Proceedings of the 6™ AGILE
April 24™-26™ 2003 — Lyon, France

USABILITY OF GEODATA
FOR MOBILE ROUTE PLANNING SYSTEMS'

Martin Breunig and Wolfgang Bar

Research Center for Geoinformatics and Remote Sensing
University of Vechta
P.O. Box 1553
49364 Vechta
Germany

e-mail: (mbreunig,wbaer)@fzg.uni-vechta.de

1. INTRODUCTION

The impact of tele- and mobile information technology will increase the need for route
planning systems drastically [1,2]. However, hitherto many problems concerning the wireless
access to geodata are not yet solved. First experiences with existing systems in the leisure
time sector show that geodata cannot be accessed continuously, because the connection is
timed out or because data is not locally available. The requirements of route planning
systems to GIS technology mainly concern the modelling and management of graph-based
geodata. The efficient storage of the routes and the supply of location-based database
queries are new challenges to meet. Many database queries should be supported locally at
the mobile client device, because they only need access to data which is spatially located
near the user. That is why such queries should be processed without connection to the
server DBMS. However, today’s commercial database systems for mobile devices do not
support spatial database queries.

In comparison to today’s static route planning systems, a route planning system with
mobile devices should not only support the preparation of routes being realized by graphical
or textual route descriptions. But it should also support the user online during the tour, ride
or walk, with guide features.

2. REQUIREMENTS OF MOBILE ROUTE PLANNING SYSTEMS TO GIS
TECHNOLOGY

First experiences at our research centre with bicycle route planning systems [3]
showed that a route planning system with mobile devices should provide the following GIS
functionality separated into server and mobile client:

Server functionality:
e Computation, storage and visualization of different route types (e.g. shortest
routes between two arbitrary points, roundtrip route for a given point set);
e generation of routes under consideration of semantic information (e.g. tourist
information, roads with certain points of interest).

Mobile client functionality:

' This work has been supported by KFN, University of Vechta, Germany.

452 6" AGILE - Lyon 2003

e Database support for the location-based visualization of the route and
environmental data;

e offline data management of route data and tourist information (e.g. points of
interest);

o offline support of smaller changes of the route to reserve the user the possibility to
react flexibly on road works.

The offline support of tourist information leads to the transfer of large data sets to the
mobile device. Additionally to routes being generated by the server system, neighbouring
roads are candidates for possible updates of the route or detours. Tourist information near
the used route have to be stored in the mobile client DBMS. Hence a DBMS developer can
choose between two extreme possibilities:

1) Loading the complete road network at the beginning of the database session from
the server database to the client database and processing it further at the mobile
client.

2) Managing the road network at the server. Queries to the database are transferred
each time when needed "on demand” from the client to the server. The result of the
database query is transferred back to the client.

The drawback of the first possibility presented above is that the data sets are too large
(e.g. the bicycle network of Germany) to be transferred, managed or to be presented
graphically on today’s mobile devices. The second possibility, however, has the
disadvantage that a continuous connection between client and server has to exist almost
without disconnection. The frequent communication between server and client can easily
appear as the "bottleneck” between the application and the database management system.
Therefore, the following compromise seems to be a promising approach:

The primary route computation is done on the server database management system
and the computed route with the essential data set is transferred to the client database
management system. During the usage of the computed route, finer grained parts of the
road network and the tourist information are dynamically loaded — dependent on the current
position — for the further processing of location-based queries on the mobile database.

