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Chapter 1

Introduction

1.1 Objective

The current work is concerned with relevant aspects of algorithmic stock trading.

It was first and foremost motivated by a concrete problem arisen from the order

execution process of the Lupus alpha NeuroBayes R© Short Term Trading Fund. This

is a high frequent trading fund, invested in large cap stocks, and classifies as a hedge

fund in the popular terminology. For this purpose, a quite general issue has to be

solved, namely the execution of many large orders at the stock exchanges in a given

predefined time. The optimal solution would of course be an optimized fully au-

tomated trading algorithm executing orders with low market impact and minimum

exchange fees. This is a typical challenge for market participants such as brokers

and asset managers of mutual funds, ETFs, and also hedge funds.

In this research thesis I want to investigate in more detail the most important

components of the mentioned automated trading algorithm. Furthermore, analyses

for the optimization of execution strategies are provided. The realization of such

a trading algorithm requires a multitude of aspects which have to be taken into

account. They range from regulation aspects via market microstructure to very

technical aspects such as electronic market access and computer systems. Therefore,

many topics will be discussed by reviewing the appropriate literature. Further re-

search is focused on a market impact model and a model for the prediction of trading
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volume.

One of the most crucial points is the understanding of trading costs, especially

the implicit ones, which are called “market impact”. Market impact is the interac-

tion of a market participant’s own action on the entire market, i.e. the price of the

traded security is affected by the trading action. The direction of the price impact is

in the same direction as the causal trade (e.g. a buy drives the price up). Thus, the

execution price of the security is in general worse than the price before the trading

starts. Qualitatively, this effect is easily explainable but the quantification and the

prediction of this effect is a rather complex task. In order to reduce the market

impact of an order execution, the influencing factors have to be known. Hence, an

empirical analysis of a large data set of homogeneous algorithmic trades is done.

The result of this analysis is a model which is able to predict the market impact

of an algorithmic trade. This model is used as an important input of the portfolio

optimization of the above mentioned NeuroBayes Fund.

Based on this market impact model, it is shown that the so-called VWAP trad-

ing strategy is optimal. The implementation of such a VWAP execution strategy

requires knowledge about the overall future trading volume of the given security.

Therefore, a model for trading volume predictions is developed.

1.2 Approach

The market impact analysis is based on a proprietary data set. The main advantage

of this data set as compared to publicly available ones is due to the fact that single

orders of a certain market participant are identified and logically connected. Because

of that, the resulting market impact of the entire transaction can be measured.

Thus, the market impact of the total algorithmic execution, which is spread over

an extended period of time, is observed. Otherwise, the single orders usually are

assumed to be independent which is obviously not true. The underlying algorithmic

trades originate from the trading activity of the NeuroBayes Fund from April 2008

to July 2010 with an overall trading volume of more than 30 billion USD equivalent.

Its stock universe covers the most liquid 800 stocks of various markets (Canada,
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Europe, Japan, and USA). The analyzed data set contains homogeneous algorithmic

executions which have several parameters in common, for example the trading period

and the usage of the same execution strategy. However, they differ in some aspects

such as size of the orders and different markets. Nevertheless, I think that the

conclusions of this analysis are universally valid because they correspond to the

characteristics of the stock market.

The distribution of the intraday trading volume of almost all stocks has the

famous u-shaped pattern. This means that the trading activity is high shortly after

the opening of the market in the morning and before the closing in the evening.

During lunch time the market activity is at its low. Although the pattern is quite

similar for all stocks over years, there are significant differences. For example, a

change in this pattern is observed during the financial crisis in 2008 and there are

slightly different patterns for highly liquid stocks and for stocks with lower liquidity.

The trading volume model takes these aspects into account and is able to predict

the intraday trading volume pattern for different stocks. To this end, market data

on a minute-by-minute basis of the US stock market is used.

1.3 Outline

This thesis covers many aspects of algorithmic trading. The work is split into 5 parts.

Part I provides the mathematical background of the most important methods used

in the analyses. Part II comprises a detailed literature review about algorithmic

trading. Several topics of market microstructure are discussed, such as the func-

tionality of a financial market and the meaning of trading costs. Additionally, an

overview is given of the existing execution strategies which are well known in the

finance industry.

The market impact model is presented in part III. First of all, the data set is

described in detail. Subsequently the models and the fit results are described. Ad-

ditionally, the individualized linear model is introduced. Finally, the current results

are compared with another empirical measurement and the market microstructure

theory. It is shown that the VWAP strategy is optimal for the presented market
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impact models.

Part IV encompasses the trading volume model, starting with the description of

the data set. The data is processed by calculating different mean values and writing

them as matrices. These matrices are analyzed with the help of SVD (singular-value

decomposition). The results are used to predict the future trading volume distribu-

tions.

Finally, chapter 14 recapitulates the main results of the work and gives an outlook

for potential future research.
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Chapter 2

Mathematical Methods

2.1 Maximum Likelihood

2.1.1 Principle of the ML Method

Maximum likelihood is a general and often used method for parameter estimation.

It is a concept to determine an adequate probability distribution for a given set

of observations. A set of observations is called a sample. It is usually assumed

that the observations are independently drawn from the same probability density

distribution, Rachev et al. (2005). Under appropriate conditions, the maximum

likelihood estimators are consistent, asymptotically unbiased, and efficient. The

maximum likelihood procedure searches for a parameter set that is most suitable for

the set of observations.

The random variables y0, ..., yT are assumed to be iid (independent identically

distributed) and drawn from the probability density distribution f(·; θ), where θ is

the parameter vector, see Rachev et al. (2007). The joint probability distribution

function of YT = (y0, ..., yT ) can be written as

f(YT ; θ) =
T
∏

t=0

f(yt; θ) (2.1)
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The function f(YT ; θ) may be viewed as a function of θ and thus f(YT ; θ) is an

indication of the plausibility of a particular θ for the data set YT . The likelihood

function of f(·; θ) for data set YT is defined as:

L(θ;YT ) = f(yt; θ) (2.2)

The MLE (maximum likelihood estimator) of θ, θ̂ML has the property that for any

other estimator θ̂

L(θ̂ML;YT ) ≥ L(θ̂;YT ) (2.3)

The MLE θ̂ML of θ is obtained by finding the value of θ that maximizes f(YT ; θ).

Thus, the aim is to find the values of the unknown parameter set that maximizes

the likelihood computed for a given set of observations y0, ..., yT (see Rachev et al.

(2007)).

Hence the maximum likelihood method is able to estimate parameters of a proba-

bility density distribution in contrast to the estimation of parameters of an arbitrary

function as it is the case when using the χ2 method. To estimate parameters de-

scribing a functional dependency between two (or even more) variables, the issue has

to be formulated as an estimation of a probability density function. This is usually

done by the estimation the probability density function of the residuals.

2.1.2 Error Estimation

The maximum likelihood method also enables the calculation of the statistical un-

certainty for the estimated parameters.

In the case T → ∞ the likelihood function converges to a Gaussian function

and the variance V [θ̂ML] → 0. The negative log-likelihood function can be expanded

around its minimum.

logL(θ) = logL(θ̂ML)+

[

∂logL

∂θ

]

θ=θ̂ML

(θ− θ̂ML)+
1

2!

[

∂2logL

∂θ2

]

θ=θ̂ML

(θ− θ̂ML)
2 + ...

(2.4)

The negative log-likelihood function has the form of a parabola around its minimum

and the second derivation is constant. The first derivation at θ = θ̂ML is 0 and higher
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order terms are ignored. Then one get:

logL(θ) = logL(θ̂ML)−
(θ − θ̂ML)

2

2σ2
θ̂ML

(2.5)

or

logL(θ̂ML ± σθ̂ML
) = logL(θ̂ML)−

1

2
(2.6)

with

σθ̂ML
=

(

d2L

dθ2

∣

∣

∣

∣

θ̂ML

)− 1
2

(2.7)

The error calculation for more parameters can be done analogously, where the

minimal function Lmin(θi) of the i-th parameter of ~θ is formally given by Lmin(θi) =

minL(~θ). Lmin(θi) is the minimum of L(~θ) with respect to all the other parameters.

Further detailed information about the error calculation of estimated parameters

can be found in Blobel and Lohrmann (1998) and Cowan (1998).

2.2 Singular-Value Decomposition

2.2.1 Theorem

The Singular-Value Decomposition (SVD) is a factorization of a rectangular real or

complex matrix A of the dimension m× n (see Quarteron et al. (2000)):

A = UΣV ∗ (2.8)

Hereby, U is a m × m unitary matrix whose columns are the left singular vectors

of A. Σ has the same dimension as A and is a diagonal matrix with nonnegative

real numbers being in fact the singular values of A. Finally, the unitary matrix V ∗

(conjugate transpose of V ) has the dimension n×n whose rows are the right singular

vectors. A common convention is to order the diagonal entries Σi,j in descending

order.
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2.2.2 Low-rank Approximation

A practical application of the SVD is the low-rank matrix approximation. The matrix

A can be approximated by matrix Ã with rank r

Ã = UΣ̃V ∗ (2.9)

where Σ̃ is the same matrix as Σ except only the largest r singular values are unequal

to 0 and rank(Ã) = r. This is known as the Eckart-Young theorem (see Gower and

Dijksterhuis (2004)).

If the matrix Ã is a good approximation for matrix A, the Frobenius norm of the

difference A− Ã has to be minimal

||A− Ã||F !
= min (2.10)

where the Frobenius norm is defined as ||X||F =
√

∑m
i=1

∑n
j=1 |xij|2.

Take A = UΣV ∗ and the invariance under unitary transformations of the Frobe-

nius norm, one arrive at the following:

min||A− Ã||F = min||Σ− S||F (2.11)

= min

√

√

√

√

n
∑

i=1

(σi − si)
2

= min

√

√

√

√

r
∑

i=1

(σi − si)
2 +

n
∑

i=r+1

σ2
i

=

√

√

√

√

n
∑

i=r+1

σ2
i

Note that Σ is diagonal, so S = U∗ÃV also has to be diagonal on order to minimize

the Frobenius norm. si and σi denote the diagonal elements of S and Σ respectively.

Thus Ã is a good approximation for A when σi = si and the corresponding singular

vectors are the same as those of A.

The low rank approximation of a matrix can be used for data compression and
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noise reduction. Writing it out, the rank 1 approximation explicitly leads to

ãij = σi · ui1 · vj1 (2.12)

Hence the matrix elements of Ã are a product of the singular value and the according

components of the left and right singular vector.

Further details about SVD as well as applications can be found numerously in

literature, for example Eldén (2007) and Berry and Browne (2005).
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Part II

Algorthmic Trading 1

1this part of the work is published in Fränkle and Rachev (2009)
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Chapter 3

Algorithmic Trading

Algorithmic trading is automated trading, i.e. a computer system is completing all

work from the trading decision to the execution. Algorithmic trading has become

possible with the existence of fully electronic infrastructure in stock trading systems

such as (direct) market access, exchange and market data provision. The following

overview gives a flavor of chances and challenges in algorithmic trading as well as

an introduction to several components needed for setting up a competitive trading

algorithm.

3.1 Chances and Challenges

In contrast to trading by humans, algorithmic trading has several advantages. Com-

puter systems in general have a much shorter reaction time and reach a higher level

of reliability than humans. The decisions made by a computer system rely on the

underlying strategy with specified rules. This leads to a reproducibility of these very

decisions. Thus back-testing and improving the strategy by varying the underlying

rules is made possible. Algorithmic trading ensures objectivity in trading decisions

and is not exposed to subjective influences (such as panic for example). When trad-

ing many different securities at the same time, one computer system may substitute

many human traders. So both the observation and the trading of securities of a large
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universe becomes possible for companies without employing dozens of traders. Alto-

gether these effects may result in a better performance of the investment strategy as

well as in lower trading costs. For further information concerning algorithmic trading

and artificial agents, see Boman et al. (2001), Kephart (2002), LeBaron (2000) and

Gudjónsson and MacRitchie (2005).

Nevertheless, it is challenging to automate the whole process from coming to

investment decisions to execution. System stability is crucially important. The al-

gorithm has to be robust against numerous possible errors. The trading system is

dependent on different services such as market data provision, connection to mar-

ket and the exchange itself. These are technical issues which can be overcome by

diligently implementing the system. Even more complex is the development of an

investment strategy, i.e. deriving trading decisions and strategies implementing these

decisions. This work focuses on the implementation and thus the execution strategy

of externally given investment decisions. It is beyond the scope of this work to cover

the process of a quantitative framework for derivation of investment decisions.

The inputs for the execution strategy are for example security names, the num-

ber of shares, and the trading direction (buy/sell). In addition there may be inputs

such as aggressiveness and constraints (for example market neutrality during the ex-

ecution when trading a basket), dependent on the needs of the investment strategy.

The main challenge for trading algorithms is the realization of low trading costs

in preferably all market environments (independent from falling or rising markets

and high or low liquidity). Another critical point which has to be taken into ac-

count is the transparency of the execution strategy for other market participants. If

a structured execution strategy acts in repeating processes (for example, orders are

sent in periodical iterations) other market participants may then observe patterns in

market data and may take an advantage of the situation.

3.2 Components of an Automated Trading System

Trading algorithms have the advantage that the execution performance is measurable

and predictable for a specified order (see part III of the current work). Hence, the
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profitability of algorithmic trades can be calculated in advance by taking trading

costs into account. The realization of this implies additional components which are

already suggested by Investment Technology Group (2007) and Kissell and Malamut

(2005).

