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INTRODUCTION 1

Introduction

In 1986, Alan McIntosh introduced in the fundamental paper Operators which have an Hq
functional calculus (|McI86]) his notion of a bounded H*°-calculus for sectorial operators: Let A
be a sectorial operator in a complex Banach spaces X, i.e. the set of resolvents {AR(\, A) | A €
C\X,} is bounded for some w € (0,7), where %, := {2z € C\{0}||arg(z)] < w} denotes the
open sector symmetric around the positive axis with half opening angle w. Then based on the
ideas of the Dunford functional calculus one defines
o(A) = = [ (VRO A)dr € LX),
2mi Jr

where I' is the canonical parametrization of the oriented boundary of a suitable sector, and ¢ is of
class H§°, i.e. a bounded holomorphic function on a larger open sector that decays polynomially
to 0 as z tends to 0 or co. Then ¢ +— ¢(A) defines a functional calculus on H{°, which can
be naturally extended to the larger algebra of holomorphic functions with at most polynomial
growth at 0 and oo, where in this case the resulting operators are in general unbounded. In
particular, f(A) is defined for all bounded holomorphic functions f € H*. Now one central
question is the following:

Is f(A) bounded for any f € H*, and does an estimate || f(A)|| S || flloo hold?

In this case, A is said to have a bounded H°-calculus. Mclntosh was able to give various
characterizations of the boundedness of the H°°-calculus in the case that the underlying space is
a Hilbert space. One of these is given in terms of so-called square functions and can be rewritten
in the following form: A sectorial operator A in a Hilbert space X has a bounded H*°-calculus if
and only if the following norm equivalence holds for one (and then for all) ¢ € H§® with ¢ # 0:

|zl x ~ (/0 lo(tA)z||5% t) for x € X. (1)

This condition was motivated by well known concepts of square functions from harmonic analysis.
Indeed, the methods McIntosh used were operator theoretic, but many of them are motivated
by harmonic analysis. McIntosh himself says the following in his paper [McI86]:

The material in this paper has two heritages: One is operator theory [...J; the other is harmonic
analysis [...],

and this thesis follows the same tradition.

The condition (1) has been generalized to other classes of spaces, in a first step to spaces X = LP,
p € (1,400), where it takes the following form: A sectorial operator A in the space X = LP has
a bounded H*°-calculus if and only if the following norm equivalence holds for one (and then for
all) ¢ € H§® with ¢ # 0:

00 at\ /2
el ~ | ([ etearer §)

for z € X. (2)

X
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This has first been treated in [CDMY96]. Note that for X = L?, the norm expressions in (1)
and (2) coincide by Fubini. Again, the idea for (2) is based on methods from classical harmonic
analysis in LP| in particular Littlewood-Paley theory. Let us mention that this concept of char-
acterizing the boundedness of the H°°-calculus has finally been transferred to general Banach
spaces by Nigel Kalton and Lutz Weis in [KW-1], cf. also [KW04] and [KKWO06|, where the
square-function norms in (2) are replaced by more general square functions in terms of so called
Rademacher-norms and in terms of v-norms. Furthermore, square function estimates are used
in various fields of analysis, e.g. questions of admissibility of certain operators for control sys-
tems have been treated in [LeMO03| using square function norms of the form (1), and the related
concept of R-admissibility is treated in [LeMO04] in terms of the square function norms in (2).
Moreover, [KW-1] and the survey [LeMO07| give a nice overview of different characterizations and

applications for square functions and square function estimates.

In this thesis, we will concentrate on a certain class of Banach function spaces instead of general
Banach spaces, so in particular, we have an additional lattice structure, and expressions as in (2)
are still well defined. We note that this class of spaces covers the spaces LP, where p € [1, +00),
but also certain kinds of Lorentz-, Orlicz- and mixed LP L4-spaces. The central challenge we meet
in this work is to change the power 2 in (2) to a power s € [1,+oc]. This leads to the following
expressions:

oo Ldt\ Ve
fellas = ([ teteare )

Although starting from the same idea, i.e. generalizing the square function norms (2), we will

if s < 400, and ||z]/c0,4,4 1= H sup|g0(tA)a:|HX. (3)
X t>0
use these two expressions for two different ideas:

In the first part of this thesis, we will study the terms sup,-|¢(tA)z|. These are well known in
classical situations and are referred to as maximal functions. In this context, the question arises

naturally, if an estimate of the form
H iug) ]go(tA)ﬂHX Slzllx forze X (4)
>
holds. Here we will work more generally in vector-valued Banach function spaces X (FE) (e.g.

vector-valued Lebesgue spaces LP(), E)), where E is a Banach space. Given a sectorial operator
A in X (F) we ask for the validity of a maximal estimate

| sup ozA)alz]y S lelxe) for = € X(). (5)
z€2s

One important issue in this context is the Banach principle, which states that if the estimate (5)
holds, then the set of all z € X(FE) such that

(p(2A)z) ey, converges pointwise a.e. if 353 2z — 0

is closed in X(F). If e.g. A = —A is the Laplacian and X = LP(R?) with p € (1,+o0) and
¢(z) = e™%, then (5) (for § =0 and X := (0,00)) reads as

I sup [ * ulgl|, S Il for u e LP(E), (6)
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where hy is the heat kernel in R?. Since convergence a.e. is clear if e.g. u € S(R?, E), the validity
of a maximal estimate (6) implies that

hi*u — u ae. ast— 0 for all u € LP(RY, E).

Actually we will show that the maximal estimate (6) holds in the case that E = [Ey, F1]g is a
complex interpolation space between a UMD-space Ey and a Banach space E for some 6 € (0,1).
We note that the question about maximal estimates for semigroups has a long history in con-
nection with the maximal ergodic theorem, cf. e.g. [St61], or [DS58], Chapter VIII.

In this thesis we will do a systematic treatment of maximal estimates according to (5) using
concepts of functional calculi for sectorial operators in Banach function spaces, that also work in
vector-valued spaces. We note in this place that the concept of using functional calculi methods
for considering maximal estimates has already been regarded by Michael Cowling in [Co83|, and
a generalization to the vector-valued setting has been done e.g. in [Bl02| and [Ta09]. We note
that in [Bl02], the considered operators are assumed to have bounded imaginary powers, and the
underlying space has to be a UMD-space, whereas in [Ta09] generators of symmetric diffusion
semigroups are treated, hence self-adjoint operators in L?, and the underlying Banach spaces
for the vector-valued maximal estimates are interpolation spaces [H, El]y, where H is a Hilbert
space and F is an UMD space. In both cases, we show that the assumptions can be weakened.
We will give more details in the sequel when we discuss the structure of Chapter 2.

In the second part of this thesis we will pursue a different idea, considering the terms ||z||s.4,,
for the whole scale of s € [1, +00]. More generally, we consider the terms

[o.¢] _ Sdt 1/8
zll0,5,4.6 = H(/O 1t (tA) x| t)

for each § € R (with the usual modification if s = 400). These terms have an interesting

(7)

X

interpretation if one considers the natural counterparts

00 0 . dt 1/s
o= ([ pteare 4) ®)

The term (8) is well known to be the homogeneous part of the norm in real interpolation spaces
(X,D(A))ps if 0 € (0,1) for appropriate auxiliary functions ¢, i.e. the norm in (X, D(A))g,s is
equivalent to the norm || - [[x + || - [[6,s,4,0, cf. e.g. [Ha06], Chapter 6. In particular, if A = —A

in X = LP(R?) and 6 € (0,1), then (X, D(A))gs = BgfS is a Besov space, whereas the norm

|- llx 1 - l,s,4, is equivalent to the norm in the Triebel-Lizorkin space F2, cf. [Tr83]. The

usefulness of Besov spaces is widely known, since they are real interpolation spaces and hence

]

e.g. occur as trace spaces in many applications in differential equations. Moreover, Besov and
Triebel-Lizorkin spaces coincide in the case p = s, i.e. Bzg, = Fﬁz, whereas in the case s = 2
the Triebel-Lizorkin spaces coincide by Littlewood-Paley theory with the Bessel potential spaces
H¥P(R?) if p € (1,400). The case s # 2 has become of interest e.g. in connection with Navier-

Stokes equations, cf. [KY04]. Moreover, vector-valued variants of Triebel-Lizorkin spaces have
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been recognized to occur naturally in characterizing the sharp temporal regularity of certain
trace spaces in the theory of evolution equations, cf. [We02] and [We05|, but we will not study
vector-valued Triebel-Lizorkin spaces in this thesis.

Turning back to the general expressions (7) and (8), the idea naturally arises to define generalized
Triebel-Lizorkin spaces for any sectorial operator A using the norm (7). Of course, the norm
expression in (7) should be independent of the special function ¢ € H§°\{0}. To ensure this, we
resort to the notion of Rs-boundedness from [WelOla]: A set 7 of linear operators in X is called
Rs-bounded if an estimate

(S mest) [ < ()
J=1 Jj=1

holds uniformly for all T; € 7,z; € X and n € N (with the usual modification if s = 4+00). If the
Banach function space X fulfills a certain geometric property, then Ro-boundedness is equivalent

(9)

X

to R-boundedness, and for the concept of Rs-boundedness we show some basic results that are
similar to corresponding results for R-bounded sets of operators. Nevertheless, there are also
considerable differences between the concepts of Rs- and R-boundedness. The most striking one
is that even a single operator does not need to be Rs-bounded if s # 2, cf. e.g. [Du01], Chapter 8.

In this manner, a sectorial operator is said to be R ¢-sectorial if the set of resolvents { \R(X, A) | A €
C\X,} is Rs-bounded for some w € (0, 7). If A is Rs-sectorial, we will show that the norm expres-
sion in (7) is independent of ¢, for ¢ within a suitable class of bounded holomorphic functions,
in the sense of equivalent norms. Having this concept at hand, we can define generalized Triebel-
Lizorkin spaces for Rs-sectorial operators, which we will refer to as the associated s-intermediate
spaces, via the norm expression (7):

9
Xoa =1z € X|llzllosap <+oo}, lzlxo , = llzlx + 20,40,

where ¢ # 0 is a suitable holomorphic function such that z — z~?

¢(z) is an H§°-function. More-
over we will define the associated homogeneous s-intermediate spaces Xz 4 to be the completion
of XS)’A with respect to the norm || - [|g,s,4,,- In both cases, we will show that the norms are
independent of ¢ with the above properties in the sense of equivalent norms. One main result
of this thesis is that the "part" of A (which is defined by an abstract extrapolation argument)
always has a bounded H°°-calculus in the homogeneous spaces Xg 4,0 € R, and if A is invertible
or has a bounded H-calculus in X, then the part of A in the inhomogeneous spaces XﬁA, 0>0
has a bounded H°-calculus. This can be seen as a counterpart to Dore’s Theorem (cf. [Do99),
[Do01]), that states a similar result for the real interpolation spaces (X, D(A))g s instead of the
s-intermediate spaces.

Let us again have a short look at the case s = 2, from which we started. Then the homogeneous
norm ||-

0,2,4, 18 a (classical) square function norm associated to A, and the corresponding spaces
Xg’ 4 have also been studied in the context of general Banach spaces (sharing some suitable geo-
metric properties) by Nigel Kalton and Lutz Weis, cf. [KW-1], [KW-2]: the norm || - [|g2,4,, in a
Banach function space X can be reformulated in terms of v-norms, and it is e.g. well known that
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if A has a bounded H*°-calculus, then X297 4 equals the homogeneous fractional domain D(A%).
However, many methods used in the case s = 2, in particular equivalence of square function
norms to Rademacher- and «-norms, break down in the case s # 2, and we have to develop new
approaches in this situation.

Using methods from harmonic analysis we will show that wide classes of operators are R s-sectorial
and indeed even have an Rs-bounded H*-calculus, i.e. the set {f(A)|f € Zu, || flloc < 1} is
Rs-bounded for some w € (0, 7). Moreover, we establish comparison and perturbation results
that enable us to show that for certain kinds of elliptic differential operators the generalized
Triebel-Lizorkin spaces associated to these operators coincide with the classical Triebel-Lizorkin
spaces. In particular, such operators have a bounded H°-calculus in classical Triebel-Lizorkin
spaces. Again, we give a more detailed exposition below when we give an overview for Chapter 3.

This thesis is organized as follows: In Chapter 1 we present notations and preliminaries. After
introducing some notations in Section 1.1, we recall the notion of the functional calculus for sec-
torial operators and its extension to an operator-valued functional calculus in Sections 1.2 and
1.3. In Section 1.4 we describe the operator-valued version of the Mikhlin multiplier theorem
in UMD-spaces, that relies on results from [We01b|, [SW07| and [HHNO2|. After this we give a
brief summary of abstract interpolation functors, and further present the concrete concepts of
real and complex interpolation spaces. In particular, we will introduce a multilinear version of
the abstract Stein interpolation theorem for complex interpolation spaces due to [Vo92|, which
should be known, but seems not to be explicitly written down in the literature. Furthermore
we give a detailed exposition of Banach function spaces, and finally a brief review on (classical)
Besov and Triebel-Lizorkin spaces.

In Chapter 2 we introduce the notion of maximal estimates for sets of linear operators in
vector-valued Banach function spaces X (FE), and in particular the notion of a bounded mazimal
function for a sectorial operator A in X (FE). We say that A has a bounded H{°(X,)-maximal
function, or shortly that A has a bounded Hj°-maximal function, if there is a C' > 0 such that
the maximal estimate

| sup le(tA)z|e|| < Cllzllx ) (10)
t>0

holds for all ¢ € H{®(Xy),x € X(F). Actually (10) implies a more general maximal estimate:
Define the maximal function

My p(x) = sup{]go(A)x\E ’ © € H§°(X,,) for some o' € (w, ) with lellrios.,) < 1}

for all x € X(E), where [|¢| 11 (95,) = fazw lo(N)] ‘ﬁT/\“' We will show that if A has a bounded

H§®(Xs)-maximal function, then also the maximal function M 4, is bounded on X (E) if w > 0.

In Section 2.2 we give examples for large classes of operators that have a bounded H§°-maximal
function, namely operators that have BIP, operators that satisfy one-sided square-function esti-
mates, or operators which are generators of semigroups that satisfy suitable maximal estimates.
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Moreover, we give an example for an operator without BIP which also has a bounded H§°-
maximal function, thus we show that our methods generalize results from [Bl02]|, where only
operators which have BIP are considered.

In Section 2.3 we consider the maximal estimate (10) in the case that ¢ is in the larger class £(%,)
of bounded holomorphic functions that have polynomial limits in 0, i.e. f(z) — f(0) = O(z%)
if z — 0 for some a > 0, and in oo, i.e. 2z — f(27!) has a polynomial limit in 0. We will
show that if A has a bounded H{°-maximal function, then the maximal estimate (10) holds for
all ¢ € E(3,) if it holds for some ¢ € E£(X,) with ¢(0) # ¢(c0), and moreover under this
assumption also the maximal estimate (5) holds for some § > 0.

In Section 2.4 we will present an interpolation result for maximal functions if A acts as a sectorial
operator in spaces X;(FEj;), j = 0,1 with compatible resolvents. In the last Section 2.5 of this
chapter we consider the special case of operators A” in the vector-valued space X(E) which
arise as tensor extensions of operators A in the scalar space X. As an application we generalize
a result by Robert J. Taggart from [Ta09] about maximal estimates for tensor extensions of
symmetric diffusion semigroups in vector-valued space LP ({2, F).

In the last part, Chapter 3, we present the concept of Rs-boundedness of linear operators, cf.
(9) above, and, as already noted, we will use this concept to define Rs-sectorial operators in
the natural way. In Subsection 3.2.2 we will prove the important fact that the norm expressions
in (3) are equivalent for all ¢ € H°(X,)\{0} if A is Rs-sectorial of type smaller than o. In
Subsection 3.2.3 we introduce the notion of an Rs-bounded H°-calculus: The operator A in X
is said to have an Rs-bounded H*>(X,,)-calculus if the set

{F(A) [ f e H*(3u), | flloow < 1}

is Rs-bounded. We will show that if f(A) is Re-bounded for each f € H*(X,), then the secto-
rial operator A has an Rs-bounded H*°(3,,)-calculus for all w > o.

In Section 3.3 we introduce the associated s-intermediate spaces for an Rs-sectorial operator A,
namely the homogeneous spaces Xg} 4,0 € R and the inhomogeneous spaces Xg’ 4,0 > 0. After
presenting elementary properties of these spaces in Subsection 3.3.1 we will show in Subsection
3.3.2 that these spaces are indeed reasonable intermediate spaces for X and D(A™) if § € (0,m),
and moreover we present results about real and complex interpolation of these spaces. In Sub-
section 3.3.3 we constitute the main theorem already mentioned (Theorem 3.3.23), which states
that A has a bounded H*°-calculus in the spaces Xg 4,0 € R, and under appropriate assumptions
also in the spaces Xf,A, 6 > 0.

In Section 3.4 we present comparison and interpolation results for R s-sectorial operators. In both
cases we can show that if C' is a comparable operator or an additive perturbation (i.e. C = A+ B
for some linear operator B : X O D(A) — X) of an operator A with an Rs-bounded H>-
calculus, then under appropriate conditions also C' has an Rs-bounded H*°-calculus. Moreover,
and that is what we are more interested in, under similar conditions we can also show that the
operator C' has the same associated s-intermediate spaces as A, i.e. we have ng,c = Xg 4 and
vac ~ XS,A for some range of 6. Together with the results of Section 3.3 this yields that these op-
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erators C have a bounded H-calculus in the s-intermediate spaces associated to the operator A.

In Section 3.5 we will show that the negative A of a generator of an analytic semigroup T in the
space L?(£) over some space of homogeneous type Q has an Rs-bounded H>-calculus in the
spaces LP(Q) for all s,p € (po, p1), if the semigroup T satisfies a certain kind of weighted py — p1
estimates, which are also referred to as off-diagonal or generalized Gaussian estimates. Thus we
generalize a theorem by Sonke Blunck and Peer Kunstmann from [BK03], where it is shown that
under similar conditions the operator A has a bounded H®-calculus in the spaces LP(Q2) for all
p € (po,p1). As an application we will show that wide classes of differential operators, cover-
ing certain elliptic operators in divergence and non-divergence form and Schrédinger operators
—A+V with appropriate potentials V', have an Rs-bounded H°-calculus, thus are in particular
R s-sectorial, and the associated s-intermediate spaces are well defined for these operators, and
the theory from Section 3.3 can be applied.

We note that for Schrodinger operators with special potentials, a similar concept of generalized
Triebel-Lizorkin spaces is introduced in [OZ06] and [Zh06]. There, the main issue is to show
that the norm in those spaces is independet of the auxiliary function ¢ used in the definition of
the norm. Nevertheless, the definition given there differs from ours and is closer to the original
definition of Triebel-Lizorkin spaces, where auxiliary functions ¢ € C2°(R) are used to define the
norm in those spaces. On the other hand, our concept is more general in the sense that we can
also handle non-selfadjoint sectorial operators with non-real spectrum. Let us also mention that
the case s = 2 in the framework of |[OZ06] and [Zh06] is also covered by [Kr09|, Chapter 4, where
Littlewood-Paley decompositions associated to O-sectorial operators are studied in general. We
give more comments on this topic at the end of Subsection 3.5.2.

Finally, in the last Section 3.6 we will apply the results from Section 3.4 to identify the s-
intermediate spaces associated to certain elliptic operators in non-divergence and in divergence
form. We will show that these spaces coincide with the classical Triebel-Lizorkin spaces F} , for
a certain range of s if the top order coefficients of the differential operators satisfy appropriate
regularity assumptions. In the case of non-divergence form operators this will be a Hdlder-
continuity condition, and in the case of divergence form operators this condition can be weakened
to the assumption that the top order coefficients are bounded and uniformly continuous. So in
particular, operators that satisfy these conditions have a bounded H°°-calculus in the classical
Triebel-Lizorkin spaces. For the case of non-divergence form operators with Holder-continuous
coefficients, such results are already indicated in [ES08] and [DSS09], where even more generally
pseudodifferential operators are considered, but the details in the proof for the case of Triebel-
Lizorkin spaces are left out. We note that our methods are operator theoretical and are totally
different from the approaches in [ES08| and [DSS09|, which are based on pseudodifferential
calculus. Moreover, our results will not only show that the differential operators A, (of order 2m
in X = LP(R%)) we consider have a bounded H>-calculus in classical Triebel-Lizorkin spaces, but
also that the norm equivalences XerAp’q = X5+(_A)m’q and XSJFAP’(] = X5+(_A)m’q ~ Figw hold
for all ¢ € (1,400) and appropriate § and v > 0, i.e. we can express the norm in the classical
Triebel-Lizorkin spaces by the s-power function norms associated to the more general elliptic
operator A, instead of the Laplacian. These representations of the classical Triebel-Lizorkin



INTRODUCTION 8

spaces are new. The corresponding results for divergence operators are entirely new.
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Chapter 1

Notations and Preliminaries

1.1 Notations

We introduce some notations. For any set X, we denote the power set of X by Pot(X). If
(X, <) is a partially ordered set and z,y € X, we let x Ay := inf{z,y} and = V y := sup{z,y},
if the latter exist. If X,Y are normed spaces we let £(X,Y’) := Hom(X,Y) be the set of linear
maps from X to Y and denote by L(X,Y) := {T € L(X,Y) | T bounded} the bounded linear
operators from X to Y. We use the notation X’ := L(X,K) for the dual space. For the dual
pairing (X, X’) we will use the notation (z,z') := (z,2")xxx/ = o'(x) if (z,2') € X x X'. If
X,Y are normed spaces with X C Y, or X is canonically identified with a subspace of Y, we
write X — Y if the canonical inclusion map is continuous.

If Q is a set and p is a measure on some og-algebra over {2 we say that (£2, ) is a measure space.
Observe that the underlying o-algebra can be recovered as the domain D(p) of u!, but we will
usually only consider the o-algebra of y-measurable subsets of 2. Let (€2, 1) be a measure space,
E a Banach space and p € [1,400], then we denote the usual Lebesgue-spaces by LP(u, F), or
a little improperly by £P(, E). If it is clear what the underlying measure space (£, u) is we
just write LP(E). The corresponding spaces of equivalence classes modulo the equivalence rela-
tion given by pointwise equality up to a p-nullset are denoted by LP(u, E), LP(Q2, E) or LP(E),
respectively. If p is the counting measure, we will use the notations ¢?(£2, E) or ¢?(E) instead
of LP(Q, E). Finally, if E = K € {R,C} we will usually drop E in the notation and just write
LP(p), LP(2), LP, LP(u), LP(S2), LP, ¢P(Q2) or ¢P, respectively.

Let d € N and E be a Banach space. We will use the common notation of multi-indices, i.e. if
a e N¢ we let 2 =[], 257, 9 := H;-lzl 8;-” and |ao| = 2?21 aj, and for later use we already
introduce the notations D; := 19; and D* := (=i)lo>. If u € LY(R?, E) we define the Fourier

transform of u by

A(E) = (FF)(E) = / e~ f(x) dp for all £ € RY,

Rd

and for u € F(LY(R?, E)) we denote the inverse Fourier transform of u by @ := F~1(u). Let

'and in fact, also the set  can be recovered from p by Q = |J D(u)

9
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Sa(E) be the space of E-valued Schwartz-functions on R? an let S/(E) := L(S,, E) be the space
of E-valued tempered distributions on R?. Then we will extend the notions of Fourier transforms
and e.g. convolution to the space of tempered distributions as usual, cf. e.g. [Am95]| for the
vector-valued version of these standard notions.

Finally, in estimates we will sometimes drop constants and use the relation symbols < and ~.
This is done if we only leave out universal constants (like e.g. natural numbers) or if it is clear
on which other terms the constants depend. To be more concrete we use sometimes the symbols
<wm and = to indicate that the dropped constants depend on the term M.

1.2 The functional calculus for sectorial operators and the H>-
calculus

We give a short introduction to the functional calculus for sectorial operators, for details we refer
to the standard literature as [Ha06] or [KWO04].

Let X be a complex Banach space. For o € (0, 7] we define the open sector
Yo = {2 € C\(~00,0] | |arg(2)| < o},

where arg is the principal branch of the argument-function, and we let ¥y := (0, +00). Moreover
we define %, := X, for all o € [0, 7).

Definition 1.2.1 (Sectorial operator, type of a sectorial operator). Let A : X D D(A) — X
be a linear operator. A is called a sectorial operator of type w € [0, ) if the spectrum o(A) is
contained in the closed sector ¥, and the set of operators {zR(z, A)| 2z € C\E,} is bounded for
all 0 € (w, 7). The infimum w(A) over all such w is called the type of A.

For the remaining section we fix some injective sectorial operator A : X O D(A) — X and
o€ (w(A),n].

For f: X5 — Clet || f|loc,o := sup,eyx, |f(2)|, where we sometimes drop the index o if there is no
risk of confusion. We introduce the algebra H>*(X,) := {f : ¥, — C| f analytic, || f|/cc,c < +00}
of bounded analytic functions on the sector ¥, and the subalgebra H3°(3,) consisting of those
f € H>®(%,) for which there exists an e > 0 with supcy_ ((|2|° V |2]79)[f(2)]) < +o0.

Let w € (w(A), o) and define the path of integration I'y,(¢) := |t|e~ 8"« for all ¢ € R, then
1
o @A) = — V(ANR(A, A) dA (1.2.1)
211 T
defines an algebra homomorphism H§°(X,) — L(X) that is independent of w € (w(A), o) and
only depends on the germ of ¢ on iw( A)

By a standard extension procedure we obtain a functional calculus for all f € H*(X,) and even
for a larger class of holomorphic functions: we define p(\) := A\(1+ )2 for A € C\(—o0,0). Let

B(Ey) ={f:5 —=>Clz—p(2)"f(z) € H°(X,) for some m € N}
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be the algebra of analytic functions on the sector X, that are polynomially bounded at 0 and
0o. Then it is easy to check that p™(A) = p(4A)™ = A™(1 + A)~?™, and p(A) is an injective
operator. Let f € B(X,) and choose m € N such that p™f € H{°(X,), then the operator
(p™f)(A) € L(X) is well defined by the functional calculus described above and we can define

f(A) = (p(A)) "™ (P [)(A).

It can be shown that the definition of f(A) is independent of m € N such that p f € H{*(%,),
and that f — f(A) is an (abstract) functional calculus for A in the sense of [Ha06]|, Chapter 1.3.

As a special class of analytic functions f that still yield a nice representation formula and ensure
that f(A) is bounded we introduce the extended Dunford-Riesz class, which is defined by
E(S,) 1= HE(Sy) @ < >C ©(Is,)c and & = | J E(S,) forany w € [0, 7).

o'>w

1+idy,

It can easily be shown that £(3,) is exactly the algebra of bounded analytic functions on X, that
have finite polynomial limits in 0 and co. Here we say that f has a finite polynomial limit in 0, if
there is an a € C and a > 0 such that f(z) —a = O(|z|*) as z — 0, and a finite polynomial limit
in oo, if the latter is true for f(z~1). In this case, the values f(0), f(oco) € C are well defined.
Moreover, by the mean value theorem, bounded holomorphic functions on >, that are either
decaying to 0 or holomorphic in a neighborhood of 0 and oo, respectively, belong to the class
E(Xs). For f e E(Xy) let p 1= f — %dfz(oo) — f(00) 1y, be the corresponding Hg°-function,
then it is easily checked that ’

F(A) = o(A) + (f(0) = f(00)) (L +A) ™" + f(o0) idx .
For details we refer to [Ha06|, Section 2.2.
From now on we assume additionally that the operator A has dense domain and range?. Actually,
this is not much loss of generality in our situation, because our main examples will be in reflexive
spaces, and in this case sectorial operators always have dense domain, and they are injective
if and only if they have dense range, cf. [Ha06|, Proposition 2.1.1. An important issue in this

context is the so-called Convergence Lemma, which we state in the following version, cf. [Ha06],
Proposition 5.1.4.

Proposition 1.2.2 (Convergence Lemma). Let (fy)nen € (H®(Xo))N be a sequence such that
the following assertions hold:

(i) The pointwise limit fo(z) := limy, o0 fn(z) exists for all z € X,
(it) suppen [ fnlloo,e < +o0,

(iii) fn(A) € L(X) for alln € N and M := sup, ey || fn(A)] < 400.

2Observe that the density of R(A) already implies that A is injective by the sectoriality condition, cf. [Ha06],
Proposition 2.1.1.
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Then fo € H*®(3,) and fo(A) € L(X) with ||fo(A)|| < M. Moreover, f,(A)x — fo(A)x if
n — oo foralx e X.

We can now turn to the important notion of a bounded H°-calculus.

Definition 1.2.3 (Bounded H*-calculus). Let o € (w(A), w]. The operator A is said to have a
bounded H*® (%, )-calculus if

Mg=(A) == sup{[[f (A | f € H*(Xo), [ flloo,e <1} < +o0.

Moreover, wge(A) := inf{o € (w(A),n] | MX(A) < +oo} is called the H®-type of A. If A
has a bounded H*(X,)-calculus for some o > w(A), we also just say that A has a bounded

H®-calculus.

The following characterization is an easy consequence of the convergence lemma and the closed
graph theorem, cf. e.g. [KW04|, Remark 9.11 and [Ha06|, Proposition 5.3.4.

Remark 1.2.4. The operator A has a bounded H* (%, )-calculus if and only if there is a C' > 0
such that

le(Al < Cllgllcos  for all ¢ € Hg*(30),

and in this case M°(A) < C.

1.3 ‘R-sectorial operators and the operator-valued H“-calculus

It has been shown in [KWO01-a| that a bounded H*-calculus can be extended to an operator-
valued H*°-calculus for operator-valued functions with an R-bounded range. Moreover, under
an additional geometric assumption on the underlying Banach space this can be even extended
to the stronger notion of an R-bounded H°-calculus. We will use these tools frequently in this
work, where we also are interested in controlling the involved constants, hence we will present a
slightly more general version of the corresponding results from [KWO01-a] and [KW04]. We will
also introduce the notion of R-sectorial operators.

Let X,Y be complex Banach spaces. Let (7;);en be a Rademacher-sequence, i.e. a sequence of
independent symmetric +1-valued random variables on some probability space (2, P), and let
E denote the expectation with respect to the corresponding probability measure P. A standard
example are the Rademacher functions 7;(t) := sgn(sin(2’/nt)) for all ¢t € [0,1],5 € N on the
probability space [0, 1] endowed with the usual Lebesgue-measure. Observe that for any Banach
space E and p € [1,+00) the expressions

n P 1/p 1 n p 1/p
(E’ZT’]'@.%']“E> = <2n Z HZU]HJJHE) (1.3.2)
J=1 oe{-1,1}» j=1

for z € E™,n € N do not depend on the special choice of the Rademacher-sequence (7;);en.
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Definition 1.3.1 (R-boundedness). A set 7 C L(X,Y) is called R-bounded if there exists a
constant C' € Ry such that foralln e NN T € 7" and z € X™:

n n
E‘z;rj(@ﬂxj‘XSCE‘Z;Tj@xj‘X. (133)
J= J=

In this case, the infimum over all such constants C' > 0 is denoted by R(7) and called the
R-bound of 7.

A detailed exposition of the notion of R-boundedness can be found e.g. in [CAPSWO00] or in
[KWO04], Section 2.

Definition 1.3.2 (R-sectorial operator, R-type of an R-sectorial operator). Let A : X D
D(A) — X be a linear operator. A is called an R-sectorial operator of R-type w € [0, 7) if the
spectrum o (A) is contained in the closed sector X, and the set of operators {zR(z, A) |z € C\X,}
is R-bounded for all o € (w, 7). The infimum wgr(A) over all such w is called the R-type of A.
In this case we define

Mg o(A) :=R({zR(z,A), AR(z, A) | z € C\Z,})

for all o € (wr(A), 7). Observe that this set is indeed also R-bounded, since
AR(z,A) = 2R(z,A) —idx for all z € C\%,,

hence Mg ,(A) < R({zR(z,A) | z € C\E,}) + 1 < 2Mg ,(A).

We will now turn to the notion of the operator-valued H°-calculus as presented e.g. in [KWO01-a]
or [KW04]|, Chapter 12. Let A C L(X) denote the subalgebra of all bounded operators that
commute with resolvents of A. Then we define

RH™>(X,,A) :={F : X, — A| F is analytic and F(X,) is R-bounded}.

For each F' € RH*(%,, A) we define the norm || F||gpg~ » := R(F(2,)). By RH{®(2,,.A) we de-
note the subspace of functions F' € RH*(%,, A) such that sup,cy,_ ((|2[°V[2]79)||F(2)]]) < +o0
for some ¢ > 0.

Then it can be shown that in the same manner as for scalar-valued analytic functions the mapping

21

1
P b /m FO)R(\, A) dA

is independent of w € (w(A), o) and defines a functional calculus ® 4 : RH(X,) — L(X) for the
operator A. If A has a bounded H* (X, )-calculus, it can be shown that the functional calculus
®4 can be extended to the algebra RH*(X,/) for all o/ > o, cf. [KWO01-a] Theorem 4.4 or
[KW04|, Theorem 12.7. In fact, a careful inspection of the proof of [KWO04]|, Theorem 12.7 shows
the following sharper version covering also the involved constants.
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Theorem 1.3.3. Assume that A has a bounded H*>(X,)-calculus. Then for each w > o there
is a constant Cy, 5 > 0 independent of A such that

Vo' > wVF € RH®(Sp) 1 |F(A)|| < Coo - MP(A) - | Fll iz .

As an application one can show that a bounded H°-calculus of the operator A implies an R-
bounded H*°-calculus and even an R-bounded RH®-calculus (in the sense of Theorem 1.3.5

below), if the Banach space X has the so-called property («) introduced by Pisier in [Pi78|.

Definition 1.3.4 (Property («)). The Banach space X has property («) if there is a constant
Cx > 0 such that for alln € N, a = (Oéjk)}l,k:l e C™" with |aj| < 1 for all j,k € N<,, and
z = ()} _y € X™" we have

EP@P)(TJ ®rE) ® O‘jklec‘x < Cx EP@P‘(TJ ®TE) ® fﬂjk‘X, (1.3.4)

where EP®F denotes the expectation on the probability space (QxQ,P®P).

If we work with the standard Rademacher functions, (1.3.4) can be rewritten as
11
I

There are wide classes of Banach spaces which are known to have property (a). We just refer to

1,1
rj(t)rk(s)ajkmijthds < C’X/O /0

rj(t)rk(s)xijX dt ds. (1.3.5)

Proposition 1.6.22 in Subsection 1.6.3 for the special case of g-concave Banach function spaces,
which is a sufficiently large class of such spaces for this work.

Having this notions at hand, [KWO01-a|, Theorem 5.3 and its Corollary 5.4, or [KW04], Theorem
12.8 and Remark 12.10 show that if X has property («) and A has a bounded H*°-calculus, then
A has also an R-bounded H°-calculus, i.e. the set

{F(A) [ 1 flloo.or <1}

is R-bounded for all 0/ > wye(A). In particular, if X has property («) and A has a bounded
H®-calculus, then A is R-sectorial with wg(A) < wge(A). This assertion is still true under
much weaker assumptions on the Banach space X, cf. [KWO01-a].

In fact, even more is proven: under the same assumptions the operator-valued functional calculus
is R-bounded, and again, a careful inspection of the proofs yields the following theorem.

Theorem 1.3.5. Assume that X has property (o) and A has a bounded H*™ (X, )-calculus. Then
for each w > o there is a constant C, » > 0 independent of A such that for all T C L(X) the
following holds:

Vo' >w : R{F(A)|F € RH®(X,,A),F(S,) CT}) < Cuo- M3(A)-R(T). (1.3.6)

If o/ > w we can consider H>(%,) as a subspace of RH*(%,,, A) by the injection f — (f|s,)®
idx. Then for each subset F C H*>(X,) we have R(Ufe}-f(Ew)) < 2supser || flloow by
Kahane’s contraction principle, hence we obtain the following special case of Theorem 1.3.5 (cf.
also [KWO04], Theorem 12.8 and Remark 12.10).
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Corollary 1.3.6. Assume that X has property (o) and A has a bounded H*(X,)-calculus. Then
for each w > o there is a constant C, » > 0 independent of A such that the following holds:

Vo' 2wV F CH*(Sx) : RU{f(A)|f€F}) < Cuo M7(A) - sup | flloo-
feF

In particular, A is R-sectorial with wgr(A) < o, and for each w > o there is a constant 5’w7g >0
independent of A such that the following holds:

VO'/ Z W MR,O”(A) S Cw,o‘ : MOO(A)

(e

1.4 UMD spaces and the operator-valued Mikhlin Theorem

In this work we will often use the operator-valued version of the Mikhlin Multiplier Theorem in
UMD-spaces, which in the version on the real line is due to Lutz Weis, [We01b|. We will also
use versions of this theorem in the space RY, which are presented in [KW04] or [SW07], cf. also
[HHNO02|. Beside the concept of UMD-spaces, which is briefly described in this section, we will
also need the notion of R-boundedness and the property («) for Banach spaces, which have been

introduced in the preceding section.

Let E, F be complex Banach spaces, p € (1,+00) and d € N.

Definition 1.4.1. Let m € L™®(R? L(E, F)). Then the operator
T : Sa(E) — Sq(F),u — f_l(m - Fu)

is called the Fourier multiplier operator associated to m. The function m is called an LP-Fourier-
multiplier if T,,(S4(E)) C LP(F') and there is a constant C}, > 0 such that ||T,ull, < Cp|lull,
for all u € S4(E).

In this case, T, can be extended to a bounded operator LP(E) — LP(F'), which we will also
denote by T},.

An elementary multiplier operator on the real line is given by the function m := —isgn. The
associated Fourier multiplier operator is called the Hilbert transform on E. Indeed, the bound-
edness of the Hilbert transform on LP(FE) is sufficient for the boundedness of a large class of
multiplier operators. We have the following concrete representation of the Hilbert transform, cf.
e.g. |[Am95|, Section I11.4.3.

Definition /Proposition 1.4.2 (Hilbert-transform). The vector-valued Hilbert-Transform Hp :
S(E) — S'(E) on FE is the Fourier multiplier operator associated to the function —isgn. For all
f € S(F) it is given by

Hef(x) = lim 1 flz—y)

dy for all x € R.
NOT Jyze Y
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We are now in position to give the definition of an UMD-space. We will present the original
definition involving vector-valued martingales - indeed, the notation UMD-space originates in the
term Unconditionality of Martingal Differences - as well as the characterizations in a geometric
manner on the one hand and in terms of boundedness of the vector valued Hilbert transform on
the other hand. Hence we will first present the following expansive characterization result for the
property UMD that will be defined subsequently. The proof can be found in the papers [Bu81],
[Bu83| and [Bo83|.

Theorem 1.4.3. Let p € (1,400). Then the following conditions on E are equivalent:

(1) E has the property UMD, i.e.: there exists a constant M, (E) > 0 such that for all E-valued
martingales u = (Up)nen, all € € {—1,1}N and all n € N the following holds:

> (uk — up—1)

k=1

< My(E)-

(= Mp(E) lunlly).

n
> en(up — ug—1)
k=1

where ug := 0.

(2) E is (-convez, i.e.: there exists a symmetric biconvex function ¢ : E x E — R with

¢(0,0) > 0 and

Vo,ye B o <1<yl = ((z,y) <[lz+yl.

(3) E has the property HTp, t.e.: the vector-valued Hilbert-Transform Hg on S(E) can be
extended to a bounded operator on LP(E), in other words: Hg(S(E)) C LP(E), and

30, >0V f € SE) : [[Hefly < Cp I £,

In particular, since (2) does not depend on p € (1 + o0), the properties UMD,, HT,, hold for
some p € (1,400) if and only if they hold for all p € (1,400). The equivalent conditions of
Theorem 1.4.3 lead to the following definition of UMD-spaces.

Definition 1.4.4 (UMD-space). The space F is called an UMD-space if E satisfies the equivalent
conditions (1)-(3) of Theorem 1.4.3.

We give some important examples of UMD-spaces: By Plancherel’s Theorem every Hilbert space
is a UMD-space, and moreover if E is a UMD-space, then also closed subspaces and quotients
of E are UMD-spaces, and LP(u, E) is a UMD-space for all o-finite measure spaces (€2, u) and
p € (1,400), cf. also [Am95], Theorem II1.4.5.2. More information concerning UMD-spaces can
be found e.g. in [Am95]|, Sections II1.4.4 and III.4.5.

We can now cite the operator-valued version of the Mikhlin Multiplier Theorem on R, cf. [We01b],
Theorem 3.4 or [KWO04|, Theorem 3.12.

Theorem 1.4.5. Let E, F be UMD-spaces and m € CY(R\{0}, L(E, F)) satisfy the following
condition:
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The sets My := m(R\{0}) and My := {tm/(t) |t € R\{0}} are R-bounded.

Then m is an LP-Fourier-multiplier, and | Tp|| < Cp (R(M1) V R(M2)) with a constant C, only
depending on E, F and p.

We will next formulate the multi-dimensional version of this theorem, cf. [KW04], Theorems 4.6
and 4.13.

Theorem 1.4.6. Let E, F be UMD-spaces, m € C*(RN\{0}, L(E,F)) and M > 0. Assume that
one of the following conditions is fulfilled:

(1) The set T := {\:E||O‘|3O‘m(az) cz € RN\{0},a < (1,1,...,1)} is R-bounded with R(T;) <
M, or

(2) E and F have property (), and the set T := {z*9*m(z) : z € R\{0},a0 < (1,1,...,1)}
is R-bounded with R(72) < M.

Then m is an LP-Fourier-multiplier, and ||Ty,| < Cp - M with a constant C), only depending on
E F,d and p.

1.5 Interpolation of Banach spaces

We will give a short overview of the theory of interpolation spaces as we will use it in the sequel.
We will restrict ourselves here to some basic definitions and elementary properties. For the proofs
and more detailed expositions we refer to the standard literature, e.g. [BL76], [Lu09] or [Tr78].

1.5.1 Interpolation couples and interpolation functors

Definition 1.5.1. A pair X = (Xj, X1) of Banach spaces is said to be an interpolation couple if
there is a separated topological vector space Z such that Xy, X1 C Z with continuous inclusion.

Let ((Xo, || - 1lo), (X1, - ||1)) be an interpolation couple, then the spaces Xo N X7 and Xo + X1
are well defined as subspaces of Z. Define ||z|~ := ||z|lo + ||z]|1 for each z € Xy N X; and
lzlls := inf{||xollo + [|z1]l1 | (0, z1) € Xo x X1,2 = mo + 1} for each z € Xy + X7, then
(XoN X1, - |ln) and (Xo + X1,] - ||z) are Banach spaces with

XoNXy— X; — Xg+ Xy for j =0,1 with continuous inclusions.

Any Banach space E such that Xo N X; — E — Xy + X7 with continuous inclusions is called
an intermediate space between Xy and Xj.

The interpolation couples form the objects of a category, where the morphisms are bounded
linear operators T': Xo+ X1 — Yo+ Y3 such that T(X;) C Y; and T|x, € L(X},Yj) for j =0, 1,
where (Xo, X1), (Yo, Y1) are interpolation couples, and the composition is the usual composition
of maps.

A functor F from the category of interpolation couples into the category of Banach spaces is
called an interpolation functor, if the following assertions hold:
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(1) F(X) is an intermediate space for all interpolation couples X = (Xp, X1),

(2) F(T) = T|#x) for all interpolation couples X = (Xo, X1),Y = (Yp,Y1) and morphisms
T: X —-Y.

An interpolation functor F is called exact of exponent 6 € [0, 1] if

0 0
1Tl 20 —7v) < 1T Ny 1N =1

for all interpolation couples X = (Xo, X1),Y = (Yo, Y1) and morphisms 7 : X — Y.

We will now turn to a useful tool to determine interpolation spaces of some general interpolation
couple by representing it as a retract of some other interpolation couple, for which the interpo-
lation spaces are already known. Let X,Y be objects in a category, then Y is called a retract of
X if there are morphisms R: X — Y and S : Y — X such that Ro .S = idy. In this situation
R is called a retraction and S a corresponding coretraction.

Proposition 1.5.2 (cf. [Tr78|, 1.2.4 Theorem). Let X = (X, X1),Y = (Yo, Y1) be interpolation
couples such that'Y is a retract of X in the category of interpolation couples of Banach spaces. Let
R: X —Y be a retraction and S :' Y — X a corresponding coretraction. Let F be an arbitrary
interpolation functor. Then F(R) = R|rx) : F(X) — F(Y) is a retraction with corresponding
coretraction F(S). Moreover, SR|r(xy is a projection on a complemented subspace E of F(X)
such that F(S) : F(Y) — E is an isomorphism.

1.5.2 Real interpolation spaces

Let ((Xo, | - llo); (X1, - |l1)) be an interpolation couple. For all ¢t > 0 and z € Xy + X; define
the K-functional

K(t, Z) = mf{onHo + tHl‘lnl | (l’o,l’l) € Xogx X1,z=2x¢+ $1}.

If pe[l,+00] and f: (0,00) — E is Lebesgue-measurable with values in some Banach space E
we let

o0 a7
([Tiron )" itr< o

sup | f(£) 2 if p = 400,
>0

/1

LP = Hf\

LY(E) *=

and we define the spaces
LL(E) := LP((0,00),dt/t, E) := {f : (0,00) — E| f Lebesgue-measurable, || || ;» < +o0o}

(modulo the usual identification of functions that are equal up to a Lebesgue-Nullset). Moreover,
for all 0 € (0,1),p € [1,+00] and z € Xo + X7 let [|2]g, := ||t — t O K (¢, 2)]| .
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Definition 1.5.3 (Real interpolation spaces). Let # € (0,1) and p € [1,400]. Then the real
interpolation space (Xo, X1)g,p is defined as

(XO,Xl)O,p = {:L’ c XO + X1 | ||{L‘

0p < oo},
endowed with the norm || - ||g .

It can be shown that the real interpolation method (-, --)s, defines an exact interpolation functor
of exponent 6, cf. [BL76|, Theorem 3.1.2. In the following proposition we list some elementary
properties of real interpolation spaces.

Proposition 1.5.4 (cf. [BL76], Theorem 3.4.1, [Lu09], Proposition 1.1.4, Corollary 1.1.7). Let
6,0 € (0,1) for j =0,1 and p,q € [1,400].

(1) (Xo,X1)gp = (X1, X0)1-0,4 with equal norms.

(2) Ifp < q, then (Xo, X1)ap — (X0, X1)aq-

(3) If X1 — Xo and 0y < 01, then (Xo, X1)a, p — (X0, X1)g0,q-

(4) There is a constant c¢(0,p) such that ||z|lg, < c(8,p)| =5 Iz||§ for all x € Xo N X;.

We will now turn to the fundamental Reiteration Theorem for the real interpolation method,
where we follow the lines of [Lu09], Chapter 1.3. Let (Xo, X7) be an interpolation couple and FE
an intermediate space.

Definition 1.5.5 (Classes Jy, Ky). Let 6 € [0,1]. E is said to be of class Jp if there is a constant
¢ > 0 such that

lzlle < cllzlld™? 2]l for all z € XoN X;.

In this case we write E € Jy, or E € Jy(Xo, X1) if we want to refer explicitly to the underlying
interpolation couple.

E is said to be of class Ky if there is a constant k > 0 such that
K(t,z) < kt?||z| g for all 2 € E,t > 0.

In this case we write F € Ky, or E € Ky(Xp, X1) if we want to refer explicitly to the underlying
interpolation couple.

We have the following important characterizations in the case 6 € (0, 1).

Proposition 1.5.6. Let § € (0,1). Then E is of class Jy if and only if (Xo, X1)pq — E, and
E is of class Ky if and only if E — (Xo, X1),00-

Theorem 1.5.7 (Reiteration Theorem). Let 0 < 0y < 01 < 1 and 6 € (0,1), and let 6 :=
(1 —10)0g+ 061. Let E; be intermediate spaces between Xo and Xy for j =0,1.

(1) If Ej € Jy,(Xo, X1) for j = 0,1, then (Xo, X1)g,p — (Eo, E1)sp for all p € [1,+00].
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(2) If Ej € Ko, (X0, X1) for j =0,1, then (Eo, E1)5, — (X0, X1)ep for all p € [1,+00].
Consequently, if E; € Jy,(Xo, X1) N Ky, (Xo, X1) for j = 0,1, then
(Eo, E1)sp = (Xo, X1)op
with equivalent norms for all p € [1,+0o0].

At the end of this subsection we consider the interpolation couple (X, D(A%)) for a € C with
Re(a) > 0, where X is a complex Banach space and A : X D D(A) — X is an injective sectorial
operator. In this case the K-functional and hence the real interpolation space (X, D(A®%))g, can
be described in terms of functions of the operator A. This has first been shown in [Ko67], we will
cite a recent version in terms of the functional calculus for sectorial operators given by [Ha06],
Theorem 6.5.3 a) and Corollary 6.5.5.

Theorem 1.5.8. Let A be an injective sectorial operator in a complex Banach space X, a € C
with Re(a)) > 0, 0 € (w(A4),m), 6 € (0,1) and p € [1,400]. Let ¢ € H®(X,;)\{0} such that
2 z700p(2) € HE(S,).

(1) We have
(X, D(A%))op = { € X |t 0ROt A) € L2(X)},

and an equivalent norm on (X, D(A%))g, is given by

—0Rela R ol dt 1/p
2 2]l + ||t = R A)e| oy = 2l + ( /0 [¢=0 R Dot A)z t) :
(2) If additionally A=' € L(X), then also

—0Re(a) =0 Re(a) p dt\'?
7 [t TR () ) = (/0 0B ot A [, t)
defines an equivalent norm on (X, D(A%))g,p-

1.5.3 Complex interpolation spaces and multilinear Stein interpolation

We will now turn to the complex interpolation method. Beside some standard definitions and
properties we will prove a generalized multilinear version of the standard Stein interpolation
method for analytic families of operators in complex interpolation spaces. For notations and
proofs in this subsection we refer to [BL76] and [V092].

Let X = ((Xo, ] - llo), (X1, - [[1)) be an interpolation couple of complex Banach spaces. We
define the strip

S:={z€C]| Re(z) € [0,1]}
and the function space
Fo(X):={f:S — Xo+ X1| f bounded, analytic on S, f(j+i) € Co(R, X;) for j =0,1},
endowed with norm || f|| 7 := sup{[[f(j + it)|; [t € R,j € {0,1}}.
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Definition 1.5.9 (Complex interpolation space). Let 6 € [0,1]. The complex interpolation
space [Xo, X1]p is defined as

[(Xo, Xi]o :={f(0) [ f € Fo(X)},
endowed with the norm x — ||z||p := inf{| f||# | f € Fo(X), f(0) = z}.

It can be shown that the complex interpolation method [, -]y defines an exact interpolation
functor of exponent 0, cf. [BL76] Theorem 4.1.2. In the following proposition we list some
elementary properties of complex interpolation spaces.

Proposition 1.5.10 (cf. [BL76|, Theorems 4.2.1, 4.7.1). Let 6,6, € [0,1] for j =0, 1.
(1) [Xo, X1]o = [ X1, Xo]1—¢ with equal norms.
(2) If € (0,1), then [Xo, Xolo = Xo.
(3) If X1 — Xo and 0y < 01, then [Xo, X1]o, — [Xo, X1]e,-
(4) 1f6 € (0,1), then (Xo, X1)g,1 — [Xo, X1]o — (X0, X1)6,00, €. [Xo, X1]g is of class JoNKy.

We cite the following density property from [Vo92], Corollary 1.2: Let D < Xy N X; be a dense
subspace and define

Fo(X,D) :=lin{z — e’ p(2)x |6 > 0, € A(S),z € D} < Fo(X),
where A(S) denotes the algebra of bounded continuous functions on S, analytic in S. Then

lzllo = inf{|| fl = | f € Fo(X, D), f(6) = x}. (1.5.7)

We are now in position to prove the following multilinear version of the abstract interpolation
[Vo92], Theorem 2.1, which generalizes classical Stein interpolation to the setting of abstract
complex interpolation spaces. In fact, the proof given here is just a combination of the proof of
[Vo92|, Theorem 2.1 with the proof of [BL76] Theorem 4.4.1 about multilinear interpolation.

Theorem 1.5.11. Let m € N and X*®).Y be interpolations pairs (of Banach spaces), and let
Dy, be a dense subspace X(()k) N Xl(k) for each k € N<p,. Let (T'(2)).es be a family of multilinear
m

mappings T(z) : D — Yy + Y7 where D := [] Dy with the following properties:
k=1

(i) For all x € D the function T(-)x : S — Yo+ Y1 is continuous and bounded and analytic on
S,

(11) For allx € D and j € {0,1}, the function t — T(j +it)x € Yj is continuous, and

M; == sup{||T(j + it)z||y; |t € R,z € D with ||lzy|| &) <1 for each k € N<p} < o0.
j
Then, for all 6 € (0,1) we have T(0)D C [Yo, Y1]g, and

Vo e D TO) v, < MM TT lowl o0 oo, (15.8)
k=1
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Proof. Let 6§ € (0,1). W.lo.g. we may assume My = M; = 1, otherwise replacing T' by
2 MEIMET(2). If fr € Fo(X®), Dy) for each k € Ne,y,, we clearly have

(2= T(2)(f1(2), - -, fm(2))) € Fo(Y),

and this immediately implies T(0)D C [Yp, Yi]g. Now let € D. If f, € Fo(X®), D) with
fr(0) = xy, for each k € N<,;,, we obtain

ITO)llvo,v110 < NTCC)s o5 Fn ()l 7oy H L3l 7 ey

and taking the infimum on the right hand side we obtain the required estimate by the density
result (1.5.7). O

1.6 Banach function spaces

1.6.1 Definition and elementary properties

For this chapter we refer to the standard references |[BS88] Chapter 1 and [Za67| Chapter 15.
Let (£2, 1) be a o-finite measure space. We fix a p-localizing sequence (Qp,)nen, 1.€. an increasing
sequence of p-measurable subsets such that p(€2,) < 400 for all n € N and [ J,cy Q2 = Q. A
p-measurable subset M C  will be called (,,)nen-bounded if M\, is a p-nullset for some
n € N. We will use the terminology that a property for a u-measurable function f on  holds
() nen-locally if it holds for f|ps for all (Q,),en-bounded sets M. In particular we introduce
the following notation:

If f,, : Q@ — K,n € Ny are p-measurable functions, we say that f,, — fo converges (Qp)nen-locally
in measure for n — oo if f,|ar — folar in measure for n — oo for all (Q,),en-bounded sets M,

ie.
p({w € M | |fo(w) — folw)| > e}) =370 for all (,)nen-bounded sets M,e > 0.

