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Introduction 1

Introduction

In 1986, Alan McIntosh introduced in the fundamental paper Operators which have an H∞
functional calculus ([McI86]) his notion of a bounded H∞-calculus for sectorial operators: Let A
be a sectorial operator in a complex Banach spaces X, i.e. the set of resolvents {λR(λ,A) |λ ∈
C\Σω} is bounded for some ω ∈ (0, π), where Σω := {z ∈ C\{0} | | arg(z)| < ω} denotes the
open sector symmetric around the positive axis with half opening angle ω. Then based on the
ideas of the Dunford functional calculus one defines

ϕ(A) :=
1

2πi

∫
Γ
ϕ(λ)R(λ,A) dλ ∈ L(X),

where Γ is the canonical parametrization of the oriented boundary of a suitable sector, and ϕ is of
class H∞0 , i.e. a bounded holomorphic function on a larger open sector that decays polynomially
to 0 as z tends to 0 or ∞. Then ϕ 7→ ϕ(A) defines a functional calculus on H∞0 , which can
be naturally extended to the larger algebra of holomorphic functions with at most polynomial
growth at 0 and ∞, where in this case the resulting operators are in general unbounded. In
particular, f(A) is defined for all bounded holomorphic functions f ∈ H∞. Now one central
question is the following:

Is f(A) bounded for any f ∈ H∞, and does an estimate ‖f(A)‖ . ‖f‖∞ hold?

In this case, A is said to have a bounded H∞-calculus. McIntosh was able to give various
characterizations of the boundedness of the H∞-calculus in the case that the underlying space is
a Hilbert space. One of these is given in terms of so-called square functions and can be rewritten
in the following form: A sectorial operator A in a Hilbert space X has a bounded H∞-calculus if
and only if the following norm equivalence holds for one (and then for all) ϕ ∈ H∞0 with ϕ 6= 0:

‖x‖X ≈
(∫ ∞

0
‖ϕ(tA)x‖2X

dt

t

)1/2

for x ∈ X. (1)

This condition was motivated by well known concepts of square functions from harmonic analysis.
Indeed, the methods McIntosh used were operator theoretic, but many of them are motivated
by harmonic analysis. McIntosh himself says the following in his paper [McI86]:

The material in this paper has two heritages: One is operator theory [...]; the other is harmonic
analysis [...],

and this thesis follows the same tradition.

The condition (1) has been generalized to other classes of spaces, in a first step to spaces X = Lp,
p ∈ (1,+∞), where it takes the following form: A sectorial operator A in the space X = Lp has
a bounded H∞-calculus if and only if the following norm equivalence holds for one (and then for
all) ϕ ∈ H∞0 with ϕ 6= 0:

‖x‖X ≈
∥∥∥∥(∫ ∞

0
|ϕ(tA)x|2 dt

t

)1/2∥∥∥∥
X

for x ∈ X. (2)
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This has first been treated in [CDMY96]. Note that for X = L2, the norm expressions in (1)
and (2) coincide by Fubini. Again, the idea for (2) is based on methods from classical harmonic
analysis in Lp, in particular Littlewood-Paley theory. Let us mention that this concept of char-
acterizing the boundedness of the H∞-calculus has finally been transferred to general Banach
spaces by Nigel Kalton and Lutz Weis in [KW-1], cf. also [KW04] and [KKW06], where the
square-function norms in (2) are replaced by more general square functions in terms of so called
Rademacher-norms and in terms of γ-norms. Furthermore, square function estimates are used
in various fields of analysis, e.g. questions of admissibility of certain operators for control sys-
tems have been treated in [LeM03] using square function norms of the form (1), and the related
concept of R-admissibility is treated in [LeM04] in terms of the square function norms in (2).
Moreover, [KW-1] and the survey [LeM07] give a nice overview of different characterizations and
applications for square functions and square function estimates.

In this thesis, we will concentrate on a certain class of Banach function spaces instead of general
Banach spaces, so in particular, we have an additional lattice structure, and expressions as in (2)
are still well defined. We note that this class of spaces covers the spaces Lp, where p ∈ [1,+∞),
but also certain kinds of Lorentz-, Orlicz- and mixed LpLq-spaces. The central challenge we meet
in this work is to change the power 2 in (2) to a power s ∈ [1,+∞]. This leads to the following
expressions:

‖x‖s,A,ϕ :=
∥∥∥∥(∫ ∞

0
|ϕ(tA)x|s dt

t

)1/s∥∥∥∥
X

if s < +∞, and ‖x‖∞,A,ϕ :=
∥∥ sup
t>0
|ϕ(tA)x|

∥∥
X
. (3)

Although starting from the same idea, i.e. generalizing the square function norms (2), we will
use these two expressions for two different ideas:

In the first part of this thesis, we will study the terms supt>0 |ϕ(tA)x|. These are well known in
classical situations and are referred to as maximal functions. In this context, the question arises
naturally, if an estimate of the form∥∥ sup

t>0
|ϕ(tA)x|

∥∥
X

. ‖x‖X for x ∈ X (4)

holds. Here we will work more generally in vector-valued Banach function spaces X(E) (e.g.
vector-valued Lebesgue spaces Lp(Ω, E)), where E is a Banach space. Given a sectorial operator
A in X(E) we ask for the validity of a maximal estimate∥∥ sup

z∈Σδ

|ϕ(zA)x|E
∥∥
X

. ‖x‖X(E) for x ∈ X(E). (5)

One important issue in this context is the Banach principle, which states that if the estimate (5)
holds, then the set of all x ∈ X(E) such that

(ϕ(zA)x)z∈Σδ converges pointwise a.e. if Σδ 3 z → 0

is closed in X(E). If e.g. A = −∆ is the Laplacian and X = Lp(Rd) with p ∈ (1,+∞) and
ϕ(z) = e−z, then (5) (for δ = 0 and Σ0 := (0,∞)) reads as∥∥ sup

t>0
|ht ∗ u|E

∥∥
Lp

. ‖u‖Lp(E) for u ∈ Lp(E), (6)
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where ht is the heat kernel in Rd. Since convergence a.e. is clear if e.g. u ∈ S(Rd, E), the validity
of a maximal estimate (6) implies that

ht ∗ u→ u a.e. as t→ 0 for all u ∈ Lp(Rd, E).

Actually we will show that the maximal estimate (6) holds in the case that E = [E0, E1]θ is a
complex interpolation space between a UMD-space E0 and a Banach space E1 for some θ ∈ (0, 1).
We note that the question about maximal estimates for semigroups has a long history in con-
nection with the maximal ergodic theorem, cf. e.g. [St61], or [DS58], Chapter VIII.

In this thesis we will do a systematic treatment of maximal estimates according to (5) using
concepts of functional calculi for sectorial operators in Banach function spaces, that also work in
vector-valued spaces. We note in this place that the concept of using functional calculi methods
for considering maximal estimates has already been regarded by Michael Cowling in [Co83], and
a generalization to the vector-valued setting has been done e.g. in [Bl02] and [Ta09]. We note
that in [Bl02], the considered operators are assumed to have bounded imaginary powers, and the
underlying space has to be a UMD-space, whereas in [Ta09] generators of symmetric diffusion
semigroups are treated, hence self-adjoint operators in L2, and the underlying Banach spaces
for the vector-valued maximal estimates are interpolation spaces [H,E]θ, where H is a Hilbert
space and E is an UMD space. In both cases, we show that the assumptions can be weakened.
We will give more details in the sequel when we discuss the structure of Chapter 2.

In the second part of this thesis we will pursue a different idea, considering the terms ‖x‖s,A,ϕ
for the whole scale of s ∈ [1,+∞]. More generally, we consider the terms

‖x‖θ,s,A,ϕ :=
∥∥∥∥(∫ ∞

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥∥
X

(7)

for each θ ∈ R (with the usual modification if s = +∞). These terms have an interesting
interpretation if one considers the natural counterparts

‖|x‖|θ,s,A,ϕ :=
(∫ ∞

0
‖t−θϕ(tA)x‖sX

dt

t

)1/s

. (8)

The term (8) is well known to be the homogeneous part of the norm in real interpolation spaces
(X,D(A))θ,s if θ ∈ (0, 1) for appropriate auxiliary functions ϕ, i.e. the norm in (X,D(A))θ,s is
equivalent to the norm ‖ · ‖X + ‖| · ‖|θ,s,A,ϕ, cf. e.g. [Ha06], Chapter 6. In particular, if A = −∆
in X = Lp(Rd) and θ ∈ (0, 1), then (X,D(A))θ,s = B2θ

p,s is a Besov space, whereas the norm
‖ · ‖X + ‖ · ‖θ,s,A,ϕ is equivalent to the norm in the Triebel-Lizorkin space F 2θ

p,s, cf. [Tr83]. The
usefulness of Besov spaces is widely known, since they are real interpolation spaces and hence
e.g. occur as trace spaces in many applications in differential equations. Moreover, Besov and
Triebel-Lizorkin spaces coincide in the case p = s, i.e. B2θ

p,p = F 2θ
p,p, whereas in the case s = 2

the Triebel-Lizorkin spaces coincide by Littlewood-Paley theory with the Bessel potential spaces
H2θ,p(Rd) if p ∈ (1,+∞). The case s 6= 2 has become of interest e.g. in connection with Navier-
Stokes equations, cf. [KY04]. Moreover, vector-valued variants of Triebel-Lizorkin spaces have
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been recognized to occur naturally in characterizing the sharp temporal regularity of certain
trace spaces in the theory of evolution equations, cf. [We02] and [We05], but we will not study
vector-valued Triebel-Lizorkin spaces in this thesis.

Turning back to the general expressions (7) and (8), the idea naturally arises to define generalized
Triebel-Lizorkin spaces for any sectorial operator A using the norm (7). Of course, the norm
expression in (7) should be independent of the special function ϕ ∈ H∞0 \{0}. To ensure this, we
resort to the notion of Rs-boundedness from [We01a]: A set T of linear operators in X is called
Rs-bounded if an estimate∥∥∥( n∑

j=1

|Tjxj |s
)1/s∥∥∥

X
.
∥∥∥( n∑

j=1

|xj |s
)1/s∥∥∥

X
(9)

holds uniformly for all Tj ∈ T , xj ∈ X and n ∈ N (with the usual modification if s = +∞). If the
Banach function space X fulfills a certain geometric property, then R2-boundedness is equivalent
to R-boundedness, and for the concept of Rs-boundedness we show some basic results that are
similar to corresponding results for R-bounded sets of operators. Nevertheless, there are also
considerable differences between the concepts of Rs- and R-boundedness. The most striking one
is that even a single operator does not need to beRs-bounded if s 6= 2, cf. e.g. [Du01], Chapter 8.

In this manner, a sectorial operator is said to beRs-sectorial if the set of resolvents {λR(λ,A) |λ ∈
C\Σω} isRs-bounded for some ω ∈ (0, π). If A isRs-sectorial, we will show that the norm expres-
sion in (7) is independent of ϕ, for ϕ within a suitable class of bounded holomorphic functions,
in the sense of equivalent norms. Having this concept at hand, we can define generalized Triebel-
Lizorkin spaces for Rs-sectorial operators, which we will refer to as the associated s-intermediate
spaces, via the norm expression (7):

Xθ
s,A := {x ∈ X | ‖x‖θ,s,A,ϕ < +∞}, ‖x‖Xθ

s,A
:= ‖x‖X + ‖x‖θ,s,A,ϕ,

where ϕ 6= 0 is a suitable holomorphic function such that z 7→ z−θϕ(z) is an H∞0 -function. More-
over we will define the associated homogeneous s-intermediate spaces Ẋθ

s,A to be the completion
of Xθ

s,A with respect to the norm ‖ · ‖θ,s,A,ϕ. In both cases, we will show that the norms are
independent of ϕ with the above properties in the sense of equivalent norms. One main result
of this thesis is that the "part" of A (which is defined by an abstract extrapolation argument)
always has a bounded H∞-calculus in the homogeneous spaces Ẋθ

s,A, θ ∈ R, and if A is invertible
or has a bounded H∞-calculus in X, then the part of A in the inhomogeneous spaces Xθ

s,A, θ ≥ 0
has a bounded H∞-calculus. This can be seen as a counterpart to Dore’s Theorem (cf. [Do99],
[Do01]), that states a similar result for the real interpolation spaces (X,D(A))θ,s instead of the
s-intermediate spaces.

Let us again have a short look at the case s = 2, from which we started. Then the homogeneous
norm ‖·‖θ,2,A,ϕ is a (classical) square function norm associated to A, and the corresponding spaces
Ẋθ

2,A have also been studied in the context of general Banach spaces (sharing some suitable geo-
metric properties) by Nigel Kalton and Lutz Weis, cf. [KW-1], [KW-2]: the norm ‖ · ‖θ,2,A,ϕ in a
Banach function space X can be reformulated in terms of γ-norms, and it is e.g. well known that
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if A has a bounded H∞-calculus, then Ẋθ
2,A equals the homogeneous fractional domain Ḋ(Aθ).

However, many methods used in the case s = 2, in particular equivalence of square function
norms to Rademacher- and γ-norms, break down in the case s 6= 2, and we have to develop new
approaches in this situation.

Using methods from harmonic analysis we will show that wide classes of operators areRs-sectorial
and indeed even have an Rs-bounded H∞-calculus, i.e. the set {f(A) | f ∈ Σω, ‖f‖∞ ≤ 1} is
Rs-bounded for some ω ∈ (0, π). Moreover, we establish comparison and perturbation results
that enable us to show that for certain kinds of elliptic differential operators the generalized
Triebel-Lizorkin spaces associated to these operators coincide with the classical Triebel-Lizorkin
spaces. In particular, such operators have a bounded H∞-calculus in classical Triebel-Lizorkin
spaces. Again, we give a more detailed exposition below when we give an overview for Chapter 3.

This thesis is organized as follows: In Chapter 1 we present notations and preliminaries. After
introducing some notations in Section 1.1, we recall the notion of the functional calculus for sec-
torial operators and its extension to an operator-valued functional calculus in Sections 1.2 and
1.3. In Section 1.4 we describe the operator-valued version of the Mikhlin multiplier theorem
in UMD-spaces, that relies on results from [We01b], [SW07] and [HHN02]. After this we give a
brief summary of abstract interpolation functors, and further present the concrete concepts of
real and complex interpolation spaces. In particular, we will introduce a multilinear version of
the abstract Stein interpolation theorem for complex interpolation spaces due to [Vo92], which
should be known, but seems not to be explicitly written down in the literature. Furthermore
we give a detailed exposition of Banach function spaces, and finally a brief review on (classical)
Besov and Triebel-Lizorkin spaces.

In Chapter 2 we introduce the notion of maximal estimates for sets of linear operators in
vector-valued Banach function spaces X(E), and in particular the notion of a bounded maximal
function for a sectorial operator A in X(E). We say that A has a bounded H∞0 (Σσ)-maximal
function, or shortly that A has a bounded H∞0 -maximal function, if there is a C > 0 such that
the maximal estimate∥∥ sup

t>0
|ϕ(tA)x|E

∥∥
X
≤ C ‖x‖X(E) (10)

holds for all ϕ ∈ H∞0 (Σσ), x ∈ X(E). Actually (10) implies a more general maximal estimate:
Define the maximal function

MA,ω(x) := sup
{
|ϕ(A)x|E

∣∣ ϕ ∈ H∞0 (Σω′) for some ω′ ∈ (ω, π) with ‖ϕ‖L1
∗(∂Σω) ≤ 1

}
for all x ∈ X(E), where ‖ϕ‖L1

∗(∂Σω) :=
∫
∂Σω
|ϕ(λ)| |dλ||λ| . We will show that if A has a bounded

H∞0 (Σσ)-maximal function, then also the maximal functionMA,ω is bounded on X(E) if ω > σ.

In Section 2.2 we give examples for large classes of operators that have a bounded H∞0 -maximal
function, namely operators that have BIP, operators that satisfy one-sided square-function esti-
mates, or operators which are generators of semigroups that satisfy suitable maximal estimates.
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Moreover, we give an example for an operator without BIP which also has a bounded H∞0 -
maximal function, thus we show that our methods generalize results from [Bl02], where only
operators which have BIP are considered.

In Section 2.3 we consider the maximal estimate (10) in the case that ϕ is in the larger class E(Σσ)
of bounded holomorphic functions that have polynomial limits in 0, i.e. f(z) − f(0) = O(zα)
if z → 0 for some α > 0, and in ∞, i.e. z 7→ f(z−1) has a polynomial limit in 0. We will
show that if A has a bounded H∞0 -maximal function, then the maximal estimate (10) holds for
all ϕ ∈ E(Σσ) if it holds for some ϕ ∈ E(Σσ) with ϕ(0) 6= ϕ(∞), and moreover under this
assumption also the maximal estimate (5) holds for some δ > 0.

In Section 2.4 we will present an interpolation result for maximal functions if A acts as a sectorial
operator in spaces Xj(Ej), j = 0, 1 with compatible resolvents. In the last Section 2.5 of this
chapter we consider the special case of operators AE in the vector-valued space X(E) which
arise as tensor extensions of operators A in the scalar space X. As an application we generalize
a result by Robert J. Taggart from [Ta09] about maximal estimates for tensor extensions of
symmetric diffusion semigroups in vector-valued space Lp(Ω, E).

In the last part, Chapter 3, we present the concept of Rs-boundedness of linear operators, cf.
(9) above, and, as already noted, we will use this concept to define Rs-sectorial operators in
the natural way. In Subsection 3.2.2 we will prove the important fact that the norm expressions
in (3) are equivalent for all ϕ ∈ H∞0 (Σσ)\{0} if A is Rs-sectorial of type smaller than σ. In
Subsection 3.2.3 we introduce the notion of an Rs-bounded H∞-calculus: The operator A in X
is said to have an Rs-bounded H∞(Σω)-calculus if the set

{f(A) | f ∈ H∞(Σω), ‖f‖∞,ω ≤ 1}

is Rs-bounded. We will show that if f(A) is Rs-bounded for each f ∈ H∞(Σσ), then the secto-
rial operator A has an Rs-bounded H∞(Σω)-calculus for all ω > σ.

In Section 3.3 we introduce the associated s-intermediate spaces for an Rs-sectorial operator A,
namely the homogeneous spaces Ẋθ

s,A, θ ∈ R and the inhomogeneous spaces Xθ
s,A, θ ≥ 0. After

presenting elementary properties of these spaces in Subsection 3.3.1 we will show in Subsection
3.3.2 that these spaces are indeed reasonable intermediate spaces for X and D(Am) if θ ∈ (0,m),
and moreover we present results about real and complex interpolation of these spaces. In Sub-
section 3.3.3 we constitute the main theorem already mentioned (Theorem 3.3.23), which states
that A has a bounded H∞-calculus in the spaces Ẋθ

s,A, θ ∈ R, and under appropriate assumptions
also in the spaces Xθ

s,A, θ ≥ 0.

In Section 3.4 we present comparison and interpolation results forRs-sectorial operators. In both
cases we can show that if C is a comparable operator or an additive perturbation (i.e. C = A+B

for some linear operator B : X ⊇ D(A) → X) of an operator A with an Rs-bounded H∞-
calculus, then under appropriate conditions also C has an Rs-bounded H∞-calculus. Moreover,
and that is what we are more interested in, under similar conditions we can also show that the
operator C has the same associated s-intermediate spaces as A, i.e. we have Ẋθ

s,C ≈ Ẋθ
s,A and

Xθ
s,C ≈ Xθ

s,A for some range of θ. Together with the results of Section 3.3 this yields that these op-
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erators C have a bounded H∞-calculus in the s-intermediate spaces associated to the operator A.

In Section 3.5 we will show that the negative A of a generator of an analytic semigroup T in the
space L2(Ω) over some space of homogeneous type Ω has an Rs-bounded H∞-calculus in the
spaces Lp(Ω) for all s, p ∈ (p0, p1), if the semigroup T satisfies a certain kind of weighted p0 → p1

estimates, which are also referred to as off-diagonal or generalized Gaussian estimates. Thus we
generalize a theorem by Sönke Blunck and Peer Kunstmann from [BK03], where it is shown that
under similar conditions the operator A has a bounded H∞-calculus in the spaces Lp(Ω) for all
p ∈ (p0, p1). As an application we will show that wide classes of differential operators, cover-
ing certain elliptic operators in divergence and non-divergence form and Schrödinger operators
−∆+V with appropriate potentials V , have an Rs-bounded H∞-calculus, thus are in particular
Rs-sectorial, and the associated s-intermediate spaces are well defined for these operators, and
the theory from Section 3.3 can be applied.

We note that for Schrödinger operators with special potentials, a similar concept of generalized
Triebel-Lizorkin spaces is introduced in [OZ06] and [Zh06]. There, the main issue is to show
that the norm in those spaces is independet of the auxiliary function ϕ used in the definition of
the norm. Nevertheless, the definition given there differs from ours and is closer to the original
definition of Triebel-Lizorkin spaces, where auxiliary functions ϕ ∈ C∞c (R) are used to define the
norm in those spaces. On the other hand, our concept is more general in the sense that we can
also handle non-selfadjoint sectorial operators with non-real spectrum. Let us also mention that
the case s = 2 in the framework of [OZ06] and [Zh06] is also covered by [Kr09], Chapter 4, where
Littlewood-Paley decompositions associated to 0-sectorial operators are studied in general. We
give more comments on this topic at the end of Subsection 3.5.2.

Finally, in the last Section 3.6 we will apply the results from Section 3.4 to identify the s-
intermediate spaces associated to certain elliptic operators in non-divergence and in divergence
form. We will show that these spaces coincide with the classical Triebel-Lizorkin spaces F sp,q for
a certain range of s if the top order coefficients of the differential operators satisfy appropriate
regularity assumptions. In the case of non-divergence form operators this will be a Hölder-
continuity condition, and in the case of divergence form operators this condition can be weakened
to the assumption that the top order coefficients are bounded and uniformly continuous. So in
particular, operators that satisfy these conditions have a bounded H∞-calculus in the classical
Triebel-Lizorkin spaces. For the case of non-divergence form operators with Hölder-continuous
coefficients, such results are already indicated in [ES08] and [DSS09], where even more generally
pseudodifferential operators are considered, but the details in the proof for the case of Triebel-
Lizorkin spaces are left out. We note that our methods are operator theoretical and are totally
different from the approaches in [ES08] and [DSS09], which are based on pseudodifferential
calculus. Moreover, our results will not only show that the differential operators Ap (of order 2m
inX = Lp(Rd)) we consider have a boundedH∞-calculus in classical Triebel-Lizorkin spaces, but
also that the norm equivalences Ẋθ

ν+Ap,q
≈ Ẋθ

ν+(−∆)m,q and X
θ
ν+Ap,q

≈ Xθ
ν+(−∆)m,q ≈ F

2mθ
p,q hold

for all q ∈ (1,+∞) and appropriate θ and ν > 0, i.e. we can express the norm in the classical
Triebel-Lizorkin spaces by the s-power function norms associated to the more general elliptic
operator Ap instead of the Laplacian. These representations of the classical Triebel-Lizorkin
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spaces are new. The corresponding results for divergence operators are entirely new.
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Chapter 1

Notations and Preliminaries

1.1 Notations

We introduce some notations. For any set X, we denote the power set of X by Pot(X). If
(X,≤) is a partially ordered set and x, y ∈ X, we let x ∧ y := inf{x, y} and x ∨ y := sup{x, y},
if the latter exist. If X,Y are normed spaces we let L(X,Y ) := Hom(X,Y ) be the set of linear
maps from X to Y and denote by L(X,Y ) := {T ∈ L(X,Y ) | T bounded} the bounded linear
operators from X to Y . We use the notation X ′ := L(X,K) for the dual space. For the dual
pairing (X,X ′) we will use the notation 〈x, x′〉 := 〈x, x′〉X×X′ := x′(x) if (x, x′) ∈ X × X ′. If
X,Y are normed spaces with X ⊆ Y , or X is canonically identified with a subspace of Y , we
write X ↪→ Y if the canonical inclusion map is continuous.

If Ω is a set and µ is a measure on some σ-algebra over Ω we say that (Ω, µ) is a measure space.
Observe that the underlying σ-algebra can be recovered as the domain D(µ) of µ1, but we will
usually only consider the σ-algebra of µ-measurable subsets of Ω. Let (Ω, µ) be a measure space,
E a Banach space and p ∈ [1,+∞], then we denote the usual Lebesgue-spaces by Lp(µ,E), or
a little improperly by Lp(Ω, E). If it is clear what the underlying measure space (Ω, µ) is we
just write Lp(E). The corresponding spaces of equivalence classes modulo the equivalence rela-
tion given by pointwise equality up to a µ-nullset are denoted by Lp(µ,E), Lp(Ω, E) or Lp(E),
respectively. If µ is the counting measure, we will use the notations `p(Ω, E) or `p(E) instead
of Lp(Ω, E). Finally, if E = K ∈ {R,C} we will usually drop E in the notation and just write
Lp(µ),Lp(Ω),Lp, Lp(µ), Lp(Ω), Lp, `p(Ω) or `p, respectively.

Let d ∈ N and E be a Banach space. We will use the common notation of multi-indices, i.e. if
α ∈ Nd

0 we let xα :=
∏d
j=1 x

αj
j , ∂α :=

∏d
j=1 ∂

αj
j and |α| =

∑d
j=1 αj , and for later use we already

introduce the notations Dj := 1
i ∂j and D

α := (−i)|α|∂α. If u ∈ L1(Rd, E) we define the Fourier
transform of u by

û(ξ) := (Ff)(ξ) :=
∫

Rd
e−ix·ξf(x) dx for all ξ ∈ Rd,

and for u ∈ F(L1(Rd, E)) we denote the inverse Fourier transform of u by ǔ := F−1(u). Let
1and in fact, also the set Ω can be recovered from µ by Ω =

⋃
D(µ)

9
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Sd(E) be the space of E-valued Schwartz-functions on Rd an let S ′d(E) := L(Sd, E) be the space
of E-valued tempered distributions on Rd. Then we will extend the notions of Fourier transforms
and e.g. convolution to the space of tempered distributions as usual, cf. e.g. [Am95] for the
vector-valued version of these standard notions.

Finally, in estimates we will sometimes drop constants and use the relation symbols . and ≈.
This is done if we only leave out universal constants (like e.g. natural numbers) or if it is clear
on which other terms the constants depend. To be more concrete we use sometimes the symbols
.M and ≈M to indicate that the dropped constants depend on the term M .

1.2 The functional calculus for sectorial operators and the H∞-
calculus

We give a short introduction to the functional calculus for sectorial operators, for details we refer
to the standard literature as [Ha06] or [KW04].

Let X be a complex Banach space. For σ ∈ (0, π] we define the open sector

Σσ := {z ∈ C\(−∞, 0] | | arg(z)| < σ},

where arg is the principal branch of the argument-function, and we let Σ0 := (0,+∞). Moreover
we define Σσ := Σσ for all σ ∈ [0, π].

Definition 1.2.1 (Sectorial operator, type of a sectorial operator). Let A : X ⊇ D(A) → X

be a linear operator. A is called a sectorial operator of type ω ∈ [0, π) if the spectrum σ(A) is
contained in the closed sector Σω and the set of operators {zR(z,A) | z ∈ C\Σσ} is bounded for
all σ ∈ (ω, π). The infimum ω(A) over all such ω is called the type of A.

For the remaining section we fix some injective sectorial operator A : X ⊇ D(A) → X and
σ ∈ (ω(A), π].

For f : Σσ → C let ‖f‖∞,σ := supz∈Σσ |f(z)|, where we sometimes drop the index σ if there is no
risk of confusion. We introduce the algebraH∞(Σσ) := {f : Σσ → C | f analytic, ‖f‖∞,σ < +∞}
of bounded analytic functions on the sector Σσ and the subalgebra H∞0 (Σσ) consisting of those
f ∈ H∞(Σσ) for which there exists an ε > 0 with supz∈Σσ

(
(|z|ε ∨ |z|−ε)|f(z)|

)
< +∞.

Let ω ∈ (ω(A), σ) and define the path of integration Γω(t) := |t|e− sgn(t)iω for all t ∈ R, then

ϕ 7→ ϕ(A) :=
1

2πi

∫
Γω

ϕ(λ)R(λ,A) dλ (1.2.1)

defines an algebra homomorphism H∞0 (Σσ) → L(X) that is independent of ω ∈ (ω(A), σ) and
only depends on the germ of ϕ on Σω(A).

By a standard extension procedure we obtain a functional calculus for all f ∈ H∞(Σσ) and even
for a larger class of holomorphic functions: we define ρ(λ) := λ(1 +λ)−2 for λ ∈ C\(−∞, 0). Let

B(Σσ) := {f : Σσ → C | z 7→ ρ(z)mf(z) ∈ H∞0 (Σσ) for some m ∈ N}
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be the algebra of analytic functions on the sector Σσ that are polynomially bounded at 0 and
∞. Then it is easy to check that ρm(A) = ρ(A)m = Am(1 + A)−2m, and ρ(A) is an injective
operator. Let f ∈ B(Σσ) and choose m ∈ N such that ρmf ∈ H∞0 (Σσ), then the operator
(ρmf)(A) ∈ L(X) is well defined by the functional calculus described above and we can define

f(A) := (ρ(A))−m(ρmf)(A).

It can be shown that the definition of f(A) is independent of m ∈ N such that ρmf ∈ H∞0 (Σσ),
and that f 7→ f(A) is an (abstract) functional calculus for A in the sense of [Ha06], Chapter 1.3.

As a special class of analytic functions f that still yield a nice representation formula and ensure
that f(A) is bounded we introduce the extended Dunford-Riesz class, which is defined by

E(Σσ) := H∞0 (Σσ)⊕
〈 1

1 + idΣσ

〉
C
⊕ 〈1Σσ〉C and Eω :=

⋃
σ′>ω

E(Σσ′) for any ω ∈ [0, π).

It can easily be shown that E(Σσ) is exactly the algebra of bounded analytic functions on Σσ that
have finite polynomial limits in 0 and∞. Here we say that f has a finite polynomial limit in 0, if
there is an a ∈ C and α > 0 such that f(z)−a = O(|z|α) as z → 0, and a finite polynomial limit
in ∞, if the latter is true for f(z−1). In this case, the values f(0), f(∞) ∈ C are well defined.
Moreover, by the mean value theorem, bounded holomorphic functions on Σσ that are either
decaying to 0 or holomorphic in a neighborhood of 0 and ∞, respectively, belong to the class
E(Σσ). For f ∈ E(Σσ) let ϕ := f − f(0)−f(∞)

1+idΣσ
− f(∞) 1Σσ be the corresponding H∞0 -function,

then it is easily checked that

f(A) = ϕ(A) + (f(0)− f(∞)) (1 +A)−1 + f(∞) idX .

For details we refer to [Ha06], Section 2.2.

From now on we assume additionally that the operator A has dense domain and range2. Actually,
this is not much loss of generality in our situation, because our main examples will be in reflexive
spaces, and in this case sectorial operators always have dense domain, and they are injective
if and only if they have dense range, cf. [Ha06], Proposition 2.1.1. An important issue in this
context is the so-called Convergence Lemma, which we state in the following version, cf. [Ha06],
Proposition 5.1.4.

Proposition 1.2.2 (Convergence Lemma). Let (fn)n∈N ∈ (H∞(Σσ))N be a sequence such that
the following assertions hold:

(i) The pointwise limit f0(z) := limn→∞ fn(z) exists for all z ∈ Σσ,

(ii) supn∈N ‖fn‖∞,σ < +∞,

(iii) fn(A) ∈ L(X) for all n ∈ N and M := supn∈N ‖fn(A)‖ < +∞.
2Observe that the density of R(A) already implies that A is injective by the sectoriality condition, cf. [Ha06],

Proposition 2.1.1.
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Then f0 ∈ H∞(Σσ) and f0(A) ∈ L(X) with ‖f0(A)‖ ≤ M . Moreover, fn(A)x → f0(A)x if
n→∞ for all x ∈ X.

We can now turn to the important notion of a bounded H∞-calculus.

Definition 1.2.3 (Bounded H∞-calculus). Let σ ∈ (ω(A), π]. The operator A is said to have a
bounded H∞(Σσ)-calculus if

M∞σ (A) := sup{‖f(A)‖ | f ∈ H∞(Σσ), ‖f‖∞,σ ≤ 1} < +∞.

Moreover, ωH∞(A) := inf{σ ∈ (ω(A), π] |M∞σ (A) < +∞} is called the H∞-type of A. If A
has a bounded H∞(Σσ)-calculus for some σ > ω(A), we also just say that A has a bounded
H∞-calculus.

The following characterization is an easy consequence of the convergence lemma and the closed
graph theorem, cf. e.g. [KW04], Remark 9.11 and [Ha06], Proposition 5.3.4.

Remark 1.2.4. The operator A has a bounded H∞(Σσ)-calculus if and only if there is a C > 0
such that

‖ϕ(A)‖ ≤ C ‖ϕ‖∞,σ for all ϕ ∈ H∞0 (Σσ),

and in this case M∞σ (A) ≤ C.

1.3 R-sectorial operators and the operator-valued H∞-calculus

It has been shown in [KW01-a] that a bounded H∞-calculus can be extended to an operator-
valued H∞-calculus for operator-valued functions with an R-bounded range. Moreover, under
an additional geometric assumption on the underlying Banach space this can be even extended
to the stronger notion of an R-bounded H∞-calculus. We will use these tools frequently in this
work, where we also are interested in controlling the involved constants, hence we will present a
slightly more general version of the corresponding results from [KW01-a] and [KW04]. We will
also introduce the notion of R-sectorial operators.

Let X,Y be complex Banach spaces. Let (rj)j∈N be a Rademacher-sequence, i.e. a sequence of
independent symmetric ±1-valued random variables on some probability space (Ω, P ), and let
E denote the expectation with respect to the corresponding probability measure P . A standard
example are the Rademacher functions rj(t) := sgn(sin(2jπt)) for all t ∈ [0, 1], j ∈ N on the
probability space [0, 1] endowed with the usual Lebesgue-measure. Observe that for any Banach
space E and p ∈ [1,+∞) the expressions(

E
∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣p
E

)1/p

=
(

1
2n

∑
σ∈{−1,1}n

∥∥∥ n∑
j=1

σjxj

∥∥∥p
E

)1/p

(1.3.2)

for x ∈ En, n ∈ N do not depend on the special choice of the Rademacher-sequence (rj)j∈N.
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Definition 1.3.1 (R-boundedness). A set T ⊆ L(X,Y ) is called R-bounded if there exists a
constant C ∈ R>0 such that for all n ∈ N, T ∈ T n and x ∈ Xn:

E
∣∣∣ n∑
j=1

rj ⊗ Tjxj
∣∣∣
X
≤ C E

∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣
X
. (1.3.3)

In this case, the infimum over all such constants C > 0 is denoted by R(T ) and called the
R-bound of T .

A detailed exposition of the notion of R-boundedness can be found e.g. in [CdPSW00] or in
[KW04], Section 2.

Definition 1.3.2 (R-sectorial operator, R-type of an R-sectorial operator). Let A : X ⊇
D(A) → X be a linear operator. A is called an R-sectorial operator of R-type ω ∈ [0, π) if the
spectrum σ(A) is contained in the closed sector Σω and the set of operators {zR(z,A) | z ∈ C\Σσ}
is R-bounded for all σ ∈ (ω, π). The infimum ωR(A) over all such ω is called the R-type of A.
In this case we define

MR,σ(A) := R({zR(z,A), AR(z,A) | z ∈ C\Σσ})

for all σ ∈ (ωR(A), π). Observe that this set is indeed also R-bounded, since

AR(z,A) = zR(z,A)− idX for all z ∈ C\Σσ,

hence MR,σ(A) ≤ R({zR(z,A) | z ∈ C\Σσ}) + 1 ≤ 2MR,σ(A).

We will now turn to the notion of the operator-valued H∞-calculus as presented e.g. in [KW01-a]
or [KW04], Chapter 12. Let A ⊆ L(X) denote the subalgebra of all bounded operators that
commute with resolvents of A. Then we define

RH∞(Σσ,A) := {F : Σσ → A | F is analytic and F (Σσ) is R-bounded}.

For each F ∈ RH∞(Σσ,A) we define the norm ‖F‖RH∞,σ := R(F (Σσ)). By RH∞0 (Σσ,A) we de-
note the subspace of functions F ∈ RH∞(Σσ,A) such that supz∈Σσ

(
(|z|ε∨|z|−ε)‖F (z)‖

)
< +∞

for some ε > 0.

Then it can be shown that in the same manner as for scalar-valued analytic functions the mapping

F 7→ 1
2πi

∫
Γω

F (λ)R(λ,A) dλ

is independent of ω ∈ (ω(A), σ) and defines a functional calculus ΦA : RH∞0 (Σσ)→ L(X) for the
operator A. If A has a bounded H∞(Σσ)-calculus, it can be shown that the functional calculus
ΦA can be extended to the algebra RH∞(Σσ′) for all σ′ > σ, cf. [KW01-a] Theorem 4.4 or
[KW04], Theorem 12.7. In fact, a careful inspection of the proof of [KW04], Theorem 12.7 shows
the following sharper version covering also the involved constants.
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Theorem 1.3.3. Assume that A has a bounded H∞(Σσ)-calculus. Then for each ω > σ there
is a constant Cω,σ > 0 independent of A such that

∀σ′ ≥ ω ∀F ∈ RH∞(Σσ′) : ‖F (A)‖ ≤ Cω,σ ·M∞σ (A) · ‖F‖RH∞,ω.

As an application one can show that a bounded H∞-calculus of the operator A implies an R-
bounded H∞-calculus and even an R-bounded RH∞-calculus (in the sense of Theorem 1.3.5
below), if the Banach space X has the so-called property (α) introduced by Pisier in [Pi78].

Definition 1.3.4 (Property (α)). The Banach space X has property (α) if there is a constant
CX > 0 such that for all n ∈ N, α = (αjk)nj,k=1 ∈ Cn×n with |αjk| ≤ 1 for all j, k ∈ N≤n and
x = (xjk)nj,k=1 ∈ Xn×n we have

EP⊗P
∣∣∣(rj ⊗ rk)⊗ αjkxjk∣∣∣

X
≤ CX EP⊗P

∣∣∣(rj ⊗ rk)⊗ xjk∣∣∣
X
, (1.3.4)

where EP⊗P denotes the expectation on the probability space (Ω× Ω, P ⊗ P ).

If we work with the standard Rademacher functions, (1.3.4) can be rewritten as∫ 1

0

∫ 1

0

∥∥∥rj(t)rk(s)αjkxjk∥∥∥
X
dt ds ≤ CX

∫ 1

0

∫ 1

0

∥∥∥rj(t)rk(s)xjk∥∥∥
X
dt ds. (1.3.5)

There are wide classes of Banach spaces which are known to have property (α). We just refer to
Proposition 1.6.22 in Subsection 1.6.3 for the special case of q-concave Banach function spaces,
which is a sufficiently large class of such spaces for this work.

Having this notions at hand, [KW01-a], Theorem 5.3 and its Corollary 5.4, or [KW04], Theorem
12.8 and Remark 12.10 show that if X has property (α) and A has a bounded H∞-calculus, then
A has also an R-bounded H∞-calculus, i.e. the set

{f(A) | ‖f‖∞,σ′ ≤ 1}

is R-bounded for all σ′ > ωH∞(A). In particular, if X has property (α) and A has a bounded
H∞-calculus, then A is R-sectorial with ωR(A) ≤ ωH∞(A). This assertion is still true under
much weaker assumptions on the Banach space X, cf. [KW01-a].

In fact, even more is proven: under the same assumptions the operator-valued functional calculus
is R-bounded, and again, a careful inspection of the proofs yields the following theorem.

Theorem 1.3.5. Assume that X has property (α) and A has a bounded H∞(Σσ)-calculus. Then
for each ω > σ there is a constant Cω,σ > 0 independent of A such that for all T ⊆ L(X) the
following holds:

∀σ′ ≥ ω : R
(
{F (A) | F ∈ RH∞(Σσ′ ,A), F (Σσ′) ⊆ T }

)
≤ Cω,σ ·M∞σ (A) · R(T ). (1.3.6)

If σ′ ≥ ω we can consider H∞(Σσ′) as a subspace of RH∞(Σω,A) by the injection f 7→
(
f |Σω

)
⊗

idX . Then for each subset F ⊆ H∞(Σσ′) we have R
(⋃

f∈F f(Σω)
)
≤ 2 supf∈F ‖f‖∞,ω by

Kahane’s contraction principle, hence we obtain the following special case of Theorem 1.3.5 (cf.
also [KW04], Theorem 12.8 and Remark 12.10).
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Corollary 1.3.6. Assume that X has property (α) and A has a bounded H∞(Σσ)-calculus. Then
for each ω > σ there is a constant Cω,σ > 0 independent of A such that the following holds:

∀σ′ ≥ ω ∀F ⊆ H∞(Σσ′) : R({f(A) | f ∈ F}) ≤ Cω,σ ·M∞σ (A) · sup
f∈F
‖f‖∞,ω.

In particular, A is R-sectorial with ωR(A) ≤ σ, and for each ω > σ there is a constant C̃ω,σ > 0
independent of A such that the following holds:

∀σ′ ≥ ω : MR,σ′(A) ≤ C̃ω,σ ·M∞σ (A).

1.4 UMD spaces and the operator-valued Mikhlin Theorem

In this work we will often use the operator-valued version of the Mikhlin Multiplier Theorem in
UMD-spaces, which in the version on the real line is due to Lutz Weis, [We01b]. We will also
use versions of this theorem in the space Rd, which are presented in [KW04] or [SW07], cf. also
[HHN02]. Beside the concept of UMD-spaces, which is briefly described in this section, we will
also need the notion of R-boundedness and the property (α) for Banach spaces, which have been
introduced in the preceding section.

Let E,F be complex Banach spaces, p ∈ (1,+∞) and d ∈ N.

Definition 1.4.1. Let m ∈ L∞(Rd, L(E,F )). Then the operator

Tm : Sd(E)→ Sd(F ), u 7→ F−1(m · Fu)

is called the Fourier multiplier operator associated to m. The function m is called an Lp-Fourier-
multiplier if Tm(Sd(E)) ⊆ Lp(F ) and there is a constant Cp > 0 such that ‖Tmu‖p ≤ Cp ‖u‖p
for all u ∈ Sd(E).

In this case, Tm can be extended to a bounded operator Lp(E) → Lp(F ), which we will also
denote by Tm.

An elementary multiplier operator on the real line is given by the function m := −i sgn. The
associated Fourier multiplier operator is called the Hilbert transform on E. Indeed, the bound-
edness of the Hilbert transform on Lp(E) is sufficient for the boundedness of a large class of
multiplier operators. We have the following concrete representation of the Hilbert transform, cf.
e.g. [Am95], Section III.4.3.

Definition/Proposition 1.4.2 (Hilbert-transform). The vector-valued Hilbert-Transform HE :
S(E)→ S ′(E) on E is the Fourier multiplier operator associated to the function −i sgn. For all
f ∈ S(E) it is given by

HEf(x) := lim
ε↘0

1
π

∫
|y|≥ε

f(x− y)
y

dy for all x ∈ R.
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We are now in position to give the definition of an UMD-space. We will present the original
definition involving vector-valued martingales - indeed, the notation UMD-space originates in the
term Unconditionality of Martingal Differences - as well as the characterizations in a geometric
manner on the one hand and in terms of boundedness of the vector valued Hilbert transform on
the other hand. Hence we will first present the following expansive characterization result for the
property UMD that will be defined subsequently. The proof can be found in the papers [Bu81],
[Bu83] and [Bo83].

Theorem 1.4.3. Let p ∈ (1,+∞). Then the following conditions on E are equivalent:

(1) E has the property UMDp, i.e.: there exists a constantMp(E) > 0 such that for all E-valued
martingales u = (un)n∈N, all ε ∈ {−1, 1}N and all n ∈ N the following holds:∥∥∥∥ n∑

k=1

εn(uk − uk−1)
∥∥∥∥
p

≤Mp(E) ·
∥∥∥∥ n∑
k=1

(uk − uk−1)
∥∥∥∥
p

(
= Mp(E) ‖un‖p

)
,

where u0 := 0.

(2) E is ζ-convex, i.e.: there exists a symmetric biconvex function ζ : E × E → R with
ζ(0, 0) > 0 and

∀x, y ∈ E : ‖x‖ ≤ 1 ≤ ‖y‖ ⇒ ζ(x, y) ≤ ‖x+ y‖.

(3) E has the property HT p, i.e.: the vector-valued Hilbert-Transform HE on S(E) can be
extended to a bounded operator on Lp(E), in other words: HE(S(E)) ⊆ Lp(E), and

∃Cp > 0 ∀ f ∈ S(E) : ‖HEf‖p ≤ Cp ‖f‖p.

In particular, since (2) does not depend on p ∈ (1 +∞), the properties UMDp,HT p hold for
some p ∈ (1,+∞) if and only if they hold for all p ∈ (1,+∞). The equivalent conditions of
Theorem 1.4.3 lead to the following definition of UMD-spaces.

Definition 1.4.4 (UMD-space). The space E is called an UMD-space if E satisfies the equivalent
conditions (1)-(3) of Theorem 1.4.3.

We give some important examples of UMD-spaces: By Plancherel’s Theorem every Hilbert space
is a UMD-space, and moreover if E is a UMD-space, then also closed subspaces and quotients
of E are UMD-spaces, and Lp(µ,E) is a UMD-space for all σ-finite measure spaces (Ω, µ) and
p ∈ (1,+∞), cf. also [Am95], Theorem III.4.5.2. More information concerning UMD-spaces can
be found e.g. in [Am95], Sections III.4.4 and III.4.5.

We can now cite the operator-valued version of the Mikhlin Multiplier Theorem on R, cf. [We01b],
Theorem 3.4 or [KW04], Theorem 3.12.

Theorem 1.4.5. Let E,F be UMD-spaces and m ∈ C1(R\{0}, L(E,F )) satisfy the following
condition:
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The sets M1 := m(R\{0}) and M2 := {tm′(t) | t ∈ R\{0}} are R-bounded.

Then m is an Lp-Fourier-multiplier, and ‖Tm‖ ≤ Cp
(
R(M1)∨R(M2)

)
with a constant Cp only

depending on E,F and p.

We will next formulate the multi-dimensional version of this theorem, cf. [KW04], Theorems 4.6
and 4.13.

Theorem 1.4.6. Let E,F be UMD-spaces, m ∈ C1(Rd\{0}, L(E,F )) and M > 0. Assume that
one of the following conditions is fulfilled:

(1) The set T1 :=
{
|x||α|∂αm(x) : x ∈ Rd\{0}, α ≤ (1, 1, . . . , 1)

}
is R-bounded with R(T1) ≤

M , or

(2) E and F have property (α), and the set T2 :=
{
xα∂αm(x) : x ∈ Rd\{0}, α ≤ (1, 1, . . . , 1)

}
is R-bounded with R(T2) ≤M .

Then m is an Lp-Fourier-multiplier, and ‖Tm‖ ≤ Cp ·M with a constant Cp only depending on
E,F, d and p.

1.5 Interpolation of Banach spaces

We will give a short overview of the theory of interpolation spaces as we will use it in the sequel.
We will restrict ourselves here to some basic definitions and elementary properties. For the proofs
and more detailed expositions we refer to the standard literature, e.g. [BL76], [Lu09] or [Tr78].

1.5.1 Interpolation couples and interpolation functors

Definition 1.5.1. A pair X = (X0, X1) of Banach spaces is said to be an interpolation couple if
there is a separated topological vector space Z such that X0, X1 ⊆ Z with continuous inclusion.

Let ((X0, ‖ · ‖0), (X1, ‖ · ‖1)) be an interpolation couple, then the spaces X0 ∩X1 and X0 + X1

are well defined as subspaces of Z. Define ‖x‖∩ := ‖x‖0 + ‖x‖1 for each x ∈ X0 ∩ X1 and
‖z‖Σ := inf{‖x0‖0 + ‖x1‖1 | (x0, x1) ∈ X0 × X1, z = x0 + x1} for each z ∈ X0 + X1, then
(X0 ∩X1, ‖ · ‖∩) and (X0 +X1, ‖ · ‖Σ) are Banach spaces with

X0 ∩X1 ↪→ Xj ↪→ X0 +X1 for j = 0, 1 with continuous inclusions.

Any Banach space E such that X0 ∩X1 ↪→ E ↪→ X0 + X1 with continuous inclusions is called
an intermediate space between X0 and X1.

The interpolation couples form the objects of a category, where the morphisms are bounded
linear operators T : X0 +X1 → Y0 +Y1 such that T (Xj) ⊆ Yj and T |Xj ∈ L(Xj , Yj) for j = 0, 1,
where (X0, X1), (Y0, Y1) are interpolation couples, and the composition is the usual composition
of maps.

A functor F from the category of interpolation couples into the category of Banach spaces is
called an interpolation functor, if the following assertions hold:
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(1) F(X) is an intermediate space for all interpolation couples X = (X0, X1),

(2) F(T ) = T |F(X) for all interpolation couples X = (X0, X1), Y = (Y0, Y1) and morphisms
T : X → Y .

An interpolation functor F is called exact of exponent θ ∈ [0, 1] if

‖T‖F(X)→F(Y ) ≤ ‖T‖1−θX0→Y0
‖T‖θX1→Y1

for all interpolation couples X = (X0, X1), Y = (Y0, Y1) and morphisms T : X → Y .

We will now turn to a useful tool to determine interpolation spaces of some general interpolation
couple by representing it as a retract of some other interpolation couple, for which the interpo-
lation spaces are already known. Let X,Y be objects in a category, then Y is called a retract of
X if there are morphisms R : X → Y and S : Y → X such that R ◦ S = idY . In this situation
R is called a retraction and S a corresponding coretraction.

Proposition 1.5.2 (cf. [Tr78], 1.2.4 Theorem). Let X = (X0, X1), Y = (Y0, Y1) be interpolation
couples such that Y is a retract of X in the category of interpolation couples of Banach spaces. Let
R : X → Y be a retraction and S : Y → X a corresponding coretraction. Let F be an arbitrary
interpolation functor. Then F(R) = R|F(X) : F(X) → F(Y ) is a retraction with corresponding
coretraction F(S). Moreover, SR|F(X) is a projection on a complemented subspace E of F(X)
such that F(S) : F(Y )→ E is an isomorphism.

1.5.2 Real interpolation spaces

Let ((X0, ‖ · ‖0), (X1, ‖ · ‖1)) be an interpolation couple. For all t > 0 and z ∈ X0 + X1 define
the K-functional

K(t, z) := inf{‖x0‖0 + t‖x1‖1 | (x0, x1) ∈ X0 ×X1, z = x0 + x1}.

If p ∈ [1,+∞] and f : (0,∞)→ E is Lebesgue-measurable with values in some Banach space E
we let

‖f‖Lp∗ := ‖f‖Lp∗(E) :=


(∫ ∞

0
‖f(t)‖pE

dt

t

)1/p

if p < +∞,

sup
t>0
‖f(t)‖E if p = +∞,

and we define the spaces

Lp∗(E) := Lp((0,∞), dt/t, E) := {f : (0,∞)→ E | f Lebesgue-measurable, ‖f‖Lp∗ < +∞}

(modulo the usual identification of functions that are equal up to a Lebesgue-Nullset). Moreover,
for all θ ∈ (0, 1), p ∈ [1,+∞] and x ∈ X0 +X1 let ‖x‖θ,p := ‖t 7→ t−θK(t, x)‖Lp∗ .
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Definition 1.5.3 (Real interpolation spaces). Let θ ∈ (0, 1) and p ∈ [1,+∞]. Then the real
interpolation space (X0, X1)θ,p is defined as

(X0, X1)θ,p := {x ∈ X0 +X1 | ‖x‖θ,p < +∞},

endowed with the norm ‖ · ‖θ,p.

It can be shown that the real interpolation method (·, ··)θ,p defines an exact interpolation functor
of exponent θ, cf. [BL76], Theorem 3.1.2. In the following proposition we list some elementary
properties of real interpolation spaces.

Proposition 1.5.4 (cf. [BL76], Theorem 3.4.1, [Lu09], Proposition 1.1.4, Corollary 1.1.7). Let
θ, θj ∈ (0, 1) for j = 0, 1 and p, q ∈ [1,+∞].

(1) (X0, X1)θ,p = (X1, X0)1−θ,q with equal norms.

(2) If p ≤ q, then (X0, X1)θ,p ↪→ (X0, X1)θ,q.

(3) If X1 ↪→ X0 and θ0 < θ1, then (X0, X1)θ1,p ↪→ (X0, X1)θ0,q.

(4) There is a constant c(θ, p) such that ‖x‖θ,p ≤ c(θ, p)‖x‖1−θ0 ‖x‖θ1 for all x ∈ X0 ∩X1.

We will now turn to the fundamental Reiteration Theorem for the real interpolation method,
where we follow the lines of [Lu09], Chapter 1.3. Let (X0, X1) be an interpolation couple and E
an intermediate space.

Definition 1.5.5 (Classes Jθ,Kθ). Let θ ∈ [0, 1]. E is said to be of class Jθ if there is a constant
c > 0 such that

‖x‖E ≤ c ‖x‖1−θ0 ‖x‖θ1 for all x ∈ X0 ∩X1.

In this case we write E ∈ Jθ, or E ∈ Jθ(X0, X1) if we want to refer explicitly to the underlying
interpolation couple.

E is said to be of class Kθ if there is a constant k > 0 such that

K(t, x) ≤ k tθ‖x‖E for all x ∈ E, t > 0.

In this case we write E ∈ Kθ, or E ∈ Kθ(X0, X1) if we want to refer explicitly to the underlying
interpolation couple.

We have the following important characterizations in the case θ ∈ (0, 1).

Proposition 1.5.6. Let θ ∈ (0, 1). Then E is of class Jθ if and only if (X0, X1)θ,1 ↪→ E, and
E is of class Kθ if and only if E ↪→ (X0, X1)θ,∞.

Theorem 1.5.7 (Reiteration Theorem). Let 0 ≤ θ0 < θ1 ≤ 1 and δ ∈ (0, 1), and let θ :=
(1− δ)θ0 + δθ1. Let Ej be intermediate spaces between X0 and X1 for j = 0, 1.

(1) If Ej ∈ Jθj (X0, X1) for j = 0, 1, then (X0, X1)θ,p ↪→ (E0, E1)δ,p for all p ∈ [1,+∞].
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(2) If Ej ∈ Kθj (X0, X1) for j = 0, 1, then (E0, E1)δ,p ↪→ (X0, X1)θ,p for all p ∈ [1,+∞].

Consequently, if Ej ∈ Jθj (X0, X1) ∩Kθj (X0, X1) for j = 0, 1, then

(E0, E1)δ,p = (X0, X1)θ,p

with equivalent norms for all p ∈ [1,+∞].

At the end of this subsection we consider the interpolation couple (X,D(Aα)) for α ∈ C with
Re(α) > 0, where X is a complex Banach space and A : X ⊇ D(A)→ X is an injective sectorial
operator. In this case the K-functional and hence the real interpolation space (X,D(Aα))θ,p can
be described in terms of functions of the operator A. This has first been shown in [Ko67], we will
cite a recent version in terms of the functional calculus for sectorial operators given by [Ha06],
Theorem 6.5.3 a) and Corollary 6.5.5.

Theorem 1.5.8. Let A be an injective sectorial operator in a complex Banach space X, α ∈ C
with Re(α) > 0, σ ∈ (ω(A), π), θ ∈ (0, 1) and p ∈ [1,+∞]. Let ϕ ∈ H∞(Σσ)\{0} such that
z 7→ z−θαϕ(z) ∈ H∞0 (Σσ).

(1) We have

(X,D(Aα))θ,p =
{
x ∈ X | t 7→ t−θRe(α)ϕ(tA)x ∈ Lp∗(X)

}
,

and an equivalent norm on (X,D(Aα))θ,p is given by

x 7→ ‖x‖X +
∥∥t 7→ t−θRe(α)ϕ(tA)x

∥∥
Lp∗(X)

= ‖x‖X +
(∫ ∞

0

∥∥t−θRe(α)ϕ(tA)x
∥∥p
X

dt

t

)1/p

.

(2) If additionally A−1 ∈ L(X), then also

x 7→
∥∥t 7→ t−θRe(α)ϕ(tA)x

∥∥
Lp∗(X)

=
(∫ ∞

0

∥∥t−θRe(α)ϕ(tA)x
∥∥p
X

dt

t

)1/p

defines an equivalent norm on (X,D(Aα))θ,p.

1.5.3 Complex interpolation spaces and multilinear Stein interpolation

We will now turn to the complex interpolation method. Beside some standard definitions and
properties we will prove a generalized multilinear version of the standard Stein interpolation
method for analytic families of operators in complex interpolation spaces. For notations and
proofs in this subsection we refer to [BL76] and [Vo92].

Let X = ((X0, ‖ · ‖0), (X1, ‖ · ‖1)) be an interpolation couple of complex Banach spaces. We
define the strip

S := {z ∈ C | Re(z) ∈ [0, 1]}

and the function space

F0(X) := {f : S → X0 +X1 | f bounded, analytic on S̊, f(j + i·) ∈ C0(R, Xj) for j = 0, 1},

endowed with norm ‖f‖F := sup{‖f(j + it)‖j | t ∈ R, j ∈ {0, 1}}.
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Definition 1.5.9 (Complex interpolation space). Let θ ∈ [0, 1]. The complex interpolation
space [X0, X1]θ is defined as

[X0, X1]θ := {f(θ) | f ∈ F0(X)},

endowed with the norm x 7→ ‖x‖θ := inf{‖f‖F | f ∈ F0(X), f(θ) = x}.

It can be shown that the complex interpolation method [·, ··]θ defines an exact interpolation
functor of exponent θ, cf. [BL76] Theorem 4.1.2. In the following proposition we list some
elementary properties of complex interpolation spaces.

Proposition 1.5.10 (cf. [BL76], Theorems 4.2.1, 4.7.1). Let θ, θj ∈ [0, 1] for j = 0, 1.

(1) [X0, X1]θ = [X1, X0]1−θ with equal norms.

(2) If θ ∈ (0, 1), then [X0, X0]θ = X0.

(3) If X1 ↪→ X0 and θ0 < θ1, then [X0, X1]θ1 ↪→ [X0, X1]θ0.

(4) If θ ∈ (0, 1), then (X0, X1)θ,1 ↪→ [X0, X1]θ ↪→ (X0, X1)θ,∞, i.e. [X0, X1]θ is of class Jθ∩Kθ.

We cite the following density property from [Vo92], Corollary 1.2: Let D ≤ X0 ∩X1 be a dense
subspace and define

F̃0(X,D) := lin{z 7→ eδz
2
ϕ(z)x | δ > 0, ϕ ∈ A(S), x ∈ D} ≤ F0(X),

where A(S) denotes the algebra of bounded continuous functions on S, analytic in S̊. Then

‖x‖θ = inf{‖f‖F | f ∈ F̃0(X,D), f(θ) = x}. (1.5.7)

We are now in position to prove the following multilinear version of the abstract interpolation
[Vo92], Theorem 2.1, which generalizes classical Stein interpolation to the setting of abstract
complex interpolation spaces. In fact, the proof given here is just a combination of the proof of
[Vo92], Theorem 2.1 with the proof of [BL76] Theorem 4.4.1 about multilinear interpolation.

Theorem 1.5.11. Let m ∈ N and X(k), Y be interpolations pairs (of Banach spaces), and let
Dk be a dense subspace X(k)

0 ∩X(k)
1 for each k ∈ N≤m. Let (T (z))z∈S be a family of multilinear

mappings T (z) : D → Y0 + Y1 where D :=
m∏
k=1

Dk with the following properties:

(i) For all x ∈ D the function T (·)x : S → Y0 + Y1 is continuous and bounded and analytic on
S̊,

(ii) For all x ∈ D and j ∈ {0, 1}, the function t 7→ T (j + it)x ∈ Yj is continuous, and

Mj := sup{‖T (j + it)x‖Yj | t ∈ R, x ∈ D with ‖xk‖X(k)
j

≤ 1 for each k ∈ N≤m} <∞.

Then, for all θ ∈ (0, 1) we have T (θ)D ⊆ [Y0, Y1]θ, and

∀x ∈ D : ‖T (θ)x‖[Y0,Y1]θ ≤M
1−θ
0 M θ

1

m∏
k=1

‖xk‖[X(k)
0 ,X

(k)
1 ]θ

. (1.5.8)
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Proof. Let θ ∈ (0, 1). W.l.o.g. we may assume M0 = M1 = 1, otherwise replacing T by
z 7→M z−1

0 M z
1T (z). If fk ∈ F̃0(X(k), Dk) for each k ∈ N≤m, we clearly have

(z 7→ T (z)(f1(z), . . . , fm(z))) ∈ F0(Y ),

and this immediately implies T (θ)D ⊆ [Y0, Y1]θ. Now let x ∈ D. If fk ∈ F̃0(X(k), Dk) with
fk(θ) = xk for each k ∈ N≤m, we obtain

‖T (θ)x‖[Y0,Y1]θ ≤ ‖T (·)(f1(·), . . . , fm(·))‖F0(Y ) ≤
m∏
k=1

‖fk‖F0(X(k)),

and taking the infimum on the right hand side we obtain the required estimate by the density
result (1.5.7).

1.6 Banach function spaces

1.6.1 Definition and elementary properties

For this chapter we refer to the standard references [BS88] Chapter 1 and [Za67] Chapter 15.
Let (Ω, µ) be a σ-finite measure space. We fix a µ-localizing sequence (Ωn)n∈N, i.e. an increasing
sequence of µ-measurable subsets such that µ(Ωn) < +∞ for all n ∈ N and

⋃
n∈N Ωn = Ω. A

µ-measurable subset M ⊆ Ω will be called (Ωn)n∈N-bounded if M\Ωn is a µ-nullset for some
n ∈ N. We will use the terminology that a property for a µ-measurable function f on Ω holds
(Ωn)n∈N-locally if it holds for f |M for all (Ωn)n∈N-bounded sets M . In particular we introduce
the following notation:

If fn : Ω→ K, n ∈ N0 are µ-measurable functions, we say that fn → f0 converges (Ωn)n∈N-locally
in measure for n→∞ if fn|M → f0|M in measure for n→∞ for all (Ωn)n∈N-bounded sets M ,
i.e.

µ
({
ω ∈M | |fn(ω)− f0(ω)| ≥ ε

}) n→∞−→ 0 for all (Ωn)n∈N-bounded sets M ,ε > 0.

We denote by M∗(Ω, µ) := M∗(µ) the class of µ-measurable extended scalar-valued (real
or complex) functions on Ω, by M(Ω, µ) := M(µ) the space of µ-measurable scalar-valued
functions on Ω, endowed with the topology of (Ωn)n∈N-local convergence in measure, and by
M+(Ω, µ) :=M+(µ) the cone of µ-measurable functions on Ω with values in [0,+∞]. Further-
more let M(Ω, µ) := M(µ) := {[f ]µ | f ∈M(µ)} denote the corresponding space of equivalence-
classes of functions by the equivalence relation given by pointwise equality up to a µ-nullset,
analogously M∗(Ω, µ) := M∗(µ) and M+(Ω, µ) := M+(µ). Moreover we define the spaces

L1
loc(Ω, µ) := {f ∈M(µ) | f |M ∈ L1(M) for all (Ωn)n∈N-bounded sets M}, and
L∞c (Ω, µ) := {f ∈ L∞(Ω) | supp f is (Ωn)n∈N-bounded},

of locally integrable functions and essentially bounded functions with bounded support, respec-
tively. The corresponding spaces of equivalence-classes modulo the relation of pointwise equality
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up to a µ-nullset will be notated as L1
loc(Ω, µ) and L∞c (Ω, µ), respectively. The space L1

loc(Ω, µ)
will be endowed with the (locally convex) topology of convergence on (Ωn)n∈N-bounded sets.

Finally let S(Ω, µ) := {f ∈ L∞c (Ω) | f(Ω) is finite} be the space of step functions with bounded
support. All these spaces depend of course in general on the special choice of the underlying µ-
localizing sequence (Ωn)n∈N. Nevertheless we will suppress the explicit notation of the sequence
(Ωn)n∈N in the sequel but keep it in mind.

Definition 1.6.1 (Banach function norm, Banach function space (B.f.s.)). A map ρ :M+(µ)→
[0,+∞] is called a Banach function norm, if for all f, g, fn ∈M+(µ), n ∈ N, all constants α > 0
and all µ-measurable subsets M of Ω the following properties hold:

(B1) ρ(f) = 0 ⇐⇒ f = 0 µ-a.e. , ρ(αf) = αρ(f) and ρ(f +g) ≤ ρ(f)+ρ(g) (norm properties),

(B2) 0 ≤ g ≤ f µ-a.e. ⇒ ρ(g) ≤ ρ(f) (monotonicity),

(B3) 0 ≤ fn ↗ f µ-a.e. ⇒ ρ(fn)↗ ρ(f) (Fatou property),

(B4) M bounded ⇒ ρ(1M ) < +∞,

(B5) M bounded ⇒
∫
M f dµ ≤ CMρ(f), where CM > 0 is a constant independent of f .

If ρ :M+(µ)→ [0,+∞] is a Banach function norm, let X (ρ) := {f ∈M∗(µ) | ρ(|f |) < +∞} and
X := X(ρ) := {[f ]µ | f ∈ X}. Then [f ]µ 7→ ‖[f ]µ‖X := ρ(|f |) defines a norm on X that turns X
into a Banach space, and (X, ‖ · ‖X) is called a Banach function space.

It is an immediate consequence of the definition that X(ρ) ↪→ L1
loc(Ω, µ) by (B5), and (B3) im-

plies that appropriate versions of the classical Fatou Lemma and monotone convergence theorem
hold in X, for a detailed exposition cf. [BS88], Chapter 1.1.

Observe that our definition of a Banach function spaces is a little more general than the one
given in [BS88] since conditions (B4), (B5) need only to hold on bounded sets in the sense as
discussed at the beginning. In [BS88] conditions (B4), (B5) are formulated for the collections
of all µ-measurable sets M of finite measure. Nevertheless, the proofs given in [BS88] also work
in our situation, hence we will usually cite [BS88] as our standard reference. In [Za67] a more
general notion of Banach function spaces, which are called Köthe spaces there, are considered.

Before going further we cite the most important examples of Banach function spaces in our
sense. Observe that in (a)-(c) the µ-localizing sequence (Ωn)n∈N can be chosen arbitrarily and
will always lead to the same spaces. In fact, these classes of examples are also covered by the
definition in [BS88]. We will see that the situation is different in example (d).

(a) Lp-spaces. Let p ∈ [1,+∞], then the usual Lp-space X = Lp(Ω, µ) is a Banach func-

tion spaces with the Banach function norm ρp(f) :=
( ∫

Ω f
p dµ

)1/p
if p < +∞ and ρp(f) :=



1. Notations and Preliminaries
1.6. Banach function spaces 24

ess supω∈Ω f(ω) if p = +∞ for all f ∈ M+(µ), where ess sup denotes the essential supremum
with respect to the measure µ. More generally, let w : Ω → [0,+∞) be a weight function such

that {w 6= 0} is a µ-nullset, then ρp;w(f) :=
( ∫

Ω f
pw dµ

)1/p
(with the same identification as

above if p = +∞) defines a Banach function norm, and the corresponding Banach function space
is the weighted Lp-space X = Lp(Ω, wdµ).