A pre-trade analysis component provides a preliminary estimate of transaction

costs of a given algorithmic order. To this end, an econometric model based on

historical trading data is used. The pre-trade analysis can be used to optimize the

expected transaction costs by varying the parameters or even the trading strategy.

In the pre-trade analysis also a more general optimization function can be optimized

due to the trader’s preferences, for example:

(1− λ) · E(C) + λ · V ar(C) → min

where C is the total execution cost of a trade, E(C) the expected value of C, and

Var(C) is the variance of C. λ is the traders risk aversion parameter (see Invest-

ment Technology Group (2007)). The expected cost of a trade E(C) can contain

opportunity costs if the trader allows the algorithm not to execute the complete po-

sition. Yang and Jiu (2006) provide an empirical approach of selecting algorithms

which satisfy the traders needs best. Domowitz and Yegerman (2005) explain how

to compare the performance of algorithms and specify some parameters for trading

algorithm. An approach to forecast and optimize execution is also provided in the

work of Coggins et al. (2006). The second component is the trading algorithm

itself. It’s the part of executing orders according to the underlying strategy (see

5.2). The optimal strategy has to be found with the help of the pre-trade analysis,

but further improvement can be reached by adjusting parameters during the trading

period. Therefore Bialkowski et al. (2005) and Bialkowski (2008) provide a model

of decomposing trading volume and model the components to forecast the trading

volume (see also part IV). This can be taken into account by the trading algorithm

if it is based on trading volume such as VWAP. Obizhaeva and Wang (2005) show

the relationship of supply and demand dynamics of a security in the market and

the execution performance of a given order. They provide a model of the impact

of supply/demands dynamics on execution costs. Post-trade analysis is the third
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component of the system. After all information of the trades are available, a perfor-

mance measurement can be done and be compared to the pre-trade estimation. This

is a very important information to improve pre-trade analysis for future trades. See

Investment Technology Group (2007) as an example of a post-trade analysis frame-

work. Kissell and Malamut (2005) suggest a two part post trade analysis of trading

cost measurement and algorithm performance measurement. The estimation of the

market impact model in part III of the current work can also be seen as a post trade

analysis. However the estimated model is a very important input for the pre-trade

analysis.
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Chapter 4

Market Microstructure

Several definitions of market microstructure have been suggested in the literature.

Two of the more notable ones are provided by O’Hara (1995) and Stoll (2001).

O’Hara defines market microstructure as “the study of the process and outcomes of

exchanging assets under explicit trading rules”. Stoll defines market microstructure

as “the study of trading costs and the impact costs resulting in the short-run behav-

ior of security prices”. As it will be shown, both definitions are very similar in their

meaning. Moreover, it will be explained why trading costs are a very basic element

in market microstructure. This section introduces market microstructure theory and

gives a short overview of the literature.

A general overview and introduction in market microstructure theory is given

by O’Hara (1995). Besides an introduction to price determination, inventory mod-

els of market makers are presented and also a theory behind bid-ask spreads. She

identifies the influence of trading strategies on market microstructure and the infor-

mation of trades in the price process. Harris (2002) provides a more practical view on

market microstructure, explaining the background for some key elements of market

microstructure and the investment objectives and activities of different market par-

ticipants. Harris also presents a review of trading platforms and the role they play.

Cohen et al. (1986) provides a detailed cross-sectional comparison of the worldwide

equity markets. Stoll (2001) focuses on trading costs, market designs and the forces

leading to the centralization of trading in a single market versus the forces leading
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to multiple markets. Madhavan (2000) provides a review of theoretical, empirical,

and experimental literature on market microstructure with a focus on informational

issues.

4.1 Nature of the Market

One of the principal functions of financial markets is to bring together the parties

interested in trading a security. Trading platforms are the most efficient way to

bring these counterparts together. Such trading platforms can be accomplished via

the physical presence of brokers and traders on the floor of an exchange. But it can

also be realized as an electronic platform where the physical location is unimportant

and market participants are just connected electronically. The third alternative is a

hybrid market wherein there is both a trading floor and an electronic platform. The

best example of a hybrid market is the New York Stock Exchange (NYSE).

The trading process itself is similar for all financial markets. All market partic-

ipants express their trading interest with an order which is sent to the market. An

order contains the information which security to trade, the direction (buy or sell),

the quantity of shares, and a limit price expressing the worst price the party is willing

to accept. When the limit price is not identified as part of the order, this results in

a market order and the party is willing to accept all prices.

The task of financial markets is to match compatible orders and execute them.

Each market defines its trading rules to enable high liquidity and fast execution with

low price volatility in order to get fair prices and an efficient trading process. A

very basic idea for the trading process is the Walrasian auctioneer. Each market

agent provides a demand-price function to the auctioneer who first aggregates these

orders and then computes a price where demand and supply are equal, called the

market-clearing price.

Walrasian auctions are discrete auctions; that is, trading takes places only at

specified times during the trading day. Modern exchanges provide continuous trad-

ing, hence market participants have the opportunity to trade at any time during the

trading day. But for each trading interest a counter-party has to be found, willing to
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trade the same position in the contrarian direction. In the limiting case of iterating

Walrasian auctions with infinite frequency, continuous trading would be realized but

the execution probability of a trader’s order would be equal to zero. The probability

of two orders reaching the same auction declines with the increase of the frequency

of auctions if the trader’s order is valid for exactly one auction. So there is a need

for orders which are valid for more than one auction. Such orders do not satisfy

investor’s needs to be executed immediately, but their existence enables immediate

execution of other orders. Thus besides market participants preferring immediate

execution, other market participants providing liquidity are needed. Traditionally,

market participants providing liquidity are called market makers. Their profit arises

from the existence of the implicit liquidity premium that the counter party seeking

liquidity is willing to pay. This premium is represented by the bid-ask spread of the

order book. The bid-ask spread increases with the size of the trade and reflects the

expected risk the market maker incurs.

4.2 Continuous Trading and Open Limit Order Book

Most stock markets provide continuous trading. Some markets have additional dis-

crete call auctions at specified times when the uncertainty is large, for example at

the open, close, and reopen after a trading halt caused by large price movements.

The economic justification is that call auctions are especially helpful in uncertain

times during the trading day because of the information aggregation argument, see

Madhavan (2000).

Open limit order books are the core of most continuous trading systems. A limit

order book contains limit orders of market participants, including the information

about the limit price, quantity of shares, and trading direction (buy or sell). The

content of open order books is published in contrast to closed order books where no

information about the status of the market is provided as it is realized in so-called

“dark pools”.

The most relevant measure of order books is the bid-ask spread. It is the dif-

ference between the lowest provided sell price (ask) and the highest buy price (bid).
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By definition of the order book, the ask price is always higher than the bid price.

The bid-ask spread is a good measure for the liquidity of a security, i.e. in actively

traded securities the spread in general is smaller than in inactive markets. Implicit

trading costs arise in continuous trading through the existence of the bid-ask spread.

Liquidity takers have to cross the spread for trading which can be interpreted as

the premium for liquidity provision. This premium is justified by the risks and the

costs the liquidity provider faces, such as inventory risk and order handling costs.

The competition between liquidity providers forces the market in the direction to

lower spreads. Some theoretical studies concerning liquidity provision are provided

by Biais et al. (1995), Biais et al. (1999), Harris and Hasbrouck (1996), and Foucault

(1998).

Trading takes place when an order arrives at the order book and matches at least

one existing order book position. This is the case if the limit price of the incoming

buy (sell) order is higher (lower) than the current ask (bid). Otherwise the order is

inserted into the order book as an additional position. The execution price of a trade

is always the limit price of the order book position which is involved. This leads to

jumps in security prices from bid to ask prices depending on the direction the ini-

tiator trades, see Garman (1976) and Madhavan et al. (1997) for models describing

time series behavior of prices and quotes.

For the best bid and ask positions, the provided volume is typically quite small

compared to the entire order book volume and also small compared to typical order

sizes of institutional investors. Submitting a large aggressive order to a continu-

ous trading system leads to a sharp price movement and a rebuilding of the order

book afterwards, resulting in huge implicit trading costs because of the large realized

bid-ask spread. So optimal trading in continuous trading systems requires adapted

strategies where large orders are split up into several smaller orders which are traded

over an extended period of time. In the period between the execution of the slices,

the order book can regenerate in the sense that liquidity providers narrow the spread

after it has widened through a trade, see Obizhaeva and Wang (2005).
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4.2.1 Resilience of the Order Book

What happens with a limit order book during and after the execution of a market

order? The following section gives an overview of the interaction between the order

book and a marketable order. A marketable order is an order taking liquidity from

the order book, that is, all market orders but also limit orders with aggressive limits.

The direct reaction of the order book on such a marketable order is quite simple,

the incoming order is matched with the waiting passive orders. This results in the

widening of the spread and the reduction of the provided volume in the order book.

The more interesting effect is the reaction of the market after the execution. How

the spread will narrow and how the provided volume in the book will re-rise. This

effect is called the resilience of the limit order book.

Alfonsi et al. (2007) presents two approaches of modeling the resilience. An

exponential recovery of the limit order book is assumed. One approach models

the recovery of the limit order book inventory. The second approach models the

narrowing of the bid-ask spread. For measuring this effect, a reference limit price

has to be defined. This unaffected limit (best bid or ask) is modeled by a Brownian

motion. A similar model together with an empirical test on TAQ data is provided by

Dong and Kempf (2007). They use the following model to describe the last execution

price:

S(t) = F (t) + Y (t) (4.1)

where

F (t) = µ+ F (t− 1) + ǫ(t) (4.2)

and

∆Y (t) = Y (t)− Y (t− 1) = −αY (t− 1) + Φ(t) (4.3)

and

Φ(t) ∼ N(0, σ2
Φ), ǫ(t) ∼ N(0, σ2

ǫ ) (4.4)

The last execution price S(t) is written as a sum of the components F (t) and Y (t).

F (t) represents a random walk with drift describing the underlying price process.

The term Y (t) describes the price recovery approach and ∆Y (t) is interpreted as the
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“pricing error” which tends towards zero because of the market forces. The resilience

is denoted by the mean-reversion parameter α. This model is applied on 1-minute

NYSE TAQ data using a Kalman-filter smooth estimation procedure to estimate the

resilience measure α. The mean value of all the resilience estimates is α = 0.60 which

is significantly different from both zero and one. This means that the pricing error is

stationary. On average around 60% of the pricing error is corrected in the following

1-minute interval.

Additionally, some description variables of the order book resilience are analyzed.

The price level (inverse of tick size) has a negative effect on resilience indicating

that lower tick size leads to more resilience. The number of trades is positively

correlated to resilience whereas average trading size is negatively correlated and also

the volatility of the stock price.

4.2.2 The Open Limit Order Book and Execution Probability

The functioning of a limit order book is described in section 4.2. The following fo-

cuses on the dynamics of limit orders in order books and thus the interaction between

the order book and the order flow.

Theoretical models provided by Kyle (1985) or Glosten and Milgrom (1985) fo-

cus on market maker quotations. Glosten (1992) analyzes limit order markets by

modeling the price impact of trades reflecting their informational content.

Biais et al. (1995) provide an empirical analysis of order book characteristics,

starting with descriptive statistics. They compute the number of ticks between bid

and ask quotes as well as between adjacent quotes. First, they find that the bid-ask

spread is twice the difference between adjacent quotes on each side of the order book.

And secondly they find a tick size dependency of these calculated differences. The

median difference between neighboring limits is larger than one tick size. Addition-

ally, the bid-ask spread and the relative spreads on each side of the book show an

intraday u-shaped pattern. They also analyzed the order volume distribution in the

order book dependent on the limit prices. The depth (cumulative order volume per

price) increases with the distance from the best bid and ask respectively, see figure

4.1.
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Besides order book characteristics, order flow is analyzed in detail by Biais et al.

Figure 4.1: The cross-sectional average (across stocks) of the time series averages of the five best
ask and bid quotes and their associated depth, Biais et al. (1995).

(1995). Orders can be classified according to their direction, aggressiveness and size.

They cluster orders in different categories, for example a “large buy” which is an

aggressive order larger than the volume behind the best ask. For each of these cat-

egories (large buy, small buy, large sell, small sell) the unconditional probabilities

for the arrival of such an order in a given period of time are calculated using a data

sample of stocks included in CAC 40 in 1991. In addition, the probabilities of orders

and trades conditioned on the last action (order or trade) are calculated and can

be written in a matrix form. This matrix shows an interesting diagonal effect, i.e.

the probability of a given order or trade is higher after this event has just occurred.

Furthermore, they try to connect further orders or trades with the current state of

the order book by calculating order and trade probabilities conditioned by the state

of the order book. Besides the probability of the occurrence of a certain event, they

also provide an approach to predict the time interval between order and trade events.
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The analysis (Biais et al. (1995)) provide very interesting empirical approaches

to describe market microstructure aspects in limit order books. Knowledge about

the probability of further events in the book can be used to calculate the execu-

tion probabilities of the own limit orders which can be used to optimize execution

strategies.

4.3 Trading Costs

Trading costs will be discussed in more detail in part III of the current work. How-

ever, a brief overview is given here.

