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1 Introdu
tionIn this work, we are interested in so-
alled breather solutions for nonlinear wave equa-tions. A breather is a solution u = u(x, t) ∈ R, (x, t ∈ R), whi
h is periodi
 in time andis spatially lo
alized, i.e.,
u(x, t) = u(x, t+ T ), x, t ∈ R (1.1)

|u(x, t)| < C e−βx, x, t ∈ R (1.2)for a (minimal)-period T > 0 and real-valued 
onstants C, β > 0. The author of [5℄proved, that any perturbation of the sine-Gordon equation
∂2

xu(x, t) = ∂2
t u(x, t) + sin(u(x, t))will destroy the spe
ial symmetry of this equation. We 
on
lude that breather solutionsare a singular o

uren
e for the sine-Gordan equation only. In parti
ular the nonlinearKlein-Gordon equation

∂2
xu(x, t) = ∂2

t u(x, t) + u(x, t) − u3(x, t) (1.3)does not have any breather solutions. From appli
ations in physi
s and ele
tri
al engi-neering it is known that for this equation there is a NLS-approximation whi
h gives areason to rethink the non-existen
e of breather solutions.The authors of [8℄ looked at the nonlinear Klein-Gordon equation and found that, al-though there does not exist a breather solution, there is a generalized breather whi
his periodi
 in time but not lo
alized in spa
e: there is a small �periodi
-tail�. Speakinggeometri
ally, only the sine-Gordon equation with periodi
 boundary 
onditions w.r.t.7



1 Introdu
tion
t permits that the low-dimensional unstable and stable manifold of the origin of thespatial dynami
s system interse
t. But what if we add more degrees of freedom to thenonlinear Klein-Gordon equation su
h that we 
an make both manifolds meet ea
h other?

0
2

-2
-10 4

-1

-5 6

0

8
0

1

t10
x

2

5 12
14

10Figure 1.1: A depi
tion of one of the breathers of the sine-Gordon equa-tion.Motivated by the mathemati
al des
ription of photoni
 band-gap materials we startedlooking at nonlinear Klein-Gordon equations with periodi
 
oe�
ients, i.e.,
∂2

xu(x, t) = s(x)∂2
t u(x, t) + q(x)u(x, t) − r(x)u3(x, t). (1.4)In this thesis we show that breathers exist for 
ertain x-dependent periodi
 
oe�
ients

s, q, r, i.e. s(x+1) = s(x), q(x+1) = q(x) and r(x+1) = r(x). Using the time-periodi
boundary 
ondition (1.1), this is equivalent to an 
ountably in�nite system of ODEswhi
h 
an be redu
ed to a 2-dimensional 
enter-manifold. The key to the appli
ation of
enter-manifold theory lies in the linear (Floquet-) spe
trum whi
h 
an be �tailored� withthe help of the equation's (1.4) x-dependent 
oe�
ients. In the 2-dimensional 
enter-manifold there exists a homo
lini
 orbit stru
turally stable to perturbations. This stabil-ity is due to the symmetry of the spatial 
oe�
ients and the 
onsequential reversibilityof the equation (1.4).The method we use to prove a breather solution for (1.4) 
an also be applied to time-dependent nonlinear Klein-Gordon equation of the type
∂2

xu(x, t) = ∂2
t (s ⋆ u)(x, t) + u3(x, t). (1.5)8



where s(t) is a time-dependent 
oe�
ient and where �⋆� denotes the 
onvolution in time,see equation (3.2) for a de�nition. The 
oe�
ient s gives enough freedom to tailor thespe
trum in su
h a way that a 2-dimensional 
enter-manifold exists and that we 
anredu
e the dynami
s of this equation to the existen
e of a homo
lini
 solution.The last 
hapter is both interesting in its own right and supplementary to the proof ofthe breather solution result of Chapter 2. It explains in detail how we 
hose the spatiallyperiodi
 
oe�
ients of equation (1.4) su
h that the (Floquet)-spe
trum of (1.4) allowsthe appli
ation of the 
enter-manifold theory.The results of this thesis suggest that breather solutions in nonlinear wave equations aremore 
ommon than we thought at �rst.
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2 Breather solutions inKlein-Gordon equations
We 
onsider the nonlinear, spatially periodi
 Klein-Gordon equation

s(x)∂2
t u(x, t) = ∂2

xu(x, t) − q(x)u(x, t) + r(x)u3(x, t), (2.1)where u = u(x, t) ∈ R with x ∈ R, t ∈ R and a-periodi
 
oe�
ients s, q and r, i.e.,
s(x) = s(x+ a), q(x) = q(x+ a), and r(x) = r(x+ a),where w.l.o.g. we 
hoose in the following a = 1. Then we prove the following theorem.Theorem 2.1. The equation (2.1) allows the existen
e of breather solutions, i.e. thereexists a solution u = u(x, t) with real-valued positive 
onstants β, C > 0 su
h that

|u(x, t)| ≤ C e−β|x|, ∀t ∈ R, x ∈ R,
u(x, t) = u(x, t+

2π

ω0
), ∀x ∈ R. (2.2)There exists a breather solution for ω2

0 = 2π 13
16
, ε ∈ (0, ε0), (ε0 > 0), and the 
oe�
ients

s(x) = χ[0,6/13] + 16χ[6/13,7/13] + χ[7/13],1(x mod 1)

q(x) = (q0 + q1ε
2)s(x)

r(x) = r0

(2.3)with q0 ∈ R, (q0 ≈ 3.235) and q1, r0 ∈ {−1,+1}, whi
h are determined in the proof. 11



2 Breather solutions in Klein-Gordon equationsRemark 2.1. The breather solution is given in lowest order by
sup
x∈R |u(x, t) − 2εc1se
h(εc2x)q11(x) sin(ω0t)| ≤ Cε2 (2.4)with 
onstants c1, c2 and a 2-periodi
 fun
tion q11 de�ned subsequently. See also Se
tion2.10 Remark 2.10.Remark 2.2. A

ording to Theorem 2.1 and Remark 2.1 we have a family of breathersolutions, where ε ∈ (0, ε0) takes the role of the parameter. The amplitude is O(ε) andthe envelope modulates the underlying 
arrier-wave q11(x) sin(ω0t) on the spatial s
ale is

O(ε−1). We use the big-O notation O throughout this work. It is de�ned for fun
tions
h : R→ R by

O
(

h(x)
)

=

{

g : R→ R : g 6= 0, lim
x→0

h(x)

g(x)
<∞

}

.By 
onvention we use the notation g(x) = O
(

h(x)
) instead of the 
orre
t notation g(x) ∈

O
(

h(x)
).Remark 2.3. The 
hoi
e of the 
oe�
ients is not by 
han
e. Chapter 4 shows a methodto tailor the 
oe�
ients s and q to give an expli
it form of the so-
alled dis
riminantfrom whi
h the the Floquet-spe
trum of (2.1) 
an be derived. Through this method we 
anapply an inverse analysis of the dis
riminant and 
an expli
itly 
ompute the 
oe�
ients

s and q. However, this inverse analysis is only possible for 
oe�
ients with very fewdegrees of freedom. The general inverse problem, i.e. 
ompute the 
oe�
ient when theFloquet-spe
trum is given, is not solvable with the presented method.Remark 2.4. Solutions of (2.1) 
an be approximated via the ansatz
u(x, t) = εA(ε(x− cgt), ε

2t)fn(x, k) eiωn(k)t + 
.
.with A(X, T ) ∈ C, cg ∈ R and 0 < ε≪ 1 by an NLS-equation
∂TA = −iω′′

n(0)∂2
XA+ iγnA|A|2.If ω′′

n(0)γn < 0 this equation possesses pulse solutions A(X, T ) = Ã(X) eiω̃T of the form(2.4). In [3℄ an approximation result has been established that guarantees that solutions12



2.1 Breather solution: Constru
tionof (2.6) 
an be approximated on an O(ε−2) time-s
ale via the solutions of this NLS-equation.Due to the periodi
 
oe�
ient we use Blo
h-modes fn(x, k), where n is the number ofthe band, k is the Floquet-exponent and ωn(k) gives the dispersion relation. Sin
e weperturb o� a band-edge, we usually 
onsider k = 0 or k = 1/2. Then also cg = 0.For small spe
tral gaps there is one band edge where the asso
iated NLS-equation pos-sesses pulse solutions. For small spe
tral gaps we have γn ≈ γn+1 but ω′′
n(0) > 0 and

ω′′
n+1(0) < 0 or vi
e versa.2.1 Breather solution: Constru
tionFor the 
onstru
tion of the breather solution of the equation (2.1) we will use spatialdynami
s, 
enter-manifold theory and bifur
ation theory. Motivated by [12℄ we write(2.1) as an evolutionary system w.r.t. x ∈ R in the phase spa
e of 2π

ω0
-time periodi
fun
tions, i.e., we 
onsider

∂xu = v,

∂xv = s(x)∂2
t u+ q(x)u− r(x)u3.

(2.5)where we abbreviate u(x, t), v(x, t) ∈ R with u, v ∈ R from now on, but we keep the xfor the 
oe�
ients to emphasize the x-dependen
y. Due to the periodi
ity of s, q, and
r w.r.t. x the system is non-autonomous. We use Floquet-theory to 
al
ulate the linear(Floquet-)spe
trum, whi
h des
ribes the asymptoti
 behavior of the solutions

uω(x, t) = p(x, ω) ek(ω)x eiωtof the linearized system of (2.5) with ω ∈ R, k(ω) ∈ C and p(x, ω) = p(x + 1, ω) forall ω ∈ R. To emphasize the di�eren
e of the spatially periodi
 
ase and the spatiallyhomogeneous 
ase, i.e. s, q, r =
onst, where solutions of the linearized system are givenby
uω(x, t) = ek(ω)x eiωt, 13



2 Breather solutions in Klein-Gordon equationswhere the eigenvalues 
an be expli
itly 
omputed by the dispersion relation
k2(ω) = −sω2 + q.In the spatially periodi
 
ase there is a periodi
, non-
onstant fun
tion p(x, ω) and aFloquet-exponent k(ω) whi
h 
annot be easily 
omputed. We will show on the next fewpages how one 
an 
al
ulate the Floquet-exponent k(ω).Sin
e we are in the spa
e of 2π

ω0
-time periodi
 fun
tions, there are 
ountably manyFloquet-exponents k(ω)|ω=nω0

for a �xed ω0 ∈ R indexed by n ∈ Z. By using in-varian
es of the equation 2.5 we 
an restri
t ourselves to some invariant subspa
e of(2.5) whi
h redu
es the amount of Floquet-exponents by a fa
tor 2, so that k(ω)|ω=nω0will be indexed by n ∈ Nodd. We 
all Nodd the set of all odd natural numbers. Then wewill prove the following Lemma.Lemma 2.1 (Property 1). Under the 
onditions of Theorem 2.1 in the invariant subspa
ede�ned in Se
tion 2.3 the linearisation of the spatial dynami
s system (2.5) with the
oe�
ients (2.3) possesses only two Floquet exponents on the imaginary axis, whi
hmove o� the axis as ε > 0 in
reases. The rest of the spe
trum is uniformly boundedaway from the imaginary axis for all su�
iently small ε ≥ 0.This lemma allows the use of invariant manifold theory for periodi
 systems (seese
tion 2.6) to redu
e the in�nite-dimensional system (2.5) to a two-dimensional systemon the 
enter-manifold asso
iated with the two 
entral eigenvalues. We then show thatthe redu
ed system has a homo
lini
 solution, i.e. a solution U : R→ R with U(x) → 0for |x| → ∞, whi
h is stru
turally stable due to the reversibility of the spatial dynami
sformulation, i.e. (2.5) is invariant under (x, u, v) 7→ (−x, u,−v). This is due to thesymmetry of the 
oe�
ientsLemma 2.2 (Property 2). The 
oe�
ients 
hosen above are even w.r.t. x, i.e.,
s(x) = s(−x), q(x) = q(−x), and r(x) = r(−x).for all ε.