3. MODELLING AND MANAGEMENT OF GRAPH-BASED GEODATA
3.1 Requirements

For the modelling and management of road networks and routes, obviously graphs are
the best suited data types [4,5,6,7]. Additionally, in route planning systems different levels of
detail have to be distinguished to support the modelling and storage of hierarchies [6]. Using
hierarchical graphs, sub-graphs can be inserted into new nodes and edges of a graph. With
this extension nodes of different levels of detail can be connected with each other.
Furthermore, the navigation between nodes of different levels of detail can be realized. The
storage of graph-based geodata has to be organized in a way that graph algorithms like the
shortest way search [8] are supported efficiently. Furthermore, algorithms on hierarchical
graphs consisting of several sub-graphs and the distance search for routes of different levels
of detail have to be supported efficiently. A special problem is to find points of interest which
are outside the graph. To solve the problem additional context information has to be
represented in the database. To provide efficient route planning, the following types of
database queries on graphs have to be supported:

e Shortest way queries and context-specific queries (considering the amount of

points of interest, the degree of slopes, user profiles etc.);

Parallel Session 3.2 Data Usability 453

e navigation in graphs (predecessor, successor nodes and edges);
e search in hierarchical graphs (distinction between different levels of detail);
e spatial selection of sub-graphs (contains and intersects region query).

If using the route planning system without connection to the server DBMS, the route
data and relevant additional information have also to be managed in the DBMS of the mobile
device. The consequence is that large data sets have to be managed by the mobile client
DBMS. Furthermore, the access to local audio guides (e.g. to explain the landscape or
points of interest in a region) and to internet-based services like weather forecast services,
accessible via external wireless connections are of special interest [9]. The mobile client
DBMS should allow specific location-based spatial and non-spatial queries. The server
DBMS should provide kernel functionality like the support of region queries and the
navigation on nodes in a graph.

3.2 Using an XML-based DBMS
State-of-the-art

We follow Waterfeld [10] speaking of an XML database management system, if and
only if the database management system understands XML completely as its data model.
The schema then is defined in XML and the DBMS can store arbitrary XML instances.
Furthermore, the XML database management system returns the XML instances with an
XML-based query language. This implies the use of modern standards like XML Schema
and XPath. XML Schema and XPath have been developed for the description of schemes
and for the hierarchical navigation in nodes of a document (so called path expressions).

Comparable with the introduction of object-relational and object-oriented DBMS in the
eighties, XML database management systems can also be divided into two categories [10]:

1) Extensions on top of existing database management systems;
2) ’native” XML database management systems.

The first approach uses existing DBMS technology adding a new XML layer to model
XML data. The second, however, contains a totally new DBMS for the management of XML
data. Obviously, a third approach — the extension of existing relational or object-oriented
DBMS “from the side” — is not pursued by today’s DBMS vendors. In this approach it would
be possible to extend the DBMS at different layers like query language, access structures
etc. Most of the existing DBMS today have realized layer-based solutions on top of relational
or object-relational DBMS. However, there are also native XML database management
systems.

DBMS of the first category are IBM DB2® and Oracle 8i®. The advantage of these
systems is that proven database technology can be used. However, this advantage is paid
with the price of losing information during the mapping to other data models. This can lead
to bad performance, especially when very large data sets are processed. A representative of
the second category of DBMS is Tamino DB® [11]. This DBMS stores XML documents in an
optimized way without using other data models. It also provides XML database structures for
the physical storage of the data. The XPath Standard has been extended in Tamino in a
way that it can be used as query language for sets of XML instances. With the release of
XQuery [12], current working draft status of W3C, in the next versions of Tamino DB also a
standardized query language for XML documents will be supported. First prototypical
implementations based on this specification already exist.

® DB2 is a registered trademark of the International Business Machines Corporation IBM
® Oracle 8i is a registered trademark of Oracle Corporation
® Tamino is a registered trademark of Software AG, Darmstadt, Germany

454 6" AGILE - Lyon 2003

Using an XML-based DBMS for the management of geodata

To the knowledge of the authors, hitherto no solutions of XML-based DBMS for the
management of (graph-based) geodata exist. Generally, the following two approaches could
be used:

1) The extension of the DBMS directly for geodata (indexing, query) in the DB kernel;
2) alayer-based extension for geodata realized in the specific API of the DBMS.