(b) Lorentz spaces. For f ∈M(Ω, µ) we define the distribution function df (λ) := µ({|f | > λ})
for all λ ≥ 0, the decreasing rearrangement f∗ of f by f∗(t) := inf{λ ≥ 0 | df (λ) ≤ t} and the
maximal function of f∗ as f∗∗(t) := 1

t

∫ t
0 f
∗(s) ds for all t ≥ 0. Let p, q ∈ [1,+∞] and define

ρpq(f) :=



(∫ ∞
0

(
t1/pf∗(t)

)q dt
t

)1/q

if 1 ≤ q ≤ p < +∞,(∫ ∞
0

(
t1/pf∗∗(t)

)q dt
t

)1/q

if 1 < p < q < +∞,

ess supt>0

(
t1/pf∗∗(t)

)
if 1 < p ≤ q = +∞

for all f ∈ M+(µ), then ρpq is a Banach function norm, cf. [BS88] Theorem II.4.3, II.4.6. The
corresponding Banach function spaces Lp,q(Ω, µ) := X(ρpq) are the Lorentz spaces.

(c) Orlicz spaces. We use the definition from [BS88], Chapter IV.8. Let ϕ : [0,+∞)→ [0,+∞]
be increasing and left-continuous with ϕ(0) = 0 such that ϕ(s) ∈ (0,+∞) for some s > 0. Then
the function

Φ : [0,+∞)→ [0,+∞), t 7→
∫ t

0
ϕ(s) ds

is said to be a Young’s function3. Define the corresponding Luxemburg norm

ρΦ(f) := inf
{
c > 0 :

∫
Ω

Φ
(f(ω)

c

)
dµ(ω) ≤ 1

}
for all f ∈ M+(µ) then ρΦ is a Banach function norm, cf. [BS88] Theorem IV.8.9. The corre-
sponding Banach functions spaces LΦ(Ω, µ) := X(ρΦ) are the Orlicz spaces.

(d) Mixed spaces LpLq. Let (J, ν) be another σ-finite measure space with ν-localizing sequence
(Jn)n∈N. Let p, q ∈ [1,+∞] and define

ρpq(f) :=



(∫
Ω

(∫
J
f(ω, t)q dν(t)

)p/q
dµ(ω)

)1/p

if 1 ≤ p, q < +∞,(∫
Ω

(
ess supt∈J f(ω, t)

)p
dµ

)1/p

if 1 ≤ p < q = +∞,

ess supω∈Ω

(∫
J
f(ω, t)q dν(t)

)1/q

if 1 ≤ q < p = +∞,

ess supω∈Ω,t∈J f(ω, t) if p = q = +∞
3Note that in the literature the exact definition of a Young’s function might differ in some details from the

one given here; we have chosen a definition that is suitable to provide the desired property of a Banach function
space.
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for all f ∈M+(µ⊗ν), then ρp,q is a Banach function norm if we choose (Ωn×Jn)n∈N as a µ⊗ν-
localizing sequence. The corresponding Banach function spaces LpLq(Ω × J, µ ⊗ ν) := X(ρp,q)
are the mixed Lp(Lq)-spaces.

In contrast to the examples (a)-(c) the mixed spaces do substantially depend on the chosen
µ⊗ ν-localizing sequence that defines the bounded subsets:

Consider the space L1L2(R×R) endowed with the usual Lebesgue-measure, which we will simply
notate as | · |. Let M1 :=

⋃̇
n∈N[n− 1, n)× [0, 1/n2), then

|M1| =
∑
n∈N
|[n− 1, n)| · |[0, 1/n2)| =

∑
n∈N

1
n2

< +∞,

but

‖1M1 ‖L1L2 =
∑
n∈N
‖1[n−1,n) ‖L1 · ‖1[0,1/n2) ‖L2 =

∑
n∈N

1/n = +∞,

hence (B4) would not be satisfied if we choose a localizing sequence that contains M1.

If X is a Banach function space, the following inclusions hold: S(Ω, µ) ↪→ X ↪→M(µ), where the
second inclusion is continuous ([BS88], Theorem 1.4). This implies e.g. the property, that each
convergent sequence f ∈ XN contains a subsequence that converges µ-a.e., cf. [BS88], Theorem
I.1.7 (vi). One can also show that X is a complete lattice, to be more precise:

Proposition 1.6.2. Let X be a Banach function space. Then X is a complete sub-lattice of
M∗(µ), and to every F ⊆ X there is a countable subset F0 ∈ F such that supF = supF0.

This can be proven in the same manner as in the case X = Lp as it is done in [DS58] Cor.
IV.11.7, cf. also [Me-Ni91], Lemma 2.6.1 and the following discussion.

We will usually also need the following additional property:

(B6) If f ∈ X and (Mn)n∈N is a decreasing sequence of µ-measurable sets with 1Mn → 0 µ-a.e.,
then ‖f 1Mn ‖X → 0 for n→∞ (absolute continuity).

A Banach function space that fulfills (B1)-(B6) will be called a Banach function space with
absolute continuous norm. Observe that (B6) implies that the space of step functions S(Ω, µ)
as introduced above is dense in X, cf. [BS88], Theorem I.3.11. Moreover, property (B6) is
equivalent to the σ-order-continuity of the lattice X, i.e.

∀ (xn)n∈N ∈ XN :
(
xn ↘ 0 for n→∞

)
⇒ inf

n∈N
‖xn‖ = 0,

and to the validity of Lebesgue’s theorem, compare [BS88] Propositions 3.5,3.6.

In fact, the property (B6) implies also a version of Vitali’s convergence theorem for X. For the
following we assume that X has absolute continuous norm. We will need the following lemma,
which can also be found in [BS88], Lemma I.3.4.



1. Notations and Preliminaries
1.6. Banach function spaces 26

Lemma 1.6.3. Let M ⊆ Ω be a bounded set. Then, to each ε > 0 there is a δ > 0 such that for
all µ-measurable A ⊆M we have

µ(A) < δ ⇒ ‖1A ‖X < ε.

Proof. Assume that the claim is false, then there is an ε > 0 and a sequence (An)n∈N of µ-
measurable subsets of M such that µ(An) < 2−n and ‖1An ‖X ≥ ε for all n ∈ N. Then∫

Ω

∞∑
n=1

1An dµ =
∞∑
n=1

∫
Ω
1An dµ =

∞∑
n=1

µ(An) < +∞

by the monotone convergence theorem, so we have
∞∑
n=1

1An ∈ L1(Ω) and hence in particular

1An → 0 µ-a.e. for n→∞. Since x := 1M ∈ X, the absolute continuity leads to the contradic-
tion

ε ≤ ‖1An ‖X = ‖x · 1An ‖X → 0 for n→∞.

Lemma 1.6.4. Let x ∈ X.

(1) ∀ ε > 0 ∃M µ-mb., bounded : ‖x1Ω\M ‖X < ε,

(2) ∀ ε > 0 ∃ δ > 0 ∀Aµ-mb. : µ(A) < δ ⇒ ‖x1A ‖X < ε.

Proof. Let ε > 0.

(1) Recall that Ω =
⋃
n∈N

Ωn, where Ωn are µ-measurable sets of finite measure with Ωn ⊆ Ωn+1

for all n ∈ N. Hence 1Ω\Ωn → 0 µ-a.e. for n → ∞ which implies ‖x1Ω\Ωn ‖X → 0 for n → ∞,
so we can choose M := Ωn for a suitable large n.

(2) Choose M ⊆ Ω according to (1) with ε/3 in place of ε. W.l.o.g we can assume that x ≥ 0.
Let xn := x∧n for all n ∈ N, then xn → x in X for n→∞ by the Fatou property, hence we can
choose n ∈ N such that ‖xn − x‖X < ε/3. According to Lemma 1.6.3 we can now choose δ > 0
such that for all µ-measurable A ⊆M we have

µ(A) < δ ⇒ ‖1A ‖X <
ε

3n
.

Now let A ⊆ Ω be µ-measurable with µ(A) < δ, then in particular µ(A ∩M) < δ, hence

‖x1A ‖X ≤ ‖x1A∩M ‖X + ‖x1A\M ‖X ≤ ‖(x− xn)1A∩M ‖X + ‖xn 1A∩M ‖X + ‖x1A\M ‖X
≤ ‖x− xn‖X + n ‖1A∩M ‖X + ‖x1Ω\M ‖X < ε.

Proposition 1.6.5. Let x, xn ∈ X for all n ∈ N. Then the following assertions are equivalent:
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(1) xn → x in X for n→∞,

(2) (a) xn → x locally in measure,

(b) ∀ ε > 0∃M µ-mb., bounded : supn∈N ‖xn 1Ω\M ‖X < ε,

(c) ∀ ε > 0 ∃ δ > 0 ∀Aµ-mb. : µ(A) < δ ⇒ sup
n∈N
‖xn 1A ‖X < ε.

Proof. (1)⇒(2): Assume (1), then we have already noted that (a) holds. For each µ-mb. B ⊆ Ω
and n ∈ N we have

‖xn 1B ‖X ≤ ‖(xn − x)1B ‖X + ‖x1B ‖X ≤ ‖xn − x‖X + ‖x1B ‖X ,

hence (b) and (c) follow easily with Lemma 1.6.4 applied to x and finitely many of the xn’s for
fixed ε > 0.

(2)⇒(1): We assume first that instead of (a) we even have µ-a.e. convergence xn → x for n→∞.
Let ε > 0, then choose M ⊆ Ω and δ > 0 according to (b) and (c) for ε/5 in place of ε. By the
Fatou property we than also have

‖x1Ω\M ‖X ≤ lim inf
n→∞

‖xn 1Ω\M ‖X < ε/5 and ‖x1A ‖X ≤ lim inf
n→∞

‖xn 1A ‖X < ε/5 (1.6.9)

for all µ-measurable A with µ(A) < δ. By Egoroff’s theorem we can choose a µ-mb. B ⊆ M

with µ(M\B) < δ such that (xn − x)1B → 0 uniformly for n → ∞. Then B is also bounded,
hence we can choose n0 ∈ N such that ‖(xn − x)1B ‖∞ · ‖1B ‖X < ε/5 for all n ≥ n0, hence

‖xn − x‖X ≤ ‖(xn − x)1B ‖X + ‖(xn − x)1M\B ‖X + ‖(xn − x)1Ω\M ‖X
≤ ‖(xn − x)1B ‖∞ · ‖1B ‖X + ‖xn 1M\B ‖X + ‖x1M\B ‖X + ‖xn 1Ω\M ‖X

+‖x1Ω\M ‖X
< ε.

Now we consider the general case where only (a) holds. Let (yn)n∈N be a subsequence of (xn)n∈N,
then by standard arguments of measure theory we can choose a subsequence (yn(k))k∈N that
converges µ-a.e. to x and has of course also properties (b) and (c), hence yn(k) → x in X for
k →∞ by what we have already proved.

Corollary 1.6.6. Let x, y, xn, yn ∈ X for all n ∈ N such that

(1) xn → x locally in measure for n→∞,

(2) |xn| ≤ yn for all n ∈ N,

(3) yn → y in X for n→∞.

Then xn → x in X for n→∞.

Proof. Apply Proposition 1.6.5 (1)⇒(2) for (yn)n∈N and y, then the conditions (b) and (c) carry
over to (xn)n∈N and x, hence 1.6.5 (2)⇒(1) yields the assertion.
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Now let E be a Banach space, where we always assume that E is non-trivial. We define the
E-valued extension of the function space X as

X(E) := {F ∈M(Ω, E) | |F |E ∈ X},

where the modulus is defined as |F |E := ‖F̃ (·)‖E for some representative F̃ of F . Letting
‖F‖X(E) := ‖ |F |E ‖X makes X(E) a Banach space (cf. [Ca64]). If in addition X has absolute
continuous norm, then the space of step functions S(Ω, µ) is dense in X (cf. the remark made
after introducing the property (B6)), hence X ⊗ E is dense in X(E) in this case.

Assume now that X has absolute continuous norm and E is in addition a Banach function space
over some σ-finite measure space (J, ν) with corresponding ν-localizing sequence (Jn)n∈N, and
E has also absolute continuous norm. Then the natural embeddings and identification

X(E) ↪→M(Ω, E) ↪→M(Ω,M(J)) ∼= M(Ω× J)

together with the density of the space of step functions show that X(E) can be identified
with a subspace XE ↪→ M(Ω × J), where for each x ∈ M(Ω × J) the norm is given by
‖x‖XE := ‖|x̃(·)|E‖X and x̃ ∈M(Ω,M(J)) corresponds to x ∈M(Ω× J).

In this case we will call XE a mixed Banach function space. Observe that properties (B1)-(B3)
for XE follow easily from the corresponding properties of X,E, hence XE is a Banach lattice
and has the Fatou property. Moreover, the sequence (Ωn × Jn)n∈N is µ⊗ ν-localizing, and with
respect to this sequence properties (B4),(B5) for XE are an easy consequence of the correspond-
ing properties for X and E. We will assume that the mixed space XE is endowed with the
µ⊗ ν-localizing sequence (Ωn× Jn)n∈N, then XE is again a Banach function space. Finally it is
easily shown that the absolute continuity of the norm in both spaces X,E implies that also the
mixed Banach function space XE has absolute continuous norm.

Observe that the construction of the space X(E) works for real and complex Banach spaces E
and thus makes X(E) to a real or complex Banach space, respectively. In particular, the space
X(C) is well-defined. We will call the space X(C) a complex Banach function space. We note
that this notion of complex Banach function spaces is consistent with the abstract concepts of
complexification of real Banach spaces and real Banach lattices as described in [Me-Ni91] Chap-
ter II, §11 or [Sc74] Chapter 2.2. In the sequel we will just say that the space X is a complex
Banach function space having in mind that X = X̃(C) for some (real) Banach function space
X̃. In this case, properties as (B6) for X are always understood as X̃ having this property, and
X(E) denotes the space X̃(E) for any Banach space E.

We will encounter X(E)-valued integrable functions, for which we need the following proposition,
that is well known for X = Lp(Ω, µ), cf. [DS58], Chapter III.11:

Proposition 1.6.7. Assume that X has absolute continuous norm. Let (J, ν) be a σ-finite
measure-space and F : J → X(E) be an integrable function. Then there exists a ν⊗µ-measurable
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function f : J × Ω → E with [f(t, ·)]µ = F (t) for ν-a.e. t ∈ J such that f(·, ω) is integrable for
µ-a.e. ω ∈ Ω and the mapping

ω 7→
∫
J
f(t, ω) dν(t)

is a representative of
∫
J F (t) dν(t).

We only want to give a sketch of the proof: If µ(Ω) < +∞, then we have a continuous embedding
ι : X(E) ↪→ L1(Ω, µ, E), so ι ◦ F : J → L1(Ω, µ, E) is integrable and we can use the standard
theory for this situation, cf. [DS58], Lemma III.11.16. The general case where (Ω, µ) is σ-finite
can be reduced to the latter case by choosing a sequence (Mn)n ∈ N of disjoint µ-measurable
sets of finite measure and decompose F by the functions t 7→ F (t)|Mn . This procedure can be
made precise in exactly the same way as in the proof of Thm. III.11.17 in [DS58], where one
simply replaces the spaces Lp(Ω, µ) by the general B.f.s X.

In the situation of Proposition 1.6.7 one obviously has that |f |E has the corresponding property
for |F |X(E), hence we obtain a pointwise version of the triangle inequality for the integral:∣∣∣ ∫

J
F (t) dν(t)

∣∣∣
E
≤
∫
J
|f(t, ·)|E dν(t) =

∫
J
|F (t)|E dν(t). (1.6.10)

Finally we remark the standard fact, that if U ⊆ C is open and F : U → X(E) is analytic, one can
choose a version of F with analytic paths, i.e., there is a measurable function f : U×Ω→ E such
that f(·, w) is analytic for a.e. w ∈ Ω, and for all z ∈ U and k ∈ N0 we have [∂kz f(z, ·)]µ = F (k)(z).
This result goes back to Stein, cf. [St70], III.2 Lemma, a detailed exposition for X = Lp can be
found in [DH02], and the proof given there can easily be modified to work in our situation in
the same way as it was already indicated above (i.e. since X locally embeds into L1). Indeed,
in the situation of Proposition 1.6.7 we will usually have analytic functions F , so we can choose
the analytic version f such that the claim in Proposition 1.6.7 holds for this version.

1.6.2 Duality in Banach function spaces

We will now give a short summary of duality theory for Banach function spaces as we will use it.

Definition/Proposition 1.6.8 (cf. [BS88], Theorem 2.2). Let ρ : M+(µ) → [0,+∞] be a
Banach function norm. Then

ρ′(g) := sup
{∫

Ω
fg dµ

∣∣∣ f ∈M+(µ), ρ(f) ≤ 1
}

for all g ∈M+(µ)

is called the associated norm ρ′. Then ρ′ is again a Banach function norm, and the space
X# := X(ρ′) is called the associated space of X. In the literature, this space is also often
denoted as the Köthe dual of X.

Observe that the norm in the associated space X# is given by

‖x‖X# = sup
{∫

Ω
|fg| dµ

∣∣∣ f ∈ X, ‖f‖X ≤ 1
}

for all g ∈ X#.

We have the validity of the following generalization of Hölder’s inequality.
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Proposition 1.6.9 (Hölder’s inequality, cf. [BS88], Theorem 2.4). Let X be a Banach function
space with associated space X#. If f ∈ X and g ∈ X#, then fg is integrable and∫

Ω
|fg| dµ ≤ ‖f‖X ‖g‖X# .

This leads to the following dual representation of the norm in X# (cf. [BS88], Lemma 2.8):

‖x‖X# = sup
{∣∣∣∣ ∫

Ω
fg dµ

∣∣∣∣ : f ∈ X, ‖f‖X ≤ 1
}

for all g ∈ X#. (1.6.11)

Up to now we have only X# ≤ X ′ by the canonical isometric embedding g 7→
∫

Ω g · dµ, and it
can easily be shown that X# can be canonically isometrically identified with a norming subspace
of X ′ (cf. [BS88], Theorem 2.9). We will have a closer look on the question when X# = X ′ and
the relation to reflexivity of X.

Theorem 1.6.10 (cf. [BS88], Corollaries 4.3 and 4.4). Let X be a Banach function space with
associated space X#.

(1) The dual space X ′ is canonically isometrically isomorphic to X# if and only if X has
absolute continuous norm.

(2) X is reflexive if and only if both spaces X and X# have absolute continuous norm.

So if X is a Banach function space with absolute continuous norm, we will always identify the
dual space X ′ with the associated space X#, which in turn will also be denoted by X ′.

We will now turn to vector-valued Banach function spaces. Let X be a Banach function space
with absolute continuous norm and E be a Banach space. Then it is clear thatX ′(E′) ↪→ (X(E))′

canonically by the dual pairing

〈F,G〉X(E),X′(E′) :=
∫

Ω
〈F (ω), G(ω)〉E,E′ dµ(ω),

and approximation with step functions shows easily that X ′(E′) can be canonically isometrically
identified with a norming subspace of (X(E))′. Recall that the Banach space E is said to have
the Radon-Nikodym property (RNP) if one, respectively all of the following equivalent conditions
hold:4

(1) For every finite measure space (J,Σ, ν) and for every ν-continuous vector measure m : Σ→
E of bounded variation there exists G ∈ L1(J, ν,X) such that

m(A) =
∫
A
Gdµ for all A ∈ Σ.

4Note that (1) is the usual definition as given in [DU77], and the equivalences are shown in [DU77], Chapter
IV.3 and Corollary V.3.8.
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(2) For every continuous vector measure m : B([0, 1]) → E of bounded variation there exists
G ∈ L1([0, 1], X) such that

m(A) =
∫
A
G(t) dt for all A ∈ B([0, 1]),

where B([0, 1]) is the Borel-σ-algebra and dt the usual Lebesgue-measure on [0, 1].

(3) Every function F : [0, 1]→ E of bounded variation is differentiable a.e..

(4) Every absolutely continuous function F : [0, 1] → E of bounded variation is differentiable
a.e..

We have the following important standard classes of spaces that have (RNP).

Proposition 1.6.11. Let E be a Banach space, then E has (RNP) if

(1) E is separable and E = F ′ for some Banach space F , or

(2) E is reflexive.

For the proof cf. [DU77], Theorem III.3.1 and Corollary III.3.4. Part (1) of Proposition 1.6.11
is also referred to as the Dunford-Pettis Theorem.

We can turn to the central theorem of this subsection.

Theorem 1.6.12 (cf. [GU72] Theorem 3.2, Corollary 3.4). Let X be a Banach function space
with absolute continuous norm and E be a Banach space having (RNP). Then X ′(E′) is canon-
ically isometrically isomorphic to (X(E))′. Moreover, X(E) is reflexive if and only if X and E
are both reflexive.

Observe that the additional requirements for the corresponding Theorem 3.2 in [GU72] are
automatically fulfilled in our situation.

1.6.3 p-convexity and q-concavity

We present definitions and some basic results about p-convexity and q-concavity in Banach func-
tion spaces. Note that these concepts also make sense in the more general framework of Banach
lattices, but we will only present the results in our special situation as we will use them in the
sequel.

Definition 1.6.13 (p-convex/q-concave). Let X be a Banach function space and p, q ∈ [1,+∞].
Then X is called p-convex if there is a constant M > 0 such that∥∥∥( n∑

j=1

|xj |p
)1/p∥∥∥

X
≤M

( n∑
j=1

‖xj‖pX
)1/p

for all x ∈ Xn, n ∈ N (1.6.12)
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in the case p < +∞, and∥∥ sup
j∈N≤n

|xj |
∥∥
X
≤M · sup

j∈N≤n
‖xj‖X for all x ∈ Xn, n ∈ N (1.6.13)

in the case p = +∞, respectively. If X is p-convex we define M (p)(X) as the infimum over all
constants M such that (1.6.12) (or (1.6.13), respectively) holds. Moreover, X is called q-concave
if there is a constant M > 0 such that( n∑

j=1

‖xj‖qX
)1/q

≤M
∥∥∥( n∑

j=1

|xj |q
)1/q∥∥∥

X
for all x ∈ Xn, n ∈ N (1.6.14)

in the case q < +∞, and

sup
j∈N≤n

‖xj‖X ≤M
∥∥ sup
j∈N≤n

|xj |
∥∥
X

for all x ∈ Xn, n ∈ N (1.6.15)

in the case q = +∞, respectively. If X is q-concave we define M(q)(X) as the infimum over all
constants M such that (1.6.14) (or (1.6.15), respectively) holds.

Let X be an arbitrary Banach function space, n ∈ N and x ∈ Xn, then we always have∥∥∥ n∑
j=1

|xj |
∥∥∥
X
≤
( n∑
j=1

‖xj‖X
)

and |xk| ≤ supj∈N≤n |xj |, hence also supk∈N≤n ‖xk‖X ≤
∥∥ supj∈N≤n |xj |

∥∥
X
, so X is always 1-

convex and ∞-concave with M (1)(X) = M(∞)(X) = 1.

We have the following reformulation of p-convexity/q-concavity in terms of embeddings for vector-
valued Banach function spaces: The Banach function space is p-convex (q-concave) if and only if
there is a constant M > 0 such that the identity map in : `pn(X)→ X(`pn) (jn : X(`qn)→ `qn(X))
is bounded with ‖in‖ ≤M (‖jn‖ ≤M) for all n ∈ N. Since X has the Fatou property, we obtain
for p ∈ [1,+∞], q ∈ [1,+∞):

X is p-convex if and only if the identity map `p(X)→ XN induces a bounded map Ip : `p(X)→
X(`p), and in this case M (p)(X) = ‖Ip‖. In the same manner X is q-concave if and only if
the identity map X(`q) → XN induces a bounded map Jq : X(`q) → `q(X), and in this case
M(q)(X) = ‖Jq‖.

The above considerations can be found in [LT96] Definition II.1.d.3 and the following discussions.

The properties p-convex and q-concave are dual in the following sense, which is a special case of
[LT96], Proposition II.1.d.4:

Proposition 1.6.14. Let X be a Banach function space with absolute continuous norm and
p, q ∈ [1,+∞] with corresponding dual exponents p′, q′ ∈ [1,+∞], i.e. 1

r + 1
r′ = 1 for r ∈ {p, q}.

Then
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(1) X is p-convex if and only if X ′ is p′-convex, and in this case M (p)(X) = M(p′)(X ′),

(2) X is q-concave if and only if X ′ is q′-convex, and in this case M(q)(X) = M (q′)(X ′).

Moreover we have the following important extension property, which one obtains from [LT96],
Theorem II.1.f.7 and its preceding remarks:

Proposition 1.6.15. Let X be a Banach function space and p, q ∈ [1,+∞].

(1) If X is p-convex, then X is also s-convex for all s ∈ [1, p],

(2) If X is q-concave, then X is also s-concave for all s ∈ [q,+∞].

Proposition 1.6.16. Let X be a Banach function space, and assume that X is p-convex and
q-concave for some p, q ∈ (1,+∞). Then X is reflexive.

Proof. By Proposition 1.6.15 we can assume that p ≤ 2 ≤ q. Thus Theorem II.1.f.1 from
[LT96] implies that X can be renormed equivalently so that X, endowed with the new norm, is
uniformly convex, hence it is also reflexive, cf. e.g. [LT96] Theorem II.1.e.3. This implies that
also X endowed with the original norm is reflexive.

Let us now have a look at some examples.

Examples 1.6.17. Let (Ω, µ), (J, ν) be σ-finite measure spaces and p, q ∈ [1,+∞].

(a) The space Lp(Ω, µ) is r-convex for all r ∈ [1, p] and s-concave for all s ∈ [q,+∞].

(b) More general let X := LpLq(Ω × J, µ ⊗ ν). Then X is r-convex for all r ∈ [1, p ∧ q] and
s-concave for all s ∈ [p ∨ q,+∞].

Example (a) is a trivial consequence of Proposition 1.6.15, and (b) is a special case of the following
general result.

Proposition 1.6.18. Let X,E be Banach function spaces and p0, p1, q0, q1 ∈ [1,+∞].

(1) If X is p0-convex and E is p1-convex, then the mixed space XE is r-convex for all r ∈
[1, p0 ∧ p1],

(2) If X is q0-concave and E is q1-concave, then the mixed space XE is s-concave for all
s ∈ [q0 ∨ q1,+∞].

Proof. (1) Let r ∈ [1, p0 ∧ p1]. By Proposition 1.6.15 both spaces X,E are r-convex, hence∥∥∥( n∑
j=1

|xj |r
)1/r∥∥∥

XE
=

∥∥∥∣∣∣( n∑
j=1

|xj |r
)1/r∣∣∣

E

∥∥∥
X
≤M (r)(E)

∥∥∥( n∑
j=1

|xj |rE
)1/r∥∥∥

X

≤ M (r)(E)M (r)(X)
( n∑
j=1

‖|xj |E‖rX
)1/r

= M (r)(E)M (r)(X)
( n∑
j=1

‖xj‖rXE
)1/r
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for all x ∈ XEn, n ∈ N (with the usual modification if r = +∞). The claim (2) can be proved
in the same way.

Finally we want to present a generalization of the Chintschin inequality in q-concave Banach
function space. For this we first recall the classical Chintschin inequality and the Kahane in-
equality.

Let (rj)j∈N be a Rademacher sequence, cf. Section 1.3. Recall that for any Banach space E and
p ∈ [1,+∞) the expressions(

E
∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣p
E

)1/p

=
(

1
2n

∑
σ∈{−1,1}n

∥∥∥ n∑
j=1

σjxj

∥∥∥p
E

)1/p

(1.6.16)

for x ∈ En, n ∈ N do not depend on the special choice of the Rademacher-sequence (rj)j∈N.

We will now turn to two classical inequalities for norm-expressions like (1.6.16).

Theorem 1.6.19 (Chintschin inequality, cf. [LT96] Theorem I.2.b.3). Let p ∈ [1,+∞). Then
there are constants Ap, Bp > 0 such that

Ap

( n∑
j=1

|αj |2
)1/2

≤
(

E
∣∣∣ n∑
j=1

αjrj

∣∣∣p)1/p

≤ Bp
( n∑
j=1

|αj |2
)1/2

(1.6.17)

for all (αj)j∈N≤n ∈ Cn, n ∈ N.

Theorem 1.6.20 (Kahane inequality, cf. [LT96] Theorem II.1.e.13). Let p ∈ [1,+∞). Then
there is a constant Kp > 0 such that for any Banach space X the following inequality holds:

E
∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣
X
≤
(

E
∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣p
X

)1/p

≤ Kp E
∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣
X

(1.6.18)

for all (xj)j∈N≤n ∈ En, n ∈ N.

This leads to the announced generalizations of the Chintschin inequality in q-concave Banach
function spaces:

Proposition 1.6.21. Let X be a Banach function space and p ∈ [1,+∞).

(1) The following estimate holds for all (xj)j∈N≤n ∈ Xn, n ∈ N:

A1

∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥

X
≤
(

E
∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣p
X

)1/p

.

(2) Assume that X is in addition q-concave for some q ∈ [1,+∞), then

A1

∥∥∥( n∑
j=1

|xj |2
)1/2∥∥∥

X
≤
(

E
∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣p
X

)1/p

≤ Cp,q
∥∥∥∥( n∑

j=1

|xj |2
)1/2

∥∥∥∥
X

for all (xj)j∈N≤n ∈ Xn, n ∈ N with Cp,q := KpBqM(q)(X).
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Proposition 1.6.21 is an easy consequence of the classical Chintschin and Kahane inequality, cf.
[LT96], Theorem II.1.d.6 (i).

Finally we mention the following important property of q-concave Banach function spaces, which
is a consequence of Proposition 1.6.21:

Proposition 1.6.22. Let X be a Banach function space that is q-concave for some q ∈ [1,+∞),
then X has property (α).

1.6.4 Some approximation results

We recall the following well known fact.

Lemma 1.6.23. Let E,F be Banach spaces, (J, µ) a σ-finite measure space, S : J → L(E,F )
strongly measurable and x : J → E measurable. Then t 7→ S(t)x(t) defines a measurable mapping
S · x : J → F .

Proof. Since x : J → E is measurable, we can find a sequence of step function (sn)n∈N in
S(J) ⊗ E such that sn(t) → x(t) for ν-a.e. t ∈ J . For each n ∈ N we obtain a representation

sn =
rn∑
k=1

1Ak ⊗vk. Let yn(t) := S(t)sn(t) =
rn∑
k=1

1Ak(t)(S(t)vk), then yn is measurable since the

mappings S(·)vk are measurable, and since S(t) ∈ L(E,F ) we obtain yn(t) → S(t)x(t) for a.e.
t ∈ J using the uniform boundedness principle, hence S · x is measurable as pointwise a.e. limit
of measurable functions.

We will often deal with convergent sequences of X-valued measurable functions. Then pointwise,
the convergence in X yields a subsequence that converges µ-a.e.. We will need a refinement
which states that the choice of the subsequence and nullsets can be done uniformly for the whole
function.

Lemma 1.6.24. Let (J, ν) be a σ-finite measure space and x, xn : J → X for all n ∈ N be
ν-measurable functions with xn(t) → x(t) for ν-a.e. t ∈ J . Then one can choose a subsequence
(xnk)k∈N and a (ν ⊗ µ)-nullset N ⊆ J × Ω such that

∀ (t, ω) ∈ (J × Ω)\N : xnk(t)(ω)→ x(t)(ω) for k →∞,

where (t, ω) 7→ x(t)(ω), xn(t)(ω) are any (ν ⊗ µ)-measurable representatives, i.e. xnk(·)(··) →
x(·)(··) converges λ⊗ µ-a.e. for n→∞.

Proof. Let yn := xn − x for all n ∈ N. Write Ω =
⋃
m∈N Ωm, where (Ωm)m∈N is a corresponding

µ-localizing sequence. By Egoroff’s Theorem, we can find an increasing sequence (Jm)m∈N of
measurable subsets of J with finite measure, such that NJ := J\

⋃
m∈N Jm is a nullset and

yn|Jm → 0 uniformly, i.e. in the space L∞(Jm, X). Hence, we can choose a subsequence such
that supt∈Jk ‖ynk(t)‖X ≤ 2−k for all k ∈ N. Now fix m ∈ N. Since the Jk are increasing, we
obtain

∀ k ≥ m : sup
t∈Jm

‖ynk(t)‖X ≤ 2−k.
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Since jm : X|Ωm ↪→ L1(Ωm) is bounded, we have∫
Jm

∫
Ωm

N∑
k=1

|ynk(t)| dµ dt =
N∑
k=1

∫
Jm

∫
Ωm

|ynk(t)| dµ dt ≤
N∑
k=1

|Jm| sup
t∈Jm

∥∥ynk(t)|Ωm
∥∥
L1(Ωm)

≤ |Jm|
N∑
k=1

sup
t∈Jm

‖jm‖ ‖ynk(t)‖X

≤ |Jm| ‖jm‖
(m−1∑
k=1

sup
t∈Jm

‖ynk(t)‖X +
∞∑
k=m

2−k
)

=: Cm.

Since yn|Jm → 0 uniformly we have in particular supn∈N supt∈Jm ‖yn(t)‖X < +∞, hence Cm <

+∞. By Beppo-Levi we have
∫
Jm×Ωm

∞∑
k=1

|ynk(t)| dµ dt < +∞. In particular there is a nullset

Nm ⊆ Jm × Ωm such that for all (t, ω) ∈ (Jm × Ωm)\Nm we have
∞∑
k=1

|ynk(t)(ω)| < +∞, hence

ynk(t)(ω)→ 0 for n→∞.

So N := (NJ × Ω) ∪
⋃
m∈N

Nm is a nullset in J × Ω with the desired property.

Furthermore we will need the following approximation property:

Lemma 1.6.25. Let E be a Banach function space over the σ-finite measure space (J, ν) and
assume that X,E have absolute continuous norm. Let x : J → X be measurable with ‖x‖X(E) <

∞ via the usual identification x ∈ M(J,M(Ω)) ∼= M(J × Ω) ∼= M(Ω,M(J)). Then one can
find a sequence (xn)n∈N in S(J, ν)⊗ S(Ω, µ) with the following properties:

1. xn → x pointwise (ν ⊗ µ)-a.e. on J × Ω for n→∞,

2. xn(t)→ x(t) in X for n→∞ for µ-a.e. t ∈ J ,

3. lim inf
n→∞

‖xn‖X(E) ≤ ‖x‖X(E).

Proof. We can find sequences (sn)n∈N, (s′n)n∈N ∈ (S(J, ν)⊗ S(Ω, µ))N such that sn(t)→ x(t) in
X for a.e. t ∈ J and s′n → x in X(E). By choosing a subsequence we can also assume w.l.o.g.
s′n(ω) → x(ω) in E for a.e. ω ∈ Ω. We now apply Lemma 1.6.24 to both sequences, and by
possibly restricting again to suitable subsequences we can assume w.l.o.g. that also sn, s′n → x

pointwise (ν ⊗ µ)-a.e. on J × Ω.

Let n ∈ N. Then we can find a common partition of rectangular sets

Rn,j ∈ {I ×B | I ⊆ J,B ⊆ Ω measurable and bounded}, j = 1, . . . , rn, n ∈ N

for sn, s′n such that sn|Rn,j und s′n|Rn,j are constant. Now we write

sn = Re(sn)+ − Re(sn)− + i Im(sn)+ − i Im(sn)−, and

s′n = Re(s′n)+ − Re(s′n)− + i Im(s′n)+ − i Im(s′n)−
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and define xn by Re(xn)+ := Re(sn)+ ∧ Re(s′n)+, Re(xn)− := Re(sn)− ∧ Re(s′n)−, Im(xn)+ :=
Im(sn)+ ∧ Im(s′n)+, Im(xn)− := Im(sn)− ∧ Im(s′n)−.

Then each xn is constant on the Rn,j , j = 1, . . . , rn, hence xn ∈ S(J, ν) ⊗ S(Ω, µ), and we
obviously obtain the following properties:

1. xn → x pointwise (ν ⊗ µ)-a.e. on J × Ω for n→∞,

2. |xn|C ≤ |sn|C ∧ |s′n|C (ν ⊗ µ)-a.e. on J × Ω.

In particular, we have ‖xn(t)‖X ≤ ‖sn(t)‖X for a.e. t ∈ J , hence xn(t)→ x(t) in X for n→∞
by Corollary 1.6.6. Moreover, the Fatou property of X(E) yields

lim inf
n→∞

‖xn‖X(E)) ≤ ‖ lim inf
n→∞

|xn|C‖X(E) ≤ ‖ lim inf
n→∞

|s′n|C‖X(E) = ‖x‖X(E).

1.6.5 H∞-calculus in q-concave Banach function spaces

Let X be a Banach function spaces with absolute continuous norm such that X is q-concave for
some q < +∞, and let A be a sectorial operator in X. Then it is well known (at least in the case
X = Lp) that A has a bounded H∞-calculus if and only if A is R-sectorial and satisfies suitable
square-function estimates, which in a general Banach space have to be replaced by corresponding
Rademacher-norms. For the applications in this work we will only need one implication, hence
we will only cite this in detail.

Let σ ∈ (0, π) and assume that the operator A has a bounded H∞(Σσ)-calculus. Observe that
A is R-sectorial by Corollary 1.3.6 since X has property (α) by Proposition 1.6.22. Then, for all
σ′ > σ and ϕ ∈ H∞0 (Σσ′)\{0} there is a constant C > 0 such that for all x ∈ X:

1
C
‖x‖X ≤

∥∥∥∥(∫ ∞
0
|ϕ(tA)x|2 dt

t

)1/2
∥∥∥∥
X

≤ C ‖x‖X .

In the case X = Lp this has been proven in [CDMY96], and in a more general context this can
be found in [KKW06], [KW-1] and [KW-2]. To be more concrete, again a careful inspection of
the proofs in the cited literature shows the following: For all ω > σ there is a constant Cω,σ > 0
independent of A such that

∀x ∈ X :
∥∥∥∥(∫ ∞

0
|ϕ(tA)x|2 dt

t

)1/2
∥∥∥∥
X

≤ Cω,σ ·M∞σ (A) · ‖x‖X .

1.7 Classical function spaces: Besov- and Triebel-Lizorkin spaces

We give a short description of the classical Besov-spaces Bs
p,q and Triebel-Lizorkin spaces F sp,q

in terms of Littlewood-Paley-decompositions. Moreover we present equivalent descriptions in-
volving the heat semigroup, which can be reformulated as representations of the norms in terms
of the functional calculus for the Laplacian. For this section we refer to the standard literature
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[Tr83], [Tr92] and [Tr78], and moreover to [BL76] for Besov spaces and to [FJW91] for additional
material on the homogeneous spaces.

We fix d ∈ N in this section. If ψ ∈ Sd we use the standard notation ψ(D)u := F−1(ψ · û) = ψ̌∗u
for all u ∈ S ′d.

Let ψ ∈ Sd be a Schwartz function having the following properties:

(1) supp(ψ) = {ξ ∈ Rd | 1/2 ≤ |ξ| ≤ 2} and ψ(ξ) > 0 for all ξ ∈ Rd with 1/2 < |ξ| < 2,

(2)
∞∑

j=−∞
ψ(2−jξ) = 1 for all ξ ∈ Rd\{0}.

We then define functions ψj ,Ψ ∈ Sd for all j ∈ Z as

ψj(ξ) := ψ(2−jξ) and Ψ(ξ) = 1−
∞∑
j=1

ψj(ξ) for all ξ ∈ Rd. (1.7.19)

Let s ∈ R and p, q ∈ (0,+∞], then for each u ∈ S ′d we define

‖u‖Bsp,q := ‖Ψ(D)u‖p + ‖(2sjψj(D)u)j∈N‖`q(Lp) = ‖Ψ(D)u‖p +
( ∞∑
j=1

‖2sjψj(D)u‖qp
)1/q

,

‖u‖F sp,q := ‖Ψ(D)u‖p + ‖(2sjψj(D)u)j∈N‖Lp(`q) = ‖Ψ(D)u‖p +
∥∥∥∥( ∞∑

j=1

|2sjψj(D)u|q
)1/q

∥∥∥∥
p

,

‖u‖Ḃsp,q := ‖(2sjψj(D)u)j∈Z‖`q(Lp) =
( ∞∑
j=−∞

‖2sjψj(D)u‖qp
)1/q

,

‖u‖Ḟ sp,q := ‖(2sjψj(D)u)j∈Z‖`p(Lq) =
∥∥∥∥( ∞∑

j=−∞
|2sjψj(D)u|q

)1/q
∥∥∥∥
p

(with the usual modification if p = +∞ or q = +∞).

Definition 1.7.1 (The spaces Bs
p,q and F sp,q). Let s ∈ R and p, q ∈ (0,+∞], then we define the

inhomogeneous Besov space

Bs
p,q := Bs

p,q(Rd) :=
{
u ∈ S ′d | ‖u‖Bsp,q < +∞

}
,

and in the case p < +∞ we define the homogeneous Triebel-Lizorkin space

F sp,q := F sp,q(Rd) :=
{
u ∈ S ′d | ‖u‖F sp,q < +∞

}
.

It can be shown that the spaces Bs
p,q, F

s
p,q are quasi-Banach spaces, and Banach spaces in the

case p, q ≥ 1, that do not depend on ψ ∈ Sd with (1), (2), and varying ψ with these properties
leads to equivalent norms. Moreover, Sd ↪→ Bs

p,q ↪→ S ′d and Sd ↪→ F sp,q ↪→ S ′d, and if p, q < +∞,
then Sd is dense in Bs

p,q and F sp,q.
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We will also introduce homogeneous variants of these spaces. For this let Pd be the set of all
polynomial functions on Rd and

Zd :=⊥ Pd =
{
u ∈ Sd : 〈u, xα〉Sd×S′d = 0 for all α ∈

⋃
n∈N

Nn
0

}
=

{
u ∈ Sd : ∂αû(0) = 0 for all α ∈

⋃
n∈N

Nn
0

}
,

where xα denotes the mapping ξ 7→ ξα considered as an element of S ′d. Then we have a canonical
isomorphism Z ′d ∼= S ′d/Pd, i.e. Z ′d is the space of tempered distributions modulo polynomial
functions. Many operations on S ′d can be transferred to Z ′d, in particular if ψ ∈ Sd, then it can
be shown that ψ(D)u := ψ̌ ∗ u is well-defined for u ∈ Z ′d. Now the homogeneous spaces are
defined as subspaces of Z ′d in the following way:

Definition 1.7.2 (The spaces Ḃs
p,q and Ḟ sp,q). Let s ∈ R and p, q ∈ (0,+∞], then we define the

homogeneous Besov space

Ḃs
p,q := Ḃs

p,q(Rd) :=
{
u ∈ Z ′d | ‖u‖Ḃsp,q < +∞

}
,

and in the case p < +∞ we define the inhomogeneous Triebel-Lizorkin space

Ḟ sp,q := Ḟ sp,q(Rd) :=
{
u ∈ Z ′d | ‖u‖Ḟ sp,q < +∞

}
.

Again it can be shown that the spaces Ḃs
p,q, Ḟ

s
p,q are quasi-Banach spaces, and Banach spaces

in the case p, q ≥ 1, that do not depend on ψ ∈ Sd with (1), (2), and varying ψ with these
properties leads to equivalent norms. Moreover, Zd ↪→ Ḃs

p,q ↪→ Z ′d and Zd ↪→ Ḟ sp,q ↪→ Z ′d, , and
if p, q < +∞, then Zd is dense in Ḃs

p,q and Ḟ sp,q, cf. [Tr83], Section 5.1.3.

These function spaces have been extensively investigated in the past, and there is an exhausting
theory containing e.g. embedding and interpolation properties or multiplier theorems. We will
not list all these assertions at this place but just refer to the standard literature cited above.

Note that various classes of classical function spaces appear in the scale of Besov and Triebel-
Lizorkin spaces, we just give a short overview, details can be found e.g. in [Tr92], Chapter 1,2
and [Gr04], Chapter 6.

Ḟ 0
p,2 = F 0

p,2 = Lp 1 < p <∞ Lebesgue spaces
Fmp,2 = Wm,p 1 < p <∞,m ∈ N0 Sobolev spaces
F sp,2 = Hs,p 1 < p <∞, s ∈ R Bessel potential or fractional Sobolev spaces
Ḟ sp,2 = Ḣs,p 1 < p <∞, s ∈ R Riesz potential spaces
Ḟ 0
p,2 = Hp 0 < p <∞ Hardy spaces
F 0
p,2 = hp 0 < p <∞ non-homogeneous or local Hardy spaces
Bs
p,p = W s,p 1 ≤ p <∞, s > 0, s /∈ N Sobolev-Slobodeckij spaces

Bs
p,q = Λsp,q 1 ≤ p, q <∞, q 6=∞, s > 0 classical Besov spaces

Bs
∞,∞ = Cs s > 0, s /∈ N Hölder spaces

Bs
∞,∞ = Cs s > 0 Zygmund spaces
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Note that the case "p = +∞" has been excluded in the definition of the Triebel-Lizorkin spaces.
The reason is that in the case p = +∞ the definition given above is not the "right one", e.g.
it would lead to a norm depending on the auxiliary function ϕ. Nevertheless it is possible to
define the spaces F s∞,q, Ḟ s∞,q if 1 < q <∞ by a modification of these definitions. In this case, one
would obtain the additional identification Ḟ 0

∞,2 = BMO, where BMO is the space of functions of
Bounded Mean Oscillation. We refer to [Tr83], Sections 2.3.1, 2.3.4, and the additional literature
cited there for this case.

For all the spaces Bs
p,q, Ḃ

s
p,q, F

s
p,qḞ

s
p,q there a equivalence theorems for the norms that give rise to

a much larger class of functions ψ that may be considered on the one hand, and give continuous
counterparts of the norms on the other hand. A general treatment can be found in [Tr92], Chapter
2, and for the homogeneous norms in [Tr83], Section 5.2.3 and more detailed in [Tr82]. We will
not present the most general known results here but just cite an equivalent norm expression
in terms of the heat semigroup and hence in terms of the analytic functional calculus for the
Laplacian.
For this purpose we fix s ∈ R and p, q ∈ (0,+∞], and choose some m ∈ N>s/2. Let A := −∆
be the negative of the Laplace operator in Lp, and denote by (e−tA)t≥0 the heat semigroup. Let
ϕ(z) := zme−z, then the analytic functional calculus yields for all t > 0 and u ∈ S ′

ϕ(tA)u = (tA)me−tAu = (−t)m
( d
dt

)m
T (t)u. (1.7.20)

With these notation we obtain the following reformulation of the characterizations theorems
[Tr82], Corollaries 3.3, 3.4:

Theorem 1.7.3. (1) The mapping u 7→
(∫ ∞

0

∥∥t−s/2ϕ(tA)u
∥∥q
p

dt

t

)1/q

(with the usual modifi-

cation if q = +∞) defines an equivalent quasi-norm on Ḃs
p,q.

(2) If s > max{d(1/p− 1), 0}, then the mapping

u 7→ ‖u‖p +
(∫ ∞

0

∥∥t−s/2ϕ(tA)u
∥∥q
p

dt

t

)1/q

(with the usual modification if q = +∞) defines an equivalent quasi-norm on Bs
p,q.

(3) If p < +∞, the mapping in u 7→
∥∥∥∥(∫ ∞

0

∣∣t−s/2ϕ(tA)u
∣∣q dt
t

)1/q∥∥∥∥
p

(with the usual modifi-

cation if q = +∞) defines an equivalent quasi-norm on Ḟ sp,q.

(4) If p < +∞ and s > max{d(1/p− 1), 0}, then the mapping

u 7→ ‖u‖p +
∥∥∥∥(∫ ∞

0

∣∣t−s/2ϕ(tA)u
∣∣q dt
t

)1/q∥∥∥∥
p

(with the usual modification if q = +∞) defines an equivalent quasi-norm on F sp,q.
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Observe that the equivalent norms in (1), (2) for the Besov spaces can also be seen from a
different point of view, namely as equivalent norms in real interpolation spaces in accordance
with Theorem 1.5.8. If e.g. p ≥ 1 and s ∈ (0, 2), then Bs

p,q = (Lp, D(Am))θ,q where θ := s/2, and
in this case (2) is just an application of Theorem 1.5.8. In contrast to this, the Triebel-Lizorkin
norms in (3),(4) in general do not arise from real interpolation norms. This is due to the fact
that real interpolation of Triebel-Lizorkin spaces leads in general to the scale of Besov spaces
by the Reiteration Theorem 1.5.7, we refer to the standard literature given above. So this is
one motivation to define norm expressions as in (3), (4) for more general sectorial operators A
instead of −∆ and try to define associated spaces in terms of this norms, which would give rise to
"generalized Triebel-Lizorkin spaces" associated to the operator A. This is in fact what we will
do in Section 3.3, after we established the technical concepts of Rs-boundedness in Sections 3.1
andRs-sectoriality in Section 3.2, which provide fundamental tools to deal with norm expressions
as in (3), (4) for a general sectorial operator A.
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Chapter 2

Maximal functions for sectorial
operators

2.1 The H∞0 -maximal function for sectorial operators

From now on we fix a Banach function space X over a σ-finite measure space (Ω, µ) with absolute
continuous norm, a complex Banach space E and a sectorial operator A in X(E) of type ω(A)
with dense domain and range (cf. Section 1.2 for this notions). If ω(A) < π/2, we denote by
(Tt)t≥0 or (e−tA)t≥0 the bounded analytic semigroup generated by −A.

We will use the notations H∞ω,0 :=
⋃
σ>ωH

∞
0 (Σσ) and H∞ω :=

⋃
σ>ωH

∞(Σσ). Next we introduce
some notations concerning maximal estimates.

Definition 2.1.1 (Maximal estimates for sets of operators). Let T ⊆ L(X(E)). We say the set
T or the family (T )T∈T satisfies a maximal estimate or has a bounded maximal function, if there
is a constant C > 0 such that for all x ∈ X(E) it holds∥∥ sup

T∈T
|Tx|E

∥∥
X
≤ C ‖x‖X(E).

We note that the supremum in the above definition is taken in the complete lattice X ⊆M(µ)
in the sense of Proposition 1.6.2.

A standard application for maximal estimates is given by Banach’s principle, which we cite in
the following version:

Proposition 2.1.2 (Banach’s principle). Let F be a Banach space and (Tn)n∈N ∈ L(F,M(µ,E))N

such that supn∈N |Tnf |E ∈M(µ) for all f ∈ F . Then the set

F0 := {f ∈ F | (Tnf)n∈N converges pointwise µ-a.e.}

is closed in M(µ,E).

43
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A proof for E = C can be found e.g. in [BS88], Cor. 5.8 or a more general version in [DS58],
Thm. IV.11.3., and the proofs given there easily extend to the vector-valued case. Note that
Proposition 2.1.2 is usually applied in situations where it is already known that (Tnf)n∈N con-
verges pointwise µ-a.e. for a dense subset D ⊆ X(E) of some Banach function space X(E), and
then yields the pointwise µ-a.e. convergence of (Tnf)n∈N for all f ∈ X(E).

We introduce more specific notations in the case that the sets of operators are induced by a
single operator via the functional calculus.

Definition 2.1.3 (bounded f - and H∞0 (Σσ)-maximal function). Let π ≥ σ > ω(A). For f ∈
H∞(Σσ) we say that A has a bounded f -maximal function, if {f(tA) | t > 0} ⊆ L(X(E)) and the
family (f(tA))t>0 satisfies a maximal estimate. If this is true for all ϕ ∈ H∞0 (Σσ), we say that
A has a bounded H∞0 (Σσ)-maximal function. In this case we define ωM (A) as the infimum over
all σ > ω(A) with that property and say shortly, the operator A has a bounded H∞0 -maximal
function.

Remark 2.1.4. The property of having a bounded f -maximal function can actually be checked
on finite sets: Let x ∈ X, then by Proposition 1.6.2 we can choose a countable set J ⊆ (0,∞)
such that supt>0 |ϕ(tA)x|E = supt∈J |ϕ(tA)x|E. Let (tk)k ∈ N be an enumeration of J , then
since in X the monotone convergence theorem holds, we obtain∥∥ sup

t>0
|ϕ(tA)x|E

∥∥
X

=
∥∥ sup
k∈N
|ϕ(tkA)x|E

∥∥
X

= lim
m→∞

∥∥ sup
k∈N≤m

|ϕ(tkA)x|E
∥∥
X
.

Obviously it is sufficient to check the condition on a dense subset of X(E), so this shows that A
has a bounded f -maximal function if and only if there is a C > 0 and a dense subspace D ⊆ X(E)
such that for all finite subsets J ⊆ R>0 and x ∈ D:∥∥ sup

t∈J
|f(tA)x|E

∥∥
X
≤ C‖x‖X(E).

The denotation of having a bounded maximal function will become clear in the following, as
in this case we will obtain more general uniform estimates in terms of the s-maximal function
associated to A introduced next.

For π ≥ σ > ω > 0, s ∈ [1,+∞] and f ∈ H∞(Σσ) we introduce the notation

‖f‖Ls∗,ω := ‖f |∂Σω‖Ls∗,ω =


(∫

∂Σω
|f(λ)|s |dλ||λ|

)1/s
if s < +∞,

supλ∈∂Σω |f(λ)| if s = +∞

and the corresponding spaces H∞ω,s :=
⋃
σ>ω{f ∈ H∞(Σσ) | ‖f‖Ls∗,ω < +∞}. Obviously we have

H∞ω,0 ⊆ H∞ω,s.

Definition 2.1.5 (s-maximal function for A). Let π > ω > ω(A) and s ∈ [1,+∞]. Then we
define

MA,s,ω(x) := sup
{
|ϕ(A)x|E

∣∣∣ ϕ ∈ H∞ω,0 with ‖ϕ‖Ls′∗ (∂Σω) ≤ 1
}

for all x ∈ X(E). (2.1.1)
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If MA,s,ω is bounded as a sublinear operator on X(E), i.e. if there is a Cω = C(s, ω,A) > 0
such that for all x ∈ X(E) we have ‖MA,s,ω(x)‖X ≤ Cω ‖x‖X(E), then we will say that A has
a bounded s-maximal function with respect to the angle ω. In this case, the homogeneity in
‖f‖Ls′∗ (∂Σω) leads to∥∥ sup{|f(A)x|E | f ∈ H∞ω,0, ‖f‖Ls′∗ (∂Σω) ≤ K}

∥∥
X
≤ CωK ‖x‖X(E) for all x ∈ X(E),K > 0.

Next, we define the auxiliary functions ψα,ω(z) := zα

eiω−z for all ω > 0, z ∈ Σω and α ∈ [0, 1].

Lemma 2.1.6. Let α ∈ [0, 1], ω > ω(A) and ϕ ∈ H∞ω,0. Then, for all x ∈ X(E),

|ϕ(A)x|E ≤
1

2π
‖ϕ‖Ls′∗ (∂Σω) ·

∑
j∈{−1,1}

(∫ ∞
0
|ψα,jω(tA)x|sE

dt

t

)1/s

, (2.1.2)

in case s 6= +∞, and

|ϕ(A)x|E ≤
1

2π
‖ϕ‖L1

∗(∂Σω) ·
∑

j∈{−1,1}

sup
t>0
|ψα,jω(tA)x|E (2.1.3)

in case s = +∞, respectively.

Proof. Choose π ≥ σ > ω with ϕ ∈ H∞0 (Σσ). Let x ∈ X(E), then

ϕ(A)x =
1

2πi

∫
∂Σω

ϕ(λ)λR(λ,A)x
dλ

λ
=

1
2πi

∫
∂Σω

ϕ(λ)
(
λ1−αAαR(λ,A)x

) dλ
λ
.

If α ∈ (0, 1) this is Proposition 4.2 in [KW01-a], if α = 0 it is trivial and for α = 1 use
λR(λ,A) − AR(λ,A) = IdX and Cauchy’s Theorem. Hence ϕ(A)x = 1

2πi

∫
∂Σω

ϕ(λ)G(λ) dλλ ,
where G(λ) := ψ

(
1
λA
)
x with ψ(z) := ψ0,α(z) = zα

1−z for all λ ∈ ∂Σω, z ∈ C\R. In the case
s 6= +∞, we conclude with Hölders inequality

|ϕ(A)x|E
(1)

≤ 1
2π

∫
∂Σω

|ϕ(λ)G(λ)|E
|dλ|
|λ|
≤ 1

2π
‖ϕ‖Ls′∗ (∂Σω)

(∫
∂Σω

|G(λ)|sE
|dλ|
|λ|

)1/s

(2)
=

1
2π
‖ϕ‖Ls′∗ (∂Σω)

((∫ ∞
0
|ψα,ω(tA)x|sE

dt

t

)1/s

+
(∫ ∞

0
|ψα,−ω(tA)x|sE

dt

t

)1/s
)
.

Here, (1) is true by (1.6.10) and (2) by plugging in the parametrization and the auxiliary function
ψω,α defined above. This shows the statement. The modification for s = +∞ is obvious.

Lemma 2.1.6 provides a technical condition, namely a one-sided s-function estimate for the
auxiliary functions ψα,±ω

∀x ∈ X(E), j ∈ {−1, 1} : ‖ψα,jω(·A)x‖X(Ls∗(E)) ≤ Cs,α,ω ‖x‖X(E). (SEs,α,ω),

which is sufficient for a bounded s-maximal function:

Proposition 2.1.7. Let α ∈ [0, 1], ω > ω(A) and s ∈ [1,+∞], and we assume there is a Cs,α,ω
such that (SEs,α,ω) is fulfilled. Then A has a bounded s-maximal function with respect to the
angle ω.



2. Maximal functions for sectorial operators
2.1. The H∞0 -maximal function for sectorial operators 46

Proof. Define ψj := ψα,(−1)jω for j = 1, 2. Let π ≥ σ > ω andM > 0, then we obtain by Lemma
2.1.6 (with the usual modification in the case s = +∞) the pointwise estimate

sup{|f(A)x| | f ∈ H∞ω,0, ‖f‖Ls′∗ (∂Σω) ≤M} ≤
1

2π
·M

2∑
j=1

(∫ ∞
0
|ψj(tA)x|s dt

t

)1/s

.

Therefore the one-sided s-function estimate (SEs,α,ω) leads to the norm estimate∥∥∥sup
{
|f(A)x|

∣∣∣ f ∈ H∞ω,0 with ‖f‖Ls′∗ (∂Σω) ≤M
}∥∥∥

X

≤ 1
2π
·M

( ∥∥|ψ1(·A)x|Ls∗((0,+∞))

∥∥
X

+
∥∥|ψ2(·A)x|Ls∗((0,+∞))

∥∥
X

)
≤ Cs,α,ω

π
·M ‖x‖.

Remark 2.1.8. It is an easy consequence of the convergence lemma, that in the situation of
Proposition 2.1.7 we also have f(A) ∈ L(X) for all f ∈ H∞ω,s′, and that in the definition of the
s-maximal function we can take the supremum over all f ∈ H∞ω,s′ with ‖f‖Ls′∗ (∂Σω) ≤ 1.

Putting all together we obtain the following characterization of having a bounded maximal
function.

Theorem 2.1.9. Let ω, σ > ω(A). Consider the following assertions:

(1) ∃C1 > 0 ∀α ∈ (0, 1)∀x ∈ X(E) : ‖ψα,±ω(tA)x‖X(L∞∗ (E)) ≤ C1‖x‖X(E),

(2) ∃C2 > 0 ∃α ∈ [0, 1]∃s ∈ [1,+∞]∀x ∈ X(E) : ‖ψα,±ω(tA)x‖X(Ls∗(E)) ≤ C2‖x‖X(E),

(3) MA,s,ω is bounded for some s ∈ [1,+∞],

(4) MA,∞,ω is bounded,

(5) A has a bounded H∞0 (Σσ)-maximal function.

Then (1) ⇒ (2) ⇒ (3) and (1) ⇒ (4). Moreover, if σ > ω , then (3) ⇒ (5), and if ω > σ, then
(5)⇒ (1).

Proof. (1) ⇒ (2) is trivial, and (2) ⇒ (3) and (1) ⇒ (4) are just Proposition 2.1.7. Now assume
(3) and σ > ω. Then (5) follows from the fact, that ‖ϕ(t·)‖Ls′∗ (∂Σω) = ‖ϕ‖Ls′∗ (∂Σω) =: M for all
t > 0 and the boundedness of the s-maximal function. Now we assume (5) and ω > σ. Then
ψα,±ω ∈ H∞0 (Σσ), hence (1) follows.

The typical way to use Theorem 2.1.9 is the following: We will check condition (2) for all ω > ω0

and obtain by (5) ωM (A) ≤ ω0. Then the theorem asserts that for all ω > ωM (A) conditions (3)
and (4) are fulfilled:

Corollary 2.1.10. Let A have a bounded maximal function. Let π ≥ σ > ωM (A), ϕ ∈ H∞0 (Σσ)
and 0 ≤ δ < σ−ωM (A). Then (ϕ(zA))z∈Σδ

satisfies a maximal estimate, i.e. there exists C > 0
such that∥∥ sup

z∈Σδ

|ϕ(zA)x|E
∥∥
X
≤ C ‖x‖X(E) for all x ∈ X(E). (2.1.4)
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Proof. Let σ − δ > ω > ωM (A), then A has a bounded ∞-maximal function with respect to the
angle ω. Choose C0 > 0, β > 0 with |ϕ(z)| ≤ C0 (|z|β ∧ |z|−β) for all z ∈ Σσ. Let z ∈ Σδ\{0}
(the case z = 0 can be neglected because ϕ(0) = 0), then z = τw for some τ > 0, w ∈ Σδ ∩ S1,
and wλ ∈ Σσ for all λ ∈ ∂Σω. We obtain∫

∂Σω

|ϕ(zλ)| |dλ|
|λ|

=
∑

j∈{−1,1}

∫ ∞
0
|ϕ(τtweijω)| dt

t
=

∑
j∈{−1,1}

∫ ∞
0
|ϕ(tweijω)| dt

t

≤ C2
0

∑
j∈{−1,1}

∫ ∞
0

(tβ ∧ t−β)
dt

t
=: K < +∞,

i.e. ‖ϕ(z·)‖L1
∗(∂Σω) ≤ K. The boundedness of the ∞-maximal function yields∥∥ sup

z∈Σδ

|ϕ(zA)x|E
∥∥
X
≤
∥∥ sup

{
|f(A)x|E | f ∈ H∞0 , ‖f‖L1

∗(∂Σω) ≤ K
}∥∥

X
≤ CωK ‖x‖X(E).

Remark 2.1.11. In fact, in the situation of Corollary 2.1.10 the constant C only depends on
the constants C0, β of the majorant z 7→ C0 (|z|β ∧ |z|−β) of the H∞0 -function ϕ, hence we
obtain uniform estimates for any subset F ⊆ H∞0 (Σσ) which fulfills uniform estimates |ϕ(z)| ≤
C0 (|z|β ∧ |z|−β) for all ϕ ∈ F and some C0, β > 0. Moreover, in the special case δ = 0 we have
the sharper estimate∥∥ sup

t>0
|ϕ(tA)x|E

∥∥
X
≤ Cω ‖ϕ‖L1

∗(∂Σω) ‖x‖X(E) for all x ∈ X(E) (2.1.5)

and for all ϕ ∈ H∞0,ωM (A), and the constant Cω is independent of ϕ.

Examples 2.1.12. Let A have a bounded H∞0 -maximal function.

(1) Let α > 0 and ϕ(λ) := λα

(1+λ)2α for all λ ∈ Σπ, and let 0 ≤ δ < π−ωM (A). Then (ϕ(zA))z∈Σδ

satisfies a maximal estimate, i.e. there exists C > 0 such that for all x ∈ X:∥∥ sup
z∈Σδ

|zαAα(z +A)−2αx|
∥∥
X
≤ C ‖x‖X . (2.1.6)

(2) We assume ωM (A) < π/2. Let α > 0 and ϕ(λ) := λαe−λ for all λ ∈ Σπ/2, and let 0 ≤ δ <

π/2− ωM (A). Then (ϕ(zA))z∈Σδ
satisfies a maximal estimate, i.e. there exists C > 0 such that

for all x ∈ X:∥∥ sup
z∈Σδ

|zαAαTzx|
∥∥
X
≤ C ‖x‖X . (2.1.7)

Finally we present some standard persistence properties of having a bounded maximal function.

Proposition 2.1.13. Let A have a bounded H∞0 -maximal function.

(1) If r > 0 and δ ∈ [0, ωM (A)), then also reiδA has a bounded H∞0 -maximal function with
ωM (reiδA) ≤ ωM (A) + δ,
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(2) Let α ∈ R with |α| < π/ωM (A), then Aα has a bounded H∞0 -maximal function and
ωM (Aα) = |α|ωM (A).

Proof. (1) is a consequence of Corollary 2.1.10.

(2) We first note that A−1 has a bounded maximal function with ωM (A−1) = ωM (A), this is a
consequence of Theorem 2.1.9 and the simple fact that for α = 1/2 and θ > ωM (A), t > 0 we have
ψ±θ(tA−1) = −e∓iθψ∓θ(t−1A). Hence we may assume w.l.o.g. that α > 0. Let σ > αωM (A) and
ϕ ∈ H∞0 (Σσ). Define ϕα(z) := ϕ(zα), then ϕα ∈ H∞0 (Σσ/α), and by the composition rule for the
functional calculus we have ϕ(Aα) = ϕα(A), cf. e.g. [Ha06], Prop. 3.1.4. Since σ/α > ωM (A),
the family (ϕ(tAα))t>0 = (ϕα(t1/αA))t>0 satisfies a maximal estimate, hence Aα has a bounded
maximal function with ωM (Aα) ≤ αωM (A). If we apply this for Aα instead of A, we obtain the
remaining estimate ωM (A) = ωM ((Aα)

1
α ) ≤ 1

αωM (Aα).

2.2 Examples of operators with a bounded H∞0 -maximal function

In this section we present classes and examples of operators with a bounded maximal function.
In particular we will give examples of operators without BIP that have a bounded maximal
function. This shows that our techniques extend those used in [Bl02], where only operators with
BIP are considered.

(a) Operators with bounded imaginary powers

Let A ∈ BIP(X(E)), i.e. in this situation Ais ∈ L(X(E)) for all s ∈ R, and hence (Ais)s∈R is a
C0-group1 so there is ω ≥ 0 and Mω ≥ 1 with

‖Ais‖X(E) ≤M eω|s| für alle s ∈ R.

The infimum of all ω ≥ 0 for which there exists such an Mω is denoted by ωBIP (A). In the
following we assume ωBIP (A) < π.

Let θ ∈ (−π, π) with |θ| < π − ωBIP (A) and ωBIP (A) < ω < π − |θ|, so δ := π − |θ| − ω >

0. Moreover let Mω ≥ 1 with ‖Ais‖X ≤ Mω e
ω|s| for all s ∈ R. We will use the following

representation formula which can be seen as a variant of the Mellin inversion formula:

r1/2eiθ/2A1/2(reiθ +A)−1x =
1
2

∫ ∞
−∞

r−is
eθs

cosh(πs)
Aisx ds. (2.2.8)

We will give a derivation of (2.2.8) following the lines of [KW04], proof of 11.9.

1In this situation, this claim is equivalent to the usual definition in the general case, i.e. (Ais)s∈R is a C0-
group. This is due to the fact that if x ∈ D(A) ∩ R(A), then s 7→ Aisx =: T (s)x is bounded, and by density
this yields that s 7→ T (s)x is measurable for each x ∈ X. Hence (T (s))s∈R is a strongly measurable group,
and it is well known that this implies strong continuity of (T (s))s>0. For s ≤ 0 the group property leads to
T (s+ h)x = T (1 + h)T (s− 1)x→ T (1)T (s− 1)x = T (s)x for x ∈ X if h→ 0, hence T is a C0-group.