14



2.2 Proof of the Theorem 2.12.2 Proof of the Theorem 2.1As brie�y explained in the previous se
tion, we will prove Lemma 2.1 with the useof Floquet-theory and invariant subspa
es. Then we will dis
uss the appli
ation of
enter-manifold theory to redu
e the dynami
s to a 2-dimensional system. There wewill show that there is a homo
lini
 solution, i.e. a solution U : R→ R with U(x) → 0with exponential de
ay for |x| → ∞. From the 
enter-manifold theory we know that theexponential de
ay of the homo
lini
 solution will 
arry over to the full system in the formof a spatially lo
alized solution with exponential de
ay as |x| → ∞. The Fourier-seriesin time then puts this spatially lo
alized solution into a time-periodi
 frame, therefore
ompleting the proof.The proof 
onsists of seven steps. First we dis
uss invarian
es of the system (2.5) su
hthat we are able to restri
t our solutions to a �tting invariant subspa
e, see Se
tion 2.3.In this invariant subspa
e we go on to 
ompute the Floquet-exponents. In se
tion 2.4we also explain why we had to use an invariant subspa
e. Se
tion 2.5 and 2.6 talk aboutthe 
enter-manifold redu
tion and prove a modi�
ation of the 
enter-manifold theorem.Se
tions 2.7 through 2.9 analyse the redu
ed two-dimensional system on the 
enter-manifold. The two-dimensional system 
an be seen as a basi
 system whi
h is known tohave homo
lini
 solutions and a perturbation. We show that even under perturbationsthe basi
 system's homo
lini
 solution will persist. From there we 
on
lude the proof ofTheorem 2.1 with a summary of every step taken along the way. At the end we are ableto give a �rst order approximation of the breather.
Preparations Sin
e we are interested in time-periodi
 solutions of equation (2.1), i.e.,
u(x, t+ 2π

ω0
) = u(x, t) for all x, t ∈ R we use Fourier-series with respe
t to time leadingto the system of 
ountable many ODEs
∂2

xum(x) = −s(x)m2ω2
0um(x) + q(x)um(x) − r(x)gm(x), m ∈ Z, (2.6)15



2 Breather solutions in Klein-Gordon equationswhere
gm(x) =

∑

n∈Z3,|n|=m

un1
(x)un2

(x)un3
(x). m ∈ Z. (2.7)In terms of the spatial dynami
s formulation (2.5) we have the system

∂xum(x) = vm(x)

∂xvm(x) = −s(x)m2ω2
0um(x) + q(x)um(x) − r(x)gm(x)

for m ∈ Z. (2.8)
2.3 Invarian
esThere is a number of linear subspa
es invariant under the evolution of (2.6) resp. (2.8).These are as follows. The invariant subspa
e 
orresponding to real solutions of (2.8) isgiven by

UR := {(um)m∈Z : um = u−m}.Sin
e the system is invariant under the transform S : (t, u, v) 7→ (−t,−u,−v) also
Uodd = {(um)m∈Z : um = −u−m}is some invariant subspa
e. A

ording to the fa
t that we have a 
ubi
 nonlinearity also
UO = {(um)m∈Z : u2m = 0}is an invariant subspa
e. Therefore the interse
tion of all these subspa
es

UR ∩ Uodd ∩ UO = {(um)m∈Z : Reum = 0, u2m = 0} =: X̂is also invariant. In the following we restri
t our analysis to those solutions of (2.1)whose Fourier-
oe�
ients are in X̂. Su
h solutions 
an be written as
u(x, t) =

∑

m∈Zodd

ium(x) eimωtwhere um ∈ R and um = u−m satisfy a system of 
ountable many ODEs
∂2

xum(x) = vm(x)

∂2
xvm(x) = −s(x)m2ω2um(x) + q(x)um(x) + r(x)gm(x)

(2.9)
16



2.4 Proof of Lemma 2.1but now with m ∈ Nodd and
gm(x) =

∑

n∈Z3,|n|=m

un1
(x)un2

(x)un3
(x). m ∈ Nodd. (2.10)The tayloring of the 
oe�
ient and the restri
tion to the invariant subspa
e X̂ are themost important steps in the proof. If we restri
t the subspa
e of solutions to X̂, we alsorestri
t the spe
trum to those Floquet-exponents that are o� the imaginary axis, seeFigure 2.2.2.4 Proof of Lemma 2.1We want to 
ompute the Floquet-exponents of the linearizations of equations (2.6)-(2.7)and (2.9)-(2.10) at the origin respe
tively and prove that there are only two Floquet-exponents near the imaginary axis and that all others are uniformly bounded away fromthe imaginary axis. In order to analyze the linear part

∂xum(x) = vm(x)

∂xvm(x) = −s(x)m2ω2
0um(x) + (q0 + q1ε

2)s(x)um(x)
(2.11)where q(x) = (q0 + q1ε

2)s(x), we substitute mω0 = λ and only look at the ODE
u̇(x) = v(x)

v̇(x) = −s(x)λ2u(x) + (q0 + q1ε
2)s(x)u(x),

(2.12)where we 
an apply Floquet's theorem, see [6℄, to �nd its Floquet-exponents dependingon λ ∈ R.Let x 7→ Φλ2(x; x0) be the fundamental solution of the ODE (2.12) with Φλ2(x0; x0) =

I and x0 ∈ R. Then let ρ± be the eigenvalues of Cλ2 := Φλ2(x0 + 1; x0), the so-
alled monodromy matrix . Floquet's Theorem says that the Floquet-multipliers are theeigenvalues of the monodromy matrix and are given by
ρ±(λ2) =

1

2
traceCλ2 ± 1

2

√

(traceCλ2)2 − 4. 17



2 Breather solutions in Klein-Gordon equationsThe tra
e of the monodromy matrix is 
alled the dis
riminant . We use the abbreviation
D(λ2) := traceCλ2 = φ1(x0 + 1; x0, λ

2) + φ′
2(x0 + 1; x0, λ

2) where
Φλ2(x; x0) =





φ1(x; x0, λ
2) φ2(x; x0, λ

2)

φ′
1(x; x0, λ

2) φ′
2(x; x0, λ

2)



 .The dis
riminant depends on the parameter λ and so
ρ±(λ2) =

1

2
D(λ2) ± 1

2

√

(D(λ2))2 − 4.There exists a representation for solutions (see [6℄), whi
h gives a good 
onne
tion tothe autonomous 
ase:
Φλ2(x; x0) = Pλ2(x; x0) e(x−x0)Mλ2 (2.13)whereM is 
alled the exponential matrix . Its eigenvalues are 
alled the Floquet-exponent

k ∈ C de�ned by ρ±(λ2) = e±k(λ2). The Floquet-exponent is not ne
essarily unique but
an be 
hosen in su
h a way, that it is unique. We �nd thatS1a) if |D(λ2)| > 2 then the Floquet-multipliers ρ±(λ2) are real, i.e., k ∈ R \ {0}. Asa 
onsequen
e Φλ2 shows exponential growth w.r.t. x.S1b) if |D(λ2)| < 2 then the Floquet-multipliers ρ±(λ2) are on the 
omplex unit 
ir-
le, i.e., k ∈ iR. As a 
onsequen
e Φλ2 is uniformly bounded w.r.t. x.S2) if |D(λ2)| = 2 then the Floquet-multipliers ρ±(λ2) are = −1 or = 1. As a
onsequen
e Φλ2 has at most polynomial growth w.r.t. x.Remark 2.5. By the representation (2.13) it doesn't matter at whi
h point x0 we start.The dis
riminant is the same for ea
h x0.The dis
riminant of the equation (2.12) with the spe
ial 
hoi
e of 
oe�
ients
s(x) = χ[0,6/13] + 16χ[6/13,7/13] + χ[7/13],1(x mod 1)

q(x) = (q0 + q1ε
2)s(x)18



2.4 Proof of Lemma 2.1
an be 
omputed by the Transfer-Matrix Method or the Fourier-Interfa
e Method , seeChapter 4, and yields
D(λ2) =

25

8
cos

(

16

13

√

λ2 + q0 + q1ε2

)

− 9

8
cos

(

8

13

√

λ2 + q0 + q1ε2

)

. (2.14)The graph of this dis
riminant and its 
orresponding dispersion relation is plotted inFigure 2.1. The dispersion relation simply plots the imaginary part of the Floquet-exponent ±k as a fun
tion of λ2. The real part 
orresponds to exponential growingsolutions, therefore we 
all an Floquet-exponent to lie in a band-gap if it has a non-vanishing real part. On the 
ontrary, if the Floquet-exponent is purely imaginary, wesay it lies in a band .
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Figure 2.1: The �gure shows the dispersion relation and the dis
rimi-nant. When there are band-gaps then k is real.
The Floquet-spe
trum We now 
hoose

ω2
0 = 2π

13

16
(2.15)19



2 Breather solutions in Klein-Gordon equationsin equation (2.8) to be in phase with the leading term of the dis
riminant (2.14) in thefollowing sense (with q0 = 0 and ε = 0):
cos

(

16

13

√

λ2 + q0 + q1ε2

)∣

∣

∣

∣

λ=mω0

= cos(2πm)For q0 = ε = 0 we therefore get
D(m2ω2

0) =



























34
8
, m ∈ 2 + 4Z,

2, m ∈ 4Z,
25
8
, m ∈ 1 + 2Z.We 
hoose q0 in su
h a way that D(ω2

0) = 2 if ε = 0 and thus D(ω2
0) = 2 + O+(ε2) for

ε→ 0.De�nition 2.1. We de�ne g(x) = O+(h(x)) for x→ 0 as
lim
x→0

h(x)

g(x)
= C+with g(x), h(x) ≥ 0 for some 
onstant C+ ≥ 0.At this point we see why it is ne

essary to restri
t our analysis to the spa
e X̂, i.e.

λ2 = m2ω2
0 with m ∈ Nodd. Let q0 = ε = 0 and look at the problems (2.6)-(2.7) and(2.9)-(2.10). We get Floquet-multipliers

ρ±(m2ω2
0) =



























34
16

± 1
2

√

(34
8
)2 − 4, m ∈ 2 + 4Z,

1, m ∈ 4Z,
25
16

± 1
2

√

(25
8
)2 − 4, m ∈ 1 + 2Z.Therefore, for q0 = ε = 0 there are �ve di�erent Floquet-multipliers, four o� theunit 
ir
le but one on the unit 
ir
le. The fa
t that there are in�nitely many Floquetmultipliers on the unit 
ir
le would prohibit the appli
ation of 
enter-manifold theory.However, sin
e we look for solutions in X̂ we have m ∈ Nodd and therefore ρ±(m2ω2

0) =

25
16
± 1

2

√

(25
8
)2 − 4 are the only two Floquet-multipliers to be 
onsidered. See Figure 2.2.20



2.4 Proof of Lemma 2.1
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Figure 2.2: The Floquet-multipliers for the above 
hoi
e of s, q, and ω.Left: for m ∈ Z. Right: for m ∈ N odd.For approximatly q0 ≈ 3.235 the Floquet-multiplier for m = 1 is ρ±(ω2
0) = −1. The twopoints 25

16
± 1

2

√

(25
8
)2 − 4 are now a

umulation points, yet are only approa
hed asymp-toti
ally by all other Floquet-multipliers ρ±(ω2m2) (m > 1), whi
h are still uniformlybounded away from the 
omplex unit 
ir
le.With the 
hoi
e q1 = −1 or q1 = 1 we 
an make two Floquet-multipliers move from

−1 o� the unit 
ir
le for ε > 0. If q1 is not set 
orre
tly, the Floquet-multipliers movefrom −1 along the imaginary unit 
ir
le. The value of q1 sets the dire
tion su
h that webifur
ate into the band-gap (instead of bifur
ating further into the band) See Figure 2.3for a depi
tion of the 
orre
t bifur
ation.
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Figure 2.3: The distribution of Floquet-multipliers in X̂ for the 
hoi
eof q = q0 with ε = 0 (left) and ε > 0 (right).The Floquet-exponent is lo
ated on the imaginary axis if its 
orresponding Floquet-multiplier is lo
ated on the unit 
ir
le. All other Floquet-exponents are o� the imaginaryaxis if their 
orresponding Floquet-multipliers are o� the unit 
ir
le. Figure 2.4 shows
21



2 Breather solutions in Klein-Gordon equationsthe 
orresponding Floquet-exponents to the Floquet-multipli
ators shown in Figure 2.3.The proof of Lemma 2.1 is therefore 
ompleted.
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Figure 2.4: The distribution of Floquet-exponents in X̂ for the 
hoi
e of
q = q0 with ε = 0 (left) and ε > 0 (right).Remark 2.6. The Floquet-diagram (Figure 2.3) is a
tually the spe
trum of the linearmonodromy operator C =
⊕

m∈Nodd Cm where Cm is the monodromy matrix of ea
h ODEof Equation (2.8). Hen
e,
σ(C) =

