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Abstract 
 

 

 

The transport models in multi-component tokamak plasma with various impurity ions are 

discussed here for implementation in the tokamak integrated code TOKES. Impurity transport in the 

core and boundary plasma of a tokamak is a crucial issue for a fusion reactor device like ITER and 

DEMO. In steady state reactor operation the tokamak bulk plasma can be contaminated by intrinsic 

impurities, which can considerably affect the confinement time and bring about the burning plasma 

dilution. The impurities are originated due to erosion of plasma-facing components and, 

particularly, during the transient processes like repetitive ELMs, small disruptions etc. Mitigation of 

ELMs can relax the power loading on PSCs and the problem of core plasma contamination. 

However, it is still remains unclear to which extend these ELMs must be reduced in order to have a 

moderate erosion of divertor plates due to physical sputtering during the long-pulse reactor 

operation to avoid intolerable accumulation of impurities in the core. Impurities, originated at the 

plate can migrate through the SOL and penetrate through pedestal region into balk plasma. Effect of 

impurity screening due to ELMs repulsive force (entraining effect) can protect balk plasma from 

impurities.  

The transport features in tokamak plasma in the presence of arbitrary concentration of various 

impurity species in different charge state are investigated. Impurity behaviour in the balk and 

boundary plasma can be simulated in the frame of the integrated code TOKEs. Recently the code 

was considerably updated [1]. The neoclassical and anomalous transport coefficients where 

implemented in balk plasma and the pedestal region together with ELM model. The SOL and 

divertor region were elaborated. These improvements and the impurity transport models, described 

here will enable a self-consistent simulation of impurity dynamic in muli-component complex 

plasma, where impurity ions dominate and determine the transport properties. 

The various transport models for multi-component plasma have been reviewed and proper 

equations, describing a multi-component plasma transport have been suggested for implementation 

in the integrated code TOKES. 
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In the frame of the Contract the following tasks have been completed: 

• Analytical models of the multi-fluid 1D impurity equations (in the frame of Grad and the 

Chapmen-Enscog methods) are derived and analysed. The models describe the dynamic of 

impurity ions of arbitrary charge state in the SOL and divertor region. 

• The Reduce Charge State procedure was elaborate to decrease the number of fluid equations 

in the SOL for impurity ions of each charge state to the equations of only nucleus. Source of 

impurity ions due to the plasma flux impinging the tungsten divertor plates can be self-

consistently calculated.  

• Boundary conditions for impurity ions flows at the separatrix and at the chamber wall are 

formulated and can easily be implemented into the code. 

• Simulation of drifts in transport equations is introduced. Drifts can affect the spatial 

distribution of extrinsic impurities, lunched into plasma for disruption mitigation. 

• The modelling of neutral atoms in tokamak boundary plasma is suggested in the frame of fluid 

approximation. 

• Sputtering of the first wall and divertor plates in multi-component plasma in the presence of 

impurity ions and the secondary electron emission is self-consistently described.  
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Zusamenfassung 
 

 

Thema dieser Arbeit ist die Betrachtung von Transportmodellen für Multi-Komponenten-

Plasmen mit verschiedenen Verunreinigungen zur Implementierung im Tokamak-

Simulationsprogramm TOKES. The Verunreinigungstransport im zentralen Plasma und im Plasma-

Randbereich ist von entscheidender Bedeutung für Fusionsreaktoren wie ITER und DEMO. 

Intrinsische Verunreinigungen im zentralen Plasma eines Tokamaks können bei stationärem Betrieb 

signifikant die Einschlusszeit beeinflussen und führen zur Verdünnung des Fusionsbrennstoffes. 

Diese Verunreinigungen werden durch Erosion an den dem Plasma zugewandten 

Materialoberflächen gebildet. Dabei können transiente Prozesse wie die sich wiederholenden ELMs 

und kleine Disruptionen eine bedeutende Rolle spielen. Eine Abschwächung der ELMs kann den 

Leistungseintrag auf die Erste Wand und das Problem der Plasmaverunreinigung verringern. Es ist 

aber noch nicht klar, wie stark diese Abschwächung und Reduzierung der ELMs erfolgen müssen, 

damit die physikalische Zerstäubung auf den Divertorplatten unter Langpuls-Bedingungen 

akzeptabel bleibt und nichttolerierbare Verunreinigungskonzentrationen im zentralen Plasma 

vermieden werden können. Verunreinigungen, die von den Divertorplatten erodiert werden, können 

durch die SOL und die Piedestal-Region in das zentrale Plasma gelangen. Der Abschirmungseffekt 

durch die abstoßenden Kräfte der sich regelmäßig wiederholenden ELMs (Mitnahme-Effekt) kann 

das zentrale Plasma vor den Verunreinigungen bewahren. 

