounded imaginary powers enjoy very good properties. If A is invertible
and admits bounded imaginary powers then Yagi’s theorem states that for 0 < Rew < Rez
and 6 € (0,1) it holds

[D(A¥), D(A?)]g = D(AU-00t07), (A.3.1)

where the domains are again equipped with the graph norm, respectively [82, Thm. 1.15.3].
The above identity is useful to determine a complex interpolation space in concrete situa-

tions. The following result is a variant of the Dore-Venni theorem [31, 72].

Theorem A.3.2. Let F be of class HT , and suppose that the operators A, B are resolvent
commuting and admit bounded imaginary powers with 84 + 0 < w. Then for all p > 0
the following holds true.

a) A+ pB with D(A+ pB) = D(A) N D(B) is closed and sectorial;
b) A+ pB admits bounded imaginary powers with 64,5 < max{64,0p};
c) there is a constant C' > 0, independent of p, such that

|Az|g + p|Bz|p < C|Az + pBxlp,  x € D(A)N D(B).

If A or B is invertible, then A + pB is invertible as well.
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The next result is also called the mixed derivative theorem, see [78] and also [27].

Lemma A.3.3. In the situation of the Dore-Venni Theorem A.3.2, for each o € [0,1] it
holds B'=%z € D(A®) for x € D(A) N D(B), and there is a constant C > 0 such that

|A“B'"z|p < C'|Az + Bz|g  for allz € D(A) N D(B).
In particular, B'=* € B(D(A) N D(B), D(A%)).
We next state a variant of Lemma A.3.1 for complex interpolation, see [37, Lem. 9.5|.

Lemma A.3.4. Let E be of class HT and 6 € (0,1). Suppose that the operators A, B are
resolvent commuting, that they admit boundary imaginary powers with 04 + 0p < 7, and
that A or B is invertible. Then

[E,D(A+ B)lp = [E,D(A)]gN[E,D(B)ls, 0€(0,1),
ie., D((A+ B)?) = D(A%) n D(BY).

For more properties of operators with bounded imaginary powers we refer to |7, Sec. I11.4.7],
[68, Sec. 4.2] and [24, Sec. 2.3].

The above properties of a sectorial operator A on a Banach space E of class H7 are related
as follows. If A admits a bounded H*°-calculus then A admits bounded imaginary powers,
and the latter property implies that A is R-sectorial [24, Sec. 2.4, Thm. 4.5|. The angles
satisfy

OX > 04> ¢K > ¢a. (A32)

In particular, if F is of class H7 and A admits a bounded H*°-calculus or bounded imag-
inary powers with angles strictly smaller than 7/2, then A enjoys maximal L,-regularity
on the half-line for all p € (1, 00). The converse of the above assertions is false, in general.

The standard examples for operators with a bounded H*°-calculus are for p € (1,00) and
a Banach space of class HT the derivative d; on L,(R; E) with domain W, (R; E), and the
negative Laplacian —A,, on L,(R"; E) with domain W7 (R"; E). For the angles we have
¢ = m/2 and $>°, = 0. For a proof we refer to [24, Thm. 5.5] and [48, Ch. 8] (see also
Theorem 1.1.7 and Lemma 1.3.1).

We now consider further properties of sectorial operators. We already saw that a real
fractional power of a sectorial operator remains sectorial if the power and the sectoriality

angle are appropriate. A similar result is true for other properties of an operator.

Lemma A.3.5. Assume that A admits a bounded H*>°-calculus or bounded imaginary
powers, and let o > 0 satisfy

a<mw/oF, or a<m/f4.
Then A% enjoys the same property, with

PR < ady, or Ope < aby.
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Proof. (I) First suppose that A admits a bounded H*°-calculus. Take a small € > 0 with
a(¢pF +¢) < mand ¢ + ¢ < m. Then for f € HF(X,) with ¢ € (aqﬁf’f,a(qﬁf + 6)) the
function A — f()) := f(A¥) belongs to H5%(Xy/q), and ¢/a € (¢, 7). Using that A“

is sectorial and the composition rule for the functional calculus of sectorial operators [48,
Theorem 2.4.2| we obtain

|F (A 5 = |F(A)sm) < Kool floo = Kp/alfloo-

Hence A% admits a bounded H*°-calculus of angle not larger than a¢%.