2. Maximal functions for sectorial operators
2.2. Examples of operators with a bounded H∞0 -maximal function 49

(i) The Balakrishnan representation yields for y ∈ R(A), x := A−1y ∈ D(A) and −1 < Re(α) <
0:

Aαy = A1+αx
Balakr.=

sin(π(1 + α))
π

∫ ∞
0

tα(t+A)−1Axdt = −sin(πα))
π

∫ ∞
0

tα(t+A)−1y dt.

(ii) Let x ∈ D(A) ∩R(A) ⊆ D(A1/2) ∩D(Ais) = D(Ais−1/2A1/2), then

Aisx = Ais−1/2A1/2x
(i)
= −sin(π(is− 1/2)))

π

∫ ∞
0

tis−1/2(t+A)−1A1/2x dt

=
cosh(πs)

π

∫ ∞
0

tist1/2(t+A)−1A1/2x
dt

t
.

(iii) Choose θ ∈ [0, π) with |θ| < π−ωBIP (A) and ωBIP (A) < ω < π−|θ|, so δ := π−|θ|−ω > 0,
and moreover Mω ≥ 1 with ‖Ais‖X ≤M eω|s| for all t ∈ R. We apply (ii) to e−iθA instead of A
and obtain with the substitution t = eu, dt/t = du:

πeθs

cosh(πs)
Aisx =

∫ ∞
0

tist1/2eiθ/2(eiθt+A)−1A1/2x
dt

t

=
∫ ∞
−∞

eisu eu/2eiθ/2(eiθeu +A)−1A1/2x︸ ︷︷ ︸
F (u):=

du = F̂ (−s).

As in general e|x|/2 ≤ cosh(x) ≤ e|x| for all x ∈ R, it follows that

‖F̂ (s)‖ ≤ πe|θs|

cosh(π|s|)
‖A−isx‖ ≤ 2πMω e

|θs|−π|s| eω|s| ‖x‖X = 2πMω e
−(π−|θ|−ω)|s| ‖x‖X

= 2πMω e
−δ|s| ‖x‖X for all s ∈ R,

hence F̂ ∈ L1(R, X). By Fourier inversion we obtain

eu/2eiθ/2(eiθeu +A)−1A1/2x = F (u) =
1

2π

∫ ∞
−∞

eiusF̂ (s) ds =
1
2

∫ ∞
−∞

eius
e−θs

cosh(πs)
A−isx ds.

Substituting r = eu/2 and s 7→ −s in the integral yields (2.2.8) for all x ∈ D(A) ∩ R(A), and
since D(A) ∩R(A) is dense and both sides of equation (2.2.8) define bounded operators, this is
also true for all x ∈ X(E).

We now substitute t = r−1 in formula (2.2.8) and obtain

|(tA)1/2(eiθ + tA)−1x|E ≤
∫

R
e−(π−|θ|)|s| |A−isx|E ds for all x ∈ X(E), t > 0.

Since the right-hand side of the inequality above is independent of t,

sup
t>0
|(tA)1/2(eiθ + tA)−1x|E ≤

∫
R
e−(π−|θ|)|s| |A−isx|E ds.

Letting α := 1/2 and ψj := ψα,(−1)j(π−|θ|), we have

sup
t>0
|ψj(tA)x|E = sup

t>0
|(te(−1)j(π−|θ|)A)1/2(1−te(−1)j(π−|θ|A)−1x|E ≤

∫
R
e−(π−|θ|)|s| |A−isx|E ds,
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and this leads finally to∥∥ sup
t>0
|ψj(tA)x|E‖X ≤

∫
R
e−(π−|θ|)|s| ‖A−isx‖X(E) ds ≤Mω

∫
R
e−δ|s| ds·‖x‖X(E) =

2Mω

δ
‖x‖X(E).

So we have proven:

Proposition 2.2.1. Let A ∈ BIP(X(E)) with ωBIP (A) < π. Then the operator A has a bounded
H∞0 -maximal function with ωM (A) ≤ ωBIP (A).

Remark 2.2.2. In recent years optimal BIP- and in fact H∞-angles for certain classes of elliptic
differential operators have been established also in the vector-valued setting of a space Lp(Ω, E),
where E is a UMD-space, cf. e.g. [DHP03], [DDHPV04].

As already mentioned above, this example shows in particular that in our framework we can
handle the operators considered in [Bl02].

(b) Operators that satisfy a one-sided square function estimate

We want to draw attention to the case s = 2, then the condition (2) of Theorem 2.1.9 is fulfilled in
particular if the operator A satisfies one-sided square function estimates, which are well known in
classical situations in harmonic analysis. It is well known that if X is q-concave for some q < +∞
and the operator A has a bounded H∞-calculus then for all σ > ωH∞(A) and ϕ ∈ H∞0 (Σσ)\{0}
there is a constant C > 0 such that for all x ∈ X:

1
C
‖x‖X ≤

∥∥∥∥(∫ ∞
0
|ϕ(tA)x|2 dt

t

)1/2
∥∥∥∥
X

≤ C ‖x‖X ,

cf. Subsection 1.6.5. Of course, this situation is already covered by (a). Nevertheless we want
to mention that even in the Hilbert-space case X = L2 there are examples of operators without
an H∞-calculus, hence without BIP, that satisfy only a one-sided square-function estimate∥∥∥∥(∫ ∞

0
|ϕ(tA)x|2 dt

t

)1/2
∥∥∥∥
X

≤ C ‖x‖X

for ϕ ∈ H∞0 (Σσ)\{0}, cf. [LeM03], Section 5. So these operators fulfill condition (SEs,α,ω) for
s = 2, α = 1/2 and ω > σ and hence have a bounded H∞0 -maximal function.

(c) Generators of analytic semigroups which satisfy a maximal estimate

Now we assume ω(A) ≤ π/2 and that −A generates a bounded C0-semigroup (Tt)t≥0. Further
we assume that there is a constant C > 0 such that one of the following estimates holds for all
x ∈ X(E):∥∥ sup

t>0

∣∣Ttx∣∣E∥∥X ≤ C ‖x‖X(E). (2.2.9)
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or ∥∥ sup
t>0

∣∣∣1
t

∫ t

0
Tsx ds

∣∣∣
E

∥∥
X
≤ C ‖x‖X(E) (2.2.10)

Proposition 2.2.3. Under the above assumptions, the operator A has a bounded H∞0 -maximal
function in X(E) with ωM (A) ≤ π/2.

Proof. In both cases we use the representation formula of the resolvent as Laplace transform of
the semigroup. Let π ≥ |θ| > π/2, x ∈ X(E) and t > 0, r := t−1. Let us first assume that (2.2.9)
holds. Then using the Laplace-transform we obtain

R(eiθ, tA) = rR(reiθ, A) = −
∫ ∞

0
resre

iθ
Tsx ds,

hence with α = 0

|ψθ(tA)x|E ≤
∫ ∞

0

∣∣resreiθTsx∣∣E ds ≤ ∫ ∞
0

re−sr| cos(θ)| ds · sup
s>0
|Tsx|E =

1
| cos(θ)|

· sup
s>0
|Tsx|E .

By our assumption we obtain the estimate∥∥ sup
t>0
|ψ±θ(tA)x|E

∥∥
X
≤ 1
| cos(θ)|

‖ sup
s>0
|Tsx|E‖X ≤

C

| cos(θ)|
‖x‖X(E).

Now we assume that (2.2.10) holds. Let µ := −reiθ, then again by the Laplace-transform
representation and partial integration it follows that

−R(eiθ, tA)x =
∫ ∞

0
re−µsTsx ds =

[
rse−µs

1
s

∫ s

0
Tτx dτ

]∞
0︸ ︷︷ ︸

=0

+
∫ ∞

0
rµe−µs

(∫ s

0
Tτx dτ

)
ds,

hence

|R(eiθ, tA)x|E ≤
∫ ∞

0
r2se−Re(µ)s

∣∣∣∣(1
s

∫ s

0
Tτx dτ

)∣∣∣∣
E

ds

≤
∫ ∞

0
r2se−sr| cos(θ)| ds · sup

s>0

∣∣∣∣1s
∫ s

0
Tτx dτ

∣∣∣∣
E

=
1

cos2(θ)
· sup
s>0

∣∣∣∣1s
∫ s

0
Tτx dτ

∣∣∣∣
E

.

Similar as in the first case we obtain the estimate∥∥ sup
t>0
|ψ±θ(tA)x|E

∥∥
X
≤ 1

cos2(θ)

∥∥ sup
s>0

∣∣∣∣1s
∫ s

0
Tτx dτ

∣∣∣∣
E

∥∥
X
≤ C

cos2(θ)
‖x‖X(E).

This shows the claim in both cases.

We will later see how we can obtain operators fulfilling the above assumptions, e.g. by using
classical results from harmonic analysis and ergodic theory for operators in scalar-valued function
spaces and then pass to tensor extensions in vector-valued spaces. Although we only get the
rather "bad" angle π/2 with this method, we at least get a starting point for an angle that might
be improved by interpolation.
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(d) Another example for an operator without BIP, that has a bounded H∞0 -maximal
function

One such example is already cited in (b). Nevertheless we will construct another example which
is taken from [KW04], Example 10.17. Let p ∈ (1,+∞) and −1 < γ < p − 1, and define the
weight function w(x) := |x|γ and the weighted space X := Lp(R, w(x)dx). We note that w is
a so-called Ap-weight, cf. e.g. [Du01], Chapter 7. Define the operator A := exp(1

i
d
dx) as an

unbounded Fourier-multiplier-operator in X, i.e. Af := F−1
ξ (eξ f̂(ξ)) for all f ∈ D(A) := {g ∈

X | F−1
ξ (eξ f̂(ξ)) ∈ X}. Then the following statements are true:

1. Since w is an Ap-weight, the Mikhlin-multiplier-theorem holds in X, cf. [KW79]. Hence
the operator A is sectorial with ω(A) = 0.

2. The imaginary powers are formally given by the translation operators Aisf = f(s + ·),
hence it can easily be shown that in the case γ 6= 0 the operator A does not have BIP.

3. A has a bounded H∞0 -maximal function with ωM (A) = 0: Let α := 1/2, ω ∈ (0, π] and
ψ := ψα,±ω. Letting t = er > 0 we have

ψ(tA)f = F−1
ξ

(
ψr(ξ) · f̂(ξ)

)
=
(
F−1ψr

)
∗ f,

with the symbol ψr(ξ) = e
r+ξ

2

e±iω−er+ξ , hence ψr(ξ) = ψ0(r + ξ) for all r ∈ R. This leads to
an estimate

|F−1ψr(x)| ≈ |eirxF−1ψ0(x)| = |F−1ψ0(x)| . 1
1 + |x|2

,

hence we obtain the pointwise estimate supt>0 |ψ(tA)f(x)| . ‖F−1ψ0‖L1(R) · M|f |(x),
whereM is the Hardy-Littlewood maximal operator. Since w is an Ap-weight, the maximal
operatorM is bounded in X (cf. [GCRdF85], Theorem IV.2.8), hence

‖ sup
t>0
|ψ(tA)f |‖X . ‖M|f |‖X . ‖f‖X .

2.3 Equivalence of maximal estimates for f ∈ E(Σσ)

For arbitrary H∞-functions f the family (f(tA))t>0 need not fulfill maximal estimates in general.
But there are nice transference properties between functions f in the extended Dunford-Riesz
class. Recall that

E(Σσ) = H∞0 (Σσ)⊕
〈 1

1 + idΣσ

〉
C ⊕ 〈1Σσ〉C and Eω :=

⋃
σ>ω

E(Σσ) for all ω ∈ [0, π),

and that E(Σσ) is exactly the algebra of bounded analytic functions on Σσ having finite polyno-
mial limits in 0 and ∞, hence in particular, by the mean value theorem, bounded holomorphic
functions on Σσ that are either decaying to 0 or holomorphic in a neighborhood of 0 and ∞,
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respectively, belong to the class E(Σσ) (cf. Section 1.2). This is the typical situation we will be
faced with.

Now we are in a position to formulate the equivalence theorem for bounded f -maximal functions
if f ∈ E(Σσ):

Theorem 2.3.1. Let A have a bounded H∞0 -maximal function. The following assertions are
equivalent:

(1) There exists an f ∈ EωM (A) with f(0) 6= f(∞) such that A has a bounded f -maximal
function.

(2) For all π ≥ σ > ωM (A), g ∈ E(Σσ) and 0 ≤ δ < σ − ωM (A), the family (g(zA))z∈Σδ

satisfies a maximal estimate.

The idea of the proof is simple: Every function in E can be decomposed into the sum of a H∞0 -
function and constants times the function z 7→ 1

1+z and 1. Hence the main step is to handle
these classes of functions separately. For H∞0 -functions, this has been done in Corollary 2.1.10,
so it remains to handle the function z 7→ 1

1+z . This is what we will do in the following lemma.

Lemma 2.3.2. Let A have a bounded maximal function and assume that there is a constant
C1 > 0 such that for all x ∈ X(E)∥∥ sup

t>0
|t(t+A)−1x|E

∥∥
X
≤ C1 ‖x‖X(E). (2.3.11)

Then, to each ω′ > ωM (A) there is a constant C > 0 such that∥∥ sup
λ/∈Σω′

|λR(λ,A)x|E
∥∥
X
≤ C ‖x‖X(E) for all x ∈ X(E). (2.3.12)

Proof. Choose ω′ > ω > ωM (A), then A has a bounded s-maximal function with respect to the
angle ω for s = +∞. Let λ ∈ C\Σω′ , then λ = teiθ for some t > 0, ω′ < |θ| ≤ π. By the resolvent
equation we have

λR(λ,A)− t(t+A)−1 = (λ+ t)A(λ−A)−1(t+A)−1 = t(1 + eiθ)A(teiθ −A)−1(t+A)−1

= (1 + eiθ) t−1A (eiθ − t−1A)−1(1 + t−1A)−1 = ϕθ(t−1A),

where ϕθ(z) := (1+eiθ)
z

(eiθ − z)(1 + z)
. Fix ω′ > σ > ω, then ϕθ ∈ H∞0 (Σσ) for all ω′ < |θ| ≤ π.

Indeed one can find a constant C0 > 0 such that for all ω′ < |θ| ≤ π and z ∈ Σσ we can estimate
|ϕθ(z)| ≤ C0 ·min

{
|z|, 1

|1+z|

}
, hence

‖ϕθ‖L1
∗(∂Σω) ≤ 2C

∫ ∞
0

min{t, 1/t} dt
t

=: M

By the translation invariance of the measure dt/t on (0,∞) we obtain ‖ϕθ(t·)‖L1
∗(∂Σω) ≤ M for

all |θ| > ω′, t > 0.
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By construction, to each λ ∈ C\Σω′ there are t > 0, ω′ < |θ| ≤ π such that λR(λ,A) =
t(t+A)−1 + ϕθ(t−1A), hence

sup
λ/∈Σω′

|λR(λ,A)x|E ≤ sup
t>0
|t(t+A)−1x|E + sup

θ,t
|ϕθ(tA)x|E

So we have∥∥ sup
λ/∈Σω′

|λR(λ,A)x|E
∥∥
X
≤
∥∥ sup
t>0
|t(t+A)−1x|E

∥∥
X

+ CωM ‖x‖X(E) ≤ (C1 + CωM) ‖x‖X(E),

where the constant Cω is chosen by the boundedness of the maximal function of A with respect
to the angle ω.

Now we are in a position to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. We only have to prove the non-trivial implication (1) ⇒ (2): Let σ0 ∈
(ωM (A), π] and f ∈ E(Σσ0) with f(0) 6= f(+∞) such that A has a bounded f -maximal function.
Then we can decompose f as f(z) = ϕ0(z) + a

1+z + b, where a = f(0) − f(∞) 6= 0 and ϕ0 ∈
H∞0 (Σσ0), hence 1

1+z = 1
a

(
f(z)− ϕ0(z)− b

)
. So we have

t(t+A)−1 = (1 + t−1A)−1 =
1
a

(
f(t−1A)− ϕ0(t−1A)− b IdX(E)

)
.

By our assumption the family (f(tA))t>0 satisfies a maximal estimate, hence also (t(t+A)−1)t>0

satisfies a maximal estimate.

Now let π ≥ σ > ωM (A), g ∈ E(Σσ) and 0 ≤ δ < σ − ωM (A) be arbitrary. Then again we
have a decomposition g(ζ) = ϕ(ζ) + c

1+ζ + d, hence for each z ∈ Σδ we have the representation
g(z·) = ϕ(z·) + c

1+z· + d, hence

g(zA) = ϕ(zA) + c(1 + zA)−1 + d IdX(E) = ϕ(zA) + cλR(λ,A) + d IdX(E),

where λ := −1
z ∈ C\Σπ−δ. Since ω′ := π − δ ≥ σ − δ > ωM (A), we can apply Lemma 2.3.2

together with Corollary 2.1.10 to obtain the claim.

A simple application of Theorem 2.3.1 is the following:

Corollary 2.3.3. We assume additionally that ωM (A) < π/2. Let α ∈ R with |α| < π/ωM (A),
0 ≤ δ < π/2− |α|ωM (A) and ω′ > |α|ωM (A). Then the following assertions are equivalent:

(1) There is a constant C1 > 0 such that for all x ∈ X(E):

∥∥ sup
t>0

∣∣∣1
t

∫ t

0
e−sAx ds

∣∣∣
E

∥∥
X
≤ C1 ‖x‖X(E). (2.3.13)

(2) There is a constant C2 > 0 such that for all x ∈ X(E):∥∥ sup
t>0
|e−tAx|E

∥∥
X
≤ C2 ‖x‖X(E). (2.3.14)
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(3) There is a constant C3 > 0 such that for all x ∈ X(E):∥∥ sup
t>0
|t(t+A)−1x|E

∥∥
X
≤ C3 ‖x‖X(E). (2.3.15)

(4) There is a constant C4 > 0 such that for all x ∈ X(E):∥∥∥ sup
| arg z|<δ

∣∣∣1
z

∫ z

0
e−λA

α
x dλ

∣∣∣
E

∥∥
X
≤ C4 ‖x‖X(E). (2.3.16)

(5) There is a constant C5 > 0 such that for all x ∈ X(E):∥∥ sup
| arg z|<δ

|e−zAαx|E
∥∥
X
≤ C5 ‖x‖X(E). (2.3.17)

(6) There is a constant C6 > 0 such that for all x ∈ X(E):∥∥ sup
λ/∈Σω′

|λR(λ,Aα)x|E
∥∥
X
≤ C6 ‖x‖X(E). (2.3.18)

Proof. We assume first that α = 1. Define f1(λ) := e−λ−1
−λ , f2(λ) := e−λ and f3(λ) := 1

1+λ .
Choose ωM (A) + δ < σ < π/2, then f1, f2 ∈ E(Σσ), f3 ∈ E(Σπ) and fj(0) = 1 6= 0 = fj(∞) for
j = 1, 2, 3, and we have the representations

1
z

∫ z

0
e−λAx dλ = f1(zA)x, e−zAx = f2(zA)x, and λR(λ,A) = (1− λ−1A) = f3(−λ−1A)

for all z ∈ Σδ, λ /∈ Σω′ and x ∈ X(E). Hence we can apply Theorem 2.3.1 to obtain all stated
equivalences.

Now assume α > 0, then we first remark that also Aα has a bounded H∞0 -maximal function by
Proposition 2.1.13(2) with ωM (Aα) = αωM (A). Then the assertions (4), (5), (6) are equivalent
by the same arguments given above, where we just replace A by Aα. Hence it is sufficient to

show that (1) is equivalent to (1) with Aα in place of A. For this we define f(λ) :=
1

1 + λα
for

all λ ∈ Σπ−α, then

t(t+Aα)−1 = (1 + (t−1/αA)α)−1 = f(t−1/αA),

where in the last step we used again the composition rule for the functional calculus. Moreover,
f ∈ E(Σπ−α) with f(0) = 1 6= 0 = f(∞), so the claim follows again from Theorem 2.3.1.

The remaining case α < 0 can simply be reduced to the above case by considering B := A−α

and B−1 instead of A. Since the inversion λ 7→ λ−1 leaves all sectors invariant, and since by
Proposition 2.1.13(2) we have ωM (B−1) = ωM (B), the claim also follows easily in this case.
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Remark 2.3.4. Parts of the statement above can also be proved using integral representations,
e.g. (2)⇒(3) via

|t(t+A)−1x|E =
∣∣∣∣∫ ∞

0
te−tsTsx ds

∣∣∣∣
E

≤
∫ ∞

0
te−ts|Tsx|E ds ≤ sup

s>0
|Tsx|E ·

∫ ∞
0

te−ts︸ ︷︷ ︸
=1

ds,

hence supt>0 |t(t + A)−1x|E ≤ sups>0 |Tsx|E. Analogously, (6)⇒(2) can be proved using an
integral representation of Tt.

Combining Corollary 2.3.3 with Banach’s Principle leads to the following standard applications,
which in special situations are well known in semigroup and ergodic theory.

Corollary 2.3.5. Let ωM (A) < π/2 and assume that the equivalent conditions of Corollary 2.3.3
are fulfilled.

(1) If Ttx→ x µ-a.e. for t→ 0 for all x in a dense subset of X(E), then the a.e. convergence
holds for all x ∈ X(E).

(2) Assume that the semigroup (Tt)t≥0 is mean ergodic, i.e. 1
t

∫ t
0 Tsx → Px for t → +∞ for

all x ∈ X(E), where P is the associated projection on kerA (for details cf. [DS58] Chapter
VIII or [EN00] V.4). If 1

t

∫ t
0 Tsx → Px µ-a.e. for t → +∞ for all x in a dense subset of

X(E), then the a.e. convergence holds for all x ∈ X(E).

Examples 2.3.6. We present some examples for the situation of Corollary 2.3.3 in the scalar-
valued case. These are not new, but nevertheless we can give a different view with the methods
described here. We will take a look on versions for vector-valued extensions in the examples in
Section 2.5.

(1) Let 1 < p < +∞ and X := Lp(Ω). We assume that ω(A) < π/2 and that the analytic
contraction C0-semigroup (Tt)t≥0 generated by A in Lp(Ω) is positive. Then by [Fe98],
Thm. 5.4.3 there is a constant C > 0 such that for all x ∈ Lp(Ω) the maximal estimate∥∥ sup

t>0

∣∣∣1
t

∫ t

0
Tsx ds

∣∣∣∥∥Lp ≤ C ‖x‖Lp (2.3.19)

holds. By the transference principle, A has a boundedH∞-calculus with possibly ωH∞(A) ≥
π/2 (cf. e.g. [KW04] Corollary 10.9 together with Theorem 4.2.1 in [Fe98]). Moreover,
the angle ωR(A) of R-sectoriality is strictly less then π/2, cf. [We01a] 4.d), and since
the space Lp(Ω) has property (∆), we have ωH∞(A) = ωR(A) < π/2, cf. [KW01-a],
Thm. 5.3). Hence we also have ωM (A) < π/2, so the equivalent conditions of Corollary
2.3.3 are fulfilled. Actually, the maximal estimate (2.3.19) is also a crucial tool in deriv-
ing ωR(A) < π/2 by interpolation. In particular, in this situation the maximal estimate
(2.3.19) implies for each m ∈ N0 also the maximal estimate∥∥∥ sup

t>0

∣∣tm( d
dt

)m
Ttx
∣∣∥∥∥
Lp
≤ Cm ‖x‖Lp , (2.3.20)
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since (−t)m
(
d
dt

)m
Tt = f(tA), where f(z) = zme−z. We note that this has very recently

also been proven in [LeMX10], Corollary 4.2, as an application of corresponding maximal
estimates for discrete semigroups, which are studied there in detail.

(2) Let again 1 < p < +∞, X := Lp(Ω) and ω(A) < π/2. Instead of positivity we now
assume that the analytic contraction C0-semigroup (Tt)t≥0 generated by A in Lp(Ω) is
Lq-contractive for all q ∈ [1,+∞], i.e. ‖Ttx‖Lq ≤ ‖x‖Lq for all x ∈ Lp(Ω) ∩ Lq(Ω), t > 0.
Then by the classical Dunford-Hopf Ergodic Theorem (cf. [DS58], Theorem VIII.7.7), the
estimate (2.3.19) holds for (Tt)t≥0, hence we obtain with the same method as described in
(1) that ωM (A) = ωH∞(A) < π/2, hence the equivalent conditions of Corollary 2.3.3 are
also fulfilled in this situation.

(3) If X = L2(Ω) and A is self-adjoint with σ(A) ≥ 0, then of course ωM (A) = ωH∞(A) = 0.
The question wether the equivalent conditions of Corollary 2.3.3 are fulfilled is investigated
in [Ga81], proof of Theorem 1 and the observation 2) on page 17, where a characterization
for the validity of (2.3.19) is formulated in terms of the projection-valued measure associated
to A via the spectral theorem.

2.4 Interpolation of maximal functions

In this section we will derive a technique to interpolate the boundedness of maximal functions
for consistent sectorial operators. For this we first give a different view on maximal estimates as
the continuity of a suitable linear operator. If we consider the object ϕ(·A)x as an element of
the space X(L∞∗ (E)) (cf. Section 1.6), then ‖ supt>0 |ϕ(tA)x|E‖X = ‖ϕ(·A)x‖X(L∞∗ (E), where we
as usual do not distinguish ϕ(·A)x from the special version we choose. So we see that the family
(ϕ(tA))t>0 satisfies a maximal estimate if and only if x 7→ ϕ(·A)x defines a bounded operator
X(E)→ X(L∞∗ (E)).

Now let X0, X1 be two Banach function spaces over the σ-finite measure space (Ω, µ), where
at least one of them has absolute continuous norm, and E0, E1 be Banach spaces such that
(E0, E1) is an interpolation couple. Then (X0(E0), X1(E1)) is an interpolation couple as well.
For θ ∈ (0, 1) let Xθ := [X0, X1]θ and Eθ := [E0, E1]θ be the complex interpolation spaces.

Calderon defines in [Ca64] 13.5 an intermediate space Xθ := X1−θ
0 Xθ

1 := {f ∈M(µ) | ∃gj ∈ Xj :
|f | = |g0|1−θ|g1|θ} endowed with the norm

‖f‖X1−θ
0 Xθ

1
:= inf{‖g0‖1−θX0

· ‖g1‖θX1
| |f | = |g0|1−θ|g1|θ}.

In fact, the definition given in [Ca64] is slightly different, but equivalent, cf. Remark 1.8 in [Pi79].
The space Xθ is consistent with the usual complex interpolation spaces Xθ in the following sense:

(Cal) [X0(E0), X1(E1)]θ ⊆ Xθ(Eθ), the inclusion is norm-decreasing, and the spaces coincide
with equal norm if Xθ has absolute continuous norm,
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cf. [Ca64] 13.6(i). Moreover it is shown in [KPS82], remark on p. 245, that Xθ has absolute
continuous norm if at least on of the Xj has absolute continuous norm, which we have assumed.
Thus we obtain [X0(E0), X1(E1)]θ = Xθ(Eθ). Plugging in E0 = E1 = C yields Xθ = Xθ, then
replacing Ej by `∞m (Ej) where m ∈ N leads to

[X0(`∞m (E0)), X1(`∞m (E1))]θ = Xθ([`∞m (E0), `∞m (E1)]θ) = Xθ(`∞m (Eθ)) (2.4.21)

with equal norms. In the second step we used the general fact that with L∞0 := Sf (Ω)
L∞

,
where Sf (Ω) is the space of step functions supported in a set of finite measure, we always have
[L∞(E0), L∞0 (E1)]θ = [L∞0 (E0), L∞0 (E1)]θ = L∞0 ([E0, E1]θ) with equal norms, cf. [Tr78], 1.18.4
Remark 3 and the proof of Theorem 1.18.4.

For each θ ∈ [0, 1] let Aθ be a sectorial operator in Xθ(Eθ) such that the following consistency
property is fulfilled:

(t+Aθ)−1x = (t+Aθ′)−1x for all θ, θ′ ∈ [0, 1], x ∈ Xθ(Eθ) ∩Xθ′(Eθ′), t > 0.

Then by a connectedness argument we have that the resolvents of each two operators Aθ, Aθ′ coin-
cide on the largest sector that is contained in both resolvent-sets, and if σ > max{ω(Aθ), ω(Aθ′)}
and f ∈ H∞(Σσ) such that f(Aj) ∈ L(Xj(Ej)) for j = 0, 1, then f(Aθ)x = f(Aθ′)x for all
x ∈ Xθ(Eθ) ∩ Xθ′(Eθ′). Hence we will sometimes simply write f(A)x instead of f(Aθ)x if
x ∈ Xθ(Eθ).

Now using abstract Stein interpolation (cf. [Vo92]) we obtain the following interpolation result
for maximal estimates.

Proposition 2.4.1. Let σ ∈ (0, π], f ∈ H∞(Σσ), and let 0 ≤ δj < σ − ω(Aj) such that the
family

(
f(zAj)

)
z∈Σδj \{0}

satisfies a maximal estimate in Xj(Ej) for j = 0, 1. Then the family(
f(zAθ)

)
z∈Σδ\{0}

satisfies a maximal estimate in Xθ(Eθ), where δ = (1− θ)δ0 + θδ1.

Proof. For j = 0, 1 choose Cj > 0 with
∥∥ supz∈Σδj \{0}

|f(zAj)x|Ej
∥∥
Xj
≤ Cj ‖x‖Xj(Ej) for all

x ∈ Xj(Ej). We first make some observations. Fix x ∈ D(Aθ) ∩R(Aθ) for a moment. Then, by
Remark 2.1.4 and the Phragmén-Lindelöf-Theorem we have∥∥ sup

z∈Σδj \{0}
|f(zA)x|Eθ

∥∥
Xθ

= lim
m→∞

∥∥ sup
k∈N≤m

|f(tke±iδA)x|Eθ
∥∥
Xθ
,

where (tk)k∈N is any an enumeration of Q>0. Hence it is sufficient to estimate the norm of
(|f(tke±iδA)x|Eθ)k∈N≤m with a constant independent of m. We note that the norm then is taken
in Xθ(`∞m (Eθ)), which is norm-isomorphic to `∞m (Xθ(Eθ)), where the constants, of course, depend
on m.

So fix a finite subset {t1, . . . , tm} ⊆ R>0, and define the strip S := {λ ∈ C | 0 ≤ Re(λ) ≤ 1},
δ(λ) := (1−λ)δ0 +λδ1 and N(λ)x :=

(
f(tkeiδ(λ)A)x

)
k∈N≤m

for all λ ∈ S, x ∈ X0(E0)∩X1(E1).
Define D :=

⋂
j∈{0,1}

D(Aj) ∩ R(Aj), then D is dense in X0(E0) ∩X1(E1): To see this we define
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standard approximation functions ρn(z) := n
n+z −

1
1+nz , then ρn(Aj) : Xj → D(Aj) ∩ R(Aj) is

bijective and ρn(Aj)x→ x in Xj(Ej) for each x ∈ Xj(Ej) and j = 0, 1 (cf. [KW04], Proposition
9.4 (b)). Hence, if x ∈ X0(E0) ∩X1(E1), then D 3 yn := ρn(A0)x = ρn(A1)x→ x in X0(E0) ∩
X1(E1) for n→∞. For fixed x ∈ D and j = 0, 1, the function

s 7→ N(j + is)x =
(
f(tkes(δ0−δ1)eiδjA)x

)
k∈N≤m

∈ Xj(`∞m (Ej))

is continuous (since it is continuous considered as a mapping into `∞m (Xj(Ej))) and bounded
with

‖N(j + is)x‖Xj(`∞m (Ej)) ≤
∥∥ sup
t>0
|f(teiδjAj)x|Ej

∥∥
Xj
≤ Cj ‖x‖Xj(Ej).

Now choose j ∈ {0, 1} such that δj = max{δ0, δ1}. Then N(·)x considered as a mapping
S̊ → Xj(`∞m (Ej)) is also continuous and even analytic, where we again use Xj(`∞m (Ej)) ∼=m

`∞m (Xj(Ej)), hence it is also analytic considered as a mapping S̊ → X0(L∞∗ (E0)) +X1(L∞∗ (E1)).
By abstract Stein interpolation we obtain

‖N(θ)x‖Xθ(`∞m (Eθ)) ≤ C1−θ
0 Cθ1︸ ︷︷ ︸
=:Cθ

‖x‖Xθ(Eθ) for all x ∈ D,

hence (by density) ‖ supk∈N≤m |f(tkeiδ)Ax|Eθ‖Xθ ≤ Cθ ‖x‖Xθ(Eθ) for all x ∈ Xθ(Eθ). So the
claim follows by the preceding discussion.

If we apply this lemma to the special functions ψ(λ) = λ1/2

e±iθ−λ , then the simple fact that

ψ(e±iδλ) = e∓iδ/2 · λ1/2

e±i(θ−δ)−λ leads to an improvement of the angle of the interpolated max-
imal function.

Proposition 2.4.2. Assume that the operators Aj have a bounded H∞0 -maximal function in
Xj(Ej) for j = 0, 1. Then the operator Aθ in Xθ(Eθ) has a bounded H∞0 -maximal function with
ωM (Aθ) ≤ (1− θ)ωM (A0) + θωM (A1).

Proof. Assume w.l.o.g. ωM (A1) > ωM (A0). Let ω > (1 − θ)ωM (A0) + θωM (A1) and write
ω = (1− θ)ω0 + θω1, where ωj > ωM (Aj) and ω1 > ω0. Let δ0 := ω1 − ω0 > 0 and δ1 := 0, and
choose σ > 0 such that max{ω1 − (ω0 − ωM (A0)), ωM (A1)} < σ < ω1. Then δj < σ − ωM (Aj)
for j = 0, 1, hence we can apply Lemma 2.4.1 to

ϕ(λ) :=
λ1/2

e±iω1 − λ
for all λ ∈ Σσ

and obtain that
(
ϕ(zAθ)

)
z∈Σδ\{0}

satisfies a maximal estimate on Xθ(Eθ), where δ = (1−θ)(ω1−
ω0) = ω1 −

(
(1− θ)ω0 + θω1

)
= ω1 − ω. In particular, A has a bounded ψ-maximal function for

ψ(λ) := ϕ(e±iδλ) = e±iδ/2
λ1/2

e∓iω−λ
.

Hence ωM (A) ≤ ω by Theorem 2.1.9.
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Combining Proposition 2.4.1 with Theorem 2.3.1 yields

Corollary 2.4.3. Assume that the operators Aj have a bounded H∞0 -maximal function in Xj(Ej)
for j = 0, 1. Assume that there exist σ0 > max{ωM (A0), ωM (A1)} and f0 ∈ E(Σσ) such that
Aj has a bounded f -maximal function for j = 0, 1. Then, for every σ > max{ωM (A0), ωM (A1)}
and f ∈ E(Σσ) the family

(
f(zAθ)

)
z∈Σδ

satisfies a maximal estimate on Xθ(Eθ) for all

0 ≤ δ < σ − (1− θ)ωM (A0)− θωM (A1).

2.5 Maximal functions for tensor-extensions of A in vector-valued
Banach function spaces

In concrete applications, it often happens that the operator in the vector-valued space X(E)
arises as a tensor extension of an operator A in the (scalar-valued) space X. We want to give an
overview on how the developed theory applies to this special case.

Assume that X has absolute continuous norm and A is a sectorial operator in X. Since the
algebraic tensor product X ⊗E ⊆ X(E) contains all step functions, it is dense. We consider the
algebraic tensor extension A⊗ IdE on X ⊗ E and define the E-valued extension

AE := {(x, y) ∈ X(E)×X(E) | ∀ϕ ∈ E′ : 〈x, ϕ〉 ∈ D(A) and A〈x, ϕ〉 = 〈y, ϕ〉}.

Proposition 2.5.1. The following assertions are true:

(1) AE is densely defined and closed with A⊗ IdE ⊆ AE,

(2) Let λ ∈ C, then
λ ∈ ρ(AE) ⇐⇒ λ ∈ ρ(A) and R(λ,A)E ∈ L(X),

and in this case R(λ,A)E = R(λ,A)⊗ IdE = R(λ,AE),

(3) If ρ(AE) 6= ∅, then AE = A⊗ IdE. In particular, if D ⊆ D(A) is a core for A, then D⊗E
is a core for AE,

(4) If AE is sectorial, σ > max{ω(A), ω(AE)} and f ∈ B(Σσ), then f(AE) = f(A)⊗ IdE.

Proof. Except for the implication ⇐ in (2), this is proven for X = Lp in [Ui98], Chapter 5, and
the proof given there extends easily to the case of a Banach function space X. The remaining
claim ⇐ in (2) is an easy consequence of the definition.

One problem is, that, only by the knowledge of A, there cannot be said too much about the
vector-valued extension AE as long as one has no further information on AE . For this reason it
is common to consider instead the bounded operators R(λ,A) or e−tA, if A is the generator of a
C0-semigroup. In particular, if max{ω(A), ω(AE)} < π/2, then TEt = e−tA

E , and we can carry
over maximal estimates for the semigroup. This method works particulary fine if the space X
has nice tensor-extension properties, which we note in the next remark.
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Remark 2.5.2. (1) Let X = L2 and H be a Hilbert space, then every bounded operator T ∈
L(X) extends to a bounded operator TH on L2(H) with ‖TH‖ = ‖T‖. If we apply this
on resolvents, we obtain via Proposition 2.5.1 immediately the following result: If A is
sectorial in L2, then for each Hilbert space H the vector-valued extension AH is sectorial
as well with ω(AH) = ω(A).

(2) Let X = L1 and E be a Banach space, then every bounded operator T ∈ L(X) extends to a
bounded operator TE on L1(E) with ‖TE‖ = ‖T‖. As in (1) we can conclude, that if A is
sectorial in L1, then for each Banach space E the vector-valued extension AE is sectorial
as well with ω(AE) = ω(A).

The first statement is a standard result in the theory of Hilbert spaces operators, cf. e.g. [We76],
Satz 8.32, whereas (2) follows from the properties of the π- tensor product of Banach spaces, cf.
e.g. [DF93], Proposition 3.2.

In the general case, one has no such nice extension properties, a prominent example for this
situation is the Hilbert transform in Lp, 1 < p < +∞, which extends to a bounded operator on
Lp(E) if and only if E is a UMD-space. Nevertheless there are classes of operators that have
nice extension properties, e.g. the class of positive operators, i.e. operators S : X → X such that
Sx ≥ 0 if x ≥ 0 for all x ∈ X. Observe that positive operators on Banach function spaces are
always bounded, cf. [Sc74] Theorem II.5.3. Moreover, positive operators always have bounded
vector-valued extensions to any Banach space, and more generally, every operator dominated
by a positive operator also has this extension property. This is the content of the following
proposition, which is taken from [GCRdF85], Thm. V.1.12.. Since this proposition will also be
important in subsequent chapters we give the full proof here.

Proposition 2.5.3. Let T ∈ L(X) be dominated by the positive operator S : X → X, i.e.
|Tx| ≤ S|x| for all x ∈ X. Then TE ∈ L(X(E)) with ‖TE‖ ≤ ‖S‖ and |TEF |E ≤ S|F |E for all
F ∈ X(E).

Proof. Assume first F ∈ X⊗E, so there existm ∈ N and x ∈ Xm, v ∈ Em such that F =
m∑
k=1

xk⊗

vk. Choose a countable subset W ⊆ E′ that is norming for the linear span 〈{vk | k ∈ N≤m}〉.
Then for µ-a.e. ω ∈ Ω the following holds:

|TEF |E(ω) =
∥∥∥ m∑
k=1

(Txk)(ω) · vk
∥∥∥
E

= sup
ϕ∈W

∣∣∣∣∣ϕ
(

m∑
k=1

(Txk)(ω) · vk

)∣∣∣∣∣
= sup

ϕ∈W

∣∣∣∣∣
m∑
k=1

(Txk)(ω) · ϕ(vk)

∣∣∣∣∣ = sup
ϕ∈W

∣∣∣∣∣T
(

m∑
k=1

ϕ(vk)xk

)
(ω)

∣∣∣∣∣
≤ S

(
sup
ϕ∈W

∣∣∣∣∣
m∑
k=1

ϕ(vk)xk

∣∣∣∣∣
)

(ω) = S

(
sup
ϕ∈W

∣∣∣∣∣ϕ ◦
(

m∑
k=1

xk ⊗ vk

)∣∣∣∣∣
)

(ω)

= S
∥∥∥ m∑
k=1

xk ⊗ vk(·)
∥∥∥
E

(ω) = (S|F |E)(ω).
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Now let F0 ∈ X(E) be arbitrary. Then one can choose a sequence F ∈ (X ⊗E)N with Fn → F0

for n → ∞. By possibly choosing a subsequence we can w.l.o.g. assume Fn(ω) → F0(ω) and
(SFn)(ω)→ (SF0)(ω) for µ-a.e. ω ∈ Ω, hence we obtain

|TEF0|E(ω) = lim
n→∞

|TEFn|E(ω) ≤ lim
n→∞

(S|Fn|E)(ω) = (S|F0|E)(ω)

for µ-a.e. ω ∈ Ω. Hence |TEF0|E ∈ X and

‖TEF0‖X(E) = ‖|TEF0|E‖X ≤ ‖S|F0|E‖X ≤ ‖S‖ ‖|F0|E‖X = ‖S‖ ‖F0‖X(E).

We obtain immediately the following

Corollary 2.5.4. Let T ⊆ L(X), and let S : X → X be a positive operator such that |Tf | ≤ S|f |
for all T ∈ T , x ∈ X. Then∥∥ sup

T∈T
|TEF |E

∥∥
X
≤ ‖S‖ ‖F‖X(E) for all F ∈ X(E).

Proof. Let F ∈ X(E), then by Proposition 2.5.3 we have supT∈T |TEF |E ≤ S|FE |, hence also∥∥ supT∈T |TEF |E
∥∥
X
≤ ‖S|F |E‖X ≤ ‖S‖ ‖F‖X(E).

Before we present more detailed examples, we will outline the general approach. We will usually
consider an operator in two spaces X0(E0) and X1(E1). Although the following examples are just
vector-valued extension of the examples in 2.3.6, we cannot just naively extend the angle ωM (A)
derived there. Instead of this, we will choose a "good" space X0(E0), where we typically assume
that E0 is an UMD-space or even a Hilbert-space, such that the extended operator AE0 has nice
properties, as e.g. BIP or even an H∞-calculus, which lead to an H∞0 -maximal function with an
angle ωM (AE0) < π/2. On the other end of the scala we choose an arbitrary space E1 and get
maximal estimates by extending the scalar estimates with the aid of positivity or domination.
For this reason, we will assume that the operator A generates a C0-semigroup (Tt)t≥0 such that
one of the following (scalar) maximal estimates hold:

∥∥ sup
t>0

∣∣∣1
t

∫ t

0
Tsx ds

∣∣∣∥∥X ≤ C ‖x‖X , or (2.5.22)∥∥ sup
t>0

∣∣Ttx∣∣∥∥ ≤ C ‖x‖X . (2.5.23)

This estimate will be extended by Corollary 2.5.4 to the corresponding maximal estimates for
AE1 , hence by Proposition 2.2.3 we obtain that AE1 has a bounded H∞0 -maximal function
with ωM (AE1) ≤ π/2. Now assume that (E0, E1) is an interpolation couple, θ ∈ (0, 1) and
E := [E0, E1]θ is the complex interpolation space. Then AE has an H∞0 -maximal function in
Xθ(E) with ωM (AE) < π/2, hence we can also apply Corollary 2.3.3 in these spaces.
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Examples 2.5.5. (a) Generators of positive contraction semigroups in some Lp.

Let X = Lp for some 1 < p < +∞ and A be a sectorial operator in X that generates a C0-
semigroup of positive contractions (Tt)t≥0 on Lp(Ω). Then the estimate (2.5.22) always holds,
cf. [Fe98], Theorem 5.4.3. Now let E be an arbitrary Banach space, then the semigroup and the
maximal estimate (2.5.22) extend to Lp(E) by positivity, hence the vector-valued extension AE

has a bounded maximal function with ωM (AE) ≤ π/2.

(b) The Laplace Operator.

Let Ω = Rd, 1 < p < +∞ and A := −∆ in X := Lp := Lp(Rd). Then A is the generator of
an analytic positive contraction C0-semigroup (Tt)t≥0 in X, and the estimate (2.5.23) is fulfilled
(this is obtain by estimating against the Hardy-Littlewood maximal function).2 Now let E0 be
an UMD-space and E1 be an arbitrary Banach space, then AE0 has a bounded H∞-calculus with
ωH∞(AE0) = 0 (this is an easy consequence of the vector-valued Mikhlin multiplier theorem, cf.
[KW04] Example 10.2 b)), hence ωM (AE0) = ωH∞(AE0) = 0. By the preceding arguments we
have ωM (AE1) ≤ π/2.

Now assume that (E0, E1) is an interpolation couple, θ ∈ (0, 1) and E := [E0, E1]θ is the complex
interpolation space, then AE has an H∞0 -maximal function with ωM (AE) ≤ θπ/2 < π/2.

Moreover it is well known that the semigroup (et∆)t≥0 is positive in Lp and et∆x ≤ Mx for all
x ∈ Lp with x ≥ 0, where M is the Hardy-Littlewood maximal operator. Hence∥∥ sup

t>0
|et∆E

x|E
∥∥
p
≤
∥∥ sup
t>0

et∆
E |x|E

∥∥
p
≤ ‖M |x|E‖p . ‖x‖Lp(E) for all x ∈ Lp(E),

since M is bounded in Lp. Hence we can apply Theorem 2.3.1 and obtain

Proposition 2.5.6. Let (E0, E1) be an interpolation couple, where E0 is an UMD-space. Let
θ ∈ (0, 1) and E := [E0, E1]θ. Then the negative Laplace operator −∆E in Lp(E) has a bounded
maximal function with ωM (−∆E) ≤ θπ/2. Moreover, for all σ > θπ/2, δ ∈ [0, σ − θπ/2) and
f ∈ E(Σσ) there is a constant C > 0 such that the following maximal estimate holds:∥∥ sup

z∈Σδ

|f(−z∆E)x|E
∥∥
p
≤ C ‖x‖Lp(E) for all x ∈ Lp(E). (2.5.24)

In particular the assumptions of Corollary 2.3.3 are satisfied, hence −∆E in Lp(E) fulfills the
equivalent assertions (1)-(6) from Corollary 2.3.3.

(c) Generators of L1-L∞-contractive semigroups.

Now we assume more generally that A is a sectorial operator in L2 that generates an L1-L∞-
contractive semigroup, i.e. (Tt)t≥0 is Lq-contractive for all q ∈ [1,+∞]. Then we get the following
generalization of [Ta09], Theorem 1.5:

2Of course, also (2.5.22) is fulfilled, this follows by example (a), on the other hand it is a simple consequence
of (2.5.23) by the triangle inequality.
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Proposition 2.5.7. Let A be a sectorial operator in L2(Ω) with ω0 := ω(A) < π/2 such that
the generated semigroup (T (t))t≥0 is Lq-contractive for all q ∈ [1,+∞]. Let (H,E) be an inter-
polation couple, where H is a Hilbert space and E an arbitrary Banach space, let θ ∈ (0, 1) and
Y := [H,E]θ. Let 1 < p < +∞ such that |2/p − 1| < θ and 0 ≤ δ <

(
π
2 − ω0

)
(1 − θ). Then

(T (t))t≥0 extends to an analytic contraction semigroup (T Yp (z))z∈Σδ on Lp(Y ), and there is a
C > 0 such that

∀x ∈ Lp(Y ) :
∥∥ sup
z∈Σδ

|T Yp (z)x|Y
∥∥
Lp
≤ C ‖x‖Lp(Y ). (2.5.25)

We note that in [Ta09], Theorem 1.5, the assumptions are stronger: the Banach space E has to
be an UMD-space, and moreover A is assumed to be self-adjoint.

On the other hand, the formulation of Theorem 1.5 from [Ta09] is a little more general in the
sense that not only complex interpolation spaces Y = [H,E]θ are considered, but more generally
closed subquotients of the complex interpolation space [H,E]θ, i.e. quotient spaces Y = Y0/Y1,
where Y1 ≤ Y0 ≤ [H,E]θ are closed subspaces. In fact, this is a corollary, once the maximal
estimate (2.5.25) is shown for the space [H,E]θ, and the proof only relies on the special situation
that the semigroup T Y in the vector-valued space is a tensor extension of a semigroup T in the
scalar-valued space. Thus the same arguments also work in our situations, and in Proposition
2.5.7 we could also take Y just to be a Banach spaces isomorphic to a closed subquotient of
[H,E]θ.

For the proof of Proposition 2.5.7 we will need the following density property.

Lemma 2.5.8. Let X0, X1 be Banach function spaces over Ω and (E0, E1) be an interpolation
couple. Then the set of step functions S(Ω, E0 ∩ E1) ⊆ (X0 ∩ X1) ⊗ (E0 ∩ E1) is dense in
X0(E0) ∩X1(E1).

Proof. We will prove the claim in three steps.

1. Choose an increasing sequence (Ωn)n∈N of measurable subsets of Ω of finite measure with⋃
n∈N Ωn = Ω. Let x ∈ X0(E0) ∩X1(E1) and define xn := x1Ωn for each n ∈ N. Then xn → x

pointwise a.e. for n → ∞ in both spaces Ej , j = 0, 1, and |xn|Ej ≤ |x| for all n ∈ N, hence
xn → x for n → ∞ in both spaces Xj(Ej), j = 0, 1. By this we have shown: the subspace of
functions supported in a set of finite measure is dense in X0(E0) ∩X1(E1).

2. Now let x ∈ X0(E0) ∩X1(E1) where Ω0 := supp(x) has finite measure. We aim to define xn
in a way such that |xn|E0 ∨ |xn|E1 ≤ Cn and xn → x in both spaces Xj(Ej), j = 0, 1. That will
imply that the subspace of functions supported in a set of finite measure and essentially bounded
in E0 ∩ E1 is dense. For this define

xn :=
( n

|x|E0 ∨ |x|E1

∧ 1
)
· x1{|x|E0

∨|x|E1
<+∞} for all n ∈ N.

Then |xn|Ej ≤ |x|Ej ∧ n for all n ∈ N, j = 0, 1, and if ω ∈ {|x|E0 ∨ |x|E1 < +∞}, then
xn(ω) = x(ω) for all n > ‖x(ω)‖E0 ∨ ‖x(ω)‖E1 , hence xn(ω)→ x(ω) for n→∞ in E0 ∩ E1.
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3. Now let finally x ∈ X0(E0)∩X1(E1)∩L∞(E0 ∩E1), where Ω0 := supp(x) has finite measure.
We can now construct step functions that approximate x pointwise a.e. as it is done in [Ca64],
Section 33.6, p.171f, and a majorant is given by ‖x‖L∞(E0∩E1) · 1Ω0 for j = 0, 1.

Proof of Proposition 2.5.7. First we note that the Lq-contractivity for all q ∈ [1,+∞] has two
immediate consequences:

1. The analytic contraction C0-semigroup (T2(t))t≥0 generated by A2 := A in L2(Ω) can be
extrapolated to a C0-semigroup (Tq(t))t≥0 of contractions in each Lq(Ω) for 1 ≤ q < +∞, and
the family of semigroups (Tq)q∈[1,+∞) is consistent.

2. The semigroup (T (t))t≥0 is dominated by a strongly measurable positive semigroup (St)t≥0

which is contractive in each space Lp, p ∈ [1,+∞), i.e. |T (t)x| ≤ St|x| for all x ∈ L2, t > 0 (cf.
[Kr85] or [Ta09], Theorem 3.1 for a detailed exposition).

Hence, for each Banach space Z and q ∈ [1,+∞), the operator Aq has a well-defined sectorial
tensor extension AZq on Lq(Ω, Z) with ω(AZq ) ≤ π/2, since it is the generator of the strongly con-
tinuous contraction semigroup TZq = (TZq (t))t≥0. Since |2/p−1| < θ, we can choose a q ∈ (1,+∞)
with 1

p = (1− θ)1
2 + θ 1

q . Then the resolvents of the operators AH2 and AEq are consistent as well,
since the space (L2 ∩ Lq)⊗ (H ∩ E) is dense in L2(Ω, H) ∩ Lq(Ω, E).

The dominating semigroup (St)t≥0 fulfills the maximal estimate (2.5.22) by the classical Dunford-
Hopf ergodic theorem (cf. [DS58], Thm. VIII.7.7), hence by Corollary 2.5.4 this maximal esti-
mate carries over to the vector-valued extension AEq , and then finally by Proposition 2.2.3 we
obtain ωM (AEq ) ≤ π/2. On the other hand, by Remark 2.5.2 (1) the operator AH2 is sectorial
with ω(AH2 ) = ω(A2) < π/2, and since AH2 is the generator of an analytic C0-semigroup of
contractions in the Hilbert space L2(Ω, H), by [KW04], Cor. 10.12 we obtain that AH2 has an
H∞-calculus with optimal angle, hence ωM (AH2 ) = ωH∞(AH2 ) = ω(AH2 ) = ω0 < π/2.

Now we can interpolate the H∞0 -maximal function with Proposition 2.4.1 and obtain that the
operator AYp has a bounded maximal function with

ωM (AYp ) ≤ (1− θ)ωM (AH2 ) + θωM (AEq ) ≤ (1− θ)ω0 + θπ/2 < π/2.

In particular, the semigroup T Yp is analytic, and by the same argument as given for AEq above
we see that also AYp satisfies the maximal estimate (2.2.9), hence the assumptions of Corollary
2.3.3 are fulfilled, and we obtain the maximal estimate (2.5.25), since

δ <
(π

2
− ω0

)
(1− θ) =

π

2
− (1− θ)ω0 − θ

π

2
≤ π

2
− ωM (AYp ).

The class of spaces [H,E]θ occurring in Proposition 2.5.7 are investigated by Pisier in [Pi79],
where he calls these spaces θ-Hilbertian and asks for general characterizations of θ-Hilbertian
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spaces. A partial answer is given for Banach function spaces by [Pi79], Theorem 2.3, which
states that a Banach lattice Y is order-isomorphic to a Banach function space [H,E]θ, where
H,E are Banach function spaces and H is in addition a Hilbert space, if and only if Y is p-
convex and p′-concave with corresponding constants M (p)(Y ) = M(p′)(Y ) = 1, where p > 1 and
1/p = (1− θ)/1 + θ/2 (observe that this implies 1 < p < 2 < p′ < +∞). Further investigations
of this topic can be found in [Pi08].



Chapter 3

Rs-boundedness and Rs-sectorial
operators

3.1 Rs-boundedness

In this section we introduce the notion of Rs-boundedness, which is the central technical tool
in this chapter. The concept of Rs-boundedness in Lp-spaces is a subject of classical harmonic
analysis, although it is not denoted in this way. It is mainly considered in the framework of vector-
valued singular integrals, cf. e.g. the monographs [St93], [GCRdF85] or [Gr04]. At the end of
this section we will give some examples that are based on results of classical harmonic analysis,
in particular we will give more bibliographical references. The explicit notion of Rs-boundedness
in Lp-spaces was introduced bei Lutz Weis in [We01a], where also elementary properties are
introduced. It was used there and in the sequel e.g. in [BK02] to show maximal regularity of
certain sectorial operators. There the central fact is used that in Lp-spaces R2-boundedness is
equivalent to R-boundedness if 1 ≤ p < +∞ (this is shown in a slightly more general version in
Remark 3.1.7), which in turn is a central tool in dealing with the question of maximal regularity.
In fact, many of the assertions we present in this section are already indicated in [We01a], or
they are variants of corresponding assertions for R-boundedness as shown in [KW04], Chapter
2.

In this section, let (Ω, µ), (Ω̃, µ̃) be σ-finite measure space and X,Y be complex Banach function
spaces over (Ω, µ) and (Ω̃, µ̃), respectively, with absolute continuous norm, and let s ∈ [1,+∞].
Our standard examples will be the spaces Lp := Lp(µ,C) with p ∈ [1,+∞). We note that
the basic ideas and definitions presented in this chapter easily generalize to the more general
setting of an abstract Banach lattice using the Krivine-calculus (cf. e.g. [LT96], Section II.1.d).
Nevertheless, in view of our later applications we will need stronger assumptions on the Banach
lattices which make it natural to consider Banach function spaces, and doing so we can avoid
non-essential technical difficulties.

Definition 3.1.1 (Rs-boundedness). Let T ⊆ L(X,Y ). The set T is called Rs-bounded, if there

67
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exists a constant C ∈ R>0, such that for all n ∈ N, T ∈ T n and x ∈ Xn:∥∥∥( n∑
j=1

|Tjxj |s
)1/s∥∥∥

Y
≤ C

∥∥∥( n∑
j=1

|xj |s
)1/s∥∥∥

X
, if s < +∞, (3.1.1)∥∥∥ sup

j∈N≤n
|Tjxj |

∥∥∥
Y
≤ C

∥∥∥ sup
j∈N≤n

|xj |
∥∥∥
X
, if s =∞. (3.1.2)

The infimum of all such bounds C is called the Rs-bound of T and denoted by Rs(T ). If
T ∈ L(X,Y ), we say that T is Rs-bounded if {T} is Rs-bounded and let Rs(T ) := Rs({T}).

Observe that taking n = 1 in (3.1.1) immediately yields the following

Remark 3.1.2. Let T ⊆ L(X,Y ) be Rs-bounded, then T ⊆ L(X,Y ), and T is norm-bounded
with supT∈T ‖T‖ ≤ Rs(T ).

Moreover, the following is a direct consequence of the definition: If T ⊆ L(X,Y ) and C > 0,
then T is Rs-bounded with Rs(T ) ≤ C if and only if T0 is Rs-bounded with Rs(Ts) ≤ C for all
finite subsets T0 ⊆ T , and in this case

Rs(T ) = sup{Rs(T0) | T0 ⊆ T finite}.

We note that in the sequel we will be faced with densely defined operators A : X ⊇ D(A)→ Y

such that A is Rs-bounded. In this situation we will also simply say that A is Rs-bounded and
define Rs(A) := Rs({A}) := Rs({A}).

If one considers x ∈ Xn as an element of M(Ω,Cn), we have∥∥∥( n∑
j=1

|xj |s
)1/s∥∥∥

X
= ‖x‖X(`sn) and

∥∥ sup
j∈N≤n

|xj |s
∥∥
X

= ‖x‖X(`∞n ),

respectively. So T ∈ T n can be identified with the diagonal operator

T̃ : Xn → Y n, x 7→ (Tjxj)j∈N≤n ,

which can be considered as a bounded operator X(`sn)→ Y (`sn). With this notation the set T is
Rs-bounded if and only if the set of operators

{T̃ |T ∈ T n, n ∈ N} ⊆
⋃
n∈N

L
(
X(`sn), Y (`sn)

)
is uniformly bounded.

Remark 3.1.3. Since X,Y have the Fatou property, we can replace the finite sums in (3.1.1) in
the definition of Rs-boundedness by infinite series and the suprema in (3.1.2) by suprema over
all N. In particular, a single operator T ∈ L(X,Y ) is Rs-bounded if and only if the diagonal
operator

(xn)n∈N 7→ (Txn)n∈N

induces a bounded operator T̃s ∈ L(X(`s), Y (`s)), and in this case Rs(T ) = ‖T̃s‖L(X(`s),Y (`s)).
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Definition/Proposition 3.1.4. Let RsL(X,Y ) := {T ∈ L(X,Y ) |T is Rs-bounded}. Then
RsL(X,Y ), endowed with the norm Rs(·), is a Banach space.

Proof. Let (Tn)n∈N ∈ RsL(X,Y )N such that Rs(Tn−Tm)→ 0 for n,m→∞. Since ‖ ·‖L(X,Y ) ≤
Rs(·) there is a T0 ∈ L(X,Y ) such that ‖Tn − T0‖L(X,Y ) → 0 for n→∞. We have to show that

(i) T0 ∈ RsL(X,Y ),

(ii) Rs(Tn − T )→ 0 for n→∞.

By our assumption we have ‖ ˜Tn − Tm‖L(X(`s),Y (`s)) → 0 for m,n→∞ (we drop the lower index
s for operators in this proof to hold notations concise), so in particular

C := sup
n∈N
‖T̃n‖L(X(`s),Y (`s)) < +∞.

(i) Let m ∈ N and x1, . . . , xm ∈ X, then for each n ∈ N we have

∥∥∥( m∑
j=1

|Tnxj |s
)1/s∥∥∥

Y
≤ C

∥∥∥( m∑
j=1

|xj |s
)1/s∥∥∥

X
,

and moreover,∥∥∥( m∑
j=1

|Tnxj |s
)1/s

−
( m∑
j=1

|Txj |s
)1/s∥∥∥

Y
≤

∥∥∥( m∑
j=1

|(Tn − T )xj |s
)1/s∥∥∥

Y
≤
∥∥∥ m∑
j=1

|(Tn − T )xj |
∥∥∥
Y

≤
m∑
j=1

‖(Tn − T )xj‖Y → 0 if n→∞,

hence∥∥∥( m∑
j=1

|Txj |s
)1/s∥∥∥

Y
= lim

n→∞

∥∥∥( m∑
j=1

|Tnxj |s
)1/s∥∥∥

Y
≤ C

∥∥∥( n∑
j=1

|xj |s
)1/s∥∥∥

X

(with the usual modifications if s = +∞). So T is Rs-bounded with Rs(T ) ≤ C.

(ii) We will again only consider the case s < +∞, the case s = +∞ follows easily by standard
modifications. Let ε > 0 and choose n0 ∈ N such that ‖ ˜(Tn − Tk)‖L(X(`s),Y (`s)) < ε/3 for all
k, n ≥ n0. Let n ≥ n0 and x ∈ X(`s) with ‖x‖X(`s) ≤ 1. By the dominated convergence theorem
we have∥∥∥( ∞∑

n=m

|xn|s
)1/s∥∥∥

X
→ 0 if m→∞,

hence we can choose an m ∈ N≥n0 such that

2C
∥∥x̃∥∥

X(`s)
= 2C

∥∥∥( ∞∑
n=m

|xn|s
)1/s∥∥∥

X
< ε/3.
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Define x̃ ∈ X(`s) by

x̃j :=

{
0 if j < m,

xn if j ≥ m.

Finally choose k ∈ N≥n0 such that (m − 1)‖(Tk − T )xj‖Y < ε/3 for all j = 1, . . . ,m, then we
obtain

‖ ˜(Tn − T )x‖Y (`s) ≤ ‖ ˜(Tn − Tk)x‖Y (`s) + ‖ ˜(Tk − T )x‖Y (`s)

≤ ‖ ˜(Tn − Tk)‖L(X(`s),Y (`s)) ‖x‖X(`s) +
∥∥∥( ∞∑

j=1

|(Tk − T )xj |s
)1/s∥∥∥

Y

≤ Rs(Tn − Tk) +
∥∥∥(m−1∑

j=1

|(Tk − T )xj |s
)1/s∥∥∥

Y
+
∥∥∥( ∞∑

j=m

|(Tk − T )xj |s
)1/s∥∥∥

Y

≤ ε/3 +
m−1∑
j=1

‖(Tk − T )xj‖Y +
∥∥ ˜(Tk − T )x̃

∥∥
Y (`s)

≤ ε/3 + ε/3 + 2C
∥∥x̃∥∥

X(`s)
≤ 2ε/3 + ε/3 = ε.

If the spaces X,Y have appropriate concavity and convexity properties, the norm-boundedness
of a set of operators also implies the Rs-boundedness for a certain range of s:

Remark 3.1.5. Let T ⊆ L(X,Y ). Let X be p-concave and Y be q-convex for some 1 ≤ p ≤
q ≤ +∞, and let T be norm-bounded. Then T is Rs-bounded for all s ∈ [p, q]. In particular, if
X = Lp, Y = Lq and T is norm-bounded, then T is Rs-bounded for all s ∈ [p, q].

Proof. Let s ∈ [p, q] and define C := supT∈T ‖T‖ < +∞. Let n ∈ N, T ∈ T n and x ∈ Xn, then

‖T̃ x‖Y (`sn) ≤ M (s)(Y ) ‖T̃ x‖`sn(Y ) = M (s)(Y )
∥∥(‖Tjxj‖Y )j

∥∥
`sn
≤M (s)(Y )

∥∥(C ‖xj‖X)j
∥∥
`sn

= M (s)(Y )C ‖x‖`sn(X) ≤ CM (s)(Y )M(s)(X) · ‖x‖X(`sn).

Here we used the fact that X is also s-concave and Y is s-convex since p ≤ s ≤ q, cf. Proposition
1.6.15, and the supplementary assertions follows from the fact that Lp is always p-concave and
p-convex, cf. Example 1.6.17 (a).

Moreover, the union of Rs-bounded sets is again Rs-bounded, if the Rs-norms are summable:

Remark 3.1.6. Let T ⊆ Pot(L(X,Y )) such that
∑
T ∈TRs(T ) < +∞, then also

⋃
T is Rs-

bounded, and Rs(
⋃

T) ≤
∑
T ∈TRs(T ).

Proof. Define C :=
∑
T ∈TRs(T ) < +∞. Let n ∈ N, x ∈ Xn and T ∈

(⋃
T
)n. Choose a finite

subset T0 ⊆ T and an injective mapping J : T0 → Pot(N≤n) such that J(T0) is a partition of
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N≤n and T (J(T )) ⊆ T for all T ∈ T0. Then the triangle inequality in Y (`sn) yields∥∥∥( n∑
j=1

|Tjxj |s
)1/s∥∥∥

Y
=

∥∥∥( ∑
T ∈T0

∑
j∈JT

|Tjxj |s
)1/s∥∥∥

Y
≤
∑
T ∈T0

∥∥∥( ∑
j∈JT

|Tjxj |s
)1/s∥∥∥

Y

≤
∑
T ∈T0

Rs(T )
∥∥∥( ∑

j∈JT

|xj |s
)1/s∥∥∥

X
≤ C

∥∥∥( n∑
j=1

|xj |s
)1/s∥∥∥

X
.

We recall the related definition of R-boundedness from Section 1.3: A set T ⊆ L(X,Y ) is called
R-bounded, if there exists a constant C ∈ R>0, such that for all n ∈ N, T ∈ T n and x ∈ Xn:

E
∣∣∣ n∑
j=1

rj ⊗ Tjxj
∣∣∣
X
≤ C E

∣∣∣ n∑
j=1

rj ⊗ xj
∣∣∣
X
, (3.1.3)

where (rj)j∈N is any sequence of independent symmetric ±1-valued, i.e. Bernoulli-distributed,
random variables on some probability space, and E denotes the expectation with respect to
the corresponding probability measure. We usually choose the Rademacher functions rj(t) :=
sgn sin(2jπt), j ∈ N on [0, 1].

Then with Proposition 1.6.21 we obtain the following close relation between R-boundedness and
R2-boundedness as already indicated in the introduction of this section.

Remark 3.1.7. Let T ⊆ L(X,Y ).

(1) If X is r-concave for some r < +∞, then R-boundedness of T implies that T is R2-
bounded,

(2) If Y is r-concave for some r < +∞, then R2-boundedness of T implies that T is R-bounded.

In particular, if both X and Y are r-concave for some r < +∞, then T is R-bounded if and only
if T is R2-bounded.

We will now turn to some persistence properties of Rs-boundedness that correspond to persis-
tence properties of R-boundedness, cf. e.g. [KW04], Section 2.

Proposition 3.1.8. Let S ⊆ L(X,Y ) be Rs-bounded.