Die besonderen Transportprozesse in einem Tokamak-Plasma bei Vorhandensein beliebiger 

Konzentrationen verschiedener Verunreinigungs-Spezies in unterschiedlichen Ladungszuständen 

wurden untersucht. Das Verhalten der Verunreinigungen im zentralen Plasma und im Plasma-

Randbereich kann mit Hilfe des Programms TOKES simuliert werden. Dieses Programm wurde 

kürzlich bedeutend erweitert [1]. Neoklassische und anomale Transportkoeffizienten wurden für das 

zentrale Plasma und das Randschichtplasma implementiert und ein ELM Model integriert. 

Insbesondere wurden die SOL und der Divertor-Bereich untersucht. Diese hier beschriebenen 

Verbesserungen erlauben eine selbstkonsistente Simulation der Verunreinigungs-Dynamik in einem 

Multi-Komponenten-Plasma, in dem die Verunreinigungsionen die Transportprozesse dominieren. 

Die verschiedenen Transportmodelle für ein Multi-Komponenten-Plasma wurden analysiert 

und geeignete Gleichungen zur Implementierung in das Programm TOKES entwickelt. 



 

V 

 

Im Rahmen des Vertrags wurden die folgenden Aufgaben abgeschlossen. 

• Analytische Modelle der 1D Mehrflüssigkeitsgleichungen der Verunreinigungen wurden 

abgeleitet und analysiert (mit Hilfe der Grad- und Chapmen-Enscog Methoden). Die Modelle 

beschreiben die Dynamik der Verunreinigungen beliebigen Ladungszustandes in der SOL und 

im Divertor-Bereich. 

• Die Prozedur der Ladungszustands-Reduktion wurde angewandt, um die Anzahl der 

Gleichungen im Mehrflüssigkeitsbild der Verunreinigungen mit vielen Ladungszuständen auf 

die Gleichungen für nur jeweils unterschiedliche Verunreinigungselemente zu reduzieren.  Die 

Verunreinigungsquelle aufgrund der Zerstäubung der Divertorplatten aus Wolfram kann 

selbstkonsistent berechnet werden.  

• Die Randbedingungen für die Verunreinigungsionen an der Separatrix und an den 

Materialoberflächen der ersten Wand wurden formuliert und sind einfach im Programm zu 

implementieren.  

• Simulationen von Driften in den Transportgleichungen sind eingeführt worden. Diese Driften 

können die räumliche Verteilung von Verunreinigungen beeinflussen, die z.B. für die 

Abschwächung und Verhinderung von Disruptionen von außen eingebracht werden. 

• Die Modellierung von neutralen Atomen im Randschichtplasma eines Tokamaks wird im 

Rahmen der Flüssigkeits-Betrachtung vorgeschlagen. 

• Die Zerstäubung an den Materialoberflächen der ersten Wand und der Divertorplatten in 

einem Multi-Komponenten-Plasma und bei Berücksichtigung von Sekundär-

Elektronenemission ist selbstkonsistent beschrieben.  
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Introduction  

 

In the field of plasma-edge modeling, there has been much resent interest in obtaining various 

transport models which adequately account for the effects of impurities in contamination of fusion 

plasma and mitigation of disruption events in reactor plasma. During the transient processes like 

ELM and pre-emptive disruption mitigation by intensive gas puffing the boundary plasma becomes 

strongly mixed with neutral atoms and impurity ions of different species in various charge states. 

This multi-component mixture reviles its own specific properties, which require a special 

description. Below two approaches for multi-component plasma are suggested for the SOL and bulk 

plasma region as a possible approach for numerical implementation in integrated code TOKES [2-

5]. There are two types of equations: for each charge state of species and the equations, describing 

plasma as a whole. For partial quantities, it is convenient to work in the coordinate system of 

reference where the whole plasma does not move.  

The two-dimensional transport equations are presented to simulate multi-species plasma in 

curvilinear configuration. The equations are a direct extension of Braginskii equations for electrons 

and single ionic species to a multiple case. The equations are of Navier-Stokes form as regards the 

parallel flow along B and of a diffusive form in the radial direction. 