⋃

m∈Nodd{ρm
±}where ρm

± are the eigenvalues of Cm. The Floquet-spe
trum (Figure 2.4) is the generali-sation of the spe
trum of linear autonomous operators. In the next 
hapter we introdu
e�rotational 
oordinates� and transform the linear operator A(x) (see de�nition next se
-tion) into an autonomous linear operator M . Its eigenvalues are the Floquet-exponents,and therefore its spe
trum is given by
σ(M) =

⋃

m∈Nodd{±km}with km = k(m2ω2
0).22



2.5 Rotational Coordinates2.5 Rotational CoordinatesIn the last 
hapter we dis
ussed the spe
trum of M by 
al
ulating the dis
riminant.In this se
tion we apply a 
hange of 
oordinates to the system (2.9) whi
h preservesits reversibility and takes the rotational nature of the periodi
 equation into a

ountsu
h that the tranformed system has an autonomous linear part. Therefore we speak ofrotational 
oordinates. With the system in new 
oordinates the 
enter-manifold theory
an be modi�ed to en
ompass an x-periodi
 nonlinear part.We 
onsider the spatial dynami
s formulation (2.9)
∂xum = vm,

∂xvm = −s(x)m2ω2
0um(x) + (q0 + q1ε

2)s(x)um(x) + r(x)gm(x)
(2.16)for m ∈ Nodd. The equation (2.16) 
an be written in a more 
ompa
t form

∂xUm = AmUm + SεUm +Nm[(Um)m], m ∈ Nodd (2.17)with
Um = (um, vm),

Am(x)Um(x) =





0 1

−s(x)(m2ω2
0 + q0) 0



Um,

Sε(x)Um =





0 0

ε2q1s(x) 0



Um

Nm[(Um)](x) =





0

r(x)gm(x)



 .For 
onvenien
e we write U = (Um)m = (um, vm)m = (um, vm)m∈Nodd = (Um)m∈Nodd fromhere on.The reversibility: In Se
tion 2.9 we need the reversibility of (2.6) in order to provethe persisten
e of the homo
lini
 solution with respe
t to higher order perturbations.Therefore we de�ne the reversibility operator R by
Rm(um, vm) = (um,−vm). 23



2 Breather solutions in Klein-Gordon equationsThe system is reversible, i.e., invariant under (x, u, v) 7→ (−x, u,−v), whi
h implies thatwith Um(x) = (um, vm)(x) also Vm(x) = RmUm(−x) is a solution. Furthermore we de�nethe reversibility map
Tm[Um](x) := RmUm(−x)The reversibility property holds for an equation

U̇ = F (x, U)if
RF (x, U) = −F (−x,RU).This holds for our system as well sin
e

V̇m(x) = −RmU̇m(−x)

= −RmA(−x)Um(−x) −RmNm(−x, (Uj)j(−x))

= −RmA(−x)RmRmUm(−x) +Nm(−x, (RjUj)j(−x))

= A(−x)Vm(x) +Nm(−x, (Vj)j(x))

= A(x)Vm(x) +Nm(x, (Vj)j(x)).The last step is due to the symmetry of the 
oe�
ients. In the following arguments the�xed spa
e of reversibility plays a major role. It is given by
Rfix = {U = RU} = {(um, 0)m}.The 
hange of 
oordinates Due to the theorem of Floquet the solutions of

∂xUm = Am(x)Umare given by
Um(x, x0) = Pm(x, x0) e(x−x0)MmUm(x0, x0)with
Pm(x, x0) = Pm(x+ 1, x0), Mm ∈ R2×2.24



2.5 Rotational CoordinatesSin
e all Floquet-multipliers have a negative real part and a vanishing imaginary part(see Figure 2.3), the asso
iated Floquet-exponents, the eigenvalues ofM =
⊕

m∈Nodd Mm,are of the form α± iπ with α ∈ R, see Figure 2.5.
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Figure 2.5: All Floquet-multipliers are of the form α ± iπ with α ∈ R.In order to have real-valued Floquet-exponents we apply Floquet's theorem for 2-periodi
fun
tions, i.e. the solutions of ∂xUm = Am(x)Um are given by
Um(x, x0) = Qm(x, x0) e(x−x0)BmUm(x0, x0)with Qm(x, x0) = Qm(x+ 2, x0) and Bm ∈ R2×2.Preserving the reversibility In order to make the linear part of the system (2.17)autonomous we 
ould make a 
hange of variables Um(x, x0) = Qm(x, x0)Vm(x, x0). How-ever, this 
hoi
e would destroy the reversibility. Instead we use a slightly modi�edversion of this 
hange of 
oordinates. We write

Um(x, x0) = Qm(x, x0) e(x−x0)BmUm(x0, x0)

= Qm(x, x0)S
−1
m e(x−x0)JmSmUm(x0, x0)

= Q̃m(x, x0) e(x−x0)JmVm(x0, x0) 25



2 Breather solutions in Klein-Gordon equationssu
h that Vm(x, x0) de�ned by
Um(x, x0) = Q̃m(x, x0)Vm(x, x0) (2.18)satis�es the autonomous ODE ∂xVm = JmVm. Next we want to show that (2.18) pre-serves the reversibility. Let λ1m and λ2m be the eigenvalues of Bm.Case S1: Assume �rst that λ1m 6= λ2m. Then the solutions of ∂xUm = Am(x)Um 
analso be written as the linear 
ombination of two linearly independent solutions ψ1m and

ψ2m:
Um(x) = c1mψ1m(x) + c2mψ2m(x) = c1m eλ1mxφ1m(x) + c2m eλ2mxφ2m(x)with 2-periodi
 φjm, j = 1, 2, here and in the following. Sin
e the system is reversible,

x 7→ e−λ1mxRφ1m(−x) is also a solution if x 7→ eλ1mxφ1m(x) is a solution. Hen
e wede�ne the se
ond fundamental solution
ψ2m(x) = eλ2mxφ2m(x) = e−λ1mxRφ1m(−x).su
h that λ2m = −λ1m and φ2m(x) = Rφ1m(−x). We introdu
e the new variable Vm(x) =

(ũm, ṽm)(x) by
Um(x) = ũm(x)φ1m(x) + ṽm(x)φ2m(x) = (φ1m(x), φ2m(x))





ũm(x)

ṽm(x)



where by 
onstru
tion ∂xVm(x) = JmVm(x) with Jm = diag(λ1m, λ2m). Therefore, theabove 
hange of variables (2.18) for x0 = 0 and the last 
hange of variables 
oin
ideand the new system is still reversible in 
ase x0 = 0 w.r.t. the transformed reversibilityoperator R̃m de�ned through
R̃m





ũm

ṽm



 =





ṽm

ũm



 .Case S2: Next assume that we have a Jordan blo
k. Then
Um(x) = c1mψ1m(x) + c2mψ2m(x) = c1m eλmxφ1m(x) + c2m( eλmxxφ1m(x) + eλmxφ2m(x)).26



2.5 Rotational CoordinatesAs a result of the reversibility the eigenvalues ne
essarily ful�l λm = 0, φ1m(x) =

Rφ1m(−x) and φ2m(x) = −Rφ2m(−x). We introdu
e the new variable Vm(x) = (ũm, ṽm)(x)by
Um(x) = ũm(x)φ1m(x) + ṽm(x)φ2m(x) = (φ1m(x), φ2m(x))





ũm(x)

ũm(x)



where by 
onstru
tion ∂xVm(x) = JmVm(x), where Jm =





0 1

0 0



. In this 
ase therepresentation of the reversibility operator is preserved, i.e.
R̃m





ũm

ṽm



 =





ṽm

−ṽm



 .Remark 2.7. We 
ould also 
hoose Jm =





0 0

1 0



. The 
hange of 
oordinates wouldthen be given by inter
hanging φ1m and φ2m. The reversibility operator then is
R̃





ũm

ṽm



 =





−ṽm

ũm



 .The old reversibility operator Rm and the new reversibility operator R̃m (valid for both
ases) are 
onjugated w.r.t. the transform Um = Q̃mVm de�ned by Q̃m = (φ1m φ2m), i.e.
RmQ̃m(x) = Q̃m(−x)R̃mwhi
h implies RmQ̃

−1
m (−x) = Q̃−1

m (x)R̃m.For the operator of reversibility for the full system (2.17)
R =

⊕

m∈NoddRmand
R̃ =

⊕

m∈Nodd R̃m,the reversibility of the old nonlinearity N means RN(U) = −N(RU). The reversibilityof the transformed nonlinearity Ñ(x, V (x)) := Q̃−1(x)N(Q̃(x)V (x)) means R̃Ñ(x, V ) =27



2 Breather solutions in Klein-Gordon equations
−Ñ(−x, R̃V ). This holds a

ording to

R̃Ñ(x, V (x)) = R̃Q̃−1(x)N(Q̃(x)V (x))

= Q̃−1(−x)RN(Q̃(x)V (x)) = −Q̃−1(−x)N(RQ̃(x)V (x))

= −Q̃−1(−x)N(Q̃(−x)R̃V (x)) = −Ñ(−x, R̃V (x)).The reversibility property 
arries over for Sε in an analogous way. Although reversibilityis only preserved for x0 = 0, we keep x0 in order to make some subsequent arguments
learer.The reversible 
hange of 
oordinates With Um(x, x0) = Q̃m(x, x0)Vm(x, x0) we �nd
∂xVm(x, x0) = JmVm(x, x0) + Fm,ε

(

x, x0, (Vj)j (x, x0)
) (2.19)with

Fm,ε

(

x, x0, (Vj)j (x, x0)
)

= Q̃m(x, x0)
−1Sε(x)Q̃m(x, x0)Vm(x, x0)

+ (Q̃m(x, x0))
−1Nm(x, (Q̃jVj)j (x, x0)).

(2.20)We �nd by 
onstru
tion that J1 has one Jordan blo
k of size 2 with asso
iated eigenvalue
0 (Case S2). All other Jm with m ≥ 3 possess one positive and one negative eigenvaluewhi
h are uniformly bounded away from the imaginary axis w.r.t. m (Case S1), i.e.(2.19) has the spe
tral pi
ture plotted in the right panel of Figure 2.5. Moreover, system(2.19) is reversible w.r.t. the transformed reversibility operator

R̃ =
⊕

m∈Nodd R̃mif x0 = 0, sin
e we have
Jm = −R̃mJmR̃m

Fm,ε (x, 0, (Vj)j (x)) = −R̃mFm,ε

(

−x, 0, (R̃jVj)j (x)
)

.
(2.21)The 
hange of 
oordinates is bounded in the sense of Lemma 2.3. In parti
ular, Q̃−1

m Sε(x)Q̃mis only of order ε2 and is uniformly bounded for all m.28



2.5 Rotational CoordinatesLemma 2.3. Let Q̃m = (φ1 φ2) =





q11,m q12,m

q21,m q22,m



. Then there exists a C > 0 su
hthat for allm ∈ Nodd we have supx∈[0,2](|q11,m(x)|+|q12,m(x)|) < C and supx∈[0,2] |(Q̃m(x))−1| <
C.Proof. By expli
itly solving for initial 
onditions φ1(0) = 1, φ′

1(0) = 0 we see that
φ1(x) = O(1) and φ′

1(x) = O(m) as m → ∞. Asymptoti
ally only Case S1 is relevant,so we know φ2(x) = Rφ1(−x), hen
e φ2(x) = O(1) and φ′
2(x) = O(m) as m→ ∞. Thusthe lemma is proven sin
e

Q̃m = (φ1 φ2).Remark 2.8. The dire
t appli
ation of the 
enter-manifold theory to the equation (2.17)is not possible sin
e the linear solution operator is not smoothing. The reason is asfollows. The linear solution operator is given by
Φ(x, x0) =

⊕

m∈Nodd Φm(x; x0)where ea
h Φm(x; x0) is the fundamental system of
U̇m = Am(x)Umgiven by (2.13). By the proof of Lemma 2.3 the fundamental solution is Φm(x; x0) =

