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Zusammenfassung

Verarbeitung und Analyse von Daten mit Raum-/Zeitbezug mit dem Ziel einer

Schätzung von Werten auf einer Menge von Datenpunkten, für welche keine

Beobachtungen (Messungen) verfügbar sind ist Gegenstand mehrerer Teilgebi-

ete der statistischen Wissenschaften. Dabei basiert die Abschätzung auf Stich-

proben, die aus einer Menge von Beispielen (Datenpunkten und Beobachtungen)

bestehen. Das Spektrum der Anwendungen umfasst unterschiedliche Fragestel-

lungen wie z.B. die Schätzung der Konzentration eines Minerals im Boden, die

Schätzung der Verteilung von Schadstoffen in der Luft oder die Schätzung der

Anfälligkeit gegenüber einer Naturgefahr und des damit verbundenen Risiko.

Gauss-Prozess-Techniken sind probabilistische Techniken, welche für Schätzung/

Vorhersage kontinuierlicher Werte verwendet werden. Der Grund hierfür liegt

in der Handhabbarkeit mathematischer Ausdrücke im Fall kontinuierlicher Ziel-

werte. Im Gegensatz dazu ist die Anwendung von Gauss-Prozess-Techniken im

Fall diskreter Zielwerte mit Mehraufwand verbunden, der durch Approximation

hochdimensionaler Integrale über Produkte von Verteilungen unterschiedlichen

Typs mit Hilfe deterministischer oder stochastischer Verfahren entsteht.

Ziel der Arbeit ist eine Untersuchung der Eignung von Gauss-Prozess-Techniken

für Klassifikation (Schätzung diskreter Zielwerte) räumlicher Daten, mit Fokus

auf Klassifikation der Gefährdung durch Massenbewegungen (Erdbewegungen,

Schneelawinen). Dabei wird die Eignung von für die Schätzung/ Vorhersage

räumlich verteilter Zielwerte bisher nicht angewandten Techniken am Beispiel

hoch-dimensionaler realer Datensätze im Vergleich mit einer etablierten Tech-

nik des Maschinellen Lernens (Support Vector Machine (SVM)) überprüft , der

gegenüber sie den Vorteil einer Aussage über die Unsicherheit in der Schätzung/

Vorhersage bieten, mit dem Potential, Entscheidungsunterstützung im Rahmen

einer geeigneten Frühwarnkette zu verbessern.



Abstract

Processing and analysis of data describing the spatial distribution of quanti-

ties of interest aiming at estimation/ prediction of values at data points (loca-

tions) where observations (measurements) are missing has been topic of research

in different fields of statistical science(s). Given a collection of data points with

observations, quantities of interest may refer to the concentration of a particular

mineral in a soil volume, concentration of pollutants within an area, incidence/

prevalence of a particular disease, or susceptibility to a particular kind of natural

or hazard, and the corresponding risk.

Gaussian process techniques are probabilistic techniques commonly applied to

prediction of continuous target values. This is due to analytical tractability of

expressions involved in inference, with observations interpreted as an incomplete

realization of a Gaussian process defined on the space of data points, trans-

formed by a Gaussian noise process. In order to explain discrete target values,

the assumption of a non-Gaussian process acting on the prior Gaussian process

is introduced, resulting in intractable expressions. Consequently, classification

problems have to be dealt with in a different (in general, more involving) way.

Aim of this work is an investigation of the applicability of Gaussian process

classification techniques to prediction of categorical variables (classification) of

spatial data on regional scale, focusing on occurence of mass movements (earth

movements, snow avalanches). This is achieved by qualitative and quantitative

evaluation, indicating predictive performance (sensitivity) comparable to the pre-

dictive performance (sensitivity) of the Support Vector Machine (SVM), with po-

tential to improve decision support resulting from uncertainty estimates provided

by Gaussian process techniques.
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Chapter 1

Introduction

Processing and analysis of data describing the spatial distribution of quantities
of interest aiming at estimation/ prediction of values at data points (locations)
where observations (measurements) are missing has been topic of research in
different fields of statistical science(s). Given a collection of data points with
observations, quantities of interest may refer to the concentration of a particular
mineral in a soil volume, concentration of pollutants within an area, incidence/
prevalence of a particular disease, or susceptibility to a particular kind of natural
hazard, and the corresponding risk.

Since the early work of Krige (20) and Matheron (24), geostatistics (4) has been
established as a mainstream method for working with spatial data. Developed
in the geological sciences for the task of estimation of concentration of mineral
deposits (prediction of ore grade), the success of geostatistical techniques, based
on recognition and modelling of spatial correlation, resulted in application to
prediction problems in a range of domains, including the environmental sciences
(meteorology, hydrology, ecology), epidemiology, geography, and a number of
other fields.

In context of statistical prediction, recognition and modelling of correlation can
be seen as a characteristic of geostatistical methods and a collection of different
techniques developed in statistics (26) and machine learning (38), (35) to deal
with problems involving spatial and non-spatial data. These techniques are ca-
pable of making use of information in a description of correlation between data
points. In presence of correlation in data, data points convey information about
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1. INTRODUCTION

each other, with explicit modelling of correlation between data points resulting
in more accurate predictions.

Due to the focus on spatial location, geostatistics has focused on prediction prob-
lems where values of observations are assumed to be the outcomes of a (contin-
uous) function of coordinates in low-dimensional (Euclidean) space (i.e., in IRn,
with n = 2, or n = 3). Hence, the design of traditional geostatistical procedures
(involving estimation of correlation structure from data 1) does not lend itself
to more general spatial prediction problems, where values of observations (which
need not be continuous) are assumed to depend on a set of D variables (geo-
features), or to spatio-temporal problems. At this point, techniques developed
in statistics (26) and machine learning (38), (35) introduce several advantages,
including applicability to more complex prediction tasks, generalization to dif-
ferent/ more complex models (allowing for application to different prediction
tasks, e.g. prediction of categorical (i.e., non-continuous) variables), more objec-
tive estimation of correlation parameters, and the possibility of introduction of
techniques suitable to deal with larger data sets.

Aim of this work Aim of this work is an investigation of the applicability
of statistical/ probabilistic machine learning techniques not previously applied
in spatial prediction to the task of prediction of categorical variables (classifi-
cation) of spatial data on regional scale. Specifically, a class of discriminative
probabilistic techniques developed in statistics and machine learning, referred
to as Gaussian process techniques, is investigated, focusing on occurence of mass
movements (earth movements, snow avalanches). This problem is a particular in-
stance of a classification problem, with values to be predicted representing class
membership (i.e., whether a data point (location) is considered susceptible to
a particular type of movement (in case of spatio-temporal problems, subject to
mass movement hazard), or not). In context of hazard prediction, quantities of
interest are defined to be probabilities of movement occurence, resulting in the
special case of probabilistic classification. Due to the high-dimensional nature of
the problem (with data points described by a set of D variables (with D > 2, in
general)) and the type of values to be predicted, techniques developed in statis-
tics and machine learning are considered, with focus on probabilistic techniques
providing information related to uncertainty in predictions, of interest when pre-

1In geostatistics, this is referred to as the variography procedure.
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dictions are made based on real-world data (where observations may be missing).
The work summarizes results of research in context of project ’Development of
suitable information systems for early warning systems’ (EGIFF)1, with focus
on introduction of techniques aiming at improvements in processing of data in
context of an early warning chain focusing on the occurence of movements.

In this work, these results consist of:

- Investigation of the applicability of approximate inference techniques not pre-
viously applied in spatial prediction to classification of high-dimensional spatial
data on regional scale, focusing on classification of susceptibility to mass move-
ments (earth movements) and prediction of avalanche hazard;

- Application of these techniques, with results indicating predictive performance
comparable to established non-probabilistic techniques (Support Vector Machines),
providing additional information related to uncertainty in prediction, with the po-
tential to improve decision support;

- Implementation of these techniques in a way allowing for flexible use in context
of a suitable early warning chain, extending to arbitrary classification tasks.

Outline of the thesis In the following, an outline of the thesis is given:

In chapter 2, spatial prediction is introduced, including the common problems of
regression (prediction of continuous target values) and classification (prediction
of discrete target values). Following a short introduction to the problem, investi-
gation of techniques developed in statistics/ machine learning is motivated based
on requirements of increasingly complex applications in spatial prediction. In this
context, two types of techniques (probabilistic and non-probabilistic techniques)
are discussed, focusing on a class of discriminative probabilistic techniques, re-
ferred to as Gaussian process techniques. In chapter 3, Gaussian process tech-
niques for regression are introduced, starting with the definition of a stochastic
process, common to methods developed in geostatistics, statistics, and machine
learning. In the chapter, model-free kriging methods and model-based techniques

1part of the GEOTECHNOLOGIEN research program (http://www.geotechnologien.de),
funded by the German Federal Ministry of Research and Education (BMBF)
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1. INTRODUCTION

developed in statistics and machine learning are introduced, with expressions for
the Best Linear Unbiased Predictor (BLUP) and Best Predictor (BP) derived
from the (probabilistic) model. In chapter 4, Gaussian process techniques for
classification are described, focusing on problems resulting from the assumption
of discrete target values. In the chapter, it is shown how these problems can be
approached, resulting in approximate expressions for a predictive distribution,
providing information related to uncertainty in prediction in addition to prob-
abilistic predictions in case of discrete target values . In chapter 5, Gaussian
process techniques for prediction in case of large data sets are described, focusing
on algebraic techniques (reduced-rank approximations to the covariance matrix)
and sparse Gaussian process techniques for classification. In chapter 6, the pre-
dictive performance (sensitivity) of Gaussian process techniques for classification
is evaluated on two high-dimensional real-world spatial data sets, describing the
occurence of different types of mass movements. Chapter 7 concludes, summa-
rizing results of the work.

12



Chapter 2

Spatial prediction

Summary In this chapter, spatial prediction is introduced, including the com-
mon problems of regression (prediction of continuous target values) and classi-
fication (prediction of discrete target values) of spatial (spatio-temporal) data.
Subsequently, investigation of techniques developed in statistics/ machine learn-
ing is motivated based on requirements of increasingly complex applications in
spatial prediction, focusing on classification of spatial (spatio-temporal) data in-
volving the occurence of hazardous mass movements (earth movements, snow
avalanches). In this context, probabilistic and non-probabilistic techniques are
considered, focusing on a class of discriminative probabilistic techniques (Gaus-
sian process techniques), based on the argument of availability of a predictive
distribution, providing information related to uncertainty in prediction, with po-
tential to improve decision support.

The problem of spatial prediction is to build a model providing predictions for
quantities of interest at any location in an area, given examples consisting of data
points (denoted by xi, with i = 1, . . . , N), described by a set of variables and
measurements/ observations ti (target variables). Given examples {xi, ti} and
a new data point xN+1, the goal of spatial prediction is to accurately estimate/
predict the value of target variable tN+1 at xN+1, based on information contained
in {xi, ti}.

In general, target variables can be continuous or non-continuous. Depending
on the type of target variables, the spatial prediction problem is referred to as a
regression problem (with ti ∈ IR), ordinal (count type) regression problem (with

13



2. SPATIAL PREDICTION

ti ∈ Z+), or classification problem (with ti ∈ {c1, . . . , ck, . . . , cK}). Depending
on the type of the problem, different techniques can be applied, with different
techniques available for prediction problems of different types.

In context of spatial data, prediction of quantities of interest (values of targe
variables) at data points (locations) has traditionally been performed within the
framework of kriging techniques (4). However, application of kriging techniques
has focused on data points described by coordinates in low-dimensional Euclidean
space and continuous target values, i.e., on low-dimensional regression problems.

With recent technological advances, more data (sensoric measurements) has been
made available, resulting in more complex prediction problems of different types.
With more complex data sets (consisting of data points described by D variables
(with D > 2, in general), and target variables of different types), resulting pre-
diction problems suggest the application of more general prediction techniques
developed in statistics (26) and machine learning (38), (35), with particular tech-
niques (notably, the Support Vector Machine (SVM)) established as methods of
choice for regression and classification in context of spatial data (18), as a result
of good predictive performance on different prediction tasks.

The aim of this work is an investigation of the applicability of statistical/ proba-
bilistic machine learning techniques not previously applied in spatial prediction to
classification of spatial data, focusing on occurence of mass movements. In mod-
elling the prediction problem, it is assumed that values of discrete target variables
representing class membership (indicating whether movement occurence at a data
point (location) has been registered) are dependent on N data points described by
D > 2 variables (environmental factors), contributing to disposition (tendency)
of mass to move, or triggering movement. In consequence, the prediction prob-
lem suggests the application of statistical/ machine learning techniques capable
of modelling complex dependencies between the (categorical) target values and
high-dimensional data points.

In the range of applicable methods developed in statistics and machine learn-
ing, available techniques can be divided in probabilistic and non-probabilistic
techniques, corresponding to whether the assumption of a probabilistic model
is made. This can be formalized as the assumption of (types for) probabilities

14



contributing to the joint probability p(x1, . . . ,xN ,xN+1, . . . , t, tN+1, . . .) (with
t = (t1, . . . , tN )T , ti ∈ {c1, . . . , cK}), describing the assignment of target values
to data points.

In general, non-probabilistic techniques, including Artificial Neural Networks
(ANN) (2) and Support Vector Machines (SVM) (38) do not make the assump-
tion of a probabilistic model. Instead, these techniques assume that examples
in {xi, ti} are i.i.d. (independent, identically distributed) samples drawn from
some distribution. Unfortunately, this means that expression(s) for probabilities
contributing to the joint probability p(x1, . . . ,xN ,xN+1, . . . , t, tN+1, . . .) are not
available. However, when modelling real-world data, it is preferable to know these
expressions, which can be used to obtain a predictive distribution, describing the
probability of the assignment of target values to a new data point xN+1, given
the set of examples {xi, ti}. In addition to probabilistic predictions based on
the predictive distribution, uncertainty estimates provide additional information,
which is of interest when real-world data is considered (where observations may
be missing). In general, this makes probabilistic prediction techniques well-suited
to probabilistic classification tasks if real-world spatial data is considered, with
probabilistic predictions allowing for probabilistic mapping.

Given a probabilistic model (i.e., expression(s) for probabilities contributing to
p(x1, . . . ,xN ,xN+1, . . . , t, tN+1, . . .) and a new data point xN+1, two approaches
to probabilistic classification can be considered. In the first, referred to as the gen-
erative approach, p(x1, . . . ,xN ,xN+1, t, tN+1 = ck) (with k = 1, . . . ,K) can be
written as a product of a class-conditional p(x1, . . . ,xN ,xN+1|t, tN+1 = ck) and
a prior density p(t, tN+1 = ck) for observations t, tN+1. From class-conditional
and prior density, a predictive distribution is obtained using Bayes’ Theorem,
resulting in

p(tN+1 = ck|x1, . . . ,xN ,xN+1, t) =
p(x1,...,xN ,xN+1|t,tN+1=ck)p(t,tN+1=ck)∑K
k=1 p(x1,...,xN ,xN+1|t,tN+1=ck)p(t,tN+1=ck)

1
p(t|x1,...,xN [,xN+1])

The alternative approach, referred to as the discriminative approach, focuses
on modelling the posterior distribution for observations given data points (the
set of variables describing data points) p(t, tN+1 = ck|x1, . . . ,xN ,xN+1) in the
product p(t, tN+1 = ck|x1, . . . ,xN ,xN+1)p(x1, . . . ,xN ,xN+1) to obtain the pre-

15



2. SPATIAL PREDICTION

dictive distribution p(tN+1 = ck|x1, . . . ,xN ,xN+1, t) more directly.

In this work, the discriminative approach is adopted. Specifically, a class of
discriminative probabilistic techniques developed in statistics and machine learn-
ing, referred to as Gaussian process classification techniques, is investigated with
respect to applicability to the task of classification of high-dimensional real-world
spatial/ spatio-temporal data, focusing on the occurence of mass movements. As-
suming that the vector of variables describing data points is high-dimensional,
the approach circumvents the problem of density estimation for class-conditional
densities p(x1, . . . ,xN ,xN+1|t, tN+1 = ck), focusing on a Gaussian prior defined
over a collection of latent (i.e., unobservable) random variables. For inference,
the Gaussian prior is combined with a likelihood function, resulting in a poste-
rior over the latent variables. Subsequently, different techniques can be applied
to obtain a predictive distribution, allowing for probabilistic predictions.

In context of spatial prediction, Gaussian process techniques can be thought of in
the framework of a generalization of geostatistical techniques to high-dimensional
data sets, based on related assumptions. In analogy to geostatistical techniques,
Gaussian process techniques allow to include information about correlation be-
tween data points (variables describing data points) in terms of a (symmetric, pos-
itive definite) covariance function c. Extending the capabilities of geostatistical
techniques, Gaussian process techniques introduce several advantages, including
applicability to more complex prediction tasks, generalization to different pre-
diction problems (e.g., prediction of categorical (i.e., non-continuous) variables),
more objective estimation of correlation parameters (in terms of parameters of
the covariance function), and the possibility of introduction of techniques suitable
to deal with larger data sets.

In the following chapters, Gaussian process techniques are introduced, start-
ing with regression methods developed from geostatistical techniques (chapter
3). Subsequently, Gaussian process classification techniques developed in statis-
tics and machine learning are introduced (chapter 4). In chapter 5, techniques
suitable to deal with a large number of data points to include in prediction are
considered.

16



Chapter 3

Gaussian process regression

Summary This chapter deals with Gaussian process techniques for regression
(prediction of continuous target values). Starting with the definition of a stochas-
tic process and the introduction of the covariance function, describing correlation
between data points, Gaussian process-based techniques are introduced, with
derivation of the Best Linear Unbiased Predictor (kriging predictor) from a mea-
sure of prediction error referred to as the mean square error (MSE). Subsequently,
model-based techniques developed in statistics and machine learning are intro-
duced, with expressions for the Best Linear Unbiased Predictor and Best Pre-
dictor derived from the model, making use of properties of the Gaussian. The
chapter concludes with a method for estimation of parameters of the covariance
function, based on optimization of the likelihood of data (observations) given the
model. Throughout the chapter, it is shown how different approaches can be
used to obtain optimal predictions within the framework of stochastic processes,
with model-based techniques for regression linking geostatistical techniques to
Gaussian process methods for classification, introduced in chapter 4.