 The transport equations and corresponding kinetic coefficients for multi-component plasma in 

1-D can be written in the moment approximation directly related to the 21-moment Grad method, 

which can be naturally generalized to the plasma with many impurity species in different charge 

states. Here we will derive the 21-moment equations, which being equivalent to Braginskii ones, 

but having an advantage to be the first order differential equations. Moreover, this system is 

inherently can be generalized to account for the kinetic effects in the SOL region.  

 The Braginskii equations are based on Chapman-Enscogo approximation. In this 

approximation the equations for coefficients are truncated by some iteration procedure, where all 

coefficients (or moments) the higher order are expressed through the low moments αn , u , αT  and its 

partial derivatives.  

 In the Grad method the equations for coefficients are truncated based on assumption that for 

each system of equation of the order k the distribution function can be approximated in series, 

where the coefficients of higher order than k assumed to be zero. This allows one to close the 

system of equations. The difference in results obtained by these two methods for multi-component 
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plasma becomes negligible in the case when the 21-moments approach is used. The difference 

between the Chapman-Enscogo and the Grad methods is also in the choice of reference coordinate 

system. The moment equations in Grad method are derived in a centre of mass frame of reference, 

which has an advantage of having a simplified evolution of the collision integral. Braginskii uses a 

multiple set of velocity reference frames, one for each species, corresponding to the mean mass 

velocity of each species. This has an advantage of reducing the number of terms in the fluid 

equations, but complicates a rigorous calculation of the collisional terms, along with relationships 

of energy conservation due to collisions.  

Both sets of equations are presented here for implementation in TOKEs. 

The presence of several different multiply charged ions in the divertor plasma increases 

immensely the number of equation to be solved. The fluid equations for separate charge states of a 

given isotope can be replaced by a set of averaged equations representing an effective single 

reduced charge state. These equations are fewer in number than the original equations for the 

individual ions by a factor of maxZ  for each speciesα . This Reduce Charge State approach, 

suggested here for implementation in TOKES, was incorporated into B2 Code allowing one to 

simulate divertor and the SOL plasmas with multiple ion species plasma without excessive time 

consumption. 

Classical particle drifts across the magnetic field can play an important role in tokamak edge-

plasma transport. The relative influence of these terms is important for self-consistent simulations 

by including them, together with anomalous diffusion transport, in a 2-D fluid model of edge-

plasma transport for the tokamak geometry. The drifts cause asymmetries in the plasma equilibrium 

which depend on the direction of the magnetic field, B. Here transport equations are complemented 

by drifts and some results are presented, showing how drifts modifying plasma density and 

temperature distribution near the divertor plates. 

In this report the sheath potential formation at the divertor plates in the presence of impurity 

ions and of secondary electron emission is self-consistently considered. This is important for 

simulation of boundary plasma in the case of multi-component species at the vicinity to the divertor 

plate. It is shown that the sputtering at the plate or limiter can increase the potential drop, when 

impurities cause strong increases of electron upstream density. Impurity flux to the target as far as 

the secondary electron emission (SEE) from the target can only reduce the potential drop. The SEE 

yield saturates due to space charge limitations and cannot be used to reduce completely the 

unfavourable effect on sputtering yield of the acceleration by the potential drop even when a 

dilution effect of positive impurity ions is taken into account.  

It is now recognized that the lifetime of a tokamak reactor is determined by damage of structural 

elements facing the plasma (e.g. the first wall and divertor plates). For this reason, it is important to 
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obtain the most accurate estimates of erosion rates for these elements. Available experimental data 

applied to steady state or long pulse operation indicate that the first wall erosion rate is due mainly 

to charge exchange neutral sputtering, and that fuel and impurity ion physical sputtering 

(particularly self-sputtering) determines the erosion rate of divertor plates. The sputtering yields 

averaged over the distribution function and over the projectile incident angle have been obtained for 

some candidate target materials (C, Al, Ti, Fe, MO, W) and incident deuterium and tritium ions. It 

is shown here that the sputtering yield increases if the sheath potential is taken into account and that 

the usual estimation of the sputtering yield at energy ejTZE 5.3= is underestimates the yield value. 

 The effect of neutral atoms is not included in standard tokamak transport treatments. However, 

it is clear that neutral atoms in the tokamak edge can influence global confinement by affecting the 

transition from low to high confinement. The physical mechanism by which this occurs is not yet 

clearly identified, but it is well known that neutrals influence ion dynamics through charge-

exchange interactions. Furthermore, the radial neutral flux of toroidal angular momentum can 

modify or even determine the edge radial electric field and plasma rotation. The radial localization 

of the neutrals also introduces a shear in the flow that may affect edge turbulence. Neutral atoms 

play an essential role in momentum transfer from the plasma to the wall, thereby facilitating the 

transition from attached to detach operation regime with increasing input power. They can also play 

an important role in mitigation of ELMs and runaway electrons. In this report several models of 

neutral atoms transport in boundary plasma and in the SOL is considered.  

