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Abstract 

 

A “fund of funds (FoF)” is an investment fund that invests in other 

investment funds rather than investing directly in shares, bonds, or other 

securities. Sometimes referred to as multi-manager funds, these investment 

funds pose – apart from the challenges that arise for every portfolio to be 

managed – special problems to their management teams. Most of those must 

be addressed with appropriate statistical or mathematical methods. We show 

how this may be done, using - among others - both state-of-the-art tools like 

post-modern portfolio optimization as well as using accessible and 

comprehensive representations. 
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1. The World of Funds of Funds 

1.1. Introduction 

 

The fund of funds (FoF) concept has its origin in the 1960s, with the 

industry steadily growing since then. A FoF is a fund, which invests in other 

funds and is sometimes referred to as a multi-manager fund. There are many 

different types of FoFs. They include funds of hedge funds, funds of private 

equity funds, funds of mutual funds, and funds of real estate funds among 

many others. Being the most popular FoF type, funds of hedge funds had 

about US $600 billion assets under management at the end of 2009, 

compared to total hedge fund assets under management of about US $1.500 

billion according to Barclay Hedge (managed futures had about US $214 

billion assets under management).   

Investments in FoFs can be advantageous for both retail and institutional 

investors due to the distinct features of this kind of financial product. 

However, as with any other investment product, disadvantages and sources 

of possible dissatisfaction exist as well.  

One out of several striking advantages of FoF concepts is the possibility for 

retail investors to get access to financial products in which they could not 

directly invest. Many funds ─ and especially hedge funds ─ are not 

accessible for most private and retail investors due to high minimum 

investments, prohibitive high transaction costs, lack of information or 

simply because of missing distribution channels.  

With FoFs, retail investors are able to get exposure to sectors, asset classes, 

markets, and products which otherwise would not have been included in 

their portfolios. Such structural aspects, albeit largely differing between 

countries, markets, and sectors, stem from the fact that business ties and 

related costs are crucial in determining the investment product universe. 
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With most FoFs pooling money from large and diverse investor bases, they 

are able to invest in assets that demand high minimum investments or that 

offer discounts to management fees, costs or loads when investing amounts 

above specified marks. Investing in special share classes of funds that are 

generally open for all kinds of investors with pre-defined minimum 

investments and lower management fees, is another path to cost reduction. 

Because banks and fund management companies generally have their own 

trading infrastructure, accounting, and clearing offices and desks as well as 

special agreements with other market players and counterparties, absolute 

and relative operational costs also can be reduced significantly.  

However, on the con side, the double cost structure of FoFs caused debates 

in the past and is still subject to discussions both in the academic world and 

among practitioners.  

In addition to these organizational economies of scale, direct contracting 

between financial institutions may impose another beneficial factor when it 

comes to market access. With direct contracts between financial institutions, 

banks, endowments, management companies, and/or advisors, discounts to 

fund load fees for example may be agreed on, or the institution may be able 

to trade without paying issuance fees. Structural aspects and the effects of 

business ties in the fund industry have been the subject of numerous studies, 

which will be discussed in the fund (of fund) industry review in Section 1.2. 

Besides constraints at the cost-of-investment side or barriers to entry, retail 

investors face another problem when building portfolios out of a large 

variety of assets and financial products: The problem of information and 

overview. As the fund industry is offering a huge range of products, it is 

difficult for retail investors to get an overview concerning funds in which 

they are interested. Performing the task of market screening may be both 

time-consuming and inefficient. Furthermore, even when having found a 

pool of investment possibilities, selecting the ones that suit the investor’s 

needs and preferences is a challenging task, sometimes even for experienced 

investors.  
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As is the task to define an investment universe, the evaluation task is 

challenging, because based on the respective needs each single investor has, 

information building with respect to the quality of target funds is crucial. 

This stems from two interrelated facts. First, retail investors generally do not 

have access to sophisticated data systems or information systems. Second, 

even if such sources are at their disposal, retail investors may find it difficult 

to use such information properly.  

Being exposed to some kind of informational blinkers, the only way to 

remedy may be delegating investment decisions. This can happen in various 

ways, for example with investment advisors or wealth managers. Investing 

in pension funds or insurance plans could be a solution, too. However, none 

of the mentioned forms of investment decision delegation is free from 

shortcomings or disadvantages. Costs have to be incurred in any case, and 

one is always exposed to the classical problems of moral hazard, divergence 

of interests, uncertainty, and, once again, insufficient information. For FoFs, 

the same holds true of course, and one may argue that indirectly paying a 

FoF manager via management fees may result in the same problems as 

paying directly for investment consultancy or wealth management.  

However, the emergence of the industry in recent years and the steady path 

of growth that the branch has found, suggests another view. Seemingly, the 

FoF industry delivers products and investment possibilities that attract retail 

investors all over the world. If it would not pay in the most direct sense of 

the word, why should people put their money into FoFs? Is it the inexistence 

of better solutions, advertisement effects, or do FoFs really suit retail 

investors that well? These questions have yet to be answered, where 

attention should be drawn on the double cost structure imposed by FoFs and 

their management fees. This often-emphasized double fee structure of FoFs 

is subject to the studies of Brown et al. (2004) and Reddy (2007). 

Many of the problems that retail investors face when making investment 

decisions do not arise for institutional investors in the same manner. As 

mentioned above, information flows are completely different for 
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institutional investors such as pension plans, asset managers, wealth 

managers, endowments, or state-owned investment funds than they are for 

private, retail investors. The same holds true for different cost burdens, 

resulting from the structures discussed above. Reconsidering the decision to 

choose between types of delegating investment decisions, questions 

concerning the value added by market professionals have to be answered.  

Naturally related to management fees and advisor compensation is the 

question of how well the services provided suit the investors. When 

deciding on the sector, asset class or country to invest in, the problem is not 

only to separate the ones which one wants to be exposed to, but to decide on 

how this can be achieved. Investing in index or basket certificates or 

exchange traded funds (ETFs), for example, are ways to gain exposure to 

specific markets, sectors, countries or strategies. Most index products are 

very transparent when it comes to underlying constituents, have very low 

management fees, and offer the ability to participate directly in the 

movements of the underlying index. If exposure is gained through index or 

asset tracking products, the investor receives a return profile with zero alpha 

(no excess returns over the benchmark or index) and a beta of one (the 

returns are – or should be - proportional to the underlying benchmark or 

index).  

Passively managed ─ or at least benchmark oriented ─ funds are another 

way to participate (almost) one-by-one, although some funds exist, which 

are marketed as actively managed ones, but are merely tracking their 

benchmark. In contrast to investing in index profiles, both retail and 

institutional investors are demanding excess returns from their investments, 

that is, they expect the managers to outperform their benchmark.  

Finding fund or portfolio managers which seem to possess superior ability 

to outperform the market and thereby keeping track of the imposed costs is 

also a strain of research of its own. Questions that arise when searching for 

alpha include ─ among many others ─ the following: Is past performance 

due to pure luck or ability? Are the returns achieved driven by timing, 
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selectivity, superior strategies or are unobservable factors responsible? May 

the investors expect the past performance to persist over time? As even 

market professionals and academics may struggle to identify winners and 

losers, the quest for alpha is understood as being one of the most 

challenging. Selection problems, performance analyses, and efforts to 

identify winners and losers are the subject of Section 1.3. These problems 

arise on both sides of the FoF ─ investors are interested in selecting the best 

FoFs and in turn FoF managers are seeking to invest in the best funds.  

After discussing selectivity and identification problems that arise when 

deciding on investments, we lay out a problem that is very much a special 

FoF problem. FoF managers may choose among a large variety of funds 

depending on the branch they are investing in. Building portfolios out of 

funds may result in multiple exposures to one and the same asset or risk 

factor. For example, when investing in European real estate equity funds 

like the Henderson Horizon Pan-European Property Equity Fund or the 

Morgan Stanley European Property Fund, one has significant exposure to 

the shares of Unibail Rodamco, a real estate company that makes up more 

than 10% of the European Public Real Estate Association (EPRA) Europe 

Index. 

One should be careful when selecting related funds in order to avoid the trap 

of ending up with a market-representing portfolio of top-holdings, while at 

the same time incurring higher costs than when investing in the related 

indices. From this, it should be clear that limits to diversification arise not 

only from the structure of the underlying assets but also from the paralleling 

of holdings. Benefits of including additional funds therefore need to be 

weighed against the disadvantageous increased monitoring burden and the 

diversification drain. Of course, this problem is not limited in dimensions, 

as FoF-Squared (fund of fund of funds) structures exist as well, for example 

when institutions decide between building portfolios out of funds or 

investing in FoFs. We will cover FoF specific portfolio construction 

problems in Section 1.4. 
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1.2. The Fund (of Funds) Industry 

 

As noted earlier, many different FoF types exist. Although the variety is 

large and growing, hedge FoFs (HFoFs) have attracted the majority of 

capital invested in FoFs. The large fraction of HFoFs in the industry has a 

straightforward structural interpretation, as one crucial benefit from 

investing in this type of FoF is the possibility of investing in hedge funds at 

all. Generally, hedge funds are not accessible for most non-institutional 

investors except high-net-worth individuals, and by pooling investors’ 

money, the HFoFs open the door to this asset class for nearly everybody. Of 

course, minimum investments exist for HFoFs too, but especially when 

accessing investible hedge fund indices those are found to be lower.  

Diversification benefits are another source of attractiveness of all FoFs, 

especially when multiple hedge fund strategies such as Event Driven, 

Convertible Arbitrage, Distressed Securities or Global Macro for example 

are included in the HFoFs. Large and growing, hedge funds show a wide 

range of investment possibilities. Due to the fact that hedge funds are way 

less transparent than mutual funds and do not have the strong and strict 

reporting obligations that are imposed on mutual funds, the task of selection 

and identification in the investment process is especially tough when 

building portfolios that consist of or at least contain hedge funds. In this 

respect, HFoFs deliver a precious service to investors by screening the 

hedge fund market, performing due diligence processes, and by selecting the 

most prospective investment possibilities.  

As with any other asset class, the layout of the investment process is crucial 

to the success of the investments made. Following the due diligence process 

and the manager selection, the HFoF asset allocation (bottom-up or top-

down approach, diversification considerations, expectation building among 

others) is done, followed by continuously monitoring the risks and returns 

of the investments made. Investment processes’ setup and quality are the 

determining factors for the success or failure of HFoFs. For example, 
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Standard & Poor’s defines fund rating criteria that are underlying their 

decisions such as investment culture, due diligence approach, portfolio 

monitoring systems and controls, operational risk assessment, experience of 

fund management teams, selected managers’ experience, and performance 

success.  

Private equity FoFs (PEFoFs) parallel many features and advantages of 

HFoFs outlined above. These invest in leveraged buyout (LBO) or venture 

capital (VC) funds and by doing so serve as investment channels to 

otherwise not accessible investment possibilities. PiperJaffray, who offers a 

variety of PEFoFs, published a special report – hereafter referred to as 

PiperJaffray (2003) – on this type of FoFs, which describes the distinct 

features of this sort of investment, some of which are explained in the 

following. 

LBO or VC funds invest directly in companies that are not traded publicly 

on stock exchanges and are not listed. While LBO funds make use of 

leverage after purchasing part of a target company, VC funds typically make 

serial equity investments without taking debt. Of course, both sub-types of 

private equity try to identify companies that seem to be the most promising 

concerning actual and future returns. Due diligence and subsequent close 

monitoring enhance the possibility of high prospective returns on capital 

invested. Especially LBO funds when taking over whole firms are directing 

the path of the companies in which they are investing. The difference 

between VC and LBO funds can be roughly seen in the maturity of their 

target companies, with the former commonly investing in young, immature 

companies and the latter targeting more mature firms with more or less 

stable cash flows. High capital amounts are demanded to perform this kind 

of business, and the pooling of money by PEFoFs serves as an appropriate 

way of raising those. 

In addition to the HFoFs and the PEFoFs, which make up most of the 

industry, many other FoF types have emerged in recent years. For example, 

FoFs that consist of stock funds and bond funds provide high diversification 
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benefits due to the opposing movements that the fixed income and equity 

markets naturally take. Investors do not need to shift between bonds and 

stocks; the adjustments are made by the FoF managers, whose timing on the 

markets is crucial to the performance of this type of investment vehicle.  

Sector specific or industry mutual FoFs exist as well, being portfolios that 

comprise investments in a certain sector, country or class of investments. 

For example, some real estate FoFs invest in both open-ended real estate 

funds (which are directly investing property funds with a bond-like risk and 

return profile) and real estate equity funds. Depending on their market 

expectations, the fund management teams can quickly increase their real 

estate equity exposure or stick to the “safe-haven”1 directly investing real 

estate funds.  

Not all FoFs are limited to invest solely in other funds. Some have the 

possibility to invest certain fractions of the fund volume in shares of 

companies, corporate or government bonds, certificates or derivatives. 

While increasing the flexibility and enlarging the investment universe of 

these FoFs, additional investment possibilities represent both opportunities 

and threats. Consider a fund manager who has a strong bullish view on one 

single company, to which he wants to get more exposure than is possible 

through the underlying fund holdings. By buying ordinary shares or 

derivatives on that company, the fund manager may tweak the exposure to 

that company to the desired level. Another strategy example would be to use 

derivatives or reverse index trackers to isolate underlying fund 

performances or alpha, or to reduce exposure to certain parts of the 

underlying funds while maintaining the remaining structure. Non-fund 

investments may therefore be a tool for sophisticated FoF strategies, with 

hedge fund-like strategies then being accessible by managers of long-only 

funds. However, if FoF managers are able to discretionally invest in non-

fund assets, the FoF concept may loose its stability or the structure that was 

                                                 
1 Please note however, that the developments following the financial market crisis has set 

some funds under stress and several funds had to devalue parts of their portfolios.   
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expected by investors. Put another way, the abilities of FoF managers need 

to be high enough to reap the benefits of non-fund investment possibilities.  

Therefore, the skills of the management team are once again the crucial 

determinant of the success of investments. When it comes to performance 

measuring and attribution, a variety of questions and problems arises, such 

as comparability, factor selection, statistical or technical problems, 

measurement decisions and many more. To address these issues, the next 

section will be devoted to an overview concerning performance analysis and 

identification problems in the fund and fund of fund world. 

 

1.3. Performance Analysis and Identification Problems in  

Fund (of Funds) Management 

 

This section highlights the problems of performance analysis, the search for 

alpha and identification problems inherent in FoF business. In doing so, we 

turn the focus on several problems which especially apply to FoF 

investments.  

When building FoFs, the product management and portfolio management 

teams are confronted with a large set of questions. First, one has to choose 

how the investment universe should be defined. Generally, FoFs are set up 

as products that focus on a certain industry, a country, a sector, or an asset 

class of financial products. Several possible types of FoFs have been 

discussed in Section 1.1. After the “topic” of the FoF is selected, the next 

step is whether to constrain the investment universe further. For example, if 

a FoF is bond oriented, the question is whether the FoF should be able to 

invest in bond funds of any kind, or whether certain profiles or countries 

may be excluded or limited.  
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In addition, some FoFs are allowed to allocate a certain fraction of their 

assets under management to non-fund investments, such as single stock 

shares, bonds, derivatives or others. As mentioned above, this may lead to 

two opposing outcomes. On the one hand, the profile of the FoF could be 

greatly improved. With FoF managers having the ability to (partly) hedge 

fractions of their investments, to gain or tweak exposures to preferred 

sectors or companies which may be underrepresented in the fund holdings, 

or to circumvent structural and institutional constraints, able managers may 

perform better than they would when being limited to fund-only investment 

schemes.  

A striking example is that of real estate company Unibail-Rodamco. The 

EPRA (European Public Real Estate Association) Europe Index, which 

serves as the benchmark for most European real estate equity mutual funds, 

consiste of about 19% of Unibail-Rodamco in March 2010. As UCITS 

(Undertakings for the Collective Investment of Transferable Securities) 

regulation limits the single allocation of mutual funds in one company to 

10% of the fund volume, this has led to all funds underweighting Unibail-

Rodamco relative to the benchmark. If the FoF management team is bullish 

on Unibail-Rodamco, they may heal the expected underperformance of their 

regulated fund holdings by investing directly in Unibail-Rodamco shares or 

derivatives. Another example would be if the FoF managers want to pursue 

a strategy of picking small companies for which they have promising 

information, but which are only small fractions in the target fund holdings 

due to their small role in the benchmark index.  

On the other hand, non-fund investment allowances for FoF managers may 

lead to undesirable effects. If managers take the wrong steps and have a 

large amount of discretionary freedom, they may dis-stabilize the FoF and 

introduce performance flaws. Put another way, the possibility of non-fund 

investments is increasing both risk and uncertainty concerning future 

performance from the perspective of FoF shareholders. As the investment 

universe and therefore the allocation possibilities may be exploding due to 

non-fund investments, the investor holding a FoF is confronted with 
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increased problems concerning expectation building. Therefore, fund 

manager ability is the crucial factor dividing pro and con of non-fund 

investment possibilities for FoFs.  

When it comes to ability and performance attribution as well as the 

identification of “better” funds and FoFs, i.e. investments that deliver 

“alpha”, we are in the favourable position of having a huge research work 

body concerning performance measurement at our disposal. While the 

several studies are differing largely in their very nature, the aim of the most 

is to conduct an analysis that may be useful for selecting funds, i.e. 

managers. Before the various approaches will be discussed and put in 

relation to the FoF world, some preceding arguments are due.  

One important aim of performance analyses and identification in the search 

for alpha should be comparability, that is, when trying to analyse various 

mangers’ skills and fund performances, the study needs to focus on the right 

factors and benchmarks. The classical model of portfolio selection and the 

single-index model by Markowitz (1952 and 1959) as well as the Capital 

Asset Pricing Model (CAPM) that has been developed by Sharpe (1964) and 

Lintner (1965), use simple linear ordinary least squares regressions (OLS). 

The regression is run on the excess return of an asset on its benchmark’s 

(the market portfolio) excess return, with the excess return generally being 

defined as over a risk-free rate. In these models, the higher the intercept that 

represents the alpha, the higher the risk adjusted return, while risk is 

measured as beta, relative to the benchmark.  