3.1 Stochastic processes

All statistical techniques described in the following (chapter 3, 4, and 5) (includ-
ing geostatistical, statistical, and machine learning/ Bayesian statistical tech-
niques) are expressed in terms of stochastic processes, defined as follows:

Definition A stochastic process Y (·) is a collection of random variables Y (x)
{Y (x)|x ∈ X} defined on an index set (input space) X.

17



3. GAUSSIAN PROCESS REGRESSION

According to the Kolmogorov extension theorem (19), a stochastic process can be
specified from a consistent (in terms of the marginalization property) collection
of finite-dimensional probability distributions. Conversely, for a finite collection
{Y (x1), . . . , Y (xN )}, a probability distribution, referred to as the distribution of
the process, can be obtained from the stochastic process:

p((Y (x1), . . . , Y (xN )))
=
∫
. . .
∫
p((Y (x1), . . . , Y (xN ), Y (xN+1), . . . , Y (xN+n)))

dY (xN+1) . . . dY (xN+n),

with n ∈ IN, and (xN+1, . . . ,xN+n)T ∈ Xn.

From above expression, p((Y (x1), . . . , Y (xN ))) can be substituted for Y (·) if the
finite collection {Y (x1), . . . , Y (xN )} is considered. Hence, if interested in the
distribution of finite y, it is possible to work with (Y (x1), . . . , Y (xN ))T (and the
corresponding probability distribution p(y) = p((Y (x1), . . . , Y (xN ))), not taking
(YN+1, . . . , YN+n) into account.

Within the stochastic process framework, examples {x1, . . . ,xN , t1, . . . , tN} are
interpreted as an incomplete realization of a stochastic process Y (·) := {Y (x)|x ∈
X}, transformed by a noise process {TY (y(x))|y(x) = Y (·)} acting on realizations
of Y (·): 1

{x1, . . . ,xN , t1, . . . , tN}
∼ p(T (x1), . . . , T (xN )|Y (x1), . . . , Y (xN ))p(Y (x1), . . . , Y (xN ))

In general, the stochastic process underlying {t,x} = {x1, . . . ,xN , t1, . . . , tN} is
not assumed to be completely observable. Instead, {t,x} is assumed to represent
an (incomplete) realization of a transformed latent (i.e., unobservable) process
Y (·).

Depending on the type of TY (·), different distributions of {t,x} can be ex-
plained, resulting in prediction problems corresponding to regression problems
(with ti ∈ IR), count type regression problems (with ti ∈ Z+), or classification
problems (with ti ∈ {c1, . . . , ck, . . . , cK} (with k = 1, . . . ,K)).

1see e.g. (7)
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3.1 Stochastic processes

Given {t,x}, an optimal prediction for T (xN+1) at xN+1 ∈ X can be made based
on a predictive distribution, given by p(T (xN+1)|t) 1. Depending on the type of
TY (·), different techniques can be applied to obtain the predictive distribution,
as described in this chapter, and in the sections in chapter 4.

3.1.1 The covariance function

In the stochastic process framework, correlation is formalized in terms of a sym-
metric, positive definite function c(xi,xj) of input points xi,xj , referred to as
the covariance function cov(Y (xi), Y (xj)) of the process, defined by

c(xi,xj) = cov(Y (xi), Y (xj)) = E((Y (xi)− E(Y (xi)))(Y (xj)− E(Y (xj)))),

with E(Y (x)) determined by the mean function µ(x).

A number of covariance functions is common in practice. E.g.,
the squared exponential covariance function cSE ,

cSE(xi,xj) = exp(− r2

2l2
), with length scale l > 0, and (squared) input distance

r2 = (xj − xi)2,

the Matern covariance function cMatern,

cMatern = 21−ν

Γ(ν) (
√

2νr
l )νKν(

√
2νr
l )

with smoothness parameter ν > 0, length scale l > 0, r = ‖xj − xi‖, and Kν

denoting the modified Bessel function 2,

the rational quadratic covariance function cRQ,

cRQ = (1 + r2

2αl2
)−α

with prior shape parameter α > 0, length scale l > 0, r2 = (xj − xi)2,

1see e.g. (39)
2see (1), sec. 9.6
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and the (polynomial) dot product covariance function cpolydot,

cpolydot = (xixj)p with p ∈ Z+.

3.1.2 Properties of stochastic processes

Stationarity A stochastic process can be characterized by properties related
to the behavior of the process with respect to (linear) transformations of x in the
input space. If the distribution of the process is not changed if x is translated, the
process is stationary. In this case, the covariance depends only on the difference
h = xj − xi:

cov(Y (xi), Y (xj)) = c(xi,xj) = c(xj − xi)

The important case of second order stationarity occurs if for any two xi, xj ,
the distribution of the process depends only on h, up to its second moment:

cov(Y (xi), Y (xj)) = E(Y (xi)Y (xi + h))− E(Y (xi))2

Intrinsic stationarity occurs in the case when differences of observed values at
two xi, xj have mean 0 (E((Y (xi) − Y (xi + h))) = 0) and the variance of the
differences depends only on h, for any two xi,xj . 1

Isotropy A different property of the stochastic process is related to the be-
havior of the process with respect to rotations of input space. If the covariance
function is a function of ‖h‖ = ‖xj − xi‖ only (irrespective of the direction), the
process is said to be isotropic. Otherwise (i.e., if the distribution of data has a
preferred direction), the process is anisotropic.

3.2 Elements of geostatistics

The property of (intrinsic) stationarity is a central property in geostatistical tra-
dition. In geostatistics, the condition of intrinsic stationarity must be met to
apply a measure of spatial correlation particular to geostatistical practice, re-
ferred to as the (semi-)variogram γ(h):

1The assumption of intrinsic stationarity is referred to as the intrinsic hypothesis in geo-
statistics, see (24)
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γ(h) = 1
2var(Y (xi)− Y (xi + h))

Traditionally, geostatistics bases its predictions on the (semi-)variogram, not as-
suming the existence of a covariance function. If the covariance is assumed to
exist, there is a close relationship between variogram and covariance:

γ(h) = 1
2cov(Y (xi), Y (xi))− cov(Y (xi), Y (xi + h)) + 1

2cov(Y (xi + h), Y (xi + h))

which reduces to γ(h) = cov(Y (xi), Y (xi)) − cov(Y (xi), Y (xi + h)) in case of
second-order stationarity (in which var(x) is constant).

Hence, if the covariance is assumed to exist, γ(h) can be derived from above
expression. Typically, this is not the case in geostatistical practice. Instead,
the variogram is built based on a discrete approximation to γ(h), known as the
empirical variogram γemp(h), in the variography procedure.

3.2.1 The kriging predictor

In geostatistics, the procedure of predicting the values of T (xN+1), T (xN+2), . . .
at unobserved locations xN+1,xN+2, . . . based on an assumed variogram (or, if
the covariance is assumed to exist, the covariance function), is known as kriging,
after Daniel G. Krige, who, in the 1950s, introduced a technique making use of
information contained in a description of correlation in order to improve predic-
tion accuracy.

In classical statistics, the kriging predictor is referred to as a Best Linear Unbi-
ased Predictor (BLUP) (17). It is linear since the predictor t̃(xN+1) = λT t (with
t = (T (x1), . . . , T (xN ))T ) is a linear function of the vector of observations. With
E(t̃(xN+1)) = E(T (xN+1)), the kriging predictor is unbiased. Finally, it is best in
the sense of having minimum mean squared error MSE = E((λT t− T (xN+1))2)
in the class of linear (unbiased) predictors.

There are different names for various types of kriging. In the following, the main
types, known as ordinary kriging (kriging with unknown but constant mean) and
universal kriging (kriging with trend model) are described.
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Ordinary kriging In case of ordinary kriging, the mean E(T (x)) is unknown.
In order to obtain t̃(xN+1) = λT t , the MSE under the linear predictor t̃(xN+1) =
λT t is minimized, subject to

E(t̃(xN+1)) = E(T (xN+1))⇔
∑N

i=1 λiE(T (xi)) = µ(xN+1)⇔
∑N

i=1 λi = 1
⇔ λT1 = 1

where E(T (xi)) = µ(x) = µ(xN+1).

Universal kriging Universal kriging allows the mean of the distribution of the
random process to be linear in a set of vectors fi of values f1(xi), . . . , fP (xi),
evaluated at locations xi. Often, the set of functions is chosen so that Fβ =
(f1, . . . , fN )Tβ describes a polynomial trend surface of order p (with X = IRD,
D ∈ {2, 3}, and p << 10 , in general) for a P × 1 vector β:

fTi β = β0 +
∑D

j1=1 βj1xj1 +
∑D

j1=1

∑D
j2=1 βj1j2xj1xj2 + . . .

+
∑D

j1=1 . . .
∑D

jq=1 βj1...jqxj1 . . . xjq

In case of universal kriging, the MSE is minimized subject to

∑N
i=1

∑P
j=1 λifj(xi)βj =

∑P
j=1 fj(xN+1)βj ⇔ λTFβ = fTN+1β∀β

with the P × 1 vector fN+1 = (f1(xN+1), . . . , fP (xN+1))T , evaluated at data
point xN+1.

3.2.1.1 Prediction

Prediction in terms of the variogram The expression λ∗ for the kriging
weights obtained by minimizing the MSE subject to the unbiasedness constraint
(in terms of the variogram) for ordinary and universal kriging is derived in Ap-
pendix C.

Substituting λ∗ in the linear predictor, the predicted value t̃(xN+1) at location
xN+1 is

λT∗ t
(1TΓ−11)−1=A

= (γ + 1A(1− 1TΓ−1γ))TΓ−1t
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in case of ordinary kriging, and λT∗ t
(FTΓ−1F)−1=A

=
(γ + FA(fN+1 − FTΓ−1γ))TΓ−1t

in universal kriging,

where γ = (γ(x1 − xN+1), . . . , γ(xN − xN+1))T ∈ IRN , and Γ is a N ×N matrix
with (i, j)-th element determined by γ(xi−xj), for i = 1, . . . , N and j = 1, . . . , N .

The achieved minimum MSE calculated using these weights (denoted MSE∗)
is referred to as the kriging variance. Substituting λ∗ into the expression for the
MSE yields:

MSE∗ = 2λT∗ γ −λT∗ Γλ∗
(1TΓ−11)−1=A

= γTΓ−1γ − (1− 1TΓ−1γ)TA(1− 1TΓ−1γ)

in case of ordinary kriging, and MSE∗ = 2λT∗ γ−λT∗ Γλ∗
(FTΓ−1F)−1=A

= γTΓ−1γ−
(fN+1 − FTΓ−1γ)TA(fN+1 − FTΓ−1γ)

in universal kriging.

In geostatistical terms, the kriging variance is an estimate of the precision of
prediction. Low kriging variance implies a high level of precision (high level of
confidence) in prediction. Conversely, high kriging variance implies a low level of
precision (low level of confidence) in prediction.

Prediction in terms of the covariance In geostatistical practice, the kriging
procedure is typically performed in terms of the variogram. Assuming the covari-
ance function is known, the MSE can be expressed in terms of the covariance:

MSE = var(T (xN+1))− 2λT c + λTCλ

where c = (cov(T (x1), T (xN+1)), . . . , cov(T (xN ), T (xN+1)))T ∈ IRN , and C is
a N × N matrix with entries cij determined by cov(T (xi), T (xj)), evaluated at
locations xi, xj .

In this case, derivation of the kriging weights results in an alternative expres-
sion for the predictor t̃(xN+1) and MSE∗:
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λT∗ t
(1TC−11)−1=A

= (c + 1A(1− 1TC−1c))C−1t

in case of ordinary kriging, and λT∗ t
(FTC−1F)−1=A

=
(c + FA(fN+1 − FTC−1c))C−1t

in universal kriging.

3.3 Model-based statistics

Classical geostatistics (relying on variogram modelling and the use of kriging
techniques) assumes no distributional model. A different approach to spatial
statistics, borrowing ideas from classical statistics, makes predictions based on
a particular distributional model. In contrast to the distribution-free technique,
predictions under the distributional are based on a predictive distribution, de-
scribing the assignment of probabilities to predicted target values. Compared to
the distribution-free technique, the assumption of a statistical model introduces
several advantages, including the possibility of generalization to different/ more
complex models (allowing for application to classification tasks, i.e., prediction
of categorical variables), more objective estimation of correlation parameters (in
terms of parameters of the covariance function) and the possibility of introduc-
tion of techniques suitable to deal with larger data sets.

In the following sections, two approaches to model-based spatial statistics are
introduced. In the first, a model developed in classical statistics is presented.
Subsequently, a fully non-parametric Bayesian approach to process-based infer-
ence, reflecting the point of view taken in machine learning, is described.

3.3.1 The linear model

In classical statistics, a model resulting in predictions equivalent to the kriging
techniques is known as the (Gaussian) linear model. The linear model involving
stochastic processes can be written

t = Fβ + e

with t = (T (x1), . . . , T (xN ))T , a N × P design matrix F of values of functions
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f1, . . . , fP evaluated at data points (locations) xi for i = 1, . . . , N , a P ×1 vector
β of unknown fixed effects and a N × 1 random vector e, interpreted as an in-
complete realization of a Gaussian process, with the zero function as mean, and
covariance function ce.

Due to the presence of the Gaussian process component, the linear model can be
written

t ∼ N(t|Fβ,Ce)

with mean Fβ and covariance matrix Ce, with entries cij determined by the co-
variance function ce(xi,xj), evaluated at xi, xj for i = 1, . . . , N and j = 1, . . . , N .

Various forms of kriging can be accomodated in this framework. The models for
simple and ordinary kriging are special cases with P = 0 and P = 1, respectively:

t = e,

and

t =


f1(x1)
f1(x2)

...
f1(xN)

β + e = f1(x)β + e
f1(x)β=:µT= µT + e

Simple kriging with zero mean, or (equivalently) constant mean µ removed, can
be expresed as t = e, or t+ − µ = t = e. Ordinary kriging (i.e., kriging with
unknown but constant mean) can be expressed as t = µ+ e.

With dimensionality D, universal kriging with a linear trend has D + 1 parame-
ters. For a polynomial of order p in D dimensions, the number of parameters P
grows proportionally to Dp with p (< Dp due to symmetry)1. Hence, under the
linear model, universal kriging with polynomial trend can be expressed as

1e.g., for D = 2 and p = 2, the surface takes the form β0+
∑D
i=1 βixi+

∑D
i=1

∑D
j=1 βi,jxixj =

β0 +β1x1 +β2x2 +β1,1x1x1 +β1,2x1x2 +(β2,1x2x1)+β2,2x2x2, with 3 additional (unique) terms
due to the increase to p = 2.
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t =


1 x1,1 . . . x1,D . . . . . . . . . xp1,1 . . . xp1,D
1 x2,1 . . . x2,D . . . . . . . . . xp2,1 . . . xp2,D
...

... . . .
... . . .

... . . .
...

1 xN,1 . . . xN,D . . . . . . . . . xpN,1 . . . xpN,D



β1

β2

...
βP

+ e

, and, in the more general case of a set of functions {f1(x), . . . , fP (x)}, as

t =


f1(x1) . . . fP (x1)
f1(x2) . . . fP (x2)

... . . .
...

f1(xN ) . . . fP (xN )



β1

β2

...
βP

+ e

3.3.1.1 Prediction under the linear model

Provided the form of the covariance function ce is known, predictions under the
linear model can be made in a way similar to kriging. In case when (additional)
random effects are absent, prediction under the linear model is equivalent to (uni-
versal) kriging. However, in comparison to kriging, prediction under the linear
model has the advantage that the covariance function(s) need not be stationary.
In order for the variance of the predictor to be ≥ 0, it is sufficient for the co-
variance function of the process (the covariance matrix Ce) to be positive definite:

var(
∑N

i=1 λiT (xi)) ≥ 0 ⇔
∑N

i=1

∑N
j=1 λiλjcov(T (xi), T (xj)) ≥ 0 ⇔ λTCeλ ≥

0∀λ ∈ IRN

In the following, two approaches resulting in predictors for the unknown value
at a new location xN+1 are given. In the first, a Best Linear Unbiased Predictor
under the linear model is derived. In the second approach, a Best Predictor (BP)
is derived from the predictive distribution p(T (xN+1)|t), making use of properties
of the Gaussian.

Best Unbiased Linear Predictor Derivation of the Best Linear Unbiased
Predictor under the linear model is performed in a way similar to the (universal)
kriging predictor (see Appendix C for details), by minimizing the MSE subject
to an unbiasedness constraint.

Given a new data point xN+1 with known fN+1 = (f1(xN+1), . . . , fP (xN+1))T ,
the MSE can be written:
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E((λT t− T (xN+1))2)
λTFβ=fN+1β= E(((λT t− λTFβ)− (T (xN+1)− fN+1β))2)

= λTCeλ− 2λT c + var(T (xN+1)),

with c = cov(t, T (xN+1)).

Introducing a P × 1 vector α of Lagrange multipliers αk, k = 1, . . . , P , the
expression to be minimized subject to the unbiasedness constraint

E(t̃(xN+1)) = λTE(t)⇔ λTF = fTN+1 is

λTCeλ− 2λT c + var(T (xN+1))− 2αT (FTλ− fN+1)

Differentiating the expression with respect to λ and α and equating to 0 re-
sults in the matrix form(

Ce −F
FT 0

)(
λ

α

)
=

(
c

−fN+1

)

Assuming that Ce is non-singular (this is the case when the covariance func-
tion is positive definite), and using the result for the inverse of a partitioned
matrix M (see Appendix B for details), the solution can be written(
λ

α

)
=

(
P −C−1

e F(FTC−1
e F)−1

−(FTC−1
e F)−1FTC−1

e −(FTC−1
e F)−1

)(
c

−fN+1

)

with P = C−1
e −C−1

e F(FTC−1
e F)−1FTC−1

e .

Hence,

λ∗ = C−1
e (c + F(FTC−1

e F)−1(fN+1 − FTC−1
e c))

which results in the expression for the Best Linear Unbiased Predictor in the
case of universal kriging, if the covariance function is used instead of the vari-
ogram function:

λT∗ t
(FTC−1

e F)−1=A
= (c + FA(fN+1 − FTC−1

e cT ))C−1
e t
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As in the case of kriging, λ∗ can be substituted into the expression for the MSE,
resulting in

MSE∗
(FTC−1

e F)−1=A
= var(T (xN+1)) − cTC−1

e c + (fN+1 − FTC−1
e cTA(fN+1 −

FTC−1
e c)

which is equivalent to the expression for the minimum MSE in case of universal
kriging, if the covariance function is used instead of the variogram function.