(IT) Now assume that A admits bounded imaginary powers. Then (A%)" = A® ¢ B(E)
for all s € R, and |(A%)*| < C for all |s| < e/a. Thus A% also admits bounded imaginary
powers. Moreover, due to [7, Corollary I11.4.7.2], for all § > 64 we have |A**|g gy < Cefelsl,
Taking the logarithm yields that 64« < af, and the assertion follows. |

For a o-finite measure space (£2,v) and p € (1,00) we may define the pointwise realization

of A, on L,(2; E) by
(Apu)(t) == Au(t), a.e. teQ, u € D(A,) == Ly(Q; D(A)),

where D(A) is endowed with the graph norm. We show that A, enjoys the same properties
as A.

Lemma A.3.6. Let (2,v) be a o-finite measure space, and suppose that the operator A is
sectorial, admits a bounded H*°-calculus or admits bounded imaginary powers. Then for
p € (1,00) the pointwise realization A, of A on L,(Q2, E) enjoys the same property, with

ba, < da, %, < O% s or 64, <04.
In addition, if A is sectorial and f € H®(X,) with ¢ € (¢a,7), then f(Ay) = f(A),.

Proof. (I) Suppose that A is sectorial. We first show that A, is densely defined. Let
e > 0 be given, and let Y /", a;z; € Lp(Q; E) be a step function, with m € N, o; €
L,(Q), a; # 0 and z; € E. Since D(A) is dense in E we find y; € D(A) with |z; —
yile < e/(mlailr, )" It then holds Y21 aiy; € D(A,) = Lyp(Q; D(A)), and further
|y @i — D% il ;) < €. Since the step functions are dense in L,(; E), it
follows that D(Ap) is dense in L,(€2; E). The density of the range of A, in L,(}; E) is
shown in a similar way.

Now let A € p(A). Then for h € L,(£2; E') the unique solution u € L,(Q; E) of (A+A4p)u =h
is for almost every ¢t € Q given by u(t) = (A + A)"'h(t). Hence A, is closed, and it holds

p(A) Cp(Ap),  (A+4) = ((A+4)7") for Aep(A). (A.3.3)
This yields for A € p(A) the estimate

AN+ Ap) s,y = sup IAA+ A) Al m) < IAA+ A) 7 p),

|hlL,(0:m)=1

which shows that A, is sectorial with ¢4, < ¢a.
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(IT) If A is sectorial then we infer from (A.3.3) that for f € H{°(EXy) with ¢ € (¢a, ),
h € Ly(€; E) and almost every t € €2 it holds

(FAR)0) = 3= [ T+ A4) B (OdA = ()b,

which yields f(A,) = f(A),. Similarly one obtains this identity for f € H{®(34). Using
this fact and estimating as above it is straight forward to check that the other properties
of A carry over to A, as asserted. |

A.4 Function Spaces on Domains and Boundaries

We first consider function spaces with values in a Banach space of class H7, and refer to
[8, 9, 75, 91] for more details and proofs. For scalar-valued function spaces we refer to [82].
The H7T -valued function spaces share many properties with the scalar-valued spaces, due

to the fact that appropriate Fourier multiplier theorems are available.

Let E be a complex Banach space of class H7, and let Q C R™ be a domain with smooth
boundary. We denote by V = (04, ..., 0y) the euclidian gradient on €2, and o € Njj denotes
a multiindex. For k& € Ny the Banach space of the E-valued k-times bounded uniformly
continuously differentiable functions on € is denoted by

BUC*(Q; E),

equipped with its canonical norm. For s = [s] + s, € R4 \N with [s] € Ny and s, € [0,1)

the Banach space of bounded Holder continuous functions of order s on ) is given by
BUC*(; E) := {u € BUCPN(Q; E) : for |a| = [s] it holds [V*u] gy (@) < %)

where for 7 € (0,1) the seminorm [] gjor (g, ) 1 defined by

u(z) —u(y)|
lpver@p = s =T
z,y€Q,x#Y Y

)

and BUC*(Q; E) is equipped with the norm |u] 5y (Q:E) + 2 al<s [V U pros-ta (@:E)- For
k € Ny we further denote by
CH(E) and C*(:E)

the space of k-times continuously differentiable functions on Q and Q, respectively. For
s > 0 the space of the locally Hélder continuous functions of order s on € and Q are
denoted by C*(2; E) and C*(Q; E), respectively. If Q is bounded, it holds