The first approach is more efficient, because the extensions can be built in at a lower
system level. Furthermore, a "toolbox” for different classes of geo-applications can be
realized in the DBMS (e.g. for 2D/3D applications). The advantage of this solution is that the
classes do not have to be implemented from scratch for each application again (re-use of
the code). The disadvantage, however, is that the DBMS developers are dependent on the
further proceeding of specific geo-standards. That is why the geo-extensions often have to
be updated and adapted. The second approach is more flexible, because an adaptation of
the XML standard for geodata only has to be carried through for the current application
class. However, the portability of other application classes is more difficult. In the following
we give an example for the second approach (see also [13,14]).

An extension of Tamino API for the management of XML geodata

A straight-forward way to extend native XML DBMS is to extend their AP| used for the
access to the DBMS. In the following we describe an extension of the Java API of Tamino
DB. The extension can be divided into two parts. The first part contains the implementation
of a spatial R-tree based index [15] with a simple support of transactions. This
implementation is independent of the used DBMS. The second part is the extension of
Tamino API with interfaces and classes for the management and the access to XML
geodata.

The definitions of the Tamino API interfaces and classes being responsible for the
access to XML data could be taken over 1:1 into the geo-extension, just adding the
denotation "Geo” at the beginning of the interface-, class-, and methods signatures. The
implementation of the interfaces of the geo-extension has been realized by using a container
around the existing access classes. Therefore within the classes of the geo-extension a pre-
processing of the data takes place. Finally, the data are transferred to the implementation of
the wrapped class of the original Tamino API. In the current realization all XML documents
that contain a defined element "BoundingBox” are inserted into a spatial index. Furthermore,
the currently used XML query language of Tamino has been extended within the geo-
extension by the query types intersects, contains und nearestOf to be used in
spatial queries.

Currently, the storage of GML documents is not possible with Tamino DB, because the
XML Schema elements needed by GML are not yet completely supported in Tamino
Schema Language.

Modelling of graph-based geodata in an XML DBMS

There are several different possibilities for modelling graph data structures in an XML-
based DBMS. We enter into the following two ways of modelling:

1) Modelling graph parts as XML documents with their nodes, edges and pointers to
the neighbour graph parts;

2) modelling edges and nodes as single XML documents with pointers to their
neighbour edges and adjacent nodes.

The first possibility partitions the geometric region given by the graph data into equal
parts. Every part is modelled as an own XML document with pointers to the connected

Parallel Session 3.2 Data Usability 455

edges/nodes of the neighbour graphs parts. A positive aspect of this approach is that
spatially selected parts of the graph can be loaded with only one transfer call from the
database management system. However, a disadvantage is the larger size of the XML
documents, as most XML-based DBMSs (Tamino, Xindice) are designed for use with a large
number of small documents stored.

From that point of view modelling every edge and node of the graph as single
documents with pointers to their connected edges/nodes is the better modelling design,
because it keeps the size of the XML documents small. This design is also preferable, if we
need a database with high concurrency access to the node/edge data, since for example
Tamino DB's locking mechanism is based on the document level.

In order to achieve spatial access to the graph elements, the design has to follow the
restrictions given by the extension of Tamino’s API for the management of XML geodata
described above, i.e. inserting a “BoundingBox” element.

3.3 Using an OODBMS

Obviously, object-oriented database management systems (OODBMS) are well suited
to model and manage network structures as they are needed in route planning systems.
That is why we decided to test also a representative of an OODBMS as database
management system for our route planning application. The advantage of such a system is
to work with references which are well suited to model graph data. However, the OODBMS
technology still is a research field, which means that the tools provided for data input, output
and management are less comfortable than those of relational or object-relational DBMSs.
On the other hand, extending OODBMS with special access path (like spatial access paths
for geodata in arbitrary dimensions) is much easier to realize.

State-of-the-art

An OODBMS [16,17] provides the object-oriented data model completely as its data
model. Its schema is defined as classes and the OODBMS can store class instances, i.e.
objects. The OODBMS returns objects with an OQL-based query language or through
“walking” along references from named database roots. Index support is directly provided for
classes and their attributes. Following Heuer [17] we can distinguish between the two
following types of OODBMSs:

1) Newly developed object-oriented database systems (e.g. 0.®, ORION/ITASCA,
COCOON);

2) object-oriented database programming languages (e.g. Objectivity/DB®,
ObjectStore® etc.).

