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A HIGH-EFFICIENT SCALABLE SOLVER FOR THE
GLOBAL OCEAN/SEA-ICE MODEL MPIOM

F. WILHELM!, P. ADAMIDIS2 AND V. HEUVELINE?

L Engineering Mathematics and Computing Lab, Karlsruhe Institute of Technology, Karlsruhe, Germany
2Scientific Computing, Deutsches Klimarechenzentrum GmbH, Hamburg, Germany

ABsTrACT. This paper presents the work of the "Scalable-Earth-System-Models for high pro-
ductivity climate simulations" project in improving the linear solver of the barotropic sub-
system in the global ocean/sea-ice model MPIOM developed by the Max-Planck-Institute in
Hamburg, Germany. We demonstrate the implementation of the conjugate gradient method
and an incomplete Cholesky preconditioner with fill-in p in order to achieve high scalability
and performance on an IBM POWERSG6 based supercomputer. Benchmarks of the new solver
compared to the traditionally used Successive-Over-Relaxation-Method are given and analyzed
with respect to the number of iterations and runtime.

1. INTRODUCTION

Climate change and anthropogenic influence on it, is one of the most important issues mankind
has to deal with in this century. It is an largely accepted fact that world climate is changing
because of higher CO4 emissions since the beginning of the second industrial revolution in mid
19'" century until today. The first consequences of global warming, like more frequent storms,
droughts and glacier melt appear worldwide and raise the question how climate will change in
the future due to man-made greenhouse gas emissions. The significance of this field of research
is obvious, given the fact that the United Nations Environment Programme (UNEP) established
the Intergovernmental Panel on Climate Change (IPCC) in November 1988 to coordinate global
research efforts in climate change and to provide an IPCC Assessment Report (IPCC AR) reg-
ularly. The crucial part of this report consists of climate projections provided by simulations
based on possible future scenarios of CO4 emissions which are of paramount importance to assess
the consequences of economic decisions now to be taken.

Earth-System-Models (ESMs) consisting of coupled components that describe physical and
biogeochemical processes in different parts of the Earth System (atmosphere, ocean, land, cryo-
sphere, biosphere etc.) have been developed for many decades to simulate different future sce-
narios. The recent advancements in parallel computing assume these models to be optimized for
scalability on modern hardware in order to enlarge the range of explicitly resolved phenomena
by increasing horizontal and vertical model grid resolution and to implement more sophisticated
descriptions of unresolved sub-grid processes. This would give more confidence in results of the
future climate change projections. The goal of the Scalable-Earth-System-Models for high pro-
ductivity climate simulations (ScalES) project funded by the German Bundesministerium fiir
Bildung und Forschung (BMBF No. 01IH08004E) is to improve the COSMOS ESM [4] in this
regard by means of advanced mathematical methods and modern programming techniques on
state-of-the-art hardware.

Key words and phrases. hpc, sor, cg method, icc(p), mpiom, climate simulation, mathematical modeling,
ocean model, barotropic subsystem.
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In this paper we present work done in the ocean/sea-ice model MPIOM developed by the
Max-Planck-Institute for Meteorology (MPI-M) to achieve better performance and scalability
on the world’s largest IBM POWERG installation in a single InfiniBand cluster at the Deutsche
Klimarechenzentrum (DKRZ), the German climate computing center, in Hamburg, Germany.

2. MoDnEL DESCRIPTION OF MPIOM

MPIOM is an Ocean General Circulation Model (OGCM) based on the ocean primitive equa-
tions on a curvilinear C-grid with z-coordinates and free surface [9]. The first version of MPIOM
was released in 1997 as a serial program written in FORTRAN 77. In 2000 the code was then
parallelized for the NEC SX6 vector parallel supercomputer, accompanied by a switch to FOR-
TRAN 90. Today the code encompasses roughly 40,000 lines of FORTRAN 90/95 code and uses
the Message Passing Interface (MPI) library with optional OpenMP for parallelization.

