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1 Introduction

In this work, we are interested in so-called breather solutions for nonlinear wave equa-
tions. A breather is a solution u = u(x,t) € R, (z,t € R), which is periodic in time and

is spatially localized, i.e.,

u(z,t) = wu(z,t+1T), r,t € R (1.1)

lu(z,t)] < Ce P, z,t e R (1.2)

for a (minimal)-period T" > 0 and real-valued constants C,3 > 0. The author of [5]

proved, that any perturbation of the sine-Gordon equation
Ou(z,t) = 0Pu(z,t) + sin(u(z, t))

will destroy the special symmetry of this equation. We conclude that breather solutions
are a singular occurence for the sine-Gordan equation only. In particular the nonlinear

Klein-Gordon equation
O2u(z,t) = Ofu(w,t) + u(x,t) — u(x, t) (1.3)

does not have any breather solutions. From applications in physics and electrical engi-
neering it is known that for this equation there is a NLS-approximation which gives a
reason to rethink the non-existence of breather solutions.

The authors of [8] looked at the nonlinear Klein-Gordon equation and found that, al-
though there does not exist a breather solution, there is a generalized breather which
is periodic in time but not localized in space: there is a small ,periodic-tail”. Speaking

geometrically, only the sine-Gordon equation with periodic boundary conditions w.r.t.




1 Introduction

t permits that the low-dimensional unstable and stable manifold of the origin of the
spatial dynamics system intersect. But what if we add more degrees of freedom to the

nonlinear Klein-Gordon equation such that we can make both manifolds meet each other?

FIGURE 1.1: A depiction of one of the breathers of the sine-Gordon equa-

tion.

Motivated by the mathematical description of photonic band-gap materials we started

looking at nonlinear Klein-Gordon equations with periodic coefficients, i.e.,
O2u(z,t) = s(x)Fu(z,t) + q(z)u(z, t) — r(z)u’(x,t). (1.4)

In this thesis we show that breathers exist for certain x-dependent periodic coefficients
s,q,ryie s(x+1) =s(x), ¢g(r+1) =q(z) and r(z+1) = r(z). Using the time-periodic
boundary condition (1.1), this is equivalent to an countably infinite system of ODEs
which can be reduced to a 2-dimensional center-manifold. The key to the application of
center-manifold theory lies in the linear (Floquet-) spectrum which can be "tailored” with
the help of the equation’s (1.4) z-dependent coefficients. In the 2-dimensional center-
manifold there exists a homoclinic orbit structurally stable to perturbations. This stabil-
ity is due to the symmetry of the spatial coefficients and the consequential reversibility
of the equation (1.4).

The method we use to prove a breather solution for (1.4) can also be applied to time-

dependent nonlinear Klein-Gordon equation of the type

O2u(z,t) = 02 (sxu)(w,t) +u’(z, ). (1.5)




where s(t) is a time-dependent coefficient and where ”+” denotes the convolution in time,
see equation (3.2) for a definition. The coefficient s gives enough freedom to tailor the
spectrum in such a way that a 2-dimensional center-manifold exists and that we can
reduce the dynamics of this equation to the existence of a homoclinic solution.

The last chapter is both interesting in its own right and supplementary to the proof of
the breather solution result of Chapter 2. It explains in detail how we chose the spatially
periodic coefficients of equation (1.4) such that the (Floquet)-spectrum of (1.4) allows
the application of the center-manifold theory.

The results of this thesis suggest that breather solutions in nonlinear wave equations are

more common than we thought at first.
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2 Breather solutions in

Klein-Gordon equations

We consider the nonlinear, spatially periodic Klein-Gordon equation
s(z)0Pu(z,t) = Pu(z,t) — q(x)u(x, t) + r(x)u’(z,t), (2.1)
where v = u(z,t) € R with z € R, t € R and a-periodic coefficients s, ¢ and 7, i.e.,
s(z) =s(x+a), q(z)=gq(r+a), and r(z)=r(r+a),
where w.l.o.g. we choose in the following a = 1. Then we prove the following theorem.

Theorem 2.1. The equation (2.1) allows the existence of breather solutions, i.e. there

exists a solution u = u(x,t) with real-valued positive constants (3,C > 0 such that

lu(z,t)| < Ce P, Vie R, z € R,

o (2.2)
u(zx,t) :u(x,t—i—w—), Vz € R.
0

There exists a breather solution for w} = 2#%2, e € (0,9), (g0 > 0), and the coefficients

S(l‘) = X][0,6/13] + 16X[6/13,7/13] + X[7/13]71(l‘ mod 1)
q(z) = (g0 + que?)s() (2.3)

r(x) =ro

with qo € R, (qo = 3.235) and ¢1,ro € {—1,+1}, which are determined in the proof.

11



2 Breather solutions in Klein-Gordon equations

Remark 2.1. The breather solution is given in lowest order by

sup |u(z,t) — 2ecisech(ecaz)qry () sin(wpt)| < Ce? (2.4)
zeR

with constants ¢y, cy and a 2-periodic function g1 defined subsequently. See also Section

2.10 Remark 2.10.

Remark 2.2. According to Theorem 2.1 and Remark 2.1 we have a family of breather
solutions, where € € (0,e0) takes the role of the parameter. The amplitude is O(e) and
the envelope modulates the underlying carrier-wave g1 (x) sin(wot) on the spatial scale is
O(e™1). We use the big-O notation O throughout this work. It is defined for functions
h:R — R by
O(h(z)) = {g:R—>]R . g #0, limM <oo}.
=0 g(x)

By convention we use the notation g(z) = O(h(z)) instead of the correct notation g(x) €

O(h(x)).

Remark 2.3. The choice of the coefficients is not by chance. Chapter J shows a method
to tailor the coefficients s and q to give an explicit form of the so-called discriminant
from which the the Floquet-spectrum of (2.1) can be derived. Through this method we can
apply an inverse analysis of the discriminant and can explicitly compute the coefficients
s and q. Howewver, this inverse analysis is only possible for coefficients with very few
degrees of freedom. The general inverse problem, i.e. compute the coefficient when the

Floquet-spectrum is given, is not solvable with the presented method.

Remark 2.4. Solutions of (2.1) can be approrimated via the ansatz
u(w,t) = eA(e(x — cgt), %) ful, k) ® L cc.
with A(X,T) € C, ¢, € R and 0 < e < 1 by an NLS-equation
OrA = —iw!(0)0% A + iy, A| A%

If W/(0)y, < O this equation possesses pulse solutions A(X,T) = A(X)e“T of the form

(2.4). In [3] an approzimation result has been established that guarantees that solutions

12



2.1 Breather solution: Construction

of (2.6) can be approzimated on an O(c~2) time-scale via the solutions of this NLS-
equation.

Due to the periodic coefficient we use Bloch-modes f,(z,k), where n is the number of
the band, k is the Floquet-exponent and w,(k) gives the dispersion relation. Since we
perturb off a band-edge, we usually consider k =0 or k =1/2. Then also ¢, = 0.

For small spectral gaps there is one band edge where the associated NLS-equation pos-
sesses pulse solutions. For small spectral gaps we have 7, = Vn11 but w(0) > 0 and

" N
wh1(0) <0 or vice versa.

2.1 Breather solution: Construction

For the construction of the breather solution of the equation (2.1) we will use spatial
dynamics, center-manifold theory and bifurcation theory. Motivated by [12] we write
(2.1) as an evolutionary system w.r.t. x € R in the phase space of i—g-time periodic

functions, i.e., we consider

Ou = v,
(2.5)
ov = s(x)0u+ q(x)u —r(z)ud.
where we abbreviate u(z,t), v(z,t) € R with u,v € R from now on, but we keep the x
for the coefficients to emphasize the z-dependency. Due to the periodicity of s, ¢, and

r w.r.t. x the system is non-autonomous. We use Floquet-theory to calculate the linear

(Floquet-)spectrum, which describes the asymptotic behavior of the solutions

Uy (z,t) = p(z, w) ke et

of the linearized system of (2.5) with w € R, k(w) € C and p(z,w) = p(z + 1,w) for
all w € R. To emphasize the difference of the spatially periodic case and the spatially
homogeneous case, i.e. s,q,r =const, where solutions of the linearized system are given
by

Uw(l', t) — ek(w)a: eiwt’

13



2 Breather solutions in Klein-Gordon equations

where the eigenvalues can be explicitly computed by the dispersion relation
E*(w) = —sw® +q.

In the spatially periodic case there is a periodic, non-constant function p(x,w) and a
Floquet-exponent k(w) which cannot be easily computed. We will show on the next few
pages how one can calculate the Floquet-exponent k(w).

Since we are in the space of i—’g—time periodic functions, there are countably many

Floquet-exponents k(w)] , for a fixed wy € R indexed by n € Z. By using in-

wW=nw
variances of the equation 2.5 we can restrict ourselves to some invariant subspace of
(2.5) which reduces the amount of Floquet-exponents by a factor 2, so that k(w)|,_,.

will be indexed by n € Nyqq. We call Nyqq the set of all odd natural numbers. Then we

will prove the following Lemma.

Lemma 2.1 (Property 1). Under the conditions of Theorem 2.1 in the invariant subspace
defined in Section 2.3 the linearisation of the spatial dynamics system (2.5) with the
coefficients (2.3) possesses only two Floquet exponents on the imaginary axis, which
move off the axis as € > 0 increases. The rest of the spectrum is uniformly bounded

away from the imaginary axis for all sufficiently small € > 0.

This lemma allows the use of invariant manifold theory for periodic systems (see
section 2.6) to reduce the infinite-dimensional system (2.5) to a two-dimensional system
on the center-manifold associated with the two central eigenvalues. We then show that
the reduced system has a homoclinic solution, i.e. a solution U : R — R with U(z) — 0
for |x| — oo, which is structurally stable due to the reversibility of the spatial dynamics
formulation, i.e. (2.5) is invariant under (z,u,v) — (—xz,u,—v). This is due to the

symmetry of the coefficients
Lemma 2.2 (Property 2). The coefficients chosen above are even w.r.t. x, i.e.,

s(x) = s(=x), q(x) =q(=x), and r(z)=r(-z).

for all e.

