
 

 Karlsruhe Reports in Informatics 2011,6 
Edited by Karlsruhe Institute of Technology,  
Faculty of Informatics   

 ISSN 2190-4782 
 
 
 
 
 
 
 

Termination Analysis of C Programs Using 
Compiler Intermediate Languages 
 
 
 
 
                   

 
 

Stephan Falke, Deepak Kapur, and Carsten Sinz 
 

 
 
 

                        
 

 
 
   
 
 
 
 
 
 
 
 2011 
 
 

KIT –  University of the State of Baden-Wuerttemberg and National 
Research Center of the Helmholtz Association  



 

  
   

  
 
 
 
 
 
 
 
 
 

Please note: 
This Report has been published on the Internet under the following 
Creative Commons License: 
http://creativecommons.org/licenses/by-nc-nd/3.0/de. 



Termination Analysis of C Programs Using
Compiler Intermediate Languages
Stephan Falke1, Deepak Kapur2, and Carsten Sinz1

1 Institute for Theoretical Computer Science
Karlsruhe Institute of Technology (KIT), Germany
{stephan.falke, carsten.sinz}@kit.edu

2 Department of Computer Science
University of New Mexico, Albuquerque, NM, USA
kapur@cs.unm.edu

Abstract
Modeling the semantics of programming languages like C for the automated termination analysis
of programs is a challenge if complete coverage of all language features should be achieved. On the
other hand, low-level intermediate languages that occur during the compilation of C programs to
machine code have a much simpler semantics since most of the intricacies of C are taken care of by
the compiler frontend. It is thus a promising approach to use these intermediate languages for the
automated termination analysis of C programs. In this paper, we present a termination analysis
method based on this approach. For this, programs in the compiler intermediate language are
translated into term rewrite systems (TRSs), and the termination proof itself is then performed
on the automatically generated TRS. An evaluation on a large collection of C programs shows
the effectiveness and practicality of the proposed method.

1 Introduction

Methods for automatically proving termination of imperative programs operating on integers
have received increased attention recently. The most commonly used automatic method for
this is based on linear ranking functions which linearly combine the values of the program
variables in a given state [7, 8, 31, 32, 4]. More recently, the combination of abstraction
refinement and linear ranking functions has been considered [11, 12, 6]. Based on this idea,
the tool Terminator [13], developed at Microsoft Research, has reportedly been used for
showing termination of device drivers.

Developing a tool that can handle all intricacies of C is a challenge since C employs a
complex syntax and semantics. It is not clear to what extent the implementations of the
aforementioned methods can handle real-life C programs since the presentation in the papers
is typically based on idealized transition systems and the implementations themselves are
not publicly available.

We advocate to perform the termination analysis of C programs not on the source code
level but rather on the level of a compiler intermediate representation (IR). This approach
has the following advantages:
1. The IR is considerably simpler than C. This makes it relatively easy to support most of

C’s features.
2. The program whose termination behavior is analyzed is much closer to the program that

is actually executed on the computer since ambiguities of C’s semantics have already
been resolved.

3. In producing the IR, compilers already use program optimizations that might simplify
the termination analysis significantly.



2 Termination Analysis of C Programs Using Compiler Intermediate Languages

For similar reasons, termination analysis of Java programs is often performed on the bytecode
level and not on the source code [1, 35, 30].

In this paper, we focus on the LLVM compiler framework and its intermediate language
LLVM-IR [28]. The method itself is independent of the concrete IR, however. Since there are
compilers for various programming languages built atop of LLVM, the methods presented
in this paper can be used for the termination analysis of programs written in C, C++,
Objective-C, and further programming languages.

Termination analysis of LLVM-IR programs is then performed by generating a term
rewrite system (TRS) from the LLVM-IR program. Termination analysis for TRSs has
been investigated extensively in the past (see [37] for a survey). In this paper, TRSs with
constraints over the integers (int-based TRS) are used, where the constraints are relations
on the variables expressed as quantifier-free formulas. Similarly to what was proposed in
[18, 20], we adapt well-known methods from the term rewriting literature for the termination
analysis of int-based TRSs.

I Example 1. Consider the following simple C program:

int power(int x, int y) {
int r = 1;
while (y > 0) {

r = r∗x;
y = y − 1;

}
return r;

}

Using the methods developed in this paper, the following int-based TRS is obtained from
the LLVM-IR of the C program:

statestart(vx, vy, vy.0, vr.0)→ stateentryin(vx, vy, vy.0, vr.0)
stateentryin(vx, vy, vy.0, vr.0)→ statebb1in(vx, vy, vy, 1)
statebb1in(vx, vy, vy.0, vr.0)→ statebbin(vx, vy, vy.0, vr.0) Jvy.0 > 0K

statebb1in(vx, vy, vy.0, vr.0)→ statereturnin(vx, vy, vy.0, vr.0) Jvy.0 ≤ 0K

statebbin(vx, vy, vy.0, vr.0)→ statebb1in(vx, vy, vy.0 − 1, vr.0 ∗ vx)
statereturnin(vx, vy, vy.0, vr.0)→ statestop(vx, vy, vy.0, vr.0)

Intuitively, the variables vx and vy represent the inputs to the function, whereas the variables
vy.0 and vr.0 correspond to the (changing) program variables y and r used inside the loop of
the function.1 The function symbols used in the int-based TRS intuitively correspond to a
“program counter”. J

The approach has been implemented in the publicly available termination tool KITTeL. An
empirical evaluation on a collection of examples taken from recent papers on the termination
analysis of imperative programs [4, 5, 6, 7, 8, 11, 12, 31, 32], from the textbook [34], from
the Java category of TPDB [36] and converted to C, and from various online sources clearly
shows the effectiveness and practicality of our method.

The approach advocated in this paper is similar to the approach presented in [18]. There
are, however, the following important differences:

1 Why the program variable y gives rise to vy and yy.0 is explained in Section 4.



Stephan Falke, Deepak Kapur, and Carsten Sinz 3

1. In contrast to [18], we now consider the real-life programming language C. In order to
support all intricacies of C, we use an existing compiler frontend and operate on the
compiler intermediate representation.

2. While [18] was restricted to (linear) Presburger arithmetic, we now support non-linear
arithmetic.

This paper is organized as follows. Section 2 introduces int-based TRSs. Before discussing
the translation of LLVM-IR programs into int-based TRSs in Section 4, the translation of
Simple programs into int-based TRSs is discussed in Section 3. Simple is the while-language
used by the Interproc static analysis tool [26], and the translation of Simple programs into
int-based TRSs presents the main ideas that are used for the translation of LLVM-IR into
int-based TRSs in a simpler context. Section 5 discusses the role of static analysis methods
for the termination analysis of programs. Next, Sections 6–10 discuss the termination analysis
of int-based TRSs. Section 11 outlines the implementation of these methods in KITTeL.
Finally, Section 12 presents an empirical evaluation of KITTeL and Section 13 concludes.

2 int-Based TRSs

In order to model integers, the function symbols from Fint = FZ ∪ {+, ∗,−} with FZ =
{n | n ∈ Z} and types +, ∗ : int×int→ int, and − : int→ int are used. Terms built from
these function symbols and a disjoint set V of variables are called int-terms. This paper
uses a simplified, more natural notation for int-terms, i.e., the int-term (x+ (−(y ∗ y))) + 3
will be written as x− y2 + 3. A linear int-term is an int-term that does not contain any
occurrence of the function symbol “∗”. Notice that int-terms correspond to polynomial
expressions and that linear int-terms correspond to linear functions.

We extend Fint by finitely many function symbols f with types int× . . .× int→ univ,
where univ is a type distinct from int. These additional function symbols are used to model
program behavior, and the set containing them is denoted by F . Then, T (F ,Fint,V) denotes
the set of terms of the form f(s1, . . . , sn) where f ∈ F and s1, . . . , sn are int-terms. Notice
that nesting of function symbols from F is not permitted, thus resulting in a very simple
term structure. This simple structure is nonetheless sufficient for modeling programs. In the
following, s∗ denotes a tuple of int-terms, and notions from terms are extended to tuples of
terms component-wise. A substitution is a mapping from variables to int-terms.

int-constraints are quantifier-free formulas from (non-linear) integer arithmetic. This
extends the PA-constraints used in [18] which were limited to (linear) Presburger arithmetic.

I Definition 2 (Syntax). An atomic int-constraint has the form s ' t, s ≥ t, or s > t for
int-terms s, t. The set of int-constraints is inductively defined as follows:
1. > is an int-constraint.
2. Every atomic int-constraint is an int-constraint.
3. If ϕ is an int-constraint, then ¬ϕ is an int-constraint.
4. If ϕ1, ϕ2 are int-constraints, then ϕ1 ∧ ϕ2 is an int-constraint.

The Boolean connectives ⊥, ∨, ⇒, and ⇔ are defined as usual. Furthermore, int-
constraints of the form s < t and s ≤ t denote the int-constraints t > s and t ≥ s,
respectively. Also, s 6' t abbreviates ¬(s ' t), and similarly for the other predicate symbols.

int-constraints have the expected semantics. In the next definition, n denotes the integer
corresponding to the variable-free int-term n (i.e., n is the evaluation of n according to the
standard semantics of “+”, “∗”, and “−”).



4 Termination Analysis of C Programs Using Compiler Intermediate Languages

I Definition 3 (Semantics). A variable-free int-constraint ϕ is int-valid iff
1. ϕ has the form >, or
2. ϕ has the form s ' t and s = t in Z, or
3. ϕ has the form s ≥ t and s ≥ t in Z, or
4. ϕ has the form s > t and s > t in Z, or
5. ϕ has the form ¬ϕ1 and ϕ1 is not int-valid, or
6. ϕ has the form ϕ1 ∧ ϕ2 and both ϕ1 and ϕ2 are int-valid.
An int-constraint ϕ with variables is int-valid iff ϕσ is int-valid for all ground substitutions
σ : V(ϕ) → T (Fint). An int-constraint ϕ is int-satisfiable iff there exists a ground
substitution σ : V(ϕ)→ T (Fint) such that ϕσ is int-valid. Otherwise, ϕ is int-unsatisfiable.

int-validity and int-satisfiability are decidable for linear int-constraints [33].
The rewrite rules of int-based TRSs are equipped with int-constraints. These constraints

are used in order to restrict the applicability of the rewrite rules, see Definition 6. The rules
generalize the PA-based rewrite rules from [18]. Alternatively, they can be interpreted as a
restricted form of the rewrite rules considered in [20] which support nested function symbols.

I Definition 4 (int-Based Rewrite Rules). An int-based rewrite rule has the form l→ rJϕK
where l = f(x1, . . . , xn) for pairwise distinct variables x1, . . . , xn, r ∈ T (F ,Fint,V), and ϕ
is an int-constraint.

The constraint > is omitted in an int-based rewrite rule l→ rJ>K. An int-based term
rewrite system (int-based TRS) R is a finite set of int-based rewrite rules. Notice that r
and ϕ may use variables that are not occurring in l. The restriction that the arguments
on the left-hand side are pairwise distinct variables simplifies the definition of the rewrite
relation of an int-based TRS since matching becomes trivial. Notice that equality between
the arguments xi and xj can be enforced by adding the int-constraint xi ' xj .

int-based TRSs give rise to the following rewrite relation. It requires that the constraint
of the int-based rewrite rule is int-valid after being instantiated by the matching substitution.
This is in general only decidable if the constraint and the matching substitution are linear.
An easy way to achieve decidability is to define the rewrite relation only on terms whose
arguments are from FZ. Then, the substitutions used for matching instantiate variables by
constant symbols from FZ.

I Definition 5 (FZ-Based Substitutions). A substitution σ is FZ-based iff σ(x) ∈ FZ for all
variables x.

I Definition 6 (Rewrite Relation). For an int-based TRS R, the relation s →int\R t for
terms s, t of the form f(n1, . . . , nk) holds iff there exist l → rJϕK ∈ R and an FZ-based
substitution σ such that
1. s = lσ,
2. ϕσ is int-valid, and
3. t = norm(rσ).
Here, norm(rσ) evaluates the arguments according to the usual semantics of “+”, “∗”, and
“−” on ground terms.

I Example 7. For R from Example 1, statebb1in(2, 2, 2, 1) →int\R statebbin(2, 2, 2, 1) using
the third rewrite rule. To see this, notice that for σ = {vx 7→ 2, vy 7→ 2, vy.0 7→ 2, vr.0 7→ 1},
(vy.0 > 0)σ = (2 > 0) is int-valid. Next, statebbin(2, 2, 2, 1)→int\R statebb1in(2, 2, 1, 2) since
norm(statebb1in(2, 2, 2− 1, 1 ∗ 2)) = statebb1in(2, 2, 1, 2). J



Stephan Falke, Deepak Kapur, and Carsten Sinz 5

3 Translating Simple Programs into int-Based TRSs

Before considering the translation from LLVM-IR programs into int-based TRSs, this section
first considers a simple imperative programming language where programs are formed
according to the grammar in Figure 1. Most of the ideas used for LLVM-IR programs in
Section 4 are more intuitive when considered at the level of this toy programming language.
The language defined in Figure 1 is the function-free2 fragment of the Simple language that
is also used as the input language of the Interproc static analysis tool [26].

<program> ::= var <vars-decl>; begin <statement>+ end
<vars-decl> ::= id: int (, id: int)∗

<statement> ::= skip;
| halt;
| assume (<bexpr>);
| id = random;
| id = <nexpr>;
| if (<bexpr>) then <statement>+ else <statement>+ endif;
| while (<bexpr>) do <statement>+ done;

<bexpr> ::= brandom
| “int-constraints”

<nexpr> ::= “int-terms”

Figure 1 Grammar for Simple programs.

Most constructs in this programming language have the expected meaning, e.g., skip is
a do-nothing statement and halt halts the program execution. For the int-constraints in
<bexpr>, conjunction is written as and, disjunction is written as or, and negation is written
as not. Furthermore, the predicates are written ==, >=, >, <=, and <.

The statement assume (bexpr) is equivalent to if (bexpr) then skip; else halt;
endif;. Its effect is to consider only program runs that satisfy the given Boolean expression.