It is the successor of the Hamburg Ocean Primitive Equation (HOPE) model [13]. While the
horizontal discretization in HOPE was based on a staggered Arakawa E-grid, MPIOM makes
use of a curvilinear C-grid [2]. There are mainly two reasons for this transition. Firstly, the
C-grid is computationally more efficient than the staggered E-grid, because a higher horizontal
resolution can be achieved with the same number of grid points. Secondly, the E-grid model
required additional horizontal numerical diffusion in order to achieve convergence. MPIOM has
been applied in numerous scientific studies investigating different aspects of the ocean/sea-ice
dynamics and the ocean’s role in Earth System dynamics. Simulations with the coupled ESM
ECHAM-MPIOM have contributed to the IPCC AR4 and will also provide data for IPCC ARS.
In the remaining section the linear system that is solved in MPIOM is shortly derived.

The horizontal conservation of momentum equation for a Boussinesq fluid on a rotating sphere
with orthogonal coordinates is

d 1
(1) %u‘Ff(ZXU):_FVH(p+ngn)+FH+FV7

w

where u = (u,v) are the horizontal components of velocity v, ¢ is the time, f the Coriolis
parameter, z the vertical unit vector, p,, the reference density of sea-water, Vy the horizontal
gradient operator, p the internal pressure, g the effective gravitational acceleration and n the
sea-surface elevation. The total derivative is % =0 +u-Vyg +w-0,, where w is the vertical
component of v. The terms Fy and Fy describe the horizontal and vertical eddy viscosity.

Following [12] the conservation of momentum is now solved by decomposing u into its barotropic
u and baroclinic G components

0 —
u:/ udz, ﬁ:u—g,

—H

T

where H is the local depth of the sea. Applying this to (1) results in a barotropic subsystem

0
atﬁ+A(u,u)+f(z><ﬁ):—gHVHn—/ VHﬁdZ—i-FH-l-Fv,
—H

and a baroclinic subsystem

I -
dru+ A(u,u) — A(u,u) + f(z x 1) = H/ Vupdz —Vup+Fg +Fy,
—H

where p = p/p,, denotes the baroclinic pressure divided by the constant density and the advection
term given by

A(u,u) = (u-V)u+ wo,u.
Partially updating @ and @ with respect to the advection terms A(u,u), A(u,u) and viscosity
terms Fg, Fy, Fg, Fy by means of operator splitting techniques further reduces the barotropic
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and baroclinic subsystems. The baroclinic subsystem, together with an equation for the time
evolution of the internal pressure
A~ wg
0:0,p = —=0,p,

w
can be discretized in time by a forward Euler scheme and in space with finite differences with

respect, to the curvilinear C-grid concluding to an equation system that can be easily solved by
a fixed-point iteration scheme, provided the solution of the last time step is used as initial guess.
On the contrary the partially updated barotropic subsystem together with the barotropic
continuity equation
O+ Opu+ 0yv =0
results, after the discretization in time by forward Euler, in the linear equation system
"t — " — fAL (0" + (1 - a)d™)

D) 0
@) +gHAL (e + (1 — o)) + At/ prttdz =0
~H

7" — "+ fAE (aa™ ! + (1 - a)u™)

3 0
@ +gHAt (any ™ 4+ (1 - a)ny) + At/ pyttdz=0
—H

(4) "t — gt At (Bup T+ (1= Bl + Byt + (1 B)oy) =0,

with relaxation parameters o and (3, that cannot be solved in the same way. Solving (2) resp.
(3) for @ resp. © and substituting into (4) yields an equation system for 7" %! and its horizontal
derivatives n"*!1 and 17;‘“. Using finite differences to discretize horizontal derivatives on a
curvilinear C-grid with m unknowns in zonal, n unknowns in meridional direction and a total
of N = mn unknowns results in a Stieltjes matrix A = (a;;) € RV*¥N that is a real symmetric
positive definite matrix with non-positive off-diagonal entries, and a right hand side b € RV. A

is of block tridiagonal shape

Dy 5
S1 DQ SQ
(5) A= Sg R s
.S,
Sn Dnp
with diagonal matrices S; € R"™*™ and tridiagonal matrices D; € R™*™ 4 = 1,...,n. To

exploit this sparsity pattern the matrix can be reformulated as a five-point stencil as in Figure
la. The following sections discuss methods of solving this system of linear equations.