Best Predictor A mathematically less involving way to obtain an expression
equivalent to the BLUP results from the assumption of Gaussianity. Making use
of the result for the conditional Gaussian distribution p(x1|x2), given the joint
Gaussian distribution p(x1,x2) (see Appendix A for details), given by(
T (xN+1)

t

)
∼ N(

(
T (xN+1)

t

)
|

(
fTN+1β

Fβ

)
,

(
c c

cT Ce

)
)

with c = var(T (xN+1)), and c = cov(T (xN+1), t), the predictive distribution
p(T (xN+1)|t) is obtained:

p(T (xN+1)|t[,β]) = N(T (xN+1)|fTN+1β + cC−1
e (t− Fβ),

var(T (xN+1))− cC−1
e cT )

A result equivalent to BLUP and MSE∗ is obtained by recognizing the depen-
dence on β in p(T (xN+1)|t[,β]). Emphasizing the dependence and making use
of the result for the marginal distribution p(y) given a marginal distribution
p(x) and a conditional distribution p(y|x) (with p(x) = p(β|[t]) ∼ N(β|E(β) =
β̂, E((β − β̂)(β − β̂)T ) = (FTC−1

e F)−1) 1 , and p(y|x) = p(T (xN+1)|t,β); see
Appendix A for details), the predictive distribution is

p(T (xN+1)|t)
= N(T (xN+1)|(fTN+1 − cC−1

e F)β̂ + cC−1
e t,

var(T (xN+1))− cC−1
e cT + (fTN+1 − cC−1

e F)(FTC−1
e F)−1(fTN+1 − cC−1

e F)T )

i.e., a Gaussian with BLUP and MSE∗ as first and second moment, respectively.

1with β̂ denoting the BLUE/ GLS estimate β̂GLS = β̂ML = (FTV−1F)−1FTV−1t obtained

from maximizing p(t|β) = (2π)−
N
2 |Ce|−

1
2 exp(− 1

2
(t− Fβ)TC−1

e (t− Fβ)) with respect to β.
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3.3.2 The Gaussian process model (GPM)

Application of the linear model for the task of predicting the value of T (xN+1)
provides an alternative to the kriging procedure. A different approach to the
problem is taken in the Bayesian framework.

In the (fully non-parametric) Bayesian approach, a prior probability distribution
is placed directly over y, interpreted as an incomplete realization of a stochastic
process Y (·). In general, it is assumed that Y (·) is a latent Gaussian process with
zero mean and covariance function reflecting assumptions about characteristics
(continuity, differentiability) of functions (realizations of Y (·)) involved in infer-
ence:

p(y) = N(y|0,C)

with y = (Y (x1), . . . , Y (xN ))T .

To explain the distibution of t = (T (x1), . . . , T (xN ))T , the prior is combined
with a likelihood function p(t|y), reflecting assumptions about the type of a
noise process TY (·). In Gaussian process regression, typically isotropic Gaussian
likelihood is assumed (equivalent to the assumption of i.i.d Gaussian noise):

p(t|y) = N(t|y, σ2IN ), with σ2IN = diag(σ2)1, σ2 > 0.

Making use of the result for the marginal distribution p(y) given a marginal
Gaussian distribution p(x) and a conditional Gaussian distribution p(y|x) (see
Appendix A for details), the Gaussian marginal can be written

p(t) =
∫
p(t|y)p(y)dy = N(0,K = C + σ2IN )

Based on the Gaussian marginal p(t), inference in the Gaussian process model is
performed by making use of the result for the conditional Gaussian distribution
p(x1|x2), given the joint Gaussian distribution p(x1,x2):(
T (xN+1)

t

)
∼ N(

(
T (xN+1)

t

)
|

(
0
0

)
,

(
k k

kT K

)
)

1with A = diag(a) denoting a diagonal matrix with entries a.
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with k = var(T (xN+1)), and k = cov(T (xN+1), t), the predictive distribution
is obtained:

p(T (xN+1)|t) = N(T (xN+1)|k(C + σ2IN )−1t),
var(T (xN+1))− k(C + σ2IN )−1kT )

Prediction under the GPM is equivalent to prediction resulting from an applica-
tion of simple kriging (assuming i.i.d. Gaussian noise). In contrast to the linear
model, the assumption of a deterministic trend Fβ in the mean is dropped ,
reducing the increased computational complexity (in the order of P 3), resulting
from inversion of the P × P matrix product (FTC−1

e F).

3.3.3 Hyperparameter estimation

Application of the model-based statistical techniques to spatial data provides an
alternative to kriging techniques, resulting in predictive distributions for quan-
tities of interest. Another advantage of model-based statistical techniques in
comparison to kriging is a more principled/ objective method of estimating the
parameters of the correlation structure, modelled by the covariance function. In
the linear model and the Gaussian process model, this is achieved by maximizing
the likelihood of the data (observations t) with respect to the vector of parameters
θ of the covariance function. In general, the procedure results in an optimal esti-
mate θ̂ for θ. From the statistical point of view, the technique has the properties
of statistical consistency and asymptotic normality 1.

Automatic Relevance Determination The technique of hyperparameter es-
timation can be extended by including a separate parameter for each input vari-
able xj in the covariance function. Then, optimization of parameters allows the
relative importance of covariance parameters to be estimated from the data. I.e.,
if the covariance function is parametrized with a D-dimensional vector θ (with
component θj for each input variable xj), the procedure allows to determine the
relevance of each xj with respect to the target variables.

1i.e., limN→∞ P (|θ̂N − θ| ≥ ε) = 0 for ε > 0, and, for N → ∞, p(θ̂N ) → N(θ̂N |θ, I(θ̂N )),
with θ̂N denoting the ML estimator based on a sample of size N , and I(θ̂N ) denoting the Fisher
information matrix, evaluated at θ̂N .
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maximum likelihood In the maximum likelihood approach, the log likelihood
of the data given the model θ is given by

lML = log p(t) = log((2π)−
N
2 |(C + σ2IN )|−

1
2 exp(−1

2tT (C + σ2IN )−1t)
= −N

2 log(2π)− 1
2 log(|(C + σ2IN )|)− 1

2tT (C + σ2IN )−1t

Making use of the result for the derivative of the inverse C−1
e and the deriva-

tive of the log of the determinant log(|Ce|) (see Appendix B.3 for details), the
vector of estimates θ̂ is obtained by differentiating the log likelihood function
with respect to each hyperparameter θj , resulting in

∂lML
∂θj

= ∂ log p(t)
∂θj

= −1
2 tr(C

−1 ∂C
∂θj

) + 1
2tTC−1 ∂C

∂θj
C−1t

Having obtained an expression for the log likelihood and the partial deriva-
tives for each θj , maximization of the log likelihood can be performed using effi-
cient gradient-based optimization algorithms, e.g. conjugate gradient, or Quasi-
Newton methods (29).
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Chapter 4

Gaussian process classification

Summary In this chapter, Gaussian process techniques for classification are
introduced, in preparation for application in chapter 6. In contrast to techniques
for regression introduced in chapter 3, the distribution of (discrete) target values
in classification implies the choice of a different probabilistic model, resulting in
intractable expressions for distributions involved in inference. In this chapter, it
is shown how these expressions can be approximated by means of deterministic
or stochastic techniques developed in statistics and machine learning, resulting
in approximate expressions for the predictive distribution, providing information
related to uncertainty in addition to probabilistic predictions in case of discrete
target values.

The techniques presented in chapter 3 are regression techniques. These tech-
niques are suitable to deal with problems where observations ti and the unknown
value T (xN+1) to be predicted are continuous (with t ∈ IRN , T (xN+1) ∈ IR) and
the vector (t, T (xN+1)) can be assumed to follow the distribution of a Gaussian
process. A different class of problems is classification, where, for all x ∈ X, T (x)
∈ {c1, . . . , cK} and T (xN+1) is to be assigned an element of {c1, . . . , cK}. From
this definition, T (·) cannot be modelled by the Gaussian distribution alone. Con-
sequently, classification problems have to be dealt with in a different (in general,
more involving) way.

Within the stochastic process framework, probabilistic classification techniques
have been developed in classical statistics and machine learning/ Bayesian statis-
tics. In geostatistics, a technique referred to as indicator kriging has been applied
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to the task of modelling the (spatial) cumulative distribution of quantities of in-
terest. In classical statistics, work on extending the linear model has led to
development of the generalized linear mixed model (GLMM) (26), a generaliza-
tion applicable to classification tasks in context of correlated data. In Bayesian
statistics, stochastic approximations using Markov Chain Monte Carlo (MCMC)
techniques (13), (22) are applied when distributions involved in inference are
non-conjugate 1 2 Also within the Bayesian framework, variational approxima-
tion methods have been introduced in machine learning, improving on techniques
developed in classical statistics.

This chapter is structured as follows: In the next section, the geostatistical ap-
proach to probabilistic classification is introduced. Subsequently, classical and
Bayesian model-based approaches are reviewed. In the first part, a GLMM suit-
able for prediction within thea stochastic process framework is developed by
introducing the generalized linear model (GLM)(25), an extension of the linear
model which allows the outcome of the model to result from a non-linear trans-
formation of the linear predictor Fβ. Subsequently, the GLM is extended by
appending a vector of random effects to the linear predictor, resulting in a gen-
eral prediction technique capable of making use of (a description of) correlation.
In the second part, the Bayesian approach to Gaussian process classification is
described. As in the case of Gaussian process regression, a fully non-parametric
point of view is taken, with inference taking place in the space of functions (real-
izations of a stochastic process). However, in contrast to the regression case, the
likelihood function (reflecting the effect of a noise process TY (·)) is not assumed
to be Gaussian. In general, this precludes analytical treatment of expressions
(integrals) involved in inference and approximate inference must be performed.

Approximate inference Both in the classical and the Bayesian statistical ap-
proach to Gaussian process classification, the generalization to a non-Gaussian
likelihood introduces computational problems. Since the likelihood is no longer
Gaussian, integrals involving realizations of a Gaussian process prior and the
likelihood can no longer be evaluated in closed form. Hence, application of Gaus-
sian processes to classification requires additional treatment, involving analytical,
numerical, or stochastic approximations.

1In Bayesian statistics, a prior distribution p(θ) is said to be conjugate to a likelihood
function p(x|θ) if the resulting posterior distribution p(θ|x) is of the same type as p(θ).

2In particular, the Gaussian distribution is self-conjugate.
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4.1 Geostatistical classification

The geostatistical techniques introduced in chapter 3 are regression/ interpolation
techniques. For classification tasks, a variant of kriging referred to as indicator
kriging has been used for classification (more generally, to estimate the prob-
ability of a value exceeding a certain threshold). The technique is based on a
transformation of the data so that for a fixed threshold zk, the values of the
random variables T (xi) (with 1 ≤ i ≤ N) are replaced by values of indicator
variables I(xi), with

I(xi) =

1 if T (xi) > zk

0 otherwise

After transformation, the variography procedure is performed as in the case of
regression, resulting in a variogram model.

Based on the variogram model, ordinary kriging is performed on the values of
the indicator variables, with predictions at locations x interpreted as probabili-
ties p(I(x) = 1) (more generally, p(T (x) > zk)). The procedure can be iterated
for a sequence of thresholds zk for k = 1, . . . ,K, with t1 < . . . < tK and the re-
sult can be interpreted as an approximation to the (complementary) cumulative
distribution function of the indicator variable at location x.

In essence, indicator kriging is ordinary kriging (i.e., a regression technique) ap-
plied to binary class labels I(x) ∈ {0, 1}. In particular, the technique lacks a
probabilistic model reflecting the assumption of a (non-Gaussian) process TY (·),
resulting in a mapping IRN → {c1, . . . , cK}N for y. Consequently, it is more
appropriately referred to as a label regression technique. From a practical point
of view, the technique suffers from the same drawbacks as ordinary kriging, due
to limitations resulting from the use of the variogram (more generally, the vari-
ography procedure).

4.2 Model-based classification

4.2.1 The generalized linear model

In the linear model introduced in the previous chapter, the vector of observations
is interpreted as an incomplete realization of a Gaussian process:
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t ∼ N(t|Fβ,Ce)

In the generalized linear model, t is assumed to follow a distribution from an
exponential family:

p(t) =
∏N
i=1 p(ti) =

∏N
i=1 exp( tiγi−b(γi)τ − c(ti, τ))

A second assumption introduced in the GLM is the assumption that the mean
E(t) = µ of the distribution p(t) need not equal the linear predictor η = Fβ.
Instead, the less restrictive structural assumption E(t) = µ = h(η) = h(Fβ),
or, equivalently, Fβ = η = g(µ) is made, with a suitable non-linear response
function h, or, equivalently, a suitable link function g = h−1.

Using h, the linear predictor can be transformed in a different range, depending
on the task. Different response functions (corresponding to different exponential
families for p(ti)) can be used when modelling probabilities, counts, or continuous
target variables. This way, the GLM can be used for regression (with ti ∈ IR),
probabilistic classification (with p(ti = ck) ∈ [0, 1] for k = 1, . . . ,K), or other
prediction tasks.

In (binary) classification, ti is assumed to follow the Bernoulli distribution (de-
noted Bin(1, πi)), modelling the probability of an outcome k (k ∈ {0, 1}) in a
binary trial. In canonical form, the distribution can be written

p(ti = k) =
(

1
k

)
πtii (1− πi)1−ti

= exp(
ti log(

πi
1−πi

)−log(1+exp(log(
πi

1−πi
)))

1 ),

with γi = log( πi
1−πi ), b(γi) = log(1 + exp(γi)), c(ti, τ) = 0, τ = 1.

4.2.2 The generalized linear mixed model

As a result of the generalization to a non-linear response function, the general-
ized linear model can be applied to binary classification tasks by estimating the
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unknown β 1 2, followed by non-linear transformation h(fTN+1β̂), resulting in a
probabilistic prediction for the assignment T (xN+1) = c1. However, in presence
of correlated data, prediction under the GLM typically results in low prediction
accuracy. Higher accuracy can be obtained from an extension of the GLM, re-
sulting from appending a vector of random effects to the linear predictor. The
resulting model, referred to as a generalized linear mixed model (GLMM) (26),
is capable of making use of information contained in a description of correlation,
resulting in improved prediction accuracy if correlation is present.

In the GLMM, t is assumed to consist of conditionally independent observations
ti, given the (latent) yi. Given yi, ti follow a distribution from an exponential
family:

p(t|y) =
∏N
i=1 p(ti|yi) =

∏N
i=1 exp( tiγi−b(γi)τ − c(ti, τ))

The linear predictor η = Fβ is extended by a vector of random effects, in-
terpreted as an incomplete realization of a Gaussian process Y (·):

η = Fβ + y

Finally, the structural assumption in the GLMM is

E(t|y) = µ = h(η) = h(Fβ + y), or, equivalently, Fβ + y = η = g(µ).

4.2.2.1 Prediction under the GLMM

Given a new data point xN+1 with known vector fN+1, prediction under the
GLMM can be made by estimating the unknown parameters β and y, followed
by a non-linear transformation h(fTN+1β + y) (substituting estimates for param-
eters), resulting in p(T (xN+1) = c1) for the assignment T (xN+1) = c1.

As in the GLM, the unknown parameters are obtained by maximizing the marginal
log likelihood of the model, given by

1In general, β is estimated by maximizing the marginal log likelihood of the model, resulting
in a non-linear optimization problem, solved by IWLS, or Fisher scoring.

2see Appendix D for details
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p(t) =
∫
p(t|y)p(y)dy =

∫ ∏N
i=1 exp( tiγi−b(γi)τ − c(ti, τ))p(y)dy

with p(y) ∼ N(y|0,Cy),

with respect to β and y.

In the general case (if the likelihood p(t|y) is not Gaussian), the integral cannot
be evaluated analytically. Hence, application of the GLMM to classification tasks
requires additional effort, with common approaches described below.

Numerical integration Numerical integration techniques approximate inte-
grals which cannot be solved analytically. In general, these methods are based
on re-expressing a function f(x) : IRN → IR+ as the product of a positive weight
function w(x) : IRN → IR+ and a (real) function g(x) : IRN → IR,
so that f(x) = w(x)g(x).

Gauss-Hermite quadrature In case when x = θ, p(θ) = N(θ|µ,Σ), Gauss-
Hermite quadrature can be applied to evaluate integrals of the form

S(a(θ)) =
∫
a(θ)p(t|θ)p(θ)dθ

Substituting θ =
√

2Lz + µ with the left Cholesky square root (the lower trian-
gular factor ) L 1 yields the expression

S(a(θ)) =
∫
a(z)p(t|z)p(z)dz =

∫
a(z)p(t|z)(2π)−

N
2 exp (−zT z)dz

with weight function exp (−zT z), which can be approximated using a Cartesian
product rule:

S(a(θ)) =
∫
a(z)p(t|z)(2π)−

N
2 exp (−z2

1) . . . exp (−z2
N )dz1 . . . dzN

≈
∑k1

i1=1(2π)−
N
2 w

(1)
i1
. . .
∑kN

iN=1(2π)−
N
2 w

(N)
iN

a(z(1)
i1
, . . . , z

(N)
iN

)p(t|z(1)
i1
, . . . , z

(N)
iN

)

with w
(r)
ir

denoting the weight of the Hermite polynomial Hkr(x) of degree kr,
evaluated at the ir-th zero x(r)

ir
, and z = (z(1)

i1
, . . . , z

(N)
iN

), with z
(r)
ir

denoting the

1obtained from the Cholesky decomposition LLT = Σ, for a positive-definite matrix Σ.
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ir-th zero of Hkr(z).
1

Using the Cartesian product rule, an estimate for β can be obtained by max-
imization of the approximate marginal log likelihood log p(t),

log p(t) = logS(1) =
∫
p(t|z)(2π)−

N
2 exp (−zT z)dz

≈
∑k1

i1=1 v
(1)
i1
. . .
∑kN

iN=1 v
(N)
iN

p(t|z(1)
i1
, . . . , z

(N)
iN

),

with z = 1√
2
L−1y,

given an approximation to the partial derivative ∂ log(p(t))
∂β :

∂ log(p(t))
∂β =

∫
(
∂p(t|y)
∂β

)p(y)dy

p(t) =
∫

( 1
p(t|y)

∂p(t|y)
∂β

)p(t|y)p(y)dy

p(t)

=
∫ ∂ log(p(t|y))

∂β
p(t|y)p(y)dy

p(t)

Subsequently, β̂ can be substituted in the expression

E(y|t) = S(y)
S(1) ≈

∑k1
i1=1 v

(1)
i1
...
∑kN
iN=1 v

(N)
iN

zp(t|z(1)i1
,...,z

(N)
iN

)

p(t) ,

yielding an estimate E(y|t, β̂).