Fama and French (1992) in their seminal study augment the analysis with 

additional factors. They introduce two factors in addition to the benchmark 

or market portfolio, the excess return of small capitalisation stocks over 

large capitalisation stocks (small-minus-big, SMB) and the excess return of 

stocks with high ratios of book-to-market-value over ones with low book-to-

market-value (high-minus-low, HML). Not representing the end of the 

factor model developments, the Fama and French (1992 and 1993) model 

had an invention by Carhart (1997), who introduced the momentum of one-
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year stock returns as an additional characteristic component, after Jegadeesh 

and Titman (1993) having proposed the momentum factor. The resulting 

four-factor model has been used extensively in the past and builds the 

baseline for many studies on performance analysis. The initial work on 

portfolio theory and benchmark-oriented performance measurement has 

triggered a lot of following research work, such as the arbitrage pricing 

theory by Ross (1976), an alternative to the CAPM. 

Before discussing the nature of performance analyses for selection processes, 

a few technical facts concerning the use of alpha and beta as a measure of 

superior fund (manager) quality are noteworthy. As alpha is simply the 

intercept of an OLS regression, it tells the analyst about the (excess) return 

that a fund would achieve if all the explaining factors (for example, the 

SMB excess return) were set to zero. It is understood that the intercept is 

somehow a bin for all non-random effects not caught up by the explaining 

factors and therefore may be the result of a large variety of effects, not only 

representing the superior ability of a funds’ manager. When it comes to beta, 

used as a measure of fund exposure to the explaining factors, the use of 

linear regression analyses may be inappropriate especially when analysing 

funds that show highly non-linear dependencies, for example hedge funds 

and other vehicles that are subject to option-like payoff structures. However, 

the non-linear effects may be included even in linear regression analyses 

when using respective explaining factors. 

Not criticizing the use of the four-factor model or related setups, we stress 

that the four-factor model is not suitable for all kinds of performance 

analyses, especially when constructing FoF portfolios. For example, if the 

universe of the funds under review is not restricted very much, that is, if 

fund managers may have invested in a large variety of stocks (for example a 

country oriented mutual fund), the four-factor model lets conclude about the 

source of performance. Nevertheless, the alpha, the regressions’ intercept, is 

not measuring the ability of the fund manager.  
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An intuitive example: A fraction of fund managers in a study sample 

overweighs small caps against large caps stronger than other fund managers. 

In a year where small caps subsequently perform better than their blue chip 

counterparts, the higher returns of the small cap biased funds are a result of 

their superior ability to forecast the small cap outperformance. In the four-

factor model, this ability is not identified as ability, but is “soaked up” by 

the SML term in the regression, leaving an alpha that neglects the good 

decision made by the fund managers overweighing small caps. If the aim of 

the study is to identify where the performance comes from, this is a 

favourable effect, if the study was to compare fund managers in a selection 

process, it is not. This problem is crucial to any performance analysis in the 

fund universe and calls for sensible selection of the factors in relation to 

which information is to be obtained, thereby carefully interpreting the 

results obtained.  

Especially when analysing funds in a FoF portfolio building process, the 

caveats of simply picking high Carhart-alpha funds are clear-cut. As FoFs 

should be well diversified portfolios build out of the most promising target 

funds, the misleading effects discussed above may introduce biases that lead 

to significant deviations from this goal. In the mentioned example, one 

would be underweighting funds that successfully chose the right strategy, 

possibly harming future performance. Therefore, it is key to use factor 

models such as the Carhart (1997) model in the right way. If the FoF 

management team is aiming at identifying the strategy or sector relations of 

target funds, the factor models may suit them well, for example when 

aiming at including a heterogeneous set of target funds. If they want to 

identify the ones that made the right investment decisions, they should 

change the respective view.  

In the fund selection process for a FoF, we propose a multi-step use of the 

Carhart (1997) model or similar factor models. First, the model should be 

used to identify by which of the observable and identifiable factors or 

characteristics a fund’s performance was driven, on a very aggregated level, 

for example indeed with the four factors proposed by the Carhart (1997) 
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model. Second, from the initial analysis, separate classes are built for which 

the analysis is re-run, yielding a more reliable picture of the underlying 

funds’ quality. In the re-run(s), the factors may be adjusted in relation to the 

class characteristics. For example after separating the small cap-benefited 

funds, one could introduce further more dis-aggregated sector benchmarks 

such as the S&P Technology or the Wilshire Micro Caps. Obviously, the 

use of the multi-step procedure may better suit FoF selection processes due 

to the possibility of both finding different characteristic classes of funds and 

finding the ones that are the best performers in the respective classes. How 

deep the analyses are conducted, and in which order the analyses are 

performed, depends on the respective needs and the structures of the target 

funds under consideration. 

The arguments proposing a multi-step approach to fund selection are 

broadly in line with Daniel et al. (1997), who favour characteristic 

benchmark portfolio models over the four- factor model by Carhart (1997). 

However, even when using the proposed multi-step analysis or benchmark 

portfolio building processes, the analyst may struggle to identify the funds 

which steadily perform in the way that is found in the analysis.  

As for any other investor, the search for performance persistence and the 

interpretation of past fund returns (and the projection of those into the future) 

is an important task in the FoF portfolio building process. Besides the 

problems discussed above, one has to take the analysis from the cross-

section to the intertemporal dimension. Work on this subject goes back to 

Jensen (1969) and Beebower and Bergstrom (1977), and it were Grinblatt 

and Titman (1989a, 1989b, 1992), Brown and Goetzmann (1995), 

Hendricks et al. (1993), Malkiel (1995), Elton et al. (1996), Daniel et al. 

(1997) and Carhart (1997) heavily influencing the work on performance 

persistence. The issue of survivorship bias in performance persistence 

studies is an often-discussed problem, as are the problems of short-history 

samples and non-normally distributed alphas across the funds. The latter 

two problems have led to the use of Bayesian and bootstrap methods, see 



 

23 

Pastor and Stambaugh (2002a and 2002b) and Kosowski et al. (2006 and 

2007) among others. 

Concerning FoF performance, Rachlin and Castro (2007) discuss hedge 

fund performance measuring for FoF managers and on the FoF layer, 

Chiang et al. (2008) investigate the performance of real estate mutual FoFs.  

As all of the studies above are related to analysing the performance of funds 

and/or assets, the question being addressed is how to identify winners and 

losers, and to identify which of them tend to be of the same type in the 

future. Following the performance analysis and identification problem, the 

process of fund of fund portfolio building necessitates an appropriate 

selection process in the task of picking the respective funds to include in the 

portfolio. This leads to a discussion of the problems concerning portfolio 

optimization and is covered in the next section.  

 

1.4. Building Funds of Funds 

 

When constructing portfolios of funds, it is critical to consider both the 

nature of any fund, as well as the common factors driving them. 

Diversification benefits stemming from low or even negative correlations 

and relationships among assets are important for the expected risk and 

return structure of the resulting portfolio. Since the seminal work of 

Markowitz (1952 and 1959), this topic has been among the most researched 

and discussed by both academics and practitioners, see Steinbach (2001) for 

an overview on mean-variance optimization. 

Black and Litterman (1990 and 1992) have developed a framework that lets 

the investor include his subjective views, a setup being more robust to 

estimation errors. Extensions to the Black-Litterman approach have been 

made by Giacometti et al. (2007) who use stable distributions and therefore 

propose models that do not suffer from the shortcomings caused by the 
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normality assumption of the classical models. The use of stable Paretian 

distributions in financial and portfolio modelling has been studied in detail 

by Mittnik and Rachev (1993 and 2000), Samorodnitsky and Taqqu (1994), 

Rachev and Han (2000), and Ortobelli et al. (2002 and 2003). 

When it comes to FoFs, a few words concerning the distinctiveness of FoF 

portfolio optimization are due. In the FoF building process, one often has to 

choose one or several funds out of a family of funds with very similar 

exposures and/or strategies. This introduces the possibility of very high 

correlations among underlying funds, stemming from the fact that those may 

be invested in the same companies, assets, sectors or markets. It is therefore 

crucial to identify the holding structures or risk factors of target funds, as 

well as common factors that are influential to the funds’ performances. Only 

by doing so does the FoF management team avoid the risk of unnecessary 

and inefficient double or multiple exposures to the same companies, assets, 

sectors or markets. This may be done by either running factor analyses on 

the funds’ data or by investigating the reports of funds and/or taking into 

account information available on them. If the unique and common features 

of the respective funds are found and a set of funds in which the FoF 

management wants to invest is defined, the question remains how the FoF 

portfolio will be build. Thereby, it is not possible to build a FoF by viewing 

any target fund as a single asset. 

Using an appropriate risk measure is crucial for FoF portfolio building, with 

Goodworth and Jones (2007) focussing on non-parametric risk measurement 

for hedge funds and FoFs, and Christie (2007) using downside leverage and 

event risk measures in FoFs. For a general discussion of risk measures, see 

Rachev et al. (2008).  

As is the choice of the appropriate risk measure far from trivial, so is its 

interpretation, especially when being applied for optimizing a FoF portfolio. 

When viewing any target fund as a single asset, one ignores the possibility 

that the risk that is included in one fund may also be included in other funds. 
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Related to this problem is the issue of choosing not only which funds or 

what kinds of funds to include in a FoF, but also how many. The question is 

whether including additional funds really helps in diversifying the portfolio 

and thereby not averaging or counter-investing away the characteristics of 

the target funds. Among others, Connelly (1997), O’Neal (1997), Park and 

Staum (1998), Saraoglu and Detzler (2002), Brands and Gallagher (2005), 

Louton and Saraoglu (2006), Amo et al. (2007) and Kooli (2007) discuss the 

problem of FoF portfolio building. Especially the Connelly (1997) paper 

hits the point with the discussion surrounding so-called unintended indexing, 

which means that by choosing too many funds, one could end up with a 

costly index-type investment portfolio. This does not only come from the 

fact that especially many mutual funds label themselves as being actively 

managed and thereby only slightly over- or underweight their holdings 

relative to their benchmark. Connelly (1997), in citing a speech of William 

E. Jacques at the Institute for International Research sponsored conference 

of Active vs. Passive Investment Management argues that mixing for 

example a growth fund with a value fund counters the investment strategies, 

thereby increasing the portfolio holdings deadweight.  

With all the problems introduced in the preceding discussion, it is clear that 

FoF portfolio building is by no means a trivial or at least easy task. While 

only a few studies on fund portfolios exist, the literature did not yet provide 

a concluding answer on the questions raised, leaving open the door for 

further investigations and insights. 

 

1.5. Outlook and Structure of the Thesis 

 

Being a large and growing part of worldwide financial investment 

possibilities, funds of funds are increasingly in the focus of both 

practitioners and academic researchers. In this initial section, we lined out 
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some specific features, (dis) advantages, developments, questions and 

problems that are special to FoFs. By doing so, we reviewed past research 

work in both the FoF world as well as in the field of funds as the natural 

FoF underlyings.  

Among the most crucial questions and challenges that we found are the 

following: FoFs are very diverse according to their investment universe and 

need to be treated accordingly; the fees charged by FoFs have initiated the 

discussion of the double-cost fee structure; fund portfolios have to be build 

by taking into account that the target funds may not be seen a single assets.  

With these problems and many more still being unresolved, we stress the 

importance that FoF research needs to be done with tools that are sensible in 

light of the special nature of fund portfolios. Identifying the nature, risk 

factors and exposures of the target funds, thereby assessing their similarities 

and differences, needs sophisticated and sensible approaches and techniques.  

Especially when it comes to non-linear (inter)dependencies and 

relationships, classical measures and methods may not be sufficient to 

perform the needed analyses. Copulas, simulation models and other 

inventions may be needed to identify the factors that are crucial in FoF 

management. Of course, the obtained results need to be used with other 

information from the due diligence and compliance assessment processes.  

When building portfolios out of funds, it is clear that one cannot rely on the 

classical models with an assumed normal distribution. As both the most 

target funds as well as their investments exhibit non-normally distributed 

returns, we propose the use of stable distributions in the portfolio building 

process for FoFs. Furthermore, the fact that several target funds may be 

influenced by the same factors calls for methods that detect multiple 

exposures or holdings.    

In this study, a large variety of issues and topics regarding FoF management 

that have been mentioned in this introductory chapter are addressed using 

post-modern tools of portfolio analysis and portfolio management:  
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In Chapter 2, we pick up a classical topic, the one of style investing, in a 

FoF context. We use not only the common moments of absolute and relative 

performance of growth, value and style-neutral FoFs of different sizes, but 

use a post-modern reward-to-risk measure in the analysis to find out 

whether style-neutral FoFs provide value added. 

Chapter 3 is devoted to the problem of optimizing portfolios using different 

approaches, from classical mean-variance to tail dependent performance 

ratio measures. In addition, the approach presented provides an elegant 

solution to non-linear optimization problems, which are especially severe 

when dealing with heterogeneous assets, non-linear performance measures 

and a large span of different portfolio optimization outcomes. 

The effects of broad market movements on sector FoFs are in the focus of 

the study presented in Chapter 4, where again post-modern tools are used in 

a parsimonious approach of measuring asset and market interdependencies. 

A comparison with traditional approaches and a careful assessment of the 

results shows that the approach is superior to its peers and may be highly 

beneficial in practical FoF management. 

Chapter 5 is devoted to a problem that was at the core of many discussions 

during the subprime meltdown, the credit crunch and financial crisis that 

emerged since 2007, the problem of money flows and liquidity. As not only 

single assets like stocks, bonds, derivatives or commodities may be largely 

affected by liquidity issues, FoFs may face a special problem when target 

funds restrict asset flows to protect from flow-induced issues.  

We sum up the study in Chapter 6, and come back to the results found in the 

studies comprising the thesis, with an eye on the asset management world.  
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2. Style-neutral Funds of Funds: Diversification or 

Deadweight ? 

 

2.1. Introduction 

 

 
Style-neutral portfolios are built by investing equally in opposing styles, the 

objective being to generate risk-adjusted returns that are superior to those 

obtained from investing with a tilt towards one or the other style. While 

there are many possible style classifications, we focus on a pair of the most 

important and widely accepted style classifications, namely “value” and 

“growth”. Generally, the definition of “value” and “growth” stocks are as 

follows: Shares of companies classified as value stocks are shares for which 

the price-to-book ratio is low and those classified as growth stocks have a 

high price-to-book ratio. Value managers therefore are investors who expect 

upside potential in companies with a low price-to-book ratio, as those seem 

to be undervalued by the market.  

The style of value investing has its origin in Graham and Dodd (1934 

and1949) which had a tremendous influence on investment theory and 

practice, although the focus increasingly turned on price-to-earnings rather 

than price-to-book. In contrast to value investors, growth managers focus on 

capital appreciation with companies mainly reinvesting their earnings and 

with good prospects for further expansion. The value and growth 

classifications are not directly defined as mutually exclusive counterparts 

based on a single measure. The term growth at a reasonable price (GARP) 

further relates the price and expansion potential characteristics to each other.  
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Being defined that way, the value versus growth distinction has found its 

way into the above mentioned three-factor model by Fama and French 

(1992 and 1993), with Fama and French (1998) providing evidence 

concerning value and growth investing. In the extension of the Capital Asset 

Pricing Model (CAPM), the factor “high-minus-low” with respect to the 

book-to-market ratio is used to control managers’ performance against the 

benchmark for their growth or value style. The other factor being used to 

augment the CAPM is the excess return of small capitalisation stocks over 

large capitalisation stocks (“small-minus-big”)2.  

The discussion surrounding style investing has led to extensive research 

regarding timing styles and employing neutral approaches. Gerber (1994), 

Fan (1995), Sorensen and Lazzara (1995), Ahmed et al. (2002) and Amenc 

et al. (2003), for example, focus on style timing, mainly implemented in a 

market-neutral framework. 

In this study, we do not analyze value versus growth style investing within a 

market-neutral approach, but investigate the properties of style-neutral 

portfolios including both value and growth strategies. We analyze style-

neutral portfolios by building synthetic funds of funds (FoFs) out of both 

value- and growth-oriented equity funds. This is also interesting in the light 

of two contrary notions regarding FoFs, namely, the view that style-neutral 

FoFs may deliver the best of both worlds against the view that they will 

result in costly benchmark replicators. The latter argument was brought 

forward by Connelly (1997) for FoFs in general and may be amplified in the 

case of style-based fund portfolio building. Connelly’s view implies that the 

countering of styles results in obtaining a FoF that has countered and erased 

most or all active bets of the target fund managers, resulting in so-called 

portfolio deadweight and unintended indexing as mentioned in Chapter 1. 

Because the analysis in our study is performed for funds rather than for 

individual common stocks has several implications. First, the identification 

                                                 
2 As discussed above, another popular extension is provided by the four factor 
model of Carhart (1997) who augmented the analysis with a momentum factor. See 
Haugen and Baker (1996) for a discussion of 50 possibly influencing factors.  
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problem of value and growth is more complicated, as not only fund 

managers must properly identify the respective stocks but FoF managers 

must also carefully select their target fund managers. This may cause a 

dampening of effects and a diluted result. Second, we need to take into 

account an extra layer of fees because FoF managers charge their own fees3. 

Using a five-year sample of 25 value-oriented and 56 growth-oriented 

equity funds that focus on U.S. equities and are listed and classified in the 

Morningstar database and eligible in Germany, we build style-neutral FoFs 

and compare them with their most representative benchmark, the S&P 500. 

As the analysis aims at finding an answer to the question of whether style-

neutral FoFs investing in both value and growth strategies could be 

beneficial, we use a rolling window approach in order to see the time-

changing properties of the style-neutral fund portfolios. To get insight into 

the sources of the results obtained, the respective value- and growth-style 

portfolios also have been analyzed.  

We find that diversification benefits in terms of return dispersion occur 

when investing in at least six to eight funds, a finding which is in line with 

earlier studies. However, the first four moments of the simulated FoFs and 

the benchmark did not yield a conclusive picture of the benefits and 

disadvantages of the style-neutral FoFs. Whether they are well-diversified 

portfolios of use to investors or resulting in costly portfolios that are merely 

the result of portfolio deadweight was therefore investigated by using the R 

ratio, which is a tail-dependent reward-to-risk measure.  

The analysis shows that investing in more funds successively improves the 

R ratio in the style FoFs as well as in the style-neutral FoFs. However, the 

building of style-neutral FoFs results in an averaging process with time-

dependent differences. This points at the notion that on average it is not a 

priori beneficial to build style-neutral FoFs, only when being able to select 

the best performing funds of the respective classes.  