14



2.2 Proof of the Theorem 2.1

2.2 Proof of the Theorem 2.1

As briefly explained in the previous section, we will prove Lemma 2.1 with the use
of Floquet-theory and invariant subspaces. Then we will discuss the application of
center-manifold theory to reduce the dynamics to a 2-dimensional system. There we
will show that there is a homoclinic solution, i.e. a solution U : R — R with U(x) — 0
with exponential decay for || — co. From the center-manifold theory we know that the
exponential decay of the homoclinic solution will carry over to the full system in the form
of a spatially localized solution with exponential decay as |x| — oco. The Fourier-series
in time then puts this spatially localized solution into a time-periodic frame, therefore
completing the proof.

The proof consists of seven steps. First we discuss invariances of the system (2.5) such
that we are able to restrict our solutions to a fitting invariant subspace, see Section 2.3.
In this invariant subspace we go on to compute the Floquet-exponents. In section 2.4
we also explain why we had to use an invariant subspace. Section 2.5 and 2.6 talk about
the center-manifold reduction and prove a modification of the center-manifold theorem.
Sections 2.7 through 2.9 analyse the reduced two-dimensional system on the center-
manifold. The two-dimensional system can be seen as a basic system which is known to
have homoclinic solutions and a perturbation. We show that even under perturbations
the basic system’s homoclinic solution will persist. From there we conclude the proof of
Theorem 2.1 with a summary of every step taken along the way. At the end we are able

to give a first order approximation of the breather.

Preparations Since we are interested in time-periodic solutions of equation (2.1), i.e.,
u(x,t+ i—g) = u(z,t) for all z,t € R we use Fourier-series with respect to time leading

to the system of countable many ODEs

Ot (7) = —5(2)M> Wit () + (@)t (7) — 7(3) g (), m € 7, (2.6)

15



2 Breather solutions in Klein-Gordon equations

where

gm(z) = Z Uy () Uy () Uy (). m € 7. (2.7)

neZs,|n|l=m

In terms of the spatial dynamics formulation (2.5) we have the system

Optim () = V() for m € Z. (2.8)

Oyvm() = —5(2)MwRn (@) + @2t (2) = 1(2) g ()

2.3 Invariances

There is a number of linear subspaces invariant under the evolution of (2.6) resp. (2.8).
These are as follows. The invariant subspace corresponding to real solutions of (2.8) is
given by

Ur ‘= {(Um)mez : Um =TU_m}-

Since the system is invariant under the transform S : (t,u,v) — (—t, —u, —v) also

Uodd - {(um)meZ DU = _u—m}

is some invariant subspace. According to the fact that we have a cubic nonlinearity also
Uo = {(um)mez : uam = 0}
is an invariant subspace. Therefore the intersection of all these subspaces
Ur NUsaa NUo = {(tm)mez = Rety,, = 0,us, =0} =: X

is also invariant. In the following we restrict our analysis to those solutions of (2.1)
whose Fourier-coefficients are in X. Such solutions can be written as
u(z,t) = Z i, (1) ™t
MEZodd
where u,, € R and u,, = u_,, satisfy a system of countable many ODEs
aium(x) = Um ()

(2.9)
v (x) = —s(2)m*wuy (x) + q(2)um (2) + 7(2) g (2)

16



2.4 Proof of Lemma 2.1

but now with m € N,gqq and

gm(z) = Z Uy () Uy () Uy (). m € Noqq.- (2.10)

neZ3,In|=m

The tayloring of the coefficient and the restriction to the invariant subspace X are the
most important steps in the proof. If we restrict the subspace of solutions to X , we also
restrict the spectrum to those Floquet-exponents that are off the imaginary axis, see

Figure 2.2.

2.4 Proof of Lemma 2.1

We want to compute the Floquet-exponents of the linearizations of equations (2.6)-(2.7)
and (2.9)-(2.10) at the origin respectively and prove that there are only two Floquet-
exponents near the imaginary axis and that all others are uniformly bounded away from

the imaginary axis. In order to analyze the linear part

Ot () = V()

(2.11)
DoV (1) = —8(X)M Wit (1) + (qo + ¢1%)8(2) U (2)
where ¢(x) = (qo + q:€?)s(z), we substitute mwy = A and only look at the ODE
u(x) = v(x)
(2.12)

0(r) = —s(@)\u(2) + (g0 + @ue?)s(@)u(z),

where we can apply Floquet’s theorem, see 6], to find its Floquet-exponents depending
on A € R.

Let © — ®y2(z;29) be the fundamental solution of the ODE (2.12) with ®y2(xo;z0) =
I and zp € R. Then let pL be the eigenvalues of C\2 := ®y2(z¢ + 1;z0), the so-
called monodromy matriz. Floquet’s Theorem says that the Floquet-multipliers are the

eigenvalues of the monodromy matrix and are given by

1 1
p+(\?) = 5 trace Cyz + 5\/(trace Cy2)? — 4.

17



2 Breather solutions in Klein-Gordon equations

The trace of the monodromy matrix is called the discriminant. We use the abbreviation

D(A\?) := trace Cy2 = ¢1(wg + 1; 0, A?) + ¢ (o + 1; 29, \?) where

G1(w;20,\*)  Pa(2; w0, A?)
Dy (x;x0) =
¢ (2320, A%)  Ph(; 20, A?)
The discriminant depends on the parameter A\ and so

pe(¥) = 2D(V) £ o/ (DOBE — 4

There exists a representation for solutions (see [6]), which gives a good connection to

the autonomous case:

B2 (13 20) = P 1) e@720)M2 (2.13)

where M is called the exponential matrixz. Its eigenvalues are called the Floquet-exponent
k € C defined by p+(\?) = etF(X*) . The Floquet-exponent is not necessarily unique but

can be chosen in such a way, that it is unique. We find that

S1a) if [D(\?)| > 2 then the Floquet-multipliers p.(\?) are real, i.e., k € R\ {0}. As

a consequence ®,2 shows exponential growth w.r.t. x.

S1b) if |D(A\?)] < 2 then the Floquet-multipliers p.(A?) are on the complex unit cir-

cle, i.e., k € iR. As a consequence ®,: is uniformly bounded w.r.t. x.

S2) if |D(A?)| = 2 then the Floquet-multipliers pi(A\?) are = —1 or = 1. As a

consequence ®,2 has at most polynomial growth w.r.t. x.

Remark 2.5. By the representation (2.13) it doesn’t matter at which point xo we start.

The discriminant is the same for each xg.
The discriminant of the equation (2.12) with the special choice of coefficients

5(x) = Xo,6/13 + 16X[6/13,7/13) + X[7/13,1 (2 mod 1)

q(z) = (qo + q1€°)s(x)

18



2.4 Proof of Lemma 2.1

can be computed by the Transfer-Matriz Method or the Fourier-Interface Method, see
Chapter 4, and yields

8 13

2 1
D()\2) - _5(:os (_61 /N2 + qo + Q182) _ gcos <§, /22 + qp +q152> _ (2.14)

The graph of this discriminant and its corresponding dispersion relation is plotted in
Figure 2.1. The dispersion relation simply plots the imaginary part of the Floquet-
exponent +k as a function of A2. The real part corresponds to exponential growing
solutions, therefore we call an Floquet-exponent to lie in a band-gap if it has a non-
vanishing real part. On the contrary, if the Floquet-exponent is purely imaginary, we

say it lies in a band.

15 15

110

1-5

1-10

AVTAVAY,
ATTATTA

-15
-5

: : 15
5 4 -2 2 4

o

+Im[k(}3)]
FIGURE 2.1: The figure shows the dispersion relation and the discrimi-

nant. When there are band-gaps then k is real.

The Floquet-spectrum We now choose

13
wy = 271 (2.15)
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2 Breather solutions in Klein-Gordon equations

in equation (2.8) to be in phase with the leading term of the discriminant (2.14) in the

following sense (with go = 0 and € = 0):

16
cos (—\/)\2 +qo + q152)

13 = cos(2mm)

A=muwq

For ¢y = ¢ = 0 we therefore get
(
B me2+447,

D(m’wg) =92, m €47,

5 mel+t 22
\

We choose g in such a way that D(w3) = 2 if ¢ = 0 and thus D(w3) = 2+ O, (¢?) for

e — 0.

Definition 2.1. We define g(x) = O (h(z)) for x — 0 as

with g(z), h(z) > 0 for some constant Cy > 0.

At this point we see why it is neccessary to restrict our analysis to the space X, ie.
N = m?w? with m € Nygq. Let go = € = 0 and look at the problems (2.6)-(2.7) and
(2.9)-(2.10). We get Floquet-multipliers

(

Rl /(E)?2—4, me2+47,
px(mwi) = 41, m € 47,
B4l /(B2 -4, mel+2Z.

\

Therefore, for g9 = ¢ = 0 there are five different Floquet-multipliers, four off the
unit circle but one on the unit circle. The fact that there are infinitely many Floquet
multipliers on the unit circle would prohibit the application of center-manifold theory.
However, since we look for solutions in X we have m € Nogq and therefore py (m?w2) =

2 4+ 2./(%2)? — 4 are the only two Floquet-multipliers to be considered. See Figure 2.2.

20



2.4 Proof of Lemma 2.1

Im
o

o (1D A
) N N

-3 -3
-5 0 5 -5 0 5
Re Re

FiGURE 2.2: The Floquet-multipliers for the above choice of s, ¢, and w.

LEFT: for m € Z. RigHT: for m € N odd.

For approximatly gy ~ 3.235 the Floquet-multiplier for m = 1 is p4(wi) = —1. The two
points % + % (%5)2 — 4 are now accumulation points, yet are only approached asymp-
totically by all other Floquet-multipliers pi(w?m?) (m > 1), which are still uniformly
bounded away from the complex unit circle.

With the choice ¢; = —1 or ¢; = 1 we can make two Floquet-multipliers move from
—1 off the unit circle for ¢ > 0. If ¢; is not set correctly, the Floquet-multipliers move
from —1 along the imaginary unit circle. The value of ¢; sets the direction such that we
bifurcate into the band-gap (instead of bifurcating further into the band) See Figure 2.3

for a depiction of the correct bifurcation.

3 3

-3 -3
-5 0 5 -5 0 5
Re Re

FIGURE 2.3: The distribution of Floquet-multipliers in X for the choice
of ¢ = qop with e =0 (left) and € > 0 (right).