We denote by M*(Q,u) := M*(u) the class of p-measurable extended scalar-valued (real
or complex) functions on Q, by M(Q,u) := M(u) the space of p-measurable scalar-valued
functions on €, endowed with the topology of (€,)nen-local convergence in measure, and by
MF(Q, ) := M™ (1) the cone of u-measurable functions on  with values in [0, +0c]. Further-
more let M (Q, p) := M(p) == {[f]u| f € M(p)} denote the corresponding space of equivalence-
classes of functions by the equivalence relation given by pointwise equality up to a p-nullset,
analogously M*(2, ) := M*(u) and M (Q, u) := M+ (). Moreover we define the spaces

Lh.(Qu) = {feM)| flu € L (M) for all (Q,),en-bounded sets M}, and
LEQp) = {fe€ L) | supp [ is (Qn)nen-bounded},

of locally integrable functions and essentially bounded functions with bounded support, respec-
tively. The corresponding spaces of equivalence-classes modulo the relation of pointwise equality
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1
loc

will be endowed with the (locally convex) topology of convergence on (£2,),en-bounded sets.

(9, 1) and L(Q, u1), respectively. The space L (€, i)

loc

up to a p-nullset will be notated as L

Finally let S(Q, ) := {f € £2°(Q) | £(2) is finite} be the space of step functions with bounded
support. All these spaces depend of course in general on the special choice of the underlying p-
localizing sequence (€2, )nen. Nevertheless we will suppress the explicit notation of the sequence
() nen in the sequel but keep it in mind.

Definition 1.6.1 (Banach function norm, Banach function space (B.f.s.)). A map p: M*(u) —
[0, +00] is called a Banach function norm, if for all f, g, f, € M™(u),n € N, all constants a > 0
and all y-measurable subsets M of 2 the following properties hold:

(B1) p(f) =0 <= f=0pae.,plaf)=ap(f)and p(f+g) < p(f)+p(g) (norm properties),
(B2) 0<g < f pae = plg) < p(f) (monotonicity),

(B3) 0< fo /' f prace. = p(fn) /" p(f) (Fatou property),

(B4) M bounded = p(1y) < +o0,

(B5) M bounded = [, f du < Carp(f), where Cyy > 0 is a constant independent of f.

If p: MT (1) — [0, +00] is a Banach function norm, let X (p) := {f € M*(u) | p(|f]) < 400} and
X = X(p) = {[flu| f € X} Then [f], — ||[flullx := p(|f]) defines a norm on X that turns X
into a Banach space, and (X, || - ||x) is called a Banach function space.

(2, ) by (B5), and (B3) im-
plies that appropriate versions of the classical Fatou Lemma and monotone convergence theorem
hold in X, for a detailed exposition cf. [BS88|, Chapter 1.1.

It is an immediate consequence of the definition that X (p) — L},

Observe that our definition of a Banach function spaces is a little more general than the one
given in [BS88| since conditions (B4), (B5) need only to hold on bounded sets in the sense as
discussed at the beginning. In [BS88| conditions (B4), (B5) are formulated for the collections
of all p-measurable sets M of finite measure. Nevertheless, the proofs given in [BS88| also work
in our situation, hence we will usually cite |[BS88| as our standard reference. In |Za67| a more

general notion of Banach function spaces, which are called Kéthe spaces there, are considered.

Before going further we cite the most important examples of Banach function spaces in our
sense. Observe that in (a)-(c) the p-localizing sequence (£2,,)nen can be chosen arbitrarily and
will always lead to the same spaces. In fact, these classes of examples are also covered by the
definition in [BS88]. We will see that the situation is different in example (d).

(a) LP-spaces. Let p € [1,40c], then the usual LP-space X = LP(Q,u) is a Banach func-
1/
tion spaces with the Banach function norm p,(f) := (fQ fP d,u) : if p < 400 and pp(f) =
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ess sup,,cq f(w) if p = +oo for all f € M™T(u), where ess sup denotes the essential supremum
with respect to the measure . More generally, let w : Q@ — [0, +00) be a weight function such

1/
that {w # 0} is a p-nullset, then pp.,(f) = (fﬂ fPw d,u) : (with the same identification as
above if p = +00) defines a Banach function norm, and the corresponding Banach function space
is the weighted LP-space X = LP(QQ, wdpu).

(b) Lorentz spaces. For f € M(, ) we define the distribution function d¢(X) := p({|f| > A})
for all A > 0, the decreasing rearrangement f* of f by f*(t) := inf{A > 0 | df(\) < t} and the
maximal function of f* as f**(t) := % f(f f*(s)ds for all t > 0. Let p,q € [1,+00] and define

i : Sq=p 00,
— o0 1/
ph(f) </ (17 (1)) ‘ff) " <p<q<+oo,
0

ess SUpPysq (tl/pf** (t)) fl<p<g=+o0

for all f € M*(u), then p§ is a Banach function norm, cf. [BS88] Theorem 11.4.3, 11.4.6. The
corresponding Banach function spaces LP4(Q, u) := X (ph) are the Lorentz spaces.

(c) Orlicz spaces. We use the definition from [BS88|, Chapter IV.8. Let ¢ : [0,4+00) — [0, 4+00]
be increasing and left-continuous with ¢(0) = 0 such that ¢(s) € (0, +o00) for some s > 0. Then
the function

®: [0, +00) — [0, +00),t — /0 o(s)ds

is said to be a Young’s function®. Define the corresponding Luzemburg norm

pas(f) ::inf{c>0 : /Q<1>(f(“)) dp(w) < 1}

C

for all f € M™(u) then pg is a Banach function norm, cf. [BS88] Theorem IV.8.9. The corre-
sponding Banach functions spaces L® (2, 1) := X (pg) are the Orlicz spaces.

(d) Mixed spaces LPLY. Let (J,v) be another o-finite measure space with v-localizing sequence
(Jn)nen. Let p,q € [1,400] and define

p/q 1/p
(/ </ flw,t)d du(t)) du(w)) if 1 <p,q<—+o0,
Q
! P 1/p
P(f) = </§2<esssuptejf(w,t)> du) if 1 <p<gq=+o0,
AV
1/q
€ss SUP,,cn (/ flw,t)? du(t)) if 1 <qg<p=-+o0,
J
L ess Supyeq e f(w,t) ifp=q=+oc0

3Note that in the literature the exact definition of a Young’s function might differ in some details from the
one given here; we have chosen a definition that is suitable to provide the desired property of a Banach function
space.
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for all f € MT(n®v), then p, 4 is a Banach function norm if we choose (Qy, X J, )nen as a u® v-
localizing sequence. The corresponding Banach function spaces LPLI(Q x J,u @ v) := X(ppq)
are the mized LP(L?)-spaces.

In contrast to the examples (a)-(c) the mixed spaces do substantially depend on the chosen
1 ® v-localizing sequence that defines the bounded subsets:

Consider the space L' L2(R x R) endowed with the usual Lebesgue-measure, which we will simply

notate as | - |. Let My := J,cn[n — 1,n) x [0,1/n?), then

1
My =) = 1n)] - [[0,1/n)] = 3 —5 < +oo,
neN neN
but
(RSY IRV Z I Dpmrm) N2 - [ Lo, /m2) 22 = Z 1/n = +oo,
neN neN

hence (B4) would not be satisfied if we choose a localizing sequence that contains M.

If X is a Banach function space, the following inclusions hold: S(€Q, u) < X < M(u), where the
second inclusion is continuous ([BS88|, Theorem 1.4). This implies e.g. the property, that each
convergent sequence f € X contains a subsequence that converges p-a.e., cf. [BS88|, Theorem
[.1.7 (vi). One can also show that X is a complete lattice, to be more precise:

Proposition 1.6.2. Let X be a Banach function space. Then X is a complete sub-lattice of
M*(p), and to every F' C X there is a countable subset Fy € F' such that sup F' = sup Fyp.

This can be proven in the same manner as in the case X = LP as it is done in [DS58] Cor.
IV.11.7, cf. also [Me-Ni91|, Lemma 2.6.1 and the following discussion.

We will usually also need the following additional property:

(B6) If f € X and (M,)nen is a decreasing sequence of pu-measurable sets with 1,7, — 0 p-a.e.,
then ||f 1z, ||x — 0 for n — oo (absolute continuity).

A Banach function space that fulfills (B1)-(B6) will be called a Banach function space with
absolute continuous norm. Observe that (B6) implies that the space of step functions S(€2, u1)
as introduced above is dense in X, cf. [BS88|, Theorem I1.3.11. Moreover, property (B6) is
equivalent to the o-order-continuity of the lattice X, i.e.

V (Tn)nen € XN (l‘n N\, 0 for n — oo) = inlt;l |z = 0,
ne

and to the validity of Lebesgue’s theorem, compare [BS88| Propositions 3.5,3.6.
In fact, the property (B6) implies also a version of Vitali’s convergence theorem for X. For the

following we assume that X has absolute continuous norm. We will need the following lemma,
which can also be found in [BS88|, Lemma 1.3.4.
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Lemma 1.6.3. Let M C Q be a bounded set. Then, to each € > 0 there is a § > 0 such that for
all p-measurable A C M we have

WA) <8 = || 1allx <e.

Proof. Assume that the claim is false, then there is an ¢ > 0 and a sequence (A4, )nen of u-
measurable subsets of M such that p(A4,) <27 and || 14, |[x > € for all n € N. Then

/Z]lAn dM:Z/]lAn du:Zu(An)<—|—oo
Qn:l n=1 Q n=1

n ‘

[e.°]

by the monotone convergence theorem, so we have > 14, € £(Q) and hence in particular
n=1

14, — 0 p-a.e. for n — oo. Since x := 1y € X, the absolute continuity leads to the contradic-

tion

e< |14, llx =lz-14,]x =0 forn— .

Lemma 1.6.4. Let x € X.
(1) Ve > 03 M p-mb., bounded: ||z 1o\ [x <€,
(2) Ve >035>0VAu-mb. : p(Ad) <d=|zla|x <e.

Proof. Let € > 0.

(1) Recall that Q = |J €, where Q,, are y-measurable sets of finite measure with Q,, C Q41
neN
for all n € N. Hence 1g\q, — 0 p-a.e. for n — oo which implies ||z 1g\q, x — 0 for n — oo,

so we can choose M := 2, for a suitable large n.

(2) Choose M C Q according to (1) with £/3 in place of e. W.l.o.g we can assume that > 0.
Let x,, := z An for all n € N, then z,, — x in X for n — oo by the Fatou property, hence we can
choose n € N such that ||z, — z||x < /3. According to Lemma 1.6.3 we can now choose 6 > 0
such that for all u-measurable A C M we have

9
A 1 —.
pA) <8 [ Talx < o

Now let A C Q be p-measurable with p(A) < 6, then in particular (A N M) < 4, hence

lzlallx < llzlanm |x + |2 Lo lx < (@ —20) Lanm I x + |20 Lana Ix + llz Lavar [l x

IN

|2 — znllx + 0l Tanm [[x + Iz Towar |l x <e.

O]

Proposition 1.6.5. Let x,x, € X for alln € N. Then the following assertions are equivalent:
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(1) xp — x in X for n — oo,

(2) (a) x, — x locally in measure,
(b) Ve > 03 M p-mb., bounded: sup,ey [[Tn Loy llx <e,
(¢) Ve>030 >0VAu-mb. : u(A) <dé=sup|lz,lalx <e.
neN

Proof. (1)=(2): Assume (1), then we have already noted that (a) holds. For each y-mb. B C Q
and n € N we have

lzn 1 llx < (zn —2) 1p|lx +|z1B|x < |lzn —2|lx + |z 15X,

hence (b) and (c) follow easily with Lemma 1.6.4 applied to x and finitely many of the x,,’s for
fixed € > 0.

(2)=-(1): We assume first that instead of (a) we even have p-a.e. convergence x,, — x for n — oo.
Let € > 0, then choose M C Q and § > 0 according to (b) and (c) for €/5 in place of €. By the
Fatou property we than also have

|z Tovar |x < liminf (|2, Tow llx <e/5  and [z 14| x <liminf ||z, 14(x <e/5 (1.6.9)
n—00 n—00

for all p-measurable A with u(A) < §. By Egoroff’s theorem we can choose a p-mb. B C M
with p(M\B) < ¢ such that (z, —x) 1p — 0 uniformly for n — oo. Then B is also bounded,
hence we can choose ng € N such that ||(z, — ) 1B || - || LB ||x < /5 for all n > ng, hence

len —zlx < (@0 —2) g |x + (20 — 2) Tanp I x + (20 — 2) Lo [ x

IN

[(zn —2) 1B |leo - | 1B | x + |70 Lang Ix + 2 Tans | x + |20 Tovar 1 x
+lz Tovar llx
< e&.

Now we consider the general case where only (a) holds. Let (y,)nen be a subsequence of (z,)nen,
then by standard arguments of measure theory we can choose a subsequence (yn(k))kGN that
converges p-a.e. to x and has of course also properties (b) and (c), hence y,;) — 2 in X for
k — oo by what we have already proved. O

Corollary 1.6.6. Let x,y,xn,y, € X for all n € N such that
(1) x,, — x locally in measure for n — oo,
(2) |xn| < yn for alln € N,
(3) yn — y in X for n — oo.

Then x, — x in X for n — oo.

Proof. Apply Proposition 1.6.5 (1)=-(2) for (y»)nen and y, then the conditions (b) and (c) carry
over to (zn)nen and x, hence 1.6.5 (2)=-(1) yields the assertion. O
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Now let ' be a Banach space, where we always assume that E is non-trivial. We define the
FE-valued extension of the function space X as

X(E) :={FeME,E)||F|peX},

where the modulus is defined as |F|g := ||[F(-)||g for some representative F of F. Letting
| Fl|x gy == II|F|e | x makes X(E) a Banach space (cf. [Ca64]). If in addition X has absolute
continuous norm, then the space of step functions S(2, i) is dense in X (cf. the remark made
after introducing the property (B6)), hence X ® F is dense in X (F) in this case.

Assume now that X has absolute continuous norm and F is in addition a Banach function space
over some o-finite measure space (J,v) with corresponding v-localizing sequence (J,)nen, and
E has also absolute continuous norm. Then the natural embeddings and identification

X(E) < M(Q, E) — M(Q, M(.J)) = M(Q x J)

together with the density of the space of step functions show that X(E) can be identified
with a subspace XE — M(Q x J), where for each x € M(Q x J) the norm is given by
|zl xe == |l|z(")|el|x and T € M (2, M(J)) corresponds to x € M (2 x J).

In this case we will call XE a mized Banach function space. Observe that properties (B1)-(B3)
for X FE follow easily from the corresponding properties of X, F, hence X E is a Banach lattice
and has the Fatou property. Moreover, the sequence (2, X Jp,)nen is p ® v-localizing, and with
respect to this sequence properties (B4),(B5) for X E are an easy consequence of the correspond-
ing properties for X and E. We will assume that the mixed space X FE is endowed with the
u ® v-localizing sequence (€2, X Jp)nen, then X E' is again a Banach function space. Finally it is
easily shown that the absolute continuity of the norm in both spaces X, E implies that also the
mixed Banach function space X E has absolute continuous norm.

Observe that the construction of the space X (FE) works for real and complex Banach spaces E
and thus makes X (F) to a real or complex Banach space, respectively. In particular, the space
X(C) is well-defined. We will call the space X(C) a complex Banach function space. We note
that this notion of complex Banach function spaces is consistent with the abstract concepts of
complexification of real Banach spaces and real Banach lattices as described in [Me-Ni91| Chap-
ter II, §11 or [Sc74] Chapter 2.2. In the sequel we will just say that the space X is a complex
Banach function space having in mind that X = X (C) for some (real) Banach function space
X. In this case, properties as (B6) for X are always understood as X having this property, and
X(F) denotes the space X (E) for any Banach space E.

We will encounter X (E)-valued integrable functions, for which we need the following proposition,
that is well known for X = LP(Q, u), cf. [DS58], Chapter III.11:

Proposition 1.6.7. Assume that X has absolute continuous norm. Let (J,v) be a o-finite
measure-space and F : J — X (E) be an integrable function. Then there exists a v® p-measurable
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function f:J x Q — E with [f(t,-)], = F(t) for v-a.e. t € J such that f(-,w) is integrable for
u-a.e. w € Q) and the mapping

wr—»/f(t,w) dv(t)
J

is a representative of [, F(t)dv(t).

We only want to give a sketch of the proof: If 1(£2) < 400, then we have a continuous embedding
L: X(E) — LYQ,u,E),s0to0F :J— LYQ,u, E) is integrable and we can use the standard
theory for this situation, cf. [DS58|, Lemma II1.11.16. The general case where (€, 1) is o-finite
can be reduced to the latter case by choosing a sequence (M), € N of disjoint u-measurable
sets of finite measure and decompose F' by the functions t +— F'(t)|as,. This procedure can be
made precise in exactly the same way as in the proof of Thm. III.11.17 in [DS58|, where one
simply replaces the spaces LP(€2, u) by the general B.f.s X.

In the situation of Proposition 1.6.7 one obviously has that | f|g has the corresponding property
for |F'|x(p), hence we obtain a pointwise version of the triangle inequality for the integral:

| [ Foyavo], < [1reolea = [ P00, (1.6.10)

Finally we remark the standard fact, that if U C Cisopen and F' : U — X (F) is analytic, one can
choose a version of F' with analytic paths, i.e., there is a measurable function f : U x ) — E such
that f(-,w) is analytic for a.e. w € Q, and for all z € U and k € N we have [95 f (2, )], = F¥)(2).
This result goes back to Stein, cf. [St70], III.2 Lemma, a detailed exposition for X = LP can be
found in [DH02|, and the proof given there can easily be modified to work in our situation in
the same way as it was already indicated above (i.e. since X locally embeds into L'). Indeed,
in the situation of Proposition 1.6.7 we will usually have analytic functions F', so we can choose
the analytic version f such that the claim in Proposition 1.6.7 holds for this version.

1.6.2 Duality in Banach function spaces

We will now give a short summary of duality theory for Banach function spaces as we will use it.

Definition/Proposition 1.6.8 (cf. |BS88|, Theorem 2.2). Let p : M*(u) — [0, +oc] be a

Banach function norm. Then
#(g) := sup { [ saai| £ € M¥ o) < 1} for all g € M ()

is called the associated norm p’. Then p’ is again a Banach function norm, and the space
X# = X(p ) is called the associated space of X. In the literature, this space is also often
denoted as the Kdthe dual of X.

Observe that the norm in the associated space X7 is given by

fellxe =sup{ [ \falda | £€ X,1flx <1} forang  x#,
Q

We have the validity of the following generalization of Holder’s inequality.
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Proposition 1.6.9 (Holder’s inequality, cf. [BS88|, Theorem 2.4). Let X be a Banach function
space with associated space X#. If f € X and g € X#, then fg is integrable and

Llﬂfgh#LSHfHXHng#-

This leads to the following dual representation of the norm in X# (cf. [BS88|, Lemma 2.8):

||$||X#:sup{‘/fgdp‘ : f€X,||f||X§1} for all g € X7, (1.6.11)
Q

Up to now we have only X# < X’ by the canonical isometric embedding g — fQ g - du, and it
can easily be shown that X# can be canonically isometrically identified with a norming subspace

of X’ (cf. [BS88|, Theorem 2.9). We will have a closer look on the question when X# = X’ and
the relation to reflexivity of X.

Theorem 1.6.10 (cf. [BS88], Corollaries 4.3 and 4.4). Let X be a Banach function space with
associated space X#.

(1) The dual space X' is canonically isometrically isomorphic to X# if and only if X has
absolute continuous norm.

(2) X is reflexive if and only if both spaces X and X# have absolute continuous norm.

So if X is a Banach function space with absolute continuous norm, we will always identify the
dual space X’ with the associated space X7, which in turn will also be denoted by X'.

We will now turn to vector-valued Banach function spaces. Let X be a Banach function space
with absolute continuous norm and E be a Banach space. Then it is clear that X'(E') — (X(E))
canonically by the dual pairing

W£umx@w=4wmmammgwwx

and approximation with step functions shows easily that X’(E’) can be canonically isometrically
identified with a norming subspace of (X (F))’. Recall that the Banach space F is said to have
the Radon-Nikodym property (RNP) if one, respectively all of the following equivalent conditions
hold:*

(1) For every finite measure space (.J, 3, v) and for every v-continuous vector measure m : ¥ —
E of bounded variation there exists G € L!(J, v, X) such that

m(A):/AGdu for all A € 3.

“Note that (1) is the usual definition as given in [DU77], and the equivalences are shown in [DU77], Chapter
IV.3 and Corollary V.3.8.
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(2) For every continuous vector measure m : B([0,1]) — E of bounded variation there exists
G € L'([0,1], X) such that

m(A) = /AG(t) dt  for all A € B([0,1]),

where B([0, 1]) is the Borel-o-algebra and dt the usual Lebesgue-measure on [0, 1].
(3) Every function F': [0,1] — E of bounded variation is differentiable a.e..

(4) Every absolutely continuous function F': [0,1] — E of bounded variation is differentiable

a.e..
We have the following important standard classes of spaces that have (RNP).
Proposition 1.6.11. Let E be a Banach space, then E has (RNP) if
(1) E is separable and E = F' for some Banach space F, or
(2) E is reflexive.
For the proof cf. [DU77|, Theorem II1.3.1 and Corollary II1.3.4. Part (1) of Proposition 1.6.11

is also referred to as the Dunford-Pettis Theorem.

We can turn to the central theorem of this subsection.

Theorem 1.6.12 (cf. [GU72| Theorem 3.2, Corollary 3.4). Let X be a Banach function space
with absolute continuous norm and E be a Banach space having (RNP). Then X'(E’) is canon-
ically isometrically isomorphic to (X (FE))'. Moreover, X (FE) is reflexive if and only if X and E
are both reflexive.

Observe that the additional requirements for the corresponding Theorem 3.2 in [GUT2| are
automatically fulfilled in our situation.

1.6.3 p-convexity and ¢-concavity

We present definitions and some basic results about p-convexity and g-concavity in Banach func-
tion spaces. Note that these concepts also make sense in the more general framework of Banach
lattices, but we will only present the results in our special situation as we will use them in the
sequel.

Definition 1.6.13 (p-convex/g-concave). Let X be a Banach function space and p, ¢ € [1,400].
Then X is called p-convez if there is a constant M > 0 such that

- 1/p i 1/p
H (Z |xj|p) HX <M (Z ||xj||§() for all z € X", n € N (1.6.12)
j=1 j=1
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in the case p < +00, and

H :gp |x]|HX <M - ‘sgp |lzjl|x forallze X" neN (1.6.13)
j

<n J <n
in the case p = +oo, respectively. If X is p-convex we define M®)(X) as the infimum over all

constants M such that (1.6.12) (or (1.6.13), respectively) holds. Moreover, X is called g-concave
if there is a constant M > 0 such that

(zn: ||xj||§()1/q <M H (zn: |xj|q)1/qHX for all z € X", n € N (1.6.14)
j=1 j=1

in the case ¢ < 400, and

sup |lzjllx <M H sup |x]|HX forallz € X", neN (1.6.15)
jGNSn jENgn

in the case ¢ = +00, respectively. If X is g-concave we define M, (X) as the infimum over all

constants M such that (1.6.14) (or (1.6.15), respectively) holds.

Let X be an arbitrary Banach function space, n € N and x € X™, then we always have
n n
I3kl = (D2 )
j=1 J=1

and [zi| < supjen_, [#;], hence also supgen_, [zklx < | SUpjen_, ]a:j\HX, so X is always 1-
convex and oo-concave with M (X) = Moy (X) = 1.

We have the following reformulation of p-convexity/g-concavity in terms of embeddings for vector-
valued Banach function spaces: The Banach function space is p-convex (g-concave) if and only if
there is a constant M > 0 such that the identity map i, : £ (X) — X(€5) (jn : X (1) — €L(X))
is bounded with ||i,|| < M (||jn|| < M) for all n € N. Since X has the Fatou property, we obtain
for p € [1,4+00],q € [1,+00):

X is p-convex if and only if the identity map ¢?(X) — X~ induces a bounded map I, : /P(X) —
X (¢P), and in this case M®)(X) = ||I,||. In the same manner X is g-concave if and only if
the identity map X (¢4) — X" induces a bounded map J, : X(¢9) — £4(X), and in this case
Mig)(X) = [|Jq]l-

The above considerations can be found in [LT96] Definition I1.1.d.3 and the following discussions.

The properties p-convex and g-concave are dual in the following sense, which is a special case of
[LT96], Proposition I1.1.d.4:

Proposition 1.6.14. Let X be a Banach function space with absolute continuous norm and
p,q € [1,+00]| with corresponding dual exponents p',q" € [1,+o0], i.e. %—f— % =1 forr € {p,q}.
Then
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(1) X is p-convez if and only if X' is p'-convex, and in this case MP)(X) = M (X7,
(2) X is q-concave if and only if X' is q'-conver, and in this case My (X) = M@ (X").

Moreover we have the following important extension property, which one obtains from [LT96],
Theorem I1.1.f.7 and its preceding remarks:

Proposition 1.6.15. Let X be a Banach function space and p,q € [1,+00].
(1) If X is p-convez, then X is also s-convez for all s € [1,p],
(2) If X is q-concave, then X is also s-concave for all s € [q, +00].

Proposition 1.6.16. Let X be a Banach function space, and assume that X is p-conver and
q-concave for some p,q € (1,4+00). Then X is reflexive.

Proof. By Proposition 1.6.15 we can assume that p < 2 < ¢. Thus Theorem II.1.f.1 from
[LT96] implies that X can be renormed equivalently so that X, endowed with the new norm, is
uniformly convex, hence it is also reflexive, cf. e.g. [LT96] Theorem II.1.e.3. This implies that
also X endowed with the original norm is reflexive. O

Let us now have a look at some examples.

Examples 1.6.17. Let (Q, 1), (J,v) be o-finite measure spaces and p, g € [1, +00].

(a) The space LP(, ) is r-convex for all r € [1,p| and s-concave for all s € [g, +00].

(b) More general let X := LPLI(Q x J,up ® v). Then X is r-convex for all r € [1,p A ¢] and
s-concave for all s € [pV ¢, +0o0].

Example (a) is a trivial consequence of Proposition 1.6.15, and (b) is a special case of the following
general result.

Proposition 1.6.18. Let X, E be Banach function spaces and po,p1,qo,q1 € [1,+00].

(1) If X is po-convex and E is p1-convex, then the mized space X E is r-convex for all r €
[17p0 A p1]7

(2) If X is qo-concave and E is qi-concave, then the mized space XE is s-concave for all
s € [qo V q1, o).

Proof. (1) Let r € [1,po A p1]. By Proposition 1.6.15 both spaces X, E are r-convex, hence

Ik H)(Zw >” = (Sin) ],
< MO(E (Z sl l)
= (T) (Z ||$J||XE>
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for all z € XE",n € N (with the usual modification if » = +00). The claim (2) can be proved
in the same way. O

Finally we want to present a generalization of the Chintschin inequality in g-concave Banach
function space. For this we first recall the classical Chintschin inequality and the Kahane in-
equality.

Let (75)jen be a Rademacher sequence, cf. Section 1.3. Recall that for any Banach space £ and
p € [1,+00) the expressions

<E’irj®a:j‘f;>1/p:< HZJJ:U]H > (1.6.16)
J=1 oe{-1,1}n

for x € E™,n € N do not depend on the special choice of the Rademacher-sequence (7;);en.

We will now turn to two classical inequalities for norm-expressions like (1.6.16).

Theorem 1.6.19 (Chintschin inequality, cf. [LT96] Theorem 1.2.b.3). Let p € [1,+00). Then
there are constants Ay, B, > 0 such that

Ay (i: \aj\z)m < (E‘ zn:@jrj’p> v <B, (i \ajP)m (1.6.17)
=1 j=1 j=1

for all (aj)jen., € C", neN.

Theorem 1.6.20 (Kahane inequality, cf. [LT96] Theorem II.1.e.13). Let p € [1,+00). Then
there is a constant K, > 0 such that for any Banach space X the following inequality holds:

1/p n
E‘Zr]ezaa:j’ < ‘ere@x]( ) SKPE’Z;@@%)X (1.6.18)
J:

for all (zj)jen., € E™, n € N.

This leads to the announced generalizations of the Chintschin inequality in g-concave Banach

function spaces:
Proposition 1.6.21. Let X be a Banach function space and p € [1,+00).
(1) The following estimate holds for all (z;)jen., € X", n € N:

(), = (S menf)

(2) Assume that X is in addition g-concave for some q € [1,+00), then

a(SR) "], = (H S nenf) <o

for all (zj)jen_, € X", n € N with Cp 4 1= K, BgM4)(X).

n

(3 oyf) "

j=1

X
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Proposition 1.6.21 is an easy consequence of the classical Chintschin and Kahane inequality, cf.
|[LT96], Theorem I1.1.d.6 (i).

Finally we mention the following important property of g-concave Banach function spaces, which
is a consequence of Proposition 1.6.21:

Proposition 1.6.22. Let X be a Banach function space that is q-concave for some q € [1,+00),
then X has property («).

1.6.4 Some approximation results

We recall the following well known fact.

Lemma 1.6.23. Let E, F' be Banach spaces, (J, ) a o-finite measure space, S : J — L(E, F)
strongly measurable and x : J — E measurable. Thent — S(t)x(t) defines a measurable mapping
S-x:J—F.

Proof. Since x : J — FE is measurable, we can find a sequence of step function (s,)pen in
S(J) ® E such that s,(t) — z(t) for v-a.e. t € J. For each n € N we obtain a representation

Sp = Z 14, ®ug. Let y,(t) := S(t Z La,(t) Vi), then y, is measurable since the

k=1
mappings S(-)vg are measurable, and since S( ) € L(E,F) we obtain y,(t) — S(t)x(t) for a.e.

t € J using the uniform boundedness principle, hence S - x is measurable as pointwise a.e. limit
of measurable functions. O

We will often deal with convergent sequences of X-valued measurable functions. Then pointwise,
the convergence in X yields a subsequence that converges p-a.e.. We will need a refinement
which states that the choice of the subsequence and nullsets can be done uniformly for the whole
function.

Lemma 1.6.24. Let (J,v) be a o-finite measure space and x,x, : J — X for alln € N be
v-measurable functions with x,(t) — x(t) for v-a.e. t € J. Then one can choose a subsequence
(n,)ken and a (v @ p)-nullset N C J x Q such that

V(tw) € (J X Q\N = 2y, ()(w) — z(t)(w)  for k — oo,

where (t,w) — x(t)(w), zn(t)(w) are any (v @ p)-measurable representatives, i.e. Xy, (-)(-) —
x(-)(-+) converges A ® p-a.e. forn — oco.

Proof. Let y, := x, — x for all n € N. Write Q = |J,,cy Qm, where (€,,,)men is a corresponding
p-localizing sequence. By Egoroff’s Theorem, we can find an increasing sequence (Jy,)men of
measurable subsets of J with finite measure, such that Nj := J\U,,cy Jm is a nullset and
Ynls,, — 0 uniformly, i.e. in the space L*°(J,,, X). Hence, we can choose a subsequence such
that sup;c s, ||y, (£)llx < 27% for all k € N. Now fix m € N. Since the Jj, are increasing, we
obtain

Vk>m : sup [y, ()] x <27
tedm
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Since jp, : X|q,, = L'(Q) is bounded, we have

N N N
(B dpdt = e ()] dppdt <5 [ (1
J, X ndnde = 52 [ [ty @l <371l s o Ol
N

m k=1

< |l D2 sup [l llymg (8)]1x
o tedm

m—1

< Vnl il (D2 500 llgmy @llx + - 27) = G
k=1 t€m k=m

A

Since yn|s,, — 0 uniformly we have in particular sup, ey supsey . |[yn(t)||x < 400, hence G, <

oo
+00. By Beppo-Levi we have / Z |Yn,, (1) dpdt < 4o00. In particular there is a nullset
m X8 1

Nu C T X Qyy, such that for all (t,w) € (Jm X Q) \ Ny we have Z Y, (£)(w)] < 400, hence
k=1
Yn,, (1) (w) — 0 for n — oo.

So N:=(N;yxQ)U U Ny, is a nullset in J x  with the desired property. O]
meN

Furthermore we will need the following approximation property:

Lemma 1.6.25. Let E be a Banach function space over the o-finite measure space (J,v) and
assume that X, E have absolute continuous norm. Let x : J — X be measurable with ||z| x gy <
oo wia the usual identification x € M(J, M(Q)) = M(J x Q) = M(Q, M(J)). Then one can
find a sequence (xn)nen n S(J,v) ® S(Q, u) with the following properties:

1. x, — x pointwise (v @ p)-a.e. on J x Q for n — oo,
2. xp(t) — x(t) in X forn — oo for p-a.e. t € J,
3. liminf ||z, || x ) < 2] x(E)-

n—oo

Proof. We can find sequences (s,)nen, (h)nen € (S(J,v) @ S(€, 1)) such that s,(t) — z(t) in
X for a.e. t € J and s/, — x in X(FE). By choosing a subsequence we can also assume w.l.o.g.
sh(w) = z(w) in E for a.e. w € Q. We now apply Lemma 1.6.24 to both sequences, and by
possibly restricting again to suitable subsequences we can assume w.l.o.g. that also s,,s), — z

pointwise (v ® p)-a.e. on J x .
Let n € N. Then we can find a common partition of rectangular sets
R,; € {I xB|I C J, B C { measurable and bounded}, j=1,...,r,,n € N

for s, s’

P .
n such that s,|g, ; und s;|g, ; are constant. Now we write

sp, = Re(sp)T —Re(s,)” +ilm(s,)t —ilm(s,)”, and
sl = Re(s),)T —Re(s))” +ilm(s,)" —ilm(s])~
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and define z,, by Re(z,,)" := Re(s,)t ARe(s),) ™, Re(z,)™ := Re(s,)” ARe(s),)”, Im(x,)" :=
Im(s,)t AlIm(s))", Im(z,)~ :=Im(s,)~ Alm(s])".

Then each z, is constant on the R, ;,j = 1,...,7,, hence z, € S(J,v) ® S(Q, p), and we
obviously obtain the following properties:

1. x, — x pointwise (v ® p)-a.e. on J x Q for n — oo,
2. |xnlc < Isnlc Alshlc (v @ p)-a.e. on J x Q.

In particular, we have ||, (t)||x < ||sn(t)||x for a.e. t € J, hence z,(t) — z(t) in X for n — oo
by Corollary 1.6.6. Moreover, the Fatou property of X (FE) yields

lim inf [l x(zy) < [l inf fealcllx (e < [Tminf | lellxce) = ] x ).

1.6.5 H-calculus in ¢g-concave Banach function spaces

Let X be a Banach function spaces with absolute continuous norm such that X is g-concave for
some g < +00, and let A be a sectorial operator in X. Then it is well known (at least in the case
X = LP) that A has a bounded H°-calculus if and only if A is R-sectorial and satisfies suitable
square-function estimates, which in a general Banach space have to be replaced by corresponding
Rademacher-norms. For the applications in this work we will only need one implication, hence

we will only cite this in detail.

Let o € (0,7) and assume that the operator A has a bounded H® (3, )-calculus. Observe that
A is R-sectorial by Corollary 1.3.6 since X has property («) by Proposition 1.6.22. Then, for all
o' >0 and p € HJ(X,/)\{0} there is a constant C' > 0 such that for all z € X:

1 o0 5 dtN1/2
_ < — <
= llzllx < H( | et ) HX_CHCUHX-

In the case X = LP this has been proven in [CDMY96|, and in a more general context this can
be found in [KKWO06], [KW-1| and [KW-2|. To be more concrete, again a careful inspection of
the proofs in the cited literature shows the following: For all w > o there is a constant C,, ; > 0
independent of A such that

< Cw,a : MJOO(A) : ||«THX

dt\1/2
2 7) i

VreX : H(/Ooo\go(tA):c

1.7 Classical function spaces: Besov- and Triebel-Lizorkin spaces

We give a short description of the classical Besov-spaces B, , and Triebel-Lizorkin spaces F};
in terms of Littlewood-Paley-decompositions. Moreover we present equivalent descriptions in-
volving the heat semigroup, which can be reformulated as representations of the norms in terms
of the functional calculus for the Laplacian. For this section we refer to the standard literature
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[Tr83], [Tr92| and [Tr78], and moreover to [BL76] for Besov spaces and to [FJW91] for additional
material on the homogeneous spaces.

We fix d € N in this section. If 1) € Sy we use the standard notation 1(D)u := F~1(¢)-1) = ¥ *u
for all u € S}
Let ¢ € §4 be a Schwartz function having the following properties:

(1) supp(¢p) = {€ € R?|1/2 < €] < 2} and (&) > 0 for all ¢ € RY with 1/2 < |¢] < 2,

o0

(2) ) (279 =1 for all £ € RN\{0}.

Jj=—00
We then define functions ¢;, ¥ € Sy for all j € Z as

¥i(€) =9(277¢) and U(&) =1- 1;(¢) for all £ € R%. (1.7.19)
j=1

Let s € R and p, ¢ € (0,+00], then for each u € S, we define

12(D)ull, + 1259465 (D)u)senllacrry = [(D)ull, + (Zuz% ulg) ",

(S wion)”

[ulls;,

lullr, = 1E(D)ully, + [(27%;(D)u)jenl Lo(eay = 1€ (D)ullp +

g, = 1@ Dmezlann = (Y I290;Duls) ",

j=—00

e e (DG

j=—00 p

s

(with the usual modification if p = 400 or ¢ = +00).

Definition 1.7.1 (The spaces By , and F; ). Let s € R and p,q € (0, +0o0], then we define the
inhomogeneous Besov space

d
By, = B;  (RY) = {u e Sy |ulls, < +oo},
and in the case p < +00 we define the homogeneous Triebel-Lizorkin space
d
Fs =F5 (RY) :={ueS)] Jullps, < +00}.

It can be shown that the spaces B, ,, F)J  are quasi-Banach spaces, and Banach spaces in the
case p,q > 1, that do not depend on ¢ € Sz with (1), (2), and varying 1) with these properties
leads to equivalent norms. Moreover, Sq — Bp , — S/ and S; — Fq— S/, and if p,q < 400,

. . s R
then Sy is dense in B, , and F) .
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We will also introduce homogeneous variants of these spaces. For this let P; be the set of all

polynomial functions on R% and

Zyi=tPy = {u €84t (u, %) 5,5, =0forall a € U NEL}
neN
= {u €8y : 0%(0) =0 for all o € U Ng},
neN
where z% denotes the mapping § — £ considered as an element of S;. Then we have a canonical
isomorphism Z!, = S /Py, i.e. Z! is the space of tempered distributions modulo polynomial
functions. Many operations on & can be transferred to Z)), in particular if ¢ € Sg, then it can
be shown that 1(D)u := 1 * u is well-defined for u € Z!. Now the homogeneous spaces are
defined as subspaces of Z), in the following way:

Definition 1.7.2 (The spaces B;’q and F;’q). Let s € R and p,q € (0, +0o0], then we define the
homogeneous Besov space

. ) d
B, , = B, ,(RY) = {ue zZ] H“HB;,Q < 400},
and in the case p < +00 we define the inhomogeneous Triebel-Lizorkin space
. . J
S =F (R = {ue Zj| lullpy . < +o00}.

Again it can be shown that the spaces B;’q, sz’q are quasi-Banach spaces, and Banach spaces
in the case p,q > 1, that do not depend on ¢ € Sz with (1), (2), and varying ¢ with these
properties leads to equivalent norms. Moreover, Z; — B;q — Z! and Z; — sz’q — Z!, and

if p,q < 400, then Z; is dense in B;q and F§7q7 cf. [Tr83], Section 5.1.3.

These function spaces have been extensively investigated in the past, and there is an exhausting
theory containing e.g. embedding and interpolation properties or multiplier theorems. We will
not list all these assertions at this place but just refer to the standard literature cited above.

Note that various classes of classical function spaces appear in the scale of Besov and Triebel-
Lizorkin spaces, we just give a short overview, details can be found e.g. in [Tr92|, Chapter 1,2
and [Gr04], Chapter 6.

FIRQ = F122 =[P 1<p<o Lebesgue spaces

F)ly = Wb l<p<oo,meNy Sobolev spaces

Fjo=HP l<p<oo,seR Bessel potential or fractional Sobolev spaces
Fjy=H%P l<p<oo,seR Riesz potential spaces

F}?’Q = H? 0<p<x@ Hardy spaces

Fz?, 9 = hP 0<p<oo non-homogeneous or local Hardy spaces
By, = WP 1<p<oo,s>0,s¢N Sobolev-Slobodeckij spaces

By, =7, 1<p,g<oo,q#00,5>0 classical Besov spaces

B, o =C* s>0,s¢N Hélder spaces

B3, oo =C* 5s>0 Zygmund spaces
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Note that the case "p = 400" has been excluded in the definition of the Triebel-Lizorkin spaces.
The reason is that in the case p = +o0o the definition given above is not the "right one", e.g.
it would lead to a norm depending on the auxiliary function ¢. Nevertheless it is possible to
define the spaces I3, F ¢ if 1 < g < oo by a modification of these definitions. In this case, one
would obtain the addltlonal identification F 2 = BMO, where BMO is the space of functions of
Bounded Mean Oscillation. We refer to [Tr83], Sections 2.3.1, 2.3.4, and the additional literature

cited there for this case.

For all the spaces By, B;’ oy qFIf o there a equivalence theorems for the norms that give rise to
a much larger class of functions 1 that may be considered on the one hand, and give continuous
counterparts of the norms on the other hand. A general treatment can be found in [Tr92], Chapter
2, and for the homogeneous norms in [Tr83|, Section 5.2.3 and more detailed in [Tr82]. We will
not present the most general known results here but just cite an equivalent norm expression
in terms of the heat semigroup and hence in terms of the analytic functional calculus for the
Laplacian.

For this purpose we fix s € R and p,q € (0, +0o0], and choose some m € Nsg/2. Let A:=—-A

ftA)

be the negative of the Laplace operator in L?, and denote by (e +>0 the heat semigroup. Let

©(z) := 2"™e"#, then the analytic functional calculus yields for all ¢ > 0 and u € &'

o(tA)u = (tA) e Ay = (=)™ (i

dt>mT(t)u. (1.7.20)

With these notation we obtain the following reformulation of the characterizations theorems
[Tr82], Corollaries 3.3, 3.4:
>0 dt\ M
Theorem 1.7.3. (1) The mapping u +— </ Htfs/an(tA)uHZ t) (with the usual modifi-
0
cation if ¢ = +00) defines an equivalent quasi-norm on B, .

(2) If s > max{d(1/p —1),0}, then the mapping

1/q
wellly+ ([ et )

(with the usual modification if ¢ = +00) defines an equivalent quasi-norm on By,

1/q
([ )

(3) If p < +o0, the mapping in u — (with the usual modifi-

P
cation if ¢ = +00) defines an equivalent quasi-norm on Fpiq'
(4) If p < 400 and s > max{d(1/p —1),0}, then the mapping
dt\ '
u— |ull, + H( \t 2ot Ayul? )
p

(with the usual modification if ¢ = +00) defines an equivalent quasi-norm on Fq
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Observe that the equivalent norms in (1), (2) for the Besov spaces can also be seen from a
different point of view, namely as equivalent norms in real interpolation spaces in accordance
with Theorem 1.5.8. If e.g. p > 1 and s € (0,2), then B, , = (LP, D(A™))g 4 where 0 := 5/2, and
in this case (2) is just an application of Theorem 1.5.8. In contrast to this, the Triebel-Lizorkin
norms in (3),(4) in general do not arise from real interpolation norms. This is due to the fact
that real interpolation of Triebel-Lizorkin spaces leads in general to the scale of Besov spaces
by the Reiteration Theorem 1.5.7, we refer to the standard literature given above. So this is
one motivation to define norm expressions as in (3), (4) for more general sectorial operators A
instead of —A and try to define associated spaces in terms of this norms, which would give rise to
"generalized Triebel-Lizorkin spaces" associated to the operator A. This is in fact what we will
do in Section 3.3, after we established the technical concepts of Rs-boundedness in Sections 3.1
and Rs-sectoriality in Section 3.2, which provide fundamental tools to deal with norm expressions
as in (3), (4) for a general sectorial operator A.
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Chapter 2

Maximal functions for sectorial
operators

2.1 The H{*-maximal function for sectorial operators

From now on we fix a Banach function space X over a o-finite measure space (€2, 1) with absolute
continuous norm, a complex Banach space E and a sectorial operator A in X (F) of type w(A)
with dense domain and range (cf. Section 1.2 for this notions). If w(A) < 7/2, we denote by
(T)i>0 or (e74);>0 the bounded analytic semigroup generated by —A.

We will use the notations H3% := Uy, H§(X0) and HZ® ==, H*°(X,). Next we introduce
some notations concerning maximal estimates.

Definition 2.1.1 (Maximal estimates for sets of operators). Let 7 C L(X(FE)). We say the set
T or the family (T')per satisfies a mazimal estimate or has a bounded mazimal function, if there
is a constant C' > 0 such that for all z € X(E) it holds

T <C .
H;‘ég‘ z|elly < Cllzllxe)

We note that the supremum in the above definition is taken in the complete lattice X C M (u)
in the sense of Proposition 1.6.2.

A standard application for maximal estimates is given by Banach’s principle, which we cite in
the following version:

Proposition 2.1.2 (Banach’s principle). Let F be a Banach space and (T}, )nen € L(F, M (p, E))N
such that sup,en |TnflE € M(p) for all f € F. Then the set

Fy:={f € F|(Twf)nen converges pointwise ji-a.e.}
is closed in M (pu, E).

43
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A proof for E = C can be found e.g. in [BS8§|, Cor. 5.8 or a more general version in [DS5§],
Thm. IV.11.3., and the proofs given there easily extend to the vector-valued case. Note that
Proposition 2.1.2 is usually applied in situations where it is already known that (7}, f)nen con-
verges pointwise p-a.e. for a dense subset D C X (F) of some Banach function space X (F), and
then yields the pointwise p-a.e. convergence of (1), f)nen for all f € X(E).

We introduce more specific notations in the case that the sets of operators are induced by a
single operator via the functional calculus.

Definition 2.1.3 (bounded f- and H{°(X,)-maximal function). Let 7 > o > w(A). For f €
H®>(3,) we say that A has a bounded f-maximal function, if { f(tA) |t > 0} C L(X(E)) and the
family (f(tA));>o satisfies a maximal estimate. If this is true for all ¢ € H§°(X,), we say that
A has a bounded H{°(X,)-maximal function. In this case we define wys(A) as the infimum over
all 0 > w(A) with that property and say shortly, the operator A has a bounded H§°-maximal
function.

Remark 2.1.4. The property of having a bounded f-mazximal function can actually be checked
on finite sets: Let x € X, then by Proposition 1.6.2 we can choose a countable set J C (0,00)
such that sup,q |p(tA)z|p = supcy |@(tA)z|p. Let (tx)r € N be an enumeration of J, then
since in X the monotone convergence theorem holds, we obtain
H sup |g0(tA)ac|EHX = H sup|gp(tkA):B|EHX = lim H sup |<p(tkA)x|EHX.
>0 keN keN

m—00
<m

Obviously it is sufficient to check the condition on a dense subset of X (E), so this shows that A
has a bounded f-maximal function if and only if there is a C > 0 and a dense subspace D C X (F)
such that for all finite subsets J C Rsg and x € D:

| sup | f(tA)z|e| y < Cllzllx(p)-
ted

The denotation of having a bounded maximal function will become clear in the following, as
in this case we will obtain more general uniform estimates in terms of the s-mazimal function
associated to A introduced next.

Form >0 >w>0,s¢€][l,+o0] and f € H*(X,) we introduce the notation

/s
(fazw \f()\)|s%> if s < 400,
Supjeas,, |f(A)] if s = 00

/]

s, = [ flosollzs, =

and the corresponding spaces H%s := J -, {f € H*(Xs) | || f]
HZy C HT.

Lsw < H+00}. Obviously we have

Definition 2.1.5 (s-maximal function for A). Let 7 > w > w(A) and s € [1,400]. Then we
define

Masao(w) = sup {[p(A)zlp | ¢ € HZp with ol o) 1} forall o € X(B). (21.1)
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If M4, is bounded as a sublinear operator on X (E), i.e. if there is a C,, = C(s,w,A) > 0
such that for all z € X(F) we have [[Masw(7)|x < Cy[|7||x(g), then we will say that A has
a bounded s-maximal function with respect to the angle w. In this case, the homogeneity in
11l (5., leads to

Isup{|f(A)ale| f € B0 1 e o) < K¢ < CoK llzllxm forall € X(E), K > 0.

Next, we define the auxiliary functions ¢, (2) = ﬁ for all w > 0,z € ¥, and « € [0, 1].

Lemma 2.1.6. Let a € [0,1], w > w(A) and p € HSY. Then, for all x € X(E),

1 dt\ V/?
p(A)els < o ellLy os.) > (/O lwa]w(tA)x!E) , (2.1.2)

je{flrl}

in case s # 400, and

1
lo(A)z]e < o llellries.) - > sup|Yaw(td)z|s (2.1.3)
ey 0

in case s = 400, respectively.

Proof. Choose m > 0 > w with ¢ € Hj°(%,). Let x € X(F), then

oAz = [ RO, A 2 = L

dA
21 Jox, )

l-a ga bl
N 27 o, “0(’\)@‘ A R(A’Aw )

If « € (0,1) this is Proposition 4.2 in [KWO0l-a|, if & = 0 it is trivial and for « = 1 use
AR(X, A) — AR(X\,A) = Idx and Cauchy’s Theorem. Hence p(A)x = 5= Jos, PG Q&
where G(A) = ¢(A)z with ¥(z) = Pga(2) = { w, 2 € C\R. In the case
s # 400, we conclude with Holders inequality

ette < o [ teweoile Tl < Celln ([ 60

1 00 dt\ '/ 00 ar\ '/
2 Lol om. ((/0 altialy ) ([ oottty § ) )

Here, (1) is true by (1.6.10) and (2) by plugging in the parametrization and the auxiliary function

—
~

Yy« defined above. This shows the statement. The modification for s = 400 is obvious. ]

Lemma 2.1.6 provides a technical condition, namely a one-sided s-function estimate for the
auxiliary functions ¥ +.

Vz € X(E),j€{-1,1} : ||¢a,jw('A)5'3||X(Lg(E)) < Csaw ||5U||X(E)- (SES,a,w)a

which is sufficient for a bounded s-maximal function:

Proposition 2.1.7. Let a € [0,1], w > w(A) and s € [1,400], and we assume there is a Cs o4
such that (SEs ) ts fulfilled. Then A has a bounded s-mazimal function with respect to the
angle w. ]
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Proof. Define ¢; := 1, (_1)i, for j = 1,2. Let 7 > 0 > w and M > 0, then we obtain by Lemma
2.1.6 (with the usual modification in the case s = +00) the pointwise estimate

1 2 dat\*
sup{lF (| 1 € HZ Uflszomy < MY < 00 3 ([ hwsteasal §)

Jj=1

Therefore the one-sided s-function estimate (SEjs ) leads to the norm estimate
Hsup {I7(A)al| € HZ with £l os,) < M}
C

< o M (W16 Aalisoseonll + 1626 Alisoroepll) < Z222 - M |,
O
Remark 2.1.8. It is an easy consequence of the convergence lemma, that in the situation of

Proposition 2.1.7 we also have f(A) € L(X) for all f € H,, and that in the definition of the
s-mazimal function we can take the supremum over all f € HZ’, with | f| ¢ (s < 1-

Putting all together we obtain the following characterization of having a bounded maximal

function.
Theorem 2.1.9. Let w,0 > w(A). Consider the following assertions:
(1) 3C1>0Va € (0,1)Vr € X(E) : [ta+w(tA)zlx (Lo m) < Cillzlxm),
(2) 3C2>03a € [0,1]3s € [I,+o0]Vz € X(E) : [|[Va+uw(tA)zllx(r:(E) < Collzllx (),
(3) M is bounded for some s € [1,+00],
(4) Macow is bounded,
(5) A has a bounded HZ® (X, )-mazimal function.

Then (1) = (2) = (3) and (1) = (4). Moreover, if 0 > w , then (3) = (5), and if w > o, then
(5) = (1).