The first type of OODBMS are newly developed database management systems,
based on completely new designed object-oriented data models having neither the relational
model nor an object-oriented programming language data model as conceptual basis. In
contrary to this approach, object-oriented programming languages like C** or Java implicitly
support object-oriented modelling. What they fail in is an extension to store objects
persistently. Thus the second type of OODBMS - the object-oriented database
programming languages - extend the transient object-oriented programming languages by
data handling operations. In chapter 4 we present evaluation results with Objectivity/DB®, a
representative of the second type of OODBMS.

Using and extending an OODBMS for the management of graph-based geodata

® Objectivity/DB is a registered trademark of Objectivity Inc., USA

456 6" AGILE - Lyon 2003

Like with the XML-based approach, in an OODBMS we again have to choose between
the extension of the database kernel and the extension of the specific APls of the DBMS for
the management of graph-based geodata. As before, the second approach has been
selected to extend the OODBMS by management operations needed.

In the OODBMS the retrieval of arbitrary region based graph parts is needed.
Furthermore, efficient spatial retrieval of node and edge data or of different geocoded
tourism information data have to be supported. The different dimensional extents of node (0
D) and edge data (1 D) leads to the need of a spatial access method for zero- and
multidimensional data.

The spatial access method extension to Objectivity/DB is based on an R*-tree [18] with
algorithms for nearest neighbour search. This R*-tree is modelled — according to the above
second approach of extending a DBMS - as application objects of the OODBMS,
implemented in the application programming language Java. Thus the OODBMS is
responsible for transaction processing and concurrent access to the objects modelling the
R*-tree.

The graph structure in Objectivity/DB is represented as single node and edge objects
with connecting references. Every object in the database is indexed twice. Once by the
spatial access method for efficient region based access to graph parts and once by a B-tree
data structure for an ID based access for start and end nodes.

3.4 Using other DBMSs

There are also other candidates for the management of graph-based geodata like
object-relational database management systems (ORDBMSs). They also allow the
modelling of object hierarchies and networks as they are needed for the management and
processing of graph-based databases. ORDBMSs are based upon well known and proved
relational database technology, i.e. the query processing can be optimized by the Relational
Algebra and advanced tools for the input and output of data are available. The prize,
however, we have to pay by using ORDBMSs is that object hierarchies and networks are
mapped into “flat” relational tables. This leads to poor performance, if very large data sets
are involved. Nevertheless, further experiments with a representative of an ORDBMS and
an OODBMS, respectively, will follow in our future work.

4. EVALUATION WITH BICYCLE ROUTE DATA

Using the data of an existing local bicycle routing software [19], the given concepts
have been prototypically implemented. As server DBMSs, Tamino DB with the extension for
the management of XML geodata and Objectivity/DB have been used. At the mobile device
a simple spatial object store, based on the Java serialization feature, has been implemented
for prototypical experiments. Figure 1 shows two screenshots of the mobile client application
implemented in Java (PersonalJava Specification) on a Compaq iPAQ device.

The data set of the local bicycle routing software consists of 40,908 nodes connected
through 51,800 edges. The edges are weighted by their Euclidean distance connecting their
nodes bidirectional, so that there are no one-way streets. The whole routing area has an
extent of approximately 60 km horizontal, 80 km vertical and is located in the Oldenburger
Minsterland (near Bremen) in Lower Saxony, Germany.

For the prototype of the bicycle route planning system a multi-tiered system
architecture has been chosen. The layer for the primary route generation implementing a
modified version of the A*-algorithm with a heuristic for Euclidean graphs [13,20], is based
on a data broker component which dynamically loads needed graph data from the
underlying server DBMS.

Parallel Session 3.2 Data Usability

457

— COMPAG —
-
-

. 2 3 4 o
7| [0l
AT
- /g‘m

N

,<

[

917 3 \<

B

—

Fig. 2 Partitioning of the routing area with fringe-areas.