The Floquet-exponent is located on the imaginary axis if its corresponding Floquet-
multiplier is located on the unit circle. All other Floquet-exponents are off the imaginary

axis if their corresponding Floquet-multipliers are off the unit circle. Figure 2.4 shows

21



2 Breather solutions in Klein-Gordon equations

the corresponding Floquet-exponents to the Floquet-multiplicators shown in Figure 2.3.

The proof of Lemma 2.1 is therefore completed.

e=0 >0
3} (o) o O i 3l (o) 0.0 (0]
E o0 E o0
-3t 1 -3t
-2 0 2 -2 0 2
Re Re

FIGURE 2.4: The distribution of Floquet-exponents in X for the choice of

q = qo with e = 0 (left) and € > 0 (right).

Remark 2.6. The Floquet-diagram (Figure 2.3) is actually the spectrum of the linear
monodromy operator C' = @ Cyn where C,, is the monodromy matrix of each ODE

of Equation (2.8). Hence,

mMEN ;44

a(C)= J {o¥

meN paq

where p7 are the eigenvalues of Cp,. The Floquet-spectrum (Figure 2.4) is the generali-
sation of the spectrum of linear autonomous operators. In the next chapter we introduce
srotational coordinates” and transform the linear operator A(x) (see definition next sec-
tion) into an autonomous linear operator M. Its eigenvalues are the Floquet-exponents,

and therefore its spectrum is given by

o(M)= ] {£kn}

mEN 44

with ky, = k(m*w?).
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2.5 Rotational Coordinates

2.5 Rotational Coordinates

In the last chapter we discussed the spectrum of M by calculating the discriminant.
In this section we apply a change of coordinates to the system (2.9) which preserves
its reversibility and takes the rotational nature of the periodic equation into account
such that the tranformed system has an autonomous linear part. Therefore we speak of
rotational coordinates. With the system in new coordinates the center-manifold theory
can be modified to encompass an z-periodic nonlinear part.

We consider the spatial dynamics formulation (2.9)

axum = Unm,
(2.16)
Oy = —s(x)mPwium(z) + (g0 + q16?)s(2) () + r(2) g ()
for m € Nyqq. The equation (2.16) can be written in a more compact form
axUm = AmUm + SaUm + Nm[(Um)m]7 m e Nodd (217)
with
Um = (Um, Um)a
0 1
Ap(2)Up(z) = U,
—s(x)(m2wi + q) 0
0 0
Se(2)U,, = Un
e2qs(x) 0
0
Nin[(Un)(2) =
r(@)gm(2)

For convenience we write U = (Up)m = (U Um)m = (Ums Um)meN,qq = (Um)meN, 4y from

here on.

The reversibility: In Section 2.9 we need the reversibility of (2.6) in order to prove
the persistence of the homoclinic solution with respect to higher order perturbations.

Therefore we define the reversibility operator R by

Rm(uma Um) = (urm _Um)'

23



2 Breather solutions in Klein-Gordon equations

The system is reversible, i.e., invariant under (z,u,v) — (—z,u, —v), which implies that
with Uy, () = (U, vy)(x) also Vi, (z) = RyuUy(—x) is a solution. Furthermore we define

the reversibility map

The reversibility property holds for an equation
U= F(z,U)
if
RF(z,U) = —F(—z, RU).
This holds for our system as well since
Vm(x) = —RmUm(—x)

= —RpA(—2)Upn(—2) — RyNip (=1, (Uj);(—2))

= —RpA(=2)RinRpnUn(—2) + Nin(—2, (R;U;);(—x))

= A(=2)Vin(2) + Nom(=2, (V) ;(2))

The last step is due to the symmetry of the coefficients. In the following arguments the

fized space of reversibility plays a major role. It is given by

Ry = {U=RU} = {(tm,0)m}

The change of coordinates Due to the theorem of Floquet the solutions of

are given by

Um(xa xO) = Pm(xa xO) e(zixO)Mm Um(x07 .%'0)
with

Po(z,70) = P2+ 1,20), M, € R¥?
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2.5 Rotational Coordinates

Since all Floquet-multipliers have a negative real part and a vanishing imaginary part
(see Figure 2.3), the associated Floquet-exponents, the eigenvalues of M = P, cx_ .. Mo,

are of the form a &+ im with a € R, see Figure 2.5.

e=0 >0
3l o © o ] 3l 0 00 ©
E o0 E o0
=37 1 =37
-2 0 2 -2 0 2
Re Re

F1GUurE 2.5: All Floquet-multipliers are of the form « 4+ im with a € R.

In order to have real-valued Floquet-exponents we apply Floquet’s theorem for 2-periodic

functions, i.e. the solutions of 0,U,, = A,,(x)U,, are given by
Um(xa .%'0) = Qm(xa xO) e(zixO)Bm Um(x07 .%'0)

with Q,.(z,70) = Qm(x + 2, z0) and B,, € R?*2.

Preserving the reversibility In order to make the linear part of the system (2.17)
autonomous we could make a change of variables U,,(z, zo) = Qm(x, xo)Vin(x, 29). How-
ever, this choice would destroy the reversibility. Instead we use a slightly modified

version of this change of coordinates. We write

Um(xax()) = Qm(xalb) e(xizO)BmUm(x(JaxO)
= Qum(z,10)S,,! @0V m S U, (20, 20)

= Qu(r,30) ™™V (20, 10)
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2 Breather solutions in Klein-Gordon equations

such that V,,,(x, zo) defined by

Un(z,x0) = Qm(x, 20) Vi (z, o) (2.18)

satisfies the autonomous ODE 0,V,, = J,,V,,. Next we want to show that (2.18) pre-
serves the reversibility. Let Ay, and Ay, be the eigenvalues of B,,.
Case S1: Assume first that Ay, # Aoj,. Then the solutions of 0,U,, = A,,(z)U,, can

also be written as the linear combination of two linearly independent solutions 1, and

me:
Um(x) = Clm¢1m(£) + 02m¢2m(l‘) = Cim e)\lmxgblm(l‘) + Com e>\2m$¢2m(x)

with 2-periodic ¢;,,, 7 = 1,2, here and in the following. Since the system is reversible,
T +— e MmTR¢ (—x) is also a solution if x — eMmT¢y, (x) is a solution. Hence we

define the second fundamental solution

me(x) = e>\2mm¢2m(x) = e_)\lmmRlem(_x)'
such that Ay, = — Ay, and @9 () = Rp1(—2). We introduce the new variable V,,,(z) =
(ﬂmvﬂm)(x) by

V() = () (&) + o (2)0m (2) = (D12}, dam()) [ )

where by construction 0,V,,(z) = J,,Vin(x) with J,, = diag(Ain, Aoy ). Therefore, the
above change of variables (2.18) for o = 0 and the last change of variables coincide
and the new system is still reversible in case xqg = 0 w.r.t. the transformed reversibility

operator R,, defined through

Case S2: Next assume that we have a Jordan block. Then

Um(x) - Clm¢1m(£) + 02m¢2m(l‘) = Cim ekmxgblm(x) + C2m( e)\mxffﬁblm@) + eAmx¢2m(x))~
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2.5 Rotational Coordinates

As a result of the reversibility the eigenvalues necessarily fulfil \,, = 0, ¢y,,(z) =
Rp1m(—x) and ¢y, () = — Rpo (—x). We introduce the new variable V,,,(x) = (U, 0y ) ()
by

- - Ui ()
Um(.’L') = Um($)¢1m($) + /Um(x)(me(x) = ((blm(x)a ¢2m(x>> ~
1
where by construction 0,V,,(z) = J,,V;,(z), where J,, = . In this case the
0 0
representation of the reversibility operator is preserved, i.e.
. U, U
R, =
U —Upp
Remark 2.7. We could also choose J,, = . The change of coordinates would
10

then be given by interchanging ¢1, and ¢op,. The reversibility operator then is

- | U —Upm,

Um Um

The old reversibility operator R,, and the new reversibility operator R,, (valid for both
cases) are conjugated w.r.t. the transform U, = Q,,V,, defined by Qp = (d1m dam), i-e.

RQO(x) = Qm(_x)ém

which implies R,,Q; ! (—z) = Q! () Ry..

m

For the operator of reversibility for the full system (2.17)

R:@Rm

mENydq

and

P @ R
mENodd

the reversibility of the old nonlinearity N means RN (U) = —N(RU). The reversibility
of the transformed nonlinearity N(z, V(z)) :== Q' (z)N(Q(z)V (z)) means RN (z,V) =
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2 Breather solutions in Klein-Gordon equations

—N(—x, RV). This holds according to

RN(z,V(x)) = RQ '(x)N(Q(2)V(x))

The reversibility property carries over for S. in an analogous way. Although reversibility
is only preserved for xo = 0, we keep xy in order to make some subsequent arguments

clearer.

The reversible change of coordinates With U,,(z, zo) = Q. (2, o) Vin(x, zo) we find
OuVin (2, 20) = JpVin (2, x0) + Fin e (x, zo, (V;); (, xo)) (2.19)

with

Fm,e($,$0> (Vi) (%900)) = Qm(ffwo)_lse(x)(?m(%$0)Vm($a900)

B B (2.20)
+ (Qm(m, xo))ile(fpv (Q;V;); (w, xo)).

We find by construction that J; has one Jordan block of size 2 with associated eigenvalue
0 (Case S2). All other J,, with m > 3 possess one positive and one negative eigenvalue
which are uniformly bounded away from the imaginary axis w.r.t. m (Case S1), i.e.
(2.19) has the spectral picture plotted in the right panel of Figure 2.5. Moreover, system

(2.19) is reversible w.r.t. the transformed reversibility operator

if xo = 0, since we have

Jm = =R Ron
] i (2.21)
Fone (2,0, (V3); (2)) = =R (=0, (B;V5) (1))

The change of coordinates is bounded in the sense of Lemma 2.3. In particular, Q'S (2)Q,,

is only of order €2 and is uniformly bounded for all m.
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2.5 Rotational Coordinates

q11,m  q12,m

Lemma 2.3. Let Q,, = (P1 o) = . Then there exists a C' > 0 such

421,m  q22,m

that for allm € N,qq we have Spre[Oyg](|Q11,m($)|+|q127m(x)|) < C andsup,¢p g |(Qm(x))*1| <
C.