With its presence in the market, a buy or sell intention has an impact on the

future price process. In stock markets buy and sell intentions are generally expressed

by orders sent to the market. Perold (1988) introduces the implementation shortfall

which is defined as the performance difference between the paper portfolio and the

realized one. Implementation of investment strategies leads to friction losses. This

difference in performance is dominated by three blocks of costs. One consists of fees

and commissions for brokers and exchanges, the second part are market impact costs,

and the third part are opportunity costs.

Market impact costs of a trade arise from the information acquisition and the

demand of liquidity. It is a function of the aggressiveness of the trade, liquidity of

the security and the amount of ordered shares. Market impact increases when trad-

ing large volumes in a short time span. Opportunity costs arise when less volume

than originally wanted is traded because of the loss of profit. They also arise if a

longer period of time is needed because of volatility risks. An investor has to find

the trade-off between opportunity costs and market impact costs leading to optimal

overall execution costs. See Kissell (2006) and Wagner and Edwards (1993) for fur-

ther introduction in different kinds of trading costs.

Market impact is the most interesting trading cost component because of its

complexity reflecting the interaction between one market participant and the mar-

ket. Thus the realized execution price for a security is worse than the security price

before the beginning of the trading activities of the investor. A possibility of mea-
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suring market impact is the calculation of the difference between the realized average

execution price of a trade and the security price before the trading activity has begun

(arrival price). The reasons for market impact are, as already mentioned, informa-

tion acquisition and demand for liquidity. If an informed trader expects a higher

price of the security in the future, he is willing to pay a higher price than the current

one with the constraint that the price has to be lower than the expected price in the

future. The investor’s information is anticipated by the market resulting in market

impact. The liquidity demanding component of market impact arises from the risk

and costs the trading counterpart is faced with, see section 4.2. These effects differ

in the sustainability of their impact, and while the information component is a per-

manent effect, the liquidity component is a temporary effect. Further description of

market impact and the differentiation of temporary and permanent impact can be

found in Kissell (2006), Kissell and Malamut (2005), Madhavan (2000) and Almgren

and Chriss (1999).

4.4 Market Design

The design of the market determines the market microstructure. Thus, the market

design is responsible for the quality and the success or failure of the trading venue.

The microstructure influences investing strategies, patterns of trades, liquidity, and

volatility. Therefore exchanges have to find their setup to attract traders. There are

several studies in literature describing the impact of market designs on the market

characteristics. Levecq and Weber (2002) and Stoll (2001) give a general overview

of different possibilities how a market can be organized. Levecq and Weber (2002),

Levecq and Weber (1995) and Barclay et al. (2001) focus on information technology

and electronic systems in financial markets.

To evaluate the quality of trading at a certain exchange, quantities for market

quality have to be defined. Madhavan (2000) mentions bid-ask spread, liquidity, and

volatility. Others, for example Boehmer (2005), add availability and execution speed

to the list of quality measures. The availability expresses the reliability of the ex-

change. The execution speed is the period of time an investor needs to get a trading
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decision executed depending on the size of the order. Also the reaction time is an

important quality measure for some certain traders who are interested in ultra-high

frequency trading, as it is described by Byrne (2007).

Market structure choices are elementary for exchanges to offer a market environ-

ment satisfying the investor’s needs best in a competitive environment.

4.4.1 Market Architecture

“Market architecture refers to the set of rules governing the trading process”, Madha-

van (2000). These rules cover the market type including degree of continuity, choice

between order-driven and quote-driven markets and also the degree of automation.

Most stock markets are continuous trading systems combined with discrete auctions

when the uncertainty is high. Most stock markets are organized as a mixture of

order- and quote driven markets. Another aspect in market architecture is price

discovery. There are several possibilities for price discovery processes. For example

the already described process used in open limit order books, where the execution

price is equal to the limit price of the involved limit order. Another example is the

process used for example in closing auctions of most stock markets known as the

Walrasian auctioneer. Some dark pools use another method where the midpoint of

the bid-ask spread of the primary exchange is used as the execution price. Another

important aspect is the transparency. Most stock markets provide pre-trade infor-

mation such as quotes and related order sizes. Additionally, they provide post-trade

information such as times and sales. This information can be used by an investor as

a basis for trading decisions and execution optimization. Certain markets, such as

dark pools,do not provide any market information except trading confirmations for

directly involved trading parties. It is assumed that trading has less price impact

if the order information is not published because other market participants cannot

react on the presence of an order if it is not visible. More detailed information con-

cerning market architecture can be found in Madhavan (2000).

Levecq and Weber (2002) focus on aspects of the market architecture of elec-

tronic trading systems. Electronic trading systems have their origin in the 1960s

and 1970s with NASDAQ and Instinet. They have experienced strong growth up to
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now and dominate stock trading today. Two parallel evolutions occurred concerning

electronic markets; there are the traditional markets such as NYSE using the elec-

tronic trading system to support their existing trading system. Automation helps

to improve efficiency because it lowers trading costs. With the spread of electronic

networks in the finance industry, the second type of markets have arisen. They

are called ECN (electronic communication network) or MTF (multilateral trading

facility). These trading platforms only concentrate on electronic trading mainly in

liquid securities such as large caps and currencies. They provide very fast trading

systems and charge low exchange fees. For institutional investors it is easy, and

inexpensive to connect to an ECN. MTFs are established for years in the USA and

cover a significant fraction of the trading volume in large caps. The ECNs in Europe

currently experience a fast growth in trading volumes. Some important examples

are Chi-X, BATS, and Turquoise. They have similar fee tariffs working as follows:

market participants have to pay a fee for the execution of aggressive orders and they

get a rebate for executed passive orders. This trading tariff concept of the ECNs

attracts liquidity and therefore they do not need explicit market makers.

4.5 Fragmentation of the Market

Today we are faced with a widespread fragmentation of the stock market, in the

US and also in Europe. Besides the primary markets, there are many ATSes (al-

ternative trading systems) playing an important role. Figure 4.2 and 4.3 show the

market share of the most important trading venues for DAX 30 stocks and FTSE

100 stocks. The market share of the primary market for the DAX 30 stocks is less

than 70 % and for the FTSE 100 stock it is even less than 55 %. Thus, a significant

fraction of the order flow goes to ATSes. This is quite similar to almost all important

European stock markets. The US stock market also is fragmented where NYSE with

its 3 platforms has 27.6 % and NASDAQ with its 2 venues has 24.5 % of market

share. The third largest trading venue for stocks in the US is BATS with a market

share of 10.6 % 1.
1source: businessweek March 02, 2010; http://www.businessweek.com/news/2010-03-02/bats-tops-direct-edge-to-

become-third-largest-u-s-stock-market.html

32



This quite large fragmentation of these important stock markets is a quite new

Figure 4.2: Market share of DAX 30 stocks, source: www.Chi-X.com

Figure 4.3: Market share of FTSE 100 stocks, source: www.Chi-X.com

development and is founded in changes of the market regulation in the US and also

in Europe. The SEC2 established the regulation of ATSes together with the Rule

3b-16 in 1998. This has implicated that price discovery is no longer a prerequisite

for exchange status and has opened the market for trading venues. Additionally, the

2U.S. Securities and Exchange Commission
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SEC requirement called NBBO (national best bid and offer) also takes the ATSes

into account. Hence, marketable orders of clients have to be routed to the trading

venue with the current best bid or offer to guarantee best execution. In Europe, Mi-

FID was introduced in 2007. It regulates ATSes and encourages competition between

trading venues. The preference rule and also the concentration rule for the primary

markets have been replaced in many European countries. Thus the European stock

markets have become harmonized and more open.

The main advantage of the “new” regulations of the stock markets and the frag-

mentation is the competition between the different trading venues. This has led to

innovations, such as much lower exchange fees. Examples for the innovations are

lower tick sizes in Europe, much faster trading systems and trading fee tariffs at-

tracting liquidity providers.

Barclay et al. (2001) find that increased trading on ATSes improves most measures of

overall market quality. As an explanation, they find that ECNs attract a higher frac-

tion of informed orders reducing adverse selection costs faced by the market makers.

This leads to lower spreads in competitive markets. Another effect of fragmentation

is the lower level of trade disclosure. An investor trading large positions can benefit

from this effect, see Madhavan (1995). In a consolidated market the effect of “front

running” their own order can also be much more significant.

The main disadvantage of the stock market fragmentation is the reduced liq-

uidity at the primary market and that it is more complex to trade large sizes in

a fragmented market. There is some literature describing the effects of reducing

liquidity by fragmentation of market, see Mendelson (1987), Chowdhry and Nanda

(1991), Grossman (1992), Madhavan (1995) and Hendershott and Mendelson (2000).

Bennett and Wei (2006) chose stocks which switched from listed on the NYSE to

NASDAQ and vice versa. They measure the market quality before and after the

switches and find that the NYSE has a better market quality than the NASDAQ for

illiquid stocks. NYSE is one market where NASDAQ is a pool of different ECNs and

exchanges, while NASDAQ is, in itself, a fragmented market.

As described above, there are opposing influences on market quality from frag-

mentation. Because of the interests of market participants to be well executed, there

are forces in the direction of maximal market quality. Both extreme scenarios of
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a complete consolidation and also an extremely highly fragmented market are no

optimal scenarios. In order to achieve good execution on fragmented markets, there

are several ways of linking and consolidating them. One idea for quasi-consolidation

is that every trade has to occur between the nationwide best bid and offer. If a

marketplace does provide a worse price, the order has to be sent to another market

with a better quote. Additionally, market participants can do pre-trade analysis to

find out how to split the order and where to send it to have the best possible exe-

cution. Systems doing so are called “smart order routing” systems and are provided

by most brokerage firms. In recent years also, many startups arise with the business

idea of doing arbitrage by high frequent trading on different markets. These linkages

of markets are a kind of consolidation with different impact on competition, see for

example Blume (2007).
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Chapter 5

Execution Strategies

The cost-efficient implementation of investment decisions is quite important for a

successful realization of investment strategies. Depending on the frequency of the

reallocation of the portfolio, trading costs can reduce the performance significantly.

Especially large trading volumes cannot be executed instantly and the trade has to

be split over a period of time. To this end, execution algorithms can be used. The

current section wants to introduce some ideas behind common execution strategies.

5.1 Benchmarks

In order to measure the execution quality of execution strategies several measures

can be taken into account: the executed fraction of the order, average execution

price, and the execution price uncertainty. The most important measure is the exe-

cution price. This average execution price is usually compared to price benchmarks.

These benchmarks can be categorized into pre-, intra-, and post-trade prices, see

Kissell (2006). Very common price benchmarks are the VWAP benchmark (volume

weighted average price) or the TWAP benchmark (time weighted average price) of

the trading horizon. These benchmarks are so called intra-trade prices because secu-

rity prices during the trading period are used for the calculation. Another benchmark

such as the arrival price (price of the security before the arrival of the order) is a
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pre-trade price. An example for a post-trade benchmark is the day’s closing price or

the departure price (price of the security after the execution of the order). There are

a variety of more benchmark definitions and also a spectrum of similar but slightly

different definitions for each kind of benchmark, see for example Madhavan (2002)

for various definitions for VWAP.

Different kinds of benchmarks have diverse characteristics, so investors have to

take care by choosing their benchmarks with regard to their trading strategy and

preferences. Pre-trade benchmarks are suitable for measuring market impact because

they are not influenced by the price movement induced by their own trades. Mea-

suring execution costs as part of the implementation shortfall, introduced by Perold

(1988), has to be done by pre-trade benchmarks. Intra-trade benchmarks are a good

indicator (see Berkowitz et al. (1988)) for the quality of the trading algorithm and

market impact in the case of a quite passive execution strategy. Because the VWAP

benchmark is heavily influenced by the trades if a market participant plays a dom-

inant role on the market. In the limiting case of a completely dominant trader, the

VWAP benchmark is equal to the average execution price, but the market impact is

very high anyway. The intra-trade benchmarks have the advantage that the variance

of the difference between the benchmark and the average execution price is smaller

compared to many other benchmarks. That is because the intra-trade benchmarks

contain the security price movement during the trading period, whereas pre-trade or

post-trade benchmarks do not. The variance of the difference between intra-trade

benchmarks and the execution price of a sample of algorithmic trades generally is sig-

nificantly smaller than the differences between pre-trade (or post-trade) benchmarks

and the execution price. Post-trade benchmarks aren’t reasonable for measuring the

market impact. But some investors or traders may desire the execution near the

closing price for some reasons, (see Kissell (2006)).

Having a maximally objective view on the execution quality, several benchmarks

should be taken into account. Only one benchmark is not able to represent execution

quality as a whole.

A basic concept behind all execution benchmarks is the fact that trading is a

zero sum game. The sum of all market impact costs of all market participants is zero

which has to be considered by any measure of market impact costs. Otherwise the
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benchmark is biased and there are unexploited arbitrage opportunities, see Berkowitz

et al. (1988).

5.2 Implementation of Execution Strategies

Domowitz and Yegerman (2005) introduce a spectrum of different execution strate-

gies. They reach from unstructured, opportunistic liquidity searching to highly struc-

tured, precisely scheduled sequences of trading activity, generally linked to a certain

benchmark. An example of a highly structured trading algorithm is the VWAP strat-

egy. The unstructured strategies have the disadvantage that they generate in general

large execution risks. Satisfying the investor’s needs better and if some constraints

have to be fulfilled, more sophisticated strategies are needed. This can be realized

by using structured strategies and combining them with opportunistic components

in order to achieve favorable prices during the constraints are fulfilled. Coggins et al.