Proof. (1) = (2) is trivial, and (2) = (3) and (1) = (4) are just Proposition 2.1.7. Now assume
(3) and 0 > w. Then (5) follows from the fact, that [[¢(t)] 1« s5,) = €l s o5, = M for all
t > 0 and the boundedness of the s-maximal function. Now we assume (5) and w > ¢. Then
Ya+w € H3(3,), hence (1) follows. O

The typical way to use Theorem 2.1.9 is the following: We will check condition (2) for all w > wy
and obtain by (5) was(A) < wp. Then the theorem asserts that for all w > wys(A) conditions (3)
and (4) are fulfilled:

Corollary 2.1.10. Let A have a bounded mazimal function. Let m > o > wp(A), ¢ € HE(Xs)
and 0 < § < o —wpr(A). Then (p(zA))
such that

2eSs satisfies a maximal estimate, i.e. there exists C > 0

H sup |cp(zA)a:|EHX <Clzllx@E foralze X(E). (2.1.4)
ZE€Xs
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Proof. Let 0 — ¢ > w > wyr(A), then A has a bounded co-maximal function with respect to the
angle w. Choose Cy > 0,3 > 0 with |o(2)] < Co (|2 A |2|7P) for all z € B,. Let z € ¥5\{0}
(the case z = 0 can be neglected because ¢(0) = 0), then z = 7w for some 7 > 0,w € X5 N S,
and wA € X, for all A € 9%,,. We obtain

]d)\\ /°° / dt
zZA = % Ttwe”w — tweW —
LSl = 3 [t T = Y Ik

je{-1,1} je{-1,1}
< G / tﬁAtﬁ = K < +o0,
je{-1,1}

ie. |o(z)llL1ox.) < K. The boundedness of the co-maximal function yields

| sup |e(zA)z|e|| ¢ < ||sup {|f(A)z|e | f € H, [ fllros.) < K}y < CoK |zl xr)
zE€Xs

O

Remark 2.1.11. In fact, in the situation of Corollary 2.1.10 the constant C only depends on
the constants Co, 3 of the majorant z +— Cy (|z|° A |2|78) of the HZ-function ¢, hence we
obtain uniform estimates for any subset F C H(X,) which fulfills uniform estimates |¢(z)| <
Co (12|P A |2|78) for all ¢ € F and some Cy, 3 > 0. Moreover, in the special case § = 0 we have
the sharper estimate

[supletA)als] < Cullelnion,) lallxm  for allz € X(E) (2.1.5)

and for all p € HgowM(A)’ and the constant C,, is independent of .

Examples 2.1.12. Let A have a bounded H§°-maximal function.

(1) Let @ > 0 and () == W for all A € X, and let 0 < 6 < m—wps(A). Then (¢(zA))
satisfies a maximal estimate, i.e. there exists C' > 0 such that for all x € X:

zei;
| sup |2¥A%(z + A)_2°‘:17|HX < C x| x- (2.1.6)
ZEXS

(2) We assume wyr(A) < 7/2. Let a > 0 and p()) := A% for all \ € Y2, and let 0 < 6 <
7/2 —wn(A). Then (p(2A)), 5, satisfies a maximal estimate, i.e. there exists C' > 0 such that
for all z € X:

H sup |zO‘Aasz|HX < Clz|x. (2.1.7)
z2E€EX5

Finally we present some standard persistence properties of having a bounded maximal function.
Proposition 2.1.13. Let A have a bounded HG®-mazximal function.

(1) If r >‘O and § € [0,wpr(A)), then also re® A has a bounded H§®-mazimal function with
war(re® A) < wpr(A) + 6,



2. MAXIMAL FUNCTIONS FOR SECTORIAL OPERATORS
2.2. Examples of operators with a bounded H§°-maximal function 48

(2) Let o« € R with |a] < w/wr(A), then A* has a bounded H{°-mazimal function and
wir(AY) = |ajwar(A).

Proof. (1) is a consequence of Corollary 2.1.10.

(2) We first note that A~! has a bounded maximal function with wy;(A™!) = wys(A), this is a
consequence of Theorem 2.1.9 and the simple fact that for « = 1/2 and 6 > wys(A),t > 0 we have
Vig(tA™Y) = —eT9)p(t "1 A). Hence we may assume w.l.o.g. that o > 0. Let o > awys(A) and
¢ € H§®(X,). Define pq(2) := p(2%), then po € HF®(X,/4), and by the composition rule for the
functional calculus we have p(AY) = o (A), cf. e.g. [Ha06|, Prop. 3.1.4. Since o/a > wpr(A),
the family (@(tAY))i>0 = (@a(t'/*A))s>o satisfies a maximal estimate, hence A® has a bounded
maximal function with wp;(A%) < awpr(A). If we apply this for A% instead of A, we obtain the
remaining estimate wys(A) = wM((AO‘)é) < Lo (A%). O

2.2 Examples of operators with a bounded H;°-maximal function

In this section we present classes and examples of operators with a bounded maximal function.
In particular we will give examples of operators without BIP that have a bounded maximal
function. This shows that our techniques extend those used in [B102|, where only operators with

BIP are considered.
(a) Operators with bounded imaginary powers

Let A € BIP(X(E)), i.e. in this situation A® € L(X(FE)) for all s € R, and hence (A%)scp is a
Co-group! so there is w > 0 and M, > 1 with

A x(my < M el fiir alle s € R.

The infimum of all w > 0 for which there exists such an M, is denoted by wprp(A). In the

following we assume wprp(A) < 7.

Let 6 € (—m,7) with |§] < 7 — wprp(A) and wpp(A) <w <7 — 10,00 =7 — |0 —w >
0. Moreover let M, > 1 with ||A*|x < M, e“lsl for all s € R. We will use the following
representation formula which can be seen as a variant of the Mellin inversion formula:

. . 1 o0 . 698 )
V2602 12 4 A) Ny = / i S gisy s, 22
r/ e (re” +A) 'x 5 _Oor cosh(s) xds (2.2.8)

We will give a derivation of (2.2.8) following the lines of [KWO04|, proof of 11.9.

'In this situation, this claim is equivalent to the usual definition in the general case, i.e. (A*)ser is a Co-
group. This is due to the fact that if z € D(A) N R(A), then s — A*z =: T(s)x is bounded, and by density
this yields that s — T'(s)z is measurable for each x € X. Hence (T(s))scr is a strongly measurable group,
and it is well known that this implies strong continuity of (7'(s))s>o0. For s < 0 the group property leads to
T(s+h)z=T(1+h)T(s— 1)z — T(1)T(s — 1)x =T(s)z for x € X if h — 0, hence T is a Co-group.
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(i) The Balakrishnan representation yields for y € R(A), z := A~'y € D(A) and —1 < Re(a) <

alakr. Si 1 > - i > -
oy — Albog Dok Sm(W(M))/ (i1 A) 1Axdt:_sm(m))/ £t 4+ A) "~y dt.
0 0

s s

(ii) Let = € D(A) N R(A) C D(AY2) N D(A*) = D(A*~/2A'/?), then

Aisy — Ais—1/241/2, 9 _sin(w(is — 1/2))) /Oo 512 4 ) A2 dt
Q 0
h >
_ cos (773)/ tzstl/Q(t_{_A)—lAl/Qmﬂ'
T 0 t

(iii) Choose @ € [0, 7) with |0| < m—wprp(A) and wprp(A) <w < w—|0],80 6 ;== 17— 0| —w > 0,
and moreover M, > 1 with ||A%|x < M e“I*l for all t € R. We apply (ii) to e~ A instead of A
and obtain with the substitution t = ", dt/t = du:

Os e
e AiSCE _ / tist1/26i9/2(ei9t + A)flAl/Qa7 ﬂ
cosh(ms) 0 t
_ / eisu 6u/26io9/2(6i66u + A)_1A1/2l‘ du = ﬁ(_s)‘

F(u):=
As in general el /2 < cosh(z) < el®l for all z € R, it follows that

7re|9$|

IE ()] |47 ]| < 2w M, 17Tl e o = 2m, e (Ol )

cosh(r|s|)
= 2rM, e Bl ||z]|x forall s € R,

hence F' € £L1(R, X). By Fourier inversion we obtain

. . 1 o 1 oo —0s )
e"2e02 (et 4 A)TLAY?2: = F(u) = — / e F(s)ds = = / eus S Aisp s,
21 J_ oo 2 J_o  cosh(ms)

Substituting r = €*/? and s — —s in the integral yields (2.2.8) for all z € D(A) N R(A), and
since D(A) N R(A) is dense and both sides of equation (2.2.8) define bounded operators, this is
also true for all x € X (F). O

We now substitute t = r~! in formula (2.2.8) and obtain

(LA 2 (e +tA) | < /Re_(”_w”s' |A™%z|pds for all z € X (E),t > 0.
Since the right-hand side of the inequality above is independent of t,

sup |(tA)Y2(e + tA)ta|p < / e~ mlODIsh A= 2| 1 ds.

>0 R

Letting o := 1/2 and ¥; 1= 1 (—1)i (r—|g))» We have

sup |[¢(tA)z|g = sup \(te(_l)j(”_‘e‘)A)l/Q(l—te(_l)j(”_w'A)_lx\E < / e~ T =IODIsl | A= | 1 dls,
>0 >0 R
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and this leads finally to

—(mr— S —1i8 —d|s 2Mw
|| sup [v;(tA)z | x §/e (= 10D1s || A ]| dngw/e ol ds- 2l xm) = =5 el xe).
t>0 R R

So we have proven:

Proposition 2.2.1. Let A € BIP(X (E)) with wprp(A) < w. Then the operator A has a bounded
H§®-mazimal function with war(A) < wprp(A). O]

Remark 2.2.2. In recent years optimal BIP- and in fact H*-angles for certain classes of elliptic
differential operators have been established also in the vector-valued setting of a space LP(§2, F),
where E is a UMD-space, cf. e.g. [DHP03], [DDHPV0//.

As already mentioned above, this example shows in particular that in our framework we can
handle the operators considered in [B102].

(b) Operators that satisfy a one-sided square function estimate

We want to draw attention to the case s = 2, then the condition (2) of Theorem 2.1.9 is fulfilled in
particular if the operator A satisfies one-sided square function estimates, which are well known in
classical situations in harmonic analysis. It is well known that if X is ¢-concave for some g < +00
and the operator A has a bounded H°-calculus then for all 0 > wpe(A) and ¢ € H§°(X,)\{0}
there is a constant C' > 0 such that for all z € X:

1 o° dtN\1/2
— < Az — <
slel < | ([T e )] <cy,

cf. Subsection 1.6.5. Of course, this situation is already covered by (a). Nevertheless we want
to mention that even in the Hilbert-space case X = L? there are examples of operators without
an H°-calculus, hence without BIP, that satisfy only a one-sided square-function estimate

o dt\1/2
H( | et ) H < Cllellx
0

X

for p € H§*(X,)\{0}, cf. [LeMO03|, Section 5. So these operators fulfill condition (SEjs ) for
s =2,a=1/2 and w > o and hence have a bounded H§°-maximal function.

(c) Generators of analytic semigroups which satisfy a maximal estimate

Now we assume w(A) < 7/2 and that —A generates a bounded Cp-semigroup (7;);>0. Further
we assume that there is a constant C' > 0 such that one of the following estimates holds for all
x € X(E):

Isup [Tzl gl < Clizllxe. (2.2.9)
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2.2. Examples of operators with a bounded H§°-maximal function o1
or
1 t
= | Tad ‘ <C 2.2.10
[supls [ Twds] | < Clielxie (2:2.10)

Proposition 2.2.3. Under the above assumptions, the operator A has a bounded HS®-maximal
function in X (E) with wy(A) < /2.

Proof. In both cases we use the representation formula of the resolvent as Laplace transform of
the semigroup. Let m > 0| > 7/2,2 € X(E) and t > 0,7 := t~!. Let us first assume that (2.2.9)
holds. Then using the Laplace-transform we obtain

R(e? tA) = rR(re” A) = —/ re’™ Ty ds,
0
hence with o =0

o . o0
lWe(tA)z|p < / ‘resrezeTsm}Eds < / re= 15O g . sup | Tya| g =
0 0

1
——— -sup |Tsx|E.
>0 | cos ()] s>0| -l

By our assumption we obtain the estimate
Jsup liso(tA)al ]|« < o | sup Tl < e,
>0 [ cos(0)] " s>0 | cos()]

Now we assume that (2.2.10) holds. Let p := —re? then again by the Laplace-transform
representation and partial integration it follows that

i o0 1 S e’ [o¢] S
—R(ele, tA)r = / re MTexds = {7‘867“5 / Trx dT} —l—/ rue H° (/ Trx dT) ds,
0 0 0 0

S 0
=0
hence
i o0 1 S
|R(e? tA)z|p < / r2se” Relw)s (/ T x dT) ds
0 S Jo E
* 0 1 [° 1 1 /%
< / r2ge "l cos( ”ds-sup / Trxdr| = ——%~sup / T-xdr
0 s>0 S Jo g COS 0) s>0ls.Jo E
Similar as in the first case we obtain the estimate
H sup Wie(tz‘l)w’EH < b H sup 1/8 Trxdr H < L Hx||X(E).
>0 X = cos2(0) =05 Jo g X7 cos?(0)
This shows the claim in both cases. O

We will later see how we can obtain operators fulfilling the above assumptions, e.g. by using
classical results from harmonic analysis and ergodic theory for operators in scalar-valued function
spaces and then pass to tensor extensions in vector-valued spaces. Although we only get the
rather "bad" angle 7/2 with this method, we at least get a starting point for an angle that might
be improved by interpolation.
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(d) Another example for an operator without BIP, that has a bounded H{°-maximal

function

One such example is already cited in (b). Nevertheless we will construct another example which
is taken from [KWO04], Example 10.17. Let p € (1,+00) and —1 < v < p — 1, and define the
weight function w(z) := |z|” and the weighted space X := LP(R,w(x)dxz). We note that w is
a so-called A,-weight, cf. e.g. [Du01], Chapter 7. Define the operator A := exp(%%) as an
unbounded Fourier-multiplier-operator in X, i.e. Af := F{l(egf(ﬁ)) for all f € D(A) :={g €
X fgl(eff(f)) € X}. Then the following statements are true:

1. Since w is an Ap,-weight, the Mikhlin-multiplier-theorem holds in X, c¢f. [KW79]. Hence
the operator A is sectorial with w(A) = 0.

2. The imaginary powers are formally given by the translation operators A®f = f(s + -),
hence it can easily be shown that in the case v # 0 the operator A does not have BIP.

3. A has a bounded H§°-maximal function with wy;(A) = 0: Let o := 1/2, w € (0, 7] and
) 1= 1o +,. Letting t = e” > 0 we have

o~

WA = (0(©) - F©) = (F7wn) + f,

r+§

with the symbol ¢, (§) = %, hence ¥,.(§) = ¥o(r + &) for all r € R. This leads to
an estimate

: 1
f_l N ~ zm:]_-—l — f_l < ’
|F~ r(z)| = e Yo(@)| = [F o)l £ s P

hence we obtain the pointwise estimate sup,.q|t(tA)f(z)] < [IF ollpiw) - M|fI(z),
where M is the Hardy-Littlewood maximal operator. Since w is an A,-weight, the maximal
operator M is bounded in X (cf. [GCRAF85|, Theorem IV.2.8), hence

[sup [ (EA) flllx S IMIfIllx S 11 llx-
t>0

2.3 Equivalence of maximal estimates for f € £(X,)

For arbitrary H*-functions f the family (f(tA))¢~o need not fulfill maximal estimates in general.
But there are nice transference properties between functions f in the extended Dunford-Riesz
class. Recall that

1

E(Xy) = HC(Z,) @ <m>c@<

Iy,)c and &, = U E(X,) forallw e [0,7),

o>w

and that £(X,) is exactly the algebra of bounded analytic functions on ¥, having finite polyno-
mial limits in 0 and oo, hence in particular, by the mean value theorem, bounded holomorphic
functions on ¥, that are either decaying to 0 or holomorphic in a neighborhood of 0 and oo,
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respectively, belong to the class £(X,) (cf. Section 1.2). This is the typical situation we will be
faced with.

Now we are in a position to formulate the equivalence theorem for bounded f-maximal functions
if fe&(X,):

Theorem 2.3.1. Let A have a bounded HG°-mazimal function. The following assertions are
equivalent:

(1) There exists an f € &,,,(a) with f(0) # f(oo) such that A has a bounded f-mazximal

function.

(2) For all m > o > wp(A), g € E(X,) and 0 < 6 < 0 —wp(A), the family (9(zA)).ex;
satisfies a mazximal estimate.

The idea of the proof is simple: Every function in £ can be decomposed into the sum of a H§°-

function and constants times the function z — 1—%2 and 1. Hence the main step is to handle

these classes of functions separately. For Hy°-functions, this has been done in Corollary 2.1.10,

S0 it remains to handle the function z — ﬁ This is what we will do in the following lemma.

Lemma 2.3.2. Let A have a bounded mazximal function and assume that there is a constant

Cy > 0 such that for all x € X(E)

| igg |t(t + A)*lw\EHX < C1 |zl x(E)- (2.3.11)

Then, to each W' > wyr(A) there is a constant C > 0 such that

| sup [AR(A, A):c\EHX < Cllzllx@) foralze X(E). (2.3.12)
AES,

Proof. Choose ' > w > wys(A), then A has a bounded s-maximal function with respect to the
angle w for s = +o00. Let A € C\X,/, then A = te? for some t > 0, w’ < |§] < 7. By the resolvent
equation we have

ARMNA) —t(t+ A = A+ AN—A) Yt +A) P =t(1+e)Ate? — A) 7Lt + A)7!
= 1+t AEY — 1A A+ t71A) T = pp(t LA,
z
(@ —2)(1+2)
Indeed one can find a constant Cp > 0 such that for all ' < |0] < 7 and 2z € X, we can estimate

lpg(2)] < Cp - min {|z|, ﬁ}, hence

where @g(z) 1= (1+¢%) . Fixw' > 0 > w, then py € HJ(X,) for allw’ < |0] < 7.

< dt
ool oz, < 2C /0 min{¢, 1/t}7 =M

By the translation invariance of the measure dt/t on (0,00) we obtain |l (t-)[|r1(sx,,) < M for
all |0] > W', t > 0.
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By construction, to each A\ € C\X,, there are t > 0, o’ < |f] < 7 such that AR\, A) =
tt+ A"t + pg(t71A), hence

sup AR\, A)z|gp < sup|t(t+ A)7Lz|p 4 sup |pg(tA)z| g

AES >0 0,

So we have

| sup RO, A)alp ] < [lsup i+ 4) el + Cod lallxqm) < (€1 + Cudd) [zl x(e,

w!

where the constant C,, is chosen by the boundedness of the maximal function of A with respect
to the angle w. O

Now we are in a position to prove Theorem 2.3.1.

Proof of Theorem 2.53.1. We only have to prove the non-trivial implication (1) = (2): Let o9 €
(wr(A), ] and f € £(Z,) with f(0) # f(+0o0) such that A has a bounded f-maximal function.
Then we can decompose f as f(z) = wo(z) + 157 + b, where a = f(0) — f(o0) # 0 and ¢ €

H§®(X4,), hence l}rz = 1(f(2) = po(2) = b). So we have

4+ A = (A = (£ A) — olt ) — Ty ).

By our assumption the family (f(tA));>o satisfies a maximal estimate, hence also (t(t+ A)~1)i>0
satisfies a maximal estimate.

Now let m > 0 > wp(A), g € £(E5) and 0 < 0 < 0 —wpr(A) be arbitrary. Then again we
have a decomposition g(¢) = ¢(¢) + Ti¢ +d, hence for each z € X5 we have the representation
g(z) = p(z) + 1—Ez~ -+ d, hence

g(zA) = p(zA) + c(1 4+ zA) 7! + dldx(g) = ¢(zA) + AR\, A) + d1d x (g,

where A :== —1 € C\Z,_4. Since ' := 7 -6 > 0 —§ > wy(A), we can apply Lemma 2.3.2
together with Corollary 2.1.10 to obtain the claim. O

A simple application of Theorem 2.3.1 is the following:

Corollary 2.3.3. We assume additionally that wpr(A) < 7/2. Let o € R with o] < w/wpr(A),
0<d6<7/2—|alwp(A) and W' > |a|wrr(A). Then the following assertions are equivalent:

(1) There is a constant C1 > 0 such that for all z € X(E):

1 t
Hstlig - /0 e_SAxds‘EHX < C1 |zl x(E)- (2.3.13)

(2) There is a constant Cy > 0 such that for all z € X(E):

I igg \e_tAx]EHX < Co |zl x(E)- (2.3.14)
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(3) There is a constant C3 > 0 such that for all x € X(E):

[suple(t + )~ el x < Callellxm). (2.3.15)

(4) There is a constant Cy > 0 such that for all x € X(E):

|

(5) There is a constant Cs > 0 such that for all x € X (E):

1 [ e
‘/ oM di‘ I < Cullzllxm)- (2.3.16)
Z Jo E

sup
|arg z|<d

| sup le=*A”

ol < Csllzllx(p). (2.3.17)
|arg z|<d

(6) There is a constant Cs > 0 such that for all x € X (E):

I SLB|AR(>\,AQ){L"EHX < Cs |zl x(E)- (2.3.18)
AES

O

Proof. We assume first that « = 1. Define fj(\) := 6_37;1, fo(A) == e and f3(\) := 1%\
Choose wy(A) +6 < o < 7/2, then f1, fo € £(X5), f3 € £(X;) and f;(0) =1 # 0 = f;(o0) for
7 =1,2,3, and we have the representations
1 4
. / e Mzdh = fi(zA)z, ez = fo(zA)z, and AR(M, A) = (1—A"1A) = f3(=A"1A)
0
for all z € ¥5,\ ¢ ¥,/ and 2 € X(E). Hence we can apply Theorem 2.3.1 to obtain all stated
equivalences.

Now assume « > 0, then we first remark that also A® has a bounded H{j°-maximal function by
Proposition 2.1.13(2) with wjs(A%) = awyr(A). Then the assertions (4), (5), (6) are equivalent
by the same arguments given above, where we just replace A by A®. Hence it is sufficient to
show that (1) is equivalent to (1) with A in place of A. For this we define f(\) := !

T o
all A € X, then

e+ A% = (14 @A) = faYea),

where in the last step we used again the composition rule for the functional calculus. Moreover,
f€&(Xr_qa) with f(0) =1# 0= f(c0), so the claim follows again from Theorem 2.3.1.

The remaining case o < 0 can simply be reduced to the above case by considering B := A™¢
and B~! instead of A. Since the inversion A +— A~! leaves all sectors invariant, and since by
Proposition 2.1.13(2) we have wy(B™!) = wy(B), the claim also follows easily in this case. [
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Remark 2.3.4. Parts of the statement above can also be proved using integral representations,

e.g. (2)=(3) via
/ te Tz ds
0

hence supysq |t(t + A)"z|p < supys|Tsz|p. Analogously, (6)=(2) can be proved using an

[t(t + A)"'zlp =

o0 oo
< / te” | Tyx|p ds < sup |Tsz|g - / te™' ds,
E 0 5>0 0

=1

integral representation of T;.

Combining Corollary 2.3.3 with Banach’s Principle leads to the following standard applications,
which in special situations are well known in semigroup and ergodic theory.

Corollary 2.3.5. Let wy(A) < 7/2 and assume that the equivalent conditions of Corollary 2.3.3
are fulfilled.

(1) If Tix — x p-a.e. fort — 0 for all x in a dense subset of X(E), then the a.e. convergence
holds for all z € X (E).

(2) Assume that the semigroup (Ti)i>0 is mean ergodic, i.e. %fg Tsx — Pz fort — 400 for
all x € X(E), where P is the associated projection on ker A (for details cf. [DS58] Chapter
VIII or [EN0OO] V.4). If % fg Tsx — Px p-a.e. fort — 400 for all z in a dense subset of
X (FE), then the a.e. convergence holds for all x € X (F).

Ol

Examples 2.3.6. We present some examples for the situation of Corollary 2.3.3 in the scalar-
valued case. These are not new, but nevertheless we can give a different view with the methods
described here. We will take a look on versions for vector-valued extensions in the examples in
Section 2.5.

(1) Let 1 < p < 400 and X := LP(Q2). We assume that w(A) < m/2 and that the analytic
contraction Cp-semigroup (T3)¢>0 generated by A in LP(2) is positive. Then by [Fe98|,
Thm. 5.4.3 there is a constant C' > 0 such that for all € LP(Q2) the maximal estimate

1 t
| sup 7 /0 Tsmds’HLP < C'lz| r» (2.3.19)

t>0

holds. By the transference principle, A has a bounded H°-calculus with possibly wge (A4) >
/2 (cf. e.g. [KWO04] Corollary 10.9 together with Theorem 4.2.1 in [Fe98|). Moreover,
the angle wr(A) of R-sectoriality is strictly less then /2, cf. [WeOla] 4.d), and since
the space LP(Q2) has property (A), we have wy~(A) = wr(A) < 7/2, cf. [KWO01-a],
Thm. 5.3). Hence we also have wys(A) < 7/2, so the equivalent conditions of Corollary
2.3.3 are fulfilled. Actually, the maximal estimate (2.3.19) is also a crucial tool in deriv-
ing wr(A) < 7/2 by interpolation. In particular, in this situation the maximal estimate
(2.3.19) implies for each m € Ny also the maximal estimate

d
H st1>1%) |tm(%)mTtx‘ HLP < O ||| e, (2.3.20)
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2.4

since (—t)m(%)mTt = f(tA), where f(z) = 2™e"*. We note that this has very recently
also been proven in [LeMX10]|, Corollary 4.2, as an application of corresponding maximal
estimates for discrete semigroups, which are studied there in detail.

Let again 1 < p < 400, X = LP(Q) and w(A) < 7/2. Instead of positivity we now
assume that the analytic contraction Cp-semigroup (7;):>0 generated by A in LP(Q) is
Li-contractive for all ¢ € [1,+00], i.e. [|[Tyz||re < ||z|Ls for all z € LP(Q) N LY(Q),t > 0.
Then by the classical Dunford-Hopf Ergodic Theorem (cf. [DS58|, Theorem VIIL.7.7), the
estimate (2.3.19) holds for (7});>0, hence we obtain with the same method as described in
(1) that wpr(A) = whe(A) < m/2, hence the equivalent conditions of Corollary 2.3.3 are
also fulfilled in this situation.

If X = L?(Q) and A is self-adjoint with o(A) > 0, then of course wys(A) = wy=(A) = 0.
The question wether the equivalent conditions of Corollary 2.3.3 are fulfilled is investigated
in [Ga81], proof of Theorem 1 and the observation 2) on page 17, where a characterization
for the validity of (2.3.19) is formulated in terms of the projection-valued measure associated

to A via the spectral theorem.

Interpolation of maximal functions

In this section we will derive a technique to interpolate the boundedness of maximal functions

for consistent sectorial operators. For this we first give a different view on maximal estimates as

the continuity of a suitable linear operator. If we consider the object p(-A)z as an element of
the space X (L°(E)) (cf. Section 1.6), then ||sup;sq [p(tA)z|g|x = [lo(-A)2| x(Le(E), Where we
as usual do not distinguish ¢(-A)x from the special version we choose. So we see that the family

(p(tA))s>0 satisfies a maximal estimate if and only if x — ¢(-A)x defines a bounded operator
X(E) = X(LX(E)).

Now let Xy, X7 be two Banach function spaces over the o-finite measure space (2, u), where

at least one of them has absolute continuous norm, and Ey, F; be Banach spaces such that

(Eo, F1) is an interpolation couple. Then (Xo(Ep), X1(FE1)) is an interpolation couple as well.
For 6 € (0,1) let Xy := [Xo, X1]p and Ey := [Ey, E1]g be the complex interpolation spaces.

Calderon defines in [Ca64] 13.5 an intermediate space X% := X(}*HXIQ ={feM(u)|3dg; € X;:

1fl=

190/ ?|91/?} endowed with the norm

1£0 -0 o == inf{llgoll 3.% - llgn %, | 11 = lgol' ]9}
0 1

In fact, the definition given in [Ca64] is slightly different, but equivalent, cf. Remark 1.8 in [Pi79).
The space X is consistent with the usual complex interpolation spaces Xy in the following sense:

(Cal) [Xo(FEp), X1(E1)]g € X%(FEp), the inclusion is norm-decreasing, and the spaces coincide

with equal norm if X? has absolute continuous norm,
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cf. [Ca64] 13.6(i). Moreover it is shown in [KPS82], remark on p. 245, that X? has absolute
continuous norm if at least on of the X; has absolute continuous norm, which we have assumed.
Thus we obtain [Xo(Eo), X1(F1)]s = X?(Ep). Plugging in Eg = F; = C yields X% = Xj, then
replacing E; by £;°(E;) where m € N leads to

X065 (o)), X1 (65(E0))lo = Xo([655(Bo), 65 (En)e) = Xo(£5(Ep)) (2.4.21)

[e3]

with equal norms. In the second step we used the general fact that with Lg® := S f(Q)L

)

where S¢(2) is the space of step functions supported in a set of finite measure, we always have
[L>®(Ey), L (E1)]e = [LF(Eo), LP (E1)]e = LE°([Eo, Eilg) with equal norms, cf. [Tr78], 1.18.4
Remark 3 and the proof of Theorem 1.18.4.

For each 6 € [0, 1] let Ap be a sectorial operator in Xy(FEy) such that the following consistency
property is fulfilled:

(t + Ag) Tr = (t + Ag/) x  for all (9,9/ S [0, 1],x € XQ(EQ) N X@/(E@/),t > 0.

Then by a connectedness argument we have that the resolvents of each two operators Ag, Agr coin-
cide on the largest sector that is contained in both resolvent-sets, and if o > max{w(A4p),w(Ay )}
and f € H*>(X,) such that f(A;) € L(X;(E;)) for j = 0,1, then f(Ag)x = f(Ap)x for all
x € Xy(Fy) N Xg/(FEyg). Hence we will sometimes simply write f(A)x instead of f(Ag)x if
S XQ(EQ).

Now using abstract Stein interpolation (cf. [Vo92|) we obtain the following interpolation result
for maximal estimates.

Proposition 2.4.1. Let 0 € (0,7, f € H®(%,), and let 0 < §; < 0 — w(A;) such that the
family (f(ZAj))zeis \{0} satisfies a mazximal estimate in X;(Ej) for j = 0,1. Then the family
i

(f(ZA9))zei \(0} satisfies a mazimal estimate in Xg(Ey), where § = (1 — 0)dg + 001

Proof. For j = 0,1 choose C; > 0 with Hsupzezé oy [f (245)| g HX Cjllz|lx; g, for all

x € X;(E;). We first make some observations. Fix z € D(Ap) N R(Ap) for a moment. Then by
Remark 2.1.4 and the Phragmén-Lindel6f-Theorem we have

| sup |f(zA) :L‘|E9HX = lim H Sup |f(tretP A)z| g,

s I,
ZEEL;].\{O} m—oo ke <'m

where (t;)ken is any an enumeration of Q~¢. Hence it is sufficient to estimate the norm of
(]f(tkeii‘sA)a:\Ee)keNgm with a constant independent of m. We note that the norm then is taken
in Xg(£°(Ep)), which is norm-isomorphic to £5°(Xy(Ep)), where the constants, of course, depend
on m.

So fix a finite subset {¢,...,t } C R, and define the strip S := {A € C|0 < Re(\) < 1},
5()\) = ( )\)(50 + Ad1 and N( ) ( (tkez(s()‘)A) )kEN forall A e S, z € X()(E()) NX, (El)
R(A

Define D := () D(A4;)N ) then D is dense in XO(EO) N X1 (E1): To see this we define
7€{0,1}



2. MAXIMAL FUNCTIONS FOR SECTORIAL OPERATORS
2.4. Interpolation of maximal functions 59

standard approximation functions p,(2) = i — Tlnz’ then pp(A4;) : X; — D(A;) N R(A;) is
bijective and p,(A4;)z — x in X;(E;) for each z € X;(E;) and j = 0,1 (cf. [KWO04|, Proposition
9.4 (b)). Hence, if x € Xo(Ep) N X1(E1), then D 3 y,, := pp(Ao)z = pn(41)r — x in Xo(Ep) N

X1 (E1) for n — oo. For fixed x € D and j = 0,1, the function

s+— N(j+is)x = (f(tkes(‘so_‘sl)eiéjA)x) € X (E)))

kENSm
is continuous (since it is continuous considered as a mapping into £5°(X;(E;))) and bounded
with

ING +is)xll x, g0, < | Sup |f(te Aj)z|g, HXJ. < Cjllzllx, ;-

Now choose j € {0,1} such that J; = max{dp,d1}. Then N(-)z considered as a mapping
S — X;(6X(E;)) is also continuous and even analytic, where we again use X;(¢59(Ej)) =m
(2°(X;(E;)), hence it is also analytic considered as a mapping S — Xo(L°(Eo)) + X1(LP(Ey)).

By abstract Stein interpolation we obtain

—0 0
[N (0)z| x, (e50 () < e |zllx, (g, forallze D,

=:Cy

hence (by density) [|suppen._,, |f(tke®) Az|g,|lx, < Co Izl xy(E,) for all z € Xg(Ep). So the

claim follows by the preceding discussion. O

If we apply this lemma to the special functions 1 (\) = %, then the simple fact that

P(eFON) = F0/2. % leads to an improvement of the angle of the interpolated max-

imal function.

Proposition 2.4.2. Assume that the operators A; have a bounded HG®-mazimal function in
X;(Ej) for j =0,1. Then the operator Ag in Xo(Ep) has a bounded HG®-mazimal function with
wir(Ag) < (1 —0)wpr(Ag) + Owpr(Ar).

Proof. Assume w.l.o.g. wpr(A1) > wp(Ap). Let w > (1 — O)war(Ag) + Ownr(Ar) and write
w= (1 —=0)wy + Owi, where w; > wpr(A4;) and w1 > wp. Let dp := w1 —wp > 0 and 6; := 0, and
choose o > 0 such that max{w; — (wo — wn(Ao)), wm (A1)} <o <wi. Then 6; < o0 —wpr(4;)
for 7 =0, 1, hence we can apply Lemma 2.4.1 to

)\1/2
(,0()\) = m for all A € Eo

and obtain that (go(zAg))zeié\{o} satisfies a maximal estimate on Xy(FEy), where § = (1—6)(w; —

wo) = wy — ((1 — Q)wp + Gwl) = w1 —w. In particular, A has a bounded 1-maximal function for

‘ . AL/2
(i Eid/2
P(A) == p(e™0N) = e/ Fon

Hence wys(A) < w by Theorem 2.1.9. O
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Combining Proposition 2.4.1 with Theorem 2.3.1 yields

Corollary 2.4.3. Assume that the operators A; have a bounded HG°-mazimal function in X;(E;)
for j = 0,1. Assume that there exist oy > max{wnr(Ao),wrr(A41)} and fo € E(E,) such that
A;j has a bounded f-mazimal function for j =0,1. Then, for every o > max{wns(Ao),wrr (A1)}
and f € E(3,) the family (f(ZAe))zeE(; satisfies a mazimal estimate on Xg(Ey) for all

0<d<o— (1 — G)WM(A()) — QWM(Al).
O

2.5 Maximal functions for tensor-extensions of A in vector-valued
Banach function spaces

In concrete applications, it often happens that the operator in the vector-valued space X (F)
arises as a tensor extension of an operator A in the (scalar-valued) space X. We want to give an
overview on how the developed theory applies to this special case.

Assume that X has absolute continuous norm and A is a sectorial operator in X. Since the
algebraic tensor product X ® E C X (F) contains all step functions, it is dense. We consider the
algebraic tensor extension A ® Idg on X ® F and define the E-valued extension

AP = {(z,y) € X(E) x X(E)|[Vp € E' : (z,¢) € D(A) and Az, ) = (y,¢)}-
Proposition 2.5.1. The following assertions are true:
(1) AF is densely defined and closed with A ® Idg C AP,
(2) Let A € C, then
A€ p(AF) <= X e p(A) and R(\, A)F € L(X),
and in this case R(\, A)¥ = R(\, A) @ Idg = R(\, AF),
(3) If p(AE) # 0, then A¥ = A®1dg. In particular, if D C D(A) is a core for A, then D® E
is a core for AF,
(4) If A¥ is sectorial, o > max{w(A),w(AF)} and f € B(X,), then f(AP) = f(A) @ 1dg.

Proof. Except for the implication < in (2), this is proven for X = LP in [Ui98|, Chapter 5, and
the proof given there extends easily to the case of a Banach function space X. The remaining
claim < in (2) is an easy consequence of the definition. O

One problem is, that, only by the knowledge of A, there cannot be said too much about the
vector-valued extension A as long as one has no further information on A”. For this reason it
is common to consider instead the bounded operators R(\, A) or e ' if A is the generator of a
Co-semigroup. In particular, if max{w(A),w(AF)} < 7/2, then TF = e~*A" "and we can carry
over maximal estimates for the semigroup. This method works particulary fine if the space X
has nice tensor-extension properties, which we note in the next remark.
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Remark 2.5.2. (1) Let X = L? and H be a Hilbert space, then every bounded operator T €
L(X) extends to a bounded operator TH on L?(H) with |TH| = ||T||. If we apply this
on resolvents, we obtain via Proposition 2.5.1 immediately the following result: If A is

sectorial in L?, then for each Hilbert space H the vector-valued extension AH is sectorial
as well with w(AT) = w(A).

(2) Let X = L' and E be a Banach space, then every bounded operator T € L(X) extends to a
bounded operator T¥ on LY(E) with ||TF|| = ||T||. As in (1) we can conclude, that if A is
sectorial in L', then for each Banach space E the vector-valued extension AF is sectorial

as well with w(AF) = w(A).

The first statement is a standard result in the theory of Hilbert spaces operators, cf. e.g. [WeT76],
Satz 8.32, whereas (2) follows from the properties of the - tensor product of Banach spaces, cf.
e.g. |[DF93|, Proposition 3.2.

In the general case, one has no such nice extension properties, a prominent example for this
situation is the Hilbert transform in LP, 1 < p < 400, which extends to a bounded operator on
LP(E) if and only if E is a UMD-space. Nevertheless there are classes of operators that have
nice extension properties, e.g. the class of positive operators, i.e. operators S : X — X such that
Sz > 0if x > 0 for all x € X. Observe that positive operators on Banach function spaces are
always bounded, cf. [Sc74] Theorem I1.5.3. Moreover, positive operators always have bounded
vector-valued extensions to any Banach space, and more generally, every operator dominated
by a positive operator also has this extension property. This is the content of the following
proposition, which is taken from [GCRdF85], Thm. V.1.12.. Since this proposition will also be
important in subsequent chapters we give the full proof here.

Proposition 2.5.3. Let T € L(X) be dominated by the positive operator S : X — X, i.e.
|Tx| < S|z| for all x € X. Then T* € L(X(E)) with |T¥|| < ||S|| and [TEF|g < S|F|g for all
FeX(E).

m
Proof. Assume first F' € X®F, so there exist m € Nand z € X™, v € E™ such that F' = ) z;®
k=1
vg. Choose a countable subset W C E’ that is norming for the linear span ({vg |k € N<p,}).

Then for p-a.e. w € Q the following holds:

TPFlp(w) = Hfﬁ(Tw)(w)-kaEzjug
k=1 €

¢ (Z@xk)(w) k>

k=1

= sup
peW

m

k=1
S| sup o) Tk
g

= 5| gjk @ o) @) = (SIFlE)@).

IN
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Now let Fy € X(E) be arbitrary. Then one can choose a sequence F € (X ® E)N with F,, — F,
for n — oo. By possibly choosing a subsequence we can w.l.o.g. assume Fj,(w) — Fy(w) and
(SF,)(w) — (SFy)(w) for p-a.e. w € €, hence we obtain

TP Fo|p(w) = lim |TPFy|p(w) < lim (S|F,[p)(w) = (S|Folp)(w)
n—oo n—oo
for p-a.e. w € Q. Hence [T¥Fy|p € X and

1T Follx(m) = IIT" Folellx < IS1Fo|elx < ISIHFolellx = IS Follx ).

We obtain immediately the following

Corollary 2.5.4. Let T C L(X), and let S : X — X be a positive operator such that |T f| < S|f]
forall T eT,x e X. Then

| sup T2 Fli] < IS |Fllxqe, for all F e X(E).
€

Proof. Let F € X(FE), then by Proposition 2.5.3 we have suppcr |[TPF|gp < S|Fg|, hence also
| suprer ITPFle| x < ISIFlpllx < ISIIFIlx ). O

Before we present more detailed examples, we will outline the general approach. We will usually
consider an operator in two spaces X(Ep) and X;(E1). Although the following examples are just
vector-valued extension of the examples in 2.3.6, we cannot just naively extend the angle wys(A)
derived there. Instead of this, we will choose a "good" space X(Ep), where we typically assume
that Ey is an UMD-space or even a Hilbert-space, such that the extended operator A0 has nice
properties, as e.g. BIP or even an H*-calculus, which lead to an Hj°-maximal function with an
angle wyy (AF0) < 7/2. On the other end of the scala we choose an arbitrary space F; and get
maximal estimates by extending the scalar estimates with the aid of positivity or domination.
For this reason, we will assume that the operator A generates a Cp-semigroup (73):>0 such that
one of the following (scalar) maximal estimates hold:

t
| sup 1/ T ds||| < Clallx, or (2.5.22)
t>0 t 0
[ sup |Tyz||| < C |z x. (2.5.23)
t>0

This estimate will be extended by Corollary 2.5.4 to the corresponding maximal estimates for
AE1 | hence by Proposition 2.2.3 we obtain that A®! has a bounded Hg°-maximal function
with wyr(AF1) < 7/2. Now assume that (Ep, E1) is an interpolation couple, § € (0,1) and
E := [Ey, E1]g is the complex interpolation space. Then AP has an H§°-maximal function in
Xo(E) with wps(AF) < m/2, hence we can also apply Corollary 2.3.3 in these spaces.
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Examples 2.5.5. (a) Generators of positive contraction semigroups in some L?.

Let X = LP for some 1 < p < +00 and A be a sectorial operator in X that generates a Cp-
semigroup of positive contractions (T});>0 on LP(€2). Then the estimate (2.5.22) always holds,
cf. [Fe98|, Theorem 5.4.3. Now let E be an arbitrary Banach space, then the semigroup and the
maximal estimate (2.5.22) extend to LP(E) by positivity, hence the vector-valued extension A%
has a bounded maximal function with wys(A¥) < /2.

(b) The Laplace Operator.

Let @ =R% 1 <p < 4+ooand A := —A in X := LP := LP(R?). Then A is the generator of
an analytic positive contraction Cop-semigroup (73)¢>0 in X, and the estimate (2.5.23) is fulfilled
(this is obtain by estimating against the Hardy-Littlewood maximal function).? Now let Ey be
an UMD-space and E; be an arbitrary Banach space, then A0 has a bounded H*-calculus with
wpeo (AF0) = 0 (this is an easy consequence of the vector-valued Mikhlin multiplier theorem, cf.
[KW04] Example 10.2 b)), hence wys(AF0) = wye(AF0) = 0. By the preceding arguments we
have wyr(AFY) < 7/2.

Now assume that (Ey, F1) is an interpolation couple, 6 € (0,1) and E := [Ey, E1]p is the complex
interpolation space, then A has an H$°-maximal function with wys(A¥) < 07/2 < /2.

Moreover it is well known that the semigroup (e®);> is positive in L? and ez < Mz for all
x € LP with x > 0, where M is the Hardy-Littlewood maximal operator. Hence

E E

| sup e alz]], < [|sup e [ele], < [Mlalelly S lellios) for all « € LP(E),
t>0 t>0

since M is bounded in LP. Hence we can apply Theorem 2.3.1 and obtain

Proposition 2.5.6. Let (Ey, E1) be an interpolation couple, where Ey is an UMD-space. Let
0 € (0,1) and E := [Eo, E1]s. Then the negative Laplace operator —A¥ in LP(E) has a bounded
mazimal function with wy (—AF) < 0n/2. Moreover, for all o > 0r/2, § € [0,0 — 07/2) and
f € &(X,) there is a constant C > 0 such that the following maximal estimate holds:

| su%) |f(—zAE)w\EHp < Cllxllppg) for allz € LP(E). (2.5.24)
FASPIF

O

In particular the assumptions of Corollary 2.3.3 are satisfied, hence —AF in LP(E) fulfills the
equivalent assertions (1)-(6) from Corollary 2.3.3.

(c) Generators of L!-L>-contractive semigroups.

Now we assume more generally that A is a sectorial operator in L? that generates an L!-L%°-
contractive semigroup, i.e. (1})>0 is L9-contractive for all ¢ € [1, +00]. Then we get the following
generalization of |[Ta09], Theorem 1.5:

20f course, also (2.5.22) is fulfilled, this follows by example (a), on the other hand it is a simple consequence
of (2.5.23) by the triangle inequality.
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Proposition 2.5.7. Let A be a sectorial operator in L?(2) with wy := w(A) < 7/2 such that
the generated semigroup (T'(t))e>0 is L9-contractive for all g € [1,+00]. Let (H, E) be an inter-
polation couple, where H is a Hilbert space and E an arbitrary Banach space, let § € (0,1) and
Y :=[H,E)y. Let 1 < p < +oo such that [2/p—1] < 0 and 0 < § < (§ —wo)(1 — ). Then
(T(t))ez0 extends to an analytic contraction semigroup (T)Y (2))zexy on LP(Y), and there is a
C > 0 such that

Vee LP(Y) : H sug]? ]T;(z):r:|yHLp < Cllzl ey (2.5.25)
zEL§

We note that in [Ta09]|, Theorem 1.5, the assumptions are stronger: the Banach space E has to
be an UMD-space, and moreover A is assumed to be self-adjoint.

On the other hand, the formulation of Theorem 1.5 from [Ta09] is a little more general in the
sense that not only complex interpolation spaces Y = [H, E]y are considered, but more generally
closed subquotients of the complex interpolation space [H, E]g, i.e. quotient spaces Y = Y /Y7,
where Y] < Yy < [H, E]p are closed subspaces. In fact, this is a corollary, once the maximal
estimate (2.5.25) is shown for the space [H, Elg, and the proof only relies on the special situation
that the semigroup T in the vector-valued space is a tensor extension of a semigroup 7T in the
scalar-valued space. Thus the same arguments also work in our situations, and in Proposition
2.5.7 we could also take Y just to be a Banach spaces isomorphic to a closed subquotient of

[H, Elp.

For the proof of Proposition 2.5.7 we will need the following density property.

Lemma 2.5.8. Let X, X1 be Banach function spaces over Q and (Eg, E1) be an interpolation
couple. Then the set of step functions S(2, Eg N E1) C (Xo N X1) ® (Eg N E1) is dense in
X0<E0> N Xl(El)

Proof. We will prove the claim in three steps.

1. Choose an increasing sequence (2, )nen of measurable subsets of Q of finite measure with
Unen O = Q. Let 2 € Xo(Ep) N X1(E1) and define z,, := 2 1q, for each n € N. Then z, — z
pointwise a.e. for n — oo in both spaces Fj,j = 0,1, and |z,|g, < |z| for all n € N, hence
xn — x for n — oo in both spaces X;(E;),j = 0,1. By this we have shown: the subspace of
functions supported in a set of finite measure is dense in Xo(Eg) N X1 (E1).

2. Now let z € Xo(Ep) N X1(E1) where Qg := supp(x) has finite measure. We aim to define z,,
in a way such that |z,|g, V |zy|p, < C), and z, — x in both spaces X;(E;),j = 0,1. That will
imply that the subspace of functions supported in a set of finite measure and essentially bounded
in Ey N Eq is dense. For this define

n
=—FA 1> -zl for all n € N.
o (!xlEo Vz|g, © ey Vel oo} T AT

Then |v,|p;, < |z|g, An for all n € N,j = 0,1, and if w € {|z|g, V |z[p, < +oo}, then
Zn(w) = z(w) for all n > ||z(w)||g, V |z(w)| & , hence z,(w) — x(w) for n — oo in Ey N Ej.
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3. Now let finally = € Xo(Eo) N X1(E1)NL>¥(EpN Ey), where g := supp(z) has finite measure.
We can now construct step functions that approximate x pointwise a.e. as it is done in [Ca64],
Section 33.6, p.171f, and a majorant is given by ||z Loc(gynE,) - Lo, for j =0, 1. O

Proof of Proposition 2.5.7. First we note that the L%-contractivity for all ¢ € [1,+oc] has two
immediate consequences:

1. The analytic contraction Cp-semigroup (T2(t))t>0 generated by As := A in L?(2) can be
extrapolated to a Co-semigroup (75(t))¢>0 of contractions in each L(Q2) for 1 < ¢ < 400, and
the family of semigroups (77)qe1,+00) is consistent.

2. The semigroup (T'(t))s>0 is dominated by a strongly measurable positive semigroup (St)¢>0
which is contractive in each space LP,p € [1,4+00), i.e. |T(t)x| < S|z| for all z € L%t > 0 (cf.
[Kr85] or [Ta09], Theorem 3.1 for a detailed exposition).

Hence, for each Banach space Z and ¢ € [1,400), the operator A, has a well-defined sectorial
tensor extension AZ on L9(2, Z) with w(AZ) < 7 /2, since it is the generator of the strongly con-
tinuous contraction semigroup 1,7 = (T (t)):>0. Since [2/p—1| < 6, we can choose a q € (1, +00)
with % =(1-0)5+ 9%. Then the resolvents of the operators A and AqE are consistent as well,
since the space (L2 N L) ® (H N E) is dense in L*(Q, H) N LI(Q, E).

The dominating semigroup (.St )¢>¢ fulfills the maximal estimate (2.5.22) by the classical Dunford-
Hopf ergodic theorem (cf. [DS58], Thm. VIIL.7.7), hence by Corollary 2.5.4 this maximal esti-
mate carries over to the vector-valued extension Af , and then finally by Proposition 2.2.3 we
obtain wyr(AY) < m/2. On the other hand, by Remark 2.5.2 (1) the operator A#l is sectorial
with w(A%) = w(As) < 7/2, and since A is the generator of an analytic Cp-semigroup of
contractions in the Hilbert space L2($2, H), by [KW04], Cor. 10.12 we obtain that A has an

H>-calculus with optimal angle, hence wyy(A%) = Wy (Al) = w(AY) = wy < 7/2.

Now we can interpolate the Hy°-maximal function with Proposition 2.4.1 and obtain that the
operator AZ has a bounded maximal function with

wir(A)) < (1= 0)war (AF) + 0wpr (AY) < (1= O)wo + Om/2 < /2.

In particular, the semigroup Tg/ is analytic, and by the same argument as given for Af above
we see that also A},f satisfies the maximal estimate (2.2.9), hence the assumptions of Corollary
2.3.3 are fulfilled, and we obtain the maximal estimate (2.5.25), since

§ < (g—wo)(l_e)zﬁ—(l—e)wo—e < Z (A,

T
2 2

o9

O

The class of spaces [H, E]p occurring in Proposition 2.5.7 are investigated by Pisier in [Pi79],
where he calls these spaces #-Hilbertian and asks for general characterizations of 6-Hilbertian
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spaces. A partial answer is given for Banach function spaces by [Pi79], Theorem 2.3, which
states that a Banach lattice Y is order-isomorphic to a Banach function space [H, E]y, where
H, E are Banach function spaces and H is in addition a Hilbert space, if and only if Y is p-
convex and p/-concave with corresponding constants M) (V) = M (Y) =1, where p > 1 and
1/p=(1—-0)/1+ 60/2 (observe that this implies 1 < p < 2 < p’ < +00). Further investigations
of this topic can be found in [Pi08|.



Chapter 3

R s-boundedness and Rs-sectorial
operators

3.1 'R,-boundedness

In this section we introduce the notion of Rs-boundedness, which is the central technical tool
in this chapter. The concept of Rs-boundedness in LP-spaces is a subject of classical harmonic
analysis, although it is not denoted in this way. It is mainly considered in the framework of vector-
valued singular integrals, cf. e.g. the monographs [St93], [GCRAF85] or [Gr04]. At the end of
this section we will give some examples that are based on results of classical harmonic analysis,
in particular we will give more bibliographical references. The explicit notion of Rs-boundedness
in LP-spaces was introduced bei Lutz Weis in [We0la|, where also elementary properties are
introduced. It was used there and in the sequel e.g. in [BK02| to show maximal regularity of
certain sectorial operators. There the central fact is used that in LP-spaces Rs-boundedness is
equivalent to R-boundedness if 1 < p < 400 (this is shown in a slightly more general version in
Remark 3.1.7), which in turn is a central tool in dealing with the question of maximal regularity.
In fact, many of the assertions we present in this section are already indicated in [We0la|, or
they are variants of corresponding assertions for R-boundedness as shown in [KWO04|, Chapter
2.

In this section, let (€2, u), ((2, i) be o-finite measure space and X,Y be complex Banach function
spaces over (€, u) and ((~2, 1), respectively, with absolute continuous norm, and let s € [1,4o0].
Our standard examples will be the spaces LP := LP(u,C) with p € [1,400). We note that
the basic ideas and definitions presented in this chapter easily generalize to the more general
setting of an abstract Banach lattice using the Krivine-calculus (cf. e.g. |[LT96], Section II.1.d).
Nevertheless, in view of our later applications we will need stronger assumptions on the Banach
lattices which make it natural to consider Banach function spaces, and doing so we can avoid

non-essential technical difficulties.

Definition 3.1.1 (Rs-boundedness). Let 7 C L£(X,Y). The set 7 is called Rs-bounded, if there

67
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exists a constant C' € R+, such that for alln e N7 € 7" and x € X™:

- s 1/s n R 1/s )
| i) 7|, <o (S rar) 7 s <+, (3.1.1)
J=1 j=1
H sup |Tj:cj]H <C H sup \xj\H , if s = o0. (3.1.2)
J€N<, Y jeN<, X

The infimum of all such bounds C is called the Rs-bound of 7 and denoted by Rs(7). If
T € L(X,Y), we say that T" is Rs-bounded if {T'} is Rs-bounded and let R4(T') := Rs({T'}).