 Some additional issues were also considered in this report and are presented in attachments. 

These concerns the derivation of frictional and thermal forces in complex plasma, expressions for 

Coulomb collision frequencies in multi-species plasma, the origin of plasma rotation in poloidal 

direction, the quasi-dynamic transport across B, the explanation of the origin of 5/2 term in the 

energy balance equation in the case of current-less plasma, compendium of atomic data for Ar and 

Ne, needed for our tacks and, finally, the numerical program written in FORTRAN for neutral 

atoms.  
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I. Transport in complex plasma-main definitions and transport equations 
 

 

 We start first with the basic definitions and conservation equations. The main assumption 

hereafter is that the fluid approach is justified in the relative cold and dense plasma of interest. We 

will consider a reactor plasma of electrons and arbitrary number of ion speciesα , β of different 

mass αm , βm and in different charge states, Z andξ , correspondingly. These ion species include 

atoms ( 0, =ξZ ) and deuterium and tritium hydrogen isotopes. The former can be taken in equal 

proportion (deuterons). The kinetic equation for α species in Z charge stage reads: 

( ) ( ) ∑=∇+∇+
∂

∂
ξβ

βξα
α

αα
αα

α

,
,z

zVz
zz

z St
m

fFfV
t

f , (I.1) 

where  

V∇  is the gradient in velocity space, βξα ,zSt  is the collisional term and zFα  is the force  

( )][VBEeZF z +=α   (I.2) 

We introduce the current velocity, c, and diffusive velocities: 

ααα uuw zz −=      and      uuw −= αα   (I.3) 

We will distinguish the macroscopic parameters of each particular component in its charge state, the 

species and the plasma as a whole. 

Densities:  

Vdfn zz ∫= αα ,              ∑=
z

znn αα             and       ∑=
α

αnn ,     (I.4) 

 zz nm αααρ =  ,               αααρ nm=             and      ∑=
α

αρρ    (I.5) 

 Velocities: 

VV1u df
n z

z
z ∫= α

α
α ,    z

z
z αα

α
α ρ

ρ
u1u ∑=   and      α

α
αρ

ρ
u1u ∑= ,    (I.6) 

Temperatures: 

V)uV(
22

3 2 dfmTn zzz α
α

αα ∫ −= ,       ∑=
z

zzTnTn αααα   and   ∑=
α

ααTnnT     (I.7) 

The mass flow: 

dVcfmwm zzzz ∫==Γ αααααα ρ ,           αααα ρ wm =Γ       (I.8) 

From definition of mass average velocity, u  it follows that 

( ) 0∑∑ =−=
z

zz
z

zz uuw ααααα ρρ ,             ( )∑ ∑ =−=
α

α
α

ααα ρρ 0uuw   (I.9) 
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Partial and total pressure tensor(r,s components): 

dVfccmP zsr
rs
z ∫= ααα ,     ∑=

z

rs
z

rs PP αα      and     ∑=
α

α
rsrs PP  (I.10) 

rs
zrsz

rs
z pP ααα πδ +=  ,              rs

rs
rs pP ααα πδ +=       and   rs

rs
rs pP πδ +=  (I.11) 

Pressure: 

dVfcmTnp zzzz ∫== α
α

ααα
2

2
,  ααα Tnp =        and  nTTnp ∑ ==

α
αα  (I.12) 

Viscosity: 

dfcccm rssr
rs
z ααα δπ )

3
1( 2∫ −= V,        ∑=

z

rs
z

rs
αα ππ     and  ∑=

α
ππ rsrs  (I.13) 

Partial and total heat flues: 

dVfccmq zz ∫= α
α

α
2

2
,                            ∑=

z
zqq αα      and     ∑=

α
αqq  (I.14) 

 

I.1 The partial equations for arbitrary species and charge states 

 There are two types of equations: the partial equations for each charge state of species and the 

equations, describing plasma as a whole. For partial quantities, it is convenient to work in the 

coordinate system of reference where the whole plasma does not move. For this purpose it is 

convenient to present the current velocity of specie, c , as uVc −= , so that an average of 

c equals zero ( Vu = ). In this variable kinetic equation reads: 