Proof. By explicitly solving for initial conditions ¢1(0) = 1, ¢{(0) = 0 we see that
¢1(z) = O(1) and ¢} (z) = O(m) as m — oco. Asymptotically only Case S1 is relevant,
so we know ¢o(x) = R¢1(—x), hence ¢o(x) = O(1) and ¢4(z) = O(m) as m — oo. Thus

the lemma is proven since

Qm = (¢1 ¢2)

O

Remark 2.8. The direct application of the center-manifold theory to the equation (2.17)
15 not possible since the linear solution operator is not smoothing. The reason is as

follows. The linear solution operator is given by

O(x,x9) = EB D, (x; 20)

mEN ;44

where each ®,,(x;x0) is the fundamental system of

given by (2.13). By the proof of Lemma 2.3 the fundamental solution is ®,,(x;xq) =
O(m) for m — oo. From this it follows that

®(z;m0) : (2(R* 1) — *(R*;0)

where

62(]323‘7) = {U = (umavm)m eR? : ”UHW(RQ%U) < OO}

with the norm

”UHZQ(]RQ;U) = Z m2”|Um\2.

mEN 44
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2 Breather solutions in Klein-Gordon equations

2.6 The Center-Manifold Reduction

In Section 2.5 we changed the coordinates of equation (2.17) such that we have an
autonomous linear part with eigenvalues according to Lemma 2.1. The next step is to
apply center-manifold theory to the system in rotational coordinates (2.19).

We consider the system in rotational coordinates
amvm(;p7 1'0) — Jme(l', :L‘ao) —|— Fm,e (ZL‘, Zo, (‘/;)j (ZL‘, l’o)) . (222)

We will compute the center-manifold for g = 0 and then will use the flow of equation
(2.22) to apply it to arbitrary starting point z € R.

The center-manifold reduction will be done in the phase space
C'(R*%0)={V: m—V, €R* : me€Noaa, [|V|nme.0) < 00}

where ||V{[o(r2,0) = > nen,,, M|Vl For the application of the center-manifold theory

we use a cut-off function on the nonlinearity F' to get a bounded nonlinearity:

Frne(@,V) = Fo e (@, V)X(IV ]| 028250 /6)

for a small but fixed 6 > 0, where x is a Ci°-function with values in [0, 1] satisfying x(r) =
1forr <1, x(r) = 0forr > 2. Since in N,, only the first coordinate of U occurs, after the
transforms U, = Q,,V,, only ¢11,m and g2, occur in the transformed nonlinearity. Since
both are uniformly bounded, since the same is true for anl according to Lemma 2.3, and
since /' (IR?; ¢) is closed under convolutions, (Fy,(U))mex,,, is Lipschitz continuous with
Lipschitz constant proportional to 62 for 6 — 0. The magnitude of the Lipschitz constant
follows from the cut-off function and the fact that F' does not contain any quadratic
terms. Moreover, the cut-off function does not change the reversibility property, hence
F is still reversible.

Next, we define projections P, and P,,, on the stable and unstable eigenspaces of
each of the matrices J,,, which are uniformly bounded in R?>*? w.r.t. m. With that we

define P, = €p,, Pum and Py = @,, P, as the projections on the unstable or stable

30



2.6 The Center-Manifold Reduction

eigenspace of equation (2.22). The projection on the center-eigenspace is denoted by

P.V = P,V = Vj. The center-eigenspace E. is therefore given by
E.={(V,0,0,...) € {Y(R? o) | Vi € R?}

Furthermore, we introduce V;i (z, 29) = Pr.oVin (%, 70) and Vi3 (z, 20) = Pon.oVin(, 0)
for m > 3. Then we consider all such solutions V(z) = (V;,,)m(z) of equation (2.22)

which are element of the following space for small but fixed n > 0
Y, ={V e "R xR, ("(R%0)) | sup e ||V (2) a0 < 00}
zeR

where V' = (Vi)m and ||V [|p(gr2,0) = D m?|Vp,|. According to [15] V(z) € Y, is a

mENydq

solution of (2.22) if and only if the following equation holds,

mmrzwhmm»y/iﬂﬁMFm@mww»@»nm

0

vﬁm:/m&wwwwm@am»@ma (2.23)

me:—/mﬂwW%mﬂwmm@m@»%.

We then describe this equation abstractly as

V(z) = SV, + KG(V)

where
V.= PV(0) € E.,
SVe = €™V,
G(V)(z) = F(,0,V(z))
and
KV)(@) = [ =97 pv(e)d ' @I PV (€)de — h @07 p,V(¢)dE.
5V = [ e pvig it [ o ©a- [ e (€) e

Due to the asymptotics of the discriminant we have the estimates for an arbitrary but

fixed > n and a C' > 0 independent of m € Nyqq

[l < Cetl Vo € R,
sup || e’ P, || < Ce P | Vo >0,
m
sup || e’ P, || < Ce* Vo <0.
m
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2 Breather solutions in Klein-Gordon equations

Hence (see [15]) the map I — K o G has an inverse ¥ : Y, — Y,. The solution can now
be described as

Vi(z) = W (SVe)(x)

with P,V (0) = V.. Because of the spectral gap, the cut-off function and all estimates
are O(1) for ¢ — 0, the size of the center-manifold will also be O(1) for ¢ — 0. We
define the graph of the center-manifold by a mapping h from the central subspace to the
hyperbolic subspace by

h(0,V1,e) = P,V (ST V1)(0)

where P, = P, + P, is the projection onto the hyperbolic subspace and I; : R? — E, is

the inclusion mapping. Then we have

Theorem 2.2. For all n € N there exist ¢¢ > 0 and 0y > 0 such that for all € €
(0,e0) the spatial dynamics formulation in rotational coordinates (2.22) possesses a two-

dimensional invariant manifold
Wee(0) = {V* € C{(R*% 0) | (0, V5, V5, ...) = h(0, V)", )}
tangential to the center space
E.={(V},0,0,...) | V}* € R*}

with
h0,-,-) € C"({Vi" e R? | [Vl < do} x [0, 0], €' (R?; 0))

The center-manifold W, .(0) has been constructed for the starting point xy = 0. The
other center-manifolds are easily constructed by the evolution operator S, ,, of equation

(2.22) defined by S, ., Vo = V(z, xo, Vo) with z,2; € R and V; € (*(R?, o). Then
Wc,e(xo) - Smo,OWc,e(O)
Therefore we define the reduction function h(z, -, ¢) for W, .(x) by

V(z) = 8,0V (0) = S:0(V1(0) @ h(0,V1(0), ) = Vi(z) @ h(z, Vi(z),e)
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2.6 The Center-Manifold Reduction

Remark 2.9. Note that W, .(x¢) is not smooth w.r.t. xo due to the jumps in the co-
efficient function s = s(x) w.r.t. x. More essential for our purposes is however the

smoothness of the manifold for fized xy as a function of V.

On the reversibility The reduction mapping carries over the reversibility property.
From equation (2.23) we can calculate the identity RV_ = SRV, + KG.(RV_) where
V_(z) = V(—z). Hence it is RV (—z) = U_(SRV,)(x) and we conclude Ryh(z, Vi, &) =
h(—x, R\V4,¢) with Ry, = D, cizsry R,,. Since with z — V(z) being a solution, also
z+— RV(—z) = RiVi(—2) ® Ryh(—x, Vi(—z), ) is a solution on the center-manifold, we
can conclude that Ryh(—z,Vi(—x),e) = h(z, RyVi(z), &) by the following consideration:

RV (=) = R\Vi(=2) ® Rph(—, Vi(—1),¢)

= RS_,,V(0)

=S_,oRV(0)

= S_s0(R1Vi(0) & Ryh(0,V7(0),2))

= 8_40(R1VA(0) & h((0)_, R1VA(0),¢))
= RyVi(—z) & h(z, RiVi(—x), ).

From this we find that

RiFy. (2,0, Vi(2) @ h(z, Vi(z),2) = —F). (—x, RiVi(z) @ Ryh(z, Vi(), g))

=—-I. <—IE,R1V1(9U) D h(—x,RlVl(ﬂc),»S))

As a consequence all small bounded solutions can be found on the center-manifold and

the reduced system on the center-manifold is given by
0 Vi(z) = JWVi(z) + Fi (2,0, Vi(z) ® h(z, Vi(z), €)). (2.24)

Since the center-manifold reduction preserves reversibility the reduced system (2.24) is

still reversible w.r.t. the transformed reversibility operator R.
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2 Breather solutions in Klein-Gordon equations

2.7 Properties of the reduced system

From the multiple-scale analysis (see Remark 2.4) we derive a formal approximation of

the solution, with a envelope-modulated carrier-wave
u(w,t) = cAe(x — ct), %) fulx, k) B 4 cc..
The envelope has an amplitude in O(g) scaling. Motivated by this scaling we introduce

1 (z) = eA(x)

(2.25)
o1 (z) = e*B(x).
Then we have the following result.
Theorem 2.3. Equation (2.24) together with the scaling (2.25) will read
d 2
—XA = EB + O(€ )
d y (2.26)
d—XB = es51(2)A — es3(1) A® + O(?)

where sj(x +2) = sj(x) for j =1,3 and s;j(x) > 0 j = 1,3 for all x € R. Furthermore

si(z) >0, 7 =1,3 on a set with positive measure.