(S - start node, Z - end node, A - example node — see text for explanation)

458 6" AGILE - Lyon 2003

We focused our attention on comparing the run time behaviour between the “brusque-force
method” of loading the whole graph once into main memory and a non-optimized version of
a graph partitioning method which loads sub-graphs on demand into main memory as they
are needed by the way searching of the routing algorithm (fig. 2). Obviously, the first method
can be used for small graphs. However, it will fail to be used for very large graphs. For the
second method, however, a spatial cluster strategy should be used for further optimization.

The data broker component partitions the routing area given by the geometric location
of the start and the end node (fig. 2), into equal partitions. Each partition has 8 fringe-area
parts associated with their neighbour graph partitions. Even numbered fringe-area parts are
associated with all three touching neighbour partitions. Fringe-area parts with odd numbers
are only associated with the direct neighbour partition. If the routing algorithm requests a
graph element (edge/node) from the data broker which is lying inside one of the fringe-areas
(like node A in fig. 2), the associated graph partition(s) are loaded asynchronously into main
memory.

The dynamical loading guarantees that only the graph parts just needed for route
computation are loaded into main memory. Thus the memory consumption of the server
DBMS is significantly reduced.

4.1 First tests with an XML-based DBMS

Table 1 shows the performance of this primary routing operation on the XML-based
server DBMS Tamino. In the different columns, the time needed for the route computation,
the number of nodes and edges visited by the algorithm and the number of nodes of the
retrieved route are given, respectively.

As we can see, the use of the XML-based DBMS for this routing application is not yet
acceptable due to the impedance mismatch between storage structure and the needed
object representation of the routing algorithm. Despite that, the presented extension of
Tamino API for the management of XML geodata reduces the time needed for spatial
access to the XML documents drastically, especially with small result sets.

Routing time Nodes Edges Nodes on route Routing time/Nodes on route
(seconds) (count) (count) (count) (ms per node)

127.7 14442 18533 334 3824

62.1 7140 9172 226 2745

30.1 835 1088 66 456.4

Table 4 Performance of primary routing operation for the XML-based DBMS

4.2 First tests with an OODBMS

In tables 2-4 the query results for Objectivity/DB as a representative of an OODBMS are
given. The graph data is modelled as node/edge objects with references (see section 3.3).
In every approach the start and end node is retrieved by a B-tree index. For the two sub-
graph approaches the routing data is accessed only through the DataBroker component
loading the graph parts on demand into main memory. The different tables stand for the
following approaches:

Sub-graph approach with ID-network:

With this approach (see table 2) the node/edge objects are still provided for the routing
algorithm by the DataBroker using an ID-based data structure for references between nodes
and their edges. This approach is similar to that used in the XML-based DBMS which let us

Parallel Session 3.2 Data Usability 459

compare the routing times between that different types of DBMSs. Obviously, the query
times are by a factor of 2-3 faster than with the XML-based DBMS. However, there still is
needed too much time for the loading of the sub-graphs. These times are caused by the
mapping of the database objects and by the expense needed for the management of the
objects in the cache. Furthermore, the overhead caused by the database representation of
the objects has to be considered.

Routing time Nodes Edges Nodes on route Routing time/Nodes on route
(seconds) (count) (count) (count) (ms per node)

47.0 14442 18533 334 140.7

32.0 7140 9172 226 141.6

27.0 835 1088 66 409.1

Table 1 Performance of primary routing operation for the
OODBMS sub-graph approach with ID-network

Sub-graph approach with reference network:

That approach uses - in contrary to the sub-graph approach with ID-network - the
references between node and edges objects of the graph for providing the needed objects
by the DataBroker. This means that in this approach the algorithm is also waiting until the
sub-graph is loaded into main memory before proceeding with the algorithm. Therefore the
same number of sub-graphs has to be loaded like in the “ID-approach” (first approach in
table 2). The time profit of the references in comparison to the ID-based data structure in
total are 1-1.5 seconds in average.