( ) ∑=
∂
∂

∂
∂−∇

⎟
⎠
⎞

⎜
⎝
⎛ −

+∇+
∂

∂
ξβ

βξα
αα

αα
α

α

αα
α

,
,

u

z
s

z

r

zs
zzV

z

zz
z St

c
f

c
fcf

m
dt
dF

fc
t

f  (I.15) 

The fluid equations for macroscopic plasma parameters can be derived from the kinetic equation by 

multiplying it on some dynamic variable ( )),rV, tαψ and integrating over the velocity space. For α  

type specie in Z charge state the fluid transport equation reads [6]: 

∑∫=Σ−∇+∇+⎟
⎠
⎞

⎜
⎝
⎛ ∇+

∂
∂

ξβ
βξαααααααααα ψψψψ

,
, ccuu dStnnnn

t zzzzzzzzzz  (I.16) 

where 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

∂
∂−∇⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∇+

∂
∂−+∇+

∂
∂≡Σ

s

r

r

z
szzzz

z
z c

u
c

c
t

mF
t

α
αααα

α
α

ψψψψ uu/c  (I.17) 

Here zαψ  indicates the averaging procedure 

cdfn zzzz αααα ψψ ∫=  (I.18) 
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and zfα  is the distribution function of α  species in Z charge state, chosen as a Maxwellian one.   

Choosing in conservation equation above c, αααψ mmz =  )2(and 2 /cmα  correspondingly, we 

coming to the partial equations for arbitrary specie α  in arbitrary charge state Z. 

 

• particle continuity: 

z
r

r
zz

r

r

z
z S

x
w

x
u

dt
d

α
ααα

α
α ρρρ =

∂
∂+

∂
∂+      or     ( ) ( ) zzz

z Sdivdiv
dt

d
ααξααα

α ρρρ =++ wu  (I.19) 

• momentum 

r
zr

r
z

s

rs
z

s

r
s
zz

s

s
r
zz

r

z

r
zz REeZn

x
P

x
uw

x
uw

dt
du

dt
wd

αα
α

αααα
α

α
αα ρρρρ =+−

∂
∂+

∂
∂+

∂
∂++ )]Bu[( αz  (I.20) 

or  

( ) ( ) r
zr

r
z

s

z
zr

zz
r
zz

r

z

r
zz REeZn

x
Pudivw

dt
du

dt
wd

αα

α
α

αααα
α

α
αα ρρρρ =+−

∂
∂+∇+++ )]Bu[(wu αz  (I.13) 

• energy 

zz
r

r
z

s

r
rs
z

r

r

z
z Qn

x
q

x
uP

x
up

dt
dp

ααα
αα

α
α

α
α =−

∂
∂+

∂
∂+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂+ ∗

zcF
2
3  (I.14) 

or  

zzzz
s

r
rs
zz

z Q
dt

dnqdiv
x
uPudivp

dt
dp

α
α

αααα
α

ααα
α ρ =−−+

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛ + ucF)()(

2
3

z  (I.15) 

Here )u( ∇+
∂
∂=
tdt

d  and the repetitive Latin indexes indicate summation.  

c, dStcmR zr
r
z βξα

βξ
αα ∑∫=  c, dStcmQ zrz βξα

βξ
αα ∑∫=  (I.16) 

ααααξααξ ρ uFF zz dt
dnn z−≡∗  ( )[uB])EF z +≡ eZα       (I.17) 

Equations for pure “nucleus” e.g. for quantities ∑=
z

znn αα , αT and αu can be obtained after 

summation over charge states Z the equations for partial quantities presented above 

• particle continuity: 

 ( ) ( ) ααααα
α ρρρ

nmdivdiv
dt

d
&=++ wu  (I.18) 

or 

( )( ) ααα
α nndiv

dt
dn

&=++ wu  (I.19) 
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• momentum 

( ) ( ) r
r

s

rs
rr

rr

REen
x
Pudivw

dt
du

dt
wd

ααα
α

ααααα
αα ρρρρ =+−

∂
∂+∇+++ )]Bu[(wu αzr     (I.20)  

 or 

( ) r
r

sr

ss

rs

r

r
r

r

REenww
xx

P
x
uu

t
u

αααααα
αα

α
α

α ρρ =+−
∂
∂−

∂
∂+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂+

∂
∂ )]Bu[( αzr   (I.21) 

 

• energy 

ααααααα
α ρ Q

dt
d

nqdiv
x
u

Pudivp
dt

dp
s

r
rs =−−+

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛ +

u
cF)()(

2
3  (I.22) 

or 

rad
s

r
rs Qwndivdiv

x
udivp

dt
dTn =+−−+

∂
∂++ ∑ ])uB[E(j)(

2
3)q()u(

2
3

α
ααα

α
α π   (I.23) 

Here )u( ∇+
∂
∂=
tdt

d  and the repetitive Latin indexes indicate summation.  

