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1 IntrodutionIn this work, we are interested in so-alled breather solutions for nonlinear wave equa-tions. A breather is a solution u = u(x, t) ∈ R, (x, t ∈ R), whih is periodi in time andis spatially loalized, i.e.,
u(x, t) = u(x, t+ T ), x, t ∈ R (1.1)

|u(x, t)| < C e−βx, x, t ∈ R (1.2)for a (minimal)-period T > 0 and real-valued onstants C, β > 0. The author of [5℄proved, that any perturbation of the sine-Gordon equation
∂2

xu(x, t) = ∂2
t u(x, t) + sin(u(x, t))will destroy the speial symmetry of this equation. We onlude that breather solutionsare a singular ourene for the sine-Gordan equation only. In partiular the nonlinearKlein-Gordon equation

∂2
xu(x, t) = ∂2

t u(x, t) + u(x, t) − u3(x, t) (1.3)does not have any breather solutions. From appliations in physis and eletrial engi-neering it is known that for this equation there is a NLS-approximation whih gives areason to rethink the non-existene of breather solutions.The authors of [8℄ looked at the nonlinear Klein-Gordon equation and found that, al-though there does not exist a breather solution, there is a generalized breather whihis periodi in time but not loalized in spae: there is a small �periodi-tail�. Speakinggeometrially, only the sine-Gordon equation with periodi boundary onditions w.r.t.7



1 Introdution
t permits that the low-dimensional unstable and stable manifold of the origin of thespatial dynamis system interset. But what if we add more degrees of freedom to thenonlinear Klein-Gordon equation suh that we an make both manifolds meet eah other?
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10Figure 1.1: A depition of one of the breathers of the sine-Gordon equa-tion.Motivated by the mathematial desription of photoni band-gap materials we startedlooking at nonlinear Klein-Gordon equations with periodi oe�ients, i.e.,
∂2

xu(x, t) = s(x)∂2
t u(x, t) + q(x)u(x, t) − r(x)u3(x, t). (1.4)In this thesis we show that breathers exist for ertain x-dependent periodi oe�ients

s, q, r, i.e. s(x+1) = s(x), q(x+1) = q(x) and r(x+1) = r(x). Using the time-periodiboundary ondition (1.1), this is equivalent to an ountably in�nite system of ODEswhih an be redued to a 2-dimensional enter-manifold. The key to the appliation ofenter-manifold theory lies in the linear (Floquet-) spetrum whih an be �tailored� withthe help of the equation's (1.4) x-dependent oe�ients. In the 2-dimensional enter-manifold there exists a homolini orbit struturally stable to perturbations. This stabil-ity is due to the symmetry of the spatial oe�ients and the onsequential reversibilityof the equation (1.4).The method we use to prove a breather solution for (1.4) an also be applied to time-dependent nonlinear Klein-Gordon equation of the type
∂2

xu(x, t) = ∂2
t (s ⋆ u)(x, t) + u3(x, t). (1.5)8



where s(t) is a time-dependent oe�ient and where �⋆� denotes the onvolution in time,see equation (3.2) for a de�nition. The oe�ient s gives enough freedom to tailor thespetrum in suh a way that a 2-dimensional enter-manifold exists and that we anredue the dynamis of this equation to the existene of a homolini solution.The last hapter is both interesting in its own right and supplementary to the proof ofthe breather solution result of Chapter 2. It explains in detail how we hose the spatiallyperiodi oe�ients of equation (1.4) suh that the (Floquet)-spetrum of (1.4) allowsthe appliation of the enter-manifold theory.The results of this thesis suggest that breather solutions in nonlinear wave equations aremore ommon than we thought at �rst.
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2 Breather solutions inKlein-Gordon equations
We onsider the nonlinear, spatially periodi Klein-Gordon equation

s(x)∂2
t u(x, t) = ∂2

xu(x, t) − q(x)u(x, t) + r(x)u3(x, t), (2.1)where u = u(x, t) ∈ R with x ∈ R, t ∈ R and a-periodi oe�ients s, q and r, i.e.,
s(x) = s(x+ a), q(x) = q(x+ a), and r(x) = r(x+ a),where w.l.o.g. we hoose in the following a = 1. Then we prove the following theorem.Theorem 2.1. The equation (2.1) allows the existene of breather solutions, i.e. thereexists a solution u = u(x, t) with real-valued positive onstants β, C > 0 suh that

|u(x, t)| ≤ C e−β|x|, ∀t ∈ R, x ∈ R,
u(x, t) = u(x, t+

2π

ω0
), ∀x ∈ R. (2.2)There exists a breather solution for ω2

0 = 2π 13
16
, ε ∈ (0, ε0), (ε0 > 0), and the oe�ients

s(x) = χ[0,6/13] + 16χ[6/13,7/13] + χ[7/13],1(x mod 1)

q(x) = (q0 + q1ε
2)s(x)

r(x) = r0

(2.3)with q0 ∈ R, (q0 ≈ 3.235) and q1, r0 ∈ {−1,+1}, whih are determined in the proof. 11



2 Breather solutions in Klein-Gordon equationsRemark 2.1. The breather solution is given in lowest order by
sup
x∈R |u(x, t) − 2εc1seh(εc2x)q11(x) sin(ω0t)| ≤ Cε2 (2.4)with onstants c1, c2 and a 2-periodi funtion q11 de�ned subsequently. See also Setion2.10 Remark 2.10.Remark 2.2. Aording to Theorem 2.1 and Remark 2.1 we have a family of breathersolutions, where ε ∈ (0, ε0) takes the role of the parameter. The amplitude is O(ε) andthe envelope modulates the underlying arrier-wave q11(x) sin(ω0t) on the spatial sale is

O(ε−1). We use the big-O notation O throughout this work. It is de�ned for funtions
h : R→ R by

O
(

h(x)
)

=

{

g : R→ R : g 6= 0, lim
x→0

h(x)

g(x)
<∞

}

.By onvention we use the notation g(x) = O
(

h(x)
) instead of the orret notation g(x) ∈

O
(

h(x)
).Remark 2.3. The hoie of the oe�ients is not by hane. Chapter 4 shows a methodto tailor the oe�ients s and q to give an expliit form of the so-alled disriminantfrom whih the the Floquet-spetrum of (2.1) an be derived. Through this method we anapply an inverse analysis of the disriminant and an expliitly ompute the oe�ients

s and q. However, this inverse analysis is only possible for oe�ients with very fewdegrees of freedom. The general inverse problem, i.e. ompute the oe�ient when theFloquet-spetrum is given, is not solvable with the presented method.Remark 2.4. Solutions of (2.1) an be approximated via the ansatz
u(x, t) = εA(ε(x− cgt), ε

2t)fn(x, k) eiωn(k)t + ..with A(X, T ) ∈ C, cg ∈ R and 0 < ε≪ 1 by an NLS-equation
∂TA = −iω′′

n(0)∂2
XA+ iγnA|A|2.If ω′′

n(0)γn < 0 this equation possesses pulse solutions A(X, T ) = Ã(X) eiω̃T of the form(2.4). In [3℄ an approximation result has been established that guarantees that solutions12



2.1 Breather solution: Construtionof (2.6) an be approximated on an O(ε−2) time-sale via the solutions of this NLS-equation.Due to the periodi oe�ient we use Bloh-modes fn(x, k), where n is the number ofthe band, k is the Floquet-exponent and ωn(k) gives the dispersion relation. Sine weperturb o� a band-edge, we usually onsider k = 0 or k = 1/2. Then also cg = 0.For small spetral gaps there is one band edge where the assoiated NLS-equation pos-sesses pulse solutions. For small spetral gaps we have γn ≈ γn+1 but ω′′
n(0) > 0 and

ω′′
n+1(0) < 0 or vie versa.2.1 Breather solution: ConstrutionFor the onstrution of the breather solution of the equation (2.1) we will use spatialdynamis, enter-manifold theory and bifuration theory. Motivated by [12℄ we write(2.1) as an evolutionary system w.r.t. x ∈ R in the phase spae of 2π

ω0
-time periodifuntions, i.e., we onsider

∂xu = v,

∂xv = s(x)∂2
t u+ q(x)u− r(x)u3.

(2.5)where we abbreviate u(x, t), v(x, t) ∈ R with u, v ∈ R from now on, but we keep the xfor the oe�ients to emphasize the x-dependeny. Due to the periodiity of s, q, and
r w.r.t. x the system is non-autonomous. We use Floquet-theory to alulate the linear(Floquet-)spetrum, whih desribes the asymptoti behavior of the solutions

uω(x, t) = p(x, ω) ek(ω)x eiωtof the linearized system of (2.5) with ω ∈ R, k(ω) ∈ C and p(x, ω) = p(x + 1, ω) forall ω ∈ R. To emphasize the di�erene of the spatially periodi ase and the spatiallyhomogeneous ase, i.e. s, q, r =onst, where solutions of the linearized system are givenby
uω(x, t) = ek(ω)x eiωt, 13



2 Breather solutions in Klein-Gordon equationswhere the eigenvalues an be expliitly omputed by the dispersion relation
k2(ω) = −sω2 + q.In the spatially periodi ase there is a periodi, non-onstant funtion p(x, ω) and aFloquet-exponent k(ω) whih annot be easily omputed. We will show on the next fewpages how one an alulate the Floquet-exponent k(ω).Sine we are in the spae of 2π

ω0
-time periodi funtions, there are ountably manyFloquet-exponents k(ω)|ω=nω0

for a �xed ω0 ∈ R indexed by n ∈ Z. By using in-varianes of the equation 2.5 we an restrit ourselves to some invariant subspae of(2.5) whih redues the amount of Floquet-exponents by a fator 2, so that k(ω)|ω=nω0will be indexed by n ∈ Nodd. We all Nodd the set of all odd natural numbers. Then wewill prove the following Lemma.Lemma 2.1 (Property 1). Under the onditions of Theorem 2.1 in the invariant subspaede�ned in Setion 2.3 the linearisation of the spatial dynamis system (2.5) with theoe�ients (2.3) possesses only two Floquet exponents on the imaginary axis, whihmove o� the axis as ε > 0 inreases. The rest of the spetrum is uniformly boundedaway from the imaginary axis for all su�iently small ε ≥ 0.This lemma allows the use of invariant manifold theory for periodi systems (seesetion 2.6) to redue the in�nite-dimensional system (2.5) to a two-dimensional systemon the enter-manifold assoiated with the two entral eigenvalues. We then show thatthe redued system has a homolini solution, i.e. a solution U : R→ R with U(x) → 0for |x| → ∞, whih is struturally stable due to the reversibility of the spatial dynamisformulation, i.e. (2.5) is invariant under (x, u, v) 7→ (−x, u,−v). This is due to thesymmetry of the oe�ientsLemma 2.2 (Property 2). The oe�ients hosen above are even w.r.t. x, i.e.,
s(x) = s(−x), q(x) = q(−x), and r(x) = r(−x).for all ε.
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2.2 Proof of the Theorem 2.12.2 Proof of the Theorem 2.1As brie�y explained in the previous setion, we will prove Lemma 2.1 with the useof Floquet-theory and invariant subspaes. Then we will disuss the appliation ofenter-manifold theory to redue the dynamis to a 2-dimensional system. There wewill show that there is a homolini solution, i.e. a solution U : R→ R with U(x) → 0with exponential deay for |x| → ∞. From the enter-manifold theory we know that theexponential deay of the homolini solution will arry over to the full system in the formof a spatially loalized solution with exponential deay as |x| → ∞. The Fourier-seriesin time then puts this spatially loalized solution into a time-periodi frame, thereforeompleting the proof.The proof onsists of seven steps. First we disuss invarianes of the system (2.5) suhthat we are able to restrit our solutions to a �tting invariant subspae, see Setion 2.3.In this invariant subspae we go on to ompute the Floquet-exponents. In setion 2.4we also explain why we had to use an invariant subspae. Setion 2.5 and 2.6 talk aboutthe enter-manifold redution and prove a modi�ation of the enter-manifold theorem.Setions 2.7 through 2.9 analyse the redued two-dimensional system on the enter-manifold. The two-dimensional system an be seen as a basi system whih is known tohave homolini solutions and a perturbation. We show that even under perturbationsthe basi system's homolini solution will persist. From there we onlude the proof ofTheorem 2.1 with a summary of every step taken along the way. At the end we are ableto give a �rst order approximation of the breather.
Preparations Sine we are interested in time-periodi solutions of equation (2.1), i.e.,
u(x, t+ 2π