Routing time Nodes Edges Nodes on route Routing time/Nodes on route
(seconds) (count) (count) (count) (ms per node)

46.0 14442 18533 334 137.7

30.0 7140 9172 226 132.7

26.0 835 1088 66 393.9

Table 2 Performance of primary routing operation for the OODBMS
sub-graph approach with reference network

References-only approach:

In this approach the routing algorithm exclusively runs on the references of the graph
element objects in the database loading only the node/edge objects needed by the routing
algorithm into main memory. As we see in table 4, this approach shows the best results for
the used route data sets. Only few objects, about by factor 6 less than for the other
approaches, had to be loaded. Whereas in the sub-graph approaches 700,000 objects had
to be loaded, in the references-only approach only 120,000 objects were loaded into main
memory through the routing algorithm processing (numbers are inclusive database specific
overhead objects).

Routing time Nodes Edges Nodes on route Routing time/Nodes on route
(seconds) (count) (count) (count) (ms per node)

8.4 14442 18533 334 251

5.7 7140 9172 226 252

3.2 835 1088 66 48.8

Table 3 Performance of primary routing operation for the OODBMS references-only approach.

460 6" AGILE - Lyon 2003

4.3 Interpretation of the results

Taking a look at the routing times for the different approaches, the references-only
approach seems to be best suited for route computation in an OODBMS. However, in the
context of a mobile routing application we not only intend to transfer the route itself, but also
the adjacent graph data in a reasonable range for orientation or detour planning to the
mobile client database. That is why not only the needed server side routing time has to be
taken into account. Whereas the two sub-graph approaches are loading the needed graph
data already into memory, the references-only approach has to do that time consuming job
afterwards before transferring the data to the client applications database system.

It should be noticed that the presented query results are limited to three single route
queries with different distance ranges between start and end node. The presented sub-
graph approach is likely to lead to better performance results if applied to very large graphs
or in a routing system with a large number of simultaneous routing queries. In that case
already loaded sub-graphs from other routing queries reduce the loading time for the
needed sub-graphs significantly. For such applications, the spatial clustering of sub-graphs
in the DBMSs and “intelligent” swapping strategies for sub-graphs in main memory cache
will play a central role. Further research with optimizing spatial cluster strategies for the sub-
graphs has to be done in order to reduce the running time of the dynamical graph loading
component. Using spatial clustering methods, the loading of spatially neighboured cells will
reduce the number of needed database pages. For very large graphs, also hierarchical
graph representations should be used and pre-computed routes should be provided as
“stored procedures” in the DBMS. Our first experiments with the object-oriented database
management system show that these systems seem to be well suited for this type of
application.

5. CONCLUSION AND OUTLOOK

In this paper we have introduced the modelling and management of graph-based
geodata to be used for mobile route planning systems. We showed the use of an XML
database management system and an object-oriented DBMS, respectively, in an application
of a mobile bicycle route planning system. Extensions of Tamino DB and Objectivity/DB
have been implemented and evaluated by a local bicycle routing software. In our future
work, we intend to test object-relational and object-oriented DBMS to be used for mobile
geological applications in modern geoservices. The challenges in the new project are the
acquisition, visualization and management of geological data by mobile client applications.
Experiences from earlier work with OODBMSs [21, 22] and geological 3D modelling systems
[23] will be helpful for these studies.

6. BIBLIOGRAPHICAL REFERENCES

[1] Brinkhoff, T., Requirements of Traffic Telematics to Spatial Databases. Proceedings of the 6"
Intern. Symposium on Large Spatial Databases, Hong Kong, China. Lecture Notes in Computer
Science No. 1651, 365-369, 1999.

[2] Zipf, A., Strobl, J., Geoinformation mobil, in German, Herbert Wichmann Verlag, Heidelberg, 2002.

[3] Schneeweill, H., Jung, S., "Fahrradies" — Planning Bicycle tours in the Internet. In German,
German ESRI User Conference, Munich, Germany, 8p., 2001.