The brandom-construct can be used to abstract aspects of a program that cannot or do
not need to be modeled precisely. For this, a nondeterministic choice is encoded as

if (brandom) then
...

else
...

endif;

Similarly, an assignment x = random; assigns an undetermined value to the variable x.
Assumptions on this value can be modeled with a subsequent assume, e.g., the effect of
x = random; assume (x >= 0 and x <= 2); is that the value of x is between 0 and 2 in
the remaining program. An important use of random is to simulate division operations. For
instance, the “statement” y = x / 2; is equivalent to

y = random;
assume (x - 2*y >= 0 and x - 2*y <= 1);

2 Using the same ideas that are used for LLVM-IR in Section 4, it would be possible to support functions.



6 Termination Analysis of C Programs Using Compiler Intermediate Languages

Similarly, the if-“statement” if (x % 2 == 0) then ... else ... endif; which tests
whether the variable x is even can be simulated by

y = random;
if (brandom) then

assume (x = 2*y);
...

else
assume (x = 2*y + 1);
...

endif;

3.1 The Translation

The translation now proceeds as follows, where we assume that the program uses the
variables x1, . . . , xn. In a first step, each statement ω of the program is assigned two
function symbols, stateω

in and stateω
out. Furthermore, special function symbols, statestart and

statestop, denoting starting and stopping states, are introduced. For a non-empty sequence
Ω = ω1; . . . ;ωm; of statements, let stateΩ

in = stateω1
in and stateΩ

out = stateωm
out . Furthermore, for

all 1 ≤ i < m, the function symbols stateωi
out and stateωi+1

in are identified. A mapping from
statements to int-based rewrite rules is now defined by the case distinction in Figure 2. In
the translation of <bexpr>, both brandom and ¬brandom become > in the constraints of the
rewrite rules. For a Simple program P with the sequence of statements Ω, the int-based
TRS RP consists of the int-based rewrite rules obtained for all statements occurring in the
program and the additional int-based rewrite rules statestart(x1, . . . , xn)→ stateΩ

in(x1, . . . , xn)
and stateΩ

out(x1, . . . , xn)→ statestop(x1, . . . , xn).

Statement ω int-based rewrite rules

skip; stateω
in(x1, . . . , xn) → stateω

out(x1, . . . , xn)
halt; stateω

in(x1, . . . , xn) → statestop(x1, . . . , xn)
assume (bexpr); stateω

in(x1, . . . , xn) → stateω
out(x1, . . . , xn) JbexprK

stateω
in(x1, . . . , xn) → statestop(x1, . . . , xn) J¬bexprK

xi = random; stateω
in(x1, . . . , xn) → stateω

out(x1, . . . , x
′
i, . . . , xn)

where x′i is a fresh variable
xi = nexpr; stateω

in(x1, . . . , xn) → stateω
out(x1, . . . ,nexpr, . . . , xn)

if (bexpr) then stateω
in(x1, . . . , xn) → stateΩ1

in (x1, . . . , xn) JbexprK
Ω1 stateΩ1

out(x1, . . . , xn) → stateω
out(x1, . . . , xn)

else stateω
in(x1, . . . , xn) → stateΩ2

in (x1, . . . , xn) J¬bexprK
Ω2 stateΩ2

out(x1, . . . , xn) → stateω
out(x1, . . . , xn)

endif;
while (bexpr) do stateω

in(x1, . . . , xn) → stateΩ
in(x1, . . . , xn) JbexprK

Ω stateΩ
out(x1, . . . , xn) → stateω

in(x1, . . . , xn)
done; stateω

in(x1, . . . , xn) → stateω
out(x1, . . . , xn) J¬bexprK

Figure 2 Mapping from statements to int-based rewrite rules.

I Example 8. Using the translation given above, the Simple program



Stephan Falke, Deepak Kapur, and Carsten Sinz 7

1 var x: int, y: int, r: int;
2 begin
3 r = 1;
4 while (y > 0) do
5 r = r * x;
6 y = y - 1;
7 done;
8 end

is translated into the int-based rewrite rules

statestart(x, y, r)→ state3(x, y, r)
state3(x, y, r)→ state4(x, y, 1)
state4(x, y, r)→ state5(x, y, r) Jy > 0K

state4(x, y, r)→ state8(x, y, r) J¬(y > 0)K
state5(x, y, r)→ state6(x, y, r ∗ x)
state6(x, y, r)→ state7(x, y − 1, r)
state7(x, y, r)→ state4(x, y, r)
state8(x, y, r)→ statestop(x, y, r)

Here, the line numbers have been used as subscripts for the function symbols stateω
in and

stateω
out in order to improve readability. J

The following theorem is based on the observation that any state transition of the
Simple program P can be mimicked by a rewrite sequence w.r.t. RP . This is relatively
straightforward, since the int-based TRS RP that is generated is essentially a transition
system.

I Theorem 9. Let P be a Simple program. Then the above translation produces an int-based
TRS RP such that P is terminating if RP is terminating.

Proof idea. That the translation produces an int-based TRS is immediate by inspection.
For the second statement, it can be shown that the int-based rewrite rules correspond to
the operational semantics of Simple. Then, each infinite computation of P immediately gives
rise to an infinite reduction w.r.t. RP . J

Notice that RP might be non-terminating even if P is terminating since information
about the starting state of the program is not propagated in the int-based TRS (but see
Section 5).

3.2 Combination of int-Based Rewrite Rules
The translation given above produces a large number of int-based rewrite rules since each
statement in the Simple program gives rise to one or more rules. In order to decrease the
number of int-based rewrite rules, it is possible to combine several rules into a single one.
On the level of the Simple program, this corresponds to the composition of several statements
into a single statement. This is particularly useful for combining rules from a straight-line
code segment (i.e., a code segment consisting of assignments, skip-, and halt-statements
only) and can increase the performance of the subsequent termination analysis considerably.

For a Simple program P with the sequence of statements Ω, the control points of P are the
function symbols statestart, statestop, and stateω

in for each assume-, if-, and while-statement



8 Termination Analysis of C Programs Using Compiler Intermediate Languages

occurring in P . In the following, let C be the set of control points of P . It is then possible
to eliminate int-based rewrite rules that contain a function symbol not occurring in C

by combining an int-based rewrite rule statei(x1, . . . , xn) → statej(e1, . . . , en)JϕK, where
statei ∈ C and statej 6∈ C, with a rule statej(x1, . . . , xn) → statek(e′1, . . . , e′n) (notice that
the int-based rewrite rules for function symbols not in C always have the int-constraint >),
resulting in

statei(x1, . . . , xn)→ statek(e′1ω, . . . , e′nω)JϕK

where ω = {x1 7→ e1, . . . , xn 7→ en}. The old rules are replaced by the new rule and the
process is iterated until all rules with a function symbol from C on the left-hand side also
have a function symbol from C on their right-hand side. Finally, rules with a function symbol
that is not in C are deleted.

I Example 10. Applying the combination of int-based rewrite rules to the int-based TRS
from Example 8 produces the int-based TRS

statestart(x, y, r)→ state4(x, y, 1)
state4(x, y, r)→ state4(x, y − 1, r ∗ x)Jy > 0K

state4(x, y, r)→ statestop(x, y, r) J¬(y > 0)K

Here, the set of control points is C = {statestart, statestop, state4}. J

Notice that the translation with subsequent combination of int-based rewrite rules
according to control points is similar to the translation proposed in [18], but recall that the
translation in [18] is restricted to (linear) Presburger arithmetic.

4 Translating LLVM-IR Programs into int-Based TRSs

Lifting the method presented in Section 3 to a real programming language such as C is
non-trivial. C has a complex syntax and semantics, resulting in many cases that need to
be considered. An alternative to operating on the source code level is the use of compiler
intermediate languages. These languages typically have a simple syntax and semantics, thus
simplifying the translation into int-based TRSs significantly (for similar reasons, termination
analysis for Java programs is often performed on the bytecode level and not on the source
code [1, 35, 30]).

In this paper, we consider LLVM and its intermediate language LLVM-IR [28]. An LLVM-
IR program is an assembly program for a register machine with an unbounded number
of registers. A program consists of type definitions, global variable declarations, and the
program itself, given in the form of one or more functions. Each function is represented as a
graph of basic blocks (see Example 11 for an LLVM-IR program), where each basic block is a
list of instructions, and execution of a function starts at the basic block named entry. For
our purpose, LLVM-IR instructions can be categorized into six classes:
• Three-address code (TAC) instructions working on registers or constants, such as %2 =

mul i32 %r.0, %x.
• Control flow instructions: Branch (br), return (ret), phi (phi).
• Function calls using call instructions.
• Memory access instructions, namely load and store.
• Address calculations using getelementptr instructions.
• Auxiliary instructions like type casts (type casts do not change the bit-level representation

of the data) or bit-level instructions.



Stephan Falke, Deepak Kapur, and Carsten Sinz 9

Branches and return instructions are only allowed as the last instruction of a basic block and
each basic block is terminated by one of these instructions.

LLVM-IR programs are in static single assignment (SSA) form, i.e. each register (variable)
is assigned exactly once in the static IR program. Due to this, it becomes necessary to
introduce the phi-instruction phi, which is used to select one of several values whenever
the control flow in a program converges again (e.g., after an if-then-else statement). For
example, the meaning of %r.0 = phi i32 [ 1, %entry ], [ %1, %bb ] contained in the
basic block bb1 in Example 11 is that the register %r.0 is assigned the value 1 if the control
flow passed from entry to bb1. If the control flow passed from bb to bb1, then %r.0 is
assigned the value contained in %1. These phi-instructions only occur at the beginning of
basic blocks.

All variables in LLVM-IR are typed. Available types include a void type, integer types like
i32 (where the bit-width is given explicitly), floating-point types, and derived types (such as
pointer, array and structure types). The integer type i1 is used as a dedicated Boolean type.
Aggregate types (structures and arrays) are accessed using memory load/store operations
and offset calculations using the getelementptr instruction.3

4.1 Single Non-Recursive Function Operating on Integers
First, it is assumed that the LLVM-IR program operates only on integer types. Furthermore,
it is assumed that there is exactly one function, and that this function does not contain any
call instructions. It thus only contains arithmetical instructions (add, sub, mul, signed and
unsigned div and rem), comparison instructions (equality eq, disequality neq, (un)signed
greater-than (u|s)gt, greater-or-equal (u|s)ge, less-than (u|s)lt, and less-or-equal (u|s)le),
control flow instructions, and type cast instructions.

I Example 11. For the C program from Example 1, the following LLVM-IR program is
obtained using the LLVM compiler frontend llvm-gcc:

define i32 @power(i32 %x, i32 %y) {
entry:

br label %bb1

bb1:
%y.0 = phi i32 [ %y, %entry ], [ %2, %bb ]
%r.0 = phi i32 [ 1, %entry ], [ %1, %bb ]
%0 = icmp sgt i32 %y.0, 0
br i1 %0, label %bb, label %return

bb:
%1 = mul i32 %r.0, %x
%2 = sub i32 %y.0, 1
br label %bb1

return:
ret i32 %r.0

}

Here, the basic blocks bb1 and bb correspond to the loop in the C program. J

3 Details on getelementptr can be found at http://llvm.org/docs/GetElementPtr.html.

http://llvm.org/docs/GetElementPtr.html


10 Termination Analysis of C Programs Using Compiler Intermediate Languages

An LLVM-IR program is now translated into an int-based TRS as follows. Each integer-
typed (i.e., of a type different from i1) function argument, each register defined by an
integer-typed TAC instruction, and each register defined by an integer-typed phi-instruction
is mapped to a variable in the TRS. Similar to Section 3, each TAC instruction gives rise
to a rewrite rule that mimics the effect of that instruction. Here, division instructions are
handled as in Section 3 by introducing a fresh variable on the right-hand side and adding
appropriate constraints on that variable. Remainder instructions are handled similarly by
introducing fresh variables on the right-hand side.

Since int-based TRSs operate on mathematical integers, all integer types different from
i1 are identified with the mathematical integers in the following.
I Assumption 1. All LLVM-IR integer types ik with k > 1 are identified with Z.

Integer type cast instructions thus do not have any effect.
The control flow of the LLVM-IR program is mimicked as follows. As in Section 3, the

function symbols statestart and statestop are introduced, denoting starting and stopping states,
respectively. Next, each basic block bb is assigned two function symbols statebbin and statebbout .
These function symbols correspond to the points after the final phi-instruction in bb and
before the branch or return instruction of bb, respectively. If bb contains the (possibly
empty) sequence Ω of integer-typed TAC instructions, then a rule statebbin(. . .)→ stateΩ

in(. . .)
(if Ω is non-empty) or statebbin(. . .) → statebbout(. . .) (if Ω is empty) is added. If bb is
terminated by a return instruction, then the rule statebbout(. . .) → statestop(. . .) is added.
Otherwise, bb is terminated by a branch instruction. For an unconditional branch to bb′, a
rule statebbout(. . .)→ statebb′

in
(. . .) is added, where the variables on the right-hand side that

correspond to phi-instructions are instantiated according to their value in the case where
control flow passes from bb to bb′. A conditional branch is treated similarly, but now the
rules are equipped with the constraint that corresponds to the (negated) branch condition.