Gauss-Hermite quadrature can be applied to classification tasks in the way de-
scribed above. Unfortunately, the technique is limited with respect to the dimen-
sion of the integral, due to its computational complexity (in the order of kN 2)
Hence, for large N (with N denoting the dimensionality of y), other techniques
must be applied.

Analytical approximations The computational complexity of numerical in-
tegration in case of large data sets suggests that numerical integration should
be avoided. A different approach to estimation in the GLMM is based on an
analytical approximation to the integrand by means of Laplace’s approximation
(44), resulting in a Gaussian approximation to the posterior p(β,y|t), obtained
by setting the posterior mean E(β,y|t) to the posterior mode (obtained by maxi-
mization of p(t|β,y)p(y)) and the covariance matrix to the inverse of the Hessian

1The weights w
(r)
ir

and nodes (quadrature points) z
(r)
ir

are tabulated, e.g. in (1), p. 924.
2with k = maxi ki
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H(β,y) (in case of Fisher Scoring, the Fisher matrix I(β,y)) of p(t|β,y)p(β,y),
evaluated at the mode.

Laplace’s approximation The basic form of Laplace’s approximation for eval-
uating the integral in the likelihood is based on a second-order Taylor series ex-
pansion around the maximum of p(t|y)p(y):

log
∫

exp(log p(t|y) + log p(y)) = log
∫

exp(h(y))dy
≈ h(y0) + (y − y0)∂h(y)

∂y |y=y0 + 1
2(y − y0)T | ∂

2h(y)
∂y∂yT

|y=y0(y − y0),

where y0 is the solution to ∂h(y)
∂y |y=y0 = 0,

i.e., the mode of exp(h(y)) = exp(log p(t|y) + log p(y)) = p(t|y)p(y).

Assuming a flat prior p(β) for β (e.g., p(β) ∼ N(β|β0,Cβ), with C−1
β = 0),

and defining δT = (βT ,yT ), so that the components of

∂ log p(t|δ)p(δ)dδ
∂δ = (∂ log p(t|δ)p(δ)dδ

∂β , ∂ log p(t|δ)p(δ)dδ
∂y ) are given by

∂ log p(t|δ)p(δ)dδ
∂β

C−1
β =0
= 1

τ2 FTW∆(t− µ), and, by analogy,

∂ log p(t|δ)p(δ)dδ
∂y = 1

τ2 W∆(t− µ)−C−1
y y,

the expression log p(t|δ)p(δ)dδ can be maximized with respect to δ = (β,y). As
in the case of the GLM, the expression is obtained through IWLS, e.g. Newton-
Raphson, or Fisher Scoring (see Appendix D for details).

In order to evaluate the IWLS update step, it is necessary to obtain the Hes-
sian H(δ) or the Fisher information matrix I(δ):

∂2 log p(t|δ)p(δ)dδ)

∂ββT
= 1

τ2 FTW∆(−1) ∂µ

∂βT
+ 1

τ2 FT ∂(W∆)

∂βT
(t− µ)

= − 1
τ2 FTWF + 1

τ2 FT ∂(W∆)

∂βT
(t− µ),

∂2 log p(t|δ)p(δ)dδ)
∂βyT

= (∂
2 log p(t|δ)p(δ)dδ)

∂yβT
)T

= 1
τ2 FTW∆(−1) ∂µ

∂yT
+ 1
τ2 FT ∂(W∆)

∂yT
(t−µ) = − 1

τ2 FTW+ 1
τ2 FT ∂(W∆)

∂yT
(t−µ), and
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∂2 log p(t|δ)p(δ)dδ)
∂yyT

= ∂2h(y)
∂y∂yT

= − 1
τ2 W + 1

τ2
∂(W∆)
∂yT

(t− µ)−C−1
y

Collecting terms, the Hessian matrix is

H(δ) =

(
Hββ Hβy

Hyβ Hyy

)
=

(
− 1
τ2 FTWF + A − 1

τ2 FTW + B
(− 1

τ2 FTW + B)T − 1
τ2 W + D−C−1

b

)
,

where A = 1
τ2 FT ∂(W∆)

∂βT
(t−µ), B = 1

τ2 FT ∂(W∆)
∂yT

(t−µ), and D = 1
τ2

∂(W∆)
∂yT

(t−
µ).

Hence, the Fisher information matrix I(δ) is

I(δ) =

(
−E(Hββ) −E(Hβy)
−E(Hyβ) −E(Hyy)

)
E(t|β)=µ

=

(
1
τ2 FTWF 1

τ2 FTW
1
τ2 WF 1

τ2 W + C−1
y

)

and the posterior mode can be obtained using the update rule

δ(m+1) = δ(m) −H(δ(m))−1 ∂ log p(t|δ)p(δ)dδ
∂δ , or

δ(m+1) = δ(m) + I(δ(m))−1 ∂ log p(t|δ)p(δ)dδ
∂δ

, starting with an initial estimate δ(0).

In general, the justification for a Gaussian approximation to a posterior is that
the true posterior will tend to a Gaussian as the number of data points increases
(as a consequence of the central limit theorem). In case of Gaussian processes, the
number of variables grows with the number of data points (hence, the argument
does not apply directly). Hence, in context of spatial prediction, an alternative
justification for a Gaussian approximation is suggested, based on the assumption
of ergodicity. 1 Under the assumption of ergodicity, the Gaussian approximation
improves with the size of the area 2, i.e., with N →∞.

One problem with Laplace’s approximation under the GLMM is the presence
of the N × P matrix F, resulting in a (P +N)× (P +N) matrix to be inverted
in each IWLS update step. For a polynomial trend of order p in D dimen-

1Loosely speaking, the ergodic hypothesis states that statistical averaging over realizations
can be replaced by averaging over space .

2assuming fixed size for each xi
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sions, the operation may become prohibitive, with time complexity in the order
of O((N + P )3). Hence, in case of large/ complex data sets (with large N and
D > 3, respectively), Fβ may be dropped in favor of a model consisting only of
y, giving preference to a fully non-parametric simplification, as introduced below.

4.2.3 The GPM for classification

Application of the GLMM to the task of predicting the assignment T (xN+1) = c1

(in case of binary classification) provides an alternative to indicator kriging, con-
forming to the assumption of a prior Gaussian process and a non-Gaussian noise
process. Due to non-Gaussianity of the noise model, approximate inference must
be performed to obtain estimates for unknown parameters, involving a variant of
one of the approximations described in the preceding section.

In practice, both numerical integration and Laplace’s approximation have been
adopted. However, both techniques have their limitations, with respect to pre-
diction accuracy (in case of Laplace’s approximation) or scalability (in case of
Gauss-Hermite quadrature). These techniques can be improved on by a particu-
lar variational approximation technique referred to as Expectation Propagation in
machine learning, or by stochastic simulation techniques. Due to a close connec-
tion to Bayesian statistics, these methods are introduced in context of a Bayesian
treatment of Gaussian process classification, as described below.

Gaussian process classification In the Bayesian approach to Gaussian pro-
cess classification, a prior probability distribution is placed over an incomplete
realization y. As in the case of regression, it is assumed that Y (·) is a latent
Gaussian process with zero mean and covariance function reflecting assumptions
about characteristics of functions involved in inference:

p(y) = N(y|0,C)

For inference, the prior is combined with a likelihood function, reflecting as-
sumptions about the type of the (non-Gaussian) noise process TY (·). In case of
binary classification, the likelihood is given by a product of Bernoulli distribu-
tions, with πi given by the logistic function πi = πi(yi) = 1

exp(−yi) :

p(t = 1|y) =
∏N
i=1 p(ti = 1|πi)
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=
∏N
i=1

(
1
1

)
exp(1 log(πi) + (1− 1) log(1− πi) + log(

(
1
1

)
)) =

∏N
i=1 πi,

assuming that ti is conditionally independent of other observations tj given the
latent yi, with i 6= j. As an alternative, the likelihood can chosen to be the
cumulative distribution function of a standard normal distribution Φ(tiyi):

p(t = 1|y) =
∏N
i=1 Φ(tiyi),

with πi = Φ(tiyi) =
∫ tiyi
−∞ N(x|0, 1)dx,

referred to as probit likelihood.

In the Bayesian approach to (binary) Gaussian process classification, inference
is divided into two steps: First, the distribution of the latent Y (xN+1) at data
point xN+1 given the observations t , given by

p(Y (xN+1)|t,xN+1) =
∫
p(Y (xN+1)|xN+1,y)p(y|t)dy,

with p(y|t) = p(t|y)p(y)
p(t) ,

is evaluated. Subsequently, the distribution over Y (xN+1) is used to obtain a
probabilistic prediction

p(T (xN+1) = 1|t,xN+1)
=
∫
p(T (xN+1) = 1|Y (xN+1))p(Y (xN+1)|t,xN+1)dY (xN+1)

In regression, inference can be performed analytically, making use of proper-
ties of the Gaussian. In classification, the non-Gaussian likelihood p(t|y) in
the posterior p(y|t) = p(t|y)p(y)

p(t) makes the (in general, high-dimensional) in-
tegral

∫
p(Y (xN+1)|xN+1,y)p(y|t)dy analytically intractable. Consequently, to

perform inference, approximations must be applied, with suitable techniques in-
troduced in the following sections.

4.2.3.1 Analytical approximations

Laplace’s approximation Laplace’s method for the GPM, introduced in (47),
involves a Gaussian approximation q(y|t) to the posterior p(y|t). As in Laplace’s
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method for the GLMM, the approximation is obtained through a second order
Taylor expansion of log p(y|t) around the maximum of the posterior:

q(y|t) = N(y|ŷ,−H−1) ∝ exp(−1
2(y − ŷ)T (−H)(y − ŷ)),

where ŷ = arg maxy p(y|t), and H = ∂2 log p(y|t)
∂y∂yT

|y=ŷ denotes the Hessian ma-
trix of − log p(y|t), evaluated at ŷ.

Substituting the expression for the Gaussian for p(y), the log of the un-normalized
posterior Ψ(y) = p(t|y)p(y) is

Ψ(y) = log p(t|y) + log p(y) = log p(t|y)− 1
2yTC−1y − log |C| − N

2 log(2π)

In order to find ŷ, the IWLS algorithm is applied (see Appendix D for details),
with the Newton-Raphson update step

y(m+1) = y(m) −HΨ(y)−1 ∂ log p(t|y)p(y)
∂y |y=y(m)

= y(m) − (∂
2 log p(t|y)p(y)

∂y∂yT
|y=y(m))−1 ∂ log p(t|y)p(y)

∂y |y=y(m)

= (C−1 + W)−1(∂ log p(t|y)
∂y |y=y(m) −C−1y),

where

∂ log p(t|y)p(y)
∂y = ∂ log p(t|y)

∂y −C−1y, ∂2 log p(t|y)p(y)
∂y∂yT

= −W −C−1,

W =



∂2 log p(t1|y1)
∂y21

0 . . . 0

0 ∂2 log p(t2|y2)
∂y22

...
...

. . .
...

0 . . . . . . ∂2 log p(tN |yN )
∂y2N


At the maximum of Ψ(y), Laplace’s approximation to p(y|t) results in a Gaus-
sian with mean ŷ and covariance matrix −H−1

Ψ = (C−1 + W)−1:

p(y|t) ≈ q(y|t) = N(y|ŷ,−H−1
Ψ ) = N(y|ŷ, (−∂2 log p(y|t)

∂y∂yT
|y=ŷ)−1) = N(y|µ =

ŷ,Σ = (C−1 + W)−1)

Given q(y|t), the first inference step is performed making use of the result for the
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conditional Gaussian distribution p(x1|x2), given the joint Gaussian distribution
p(x1,x2) (see Appendix A for details):

p(Y (xN+1)|xN+1,y) = N(Y (xN+1)|cC−1y, c− cC−1cT ),

with c = var(Y (xN+1)), and c = cov(T (xN+1), t).

Making use of the result for the marginal distribution p(y) given a marginal
distribution p(x) and a conditional distribution p(y|x), (see Appendix A for de-
tails), the expression is combined with q(y|t) :

q(Y (xN+1)|t,xN+1) = N(Y (xN+1)|cC−1ŷ, c− c(C + W−1)−1cT ),

Given above expression, Laplace’s method for binary classification results in an
approximation to p(T (xN+1) = 1|t,xN+1):

p(T (xN+1) = 1|t,xN+1) ≈ q(T (xN+1) = 1|t,xN+1)
=
∫
p(T (xN+1) = 1|Y (xN+1))q(Y (xN+1)|t,xN+1)dY (xN+1)

Given this expression q(T (xN+1) = 1|t,xN+1) , a probability for the assign-
ment T (xN+1) = 1 given t can be obtained.

If p(T (xN+1) = 1|Y (xN+1)) = Φ(tiyi), q(T (xN+1) = 1|t,xN+1) can be evalu-
ated analytically:

q(T (xN+1) = 1|t,xN+1)
=
∫

Φ(x−mv )N(x|µ, σ2)dx = 1

(2π(v2+σ2))
1
2

∫ µ−m
−∞ exp(− z2

2(v2+σ2)
)dz = Φ( µ−m

(v2+σ2)
1
2

)

µ=cC−1ŷ,σ2=c−c(C+W−1)−1cT

= Φ( cC−1ŷ√
(1+c−c(C+W−1)−1cT )

)

In case p(T (xN+1) = 1|Y (xN+1)) = 1
exp(−yi) , the integral in q(T (xN+1) =

1|t,xN+1) is analytically intractable , and the expression must be approximated.
In contrast to the integral in p(Y (xN+1)|t,xN+1), the integral in q(T (xN+1) =
1|t,xN+1) is one-dimensional, and numerical integration is feasible.

In context of Gaussian process classification, application of Laplace’s method has
several advantages, including applicability to large/ complex classification prob-
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lems and reliable convergence to the (global) maximum of the (un-normalized)
posterior p(t|y)p(y) (assuming the likelihood p(t|y) is log concave 1 ). Unfor-
tunately, a problem with the Laplace approximation is that the Hessian matrix
(evaluated at the mode ŷ) may give a poor approximation to the true shape of
the posterior (e.g. if the true posterior is skewed). In such a case, a better ap-
proximation to the q(y|t) may be obtained by means of an alternative approach,
involving a (local) Gaussian approximation to the contribution of each data point
to the likelihood, as described below.

Expectation Propagation The Expectation Propagation (EP) technique, in-
troduced in (28), is a general analytical approximation scheme applicable to a
range of taks, including regression, probabilistic classification, and count type
regression. In this section, the application to (binary) classification is described,
with likelihood function p(t = 1|y) =

∏N
i=1 p(ti = 1|πi) given by

∏N
i=1 p(ti =

1|πi) =
∏N
i=1 Φ(tiyi).

In a nutshell, Expectation Propagation for binary classification involves a local
Gaussian approximation to the contribution of each data point to the likelihood,
in the form of an (un-normalized) Gaussian in the latent yi:

p(ti = 1|πi) = p(ti = 1|πi(yi)) ≈ gi(yi|Z̃i, µ̃i, σ̃2
i ) = Z̃iN(yi|µ̃i, σ̃2

i ),

with site parameters Z̃i, µ̃i, and σ̃2
i , corresponding to the 0-th, first, and sec-

ond moment of the (normalized) Gaussian N(yi|µ̃i, σ̃2
i ).

The product of the (independent) local likelihoods gi is

∏N
i=1 gi(yi|Z̃i, µ̃i, σ̃2

i ) = N(µ̃, Σ̃)
∏N
i=1 Z̃i,

with µ̃ = (µ̃1, . . . , µ̃N )T ,

and Σ̃ =


σ̃2

1 0 . . . 0

0 σ̃2
2

...
...

. . .
...

0 . . . . . . σ̃2
N

, so that

1This is the case for the the logistic and the probit response function.
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4.2 Model-based classification

p(t = 1|y) =
∏N
i=1 p(ti = 1|πi) = N(y|µ̃, Σ̃)

∏N
i=1 Z̃i.

In Expectation Propagation, the posterior distribution p(y|t) is approximated
by a Gaussian of the form

q(y|t) = 1
ZEP

∏N
i=1 gi(yi|Z̃i, µ̃i, σ̃2

i )p(y) = N(y|µ,Σ),

with µ = ΣΣ̃
−1
µ̃, and Σ = (C−1 + Σ̃

−1
)−1, resulting from

N(y|µ,Σ) = 1
ZEP

N(y|µ̃, Σ̃)
∏N
i=1 Z̃iN(y|0,C)

= N(y|µ = Σ(C−10+Σ̃
−1
µ̃),Σ = (C−1 +Σ̃

−1
)−1) (see Appendix A for details),

and ZEP = q(t), p(t) ≈ q(t) denoting the EP approximation to the marginal
likelihood p(t).

In order to obtain q(y|t), the site parameters Z̃i, µ̃i and σ̃2
i of the local approxi-

mations gi must be found. In EP, this is done as part of an iterative procedure,
in which Z̃i, µ̃i, and σ̃2

i are updated sequentially. This is done by iterating the
following steps (for 1 ≤ i ≤ N), until convergence:

1. Starting with a current approximate posterior q(y|t), the current gi is left
out, resulting in an approximate Gaussian cavity distribution q−i(yi) =
N(yi|µ−i, σ2

−i) ∝
∫ ∏

j 6=i gj(yj |Z̃j , µ̃j , σ̃2
j )p(y)dyj , so that

gi(yi|Z̃i, µ̃i, σ̃2
i )q−i(yi) = Z̃iN(yi|µ̃i, σ̃2

i )N(yi|µ−i, σ2
−i) = N(yi|µi, σ2

i = Σii).