Cs(ﬁ; E) = BUC'S(Q; E), s>0.
We further set

C(E) = () CM%E), CP(QE):={uecC®E) : suppu C Q},
keNy
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and analogously one defines C*°(Q; E) and C°(Q; E).
For p € [1,00) the Banach space of the E-valued Ly-space on € is defined by
Ly(Q; E) := {u: Q — E strongly measurable : |u|§p(Q;E) = /Q lu(z)|}, dz < oo},

and is endowed with the norm [u[; (o.z). The space Loo(€2; E) is defined with the usual
modification. Since E is assumed to be reflexive, for p € (1,00) these spaces are also
reflexive, with L,(Q; E)* = Ly(Q; E*) and %—}—é = 1. The set C°(Q; F) is dense in
L,(2; E) for p € [1,00). For the general theory of vector-valued L,-spaces we refer to the
Chapters III and IV of [32].

For k € Ny and p € [1, 00| the E-valued Sobolev space over (2 is defined by
W;(Q;E) = {u € L,(4 E) : V¥ exists weakly, V*u € Ly(Q; E) for |a| <k},

and is endowed with the norm ‘“|W1§(Q-E) = (Z|a|<k \Veult (Q,E))l/p, which turns it into
bl —_ P )

a Banach space.

We further define the following E-valued function spaces: for p,q € [1,00) and s > 0 the
Besov space
Bs (G E) = (L B), Wi (Q; B))

o

for p € [1,00) and s > 0 the Bessel potential space

H3(Q E) = [Ly(Q B), Wi B)]

[s]+1

9

and for p € [1,00) and s > 0 the Slobodetskii space

k . _
WE(E), s=keN,

W E) = { B (%E), s¢N.

These Banach spaces form scales according to the general properties of interpolation spaces
listed in Appendix A.2. Since F is of class H7 it further holds that

kro. — gk(o.
WHQ E) = HE(Q:E),  keN, (A.41)

see [91, Satz 3.6]. Usually the Besov spaces over R" are defined by a Littlewood-Paley
decomposition and the Bessel potential spaces are defined using the Fourier transform [91,
Def. 3.1], [75, Def. 4.3], and then the spaces over domains are defined via restriction |9,
Sec 4]. But since E is assumed to be of class H7 and we assume that 0f2 is smooth, it is
equivalent to define them via interpolation, as in [45]. This can be seen using (A.4.1), the
characterizations |75, Thm. 4.2, 4.3/3| and the interpolation results |75, Thm. 4.3/2], |91,
Satz 3.21].

The Slobodetskii spaces admit for s ¢ Ny the intrinsic representation

Ws(%E) = {ue WH(Q,E) : for |a| =[s] it holds [D%] < o0},

wyo;E)
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where for 7 € (0,1) the seminorm [-]yyr(o;) is given by

u(z) —u(y)|h
[u]@vpf(Q;E) ::/Q ; de dy, (A.4.2)

and the space on the right-hand side above is equipped with the norm
p a, 1P 1/p
(|U‘W£s] ) " | Z[ ][D U}WE*[SMQ;E)) ’
a|=|8

cf. [8, Sec. 1, 5|. As in the scalar case we have the Sobolev embeddings |8, Eq. 5.4]
Wy (s E) — W/ (4 E), S—EET—E, s>T1, p>gq,
p q
and further

5(Q)- T(O)- n
W5 (Q E) — C™ (S B), 5—527.

If E is finite dimensional, ) is bounded and the above inequalities are strict, then these
embeddings are compact by [1, Thm. 6.3] and |7, Sec. 1.2.7].