I Example 12. Consider the C program from Example 1 and its LLVM-IR from Example 11.
Using the translation outlined above, the int-based TRS

statestart(vx, vy, vy.0, vr.0, v1, v2)→ stateentryin(vx, vy, vy.0, vr.0, v1, v2)
stateentryin(vx, vy, vy.0, vr.0, v1, v2)→ stateentryout(vx, vy, vy.0, vr.0, v1, v2)

stateentryout(vx, vy, vy.0, vr.0, v1, v2)→ statebb1in(vx, vy, vy, 1, v1, v2)
statebb1in(vx, vy, vy.0, vr.0, v1, v2)→ statebb1out(vx, vy, vy.0, vr.0, v1, v2)

statebb1out(vx, vy, vy.0, vr.0, v1, v2)→ statebbin(vx, vy, vy.0, vr.0, v1, v2) Jvy.0 > 0K

statebb1out(vx, vy, vy.0, vr.0, v1, v2)→ statereturnin(vx, vy, vy.0, vr.0, v1, v2) Jvy.0 ≤ 0K

statebbin(vx, vy, vy.0, vr.0, v1, v2)→ state1(vx, vy, vy.0, vr.0, v1, v2)
state1(vx, vy, vy.0, vr.0, v1, v2)→ state2(vx, vy, vy.0, vr.0, vr.0 ∗ vx, v2)
state2(vx, vy, vy.0, vr.0, v1, v2)→ state3(vx, vy, vy.0, vr.0, v1, vy.0 − 1)
state3(vx, vy, vy.0, vr.0, v1, v2)→ statebbout(vx, vy, vy.0, vr.0, v1, v2)

statebbout(vx, vy, vy.0, vr.0, v1, v2)→ statebb1in(vx, vy, v2, v1, v1, v2)
statereturnin(vx, vy, vy.0, vr.0, v1, v2)→ statereturnout(vx, vy, vy.0, vr.0, v1, v2)

statereturnout(vx, vy, vy.0, vr.0, v1, v2)→ statestop(vx, vy, vy.0, vr.0, v1, v2)

is obtained. Here, simplified names have been used for the function symbols corresponding
to instructions in order to improve readability. J

The statement of Theorem 9 holds for LLVM-IR programs as well, i.e., an LLVM-IR
program is terminating if the int-based TRS produced by the translation is terminating.



Stephan Falke, Deepak Kapur, and Carsten Sinz 11

I Theorem 13. Let P be an LLVM-IR program. Then the above translation produces an
int-based TRS RP such that P is terminating if RP is terminating.

Again, RP might be non-terminating even if P is terminating (but see Section 5).

4.2 Simplification of int-Based Rewrite Rules
A combination of the int-based rewrite rules obtained by the translation can be done as in
Section 3. For int-based TRSs obtained from LLVM-IR, the set of control points consists of
the function symbols statestart, statestop, and statebbin for each basic block bb of the program.

I Example 14. Continuing Example 12, the control points are statestart, statestop, stateentryin ,
statebb1in , statebbin , and statereturnin . Combining rules w.r.t. these control points produces

statestart(vx, vy, vy.0, vr.0, v1, v2)→ stateentryin(vx, vy, vy.0, vr.0, v1, v2)
stateentryin(vx, vy, vy.0, vr.0, v1, v2)→ statebb1in(vx, vy, vy, 1, v1, v2)
statebb1in(vx, vy, vy.0, vr.0, v1, v2)→ statebbin(vx, vy, vy.0, vr.0, v1, v2) Jvy.0 > 0K

statebb1in(vx, vy, vy.0, vr.0, v1, v2)→ statereturnin(vx, vy, vy.0, vr.0, v1, v2) Jvy.0 ≤ 0K

statebbin(vx, vy, vy.0, vr.0, v1, v2)→ statebb1in(vx, vy, vy.0−1, vr.0 ∗ vx, v1, vy.0−1)
statereturnin(vx, vy, vy.0, vr.0, v1, v2)→ statestop(vx, vy, vy.0, vr.0, v1, v2)

as a new int-based TRS. J

After the combination of int-based rewrite rules, it is possible to remove some arguments
from the function symbols. Notice that the effect of instructions that are only used in the
same basic block where they are defined and in phi-instructions has been propagated by
the combination of rules. Thus, the corresponding variables can be removed as arguments
from the function symbols. On the syntactic level of rewrite rules, an argument position i is
unneeded if, for all rewrite rules l→ rJϕK, the variable occurring in position i of l does not
occur in ϕ and only in argument position i of r.

I Example 15. After removing the unneeded arguments in Example 14,

statestart(vx, vy, vy.0, vr.0)→ stateentryin(vx, vy, vy.0, vr.0) (1)
stateentryin(vx, vy, vy.0, vr.0)→ statebb1in(vx, vy, vy, 1) (2)
statebb1in(vx, vy, vy.0, vr.0)→ statebbin(vx, vy, vy.0, vr.0) Jvy.0 > 0K (3)
statebb1in(vx, vy, vy.0, vr.0)→ statereturnin(vx, vy, vy.0, vr.0) Jvy.0 ≤ 0K (4)
statebbin(vx, vy, vy.0, vr.0)→ statebb1in(vx, vy, vy.0 − 1, vr.0 ∗ vx) (5)

statereturnin(vx, vy, vy.0, vr.0)→ statestop(vx, vy, vy.0, vr.0) (6)

is obtained since arguments 5 and 6 are not needed. J

4.3 Several Functions Operating on Integers
In this section it is discussed how the translation from LLVM-IR programs into int-based
TRSs can be extended to the case of several functions. For this, the user first specifies which
function should be the starting function for the termination analysis (often, this is the main
function). It is then necessary to include all functions that are (transitively) called by this
starting function in the termination analysis.

A given LLVM-IR program might not contain implementations of all functions being called.
Instead, some functions may only be available as prototype declarations (library functions
are a prime example).



12 Termination Analysis of C Programs Using Compiler Intermediate Languages

I Assumption 2. It is assumed that all functions that are only declared as prototypes are
terminating. Furthermore, these functions are assumed to not call functions defined in the
program.

If the user-defined functions have function call hierarchies with arbitrary recursion, then
it needs to be ensured that the sequence of recursive calls is terminating. For this, each call
instruction to a function with non-void type gives rise to two rewrite rules. One rewrite rule
introduces a fresh variable on the right-hand side which abstracts the return value of the
called function. This rule has the form statei(. . .)→ statei+1(. . . , z, . . .), where z is a fresh
variable. The second rewrite rule has the form statei(. . .)→ statef

start(. . .), where statef
start is

the called function’s start symbol.45 A call to a function with void type is handled similarly,
but no fresh variable is introduced on the right-hand side.

I Example 16. The following C program computes the Ackermann function:

int ack(int m, int n) {
if (m <= 0) {

return n + 1;
} else if (n <= 0) {

return ack(m − 1, 1);
} else {

return ack(m − 1, ack(m, n − 1));
}

}

The C program is compiled into the following LLVM-IR program:

define i32 @ack(i32 %m, i32 %n) {
entry:

%0 = icmp sle i32 %m, 0
br i1 %0, label %bb, label %bb1

bb:
%1 = add nsw i32 %n, 1
ret i32 %1

bb1:
%2 = icmp sle i32 %n, 0
br i1 %2, label %bb2, label %bb3

bb2:
%3 = sub nsw i32 %m, 1
%4 = call i32 @ack(i32 %3, i32 1)
ret i32 %4

4 Intuitively, a non-terminating program run starting at the call instruction is either a non-terminating
run starting in the called function f , or a run where the call to f terminates and the infinite run
continues with the next instruction after the call.

5 Another way to look at this is that the recursive call to f intuitively corresponds to the single rewrite
rule statei(. . .)→ statei+1(. . . , statef

start(. . .), . . .). The rewrite rules that are generated by the proposed
translation correspond the the dependency pairs [2] of that rewrite rule, where the nested function call
has been replaced by a fresh variable.



Stephan Falke, Deepak Kapur, and Carsten Sinz 13

bb3:
%5 = sub nsw i32 %n, 1
%6 = call i32 @ack(i32 %m, i32 %5)
%7 = sub nsw i32 %m, 1
%8 = call i32 @ack(i32 %7, i32 %6)
ret i32 %8

}

Using the approach outlined above, the following int-based TRS is generated:

statestart(vm, vn)→ stateentryin(vm, vn)
stateentryin(vm, vn)→ statebbin(vm, vn) Jvm ≤ 0K

stateentryin(vm, vn)→ statebb1in(vm, vn) Jvm > 0K

statebbin(vm, vn)→ statestop(vm, vn)
statebb1in(vm, vn)→ statebb2in(vm, vn) Jvn ≤ 0K

statebb1in(vm, vn)→ statebb3in(vm, vn) Jvn > 0K

statebb2in(vm, vn)→ statestart(vm − 1, 1)
statebb2in(vm, vn)→ statestop(vm, vn)
statebb3in(vm, vn)→ statestart(vm, vn − 1)
statebb3in(vm, vn)→ statestart(vm − 1, z)
statebb3in(vm, vn)→ statestop(vm, vn)

Termination of this TRS is easily shown using the methods presented in Sections 6–10. J

4.4 Programs Containing Pointers and Floating Point Numbers
int-based TRSs do not support pointers or floating point numbers. Thus, all instructions of
these types are ignored in the translation. In order to have a non-termination preserving
translation, instructions that take a pointer or a floating point number and return an integer
(such as load or fptosi) are abstracted to an unspecified value which corresponds to a
fresh variable on the right-hand side of the generated rewrite rule. Pointer or floating point
comparisons are handled the same way that brandom was handled in Section 3.

I Example 17. The following C program computes the maximal element in the range
[low..high] of the array pointed to by a:

int max(int a[], int low, int high) {
if (low >= high) {

return a[low];
} else {

int mid = (low + high) / 2;
int leftmax = max(a, low, mid);
int rightmax = max(a, mid + 1, high);
if (leftmax > rightmax) {

return leftmax;
} else {

return rightmax;
}

}
}



14 Termination Analysis of C Programs Using Compiler Intermediate Languages

This program is translated into the following LLVM-IR program (here, the select instruction
chooses between %5 and %7, depending on the truth value of %8):

define i32 @max(i32* %a, i32 %low, i32 %high) {
entry:

%0 = icmp sge i32 %low, %high
br i1 %0, label %bb, label %bb1

bb:
%1 = getelementptr i32* %a, i32 %low
%2 = load i32* %1
ret i32 %2

bb1:
%3 = add i32 %low, %high
%4 = sdiv i32 %3, 2
%5 = call i32 @max(i32* %a, i32 %low, i32 %4)
%6 = add i32 %4, 1
%7 = call i32 @max(i32* %a, i32 %6, i32 %high)
%8 = icmp sgt i32 %5, %7
%retval = select i1 %8, i32 %5, i32 %7
ret i32 %retval

}

Termination of the generated int-based TRS

statestart(vlow, vhigh)→ stateentryin(vlow, vhigh)
stateentryin(vlow, vhigh)→ statebbin(vlow, vhigh) Jvlow ≥ vhighK

stateentryin(vlow, vhigh)→ statebb1in(vlow, vhigh) Jvlow < vhighK

statebbin(vlow, vhigh)→ statestop(vlow, vhigh)
statebb1in(vlow, vhigh)→ statestart(vlow, z1) Jvlow + vhigh − 2 ∗ z1 ≥ 0∧

vlow + vhigh − 2 ∗ z1 < 2 K

statebb1in(vlow, vhigh)→ statestart(z1 + 1, vhigh)Jvlow + vhigh − 2 ∗ z1 ≥ 0∧
vlow + vhigh − 2 ∗ z1 < 2 K

statebb1in(vlow, vhigh)→ statestop(vlow, vhigh) Jz2 > z3K

statebb1in(vlow, vhigh)→ statestop(vlow, vhigh) Jz2 ≤ z3K

can easily be established using the methods developed in this paper (here, z1 corresponds to
the division and z2 and z3 correspond to the return values of the recursive calls). J

5 Utilizing Static Analysis Methods

Notice that the translations from Simple programs and LLVM-IR programs into int-based
TRSs do not propagate information about the initial state of the program. Thus, the
int-based TRS RP might be non-terminating even if the program P is terminating since
reductions w.r.t. RP are not restricted to reductions that are reachable from the initial state.

I Example 18. The Simple program



Stephan Falke, Deepak Kapur, and Carsten Sinz 15

1 var x: int;
2 begin
3 x = 1;
4 while (x < 217) do
5 x = 2*x;
6 done;
7 end

is clearly terminating since the while-loop is executed exactly 8 times. The int-based TRS

statestart(x)→ state4(1)
state4(x)→ state4(2 ∗ x)Jx < 217K

state4(x)→ statestop(x) Jx ≥ 217K

obtained by the translation and the combination of int-based rewrite rules according to
control points is, however, non-terminating since state4(0)→int\R state4(0)→int\R . . .. J

It is thus desirable to make information about the initial state explicit throughout the
program. Furthermore, a successful automatic termination proof requires simple invariants
on the program variables (such as “a variable is always non-negative”) in some cases.

For Simple programs, this kind of information can be obtained automatically using the
static analysis tool Interproc [26], which is based on the abstract interpretation framework
[14] in combination with the interval [14], polyhedra [15], or octagon [29] domain. The
translation from Section 3 can utilize this information if the invariants computed by the tool
are added to the Simple program in the form of assume-statements. Notice that this does
not alter the program behavior since the invariants imply that the added assume-statements
are equivalent to a skip-statement.

I Example 19. Using the Interproc static analysis tool on the Simple program from
Example 18, one invariant is obtained:

1 var x: int;
2 begin
3 x = 1;
4 while (x < 217) do
5 assume (x >= 1);
6 x = 2*x;
7 done;
8 end

Now, the int-based TRS

statestart(x)→ state4(1)
state4(x)→ state5(x) Jx < 217K

state5(x)→ state4(2 ∗ x)Jx ≥ 1K

state5(x)→ statestop(x) Jx < 1K

state4(x)→ statestop(x) Jx ≥ 217K

is the result of the translation and combination of int-based rewrite rules according to
control points. This int-based TRS is terminating and the methods developed in this paper
can easily prove this. J



16 Termination Analysis of C Programs Using Compiler Intermediate Languages

Similarly, for C programs, the static analysis tool Aspic/C2fsm [19] can be used to
automatically compute invariants. These invariants can then be added to the C program as
calls to a (prototype only) assume function with a built-in semantics. These calls are then
handled the same way that the assume-statements from Simple were handled (see Section 3).

6 Characterizing Termination of int-Based TRSs

The remainder of this paper is concerned with methods for showing termination of int-based
TRSs. In order to verify termination of int-based TRSs, the notion of chains is used.
Intuitively, a chain represents a possible sequence of rule applications in a reduction w.r.t.
→int\R. In the following, it is always assumed that different (occurrences of) int-based
rewrite rules are variable-disjoint, and the domain of substitutions may be infinite. This
allows for a single substitution in the following definition. Recall that →int\R is only applied
at the root position of a term.

I Definition 20 (R-Chains). Let R be an int-based TRS. A (possibly infinite) sequence of
int-based rewrite rules l1 → r1Jϕ1K, l2 → r2Jϕ2K, . . . from R is an R-chain iff there exists
an FZ-based substitution σ such that norm(riσ) = li+1σ and ϕiσ is int-valid for all i ≥ 1.