O(m) for m→ ∞. From this it follows that
Φ(x; x0) : ℓ2(R2; 1) −→ ℓ2(R2; 0)where

ℓ2(R2; σ) =
{

U = (um, vm)m ∈ R2 : ‖U‖ℓ2(R2;σ) <∞
}with the norm

‖U‖ℓ2(R2;σ) =

√

∑

m∈Noddm2σ|Um|2.By 29



2 Breather solutions in Klein-Gordon equations2.6 The Center-Manifold Redu
tionIn Se
tion 2.5 we 
hanged the 
oordinates of equation (2.17) su
h that we have anautonomous linear part with eigenvalues a

ording to Lemma 2.1. The next step is toapply 
enter-manifold theory to the system in rotational 
oordinates (2.19).We 
onsider the system in rotational 
oordinates
∂xVm(x, x0) = JmVm(x, xa0) + Fm,ε

(

x, x0, (Vj)j (x, x0)
)

. (2.22)We will 
ompute the 
enter-manifold for x0 = 0 and then will use the �ow of equation(2.22) to apply it to arbitrary starting point x0 ∈ R.The 
enter-manifold redu
tion will be done in the phase spa
e
ℓ1(R2; σ) = {V : m 7→ Vm ∈ R2 : m ∈ Nodd, ‖V ‖ℓ1(R2;σ) <∞}where ‖V ‖ℓ1(R2;σ) =

∑

m∈Nodd mσ|Vm|. For the appli
ation of the 
enter-manifold theorywe use a 
ut-o� fun
tion on the nonlinearity F to get a bounded nonlinearity:
F̌m,ε(x, V ) = Fm,ε(x, V )χ(‖V ‖ℓ1(R2;σ)/δ)for a small but �xed δ > 0, where χ is a C∞

0 -fun
tion with values in [0, 1] satisfying χ(r) =

1 for r ≤ 1, χ(r) = 0 for r ≥ 2. Sin
e inNm only the �rst 
oordinate of U o

urs, after thetransforms Um = Q̃mVm only q11,m and q12,m o

ur in the transformed nonlinearity. Sin
eboth are uniformly bounded, sin
e the same is true for Q̃−1
m a

ording to Lemma 2.3, andsin
e ℓ1(R2; σ) is 
losed under 
onvolutions, (F̌m,ε(U))m∈Nodd

is Lips
hitz 
ontinuous withLips
hitz 
onstant proportional to δ2 for δ → 0. The magnitude of the Lips
hitz 
onstantfollows from the 
ut-o� fun
tion and the fa
t that F̌ does not 
ontain any quadrati
terms. Moreover, the 
ut-o� fun
tion does not 
hange the reversibility property, hen
e
F̌ is still reversible.Next, we de�ne proje
tions Ps,m and Pu,m on the stable and unstable eigenspa
es ofea
h of the matri
es Jm whi
h are uniformly bounded in R2×2 w.r.t. m. With that wede�ne Pu =

⊕

m Pu,m and Ps =
⊕

m Ps,m as the proje
tions on the unstable or stable30



2.6 The Center-Manifold Redu
tioneigenspa
e of equation (2.22). The proje
tion on the 
enter-eigenspa
e is denoted by
PcV = P1V = V1. The 
enter-eigenspa
e Ec is therefore given by

Ec = {(V1, 0, 0, . . .) ∈ ℓ1(R2, σ) | V1 ∈ R2}Furthermore, we introdu
e V (s)
m (x, x0) = Pm,sVm(x, x0) and V (u)

m (x, x0) = Pm,uVm(x, x0)for m ≥ 3. Then we 
onsider all su
h solutions V (x) = (Vm)m(x) of equation (2.22)whi
h are element of the following spa
e for small but �xed η > 0

Yη = {V ∈ C0(R×R, ℓ1(R2; σ)) | sup
x∈R e−η|x|‖V (x)‖ℓ1(R2;σ) <∞}where V = (Vm)m and ‖V ‖ℓ1(R2;σ) =

∑

m∈Nodd mσ|Vm|. A

ording to [15℄ V (x) ∈ Yη is asolution of (2.22) if and only if the following equation holds,
V1(x) = exJ1V1(0) +

∫ x

0

e(x−ξ)J1F̌1,ε(ξ, 0, (Vj)j (ξ))) dξ,

V (s)
m (x) =

∫ x

−∞

Pm,s e(x−ξ)JmF̌m,ε(ξ, 0, (Vj)j (ξ)) dξ,

V (u)
m (x) = −

∫ ∞

x

Pm,u e(x−ξ)JmF̌m,ε(ξ, 0, (Vj)j (ξ)) dξ.

(2.23)We then des
ribe this equation abstra
tly as
V (x) = SVc +KG(V )where

Vc = P1V (0) ∈ Ec,

SVc = exJVc,

G(V )(x) = F̌ε(x, 0, V (x))and
(KV )(x) =

∫ x

0

e(x−ξ)JP1V (ξ) dξ +

∫ x

−∞

e(x−ξ)JPsV (ξ) dξ −
∫ ∞

x

e(x−ξ)JPuV (ξ) dξ.Due to the asymptoti
s of the dis
riminant we have the estimates for an arbitrary but�xed β > η and a C > 0 independent of m ∈ Nodd
‖ eJ1x‖ ≤ C eη|x|/2 , ∀x ∈ R,

sup
m

‖ eJmxPm,s‖ ≤ C e−βx , ∀x ≥ 0,

sup
m

‖ eJmxPm,u‖ ≤ C eβx , ∀x ≤ 0. 31



2 Breather solutions in Klein-Gordon equationsHen
e (see [15℄) the map I−K ◦ G has an inverse Ψ : Yη → Yη. The solution 
an nowbe des
ribed as
V (x) = Ψε(SVc)(x)with PcV (0) = Vc. Be
ause of the spe
tral gap, the 
ut-o� fun
tion and all estimatesare O(1) for ε → 0, the size of the 
enter-manifold will also be O(1) for ε → 0. Wede�ne the graph of the 
enter-manifold by a mapping h from the 
entral subspa
e to thehyperboli
 subspa
e by

h(0, V1, ε) = PhΨε(SI1V1)(0)where Ph = Pu + Ps is the proje
tion onto the hyperboli
 subspa
e and I1 : R2 → Ec isthe in
lusion mapping. Then we haveTheorem 2.2. For all n ∈ N there exist ε0 > 0 and δ0 > 0 su
h that for all ε ∈
(0, ε0) the spatial dynami
s formulation in rotational 
oordinates (2.22) possesses a two-dimensional invariant manifold

Wc,ε(0) = {V ∗ ∈ ℓ1(R2; σ) | (0, V ∗
3 , V

∗
5 , . . .) = h(0, V ∗

1 , ε)}tangential to the 
enter spa
e
Ec = {(V ∗

1 , 0, 0, . . .) | V ∗
1 ∈ R2}with

h(0, ·, ·) ∈ Cn
(

{V ∗
1 ∈ R2 | ‖V ∗

1 ‖ ≤ δ0} × [0, ε0], ℓ
1(R2; σ)

)The 
enter-manifold Wc,ε(0) has been 
onstru
ted for the starting point x0 = 0. Theother 
enter-manifolds are easily 
onstru
ted by the evolution operator Sx,x0
of equation(2.22) de�ned by Sx,x0

V0 = V (x, x0, V0) with x, x1 ∈ R and V0 ∈ ℓ1(R2, σ). Then
Wc,ε(x0) = Sx0,0Wc,ε(0)Therefore we de�ne the redu
tion fun
tion h(x, ·, ε) for Wc,ε(x) by

V (x) = Sx,0V (0) = Sx,0

(

V1(0) ⊕ h(0, V1(0), ε)
)

= V1(x) ⊕ h(x, V1(x), ε)32



2.6 The Center-Manifold Redu
tionRemark 2.9. Note that Wc,ε(x0) is not smooth w.r.t. x0 due to the jumps in the 
o-e�
ient fun
tion s = s(x) w.r.t. x. More essential for our purposes is however thesmoothness of the manifold for �xed x0 as a fun
tion of V1.On the reversibility The redu
tion mapping 
arries over the reversibility property.From equation (2.23) we 
an 
al
ulate the identity R̃V− = SR̃Vc + KGε(R̃V−) where
V−(x) = V (−x). Hen
e it is R̃V (−x) = Ψε(SR̃Vc)(x) and we 
on
lude R̃hh(x, V1, ε) =

h(−x, R̃1V1, ε) with R̃h =
⊕

m∈{3,5,7,...} R̃m. Sin
e with x 7→ V (x) being a solution, also
x 7→ R̃V (−x) = R̃1V1(−x) ⊕ R̃hh(−x, V1(−x), ε) is a solution on the 
enter-manifold, we
an 
on
lude that R̃hh(−x, V1(−x), ε) = h(x, R̃1V1(x), ε) by the following 
onsideration:

R̃V (−x) = R̃1V1(−x) ⊕ R̃hh(−x, V1(−x), ε)

= R̃S−x,0V (0)

= S−x,0R̃V (0)

= S−x,0

(

R̃1V1(0) ⊕ R̃hh(0, V1(0), ε)
)

= S−x,0

(

R̃1V1(0) ⊕ h((0)−, R̃1V1(0), ε)
)

= R̃1V1(−x) ⊕ h(x, R̃1V1(−x), ε).From this we �nd that
R̃1F1,ε (x, 0, V1(x) ⊕ h(x, V1(x), ε)) = −F1,ε

(

−x, R̃1V1(x) ⊕ R̃hh(x, V1(x), ε)
)

= −F1,ε

(

−x, R̃1V1(x) ⊕ h(−x, R̃1V1(x), ε)
)As a 
onsequen
e all small bounded solutions 
an be found on the 
enter-manifold andthe redu
ed system on the 
enter-manifold is given by

∂xV1(x) = J1V1(x) + F1,ε

(

x, 0, V1(x) ⊕ h(x, V1(x), ε)
)

. (2.24)Sin
e the 
enter-manifold redu
tion preserves reversibility the redu
ed system (2.24) isstill reversible w.r.t. the transformed reversibility operator R̃1. 33



2 Breather solutions in Klein-Gordon equations2.7 Properties of the redu
ed systemFrom the multiple-s
ale analysis (see Remark 2.4) we derive a formal approximation ofthe solution, with a envelope-modulated 
arrier-wave
u(x, t) = εA(ε(x− cgt), ε

2t)fn(x, k) eiωn(k)t + 
.
..The envelope has an amplitude in O(ε) s
aling. Motivated by this s
aling we introdu
e
ũ1(x) = εA(x)

ṽ1(x) = ε2B(x).
(2.25)Then we have the following result.Theorem 2.3. Equation (2.24) together with the s
aling (2.25) will read

d

dX
A = εB + O(ε2)

d

dX
B = εs1(x)A− εs3(x)A

3 + O(ε2)

(2.26)where sj(x + 2) = sj(x) for j = 1, 3 and sj(x) ≥ 0 j = 1, 3 for all x ∈ R. Furthermore
sj(x) > 0, j = 1, 3 on a set with positive measure.Proof. By de�nition we have

U1 = Q̃1V1 = Q̃1





εA

ε2B



 = ε





q11A + εq12B

q21A + εq22B



The 
enter-manifold is tangential to the 
enter-eigenspa
e, therefore
Uj(x) = Q̃j(x)hj(x, V1(x), ε) = O(‖V1(x)‖3) = O(ε3)therefore for all j = 3, 5, 7, . . . the in�uen
e of Uj in the nonlinearity N1 is small and weonly need to look at U1. Hen
e we have

N1

(

Q̃1(x)V1(x) ⊕ (Q̃j(x)hj(x, V1(x), ε))j

)

=





0

ε3r(x)(q11)
3A3



+ O(ε4)

34



2.8 Averaging Argumentwhi
h implies
Q̃−1

1 N1(Q̃1V1 ⊕ (Q̃jhj)j) =





0

ε3r(x) (q11)4

det Q̃1
A3



+ h.o.t.Sin
e the Wronskian equals 1 and is 
onstant for all x ∈ R the determinant det Q̃1 =

detS−1
1 = 1/ detS1. The last equation simpli�es to

Q̃−1
1 N1(Q̃1V1 ⊕ (Q̃jhj)j) =





0

ε3r(x) det(S1)(q11)
4A3



+ h.o.t.This 
on
ludes the nonlinear part of the equation. The linear part is
J̃1,εV1 = J1V1 + Q̃−1

1 Sε(x)Q̃1V1 =





ε2B

ε3q1det(S1)s(x)(q11)
2A



+ h.o.t.The res
aled equation is then given by




Ȧ

Ḃ



 = ε





B

s(x)q1det(S1)q
2
11(x)A+ r(x) det(S1)q

4
11(x)A

3



 + O(ε3)We set
r(x) = r0 = −1/ det(S1),

s1(x) = s(x)(q11(x))
2,

q1 = 1/ det(S1),

s3(x) = (q11(x))
4.