Now suppose that 02 is compact. Then there are a finite collection of charts (U;, ;) for
0 with corresponding parametrisations g; and a partition of unity {;} subordinate to
\U; Us. For p € [1,00] the spaces L,(0€; E) are defined in a standard way with respect to
the surface measure on 9. Moreover, for s > 0 and p,q € [1,00) we define as in |82, Def.
3.6.1]

By (0% E) = {u € Ly(0% E) : (Yiu)og; € By (R";E) forall i},
[ul B ,00:m) = D |(¥iw) 0 il gy mn-1.m),
Hy(0Q; E) = {ue Ly(0%E) : (Yu)og; € H;(R”_I;E) for all i },
|ul 3008 = ZZ |(Viw) © gl gs@n-1.E)
CHON E) == {u e C(ONE) : (hu)og € C3R" L E) foralli},
[ulcs (90, B) = ZZ |(Yiu) 0 g;lcsrn-1,E),
which are all Banach spaces with their respective norms. Note that here we identify the
functions (1;u)og; with their trivial extension to R"~!. If one chooses another collection of

charts and another partition of unity for 02, one obtains the same spaces with equivalent

norms, respectively.

It follows from the definitions that the basic embeddings obtained from interpolation as
well as the Sobolev embeddings for spaces over domains carry over to the corresponding
spaces over a boundary, with dimension n replaced by n — 1. Moreover, as in [86, Thm.
4.3] it can be seen that

C=(99; E) < BS (09; E), H(99; E),
for s > 0 and p,q € [1,00).

We consider local properties of the above function spaces on and near the boundary.
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Lemma A.4.1. Let s > 0 and p,q € [1,00), and let (U,¢) be a chart for 092, with
corresponding push forward operator ®. Then ® induces a continuous isomorphism

B, (QNU;E) — By (R} No(U); ),
with inverse ®~1. Moreover, for ¢ € C2°(U) the map u — ®(¢u) is continuous
. -1 .
By (0 E) — By (R* Np(U); E),
and for ¢ € CX(R" ! N(U)) the map u — ®~(¢u) is continuous
B R ' Np(U);E) — B (0% E).
All these assertions remain true if one replaces the B, ,-spaces by the Hj-spaces, s > 0.

Proof. In the scalar-valued case and for p = ¢ = 2, first assertion is shown in [86, Thm.
4.1]. The proof for W-spaces with s € Ng and p € (1,00) carries over to the vector-valued
case, from which the general case follows from interpolation. The remaining two assertions
follow immediately from the definitions of the spaces over 0f). [ |

We finish this section with a general interpolation result for the H- and the B-spaces.

Proposition A.4.2. Let I be of class HT , let 2 C R™ be a domain with smooth boundary,
and let p € [1,00), 0 < s1 < s2, 0 € (0,1) and s = (1 — 0)s1 + 0sa. Then it holds

[Hy (2 E), H* (% E)]y = Hy(B E),  (Hy (% E), H* (% E)), = By (% E),

(B E), B2 (% E)), =By, (% E),  [ByL(%E), B (% E)|, = B, (% E),

P e P P

where the case s; = 0 is excluded for the B-spaces. These identities remain true if one
replaces () # R™ by its boundary 0.

Proof. (I) First let Q = R™. The complex interpolation result for the H-spaces is shown
in [91, Satz 3.21]. For the real interpolation of the H-spaces we consider the realization of
the shifted Laplacian A := 1 — A, on L,(R™; E) with domain D(A) = W2(R"; E), which
is invertible and admits a bounded H*°-calculus of H>-angle equal to zero, due to [24,
Theorem 5.5]. It thus follows from complex interpolation of the H-spaces and (A.3.1) that
D(AT/?) = Hp7, 7> 0. From the reiteration theorem we infer

(1 )y, = (D), D),

= (L DA

D IR p:p’

as asserted. The real interpolation result for the B-spaces is shown in [75, Thm. 4.2]. Taking
powers of A as isomorphisms we obtain from [24, Prop. 2.11] and the interpolation results
that were already shown that the realization of A7/2 on B}, with domain B;};“T admits
a bounded H*°-calculus of H>-angle equal to zero as well, 7,77 > 0. Thus the complex
interpolation result follows from Yagi’s theorem (A.3.1).