I Example 21. Continuing Example 15, the R-chain

statebb1in(vx, vy, vy.0, vr.0)→ statebbin(vx, vy, vy.0, vr.0) Jvy.0 > 0K

statebbin(v′x, v′y, v′y.0, v
′
r.0)→ statebb1in(v′x, v′y, v′y.0 − 1, v′r.0 ∗ v′x)

statebb1in(v′′x , v′′y , v′′y.0, v
′′
r.0)→ statebbin(v′′x , v′′y , v′′y.0, v

′′
r.0) Jv′′y.0 > 0K

can be built by considering the substitution σ = {vx 7→ 2, v′x 7→ 2, v′′x 7→ 2, vy 7→ 2, v′y 7→
2, v′′y 7→ 2, vy.0 7→ 2, v′y.0 7→ 2, v′′y.0 7→ 1, vr.0 7→ 1, v′r.0 7→ 1, v′′r.0 7→ 2} since

norm(statebbin(vx, vy, vy.0, vr.0)σ) = norm(state(2, 2, 2, 1))
= statebbin(2, 2, 2, 1)
= statebbin(v′x, v′y, v′y.0, v

′
r.0)σ

and

norm(statebb1in(v′x, v′y, v′y.0 − 1, v′r.0 ∗ v′x)σ) = norm(statebb1in(2, 2, 2− 1, 1 ∗ 2))
= statebb1in(2, 2, 1, 2)
= statebb1in(v′′x , v′′y , v′′y.0, v

′′
r.0)σ

where additionally (vy.0 > 0)σ = (2 > 0) and (v′′y.0 > 0)σ = (1 > 0) are int-valid. J

Using the notion ofR-chains, the following characterization of termination of an int-based
TRS R is easily obtained.

I Theorem 22. Let R be an int-based TRS. Then R is terminating if and only if there are
no infinite R-chains.

Proof. Let R be an int-based TRS.

“⇐” Assume that there exists a term s which starts an infinite →int\R-reduction and
consider an infinite reduction starting with s. According to the definition of →int\R, there
exist an int-based rewrite rule l1 → r1Jϕ1K ∈ R and an FZ-based substitution σ1 such



Stephan Falke, Deepak Kapur, and Carsten Sinz 17

that s = l1σ1 and ϕ1σ1 is int-valid. The reduction then yields norm(r1σ1) and the infinite
→int\R-reduction continues with norm(r1σ1), i.e., the term norm(r1σ1) starts an infinite
→int\R-reduction as well. The first int-based rewrite rule in the infinite R-chain that is being
constructed is l1 → r1Jϕ1K. The other int-based rewrite rules of the infinite R-chain are
determined in the same way: let li → riJϕiK be an int-based rewrite rule such that norm(riσi)
starts an infinite →int\R-reduction. Again, an int-based rewrite rule li+1 → ri+1Jϕi+1K
is applied to norm(riσi) using a substitution σi+1 and the term norm(ri+1σi+1) starts an
infinite →int\R-reduction. This produces the next int-based rewrite rule in the infinite
R-chain. In this way, the infinite sequence

l1 → r1Jϕ1K, l2 → r2Jϕ2K, l3 → r3Jϕ3K, . . .

is obtained. Since it is assumed that different (occurrences of) int-based rewrite rules are
variable-disjoint, the substitution σ = σ1 ∪ σ2 ∪ . . . gives norm(riσ) = li+1σ and int-validity
of the instantiated int-constraint ϕiσ for all i ≥ 1. Thus, the above infinite sequence is
indeed an infinite R-chain.

“⇒” Assume there exists an infinite R-chain

l1 → r1Jϕ1K, l2 → r2Jϕ2K, l3 → r3Jϕ3K, . . .

Hence, there exists a substitution σ such that

norm(r1σ) = l2σ,

norm(r2σ) = l3σ,

...

and the instantiated int-constraints ϕ1σ, ϕ2σ, . . . are int-valid.
From this, the infinite →int\R-reduction

norm(r1σ)→int\R norm(r2σ)→int\R norm(r3σ) . . .

is obtained, and R is thus not terminating. J

In the next sections, various techniques for showing termination of int-based TRSs are
developed. These techniques are stated independently of each other in the form of termination
processors, following the dependency pair framework for ordinary term rewriting [21] and for
term rewriting with built-in numbers [17]. The main motivation for this approach is that
it allows to combine different termination techniques in a flexible manner since it typically
does not suffice to just use a single technique in a successful termination proof.

Termination processors are used to transform an int-based TRS into a (finite) set of
int-based TRSs for which termination is (hopefully) easier to show. A termination processor
Proc is sound iff for all int-based TRSs R, R is terminating whenever all int-based TRSs
in Proc(R) are terminating. Notice that Proc(R) = {R} is possible. This can be interpreted
as a failure of Proc and indicates that a different termination processor should be applied.

Using sound termination processors, a termination proof of R then consists of the repeated
application of these processors. If all int-based TRSs obtained in this process are transformed
into ∅, then R is terminating.



18 Termination Analysis of C Programs Using Compiler Intermediate Languages

7 Splitting into Dual Clauses

Often, it is convenient to only consider int-based rewrite rules with a restricted kind of
int-constraints. In particular, the restriction to int-constraints that are conjunctions of
(negated) atomic int-constraints may be convenient. This can be achieved by a conversion
into disjunctive normal form (DNF) and the introduction of one rewrite rule for each dual
clause in this DNF.6

I Theorem 23 (Processor Based on DNF). The termination processor with Proc(R) =⋃
l→rJϕK∈R dnf(l→ rJϕK) where

dnf(l→ rJϕK) = {l→ rJψK | ψ is a dual clause in the DNF of ϕ}

is sound.

Proof. It needs to be shown that every occurrence of (a variable-renamed version of) l→ rJϕK
in an infinite chain can be replaced by some int-based rewrite rule from Proc(R). Thus,
assume that some infinite chain contains . . . , l→ rJϕK, . . .. Let the infinite chain be based
on the substitution σ, i.e., ϕσ is int-valid. Thus, the DNF of ϕσ is int-valid as well, which
means that (at least) one dual clause in the DNF of ϕσ is int-valid. Since there exists an
int-based rewrite rule l → rJψK ∈ Proc(R) that corresponds to this dual clause, l → rJϕK
can be replaced by l→ rJψK and there exists an infinite Proc(R)-chain as well. J

8 Termination Graphs

Notice that an int-based TRS R may give rise to infinitely many different R-chains. This
section introduces a method that represents these infinitely many chains in a finite graph.
Then, each R-chain (and thus each computation path in the imperative program) corresponds
to a path in this graph. By considering the strongly connected components of this graph, it
then becomes possible to decompose an int-based TRS into several independent int-based
TRSs by determining which int-based rewrite rules may follow each other in a chain.

The termination processor for this idea uses termination graphs, which are motivated by
the dependency graphs used in the dependency pair framework for ordinary term rewriting
[2] and rewriting with built-in numbers [17].

I Definition 24 (Termination Graphs). Let R be an int-based TRS. The nodes of the
R-termination graph TG(R) are the int-based rewrite rules from R and there is an arc from
l1 → r1Jϕ1K to l2 → r2Jϕ2K iff l1 → r1Jϕ1K, l2 → r2Jϕ2K is an R-chain.

A set R′ ⊆ R of int-based rewrite rules is a strongly connected subgraph of TG(R) iff for
all int-based rewrite rules l1 → r1Jϕ1K and l2 → r2Jϕ2K from R′ there exists a path from
l1 → r1Jϕ1K to l2 → r2Jϕ2K that only traverses int-based rewrite rules from R′. A strongly
connected subgraph is a strongly connected component (SCC) if it is not a proper subset of
any other strongly connected subgraph. Now, every infinite R-chain contains an infinite tail
that stays within an SCC of TG(R), and it is thus sufficient to prove the absence of infinite
chains for each SCC separately.

6 Here, it can be assumed that negated atomic constraints of the form ¬(s ' t) are replaced by s > t∨t > s.



Stephan Falke, Deepak Kapur, and Carsten Sinz 19

I Theorem 25 (Processor Based on Termination Graphs). The termination processor with
Proc(R) = {R1, . . . ,Rn}, where R1, . . . ,Rn are the non-trivial7 SCCs of TG(R), is sound.8

Proof. After a finite number of int-based rewrite rules in the beginning, any infinite R-chain
only contains int-based rewrite rules from some non-trivial SCC. Hence, every infinite
R-chain gives rise to an infinite Ri-chain for some 1 ≤ i ≤ n and Proc is thus sound. J

It is in general unclear whether TG(R) is computable. The following procedure can be
used to approximate TG(R), where it is assumed that the processor from Section 7 that
splits an int-based rewrite rule into several int-based rewrite rules according to the DNF
of the int-constraint has already been applied. Then, in order to determine whether there
is an arc from l1 → r1Jϕ1K to l2 → r2Jϕ2K if r1 = f(e1, . . . , en) and l2 = f(x1, . . . , xn), it is
determined whether the int-constraint drop(ϕ1 ∧ ϕ2σ) is int-satisfiable, where σ = {x1 7→
e1, . . . , xn 7→ en} and drop drops all (negated) atomic int-constraints that contain “∗” from
the conjunction ϕ1 ∧ϕ2σ. Alternatively, sound but incomplete methods can be used in order
to determine whether ϕ1 ∧ ϕ2σ is satisfiable in the integers.

I Example 26. Continuing Example 21, the int-based TRS generated there gives rise to
the following termination graph:

(1) (2)
(3)

(4)

(5)

(6)

There is an arc from (3) to (5) since the int-constraint drop(vy.0 > 0) = (vy.0 > 0) is int-
satisfiable. Similar reasoning is applied in order to determine the existence of the remaining
arcs. The termination graph contains one non-trivial SCC and the termination processor of
Theorem 25 returns the int-based TRS {(3), (5)}. J

9 int-Polynomial Interpretations

In this section, well-founded relations on terms are considered and it is shown that int-based
rewrite rules may be deleted from an int-based TRS if their left-hand side is strictly “bigger”
than their right-hand side. A promising way for the generation of such well-founded relations
is the use of polynomial interpretations [27]. In contrast to [27], int-based TRSs allow for the
use of polynomial interpretations with coefficients from Z. In the term rewriting literature,
polynomial interpretations with coefficients from Z have been utilized in [23, 22, 17, 18, 20].

An int-polynomial interpretation maps each symbol f ∈ F to a polynomial over Z such
that Pol(f) ∈ Z[x1, . . . , xn] if f has n arguments. The mapping Pol is then extended to
terms from T (F ,Fint,V) by letting [f(t1, . . . , tn)]Pol = Pol(f)(t1, . . . , tn) for all f ∈ F . Now
int-polynomial interpretations generate relations on terms as follows. Here, the requirement
[s]Pol ≥ 0 is needed for well-foundedness of �Pol .

I Definition 27 (�Pol and &Pol). For an int-polynomial interpretation Pol, terms s, t ∈
T (F ,Fint,V), and an int-constraint ϕ, let:

7 An SCC is trivial if it has size 1 and there is no arc from its element to itself.
8 Notice, in particular, that Proc(∅) = ∅. Also, notice that int-based rewrite rules with unsatisfiable
constraints are not connected to any int-based rewrite rule and do thus not occur in any non-trivial
SCC.



20 Termination Analysis of C Programs Using Compiler Intermediate Languages

• s �ϕ
Pol t iff ϕ⇒ [s]Pol ≥ 0 and ϕ⇒ [s]Pol > [t]Pol are int-valid.

• s &ϕ
Pol t iff ϕ⇒ [s]Pol ≥ [t]Pol is int-valid.

Notice that �Pol and &Pol are in general undecidable since [s]Pol and [t]Pol may be
non-linear. A heuristic for the automatic generation of int-polynomial interpretations that
ensure s �ϕ

Pol t or s &
ϕ
Pol t is presented in Section 11.1.

Using int-polynomial interpretations, int-based rewrite rules l → rJϕK with l �ϕ
Pol r

can be removed from an int-based TRS if all remaining int-based rewrite rules l′ → r′Jϕ′K
satisfy l′ &ϕ′

Pol r
′.

I Theorem 28 (Processor Based on int-Polynomial Interpretations). Let Pol be an int-
polynomial interpretation and let Proc be the termination processor with Proc(R) =
• {R −R′}, if R′ ⊆ R such that

– l �ϕ
Pol r for all l→ rJϕK ∈ R′, and

– l &ϕ
Pol r for all l→ rJϕK ∈ R−R′.

• {R}, otherwise.

Then Proc is sound.

Proof. This is a special case of Theorem 34 from Section 9.1. J

I Example 29. Recall the int-based TRS {(3), (5)} from Example 26. For this int-based
TRS, an int-polynomial interpretation such that Pol(statebb1in) = x3 and Pol(statebbin) =
x3 − 1 can be used (this polynomial interpretation can be generated automatically by the
heuristic presented in Section 11.1).

For (3), statebb1in(vx, vy, vy.0, vr.0) �vy.0>0
Pol statebb1in(vx, vy, vy.0, vr.0) since vy.0 > 0 ⇒

vy.0 ≥ 0 and vy.0 > 0⇒ vy.0 > vy.0−1 are int-valid. For (5), statebb1in(vx, vy, vy.0, vr.0) &Pol
statebbin(vx, vy, vy.0 − 1, vr.0 ∗ vx) since vy.0 − 1 ≥ vy.0 − 1 is trivially int-valid. J

9.1 int-Reduction Pairs
For the proof of Theorem 28, it is convenient to give an abstract characterization of well-
founded relations on terms that may be used for termination proofs of int-based TRSs.
The relations that can be used should not make a distinction between terms that are
int-equivalent, i.e., they need to satisfy the following requirement.

I Definition 30 (int-Compatible Relations). A relation ./ on T (F ,Fint,V) is int-compatible
iff s ./ t implies s′ ./ t′ for all s′, t′ such that s ' s′ and t ' t′ are int-valid.9

The notion of int-reduction pairs is motivated by the notion of reduction pairs [25]. An
int-reduction pair consists of two relations & and �, where it is not required that � is the
strict part of &.