Observe that taking n = 1 in (3.1.1) immediately yields the following

Remark 3.1.2. Let T C L(X,Y) be Rs-bounded, then T C L(X,Y), and T is norm-bounded
with supper | T < Rs(7T).

Moreover, the following is a direct consequence of the definition: If 7 C £L(X,Y) and C' > 0,
then 7 is Rs-bounded with R4(7) < C'if and only if 7y is Rs-bounded with R4(7;) < C for all
finite subsets 7y C 7, and in this case

Rs(T) =sup{Rs(7p) | 7o C 7T finite}.

We note that in the sequel we will be faced with densely defined operators A: X D D(A) —» Y

such that A is R,-bounded. In this situation we will also simply say that A is R-bounded and
define Rs(A) := Rs({A}) := Rs({A}).

If one considers z € X™ as an element of M (2, C"), we have

n 1/s
(32 1sl) 7|, = Nzl and || sup [ = llzlx o),
j=1 JEN

<n

respectively. So T' € 7" can be identified with the diagonal operator

T:X"—Y" 2w (Tjz))jen,,

which can be considered as a bounded operator X (¢;) — Y (£7). With this notation the set 7 is
Rs-bounded if and only if the set of operators

{T|TeTmneN}C |JL(X(). V()
neN

is uniformly bounded.

Remark 3.1.3. Since X, Y have the Fatou property, we can replace the finite sums in (3.1.1) in
the definition of Rs-boundedness by infinite series and the suprema in (3.1.2) by suprema over
all N. In particular, a single operator T € L(X,Y) is Rs-bounded if and only if the diagonal
operator

(xn)nEN = (Txn)neN

induces a bounded operator Ty € L(X (65),Y (%)), and in this case Ry(T) = ||TS||L(X(55)7y(Zs)),
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Definition/Proposition 3.1.4. Let R{L(X,Y) := {T € L(X,Y)|T is Rs-bounded}. Then
RsL(X,Y), endowed with the norm R(-), is a Banach space.

Proof. Let (T))nen € RsL(X,Y)N such that R(T}, —T},) — 0 for n,m — oco. Since || - lzxy) <
Rs(:) there is a Ty € L(X,Y) such that ||T;, — Tol/1(x,y) — O for n — oo. We have to show that

(i) To € RsL(X,Y),
(ii) Rs(T), — T) — 0 for n — oc.

By our assumption we have (|15, — Tinll1(x (¢5),v (¢s)) — 0 for m,n — oo (we drop the lower index
s for operators in this proof to hold notations concise), so in particular

C:= sup R
ne

(i) Let m € N and z1,...,z, € X, then for each n € N we have

()], < (S1er)”
j=1
and moreover,

IS5 (S ], = (00, <55 5,
Jj= j= =

=1

Y

X

IN

> I(Tn = T)zjlly — 0 if n — oo,
j=1
hence

m s 1/s . m s 1/s n s 1/s

| (2 imast) 7, = o (S msr) ™, <€ (X test)

7j=1 7=1 7j=1
(with the usual modifications if s = +00). So T" is Rs-bounded with R4(T") < C.
(ii) We will again only consider the case s < +o00, the case s = +oo follows easily by standard
modifications. Let € > 0 and choose ng € N such that ||(T =Tl Lexes),yes)) < €/3 for all

k,n >mng. Let n > ng and z € X(£°) with |[z[ xs) < 1. By the dominated convergence theorem
we have

(S ) [ =0 tm o

hence we can choose an m € N>, such that

20l =20 (3 ol <
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Define 7 € X (¢%) by

- 0 if j <m,
=
J Ty if j > m.

Finally choose k € N>, such that (m — 1)||(Ty — T)xj|ly < ¢/3 for all j =1,...,m, then we
obtain

|(To = Dallyey < 1Tn = To)allye) + 1T = Tallyey
——— 0 /s

< T = T ey vy Hzllx<es>+H(Z @~ myst)
m—1 1/s 00 /s

< Rol =10+ | (218 = 7r?) )+ (3 I ms)
j=1 j=m

< <3t ST Tyl + (T = 1)y g

7=1
< ef3+¢/3+2C ]y <2/3+¢/3=c¢.

O]

If the spaces X,Y have appropriate concavity and convexity properties, the norm-boundedness

of a set of operators also implies the Rs-boundedness for a certain range of s:

Remark 3.1.5. Let 7 C L(X,Y). Let X be p-concave and Y be g-convex for some 1 < p <
q < +o0, and let T be norm-bounded. Then T is Rs-bounded for all s € [p,q|. In particular, if
X =LP)Y = L7 and T is norm-bounded, then T is Rs-bounded for all s € [p,q].

Proof. Let s € [p,q] and define C := suppcs ||T|| < +00. Let n € N,T € 7" and « € X", then

Tzl < MOE)|Tallw ) = M) [Tz, < MOQ)[(C llslxll,

= M) O allgx) < CMDY) M (X) - |2l xe).

Here we used the fact that X is also s-concave and Y is s-convex since p < s < ¢, cf. Proposition
1.6.15, and the supplementary assertions follows from the fact that L? is always p-concave and
p-convex, cf. Example 1.6.17 (a). O

Moreover, the union of Rs-bounded sets is again Rs-bounded, if the Rs-norms are summable:

Remark 3.1.6. Let T C Pot(L(X,Y)) such that ) ;. Rs(T) < +o0, then also |JT is Rs-
bounded, and Rs(JT) < D 7reacRs(T).

Proof. Define C := Y 7.+ Rs(T) < 400. Let n € Nz € X" and T € (|JT)". Choose a finite
subset Ty C ¥ and an injective mapping J : Ty — Pot(N<,,) such that J(%Ty) is a partition of
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N<,, and T(J(T)) C 7 for all 7 € %y. Then the triangle inequality in Y (£3) yields

(S mer) = 1S Z me) ], < X (S mer) ],

TE% jEJT %o JEJT

OIS ) =el(S )

IA

X'
TET()

O
We recall the related definition of R-boundedness from Section 1.3: A set 7 C L(X,Y) is called
R-bounded, if there exists a constant C' € R~q, such that for alln € N7 € 7" and x € X™:

n n
E‘erj(g)j}l'j‘XéCE‘ZlTj@l‘j‘X, (313)
J= J=

where (r;);en is any sequence of independent symmetric 1-valued, i.e. Bernoulli-distributed,
random variables on some probability space, and E denotes the expectation with respect to
the corresponding probability measure. We usually choose the Rademacher functions r;(t) =
sgnsin(2/nt), 7 € N on [0, 1].

Then with Proposition 1.6.21 we obtain the following close relation between R-boundedness and
Ro-boundedness as already indicated in the introduction of this section.

Remark 3.1.7. Let T C L(X,Y).

(1) If X is r-concave for some r < 400, then R-boundedness of T implies that T is Ro-
bounded,

(2) IfY isr-concave for somer < +00, then Ra-boundedness of T implies that T is R-bounded.

In particular, if both X and Y are r-concave for some r < 400, then T is R-bounded if and only
if T is Re-bounded. O

We will now turn to some persistence properties of Rs-boundedness that correspond to persis-
tence properties of R-boundedness, cf. e.g. [KWO04], Section 2.

Proposition 3.1.8. Let S C L(X,Y) be Rs-bounded.

(1) If T C L(X,Y) is Rs-bounded, then the set S+T = {S+T|S € S,T € T} is Rs-bounded,

and

Re(S+T) < Re(S) + R(T).

(2) If V is another Banach function space and T C L(V,X) is Rs-bounded, then the set
ST :={ST|S €S8, T €T} is Rs-bounded with

Ro(ST) < Ro(S) - Rs(T).
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Proof. This follows immediately by properties of the norm in the spaces X (¢5),Y (¢5),V (¢3). O

The following convexity property is an important tool and is again a variant of a corresponding
result for R-bounded operators, cf. e.g. [KWO04|, Theorem 2.13.

Proposition 3.1.9. Let T C L(X,Y) be Rs-bounded. Then the strong closure of the absolute
convex hull aco®(7T) C L(X,Y) is Rs-bounded with Rs(aco®(7)) = Rs(T).

Proof. By similar arguments as used in the proof of Proposition 3.1.4 the strong closure 7" is
again Rs-bounded with R4(T") < Rs(7T), and we clearly have [(ejzi)illyes) < 1zl xes) for
x = (xj); € X(£;), |oj] <1, so0 it remains to show that the convex hull co(7) is Rs-bounded
with Rs(co(7)) = Rs(7). Let S € co(T)" = co(T"), then S = 37", M T®) with suitable
TH) € 77 A € 0,1] with 332, A\x = 1. Hence

m

1Sellvis) = D MT®a]y ) < S MIT®allyegy < (3 M) Ro(T)lll e
k=1 k=1 k=1

= Rs(T)HfUHX(z;)'
O

For every o-finite measure space (J, v) and strongly measurable S : J — L(X,Y) and a € L(J),
define an operator T, s € L(X,Y’) by

To st = / a(t)S(t)xdv(t) forall z € X.
J

By approximation, it follows that T, ¢ € aco®(S(J)) if ||la||,: = 1. In this situation, we get

Corollary 3.1.10. Let 7 C L(X,Y) be Rs-bounded, (J,v) be a o-finite measure space and
R > 0. Then the set

S:={T,s|S5:J— L(X,Y) strongly measurable with S(J) C T,a € Li(J) with ||a||r, < R}
is Rs-bounded with Rs(S) < RR(T). O

This is proven in [KWO04], Corollary 2.14 for R-boundedness, and using Proposition 3.1.9 the
proof carries over to our situation. Again in view of the corresponding results in [KW04| we
give some examples for an application of Corollary 3.1.10 that are taken from [KW04], Examples
2.15, 2.16 and can be proven in exactly the same way as it is done there using Corollary 3.1.10.

Example 3.1.11. Let S : [0, +00) — L(X,Y) be strongly continuous such that S := S([0, +00))
is Rs-bounded, and define the Laplace transforms

S(\)z = / e MS(t)xdt for all z € X,Re(\) > 0.
0

Then the set 7, := {/\g()\) | A € ¥} is Rs-bounded for all w € [0,7/2) with Rs(7) < Rs(S).

Example 3.1.12. Let 0 € (0,7] and w € [0,0). Let S : 3, — L(X,Y) be analytic such that
S := 5(8%,\{0}) is Rs-bounded. Then
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(a) 7 :=5(2,) is Rs-bounded with R4(7) < R4(S),

(b) For each w' € [0,w) there is a constant C,, > 0 (independent of S) such that 7, :=
{AS’(N) | Bor} is Re-bounded with R4(Z,) < Cyy Rs(S).

We recall from Section 1.6 some notations: If J C R is an interval and x : J — X is A-measurable,
then by the continuous embedding X < M (u) we can find a A\ ® p-measurable representative
Z:J x Q — C and hence identify z also with the measurable function w — Z(-,w). In this
manner we can e.g. deal with the question if x € X (L3(J)). If there is no risk of confusion, we
will work with this identification in the sequel without explicitly mentioning it.

With the convergence and approximation claims from Subsection 1.6.4 we obtain the following
continuous version of Rs-boundedness, which is again a variant of a corresponding result for
R-boundedness from [We0Ola|, Lemma 4 a).

Proposition 3.1.13. Let s € [1,+00). Let J C R be a non-trivial interval and S : J — L(X,Y)
be strongly measurable such that S(J) is Rs-bounded. Then for all measurable x : J — X we

H /IS Isdt /s YSRS(S(J))'“(/]|x(t)]5dt>l/s"X. (3.1.4)

In other words, the operator S extends to a continuous diagonal operator (S(t))ie.s from X (L*(J))
to Y (L*(J)).

Proof. Let C :=Rs(S(J)). We first consider z € S(J,v) ® S(Q, ). Let x = ZZ:1 ap Ly, @14,
be a disjoint representation of z, where I, C J and A C  are bounded sets and the I are

intervals such that Jy := Uz:1 I}, is a finite interval. For each n € N let D,, := {D,, ;| j € N<on}
be a "dyadic" decomposition of Jy, i.e each D, ; has length ¢,, := |D,, ;| = ‘ | for all 7 € N<on.

have

Moreover we define the approximation S,, : J — L(X,Y") by

on

1
Sn()€ :=E(S(-)¢|Dy) Z Ip, ;(:) Sn;& where Sy ;& = Dol /D S(t)Edt
n,j) n,J

for all £ € X, n € N. Then in particular we have S, ; € aco®(S(J)) for all n € N, j € Ncon. We
have the following estimate
s 1/s
dt>

/s () at)’ H Z/M\Zak 17, (£)(Sa() L)
= (Z/ Z’%!s 17, () [Sn(t) La, ’Sdt)l/s

Y

Dnj =1 Yy
d 1/s
= (ZZ/ 17, (8) [Sn.5(ar La,)® dt>
k=1 j5=1 Y
d 1/s 1/s
- (ZDDnmIk 18ns(an 1)1 H(ZZ\SM ata)l) |
k=1 j=1 k=1 j=1 Y

=Tk
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where we used that we had chosen a disjoint representation. Since aco®(S(J)) is still Rs-bounded
by Proposition 3.1.9 with Rs-constant not greater than C, we obtain

(fsomray”], = e|(EErwarar”],

k=1 j=1
Moreover the same calculations as above lead to

Y

2m 1/s
<ZZ|% ap La, [° H H( Z\Dn,y‘ﬂfﬂ) o La, !s>
k=1 j=1 =1 X
d 1/s 1/s
= <Z|Ik||0¢k|s ]lAk> H< /]l - Jogl® 14, dt)
—JJ X
d s 1/s
= /Z’ak’ ﬂ[k ]lAk dt) H ‘( ‘Zak]ljk ]lAk‘ dt) H
S k=1 I k=1 X
1/s
= ([ ora)”] .
J X
hence putting all together we obtain
1/s 1/s
|Sn(t)x(t)]® dt < C H / |x(t)]° dt H .
v N MR (FACION §
Further we have
d
Sp(t)z(t) — S(t)z(t) = Z o 1, () ((Sn(t) — S(¢) 14, ),
k=1
hence
s 1/s d s s 1/s
([ 18:0020) = S0P at) = (3l /J 1, (8) [(Sn(t) = S(8)) 1a, | dt)
k=1

ol ([ 100)1(8ut0) = 50 L, ") "

IN
&TEM&

IN

ya< \S ) 1a, St)]lAk‘sdt>l/S—>0

k=1

pointwise p-a.e. for n — oo (this can easily be seen by considering suitable representatives
pointwise a.e. and using the well known fact that E(F|D,) — E(F|D) = F pointwise a.e. and
in L*(Jo,dt/|Jo|) for F € L*(Jo,dt/|Jo|), where Dy is the o-algebra generated by |J,,cy Pn, cf.
e.g. |[Ka97|, Theorem 6.23 in combination with Corollary 6.22 and an LP-version of Lemma 5.5).
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So the Fatou property of Y yields

e
‘ /|S O dt)

dm ([ 1s.0aora)”|
‘ /|S (0) dt) e
e ],

Now let z : J — L(X,Y) be an arbitrary measurable function such that ||z xs.s) < +oo.

Y

IN

lim inf
n—oo

Y

IN

By Lemma 1.6.25 we can choose a sequence (2, )nen € (S(J,v) ® S(Q, u))N with the following
properties:

1. zp(t,w) — z(t,w) for n — oo for (A ®@ p)-a.e. (t,w) € J x Q,
2. zp(t) — x(t) in X for n — oo for p-a.e. t € J,
3. Tminf [z x(zo()) < 2] x (L0 ()

We apply Lemma 1.6.24 to the measurable functions ¢ +— S(t)x(t), S(t)x,(t) and obtain that we
can w.l.o.g. (by possibly choosing a subsequence) assume that (S(-)z,(-))(--) — (S()y(-))(-)
A ® p-a.e. for n — oco. Using again the Fatou property yields finally

/\S 1) di) /S (/ lim |S(0)z ()|sdt>1/s

Y

n—oo

1/s
< liminf</ |S(t)xn(t)|sdt) < liminf ’ /!S T (t lsdt>
1/s /s
< Climinf (/\xn(t)\sdt) ‘ gc-H /|x(t)\sdt H .
J X J X

O]

In the case s = 2 the converse conclusion of Proposition 3.1.4 is also true if X,Y are r-concave
for some r < +00, as in this case Rs-boundedness is equivalent to R-boundedness, a proof can
be found in [We0la], 4a).

We obtain an analogous result for s = 400, in this case we can of course drop the measurability
assumptions on S.

Proposition 3.1.14. Let J be a non-empty set and S : J — L(X,Y) such that S(J) is Reo-
bounded. Then for all mappings x : J — X we have

< Roo(S(J)) - || ilglg\a:(t) (3.1.5)

llx-

Isup 1S@=(0)1]y

Proof. Let C' := Roo(S(J)), and let x : J — X. Then by Proposition 1.6.2 we can choose
a countable subset Jy € J such that sup,c; [S(t)z(t)| = sup;e, |S(t)z(t)]. Let (tj)ren be an
enumeration of Jy, then for all n € N we obtain

H sup |S(t))x( |HY<C' H sup | (¢

J <n <n

Mlx



3. Rs-BOUNDEDNESS AND R¢-SECTORIAL OPERATORS
3.1. Rs-boundedness 76

and the Fatou property yields

[supis@=@llly = llsup1S@z@llly = lim sw 1)),
jEN
< 11nrr_1)£fH zugn 1S (t)z ()] < C hmme zggn\x ]|
< O flsuplatlly < € llsupla)lx-

O]

Remark 3.1.15. For later purpose we note again that there are, of course, also discrete versions
of Propositions 3.1.13, 3.1.14 which follow immediately with the Fatou property. For, e.g., s €
[1,+00) and (S;)jez € L(X,Y)? such that S := {S;|j € Z} is Rs-bounded, we have for all
(z5)jez € X%

. (3.1.6)
: - X
JEL JEZ
Further standard methods to obtain Rs-boundedness are by means of interpolation and duality.
Recall that a set 7 of operators is Rs-bounded if and only if the diagonal operators T" for T €
7",n € N induce uniformly bounded operators from X (¢5) to Y (¢). By complex interpolation
we obtain [X (£50), X (£51)]g = X (¢59) (with equal norms) where i =(1- 9)% + 9% (for more
details cf. Section 2.4). This leads immediately to the following

Proposition 3.1.16. Let 1 < 5o < s1 < oo. If T C L(X,Y) is Rs;-bounded for j = 1,2, then
T is Rs-bounded for all s € [sg, s1]. O

In the special case X =Y = LP, a norm-bounded set 7 C X is always Rp-bounded, as we have
seen in Remark 3.1.5. As there are various results for R-boundedness of operators, sometimes
the following remark is helpful.

Corollary 3.1.17. Let X = LP and T C L(X) be R-bounded. Then T is Rs-bounded for all
s€2ADp,2VD]. O

In particular, finite operator sets in LP are always Rs-bounded for all s € [2 A p,2 V p], since
the latter is true for R-boundedness. Hence it is noteworthy that in spite of these special cases,
finitely many or even a single operator need not to be Rs-bounded, even in the Hilbert space
case.

Example 3.1.18. Consider X =Y = L?([0,1]). Let r;(¢) := sgn(sin(2/xt)) for all t € [0,1],j €
N be the Rademacher functions. Then (r;);en is an orthonormal system in X. Let us further
define I; := (277,277+1] f;(t) := 29/2 1y, for all j € N, then it is easily checked that (f;);en is
an orthonormal system in X as well. For all n € N, we have

IS, = 1 m0)”

. Hnl/s Lo, HL2 = n'/*.
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Because the f; have disjoint supports, we have on the other hand

IS, = (f (S = (S [ )"
= <§/0 |fj|2>1/2 _ (ilnfjrig)m _

As the (75);,(f;); are orthonormal sequences, we can construct operators T',.S on X with the

property T'f; = rj and Sr; = f; for all j € N (for example by defining 7', S on the f; ,r;
respectively, an letting them 0 on the orthogonal complement). Then the above equalities show
that T is not Rs-bounded in case s < 2 and S is not Rs-bounded in case s > 2.

We now have a look at duality. Recall that the dual space X’ can be identified with the associated
space X7 of X (cf. Subsection 1.6.2) since X has absolute continuous norm, and for s € [1, +00)
we have in this sense (X (¢%))" = X’(¢*") by Theorem 1.6.12 since £* has (RNP) if s € [1,+00).
Moreover, for T € L(X,Y) we identify its dual operator 7" with the corresponding operator
T':Y# — X#. Then we obtain the following duality result.

Proposition 3.1.19. Let s € [1,+00) and T C L(X) be Rs-bounded. Then T':={T"|T € T}
is Ry -bounded in X'. O

We note that in general the Banach function space X’ does not have absolute continuous norm
and hence does not fit in our framework. So if we use duality results like Proposition 3.1.19, we
usually require X to be reflexive, so in turn X’ has also absolute continuous norm, cf. Theorem
1.6.12.

We will give some more classical criteria to check R¢-boundedness for concrete operators. Recall
that a linear operator S : X — Y is called positive, if x > 0 implies Sz > 0 for all x € X, and
positive operators are always bounded, cf. Section 2.5. Then we obtain the following criterion
for Rs-boundedness, which we prove in detail for the sake of completeness.

Proposition 3.1.20. Let 7T C L(X,Y) and S : X — Y be a positive operator that dominates
T, ie |Tx| < Slx| for all T € T,z € X. Then T is Rs-bounded with Rs(T) < ||S|| for all
s € [1,400].

Proof. Choose r € [1,400] with 1/s+1/r =1. Let n € Nand T' € 7",z € Y™. Then we have
by duality

(3 masl)
j=1

n n n
sup Y |aTja;| < sup Y Slajz,| = sup S(Z!aﬁjl)

a€Bm = a€Bm sy Q€L j=1
n n 1/s
< S( sup Z!ay‘l‘ﬂ) ZS(Z!%‘!S> :
OlGBg?y’} ]:1 ]:1

hence

(3 ) < (o) | st (S )]
j=1 j=1 Jj=1
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(with the usual modification if s = +00). O

In fact, the proof is based on a simplified version of the general result that positive operators
S : X — Y always have bounded extensions S ® Idg in the vector-valued spaces X (E) — Y (E)
(cf. Proposition 2.5.3), and the obvious, but useful fact, that Rs-boundedness is inherited by
domination in the following sense.

Remark 3.1.21. Let 7,8 C L(X,Y) such that for oll T € T there is an S € S such that
|Tx| < |Sx| for allz € X. Then T is Rs-bounded if S is Rs-bounded. O

At the end of this section we have a glance at the concrete situation where X = LP(2),Y = Li(Q)
based on classical Calderén-Zygmund theory. More involved examples in this framework will be
given in Section 3.5.

We assume that (2, d) is a metric space and p is a o-finite regular Borel measure on 2 such that
(Q,d, 1) is a space of homogeneous type in the sense of Coifman and Weiss, cf. [CWT1]|, [CWT77|,
i.e. there is a constant C7; > 1 such that

w(B(x,2r)) < Ciyu(B(x,r)) forall z € Q,r>0. (3.1.7)
From (3.1.7) one can deduce the existence of some D > 0 and Cp > 1 such that
w(B(z,\r)) < Cp AP u(B(z,r)) for all z € Q,7 >0,\ > 1. (3.1.8)

One central issue in this situation is the Fefferman-Stein-inequality, which states Rs-boundedness
of the (uncentered) Hardy-Littlewood maximal operator, which is defined as

1
(M f)(x) := sup {M(B) /B |f| du ‘ B C Qis a ball with z € B} for all f € L},.(Q),z € .

The following classical theorem holds.

Theorem 3.1.22 (Fefferman-Stein). Let p € (1,400) and s € (1,+0o0], then the sublinear
operator M is Rs-bounded in LP(S2).

This originates in the paper [FS71| for the case Q@ = R Alternative proofs for this special
situation can be found in [GCRAF85|, Corollary V.4.3 or in |Gr04], Theorem 4.4.6 . The gener-
alization on spaces of homogeneous type can be found in [GLY07] , Theorem 1.2. We will give
more details about the proof of Theorem 3.1.22 in the sequel after the following examples.

The Rs-boundedness of the Hardy-Littlewood maximal operator yields a wide class of examples
for Rs-bounded sets of classical operators by well known uniform estimates against the maximal
function and the simple fact that Rs-boundedness is preserved under domination, cf. Proposition
3.1.20 above. One important fact is that in the classical case Q = R the dilations of any
function that has a radial positive decreasing integrable majorant can be controlled by the
Hardy-Littlewood maximal operator: For any function v : RP — C we define its dilations
uy(z) := t~Pu(x/t) for all z € RP ¢ > 0. Then we obtain the following classical result.
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Proposition 3.1.23. Let ¢ : [0,00) — [0,00) be a decreasing measurable function such that
r — o(r)rP=1 is integrable. Let ® € LY(RP) such that |®(z)| < ¢(|z|) for all z € RP,t > 0.
Then we have the pointwise estimate

sup ¢ f(2)] < llo(] - Dll 1oy (M [f)(@)  for all w € R, f € Li,(RP). (3.1.9)

Hence the set of convolution operators {®; % - |t > 0} is Rs-bounded on LP(RP) for all p €
(1,+00), s € (1, +o0].

A proof may be found in many standard monographs about harmonic or Fourier analysis, e.g.
in [Du01], Proposition 2.7 and Corollary 2.8. A concrete application is the following example.

Example 3.1.24. Let D € N,p € (1,00) and

D
A LP(RP) 2 HP?(RP) - LP(RP), f — Af =D 05 f
j=1

be the Laplace operator, where HP? = HP2(RP) = {f € L,(RP)|0%f € LP for all |a| < 2}.
Then the set of operators 7 := {t(t — A)~! |t > 0} is Rs-bounded in LP(RP) for all s € (1, +00].

Proof. Define 9;(&) := t(t+|€?)~! for all ¢ € RP ¢ > 0. Then t(t — A)~!f = F~ Ly, Ff for each
f € S, where F is the Fourier transform. So the operator #(t —A)~! is given by convolution with
the kernel F~14;. Since ¢y = ¥1(t~1/2) we have F~ 1oy = F (1 (1)) = v P(F~1ep1)(-/7)
with r» = t~1/2. Hence the set 7 equals the set of convolution operators {®, % - [ > 0} with
® := F14/1. A standard calculation (or using Laplace transform of the heat semigroup) shows
that ® is given by

O(x) = / (47T7’)_D/2€_T€_|x|2/47 dr for all z € RP. (3.1.10)
0

Hence ® € L; with ||®||z, = 1, so by Young’s inequality we have ||®, * f|, < || f||, for all f € LP.
This shows that the convolution operators ®,. - ,r > 0 are uniformly bounded on LP. Moreover,
the radial function ® fulfills the assumptions of Proposition 3.1.23, so this gives the claim. [

As announced above we will now show one possible way to prove Theorem 3.1.22, which is
indeed the line of proof in the literature cited above. It is based on a result about extrapolating
continuity on the LP-scale for (singular) integral operators which have a kernel that fulfills the
Hormander condition, which is interesting in itself as well. We give a short sketch of this: Let
E, F be Banach spaces, K : Q x Q\Idg — L(E, F) be a locally integrable mapping. A linear
operator T : L(Q, E) — L. (2, F) is said to be associated with the kernel K if

loc

Tf(z) = /Q K (,0) f () du(w)
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for all f € LX(Q, F) and x ¢ supp(F'). The kernel K is said to fulfill the Hérmander condition,
if there is a constant B > 0 such that

[ 1K@ - K@)l dute) < B, and (3.1.11)
d(w,y)>2d(y,z)

[ 1K) - Kl i) < B forall g,z € 0.
d(w,y)>2d(y,z)

Then we have the following result taken from [GLYO07], Theorem 1.1, which is classical for
Q=RP.

Proposition 3.1.25. Let K fulfill the Hormander condition (3.1.11) and let T be a bounded
operator from L"(), E) to L"(Q, F) for some r € (1,00]| with associated kernel K. Then T
extends to a bounded operator from LP(Q, E) to LP(Q, F) for all p € (1,00), and we have an
estimate

ITfllp < CpllFllp  for all f € Ly( E), (3.1.12)

where the constant C, only depends on Q,p and the constants B, ||T||, associated to the kernel
K and the operator T

In fact, this proposition can be applied twice and is then self improving in the following sense
(cf. [GLY07], Corollary 2.9):

Proposition 3.1.26. Let K fulfill the Hormander condition (3.1.11) and let T be a bounded
operator from L (2, E) to L"(Q, F') for some r € (1, 00] with associated kernel K. Then T ® Idga
extends to a bounded operator from LP(2,09(E)) to LP(Q,04(F)) for all p,q € (1,00), and we
have an estimate

[(Sirsie) | < oa|(Srste) ™|, for ait (fsen € i@ 08, @113)
JEN jEN

where the constant Cp 4 only depends on Q,p, q and the constants B, ||T||, associated to the kernel
K and the operator T

In fact, Proposition 3.1.26 can easily be deduced from Proposition 3.1.25 by considering the
vector-valued kernels K (-,--) ® Idge. If E = F = C, Proposition 3.1.26 gives a classical criterion
for Rs-boundedness.

A well known and well studied class of operators that satisfy the assumptions of Proposition
3.1.25 (for E = F = C) are the Calderdn-Zygmund operators. These are bounded operators on
L%(Q) that are associated to a so called standard kernel, which in particular satisfies the Hérman-
der condition. Since we will usually not deal explicitly with Calderén-Zygmund operators in this
work, we will not go into detail but just refer to the standard literature as [St93], [GCRAF85],
|Gr04] or [Du01].
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As indicated above we will now give a sketch of how the proof of Rs-boundedness of the Hardy-
Littlewood maximal operator can be reduced to the above Proposition 3.1.26. In a first step we
define the so called centered Hardy-Littlewood mazimal operator by

_ 1 . 1
(Mef)@) = sp s [ Wl forall £ € L), € 0

Then it is an easy consequence of the doubling property (3.1.8) that we have the pointwise
estimate

(M, f)(x) < (Mf)(x) <3PCp (M.f)(z) forall fe L (Q) and a.e. z € Q,

hence it is sufficient to consider M, instead of M. We will only show the idea in the case

Q = RP, the proof of the general case follows the same idea, but one has to make more involved

approximations in the general space (€2, u1,d). So we assume from now on that Q = R”, then

M.f(z) = sup,so ¥y * |f|(z) for all f € L} () and ae. z € Q, where ¢ := m 13, (0)-
1

Let ¢ € S(RP) be positive and radially symmetric decreasing such that ¢| B1(0) = MERO)L then
@ > 1 >0, hence

M f(x) = sup @y * [f(x)] = sup ;| f(z)]
t>0 t€Q>o0
by Proposition 3.1.23 and the fact that 0 < ¥ < ¢, and since ¢ is continuous. Moreover it is
sufficient to consider only the term sup;cp ¢t * f(z)| for any finite subset F C Qs and to show
that we obtain uniform bounds that do not depend on F'. Let us consider the maximal operator
M, defined by My, pf(z) := supep | * f(x)] for all f € L], (RP) and a.e. z € RP. Then in
the same way as in Chapter 2 the maximal operator M, i can be considered as a linear operator

My, p : IP(RP) D Sp — Co(RP, £°(F))

with associated convolution kernel Kp(x) := (p¢(x))zer € L(C,0°°(F)). Since ¢ € S, it is easily
checked that the Héormander condition for the kernel K is satisfied in the following simpler form
for convolution operators:

3C >0Vy eRP : / sup|<,0t(:vy)g0t(:c)|d:p§/ sup |pi(x — y) — ()| de < C
|z|>2]y| teF |z|>2|y| t>0

Moreover, M, p acts obviously as a bounded operator L®(RP) — L*®°(RP, ¢>°(F)), where the

norm is controlled by |¢|/s. Thus Proposition 3.1.26 yields Theorem 3.1.22, since the norm

bounds do only depend on ¢, but not on F. The details for this approach in the case Q = RP

can be found e.g. in [GCRAF85|, Section V.4, |[Gr04] Theorem 4.6.6, or [Du01| Chapter 5, §6.7,

and the general case is treated in [GLY07], Section 3.

Finally we note that there are many works concerning Rs-boundedness (without using this ter-
minology) in the framework of classical harmonic analysis. Indeed, Proposition 3.1.26 is an
example for a modern version of such classical results. It is noteworthy that in the monograph
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[GCRAF85| this topic is intensively studied in connection with some kind of weighted estimates,
also involving Muckenhoupt weights. We note that nevertheless that notion of weighted esti-
mates differs from the concept of weighted estimates as we will use it in Section 3.5. In fact, in
the article [Ga90| the topics from the monograph [GCRAF85| are also considered in the more
general framework of Banach function spaces, as we do it here as well.

3.2 'R,-sectorial operators

Let X be a Banach function space with absolute continuous norm. In this section, A : X D
D(A) — X will always denote a sectorial operator with type w(A) and with dense range and

domain, cf. Section 1.2.

To avoid technical difficulties in some situations, we assume additionally that the operator A is
injective and has dense domain and range. Recall that the density of R(A) already implies that
A is injective, and if X is reflexive, then D(A) is always dense, and R(A) is dense if and only if
A is injective. Actually, our assumption is not much loss of generality since in our situation the
considered spaces are usually reflexive, and we are mostly interested in injective operators since
we want to use the full strength of the general functional calculus.

3.2.1 Definition and elementary properties of R,-sectorial operators

Definition 3.2.1. Let s € [1,400]. The operator A is called Rs-sectorial, if there exists an
w € [0,7) such that o(A4) C ¥, and the set {zR(z,A4)|z € C\X,} is Rs-bounded for each
o € (w, 7). The infimum wg, (A) of all such w is called the Rs-type of A.

In this case we define
M, o (A) = Mg, o (A) = Ry({=R(z, A), AR(2, A) | » € O\S,})

for all 0 € (wr,(A), 7). Observe that this set is indeed also Rs-bounded, since
AR(z,A) = zR(z,A) —idx for all z € C\%,,

hence Mg, »(A) < Rs({zR(z,A) | 2 € C\Z,}) + 1 < 2Mg_ ,(A).

Recall our notation ¢¢ := ¢*(N, C). We will introduce a diagonal operator extension A, of AR1dys
— which turns out to be equal to the vector-valued extension A¢ as introduced in Section 2.5 if
s < 400 — such that properties as R s-sectoriality and Rs-boundedness of the H*°-calculus can be
expressed as "simple" sectoriality and boundedness of the H°°-calculus for the single operator ES,
Although this is a natural concept, we note that it is not always straightforward to check these
correspondences. Indeed, while Rg-sectoriality of A will turn out to imply sectoriality of ﬁs by
definition, the converse is not clear, since Rs-sectoriality of the single operators AR(\, A) might
not imply Rs-sectoriality of the set {AR(\, A) | A € C\X,}. Furthermore, the correspondence
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between Rs-boundedness of the H*°-calculus of A and boundedness of the H*-calculus of ﬁs is
more involved, and in the case that f(A) is Rs-bounded for any f € H*(X),, we will be able
to show that indeed A has an Rs-bounded H°-calculus under suitable assumptions. The latter
will be done in Subsection 3.2.3.

Definition /Proposition 3.2.2. Let s € [1, +00| and assume that A is Rs-sectorial. Define the
diagonal operator

As = {((zn)nen, (AZpn)nen) | (Tn)neny € X (0°), 2, € D(A) for all n € N and (Axy)neny € X (€°)}
(3.2.1)

in X (£%). Then A, is a sectorial operator in X (£*) with w(A,) < wg,(A), and we have
VA€ C\S,p (a),7 € X(£%) : R(N, Az = (R(\, A)zn)nen. (3.2.2)

Proof. Let o € (wr,(A), ). For all A\ € C\X, =: S define the operator R()\) := AR(\, A), then
R(S) is Rs-bounded, so let M := R4(R(S)). Moreover, for each A € S and © = (2, )neny € X (€°)
define

Rz := (R(A)Zn)nen-

Then R(\) € L(X(£%)), and the operator set R(S) is uniformly bounded by M. Moreover it is
an easy calculation that R(\) = AR(\, As), hence Ay is sectorial with w(Ay) < o. O

The representation (3.2.2) of the resolvents of A, implies that also the functional calculus for A,
is just given by diagonal operators with maximal domains. Recall that 8(X%,) is the algebra of
analytic functions on the sector X, that are polynomially bounded at 0 and oo, cf. Section 1.2.

Lemma 3.2.3. Let s € [1,+00]. Assume that A is Rs-sectorial and let o € (wr,(A), 7] and
feB(X,). Then

D(f(A5)) = {(zn)new € X(&°) | zn € D(f(A)) for alln € N and (f(A)zn)nen € X (€°)}

and f(As)x = (f(A)zn)nen for all @ = (2q)nen € D(f(Ay)).

Proof. Let first ¢ € H°(X,). Let w € (wgr,(A),0) and I' be the usual parametrization of the
boundary 0%,. Since the projections m; : X(¢°) — X, (zp)nen — ) are continuous for all
k € N, the representation (3.2.2) of the resolvents of A implies

oAz = so(z)R(z,mdz:( = so(z)R(z,Amdz) — (P(A)n)nen

21 Jr 271 neN

for all z = (z)neny € X(¢%). Now consider the general case f € B(X,). Let p(z) := z(1 + )72
and choose m € Ny such that ¢ := p" f € H§°(X (¢*)). Then

f(As) = (P(ES))_m(pmf)(ES) = (28(1 + AS)_Q)_m ‘P(KS) = ((1 + ES)Qgs_l)m 90(113)-

This yields the claim since ((1 + ZS)Z/LTl)m is a diagonal operator with maximal domain. [
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Finally we observe that in the case s < 400 the diagonal operator A, coincides with the vector-
valued extension A* as defined in Section 2.5

Remark 3.2.4. Let s € [1,400). Then ZS = AY, where the latter operator is defined as in
Section 2.5.

Proof. So assume first that (z,y) € A Let k € N and define ¢, : 5 — C, z — 2z, then ¢}, €
(03, {x, 1) =z and (y, pr) = yx. Thus by definition of A we obtain xj, = (z, ;) € D(A) and

ur = (y, ox) = Az, 1) Az, hence (Azy,)nen =y € X (€%), so . € D(A,) and A2 =y = A,

Now let conversely z = (zn)neny € D(Ay). Let ¢ = (an)nen € €5 = (£5), then by Holder’s
inequality (cf. Subsection 1.6.2)

00 00
IS o, <5 e
n=1 n=1

= llallps - ll2llx s

Iz, o)l x

> /s > N 1/s
NS ()"
n=1 n=1 X

and analogously ||(Agz, ¢)||x = H Z an AmnHX < H Z |ay, Ax,|
n=1 n=1

¢ S llallgr - 1Az xes)-

Since A is closed, this implies (z, ) = Zanxn € D(A) and A(x, @) = Z an Azy = (Agz, ),
n=1 n=1

ie. (z,Agx) € AY. . O

With Proposition 2.5.1 this immediately yields the following

Corollary 3.2.5. Let s € [1,+00) and A be Rs-sectorial, then the following statements hold.
(1) A®1dys C ;IS andﬁs = A®Idg,

—_—

(2) If x € C\Z then R(\, As) = RO\, A) @ Tdgs = R(\, A),,

WRs(A)?

(3) If D is a core for A, then DM := {(2,), € DY |{n € N : x, # 0} is finite} is a core for
As,

(4) Let 0 > wr, (A) and f € B(E,), then f(A) = f(A) @ 1dgs = f(A),.
Ol
We have left out the case s = 400 in our considerations of Remark 3.2.4 above. In this case only
the inclusion A® C A, is trivial, but it seems that the other inclusion As, C A*” might fail,

since the dual space of £*° is "too large". Nevertheless, in the sequel it is sufficient to work with
the operators Ay for s € [1, +o0], hence we will not discuss this problem any further.

We will now turn to some elementary properties of Rs-sectorial operators that are standard for
sectorial operators or e.g. R-sectorial operators. In fact, many properties can be proven analo-
gously as it is done for R-sectorial operators in [KW04|, Chapter 2, hence we will often refer to

the proofs given there.

The same arguments as for R-sectorial operators show the following
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Remark 3.2.6. If the set {t(t+ A)|t > 0} is Rs-bounded, then A is Rs-sectorial. O

By Example 3.1.24 we obtain immediately that the Laplace operator is Rs-sectorial in LP(R%)
for all p € (1,+00),s € (1,400]. We will show a more detailed assertion in Proposition 3.2.11
below, where we also state the Rs-sectoriality angle.

Using the elementary functional calculus for HG°-functions we can extend Rs-boundedness to
more general sets consisting of operators generated by functions of A.

Lemma 3.2.7. Let s € [1,400] and A be an Rs-sectorial operator in X. Let 0 > wgr, (A)
and F C H§(X,) such that one can choose Cp,3 > 0 with |¢(2)] < Co (|2° A |2|77) for all
2 € Xy,0€F. Then for each 0 <6 < 0 —wgr,, the set

{p(zA) |z € 5,0 € F}

is Rs-bounded. To be more precise, for each w € (wr,(A),0) we can choose a constant C' =
C(w, Co, B) such that the estimate

Rs({p(24) |2 € X5, € F}) < C M;0(A)
holds for all § € [0,0 — w).

Proof. Let 0 —§ > w > wy(A). Let z € 3, then z = 7w for some 7 > 0,w € ¥5N St and
wA € Y, for all A € 0%, hence

dA] e iy A & iiwny At
et = 5 [Cletrte S = 30 [T pte) §

je{-1,1370 je{-1,1370
o dt
< Co Y / At P = M < +oo,
. 0 t
]E{_Ll}

ie. HQD(Z')HLl(aEwJ%D) < M for all z € X5, € F. We have

dA

©(zA) - AR(A, A) R

p(2A) = /8 | PENRO A dr =

2mi 21 Jax,

hence [p(2A)z| < & Jos, 1PN - [AR(X, A)z| |2 for each ¢ € F,z € X5 and z € X. Since
{AR(\, A) |\ € 0%, } is Rs-bounded, the assertion follows with Corollary 3.1.10. O

In view of the functional calculus for the extended Dunford-Riesz class (cf. Section 1.2) we obtain
the following slightly more general version.

Corollary 3.2.8. Let s € [1,400]| and A be an Rs-sectorial operator in X. Let 0 > wr,(A) and
F C E(Xy) such that there exists an € > 0 with
_ 0) + f(o0)z
My :=sup || flloc,e < +00  and Cy := sup sup (|z|° V |z|79)|f(z) — J(O) + floo)z < +00.
feFr fEF 2€5, L+2
(3.2.3)

Let 0 < 6§ < 0 —wr,, then the set {f(zA)|z € Es, f € F} is Rs-bounded.
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Proof. Let f € F, then by Section 1.2 we have a decomposition f(¢) = ¢f(¢) + 1%1( + b, where
p € H(X,) and b = f(o0),a + b= f(0). Hence |al, |b] < 2My and

(a+0b)+bC

< Cplz|® Alz]7C.
LY < ol =

e (Ol = 1) -

For each z € X5 we obtain the representation f(2) = ¢r(2-) + 175 + b, hence
f(zA) = o (2A) +a(1 + 2A) "+ bIdy = pp(zA) + aAR(N, A) + b1dy,

where A := —1 € C\E, ;. Since ' :=7— 6 > 0 — § > wp(A), the set
1
{a)\R()\,A) | =5 €Zslal < 2MO}

is Ry-bounded, and Lemma 3.2.7 implies the Rs-boundedness of {pf(zA) |z € X5, f € F}, hence
also {f(zA) |z € 35, f € F} is Rs-bounded. O

A special case is the following corollary with just one function f € £(3,).

Corollary 3.2.9. Let s € [1,4+00] and A be an Rs-sectorial operator in X. Let 0 > wr,(A),
0<d<o—wr, and f € E(X,). Then the set {f(zA) |z € Es} is Rs-bounded. O

An immediate consequence is the following: If wg,(A) < 7/2, the generated analytic semigroup
(e7*4),ex, is Rs-bounded for all § € [0,7/2 — wr,(A)). We will say in this case that A is Rs-
analytic. More characterizations of Rgs-analyticity are the content of the following proposition,
which is an Rs-bounded version of [KWO04], Theorem 2.20, and again the proof given there
carries over to our situation if we replace "R-boundedness" by "Rs-boundedness" and take into
account Examples 3.1.11, 3.1.12. Moreover, note that assumption (4) is a modification of the
corresponding assumption in [KW04|, Theorem 2.20, but equivalent by Remark 3.1.6.

Proposition 3.2.10. Assume w(A) < w/2. Then the following conditions are equivalent:
(1) A is Rs-analytic,
(2) A is Rs-sectorial with wgr, (A) < 7/2,
(3) The set {t"(it+ A)™" |t € R\{0}} is Rs-bounded for some n € N,
(4) The sets {7t |t > 0}, {tAe ™t |t > 0} are Rs-bounded.
We conclude this subsection with our most important example.

Proposition 3.2.11. Let d € N and p € (1,400),s € (1,00]. Then the Laplace operator —A is
Rs-analytic in LP(R?), and if s < +o0, then wr, (—A) = 0.

Proof. We will show first that —A is Rs-sectorial with wg,(—A) < 7/2. By Proposition 3.2.10 it
is sufficient to show that the sets {e!® [t > 0}, {t(—A)e!® |t > 0} are R-bounded, which in turn
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we will show with Proposition 3.1.23 in the same way as we proved Example 3.1.24. Observe
that —A generates the heat semigroup which is given by convolution with the kernel

ho(z) := t7 %2 p(|z|/VE) for all z € RYt > 0,

where o(y) = (4m)"Y2e /4 for all y > 0, ic. e®f = by« f for all f € LP,t > 0. Since
the function ¢ fulfills obviously the assumptions of Proposition 3.1.23 we obtain that the set
{e!® |t > 0} is Re-bounded.

Moreover, the operator —tAe'® is formally given by convolution with the kernel

he) = —tghaa) = (= el VD 4P V) - (- 57

t= 2y (|| /VE) for all z € Rt > 0,

where ¥ (y) = %g@(y) + 1y¢/(y) for all y > 0, and this formal calculation leads easily to the
identity t(—A)e!®f = k; * f for all f € LP,t > 0. The function 1 can obviously be dominated
by a function ¢ that fulfills the assumptions of Proposition 3.1.23, hence we obtain that also the
set {t(—=A)et® |t > 0} is Rs-bounded. So the first claim follows with Proposition 3.2.10.

The claim on the angle will be proven in a more general form in Proposition 3.2.24 in Subsection
3.2.3. =
3.2.2 Equivalence of s-power function norms

We will now turn to the central estimates for a reasonable definition of the associated s-
intermediate spaces for an Rs-sectorial operator, which will be done in the next section. The
following proposition is well known for s = 2 and X = L, cf. [LeM04|, Theorem 1.1, and our
proof follows the line of the proof in that case given in [LeMO04|.

Proposition 3.2.12. Let s € [1,+0o0] and A be an R-sectorial operator in X. Let o > wr_(A)
and o, € HP(X;)\{0}. Then there is a constant C' > 0 such that for all f € H®(X,) and

x € X we have
H ([ et §)" ([ e §)"

(with the usual modification if s = +00).

< Ollf e (3.2

X

Remark 3.2.13. The norm expressions occurring in the estimate (3.2.4) will also be referred to
as s-power function norms.

Proof of Proposition 3.2.12. We will first show (3.2.4) for f € H§°(X,). Let x € X be such
that [|z]ly := [|(J5* [ (tA)x]® %)I/SHX < 4o00. Let w € (wgr,(A),0) and I' be the parameterized
contour of 0%,,. Choose auxiliary functions F,G € H§°(X,) such that

/0 T PG @) %_1 (3.2.5)
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Then for each H € {F,G} we have
d o dt
sup/ |H (tz)| 1dz| <400 and sup / |H(tz)] — < +o0,
>0 ] zean., Jo t

since |H(2)| < |2|° A |z|7¢ for some € > 0: from this, both claims follow by the translation

invariance of the Haar measure dt/t on (0,00), where for the first claim one just applies the

parametrization of 9%, and for the second claim we observe that for z = ret™:

o0 ion dt o ion g dt ° ; ; dt
/ |H(t’l”€izw)’ - / ’H(te:tzw)‘ hatd SJ / ’te:tzw‘s A |te:tzw|fs bt
0 t 0 t 0 t

& dt
= / AL — < +o0.
0 t
We will proceed in four steps, where the constants C} wich occur in each step do not depend on

x and f.

Step 1. For all t > 0 we have

5(t) = f(A)G(tA) 2m/f G(t2)zR(z, A) d; (3.2.6)

Then
dz
OGNy = [ 1760 < (s [16021 D)

Since § := {zR(z,A)|z € T'} is Rs-bounded by assumption, Corollary 3.1.10 yields that also
S((0,400)) is Rs-bounded with Rs(S((0,400))) < C1 || f|loo,s- Hence by Proposition 3.1.13 we
obtain

H(/()m\f(A)G(tAw(tA) L dt)/

X

- di\1/s
= ([ st £ < Collg-tal
(3.2.7)
(with the usual modification if s = +o00 using Proposition 3.1.14.)

o0

Step 2. Let w(t) := S(t)yY(tA)x for all t > 0 and u(z) := / F(tz)w(t) % By choosing

0
appropriate representatives, by Holder’s inequality and Fubini’s theorem we have p-a.e. for

5 < oo
Juer < ([T ireunr )
= /F(/Ooo\p(tz),l/s'.|F(tz)|1/s|w(t)\?>sﬁ
L

00 dtys-1 [ Sdt|dz\
|orear ) [ peieer

t |zl

/OOO|F<tz>| / ([irea D wor

dz dt
SUP/ |F(tz | | / |w(t)|87
>0

IA IA
)
o=

=
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hence we obtain the estimate

H /, ,s\dz! 1s

If s = +00, we obtain similarly

(3.2.7)
< Cu | fllso - llzlly- (3.2.8)

cse ()],

suplu(:)| < (sup [ 1 () ) -sup (o),

zel zel t>0
hence also
(3.2.7)
| sup [u(a)l ] < O - [lsup @) < G- el (3.2.9)
z

Step 3. Let v(t) := / o(tz)zR(z, A)u(z) dz for all ¢ > 0. Then again, with Holder’s inequality
T z

and Fubini’s theorem we can conclude if s < +o0:

/OOO [v(t)]? % /OO / lo(tz)] |zR(z, A)u(z)] ||dj>s %
/ /"P (tz)] — |dz‘ /’(p (t2)||zR(z, A)u(z )’g||d;|”cit
< sup /\so (t2)] 122 !dz| s—1 /F</0 w(tz))yzR@’A)u(z)’s\ﬁj

IN

IN

d 1 o0 d
< Sup /\w(tZ)!’Z| N -(sup/ p(tz) !* /!sz A)u 18‘ ?|
t>0 \Jr ’2\ zel' Jo K
Using again Rs-boundedness of {zR(z, A)|z € I'} in the same way as in Step 1 we obtain
1/s d 1/s
H(/ ) < o /|szA |S""|)
X |z X
d 1/s
< C5R H /| ‘s | Z|
!Z\
(3.2.8)
=7 Gy 1l -l (3.2.10)

The analogous inequality holds also in the case s = 400, which can be shown in the same manner
as in Step 2.
Step 4. By analytic continuation we have

/ F(tz)G(tz)¢(tz)% =1 forall z € 3,.
0

By the multiplicativity of the functional calculus (and Fubini) we obtain

f) = [ reaceaweasa §.
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hence for all 7 > 0:

f(A)p(tA)z = /0°°(p(TA)F(tA)G(tA)¢(tA)f(A)$‘it
_ /Ooo ( QLﬂ'z /F o(r2)F(t2)R(z, A) dz)G(tAm(tA) £ A)x%
! > dt
= 5 FSO(TZ)R(Z,A)</O F(tZ)G(tA)w(tA)f(A)x7) dz
= % | #(T2)R(z AJu(z) dz = v(r).

So with (3.2.10) the claim follows for f € H{®(X,).

Now let f € H*(¥;) be arbitrary. Let again p,(2) := ;15 — ﬁ for all z € ¥,,n € N.
Then p, € H{(E,) and [pp(z)] < K, for all z € ¥;,n € N (where K, := 2dist(—1,%,)).
Let f, := pn - f for all n € N, then (f)neny € (H§(X,))Y is a bounded sequence such that
|fn(2)| < Ko - |f(2)] and fr(A)d(tA)z — f(A)d(tA)z in X for n — oo and all z € X, ¢t > 0. Let
x € X, then by Lemma 1.6.24 we may assume w.l.o.g. that also f,(A)¢(-A)z — f(A)p(-A)x

pointwise % ® p-a.e. for n — oo, hence we obtain with the Fatou property (again, with the usual

modification if s = +00):
< lim inf

H ([ ireeeant §)"| <imin

([ et §)"

(/OOO | fn(A)p(tA)z|® %)1/3 )

([ e §)"

< COKp[|flloco
X

< Climinf||fofoc,o
n— oo

X
O

We now turn to a discrete version of Proposition 3.2.12. At present we do not know if such a
discrete version (in the sense of Propositions 3.2.17, 3.2.18 below) will hold in full generality for
all p,9 € H§°(X,)\{0}. In fact, the proof of Proposition 3.2.12 would also work in a discrete
setting if a discrete analogon of formula (3.2.5) holds, i.e., if for any ¢ € H5°(X,)\{0} one can
choose functions F,G € H{°(X,) such that

VE>0: Y FRING2)y(2t) =1. (3.2.11)
JEZ

Since we do not know if such a general formula holds, we will restrict ourselves to a suitable sub-
class of H°-functions which will lead to an equivalence between the continuous s-power function
norms as in (3.2.4) to some corresponding discrete s-power function norms. The assumptions
for this class of functions are rather technical and made to fit our needs, but they are not too
restrictive: we will show that the standard Hy°-functions we usually use as concrete auxiliary
functions belong to this subclass of HG°.