3. SOLVING THE BAROTROPIC SUBSYSTEM

In MPIOM the barotropic subsystem is formulated as a five-point stencil (see Figure 1a) on a
structured 2D grid realized by means of arrays. The desired solution n™*! is stored in an array
Z10(i,j) with ¢ = 1,...,m and j = 1,...,n, where i represents a zonal (west—east) and j a
meridional (north—south) coordinate. The corresponding barotropic stencil is defined as a set of
three 2D arrays FF for the central part, UF for the zonal arms and VF for the meridional arms of
the stencil at coordinate (7,j). Keeping the staggered Arakawa C-Grid in mind an application
of the stencil to Z10(4,j) translates to

FF(i,3) * Z10(i, j) — UF(i, j) * Z10(i + 1,j) — UF(i — 1,3) * Z10(i — 1, j)
—VF(i,j)*210(i,j + 1) — VF(i,j — 1) * Z10(1, j — 1).



A HIGH-EFFICIENT SCALABLE SOLVER FOR THE GLOBAL OCEAN/SEA-ICE MODEL MPIOM 4

Liicp—1) lii—2 lii—1 L

O

O

litmi litmit1 litmive litmitp

(a) Five-point stencil (B) Stencil of the ICC(p) factorization
of the barotropic sub-
system

FIGURE 1. Stencil structure of the barotropic subsystem and its ICC(p) factorization
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FIGURE 2. Boundary exchange of one partition (white area) with its neighbours.
The grey area represents one or more boundary halos [3].

Parallelization is accomplished by a uniform block decomposition of the 2D arrays into z =z -y
rectilinear partitions for a total of z processes with = partitions in zonal direction and y partitions
in meridional direction. Consequently any partition has four directly and four diagonally neigh-
bouring partitions as illustrated in Figure 2. Communication is performed through additional
boundary halos, implemented by appropriately enlarged arrays, that overlap the neighbouring
partitions and are updated with the according values each time a boundary exchange function
is called. In case of only one boundary halo, communication is only necessary with four neigh-
bouring partitions due to the structure of the stencil. Depending on the application, using more
halos reduces the number of necessary boundary exchanges. This results in shorter communica-
tion time per data, because of fewer communication operations and therefore fewer latencies.

Traditionally the barotropic subsystem was solved with Successive-Over-Relazation (SOR) in
MPIOM which is a splitting method based on wA = (D+wL)— ((1 —w)D —wU), where D is the
diagonal of A, L its strict lower part, U = L7 its strict upper part and w a relaxation parameter
with w € (0,2). Hence the iteration scheme is

(D4 wL)zpyr = (1 —w)D — wLT)x) + wh,
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which can be easily translated to a stencil formulation. Parallelization is done by a red-black
ordering that allows parallel treatment of points with the same colour. The drawback of this
ordering is the necessity of two boundary exchanges per iteration if only one boundary halo is
used. Therefore two boundary halos are used in MPIOM following the recommendations in [3].
The most important relaxation parameter w, with regard to the rate of convergence, is estimated
by a number of test calculations measuring the rate of convergence followed by manual fine
tuning. Still the SOR method proved to be insufficient in terms of a too large number of necessary
iterations that impairs the scalability of this method. Furthermore the SOR method provides
no implicit way to check for the quality of the current iteration, meaning that additionally the
calculation of a residual would be needed to assure the quality of the solution. In the current SOR
implementation this is omitted, meaning that one needs to preset a fixed number of iterations.
A major task in the ScalES project was to resolve these limitations by replacing SOR with the
conjugate gradient method.

3.1. Properties and Implementation of the Conjugate Gradient Method. For solving
a sparse symmetric positive definite linear system, the conjugate gradient (CG) method is one
of the best known iterative techniques [11]. It belongs to the class of projection methods onto
Krylov subspaces and was first proposed in 1952 [7]. The CG method consists basically only
of two building blocks: matrix-vector multiplication and dot product, whose efficient implemen-
tation determines much of the resulting scalability of the algorithm. Besides the operations in
each iteration, the overall number of iterations needed to satisfy a given tolerance is of utmost
importance. According to the convergence theory of CG, this number depends on the condition
number k(A) through the relation

llex |4 K(A) =11k
lleoll 4 = /<;(A)+1) ’

where ej, = 13, — x is the error in the k' iteration and || - |4 the energy norm. This inequality
justifies the application of a preconditioner M where (M ~'A) < k(A) and conclusively fewer
iterations are necessary to solve the equivalent system M ~!Axz = M~'b. The preconditioner
M needs to be symmetric and positive definite to sustain those properties for the CG method.
Without a preconditioner the number of necessary iterations is too high and the resulting number
of network communications impairs the scalability and overall runtime.