I Definition 31 (int-Reduction Pairs). An int-reduction pair (&,�) consists of two relations
on T (F ,Fint,V) such that � is well-founded, & and � are int-compatible, and � is
compatible with &, i.e., & ◦ � ⊆ � or � ◦ & ⊆ �.

Relations on T (F ,Fint,V) are extended to operate on terms with constraints as follows.
Intuitively, it suffices to consider all instantiations that make the constraint int-valid.

9 Strictly speaking, s ' s′ needs to be valid in the theory of integers and uninterpreted functions since s
and s′ have a function symbol from F as their root symbol. But since s and s′ do not contain nested
function symbols this is equivalent to the validity of pairwise equality of arguments.



Stephan Falke, Deepak Kapur, and Carsten Sinz 21

I Definition 32 (Relations on Constrained Terms). Let ./ be a relation on T (F ,Fint,V).
Let s, t be terms and let ϕ be an int-constraint. Then s ./ϕ t iff sσ ./ tσ for all FZ-based
substitutions σ such that ϕσ is int-valid.

I Example 33. Consider the relation >int on int-terms over V, defined by s >int t iff
s > t is int-valid. Then x+ y 6>int x since x+ y > x is not int-valid. On the other hand,
x+ y >y>0

int x. J

Using int-reduction pairs, int-based rewrite rules l → rJϕK such that l �ϕ r can be
removed from an int-based TRS if all remaining int-based rewrite rules l′ → r′Jϕ′K satisfy
l′ &ϕ′

r′. This generalizes Theorem 28.

I Theorem 34 (Processor Based on int-Reduction Pairs). Let (&,�) be an int-reduction
pair and let Proc be the termination processor with Proc(R) =
• {R −R′}, if R′ ⊆ R such that

– l �ϕ r for all l→ rJϕK ∈ R′, and
– l &ϕ r for all l→ rJϕK ∈ R−R′.

• {R}, otherwise.

Then Proc is sound.

Proof. In the second case soundness is obvious. Otherwise, it needs to be shown that every
infinite R-chain contains only finitely many int-based rewrite rules from R′. Thus, assume
that l1 → r1Jϕ1K, l2 → r2Jϕ2K, . . . is an infinite R-chain using the substitution σ. Hence,
norm(riσ) = li+1σ and ϕiσ is int-valid for all i ≥ 1.

Since li &ϕi ri for all li → riJϕiK ∈ R −R′ and li �ϕi ri for all li → riJϕiK ∈ R′, this
implies liσ & riσ or liσ � riσ for all i ≥ 1. Furthermore, notice that riσ ' norm(riσ) is
int-valid. Hence, using the int-compatibility of & and �, the infinite R-chain gives rise to

l1σ ./1 norm(r1σ) = l2σ ./2 norm(r2σ) = l3σ . . .

where ./i ∈ {&,�}. Therefore,

l1σ ./1 l2σ ./2 l3σ . . .

If the infinite R-chain contains infinitely many int-based rewrite rules from R′, then ./i = �
for infinitely many i. In this case, the compatibility of � with & produces an infinite �-chain,
contradicting the well-foundedness of �. Thus, only finitely many int-based rewrite rules
from R′ occur in the infinite R-chain and there exists an infinite (R−R′)-chain as well. J

For the proof of Theorem 28, it thus suffices to show that int-polynomial interpretations
yield int-reduction pairs. For this, s �Pol t iff s �>Pol t, and similarly for &Pol .

I Theorem 35. Let Pol be an int-polynomial interpretation. Then (&Pol ,�Pol) is an
int-reduction pair.

Proof. It needs to be shown that �Pol is well-founded, that &Pol and �Pol are int-compatible,
and that �Pol is compatible with &Pol .

�Pol is well-founded: For a contradiction, assume that s1 �Pol s2 �Pol . . . is an infinite
descending sequence of terms. This means that [si]Pol > [si+1]Pol and [si]Pol ≥ 0 for all
i ≥ 1 and all instantiations of the variables by integers. By fixing an arbitrary instantiation,
integers d1, d2, . . . ≥ 0 are obtained such that d1 > d2 > . . ., which is clearly impossible.



22 Termination Analysis of C Programs Using Compiler Intermediate Languages

&Pol and �Pol are int-compatible. Let s &Pol t and assume that s′ ' s and t ' t′ are int-
valid. Then s = f(s∗), s′ = f(s′∗), t = g(t∗), and t′ = g(t′∗), where s∗ ' s′∗ and t∗ ' t′∗ are
int-valid. Clearly, s ' s′ implies that s and s′ are equal for all instantiations of the variables
by integers. Thus, [s′]Pol = Pol(f)(s′1, . . . , s′n) = Pol(f)(s1, . . . , sn) ≥ Pol(g)(t1, . . . , tm) =
Pol(g)(t′1, . . . , t′n) = [t′]Pol for all instantiations of the variables by integers since s &Pol t.
But then s′ &Pol t

′. int-compatibility of �Pol is shown the same way.

�Pol is compatible with &Pol: For showing that �Pol ◦ &Pol ⊆ �Pol , let s �Pol t &Pol u,
i.e., [s]Pol > [t]Pol ≥ [u]Pol and [s]Pol ≥ 0 for all instantiations of the variables by integers.
But then [s]Pol > [u]Pol for all instantiations of the variables as well and therefore s �Pol u.

Also, &Pol ◦ �Pol ⊆ �Pol . To see this, let s &Pol t �Pol u. Then [s]Pol ≥ [t]Pol > [u]Pol
and [t]Pol ≥ 0 for all instantiations of the variables by integers. But then also [s]Pol ≥ 0 and
[s]Pol > [u]Pol for all instantiations of the variables, i.e., s �Pol u. J

10 Chaining

It is possible to replace an int-based rewrite rule l→ rJϕK by a set of new int-based rewrite
rules that are formed by chaining l→ rJϕK to the int-based rewrite rules that may follow it
in an infinite chain10. This way, further information about the possible substitutions used
for a chain can be obtained. Chaining of int-based rewrite rules corresponds to executing
bigger parts of the imperative program at once, spanning several control points. This is of
course similar to the idea of combining int-based rewrite rules as used in Sections 3 and 4.

I Example 36. Consider the following C program and its LLVM-IR program:

void f(int x) {
while (x != 0) {

if (x > 0) {
x = −x + 1;

} else {
x = −x − 1;

}
}

}

define void @f(i32 %x) {
entry:

br label %bb3

bb3:
%x.0 = phi i32 [ %x, %entry ], [ %2, %bb1 ], [ %3, %bb2 ]
%0 = icmp ne i32 %x.0, 0
br i1 %0, label %bb, label %return

bb:
%1 = icmp sgt i32 %x.0, 0
br i1 %1, label %bb1, label %bb2

10Dually, it is possible to consider the int-based rewrite rules that may precede it.



Stephan Falke, Deepak Kapur, and Carsten Sinz 23

bb1:
%2 = sub i32 1, %x.0
br label %bb3

bb2:
%3 = sub i32 -1, %x.0
br label %bb3

return:
ret void

}

Then, the following int-based TRS is generated from it:

statestart(vx, vx.0)→ stateentryin(vx, vx.0) (7)
stateentryin(vx, vx.0)→ statebb3in(vx, vx) (8)
statebb3in(vx, vx.0)→ statebbin(vx, vx.0) Jvx.0 < 0K (9)
statebb3in(vx, vx.0)→ statebbin(vx, vx.0) Jvx.0 > 0K (10)
statebb3in(vx, vx.0)→ statereturnin(vx, vx.0) Jvx.0 ' 0K (11)
statebbin(vx, vx.0)→ statebb1in(vx, vx.0) Jvx.0 > 0K (12)
statebbin(vx, vx.0)→ statebb2in(vx, vx.0) Jvx.0 ≤ 0K (13)

statebb1in(vx, vx.0)→ statebb3in(vx,−vx.0 + 1) (14)
statebb2in(vx, vx.0)→ statebb3in(vx,−vx.0 − 1) (15)

statereturnin(vx, vx.0)→ statestop(vx, vx.0) (16)

Using the termination graph, the int-based TRS {(7)–(16)} is transformed into the int-
based TRS {(9), (10), (12), (13), (14), (15)}. This int-based TRS cannot be handled by the
techniques presented so far. Notice that in any chain, each occurrence of the int-based rewrite
rule (9) is followed by an occurrence of the int-based rewrite rule (12) or an occurrence of
the int-based rewrite rule (13). Thus, (9) may be replaced by new int-based rewrite rules
that simulate an application of (9) followed by an application of (12) or (13), respectively.
These new int-based rewrite rules are

statebb3in(vx, vx.0)→ statebb1in(vx, vx.0)Jvx.0 < 0 ∧ vx.0 > 0K (9.12)
statebb3in(vx, vx.0)→ statebb2in(vx, vx.0)Jvx.0 < 0 ∧ vx.0 ≤ 0K (9.13)

The int-based TRS {(9.12), (9.13), (10), (12), (13), (14), 15)} is transformed into the int-
based TRS {(9.13), (10), (12), (14), (15)} using the termination graph. Then, the int-based
rewrite rule (10) can be combined with all int-based rewrite rules that may follow it in
chains. This produces

statebb3in(vx, vx.0)→ statebb1in(vx, vx.0)Jvx.0 > 0K (10.12)

and the int-based TRS {(9.13), (10.12), (12), (14), (15)} which is transformed into the int-
based TRS {(9.13), (10.12), (14), (15)} using the termination graph. Combining (14) with
all rules that may follow it yields

statebb1in(vx, vx.0)→ statebb2in(vx,−vx.0 + 1)J−vx.0 + 1 < 0 ∧ −vx.0 + 1 ≤ 0K (14.9.13)
statebb1in(vx, vx.0)→ statebb1in(vx,−vx.0 + 1)J−vx.0 + 1 > 0K (14.10.12)



24 Termination Analysis of C Programs Using Compiler Intermediate Languages

and the int-based TRS {(9.13), (10.12), (14.9.13), (14.10.12), (15)} which contains the non-
trivial SCC {(9.13), (10.12), (14.9.13), (15)}. Next, considering the rules that may follow
(15), the new rules

statebb2in(vx, vx.0)→ statebb2in(vx,−vx.0 − 1) J−vx.0 − 1 < 0 ∧ −vx.0 − 1 ≤ 0K (15.9.13)
statebb2in(vx, vx.0)→ statebb1in(vx,−vx.0 − 1) J−vx.0 − 1 > 0K (15.10.12)

give rise to the int-based TRS {(9.13), (10.12), (14.9.13), (15.9.13), (15.10.12)}. There is one
non-trivial SCC {(14.9.13), (15.10.12)}. This final int-based TRS can now easily be handled
using a polynomial interpretation with Pol(statebb1in) = x2 and Pol(statebb2in) = −x2. J

Formally, this idea can be stated as the following termination processor. Notice that
chaining of int-based rewrite rules is easily possible since the left-hand sides have the form
f(x1, . . . , xn). Also, notice that the rule l → f(s1, . . . , sn)JϕK is replaced by the rules that
are obtained by chaining.

I Theorem 37 (Processor Based on Chaining). The termination processor with Proc(R]{l→
f(s1, . . . , sn)JϕK}) = {R ∪ R′} where R′ = {l → r′µJϕ ∧ ϕ′µK | f(x1, . . . , xn) → r′Jϕ′K ∈
R ∪ {l→ f(s1, . . . , sn)JϕK}, µ = {x1 7→ s1, . . . , xn 7→ sn}} is sound.

Proof. It needs to be shown that every occurrence of (a variable-renamed version of)
l→ rJϕK and the int-based rewrite rule following it in an infinite chain can be replaced by
some int-based rewrite rule from R′. Thus, assume some infinite chain contains . . . , l →
rJϕK, l′ → r′Jϕ′K, v → wJψK, . . .. Let the infinite chain be based on the substitution σ,
i.e., norm(rσ) = l′σ, norm(r′σ) = vσ, and ϕσ and ϕ′σ are int-valid. Now norm(rσ) =
norm(l′µσ) = l′norm(µσ) since r = l′µ for the substitution µ used in the definition of R′.
Therefore l′norm(µσ) = l′σ and thus xinorm(µσ) = xiσ for all variables x occurring in
l′. This implies that ϕ′µσ is int-valid since ϕ′σ is int-valid. Thus, l → rJϕK, l′ → r′Jϕ′K
can be replaced by l → r′µJϕ ∧ ϕ′µK since ϕσ ∧ ϕ′µσ is int-valid and norm(r′µσ) =
norm(r′norm(µσ)) = norm(r′σ) = vσ. J

11 Implementation

In order to show the effectiveness and practicality of the proposed approach, it has been
implemented in the tool KITTeL (KIT int-based TRS Termination Laboratory). Like its
predecessor pasta [18], KITTeL has been written in OCaml and consists of about 2400 lines
of code. The input to KITTeL is a Simple program or an int-based TRS. The translation
from LLVM-IR programs into int-based TRSs has been implemented in the separate tool
llvm2kittel using about 3800 lines of C++ code.

The first decision that has to be made for the implementation of KITTeL is the order in
which the termination processors from Sections 7–10 are applied. The order employed by
KITTeL is given in Figure 3.

Here, DNF is the termination processor of Theorem 23 that splits an int-based rewrite
rule into several int-based rewrite rules according to the DNF of the rule’s int-constraint.
SCC is the termination processor of Theorem 25 that returns the non-trivial SCCs of the
termination graph, polo is the termination processor of Theorem 28 using int-polynomial
interpretations that removes int-based rewrite rules which are decreasing w.r.t. �Pol , and
chain is the termination processor of Theorem 37 that combines int-based rewrite rules.

SCC approximates the termination graph using a decision procedure for int-satisfiability.
More precisely, KITTeL uses the SMT-solver Yices [16] for this. Then, the standard graph



Stephan Falke, Deepak Kapur, and Carsten Sinz 25

R := DNF(R)
todo := SCC(R)
while todo 6= ∅ do
P := pick-and-remove(todo)
P ′ := polo(P)
if P = P ′ then
P ′ := chain(P)
if P = P ′ then

return “Failure”
end if

end if
todo := todo ∪ SCC(P ′)

end while
return “Termination shown”

Figure 3 Main loop of KITTeL.

algorithm as implemented in the library ocamlgraph [9] is used to compute the non-trivial
SCCs. The most complex part of the implementation is the function polo for the automatic
generation of int-polynomial interpretations.