Definition 3.2.14. Let 0 € (0, 7] and ¢ € H§®(X,) with 0 ¢ ¢(3,). We say that ¢ belongs to
the class <I>§70 if the following property (named after uniform in £) holds:
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(UE) There exist d € Z and a set of functions F C £(X,) such that F fulfills condition (3.2.3)
from Corollary 3.2.8 and

{o(@2t)/p(Z74), 0(270) fo(2t) | j € Z,t € [1,2]} C{f(r) | f € F,r > 0}.

By Corollary 3.2.8 we obtain the following important issue:

Lemma 3.2.15. Let 0 € (0,7] and ¢ € @?70. Choose d € 7 due to property (UE) above and
define the operators S;(t) = (p(271%)/p(27t-))(A) and S;(t) = (p(27t-)/p(277%))(A) for all
Jj € Z,t€0,1]. Then the set

{S;(1),S;(t)|j € Z,t € [1,2]}
is Rs-bounded, and for all j € Z,t € [1,2] we have

(27t A) S;j(t) = S;(H)p(27tA) = p(27T4A),  hence S;(t) = p(27tA)Tp(27T1A4).  (3.2.12)
and

P(2770A)S;(t) = S;(t) (27 A) = p(27tA)  hence S;(t) = p(2171A)T1p(27tA), (3.2.13)

Proof. The first statement follows immediately from the definition of the class (I)(?, ., and Corollary
3.2.8, and (3.2.12) and (3.2.13) follow from the multiplicativity property of the functional calculus
in the class £(X,). O

We now turn to the most important examples of functions in <I>§0.

m

Examples 3.2.16. (1) Let 0 € (0,7) and m € N and define p(z) := ==

g2y for all z € ¥, then
@ € OF,.

Proof. We first consider the case m = 1, where we will show that the condition (UE) is fulfilled
with d = 0. For j € Z,t € [1,2] and z € ¥, define

1427z )2 B (1 +t_12jt2>2

gj1(2) = p(27tz) /(27 2) 14 2tz 14 27tz

142z
We will show that F := {t- f.|t,7 € [1/2,2]} fulfills condition (3.2.3) from Corollary 3.2.8. So

let 7 € [1/2,2], then f,(0) =1 and f,(c0) = 72, and
~ [70) + fr(o0)z (1 + 72)% — (1+2)(1 4 7%2)

142 1+ 2)2 @r—7"-1)

; 2
With r = 27t > 0 and 7 := ¢! € [1/2,1] we obtain g;:(z) =t fr(rz) where f;(2) := (HTZ) i

z

¢T(Z) = fT(Z) ma

hence [t5,(2)] < |27 = 72 = 1| | 72
holds with € = 1.

<9 ’ﬁ . This shows that the uniform estimate (3.2.3)
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Now consider

1+2jt2)2

hie(2) = p(F2) 0P t) =17 (T

then h;+(z) = 7f:(272) with the same notations as above, hence also {h;:|j € Z,t € [1,2]} C

{f(r)|feF}.

This shows that condition (UE) is fulfilled with d = 0, hence ¢ € ‘I)E,o for m = 1. The general
case m € N can be treated analogously, hence we omit the proof. O

(2) Let 0 € (0,7/2) and > 0 and define ¢(z) := z% % for all z € ¥, then ¢ € CI%J

Proof. For j € Z,t € [1,2] and z € ¥, define
9i2(2) 1= @(212) [p(212) = (2t)* e BV,

then g;+(2z) = e with r := (2t —1)2/7! > 0, hence g € {r-e " |7 € [1,4%],7r > 0} =: F. Let
hia(2) im (27H12) fp(2tz) = 2% 20z,

then also hj; € F. Since F clearly fulfills condition (3.2.3) from Corollary 3.2.8, this shows that
condition (UE) is fulfilled with d = —1, hence ¢ € @?70. O

We can now turn to the central equivalence of continuous and discrete versions of s-power function
norms.

Proposition 3.2.17. Let s € [1,+00] and A be an Rs-sectorial operator in X. Let o > wg (a)
and ¢ € (IDEO. Then there is a constant C' > 0 such that for all v € X :

e (Sreearr) | < | e ) < el(Siewaer)”,

(with the usual modification if s = +00.)

Proof. We assume first that s < 400. Choose the integer d € Z due to property (UE) of ¢ and
define

Si(t) == (p(2774) fp(271)) (A) = (271 A) o279 4)

and

Si(t) == (2(20794) /p(29)) (A) = (27 A) " ip(2HLA)

for all j € Z,t € [0,1]. By Lemma 3.2.15 the set S := {S;(¢),S,(t)|j € Z,t € [1,2]} is Rs-
bounded, so let C' := R4(S).
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Let z € X. Define

Z L o5+1y( o(rA) L2791 A)  and y(t) == o(tA)z for all t,7 > 0,
JEZ

then y : (0, +00) — X is measurable, S : (0, +00) — L(X) is strongly measurable and S(2/t) =
(29t A)"Lp(27+9A) = S;(t) for all t € [1,2) and j € Z. Moreover, S((0,+00)) C S is Rs-
bounded. By Proposition 3.1.13 we obtain

. 1/s 2 . /s
(Tle@aer)”| = H(ZI@(WdA):c\S) |, = H(Z / rso<2f+dA>a:|5dt)
jez jez jez 1 X
1/s &t 1/s
— (Z/ |p(27tA)S )x|sdt> (Z/ 1S(27t)y(271)|* )
JEZ JEZ X
2]+1 1/s 0o 1/s
- (Z [os it> - H( / rs<t>y<t>\scf>
JEL 2 X 0 X
1/s o 1/s
= ( Sy(t))lsdt> <C- |</ (tsy(t))\sdt>
X 0 X
d 1/s
_ c.</i\@AnSt>
0 X
We now turn to the inverse inequality. By the Fatou property we obtain in a first step
ee dt\1/s 2 . s o\
() tetenet ) N = [( ) etarerar) 7]
2 . s 1/s s 1/s
_ (Z/1 p(27F U Az dt) _H Z/ IS5 ()p(21 A) \dt) HX
= hm / 1S;(t)p(27 A) x\sdt) SH < hmlnf / 1S (t)p(27 A) m|sdt) /SH
N—>oo . X

Since t +— gj(t) is analytic, we can work with a version with analytic, hence in particular
continuous, paths (cf. Subsection 1.6.1) and obtain

L

1
/S (27 A) Jol*dt = lim ZZ ©(27 A)z|*

k=1

-a.e. in €. Let S(e) =S (1+%)forall j € Z,¢ € Nand k € Noy, then using the Fatou
H Jk J ? <
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property again leads to

H (/Ooo lp(tA)z|* Cfft)l/s

N 1 L 0 ) S\ /s
y < hmme(hm Z ZZ|SJ'7’“(’0(2]A)$‘> HX

j=—N k=1
< liminfliminf ¢~1/° (Ji:Nglsﬁw(?”A)xs) / Hx
< C-liminflim inf e (jﬁ:}vé\@(%‘lm ) / H
= C- hmlan( Z |p(27 A)a]? ) HX
<

o[ 3 e,

Now let s = 4+00. Then we have trivially sup;cz [@(2/A)z| < supysg|p(tA)z| for all z € X,
hence we obtain the first inequality || SUpjeyz, \gp(ZjA)xH‘X < || sup;sg \go(tA)x]HX for all x € X.
For the second estimate we use the same notations as above and obtain by Proposition 3.1.14

1

IsupletA)zlllx = [sup sup |p(27 1t A)zl|| = Hsup S 195 (t)p(2 A)z

JEZ te[1,2]
= || swp  |S;)p(@ Al <C-f|  sup (2 Al
(J,t)EZX[1,2] (J,t)EZX[1,2]

= C-||sup|p(2 A)al| .
JEZ

If we combine Proposition 3.2.17 with Proposition 3.2.12 we obtain

Proposition 3.2.18. Let s € [1,+o0] and A be an Rs-sectorial operator in X. Let o > wr,(A)
and o, € CIJEO. Then there is a constant C > 0 such that for all f € H*®(X,) and v € X we
have

H(ZU p(2 A)z|* ) HX < Clfllsce ‘(ZW(QJ‘A)Q:P)USHX (3.2.14)
JEZ JEZ
(with the usual modification if s = +00). O

3.2.3 R,-bounded H-calculus

For this subsection we fix some s € [1, +00].

Definition 3.2.19. Let 0 > w(A). We say that A has an Rs-bounded H*(E,)-calculus if the
set

{F(A)[f e H*(Zo), I fllo <1}
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is Rs-bounded, which is equivalent to the existence of a constant C' > 0 such that the estimate

1(£5(A)2;)ilx ey < € sup [ filloo - 123)s e
J

holds for all f; € H*(X,) and z; € X, j € N. In this case we define
MG(A) = Rs({£(A) | f € H*(Zs), [ flloor < 1}).
Moreover,
wree(A) :=inf{o € (w(A),7]| A has an R,-bounded H>(X,)-calculus}

is called the R2°-type of A, and in this situation we will also just say that A has an Rs-bounded
H®-calculus.

We trivially have the following

Remark 3.2.20. Let A have an Rgs-bounded H®-calculus, then A is also Rs-sectorial with
wr,(A) < WR (A). O

We will now show how the property of A having an Rs-bounded H*°-calculus can be expressed
in terms of the diagonal operator As.

Lemma 3.2.21. Let 0,0’ > w(A). Consider the following assertions:
(1) For each f € H>®(X,) the operator f(A) is Rs-bounded,

(2) The diagonal operator A, is sectorial with w(Ay) < o and has a bounded H™ (Sq/)-calculus
in X(£°).

Then (2) = (1) if o > o', and (1) = (2) if o’ > o. Moreover, if (1) holds there is a constant
Cy > 0 such that

Rs(f(A) < Cs - | flloo,e  for all f € H*(Eq)
for each o’ > 0.

Proof. Tt is trivial that (2) implies (1) if o > ¢/, so we assume o’ > ¢ and that (1) holds. Observe
that A has in particular a bounded H*° (%, )-calculus, hence

Do HX (o) — L(X), [ — f(A)

is bounded. By (1) we have in addition R(®4) € RsL(X) — L(X) and RsL(X) is a Banach
space by Proposition 3.1.4, hence the Closed Graph Theorem implies that &4 : H*(Y%,) —
RsL(X), f — f(A) is bounded, i.e. there is a constant C, > 0 such that

Ro(F(4) < Cs - [[fllnoe for all f € HX(S,). (3.2.15)

Choose w € (0,0”), then by (3.2.15) the set {AR(X, A,) | A € C\Z,} is bounded in the space
L(X(¢%)), hence the diagonal operator Ay is sectorial with w(As) < w < ¢/, and again (3.2.15)
implies that the diagonal operator As has a bounded H>(X,)-calculus in X (£°). O
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Observe that the restriction o’ > o in (1) = (2) if of Lemma 3.2.21 is due to the fact that we do
not assume A to be Rs-sectorial. If we do this, we get the following slightly sharper condition,
which can be proven in the same way.

Lemma 3.2.22. Let A be an Rs-sectorial operator and o > wr, (A). Then the following condi-
tions are equivalent:

(1) For each f € H>®(X,) the operator f(A) is Rs-bounded,
(2) The diagonal operator Ay has a bounded H™(2,)-calculus in X (6%).
O

We will now show the important fact that in a suitable framework the Rs-boundedness of the
single operators f(A) for f € H*(X,) as in Lemma 3.2.21 (1) already implies an R,-bounded
H®(X,)-calculus for all o/ > o.

Proposition 3.2.23. Let 0,0’ > w(A) and s € [1,400), and assume that X is r-concave for
some r < +00. Consider the following assertions:

(1) A has an Rs-bounded H* (X, )-calculus.
(2) For each f € H*(X,) the operator f(A) is Rs-bounded,

(3) For each ¢ € H{°(X,) the operator (A) is Rs-bounded, and there is a constant C' > 0
such that

Vo € Hy"(Xo) + Rs(¢(A)) < Cll@llooo
Then (1)=(3)=(2) if o > o', and (2)=(1) if o' > 0.

More precisely, if (2) holds, then for each w > o there is a constant C,, , > 0 independent of A
such that

Vo' >w: Mo (A) < Cupo-sup{Rs(f(A)) | f € H®(Es), | fllooe < 1} (3.2.16)

Proof. We clearly have (1) = (3) if o > 0, so we assume that (3) holds and show (2). For this
let again pm(2) == 0 — Hﬁ for all z € ¥,,m € N. Then p,, € H®(Z,) and |pm(2)| < K»
for all z € ¥;,m € N (where K, := 2dist(—1,%,)), and for all z € X, we have p,(z) — 1
for m — co. Now let f € H®(3,) with || f|locc,e < 1. Let n € N and (z;)jen., € X(¢;) and

(Yj)jenc, € X'(£5) with (W) jenc, |l x/ sy = 1. By the Convergence Lemma 1.2.2 we have

m - [)(A)xz; — f(A)z; in X as m — oo for all j € N«,, hence we obtain
P J J =

S/Q;\f(fl)ﬁj‘yjldu

((F(A)zj)jenc, (U7)eNan) x(es) x7(es))

< Z(‘f(A)xﬂv ’yj|>X><X’ = n%EnOOZQ(pm ) f)(A)ij ’yj|>X><X’

J=1 j=1
- n}gnoo <(’(pm : f)(A)ij]v (’yj|)j>x(£;),x’(e%’) < %E)noo H (‘(pm : f)(A)xj’)jHX(EfL)
<

C lim Jlipm - fllooo [1(25)5llx(e) < KoCllflloo,o (25)5lxe5)-
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By duality this yields [[(f(A4)x;)jllx(es) < KoC || flloo,o [I(5)5]lx(es), hence the operator f(A) is
Rs-bounded.

Finally we assume that ¢/ > o and (2) holds, and we will show (1). Observe that by a
similar argument as used above in the proof of (3)=-(2) it is sufficient to show that the set
{p(A) [ p € H§(Zs), [¢lloc,or < 1} is Re-bounded.

Choose w € (0,0’) and let w’ := 1(0+w), then o < w’ < w. We will show the estimate in (3.2.16),
where it is sufficient to consider the case 0’ = w, since trivially we have M%,(A) < Mg, (A).

By Lemma 3.2.21, the diagonal operator A, is sectorial with w(ﬁs) < w’ and has a bounded
H>(X,,)-calculus in X (£°). Hence it has also an RH*°(X,,)-bounded functional calculus, i.e.
a bounded functional calculus for operator valued functions F : ¥, — A C L(X(¢%)) with
R-bounded range, where A C L(X(¢*)) denotes the subalgebra of all bounded operators that
commute with resolvents of /L, cf. Section 1.3 in the preliminaries for this notion. Moreover, by
Theorem 1.3.3 we can choose a constant C,, .+ > 0 independent of Ks such that

IF (A Lix(e)) < Cuowr - MF(As) - R(F(5,)) (3.2.17)
for all FF € RH>®(X,, A).

Now let ¢, € H*®(X,) with ||¢n|lecw < 1 for all n € N. For each X\ € X, we define F'(\) €
L(X(¢°)) as the diagonal operator (;)neny — (Pn(N)Zn)nen, then F' : ¥, — L(X (£)) is analytic.
Moreover, F(%,) is Ra-bounded in L(X(¢%)): Let A € ¥ and z; = (xg-n))neN € X (¢9) for all
7 € N. Then

IFO)zile = (lon()zi), o = (eaO) 25D, o < (12571), o = lajle

in X(¢%) for all j € N (observe that for z € X(¢*) = X{¢° we have the modulus |z|c :=
(|zn|c)nen € X (€%), cf. the corresponding remarks about mixed Banach function spaces in
Subsection 1.6.1), hence

H<%|F(Aj)xj%>l/2uw> 5 H(g‘xﬂ%)lﬂ’ﬂfﬂ'

Since X is r-concave, the mixed Banach function space X¢* = X (£*) is r V s-concave by Propo-
sition 1.6.18 with r V s < +00, so Remark 3.1.7 implies that the set F(¥,) is also R-bounded.
Hence, the RH* (X, )-calculus of Ay yields boundedness of the operator F'(A5). If x € X(¢%)
and T is the oriented boundary of the sector ¥, (recall that w’' € (w(As),w)), we obtain
F(A)r = / FOVR(, Ag)edr = ( / ea(MRO, A)wnd)) = (pa(A)a)nen,
r r

neN

So boundedness of F(A;) in L(X(£%)) is just Re-boundedness of {¢,(A)|n € N} in L(X), and
by (3.2.17) we obtain

R({en(A)[n € N}) = [|[F(As)| Lx(es)) S Coowr - M (As) - R(F(20)) S Cuer - MG (As).

Since MSP(As) < sup{Rs(f(A4)) | f € H*(Xs), || flloc,c < 1} this yields the estimate (3.2.16).
O
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Again, we conclude with our standard example.

Proposition 3.2.24. Let d,m € N and p,s € (1,400). Then the Laplace operator A := (—A)™
has an Rs-bounded H*-calculus in LP(R?) with wree ((—A)™) = 0.

Proof. Observe that with the notations of Section 2.5 we just have to show that the operator
A” has a bounded H>(X,)-calculus in LP(R?, ¢%) for each o > 0. Since ¢ is a UMD-spaces,
this is a consequence of the vector-valued Mikhlin Multiplier Theorem. This is shown in detail
for m =1 in [KWO04], Example 10.2 b).

O

3.3 The associated s-intermediate spaces

In this section we fix s € [1,+o0], and A will always denote an Rs-sectorial operator in X with
dense domain and dense range.

We now turn to the definition of the associated homogeneous and inhomogeneous s-intermediate
spaces Xg A Xf’ 4 which we will also refer to as generalized Triebel-Lizorkin spaces. This will
be justified in Proposition 3.3.12, where we show that the s-intermediate spaces for the Laplace
operator A = —A coincide with the classical Triebel-Lizorkin spaces, cf. also the remarks given
at the end of Section 1.7. After the definition and some elementary properties in Subsection 3.3.1
we will show in Subsection 3.3.2 that the s-intermediate spaces are indeed intermediate spaces
for the couple (X, D(A™)), and we will explore real and complex interpolation of these spaces.
In the last Subsection 3.3.3 we will present one of the main results of this work, where we show
that the "part" of A (which has to be defined properly) always has a bounded H®-calculus in
its scale of homogeneous s-intermediate spaces Xf’ 4,0 € R, and in the case that A is invertible,
or A has a bounded H°-calculus in X, also in the inhomogeneous spaces Xg’ 4 if @ > 0. This can
be seen as a variant of Dore’s Theorem that states that an invertible sectorial operator A in a
Banach space X has a bounded H*-calculus in the scale of real interpolation spaces (X, D(A))p.6
forp € [1,4+00],8 € (0,1), cf. [D099|. A more general version is given in [Do01], and an extensive
treatment using functional calculus is given in [Ha06], Chapter 6. Indeed, in the same way as
classical Triebel-Lizorkin spaces are to a certain extent a natural counterpart to Besov spaces,
the s-intermediate spaces are appropriate counterparts to the real interpolation spaces. Hence we
will sometimes be able to use techniques similar to the one used in [Ha06] for real interpolation
spaces.

3.3.1 Definition end elementary properties of the spaces Xg 4 and Xﬁ A

For each o € (0,7] and 0 € R let
00 = {p € E(Z)\{0} | 2= 27%0(2) € H5* (o)}
For the discrete counterparts we define the subset

(PEH = {SO S ®0'70 | Z = Z_gsp(z) € (Pg,o}'

g,



3. Rs-BOUNDEDNESS AND R¢-SECTORIAL OPERATORS
3.3. The associated s-intermediate spaces 99

Note that @59 — P, ¢ and ®Z, — &%, for 0 > o’ and 6 > 0.

Definition 3.3.1. Let § € R, s € [1,+00] and 0 > w(A). Let ¢ € ®,4, then we define the
corresponding s-power function norm as

* dt\1/s
lz|lo,s,4,6 = H(/ [t~ 0o (tA)x|® 7) HX for all z € X (3.3.1)
0

(with the usual modification if s = +00). Moreover, for ¢ € (IDEG we define the corresponding

discrete counterpart as

. . 1/s
|2lFsap = H(Z |2—J%(2JA):U|S) HX for all z € X (3.3.2)
JEZ

(with the usual modification if s = +00).

Finally we define the space

0
Xs,A,ap = {‘T € X| ||$’

0,5, A0 < +OO}.

We will show that || - [|g.s.4., defined by (3.3.1) actually defines a norm on X! , » The mapping

J: XﬁAW — X(L3),z — (tfecp(tA)x)bo

is linear, and ||z(lo,s,4,, = ||J2| x(Ls) for all x € Xg’AM by definition, hence we only have to
show that J is injective. This is a consequence of Proposition 3.2.12, but we will also give
a direct argument (that is indeed also used in the proof of Proposition 3.2.12), which would
also work without the assumed R,-sectoriality of A: Let x € Xg A with Jr = 0. Define
p(z) == z/(1+2)* and ¢ := [~ p(t)|e(t)|? % > 0, and let 1 := pp, then ¢ € H§(X,) and
IS v (@) e(t) % =1 IS p®)|e()? % = 1. Since dt/t is a translation invariant measure on the
multiplicative group (0, c0) this yields

/000 »(tz)p(tz) % =1 (3.3.3)

for all z € (0,00), and by analytic continuation and the identity theorem for analytic functions,
(3.3.3) is also true for all z € 3,. By the functional calculus we obtain

0 dt
x = /0 P(tA) cp(ziA)a: 5= 0.

=0

By the preceding section we have the important issue that the s-power function norm || - {[g,s.4,,

does not depend on ¢ in the following sense:

Proposition 3.3.2. Let 0 € R, 0 > wr (A) and p,7) € ®,9. Then there is a constant C > 0
such that for all x € D(A%) and f € H*®(%,)

(1) €7 lallosap < llzllosap < Cllzllosap,
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(2) 1£(A)

If o, € (I)ae, then we have in addition

Ap SO flloo - l2llo5,a.0-

(3) CM @llos,a < 125 a0 < s

and (1), (2) also hold for the discrete counterparts || - HGEsAso’ || - ||925A¢ instead of || - ||6,s,4,¢, || -
”9,5,14,7,[1-

Proof. We apply Proposition 3.2.12 with 3(z) := 2 %¢(z) and ¢(z) := 2 % (2) instead of ¢,
and choose the constant C' > 0 as given there. Let z € D(A?) and f € H>®(X,), then:

If(Alosae = H(/ (e (e ) :H(/O"‘]f(mﬂmm%sit)vs
< Cliflle- | ( / A% Y| = e ol

X

(with the usual modification if s = +00). This shows (1) and (2). In the same manner, (3)
follows by Propositions 3.2.17 and 3.2.18. O

The central objects are now the following normed spaces:

endowed with the norm || - [lxo =[x + | llo,s,4,4 if 0 >0,
5, A,
as the completion of the space X9 ,, endowed with the norm || - [lg,s 4,¢-

We will see later in Proposition 3.3.5 (based, of course, on Proposition 3.3.2) that these spaces
are independent of ¢ in the sense that varying ¢ € ®,4 leads to equivalent norms, hence we
will later drop the ¢ in notation, and the space XS‘97 4 will be called the associated inhomogeneous
s-intermediate space, and XE’A the associated homogeneous s-intermediate space. Although the
definition (1) would also make sense for § < 0, we leave out these spaces from our considerations,
since they appear to be quite unnatural. In fact, even for § = 0 these spaces are delicate, since
they are forced to be embedded into X, which might not be natural, if one looks at the concrete
examples of classical Triebel-Lizorkin spaces.

As usual, the homogeneous space is somehow closer related to the operator A, but has a more
complicated structure, since e.g. it is in general not embedded into X. Nevertheless many prop-
erties of the homogeneous spaces can easily be carried over to the inhomogeneous space; this is
due to the fact that if A is invertible, then Xfy = X‘f’ 4 for 0 > 0, as we will show in Proposition
3.3.11. Hence we will start with a detailed study of the homogeneous spaces.

We will show first the following important density property.

Proposition 3.3.3. Let § € R, m € N with m > |0| and 0 > wr (A). Then D(A™)NR(A™) is

a dense subset in X forall p € ®s4.

s,A,p
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Proof. We will show first that D(A™) N R(A™) C XEA@ Let 2 € D(A™) N R(A™) C D(A?).

Choose € > 0 such that ¢ < m — |0]. Let ¢(z) := (1+z)2m and ¥ (z) == gm—0Ee

m, then %) S q)o-e
and ¢ € H°(X,), and

Oo(tA)e = tTe(tA) 9 p(tA)x = tTeo (tA) for all t > 0.

Hence we obtain (with the usual modification if s = +00)

[z]lg.5.40 = </ (Al dt)l/s
S (/ it p(tA)z >1/s +H(/loo N, dt)l/s
S (/O [t5p_(tA)z|® it)l/s +H</1 A dt)l/s
%) (/01 |t€x‘sit)l/s +H(/1 - ‘Sdt>1/s

where we used in (*) that the operator set {¢4(tA)|t > 0} is Rs-bounded. This shows that
D(A™)NR(A™) C XSHA . for the special ¢ we have chosen, and by Proposition 3.3.2 this is also

true for arbitrary ¢ € ®, 4 since D(A™) N R(A™) C D(AY).

2
= — |lz||x < +o0,
se

Now we define

X (Am) m R(Am)”'llx@,s,A,so S XQA

s,Ap T s, 4,9

then by Proposition 3.3.2 all the spaces X where ¢ € @, (a)6, coincide and have equiva-

$,A,p? )
lent norms. Hence D(A™) N R(A™) is dense in all XSA@, ¢ € Pup_(4)6 if it is dense for some

= ﬁ, hence ¢ € > o0 Let nggo be the comple-

tion of D(A™)NR(A™) with respect to the norm || - H(, s.Ap- Then again by Proposition 3.3.2 (3)

v0,z
X sAnngsAtp

¢ € Dy, _(4),0, SO We may assume that ()

we also have X?

s A with equivalent norms, so it is enough to show that X

S, A R
Let z € X‘f’Aw and define T, := n(n+ A1) In(n+ A)~! = nA(1 +nd)~1(1+ L 4)7" for all
n € N. Let z,, :=T"z € D(A™) N R(A™) for all n € N, then it is well known that z,, — = in X
for n — oo.

We consider first the case s < +00. Let € > 0, then since x € D ¢4 we can choose NV € N such
that

s,A,p?
. . /s
H(mgle‘Mmmrs)l |, <er2

Let Ky := 3. 2799 ¢(27 A)z| x, then we can choose ng € N such that Ky - ||, — 2|/ x < /2
ljI<N
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for all n > ng. Let n > ng, then

|(S @ Ay, - )"

by
[z = 25,

JEZ X
< (X m—ﬁwzﬂ'munfx)ﬁ)”s .
l7I<N
(S v -,
lil=N
S | X et o]+ | ea)
lil<N lil=N
< Y el Al -l ol + (3 e anl) | <e
I =N

for all n > ng, where we used in (1) that ¢! < ¢ and that the operators 7", n € N are R-
bounded. So we have ||z — x5, A — 0forn — oo.

Now consider the case s = +00. Let € > 0. Then again, since z € X? and X has the Fatou

00, A,p
property, we can choose N € N such that

Hsup]2 (29 A)z| — sup |277%p(27 A) a;\HX <e/2,
lil<N

and we can proceed as in the first case by using the estimate

2 = @nllooone = ||sup|277%0(2/ A)xl]|
JEZ
< |[sup [277%9(27 A)z| — sup [27%p(27 A)z||| + || sup [2770(27 A)z|) -
JEL l7I<N 7SN
O

Of course, Proposition 3.3.3 implies an analogous density property for the inhomogeneous spaces:

Corollary 3.3.4. Let 0 > 0, m € Nyg and 0 > wr,(A). Then D(A™)NR(A™) is a dense subset

mn XgAW for all p € Oy p. O]
With these density properties we can extend the norm estimates from Proposition 3.3.2 to the
whole spaces XS A (p,XfA(p.

Proposition 3.3.5. Let § € R, 0 > wr (A) and ¢, € ®,9. Then there is a constant C > 0

such that for all x € XSAW and f € H®(X,)

(1) €7 allosagp < llzllosap < Cllzllosagp,

(2) 1 f(A)zllos,a0 < Cllflloo - lzllo,s,4,0-
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In particular, for each o, € ®,¢9 the spaces XGA v and XGAzp have equivalent norms, and if

and (1),(2) also hold for the

Y € <I>09, then also || - H(,SA@ is an equivalent norm on XsAW

discrete counterpart || - ||7 A nstead of || - [lo,s,4,0-
Finally, if 6 > 0, then all statements are also true for the inhomogeneous spaces XS(”A’@ with the

inhomogeneous norms || - || x + || - |o,s,4,0 and || - ||x + | - HQE@A,W respectively. O

X@
$,A,07 <15, A0
if there is no risk of confusion. Moreover, if § € R, 0 > wg,(A4) and ¢ € Py p (or p € (I)E,ev

Hence we will usually drop the ¢ and sometimes A in our notation of the spaces XY

respectively), we will use the notation

(] ot ) <||mue,s ~|(X l2‘j%<2jf4>f’f|)l/sux>

JEZL

to indicate that | - ||g s is any of the equivalent norms || - ||g,s.4, ¥ € @5 (or | - Hgsdﬂ (NS @Eﬁ,
respectively).

If @ > 0and ¢ € @, ¢ for some o > wr_(A), we observe that by Rs-boundedness of {p(tA) |t > 0}

we have
B [ e )
)L+ 10, e D,
0 (/1°°|t—9|5t) " il
- | /0 (et D)+ 097 .

This leads to the following

S, X

VAN
VS VS VS
(e
-
&
AS)
=
N
N~—
g
=

Remark 3.3.6. Let 0 > 0 and p € ®,¢ for some o > wr, (A). Then
dt\1/s
XAsz{xEX‘H / 0o (tA)z|* t) HX<+oo},

1/s
and x — ||z||x + H( |7§—9 (tA)z|® Cit) H defines an equivalent norm on Xfl,s. [
X

The next proposition describes some elementary embedding properties.
Proposition 3.3.7. Let 6,0’ € R and r € [1,+00]. Then the following embeddings hold:

(1) If r < s and A is also R,-sectorial, then XﬁA — XZA and Xf’A — XE?A if 6 >0,
respectively.

(2) If0' >6>0, then X, — X — X.
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Proof. (1) This follows immediately if we use the discrete norm representation in the spaces
XﬁA,XzA and the fact that £7 < £%.

(2) This is an immediate consequence of Remark 3.3.6. O

This is a first point that shows that the space X%S does not really fit into the scale of the
inhomogeneous spaces: We cannot prove a general embedding th s XEL - Indeed, this would
require an estimate of the kind

[ ewsrar ) 2 ot etar )+ o

if p € ®ypNHG(X,) for some o > wr, (A). It seems that this cannot be expected in general.

We will show now that also the homogeneous spaces Xg 4 can be embedded into some natural
extrapolation spaces associated to A. A suitable framework is the theory of abstract extrapo-
lation spaces as it is developed in [Ha06], Chapter 6.3. We will give a short summary of those
parts of the theory that are sufficient for our work.

We define the operator J := A(1+ A)~™2: X — X, then JX = D(A) N R(A) — X, and J is a

topological isomorphism. Now consider the following commutative diagram:

id

Then ¢ : X — X(_y) is an embedding, hence we may view X(_;) as a proper superspace of X,
the so-called extrapolation space of order 1. Since the diagram is commuting, we have moreover
J(—1)ot=J, hence after some identifications we can also write J instead of Ji_y). This leads to

the following diagram:

Xy X

X4>X(1)
(
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Iterating this construction leads to a scale of spaces
X = X() — X(,l) — X(,g) e X(,n) — ...

together with a family of (compatible) isometric isomorphisms J : X(_,y — X(_,11). Finally,
U:=U,en X (—n) is called the universal extrapolation space corresponding to A. This space can
be endowed with a notion of net-convergence in the following sense: Let (x4 )aca be a net in U
and y € U, then

To —yY:<= dneNa €A : (VOéGAzaoi y,xan_n) A Jlza —yl — 0.

Then the limit of a net in U is unique, and sum and scalar multiplication are "continuous" with
respect to the so-defined notion of convergence. Since the operator J is defined on each space
X_pn, n €N, it can be considered as a mapping J : U — U, which then is obviously surjective,
whence it is an algebraic isomorphism, continuous with respect to the notion of convergence
defined above.

In fact, the construction of the space U and in particular the notion of convergence in U is only
an ad-hoc construction, which is suitable to make formulations easier: For example, convergence
in the space U is convergence in the space X (=m) for some m € N, and in the same manner
arguments made in the space U always have to be understood to be made in the space X (™)
for some m € N.

Now the operator A can also be lifted to the whole scale of extrapolation spaces and the whole
space U: We define

Ayy=J7'AJ  with domain D(A(_y) := J ' D(A).

Then A is an injective sectorial operator in X(_;y that is isometrically similar to A. Moreover

X1y € D(A(~1)) € X(_1), and A is the part of A(_y), i.e.
A= A(,l) N (X X X) = {(m,A(,l)x) |x,A(,1)J; S X}

Iterating this procedure leads to a sequence of isometrically similar sectorial operators A(_,) in
X(—n) where A(_,) is the part of A(_,_1) in X(_,). Thus A can be considered as an operator on
the whole space U.

We now take a short look at the functional calculus in this framework. Let o € (w(A), 7] and
f € B(X,). Then the operator f(A) can be considered as an operator in each X(_y), and we have
consistency in the sense that f(A(—n—l))|X(_n) = f(A(n)) for alln € N. To be more precise, if we
choose m € N such that p™ f € £(E,), where p(z) = z/(1 + 2)?, then f(A) : X(_,) = X(_pem)
is bounded for each n € N. Hence f(A) can be considered as an operator on the whole space U,
and we have the following important lemma.

Lemma 3.3.8 (|Ha06], Lemma 6.3.1). Let 0 € (w(A),7) and f € B(X,). Then D(f(A)) =
{z € X | f(A)z € X}, i.e., the operator f(A) considered as an operator in X is the part in X of
f(A) considered as an operator in U. O
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Finally we define for later use for each o € R the homogeneous fractional space
X,:=A°X endowed with the norm || - [|lo := || - %, =A% lx,
where A™% has to be understood in the sense of Lemma 3.3.8 and its preceding remarks.

After this excursus we turn back to the theory of s-intermediate spaces. We can now give a
concrete description of the homogeneous spaces as subspaces of the abstract extrapolation space.

Proposition 3.3.9. Let 6 € R. Then
XSA_{a:E Ul|lzllos,4 < +o0} — A 9X( 1)

Proof. For brevity we drop the A in the notations of norms and spaces for this proof. Define the
auxiliary space

X% :={zcUl|zlps < +o0}, endowed with the norm || - g

We will start by showing the embedding X? < A_OX(_l). Choose any o € (wr,(A), 7] and
¢ € O, 9. With $(2) := 27%(2) we have § € &, and

P(tA) A% = (tA)Pp(tA) A% = t7%(tA)x for all x € D(A%),t > 0,

hence A? is an isomorphism from )N(g to 5(2 and we may assume w.l.o.g. that 8 = 0. Let x € U
with ||z ||o,s, < +00. We will now argue similar as in the proof of Proposition 3.2.12. We choose
a function ¢ € HG®(X,) such that [° @()(t)% = 1 and conclude by the same techniques as
in the proof of Proposition 3.2.12 that

/00 go(tA)Q/)(tA)x% x in U,
0

i.c. the integral is taken in the extrapolation space X(_,,) for some m € N. Let p(z) := z/(1+2)?,
choose w € (wgr,(A),o) and let T' by the usual parametrization of d%,,. Using the functional
calculus and Fubini-Tonelli yields

p(A)z = /OOO p(A)p(tA)p(tA) x — / o / Y(tz)zR(z, A)p(tA)x dj%

— L )R ) </ b(t2)p(tA)z dt) ‘iz. Z

2mi Jr

=:u(z)
By Holder’s inequality we have

wel = ([Ter ) ([Ceaar )

C(z):=
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where C' := sup,cr C(z) < 400 since ¢ € HG®(X,). Since also p € H{(X,) and M =
sup,ey,, [|2R(2, A)|| < +00 we obtain Jx = p(A)xr € X, hence x € X(_;), with

|dz|
zllx ., = [Jzlx =lp(A)zx < /!P ) zR(z, A)llx - [lu2)[lx 5 E
|dz\ dt\ V*
s S [l A V| S el
X
as desired.
We will now show that ()?3, |- H975) is a Banach space. Again, we may assume w.l.0.g. that § =0

and choose ¢(z) := 2/(1 + 2)? to calculate the norm in X?. Let (z)nen € ()?Q)N be a Cauchy
sequence. Then by the already proven embedding )N(g — X(_1) we can find an x € X(_y) with
Tp — x inx € X(_y), hence also p(tA)z, — ¢(tA)z in X for n — oo, since by the special choice
of ¢ we have p(tA) € L(X(_y), X). On the other hand, (¢(tA4)x)¢~0 is a Cauchy sequence in the
Banach space X (Lg), hence we can find an F' € X (L) with ¢(-)Az — F in X(L$). By Lemma
1.6.24 we may assume w.l.o.g. by possibly choosing subsequences, that also ¢(-A)x, — p(-A)z
and p(-A)x, — F pointwise a.e. for n — oco. Thus we obtain ¢(-A)xr = F € X(L$), hence
ze X? and ||z — Tnl xo = l(-A)zn — Flx(1s) — 0 for n — oo.

Since )Z'f is a Banach space and trivially X¢ C X 9 we also obtain X? C X 9 and it only remains
to show the other inclusion X 9 cC X 9. But this can easily be seen by a density argument, since
for sufficiently large m € N we have again that D(A™) N R(A™) is also dense in the space X?.
This can be proven in the same way as it is done in the proof of Proposition 3.3.3. O

We want to show a sketch of another possible proof of the embedding Xg’ 4 < X(—1) where we
use a corresponding result for the so called McIntosh-Yagi spaces from [Ha06], Proposition 6.4.1.:

With the notations of the above proof we obtain with [Ha06|, Proposition 6.4.1 b) the estimate
zllx ., < C-supllp(tA)z]x.
>0
Since A is sectorial, by similar arguments as used in the proof of Proposition 3.2.17 we obtain

sup [|p(tA)zllx = sup sup [p(2tA)zx ~sup||<p(2JA)mllx S ||sup|<p(2]A)wlllx
t>0 JEZ te(1,2]

00 1/s
(] e )
0

With the aid of Proposition 3.3.9 we can deduce a close relationship between the homogeneous

<

X

and the inhomogeneous spaces:
Corollary 3.3.10. Let 0 > 0, then XS’A = Xg,A N X with equivalent norms.

Proof. This follows immediately from Proposition 3.3.9 since

X{a={z e X|||zllosa < +oo} = X4 NX.
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There are more relations between the homogeneous and the inhomogeneous spaces if A is in-
vertible. Moreover, the inhomogeneous spaces do not change if A is replaced by A + ¢ for some
€ > 0. This is contained in the following

Proposition 3.3.11. Lete,0 > 0.
(1) If A=t € L(X), then X%, = X7 ,,
(2) Xg,e—l—A = XSQ,A‘

In particular we have XgA = X275+A.

Proof. (1) Assume that A~! € L(X). Choose o € (wg,(4),7) and ¢ € @?70 and let x € X. By
[Ha06|, Proposition 6.5.4 we obtain

lzllx < (¢ eA)z),

|| sup [277%p (27 A)z| .,
JEZ

(*) o
Loy = Sup [0 (tA)z | S sup [|12770p(27 A)el|
* t>0 JEZ

IN

where (%) can be seen by analogous arguments as in the proof of Proposition 3.2.17 for the case
s = 400, where in this case we just use the sectoriality of A. If s < 400 we can proceed with
the embedding ¢° — £°°:

. . . . 1/s
lzllx < ||gg§|2 B2 Azl < H(Z\z aew(zm)xy) HX ~ [|z]lg,s,4,
J jET

since ¢ € CID(?Q. So we obtain
lzllxe , = llllx +lzllos,a S [[llo,s,4,
hence || - ||g,5,4 is an equivalent norm on the Banach space Xf’ 4 which implies Xg’ 4= XS(” A

(2) Choose o € (wr,(a),7) and m € N with m —1 < 0 < m and define ¢(z) := pn(z) =
2™ /(14 2)™, then ¢ € ®,4, and for all ¢ > 0 we obtain

Ot TA) = tTAM (L F AT = AT+ AT

We will first show the embedding XzAJrE — XgA, so let z € X7 Then by Remark 3.3.6 we

s,A+e"
1 1/s
_ dt
el ~lells + | ([ ireteaar )

t
1 1/s
([t
0 t

have

X

00 1/s
= (et
X 1 t X

00 1/s
= (/ ]teAm(tJrA)_mx]SClt)
1 t X

- (/100 !t9S(t)(6+A)m(t+€+A)_mx’8dt>1/s

and

t

X
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with S(t) == (t+e+ A)" (e + A)"™A™(t + A)~™, hence

St = [t+e+A)Ee+ATAE+A " = [Ale+A) Nt +e+ A+ A"
= [AE+A "M +et+A) " =[A+A4) 1+ G AH™

Since A is Rs-sectorial, the range S([1,00)) is also Rs-bounded, hence by Proposition 3.1.13

1 1/s
([
0 t

9 sdt 1/8
S (E)(e + A)"(t + 2+ A) "l

X X

|
ar\"/*
]t95+A )t e+ A) Tl — >

t
dt 1/8
/|t9 KA+ £))al* t)

X

)

X

(o
S0
<

and we obtain

v AR
el -+ ([ 1e2otear )

S

Q

2l xo

Sleli+ | ([ 100 <A+e>>ri)1/s

We now show the reverse embedding Xs A so let z € XY s.4- Then for all ¢ > 0 we have

0
s,A+e

(A+e)™(t+e+A)™ = Z(Z)Em FAk(t e+ 4™
k=0
= > (Z‘)sm Foam=k 4 e (b4 e+ A7 7m0 AR (g 4 4)7F
el g

Sp(t) = t"Ft+e+ AT (G4 ARt e+ A)TF

N +A)—1}mfk- [
- Llt+e © © t+e
~——

€1[0,1] €[0,1]

(t+e)t+e+ AT+ At e+ AT

X
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This shows that also {Si(t) |t > 0} is Rs-bounded for each k € (Ngy)<,, hence
! dt\'* e\
</ 10p(t(A + a))x\st> H( [ et s enat )
0

> 0 m -m s@ /e
[t"(A+e)"(t+e+ A) "zl
1 t X
/ 9> " ag - Si(t) -t R AR+ A) x\s‘f)
1 k=0
> 0—(m—k) Ak —k s@ e
|t Sp(t) - A%(t+ A) "z ;
1
S 1/s
(/ 0= (m=h).. Ak(t+A)kx\scit>
1
2

l/s
S IIrvHe kA+H</ O (tA)z|* )

k=

X

1/s

X

X

m

A

S

dt 1/8
</ [t O0R L (tA)z]) = )
H</ - 0 |5dt>1/s

By the choice of m we have a :=m —6 > 0 and f:=60 — (m —1) € [0,1). If m = 1, then
B =46 ¢€ (0,1), and we define § := 5. If m > 2, then S € [0,1 A ), hence we can choose
d € (8,1A0), and in both cases we obtain § € (0,1) N[, 6] . Then we can continue the estimate

to
1/s
H< yt‘) A—I—s))a:\sdt)
X

6> 1 5 dt 1/s
< §j||:c|re_k,s,,4+H( [ e ) T
k=0 0 X

m—
S D lello-rsa +llzlssa+ (as)™" zllx,
k=0

O

k=

3 w
|

X

1 ar\"*
0 t

X

where we used @, € Pyg_p for k € (Ng)<m—2 and 1 € ®,5. So we also have an estimate

e+ ([ 1etecasepar )

m—2

S llzllx + Y Izllo-rsa + llzllss,a.
k=0

By Proposition 3.3.7 we have embeddings XgA — Xg;lk for all k € (Ng)<m—2 and Xf’A — Xg’A
by our choice of §, hence also

%

[l o

,Ade X

m—2
lollxo,,. S 3 Iallgos + lollxs, S lallxo
k=0
O]

Again, to the end of the subsection we consider our standard example, the Laplacian in the space
LP(RY).

X
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Proposition 3.3.12. Let m,d € N and p,s € (1,40), and let A := (—=A)™ be the m-th power
of the Laplace operator in LP(R?) with domain D(A) = W2?™P(R?). Let 6 € R, then

X4 =P RY),
and if 0 > 0, then also

X0, = P2 (RY)
with equivalent norms.

Proof. Choose o € (0,7/2) and k € Ny g, and define o(z) := Z*e=#""" for all z € Xy. Then
pE @?e, hence ¢ is suitable to calculate the norm in XS’A, and also in XgA in the case 6 > 0.
On the other hand, if t > 0 and 7 := t1/™, then

Y(tA)u = tk(—A)kme(tl/mA)u = (—rA)FmerBy for allu € S

Thus Theorem 1.7.3 shows that ||-[|g,s,4,, is also an equivalent norm for the homogeneous Triebel-
[2mb
p7S ’

inhomogeneous Triebel-Lizorkin space Fg}’;‘@. Hence the result for the inhomogeneous spaces

Lizorkin space and in the case § > 0, the norm || - || x¢ , _is an equivalent norm for the
s, A0

is immediate, and for the homogeneous spaces it follows from density: it can be shown that
Z5 C D(AF) N R(AF) C F;}TG(Rd), hence D(AF) N R(AF) is a dense subspace of F;}TG(Rd), and
on the other hand it is also dense in XfA by Proposition 3.3.3. O

Let us finally mention that we can reformulate the well known fact that having a bounded
H®-calculus is equivalent to square function estimates (cf. Subsection 1.6.5) in terms of the
coincidence of X with the space XS A

Remark 3.3.13. Assume that X is q-concave for some q < 400 and let A be an Ry-sectorial
operator in X. Then A has a bounded H*-calculus in X if and only if X = XS’A with equivalent
norms, and in this case wg(A) = wr,(A).

Proof. The "if"-part follows immediately from Proposition 3.2.12. Recall that in this situation
Ro-boundedness is equivalent to R-boundedness by Remark 3.1.7, hence the other implication
follows by the remarks in Subsection 1.6.5. The identity wye(A) = wgr,(A) follows again from
Proposition 3.2.12 and Theorem 1.3.5 (cf. also its preceding remarks). O

3.3.2 The s-spaces as intermediate spaces and interpolation

We will show now that the s-spaces Xg As XQ 4 defined in the previous subsection are "reasonable"
intermediate space. We will start with the following connection with the real interpolation spaces
(X, D(A™))aq-

Proposition 3.3.14. Leta>0>0and1 <p<s<q < +o0.
(1) If X is g-concave, then X? , — (X, D(A%))6/a,q>

(2) If X is p-convez, then (X, D(A%))g/a,p — X‘f’A.
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Proof. We will only proof (1), since the proof of (2) can be done similarly. Choose o € (wg, (4, T)
and ¢ € <I>§’9. Then Theorem 1.5.8, an equivalent norm in (X, D(A%))g/q,4 is given by

x> |zllx + || (00 (tA)z)

t>0‘ Li(X)"

We consider only the case ¢ < +00, the case ¢ = +00 can be treated similarly as usual. By
analogous arguments as in the proof of Proposition 3.2.17 using the sectoriality of A we obtain

oo R ANA s : 1/q
oo = ([ 1%t ) " s (Sl e A

JEZ

M(q)(X) . H <ng; |2—j0¢(2jA)x|q> 1/qHX

1t e (tA)2)

*)
<

. ) s 1/s
< M) | (7@ A)al) 7|~ lellosa.
JEZ

where in (*) we used the Fatou-property and the g-concavity of X, and in the last inequality we
used that ¢£° < £9. Hence we also obtain

-0
12l (x,D(A))0 /0 12 lx + [0 A)) o[l o x) S I2llx + [12llos.a = o -

O
In particular, since X is always oo-concave and 1-convex, we have trivially
Corollary 3.3.15. Let a > 0 > 0, then
(X, D(A"))gjan = X a = (X, D(A%))g/000- (3.3.4)
O

We can now use standard methods from the theory of real interpolation spaces, which lead to
the following

Corollary 3.3.16. (1) Leta> 6 > (3> 0, then D(A%) — Xf’A — D(AP).
(2) Let 0y < 01 < a and sp,s1 € [1,+00] and 6 € (0,1), then
(XL 1 XD )sq = (X, D(A"))gja,  with 0 := (1 5)00 + 561 (3.3.5)

Proof. (1) This is simply due to the fact that by real interpolation theory and Corollary 3.3.15
we have

D(Aa) — (X7 D(Aa))e/a,l — Xg,A — (Xv D(Aa))é’/a,oo — (Xv D(Aa))ﬂ/oc,l — D(Aﬁ)

For (2) we observe that equation (3.3.4) from Corollary 3.3.15 is equivalent to the fact that the
spaces ijA are in the class Jy, /o (X, D(A)) N Ky, /0(X, D(A%)) for j = 0,1, hence (2) follows
from the reiteration theorem for real interpolation, Theorem 1.5.7. O
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We conclude this subsection by considering the complex interpolation of the s-spaces.

Proposition 3.3.17. Let sg,s1 € (1,00) and assume that A has an Rs,-bounded H> -calculus
with wy := ngg(A) V wree (A) < 7/2 for j =0,1. Let 0y,01 € R with

2
60l, 161, 160 — 01 < ”/0 . (3.36)

Then for

1 1 1
(6.2) === ) (80, — ) +a(6r,—)
s 50 $1
we have [XSSA,XQ A}a = '{f’A, and if 0,01 > 0 we also have [ngA,Xgll A]a & X‘f’A

We remark that the restriction (3.3.6) for the interpolation indices §; has its reason in our method
of proof. Up to now it seems not clear if this restriction is reasonable or just a matter of lack
of technique in our method. Nevertheless, in the classical situation of Triebel-Lizorkin-spaces
where A = —A we have wg = 0, hence complex interpolation works for all #; € R as it is also
known from the classical results.

Proof of Proposition 3.3.17. First we observe that if we have proved the result for the homoge-
neous spaces, then by Proposition 3.3.11 we obtain the corresponding result for the inhomoge-
neous spaces, hence it is sufficient to consider the homogeneous spaces.

According to the assumption on 6y, 61 we can choose 0 < a < < / such that §; € (a — (3, a)

for j = 0,1. Furthermore fix some o € (wo, ﬂé2).
We will show first that we can reduce to the case 8 = 1. If § < 1, we can obviously replace 8 by

1, so consider the case 3 > 1. Since A has an Rs,-bounded H°-calculus, the operator AP also
has an st—bounded H®°-calculus with

UJjo(Aﬁ) < 560723;(14) < Puwy < m/2 for j=0,1.

Observe that Xsﬁi = Xg s for 0 € R canonically, since for ¢ € @5, 5 and 1 (z) 1= ©(2”) we have

1#6@0755 and
1/s 1/s
H( (e A ‘”) ( | et a0ap dt)
t X 0 t

~1/s —5 (4 ABys A Ve
= g/ |t p(tA”)z|® ~ |zlls,s,48 -
t

X
So since the above stated isomorphisms are canonical we can replace A by A” and then 3 by 1.

[l gs,s,4,

X

We define the auxiliary spaces

00 = 09(2) = { (03); € € | [0 lmo = [[(2 %0y,

Al < 00}7
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endowed with the weighted norm || - ||y for all s € [1,400],60 € R. Then we have for all
50,81 € [1,400] and 0y, 61 € R and o € (0,1)

[X(E99), X ()]0 = X(*)  where (6. é) = (1-a) (00, 810) a6, 311) (3.3.7)

cf. Section 2.4 and |[BL76|, Theorem 5.6.3.

The strategy is now to show that the homogeneous spaces are retracts of the spaces X (¢5%) with
canonical (co-)retractions and then use Proposition 1.5.2 and (3.3.7). For this we will construct
a coretraction J : XgA — X (£%%) and a retraction P : X (¢59) — Xg,A? i.e. bounded operators
such that PJ = IngA, which are independent of § € (a« — 1, ) and s € [1, +0o0] such that A has

an Rs-bounded H _calculus with ws < wp.

By the above reduction we have § = 1, hence a € (0,1). We define auxiliary functions

P yl-a P
‘P(Z) .__2—’—2’7 1/}( )._1+Z, p(Z) _1+Z
and f(z) := p(2)¥(z) = e = 1-1+z — 2—%2: for all z € ¥,. For later use we mention the

following easily proved estimate: If a,b,¢ > 0 and ¢(z) := , then

(1+azc)?1+bz)

l9(2)| <o 9(]2]) <2 ai—l—b for all z € ¥,. (3.3.8)

We now define the operator Jx := (@(2jA)x)j€Z for all z € X and formally

N

P(y;); = > (2 A)y; == lim (2 A)y;  for (y;); € X7
JEZ j=—N

Let 0 € (o« — 1,a) and s € [1,400] such that A has an Rs-bounded H>-calculus with ws < wy.
We will show now that J|X§,A : XSA — X (¢#9) is a coretraction and Plx sy X (¢29) — XgA

is a corresponding retraction, i.e. we have to show that
1) Jlge :X?, — X(¢59) is bounded,
X7 4 s,A
(2) Plx oy : X(%) — X! , is well-defined and bounded, and
(3) PJx=x for all z € Xg7A.