(1) If T ⊆ L(X,Y ) is Rs-bounded, then the set S+T := {S+T |S ∈ S, T ∈ T } is Rs-bounded,
and

Rs(S + T ) ≤ Rs(S) +Rs(T ).

(2) If V is another Banach function space and T ⊆ L(V,X) is Rs-bounded, then the set
ST := {ST |S ∈ S, T ∈ T } is Rs-bounded with

Rs(ST ) ≤ Rs(S) · Rs(T ).
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Proof. This follows immediately by properties of the norm in the spaces X(`sn), Y (`sn), V (`sn).

The following convexity property is an important tool and is again a variant of a corresponding
result for R-bounded operators, cf. e.g. [KW04], Theorem 2.13.

Proposition 3.1.9. Let T ⊆ L(X,Y ) be Rs-bounded. Then the strong closure of the absolute
convex hull acos(T ) ⊆ L(X,Y ) is Rs-bounded with Rs(acos(T )) = Rs(T ).

Proof. By similar arguments as used in the proof of Proposition 3.1.4 the strong closure T s is
again Rs-bounded with Rs(T

s) ≤ Rs(T ), and we clearly have ‖(αjxj)j‖Y (`sn) ≤ ‖x‖X(`sn) for
x = (xj)j ∈ X(`sn), |αj | ≤ 1, so it remains to show that the convex hull co(T ) is Rs-bounded
with Rs(co(T )) = Rs(T ). Let S ∈ co(T )n = co(T n), then S =

∑m
k=1 λkT

(k) with suitable
T (k) ∈ T n, λk ∈ [0, 1] with

∑m
k=1 λk = 1. Hence

‖S̃x‖Y (`sn) =
∥∥ m∑
k=1

λkT̃ (k)x
∥∥
Y (`sn)

≤
m∑
k=1

λk‖T̃ (k)x‖Y (`sn) ≤
( m∑
k=1

λk
)
Rs(T )‖x‖X(`sn)

= Rs(T )‖x‖X(`sn).

For every σ-finite measure space (J, ν) and strongly measurable S : J → L(X,Y ) and a ∈ L1(J),
define an operator Ta,S ∈ L(X,Y ) by

Ta,Sx :=
∫
J
a(t)S(t)x dν(t) for all x ∈ X.

By approximation, it follows that Ta,S ∈ acos(S(J)) if ‖a‖L1 = 1. In this situation, we get

Corollary 3.1.10. Let T ⊆ L(X,Y ) be Rs-bounded, (J, ν) be a σ-finite measure space and
R > 0. Then the set

S := {Ta,S |S : J → L(X,Y ) strongly measurable with S(J) ⊆ T , a ∈ L1(J) with ‖a‖L1 ≤ R}

is Rs-bounded with Rs(S) ≤ RRs(T ).

This is proven in [KW04], Corollary 2.14 for R-boundedness, and using Proposition 3.1.9 the
proof carries over to our situation. Again in view of the corresponding results in [KW04] we
give some examples for an application of Corollary 3.1.10 that are taken from [KW04], Examples
2.15, 2.16 and can be proven in exactly the same way as it is done there using Corollary 3.1.10.

Example 3.1.11. Let S : [0,+∞)→ L(X,Y ) be strongly continuous such that S := S([0,+∞))
is Rs-bounded, and define the Laplace transforms

Ŝ(λ)x :=
∫ ∞

0
e−λtS(t)x dt for all x ∈ X,Re(λ) > 0.

Then the set Tω := {λŜ(λ) | λ ∈ Σω} is Rs-bounded for all ω ∈ [0, π/2) with Rs(T ) ≤ Rs(S).

Example 3.1.12. Let σ ∈ (0, π] and ω ∈ [0, σ). Let S : Σσ → L(X,Y ) be analytic such that
S := S

(
∂Σω\{0}

)
is Rs-bounded. Then
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(a) T := S(Σω) is Rs-bounded with Rs(T ) ≤ Rs(S),

(b) For each ω′ ∈ [0, ω) there is a constant Cω′ > 0 (independent of S) such that Tω′ :=
{λS′(λ) | Σω′} is Rs-bounded with Rs(Tω′) ≤ Cω′ Rs(S).

We recall from Section 1.6 some notations: If J ⊆ R is an interval and x : J → X is λ-measurable,
then by the continuous embedding X ↪→ M(µ) we can find a λ ⊗ µ-measurable representative
x̃ : J × Ω → C and hence identify x also with the measurable function ω 7→ x̃(·, ω). In this
manner we can e.g. deal with the question if x ∈ X(Ls∗(J)). If there is no risk of confusion, we
will work with this identification in the sequel without explicitly mentioning it.

With the convergence and approximation claims from Subsection 1.6.4 we obtain the following
continuous version of Rs-boundedness, which is again a variant of a corresponding result for
R-boundedness from [We01a], Lemma 4 a).

Proposition 3.1.13. Let s ∈ [1,+∞). Let J ⊆ R be a non-trivial interval and S : J → L(X,Y )
be strongly measurable such that S(J) is Rs-bounded. Then for all measurable x : J → X we
have ∥∥∥∥(∫

J
|S(t)x(t)|s dt

)1/s
∥∥∥∥
Y

≤ Rs(S(J)) ·
∥∥∥∥(∫

J
|x(t)|s dt

)1/s
∥∥∥∥
X

. (3.1.4)

In other words, the operator S extends to a continuous diagonal operator (S(t))t∈J from X(Ls(J))
to Y (Ls(J)).

Proof. Let C := Rs(S(J)). We first consider x ∈ S(J, ν)⊗ S(Ω, µ). Let x =
∑d

k=1 αk 1Ik ⊗1Ak
be a disjoint representation of x, where Ik ⊆ J and Ak ⊆ Ω are bounded sets and the Ik are
intervals such that J0 :=

⋃d
k=1 Ik is a finite interval. For each n ∈ N let Dn := {Dn,j | j ∈ N≤2n}

be a "dyadic" decomposition of J0, i.e each Dn,j has length `n := |Dn,j | = |J0|
2n for all j ∈ N≤2n .

Moreover we define the approximation Sn : J → L(X,Y ) by

Sn(·)ξ := E(S(·)ξ|Dn) =
2n∑
j=1

1Dn,j (·)Sn,jξ, where Sn,jξ :=
1
|Dn,j |

∫
Dn,j

S(t)ξ dt

for all ξ ∈ X, n ∈ N. Then in particular we have Sn,j ∈ acos(S(J)) for all n ∈ N, j ∈ N≤2n . We
have the following estimate∥∥∥∥(∫

J
|Sn(t)x(t)|s dt

)1/s
∥∥∥∥
Y

=

∥∥∥∥∥
( 2n∑
j=1

∫
Dn,j

∣∣∣ d∑
k=1

αk 1Ik(t)(Sn(t)1Ak)
∣∣∣s dt)1/s

∥∥∥∥∥
Y

=

∥∥∥∥∥
( 2n∑
j=1

∫
Dn,j

d∑
k=1

|αk|s 1Ik(t) |Sn(t)1Ak |
s dt

)1/s
∥∥∥∥∥
Y

=

∥∥∥∥∥
( d∑
k=1

2n∑
j=1

∫
Dn,j

1Ik(t) |Sn,j(αk 1Ak)|s dt
)1/s

∥∥∥∥∥
Y

=

∥∥∥∥∥
( d∑
k=1

2n∑
j=1

|Dn,j ∩ Ik|︸ ︷︷ ︸
=:rjk

·|Sn,j(αk 1Ak)|s
)1/s

∥∥∥∥∥
Y

=
∥∥∥∥( d∑

k=1

2n∑
j=1

∣∣Sn,j(r1/s
jk αk 1Ak)

∣∣s)1/s∥∥∥∥
Y

,
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where we used that we had chosen a disjoint representation. Since acos(S(J)) is still Rs-bounded
by Proposition 3.1.9 with Rs-constant not greater than C, we obtain

∥∥∥∥(∫
J
|Sn(t)x(t)|s dt

)1/s
∥∥∥∥
Y

≤ C

∥∥∥∥( d∑
k=1

2n∑
j=1

|r1/s
jk αk 1Ak |

s
)1/s

∥∥∥∥
X

.

Moreover the same calculations as above lead to∥∥∥∥( d∑
k=1

2n∑
j=1

|r1/s
jk αk 1Ak |

s
)1/s

∥∥∥∥
X

=
∥∥∥∥( d∑

k=1

( 2n∑
j=1

|Dn,j ∩ Ik|
)
· |αk 1Ak |

s

)1/s∥∥∥∥
X

=
∥∥∥∥( d∑

k=1

|Ik| · |αk|s 1Ak
)1/s∥∥∥∥

X

=
∥∥∥∥( d∑

k=1

∫
J
1Ik(t) · |αk|s 1Ak dt

)1/s∥∥∥∥
X

=
∥∥∥∥(∫

J

d∑
k=1

|αk|s 1Ik(t) 1Ak dt
)1/s

∥∥∥∥
X

=
∥∥∥∥(∫

J

∣∣ d∑
k=1

αk 1Ik(t) 1Ak
∣∣s dt)1/s

∥∥∥∥
X

=
∥∥∥∥(∫

J
|x(t)|s dt

)1/s
∥∥∥∥
X

,

hence putting all together we obtain∥∥∥∥(∫
J
|Sn(t)x(t)|s dt

)1/s
∥∥∥∥
Y

≤ C

∥∥∥∥(∫
J
|x(t)|s dt

)1/s
∥∥∥∥
X

.

Further we have

Sn(t)x(t)− S(t)x(t) =
d∑

k=1

αk 1Ik(t)
(
(Sn(t)− S(t))1Ak

)
,

hence

(∫
J
|Sn(t)x(t)− S(t)x(t)|s dt

)1/s
=

( d∑
k=1

|αk|s
∫
J
1Ik(t)

∣∣(Sn(t)− S(t))1Ak
∣∣s dt)1/s

≤
d∑

k=1

|αk|
(∫

J
1Ik(t)

∣∣(Sn(t)− S(t))1Ak
∣∣s dt)1/s

≤
d∑

k=1

|αk|
(∫

J0

∣∣Sn(t)1Ak −S(t)1Ak
∣∣s dt)1/s

→ 0

pointwise µ-a.e. for n → ∞ (this can easily be seen by considering suitable representatives
pointwise a.e. and using the well known fact that E(F |Dn)→ E(F |D∞) = F pointwise a.e. and
in Ls

(
J0, dt/|J0|

)
for F ∈ Ls

(
J0, dt/|J0|

)
, where D∞ is the σ-algebra generated by

⋃
n∈NDn, cf.

e.g. [Ka97], Theorem 6.23 in combination with Corollary 6.22 and an Lp-version of Lemma 5.5).



3. Rs-boundedness and Rs-sectorial operators
3.1. Rs-boundedness 75

So the Fatou property of Y yields∥∥∥∥(∫
J
|S(t)x(t)|s dt

)1/s
∥∥∥∥
Y

=
∥∥∥∥ lim
n→∞

(∫
J
|Sn(t)x(t)|s dt

)1/s
∥∥∥∥
Y

≤ lim inf
n→∞

∥∥∥∥(∫
J
|Sn(t)x(t)|s dt

)1/s
∥∥∥∥
Y

≤ C ·
∥∥∥∥(∫

J
|x(t)|s dt

)1/s
∥∥∥∥
X

.

Now let x : J → L(X,Y ) be an arbitrary measurable function such that ‖x‖X(Ls(J)) < +∞.
By Lemma 1.6.25 we can choose a sequence (xn)n∈N ∈ (S(J, ν) ⊗ S(Ω, µ))N with the following
properties:

1. xn(t, ω)→ x(t, ω) for n→∞ for (λ⊗ µ)-a.e. (t, ω) ∈ J × Ω,

2. xn(t)→ x(t) in X for n→∞ for µ-a.e. t ∈ J ,

3. lim inf
n→∞

‖xn‖X(Ls(J)) ≤ ‖x‖X(Ls(J)).

We apply Lemma 1.6.24 to the measurable functions t 7→ S(t)x(t), S(t)xn(t) and obtain that we
can w.l.o.g. (by possibly choosing a subsequence) assume that (S(·)xn(·))(··) → (S(·)y(·))(··)
λ⊗ µ-a.e. for n→∞. Using again the Fatou property yields finally∥∥∥∥(∫

J
|S(t)x(t)|s dt

)1/s
∥∥∥∥
Y

=
∥∥∥∥(∫

J
lim
n→∞

|S(t)xn(t)|s dt
)1/s

∥∥∥∥
Y

≤
∥∥∥∥lim inf
n→∞

(∫
J
|S(t)xn(t)|s dt

)1/s
∥∥∥∥
Y

≤ lim inf
n→∞

∥∥∥∥(∫
J
|S(t)xn(t)|s dt

)1/s
∥∥∥∥
Y

≤ C lim inf
n→∞

∥∥∥∥(∫
J
|xn(t)|s dt

)1/s
∥∥∥∥
X

≤ C ·
∥∥∥∥(∫

J
|x(t)|s dt

)1/s
∥∥∥∥
X

.

In the case s = 2 the converse conclusion of Proposition 3.1.4 is also true if X,Y are r-concave
for some r < +∞, as in this case Rs-boundedness is equivalent to R-boundedness, a proof can
be found in [We01a], 4a).

We obtain an analogous result for s = +∞, in this case we can of course drop the measurability
assumptions on S.

Proposition 3.1.14. Let J be a non-empty set and S : J → L(X,Y ) such that S(J) is R∞-
bounded. Then for all mappings x : J → X we have∥∥ sup

t∈J
|S(t)x(t)|

∥∥
Y
≤ R∞(S(J)) ·

∥∥ sup
t∈J
|x(t)|

∥∥
X
. (3.1.5)

Proof. Let C := R∞(S(J)), and let x : J → X. Then by Proposition 1.6.2 we can choose
a countable subset J0 ∈ J such that supt∈J |S(t)x(t)| = supt∈J0

|S(t)x(t)|. Let (tj)k∈N be an
enumeration of J0, then for all n ∈ N we obtain∥∥ sup

j∈N≤n
|S(tj)x(tj)|

∥∥
Y
≤ C ·

∥∥ sup
j∈N≤n

|x(tj)|
∥∥
X
,
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and the Fatou property yields∥∥ sup
t∈J
|S(t)x(t)|

∥∥
Y

=
∥∥ sup
t∈J0

|S(t)x(t)|
∥∥
Y

=
∥∥ lim
n→∞

sup
j∈N≤n

|S(tj)x(tj)|
∥∥
Y

≤ lim inf
n→∞

∥∥ sup
j∈N≤n

|S(tj)x(tj)|
∥∥
Y
≤ C · lim inf

n→∞

∥∥ sup
j∈N≤n

|x(tj)|
∥∥
X

≤ C ·
∥∥ sup
j∈N
|x(tj)|

∥∥
X
≤ C ·

∥∥ sup
t∈J
|x(t)|

∥∥
X
.

Remark 3.1.15. For later purpose we note again that there are, of course, also discrete versions
of Propositions 3.1.13, 3.1.14 which follow immediately with the Fatou property. For, e.g., s ∈
[1,+∞) and (Sj)j∈Z ∈ L(X,Y )Z such that S := {Sj | j ∈ Z} is Rs-bounded, we have for all
(xj)j∈Z ∈ XZ:∥∥∥(∑

j∈Z
|Sjxj |s

)1/s∥∥∥
X
≤ Rs(S) ·

∥∥∥(∑
j∈Z
|xj |s

)1/s∥∥∥
X
. (3.1.6)

Further standard methods to obtain Rs-boundedness are by means of interpolation and duality.
Recall that a set T of operators is Rs-bounded if and only if the diagonal operators T̃ for T ∈
T n, n ∈ N induce uniformly bounded operators from X(`sn) to Y (`sn). By complex interpolation
we obtain [X(`s0n ), X(`s1n )]θ = X(`sθn ) (with equal norms) where 1

sθ
= (1 − θ) 1

s0
+ θ 1

s1
(for more

details cf. Section 2.4). This leads immediately to the following

Proposition 3.1.16. Let 1 ≤ s0 < s1 ≤ ∞. If T ⊆ L(X,Y ) is Rsj -bounded for j = 1, 2, then
T is Rs-bounded for all s ∈ [s0, s1].

In the special case X = Y = Lp, a norm-bounded set T ⊆ X is always Rp-bounded, as we have
seen in Remark 3.1.5. As there are various results for R-boundedness of operators, sometimes
the following remark is helpful.

Corollary 3.1.17. Let X = Lp and T ⊆ L(X) be R-bounded. Then T is Rs-bounded for all
s ∈ [2 ∧ p, 2 ∨ p].

In particular, finite operator sets in Lp are always Rs-bounded for all s ∈ [2 ∧ p, 2 ∨ p], since
the latter is true for R-boundedness. Hence it is noteworthy that in spite of these special cases,
finitely many or even a single operator need not to be Rs-bounded, even in the Hilbert space
case.

Example 3.1.18. Consider X = Y = L2([0, 1]). Let rj(t) := sgn(sin(2jπt)) for all t ∈ [0, 1], j ∈
N be the Rademacher functions. Then (rj)j∈N is an orthonormal system in X. Let us further
define Ij := (2−j , 2−j+1], fj(t) := 2j/2 1Ij for all j ∈ N, then it is easily checked that (fj)j∈N is
an orthonormal system in X as well. For all n ∈ N, we have∥∥∥( n∑

j=1

|rj |s
)1/s∥∥∥

L2

=
∥∥∥( n∑

j=1

1[0,1]

)1/s∥∥∥
L2

=
∥∥n1/s

1[0,1]

∥∥
L2

= n1/s.
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Because the fj have disjoint supports, we have on the other hand∥∥∥( n∑
j=1

|fj |s
)1/s∥∥∥

L2

=
(∫ 1

0

( n∑
j=1

|fj |s
)2/s

)1/2

=
( n∑
j=1

∫ 1

0

(
|fj |s

)2/s)1/2

=
( n∑
j=1

∫ 1

0
|fj |2

)1/2

=
( n∑
j=1

‖fj‖2L2

)1/2

= n1/2.

As the (rj)j , (fj)j are orthonormal sequences, we can construct operators T, S on X with the
property Tfj = rj and Srj = fj for all j ∈ N (for example by defining T, S on the fj ,rj
respectively, an letting them 0 on the orthogonal complement). Then the above equalities show
that T is not Rs-bounded in case s < 2 and S is not Rs-bounded in case s > 2.

We now have a look at duality. Recall that the dual spaceX ′ can be identified with the associated
space X# of X (cf. Subsection 1.6.2) since X has absolute continuous norm, and for s ∈ [1,+∞)
we have in this sense (X(`s))′ = X ′(`s

′
) by Theorem 1.6.12 since `s has (RNP) if s ∈ [1,+∞).

Moreover, for T ∈ L(X,Y ) we identify its dual operator T ′ with the corresponding operator
T ′ : Y # → X#. Then we obtain the following duality result.

Proposition 3.1.19. Let s ∈ [1,+∞) and T ⊆ L(X) be Rs-bounded. Then T ′ := {T ′ |T ∈ T }
is Rs′-bounded in X ′.

We note that in general the Banach function space X ′ does not have absolute continuous norm
and hence does not fit in our framework. So if we use duality results like Proposition 3.1.19, we
usually require X to be reflexive, so in turn X ′ has also absolute continuous norm, cf. Theorem
1.6.12.

We will give some more classical criteria to check Rs-boundedness for concrete operators. Recall
that a linear operator S : X → Y is called positive, if x ≥ 0 implies Sx ≥ 0 for all x ∈ X, and
positive operators are always bounded, cf. Section 2.5. Then we obtain the following criterion
for Rs-boundedness, which we prove in detail for the sake of completeness.

Proposition 3.1.20. Let T ⊆ L(X,Y ) and S : X → Y be a positive operator that dominates
T , i.e. |Tx| ≤ S|x| for all T ∈ T , x ∈ X. Then T is Rs-bounded with Rs(T ) ≤ ‖S‖ for all
s ∈ [1,+∞].

Proof. Choose r ∈ [1,+∞] with 1/s + 1/r = 1. Let n ∈ N and T ∈ T n, x ∈ Y n. Then we have
by duality( n∑

j=1

|Tjxj |s
)1/s

= sup
α∈B`nr

n∑
j=1

|αjTjxj | ≤ sup
α∈B`nr

n∑
j=1

S|αjxj | = sup
α∈B`nr

S
( n∑
j=1

|αjxj |
)

≤ S
(

sup
α∈B`nr

n∑
j=1

|αjxj |
)

= S
( n∑
j=1

|xj |s
)1/s

,

hence∥∥∥( n∑
j=1

|Tjxj |s
)1/s∥∥∥

X
≤
∥∥∥S( n∑

j=1

|xj |s
)1/s∥∥∥

X
≤ ‖S‖

∥∥∥( n∑
j=1

|xj |s
)1/s∥∥∥

X
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(with the usual modification if s = +∞).

In fact, the proof is based on a simplified version of the general result that positive operators
S : X → Y always have bounded extensions S ⊗ IdE in the vector-valued spaces X(E)→ Y (E)
(cf. Proposition 2.5.3), and the obvious, but useful fact, that Rs-boundedness is inherited by
domination in the following sense.

Remark 3.1.21. Let T ,S ⊆ L(X,Y ) such that for all T ∈ T there is an S ∈ S such that
|Tx| ≤ |Sx| for all x ∈ X. Then T is Rs-bounded if S is Rs-bounded.

At the end of this section we have a glance at the concrete situation whereX = Lp(Ω), Y = Lq(Ω)
based on classical Calderón-Zygmund theory. More involved examples in this framework will be
given in Section 3.5.

We assume that (Ω, d) is a metric space and µ is a σ-finite regular Borel measure on Ω such that
(Ω, d, µ) is a space of homogeneous type in the sense of Coifman and Weiss, cf. [CW71], [CW77],
i.e. there is a constant C1 ≥ 1 such that

µ(B(x, 2r)) ≤ C1 µ(B(x, r)) for all x ∈ Ω, r > 0. (3.1.7)

From (3.1.7) one can deduce the existence of some D > 0 and CD ≥ 1 such that

µ(B(x, λr)) ≤ CD λD µ(B(x, r)) for all x ∈ Ω, r > 0, λ ≥ 1. (3.1.8)

One central issue in this situation is the Fefferman-Stein-inequality, which statesRs-boundedness
of the (uncentered) Hardy-Littlewood maximal operator, which is defined as

(Mf)(x) := sup
{

1
µ(B)

∫
B
|f | dµ

∣∣∣B ⊆ Ω is a ball with x ∈ B
}

for all f ∈ L1
loc(Ω), x ∈ Ω.

The following classical theorem holds.

Theorem 3.1.22 (Fefferman-Stein). Let p ∈ (1,+∞) and s ∈ (1,+∞], then the sublinear
operator M is Rs-bounded in Lp(Ω).

This originates in the paper [FS71] for the case Ω = Rd. Alternative proofs for this special
situation can be found in [GCRdF85], Corollary V.4.3 or in [Gr04], Theorem 4.4.6 . The gener-
alization on spaces of homogeneous type can be found in [GLY07] , Theorem 1.2. We will give
more details about the proof of Theorem 3.1.22 in the sequel after the following examples.

The Rs-boundedness of the Hardy-Littlewood maximal operator yields a wide class of examples
for Rs-bounded sets of classical operators by well known uniform estimates against the maximal
function and the simple fact that Rs-boundedness is preserved under domination, cf. Proposition
3.1.20 above. One important fact is that in the classical case Ω = RD the dilations of any
function that has a radial positive decreasing integrable majorant can be controlled by the
Hardy-Littlewood maximal operator: For any function u : RD → C we define its dilations
ut(x) := t−Du(x/t) for all x ∈ RD, t > 0. Then we obtain the following classical result.
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Proposition 3.1.23. Let ϕ : [0,∞) → [0,∞) be a decreasing measurable function such that
r 7→ ϕ(r)rD−1 is integrable. Let Φ ∈ L1(RD) such that |Φ(x)| ≤ ϕ(|x|) for all x ∈ RD, t > 0.
Then we have the pointwise estimate

sup
t>0
|Φt ∗ f(x)| ≤ ‖ϕ(| · |)‖L1(RD) (Mf)(x) for all x ∈ RD, f ∈ L1

loc(RD). (3.1.9)

Hence the set of convolution operators {Φt ∗ · | t > 0} is Rs-bounded on Lp(RD) for all p ∈
(1,+∞), s ∈ (1,+∞].

A proof may be found in many standard monographs about harmonic or Fourier analysis, e.g.
in [Du01], Proposition 2.7 and Corollary 2.8. A concrete application is the following example.

Example 3.1.24. Let D ∈ N, p ∈ (1,∞) and

∆ : Lp(RD) ⊇ Hp,2(RD)→ Lp(RD), f 7→ ∆f =
D∑
j=1

∂2
j f

be the Laplace operator, where Hp,2 = Hp,2(RD) = {f ∈ Lp(RD) | ∂αf ∈ Lp for all |α| ≤ 2}.
Then the set of operators T := {t(t−∆)−1 | t > 0} is Rs-bounded in Lp(RD) for all s ∈ (1,+∞].

Proof. Define ψt(ξ) := t(t+ |ξ|2)−1 for all ξ ∈ RD, t > 0. Then t(t−∆)−1f = F−1ψtFf for each
f ∈ S, where F is the Fourier transform. So the operator t(t−∆)−1 is given by convolution with
the kernel F−1ψt. Since ψt = ψ1(t−1/2·) we have F−1ψt = F−1(ψ1(r·)) = r−D(F−1ψ1)(·/r)
with r = t−1/2. Hence the set T equals the set of convolution operators {Φr ∗ · | r > 0} with
Φ := F−1ψ1. A standard calculation (or using Laplace transform of the heat semigroup) shows
that Φ is given by

Φ(x) =
∫ ∞

0
(4πτ)−D/2e−τe−|x|

2/4τ dτ for all x ∈ RD. (3.1.10)

Hence Φ ∈ L1 with ‖Φ‖L1 = 1, so by Young’s inequality we have ‖Φr ∗f‖p ≤ ‖f‖p for all f ∈ Lp.
This shows that the convolution operators Φr ∗ · , r > 0 are uniformly bounded on Lp. Moreover,
the radial function Φ fulfills the assumptions of Proposition 3.1.23, so this gives the claim.

As announced above we will now show one possible way to prove Theorem 3.1.22, which is
indeed the line of proof in the literature cited above. It is based on a result about extrapolating
continuity on the Lp-scale for (singular) integral operators which have a kernel that fulfills the
Hörmander condition, which is interesting in itself as well. We give a short sketch of this: Let
E,F be Banach spaces, K : Ω × Ω\ IdΩ → L(E,F ) be a locally integrable mapping. A linear
operator T : L∞c (Ω, E)→ L1

loc(Ω, F ) is said to be associated with the kernel K if

Tf(x) =
∫

Ω
K(x, ω)f(ω) dµ(ω)
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for all f ∈ L∞c (Ω, E) and x /∈ supp(F ). The kernel K is said to fulfill the Hörmander condition,
if there is a constant B > 0 such that∫

d(ω,y)>2d(y,z)

‖K(ω, y)−K(ω, z)‖L(E,F ) dµ(ω) ≤ B, and (3.1.11)

∫
d(ω,y)>2d(y,z)

‖K(y, ω)−K(z, ω)‖L(E,F ) dµ(ω) ≤ B for all y, z ∈ Ω.

Then we have the following result taken from [GLY07], Theorem 1.1, which is classical for
Ω = RD.

Proposition 3.1.25. Let K fulfill the Hörmander condition (3.1.11) and let T be a bounded
operator from Lr(Ω, E) to Lr(Ω, F ) for some r ∈ (1,∞] with associated kernel K. Then T

extends to a bounded operator from Lp(Ω, E) to Lp(Ω, F ) for all p ∈ (1,∞), and we have an
estimate

‖Tf‖p ≤ Cp ‖F‖p for all f ∈ Lp(Ω, E), (3.1.12)

where the constant Cp only depends on Ω, p and the constants B, ‖T‖r associated to the kernel
K and the operator T .

In fact, this proposition can be applied twice and is then self improving in the following sense
(cf. [GLY07], Corollary 2.9):

Proposition 3.1.26. Let K fulfill the Hörmander condition (3.1.11) and let T be a bounded
operator from Lr(Ω, E) to Lr(Ω, F ) for some r ∈ (1,∞] with associated kernel K. Then T ⊗ Id`q
extends to a bounded operator from Lp(Ω, `q(E)) to Lp(Ω, `q(F )) for all p, q ∈ (1,∞), and we
have an estimate∥∥∥(∑

j∈N
‖Tfj‖qF

)1/q∥∥∥
p
≤ Cp,q

∥∥∥(∑
j∈N
‖Tfj‖qE

)1/q∥∥∥
p

for all (fj)j∈N ∈ Lp(Ω, `q(E)), (3.1.13)

where the constant Cp,q only depends on Ω, p, q and the constants B, ‖T‖r associated to the kernel
K and the operator T .

In fact, Proposition 3.1.26 can easily be deduced from Proposition 3.1.25 by considering the
vector-valued kernels K(·, ··)⊗ Id`q . If E = F = C, Proposition 3.1.26 gives a classical criterion
for Rs-boundedness.

A well known and well studied class of operators that satisfy the assumptions of Proposition
3.1.25 (for E = F = C) are the Calderón-Zygmund operators. These are bounded operators on
L2(Ω) that are associated to a so called standard kernel, which in particular satisfies the Hörman-
der condition. Since we will usually not deal explicitly with Calderón-Zygmund operators in this
work, we will not go into detail but just refer to the standard literature as [St93], [GCRdF85],
[Gr04] or [Du01].
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As indicated above we will now give a sketch of how the proof of Rs-boundedness of the Hardy-
Littlewood maximal operator can be reduced to the above Proposition 3.1.26. In a first step we
define the so called centered Hardy-Littlewood maximal operator by

(Mcf)(x) := sup
r>0

1
µ(Br(x))

∫
Br(x)

|f | dµ for all f ∈ L1
loc(Ω), x ∈ Ω.

Then it is an easy consequence of the doubling property (3.1.8) that we have the pointwise
estimate

(Mcf)(x) ≤ (Mf)(x) ≤ 3DCD (Mcf)(x) for all f ∈ L1
loc(Ω) and a.e. x ∈ Ω,

hence it is sufficient to consider Mc instead of M . We will only show the idea in the case
Ω = RD, the proof of the general case follows the same idea, but one has to make more involved
approximations in the general space (Ω, µ, d). So we assume from now on that Ω = RD, then
Mcf(x) = supr>0 ψr ∗ |f |(x) for all f ∈ L1

loc(Ω) and a.e. x ∈ Ω, where ψ := 1
µ(B1(0)) 1B1(0).

Let ϕ ∈ S(RD) be positive and radially symmetric decreasing such that ϕ|B1(0) ≥ 1
µ(B1(0)) , then

ϕ ≥ ψ ≥ 0, hence

Mcf(x) ≈ sup
t>0

ϕt ∗ |f(x)| = sup
t∈Q>0

ϕt ∗ |f(x)|

by Proposition 3.1.23 and the fact that 0 ≤ ψ ≤ ϕ, and since ϕ is continuous. Moreover it is
sufficient to consider only the term supt∈F |ϕt ∗ f(x)| for any finite subset F ⊆ Q>0 and to show
that we obtain uniform bounds that do not depend on F . Let us consider the maximal operator
Mϕ,F defined by Mϕ,F f(x) := supt∈F |ϕt ∗ f(x)| for all f ∈ L1

loc(RD) and a.e. x ∈ RD. Then in
the same way as in Chapter 2 the maximal operator Mϕ,F can be considered as a linear operator

Mϕ,F : Lp(RD) ⊇ SD → C0(RD, `∞(F ))

with associated convolution kernel KF (x) := (ϕt(x))x∈F ∈ L(C, `∞(F )). Since ϕ ∈ S, it is easily
checked that the Hörmander condition for the kernel KF is satisfied in the following simpler form
for convolution operators:

∃C > 0 ∀ y ∈ RD :
∫
|x|>2|y|

sup
t∈F
|ϕt(x− y)− ϕt(x)| dx ≤

∫
|x|>2|y|

sup
t>0
|ϕt(x− y)− ϕt(x)| dx ≤ C

Moreover, Mϕ,F acts obviously as a bounded operator L∞(RD) → L∞(RD, `∞(F )), where the
norm is controlled by ‖ϕ‖∞. Thus Proposition 3.1.26 yields Theorem 3.1.22, since the norm
bounds do only depend on ϕ, but not on F . The details for this approach in the case Ω = RD

can be found e.g. in [GCRdF85], Section V.4, [Gr04] Theorem 4.6.6, or [Du01] Chapter 5, §6.7,
and the general case is treated in [GLY07], Section 3.

Finally we note that there are many works concerning Rs-boundedness (without using this ter-
minology) in the framework of classical harmonic analysis. Indeed, Proposition 3.1.26 is an
example for a modern version of such classical results. It is noteworthy that in the monograph



3. Rs-boundedness and Rs-sectorial operators
3.2. Rs-sectorial operators 82

[GCRdF85] this topic is intensively studied in connection with some kind of weighted estimates,
also involving Muckenhoupt weights. We note that nevertheless that notion of weighted esti-
mates differs from the concept of weighted estimates as we will use it in Section 3.5. In fact, in
the article [Ga90] the topics from the monograph [GCRdF85] are also considered in the more
general framework of Banach function spaces, as we do it here as well.

3.2 Rs-sectorial operators

Let X be a Banach function space with absolute continuous norm. In this section, A : X ⊇
D(A) → X will always denote a sectorial operator with type ω(A) and with dense range and
domain, cf. Section 1.2.

To avoid technical difficulties in some situations, we assume additionally that the operator A is
injective and has dense domain and range. Recall that the density of R(A) already implies that
A is injective, and if X is reflexive, then D(A) is always dense, and R(A) is dense if and only if
A is injective. Actually, our assumption is not much loss of generality since in our situation the
considered spaces are usually reflexive, and we are mostly interested in injective operators since
we want to use the full strength of the general functional calculus.

3.2.1 Definition and elementary properties of Rs-sectorial operators

Definition 3.2.1. Let s ∈ [1,+∞]. The operator A is called Rs-sectorial, if there exists an
ω ∈ [0, π) such that σ(A) ⊆ Σω and the set {zR(z,A) | z ∈ C\Σσ} is Rs-bounded for each
σ ∈ (ω, π). The infimum ωRs(A) of all such ω is called the Rs-type of A.

In this case we define

Ms,σ(A) := MRs,σ(A) := Rs({zR(z,A), AR(z,A) | z ∈ C\Σσ})

for all σ ∈ (ωRs(A), π). Observe that this set is indeed also Rs-bounded, since

AR(z,A) = zR(z,A)− idX for all z ∈ C\Σσ,

hence MRs,σ(A) ≤ Rs({zR(z,A) | z ∈ C\Σσ}) + 1 ≤ 2MRs,σ(A).

Recall our notation `s := `s(N,C). We will introduce a diagonal operator extension Ãs of A⊗Id`s
– which turns out to be equal to the vector-valued extension A`s as introduced in Section 2.5 if
s < +∞ – such that properties as Rs-sectoriality and Rs-boundedness of the H∞-calculus can be
expressed as "simple" sectoriality and boundedness of theH∞-calculus for the single operator Ãs.
Although this is a natural concept, we note that it is not always straightforward to check these
correspondences. Indeed, while Rs-sectoriality of A will turn out to imply sectoriality of Ãs by
definition, the converse is not clear, since Rs-sectoriality of the single operators λR(λ,A) might
not imply Rs-sectoriality of the set {λR(λ,A) | λ ∈ C\Σσ}. Furthermore, the correspondence
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between Rs-boundedness of the H∞-calculus of A and boundedness of the H∞-calculus of Ãs is
more involved, and in the case that f(A) is Rs-bounded for any f ∈ H∞(Σ)σ, we will be able
to show that indeed A has an Rs-bounded H∞-calculus under suitable assumptions. The latter
will be done in Subsection 3.2.3.

Definition/Proposition 3.2.2. Let s ∈ [1,+∞] and assume that A is Rs-sectorial. Define the
diagonal operator

Ãs := {((xn)n∈N, (Axn)n∈N) | (xn)n∈N ∈ X(`s), xn ∈ D(A) for all n ∈ N and (Axn)n∈N ∈ X(`s)}
(3.2.1)

in X(`s). Then Ãs is a sectorial operator in X(`s) with ω(Ãs) ≤ ωRs(A), and we have

∀λ ∈ C\ΣωRs (A), x ∈ X(`s) : R(λ, Ãs)x = (R(λ,A)xn)n∈N. (3.2.2)

Proof. Let σ ∈ (ωRs(A), π). For all λ ∈ C\Σσ =: S define the operator R(λ) := λR(λ,A), then
R(S) is Rs-bounded, so let M := Rs(R(S)). Moreover, for each λ ∈ S and x = (xn)n∈N ∈ X(`s)
define

R̃(λ)x := (R(λ)xn)n∈N.

Then R̃(λ) ∈ L(X(`s)), and the operator set R̃(S) is uniformly bounded by M . Moreover it is
an easy calculation that R̃(λ) = λR(λ, Ãs), hence Ãs is sectorial with ω(Ãs) ≤ σ.

The representation (3.2.2) of the resolvents of Ãs implies that also the functional calculus for Ãs
is just given by diagonal operators with maximal domains. Recall that B(Σσ) is the algebra of
analytic functions on the sector Σσ that are polynomially bounded at 0 and ∞, cf. Section 1.2.

Lemma 3.2.3. Let s ∈ [1,+∞]. Assume that A is Rs-sectorial and let σ ∈ (ωRs(A), π] and
f ∈ B(Σσ). Then

D(f(Ãs)) = {(xn)n∈N ∈ X(`s) | xn ∈ D(f(A)) for all n ∈ N and (f(A)xn)n∈N ∈ X(`s)}

and f(Ãs)x = (f(A)xn)n∈N for all x = (xn)n∈N ∈ D(f(Ãs)).

Proof. Let first ϕ ∈ H∞0 (Σσ). Let ω ∈ (ωRs(A), σ) and Γ be the usual parametrization of the
boundary ∂Σω. Since the projections πk : X(`s) → X, (xn)n∈N 7→ xk are continuous for all
k ∈ N, the representation (3.2.2) of the resolvents of Ãs implies

ϕ(Ãs)x =
1

2πi

∫
Γ
ϕ(z)R(z, Ãs)x dz =

(
1

2πi

∫
Γ
ϕ(z)R(z,A)xn dz

)
n∈N

= (ϕ(A)xn)n∈N

for all x = (xn)n∈N ∈ X(`s). Now consider the general case f ∈ B(Σσ). Let ρ(z) := z(1 + z)−2

and choose m ∈ N0 such that ϕ := ρmf ∈ H∞0 (X(`s)). Then

f(Ãs) = (ρ(Ãs))−m(ρmf)(Ãs) =
(
Ãs(1 + Ãs)−2

)−m
ϕ(Ãs) =

(
(1 + Ãs)2Ã−1

s

)m
ϕ(Ãs).

This yields the claim since
(
(1 + Ãs)2Ã−1

s

)m is a diagonal operator with maximal domain.
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Finally we observe that in the case s < +∞ the diagonal operator Ãs coincides with the vector-
valued extension A`s as defined in Section 2.5

Remark 3.2.4. Let s ∈ [1,+∞). Then Ãs = A`
s, where the latter operator is defined as in

Section 2.5.

Proof. So assume first that (x, y) ∈ A`s . Let k ∈ N and define ϕk : `s → C, z 7→ zk, then ϕk ∈
(`s)′, 〈x, ϕk〉 = xk and 〈y, ϕk〉 = yk. Thus by definition of A`s we obtain xk = 〈x, ϕk〉 ∈ D(A) and
yk = 〈y, ϕk〉 = A〈x, ϕk〉Axk, hence (Axn)n∈N = y ∈ X(`s), so x ∈ D(Ãs) and A`sx = y = Ãsx.

Now let conversely x = (xn)n∈N ∈ D(Ãs). Let ϕ = (an)n∈N ∈ `s
′ ∼= (`s)′, then by Hölder’s

inequality (cf. Subsection 1.6.2)

‖〈x, ϕ〉‖X =
∥∥∥ ∞∑
n=1

anxn

∥∥∥
X
≤
∥∥∥ ∞∑
n=1

|anxn|
∥∥∥
X
≤
∥∥∥∥( ∞∑

n=1

|xn|s
)1/s

·
( ∞∑
n=1

|an|s
′
)1/s′

∥∥∥∥
X

= ‖a‖`s′ · ‖x‖X(`s)

and analogously ‖〈Ãsx, ϕ〉‖X =
∥∥∥ ∞∑
n=1

anAxn

∥∥∥
X
≤
∥∥∥ ∞∑
n=1

|anAxn|
∥∥∥
X
≤ ‖a‖`s′ · ‖Ãsx‖X(`s).

Since A is closed, this implies 〈x, ϕ〉 =
∞∑
n=1

anxn ∈ D(A) and A〈x, ϕ〉 =
∞∑
n=1

anAxn = 〈Ãsx, ϕ〉,

i.e. (x, Ãsx) ∈ A`s .

With Proposition 2.5.1 this immediately yields the following

Corollary 3.2.5. Let s ∈ [1,+∞) and A be Rs-sectorial, then the following statements hold.

(1) A⊗ Id`s ⊆ Ãs and Ãs = A⊗ IdE,

(2) If λ ∈ C\ΣωRs(A)
, then R(λ, Ãs) = R(λ,A)⊗ Id`s = R̃(λ,A)s,

(3) If D is a core for A, then D(N) :=
{

(xn)n ∈ DN | {n ∈ N : xn 6= 0} is finite
}
is a core for

Ãs,

(4) Let σ > ωRs(A) and f ∈ B(Σσ), then f(Ãs) = f(A)⊗ Id`s = f̃(A)s.

We have left out the case s = +∞ in our considerations of Remark 3.2.4 above. In this case only
the inclusion A`

s ⊆ Ãs is trivial, but it seems that the other inclusion Ã∞ ⊆ A`
∞ might fail,

since the dual space of `∞ is "too large". Nevertheless, in the sequel it is sufficient to work with
the operators Ãs for s ∈ [1,+∞], hence we will not discuss this problem any further.

We will now turn to some elementary properties of Rs-sectorial operators that are standard for
sectorial operators or e.g. R-sectorial operators. In fact, many properties can be proven analo-
gously as it is done for R-sectorial operators in [KW04], Chapter 2, hence we will often refer to
the proofs given there.

The same arguments as for R-sectorial operators show the following
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Remark 3.2.6. If the set {t(t+A) | t > 0} is Rs-bounded, then A is Rs-sectorial.

By Example 3.1.24 we obtain immediately that the Laplace operator is Rs-sectorial in Lp(Rd)
for all p ∈ (1,+∞), s ∈ (1,+∞]. We will show a more detailed assertion in Proposition 3.2.11
below, where we also state the Rs-sectoriality angle.

Using the elementary functional calculus for H∞0 -functions we can extend Rs-boundedness to
more general sets consisting of operators generated by functions of A.

Lemma 3.2.7. Let s ∈ [1,+∞] and A be an Rs-sectorial operator in X. Let σ > ωRs(A)
and F ⊆ H∞0 (Σσ) such that one can choose C0, β > 0 with |ϕ(z)| ≤ C0 (|z|β ∧ |z|−β) for all
z ∈ Σσ, ϕ ∈ F . Then for each 0 ≤ δ < σ − ωRs, the set

{ϕ(zA) | z ∈ Σδ, ϕ ∈ F}

is Rs-bounded. To be more precise, for each ω ∈ (ωRs(A), σ) we can choose a constant C =
C(ω,C0, β) such that the estimate

Rs({ϕ(zA) | z ∈ Σδ, ϕ ∈ F}) ≤ CMs,σ(A)

holds for all δ ∈ [0, σ − ω).

Proof. Let σ − δ > ω > ωM (A). Let z ∈ Σδ, then z = τw for some τ > 0, w ∈ Σδ ∩ S1, and
wλ ∈ Σσ for all λ ∈ ∂Σω, hence∫

∂Σω

|ϕ(zλ)| |dλ|
|λ|

=
∑

j∈{−1,1}

∫ ∞
0
|ϕ(τtweijω)| dt

t
=

∑
j∈{−1,1}

∫ ∞
0
|ϕ(tweijω)| dt

t

≤ C0

∑
j∈{−1,1}

∫ ∞
0

tβ ∧ t−β dt
t

=: M < +∞,

i.e. ‖ϕ(z·)‖
L1
(
∂Σω ,| dλλ |

)
)
≤M for all z ∈ Σδ, ϕ ∈ F . We have

ϕ(zA) =
1

2πi

∫
∂Σω

ϕ(zλ)R(λ,A) dλ =
1

2πi

∫
∂Σω

ϕ(zλ) · λR(λ,A)
dλ

λ
,

hence |ϕ(zA)x| ≤ 1
2π

∫
∂Σω
|ϕ(zλ)| · |λR(λ,A)x| |dλλ | for each ϕ ∈ F , z ∈ Σδ and x ∈ X. Since

{λR(λ,A) |λ ∈ ∂Σω} is Rs-bounded, the assertion follows with Corollary 3.1.10.

In view of the functional calculus for the extended Dunford-Riesz class (cf. Section 1.2) we obtain
the following slightly more general version.

Corollary 3.2.8. Let s ∈ [1,+∞] and A be an Rs-sectorial operator in X. Let σ > ωRs(A) and
F ⊆ E(Σσ) such that there exists an ε > 0 with

M0 := sup
f∈F
‖f‖∞,σ < +∞ and C0 := sup

f∈F
sup
z∈Σσ

(|z|ε ∨ |z|−ε)
∣∣∣f(z)− f(0) + f(∞)z

1 + z

∣∣∣ < +∞.

(3.2.3)

Let 0 ≤ δ < σ − ωRs, then the set {f(zA) | z ∈ Σδ, f ∈ F} is Rs-bounded.
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Proof. Let f ∈ F , then by Section 1.2 we have a decomposition f(ζ) = ϕf (ζ) + a
1+ζ + b, where

ϕ ∈ H∞0 (Σσ) and b = f(∞), a+ b = f(0). Hence |a|, |b| ≤ 2M0 and

|ϕf (ζ)| =
∣∣∣f(ζ)− (a+ b) + bζ

1 + ζ

∣∣∣ ≤ C0 |z|ε ∧ |z|−ε.

For each z ∈ Σδ we obtain the representation f(z·) = ϕf (z·) + a
1+z· + b, hence

f(zA) = ϕf (zA) + a(1 + zA)−1 + b IdY = ϕf (zA) + aλR(λ,A) + b IdY ,

where λ := −1
z ∈ C\Σπ−δ. Since ω′ := π − δ ≥ σ − δ > ωM (A), the set{

aλR(λ,A)
∣∣ − 1

λ
∈ Σδ, |a| ≤ 2M0

}
is Rs-bounded, and Lemma 3.2.7 implies the Rs-boundedness of {ϕf (zA) | z ∈ Σδ, f ∈ F}, hence
also {f(zA) | z ∈ Σδ, f ∈ F} is Rs-bounded.

A special case is the following corollary with just one function f ∈ E(Σσ).

Corollary 3.2.9. Let s ∈ [1,+∞] and A be an Rs-sectorial operator in X. Let σ > ωRs(A),
0 ≤ δ < σ − ωRs and f ∈ E(Σσ). Then the set {f(zA) | z ∈ Σδ} is Rs-bounded.

An immediate consequence is the following: If ωRs(A) < π/2, the generated analytic semigroup
(e−zA)z∈Σδ is Rs-bounded for all δ ∈ [0, π/2 − ωRs(A)). We will say in this case that A is Rs-
analytic. More characterizations of Rs-analyticity are the content of the following proposition,
which is an Rs-bounded version of [KW04], Theorem 2.20, and again the proof given there
carries over to our situation if we replace "R-boundedness" by "Rs-boundedness" and take into
account Examples 3.1.11, 3.1.12. Moreover, note that assumption (4) is a modification of the
corresponding assumption in [KW04], Theorem 2.20, but equivalent by Remark 3.1.6.

Proposition 3.2.10. Assume ω(A) < π/2. Then the following conditions are equivalent:

(1) A is Rs-analytic,

(2) A is Rs-sectorial with ωRs(A) < π/2,

(3) The set {tn(it+A)−n | t ∈ R\{0}} is Rs-bounded for some n ∈ N,

(4) The sets {e−tA | t > 0}, {tAe−tA | t > 0} are Rs-bounded.

We conclude this subsection with our most important example.

Proposition 3.2.11. Let d ∈ N and p ∈ (1,+∞), s ∈ (1,∞]. Then the Laplace operator −∆ is
Rs-analytic in Lp(Rd), and if s < +∞, then ωRs(−∆) = 0.

Proof. We will show first that −∆ is Rs-sectorial with ωRs(−∆) < π/2. By Proposition 3.2.10 it
is sufficient to show that the sets {et∆ | t > 0}, {t(−∆)et∆ | t > 0} are Rs-bounded, which in turn
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we will show with Proposition 3.1.23 in the same way as we proved Example 3.1.24. Observe
that −∆ generates the heat semigroup which is given by convolution with the kernel

ht(x) := t−d/2 ϕ(|x|/
√
t) for all x ∈ Rd, t > 0,

where ϕ(y) := (4π)−d/2e−y
2/4 for all y ≥ 0, i.e. et∆f = ht ∗ f for all f ∈ Lp, t > 0. Since

the function ϕ fulfills obviously the assumptions of Proposition 3.1.23 we obtain that the set
{et∆ | t > 0} is Rs-bounded.

Moreover, the operator −t∆et∆ is formally given by convolution with the kernel

kt(x) := −t d
dt
ht(x) = −t

(
− d

2
t−d/2−1ϕ(|x|/

√
t) + t−d/2ϕ′(|x|/

√
t) ·
(
− 1

2
t−3/2

))
= t−d/2 ψ(|x|/

√
t) for all x ∈ Rd, t > 0,

where ψ(y) := d
2ϕ(y) + 1

2yϕ
′(y) for all y > 0, and this formal calculation leads easily to the

identity t(−∆)et∆f = kt ∗ f for all f ∈ Lp, t > 0. The function ψ can obviously be dominated
by a function ϕ̃ that fulfills the assumptions of Proposition 3.1.23, hence we obtain that also the
set {t(−∆)et∆ | t > 0} is Rs-bounded. So the first claim follows with Proposition 3.2.10.

The claim on the angle will be proven in a more general form in Proposition 3.2.24 in Subsection
3.2.3.

3.2.2 Equivalence of s-power function norms

We will now turn to the central estimates for a reasonable definition of the associated s-
intermediate spaces for an Rs-sectorial operator, which will be done in the next section. The
following proposition is well known for s = 2 and X = Lp, cf. [LeM04], Theorem 1.1, and our
proof follows the line of the proof in that case given in [LeM04].

Proposition 3.2.12. Let s ∈ [1,+∞] and A be an Rs-sectorial operator in X. Let σ > ωRs(A)
and ϕ,ψ ∈ H∞0 (Σσ)\{0}. Then there is a constant C > 0 such that for all f ∈ H∞(Σσ) and
x ∈ X we have∥∥∥∥∥(

∫ ∞
0
|f(A)ϕ(tA)x|s dt

t

)1/s
∥∥∥∥∥
X

≤ C ‖f‖∞,σ

∥∥∥∥∥(
∫ ∞

0
|ψ(tA)x|s dt

t

)1/s
∥∥∥∥∥
X

(3.2.4)

(with the usual modification if s = +∞).

Remark 3.2.13. The norm expressions occurring in the estimate (3.2.4) will also be referred to
as s-power function norms.

Proof of Proposition 3.2.12. We will first show (3.2.4) for f ∈ H∞0 (Σσ). Let x ∈ X be such
that ‖x‖ψ := ‖(

∫∞
0 |ψ(tA)x|s dtt )1/s‖X < +∞. Let ω ∈ (ωRs(A), σ) and Γ be the parameterized

contour of ∂Σω. Choose auxiliary functions F,G ∈ H∞0 (Σσ) such that∫ ∞
0

F (t)G(t)ψ(t)
dt

t
= 1. (3.2.5)
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Then for each H ∈ {F,G} we have

sup
t>0

∫
Γ
|H(tz)| |dz|

|z|
< +∞ and sup

z∈∂Σω

∫ ∞
0
|H(tz)| dt

t
< +∞,

since |H(z)| . |z|ε ∧ |z|−ε for some ε > 0: from this, both claims follow by the translation
invariance of the Haar measure dt/t on (0,∞), where for the first claim one just applies the
parametrization of ∂Σω, and for the second claim we observe that for z = re±iω:∫ ∞

0
|H(tre±iω)| dt

t
=

∫ ∞
0
|H(te±iω)| dt

t
.
∫ ∞

0
|te±iω|ε ∧ |te±iω|−ε dt

t

=
∫ ∞

0
tε ∧ t−ε dt

t
< +∞.

We will proceed in four steps, where the constants Ck wich occur in each step do not depend on
x and f .

Step 1. For all t > 0 we have

S(t) := f(A)G(tA) =
1

2πi

∫
Γ
f(z)G(tz)zR(z,A)

dz

z
. (3.2.6)

Then

‖f(·)G(t·)‖
L1
(

Γ,| dz
z
|
) =

∫
Γ
|f(z)G(tz)| |dz|

|z|
≤
(

sup
r>0

∫
Γ
|G(rz)| |dz|

|z|

)
· ‖f‖∞,σ.

Since S := {zR(z,A) | z ∈ Γ} is Rs-bounded by assumption, Corollary 3.1.10 yields that also
S((0,+∞)) is Rs-bounded with Rs(S((0,+∞))) ≤ C1 ‖f‖∞,σ. Hence by Proposition 3.1.13 we
obtain∥∥∥(∫ ∞

0
|f(A)G(tA)ψ(tA)x|s dt

t

)1/s∥∥∥
X

=
∥∥∥(∫ ∞

0
|S(t)ψ(tA)x|s dt

t

)1/s∥∥∥
X
≤ C2 ·‖f‖∞,σ ·‖x‖ψ.

(3.2.7)

(with the usual modification if s = +∞ using Proposition 3.1.14.)

Step 2. Let w(t) := S(t)ψ(tA)x for all t > 0 and u(z) :=
∫ ∞

0
F (tz)w(t)

dt

t
. By choosing

appropriate representatives, by Hölder’s inequality and Fubini’s theorem we have µ-a.e. for
s < +∞:∫

Γ
|u(z)|s |dz|

|z|
≤

∫
Γ

(∫ ∞
0
|F (tz)w(t)| dt

t

)s |dz|
|z|

=
∫

Γ

(∫ ∞
0
|F (tz)|1/s′ · |F (tz)|1/s|w(t)| dt

t

)s |dz|
|z|

≤
∫

Γ

(∫ ∞
0
|F (tz)| dt

t

)s−1
·
∫ ∞

0
|F (tz)||w(t)|s dt

t

|dz|
|z|

≤ sup
z∈Γ

(∫ ∞
0
|F (tz)| dt

t

)s−1
·
∫ ∞

0

(∫
Γ
|F (tz)| |dz|

|z|

)
|w(t)|s dt

t

≤ sup
z∈Γ

(∫ ∞
0
|F (tz)| dt

t

)s−1
·
(

sup
t>0

∫
Γ
|F (tz)| |dz|

|z|

)
·
∫ ∞

0
|w(t)|s dt

t
,
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hence we obtain the estimate∥∥∥(∫
Γ
|u(z)|s |dz|

|z|

)1/s∥∥∥
X
≤ C3 ·

∥∥∥(∫ ∞
0
|w(t)|s dt

t

)1/s∥∥∥
X

(3.2.7)

≤ C4 · ‖f‖∞,σ · ‖x‖ψ. (3.2.8)

If s = +∞, we obtain similarly

sup
z∈Γ
|u(z)| ≤

(
sup
z∈Γ

∫ ∞
0
|F (tz)| dt

t

)
· sup
t>0
|w(t)|,

hence also

∥∥ sup
z∈Γ
|u(z)|

∥∥
X
≤ C3 ·

∥∥ sup
t>0
|w(t)|

∥∥
X

(3.2.7)

≤ C4 · ‖f‖∞,σ · ‖x‖ψ. (3.2.9)

Step 3. Let v(t) :=
∫

Γ
ϕ(tz)zR(z,A)u(z)

dz

z
for all t > 0. Then again, with Hölder’s inequality

and Fubini’s theorem we can conclude if s < +∞:∫ ∞
0
|v(t)|s dt

t
≤

∫ ∞
0

(∫
Γ
|ϕ(tz)| |zR(z,A)u(z)| |dz|

|z|

)s dt
t

≤
∫ ∞

0

(∫
Γ
|ϕ(tz)| |dz|

|z|

)s−1
∫

Γ
|ϕ(tz)||zR(z,A)u(z)|s |dz|

|z|
dt

t

≤ sup
t>0

(∫
Γ
|ϕ(tz)| |dz|

|z|

)s−1
·
∫

Γ

(∫ ∞
0
|ϕ(tz)| dt

t

)
|zR(z,A)u(z)|s |dz|

|z|

≤ sup
t>0

(∫
Γ
|ϕ(tz)| |dz|

|z|

)s−1
·
(

sup
z∈Γ

∫ ∞
0
|ϕ(tz)| dt

t

)
·
∫

Γ
|zR(z,A)u(z)|s |dz|

|z|
.

Using again Rs-boundedness of {zR(z,A) | z ∈ Γ} in the same way as in Step 1 we obtain∥∥∥(∫ ∞
0
|v(t)|s dt

t

)1/s∥∥∥
X

≤ C5 ·
∥∥∥(∫

Γ
|zR(z,A)u(z)|s |dz|

|z|

)1/s∥∥∥
X

≤ C5Rs(S) ·
∥∥∥(∫

Γ
|u(z)|s |dz|

|z|

)1/s∥∥∥
X

(3.2.8)

≤ C6 · ‖f‖∞,σ · ‖x‖ψ. (3.2.10)

The analogous inequality holds also in the case s = +∞, which can be shown in the same manner
as in Step 2.

Step 4. By analytic continuation we have∫ ∞
0

F (tz)G(tz)ψ(tz)
dt

t
= 1 for all z ∈ Σσ.

By the multiplicativity of the functional calculus (and Fubini) we obtain

f(A) =
∫ ∞

0
F (tA)G(tA)ψ(tA)f(A)

dt

t
,
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hence for all τ > 0:

f(A)ϕ(τA)x =
∫ ∞

0
ϕ(τA)F (tA)G(tA)ψ(tA)f(A)x

dt

t

=
∫ ∞

0

( 1
2πi

∫
Γ
ϕ(τz)F (tz)R(z,A) dz

)
G(tA)ψ(tA)f(A)x

dt

t

=
1

2πi

∫
Γ
ϕ(τz)R(z,A)

(∫ ∞
0

F (tz)G(tA)ψ(tA)f(A)x
dt

t

)
dz

=
1

2πi

∫
Γ
ϕ(τz)R(z,A)u(z) dz = v(τ).

So with (3.2.10) the claim follows for f ∈ H∞0 (Σσ).

Now let f ∈ H∞(Σσ) be arbitrary. Let again ρn(z) := n
n+z −

1
1+nz for all z ∈ Σσ, n ∈ N.

Then ρn ∈ H∞0 (Σσ) and |ρn(z)| ≤ Kσ for all z ∈ Σσ, n ∈ N (where Kσ := 2 dist(−1,Σσ)).
Let fn := ρn · f for all n ∈ N, then (fn)n∈N ∈ (H∞0 (Σσ))N is a bounded sequence such that
|fn(z)| ≤ Kσ · |f(z)| and fn(A)φ(tA)x→ f(A)φ(tA)x in X for n→∞ and all x ∈ X, t > 0. Let
x ∈ X, then by Lemma 1.6.24 we may assume w.l.o.g. that also fn(A)φ(·A)x → f(A)φ(·A)x
pointwise dt

t ⊗µ-a.e. for n→∞, hence we obtain with the Fatou property (again, with the usual
modification if s = +∞):∥∥∥∥∥(

∫ ∞
0
|f(A)ϕ(tA)x|s dt

t

)1/s
∥∥∥∥∥
X

≤ lim inf
n→∞

∥∥∥∥∥(
∫ ∞

0
|fn(A)ϕ(tA)x|s dt

t

)1/s
∥∥∥∥∥
X

≤ C lim inf
n→∞

‖fn‖∞,σ

∥∥∥∥∥(
∫ ∞

0
|ψ(tA)x|s dt

t

)1/s
∥∥∥∥∥
X

≤ CKθ ‖f‖∞,σ

∥∥∥∥∥(
∫ ∞

0
|ψ(tA)x|s dt

t

)1/s
∥∥∥∥∥
X

.

We now turn to a discrete version of Proposition 3.2.12. At present we do not know if such a
discrete version (in the sense of Propositions 3.2.17, 3.2.18 below) will hold in full generality for
all ϕ,ψ ∈ H∞0 (Σσ)\{0}. In fact, the proof of Proposition 3.2.12 would also work in a discrete
setting if a discrete analogon of formula (3.2.5) holds, i.e., if for any ψ ∈ H∞0 (Σσ)\{0} one can
choose functions F,G ∈ H∞0 (Σσ) such that

∀ t > 0 :
∑
j∈Z

F (2jt)G(2jt)ψ(2jt) = 1. (3.2.11)

Since we do not know if such a general formula holds, we will restrict ourselves to a suitable sub-
class of H∞0 -functions which will lead to an equivalence between the continuous s-power function
norms as in (3.2.4) to some corresponding discrete s-power function norms. The assumptions
for this class of functions are rather technical and made to fit our needs, but they are not too
restrictive: we will show that the standard H∞0 -functions we usually use as concrete auxiliary
functions belong to this subclass of H∞0 .

Definition 3.2.14. Let σ ∈ (0, π] and ϕ ∈ H∞0 (Σσ) with 0 /∈ ϕ(Σσ). We say that ϕ belongs to
the class ΦΣ

σ,0 if the following property (named after uniform in E) holds:
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(UE) There exist d ∈ Z and a set of functions F ⊆ E(Σσ) such that F fulfills condition (3.2.3)
from Corollary 3.2.8 and{

ϕ(2jt·)/ϕ(2j−d·), ϕ(2j+d·)/ϕ(2jt·)
∣∣ j ∈ Z, t ∈ [1, 2]

}
⊆ {f(r·) | f ∈ F , r > 0}.

By Corollary 3.2.8 we obtain the following important issue:

Lemma 3.2.15. Let σ ∈ (0, π] and ϕ ∈ ΦΣ
σ,0. Choose d ∈ Z due to property (UE) above and

define the operators Sj(t) :=
(
ϕ(2j+d·)/ϕ(2jt·)

)
(A) and Sj(t) :=

(
ϕ(2jt·)/ϕ(2j−d·)

)
(A) for all

j ∈ Z, t ∈ [0, 1]. Then the set

{Sj(t), Sj(t) | j ∈ Z, t ∈ [1, 2]}

is Rs-bounded, and for all j ∈ Z, t ∈ [1, 2] we have

ϕ(2jtA)Sj(t) = Sj(t)ϕ(2jtA) = ϕ(2j+dA), hence Sj(t) = ϕ(2jtA)−1ϕ(2j+dA). (3.2.12)

and

ϕ(2j−dA)Sj(t) = Sj(t)ϕ(2j−dA) = ϕ(2jtA) hence Sj(t) = ϕ(2j−dA)−1ϕ(2jtA), (3.2.13)

Proof. The first statement follows immediately from the definition of the class ΦΣ
0,σ and Corollary

3.2.8, and (3.2.12) and (3.2.13) follow from the multiplicativity property of the functional calculus
in the class E(Σσ).

We now turn to the most important examples of functions in ΦΣ
σ,0.

Examples 3.2.16. (1) Let σ ∈ (0, π) and m ∈ N and define ϕ(z) := zm

(1+z)2m for all z ∈ Σσ, then
ϕ ∈ ΦΣ

0,σ.

Proof. We first consider the case m = 1, where we will show that the condition (UE) is fulfilled
with d = 0. For j ∈ Z, t ∈ [1, 2] and z ∈ Σσ define

gj,t(z) := ϕ(2jtz)/ϕ(2jz) = t
( 1 + 2jz

1 + 2jtz

)2
= t

(1 + t−12jtz
1 + 2jtz

)2
.

With r = 2jt > 0 and τ := t−1 ∈ [1/2, 1] we obtain gj,t(z) = t · fτ (rz) where fτ (z) :=
(

1+τz
1+z

)2
.

We will show that F := {t · fτ | t, τ ∈ [1/2, 2]} fulfills condition (3.2.3) from Corollary 3.2.8. So
let τ ∈ [1/2, 2], then fτ (0) = 1 and fτ (∞) = τ2, and

ψτ (z) := fτ (z)− fτ (0) + fτ (∞)z
1 + z

=
(1 + τz)2 − (1 + z)(1 + τ2z)

(1 + z)2
= (2τ − τ2 − 1)

z

(1 + z)2
,

hence |ψτ (z)| ≤ |2τ − τ2 − 1|
∣∣∣ z

(1+z)2

∣∣∣ ≤ 9
∣∣∣ z

(1+z)2

∣∣∣. This shows that the uniform estimate (3.2.3)
holds with ε = 1.
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Now consider

hj,t(z) := ϕ(2jz)/ϕ(2jtz) = t−1
(1 + 2jtz

1 + 2jz

)2
,

then hj,t(z) = τft(2jz) with the same notations as above, hence also {hj,t | j ∈ Z, t ∈ [1, 2]} ⊆
{f(r·) | f ∈ F}.

This shows that condition (UE) is fulfilled with d = 0, hence ϕ ∈ ΦΣ
σ,0 for m = 1. The general

case m ∈ N can be treated analogously, hence we omit the proof.

(2) Let σ ∈ (0, π/2) and α > 0 and define ϕ(z) := zαe−z for all z ∈ Σσ, then ϕ ∈ ΦΣ
0,σ.

Proof. For j ∈ Z, t ∈ [1, 2] and z ∈ Σσ define

gj,t(z) := ϕ(2jtz)/ϕ(2j−1z) = (2t)α e−(2t−1)2j−1z,

then gj,t(z) = e−rz with r := (2t−1)2j−1 > 0, hence gj,t ∈ {τ · e−r· | τ ∈ [1, 4α], r > 0} =: F . Let

hj,t(z) := ϕ(2j+1z)/ϕ(2jtz) = 2/tα e−(2−t)2jz,

then also hj,t ∈ F . Since F clearly fulfills condition (3.2.3) from Corollary 3.2.8, this shows that
condition (UE) is fulfilled with d = −1, hence ϕ ∈ ΦΣ

σ,0.

We can now turn to the central equivalence of continuous and discrete versions of s-power function
norms.

Proposition 3.2.17. Let s ∈ [1,+∞] and A be an Rs-sectorial operator in X. Let σ > ωRs(A)

and ϕ ∈ ΦΣ
σ,0. Then there is a constant C > 0 such that for all x ∈ X:

C−1
∥∥∥(∑

j∈Z
|ϕ(2jA)x|s

)1/s∥∥∥
X
≤
∥∥∥∥(∫ ∞

0
|ϕ(tA)x|s dt

t

)1/s
∥∥∥∥
X

≤ C
∥∥∥(∑

j∈Z
|ϕ(2jA)x|s

)1/s∥∥∥
X
.

(with the usual modification if s = +∞.)