11.1 Automatic Generation of int-Polynomial Interpretations
For the automatic generation, a linear11 parametric int-polynomial interpretation is used, i.e.,
an interpretation where the coefficients of the polynomials are not integers but parameters
that have to be determined. Thus, Pol(statei) = ai,1x1 + . . .+ ai,nxn + ci for each function
symbol statei, where the ai,j and ci are parameters.

Recall that the termination processor of Theorem 28 operating on an int-based TRS R
aims at generating an int-polynomial interpretation Pol with
• l �ϕ

Pol r for all l→ rJϕK ∈ R′ for some non-empty R′ ⊆ R and
• l &ϕ

Pol r for all l→ rJϕK ∈ R−R′.
As shown in Section 9, it suffices to show that
• ϕ ⇒ [l]Pol − [r]Pol > 0 and ϕ ⇒ [l]Pol ≥ 0 are int-valid for all l → rJϕK ∈ R′ for some

non-empty R′ ⊆ R and
• ϕ⇒ [l]Pol − [r]Pol ≥ 0 is int-valid for all l→ rJϕK ∈ R−R′.
Notice that [l]Pol and [l]Pol − [r]Pol are (possibly non-linear) polynomials whose coefficients
are linear polynomials over the parameters (so-called polynomials with linear coefficients). For
instance, if [l] = state(x, x+x∗y) and Pol(state) = ax1+bx2+c, then [l]Pol = (a+b)x+bxy+c.

In order to determine the parameters such that ϕ⇒ [l]Pol − [r]Pol ≥ 0 is int-valid for all
l→ rJϕK ∈ R, sufficient conditions on the parameters are derived and it is checked whether
these conditions are satisfiable. Since the conditions on the parameters will be linear, it is
decidable whether they are satisfiable. Furthermore, SMT-solvers such as Yices can compute
a satisfying assignment which immediately gives rise to a polynomial interpretation. The
derivation of the conditions is done independently for the int-based rewrite rules, but the

11The method presented in this section can also be applied in order to generate non-linear int-polynomial
interpretations.



26 Termination Analysis of C Programs Using Compiler Intermediate Languages

check for satisfiability of the conditions considers all int-based rewrite rules since they need
to be oriented using the same int-polynomial interpretation.

For a single int-based rewrite rule l → rJϕK, the conditions on the parameters are
obtained as follows, where p = [l]Pol − [r]Pol :
1. ϕ is transformed into a conjunction of atomic int-constraints of the form

∑n
i=1 aixi+c ≥ 0

where a1, . . . , an, c ∈ Z.
2. The int-constraints from step 1 are used to derive upper and/or lower bounds on the

variables in p.
3. The bounds from step 2 are used to derive conditions on the parameters.
Here, the first two steps are identical to [18], but the third step is more complex than in [18].

Step 1: Transformation of ϕ. For linear int-terms s and t, s ' t is transformed into
s − t ≥ 0 ∧ t − s ≥ 0, s ≥ t is transformed into s − t ≥ 0, and s > t is transformed into
s− t− 1 ≥ 0. Non-linear atoms are discarded.

Step 2: Deriving upper and/or lower bounds. The int-constraints obtained after step 1
might already contain upper and/or lower bounds on the variables, where a lower bound has
the form x+ c ≥ 0 and an upper bound has the from −x+ c ≥ 0 for some c ∈ Z. Otherwise,
it might be possible to obtain such bounds as follows.

An atomic constraint of the form ax + c ≥ 0 with a 6= 0, 1,−1 that contains only one
variable gives a bound on that variable that can be obtained by dividing by |a| and rounding.
For example, the int-constraint 2x+ 3 ≥ 0 is transformed into x+ 1 ≥ 0, and −3x− 2 ≥ 0
is transformed into −x− 1 ≥ 0.

An atomic int-constraint with more than one variable can be used to express a variable
x occurring with coefficient 1 in terms of the other variables and a fresh slack variable w
with w ≥ 0. This allows to eliminate x from the polynomial p and at the same time gives
the lower bound 0 on the slack variable w. For example, x− 2y ≥ 0 can be used to eliminate
the variable x by replacing it with 2y + w. Similar reasoning applies if the variable x occurs
with coefficient −1.

These ideas are formalized in the transformation rules from Figure 4 that operate on
triples 〈C1, C2, q〉 where C1 and C2 are sets of atomic int-constraints and q is a polynomial
with linear coefficients. Here, C1 only contains int-constraints of the form ±xi + c ≥ 0
giving upper and/or lower bounds on the variable xi and C2 contains arbitrary atomic
int-constraints. The initial triple is 〈∅, C, p〉.

C1, C2 ] {aixi + c ≥ 0}, q
Strengthen if ai 6= 0

C1 ∪
{

ai

|ai|xi + b c
|ai|c ≥ 0

}
, C2, q

C1, C2 ] {
∑n

i=1 aixi + c ≥ 0} , q
Express+

if aj = 1 and σ is the substitution
{xj 7→ −

∑
i 6=j

aixi − c+ w}
for a fresh slack variable wC1 ∪ {w ≥ 0}, C2σ, qσ

C1, C2 ] {
∑n

i=1 aixi + c ≥ 0} , q
Express−

if aj = −1 and σ is the substitution
{xj 7→

∑
i 6=j

aixi + c− w}
for a fresh slack variable wC1 ∪ {w ≥ 0}, C2σ, qσ

Figure 4 Transformation rules to derive upper and/or lower bounds.



Stephan Falke, Deepak Kapur, and Carsten Sinz 27

Step 3: Deriving conditions on the parameters. After finishing step 2, a final triple
〈C1, C2, q〉 is obtained. If C1 contains more than one bound on a variable xi, then it suffices
to consider the maximal lower bound and the minimal upper bound. The bounds in C1 are
used in combination with absolute positiveness12 [24] in order to obtain conditions on the
parameters that make q =

∑k
i=1 pix

i1
1 · · ·xin

n + p0 non-negative for all instantiations of the
variables that satisfy C1 ∪ C2.

This is done similarly to [18] but the method is more complex since q may be non-linear.
If q contains a monomial plx

l1
1 · · ·xln

n such that at least one of the xi occurring with positive
odd degree13 does not have an upper or lower bound, then the absolute positiveness test
requires pl ' 0 as a condition on the parameters.

Otherwise, for simplicity of presentation, assume that all variables occur with positive
degree, that x1, . . . , xo occur with odd degree, that x1, . . . , xo′ have upper bounds −xi + ci ≥
0, that xo′+1, . . . , xo have lower bounds xj + cj ≥ 0, and that xo+1, . . . , xn have even
degree. Then, notice that m := plx

l1
1 · · ·xln

n can also be written as r + (m − r) where
r := (−1)o′

pl(−x1 + c1)l1 · · · (−xo′ + co′)lo′ (xo′+1 + co′+1)lo′+1 · · · (xo + co)lox
lo+1
o+1 · · ·xln

n . The
absolute positiveness test then requires (−1)o′

pl ≥ 0 as a condition on the parameters.14

Summarizing this method, the algorithm from Figure 5 is used in order to obtain conditions
D on the parameters. Here, “⊕” means that the monomials of m− r (if non-zero) are added
to monomials with the same variable degrees or inserted into todo, respectively. Furthermore,
sign(C) is 1 if C is of the form xi + c ≥ 0 and −1 if C is of the form −xi + c ≥ 0.

Automatically finding strictly decreasing rules. For the termination processor of Theorem
28, it also has to be ensured that R′ is non-empty, i.e., that at least one int-based rewrite
rule is decreasing w.r.t. �Pol . Let l→ rJϕK be an int-based rewrite rule that should satisfy
l �ϕ
Pol r. Then, ϕ⇒ [l]Pol ≥ 0 gives rise to conditions D1 on the parameters as above. The

second condition, i.e., ϕ⇒ [l]Pol − [r]Pol > 0, gives rise to conditions D2 just as above, with
the only difference that the constant monomial (i.e., the monomial where all variables have
degree 0) now needs to be strictly bigger than 0.

Given a set of rules {l1 → r1Jϕ1K, . . . , ln → rnJϕnK}, the final constraint on the parameters
is then

∧n
i=1D

i∧
∨n

i=1(Di
1∧Di

2) where the Di are obtained from ϕi ⇒ [li]Pol−[ri]Pol ≥ 0, the
Di

1 are obtained from ϕi ⇒ [li]Pol ≥ 0, and the Di
2 are obtained from ϕCi ⇒ [li]Pol− [ri]Pol >

0. Notice that this constraint is linear and can thus be given to an SMT solver for linear
integer arithmetic which, in case the constraint is satisfiable, can also produce a satisfying
assignment. This satisfying assignment then gives rise to an int-polynomial interpretation.

I Example 38. The method is illustrated on the int-based TRS consisting of the int-based
rewrite rule state(x, y, z)→ state(x, y ∗ x, z)Jy < z ∧ y > 0 ∧ x > 1K.

For this, a parametric int-polynomial interpretation with Pol(state) = ax1 +bx2 +cx3 +d
is used, where a, b, c, d are parameters that need to be determined. Thus, the goal is to
instantiate the parameters in such a way that state(x, y, z) �y<z∧y>0∧x>1

Pol state(x, y ∗ x, z),
i.e., such that

y < z ∧ y > 0 ∧ x > 1 ⇒ [state(x, y, z)]Pol ≥ 0

12For a polynomial p in the indeterminates x1, . . . , xn which may only be instantiated by natural numbers,
the absolute positiveness test concludes that p is non-negative for all instantiations of the indeterminates
if all coefficients of p are non-negative.

13Notice that even powers of variables are always non-negative.
14This is only one possibility. It is of course also possible to consider the bounds for variables occurring

with even degree, and the implementation in KITTeL actually supports both possibilities.



28 Termination Analysis of C Programs Using Compiler Intermediate Languages

D := true
todo := monomials(q)
for plx

l1
1 · · ·xln

n ∈ todo do
if one of the xi occurring with odd degree does not have a bound in C1
then
D := D ∧ pl ' 0
todo := todo− {plx

l1
1 · · ·xln

n }
end if

end for
while todo := ∅ do
pick monomial m := plx

i1
1 · · ·xin

n ∈ todo with maximal degree
todo := todo− {m}
r := pl

o′ := 0
for 1 ≤ k ≤ n do

if ik is odd then
pick bound C of the form ±xk + c ≥ 0 from C1
r := r ∗ sign(C) ∗ (±xk + c)lk

if sign(C) = −1 then
o′ := o′ + 1

end if
else
r := r ∗ xlk

k

end if
end for
todo := todo⊕ {m− r}
D := D ∧ (−1)o′

pl ≥ 0
end while

Figure 5 Deriving conditions on the parameters

and

y < z ∧ y > 0 ∧ x > 1 ⇒ [state(x, y, z)]Pol − [state(x, y ∗ x, z)]Pol > 0

are int-valid. Notice that [state(x, y, z)]Pol = ax+ by + cz + d and [state(x, y ∗ x, z)]Pol =
ax+ byx+ cz + d. Therefore, [state(x, y, z)]Pol − [state(x, y ∗ x, z)]Pol = by − byx.

For the first formula, the constraint y < z is transformed into z − y − 1 ≥ 0 in step 1
while the other two constraints are transformed into y − 1 ≥ 0 and x− 2 ≥ 0, respectively.
In step 2, the transformation rules from Figure 4 are applied to the triple 〈∅, {z − y − 1 ≥
0, y − 1 ≥ 0, x− 2 ≥ 0}, ax+ by + cz + d〉. A possible transformation sequence is as follows,
where the Express+-step uses σ = {z 7→ y + w + 1}.

∅, {z − y − 1 ≥ 0, y − 1 ≥ 0, x− 2 ≥ 0}, ax+ by + cz + d
Strengthen2

{y − 1 ≥ 0, x− 2 ≥ 0}, {z − y − 1 ≥ 0}, ax+ by + cz + d
Express+

{y − 1 ≥ 0, x− 2 ≥ 0, w ≥ 0}, ∅, ax+ (b+ c)y + cw + c+ d

Step 3 gives a ≥ 0 ∧ b+ c ≥ 0 ∧ c ≥ 0 ∧ 2a+ b+ 2c+ d ≥ 0 as conditions on the parameters.
For the second formula from above, step 1 is as above while step 2 does not perform any

“interesting” transformation, i.e., the (relevant parts of the) result of the transformation is



Stephan Falke, Deepak Kapur, and Carsten Sinz 29

C1 = {y−1 ≥ 0, x−2 ≥ 0}, q = −bxy+by. Step 3 first removes the monomial −bxy and adds
the monomial r = −bxy−(−b(x−2)(y−1)) = −bxy−(−bxy+bx+2by−2b) = −bx−2by+2b
to the set todo, thus obtaining todo = {−bx,−by, 2b}. Furthermore, −b ≥ 0 is obtained as
a condition on the parameters. The set todo is subsequently transformed into {−by} and
then {−b}, giving rise to the conditions −b ≥ 0 and −b ≥ 0. Finally, the set {−b} requires
−b > 0 since the constant monomial needs to be strictly bigger than 0.

The final constraint on the parameters is thus a ≥ 0∧b+c ≥ 0∧c ≥ 0∧2a+b+2c+d ≥ 0∧
−b > 0. This constraint is satisfiable and the satisfying assignment a = 0, b = −1, c = 1, d = 0
gives rise to the int-polynomial interpretation Pol(state) = x3 − x2. J

12 Evaluation

The implementation in KITTeL/llvm2kittel has been evaluated on a collection of 174
examples that were taken from various places, including several recent papers on the termi-
nation of imperative programs [4, 5, 6, 7, 8, 11, 12, 31, 32], the textbook [34], from the Java
category of TPDB [36] and converted to C, and the zlib compression library. The collection
of examples includes “classical” algorithms such as binary search and sorting algorithms,
cyclic redundancy check and hash code algorithms, encryption algorithms, image processing
algorithms, and numerical algorithms. 14 out of these 174 examples (e.g., the heapsort
example from [15]) require simple invariants on the program variables (such as “a variable is
always non-negative”) for a successful termination proof. This kind of information can be
obtained automatically using static program analysis tools such as Aspic/C2fsm [19].