In Algorithm 1 the pseudo code of the preconditioned conjugate gradient (PCG) method is
illustrated. The implementation in MPIOM was done in a generic way, meaning that the five-
point stencil of the barotropic subsystem is provided as a function parameter to the PCG function
so that it is independent of the actual stencil implementation. Each process performs the stencil
operation on its local partition followed by a boundary exchange to update the boundary halos. In
the same way was the preconditioner M ~! implemented to allow for different kinds. To calculate
the dot product local dot products are summed up using the sum reduction (MPI__Allreduce,
MPI SUM) of the MPI library. Tt is possible to switch to routines from the Basic Linear Algebra
Subprograms (BLAS) library for saxpy operations and dot products with a preprocessor flag.
We emphasized a modular implementation to facilitate reuse of the code in other projects.

4. THE INCOMPLETE CHOLESKY PRECONDITIONER

As a preconditioner for the PCG the incomplete Cholesky decomposition (ICC) is one of the
most appealing. Depending on the level of fill-in, it is possible to achieve a great reduction
in the number of necessary PCG iterations. The symmetric decomposition, as defined in the
following subsection, reduces memory requirements in contrast to other decomposition methods
like incomplete LU. Parallelization was achieved by performing ICC partition-wise, so that no
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Algorithm 1 Preconditioned conjugate gradient [1].

1: 1o = b— Axg
2: zp = M71T0

3: Po = 2o
4: for k=0,1,...,kpq do
5 ap = AT

: k= pT Apy,
6:  Tp41 = Tr + QpDi
7o Thyl =Tk — pApg
8 Zpp1 =M lrp
9: if r,{szH < TOL then
10: exit loop
11: end ifT

T zZ

122 B = %
130 Pry1 = Zkg1 + Bibk
14: end for

communication is needed when applying the preconditioner. The ICC preconditioner consists
of two steps: a setup step where the incomplete decomposition is calculated and its actual
application in the PCG algorithm. Those steps are detailed in the following two subsections.

4.1. Incomplete Cholesky Factorization of A. Given that A is a symmetric and positive
definite matrix, there exists a unique factorization A = LLT, where L is a lower diagonal matrix
with positive diagonal entries [5]. By applying the column-wise proceeding Cholesky-Crout
algorithm, for i = 1,..., N we have

1—1
ai— Y 15
k=1
1 i—1
lji = l— <aji — leklik> , forj > 1.
% b1

The choice of a column-wise instead of a row-wise traversal is motivated by the fact that FOR-
TRAN stores arrays column-wise, resulting in a higher cache-hit rate when accessed in the same
manner, as we will see later. A complete factorization would lead to a dense matrix L, that must
be avoided because of memory limitations and high computational costs, when doing forward
and backward substitution. Therefore we introduce for [;; the common definition [11] of the
initial level of fill-in

oo otherwise

{0 if aij £ 0ori=j
levij = ;
and update the current level lev;; when [;; is updated according to

=1,...,2—1

lev;; = min <1evij, min  (lev,; + lev; + 1)) )

When lev;; exceeds a predefined maximum level of fill-in p we set [;; = 0. Let L? be the factor
L due to the incomplete Cholesky decomposition with level of fill-in p. Analysing the resulting
sparsity pattern of LP (see Figure 3) with the help of a naive implementation in Matlab, we can
easily derive a rule to predict the sparsity pattern. Let diag, (L) = (lizxi)i=1..n—k be the k"
lower diagonal. L° has the same sparsity pattern as the lower diagonal matrix of A meaning
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p=0 =, p=1 " p=2

F1qure 3. Fill-in pattern for ICC(p) with p =0,...,5.

the non-zero elements are in diag, (L) with k = 0,1, m, whereas L' gains additional elements in
diag,,,_1(L). In case of L? with p > 2 we have non-zero elements in diag, (L) with k =0,...,p—1
and k = m — p,...,m. We can extend this rule to include the somewhat exceptional cases L°
and L' to obtain in all

(7) ly; = 0if I7; ¢ diag, (L) with k = 0,...,max(1,p —1),m —p,...,m.