Ad (1): This is simply due to the fact that ¢ € ®>, (this can be shown in exactly the same way
as the calculations in Example 3.2.16 (1)).
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Ad (2): We now use the function p to calculate the norm in the space XEA, which is possible
since also p € @?79:

N
N _ k9
IPvs)lsg, = | (27 ) Y v |
N ' ' ‘ —k+N
- 2-““—”%(2’%)2—J9w<2ﬂA>yj)kH —[[( 2 et apeam) |
N X(%) t=—k—N X(e9)
< |(Zrtnet e amed),| < SN A
=/ ) ez
S (SUP 2%p(2 W(QHZZ)’) | (ne kHX(eS) < CH(yk)kHX(ZS)
er ZGEO'

with C := ) ( sup ]2€9p(2kz)1/)(2k+£z)]>. So we only have to show that C' < +00, because then
LeZ 2€EX s
with the Fatou property we obtain

1P ()il o, < iminf [Py (y;);llxe , S C [ () el o)

For this let

(14 az)(1+bc)’

9(2) 1= p(2t )0 (22) = -

where a := 2F b := 250 and ¢ 1= @b~ = 20k+(1-a)(k+8) — gk+(1-)l then by (3.3.8)

o5 () = (a0 ) <ot

C

For ¢ € Ny this implies 2%|g(z)| < 27(@=9¢ and for £ € —N we have 2%|g(z)| < 2~ (@+1-a)lt],
hence altogether with ¢ := min{ao — 6, (0 +1— )} > 0:

sup |299p(252)(282)| = sup |2%g(2)| <27 for all £ € Z,
2EX s 2€¥4

so C' < 327 < 400 as desired.
LeZ
Ad (8): Let z € XgA7 then
N

N N
S w@ A Az = Y f@PAz= ) (2—7‘(2—1‘ + A)g — 2701 (2=U-D —i—A)x)
j=—N j=—N

j=—N
= 27N N+ A 2N+1(2N+1—|—A) —0-x=2 in ngA,
since the part of A in Xf’ 4 is sectorial (cf. Lemma 3.3.22 in the following subsection).

Since the operators J, P are appropriate (co-)retractions, the claim follows by Proposition 1.5.2
together with (3.3.7). O
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Let us finally mention the correspondence of the s-intermediate spaces for Re-sectorial operators
with the so called Rademacher interpolation spaces (X,Y)y, which have been introduced in
[KKWO06|, we refer also to [SWO06| for the relationship with interpolation by the y-method, and
to [KW-2|, where this interpolation method is studied in a general framework in connection with
Euclidean structures. Then the same techniques as used in the proof of [KKWO06|, Theorem 7.4
show the following.

Remark 3.3.18. Let X be g-concave and p-convex for some 1 < p,q < 400, and assume that
A is Ra-sectorial. Then XQH,A = (X, X1)g for all 0 € (0,1) with equivalent norms.

In fact, the inclusion Xg’ 4 C (X, X1>9 can be shown by similar arguments as in the proof of
[KKWO06], Theorem 7.4, p. 782, and the other inclusion can be derived by means of duality with
similar arguments as in the proof of [KKWO06|, Theorem 7.4, p. 783f.

3.3.3 The part of A in the s-intermediate spaces

For this subsection let # € R. We recall that we can extrapolate the operator A to an opera-
tor in the universal extrapolation space U such that A is sectorial in each extrapolation space
X (—m), M € N.

Observe first that the operators A“ shift the scales of associated s-spaces in the following sense.

Lemma 3.3.19. Let o € R. Then AO‘XSGA coincides with Xg;{l in the set-theoretical sense, and

the operator A% (defined on U ) induces a topological isomorphism
A XzA — Xg;lo‘.

If in addition 6 > oV 0, then also the operator (1 + A)* induces an isomorphism
(1+ A)*: ngA — Xg;la.

Proof. Choose 0 € (wr,(4), ) and ¢ € 5 such that ¥(z) := 2%¢(z) defines a function in
E(Xs), then ¢ € &, 4. Let x € X, then

; 1/s 0 dt 1/s
1A%y nen ~ H( 04 (4) A% ) H( 0 (LA (e A)al? )
X
= || ([T eewtearnt E) | <ol
X
hoae A5 € X030 <= 5 € X0y and A7 5 (8- Daas) — (L o)

is an isometric isomorphism. Since X A'Y is dense in Xf;{y for v € {0,a} this also yields
A% € Xg;‘a — T € Xg’ 4 for all x € U and that A® induces a topological isomorphism
A% XgA — Xg;‘a

If in addition 6 > « V 0, then X9 = XS At for v € {0, a} by Proposition 3.3.11, and we can
apply the first part for 1 + A 1nstead of A. O
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Definition 3.3.20. Let Agvs = AXZ be the part of A in Xf‘ sand Ag s = sz be the part
of A in Xf‘ ¢ if @ > 0, respectively.

Remark 3.3.21. The spaces Xg,m and Xfl’s if 0 > 0, respectively, are invariant under resolvents
of A, i.e. R()\,A)Xfm - XZS, and if @ > 0 then R()\,A)Xfl’s’@ - XI%’S’W respectively, for all

A e C\Xs and o € (wr,(a), 7). In fact, it is sufficient to show that )\R()\,A)XzA C X§7A. To
see this we let x € XS,A and choose o € (wgr,(a), ™) and ¢ € D54, then

AR, A)zlosa =[RS )0t A} pp) < Mroo(A) [0t A) D)0l 1)

||

Q

0,s,A
for all X € C\X,, since the set {zR(z,A) |z € C\E,} is Rs-bounded. O
By Remark 3.3.21 we obtain the following elementary properties of the operators Agﬁ, Ag s.

Lemma 3.3.22. The operator A97S 18 an injective sectorial operator in XgA of type w(Agys) <

wr, (A) with D(Ag’s) = Xﬁ}Aﬁszl. If 0 > 0, the operator Ag s is an injective sectorial operator
n XS,A of type w(Aps) < wr, (A) with D(Ag ) = Xf;l.

Moreover, if m € Ny g, then D(A™) N R(A™) is a core of Ag,s, and of Ags in the case 0 > 0,
respectively.

Proof. Tt is well know that the statements of Remark 3.3.21 imply the asserted sectoriality
properties, so we only have to verify the statements concerning the domains. But this follows
immediately from Lemma 3.3.19 with o« = 1. The final assertions follows from the approximation
result that is also used in the proof of Proposition 3.3.3. O

Combining Lemma 3.3.22 with Proposition 3.3.5 we immediately obtain the following theorem,
which is one of the main results of this work.

Theorem 3.3.23. (1) The part Ag, of A in XZA with domain D(Ag¢) = XgA NX%%! has a
bounded H*-calculus with wge(Ag ) < wr,(A).

(2) Let® > 0. If A=' € L(X) or A has a bounded H>-calculus in X, then the part Ag s of A in
ngA with domain D(Aps) = ij:ll has a bounded H>-calculus with wre(Ags) < wr,(A).
L]

As we already noted in the introduction of this section, Theorem 3.3.23 can be seen as a variant
of Dore’s Theorem that states that an invertible sectorial operator A in a Banach space X has a
bounded H*-calculus in the scale of real interpolation spaces (X, D(A))pp for p € [1,+0],0 €
(0,1), cf. [Do99] and [Do01], and also the extensive treatment using functional calculus which is
given in [Ha06|, Chapter 6.
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3.4 Comparison and perturbation for R -sectorial operators

In this section we consider perturbation and comparison results for Rs-sectoriality, Rs-bounded
functional calculi and the associated s-intermediate spaces. One central task is, given an R-
sectorial operator A, to give sufficient conditions for a linear operator C' such that C is Rs-
sectorial as well and one has X s A= ch We will closely follow the lines of the corresponding
comparison and perturbation results of [KWO01-b|, [KW04], Chapter 13 and [KKWO06] for the
H>-calculus. In fact, our assumptions are in many cases Rs-versions of corresponding assump-
tions of comparison and perturbation results in the articles cited above. Since these are equiva-
lent to usual boundedness assumptions for the vector-valued extensions ﬁs in the vector-valued
space X (£%) it is not surprising that under our assumptions we will obtain similar results for
an Rs-bounded H-calculus for A. Nevertheless, we are also interested in coincidence of the
corresponding s-intermediate spaces, which will be done by suitable estimates of the s-power
function norms. Here we will use techniques similar to the ones used in [KWO04|, Chapter 13,
but the estimates we use will be more involved.

We fix s € [1,400], and A will always denote an R-sectorial operator in X with dense domain
and dense range. Moreover we fix o € (0, 7). Recall the following notations:

M; o (A) := Mg, -(A) :=Rs({zR(2,A), AR(2,A) | z € C\3,1})
and

MZ5(A) =R ({£(A) | f € H*(Zo), |flloc.s < 1})

in the case that A has an Rs-bounded H> (3, )-calculus.

We start with an Rs-version of a standard perturbation result for sectorial operators.

Proposition 3.4.1. Assume o > wgr_(A) and let B be a linear operator in X with D(B) 2 D(A)
such that BA™1 extends to an Rs-bounded operator on X with a :== Rs(BA™Y) < 1/Mjs,(A).
Then A+ B is again Rs-sectorial with

M; U(A)

MsolA+B) < 7= 31— h)

+1

In particular, we have wr,(A+ B) < o.

Proof. Since BR(z,A) = BA™! AR(z, A) for all z € C\X,, we obtain that {BR(z,A) | z €
C\X,} is Re-bounded with

Rs({BR(z,A4) | z € C\X5}}) < aM;,(A) < 1.

In particular, the operator Idx —BR(z, A) is invertible and

2R(2,A+ B) = zR(z, A)(Idx —BR(z,A))"! = i BR(z, A)* € L(X) (3.4.1)
k=0
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for all 2 € C\X,. This shows that 0(A + B) C 3, and that A + B is Rs-sectorial with

M; - (A)

Rs({zR(z,A+ B) | 2 € C\Zs}}) < My (A ki; aM;,o(A W'

O
We now turn to the comparison result, for which the following lemma states the central estimate.

Lemma 3.4.2. Let a,3 > 0, and let A and B be Rg-sectorial operators such that D(A®) =
D(B®) and R(A®) = R(BP) and the operators B*A~® and B~PAP extend to R,-bounded oper-
ators on X. Then, for all 0 € (=, ) we have

Proof. We define
M = max{M, ,(A), M, ,(B),Rs(B*A~%),Rs(B P A%)} < 4o0.

Choose some w € (wg,(A) Vwgr,(B),r). We define for all a,b > 0 the auxiliary functions

Za

wa,b(z) = m,

then ¢, € Hi°(X,) if b>a >0 and 9,5 € ®yp if b > a — 60 > 0. Moreover we have
Vi >0 hap(t P A) =" A%t + A)™°

Let A, B be operators according to the assumptions. Define T' := B®A~% and S := B—8AP,
then T, S are Rs-bounded. Choose a > o+ 3 and n € N with n > 3a. Let ¢ > 0, then we have

B(t+B)™" = B(t+B)"(t+ A" (t+A)T =) (Z) Bt + B) " kARt 4 A)™
k=0
hence

n

Yan(t'B) = t""BY(t+B) " =) <Z> "Bt + B) " kARt + A
k=0

Sk(t):=

Now let 0 € (=, ) and define N := [|0]]. We split up the sum as

wanttn) = (s s > (Dsws 3 (s

k=0 k=N+1 k=n—N

and consider the three types of summands separately.

Case 1. For k € Ng with & < N < |0| we have

Sp(t) = tneme) ga=ap 4 By (kte) gkte 4 AV — g, (T B T an (A,
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We have n > a — o > 0, hence ¢4—qn € HJ(X,), and
0<a—0<k+a-60<||—-0+a<2/0+a<n,

hence Yp4an € Py . So for all x € XS,A we have by Proposition 3.1.13 and Lemma 3.2.7:
1Sk (O)x)isol| 1) Sar 1 Whtan(t™ A)a)soll (o) = 12 ]0,5,a-

Case 2. Now consider the case k € Ng with N +1 <k <n— N —1, hence 0| < k <n —10].
Then

Sk(t) = "Bt + B) ARt ) = (7 Bt A).
We have n > a > 0, hence 9, , € H®(X,), and
0<|0|—0<k—0<n—|0—0<n,

hence vy, ,, € ®g,,. So for all x € ngA we have

H(tesk(t)z)boHX(Li) M H(telbk,n(t_lA)%)boHX(Li) ~ [|]lg,s,a-

Case 3. Finally we consider the case k € Ny with n — N <k <mn, hence n — |#| < k <n. Then
Sy(t) =t @t patbq 4 By g (k=B AR=B(1 4 )" = 4py 5, (T B) St _pa(tTTA).

We have n > a + > 0, hence 415, € H;(X,), and
O<n—pB—0|-0<k-3-0<n—(B-10]) <mn,

hence Y_g, € ®g,,. So for all z € XE,A we have

H(tesk(t)ﬂﬁ)»oHX(Li) SM H(t9¢k—ﬁ,n(t_1A)$)t>0HX(Li) ~ [|z]g,s,A-

Now we put all cases together, then for all x € Xf, 4 We obtain by Proposition 3.1.13

o d\ 1/s
Izl =~ H(/O amt B2l T) | = [0 et Bl

| (kz_o <Z> t9Sk(t)$)t>OHX(Li) < kZ_O (Z) H(tGSk(t)$)t>OHX(Li)

n
n
S
k=0
(with the usual modifications if s = +00). O

Observe that in the proof of Lemma 3.4.2, the derivation of the estimates shows that the constants
can be chosen independent of § € (—(, ), since we only considered finitely many summands,
and moreover can be estimated by a multiple of the constant M. Hence we obtain the following
more detailed assertion about the norm of the embedding Xg A Xg B
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For all o, 3, M > 0 there is a constant K > 0 (only depending on the preceding quantities)
with the following property: let A and B be Rs-sectorial operators such that D(A%) = D(B%)
and R(AP) = R(B®) and such that the operators B*A~® and B~% AP extend to Rsbounded
operators on X, and

max{M; ,(A), Ms ,(B), Rs(B*A~%), Ry(B P AP)} < M.

Then, for all § € (-0, a),w € (wr,(A) Vwr,(B),n) and ¢ € ¥, ¢ there is a constant C(¢) such
that

z[lo,5,5.6 < K - C(0) - |z[lo,s,a,5 for all x € X 4.
Now Lemma 3.4.2 leads to the following comparison result.

Theorem 3.4.3. Let A and B be Rs-sectorial operators with o > wg (4) V wr,(B) and assume
that there are aj, 3; > 0 for j = 1,2 such that

(a) D(A%) = D(B%) and R(A%) = R(B%) for j =1,2,

(b) The operators Bt A= B=A1 AP and A2 B=22 A=5%2 BP2 extend to Rs-bounded operators
on X.

Then
XZA = XSG,B forall 6 € (— (61 A B2), 010 A az). (3.4.2)

In the same spirit as in the remarks to Lemma 3.4.2 and its proof we obtain in addition, that
the norm equivalence constants do not depend on 6 and the explicit operators A, B but only on
the Rs-sectoriality constants M ,(A) and M, ,(B), the Rs-norms of the operators in (b) and
the auxiliary function ¢ that is used to determine the norms in the spaces Xf’ A Xﬁ B

Proof of Theorem 3.4.3. This follows immediately from Lemma 3.4.2 by interchanging the roles
of A and B. 0

In view of the corresponding comparison theorem from [KKWO06], Theorem 5.1, we also obtain
a comparison result for an Rs-bounded H*°-calculus. We will apply [KKWO06]|, Theorem 5.1 for
the vector-valued extensions Ag, Bs of A, B in the space X (£°), so we only have to ensure that

these operators satisfy the assumptions of the latter theorem.

Theorem 3.4.4. Let s < 400 and X be g-concave for some ¢ < +00. Let A and B be Rs-
sectorial operators with o > wr (4) V wr,(B) and assume that there are ay, B; > 0 for j = 1,2
such that

(a) D(A%) = D(B%) and R(A%) = R(B%) for j =1,2,

(b) The operators Bt A= B~ APt and A¥2B=*2, A=P2 BP2 extend to Rs-bounded operators
on X.
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Moreover assume that

(c) A has an Rs-bounded H* (X, )-calculus,
(d) The operator By is R-sectorial with wr (Bs) < o.

Then, for each o’ > o the operator B has an Rs-bounded H™® (X ,/)-calculus. Moreover, for each
w > o there is a constant Cy, , that only depends on w,o and the Rs-norms of the operators in
(b) such that the following estimate holds for all o/ > w:

M (B) < Clup - MES(A) - M o (B). (3.4.3)

Before we prove Theorem 3.4.4 let us have a closer look on the condition (d). Since B is Rs-
sectorial and s < 400, we already know that for each A € C\X, the operator R(\, B) @ Idys
has a bounded extension to the space X (¢%). Moreover, a single bounded operator is always
R-bounded, hence in this setting Re-bounded, which means that we also obtain a bounded
extension of the operator

(R(A\, B) ®1ds) ® Idpe = R(A, B) ® (Idss ©1d2) = R(A, B) ® (Idpsgz) € R(A, B) @ Idys g2y

in the space X/¢*(¢£%) = X (¢*(¢2?)). So condition (d) just means that the set

{AR(\,B) ® Id@s(@) | A e C\X,}
of tensor extensions of the operators AR(), B) is bounded in the space X (¢5(¢?)) for all o/ > 0.

Proof of Theorem 3.4.4. Let ¢/ > w > &' > w” > 0. As announced before we consider the
vector-valued extensions gs,és as operators in the space X (¢%), then Zs, B, are sectorial op-
erators with w(A,),w(Bs) < ", and Ay has an H> (3, )-calculus, cf. Proposition 3.2.23 and
Lemma 3.2.21. Moreover, the space X (¢%) is ¢V s-concave by Proposition 1.6.18, thus X (¢°) has
property () by Proposition 1.6.22. Hence A, is also R-sectorial with wg(Ay) < wye(Ay) < o
by Corollary 1.3.6.

This shows that the conditions (a)—(d) are just the assumptions of the comparison theorem
[KKWO06], Theorem 5.1 for the operators Ay, By (note that the restriction |, || < 3/2 assumed
there can be dropped by the same technique of proof as used in the proof of Lemma 3.4.2).
Accordingly the operator B, has a bounded H (3, )-calculus in the space X (¢%), hence B has
an Rs-bounded H>(X,)-calculus in X by Proposition 3.2.23. Finally, the estimate (3.4.3) is a
consequence of the proof of [KKWO06|, Theorem 5.1 and Proposition 3.2.23 and Corollary 1.3.6
(cf. also Section 1.3 for this kind of estimates). O

We now turn to perturbation theorems for Rs-sectorial operators, where the main focus lies on
the coincidence of s-intermediate spaces Xg A Xz 4 of some Rg-sectorial operator A with the s-
intermediate spaces XS(” A+B> Xg’ a4p of an additive perturbation of A under suitable conditions
on B. They are extensions on corresponding perturbation theorems for the H-calculus, cf.
[KW04|, Chapter 13 and [KKWO06|, Section 6. We will start with a perturbation result under
rather weak assumptions, which in turn will only provide one inclusion for the s-intermediate
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spaces. Nevertheless, in this proposition we will already derive the representation (3.4.4) for
resolvents of the perturbed operator, which is one central tool also in the subsequent perturbation
theorems.

Proposition 3.4.5. Let A be Rs-sectorial with o > wgr (A) and let § ;=7 — 0 and 7 >w > 0.
Define € := 1/(2Mjs 5(A)), then there is a constant C,, , only depending on o,w with the following

property:

Let a € (0,1) and B be a linear operator in X such that
(a) D(B) 2 D(4) and |BA7Y|| <e,
(b) B(D(A)) C R(A™%) and L := A“"1BA~< is Ry-bounded with Rs(L) < e.
Then A+ B is again Rs-sectorial with
A+ A+B) L=+ A) AN+ A)TTMN AN+ A) 7L (3.4.4)

where M(X) == 332 (—LA\ + A)"HFL € L(X) for all X € 35, and the set {M(\) |\ € X5} is
Rs-bounded with Rs({M () | X € Es5}) < 2. Moreover

XQA — XS7A+B forall 0 € (a—1,a). (3.4.5)

Again, the norm of the embedding map in (3.4.5) does not depend on the explicit operators A, B
but only on w, o, o, the Rs-sectoriality constant M ,(A) of A and the auxiliary function used
to determine the norms in the spaces Xg A Xf’ A+ An analogous assertion will be true for all
subsequent perturbation theorems in this section, hence we will not emphasize this fact in the
sequel.

Proof of Proposition 3.4.5. We follow the lines of [KKWO06] and will first derive a representation
formula for the resolvents of A 4+ B.

Let B be a linear operator in X having the stated properties (a) and (b). Then Rs({LA(A
ALY X € Bs}) < Rs(L) Mg (A) <1/2. This implies that indeed

= (~LAM+A)"HFL € L(X),
k=0

and the set {M(\)| A € X5} is Rs-bounded by Proposition 3.1.9 and Remark 3.1.7 with

oo

R({MN) [N € Bs}) <D (1/2)F ) < 2.

k=0

For all A € 35 we have

AOLAY N+ A) " D ATOATIBATOAY A+ A) T = A4 B(A+ A) L = B(A+ A)
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hence A'=*LAY(\ + A)~™! = B(\ + A)~! € L(X), since the operator on the right hand side
is closed and defined on the whole space X. By the choice of ¢ > 0 we have the standard

representation
A+A+B) ' =+ A+ A+ A (=BA+A) Y forall A€ X5, (3.4.6)
k=0

cf. Proposition 3.4.1 and its proof. We claim that for all A € 35 and k& € Ny
A+ A H =B+ A H = _ AN+ A)TH =LAV + A)HP LAY A+ A)7L (3.4.7)
We prove (3.4.7) by induction. Let A € X5. We have
A+A) T BOA+A) ™ = A+ A)TTATOLAY A+ A) T D AT YA+ A) TILAY(A+ A) T e L(X),

hence (A+ A)™' (= B(A+A)™1) = —A7"*(A+ A)"'LA%(A+ A)~!, which is the claim for k = 0.
Now assume that (3.4.7) holds for some k € Ny, then
A+ A)7H(=B(A+ 4)~HF?
= A+ AN (=BM\+AH*IBA+ A)!
= AN+ A)TH—LAN+ ATH* LAY (AN + AT B+ AT
AN+ A)TH =LA+ A" HEFLAYAY N+ A)TILAY (A + A) 7!
= AN+ A)TH(—LAN+ A THF LAY N+ A)TILAYA + A) 7Y
= —AY YN+ A)TH =LA+ A HFFI LAY\ + A)7!

and the claim is proved.

Plugging (3.4.7) into (3.4.6) yields

A+A+B) L= +A) AN+ A) MV AN+ A)~! (3.4.8)

2" and Yg =Yg forallv>0,8¢

for all A € 5. We define the auxiliary functions ¢, 5(2) := %

(0,1). Then the representation
MA+A+B)™ = A+ A7 = a2A N+ A)TEMA) ATYAYN + A) T
AMA+ A=At (AT A (L a AT
= AMA+A) T =Y aATTAMN)Ya (AT A)

for all A € X5 shows that A + B is Rs-sectorial with wg (A + B) < ¢ and M;,(A+ B) <
Co,o0 Ms +(A) for some constant Cy , > 0.

Now let # € (o — 1, ). We will use the representation (3.4.8) to estimate the s-power function-
norms associated to A and A + B, respectively. For this we define
1 2 -z

¥(z) = 1tz 212 (1+2)(2+2)’ then ¢ € ©o.p.
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Then

Yt Y (A+B)) = tt+A+B)P—2(2t+A+B)!
tt+A) " — ot A M ()16t A)
—(2t(2t + A) 7t — 1o ((2t) TTA) M (2t)0a((2t) 1 A))
= P A) = Yo (tTTAM )1t A) + 2001 a(tTTA)M (240 (t 1 A).
Since ¢y 1—a € Hi°(Xs) and ¥,,1— € Py g this yields via Proposition 3.1.13

lelosass = (1w @ Byt F) ] = 0w A Bl

< @A) ol ng) + 2 Yr-alt T M @)Y2.at ™ A)2) ol k1
H (1t M (D10t A)a) ol )
< | (tew(tilA)x)moH)c(Lg) +2| (tewla(tilflm)»oHx(Lg)
+ (tewlaa(t_lA)x)bo‘ X(Ls)
=~ |llos.a
(with the usual modification if s = +00). O

We now turn to a more involved version of this perturbation theorem, where we assume X to be
p-convex and g-concave, thus in particular reflexive, and s € (1, 4+00) to be in the reflexive range.
In addition we assume that A has an Rs-bounded H*°-calculus. Under these assumptions we can
show that we have not only a one-sided embedding but indeed coincidence of the s-intermediate
spaces of A and A+ B, and moreover also the operator A+ B has an Rs-bounded H°-calculus.

Theorem 3.4.6. Let s € (1,400) and assume that X is p-convexr and q-concave for some
p,q € (1,400). Let A be Rs-sectorial with o > wr,(A) and assume that A has in addition an
Rs-bounded H*®(X,)-calculus. Let m1 > w > o.

Then there is an € > 0 only depending on o,w and M, (A) and a constant C,, , > 0 independent
of A with the following property: If a € (0,1) and B is a linear operator in X with the following
properties:

(a) D(B) 2 D(A) and [BA7T < =,
(b) B(D(A)) C R(A'~?) and A>~1BA—< is R,-bounded with R(A®~TBA=%) < ¢,
then the following assertions hold:
(1) A+ B has an Rs-bounded H*>®(X,/)-calculus, and we have an estimate
Mo/ (A+ B) < Cy o M5 (A) (3.4.9)
for each o' > w. Moreover

X§7A%X§7A+B forall 6 € (o — 1, ). (3.4.10)
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(2) If in addition to (a),(b) the operator BA=1 is Rg-bounded with Rs(BA™1) < e, then we
have

X37A%X§7A+B forallf € (a—1,1). (3.4.11)

Before we turn to the proof of Theorem 3.4.6 we make some comments.

1. The conditions ¢, s < +oo will be used to ensure that the mixed space X (£°) is ¢V s-concave
with ¢V s < 400, hence X has property («), and R-boundedness in L(X) is equivalent to
Rao-boundedness. Since we will also work with the dual operator A" in the dual space X',
we assume additionally p,s > 1 so that also X’(¢*') is p/ V s'-concave with p/ V s’ < +o0.

2. Observe that the domain and range conditions in (a),(b) ensure that the occurring operators
are densely defined, so indeed these operators extend to (Rs-)bounded operators if and only
if their closures are (Rs-)bounded operators.

3. Note that in the assumption (a) we require the operator BA=1 only to be bounded (with
small norm) and do not need Rs-boundedness, as one might conjecture. This is due
to the fact that the crucial estimates depend only on the representation (3.4.4) of the
resolvent, where (beside functions of A) only the operator A*~1BA~% occurs instead of
BA-T. Nevertheless, if we assume BA=! to be R,-bounded with sufficiently small norm,
then we obtain an improvement for the upper bound of the range of indices 8 for which
X0, = X!, g holds.

4. We will split up the proof and put the main work into the separated Lemma 3.4.7 below,
since we will use this part of the proof also in Theorem 3.4.8, which is a variant of this
perturbation theorem.

Proof of Theorem 3.4.6. Let 6g := m — o and L := A*"1BA->  We will choose 0 < & <
1/(2M; »(A)), then from Proposition 3.4.5 we obtain the representation

A+ A+B) =+ A) - A\ + A)TIMN) AN+ A) 7 (3.4.12)

where M (N) := 322 (=LA + A)"H)*L € L(X) for all A € X5, and that the set {M(X\) |\ €
Y5, } is Re-bounded with Rs({M(A) | A € E5,}) < 1/M,4(A).

Let ' 1= 0+ (0 —w) and W’ := 0 + 2(0 —w), then 0 < ' < w” < w. Observe that
by Definition/Proposition 3.2.2 and Proposition 3.2.23 the diagonal operator A; : X(£°) D
D(A4,) — X(£9), (yj); — (Ayj); is sectorial with w(Ag) < o and has a bounded H®(X,,)-
calculus. Moreover, the mixed Banach function space X (£%) is ¢ V s-concave and q V s < +o0,
hence X (¢°) has property («) by Proposition 1.6.22. By Corollary 1.3.6 the diagonal operator

Ag is also R-sectorial with wg(As) < w’ and we can choose a constant C, , > 1 (independent of
A) such that the following estimate holds for each ¢’ > w:

Mg o(As) < CooMZ(A). (3.4.13)
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Let § := m —w < do. By choosing ¢ := 1/2C,, - (M5 (A) V M; 5(A)) we obtain that the operator
set {M(N),| A € Xs} is also R-bounded in X (£*) with

RUMN), | X € S5)) < i (1/2)F = 2R(L) < 26 < 1/Cyy M5 (A).
k=0

Together with the representation formula (3.4.12) for the resolvent of A+ B, the assumptions of
the following Lemma 3.4.7 are fulfilled with C' = A + B, hence (1) follows from Lemma 3.4.7.

If the additional assumptions of (2) are fulfilled we let K := BA~!. Then
(A+ B)A™' = AA' + BAT' C T + K,

hence (A + B)'A~1 is Rs-bounded. Moreover I + K is invertible with

AA+B) ' CU+E) =) (-K
k=0

hence also A1(A + B)~! is Rs-bounded. Combining this with (3.4.15) from the following Lemma
3.4.7 with C'= A + B, the assertion of (2) follows by the Comparison Theorem 3.4.3. O

Before we go further, we have a closer look on the assertion on € > 0 in connection with
the preceding proof of Theorem 3.4.6. At first glance it might be surprising that we cannot
choose an € > 0 independent of w > o such that A + B has an Rs-bounded H°-calculus with
wre (A + B) < 0. This is due to the fact that we needed the R-sectoriality of the operator
A, with wR(fL) < w, which from the assumptions we could only derive if w > o, and then
the constant C,, , from (3.4.13) enters into the definition of . Hence, if we make the following
additional assumption on A:

The diagonal operator A, in X (£9) is R-sectorial with wr(Ag) < o,

then the proof shows that we can choose ¢ := %MR,U (AS)_1 independently of w > ¢ and obtain
that A + B has an Rs-bounded H°-calculus with wre (A + B) < o, if B satisfies conditions
(a),(b) from Theorem 3.4.6.

We will now turn to the announced lemma that will conclude the proof of Theorem 3.4.6. As
already mentioned we follow the line of proof from [KWO04] and [KKWO06]|, and the following
lemma is a variant of [KW04| Lemma 13.6 and the corresponding Lemma 6.2 from [KKWO06],
that is adapted to our setting.

Lemma 3.4.7. Let s € (1,400) and X be p-convex and q-concave for some p,q € (1,4+00) and

€ (0,1), and assume that A has an Rs-bounded H>-calculus. Let § € (0,7 —wre(A)) and let
C be an Rs-sectorial operator in X, and assume there is a family (M (\))res; € L(X)® such
that M (X5) is Rs-bounded and we have a representation

A+O)y =+ A AT A+ ATIMO) AN+ AT for all X € X5, (3.4.14)
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—_— —_—~—

Finally assume that the family (M(X\),)ex, of the extended diagonal operators M(N), in the
space X (£°) is R-bounded as a family of operators in X (£%). Then the following statements hold:

D(C?%) = D(A%), and A°C—Y and C* A= are Ry-bounded for all § € (o —1,0).  (3.4.15)
Moreover, C' has an Rs-bounded H* (X )-calculus, where o :== 7 — 6§, and
ngA = X‘fyc for all € (o — 1, ). (3.4.16)

Furthermore, for all w > o there is a constant C, , > 0 independent of A,C such that for all

o' > w we have an estimate

—_—

M2/(C) < Cuoy RUMN), | A € S5}) - MZS(A)2. (3.4.17)

Proof. To have suitable representation formulas for the fractional powers, we break up the claim
(3.4.15) into four parts:

(1) D(C? C D(A%) and A°C~? is R,-bounded for all 8 € (0, a),
(1) R(A%) D R(C?) and A=9C? is Rs-bounded for all 6 € (0,1 — ).
(2) D(C?) 2 D(A%) and C? A= is Rs-bounded for all 8 € (0, a),
(2)" R(A%) C R(C?) and C~? A% is Rs-bounded for all 6 € (0,1 — a).

We will start by showing (1) in all details, so let § € (0,«). Let z € R(C) and 2’ € D(A") C
D((4")?). Observe that R(C) is a core for C~% and D(A’) is a core for (A')?, respectively.
Observe that X is reflexive by Proposition 1.6.16, so we can use duality methods, where as usual
we identify the dual space X’ with the associated space of X, cf. Subsection 1.6.2.

By the Balakrishnan representation formula for fractional powers (cf. e.g. [MS01]|, Section 7.2
or [Ha06|, Proposition 3.2.1 d)) we have
() [
o0y = Snm9) / 00t + C) L dt,
0

s
N——

=:cq

hence

sin(70)

™

(0%, (A% 2')q / T ((t+ C) L, (A% 2"V g dt
0

R
= lim lim 09/ t_9<(t+0)_1$a (Ae)’x%zdt-

r—0 R—oo

~~

::If’R(x,x’)
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Let 0 < r < R < 400, then
R
If}R(:c, ) = ¢ / 70t 4+ A) L, (A% 2" )q dt

R
—cp / 70 (A0 4 A)TIM AN+ A) e, 2 g di

_ <69 /TRt_e (t+ A) Lo dt, (Ae)'gc'>Q

R
—cp / O (M)At + A) e, (AN 4 AN g di

R R
— <c@/ t"(t+A)1xdt,(A9)/x’>Q—c9/ <M(t)wa(t*1A)x,W(t*lA’)x’)Q@

where 3 := 1 — (a — ) € (0,1) since § € (o — 1,a). Now let n € N, (zj)jen., € R(C)" and
(z})jene, € D(A')", then
n R
Z Zatesas) = (e [T ) (%)
=1 r Q
f -1 e W 1AV dt

=g ), [ (M(E)a(t™ A)aj, vt A)af)a —.
We will estimate the absolute value of the latter integral and show in particular that the limit
for r — 0, R — oo exists; this will imply that also the first integral converges r — 0, R — oo and

becomes
3 (o [ A 0 ) = YA ()0 = 3 o
=1 0 Q j=1 j=1

To handle the latter term we use Holder inequality in the spaces X (¢2 (L2(r, R))), X' (¢ (L2(r, R))),
cf. Proposition 1.6.9, and obtain

Z B R

N N/ dt
< Z_;/r /Q|M(t 1)¢a(tA)l’jH1/Jg(tA):L’j|dﬂ7
_ / Z / M (t—l)zpa(m)xj\\wﬁ(mng\%d#
1/2 L2
: H< MEDwaltA)zl dt) H( Yp(tA) 9!2% .
e x(e3)

We now use that by our assumption the family (M ()\) <)aex; is R-bounded, which in this situation
is equivalent to Rg-boundedness, cf. Remark 3.1.7. Moreover, the diagonal operator A, :
X)) 2 D(A)™ — X(£;,),(yj); — (Ay;); has a bounded H*-calculus by Proposition 3.2.23,
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hence the norm in X (¢7) is equivalent to square function norms associated with the operator
Asn, where the equivalence constants can be estimated in terms of Mg (A), cf. Subsection 1.6.5.
Hence we obtain

([ e tyagene,r )™

- () 1/2
Rz{M(t)@Id@L|t>0} . H</0 |¢a(tA)1;j|2 Cf)

X(63)

IN

X(£)
< R{MO), | Ae s} M s (A) - 1(25)jl x 5)-

We can apply the same arguments to the second factor: By our assumptions we have s’ < +oo0,
and X' is p’-concave with p’ < +o0o by Proposition 1.6.14, hence A’ inherits by dualization the
corresponding properties of A, i.e. it has an Ry-bounded H*-calculus in X’ (EZ/ ). Hence we
obtain

§:/ (47 Y vt A0 o] &
S RN, | X € T} MESA - s lxcep - 1 g

As announced before we can now conclude that the limits for r — 0, R — oo exist, and putting
all together yields

—_—

D C 0y, (A% ol S RAMN), | A € Z5} - M5 (A - [1(x5)illxes) - 1125 x0 ey

By duality this provides C~%z; € D(A%), and we have the estimate

1(A°C ™ a)sllxen) = sup{‘<c—9(xj)j,(A9)’(x;)j> : \I(fv;-)j!!;(/(eg)Sl}
()% X" (&)

S REMOV, | A€ S5} - M (A - Il e

~

uniformly in n € N, hence the operator A?C~? extends to an Rs-bounded operator on X.

The other cases can be treated similar, so we will only give short sketches: For the proof of (1)’
let 6 € (0,1—«) and z € D(C), then another variant of the Balakrishnan representation formula
for fractional powers (cf. e.g. [MS01|, Theorem 5.2.1 or [Ha06|, Proposition 3.1.12) yields

Clr = 09/ tHC(t—l—C')l:cit—ce/ te(I—t(t—i—C)*l)x@
0 0

R R
dt dt
= lim (09 / tr = — ¢ / ttt +C) )
r—0,R—o0 r t r t
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hence for all 2/ € R((A")?)

R R
(P, (A7%2"Yy = lim <09 /1 <t9x,(A’9)’a:’>%—09 / Ot +C) L, (A7) ') dt)

Ao\ e !

R oo o o dt R o s dt

= lin% cy / (t'x, (A7) ) 5~ co / 2t + A) e, (A7) ) "
R—o0 T s

R dt
e / AT A )M AN A) ) T

E 0 dt
— 1im (o / (A + A) e, (472 T
R—o0 r

+ co /Rt1+9<M(t)Ao‘(t+A)_lx7 (A/)l—a—e(t+A/)_1x,> C?)

r

R
- 1%1_1% (Ce/r te(A(tJrA)‘lx,(A‘@)’x’)%
R
+cg / (M ()ta(t™ Az, (™1 A)a) Cf)

where f:=1—a —0 € (0,1) since § € (0,1 — o). From now on we can proceed as in the proof
of (1) and obtain that the operator A~?C? extends to an R,-bounded operator on X.

We now turn to equations (2),(2)’, where we just use the same arguments as above for the dual
operators. Observe that (3.4.14) implies

A+CHY =N+ A)T =AY+ A)TIMON) (A A+ AN forall A € 85, (3.4.18)

For (2)’ let 6 € (0,1 — ). Let 2 € D(A) and 2’ € R((C")?), then again by the Balakrishnan
representation formula for fractional powers we have

o0
(Y2 = 09,/ t=0(t 4+ ")l dt,
0
hence

R
(A%, (C) P2y = lim lim 09/ 70 (A%, (t+ C') 2\ dt,

r—0 R—oo

::IfyR(:r,x’)
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and for0<r < R < +oc0

R
Dp(za) = e / 70 (A0, (t + A) "Ll )q dt

—cp /R 70 (, (ANt + A)TIM (@) (A) Tt + A) ) dt

R
= <A‘9x,09 / t_e(t+A’)_1x'>
r Q

—cy /R t70 (A0t 4+ A) e, M(t) (At + ALl dt

r

R R dt
= <A9x ,Co / 0t + A/)la:’> —cp / (st A)z, b1t A2 Vg "
r (9] r
where :=a+60 € (0,1) since 0 € (0,1 — ) and we can proceed as in the proof of (1). Finally,
in the same manner (2) can be proved analogously to (1)’ using again the dual resolvents (3.4.18).

For the claim concerning the Rs-bounded H°-calculus of the operator C, we can argue in the
same way as in the proof of Theorem 3.4.4:

We consider again the vector-valued extensions ZS, C, as operators in the space X (%), then A is
a sectorial operator having an H*° (X%, )-calculus, and C,is a perturbation of the operator A, in
the sense of Lemma 6.2 from [KKWO06| or Lemma 13.6 from [KW04|, respectively. This implies
that the operator Cy in the space X (¢%) has an H*(X,)-calculus for each ¢/ > o, i.e. C has an
Rs-bounded H*(X,)-calculus for all ¢’ > o by Proposition 3.2.23. The norm estimate (3.4.17)
follows from a careful inspection of the proof of [KKWO06| or Lemma 6.2.

O

We now present a variant of Theorem 3.4.6 where the perturbation operator need not be an
operator in X but is an operator B : X, — X,_1. This situation appears e.g. in perturbation of
boundary conditions of differential operators, or when differential operators in divergence form
are considered, as we will do it in Subsection 3.6.2. A first version of this kind of theorem in the
context of maximal regularity can be found in [KWO01-b|, Theorem 8. In that paper examples are
given how to apply this theorem to perturbation of boundary conditions of differential operators.
An extended version that deals with perturbation of the H*-calculus is [KKWO06], Theorem 6.6.
In fact, we will intensively use the ideas and proofs given in [KKWO06.

Recall that the fractional spaces X, and the (universal) extrapolated operator A have been
introduced in Subsection 3.3.1. In particular, the operator A% acts as an isometry X, — X and
A~ acts as an isometry X — X, for a > 0.

Theorem 3.4.8. Let s € (1,400) and X be p-conver and g-concave for some p,q € (1,+00),
and assume that A has an Rs-bounded H*> (%, )-calculus. Let o € (0,1) and m > w > o. Then
there is a constant C, » > 0 independent of A, and an ¢ > 0 only depending on w, o and M (A)
such that if B : Xa — Xa,l is a bounded linear operator and

L:= A“"'BA™ is an Rs-bounded operator on X with R4(L) < ¢, (3.4.19)
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then there exists a unique sectorial operator C in X whose resolvents are consistent with those
of Aa_1+ B in Xo_1. Moreover, the following assertions hold:

(1) The operator C has an Rs-bounded H*(X,/)-calculus for all o’ > w, and

MZ2,(C) < Clup MI(A). (3.4.20)

(2) Xg?A = XSGC forallf € (o —1,a).
Remark 3.4.9. Again, if we make the additional assumption that
the diagonal operator A, in X (0%) is R-sectorial with wg(As) < o,

we can choose € > 0 (not depending on w > o) such that C in Theorem 3.4.8 has an Rs-bounded
H®>-calculus with wre (C) < o if B satisfies the assumptions of Theorem 3.4.8. O

Proof of Theorem 8.4.8. This can be deduced from the corresponding theorem and the line of
proof in [KKWO06|, Theorem 6.6, using similar arguments as in the proof of Theorem 3.4.6. In a
first step, by the same arguments as given in the proof of Theorem 3.4.6 we can conclude that
the diagonal operator gs is R-sectorial, and in particular also A is R-sectorial. Let w' € (o, w)
and ¢ := 7 — w’. Then the assumptions of [KKWO06|, Theorem 6.6 are fulfilled, so the proof
of [KKWO06|, Theorem 6.6 implies the existence of a unique sectorial operator C' in X whose
resolvents are consistent with those of Aa_1 + B in Xa_l with

A+O)y =+ AT AT A+ ATIMOW)AYN+ AT for all A € By,

where M () := > 22 o (~LA(\ + A)"Y)*L € L(X). Choosing ¢ > 0 as in the proof of Theorem

3.4.6 yields that M (Xs) is Rs-bounded and moreover the set of diagonal operator extensions

—_—

{M(\), | X € g} in the space X (£°) is R-bounded with R({M(\), | A € Xs}) Sw MG (A).
Hence all assertions of Theorem 3.4.8 follow from Lemma 3.4.7. O

Finally we turn to a version of the Perturbation Theorem 3.4.6 that will also give norm equiva-
lence for higher order associated spaces. This is the central theorem we will use in the application
on differential operators in non-divergence form in Subsection 3.6.1. In fact, the line of proof
gives the idea that under similar assumptions as in Theorem 3.4.10 we can also obtain norm
equivalence of the associated spaces for arbitrary order. Nevertheless we will only consider per-
turbation and corresponding norm-equivalences up to the order 2, this will be sufficient for our
application in Subsection 3.6.1 to differential operators.

This theorem is a combination of the corresponding theorem for perturbation of the H°°-calculus
in [KKWO06], Theorem 6.1 (as already worked with earlier), and [DDHPV04|, Theorem 3.2. In
fact, we will use a representation formula for resolvents of the perturbed operator that goes back
to Jan Priiff and is presented in the proof of [DDHPV04|, Theorem 3.2.

Theorem 3.4.10. Let s € (1,+00) and X be p-convex and q-concave for some p,q € (1,400),
and assume that A has an Rs-bounded H*>-calculus. Let o, 3 € (0,1) and ™ > w > 0 > wre(A).
Then there is a constant C,, , > 0 independent of A and an € > 0 only depending on w,o and
M (A) such that if B is a linear operator in X with the following properties:
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(a) D(B) 2 D(A) and Rs(BA~1) <e,
(b) B(D(A)) C R(AP), and A=PBAP~ is Ry-bounded with Rs(A~PBAP~1) < ¢,
(c) B(D(A?)) C D(A®), and A*BA~1=2 s Rs-bounded with Rs(A*BA-1-a) < ¢,

then the operator A + B has an Rs-bounded H* (X, )-calculus for all o' > w, and

MSO;’,/(A +B) < Cyyo M;’f,(A) (3.4.21)
Moreover
XE,A = XS’AJrB forallf € (=B,14+a A (1-7)). (3.4.22)

Discussion of the assumptions in Theorem 8.4.10:

1. Let us note first that in comparison to the formulation of Theorem 3.4.6, the exponent
B from (b) is a substitute for 1 — « in the formulation of (b) in Theorem 3.4.6. Observe
that for given o € (0, 1) one obtains the largest range of 6 such that the norm equivalence
XE,A = XZAJFB holds, namely the interval (—f3,2 — ) of length 2, if one can choose
8 >1— a. On the other hand, the largest possible upper bound for admissible 6, namely
1+ «, is obtained if one can choose <1 — a.

2. The mapping condition on the domains in (c) ensures that the operator AYBA~17% is
densely defined.

3. Furthermore, the assumptions in Theorem 3.4.10 are rather strong compared with the
assumptions for perturbation of the H-calculus. In this case one would either assume
(a) and (b) or (a) and (c). The first combination matches with the perturbation theorem
by Kunstmann and Weis (cf. [KWO01-b], [KW04], [KKWO06]) and the second one with
the earlier perturbation result of Jan Priif as it can be found in [DDHPVO04]|. Indeed,
this second result can also be deduced from the first one by complex interpolation, this is
also shown in the literature cited above. Of course, (a) and (c) are also in this situation
already sufficient for A + B to have an Rs-bounded H°-calculus, this can be proven with
the aid of the diagonal operator extensions in the spaces X (¢°) as it has also been done
in the proofs before. Nevertheless the crucial point we are interested in are the norm
equivalences X597A = Xg,A+B for the wider range 6 € (— 6, (1 + @) A (2 — 3)), and this
makes it reasonable that both assumptions might be necessary. Moreover, in our concrete
application to differential operators in Subsection 3.6.1, both conditions (b) and (c) are
(under suitable regularity assumptions on the coefficients) equivalent by duality, hence this
result is a suitable tool.

4. Again, if we make the additional assumption that

the diagonal operator A, in X (£%) is R-sectorial with wg(Ay) < o,
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we can choose € > 0 (not depending on w > o) such that A+ B in Theorem 3.4.10 has an
Rs-bounded H*°-calculus with wre(A+ B) < o if B satisfies the assumptions of Theorem
3.4.10.

Proof of Theorem 8.4.10. In view of Theorem 3.4.6 and its proof we obtain immediately that if
we choose € > 0 properly, then C' := A + B has an Rs-bounded H®°-calculus with wre(C) <
wre (A) and that XS,A = ch for all § € (—3,1). Moreover we get from Lemma 3.4.7 the
Rs-boundedness of the interchanging fractional power operators, i.e.

D(C? = D(A?), and A°C~? and C? A=Y are R -bounded for all 6 € (—3,1 — 3) (3.4.23)

We only have to show that Xg,A = ng,c forall @ € [1,1 4+ a A (1 — 7)), and in view of (3.4.23)
and the comparison theorem it is sufficient to show for all § € (0,a A (1 — 3)):

D(C'9) = D(A'™9), and C'9A~19 and AMC—1-9 are Ry-bounded (3.4.24)

We show first that the assumed Rg-boundedness of the operators BA=! and L := A®BA—1-«
also implies the R -boundedness of the operators A° BA~1-9 and the existence of some My > 1
with R4 (A9BA-1-9) < Myeg for all § € (0,a) by complex interpolation: Let K := BA-L,
then AYBA—1-0 = ASK A9, Now fix some n € N and let A and K be the diagonal operator
extensions of A and K in the space X (¢5), then K is a bounded operator, and the operator Ais

sectorial and has a bounded H*-calculus in X (¢), with bounds that are independent of n € N.
In particular, the operator A has bounded imaginary powers, hence we can choose constants
M > 1,w € R such that

||gitx||X(g%) < M vt 1zl xs) foralxe X(£),teR.

Let
T(2)(wp)k = (e A KA~y

for all (z;)r € D := D(A%)" N R(A2)" and z € S := {z € C| Re(2) € [0,1]} (observe that
KA g = BAT17 A7 Ay € D(A®) < D(A™") < D(A*%)

for each z € D(A%) N R(A?) and z = u + it € S). For fixed z = (z3); € D we have in each
component

up(2) == (T(2)2)p = % [A% (1 + A) "] [(1 + A)*K Az,

where the operators z — e* A% (1 + A)~@ = = AieIm(z) [4aRe(2)(1 4+ A)~9] are uniformly
bounded, hence uy, : S — X is continuous and bounded, and w is analytic on the open strip S.
Moreover,
S e
1T+ it)al| xqes) < M2e' ™ "2 eg - [zl x(es) < Mogo - |2 xes)
for some constant My > 1 and for all x € 15, j € {0,1}. By abstract Stein interpolation we can

conclude

(A KA 2kl x(es) = IT(6/ )| x(es) < Mogo - |zl x(es)

1



3. Rs-BOUNDEDNESS AND R¢-SECTORIAL OPERATORS
3.4. Comparison and perturbation for Rs-sectorial operators 136

forall z = (x3)x € X (£7), hence A° BA™179 extends to an R,-bounded operator with Rs(A9 BA=1-9) <
M()Eo.

We now fix some § € (0, ). Then
Cl+5A—l—5 _ CJCA—l—(S o) [C(SA—J] [A(SCA_l_(S],
and the operator C9 A9 is R -bounded by (3.4.23) since § € (0,1 — /), and moreover
A50A—163A5AA15+A6A15 1_|_A5Al5
and the second operator extends to an Rs-bounded operator by the preceding interpolation re-
sult. This shows that D(A'*%) C D(C'*?) and that the operator C'*9 A== extends to an
Rs-bounded operator on X.
It remains to show that also the operator A°C~179 is R -bounded. For this we use the following

representation formula of the resolvent that is taken from [DDHPV04| and can be derived in a
similar way as the corresponding representation formula in Theorem 3.4.5:

t+0)t = (I+K)(t+A Z A(t+ A) 1K)k+1(t+A)—1) (I+K)™

= (I+K) ((t+A)_ +A1_"‘(t+A)_ M(t)Aa(tJrA)_l) (I+K)™!

o0

where M (t) := — Z(—LA(t + A)"H*L. Observe that I+ K, (I + K)~! are Rs-bounded exten-
k=0

sions of the operator CA~! and AC™!, respectively.

Now let z € R(C?) and 2’ € D((A%)), then we use again the Balakrishnan representation formula,

and the additivity of fractional powers to obtain

AC 1% = (I + K)t0 % = sin(rd) / t O (I +K) Yt +C) e dt,
—_Jo

=:cs

hence
(AC™' %z, (A2 )q = C5/ (I + K) Nt +C) e, (A2 )q dt
0

r—0 R—oo

R
= lim lim ¢y / t=0 <(I + K)_l(t + C)_ISU, (Aé),$/>§2 dt .

~
::IiR(x,m/)
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Let 0 <r <R < +ocoand T := (I + K)~!, then
R
I,‘iR(m, 7)) = ¢ / t=0((t + A)" T, (A% 2V q dt

R
tes / 10 (A1-@=0) (4 4 AV IM(E) At + A) 1Tz, 2’ dit

T

_ <05 /Rt_5 (t+ A) T dt, (A‘S)’:n’>Q

r

R
+cs / tO (M)At + A) " Tz, (AN O (¢ 4 AN Vg dt
TR
= <05 / t=0 (t4+ A) Tz dt, (Aa)’x’>
r Q
dt

R
s / (M ()bt~ A) T, st~ A ) &

where 8 := 1 — (a — 0) € (0,1) since § € (0,a). Now let n € N, (z;)jen., € R(C)" and
(@) jens, € D((A)°)", then

S8 (g, 1)) Z<c / 170 (t+ A) Ty dt, (A% ]>
j=1

J=1 @

dt

+es Z / (7 ATy, ¥t A = (3.4.25)

In the same way as in the proof of Lemma 3.4.7 we can handle the second integral with Holder’s
inequality in the spaces X (£5(L2(r, R))), X' (¢5 (L2(r, R))) and obtain

Z R O R

</ e 1)%(%)”"”)1/2 H( st A \th>1/2

and using the fact that the diagonal operator A : X (£5) D D(A)" — X (£3), (yj);j — (Ay;); has
a bounded H*°-calculus, the same arguments as in the proof of Lemma 3.4.7 lead to

H< M () ha(tA) Ty c?) 1/2

oo 1/2
RO @ g, 1120 | [7 atearra )
0

< Rs(T) 1(25)5 1 x(es)-

VAN

)

X'(eg)

ge

X(£)

IN

S |’(T$j)j||x(e;)
X(4)

We can apply the same arguments to the second factor, since A’ inherits by dualization the
corresponding properties of A, i.e. it has an Rgy-bounded H°-calculus in X’(Ef;). Thus we
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obtain
ttAT ttA dt < ;i "
Z (t)val( )T, ¥s( )z > }7 ~ ||($J)JHX(£;;)'”(%)JHX/@%’)-

Hence we can conclude that the limits for » — 0,R — oo in (3.4.25) exist, and putting all
together yields

S (ACT1 0y, (A% bal S N llxces) - 15l (3.4.26)
j=1

By duality this provides 0—1—6% € D(A?%), and we have the estimate

JAYOC (@)l x ey = IACACT 025, xes)

= sup {‘<Cé(l’j)j, (AJ)/<1‘;)]>
X(e)xX"(e5))

S @)l xes)

: H(%’)j”Xf(@;’) S 1}

uniformly in n € N, hence the operator A'°C~179 extends to an R,-bounded operator on X,
and the proof is finished. O
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3.5 Weighted estimates and R;-boundedness in L”

In this section we will show that negatives of generators of analytic semigroups always have an
Rs-bounded H°-calculus in an appropriate scale of LP-spaces if the semigroup satisfies suitable
generalized Gaussian estimates. This result is similar to the corresponding one in [BK03|, where
under slightly more general assumptions it is shown that such operators have a bounded H®°-
calculus in the same scale of LP-spaces. We will apply our result to show that large classes of
differential operators have an Rs-bounded H°°-calculus. Thus the theory developed in Section
3.3 can be applied to these operators.