(2006) gives some introduction in algorithmic execution strategies, Obizhaeva and

Wang (2005) provides the possibility of optimal execution, taking market dynamics

into account.

5.2.1 Examples of Algorithmic Execution Strategies

Some examples of common execution strategies are presented in the following:

• The Arrival Price is the price of the security price at the moment before the

first order is sent. The basic idea of execution strategies with this benchmark

is to concentrate trading volume at the beginning of the trade, thus near the

arrival price to minimize volatility risk. Minimization of volatility risk leads to

fast execution and thus to high market impact. Every trader has to find his

optimal point on the efficient frontier of the execution, introduced by Almgren

and Chriss (1999).

A more enhanced strategy is the adaptive arrival price strategy of Almgren and

Lorenz (2007) where execution speed is updated in response to observed price

motions leading to a better formulation of the mean-variance tradeoff.
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• The TWAP execution strategy tries to reach the time weighted average price.

Such a strategy divides the trading period in equally sized time slots and dis-

tributes the order volume equally over these slots. Thus, the same amount of

shares is traded in each time slot.

The TWAP benchmark is given by:

TWAPi =
1

T

T
∑

t=1

pit {t} ∈ T (5.1)

where pit is the price of security i at time t.

• The VWAP trading strategy is very popular and is often used in the finance

industry. The underlying benchmark is the volume weighted average price

(VWAP) of the security i during a specified period T including all trades ob-

served at the market with price pit and size vit.

VWAPi =

∑T
t vitpit
∑T

t vit
{t} ∈ T (5.2)

More detailed information and some variations of VWAP definitions can be

found in Berkowitz et al. (1988) and Madhavan (2002).

VWAP strategies work similarly to the TWAP strategy. The given time horizon

where the trade ought to take place is divided in n (equal) sized time slots. In

every time slot a certain fraction of the overall trading volume is executed.

The executed volume per time slot divided by the overall trading volume in

this security at the market should thereby be constant. Thus, how large the

volume in each time slot is, depends on the historical trading volume of the

special security in this time period taken as an estimation for the overall trading

volume. Trading volume in equities is generally u-shaped over the trading day,

i.e. in the first and in the last trading minutes, trading volume per time unit

is extremely large and the minimum is around noon. A model predicting the

trading volume is presented in part IV.

Within a time slot, the algorithm may send limit orders to the market and then

wait for execution at favorable prices. When the end of the time slot nears,
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limits may become more aggressive and finally a market order is sent if the

execution is forced.

• The TVOL (target volume) strategy is more opportunistic and trades a con-

stant fraction of the actual overall trading volume in the security. Thus it is

a modification of the VWAP strategy and only takes actual and not historic

volume into account. There is no benchmark this strategy tries to beat. Before

the beginning of the algorithmic execution, the overall trading volume and thus

the duration of trading is not known.

Examples for opportunistic trading algorithms cannot easily be named because

there is no industry standard. Using these algorithms is much more challenging be-

cause on the one hand they may provide lower execution costs, but on the other

hand the handling of marginal constraints of the execution is more complicated.

One issue may arise especially when using schedule-driven algorithms. If the

algorithm always acts very periodically, other market participants can observe pat-

terns and take advantage of it. This leads to worse execution quality of the trading

algorithm.

Comparisons between different execution strategies are available in literature.

Kearns et al. (2004) compares one way algorithms as well as El-Yaniv et al. (2001).

Yang and Jiu (2006) and Domowitz and Yegerman (2005) provide approaches for

comparing different trading algorithms taking structure and performance into ac-

count.
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Part III

Market Impact Measurement
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Chapter 6

Introduction to the Market Impact

Measurement of a VWAP

Algorithm

The performance of mutual funds strongly depends on transaction costs. For high

frequency hedge fund strategies with a large turnover, transaction costs thus play a

crucial role. Very often the size of a fund is limited because too large sizes cannot

be traded profitably: given the price predictions usually the market impact increases

when trading volume becomes larger thus reducing the benefit of the strategy.

Transaction costs generally consist of two components: explicit costs including

exchange and broker fees and also implicit costs such as market impact. Market

impact is the interaction of a market participant’s own activity on the market. In

general the price observed at the beginning of a large trade is not equal to the actual

execution price - on average the execution price is worse. This effect plus the explicit

costs (fees) is also well known as implementation shortfall and discussed for example

by Demsetz (1968) and Perold (1988).

The current analysis is an empirical analysis of the market impact of a homoge-

neous set of algorithmic trades in the stock market from April 2008 to July 2010

on Canadian, European, Japanese, and US stocks. It is done with the help of
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a proprietary data set originating from real trading activity of the Lupus alpha

NeuroBayes R©Short Term Trading Fund. This data set covers more than 2 years of

trading activity on over 800 stocks in various countries (Europe, USA, Canada, and

Japan) and a trade volume of over 30 billion USD equivalent. The main advantage

of this data set compared to publicly available ones is given by the fact that sin-

gle orders of one market participant are identified and connected. Because of that,

the resulting market impact of the entire transaction can be measured. Without

connecting single orders, the orders usually are assumed to be independent which is

obviously not true. In that case, the trading strategy of a market participant cannot

be reconstructed. So the characteristics of the proprietary data set enables me to

provide rare empirical measurements to verify theoretical considerations.

The used trading algorithm is a so called VWAP (short for volume weighted av-

erage price) trading algorithm combined with a smart order router1. Its objective is

the execution of a algorithmic order within a given time at minimal execution cost.

It is realized by splitting up the size of the algorithmic order over the trading period

according to the entire trading volume profile. It is shown that the VWAP trading

algorithm is the strategy which produces the lowest market impact when taking the

current market impact models as a basis.

The current analysis is an approach motivated by the needs of a practitioner.

It provides several models describing the dependency between the market impact

and some description variables. I found the participation rate as the by far most

important variable to describe the market impact. As participation rate the ratio

between the algorithmic order size and the entire number of traded shares in the

respective period of time is defined. The first market impact model is linear in the

participation rate whereas the second one is based on a power law. The explanation

power of the linear model is improved with the introduction of an individualized

linear regression. By doing so, the linear regression parameters (slope and intercept)

are dependent on additional exogenous variables. For this purpose the linear model

is taken: when this route is taken for a portfolio optimization, it is much easier to

find an optimum in a multidimensional space since the model for relative transaction

1The purpose of the smart order router is to find the best trading venue in consideration of low exchange fees and
a good execution price.
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costs is linear in order size. In contrast to arbitrary functions there are very efficient

and fast optimization algorithms, such as Simplex and Gauss-Newton for linear and

quadratic optimization functions.

The model based on a power law is motivated by the results of the microstructure

theory and by a slightly concave curve (figure 8.2) observed in the data especially

for a wide range of participation rates.

The different markets behave quite similar in many aspects, but there are signif-

icant differences between the Japanese market and the remaining markets. This can

partly be explained by different regulations (such as the up-tick-rule in the Japanese

market and different tick size definitions).

Additionally, it can be shown that the VWAP trading strategy is the optimal

execution strategy taking the results of my market impact models into account.
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Chapter 7

Description of the Data Set

7.1 Trading Specifications

The underlying data sample of the current analysis contains all relevant informations

within a set of about 120.000 algorithmic trades from April 2008 to July 2010. The

data originates from the trading activity of the Lupus alpha NeuroBayes R©Short Term

Trading Fund1. Its stock universe consists of stock with a large market capitalization

(large caps) from Europe, USA, Japan and Canada. More precisely, the universe

consists of the 500 most liquid stocks in the USA. They are mainly covered by the

S&P500 index. The 250 most liquid European stocks belong to the universe as well

and also the 110 most liquid Japanese stocks and about 200 Canadian stocks. The

investment strategy is based on statistical arbitrage on a day to day basis.

The implementation of the investment strategy is realized with the help of a

trading algorithm. For trade execution, the orders are split over a given time period

and are executed incrementally, since large orders cannot be executed at once at an

attractive price (due to finite liquidity in the order book). The trading algorithm

works on the basis of a VWAP trading strategy. This means that the trading volume

of the algorithmic order is distributed over time, weighted by the entire trading

volume. Further details can be found in Fränkle and Rachev (2009).

All analyzed trades have the same trading period. In the US and Canadian

1http://www.ise.ie, Sedol: B1HMBP7

45



markets, this period encompasses in the last 15 minutes of the official trading hours,

i.e. from 3.45 pm to 4.00 pm ET. The trades in the Japanese market are executed

in the last 25 minutes of the trading day. The trading of European stocks is entirely

different in the sense that there are closing auctions with significant trading volumes.

So quite a large fraction of the algorithmic orders is executed in the closing auction.

However, the execution of the algorithmic orders starts during the continuous trading

session about 20 minutes before the closing auction begins.

The used trading algorithm tries to execute as much as possible with the usage

of passive limit orders in order to reduce the market impact and explicit transaction

costs.

7.2 Market Impact Definition

Market impact is defined as the interaction of the investors own order with the

market, i.e. how large is the price change influenced by this order? Therefore the

quantity “market impact” is described by a price difference between a benchmark

price, which should as little as possible be influenced by the own order, and a price

incorporating the full impact. In the current analysis, I take the relative price change

rs between the average execution price Pvwap and the arrival price Parrival

rs = d · Pvwap − Parrival

Parrival

(7.1)

where

Pvwap =

∑

i pi · qi
∑

i qi
(7.2)

The direction d is 1 for buys and -1 for sells, pi is the execution price of the i-th partial

fill and qi is the corresponding size. The arrival price Parrival is the current stock

price ultimately before the order arrives at the exchange. The average execution

price is the volume weighted average price (vwap) of all transactions of the specific

order during the trading period.

Note, however, that this relative price difference contains also the externally

triggered price movements which are not part of the market impact of the own
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order. So the price change rs can be written as a sum of two components:

rs = re + I (7.3)

As mentioned above, one component is the stock price move re which is induced

by external influences. The second component is the market impact I of the own

trade which is analyzed here. To get rid of this effect the market impact definition

is modified in equation 7.1 as the mean value of the distribution of rs (averaged

over different stocks and days). The advantage of this definition is that the mean

value of the re distribution is 0, so the mean value of the rs distribution is an

unbiased estimator for the empirical market impact. The reason why this assumption

is reasonable, is market neutrality (dollar and beta2 neutral) of the fund’s investment

strategy. Therefore the trades are also market neutral and market movements do not

affect < rs >
3.

For these reasons the market impact of a trade can be defined as:

< rs >=< re > + < I >=< I > (7.4)

without having a bias in the data. Although the externally induced return does not

contribute to the average impact < I >, it dramatically increases the variance of rs.

Therefore the width of the distribution of rs is dominated by the external induced

price movements. Hence the market impact can only be measured significantly with

enough statistics.

The rs distributions for the different markets are shown in the figures 7.1, to-

gether with the statistics in table 7.1. It is quite notable that the distribution of the

transactions in the Japanese market has a strong peak at 0. This peak is explained

by large tick sizes for many stocks, leading to a higher probability of unchanged stock

prices. The average tick size over the execution price, measured for the European

universe, is 4.7 BPS, for the US stocks 3.7 BPS and for the Japanese ones 18.0 BPS.

2beta factor, known from the CAPM (Capital Asset Pricing Model)
3< x > mean value of a set of numbers x1, x2, x3, ..., xn

47



Figure 7.1: Distributions of the price change rs for the various markets, top left to bottom down:
Europe, Japan, USA, and Canada.

7.3 Comparison of Sell and Short-Sell Trades

For all sell transactions in the Japanese and US market the data provides the in-

formation whether the order was a long-sell or a short-sell. As explained in section

7.2 there is no bias in the average impact because < re >= 0 in equation 7.4. This

is not the case if taking only subsets of the trades into account such as buy or sell

orders. It is still reasonable to look at the difference between sell orders and short-

Table 7.1: Statistics of rs distributions

# trades mean error of mean RMS
Europe 42345 1.99 0.166 34.26
Japan 18766 5.04 0.22 30.7
USA 49169 2.41 0.11 24.67

Canada 5713 4.89 0.42 31.60
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sell orders. Although there is a nonzero < r
(short-)sell
e > as shown in figure 7.2 the

expected return of the market can be approximated to be the same for sell orders

and short-sell orders:

< rselle >≈< rshort-selle > (7.5)

Figure 7.2 shows the impact of trades in the Japanese and the US market for long-sell

and short-sell orders. The US equities’ impact distribution differs not statistically

Figure 7.2: Comparison of the rs distribution of long-sells and short-sells.

significant for long-sells and short-sells because the mean, standard deviation, skew-

ness and kurtosis of both distributions cannot be distinguished by statistical tests.

This is not the case for the trades in the Japanese market where the means of both

distributions are significantly different 4. The difference between the Japanese and

the US market is due to a Japanese market rule, the so called ’up-tick rule’. For the

rule to be satisfied, the execution price for short-sells must be equal or above the

last traded price of the security. So there is a bias in the execution of short-sells in

getting better prices for short-sells. This comes for the price of a lower execution

4The statistical error of the mean σµ is defined by σµ = σ/
√
n where σ is the standard deviation of the impact

distribution and n is the number of observations.
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probability.
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Chapter 8

Market Impact Model

The dependencies between the observable description variables and the market im-

pact is analyzed. As the most important variable, the participation rate is identified.