The diagonals diag, (L) with £ =0, ..., max(1,p — 1) will be denoted with secondary diagonals
and diag, (L) with k =m — p,..., m with outer diagonals.

Taking into account the diagonal growth of this pattern for increasing fill-in, the DTAG format
[11] is a suitable storage format. The DIAG format stores elements along a diagonal in a two-
dimensional array DIAG(1:n,1:Nd), where Nd is the number of diagonals with non-zero entries.
The offset of each diagonal from the main diagonal is saved in the array IOFF(1:Nd). As in the
FORTRAN 95 language the colon notation A(i:j) is used to account for the dimension of an
array A or a slice consisting of the ordered elements A(i), A(i+1),..., A(j). By adding an
increment of -1 as in A(i:j:-1) the order of the elements is reversed.

Considering the fact that we are dealing with a stencil, we modified the DIAG storage scheme
into a more stencil compliant form. Transforming the matrix LP to a stencil representation
results in an ICC stencil as pictured in Figure 1b. The western arm l;;_1,...,l;;_(p—1) of this
stencil is stored in the three-dimensional array ICC_W(1:MAX(1,p-1),1:m,1:n), the inverse of
the central element [;; in the array ICC_C(1:m,1:n) and the southern arm l; 1y, 4,. .. litmitp
in ICC_S(1:p+1,1:m,1:n). Again, the indexing of these arrays was chosen so that the element
access in the forward and backward substitution step is most cache efficient. By virtue of storing

1

7~ in ICC_C we can later, when applying the preconditioner, use a multiplication instead of a

division which can be computed in 1 cycle compared to 30 cycles on the IBM POWERG.
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Algorithm 2 Main loop of the ICC(p) decomposition. A and L as defined in (5) and (6).

DO i = 1,N
! treat main diagonal
tmp = get_value_of_A(i,i)
DO k = MAX(1,i-m),i-m+p
tmp = tmp - get_value_of _L(i,k)**2
ENDDO
DO k = MAX(1,i-MAX(1,p-1)),i-1
tmp = tmp - get_value_of_L(i,k)*x*2
ENDDO
tmp = SQRT (tmp)
CALL set_value_of_L(i,i,tmp)

! treat secondary diagonals
DO j = i+1,i+MAX(1,p-1)
IF ( j > n ) EXIT
tmp = get_value_of_A(j, 1)
DO k = MAX(1,i-m),i-m+p ! outer diagonals
tmp = tmp - get_value_of_L(j,k) * get_value_of_L(i,k)
ENDDO
DO k = MAX(1,i-MAX(1,p-1)),i-1 ! secondary diagonals
tmp = tmp - get_value_of_L(j,k) * get_value_of_L(i,k)
ENDDO
tmp = tmp / get_value_of _L(i,i)
CALL set_value_of_L(j, i, tmp)
ENDDO

! treat outer diagonals
DO m_j = m_i+m_m-p,m_i+m_m
! same loop body as before
ENDDO
ENDDQ

Calculating the ICC(p) decomposition with regard to the arrays of the ICC stencil is then
accomplished by the implementation of (6) and a simple transformation that maps an element
e;;j of a matrix to the according stencil at (x,y) and vice versa. To restrict the decomposition
to a fill-in of level p and to avoid unnecessary calculations, only the non-zero elements according
to (7) are considered as displayed in Algorithm 2.

4.2. Applying the ICC(p) Preconditioner. For a given residual » € RV where 7(i, j) with
i=1,...,mand j =1,...,n presents the component at the grid point (i, ), we can now define
the forward and backward substitution step in terms of the ICC stencil. In the following, the
arms ICC_W, ICC_S and the inverse of the central element ICC_C of the ICC stencil will be
abbreviated with W, S and C respectively.