The implementation has been able to show termination of all15 examples fully automati-
cally, on average taking less than 0.3 seconds16 for each example, with the longest time being
slightly more than 3 seconds. These times include the compilation from C into LLVM-IR, the
translation from LLVM-IR into a TRS, and the termination analysis of the obtained TRS.
The following table contains details for some of the examples. Here, the “LOC” column gives
the number of code lines in the C program, and the “RR” column gives the number of rewrite
rules that are generated. The full results for all examples are provided in Appendix A.

C program LOC RR Time / s C program LOC RR Time / s
allroots 200 77 0.861 dijkstra 78 58 0.693
almabench 390 42 0.370 fft 99 30 0.342
barr-crc16 265 45 0.398 hash 241 80 0.566
barr-crc32 265 45 0.402 jfdctint 366 15 0.374
barr-crc-ccitt 265 35 0.318 lpbench 419 134 1.155
bellman-ford 75 39 0.369 mergesort-recursive 42 50 0.634
blowfish 476 43 0.389 sort 138 90 0.757
bmpfile 749 254 3.050 zlib-adler32 124 34 0.891
c-aes 236 64 0.385 zlib-crc32-BYFOUR 335 41 1.182
c-des 399 64 0.477 zlib-crc32 333 13 0.170

Thus, KITTeL clearly shows the practicality and effectiveness of the proposed approach on
a collection of “typical” examples. Notice that an empirical comparison with the methods
from [4, 5, 6, 7, 8, 11, 12, 31, 32] is not possible since implementations of those methods are
not publicly available. The examples, detailed results, the termination proofs generated by

15 If the invariants are omitted from the aforementioned 14 examples, then termination cannot be shown.
16On a 2.4 GHz Intel® Core™2 Duo processor with 4 GB main memory.



30 Termination Analysis of C Programs Using Compiler Intermediate Languages

KITTeL, an a link to a web interface for KITTeL are available at http://baldur.iti.kit.
edu/~falke/kittel/.

13 Conclusions

We have presented a method for showing termination of C programs that is based on compiler
intermediate languages and term rewriting techniques. For this, a C program is translated
into an intermediate language by the compiler frontend and the obtained intermediate
representation is then translated into a term rewriting system. In this paper, we have
concentrated on LLVM and its intermediate language LLVM-IR [28]. Finally, termination of
the obtained TRS is shown using term rewriting techniques.

Recall that it is assumed in this paper that all integer types of the intermediate language
are identified with Z. Notice, however, that this abstraction might alter the termination
behavior of the program whose termination is to be investigated. The methods from
[4, 5, 6, 7, 8, 11, 12, 31, 32] also exhibit this problem, only [10] investigates the generation
of ranking functions for bitvectors. In future work, we are planning to investigate how to
model the bitvector behavior more precisely. While the translation into TRSs does not need
to be modified substantially, proving termination of a TRS operating on bitvectors has not
been investigated thus far. A further topic for future work is to suitably model the memory
content (stack, heap, and global variables).

References
1 Elvira Albert, Puri Arenas, Michael Codish, Samir Genaim, Germán Puebla, and Damiano

Zanardini. Termination analysis of Java bytecode. In Gilles Barthe and Frank S. de Boer,
editors, Proceedings of the 10th Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS ’08), volume 5051 of Lecture Notes in Computer Science,
pages 2–18. Springer-Verlag, 2008.

2 Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236(1–2):133–178, 2000.

3 Thomas Ball and Robert Jones, editors. Proceedings of the 18th Conference on Computer
Aided Verification (CAV ’06), volume 4144 of Lecture Notes in Computer Science. Springer-
Verlag, 2006.

4 Aaron Bradley, Zohar Manna, and Henny Sipma. Linear ranking with reachability. In
Kousha Etessami and Sriram Rajamani, editors, Proceedings of the 17th Conference on
Computer Aided Verification (CAV ’05), volume 3576 of Lecture Notes in Computer Science,
pages 491–504. Springer-Verlag, 2005.

5 Aaron Bradley, Zohar Manna, and Henny Sipma. Termination of polynomial programs. In
Radhia Cousot, editor, Proceedings of the 6th Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI ’05), volume 3385 of Lecture Notes in Computer
Science, pages 113–129. Springer-Verlag, 2005.

6 Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and Hongseok Yang. Rank-
ing abstractions. In Sophia Drossopoulou, editor, Proceedings of the 17th European Sym-
posium on Programming (ESOP ’08), volume 4960 of Lecture Notes in Computer Science,
pages 148–162. Springer-Verlag, 2008.

7 Michael Colón and Henny Sipma. Synthesis of linear ranking functions. In Tiziana Margaria
and Wang Yi, editors, Proceedings of the 7th Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’01), volume 2031 of Lecture Notes in
Computer Science, pages 67–81. Springer-Verlag, 2001.

http://baldur.iti.kit.edu/~falke/kittel/
http://baldur.iti.kit.edu/~falke/kittel/


Stephan Falke, Deepak Kapur, and Carsten Sinz 31

8 Michael Colón and Henny Sipma. Practical methods for proving program termination.
In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the 14th Conference
on Computer Aided Verification (CAV ’02), volume 2404 of Lecture Notes in Computer
Science, pages 442–454. Springer-Verlag, 2002.

9 Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Designing a generic graph
library using ML functors. In Marco T. Morazán, editor, Proceedings of the 8th Sympo-
sium on Trends in Functional Programming (TFP ’07), volume 8 of Trends in Functional
Programming, pages 124–140. Intellect Books, 2008.

10 Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger. Rank-
ing function synthesis for bit-vector relations. In Javier Esparza and Rupak Majumdar,
editors, Proceedings of the 16th Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’10), volume 6015 of Lecture Notes in Computer Science,
pages 236–250. Springer-Verlag, 2010.

11 Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement for ter-
mination. In Chris Hankin and Igor Siveroni, editors, Proceedings of the 12th Symposium
on Static Analysis (SAS ’05), volume 3672 of Lecture Notes in Computer Science, pages
87–101. Springer-Verlag, 2005.

12 Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems
code. In Proceedings of the 2006 Conference on Programming Language Design and Imple-
mentation (PLDI ’06), pages 415–426, 2006.

13 Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond safety. In
Ball and Jones [3], pages 415–418.

14 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th Symposium on Principles of Programming Languages (POPL ’77), pages 238–252,
1977.

15 Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th Symposium on Principles of Programming
Languages (POPL ’78), pages 84–96, 1978.

16 Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T). In
Ball and Jones [3], pages 81–94.

17 Stephan Falke and Deepak Kapur. Dependency pairs for rewriting with built-in num-
bers and semantic data structures. In Andrei Voronkov, editor, Proceedings of the 19th
Conference on Rewriting Techniques and Applications (RTA ’08), volume 5117 of Lecture
Notes in Computer Science, pages 94–109. Springer-Verlag, 2008. An expanded version
is Technical Report TR-CS-2007-21, available from http://www.cs.unm.edu/research/
tech-reports/.

18 Stephan Falke and Deepak Kapur. A term rewriting approach to the automated termination
analysis of imperative programs. In Renate A. Schmidt, editor, Proceedings of the 22nd
Conference on Automated Deduction (CADE ’09), volume 5663 of Lecture Notes in Artificial
Intelligence, pages 277–293. Springer-Verlag, 2009. An expanded version is Technical Report
TR-CS-2009-02, available from http://www.cs.unm.edu/research/tech-reports/.

19 Paul Feautrier and Laure Gonnord. Accelerated invariant generation for C programs with
Aspic and C2fsm. Electronic Notes in Theoretical Computer Science, 267(2):3–13, 2010.

20 Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and Stephan Falke.
Proving termination of integer term rewriting. In Ralf Treinen, editor, Proceedings of
the 20th International Conference on Rewriting Techniques and Applications (RTA ’09),
volume 5595 of Lecture Notes in Computer Science, pages 32–47. Springer-Verlag, 2009.

21 Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency pair frame-
work: Combining techniques for automated termination proofs. In Franz Baader and Andrei

http://www.cs.unm.edu/research/tech-reports/
http://www.cs.unm.edu/research/tech-reports/
http://www.cs.unm.edu/research/tech-reports/


32 Termination Analysis of C Programs Using Compiler Intermediate Languages

Voronkov, editors, Proceedings of the 11th Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning (LPAR ’04), volume 3452 of Lecture Notes in Artificial
Intelligence, pages 301–331. Springer-Verlag, 2005.

22 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-Kamp. Proving
termination by bounded increase. In Frank Pfenning, editor, Proceedings of the 21st Con-
ference on Automated Deduction (CADE ’07), volume 4603 of Lecture Notes in Artificial
Intelligence, pages 443–459. Springer-Verlag, 2007. An expanded version is Technical Re-
port AIB-2007-03, available from http://aib.informatik.rwth-aachen.de/.

23 Nao Hirokawa and Aart Middeldorp. Tyrolean termination tool: Techniques and features.
Information and Computation, 205(4):474–511, 2007.

24 Hoon Hong and Dalibor Jakuš. Testing positiveness of polynomials. Journal of Automated
Reasoning, 21(1):23–38, 1998.

25 Keiichirou Kusakari, Masaki Nakamura, and Yoshihito Toyama. Argument filtering trans-
formation. In Gopalan Nadathur, editor, Proceedings of the 1st Conference on Principles
and Practice of Declarative Programming (PPDP ’99), volume 1702 of Lecture Notes in
Computer Science, pages 47–61. Springer-Verlag, 1999.

26 Gaël Lalire, Mathias Argoud, and Bertrand Jeannet. Interproc analyzer for recur-
sive programs with numerical variables, 2010. http://pop-art.inrialpes.fr/people/
bjeannet/bjeannet-forge/interproc/index.html.

27 Dallas Lankford. On proving term rewriting systems are Noetherian. Memo MTP-3, Math-
ematics Department, Louisiana Tech University, Ruston, 1979.

28 Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the 2nd Symposium on Code Generation and
Optimization (CGO ’04), pages 75–88. IEEE Computer Society, 2004.

29 Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

30 Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl. Automated ter-
mination analysis of Java bytecode by term rewriting. In Christopher Lynch, editor, Pro-
ceedings of the 21st Conference on Rewriting Techniques and Applications (RTA ’10), vol-
ume 6 of Leibniz International Proceedings in Informatics, pages 259–276. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2010.

31 Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Bernhard Steffen and Giorgio Levi, editors, Proceedings of the 5th
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI ’04),
volume 2937 of Lecture Notes in Computer Science, pages 239–251. Springer-Verlag, 2004.

32 Andreas Podelski and Andrey Rybalchenko. Transition invariants. In Proceedings of the
19th Symposium on Logic in Computer Science (LICS ’04), pages 32–41. IEEE Computer
Society, 2004.

33 Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du
Premier Congrès de Mathématiciens des Pays Slaves, pages 92–101, 1929.

34 Robert Sedgewick. Algorithms in C. Addison-Wesley, 1990.
35 Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java byte-

code based on path-length. ACM Transactions on Programming Languages and Systems,
32(3):8:1–8:70, 2010.

36 TPDB. Termination problem data base 7.0.2, 2010. Available from http://termcomp.
uibk.ac.at/2010/downloads/.

37 Hans Zantema. Termination. In TeReSe, editor, Term Rewriting Systems, chapter 6. Cam-
bridge University Press, 2003.

http://aib.informatik.rwth-aachen.de/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/index.html
http://termcomp.uibk.ac.at/2010/downloads/
http://termcomp.uibk.ac.at/2010/downloads/


Stephan Falke, Deepak Kapur, and Carsten Sinz 33

A Empirical Results

We have evaluated KITTeL/llvm2kittel on a collection of 174 examples. 14 out of these
174 examples require simple invariants on the program variables for a successful termination
proof. In the following table, C programs with a name ending in no-inv have these invariants
omitted and are otherwise identical to the corresponding C programs containing the invariants.

The following table contains the details of our empirical evaluation. All times where
obtained on a 2.4 GHz Intel® Core™2 Duo processor with 4 GB main memory. The “LOC”
column gives the number of code lines in the C program, and the “RR” column gives the
number of rewrite rules that are generated. We have recorded the times taken by the compiler
frontend (llvm-gcc), the translation into a TRS (llvm2kittel), and the termination proof
(KITTeL). A (total) timeout of 5 seconds was used. The examples and the termination proofs
generated by KITTeL are available at http://baldur.iti.kit.edu/~falke/kittel/.