∑=
z

r
z

r RR αα          z
z

QQ αα ∑=  (I.24) 

uFF
dt
dnn ααααα ρ−≡∗           ( )[uB])EF +≡ eZα         (I.25)   

One can note, that αS  term in the continuity equation turns to zero after summation over α and β  

particles in the case of pure elastic collisions. But in the case of ionization or 

recombination ααα nmS &= , where αn&  is rate of α  particles production.  

If further sum up over α  the equations for “nucleus “,  then the right hand side terms in the rest 

equations will also tern to zero, since  

0R =∑
α

α        0Q =∑
α

α   (I.26) 

 

I.2 The conservation equations for entire mixture 

 Finally, summing up the last equations over Z and α  one gets finally the equations for entire 

mixture: 

• continuity equation  

∑=⋅+
βα

ααρρ
,

)u( nmdiv
dt
d

&   or     ∑∑ =++
α

αα
α

α nmnwdivndiv
dt
dn

&)()u(  (I.27) 
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• momentum 

exc
r

s

rsr RFn
x
P

dt
du

−=−
∂
∂+ ∑

α
ααρ    or   excRdivp

dt
d

−=−++ ]jB[)grad(u πρ  (I.28) 

• energy 

rad
s

r
rs Qndiv

x
uPdivp

dt
dp =−+

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛ + ∑

α
αα cF)q()u(

2
3  (I.29) 

 

Here excR − is the momentum source due to charge exchange collisions with neutral atoms and radQ  

are the radiation energy losses. 

Using the definition for the current density  

αα
α

α wj ne∑=  (I.30) 

and quasi-neutrality, 0=∑ αα ne , it is easy to see that  

]jB[F =∑ α
α

αn    (I.31) 

and 

])uB[E(jcF +=∑ α
α

αn  (I.32) 

 

Now, the equation of motion of entire plasma (momentum equation) can be written as: 

excRdivp
dt
d

−=−++ ]jB[)grad(u πρ   (I.33) 

As far as the energy equation concerns, it can be presented in variety forms: 
 

• temperature equation for α species 

rad
s

r
rs Qwndivdiv

x
udivp

dt
dTn =+−−+

∂
∂++ ∑ ])uB[E(j)(

2
3)q()u(

2
3

α
ααα π  (I.34) 

• energy balance of entire plasma 

( ) jEqu)( rs =++++
∂
∂

stt updiv
t

πεε ,         where        pu
t 2

3
2

2

+⋅≡ ρε   (I.35) 

In quasi-hydrodynamic approximation, when αα TV<<w , the distribution function  

for zα  particles can be written as )cw1(0
zzzz ff αααα γ+= ,  

where )2/exp(
2

2
2/3

0 cnf z
z

zz α
α

αα γ
π

γ −⎟
⎠
⎞

⎜
⎝
⎛=  and zz Tm εααγ /= , uVc −= . 

Notice, that in this case the thermal conductivity and viscosity can be ignored and  
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( )∑ −−= −

β
βαβαβαα τμ wwR α

1n ,                                          
βα

βα
αβμ

mm
mm
+

=   (I.36) 

( ) ( )βααββααβ
β

αα τμ TTmmnQ −+−= −∑ 1]/[3   (I.37) 

α

αβ

αβ

β

ξ
βξααβ

μξ
λπντ

mT
Zn

e
z

z 2/3

22
4

,

1

3
24==∑− ,          ∑=

ξ
βξβ ξξ 22 nn  (I.38) 

α

αβ

αβ

βξ

α

αβ

αβ

βξ
βαβξα

μξ
λπμ

λπν
mT

Zn
e

mT
n

eez 2/3

22
4

2/3
22

3
24

3
24 ==   (I.39) 

In this approximation the closed system of equations for αn , αu and αT  of a particular  

species α reads: 

( )( ) ααα
αα nndiv

dt
nd

&=++ wu   (I.40) 

( )∑ −−=+−∇+ −

β
βαβαβααααα

αα
α τμρ ww])Bu[E(u

α
1nenp

dt
d  (I.41) 