ω0
) = u(x, t) for all x, t ∈ R we use Fourier-series with respet to time leadingto the system of ountable many ODEs
∂2

xum(x) = −s(x)m2ω2
0um(x) + q(x)um(x) − r(x)gm(x), m ∈ Z, (2.6)15



2 Breather solutions in Klein-Gordon equationswhere
gm(x) =

∑

n∈Z3,|n|=m

un1
(x)un2

(x)un3
(x). m ∈ Z. (2.7)In terms of the spatial dynamis formulation (2.5) we have the system

∂xum(x) = vm(x)

∂xvm(x) = −s(x)m2ω2
0um(x) + q(x)um(x) − r(x)gm(x)

for m ∈ Z. (2.8)
2.3 InvarianesThere is a number of linear subspaes invariant under the evolution of (2.6) resp. (2.8).These are as follows. The invariant subspae orresponding to real solutions of (2.8) isgiven by

UR := {(um)m∈Z : um = u−m}.Sine the system is invariant under the transform S : (t, u, v) 7→ (−t,−u,−v) also
Uodd = {(um)m∈Z : um = −u−m}is some invariant subspae. Aording to the fat that we have a ubi nonlinearity also
UO = {(um)m∈Z : u2m = 0}is an invariant subspae. Therefore the intersetion of all these subspaes

UR ∩ Uodd ∩ UO = {(um)m∈Z : Reum = 0, u2m = 0} =: X̂is also invariant. In the following we restrit our analysis to those solutions of (2.1)whose Fourier-oe�ients are in X̂. Suh solutions an be written as
u(x, t) =

∑

m∈Zodd

ium(x) eimωtwhere um ∈ R and um = u−m satisfy a system of ountable many ODEs
∂2

xum(x) = vm(x)

∂2
xvm(x) = −s(x)m2ω2um(x) + q(x)um(x) + r(x)gm(x)

(2.9)
16



2.4 Proof of Lemma 2.1but now with m ∈ Nodd and
gm(x) =

∑

n∈Z3,|n|=m

un1
(x)un2

(x)un3
(x). m ∈ Nodd. (2.10)The tayloring of the oe�ient and the restrition to the invariant subspae X̂ are themost important steps in the proof. If we restrit the subspae of solutions to X̂, we alsorestrit the spetrum to those Floquet-exponents that are o� the imaginary axis, seeFigure 2.2.2.4 Proof of Lemma 2.1We want to ompute the Floquet-exponents of the linearizations of equations (2.6)-(2.7)and (2.9)-(2.10) at the origin respetively and prove that there are only two Floquet-exponents near the imaginary axis and that all others are uniformly bounded away fromthe imaginary axis. In order to analyze the linear part

∂xum(x) = vm(x)

∂xvm(x) = −s(x)m2ω2
0um(x) + (q0 + q1ε

2)s(x)um(x)
(2.11)where q(x) = (q0 + q1ε

2)s(x), we substitute mω0 = λ and only look at the ODE
u̇(x) = v(x)

v̇(x) = −s(x)λ2u(x) + (q0 + q1ε
2)s(x)u(x),

(2.12)where we an apply Floquet's theorem, see [6℄, to �nd its Floquet-exponents dependingon λ ∈ R.Let x 7→ Φλ2(x; x0) be the fundamental solution of the ODE (2.12) with Φλ2(x0; x0) =

I and x0 ∈ R. Then let ρ± be the eigenvalues of Cλ2 := Φλ2(x0 + 1; x0), the so-alled monodromy matrix . Floquet's Theorem says that the Floquet-multipliers are theeigenvalues of the monodromy matrix and are given by
ρ±(λ2) =

1

2
traceCλ2 ± 1

2

√

(traceCλ2)2 − 4. 17



2 Breather solutions in Klein-Gordon equationsThe trae of the monodromy matrix is alled the disriminant . We use the abbreviation
D(λ2) := traceCλ2 = φ1(x0 + 1; x0, λ

2) + φ′
2(x0 + 1; x0, λ

2) where
Φλ2(x; x0) =





φ1(x; x0, λ
2) φ2(x; x0, λ

2)

φ′
1(x; x0, λ

2) φ′
2(x; x0, λ

2)



 .The disriminant depends on the parameter λ and so
ρ±(λ2) =

1

2
D(λ2) ± 1

2

√

(D(λ2))2 − 4.There exists a representation for solutions (see [6℄), whih gives a good onnetion tothe autonomous ase:
Φλ2(x; x0) = Pλ2(x; x0) e(x−x0)Mλ2 (2.13)whereM is alled the exponential matrix . Its eigenvalues are alled the Floquet-exponent

k ∈ C de�ned by ρ±(λ2) = e±k(λ2). The Floquet-exponent is not neessarily unique butan be hosen in suh a way, that it is unique. We �nd thatS1a) if |D(λ2)| > 2 then the Floquet-multipliers ρ±(λ2) are real, i.e., k ∈ R \ {0}. Asa onsequene Φλ2 shows exponential growth w.r.t. x.S1b) if |D(λ2)| < 2 then the Floquet-multipliers ρ±(λ2) are on the omplex unit ir-le, i.e., k ∈ iR. As a onsequene Φλ2 is uniformly bounded w.r.t. x.S2) if |D(λ2)| = 2 then the Floquet-multipliers ρ±(λ2) are = −1 or = 1. As aonsequene Φλ2 has at most polynomial growth w.r.t. x.Remark 2.5. By the representation (2.13) it doesn't matter at whih point x0 we start.The disriminant is the same for eah x0.The disriminant of the equation (2.12) with the speial hoie of oe�ients
s(x) = χ[0,6/13] + 16χ[6/13,7/13] + χ[7/13],1(x mod 1)

q(x) = (q0 + q1ε
2)s(x)18



2.4 Proof of Lemma 2.1an be omputed by the Transfer-Matrix Method or the Fourier-Interfae Method , seeChapter 4, and yields
D(λ2) =

25

8
cos

(

16

13

√

λ2 + q0 + q1ε2

)

− 9

8
cos

(

8

13

√

λ2 + q0 + q1ε2

)

. (2.14)The graph of this disriminant and its orresponding dispersion relation is plotted inFigure 2.1. The dispersion relation simply plots the imaginary part of the Floquet-exponent ±k as a funtion of λ2. The real part orresponds to exponential growingsolutions, therefore we all an Floquet-exponent to lie in a band-gap if it has a non-vanishing real part. On the ontrary, if the Floquet-exponent is purely imaginary, wesay it lies in a band .
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The Floquet-spetrum We now hoose
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2 Breather solutions in Klein-Gordon equationsin equation (2.8) to be in phase with the leading term of the disriminant (2.14) in thefollowing sense (with q0 = 0 and ε = 0):
cos

(

16

13

√

λ2 + q0 + q1ε2

)∣

∣

∣

∣

λ=mω0

= cos(2πm)For q0 = ε = 0 we therefore get
D(m2ω2

0) =



























34
8
, m ∈ 2 + 4Z,

2, m ∈ 4Z,
25
8
, m ∈ 1 + 2Z.We hoose q0 in suh a way that D(ω2

0) = 2 if ε = 0 and thus D(ω2
0) = 2 + O+(ε2) for

ε→ 0.De�nition 2.1. We de�ne g(x) = O+(h(x)) for x→ 0 as
lim
x→0

h(x)

g(x)
= C+with g(x), h(x) ≥ 0 for some onstant C+ ≥ 0.At this point we see why it is neessary to restrit our analysis to the spae X̂, i.e.

λ2 = m2ω2
0 with m ∈ Nodd. Let q0 = ε = 0 and look at the problems (2.6)-(2.7) and(2.9)-(2.10). We get Floquet-multipliers

ρ±(m2ω2
0) =



























34
16

± 1
2

√

(34
8
)2 − 4, m ∈ 2 + 4Z,

1, m ∈ 4Z,
25
16

± 1
2

√

(25
8
)2 − 4, m ∈ 1 + 2Z.Therefore, for q0 = ε = 0 there are �ve di�erent Floquet-multipliers, four o� theunit irle but one on the unit irle. The fat that there are in�nitely many Floquetmultipliers on the unit irle would prohibit the appliation of enter-manifold theory.However, sine we look for solutions in X̂ we have m ∈ Nodd and therefore ρ±(m2ω2

0) =

25
16
± 1

2

√

(25
8
)2 − 4 are the only two Floquet-multipliers to be onsidered. See Figure 2.2.20



2.4 Proof of Lemma 2.1
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Figure 2.2: The Floquet-multipliers for the above hoie of s, q, and ω.Left: for m ∈ Z. Right: for m ∈ N odd.For approximatly q0 ≈ 3.235 the Floquet-multiplier for m = 1 is ρ±(ω2
0) = −1. The twopoints 25

16
± 1

2

√

(25
8
)2 − 4 are now aumulation points, yet are only approahed asymp-totially by all other Floquet-multipliers ρ±(ω2m2) (m > 1), whih are still uniformlybounded away from the omplex unit irle.With the hoie q1 = −1 or q1 = 1 we an make two Floquet-multipliers move from

−1 o� the unit irle for ε > 0. If q1 is not set orretly, the Floquet-multipliers movefrom −1 along the imaginary unit irle. The value of q1 sets the diretion suh that webifurate into the band-gap (instead of bifurating further into the band) See Figure 2.3for a depition of the orret bifuration.
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Figure 2.3: The distribution of Floquet-multipliers in X̂ for the hoieof q = q0 with ε = 0 (left) and ε > 0 (right).The Floquet-exponent is loated on the imaginary axis if its orresponding Floquet-multiplier is loated on the unit irle. All other Floquet-exponents are o� the imaginaryaxis if their orresponding Floquet-multipliers are o� the unit irle. Figure 2.4 shows
21



2 Breather solutions in Klein-Gordon equationsthe orresponding Floquet-exponents to the Floquet-multipliators shown in Figure 2.3.The proof of Lemma 2.1 is therefore ompleted.
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Figure 2.4: The distribution of Floquet-exponents in X̂ for the hoie of
q = q0 with ε = 0 (left) and ε > 0 (right).Remark 2.6. The Floquet-diagram (Figure 2.3) is atually the spetrum of the linearmonodromy operator C =
⊕

m∈Nodd Cm where Cm is the monodromy matrix of eah ODEof Equation (2.8). Hene,
σ(C) =

⋃

m∈Nodd{ρm
±}where ρm

± are the eigenvalues of Cm. The Floquet-spetrum (Figure 2.4) is the generali-sation of the spetrum of linear autonomous operators. In the next hapter we introdue�rotational oordinates� and transform the linear operator A(x) (see de�nition next se-tion) into an autonomous linear operator M . Its eigenvalues are the Floquet-exponents,and therefore its spetrum is given by
σ(M) =