3.5.1 Weighted estimates and R,-bounded H*-calculus

We will use the general framework of spaces of homogeneous type, that was already introduced
in Section 3.1. Let (o, d) be a metric space and p a o-finite regular Borel measure on €y such
that (Qo,d, i) is a space of homogeneous type in the sense of Coifman and Weiss (cf. [CWT71],
[CWTT]). Recall from Section 3.1 that this means there is a constant C; > 1 such that

pu(Bay(z,2r)) < Cy u(Boy(z,7))  for all z € Qg, 7 > 0. (3.5.1)
For abbreviation we will write |B| := p(B) for p-measurable sets B C Qg and pBq,(z,7) :=

Bq,(x,rp) for all ,p > 0 and z € Q.

From (3.5.1) one can deduce the existence of some D > 0 and Cp > 1 such that
|Bq, (x, Ar)| < Cp AP |Bq,(x,7)| forall z € Qo7 > 0,A > 1. (3.5.2)

We will usually use this in the following more general form, which follows from the simple fact,
that Bo,(z,7) C B, (y, r+ d(z, y)):

r+d(x,y)

D
) ) [ Bao (y, p)|. (3.5.3)

Va,y e QoVr>p>0: |Bg,(z,7)] < C’D<

Moreover we fix a p-localizing sequence (2y,)nen for (Qo, 1) with the additional property
diam(§2,) := sup{d(z,y) | z,y € Q,} < +oo for alln € N

and define the spaces L(Q0, 1), L}, .(Q0, 1) with respect to this fixed sequence (€,,)nen accord-
ing to Subsection 1.6.1.

Finally we fix a measurable 2 C Qg with |©2| > 0 and Banach spaces E, F. In this section, we will
again use the abbreviation LP := LP(Q) for the scalar-valued LP-spaces and LP(F) := LP(Q, E)
for the vector-valued LP-spaces. The set € will be endowed with the induced Borel-measure from
(Q0, ) and the localizing sequence (2N, )nen. We will use the notation B(z,r) := Bq,(z, )N
for open balls in 2, and for later use we define the annulus Ag(z,r) := B(x, (k + 1)r)\B(zx, kr)
for all k € Ny and z € Qp,r > 0. Note that by (3.5.2) we have

|Ag(z,7)| < Cp(1 4 k)P|Bq,(x,7)| for all k € Ng,z € Qq,7 > 0.
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The subset Q@ C Qg will be used for a slightly more general formulation of the main theo-
rems of this section. Nevertheless, in all lemmata and proofs we will concentrate on the case
Q = Qp, wich is justified by the following reason: each function f € L] (Q,E) can be iden-
tified with the zero extension Jof := f U ((Q\Q) x {0g}) € L}, .(Q, E), and vice versa a
function g € L}OC(QO,E) can be identified with the function Pyg := g¢lg € L}OC(Q,E). In
the same way each operator T' : L(Q,E) — L, .(Q,F) induces a corresponding operator
To == JoT Py : L (Q, E) — L} .(Qo, F). We will see that all assumptions we will make in the
following assertions on operators in spaces over 2 will naturally carry over to the corresponding
operator Ty in spaces over g, hence in the proofs it will always be sufficient to consider the case

Q = Q.

The main assumptions in this section will be generalized Gaussian estimates, also referred to as
weighted or off-diagonal estimates. Roughly speaking these are estimates that generalize classical
Gaussian kernel estimates on the one hand, and on the other hand they are a technical tool to
formulate a substitute for the Hérmander condition on integral operators, which will give a weak
(qo, qo)-criterion for non-integral operators in the sense of Proposition 3.5.11. To get a better
insight we present some basic facts about estimates of this kind and their connection to classical
kernel estimates. For a family (S;)tes of operators L°(E) — L} (F) we will consider estimates
of the form

1_1
I LB St Lag(am) llp—q < [Bag (@, m)|a "7 g(k) (3.5.4)

and their dual version

11
I LA St LB llp—a < [Bag(z:7e)|7 7 g(k) (3.5.5)

for all z € Qp and t € J,k € Ny and some (r¢)ics € (Rsg)’, where g : [0,00) — [0,00) is
non-increasing and 1 < p < ¢ < +o0. Note that these estimates can be rewritten by explicitly
writing out the integral norms, e.g. (3.5.5) can be rewritten as

1 q 1 1 ) 1/p
|Bay (z,71)| Siflpd =gk / d ) 3.5.6
<‘BQO(QJ,T})‘ Ap(z,re) ’ tf|F M) g( )<‘B§20(xaTt)| B(x,r¢) |f|E s ( )

for all f € L°(E) with supp(f) C B(z, 7). Moreover, estimates like (3.5.4), (3.5.5) also imply
corresponding estimates for p, ¢ € [1, +oo] instead of p,q if p < p < ¢ < g, by maybe some waste
of decay in the function g. Since we will use this fact later for the estimate (3.5.5) we give more
details in that situation:

Lemma 3.5.1. Let 1 <p < ¢ < 400 and g : [0,00) — [0,00) be a non-increasing function. Let
(St)ies be a family of operators L (E) — L} (F) which satisfies the estimate (3.5.5) for all

r€Qandt € J k€ Ny and some (r¢)ies € (Rso)?. Let p,G € [p,q] such that p < p < § < q.
Then the estimate

11
[ 14, (are) St 1B l5—q < [Bao (@, re)[7 7 g(k) (3.5.7)

1_1

holds for all € Q and t € J,k € Ny, where §(k) 1= O “g(k)(1 + k)PG ).
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Proof. We only consider the case ¢ < 400, the modification for the remaining cases is obvious.
Let x € Qo and t € J, k € Ny. For brevity let By := Bq,(z,7¢), B := B(z,r;) and A := Ag(z, 1),
then |B| < |Bo| and |A| < Cp(1+ k)P|By|. By Holder’s inequality, we obtain

1 -\ ANV 1 ;o\
)= " (i 150149
(’BO‘/,;}’ tf‘F 1% <‘BO‘) ‘A| A’ tf|F M
A 1/q~<1/ >1/q A 1/ql/q( 1 / >1/q
< L _ S, fl4 d Y O el - S, 19 d
< (&) (g fyseftban) = (i) B, /e
A 1/@—1/q< 1 / » )”p
g (2L — d

1

1_1 D(1/6-1 1 - 1/p
< g(k)CH (1L 4 k)PS0 (,BO‘ /B If!%du>

for all f € LX(FE) with supp(f) C B(x, ). O

We cite two results from [BK02| and [Ku02| to get a better understanding for this kind of
estimates. The first result connects the estimate (3.5.4) with classical kernel estimates for
(p,q) = (1,400) if the S; are integral operators.

Lemma 3.5.2. Let (S;)ics be a family of linear integral operators L'(E) — L (F) with kernels
ki € L®(Q x Q,L(E, F))' and (r)tes € (0,00)7. Then an estimate of the form

I 1B St Lag(er) 1—00 < |B(x,me)| "t g(k)  for all x € Qo k € Rxo,t € J, (3.5.8)

where g : [0,00) — [0,00) is non-increasing, is equivalent to an estimate of the form

d(z,
Il < Br) (M) for i,y € o,te s (3.5.9)

where h : [0,00) — [0, 00) is non-increasing. Moreover, if (3.5.8) holds, one can take h := g, and

if (3.5.9) holds, one can take g(t) := 2PCph((t — 1) v 0).

This lemma can be found in [BK02|, Proposition 2.9 or [Ku02| Proposition 2.2. for the scalar-
valued case, and the proof given there generalizes to the vector-valued case, since also then the

identity [|Sk|li—co = ||k||co holds for all kernels k& € L>°(2 x Q, L(E, F)) and associated integral
operators Sj.

On the other hand, estimates of the above form can be compared with a symmetrized version
with indicator functions of balls on both sides, and with exponential weights if the function g
has a sufficiently fast decay.

Lemma 3.5.3. Let (Sy)icy be a family of linear operators Sy : L°(E) — L}

loc

(F) and (ri)ieg €
(Ro)”?. Then an estimate

|| ]lB(;B,Tt) St ]]-Ak(l',’l‘t) HPH(] < Cﬁl |B(l’art)|%_% (1+k)_’€1 fOT all x € QOa ke No,t €J (3510)

Yie. Sif(x) == [, ke(z,y) f(y) du(y) for f € L*(E) and a.e. z € Q
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for all k1 > 0 is equivalent to an estimate

1 _1 d(x,y)\ —r2
18500 St Lt I < Coa 1Bl 1Bl (14 D22 (35.11)
for all x € Qo, k € No,t € J and all kg > 0. More precisely, if (3.5.10) holds for some k1, then
(8.5.11) holds with ko = k1, and if (3.5.11) holds for some ko > 2D, then (3.5.10) holds with

K1 :HQ—2D.

This lemma is a special case of [Ku02|, Proposition 2.6. Note that in the applications one usually
has not only polynomial but even exponential decay in the weighted norm estimates, which of
course also imply these kinds of estimates, cf. e.g. [Ku02], Proposition 2.6. Moreover, we can
replace the exponents 1/p, —1/q in (3.5.11) by any «, 5 € R such that a4+ = 1/p—1/¢q by maybe
some waste of decay, i.e. one has to change k2 in this case. This is a simple consequence of (3.5.3).

Let us finally mention that in the classical situation Gaussian bounds are often only derived for
real times. But in this case one can also derive corresponding estimates for complex times by
eventually loosing some decay, and moreover the sector on which complex time estimates can
be established depends on the decay on the underlying real time estimates. We will not go into
detail but just refer to the exposition in [Ku02|, Sections 2.4, 2.5.

The following theorem is the main result of this section.

Theorem 3.5.4. Let 1 < pg <2 < p1 < 400 and wy € (0,7/2). Let A be a sectorial operator
in L2(Q) such that A has a bounded H™-calculus in L*(Q)) with wys(A) < wy. Assume that the

generated semigroup Ty := e ™ satisfies the following weighted norm estimates for each 6 > wy:
11 _

1T a4, (o pt/m) To T e at/my lpo—pr < ColB(a, [A[Y ™)1 70 (1 4 k)=, (3.5.12)
11 a

1 g agrm) Ta Lay o gafirmy llpo—pr < Col B, [AMY™)[71 770 (14 k)~ (3.5.13)

for all z € Qo, k € No, A € X1 /5_g and some constants m > 0, kg > D(p% — /p% + poip, ) + 1 and
1
Cy > 0. Then, for all p,s € (po,p1) and w > wqy the operator A has an Rs-bounded H>®(%,,)-

calculus in LP(Q).
To be more exact we can reformulate the statement of Theorem 3.5.4 in the following way:

For all p € (po,p1), the semigroup T induces a consistent Cy-semigroup T, on LP(Q) with
generator —A,, and for all s € (po,p1) the operator A, has an Rs-bounded H>-calculus
with wre (Ap) < wo.

The extrapolation procedure is well known, cf. e.g [Ou05| for extrapolation of semigroups in
the classical situation of L!-L*-contractivity or classical Gaussian bounds, and [BK02|, where
semigroups are considered that satisfy the assumptions of Theorem 3.5.4. Thus we will not go
into further details for this.
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3.5.2 Applications to differential operators

Before we turn to the proof of Theorem 3.5.4 we will give some examples of classes of operators
that are well known to satisfy generalized pyg — p; Gaussian estimates for some py < 2 < p
on the one hand and have a bounded H*-calculus in L? on the other hand. So in these cases,
the assumptions of Theorem 3.5.4 are fulfilled and hence the considered operators also have an
Rs-bounded H®°-calculus in LP for all p,s € (pg,p1). In fact, in most situations much stronger
weighted estimates than required are known, typically in the symmetric form (3.5.11) for arbi-
trary ko > 0, i.e. with decay faster than every polynomial, or even exponential, i.e. "classical"
Gaussian bounds.

In particular, the differential operators in the following examples turn out to be R4-sectorial in L?
for all p, s € (po, p1) with appropriate pg, p1. Thus for these operators, the s-intermediate spaces
are well defined, and the norms are independent of the auxiliary function chosen to determine
the s-power function norms associated to the operator. Furthermore we can apply the theory
developed in Section 3.3 to these operators. Nevertheless, we do not determine the associated
s-intermediate spaces explicitly in this section. That will be done for uniformly elliptic operators
in divergence and non-divergence form under stronger assumptions on the top order coefficients
in the subsequent Section 3.6, where we will show that the s-intermediate spaces associated to
certain classes of elliptic operators coincide with the classical Triebel-Lizorkin spaces F'; at least

for some range of a.

(a) Elliptic operators in divergence form.

There are many contributions to Gaussian estimates for elliptic operators in divergence form, cf.
e.g. [Da89], [Da97-2|, [Ou05] and the literature cited there. If  C R is a region, an elliptic
operator on {2 in divergence form is formally given as

Au= " (-1)I19°(as30°u), (3.5.14)

laf,|8]<m

with coefficients aq3 € L*°(£2,C). To be more exact, the realization Ay of the operator A in
L%(Q) := L?*(Q,C) (with Dirichlet boundary conditions) is defined as the operator associated to
the form

a(u,v) ::/ Z aap(x)0%u(z)0Pv(z) dx  for all u,v e W(;n’Z(Q), (3.5.15)
|adl,|B|<m

where we have to impose appropriate ellipticity conditions for the principal part to ensure that
A, is well-defined. For simplicity we restrict ourselves to the case Q = RP and to homogeneous
operators without lower order terms, i.e.

a(u,v) = / Z aop()0%u(x)0Pv(z) dx  for all u,v € W™*(RP) (3.5.16)
lodl,|B|l=m

with coefficients a,g € L®(RP,C). Note that additional lower order terms can be treated by
perturbation arguments and will usually lead to the same results cited in the sequel for A + v
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instead of A and some sufficiently large v > 0.

We assume the form a to be sectorial, i.e.
| Tma(u,u)| < tan(y)) Rea(u,u) for all u € W™?(RP) (3.5.17)

for some ¢ € [0,7/2), and to satisfy an ellipticity condition in the form that the following
Garding’s inequality

Rea(u,u) > n][(=A)™?u||3 for all u € W™?(RP) (3.5.18)

holds for some 1 > 0. Observe that in the case m = 1, the conditions (3.5.17) and (3.5.18) are
consequences of the following uniformly strong ellipticity condition:

D
Re Y ajr(x)é& = nl¢)> forall ¢ € CP,z € RP, (3.5.19)
g k=1

with ajj := @e,e,, where maybe A has to be replaced by A + v for some constant v > 0.

In this situation a is a closed sectorial form, hence the associated operator Ay in L?(RP) is
sectorial and has a bounded H> calculus with wge(4,) < 9, so the assumptions of Theorem
3.5.4 are fulfilled if the generated semigroup satisfies generalized Gaussian estimates, which is
true in various cases. We take a closer look on some special situations.

(i) In the case m =1 we can formally write Au = —div(aVu), where a = (ajk)szl. Assume
that a is real-valued and symmetric, i.e. ajp = ag; : RP — R for all j,k € N<p, then
the associated operator As in L2(RP) is selfadjoint, and the semigroup generated by — Ay
has a kernel k; that satisfies classical Gaussian bounds in the following sense: for all € > 0
there is a constant C. > 0 such that

(z —y)?

0 < ki(z,y) < Cet™P/2 exp < ~at(1+o)flaflw

> for all z,y € RP ¢ > 0.

This result is nowadays classical and we refer to the standard literature as [Da89], Corollary
3.2.8, where also the case of general regions Q C R” is considered. Hence the operator A
has an Rs-bounded H>-calculus in LP(RP) for all s,p € (0, 400) in this case.

(ii) We consider again the case m = 1, so Au = —div(aVu), but now we admit a : RP —
CP*P to be complex valued and also drop the symmetry condition. In this setting, things
are rigorously different than in the real symmetric situation, we refer to [AMT98| for an
comprehensive treatment of this case. First of all, we usually have to consider v + A
for some v > 0 to obtain Gaussian bounds, even in the absence of lower order terms.
Furthermore, it is no more true that v+ A has classical Gaussian bounds in any dimension
D for some v > 0, if we assume no more regularity on the coefficients a. Nevertheless, in
the case D < 2 Gaussian bounds for v + A are obtained without any further assumptions
for some v > 0, whereas for D > 3 there are examples of operators that have no Gaussian
bounds, cf. [HMM10]. In [Au96] it is shown that v + A satisfies Gaussian estimates for
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(iii)

some v > 0 in the case D > 3 if the coefficients a are assumed to be uniformly continuous.
So in these cases the operator v + A has an Rs-bounded H>-calculus in LP(RP) for all
s,p € (1,400).

We will now consider the general case m € N, where for simplicity we assume D > 3. Then
by (ii) it is already clear that we cannot expect A to satisfy classical Gaussian estimates
without any further regularity assumptions for all D > 3. We cite a result without any
additional regularity assumptions from [Ku02], Section 4.1, cf. also [Da97-2] for earlier
results in this direction. Assume D # 2m and let py := % if D > 2m and p; := +oo if
D < 2m and pg := p}. Then there is an v > 0 such that the semigroup generated by the
operator —(v+ Ay) in L?(RP) satisfies Gaussian bounds of the form (3.5.12), (3.5.13) for all
kg > 0 and some 6 € (0,7/2). Hence the operator v + A has an Rs-bounded H°-calculus
in LP(RP) for all s,p € (po,p1) in this case. In fact, more is known in this situation: It
can be shown that this result is optimal in the sense that for all r ¢ [pg, p1] one can find
an operator A of the above form such that the generated semigroup does not extend to
L"(RP), cf. [Da97-1], and also the case D = 2m has been treated. More references can be
found in the more detailed exposition in [KW04], Chapter 8 and 14 and the corresponding
notes.

(b) Elliptic operators in non-divergence form.

Although the notion of Gaussian bounds is by natural reasons strongly connected with elliptic

operators in divergence form, there are also results on Gaussian bounds for elliptic operators in

non-divergence form. We just cite one recent result due to Peer Kunstmann explicitly:

Let A, be the realization in LI(RP) := LI(RP,C) of the differential operator

A= Z ao(z)D®

la]<2m

with D(A,) = W2™4(RP), where

(D

(IT)
(I1)?

aq € L®(RP C) for all |a| < 2m, and there are w € (0,7/2),7 > 0 such that for all
z, & € RD:

Z aq ()" € ¥y, and ‘ Z aa(x)ﬁa‘ > n|eP™.

|a|=2m |a|=2m
ae is bounded and uniformly continuous, i.e. a, € BUC(RP,C) if |a| = 2m, or

aq is of vanishing mean oscillation, i.e. a, € VMO(RP,C) if |a| = 2m.

Then in [Ku08], Section 6.1 the following result is shown:

Proposition 3.5.5. Assume that (I) and either (II) or (II)’ holds. There are constants v > 0
and § € (0,7/2) such that —(v+ A,) generates an analytic semigroup (T(2)),ex;) in LY(RP) for
all ¢ € (1,400). Moreover, the semigroup T satisfies the following Gaussian estimate

|z —y|*™

2 .
105 e} T L e e < C 277 exp ( - b(T) ) (3.5.20)
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for all z € X5 for some C,;b >0 for any p > 1.

Observe that the Gaussian estimate (3.5.20) implies the estimates (3.5.12), (3.5.13) in the as-
sumptions of Theorem 3.5.4 for all 1 < py < 2 < p; < +00. Moreover, it is well known that
v+ Ay and even v + A, for ¢ € (1,400) has a bounded H*-calculus for some v > 0 if the
coefficients of the principle part are BUC, cf. [DS97|, Theorem 6.1, and the same is true in the
case (II)" under the additional assumption m = 1 and a, = 0 if |a| # 2, cf. [DY02].

(c) Schrédinger operators with singular potentials.

Let us finally have a short look on Schrodinger operators, i.e. A = —%A + V, where A is
the Laplace operator and the potential V : RP? — R is a measurable function. For simplicity
we restrict ourselves to the case D > 3. We let VT := Vv (0 and V™~ := —(V A 0) so that
V =Vt —V~. We assume that V¥ € L} (RP”) and V~ is in the Pseudo-Kato class, cf.
[KPS81]. Then the operator Ay := —3A + VT is associated to the form

ap(u,v) == % /Vu(a:)Vv(:L‘) dx + /V+(a:)u(x)v(x)dx for all u,v € D(ayp),

where D(ag) := {u € WYA(RP)| [V (2)|u(z)?dr < +oco}, and it is well known that the
realization of Ag in L2(RP) is a self-adjoint operator, and its generated semigroup is dominated
by the heat semigroup, hence it satisfies classical Gaussian bounds. The realization As of A in
L?(RP) is defined as the operator associated to the form perturbation (—1A +V7T) =V~ =
Ao — V. Since this form is symmetric, the associated operator As is self-adjoint and semi-
bounded from below under certain assumptions on V= (cf. e.g. [KPS81|, Section 4 or [BS91]),
so in that case a suitable translate of As has a bounded H%-calculus in L?(RP), and in our
sense the only task is to ask for (generalized) Gaussian estimates.

(i) Recall that V* € L} (RP). If in addition V™ is in the Kato class (cf. e.g. [Si82]), then it
is shown in the comprehensive paper [Si82] that As is selfadjoint (this goes indeed back to
Kato, [Ka73]), and the generated semigroup has a kernel k; that satisfies classical Gaussian
bounds in the following sense: there is a v > 0 such that for all € > 0 there is a constant
C: > 0 such that

(z —y)?

k_ < Et—d/Q vt _
)] < Cor 26 exp (- o

) for all z,y € RP ¢t > 0.
So the shifted operator v+ A has a bounded H>-calculus in L?(R”) and moreover satisfies

weighted 1— oo estimates. A more general treatment of this class of operators can be found
in [Ou06].

(ii) One situation of more general potentials is described in [BK03], where V satisfies weaker
assumptions such that A, still generates a semigroup, but in general no 1 — oo weighted
estimates hold for the semigroup, a typical example is V (z) = —ﬁ for a certain range of
¢ >0, cf. e.g. [KPS81], Section 5. Nevertheless, the semigroup in this case still satisfies
weighted p— p’ estimates for some p > 1, hence the theory of this section can be applied.
For more details we refer to the article [BK03] and the literature cited there.
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Note again, that this shows in particular that the associated s-intermediate spaces for Schrédinger
operators according to Example (c¢) are well defined and independent of the auxiliary function
chosen to determine the associated s-power function norms. For Schrédinger operators, a sim-
ilar concept is developed in [OZ06| and [Zh06|, where also generalized Triebel-Lizorkin spaces
associated to Schrodinger operators are defined and studied. The definition given there differs
from our definition and is closer to the original definition of Triebel-Lizorkin spaces, cf. Section
1.7. In particular, the fact that the considered Schrédinger operators are self-adjoint is essential,
since the auxiliary functions used to define the spaces are in the class CZ°(R). On the other
hand, our concept is more general in the sense that we can handle also non-self-adjoint sectorial
operators, as we considered in Examples (a) and (b). Nevertheless, although we do not study this
here, it seems reasonable to conjecture that the generalized Triebel-Lizorkin spaces introduced
in [OZ06] for Schrodinger operators coincide with our notion of s-intermediate spaces, at least,
if the negative part of the potential is in the Kato class. A proof might be based on suitable
modifications of the methods in [Kr09|, Chapter 4.4, where only the case s = 2 is treated in
connection with Littlewood-Paley decompositions.

3.5.3 Proof of Theorem 3.5.4

We now turn to the proof of Theorem 3.5.4. We will use the following technical tool: For all
p € [1,4+00],7 > 0 we define

for all y €

Np,?"f(y) = || lB(y,T) fHLp(907 dx E) = H‘f‘B(y’T)HLP(B(y,r)

dx )
3 b ) k)
[Bag 5] TBay wor)]

if f € L (Qo, E). Moreover the Hardy-Littlewood p-maximal operator M, is defined by

loc

Myf(x) :=sup Np,f(xz) forall x € Q
r>0

if f e L} (Qo,E). Then an easy consequence of Theorem 3.1.22 is the following generalization:

Theorem 3.5.6. Let p € [1,00), then the Hardy-Littlewood p-mazximal operator M, is R-
bounded on L1(Qg) for all q,s € (p,00). O

We have the following norm equivalence for the operators Np,,.

Lemma 3.5.7. Assume Q = Qq. For each p € [1,+00] there is a constant ¢, > 0 such that

C;IHpr <|[Npsfllp < el fllp (3.5.21)

forallr >0 and f € LT (Qo, E).

loc

Proof. The statement is trivial for p = +o0o, so we assume p < +oo. Let f € LY. (Qq, E), then

loc

1
N, flP = / I — x)||P dx dy.
|| p, f”p Q% ‘B(y,?’)’ B () Hf( )H Y
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|B(x,r)|

For all y € Qo,z € B,(y) we have C;l < Blyn)| < Cq and 1p () (7) = 1p, (5)(y), hence by

Fubini’s theorem

1l ~ [ o | taw@If@IP sy
= | (o [, 1@ d)isaira = [ 1s@ipd =1

.%',7")| Qo

O

We will now derive an important pointwise estimate Ny, (Sf) S M, f(z) for operators S that
satisfy suitable p — g-estimates. This originates in [BK02|, Lemma 2.6, and a more involved
version can be found in [Ku08|, Proposition 2.3.

Lemma 3.5.8. Assume Q = Q. Let p € [1,00) and 6 > % + 1%' Then there is a constant
Co = Co(p,0,D,Cp) > 0 with the following property: If ¢ € (1,00],r,C1 >0, and S : L*(E) —
L}OC(F) s a linear operator satisfying the weighted estimate

1_1 _
1155 Ly g < C1 [BIF 5 (14 £) (3522)
for all balls B of radius r, then Nq,(Sf)(x) < CoCi M, f(x) for p-a.e. x € Qo, f € L°(E).

Proof. Let q,r,C1,S be as in the assumption and let x € Qg and f € LP(E) N LY(E). Define
B := B(z,r), then

Neo(SH)(x) = [BI7V9) 15 Sflq < 1BI™ Y 115 S Lasryms g
k=0
< GBIV (L4 E) o b1y i), B)
k=0

(with the usual modifications if ¢ = +00). Consider first the case p = 1. Then

N(SPl@) < GBI S+ /<k+1)3\k3'f'Ed“
= ¢ |B[™ g}(l“ﬁ)_‘s(/(Hl)BlflEdu—/kBlflEdu)
- B ,f}(“ T
<o g‘ﬁ’w (R - (M ()
< OiCp kikD(/M — 1+ k)70 - (Myf)(x) < 6C1Cp (kikl”l) (M, f)(x).
~ ~

Since D — § — 1 > 0 by assumption the assertions follows in this case.
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Now assume p > 1. Let v := pp, , then
D 1 D-1 D 1 D-1
a=0—p >—+—— >1 and B:=04+w—D>—+ -+ —
p p p p p
hence
= 1/p'
K = (Z(l + k:)‘o‘> < +o0.
k=0

Since 0 = (6/p" + ) + (6/p" — ~y), Holder’s inequality yields

Ny (Sf)(z) < & (i(uk)‘é”ﬂ)w (1B Z(1+k) A ey k. E>)1/p
k=0 k=0
= O1K <\B[71 ki(l + k)*D*ﬁ (waz (k+1)B,E) HfHLp kB E))>1/p
=0
= O1K <|B|_1 ki(k_D_ﬁ (1+k)=P=h) ||f||Lp(k;B E)) v
=1
< C})/p(hK( 3 KP (kD=0 — (14 k)~P=0) kB[ Y| £I12, kBE)>1/p
k=1
< offeiK ((D+B)ik - ﬂ) My f ().
k=1
O

Although we will not use it explicitly, for sake of completeness we cite the following result that
weighted norm estimates imply Rs-boundedness from [Ku08|, Theorem 2.2.

Proposition 3.5.9. Assume = Q. Let 1 < qp < ¢1 < +00 and § > qQO + qi,, and assume that
0
(S(t))iey is a family of linear operators S(t) : L° — L}

loc

satisfying the weighted estimate

11 B
|| ]lB(x,rt) S(t) ]lAk(:v,Tt) ||q0ﬂf11 <C |B(l’, rt)|q1 0 (1 + k) 0 (3523)

for all z € Q,t € Jk € Ny and some C > 0, where (r¢)ic; € (Rsg)? is some family of
radii. Then the set S(J) of operators extends to a set of Rs-bounded operators on LP for all

(p;s) € (q0,q1) X [q0, 1] U {(q0,90), (q1,01)}

Proposition 3.5.9 is for gy < p, s < ¢1 an easy consequence of Lemma 3.5.8 above, cf. also [BK02],
Corollary 2.7. The more general version presented here is taken from [Ku08|, Theorem 2.2, and
is based on a more involved version of Lemma 3.5.8 we leave out here since we will not use it in
the sequel.

We will now continue to provide technical tools for the proof of the main Theorem 3.5.4. Next
we show how the weighted estimate (3.5.12) can be generalized to arbitrary radii:
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Lemma 3.5.10. Assume 2 = Qy. Let 1 < p <2 < q < +oo, and let (T)),>0 be a family of
bounded operators in L*() such that there exists a constant k > D/q' + 1 such that

11 _
[ Yy1)B,\kBp Ip 1B, lp—q < C|Bple »(1+ k)" (3.5.24)

for all k € No,p > 0 and balls B, of radius p > 0. Let m € N, 3 := (n—qQ—l) > 0 and
v := k/m, and define the weight function w(t) := t7(1+)Y=" fort > 0. Then

11 i
I L k1) \kB, Tp 1B, lp—q < cw(p™/r™) - [Br|a" ¥ (1 + k)
for allk > 2,p >0 and balls B, of radius r > 0 with some constant ¢ > 0.

Before we prove Lemma 3.5.10 we make the following observation: Let x,y € Q¢ and r > p > 0.

(x) For fixed y € B, (x) the annulus (k + 1)B,(x)\kB;(x) can be covered as

d

(k+1)Br(2)\kBy(x) C (£+1)By(y)\dBy(y) = | J (v + 1)B,(y)\wB,(y)

v=L{
where d := |(k+2)r/p] and £ := | (k — 1)r/p], and we have

d—0Sr/p, andfork>2: (14+6)7"<S(r/p) "1+ k)" (3.5.25)

Proof of (+): Let z € (k + 1)B,(x)\kB,(z), then
dly,z) <d(y,z) +d(z,2) < (k+2)r=(k+2)r/p-p < ({+1)p
and
d(y,z) =z d(z,2) —d(y,x) = (k= 1)r=(k—=1)r/p-p = dp,
hence z € (£ 4 1)B,(y)\dB,(y). Moreover by definition we obtain
d—0<(k+2)r/p— ((k—=1)r/p—1)=3r/p+1<7/p
and for k > 2:
A+0™" < ((k=1r/p) " S ((k+)r/p) " =(r/p) "1 +k)™" O

Proof of Lemma 3.5.10: Let x € Qp,k > 2 and 7,p > 0. We first assume that r > p. We will
work in the dual situation, so let f € L7 (Q), then:

Lemma 3.5.7

118, @) Ty Lot1)Bo@)\kBo(@) Flly S Ny p(1B,(2) Tp Lkt 1) Br@)\k B () )l
< N 1B@rp) Np o (T Lkt1) By (2)\kBo () )l
< N 1B@etp lpy - sup Ny (T, ]l(k+1)BT(x)\kBr(x) )
yEB(z,r+p)
S a7 sup Ny o(T) 1), @)0\kB, () F)(©):

yEB(z,r+p)
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For fixed y € B(z,r + p) we have by (x):

Ny o (T L es 1) By @\ By () ) (W) S 1By, p)| 7 ZH 180500 Tp Lw1)B,w)\vBo () )l
v={

/ (1 _ 1
S By )V d— 04 1) By)| T 0+ 07 I f g
-4 —K —K
S (/) Bl A+ k)T )" flly
, 1 w
< (/) (/o) P B (@) (LK) flg
Hence we obtain
11
15,0 T L i) Sy S (0/r)™ < [Bo (@) (L4 B)7 £l
By dualization this yields
I L (k+1) B @)\kBo(2) Tp 1B (2) lp—a = 11 1B,.@) T, ﬂ(kJrl)Br(x)\kBr g —pr

< (/o)™ [Be()|s r (14 k)"

Next we assume r < p, in this case define ¢ := |kr/p|. If z € (k + 1)B,(z)\kB,(z), then

d(zx,

hence

z) < (k+1)r<(kr/p)-p+p<({+2)p, andd(z,2) > (kr/p)-p > Lp,

(k+1)By(2)\kBy(x) C ((£+ 2)By(x)\(€ + 1)B,(z)) U ((€ + 1) B,(2)\{B,()).

So we get

N

IN

1
I L1y B, (@) Bo @) To LB, (2) lo—a < D I Lewsan) By @+5)Bo(@) Tp LB, (@) llp—a
7=0

Z\B )MITVP(L 4 4 )7 < 2|B ()| VP14 0) 7"

2!Br(x)\l/q YP(kr /p) ™" S (p/r)™ - 1B (@)Y P (L4 k)"

Putting both parts together we obtain

I 1 k1) By )\ kB () T L, (2) lp—sq S w(IA™/7) - [Bp(@) Y972 (1 + k)"

O]

The proof of Theorem 3.5.4 will essentially follow the lines in [BK03] with modifications as used

in [Ku08|;

a similar approach is sketched in [Au07|, Section 6.1. Thus, the keystone for the proof

is the following weak type (qo, qo)-criterion, which is a vector-valued version of [Ku08|, Theorem

5.4.
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Proposition 3.5.11. Let E, F be Banach spaces, 1 < qo < q < o0, and let T : L4Y(Q, E) —
LY(Q, F) be a bounded linear operator. Suppose that there is a family (Sy)r>o of uniformly
bounded linear operators in L1(Q), E) such that the following weighted norm estimates hold:

| Bay (z,7)[7 w0 h(k) for all k € N, (3.5.26)

IN

|| ]lAk(ac,r) Sy ]lB(ac,r) ||L‘10 (E)—Li(E)
1_ 1
H I[Ak(ac,r) T(I - ST) ]lB(x,r) HLqO(E)—>Lq(F) < |BQO (.Q?, r)|q “° h(k) Jor allk > ko, (3527

for allx € Qo,r > 0 and some constant ky € N, where the sequence h satisfies h(k) < cs(k+1)7°
for some constants cs > 0 and 6 > % + g. Then T is of weak type (qo,qo0) and bounded as an
operator LP(E) — LP(F) for all p € (qo,q], where the norm || T p(r(E),Lr(r)) depends only on
the involved comstants and the sequence h, but not on the operator itself.

We will reproduce a proof that is due to Peer Kunstmann for the scalar-valued case and easily
generalizes to the vector-valued case. We will start with a Calderon-Zygmund decomposition in
the vector-valued spaces LP(E).

Lemma 3.5.12 (LP-Calderon-Zygmund decomposition). Assume Q = Qg and let p € [1,00).
Then there exists constants Cp, A, > 0 such that for all f € LP(E) an o > 0, we find a p-
measurable function g and a countable index-set J and a family (b;)jes of p-measurable functions
with disjoint supports and (Bj)je of balls such that

(7’) f(x) = g(.%') + Zje] bj<1') for p-a.e. x € Qy,
(i) llglloo < Cpev,
(tii) supp(bj) C Bj forallj € J and |{j € J : x € Bj}| < Ay for all x € Qp,

() |1bjll, < Cpa|B;j|YP forall j € J,

1/
(0) (SyesBil) " < Ca i fll,

(vi) llglly < Cp 1 F1lp-

This lemma is proved in [BK03|, Theorem 3.1 and Remark 3.2, for the scalar-valued case, and
the proof given there extends immediately to the vector-valued case if one simply replaces the
modulus |f| by the norm-modulus |f|g in the proof.

Proof of Proposition 3.5.11. The remarks given at the beginning of this section imply that we
can w.l.o.g. assume Q = . We first observe that by Lemma 3.5.8 the assumptions (3.5.26) and
(3.5.27) imply the pointwise estimates

Ny o (SLP)(@) < Co My f(x) and Ny, (T(I - S,)) f)(@) < Co My f(a), (3.5.28)

where the former holds for p-a.e. x € Q and all f € LY(E) N LY(E) and the latter holds for
p-a.e. x € Q and all f € LP(E) N LY(E) with supp(f) N B(x, kor) = 0.

Moreover we only have to show that 7" is of weak type (qo, go), the remaining strong estimates
can then be obtained with a vector-valued version of the Marcinkiewicz interpolation theorem,
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cf. e.g. [GLY07|, Lemma 2.5, and the comments given there.

Let a > 0 and f € L9%(E) N LY(E). Then choose an L%-Calderon-Zygmund decomposition ac-
cording to Lemma 3.5.12, i.e. we choose py-measurable functions g and (b;),ecs for some countable
index-set J with disjoint supports and a family of balls B; = B(xj,r;),j € J such that (i)-(vi)
from Lemma 3.5.12 hold. Then formally

Tf=Tg+» TSaubj+ Y T~ So,)bj=:Tg+hi+hs (3.5.29)
jeJ jeJ

We first treat the "good" part g:

(e e Q| |Tg@)r>a} < a® /Q Tgl% dp < || T, 079 /Q 1912 dy

e 1o \
1113 q 0™ Ca™ llgllzy < 17113y Cly (5 2)™.

IN

To estimate the term hy and justify the representation (3.5.29) it is sufficient to show that

(S2r,b5)jes is summable in LY(E) and H ZSQijqu < Caf H Z Ip,
jed 1 jed

’ (3.5.30)
q

because then by the L%-boundedness of T and the properties of the L%-Calderon-Zygmund
decomposition

_ q
el Im@)lr>a} < IT10™ | X Sty < ClITIE, | Y15,
jeJ jeJ

q

q

< || B < comrfa_, (1lu)®

— H ||q—>q Z| ]‘— q0|| Hq—»q a .
jeJ

For the proof of (3.5.30) we take ¢ € L9 (E’) with [|¢||, = 1, and obtain
/ 1 a5 Yo
(S5 = 1005 85,001 < Coal B0 - ([ 183,018 )
5
— CualBjl Ny, (S5, () <300 Cpr+ | Ny, (S,0)
5

< 3CDCqOCO Oé-/ Mq/(qb)du.
S——— B;

=:co

Let £ := UjeJ Bj, then for any finite subset Jy C J we obtain

‘<252mbj7¢>‘ Coa Z/B_qu(sb)duzcw-/EzJlBqu/(@dM

J€Jo J€Jo Jj€Jo
r'\1/q"
wdna- [ Mp@)du=codga- [ (iolf)" an

An inequality by Kolmogorov (cf. [GCRAF85|, Lemma V.2.8, p. 485) states

IN

IN

’ l/q/
[ 9 dn < al 1 (sup (¢ 12 € 2| g(a) > 1)) )
E t>0
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for each measurable function g > 0, hence we obtain together with the weak (1, 1)-boundedness
of the maximal operator M

(S ob1.0)] < codggaar 1B (sup (¢ € 0 Miolf > 1)) "
ieTo t>0
< o || X s | el
jedJ

Since L (E') is a norming subspace of (L4(E))’ this yields (3.5.30). The term hy can be treated

similarly: let F':= {J;c ; B(x;, 2kor;), then

HzeQ : ||ha(@)|r > a) <|F|+ Hx cq H S Lpe(@)T(I - SQTj)bj(x))HF > a},
JjeJ

where |F| < CpCyy(2ko)? - o || f||% by (v) from Lemma 3.5.12. Now we can use the same
argument as above for 1pe T'(I — SQT].) in place of S, . O

If we apply Proposition 3.5.11 for the Banach spaces £ = F' = ¢° and tensor extensions 1" & Idys
of operators in a scalar valued space L4(2), we can derive the following corresponding criterion
for Rs-boundedness.

Corollary 3.5.13. Let Q C Qg be a measurable subset, 1 < gy < q < o0, and let T C L(LY) be
a set of bounded linear operators. Suppose that there is a family (Sy)r>o of uniformly bounded
linear operators in LY such that the following weighted norm estimates hold:

1_1
” ]l(k+1)B\kB S 1p ||q0Hq < |B|‘1 0 h(kj) for all k € Ny, (3.5.31)
1_1
I Lgrnyps T = )15 llgog < |Bls wh(k)  for all k > ko, (3.5.32)

for all balls B of radius v, T € T and some constant kg € N, where the sequence h satisfies
h(k) < c5 (k+1)70 for some constants cs > 0 and § > % + g. Then T is Rs-bounded in LP for
all p € (qo,q] and s € [p,q].

Proof. Note first that if we apply Proposition 3.5.11 for the scalar-valued operators we obtain
that 7 is uniformly bounded in each L? and hence also R,-bounded in each L? for p € (qo, ¢]. Let
p € (qo,q) and s € [p,q], and let n € N. We define the operators T := T®Ip and Sy := S, ® Ijs
for all T € 7,7 >0. Then {T : T € T} and {S, : r > 0} are uniformly bounded in L*(¢%).

Now let B be a ball of radius r, k € No, C := (k+ 1)B\kB and f; € L% for all j € N. Then we
obtain with g; := 1¢ S, f;:

1Ly Sr 1s(f)illosesy = 1092l = 1(gs)illes(ns) (3.5.33)
s 1/s 1_1 s 1/s
= (X laslz) " <1BE R - (S IAI) T (35.34)
JeN jEN

IN

1_1
|Bl7 = h(k) - [[(fi)jenllLo(es)- (3.5.35)
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In the last estimate we used that LP(£°) < ¢5(LP), since p < s. By the same argument we obtain

—_—~— 1 1

[ LrrvypwB T = Sr) LB || Lo(es)—Ls(es) < [BlP~ = h(k)

for all k£ > kg. This shows that the assumptions of Proposition 3.5.11 are fulfilled with £ = F' =
23 and (qo,q) = (p,s), hence {T'" : T € T} is uniformly bounded in L"(¢;) for all r € (p,s),
which just is the Rs-boundedness of 7 in L". Since p € (qo,q] was arbitrary this shows the
claim. O

We will also need the following technical lemma which is a special case of Lemma 3.7 in [BKO03|:

Lemma 3.5.14. Let N € N,b > 0 and 0 < 3,7 < N, and let w(t) := t*(1 +t)7=# for t > 0.
Then

/ (/ e (1A s™) ds)w(t) dt < +o0.
0 0
Proof. We split up the integral as
/ (/ e (1 A s ds)w(t) dt
0 0
1 1 1 o0
= / (/ e tts gV ds)w(t) dt+/ (/ et ds)w(t) dt
0 0 0 1
o0 1 o0 o0
+/ (/ e Vs N ds)w(t) dt~|—/ (/ et ds)w(t) dt
1 0 1 1

= L+ I+ 13+ 14

Then clearly I} < +00. Moreover we have

1! dt ! dt
I, = / e Plw(t) — ,§/ e P = < 400, and
b/, t ~J t
1 [ dt e dt
I, = / e hw(t) — < / e M — < foo
b 1 t 1 t

since 8,b > 0. Finally

1 o0 y
N! bt)J
—bts N g _ —bt —N-1
/Oe Sg ds_(bt)N+1e E — S 1At ,

so v — N < 0 yields

I 5/ 1At N"Lw(t) dt 5/ 7 Nap(t) + < Foo.
1 1

We can now turn to the proof of Theorem 3.5.4.
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Proof of Theorem 8.5.4. Again, by the remarks given at the beginning of this section we can
w.lo.g. assume Q = Q. Let 70,9 € [po,p1] with ¢o < ¢ and w € (wp,n/2), and define
K 1= Ko — D(p% — p%) > po/\p’ + 1. We fix some 6y € (wp,w), then by the assumptions of

Theorem 3.5.4 and by Lemma 3.5.1 the weighted estimate

11 ke
1L, a7y T3 L agp/my lan—a < Col Bla, AIY™)[17 70 (1 + k) (3.5.36)
holds for all z € Qo, k € Ng and A € 3 /5_g, for some constant Co > 0.

Let ¢ € H3 (X)) with [|¢]cow < 1 and define T' := ¢(A). Let N € N, whose size will be specified
later, and define

Sy =T —(I—e NN

HMZ

( ) k“e_krmA for all » > 0.

Then the family (S, ),>o is uniformly bounded in L4. Since

D D D 1
K> +1>—+1>—+-— (3.5.37)
P q q q
we can apply Lemma 3.5.10 and obtain that (S,),~¢ also satisfies the assumption (3.5.26) of
Proposition 3.5.11, or (3.5.31) of Corollary 3.5.13, respectively, with gy = pp. Now the key step
is to check (3.5.32). After this is done, we can derive the full statement of the theorem if we
apply Proposition 3.5.11 and Corollary 3.5.13 in various steps and do some standard duality and
approximation arguments.

We define the integration paths I't : (0,00) — C,t +— tet. Let § € (fy,w) and choose
d >0 with7/2 -0 < <7/2—6y. Let r > 0 and B be a ball of radius r, £ € N and let
C := (k+1)B\kB. We define 9(z) := p(2)(1 — e " *)N then ¢ € H§°(X,) and

[9(2)] S llelloo - (1A (F™2) 7).

We use the following variant of the Laplace transform representation of the resolvent:
R(z,A) = — /i e My d\ if z € (0,+00) - €T,
r

This leads to

T(I-8) = (4)=—

27i

w() (2,4)dz

1 1
- 27.” 1/}( ) (Z7A) dz + % r- T/’(Z)R(Z,A) dz
1 1
= . w(z) / eAydhdz — =— | P(z) / e\ d)\ dz
2mi rf Tt o7 r; _

1 A 1 A
= — i dz )Ty d\ — — z dz )Ty d\
o o (L v@amar— g [ ([ ervaz)man,
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hence

1 T(I-5,) 15 = le(/r+ (/F+ eMp(2)dz) 1o Ty 1y d)\—/r_ (/F

Let b := —cos(f 4+ §) > 0, and choose 3,7 > 0 and the weight function w according to Lemma
3.5.10. Then Minkowski’s inequality and the weighted norm inequality from Lemma 3.5.10 yield

I1e T = 5) 15 [lgg—q

eMp(2) dz) 10T, 15 d)\>.

0

1 Re(zX)
< =
< ge L (L W) 10 T35 gy
1 Re(z\)
0 1o Ty 15 |lo
tar o (WA 0T L
11 .
S / (/ e*b'z‘“‘uA(rm\z\)N)d|z|)w(|A|/rM)dw.yB|q 61+ 5) " (o]l
r Vg
11
+/ (/ e_b|z|\>\|(1/\(7“m|z’)N) d|Z|)w(|)\’/rm) d|)\| . |B|q a0 (1+k)—n. ||(P”oo
Iy ~JTy
0 0

1_1
S IBlr 0 (1K) @]l

since the latter integral is finite by Lemma 3.5.14 if we choose N > ~.

We can now apply Proposition 3.5.11 with gg = pg, ¢ = 2 to obtain that T is bounded in L? for
all p € (po,2]. On the other hand, assumption (3.5.13) is just the same as (3.5.12) for the dual
operator A" with the pairing (p/, pj) in place of (po, p1). Observe that the condition on kg is the
same for this pairing, since

111 11 1
D(———+ J#1=D(o =+ =)+ 1,
Po )

po p1 PoAP) P P A (pp
thus also in the dual situation we have the appropriate estimate on « := ﬁ + 1 to apply
1
Lemma 3.5.10 and Proposition 3.5.11, namely £ > £ +1 = -2 +1 > 2= 4+ 1 Using the
Po ) (Po)" " P

same arguments for A’ in place of A yields that also 7" is bounded for all p’ € (p}, 2], hence T is
bounded in LP for all p € (pg, p1).

Now we can take any ¢ € (po, p1) as a new starting point, i.e. we consider 7" as an operator in L4
with corresponding pg — ¢ weighted estimates, and use Corollary 3.5.13 to get Rs-boundedness
of T in LP for all p € (pg,p1) and s € [p,p1). Then we again dualize and obtain the Rg-
boundedness of 7" in L¥ for all p’ € (p), p})) and &' € [p', p}), hence the Rs-boundedness of T in
LP for all p € (po,p1) and s € (po, p|.

We use finally that the constants did not explicitly depend on ¢ € HZ®(X,) with [[¢|ccw < 1,
so the general assertion follows from Proposition 3.2.23. O
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3.6 The s-intermediate spaces for differential operators and Triebel-
Lizorkin spaces

In this section we consider differential operators of order 2m in the spaces X := LP(R4, CV).
Hence we fix N,m,d € N and p,q € (1,00). In order to be consistent with the notation of
classical Triebel-Lizorkin spaces we will use the terminology R,-boundedness instead of R-
boundedness in this section. Moreover, all function spaces will be defined on the whole space
RY, hence we will simply write F instead of F (R, CY) for any function space F(R? C"), where
eg. Fel{F,, By, W5 H*P LP}.

We will show that certain classes of elliptic operators have an R4-bounded H°-calculus, but
the central issue in this section is to show that these operators have the same g¢-intermediate
spaces as the Laplace operator. So we first recall the following theorem concerning only the
Laplace operator, which is just a compilation of Proposition 3.2.24 and Proposition 3.3.12 and
an application of Theorem 3.3.23 together with the well known fact that (—A)™ has a bounded
H-calculus in X with wge ((—A)™) = 0.

Theorem 3.6.1. Let A := (—A)™ with D(A) :== W?™P in X. Then A has an Rg-bounded
H®-calculus with wree(A) = 0, and for all § € R we have

X0, = FX0 and X0 o = F2m0 if 6 > 0.

In particular, (—A)™ has a bounded H*(3,) calculus for all o > 0 in the spaces inq for all
s € R, and in the space F; , for all s > 0.

So if we show that a differential operator A has the same g-intermediate spaces as the Laplace
operator, Theorem 3.3.23 yields that A has a bounded H-calculus in the Triebel-Lizorkin spaces
Fs,. s €R, and in F3 if s > 0.

3.6.1 Elliptic differential operators in non-divergence form on R?

We start with elliptic operators in non-divergence form. We will use the notion of (M, wy)-elliptic
operators as it was introduced in [AHS94], cf. also [DS97]. The structure of the proof of the main
theorem of this section follows the line of [KW04], Chapters 6 and 13, where under the same
hypotheses it is shown that elliptic differential operators are R-sectorial and have a bounded
H®-calculus in the space LP. In fact, this result goes back to [AHS94| for Hélder continuous
coefficients and [DS97] for BU C-coefficients.

We consider the differential operator

A:=A@,D) = > aa(x)D (3.6.1)

|| <2m

of order 2m with measurable coefficients a, : R? — CN*N. Then A(z,€) = Z aq ()€,
la|<2m
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where z, ¢ € R?, is the symbol of A, i.e. formally A acts as
A(z, Dyu(z) = Y aa(x)(D*u)(z) = F; ' (A(z, &) F (&) ().

la|<2m
Moreover we define the principle part of A as A (z, D) := Z aq(x)De.
|a|=2m

Let M > 0 and wp € [0, 7). The differential operator A as in (3.6.1) is called (M,wp)-elliptic if
the following uniform ellipticity conditions on the principle symbol hold:

> laalles < M, (3.6.2)
|a|=2m
o(Ar(z,0)) CZ,\{0} and |[(Ar(z,0)) | <M forall z € RY o € SO (3.6.3)

Observe that in the case N = 1 the above assumption 3.6.3 is equivalent to the usual uniform
ellipticity conditions Ax(z,€) € Sy, and |Ax(z, )| > 77 |£[*™ for all z, £ € R%. Moreover we will
use the following additional boundedness property for the lower order terms:

D> laalle < M. (3.6.4)

la|<2m—1
If Ais an (M,wp)-elliptic operator, then we define the LP-realization A, of A as
Apu = Y ag(D) for all u € D(Ap) := WP,
la]=2m

If we assume in addition N = 1 and that the highest order coefficients are uniformly continuous,
or m = 1 and the operator is homogeneous with VMO coefficients, we can conclude with the
results of Section 3.5, Example (b) that an appropriate translate of A, has an Ry-bounded H*°-
calculus if wy < 7/2 via generalized Gaussian estimates for the generated analytic semigroup:

Proposition 3.6.2. Assume N = 1. Let wy € [0,7/2),M > 0 and A be an (M,wy)-elliptic
operator. Assume that either

(I) a € BUC for all a € N& with |a| = 2m, or

(II) m =1, ap, € VMO for all « € Ng with |a| =2 and a, = 0 if |a| < 2.
Then the LP-realization v + A, of A has an Ry-bounded H* -calculus for some v > 0.
Nevertheless, we are more interested in identifying the associated g-intermediate spaces for the
operators A,. For this we will make stronger assumptions, namely we will assume the coefficients

in the principal part to be Holder-continuous. Then we obtain the following theorem, which is

one of the main results of this section.