C program LOC RR llvm-gcc llvm2kittel KITTeL Total Result
a.01.c 10 9 0.014 0.007 0.071 0.092 YES
a.02.c 19 17 0.013 0.014 0.107 0.134 YES
a.02.real.c 12 14 0.013 0.010 0.100 0.124 YES
a.03.c 44 29 0.014 0.036 0.495 0.545 YES
a.03-no-inv.c 43 28 0.013 0.035 5.007 5.055 ∞
a.03.real.c 38 28 0.014 0.027 0.369 0.409 YES
a.03.real-no-inv.c 37 27 0.013 0.026 5.006 5.046 ∞
a.04.c 6 6 0.014 0.006 0.037 0.057 YES
a.05.c 6 6 0.013 0.007 0.037 0.057 YES
a.06.c 7 6 0.013 0.007 0.039 0.059 YES
a.07.c 7 7 0.013 0.007 0.064 0.084 YES
a.08.c 7 6 0.013 0.006 0.037 0.056 YES
a.09.c 10 8 0.013 0.007 0.046 0.066 YES
a.10.c 10 10 0.013 0.007 0.159 0.178 YES
a.11.c 16 17 0.013 0.012 0.193 0.217 YES
ack.c 9 11 0.013 0.008 0.174 0.195 YES
Ack.c 27 16 0.023 0.009 0.198 0.230 YES
allroots.c 200 77 0.034 0.050 0.763 0.847 YES
almabench.c 390 42 0.039 0.027 0.300 0.366 YES
b.01.c 6 6 0.013 0.006 0.037 0.055 YES
b.02.c 7 6 0.013 0.007 0.037 0.057 YES
b.03.c 10 8 0.013 0.006 0.047 0.066 YES
b.03-no-inv.c 9 7 0.013 0.006 5.010 5.029 ∞
b.04.c 8 5 0.014 0.006 0.029 0.048 YES
b.05.c 10 9 0.013 0.008 0.058 0.079 YES
b.06.c 7 7 0.013 0.007 0.044 0.064 YES
b.07.c 7 7 0.013 0.007 0.057 0.076 YES
b.08.c 18 16 0.013 0.010 0.113 0.136 YES
b.09.c 15 12 0.013 0.007 0.090 0.110 YES
b.09-no-inv.c 14 10 0.013 0.007 5.006 5.026 ∞
b.10.c 14 10 0.013 0.009 0.100 0.122 YES

http://baldur.iti.kit.edu/~falke/kittel/


34 Termination Analysis of C Programs Using Compiler Intermediate Languages

C program LOC RR llvm-gcc llvm2kittel KITTeL Total Result
b.11.c 14 13 0.013 0.009 0.103 0.124 YES
b.12.c 14 11 0.013 0.008 0.124 0.146 YES
b.13.c 14 11 0.013 0.008 0.124 0.145 YES
b.14.c 9 10 0.013 0.008 0.067 0.087 YES
b.15.c 9 10 0.013 0.008 0.072 0.093 YES
b.16.c 9 9 0.013 0.007 0.067 0.087 YES
b.17.c 9 9 0.013 0.008 0.080 0.100 YES
b.18.c 14 14 0.013 0.009 0.097 0.119 YES
barr-crc16.c 265 45 0.021 0.037 0.337 0.395 YES
barr-crc32.c 265 45 0.021 0.038 0.336 0.395 YES
barr-crc-ccitt.c 265 35 0.021 0.030 0.269 0.319 YES
bellman-ford.c 75 39 0.019 0.026 0.318 0.363 YES
binary_search.c 13 13 0.013 0.011 0.131 0.155 YES
binsearch.c 30 20 0.013 0.014 0.448 0.476 YES
binsearch-recursive.c 17 15 0.013 0.010 0.910 0.934 YES
blit.c 98 28 0.019 0.126 0.166 0.311 YES
blowfish.c 476 43 0.026 0.045 0.324 0.395 YES
bmpfile.c 749 254 0.046 0.424 2.536 3.006 YES
break.c 9 6 0.013 0.006 0.034 0.053 YES
bresenham.c 36 9 0.014 0.026 0.067 0.106 YES
brutesearch.c 21 15 0.016 0.012 0.150 0.178 YES
brutesearch-no-inv.c 17 13 0.016 0.011 5.007 5.034 ∞
bubble_nice.c 50 25 0.024 0.014 0.170 0.208 YES
bubble_sort.c 13 12 0.013 0.010 0.102 0.125 YES
bubblesort.c 14 12 0.013 0.011 0.104 0.128 YES
Bubblesort.c 172 41 0.024 0.024 0.270 0.317 YES
c.01.c 13 10 0.013 0.007 0.079 0.100 YES
c.01-no-inv.c 10 9 0.013 0.007 5.009 5.029 ∞
c.02.c 11 10 0.014 0.008 0.081 0.103 YES
c.03.c 10 9 0.018 0.007 0.126 0.151 YES
c.04.c 19 13 0.013 0.009 0.150 0.172 YES
c.04-no-inv.c 16 12 0.013 0.008 5.005 5.026 ∞
c.05.c 19 14 0.013 0.009 0.124 0.146 YES
c.06.c 24 17 0.014 0.014 0.590 0.618 YES
c.07.c 9 7 0.013 0.007 0.048 0.068 YES
c.08.c 10 9 0.013 0.008 0.071 0.092 YES
c.09.c 13 11 0.013 0.008 0.115 0.136 YES
c.10.c 14 8 0.013 0.008 0.048 0.069 YES
c.11.c 18 13 0.013 0.009 0.096 0.119 YES
cacm.c 15 11 0.013 0.009 0.079 0.100 YES
c_aes.c 236 64 0.028 0.022 0.331 0.381 YES
cav1.c 12 10 0.013 0.007 0.065 0.085 YES
cav2.c 23 15 0.013 0.011 0.335 0.359 YES



Stephan Falke, Deepak Kapur, and Carsten Sinz 35

C program LOC RR llvm-gcc llvm2kittel KITTeL Total Result
c_des.c 399 64 0.037 0.066 0.370 0.472 YES
chaining1.c 16 14 0.013 0.009 0.442 0.464 YES
chaining2.c 12 9 0.013 0.007 0.129 0.148 YES
chaining3.c 10 10 0.013 0.060 0.456 0.529 YES
crc.c 98 33 0.031 0.118 0.211 0.360 YES
cube.c 146 68 0.035 0.050 0.532 0.616 YES
diff.c 25 25 0.013 0.015 0.249 0.277 YES
dijkstra.c 78 58 0.020 0.038 0.622 0.681 YES
dt4.c 49 35 0.019 0.184 1.940 2.143 YES
eratosthenes.c 21 22 0.020 0.014 0.159 0.194 YES
euclid.c 30 13 0.018 0.009 0.078 0.105 YES
euclid-no-inv.c 29 12 0.019 0.009 5.010 5.038 ∞
ex1.c 8 6 0.014 0.007 0.035 0.056 YES
ex2.c 15 14 0.013 0.009 0.178 0.200 YES
ex3a.c 6 7 0.013 0.006 0.050 0.069 YES
ex3b.c 6 7 0.013 0.007 0.052 0.072 YES
factorial.c 8 6 0.013 0.006 0.034 0.053 YES
fermat.c 22 38 0.013 0.028 0.206 0.248 YES
fft16.c 188 2 0.020 0.007 0.010 0.038 YES
fft.c 99 30 0.028 0.025 0.285 0.338 YES
fft-no-inv.c 97 29 0.023 0.025 5.006 5.054 ∞
fibcall.c 79 7 0.014 0.007 0.051 0.072 YES
fibo.c 75 11 0.027 0.010 0.070 0.108 YES
fibonacci.c 8 7 0.013 0.006 0.043 0.063 YES
flag.c 7 8 0.017 0.006 0.058 0.082 YES
floyd-warshall.c 23 15 0.014 0.011 0.144 0.169 YES
hanoi.c 45 8 0.023 0.007 0.047 0.077 YES
hash.c 241 80 0.025 0.045 0.478 0.548 YES
hoist_call.c 14 7 0.013 0.007 0.038 0.058 YES
hoist_load.c 14 6 0.014 0.006 0.035 0.056 YES
inline.c 15 7 0.013 0.006 0.041 0.060 YES
insertion_sort.c 13 12 0.014 0.009 0.100 0.123 YES
insertionsort.c 12 12 0.013 0.009 0.100 0.123 YES
insertsort.c 85 11 0.014 0.009 0.085 0.107 YES
inside.c 44 14 0.015 0.023 0.092 0.131 YES
intersect.c 24 2 0.014 0.005 0.008 0.027 YES
IntMM.c 161 36 0.023 0.016 0.220 0.259 YES
java_Ackermann.c 5 11 0.013 0.008 0.172 0.193 YES
java_AG313.c 9 9 0.013 0.008 0.061 0.082 YES
java_AProVEMath.c 22 26 0.013 0.013 0.162 0.189 YES
java_AProVEMathRecursive.c 14 20 0.019 0.015 0.435 0.470 YES
java_Avg.c 9 10 0.013 0.007 0.327 0.347 YES
java_Break.c 8 6 0.013 0.005 0.034 0.052 YES



36 Termination Analysis of C Programs Using Compiler Intermediate Languages

C program LOC RR llvm-gcc llvm2kittel KITTeL Total Result
java_BubbleSort.c 11 12 0.013 0.010 0.107 0.130 YES
java_Continue1.c 8 6 0.013 0.006 0.034 0.053 YES
java_Diff.c 19 25 0.016 0.015 0.253 0.285 YES
java_DivMinus1.c 8 7 0.014 0.006 0.046 0.066 YES
java_DivMinus2.c 21 14 0.013 0.010 0.211 0.235 YES
java_DivWithoutMinus.c 19 16 0.013 0.009 0.132 0.154 YES
java_Double1.c 10 8 0.013 0.006 0.114 0.133 YES
java_Double2.c 10 8 0.019 0.009 0.052 0.080 YES
java_Double3.c 8 8 0.013 0.006 0.048 0.067 YES
java_Duplicate.c 11 7 0.013 0.007 0.046 0.066 YES
java_EqUserDefRec.c 7 11 0.013 0.007 0.067 0.087 YES
java_Factorial.c 4 6 0.013 0.006 0.034 0.053 YES
java_FactSum.c 17 13 0.013 0.007 0.068 0.089 YES
java_FibRecursive.c 9 10 0.013 0.007 0.063 0.083 YES
java_Hanoi.c 11 9 0.013 0.007 0.055 0.074 YES
java_LeUserDefRec.c 7 9 0.014 0.007 0.056 0.076 YES
java_LogBuiltIn.c 14 8 0.014 0.006 0.046 0.066 YES
java_MinusBuiltIn.c 16 6 0.013 0.006 0.037 0.056 YES
java_MinusMin.c 24 10 0.013 0.008 0.054 0.076 YES
java_Nested.c 7 9 0.013 0.007 0.063 0.083 YES
java_NestedLoop.c 20 19 0.019 0.017 0.163 0.199 YES
java_PlusSwap.c 19 6 0.013 0.006 0.047 0.066 YES
java_Recursions.c 44 36 0.015 0.015 0.263 0.293 YES
java_Sequence.c 7 9 0.013 0.006 0.053 0.072 YES
java_TimesPlusUserDef.c 17 18 0.013 0.009 0.112 0.134 YES
jfdctint.c 366 15 0.015 0.269 0.083 0.367 YES
knapsack.c 14 15 0.013 0.014 0.147 0.174 YES
lis.c 28 24 0.019 0.023 0.242 0.284 YES
lpbench.c 419 134 0.036 0.065 1.051 1.151 YES
lpbench-no-inv.c 419 133 0.036 0.064 5.013 5.113 ∞
matmul.c 78 22 0.014 0.015 0.191 0.220 YES
matrix.c 65 32 0.019 0.017 0.235 0.271 YES
Matrix.c 71 40 0.024 0.021 0.313 0.357 YES
matrix_chain.c 26 26 0.015 0.035 0.291 0.340 YES
max-array.c 15 10 0.013 0.008 0.068 0.089 YES
max_sum.c 69 35 0.020 0.020 0.356 0.396 YES
mergesort.c 55 42 0.023 0.026 0.398 0.447 YES
mergesort-no-inv.c 53 40 0.023 0.026 5.006 5.055 ∞
mergesort-recursive.c 42 50 0.036 0.065 0.522 0.624 YES
mutual1.c 11 9 0.013 0.006 0.052 0.070 YES
mutual2.c 21 15 0.013 0.007 0.084 0.104 YES
n-body.c 141 35 0.034 0.016 0.237 0.287 YES
nsieve-bits.c 38 29 0.024 0.035 0.302 0.362 YES



Stephan Falke, Deepak Kapur, and Carsten Sinz 37

C program LOC RR llvm-gcc llvm2kittel KITTeL Total Result
nsieve-bits-no-inv.c 36 28 0.024 0.034 5.006 5.065 ∞
opt-tree.c 30 33 0.016 0.055 0.425 0.496 YES
Oscar.c 323 77 0.027 0.053 0.568 0.647 YES
Oscar-no-inv.c 320 74 0.027 0.051 5.006 5.084 ∞
perfect.c 57 31 0.024 0.024 0.328 0.376 YES
perfect-no-inv.c 54 30 0.023 0.023 5.006 5.052 ∞
Perm.c 172 35 0.025 0.013 0.195 0.233 YES
pi.c 31 17 0.023 0.019 0.112 0.154 YES
power.c 23 26 0.013 0.014 0.162 0.188 YES
prim.c 83 44 0.019 0.036 0.432 0.487 YES
puzzle.c 67 31 0.023 0.016 0.194 0.233 YES
qsort.c 35 20 0.013 0.011 0.141 0.165 YES
RealMM.c 162 36 0.024 0.015 0.218 0.257 YES
selection_nice.c 59 24 0.023 0.013 0.159 0.195 YES
selection_sort.c 15 11 0.013 0.010 0.096 0.119 YES
selectionsort.c 18 11 0.016 0.010 0.101 0.127 YES
shell_sort.c 20 27 0.014 0.019 0.268 0.301 YES
snu-crc.c 124 33 0.015 0.118 0.211 0.343 YES
sort.c 138 90 0.024 0.038 0.682 0.745 YES
spectral-norm.c 52 39 0.032 0.018 0.263 0.312 YES
sphere.c 157 68 0.035 0.050 0.533 0.617 YES
spiral.c 176 80 0.034 0.068 0.619 0.722 YES
Towers.c 220 37 0.025 0.014 0.176 0.215 YES
twisted.c 18 15 0.013 0.011 0.139 0.164 YES
wrap.c 38 24 0.019 0.025 0.211 0.255 YES
zlib-adler32.c 124 34 0.017 0.642 0.223 0.883 YES
zlib-crc32-BYFOUR.c 335 41 0.027 0.851 0.276 1.154 YES
zlib-crc32.c 333 13 0.017 0.074 0.074 0.166 YES


	2011,6_Titelbl.pdf
	Termination Analysis of C Programs Using Compiler Intermediate Languages

	report.pdf
	Introduction
	int-Based TRSs
	Translating Simple Programs into int-Based TRSs
	The Translation
	Combination of int-Based Rewrite Rules

	Translating LLVM-IR Programs into int-Based TRSs
	Single Non-Recursive Function Operating on Integers
	Simplification of int-Based Rewrite Rules
	Several Functions Operating on Integers
	Programs Containing Pointers and Floating Point Numbers

	Utilizing Static Analysis Methods
	Characterizing Termination of int-Based TRSs
	Splitting into Dual Clauses
	Termination Graphs
	int-Polynomial Interpretations
	int-Reduction Pairs

	Chaining
	Implementation
	Automatic Generation of int-Polynomial Interpretations

	Evaluation
	Conclusions
	Empirical Results