2. In the second step, the cavity distribution is combined with the exact like-
lihood p(ti = 1|yi), resulting in a non-Gaussian marginal

∫
q−i(yi)p(ti =

1|yi)dyi.

3. In the third step, an (un-normalized) Gaussian posterior marginal q̂(yi) ap-
proximating

∫
q−i(yi)p(ti = 1|yi)dyi is found by minimizing the Kullback-

Leibler divergence KL(p(yi)‖q(yi)) = KL(
∫
q−i(yi)p(ti = 1|yi)dyi‖q(yi)) =

−
∫
q−i(yi)p(ti = 1|yi)dyi log q(yi)∫

q−i(yi)p(ti=1|yi)dyi
:
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4. GAUSSIAN PROCESS CLASSIFICATION

q̂(yi) = ẐiN(yi|µ̂i, σ̂2
i )

= arg minq(yi)KL(
∫
q−i(yi)p(ti = 1|yi)dyi‖q(yi))

4. In the fourth step, a local approximation gi is found, so that

gi(yi|Z̃i, µ̃i, σ̃2
i )q−i(yi) = Z̃iN(yi|µ̃i, σ̃2

i )N(yi|µ−i, σ2
−i) = ẐiN(yi|µ̂i, σ̂2

i ).

5. Finally, q(y|t) is updated to include the gi (the site parameters Z̃i, µ̃i, and
σ̃2
i ) obtained in the last step.

In more detail, gi are optimized sequentially, using the approximations obtained
so far for all gj , j 6= i. Typically, this requires several passes over the data, since
the update of a gi potentially influences all approximate marginal posteriors.

Due to minimization of the Kullback-Leibler divergence KL(p(yi)‖q(yi)), Expec-
tation Propagation has been referred to as a variational approximation technique
in machine learning. For a Gaussian q(yi), the q̂(yi) minimizing KL(p(yi)‖q(yi))
is a Gaussian whose first and second moments match the first and second mo-
ments of p(yi). 1

Based on the EP approximation q(y|t), prediction for a new data point xN+1

can be made as in the case of Laplace’s approximation, with the EP approxima-
tion to p(Y (xN+1)|t,xN+1) given by:

q(Y (xN+1)|t,xN+1) = N(Y (xN+1)|c(C + Σ̃)−1µ̃, c− c(C + Σ̃)−1cT ),

with c = var(Y (xN+1)) and c = cov(T (xN+1), t).

Given above expression, EP for binary classification results in an approxima-
tion to p(T (xN+1) = 1|t,xN+1), given by

q(T (xN+1) = 1|t,xN+1)
=
∫
p(T (xN+1) = 1|Y (xN+1))q(Y (xN+1)|t,xN+1)dY (xN+1)

From above expression, a probability for the assignment T (xN+1) = 1 can be
obtained, resulting in the prediction

1As q̂(yi) is un-normalized, the 0-th moment (the normalizing constant) Ẑi of q̂(yi) is equated
to
∫
N(yi|µ−i, σ2

−i)Φ( tiyi−0
1

)dyi = Φ(zi), with zi =
tiµ−i√
1+σ2

−i

.
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4.2 Model-based classification

Ep(p(T (xN+1) = 1|Y (xN+1))) ≈ Eq(p(T (xN+1) = 1|Y (xN+1))) = q(T (xN+1) =
1|t,xN+1)
=
∫

Φ(x−mv )N(x|µ, σ2)dx
µ=c(C+Σ̃)−1µ̃,σ2=c−c(C+Σ̃)−1cT

= Φ( c(C+Σ̃)−1µ̃,√
(1+c−c(C+Σ̃)−1cT )

)

4.2.3.2 Markov Chain Monte Carlo

In many probabilistic models, Bayesian inference, involving the evaluation of
high-dimensional integrals, is intractable, and approximate inference techniques
must be applied. In case of Gaussian process models for classification, determin-
istic techniques involving a Gaussian approximation to the posterior p(y|t) can
be used, and inference can be performed analytically, as described in the previous
sections. An alternative to this approach is provided by stochastic approximation
techniques. In general, these techniques are based on the idea that the expecta-
tion of a function f(θ) with respect to a (un-normalized) distribution p(θ)1 can
be approximated by averaging over a finite set of samples θl (with l = 1, . . . , L)
from p(θ):

E(f(θ)) =
∫
f(θ)p(θ)dθ ≈ f̂(θ) = 1

L

∑L
l=1 f(θl)

An advantage of stochastic approximation techniques is that, in principle, the
accuracy of f̂(θ) does not depend on the dimensionality of θ. In general, a prob-
lem with the approach is that obtaining a set of independent samples from p(θ)
can be difficult (depending on the form of p(θ)). This problem is addressed by a
class of general and powerful stochastic approximation techniques, referred to as
Markov Chain Monte Carlo (MCMC) techniques (13), (22), sampling in a way
such that the distribution p(θ) is an invariant distribution of a Markov chain 2

in the space of θ:

p(θ) =
∑
θ′ z(θ

′,θ)p(θ′),
1In general, p(θ) must be known up to a normalization constant.
2A Markov chain of order n (with n ∈ IN0) is a collection of random variables Xm

(m = 1, . . . ,M , with M ∈ IN), with the property that

p(Xm = θm|X0 = θ0,X1 = θ1, . . . ,Xm−1 = θm−1) = p(Xm = θm|Xm−n =
θm−n, . . . ,Xm−1 = θm−1),

for n ≤ m.
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4. GAUSSIAN PROCESS CLASSIFICATION

with z(θ′,θ) = z(θm,θm+1) denoting the transition probability from state θm to
θm+1.

In this approach, the proposal distribution pm(θ̃|θm) used to draw the next sam-
ple depends on the current state θm, and the sequence of samples θ0, θ1, θ2, . . .,
has the Markov property:

p(θm+1|θ1, . . . ,θm) = p(θm+1|θm)

Assuming that the Markov chain is ergodic, i.e., that for m → ∞, p(θm) con-
verges to p(θ) (irrespective of the initial state θ0), θm becomes an approximately
independent sample of p(θ). In practice, the chain is generated for a finite length
L and the sequence θ0, θ1, θ2, . . ., θL is interpreted as a set of samples drawn
from p(θ). The procedure is continued until enough samples are obtained, i.e.,
so that the expectation of f(θ) with respect to p(θ) is approximated well by f̂(θ).

One problem in MCMC is the choice of the proposal distribution used to draw
the next sample, given the current state θm. In general, the proposal distribution
is specified together with a rule indicating if a candidate sample θ̃ drawn from
pm(θ̃|θm) is accepted, so that θm+1 := θ̃ (i.e., a change of state occurs) or not,
which constitutes a MCMC procedure.

Metropolis-Hastings A basic Markov Chain Monte Carlo technique is the
Metropolis-Hastings sampling method (27), (16). In the Metropolis-Hastings
procedure, a candidate sample θ̃ is drawn from a proposal distribution (depend-
ing on the current state θm). The candidate sample is accepted with probability
pz(θ̃), where

pz(θ̃) = min (1, p(θ̃)pm(θm|θ̃)

p(θm)pm(θ̃|θm)
)

Given pz(θ̃), the candidate sample is accepted (so that θm+1 := θ̃) if u ∼
U(u|0, 1) ≤ pz(θ̃),

with U(u|0, 1) denoting the uniform distribution on the interval [0, 1],
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4.2 Model-based classification

and rejected otherwise.

Gibbs sampling Markov Chain Monte Carlo sampling procedures for a par-
ticular p(θ) can be implemented using different proposal distributions. In a
more refined proposal strategy, θ can be divided in R components, so that
θ = (θ1, . . . ,θR)T . Then, instead of updating the state θ, each component θr
(with r = 1, . . . , R) ∈ {θ1, . . . ,θR} is updated in turn. This strategy is applied in
Gibbs sampling, which can be seen as a special case of the Metropolis-Hastings
procedure.

For a p(θ) = p(θ1, . . . ,θR), each step of Gibbs sampling involves replacing the
value of a θr by a value drawn from the distribution of θr conditioned on the
values of the remaining variables:

θm+1
r = θ̃r,

with θ̃r ∼ p(θr|θm−r)

Gibbs sampling can be seen as a special case of Metropolis-Hastings in which
the proposed states are always accepted. This can be seen by substituting the
proposal distribution p(θr|θm−r) in the Metropolis-Hastings rule:

pz(θ̃) = p(θ̃r,θ
m
−r)pm(θm|θ̃r,θm−r)

p(θm) pm(θ̃r,θ
m
−r|θm)

= 1,

with θ̃ = (θ̃r,θm−r).

A practical problem with Gibbs sampling is that dependencies between θr are
not taken into account. In effect, the chain may take long to explore the support
of p(θ).

Hybrid Monte Carlo One problem of the Metropolis-Hastings procedure is
sensitivity to step size. If the step size in a particular direction j (corresponding
to a component θj) is too small, the procedure will take long to explore the sup-
port of p(θ). Conversely, if the step size is too large, the acceptance rate will be
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4. GAUSSIAN PROCESS CLASSIFICATION

low, resulting in an inefficient procedure.

The technique of Hybrid Monte Carlo (9) provides an adaptive step size which
is adjusted to match the characteristics of p(θ). In short, the technique is based
on evaluating partial derivatives of p(θ) with respect to θj , which provide infor-
mation about directions in which regions of higher density can be found.

Conceptually, Hybrid Monte Carlo can be thought of as a simulation of a fic-
titious physical system evolving in continuous time τ . In this system, the state
θ is interpreted as the location of particles with momentum q. New states are
proposed using a procedure which can be understood as a discrete simulation of
Hamiltonian dynamics.

In order to simulate the system, the potential and kinetic energies have to be
defined. The potential energy E(θ) is set to − log p(θ). Then, the energy of the
system (referred to as the Hamiltonian H(θ,q)) is the sum of potential energy
E(θ) and kinetic energy K(q), with

H(θ,q) = E(θ) +K(q) = − log p(θ) + 1
2‖q‖

2

The key idea in Hybrid Monte Carlo is that candidate samples in a Metropolis-
Hastings sampler are obtained by discrete simulation of Hamiltonian dynamics.
The simulation is discretised using the so-called leapfrog method, which mini-
mizes the impact of errors introduced in a numerical integration of the Hamilto-
nian equations:

dθ
dτ = ∂H(θ,q)

∂q = q,

dq
dτ = −∂H(θ,q)

∂θ = ∂ log p(θ)
∂θ ,

and ensures that p(θ,q) ∝ exp (−H(θ,q)) = p(θ) exp (−1
2‖q‖

2) is invariant.

In summary, Hybrid Monte Carlo involves alternating between a series of leapfrog
updates and resampling of q. After each application of the leapfrog updates, the
resulting candidate state is accepted or rejected according to the Metropolis-
Hastings rule based on the value of H(θ,q):
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4.2 Model-based classification

pz(θ̃, q̃) = min (1, exp (H(θm,qm)−H(θ̃, q̃)))

Unlike the basic Metropolis-Hastings procedure, Hybrid Monte Carlo is able to
make use of information from the gradient ∂ log p(θ)

∂θ . In general, this makes the
Hybrid Monte Carlo procedure more efficient in exploring the support of p(θ).

Hybrid Monte Carlo for the GPM Hybrid Monte Carlo can be used to
perform approximate inference in the GPM. In case of Gaussian process classifi-
cation, yl can be drawn from p(y[, t]) = p(t|y)p(y) (assuming differentiability of
likelihood p(t|y) and prior p(y)), so that

E(y) =
∫

yp(y[, t])dy ≈ ŷ = 1
L

∑L
l=1 yl, and

cov(y) =
∫

(y − E(y))(y − E(y))T p(y[, t])dy
≈ ˆcov(y) = 1

L

∑L
l=1(yl − ŷ)(yl − ŷ)T

Hyperparameter sampling When applying a MCMC sampling procedure,
it is straightforward to perform inference over all unknown parameters. In case
of the GPM, this includes the vector of parameters of the covariance (denoted
ψ = (ψ1, . . . , ψM )T ). Hybrid Monte Carlo can be used to draw θl = (y,ψ)Tl from
the distribution p(y,ψ|t) ∝ p(y,ψ[, t]) = p(t|y)p(y|ψ)p(ψ), or, more generally,

p(y,ψ|t, ξ) ∝ p(y,ψ[, t]|ξ) = p(t|y)p(y|ψ)p(ψ|ξ),

introducing a hyperprior p(ψ|ξ) for hyperparameter ψ.

Substituting expressions, θl can be sampled from the un-normalized log pos-
terior, given by

log p(y,ψ[, t]|ξ) = log p(t|y)− 1
2 log |C| − 1

2yTC−1y + log p(ψ|ξ),

with ∇p(y,ψ[, t]|ξ) = ∇ log p(t|y) −C−1y (with ∇ log p(t|y) depending on the
choice of the likelihood function),

and ∂ log p(y,ψ[,t]|ξ)
∂ψj

= −1
2 tr(C

−1 ∂C
∂ψj

) + 1
2yTC−1 ∂C

∂ψj
C−1y
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In general, y and ψ are updated separately, due to different computational
costs. Evaluating log p(y,ψ[, t]|ξ) for different values of y is inexpensive, since
only log p(t|y) and −1

2yTC−1y need to be re-computed. In contrast, evaluating
log p(y,ψ[, t]|ξ) for different values of ψ requires re-computations of the inverse
C−1 and the determinant |C|, with computational complexity in the order of
O(N3).

Assuming L samples θ1, . . ., θL have been drawn from log p(y,ψ|t, ξ), the set of
samples can be used to approximate the distribution of the latent Y (xN+1) given
t, given by

p(Y (xN+1)|t,xN+1, ξ) =
∫
p(Y (xN+1)|y,xN+1,ψ)p(y,ψ|t, ξ)dydψ

≈ 1
L

∑L
l=1 p(Y (xN+1)|yl,ψl, t,xN+1)

Subsequently, the predictive distribution can be approximated, resulting in

p(T (xN+1) = ck|t,xN+1, ξ))
≈ 1

L

∑L
l=1 p(T (xN+1) = ck|Y (xN+1))p(Y (xN+1)|yl,ψl, t,xN+1)
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Chapter 5

Prediction for large data sets

Summary In chapter 3 and 4, Gaussian process techniques have been intro-
duced, with Gaussian process techniques for classification developed from geosta-
tistical methods and Gaussian process techniques for regression. In this chapter,
results of research on the topic of extending the applicability of Gaussian process
techniques to increasingly large data sets are reviewed, focusing on approaches
based on obtaining a reduced-rank approximation to the covariance matrix and
sparse approximation techniques applicable in Gaussian process classification.

Gaussian process models can be applied to predict quantities in the continu-
ous case (where inference is exact) and the discrete case (where inference is ap-
proximate) as described in previous chapters. A problem with Gaussian process
prediction is computational complexity (in the order of O(N3)), resulting from
inversion of a N ×N covariance matrix C. E.g., in case of regression,

p(T (xN+1)|t) = N(T (xN+1)|k(C + σ2IN )−1t), k − k(C + σ2IN )−1kT ),

or, in case of classification,

q(T (xN+1) = 1|t,xN+1) = Φ( cC−1ŷ√
(1+c−c(C+W−1)−1cT )

) in case of the Laplace ap-

proximation, and q(T (xN+1) = 1|t,xN+1) = Φ( c(C+Σ̃)−1µ̃,√
(1+c−c(C+Σ̃)−1cT )

) in case of

Expectation Propagation, respectively.

In general, this makes Gaussian process prediction impractical or infeasible for
large data sets, with N > 10000 data points.

55



5. PREDICTION FOR LARGE DATA SETS

In order to overcome this limitation, a number of approximations has been sug-
gested. In general, these techniques can be divided into approaches substituting
the covariance matrix with a reduced rank approximation and sparse Gaussian
process approaches based on the selection of a set of M < N inducing inputs to
represent the data, constituting an active set I. While the former can be applied
to regression and classification, only few sparse GP techniques can be applied to
classification tasks.

In the following sections, the two approaches are reviewed, with focus on classifi-
cation in case of sparse Gaussian process techniques. In the first, algebraic tech-
niques aiming at obtaining a reduced rank approximation to C are presented. In
the following section, an unifying view of sparse approximations for Gaussian pro-
cess techniques (due to (34)) is introduced, focusing on sparse Gaussian process
techniques suitable for classification tasks.

5.1 Reduced rank approximations

In general, the optimal reduced-rank approximation C̃Q (of rank Q) to C [with
respect to the Frobenius norm 1 ‖C‖F = tr(CCT )] is UQΛQUT

Q, where ΛQ

is the matrix of the leading Q eigenvalues of C and UQ is the matrix of the
corresponding eigenvectors. Unfortunately (due to a time complexity in the order
of N3), the eigenvalue decomposition offers little computational advantage.

Nyström approximation The Nyström approximation can be applied to ob-
tain a reduced-rank approximation to the covariance matrix. The technique can
be motivated from an eigenanalysis of the covariance function c(xi,xj):

∫
c(xi,xj)φ(xi)p(xi)dxi = λφ(xj)

with the set of orthogonal eigenfunctions φ1(x), φ2(x), . . . with the property∫
φk(x)φl(x)p(x)dx = δkl, corresponding eigenvalues λ1, λ2, . . . (assuming an or-

dering so that λ1 ≥ λ2 ≥ . . .)

Based on above expression, an approximation to the eigenfunctions and eigenval-

1see e.g. (14)
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5.1 Reduced rank approximations

ues can be obtained from:

λkφk(xj) =
∫
c(xi,xj)φk(x)p(x)dx ≈ 1

M

∑M
m=1 c(xm,xj)φk(xm)

In context of GP prediction, the Nyström method can be used to approximate the
eigenvalues/ eigenvectors of C. The procedure starts with a subset (the active
set) I of M < N data points (with J = {xi|xi 6∈ I}). Then, C can be partitioned
as follows:

C =

(
CI,I CI,J

CJ,I CJ,J

)

, with CA,B denoting a covariance matrix with entries determined by the co-
variance function c(xi,xj), with xi ∈ A, xj ∈ B.