⋃

m∈Nodd{±km}with km = k(m2ω2
0).22



2.5 Rotational Coordinates2.5 Rotational CoordinatesIn the last hapter we disussed the spetrum of M by alulating the disriminant.In this setion we apply a hange of oordinates to the system (2.9) whih preservesits reversibility and takes the rotational nature of the periodi equation into aountsuh that the tranformed system has an autonomous linear part. Therefore we speak ofrotational oordinates. With the system in new oordinates the enter-manifold theoryan be modi�ed to enompass an x-periodi nonlinear part.We onsider the spatial dynamis formulation (2.9)
∂xum = vm,

∂xvm = −s(x)m2ω2
0um(x) + (q0 + q1ε

2)s(x)um(x) + r(x)gm(x)
(2.16)for m ∈ Nodd. The equation (2.16) an be written in a more ompat form

∂xUm = AmUm + SεUm +Nm[(Um)m], m ∈ Nodd (2.17)with
Um = (um, vm),

Am(x)Um(x) =





0 1

−s(x)(m2ω2
0 + q0) 0



Um,

Sε(x)Um =





0 0

ε2q1s(x) 0



Um

Nm[(Um)](x) =





0

r(x)gm(x)



 .For onveniene we write U = (Um)m = (um, vm)m = (um, vm)m∈Nodd = (Um)m∈Nodd fromhere on.The reversibility: In Setion 2.9 we need the reversibility of (2.6) in order to provethe persistene of the homolini solution with respet to higher order perturbations.Therefore we de�ne the reversibility operator R by
Rm(um, vm) = (um,−vm). 23



2 Breather solutions in Klein-Gordon equationsThe system is reversible, i.e., invariant under (x, u, v) 7→ (−x, u,−v), whih implies thatwith Um(x) = (um, vm)(x) also Vm(x) = RmUm(−x) is a solution. Furthermore we de�nethe reversibility map
Tm[Um](x) := RmUm(−x)The reversibility property holds for an equation

U̇ = F (x, U)if
RF (x, U) = −F (−x,RU).This holds for our system as well sine

V̇m(x) = −RmU̇m(−x)

= −RmA(−x)Um(−x) −RmNm(−x, (Uj)j(−x))

= −RmA(−x)RmRmUm(−x) +Nm(−x, (RjUj)j(−x))

= A(−x)Vm(x) +Nm(−x, (Vj)j(x))

= A(x)Vm(x) +Nm(x, (Vj)j(x)).The last step is due to the symmetry of the oe�ients. In the following arguments the�xed spae of reversibility plays a major role. It is given by
Rfix = {U = RU} = {(um, 0)m}.The hange of oordinates Due to the theorem of Floquet the solutions of

∂xUm = Am(x)Umare given by
Um(x, x0) = Pm(x, x0) e(x−x0)MmUm(x0, x0)with
Pm(x, x0) = Pm(x+ 1, x0), Mm ∈ R2×2.24



2.5 Rotational CoordinatesSine all Floquet-multipliers have a negative real part and a vanishing imaginary part(see Figure 2.3), the assoiated Floquet-exponents, the eigenvalues ofM =
⊕

m∈Nodd Mm,are of the form α± iπ with α ∈ R, see Figure 2.5.
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Figure 2.5: All Floquet-multipliers are of the form α ± iπ with α ∈ R.In order to have real-valued Floquet-exponents we apply Floquet's theorem for 2-periodifuntions, i.e. the solutions of ∂xUm = Am(x)Um are given by
Um(x, x0) = Qm(x, x0) e(x−x0)BmUm(x0, x0)with Qm(x, x0) = Qm(x+ 2, x0) and Bm ∈ R2×2.Preserving the reversibility In order to make the linear part of the system (2.17)autonomous we ould make a hange of variables Um(x, x0) = Qm(x, x0)Vm(x, x0). How-ever, this hoie would destroy the reversibility. Instead we use a slightly modi�edversion of this hange of oordinates. We write

Um(x, x0) = Qm(x, x0) e(x−x0)BmUm(x0, x0)

= Qm(x, x0)S
−1
m e(x−x0)JmSmUm(x0, x0)

= Q̃m(x, x0) e(x−x0)JmVm(x0, x0) 25



2 Breather solutions in Klein-Gordon equationssuh that Vm(x, x0) de�ned by
Um(x, x0) = Q̃m(x, x0)Vm(x, x0) (2.18)satis�es the autonomous ODE ∂xVm = JmVm. Next we want to show that (2.18) pre-serves the reversibility. Let λ1m and λ2m be the eigenvalues of Bm.Case S1: Assume �rst that λ1m 6= λ2m. Then the solutions of ∂xUm = Am(x)Um analso be written as the linear ombination of two linearly independent solutions ψ1m and

ψ2m:
Um(x) = c1mψ1m(x) + c2mψ2m(x) = c1m eλ1mxφ1m(x) + c2m eλ2mxφ2m(x)with 2-periodi φjm, j = 1, 2, here and in the following. Sine the system is reversible,

x 7→ e−λ1mxRφ1m(−x) is also a solution if x 7→ eλ1mxφ1m(x) is a solution. Hene wede�ne the seond fundamental solution
ψ2m(x) = eλ2mxφ2m(x) = e−λ1mxRφ1m(−x).suh that λ2m = −λ1m and φ2m(x) = Rφ1m(−x). We introdue the new variable Vm(x) =

(ũm, ṽm)(x) by
Um(x) = ũm(x)φ1m(x) + ṽm(x)φ2m(x) = (φ1m(x), φ2m(x))





ũm(x)

ṽm(x)



where by onstrution ∂xVm(x) = JmVm(x) with Jm = diag(λ1m, λ2m). Therefore, theabove hange of variables (2.18) for x0 = 0 and the last hange of variables oinideand the new system is still reversible in ase x0 = 0 w.r.t. the transformed reversibilityoperator R̃m de�ned through
R̃m





ũm

ṽm



 =





ṽm

ũm



 .Case S2: Next assume that we have a Jordan blok. Then
Um(x) = c1mψ1m(x) + c2mψ2m(x) = c1m eλmxφ1m(x) + c2m( eλmxxφ1m(x) + eλmxφ2m(x)).26



2.5 Rotational CoordinatesAs a result of the reversibility the eigenvalues neessarily ful�l λm = 0, φ1m(x) =

Rφ1m(−x) and φ2m(x) = −Rφ2m(−x). We introdue the new variable Vm(x) = (ũm, ṽm)(x)by
Um(x) = ũm(x)φ1m(x) + ṽm(x)φ2m(x) = (φ1m(x), φ2m(x))





ũm(x)

ũm(x)



where by onstrution ∂xVm(x) = JmVm(x), where Jm =





0 1

0 0



. In this ase therepresentation of the reversibility operator is preserved, i.e.
R̃m





ũm

ṽm



 =





ṽm

−ṽm



 .Remark 2.7. We ould also hoose Jm =





0 0

1 0



. The hange of oordinates wouldthen be given by interhanging φ1m and φ2m. The reversibility operator then is
R̃





ũm

ṽm



 =





−ṽm

ũm



 .The old reversibility operator Rm and the new reversibility operator R̃m (valid for bothases) are onjugated w.r.t. the transform Um = Q̃mVm de�ned by Q̃m = (φ1m φ2m), i.e.
RmQ̃m(x) = Q̃m(−x)R̃mwhih implies RmQ̃

−1
m (−x) = Q̃−1

m (x)R̃m.For the operator of reversibility for the full system (2.17)
R =

⊕

m∈NoddRmand
R̃ =

⊕

m∈Nodd R̃m,the reversibility of the old nonlinearity N means RN(U) = −N(RU). The reversibilityof the transformed nonlinearity Ñ(x, V (x)) := Q̃−1(x)N(Q̃(x)V (x)) means R̃Ñ(x, V ) =27



2 Breather solutions in Klein-Gordon equations
−Ñ(−x, R̃V ). This holds aording to

R̃Ñ(x, V (x)) = R̃Q̃−1(x)N(Q̃(x)V (x))

= Q̃−1(−x)RN(Q̃(x)V (x)) = −Q̃−1(−x)N(RQ̃(x)V (x))

= −Q̃−1(−x)N(Q̃(−x)R̃V (x)) = −Ñ(−x, R̃V (x)).The reversibility property arries over for Sε in an analogous way. Although reversibilityis only preserved for x0 = 0, we keep x0 in order to make some subsequent argumentslearer.The reversible hange of oordinates With Um(x, x0) = Q̃m(x, x0)Vm(x, x0) we �nd
∂xVm(x, x0) = JmVm(x, x0) + Fm,ε

(

x, x0, (Vj)j (x, x0)
) (2.19)with

Fm,ε

(

x, x0, (Vj)j (x, x0)
)

= Q̃m(x, x0)
−1Sε(x)Q̃m(x, x0)Vm(x, x0)

+ (Q̃m(x, x0))
−1Nm(x, (Q̃jVj)j (x, x0)).

(2.20)We �nd by onstrution that J1 has one Jordan blok of size 2 with assoiated eigenvalue
0 (Case S2). All other Jm with m ≥ 3 possess one positive and one negative eigenvaluewhih are uniformly bounded away from the imaginary axis w.r.t. m (Case S1), i.e.(2.19) has the spetral piture plotted in the right panel of Figure 2.5. Moreover, system(2.19) is reversible w.r.t. the transformed reversibility operator

R̃ =
⊕

m∈Nodd R̃mif x0 = 0, sine we have
Jm = −R̃mJmR̃m

Fm,ε (x, 0, (Vj)j (x)) = −R̃mFm,ε

(

−x, 0, (R̃jVj)j (x)
)

.
(2.21)The hange of oordinates is bounded in the sense of Lemma 2.3. In partiular, Q̃−1

m Sε(x)Q̃mis only of order ε2 and is uniformly bounded for all m.28



2.5 Rotational CoordinatesLemma 2.3. Let Q̃m = (φ1 φ2) =





q11,m q12,m

q21,m q22,m



. Then there exists a C > 0 suhthat for allm ∈ Nodd we have supx∈[0,2](|q11,m(x)|+|q12,m(x)|) < C and supx∈[0,2] |(Q̃m(x))−1| <
C.Proof. By expliitly solving for initial onditions φ1(0) = 1, φ′

1(0) = 0 we see that
φ1(x) = O(1) and φ′

1(x) = O(m) as m → ∞. Asymptotially only Case S1 is relevant,so we know φ2(x) = Rφ1(−x), hene φ2(x) = O(1) and φ′
2(x) = O(m) as m→ ∞. Thusthe lemma is proven sine

Q̃m = (φ1 φ2).Remark 2.8. The diret appliation of the enter-manifold theory to the equation (2.17)is not possible sine the linear solution operator is not smoothing. The reason is asfollows. The linear solution operator is given by
Φ(x, x0) =

⊕

m∈Nodd Φm(x; x0)where eah Φm(x; x0) is the fundamental system of
U̇m = Am(x)Umgiven by (2.13). By the proof of Lemma 2.3 the fundamental solution is Φm(x; x0) =