Proof. By definition we have

~ ~ eA quA +eq2B
U = Q1V1 = Q1 =€
e’B g1 A+ eqnB

The center-manifold is tangential to the center-eigenspace, therefore

Uj(x) = Q;(x)hi(x, Vi(z),e) = O(|IVi(2)]|*) = O(?)

therefore for all j = 3,5,7,... the influence of U; in the nonlinearity /N; is small and we

only need to look at U;. Hence we have

~ ~ 0
N (Qi@Vilo) @ @@k, Vi(@),2));) = +O(e)
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2.8 Averaging Argument

which implies

- - - 0
TN (O, V hi)i) = h.o.t.
Q7 Ni(Q 1@(@; ])J) 837"(33)((12151143 +ho

Since the Wronskian equals 1 and is constant for all z € R the determinant det Q; =

det S;' = 1/det S;. The last equation simplifies to

. . ~ 0
Q7' N1 (QiVi @ (Qihy);) = +hodt.
e3r(z) det(Sy)(qu1)*A3
This concludes the nonlinear part of the equation. The linear part is

- ~ - e’B
LVi= IV + QS (2)Q1 V) = + h.o.t.
e3qidet(Sy)s(x)(q11)?A
The rescaled equation is then given by
A B
. = £ + 0(83)
B s(z)qidet(S1)qf () A + r(x) det(S1)qi; (x) A?
We set
r(x) =rg = —1/det(Sy),
s1(z) = s(x)(qu(2))?,
q1 = 1/ det(Sl),
s3(z) = (911($))4~

The coefficients s, 7, ¢ are from the original Klein-Gordon equation (2.1). Both si, s3

(2.27)

are 2-periodic functions. Since g7 is continuous and ¢i1(zo, x9) = 1, ¢11 > 0 on a set
with positive measure, which means that s; and s3 are also positive on a set of positve

measure. ]

2.8 Averaging Argument

We use averaging as discussed in [11] to analyze the dynamics of equation (2.26) which

we will rewrite abstractly to

O,a = eF(z,a) + £2G(z, a). (2.28)
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2 Breather solutions in Klein-Gordon equations

with a = (A, B) and
B
s1(z)A — s3(x)A3

Then equation (2.28) can be transformed according to [11] to the following equation

F(z,a)=¢

9. A = cF(A) + *H(z,¢, A), (2.29)
with the averaged part of the equation given by
OpAsvg = eF(Auyg) (2.30)
with

_ 1 /2 B
F(.) = 5/O F(z, )dr = SR , (2.31)
514 — S3

where §; = 3 f02 sj(x)dz, j = 1,3. By the fact that s;(z) > 0 on a set of positive measure
we conclude that 5; > 0, j = 1,3. From the choice of coefficients we note that we have
set r(x) =rg = 1/ det(S;) for all z.

The solution to equation (2.30) is computed by rescaling A (z) = A(ez) = A(X), so

we have

with

8)(3 = 5114 - 531&3,
This system has a homoclinic orbit which is explicitly given by

~ Ahom(Xa XO)
Aavg/hom(Xa XO) - ~
Bhom(X7 XO)

with
~ 25 - -
Apom (X, Xo) = %4/ —sech (v51(X = X0)) . Bhom (X, Xo) = Ox Apom (X, Xo)
3
Undoing the rescaling we have the solution of equation (2.30)

./ Srsech (sv/51(x — o))
F %tanh (5\/§(x — xo)) sech (5\/5(95 — $0))

Aavg/hom (l‘, .’L’o) =
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2.9 Persistence Proof

2.9 Persistence Proof

In this section we prove the existence of the homoclinic solution in equation (2.29) based
on the existence of a homoclinic solution of equation of (2.30). Since both equations
only differ in higher order terms (O(e?)), we speak of the persistence of the homoclinic
solution.

The homoclinic orbit A,y /mom lies in the intersection of the stable manifold and the
unstable manifold of system (2.30). In general, if higher order terms are added, the
intersection will break up and the perturbed stable manifold and the unstable manifold
will no longer intersect. In reversible systems the situation is different. The persistence
of the homoclinic solution is established basically in two steps. First, by proving a
transversal intersection of the stable manifold with the fixed space of reversibility for the
unperturbed system. Second, by arguing that this transversal intersection will remain
even in the perturbed system. This results in the homoclinic orbit, for = € [0, c0).
Applying the reversibility operator R to this part of the solution, also results in the
homoclinic orbit, for x € (—o0, 0].

The actual persistence proof consists of three steps:
i) Beyond other things in [11, Theorem 4.1.1] the following is shown

Lemma 2.4. There exists a C"-change of coordinates A = a + cw(a, z, ) under

which (2.28) becomes (2.29)
O, A = cF(A) + ®H(w, ¢, A)

where H s of period 2 w.r.t. x.

Hence in an O(1)-neighborhood the stable manifold W of the averaged system
(2.30) and the stable manifold W; of the full system (2.28) resp. (2.29) are O(¢)-

close together.

ii) In addition to the statement in Lemma 2.4, in [11, Theorem 4.1.1] it is shown
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2 Breather solutions in Klein-Gordon equations

Lemma 2.5. If A,,,(x) and A(x) are solutions of (2.29) and (2.30) with | A 4,,(0)—
A(0)] = O(e), then |Ay(z) — A(z)] = O(e) on a scale O(1/¢).

By applying the approximation result from Lemma 2.5 shows that the stable man-
ifold W, of the averaged system (2.30) and the stable manifold W, of the full
system (2.28) resp. (2.29) are O(g)-close together on a scale O(1/¢). Hence, O(¢)-
close to the intersection point of the averaged system (2.30) with the fixed space
of reversibility there is an intersection point of the full system (2.28) resp. (2.29).
See Figure 2.9. As a consequence we have a solution a(x) of (2.28) for x € [0, 00)

which satisfies lim, . a(z) = 0 and a(0) € {B = 0}.

iii) Finally, we use the reversibility of the reduced system (2.24) resp. (2.28). It allows
us to extend Vi(z) for x € [0,00) by Vi(—z) = RVi(x) to x € R. In response, we
constructed a homoclinic solution to the origin for (2.24) and as a consequence of

the exact center-manifold reduction finally one for the original system (2.6).

F1GURE 2.5: The combination of local estimate for the difference from
(i) with the approximation result from ii). The dotted/full
line is the stable manifold of the averaged system (2.30)/full
system (2.28).
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2.10 Lowest Order Approximation

2.10 Lowest Order Approximation

In this section we want to summarize the steps of the last section in order to give an
approximation result which independently affirms the NLS-approximation of Remark
2.4.

The solution of (2.30) and (2.29) are related by

A(7) = Aavg/hom + R ()

with a remainder smaller than the homoclinic solution. By Lemma 2.4 the change of

coordinates A = a + cw(a, z,¢) has an inverse which we shall call
a=A+cW(A zx,¢),

so we get

a(:p) - Aavg/hom(x) + 0(5)

Undoing the rescaling of (2.25) we have

Vi =" |
0 ¢

e 0 O(e?

- Aavg/hom(l')_}_ ( )

0 ¢ O(e%)

Ur(2) =Q1(2)Vi(2) = Q1(2) Aavg/hom (2) +

5(]11(1')Aavg/h0m(x) + 0(52)
€q21 (x>Aavg/hom(x) + €2q22(x)Bavg/hom + 0(53)

Since we only need u; for an approximation, we get from the last statement

ur(z) = tequ (o) \/?S;sech(s\/gx) + O(e?)
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2 Breather solutions in Klein-Gordon equations

which corresponds to the original solution in the following way

u(z,t) = j:25q11(x)\/§931sech(5\/§x) sin(wot) + O(?). (2.32)

From the last section the coefficients s, 53 are all given by

1 2
5= [ sl
0

and
I B
53 = 5 ¢i1(z)dz.
0

Remark 2.10. In Remark 2.1 we have stated that in the lowest order the breather is

given by
u(z,t) = 2ecisech(ecoz)qry () sin(wot) + O(?) (2.33)
with constants
25,
Cl =1\ —
53 (2.34)

Co = \/E
From the approximation result (2.32) and the coefficients §; and 53 we only need the
knowledge of ¢i1(z). It is a 2-periodic function given by the periodic part of the linear

solution of

"

y' = —(wg — q)s(x)y. (2.35)
[ts fundamental solution is given by ®;(z;0) = ®;(z+2;2), with ®(0;0) = I which can

be decomposed according to Floquet’s Theorem
Oy (2;0) = Q1 (z;0) ™"

and

Ql(:t;(]): Q11($) Q12(ZU)
qo1()  qaa(x)

This concludes the chapter. We have shown that there exists a breather solution and that
its approximation matches the expected approximation from the multiple scale analysis

of Remark 2.4.

QED.
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3 Breather Solutions In

Time-dependent Wave Equations

In the last chapter we proved the existence of breather solutions in the spatially periodic
nonlinear Klein-Gordon equation. The question arises if the linear spectrum can be
tailored by other means, for example by also using time-dependent coefficients.

In this chapter we first show that a time-dependent but spatially homogeneous coefficient
is enough to repeat the steps of Chapter 2 and to prove the existence of a breather
solution. Then we generalize the idea to a slightly more physical nonlinear wave equation

with time- and space-dependent coefficients.

3.1 The Spatially Homogeneous Case

We show that for a certain choice of time-dependent coefficients in the nonlinear Klein-
Gordon equation all eigenvalues except of two are bounded away from the imaginary
axis. The two eigenvalues close to the imaginary axis can be moved with a small change
in the temporal frequency w. A center-manifold reduction is then possible and admits a

homoclinic solution in the reduced system. In summary

Theorem 3.1. Consider the equation

Ru=0(s*xu) +u—u’ (3.1)
with
(sxu)(z,t) = /_ s(t — m)u(z, 7)dr
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3 Breather Solutions in Time-dependent Wave Equations

and periodic boundary conditions in time:
w(z,t) =u(z,t+71), z,telR,

where T = 22 Let s(t) be the coefficient of equation (3.1) whose Fourier-transform § is
given by Figure 3.1. Then for w = 1 —e? (¢ < 1) there exists a breather solution, i.e.

there exists constants C, 3 > 0 such that
lu(z,t)| < Ce Pl
holds.

Remark 3.1. We will discuss an extension to this theorem in the next section: the
coefficient s may also be periodic in space, i.e. s(x,t) = s(x + 1,t) for all z,t € R.

b s(n)

Smooth transition
possible

FIGURE 3.1: The (smooth) function §.

Remark 3.2. The coefficient s(t) will be chosen in such a way that the general Cauchy-
problem will become ill-posed. In this instance it means that only the initial value problem
with respect to the space variable x is well posed whereas the initial value problem w.r.t.
t is not defined.

In fact, in physics or electrical engineering it is customary to interchange the role of
space and time: the initial condition will be the “insertion” of a signal at a certain input
point r =0,

anlw(t) = u(x’t)|z:0
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3.1 The Spatially Homogeneous Case

and the output at point x = L will be also measured w.r.t. time
output(t) == u(x,t)|,_; -

Remark 3.3. In causal systems we assume that the influence of s(t) on u(-,t) can only
come from the present and the past, but never from the future. As a result s(t) = 0 for all
t < 0. Mathematically the principle of causality induces the ,,Kramers-Kronig™relation,
which states that the Fourier-transform of s(t) must have nonvanishing imaginary parts

(see [24] and [25]). We ignore the restrictions of causality in our analysis.