The forward substitution for Ly = r, more precisely

1 1—1
yizlf Ti—zlik?/k )
11 k:].
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Algorithm 3 Applying the ICC(p) preconditioner

s_.1 =p + 1 ! length of southern arm of IC(C stenctl
MAX(1,p-1) ! length of western arm of ICC stencil

=
=
1]

! 1.) Forward substitution
! first column
r(1,1) = r(1,1)*ICcC_C(1,1)

DO i=2,m
r(i,1) = (r(i,1) - ICC_W(1l,i,1)*r(i-1,1))*ICC_C(i,1)
ENDDO
! all other columns
DO j = 2,n
DO i = 1,m

r(i,j) = C r(i,j) - ICC_S(1l:s_1,i,jl*r(i:i+s_1-1,j-1) &
- ICC_W(l:w_l,i,j)*r(i-1:i-w_1:-1,3) )*ICC_C(i,j) ! dotprod
ENDDO
ENDDQ

! 2.) Backward substitution
! all but first column
DO j = n,2,-1
DO i = m,1,-1
r(i,j) = r(i,j)*ICC_C(i,j)
r(i-1:i-w_1l:-1,3) = r(i-1:i-w_1:-1,3) - r(i,j)*ICC_W(l:w_1,i,j) ! sazpy
r(i:i+p,j-1) = r(i:i+p,j-1) - r(i,jl)*ICC_S(1l:s_1,1i,j) ! sazpy
ENDDO
ENDDO

! first column
DO i = m,2,-1
r(i,1) = r(i,1)*ICC_C(i,1)
r(i-1,1) = r(i-1,1) - r(i,1)*xICC_W(1,i,1)
ENDDQ
r(1,1) = r(1,1)*ICC_C(1,1)

fori=1,..., N, can then be transformed into a stencil formulation, that is
p+1 B

(8) y(i,j) =Cli,j)- (r(@j) = S(kying) r(i— 14k, j—1) =Y W(k,i,j) (i — lm’)) ,
k=1 k=1

fori=1,...,mand j=1,...,n, where § = max(1,p—1). We traverse y(i, j) in a cache-friendly
way, so that the inner loop iterates over i, to ensure optimal cache utilization. Treating the case
j = 1 separately without the second term on the right-hand-side of (8) eliminates unnecessary
calculations for the first column where no S (resp. no outer diagonals) exist. The actual code
is shown in the first part of Algorithm 3. It should be noted that the result y(7,j) is saved in
r(i,j) again to avoid storing an additional array.

Backward substitution, LTz = y, is more challenging to accomplish in a cache efficient way,
because the first index of W and S now present columns in LY. To overcome this, the substitution
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is reordered to result in a column-wise operation. Instead of

x; = li <y¢— Z lkiivk:),

k=i+1

for : = N,...,1 we perform partial updates of xz;. We start by setting x; = y; for all 7. At
first, the element 2 is updated to its final value by zy < 7%. After this, the remaining z;,
i =N —1,...,1 get updated according to the N column by virtue of z; < x; — l ;2x, which
is an efficient saxpy operation. The whole process is now repeated for xy_; until z;.

This principle can be conveyed to the stencil formulation with some modifications. The saxpy
operation can be split into two saxpy operations by S and W elements and is performed such
that first x(i,7) is multiplied by C(z,7), then x(i — 1:4 — max(1,p — 1): —1,j) gets updated due
to W followed by an update of x(i:i+p,j + 1) with respect to S. Applying this in the described
column-wise fashion results in cache efficient chunk-wise updates of x as seen in line 20 to 26 of
the Algorithm 3. Like in the forward substitution the values in the first column z(i,1) need to
be updated only with respect to W which is addressed in lines 29 to 33. Furthermore it should
be noted that the code avoids conditional statements and dependent iteration variables at the
expense of a little extra work to help vectorization. This can be seen for instance in line 14 for
i =1 and j = 2 the elements r(0,2), r(—1,2),... (which wrap to r(m,1), r(m —1,1),...) are
multiplied with 0 only entries in W(1 : max(1,p — 1),1,1). Using the Hardware Performance
Monitor (HPM) library we could determine that the cache hit rate of our implementation is
99.945%.

5. NUMERICAL EXPERIMENTS

Projections of future climate changes depend strongly on the accuracy of the simulated ocean
circulation, therefore a realistic description of oceanic processes is required. A major factor which
influences the accuracy is the resolution of the mesh.