                                                 
3
 See Brown et al. (2004) for a discussion of fees on fees in FoFs. 
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The chapter is organized as follows: In Section 2.2 we discuss the 

theoretical aspects of diversification and deadweight and explain our 

approach to measure style-neutral FoFs against the benchmark in Section 

2.3. The presentation and discussion of the empirical findings follows in 

Section 2.4., our conclusions are summarized in Section 2.5. 

 

2.2. Diversification and Deadweight 

 

In this section, we briefly contrast the opposing views related to the general 

benefits and caveats of FoFs before discussing those in the context of style-

neutral FoFs. Proponents of FoF structures highlight the ability of FoFs to 

benefit from diversification effects and from picking the best managers and 

strategies, but FoF critics stress the danger of countering styles or 

inefficiencies owing to the double layer of fees. 

A general question related to FoF building is the one concerning the number 

of investments, as one may reduce both volatility over the course of time 

and terminal wealth dispersion by increasing the number of target funds. 

O’Neal (1997) shows that for growth equity funds, four funds may be 

sufficient to decrease most of the uncertainty concerning the FoF returns, 

whereas L’habitant and Learned (2003), for example, find the number to be 

between 5 and 10 for hedge fund portfolios. The effects of different fund 

portfolio sizes were also examined by Park and Staum (1998), Brands and 

Gallagher (2005) as well as by Gallagher and Gardner (2006) among others.  

Apart from the general possibility of diversification benefits delivered by 

FoFs, the danger of countering styles or the correlation of target managers’ 

styles has led to work by diBartolomeo (1999) and Gallagher and Gardner 

(2006), who demonstrate that while providing diversification, fund 

portfolios may end up resembling the benchmark and may be unable to 

outperform the index. Their results are in line with the theoretical arguments 
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mentioned in Connelly (1997), who stresses the danger of countering the 

active bets of target fund managers. Connelly defines the measure of 

portfolio deadweight in a fund as the sum of the minima of each company’s 

share in either the benchmark or the fund under consideration4. Therefore, 

funds which have large off-benchmark holdings would have the lowest 

deadweight score. 

Connelly (1997) in his critique of FoFs states that by investing in funds that 

have different styles and therefore bets against the benchmark, a FoF may 

end up as a costly benchmark product. Labelling this problem as the law of 

unintended indexing, Connelly proposes the use of a benchmark tracking 

product and a future overlay. While this argument is generally appealing, we 

reject this proposal in our analysis of FoFs because we assume the FoF 

managers invest only in funds.  

In the light of style-neutral FoFs, we find it of particular interest to analyze 

whether a fund portfolio that is balanced between value and growth target 

funds is delivering superior performance than the benchmark and/or fund 

portfolios focussing on one of the respective styles. As target fund managers 

select the stocks of their investment universe that best suit their style and for 

which they expect the best performance, it may be possible to benefit from 

their selection abilities through fund investments. By combining several 

managers with different styles, one could expect both diversification 

benefits and a superior benchmark-relative performance. On the other hand, 

correlations between stocks in the target markets as well as the countering 

of styles may result in the indexing schemes introduced above and a costly 

benchmark replication product.  

 

 

                                                 
4  Connelly acknowledges that this measure is obtained from a presentation by 
William Jacques at a conference on active versus passive investment management 
sponsored by the Institute for International Research. 
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2.3. Data and Methodology 

 

To examine the opposing effects and structures discussed in the preceding 

section, we focus on the return patterns of the funds in the analysis due to 

the limitation that fund holdings are available only from time to time, and 

often for differing dates. While the top positions in a mutual fund are 

usually reported on a monthly basis, complete fund compositions can be 

observed only once or twice a year in most regulated fund markets (with 

different reporting deadlines for different fund business years), making a 

holding structure analysis impossible or at least highly complicated. 

We used Morningstar’s database for selection purposes that includes solely 

funds that are permitted for distribution in Germany, with a total of about 

15.000 funds. As we need to base our analysis on comparisons with a 

sensible and representative benchmark, we have chosen to do the analysis 

for equity funds with a focus on the United States. This stems from the fact 

that for this group the number of funds was largest and is not broken down 

into sub-regions as it can be seen for European focused funds (EU-15, EU-

27, Eurozone or Europe-ex-UK are examples). Using U.S. dollar-

denominated funds is straightforward with the chosen country focus and 

rules out conversion or hedging distortions. We used the S&P 500 as the 

benchmark. Accordingly, we restricted the sample further to large 

capitalization focused funds, ruling out any biases stemming from size tastes 

of fund managers. This was done by using Morningstar’s 3-by-3 fund 

classification matrix, which indicates whether a fund is focussing on small, 

mid or large capitalization stocks and whether the fund management is 

pursuing a value, blend or growth investment approach. The Morningstar 

fund classifications resulted in 47 value and 84 growth funds. 



 

39 

Our approach is sensible in the way that we can rule out any distortions and 

biases due to legal or regulatory constraints, have no currency conversion 

issues, and can rule out any size effects, home or foreign biases5. 

We considered a time span of five years to be sufficient for the analysis, and 

have therefore chosen the sample time from July 1, 2003 to June 30, 2008. 

Because data were not available for the 47 plus 84 funds for the entire five-

year period6, our sample was reduced to 25 value and 56 growth funds that 

were in existence prior to the commencement of the study period.  

Using total return data from DataStream Financial Thomson in weekly 

frequency, we have 261 weeks of performance data as our basis. The use of 

weekly data is beneficial as the results are not cursed by accounting 

discrepancies. This means that the funds’ return series and therefore those of 

the synthetic FoFs can be compared more easily to the benchmark as there 

need not be done any time shifts induced by pricing differences7. The latter 

problem would be even further complicated as we use funds that have their 

investment focus in a time-zone other than the fund domicile’s time-zone. 

Checking how style-neutral FoFs performed against the benchmark was 

done by using synthetic style-neutral FoFs and the S&P 500 Composite 

Index. Although not all funds included in the analysis have the S&P 500 as 

their official benchmark, the index serves as the most important benchmark 

in evaluating fund managers. With respect to the used sample, it is 

straightforward to use the index representing the 500 U.S. companies with 

the largest capitalization to serve as orientation for FoFs with a large set of 

U.S. focused target equity funds.  

                                                 
5
 See Chan et al. (2005) for an examination of managers’ foreign and domestic 

biases.  

6 According to information from Morningstar, 3 value and 13 growth funds were 
obsolete from the dataset chosen. The aim of the study is on the effect of style-
neutrality however, such that the survivorship influence is not crucial. 

7 While some funds report prices end of the day, others report prices for the day 
before. The latter method being called forward-pricing aims at preventing 
speculative trading against the fund.  
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To gain insight into the behaviour of the synthetic FoFs, we perform a time-

varying analysis. With the 261 weekly fund and benchmark returns, the 

analyses were done by rolling 209 spans of 52 weekly returns through the 

sample. By comparing the characteristics of the style-neutral FoFs and the 

benchmark over time this enables us to carefully assess pros and cons of the 

style-neutral FoF investments. 

As we want to analyze style-neutral FoFs we have to use even numbers of 

funds included in the portfolios. Furthermore, because there are only 25 

value funds, we cannot compare the neutral FoFs to style FoFs containing 

more than 25 funds for an unbiased picture. These limitations have led to 

the bounds of 2 and 24 funds for the simulated portfolios. Consisting of 1 to 

12 funds for each investment style, we build style-neutral funds by 

assigning 50% weight to each investment style class. Accordingly, we have 

built synthetic style-neutral FoFs and style FoFs of the same sizes between 2 

and 24 funds for the sake of comparison.  

Using this approach, we rule out the possibility of short selling and fulfill 

the constraint of full investment, as those constraints are most representative 

for real- world investment bounds. We generate 10.000 synthetic portfolios 

for each of the 3 FoF types, 209 time periods and 12 portfolio sizes. 

Afterwards, the return series of the synthetic FoFs are generated and 

compared with the benchmark. This is done to see how style-neutral funds 

in all varieties of compositions and sizes behave in comparison with the 

used benchmark and the style based FoFs. Analyzing windows of 

observations that are rolled through the sample enables us to see whether the 

findings are robust in different market periods.  

The comparison of the simulated FoFs with the benchmark is done in 

various ways. As the stated arguments both in favour and against FoFs in 

general and style-neutral FoFs in particular are related to the diversification 

argument as well as performance considerations, we use not only dispersion 

measures for the portfolio and benchmark returns, but employ more 

sophisticated measures to examine the nature of the simulated FoFs.  
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Focussing on the tails and extreme returns is done by using the Rachev ratio 

(R ratio). For extensive discussions and applications concerning the R ratio 

and related risk and performance measures see Biglova et al. (2004), Rachev 

et al. (2005), Okuyama and Francis (2007), Rachev et al. (2008) and 

Farinelli et al. (2009). 

To understand the R ratio, it is necessary to consider first the measure of 

expected tail loss (ETL, equivalent to the conditional value at risk, CVaR, 

for continuous distributions), which accounts for the concentration in the 

tails of the distribution. While the traditional value at risk (VaR) measure 

only indicates the value of the distribution at the threshold and therefore the 

maximum loss not to be exceeded with a certain confidence, the ETL 

measures the expected loss in the case of a tail event: 

( ) ( )( )pppp rVaRrrErETL αα −− >−−= 11 0,max)(  

Therefore, )(1 prETL α−  is the expected tail loss with tail probability α for 

portfolio returns pr . Common choices for α are 1% or 5% in accordance 

with common choices of the 99% and 95% confidence levels used for VaR 

measures. Of course, the ETL for any given probability or confidence is 

always higher than the respective VaR. In the R ratio, the ETL of the 

difference of any portfolio’s returns in comparison with the benchmark is 

serving as the denominator, giving a term for the severity of portfolio 

underperformance against the benchmark. By choosing the measure in that 

way, one does obtain a benchmark relative portfolio risk measure.  

While the ETL based measure is used for the downside, a corresponding 

measure for the additional gains versus the benchmark is also needed. The 

ETL of the difference between the benchmark returns and the portfolio 

returns therefore serves as a relative gain measure and represents the 

nominator of the R ratio. Therefore, the R ratio may be interpreted as a 

benchmark relative reward to risk measure. Below the R ratio is expressed 

with confidence levels α  and β  for the two measures on the lower and 

upper tail of the performance differences between FoFs and the benchmark: 
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As we will analyze the portfolios versus the benchmark, pr  and br  denote 

the corresponding return series. With the R ratio we have a very flexible 

performance measure at our disposal, which is free from distributional 

assumptions or comparable flaws. Sensible percentages for α  are, for 

example, 30% to 40% to adequately measure the extra portfolio gain while 

β  could be chosen to be 1% or 5% to control for the severity of 

underperformances against the benchmark8.  

 

2.4. Simulated Style (Neutral) Funds of Funds Analysis 

 

In this section, we present the empirical results of the analysis of the 

synthetic FoFs against the benchmark and against their style-focused FoF 

counterparts. Starting with the first four statistical moments of the respective 

return distributions, i.e. the mean, the standard deviation, the skewness and 

the kurtosis, we compare the FoFs over time and with differing portfolio 

sizes. Following the first statistical examinations, we used the R ratio to 

deliver a conclusive picture of the benefits and disadvantages from building 

style-neutral FoFs.  

Exhibit 2.1. shows the difference of the average annualised geometric mean 

return between the style-neutral FoFs and the S&P 500. The synthetic FoFs 

seem to be outperforming and underperforming against the benchmark, 

depending on the time period analyzed, although FoF underperformance 

seems to occur more often, and the underperformance periods are more 

severe than outperformance periods. As the average of the geometric mean 

                                                 
8
 Other possibilities include setting the upper and lower percentage to equal values 

in order to get a symmetric reward-to-risk measure rather than one that controls for 
large underperformances that serve as risk measures in the denominator. 



 

43 

returns represents a cross-sectional average of the first moment, the straight 

line for 2 to 24 funds for any period is natural and shows that a reasonable 

number of simulations was chosen. Looking at the respective style FoFs in 

Exhibit 2.1.a. and 2.1.b. (i.e. the value and growth FoFs), we can see that 

there is a large difference in the performances of the two styles over time, as 

expected. While the performance against the benchmark of the value FoFs is 

much centered around zero until the later time periods, the growth funds 

exhibit more pronounced periods of better or worse performance. 

Interestingly, during the sub-prime crisis beginning in 2007, the growth 

funds performed much better against the benchmark while the value funds 

have underperformed, indicating that the value funds had more exposure to 

companies being related with the financial market crisis and the following 

credit crunch. 

 

Exhibit 2.1. Difference in average annualized geometric mean return for style-

neutral FoFs against the benchmark 
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Exhibit 2.1.a. Difference in average annualized geometric mean return for value 

FoFs against the benchmark 

 

Exhibit 2.1.b. Difference in average annualized geometric mean return for growth 

FoFs against the benchmark 
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However, the fact that the style-neutral FoFs result in the picture we see in 

Exhibit 2.1. seems to show that the effect of style countering may be 

beneficial or disadvantageous depending on the time interval. While the 

general effect of more pronounced underperformance may be due to a 

general inability of fund managers to beat the benchmark, the comparison 

between the style FoFs and the style-neutral FoFs is showing that combining 

the two styles is resulting in a general process of averaging. In addition, the 

extra layer of fees induced by FoFs would lead to an even lower net 

performance against the S&P 500.  

By analyzing the minimum and maximum geometric mean returns, i.e. the 

worst and best style-neutral FoFs and the respective style class FoFs in 

Exhibits 2.9. in the appendix, we can see again that the value funds are more 

stable over time when being compared to the benchmark than their growth 

counterparts.  

The next important step when analyzing the synthetic FoFs over time and 

sizes is to take into account the resulting standard deviation of the FoFs and 

the benchmark, represented in Exhibit 2.2. As most of the reduction in the 

standard deviation is obtained with six to eight funds in the synthetic 

portfolios, this is roughly in line with other empirical findings. The synthetic 

FoFs seem to provide a reduction in the return dispersion against the 

benchmark in most time intervals.  
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Exhibit 2.2. Difference in average annualized standard deviation for style-neutral 

FoFs against the benchmark 

 

Exhibit 2.2.a. Difference in average annualized standard deviation for value FoFs 

against the benchmark 
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Exhibit 2.2.b. Difference in average annualized standard deviation for growth 

FoFs against the benchmark 

 

What is striking in this analysis is that the most favourable reduction in the 

returns' dispersion is obtained during the sub-prime meltdown and the 

following credit crunch. Two possible explanations for this observation are 

most likely: First, during pronounced downturn phases and crashes, fund 

managers tend to hold more cash than during other phases. Second, the 

credit crisis was hitting most the companies and financial intermediaries that 

were exposed to the mortgage market, were highly leveraged or were related 

with the real estate market and fund managers could have reduced their 

holdings in these companies and sectors.  

Again, looking at the style FoFs in Exhibits 2.2.a. and 2.2.b. reveals further 

insight, as the value FoFs are always less volatile than the benchmark, while 

the growth FoFs seem to be more or less dispersed in their returns compared 

to the benchmark depending on the time interval under consideration.  

Analyzing the minimum and maximum annualized standard deviations, i.e. 

the best diversifying and worst diversifying style-neutral FoFs and the 

respective style counterparts in Exhibits 2.10. in the appendix, we obtain the 



 

48 

usual picture of more stable value and more dynamic growth funds versus 

the benchmark. 

Having analyzed the first and second moments of the synthetic FoFs versus 

the benchmark, we can state the following intermediate results: The average 

return of the fund portfolios against the benchmark shows that over- and 

under-performance change during the course of time and under-performance 

versus the benchmark appears to be first, more likely and second, more 

severe. The more dynamic and time-dependent nature of the growth funds is 

partially offset by the value funds, which holds true for both the mean 

returns as well as the returns’ dispersion. For the measure of dispersion (i.e. 

the standard deviation), we find that building style-neutral fund portfolios is 

indeed reducing the volatility of returns when being compared to the S&P 

500. The clear reduction however, is merely the result of the fact that the 

value funds are less volatile than the index in almost all periods.  

Considering only the first two moments of the portfolio and benchmark 

returns does not yield a satisfactorily clear picture of whether a style-neutral 

FoF may be advantageous over a benchmark investment or style FoFs and 

whether the benefits of diversification are more powerful than the 

disadvantages caused by countering styles and the so-called portfolio 

deadweight. A deeper insight is possible by taking into account higher 

moments of the returns and the tail behaviour.  

Looking at the skewness differences in Exhibits 2.3.a. and 2.3.b., we can see 

that in contrast to the mean and standard deviation graphs, the value and 

growth parts that constitute the style-neutral FoFs are more similar to each 

other with respect to the behaviour against the benchmark over time. In 

addition, we see that the building of style-neutral fund portfolios does not 

result in a significant smoothing of the returns skewness. This may stem 

from the fact that the skewness of the funds is a more characteristic and 

time-dependent measure than a style or skill dependent measure for asset 

returns (although more variation is seen in the growth sub parts again).  
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Exhibit 2.3. Difference in average skewness for style-neutral FoFs against the 

benchmark 

 

 

Exhibit 2.3.a. Difference in average skewness for value FoFs against the 

benchmark 
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Exhibit 2.3.b. Difference in average skewness for growth FoFs against the 

benchmark 

 

The difference in kurtosis for the FoFs and their sub-parts are shown in 

Exhibits 2.4.a. and 2.4.b. Although we can see a similarity to the skewness 

difference plots above with the two styles not differing as largely as when 

being investigated via the first two statistical moments, we see that the 

kurtosis is not reduced against the benchmark returns’ kurtosis. This result 

is puzzling due to the following reasons: As one might expect that the 

building of style-neutral FoFs should result in a reduction in the tail 

concentration and a return distribution more centered around the mean, the 

expected result on the kurtosis is ambiguous. The technical fact that the 

kurtosis measure is increasing for larger tail concentration as well as for 

higher probability around the mean does not allow for a final conclusion 

concerning the style-neutral FoF behaviour, as the two expected effects have 

opposing influences on the value of the kurtosis. 
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Exhibit 2.4. Difference in average kurtosis for style-neutral FoFs against the 

benchmark 

 

 

Exhibit 2.4.a. Difference in average kurtosis for value FoFs against the benchmark 
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Exhibit 2.4.b. Difference in average kurtosis for growth FoFs against the 

benchmark 

 

 

As for the mean and standard deviation plots, we have left the minimum and 

maximum plots in the Appendix, where in Exhibits 2.11. are the skewness 

differences, and in Exhibits 2.12. the kurtosis plots are found.  