Proof. We assume first that s < +∞. Choose the integer d ∈ Z due to property (UE) of ϕ and
define

Sj(t) :=
(
ϕ(2j+d·)/ϕ(2jt·)

)
(A) = ϕ(2jtA)−1ϕ(2j+dA)

and

Sj(t) :=
(
ϕ(2j+dt·)/ϕ(2j ·)

)
(A) = ϕ(2jA)−1ϕ(2j+dtA)

for all j ∈ Z, t ∈ [0, 1]. By Lemma 3.2.15 the set S := {Sj(t), Sj(t) | j ∈ Z, t ∈ [1, 2]} is Rs-
bounded, so let C := Rs(S).
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Let x ∈ X. Define

S(r) :=
∑
j∈Z

1[2j ,2j+1)(r)ϕ(rA)−1ϕ(2j+dA) and y(t) := ϕ(tA)x for all t, r > 0,

then y : (0,+∞)→ X is measurable, S : (0,+∞)→ L(X) is strongly measurable and S(2jt) =
ϕ(2jtA)−1ϕ(2j+dA) = Sj(t) for all t ∈ [1, 2) and j ∈ Z. Moreover, S((0,+∞)) ⊆ S is Rs-
bounded. By Proposition 3.1.13 we obtain

∥∥∥(∑
j∈Z
|ϕ(2jA)x|s

)1/s∥∥∥
X

=
∥∥∥(∑

j∈Z
|ϕ(2j+dA)x|s

)1/s∥∥∥
X

=

∥∥∥∥∥
(∑
j∈Z

∫ 2

1
|ϕ(2j+dA)x|s dt

)1/s∥∥∥∥∥
X

=

∥∥∥∥∥
(∑
j∈Z

∫ 2

1
|ϕ(2jtA)Sj(t)x|s dt

)1/s∥∥∥∥∥
X

≈

∥∥∥∥∥
(∑
j∈Z

∫ 2

1
|S(2jt)y(2jt)|s dt

t

)1/s∥∥∥∥∥
X

=

∥∥∥∥∥
(∑
j∈Z

∫ 2j+1

2j
|S(t)y(t)|s dt

t

)1/s∥∥∥∥∥
X

=

∥∥∥∥∥
(∫ ∞

0
|S(t)y(t)|s dt

t

)1/s∥∥∥∥∥
X

=

∥∥∥∥∥
(∫ ∞

0
|S(t)(t−sy(t))|s dt

)1/s∥∥∥∥∥
X

≤ C ·

∥∥∥∥∥
(∫ ∞

0
|(t−sy(t))|s dt

)1/s∥∥∥∥∥
X

= C ·

∥∥∥∥∥
(∫ ∞

0
|ϕ(tA)x|s dt

t

)1/s∥∥∥∥∥
X

.

We now turn to the inverse inequality. By the Fatou property we obtain in a first step

∥∥∥(∫ ∞
0
|ϕ(tA)x|s dt

t

)1/s∥∥∥
X
≈
∥∥∥(∑

j∈Z

∫ 2

1
|ϕ(2jtA)x|s dt

)1/s∥∥∥
X

=
∥∥∥(∑

j∈Z

∫ 2

1
|ϕ(2j+dtA)x|s dt

)1/s∥∥∥
X

=
∥∥∥(∑

j∈Z

∫ 2

1
|Sj(t)ϕ(2jA)x|s dt

)1/s∥∥∥
X

=
∥∥∥( lim

N→∞

N∑
j=−N

∫ 2

1
|Sj(t)ϕ(2jA)x|s dt

)1/s∥∥∥
X
≤ lim inf

N→∞

∥∥∥( N∑
j=−N

∫ 2

1
|Sj(t)ϕ(2jA)x|s dt

)1/s∥∥∥
X

Since t 7→ Sj(t) is analytic, we can work with a version with analytic, hence in particular
continuous, paths (cf. Subsection 1.6.1) and obtain

∫ 2

1
|Sj(t)ϕ(2jA)x|s dt = lim

`→∞

1
`

∑̀
k=1

|Sj
(
1 +

k

`

)
ϕ(2jA)x|s

µ-a.e. in Ω. Let S(`)
j,k := Sj

(
1 + k

`

)
for all j ∈ Z, ` ∈ N and k ∈ N≤`, then using the Fatou
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property again leads to∥∥∥(∫ ∞
0
|ϕ(tA)x|s dt

t

)1/s∥∥∥
X
≤ lim inf

N→∞

∥∥∥( lim
`→∞

N∑
j=−N

1
`

∑̀
k=1

|S(`)
j,kϕ(2jA)x|s

)1/s∥∥∥
X

≤ lim inf
N→∞

lim inf
`→∞

`−1/s
∥∥∥( N∑

j=−N

∑̀
k=1

|S(`)
j,kϕ(2jA)x|s

)1/s∥∥∥
X

≤ C · lim inf
N→∞

lim inf
`→∞

`−1/s
∥∥∥( N∑

j=−N

∑̀
k=1

|ϕ(2jA)x|s
)1/s∥∥∥

X

= C · lim inf
N→∞

∥∥∥( N∑
j=−N

|ϕ(2jA)x|s
)1/s∥∥∥

X

≤ C ·
∥∥∥( ∞∑

j=−∞
|ϕ(2jA)x|s

)1/s∥∥∥
X
.

Now let s = +∞. Then we have trivially supj∈Z |ϕ(2jA)x| ≤ supt>0 |ϕ(tA)x| for all x ∈ X,
hence we obtain the first inequality

∥∥ supj∈Z |ϕ(2jA)x|
∥∥
X
≤
∥∥ supt>0 |ϕ(tA)x|

∥∥
X

for all x ∈ X.
For the second estimate we use the same notations as above and obtain by Proposition 3.1.14∥∥ sup

t>0
|ϕ(tA)x|

∥∥
X

=
∥∥ sup
j∈Z

sup
t∈[1,2]

|ϕ(2j+dtA)x|
∥∥
X

=
∥∥ sup
j∈Z

sup
t∈[1,2]

|Sj(t)ϕ(2jA)x|
∥∥
X

=
∥∥ sup

(j,t)∈Z×[1,2]
|Sj(t)ϕ(2jA)x|

∥∥
X
≤ C ·

∥∥ sup
(j,t)∈Z×[1,2]

|ϕ(2jA)x|
∥∥
X

= C ·
∥∥ sup
j∈Z
|ϕ(2jA)x|

∥∥
X
.

If we combine Proposition 3.2.17 with Proposition 3.2.12 we obtain

Proposition 3.2.18. Let s ∈ [1,+∞] and A be an Rs-sectorial operator in X. Let σ > ωRs(A)
and ϕ,ψ ∈ ΦΣ

σ,0. Then there is a constant C > 0 such that for all f ∈ H∞(Σσ) and x ∈ X we
have ∥∥∥(∑

j∈Z
|f(A)ϕ(2jA)x|s

)1/s∥∥∥
X
≤ C ‖f‖∞,σ

∥∥∥(∑
j∈Z
|ψ(2jA)x|s

)1/s∥∥∥
X

(3.2.14)

(with the usual modification if s = +∞).

3.2.3 Rs-bounded H∞-calculus

For this subsection we fix some s ∈ [1,+∞].

Definition 3.2.19. Let σ > ω(A). We say that A has an Rs-bounded H∞(Σσ)-calculus if the
set

{f(A) | f ∈ H∞(Σσ), ‖f‖∞ ≤ 1}
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is Rs-bounded, which is equivalent to the existence of a constant C > 0 such that the estimate

‖(fj(A)xj)j‖X(`s) ≤ C sup
j∈N
‖fj‖∞,σ · ‖(xj)j‖X(`s)

holds for all fj ∈ H∞(Σσ) and xj ∈ X, j ∈ N. In this case we define

M∞s,σ(A) := Rs
({
f(A) | f ∈ H∞(Σσ), ‖f‖∞,σ ≤ 1

})
.

Moreover,

ωR∞s (A) := inf{σ ∈ (ω(A), π] | A has an Rs-bounded H∞(Σσ)-calculus}

is called the R∞s -type of A, and in this situation we will also just say that A has an Rs-bounded
H∞-calculus.

We trivially have the following

Remark 3.2.20. Let A have an Rs-bounded H∞-calculus, then A is also Rs-sectorial with
ωRs(A) ≤ ωR∞s (A).

We will now show how the property of A having an Rs-bounded H∞-calculus can be expressed
in terms of the diagonal operator Ãs.

Lemma 3.2.21. Let σ, σ′ > ω(A). Consider the following assertions:

(1) For each f ∈ H∞(Σσ) the operator f(A) is Rs-bounded,

(2) The diagonal operator Ãs is sectorial with ω(Ãs) < σ′ and has a bounded H∞(Σσ′)-calculus
in X(`s).

Then (2) ⇒ (1) if σ ≥ σ′, and (1) ⇒ (2) if σ′ > σ. Moreover, if (1) holds there is a constant
Cσ > 0 such that

Rs(f(A)) ≤ Cσ · ‖f‖∞,σ for all f ∈ H∞(Σσ′)

for each σ′ > σ.

Proof. It is trivial that (2) implies (1) if σ ≥ σ′, so we assume σ′ > σ and that (1) holds. Observe
that A has in particular a bounded H∞(Σσ)-calculus, hence

ΦA : H∞(Σσ)→ L(X), f 7→ f(A)

is bounded. By (1) we have in addition R(ΦA) ⊆ RsL(X) ↪→ L(X) and RsL(X) is a Banach
space by Proposition 3.1.4, hence the Closed Graph Theorem implies that ΦA : H∞(Σσ) →
RsL(X), f 7→ f(A) is bounded, i.e. there is a constant Cσ > 0 such that

Rs(f(A)) ≤ Cσ · ‖f‖∞,σ for all f ∈ H∞(Σσ). (3.2.15)

Choose ω ∈ (σ, σ′), then by (3.2.15) the set {λR(λ, Ãs) | λ ∈ C\Σω} is bounded in the space
L(X(`s)), hence the diagonal operator Ãs is sectorial with ω(Ãs) ≤ ω < σ′, and again (3.2.15)
implies that the diagonal operator Ãs has a bounded H∞(Σσ′)-calculus in X(`s).



3. Rs-boundedness and Rs-sectorial operators
3.2. Rs-sectorial operators 96

Observe that the restriction σ′ > σ in (1) ⇒ (2) if of Lemma 3.2.21 is due to the fact that we do
not assume A to be Rs-sectorial. If we do this, we get the following slightly sharper condition,
which can be proven in the same way.

Lemma 3.2.22. Let A be an Rs-sectorial operator and σ > ωRs(A). Then the following condi-
tions are equivalent:

(1) For each f ∈ H∞(Σσ) the operator f(A) is Rs-bounded,

(2) The diagonal operator Ãs has a bounded H∞(Σσ)-calculus in X(`s).

We will now show the important fact that in a suitable framework the Rs-boundedness of the
single operators f(A) for f ∈ H∞(Σσ) as in Lemma 3.2.21 (1) already implies an Rs-bounded
H∞(Σσ′)-calculus for all σ′ > σ.

Proposition 3.2.23. Let σ, σ′ > ω(A) and s ∈ [1,+∞), and assume that X is r-concave for
some r < +∞. Consider the following assertions:

(1) A has an Rs-bounded H∞(Σσ′)-calculus.

(2) For each f ∈ H∞(Σσ) the operator f(A) is Rs-bounded,

(3) For each ϕ ∈ H∞0 (Σσ) the operator ϕ(A) is Rs-bounded, and there is a constant C > 0
such that

∀ϕ ∈ H∞0 (Σσ) : Rs(ϕ(A)) ≤ C ‖ϕ‖∞,σ

Then (1)⇒(3)⇒(2) if σ ≥ σ′, and (2)⇒(1) if σ′ > σ.

More precisely, if (2) holds, then for each ω > σ there is a constant Cω,σ > 0 independent of A
such that

∀σ′ ≥ ω : M∞s,σ′(A) ≤ Cω,σ · sup{Rs(f(A)) | f ∈ H∞(Σσ), ‖f‖∞,σ ≤ 1}. (3.2.16)

Proof. We clearly have (1)⇒ (3) if σ ≥ σ′, so we assume that (3) holds and show (2). For this
let again ρm(z) := m

m+z −
1

1+mz for all z ∈ Σσ,m ∈ N. Then ρm ∈ H∞0 (Σσ) and |ρm(z)| ≤ Kσ

for all z ∈ Σσ,m ∈ N (where Kσ := 2 dist(−1,Σσ)), and for all z ∈ Σσ we have ρm(z) → 1
for m → ∞. Now let f ∈ H∞(Σσ) with ‖f‖∞,σ ≤ 1. Let n ∈ N and (xj)j∈N≤n ∈ X(`sn) and
(yj)j∈N≤n ∈ X ′(`s

′
n ) with ‖(yj)j∈N≤n‖X′(`s′n ) = 1. By the Convergence Lemma 1.2.2 we have

(ρm · f)(A)xj → f(A)xj in X as m→∞ for all j ∈ N≤n, hence we obtain∣∣〈(f(A)xj)j∈N≤n , (yj)j∈N≤n〉X(`sn),X′(`s′n )

∣∣ ≤ ∫
Ω

n∑
j=1

|f(A)xj · yj | dµ

≤
n∑
j=1

〈|f(A)xj |, |yj |〉X×X′ = lim
m→∞

n∑
j=1

〈|(ρm · f)(A)xj |, |yj |〉X×X′

= lim
m→∞

〈(
|(ρm · f)(A)xj |

)
j
, (|yj |)j

〉
X(`sn),X′(`s′n )

≤ lim
m→∞

∥∥(|(ρm · f)(A)xj |
)
j

∥∥
X(`sn)

≤ C lim
m→∞

‖ρm · f‖∞,σ ‖(xj)j‖X(`sn) ≤ KσC ‖f‖∞,σ ‖(xj)j‖X(`sn).
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By duality this yields ‖(f(A)xj)j‖X(`sn) ≤ KσC ‖f‖∞,σ ‖(xj)j‖X(`sn), hence the operator f(A) is
Rs-bounded.

Finally we assume that σ′ > σ and (2) holds, and we will show (1). Observe that by a
similar argument as used above in the proof of (3)⇒(2) it is sufficient to show that the set
{ϕ(A) | ϕ ∈ H∞0 (Σσ′), ‖ϕ‖∞,σ′ ≤ 1} is Rs-bounded.

Choose ω ∈ (σ, σ′) and let ω′ := 1
2(σ+ω), then σ < ω′ < ω. We will show the estimate in (3.2.16),

where it is sufficient to consider the case σ′ = ω, since trivially we have M∞s,σ′(A) ≤M∞s,ω(A).

By Lemma 3.2.21, the diagonal operator Ãs is sectorial with ω(Ãs) < ω′ and has a bounded
H∞(Σω′)-calculus in X(`s). Hence it has also an RH∞(Σω)-bounded functional calculus, i.e.
a bounded functional calculus for operator valued functions F : Σω → A ⊆ L(X(`s)) with
R-bounded range, where A ⊆ L(X(`s)) denotes the subalgebra of all bounded operators that
commute with resolvents of Ãs, cf. Section 1.3 in the preliminaries for this notion. Moreover, by
Theorem 1.3.3 we can choose a constant Cω,ω′ > 0 independent of Ãs such that

‖F (Ãs)‖L(X(`s)) ≤ Cω,ω′ ·M∞ω′ (Ãs) · R(F (Σω)) (3.2.17)

for all F ∈ RH∞(Σω,A).

Now let ϕn ∈ H∞(Σω) with ‖ϕn‖∞,ω ≤ 1 for all n ∈ N. For each λ ∈ Σω we define F (λ) ∈
L(X(`s)) as the diagonal operator (xn)n∈N 7→ (ϕn(λ)xn)n∈N, then F : Σω → L(X(`s)) is analytic.
Moreover, F (Σω) is R2-bounded in L(X(`s)): Let λ ∈ ΣN

ω and xj = (x(n)
j )n∈N ∈ X(`s) for all

j ∈ N. Then

|F (λj)xj |C =
(
|ϕn(λj)x

(n)
j |
)
n∈N =

(
|ϕn(λj)| |x(n)

j |
)
n∈N ≤

(
|x(n)
j |
)
n∈N = |xj |C

in X(`s) for all j ∈ N (observe that for x ∈ X(`s) ∼= X`s we have the modulus |x|C :=
(|xn|C)n∈N ∈ X(`s), cf. the corresponding remarks about mixed Banach function spaces in
Subsection 1.6.1), hence∥∥∥(∑

j∈N
|F (λj)xj |2C

)1/2∥∥∥
X(`s)

≤
∥∥∥(∑

j∈N
|xj |2C

)1/2∥∥∥
X(`s)

.

Since X is r-concave, the mixed Banach function space X`s ∼= X(`s) is r ∨ s-concave by Propo-
sition 1.6.18 with r ∨ s < +∞, so Remark 3.1.7 implies that the set F (Σω) is also R-bounded.
Hence, the RH∞(Σω)-calculus of Ãs yields boundedness of the operator F (Ãs). If x ∈ X(`s)
and Γ is the oriented boundary of the sector Σω′ (recall that ω′ ∈ (ω(Ãs), ω)), we obtain

F (Ãs)x =
∫

Γ
F (λ)R(λ, Ãs)x dλ =

(∫
Γ
ϕn(λ)R(λ,A)xn dλ

)
n∈N

= (ϕn(A)xn)n∈N.

So boundedness of F (Ãs) in L(X(`s)) is just Rs-boundedness of {ϕn(A) |n ∈ N} in L(X), and
by (3.2.17) we obtain

R({ϕn(A) |n ∈ N}) = ‖F (Ãs)‖L(X(`s)) ≤ Cω,ω′ ·M∞ω′ (Ãs) · R(F (Σω)) . Cω,ω′ ·M∞ω′ (Ãs).

Since M∞ω′ (Ãs) ≤ sup{Rs(f(A)) | f ∈ H∞(Σσ), ‖f‖∞,σ ≤ 1} this yields the estimate (3.2.16).
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Again, we conclude with our standard example.

Proposition 3.2.24. Let d,m ∈ N and p, s ∈ (1,+∞). Then the Laplace operator A := (−∆)m

has an Rs-bounded H∞-calculus in Lp(Rd) with ωR∞s
(
(−∆)m

)
= 0.

Proof. Observe that with the notations of Section 2.5 we just have to show that the operator
A`

s has a bounded H∞(Σσ)-calculus in Lp(Rd, `s) for each σ > 0. Since `s is a UMD-spaces,
this is a consequence of the vector-valued Mikhlin Multiplier Theorem. This is shown in detail
for m = 1 in [KW04], Example 10.2 b).

3.3 The associated s-intermediate spaces

In this section we fix s ∈ [1,+∞], and A will always denote an Rs-sectorial operator in X with
dense domain and dense range.

We now turn to the definition of the associated homogeneous and inhomogeneous s-intermediate
spaces Ẋθ

s,A, X
θ
s,A which we will also refer to as generalized Triebel-Lizorkin spaces. This will

be justified in Proposition 3.3.12, where we show that the s-intermediate spaces for the Laplace
operator A = −∆ coincide with the classical Triebel-Lizorkin spaces, cf. also the remarks given
at the end of Section 1.7. After the definition and some elementary properties in Subsection 3.3.1
we will show in Subsection 3.3.2 that the s-intermediate spaces are indeed intermediate spaces
for the couple (X,D(Am)), and we will explore real and complex interpolation of these spaces.
In the last Subsection 3.3.3 we will present one of the main results of this work, where we show
that the "part" of A (which has to be defined properly) always has a bounded H∞-calculus in
its scale of homogeneous s-intermediate spaces Ẋθ

s,A, θ ∈ R, and in the case that A is invertible,
or A has a bounded H∞-calculus in X, also in the inhomogeneous spaces Xθ

s,A if θ > 0. This can
be seen as a variant of Dore’s Theorem that states that an invertible sectorial operator A in a
Banach space X has a bounded H∞-calculus in the scale of real interpolation spaces (X,D(A))p,θ
for p ∈ [1,+∞], θ ∈ (0, 1), cf. [Do99]. A more general version is given in [Do01], and an extensive
treatment using functional calculus is given in [Ha06], Chapter 6. Indeed, in the same way as
classical Triebel-Lizorkin spaces are to a certain extent a natural counterpart to Besov spaces,
the s-intermediate spaces are appropriate counterparts to the real interpolation spaces. Hence we
will sometimes be able to use techniques similar to the one used in [Ha06] for real interpolation
spaces.

3.3.1 Definition end elementary properties of the spaces Xθ
s,A and Ẋθ

s,A

For each σ ∈ (0, π] and θ ∈ R let

Φσ,θ := {ϕ ∈ E(Σσ)\{0} | z 7→ z−θϕ(z) ∈ H∞0 (Σσ)}.

For the discrete counterparts we define the subset

ΦΣ
σ,θ := {ϕ ∈ Φσ,θ | z 7→ z−θϕ(z) ∈ ΦΣ

σ,0}.
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Note that Φσ,θ ↪→ Φσ′,θ′ and ΦΣ
σ,θ ↪→ ΦΣ

σ′,θ′ for σ ≥ σ′ and θ ≥ θ′.

Definition 3.3.1. Let θ ∈ R, s ∈ [1,+∞] and σ > ω(A). Let ϕ ∈ Φσ,θ, then we define the
corresponding s-power function norm as

‖x‖θ,s,A,ϕ :=
∥∥∥(∫ ∞

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X

for all x ∈ X (3.3.1)

(with the usual modification if s = +∞). Moreover, for ϕ ∈ ΦΣ
σ,θ we define the corresponding

discrete counterpart as

‖x‖Σθ,s,A,ϕ :=
∥∥∥(∑

j∈Z
|2−jθϕ(2jA)x|s

)1/s∥∥∥
X

for all x ∈ X (3.3.2)

(with the usual modification if s = +∞).

Finally we define the space

Xθ
s,A,ϕ := {x ∈ X | ‖x‖θ,s,A,ϕ < +∞}.

We will show that ‖ · ‖θ,s,A,ϕ defined by (3.3.1) actually defines a norm on Xθ
s,A,ϕ: The mapping

J : Xθ
s,A,ϕ → X(Ls∗), x 7→

(
t−θϕ(tA)x

)
t>0

is linear, and ‖x‖θ,s,A,ϕ = ‖Jx‖X(Ls∗)
for all x ∈ Xθ

s,A,ϕ by definition, hence we only have to
show that J is injective. This is a consequence of Proposition 3.2.12, but we will also give
a direct argument (that is indeed also used in the proof of Proposition 3.2.12), which would
also work without the assumed Rs-sectoriality of A: Let x ∈ Xθ

s,A,ϕ with Jx = 0. Define
ρ(z) := z/(1 + z)2 and c :=

∫∞
0 ρ(t)|ϕ(t)|2 dt

t > 0, and let ψ := 1
cρϕ, then ψ ∈ H∞0 (Σσ) and∫∞

0 ψ(t)ϕ(t) dtt = 1
c

∫∞
0 ρ(t)|ϕ(t)|2 dt

t = 1. Since dt/t is a translation invariant measure on the
multiplicative group (0,∞) this yields∫ ∞

0
ψ(tz)ϕ(tz)

dt

t
= 1 (3.3.3)

for all z ∈ (0,∞), and by analytic continuation and the identity theorem for analytic functions,
(3.3.3) is also true for all z ∈ Σσ. By the functional calculus we obtain

x =
∫ ∞

0
ψ(tA)ϕ(tA)x︸ ︷︷ ︸

=0

dt

t
= 0.

By the preceding section we have the important issue that the s-power function norm ‖ · ‖θ,s,A,ϕ
does not depend on ϕ in the following sense:

Proposition 3.3.2. Let θ ∈ R, σ > ωRs(A) and ϕ,ψ ∈ Φσ,θ. Then there is a constant C > 0
such that for all x ∈ D(Aθ) and f ∈ H∞(Σσ)

(1) C−1 ‖x‖θ,s,A,ϕ ≤ ‖x‖θ,s,A,ψ ≤ C ‖x‖θ,s,A,ϕ,
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(2) ‖f(A)x‖θ,s,A,ϕ ≤ C ‖f‖∞ · ‖x‖θ,s,A,ϕ.

If ϕ,ψ ∈ ΦΣ
σ,θ, then we have in addition

(3) C−1 ‖x‖θ,s,A,ϕ ≤ ‖x‖Σθ,s,A,ψ ≤ C ‖x‖θ,s,A,ϕ,

and (1), (2) also hold for the discrete counterparts ‖ · ‖Σθ,s,A,ϕ, ‖ · ‖Σθ,s,A,ψ instead of ‖ · ‖θ,s,A,ϕ, ‖ ·
‖θ,s,A,ψ.

Proof. We apply Proposition 3.2.12 with ϕ̃(z) := z−θϕ(z) and ψ̃(z) := z−θψ(z) instead of ϕ,ψ
and choose the constant C > 0 as given there. Let x ∈ D(Aθ) and f ∈ H∞(Σσ), then:

‖f(A)x‖θ,s,A,ϕ =
∥∥∥(∫ ∞

0
|t−θϕ(tA)f(A)x|s dt

t

)1/s∥∥∥
X

=
∥∥∥(∫ ∞

0
|f(A)ϕ̃(tA)Aθx|s dt

t

)1/s∥∥∥
X

≤ C ‖f‖∞ ·
∥∥∥(∫ ∞

0
|ψ̃(tA)Aθx|s dt

t

)1/s∥∥∥
X

= C ‖f‖∞ · ‖x‖θ,s,A,ψ

(with the usual modification if s = +∞). This shows (1) and (2). In the same manner, (3)
follows by Propositions 3.2.17 and 3.2.18.

The central objects are now the following normed spaces:

(1) Xθ
s,A,ϕ endowed with the norm ‖ · ‖Xθ

s,A,ϕ
:= ‖ · ‖X + ‖ · ‖θ,s,A,ϕ if θ ≥ 0,

(2) Ẋθ
s,A,ϕ as the completion of the space Xθ

s,A,ϕ endowed with the norm ‖ · ‖θ,s,A,ϕ.

We will see later in Proposition 3.3.5 (based, of course, on Proposition 3.3.2) that these spaces
are independent of ϕ in the sense that varying ϕ ∈ Φσ,θ leads to equivalent norms, hence we
will later drop the ϕ in notation, and the space Xθ

s,A will be called the associated inhomogeneous
s-intermediate space, and Ẋθ

s,A the associated homogeneous s-intermediate space. Although the
definition (1) would also make sense for θ < 0, we leave out these spaces from our considerations,
since they appear to be quite unnatural. In fact, even for θ = 0 these spaces are delicate, since
they are forced to be embedded into X, which might not be natural, if one looks at the concrete
examples of classical Triebel-Lizorkin spaces.

As usual, the homogeneous space is somehow closer related to the operator A, but has a more
complicated structure, since e.g. it is in general not embedded into X. Nevertheless many prop-
erties of the homogeneous spaces can easily be carried over to the inhomogeneous space; this is
due to the fact that if A is invertible, then Xθ

s,A
∼= Ẋθ

s,A for θ > 0, as we will show in Proposition
3.3.11. Hence we will start with a detailed study of the homogeneous spaces.

We will show first the following important density property.

Proposition 3.3.3. Let θ ∈ R, m ∈ N with m > |θ| and σ > ωRs(A). Then D(Am)∩R(Am) is
a dense subset in Ẋθ

s,A,ϕ for all ϕ ∈ Φσ,θ.
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Proof. We will show first that D(Am) ∩ R(Am) ⊆ Ẋθ
s,A,ϕ. Let x ∈ D(Am) ∩ R(Am) ⊆ D(Aθ).

Choose ε > 0 such that ε < m − |θ|. Let ϕ(z) := zm

(1+z)2m and ψ±(z) := zm−θ±ε

(1+z)2m , then ϕ ∈ Φσθ

and ψ ∈ H∞0 (Σσ), and

t−θϕ(tA)x = t∓ε(tA)−θ±εϕ(tA)x = t∓εψ±(tA) for all t > 0.

Hence we obtain (with the usual modification if s = +∞)

‖x‖θ,s,A,ϕ =
∥∥∥∥(∫ ∞

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥∥
.

∥∥∥∥(∫ 1

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥∥+
∥∥∥∥(∫ ∞

1
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥∥
.

∥∥∥∥(∫ 1

0
|tεψ−(tA)x|s dt

t

)1/s∥∥∥∥+
∥∥∥∥(∫ ∞

1
|t−εψ+(tA)x|s dt

t

)1/s∥∥∥∥
(∗)
.

∥∥∥∥(∫ 1

0
|tεx|s dt

t

)1/s∥∥∥∥+
∥∥∥∥(∫ ∞

1
|t−εx|s dt

t

)1/s∥∥∥∥ =
2
sε
‖x‖X < +∞,

where we used in (∗) that the operator set {ψ±(tA) | t > 0} is Rs-bounded. This shows that
D(Am)∩R(Am) ⊆ Ẋθ

s,A,ϕ for the special ϕ we have chosen, and by Proposition 3.3.2 this is also
true for arbitrary ϕ ∈ Φσ,θ since D(Am) ∩R(Am) ⊆ D(Aθ).

Now we define

X̃θ
s,A,ϕ := D(Am) ∩R(Am)

‖·‖Xθ,s,A,ϕ ≤ Ẋθ
s,A,ϕ,

then by Proposition 3.3.2 all the spaces X̃θ
s,A,ϕ, where ϕ ∈ ΦωRs (A),θ, coincide and have equiva-

lent norms. Hence D(Am) ∩ R(Am) is dense in all X̃θ
s,A,ϕ, ϕ ∈ ΦωRs (A),θ if it is dense for some

ϕ ∈ ΦωRs (A),θ, so we may assume that ϕ(z) = zm

(1+z)2m , hence ϕ ∈ ΦΣ
σ,θ. Let X̃

θ,Σ
s,A,ϕ be the comple-

tion of D(Am)∩R(Am) with respect to the norm ‖ ·‖Σθ,s,A,ϕ. Then again by Proposition 3.3.2 (3)
we also have X̃θ

s,A,ϕ = X̃θ,Σ
s,A,ϕ with equivalent norms, so it is enough to show thatXθ

s,A,ϕ ⊆ X̃
θ,Σ
s,A,ϕ.

Let x ∈ Xθ
s,A,ϕ and define Tn := n(n + A−1)−1n(n + A)−1 = nA(1 + nA)−1(1 + 1

nA)−1 for all
n ∈ N. Let xn := Tmn x ∈ D(Am)∩R(Am) for all n ∈ N, then it is well known that xn → x in X
for n→∞.

We consider first the case s < +∞. Let ε > 0, then since x ∈ Xθ
s,A,ϕ, we can choose N ∈ N such

that ∥∥∥( ∑
|j|≥N

|2−jθϕ(2jA)x|s
)1/s∥∥∥

X
< ε/2.

Let KN :=
∑
|j|≤N

2−jθ‖ϕ(2jA)x‖X , then we can choose n0 ∈ N such that KN · ‖xn − x‖X < ε/2
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for all n ≥ n0. Let n ≥ n0, then

‖xn − x‖Σθ,s,A,ϕ =
∥∥∥(∑

j∈Z
|2−jθϕ(2jA)(xn − x)|s

)1/s∥∥∥
X

≤
∥∥∥( ∑
|j|≤N

|2−jθϕ(2jA)(xn − x)|s
)1/s∥∥∥

X

+
∥∥∥( ∑
|j|≥N

|(Tmn − Id)2−jθϕ(2jA)x|s
)1/s∥∥∥

X

(1)

.m

∥∥∥ ∑
|j|≤N

2−jθ|ϕ(2jA)(xn − x)|
∥∥∥
X

+
∥∥∥( ∑
|j|≥N

|2−jθϕ(2jA)x|s
)1/s∥∥∥

X

≤
∑
|j|≤N

2−jθ‖ϕ(2jA)x‖X · ‖xn − x‖X +
∥∥∥( ∑
|j|≥N

|2−jθϕ(2jA)x|s
)1/s∥∥∥

X
< ε

for all n ≥ n0, where we used in (1) that `1 ↪→ `s and that the operators Tmn , n ∈ N are Rs-
bounded. So we have ‖x− xn‖Σθ,s,A,ϕ → 0 for n→∞.

Now consider the case s = +∞. Let ε > 0. Then again, since x ∈ Xθ
∞,A,ϕ and X has the Fatou

property, we can choose N ∈ N such that∥∥ sup
j∈Z
|2−jθϕ(2jA)x| − sup

|j|≤N
|2−jθϕ(2jA)x|

∥∥
X
< ε/2,

and we can proceed as in the first case by using the estimate

‖x− xn‖θ,∞,A,ϕ =
∥∥ sup
j∈Z
|2−jθϕ(2jA)x|

∥∥
X

≤
∥∥ sup
j∈Z
|2−jθϕ(2jA)x| − sup

|j|≤N
|2−jθϕ(2jA)x|

∥∥
X

+
∥∥ sup
|j|≤N

|2−jθϕ(2jA)x|
∥∥
X
.

Of course, Proposition 3.3.3 implies an analogous density property for the inhomogeneous spaces:

Corollary 3.3.4. Let θ ≥ 0, m ∈ N>θ and σ > ωRs(A). Then D(Am)∩R(Am) is a dense subset
in Xθ

s,A,ϕ for all ϕ ∈ Φσ,θ.

With these density properties we can extend the norm estimates from Proposition 3.3.2 to the
whole spaces Ẋθ

s,A,ϕ, X
θ
s,A,ϕ.

Proposition 3.3.5. Let θ ∈ R, σ > ωRs(A) and ϕ,ψ ∈ Φσ,θ. Then there is a constant C > 0
such that for all x ∈ Xθ

s,A,ϕ and f ∈ H∞(Σσ)

(1) C−1 ‖x‖θ,s,A,ϕ ≤ ‖x‖θ,s,A,ψ ≤ C ‖x‖θ,s,A,ϕ,

(2) ‖f(A)x‖θ,s,A,ϕ ≤ C ‖f‖∞ · ‖x‖θ,s,A,ϕ.
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In particular, for each ϕ,ψ ∈ Φσ,θ the spaces Ẋθ
s,A,ϕ and Ẋθ

s,A,ψ have equivalent norms, and if
ϕ ∈ ΦΣ

σ,θ, then also ‖ · ‖Σθ,s,A,ϕ is an equivalent norm on Ẋθ
s,A,ϕ, and (1), (2) also hold for the

discrete counterpart ‖ · ‖Σθ,s,A,ϕ instead of ‖ · ‖θ,s,A,ϕ.

Finally, if θ ≥ 0, then all statements are also true for the inhomogeneous spaces Xθ
s,A,ϕ with the

inhomogeneous norms ‖ · ‖X + ‖ · ‖θ,s,A,ϕ and ‖ · ‖X + ‖ · ‖Σθ,s,A,ϕ, respectively.

Hence we will usually drop the ϕ and sometimes A in our notation of the spaces Ẋθ
s,A,ϕ, X

θ
s,A,ϕ,

if there is no risk of confusion. Moreover, if θ ∈ R, σ > ωRs(A) and ϕ ∈ Φσ,θ (or ϕ ∈ ΦΣ
σ,θ,

respectively), we will use the notation

‖x‖θ,s ≈
∥∥∥(∫ ∞

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X

(
‖x‖θ,s ≈

∥∥∥(∑
j∈Z
|2−jθϕ(2jA)x|

)1/s∥∥∥
X

)

to indicate that ‖ · ‖θ,s is any of the equivalent norms ‖ · ‖θ,s,ψ, ψ ∈ Φσ,θ (or ‖ · ‖Σθ,s,ψ, ψ ∈ ΦΣ
σ,θ,

respectively).

If θ > 0 and ϕ ∈ Φσ,θ for some σ > ωRs(A), we observe that byRs-boundedness of {ϕ(tA) | t > 0}
we have

‖x‖θ,s,ϕ ≤
∥∥∥(∫ 1

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X

+
∥∥∥(∫ ∞

1
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X

≤
∥∥∥(∫ 1

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X

+
∥∥∥(∫ ∞

1
|t−θx|s dt

t

)1/s∥∥∥
X

=
∥∥∥(∫ 1

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X

+
(∫ ∞

1
|t−θ|s dt

t

)1/s
· ‖|x|‖X

=
∥∥∥(∫ 1

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X

+ (θs)−1/s · ‖x‖X .

This leads to the following

Remark 3.3.6. Let θ > 0 and ϕ ∈ Φσ,θ for some σ > ωRs(A). Then

Xθ
A,s =

{
x ∈ X

∣∣∣ ∥∥∥(∫ 1

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X
< +∞

}
,

and x 7→ ‖x‖X +
∥∥∥∥(∫ 1

0
|t−θϕ(tA)x|s dt

t

)1/s
∥∥∥∥
X

defines an equivalent norm on Xθ
A,s.

The next proposition describes some elementary embedding properties.

Proposition 3.3.7. Let θ, θ′ ∈ R and r ∈ [1,+∞]. Then the following embeddings hold:

(1) If r ≤ s and A is also Rr-sectorial, then Ẋθ
r,A ↪→ Ẋθ

s,A and Xθ
r,A ↪→ Xθ

s,A if θ ≥ 0,
respectively.

(2) If θ′ ≥ θ > 0, then Xθ′
A,s ↪→ Xθ

A,s ↪→ X.
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Proof. (1) This follows immediately if we use the discrete norm representation in the spaces
Ẋθ
r,A, Ẋ

θ
s,A and the fact that `r ↪→ `s.

(2) This is an immediate consequence of Remark 3.3.6.

This is a first point that shows that the space X0
A,s does not really fit into the scale of the

inhomogeneous spaces: We cannot prove a general embedding Xθ
A,s ↪→ X0

A,s. Indeed, this would
require an estimate of the kind∥∥∥(∫ ∞

1
|ϕ(tA)x|s dt

t

)1/s∥∥∥
X

.
∥∥∥(∫ 1

0
|t−θϕ(tA)x|s dt

t

)1/s∥∥∥
X

+ ‖x‖X

if ϕ ∈ Φσ,θ ∩H∞0 (Σσ) for some σ > ωRs(A). It seems that this cannot be expected in general.

We will show now that also the homogeneous spaces Ẋθ
s,A can be embedded into some natural

extrapolation spaces associated to A. A suitable framework is the theory of abstract extrapo-
lation spaces as it is developed in [Ha06], Chapter 6.3. We will give a short summary of those
parts of the theory that are sufficient for our work.

We define the operator J := A(1 + A)−2 : X → X, then JX = D(A) ∩ R(A) ↪→ X, and J is a
topological isomorphism. Now consider the following commutative diagram:

X
id // X

X
J

//

J

OO

JX

We rename some components and let X(1) := D(A) ∩R(A), then it becomes

X(−1)

J(−1) // X

X
J

//

ι

OO

X(1)

Then ι : X ↪→ X(−1) is an embedding, hence we may view X(−1) as a proper superspace of X,
the so-called extrapolation space of order 1. Since the diagram is commuting, we have moreover
J(−1) ◦ ι = J , hence after some identifications we can also write J instead of J(−1). This leads to
the following diagram:

X(−1)
J // X

X
J

// X(1)

X(1)
J

// X(2)
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Iterating this construction leads to a scale of spaces

X = X0 ↪→ X(−1) ↪→ X(−2) ↪→ · · · ↪→ X(−n) ↪→ ...

together with a family of (compatible) isometric isomorphisms J : X(−n) → X(−n+1). Finally,
U :=

⋃
n∈NX(−n) is called the universal extrapolation space corresponding to A. This space can

be endowed with a notion of net-convergence in the following sense: Let (xα)α∈A be a net in U
and y ∈ U , then

xα → y :⇐⇒ ∃n ∈ N, α0 ∈ A :
(
∀α ∈ A≥α0 : y, xα ∈ X−n

)
∧ ‖xα − y‖ → 0.

Then the limit of a net in U is unique, and sum and scalar multiplication are "continuous" with
respect to the so-defined notion of convergence. Since the operator J is defined on each space
X−n, n ∈ N, it can be considered as a mapping J : U → U , which then is obviously surjective,
whence it is an algebraic isomorphism, continuous with respect to the notion of convergence
defined above.

In fact, the construction of the space U and in particular the notion of convergence in U is only
an ad-hoc construction, which is suitable to make formulations easier: For example, convergence
in the space U is convergence in the space X(−m) for some m ∈ N, and in the same manner
arguments made in the space U always have to be understood to be made in the space X(−m)

for some m ∈ N.

Now the operator A can also be lifted to the whole scale of extrapolation spaces and the whole
space U : We define

A(−1) := J−1AJ with domain D(A(−1)) := J−1D(A).

Then A is an injective sectorial operator in X(−1) that is isometrically similar to A. Moreover
X(1) ⊆ D(A(−1)) ⊆ X(−1), and A is the part of A(−1), i.e.

A = A(−1) ∩ (X ×X) = {(x,A(−1)x) |x,A(−1)x ∈ X}.

Iterating this procedure leads to a sequence of isometrically similar sectorial operators A(−n) in
X(−n) where A(−n) is the part of A(−n−1) in X(−n). Thus A can be considered as an operator on
the whole space U .

We now take a short look at the functional calculus in this framework. Let σ ∈ (ω(A), π] and
f ∈ B(Σσ). Then the operator f(A) can be considered as an operator in each X(−n), and we have
consistency in the sense that f(A(−n−1))|X(−n)

= f(A(−n)) for all n ∈ N. To be more precise, if we
choose m ∈ N such that ρmf ∈ E(Σσ), where ρ(z) = z/(1 + z)2, then f(A) : X(−n) → X(−n−m)

is bounded for each n ∈ N. Hence f(A) can be considered as an operator on the whole space U ,
and we have the following important lemma.

Lemma 3.3.8 ([Ha06], Lemma 6.3.1). Let σ ∈ (ω(A), π) and f ∈ B(Σσ). Then D(f(A)) =
{x ∈ X | f(A)x ∈ X}, i.e., the operator f(A) considered as an operator in X is the part in X of
f(A) considered as an operator in U .
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Finally we define for later use for each α ∈ R the homogeneous fractional space

Ẋα := A−αX endowed with the norm ‖ · ‖α := ‖ · ‖Ẋα := ‖Aα · ‖X ,

where A−α has to be understood in the sense of Lemma 3.3.8 and its preceding remarks.

After this excursus we turn back to the theory of s-intermediate spaces. We can now give a
concrete description of the homogeneous spaces as subspaces of the abstract extrapolation space.

Proposition 3.3.9. Let θ ∈ R. Then

Ẋθ
s,A
∼= {x ∈ U | ‖x‖θ,s,A < +∞} ↪→ A−θX(−1)

Proof. For brevity we drop the A in the notations of norms and spaces for this proof. Define the
auxiliary space

X̃θ
s := {x ∈ U | ‖x‖θ,s < +∞}, endowed with the norm ‖ · ‖θ,s.

We will start by showing the embedding X̃θ
s ↪→ A−θX(−1). Choose any σ ∈ (ωRs(A), π] and

ϕ ∈ Φσ,θ. With ϕ̃(z) := z−θϕ(z) we have ϕ̃ ∈ Φσ,0 and

ϕ̃(tA)Aθx = (tA)−θϕ(tA)Aθx = t−θϕ(tA)x for all x ∈ D(Aθ), t > 0,

hence Aθ is an isomorphism from X̃θ
s to X̃0

s and we may assume w.l.o.g. that θ = 0. Let x ∈ U
with ‖x‖0,s,ϕ < +∞. We will now argue similar as in the proof of Proposition 3.2.12. We choose
a function ψ ∈ H∞0 (Σσ) such that

∫∞
0 ϕ(t)ψ(t)dtt = 1 and conclude by the same techniques as

in the proof of Proposition 3.2.12 that∫ ∞
0

ϕ(tA)ψ(tA)x
dt

t
= x in U,

i.e. the integral is taken in the extrapolation spaceX(−m) for somem ∈ N. Let ρ(z) := z/(1+z)2,
choose ω ∈ (ωRs(A), σ) and let Γ by the usual parametrization of ∂Σω. Using the functional
calculus and Fubini-Tonelli yields

ρ(A)x =
∫ ∞

0
ρ(A)ϕ(tA)ψ(tA)x

dt

t
=
∫ ∞

0

1
2πi

∫
Γ
ρ(z)ψ(tz)zR(z,A)ϕ(tA)x

dz

z

dt

t

=
1

2πi

∫
Γ
ρ(z) zR(z,A)

(∫ ∞
0

ψ(tz)ϕ(tA)x
dt

t

)
︸ ︷︷ ︸

=:u(z)

dz

z
.

By Hölder’s inequality we have

|u(z)| ≤
(∫ ∞

0
|ψ(tz)|s′ dt

t

)1/s′

︸ ︷︷ ︸
C(z):=

·
(∫ ∞

0
|ϕ(tA)x|s dt

t

)1/s

,
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where C := supz∈ΓC(z) < +∞ since ψ ∈ H∞0 (Σσ). Since also ρ ∈ H∞0 (Σσ) and M :=
supz∈Σω ‖zR(z,A)‖ < +∞ we obtain Jx = ρ(A)x ∈ X, hence x ∈ X(−1), with

‖x‖X(−1)
= ‖Jx‖X = ‖ρ(A)x‖X ≤

1
2π

∫
Γ
|ρ(z)| ‖zR(z,A)‖X · ‖|u(z)|‖X

|dz|
|z|

.
CM

2π

∫
Γ
|ρ(z)| |dz|

|z|
·
∥∥∥∥(∫ ∞

0
|ϕ(tA)x|s dt

t

)1/s∥∥∥∥
X

. ‖x‖X0
s

as desired.

We will now show that
(
X̃θ
s , ‖·‖θ,s

)
is a Banach space. Again, we may assume w.l.o.g. that θ = 0

and choose ϕ(z) := z/(1 + z)2 to calculate the norm in X0
s . Let (xn)n∈N ∈

(
X̃0
s

)N be a Cauchy
sequence. Then by the already proven embedding X̃0

s ↪→ X(−1) we can find an x ∈ X(−1) with
xn → x in x ∈ X(−1), hence also ϕ(tA)xn → ϕ(tA)x in X for n→∞, since by the special choice
of ϕ we have ϕ(tA) ∈ L(X(−1), X). On the other hand, (ϕ(tA)x)t>0 is a Cauchy sequence in the
Banach space X(Ls∗), hence we can find an F ∈ X(Ls∗) with ϕ(·)Ax→ F in X(Ls∗). By Lemma
1.6.24 we may assume w.l.o.g. by possibly choosing subsequences, that also ϕ(·A)xn → ϕ(·A)x
and ϕ(·A)xn → F pointwise a.e. for n → ∞. Thus we obtain ϕ(·A)x = F ∈ X(Ls∗), hence
x ∈ X̃θ

s , and ‖x− xn‖X0
s

= ‖ϕ(·A)xn − F‖X(Ls∗)
→ 0 for n→∞.

Since X̃θ
s is a Banach space and trivially Xθ

s ⊆ X̃θ
s , we also obtain Ẋθ

s ⊆ X̃θ
s , and it only remains

to show the other inclusion X̃θ
s ⊆ Ẋθ

s . But this can easily be seen by a density argument, since
for sufficiently large m ∈ N we have again that D(Am) ∩ R(Am) is also dense in the space X̃θ

s .
This can be proven in the same way as it is done in the proof of Proposition 3.3.3.

We want to show a sketch of another possible proof of the embedding Ẋ0
s,A ↪→ X(−1) where we

use a corresponding result for the so called McIntosh-Yagi spaces from [Ha06], Proposition 6.4.1.:

With the notations of the above proof we obtain with [Ha06], Proposition 6.4.1 b) the estimate

‖x‖X(−1)
≤ C · sup

t>0
‖ϕ(tA)x‖X .

Since A is sectorial, by similar arguments as used in the proof of Proposition 3.2.17 we obtain

sup
t>0
‖ϕ(tA)x‖X = sup

j∈Z
sup
t∈[1,2]

‖ϕ(2jtA)x‖X ≈ sup
j∈Z
‖ϕ(2jA)x‖X . ‖ sup

j∈Z
|ϕ(2jA)x|‖X

.

∥∥∥∥(∫ ∞
0
|ϕ(tA)x|s dt

t

)1/s∥∥∥∥
X

.

With the aid of Proposition 3.3.9 we can deduce a close relationship between the homogeneous
and the inhomogeneous spaces:

Corollary 3.3.10. Let θ ≥ 0, then Xθ
s,A = Ẋθ

s,A ∩X with equivalent norms.

Proof. This follows immediately from Proposition 3.3.9 since

Xθ
s,A = {x ∈ X | ‖x‖θ,s,A < +∞} = Ẋθ

s,A ∩X.
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There are more relations between the homogeneous and the inhomogeneous spaces if A is in-
vertible. Moreover, the inhomogeneous spaces do not change if A is replaced by A+ ε for some
ε > 0. This is contained in the following

Proposition 3.3.11. Let ε, θ > 0.

(1) If A−1 ∈ L(X), then Ẋθ
s,A
∼= Xθ

s,A,

(2) Xθ
s,ε+A

∼= Xθ
s,A.

In particular we have Xθ
s,A
∼= Ẋθ

s,ε+A.

Proof. (1) Assume that A−1 ∈ L(X). Choose σ ∈ (ωRs(A), π) and ϕ ∈ ΦΣ
σ,θ and let x ∈ X. By

[Ha06], Proposition 6.5.4 we obtain

‖x‖X .
∥∥(t−θϕ(tA)x

)
t>0

∥∥
L∞∗ (X)

= sup
t>0

∥∥t−θϕ(tA)x
∥∥
X

(∗)
. sup

j∈Z

∥∥|2−jθϕ(2jA)x|
∥∥
X

≤
∥∥ sup
j∈Z
|2−jθϕ(2jA)x|

∥∥
X
,

where (∗) can be seen by analogous arguments as in the proof of Proposition 3.2.17 for the case
s = +∞, where in this case we just use the sectoriality of A. If s < +∞ we can proceed with
the embedding `s ↪→ `∞:

‖x‖X .
∥∥ sup
j∈Z
|2−jθϕ(2jA)x|

∥∥
X
≤
∥∥∥(∑

j∈Z
|2−jθϕ(2jA)x|

)1/s∥∥∥
X
≈ ‖x‖θ,s,A,

since ϕ ∈ ΦΣ
σ,θ. So we obtain

‖x‖Xθ
s,A
≈ ‖x‖X + ‖x‖θ,s,A . ‖x‖θ,s,A,

hence ‖ · ‖θ,s,A is an equivalent norm on the Banach space Xθ
s,A which implies Xθ

s,A
∼= Ẋθ

s,A.

(2) Choose σ ∈ (ωRs(A), π) and m ∈ N with m − 1 ≤ θ < m and define ϕ(z) := ϕm(z) :=
zm/(1 + z)m, then ϕ ∈ Φσ,θ, and for all t > 0 we obtain

ϕ(t−1A) = t−mAm(1 + t−1A)−m = Am(t+A)−m.

We will first show the embedding Xθ
s,A+ε ↪→ Xθ

s,A, so let x ∈ Xθ
s,A+ε. Then by Remark 3.3.6 we

have

‖x‖Xθ
s,A
≈ ‖x‖X +

∥∥∥∥(∫ 1

0
|t−θϕ(tA)x|sdt

t

)1/s∥∥∥∥
X

and ∥∥∥∥(∫ 1

0
|t−θϕ(tA)x|sdt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

1
|tθϕ(t−1A)x|sdt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

1
|tθAm(t+A)−mx|sdt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

1
|tθS(t)(ε+A)m(t+ ε+A)−mx|sdt

t

)1/s∥∥∥∥
X
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with S(t) := (t+ ε+A)m(ε+A)−mAm(t+A)−m, hence

S(t) =
[
(t+ ε+A)(ε+A)−1A(t+A)−1

]m =
[
A(ε+A)−1(t+ ε+A)(t+A)−1

]m
=

[
A(ε+A)−1(1 + ε(t+A)−1)

]m =
[
A(ε+A)−1(1 +

ε

t︸︷︷︸
∈[0,ε]

·t(t+A)−1)
]m
.

Since A is Rs-sectorial, the range S([1,∞)) is also Rs-bounded, hence by Proposition 3.1.13

∥∥∥∥(∫ 1

0
|t−θϕ(tA)x|sdt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

1
|tθS(t)(ε+A)m(t+ ε+A)−mx|sdt

t

)1/s∥∥∥∥
X

.

∥∥∥∥(∫ ∞
1
|tθ(ε+A)m(t+ ε+A)−mx|sdt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ 1

0
|t−θϕ(t(A+ ε))x|sdt

t

)1/s∥∥∥∥
X

,

and we obtain

‖x‖Xθ
s,A

≈ ‖x‖X +
∥∥∥∥(∫ 1

0
|t−θϕ(tA)x|sdt

t

)1/s∥∥∥∥
X

. ‖x‖X +
∥∥∥∥(∫ 1

0
|t−θϕ(t(A+ ε))x|sdt

t

)1/s∥∥∥∥
X

≈ ‖x‖Xθ
s,A+ε

.

We now show the reverse embedding Xθ
s,A ↪→ Xθ

s,A+ε, so let x ∈ Xθ
s,A. Then for all t > 0 we have

(A+ ε)m(t+ ε+A)−m =
m∑
k=0

(
m

k

)
εm−k Ak(t+ ε+A)−m

=
m∑
k=0

(
m

k

)
εm−k︸ ︷︷ ︸

=:ak

· tm−k(t+A)k · (t+ ε+A)−m︸ ︷︷ ︸
=:Sk(t)

·t−(m−k)Ak(t+A)−k,

and

Sk(t) = tm−k(t+ ε+A)−(m−k) · (t+A)k(t+ ε+A)−k

=
[ t

t+ ε︸ ︷︷ ︸
∈[0,1]

·(t+ ε)(t+ ε+A)−1
]m−k

·
[ t

t+ ε︸ ︷︷ ︸
∈[0,1]

·(t+ ε)(t+ ε+A)−1 +A(t+ ε+A)−1
]k
.
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This shows that also {Sk(t) | t > 0} is Rs-bounded for each k ∈ (N0)≤m, hence∥∥∥∥(∫ 1

0
|t−θϕ(t(A+ ε))x|sdt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

1
|tθϕ(t−1(A+ ε))x|sdt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

1
|tθ(A+ ε)m(t+ ε+A)−mx|sdt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

1
|tθ

m∑
k=0

ak · Sk(t) · t−(m−k)Ak(t+A)−kx|sdt
t

)1/s∥∥∥∥
X

.
m∑
k=0

∥∥∥∥(∫ ∞
1
|tθ−(m−k) · Sk(t) ·Ak(t+A)−kx|sdt

t

)1/s∥∥∥∥
X

.
m∑
k=0

∥∥∥∥(∫ ∞
1
|tθ−(m−k) ·Ak(t+A)−kx|sdt

t

)1/s∥∥∥∥
X

=
m∑
k=0

∥∥∥∥(∫ 1

0
|t−(θ−k)ϕm−k(tA)x|sdt

t

)1/s∥∥∥∥
X

.
m−2∑
k=0

‖x‖θ−k,s,A +
∥∥∥∥(∫ 1

0
|t−(θ−(m−1))ϕ1(tA)x|sdt

t

)1/s∥∥∥∥
X

+
∥∥∥∥(∫ 1

0
|tm−θx|sdt

t

)1/s∥∥∥∥
X

.

By the choice of m we have α := m − θ > 0 and β := θ − (m − 1) ∈ [0, 1). If m = 1, then
β = θ ∈ (0, 1), and we define δ := β. If m ≥ 2, then β ∈ [0, 1 ∧ θ), hence we can choose
δ ∈ (β, 1∧ θ), and in both cases we obtain δ ∈ (0, 1)∩ [β, θ] . Then we can continue the estimate
to ∥∥∥∥(∫ 1

0
|t−θϕ(t(A+ ε))x|sdt

t

)1/s∥∥∥∥
X

δ≥β
.

m−2∑
k=0

‖x‖θ−k,s,A +
∥∥∥∥(∫ 1

0
|t−δϕ1(tA)x|sdt

t

)1/s∥∥∥∥
X

+
∥∥∥∥(∫ 1

0
|tαx|sdt

t

)1/s∥∥∥∥
X

.
m−2∑
k=0

‖x‖θ−k,s,A + ‖x‖δ,s,A + (αs)−1 ‖x‖X ,

where we used ϕm−k ∈ Φσ,θ−k for k ∈ (N0)≤m−2 and ϕ1 ∈ Φσ,δ. So we also have an estimate

‖x‖Xθ
s,A+ε

≈ ‖x‖X +
∥∥∥∥(∫ 1

0
|t−θϕ(t(A+ ε))x|sdt

t

)1/s∥∥∥∥
X

. ‖x‖X +
m−2∑
k=0

‖x‖θ−k,s,A + ‖x‖δ,s,A.

By Proposition 3.3.7 we have embeddings Xθ
s,A ↪→ Xθ−k

s,A for all k ∈ (N0)≤m−2 and Xθ
s,A ↪→ Xδ

s,A

by our choice of δ, hence also

‖x‖Xθ
s,A+ε

.
m−2∑
k=0

‖x‖Xθ−k
s,A

+ ‖x‖Xδ
s,A

. ‖x‖Xθ
s,A
.

Again, to the end of the subsection we consider our standard example, the Laplacian in the space
Lp(Rd).
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Proposition 3.3.12. Let m, d ∈ N and p, s ∈ (1,+∞), and let A := (−∆)m be the m-th power
of the Laplace operator in Lp(Rd) with domain D(A) = W 2m,p(Rd). Let θ ∈ R, then

Ẋθ
s,A = Ḟ 2mθ

p,s (Rd),

and if θ > 0, then also

Xθ
s,A = F 2mθ

p,s (Rd)

with equivalent norms.

Proof. Choose σ ∈ (0, π/2) and k ∈ N>|θ|, and define ϕ(z) := zke−z
1/m for all z ∈ Σσ. Then

ϕ ∈ ΦΣ
σ,θ, hence ϕ is suitable to calculate the norm in Ẋθ

s,A, and also in Xθ
s,A in the case θ > 0.

On the other hand, if t > 0 and r := t1/m, then

ϕ(tA)u = tk(−∆)kme(t1/m∆)u = (−r∆)kmer∆u for all u ∈ S ′d.

Thus Theorem 1.7.3 shows that ‖·‖θ,s,A,ϕ is also an equivalent norm for the homogeneous Triebel-
Lizorkin space Ḟ 2mθ

p,s , and in the case θ > 0, the norm ‖ · ‖Xθ
s,A,ϕ

is an equivalent norm for the

inhomogeneous Triebel-Lizorkin space F 2mθ
p,s . Hence the result for the inhomogeneous spaces

is immediate, and for the homogeneous spaces it follows from density: it can be shown that
Zd ⊆ D(Ak) ∩R(Ak) ⊆ Ḟ 2mθ

p,s (Rd), hence D(Ak) ∩R(Ak) is a dense subspace of Ḟ 2mθ
p,s (Rd), and

on the other hand it is also dense in Ẋθ
s,A by Proposition 3.3.3.

Let us finally mention that we can reformulate the well known fact that having a bounded
H∞-calculus is equivalent to square function estimates (cf. Subsection 1.6.5) in terms of the
coincidence of X with the space Ẋ0

2,A:

Remark 3.3.13. Assume that X is q-concave for some q < +∞ and let A be an R2-sectorial
operator in X. Then A has a bounded H∞-calculus in X if and only if X = Ẋ0

2,A with equivalent
norms, and in this case ωH∞(A) = ωR2(A).

Proof. The "if"-part follows immediately from Proposition 3.2.12. Recall that in this situation
R2-boundedness is equivalent to R-boundedness by Remark 3.1.7, hence the other implication
follows by the remarks in Subsection 1.6.5. The identity ωH∞(A) = ωR2(A) follows again from
Proposition 3.2.12 and Theorem 1.3.5 (cf. also its preceding remarks).

3.3.2 The s-spaces as intermediate spaces and interpolation

We will show now that the s-spacesXθ
s,A, Ẋ

θ
s,A defined in the previous subsection are "reasonable"

intermediate space. We will start with the following connection with the real interpolation spaces
(X,D(Am))α,q.

Proposition 3.3.14. Let α > θ > 0 and 1 ≤ p ≤ s ≤ q ≤ +∞.

(1) If X is q-concave, then Xθ
s,A ↪→ (X,D(Aα))θ/α,q,

(2) If X is p-convex, then (X,D(Aα))θ/α,p ↪→ Xθ
s,A.



3. Rs-boundedness and Rs-sectorial operators
3.3. The associated s-intermediate spaces 112

Proof. We will only proof (1), since the proof of (2) can be done similarly. Choose σ ∈ (ωRs(A), π)
and ϕ ∈ ΦΣ

σ,θ. Then Theorem 1.5.8, an equivalent norm in (X,D(Aα))θ/α,q is given by

x 7→ ‖x‖X +
∥∥(t−θϕ(tA)x

)
t>0

∥∥
Lq∗(X)

.

We consider only the case q < +∞, the case q = +∞ can be treated similarly as usual. By
analogous arguments as in the proof of Proposition 3.2.17 using the sectoriality of A we obtain∥∥(t−θϕ(tA)x

)
t>0

∥∥
Lq∗(X)

=
(∫ ∞

0
‖t−θϕ(tA)x‖qX

dt

t

)1/q

≈
(∑
j∈Z
‖2−jθϕ(2jA)x‖qX

)1/q

(∗)
≤ M(q)(X) ·

∥∥∥(∑
j∈Z
|2−jθϕ(2jA)x|q

)1/q∥∥∥
X

≤ M(q)(X) ·
∥∥∥(∑

j∈Z
|2−jθϕ(2jA)x|s

)1/s∥∥∥
X
≈ ‖x‖θ,s,A.

where in (*) we used the Fatou-property and the q-concavity of X, and in the last inequality we
used that `s ↪→ `q. Hence we also obtain

‖x‖(X,D(Aα))θ/α,q ≈ ‖x‖X +
∥∥(t−θϕ(tA)x

)
t>0

∥∥
Lq∗(X)

. ‖x‖X + ‖x‖θ,s,A ≈ ‖x‖Xθ
s,A
.

In particular, since X is always ∞-concave and 1-convex, we have trivially

Corollary 3.3.15. Let α > θ > 0, then

(X,D(Aα))θ/α,1 ↪→ Xθ
s,A ↪→ (X,D(Aα))θ/α,∞. (3.3.4)

We can now use standard methods from the theory of real interpolation spaces, which lead to
the following

Corollary 3.3.16. (1) Let α > θ > β > 0, then D(Aα) ↪→ Xθ
s,A ↪→ D(Aβ).

(2) Let θ0 < θ1 < α and s0, s1 ∈ [1,+∞] and δ ∈ (0, 1), then

(Xθ0
s0,A

, Xθ1
s1,A

)δ,q = (X,D(Aα))θ/α,q with θ := (1− δ)θ0 + δθ1. (3.3.5)

Proof. (1) This is simply due to the fact that by real interpolation theory and Corollary 3.3.15
we have

D(Aα) ↪→ (X,D(Aα))θ/α,1 ↪→ Xθ
s,A ↪→ (X,D(Aα))θ/α,∞ ↪→ (X,D(Aα))β/α,1 ↪→ D(Aβ).

For (2) we observe that equation (3.3.4) from Corollary 3.3.15 is equivalent to the fact that the
spaces Xθj

s,A are in the class Jθj/α(X,D(Aα)) ∩Kθj/α(X,D(Aα)) for j = 0, 1, hence (2) follows
from the reiteration theorem for real interpolation, Theorem 1.5.7.
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We conclude this subsection by considering the complex interpolation of the s-spaces.

Proposition 3.3.17. Let s0, s1 ∈ (1,∞) and assume that A has an Rsj -bounded H∞-calculus
with ω0 := ωR∞s0

(A) ∨ ωR∞s1 (A) < π/2 for j = 0, 1. Let θ0, θ1 ∈ R with

|θ0|, |θ1|, |θ0 − θ1| <
π/2
ω0

. (3.3.6)

Then for(
θ,

1
s

)
:= (1− α)

(
θ0,

1
s0

)
+ α

(
θ1,

1
s1

)
we have

[
Ẋθ0
s0,A

, Ẋθ1
s1,A

]
α
∼= Ẋθ

s,A, and if θ0, θ1 > 0 we also have
[
Xθ0
s0,A

, Xθ1
s1,A

]
α
∼= Xθ

s,A.

We remark that the restriction (3.3.6) for the interpolation indices θj has its reason in our method
of proof. Up to now it seems not clear if this restriction is reasonable or just a matter of lack
of technique in our method. Nevertheless, in the classical situation of Triebel-Lizorkin-spaces
where A = −∆ we have ω0 = 0, hence complex interpolation works for all θj ∈ R as it is also
known from the classical results.

Proof of Proposition 3.3.17. First we observe that if we have proved the result for the homoge-
neous spaces, then by Proposition 3.3.11 we obtain the corresponding result for the inhomoge-
neous spaces, hence it is sufficient to consider the homogeneous spaces.

According to the assumption on θ0, θ1 we can choose 0 < α < β < π/2
ω0

such that θj ∈ (α− β, α)

for j = 0, 1. Furthermore fix some σ ∈
(
ω0,

π/2
β

)
.

We will show first that we can reduce to the case β = 1. If β < 1, we can obviously replace β by
1, so consider the case β > 1. Since A has an Rsj -bounded H∞-calculus, the operator Aβ also
has an Rsj -bounded H∞-calculus with

ωR∞sj
(Aβ) ≤ βωR∞sj (A) ≤ βω0 < π/2 for j = 0, 1.

Observe that Ẋβδ
s,A
∼= Ẋδ

s,Aβ
for δ ∈ R canonically, since for ϕ ∈ Φβσ,δ and ψ(z) := ϕ(zβ) we have

ψ ∈ Φσ,βδ and

‖x‖βδ,s,A,ψ =
∥∥∥∥(∫ ∞

0
|t−βδψ(tA)x|s dt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

0
|t−βδϕ(tβAβ)x|s dt

t

)1/s∥∥∥∥
X

= β−1/s ·
∥∥∥∥(∫ ∞

0
|t−δϕ(tAβ)x|s dt

t

)1/s∥∥∥∥
X

≈ ‖x‖δ,s,Aβ ,ϕ.

So since the above stated isomorphisms are canonical we can replace A by Aβ and then β by 1.

We define the auxiliary spaces

`s,θ := `s,θ(Z) :=
{

(αj)j ∈ CZ ∣∣ ‖(αj)‖`s,θ :=
∥∥(2−θjαj)j

∥∥
`s
<∞

}
,
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endowed with the weighted norm ‖ · ‖`s,θ for all s ∈ [1,+∞], θ ∈ R. Then we have for all
s0, s1 ∈ [1,+∞] and θ0, θ1 ∈ R and α ∈ (0, 1)

[X(`s0,θ0), X(`s1,θ1)]α ∼= X(`s,θ) where
(
θ,

1
s

)
= (1− α)

(
θ0,

1
s0

)
+ α

(
θ1,

1
s1

)
, (3.3.7)

cf. Section 2.4 and [BL76], Theorem 5.6.3.

The strategy is now to show that the homogeneous spaces are retracts of the spaces X(`s,θ) with
canonical (co-)retractions and then use Proposition 1.5.2 and (3.3.7). For this we will construct
a coretraction J : Ẋθ

s,A → X(`s,θ) and a retraction P : X(`s,θ) → Ẋθ
s,A, i.e. bounded operators

such that PJ = IdẊθ
s,A

, which are independent of θ ∈ (α− 1, α) and s ∈ [1,+∞] such that A has
an Rs-bounded H∞-calculus with ωs ≤ ω0.