O(m) for m→ ∞. From this it follows that
Φ(x; x0) : ℓ2(R2; 1) −→ ℓ2(R2; 0)where

ℓ2(R2; σ) =
{

U = (um, vm)m ∈ R2 : ‖U‖ℓ2(R2;σ) <∞
}with the norm

‖U‖ℓ2(R2;σ) =

√

∑

m∈Noddm2σ|Um|2.By 29



2 Breather solutions in Klein-Gordon equations2.6 The Center-Manifold RedutionIn Setion 2.5 we hanged the oordinates of equation (2.17) suh that we have anautonomous linear part with eigenvalues aording to Lemma 2.1. The next step is toapply enter-manifold theory to the system in rotational oordinates (2.19).We onsider the system in rotational oordinates
∂xVm(x, x0) = JmVm(x, xa0) + Fm,ε

(

x, x0, (Vj)j (x, x0)
)

. (2.22)We will ompute the enter-manifold for x0 = 0 and then will use the �ow of equation(2.22) to apply it to arbitrary starting point x0 ∈ R.The enter-manifold redution will be done in the phase spae
ℓ1(R2; σ) = {V : m 7→ Vm ∈ R2 : m ∈ Nodd, ‖V ‖ℓ1(R2;σ) <∞}where ‖V ‖ℓ1(R2;σ) =

∑

m∈Nodd mσ|Vm|. For the appliation of the enter-manifold theorywe use a ut-o� funtion on the nonlinearity F to get a bounded nonlinearity:
F̌m,ε(x, V ) = Fm,ε(x, V )χ(‖V ‖ℓ1(R2;σ)/δ)for a small but �xed δ > 0, where χ is a C∞

0 -funtion with values in [0, 1] satisfying χ(r) =

1 for r ≤ 1, χ(r) = 0 for r ≥ 2. Sine inNm only the �rst oordinate of U ours, after thetransforms Um = Q̃mVm only q11,m and q12,m our in the transformed nonlinearity. Sineboth are uniformly bounded, sine the same is true for Q̃−1
m aording to Lemma 2.3, andsine ℓ1(R2; σ) is losed under onvolutions, (F̌m,ε(U))m∈Nodd

is Lipshitz ontinuous withLipshitz onstant proportional to δ2 for δ → 0. The magnitude of the Lipshitz onstantfollows from the ut-o� funtion and the fat that F̌ does not ontain any quadratiterms. Moreover, the ut-o� funtion does not hange the reversibility property, hene
F̌ is still reversible.Next, we de�ne projetions Ps,m and Pu,m on the stable and unstable eigenspaes ofeah of the matries Jm whih are uniformly bounded in R2×2 w.r.t. m. With that wede�ne Pu =

⊕

m Pu,m and Ps =
⊕

m Ps,m as the projetions on the unstable or stable30



2.6 The Center-Manifold Redutioneigenspae of equation (2.22). The projetion on the enter-eigenspae is denoted by
PcV = P1V = V1. The enter-eigenspae Ec is therefore given by

Ec = {(V1, 0, 0, . . .) ∈ ℓ1(R2, σ) | V1 ∈ R2}Furthermore, we introdue V (s)
m (x, x0) = Pm,sVm(x, x0) and V (u)

m (x, x0) = Pm,uVm(x, x0)for m ≥ 3. Then we onsider all suh solutions V (x) = (Vm)m(x) of equation (2.22)whih are element of the following spae for small but �xed η > 0

Yη = {V ∈ C0(R×R, ℓ1(R2; σ)) | sup
x∈R e−η|x|‖V (x)‖ℓ1(R2;σ) <∞}where V = (Vm)m and ‖V ‖ℓ1(R2;σ) =

∑

m∈Nodd mσ|Vm|. Aording to [15℄ V (x) ∈ Yη is asolution of (2.22) if and only if the following equation holds,
V1(x) = exJ1V1(0) +

∫ x

0

e(x−ξ)J1F̌1,ε(ξ, 0, (Vj)j (ξ))) dξ,

V (s)
m (x) =

∫ x

−∞

Pm,s e(x−ξ)JmF̌m,ε(ξ, 0, (Vj)j (ξ)) dξ,

V (u)
m (x) = −

∫ ∞

x

Pm,u e(x−ξ)JmF̌m,ε(ξ, 0, (Vj)j (ξ)) dξ.

(2.23)We then desribe this equation abstratly as
V (x) = SVc +KG(V )where

Vc = P1V (0) ∈ Ec,

SVc = exJVc,

G(V )(x) = F̌ε(x, 0, V (x))and
(KV )(x) =

∫ x

0

e(x−ξ)JP1V (ξ) dξ +

∫ x

−∞

e(x−ξ)JPsV (ξ) dξ −
∫ ∞

x

e(x−ξ)JPuV (ξ) dξ.Due to the asymptotis of the disriminant we have the estimates for an arbitrary but�xed β > η and a C > 0 independent of m ∈ Nodd
‖ eJ1x‖ ≤ C eη|x|/2 , ∀x ∈ R,

sup
m

‖ eJmxPm,s‖ ≤ C e−βx , ∀x ≥ 0,

sup
m

‖ eJmxPm,u‖ ≤ C eβx , ∀x ≤ 0. 31



2 Breather solutions in Klein-Gordon equationsHene (see [15℄) the map I−K ◦ G has an inverse Ψ : Yη → Yη. The solution an nowbe desribed as
V (x) = Ψε(SVc)(x)with PcV (0) = Vc. Beause of the spetral gap, the ut-o� funtion and all estimatesare O(1) for ε → 0, the size of the enter-manifold will also be O(1) for ε → 0. Wede�ne the graph of the enter-manifold by a mapping h from the entral subspae to thehyperboli subspae by

h(0, V1, ε) = PhΨε(SI1V1)(0)where Ph = Pu + Ps is the projetion onto the hyperboli subspae and I1 : R2 → Ec isthe inlusion mapping. Then we haveTheorem 2.2. For all n ∈ N there exist ε0 > 0 and δ0 > 0 suh that for all ε ∈
(0, ε0) the spatial dynamis formulation in rotational oordinates (2.22) possesses a two-dimensional invariant manifold

Wc,ε(0) = {V ∗ ∈ ℓ1(R2; σ) | (0, V ∗
3 , V

∗
5 , . . .) = h(0, V ∗

1 , ε)}tangential to the enter spae
Ec = {(V ∗

1 , 0, 0, . . .) | V ∗
1 ∈ R2}with

h(0, ·, ·) ∈ Cn
(

{V ∗
1 ∈ R2 | ‖V ∗

1 ‖ ≤ δ0} × [0, ε0], ℓ
1(R2; σ)

)The enter-manifold Wc,ε(0) has been onstruted for the starting point x0 = 0. Theother enter-manifolds are easily onstruted by the evolution operator Sx,x0
of equation(2.22) de�ned by Sx,x0

V0 = V (x, x0, V0) with x, x1 ∈ R and V0 ∈ ℓ1(R2, σ). Then
Wc,ε(x0) = Sx0,0Wc,ε(0)Therefore we de�ne the redution funtion h(x, ·, ε) for Wc,ε(x) by

V (x) = Sx,0V (0) = Sx,0

(

V1(0) ⊕ h(0, V1(0), ε)
)

= V1(x) ⊕ h(x, V1(x), ε)32



2.6 The Center-Manifold RedutionRemark 2.9. Note that Wc,ε(x0) is not smooth w.r.t. x0 due to the jumps in the o-e�ient funtion s = s(x) w.r.t. x. More essential for our purposes is however thesmoothness of the manifold for �xed x0 as a funtion of V1.On the reversibility The redution mapping arries over the reversibility property.From equation (2.23) we an alulate the identity R̃V− = SR̃Vc + KGε(R̃V−) where
V−(x) = V (−x). Hene it is R̃V (−x) = Ψε(SR̃Vc)(x) and we onlude R̃hh(x, V1, ε) =

h(−x, R̃1V1, ε) with R̃h =
⊕

m∈{3,5,7,...} R̃m. Sine with x 7→ V (x) being a solution, also
x 7→ R̃V (−x) = R̃1V1(−x) ⊕ R̃hh(−x, V1(−x), ε) is a solution on the enter-manifold, wean onlude that R̃hh(−x, V1(−x), ε) = h(x, R̃1V1(x), ε) by the following onsideration:

R̃V (−x) = R̃1V1(−x) ⊕ R̃hh(−x, V1(−x), ε)

= R̃S−x,0V (0)

= S−x,0R̃V (0)

= S−x,0

(

R̃1V1(0) ⊕ R̃hh(0, V1(0), ε)
)

= S−x,0

(

R̃1V1(0) ⊕ h((0)−, R̃1V1(0), ε)
)

= R̃1V1(−x) ⊕ h(x, R̃1V1(−x), ε).From this we �nd that
R̃1F1,ε (x, 0, V1(x) ⊕ h(x, V1(x), ε)) = −F1,ε

(

−x, R̃1V1(x) ⊕ R̃hh(x, V1(x), ε)
)

= −F1,ε

(

−x, R̃1V1(x) ⊕ h(−x, R̃1V1(x), ε)
)As a onsequene all small bounded solutions an be found on the enter-manifold andthe redued system on the enter-manifold is given by

∂xV1(x) = J1V1(x) + F1,ε

(

x, 0, V1(x) ⊕ h(x, V1(x), ε)
)

. (2.24)Sine the enter-manifold redution preserves reversibility the redued system (2.24) isstill reversible w.r.t. the transformed reversibility operator R̃1. 33



2 Breather solutions in Klein-Gordon equations2.7 Properties of the redued systemFrom the multiple-sale analysis (see Remark 2.4) we derive a formal approximation ofthe solution, with a envelope-modulated arrier-wave
u(x, t) = εA(ε(x− cgt), ε

2t)fn(x, k) eiωn(k)t + ...The envelope has an amplitude in O(ε) saling. Motivated by this saling we introdue
ũ1(x) = εA(x)

ṽ1(x) = ε2B(x).
(2.25)Then we have the following result.Theorem 2.3. Equation (2.24) together with the saling (2.25) will read

d

dX
A = εB + O(ε2)

d

dX
B = εs1(x)A− εs3(x)A

3 + O(ε2)

(2.26)where sj(x + 2) = sj(x) for j = 1, 3 and sj(x) ≥ 0 j = 1, 3 for all x ∈ R. Furthermore
sj(x) > 0, j = 1, 3 on a set with positive measure.Proof. By de�nition we have

U1 = Q̃1V1 = Q̃1





εA

ε2B



 = ε





q11A + εq12B

q21A + εq22B



The enter-manifold is tangential to the enter-eigenspae, therefore
Uj(x) = Q̃j(x)hj(x, V1(x), ε) = O(‖V1(x)‖3) = O(ε3)therefore for all j = 3, 5, 7, . . . the in�uene of Uj in the nonlinearity N1 is small and weonly need to look at U1. Hene we have

N1

(

Q̃1(x)V1(x) ⊕ (Q̃j(x)hj(x, V1(x), ε))j

)

=





0

ε3r(x)(q11)
3A3



+ O(ε4)

34



2.8 Averaging Argumentwhih implies
Q̃−1

1 N1(Q̃1V1 ⊕ (Q̃jhj)j) =





0

ε3r(x) (q11)4

det Q̃1
A3



+ h.o.t.Sine the Wronskian equals 1 and is onstant for all x ∈ R the determinant det Q̃1 =

detS−1
1 = 1/ detS1. The last equation simpli�es to

Q̃−1
1 N1(Q̃1V1 ⊕ (Q̃jhj)j) =





0

ε3r(x) det(S1)(q11)
4A3



+ h.o.t.This onludes the nonlinear part of the equation. The linear part is
J̃1,εV1 = J1V1 + Q̃−1

1 Sε(x)Q̃1V1 =





ε2B

ε3q1det(S1)s(x)(q11)
2A



+ h.o.t.The resaled equation is then given by




Ȧ

Ḃ



 = ε





B

s(x)q1det(S1)q
2
11(x)A+ r(x) det(S1)q

4
11(x)A

3



 + O(ε3)We set
r(x) = r0 = −1/ det(S1),

s1(x) = s(x)(q11(x))
2,

q1 = 1/ det(S1),

s3(x) = (q11(x))
4.