(II) Now suppose that Q is a domain with smooth boundary. For given k € N there is
a continuous extension operator £q from Wé(Q;E) to Wé(R”;E) for all I € {0,...,k},
which may be extended to the H- and the B-scale by interpolation. It also follows from
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interpolation that the restriction of functions on R"™ to 2 is continuous on both scales.
From the result on R™ we thus infer that £ is continuous

[H3 (% E), H?* (5 E)|,, — Hy(R™; E),

and combined with the restriction to € this yields that [H3'(; E), H3*(Q; E)] p embeds
continuously into H,(€2; E'). Conversely, £, maps continuously
H3 (% E) — [H3Y(R™ E), H*(R™; E)| ,,
and the restriction maps the latter space into [HS'(Q; E), H52(; E)]a' We thus obtain
the asserted complex interpolation result for the H-spaces. The remaining identities follow
from the same arguments.
(IIT) We finally consider the spaces over 9€). Describe the boundary by a finite collection of
charts (U;, ¢;) with corresponding push-forward operators ®;, and let {¢;} be a partition
of unity subordinate to |J; U;. Choose further ¢; € C(R"™1 N (U;)) with ¢; = 1 on
supp ®;10; N R*1. We decompose the identity on H;(@Q; E), 7 > 0, according to id =
> @;lqﬁi(@iwi). For each 7, Lemma A.4.1 shows that the map u +— ®; (wzu) is continuous
HJ (0 E) — H;(R"fl N ¢;(U;); E) for all 7, and from interpolation and the result on

domains we obtain that it is continuous
[H3 (09 E), H3* (09 E)], — Hy(R™ N oi(Us); E).

Lemma A.4.1 also yields that u +— ®;'(¢u) is continuous Hs(R™™ 1 @i(Us); E) —
H3(0%; E), which implies that [H3'(9Q; E), H3?(9; E)], — H3(9Q; E). The converse
embedding and the remaining identities are shown in the same way. |

A.5 Differential Operators on a Boundary

Let Q C R™ be a domain with compact smooth boundary 02, and let E be a Banach space
of class H7. We call a linear map

C:C®(00NFE) — L1(0; E)

a linear differential operator on OS2 of order k € Ny, if for all local coordinates g for 0f2
there are coefficients ¢§ € L1 (R""1 N p(U); B(E)), v € Nj ', |7] < k such that

(Cu)og= Z E(@)V)_(uog)(z), € g YU NN, (A.5.1)
IvI<k

for all u € C*(98; E). Here V,,_1 = (01,...,0,_1) is the euclidian gradient on R"~!.
Of course it is understood that at least one top order coefficient is nontrivial. The local
coefficients ¢§ may depend on the chosen coordinates g. We do not assume that C has
global coefficients, in the sense that there are ¢, € L1 (T'; B(E)) with &§ = ¢, o g.
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The regularity of the local coefficients determines whether C can be continuously extended
to other function spaces, or even to a whole scale. Suppose that for all coordinates g and
all ¢ € C°(U) there is an estimate of the form

|(¢Cu) o g‘W;(Rnflﬂgo(U);E) N |u’W;+k(aQ;E)7 u € C™(00; E),

where s > 0. Then by density of C*°(9€; E) in WiT5(8€; E) the operator C may be
uniquely extended to a bounded linear map

Wt (0 B) — Wi (00 B).

In local coordinates the extended operator is of the same form as in (A.5.1) for smooth
functions, as a density argument shows. This reasoning remains valid for the extension of
C to Besov and Bessel potential spaces.

A sufficient condition for the extendability of C to W;*k (0% E) is that for all [ € {0, ..., k}
and all coordinates g the coefficients ¢§ with |y| = [ are pointwise multipliers from W;H
to W, In particular, if the local coordinates are smooth then C extends to the whole scale

of Slododetskii, Besov and Bessel potential spaces, respectively.

We consider examples for differential operators on boundaries. For x € 90 a scalar-valued
function u € C*°(91) induces an element of the dual space of 7,02 via the directional
derivative of tangential vectors at x € 0f). Considering T,.0€) as a Hilbert space with the
scalar product induced from R, the surface gradient Vru(z) of u at x is then the unique
element of T,0¢) corresponding to this dual space element via the Riesz isomorphism. In
local coordinates g for 92, with fundamental form G = (g;;) and inverse G™1 = (g¥), the
components of the surface gradient with respect to the canonical basis {0:g, ..., 0,18} of
1,08 are given by the components of G™'V,,_1(uog)”, i.e.,

n—1
Vaoquog= Z g70j(u o g)dig. (A.5.2)
ij=1
Now let E be a Banach space. We define the surface gradient for a function u € C*°(9%2; E)
in coordinates by the formula (A.5.2), which yields that

Vaqu € C*°(0Q; E™).