Theorem 3.6.3. Let wy € [0,7), M > 0,7 € (0,2m) and o > wy. Then there is v > 0 such that
for each LP-realization A, of an (M,wy)-elliptic operator

A(z,D) = Z aq(z) D,
la]<2m

where all ag : RY — CN*N are measurable, the conditions (3.6.2), (3.6.3) and (3.6.4) are fulfilled
and ay € CYV (R, CVN*N) if |a| = 2m, the following assertions hold:
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(1) v+ Ay, has an Ry-bounded H™ (X, )-calculus.

(2) For all § € (—22,1) we have Xﬁ—s—Ap,q ~ XS+(—A)M,q’ and X0+Ap,q ~ Xg+(_A)m7q ~ F2me

2m v
if 8 > 0, respectively.
(8) For all s € (0,2m) the part v + Ap 45 of the differential operator v + Ay, in the space I},
has a bounded H* (X, )-calculus.

(4) If in addition a, € CY(RY,CN*NY for all |a| < 2m, then D(v + Apys) = Est2m for all
s € (0,7).

In all cases the bounds and equivalency constants do not depend on the explicit operator A but
only on the constants N,wy, M,~, 0.

It is clear that (3) follows by Theorem 3.3.23 once (2) has been established. Note that in general
1+s/2m
q,v+Ap
not coincide with the space F§7‘52m. This is due to the fact that if the lower order coefficients

for s € (0,2m) the domain of the operator v + Ay, in F;  is the space X which need
are only assumed to be in L* they are in general not pointwise multipliers in the space F} .
However, if the additional assumption of (4) holds, then the coefficients of the lower order terms
are pointwise multipliers, and we obtain the "right" domain D(v+ A, 4) = F;;Qm in that case.
If there are lower order terms, it is necessary that the coefficients a, are pointwise multipliers
in Fj, (at least in the case v = 0) for this identity to hold, so this shows the importance of
the knowledge of pointwise multipliers in FJ . when considering differential operators in Triebel-
Lizorkin spaces. We refer to [Si93] and [JLO1| for some general results about multiplication
of functions in Triebel-Lizorkin spaces, and to [Si99] for abstract characterizations of pointwise
multipliers in the space Fj;,. Finally let us mention the recent paper [DMO6], where known
sufficient conditions for pointwise multipliers in the space F}; , have been improved.

Because of its importance we extract the result concerning the bounded H°°-calculus by com-
bining (3) and (4) of Theorem 3.6.3 as a separated theorem:

Theorem 3.6.4. Let wy € [0,7), M > 0,7 € (0,2m) and o > wy. Then there is v > 0 with the
following property: Let

Az, D)= Y an(x) D"

|| <2m

be an (M, wp)-elliptic operator, where a, € CY(RY, CNXNY for all || < 2m and the ellipticity

conditions (3.6.2), (3.6.3), and moreover (3.6.4) are fulfilled. Then the realization v + Ap 4
of the differential operator v+ A in the space Fy , with domain D(v + Ap4s) := F;;Qm has a
bounded H*® (X )-calculus for all s € (0,7). O

One can already find results about bounded H®°-calculus in Triebel-Lizorkin spaces in the lit-
erature, even for the more general class of pseudodifferential operators under mild regularity
assumptions. Such results, also under the condition of Holder continuous symbols in the princi-
pal part, are indicated in [ESO8] and more directly in [DSS09|. Nevertheless, these results are in
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full details proven in some other scale of spaces like Sobolev- and Hélder spaces, and it is only
suggested how the proofs can be adapted to the situation of operators in Triebel-Lizorkin spaces.
Moreover, the techniques used in [DSS09| are based on methods for pseudodifferential operators,
whereas our methods are operator theoretical, based on the comparison and perturbation the-
orems from Section 3.4. Finally, our results will not only show that the operators we consider
have a bounded H®°-calculus in classical Triebel-Lizorkin spaces, but also the norm equivalences
XerAp’q ~ X£+(_A)m7q and XSJFAp’q = X§+(_A)m’q ~ F[?Zw for appropriate 0, i.e. we can express
the norm in the classical Triebel-Lizorkin spaces by the s-power function norms associated to
more general elliptic operators instead of the Laplacian. These results are new.

The proof of Theorem 3.6.3 will be done in the classical 3-step method: We start by considering
constant coefficient operators, which can be handled with the Comparison Theorems 3.4.3 and
3.4.4. In the second step we will consider small perturbations of operators with constant coeffi-
cient, where we use the Perturbation Theorem 3.4.6 for the assertions (1)-(3) and Theorem 3.4.10
for the assertion (4). The general case will be done in the third step using a localization procedure.

Step I. Constant Coefficients.

We start with homogeneous elliptic operators with constant coefficients. In this case it is no
surprise that the assertions of Theorem 3.6.3 can be improved in the following way:

Theorem 3.6.5. Let wy € [0,7), M > 0 and A, be the LP-realization of a homogeneous (M,wy)-

elliptic operator A with constant coefficients, i.e. A= Z ao D™ where a,, € CV*N . Then the
|a|=2m

following assertions hold:

(1) For each o > wy the operator A, has an Ry-bounded H*(¥;)-calculus, and the RZ°-
constant Mgy, does not depend on the explicit operator A but only on the constants M, wy.

(2) For all 0 € R we have szq ~ X?_A)m,q ~ Fgf;e, and sz,q ~ X(G_A)mﬂ ~ F;Zw if >0,
respectively, and the equivalence constants only depend on the constants M, wqy, but not on
the explicit operator A, and can be chosen uniformly if 6| < « for some fized a > 0, if one
chooses a fized auziliary function to calculate the norms.

(3) Lets € R. The part (via extrapolation) Ap,q,s of the differential operator A, in the space sz,q
with domain D(A,4s) = F}f’fm N Fps’q has a bounded H*-calculus with wire(Apq.5) < wo.

(4) Let s > 0. The realization A, ,s of the differential operator A, in the space Fj, with
domain D(Apgs) = F5i2™ has a bounded H™-calculus with wi(Ap,q,s) < wo.

Although we have no references for the explicit assertions (1),(3) and (4) of Theorem 3.6.5, we
are sure that these results may already be seen as to be known. For example, since operators
with constant coefficients are in particular pseudodifferential operators with smooth symbols,
the results (3),(4) can be seen as special cases of the results from [ES08], [DSS09] in the version
for Triebel-Lizorkin spaces indicated there. In this context we refer to |Tr92|, Chapter 6 for
the treatment of pseudodifferential operators in Triebel-Lizorkin spaces. On the other hand,



3. Rs-BOUNDEDNESS AND R¢-SECTORIAL OPERATORS
3.6. The s-intermediate spaces for differential operators and Triebel-Lizorkin spaces 162

resolvents of operators with constant coefficients can be handled within the theory of Calderén-
Zygmund operators, which are also well-behaved in Triebel-Lizorkin spaces, cf. e.g. [FTW8g|,
or by means of classical multiplier theorems, cf. e.g. [Tr83|, Sections 2.3.7, 2.6.6 and 5.2.2. Both
methods also work in vector-valued spaces, so this also indicates that (1) is true. In fact, our
proof is also based on the operator-valued version of the Mikhlin multiplier theorem.

Proof of Theorem 3.6.5. For easier notation we will write a(§) := Z an&” for the symbol of
|a|=2m
the differential operator A = Z aqD* and accordingly A = a(D) in this proof.

|ar]=2m
We will first show that A, is Rg-sectorial with wr,(A4p) < wp. Let w1 € (wo, ™) be fixed. Let
I:=[-m —w|Ufw, 7], T :=85%:={(0,6) e R x R? : |o|? + |£|? = 1}, and define
K = {(aa)a|:2m © aq € CVN and (ag)azam, A = Z aq,D* satisty (3.6.2), (3.6.3)}
|a)=2m

then it is not hard to see that K x I x I' is compact. Moreover define

Mag)asw(0:€) 1= €]a]*" (€0 ]*™ —a(€)) ™" for all ((aa)a,w) € K x I, 0 € R\{0},& € R\{0},

then each function m,,), ., is homogeneous of degree 0, i.e. M4, ), w(tV) = M(g,), (V) for all
v € (RN\{0}) x (RN\{0}),¢ > 0, and it is an easy consequence that the set of multiplier functions

M = {m(aa)a,W(U’ ) | ((aa)a,w,a) € K x 1T x (Rd\{O})}

satisfies Mikhlin’s condition uniformly, i.e.

¢ = Sup {|£||ﬂ|D§ﬂm(aa)a,w(O-af) | OIS R\{0}7§ € Rd\{()},w € I7 (aa)a € K?ﬁ < (17 SRR 1)}
= sup {|¢[*'DJm (4, w(0.6) | (0,€) €T w €I, (an)a € K, B € Nf with 8 < (1,...,1)}
<  +oo.

(All the above assertions can be found in detail in the proof of [KWO04], Theorem 6.2).

Now fix some o € R\{0},w € I and (aa)a € K and let m = m,,), »(0,-). We will apply

~

the operator valued version of Mikhlin’s theorem, Theorem 1.4.6, in the spaces LP ({3, (¢7)) =y
LP(¢4(CN)) for the multiplier function

M(&)(uj)j :== (m(wj); for (uy); € 09(CcM)y.

Observe first that £4(C") is a UMD-space with property (a) since ¢ € (1,400). So we have to
show that the set

T = {|¢|P'D{ M | ¢ € R\{0}, 8 € Ng with 8 < (1,...,1)}

is R-bounded in L(LP(¢#4(CY))). By Remark 3.1.7 this is equivalent to Ro-boundedness of 7
in L(LP(¢7(C"))), hence to boundedness of the corresponding diagonal operators in the spaces
L(LP(£9(€3:(£%)))) 2= L(LP(£9(*(CN)))). Let (&)ren € (RN{ODY and § € (N§)™ with G, <
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( ., 1) for all £ € N and define F (&) :

) ‘£||5k|D?kM(£) for abbreviation. Let (ugk))]k €
(zqe2(CN)) >~ LP((1(¢*(C"))), then

H i ‘ F(&k)( k ')j’2>1/2‘ Lr(£9) = H(i lék\z'ﬂ‘lD?m(ik)\z '|“§‘k)‘2)1/2‘ LP(£9)
— <c?
= H(Z| )1/2‘”7(@)'

This shows that indeed 7 is Ro-bounded with R2(7) < ¢, hence by the Mikhlin theorem the set
of Fourier multiplier operators {m(D) | m € M} is R4-bounded in LP. Since for ((aq)a,w, o) €
K x I x (R1\{0}) formally

Mfan)aw(0, D) = €0 ([0 ™ — a(D)) ™" = AR\, a(D))

with A = €™|o|*™ we have proven that A, is R4-sectorial with wg,(Ap) < wo.

Recall that this means that the corresponding tensor extension A, = (Ap)* is a sectorial 1 operator
in LP(¢9) with w(A ) < wp. In fact, we can extend the above arguments to show that A is even
R-sectorial with wR(A ) < wp. For this we consider the multiplier function

M (&) (uje) ji = (m(€)ujn) i for all (ujw)z € X (£20%(CY))

in the larger space LP(¢3,(¢4(¢?))) =y LP(¢4¢*(CY)). Then the same arguments as above show
that M satisfies Mikhlin’s condition and hence the operators AR(A,a(D)) also have bounded
tensor extensions to £¢(¢?), uniformly bounded in A € C\,,.

Using this fact we can show in a second step that each (M,wp)-elliptic operator has even
an Rg-bounded H*-calculus with wg, (Ap) < wp. For this let A be an (M, wp)-elliptic op-
erator and o > 0. Then the operators AITO‘(—A)quO‘ and (—A):FmaA;,m have the symbols
€ (£72ma(€))*®, which are homogeneous of degree 0 and C* on R?\{0}. Similar as in the
first step we obtain with the operator valued version of Mikhlin’s theorem that the operators
Az?o‘(fAﬁmo‘ and (fA):Fmo‘AI:,to‘ are R,-bounded, where the R,-norms depend only on the con-
stants M, wq, o

So we have shown that the assumptions of the Comparison Theorems 3.4.3 and 3.4.4 are satisfied,
and together with Theorem 3.6.1 we can conclude that (1) and (2) hold. Then (3) follows
immediately from (1) and (2) by Theorem 3.3.23, and also (4) follows by Theorem 3.3.23, since
Ap has in particular a bounded H°-calculus in LP. ]

Step II. Small perturbations and lower order terms.

This is the crucial step: we consider "small" perturbations of operators with constant coefficients,
where for later purposes we already admit lower order terms. So in this step we assume that the
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coefficients in the principal part of the (M, wp)-elliptic differential operator A are of the form
ao(r) = a + al(z) for all x € R? and |a| = 2m, where a2 € CV*¥ is constant, hence A is of

the form

A@,D)= 3 (% +ak@)D"+ 3 aala)D",

|a|=2m lal<2m

where al, € C7 for some v € (0,2m) if |a] = 2m. We will show that the assumptions of

the Perturbation Theorem 3.4.6 (2) are satisfied for a translate v + Ag of the operator Aj :=
> lal=2m al D and the perturbation

B:= Z al(z)D™ + Z aq(z)D®,

|a|=2m lal<2m

if one chooses v > 0 sufficiently large and 5, llal||c» sufficiently small, and that the ad-
ditional assumption (c) of the Perturbation Theorem 3.4.10 holds if in addition a, € C” for all
la| < 2m.

Let us get more concrete. The realizations of A, Ag, B in LP with domain W?™P will be denoted
by A, Ag, B, respectively. We will start by showing the following for any a € (l — ﬁ(l A7), 1]
and v > 1:

(i) D(B) 2 D(v+ Ap), and B(D(v + Ag)) C R((v + Ag)' %),

(il) Ry((v+A0)* ' B(v+ A40)™®) St . llabllor +v712m.
|B]=2m

Note that (i) and (ii) imply that the assumptions of the Perturbation Theorem 3.4.6 can be
satisfied if we choose v > 1 large enough and 35 _,,, |]a}5||cw sufficiently small.

Let us turn to the proof of (i) and (ii). Note that D(B) 2 D(v+ Ap) holds trivially by definition,
and B(D(v + Ag)) C R((v + Ap)'~?) is true since the operator (v + Ag)!~® is surjective onto
LP, so (i) holds. Observe now that by the same technique as in Step I we can resort to the case
Ap = (—A)™ since

(v +A)* I B(r+40)™* = [(v+A)* v+ (=)™
(v (AT B(r 4+ (—A)™) 7 [(v+ (—A)™) (v + 40) 7],
and the operators (v + (—A)™)F (v 4 Ag) T, (v + Ag)Fo (v + (—A)™)* extend to R,-bounded

operators with R,-norms only depending on M, wq but not on v > 0. This can be seen by the

formal representations

v+ (“A)™° (v + Ag) 0 = (y(u + Ag) Tt + [(=A)™ A Ao(v + Ao)”)&, (3.6.5)

v (At A = (vl (A [Ag(-A) ] (A + (~a)) )

and again using the operator valued Mikhlin Theorem in the usual way as before.
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Let Rj := Dj(—A)~'/2 be the j-th Riesz transform and as usual R’ := Rfl e Rgd for 3 € N&,
then formally

(v + (=A™ By + (=4)™) ™

D ) (=AM lag(@) (v + (=AM T ()" (v + (=A)™) T RY]
18]=2m
2m—1 &
+ 30 3 a4 (A ag(a) [0 ((—A)) 2 (v + (—A)™) 7 R,
k=0 |8]=k

Observe that the Riesz transforms and the terms V‘S((—A)m)g(u + (—=A)™)797¢ with 6, > 0 are
R4-bounded by some universal constants only depending on m by the operator valued version
of Mikhlin’s theorem, hence we obtain for v > 1
Rq((v + (*A)m)a_lB(V +(=4)")7%)
S S Ryl + (AP lah @) + (—A)™)1 ) + 72 ag)e

|8]=2m |8l<2m
< D0 R+ (=A™ ag(@) (v + (=A)™)' ) + M-y
|8|=2m

In particular, for &« = 1 we obtain

Re(Br+ (=A)")7") Sarwe D lapllee +v772m
[B]=2m

So it remains to show that the operators (v + (—A)™)* gl s@)(v+ (- A)™)1=% are R ,-bounded,
and that the R,-norms can be controlled in terms of the Holder norms Haé”m if o # 1.

This will be done by means of complex interpolation, hence we consider as a preparation the
complex interpolation of Holder-Zygmund spaces. For all s > 0 let C*® be the Hélder space of
order s, in particular

CF = CF = {u € Cy|u k-times continuous differentiable, #%u € Cj, for all |8] < k}

is the space of k-times continuous differentiable functions with bounded derivatives up to order
k. We define the Zygmund spaces in terms of Besov spaces
cs:=C*(RY,CN) =B, (R, CY) ifseR.

Then it is well known that C* = C*® if s > 0 with s ¢ N, cf. e.g [Tr78|, Section 2.7 and [Tr92],
Section 2.6.5 and Chapter 1, and the literature given there. Moreover we define the so-called
"little" Holder spaces ¢® := C’°° for all s > 0. Then for all 0 < 59 < s; and 6 € (0,1) the
following assertion holds for all € € (0,60) and o > s := (1 — 6)sg + 0s1:

C% == C = (C%,C")go — (C°,C)g_c1 — [C*,C"]p_.. (3.6.6)

Cf. e.g. |Lu95|, Chapters 0 and 1 for the first inclusion and the first identity, and the other
inclusions follow by Propositions 1.5.4 and 1.5.10.



3. Rs-BOUNDEDNESS AND R¢-SECTORIAL OPERATORS
3.6. The s-intermediate spaces for differential operators and Triebel-Lizorkin spaces 166

Moreover C® — Cfm if s > 2m, and in particular C® — L* if s > 0.

We are now in position to prove the following proposition that is the central tool for the pertur-
bation argument in this step.

Proposition 3.6.6. Let 7 € (0,1). Then there is a constant C = C(d, N, p,q,T) such that for
allv > 1,6 € (0,7) and a € C?™(RY, CN*N) the following assertion holds: The operators

(v + (=A)")Fa(@) (v + (—A)™)*
extend to R,-bounded operators in LP(R?,CN), and
Ry((v+ (=A)™)Fa(a) (v + (—A)™)*) < C |la] -

Proof. We proceed in several steps : We will first show that the "endpoint operators" (v +
(=A)™")a(z)(v + (—A)™)° = a(z) and (v + (—A)™)La(z)(v + (—=A)™) are R,-bounded if a
is bounded or in C’gm, respectively. Then we will obtain the general result with multilinear in-
terpolation, where we have to jiggle the endpoints a little to get into the scale of Zygmund-spaces.

Let M, be the multiplication operator with the function a € L>®(R?, CN*N). First it is clear
that M, is R,-bounded in LP with norm [|afs. So we turn to the case a € CZ™ (R4, CN*V).
Then

v+ (—A)")(a-u) = l/a-u—i—(—l)m(zd:@?)m(a-u):Va-u+(—1)m Z (?)32k(a-u)
j=1

keNd
|[k|=m
m m 2K\ sok-p o8
= va-u+(—1) Z P Z 0" Pa -0 u
|k|=m [B<2k 6
= va-uta-((—A)"u) + Z Z (=™ <7;:> <2k> 0% Ba . 0Pu
|k|=m B<2k u
/8?52’6 =Kk,8
= a-(WH A ut Y D ko Fa-0u
|k|=m B<2k
B#2k

= a-(v+(=A)")u
+ 30> kg™ e P+ (=A™ T+ (—A) ™

|k|=m B<2k
B#2k

for all u € C?™(R?, CV), i.e.

(V4 (A" Myu = <Ma~|— }j § ,W(a%—ﬂa)aﬁ(w(—A)m)—1> (v+ (—A)™)u
B#2k
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for all u € C?™(R?,CV), hence

(v+ (=A)™)a(z)(v+ (-A)™) C M, + E: §:ﬁk,ﬁ(a%fﬁa)aﬁ(w(—A)m)*l.
|k|=m B<2k
B#2k

For all k € N¢ with |k| =m and 3 € Ng with 0 < 2k, 3 # 2k we have

P+ (=A™ = IR [+ (—A)™) ) T () (4 (—a)™) ]

where again R = (Ry, ..., Ry) is the vector of Riesz-transforms. Since multiplication operators
are always R,-bounded and the Riesz-transforms and terms involving (—A)™ are R,-bounded
by the operator valued Mikhlin Theorem, this yields

Ro((v+ (=) a(@)(v+(=2)") ) S llalleetr™2™ 3" > 0% Pa)le < llallczm. (3.6.7)
|k|=m B<2k
B#2k

This shows that (v + (—=A)™)a(z)(v + (—=A)™)~! is R,-bounded in LP and the norm can be
estimated by HaHCgm. Since this is true for all p,q € (1,00), we also obtain that the dual
operator

(v + (=8)™a(2) (v + (=2)™") 1) 2 (v + (=)™ a(2) (v + (=A)™)

is Rg-bounded in L?, i.e. the operator (v+(—A)™) la(z)(v+(—A)™) extends to an R,-bounded
operator for all p,q € (1,00), and the R4-bound can be estimated by Hchgm.

We now turn to the interpolation argument. Let € € (0,7 —J). We fix n € N for a moment and
consider the interpolation couples

(C¥(RY,CVXN), A I RY,CVXN)) and (LP(EH(CY)), LP(E4(CY)))

with the dense subspaces C20"+)(R4 CNV*N) — C2m(R4 CV) and S(RY, CN)", respectively.
Define

T(2)(a,u) = € (4 (=A)") Fa(@)(v+(=A)™)u = (¢ (v+(=2)™) Fa(@)(v+(~A)™)u)),

for all z € S:= {¢ € C| Re(¢) € [0,1]}, a € CZ™(R?, CV*N) and u € S(RY, CN)™. Then T'(z) is
a bilinear operator for each z € S, and for fixed (a,u) € CZ™(RY, CV*N) x S(R?,CV) we have
F(2):=T(2)(a,u) = € v+ (=)™ a(z)(v+ (-A)™)u
= v+ (=8)") Fg(2) € L (),
where g(2) := a- (v + (=A)™)*u € LP(£L(CYN)). Then the mapping z +— (v + (=A)™)"% is
analytic on {Re z > 0}, and z — g(2) is continuous on $ and analytic in S since u € S(R%, CN) C

D((—=A)*™) N R((—A)*™). Since the operator v + (—A)™ has an R,-bounded H>-calculus, it
has also R,-bounded imaginary powers, and we have an estimate

Ro((v + (=A)™) < (1 + |t))? forall t € R (3.6.8)
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for some constant ¢, > 0 that does not depend on v > 1; indeed, this is a direct consequence of
the Mikhlin multiplier theorem, cf. Theorem 1.4.6. Then the representation

2

F(2)= w4+ (—A)") v+ (-A)™") S g(z) ifz=s+itc S
shows that [ is also continuous on S, and since
1F(2) e < 7 (0 4 (=A)™) g (=)

if z € S we see immediately that F' is bounded on S.

Moreover we have
T(j+it)(a,u) = & eXhe™ (4 (= A)™) 7w+ (= A)™) Ta(z) (v + (—A)™ (v + (—A)™)u.
Again using estimate (3.6.8) we obtain

1T+ it)(a, W)l Lres vy

cpe! T (L 1) Ry(v + (=)™ Ta(@)(v + (=A)™)) [l poges evy)
Cp Ro((v + (=A)™) Val@) (v + (=2)™)) llull Lo ag o)

In the first part we have shown that if j € {0,1} and

<
<

= 02(m+8)(Rd,(CNXN) SN Cgm(Rd,(CNXN) N LOO(Rd,(CNXN),

then the operator (v+ (—A)™)Ja(z)(v+ (—A)™) is R4-bounded in the space LP(R?, C) with
Re((v + (=8)") Va(z)(v + (=8)")) < llallczms < llallgaemste,

ie.

1T +it) (@)l r@a vy S Cpllallcagmee [[ull o cny)-

Now let 6 := ¢ and choose d + -~ <7 < 7, and let f:=7— = >0, then (1— 0)2e 4+ 0(2m + 2¢) =
2m7. By bilinear Stein interpolation (cf. Proposition 2.4.1) we obtain

(v + (=A™ a(@) (v + (=A)) ull oz enyy = 1TO) (@ w)]l o vy
S Gpllalliees cromren, lull Lo e cvy)s

and by the embeddings
CQm? AN CQmF _ (025, 02(m+€))§,oo SN (025’ 02(m+€))6,1 AN [0257 C2(m+a)]9

(cf. (3.6.6)) we obtain
(v + (=2)™) a(@) (v + (=8)") ull g evy) S Cpllallems lull Lo cvy)-

Note that in all cases the constants in the estimates do not depend on n € N. Hence, by
density, the operator (v + (—A)™)"%a(z)(v + (—A)™)? extends to an R,-bounded operator in
LP(RY,CN) for all a € ¢, and the Rgnorm can be estimated in terms of the Holder-norm
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|a|| 2m7. Finally we have C?™7 < ¢?™7 hence we obtain the same result for all a € C?™, i.e.
the operator (v+(—A)™)%a(z)(v+(—A)™)? extends to an R,-bounded operator in LP(RY, CV),
and the R4-norm can be estimated in terms of the Hélder-norm ||a||g2m-. By dualization we can
also conclude the same estimates for the dual operators, i.e. the operator

(v + (~A)™a(z) (v + (~A)™) € (v + ()™ “a(x)(v + (—A)™))

extends to an R-bounded in Lp/, and also in this case the R -norm can be estimated in terms of
the Holder-norm ||al|g2m-. Since this is true for all p, g € (1, +00) we have finished the proof. [

We can now also finish the proof of the estimate (ii): Recall that it was only left to show that the
operators (v + (=A)")* tag(x)(v + (=A)™)'~* are R -bounded if |3] = 2m,« # 1, and that
the R4-norms can be controlled in terms of the Holder-norms Haé”v. But this is an immediate
consequence of Proposition 3.6.6, since by our choice we have 0 < 1 — a < y/2m.

As already mentioned above, this shows that the assumptions of the Perturbation Theorem 3.4.6
can be satisfied if we choose v > 1 sufficiently large and 3_ 5 o, lagll, sufficiently small.

Let us now assume that in addition a, € C7 for all |a| < 2m. We show that in this case the
following additional assertions to (i), (ii) hold: Let a € (0, 5= (y A 1)), and v > 1, then

) 2m

(iit) Ry((v+Ao) “B(v + A0)* ") Shwo D llabller +v712m,
|B]=2m

(iv) B(D((v+ 40))?) € D((v + Ao)®),

(V) Ro((v + A0)*B(v + A0)™*7") Shwo ) llagller +v712m.
18|=2m

Observe that (iii) ist just a reformulation of (ii) with 1 — « in place of «, and moreover

aA(l—a)=a since a < % Hence in this case also the assumptions of the Perturbation
Theorem 3.4.10 can be satisfied if we choose v > 1 large enough and 35 _,,,, HaéHm sufficiently

small, and in particular we will then obtain Xg} Ao = Xg’ 4 forany 0 € (—a, 1+ a).

Let us first have a look on (iv): We have D((v + A4¢)?) = D((1 + (=A)™))? = H*™P  and for
each u € HY™P C D(B) we have

Bu = Z a%,;(a:)Dﬁu(m)+ Z ag(z)Du(x).

18|=2m |8]<2m

For each |3 < 2m we have vg := DPu € H?*™P C H*™*P, Since 0 < 2ma < -y and a}j,a,g e,
the functions a}},ag are pointwise multipliers in H?™* cf. e.g. [Tr83], 2.8.2 Theorem and
Corollary. In fact, this result is also contained in Proposition 3.6.6. So we obtain

Bu= Y aj(xvs(x)+ Y ag(z)us(z) € H™P = R((1+ (=A)™)*) = R((v + 40)*),
|B|=2m |8]<2m
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and thus (iv) is proven. Let us finally turn to the assertions (v). By the same arguments as used
above we may assume Ay = (—A)™, and the same calculations with « instead of aw— 1 show that

Ry((v+ (—A)™)*B(v + (—A)™)~*71)
Satwo Y Ralv+ (—A)™) ah(@)(v + (~A)™") ™) + M v/,
181=2m

Thus (v) follows immediately from Proposition 3.6.6, since by our choice we have 0 < o < 7y/2m.

Step III. Localization and the general case.

We now turn to the general case via localization, i.e. in this step we present the proof of Theorem
3.6.3, based on the local perturbation results in Step II. So let A be a general (M, wy)-elliptic
operator that fulfills the conditions of Theorem 3.6.3 and let A := A, for abbreviation. Obviously
it is sufficient to prove the assertions of Theorem 3.6.3 for any 7 € (0,7)\N instead of 7, so we
also fix a ¥ € (0,7)\N.

Since the coefficients of the principal part are Holder continuous, hence in particular BUC, we
can choose r > 0 with respect to some g € (0, 1) that will be specified later such that

Yo,y e R" : |z —y| <2rVd= Z lag(x) —ag(y)| < €o. (3.6.9)
|8|=2m

Let T' := vZ% Q := (—r,r)? and Qy := £ + Q for all £ € I. We define the relation k > ¢ :
< QrNQr # 0 for all k,¢ € T and define the neighborhood V; := {k € T'|k xx £} for all
¢ €T. Then Vy = ¢+ Vj for each ¢ € T, and the number Ny := [{k € T'|k < £}| = |Vo| is
finite and independent of £ € T and r > 0. Further we choose ¥, p € C2°(Q) with 0 < ¢, p <1,

Plsupp(y) = 1 and

wa(x) =1 forall z € R?,
Lel

where ¢y := (- — £). Let
X =T, X) = PLP(T x RY, CV) = LPPR2(RY x T x Ney),

then we can and will consider X = LP¢P(3, = (PLP(% as a Banach function space (cf. the
corresponding remarks in Subsection 1.6.1). We define the operators

T X 5 Xoum (Yu)y, P:iX— X, (ug)e— > tpuy.
l

Then it is easily seen that P, J are bounded and PJ = Idx, hence P is a retraction and J a corre-
sponding coretraction. Moreover the operators P, J are evidently positive and hence R ,-bounded.

We will now construct an operator A in X of the form A = Ag + B associated to the operator A
in the sense that JA C AJ, where Ag is a diagonal operator of (M, wy)-elliptic operators with



3. Rs-BOUNDEDNESS AND R¢-SECTORIAL OPERATORS
3.6. The s-intermediate spaces for differential operators and Triebel-Lizorkin spaces 171

constant coefficients, and B is a perturbation operator in the space X, such that the assumptions
of the Perturbation Theorem 3.4.6, or Theorem 3.4.10, respectively, are satisfied.

For this, we first define

Afu:= > ag(@)D’u for allu € W™ (€T,
|B]=2m
and Ag(ug)e := (Aug), for all (ug)y € D(Ag) := X*™ := (P(I, W?™P). Then A, is a diagonal
operator which consists of (M, wy)-elliptic differential operators with constant coefficients. Hence
it is an easy consequence of the first step that the operator Ag has an R4-bounded H*°-calculus
with WRge (Ag) < wp.

In the next step we construct the perturbation operator B. For this purpose we let

Ab(u) = Z (ag(z) — ag(0))pe(z) DPu  for all u € W?™P ¢ € T.
|Bl=2m

Observe that the functions x — (ag(z) — ag(¢))pe(x) are also y-Holder continuous, and we have
an estimate ||(ag—ag(€))pellcv < Cp-|lallcr for some constant C, > 0 depending on the auxiliary
function p. Now define § :=7/v € (0,1), then

C7 =C" = (C% g0,

cf. the remarks preceding Proposition 3.6.6. By Proposition 1.5.4 (4) we can choose a constant
¢(0,p) such that

I(as = ag(@)pellcs < e(0,0) I(ap — ag()pellss” lI(ag — as(£))pell
< el0.0)2) " (Cp-llagllen)’ < max (e(6.9)CHllasl) <o
=K

Further we define the operator of lower order terms
Ajow(u) 1= Z ag(z)D%  for all u € WP,
[Bl<2m

then we have

YeAu = Appu+ (YA — Avy) u = (A] + Ap)veu+ Aigwtbeu + Y Cotbptbpu
Z:'Cg k<l

for all w € W?™P ¢ € T'. Observe that Cy is a differential operator of order < 2m — 1, where the
L*°-norm of the coefficients can be controlled by Cy, M with some constant Cy, only depending
on the auxiliary function ¥. We now define the perturbation operator as

E(uz)g = <A}Ug + Alowtty + Z ngkuk> for all (u@g € D(IB) = X2,
k<l ¢

Finally we let A := Ay + B with D(A) = X?", then by construction we have JA C A.J.
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We will show now that A = Ag + B is a "small" perturbation of Ay in the sense of the Pertur-
bation Theorem 3.4.6, or Theorem 3.4.10 in the case that in addition ag € C7 for all || < 2m,
respectively. Recall that Ag is a diagonal operator of (M,wp)-elliptic operators with constant
coefficients and has an R,-bounded H°-calculus with WRge (Ag) < wp. The operator B is an
"almost-diagonal" operator in the following sense: in each row and column there are at most
Ny entries not equal to 0. Furthermore, each component of (Aé)g is a homogeneous operator of
order 2m with y-Hoélder continuous coefficients, where the y-Holder norm of the coefficients can
be estimated by Keg.

Now let ¥ > 1 and o € (1 — 5(1 A7), 1], then we have:
(V4 Ag)* !B+ Ag) ™ (ur)e

_ (<u F AN AL+ o)+ A) g+ (0 + ADP (v + A%)auk)
k<t l

In each component we have a finite sum of operators of the kind considered in Step II, where
the quantity of the non-zero summands in each component is not larger than Ny. Hence we
can apply the results (i), (ii) from Step II (uniformly) in each component, and we obtain that
D(B) 2 D(v + Ag) and B(D(v + Ag)) C R((v + Ag)'~%); Moreover, we can w.l.o.g. replace AY
by (—A)™ for all £ € T (cf. the corresponding remarks in Step II), and then obtain

Rq((v + A0)* 'B(v + Ag) ™)
< supsup (v + (=A)™) YA} + Alow + Cotbp) (v + (—A)™) 7).

Thus (ii) from Step II yields
Rq((lj + Ao)a_IB(V + AO)_Q) §M7W07NO Keg + I/_l/zm.

This shows that we can ensure the assumptions of the Perturbation Theorem 3.4.6 (2) if we
choose gg sufficiently small and v > 1 sufficiently large. Note that in the same manner the
assumptions of the Perturbation Theorem 3.4.10 can be fulfilled if additionally ag € C7 for all
|B] < 2m, using (iii)-(v) from Step II.

So in the sequel we assume that g > 0, > 1 are chosen in a way such that the assumptions of
Theorem 3.4.6 (2), or even Theorem 3.4.10 in the case that ag € C7 for all |3| < 2m, are fulfilled
for the operators A, B in X. Thus we obtain that A = Ay + B has an R,-bounded H°°-calculus
with wree < wp. We define 9 := 1+ % in the case that ag € C7 for all |#] < 2m, and ¥ := 1

otherwise.

Then Theorem 3.4.6 (2), or Theorem 3.4.10 , respectively, implies that

X0 a2 X0, forall 0 € (=201, 0). (3.6.10)

2m

Now we will transfer the properties of the operator A in X to the operator A in X = L. W.l.o.g.
we assume v = 0 by possibly replacing ag(-) with ag(-) + v for some v > 0. Consequently w.l.o.g.
we can assume A~! € L(X), since in our framework we always assume that v > 1 > 0. Fix
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0 > w > wp. Recall that we have already shown that the operator A is sectorial with w(A) < wp.
Moreover, the operator A in X is also sectorial with w(A) < wp, this can be extracted from the
results proven here up to now, on the other hand this has been shown e.g. in [KW04|, Chapter
6, even under weaker assumptions.

We will now compare the resolvents of A and A, respectively. The relation AJ O JA implies

= A=A)TTN=AWN-A) =R\ A)J € L(X,X)

JRNA) DO A=A IO AN -ATT DN =-A)TTAT - TJAN - A)!

for all A € C\X,,. This yields for all p € H5°(2,) the identity

1 1
Jo(A) = — YA JR(N A)d\ = — CA) RN A)JT dX = p(A)J,
21 Jos, 21 Jos,

hence ¢(A) = PJp(A) = Pp(A)J. Since A has an R,-bounded H*°(X,)-calculus we obtain

Ra({e(4) | ¢ € H® (), @]l < 1})
< RY(PYRy(]) - Ry({0(h) | ¢ € HE(S), ollnco < 1}) < +o0,

hence also A has an R,-bounded H*(3,)-calculus by Proposition 3.2.23.

Now choose the special function ¢(z) := 22/(1 + 2)%, then ¢ € H§(%,), and ¢ is suitable to
calculate the norm in the g-intermediate spaces quA’ ngA for 0 € (—2,2), and for all u € XS,A

we obtain

ITullge = ([t 00(tA) ully o) = 70 TotA) g o) S 100 EA) U (o) = llull o

ah (L) (L) (L) 4

and

lull e, = [0t A oy = 7 PT@(tAYU| 10y = [t Po(tA) Tul 1oy

S HFHSD(tA)J“Hx(Lg) = HJUHXZ’M

ie.

1 Tullge, = llullxo - (3.6.11)
We can now finish the proof of Theorem 3.6.3 by showing the norm equivalence X g? A~ XY Vb (—A)m
for any 6 € (—%, 9¥). Note that the remarks following Theorem 3.6.3 illustrate how the asser-

tions of (3) and (4) can be concluded from this.

We apply the same procedure as above in addition to the Laplace-Operator (—A)™ instead of A

and obtain an analogous representation

J(u+ (—=A)™) C AJ = (Ag +B)J
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for some p > 0 and operators ;&0, B of the same type as the operators Ag, B, respectively. This
yields for all § € (— 7/\1 , V) the following norm equivalences:

—
S]
N

I

C
daerto = 1 Tully i = 10l iz

(®)
1T ellg.qp0a = 1| Tu

Hu 0,q,u+A

2

—
S
N2

12

[ullg,qg i (—a)ym- (3.6.12)

Here (a), (/c\z/) are the norm equivalences (3.6.11) and (b), (/l\)/) follow from the perturbation argument
(3.6.10) in the space X, applied to the operators A and A, respectively. The identity (c) follows
from the comparison theorem using again the representation (3.6.5) from Step II and the vector-
valued Mikhlin Theorem. Thus with these conclusions we have also finished the proof of Theorem
3.6.3.

3.6.2 Elliptic differential operators of 274 order in divergence form on R?

With some modifications we can apply the same techniques as in the preceding subsection to
operators in divergence form, but now the regularity assumptions on the principal part can be
weakened. These operators can be handled by the same approach as above: First consider op-
erators with constant coefficients, then do a local perturbation argument, and finally general
operators can be reduced to the latter case by a localization procedure. In fact, the first step
is the same as in Subsection 3.6.1, since differential operators in divergence form with constant
coefficients are also differential operators in non-divergence form. The crucial result is again the
second step, the perturbation argument for differential operators in divergence form, which in
this situation is based on the Perturbation Theorem 3.4.8. Having done this, the final localiza-
tion procedure can be done analogously to Subsection 3.6.1.

Let again p,q € (1,400) and d € N, and define X := L? := LP(R%,C). In this subsection we
will use the notations H"? := HYP(R?) and HY := HY2, v € R for the Bessel potential spaces.
For simplicity, we will only consider differential operators in divergence form of second order, i.e.
operators that are formally (!) given by

Au = =" 9i(ajn(x)dku) +Z x)u) + ¢;dju) + d(z)u
gk=1
= —div(a(z)Vu + b(x)u) + c¢(z) - Vu + d(x)u. (3.6.13)

We impose the usual strong uniform ellipticity condition on the top order coefficients of A:

V¢ eR? : Re(a(x Z Re (a1 (2)€;&) > ¢ (3.6.14)
7,k=1

for some & > 0. Moreover, we make the following regularity and boundedness assumptions on
the coefficients:

a(-) € BUC(RY, C™%), and b(-),c(-) € L®(R%,C%),d(-) € L®(RY), (3.6.15)
llalloos 1Blloo; llelloo, 1dlloo < M
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for some M > 0. Then the operator A is formally associated to the form a defined by
a(u,v) == ((aVu + bu) | Vo) + (cVu + du|v) for all u,v € H'. (3.6.16)
The following remark is well known, cf. e.g. [Ou05|, Chapter 1 and 4, and [KWO04|, Chapter 11:

Remark 3.6.7. Let M,0 > 0. Then there are vg > 0 and wy € (0,7/2) with the following
property: If a is a form given by (3.6.16), where the coefficients satisfy (3.6.14) and (3.6.15),
then the operator vy + Ag in L? associated to the form vg + a is sectorial with w(vg + Az) < wp
and has a bounded H>-calculus with wie (g + A2) = w(vg + As2).

Thus the operator —(vg+ Az) generates an analytic semigroup (T%(t)):>0 in L2, If this semigroup
can be extended to LP, which is the case if T5(t)|z» is bounded in LP for all ¢ > 0, then the neg-
ative of the generator of the semigroup 7}, defined by the bounded extensions T),(t) := Ta(t)|r»
for all ¢ > 0, is called the realization of the differential operator vy + A in LP and denoted by
Vo + Ap. So the usual way to study divergence form operators in L is to check if the semigroup
T5 is bounded in LP. To do this, standard tools are (generalized) Gaussian estimates for the
semigroup, cf. Section 3.5. In the situation described here this has been done in [Au96], where
it is shown that the semigroup Th(t) = e~**0+42) has Gaussian bounds?, so we already know
that these operators have an R,-bounded H*-calculus in each space LP, cf. also Section 3.5,

Example (a).

Nevertheless, we will use a different approach, since again we are also interested in the associated
s-intermediate spaces. Thus we will use more direct methods applying perturbation arguments
to constant coefficients operators in LP. For this we will use the Perturbation Theorem 3.4.8
with & = 1/2. Observe that Theorem 3.4.8 will only yield an abstract operator vy + C), with
the properties described there, and we will have to justify that this operator indeed equals the
operator vp + A,. We give in advance a short description how this will be done: On the one
hand, the operators vy + A,, p € (1,400) (constructed via form methods and extrapolation as
described above) have consistent resolvents. On the other hand, also the operators vy + Cp,
p € (1,400) have consistent resolvents, since they are constructed by the same formula in all
spaces LP (we will give more details for this argument in the proof of Theorem 3.6.8). Hence it
will be sufficient to show that the operators vy + As and vy + Co have consistent resolvents, and
this will be a direct consequence of the Perturbation Theorem 3.4.8, since both operators are the
part of the same "lifted" operator vy + Ay HY — H ' u— vyu + Au.

We note that our approach is closely related to the approach in [KWO04|, Chapter 13, and
[KKWO06], Section 9, Example (b): there it is shown that the operator 1+ .4 has a bounded H*°-
calculus in the spaces H*? for any s € (—1, 1) if A has no lower order terms, and if a : R? — C9*4
is Holder-continuous, then 1 + A also has a bounded H>-calculus in H~'?. These results are
based on similar perturbation methods as we will use here. Let us also note that in [Mi05] it is
shown that one can choose v > 1 such that the operator v + A, is sectorial, and this is done

2In [Au96] this in only proven for homogeneous operators without lower order terms, but such terms can be
handled by perturbation arguments.
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via considering the operator A, : H"? — H~ P,

We can now formulate the main theorem of this section.

Theorem 3.6.8. Let M,d > 0 and choose vy > 0,wq € (0,7/2) depending on M, according to
Remark 3.6.7. Then for all o € (wo,w/2) there is a v > vy with the following property:

If A is a differential operator of the form (3.6.13) that fulfills (3.6.14) and (3.6.15), then the

following assertions hold:
(1) v+ Ay, has an Ry-bounded H™ (X, )-calculus.

~ XY

(2) For all 0 € (—=1/2,1/2) we have X v A

6 € (0,1/2), respectively.

0 ~ 20
v+ Apa and XVJrA P SN Do if

(8) For all s € (0,1) the part v+ Ay 4 of the differential operator v+ Ay in the space F), , has
a bounded H* (%, )-calculus.

Proof. Let A be a differential operator of the form (3.6.13) that fulfills (3.6.14) and (3.6.15).
W.l.o.g. we may assume vy = 0 by maybe replacing d by d + 1. We will again do the proof
in three steps analogously to the proof of Theorem 3.6.3 in the preceding subsection. So we
start with the case that A = —div(agV), where ag € C%? is constant. In this case, all the
statements of Theorem 3.6.8 follow from Theorem 3.6.5, since A is (]TI ,wp)-elliptic with some
constant M > 0 depending on M, d > 0.

So in the next step we assume that a(z) = a° + a'(z), where a® € C?*? is constant. We will
show that the assumptions of the Perturbation Theorem 3.4.8 are satisfied for o = 1/2 with a
translate v + Ay for some v > 0 of the constant coefficients operator 4y := — div(ag- V) and the
perturbation

B:= —div(a'(z) - V) — div(b(z)-) + c(z) - V + d(z),

if the norm ||a!|| is sufficiently small. Let Ag be the realization of Ag in X with D(Ag) := H??,
and define Bu := Bu (in the sense of distributions) for all u € D(B) := H'P. Note that since v >
0, the spaces H*1P can be identified with the homogeneous fractional spaces Xﬂ /2 associated
to the operator v + Ay in X, cf. [Ha06|, Section 8.3, so B is an operator B : X1/2 — X_ 172 We
will show the following estimate for all v > 1:

(P) Ro((v+ Ao)?B(v + Ag)™/?) Sars lla oo + 1772,

Note that in (P) we consider the operator (¥4 Ag)~1/2 as an operator (v+Ag) /2 : X — X_l/Q,
and also as an operator (v + Ao)_1/2 : X1/2 — X, cf. Subsection 3.3.1, where the concept of
considering the operator Ag as an universal operator in the whole scale of extrapolation spaces
is briefly presented.

Furthermore, (P) implies that the assumptions of the Perturbation Theorem 3.4.8 can be fulfilled
if we choose v > 1 sufficiently large and ||a'||s sufficiently small. Before we turn to the proof of
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(P) we have a closer look on the assertions that the Perturbation Theorem 3.4.8 yields in this case:

So we assume for a moment that (P) holds, and that we have chosen v > 1 sufficiently large and
|la'||s sufficiently small such that via (P) the assumptions of the Perturbation Theorem 3.4.8
are fulfilled. Observe that we can define another realization v + jp of the formal operator v + A
as a bounded operator

v+ Ay, HYY — HY 4 — —div(a- Vu+b-u) 4+ c¢- Vu+ (v +d(-)) - u,

where div is considered as the divergence in the distributional sense. Since

X1/2:Hl’pHLp:X%Hil’p:X,1/27

Theorem 3.4.8 yields in this situation that the part v 4+ C), := v + (XP)LP of v + /~lp in X =1LP
(instead of v 4+ Ap) fulfills (1) and (2) from Theorem 3.6.8. Moreover, the resolvents of the
operators v 4+ Cp, p € (1,+00) are given by the identity

A+v+Cp) ™ = (A+r+A9) = [(v+A0) 2 (A4 v+ Ag) M) [(v+ Ao) (A + v+ Ag) Y]
(3.6.17)

for all A > 0, where

M(\) = i (= Ll(v+ A)) A+ v+ 40) ") L, and L := (v+A40) 2 B(v+ Ag) /2, (3.6.18)
k=0

cf. the proof of Theorem 3.4.8. Observe that all bounded operators in (3.6.17), (3.6.18) are con-
sistent in the spaces LP for p € (1, +00), hence the resolvents of the operators v+Cy, p € (1, +00)
are consistent. Moreover, in the special case p = 2 the operator v + Ay equals the part v+ Cs of
v+ Ay in L2 by definition of the operator associated to a form. Since also the resolvents of the
operators v + Ay, p € (1,400) (constructed via form methods and extrapolation as described
above) are consistent, this yields v + C, = v + A, in L? for all p € (1, 400).

We will now turn to the proof of (P). We define the Riesz transforms associated to the operator
Ap by R; = Aal/Qﬁj for all j € N<4. By the same arguments as we used in Subsection 3.6.1,
Step I, the operators R; are R4-bounded, and the R,-bounds depend only on M, §. Forallv > 1
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we have the following identity:
(v + Ag) M2B(v + Ag) /2
= —(v+ Ag) Y2div (al(z) - V(v + Ag)V?) — (v + Ag) V2 div (b(x) (v + Ag)~V/?)
+(v+ Ao) "V e(x) - V(v + Ao) V2 + (v + Ag) " 2d(x) (v + Ag) V2

= A w+ AO)—1/2< 3 Rja;k(g;)Rk> AV (w4 Ag)1?
G k=1

L2 AV 4 Ay 1/2<2Rb )1/2V+A ~1/2
> 1/21/+A —1/2

+u 2 2 (0 4 Ao)*l/2 <

+ 2 (04 Ao)_l/Qd(m)ul/Z(u + Ag)"V/2,
Observe that all occurring bounded operators are R,-bounded in X, and with K := R, ({t'/2(t+
Ag)~V2, A2 (¢ + Ag)~Y2 |t > 0}) we obtain
Ro((v+ A0)V?B(v + 40) V%) <Sms K2(d*|at|oo + 2dMv~Y2 4+ MY,

~

hence (P) is proven.

In the final step we do a localization procedure analogously to Step III in Subsection 3.6.1. We
will only sketch this part of the proof since it is very similar to the proof for non-divergence form
operators, where now we use the estimate (P) for the local perturbation result. So again, we let
g0 € (0,1), which will be specified later, and choose r > 0 according to (3.6.9) from Step III in
Subsection 3.6.1. Let T', Ny, ¥, p, Q, (Q¢)eer and J, P,X be as in Step III from Subsection 3.6.1.
We define

Adu = —div(a(()Vu) forallu € H*P (€T,

and Ao(U,g)g = (A?u@g for all ('LL@)@ S D(Ao) = X2 = Ep(F,HQ’p) Then A(] X D) D(AO) — X
is a diagonal operator which consists of (M, wg)-elliptic differential operators with constant co-
efficients.

We will now turn to the construction of the perturbation operator B. Define the spaces X*! :=
(T, H jEl*p), then for each v > 0 the spaces X*! can be identified with the homogeneous spaces
Xiq /2 associated to the operator v + Ay, and we have canonical embeddings

X1/2 — X X771/2-

Furthermore, for all v € H'? we define

Al(u) = —div ((a(z) — a(0)p(z))Vu)

and the lower order terms operator

Ajow (1) := —div (b(z)u) + ¢(z)Vu + d(z)u,
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as operators H''P — H~1P_ Then for all u € H'"P we have

Yedu = Apu+ (PeA — Avg) u = (A + Ap)thpu + Awtbou+ Y Cothtbpu,
N————’

—C, 4
where
Cou = — > hpdj(ae(x)Opu) + Y el — 0;(bj(x)u) + c;05u) + ved(x)u
jk—l j=1
+ Z 03 (aju (@) (ew) = Y (= 05(bj()urpe) + ¢;0;(wipe)) — d(w)urpe
7,k=1 J=1

n

= Z Aiktbe - aze(x)u + Oty - 0j(azn(x)u) + 051y - ajp(x)Opu)

]7

+ 3" 950 ((bj(2) — ¢j(@)u

=1

3 H

n

= Z ak/.’(ljg CL]k Z 837!}[ CL]]C 8ku
Ji:k=1 j,k=1

3 (00 () - (e + S0t aile) ) u
J=1 k=1
= Vi - div(ua(z)) + a(z)Vu - Vo + (Vi - (b(z) — () + tr(V2¢ga(aj))) u.

Thus Cy is an operator of order less than or equal to 1. We now define the perturbation operator
by

B(Ug)g = <A%Ue + Ajowltiy + Z ngkuk)
k<t ¢

for all (u¢) € D(B) := X!. Then B : X! — X~! is an almost diagonal operator in the same sense
as in Step III of Subsection 3.6.1, where the top order coefficients are bounded:

[(a—a(f)plls < [l(a—a(l))lg,llec < 0
For each v > 0 we obtain
(v + Ao) TV2B (v + Ag) V2 (),

= (<v T+ AY) T2 (AL + A+ AD T g+ (v + ANV S v+ AY Y “*’) '
k<l ¢

Hence in each component we have a finite sum of operators of the type we considered in the
second step, and together with (P) this yields

Re((v + Ao) " /2B(v + Ao)~'/?)

< supsup Ry ((v + AN TV2(A} + Alow + Cotby) (v + AN ™Y2) Sarsng €0 + 0712
0 ket
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This shows that we can ensure the assumptions of the Perturbation Theorem 3.4.8 if we choose
go > 0 sufficiently small and v > 1 sufficiently large. So assume that g > 0, > 1 are
chosen appropriately according to the assumptions of the Perturbation Theorem 3.4.8. Define
the operator

A X XY (ug) — Ag(ug)e + Bug)y,

then by Theorem 3.4.8 the part v + A of v + A in X has an R4-bounded H> (%, )-calculus, and
moreover

X0, =X, forallge(—1/2,1/2). (3.6.19)
In the same manner we define the lifted operators
A:HY - H Y ys Au, and J: H P — X'y (eu)g,

then by construction we have JA C &j, and furthermore JA C AJ, where A is the part of A
in X. In the same way as it is done in Step III in Subsection 3.6.1, we can conclude that v + A
has an R,-bounded H*(X,)-calculus in X, and that X§+A7q ~ X&A’q for all @ € (—1/2,1/2).
Moreover, using similar arguments as in Step II, we can conclude that v + A = v + A,. So the
assertions of Theorem 3.6.8 follow by Theorem 3.6.1 and Theorem 3.3.23. O
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