Given the eigenvalues and eigenvectors of CI,I (denoted λ
(M)
k and u(M)

k , respec-
tively), the eigenvalues/ eigenvectors of C can be approximated:

λ̃
(N)
k = N

M λ
(M)
k

1, k = 1, . . . ,M ,

ũ(N)
k =

√
M
N

1

λ
(M)
k

CNMu(M)
k , k = 1, . . . ,M ,

with CNM = (CMN )T = [CI,I ,CJ,I ]T .

In general, the covariance matrix can be approximated up to rank Q, with
Q ≤ M . Choosing the first Q=M eigenvalues/ eigenvectors (according to the
ordering λ̃(Q)

1 ≥ λ̃(Q)
2 ≥ . . . ≥ λ̃(Q)

Q ) results in

C ≈ C̃Q = CNQ
∑Q

q=1
1

λ
(Q)
q

u(Q)
q (u(Q)

q )TCQN

= CNMC−1
MMCMN ,

with CMM = CI,I .

Having obtained C̃Q, the expression for the predictive distribution in case of
regression can be written

1From Mλkφk(xj) ≈
∑M
m=1 c(xm,xj)φk(xm), for j = 1, . . . ,M
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p(T (xN+1)|t) = N(T (xN+1)|k̃(C̃Q + σ2I)−1t), k̃ − k̃(C̃Q + σ2I)−1k̃T )
= N(T (xN+1)|c(xN+1)Q−1CQNt, σ2c(xN+1)Q−1c(xN+1)T ),

with k̃ = (k̃(xN+1,x1), . . . , k̃(xN+1,xN )), k̃ = k̃(xN+1,xN+1), where

k̃(xi,xj) =
∑Q

q=1
λ
(Q)
q

Q
Q

(λ
(Q)
q )2

cT (xi)u
(Q)
q (u(Q)

q )T c(xj)

= (c(x1,xi), . . . , c(xQ,xi))TC−1
QQ(c(x1,xj), . . . , c(xQ,xj)), and

(C̃Q + σ2I)−1 = (CNQC−1
QQCQN + σ2I)−1

= σ−2I− σ−2CNQ(CQQ + CQNCNQ)−1CQN = σ−2I− σ−2CNQQ−1CQN ,

with Q = (CQQ+CQNCNQ), and application of the Sherman-Morrison-Woodbury
identity (see Appendix B.2 for details) resulting in reduction of time complexity
to O(Q3) .

In a similar way, the predictive distribution in case of classification can be written

q(T (xN+1) = 1|t,xN+1) = Φ(
k̃C̃−1

Q ŷ√
(1+k̃−k̃(C̃Q+W−1)−1k̃T )

) in case of the Laplace

approximation, and q(T (xN+1) = 1|t,xN+1) = Φ( k̃(C̃Q+Σ̃)−1µ̃,√
(1+k̃−k̃(C̃Q+Σ̃)−1k̃T )

) in case

of Expectation Propagation.

Sparse Greedy Matrix Approximation The Nyström approximation was
derived in (48) for application to kernel machines. An alternative view resulting
in the same approximation is due to Smola and Schölkopf (42) For a data point
x (with x ∈ J) the technique is based on approximating the covariance c(xi,x)
by a linear combination of covariances c(xj ,x), with j ∈ I:

c(xi,x) ≈ ĉ(xi,x) =
∑

j∈I c̃ijc(xj ,x)

for c̃ij ∈ IR, i ∈ N \ I, j ∈ I.

In order to obtain the c̃ij , the expression

Err(C̃) =
∑N

i=1 ‖c(xi,x)− ĉ(xi,x)‖2H 1

1with ‖ · ‖2H denoting proximity in the Reproducing Kernel Hilbert Space H induced by the
covariance function c(·).
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5.2 Sparse GP techniques

= tr(C)− 2tr(C̃CMN ) + tr(C̃CMMC̃T )

with respect to C̃ is minimized, resulting in

C̃∗ = arg minC̃E(C̃) = CNMC−1
MM

Smola and Schölkopf (42) suggest a greedy algorithm to choose points to include
into the active set in a way that minimizes E(C̃). Since it takes MN operations
to evaluate the change in E due to the inclusion of a new data point, Smola and
Schölkopf suggest finding the best point from a random subset of {xi}, i ∈ N \ I
on each iteration.

5.2 Sparse GP techniques

To overcome the computational limitations of Gaussian process prediction, sev-
eral approximate inference techniques have been proposed, aiming at improving
the scalability of Gaussian processes. In general, these methods, referred to as
sparse approximations, share the property that only a subset of latent variables
is treated exactly in inference, and the remaining variables are given approximate
treatment. Quinonero-Candela et al. (34) provide a unifying view of sparse ap-
proximations for Gaussian processes, extending (33). In the following section, the
common framework is presented, introducing the concepts of inducing variables
(inducing inputs), inducing conditionals, and effective prior.

Inducing variables In order to introduce the framework, the GP prior over
the latent y and Y (xN+1) (yN+) 1 is rewritten by introducing a set of additional
M (with M < N) latent variables (u1, . . . , uM ), referred to as inducing variables,
corresponding to a set of inducing inputs Xu = (xu1 , . . . ,xuM )T :

p(yN+,y) =
∫
p(yN+,y,u)du =

∫
p(yN+),y|u)p(u)du,

where u ∼ N(u|0,Cu,u) 2

1with yN+ denoting a vector of latent values (yN+1, yN+2, . . .) at (test) data points
xN+1,xN+2, . . ..

2with Ca,b denoting a covariance matrix with entries determined by the covariance function
c(·), evaluated at data points corresponding to the latent variables a, b.
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5. PREDICTION FOR LARGE DATA SETS

In the unifying framework, the inducing variables (inducing dependencies be-
tween y (the elements of the training set) and yN+ (the elements of the test set))
constitute the active set I. Particular sparse algorithms choose the inducing vari-
ables in different way. Some techniques choose the inducing inputs to be a subset
of the training set (or test set), while others do not.

Inducing conditionals The second assumption in the common framework is
the assumption of conditional independence of y and yN+, given u:

p(yN+,y) =
∫
p(yN+|u)p(y|u)p(u)du ≈ q(yN+,y)

=
∫
q(yN+|u)q(y|u)p(u)du

In the framework (34), different sparse approximation techniques correspond to
different additional assumptions with respect to the inducing conditionals q(y|u)
(training conditional) and q(yN+|u) (test conditional), with

p(y|u) = N(y|Cy,uC−1
u,uu,Cy,y −Qy,y) ≈ q(y|u),

p(yN+|u) = N(yN+|CyN+,uC
−1
u,uu,CyN+,yN+ −QyN+,yN+) ≈ q(yN+|u),

with Qa,b = Ca,uC−1
u,uCu,b.

Particular choices of q(y|u) and q(yN+|u) result in a particular form of the ef-
fective prior q(y,yN+), given by

q(y,yN+) = N(0,

(
cov(y,y) cov(y,yN+)

cov(yN+,y) cov(yN+,yN+)

)
)1

Different sparse approximation techniques implement different selection criteria
with respect to the choice of the inducing variables. The inducing variables can
be chosen from a subset of training (data) points, following a greedy selection
scheme (21). Alternatively, u can be chosen from the set of test (data) points
(45). Finally, by relaxing the constraint that the inducing inputs must be a
subset of training/ test points, the set of inducing variables can be obtained via
optimization with respect to inducing inputs, as proposed in (43).

1with the shorthand N(µ,Σ) for N(x|µ,Σ).
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5.2 Sparse GP techniques

Quinonero-Candela et al. (34) assign different techniques to the common frame-
work. Specifically, they identify the following general approaches:

Subset of Data (SoD),
with training conditional q(y|u) = p(y|u) , test conditional q(yN+|u) = p(yN+|u)
and effective prior

q(y,yN+) = N(0,

(
Cy,y Cy,yN+

CyN+,y CyN+,yN+

)
,

Deterministic Inducing Conditional (DIC),
with q(y|u) = N(y|Cy,uC−1

u,uu,0), q(yN+|u) = N(yN+|CyN+,uC
−1
u,uu,0) and

q(y,yN+) = N(0,

(
Qy,y Qy,yN+

QyN+,y QyN+,yN+

)
,

Deterministic Training Conditional (DTC),
with q(y|u) = N(y|Cy,uC−1

u,uu,0), q(yN+|u) = p(yN+|u) and

q(y,yN+) = N(0,

(
Qy,y Qy,yN+

QyN+,y CyN+,yN+

)
,

Fully Independent (Training) Conditional (FI(T)C),
with q(y|u) = N(y|Cy,uC−1

u,uu, diag(Cy,y −Qy,y)) 1, q(yN+|u) = p(yN+|u) and

q(y,yN+) = N(0,

(
Qy,y − diag(Qy,y −Cy,y) Qy,yN+

QyN+,y CyN+,yN+

)
, and

Partially Independent Training Conditional (PI(T)C),
with q(y|u) = N(y|Cy,uC−1

u,uu, blockdiag(Cy,y −Qy,y)) 2, q(yN+|u) = p(yN+|u)
and

q(y,yN+) = N(0,

(
Qy,y − blockdiag(Qy,y −Cy,y) Qy,yN+

QyN+,y CyN+,yN+

)

Quinonero-Candela et al. give the computational complexity for each approach.
Specifically, time complexity is in the order of O(M3) (training), O(M) (predic-

1with D = diag(A) denoting a N×N diagonal matrix D with entries dii = aii, i = 1, . . . , N .
2with B = blockdiag(A) denoting a N × N block diagonal matrix B, with block entries

matching the entries of A.
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5. PREDICTION FOR LARGE DATA SETS

tion) and (M2) (uncertainty estimates) in case of Subset of Data (SoD), with
training set size M , and in the order of O(NM2) (training), O(M) (prediction)
and O(M2) (uncertainty estimates) for the DTC, DIC, FI(T)C, and PI(T)C ap-
proximations, with training set size N .

Sparse GP for classification In analogy to the non-sparse case, sparse GP
methods for classification have to deal with the problem of non-Gaussian likeli-
hood, introducing the need for approximations, using methods described in the
previous chapter. Consequently, only a subset of the techniques applicable in
case of Gaussian process regression can be applied for classification.

Sparse GP techniques for classification have been proposed in (21), (5), (6), and
(45). In (21), Lawrence et al. propose a Subset of Data (SoD) approximation im-
plementing a greedy forward selection scheme according to the differential entropy
score ∆i = H(Q(yI∪{i}))−H(Q(yI)) (with Q(yI) denoting the approximate pos-
terior q((yj)j∈I |(tj)j∈I), and H(Q(yI)) denoting the entropy of Q(yI)) for candi-
date data points xi, i ∈ N \I.1 After inclusion of a data point, an approximation
to q((yj)j∈I |(tj)j∈I) is made using the EP algorithm. In order to reduce time
complexity, Lawrence et al. (21) update Σ = (C−1 +Σ̃

−1
)−1 (the covariance ma-

trix of the approximate Gaussian posterior) by sequentially growing the Cholesky

factor L, with LLT = I +Σ̃
1
2
I CIΣ̃

1
2
I

2, so that Σ = C − CIΣ̃
1
2
I (LLT )−1Σ̃

1
2
I CI

(avoiding explicit inversion of (C−1 + Σ̃
−1

)). In (41), the differential entropy
score was replaced by the information gain criterion ∆j = D(Q(yI∪{j})||Q(yI))
(with D(q(y)||p(y)) denoting the Kullback-Leibler divergence between q(y) and
p(y)), including a term dependent on (tj)j∈I . The resulting algorithm, referred
to as the Informative Vector Machine (IVM), was extended to apply a variational
approximation to the marginal likelihood for hyperparameter estimation ((40),
(41)).

In an alternative approach, Csato and Opper (5) propose a Deterministic Training
Conditional (DTC) approximation, based on sequential construction of a (non-
Gaussian) posterior pz+1(y|t), given by pz+1(y|t) = p(tz+1|y)qz(y)∫

p(tz+1|y)qz(y)dy
, which is

1This corresponds to the selection of the data point resulting in the greatest reduction in
the variance of the approximate marginal posterior q(yN+|t).

2with Σ̃I , CI denoting the respective covariance matrices restricted to the set I
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5.2 Sparse GP techniques

projected to the closest Gaussian posterior qz+1(y|t). 1 In the approach, spar-
sity is introduced by expressing the covariance c(xz+1,x) (i.e., the covariance
for the data point considered in the z + 1-th iteration) in terms of covariances
c(x1,x), . . . , c(xz,x) (in a way similar to (42)):

c(xz+1,x) ≈ êTz+1C1,...,z;1,...,N

= (c(x1,xz+1), . . . , c(xz,xz+1))C−1
1,...,z;1,...,zC1,...,z;1,...,N = uTC−1

u,uCu,y,

with êz+1 = C−1
1,...,z;1,...,z(c(x1,xz+1), . . . , c(xz,xz+1))T , so that

qSOGP (y|u) = N(y|Cy,uC−1
u,uu,0).

In the approach of (Csato and Opper 2002), the covariance c(xz+1,x) is ap-
proximated by (c(x1,xz+1), . . . , c(xz,xz+1))C−1

1,...,z;1,...,zC1,...,z;1,...,N if the approx-
imation error introduced by the projection of c(xi,x) to the subspace spanned
by (c(x1,x), . . . , c(xz,x))T , given by |qz+1|(c(xz+1,xz+1)− cz+1C−1

z cz+1), with
qz+1 = ∂ log p(tz+1|yz+1)

∂E(tz+1) and cz+1 = (c(xz+1,x1), . . . , c(xz+1,xz)), does not exceed
a threshold ε. In order to improve the quality of the approximation, data points
can be removed (pruned) from the index set (of size M), in exchange for other
data points.

Finally, the Bayesian committee machine (BCM) (45), introduced as a sparse
GP technique for regression, has been generalized to deal with classification
tasks. For the BCM, the data is split in K subsets (denoted Dk, for k =
1, . . . ,K), with Dk = (Xk, tk) = ((xk,1, . . . ,xk,Nk), (tk,1, . . . , tk,Nk)). Assuming
that p(tk|tk−1,yN+) ≈ p(tk|yN+), it holds that

p(yN+|t) ∝
∏K
k=1 p(yN+|tk)

p(yN+)K−1

Subsequently, Laplace’s approximation is applied to each of the K subsets to
yield the approximate predictive mean E(yN+|tk) and covariance cov(yN+|tk).

Due to the assumption p(tk|tk−1,yN+) ≈ p(tk|yN+), the generalized BCM has
been interpreted as an instance of the PITC approximation, with inducing points

1As in the case of Expectation Propagation, the optimal projection results from matching
the (first and second) moments of pz+1(y|t) and qz+1(y|t).
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5. PREDICTION FOR LARGE DATA SETS

given by (test) data points tN+. The computational complexity of the approxima-
tion depends on the structure of the (block-diagonal) covariance blockdiag(Qy,y−
Cy,y). For K = N/M blocks of size M ×M each, the time complexity is in the
order O(NM2).
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Chapter 6

Application to spatial data

In previous chapters, Gaussian process techniques have been introduced, focus-
ing on regression (chapter 3) and classification (chapter 4) techniques, consid-
ering the special case of large data sets (chapter 5). In this chapter, Gaussian
process classification techniques are applied to two data sets describing the oc-
curence of different types of mass movements, including earth movements and
snow avalanches. In general, the occurence of these movements can be traced to
a combination of specific factors (morphological, meteorological, anthropogenic,
or other) contributing to disposition (tendency) of rock, earth, or snow to move
downslope, or triggering mass movement. The particular combination of factors
resulting in movement depends on the type of the natural phenomenon and is
typically specific and local.

In the following sections, application of Gaussian process classification techniques
to two real-world data sets is described, starting with the first, describing the oc-
curence of earth movements in the administrative region Hochtannberg (Vorarl-
berg, Austria). Subsequently, GP classification techniques are applied to a data
set describing the occurence of snow avalanches in the region Lochaber (Scotland,
UK), subject to numerous avalanche events during winter season.

6.1 Susceptibility to earth movements

In this section, application of Gaussian process classification techniques to a data
set describing the occurence of earth movements in the region Hochtannberg
(Vorarlberg, Austria), with the aim of probabilistic classification of susceptibility
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6. APPLICATION TO SPATIAL DATA

on regional scale and probabilistic mapping is described. The description of the
data set follows (10) , (11) , (12) , summarizing work focusing on a comparison
of predictive performance of probabilistic classification techniques on the task
(10) and implementation of Gaussian process classification techniques in a way
allowing for flexible use in context of a suitable early warning chain (11), (12)
and is given in the first subsection. In the following subsection, the choice of
techniques from (10) is extended by including Gaussian process classification
techniques described in chapter 4 (Expectation Propagation) and chapter 5 (the
Sparse Online Gaussian Process classifier (5)). These techniques are evaluated
on the task and results are summarized.

6.1.1 Study area

Based on work carried out in context of the project ’Georisk map Vorarlberg’
by the Dept. of Applied Geology, University of Karlsruhe (TH), the study area
Hochtannberg was chosen as basis for a data set describing the occurence of earth
movements. The study area is a region of 115 km2 size, located in Vorarlberg, the
westernmost federal state of Austria, with border to Germany to the north, and
Liechtenstein and Switzerland to the west. The geography, climate, and geology
of study area are described in detail in (37). Throughout the area, Hochtannberg
is considered susceptible to different types of mass movement (ibid.). The mass
movements occuring in the area are of interest because of the high density of
touristic infrastructure built at steep slopes.

6.1.2 Data set

6.1.2.1 Data set/ preprocessing

The data set consisting of a set of thematic layers describing different disposi-
tive factors was produced using GIS technology (ESRI ArcInfo 9.2). A digital
elevation model (DEM) and topographic and geologic maps covering the area
of Vorarlberg were provided by the Land Surveying Office Vorarlberg (Vorarl-
berg, Austria). The digital elevation model (with resolution of 5 m) was used
to calculate morphometric features, describing the morphology of the study area
(including slope, curvature, and slope aspect ). Digital data on geology (lithology
and tectonics) was extracted from a geologic map of Vorarlberg, resulting in a
grid of 25 m grid point size. Additionally, a grid of Euclidean distances to tectonic
faults was calculated, with shortest distance to a tectonic fault assigned to each
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grid point. Digital land cover data for Vorarlberg, supplied by Umweltbundesamt
GmbH, was derived from satellite data (Landsat 5). Available land cover data
for Vorarlberg consists of 12 land cover types, including built-up area, agricul-
tural area, forests and natural area, wetlands and water surfaces. Digital data
on rainfall intensity, describing the number of days with precipitation exceeding
10 mm averaged over a period of 30 years (1970-2000), was made available by (36).