( ) ( ) radQTTmmndivp
dt

dTn +−+−=++ −∑ βααββααβ
β

ααααα
α

α τμ 1]/[3Rw)u(
2
3  (I.42) 

 

I.3 The equations for diffusive velocities  

 Equations for diffusive velocities can be obtained from the momentum equation by replacing 

dt
d αα u ==>

dt
d αu  , that corresponds to the situation, when the terms 

dt
d αα w  are disregarded in 

compare with the terms of the order α
1 w−

αβτ  in the r.h.s. of the equation. Then the equation of motion 

can be recast so: 

( )
dt
dpenn u])Bw[[uB]E(ww α

1
ααααβααβ

β
αβα ρτμ −∇−++=−−∑   (I.43) 

It also can be written as  

( ) ]jB[])Bw[[uB]E(ww α
1

ρ
ρ

ρ
ρτμ αα

αααβααβ
β

αβα −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇−∇−++=−−∑ ppenn  (I.44) 

if one replaces term 
dt
duρ  by )grad(]jB[u p

dt
d −=ρ , neglect the viscosity term. The two equations 

presented above allow one to find diffusive velocities, w  by keeping in mind, that αα
α

α wj ne∑=  

and∑ =
α

ααρ 0w . The explicit solution of these equations against αw can be written as [6]: 
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∑
=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

N

1

xxw
γ

γ
γ

αα ρ
ρ

, (I.45) 

where  

[ ]hεx
,

11
//

1
β

γβ
βαγββ

β
βαβ

β
βαα χεε ⋅′′+⋅′′+⋅′′= ∑∑∑

≠

−
⊥

≠

−

≠

−
N

k

N

k

N

k

aaaacc  (I.46) 

Here the following definitions are used. Index k is for the arbitrary chosen component of initial 

equations, which is omitted and not considered. One should keep in mind, that system of equations 

for αw is linear dependent; therefore the actual number of equations needed for solution must be in 

one equation smaller, 1−N , where N is the total number of components in mixture; 

βα wwx α −≡ , B/Bh =  and  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇−∇−+≡ ppen
ρ
ρα

αααα ])uB[E(ε ; 

( )αα εε hh// = ;    1−= αβαβααβ τμnc ; ∑
≠

−−=
N

nc
αγ

αγαγααα τμ 1 ; )det( αβcc ′=′  and αβc′  is the αβc  matrix, 

where the k line and k column are removed; the ( )βα , cofactor (minor) of that determinant matrix 

is αβc′ . 

 The equations obtained above allow one to calculate diffusion of arbitrary particles both along 

and across the magnetic field as well as. For magnetized plasma 1>>αβατω  equation () can be 

recast as: 

 ( ) ( )( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −∇′+=−∑ −

dt
dpenm u-E1]hw[ww/1

αααα
αα

αβαααβ
β

αβα ρ
ωρ

μτω  (I.47) 

where    [uB]EE +=′ , αααω me /B=  and        
α

αβ

αβ

β
αβ

μξ
λπτ

mT
Zn

e 2/3

22
41

3
24=−  

In zero approximation over the small parameter ( ) 1−
αβατω the last term on the r.h. side can be 

dropped and after substitution of zero order solution into the r.h. side term the first approximation 

can be obtained. As a result 10
⊥⊥⊥ += ααα www , where 

]
dt
duh[1]h[1]hE[10

ααα
α ωωρ

+∇+′=⊥ p
B

w    (I.48) 

and    

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∇
−∇−= ⊥⊥⊥−

⊥ ∑ dt
du1 1

2
1

β
β

α
α

β

β

β

α

α

α
αβ

α
αβ

αα
α τμ

ω
m

Z
Zm

n
p

Z
Z

n
p

m
w  (I.49) 
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Keeping in mind, that αα
α

α wj ne∑= , easy to obtain: 

]
dt
duh[]h[1j

B
p

B
ρ+∇=⊥  (I.50) 

 

or by substituting the time derivative in the last term: here [uB]EE +=′ ⊥⊥ , and  
 

( )∑=
−

α
ααα ρρ Zm

m
Z /

1

 ( ) ZmZpmp ///∑=
α

ααα ρ  (I.51) 

 
 

Equations above allow one to conclude, that the relative diffusion of plasma components across the 

magnetic field line in case of electrons and background ions occurs with the rate of penetration ~ 

( ) LBpDm //4 2π , where  πσ4/2cDm =  is the diffusion of the magnetic field through plasma: 

rp
pD

r
p

B
cuu mirer ∂

∂=
∂
∂== β

σ 2

2

 (I.52) 

where 2/4 BnTπβ = . However, in the case of multi-species the mutual diffusion of different 

species occurs in ( ) 2/1/ ei mm times quicker than the magnetic field penetration rate. Therefore, in 

time scale much smaller then the penetration time impurity ions can come in equilibrium in radial 

direction: rr
zZ wnZwnZ βξβξβααα −= .  