The fact that the amplitude of all results is greater for the growth sub FoFs 

may be the result of either the fact that the growth funds had a larger 

variation against the benchmark over time and portfolio sizes or because of 

the fact that the sample size consisted of more growth than value funds 

(making the possible range larger although restricting single portfolio sizes 

to 24), or a combination of both. Besides delivering interesting insights, 

having analyzed the first four moments separately did not yield a final 

conclusion concerning the appropriateness and usefulness of building style-

neutral FoFs. We therefore take the analysis to the field of performance and 

risk measures. As described in Section 2.3., the R ratio serves as a measure 

that takes into account both reward and risk, while not being flawed by any 

assumptions and restrictions, like many classical risk and reward measures. 
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Furthermore, the behaviour of FoFs against the benchmark is adequately 

tracked by this reward to risk ratio, a feature that is highly desirable when 

considering equity markets in general and especially when recalling the 

somehow puzzling results from the kurtosis plots.  

For the analysis of the R ratio over time, we have chosen to use 40% and 

1% as the percentages for the reward (or outperformance) term and the risk 

(or underperformance) measures that constitute the R ratio. In the explained 

interpretation, the ratio serves as a measure that is putting the “average” 

excess returns against the risk of severe underperformances on the weekly 

horizon. Put another way, it is the average excess returns in the nominator 

controlled for misplaced aggressive bets of fund managers that lead to 

underperformance as measured by the denominator.  

The R ratio in this context is informative on whether we can expect that 

building style-neutral FoFs is resulting in a controlled outperformance of the 

benchmark. As there is no pre-defined number indicating whether the ratio 

is high or low, we can compare the ratios of value, growth and neutral FoFs 

with each other, thereby getting a glance at the differences in the 

benchmark-relative performance. Exhibits 2.5.a. to 2.5.d. depict the R ratio 

over time. We can see the direct comparison in Exhibit 2.5.b., where the 

style-neutral FoFs are covered by the dark value and growth FoF R ratios. 

Only in periods where the light-gray surface is above the dark coverings, the 

style-neutral FoFs have outperformed both types of style FoFs with the 

same number of funds included. As we can see, this seldom happens, 

pointing towards the notion of a countering of styles and therefore a 

mediocre mixture of both investment styles.  
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Exhibit 2.5.a. Average R ratio of the style-neutral funds of funds. 

 

 

Exhibit 2.5.b. Average R ratio of the style-neutral funds of funds and the sub funds 

of funds 
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Exhibit 2.5.c. Average R ratio of the value sub funds of funds 

 

 

Exhibit 2.5.b. Average R ratio of the growth sub funds of funds 
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While it comes as no surprise that the mixture of differing styles results in 

an averaging out of characteristics, we can state that the “best of both 

worlds” may perhaps be obtained, but seemingly not with a 50/50 allocation 

to the two opposing strategies. As the differing styles are resulting in largely 

differing return and risk schemes in the various periods, we expect a FoF 

shifting between styles to be superior to a FoF locked in at 50/50 - given the 

ability to identify the best time to shift, of course. This result is related to the 

findings from the geometric mean analysis, where a similar pattern of time-

depending performance differences was observed and pointed at an 

averaging process that may be beneficial or harmful, depending on the time 

period analyzed.  

The implication of an averaging process caused by the mixture of both 

styles in equal proportion is further strengthened when building the average 

for all statistics over all 209 periods. Getting rid of the time-dependent 

effects, we present in Exhibit 2.6., 2.7. and 2.8. the average of the mean, 

minimum and maximum of the descriptive statistics and the R ratio for the 

10.000 simulated portfolios of each class.  

We can see that there is no a priori benefit of building style-neutral FoFs 

when analyzing the mean returns, the returns’ standard deviations and the R 

ratios that are obtained on average, as seen in Exhibit 2.6. While both 

classes seem to underperform against the benchmark, the neutral FoFs do so 

too, of course. The averaging process and the effects of diversification 

nevertheless reduce the volatility of the returns, but to a moderate degree 

only. Regarding the R ratio, we can state that the process is leading to a 

result that again implies that style-neutrality is not generally beneficial to 

risk adjusted returns, although we need to take into account that the average 

values are not telling the whole story concerning the risk-adjusted 

performance measure. Therefore, the respective minimum and maximum 

values for the respective statistics for the 10.000 FoFs of all classes are 

shown in Exhibits 2.7. and 2.8.  
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Size Mean Return Standard Deviation R ratio 

 Neutral Value Growth Neutral Value Growth Neutral Value Growth 

2 -1,14% -0,84% -1,39% 0,02% -0,56% 0,75% 0,36 0,38 0,35 

4 -1,10% -0,81% -1,34% -0,30% -0,82% 0,39% 0,36 0,38 0,36 

6 -1,08% -0,80% -1,32% -0,40% -0,91% 0,26% 0,36 0,39 0,36 

8 -1,08% -0,79% -1,31% -0,46% -0,95% 0,20% 0,36 0,39 0,36 

10 -1,07% -0,79% -1,31% -0,49% -0,98% 0,16% 0,36 0,39 0,36 

12 -1,07% -0,79% -1,31% -0,52% -1,00% 0,13% 0,36 0,39 0,36 

14 -1,07% -0,79% -1,30% -0,53% -1,01% 0,12% 0,36 0,39 0,36 

16 -1,07% -0,79% -1,30% -0,54% -1,02% 0,10% 0,36 0,40 0,36 

18 -1,07% -0,78% -1,30% -0,55% -1,03% 0,09% 0,36 0,40 0,36 

20 -1,06% -0,78% -1,30% -0,56% -1,03% 0,08% 0,36 0,40 0,36 

22 -1,06% -0,78% -1,30% -0,57% -1,04% 0,08% 0,36 0,40 0,36 

24 -1,06% -0,78% -1,30% -0,57% -1,04% 0,07% 0,36 0,38 0,36 

 

Exhibit 2.6. Average statistics for FoFs versus the S&P 500 over all 209 time 

periods of the average of the respective statistic for 10.000 simulated portfolios for 

value, growth and neutral FoFs 

 

A large dispersion of results is obtained, implying that it greatly depends on 

which funds were selected by the random number generation for the time 

spans. For the R ratio as an example, the measure is becoming very low for 

the worst FoFs, while the highest ratios are more than twice the average. 

While this is seemingly in contrast to the implied notion of countering styles 

and cancelling out of active bets of target fund managers as discussed above, 

one may not interpret these results as evidence against those notions. This is 

because the average values for minimum and maximum achieved results are 

very unlikely to be obtained in practice, as it is most unlikely that a fund 

selection process would result in the minimum or maximum attainable of 

the respective statistic all of the time. In addition, the fact that the neutral 

FoFs maximum R ratios are higher than those for their style counterparts, 
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but the minimum R ratios are lower, points in the direction that the extremes 

are merely based on the respective FoF mixture, rather than due to a general 

effect. However, the extreme values averages over time show how dispersed 

the results may be, owing to the large differences in the fund sample 

selected. 

 

Size Mean Return Standard Deviation R ratio 

 Neutral Value  Growth Neutral  Value  Growth Neutral  Value  Growth 

2 -11,56% -8,51% -12,60% -2,57% -2,29% -2,48% 0,12 0,17 0,13 

4 -9,47% -6,99% -10,13% -2,44% -2,22% -2,25% 0,11 0,17 0,14 

6 -7,99% -5,82% -8,47% -2,22% -2,07% -1,94% 0,14 0,20 0,16 

8 -6,98% -4,99% -7,42% -2,06% -1,93% -1,73% 0,16 0,23 0,18 

10 -6,28% -4,33% -6,70% -1,92% -1,83% -1,56% 0,18 0,25 0,20 

12 -5,79% -3,81% -6,15% -1,81% -1,73% -1,41% 0,19 0,27 0,21 

14 -5,37% -3,36% -5,68% -1,73% -1,65% -1,31% 0,20 0,29 0,22 

16 -5,01% -2,96% -5,32% -1,66% -1,57% -1,20% 0,21 0,31 0,23 

18 -4,75% -2,57% -4,98% -1,59% -1,50% -1,11% 0,22 0,32 0,24 

20 -4,49% -2,18% -4,71% -1,54% -1,41% -1,03% 0,23 0,34 0,25 

22 -4,27% -1,72% -4,45% -1,49% -1,30% -0,96% 0,24 0,36 0,26 

24 -4,09% -1,14% -4,23% -1,44% -1,15% -0,90% 0,24 0,38 0,26 

 

Exhibit 2.7. Average statistics for FoFs versus the S&P 500 over all 209 time 

periods of the minimum of the respective statistic for 10.000 simulated portfolios 

for value, growth and neutral FoFs 
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Size Mean Return Standard Deviation R ratio 

 Neutral Value Growth Neutral Value Growth Neutral Value Growth 

2 10,45% 7,01% 11,70% 4,29% 2,21% 5,55% 0,77 0,68 0,74 

4 8,22% 5,60% 8,44% 2,92% 1,35% 3,99% 0,80 0,70 0,73 

6 6,40% 4,42% 6,49% 2,13% 0,78% 3,10% 0,72 0,63 0,67 

8 5,31% 3,54% 5,28% 1,67% 0,40% 2,58% 0,67 0,59 0,63 

10 4,52% 2,86% 4,44% 1,35% 0,11% 2,22% 0,63 0,56 0,59 

12 3,91% 2,33% 3,82% 1,11% -0,11% 1,95% 0,60 0,53 0,57 

14 3,47% 1,86% 3,34% 0,94% -0,28% 1,75% 0,58 0,52 0,55 

16 3,09% 1,43% 2,92% 0,80% -0,42% 1,60% 0,56 0,50 0,53 

18 2,79% 1,05% 2,55% 0,68% -0,56% 1,43% 0,54 0,48 0,52 

20 2,53% 0,64% 2,22% 0,58% -0,68% 1,32% 0,53 0,47 0,51 

22 2,28% 0,20% 1,98% 0,48% -0,81% 1,21% 0,52 0,45 0,50 

24 2,05% -0,41% 1,73% 0,42% -0,96% 1,12% 0,51 0,42 0,49 

 

Exhibit 2.8. Average statistics for FoFs versus the S&P 500 over all 209 time 

periods of the maximum of the respective statistic for 10.000 simulated portfolios 

for value, growth and neutral FoFs 
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2.5. Conclusion 

 

By building simulated FoFs for the classes of value, growth and style-

neutral, we analyze whether those fund portfolios are able to outperform the 

benchmark and how they compare with each other. Choosing a simulation 

size of 10.000 portfolios for any of the 3 types of FoFs, 209 windows of 52 

weeks and 12 fund sizes, we first separately analysed the mean, standard 

deviation, skewness and kurtosis of the resulting synthetic portfolios.  

While one could conclude that the average mean return, in comparison to 

the benchmark, is very time-dependent and differing between the style FoFs, 

the style-neutral FoFs seem to average out these characteristics. The 

combining effect is more beneficial when looking at the standard deviation, 

as the standard deviation of the style-neutral FoFs is reduced versus the 

benchmark. However, this effect is strongly influenced by the generally 

lower dispersion of returns in the value sector.  

As the skewness and kurtosis effects are not as easy to judge as the first two 

moments, and since the kurtosis results are especially difficult to interpret, 

we focused on the tails of the synthetic FoF benchmark relative return 

distributions, using the R ratio. Being informative on the average 

outperformance distribution of a portfolio versus the benchmark and 

controlling for severe underperformances, the R ratio shows that building 

style-neutral FoFs do indeed result indeed in an averaging process, i.e. the 

style-neutral FoFs are merely composites of two opposing styles. This 

indicates that a mixture of those is not yielding a structure of style-neutral 

FoFs outperforming both styles in a period. 

We can therefore conclude that building style-neutral FoFs is reducing 

uncertainty and the amplitude of various return and risk measures, but a 

distinctive “best of all worlds” effect is not obtained. For a FoF manager 

willing to achieve a mediocre and stable pattern of returns, the style-neutral 
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approach may serve the purpose, but for strong risk-adjusted 

outperformance – and this has to be the aim for any manager – a shifting 

between the styles could yield more favourable results if the timing is right. 

However, as most combinations analyzed in the study already underperform 

the benchmark, there is no need to dig into fee discussions or any 

survivorship bias effects. 

Further research could be done in the field of shifting between styles in 

FoFs, or put another way, how to find the optimal proportion of the style 

and growth allocation in a FoF that is investing in both styles and is not 

locked in at 50/50. In addition, the financial market crisis and the credit 

crunch with severe drawdowns in global equity markets have surely had 

their impact on the results, which was obvious in the mid and late 2007 

periods as well as in the beginning of 2008. While the fund managers could, 

of course, have chosen to hold more cash and to reduce the holdings of 

companies most affected, the crisis had its impact not only through the raw 

performances but also through the changing of valuations of companies and 

therefore a changing picture of price-to-book ratios. While the rapid decline 

in prices of stock led to a decline in this ratio, companies may have become 

more of the value type in general until depreciations were made and book 

values changed or the markets recovered. This makes the identification of 

value and growth more complicated and the shifting in the funds’ 

compositions would be highly interesting in case of data availability.  

However, the general results found and conclusions made are fairly stable 

over time and are not the result of the particular stage of time of the credit 

crisis. The fact that the style-neutral FoFs are protecting from the worst, but 

make the best unattainable, holds throughout the time span analyzed, only 

with changing levels.  
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2.7. Appendix 

   
Exhibit 2.9.a. Difference in lowest annualized 

geometric mean return for style-neutral FoFs against the 
benchmark 

Exhibit 2.9.b. Difference in lowest annualized 
geometric mean return for value sub FoFs against the 

benchmark  

Exhibit 2.9.c. Difference in lowest annualized 
geometric mean return for growth sub FoFs against the 

benchmark  

   
Exhibit 2.9.d. Difference in highest annualized 

geometric mean return for style-neutral FoFs against the 
benchmark  

Exhibit 2.9.e. Difference in highest annualized 
geometric mean return for value sub FoFs against the 

benchmark  

Exhibit 2.9.f. Difference in highest annualized 
geometric mean return for growth sub FoFs against the 

benchmark  
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Exhibit 2.10.a. Difference in lowest annualized 

standard deviation for style-neutral FoFs against the 
benchmark 

Exhibit 2.10.b. Difference in lowest annualized 
standard deviation for value sub FoFs against the 

benchmark  

Exhibit 2.10.c. Difference in lowest annualized standard 
deviation for growth sub FoFs against the benchmark  

   
Exhibit 2.10.d. Difference in highest annualized 

standard deviation for style-neutral FoFs against the 
benchmark  

Exhibit 2.10.e. Difference in highest annualized 
standard deviation for value sub FoFs against the 

benchmark  

Exhibit 2.10.f. Difference in highest annualized 
standard deviation for growth sub FoFs against the 

benchmark  
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Exhibit 2.11.a. Difference in lowest skewness for style-

neutral FoFs against the benchmark 
Exhibit 2.11.b. Difference in lowest skewness for value 

sub FoFs against the benchmark  
Exhibit 2.11.c. Difference in lowest skewness for 

growth sub FoFs against the benchmark  

   
Exhibit 2.11.d. Difference in highest skewness for 

style-neutral FoFs against the benchmark 
Exhibit 2.11.e. Difference in highest skewness for value 

sub FoFs against the benchmark  
Exhibit 2.11.f. Difference in highest skewness for 

growth sub FoFs against the benchmark  
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Exhibit 2.12.a. Difference in lowest kurtosis for style-

neutral FoFs against the benchmark 
Exhibit 2.12.b. Difference in lowest kurtosis for value 

sub FoFs against the benchmark  
Exhibit 2.12.c. Difference in lowest kurtosis for growth 

sub FoFs against the benchmark  

   
Exhibit 2.12.d. Difference in highest kurtosis for style-

neutral FoFs against the benchmark funds 
Exhibit 2.12.e. Difference in highest kurtosis for value 

sub FoFs against the benchmark  
Exhibit 2.12.f. Difference in highest kurtosis for growth 

sub FoFs against the benchmark  
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3. R Ratio Optimization with Heterogeneous 

Assets using Genetic Algorithm 

 

3.1. Introduction 

 

In this chapter, we propose a framework to portfolio optimization that is 

superior to mean-variance approaches utilized for asset allocation. We show 

how a portfolio with heavily differing asset types in various market phases 

can be managed efficiently by using a ratio-based portfolio optimization 

approach and provide a general solution to related optimization problems 

and the technical challenges arising from them. 

Since the formulation of the portfolio selection theory, as formulated by 

Markowitz (1952), portfolio selection has been among the most discussed 

finance topics in both the theory and practice of finance. As a result, a large 

body of research work has emerged. Although the mean-variance approach 

allows a portfolio manager to identify the efficient frontier, risk-reward 

measures must be utilized to select the optimal portfolio given the investor’s 

risk aversion. The most commonly used measure is the Sharpe ratio 

proposed by Sharpe (1964) and its extension (Sharpe, 1994). The Sharpe 

ratio focuses on portfolio compositions of assets that maximize the ratio of 

expected portfolio returns to the variability of the returns. 

While the combination of the basic objectives of investing ─ maximizing 

reward and minimizing return variability or risk – is still the baseline for 

portfolio optimization approaches and frameworks, the measures and tools 

employed have changed. The mean-variance framework and the Sharpe 

ratio generally refer to the trade-off between reward and uncertainty (or 
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variability); however, measures that try to capture risk instead of uncertainty 

have become increasingly popular. While there is still considerable debate 

on the most desirable and important properties of risk measures in portfolio 

theory9 , recent approaches mainly share the same crucial characteristic, 

namely a focus on the tails of the return distributions. Among those 

measures, ratios that relate portfolio reward to portfolio (tail) risk have 

gained greater attention10.  

With this chapter, we contribute to the existing literature by providing a 

portfolio optimization method that is both independent of any distributional 

assumptions and may be used with any combination of assets, not being 

limited to benchmark-related problems. These properties are especially 

important when considering flexible and complex financial market products 

and the active management of portfolios containing them. One example is 

the fund of funds (FoF) product because it requires careful allocation of 

capital by FoF managers in order to achieve value added for investors11. 

This stems from the fact that for FoFs normally a very large universe of 

target funds may be available, depending on the products’ specification. If 

the universe of possible fund investments is very heterogeneous, the task of 

portfolio management is even more complicated. We use such a 

heterogeneous set of target funds with a sample of two very different types 

of real estate investment funds that are highly suitable for our study. The 

framework presented in this chapter may be applied to any combination of 

assets though, for example for bond and equity portfolios or even for direct 

investments rather than fund investments. 