It is defined as the ratio between the size of the algorithmic order of which the market

impact is measured, and the entire number of shares of the security traded in the

same time period. The profile plot1 depicting market impact over participation rate

suggests a slightly concave curve, as it is also observed by Almgren et al. (2005). As

mentioned earlier, I provide two alternatives to explain this relation between partic-

ipation rate and market impact. The first proposal is a simple linear model and the

second is a power law model.

8.1 Linear Model

Due to the technical reasons, a linear model may be preferable for some applications

(see for example chapter 9). Additionally, it has the advantage that it can easily be

implemented in a portfolio optimization algorithm without increasing the complexity

of the problem (see appendix B). It also can be motivated by the fact that it is the

first term of a Taylor expansion and a good approximation for a small range of the

1average impact per bin of participation rate, see appendix A
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participation rate. The linear model is given by the following function

M(v) = m · v + b (8.1)

where M is the market impact and v the participation rate. m and b are the param-

eters of the model.

The maximum likelihood method is used for the parameter estimation and an

asymmetric Laplace-distribution for the residuals r.

r(x) =
τ(1− τ)

σ
· e−ρτ (

x−µ

σ
) (8.2)

where ρτ is given by

ρτ (u) =
|u|+ (2τ − 1)u

2
. (8.3)

The parameters of the linear model (equation 8.1) m and b are estimated separately

for every market (Europe, Japan, USA, Canada) because it is reasonable to assume

that the different market characteristics lead to different market models. This effect

can be observed in the fit results (see table 8.1 and figure 8.1).

Table 8.1: Fit results of the linear model

scale, m intercept, b
Europe 55.924± 8.837 0.938± 0.197
Japan 123.377± 9.810 2.235± 0.394
USA 77.827± 6.149 1.797± 0.129

Canada 114.02± 22.890 0.997± 0.280

8.2 Power Law Model

The various profile plots which show market impact over participation rate, suggest

a slightly concave model, which is also in line with the existing literature (see for

example Almgren et al. (2005)). Especially for larger ranges of the participation

rate, the concave model fits the observations much better. Therefore a power law
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Figure 8.1: Linear market impact model, market impact over participation rate; top left to bottom
right: EU, JP, USA, CN.

model is proposed, defined by:

M(x) = m · va + b (8.4)

Here, two slightly different interpretations of the power law model for the market

impact are suggested for the different markets. The first approach is similar to

the one of the linear model, where all parameters are estimated separately for each

market. The results of this fit procedure can be found in table 8.2.

The second approach is different in the sense that the parameter m and b are

estimated separately for each market, but the exponent a is estimated together for

all markets. This has the advantage that the complete data sample can be used to
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Table 8.2: Fit results of the power law model, each market fitted separately.

scale, m exponent, a intercept, b
Europe 12.992± 8.362 0.437± 0.222 −0.247± 0.947
Japan 40.275± 24.602 0.511± 0.208 −1.112± 1.427
USA 30.320± 21.972 0.686± 0.210 1.231± 0.374

Canada 20.061± 15.685 0.423± 0.241 −0.221± 1.327

estimate the parameter, leading to lower statistical uncertainty of the fit results. The

likelihood function of this parameter estimation can be written as

L =
∏

i

Li (~vi, ~yi, ~pi) , (8.5)

where i represents the different markets (EU,US,JP,CN). The parameter set of mar-

ket i is given by ~pi = (mi, a, bi). Li denotes the likelihood function for one market

which can be written as

Li (~vi, ~yi, ~pi) =
N
∏

j=0

r(M(vji )− y
j
i ) (8.6)

where ~vi is the sample of participation rates and ~yi are the price changes in market

i. M(v) is defined by equation 8.4 and r(x) is the residual distribution, see equation

8.2.

Furthermore, it seems reasonable to take the same exponent for more than one

market, because the estimated exponents are quite similar in all 4 markets (see table

8.2). They do not differ significantly on a 95 % significance level, when using the error

propagation on the difference of the estimated parameters with their uncertainty2.

The results of the combined fit including all 4 markets (EU, US, JP, CN) can be

2The difference of the estimated parameters for different measurements is calculated. The error of the difference
can be estimated with the help of error propagation, see equation 8.7, 8.8 and 8.9.

µ = µ1 − µ2 (8.7)

σ2 =

(

dµ

dµ1
· σ1

)2

+

(

dµ

dµ2
· σ2

)2

(8.8)

σ2 = σ2
1 + σ2

2 (8.9)

54



found in table 8.3. The exponent is, by definition, the same for all 4 markets and is

estimated as 0.534± 0.115.

It is notable that there is evidence for a negative intercept of the Japanese market.

A negative intercept in this model does not make sense, because this means that very

small trades create negative costs which would imply the possibility of arbitrage.

This fact and the a priori knowledge that the Japanese market behaves differently

than the other markets with respect to regulations (such as up-tick rule (see 7.3))

motivates me to modify the fit procedure and remove the Japanese market. The

effect of the negative intercept can be explained by the up-tick rule because short-

sells have an execution probability significantly lower than 1. So the up-tick rule

which affects only the short-sells in the Japanese market leads to a bias which can

be explained as follows: If the execution price is higher than the arrival price, a

very high percentage of the short-sells should be executed and the measured market

impact for these trades is negative. If the execution price is lower than the arrival

price, the execution probability is worse (fewer shares are traded) and the measured

market impact is large. So there exists a bias towards lower market impact in the

Japanese market using the current method to estimate market impact. In spite of the

knowledge about this effect, there is no obvious solution to circumvent this problem

and integrate the Japanese data in the analysis. Assuming removal of the short-sells

for the Japanese market, this bias would be lost, but another bias may appear: the

assumptions for the negligence of the market movement in section 7.2 would be hurt.

The results of the fit with the European, US, and Canadian market can be found

in table 8.4. Figure 8.2 shows the corresponding plots.

Comparing the statistical uncertainties of the parameter estimations of table 8.1

Table 8.3: Fit results of the power law model Europe, Japan, USA and Canada together

scale, m exponent, a intercept, b
Europe 15.872± 6.017 0.534± 0.115 0.095± 0.521
Japan 42.939± 15.577 0.534± 0.115 −0.980± 0.680
USA 18.996± 7.160 0.534± 0.115 0.957± 0.344

Canada 26.816± 11.432 0.534± 0.115 0.256± 0.807

on the one hand and tables 8.2, 8.3, and 8.4 on the other hand, it is conspicuous that
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Table 8.4: Fit results of the power law model Europe, USA and Canada together

scale, m exponent, a intercept, b
Europe 16.345± 7.500 0.547± 0.143 0.131± 0.557
USA 19.801± 9.412 0.547± 0.143 0.982± 0.389

Canada 27.774± 13.726 0.547± 0.143 0.302± 0.860

the scale parameters of the first table are estimated with more statistical significance

than in the remaining tables. This is explained by the error estimation method of

the parameters and their correlations. The model parameters scale, intercept, and

exponent are correlated. By slightly varying one of the model parameters, a solution

for the remaining parameters can be found describing the data set almost as good

as the optimal solution. The errors of the parameters which are estimated by the

maximum likelihood procedure can be estimated by varying one parameter until the

likelihood function rises by 0.5. During the variation of this parameter, for all other

fit parameters, the maximum of the likelihood function has to be found (see Blobel

and Lohrmann (1998), p. 189-191). It have been done a thorough analysis of the

regression errors and have been rather conservative in the error estimate. To convince

the reader of the significance of the findings two Null-Hypotheses are tested: keeping

on the one hand the intercept equal to 0, the slope is significantly different from

0. And likewise on the other hand if the slope is kept equal to 0, the intercept is

significantly different from 0.
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Figure 8.2: Power law market impact model, market impact over participation rate; top left to
bottom right: EU, USA, CN.
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Chapter 9

Individualized linear regression

analysis

In this section the simple linear regression model is improved by using an algorithm

described in Scherrer et al. (2010). The algorithm is an advanced linear regression

model in which the slope and the intercept of the regression are allowed to be de-

pendent on every single event. This model applied to the impact analysis generalizes

the equation of the simple linear regression

ti = mvi + b+ ǫi (9.1)

ti = m(x1,i, ..., xn,i)vi + b(x1,i, ..., xn,i) + ǫ̃i (9.2)

where ǫi is the residual of event i and vi is the volume fraction. The slope m and

the intersect b are not constant any more and can depend in a nonlinear way on the

additional description variables x1, ..., xn.

This ansatz is reasonable because already the simple linear regression describes

the impact quite well but it is interesting to understand the corrections to the linear

model with respect to some external variables such as volatility of the specific stock,

tick sizes, market capitalizations etc.

It is used the individualized linear regression instead of the power law for some

practical reasons. A market impact model may be used in a portfolio optimization
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performed by a trader. The trader takes the predictions for the stock market returns

into account, but his trades in turn will influence the stock returns. Thus, a portfolio

optimization has to be fast and the solver for the optimization problem is much faster

for a linear impact model.

In the next two sections the basic idea of the algorithm will be presented and

also the results and improvements compared to the simple linear regression model.

9.1 The individualized linear regression algorithm

The details of the individualized regression analysis are described in Scherrer et al.

(2010).

The first step is to transform the input variables x1, ..., xn to be uniformly dis-

tributed. This means, by definition, a histogram of the specific input variable has

the same amount of events in every bin. In the next step the input variable is di-

vided into k bins. The parameters m and b and their errors are estimated for every

bin of the input variable. In order to make the algorithm robust against statistical

fluctuations a spline fit is used additionally to smoothen the dependencies of m and

b on the specific input variable. This procedure is done for all input variables.

For one event i there is one prediction for mi and bi for each input variable. That

means that there are n predictions for mi (bi). It is required to end up with one

prediction only for mi (bi) of a certain specific event. The easiest ansatz would be

to average the m’s and the b’s to get

mi =
1

n

n
∑

j=1

mj bi =
1

n

n
∑

j=1

bj (9.3)

But this choice is not optimal. The prediction coming from a variable with a high

correlation to the target ti should have a larger weight than the prediction coming

from a weakly correlated variable.

A problem could also appear if vector ~x is introduced in which all the components

are highly correlated to each other. The algorithm should recognize such correlations

and make sure that the statistical significance of the correlation between the input
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Table 9.1: Input variables for the individualized linear regression analysis

input variables
market-return-arrival-close
dir-market-return-arrival-close
dir-market-return-eq
vola
rel-ts
liquidity
t
volume-fraction
market-cap

variables and the target is not increased by introducing further redundant variables

which are highly correlated to the rest of the variables.

Obviously, I would like to use an algorithm which can deal with correlations

among the input variables and which is able to decide if a variable has a statistically

significant correlation to m (b) at all. If there is a large correlation of a variable

and m (b), the weight of the estimator should be larger than the weight given to an

unimportant variable. And if the input variables are correlated among each other

the algorithm should treat these correlations correctly.

For this kind of problem the NeuroBayes R©software 1 can be used which is de-

scribed in Feindt (2004). The n predictions for mi, the n predictions for bi and the

variable vi as input vector (details see Scherrer et al. (2010)) are used. The target is

defined by the execution price.

9.2 Input variables of the individualized linear regression

As there is not enough statistics for the Canadian market, there is only taken the

Japanese, the European and the US market into account.

To understand the underlying dynamics of execution price and impact, some ap-

propriate variables (see table 9.1) are introduced and the improvements to the simple

linear regression model are analyzed. This analysis should describe all dependencies

1Developed by Phi-TR© Physics Information Technologies GmbH
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of the parameters m and b on the input variables. Therefore, additional variables

will be used which does not include only past information, but also variables which

include information on the future.

The execution price for a specific stock is firstly dependent on the return of the

stock which would have taken place without the order of the market participant and

secondly on the impact of the order, according to equation (7.3).

Note that the return of the stock which was traded must not be used as input

variable, because the return already includes its impact. Therefore it is not reason-

able to explain the impact using an input variable which already includes the impact.

However, the impact of the order on the underlying stock market index (EuroStoxx

50 for Europe, S&P 500 for the USA, Nikkei for Japan) can be neglected and instead

an input variable is defined using the index return.

The following variables for the model are defined:

• “market-return-arrival-close” denotes the return of the stock market index in

the trading period

• “dir-market-return-arrival-close” denotes the return of the stock market index

multiplied with the direction the stock was traded (+1 for a buy and −1 for a

sell)

• “dir-market-return-eq” is defined by the stock market index return in the trading

period multiplied with an estimator of the beta-factor2. The beta-factor is

estimated from historical data and does not include information of the future.

• “vola” is an estimator for the volatility

• “rel-ts” is the relative tick size of the stock (tick size divided by the arrival price

when the trading period begins)

• “liquidity” is defined by the traded volume in Euro (for the specific stock) at

the trading day

2The factor β is defined for an asset i in the CAPM (see Sharpe (1964)) as βi =
cov(ri,rM )

σ2(rM )
where ri is the return

of the asset i and rM is the return of a market portfolio.
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• The variable “t” is introduced reflecting the date to account for an explicit time

dependency of the parameters m and b.

• The variable “volume-fraction” includes the relative traded Euro-volume of the

specific stock compared to all stocks of the current universe at that day for the

market in which the stock is traded (Europe, Japan, USA).

• Finally for the market capitalization the variable “market-cap” is introduced.

9.3 Results of the individualized linear regression

My findings suggest that the variables “market-return-arrival-close”, “liquidity”,

“volume-fraction”, “market-cap” and “t” do not have any significant correlations

to the parameters m and b.