For the simulations in TPCC AR4, that was published in 2007, a grid with a resolution of
256 grid points in longitude by 220 points in latitude was used. A limiting factor for increasing
the resolution is the convergence of meridians at the North Pole, which is a source of numerical
instabilities. For this reason, in the current calculations for the IPCC ARS5, report a new type
of grid has been introduced, the tripolar grid [10]. Here the North Pole is no longer a single
point, but it has been expanded to a line, resulting in two poles on the northern hemisphere and
one in the southern hemisphere. The resolution for the IPCC AR5 runs is 0.4 deg (802 x 404
grid points). Nevertheless, basin-scale ocean models with a resolution of about 0.1 deg or higher
are found to produce more realistic simulations. The main reason for such high resolution is
the necessity for a proper representation of meso-scale ocean eddies which play a crucial role in
determining the mean flow.

For the experiments presented in this work, we used a tripolar model with a resolution of 0.1
deg (3602 x 2394 grid points) which yields a system of about 8.6 million equations. To measure
the actual runtime the function call to the solver of the barotropic system is surrounded by calls
to MPI Wtime. The SOR solver uses a fixed number of 1200 iterations and reaches a relative
residual with the order of magnitude 10~!!. As start value the null vector was chosen for all
tests. The SOR relaxation parameter in all benchmarks was set to 1.934, which was hand tuned
by a large number of test calculations. In order to compare the CG method with SOR we set
it to reach the same order of magnitude in the relative residual and combined it with several
preconditioners. In Table 1 to 3 SOR denotes the traditional red-black ordered SOR method
in MPIOM and CG the new implemented conjugate gradient method with no preconditioning.
The following entries denote the PCG method combined with a preconditioner. In detail, ILU(0)
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’ 32 x 16 cores ‘

solver | #iterations | runtime [ms| | speedup
SOR 1200.0 253.3 1.00
CG 1844.9 656.3 0.39
ILU(0) | 37L2 371.0 0.68
SSOR 206.4 221.9 1.14
ICC(0) | 37L2 129.4 0.59
ICC(1) | 2402 980.5 0.87
ICC(2) | 2073 257.1 0.99
ICC(A) | 1474 212.5 1.19
ICC(6) | 133.8 216.1 117
ICC(8) | 1286 228.8 111

TABLE 1. The number of iterations and runtime of red-black SOR and CG with
different, preconditioners and fill-in levels needed to reach a relative residual of
10~ with startvalue 0, performed on 16 nodes.

denotes the incomplete LU decomposition with zero fill-in according to [11, p. 303], SSOR the
symmetric SOR method and ICC(p) the incomplete Cholesky decomposition with p fill-in. Each
solver was used to solve the barotropic subsystem in 30 different time steps to get an average
number of necessary iterations and an average runtime in milliseconds (ms). This benchmark was
repeated three times and averaged to compensate for effects like non-optimal process distribution
in the cluster. All averages were calculated with the arithmetic mean. The setup time for the
preconditioners and the SOR parameter was neglected. The partitioning is always given as x Xy
meaning x partitions in zonal and y partitions in meridional direction with one core per partition.

All benchmarks were performed on the new DKRZ high-performance supercomputer named
Blizzard. The Blizzard cluster is an IBM p575 POWERG system consisting of 264 nodes with 16
dual core CPUs per node, hence reaching a total of 8448 cores. Each core has a peak performance
of 18.8 Gigaflop /s giving a total system peak performance of 158 Teraflop/s. The aggregate band-
width of the InfiniBand Fat CLOS Tree interconnect is 7.6 Terabyte/s. A detailed description
of the IBM POWERG microarchitecture can be found in [8]. For our benchmarks Symmetric
Multithreading (SMT) was disabled because experience has shown that for symmetric memory
access patterns, as they are found in many numerical simulations, SMT has at best no benefit.
This concludes that on one node a total of 32 cores with 32 MPI processes were exclusively taken.

On the software side the IBM xIf FORTRAN compiler in version 12.1.0.3 running on IBM AIX
6.1.3.0 with IBM’s Parallel Envorinment in version PE 5.1.1.5 (which includes POE/MPI) and
disabled OpenMP support was used to compile and run MPIOM. The important compiler flags
which were used are 03 and ghot. These flags promise to enhance the performance of the code.
The drawback is that the optimization is very aggressive which alters the results of MPIOM. For
this reason the gstric, qxflag=nvectver (suppresses vector versioning) and qxflag=nsmine
(suppresses strip mining) are needed in order to get correct results.