We use a modified version of the Rachev ratio (R ratio) introduced in 

Chapter 2, which is a reward-to-risk ratio that is free from distributional 

assumptions. However, optimizing this ratio makes the solution of a non-

quasi-convex optimization problem necessary. As this technical issue is 

                                                 
9
 See Rachev et al. (2007) for an extensive study of risk and reward measures in 

portfolio management. 

10
 See Farinelli et al. (2009) for applications and comparisons of tail ratio measures.  

11 See Stein et al. (2008) for a general introduction to funds of funds. 
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very general and applies to all ratio problems that may have a negative 

denominator, we propose genetic algorithms as a general solution method 

for all ratio problems being non-quasi-convex. We show that although the 

span of possible solutions is very large due to the heterogeneous fund types 

that are candidates for inclusion in the portfolio, genetic algorithm solves 

the optimization problem efficiently and for all periods without the problem 

of numerical instability for the solution. 

The chapter is organized as follows. In Section 3.2. we explain the 

methodology used in our study, namely the statistical measures, the 

optimization approach, and the genetic algorithm for solving the problem at 

hand. We introduce the data and the implications of the differing fund type 

properties in Section 3.3. The portfolio optimization results are presented in 

Section 3.4. and our findings are summarized in Section 3.5.  

 

3.2. Rachev Ratio, Portfolio Optimization and the Genetic 

Algorithm 

 

We begin with the R ratio12. This return to risk measure uses the expected 

tail loss (equivalent to the conditional value at risk, CVaR for continuous 

distributions), generally being defined as: 

( ) ( )( )pppp rVaRrrErETL αα −− >−−= 11 0,max)(
  

where )(1 prETL α−  is the expected tail loss with tail probability α for 

portfolio returns pr . Common choices for α are 1% or 5% in accordance 

with common choices of the confidence levels 99% and 95% used for value-

at-risk (VaR) and other risk measures. As noted earlier, ETL goes beyond 

                                                 
12

 For extensive discussions and applications concerning the R ratio and related 
risk and performance measures see Biglova et al. (2004), Rachev et al. (2005), 
Okuyama and Francis (2007), Rachev et al. (2008) and Farinelli et al. (2009). 
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traditional VaR by providing information on the expected loss in the case of 

a tail event instead of furnishing information only on the loss not be 

exceeded with the respective confidence level13. 

For the R ratio, the measure of expected tail loss is used in the following 

way: The nominator is defined as the ETL with probability α of the negative 

of the excess return of a portfolio over the benchmark. Conversely, the 

denominator is the ETL with probability β  of the excess return of a 

portfolio over the benchmark. Defining the ratio this way, one obtains a 

measure of the estimated outperformance controlled for the severity of 

underperformances of a portfolio against the benchmark:  

( )
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In this study, we do not use a benchmark because we combine very different 

fund types, so we set Br  to zero and therefore have the modified R ratio 

being defined as: 
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By using this ratio, one obtains a measure for absolute expected gains at a 

given probability level divided by the absolute expected losses at another 

probability level. Sensible percentages for probability level α  are, for 

example, 30-40% to get a reward term that focuses on the upper 30-40% of 

the return distribution, while probability level β  could be chosen to be 1% 

or 5% to take into account the highest expected losses and to be in 

accordance with common risk metrics. 

Having defined the ratio to optimize the FoFs, we need to impose sensible 

restrictions and bounds prior to solving the problem. As normally a FoF is 

of the long only type, we impose the typical no short-selling constraint. 

Furthermore, we restrict the maximum weight of any fund to 20% to obtain 

                                                 
13 See Sortino and Sachell (2001) and Rockafellar (2002) among others concerning 
VaR and CVaR / ETL.  
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sensible results that are in accordance with practical portfolio management 

and often seen regulatory or compliance restrictions. In addition, we impose 

the classical full investment constraint and restrict the outcomes to 

portfolios with positive expected returns14. 

The problem therefore takes the following form: 

( )
( )rwETL

rwETL
rR

T

T

p
w

β

α

−

− −
=

1

1)(max  

∑ = 1iw
 (full investment constraint) 

2.00 ≤≤ iw
 (long-only constraint and upper limit of 20%) 

0>rwT

 (positive expected return) 

with rwr T

p =  being the portfolio returns for the vector of fund weights w  

and the vector of fund returns r . We have chosen to maximise the R ratio 

with probability levels of 33% in the nominator, i.e. the upper third of the 

return distribution and 1% for the denominator, i.e. the lower 1% of the 

return distribution. Defining the ratio that way, we obtain a moderate and 

not very aggressive measure for the reward, controlled for the most severe 

expected losses during one period: 
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We will contrast the results with other optimizations, for which the same 

restrictions and bounds were applied. The following optimizations were 

performed, thereby setting benchmark values as well as riskless rates of 

return to zero for achieving comparable results: 

                                                 
14

 The decision whether to impose the restriction for positive expected returns of a 
portfolio needs to be based on the available asset types, since depending on the 
market situation no solution may be obtained if all or most assets had a negative 
return in the estimation period. In our case, it is always possible to obtain positive 
expected portfolio returns.  
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Sharpe-ratio (SR) optimization: 
( )rw

rw
rS

T

T

p
w δ

=)(max  

Expected Tail Loss (ETL) Minimization: )(min %99 rwETL T

w
 

Expected Tail Gain (ETG) Maximization: )(max %67 rwETL T

w
−  

Optimizations, as presented above, were performed due to the following 

considerations: The Sharpe Ratio is used to check whether the distribution 

and tail focussed measures are truly superior to their mean-variance 

counterparts. The minimization of the expected tail loss has become a 

popular approach in portfolio optimization in the recent past and the 

expected tail loss is the denominator of our non-benchmark related R ratio, 

i.e. the risk part of the ratio. As the risk part of the ratio is used for a stand-

alone optimization, it is natural to use the reward term as a single objective 

too, in order to analyze whether it is one term or the interplay of the two 

terms that delivers the best result.  

While the SR, ETL, and ETG optimizations can be done using derivative 

based solving routines or linear programming routines (the solutions may 

lead to local minima however), the R ratio introduces more challenging 

computational issues. Generally, performance ratio optimizations may cause 

several issues related to solving the problem at hand. The ratio may turn out 

to be unbounded, which is a very general argument that is valid for all 

performance ratios with a possibly negative denominator. 

For the R ratio in particular, there are additional complications because the 

problem is not quasi-convex. This means it cannot be reduced to a convex 

problem with the usual techniques, implying there may be many local 

extremes. However, even if problems are not quasi-convex, they can still be 

solved with traditional convex techniques (we have to keep in mind that the 

solution is only local nevertheless) but on the condition that the ratio is 

continuously differentiable twice. As the ETL function used in the R ratio 

does not have a first derivative for all portfolios as well as for small sample 

sizes and/or low tail probabilities, the issue of numerical instability may 
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arise nevertheless. Thus, the optimization may not converge generally 

because of two reasons ─ either we have a case in which the ratio is 

unbounded, or the derivatives which the traditional convex optimization 

methods require are numerically unstable. 

We resort to the class of genetic algorithms to solve the optimization 

problem outlined above. Classified as heuristic methods for global search 

problems, genetic algorithms are procedures that behave like natural, 

evolutionary processes. The origin of genetic algorithms dates back to the 

1950s with Barricelli (1954 and 1957), Fraser (1957) and Fraser and Burnell 

(1970) heavily influencing the use of genetic algorithms in computer 

applications. Over the course of time, genetic algorithms have found their 

way to applications and research in finance and economics. For recent 

examples, see Dempster and Jones (2001), Hryshko and Downs (2004), Lai 

and Li (2008), and Lin and Liu (2008), among others. 

Generally, optimization using genetic algorithms is done by successively 

generating “populations” of solutions. Starting the search, random 

combinations of individuals are formed, for which all individuals are 

evaluated concerning their fitness, i.e. their contribution with respect to the 

objective function. In any following iteration, the current population is used 

to build the next generation. This is done by selection based on the fitness of 

individuals, randomly re-combining populations and mutating individuals. 

In our case the fitness function is the R ratio as a function of the return 

vectors and of the weights of the funds in the FoF, the population is the 

portfolio composition. This means that the genetic algorithm is successively 

building fund compositions and the evaluation of any fund’s contribution to 

the fitness (i.e. to the maximization of the R ratio) is indicative on the 

following compositions.  

While the use of genetic algorithms is often induced by computational 

necessities as in our case, they have a very beneficial side effect: The 

genetic algorithms search for global minima and therefore one obtains a 
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very robust solution to the problem at hand and is not left with a local 

minimum or corner solutions.  

 

3.3. Real Estate Funds: Data and Implications for Portfolio 

Optimization 

 

In this section we describe our data sample and the implications of the data 

properties. The two types of funds used in this study are real estate mutual 

funds and German open-ended real estate funds. The former funds invest in 

companies in the real estate sector and in real estate-related companies. 

These companies need not be Real Estate Investment Trusts (REITs). 

Candidate companies are those doing business mainly through the 

development, management or trading of real estate properties. In addition, 

real estate companies that are qualified as REITs are tax-exempt under the 

requirement of an almost complete distribution of their capital gains. As 

with any type of stock, the stocks of real estate companies that the mutual 

fund managers invest in are traded on exchanges and are therefore priced 

through demand and supply interactions in the equity market. The share 

value can trade at a premium to or discount to net asset value of the 

properties held by the company. According to the share price of the target 

stocks, the daily net asset value of the real estate mutual funds is derived, at 

which fund shares may be redeemed on a daily basis. 

The second asset type used in this study is the German regulated open-

ended real estate funds. According to German investment law, the special 

type of open-end fund must invest directly in property, and most funds focus 

on commercial real estate. As with U.S. open-end funds (mutual funds), the 

fund issues shares at net asset value; that is, there is no premium or discount 

as in the case of a closed-end fund and redemptions are also possible at net 
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asset value on every trading day15. Daily net asset values of the funds are 

determined via rents received, re-valuations of property held (normally once 

per year for each building), sales and acquisitions of properties as well as on 

costs and fees (from property management, consulting services, construction, 

refurbishments). In addition, the funds need to hold large amounts of 

liquidity (mainly cash, overnight money and very conservative bond 

investments) because their investments in very illiquid assets and the daily 

fund inflows and outflows. Due to the German practice of valuation, the 

changes in property values are small and provide a stable and smooth 

pattern over time. This is caused by basing the valuations on the long-term 

expected rents to be received (a long-term sustainable rental income method) 

by holding the property and is in contrast with mark-to-market oriented 

valuation methods seen in many other jurisdictions. In addition, especially 

for large portfolios, the smoothing effect is even greater because the assets 

re-valuation is distributed over the year, rather than taking place at one time 

for all properties held. For these reasons, open-ended real estate funds 

typically exhibit a very stable and non-volatile pattern over time16. 

Using these two kinds of real estate investments results in a very 

heterogeneous sample what represents a common problem for FoF 

managers. The problem of not having a benchmark for portfolio selection is 

apparent in this case, too. While FoFs investing in these two types of real 

estate funds (and in related fund types of the real estate sector) are spreading 

in Europe at the time of writing of this study, the combination of safe-haven 

investments and more risky and volatile assets is also common for other 

                                                 
15 If any, there was only very little trading volume of these funds in secondary 
markets during normal market phases. However, the suspension of redemptions by 
some funds (caused by large outflows of money and deteriorating liquidity) in 
October 2008 has led to trading activity on stock exchanges since then. 

 
16 However, in the following of the suspensions of redemptions and the severe 
market downturn, pronounced de-valuations of property have led to drops in assets 
prices for many German open-ended real estate funds. Nevertheless, this does not 
impose a flaw into our study with the focus being on the framework for managing 
very heterogeneous assets. 
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asset classes. Balanced funds or mandates comprising both bonds and stocks 

or bond and equity funds are examples of related problems. The nature of 

those changes primarily with respect to the combination of the differing 

asset types and the respective weightings.  

As indicated above, the two types of real estate funds differ significantly 

with respect to their return characteristics and statistical properties. Apart 

from some exceptions the typical open-ended real estate fund were returning 

between 3% to 6% per year with small daily movements in the net asset 

value and an annualized standard deviation of less than 1%. In contrast, the 

real estate mutual funds are exhibiting high volatility and leptokurtotic, 

skewed return distributions, and are prone to tail events that are typical for 

equity investments.  

For each class we have included 10 funds with Europe as their main 

investment region. Using weekly total return data from Thomson Financial 

DataStream until end of October 2008, we have chosen end of October 2003 

as our beginning date to have five years of data. As we use a rolling window 

of 52 weeks, we have 209 periods and therefore four years with largely 

differing market periods for the fund portfolio optimization.  

Exhibits 3.1. and 3.2. show the used funds and the descriptive statistics. 

From the statistics it is evident that the two fund types are very different 

from each other and that any assumption of normality of the return 

distributions fails.  

Furthermore, Exhibit 3.3. is displaying the very time-dependent 

performance of the real estate equity funds and the fairly stable return 

patterns of the German open ended real estate funds. 
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German Open 
Ended 
Real Estate Fund 

Mean 
Stand. 
Dev. 

Weekly 
Min 

Weekl
y Max 

ETL 
99% 

Max. 
Drawd

own 
Jarque-Bera 

AXA Immoselect 4,78% 0,60% -0,21% 0,68% -0,16% -0,21% 2.352,18*** 

Commerz Real 
Hausinvest Europa 4,27% 0,83% -0,19% 0,72% -0,18% -0,36% 691,43*** 

Credit Suisse 
Euroreal 4,21% 0,31% 0,00% 0,23% 0,00% -0,00% 59,51*** 

Deutsche Bank 
Grundbesitz Europa 6,59% 4,77% -6,33% 4,32% -3,19% -6,33% 2.6969,81*** 

DEGI Europa 3,18% 0,90% -0,08% 1,71% -0,05% -0,08% 193.716,98*** 

DEKA Immobilien 
Europa 4,27% 0,77% -0,19% 0,72% -0,18% -0,19% 1.400,83*** 

iii Euro Immoprofil -0,57% 1,66% -2,81% 0,69% -1,61% -3,61% 92.949,90*** 

UBS Euroinvest 
Immobilien 5,89% 0,98% -0,14% 1,24% -0,11% -0,14% 5.421,51*** 

Union Investment 
Uniimmo Deutschl. 3,83% 1,66% -1,45% 2,63% -0,78% -1,45% 60.209,68*** 

WestInvest 1 2,87% 1,06% -1,32% 0,66% -0,80% -1,32% 12.933,74*** 

Exhibit 3.1. Statistics of Data for German Open Ended Real Estate Funds 

Notes: Annualized (linear) returns and standard deviation. ***, **, and * denote 

significance at the 1%, 5%, and 10% levels (rejection of the normal distribution). 

Data source: Thomson Financial Datastream 
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Real Estate Equity 
Fund 

Mean 
Stand. 
Dev. 

Weekly
Min 

Weekl
y Max 

ETL 
99% 

Max 
Drawdo

wn 
Jarque-Bera 

Amadeus European 
Real Estate 
Securities Fund -9,63% 22,36% -21,86% 6,60% -15,74% -72,36% 1.316,72*** 

Credit Suisse 
European Property -4,74% 21,31% -17,60% 7,09% -14,66% -64,72% 492,47*** 

Dexia European 
Property Securities -4,09% 20,62% -19,00% 7,18% -15,13% -62,84% 1.036,17*** 

Henderson Horizon 
Pan European 
Equities Fund -5,23% 20,33% -18,26% 5,73% -14,70% -68,86% 874,33*** 

Morgan Stanley 
European Property 
Fund -6,38% 21,62% -19,48% 5,81% -15,22% -66,67% 794,58*** 

AXA Aedificandi 0,87% 21,30% -20,92% 6,73% -15,57% -58,79% 1.462,06*** 

ESPA Stock Europe 
Property -0,55% 18,14% -13,69% 5,49% -10,92% -58,94% 243,19*** 

Pioneer Eastern 
Europe Stock  -2,16% 30,49% -24,56% 18,87% -19,58% -68,11% 633,07*** 

ING Invest 
European Real 
Estate -2,28% 20,93% -16,65% 6,96% -13,24% -60,57% 347,92*** 

Constantia 
European Property -5,14% 20,58% -12,84% 8,24% -10,65% -64,94% 84,28*** 

Exhibit 3.2. Statistics of Data for Real Estate Equity Funds 

Notes: Annualized (linear) returns and standard deviation. ***, **, and * denote 

significance at the 1%, 5%, and 10% levels (rejection of the normal distribution). 

Data source: Thomson Financial Datastream 
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Exhibit 3.3. Total returns of the 20 funds used 

 

3.4. Optimization Results 

 

We show the results of the dynamically optimized fund portfolios in this 

section. As the algorithm is seeking to minimize the fitness function, we 

took the negative of the R ratio to maximize it. It is clear that the possible 

results can be very dispersed when considering the minimum (0,0587) and 

maximum (infinite for the fund with zero ETL and 21,391 for the other 

funds) values of the R ratio of the 20 funds during the testing period. Even 

though the imposed boundaries greatly reduce the span of possible results, 

the dispersion is, of course, still huge. 

First, we checked whether a common derivative-based optimization routine 

would find solutions to the problem. In almost all periods this approach 

failed, although the maximum allowed iterations and function evaluations 

have been set to almost impractically high values. This comes as no surprise 
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when keeping in mind the numerical problems discussed in Section 3.2. We 

therefore went on with the analysis using the genetic algorithm to optimize 

fund portfolios with respect to the R ratio.  

Exhibit 3.4. shows an arbitrarily picked example (from the week ending 

September 15, 2006) of the 209 optimizations. From the subplot bottom left 

showing the cause of termination we see that the algorithm found a solution 

to the problem after only 19 generations, which was within the span of 

maximum iterations allowed (set to 100).  

Please note that while it is the aim to have a converging optimization result, 

the speed of achieving this depends on the calibration as well. If one opts to 

have a more precise maximization or minimization of the problem at hand, 

one may use a smaller grade of change in the fitness function from one 

iteration to the next that may be allowed before stopping and vice versa. For 

smaller changes allowed until stoppage, the points in the upper left part of 

Exhibit 3.4. then resemble sort of an asymptotic line approaching the 

minimal value of the fitness function found . 