Due to the fact that the relative frequencies of buy and sell orders are equal, it

is not surprising that this variable is not important. Much more important is the

return weighted with the trading direction (“dir-market-return-arrival-close”). The

basic idea why this variable has been introduced is that the return of the asset is

generally correlated to the market portfolio. The influence of the market participant

on the market portfolio is negligible, so this variable should be a good estimator for

the return of the asset in the trading period as it contains information on the future.

It is included in the analysis to understand the underlying market components which

influence the execution price, but it cannot be used for prediction.

All information of the variables “liquidity”, “volume-fraction” and “market-cap”

is completely absorbed in the participation rate.

The most important effect in all markets investigated is a high correlation of the

parameters m and b to both the index-return weighted with the trading direction

(see figure 9.1) and to the index-return weighted with the trading direction and the

beta-factor (see figure 9.2). The dependency of the b-parameter on these two param-

eters is much more significant than the dependency of the m-parameter.

In the algorithm the last bin of the plots has a special meaning (see Scherrer

et al. (2010)): If some input variables are not known or believed to be wrong for

some events, one can activate a special flag for these events. Hence there are two
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Table 9.2: Structure of the tick sizes in Europe.

price of share tick size
0 EUR - 9.999 EUR 0.001 EUR
10 EUR - 49.995 EUR 0.005 EUR
50 EUR - 99.99 EUR 0.01 EUR

100 EUR - ∞ 0.05 EUR

different possibilities:

The first possibility is to define a variable that is not known (or not correct)

for all events. Consequently those events which are not known (or incorrect) are

separated in the last bin. The parameters m and b are then estimated for this input

variable bin and afterwards not included in the spline fit3. The second possibility is

that there are no events in the training sample which are filled in the last bin. Then

the estimator of m (b) is defined by the mean of all other bins.

If the user has adjusted the parameters of the prediction model on historical data

and would like to use the results to forecast an event in which the variable is not

known (or wrong), the estimator of the special bin is used.

In figure 9.3 it can be seen that the parameter b is significantly correlated to

the relative tick size but only in the US and in the Japanese market. A possible

reason could be that the definition of the tick size in Europe is relative to the price

level (see e.g. the tick size structure at XETRA in table 9.2) whereas in the USA

tick size is absolute 1 cent and constant for all stocks. The tick size definitions in the

Japanese market lead to extremely large relative tick sizes (tick size over stock price)

for some stocks. This is also valid for US stocks with a low absolute stock price. It

is different to the European market where the tick size depends on the price of the

stock (the rules are similar for all European exchanges). This leads to quite small

relative tick sizes for all European stocks. Maybe the European tick size definition

is responsible for the independence of tick size and execution price.

The parameters of the model are also slightly dependent on the volatility but

only in Japan and in the USA (figure 9.4). While the parameter m is fairly constant

3It has a completely different meaning compared to the rest of the bins, so the assumption that m and b are
smoothly depending on the input variable is not valid for the last bin.
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Table 9.3: Comparison of the results coming from the simple linear, the individualized linear
regression model, and the model based on power law.

simple linear
regression

individualized
linear regression

relative im-
provement of
ind. lin. reg.
compared to
simple lin. reg

power law (sep-
arate markets)

power law, mar-
kets fitted to-
gether

madEU 25.114 22.168 11.7% 25.116 25.115
σEU 34.608 31.053 10.3% 34.613 34.612

madUS 16.307 14.726 9.7% 16.308 16.307
σUS 23.657 21.910 7.4% 23.655 23.655

madJP 22.634 21.014 6.2% 22.534 xxx
σJP 30.529 28.513 6.6% 30.583 xxx

madCN 22.813 xxx xxx 22.035 22.034
σCN 31.510 xxx xxx 30.579 31.575

and independent of the volatility, the b parameter is correlated to the volatility.

As mentioned earlier the goal of the individualized linear regression applied in

this chapter is to find the importance of the underlying factors which are responsible

for the impact. The mean absolute deviation (mad) and the standard deviation σ,

which are defined as follows, are compared:

mad =
1

N

N
∑

i=1

|m(x1,i, ..., xn,i)vi + b(x1,i, ..., xn,i)− rs,i| (9.4)

σ =
1

N

N
∑

i=1

(m(x1,i, ..., xn,i)vi + b(x1,i, ..., xn,i)− rs,i)
2 (9.5)

In table 9.3 the results of the simple linear regression and the individualized linear

regression are summarized. The last column is the relative improvement of mad and

σ if the individualized linear regression is used. For the European market the simple

linear model can be improved approximately by 11%, while the US market and the

Japanese market are improved by 8.5% and 6.5% respectively. In the current analysis

I found that this effect is mainly based on the return of the underlying stock market

index as long as there is a dependency of the relative tick size and the volatility in
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the US and the Japanese market.

If a trader would like to use a market impact model for the portfolio optimization,

he would have to estimate the volatility and the volume which will be traded during

the trading period. These input parameters can be estimated quite accurately from

historical data. The relative tick size is also known before the trading period.

I have thus explained that the beta weighted return of the underlying stock

market index during the trading period is extremely important for the impact. This

variable decreases the variance of the residuals quite dramatically. But it is a problem

to estimate the return of the stock market index during the trading period a priori.

A trader can either have a mathematical model for the index return and utilize this

for the impact model. Alternatively he could relinquish the variable at all, which

would lead to a larger variance of the distribution of the residuals.
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Figure 9.1: Correlations of the parameters m and b to the stock market return of the underlying
index (see text) weighted with the direction of the trade.
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Figure 9.2: Correlations of the parameters m and b to the stock market return of the underlying
index (see text) weighted with the direction of the trade and the beta-factor.
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Figure 9.3: Correlations of the parameters m and b to the relative tick size of the stock.
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Figure 9.4: Correlations of the parameters m and b to the volatility of the traded stock.
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Chapter 10

Discussion of the Results

10.1 Theoretical Background

In order to appraise the results, I have to introduce appropriate research. Huberman

and Stanzl (2004) present a theoretical work of the relation between trading volume

and market impact. They define the realized market impact as a sum of a temporary

and a permanent component. They argue that the market impact function must have

certain characteristics. It is not allowed that there is a possibility of arbitrage when

trading a round turn in an asset (buy and sell the same amount of shares). This

leads to the result that the permanent market impact function has to be linear in

trading volume and the temporary function can have a more general form.

Figure 10.1 shows a schematic illustration of a typical average price evolution

during and after an algorithmic trade. Also the temporary and permanent compo-

nents of the market impact are presented.

10.2 Existing Empirical Measurements

Almgren et al. (2005) present an empirical analysis of the dependency between trad-

ing volume and market impact. Their data set contains algorithmic trades of the

Citigroup US equity trading desks. They measure the two components of market
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Figure 10.1: Scheme of price evolution during a algorithmic trade

impact separately (temporary and permanent). The permanent impact is defined as

the relative price change between the arrival price and the price about half an hour

after the trade was finished. The realized impact is the relative price change between

the average execution price and the arrival price. The difference between realized

and permanent impact is the temporary one.

To describe the functional form of the dependency between trading volume and

market impact they choose the following power law functions:

g(v) = ±γ|v|α (10.1)

h(v) = ±η|v|β (10.2)

where g(v) describes the permanent impact term and h(v) the temporary impact

term and v is again the participation rate. The realized market impact is the sum

of these two components, g(v) + h(v). The fit results are:

α = 0.891± 0.10

β = 0.600± 0.038 (10.3)

γ = 0.314± 0.041

η = 0.142± 0.0062
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Thus, the results are consistent with the theory in which the exponent α has to be

1 because of the absence of arbitrage. The theoretical value α = 1 is marginally

outside the 1 σ interval of the measurement and is therefore not rejected. The value

of the exponent β is 0.6, so the temporary impact function is concave.

10.3 Comparison of the Results

In the current analysis the realized market impact is described without the decom-

position into the temporary and permanent component. The current data set has

the property that the departure prices are always the close prices so there is no price

about 30 minutes after the execution. The possibility to take the open of the next

day has the disadvantage that there is usually a large price change (high volatility)

between the close and the open price. Additionally, there are overnight effects which

are unreasonable for the analysis. Hence, just the realized market impact is modeled

with the given concave function, e.g. 8.4.

Joining the two models, the one of this work and the one of Almgren et al. (2005),

one get the more general model:

M(v) = p1 · vp2 + p3 · v + p4 (10.4)

The power law term plus the intercept can be interpreted as the temporary impact

and the linear term can be interpreted as the permanent impact component. In this

analysis there is evidence for an intercept which is obviously ignored by Almgren

et al. (2005). Comparing the fit functions which are used in the two analyses with

the more general function 10.4, one can see that Almgren et al. (2005) provides a

lower bound for the exponent and this analysis provides an upper bound. The lower

and the upper bound respectively is the result of the withdrawal of one term from

the model 10.4. If the intercept term is removed the exponent is underestimated, if

the linear term is removed, the exponent is overestimated. This is shown with the

help of a toy Monte-Carlo simulation, in which the data is generated with the model

10.4. A model without the intercept term is fitted and also a model without the

linear term, the results are presented in table 10.1.
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Thus, the two measurements provide 0.600 ± 0.038 as the lower bound and

Table 10.1: results of the Monte Carlo simulation

p1 p2 p3 p4
original model 10 0.5 10 0.1

model with intercept=0 6.62 0.41 17.76 0
model without linear term 15.22 0.58 0 0.15

0.547± 0.143 as the upper bound. Without further information of the measurement

of Almgren et al. (2005), it is not possible to ascertain whether the two results are

compatible or not, taking the statistical uncertainties into account.

10.4 VWAP - The Optimal Trading Strategy

With the knowledge of the market impact models and the dependency of the market

impact on the participation rate, it is obvious to have a look on the optimization of

the trading strategy. It is assumed that the functional form between participation

rate and market impact is the same for different trading periods. For the presented

three types of models (the linear, the power law, and the individualized linear model)

it can be shown that the VWAP strategy is the optimal execution strategy.

This is demonstrated by splitting the trading period inN sub-periods and varying

the volume which is executed in each of the sub-periods. The market impact is

optimal with the constraint of full execution inside the given time period. This may

be written as follows:

f =
N
∑

i

(

m ·
(

vi

Vi

)β

· vi + b · vi
)

+ λ · (
N
∑

i

vi − v) (10.5)

Vi is the entire traded volume of the current stock in time period i, vi is the volume

traded by the certain trading algorithm in i and m, β, as well as b are the model

parameters. Parameter λ is the Lagrange multiplier of the constraint of full execution

and v the size of the algorithmic order which has to be executed.
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The result of the optimization of the entire market impact is:

vi =
Vi

V
· v ∀i ∈ [1, 2, ..., N ] and β 6= 0 (10.6)

and
vi

vj
=

Vi

Vj

(10.7)

This can be interpreted in the way that the volume of the algorithmic order should be

distributed over the given period of time, proportional to the entire trading volume

of the stock, which is exactly the idea of a VWAP trading algorithm.
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Part IV

Trading Volume Prediction
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Chapter 11

Trading Volume

The trading volume of a security in a given period of time is an important measure for

the liquidity of a security. Of course, it depends heavily on the market capitalization

and the free float of the company. Temporary trading volume fluctuations can be

influenced e.g. by strong trading interest triggered by corporate news, changes in

a stock market index composition or market movements. There are also significant

intraday and interday seasonalities.

As it is shown in section 10.4, the VWAP trading strategy is the optimal strategy

in order to trade large sizes in a given period of time. The idea behind the VWAP

strategy is to trade a constant fraction of the overall traded volume. The market

impact analysis in part III is a post trade analysis where the traded volume is already

known. During the activity of a trading algorithm the trading volume of the future

is not known, so it has to be predicted. The quality of the volume prediction has a

direct influence on the execution quality. In contrast to stock prices, trading volume

shows much stronger predictable patterns.

The following section presents a model to predict the trading volume per minute

of each stock of the universe for different time horizons in the future.
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11.1 Description of the Data Sample

The data set used for this analysis contains trading volume of about 500 of the most

liquid US stocks which are basically all covered by the S&P 500 stock market index

between January 2007 and July 2010. Trading volume is defined as the number of

stocks traded in a given period of time multiplied by the execution price. Figure 11.1

shows the average daily trading volume per stock of the universe over time. One can

see that the trading volume was quite high during the crisis in October 2008. In

2010 it is on a level which is about half of the level of 2007.

Table 11.1 shows the average trading volume per day for some stocks to get an

Figure 11.1: Average trading volume per security and day over time.

idea of how large the difference between the most and least liquid stocks can be. In

the period of time which is covered by the current data sample, Apple Inc is by far

the most traded stock in the USA.

The current data sample contains trading volume λijk aggregated per security

i, date j and trading minute k. Figure 11.2 depicts the average absolute trading

volume over stock and minute λ̂date
ik . The ticker are sorted by their liquidity. λ̂date

ik is
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Table 11.1: Ranking of US stocks by daily trading volume.

rank security avg daily volume in Million USD
1 Apple Inc 2700
2 Bank of America Corp 1500
3 Google Inc 1400
4 Goldman Sachs Inc 1300
5 Exxon Mobil Corp 1200
6 Citigroup Inc 1200
7 Microsoft Corp 1100
8 JP Morgan & Co 1000
9 General Electric Co 900
10 Intel Corp 800
...

...
...

98 Dow Chemical Co 180
...

...
...