(2.27)The 
oe�
ients s, r, q are from the original Klein-Gordon equation (2.1). Both s1, s3are 2-periodi
 fun
tions. Sin
e q11 is 
ontinuous and q11(x0, x0) = 1, q11 > 0 on a setwith positive measure, whi
h means that s1 and s3 are also positive on a set of positvemeasure.2.8 Averaging ArgumentWe use averaging as dis
ussed in [11℄ to analyze the dynami
s of equation (2.26) whi
hwe will rewrite abstra
tly to
∂xa = εF(x, a) + ε2

G(x, a). (2.28)35



2 Breather solutions in Klein-Gordon equationswith a = (A,B) and
F(x, a) = ε





B

s1(x)A− s3(x)A
3



 .Then equation (2.28) 
an be transformed a

ording to [11℄ to the following equation
∂xA = εF̄(A) + ε2

H(x, ε,A), (2.29)with the averaged part of the equation given by
∂xAavg = εF̄(Aavg) (2.30)with

F̄(·) =
1

2

∫ 2

0

F(x, ·)dx =





B̃

s̄1Ã− s̄3Ã
3



 , (2.31)where s̄j = 1
2

∫ 2

0
sj(x)dx, j = 1, 3. By the fa
t that sj(x) > 0 on a set of positive measurewe 
on
lude that s̄j > 0, j = 1, 3. From the 
hoi
e of 
oe�
ients we note that we haveset r(x) = r0 = 1/ det(S1) for all x.The solution to equation (2.30) is 
omputed by res
aling A(x) = Ã(εx) = Ã(X), sowe have

∂XÃavg = F̄(Ãavg)with
∂XÃ = B̃,

∂XB̃ = s̄1Ã− s̄3Ã
3,This system has a homo
lini
 orbit whi
h is expli
itly given by

Ãavg/hom(X,X0) =





Ãhom(X,X0)

B̃hom(X,X0)



with
Ãhom(X,X0) = ±

√

2s̄1

s̄3
se
h (

√
s1(X −X0)) , B̃hom(X,X0) = ∂XÃhom(X,X0)Undoing the res
aling we have the solution of equation (2.30)

Aavg/hom(x, x0) =





±
√

2s̄1

s̄3
se
h (ε√s1(x− x0)

)

∓
√

2(s̄1)2

s̄3
tanh (ε√s1(x− x0)

) se
h (ε√s1(x− x0)
)





36



2.9 Persisten
e Proof2.9 Persisten
e ProofIn this se
tion we prove the existen
e of the homo
lini
 solution in equation (2.29) basedon the existen
e of a homo
lini
 solution of equation of (2.30). Sin
e both equationsonly di�er in higher order terms (O(ε2)), we speak of the persisten
e of the homo
lini
solution.The homo
lini
 orbit Aavg/hom lies in the interse
tion of the stable manifold and theunstable manifold of system (2.30). In general, if higher order terms are added, theinterse
tion will break up and the perturbed stable manifold and the unstable manifoldwill no longer interse
t. In reversible systems the situation is di�erent. The persisten
eof the homo
lini
 solution is established basi
ally in two steps. First, by proving atransversal interse
tion of the stable manifold with the �xed spa
e of reversibility for theunperturbed system. Se
ond, by arguing that this transversal interse
tion will remaineven in the perturbed system. This results in the homo
lini
 orbit, for x ∈ [0,∞).Applying the reversibility operator R to this part of the solution, also results in thehomo
lini
 orbit, for x ∈ (−∞, 0].The a
tual persisten
e proof 
onsists of three steps:i) Beyond other things in [11, Theorem 4.1.1℄ the following is shownLemma 2.4. There exists a Cr-
hange of 
oordinates A = a + εw(a, x, ε) underwhi
h (2.28) be
omes (2.29)
∂xA = εF̄(A) + ε2

H(x, ε,A)where H is of period 2 w.r.t. x.Hen
e in an O(1)-neighborhood the stable manifold W s of the averaged system(2.30) and the stable manifold Ws of the full system (2.28) resp. (2.29) are O(ε)-
lose together.ii) In addition to the statement in Lemma 2.4, in [11, Theorem 4.1.1℄ it is shown 37



2 Breather solutions in Klein-Gordon equationsLemma 2.5. If Aavg(x) and A(x) are solutions of (2.29) and (2.30) with |Aavg(0)−
A(0)| = O(ε), then |Aavg(x) − A(x)| = O(ε) on a s
ale O(1/ε).By applying the approximation result from Lemma 2.5 shows that the stable man-ifold W s of the averaged system (2.30) and the stable manifold Ws of the fullsystem (2.28) resp. (2.29) are O(ε)-
lose together on a s
ale O(1/ε). Hen
e, O(ε)-
lose to the interse
tion point of the averaged system (2.30) with the �xed spa
eof reversibility there is an interse
tion point of the full system (2.28) resp. (2.29).See Figure 2.9. As a 
onsequen
e we have a solution a(x) of (2.28) for x ∈ [0,∞)whi
h satis�es limx→∞ a(x) = 0 and a(0) ∈ {B = 0}.iii) Finally, we use the reversibility of the redu
ed system (2.24) resp. (2.28). It allowsus to extend V1(x) for x ∈ [0,∞) by V1(−x) = RV1(x) to x ∈ R. In response, we
onstru
ted a homo
lini
 solution to the origin for (2.24) and as a 
onsequen
e ofthe exa
t 
enter-manifold redu
tion �nally one for the original system (2.6).
 0

 0Figure 2.5: The 
ombination of lo
al estimate for the di�eren
e from(i) with the approximation result from ii). The dotted/fullline is the stable manifold of the averaged system (2.30)/fullsystem (2.28).
38



2.10 Lowest Order Approximation2.10 Lowest Order ApproximationIn this se
tion we want to summarize the steps of the last se
tion in order to give anapproximation result whi
h independently a�rms the NLS-approximation of Remark2.4.The solution of (2.30) and (2.29) are related by
A(x) = Aavg/hom + εR(x)with a remainder smaller than the homo
lini
 solution. By Lemma 2.4 the 
hange of
oordinates A = a + εw(a, x, ε) has an inverse whi
h we shall 
all

a = A + εW (A, x, ε),so we get
a(x) = Aavg/hom(x) + O(ε).Undoing the res
aling of (2.25) we have

V1(x) =





ε 0

0 ε2



a(x)

=





ε 0

0 ε2



Aavg/hom(x) +





O(ε2)

O(ε3)



 .We move from rotational 
oordinates ba
k into the original Fourier-spa
e
U1(x) =Q̃1(x)V1(x) = Q̃1(x)Aavg/hom(x) +





O(ε2)

O(ε3)





=





εq11(x)Aavg/hom(x) + O(ε2)

εq21(x)Aavg/hom(x) + ε2q22(x)Bavg/hom + O(ε3)



 .Sin
e we only need u1 for an approximation, we get from the last statement
u1(x) = ±εq11(x)

√

2s̄1

s̄3
se
h(ε

√
s̄1x) + O(ε2) 39



2 Breather solutions in Klein-Gordon equationswhi
h 
orresponds to the original solution in the following way
u(x, t) = ±2εq11(x)

√

2s̄1

s̄3
se
h(ε

√
s̄1x) sin(ω0t) + O(ε2). (2.32)From the last se
tion the 
oe�
ients s̄1, s̄3 are all given by

s̄1 =
1

2

∫ 2

0

s(x)q2
11(x)dxand

s̄3 =
1

2

∫ 2

0

q4
11(x)dx.Remark 2.10. In Remark 2.1 we have stated that in the lowest order the breather isgiven by

u(x, t) = 2εc1se
h(εc2x)q11(x) sin(ω0t) + O(ε2) (2.33)with 
onstants
c1 =

√

2s̄1

s̄3

c2 =
√
s̄1

(2.34)From the approximation result (2.32) and the 
oe�
ients s̄1 and s̄3 we only need theknowledge of q11(x). It is a 2-periodi
 fun
tion given by the periodi
 part of the linearsolution of
y′′ = −(ω2

0 − q0)s(x)y. (2.35)Its fundamental solution is given by Φ1(x; 0) = Φ1(x+2; 2), with Φ(0; 0) = I2 whi
h 
anbe de
omposed a

ording to Floquet's Theorem
Φ1(x; 0) = Q̃1(x; 0) exJ1and

Q1(x; 0) =





q11(x) q12(x)

q21(x) q22(x)



 .This 
on
ludes the 
hapter. We have shown that there exists a breather solution and thatits approximation mat
hes the expe
ted approximation from the multiple s
ale analysisof Remark 2.4. QED.40



3 Breather Solutions inTime-dependent Wave EquationsIn the last 
hapter we proved the existen
e of breather solutions in the spatially periodi
nonlinear Klein-Gordon equation. The question arises if the linear spe
trum 
an betailored by other means, for example by also using time-dependent 
oe�
ients.In this 
hapter we �rst show that a time-dependent but spatially homogeneous 
oe�
ientis enough to repeat the steps of Chapter 2 and to prove the existen
e of a breathersolution. Then we generalize the idea to a slightly more physi
al nonlinear wave equationwith time- and spa
e-dependent 
oe�
ients.3.1 The Spatially Homogeneous CaseWe show that for a 
ertain 
hoi
e of time-dependent 
oe�
ients in the nonlinear Klein-Gordon equation all eigenvalues ex
ept of two are bounded away from the imaginaryaxis. The two eigenvalues 
lose to the imaginary axis 
an be moved with a small 
hangein the temporal frequen
y ω. A 
enter-manifold redu
tion is then possible and admits ahomo
lini
 solution in the redu
ed system. In summaryTheorem 3.1. Consider the equation
∂2

xu = ∂2
t

(

s ⋆ u
)

+ u− u3 (3.1)with
(s ⋆ u)(x, t) :=

∫ ∞

−∞

s(t− τ)u(x, τ) dτ 41



3 Breather Solutions in Time-dependent Wave Equationsand periodi
 boundary 
onditions in time:
u(x, t) = u(x, t+ T ), x, t ∈ R,where T = 2π

ω
. Let s(t) be the 
oe�
ient of equation (3.1) whose Fourier-transform ŝ isgiven by Figure 3.1. Then for ω = 1 − ε2 (ε ≪ 1) there exists a breather solution, i.e.there exists 
onstants C, β > 0 su
h that

|u(x, t)| < C e−β|x|holds.Remark 3.1. We will dis
uss an extension to this theorem in the next se
tion: the
oe�
ient s may also be periodi
 in spa
e, i.e. s(x, t) = s(x+ 1, t) for all x, t ∈ R.