(2.27)The oe�ients s, r, q are from the original Klein-Gordon equation (2.1). Both s1, s3are 2-periodi funtions. Sine q11 is ontinuous and q11(x0, x0) = 1, q11 > 0 on a setwith positive measure, whih means that s1 and s3 are also positive on a set of positvemeasure.2.8 Averaging ArgumentWe use averaging as disussed in [11℄ to analyze the dynamis of equation (2.26) whihwe will rewrite abstratly to
∂xa = εF(x, a) + ε2

G(x, a). (2.28)35



2 Breather solutions in Klein-Gordon equationswith a = (A,B) and
F(x, a) = ε





B

s1(x)A− s3(x)A
3



 .Then equation (2.28) an be transformed aording to [11℄ to the following equation
∂xA = εF̄(A) + ε2

H(x, ε,A), (2.29)with the averaged part of the equation given by
∂xAavg = εF̄(Aavg) (2.30)with

F̄(·) =
1

2

∫ 2

0

F(x, ·)dx =





B̃

s̄1Ã− s̄3Ã
3



 , (2.31)where s̄j = 1
2

∫ 2

0
sj(x)dx, j = 1, 3. By the fat that sj(x) > 0 on a set of positive measurewe onlude that s̄j > 0, j = 1, 3. From the hoie of oe�ients we note that we haveset r(x) = r0 = 1/ det(S1) for all x.The solution to equation (2.30) is omputed by resaling A(x) = Ã(εx) = Ã(X), sowe have

∂XÃavg = F̄(Ãavg)with
∂XÃ = B̃,

∂XB̃ = s̄1Ã− s̄3Ã
3,This system has a homolini orbit whih is expliitly given by

Ãavg/hom(X,X0) =





Ãhom(X,X0)

B̃hom(X,X0)



with
Ãhom(X,X0) = ±

√

2s̄1

s̄3
seh (

√
s1(X −X0)) , B̃hom(X,X0) = ∂XÃhom(X,X0)Undoing the resaling we have the solution of equation (2.30)

Aavg/hom(x, x0) =





±
√

2s̄1

s̄3
seh (ε√s1(x− x0)

)

∓
√

2(s̄1)2

s̄3
tanh (ε√s1(x− x0)

) seh (ε√s1(x− x0)
)





36



2.9 Persistene Proof2.9 Persistene ProofIn this setion we prove the existene of the homolini solution in equation (2.29) basedon the existene of a homolini solution of equation of (2.30). Sine both equationsonly di�er in higher order terms (O(ε2)), we speak of the persistene of the homolinisolution.The homolini orbit Aavg/hom lies in the intersetion of the stable manifold and theunstable manifold of system (2.30). In general, if higher order terms are added, theintersetion will break up and the perturbed stable manifold and the unstable manifoldwill no longer interset. In reversible systems the situation is di�erent. The persisteneof the homolini solution is established basially in two steps. First, by proving atransversal intersetion of the stable manifold with the �xed spae of reversibility for theunperturbed system. Seond, by arguing that this transversal intersetion will remaineven in the perturbed system. This results in the homolini orbit, for x ∈ [0,∞).Applying the reversibility operator R to this part of the solution, also results in thehomolini orbit, for x ∈ (−∞, 0].The atual persistene proof onsists of three steps:i) Beyond other things in [11, Theorem 4.1.1℄ the following is shownLemma 2.4. There exists a Cr-hange of oordinates A = a + εw(a, x, ε) underwhih (2.28) beomes (2.29)
∂xA = εF̄(A) + ε2

H(x, ε,A)where H is of period 2 w.r.t. x.Hene in an O(1)-neighborhood the stable manifold W s of the averaged system(2.30) and the stable manifold Ws of the full system (2.28) resp. (2.29) are O(ε)-lose together.ii) In addition to the statement in Lemma 2.4, in [11, Theorem 4.1.1℄ it is shown 37



2 Breather solutions in Klein-Gordon equationsLemma 2.5. If Aavg(x) and A(x) are solutions of (2.29) and (2.30) with |Aavg(0)−
A(0)| = O(ε), then |Aavg(x) − A(x)| = O(ε) on a sale O(1/ε).By applying the approximation result from Lemma 2.5 shows that the stable man-ifold W s of the averaged system (2.30) and the stable manifold Ws of the fullsystem (2.28) resp. (2.29) are O(ε)-lose together on a sale O(1/ε). Hene, O(ε)-lose to the intersetion point of the averaged system (2.30) with the �xed spaeof reversibility there is an intersetion point of the full system (2.28) resp. (2.29).See Figure 2.9. As a onsequene we have a solution a(x) of (2.28) for x ∈ [0,∞)whih satis�es limx→∞ a(x) = 0 and a(0) ∈ {B = 0}.iii) Finally, we use the reversibility of the redued system (2.24) resp. (2.28). It allowsus to extend V1(x) for x ∈ [0,∞) by V1(−x) = RV1(x) to x ∈ R. In response, weonstruted a homolini solution to the origin for (2.24) and as a onsequene ofthe exat enter-manifold redution �nally one for the original system (2.6).
 0

 0Figure 2.5: The ombination of loal estimate for the di�erene from(i) with the approximation result from ii). The dotted/fullline is the stable manifold of the averaged system (2.30)/fullsystem (2.28).
38



2.10 Lowest Order Approximation2.10 Lowest Order ApproximationIn this setion we want to summarize the steps of the last setion in order to give anapproximation result whih independently a�rms the NLS-approximation of Remark2.4.The solution of (2.30) and (2.29) are related by
A(x) = Aavg/hom + εR(x)with a remainder smaller than the homolini solution. By Lemma 2.4 the hange ofoordinates A = a + εw(a, x, ε) has an inverse whih we shall all

a = A + εW (A, x, ε),so we get
a(x) = Aavg/hom(x) + O(ε).Undoing the resaling of (2.25) we have

V1(x) =





ε 0

0 ε2



a(x)

=





ε 0

0 ε2



Aavg/hom(x) +





O(ε2)

O(ε3)



 .We move from rotational oordinates bak into the original Fourier-spae
U1(x) =Q̃1(x)V1(x) = Q̃1(x)Aavg/hom(x) +





O(ε2)

O(ε3)





=





εq11(x)Aavg/hom(x) + O(ε2)

εq21(x)Aavg/hom(x) + ε2q22(x)Bavg/hom + O(ε3)



 .Sine we only need u1 for an approximation, we get from the last statement
u1(x) = ±εq11(x)

√

2s̄1

s̄3
seh(ε

√
s̄1x) + O(ε2) 39



2 Breather solutions in Klein-Gordon equationswhih orresponds to the original solution in the following way
u(x, t) = ±2εq11(x)

√

2s̄1

s̄3
seh(ε

√
s̄1x) sin(ω0t) + O(ε2). (2.32)From the last setion the oe�ients s̄1, s̄3 are all given by

s̄1 =
1

2

∫ 2

0

s(x)q2
11(x)dxand

s̄3 =
1

2

∫ 2

0

q4
11(x)dx.Remark 2.10. In Remark 2.1 we have stated that in the lowest order the breather isgiven by

u(x, t) = 2εc1seh(εc2x)q11(x) sin(ω0t) + O(ε2) (2.33)with onstants
c1 =

√

2s̄1

s̄3

c2 =
√
s̄1

(2.34)From the approximation result (2.32) and the oe�ients s̄1 and s̄3 we only need theknowledge of q11(x). It is a 2-periodi funtion given by the periodi part of the linearsolution of
y′′ = −(ω2

0 − q0)s(x)y. (2.35)Its fundamental solution is given by Φ1(x; 0) = Φ1(x+2; 2), with Φ(0; 0) = I2 whih anbe deomposed aording to Floquet's Theorem
Φ1(x; 0) = Q̃1(x; 0) exJ1and

Q1(x; 0) =





q11(x) q12(x)

q21(x) q22(x)



 .This onludes the hapter. We have shown that there exists a breather solution and thatits approximation mathes the expeted approximation from the multiple sale analysisof Remark 2.4. QED.40



3 Breather Solutions inTime-dependent Wave EquationsIn the last hapter we proved the existene of breather solutions in the spatially periodinonlinear Klein-Gordon equation. The question arises if the linear spetrum an betailored by other means, for example by also using time-dependent oe�ients.In this hapter we �rst show that a time-dependent but spatially homogeneous oe�ientis enough to repeat the steps of Chapter 2 and to prove the existene of a breathersolution. Then we generalize the idea to a slightly more physial nonlinear wave equationwith time- and spae-dependent oe�ients.3.1 The Spatially Homogeneous CaseWe show that for a ertain hoie of time-dependent oe�ients in the nonlinear Klein-Gordon equation all eigenvalues exept of two are bounded away from the imaginaryaxis. The two eigenvalues lose to the imaginary axis an be moved with a small hangein the temporal frequeny ω. A enter-manifold redution is then possible and admits ahomolini solution in the redued system. In summaryTheorem 3.1. Consider the equation
∂2

xu = ∂2
t

(

s ⋆ u
)

+ u− u3 (3.1)with
(s ⋆ u)(x, t) :=

∫ ∞

−∞

s(t− τ)u(x, τ) dτ 41



3 Breather Solutions in Time-dependent Wave Equationsand periodi boundary onditions in time:
u(x, t) = u(x, t+ T ), x, t ∈ R,where T = 2π

ω
. Let s(t) be the oe�ient of equation (3.1) whose Fourier-transform ŝ isgiven by Figure 3.1. Then for ω = 1 − ε2 (ε ≪ 1) there exists a breather solution, i.e.there exists onstants C, β > 0 suh that

|u(x, t)| < C e−β|x|holds.Remark 3.1. We will disuss an extension to this theorem in the next setion: theoe�ient s may also be periodi in spae, i.e. s(x, t) = s(x+ 1, t) for all x, t ∈ R.