The application of functionals and the Hahn-Banach theorem show that this definition is
independent of the chosen coordinates, since it is independent of them in the scalar valued
case. Moreover, for o* € E* and u € C*(09Q; E) it holds

a (Vagu) = Vo (a*u),

where on the left-hand side the functional is applied componentwise to elements of £™. In
this sense the definition of the surface gradient for E-valued functions is consistent with
the definition in the scalar case, and because of this we still speak of a gradient although

a Riesz isomorphism is only indirectly involved.
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For a multiindex v € Ng_l the operator Vgﬂ is defined by taking iteratively the components
of Vgqu. This yields a linear map from C°°(9Q; E) into itself, and is thus a boundary
differential operator in the above sense. In particular Vgﬂ extends to a bounded linear
map

Withl o0 E) - Wi(0E),  s>0,  pe[l,od
and analogously for the Besov and Bessel potential scale.
The surface divergence divgov of a tangential vector field v € C°°(9Q,R™), ie., v(x) €

T,0Q for x € 02, is in coordinates g given by

n—1

1 .
divogguog = —= » 0;(V|G|v' 0g),
m; ( )

where v* are the components of v with respect to the basis {d1g, ..., 9,_1g} of T,O€. It can
be shown the divyg is independent of the coordinates. The Laplace-Beltrami operator

Apq = divoaVaa

is then for u € C*°(09) in local coordinates of the form

n—1

(Aoou) og = —= > 3i(VICG[gY0j(uog)).

i,j=1

The Laplace-Beltrami operator of a vector-valued function u € C*°(02; E) is defined in
coordinates by the above formula. In the same way as for the surface gradient we see that
this definition is independent of the coordinates, and it holds

o (Aagu) = Asq (a*u), o* € B,
which shows consistency to the scalar-valued case as above.

With the Laplace-Beltrami operator and the surface gradient one can define the boundary
analogon to general ’elliptic differential operators’ acting on vector-valued functions. We
finally remark that the considerations of this section carry over to a general Riemannian
manifold.

A.6 Gagliardo-Nirenberg Inequalities

The first version of the Gagliardo-Nirenberg inequality for integer differentiabilities is taken
from [41, Thm. 10.1].

Proposition A.6.1. Let Q) C R" be a bounded domain with smooth domain 02, and let
the integers k € Nog, m € N, with k < m, and the numbers p,q,r € [1, 00| satisfy

bt —o(m-t) - a-0),

q
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where 6 € [k/m,1] if m —k —n/r ¢ Ny, and 0 = k/m if m — k —n/r € No. Then there is
a constant C' > 0 such that

[ulywr o) < cm@mmmgfm for all w e W,"(Q) N Ly (). |

In [2, Prop. 4.1] an partial extension to fractional order Slobodetskii spaces is given. Ob-
serve that for integer differentiabilities Proposition A.6.1 may lead to a stronger result, for

instance forp=¢=2,r=1,k=0,m=1and § = .75.

Proposition A.6.2. Let Q C R™ be a domain with compact smooth boundary 0f), and
let the numbers 0 € [0, 1], s, s9,s1 > 0 with sg # s1 and p,p1 € (1,00), po € [1,00), satisfy
0 1-46

4 , A6.1
b1 bo ( )

1
- <
p

and

s—Z<9<sl—”>+(1—e)<so—”>, (A.6.2)

Y41 Po
with the following exceptions: it holds sq = 0 if pg = 1, it holds 6 > 0 if so = 0, and it
holds 6 < 1 if s1 = 0. Then there is a constant C' > 0 such that

[ulws o) < C|uy§V;11(Q)\u|;V—;%(Q) for all w € WH(Q) N W (Q).

If Q) is bounded and s < 0s1+ (1 —0)sg then (A.6.1) is not necessary. Further, the equality
sign in (A.6.2) is permitted if py > 1 and either sy, s1 € N or 0s1 + (1 — 6)so ¢ N. [ |

By definition these inequalities carry over to the spaces over 0€2, with n replaced by n—1,

respectively.
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