In order to apply classification techniques to study area, a data set was built
drawing on results from the project ’Georisk map Vorarlberg’. In context of
the project, occurences of earth movements were mapped, resulting in a layer
containing locations of occurences. For pre-processing, all data layers (including
feature layers and slide inventory) were converted to ESRI ASCII grid format,
with size corresponding to the size of the study area, and resolution of 25 m/
grid point.

In course of pre-processing, a subset of features (including morphometric fea-
tures obtained from the digital elevation model and thematic maps (elevation,
flow accumulation, distance to faults)) was standardized. A second set of features
(including categorical and non-linear features (lithology, land cover, precipitation,
slope aspect) was encoded as a set of binary features (in case of categorical fea-
tures), or as a set of intervals on the range of values taken by the original feature.

6.1.3 Methods

In order to evaluate the performance of the Gaussian process techniques on the
task, three different methods were applied to the data set, including a Gaus-
sian process classifier based on Laplace’s approximation, a classifier based on
Expectation Propagation, and a classifier based on (5), referred to as the Sparse
Online Gaussian Process (SOGP) classifier. All techniques were implemented
in the statistical computing environment R1, with parts of the code written in
C. In addition to the Gaussian process classifiers, a probabilistic variant of the
Support Vector Machine2 ((3) due to ((31) made available in kernlab (Karat-
zoglou et al. 2004) was applied to the task. In case of Gaussian process tech-
niques, classification was performed using an anisotropic squared exponential
covariance (kernel) cSE(xi,xj) = θ0 exp(−1

2θ
T (xj − xi)2), with covariance pa-

1http://www.r-project.com
2C-SVM
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rameter θ initialized to to the mean of parameter values on the training set.
For the SVM, an isotropic squared exponential kernel function was used (with
cSE(xi,xj) = exp(− 1

2σ2 (xj−xi)2), in order to find optimal values for parameters
σ and C by search on a balanced validation set, with size Nval = 480.

6.1.4 Results

Classification performance Results from the different classifiers obtained on
the data set are summarized in Table 6.1. For each classifier, the model was
trained on a balanced data set of N = 2400 data points, represented by feature
vectors of length 41 and a (binary) class label ti, indicating if data point xi was
part of an area where movement occurence was registered (ti = 1), or not (ti = 0)
(with negative examples sampled uniformly from a set of (176277 − 1200) grid
points, after including all grid points with ti = 1), subject to k-fold (k = 5)
cross-validation. In order to determine the influence of training set size on classi-
fication performance, training sets of decreasing size were used, corresponding to
fractions of N . In case of the SOGP classifier, active sets of different (maximum)
sizes were used, corresponding to fractions of N .

The figures in Table 6.1 indicate that the Gaussian process classifiers based on
Laplace’s approximation (LA-GP), Expectation Propagation (EP-GP) and the
SOGP classifier (SOGP-GP) yield results comparable to the SVM (with θ and C
found on the validation set) in case of N = 1920, with decreasing classification
performance for training sets of decreasing size in case of LA-GP and EP-GP.
Training times1 for Gaussian process classifiers based on Expectation Propaga-
tion and Laplace’s approximation range between 2 sec. (N = 480) and 20 sec.
(N = 1920) (Laplace’s approximation) and 20 sec. (N = 480) and 20 min.
(N = 1920) (Expectation Propagation). Training times for the SOGP classi-
fier range between 2 min. (for an active set of maximum size M = 480) and
3 min. (for M = 1920). The reduced computational complexity of the SVM
training algorithm (SMO ((30))) results in training times ranging between 1 min.
(N = 480) and 6 min. (N = 1920) (including time required for tuning of θ and
C). Finally, a Gaussian process classifier based on Hybrid Monte Carlo was ap-
plied to the task, with application restricted to N = 480 data points due to the
high computational cost.

1Intel T 2500 2 GHz,2 GB RAM
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Data set size (grid
points)

1920 1440 960 480

Method
Laplace 87.4 86.3 84.6 81.7
EP 89.6 87.5 85.8 83.5
SOGP 88.4 87.9 87.6 86.5
SVM 92.9 91.8 90.9 88.9
HMC(*) - - - 83.8

Table 6.1: Classification results (in % of correctly classified data points) for differ-
ent classification techniques on different training set sizes for the Hochtannberg
data.

Probabilistic mapping After training, the Gaussian process techniques and
the SVM were used to generate susceptibility maps for the study area. For prob-
abilistic mapping, the complete data set (N = 2400 grid points) was used, and
trained models were applied to the study area, containing 176449 grid points.
Resulting susceptibility maps were generated as 8 bit grey scale images, with the
value of each pixel given by the (approximate) predictive probability q(T (xi) =
1|t). For the Gaussian process classifiers, uncertainty maps were generated, fol-
lowing a similar procedure (substituting var(q(Y (xN+1)|t)) for the predictive
probability for q(T (xi) = 1|t)). For further use/ post-processing, each map was
exported in a number of formats, including PNG, TIFF, and ESRI ASCII Grid
(using methods contained in the rgdal R package).

6.1.5 Discussion

From a comparison of classification performance and training times for Gaussian
process classifiers and the SVM, it can be observed that application of Gaussian
process classifiers results in classification performance comparable to the SVM,
at slightly longer training times in case of Gaussian process classifiers based on
Laplace’s approximation and Expectation Propagation, and slightly shorter train-
ing times in case of the Sparse Online Gaussian Process (SOGP) classifier. From
this observation, application of the SOGP classifier is considered the preferred
option. For smaller active sets (with M < N), application of the SOGP classifier
is advantageous, reducing prediction time complexity (required for the computa-
tion of the variance of q(Y (xN+1)|t)) from O(N2) to O(M2) for each data point.
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Figure 6.1: Susceptibility/ uncertainty maps for study area
Hochtannberg (1)
Results of probabilistic classification for study area Hochtannberg. The GP clas-
sifier based on Laplace’s approximation ((a), (b)) yields results comparable to
the GP classifier based on Expectation Propagation ((c), (d)), with color gradi-
ent indicating probability of movement occurence ((a), (c)) and uncertainty in
prediction ((b), (d)).
a) result of probabilistic classification (Laplace’s approximation/ susceptibility
map); b) result of probabilistic classification (Laplace’s approximation/ uncer-
tainty map); c) result of probabilistic classification (Expectation Propagation/
susceptibility map); d) result of probabilistic classification (Expectation Propa-
gation/ uncertainty map).
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Figure 6.2: Susceptibility maps for study area Hochtannberg (2)
Results of probabilistic classification for study area Hochtannberg. The SOGP
classifier of (Csato and Opper 2002) (a) yields predictive performance compara-
ble to the performance of the (optimally tuned) SVM (b), with color gradient
indicating probability of movement occurence. Additionally, the GP classifier
provides information related to uncertainty in prediction (Fig. 6.3 (b)).
a) SOGP, M = 480, susceptibility; b) SVM, susceptibility.
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In practice, reduction of prediction time is crucial, in particular in case when the
(test) set (the set of data points (locations) to be considered in prediction) is
large, which is the case in probabilistic mapping.

In terms of prediction time, computation of uncertainty in prediction (the vari-
ance of q(Y (xN+1)|t)) makes application of Gaussian process classifiers more
computationally demanding. The problem of prediction time complexity is ad-
dressed by sparse GP classification techniques (e.g., the SOGP classifier). In case
of the SVM, the problem is circumvented by not considering uncertainty in pre-
diction (resulting in shorter prediction times). However, uncertainty estimates
obtained from the predictive disctribution provide additional information, which
is of interest when predictions are made when real-world data is considered (where
observations may be missing). A particular example for such a case is shown in
Fig. 6.3.

6.2 Avalanche hazard

In the second case study, Gaussian process classification techniques were applied
to a data set describing the occurence of snow avalanches in the Lochaber region,
Scotland, a well-known ski venue for which daily avalanche forecast is available.
In contrast to the first case study (with focus on classification of susceptibility
and probabilistic mapping), the prediction problem in the second case study is
an instance of a spatio-temporal prediction problem, with data points describ-
ing environmental conditions at a set of avalanche path sites, including weather
conditions measured by local forecasters or registered by an automatic weather
station. Given a set of examples with data points and observations describing
occurences of events on days of the winter season (4 months per year) in previous
years, the prediction task is an accurate forecast of avalanche event occurences
at the level of avalanche paths, focusing on reliable forecast (sensitive prediction)
of avalanche events.

6.2.1 Data set

The description of the data follows (23). For each data point in the data set,
corresponding to one of 40 avalanche path sites on one of 1131 days of the win-
ter seasons between 1991 and 2007, a set of features derived from measurements
of weather and snowpack conditions (precipitation, snow drift, air temperature,
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Figure 6.3: Susceptibility/ uncertainty maps for study area
Hochtannberg (3)
Results of probabilistic classification for study area Hochtannberg. a) result of
probabilistic classification (Laplace’s approximation) subject to qualitative eval-
uation ((36)), with blue polygons indicating agreement, red polygons indicating
disagreement with the model. The two susceptible areas (red polygons) in the
south east of the study area are misclassified by both the GP classifier(s) and the
SVM (Fig. 6.1, Fig. 6.2 (a), (b)). In the example, the two polygons indicating
disagreement are related to medium to high prediction uncertainty (in (b)).

wind speed and direction, cloud cover, foot penetration, and snow temperature)
was combined with a morphological description derived from a Digital Elevation
Model (DEM), with a resolution of 10 m. In the resulting data set, a binary
target value indicating whether an avalanche event was registered (or not) was
assigned to each data point (one of 40 avalanche path sites on one of 1131 days),
with the description consisting of a set of 39 variables, including 22 features cor-
responding to local morphological and meteorological conditions at each path site
and 17 temporal features, describing weather and snowpack conditions for each
data point.

Based on this data, three data sets were built, including a balanced training
set consisting of 894 data points and observations from the period between 1991
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and 2005, a validation set consisting of 10277 data points and observations from
the same period (including 148 observations of avalanche events registered at one
of the path sites) and 10129 negative examples, and an (unbalanced) test set
consisting of 4792 data points and observations (including 72 positive examples
and 4720 negative examples) from the period between 2006 and 2007. In this ar-
rangement, the validation set was introduced for the purpose of model selection
for Gaussian process classifiers and SVM, allowing for optimization with respect
to different performance criteria, including a measure of sensitivity referred to as
the Hansen-Kuipers discriminant (HK), defined as

HK = |TP |
|TP |+|FN | −

|FP |
|FP |+|TN | ∈ [−1; 1]

, with TP denoting the set of true positives (with ti = 1 = sign(q(T (xi)|t)−0.5)
for xi ∈ TP ), FP denoting the set of false positives, or false alarms (with
ti = 1 6= sign(q(T (xi)|t) − 0.5) for xi ∈ FP ), TN denoting the set of true
negatives (with ti = 0 = sign(q(T (xi)|t)− 0.5) for xi ∈ TN), and FN denoting
the set of false negatives (with ti = 0 6= sign(q(T (xi)|t)− 0.5) for xi ∈ FN).

6.2.2 Methods

In order to evaluate the performance of Gaussian process techniques on the task
of reliable avalanche forecast (sensitive prediction ), three different Gaussian pro-
cess methods (LA-GP, EP-GP, SOGP-GP) were applied to the data set, follow-
ing a training procedure involving model fitting (training) on the training set,
with model selection on the validation set. For model selection, two different
approaches were chosen, including hyperparameter estimation via optimization
of the marginal likelihood of a subset of the validation set1 (using an isotropic
squared exponential covariance cSE(xi,xj) = θ0 exp(−1

2θ(xj − xi)2)) and grid
search on the validation set (using an isotropic squared exponential covariance
(kernel)), aiming at maximization of the HK score.

6.2.3 Results

Classification performance Results for the Gaussian process techniques (LA-
GP, EP-GP, SOGP-GP) and the SVM on the prediction task are summarized in
Table 6.2, with predictive performance and sensitivity indicated by (1 - misclassi-

1with N = 1036
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6.2 Avalanche hazard

fication error) (ME) and HK score, with parameters determined by optimization
of the marginal likelihood ( denoted LA-GP-LH, EP-GP-LH ), and grid search,
involving searching for θ0opt and θopt on the set {4s|s = −5, . . . , 5}, followed by
search on {4+0.8t|t = −4, . . . , 5} for θ0 and {2−(t+4)|t = 1, . . . , 6} for θ, resulting
in θ0opt = 8, θopt = 2−4 = 0.0625 (LA-GP-GS), θ0opt = 6.4, θopt = 2−4 = 0.0625
(EP-GP-GS) and θ0opt = 4, θopt = 2−4 = 0.0625 (SOGP-GP-GS). In order to as-
sess the performance of GP classifiers compared to the SVM, an implementation
of the SVM ( e1071 (8) ) was applied to the data, using a training set consisting
of 30837 data points. For the SVM, parameters θ and C were set to θopt = 1

2.42

and Copt = 5.6 , resulting from search on the set {4s|s = −5, . . . , 5}, followed
by search on the set {4 + 0.8t|t = −4, . . . , 5} for σopt =

√
1
θopt

and Copt. Having
obtained these parameters, training times for Gaussian process techniques ranged
between 15 sec. (LA-GP-LH, LA-GP-GS), 3 min. (SOGP-GP-GS) and 27 sec.
(EP-GP-LH, EP-GP-GS), with longer training time (27 min.) for the SVM.

Results in Table 6.2 indicate that Gaussian process classifiers based on Laplace’s
approximation (LA-GP) and Expectation Propagation (EP-GP) and the Sparse
Online Gaussian Process classifier (SOGP-GP) (with different active set sizes
corresponding to fractions (percentage) of training set size) yield results compa-
rable to the SVM, with comparable number of true positives and false positives
(false alarms) in case of model selection based on grid search (LA-GP-GS, EP-
GP-GS, SOGP-GP-GS), and HK scores indicating comparable sensitivity on part
of Gaussian process techniques. Results of Gaussian process classification with
(hyper-)parameters determined by optimization of the marginal likelihood (LA-
GP-LH, EP-GP-LH) indicate lower performance on the task, as indicated by
|TP |, |FP |, and HK.

Probabilistic mapping After training, the Gaussian process classifiers and
the SVM were applied to a data grid consisting of 5002 = 250000 data points,
describing weather and snowpack conditions in the study area on a particular day
in winter season 2007 (14.02.2007), combined with a morphological description
derived from a Digital Elevation Model (DEM) (with resolution 10 m/ grid point).
Similar to the Hochtannberg case study, avalanche hazard maps resulting from
predictions made under the Gaussian process models and the SVM (Fig. 6.4,
Fig. 6.5, Fig. 6.6) were generated as 8-bit grey scale images, with the value of
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Performance criterion ME HK |TP | |FP |
Method
LA-GP-LH 74.2 0.546 58 1222
LA-GP-GS 82.6 0.714 64 825
EP-GP-LH 74.9 0.553 58 1189
EP-GP-GS 82.9 0.718 64 808
SOGP-GP-GS-25 78.9 0.674 63 998
SOGP-GP-GS-50 80.2 0.692 64 939
SOGP-GP-GS-75 80.4 0.693 64 929
SOGP-GP-GS-100 80.5 0.693 64 922
SVM 79.2 0.665 63 990

Table 6.2: Classification results (in % of correctly classified data points (1-ME),
the HK discriminant score (HK), the number of true positives (|TP |) and the
number of false positives (|FP |)) on the Lochaber data set (test set, N = 4792).

each pixel given by the (approximate) predictive probability q(T (xi) = 1|t).

6.2.4 Discussion

The figures in Table 6.2 suggest that application of Gaussian process classifiers re-
sults in classification performance comparable to the SVM, with Hansen-Kuipers
discriminant scores resulting from model selection on the validation set sug-
gesting comparable predictive performance and sensitivity at forecasting tasks.
A comparison of probabilistic maps resulting from predictions of the Gaussian
process classifiers and the SVM (Fig. 6.4, Fig. 6.5, Fig. 6.6) indicates that
the Gaussian process classifiers (LA-GP-GS, EP-GP-GS) yield accurate fore-
casts for the 14.02.2007, with assignment of probability above decision threshold
(p(T (x) = 1) > .5) to five out of five grid points (four out of five grid points
in case of EP-GP-GS) where avalanche occurence was registered (Fig. 6.5, Fig.
6.6), a result comparable to the result of prediction obtained from the SVM (Fig.
6.4). An inspection of hazard maps in Fig 6.4-6.6 shows that results of the
SVM indicate a more pronounced discrimination, with probabilities p(T (x) = 1)
in the range [0.03; 0.99], in contrast to q(T (x) = 1) ∈ [0.36; 0.73] for (LA-GP-
GS), q(T (x) = 1) ∈ [0.24; 0.90] for (EP-GP-GS), and q(T (x) = 1) ∈ [0.40; 0.74]
for (SOGP-GP-GS). Results of Gaussian process classifiers indicate more con-
servative classification, with uncertainty estimates indicating lower uncertainty
(higher confidence) in prediction at grid points where avalanche occurence was
registered (Fig. 6.7-6.9 (b)).
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6.2 Avalanche hazard

Figure 6.4: Avalanche hazard maps for study area Lochaber (1)
Results of probabilistic avalanche forecast for the Lochaber study area
(14.02.2007, SVM). a) The SVM classifier assigns high probability of avalanche
occurence (p(T (x) = 1) > .72) to 5 out of 5 grid points corresponding to locations
where avalanche occurence was registered (blue points, with brighter shades of
grey indicating higher probability). b) Results of avalanche forecast for 14.02.2007
assign probabilities above decision threshold (p(T (x) = 1) > .5) to 40 out of 48
grid points corresponding to locations where avalanche occurence was registered
prior to 14.02.2007 (16.01.2006-28.01.2007) (blue/ red points).