3.1.1 Proof of Theorem 3.1

To prove Theorem 3.1 we use the periodic boundary conditions in time to display the

solution as a Fourier-series

Then the equation becomes the system of equations
Puy, = —n*ws(nw)u, +up — gn, n €7,

with
(@)= Y wp(@)up(@)uy(z).  nel

JEZ3,|j|=n

This equation has a dispersive term which gives us a gap near the origin — we will use this
one and only gap to create eigenvalues far away from the imaginary axis. The dispersion

relation can be written down explicitly by using u,(z) = C,, e*Fn(@);
k2 (w) =1 — n*w?s(nw).

If k2(w) is negative u,(x) will be bounded, otherwise it will have exponential character.
In order to prove the theorem we need a coefficient $§ such that the critical modes
n = =+1 have very small exponential growth and all other modes have distinctively
larger exponential character. Such a coefficient can be found. It will be defined the
following way: for |r| < 1+ &% we set §(r) = 1 and for |r| > 2 — 2 we set §(r) = 0, see

Figure 3.1. The bifurcating parameter is € which changes the time frequency w = 1 —&2.
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3 Breather Solutions in Time-dependent Wave Equations

Lemma 3.1. For all e < 1, the coefficient § chosen as above has the properties:
o k2, (1—¢%) =0.(?) (where Oy >0) and
o 2. (1—e*)=1foralln=2,3,....

o The convolution is defined and bounded: § € C*(R), valid for all k € N, carries
over to decay of s faster than any polynomial, thus the integral (s * u)(z,t) =

ffooo s(t — T)u(z, 7)dr exists.
We then use spatial dynamics:
ou, = vy,
v = ki(w)un —9n

The same invariances on the phase-space apply as in the previous chapter (see section

2.3) and we can restrict our analysis to X.

A

Ur NUsaa NUo = {(tm)mez = Rety, =0,ug, =0} =1 X

Therefore we now have for n € Nyqq
ou,, = v,
ov,, = (1 - n2w2§(nw))un — Gn
For w = 1 — &2 we have for n = 1
ou; = vy
ov, = (262 — 54)u1 — g1
and for n > 1
ou,, = v,
vy = Uy — Gn
Thus the center-manifold theory can be applied (see [15]). From there we eventually

derive the ODE
A=B

B =2A—CA®+0(e)
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3.2 The Spatially Periodic Case

for uy(z) = eA(ex) and vi(z) = £2B(ex) and a constant C' > 0. In the unperturbed

state, i.e. ¢ = 0, this ODE has two homoclinic solutions

U hom () = i\/gsech(\/isx)

The proof now follows analogously to the case of Chapter 2. By reversibility this ho-
moclinic solution preserves when the higher order terms are added. Therefore there is a

breather solution in the original equation (3.1).

3.2 The Spatially Periodic Case

Theorem 3.1 can be extended to spatially periodic coefficients s(z,t) = s(x + 1,t). We
consider a modified nonlinear Klein-Gordon equation:

B, 0) = GB(s % u)(w,8) + (. 1). (32)
with (s xu)(z,t) = [7_s(z,t — 7)u(z,7)dT.

Remark 3.4. The difference to the nonlinear Klein-Gordon equation (3.1) is the lack of
a ,dispersive” term +u. The nonlinear wave equation which one derives from Mazwell’s
Equations for 1D periodic, nonlinear and linearly polarized materials is very close to

equation (3.2) (See the appendiz for the derivation).

In order to find out the spectrum of the linearized equation of equation (3.2) we switch

into frequency-domain by applying a Fourier-transform to (3.2):
Oy (1) = —5(x, nw)n’w?u, (z) — ga(), n € 7. (3.3)
We choose a separable time-space coefficient
$(z,nw) = flnw)s ()
such that we consider the equation

Pun(z) = —n2w? f(nw)é1 () un () — gn(z), n € Z. (3.4)
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3 Breather Solutions in Time-dependent Wave Equations

Linearizing around the zero-solutions gives us
Pun(z) = —n2w? f (nw)é1 () un (z), n €7, (3.5)

which is now completely decoupled in terms of the n’s. In the situation of the linearized
equation (3.5) a ,, simple” dispersion relation will not show the asymptotic behavior
of solutions of the linearized equation w.r.t. x. As a result of the periodicity of the
coefficient $;(z) = $1(x + 1) we compute the linear (Floquet-) spectrum of (3.5) by the
use of Floquet’s Theorem. To discuss the equation (3.5) we use the help of the following
ODE

y' = —y(N)s(x)y (3.6)

1 1
p=(N) = 5D((0) % 5 VD)) — 4
where D is the discriminant of
y' = —s(x)hy.

Therefore the disciminant of (3.6) is simply given by

D=Do y.
In terms of equation (3.5) we have y(\) = A2f()\), where we substituted A\ = nw for
convenience. Therefore

sy Y(A)
F) =5~

In order to control and to simplify the computation of the Floquet-multipliers we want

f to be symmetric. Additionally f should not have any singularities. With this in mind

we decide to set
A2 X< M
A =
M, X>M
with M to be the first maximum or minimum of D with |D(M)| > 2. This condition

loosely states that $;(z) must be chosen such that there is at least one band-gap. From
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3.2 The Spatially Periodic Case

the choice of v the following holds

. 1, MN<M
fA) = (3.7)
)\—]‘g, A2 > ¢

see Figure 3.3. Accordingly the discriminant is
D(A) = D(X*F()).

An example of the resulting discriminant is shown in Figure 3.2.

 D(/(N)

of 0

-2 i

FIGURE 3.2: The discriminant D(f()\?)).

Remark 3.5. The downside of the choice off 15 the discontinuity at A\ = M. Then the
convolution (s xu)(x,t) might not exist as a smooth function. However, there are also

generalizations to this choice off which are C°.

Let z be chosen to be the last zero of D()\)?—4 before the value M is reached. In other
words, let 21 < 23 < z3 < ... be the zeros of D(\)? —4. Then z = z; with 2; < M < 2;44.
In terms of the time frequency w we set the bifurcation point wy to be the square root

of this zero:

wi = 2. (3.8)
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3 Breather Solutions in Time-dependent Wave Equations

RAACY b /(2)
1

2 .2 > 2

w, € 2\2 W,

FIGURE 3.3: The functions A2f()\) and f()).
With w = wy + €? we can calculate the discriminant for n = £1
D((wo + €22 f(wo+ %) 4 = D((wo +€2)%)° =4 = D(2 + O, (e7))* —4 = O, (")

and for n| > 1

D (n*(wo + &%) f(n(wo + €))) = D(M).

Therefore we have:

and for n| > 1

Pt (n(wo + 62)) =

The Floquet-exponents are given by the formula
pa (n(wo + %)) = ebenleored
see 2.4 and formula (2.13) for details. In summary, the equation

Optin () = vy
R (3.9)
Opvn () = =381 () f (nwy + £2)n*(wo + €%)%un(z) n € 7.

has solutions

(&) = pu (@i o + £) b0t
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3.2 The Spatially Periodic Case

with 1-periodic p,, and Floquet-exponents ki (wo + ) = O, (¢2) and k,(wy +¢) = O(1)
(In|] > 0) as e — 0.

Since the same invariances as discussed in Chapter 2 Section 2.3 apply, we can restrict
the analysis to the invariant subspace X. Then we will make a change of coordinates into
rotational coordinates (as discussed in Chapter 2 Section 2.5). The resulting equation

will be (abstractly)
Un(x) = BnUn(x> + Nn [(Um>m€Z] (%’), nc Nodd

with eigenvalues k,(wo + €2). Therefore, we have an eigenvalue at n = 1 which is close
to the imaginary axis. All other eigenvalues are uniformly bounded away from that
eigenvalue. We can now perform the center-manifold reduction as described in Section
2.6. The proof of a homoclinic solution for n = 1 is analogous to Section 2.7 and

following. Therefore we have proven the following theorem.

Theorem 3.2. We consider the equation
OPu(z,t) = 02 (sxu)(x,t) + u’(z, t). (3.10)

which corresponds in Fourier-space to

O, (1) = —3(x, nw)n’w?u, (z) — gu (), n € 7. (3.11)

We choose

e ) = &1(2) ()
where f is a function defined by Figure 3.3, and $1(x) = $1(x + 1) is a periodic function
with at least one band-gap.

Then there exist a wy such that for 0 < ¢ < 1 there exists a breather solution for

w = wy + 2.

Remark 3.6. The result can be generalized to a broader range of equations. The non-

linear part of equation (3.2) can be made more complex:

Pu(z,t) = 0f ((s*xu)(z,t) — (r+u’)(z,t)).
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3 Breather Solutions in Time-dependent Wave Equations

in which case we get
O2u, (1) = —3(x, nw)n*wu, (z) — n*w?r(z, nw)g, (), n € Z.

Then the nonlinear part

—n2w?H(x, nw) g, ()

is bounded in n if r(x,nw) = O(1/n?). The center-manifold theory can also be applied

mn this situation.
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4 Fourier-Interface Method

In Chapter 2 we claimed in Remark 2.3 that the choice of the periodic coefficients given
by
s(x) = Xjo,6/13] + 16X(6/13,7/13] + X[7/13),1 (x mod 1)
q(x) = (g0 + q1%)s(x)
r(z) =19
is not a choice by chance but is based on a method to compute the discriminant of

step-functions explicitly. For the ODE
u” = —N\s(z)u (4.1)

with periodic s(x + a) = s(z) the linear asymptotics are determined by the Floquet-
multiplier which can be calculated by the discriminant. We explore a way of calculating
the discriminant by transforming this ODE into a wave-equation. With the use of
explicit solution formulas and the wave-equation’s characteristics we can calculate the
transformed discriminant.

We also deal with the inverse problem: given a discriminant what is the coefficient s?
As it will turn out only a few examples permit a well-posed inverse problem. For general

step-functions it is generally insolvable.