Figure 3.1: The (smooth) fun
tion ŝ.Remark 3.2. The 
oe�
ient s(t) will be 
hosen in su
h a way that the general Cau
hy-problem will be
ome ill-posed. In this instan
e it means that only the initial value problemwith respe
t to the spa
e variable x is well posed whereas the initial value problem w.r.t.
t is not de�ned.In fa
t, in physi
s or ele
tri
al engineering it is 
ustomary to inter
hange the role ofspa
e and time: the initial 
ondition will be the �insertion� of a signal at a 
ertain inputpoint x = 0,

input(t) := u(x, t)|x=042



3.1 The Spatially Homogeneous Caseand the output at point x = L will be also measured w.r.t. time
output(t) := u(x, t)|x=L .Remark 3.3. In 
ausal systems we assume that the in�uen
e of s(t) on u(·, t) 
an only
ome from the present and the past, but never from the future. As a result s(t) = 0 for all

t < 0. Mathemati
ally the prin
iple of 
ausality indu
es the �Kramers-Kronig�-relation,whi
h states that the Fourier-transform of s(t) must have nonvanishing imaginary parts(see [24℄ and [25℄). We ignore the restri
tions of 
ausality in our analysis.3.1.1 Proof of Theorem 3.1To prove Theorem 3.1 we use the periodi
 boundary 
onditions in time to display thesolution as a Fourier-series
u(x, t) =

∑

n∈Z un(x) einωt.Then the equation be
omes the system of equations
∂2

xun = −n2ω2ŝ(nω)un + un − gn, n ∈ Z.with
gn(x) :=

∑

j∈Z3,|j|=n

uj1(x)uj2(x)uj3(x). n ∈ Z.This equation has a dispersive term whi
h gives us a gap near the origin � we will use thisone and only gap to 
reate eigenvalues far away from the imaginary axis. The dispersionrelation 
an be written down expli
itly by using un(x) = Cn e±kn(ω)x:
k2

n(ω) = 1 − n2ω2ŝ(nω).If k2
n(ω) is negative un(x) will be bounded, otherwise it will have exponential 
hara
ter.In order to prove the theorem we need a 
oe�
ient ŝ su
h that the 
riti
al modes

n = ±1 have very small exponential growth and all other modes have distin
tivelylarger exponential 
hara
ter. Su
h a 
oe�
ient 
an be found. It will be de�ned thefollowing way: for |r| < 1 + ε2 we set ŝ(r) = 1 and for |r| > 2− 2ε2 we set ŝ(r) = 0, seeFigure 3.1. The bifur
ating parameter is ε whi
h 
hanges the time frequen
y ω = 1−ε2.43



3 Breather Solutions in Time-dependent Wave EquationsLemma 3.1. For all ε≪ 1, the 
oe�
ient ŝ 
hosen as above has the properties:
• k2

±1(1 − ε2) = O+(ε2) (where O+ ≥ 0) and
• k2

±n(1 − ε2) = 1 for all n = 2, 3, . . ..
• The 
onvolution is de�ned and bounded: ŝ ∈ Ck(R), valid for all k ∈ N, 
arriesover to de
ay of s faster than any polynomial, thus the integral (s ⋆ u)(x, t) :=
∫∞

−∞
s(t− τ)u(x, τ) dτ exists.We then use spatial dynami
s:

∂un = vn

∂vn = k2
n(ω)un − gnThe same invarian
es on the phase-spa
e apply as in the previous 
hapter (see se
tion2.3) and we 
an restri
t our analysis to X̂.

UR ∩ Uodd ∩ UO = {(um)m∈Z : Reum = 0, u2m = 0} =: X̂Therefore we now have for n ∈ Nodd
∂un = vn

∂vn =
(

1 − n2ω2ŝ(nω)
)

un − gnFor ω = 1 − ε2 we have for n = 1

∂u1 = v1

∂v1 =
(

2ε2 − ε4
)

u1 − g1and for n > 1

∂un = vn

∂vn = un − gnThus the 
enter-manifold theory 
an be applied (see [15℄). From there we eventuallyderive the ODE
Ȧ = B

Ḃ = 2A− CA3 + O(ε)44



3.2 The Spatially Periodi
 Casefor u1(x) = εA(εx) and v1(x) = ε2B(εx) and a 
onstant C > 0. In the unperturbedstate, i.e. ε = 0, this ODE has two homo
lini
 solutions
u1,hom(x) = ±

√

4

C
se
h(√2εx

)The proof now follows analogously to the 
ase of Chapter 2. By reversibility this ho-mo
lini
 solution preserves when the higher order terms are added. Therefore there is abreather solution in the original equation (3.1).
3.2 The Spatially Periodi
 CaseTheorem 3.1 
an be extended to spatially periodi
 
oe�
ients s(x, t) = s(x + 1, t). We
onsider a modi�ed nonlinear Klein-Gordon equation:

∂2
xu(x, t) = ∂2

t (s ⋆ u)(x, t) + u3(x, t). (3.2)with (s ⋆ u)(x, t) =
∫∞

−∞
s(x, t− τ)u(x, τ) dτ .Remark 3.4. The di�eren
e to the nonlinear Klein-Gordon equation (3.1) is the la
k ofa �dispersive� term +u. The nonlinear wave equation whi
h one derives from Maxwell'sEquations for 1D periodi
, nonlinear and linearly polarized materials is very 
lose toequation (3.2) (See the appendix for the derivation).In order to �nd out the spe
trum of the linearized equation of equation (3.2) we swit
hinto frequen
y-domain by applying a Fourier-transform to (3.2):

∂2
xun(x) = −ŝ(x, nω)n2ω2un(x) − gn(x), n ∈ Z. (3.3)We 
hoose a separable time-spa
e 
oe�
ient

ŝ(x, nω) = f̂(nω)ŝ1(x)su
h that we 
onsider the equation
∂2

xun(x) = −n2ω2f̂(nω)ŝ1(x)un(x) − gn(x), n ∈ Z. (3.4)45



3 Breather Solutions in Time-dependent Wave EquationsLinearizing around the zero-solutions gives us
∂2

xun(x) = −n2ω2f̂(nω)ŝ1(x)un(x), n ∈ Z, (3.5)whi
h is now 
ompletely de
oupled in terms of the n's. In the situation of the linearizedequation (3.5) a � simple� dispersion relation will not show the asymptoti
 behaviorof solutions of the linearized equation w.r.t. x. As a result of the periodi
ity of the
oe�
ient ŝ1(x) = ŝ1(x+ 1) we 
ompute the linear (Floquet-) spe
trum of (3.5) by theuse of Floquet's Theorem. To dis
uss the equation (3.5) we use the help of the followingODE
y′′ = −γ(λ)s(x)y (3.6)with periodi
 s and arbitrary γ. The Floquet-multipliers are easily 
omputed by

ρ±(λ) =
1

2
D(γ(λ)) ± 1

2

√

D(γ(λ)) − 4where D is the dis
riminant of
y′′ = −s(x)λy.Therefore the dis
iminant of (3.6) is simply given by
D̃ = D ◦ γ.In terms of equation (3.5) we have γ(λ) = λ2f̂(λ), where we substituted λ = nω for
onvenien
e. Therefore
f̂(λ) =

γ(λ)

λ2
.In order to 
ontrol and to simplify the 
omputation of the Floquet-multipliers we want

f̂ to be symmetri
. Additionally f̂ should not have any singularities. With this in mindwe de
ide to set
γ(λ) =











λ2, λ2 < M

M, λ2 ≥Mwith M to be the �rst maximum or minimum of D with |D(M)| > 2. This 
onditionloosely states that ŝ1(x) must be 
hosen su
h that there is at least one band-gap. From46



3.2 The Spatially Periodi
 Casethe 
hoi
e of γ the following holdŝ
f(λ) =











1, λ2 < M

M
λ2 , λ2 ≥ c

(3.7)see Figure 3.3. A

ordingly the dis
riminant is
D̃(λ) = D(λ2f̂(λ)).An example of the resulting dis
riminant is shown in Figure 3.2.

Figure 3.2: The dis
riminant D(f(λ2)).Remark 3.5. The downside of the 
hoi
e of f̂ is the dis
ontinuity at λ = M . Then the
onvolution (s ⋆ u)(x, t) might not exist as a smooth fun
tion. However, there are alsogeneralizations to this 
hoi
e of f̂ whi
h are C∞.Let z be 
hosen to be the last zero of D(λ)2−4 before the valueM is rea
hed. In otherwords, let z1 ≤ z2 ≤ z3 ≤ . . . be the zeros of D(λ)2−4. Then z = zi with zi < M < zi+1.In terms of the time frequen
y ω we set the bifur
ation point ω0 to be the square rootof this zero:
ω2

0 = z. (3.8)47



3 Breather Solutions in Time-dependent Wave Equations

Figure 3.3: The fun
tions λ2f̂(λ) and f̂(λ).With ω = ω0 + ε2 we 
an 
al
ulate the dis
riminant for n = ±1

D
(

(ω0 + ε2)2f̂(ω0 + ε2)
)2−4 = D

(

(ω0 + ε2)2
)2 − 4 = D

(

z + O+(ε2)
)2 − 4 = O+(ε4)and for |n| > 1

D
(

n2(ω0 + ε2)f̂(n(ω0 + ε))
)

= D(M).Therefore we have:
ρ±(ω0 + ε2) = O+(ε2)and for |n| > 1

ρ±
(

n(ω0 + ε2)
)

=
D(M) ±

√

D(M)2 − 4

2
.The Floquet-exponents are given by the formula

ρ±
(

n(ω0 + ε2)
)

= ek±n(ω0+ε2)see 2.4 and formula (2.13) for details. In summary, the equation
∂xun(x) = vn

∂xvn(x) = −ŝ1(x)f̂(nω0 + ε2)n2(ω0 + ε2)2un(x) n ∈ Z. (3.9)has solutions
un(x) = pn(x;ω0 + ε2) ekn(ω0+ε)x48



3.2 The Spatially Periodi
 Casewith 1-periodi
 pn and Floquet-exponents k±1(ω0 + ε) = O+(ε2) and kn(ω0 + ε) = O(1)(|n| > 0) as ε→ 0.Sin
e the same invarian
es as dis
ussed in Chapter 2 Se
tion 2.3 apply, we 
an restri
tthe analysis to the invariant subspa
e X̂. Then we will make a 
hange of 
oordinates intorotational 
oordinates (as dis
ussed in Chapter 2 Se
tion 2.5). The resulting equationwill be (abstra
tly)̇
Un(x) = BnUn(x) + Ñn

[

(Um)m∈Z](x), n ∈ Noddwith eigenvalues kn(ω0 + ε2). Therefore, we have an eigenvalue at n = 1 whi
h is 
loseto the imaginary axis. All other eigenvalues are uniformly bounded away from thateigenvalue. We 
an now perform the 
enter-manifold redu
tion as des
ribed in Se
tion2.6. The proof of a homo
lini
 solution for n = 1 is analogous to Se
tion 2.7 andfollowing. Therefore we have proven the following theorem.Theorem 3.2. We 
onsider the equation
∂2

xu(x, t) = ∂2
t (s ⋆ u)(x, t) + u3(x, t). (3.10)whi
h 
orresponds in Fourier-spa
e to

∂2
xun(x) = −ŝ(x, nω)n2ω2un(x) − gn(x), n ∈ Z. (3.11)We 
hoose

ŝ(x, nω) = ŝ1(x)f̂(nω)where f̂ is a fun
tion de�ned by Figure 3.3, and ŝ1(x) = ŝ1(x+ 1) is a periodi
 fun
tionwith at least one band-gap.Then there exist a ω0 su
h that for 0 < ε ≪ 1 there exists a breather solution for
ω = ω0 + ε2.Remark 3.6. The result 
an be generalized to a broader range of equations. The non-linear part of equation (3.2) 
an be made more 
omplex:

∂2
xu(x, t) = ∂2

t

(

(s ⋆ u)(x, t) − (r ⋆ u3)(x, t)
)

. 49



3 Breather Solutions in Time-dependent Wave Equationsin whi
h 
ase we get
∂2

xun(x) = −ŝ(x, nω)n2ω2un(x) − n2ω2r(x, nω)gn(x), n ∈ Z.Then the nonlinear part
−n2ω2r̂(x, nω)gn(x)is bounded in n if r(x, nω) = O(1/n2). The 
enter-manifold theory 
an also be appliedin this situation.