77



6. APPLICATION TO SPATIAL DATA

Figure 6.5: Avalanche hazard maps for study area Lochaber (2)
Results of probabilistic avalanche forecast for the Lochaber study area
(14.02.2007, Gaussian processes). For the GP classifier based on Laplace’s ap-
proximation, probabilities q(T (x) = 1) > .5 are assigned to 5 out of 5 grid
points corresponding to locations where avalanche occurence was registered on
14.02.2007 (a). For the GP classifier based on Expectation Propagation, prob-
abilities q(T (x) = 1) > .5 are assigned to 4 out of 5 grid points ((c), blue/ red
points, with brighter shades of grey indicating higher probability).
a) result of avalanche forecast for 14.02.2007 (Laplace’s approximation/ haz-
ard map); b) Results of avalanche forecast for the 14.02.2007 assign probabil-
ities above decision threshold (q(T (x) = 1) > .5) to 45 out of 48 grid points
corresponding to locations where avalanche occurence was registered prior to
14.02.2007 (16.01.2006-28.01.2007) (blue/ red points). c) result of avalanche
forecast for 14.02.2007 (Expectation Propagation/ hazard map); d) Results of
avalanche forecast for the 14.02.2007 assign probabilities above decision thresh-
old (q(T (x) = 1) > .5) to 42 out of 48 grid points (c.f. (b)).
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6.2 Avalanche hazard

Figure 6.6: Avalanche hazard maps for study area Lochaber (3)
Results of probabilistic avalanche forecast for the Lochaber study area
(14.02.2007, SOGP). a) The Sparse Online Gaussian Process (SOGP) classifier
assigns probability above decision threshold (q(T (x) = 1) > .5) to 5 out of 5 grid
points corresponding to locations where avalanche occurence was registered (blue
points, with brighter shades of grey indicating higher probability). b) Results of
avalanche forecast for the 14.02.2007 assign probabilities above decision threshold
(q(T (x) = 1) > .5) to 48 out of 48 grid points corresponding to locations where
avalanche occurence was registered prior to 14.02.2007 (16.01.2006-28.01.2007)
(blue/ red points).
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Figure 6.7: Avalanche hazard/ uncertainty maps for study area
Lochaber (4)
Results of probabilistic avalanche forecast for the Lochaber study area
(14.02.2007, Laplace’s approximation). The uncertainty map (based on
var(q(Y (xN+1)|t))) in (b) indicates lower uncertainty (higher confidence) in pre-
diction at grid points where avalanche occurence was registered in the training
set (with dark shades of grey indicating low uncertainty). Conversely, higher un-
certainty is assigned to grid points corresponding to locations where no avalanche
occurence was registered. a) result of avalanche forecast for 14.02.2007 (Laplace’s
approximation/ hazard map), with blue points corresponding to locations where
avalanche occurence was registered; b) result of avalanche forecast for 14.02.2007
(Laplace’s approximation/ uncertainty map).

80



6.2 Avalanche hazard

Figure 6.8: Avalanche hazard/ uncertainty maps for study area
Lochaber (5)
Results of probabilistic avalanche forecast for the Lochaber study area
(14.02.2007, EP). a) result of avalanche forecast for 14.02.2007 (Expectation
Propagation/ hazard map), with blue points corresponding to locations where
avalanche occurence was registered; b) result of avalanche forecast for 14.02.2007
(Exectation Propagation/ uncertainty map).
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Figure 6.9: Avalanche hazard/ uncertainty maps for study area
Lochaber (6)
Results of probabilistic avalanche forecast for the Lochaber study area
(14.02.2007, SOGP). a) result of avalanche forecast for 14.02.2007 (SOGP/ haz-
ard map), with blue points corresponding to locations where avalanche occurence
was registered; b) result of avalanche forecast for 14.02.2007 (SOGP/ uncertainty
map).
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Chapter 7

Conclusions

In this work, the applicability of a discriminative probabilistic techniques (Gaus-
sian process techniques) not previously applied in spatial prediction was inves-
tigated, focusing on the occurence of mass movements. The work summarizes
results of research in context of research project ’Development of suitable infor-
mation systems for early warning systems’ (EGIFF)1, with focus on introduction
of techniques aiming at improvements in processing of data (measurements/ ob-
servations) in context of a suitable early warning chain. Results of this research
include results of an application of different techniques for Gaussian process clas-
sification (involving application of stochastic and deterministic techniques for
approximate inference) to two data sets describing the occurence of different
types of mass movements (earth movements and snow avalanches). These results
suggest applicability of Gaussian process techniques to classification of spatial/
spatio-temporal data on regional scale, with novelty resulting from application of
different techniques for Gaussian process classification to high-dimensional real-
world spatial/ spatio-temporal data sets. This is demonstrated by qualitative and
quantitative evaluation, indicating predictive performance (sensitivity) compara-
ble to the predictive performance (sensitivity) of the Support Vector Machine
(SVM). Additionally, uncertainty estimates provided by Gaussian process clas-
sifiers result in additional information, which is of interest when predictions are
made based on real-world data, where observations may be missing. An example
for such a case is given in Fig. 6.3 (b) of chapter 6, with uncertainty estimates
provided by Gaussian process classifiers indicating possible misclassification on
part of both Gaussian process classifiers and the SVM, as suggested by qualitative

1part of the GEOTECHNOLOGIEN research program (http://www.geotechnologien.de),
funded by the German Federal Ministry of Research and Education (BMBF)
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evaluation (Fig. 6.3 (a)). Based on this result, availability of uncertainty esti-
mates is considered advantageous, with justification in the assumption of missing
observations (positive examples) due to difficult environmental conditions.

In order to apply Gaussian process techniques to classification tasks, a set of Gaus-
sian process classification techniques making use of stochastic (Hybrid Monte
Carlo) and deterministic (Laplace’s Approximation, Expectation Propagation,
SOGP) techniques for approximate inference was implemented in the statistical
computing environment R1, with critical parts of the code written in C. Resulting
classification procedures can be applied to arbitrary classification tasks, involv-
ing spatial, spatio-temporal and non-spatial data. In context of the project,
classification procedures can be applied in context of a suitable early warn-
ing chain, with prototypical client-server implementation (Java) available for
platform-independent integration of classification procedures in existing infor-
mation systems.

Gaussian process techniques for classification have rarely been applied to high-
dimensional spatial classification problems. This work is one of the first that
studied the applicability of several of these techniques to real-world spatial data.
In this work, these techniques have been applied to classification tasks focusing
on the occurence of mass movements (earth movements, snow avalanches). It is
the author’s hope to contribute to further study (more comprehensive evaluation)
of these techniques.

1http://www.r-project.com
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Appendix A

The Gaussian

For x ∈ IRN , the multivariate Gaussian distribution (denoted N(x|µ,Σ)) is
parametrized by a mean vector µ ∈ IRN and a (symmetric, positive definite)
covariance matrix Σ ∈ IRN×N .

The multivariate Gaussian distribution has the form

p(x|µ,Σ) = 1

(2π)
N
2 |Σ|

1
2

exp (−1
2(x− µ)TΣ−1(x− µ))

Conditioning and marginalizing Given a marginal Gaussian distribution
p(x1) and a conditional Gaussian distribution p(x2|x1) in the form

p(x1) = N(x1|µ,Λ−1), and p(x2|x1) = N(x2|Ax1 + b,L−1),

the marginal distribution p(x2) and the conditional distribution p(x1|x2) are

p(x2) = N(x2|Aµ + b,L−1 + AΛ−1AT ), and p(x1|x2) = N(x1|Σ(ATL(x2 −
b) + Λµ),Σ)

, where Σ = (Λ + ATLA)−1.

Given a joint Gaussian distribution N(x|µ,Σ), with Λ = Σ−1, with

x =

(
x1

x2

)
,µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,Λ =

(
Λ11 Λ11

Λ21 Λ22

)
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the conditional distribution p(x1|x2) is given by

p(x1|x2) = N(x1|µ1|2,Σ1|2), where

E(x1|x2) = µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2), and var(x1|x2) = Σ1|2 = Σ11 −

Σ12Σ−1
22 Σ21

and the marginal distribution p(x1) is given by

p(x1) = N(x1|µ1,Σ11)

(see (46), sec. 9.3)

Product of Gaussians The product of two Gaussian distributions is an (un-
normalized) Gaussian distribution:

N(x|µ1,Σ1)N(x|µ2,Σ2) = Z−1N(x|µ,Σ),

where µ = Σ(Σ1µ1 + Σ2µ2), and Σ = (Σ−1
1 + Σ−1

2 )−1, and

Z−1 = (2π)−
N
2 |Σ1 + Σ2|−

1
2 exp(−1

2(µ1 − µ2)T (Σ1 + Σ2)−1(µ1 − µ2)).
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Appendix B

Matrix results

B.1 Partitioned matrices

B.1.1

The matrix

M =

(
A B
BT 0

)

where A ∈ IRN×N symmetric and non-singular, and B ∈ IRN×P and of full
rank P ≤ N , has inverse(

A−1 −A−1B(BTA−1B)−1BTA−1 A−1B(BTA−1B)−1

(BTA−1B)−1BTA−1 −(BTA−1B)−1

)
=

(
M−

11 M−
12

M−
21 M−

22

)

B.1.2

The matrix

M =

(
A a
aT 0

)

where A ∈ IRN×N symmetric and non-singular, and a ∈ IRN×1 6= 0, has in-
verse
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(
A−1(IN − a aTA−1

aTA−1a
) A−1a

aTA−1a
aTA−1

aTA−1a
−1

aTA−1a

)

B.2 Matrix identities

A useful matrix identity involving matrix inverses which can be used to derive
several results is the following

(P−1 + BTR−1B)−1BTR−1 = PBT (BPBT + R)−1 (B.1)

Another useful identity , known as the Sherman-Morrison-Woodbury identity
(see e.g. (32)), is

(A + BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1 (B.2)

B.3 Matrix derivatives

The derivatives of the elements θ of an inverse matrix C−1 are given by

∂

∂θ
C−1 = −C−1∂C

∂θ
C−1 (B.3)

The derivatives of the elements θ of log |C| are given by

∂

∂θ
log |C| = tr(C−1∂C

∂θ
) (B.4)

(see e.g. (15))
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Appendix C

Derivation of kriging

To derive the kriging predictor in terms of the variogram function, start with the
expression for the MSE:

MSE = E((t̃(xN+1)− T (xN+1))2) = E((λT t− T (xN+1))2)

Noting that E((T (xi) − T (xj))2) = 2γ(xi − xj) (from the definition of the vari-
ogram function), the MSE is:

MSE = E(−1
2

∑N
i=1

∑N
j=1 λiλj(T (xi)− T (xj))2 +

∑N
i=1 λi(T (xi)− T (xN+1))2)

= −
∑N

i=1

∑N
j=1 λiλjγ(xi − xj) + 2

∑N
i=1 λiγ(xi − xN+1)

= −λTΓλ+ 2λTγ

where λ = (λ1, . . . , λN )T ∈ IRN , γ = (γ(x1−xN+1), . . . , γ(xN −xN+1))T ∈ IRN ,
and Γ ∈ IRN×N is a N×N matrix with (i, j)-th element determined by γ(xi−xj),
for i = 1, . . . , N and j = 1, . . . , N .

Given a continuous, (conditionally) negative definite variogram model γ(h), the
expression for the MSE can be minimized subject to the unbiasedness constraint
λT1 = 1 in case of ordinary kriging (1) and λTF = fTN+1 in case of universal
kriging (2).

Introducing a scalar Lagrange multiplier α (1), and a P × 1 Lagrange multi-
plier α (2), the expressions to be minimized are
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−λTΓλ+ 2λTγ − 2α(λT1− 1), and

−λTΓλ+ 2λTγ − 2(λTF− fTN+1)α, respectively.

Differentiating with respect to λ and α (1), and λ and α (2) and equating to 0
yields the matrix forms(

Γ 1
1T 0

)(
λ

α

)
=

(
γ

1

)
, and

(
Γ F
FT 0

)(
λ

α

)
=

(
γ

fN+1

)

Assuming that Γ is non-singular (this is the case when the variogram function is
(conditionally) negative definite), and using the result for the inverse of a parti-
tioned matrix M (see Appendix B for details), the solution (1) can be written(
λ

α

)
=

(
Γ−1(IN − 1 1TΓ−1

1TΓ−11
) Γ−11

1TΓ−11
1TΓ−1

1TΓ−11
−1

1TΓ−11

)(
γ

1

)

Hence, the solution has kriging weights

λ∗ = Γ−1(γ + 1(1TΓ−11)−1(1− 1TΓ−1γ))

in case of ordinary kriging, and, by analogy, λ∗ = Γ−1(γ+F(FTΓ−1F)−1(fN+1−
FTΓ−1γ))

in case of universal kriging.

Substituting the kriging weights λ into the linear predictor t̃(xN+1) = λT t yields
the kriging predictor, or BLUP.
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Appendix D

IWLS

In general, the iterative weighted least squares algorithm to obtain a maximum
likelihood solution for an unknown parameter θ takes the form

θ(m+1) = θ(m) −H(θ)−1 ∂lML
∂θ |θ=θ(m) in case of Newton-Raphson, or

θ(m+1) = θ(m) − E(H(θ))−1 ∂lML
∂θ |θ=θ(m)= θ(m) + I(θ)−1 ∂lML

∂θ |θ=θ(m) in the
Fisher Scoring variant,

starting with an initial estimate θ(0),

where (m) indicates the mth iteration, H(θ) denotes the Hessian matrix of second
order derivatives of the log likelihood lML, and I(θ) denotes the Fisher informa-
tion matrix, defined as I(θ) = −E(H(θ)).

In context of the GLM, an estimate for the unknown β is obtained through
either variant, given the log likelihood for the model:

lML = logLML =
∑N

i=1(tiγi − b(γi))/τ −
∑N

i=1 c(ti, τ)

In order to evaluate the IWLS update step, it is necessary to obtain the Hessian
H(β) or the Fisher information matrix I(β) by differentiating the log likelihood
with respect to β:

∂lML
∂β = ∂ logLML

∂β
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= 1
τ2

∑N
i=1(ti ∂γi∂β −

∂b(γi)
∂γi

∂γi
∂β )

µ=
∂b(γ)
∂γ= 1

τ2

∑N
i=1(ti−µi)∂γi∂β = 1

τ2

∑N
i=1(ti−µi) ∂γi∂µi

∂µi
∂β

= 1
τ2

∑N
i=1(ti − µi) ∂γi∂µi

(∂h(ηi)
∂ηi

)∂ηi∂β = 1
τ2

∑N
i=1(ti − µi) ∂γi∂µi

(∂g(µi)∂µi
)−1fi

= 1
τ2

∑N
i=1

(ti−µi)
v(µi)(

∂g(µi)

∂µi
)
fi = 1

τ2

∑N
i=1(ti − µi)wi(∂g(µi)∂µi

)fi,

after applying the chain rule to obtain ∂γi
∂β = ∂γi

∂µi
∂µi
∂β , making use of the iden-

tities ∂γi
∂µi

= (∂µi∂γi
)−1 = (∂

2b(γi)
∂γ2
i

)−1 = 1
v(µi)

, and defining wi = 1

v(µi)
∂2g(µi)

∂µ2
i

.

In matrix form, the expression can be written

∂lML
∂β = 1

τ2 FTW∆(t− µ)

with W = diag(wi) and ∆ = diag(∂g(µi)∂µi
),

where W, ∆, and µ involve the unknown β.

Having obtained an expression for ∂lML
∂β , the expression for the Hessian can be

derived:

H(β) = ∂2lML

∂β∂βT
= 1

τ2 FTW∆(−1) ∂µ

∂βT
+ 1

τ2 FT ∂(W∆)

∂βT
(t− µ)∑N

i=1(
∂g(µi)

∂µi
)−1fi=diag((

∂g(µi)

∂µi
)−1)F

= − 1
τ2 FTW∆∆−1F + 1

τ2 FT ∂(W∆)

∂βT
(t− µ)

= − 1
τ2 FTWF + 1

τ2 FT ∂(W∆)

∂βT
(t− µ)

Hence, the Fisher information matrix is

I(β) = −E(H(β)) = 1
τ2 FTWF + 1

τ2 FT ∂(W∆)

∂βT
E(t− µ)

E(t)=µ
= 1

τ2 FTWF + 0
= 1

τ2 FTWF

Using above expression, the Fisher Scoring update step for β can be written

β(m+1) = β(m) + τ(FTWF)−1 1
τ2 FTW∆(t− µ)

= β(m) + (FTWF)−1FTW∆(t− µ)

, or, equivalently,
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β(m+1) = (FTWF)−1FTW(Fβ(m) + ∆(t− µ)).

with the Newton-Raphson scheme obtained by replacing I(β) by−H(β).
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Errata

p. 20: Conversely, for a finite collection {Y (x1), . . . , Y (xN )}, a probability dis-
tribution, referred to as the distribution of the process, can be obtained from the
stochastic process:

p((Y (x1), . . . , Y (xN )))
=
∫
. . .
∫
p((Y (x1), . . . , Y (xN ), Y (xN+1), . . . , Y (xN+n)))

dY (xN+1) . . . dY (xN+n),

with n ∈ IN, and (xN+1, . . . ,xN+n)T ∈ Xn.

p. 20: From above expression, p((Y (x1), . . . , Y (xN ))) can be substituted for
Y (·) if the finite collection {Y (x1), . . . , Y (xN )} is considered.

p. 20: . . . Hence , if interested in the distribution of finite y , it is possible to work
with the random vector (Y (x1), . . . , Y (xN ))T (and the corresponding probability
distribution p(y) = p((Y (x1), . . . , Y (xN ))) , not taking (YN+1, . . . , YN+n) into
account.

p. 47: . . . by minimizing the Kullback-Leibler divergence KL(p(yi)‖q(yi))
= KL(

∫
q−i(yi)p(ti = 1|yi)dyi‖q(yi))

= −
∫
q−i(yi)p(ti = 1|yi)dyi log q(yi)∫

q−i(yi)p(ti=1|yi)dyi
:

p. 58 k̃(xi,xj) =
∑Q

q=1
λ
(Q)
q

Q
Q

(λ
(Q)
q )2

cT (xi)u
(Q)
q (u(Q)

q )T c(xj)

= (c(x1,xi), . . . , c(xQ,xi))TC−1
QQ(c(x1,xj), . . . , c(xQ,xj))
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