4.1 The Method

We show how to compute the discriminant of the following ordinary differential equation

u”(z; A) + N2s(z)u(z; \) =0, (4.2)
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4 Fourier-Interface Method

with initial conditions
1(0;A) =1, ¢2(0;A) =0,
P1(0;A) =0, @5(0;A) = 1.
The growth of this ODE’s solutions is determined by the Floquet-multiplier

o) = P2 4 L /D

with the discriminant D(A?) = ¢;(a; \) + ¢4(a; A). Applying Fourier-transform to ODE
(4.2) w.r.t. X yields

(4.3)

Ot = s(:p)aiﬂ (4.4)

T

where @(z, ) = [ u(z; ) e *#*dA. The initial conditions translate to

le(onu’) = 5(#)7 QgQ(OHU’) =0,
0x1(0, 1) = 0, 0x2(0, 1) = 6(p),

where ¢ is the Dirac-delta distribution. The Fourier-transform of the discriminant is

(4.5)

then D(u) = é1(a, i) + Opdha(a, ). We will only consider step-functions. In this case
we can solve the equation (4.4) explicitly on each constant part of s. In detail, if the

characteristic function is given by
1, reM
0, x¢ M
then we have for all functions s, which satisfy the following representation
N
8(.%') = Z S?’LX[an—lyan)(x>7
n=1
the explicit solution of the linear wave equation
0¥ = 200, T € [an_1,ay)
for each n =1,..., N. The solution is given by

) 1 1 HtSn®
(z, p) = 3 (fao1(p+ sp@) + fro1(p — s0)) + 7o / Gn—1(v)dv
n Ju—snpx

—_

n

Opti(w, 1) = 5 (gnr (ft + 50%) + Gn1 (1 — 502)) + % (fro1(p+ snz) = froy(p = sn))
(4.6)

\)
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4.1 The Method

with the initial conditions

fn(ﬂ):a(an,/i), nZO,,N—l

(4.7)
gn(p) = Opt(an, 1), m=0,...,N—1
Thus two initial value problems must be solved independently. For QAﬁl they are
Jro(p) = 6(n),
(4.8)
g1o(p) = 0.
For ngSQ the initial conditions are
fao(p) =0,
(4.9)

g2.0(p) = ().

To explain the Fourier-Interface Method we start with the constant case, i.e. the
situation with N = 1 where s(z) = s € R is a constant. In this case the solution formula
(4.6) can be directly applied. The following solution has straight lines as characteristics

originating from the origin to +sa. We have

1 (x, p) = %(W +52) + 0(p — sz))

Osa(w, 1) = 5 (0(pu + s) + 6(p — ).

DO | —

After the evolution to the point z = a we stop. Now we have the transformed discrim-

inant

A

D(p) = ¢1(a, 1) + Dudha(a, p) = 6(pu + sa) + 5(p — sa)

and recover it by an inverse Fourier-transform:
D()\?) = 2cos(as)).

There is a geometrical way of looking at this result: starting from a top-down view,
there is a Dirac-delta at z = 0 at the position ;4 = 0. Then two characteristics emanate
from this starting Dirac with a slope of £s. At z = a these Dirac-deltas will be moved

to u = £sa with mass each % See figure 4.1.
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4 Fourier-Interface Method

x=0

FIGURE 4.1: Evolution of a Dirac-delta distribution by a linear wave equa-

tion. LEFT: Isometric view. RIGHT: Top-down view.

Now we consider the case where N > 1. The main difference now are the interfaces be-
tween two layers. Each characteristic splits up into two characteristics at an interface.
The characteristics after the split-up have slopes according to the layer’s coefficient s,
where n = 1,..., N denotes the layer. The masses of the Dirac-delta distributions split
up with a preference to the direction of propagation.

For él the mass for the Dirac-delta which moves in the direction of propagation will

have the following fraction of the original mass

Ly 5o
2 Sn+1

)

and the Dirac-delta in the opposite direction of propagation will have the following

fraction of the original mass
1 Sn

“(1—

2 Sn+1

).
See figure 4.2 for an illustration of this behavior. The evolution of Oyo is very semilar

to the evolution of ngﬁl. The fraction of the original mass is

1 Sn+1

—(1

2( + Sn )
for the direction of propagation and

1 Snt1

(1 —

2( Sn )

in the opposite direction. The basic rule also says that at the splitting the total mass of

the splitted Dirac-distributions is conserved:

1(1+ sn)+1(1 Sn
2 Sp+1” 2 Spt1
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4.1 The Method

and
1 Sn41 1 Sn+1
—(1 —(1— = 1.
2( + Sy, )+ 2( Sy, )
The basis-rule for propagation can be seen if d(u + s,z)|,_, is used as initial condi-

tion in the solution formula (4.6). Please note, that there are no reflections, since the

z-derivative is proportional to +s,,.

Ao
x=a,_,
xX=a
© : © X=a,.,
s 1 Sn
%A(l— ")§ EA(HS )6
K n+l

FIGURE 4.2: Basic rule when a "Dirac-ray” hits an interface.

The basic rule can be condensed in a general solution formula:
1 N-1 .. N
p1(a, p) = oN Z H (1 + MiMiJrl;_H) d (M + ZMiSi(ai — ail))
Me{,7+}N =1 =1

and

N-1
~ 1 Sit1
aa:¢2(a'7 ,LL) = 2_N § H (1 + MiMi-l—l ;‘—

Me{— 4}V =1 ’

N
) ) (,LL + Z Misi(ai — ai_1)>
i=1
where ag = 0 and ay = a. The discriminant is then given by
N
Me{—+}Y i=1
with the masses

LN o N-1 o
Su =55 ( (1 + MM — ) + (1 + MM = >>
2 . Sit1 . S;

=1 =1

The proof of this statement is by induction.
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4 Fourier-Interface Method

Example 4.1. Consider the two-step function s(x) = $iX[0.a1) + 53X[ar,a- Then look at

the evolution of the “Dirac-ray” in Figure 4.3. The solution of the linear wave equation

18
- 1 s
$r(a, p) =7 (1+ 8—1)5(,“ + s1a1 + s2(a — ay))
2
1 S1
+Z(1 + —)o(pn — s1a1 — sa(a — ay))
S2
1 S1
+Z(1 — —)(5(# + s1a1 — SQ(CL — al))
52
1 S1
+Z(1 — —)6(pn — s1a1 + sa(a — aq)).
S2
and .
~ S
Oup2(a, 1) 21(1 + 8—2)5(M + 5101 + s2(a — a1))
1
1 S9
+Z(1 + —)5(,& — 511 — 82(& — a1>)
S1
1 S9
+Z(1 — —)5(,& + s1a1 — 82(& — a1>>
S1
1 S9
—1—1(1 — —=)o(p — s1a1 + s2(a — ay)).
51
x=0
1
4 55
I e s i Wi~
—s,a,—s,(a—a,) —s,a,+s,(a—a,)
s,a,—s,(a—a,) s,a,+s,(a—a,)

FIGURE 4.3: The evolution of qgl with a two-step function.

The corresponding image 4.3 quickly displays the result. The resulting discriminant is

then 1
D()\2) :_(2 + ﬁ + ﬁ) COS((Slal + SQ(CL - al))/\)
4 So S1
1 S1 S
ot (- -,

This concludes the example.
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4.2 The Result

In summary of the Fourier-Interface Method it is possible to give a method to compute
an explicit formula for the discriminant of the ODE (4.2) when the periodic coefficient

is a step function:

s(x) = Z SiX[an_Lan)(x) (4.10)

n=1

where N =1,2,3,...is the number of steps. The individual steps are defined by a,, and

the step value is s>. Then we get the following result.

Theorem 4.1. The discriminant of equation (4.1) under the assumption that s is a step
function as defined in (4.10) is given by:

D(\?) =2 Z Sar cos(wprA) (4.11)

Me{—,+}N
wpr>0

where wy 1= Zfil M;si(a; — ai—1) for M € {—, +}N and

1 N—-1 s 1 N-—1 s,
Sy o= — 14+ M;M; ’ — 1+ MM 5
M QNE( + +13i+1>+2Ng( + T Si)

also for M € {—, +}~. Additionally:

> Su=1

Me{—,+}N
wpr>0

Remark 4.1. Since the discriminant is defined by
D(X?) = ¢1(a; A) + dh(a; \)

where
¢1(0;A) =1, ¢2(0;A) =0,

P1(0;A) =0, ¢5(0;A) =1,

the theorem also gives the solution formulas for ¢; and ¢:

(4.12)

N-1
1 S;
o1(a; A) =2 E oN H (1 + MZ‘M’H—ls' ) cos(war )
A o
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4 Fourier-Interface Method

and
| N -~
dy(a; \) =2 E N (1 + M;M; 4 " > cos(wpr)

. 3
Me{—+}N i=1
wpr=>0

Corollary 4.1. Every step function with s; = sy_iv1 (i =1,...,N, N is odd) has the
property ¢1(a, \?) = ¢h(a, A\?). It is therefore sufficient to look at D(\) = 2¢,(a, A?).

Proof. Let N =2k +1for k € Nand M € {—, —|—}2k. The masses after the evolution

through N — 1 interfaces are

N-1 k 2k
1 S; 1 S; S;
— 1+ M;M; L) = — 1+ M;M; . 1+ M;M; .
oN :Zl_[l( + +1 Si+1) oN H( + +1Si+1)i1_£( + +13i+1)
1 b S; b S;
= on H(1 + M; M1 ——) H(1 + MM, 77)
i1 Si+l S
for ¢1 and
| Nt S 1 k S
oN (1+ M M=) = oN H(l + My M; =) H(l + M1 M; Zl)
i=1 t i=1 =1 s
for ¢5,. O

Corollary 4.2. Let 5(x) = 30 _, 82X (an_1.a,] be @ symmetric 3-step function with s, = s3
and dy = d3 where d,, :== a, —a,_1 forn =1,2,3. Then there are two frequencies wg, w1.