[4] Agrawal, R., Jagadish, H., Algorithms for Searching Massive Graphs. |IEEE Transactions on
Knowledge and Data Engineering. 6 (2), 225-235, 1994.

[5] Becker, L., Glting, R.H., The GraphDB Algebra: Specification of Advanced Data Models with
Second-Order Signature. Techn. Report No. 183 — 5/1995, Dept. of Computer Science,
FernUniversitat Hagen, Germany, 36p., 1995.

Parallel Session 3.2 Data Usability 461

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Buchholz, F., Riedhofer, B., Hierarchische Graphen zur kiirzesten Wegesuche in planaren
Graphen. Techn. Report No. 1997/13, Institute of Computer Science, University of Stuttgart, 12p.,
1997.

Car, A., Hierachical Spatial Reasoning: Theoretical Consideration and its Application to Modeling
Wayfinding, Geoinfo Series, Vol. 10, Dept. of Geoinformation, Technical University of Vienna,
published Ph.D. thesis, Viennna, Austria, 1997.

Dijkstra, E.W., A Note on two Problems in Connection with Graphs. Numerische Mathematik (1),
269-271, 1959.

Giguere, E., Mobile Data Management: Challenges of Wireless and Offline Data Access.
Proceedings of the 17" Intern. Conference on Data Engineering, Heidelberg, IEEE Computer
Society, Los Alamitos, CA, 227-228, 2001.

Waterfeld, W., Realization aspects of an XML database management system, in German,
Proceedings Datenbanksysteme in Biro, Technik und Wissenschaft (BTW), Oldenburg, Informatik
aktuell, Springer, Berlin et al., 479-484, 2001.

Tamino, Tamino XML Server, Version 3.1 - http://www.softwareag.com/tamino/., 2002

W3C, XQuery 1.0 - An XML Query Language, W3C Working Draft (November 2002), URL:
http://www.w3.org/TR/xquery/, 2002.

Bar, W., Design and implementation of software-components for a route planning system with
mobile end-user devices, in German, Diploma thesis, Department of Geoinformatics, University of
Vechta, 112p., 2002.

Breunig, M., Brinkhoff, T., Bar, W., Weitkdmper, J., XML-based techniques for location-based
services. In German. A. Zipf and J. Strobl, Geoinformation mobil, Wichmann Verlag, Heidelberg,
26-35, 2002.

Guttman, A., R-Trees: A Dynamic Index Structure for Spatial Searching. Proceedings of the Annual
Meeting ACM SIGMOD, Boston (MA), 47-57, 1984.

Atkinson, M., Bancilhon, F., Dewitt, D., Dittrich, K., Maier, D., Zdonik, S., The Object-Oriented
Database Manifesto, 1989.

Heuer, A., Objektorientierte Datenbanken, Addison-Wesley, Bonn, 724p, 1997.

Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B., The R*tree: An Efficient and Robust
Access Method for Points and Rectangles. Proceedings ACM SIGMOD, Atlantic City, N.Y., 322-
331, 1990.

Fahrradies, http://www.fahrradies.net, 2002.

Sedgewick, R.; Vitter, J. S., Shortest Paths in Euclidean Graphs. Algorithmica 1 (1986), No. 1, pp.
31-48, 1986.

Balovnev, O., Breunig, M., Cremers, A.B., From GeoStore to GeoToolKit: The Second Step.
Lecture Notes in Computer Science No. 1262, Springer, Heidelberg, 223-237, 1997.

Breunig, M., Cremers, A.B., Mller, W., Siebeck, J., Examination of Database Supported Spatio-
Temporal Intersection Queries. Proceedings of the 6™ Intern. AGILE Conference on Geographic
Information Science, Palma de Mallorca, Spain, April 25™ -27", 195-204, 2002.

Mallet, J.-L., GOCAD: A Computer Aided Design Program for Geological Applications. Turner, A.K.
(Ed.), Three-Dimensional Modeling with Geoscientific Information Systems, NATO ASI 354, Kluwer
Academic Publishers, Dordrecht, 123-142, 1992.