200 Northern Trust Corp 90
...

...
...

400 AmerisourceBergen Corp 40
...

...
...

494 Unisys Corp 9
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the average volume over date per ticker and trading minute.

In order to be able to compare the volume patterns of securities with different

Figure 11.2: A(date) times average daily trading volume for each stock with log-scale.

liquidity, the trading volume λijk of security i, day j, and trading minute k is divided

by the sum of the trading volume over all trading minutes k of the current trading

day j and stock i to get the relative volume vijk of each minute per stock and date

vijk =
λijk

∑Nminutes

k λijk

(11.1)

where Nminutes denotes the number of minutes per trading day.

A very typical characteristic for intraday trading volume is the u-shaped pattern.

All stocks in the universe have high trading volume in the first trading minutes and

in the last ones as well as minimum around lunch time. Figure 11.3 shows the

volume profile v̂
(date)
ik where i is chosen to get the data of the stock of Apple Inc and

k = [1, ..., 390]. In order to predict the trading volume of a given security in a given

time interval, such typical trading volume profiles have to be considered.
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Figure 11.3: Normalized intraday trading volume profile of Apple Inc.
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Chapter 12

Dynamics of Trading Volume

In order to analyze the dynamics of the trading volume, several different averages are

calculated. The first one is the average over securities per date and trading minute

v̂
(security)
jk :

v̂
(security)
jk =

1

Nsecurities

Nsecurities
∑

i

vijk (12.1)

where vijk is the relative trading volume of security i, day j, and trading minute

k. Nsecurities denotes the number of securities in the data sample. The analogous

proceeding is done for the average over date per security and the trading minute:

v̂
(date)
ik =

1

Ndays

Ndays
∑

i

vijk (12.2)

where Ndays is the number of days in the data sample.

These mean values can be written in form of two matrices where the respective

columns represent the trading minutes and the rows refer to the different securities or

days respectively. In this form, each row of the matrix represents an average trading
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volume pattern per day or security. These two matrices are given by:

A(security) =









v̂
(security)
1,1 . . . v̂

(security)
1,Nminutes

...
. . .

...

v̂
(security)
Ndays,1

. . . v̂
(security)
Ndays,Nminutes









(12.3)

and

A(date) =









v̂
(date)
1,1 . . . v̂

(date)
1,Nminutes

...
. . .

...

v̂
(date)
Nsecurities,1

. . . v̂
(date)
Nsecurities,Nminutes









(12.4)

Nminutes denotes the number of trading minutes per day. Figure 12.1 depicts matrix

A(date). The stocks are ordered by their overall average daily trading volume with

the inverse order of the stocks as in table 11.1. There is a dominating u-shaped

pattern over the average trading day for each stock. This was already shown in

figure 11.3. After having a closer look, one can observe stock dependent patterns. In

the following section, these effects will be analyzed in more detail.

12.1 Singular-Value Decomposition of Volume Fraction Ma-

trices

In order to analyze the dynamics in the matrices A(security) and A(date), a SVD (sin-

gular value decomposition) to both of them is applied. The SVD is applied for two

intentions: The first aim is the decomposition of the matrices in their components.

These components can be identified, interpreted, and predicted (see section 12.2 and

12.3). The second aim of the SVD is noise reduction which is realized by a low-rank

matrix approximation (see section 2.2). This is done by the decomposition of the

matrix, and the removal of unimportant singular values. The insignificant dynamics

of the matrix is removed by that procedure. An approximation of the original matrix

is computed by just using the most important r singular values and vectors.

A SVD leads to a decomposition into three matrices: the first contains the left
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Figure 12.1: A(date) with log-scale.

singular vectors, the second contains the singular values and finally the third con-

tains the right singular vectors. Each of these components are related to special

characteristics of the original matrix. The right singular vectors describe the nature

of the rows of the original matrix whereas the left ones can be associated with the

features of the columns.

The results of the SVD of A(date) and A(security) are analyzed and interpreted be-

low. The plots of the singular values and especially the plots of the singular vectors

show very interesting effects.

12.2 Discussion of the SVD of A(date)

Figure 12.2 shows the 10 largest singular values of A(date). The first singular value is

by far the largest one. The relative value of a singular value, as compared to the sum
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Figure 12.2: Singular values of A(date).

of all singular values, is a measure of the importance of that corresponding singular

value and vectors, respectively. Because of the very fast decay of the singular values,

the low-rank approximation with r = 4 seems to be reasonable. Thus, just the first 4

singular vectors have to be considered which are presented in figures 12.12 to 12.17.

The length of the left singular vectors of A(date) corresponds to the number of

stocks, i.e. the number of rows of the matrix. According to that, the right singular

vectors’ length is equal to the number of trading minutes. In matrix A(date) the stocks

are already ordered by the overall average trading volume (liquidity) (see table 11.1).

Thus, the left singular vectors are also ordered in the same way as the rows of A(date).

The value 0 on the x-axis represents the security with the lowest trading volume.

A value near 500 represents one of the most traded stocks, for example the stock

of Apple Inc. Analogously, the x-axis of the plots of the right singular vectors, for

example figure 12.13, represents the trading minute from 9:30 AM EST (minute 0)

to 16:00 AM EST (minute 390).
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The first right singular vector is interpreted as the major shape of the intraday

trading volume which is the familiar u-shaped pattern. The value of the left singular

vector component describes the stock’s specific weight of the right singular vector.

Thus, the observed trends in the left singular vectors of A(date) lead to different

volume profiles for heavily and weakly traded stocks, respectively. The second to

fourth singular vectors with their corresponding singular values can be regarded as

corrections for the first one.

The second order correction adjusts the volume profile for heavily traded stocks

upwards in the first minutes of the trading day. And the peak in volume at the end

of the day is diminished. For weakly traded stocks the second order correction works

in the opposite direction because their values of the second left singular vector have

the opposite sign.

12.3 Discussion of the SVD of A(security)

The analysis for matrix A(security), with the help of the SVD is done in a similar

way as it is done for A(date). Figure 12.11 shows the singular values of A(security).

There is a sharp drop of the singular values after the third one, so most of the

dynamics is described by the first 3 singular values. Thus, I decide to make a low-

rank approximation with rank 3.

The singular vectors of A(security) have analogous meanings as those from A(date)

with the only difference that the left singular vectors describe the weights of the

days and not securities. The first right singular vector (see figure 12.12), shows

again the u-shaped pattern of trading volume during the trading day. This pattern

is as expected quite similar to the one which is depicted in figure 12.12 because it is

the overall dominating intraday trading volume profile.

The first left singular vector, describing the trading days of the data sample

from January 2007 to July 2010 (about 850 trading days) appears quite constant

from day 0 to around day 250. Subsequently there is an upshift until around day

500. From day 500 to the end it seems to be again quite constant. A very similar

but opposed pattern shows the second left singular vector with a downshift instead
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Figure 12.3: 1. left singular vector of A(date). Figure 12.4: 1. right singular vector of A(date).

Figure 12.5: 2. left singular vector of A(date). Figure 12.6: 2. right singular vector of A(date).

Figure 12.7: 3. left singular vector of A(date). Figure 12.8: 3. right singular vector of A(date).
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Figure 12.9: 4. left singular vector of A(date). Figure 12.10: 4. right singular vector of A(date).

of an upshift in the same period of time. It is interesting to observe that the financial

crisis in 2008 had a strong impact on the trading volume profile. The collapse of

Bear Stearns on March 16th 2008 is at day 278 in the current time scale, and the

collapse of Lehman on September 15th 2008 is at day 402 in the time scale. So the

upshift and the downshift of the left singular vectors were during the climax of the

financial crisis, respectively. By looking at the second right singular vector, it can

be seen how the crisis influenced the intraday volume profile. The correction of the

second singular vector is almost 0 in the time after the crisis. Before the crisis, the

second left singular predominantly has positive values. Together with the negative

peak in the last trading minutes of the second right singular vector, it reduces the

large peak in the trading volume pattern in the last trading minutes.

A possible explanation for this effect could be the decrease in the number of

intraday trading market participants, such as hedge funds or high frequency traders,

who cause a large trading volume during the day. An additional effect may be the

increasing number of passive investments, such as exchange traded funds (ETF)

which rather trade at the close.

The third singular vector also describes a very interesting and interpretable effect.

By looking at the third left singular vector, the vector components develop very

smoothly over time except some very large equally spread negative peaks. The days

with these large peaks are always the third Fridays in month. As it is generally
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Figure 12.11: Singular values of A(security)
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known, the third Friday of each month is the day of the expiry of the exchange-listed

equity options in the USA. Thus it can be expected that this effect has an influence

on the trading behavior of their underlyings. By having a look on the right singular

vector and keeping in mind that the peaks in the left singular vectors are negative,

one can see that the trading volume in the morning is higher and in the last trading

minutes it is lower compared to the other days.

89



Figure 12.12: 1. left singular vector

of A(security)

Figure 12.13: 1. right singular vector

of A(security)

Figure 12.14: 2. left singular vector

of A(security)

Figure 12.15: 2. right singular vector

of A(security)

Figure 12.16: 3. left singular vector

of A(security)

Figure 12.17: 3. right singular vector

of A(security)
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Chapter 13

Prediction of the Trading Volume

In order to optimize VWAP trading strategies, it is important to have good estima-

tions for the future trading volume. Trading volume has significant intraday season-

alities, which have to be taken into account for all kinds of predictions. Therefore,

a straight forward approach to model the trading volume with standard methods

such as ARMA-models, moving averages, or neural networks does not work. The

approach which is presented here decomposes the intraday trading volume into its

components and models them separately from each other. The predictions for each

of the components are eventually put together to form one final prediction. For each

of these components, common models can be used.

13.1 Absolute Trading Volume

The first step in modeling trading volume is to split up the absolute volume per day

for each stock and the relative intraday distribution. The current work is focused on

modeling the relative trading volume distribution and only use a simple model for

the absolute trading volume.

One way to estimate the absolute volume is to use the moving average of the

trading volumes of the specific stock of some days before. This method can be applied

before the trading day has begun. After the beginning of the trading day another
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method is reasonable. The observed trading volume up to the present minute m and

the expected fraction of the trading volume can be used for an estimation of the

absolute volume in a future minute. Assume vijk as the volume fraction of the stock

i and the current day j for minute k. Λijm is the accumulated observed absolute

volume until minute m. Now one can calculate the absolute trading volume pijn for

any minute n of the current trading day as follows:

pijn = Λijm · v̂in
∑m

l=1 v̂il
(13.1)

where n > m. The results of this method are getting better during the day when

the volume of more trading minutes is observed.

13.2 Relative Intraday Trading Volume Distribution

To estimate the relative volume distribution during the trading day, the results from

the SVD of the volume fraction matrices A(security) and A(date) are used (see section

12). In general both matrices can be used to estimate the volume fraction of a given

minute because both matrices contain mean values of volume fractions. Later on,

an approach is presented, which combines the two matrices to one single prediction

matrix.

Matrix A(date), also after the low-rank approximation, contains stock specific

mean values of trading volume fractions, which are directly estimators for future

volume fractions. The matrix A(security) certainly contains only data from the past

and has to be extended by at least one day (one row). This is done by treating the

left singular vectors as a time series and make a one-day-ahead prediction with an

appropriate time series model. For both matrices A(date) and the extended A(security),

a low-rank approximation is applied.

The expanded matrix A′(security) can be written in the following form:

A′(security) = U ′(security)Σ′(security)V ′(security)∗ (13.2)
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where A′(security) has the dimension m+1×m+1. Consequently also U ′(security) has

to have the dimension m+1×m+1, Σ′(security) has m+1×n and the dimension of

V ′(security) stays unchanged at n×n. Hence, the matrix is unchanged in the expansion

of the dimension, thus V ′(security) = V (security). The matrix Σ′(security) is expanded by

an additional row with 0 and only the 3 largest singular values are different from 0.

The remaining singular values are set to 0 due to the low-rank approximation.

Σ′(security) =























α1

0α2

α3

0

0
. . .

0























(13.3)

Now, matrix U ′(security) is calculated as follows:

U ′(security) =













U (security)

u1,m+1

u2,m+1

...

0 · · · 0













(13.4)

where ui,m+1 are components of the left singular vectors, which can be interpreted

as a time series and are predicted with a moving average model in this case.

The matrix A′(date) is just the low-rank approximation of A(date) with the rank 4.

A′(date) = U (date)Σ′(date)V (date)∗ (13.5)
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with

Σ′(date) =



























α1

0α2

α3

α4

0

0
. . .

0



























(13.6)

13.3 Verification of the Relative Volume Predictions

In order to get a prediction of the trading volume of a given stock i, day j, and

minute k, the above presented components have to be combined to a single number.

I propose a linear combination of v̂′
(date)

ik , v̂′
(security)

jk , and v̂
(security,date)
k as the prediction

of the relative trading volume of security i, day j, and trading minute k:

v
pred
ijk = a1·(v̂′

(date)

ik −v̂
(security,date)
k )+a2·(v̂′

(security)

jk −v̂
(security,date)
k )+a3·v̂(security,date)k +a4

(13.7)

v̂′
(date)

ik and v̂′
(security)

jk are the matrix elements of A′(date) and A′(security) respectively.

v̂
(security,date)
k denotes the average value of the volume fraction of minute k, averaged

over all stocks and days up to the latest day.