Furthermore, one can see that with the ongoing process of building fund 

compositions the algorithm approached both the minimum of the fitness 

function (the maximum attainable R ratio in our case, subplot top left) as 

well as the fulfilling of the constraints by minimizing the constraint 

violations (subplot bottom right). The population providing the best solution 

to the R ratio maximization problem is depicted in the subplot at top right, 

showing the composition of the expected R ratio-optimal FoF for the next 

period. For every period, the genetic algorithm converged to an optimum 

without exceeding the limits or constraints, showing the usefulness of its 

application to the problem. 
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Exhibit 3.4. Example of genetic algorithm for solving the R ratio optimization for the estimation period September Week 2, 2005 until September Week 2, 
2006 
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The SR optimization was done by a standard derivative-based optimization. 

For only a handful of periods, optimal portfolios were violating a constraint; 

we then used the previous allocation for that period, not significantly 

influencing the results. For the ETL and ETG optimizations, standard 

derivative-based solving methods were also sufficient and delivered results 

for all 209 periods for both approaches, we did not experience numerical 

instabilities in any of the periods. 

By calculating the portfolio returns when investing the portfolio as indicated 

by the weekly ratio maximization, the performances shown in Exhibit 3.5. 

and summarized in Exhibit 3.6. are obtained. The R ratio optimized 

portfolio clearly outperforms both its Sharpe ratio counterpart that focuses 

on returns to variability as well as the two approaches using either the 

reward or the risk term. As expected, the R ratio FoF has a higher standard 

deviation than the Sharpe ratio portfolio, but only a slightly higher one than 

the risk reduction focused minimum ETL portfolio (the ETG oriented FoF 

has the highest dispersion, of course, as it does not control for either 

variability or risk). It is particularly interesting that the R ratio optimal 

portfolio has a somewhat smaller ETL than the portfolio focusing 

exclusively on that measure. This means that the orientation of the R ratio to 

realize gains and thereby to control for the highest risks works very well for 

our set of heterogeneous assets. A reward to risk ratio as used here is 

therefore highly effective on realizing risk-adjusted returns. This became 

even more clear when calculating the R ratio for all four approaches after 

the optimizations were done. As the ratio should naturally be the highest for 

the approach focusing on it, we can see that indeed this outcome is obtained, 

with a 42% (0,27 to 0,19) higher ratio when being compared with the 

Sharpe and ETL portfolio and a 29% (0,27 to 0,21) higher ratio when being 

compared to the ETG portfolio. 
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Exhibit 3.5. Total returns of the four portfolio optimization approaches 

 

Optimized funds of 
funds over time 

Mean 
Standard 
deviation 

Weekly
Min 

Weekly
Max 

ETL 
99% 

Max. 
Draw-
down 

R ratio 

(67% to 
99%) 

R ratio optimized 
portfolio (67% to 
99%) 7,61% 4,68% -2,93% 2,31% -2,76% -9,08% 0,27 

Sharpe ratio 
optimized portfolio 5,06% 1,69% -1,43% 1,23% -1,31% -2,38% 0,19 

Expected Tail Gain 
optimized portfolio 
(67%) 3,20% 12,59% -7,81% 4,89% -7,71% -39,53% 0,21 

Expected Tail Loss 
optimized portfolio 
(99%) 4,89% 4,36% -3,51% 2,11% -3,11% -7,91% 0,19 

Exhibit 3.6. Statistics of Optimized Portfolios 

Notes: Annualized (linear) returns and standard deviation. 

 

As the statistics of the FoFs discussed, so far, focused on the weekly 

measures and the distributions, the inter-temporal measures also deserve 

attention. As we can see from Exhibit 3.5., the four approaches led to very 

different return patterns over time. While the ETG portfolio generates large 

returns during the bull phase of the real estate equity markets, the same 

portfolio took a large hit during the correction in the market and the 
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financial market crisis, since no control for risk is implemented. On the 

other side, the large standard deviations of the real estate mutual funds lead 

to very defensive FoF allocations when using the Sharpe ratio. The return 

pattern merely resembles the ones of the German open-ended real estate 

funds, i.e. the Sharpe ratio is missing the upside possibilities due to 

investing heavily in the safe-haven funds. While all three approaches result 

in a lower terminal wealth than the R ratio FoF, the comparison between the 

portfolios based on the R ratio and the ETL turns out to be most interesting 

again. After the R ratio portfolio has realized far more upside returns in the 

bull phase of the real estate equity markets, the drawdown in the following 

post-peak phase (which was in February 2007), was only slightly worse than 

that of the ETL FoF (-9,08% versus -7,91%). This shows again that R ratio 

optimized portfolios may be able to realize upside potentials and, on the 

other hand, limit the severity of losses during downward phases as well.  

However, none of the approaches delivered a return pattern that realized the 

good performance of the equity markets and switched completely into safe-

haven investments during the drawdown period, but this is merely a fact that 

is due to the chosen exemplary estimation window of 52 weeks. Although it 

is questionable that perfectly fitting portfolios are realistic, shorter durations, 

higher frequencies, and other estimation methods for the tails or 

combinations of estimation periods could further enhance the return patterns 

of all four approaches.  

 

3.5. Conclusion 

 

In this chapter, we propose a framework to portfolio optimization that is 

superior to mean-variance approaches utilized for asset allocation. Using a 

very heterogeneous set of funds for which we used real estate funds as an 

example, we show how a portfolio can be managed efficiently by using a 
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ratio-based portfolio optimization approach. We also provide a general 

solution to related optimization problems and the technical challenges 

arising from them. 

The modified R ratio approach used for our benchmark-free optimization 

delivers a FoF performance that is superior to the one obtained when 

performing a Sharpe ratio-based optimization approach as well as when 

employing other tail-dependent optimization frameworks. Our results show 

the appropriateness of the approach that is due to the capability of taking 

into account tail risks and simultaneously realizing gains on the upside.  

Arising computational challenges caused by the non-quasi-convex type of 

the optimization problem are addressed by using a genetic algorithm. The 

genetic algorithm solved the optimization problem efficiently and resulted 

in robust optima, while classical derivative-based algorithms, which in 

addition may result in local minima, failed to solve the problem at hand. As 

the problem of non-quasi-convexity of the optimization is apparent for all 

ratio-based optimizations that may have a negative denominator, we 

propose the use of genetic algorithms for solving such problems in general. 
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4. Broad Market Risk for Sector Fund of Funds: 

A Copula-Based Dependence Approach 

 

4.1. Introduction 

 

If there were still doubts concerning the dependence of sectors in broad 

market downturns, the recent crisis following the sub-prime meltdown and 

the so-called credit crunch have erased those in an impressive manner. 

While sectors or industries may be largely affected by the fundamentals and 

structures in their very own part of the global economy or sub-sectors of 

markets, disruptions and downturns in the general financial markets affect 

them, too. For this reason, it is crucial for managers of sector funds or sector 

fund of funds (FoF) to take into account the dependence structure of their 

underlying industry portfolio on broad market movements. The impact of 

economic and political changes that affect all markets and sub-sectors 

impose a certain minimum of similarity in the behaviour of stock markets in 

different aggregation levels (say from the very specialized sub-part of an 

industry up to the MSCI World). These minimum similarities are 

pronounced when financial market effects lead to broad market movements 

that show up in all industries and sectors, for example through flow-effects, 

market sentiment, de-leveraging and flights to substitute asset classes. While 

these effects are not new in nature, appropriate approaches to deal with them 

are still scarce in nature, and often include strong assumptions or non-

flexible concepts. 

As the degree to which a sector portfolio is affected by market movements 

is a problem of measuring the interdependence between financial variables, 

it is a part of research that has undergone tremendous developments in 
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recent decades, from correlation or covariance-based methods to the use of 

more sophisticated multivariate distribution functions and copulas. We 

combine an asymmetric t copula and stable marginals to measure the 

dependence of a sector FoF on the broad stock market, thereby modelling 

the univariate randomness of the variables adequately as well. As 

information on investment or market risks must be updated in high 

frequencies and on a regular basis, we show how the modelling of the sector 

exposure to broad market risk can be done with a very parsimonious 

approach that reduces the dimensionality of the problem at hand, thereby 

using all relevant information available. A slim approach that is applicable 

even in the presence of few data is of special interest nowadays with the 

industry being highly dynamic and financial assets being generated very 

quickly.  

The estimation procedure has one crucial benefit in practical applications, as 

it may be used on both sides of a FoF, meaning that FoF managers may use 

the approach to model their own broad market dependence structure on the 

one hand, and investors in a specific sector FoF may use the approach to 

model their investment risks with respect to the index which they are willing 

to diversify away from.   

Employing a copula approach with an asymmetric t copula as chosen form 

for the dependence modelling, and stable distributions for the marginal 

distributions of the variables respectively, we generate simulations for the 

market index as well as for the synthetic FoFs of the sector under 

consideration. Both the dependence structure and the univariate randomness 

appear to be modelled very well with our approach, showing the need to 

apply the right sophisticated concepts for modelling financial assets prone to 

tail events, and even more important, tail dependence. From the time-

varying, rolling window estimations we can see that increases in broad 

market tail risk lead to increases in sector portfolio tail risk, but not vice 

versa, indicating a good and unbiased representation of the dependence 

structure as well as the simulation of the realizations for each period under 

consideration.  
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The fact that simulations are generated using the combination of methods at 

hand is especially comforting when it comes to the calculation of measures 

that demand a lot of observations and do not possess closed-form solutions. 

In addition, the fact that the asymmetric approach allows for differing tail-

dependencies on the up-side and the down-side suits the analysis for a FoF 

very well, as the dependence may be skewed due to industry-specific 

characteristics as well as by fund characteristics. Furthermore, changes in 

those characteristics are well tracked by the approach because estimations 

are done using very recent data and therefore short memory.  

Knowing the broad market exposure is especially important for managers of 

or shareholders of sector FoFs in industries for which derivatives are either 

not available or scarce, as in these cases it is especially difficult to reduce 

risk and market exposures. Unfortunately, for some industries, hedging 

considerations therefore simply fail due to the lack of hedging products. 

Employing an approach to measure the joint risks with the general stock 

market for which myriads of derivatives are available may enable sector-

exposed portfolios to be isolated from the broad market movements or at 

least dampen the effects of extreme events. 

Our parsimonious approach for measuring (inter)dependence between 

financial markets and assets where the data input must be very up to date or 

where only a short history of data is available is not limited to FoFs of 

course. However, we consider it especially appealing for the FoF class for 

the following reasons. While many funds are allowed to invest in 

derivatives to hedge their risks, they often abstain from doing so. Reasons 

for doing so include the lack of adequate tools (if the fund is sector focussed 

for example, as discussed above), the costs of hedging may be too high or 

the use of derivatives is regarded as being too exotic a tool in classical asset 

management. However, if the risks are not hedged on the fund level, but 

merely dampened by holding cash positions during downturns (thereby 

forfeiting partial exposures that would be beneficial and incurring a 

considerable inertia into the fund), the FoFs may fail to get the benefit of 

diversification and risk reduction by spreading their allocation over the 
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target funds. This is a special problem for FoFs, because with an increasing 

number of target funds, the marginal contribution from diversification is 

decreasing and characteristics may cancel each other out. With reliable 

measurement of the risks and exposures of the FoF and the market, this 

problem of practical portfolio management may be easily overcome and 

therefore the approach presented in this chapter should be used in practical 

applications not only for risk measurement but for risk management and 

hedging on the FoF level as well. 

The organization of this chapter is as follows. In the next section we review 

the methods used, namely the skewed t copula, stable distributions, and risk 

measures. In Section 4.3, we discuss the approach of the study and the data. 

The empirical results are presented in Section 4.4, showing the application 

of our framework to synthetic technology sector FoFs, and their dependence 

on the broad market represented by the S&P 500. Section 4.5 concludes the 

chapter. 

 

4.2. Asymmetric t Copulas and Stable Paretian Distributions 

 

In this section, we explain the method that we propose to model sector FoF 

dependence on broad market movements, as well as the type of distribution 

that we employ to model the univariate randomness of the single variables.  

To model the dependence structure between the FoF and the index, we use a 

copula function. Copulas have found increasing attention first in academic 

research on financial markets and have made their way to Wall Street and 

many other parts of finance in the following. While the use of copulas 

brings a substantial improvement to the toolboxes that are available for 

financial and economic research, the methods have been discussed in heated 
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debates in the financial industry as well17. We take the view that it is merely 

the application of the right concept for a problem at hand and the difficulty 

of choosing the right form of the copula that is decisive on the way a copula 

model suits the needs of the researcher or practitioner, see Rachev et al. 

(2009). Thus, the use of copulas is advantageous to all currently existing 

methods for measuring dependence if the right concept is applied.  

Generally, the concept of copulas enables one to separate the univariate 

randomness of any variable from the multivariate dependencies by means of 

factorization. A copula represents the true interdependence structure 

between variables while the marginal distribution is informative on the 

univariate randomness of these variables. Therefore, a standardized measure 

of the purely joint features of a multivariate distribution is generated by 

using copulas. We briefly discuss the copula definitions below 18 . The 

cumulative distribution function of a one-dimensional random variable is 

called the grade of a random variable (uniformly distributed between 0 and 

1), and the copula is the distribution of these grades, such that an n -Copula 

[ ] [ ]1,01,0: →
n

C  is an n dimensional distribution function with univariate 

marginal distributions )1,0(U . 

Archimedean (for example Clayton, Frank or Gumbel) copulas are 

calculated over a closed-form solution (being very hard to derive for 

multivariate applications beyond two dimensions however) and do not need 

to be represented by an application of well-known families of multivariate 

distributions using the theorem of Sklar (1959 and 1973). In contrast, 

elliptical (for example Gaussian or Student t) copulas can be derived via 

simulating these multivariate distributions taking advantage of their simple 

stochastic representations. In the recent past, the focus in both academia and 

practice turned to the elliptical class of copula forms. However, a caveat of 

                                                 
17

 See Whitehouse (2005) and Salmon (2009) for example.  

18 See Embrechts et al. (2003), Cherubini et al. (2004), Meucci (2006) and Nelsen 
(2006) for thorough discussions of copulas and their applications in finance.  
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general elliptical copulas is that the upper and lower tail dependence, being 

informative on joint extreme realizations, is identical, due to the radial 

symmetric shape of the elliptical copulas. In addition, a Gaussian copula has 

no tail dependence at all (see Bradley and Taqqu (2003)), and this is the 

main argument against its use in financial market applications from our 

point of view. 

That the Gaussian copula is inappropriate for most financial applications 

due to the aforementioned inability of measuring tail dependence is 

especially interesting in light of the ongoing debate surrounding copula 

functions in financial markets and especially during the credit crisis (see 

Rachev et al. (2009)). The fact that the Gaussian copula has no tail 

dependence at all is stemming from the fact that a multivariate Gaussian 

distribution is the n-dimensional version of a Gaussian distribution, which 

assigns too low probabilities to extreme outcomes. While the use of 

Gaussian distributions in financial market applications is widely accepted as 

being flawed due to the fact that this distribution type attributes too low 

probabilities to extreme observations, the multivariate version still is 

frequently used in copula applications.   

The t copula, or Student copula, does not share the shortcoming of the 

normal copula concerning the tail dependence and enables the modelling of 

joint extreme market outcomes. However, the radial symmetric shape of the 

t copula still leaves a concern regarding the use for financial market data, as 

the upper and lower tail dependence is identical. Thus, the probabilities of 

joint tail events on the downside are equally distributed as the ones on the 

upside. In reality, this may pose problems when modelling markets or assets 

for which this assumption may not hold.  

Improving the features of copula models is the use of asymmetric t copulas, 

which in contrast to the general elliptical copula forms discussed above 

allow for differing tail dependencies as well. Especially in our application of 

a sector FoF and the broad market, this feature is highly desirable as the 

dependence of the FoF may be different when considering upside and 
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downside events. Using the asymmetric t copula, we generate a large 

number of copula scenarios, thereby taking into account the dependence 

between the assets. These copula scenarios are then used to generate 

univariate scenarios for each variable, thereby making use of the inverse of 

the cumulative distribution function of the marginal distribution used for the 

univariate modelling. 

The marginal distribution for the univariate randomness of each asset is 

modelled using the stable Paretian distribution type, in the following simply 

called stable distribution. Basically, the stable distributions generalize the 

normal distribution. While the normal or Gaussian distribution is 

determined by the two parameters location and dispersion, i.e. mean and 

standard deviation, the stable distributions are defined through four 

parameters.  

First, the characteristic exponent ( 20 << α ), called the index of stability or 

stable index, determines the weight of the distribution’s tails. For lower 

values of α , the shape of the distribution is more peaked at the location 

parameter and exhibits fatter tails, parameter value 2 corresponds to the 

normal distribution. Second, the parameter β , which is bounded between -1 

(skewed to the left) and +1 (skewed to the right) determines the 

distribution’s skewness and is informative on whether the occurrence of 

returns is more probable for negative or positive realizations. Third, the 

parameter σ  is scaling the distribution. Fourth, as for any other type of 

commonly used distributions, the location parameter is responsible for the 

shift of the distribution’s peak to the left ( 0<µ ) or to the right ( 0>µ ). 

The fact that stable distributions are described by four parameters and may 

take a large variety of shapes is an advantage over other distribution types, 

with the fact that asymmetric probability distributions and heavy tails are 

featured being very favourable. Especially when being compared to the 

normal distribution function, the stable models show up as being more in 

line with real market observations, as the probabilities of occurrence of 
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extreme observations far away from the mean of a variable are heavily 

underestimated by the normal distribution.  

More detailed discussions and overviews on the properties and applications 

of stable distributions in finance are provided in Mittnik and Rachev (1993), 

Samorodnitsky and Taqqu (1994), Rachev and Han (2000), Rachev and 

Mittnik (2000) and in Ortobelli et al. (2002 and 2003), while the stable 

property’s importance for financial data has been initially discussed by 

Mandelbrot (1963). 

 

4.3. Asymmetric t copula, heavy-tailed marginals and tail risk 

valuation; Example with FoF’s Data 

 

As the properties of both the interdependence and the univariate randomness 

are changing over time and therefore should be estimated on a regular basis, 

we use a short time span for the estimations in this study. Thus, the data set 

is chosen to reflect the very recent realizations of the variables under 

consideration, mirroring the need of up to date estimations that are crucial in 

financial market applications for which often only a limited data span is 

available. Using a window of 100 trading days that is rolled through the 

whole data sample is beneficial on the one hand as the estimations are 

always very focussed on recent realizations but is resulting in a small 

sample for each estimation on the other hand.  