Figure 3.1: The (smooth) funtion ŝ.Remark 3.2. The oe�ient s(t) will be hosen in suh a way that the general Cauhy-problem will beome ill-posed. In this instane it means that only the initial value problemwith respet to the spae variable x is well posed whereas the initial value problem w.r.t.
t is not de�ned.In fat, in physis or eletrial engineering it is ustomary to interhange the role ofspae and time: the initial ondition will be the �insertion� of a signal at a ertain inputpoint x = 0,

input(t) := u(x, t)|x=042



3.1 The Spatially Homogeneous Caseand the output at point x = L will be also measured w.r.t. time
output(t) := u(x, t)|x=L .Remark 3.3. In ausal systems we assume that the in�uene of s(t) on u(·, t) an onlyome from the present and the past, but never from the future. As a result s(t) = 0 for all

t < 0. Mathematially the priniple of ausality indues the �Kramers-Kronig�-relation,whih states that the Fourier-transform of s(t) must have nonvanishing imaginary parts(see [24℄ and [25℄). We ignore the restritions of ausality in our analysis.3.1.1 Proof of Theorem 3.1To prove Theorem 3.1 we use the periodi boundary onditions in time to display thesolution as a Fourier-series
u(x, t) =

∑

n∈Z un(x) einωt.Then the equation beomes the system of equations
∂2

xun = −n2ω2ŝ(nω)un + un − gn, n ∈ Z.with
gn(x) :=

∑

j∈Z3,|j|=n

uj1(x)uj2(x)uj3(x). n ∈ Z.This equation has a dispersive term whih gives us a gap near the origin � we will use thisone and only gap to reate eigenvalues far away from the imaginary axis. The dispersionrelation an be written down expliitly by using un(x) = Cn e±kn(ω)x:
k2

n(ω) = 1 − n2ω2ŝ(nω).If k2
n(ω) is negative un(x) will be bounded, otherwise it will have exponential harater.In order to prove the theorem we need a oe�ient ŝ suh that the ritial modes

n = ±1 have very small exponential growth and all other modes have distintivelylarger exponential harater. Suh a oe�ient an be found. It will be de�ned thefollowing way: for |r| < 1 + ε2 we set ŝ(r) = 1 and for |r| > 2− 2ε2 we set ŝ(r) = 0, seeFigure 3.1. The bifurating parameter is ε whih hanges the time frequeny ω = 1−ε2.43



3 Breather Solutions in Time-dependent Wave EquationsLemma 3.1. For all ε≪ 1, the oe�ient ŝ hosen as above has the properties:
• k2

±1(1 − ε2) = O+(ε2) (where O+ ≥ 0) and
• k2

±n(1 − ε2) = 1 for all n = 2, 3, . . ..
• The onvolution is de�ned and bounded: ŝ ∈ Ck(R), valid for all k ∈ N, arriesover to deay of s faster than any polynomial, thus the integral (s ⋆ u)(x, t) :=
∫∞

−∞
s(t− τ)u(x, τ) dτ exists.We then use spatial dynamis:

∂un = vn

∂vn = k2
n(ω)un − gnThe same invarianes on the phase-spae apply as in the previous hapter (see setion2.3) and we an restrit our analysis to X̂.

UR ∩ Uodd ∩ UO = {(um)m∈Z : Reum = 0, u2m = 0} =: X̂Therefore we now have for n ∈ Nodd
∂un = vn

∂vn =
(

1 − n2ω2ŝ(nω)
)

un − gnFor ω = 1 − ε2 we have for n = 1

∂u1 = v1

∂v1 =
(

2ε2 − ε4
)

u1 − g1and for n > 1

∂un = vn

∂vn = un − gnThus the enter-manifold theory an be applied (see [15℄). From there we eventuallyderive the ODE
Ȧ = B

Ḃ = 2A− CA3 + O(ε)44



3.2 The Spatially Periodi Casefor u1(x) = εA(εx) and v1(x) = ε2B(εx) and a onstant C > 0. In the unperturbedstate, i.e. ε = 0, this ODE has two homolini solutions
u1,hom(x) = ±

√

4

C
seh(√2εx

)The proof now follows analogously to the ase of Chapter 2. By reversibility this ho-molini solution preserves when the higher order terms are added. Therefore there is abreather solution in the original equation (3.1).
3.2 The Spatially Periodi CaseTheorem 3.1 an be extended to spatially periodi oe�ients s(x, t) = s(x + 1, t). Weonsider a modi�ed nonlinear Klein-Gordon equation:

∂2
xu(x, t) = ∂2

t (s ⋆ u)(x, t) + u3(x, t). (3.2)with (s ⋆ u)(x, t) =
∫∞

−∞
s(x, t− τ)u(x, τ) dτ .Remark 3.4. The di�erene to the nonlinear Klein-Gordon equation (3.1) is the lak ofa �dispersive� term +u. The nonlinear wave equation whih one derives from Maxwell'sEquations for 1D periodi, nonlinear and linearly polarized materials is very lose toequation (3.2) (See the appendix for the derivation).In order to �nd out the spetrum of the linearized equation of equation (3.2) we swithinto frequeny-domain by applying a Fourier-transform to (3.2):

∂2
xun(x) = −ŝ(x, nω)n2ω2un(x) − gn(x), n ∈ Z. (3.3)We hoose a separable time-spae oe�ient

ŝ(x, nω) = f̂(nω)ŝ1(x)suh that we onsider the equation
∂2

xun(x) = −n2ω2f̂(nω)ŝ1(x)un(x) − gn(x), n ∈ Z. (3.4)45



3 Breather Solutions in Time-dependent Wave EquationsLinearizing around the zero-solutions gives us
∂2

xun(x) = −n2ω2f̂(nω)ŝ1(x)un(x), n ∈ Z, (3.5)whih is now ompletely deoupled in terms of the n's. In the situation of the linearizedequation (3.5) a � simple� dispersion relation will not show the asymptoti behaviorof solutions of the linearized equation w.r.t. x. As a result of the periodiity of theoe�ient ŝ1(x) = ŝ1(x+ 1) we ompute the linear (Floquet-) spetrum of (3.5) by theuse of Floquet's Theorem. To disuss the equation (3.5) we use the help of the followingODE
y′′ = −γ(λ)s(x)y (3.6)with periodi s and arbitrary γ. The Floquet-multipliers are easily omputed by

ρ±(λ) =
1

2
D(γ(λ)) ± 1

2

√

D(γ(λ)) − 4where D is the disriminant of
y′′ = −s(x)λy.Therefore the disiminant of (3.6) is simply given by
D̃ = D ◦ γ.In terms of equation (3.5) we have γ(λ) = λ2f̂(λ), where we substituted λ = nω foronveniene. Therefore
f̂(λ) =

γ(λ)

λ2
.In order to ontrol and to simplify the omputation of the Floquet-multipliers we want

f̂ to be symmetri. Additionally f̂ should not have any singularities. With this in mindwe deide to set
γ(λ) =











λ2, λ2 < M

M, λ2 ≥Mwith M to be the �rst maximum or minimum of D with |D(M)| > 2. This onditionloosely states that ŝ1(x) must be hosen suh that there is at least one band-gap. From46



3.2 The Spatially Periodi Casethe hoie of γ the following holdŝ
f(λ) =











1, λ2 < M

M
λ2 , λ2 ≥ c

(3.7)see Figure 3.3. Aordingly the disriminant is
D̃(λ) = D(λ2f̂(λ)).An example of the resulting disriminant is shown in Figure 3.2.

Figure 3.2: The disriminant D(f(λ2)).Remark 3.5. The downside of the hoie of f̂ is the disontinuity at λ = M . Then theonvolution (s ⋆ u)(x, t) might not exist as a smooth funtion. However, there are alsogeneralizations to this hoie of f̂ whih are C∞.Let z be hosen to be the last zero of D(λ)2−4 before the valueM is reahed. In otherwords, let z1 ≤ z2 ≤ z3 ≤ . . . be the zeros of D(λ)2−4. Then z = zi with zi < M < zi+1.In terms of the time frequeny ω we set the bifuration point ω0 to be the square rootof this zero:
ω2

0 = z. (3.8)47



3 Breather Solutions in Time-dependent Wave Equations

Figure 3.3: The funtions λ2f̂(λ) and f̂(λ).With ω = ω0 + ε2 we an alulate the disriminant for n = ±1

D
(

(ω0 + ε2)2f̂(ω0 + ε2)
)2−4 = D

(

(ω0 + ε2)2
)2 − 4 = D

(

z + O+(ε2)
)2 − 4 = O+(ε4)and for |n| > 1

D
(

n2(ω0 + ε2)f̂(n(ω0 + ε))
)

= D(M).Therefore we have:
ρ±(ω0 + ε2) = O+(ε2)and for |n| > 1

ρ±
(

n(ω0 + ε2)
)

=
D(M) ±

√

D(M)2 − 4

2
.The Floquet-exponents are given by the formula

ρ±
(

n(ω0 + ε2)
)

= ek±n(ω0+ε2)see 2.4 and formula (2.13) for details. In summary, the equation
∂xun(x) = vn

∂xvn(x) = −ŝ1(x)f̂(nω0 + ε2)n2(ω0 + ε2)2un(x) n ∈ Z. (3.9)has solutions
un(x) = pn(x;ω0 + ε2) ekn(ω0+ε)x48



3.2 The Spatially Periodi Casewith 1-periodi pn and Floquet-exponents k±1(ω0 + ε) = O+(ε2) and kn(ω0 + ε) = O(1)(|n| > 0) as ε→ 0.Sine the same invarianes as disussed in Chapter 2 Setion 2.3 apply, we an restritthe analysis to the invariant subspae X̂. Then we will make a hange of oordinates intorotational oordinates (as disussed in Chapter 2 Setion 2.5). The resulting equationwill be (abstratly)̇
Un(x) = BnUn(x) + Ñn

[

(Um)m∈Z](x), n ∈ Noddwith eigenvalues kn(ω0 + ε2). Therefore, we have an eigenvalue at n = 1 whih is loseto the imaginary axis. All other eigenvalues are uniformly bounded away from thateigenvalue. We an now perform the enter-manifold redution as desribed in Setion2.6. The proof of a homolini solution for n = 1 is analogous to Setion 2.7 andfollowing. Therefore we have proven the following theorem.Theorem 3.2. We onsider the equation
∂2

xu(x, t) = ∂2
t (s ⋆ u)(x, t) + u3(x, t). (3.10)whih orresponds in Fourier-spae to

∂2
xun(x) = −ŝ(x, nω)n2ω2un(x) − gn(x), n ∈ Z. (3.11)We hoose

ŝ(x, nω) = ŝ1(x)f̂(nω)where f̂ is a funtion de�ned by Figure 3.3, and ŝ1(x) = ŝ1(x+ 1) is a periodi funtionwith at least one band-gap.Then there exist a ω0 suh that for 0 < ε ≪ 1 there exists a breather solution for
ω = ω0 + ε2.Remark 3.6. The result an be generalized to a broader range of equations. The non-linear part of equation (3.2) an be made more omplex:

∂2
xu(x, t) = ∂2

t

(

(s ⋆ u)(x, t) − (r ⋆ u3)(x, t)
)

. 49



3 Breather Solutions in Time-dependent Wave Equationsin whih ase we get
∂2

xun(x) = −ŝ(x, nω)n2ω2un(x) − n2ω2r(x, nω)gn(x), n ∈ Z.Then the nonlinear part
−n2ω2r̂(x, nω)gn(x)is bounded in n if r(x, nω) = O(1/n2). The enter-manifold theory an also be appliedin this situation.