By the above reduction we have β = 1, hence α ∈ (0, 1). We define auxiliary functions

ϕ(z) := − zα

2 + z
, ψ(z) :=

z1−α

1 + z
, ρ(z) :=

zα

1 + z

and f(z) := ϕ(z)ψ(z) = −z
(1+z)(2+z) = 1

1+z −
2

2+z for all z ∈ Σσ. For later use we mention the
following easily proved estimate: If a, b, c > 0 and g(z) := cz

(1+az)(1+bz) , then

|g(z)| .σ g(|z|) ≤ 2
c

a+ b
for all z ∈ Σσ. (3.3.8)

We now define the operator Jx :=
(
ϕ(2jA)x

)
j∈Z for all x ∈ X and formally

P (yj)j :=
∑
j∈Z

ψ(2jA)yj := lim
N→∞

N∑
j=−N

ψ(2jA)yj︸ ︷︷ ︸
=:PN (yj)j

for (yj)j ∈ XZ.

Let θ ∈ (α− 1, α) and s ∈ [1,+∞] such that A has an Rs-bounded H∞-calculus with ωs ≤ ω0.
We will show now that J |Ẋθ

s,A
: Ẋθ

s,A → X(`s,θ) is a coretraction and P |X(`s,θ) : X(`s,θ)→ Ẋθ
s,A

is a corresponding retraction, i.e. we have to show that

(1) J |Ẋθ
s,A

: Ẋθ
s,A → X(`s,θ) is bounded,

(2) P |X(`s,θ) : X(`s,θ)→ Ẋθ
s,A is well-defined and bounded, and

(3) PJx = x for all x ∈ Xθ
s,A.

Ad (1): This is simply due to the fact that ϕ ∈ ΦΣ
σ,θ (this can be shown in exactly the same way

as the calculations in Example 3.2.16 (1)).
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Ad (2): We now use the function ρ to calculate the norm in the space Ẋθ
s,A, which is possible

since also ρ ∈ ΦΣ
σ,θ:

‖PN (yj)j‖Ẋθ
s,A

=
∥∥∥∥(2−kθρ(2kA)

N∑
j=−N

ψ(2jA)yj
)
k

∥∥∥∥
X(`s)

=
∥∥∥∥( N∑

j=−N
2−(k−j)θρ(2kA) 2−jθψ(2jA)yj

)
k

∥∥∥∥
X(`s)

=
∥∥∥∥( −k+N∑

`=−k−N
2`θρ(2kA)ψ(2k+`A)yk+`

)
k

∥∥∥∥
X(`s)

≤
∥∥∥∥(∑

`∈Z
|2`θρ(2kA)ψ(2k+`A)yk+`|

)
k

∥∥∥∥
X(`s)

≤
∑
`∈Z

∥∥(|2`θρ(2kA)ψ(2k+`A)yk+`|
)
k

∥∥
X(`s)

.
∑
`∈Z

(
sup
z∈Σσ

|2`θρ(2kz)ψ(2k+`z)|
)∥∥(yk+`

)
k

∥∥
X(`s)

≤ C
∥∥(yk)k∥∥X(`s)

with C :=
∑̀
∈Z

(
sup
z∈Σσ

|2`θρ(2kz)ψ(2k+`z)|
)
. So we only have to show that C < +∞, because then

with the Fatou property we obtain

‖P (yj)j‖Ẋθ
s,A
≤ lim inf

N→∞
‖PN (yj)j‖Ẋθ

s,A
. C ·

∥∥(yk)k∥∥X(`s)
.

For this let

g(z) := ρ(2kz)ψ(2k+`z) = − cz

(1 + az)(1 + bc)
,

where a := 2k, b := 2k+` and c := aαb1−α = 2αk+(1−α)(k+`) = 2k+(1−α)`, then by (3.3.8)

|g(z)| .
(
a+ b

c

)−1

=
(

2−(1−α)` + 2α`
)−1
≤ 2−α` ∧ 2(1−α)`.

For ` ∈ N0 this implies 2θ`|g(z)| . 2−(α−θ)`, and for ` ∈ −N we have 2θ`|g(z)| . 2−(θ+1−α)|`|,
hence altogether with δ := min{α− θ, (θ + 1− α)} > 0:

sup
z∈Σσ

|2`θρ(2kz)ψ(2k+`z)| = sup
z∈Σσ

|2`θg(z)| . 2−δ|`| for all ` ∈ Z,

so C .
∑̀
∈Z

2−δ|`| < +∞ as desired.

Ad (3): Let x ∈ Xθ
s,A, then

N∑
j=−N

ψ(2jA)ϕ(2jA)x =
N∑

j=−N
f(2jA)x =

N∑
j=−N

(
2−j(2−j +A)x− 2−(j−1)(2−(j−1) +A)x

)
= 2−N (2−N +A)x− 2N+1(2N+1 +A)x N→∞−→ 0− x = x in Ẋθ

s,A,

since the part of A in Ẋθ
s,A is sectorial (cf. Lemma 3.3.22 in the following subsection).

Since the operators J, P are appropriate (co-)retractions, the claim follows by Proposition 1.5.2
together with (3.3.7).
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Let us finally mention the correspondence of the s-intermediate spaces for R2-sectorial operators
with the so called Rademacher interpolation spaces 〈X,Y 〉θ, which have been introduced in
[KKW06], we refer also to [SW06] for the relationship with interpolation by the γ-method, and
to [KW-2], where this interpolation method is studied in a general framework in connection with
Euclidean structures. Then the same techniques as used in the proof of [KKW06], Theorem 7.4
show the following.

Remark 3.3.18. Let X be q-concave and p-convex for some 1 < p, q < +∞, and assume that
A is R2-sectorial. Then Ẋθ

2,A = 〈X, Ẋ1〉θ for all θ ∈ (0, 1) with equivalent norms.

In fact, the inclusion Ẋθ
2,A ⊆ 〈X, Ẋ1〉θ can be shown by similar arguments as in the proof of

[KKW06], Theorem 7.4, p. 782, and the other inclusion can be derived by means of duality with
similar arguments as in the proof of [KKW06], Theorem 7.4, p. 783f.

3.3.3 The part of A in the s-intermediate spaces

For this subsection let θ ∈ R. We recall that we can extrapolate the operator A to an opera-
tor in the universal extrapolation space U such that A is sectorial in each extrapolation space
X(−m),m ∈ N.

Observe first that the operators Aα shift the scales of associated s-spaces in the following sense.

Lemma 3.3.19. Let α ∈ R. Then AαXθ
s,A coincides with Xθ−α

s,A in the set-theoretical sense, and
the operator Aα (defined on U) induces a topological isomorphism

Aα : Ẋθ
s,A → Ẋθ−α

s,A .

If in addition θ > α ∨ 0, then also the operator (1 +A)α induces an isomorphism

(1 +A)α : Xθ
s,A → Xθ−α

s,A .

Proof. Choose σ ∈ (ωRs(A), π) and ϕ ∈ Φσ,θ−α such that ψ(z) := zαϕ(z) defines a function in
E(Σσ), then ψ ∈ Φσ,θ. Let x ∈ X, then

‖Aαx‖θ−α,s,A ≈
∥∥∥∥(∫ ∞

0
|t−θ+αϕ(tA)Aαx|s dt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

0
|t−θ(tA)αϕ(tA)x|s dt

t

)1/s∥∥∥∥
X

=
∥∥∥∥(∫ ∞

0
|t−θψ(tA)x|s dt

t

)1/s∥∥∥∥
X

≈ ‖x‖θ,s,A,

hence Aαx ∈ Xθ−α
s,A ⇐⇒ x ∈ Xθ

s,A, and Aα : (Xθ
s,A, ‖ · ‖θ,s,A,ψ) → (Xθ−α

s,A , ‖ · ‖θ,s,A,ϕ)

is an isometric isomorphism. Since Xθ−γ
s,A is dense in Ẋθ−γ

s,A for γ ∈ {0, α} this also yields
Aαx ∈ Ẋθ−α

s,A ⇐⇒ x ∈ Ẋθ
s,A for all x ∈ U and that Aα induces a topological isomorphism

Aα : Ẋθ
s,A → Ẋθ−α

s,A .

If in addition θ > α ∨ 0, then Xθ−γ
s,A
∼= Ẋθ−γ

s,A+1 for γ ∈ {0, α} by Proposition 3.3.11, and we can
apply the first part for 1 +A instead of A.
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Definition 3.3.20. Let Ȧθ,s := AẊθ
A,s

be the part of A in Ẋθ
A,s and Aθ,s := AXθ

A,s
be the part

of A in Xθ
A,s if θ ≥ 0, respectively.

Remark 3.3.21. The spaces Ẋθ
s,A, and X

θ
A,s if θ ≥ 0, respectively, are invariant under resolvents

of A, i.e. R(λ,A)Ẋθ
A,s ⊆ Ẋθ

A,s, and if θ ≥ 0 then R(λ,A)Xθ
A,s,ϕ ⊆ Xθ

A,s,ϕ, respectively, for all
λ ∈ C\Σσ and σ ∈ (ωRs(A), π). In fact, it is sufficient to show that λR(λ,A)Xθ

s,A ⊆ Xθ
s,A. To

see this we let x ∈ Xθ
s,A and choose σ ∈ (ωRs(A), π) and ϕ ∈ Φσ,θ, then

‖λR(λ,A)x‖θ,s,A ≈
∥∥(λR(λ,A))t−θϕ(tA)x)t>0

∥∥
X(Ls∗)

≤MRs,σ(A)
∥∥(t−θϕ(tA)x)t>0

∥∥
X(Ls∗)

≈ ‖x‖θ,s,A

for all λ ∈ C\Σσ, since the set {zR(z,A) | z ∈ C\Σσ} is Rs-bounded.

By Remark 3.3.21 we obtain the following elementary properties of the operators Ȧθ,s, Aθ,s.

Lemma 3.3.22. The operator Ȧθ,s is an injective sectorial operator in Ẋθ
s,A of type ω(Ȧθ,s) ≤

ωRs(A) with D(Ȧθ,s) = Ẋθ
s,A∩Ẋ

θ+1
s,A . If θ ≥ 0, the operator Aθ,s is an injective sectorial operator

in Xθ
s,A of type ω(Aθ,s) ≤ ωRs(A) with D(Aθ,s) = Xθ+1

s,A .

Moreover, if m ∈ N>|θ|, then D(Am) ∩ R(Am) is a core of Ȧθ,s, and of Aθ,s in the case θ ≥ 0,
respectively.

Proof. It is well know that the statements of Remark 3.3.21 imply the asserted sectoriality
properties, so we only have to verify the statements concerning the domains. But this follows
immediately from Lemma 3.3.19 with α = 1. The final assertions follows from the approximation
result that is also used in the proof of Proposition 3.3.3.

Combining Lemma 3.3.22 with Proposition 3.3.5 we immediately obtain the following theorem,
which is one of the main results of this work.

Theorem 3.3.23. (1) The part Ȧθ,s of A in Ẋθ
s,A with domain D(Ȧθ,s) = Ẋθ

s,A ∩ Ẋ
θ+1
s,A has a

bounded H∞-calculus with ωH∞(Ȧθ,s) ≤ ωRs(A).

(2) Let θ ≥ 0. If A−1 ∈ L(X) or A has a bounded H∞-calculus in X, then the part Aθ,s of A in
Xθ
s,A with domain D(Aθ,s) = Xθ+1

s,A has a bounded H∞-calculus with ωH∞(Aθ,s) ≤ ωRs(A).

As we already noted in the introduction of this section, Theorem 3.3.23 can be seen as a variant
of Dore’s Theorem that states that an invertible sectorial operator A in a Banach space X has a
bounded H∞-calculus in the scale of real interpolation spaces (X,D(A))p,θ for p ∈ [1,+∞], θ ∈
(0, 1), cf. [Do99] and [Do01], and also the extensive treatment using functional calculus which is
given in [Ha06], Chapter 6.
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3.4 Comparison and perturbation for Rs-sectorial operators

In this section we consider perturbation and comparison results for Rs-sectoriality, Rs-bounded
functional calculi and the associated s-intermediate spaces. One central task is, given an Rs-
sectorial operator A, to give sufficient conditions for a linear operator C such that C is Rs-
sectorial as well and one has Xθ

s,A
.= Xθ

s,C . We will closely follow the lines of the corresponding
comparison and perturbation results of [KW01-b], [KW04], Chapter 13 and [KKW06] for the
H∞-calculus. In fact, our assumptions are in many cases Rs-versions of corresponding assump-
tions of comparison and perturbation results in the articles cited above. Since these are equiva-
lent to usual boundedness assumptions for the vector-valued extensions Ãs in the vector-valued
space X(`s) it is not surprising that under our assumptions we will obtain similar results for
an Rs-bounded H∞-calculus for A. Nevertheless, we are also interested in coincidence of the
corresponding s-intermediate spaces, which will be done by suitable estimates of the s-power
function norms. Here we will use techniques similar to the ones used in [KW04], Chapter 13,
but the estimates we use will be more involved.

We fix s ∈ [1,+∞], and A will always denote an Rs-sectorial operator in X with dense domain
and dense range. Moreover we fix σ ∈ (0, π). Recall the following notations:

Ms,σ(A) := MRs,σ(A) := Rs({zR(z,A), AR(z,A) | z ∈ C\Σσ})

and

M∞s,σ(A) = Rs
({
f(A) | f ∈ H∞(Σσ), ‖f‖∞,σ ≤ 1

})
in the case that A has an Rs-bounded H∞(Σσ)-calculus.

We start with an Rs-version of a standard perturbation result for sectorial operators.

Proposition 3.4.1. Assume σ > ωRs(A) and let B be a linear operator in X with D(B) ⊇ D(A)
such that BA−1 extends to an Rs-bounded operator on X with a := Rs(BA−1) < 1/Ms,σ(A).
Then A+B is again Rs-sectorial with

Ms,σ(A+B) ≤ Ms,σ(A)
1− aMs,σ(A)

+ 1.

In particular, we have ωRs(A+B) ≤ σ.

Proof. Since BR(z,A) = BA−1AR(z,A) for all z ∈ C\Σσ, we obtain that {BR(z,A) | z ∈
C\Σσ} is Rs-bounded with

Rs({BR(z,A) | z ∈ C\Σσ}}) ≤ aMs,σ(A) < 1.

In particular, the operator IdX −BR(z,A) is invertible and

zR(z,A+B) = zR(z,A)(IdX −BR(z,A))−1 = zR(z,A)
∞∑
k=0

(BR(z,A))k ∈ L(X) (3.4.1)
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for all z ∈ C\Σσ. This shows that σ(A+B) ⊆ Σσ and that A+B is Rs-sectorial with

Rs({zR(z,A+B) | z ∈ C\Σσ}}) ≤Ms,σ(A)
∞∑
k=0

(aMs,σ(A))k =
Ms,σ(A)

1− aMs,σ(A)
.

We now turn to the comparison result, for which the following lemma states the central estimate.

Lemma 3.4.2. Let α, β > 0, and let A and B be Rs-sectorial operators such that D(Aα) =
D(Bα) and R(Aβ) = R(Bβ) and the operators BαA−α and B−βAβ extend to Rs-bounded oper-
ators on X. Then, for all θ ∈ (−β, α) we have

Ẋθ
s,A ↪→ Ẋθ

s,B.

Proof. We define

M := max{Ms,σ(A),Ms,σ(B),Rs(BαA−α),Rs(B−βAβ)} < +∞.

Choose some ω ∈ (ωRs(A) ∨ ωRs(B), π). We define for all a, b > 0 the auxiliary functions

ψa,b(z) :=
za

(1 + z)b
,

then ψa,b ∈ H∞0 (Σω) if b > a > 0 and ψa,b ∈ Φω,θ if b > a− θ > 0. Moreover we have

∀ t > 0 : ψa,b(t−1A) = tb−aAa(t+A)−b.

Let A,B be operators according to the assumptions. Define T := BαA−α and S := B−βAβ ,
then T, S are Rs-bounded. Choose a > α+ β and n ∈ N with n > 3a. Let t > 0, then we have

Ba(t+B)−n = Ba(t+B)−n(t+A)n(t+A)−n =
n∑
k=0

(
n

k

)
Ba(t+B)−ntn−kAk(t+A)−n,

hence

ψa,n(t−1B) = tn−aBa(t+B)−n =
n∑
k=0

(
n

k

)
tn−aBa(t+B)−ntn−kAk(t+A)−n︸ ︷︷ ︸

Sk(t):=

.

Now let θ ∈ (−β, α) and define N := [|θ|]. We split up the sum as

ψa,n(t−1B) =
N∑
k=0

(
n

k

)
Sk(t) +

n−N−1∑
k=N+1

(
n

k

)
Sk(t) +

n∑
k=n−N

(
n

k

)
Sk(t)

and consider the three types of summands separately.

Case 1. For k ∈ N0 with k ≤ N ≤ |θ| we have

Sk(t) = tn−(a−α)Ba−α(t+B)−nTtn−(k+α)Ak+α(t+A)−n = ψa−α,n(t−1B)Tψk+α,n(t−1A).
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We have n > a− α > 0, hence ψa−α,n ∈ H∞0 (Σω), and

0 < α− θ ≤ k + α− θ ≤ |θ| − θ + α ≤ 2|θ|+ α < n,

hence ψk+α,n ∈ Φθ,n. So for all x ∈ Xθ
s,A we have by Proposition 3.1.13 and Lemma 3.2.7:∥∥(tθSk(t)x)t>0

∥∥
X(Ls∗)

.M

∥∥(tθψk+α,n(t−1A)x)t>0

∥∥
X(Ls∗)

≈ ‖x‖θ,s,A.

Case 2. Now consider the case k ∈ N0 with N + 1 ≤ k ≤ n − N − 1, hence |θ| < k < n − |θ|.
Then

Sk(t) = tn−aBa(t+B)−ntn−kAk(t+A)−n = ψa,n(t−1B)ψk,n(t−1A).

We have n > a > 0, hence ψa,n ∈ H∞0 (Σω), and

0 ≤ |θ| − θ < k − θ < n− |θ| − θ ≤ n,

hence ψk,n ∈ Φθ,n. So for all x ∈ Xθ
s,A we have∥∥(tθSk(t)x)t>0

∥∥
X(Ls∗)

.M

∥∥(tθψk,n(t−1A)x)t>0

∥∥
X(Ls∗)

≈ ‖x‖θ,s,A.

Case 3. Finally we consider the case k ∈ N0 with n−N ≤ k ≤ n, hence n− |θ| ≤ k ≤ n. Then

Sk(t) = tn−(a+β)Ba+β(t+B)−nStn−(k−β)Ak−β(t+A)−n = ψa+β,n(t−1B)Sψk−β,n(t−1A).

We have n > a+ β > 0, hence ψa+β,n ∈ H∞0 (Σω), and

0 < n− β − |θ| − θ ≤ k − β − θ ≤ n− (β − |θ|) < n,

hence ψk−β,n ∈ Φθ,n. So for all x ∈ Xθ
s,A we have∥∥(tθSk(t)x)t>0

∥∥
X(Ls∗)

.M

∥∥(tθψk−β,n(t−1A)x)t>0

∥∥
X(Ls∗)

≈ ‖x‖θ,s,A.

Now we put all cases together, then for all x ∈ Xθ
s,A we obtain by Proposition 3.1.13

‖x‖θ,s,B ≈
∥∥∥(∫ ∞

0
|tθψa,m(t−1B)x|s dt

t

)1/s∥∥∥
X

=
∥∥(tθψa,m(t−1B)x)t>0

∥∥
X(Ls∗)

=
∥∥∥( n∑

k=0

(
n

k

)
tθSk(t)x

)
t>0

∥∥∥
X(Ls∗)

≤
n∑
k=0

(
n

k

)∥∥∥(tθSk(t)x)t>0

∥∥∥
X(Ls∗)

.M

n∑
k=0

(
n

k

)
‖x‖θ,s,A

(with the usual modifications if s = +∞).

Observe that in the proof of Lemma 3.4.2, the derivation of the estimates shows that the constants
can be chosen independent of θ ∈ (−β, α), since we only considered finitely many summands,
and moreover can be estimated by a multiple of the constant M . Hence we obtain the following
more detailed assertion about the norm of the embedding Ẋθ

s,A ↪→ Ẋθ
s,B:
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For all α, β,M > 0 there is a constant K > 0 (only depending on the preceding quantities)
with the following property: let A and B be Rs-sectorial operators such that D(Aα) = D(Bα)
and R(Aβ) = R(Bβ) and such that the operators BαA−α and B−βAβ extend to Rs-bounded
operators on X, and

max{Ms,σ(A),Ms,σ(B),Rs(BαA−α),Rs(B−βAβ)} ≤M.

Then, for all θ ∈ (−β, α), ω ∈ (ωRs(A) ∨ ωRs(B), π) and ϕ ∈ Φω,θ there is a constant C(ϕ) such
that

‖x‖θ,s,B,ϕ ≤ K · C(ϕ) · ‖x‖θ,s,A,ϕ for all x ∈ Xθ
s,A.

Now Lemma 3.4.2 leads to the following comparison result.

Theorem 3.4.3. Let A and B be Rs-sectorial operators with σ > ωRs(A) ∨ ωRs(B) and assume
that there are αj , βj > 0 for j = 1, 2 such that

(a) D(Aαj ) = D(Bαj ) and R(Aβj ) = R(Bβj ) for j = 1, 2,

(b) The operators Bα1A−α1 , B−β1Aβ1 and Aα2B−α2 , A−β2Bβ2 extend to Rs-bounded operators
on X.

Then

Ẋθ
s,A
∼= Ẋθ

s,B for all θ ∈ (−(β1 ∧ β2), α1 ∧ α2). (3.4.2)

In the same spirit as in the remarks to Lemma 3.4.2 and its proof we obtain in addition, that
the norm equivalence constants do not depend on θ and the explicit operators A,B but only on
the Rs-sectoriality constants Ms,σ(A) and Ms,σ(B), the Rs-norms of the operators in (b) and
the auxiliary function ϕ that is used to determine the norms in the spaces Ẋθ

s,A, Ẋ
θ
s,B.

Proof of Theorem 3.4.3. This follows immediately from Lemma 3.4.2 by interchanging the roles
of A and B.

In view of the corresponding comparison theorem from [KKW06], Theorem 5.1, we also obtain
a comparison result for an Rs-bounded H∞-calculus. We will apply [KKW06], Theorem 5.1 for
the vector-valued extensions Ãs, B̃s of A,B in the space X(`s), so we only have to ensure that
these operators satisfy the assumptions of the latter theorem.

Theorem 3.4.4. Let s < +∞ and X be q-concave for some q < +∞. Let A and B be Rs-
sectorial operators with σ > ωRs(A) ∨ ωRs(B) and assume that there are αj , βj > 0 for j = 1, 2
such that

(a) D(Aαj ) = D(Bαj ) and R(Aβj ) = R(Bβj ) for j = 1, 2,

(b) The operators Bα1A−α1 , B−β1Aβ1 and Aα2B−α2 , A−β2Bβ2 extend to Rs-bounded operators
on X.
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Moreover assume that

(c) A has an Rs-bounded H∞(Σσ)-calculus,

(d) The operator B̃s is R-sectorial with ωR(B̃s) ≤ σ.

Then, for each σ′ > σ the operator B has an Rs-bounded H∞(Σσ′)-calculus. Moreover, for each
ω > σ there is a constant Cω,σ that only depends on ω, σ and the Rs-norms of the operators in
(b) such that the following estimate holds for all σ′ ≥ ω:

M∞s,σ′(B) ≤ Cω,σ ·M∞s,σ(A) ·MR,σ(B̃s). (3.4.3)

Before we prove Theorem 3.4.4 let us have a closer look on the condition (d). Since B is Rs-
sectorial and s < +∞, we already know that for each λ ∈ C\Σσ the operator R(λ,B) ⊗ Id`s
has a bounded extension to the space X(`s). Moreover, a single bounded operator is always
R-bounded, hence in this setting R2-bounded, which means that we also obtain a bounded
extension of the operator

(R(λ,B)⊗ Id`s)⊗ Id`2 = R(λ,B)⊗ (Id`s ⊗ Id`2) = R(λ,B)⊗ (Id`s⊗`2) ⊆ R(λ,B)⊗ Id`s(`2)

in the space X`s(`2) ∼= X(`s(`2)). So condition (d) just means that the set

{λR(λ,B)⊗ Id`s(`2) | λ ∈ C\Σσ′}

of tensor extensions of the operators λR(λ,B) is bounded in the space X(`s(`2)) for all σ′ > σ.

Proof of Theorem 3.4.4. Let σ′ ≥ ω > ω′ > ω′′ > σ. As announced before we consider the
vector-valued extensions Ãs, B̃s as operators in the space X(`s), then Ãs, B̃s are sectorial op-
erators with ω(Ãs), ω(B̃s) < ω′′, and Ãs has an H∞(Σω′′)-calculus, cf. Proposition 3.2.23 and
Lemma 3.2.21. Moreover, the space X(`s) is q∨ s-concave by Proposition 1.6.18, thus X(`s) has
property (α) by Proposition 1.6.22. Hence Ãs is also R-sectorial with ωR(Ãs) ≤ ωH∞(Ãs) ≤ σ

by Corollary 1.3.6.

This shows that the conditions (a)–(d) are just the assumptions of the comparison theorem
[KKW06], Theorem 5.1 for the operators Ãs, B̃s (note that the restriction |α|, |β| < 3/2 assumed
there can be dropped by the same technique of proof as used in the proof of Lemma 3.4.2).
Accordingly the operator B̃s has a bounded H∞(Σω′)-calculus in the space X(`s), hence B has
an Rs-bounded H∞(Σσ′)-calculus in X by Proposition 3.2.23. Finally, the estimate (3.4.3) is a
consequence of the proof of [KKW06], Theorem 5.1 and Proposition 3.2.23 and Corollary 1.3.6
(cf. also Section 1.3 for this kind of estimates).

We now turn to perturbation theorems for Rs-sectorial operators, where the main focus lies on
the coincidence of s-intermediate spaces Xθ

s,A, Ẋ
θ
s,A of some Rs-sectorial operator A with the s-

intermediate spaces Xθ
s,A+B, Ẋ

θ
s,A+B of an additive perturbation of A under suitable conditions

on B. They are extensions on corresponding perturbation theorems for the H∞-calculus, cf.
[KW04], Chapter 13 and [KKW06], Section 6. We will start with a perturbation result under
rather weak assumptions, which in turn will only provide one inclusion for the s-intermediate
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spaces. Nevertheless, in this proposition we will already derive the representation (3.4.4) for
resolvents of the perturbed operator, which is one central tool also in the subsequent perturbation
theorems.

Proposition 3.4.5. Let A be Rs-sectorial with σ > ωRs(A) and let δ := π − σ and π > ω > σ.
Define ε := 1/(2Ms,σ(A)), then there is a constant Cω,σ only depending on σ, ω with the following
property:

Let α ∈ (0, 1) and B be a linear operator in X such that

(a) D(B) ⊇ D(A) and ‖BA−1‖ ≤ ε,

(b) B(D(A)) ⊆ R(A1−α) and L := Aα−1BA−α is Rs-bounded with Rs(L) ≤ ε.

Then A+B is again Rs-sectorial with

(λ+A+B)−1 = (λ+A)−1 −A1−α(λ+A)−1M(λ)Aα(λ+A)−1, (3.4.4)

where M(λ) :=
∑∞

k=0(−LA(λ+A)−1)kL ∈ L(X) for all λ ∈ Σδ, and the set {M(λ) |λ ∈ Σδ} is
Rs-bounded with Rs({M(λ) |λ ∈ Σδ}) < 2ε. Moreover

Ẋθ
s,A ↪→ Ẋθ

s,A+B for all θ ∈ (α− 1, α). (3.4.5)

Again, the norm of the embedding map in (3.4.5) does not depend on the explicit operators A,B
but only on ω, σ, α, the Rs-sectoriality constant Ms,σ(A) of A and the auxiliary function used
to determine the norms in the spaces Ẋθ

s,A, Ẋ
θ
s,A+B. An analogous assertion will be true for all

subsequent perturbation theorems in this section, hence we will not emphasize this fact in the
sequel.

Proof of Proposition 3.4.5. We follow the lines of [KKW06] and will first derive a representation
formula for the resolvents of A+B.

Let B be a linear operator in X having the stated properties (a) and (b). Then Rs({LA(λ +
A)−1 | λ ∈ Σδ}) ≤ Rs(L)Ms,σ(A) ≤ 1/2. This implies that indeed

M(λ) =
∞∑
k=0

(−LA(λ+A)−1)kL ∈ L(X),

and the set {M(λ) |λ ∈ Σδ} is Rs-bounded by Proposition 3.1.9 and Remark 3.1.7 with

Rs({M(λ) |λ ∈ Σδ}) ≤
∞∑
k=0

(1/2)k · Rs(L) < 2ε.

For all λ ∈ Σδ we have

A1−αLAα(λ+A)−1 ⊇ A1−αAα−1BA−αAα(λ+A)−1 = A1−αAα−1B(λ+A)−1 = B(λ+A)−1,
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hence A1−αLAα(λ + A)−1 = B(λ + A)−1 ∈ L(X), since the operator on the right hand side
is closed and defined on the whole space X. By the choice of ε > 0 we have the standard
representation

(λ+A+B)−1 = (λ+A)−1 +
∞∑
k=0

(λ+A)−1(−B(λ+A)−1)k+1 for all λ ∈ Σδ, (3.4.6)

cf. Proposition 3.4.1 and its proof. We claim that for all λ ∈ Σδ and k ∈ N0

(λ+A)−1(−B(λ+A)−1)k+1 = −A1−α(λ+A)−1(−LA(λ+A)−1)kLAα(λ+A)−1. (3.4.7)

We prove (3.4.7) by induction. Let λ ∈ Σδ. We have

(λ+A)−1B(λ+A)−1 = (λ+A)−1A1−αLAα(λ+A)−1 ⊇ A1−α(λ+A)−1LAα(λ+A)−1 ∈ L(X),

hence (λ+A)−1
(
−B(λ+A)−1

)
= −A1−α(λ+A)−1LAα(λ+A)−1, which is the claim for k = 0.

Now assume that (3.4.7) holds for some k ∈ N0, then

(λ+A)−1(−B(λ+A)−1)k+2

= −(λ+A)−1(−B(λ+A)−1)k+1B(λ+A)−1

= A1−α(λ+A)−1(−LA(λ+A)−1)kLAα((λ+A)−1B(λ+A)−1)

= A1−α(λ+A)−1(−LA(λ+A)−1)kLAαA1−α(λ+A)−1LAα(λ+A)−1

= A1−α(λ+A)−1(−LA(λ+A)−1)kLA1(λ+A)−1LAα(λ+A)−1

= −A1−α(λ+A)−1(−LA(λ+A)−1)k+1LAα(λ+A)−1,

and the claim is proved.

Plugging (3.4.7) into (3.4.6) yields

(λ+A+B)−1 = (λ+A)−1 −A1−α(λ+A)−1M(λ)Aα(λ+A)−1 (3.4.8)

for all λ ∈ Σδ. We define the auxiliary functions ψν,β(z) := zβ

ν+z and ψβ := ψ1,β for all ν > 0, β ∈
(0, 1). Then the representation

λ(λ+A+B)−1 = λ(λ+A)−1 − λαA1−α(λ+A)−1M(λ)λ1−αAα(λ+A)−1

= λ(λ+A)−1 − (λ−1A)1−α(1 + λ−1A)−1M(λ) (λ−1A)α(1 + λ−1A)−1

= λ(λ+A)−1 − ψ1−α(λ−1A)M(λ)ψα(λ−1A)

for all λ ∈ Σδ shows that A + B is Rs-sectorial with ωRs(A + B) ≤ σ and Ms,σ(A + B) ≤
Cα,σMs,σ(A) for some constant Cα,σ > 0.

Now let θ ∈ (α− 1, α). We will use the representation (3.4.8) to estimate the s-power function-
norms associated to A and A+B, respectively. For this we define

ψ(z) :=
1

1 + z
− 2

2 + z
=

−z
(1 + z)(2 + z)

, then ψ ∈ Φσ,θ.
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Then

ψ(t−1(A+B)) = t(t+A+B)−1 − 2t(2t+A+B)−1

= t(t+A)−1 − ψ1−α(t−1A)M(t)ψ1,α(t−1A)

−
(
2t(2t+A)−1 − ψ1−α((2t)−1A)M(2t)ψα((2t)−1A)

)
= ψ(t−1A)− ψ1−α(t−1A)M(t)ψ1,α(t−1A) + 2ψ2,1−α(t−1A)M(2t)ψ2,α(t−1A).

Since ψν,1−α ∈ H∞0 (Σσ) and ψν,1−α ∈ Φσ,θ this yields via Proposition 3.1.13

‖x‖θ,s,A+B ≈
∥∥∥(∫ ∞

0
|tθψ(t−1(A+B))x|s dt

t

)1/s∥∥∥
X

=
∥∥(tθψ(t−1(A+B))x)t>0

∥∥
X(Ls∗)

≤
∥∥(tθψ(t−1A)x

)
t>0

∥∥
X(Ls∗)

+ 2
∥∥(tθψ1−α(t−1A)M(2t)ψ2,α(t−1A)x

)
t>0

∥∥
X(Ls∗)

+
∥∥(tθψ1−α(t−1A)M(t)ψ1,α(t−1A)x

)
t>0

∥∥
X(Ls∗)

≤
∥∥(tθψ(t−1A)x

)
t>0

∥∥
X(Ls∗)

+ 2
∥∥(tθψ2,α(t−1A)x

)
t>0

∥∥
X(Ls∗)

+
∥∥(tθψ1,α(t−1A)x

)
t>0

∥∥
X(Ls∗)

≈ ‖x‖θ,s,A

(with the usual modification if s = +∞).

We now turn to a more involved version of this perturbation theorem, where we assume X to be
p-convex and q-concave, thus in particular reflexive, and s ∈ (1,+∞) to be in the reflexive range.
In addition we assume that A has an Rs-bounded H∞-calculus. Under these assumptions we can
show that we have not only a one-sided embedding but indeed coincidence of the s-intermediate
spaces of A and A+B, and moreover also the operator A+B has an Rs-bounded H∞-calculus.

Theorem 3.4.6. Let s ∈ (1,+∞) and assume that X is p-convex and q-concave for some
p, q ∈ (1,+∞). Let A be Rs-sectorial with σ > ωRs(A) and assume that A has in addition an
Rs-bounded H∞(Σσ)-calculus. Let π > ω > σ.

Then there is an ε > 0 only depending on σ, ω and M∞s,σ(A) and a constant Cω,σ > 0 independent
of A with the following property: If α ∈ (0, 1) and B is a linear operator in X with the following
properties:

(a) D(B) ⊇ D(A) and ‖BA−1‖ ≤ ε,

(b) B(D(A)) ⊆ R(A1−α) and Aα−1BA−α is Rs-bounded with Rs(Aα−1BA−α) ≤ ε,

then the following assertions hold:

(1) A+B has an Rs-bounded H∞(Σσ′)-calculus, and we have an estimate

M∞s,σ′(A+B) ≤ Cω,σM∞s,σ(A) (3.4.9)

for each σ′ ≥ ω. Moreover

Ẋθ
s,A
∼= Ẋθ

s,A+B for all θ ∈ (α− 1, α). (3.4.10)
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(2) If in addition to (a),(b) the operator BA−1 is Rs-bounded with Rs(BA−1) < ε, then we
have

Ẋθ
s,A
∼= Ẋθ

s,A+B for all θ ∈ (α− 1, 1). (3.4.11)

Before we turn to the proof of Theorem 3.4.6 we make some comments.

1. The conditions q, s < +∞ will be used to ensure that the mixed space X(`s) is q∨s-concave
with q ∨ s < +∞, hence X has property (α), and R-boundedness in L(X) is equivalent to
R2-boundedness. Since we will also work with the dual operator A′ in the dual space X ′,
we assume additionally p, s > 1 so that also X ′(`s′) is p′ ∨ s′-concave with p′ ∨ s′ < +∞.

2. Observe that the domain and range conditions in (a),(b) ensure that the occurring operators
are densely defined, so indeed these operators extend to (Rs-)bounded operators if and only
if their closures are (Rs-)bounded operators.

3. Note that in the assumption (a) we require the operator BA−1 only to be bounded (with
small norm) and do not need Rs-boundedness, as one might conjecture. This is due
to the fact that the crucial estimates depend only on the representation (3.4.4) of the
resolvent, where (beside functions of A) only the operator Aα−1BA−α occurs instead of
BA−1. Nevertheless, if we assume BA−1 to be Rs-bounded with sufficiently small norm,
then we obtain an improvement for the upper bound of the range of indices θ for which
Ẋθ
s,A
∼= Ẋθ

s,A+B holds.

4. We will split up the proof and put the main work into the separated Lemma 3.4.7 below,
since we will use this part of the proof also in Theorem 3.4.8, which is a variant of this
perturbation theorem.

Proof of Theorem 3.4.6. Let δ0 := π − σ and L := Aα−1BA−α. We will choose 0 < ε <

1/(2Ms,σ(A)), then from Proposition 3.4.5 we obtain the representation

(λ+A+B)−1 = (λ+A)−1 −A1−α(λ+A)−1M(λ)Aα(λ+A)−1, (3.4.12)

where M(λ) :=
∑∞

k=0(−LA(λ + A)−1)kL ∈ L(X) for all λ ∈ Σδ0 , and that the set {M(λ) |λ ∈
Σδ0} is Rs-bounded with Rs({M(λ) |λ ∈ Σδ0}) ≤ 1/Ms,σ(A).

Let ω′ := σ + 1
3(σ − ω) and ω′′ := σ + 2

3(σ − ω), then σ < ω′ < ω′′ < ω. Observe that
by Definition/Proposition 3.2.2 and Proposition 3.2.23 the diagonal operator Ãs : X(`s) ⊇
D(Ãs) → X(`s), (yj)j 7→ (Ayj)j is sectorial with ω(Ãs) ≤ σ and has a bounded H∞(Σω′)-
calculus. Moreover, the mixed Banach function space X(`s) is q ∨ s-concave and q ∨ s < +∞,
hence X(`s) has property (α) by Proposition 1.6.22. By Corollary 1.3.6 the diagonal operator
Ãs is also R-sectorial with ωR(Ãs) ≤ ω′ and we can choose a constant Cω,σ ≥ 1 (independent of
A) such that the following estimate holds for each σ′ ≥ ω:

MR,σ′(Ãs) ≤ Cω,σM
∞
s,σ(A). (3.4.13)
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Let δ := π−ω < δ0. By choosing ε := 1/2Cω,σ(M∞s,σ(A)∨Ms,σ(A)) we obtain that the operator

set {M̃(λ)s | λ ∈ Σδ} is also R-bounded in X(`s) with

R({M̃(λ)s | λ ∈ Σδ}) ≤
∞∑
k=0

(1/2)k · R(L̃s) = 2Rs(L) < 2ε ≤ 1/Cω,σM∞s,σ(A).

Together with the representation formula (3.4.12) for the resolvent of A+B, the assumptions of
the following Lemma 3.4.7 are fulfilled with C = A+B, hence (1) follows from Lemma 3.4.7.

If the additional assumptions of (2) are fulfilled we let K := BA−1. Then

(A+B)A−1 = AA−1 +BA−1 ⊆ I +K,

hence (A+B)1A−1 is Rs-bounded. Moreover I +K is invertible with

A(A+B)−1 ⊆ (I +K)−1 =
∞∑
k=0

(−K)k,

hence also A1(A+B)−1 is Rs-bounded. Combining this with (3.4.15) from the following Lemma
3.4.7 with C = A+B, the assertion of (2) follows by the Comparison Theorem 3.4.3.

Before we go further, we have a closer look on the assertion on ε > 0 in connection with
the preceding proof of Theorem 3.4.6. At first glance it might be surprising that we cannot
choose an ε > 0 independent of ω > σ such that A + B has an Rs-bounded H∞-calculus with
ωR∞s (A + B) ≤ σ. This is due to the fact that we needed the R-sectoriality of the operator
Ãs with ωR(Ãs) < ω, which from the assumptions we could only derive if ω > σ, and then
the constant Cω,σ from (3.4.13) enters into the definition of ε. Hence, if we make the following
additional assumption on A:

The diagonal operator Ãs in X(`s) is R-sectorial with ωR(Ãs) < σ,

then the proof shows that we can choose ε := 1
2MR,σ(Ãs)−1 independently of ω > σ and obtain

that A + B has an Rs-bounded H∞-calculus with ωR∞s (A + B) ≤ σ, if B satisfies conditions
(a),(b) from Theorem 3.4.6.

We will now turn to the announced lemma that will conclude the proof of Theorem 3.4.6. As
already mentioned we follow the line of proof from [KW04] and [KKW06], and the following
lemma is a variant of [KW04] Lemma 13.6 and the corresponding Lemma 6.2 from [KKW06],
that is adapted to our setting.

Lemma 3.4.7. Let s ∈ (1,+∞) and X be p-convex and q-concave for some p, q ∈ (1,+∞) and
α ∈ (0, 1), and assume that A has an Rs-bounded H∞-calculus. Let δ ∈ (0, π−ωR∞s (A)) and let
C be an Rs-sectorial operator in X, and assume there is a family (M(λ))λ∈Σδ ∈ L(X)Σδ such
that M(Σδ) is Rs-bounded and we have a representation

(λ+ C)−1 = (λ+A)−1 −A1−α(λ+A)−1M(λ)Aα(λ+A)−1 for all λ ∈ Σδ. (3.4.14)
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Finally assume that the family (M̃(λ)s)λ∈Σδ of the extended diagonal operators M̃(λ)s in the
space X(`s) is R-bounded as a family of operators in X(`s). Then the following statements hold:

D(Cθ) = D(Aθ), and AθC−θ and CθA−θ are Rs-bounded for all θ ∈ (α− 1, α). (3.4.15)

Moreover, C has an Rs-bounded H∞(Σσ)-calculus, where σ := π − δ, and

Ẋθ
s,A
∼= Ẋθ

s,C for all θ ∈ (α− 1, α). (3.4.16)

Furthermore, for all ω > σ there is a constant Cω,σ > 0 independent of A,C such that for all
σ′ ≥ ω we have an estimate

M∞s,σ′(C) ≤ Cω,σR({M̃(λ)s | λ ∈ Σδ}) ·M∞s,σ(A)2. (3.4.17)

Proof. To have suitable representation formulas for the fractional powers, we break up the claim
(3.4.15) into four parts:

(1) D(Cθ) ⊆ D(Aθ) and AθC−θ is Rs-bounded for all θ ∈ (0, α),

(1)’ R(Aθ) ⊇ R(Cθ) and A−θCθ is Rs-bounded for all θ ∈ (0, 1− α).

(2) D(Cθ) ⊇ D(Aθ) and CθA−θ is Rs-bounded for all θ ∈ (0, α),

(2)’ R(Aθ) ⊆ R(Cθ) and C−θAθ is Rs-bounded for all θ ∈ (0, 1− α).

We will start by showing (1) in all details, so let θ ∈ (0, α). Let x ∈ R(C) and x′ ∈ D(A′) ⊆
D
(
(A′)θ

)
. Observe that R(C) is a core for C−θ and D(A′) is a core for (A′)θ, respectively.

Observe that X is reflexive by Proposition 1.6.16, so we can use duality methods, where as usual
we identify the dual space X ′ with the associated space of X, cf. Subsection 1.6.2.

By the Balakrishnan representation formula for fractional powers (cf. e.g. [MS01], Section 7.2
or [Ha06], Proposition 3.2.1 d)) we have

C−θx =
sin(πθ)
π︸ ︷︷ ︸

=:cθ

∫ ∞
0

t−θ(t+ C)−1x dt,

hence

〈C−θx, (Aθ)′x′〉Ω =
sin(πθ)
π

∫ ∞
0

t−θ 〈(t+ C)−1x, (Aθ)′x′〉Ω dt

= lim
r→0

lim
R→∞

cθ

∫ R

r
t−θ 〈(t+ C)−1x, (Aθ)′x′〉Ω dt︸ ︷︷ ︸

=:Iθr,R(x,x′)

.
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Let 0 < r ≤ R < +∞, then

Iθr,R(x, x′) = cθ

∫ R

r
t−θ 〈(t+A)−1x, (Aθ)′x′〉Ω dt

−cθ
∫ R

r
t−θ 〈A1−(α−θ)(t+A)−1M(t)Aα(t+A)−1x, x′〉Ω dt

=
〈
cθ

∫ R

r
t−θ (t+A)−1x dt, (Aθ)′x′

〉
Ω

−cθ
∫ R

r
t−θ 〈M(t)Aα(t+A)−1x, (A′)1−(α−θ)(t+A′)−1x′〉Ω dt

=
〈
cθ

∫ R

r
t−θ (t+A)−1x dt, (Aθ)′x′

〉
Ω

− cθ
∫ R

r
〈M(t)ψα(t−1A)x, ψβ(t−1A′)x′〉Ω

dt

t

where β := 1 − (α − θ) ∈ (0, 1) since θ ∈ (α − 1, α). Now let n ∈ N, (xj)j∈N≤n ∈ R(C)n and
(x′j)j∈N≤n ∈ D(A′)n, then

n∑
j=1

Iθr,R(xj , x′j) =
n∑
j=1

〈
cθ

∫ R

r
t−θ (t+A)−1xj dt, (Aθ)′x′j

〉
Ω

−cθ
n∑
j=1

∫ R

r
〈M(t)ψα(t−1A)xj , ψβ(t−1A′)x′j〉Ω

dt

t
.

We will estimate the absolute value of the latter integral and show in particular that the limit
for r → 0, R→∞ exists; this will imply that also the first integral converges r → 0, R→∞ and
becomes

n∑
j=1

〈
cθ

∫ ∞
0

t−θ (t+A)−1xj dt, (Aθ)′x′j

〉
Ω

=
n∑
j=1

〈A−θxj , (Aθ)′x′j〉Ω =
n∑
j=1

〈xj , x′j〉Ω.

To handle the latter term we use Hölder inequality in the spacesX(`sn(L2
∗(r,R))), X ′(`s

′
n (L2

∗(r,R))),
cf. Proposition 1.6.9, and obtain∣∣∣∣∣∣

n∑
j=1

∫ R

r
〈M(t)ψα(t−1A)xj , ψβ(t−1A′)x′j〉Ω

dt

t

∣∣∣∣∣∣
≤

n∑
j=1

∫ R

r

∫
Ω
|M(t−1)ψα(tA)xj | |ψβ(tA′)x′j | dµ

dt

t

=
∫

Ω

n∑
j=1

∫ R

r
|M(t−1)ψα(tA)xj | |ψβ(tA)x′j |

dt

t
dµ

≤
∥∥∥∥(∫ R

r
|M(t−1)ψα(tA)xj |2

dt

t

)1/2∥∥∥∥
X(`sn)

·
∥∥∥∥(∫ R

r
|ψβ(tA′)x′j |2

dt

t

)1/2∥∥∥∥
X′(`s′n )

.

We now use that by our assumption the family (M̃(λ)s)λ∈Σδ isR-bounded, which in this situation
is equivalent to R2-boundedness, cf. Remark 3.1.7. Moreover, the diagonal operator Ãs,n :
X(`sn) ⊇ D(A)n → X(`sn), (yj)j 7→ (Ayj)j has a bounded H∞-calculus by Proposition 3.2.23,
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hence the norm in X(`sn) is equivalent to square function norms associated with the operator
Ãs,n, where the equivalence constants can be estimated in terms ofM∞s,σ(A), cf. Subsection 1.6.5.
Hence we obtain∥∥∥∥(∫ R

r
|M(t−1)ψα(tA)xj |2

dt

t

)1/2∥∥∥∥
X(`sn)

≤ R2

{
M(t)⊗ Id`sn | t > 0

}
·
∥∥∥∥(∫ ∞

0
|ψα(tA)xj |2

dt

t

)1/2∥∥∥∥
X(`sn)

. R{M̃(λ)s | λ ∈ Σδ} ·M∞s,σ(A) · ‖(xj)j‖X(`sn).

We can apply the same arguments to the second factor: By our assumptions we have s′ < +∞,
and X ′ is p′-concave with p′ < +∞ by Proposition 1.6.14, hence A′ inherits by dualization the
corresponding properties of A, i.e. it has an Rs′-bounded H∞-calculus in X ′(`s

′
n ). Hence we

obtain

n∑
j=1

∫ R

r

∣∣〈M(t)ψα(t−1A)xj , ψβ(t−1A′)x′j〉Ω
∣∣ dt
t

. R{M̃(λ)s | λ ∈ Σδ} ·M∞s,σ(A)2 · ‖(xj)j‖X(`sn) · ‖(x′j)j‖X′(`s′n ).

As announced before we can now conclude that the limits for r → 0, R→∞ exist, and putting
all together yields

n∑
j=1

∣∣〈C−θxj , (Aθ)′x′j〉Ω∣∣ . R{M̃(λ)s | λ ∈ Σδ} ·M∞s,σ(A)2 · ‖(xj)j‖X(`sn) · ‖(x′j)j‖X′(`s′n ).

By duality this provides C−θxj ∈ D(Aθ), and we have the estimate

‖(AθC−θxj)j‖X(`sn) = sup

{∣∣∣∣〈C−θ(xj)j , (Aθ)′(x′j)j〉
X(`sn)×X′(`s′n )

∣∣∣∣ : ‖(x′j)j‖X′(`s′n ) ≤ 1

}
. R{M̃(λ)s | λ ∈ Σδ} ·M∞s,σ(A)2 · ‖(xj)j‖X(`sn)

uniformly in n ∈ N, hence the operator AθC−θ extends to an Rs-bounded operator on X.

The other cases can be treated similar, so we will only give short sketches: For the proof of (1)’
let θ ∈ (0, 1−α) and x ∈ D(C), then another variant of the Balakrishnan representation formula
for fractional powers (cf. e.g. [MS01], Theorem 5.2.1 or [Ha06], Proposition 3.1.12) yields

Cθx = cθ

∫ ∞
0

tθC(t+ C)−1x
dt

t
= cθ

∫ ∞
0

tθ(I − t(t+ C)−1)x
dt

t

= lim
r→0,R→∞

(
cθ

∫ R

r
tθx

dt

t
− cθ

∫ R

r
tθt(t+ C)−1x

dt

t

)
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hence for all x′ ∈ R((A′)θ)

〈Cθx, (A−θ)′x′〉 = lim
r→0
R→∞

(
cθ

∫ R

1/R
〈tθx, (A−θ)′x′〉 dt

t
− cθ

∫ R

r
tθ〈t(t+ C)−1x, (A−θ)′x′〉 dt

t

)

= lim
r→0
R→∞

(
cθ

∫ R

r
〈tθx, (A−θ)′x′〉 dt

t
− cθ

∫ R

r
tθ〈t(t+A)−1x, (A−θ)′x′〉 dt

t

+ cθ

∫ R

r
t1+θ〈A−θA1−α(t+A)−1M(t)Aα(t+A)−1x, x′〉 dt

t

)

= lim
r→0
R→∞

(
cθ

∫ R

r
tθ〈A(t+A)−1x, (A−θ)′x′〉 dt

t

+ cθ

∫ R

r
t1+θ〈M(t)Aα(t+A)−1x, (A′)1−α−θ(t+A′)−1x′〉 dt

t

)

= lim
r→0
R→∞

(
cθ

∫ R

r
tθ〈A(t+A)−1x, (A−θ)′x′〉 dt

t

+ cθ

∫ R

r
〈M(t)ψα(t−1A)x, ψβ(t−1A′)x′〉 dt

t

)
,

where β := 1− α− θ ∈ (0, 1) since θ ∈ (0, 1− α). From now on we can proceed as in the proof
of (1) and obtain that the operator A−θCθ extends to an Rs-bounded operator on X.

We now turn to equations (2),(2)’, where we just use the same arguments as above for the dual
operators. Observe that (3.4.14) implies

(λ+C ′)−1 = (λ+A′)−1− (A′)α(λ+A′)−1M(λ)′(A′)1−α(λ+A′)−1 for all λ ∈ Σδ. (3.4.18)

For (2)’ let θ ∈ (0, 1 − α). Let x ∈ D(A) and x′ ∈ R
(
(C ′)θ

)
, then again by the Balakrishnan

representation formula for fractional powers we have

(C ′)−θx′ = cθ,

∫ ∞
0

t−θ(t+ C ′)−1x′ dt,

hence

〈Aθx, (C ′)−θx′〉Ω = lim
r→0

lim
R→∞

cθ

∫ R

r
t−θ 〈Aθx, (t+ C ′)−1x′〉Ω dt︸ ︷︷ ︸

=:Iθr,R(x,x′)

,
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and for 0 < r ≤ R < +∞

Iθr,R(x, x′) = cθ

∫ R

r
t−θ 〈Aθx, (t+A′)−1x′〉Ω dt

−cθ
∫ R

r
t−θ 〈x, (A′)α+θ(t+A′)−1M(t)′(A′)1−α(t+A′)−1x′〉Ω dt

=
〈
Aθx , cθ

∫ R

r
t−θ(t+A′)−1x′

〉
Ω

−cθ
∫ R

r
t−θ 〈Aα+θ(t+A)−1x,M(t)′(A′)1−α(t+A′)−1x′〉Ω dt

=
〈
Aθx , cθ

∫ R

r
t−θ(t+A′)−1x′

〉
Ω

− cθ
∫ R

r
〈ψβ(t−1A)x, ψ1−α(t−1A′)x′〉Ω

dt

t

where β := α+ θ ∈ (0, 1) since θ ∈ (0, 1− α) and we can proceed as in the proof of (1). Finally,
in the same manner (2) can be proved analogously to (1)’ using again the dual resolvents (3.4.18).

For the claim concerning the Rs-bounded H∞-calculus of the operator C, we can argue in the
same way as in the proof of Theorem 3.4.4:

We consider again the vector-valued extensions Ãs, C̃s as operators in the space X(`s), then Ãs is
a sectorial operator having an H∞(Σσ)-calculus, and C̃s is a perturbation of the operator Ãs in
the sense of Lemma 6.2 from [KKW06] or Lemma 13.6 from [KW04], respectively. This implies
that the operator C̃s in the space X(`s) has an H∞(Σσ′)-calculus for each σ′ > σ, i.e. C has an
Rs-bounded H∞(Σσ′)-calculus for all σ′ > σ by Proposition 3.2.23. The norm estimate (3.4.17)
follows from a careful inspection of the proof of [KKW06] or Lemma 6.2.

We now present a variant of Theorem 3.4.6 where the perturbation operator need not be an
operator in X but is an operator B : Ẋα → Ẋα−1. This situation appears e.g. in perturbation of
boundary conditions of differential operators, or when differential operators in divergence form
are considered, as we will do it in Subsection 3.6.2. A first version of this kind of theorem in the
context of maximal regularity can be found in [KW01-b], Theorem 8. In that paper examples are
given how to apply this theorem to perturbation of boundary conditions of differential operators.
An extended version that deals with perturbation of the H∞-calculus is [KKW06], Theorem 6.6.
In fact, we will intensively use the ideas and proofs given in [KKW06].

Recall that the fractional spaces Ẋα and the (universal) extrapolated operator A have been
introduced in Subsection 3.3.1. In particular, the operator Aα acts as an isometry Ẋα → X and
A−α acts as an isometry X → Ẋα for α > 0.

Theorem 3.4.8. Let s ∈ (1,+∞) and X be p-convex and q-concave for some p, q ∈ (1,+∞),
and assume that A has an Rs-bounded H∞(Σσ)-calculus. Let α ∈ (0, 1) and π > ω > σ. Then
there is a constant Cω,σ > 0 independent of A, and an ε > 0 only depending on ω, σ and M∞s,σ(A)
such that if B : Ẋα → Ẋα−1 is a bounded linear operator and

L := Aα−1BA−α is an Rs-bounded operator on X with Rs(L) < ε, (3.4.19)
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then there exists a unique sectorial operator C in X whose resolvents are consistent with those
of Ȧα−1 +B in Ẋα−1. Moreover, the following assertions hold:

(1) The operator C has an Rs-bounded H∞(Σσ′)-calculus for all σ′ ≥ ω, and

M∞s,σ′(C) ≤ Cω,σM∞s,σ(A). (3.4.20)

(2) Ẋθ
s,A
∼= Ẋθ

s,C for all θ ∈ (α− 1, α).

Remark 3.4.9. Again, if we make the additional assumption that

the diagonal operator Ãs in X(`s) is R-sectorial with ωR(Ãs) < σ,

we can choose ε > 0 (not depending on ω > σ) such that C in Theorem 3.4.8 has an Rs-bounded
H∞-calculus with ωR∞s (C) ≤ σ if B satisfies the assumptions of Theorem 3.4.8.

Proof of Theorem 3.4.8. This can be deduced from the corresponding theorem and the line of
proof in [KKW06], Theorem 6.6, using similar arguments as in the proof of Theorem 3.4.6. In a
first step, by the same arguments as given in the proof of Theorem 3.4.6 we can conclude that
the diagonal operator Ãs is R-sectorial, and in particular also A is R-sectorial. Let ω′ ∈ (σ, ω)
and δ′ := π − ω′. Then the assumptions of [KKW06], Theorem 6.6 are fulfilled, so the proof
of [KKW06], Theorem 6.6 implies the existence of a unique sectorial operator C in X whose
resolvents are consistent with those of Ȧα−1 +B in Ẋα−1 with

(λ+ C)−1 = (λ+A)−1 −A1−α(λ+A)−1M(λ)Aα(λ+A)−1 for all λ ∈ Σδ′ ,

where M(λ) :=
∑∞

k=0(−LA(λ + A)−1)kL ∈ L(X). Choosing ε > 0 as in the proof of Theorem
3.4.6 yields that M(Σδ′) is Rs-bounded and moreover the set of diagonal operator extensions
{M̃(λ)s | λ ∈ Σδ′} in the space X(`s) is R-bounded with R({M̃(λ)s | λ ∈ Σδ′}) .ω M

∞
s,σ(A).

Hence all assertions of Theorem 3.4.8 follow from Lemma 3.4.7.

Finally we turn to a version of the Perturbation Theorem 3.4.6 that will also give norm equiva-
lence for higher order associated spaces. This is the central theorem we will use in the application
on differential operators in non-divergence form in Subsection 3.6.1. In fact, the line of proof
gives the idea that under similar assumptions as in Theorem 3.4.10 we can also obtain norm
equivalence of the associated spaces for arbitrary order. Nevertheless we will only consider per-
turbation and corresponding norm-equivalences up to the order 2, this will be sufficient for our
application in Subsection 3.6.1 to differential operators.

This theorem is a combination of the corresponding theorem for perturbation of the H∞-calculus
in [KKW06], Theorem 6.1 (as already worked with earlier), and [DDHPV04], Theorem 3.2. In
fact, we will use a representation formula for resolvents of the perturbed operator that goes back
to Jan Prüß and is presented in the proof of [DDHPV04], Theorem 3.2.

Theorem 3.4.10. Let s ∈ (1,+∞) and X be p-convex and q-concave for some p, q ∈ (1,+∞),
and assume that A has an Rs-bounded H∞-calculus. Let α, β ∈ (0, 1) and π > ω > σ > ωR∞s (A).
Then there is a constant Cω,σ > 0 independent of A and an ε > 0 only depending on ω, σ and
M∞s,σ(A) such that if B is a linear operator in X with the following properties:
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(a) D(B) ⊇ D(A) and Rs(BA−1) ≤ ε,

(b) B(D(A)) ⊆ R(Aβ), and A−βBAβ−1 is Rs-bounded with Rs(A−βBAβ−1) ≤ ε,

(c) B(D(A2)) ⊆ D(Aα), and AαBA−1−α is Rs-bounded with Rs(AαBA−1−α) ≤ ε,

then the operator A+B has an Rs-bounded H∞(Σσ′)-calculus for all σ′ > ω, and

M∞s,σ′(A+B) ≤ Cω,σM∞s,σ(A). (3.4.21)

Moreover

Ẋθ
s,A
∼= Ẋθ

s,A+B for all θ ∈ (−β, 1 + α ∧ (1− β)). (3.4.22)

Discussion of the assumptions in Theorem 3.4.10:

1. Let us note first that in comparison to the formulation of Theorem 3.4.6, the exponent
β from (b) is a substitute for 1 − α in the formulation of (b) in Theorem 3.4.6. Observe
that for given α ∈ (0, 1) one obtains the largest range of θ such that the norm equivalence
Ẋθ
s,A
∼= Ẋθ

s,A+B holds, namely the interval (−β, 2 − β) of length 2, if one can choose
β ≥ 1− α. On the other hand, the largest possible upper bound for admissible θ, namely
1 + α, is obtained if one can choose β ≤ 1− α.

2. The mapping condition on the domains in (c) ensures that the operator AαBA−1−α is
densely defined.

3. Furthermore, the assumptions in Theorem 3.4.10 are rather strong compared with the
assumptions for perturbation of the H∞-calculus. In this case one would either assume
(a) and (b) or (a) and (c). The first combination matches with the perturbation theorem
by Kunstmann and Weis (cf. [KW01-b], [KW04], [KKW06]) and the second one with
the earlier perturbation result of Jan Prüß as it can be found in [DDHPV04]. Indeed,
this second result can also be deduced from the first one by complex interpolation, this is
also shown in the literature cited above. Of course, (a) and (c) are also in this situation
already sufficient for A+B to have an Rs-bounded H∞-calculus, this can be proven with
the aid of the diagonal operator extensions in the spaces X(`s) as it has also been done
in the proofs before. Nevertheless the crucial point we are interested in are the norm
equivalences Ẋθ

s,A
∼= Ẋθ

s,A+B for the wider range θ ∈
(
− β, (1 + α) ∧ (2 − β)

)
, and this

makes it reasonable that both assumptions might be necessary. Moreover, in our concrete
application to differential operators in Subsection 3.6.1, both conditions (b) and (c) are
(under suitable regularity assumptions on the coefficients) equivalent by duality, hence this
result is a suitable tool.

4. Again, if we make the additional assumption that

the diagonal operator Ãs in X(`s) is R-sectorial with ωR(Ãs) < σ,
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we can choose ε > 0 (not depending on ω > σ) such that A+B in Theorem 3.4.10 has an
Rs-bounded H∞-calculus with ωR∞s (A+B) ≤ σ if B satisfies the assumptions of Theorem
3.4.10.

Proof of Theorem 3.4.10. In view of Theorem 3.4.6 and its proof we obtain immediately that if
we choose ε > 0 properly, then C := A + B has an Rs-bounded H∞-calculus with ωR∞s (C) ≤
ωR∞s (A) and that Ẋθ

s,A
∼= Ẋθ

s,C for all θ ∈ (−β, 1). Moreover we get from Lemma 3.4.7 the
Rs-boundedness of the interchanging fractional power operators, i.e.

D(Cθ) = D(Aθ), and AθC−θ and CθA−θ are Rs-bounded for all θ ∈ (−β, 1− β) (3.4.23)

We only have to show that Ẋθ
s,A
∼= Ẋθ

s,C for all θ ∈ [1, 1 + α ∧ (1 − β)), and in view of (3.4.23)
and the comparison theorem it is sufficient to show for all δ ∈ (0, α ∧ (1− β)):

D(C1+δ) = D(A1+δ), and C1+δA−1−δ and A1+δC−1−δ are Rs-bounded (3.4.24)

We show first that the assumed Rs-boundedness of the operators BA−1 and L := AαBA−1−α

also implies the Rs-boundedness of the operators AδBA−1−δ and the existence of some M0 ≥ 1
with Rs(AδBA−1−δ) < M0ε0 for all δ ∈ (0, α) by complex interpolation: Let K := BA−1,
then AδBA−1−δ = AδKA−δ. Now fix some n ∈ N and let Ã and K̃ be the diagonal operator
extensions of A and K in the space X(`sn), then K̃ is a bounded operator, and the operator Ã is
sectorial and has a bounded H∞-calculus in X(`sn), with bounds that are independent of n ∈ N.
In particular, the operator Ã has bounded imaginary powers, hence we can choose constants
M ≥ 1, ω ∈ R such that

‖Ãitx‖X(`sn) ≤M eω|t| · ‖x‖X(`sn) for all x ∈ X(`sn), t ∈ R.

Let

T (z)(xk)k := (ez
2
AαzKA−αzxk)k

for all (xk)k ∈ D̃ := D(A2)n ∩R(A2)n and z ∈ S := {z ∈ C | Re(z) ∈ [0, 1]} (observe that

KA−αzx = BA−1−αuA−iαtAx ∈ D(Aα) ↪→ D(Aαu) ↪→ D(Aαz)

for each x ∈ D(A2) ∩ R(A2) and z = u + it ∈ S). For fixed x = (xk)k ∈ D̃ we have in each
component

uk(z) := (T (z)x)k = ez
2
[Aαz(1 +A)−α] [(1 +A)αKA−αz]xk,

where the operators z 7→ ez
2
Aαz(1 + A)−α = ez

2
Aiα Im(z) [AαRe(z)(1 + A)−α] are uniformly

bounded, hence uk : S → X is continuous and bounded, and uk is analytic on the open strip S̊.
Moreover,

‖T (j + it)x‖X(`sn) ≤M2e1−t2−2ωt ε0 · ‖x‖X(`sn) ≤M0ε0 · ‖x‖X(`sn)

for some constant M0 ≥ 1 and for all x ∈ D̃, j ∈ {0, 1}. By abstract Stein interpolation we can
conclude

‖(AδKA−δxk)k‖X(`sn) = ‖T (δ/α)x‖X(`sn) ≤M0ε0 · ‖x‖X(`sn)
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for all x = (xk)k ∈ X(`ns ), henceAδBA−1−δ extends to anRs-bounded operator withRs(AδBA−1−δ) <
M0ε0.

We now fix some δ ∈ (0, α). Then

C1+δA−1−δ = CδCA−1−δ ⊇
[
CδA−δ

] [
AδCA−1−δ],

and the operator CδA−δ is Rs-bounded by (3.4.23) since δ ∈ (0, 1− β), and moreover

AδCA−1−δ ⊇ AδAA−1−δ +AδBA−1−δ = 1 +AδBA−1−δ,

and the second operator extends to an Rs-bounded operator by the preceding interpolation re-
sult. This shows that D(A1+δ) ⊆ D(C1+δ) and that the operator C1+δA−1−δ extends to an
Rs-bounded operator on X.