This classical trade off is losing its severity in our approach, as we reduce 

the dimension of the problem to a bivariate one. We use all available funds 

at each time point to build a synthetic equal-weighted FoF. If a fund dies, 

the allocation share of it is evenly distributed among all surviving funds in 

the next period and vice versa. We have therefore a time-series of an 

artificial FoF to estimate against the market index. In practice, FoF 

managers may of course use their own actual and current portfolio weights 
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for the 100 day backward time-series generation. Investors to FoFs may use 

the actual time series of the FoF – thereby keeping in mind that it is an 

approximation due to allocation changes within the time period – or may go 

on with the equal-weighted approach as some FoFs may be approximated as 

equal-weight schemes of their fund universe.  

With the bivariate approach, we obtain the dependence structure by fitting 

the asymmetric t copula to the two return series in any window, and then 

generate simulations of the FoF and the index using the stable distribution 

for the univariate randomness. One benefit of the bivariate approach is that 

we do not need to estimate a large number of parameters, a pre-requisite for 

a dynamic approach with only limited data input, as we have here with only 

100 trading days. An estimation of the parameters for each fund in the 

respective time period would make the analysis far more complex and 

would demand more data and/or calculation steps. The return series entered 

the estimation process unfiltered, that is, no time-varying effects, volatility 

clustering or similar features have been modelled upfront as the aim is to 

show directly the dependence structure of the variables. The framework may 

as well be combined and used on pre-filtered data, for example on the 

innovations of a multivariate AR(I)MA/GARCH model between the FoF 

and the Index or on results of time-series analysis with a decaying time 

influence, but the input data set needs to be larger then.19  

Our choice for the size of simulations was 1.000 simulations for each 

variable. This keeps the computational burden on a practical level that 

allows for daily application of the approach. In addition, for appropriate 

backtesting of the model over a considerable history the size of the 

simulations should be kept in a sensible range. Therefore, we are generating 

a 1.000 by 2 matrix of simulations for each estimation window, with the 

simulations on the one hand being based on the true dependence between 

                                                 
19 See Sun et al. (2009) for a multivariate approach to estimating tail risks using the 
ARMA-GARCH methodology and the Student’s t copula. 
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the FoF and the broad index as being estimated by the copula, and on the 

other hand mirroring the single return distributions adequately.  

The resulting simulations may be used in a large variety of ways, for 

example for portfolio optimization or the calculation of risk measures. 

Moreover, the obtained results may be used by sector FoF managers or 

investors of sector FoFs to hedge their broad market exposure incurred by 

the sector investment when no industry-specific tools may be available. We 

track whether the model did adequately capture both the dependence 

structure and the structure of the single variables by comparing the 

simulations’ properties with the actual properties of the FoF and the index. 

In addition, we compare the results obtained with other methods that were 

commonly used in financial markets and that were discussed above.    

We have chosen the technology (tech) sector as an example in this study. 

The tech sector has undergone tremendous up-and-down phases in the late 

1990s and the beginning of the new century, and the returns of tech stocks 

show high concentration in the tails that makes the need for application of 

sophisticated methods obvious. As a FoF analysis was done for measuring 

the dependence on broad market movements, the approach is interesting in 

light of diversification arguments too, as the benefit of diversification is an 

oft-heard argument by FoF proponents. In addition, the approach is 

straightforward, as an estimation of the dependence of each single fund on 

the index is not needed when considering a FoF that one is managing, 

neither is it possible to do so when one is invested in the FoF and is seeking 

to estimate the dependence of it on the market.  

Selection of the funds and streaming of the total return series was done 

using Bloomberg20 based on the following criteria. All funds included are 

mutual funds that are (1) listed in the Unites States, (2) have their 

investment focus on tech stocks of the domestic market, (3) are 

denominated in U.S. dollar, and (4) report daily net asset values. Fortunately, 

the resulting fund spectrum includes both dead and alive funds such that 

                                                 
20  Datasource: Bloomberg Finance L.P. 
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even the last return of any fund before going out of business enters the 

analysis. Daily data were used for the 10 years ending April 2009. The 

resulting return matrix consists of 2.527 daily returns for each of the 255 

funds included. Measuring the broad stock market was done using the S&P 

500 for the respective time-period. The S&P 500 was selected because it is 

the index that is typically used for benchmarking by institutional investors 

and an indicative check of FoFs that satisfy our selection criteria 

strengthened this notion. Because we use an equal-weighted FoF 

construction, we have a 2.526 by 2 matrix of returns as our sample for the 

whole period, and 2.426 matrices of size 100 by 2 for the dynamic 

intertemporal estimations. 

Concerning the measurement of risk for the index and the synthetic FoFs, 

we use the expected tail loss (ETL) which is the conditional value at risk 

(CVaR) for continuous distributions21, 

( ) ( )( )aaaa rVaRrrErETL αα −− >−−= 11 0,max)(
  

with )(1 prETL α−  being the expected tail loss with tail probability α for asset 

returns ar  and VaR denoting the value at risk In accordance with common 

confidence levels for other risk measures such as VaR are 1% or 5% for α, 

corresponding to confidence levels of 99% and 95%, respectively. For any 

confidence level, ETL is higher than VaR as it measures the expected losses 

in the case of a tail event rather than measuring the loss not to be exceeded 

with the respective confidence22. Concerning the measurement of risk the 

choice of an appropriate measure is another way to omit erroneous 

estimations, as for example the VaR at 95% confidence of a normal 

distribution may be the same as the corresponding measure for a stable 

                                                 
21 See Rachev et al. (2007) for discussions on risk, uncertainty and performance 
measures. The conditional value at risk (CVaR) corresponds to the average value at 
risk (AVaR), see Pflug and Romisch (2007) for example. 

22 See Sortino and Sachell (2001) and Rockafellar (2002) among others concerning 
VaR and CVaR / ETL.  
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distribution or a t distribution, but the ETLs or CVaRs (AVaRs) at 95% may 

be largely differing.  

 

4.4. Empirical Results 

 

Before we apply the rolling window approach for successive 100 trading 

day periods, we check the data’s full sample characteristics. Looking at the 

return scatter plot of the index and the synthetic FoF as shown in Exhibit 

4.1., the elliptical shape indicates significant dependence, showing the 

immediate need for detailed modelling of the dependence structure of the 

two series.  
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Exhibit 4.1. The return scatter plot of the synthetic tech FoF and the index for the 

whole sample period 

 

In general, to check whether the pair of tools we favour adequately models 

both the dependence structure and the univariate randomness, we estimate 
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the asymmetric t copula and generate simulations using the stable 

distributions from the entire sample of observations. The result is a 2.500 by 

2 matrix with simulations for the FoF and the index. For comparison 

purposes, we used a number of simulations being approximately equal to the 

actual observation series. For comparability to other commonly used 

approaches, we have included the results of simulations using a normal 

copula and normal marginal distributions approach as well as the results of a 

directly applied multivariate t distribution (the distribution being applied on 

the returns rather than on the  cumulative density function of the variables). 

From Exhibit 4.2. it can be seen that the normal approach suffers from the 

fact that the normal copula cannot capture tail dependence and the marginal 

distribution does not account for univariate tail risks. The multivariate t 

distribution approach suffers from the fact that the dependence structure and 

the marginal distributions are not modelled separately, leading to a loss of 

information and a less detailed modelling. Therefore, a too radial and poor 

fitting shape is obtained. Increasing the number of simulations made this 

problem even more obvious when checking the approaches’ behavior. In 

contrast, the simulations obtained from our approach with the asymmetric t 

copula and stable marginals appear to be a good tracking of the dependence 

structure of the FoF and the index.  
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Exhibit 4.2. The simulations of the synthetic tech FoF and the index for several approaches for the whole sample period  
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Exhibit 4.3. Example of last period estimations 
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Using the approach with rolling 100-day periods, we continued by 

modelling the bivariate set over time. When it comes to modelling the 

dependence structure over time, we need to check the ability of the approach 

to fit the data well even in the presence of a heavily reduced data set 

because only 100 days were selected as the time window in the example. 

Since we originally had 2.526 return observations, we have 2.426 windows 

for which we generated the simulations, Exhibit 4.3. shows the last period as 

an example. We checked the short sample properties of the other methods as 

well, and the deviations from the true data sets are even more severe than in 

the whole data sample, again strengthening the notion that the appropriate 

tools were chosen for the analysis.  

As the simulations are of size 1.000 and the returns were 100 each, the 

scatter diagram of the simulations is of course more crowded than the one of 

the observations. In addition, the realizations on the tail sides seem to be 

more pronounced in the simulations. To see whether this is due to 

overestimation of the tails or to a small sample bias, the quantile-quantile 

(q-q) plots were checked for both the index and the synthetic FoF. From the 

q-q plots we can see that the simulations fit the data very well and that for 

both variables only two simulated realizations are somewhat deviating. 

Indicative checks of other periods did not give rise to doubts concerning the 

estimation and fitting performance for the problem at hand. 

We can see from the calculations of the expected tail loss that it is good 

practice to model the broad market risk for the FoF in dynamic nature, as 

both the magnitude of the risk measure as well as the joint changes therein 

are heavily time-dependent, as can be seen in Exhibit 4.4.  
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Exhibit 4.4. Stable negative expected tail losses over time 

Note: The negative of the ETL is plotted, according to industry usage of the 
negative loss as risk measure.  

 

With respect to the expected tail losses of the two variables, the fact that a 

large increase in the magnitude of this risk measure for the index leads to an 

increase of it for the FoF too, shows that the influence of the broad market 

risk on the FoF is substantial and modelled adequately. In addition, the tech 

sector had its own characteristic increases in the tail risk during drawdowns 

(besides more severe tail events throughout the sample) which did not 

appear in the broad market and did not affect the estimation results of the 

index expected tail loss. The latter fact is very favourable concerning the 

judgment of the measurement of dependence, showing that with the 

asymmetric t copula, increases in broad market risk lead to increases in 

sector FoF risk, but not the other way round and therefore no spurious 

causality seems to be generated during the asymmetric t copula fitting and 

simulation generating using the stable distributions.   
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4.5. Conclusion 

The asymmetric t copula approach for the estimation of the dependence of a 

sector FoF on broad market risk captured the independence structure very 

well. Combined with the stable distribution we obtained well-fitting 

simulations for the synthetic FoF and the index for each estimation window. 

Being applied to a very short window of data of 100 trading days, the 

approach suits estimation needs concerning short term tracking of risks and 

risk dependencies and may be applied to problems with limited and small 

data sets in general. This is because the problem of measuring the 

interdependence is of the bivariate type and the estimation efficiency using 

the asymmetric t copula and the subsequent generation of simulations using 

the numeric solutions to the previous fitting. 

As the procedure appears to generate well-fitting simulations, these may 

serve as input to a large variety of applications, from risk management and 

measurement, portfolio optimizations and scenario analyses to investment 

selection and hedging purposes as examples. It is critical to have an 

approach that identifies the joint risks of a sector FoF and the broad markets 

because for many industries or (sub) sectors no viable derivative market 

exists. The results obtained by using our approach may serve both FoF 

investors as well as FoF managers when it comes to not only measuring 

risks, but also isolating the sector portfolios from general market 

movements. Possible extensions or adjustments would be to take into 

account time-series effects such as volatility clustering and to combine the 

procedure with those, although this would demand more data points for each 

estimation, reducing the great benefit of a parsimonious approach as 

proposed in this chapter. 
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5. Flow-Induced Redemption Costs in Funds of Funds 

 

5.1. Introduction 

 

The recent crisis has clearly demonstrated that the direction and magnitude 

of capital flows are crucial to the survivorship and performance of financial 

market assets. While the years following the dotcom crisis were 

characterized by very low costs of capital, the global economy and the 

financial markets were flooded with excess liquidity. Until the sub-prime 

mortgage crisis unfolded and triggered the worst economic slump since the 

Great Depression, along with the worst year for global stock market 

performance, capital was available in huge lot sizes and at both low 

borrowing costs and restrictions. As this ended and money was withdrawn 

from investments in unprecedented speed and strength, the problems 

surrounding cash-flows and liquidity management came back into the 

discussions in the financial world and academia. 

As many fund management companies try to find ways to protect from 

renewed problems caused by capital flows, the appropriate handling of load 

fees, or redemption fees, is crucial for investors. Especially when investors 

to funds are themselves exposed to capital flows they cannot control, as are 

most FoFs, the holding of funds that may not be redeemed without costs 

calls for appropriate tracking of the cost that may be incurred when funds 

must be sold. In this chapter, we show how this may be done in two 

differing ways:  

While a static view with calculating the costs to be incurred in the presence 

of a liquidity shock delivers insight on the span of possible costs at one 

point of time, a dynamic approach with path-dependent cost effects takes 
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into account the possibility of successive periods of fund cash-flows and the 

resulting cost effects.  

The chapter is organized as follows: In Section 5.2 we discuss fund (of fund) 

flows and the resulting problems for FoFs. Sections 5.3 and 5.4 show 

analyses for fund flows and resulting costs using a static and a dynamic 

framework, respectively. Our conclusions are summarized in Section 5.5. 

 

5.2. Fund Flows, Liquidity Risk and Liquidity Costs in Funds 

(of Funds)  

 

The topic of fund flows and liquidity risk has been researched in the past, 

with research concerning mutual fund flows by Ippolito (1992), Sirri and 

Tufano (1998), Hendricks et al. (1994), Warther (1995), Zheng (1999) and 

Greene et al. (2007) being important among others. Nanda et al. (2000) 

model the interaction of flows, performance, and load structure for mutual 

funds. Although the primary focus of many theoretical and empirical studies 

has been on determining factors driving fund flows and how investors are 

affected by the loads and fees that are charged by the respective mutual 

funds, the management of flow-induced liquidity and flow-induced selling 

of target investments on the fund side has been studied as well. While 

Edelen (1999) finds that flow-induced trades are lowering fund 

performances, Chan and Lakonishok (1997) and Keim and Madhavan (1997) 

focus on the fact that trading costs increase with the size of the trades that 

are necessary to meet unexpected redemptions.  

The majority of studies focussed on funds however, rather than on funds of 

funds, which have sort of a special problem: As many FoFs invest at least 

part of their capital into funds that may not be redeemed at net asset value, 

they face the danger of performance losses when outflows occur and they 

have to sell off costly funds. The practical relevance of these problems is 
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very high, and the lessons learned from the recent crisis are implying that 

this will be amplified in the future:  

The problem in practice was that in the upswing of financial markets, the 

management of liquidity and the costs and risks that come along with it have 

been ignored or at least were at minor positions in the priorities of asset 

managers. Caused by steady and growing capital flows, the markets grew 

and prospered along with the ignorance of market players concerning the 

potential risks associated with leverage and consequences that would come 

should the funding sources run dry. The consequence was excessive 

leverage not only on the balance sheets of banks and households, but in 

asset management firms as well. Firms such as hedge funds and private 

equity funds that traditionally use large amounts of debt were heavily 

leveraged in the hunt for stellar returns and in a market that was pushed 

upward only with huge pressure on market participants not to fall behind 

their successful peers.  

In what has become a downturn in financial markets called the sub-prime 

crisis and the following credit crunch, the globally increasing interest rates 

and the burst of the housing price bubble in the United States has ended the 

spree and money was withdrawn from all kinds of investments. Of course, 

this severely affected the asset management industry as well: A large 

number of funds had to close business or at least turned out to be unable to 

fulfil the redemption wishes of their investors and had to lock in those. “If 

everybody panics, panic first” was the phrase best describing the mood in 

the industry, with investors withdrawing huge amounts from investments 

that are or could be in any way be affected by the crisis. 

The large outflows that the asset management world was facing were 

redemptions of shares by both retail investors and institutional investors. 

While the massive withdrawals of money took place in every kind of 

financial asset class, we will focus on the problems of FoFs in the presence 

of share redemptions. While funds investing into stocks or bonds for 

example may have the problem that their underlyings are turning illiquid or 
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a high spread is charged, FoFs have to sell target funds and may face the 

problem of redemption costs or back end load fees. With many asset 

management companies now taking actions to prevent from problems 

induced by share redemptions, one can expect to see increased use of 

redemption fees, causing fund investors to be conscious on the possible cost 

consequences of their investments.    

Of course, the discussion of flows in mutual funds and the fee structure of 

the funds with front-end and back-end load fees is highly relevant when it 

comes to investment and divestment decisions as well as concerning 

performance expectations. Among others, Ippolito (1989), Elton et al. 

(1993), Gruber (1996), Zheng (1999), Alves and Mendes (2007) investigate 

the performance differences between load and no-load funds, with the latter 

reporting the back-end load fees being influential on investor (non-)reaction 

to poor performance. Therefore, an assessment of the possible costs that are 

caused by an investment when being sold should be in line with the possible 

benefits of that particular investment when FoF managers select their target 

funds.    

Generally, it has been the focus to assess the differences of funds with and 

without load fees, to investigate the differing performances, and how the 

flow-induced trading filters through to the funds. However, neither has there 

been a detailed analysis of the inside of the funds, that is, of how the flows 

and the costs incurred may be seen as a risk factor to the fund liquidity, nor 

has there been an analysis on how funds of funds may deal with load fees 

when faced with flows on their own side. Although the sub-prime crisis and 

the credit crunch have shown the immediate need of dealing with liquidity 

shocks, there appears to be a lack of approaches that enable portfolio 

managers to track the risks appropriately when being invested in fund shares 

that may not be redeemed at the book value. We will show in the next 

sections how different the effects of redemption fees can be with an 

example of time-dependent back-end load fees.  
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5.3. The Static Framework: Liquidity Shock Analysis  

 

In this section, we show a slim approach that can be used by FoF managers 

to track the effects of their investments with respect to costs when needing 

liquidity and their own possible future cash flow pattern. We suggest FoF 

managers track their portfolio of investments according to time spans and 

fund volume spans as the baseline. This is straightforward, as some target 

funds held by FoFs can only be redeemed at a cost (for example back-end 

load fees), after lock-up periods or a combination of both (time-dependent 

discounts when redeeming shares). Of course, the costs to be incurred when 

reducing positions in the respective funds have changing magnitude with 

regard to the volume the FoF has when redeeming and with regard to the 

size of the redemption.  