If we assume that the two frequencies relate by wy = 2wy the following invariance is true:
3d282 = 2d181

Proof. For a 3-step function the discriminant has 4 frequencies wy, wq, ws, ws. However,
two cancel each other. The first two frequencies are:

Wy = 2d181 + d282

w1 = 2d181 — d282

and the other two are
wy = d151 + dasg — d151 = dass

w3 = d151 — dasy — dy151 = —dasy
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4.3 On the Inverse Problem

with masses

1 S1 S9
S =—(1+ —)(1 — —=
2 =g(1+ 82)( Sl),
1 S1 S9
Sz =—(1——)(1+ —).
L =51- D+
Then the frequencies ws, w3 cancel each other since Sy + S3 = 0 and wy = —ws.

Under the assumption wy = 2w; the following holds:
Wy = 2wy <= 2d151 + d282 = 4d181 — 2d282

hence

3d252 = 2d181 .

O

Remark 4.2. This invariance states that for any given temporal frequency wq there can
be found a symmetric 3-step function such that the second frequency has the given rela-
tion. This is particularly important for the discriminant and the resulting band structure.

Only under these conditions every ,odd” gap is open!

With these corollaries we can quickly re-establish our coefficient of Chapter 2. The
discriminant will be:

D()\?) = 25, cos(wpA) + 25 cos(wi \)

We set s = 1, s = 4 and a = 1. Therefore 6dy = d;. So we have the ratios 6 : 1 : 6
and we may set d; = 3 and dy = 15. Then we get Sy = $(1+3)(1+3) = 2 and

13 13" 1 1 32
S1=1(1-3)(1—-1)=—2 and the discriminant is
25 16 9 8
D) = 22 cos(2A) — 2 cos(—A).
) = 36 sz — 16 (3

4.3 On the Inverse Problem

The inverse Problem is not well-posed. We consider an N-step function, which gives us
2N-dimensions: parameters are sq,...,sy and dy,...,dy. Yet the amount of distinct

frequencies for an N-step function is 2¥~!'. That means for the general inverse problem
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that step functions is not solvable for N > 4. However, for N = 1,2, 3,4 the inverse

problem is solvable and standard techniques can be applied.
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5 Appendix: Applications in

Mathematical Physics

The original question to this work has been whether it is possible to find breather solu-
tions in other equations than the sine-Gordon equation. This question is interesting in
its own right. Additionally the questions are also interesting for applications in math-
ematical physics. This work was done under the supervision of the Research Training

Group 1294 of the German Research Foundation (DFG)
"Analysis, Simulation and Design of Nanotechnological Processes"

at the Karlruhe Institute of Technology (KIT). As such we discussed the possible ap-
plication of this work towards physics. This chapter shows the ideas to bridge the gap

between theoretical analysis and physical application.

5.1 A Physical Application: PGB-Materials

The term PGB-Materials stands for Photonic-Band-Gap-Material which is any material
which has some sort of optical semi-conductor property. From the early discovery of semi-
conductors the so-called band-gap is a gap between two energy bands of the dispersion
relation of a Schrédinger equation modelling the periodically structured lattice of atoms.
A material that has a band-gap for photons is therefore called a PGB-Material. This
roughly means that the PGB-Material prohibits the passing of light for some frequencies.

During the late 1980ies the property was found to be useful as a way to manipulate
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light. Two physicists stand out in the developement of a new field of research, namely
Sajeev John (1987) and Eli Yablonovitch (1987). They found that photonic crystals
are exceptionally good PGB-Materials. Photonic Crystals are two dielectrics which are
ordered periodically in space, with lattice constant to be proportional to the frequency
of light to be forbidden to pass the structure.

In this chapter we derive a nonlinear wave equation which describes the interaction of
light with the photonic crystal in a 1D setting. From there we will discuss how Theorem

3.2 can be applied.

5.2 Maxwell's Equation and Derivation of the Wave
Equation

We want to model a 1D photonic crystal using Maxwell’s equations. We assume linear
polarization along the z-axis (TEM-polarization) and direction of propagation along the

x-axis. Maxwell’s equations in SI units are given by

VxH = J+0D (Amperé’s law) (5.1)
VxE = —-0B (Faraday’s law) (5.2)
V-B = 0 (5.3)
V-D = p (Gauss’ law) (5.4)

The vectors E, D, B, H,J € R? depend on space (r,y,2) € R? and time ¢ € R. The
electric field is denoted by FE, its reaction on material — the electric displacement field —
is called D. The magnetic field is denoted by H and its reaction on material B is called
the magnetic induction field. Furthermore there is the electric current density J and the

electric charge density p € R. We have the important material equations

J = oF (5.5)
= ¢F (5.6)
B = uH (5.7)
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5.2 Maxwell’s Equation and Derivation of the Wave Equation

Here o is called the specific conductivity, € is known as the permittivity (with nonlinear
terms also the susceptibility) and pu is called the magnetic permeability. In the course
of this chapter we make important assumptions to simplify the equation. First, we will
not consider conductors, nor magnetic materials, therefore 0 = 0 and B = poH with pg
being a scalar value. The interaction of light and material will solely be governed by ¢.

We make an phenomenological approach to the choice of the permittivity:

D; = eoB; + eox\) (E;) + coxX\ o (Ey, By, Ey) (5.8)

]

where we use Einstein’s summation convention. The tensor y!) is linear in Fj5 whereas

x® is a multilinear form in each argument. Since we are only interested in 1D pho-

1)

tonic crystals we assume that the tensors x(!), x(® will only depend on the direction of

propagation e; and time t. The equations (5.1)-(5.4) then are reduced to

VxH = 0 (E+x"(E)+x®(EEE) (59

VxE = —pugdH (5.10)

V-B = 0 (5.11)

V- (E+xW(E)+x¥(E B E) = 0 (5.12)

Furthermore, we will restrict the electric field to be linearly polarized along the es-

direction and propagating only in e;-direction, i.e.
E(z,y,z,t) = Es(x,t)es.

Taking Vx (5.10) and inserting it into (5.9), taking into account (5.12), gives the non-

linear wave equation of Mazwell-type:

Oy <X§:13)(E3) + x s (B, B, E:s)) =0
atQ <X§13)(E3) + X%&(E& Es, E3)

11000; <Ez + x5y (Bs) + X (Bs, E3>E3)> = 0B,
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We shall simply set Xg) =0= X§§%3 for 7 = 1,2 to finally arrive at the Maxwell-type

wave equation
PFEy = 2 (Es+ () Es) + ©) Es E3 FE (5 13)
43 = Ho€00; 3 X33( 3) X3333( 3, 43, 3) .

The permeability and susceptibility are chosen in either a time-independent way, such

that
X85 (@, t, By) o= xa(2) By(,1) € R, XS (1, By, By, Bs) := xa(2) Ef(x,t) € R
or in a time-dependent part

t
Xé? (x,t, E3) = / E(x,t — 7)x1(z, 7)dT =: (Xl *Eg)(l', t)

and

t
X3 (. t, Bs, Bs, By) = / E3(x,t — 7)xs(w, 7)dT

=: (Xg * Eg’) (x,t)

The two equations of interest are now

8§E3 = /,Lof-f()at2 (Eg + X1E3 + XgEg) (514)

OBEs = pocod; (BEs+ x1x Es + x5 * E3) (5.15)

These wave equations explain the nonlinear propagation of light in the 1D direction
(linearly polarized) under certain material assumptions. In context of photonic crystals
the permittivity and susceptibility are periodic in = with lattice constant a, i.e. x;(z,t) =

Xi(z + a,t) for i =1, 3.

5.3 Additional Remarks

We want to apply Theorem 3.2 to equation (5.15)

O2E5(z,t) = pocod; (Es(z,t) + (x1 % Es)(z,t) + (x5 * E3) (2, 1))
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with periodic boundary conditions in time

2
By(x,t) = Bs(z,t+T), T=—
w

in order to show how the result of Chapter 2 and 3 can be applied to physical applications.

By using Fourier-series as an ansatz to the equation (5.15) we have the set of equations
O2Es(z,n) = pogon’w? ((1 + x1(, TLCU))Eg({L',TL) + )%3(1‘,71&)).@3(1’, n)) , n e

According to Remark 3.6 we set n*w?x3(z,nw) to be bounded in n € Z so that the
nonlinearity is bounded. From a physical point of view y3 can be assumed to adhere to
the drude model: for high frequencies it is O(1/n?), see e.g. [26]. Regarding the linear

part of the equation we will set
1+ {1z, nw) = §(z, nw) = § () f(nw) > 0.

with

X
%
V
o

which is chosen according to (3.7) to fit Theorem 3.2, and

51(x) = 2x[0,6/13) () + 16X(6/13,7/13) (T) + 2X[7/13,1) (x mod 1).

The discriminant of §; is very similar to the one of s of Chapter 2 equation (2.3): every
,0dd” gap is open. In fact, we used Corollary 4.2 and its subsequent considerations for
the derivation of the coefficient s;. Moreover, we chose it to be greater or equal than
2 for physical reasons, as outlined below in Remark 5.1. Then we are able to apply

Theorem 3.2. The existing breather is given in lowest order by
Es(z,t) = 2ec; sech(ecoz)pi1(z) sin(wot) + O(e?)

with constants ¢, co > 0, the 1-periodic p;; and the critical frequency of light wy (see

(3.8) for the definition).
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Remark 5.1 (Physical Limitations). The application of Theorem 3.2 is physically re-
stricted for two reasons. First, the coefficients x;, j = 1,3, must be physically realizable

or realistic. By definition
Y1z, nw) = & (z) f(nw) — 1. (5.16)
Forn =1 we may choose the x1 physically reasonable, i.e.
X1(z,w) =8 (x)—1>0

for all x € R. By the definition of f, the coefficient x1 will become negative as n tends
to infinity, i.e.

X1z, nw) = s1(2) f(nw) — 1 — —1, n — oo (5.17)

In other words, for high frequencies the material becomes opaque. However, whether
such a material may be constructed remains to be investigated. Second, any physical
system uses the principle of causality. Therefore, both coefficients x1 and X3 are subject

to causality which means
xj(z,t) =0, t<0, j=1,3.

Mathematically the principle of causality is described by the ,Kramers-Kronig™-relation,
which states that the Fourier-transform of x1(t) and x3(t) (namely x1 and X3) must have
nonvanishing imaginary parts (see [24] and [25]). However, we may be able to declare
that the imaginary parts of the coefficients are “small” and we drop them to get a real-
valued equation. As a result, the breather result by Theorem 3.2 of equation (5.15) may

be seen as an approrimation.
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