It remains to show that also the operator A1+δC−1−δ isRs-bounded. For this we use the following
representation formula of the resolvent that is taken from [DDHPV04] and can be derived in a
similar way as the corresponding representation formula in Theorem 3.4.5:

(t+ C)−1 = (I +K)
(

(t+A)−1 +
∞∑
k=0

(−A(t+A)−1K)k+1(t+A)−1
)

(I +K)−1

= (I +K)
(

(t+A)−1 +A1−α(t+A)−1M(t)Aα(t+A)−1
)

(I +K)−1

where M(t) := −
∞∑
k=0

(−LA(t+A)−1)kL. Observe that I +K, (I +K)−1 are Rs-bounded exten-

sions of the operator CA−1 and AC−1, respectively.
Now let x ∈ R(C2) and x′ ∈ D((Aδ)′), then we use again the Balakrishnan representation formula
and the additivity of fractional powers to obtain

AC−1−δx = (I +K)−1C−δx =
sin(πδ)
π︸ ︷︷ ︸

=:cδ

∫ ∞
0

t−δ (I +K)−1(t+ C)−1x dt,

hence

〈AC−1−δx, (Aδ)′x′〉Ω = cδ

∫ ∞
0

t−δ 〈 (I +K)−1(t+ C)−1x, (Aδ)′x′〉Ω dt

= lim
r→0

lim
R→∞

cθ

∫ R

r
t−δ 〈(I +K)−1(t+ C)−1x, (Aδ)′x′〉Ω dt︸ ︷︷ ︸

=:Iδr,R(x,x′)

.
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Let 0 < r ≤ R < +∞ and T := (I +K)−1, then

Iδr,R(x, x′) = cδ

∫ R

r
t−δ 〈(t+A)−1Tx, (Aδ)′x′〉Ω dt

+cδ

∫ R

r
t−δ 〈A1−(α−δ)(t+A)−1M(t)Aα(t+A)−1Tx, x′〉Ω dt

=
〈
cδ

∫ R

r
t−δ (t+A)−1Tx dt, (Aδ)′x′

〉
Ω

+cδ

∫ R

r
t−δ 〈M(t)Aα(t+A)−1Tx, (A′)1−(α−δ)(t+A′)−1x′〉Ω dt

=
〈
cδ

∫ R

r
t−δ (t+A)−1Tx dt, (Aθ)′x′

〉
Ω

+cδ

∫ R

r
〈M(t)ψα(t−1A)Tx, ψβ(t−1A′)x′〉Ω

dt

t

where β := 1 − (α − δ) ∈ (0, 1) since δ ∈ (0, α). Now let n ∈ N, (xj)j∈N≤n ∈ R(C)n and
(x′j)j∈N≤n ∈ D

(
(A′)δ

)n, then
n∑
j=1

Iδr,R(xj , x′j) =
n∑
j=1

〈
cδ

∫ R

r
t−δ (t+A)−1Txj dt, (Aδ)′x′j

〉
Ω

+cδ
n∑
j=1

∫ R

r
〈M(t)ψα(t−1A)Txj , ψβ(t−1A′)x′j〉Ω

dt

t
. (3.4.25)

In the same way as in the proof of Lemma 3.4.7 we can handle the second integral with Hölder’s
inequality in the spaces X(`sn(L2

∗(r,R))), X ′(`s
′
n (L2

∗(r,R))) and obtain∣∣∣∣∣∣
n∑
j=1

∫ R

r
〈M(t)ψα(t−1A)Txj , ψβ(t−1A′)x′j〉Ω

dt

t

∣∣∣∣∣∣
≤

∥∥∥∥(∫ R

r
|M(t−1)ψα(tA)Txj |2

dt

t

)1/2∥∥∥∥
X(`sn)

·
∥∥∥∥(∫ R

r
|ψβ(tA′)x′j |2

dt

t

)1/2∥∥∥∥
X′(`s′n )

,

and using the fact that the diagonal operator Ã : X(`sn) ⊇ D(A)n → X(`sn), (yj)j 7→ (Ayj)j has
a bounded H∞-calculus, the same arguments as in the proof of Lemma 3.4.7 lead to∥∥∥∥(∫ R

r
|M(t−1)ψα(tA)Txj |2

dt

t

)1/2∥∥∥∥
X(`sn)

≤ R{M(t)⊗ Id`sn | t > 0} ·
∥∥∥∥(∫ ∞

0
|ψα(tA)Txj |2

dt

t

)1/2∥∥∥∥
X(`sn)

. ‖(Txj)j‖X(`sn)

≤ Rs(T ) ‖(xj)j‖X(`sn).

We can apply the same arguments to the second factor, since A′ inherits by dualization the
corresponding properties of A, i.e. it has an Rs′-bounded H∞-calculus in X ′(`s

′
n ). Thus we
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obtain
n∑
j=1

∫ R

r

∣∣〈M(t)ψα(t−1A)Txj , ψβ(t−1A′)x′j〉Ω
∣∣ dt
t

. ‖(xj)j‖X(`sn) · ‖(x′j)j‖X′(`s′n ).

Hence we can conclude that the limits for r → 0, R → ∞ in (3.4.25) exist, and putting all
together yields

n∑
j=1

∣∣〈AC−1−δxj , (Aδ)′x′j〉Ω
∣∣ . ‖(xj)j‖X(`sn) · ‖(x′j)j‖X′(`s′n ). (3.4.26)

By duality this provides C−1−δxj ∈ D(Aδ), and we have the estimate

‖A1+δC−1−δ(xj)j‖X(`sn) = ‖AδAC−1−δ(xj)j‖X(`sn)

= sup

{∣∣∣∣〈C−δ(xj)j , (Aδ)′(x′j)j〉
X(`sn)×X′(`s′n )

∣∣∣∣ : ‖(x′j)j‖X′(`s′n ) ≤ 1

}
. ‖(xj)j‖X(`sn)

uniformly in n ∈ N, hence the operator A1+δC−1−δ extends to an Rs-bounded operator on X,
and the proof is finished.
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3.5 Weighted estimates and Rs-boundedness in Lp

In this section we will show that negatives of generators of analytic semigroups always have an
Rs-bounded H∞-calculus in an appropriate scale of Lp-spaces if the semigroup satisfies suitable
generalized Gaussian estimates. This result is similar to the corresponding one in [BK03], where
under slightly more general assumptions it is shown that such operators have a bounded H∞-
calculus in the same scale of Lp-spaces. We will apply our result to show that large classes of
differential operators have an Rs-bounded H∞-calculus. Thus the theory developed in Section
3.3 can be applied to these operators.

3.5.1 Weighted estimates and Rs-bounded H∞-calculus

We will use the general framework of spaces of homogeneous type, that was already introduced
in Section 3.1. Let (Ω0, d) be a metric space and µ a σ-finite regular Borel measure on Ω0 such
that (Ω0, d, µ) is a space of homogeneous type in the sense of Coifman and Weiss (cf. [CW71],
[CW77]). Recall from Section 3.1 that this means there is a constant C1 ≥ 1 such that

µ(BΩ0(x, 2r)) ≤ C1 µ(BΩ0(x, r)) for all x ∈ Ω0, r > 0. (3.5.1)

For abbreviation we will write |B| := µ(B) for µ-measurable sets B ⊆ Ω0 and ρBΩ0(x, r) :=
BΩ0(x, rρ) for all r, ρ ≥ 0 and x ∈ Ω0.

From (3.5.1) one can deduce the existence of some D > 0 and CD ≥ 1 such that

|BΩ0(x, λr)| ≤ CD λD |BΩ0(x, r)| for all x ∈ Ω0, r > 0, λ ≥ 1. (3.5.2)

We will usually use this in the following more general form, which follows from the simple fact,
that BΩ0(x, r) ⊆ BΩ0

(
y, r + d(x, y)

)
:

∀x, y ∈ Ω0 ∀ r ≥ ρ > 0 : |BΩ0(x, r)| ≤ CD
(r + d(x, y)

ρ

)D
|BΩ0(y, ρ)|. (3.5.3)

Moreover we fix a µ-localizing sequence (Ωn)n∈N for (Ω0, µ) with the additional property

diam(Ωn) := sup{d(x, y) | x, y ∈ Ωn} < +∞ for all n ∈ N

and define the spaces L∞c (Ω0, µ), L1
loc(Ω0, µ) with respect to this fixed sequence (Ωn)n∈N accord-

ing to Subsection 1.6.1.

Finally we fix a measurable Ω ⊆ Ω0 with |Ω| > 0 and Banach spaces E,F . In this section, we will
again use the abbreviation Lp := Lp(Ω) for the scalar-valued Lp-spaces and Lp(E) := Lp(Ω, E)
for the vector-valued Lp-spaces. The set Ω will be endowed with the induced Borel-measure from
(Ω0, µ) and the localizing sequence (Ω∩Ωn)n∈N. We will use the notation B(x, r) := BΩ0(x, r)∩Ω
for open balls in Ω, and for later use we define the annulus Ak(x, r) := B(x, (k + 1)r)\B(x, kr)
for all k ∈ N0 and x ∈ Ω0, r > 0. Note that by (3.5.2) we have

|Ak(x, r)| ≤ CD(1 + k)D|BΩ0(x, r)| for all k ∈ N0, x ∈ Ω0, r > 0.
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The subset Ω ⊆ Ω0 will be used for a slightly more general formulation of the main theo-
rems of this section. Nevertheless, in all lemmata and proofs we will concentrate on the case
Ω = Ω0, wich is justified by the following reason: each function f ∈ L1

loc(Ω, E) can be iden-
tified with the zero extension J0f := f ∪

(
(Ω0\Ω) × {0E}

)
∈ L1

loc(Ω0, E), and vice versa a
function g ∈ L1

loc(Ω0, E) can be identified with the function P0g := g|Ω ∈ L1
loc(Ω, E). In

the same way each operator T : L∞c (Ω, E) → L1
loc(Ω, F ) induces a corresponding operator

T0 := J0TP0 : L∞c (Ω0, E) → L1
loc(Ω0, F ). We will see that all assumptions we will make in the

following assertions on operators in spaces over Ω will naturally carry over to the corresponding
operator T0 in spaces over Ω0, hence in the proofs it will always be sufficient to consider the case
Ω = Ω0.

The main assumptions in this section will be generalized Gaussian estimates, also referred to as
weighted or off-diagonal estimates. Roughly speaking these are estimates that generalize classical
Gaussian kernel estimates on the one hand, and on the other hand they are a technical tool to
formulate a substitute for the Hörmander condition on integral operators, which will give a weak
(q0, q0)-criterion for non-integral operators in the sense of Proposition 3.5.11. To get a better
insight we present some basic facts about estimates of this kind and their connection to classical
kernel estimates. For a family (St)t∈J of operators L∞c (E)→ L1

loc(F ) we will consider estimates
of the form

‖1B(x,rt) St 1Ak(x,rt) ‖p→q ≤ |BΩ0(x, rt)|
1
q
− 1
p g(k) (3.5.4)

and their dual version

‖1Ak(x,rt) St 1B(x,rt) ‖p→q ≤ |BΩ0(x, rt)|
1
q
− 1
p g(k) (3.5.5)

for all x ∈ Ω0 and t ∈ J, k ∈ N0 and some (rt)t∈J ∈ (R>0)J , where g : [0,∞) → [0,∞) is
non-increasing and 1 ≤ p ≤ q ≤ +∞. Note that these estimates can be rewritten by explicitly
writing out the integral norms, e.g. (3.5.5) can be rewritten as(

1
|BΩ0(x, rt)|

∫
Ak(x,rt)

|Stf |qF dµ
)1/q

≤ g(k)
(

1
|BΩ0(x, rt)|

∫
B(x,rt)

|f |pE dµ
)1/p

(3.5.6)

for all f ∈ L∞c (E) with supp(f) ⊆ B(x, rt). Moreover, estimates like (3.5.4), (3.5.5) also imply
corresponding estimates for p̃, q̃ ∈ [1,+∞] instead of p, q if p ≤ p̃ ≤ q̃ ≤ q, by maybe some waste
of decay in the function g. Since we will use this fact later for the estimate (3.5.5) we give more
details in that situation:

Lemma 3.5.1. Let 1 ≤ p ≤ q ≤ +∞ and g : [0,∞)→ [0,∞) be a non-increasing function. Let
(St)t∈J be a family of operators L∞c (E) → L1

loc(F ) which satisfies the estimate (3.5.5) for all
x ∈ Ω0 and t ∈ J, k ∈ N0 and some (rt)t∈J ∈ (R>0)J . Let p̃, q̃ ∈ [p, q] such that p ≤ p̃ ≤ q̃ ≤ q.
Then the estimate

‖1Ak(x,rt) St 1B(x,rt) ‖p̃→q̃ ≤ |BΩ0(x, rt)|
1
q̃
− 1
p̃ g̃(k) (3.5.7)

holds for all x ∈ Ω0 and t ∈ J, k ∈ N0, where g̃(k) := C
1
q̃
− 1
q

D g(k)(1 + k)D( 1
q̃
− 1
q

).
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Proof. We only consider the case q < +∞, the modification for the remaining cases is obvious.
Let x ∈ Ω0 and t ∈ J, k ∈ N0. For brevity let B0 := BΩ0(x, rt), B := B(x, rt) and A := Ak(x, rt),
then |B| ≤ |B0| and |A| ≤ CD(1 + k)D|B0|. By Hölder’s inequality, we obtain(

1
|B0|

∫
A
|Stf |q̃F dµ

)1/q̃

=
( |A|
|B0|

)1/q̃
(

1
|A|

∫
A
|Stf |q̃F dµ

)1/q̃

≤
( |A|
|B0|

)1/q̃
(

1
|A|

∫
A
|Stf |qF dµ

)1/q

=
( |A|
|B0|

)1/q̃−1/q
(

1
|B0|

∫
A
|Stf |qF dµ

)1/q

≤ g(k)
( |A|
|B0|

)1/q̃−1/q
(

1
|B0|

∫
B
|f |pE dµ

)1/p

≤ g(k)C
1
q̃
− 1
q

D (1 + k)D(1/q̃−1/q)

(
1
|B0|

∫
B
|f |p̃E dµ

)1/p̃

for all f ∈ L∞c (E) with supp(f) ⊆ B(x, rt).

We cite two results from [BK02] and [Ku02] to get a better understanding for this kind of
estimates. The first result connects the estimate (3.5.4) with classical kernel estimates for
(p, q) = (1,+∞) if the St are integral operators.

Lemma 3.5.2. Let (St)t∈J be a family of linear integral operators L1(E)→ L∞(F ) with kernels
kt ∈ L∞(Ω× Ω, L(E,F ))1 and (rt)t∈J ∈ (0,∞)J . Then an estimate of the form

‖1B(x,rt) St 1Ak(x,rt) ‖1→∞ ≤ |B(x, rt)|−1 g(k) for all x ∈ Ω0, k ∈ R≥0, t ∈ J, (3.5.8)

where g : [0,∞)→ [0,∞) is non-increasing, is equivalent to an estimate of the form

‖kt(x, y)‖L(E,F ) ≤ |B(x, rt)|−1 h
(d(x, y)

rt

)
for all x, y ∈ Ω0, t ∈ J (3.5.9)

where h : [0,∞)→ [0,∞) is non-increasing. Moreover, if (3.5.8) holds, one can take h := g, and
if (3.5.9) holds, one can take g(t) := 2DCDh((t− 1) ∨ 0).

This lemma can be found in [BK02], Proposition 2.9 or [Ku02] Proposition 2.2. for the scalar-
valued case, and the proof given there generalizes to the vector-valued case, since also then the
identity ‖Sk‖1→∞ = ‖k‖∞ holds for all kernels k ∈ L∞(Ω× Ω, L(E,F )) and associated integral
operators Sk.

On the other hand, estimates of the above form can be compared with a symmetrized version
with indicator functions of balls on both sides, and with exponential weights if the function g

has a sufficiently fast decay.

Lemma 3.5.3. Let (St)t∈J be a family of linear operators St : L∞c (E)→ L1
loc(F ) and (rt)t∈J ∈

(R>0)J . Then an estimate

‖1B(x,rt) St 1Ak(x,rt) ‖p→q ≤ Cκ1 |B(x, rt)|
1
q
− 1
p (1+k)−κ1 for all x ∈ Ω0, k ∈ N0, t ∈ J (3.5.10)

1i.e. Stf(x) :=
∫

Ω
kt(x, y)f(y) dµ(y) for f ∈ L1(E) and a.e. x ∈ Ω
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for all κ1 > 0 is equivalent to an estimate

‖1B(x,rt) St 1B(y,rt) ‖p→q ≤ Cκ2 |B(x, rt)|
1
q |B(y, rt)|−

1
p

(
1 +

d(x, y)
rt

)−κ2

(3.5.11)

for all x ∈ Ω0, k ∈ N0, t ∈ J and all κ2 > 0. More precisely, if (3.5.10) holds for some κ1, then
(3.5.11) holds with κ2 = κ1, and if (3.5.11) holds for some κ2 > 2D, then (3.5.10) holds with
κ1 = κ2 − 2D.

This lemma is a special case of [Ku02], Proposition 2.6. Note that in the applications one usually
has not only polynomial but even exponential decay in the weighted norm estimates, which of
course also imply these kinds of estimates, cf. e.g. [Ku02], Proposition 2.6. Moreover, we can
replace the exponents 1/p,−1/q in (3.5.11) by any α, β ∈ R such that α+β = 1/p−1/q by maybe
some waste of decay, i.e. one has to change κ2 in this case. This is a simple consequence of (3.5.3).

Let us finally mention that in the classical situation Gaussian bounds are often only derived for
real times. But in this case one can also derive corresponding estimates for complex times by
eventually loosing some decay, and moreover the sector on which complex time estimates can
be established depends on the decay on the underlying real time estimates. We will not go into
detail but just refer to the exposition in [Ku02], Sections 2.4, 2.5.

The following theorem is the main result of this section.

Theorem 3.5.4. Let 1 ≤ p0 < 2 < p1 ≤ +∞ and ω0 ∈ (0, π/2). Let A be a sectorial operator
in L2(Ω) such that A has a bounded H∞-calculus in L2(Ω) with ωH∞(A) ≤ ω0. Assume that the
generated semigroup Tλ := e−λA satisfies the following weighted norm estimates for each θ > ω0:

‖1Ak(x,|λ|1/m) Tλ 1B(x,|λ|1/m) ‖p0→p1 ≤ Cθ|B(x, |λ|1/m)|
1
p1
− 1
p0 (1 + k)−κθ , (3.5.12)

‖1B(x,|λ|1/m) Tλ 1Ak(x,|λ|1/m) ‖p0→p1 ≤ Cθ|B(x, |λ|1/m)|
1
p1
− 1
p0 (1 + k)−κθ (3.5.13)

for all x ∈ Ω0, k ∈ N0, λ ∈ Σπ/2−θ and some constants m > 0, κθ > D
(

1
p0
− 1

p1
+ 1

p0∧p′1

)
+ 1 and

Cθ > 0. Then, for all p, s ∈ (p0, p1) and ω > ω0 the operator A has an Rs-bounded H∞(Σω)-
calculus in Lp(Ω).

To be more exact we can reformulate the statement of Theorem 3.5.4 in the following way:

For all p ∈ (p0, p1), the semigroup T induces a consistent C0-semigroup Tp on Lp(Ω) with
generator −Ap, and for all s ∈ (p0, p1) the operator Ap has an Rs-bounded H∞-calculus
with ωR∞s (Ap) ≤ ω0.

The extrapolation procedure is well known, cf. e.g [Ou05] for extrapolation of semigroups in
the classical situation of L1-L∞-contractivity or classical Gaussian bounds, and [BK02], where
semigroups are considered that satisfy the assumptions of Theorem 3.5.4. Thus we will not go
into further details for this.
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3.5.2 Applications to differential operators

Before we turn to the proof of Theorem 3.5.4 we will give some examples of classes of operators
that are well known to satisfy generalized p0 → p1 Gaussian estimates for some p0 < 2 < p1

on the one hand and have a bounded H∞-calculus in L2 on the other hand. So in these cases,
the assumptions of Theorem 3.5.4 are fulfilled and hence the considered operators also have an
Rs-bounded H∞-calculus in Lp for all p, s ∈ (p0, p1). In fact, in most situations much stronger
weighted estimates than required are known, typically in the symmetric form (3.5.11) for arbi-
trary κ2 > 0, i.e. with decay faster than every polynomial, or even exponential, i.e. "classical"
Gaussian bounds.

In particular, the differential operators in the following examples turn out to beRs-sectorial in Lp

for all p, s ∈ (p0, p1) with appropriate p0, p1. Thus for these operators, the s-intermediate spaces
are well defined, and the norms are independent of the auxiliary function chosen to determine
the s-power function norms associated to the operator. Furthermore we can apply the theory
developed in Section 3.3 to these operators. Nevertheless, we do not determine the associated
s-intermediate spaces explicitly in this section. That will be done for uniformly elliptic operators
in divergence and non-divergence form under stronger assumptions on the top order coefficients
in the subsequent Section 3.6, where we will show that the s-intermediate spaces associated to
certain classes of elliptic operators coincide with the classical Triebel-Lizorkin spaces Fαp,s at least
for some range of α.

(a) Elliptic operators in divergence form.

There are many contributions to Gaussian estimates for elliptic operators in divergence form, cf.
e.g. [Da89], [Da97-2], [Ou05] and the literature cited there. If Ω ⊆ RD is a region, an elliptic
operator on Ω in divergence form is formally given as

Au =
∑

|α|,|β|≤m

(−1)|β|∂β(aαβ∂αu), (3.5.14)

with coefficients aαβ ∈ L∞(Ω,C). To be more exact, the realization A2 of the operator A in
L2(Ω) := L2(Ω,C) (with Dirichlet boundary conditions) is defined as the operator associated to
the form

a(u, v) :=
∫ ∑
|α|,|β|≤m

aαβ(x)∂αu(x)∂βv(x) dx for all u, v ∈Wm,2
0 (Ω), (3.5.15)

where we have to impose appropriate ellipticity conditions for the principal part to ensure that
A2 is well-defined. For simplicity we restrict ourselves to the case Ω = RD and to homogeneous
operators without lower order terms, i.e.

a(u, v) =
∫ ∑
|α|,|β|=m

aαβ(x)∂αu(x)∂βv(x) dx for all u, v ∈Wm,2(RD) (3.5.16)

with coefficients aαβ ∈ L∞(RD,C). Note that additional lower order terms can be treated by
perturbation arguments and will usually lead to the same results cited in the sequel for A + ν
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instead of A and some sufficiently large ν ≥ 0.

We assume the form a to be sectorial, i.e.

| Im a(u, u)| ≤ tan(ψ) Re a(u, u) for all u ∈Wm,2(RD) (3.5.17)

for some ψ ∈ [0, π/2), and to satisfy an ellipticity condition in the form that the following
Garding’s inequality

Re a(u, u) ≥ η ‖(−∆)m/2u‖22 for all u ∈Wm,2(RD) (3.5.18)

holds for some η > 0. Observe that in the case m = 1, the conditions (3.5.17) and (3.5.18) are
consequences of the following uniformly strong ellipticity condition:

Re
D∑

j,k=1

ajk(x)ξjξk ≥ η |ξ|2 for all ξ ∈ CD, x ∈ RD, (3.5.19)

with ajk := aejek , where maybe A has to be replaced by A+ ν for some constant ν ≥ 0.

In this situation a is a closed sectorial form, hence the associated operator A2 in L2(RD) is
sectorial and has a bounded H∞ calculus with ωH∞(A2) ≤ ψ, so the assumptions of Theorem
3.5.4 are fulfilled if the generated semigroup satisfies generalized Gaussian estimates, which is
true in various cases. We take a closer look on some special situations.

(i) In the case m = 1 we can formally write Au = −div(a∇u), where a = (ajk)Dj,k=1. Assume
that a is real-valued and symmetric, i.e. ajk = akj : RD → R for all j, k ∈ N≤D, then
the associated operator A2 in L2(RD) is selfadjoint, and the semigroup generated by −A2

has a kernel kt that satisfies classical Gaussian bounds in the following sense: for all ε > 0
there is a constant Cε > 0 such that

0 ≤ kt(x, y) ≤ Cε t−D/2 exp
(
− (x− y)2

4t(1 + ε)‖a‖∞

)
for all x, y ∈ RD, t > 0.

This result is nowadays classical and we refer to the standard literature as [Da89], Corollary
3.2.8, where also the case of general regions Ω ⊆ RD is considered. Hence the operator A
has an Rs-bounded H∞-calculus in Lp(RD) for all s, p ∈ (0,+∞) in this case.

(ii) We consider again the case m = 1, so Au = −div(a∇u), but now we admit a : RD →
CD×D to be complex valued and also drop the symmetry condition. In this setting, things
are rigorously different than in the real symmetric situation, we refer to [AMT98] for an
comprehensive treatment of this case. First of all, we usually have to consider ν + A
for some ν ≥ 0 to obtain Gaussian bounds, even in the absence of lower order terms.
Furthermore, it is no more true that ν+A has classical Gaussian bounds in any dimension
D for some ν ≥ 0, if we assume no more regularity on the coefficients a. Nevertheless, in
the case D ≤ 2 Gaussian bounds for ν +A are obtained without any further assumptions
for some ν ≥ 0, whereas for D ≥ 3 there are examples of operators that have no Gaussian
bounds, cf. [HMM10]. In [Au96] it is shown that ν + A satisfies Gaussian estimates for
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some ν ≥ 0 in the case D ≥ 3 if the coefficients a are assumed to be uniformly continuous.
So in these cases the operator ν + A has an Rs-bounded H∞-calculus in Lp(RD) for all
s, p ∈ (1,+∞).

(iii) We will now consider the general case m ∈ N, where for simplicity we assume D ≥ 3. Then
by (ii) it is already clear that we cannot expect A to satisfy classical Gaussian estimates
without any further regularity assumptions for all D ≥ 3. We cite a result without any
additional regularity assumptions from [Ku02], Section 4.1, cf. also [Da97-2] for earlier
results in this direction. Assume D 6= 2m and let p1 := 2D

D−2m if D > 2m and p1 := +∞ if
D < 2m and p0 := p′1. Then there is an ν ≥ 0 such that the semigroup generated by the
operator −(ν+A2) in L2(RD) satisfies Gaussian bounds of the form (3.5.12), (3.5.13) for all
κθ > 0 and some θ ∈ (0, π/2). Hence the operator ν +A has an Rs-bounded H∞-calculus
in Lp(RD) for all s, p ∈ (p0, p1) in this case. In fact, more is known in this situation: It
can be shown that this result is optimal in the sense that for all r /∈ [p0, p1] one can find
an operator A of the above form such that the generated semigroup does not extend to
Lr(RD), cf. [Da97-1], and also the case D = 2m has been treated. More references can be
found in the more detailed exposition in [KW04], Chapter 8 and 14 and the corresponding
notes.

(b) Elliptic operators in non-divergence form.

Although the notion of Gaussian bounds is by natural reasons strongly connected with elliptic
operators in divergence form, there are also results on Gaussian bounds for elliptic operators in
non-divergence form. We just cite one recent result due to Peer Kunstmann explicitly:

Let Aq be the realization in Lq(RD) := Lq(RD,C) of the differential operator

A :=
∑
|α|≤2m

aα(x)Dα

with D(Aq) = W 2m,q(RD), where

(I) aα ∈ L∞(RD,C) for all |α| ≤ 2m, and there are ω ∈ (0, π/2), η > 0 such that for all
x, ξ ∈ RD:∑

|α|=2m

aα(x)ξα ∈ Σω, and
∣∣∣ ∑
|α|=2m

aα(x)ξα
∣∣∣ ≥ η |ξ|2m.

(II) aα is bounded and uniformly continuous, i.e. aα ∈ BUC(RD,C) if |α| = 2m, or

(II)’ aα is of vanishing mean oscillation, i.e. aα ∈ VMO(RD,C) if |α| = 2m.

Then in [Ku08], Section 6.1 the following result is shown:

Proposition 3.5.5. Assume that (I) and either (II) or (II)’ holds. There are constants ν ≥ 0
and δ ∈ (0, π/2) such that −(ν+Aq) generates an analytic semigroup (T (z))z∈Σδ) in Lq(RD) for
all q ∈ (1,+∞). Moreover, the semigroup T satisfies the following Gaussian estimate

‖1
B
(
x,|z|

1
2m

) T (z)1
B
(
y,|z|

1
2m

) ‖p→∞ ≤ C |z|− D
2mp exp

(
− b
( |x− y|2m

|z|

) 1
2m−1

)
(3.5.20)
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for all z ∈ Σδ for some C, b > 0 for any p > 1.

Observe that the Gaussian estimate (3.5.20) implies the estimates (3.5.12), (3.5.13) in the as-
sumptions of Theorem 3.5.4 for all 1 < p0 < 2 < p1 < +∞. Moreover, it is well known that
ν + A2 and even ν + Aq for q ∈ (1,+∞) has a bounded H∞-calculus for some ν ≥ 0 if the
coefficients of the principle part are BUC, cf. [DS97], Theorem 6.1, and the same is true in the
case (II)’ under the additional assumption m = 1 and aα = 0 if |α| 6= 2, cf. [DY02].

(c) Schrödinger operators with singular potentials.

Let us finally have a short look on Schrödinger operators, i.e. A = −1
2∆ + V , where ∆ is

the Laplace operator and the potential V : RD → R is a measurable function. For simplicity
we restrict ourselves to the case D ≥ 3. We let V + := V ∨ 0 and V − := −(V ∧ 0) so that
V = V + − V −. We assume that V + ∈ L1

loc(RD) and V − is in the Pseudo-Kato class, cf.
[KPS81]. Then the operator A0 := −1

2∆ + V + is associated to the form

a0(u, v) :=
1
2

∫
∇u(x)∇v(x) dx+

∫
V +(x)u(x)v(x) dx for all u, v ∈ D(a0),

where D(a0) := {u ∈ W 1,2(RD) |
∫
V +(x)|u(x)|2 dx < +∞}, and it is well known that the

realization of A0 in L2(RD) is a self-adjoint operator, and its generated semigroup is dominated
by the heat semigroup, hence it satisfies classical Gaussian bounds. The realization A2 of A in
L2(RD) is defined as the operator associated to the form perturbation (−1

2∆ + V +) − V − =
A0 − V −. Since this form is symmetric, the associated operator A2 is self-adjoint and semi-
bounded from below under certain assumptions on V − (cf. e.g. [KPS81], Section 4 or [BS91]),
so in that case a suitable translate of A2 has a bounded H∞-calculus in L2(RD), and in our
sense the only task is to ask for (generalized) Gaussian estimates.

(i) Recall that V + ∈ L1
loc(RD). If in addition V − is in the Kato class (cf. e.g. [Si82]), then it

is shown in the comprehensive paper [Si82] that A2 is selfadjoint (this goes indeed back to
Kato, [Ka73]), and the generated semigroup has a kernel kt that satisfies classical Gaussian
bounds in the following sense: there is a ν ≥ 0 such that for all ε > 0 there is a constant
Cε > 0 such that

|kt(x, y)| ≤ Cε t−d/2 eνt exp
(
− (x− y)2

2t(1 + ε)

)
for all x, y ∈ RD, t > 0.

So the shifted operator ν+A has a bounded H∞-calculus in L2(RD) and moreover satisfies
weighted 1→∞ estimates. A more general treatment of this class of operators can be found
in [Ou06].

(ii) One situation of more general potentials is described in [BK03], where V satisfies weaker
assumptions such that A2 still generates a semigroup, but in general no 1→∞ weighted
estimates hold for the semigroup, a typical example is V (x) = − c

|x|2 for a certain range of
c > 0, cf. e.g. [KPS81], Section 5. Nevertheless, the semigroup in this case still satisfies
weighted p→p′ estimates for some p > 1, hence the theory of this section can be applied.
For more details we refer to the article [BK03] and the literature cited there.
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Note again, that this shows in particular that the associated s-intermediate spaces for Schrödinger
operators according to Example (c) are well defined and independent of the auxiliary function
chosen to determine the associated s-power function norms. For Schrödinger operators, a sim-
ilar concept is developed in [OZ06] and [Zh06], where also generalized Triebel-Lizorkin spaces
associated to Schrödinger operators are defined and studied. The definition given there differs
from our definition and is closer to the original definition of Triebel-Lizorkin spaces, cf. Section
1.7. In particular, the fact that the considered Schrödinger operators are self-adjoint is essential,
since the auxiliary functions used to define the spaces are in the class C∞c (R). On the other
hand, our concept is more general in the sense that we can handle also non-self-adjoint sectorial
operators, as we considered in Examples (a) and (b). Nevertheless, although we do not study this
here, it seems reasonable to conjecture that the generalized Triebel-Lizorkin spaces introduced
in [OZ06] for Schrödinger operators coincide with our notion of s-intermediate spaces, at least,
if the negative part of the potential is in the Kato class. A proof might be based on suitable
modifications of the methods in [Kr09], Chapter 4.4, where only the case s = 2 is treated in
connection with Littlewood-Paley decompositions.

3.5.3 Proof of Theorem 3.5.4

We now turn to the proof of Theorem 3.5.4. We will use the following technical tool: For all
p ∈ [1,+∞], r > 0 we define

Np,rf(y) := ‖1B(y,r) f‖Lp
(

Ω0,
dx

|BΩ0
(y,r)| ,E

) = ‖f |B(y,r)‖Lp
(
B(y,r), dx

|BΩ0
(y,r)| ,E

) for all y ∈ Ω0

if f ∈ Lploc(Ω0, E). Moreover the Hardy-Littlewood p-maximal operator Mp is defined by

Mpf(x) := sup
r>0

Np,rf(x) for all x ∈ Ω0

if f ∈ Lploc(Ω0, E). Then an easy consequence of Theorem 3.1.22 is the following generalization:

Theorem 3.5.6. Let p ∈ [1,∞), then the Hardy-Littlewood p-maximal operator Mp is Rs-
bounded on Lq(Ω0) for all q, s ∈ (p,∞).

We have the following norm equivalence for the operators Np,r.

Lemma 3.5.7. Assume Ω = Ω0. For each p ∈ [1,+∞] there is a constant cp > 0 such that

c−1
p ‖f‖p ≤ ‖Np,rf‖p ≤ cp‖f‖p (3.5.21)

for all r > 0 and f ∈ Lploc(Ω0, E).

Proof. The statement is trivial for p = +∞, so we assume p < +∞. Let f ∈ Lploc(Ω0, E), then

‖Np,rf‖pp =
∫

Ω0

1
|B(y, r)|

∫
Br(y)

‖f(x)‖p dx dy.
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For all y ∈ Ω0, x ∈ Br(y) we have C−1
d ≤ |B(x,r)|

|B(y,r)| ≤ Cd and 1Br(y)(x) = 1Br(x)(y), hence by
Fubini’s theorem

‖Np,rf‖pp ≈
∫

Ω0

1
|B(x, r)|

∫
Ω0

1Br(y)(x)‖f(x)‖p dx dy

=
∫

Ω0

( 1
|B(x, r)|

∫
Ω0

1Br(x)(y) dy
)
‖f(x)‖p dx =

∫
Ω0

‖f(x)‖p dx = ‖f‖pp.

We will now derive an important pointwise estimate Nq,r(Sf) . Mpf(x) for operators S that
satisfy suitable p → q-estimates. This originates in [BK02], Lemma 2.6, and a more involved
version can be found in [Ku08], Proposition 2.3.

Lemma 3.5.8. Assume Ω = Ω0. Let p ∈ [1,∞) and δ > D
p + 1

p′ . Then there is a constant
C0 = C0(p, δ,D,CD) > 0 with the following property: If q ∈ (1,∞], r, C1 > 0, and S : L∞c (E)→
L1
loc(F ) is a linear operator satisfying the weighted estimate

‖1B S 1(k+1)B\kB ‖p→q ≤ C1 |B|
1
q
− 1
p (1 + k)−δ (3.5.22)

for all balls B of radius r, then Nq,r(Sf)(x) ≤ C0C1Mpf(x) for µ-a.e. x ∈ Ω0, f ∈ L∞c (E).

Proof. Let q, r, C1, S be as in the assumption and let x ∈ Ω0 and f ∈ Lp(E) ∩ Lq(E). Define
B := B(x, r), then

Nq,r(Sf)(x) = |B|−1/q ‖1B Sf‖q ≤ |B|−1/q
∞∑
k=0

‖1B S 1(k+1)B\kB f‖q

≤ C1 |B|−1/p
∞∑
k=0

(1 + k)−δ ‖f‖Lp((k+1)B\kB),E)

(with the usual modifications if q = +∞). Consider first the case p = 1. Then

Nq,r(Sf)(x) ≤ C1 |B|−1
∞∑
k=0

(1 + k)−δ
∫

(k+1)B\kB
|f |E dµ

= C1 |B|−1
∞∑
k=0

(1 + k)−δ
(∫

(k+1)B
|f |E dµ−

∫
kB
|f |E dµ

)
= C1 |B|−1

∞∑
k=1

(k−δ − (1 + k)−δ) ‖f‖L1(kB,E)

≤ C1

∞∑
k=1

|kB|
|B|

(k−δ − (1 + k)−δ) · (Mpf)(x)

≤ C1CD

∞∑
k=1

kD(k−δ − (1 + k)−δ) · (Mpf)(x) ≤ δC1CD

( ∞∑
k=1

kD−δ−1
)
· (Mpf)(x).

Since D − δ − 1 > 0 by assumption the assertions follows in this case.
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Now assume p > 1. Let γ := D−1
pp′ , then

α := δ − γp′ > D

p
+

1
p′
− D − 1

p
> 1 and β := δ + γp−D >

D

p
+

1
p′

+
D − 1
p′

−D > 0,

hence

K :=
( ∞∑
k=0

(1 + k)−α
)1/p′

< +∞.

Since δ = (δ/p′ + γ) + (δ/p′ − γ), Hölder’s inequality yields

Nq,r(Sf)(x) ≤ C1

( ∞∑
k=0

(1 + k)−δ+γp
′
)1/p′

·
(
|B|−1

∞∑
k=0

(1 + k)−δ−γp ‖f‖pLp((k+1)B\kB,E)

)1/p

= C1K
(
|B|−1

∞∑
k=0

(1 + k)−D−β
(
‖f‖pLp((k+1)B,E) − ‖f‖

p
Lp(kB,E)

))1/p

= C1K
(
|B|−1

∞∑
k=1

(k−D−β − (1 + k)−D−β) ‖f‖pLp(kB,E)

)1/p

≤ C
1/p
D C1K

( ∞∑
k=1

kD(k−D−β − (1 + k)−D−β) |kB|−1‖f‖pLp(kB,E)

)1/p

≤ C
1/p
D C1K

(
(D + β)

∞∑
k=1

k−1−β
)1/p

·Mpf(x).

Although we will not use it explicitly, for sake of completeness we cite the following result that
weighted norm estimates imply Rs-boundedness from [Ku08], Theorem 2.2.

Proposition 3.5.9. Assume Ω = Ω0. Let 1 ≤ q0 ≤ q1 ≤ +∞ and δ > D
q0

+ 1
q′0
, and assume that

(S(t))t∈J is a family of linear operators S(t) : L∞c → L1
loc satisfying the weighted estimate

‖1B(x,rt) S(t)1Ak(x,rt) ‖q0→q1 ≤ C |B(x, rt)|
1
q1
− 1
q0 (1 + k)−δ (3.5.23)

for all x ∈ Ω, t ∈ J, k ∈ N0 and some C > 0, where (rt)t∈J ∈ (R>0)J is some family of
radii. Then the set S(J) of operators extends to a set of Rs-bounded operators on Lp for all
(p, s) ∈ (q0, q1)× [q0, q1] ∪ {(q0, q0), (q1, q1)}.

Proposition 3.5.9 is for q0 < p, s < q1 an easy consequence of Lemma 3.5.8 above, cf. also [BK02],
Corollary 2.7. The more general version presented here is taken from [Ku08], Theorem 2.2, and
is based on a more involved version of Lemma 3.5.8 we leave out here since we will not use it in
the sequel.

We will now continue to provide technical tools for the proof of the main Theorem 3.5.4. Next
we show how the weighted estimate (3.5.12) can be generalized to arbitrary radii:
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Lemma 3.5.10. Assume Ω = Ω0. Let 1 ≤ p < 2 < q ≤ +∞, and let (Tρ)ρ>0 be a family of
bounded operators in L2(Ω) such that there exists a constant κ > D/q′ + 1 such that

‖1(k+1)Bρ\kBρ Tρ 1Bρ ‖p→q ≤ C|Bρ|
1
q
− 1
p (1 + k)−κ (3.5.24)

for all k ∈ N0, ρ > 0 and balls Bρ of radius ρ > 0. Let m ∈ N, β := 1
m

(
κ − D

q′ − 1
)
> 0 and

γ := κ/m, and define the weight function w(t) := tβ(1 + t)γ−β for t > 0. Then

‖1(k+1)Br\kBr Tρ 1Br ‖p→q ≤ cw(ρm/rm) · |Br|
1
q
− 1
p (1 + k)−κ,

for all k ≥ 2, ρ > 0 and balls Br of radius r > 0 with some constant c > 0.

Before we prove Lemma 3.5.10 we make the following observation: Let x, y ∈ Ω0 and r > ρ > 0.

(∗) For fixed y ∈ Br(x) the annulus (k + 1)Br(x)\kBr(x) can be covered as

(k + 1)Br(x)\kBr(x) ⊆ (`+ 1)Bρ(y)\dBρ(y) =
d⋃
ν=`

(ν + 1)Bρ(y)\νBρ(y)

where d := b(k + 2)r/ρc and ` := b(k − 1)r/ρc, and we have

d− ` . r/ρ, and for k ≥ 2 : (1 + `)−κ . (r/ρ)−κ(1 + k)−κ. (3.5.25)

Proof of (∗): Let z ∈ (k + 1)Br(x)\kBr(x), then

d(y, z) ≤ d(y, x) + d(x, z) ≤ (k + 2)r = (k + 2)r/ρ · ρ ≤ (`+ 1)ρ

and

d(y, z) ≥ d(x, z)− d(y, x) ≥ (k − 1)r = (k − 1)r/ρ · ρ ≥ dρ,

hence z ∈ (`+ 1)Bρ(y)\dBρ(y). Moreover by definition we obtain

d− ` ≤ (k + 2)r/ρ−
(
(k − 1)r/ρ− 1

)
= 3r/ρ+ 1 . r/ρ

and for k ≥ 2:

(1 + `)−κ ≤
(
(k − 1)r/ρ

)−κ
.
(
(k + 1)r/ρ

)−κ = (r/ρ)−κ(1 + k)−κ.

Proof of Lemma 3.5.10: Let x ∈ Ω0, k ≥ 2 and r, ρ > 0. We first assume that r > ρ. We will
work in the dual situation, so let f ∈ Lq′(Ω), then:

‖1Br(x) T
′
ρ 1(k+1)Br(x)\kBr(x) f‖p′

Lemma 3.5.7

. ‖Np′,ρ(1Br(x) T
′
ρ 1(k+1)Br(x)\kBr(x) f)‖p′

≤ ‖1B(x,r+ρ)Np′,ρ(T ′ρ 1(k+1)Br(x)\kBr(x) f)‖p′
≤ ‖1B(x,r+ρ) ‖p′ · sup

y∈B(x,r+ρ)
Np′,ρ(T ′ρ 1(k+1)Br(x)\kBr(x) f)(y)

. |1B(x,r) |1/p
′ · sup
y∈B(x,r+ρ)

Np′,ρ(T ′ρ 1(k+1)Br(x)\kBr(x) f)(y).
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For fixed y ∈ B(x, r + ρ) we have by (∗):

Np′,ρ(T ′ρ 1(k+1)Br(x)\kBr(x) f)(y) . |B(y, ρ)|−1/p′
d∑
ν=`

‖1B(y,ρ) T
′
ρ 1(ν+1)Bρ(y)\νBρ(y) f)‖p′

. |B(y, ρ)|−1/p′ · (d− `+ 1) · |Bρ(y)|−( 1
q′−

1
p′ )(1 + `)−κ · ‖f‖q′

. (r/ρ) · |Bρ(y)|−
1
q′ (1 + k)−κ(r/ρ)−κ · ‖f‖q′

. (r/ρ)1−κ · (r/ρ)D/q
′ |Br(x)|−

1
q′ (1 + k)−κ · ‖f‖q′ .

Hence we obtain

‖1Br(x) T
′
ρ 1(k+1)Br(x)\kBr(x) f‖p′ . (ρ/r)mβ · |Br(x)|

1
p′−

1
q′ (1 + k)−κ · ‖f‖q′ .

By dualization this yields

‖1(k+1)Br(x)\kBr(x) Tρ 1Br(x) ‖p→q = ‖1Br(x) T
′
ρ 1(k+1)Br(x)\kBr(x) ‖q′→p′

. (r/ρ)mβ · |Br(x)|
1
q
− 1
p (1 + k)−κ.

Next we assume r < ρ, in this case define ` := bkr/ρc. If z ∈ (k + 1)Br(x)\kBr(x), then

d(x, z) ≤ (k + 1)r ≤ (kr/ρ) · ρ+ ρ ≤ (`+ 2)ρ, and d(x, z) ≥ (kr/ρ) · ρ ≥ `ρ,

hence

(k + 1)Br(x)\kBr(x) ⊆
(
(`+ 2)Bρ(x)\(`+ 1)Bρ(x)

)
∪
(
(`+ 1)Bρ(x)\`Bρ(x)

)
.

So we get

‖1(k+1)Br(x)\kBr(x) Tρ 1Br(x) ‖p→q ≤
1∑
j=0

‖1(`+j+1)Bρ(x)\(`+j)Bρ(x) Tρ 1Bρ(x) ‖p→q

.
1∑
j=0

|Bρ(x)|1/q−1/p(1 + `+ j)−κ ≤ 2|Br(x)|1/q−1/p(1 + `)−κ

≤ 2|Br(x)|1/q−1/p(kr/ρ)−κ . (ρ/r)mγ · |Br(x)|1/q−1/p(1 + k)−κ.

Putting both parts together we obtain

‖1(k+1)Br(x)\kBr(x) Tρ 1Br(x) ‖p→q . w(|λ|m/r) · |Br(x)|1/q−1/p(1 + k)−κ.

The proof of Theorem 3.5.4 will essentially follow the lines in [BK03] with modifications as used
in [Ku08]; a similar approach is sketched in [Au07], Section 6.1. Thus, the keystone for the proof
is the following weak type (q0, q0)-criterion, which is a vector-valued version of [Ku08], Theorem
5.4.
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Proposition 3.5.11. Let E,F be Banach spaces, 1 ≤ q0 < q ≤ ∞, and let T : Lq(Ω, E) →
Lq(Ω, F ) be a bounded linear operator. Suppose that there is a family (Sr)r>0 of uniformly
bounded linear operators in Lq(Ω, E) such that the following weighted norm estimates hold:

‖1Ak(x,r) Sr 1B(x,r) ‖Lq0 (E)→Lq(E) ≤ |BΩ0(x, r)|
1
q
− 1
q0 h(k) for all k ∈ N0, (3.5.26)

‖1Ak(x,r) T (I − Sr)1B(x,r) ‖Lq0 (E)→Lq(F ) ≤ |BΩ0(x, r)|
1
q
− 1
q0 h(k) for all k ≥ k0, (3.5.27)

for all x ∈ Ω0, r > 0 and some constant k0 ∈ N, where the sequence h satisfies h(k) ≤ cδ(k+1)−δ

for some constants cδ > 0 and δ > 1
q + D

q′ . Then T is of weak type (q0, q0) and bounded as an
operator Lp(E) → Lp(F ) for all p ∈ (q0, q], where the norm ‖T‖L(Lp(E),Lp(F )) depends only on
the involved constants and the sequence h, but not on the operator itself.

We will reproduce a proof that is due to Peer Kunstmann for the scalar-valued case and easily
generalizes to the vector-valued case. We will start with a Calderon-Zygmund decomposition in
the vector-valued spaces Lp(E).

Lemma 3.5.12 (Lp-Calderon-Zygmund decomposition). Assume Ω = Ω0 and let p ∈ [1,∞).
Then there exists constants Cp, Ap > 0 such that for all f ∈ Lp(E) an α > 0, we find a µ-
measurable function g and a countable index-set J and a family (bj)j∈J of µ-measurable functions
with disjoint supports and (Bj)j∈J of balls such that

(i) f(x) = g(x) +
∑

j∈J bj(x) for µ-a.e. x ∈ Ω0,

(ii) ‖g‖∞ ≤ Cp α,

(iii) supp(bj) ⊆ Bj for all j ∈ J and |{j ∈ J : x ∈ Bj}| ≤ Ap for all x ∈ Ω0,

(iv) ‖bj‖p ≤ Cp α|Bj |1/p for all j ∈ J ,

(v)
(∑

j∈J |Bj |
)1/p

≤ C α−1 ‖f‖p,

(vi) ‖g‖p ≤ Cp ‖f‖p.

This lemma is proved in [BK03], Theorem 3.1 and Remark 3.2, for the scalar-valued case, and
the proof given there extends immediately to the vector-valued case if one simply replaces the
modulus |f | by the norm-modulus |f |E in the proof.

Proof of Proposition 3.5.11. The remarks given at the beginning of this section imply that we
can w.l.o.g. assume Ω = Ω0. We first observe that by Lemma 3.5.8 the assumptions (3.5.26) and
(3.5.27) imply the pointwise estimates

Nq′0,r
(S′rf)(x) ≤ C0Mq′f(x) and Nq′0,r

((T (I − Sr))′f)(x) ≤ C0Mq′f(x), (3.5.28)

where the former holds for µ-a.e. x ∈ Ω and all f ∈ Lq0(E) ∩ Lq(E) and the latter holds for
µ-a.e. x ∈ Ω and all f ∈ Lq0(E) ∩ Lq(E) with supp(f) ∩B(x, k0r) = ∅.

Moreover we only have to show that T is of weak type (q0, q0), the remaining strong estimates
can then be obtained with a vector-valued version of the Marcinkiewicz interpolation theorem,
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cf. e.g. [GLY07], Lemma 2.5, and the comments given there.

Let α > 0 and f ∈ Lq0(E) ∩ Lq(E). Then choose an Lq0-Calderon-Zygmund decomposition ac-
cording to Lemma 3.5.12, i.e. we choose µ-measurable functions g and (bj)j∈J for some countable
index-set J with disjoint supports and a family of balls Bj = B(xj , rj), j ∈ J such that (i)-(ví)
from Lemma 3.5.12 hold. Then formally

Tf = Tg +
∑
j∈J

TS2rjbj +
∑
j∈J

T (I − S2rj )bj =: Tg + h1 + h2 (3.5.29)

We first treat the "good" part g:

|{x ∈ Ω | ‖Tg(x)‖F > α} ≤ α−q0
∫

Ω
|Tg|qF dµ ≤ ‖T‖

q
q→q α

−q
∫

Ω
|g|qE dµ

≤ ‖T‖qq→q α−q0 Cq−q0q0 ‖g‖q0q0 ≤ ‖T‖
q
q→q C

q
q0

(‖f‖q0
α

)q0
.

To estimate the term h1 and justify the representation (3.5.29) it is sufficient to show that

(S2rjbj)j∈J is summable in Lq(E) and
∥∥∥∑
j∈J

S2rjbj

∥∥∥q
q
≤ Cαq

∥∥∥∑
j∈J

1Bj

∥∥∥q
q
, (3.5.30)

because then by the Lq-boundedness of T and the properties of the Lq0-Calderon-Zygmund
decomposition

|{x ∈ Ω | ‖h1(x)‖F > α} ≤ ‖T‖qq→q α−q
∥∥∥∑
j∈J

S2rjbj

∥∥∥q
q
≤ C‖T‖qq→q

∥∥∥∑
j∈J

1Bj

∥∥∥q
q

≤ C‖T‖qq→q
∑
j∈J
|Bj | ≤ CCq0q0 ‖T‖

q
q→q

(‖f‖q0
α

)q0
.

For the proof of (3.5.30) we take φ ∈ Lq′(E′) with ‖φ‖q′ = 1, and obtain

|〈S2rjbj , φ〉| = |〈bj , S′2rjφ〉| ≤ Cq0α|Bj |
1/q0 ·

(∫
Bj

|S′2rjφ|
q′0
E′ dµ

)1/q′0

= Cq0α|Bj | ·Nq′0,rj
(S′2rjφ)(xj) ≤ 3CD Cq0α ·

∫
Bj

Nq′0,2rj
(S′2rjφ) dµ

≤ 3CD Cq0C0︸ ︷︷ ︸
=:c0

α ·
∫
Bj

Mq′(φ) dµ.

Let E :=
⋃
j∈J Bj , then for any finite subset J0 ⊆ J we obtain∣∣∣〈∑

j∈J0

S2rjbj , φ
〉∣∣∣ ≤ c0 α ·

∑
j∈J0

∫
Bj

Mq′(φ) dµ = c0 α ·
∫
E

∑
j∈J0

1Bj Mq′(φ) dµ

≤ c0Aq0 α ·
∫
E
Mq′(φ) dµ = c0Aq0 α ·

∫
E

(
M |φ|q

′

E′
)1/q′

dµ.

An inequality by Kolmogorov (cf. [GCRdF85], Lemma V.2.8, p. 485) states∫
E
g1/q′ dµ ≤ q |E|1/q

(
sup
t>0

(
t · |{x ∈ Ω | g(x) > t}|

))1/q′



3. Rs-boundedness and Rs-sectorial operators
3.5. Weighted estimates and Rs-boundedness in Lp 154

for each measurable function g ≥ 0, hence we obtain together with the weak (1, 1)-boundedness
of the maximal operator M∣∣∣〈∑

j∈J0

S2rjbj , φ
〉∣∣∣ ≤ c0Aq0q α · |E|1/q

(
sup
t>0

(
t · |{x ∈ Ω |M |φ|q

′

E′ > t}|
))1/q′

. α ·
∥∥∥∑
j∈J

1Bj

∥∥∥
q
‖φ‖q′ .

Since Lq′(E′) is a norming subspace of (Lq(E))′ this yields (3.5.30). The term h2 can be treated
similarly: let F :=

⋃
j∈J B(xj , 2k0rj), then

|{x ∈ Ω : ‖h2(x)‖F > α} ≤ |F |+
∣∣∣{x ∈ Ω :

∥∥∥∑
j∈J

1F c(x)T (I − S2rj )bj(x))
∥∥∥
F
> α

}
,

where |F | ≤ CDCq0(2k0)D · α−q0 ‖f‖q0q0 by (v) from Lemma 3.5.12. Now we can use the same
argument as above for 1F c T (I − S2rj ) in place of S2rj .

If we apply Proposition 3.5.11 for the Banach spaces E = F = `s and tensor extensions T ⊗ Id`s
of operators in a scalar valued space Lq(Ω), we can derive the following corresponding criterion
for Rs-boundedness.

Corollary 3.5.13. Let Ω ⊆ Ω0 be a measurable subset, 1 ≤ q0 < q ≤ ∞, and let T ⊆ L(Lq) be
a set of bounded linear operators. Suppose that there is a family (Sr)r>0 of uniformly bounded
linear operators in Lq such that the following weighted norm estimates hold:

‖1(k+1)B\kB Sr 1B ‖q0→q ≤ |B|
1
q
− 1
q0 h(k) for all k ∈ N0, (3.5.31)

‖1(k+1)B\kB T (I − Sr)1B ‖q0→q ≤ |B|
1
q
− 1
q0 h(k) for all k ≥ k0, (3.5.32)

for all balls B of radius r, T ∈ T and some constant k0 ∈ N, where the sequence h satisfies
h(k) ≤ cδ (k + 1)−δ for some constants cδ > 0 and δ > 1

q + D
q′ . Then T is Rs-bounded in Lp for

all p ∈ (q0, q] and s ∈ [p, q].

Proof. Note first that if we apply Proposition 3.5.11 for the scalar-valued operators we obtain
that T is uniformly bounded in each Lp and hence also Rp-bounded in each Lp for p ∈ (q0, q]. Let
p ∈ (q0, q] and s ∈ [p, q], and let n ∈ N. We define the operators T̃ := T ⊗ I`sn and Sr := Sr ⊗ I`sn
for all T ∈ T , r > 0. Then {T̃ : T ∈ T } and {S̃r : r > 0} are uniformly bounded in Ls(`sn).

Now let B be a ball of radius r, k ∈ N0, C := (k + 1)B\kB and fj ∈ Lq1 for all j ∈ N. Then we
obtain with gj := 1C Srfj :

‖1(k+1)B\kB S̃r 1B(fj)j‖Ls(`s) = ‖(gj)j‖Ls(`s) = ‖(gj)j‖`s(Ls) (3.5.33)

=
(∑
j∈N
‖gj‖ss

)1/s
≤ |B|

1
p
− 1
sh(k) ·

(∑
j∈N
‖fj‖sp

)1/s
(3.5.34)

≤ |B|
1
p
− 1
sh(k) · ‖(fj)j∈N‖Lp(`s). (3.5.35)
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In the last estimate we used that Lp(`s) ↪→ `s(Lp), since p ≤ s. By the same argument we obtain

‖1(k+1)B\kB ˜T (I − Sr)1B ‖Lp(`s)→Ls(`s) ≤ |B|
1
p
− 1
sh(k)

for all k ≥ k0. This shows that the assumptions of Proposition 3.5.11 are fulfilled with E = F =
`sn and (q0, q) = (p, s), hence {T̃ : T ∈ T } is uniformly bounded in Lr(`sn) for all r ∈ (p, s),
which just is the Rs-boundedness of T in Lr. Since p ∈ (q0, q] was arbitrary this shows the
claim.

We will also need the following technical lemma which is a special case of Lemma 3.7 in [BK03]:

Lemma 3.5.14. Let N ∈ N, b > 0 and 0 < β, γ < N , and let w(t) := tβ(1 + t)γ−β for t > 0.
Then ∫ ∞

0

(∫ ∞
0

e−bts(1 ∧ sN ) ds
)
w(t) dt < +∞.

Proof. We split up the integral as∫ ∞
0

(∫ ∞
0

e−bts(1 ∧ sN ) ds
)
w(t) dt

=
∫ 1

0

(∫ 1

0
e−btssN ds

)
w(t) dt+

∫ 1

0

(∫ ∞
1

e−bts ds
)
w(t) dt

+
∫ ∞

1

(∫ 1

0
e−btssN ds

)
w(t) dt+

∫ ∞
1

(∫ ∞
1

e−bts ds
)
w(t) dt

=: I1 + I2 + I3 + I4.

Then clearly I1 < +∞. Moreover we have

I2 =
1
b

∫ 1

0
e−btw(t)

dt

t
.
∫ 1

0
e−bttβ

dt

t
< +∞ , and

I4 =
1
b

∫ ∞
1

e−btw(t)
dt

t
.
∫ ∞

1
e−bttγ

dt

t
< +∞

since β, b > 0. Finally∫ 1

0
e−btssN ds =

N !
(bt)N+1

e−bt
∞∑

j=N+1

(bt)j

j!
. 1 ∧ t−N−1,

so γ −N < 0 yields

I3 .
∫ ∞

1
1 ∧ t−N−1w(t) dt .

∫ ∞
1

tγ−Nw(t)
dt

t
< +∞.

We can now turn to the proof of Theorem 3.5.4.
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Proof of Theorem 3.5.4. Again, by the remarks given at the beginning of this section we can
w.l.o.g. assume Ω = Ω0. Let q0, q ∈ [p0, p1] with q0 < q and ω ∈ (ω0, π/2), and define
κ := κ0 − D

(
1
p0
− 1

p1

)
> D

p0∧p′1
+ 1. We fix some θ0 ∈ (ω0, ω), then by the assumptions of

Theorem 3.5.4 and by Lemma 3.5.1 the weighted estimate

‖1Ak(x,|λ|1/m) Tλ 1B(x,|λ|1/m) ‖q0→q ≤ C0|B(x, |λ|1/m)|
1
q
− 1
q0 (1 + k)−κ (3.5.36)

holds for all x ∈ Ω0, k ∈ N0 and λ ∈ Σπ/2−θ0 for some constant C0 > 0.

Let ϕ ∈ H∞0 (Σω) with ‖ϕ‖∞,ω ≤ 1 and define T := ϕ(A). Let N ∈ N, whose size will be specified
later, and define

Sr := I − (I − e−rmA)N =
N∑
k=1

(
N

k

)
(−1)k+1e−kr

mA for all r > 0.

Then the family (Sr)r>0 is uniformly bounded in Lq. Since

κ >
D

p′1
+ 1 ≥ D

q′
+ 1 >

D

q′
+

1
q

(3.5.37)

we can apply Lemma 3.5.10 and obtain that (Sr)r>0 also satisfies the assumption (3.5.26) of
Proposition 3.5.11, or (3.5.31) of Corollary 3.5.13, respectively, with q0 = p0. Now the key step
is to check (3.5.32). After this is done, we can derive the full statement of the theorem if we
apply Proposition 3.5.11 and Corollary 3.5.13 in various steps and do some standard duality and
approximation arguments.

We define the integration paths Γ±σ : (0,∞) → C, t 7→ te±iσ. Let θ ∈ (θ0, ω) and choose
δ > 0 with π/2 − θ < δ < π/2 − θ0. Let r > 0 and B be a ball of radius r, k ∈ N and let
C := (k + 1)B\kB. We define ψ(z) := ϕ(z)(1− e−rmz)N , then ψ ∈ H∞0 (Σω) and

|ψ(z)| . ‖ϕ‖∞ · (1 ∧ (rmz)N ).

We use the following variant of the Laplace transform representation of the resolvent:

R(z,A) = −
∫

Γ±δ

ezλTλ dλ if z ∈ (0,+∞) · e±iθ.

This leads to

T (I − Sr) = ψ(A) =
1

2πi

∫
Γθ

ψ(z)R(z,A) dz

= − 1
2πi

∫
Γ+
θ

ψ(z)R(z,A) dz +
1

2πi

∫
Γ−θ

ψ(z)R(z,A) dz

=
1

2πi

∫
Γ+
θ

ψ(z)
∫

Γ+
δ

ezλTλ dλ dz −
1

2πi

∫
Γ−θ

ψ(z)
∫

Γ−δ

ezλTλ dλ dz

=
1

2πi

∫
Γ+
δ

(∫
Γ+
θ

ezλψ(z) dz
)
Tλ dλ−

1
2πi

∫
Γ−δ

(∫
Γ−θ

ezλψ(z) dz
)
Tλ dλ,
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hence

1C T (I−Sr)1B =
1

2πi

(∫
Γ+
δ

(∫
Γ+
θ

ezλψ(z) dz
)
1C Tλ 1B dλ−

∫
Γ−δ

(∫
Γ−θ

ezλψ(z) dz
)
1C Tλ 1B dλ

)
.

Let b := − cos(θ + δ) > 0, and choose β, γ > 0 and the weight function w according to Lemma
3.5.10. Then Minkowski’s inequality and the weighted norm inequality from Lemma 3.5.10 yield

‖1C T (I − Sr)1B ‖q0→q

≤ 1
2π

∫
Γ+
δ

(∫
Γ+
θ

eRe(zλ)|ψ(z)| d|z|
)
‖1C Tλ 1B ‖q0→q d|λ|

+
1

2π

∫
Γ−δ

(∫
Γ−θ

eRe(zλ)|ψ(z)| d|z|
)
‖1C Tλ 1B ‖q0→q d|λ|

.
∫

Γ+
δ

(∫
Γ+
θ

e−b|z||λ|(1 ∧ (rm|z|)N ) d|z|
)
w(|λ|/rm) d|λ| · |B|

1
q
− 1
q0 (1 + k)−κ · ‖ϕ‖∞

+
∫

Γ−δ

(∫
Γ−θ

e−b|z||λ|(1 ∧ (rm|z|)N ) d|z|
)
w(|λ|/rm) d|λ| · |B|

1
q
− 1
q0 (1 + k)−κ · ‖ϕ‖∞

.
(∫ ∞

0

(∫ ∞
0

e−bts(1 ∧ sN ) ds
)
w(t) dt

)
· |B|

1
q
− 1
q0 (1 + k)−κ · ‖ϕ‖∞

. |B|
1
q
− 1
q0 (1 + k)−κ · ‖ϕ‖∞,

since the latter integral is finite by Lemma 3.5.14 if we choose N > γ.

We can now apply Proposition 3.5.11 with q0 = p0, q = 2 to obtain that T is bounded in Lp for
all p ∈ (p0, 2]. On the other hand, assumption (3.5.13) is just the same as (3.5.12) for the dual
operator A′ with the pairing (p′1, p

′
0) in place of (p0, p1). Observe that the condition on κ0 is the

same for this pairing, since

D
( 1
p0
− 1
p1

+
1

p0 ∧ p′1

)
+ 1 = D

( 1
p′1
− 1
p′0

+
1

p′1 ∧ (p′0)′
)

+ 1,

thus also in the dual situation we have the appropriate estimate on κ := D
p0∧p′1

+ 1 to apply

Lemma 3.5.10 and Proposition 3.5.11, namely κ > D
p0

+ 1 = D
(p′0)′ + 1 ≥ D

(p′0)′ + 1
p′0
. Using the

same arguments for A′ in place of A yields that also T ′ is bounded for all p′ ∈ (p′1, 2], hence T is
bounded in Lp for all p ∈ (p0, p1).

Now we can take any q ∈ (p0, p1) as a new starting point, i.e. we consider T as an operator in Lq

with corresponding p0 → q weighted estimates, and use Corollary 3.5.13 to get Rs-boundedness
of T in Lp for all p ∈ (p0, p1) and s ∈ [p, p1). Then we again dualize and obtain the Rs′-
boundedness of T ′ in Lp′ for all p′ ∈ (p′1, p

′
0) and s′ ∈ [p′, p′0), hence the Rs-boundedness of T in

Lp for all p ∈ (p0, p1) and s ∈ (p0, p].

We use finally that the constants did not explicitly depend on ϕ ∈ H∞0 (Σω) with ‖ϕ‖∞,ω ≤ 1,
so the general assertion follows from Proposition 3.2.23.
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3.6 The s-intermediate spaces for differential operators and Triebel-
Lizorkin spaces

In this section we consider differential operators of order 2m in the spaces X := Lp(Rd,CN ).
Hence we fix N,m, d ∈ N and p, q ∈ (1,∞). In order to be consistent with the notation of
classical Triebel-Lizorkin spaces we will use the terminology Rq-boundedness instead of Rs-
boundedness in this section. Moreover, all function spaces will be defined on the whole space
Rd, hence we will simply write F instead of F(Rd,CN ) for any function space F(Rd,CN ), where
e.g. F ∈ {F sp,q, Bs

p,q,W
s,p, Hs,p, Lp}.

We will show that certain classes of elliptic operators have an Rq-bounded H∞-calculus, but
the central issue in this section is to show that these operators have the same q-intermediate
spaces as the Laplace operator. So we first recall the following theorem concerning only the
Laplace operator, which is just a compilation of Proposition 3.2.24 and Proposition 3.3.12 and
an application of Theorem 3.3.23 together with the well known fact that (−∆)m has a bounded
H∞-calculus in X with ωH∞((−∆)m) = 0.

Theorem 3.6.1. Let A := (−∆)m with D(A) := W 2m,p in X. Then A has an Rq-bounded
H∞-calculus with ωR∞q (A) = 0, and for all θ ∈ R we have

Ẋθ
q,A = Ḟ 2mθ

p,q , and Xθ
q,A = F 2mθ

p,q if θ > 0.

In particular, (−∆)m has a bounded H∞(Σσ) calculus for all σ > 0 in the spaces Ḟ sp,q for all
s ∈ R, and in the space F sp,q for all s > 0.

So if we show that a differential operator A has the same q-intermediate spaces as the Laplace
operator, Theorem 3.3.23 yields thatA has a boundedH∞-calculus in the Triebel-Lizorkin spaces
Ḟ sp,q, s ∈ R, and in F sp,q if s > 0.

3.6.1 Elliptic differential operators in non-divergence form on Rd

We start with elliptic operators in non-divergence form. We will use the notion of (M,ω0)-elliptic
operators as it was introduced in [AHS94], cf. also [DS97]. The structure of the proof of the main
theorem of this section follows the line of [KW04], Chapters 6 and 13, where under the same
hypotheses it is shown that elliptic differential operators are R-sectorial and have a bounded
H∞-calculus in the space Lp. In fact, this result goes back to [AHS94] for Hölder continuous
coefficients and [DS97] for BUC-coefficients.

We consider the differential operator

A := A(x,D) :=
∑
|α|≤2m

aα(x)Dα (3.6.1)

of order 2m with measurable coefficients aα : Rd → CN×N . Then A(x, ξ) =
∑
|α|≤2m

aα(x)ξα,
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where x, ξ ∈ Rd, is the symbol of A, i.e. formally A acts as

A(x,D)u(x) =
∑
|α|≤2m

aα(x)(Dαu)(x) = F−1
ξ

(
A(x, ξ)F(ξ)

)
(x).