While borne out of practical considerations for FoFs facing redemption 

costs, the analysis of costs when facing capital outflows is crucial for other 

effects as well. For example during times where target funds turn illiquid 

and suspend the redemption of shares, FoF managers may be forced into 

secondary markets, where funds often are traded at discounts to their  NAV, 

the discount being a result of the illiquidity and the expectation concerning 

the NAV at a future date when the fund shares may be redeemed at NAV. 

This holds true even for open-end funds, if those need to (temporarily) 

suspend the redemption of shares or introduce restrictions.  

In this section, we consider a one-off redemption of shares to the FoF, and 

use an example to show how a FoF may be affected by costs that are caused 

by the forced selling to meet investors’ demand for capital. Consider the 

following example:   

A FoF currently has US $500 million of assets under management. The FoF 

has invested in several target funds with back-end load fees. To keep the 

analysis tractable and transparent, we set all funds with a back-end load fee 

to charge 5%, 3% and 1% for shares held less than 1 year, 2 years and 3 
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years, respectively. This means that for any time point after the first 

investment into a back-end load fee fund, we are able to calculate which 

costs at this point of time would have to be incurred depending on the 

amount of the redemption and the time held. Of course, these costs have 

direct impact on the FoF performance, with the magnitude depending on the 

size of the FoF at the time the shares are sold.  

We now look at the investments done by a FoF in Exhibit 5.1. The example 

FoF has invested a total of US $100 million, or 20%, of the fund volume of 

US $500 million into funds that may charge a cost when positions are 

reduced, depending on the time of selling. 

 

Investment 
Number 

Amount 

(in US $) 

Date Time passed 

(in years) 

Cost 

(in US $) 

Cost 

(in % of fund 
volume) 

1 20 million 1-Mar-2007 3,0 0 0,00% 

2 10 million 1-Apr-2007 2,9 100.000 0,02% 

3 10 million 1-Jun-2007 2,8 100.000 0,02% 

4 5 million 1-Sep-2007 2,5 50.000 0,01% 

5 10 million 1-Sep-2007 2,5 100.000 0,02% 

6 5 million 1-Nov-2007 2,3 50.000 0,01% 

7 5 million 1-Jan-2008 2,2 50.000 0,01% 

8 20 million 1-Jan-2008 2,2 200.000 0,04% 

9 10 million 1-Jul-2008 1,7 300.000 0,06% 

10 5 million 1-Jan-2009 1,2 150.000 0,03% 

Total 100 million     

 

We have chosen to set the date of observation to 1st of March 2010, when 

the first investment already may be redeemed without charge of costs as can 

be seen from the 2 columns on the right. However, it is even more 

interesting to see how these positions influence the potential costs over time 

and over different fund volumes. As the fund volume in the future is far 

from certain, one is best advised to calculate possible effects form 

redemption costs up front.    



 

117 

 
 

Exhibit 5.2. Costs of redemptions over time and fund volume spans 

Notes: Assumption of redemption according to fund volume reduction (allocation neutral), i.e. if the FoF has outflows of 10%, the respective share of 10% of 
funds with redemption fees is sold. Costs calculated into new fund volume, after outflows. 
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From Exhibit 5.2 we can see the time- and fund volume- dependent costs 

that would have to be incurred when being faced with redemptions, thereby 

assuming that the redemptions are made on an allocation neutral basis (for 

example an outflow of capital of 10% of the FoF volume would lead to a 

10% reduction in the positions in funds that charge redemption fees).  

It is obvious that the differing investment points are determining where the 

peaks in the possible costs from redeeming are, and that performance effects 

of over 5% are possible even though the maximum charged is 5%. This is 

due to the fact that a large outflow of capital that leads to a fund volume that 

is even smaller than the total share of capital allocated to funds with 

redemptions fees would leverage the costs on a relative basis. For example a 

reduction of 450 million US $ (90% of the original fund volume) would lead 

to a fund volume of 50 million US $, the redemptions of costly funds would 

be 90 million US $ (90% of the invested 100 million US $) and one would 

have to pay costs that will be calculated into the new fund volume of 50 

million US $ in the next period. Admittedly, this is a strong scenario that 

there will be a hit in the fund with outflows of 90% of the fund volume, but 

this can be seen as a high stress-test level.  

In addition, FoFs normally have notifications of redemptions and can sell 

off target funds before the outflows are booked, that is, the costs are 

calculated into the fund volume at the time the outflows occur, rather than 

afterwards. One the one hand, this is done to be able to serve all liquidity 

demands by FoF investors, on the other hand, waiting to sell assets and then 

pay the costs on the new fund volume is both more performance damaging 

and punishing remaining investors. How tremendous the influence of direct 

selling is, can be seen in Exhibit 5.3, where the dimension of resulting fund 

volume is irrelevant as costs have to be incurred by the fund volume of 500 

million US $ when the liquidity shock occurs, as here the effects are less 

severe than in Exhibit 5.2.  
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Exhibit 5.3. Costs of redemptions over time 

Notes: Assumption of redemption according to fund volume reduction (allocation 
neutral), i.e. if the FoF has outflows of 10%, the respective share of 10% of funds 

with redemption fees is sold. Costs calculated into old fund volume, i.e. 500 million 
US $. 

 

Apart from the extreme events, the plane of costs over time and possible 

fund volumes (the line when selling directly) is informative on the potential 

costs that have to be incurred when liquidity is needed due to own outflows 

of capital. Please note that even the moderate share of 20% of assets 

invested into costly funds may lead to large costs (especially in the case of 

high outflows and when selling may be possible only after outflows 

occurred, as seen in Exhibit 5.2). However, the assumption underlying this 

kind of static overview is that there is a single hit at the specified time point. 

A more realistic view is to see how the costs would affect the portfolio 

when there are several periods of outflows, i.e. the fund volume changes 

from time to time and the FoF management must liquidate positions in 

target funds in tranches. This brings us to a path-dependent view of the 

liquidity costs, where the process of forced redemptions is gradual, rather 

than a one-hit event in the preceding baseline example. 
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5.4. The Dynamic Framework: Path-Dependent Analysis 

 

In this section, we look at the path-dependent costs, thereby modelling the 

fund volume with Monte Carlo simulations for possible flow patterns.  

For problems related to the analysis of liquidity and cash-flows, the 

modelling of cash-flows is crucial. While from a general view the modelling 

of the expected cash-flows seems to be highly desirable, the very nature of 

those makes it complicated to do so. Inflows and outflows into and from 

investments are caused by a large variety of factors. Not only do market 

(participant) expectations, general economic surroundings, historic 

performance and observable information heavily influence the cash flow 

patterns. With the institutionalization of the asset management industry, 

sales power, mutual agreements, contracting, communication and marketing, 

and executive decision making plays a major role when it comes to the 

direction and magnitude of fund flows. This makes an extrapolation of 

historic cash-flows inappropriate for the vast majority of investments, even 

if there is data available at all. If a fund or FoF is erased from a 

recommendation list of a wealth management company for example, or if a 

distribution arm is lost in the course of a restructuring process, any historic 

data becomes useless, as the state of the world is no more the same. 

The choice of flow types, magnitudes and the statistical distribution type of 

flows is crucial to the outcomes of the analysis and any risk manager, 

portfolio manager or other to apply the analysis needs to select the 

distribution type that fits best the nature of the flows and/or the needs and 

aims of the analysis. We model daily flows with a chi squared distribution, 

using 1 and 3 degrees of freedom for the random number generation. To 

obtain both positive and negative flows, we multiply the number generated 

with the sign of a random number from a normal distribution. Flows are 

modelled on a daily basis and a time span of 1.000 trading days begins on 

the 1st of January 2009 when the last investment in shares charging costs 

was done. Of course, the path for the possible fund volumes over time may 
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be largely differing. While the restrictions of holding period based 

redemption fees are generally based on calendar days rather than trading 

days, we left out the weekend days following 5 trading days. Of course, the 

choice of the appropriate frequency is left to managers and should be done 

in accordance to the respective product structures. For redemptions, we use 

a first in-first out premise, an assumption that is not very strong as we model 

the funds to be equal. In practice, one would simply adjust for first in- first 

out for each of the respective funds.  

Our approach yields a considerable large span of possible outcomes, with 

the paths to the final outcomes being heavily differing as well as the final 

volume of the simulated FoF.  

We employ two different strategies: One is a conservative strategy, where 

inflows do not lead to successive investments into the funds with 

redemption fees; this means that the management successively reduces the 

cost-prone investments when there are outflows but does not buy shares 

when there are inflows. 

The second strategy is an allocation neutral strategy, such that if there is a 

decrease in capital, the respective share is divested and if there is an increase, 

the additional capital is invested proportionally into “costly funds”, this 

means that the 20% share is maintained throughout the analysis.  

 

Strategy 1: The Conservative Strategy  

 

The rationale behind the conservative strategy in the presence of flow-

forced adjustment may be for example a FoF whose management is 

expecting that there will be more outflows than inflows in the future and 

therefore the positions in cost-prone investments are passively reduced in 

inflow times.  

In this section we show the results that were obtained from the path-

dependent analysis using the conservative approach, where inflows are not 
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invested into funds that charge back-end load fees but for each outflow, the 

same proportion of “costly” target funds is redeemed. As this means that 

over time the allocation into such funds is decreasing due to a pessimistic 

outlook, we can expect that the relative performance effects from 

redemption costs that have to be incurred decrease because of two facts: 

First, the holdings are decreased successively, and second, increasing 

amounts of shares may be sold at no cost after minimum holding periods 

have expired.  

We need to keep in mind that even when there is a fund volume of for 

example 2 billion US $, an outflow of x % of the total volume leads to a 

reduction in the respective costly positions of x % as well, a very 

pessimistic approach. However, this is in line with several policies, 

guidelines, and management rules that have been implemented throughout 

the industry, to face the redemption and liquidity risks, especially during the 

recent crisis. First, this is to ensure that all investors are treated equal, i.e. to 

prevent from the problem of the losses being loaded on remaining investors 

only and second, to prevent from to high relative costs to be incurred when 

selling off at reduced fund volumes later on. 

Exhibit 5.4 shows the example for 5 of the 10.000 simulated paths. As 

expected, the different paths lead to very different costs that have to be 

incurred over time. The earlier outflows occur, the higher are the fees that 

have to be paid, and if large outflows occur at the end of the 1.000 day 

analysis, the additional costs are only marginal or tend to zero. 
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Exhibit 5.4. Fund volume paths and resulting costs of redemptions over time (conservative strategy, 1 degree of freedom) 

Notes: Assumption of redemption according to outflows, no new investments in inflow periods, i.e. if the FoF has outflows of 10%, the respective share of 10% 
of funds with redemption fees is sold, an inflow of 10% does not lead to buying. 5 examples from 10.000 simulations. 
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Exhibit 5.5. Fund volume paths and resulting costs of redemptions over time (conservative strategy, 3 degrees of freedom) 

Notes: Assumption of redemption according to outflows, no new investments in inflow periods, i.e. if the FoF has outflows of 10%, the respective share of 10% 
of funds with redemption fees is sold, an inflow of 10% does not lead to buying. 5 examples from 10.000 simulations. 
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As we can see from Exhibit 5.8 in the top left graph, the distribution of the 

total percentage costs, i.e. performance effects, while being diverse 

regarding the magnitude, no path did lead to total costs of even 1 percent 

with the used parameters. The performance effects therefore are 

considerable small for little over 2 and a half years, meaning that less than 

about a third of one percent point is lost per year.  

How influential the pessimistic or conservative strategy is on the costs to be 

incurred can be seen in Exhibit 5.5 and in the bottom left graph of Exhibit 

5.8: Although the magnitude of the flows is greatly enlarged, the strategy of 

selling proportionally but not re-investing when receiving inflows of capital 

is limiting the performance effects such that still over 90% of the paths do 

not lead to total costs of one percent or above for the 1.000 day period. This 

has strong implications for the selection of investments into cost-prone 

target funds, as the 20% share has an implied outperformance requirement 

of less than one percent over about 2 and a half years to justify its selection 

with respect to additional gains for additional (possible) costs.        

 

Strategy 2: The Allocation Neutral Strategy 

The rationale behind an allocation neutral strategy in the presence of flow-

forced rebalancing may be for example a FoF product structure that needs to 

be maintained, when product characteristics of target funds with and without 

redemption fees may be different.  

In this section, we show the results that were obtained from the path-

dependent analysis using the allocation neutral approach, where inflows are 

invested into funds that charge back-end load fees as for each outflow the 

same proportion of “costly” target funds is redeemed. Therefore, a constant 

proportion of 20% of costly funds is maintained, regardless the fund volume. 

This means that over time, we can expect that the relative performance 

effects from redemption costs that have to be incurred over time remain 

fairly stable apart from some steps due to expiration of holding periods from 
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the initially invested tranches of larger lot sizes and the first in-first out 

assumption.   

Exhibit 5.6 shows the example for five of the 10.000 simulated paths. As in 

the conservative framework, the different paths lead to very different costs 

that have to be incurred over time. However, as expected the timing of the 

flows is not as influential as in the previous analysis, because inflows are 

invested into cost-prone funds and therefore costs when facing outflows 

have to be incurred even in later stages of the analysis. 

 

Of course, the allocation neutral strategy results in considerably higher total 

costs over the simulation span, with the majority of the total percentage 

effects being between 2,5% and 4%, as seen in the top right graph of Exhibit 

5.8. This implies that any of the invested shares of back-end load fee funds 

should annually yield about over 1% more than other funds to justify the 

investment. Naturally, the magnitude of the costs to be paid is larger for the 

analysis using 3 degrees of freedom (Exhibit 5.7), with the majority of the 

simulation paths resulting in 9% to 12% performance losses as can bee seen 

on the bottom right of Exhibit 5.8, where the implied required 

outperformance of the restricted funds versus other funds is becoming vast. 
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Exhibit 5.6. Fund volume paths and resulting costs of redemptions over time (allocation neutral strategy, 1 degree of freedom) 
 

Notes: Assumption of redemption according to outflows and new investments in inflow periods, i.e. if the FoF has outflows of 10%, the respective share of 
10% of funds with redemption fees is sold, an inflow of 10% leads to buying. 5 examples from 10.000 simulations. 
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Exhibit 5.7. Fund volume paths and resulting costs of redemptions over time (allocation neutral strategy, 3 degrees of freedom) 
 

Notes: Assumption of redemption according to outflows and new investments in inflow periods, i.e. if the FoF has outflows of 10%, the respective share of 
10% of funds with redemption fees is sold, an inflow of 10% leads to buying. 5 examples from 10.000 simulations. 
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Exhibit 5.8. Total percent costs of redemptions over time, distribution comparison 

Notes: Histograms of total costs of 10.000 simulations. Conservative strategy on the left, allocation neutral strategy at the right. Simulations with 1 degree of 
freedom on top, results using 3 degrees at the bottom. 
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5.5. Conclusion 

 

FoF managers that invest into funds that may charge redemption fees are in 

the need of appropriately tracking the costs that may be incurred when 

target funds need to be sold. This is necessary both for existing positions as 

well as for new investments to be done. Especially in times of strong 

outflows of capital, the effects from flow-induced redemptions of target 

funds may be severe for a fund portfolio. We therefore suggest that FoF 

managers adequately mirror their risks over time and over possible fund 

volumes. 

Our analysis using the static approach yields insight into how a FoF is 

affected by a liquidity shock due to a large outflow of capital and delivers 

direct information on how severe performance effects may be in the future. 

This information may be best processed as part of a risk analysis, as well as 

part of investment selection, with the possible cost-induced performance 

drain implying how large the outperformance of cost-prone investments 

versus other holdings should be for an investment to be justified. 

The dynamic, path dependent analysis of the influence of flows on the costs 

that have to be incurred by a FoF investing into funds with time-dependent 

redemption fees, has shown that a very conservative strategy leads to 

considerable small performance effects, even in the presence of large 

changes in the fund volume. However, if a pessimistic approach is not 

demanded, for example due to additional gains to be expected from the 

back-end load fee funds if they are differing in nature from the other funds, 

the (possible) costs are heavily increasing in an allocation neutral approach. 

Therefore, both FoF managers and risk managers are best advised to closely 

model the possible performance effects of investments and holdings of cost-

prone target funds over time. 
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6. Conclusion and Outlook 

 

In the studies for this thesis, several concepts and statistical methods were 

applied to problems that one faces when managing a FoF. As FoFs may 

pose special problems for which appropriate and practical tools are needed, 

we used both existent methods and new concepts to address this. 

Laying the focus on the direct solutions to FoF specific problems, we 

mainly omitted discussions on FoF concepts themselves, but concentrated 

on the management aspects and challenges that one faces in FoF 

management. One chapter however had a relation to discussions of FoF 

concepts and their (dis) advantages, as Chapter 2 dealt with the comparison 

of value, growth and neutral style FoFs, in a transmission of the ever-young 

discussion surrounding styles to the FoF world.  

While the study concerning the style-neutral FoFs used a standard approach 

of equal-weighted portfolios, we introduced a post-modern method to 

determine optimal portfolio weights in Chapter 3. In practice, it is especially 

the task of mixing very heterogeneous funds, which makes FoF 

management so challenging. Using the simulation of the return series with 

appropriate methods and solving the tricky computational burden when 

dealing with reward-to-risk measures in portfolio optimization suited us 

very well in that task. 

Chapter 4 turned the focus away from an isolated view of the funds to be 

chosen by a FoF manager, with the study of broad market influences on 

sector FoFs highlighting the problems and solutions concerning the 

measurement of market dependencies. In contrast to the reward-to-risk 

measures used for the determination of optimal portfolios in Chapter 3, we 

employed a risk measurement framework, as is increasingly demanded by 

fast-moving markets and by regulations and practices addressing those. 
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Finally, in Chapter 5 we show how FoF managers may be affected by flows 

of money into and out of their portfolio when being invested in target funds 

charging fees. We employed a straightforward representation of the fee 

effects in FoFs that is both flow-dependent and time-dependent. Such 

representations and the incorporation and consideration of such effects into 

investment decisions are increasingly called for by recent market 

developments and industry changes.      

As a large variety of aspects of FoF management are covered and addressed 

using statistical and mathematical methods in all chapters of this thesis, it 

becomes clear how important it is to have the right tools to properly manage 

FoFs and to achieve the best risk-adjusted returns for the portfolio. 

Therefore, only when using modern and flawless methods, FoF managers 

may be able to deal appropriately with the special issues posed by managing 

a fund portfolio. 

 

        

 

 