6. CONCLUSION AND PERSPECTIVES

From analyzing the presented results we can conclude that CG with an appropriate pre-
conditioner like ICC(p) greatly reduces the number of necessary iterations needed to solve the
barotropic subsystem. Since the communication overhead is a major limiting factor, this re-
sults in a shorter overall runtime compared to SOR. One should note that one iteration of CG
needs three communications: one for the matrix-vector multiplication and two for calculating dot
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’ 32 x 32 cores ‘

solver | #iterations | runtime [ms| | speedup
SOR 1200.0 222.2 1.00
CG 1844.8 541.2 0.41
ILU(0) | 375.0 932.7 0.95
SSOR 219.0 145.4 1.53
ICC(0) | 375.0 256.3 0.87
ICC(1) | 2455 184.2 .21
ICC(2) | 2137 161.3 1.38
ICC(4) | 1563 1335 1.66
ICC(6) | 1415 129.9 171
ICC(8) | 136.2 142.3 1.56

TABLE 2. The number of iterations and runtime of red-black SOR and CG with
different, preconditioners and fill-in levels needed to reach a relative residual of
10~ with startvalue 0, performed on 32 nodes.

’ 64 x 32 cores ‘

solver | #iterations | runtime [ms] | speedup
SOR 1200.0 144.2 1.00
CG 1844.8 475.0 0.30
TLU(0) | 379.9 163.4 0.88
SSOR 244.2 1154 1.25
ICC(0) | 379.9 181.0 0.80
ICC(1) | 2518 130.7 1.10
ICC(2) | 2209 106.0 1.36
ICC(4) | 165.6 092.6 1.56
ICC(6) | 1514 093.1 1.55
ICC(8) | 146.1 092.1 1.56

TABLE 3. The number of iterations and runtime of red-black SOR and CG with
different preconditioners and fill-in levels needed to reach a relative residual of
10~ with start value 0, performed on 64 nodes.

products. Consequently the number of iterations in CG needs to be significantly lower than 400
iterations to make up for the single communication that SOR needs per iteration. The decisive
factor in the communication is the latency for which reason the two-halo-boundary exchange of
SOR is almost double as fast as two consecutively performed one-halo-boundary exchanges.

On a smaller setup as shown in Table 1 the maximum speedup of CG compared to SOR is
1.19 in case of ICC(4). When doubling the number of nodes as in Table 2 the maximum speedup
increases to 1.71 because CG with ICC(6) scales much better than SOR. The runtime of SOR
is decreased by 12% — 13% while in case of CG with ICC(6) it is decreased by 40%. Doubling
the number of nodes again, we can see in Table 3 that the runtime of SOR is decreased by 35%
against 28% with ICC(6). In this setup the scalability of CG with ICC(6) saturates because
each partition is already as small as 56 x 75 grid points leaving the communication overhead the
highest fraction of the runtime. Additionally the number of iterations increases gradually over
all setups, since more and more couplings are dropped due to smaller partitions. Still CG with
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F1GURE 4. Comparison of the runtime of red-black SOR and CG with different
preconditioners and fill-in levels for 32 x 16, 32 x 32 and 64 x 32 partitions.

ICC(6) performs about 36% faster than SOR on the largest setup which is an overly promising
result. Figure 4 summarizes the runtime of all solvers and preconditioners on the different setups.

Although the actual runtime to solve the barotropic subsystem is already a fraction of a
second there is still much need for further improvement. Considering the fact that one simulated
scenario for the IPCC AR5 spans a simulation time of 100 years, resulting in millions of time
steps where each has a barotropic subsystem to solve, one can easily see the leverage effect we are
dealing with. The bright side of solving one linear system with varying right-hand-sides many
times is that the setup time of a preconditioner or solver can be neglected.

Currently we are working on the implementation of the Chebyshev iteration that requires no
inner products and is therefore particularly suited for massively parallel computers with signifi-
cant communication cost [6]. It has the same theoretical upper bound for the rate of convergence
as CG given that a good estimation of the eigenvalues A,,;, and A4, of the preconditioned sys-
tem is known. Calculating these, especially A, is in general more complex than solving a linear
system. With the aforementioned consideration, a considerable amount of work to approximate
these eigenvalues pays off later because of the sheer number of time steps.

In the future more complex models with higher accuracies will be needed to better supplement
the research in climatology. This development will go hand in hand with a continuously raising
demand for better mathematical methods and algorithms on high-performance hardware to make
more complex simulations feasible.
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