To verify the model, an out of sample backtest is done. To this end, the data up

to day j − 1 is taken to calculate the matrices A(date), A(security), and the inclusive

trading volume fraction profile v̂
(security,date)
k . In the next step, a SVD is applied to

the matrices. The matrix A(security) has to be extended by one day which is done

by the prediction of the components of the left singular vectors for the next day

(see 13.2). The result of the low-rank approximation of A(date) and of the extended

A(security) leads to two different estimations (v̂′
(date)

ik and v̂′
(security)

jk ) for the trading

volume fraction of the security i, day j, and minute k.

The parameters of the linear model (13.7) are estimated by fitting the model to

all events observed until day j − 1. For each day, another result for the parameters

is observed. As an example, the results of the parameter estimation at June 30th
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2010 are presented:

a1 = 1.061

a2 = 0.366

a3 = 1.148

a4 = −0.000466

The above described out of sample backtest is done day by day from November

2009 to August 2010. Figure 13.1 depicts the residual distribution of the volume

fractions. The residual distribution is very asymmetric because the volume fractions

Figure 13.1: Residual distributions of the trading volume fraction estimations.

vary extremely. For some stocks, trading minutes with more than 50 % of the daily

trading volume are observed. Additionally, the fraction of the trading volume per

minute, of course, cannot be lower than 0. These two effects result in a strong

asymmetry of the residual distribution.

In order to discover the quality of the predictions for the fractions of the trading

volume, the rms (see equation 9.4) and mad (see equation 9.5) are calculated for
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Table 13.1: Comparison of several estimations for the relative trading volume.

v
pred
ijk v̂′

(date)

ik v̂′
(security)

jk v
(date)
ik v

(security)
j−1,k

rms 0.003187 0.003188 0.003199 0.003185 0.003292
mad 0.001594 0.001614 0.001692 0.001611 0.001696

the prediction model and also for some alternative approaches. The alternative

approaches to predict the volume fraction are the appropriate matrix elements of

A′(date), A′(security), A(date), and A(security).

Table 13.1 shows quite interesting results. The difference of the prediction

power of v̂′
(date)

ik and v
(date)
ik is very small, i.e. the low-rank approximation of matrix

A(date) does not improve the prediction power. In contrast to that, the low-rank

approximation and the prediction of the components of the left singular vectors of

matrix A(security) does improve the prediction power. Another result is that the

prediction of the volume fraction with v
pred
ijk leads to the lowest mad. Nevertheless,

the rms of v̂′
(date)

ik is almost as good as the rms of v
pred
ijk . Thus, v̂′

(date)

ik or v
(date)
ik

seems to be also a good predicton. However, v̂′
(date)

ik (red) shows larger systematic

discrepancies for trading minutes near the close. This can be observed in figure 13.2

which depicts a profile plot of the residuals over the trading minutes. v
pred
ijk is the

blue curve and shows systematically good results for all trading minutes.
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Figure 13.2: Avgerage residuals of volume fraction predictions over minutes for v
pred
ijk (blue),

v̂′
(date)

ik (red), and v̂′
(security)

jk (green)
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Chapter 14

Conclusion and Outlook

At today’s stock markets, almost the entire transaction volume is traded electroni-

cally (more than 95% of the trading volume of the German market is traded electron-

ically; in 2009 high frequent trading is responsible for more than 60% of the stocks

traded in the US1). The important stock exchanges in the world provide electronic

trading platforms, the floor-trading is dying out or even already abolished. However,

not only the exchanges, but also most of the market participants, like brokers or

hedge funds, execute their order flow automatically with the help of trading algo-

rithms.

The current thesis originates from the needs of a smooth order execution system

for the Lupus alpha NeuroBayes R© Short Term Trading Fund. Therefore a trading

algorithm has to be developed in order to trade the investment decisions fully auto-

matically, especially in view of the need to transact over 500 stocks within a short

time period. In order to overcome this challenge, it was rather helpful to review the

appropriate literature about market microstructure and existing execution strategies.

Another important aspect of the current stock markets in Europe and the US is

fragmentation. By this, the fact is meant that there are several trading venues where

the same stocks can be traded. Because of different exchange fees, it may be attrac-

tive to send the orders to other trading platforms and not to the primary market

although the liquidity is still higher there. On the one hand the competition between

1source: http://www.nasdaqomx.com/whatwedo/markettechnology/marketview/marketview 3 2010/moving closer/
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the different trading venues leads to several advantages for the market participants

such as low fees and high quality exchange systems. On the other hand, it is much

more challenging to find liquidity which is often done by systems known as smart

order routers.

One of the main topics of the current work is the measurement and the analysis

of the market impact of transactions performed by the trading algorithm. The vari-

ables are investigated which describe the market impact of orders at stock markets

executed by a trading algorithm. The findings indicate that the by far most impor-

tant variable is the participation rate. Altogether, order executions in four markets

(Canada, Europe, Japan, and USA) are examined. The Japanese market behaves

differently compared to the other markets due to the up-tick rule for short-sells. The

market impact is biased towards lower values because the execution probability of

short-sells is small in bear markets if the up-tick rule is valid.

We provide a pragmatical approach of this measurement which is rarely done in

the literature. The reason for the latter may be that most publicly available data

sets cannot be utilized because the observed orders cannot be related to the market

participants and its consequential impact. Only if the set of (small) sub-orders be-

longing to a (large) algorithmic order can be identified as a whole and be followed

up, the market impact of large transactions can be measured.

A linear model describing the dependence between the participation rate and

the market impact is provided for all four markets. The linear model as input for a

portfolio optimization has the advantage that the optimization function is quadratic

in the order size which is much faster to solve. In order to improve the linear model

on the one hand and keep it linear in order size on the other hand, an individualized

linear regression algorithm is introduced. This algorithm allows to handle additional

description variables in the model. The stock market index movement during the

trading period of the algorithmic order is a quite important variable to describe the

market impact. It is not possible to predict the market impact with the help of

the market movement because this would contain future information, but it helps

to better understand the dynamics. The market movement of the trading period is

of course not known when trading starts. The volatility of the stock price is also

slightly correlated to the market impact. For the US and the Japanese markets there
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is a tick size dependency. This is not true for the European market. Thus, the tick

size definitions of the European markets are more efficient in that sense.

A comparison of the different models shows that there is no large difference in

the reduction of the mad and σ of the residuals. Except the individualized linear

regression reduces the width of the residuals due to the stock market movement as

an input variable. The linear models work well for a narrow range of the participa-

tion rate. Having a wide range of participation rates, it becomes obvious that the

functional dependence between participation rate and market impact is not linear

anymore but concave. Therefore, a power law is proposed as it is already done in

literature. For the combined measurement (EU,USA,Canada), the value of the ex-

ponent of the model is estimated to be 0.547± 0.143. The result is in line with other

similar measurements. It can be utilized to verify the considerations of the market

microstructure theory.

Additionally, it has been demonstrated that the VWAP execution strategy is the

optimal execution strategy for all the discussed market impact models.

The presented analysis of the market impact does not use all the information

available on the data set. All sub-trades of the algorithmic trades are cumulated per

stock, day, and trading direction. The evolution of the market impact in time is not

taken into account. Thus, it may be an interesting topic for future research to do a

“timescale decomposition” analysis, i.e. to investigate a fine time scale.

The quality of a VWAP execution strategy strongly depends on the quality of

the overall trading volume predictions. These predictions are necessary because the

strategy works optimal if a constant participation rate is realized. The participation

rate has to be calculated before the execution starts and therefore the overall trading

volume per time interval has to be known. Thus, I developed a model to predict the

trading volume.

As it is seen here, the average intraday stock trading volume distribution has a

significant u-shaped pattern. The trading activity is high shortly after the opening

and before the closing of the market. During lunchtime the average trading volume

has its intraday low. For intraday trading volume predictions of a certain time pe-

riod, this pattern has to be taken into account. In order to analyze the data for all

stocks of the US universe together, the minute-by-minute trading volume is normal-
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ized by the daily volume of each stock. Then one receive the relative trading volumes

per stock, date, and minute. The average values of the relative trading volumes over

security and date is calculated. These average values can be written in the form

of two matrices. The two matrices are analyzed with the help of a singular value

decomposition. This method has two main advantages. On the one hand it is able

to reduce noise and statistical fluctuations with the help of the low-rank approxima-

tion. On the other hand the resulting components (left and right singular vectors)

can be identified, interpreted, and predicted. It can be observed, for example that

the intraday trading pattern has changed during the financial crisis in 2008. Since

then, the average fraction of the daily trading volume in the last minutes of the day

has increased significantly. Another interesting observed effect is the change in the

pattern on the third Friday in every month. The third Friday of each month is the

day of the expiry of exchange-listed equity options. In these certain days the frac-

tion of the trading volume in the first minutes is higher and the fraction of the last

minutes of the trading day is lower. Additionally, the dependency of the intraday

pattern from the liquidity of the stock is observed. Stocks with low liquidity show a

larger fraction of the trading volume in the last minutes of the trading day.

The provided method to model and predict the intraday trading volume of the

about 500 most liquid stocks in the US market is a reasonable approach. It is able

to handle the very significant intraday trading pattern whereas other methods, such

as ARMA models or neural networks cannot be adapted easily.

Future research on the basis of the current model may focus on the improvement

of the prediction of the components resulting from the SVD. An ARIMA model can

be used to predict the additional components for one day ahead of the left singular

vectors. With the help of neural networks, the combination of the results of the SVD

may be improved.

The current work focuses on the prediction of the intraday trading pattern and

provides a quite simple approach to predict the absolute trading volume of the fu-

ture trading day. Another interesting topic for future research is the prediction of

the intraday pattern when the trading day has already started. After observing trad-

ing volume of the first minutes of the day, there is additional information which is

currently not used for the update of the intraday pattern.
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Algorithmic trading as it is known today has become very popular during the

last few years. There are high frequent trading strategies whose purpose is to make

profit with arbitrage, i.e. they buy a security at exchange A and sell it at the same

time at exchange B. They also try to detect and trade imbalances on a very short

time scale. These kinds of algorithmic trading strategies make markets efficient and

ensure fair prices at all trading venues. Their profit results from the bid-offer spread

if they provide liquidity and from inefficiencies caused by other market participants.

The dominance of algorithmic trading leads to smaller execution sizes at the ex-

changes worldwide. Thus, it has become more difficult to execute a large order at

once. That is the reason why many investors execute their orders with the help of

execution algorithms.

Altogether, stock markets have become more liquid and are currently more effi-

cient than in former times. The spreads narrowed with the rise of algorithmic trading

activity2. Now it is up to the regulation and the trading platforms to make the sys-

tems more reliable and robust to avoid undesirable market behavior, such as the so

called “flash crash” in May 20103.

2source: http://exchanges.nyse.com/archives/2009/08/hft.php
3http://www.sec.gov/news/studies/2010/marketevents-report.pdf

WSJ, October 6, 2010; http://online.wsj.com/article/SB10001424052748704689804575536513798579500.html
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Appendix A

Profile Histogram

Profile histograms are used to depict the inter-relation of two measured variables X

and Y . To this end, the mean value of Y and its statistical error is plotted for each

bin in X. These errors are calculated as root mean square (RMS) divided by
√
N .

N is the number of events in the particular bin.

Profile histograms are a very useful alternative for two-dimensional histograms

or scatter-plots. If Y is an unknown (single-valued) approximate function of X, this

function is displayed by a profile histogram with much better precision as compared to

a scatter-plot (see http://root.cern.ch/root/html/TProfile.html). This is illustrated

with the help of figures A.1 and A.2. Figure A.1 shows a scatter plot of the

variable Y (market impact) over the variable X (participation rate). It shows that

there are more events with a small participation rate than events with a large one.

Nevertheless, this plot clearly shows the possible functional dependency of X and Y .

Figure A.2 depicts the profile plot of the same data set. For each of the bins on the

X-axis, the mean value of Y is calculated and displayed. The vertical bars represent

the errors of the mean values. These errors are smaller in the bins of smaller X

values because the number of events per bin N is larger. The profile plot clearly

suggests a functional dependency of Y and X.
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Figure A.1: Scatter Plot.

Figure A.2: Profile Plot.
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Appendix B

Portfolio Optimization

The general objective of a portfolio optimization is the maximization of the expected

profit while keeping risk constant. Having predictions and the estimated risk, an

optimization software has to find the best allocation. The actual asset allocation

before the optimization is started is denoted by ~a(0), whereas ~a is the optimal asset

allocation to be determined. The expected earnings are given by

f(~a) =
n
∑

i=1

(

aiµi − I(ai − a
(0)
i )
)

(B.1)

where µi is the expected return of asset i and I is the impact depending on the

traded volume of the asset.

The market impact model describes the relative impact of an order. The cal-

culation of the expected profit takes into account the absolute costs of the impact.

Altogether the relative impact, coming from the impact model, is multiplied by the

traded volume leading to:

f(~a) =
n
∑

i=1

(

aiµi − (ai − a
(0)
i )(m(ai − a

(0)
i ) + b)

)

(B.2)

Using the linear impact model, the optimization problem itself remains quadratic

(QP). Using the power law, it ends up with a general nonlinear problem. Optimiza-

tion algorithms solve a linear (LP) or a quadratic problem much faster than general
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nonlinear problems. In a high frequency trading set-up, the optimization algorithm

has to be fast. Therefore the linear impact model has the great advantage of not

increasing the complexity of the optimization problem.
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