50



4 Fourier-Interfae MethodIn Chapter 2 we laimed in Remark 2.3 that the hoie of the periodi oe�ients givenby
s(x) = χ[0,6/13] + 16χ[6/13,7/13] + χ[7/13],1(x mod 1)

q(x) = (q0 + q1ε
2)s(x)

r(x) = r0is not a hoie by hane but is based on a method to ompute the disriminant ofstep-funtions expliitly. For the ODE
u′′ = −λ2s(x)u (4.1)with periodi s(x + a) = s(x) the linear asymptotis are determined by the Floquet-multiplier whih an be alulated by the disriminant. We explore a way of alulatingthe disriminant by transforming this ODE into a wave-equation. With the use ofexpliit solution formulas and the wave-equation's harateristis we an alulate thetransformed disriminant.We also deal with the inverse problem: given a disriminant what is the oe�ient s?As it will turn out only a few examples permit a well-posed inverse problem. For generalstep-funtions it is generally insolvable.4.1 The MethodWe show how to ompute the disriminant of the following ordinary di�erential equation

u′′(x;λ) + λ2s(x)u(x;λ) = 0, (4.2)51



4 Fourier-Interfae Methodwith initial onditions
φ1(0;λ) = 1, φ2(0;λ) = 0,

φ′
1(0;λ) = 0, φ′

2(0;λ) = 1.
(4.3)The growth of this ODE's solutions is determined by the Floquet-multiplier

ρ±(λ2) =
D(λ2)

2
± 1

2

√

D(λ2)2 − 4with the disriminant D(λ2) = φ1(a;λ) + φ′
2(a;λ). Applying Fourier-transform to ODE(4.2) w.r.t. λ yields

∂2
xû = s(x)∂2

µû (4.4)where û(x, µ) =
∫R u(x;λ) e−iµλdλ. The initial onditions translate to

φ̂1(0, µ) = δ(µ), φ̂2(0, µ) = 0,

∂xφ̂1(0, µ) = 0, ∂xφ̂2(0, µ) = δ(µ),
(4.5)where δ is the Dira-delta distribution. The Fourier-transform of the disriminant isthen D̂(µ) = φ̂1(a, µ) + ∂xφ̂2(a, µ). We will only onsider step-funtions. In this asewe an solve the equation (4.4) expliitly on eah onstant part of s. In detail, if theharateristi funtion is given by

χM (x) =











1, x ∈M

0, x /∈Mthen we have for all funtions s, whih satisfy the following representation
s(x) =

N
∑

n=1

s2
nχ[an−1,an)(x),the expliit solution of the linear wave equation

∂2
xû = s2

n∂
2
µû, x ∈ [an−1, an)for eah n = 1, . . . , N . The solution is given by

û(x, µ) =
1

2

(

fn−1(µ+ snx) + fn−1(µ− snx)
)

+
1

2sn

∫ µ+snx

µ−snx

gn−1(ν)dν
∂xû(x, µ) =

1

2

(

gn−1(µ+ snx) + gn−1(µ− snx)
)

+
sn

2

(

f ′
n−1(µ+ snx) − f ′

n−1(µ− snx)
)(4.6)52



4.1 The Methodwith the initial onditions
fn(µ) = û(an, µ), n = 0, . . . , N − 1

gn(µ) = ∂xû(an, µ), n = 0, . . . , N − 1.
(4.7)Thus two initial value problems must be solved independently. For φ̂1 they are

f1,0(µ) = δ(µ),

g1,0(µ) = 0.
(4.8)For φ̂2 the initial onditions are

f2,0(µ) = 0,

g2,0(µ) = δ(µ).
(4.9)To explain the Fourier-Interfae Method we start with the onstant ase, i.e. thesituation withN = 1 where s(x) ≡ s2 ∈ R is a onstant. In this ase the solution formula(4.6) an be diretly applied. The following solution has straight lines as harateristisoriginating from the origin to ±sa. We have

φ̂1(x, µ) =
1

2

(

δ(µ+ sx) + δ(µ− sx)
)

∂xφ̂2(x, µ) =
1

2

(

δ(µ+ sx) + δ(µ− sx)
)

.After the evolution to the point x = a we stop. Now we have the transformed disrim-inant
D̂(µ) = φ̂1(a, µ) + ∂xφ̂2(a, µ) = δ(µ+ sa) + δ(µ− sa)and reover it by an inverse Fourier-transform:

D(λ2) = 2 cos(asλ).There is a geometrial way of looking at this result: starting from a top-down view,there is a Dira-delta at x = 0 at the position µ = 0. Then two harateristis emanatefrom this starting Dira with a slope of ±s. At x = a these Dira-deltas will be movedto µ = ±sa with mass eah 1
2
. See �gure 4.1. 53



4 Fourier-Interfae Method

Figure 4.1: Evolution of a Dira-delta distribution by a linear wave equa-tion. Left: Isometri view. Right: Top-down view.Now we onsider the ase where N > 1. The main di�erene now are the interfaes be-tween two layers. Eah harateristi splits up into two harateristis at an interfae.The harateristis after the split-up have slopes aording to the layer's oe�ient snwhere n = 1, . . . , N denotes the layer. The masses of the Dira-delta distributions splitup with a preferene to the diretion of propagation.For φ̂1 the mass for the Dira-delta whih moves in the diretion of propagation willhave the following fration of the original mass
1

2
(1 +

sn

sn+1
)and the Dira-delta in the opposite diretion of propagation will have the followingfration of the original mass

1

2
(1 − sn

sn+1

).See �gure 4.2 for an illustration of this behavior. The evolution of ∂xφ̂2 is very semilarto the evolution of φ̂1. The fration of the original mass is
1

2
(1 +

sn+1

sn
)for the diretion of propagation and

1

2
(1 − sn+1

sn

)in the opposite diretion. The basi rule also says that at the splitting the total mass ofthe splitted Dira-distributions is onserved:
1

2
(1 +

sn

sn+1
) +

1

2
(1 − sn

sn+1
) = 154



4.1 The Methodand
1

2
(1 +

sn+1

sn

) +
1

2
(1 − sn+1

sn

) = 1.The basis-rule for propagation an be seen if δ(µ+ snx)|x=an
is used as initial ondi-tion in the solution formula (4.6). Please note, that there are no re�etions, sine the

x-derivative is proportional to +sn.

Figure 4.2: Basi rule when a �Dira-ray� hits an interfae.The basi rule an be ondensed in a general solution formula:
φ̂1(a, µ) =

1

2N

∑

M∈{−,+}N

N−1
∏

i=1

(

1 +MiMi+1
si

si+1

)

δ

(

µ+
N
∑

i=1

Misi(ai − ai−1)

)

and
∂xφ̂2(a, µ) =

1

2N

∑

M∈{−,+}N

N−1
∏

i=1

(

1 +MiMi+1
si+1

si

)

δ

(

µ+

N
∑

i=1

Misi(ai − ai−1)

)

where a0 = 0 and aN = a. The disriminant is then given by
D̂(µ) =

∑

M∈{−,+}N

SM δ

(

µ+

N
∑

i=1

Misi(ai − ai−1)

)

with the masses
SM =

1

2N

(

N−1
∏

i=1

(

1 +MiMi+1
si

si+1

)

+

N−1
∏

i=1

(

1 +MiMi+1
si+1

si

)

)The proof of this statement is by indution. 55



4 Fourier-Interfae MethodExample 4.1. Consider the two-step funtion s(x) = s2
1χ[0,a1) + s2

2χ[a1,a]. Then look atthe evolution of the �Dira-ray� in Figure 4.3. The solution of the linear wave equationis
φ̂1(a, µ) =

1

4
(1 +

s1

s2
)δ(µ+ s1a1 + s2(a− a1))

+
1

4
(1 +

s1

s2

)δ(µ− s1a1 − s2(a− a1))

+
1

4
(1 − s1

s2

)δ(µ+ s1a1 − s2(a− a1))

+
1

4
(1 − s1

s2

)δ(µ− s1a1 + s2(a− a1)).and
∂xφ̂2(a, µ) =

1

4
(1 +

s2

s1
)δ(µ+ s1a1 + s2(a− a1))

+
1

4
(1 +

s2

s1
)δ(µ− s1a1 − s2(a− a1))

+
1

4
(1 − s2

s1
)δ(µ+ s1a1 − s2(a− a1))

+
1

4
(1 − s2

s1
)δ(µ− s1a1 + s2(a− a1)).

Figure 4.3: The evolution of φ̂1 with a two-step funtion.The orresponding image 4.3 quikly displays the result. The resulting disriminant isthen
D(λ2) =

1

4
(2 +

s1

s2

+
s2

s1

) cos
(

(s1a1 + s2(a− a1))λ
)

+
1

4
(2 − s1

s2
− s2

s1
) cos

(

(s1a1 − s2(a− a1))λ
)

.This onludes the example.56



4.2 The Result4.2 The ResultIn summary of the Fourier-Interfae Method it is possible to give a method to omputean expliit formula for the disriminant of the ODE (4.2) when the periodi oe�ientis a step funtion:
s(x) =

N
∑

n=1

s2
nχ[an−1,an)(x) (4.10)where N = 1, 2, 3, . . . is the number of steps. The individual steps are de�ned by an andthe step value is s2

n. Then we get the following result.Theorem 4.1. The disriminant of equation (4.1) under the assumption that s is a stepfuntion as de�ned in (4.10) is given by:
D(λ2) = 2

∑

M∈{−,+}N

ωM≥0

SM cos(ωMλ) (4.11)where ωM :=
∑N

i=1Misi(ai − ai−1) for M ∈ {−,+}N and
SM :=

1

2N

N−1
∏

i=1

(

1 +MiMi+1
si

si+1

)

+
1

2N

N−1
∏

i=1

(

1 +MiMi+1
si+1

si

)also for M ∈ {−,+}N . Additionally:
∑

M∈{−,+}N

ωM≥0

SM = 1.Remark 4.1. Sine the disriminant is de�ned by
D(λ2) = φ1(a;λ) + φ′

2(a;λ)where
φ1(0;λ) = 1, φ2(0;λ) = 0,

φ′
1(0;λ) = 0, φ′

2(0;λ) = 1,
(4.12)the theorem also gives the solution formulas for φ1 and φ′

2:
φ1(a;λ) = 2

∑

M∈{−,+}N

ωM≥0

1

2N

N−1
∏

i=1

(

1 +MiMi+1
si

si+1

)

cos(ωMλ)
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4 Fourier-Interfae Methodand
φ′

2(a;λ) = 2
∑

M∈{−,+}N

ωM≥0

1

2N

N−1
∏

i=1

(

1 +MiMi+1
si+1

si

)

cos(ωMλ)Corollary 4.1. Every step funtion with si = sN−i+1 (i = 1, . . . , N , N is odd) has theproperty φ1(a, λ
2) = φ′

2(a, λ
2). It is therefore su�ient to look at D(λ) = 2φ1(a, λ

2).Proof. Let N = 2k + 1 for k ∈ N and M ∈ {−,+}2k. The masses after the evolutionthrough N − 1 interfaes are
1

2N

N−1
∏

i=1

(1 +MiMi+1
si

si+1
) =

1

2N

k
∏

i=1

(1 +MiMi+1
si

si+1
)

2k
∏

i=k

(1 +MiMi+1
si

si+1
)

=
1

2N

k
∏

i=1

(1 +MiMi+1
si

si+1
)

k
∏

i=1

(1 +MiMi+1
si+1

si
)for φ1 and

1

2N

N−1
∏

i=1

(1 +Mi+1Mi
si+1

si
) =

1

2N

k
∏

i=1

(1 +Mi+1Mi
si+1

si
)

k
∏

i=1

(1 +Mi+1Mi
si

si+1
)for φ′

2.Corollary 4.2. Let s(x) =
∑3

n=1 s
2
nχ(an−1,an] be a symmetri 3-step funtion with s1 = s3and d1 = d3 where dn := an −an−1 for n = 1, 2, 3. Then there are two frequenies ω0, ω1.If we assume that the two frequenies relate by ω0 = 2ω1 the following invariane is true:

3d2s2 = 2d1s1Proof. For a 3-step funtion the disriminant has 4 frequenies ω0, ω1, ω2, ω3. However,two anel eah other. The �rst two frequenies are:
ω0 = 2d1s1 + d2s2

ω1 = 2d1s1 − d2s2and the other two are
ω2 = d1s1 + d2s2 − d1s1 = d2s2

ω3 = d1s1 − d2s2 − d1s1 = −d2s258



4.3 On the Inverse Problemwith masses
S2 =

1

8
(1 +

s1

s2
)(1 − s2

s1
),

S3 =
1

8
(1 − s1

s2
)(1 +

s2

s1
).Then the frequenies ω2, ω3 anel eah other sine S2 + S3 = 0 and ω2 = −ω3.Under the assumption ω0 = 2ω1 the following holds:

ω0 = 2ω1 ⇐⇒ 2d1s1 + d2s2 = 4d1s1 − 2d2s2hene
3d2s2 = 2d1s1.Remark 4.2. This invariane states that for any given temporal frequeny ω0 there anbe found a symmetri 3-step funtion suh that the seond frequeny has the given rela-tion. This is partiularly important for the disriminant and the resulting band struture.Only under these onditions every �odd� gap is open!With these orollaries we an quikly re-establish our oe�ient of Chapter 2. Thedisriminant will be:

D(λ2) = 2S0 cos(ω0λ) + 2S1 cos(ω1λ)We set s1 = 1, s2 = 4 and a = 1. Therefore 6d2 = d1. So we have the ratios 6 : 1 : 6and we may set d1 = 6
13

and d2 = 1
13
. Then we get S0 = 1

8
(1 + 1

4
)(1 + 4

1
) = 25

32
and

S1 = 1
8
(1 − 1

4
)(1 − 4

1
) = − 9

32
and the disriminant is

D(λ2) =
25

16
cos(

16

13
λ) − 9

16
cos(

8

13
λ).4.3 On the Inverse ProblemThe inverse Problem is not well-posed. We onsider an N-step funtion, whih gives us

2N-dimensions: parameters are s1, . . . , sN and d1, . . . , dN . Yet the amount of distintfrequenies for an N-step funtion is 2N−1. That means for the general inverse problem59



4 Fourier-Interfae Methodthat step funtions is not solvable for N > 4. However, for N = 1, 2, 3, 4 the inverseproblem is solvable and standard tehniques an be applied.
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5 Appendix: Appliations inMathematial PhysisThe original question to this work has been whether it is possible to �nd breather solu-tions in other equations than the sine-Gordon equation. This question is interesting inits own right. Additionally the questions are also interesting for appliations in math-ematial physis. This work was done under the supervision of the Researh TrainingGroup 1294 of the German Researh Foundation (DFG)"Analysis, Simulation and Design of Nanotehnologial Proesses"at the Karlruhe Institute of Tehnology (KIT). As suh we disussed the possible ap-pliation of this work towards physis. This hapter shows the ideas to bridge the gapbetween theoretial analysis and physial appliation.5.1 A Physial Appliation: PGB-MaterialsThe term PGB-Materials stands for Photoni-Band-Gap-Material whih is any materialwhih has some sort of optial semi-ondutor property. From the early disovery of semi-ondutors the so-alled band-gap is a gap between two energy bands of the dispersionrelation of a Shrödinger equation modelling the periodially strutured lattie of atoms.A material that has a band-gap for photons is therefore alled a PGB-Material. Thisroughly means that the PGB-Material prohibits the passing of light for some frequenies.During the late 1980ies the property was found to be useful as a way to manipulate61



5 Appendix: Appliations in Mathematial Physislight. Two physiists stand out in the developement of a new �eld of researh, namelySajeev John (1987) and Eli Yablonovith (1987). They found that photoni rystalsare exeptionally good PGB-Materials. Photoni Crystals are two dieletris whih areordered periodially in spae, with lattie onstant to be proportional to the frequenyof light to be forbidden to pass the struture.In this hapter we derive a nonlinear wave equation whih desribes the interation oflight with the photoni rystal in a 1D setting. From there we will disuss how Theorem3.2 an be applied.5.2 Maxwell's Equation and Derivation of the WaveEquationWe want to model a 1D photoni rystal using Maxwell's equations. We assume linearpolarization along the z-axis (TEM-polarization) and diretion of propagation along the
x-axis. Maxwell's equations in SI units are given by

∇×H = J + ∂tD (Amperè's law) (5.1)
∇× E = −∂tB (Faraday's law) (5.2)
∇ · B = 0 (5.3)
∇ ·D = ρ (Gauss' law) (5.4)The vetors E,D,B,H, J ∈ R3 depend on spae (x, y, z) ∈ R3 and time t ∈ R. Theeletri �eld is denoted by E, its reation on material � the eletri displaement �eld �is alled D. The magneti �eld is denoted by H and its reation on material B is alledthe magneti indution �eld. Furthermore there is the eletri urrent density J and theeletri harge density ρ ∈ R. We have the important material equations

J = σE (5.5)
D = εE (5.6)
B = µH (5.7)62



5.2 Maxwell's Equation and Derivation of the Wave EquationHere σ is alled the spei� ondutivity, ε is known as the permittivity (with nonlinearterms also the suseptibility) and µ is alled the magneti permeability. In the ourseof this hapter we make important assumptions to simplify the equation. First, we willnot onsider ondutors, nor magneti materials, therefore σ = 0 and B = µ0H with µ0being a salar value. The interation of light and material will solely be governed by ε.We make an phenomenologial approah to the hoie of the permittivity:
Di = ε0Ei + ε0χ

(1)
ij (Ej) + ε0χ

(3)
ijkl(Ej , Ek, El) (5.8)where we use Einstein's summation onvention. The tensor χ(1) is linear in E3 whereas

χ(3) is a multilinear form in eah argument. Sine we are only interested in 1D pho-toni rystals we assume that the tensors χ(1), χ(3) will only depend on the diretion ofpropagation e1 and time t. The equations (5.1)-(5.4) then are redued to
∇×H = ε0∂t

(

E + χ(1)(E) + χ(3)(E,E,E)
) (5.9)

∇× E = −µ0∂tH (5.10)
∇ · B = 0 (5.11)

∇ ·
(

E + χ(1)(E) + χ(3)(E,E,E)
)

= 0 (5.12)Furthermore, we will restrit the eletri �eld to be linearly polarized along the e3-diretion and propagating only in e1-diretion, i.e.
E(x, y, z, t) = E3(x, t)e3.Taking ∇× (5.10) and inserting it into (5.9), taking into aount (5.12), gives the non-linear wave equation of Maxwell-type:

∂x

(

χ
(1)
13 (E3) + χ

(3)
1333(E3, E3, E3)

)

= 0

∂2
t

(

χ
(1)
23 (E3) + χ

(3)
2333(E3, E3, E3)

)

= 0

µ0ε0∂
2
t

(

Ez + χ
(1)
33 (E3) + χ

(3)
3333(E3, E3, E3)

)

= ∂2
xE3
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5 Appendix: Appliations in Mathematial PhysisWe shall simply set χ(1)
i3 = 0 = χ

(3)
i333 for i = 1, 2 to �nally arrive at the Maxwell-typewave equation

∂2
xE3 = µ0ε0∂

2
t

(

E3 + χ
(1)
33 (E3) + χ

(3)
3333(E3, E3, E3)

) (5.13)The permeability and suseptibility are hosen in either a time-independent way, suhthat
χ

(1)
33 (x, t, E3) := χ1(x)E3(x, t) ∈ R, χ

(3)
3333(x, t, E3, E3, E3) := χ3(x)E

3
3(x, t) ∈ Ror in a time-dependent part

χ
(1)
33 (x, t, E3) =

∫ t

−∞

E(x, t− τ)χ1(x, τ)dτ =:
(

χ1 ⋆ E3

)

(x, t)and
χ

(3)
3333(x, t, E3, E3, E3) =

∫ t

−∞

E3
3(x, t− τ)χ3(x, τ)dτ

=:
(

χ3 ⋆ E
3
3

)

(x, t)The two equations of interest are now
∂2

xE3 = µ0ε0∂
2
t

(

E3 + χ1E3 + χ3E
3
3

) (5.14)
∂2

xE3 = µ0ε0∂
2
t

(

E3 + χ1 ⋆ E3 + χ3 ⋆ E
3
3

) (5.15)These wave equations explain the nonlinear propagation of light in the 1D diretion(linearly polarized) under ertain material assumptions. In ontext of photoni rystalsthe permittivity and suseptibility are periodi in x with lattie onstant a, i.e. χi(x, t) =

χi(x+ a, t) for i = 1, 3.5.3 Additional RemarksWe want to apply Theorem 3.2 to equation (5.15)
∂2

xE3(x, t) = µ0ε0∂
2
t

(

E3(x, t) +
(

χ1 ⋆ E3

)

(x, t) +
(

χ3 ⋆ E
3
3

)

(x, t)
)
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5.3 Additional Remarkswith periodi boundary onditions in time
E3(x, t) = E3(x, t+ T ), T =

2π

ωin order to show how the result of Chapter 2 and 3 an be applied to physial appliations.By using Fourier-series as an ansatz to the equation (5.15) we have the set of equations
∂2

xE3(x, n) = µ0ε0n
2ω2

(

(

1 + χ̂1(x, nω)
)

Ê3(x, n) + χ̂3(x, nω)Ê3
3(x, n)

)

, n ∈ ZAording to Remark 3.6 we set n2ω2χ̂3(x, nω) to be bounded in n ∈ Z so that thenonlinearity is bounded. From a physial point of view χ̂3 an be assumed to adhere tothe drude model: for high frequenies it is O(1/n2), see e.g. [26℄. Regarding the linearpart of the equation we will set
1 + χ̂1(x, nω) = ŝ(x, nω) = ŝ1(x)f̂(nω) > 0.with

f̂(λ) =











1, λ2 < M,

M
λ2 , λ2 ≥ c.,whih is hosen aording to (3.7) to �t Theorem 3.2, and

ŝ1(x) = 2χ[0,6/13)(x) + 16χ[6/13,7/13)(x) + 2χ[7/13,1] (x mod 1).The disriminant of ŝ1 is very similar to the one of s of Chapter 2 equation (2.3): every�odd� gap is open. In fat, we used Corollary 4.2 and its subsequent onsiderations forthe derivation of the oe�ient ŝ1. Moreover, we hose it to be greater or equal than
2 for physial reasons, as outlined below in Remark 5.1. Then we are able to applyTheorem 3.2. The existing breather is given in lowest order by

E3(x, t) = 2εc1 seh(εc2x)p11(x) sin(ω0t) + O(ε2)with onstants c1, c2 > 0, the 1-periodi p11 and the ritial frequeny of light ω0 (see(3.8) for the de�nition). 65



5 Appendix: Appliations in Mathematial PhysisRemark 5.1 (Physial Limitations). The appliation of Theorem 3.2 is physially re-strited for two reasons. First, the oe�ients χ̂j, j = 1, 3, must be physially realizableor realisti. By de�nition
χ̂1(x, nω) = ŝ1(x)f̂(nω) − 1. (5.16)For n = 1 we may hoose the χ̂1 physially reasonable, i.e.
χ̂1(x, ω) = ŝ1(x) − 1 > 0for all x ∈ R. By the de�nition of f̂ , the oe�ient χ̂1 will beome negative as n tendsto in�nity, i.e.

χ̂1(x, nω) = s1(x)f̂(nω) − 1 −→ −1, n→ ∞ (5.17)In other words, for high frequenies the material beomes opaque. However, whethersuh a material may be onstruted remains to be investigated. Seond, any physialsystem uses the priniple of ausality. Therefore, both oe�ients χ̂1 and χ̂3 are subjetto ausality whih means
χj(x, t) = 0, t < 0, j = 1, 3.Mathematially the priniple of ausality is desribed by the �Kramers-Kronig�-relation,whih states that the Fourier-transform of χ1(t) and χ3(t) (namely χ̂1 and χ̂3) must havenonvanishing imaginary parts (see [24℄ and [25℄). However, we may be able to delarethat the imaginary parts of the oe�ients are �small� and we drop them to get a real-valued equation. As a result, the breather result by Theorem 3.2 of equation (5.15) maybe seen as an approximation.
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