Moreover we define the principle part of A as Aπ(x,D) :=
∑
|α|=2m

aα(x)Dα.

Let M > 0 and ω0 ∈ [0, π). The differential operator A as in (3.6.1) is called (M,ω0)-elliptic if
the following uniform ellipticity conditions on the principle symbol hold:∑

|α|=2m

‖aα‖∞ ≤M, (3.6.2)

σ(Aπ(x, σ)) ⊆ Σω0\{0} and |(Aπ(x, σ))−1| ≤M for all x ∈ Rd, σ ∈ Sd−1. (3.6.3)

Observe that in the case N = 1 the above assumption 3.6.3 is equivalent to the usual uniform
ellipticity conditions Aπ(x, ξ) ∈ Σω0 and |Aπ(x, ξ)| ≥ 1

M |ξ|
2m for all x, ξ ∈ Rd. Moreover we will

use the following additional boundedness property for the lower order terms:∑
|α|≤2m−1

‖aα‖∞ ≤M. (3.6.4)

If A is an (M,ω0)-elliptic operator, then we define the Lp-realization Ap of A as

Apu :=
∑
|α|=2m

aα(Dαu) for all u ∈ D(Ap) := W 2m,p.

If we assume in addition N = 1 and that the highest order coefficients are uniformly continuous,
or m = 1 and the operator is homogeneous with VMO coefficients, we can conclude with the
results of Section 3.5, Example (b) that an appropriate translate of Ap has an Rq-bounded H∞-
calculus if ω0 < π/2 via generalized Gaussian estimates for the generated analytic semigroup:

Proposition 3.6.2. Assume N = 1. Let ω0 ∈ [0, π/2),M > 0 and A be an (M,ω0)-elliptic
operator. Assume that either

(I) aα ∈ BUC for all α ∈ Nd
0 with |α| = 2m, or

(II) m = 1, aα ∈ VMO for all α ∈ Nd
0 with |α| = 2 and aα = 0 if |α| < 2.

Then the Lp-realization ν +Ap of A has an Rq-bounded H∞-calculus for some ν ≥ 0.

Nevertheless, we are more interested in identifying the associated q-intermediate spaces for the
operators Ap. For this we will make stronger assumptions, namely we will assume the coefficients
in the principal part to be Hölder-continuous. Then we obtain the following theorem, which is
one of the main results of this section.

Theorem 3.6.3. Let ω0 ∈ [0, π),M > 0, γ ∈ (0, 2m) and σ > ω0. Then there is ν ≥ 0 such that
for each Lp-realization Ap of an (M,ω0)-elliptic operator

A(x,D) =
∑
|α|≤2m

aα(x)Dα,

where all aα : Rd → CN×N are measurable, the conditions (3.6.2), (3.6.3) and (3.6.4) are fulfilled
and aα ∈ Cγ(Rd,CN×N ) if |α| = 2m, the following assertions hold:



3. Rs-boundedness and Rs-sectorial operators
3.6. The s-intermediate spaces for differential operators and Triebel-Lizorkin spaces 160

(1) ν +Ap has an Rq-bounded H∞(Σσ)-calculus.

(2) For all θ ∈ (−γ∧1
2m , 1) we have Ẋθ

ν+Ap,q
≈ Ẋθ

ν+(−∆)m,q, and X
θ
ν+Ap,q

≈ Xθ
ν+(−∆)m,q ≈ F

2mθ
p,q

if θ > 0, respectively.

(3) For all s ∈ (0, 2m) the part ν + Ap,q,s of the differential operator ν + Ap in the space F sp,q
has a bounded H∞(Σσ)-calculus.

(4) If in addition aα ∈ Cγ(Rd,CN×N ) for all |α| ≤ 2m, then D(ν + Ap,q,s) = F s+2m
p,q for all

s ∈ (0, γ).

In all cases the bounds and equivalency constants do not depend on the explicit operator A but
only on the constants N,ω0,M, γ, σ.

It is clear that (3) follows by Theorem 3.3.23 once (2) has been established. Note that in general
for s ∈ (0, 2m) the domain of the operator ν + Ap,q,s in F sp,q is the space X1+s/2m

q,ν+Ap
, which need

not coincide with the space F s+2m
p,q . This is due to the fact that if the lower order coefficients

are only assumed to be in L∞ they are in general not pointwise multipliers in the space F sp,q.
However, if the additional assumption of (4) holds, then the coefficients of the lower order terms
are pointwise multipliers, and we obtain the "right" domain D(ν+Ap,q,s) = F s+2m

p,q in that case.
If there are lower order terms, it is necessary that the coefficients aα are pointwise multipliers
in F sp,q (at least in the case α = 0) for this identity to hold, so this shows the importance of
the knowledge of pointwise multipliers in F sp,q when considering differential operators in Triebel-
Lizorkin spaces. We refer to [Si93] and [JL01] for some general results about multiplication
of functions in Triebel-Lizorkin spaces, and to [Si99] for abstract characterizations of pointwise
multipliers in the space F sp,q. Finally let us mention the recent paper [DM06], where known
sufficient conditions for pointwise multipliers in the space F sp,q have been improved.

Because of its importance we extract the result concerning the bounded H∞-calculus by com-
bining (3) and (4) of Theorem 3.6.3 as a separated theorem:

Theorem 3.6.4. Let ω0 ∈ [0, π),M > 0, γ ∈ (0, 2m) and σ > ω0. Then there is ν ≥ 0 with the
following property: Let

A(x,D) =
∑
|α|≤2m

aα(x)Dα

be an (M,ω0)-elliptic operator, where aα ∈ Cγ(Rd,CN×N ) for all |α| ≤ 2m and the ellipticity
conditions (3.6.2), (3.6.3), and moreover (3.6.4) are fulfilled. Then the realization ν + Ap,q,s
of the differential operator ν + A in the space F sp,q with domain D(ν + Ap,q,s) := F s+2m

p,q has a
bounded H∞(Σσ)-calculus for all s ∈ (0, γ).

One can already find results about bounded H∞-calculus in Triebel-Lizorkin spaces in the lit-
erature, even for the more general class of pseudodifferential operators under mild regularity
assumptions. Such results, also under the condition of Hölder continuous symbols in the princi-
pal part, are indicated in [ES08] and more directly in [DSS09]. Nevertheless, these results are in
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full details proven in some other scale of spaces like Sobolev- and Hölder spaces, and it is only
suggested how the proofs can be adapted to the situation of operators in Triebel-Lizorkin spaces.
Moreover, the techniques used in [DSS09] are based on methods for pseudodifferential operators,
whereas our methods are operator theoretical, based on the comparison and perturbation the-
orems from Section 3.4. Finally, our results will not only show that the operators we consider
have a bounded H∞-calculus in classical Triebel-Lizorkin spaces, but also the norm equivalences
Ẋθ
ν+Ap,q

≈ Ẋθ
ν+(−∆)m,q and X

θ
ν+Ap,q

≈ Xθ
ν+(−∆)m,q ≈ F

2mθ
p,q for appropriate θ, i.e. we can express

the norm in the classical Triebel-Lizorkin spaces by the s-power function norms associated to
more general elliptic operators instead of the Laplacian. These results are new.

The proof of Theorem 3.6.3 will be done in the classical 3-step method: We start by considering
constant coefficient operators, which can be handled with the Comparison Theorems 3.4.3 and
3.4.4. In the second step we will consider small perturbations of operators with constant coeffi-
cient, where we use the Perturbation Theorem 3.4.6 for the assertions (1)-(3) and Theorem 3.4.10
for the assertion (4). The general case will be done in the third step using a localization procedure.

Step I. Constant Coefficients.

We start with homogeneous elliptic operators with constant coefficients. In this case it is no
surprise that the assertions of Theorem 3.6.3 can be improved in the following way:

Theorem 3.6.5. Let ω0 ∈ [0, π),M > 0 and Ap be the Lp-realization of a homogeneous (M,ω0)-
elliptic operator A with constant coefficients, i.e. A =

∑
|α|=2m

aαD
α where aα ∈ CN×N . Then the

following assertions hold:

(1) For each σ > ω0 the operator Ap has an Rq-bounded H∞(Σσ)-calculus, and the R∞q -
constant M∞s,σ does not depend on the explicit operator A but only on the constants M,ω0.

(2) For all θ ∈ R we have Ẋθ
Ap,q
≈ Ẋθ

(−∆)m,q ≈ Ḟ
2mθ
p,q , and Xθ

Ap,q
≈ Xθ

(−∆)m,q ≈ F
2mθ
p,q if θ > 0,

respectively, and the equivalence constants only depend on the constants M,ω0, but not on
the explicit operator Ap and can be chosen uniformly if |θ| ≤ α for some fixed α > 0, if one
chooses a fixed auxiliary function to calculate the norms.

(3) Let s ∈ R. The part (via extrapolation) Ȧp,q,s of the differential operator Ap in the space Ḟ sp,q
with domain D(Ȧp,q,s) = Ḟ s+2m

p,q ∩ Ḟ sp,q has a bounded H∞-calculus with ωH∞(Ȧp,q,s) ≤ ω0.

(4) Let s > 0. The realization Ap,q,s of the differential operator Ap in the space F sp,q with
domain D(Ap,q,s) = F s+2m

p,q has a bounded H∞-calculus with ωH∞(Ap,q,s) ≤ ω0.

Although we have no references for the explicit assertions (1),(3) and (4) of Theorem 3.6.5, we
are sure that these results may already be seen as to be known. For example, since operators
with constant coefficients are in particular pseudodifferential operators with smooth symbols,
the results (3),(4) can be seen as special cases of the results from [ES08], [DSS09] in the version
for Triebel-Lizorkin spaces indicated there. In this context we refer to [Tr92], Chapter 6 for
the treatment of pseudodifferential operators in Triebel-Lizorkin spaces. On the other hand,
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resolvents of operators with constant coefficients can be handled within the theory of Calderón-
Zygmund operators, which are also well-behaved in Triebel-Lizorkin spaces, cf. e.g. [FTW88],
or by means of classical multiplier theorems, cf. e.g. [Tr83], Sections 2.3.7, 2.6.6 and 5.2.2. Both
methods also work in vector-valued spaces, so this also indicates that (1) is true. In fact, our
proof is also based on the operator-valued version of the Mikhlin multiplier theorem.

Proof of Theorem 3.6.5. For easier notation we will write a(ξ) :=
∑
|α|=2m

aαξ
α for the symbol of

the differential operator A =
∑
|α|=2m

aαD
α and accordingly A = a(D) in this proof.

We will first show that Ap is Rq-sectorial with ωRq(Ap) ≤ ω0. Let ω1 ∈ (ω0, π) be fixed. Let
I := [−π,−ω1] ∪ [ω1, π],Γ := Sd := {(σ, ξ) ∈ R× Rd : |σ|2 + |ξ|2 = 1}, and define

K :=
{

(aα)|α|=2m : aα ∈ CN×N , and (aα)α=2m, A :=
∑
|α|=2m

aαD
α satisfy (3.6.2), (3.6.3)

}
then it is not hard to see that K × I × Γ is compact. Moreover define

m(aα)α,ω(σ, ξ) := eiω|σ|2m(eiω|σ|2m − a(ξ))−1 for all ((aα)α, ω) ∈ K × I, σ ∈ R\{0}, ξ ∈ Rd\{0},

then each function m(aα)α,ω is homogeneous of degree 0, i.e. m(aα)α,ω(tv) = m(aα)α,ω(v) for all
v ∈ (Rd\{0})× (Rd\{0}), t > 0, and it is an easy consequence that the set of multiplier functions

M :=
{
m(aα)α,ω(σ, ·) | ((aα)α, ω, σ) ∈ K × I × (Rd\{0})

}
satisfies Mikhlin’s condition uniformly, i.e.

c := sup
{
|ξ||β|Dβ

ξm(aα)α,ω(σ, ξ) | σ ∈ R\{0}, ξ ∈ Rd\{0}, ω ∈ I, (aα)α ∈ K,β ≤ (1, . . . , 1)
}

= sup
{
|ξ||β|Dβ

ξm(aα)α,ω(σ, ξ) | (σ, ξ) ∈ Γ, ω ∈ I, (aα)α ∈ K,β ∈ Nd
0 with β ≤ (1, . . . , 1)

}
< +∞.

(All the above assertions can be found in detail in the proof of [KW04], Theorem 6.2).

Now fix some σ ∈ R\{0}, ω ∈ I and (aα)α ∈ K and let m := m(aα)α,ω(σ, ·). We will apply
the operator valued version of Mikhlin’s theorem, Theorem 1.4.6, in the spaces Lp(`2N (`q)) ∼=N

Lp(`q(CN )) for the multiplier function

M(ξ)(uj)j := (m(ξ)uj)j for (uj)j ∈ `q(CN ).

Observe first that `q(CN ) is a UMD-space with property (α) since q ∈ (1,+∞). So we have to
show that the set

T := {|ξ||β|Dβ
ξM | ξ ∈ Rd\{0}, β ∈ Nd

0 with β ≤ (1, . . . , 1)}

is R-bounded in L(Lp(`q(CN ))). By Remark 3.1.7 this is equivalent to R2-boundedness of T
in L(Lp(`q(CN ))), hence to boundedness of the corresponding diagonal operators in the spaces
L(Lp(`q(`2N (`2)))) ∼= L(Lp(`q(`2(CN )))). Let (ξk)k∈N ∈ (Rd\{0})N and β ∈ (Nd

0)N with βk ≤
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(1, . . . , 1) for all k ∈ N and define Fk(ξ) := |ξ||βk|Dβk
ξ M(ξ) for abbreviation. Let (u(k)

j )j,k ∈
Lp(`q`2(CN )) ∼= Lp(`q(`2(CN ))), then∥∥∥( ∞∑

k=1

∣∣(Fk(ξk)(u(k)
j )j

)
j

∣∣2)1/2∥∥∥
Lp(`q)

≤
∥∥∥( ∞∑

k=1

|ξk|2|β||Dβ
ξm(ξk)|2︸ ︷︷ ︸
≤c2

·|u(k)
j |

2
)1/2∥∥∥

Lp(`q)

≤ c ·
∥∥∥( ∞∑

k=1

|u(k)
j |

2
)1/2∥∥∥

Lp(`q)
.

This shows that indeed T is R2-bounded with R2(T ) ≤ c, hence by the Mikhlin theorem the set
of Fourier multiplier operators {m(D) |m ∈ M} is Rq-bounded in Lp. Since for ((aα)α, ω, σ) ∈
K × I × (Rd\{0}) formally

m(aα)α,ω(σ,D) = eiω|σ|2m(eiω|σ|2m − a(D))−1 = λR(λ, a(D))

with λ = eiω|σ|2m we have proven that Ap is Rq-sectorial with ωRq(Ap) ≤ ω0.

Recall that this means that the corresponding tensor extension Ãp = (Ap)`
q is a sectorial operator

in Lp(`q) with ω(Ãp) ≤ ω0. In fact, we can extend the above arguments to show that Ãp is even
R-sectorial with ωR(Ãp) ≤ ω0. For this we consider the multiplier function

M(ξ)(ujk)jk := (m(ξ)ujk)jk for all (ujk)jk ∈ X(`q`2(CN ))

in the larger space Lp(`2N (`q(`2))) ∼=N Lp(`q`2(CN )). Then the same arguments as above show
that M satisfies Mikhlin’s condition and hence the operators λR(λ, a(D)) also have bounded
tensor extensions to `q(`2), uniformly bounded in λ ∈ C\Σω1 .

Using this fact we can show in a second step that each (M,ω0)-elliptic operator has even
an Rq-bounded H∞-calculus with ωRq(Ap) ≤ ω0. For this let A be an (M,ω0)-elliptic op-
erator and α > 0. Then the operators A±αp (−∆)∓mα and (−∆)∓mαA±αp have the symbols
ξ 7→ (ξ−2ma(ξ))±α, which are homogeneous of degree 0 and C∞ on Rd\{0}. Similar as in the
first step we obtain with the operator valued version of Mikhlin’s theorem that the operators
A±αp (−∆)∓mα and (−∆)∓mαA±αp are Rq-bounded, where the Rq-norms depend only on the con-
stants M,ω0, α.

So we have shown that the assumptions of the Comparison Theorems 3.4.3 and 3.4.4 are satisfied,
and together with Theorem 3.6.1 we can conclude that (1) and (2) hold. Then (3) follows
immediately from (1) and (2) by Theorem 3.3.23, and also (4) follows by Theorem 3.3.23, since
Ap has in particular a bounded H∞-calculus in Lp.

Step II. Small perturbations and lower order terms.

This is the crucial step: we consider "small" perturbations of operators with constant coefficients,
where for later purposes we already admit lower order terms. So in this step we assume that the
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coefficients in the principal part of the (M,ω0)-elliptic differential operator A are of the form
aα(x) = a0

α + a1
α(x) for all x ∈ Rd and |α| = 2m, where a0

α ∈ CN×N is constant, hence A is of
the form

A(x,D) =
∑
|α|=2m

(a0
α + a1

α(x))Dα +
∑
|α|<2m

aα(x)Dα,

where a1
α ∈ Cγ for some γ ∈ (0, 2m) if |α| = 2m. We will show that the assumptions of

the Perturbation Theorem 3.4.6 (2) are satisfied for a translate ν + A0 of the operator A0 :=∑
|α|=2m a

0
αD

α and the perturbation

B :=
∑
|α|=2m

a1
α(x)Dα +

∑
|α|<2m

aα(x)Dα,

if one chooses ν ≥ 0 sufficiently large and
∑
|α|=2m ‖a1

α‖Cγ sufficiently small, and that the ad-
ditional assumption (c) of the Perturbation Theorem 3.4.10 holds if in addition aα ∈ Cγ for all
|α| < 2m.

Let us get more concrete. The realizations of A,A0,B in Lp with domain W 2m,p will be denoted
by A,A0, B, respectively. We will start by showing the following for any α ∈

(
1− 1

2m(1 ∧ γ), 1
]

and ν ≥ 1:

(i) D(B) ⊇ D(ν +A0), and B(D(ν +A0)) ⊆ R((ν +A0)1−α),

(ii) Rq
(
(ν +A0)α−1B(ν +A0)−α

)
.M,ω0

∑
|β|=2m

‖a1
β‖Cγ + ν−1/2m.

Note that (i) and (ii) imply that the assumptions of the Perturbation Theorem 3.4.6 can be
satisfied if we choose ν ≥ 1 large enough and

∑
|β|=2m ‖a1

β‖Cγ sufficiently small.

Let us turn to the proof of (i) and (ii). Note that D(B) ⊇ D(ν+A0) holds trivially by definition,
and B(D(ν + A0)) ⊆ R((ν + A0)1−α) is true since the operator (ν + A0)1−α is surjective onto
Lp, so (i) holds. Observe now that by the same technique as in Step I we can resort to the case
A0 = (−∆)m since

(ν +A0)α−1B(ν +A0)−α =
[
(ν +A0)α−1(ν + (−∆)m)1−α]
·(ν + (−∆)m)α−1B(ν + (−∆)m)−α

[
(ν + (−∆)m)α(ν +A0)−α

]
,

and the operators (ν + (−∆)m)±δ(ν +A0)∓δ, (ν +A0)∓δ(ν + (−∆)m)±δ extend to Rq-bounded
operators with Rq-norms only depending on M,ω0 but not on ν > 0. This can be seen by the
formal representations

(ν + (−∆)m)δ(ν +A0)−δ =
(
ν(ν +A0)−1 +

[
(−∆)mA−1

0

]
A0(ν +A0)−1

)δ
, (3.6.5)

(ν + (−∆)m)−δ(ν +A0)δ =
(
ν(ν + (−∆)m)−1 +

[
A0(−∆)−m

]
(−∆)m(ν + (−∆)m)−1

)δ
and again using the operator valued Mikhlin Theorem in the usual way as before.
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Let Rj := Dj(−∆)−1/2 be the j-th Riesz transform and as usual Rβ := Rβ1
1 · · ·R

βd
d for β ∈ Nd

0,
then formally

(ν + (−∆)m)α−1B(ν + (−∆)m)−α

⊇
∑
|β|=2m

(ν + (−∆)m)α−1a1
β(x)(ν + (−∆)m)1−α [(−∆)m(ν + (−∆)m)−1Rβ

]
+

2m−1∑
k=0

∑
|β|=k

ν
k

2m
−1
[
ν1−α(ν + (−∆)m)α−1

]
aβ(x)

[
να−

k
2m
(
(−∆)m

) k
2m (ν + (−∆)m)−αRβ

]
.

Observe that the Riesz transforms and the terms νδ
(
(−∆)m

)ε(ν+ (−∆)m)−δ−ε with δ, ε ≥ 0 are
Rq-bounded by some universal constants only depending on m by the operator valued version
of Mikhlin’s theorem, hence we obtain for ν ≥ 1

Rq((ν + (−∆)m)α−1B(ν + (−∆)m)−α)

.
∑
|β|=2m

Rq((ν + (−∆)m)α−1a1
β(x)(ν + (−∆)m)1−α) + ν−1/2m

∑
|β|<2m

‖aβ‖∞

≤
∑
|β|=2m

Rq((ν + (−∆)m)α−1a1
β(x)(ν + (−∆)m)1−α) +M · ν−1/2m

In particular, for α = 1 we obtain

Rq(B(ν + (−∆)m)−1) .M,ω0

∑
|β|=2m

‖a1
β‖∞ + ν−1/2m.

So it remains to show that the operators (ν+(−∆)m)α−1a1
β(x)(ν+(−∆)m)1−α are Rq-bounded,

and that the Rq-norms can be controlled in terms of the Hölder-norms ‖a1
β‖Cγ if α 6= 1.

This will be done by means of complex interpolation, hence we consider as a preparation the
complex interpolation of Hölder-Zygmund spaces. For all s > 0 let Cs be the Hölder space of
order s, in particular

Ck = Ckb = {u ∈ Cb |u k-times continuous differentiable, ∂βu ∈ Cb for all |β| ≤ k}

is the space of k-times continuous differentiable functions with bounded derivatives up to order
k. We define the Zygmund spaces in terms of Besov spaces

Cs := Cs(Rd,CN ) := Bs
∞,∞(Rd,CN ) if s ∈ R.

Then it is well known that Cs = Cs if s > 0 with s /∈ N, cf. e.g [Tr78], Section 2.7 and [Tr92],
Section 2.6.5 and Chapter 1, and the literature given there. Moreover we define the so-called
"little" Hölder spaces cs := C∞b

Cs for all s > 0. Then for all 0 ≤ s0 < s1 and θ ∈ (0, 1) the
following assertion holds for all ε ∈ (0, θ) and σ > s := (1− θ)s0 + θs1:

Cσ ↪→ cs ↪→ Cs = (Cs0 , Cs1)θ,∞ ↪→ (Cs0 , Cs1)θ−ε,1 ↪→ [Cs0 , Cs1 ]θ−ε. (3.6.6)

Cf. e.g. [Lu95], Chapters 0 and 1 for the first inclusion and the first identity, and the other
inclusions follow by Propositions 1.5.4 and 1.5.10.
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Moreover Cs ↪→ C2m
b if s > 2m, and in particular Cs ↪→ L∞ if s > 0.

We are now in position to prove the following proposition that is the central tool for the pertur-
bation argument in this step.

Proposition 3.6.6. Let τ ∈ (0, 1). Then there is a constant C = C(d,N, p, q, τ) such that for
all ν ≥ 1, δ ∈ (0, τ) and a ∈ C2mτ (Rd,CN×N ) the following assertion holds: The operators

(ν + (−∆)m)∓δa(x)(ν + (−∆)m)±δ

extend to Rq-bounded operators in Lp(Rd,CN ), and

Rq((ν + (−∆)m)∓δa(x)(ν + (−∆)m)±δ) ≤ C ‖a‖C2mτ .

Proof. We proceed in several steps : We will first show that the "endpoint operators" (ν +
(−∆)m)−0a(x)(ν + (−∆)m)0 = a(x) and (ν + (−∆)m)−1a(x)(ν + (−∆)m) are Rq-bounded if a
is bounded or in C2m

b , respectively. Then we will obtain the general result with multilinear in-
terpolation, where we have to jiggle the endpoints a little to get into the scale of Zygmund-spaces.

Let Ma be the multiplication operator with the function a ∈ L∞(Rd,CN×N ). First it is clear
that Ma is Rq-bounded in Lp with norm ‖a‖∞. So we turn to the case a ∈ C2m

b (Rd,CN×N ).
Then

(ν + (−∆)m)(a · u) = νa · u+ (−1)m
( d∑
j=1

∂2
j

)m
(a · u) = νa · u+ (−1)m

∑
k∈Nd0
|k|=m

(
m

k

)
∂2k(a · u)

= νa · u+ (−1)m
∑
|k|=m

(
m

k

) ∑
β≤2k

(
2k
β

)
∂2k−βa · ∂βu

= νa · u+ a · ((−∆)mu) +
∑
|k|=m

∑
β≤2k
β 6=2k

(−1)m
(
m

k

)(
2k
β

)
︸ ︷︷ ︸

=:κk,β

∂2k−βa · ∂βu

= a · (ν + (−∆)m)u+
∑
|k|=m

∑
β≤2k
β 6=2k

κk,β ∂
2k−βa · ∂βu

= a · (ν + (−∆)m)u

+
∑
|k|=m

∑
β≤2k
β 6=2k

κk,β ∂
2k−βa · ∂β(ν + (−∆)m)−1(ν + (−∆)m)u

for all u ∈ C2m(Rd,CN ), i.e.

(ν + (−∆)m)Ma u =
(
Ma +

∑
|k|=m

∑
β≤2k
β 6=2k

κk,β (∂2k−βa) ∂β(ν + (−∆)m)−1

)
(ν + (−∆)m)u
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for all u ∈ C2m(Rd,CN ), hence

(ν + (−∆)m)a(x)(ν + (−∆)m)−1 ⊆ Ma +
∑
|k|=m

∑
β≤2k
β 6=2k

κk,β (∂2k−βa) ∂β(ν + (−∆)m)−1.

For all k ∈ Nd
0 with |k| = m and β ∈ Nd

0 with β ≤ 2k, β 6= 2k we have

∂β(ν + (−∆)m)−1 = i|β| ν
|β|
2m
−1 ·

[
ν(ν + (−∆)m)−1

]1− |β|
2m
[
(−∆)m(ν + (−∆)m)−1

]|β|/2m
Rβ

where again R = (R1, . . . , Rd) is the vector of Riesz-transforms. Since multiplication operators
are always Rq-bounded and the Riesz-transforms and terms involving (−∆)m are Rq-bounded
by the operator valued Mikhlin Theorem, this yields

Rq((ν+(−∆)m)a(x)(ν+(−∆)m)−1) . ‖a‖∞+ν−1/2m ·
∑
|k|=m

∑
β≤2k
β 6=2k

‖∂2k−βa‖∞ . ‖a‖C2m . (3.6.7)

This shows that (ν + (−∆)m)a(x)(ν + (−∆)m)−1 is Rq-bounded in Lp and the norm can be
estimated by ‖a‖C2m

b
. Since this is true for all p, q ∈ (1,∞), we also obtain that the dual

operator(
(ν + (−∆)m)a(x)(ν + (−∆)m)−1

)′ ⊇ (ν + (−∆)m)−1a(x)(ν + (−∆)m)

isRq-bounded in Lp, i.e. the operator (ν+(−∆)m)−1a(x)(ν+(−∆)m) extends to anRq-bounded
operator for all p, q ∈ (1,∞), and the Rq-bound can be estimated by ‖a‖C2m

b
.

We now turn to the interpolation argument. Let ε ∈ (0, τ − δ). We fix n ∈ N for a moment and
consider the interpolation couples

(C2ε(Rd,CN×N ), C2(m+ε)(Rd,CN×N )) and (Lp(`qn(CN )), Lp(`qn(CN )))

with the dense subspaces C2(m+ε)(Rd,CN×N ) ↪→ C2m
b (Rd,CN ) and S(Rd,CN )n, respectively.

Define

T (z)(a, u) := ez
2
(ν+(−∆)m)−za(x)(ν+(−∆)m)zu =

(
ez

2
(ν+(−∆)m)−za(x)(ν+(−∆)m)zuj

)
j

for all z ∈ S := {ζ ∈ C | Re(ζ) ∈ [0, 1]}, a ∈ C2m
b (Rd,CN×N ) and u ∈ S(Rd,CN )n. Then T (z) is

a bilinear operator for each z ∈ S, and for fixed (a, u) ∈ C2m
b (Rd,CN×N )× S(Rd,CN ) we have

F (z) := T (z)(a, u) = ez
2
(ν + (−∆)m)−za(x)(ν + (−∆)m)zu

= ez
2
(ν + (−∆)m)−zg(z) ∈ Lp(`qn(CN )),

where g(z) := a · (ν + (−∆)m)zu ∈ Lp(`qn(CN )). Then the mapping z 7→ (ν + (−∆)m)−z is
analytic on {Re z > 0}, and z 7→ g(z) is continuous on S and analytic in S̊ since u ∈ S(Rd,CN ) ⊆
D((−∆)2m) ∩ R((−∆)2m). Since the operator ν + (−∆)m has an Rq-bounded H∞-calculus, it
has also Rq-bounded imaginary powers, and we have an estimate

Rq((ν + (−∆)m)it) ≤ cp(1 + |t|)d for all t ∈ R (3.6.8)
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for some constant cp > 0 that does not depend on ν ≥ 1; indeed, this is a direct consequence of
the Mikhlin multiplier theorem, cf. Theorem 1.4.6. Then the representation

F (z) = (ν + (−∆)m)−it(ν + (−∆)m)−sez
2
g(z) if z = s+ it ∈ S

shows that F is also continuous on S, and since

‖F (z)‖Lp ≤ e1−Im(z)2 ‖(ν + (−∆)m)−zg(z)‖Lp

if z ∈ S we see immediately that F is bounded on S.

Moreover we have

T (j+ it)(a, u) = ej
2
e2jite−t

2
(ν+(−∆)m)−it(ν+(−∆)m)−ja(x)(ν+(−∆)m)j(ν+(−∆)m)itu.

Again using estimate (3.6.8) we obtain

‖T (j + it)(a, u)‖Lp(`qn(CN ))

≤ c2
pe

1−t2(1 + |t|)2dRq((ν + (−∆)m)−ja(x)(ν + (−∆)m)j) ‖u‖Lp(`qn(CN ))

≤ CpRq((ν + (−∆)m)−ja(x)(ν + (−∆)m)j) ‖u‖Lp(`qn(CN )).

In the first part we have shown that if j ∈ {0, 1} and

a ∈ C2(m+ε)(Rd,CN×N ) ↪→ C2m
b (Rd,CN×N ) ↪→ L∞(Rd,CN×N ),

then the operator (ν+(−∆)m)−ja(x)(ν+(−∆)m)j is Rq-bounded in the space Lp(Rd,CN ) with

Rq
(
(ν + (−∆)m)−ja(x)(ν + (−∆)m)j

)
. ‖a‖C2mj . ‖a‖C2(mj+ε) ,

i.e.

‖T (j + it)(a, u)‖Lp(`qn(CN )) . Cp ‖a‖C2(jm+ε) ‖u‖Lp(`qn(CN )).

Now let θ := δ and choose δ+ ε
m < τ̃ < τ , and let θ̃ := τ̃ − ε

m > θ, then (1− θ̃)2ε+ θ̃(2m+ 2ε) =
2mτ̃ . By bilinear Stein interpolation (cf. Proposition 2.4.1) we obtain

‖(ν + (−∆)m)−δa(x)(ν + (−∆)m)δu‖Lp(`qn(CN )) = ‖T (θ)(a, u)‖Lp(`qn(CN ))

. Cp ‖a‖[C2ε,C2(m+ε)]θ
‖u‖Lp(`qn(CN )),

and by the embeddings

c2mτ̃ ↪→ C2mτ̃ = (C2ε, C2(m+ε))
θ̃,∞ ↪→ (C2ε, C2(m+ε))θ,1 ↪→ [C2ε, C2(m+ε)]θ

(cf. (3.6.6)) we obtain

‖(ν + (−∆)m)−δa(x)(ν + (−∆)m)δu‖Lp(`qn(CN )) . Cp ‖a‖c2mτ̃ ‖u‖Lp(`qn(CN )).

Note that in all cases the constants in the estimates do not depend on n ∈ N. Hence, by
density, the operator (ν + (−∆)m)−δa(x)(ν + (−∆)m)δ extends to an Rq-bounded operator in
Lp(Rd,CN ) for all a ∈ c2mτ̃ , and the Rq-norm can be estimated in terms of the Hölder-norm
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‖a‖c2mτ̃ . Finally we have C2mτ ↪→ c2mτ̃ , hence we obtain the same result for all a ∈ C2mτ , i.e.
the operator (ν+(−∆)m)−δa(x)(ν+(−∆)m)δ extends to anRq-bounded operator in Lp(Rd,CN ),
and the Rq-norm can be estimated in terms of the Hölder-norm ‖a‖C2mτ . By dualization we can
also conclude the same estimates for the dual operators, i.e. the operator

(ν + (−∆)m)δa(x)(ν + (−∆)m)−δ ⊆
(
(ν + (−∆)m)−δa(x)(ν + (−∆)m)δ

)′
extends to an Rq′-bounded in Lp′ , and also in this case the Rq-norm can be estimated in terms of
the Hölder-norm ‖a‖C2mτ . Since this is true for all p, q ∈ (1,+∞) we have finished the proof.

We can now also finish the proof of the estimate (ii): Recall that it was only left to show that the
operators (ν + (−∆)m)α−1a1

β(x)(ν + (−∆)m)1−α are Rq-bounded if |β| = 2m,α 6= 1, and that
the Rq-norms can be controlled in terms of the Hölder-norms ‖a1

β‖γ . But this is an immediate
consequence of Proposition 3.6.6, since by our choice we have 0 < 1− α < γ/2m.

As already mentioned above, this shows that the assumptions of the Perturbation Theorem 3.4.6
can be satisfied if we choose ν ≥ 1 sufficiently large and

∑
|β|=2m ‖a1

β‖γ sufficiently small.

Let us now assume that in addition aα ∈ Cγ for all |α| < 2m. We show that in this case the
following additional assertions to (i), (ii) hold: Let α ∈

(
0, 1

2m(γ ∧ 1)), and ν ≥ 1, then

(iii) Rq
(
(ν +A0)−αB(ν +A0)α−1

)
.M,ω0

∑
|β|=2m

‖a1
β‖Cγ + ν−1/2m,

(iv) B(D((ν +A0))2) ⊆ D((ν +A0)α),

(v) Rq
(
(ν +A0)αB(ν +A0)−α−1

)
.M,ω0

∑
|β|=2m

‖a1
β‖Cγ + ν−1/2m.

Observe that (iii) ist just a reformulation of (ii) with 1 − α in place of α, and moreover
α ∧ (1 − α) = α, since α < 1

2 . Hence in this case also the assumptions of the Perturbation
Theorem 3.4.10 can be satisfied if we choose ν ≥ 1 large enough and

∑
|β|=2m ‖a1

β‖Cγ sufficiently
small, and in particular we will then obtain Ẋθ

q,A0
= Ẋθ

q,A for any θ ∈ (−α, 1 + α).

Let us first have a look on (iv): We have D((ν + A0)2) = D((1 + (−∆)m))2 = H4m,p, and for
each u ∈ H4m,p ⊆ D(B) we have

Bu =
∑
|β|=2m

a1
β(x)Dβu(x) +

∑
|β|<2m

aβ(x)Dβu(x).

For each |β| ≤ 2m we have vβ := Dβu ∈ H2m,p ⊆ H2mα,p. Since 0 < 2mα < γ and a1
β, aβ ∈ Cγ ,

the functions a1
β, aβ are pointwise multipliers in H2mα, cf. e.g. [Tr83], 2.8.2 Theorem and

Corollary. In fact, this result is also contained in Proposition 3.6.6. So we obtain

Bu =
∑
|β|=2m

a1
β(x)vβ(x) +

∑
|β|<2m

aβ(x)vβ(x) ∈ H2mα,p = R((1 + (−∆)m)α) = R((ν +A0)α),
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and thus (iv) is proven. Let us finally turn to the assertions (v). By the same arguments as used
above we may assume A0 = (−∆)m, and the same calculations with α instead of α−1 show that

Rq((ν + (−∆)m)αB(ν + (−∆)m)−α−1)

.M,ω0

∑
|β|=2m

Rq((ν + (−∆)m)αa1
β(x)(ν + (−∆)m)−α) +M · ν−1/2m.

Thus (v) follows immediately from Proposition 3.6.6, since by our choice we have 0 < α < γ/2m.

Step III. Localization and the general case.

We now turn to the general case via localization, i.e. in this step we present the proof of Theorem
3.6.3, based on the local perturbation results in Step II. So let A be a general (M,ω0)-elliptic
operator that fulfills the conditions of Theorem 3.6.3 and let A := Ap for abbreviation. Obviously
it is sufficient to prove the assertions of Theorem 3.6.3 for any γ̃ ∈ (0, γ)\N instead of γ, so we
also fix a γ̃ ∈ (0, γ)\N.

Since the coefficients of the principal part are Hölder continuous, hence in particular BUC, we
can choose r > 0 with respect to some ε0 ∈ (0, 1) that will be specified later such that

∀x, y ∈ Rn : |x− y| < 2r
√
d⇒

∑
|β|=2m

|aβ(x)− aβ(y)| < ε0. (3.6.9)

Let Γ := rZd, Q := (−r, r)d and Q` := ` + Q for all ` ∈ Γ. We define the relation k ./ ` :
⇐⇒ Qk ∩ Q` 6= ∅ for all k, ` ∈ Γ and define the neighborhood V` := {k ∈ Γ | k ./ `} for all
` ∈ Γ. Then V` = ` + V0 for each ` ∈ Γ, and the number N0 := |{k ∈ Γ | k ./ `}| = |V0| is
finite and independent of ` ∈ Γ and r > 0. Further we choose ψ, ρ ∈ C∞c (Q) with 0 ≤ ψ, ρ ≤ 1,
ρ|supp(ψ) = 1 and∑

`∈Γ

ψ2
l (x) = 1 for all x ∈ Rd,

where ψ` := ψ(· − `). Let

X := `p(Γ, X) ∼= `pLp(Γ× Rd,CN ) ∼= Lp`p`2(Rd × Γ× N≤N ),

then we can and will consider X ∼= Lp`p`2N
∼= `pLp`2N as a Banach function space (cf. the

corresponding remarks in Subsection 1.6.1). We define the operators

J : X → X, u 7→ (ψ`u)`, P : X→ X, (u`)` 7→
∑
`

ψ`u`.

Then it is easily seen that P, J are bounded and PJ = IdX , hence P is a retraction and J a corre-
sponding coretraction. Moreover the operators P, J are evidently positive and henceRq-bounded.

We will now construct an operator A in X of the form A = A0 + B associated to the operator A
in the sense that JA ⊆ AJ , where A0 is a diagonal operator of (M,ω0)-elliptic operators with
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constant coefficients, and B is a perturbation operator in the space X, such that the assumptions
of the Perturbation Theorem 3.4.6, or Theorem 3.4.10, respectively, are satisfied.

For this, we first define

A0
`u :=

∑
|β|=2m

aβ(`)Dβu for all u ∈W 2m,p, ` ∈ Γ,

and A0(u`)` := (A0
`u`)` for all (u`)` ∈ D(A0) := X2m := `p(Γ,W 2m,p). Then A0 is a diagonal

operator which consists of (M,ω0)-elliptic differential operators with constant coefficients. Hence
it is an easy consequence of the first step that the operator A0 has an Rq-bounded H∞-calculus
with ωR∞q (A0) ≤ ω0.

In the next step we construct the perturbation operator B. For this purpose we let

A1
` (u) :=

∑
|β|=2m

(aβ(x)− aβ(`))ρ`(x)Dβu for all u ∈W 2m,p, ` ∈ Γ.

Observe that the functions x 7→ (aβ(x)− aβ(`))ρ`(x) are also γ-Hölder continuous, and we have
an estimate ‖(aβ−aβ(`))ρ`‖Cγ ≤ Cρ ·‖a‖Cγ for some constant Cρ > 0 depending on the auxiliary
function ρ. Now define θ := γ̃/γ ∈ (0, 1), then

C γ̃ = Cγ̃ = (C0, Cγ)θ,∞,

cf. the remarks preceding Proposition 3.6.6. By Proposition 1.5.4 (4) we can choose a constant
c(θ, p) such that

‖(aβ − aβ(`))ρ`‖Cγ̃ ≤ c(θ, p) ‖(aβ − aβ(`))ρ`‖1−θ∞ ‖(aβ − aβ(`))ρ`‖θCγ
≤ c(θ, p) ε1−θ

0 (Cρ · ‖aβ‖Cγ )θ ≤ max
|β|=2m

(
c(θ, p)Cθρ‖aβ‖θCγ

)
︸ ︷︷ ︸

=:K

·ε0.

Further we define the operator of lower order terms

Alow(u) :=
∑
|β|<2m

aβ(x)Dαu for all u ∈W 2m,p,

then we have

ψ`Au = Aψ`u+ (ψ`A−Aψ`)︸ ︷︷ ︸
=:C`

u = (A0
` +A1

` )ψ`u+Alowψ`u+
∑
k./`

C`ψkψku

for all u ∈W 2m,p, ` ∈ Γ. Observe that C` is a differential operator of order ≤ 2m− 1, where the
L∞-norm of the coefficients can be controlled by CψM with some constant Cψ only depending
on the auxiliary function ψ. We now define the perturbation operator as

B(u`)` :=
(
A1
`u` +Alowu` +

∑
k./`

C`ψkuk

)
`

for all (u`)` ∈ D(B) := X2m.

Finally we let A := A0 + B with D(A) = X2m, then by construction we have JA ⊆ AJ .
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We will show now that A = A0 + B is a "small" perturbation of A0 in the sense of the Pertur-
bation Theorem 3.4.6, or Theorem 3.4.10 in the case that in addition aβ ∈ Cγ for all |β| < 2m,
respectively. Recall that A0 is a diagonal operator of (M,ω0)-elliptic operators with constant
coefficients and has an Rq-bounded H∞-calculus with ωR∞q (A0) ≤ ω0. The operator B is an
"almost-diagonal" operator in the following sense: in each row and column there are at most
N0 entries not equal to 0. Furthermore, each component of (A1

` )` is a homogeneous operator of
order 2m with γ̃-Hölder continuous coefficients, where the γ̃-Hölder norm of the coefficients can
be estimated by Kε0.

Now let ν ≥ 1 and α ∈ (1− 1
2m(1 ∧ γ̃), 1], then we have:

(ν + A0)α−1B(ν + A0)−α(u`)`

=
(

(ν +A0
` )
α−1(A1

` +Alow)(ν +A0
` )
−αu` +

∑
k./`

(ν +A0
` )
α−1C`ψk(ν +A0

k)
−αuk

)
`

In each component we have a finite sum of operators of the kind considered in Step II, where
the quantity of the non-zero summands in each component is not larger than N0. Hence we
can apply the results (i), (ii) from Step II (uniformly) in each component, and we obtain that
D(B) ⊇ D(ν + A0) and B(D(ν + A0)) ⊆ R((ν + A0)1−α); Moreover, we can w.l.o.g. replace A0

`

by (−∆)m for all ` ∈ Γ (cf. the corresponding remarks in Step II), and then obtain

Rq
(
(ν + A0)α−1B(ν + A0)−α

)
. sup

`
sup
k./`

(
(ν + (−∆)m)α−1(A1

` +Alow + C`ψk)(ν + (−∆)m)−α
)
.

Thus (ii) from Step II yields

Rq
(
(ν + A0)α−1B(ν + A0)−α

)
.M,ω0,N0 Kε0 + ν−1/2m.

This shows that we can ensure the assumptions of the Perturbation Theorem 3.4.6 (2) if we
choose ε0 sufficiently small and ν ≥ 1 sufficiently large. Note that in the same manner the
assumptions of the Perturbation Theorem 3.4.10 can be fulfilled if additionally aβ ∈ Cγ for all
|β| < 2m, using (iii)-(v) from Step II.

So in the sequel we assume that ε0 > 0, ν ≥ 1 are chosen in a way such that the assumptions of
Theorem 3.4.6 (2), or even Theorem 3.4.10 in the case that aβ ∈ Cγ for all |β| < 2m, are fulfilled
for the operators A0,B in X. Thus we obtain that A = A0 + B has an Rq-bounded H∞-calculus
with ωR∞q ≤ ω0. We define ϑ := 1 + γ̃

2m in the case that aβ ∈ Cγ for all |β| < 2m, and ϑ := 1
otherwise.

Then Theorem 3.4.6 (2), or Theorem 3.4.10 , respectively, implies that

Ẋθ
s,ν+A0

∼= Ẋθ
s,ν+A for all θ ∈ (− γ̃∧1

2m , ϑ). (3.6.10)

Now we will transfer the properties of the operator A in X to the operator A in X = Lp. W.l.o.g.
we assume ν = 0 by possibly replacing a0(·) with a0(·) +ν for some ν ≥ 0. Consequently w.l.o.g.
we can assume A−1 ∈ L(X), since in our framework we always assume that ν ≥ 1 > 0. Fix
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σ > ω > ω0. Recall that we have already shown that the operator A is sectorial with ω(A) ≤ ω0.
Moreover, the operator A in X is also sectorial with ω(A) ≤ ω0, this can be extracted from the
results proven here up to now, on the other hand this has been shown e.g. in [KW04], Chapter
6, even under weaker assumptions.

We will now compare the resolvents of A and A, respectively. The relation AJ ⊇ JA implies

JR(λ,A) ⊇ (λ− A)−1(λJ − AJ)(λ−A)−1 ⊇ (λ− A)−1(λJ − JA)(λ−A)−1

= (λ− A)−1J(λ−A)(λ−A)−1 = R(λ,A)J ∈ L(X,X)

for all λ ∈ C\Σω0 . This yields for all ϕ ∈ H∞0 (Σσ) the identity

Jϕ(A) =
1

2πi

∫
∂Σω

ϕ(λ)JR(λ,A) dλ =
1

2πi

∫
∂Σω

ϕ(λ)R(λ,A)J dλ = ϕ(A)J,

hence ϕ(A) = PJϕ(A) = Pϕ(A)J . Since A has an Rq-bounded H∞(Σσ)-calculus we obtain

Rq
({
ϕ(A) | ϕ ∈ H∞0 (Σσ), ‖ϕ‖σ,∞ ≤ 1

})
≤ Rq(P )Rq(J) · Rq

({
ϕ(A) | ϕ ∈ H∞0 (Σσ), ‖ϕ‖σ,∞ ≤ 1

})
< +∞,

hence also A has an Rq-bounded H∞(Σσ)-calculus by Proposition 3.2.23.

Now choose the special function ϕ(z) := z2/(1 + z)4, then ϕ ∈ H∞0 (Σσ), and ϕ is suitable to
calculate the norm in the q-intermediate spaces Ẋθ

q,A, Ẋ
θ
q,A for θ ∈ (−2, 2), and for all u ∈ Ẋθ

q,A

we obtain

‖Ju‖Ẋθq,A =
∥∥t−θϕ(tA)Ju

∥∥
X(Lq∗)

=
∥∥t−θJϕ(tA)u

∥∥
X(Lq∗)

.
∥∥t−θϕ(tA)u

∥∥
X(Lq∗)

= ‖u‖Ẋθ
q,A
,

and

‖u‖Ẋθ
q,A

=
∥∥t−θϕ(tA)u

∥∥
X(Lq∗)

=
∥∥t−θPJϕ(tA)u

∥∥
X(Lq∗)

=
∥∥t−θPϕ(tA)Ju

∥∥
X(Lq∗)

.
∥∥t−θϕ(tA)Ju

∥∥
X(Lq∗)

= ‖Ju‖Ẋθs,A ,

i.e.

‖Ju‖Ẋθq,A
∼= ‖u‖Ẋθ

q,A
. (3.6.11)

We can now finish the proof of Theorem 3.6.3 by showing the norm equivalence Ẋθ
q,A ≈ Ẋθ

q,ν+(−∆)m

for any θ ∈ (− γ̃∧1
2m , ϑ). Note that the remarks following Theorem 3.6.3 illustrate how the asser-

tions of (3) and (4) can be concluded from this.

We apply the same procedure as above in addition to the Laplace-Operator (−∆)m instead of A
and obtain an analogous representation

J(µ+ (−∆)m) ⊆ ÃJ = (Ã0 + B̃)J
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for some µ ≥ 0 and operators Ã0, B̃ of the same type as the operators A0,B, respectively. This
yields for all θ ∈ (− γ̃∧1

2m , ϑ) the following norm equivalences:

‖u‖θ,q,µ+A

(a)∼= ‖Ju‖θ,q,µ+A
(b)∼= ‖Ju‖θ,q,µ+A0

(c)∼= ‖Ju‖θ,q,µ+Ã0

(̃b)∼= ‖Ju‖θ,q,µ+Ã

(̃a)∼= ‖u‖θ,q,µ+(−∆)m . (3.6.12)

Here (a), (̃a) are the norm equivalences (3.6.11) and (b), (̃b) follow from the perturbation argument
(3.6.10) in the space X, applied to the operators A and Ã, respectively. The identity (c) follows
from the comparison theorem using again the representation (3.6.5) from Step II and the vector-
valued Mikhlin Theorem. Thus with these conclusions we have also finished the proof of Theorem
3.6.3.

3.6.2 Elliptic differential operators of 2nd order in divergence form on Rd

With some modifications we can apply the same techniques as in the preceding subsection to
operators in divergence form, but now the regularity assumptions on the principal part can be
weakened. These operators can be handled by the same approach as above: First consider op-
erators with constant coefficients, then do a local perturbation argument, and finally general
operators can be reduced to the latter case by a localization procedure. In fact, the first step
is the same as in Subsection 3.6.1, since differential operators in divergence form with constant
coefficients are also differential operators in non-divergence form. The crucial result is again the
second step, the perturbation argument for differential operators in divergence form, which in
this situation is based on the Perturbation Theorem 3.4.8. Having done this, the final localiza-
tion procedure can be done analogously to Subsection 3.6.1.

Let again p, q ∈ (1,+∞) and d ∈ N, and define X := Lp := Lp(Rd,C). In this subsection we
will use the notations Hγ,p := Hγ,p(Rd) and Hγ := Hγ,2, γ ∈ R for the Bessel potential spaces.
For simplicity, we will only consider differential operators in divergence form of second order, i.e.
operators that are formally (!) given by

Au = −
n∑

j,k=1

∂j(ajk(x)∂ku) +
n∑
j=1

(
− ∂j(bj(x)u) + cj∂ju

)
+ d(x)u

= −div(a(x)∇u+ b(x)u) + c(x) · ∇u+ d(x)u. (3.6.13)

We impose the usual strong uniform ellipticity condition on the top order coefficients of A:

∀ ξ ∈ Rd : Re
(
a(x)ξ · ξ

)
=

n∑
j,k=1

Re
(
ajk(x)ξjξk

)
≥ δ|ξ|2 (3.6.14)

for some δ > 0. Moreover, we make the following regularity and boundedness assumptions on
the coefficients:

a(·) ∈ BUC(Rd,Cd×d), and b(·), c(·) ∈ L∞(Rd,Cd), d(·) ∈ L∞(Rd), (3.6.15)

‖a‖∞, ‖b‖∞, ‖c‖∞, ‖d‖∞ ≤M
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for some M > 0. Then the operator A is formally associated to the form a defined by

a(u, v) := 〈(a∇u+ bu) | ∇v〉+ 〈c∇u+ du | v〉 for all u, v ∈ H1. (3.6.16)

The following remark is well known, cf. e.g. [Ou05], Chapter 1 and 4, and [KW04], Chapter 11:

Remark 3.6.7. Let M, δ > 0. Then there are ν0 ≥ 0 and ω0 ∈ (0, π/2) with the following
property: If a is a form given by (3.6.16), where the coefficients satisfy (3.6.14) and (3.6.15),
then the operator ν0 + A2 in L2 associated to the form ν0 + a is sectorial with ω(ν0 + A2) ≤ ω0

and has a bounded H∞-calculus with ωH∞(ν0 +A2) = ω(ν0 +A2).

Thus the operator −(ν0 +A2) generates an analytic semigroup (T2(t))t≥0 in L2. If this semigroup
can be extended to Lp, which is the case if T2(t)|Lp is bounded in Lp for all t > 0, then the neg-
ative of the generator of the semigroup Tp, defined by the bounded extensions Tp(t) := T2(t)|Lp
for all t > 0, is called the realization of the differential operator ν0 + A in Lp and denoted by
ν0 +Ap. So the usual way to study divergence form operators in Lp is to check if the semigroup
T2 is bounded in Lp. To do this, standard tools are (generalized) Gaussian estimates for the
semigroup, cf. Section 3.5. In the situation described here this has been done in [Au96], where
it is shown that the semigroup T2(t) = e−t(ν0+A2) has Gaussian bounds2, so we already know
that these operators have an Rq-bounded H∞-calculus in each space Lp, cf. also Section 3.5,
Example (a).

Nevertheless, we will use a different approach, since again we are also interested in the associated
s-intermediate spaces. Thus we will use more direct methods applying perturbation arguments
to constant coefficients operators in Lp. For this we will use the Perturbation Theorem 3.4.8
with α = 1/2. Observe that Theorem 3.4.8 will only yield an abstract operator ν0 + Cp with
the properties described there, and we will have to justify that this operator indeed equals the
operator ν0 + Ap. We give in advance a short description how this will be done: On the one
hand, the operators ν0 + Ap, p ∈ (1,+∞) (constructed via form methods and extrapolation as
described above) have consistent resolvents. On the other hand, also the operators ν0 + Cp,
p ∈ (1,+∞) have consistent resolvents, since they are constructed by the same formula in all
spaces Lp (we will give more details for this argument in the proof of Theorem 3.6.8). Hence it
will be sufficient to show that the operators ν0 +A2 and ν0 +C2 have consistent resolvents, and
this will be a direct consequence of the Perturbation Theorem 3.4.8, since both operators are the
part of the same "lifted" operator ν0 + Ã2 : H1 → H−1, u 7→ ν0u+Au.

We note that our approach is closely related to the approach in [KW04], Chapter 13, and
[KKW06], Section 9, Example (b): there it is shown that the operator 1+A has a bounded H∞-
calculus in the spaces Hs,p for any s ∈ (−1, 1) if A has no lower order terms, and if a : Rd → Cd×d

is Hölder-continuous, then 1 + A also has a bounded H∞-calculus in H−1,p. These results are
based on similar perturbation methods as we will use here. Let us also note that in [Mi05] it is
shown that one can choose ν ≥ ν0 such that the operator ν + Ap is sectorial, and this is done

2In [Au96] this in only proven for homogeneous operators without lower order terms, but such terms can be
handled by perturbation arguments.
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via considering the operator Ãp : H1,p → H−1,p.

We can now formulate the main theorem of this section.

Theorem 3.6.8. Let M, δ > 0 and choose ν0 ≥ 0, ω0 ∈ (0, π/2) depending on M, δ according to
Remark 3.6.7. Then for all σ ∈ (ω0, π/2) there is a ν > ν0 with the following property:

If A is a differential operator of the form (3.6.13) that fulfills (3.6.14) and (3.6.15), then the
following assertions hold:

(1) ν +Ap has an Rq-bounded H∞(Σσ)-calculus.

(2) For all θ ∈ (−1/2, 1/2) we have Ẋθ
ν+Ap,q

≈ Ẋθ
ν−∆,q, and Xθ

ν+Ap,q
≈ Xθ

ν−∆,q ≈ F 2θ
p,q if

θ ∈ (0, 1/2), respectively.

(3) For all s ∈ (0, 1) the part ν+Ap,q,s of the differential operator ν+Ap in the space F sp,q has
a bounded H∞(Σσ)-calculus.

Proof. Let A be a differential operator of the form (3.6.13) that fulfills (3.6.14) and (3.6.15).
W.l.o.g. we may assume ν0 = 0 by maybe replacing d by d + ν0. We will again do the proof
in three steps analogously to the proof of Theorem 3.6.3 in the preceding subsection. So we
start with the case that A = −div(a0∇), where a0 ∈ Cd×d is constant. In this case, all the
statements of Theorem 3.6.8 follow from Theorem 3.6.5, since A is (M̃, ω0)-elliptic with some
constant M̃ > 0 depending on M, δ > 0.

So in the next step we assume that a(x) = a0 + a1(x), where a0 ∈ Cd×d is constant. We will
show that the assumptions of the Perturbation Theorem 3.4.8 are satisfied for α = 1/2 with a
translate ν+A0 for some ν > 0 of the constant coefficients operator A0 := −div(a0 ·∇) and the
perturbation

B := −div(a1(x) · ∇)− div(b(x)·) + c(x) · ∇+ d(x),

if the norm ‖a1‖∞ is sufficiently small. Let A0 be the realization of A0 in X with D(A0) := H2,p,
and define Bu := Bu (in the sense of distributions) for all u ∈ D(B) := H1,p. Note that since ν >
0, the spaces H±1,p can be identified with the homogeneous fractional spaces Ẋ±1/2 associated
to the operator ν +A0 in X, cf. [Ha06], Section 8.3, so B is an operator B : Ẋ1/2 → Ẋ−1/2. We
will show the following estimate for all ν ≥ 1:

(P) Rq((ν +A0)−1/2B(ν +A0)−1/2) .M,δ ‖a1‖∞ + ν−1/2.

Note that in (P) we consider the operator (ν+A0)−1/2 as an operator (ν+A0)−1/2 : X → Ẋ−1/2,
and also as an operator (ν + A0)−1/2 : Ẋ1/2 → X, cf. Subsection 3.3.1, where the concept of
considering the operator A0 as an universal operator in the whole scale of extrapolation spaces
is briefly presented.

Furthermore, (P) implies that the assumptions of the Perturbation Theorem 3.4.8 can be fulfilled
if we choose ν ≥ 1 sufficiently large and ‖a1‖∞ sufficiently small. Before we turn to the proof of
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(P) we have a closer look on the assertions that the Perturbation Theorem 3.4.8 yields in this case:

So we assume for a moment that (P) holds, and that we have chosen ν ≥ 1 sufficiently large and
‖a1‖∞ sufficiently small such that via (P) the assumptions of the Perturbation Theorem 3.4.8
are fulfilled. Observe that we can define another realization ν + Ãp of the formal operator ν +A
as a bounded operator

ν + Ãp : H1,p → H−1,p, u 7→ −div(a · ∇u+ b · u) + c · ∇u+ (ν + d(·)) · u,

where div is considered as the divergence in the distributional sense. Since

Ẋ1/2 = H1,p ↪→ Lp = X ↪→ H−1,p = Ẋ−1/2,

Theorem 3.4.8 yields in this situation that the part ν + Cp := ν + (Ãp)Lp of ν + Ãp in X = Lp

(instead of ν + Ap) fulfills (1) and (2) from Theorem 3.6.8. Moreover, the resolvents of the
operators ν + Cp, p ∈ (1,+∞) are given by the identity

(λ+ν+Cp)−1 = (λ+ν+A0)−1−
[
(ν+A0)1/2(λ+ν+A0)−1

]
M(λ)

[
(ν+A0)1/2(λ+ν+A0)−1

]
(3.6.17)

for all λ > 0, where

M(λ) :=
∞∑
k=0

(
−L[(ν+A0)(λ+ν+A0)−1]

)k
L, and L := (ν+A0)−1/2B(ν+A0)−1/2, (3.6.18)

cf. the proof of Theorem 3.4.8. Observe that all bounded operators in (3.6.17), (3.6.18) are con-
sistent in the spaces Lp for p ∈ (1,+∞), hence the resolvents of the operators ν+Cp, p ∈ (1,+∞)
are consistent. Moreover, in the special case p = 2 the operator ν +A2 equals the part ν +C2 of
ν + Ã2 in L2 by definition of the operator associated to a form. Since also the resolvents of the
operators ν + Ap, p ∈ (1,+∞) (constructed via form methods and extrapolation as described
above) are consistent, this yields ν + Cp = ν +Ap in Lp for all p ∈ (1,+∞).

We will now turn to the proof of (P). We define the Riesz transforms associated to the operator
A0 by Rj := A

−1/2
0 ∂j for all j ∈ N≤d. By the same arguments as we used in Subsection 3.6.1,

Step I, the operators Rj are Rq-bounded, and the Rq-bounds depend only onM, δ. For all ν ≥ 1
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we have the following identity:

(ν +A0)−1/2B(ν +A0)−1/2

= −(ν +A0)−1/2 div
(
a1(x) · ∇(ν +A0)−1/2

)
− (ν +A0)−1/2 div

(
b(x)(ν +A0)−1/2

)
+(ν +A0)−1/2c(x) · ∇(ν +A0)−1/2 + (ν +A0)−1/2d(x)(ν +A0)−1/2

= −A1/2
0 (ν +A0)−1/2

( n∑
j,k=1

Rja
1
jk(x)Rk

)
A

1/2
0 (ν +A0)−1/2

−ν−1/2 ·A1/2
0 (ν +A0)−1/2

( n∑
j=1

Rjbj(x)
)
ν1/2(ν +A0)−1/2

+ν−1/2 · ν1/2(ν +A0)−1/2

( n∑
j=1

cj(x)Rj

)
A

1/2
0 (ν +A0)−1/2

+ν−1 · ν1/2(ν +A0)−1/2d(x)ν1/2(ν +A0)−1/2.

Observe that all occurring bounded operators are Rq-bounded in X, and with K := Rq({t1/2(t+
A0)−1/2, A

1/2
0 (t+A0)−1/2 | t > 0}) we obtain

Rq((ν +A0)−1/2B(ν +A0)−1/2) .M,δ K2(d2‖a1‖∞ + 2dMν−1/2 +Mν−1),

hence (P) is proven.

In the final step we do a localization procedure analogously to Step III in Subsection 3.6.1. We
will only sketch this part of the proof since it is very similar to the proof for non-divergence form
operators, where now we use the estimate (P) for the local perturbation result. So again, we let
ε0 ∈ (0, 1), which will be specified later, and choose r > 0 according to (3.6.9) from Step III in
Subsection 3.6.1. Let Γ, N0, ψ, ρ,Q, (Q`)`∈Γ and J, P,X be as in Step III from Subsection 3.6.1.
We define

A0
`u := −div(a(`)∇u) for all u ∈ H2,p, ` ∈ Γ,

and A0(u`)` := (A0
`u`)` for all (u`)` ∈ D(A0) := X2 := `p(Γ, H2,p). Then A0 : X ⊇ D(A0) → X

is a diagonal operator which consists of (M,ω0)-elliptic differential operators with constant co-
efficients.

We will now turn to the construction of the perturbation operator B. Define the spaces X±1 :=
`p(Γ, H±1,p), then for each ν > 0 the spaces X±1 can be identified with the homogeneous spaces
Ẋ±1/2 associated to the operator ν + A0, and we have canonical embeddings

Ẋ1/2 ↪→ X ↪→ Ẋ−1/2.

Furthermore, for all u ∈ H1,p we define

A1
` (u) := −div

(
(a(x)− a(`)ρ(x))∇u

)
and the lower order terms operator

Alow(u) := −div
(
b(x)u

)
+ c(x)∇u+ d(x)u,
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as operators H1,p → H−1,p. Then for all u ∈ H1,p we have

ψ`Au = Aψ`u+ (ψ`A−Aψ`)︸ ︷︷ ︸
=:C`

u = (A0
` +A1

` )ψ`u+Alowψ`u+
∑
k./`

C`ψkψku,

where

C`u = −
n∑

j,k=1

ψ`∂j(ajk(x)∂ku) +
n∑
j=1

ψ`
(
− ∂j(bj(x)u) + cj∂ju

)
+ ψ`d(x)u

+
n∑

j,k=1

∂j(ajk(x)∂k(ψ`u))−
n∑
j=1

(
− ∂j(bj(x)uψ`) + cj∂j(uψ`)

)
− d(x)uψ`

=
n∑

j,k=1

(
∂jkψ` · ajk(x)u+ ∂kψ` · ∂j(ajk(x)u) + ∂jψ` · ajk(x)∂ku

)
+

n∑
j=1

∂jψ` ((bj(x)− cj(x))u

=
n∑

j,k=1

∂kψ` · ∂j(ajk(x)u) +
n∑

j,k=1

∂jψ` · ajk(x)∂ku

+
n∑
j=1

(
∂jψ` ((bj(x)− cj(x)) +

n∑
k=1

∂jkψ` · ajk(x)
)
u

= ∇ψ` · div(ua(x)) + a(x)∇u · ∇ψ` +
(
∇ψ` · (b(x)− c(x)) + tr(∇2ψ`a(x))

)
u.

Thus C` is an operator of order less than or equal to 1. We now define the perturbation operator
by

B(u`)` :=
(
A1
`u` +Alowu` +

∑
k./`

C`ψkuk

)
`

for all (u`)` ∈ D(B) := X1. Then B : X1 → X−1 is an almost diagonal operator in the same sense
as in Step III of Subsection 3.6.1, where the top order coefficients are bounded:

‖(a− a(`))ρ‖∞ ≤ ‖(a− a(`))|Q`‖∞ < ε0.

For each ν > 0 we obtain

(ν + A0)−1/2B(ν + A0)−1/2(u`)`

=
(

(ν +A0
` )
−1/2(A1

` +Alow)(ν +A0
` )
−1/2u` + (ν +A0

` )
−1/2

∑
k./`

C`ψk(ν +A0
k)
−1/2uk

)
`

.

Hence in each component we have a finite sum of operators of the type we considered in the
second step, and together with (P) this yields

Rs
(
(ν + A0)−1/2B(ν + A0)−1/2

)
≤ sup

`
sup
k./`
Rs
(
(ν +A0

` )
−1/2(A1

` +Alow + C`ψk)(ν +A0
` )
−1/2

)
.M,δ,N0 ε0 + ν−1/2.
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This shows that we can ensure the assumptions of the Perturbation Theorem 3.4.8 if we choose
ε0 > 0 sufficiently small and ν ≥ 1 sufficiently large. So assume that ε0 > 0, ν ≥ 1 are
chosen appropriately according to the assumptions of the Perturbation Theorem 3.4.8. Define
the operator

Ã : X1 → X−1, (u`)` 7→ A0(u`)` + B(u`)`,

then by Theorem 3.4.8 the part ν + A of ν + Ã in X has an Rq-bounded H∞(Σσ)-calculus, and
moreover

Xθ
s,ν+A0

∼= Xθ
s,ν+A for all θ ∈ (−1/2, 1/2). (3.6.19)

In the same manner we define the lifted operators

Ã : H1,p → H−1,p, u 7→ Au, and J̃ : H−1,p → X−1, u 7→ (ψ`u)`,

then by construction we have J̃Ã ⊆ ÃJ̃ , and furthermore JA ⊆ AJ , where A is the part of Ã
in X. In the same way as it is done in Step III in Subsection 3.6.1, we can conclude that ν +A

has an Rq-bounded H∞(Σσ)-calculus in X, and that Ẋθ
ν+A,q ≈ Ẋθ

ν−∆,q for all θ ∈ (−1/2, 1/2).
Moreover, using similar arguments as in Step II, we can conclude that ν + A = ν + Ap. So the
assertions of Theorem 3.6.8 follow by Theorem 3.6.1 and Theorem 3.3.23.
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