50



4 Fourier-Interfa
e MethodIn Chapter 2 we 
laimed in Remark 2.3 that the 
hoi
e of the periodi
 
oe�
ients givenby
s(x) = χ[0,6/13] + 16χ[6/13,7/13] + χ[7/13],1(x mod 1)

q(x) = (q0 + q1ε
2)s(x)

r(x) = r0is not a 
hoi
e by 
han
e but is based on a method to 
ompute the dis
riminant ofstep-fun
tions expli
itly. For the ODE
u′′ = −λ2s(x)u (4.1)with periodi
 s(x + a) = s(x) the linear asymptoti
s are determined by the Floquet-multiplier whi
h 
an be 
al
ulated by the dis
riminant. We explore a way of 
al
ulatingthe dis
riminant by transforming this ODE into a wave-equation. With the use ofexpli
it solution formulas and the wave-equation's 
hara
teristi
s we 
an 
al
ulate thetransformed dis
riminant.We also deal with the inverse problem: given a dis
riminant what is the 
oe�
ient s?As it will turn out only a few examples permit a well-posed inverse problem. For generalstep-fun
tions it is generally insolvable.4.1 The MethodWe show how to 
ompute the dis
riminant of the following ordinary di�erential equation

u′′(x;λ) + λ2s(x)u(x;λ) = 0, (4.2)51



4 Fourier-Interfa
e Methodwith initial 
onditions
φ1(0;λ) = 1, φ2(0;λ) = 0,

φ′
1(0;λ) = 0, φ′

2(0;λ) = 1.
(4.3)The growth of this ODE's solutions is determined by the Floquet-multiplier

ρ±(λ2) =
D(λ2)

2
± 1

2

√

D(λ2)2 − 4with the dis
riminant D(λ2) = φ1(a;λ) + φ′
2(a;λ). Applying Fourier-transform to ODE(4.2) w.r.t. λ yields

∂2
xû = s(x)∂2

µû (4.4)where û(x, µ) =
∫R u(x;λ) e−iµλdλ. The initial 
onditions translate to

φ̂1(0, µ) = δ(µ), φ̂2(0, µ) = 0,

∂xφ̂1(0, µ) = 0, ∂xφ̂2(0, µ) = δ(µ),
(4.5)where δ is the Dira
-delta distribution. The Fourier-transform of the dis
riminant isthen D̂(µ) = φ̂1(a, µ) + ∂xφ̂2(a, µ). We will only 
onsider step-fun
tions. In this 
asewe 
an solve the equation (4.4) expli
itly on ea
h 
onstant part of s. In detail, if the
hara
teristi
 fun
tion is given by

χM (x) =











1, x ∈M

0, x /∈Mthen we have for all fun
tions s, whi
h satisfy the following representation
s(x) =

N
∑

n=1

s2
nχ[an−1,an)(x),the expli
it solution of the linear wave equation

∂2
xû = s2

n∂
2
µû, x ∈ [an−1, an)for ea
h n = 1, . . . , N . The solution is given by

û(x, µ) =
1

2

(

fn−1(µ+ snx) + fn−1(µ− snx)
)

+
1

2sn

∫ µ+snx

µ−snx

gn−1(ν)dν
∂xû(x, µ) =

1

2

(

gn−1(µ+ snx) + gn−1(µ− snx)
)

+
sn

2

(

f ′
n−1(µ+ snx) − f ′

n−1(µ− snx)
)(4.6)52



4.1 The Methodwith the initial 
onditions
fn(µ) = û(an, µ), n = 0, . . . , N − 1

gn(µ) = ∂xû(an, µ), n = 0, . . . , N − 1.
(4.7)Thus two initial value problems must be solved independently. For φ̂1 they are

f1,0(µ) = δ(µ),

g1,0(µ) = 0.
(4.8)For φ̂2 the initial 
onditions are

f2,0(µ) = 0,

g2,0(µ) = δ(µ).
(4.9)To explain the Fourier-Interfa
e Method we start with the 
onstant 
ase, i.e. thesituation withN = 1 where s(x) ≡ s2 ∈ R is a 
onstant. In this 
ase the solution formula(4.6) 
an be dire
tly applied. The following solution has straight lines as 
hara
teristi
soriginating from the origin to ±sa. We have

φ̂1(x, µ) =
1

2

(

δ(µ+ sx) + δ(µ− sx)
)

∂xφ̂2(x, µ) =
1

2

(

δ(µ+ sx) + δ(µ− sx)
)

.After the evolution to the point x = a we stop. Now we have the transformed dis
rim-inant
D̂(µ) = φ̂1(a, µ) + ∂xφ̂2(a, µ) = δ(µ+ sa) + δ(µ− sa)and re
over it by an inverse Fourier-transform:

D(λ2) = 2 cos(asλ).There is a geometri
al way of looking at this result: starting from a top-down view,there is a Dira
-delta at x = 0 at the position µ = 0. Then two 
hara
teristi
s emanatefrom this starting Dira
 with a slope of ±s. At x = a these Dira
-deltas will be movedto µ = ±sa with mass ea
h 1
2
. See �gure 4.1. 53



4 Fourier-Interfa
e Method

Figure 4.1: Evolution of a Dira
-delta distribution by a linear wave equa-tion. Left: Isometri
 view. Right: Top-down view.Now we 
onsider the 
ase where N > 1. The main di�eren
e now are the interfa
es be-tween two layers. Ea
h 
hara
teristi
 splits up into two 
hara
teristi
s at an interfa
e.The 
hara
teristi
s after the split-up have slopes a

ording to the layer's 
oe�
ient snwhere n = 1, . . . , N denotes the layer. The masses of the Dira
-delta distributions splitup with a preferen
e to the dire
tion of propagation.For φ̂1 the mass for the Dira
-delta whi
h moves in the dire
tion of propagation willhave the following fra
tion of the original mass
1

2
(1 +

sn

sn+1
)and the Dira
-delta in the opposite dire
tion of propagation will have the followingfra
tion of the original mass

1

2
(1 − sn

sn+1

).See �gure 4.2 for an illustration of this behavior. The evolution of ∂xφ̂2 is very semilarto the evolution of φ̂1. The fra
tion of the original mass is
1

2
(1 +

sn+1

sn
)for the dire
tion of propagation and

1

2
(1 − sn+1

sn

)in the opposite dire
tion. The basi
 rule also says that at the splitting the total mass ofthe splitted Dira
-distributions is 
onserved:
1

2
(1 +

sn

sn+1
) +

1

2
(1 − sn

sn+1
) = 154



4.1 The Methodand
1

2
(1 +

sn+1

sn

) +
1

2
(1 − sn+1

sn

) = 1.The basis-rule for propagation 
an be seen if δ(µ+ snx)|x=an
is used as initial 
ondi-tion in the solution formula (4.6). Please note, that there are no re�e
tions, sin
e the

x-derivative is proportional to +sn.

Figure 4.2: Basi
 rule when a �Dira
-ray� hits an interfa
e.The basi
 rule 
an be 
ondensed in a general solution formula:
φ̂1(a, µ) =

1

2N

∑

M∈{−,+}N

N−1
∏

i=1

(

1 +MiMi+1
si

si+1

)

δ

(

µ+
N
∑

i=1

Misi(ai − ai−1)

)

and
∂xφ̂2(a, µ) =

1

2N

∑

M∈{−,+}N

N−1
∏

i=1

(

1 +MiMi+1
si+1

si

)

δ

(

µ+

N
∑

i=1

Misi(ai − ai−1)

)

where a0 = 0 and aN = a. The dis
riminant is then given by
D̂(µ) =

∑

M∈{−,+}N

SM δ

(

µ+

N
∑

i=1

Misi(ai − ai−1)

)

with the masses
SM =

1

2N

(

N−1
∏

i=1

(

1 +MiMi+1
si

si+1

)

+

N−1
∏

i=1

(

1 +MiMi+1
si+1

si

)

)The proof of this statement is by indu
tion. 55



4 Fourier-Interfa
e MethodExample 4.1. Consider the two-step fun
tion s(x) = s2
1χ[0,a1) + s2

2χ[a1,a]. Then look atthe evolution of the �Dira
-ray� in Figure 4.3. The solution of the linear wave equationis
φ̂1(a, µ) =

1

4
(1 +

s1

s2
)δ(µ+ s1a1 + s2(a− a1))

+
1

4
(1 +

s1

s2

)δ(µ− s1a1 − s2(a− a1))

+
1

4
(1 − s1

s2

)δ(µ+ s1a1 − s2(a− a1))

+
1

4
(1 − s1

s2

)δ(µ− s1a1 + s2(a− a1)).and
∂xφ̂2(a, µ) =

1

4
(1 +

s2

s1
)δ(µ+ s1a1 + s2(a− a1))

+
1

4
(1 +

s2

s1
)δ(µ− s1a1 − s2(a− a1))

+
1

4
(1 − s2

s1
)δ(µ+ s1a1 − s2(a− a1))

+
1

4
(1 − s2

s1
)δ(µ− s1a1 + s2(a− a1)).

Figure 4.3: The evolution of φ̂1 with a two-step fun
tion.The 
orresponding image 4.3 qui
kly displays the result. The resulting dis
riminant isthen
D(λ2) =

1

4
(2 +

s1

s2

+
s2

s1

) cos
(

(s1a1 + s2(a− a1))λ
)

+
1

4
(2 − s1

s2
− s2

s1
) cos

(

(s1a1 − s2(a− a1))λ
)

.This 
on
ludes the example.56



4.2 The Result4.2 The ResultIn summary of the Fourier-Interfa
e Method it is possible to give a method to 
omputean expli
it formula for the dis
riminant of the ODE (4.2) when the periodi
 
oe�
ientis a step fun
tion:
s(x) =

N
∑

n=1

s2
nχ[an−1,an)(x) (4.10)where N = 1, 2, 3, . . . is the number of steps. The individual steps are de�ned by an andthe step value is s2

n. Then we get the following result.Theorem 4.1. The dis
riminant of equation (4.1) under the assumption that s is a stepfun
tion as de�ned in (4.10) is given by:
D(λ2) = 2

∑

M∈{−,+}N

ωM≥0

SM cos(ωMλ) (4.11)where ωM :=
∑N

i=1Misi(ai − ai−1) for M ∈ {−,+}N and
SM :=

1

2N

N−1
∏

i=1

(

1 +MiMi+1
si

si+1

)

+
1

2N

N−1
∏

i=1

(

1 +MiMi+1
si+1

si

)also for M ∈ {−,+}N . Additionally:
∑

M∈{−,+}N

ωM≥0

SM = 1.Remark 4.1. Sin
e the dis
riminant is de�ned by
D(λ2) = φ1(a;λ) + φ′

2(a;λ)where
φ1(0;λ) = 1, φ2(0;λ) = 0,

φ′
1(0;λ) = 0, φ′

2(0;λ) = 1,
(4.12)the theorem also gives the solution formulas for φ1 and φ′

2:
φ1(a;λ) = 2

∑

M∈{−,+}N

ωM≥0

1

2N

N−1
∏

i=1

(

1 +MiMi+1
si

si+1

)

cos(ωMλ)
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4 Fourier-Interfa
e Methodand
φ′

2(a;λ) = 2
∑

M∈{−,+}N

ωM≥0

1

2N

N−1
∏

i=1

(

1 +MiMi+1
si+1

si

)

cos(ωMλ)Corollary 4.1. Every step fun
tion with si = sN−i+1 (i = 1, . . . , N , N is odd) has theproperty φ1(a, λ
2) = φ′

2(a, λ
2). It is therefore su�
ient to look at D(λ) = 2φ1(a, λ

2).Proof. Let N = 2k + 1 for k ∈ N and M ∈ {−,+}2k. The masses after the evolutionthrough N − 1 interfa
es are
1

2N

N−1
∏

i=1

(1 +MiMi+1
si

si+1
) =

1

2N

k
∏

i=1

(1 +MiMi+1
si

si+1
)

2k
∏

i=k

(1 +MiMi+1
si

si+1
)

=
1

2N

k
∏

i=1

(1 +MiMi+1
si

si+1
)

k
∏

i=1

(1 +MiMi+1
si+1

si
)for φ1 and

1

2N

N−1
∏

i=1

(1 +Mi+1Mi
si+1

si
) =

1

2N

k
∏

i=1

(1 +Mi+1Mi
si+1

si
)

k
∏

i=1

(1 +Mi+1Mi
si

si+1
)for φ′

2.Corollary 4.2. Let s(x) =
∑3

n=1 s
2
nχ(an−1,an] be a symmetri
 3-step fun
tion with s1 = s3and d1 = d3 where dn := an −an−1 for n = 1, 2, 3. Then there are two frequen
ies ω0, ω1.If we assume that the two frequen
ies relate by ω0 = 2ω1 the following invarian
e is true:

3d2s2 = 2d1s1Proof. For a 3-step fun
tion the dis
riminant has 4 frequen
ies ω0, ω1, ω2, ω3. However,two 
an
el ea
h other. The �rst two frequen
ies are:
ω0 = 2d1s1 + d2s2

ω1 = 2d1s1 − d2s2and the other two are
ω2 = d1s1 + d2s2 − d1s1 = d2s2

ω3 = d1s1 − d2s2 − d1s1 = −d2s258



4.3 On the Inverse Problemwith masses
S2 =

1

8
(1 +

s1

s2
)(1 − s2

s1
),

S3 =
1

8
(1 − s1

s2
)(1 +

s2

s1
).Then the frequen
ies ω2, ω3 
an
el ea
h other sin
e S2 + S3 = 0 and ω2 = −ω3.Under the assumption ω0 = 2ω1 the following holds:

ω0 = 2ω1 ⇐⇒ 2d1s1 + d2s2 = 4d1s1 − 2d2s2hen
e
3d2s2 = 2d1s1.Remark 4.2. This invarian
e states that for any given temporal frequen
y ω0 there 
anbe found a symmetri
 3-step fun
tion su
h that the se
ond frequen
y has the given rela-tion. This is parti
ularly important for the dis
riminant and the resulting band stru
ture.Only under these 
onditions every �odd� gap is open!With these 
orollaries we 
an qui
kly re-establish our 
oe�
ient of Chapter 2. Thedis
riminant will be:

D(λ2) = 2S0 cos(ω0λ) + 2S1 cos(ω1λ)We set s1 = 1, s2 = 4 and a = 1. Therefore 6d2 = d1. So we have the ratios 6 : 1 : 6and we may set d1 = 6
13

and d2 = 1
13
. Then we get S0 = 1

8
(1 + 1

4
)(1 + 4

1
) = 25

32
and

S1 = 1
8
(1 − 1

4
)(1 − 4

1
) = − 9

32
and the dis
riminant is

D(λ2) =
25

16
cos(

16

13
λ) − 9

16
cos(

8

13
λ).4.3 On the Inverse ProblemThe inverse Problem is not well-posed. We 
onsider an N-step fun
tion, whi
h gives us

2N-dimensions: parameters are s1, . . . , sN and d1, . . . , dN . Yet the amount of distin
tfrequen
ies for an N-step fun
tion is 2N−1. That means for the general inverse problem59



4 Fourier-Interfa
e Methodthat step fun
tions is not solvable for N > 4. However, for N = 1, 2, 3, 4 the inverseproblem is solvable and standard te
hniques 
an be applied.
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5 Appendix: Appli
ations inMathemati
al Physi
sThe original question to this work has been whether it is possible to �nd breather solu-tions in other equations than the sine-Gordon equation. This question is interesting inits own right. Additionally the questions are also interesting for appli
ations in math-emati
al physi
s. This work was done under the supervision of the Resear
h TrainingGroup 1294 of the German Resear
h Foundation (DFG)"Analysis, Simulation and Design of Nanote
hnologi
al Pro
esses"at the Karlruhe Institute of Te
hnology (KIT). As su
h we dis
ussed the possible ap-pli
ation of this work towards physi
s. This 
hapter shows the ideas to bridge the gapbetween theoreti
al analysis and physi
al appli
ation.5.1 A Physi
al Appli
ation: PGB-MaterialsThe term PGB-Materials stands for Photoni
-Band-Gap-Material whi
h is any materialwhi
h has some sort of opti
al semi-
ondu
tor property. From the early dis
overy of semi-
ondu
tors the so-
alled band-gap is a gap between two energy bands of the dispersionrelation of a S
hrödinger equation modelling the periodi
ally stru
tured latti
e of atoms.A material that has a band-gap for photons is therefore 
alled a PGB-Material. Thisroughly means that the PGB-Material prohibits the passing of light for some frequen
ies.During the late 1980ies the property was found to be useful as a way to manipulate61



5 Appendix: Appli
ations in Mathemati
al Physi
slight. Two physi
ists stand out in the developement of a new �eld of resear
h, namelySajeev John (1987) and Eli Yablonovit
h (1987). They found that photoni
 
rystalsare ex
eptionally good PGB-Materials. Photoni
 Crystals are two diele
tri
s whi
h areordered periodi
ally in spa
e, with latti
e 
onstant to be proportional to the frequen
yof light to be forbidden to pass the stru
ture.In this 
hapter we derive a nonlinear wave equation whi
h des
ribes the intera
tion oflight with the photoni
 
rystal in a 1D setting. From there we will dis
uss how Theorem3.2 
an be applied.5.2 Maxwell's Equation and Derivation of the WaveEquationWe want to model a 1D photoni
 
rystal using Maxwell's equations. We assume linearpolarization along the z-axis (TEM-polarization) and dire
tion of propagation along the
x-axis. Maxwell's equations in SI units are given by

∇×H = J + ∂tD (Amperè's law) (5.1)
∇× E = −∂tB (Faraday's law) (5.2)
∇ · B = 0 (5.3)
∇ ·D = ρ (Gauss' law) (5.4)The ve
tors E,D,B,H, J ∈ R3 depend on spa
e (x, y, z) ∈ R3 and time t ∈ R. Theele
tri
 �eld is denoted by E, its rea
tion on material � the ele
tri
 displa
ement �eld �is 
alled D. The magneti
 �eld is denoted by H and its rea
tion on material B is 
alledthe magneti
 indu
tion �eld. Furthermore there is the ele
tri
 
urrent density J and theele
tri
 
harge density ρ ∈ R. We have the important material equations

J = σE (5.5)
D = εE (5.6)
B = µH (5.7)62



5.2 Maxwell's Equation and Derivation of the Wave EquationHere σ is 
alled the spe
i�
 
ondu
tivity, ε is known as the permittivity (with nonlinearterms also the sus
eptibility) and µ is 
alled the magneti
 permeability. In the 
ourseof this 
hapter we make important assumptions to simplify the equation. First, we willnot 
onsider 
ondu
tors, nor magneti
 materials, therefore σ = 0 and B = µ0H with µ0being a s
alar value. The intera
tion of light and material will solely be governed by ε.We make an phenomenologi
al approa
h to the 
hoi
e of the permittivity:
Di = ε0Ei + ε0χ

(1)
ij (Ej) + ε0χ

(3)
ijkl(Ej , Ek, El) (5.8)where we use Einstein's summation 
onvention. The tensor χ(1) is linear in E3 whereas

χ(3) is a multilinear form in ea
h argument. Sin
e we are only interested in 1D pho-toni
 
rystals we assume that the tensors χ(1), χ(3) will only depend on the dire
tion ofpropagation e1 and time t. The equations (5.1)-(5.4) then are redu
ed to
∇×H = ε0∂t

(

E + χ(1)(E) + χ(3)(E,E,E)
) (5.9)

∇× E = −µ0∂tH (5.10)
∇ · B = 0 (5.11)

∇ ·
(

E + χ(1)(E) + χ(3)(E,E,E)
)

= 0 (5.12)Furthermore, we will restri
t the ele
tri
 �eld to be linearly polarized along the e3-dire
tion and propagating only in e1-dire
tion, i.e.
E(x, y, z, t) = E3(x, t)e3.Taking ∇× (5.10) and inserting it into (5.9), taking into a

ount (5.12), gives the non-linear wave equation of Maxwell-type:

∂x

(

χ
(1)
13 (E3) + χ

(3)
1333(E3, E3, E3)

)

= 0

∂2
t

(

χ
(1)
23 (E3) + χ

(3)
2333(E3, E3, E3)

)

= 0

µ0ε0∂
2
t

(

Ez + χ
(1)
33 (E3) + χ

(3)
3333(E3, E3, E3)

)

= ∂2
xE3
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5 Appendix: Appli
ations in Mathemati
al Physi
sWe shall simply set χ(1)
i3 = 0 = χ

(3)
i333 for i = 1, 2 to �nally arrive at the Maxwell-typewave equation

∂2
xE3 = µ0ε0∂

2
t

(

E3 + χ
(1)
33 (E3) + χ

(3)
3333(E3, E3, E3)

) (5.13)The permeability and sus
eptibility are 
hosen in either a time-independent way, su
hthat
χ

(1)
33 (x, t, E3) := χ1(x)E3(x, t) ∈ R, χ

(3)
3333(x, t, E3, E3, E3) := χ3(x)E

3
3(x, t) ∈ Ror in a time-dependent part

χ
(1)
33 (x, t, E3) =

∫ t

−∞

E(x, t− τ)χ1(x, τ)dτ =:
(

χ1 ⋆ E3

)

(x, t)and
χ

(3)
3333(x, t, E3, E3, E3) =

∫ t

−∞

E3
3(x, t− τ)χ3(x, τ)dτ

=:
(

χ3 ⋆ E
3
3

)

(x, t)The two equations of interest are now
∂2

xE3 = µ0ε0∂
2
t

(

E3 + χ1E3 + χ3E
3
3

) (5.14)
∂2

xE3 = µ0ε0∂
2
t

(

E3 + χ1 ⋆ E3 + χ3 ⋆ E
3
3

) (5.15)These wave equations explain the nonlinear propagation of light in the 1D dire
tion(linearly polarized) under 
ertain material assumptions. In 
ontext of photoni
 
rystalsthe permittivity and sus
eptibility are periodi
 in x with latti
e 
onstant a, i.e. χi(x, t) =

χi(x+ a, t) for i = 1, 3.5.3 Additional RemarksWe want to apply Theorem 3.2 to equation (5.15)
∂2

xE3(x, t) = µ0ε0∂
2
t

(

E3(x, t) +
(

χ1 ⋆ E3

)

(x, t) +
(

χ3 ⋆ E
3
3

)

(x, t)
)
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5.3 Additional Remarkswith periodi
 boundary 
onditions in time
E3(x, t) = E3(x, t+ T ), T =

2π

ωin order to show how the result of Chapter 2 and 3 
an be applied to physi
al appli
ations.By using Fourier-series as an ansatz to the equation (5.15) we have the set of equations
∂2

xE3(x, n) = µ0ε0n
2ω2

(

(

1 + χ̂1(x, nω)
)

Ê3(x, n) + χ̂3(x, nω)Ê3
3(x, n)

)

, n ∈ ZA

ording to Remark 3.6 we set n2ω2χ̂3(x, nω) to be bounded in n ∈ Z so that thenonlinearity is bounded. From a physi
al point of view χ̂3 
an be assumed to adhere tothe drude model: for high frequen
ies it is O(1/n2), see e.g. [26℄. Regarding the linearpart of the equation we will set
1 + χ̂1(x, nω) = ŝ(x, nω) = ŝ1(x)f̂(nω) > 0.with

f̂(λ) =











1, λ2 < M,

M
λ2 , λ2 ≥ c.,whi
h is 
hosen a

ording to (3.7) to �t Theorem 3.2, and

ŝ1(x) = 2χ[0,6/13)(x) + 16χ[6/13,7/13)(x) + 2χ[7/13,1] (x mod 1).The dis
riminant of ŝ1 is very similar to the one of s of Chapter 2 equation (2.3): every�odd� gap is open. In fa
t, we used Corollary 4.2 and its subsequent 
onsiderations forthe derivation of the 
oe�
ient ŝ1. Moreover, we 
hose it to be greater or equal than
2 for physi
al reasons, as outlined below in Remark 5.1. Then we are able to applyTheorem 3.2. The existing breather is given in lowest order by

E3(x, t) = 2εc1 se
h(εc2x)p11(x) sin(ω0t) + O(ε2)with 
onstants c1, c2 > 0, the 1-periodi
 p11 and the 
riti
al frequen
y of light ω0 (see(3.8) for the de�nition). 65



5 Appendix: Appli
ations in Mathemati
al Physi
sRemark 5.1 (Physi
al Limitations). The appli
ation of Theorem 3.2 is physi
ally re-stri
ted for two reasons. First, the 
oe�
ients χ̂j, j = 1, 3, must be physi
ally realizableor realisti
. By de�nition
χ̂1(x, nω) = ŝ1(x)f̂(nω) − 1. (5.16)For n = 1 we may 
hoose the χ̂1 physi
ally reasonable, i.e.
χ̂1(x, ω) = ŝ1(x) − 1 > 0for all x ∈ R. By the de�nition of f̂ , the 
oe�
ient χ̂1 will be
ome negative as n tendsto in�nity, i.e.

χ̂1(x, nω) = s1(x)f̂(nω) − 1 −→ −1, n→ ∞ (5.17)In other words, for high frequen
ies the material be
omes opaque. However, whethersu
h a material may be 
onstru
ted remains to be investigated. Se
ond, any physi
alsystem uses the prin
iple of 
ausality. Therefore, both 
oe�
ients χ̂1 and χ̂3 are subje
tto 
ausality whi
h means
χj(x, t) = 0, t < 0, j = 1, 3.Mathemati
ally the prin
iple of 
ausality is des
ribed by the �Kramers-Kronig�-relation,whi
h states that the Fourier-transform of χ1(t) and χ3(t) (namely χ̂1 and χ̂3) must havenonvanishing imaginary parts (see [24℄ and [25℄). However, we may be able to de
larethat the imaginary parts of the 
oe�
ients are �small� and we drop them to get a real-valued equation. As a result, the breather result by Theorem 3.2 of equation (5.15) maybe seen as an approximation.
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