In the case of i=α , I=β  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂−
∂
∂=−=

r
p

nZ
nZ

r
p

BZ
wnZwnZ I

II

iii

i

IiIir
III

r
iziZi 2

,, τμ
ξξ  (I.53) 

10 100 1 103×
1 10 3−×

0.01

0.1

1
Diffusion time (ms) vs temperature (eV)

τm T 1013, ( )
τm T 5 1013⋅, ( )
τm T 1014, ( )
τm T 5 1014⋅, ( )

T
 

Fig. (I.1) Diffusion time of impurities vs. temperature for different density. 

   ( )105,10,105,10 314141313 −⋅⋅= cmn  
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this brings to the Boltzmann type radial distribution of impurities in time scale  

( ) LBpDmm //4 2πτ = .  (I.54) 
For aL ~  and typical values for ITER parameters TBma 5,2 ==  diffusion time is shown in Fig. 

(I.1) for different density values 314141313 105,10,105,10~ −⋅⋅ cm .  
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II. Transport equations for the multi-component tokamak plasma  
 
 
 The two-dimensional transport equations are presented to simulate multi-species plasma in 

curvilinear configuration with the x-axis in radial direction and the y-axis in poloidal direction. The 

plasma inside the separatrix is assumed to be quite dense and relative cold, allowing one the fluid 

description. The present equations are a direct extension of Braginskii equations for electrons and 

single ionic species to a multiple case.  The equations are of Nervier-Stokes form as regards the 

parallel flow along B and of a diffusive form in the radial direction.  

 

II.1 The 2D multi-species transport model based on the Chapmen-Enscog approach 

Specifically, we suggest for TOKES the following system of N transport equations for each 

ionic species a, andNa ,1( ≤≤ where 1=a corresponds to background ions): 

 

 Continuity of species a:  

ionyaa
y

xaa
x

a VnNVn
h

g
yg

Vn
h

g
xgt

n σ=
∂
∂+

∂
∂+

∂
∂ )(1)(1

,,  (II.1.1) 

x
n

h
DVn a

x

a
xaa ∂

∂−=,    (II.1.2) 

 

Momentum balance of species a )1( Na ≤≤                                                                                 

( )

mu
a

N

b
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ia
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e

e
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y
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xa

x
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∂
∂

∑
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,,,
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1

1

θ

η

η

 (II.1.3)  

 

Electron energy balance:           

( ) ( )

( ) eea
e
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yee
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xee
ye

y
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y

e
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e
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1

1

εχε
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⎜
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 (II.1.4) 
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Ion energy balance:     

 

( ) ( )( )

( )( ) i
ae

e

y

yee

x

xe
yayayaaa

y

xaxaxaaa
x

a

SQ
y
p

h
V

x
p

h
V

qVp
h

g
yg

qVp
h

g
xgt

επε

πεε

++
∂
∂

−
∂
∂

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++
∂
∂+

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
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∂
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∂
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,,
,,,

,,,

1

1

 (II.1.5) 

 

Here: 

∑=
j

j
nn αα        a

a
ae nZn ∑=            αα nznznnn ij

j
ie j

⋅+≈+= ∑  (II.1.6) 

exaa
a

axe nVnZV /,, ∑=         eyaa
a

aye nVnZV /,, ∑=            yayaya V
b

V
B
BV ,,//,,

1

θθ

==  (II.1.7) 

    θbVVV rotpolii ///,//, +⇒                                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂−

∂
∂=

r
T

Tr
n

n
VV i

i

i

i
Tiirotpol

17.21ρ  (II.1.8) 

 ∑=
j

jj nnZz αα /,  
e

j ji
eff n

znn
Z j∑+

=
2

α
 (II.1.9) 

 ee p
2
3=ε , iaa Tnp = ,  ∑+=

N
yaaaa Vp 2

//,,2
1

2
3 ρε  (II.1.10) 

 

 ( )∑ −=
β

ββξ
β

β ν ee
e

ee TT
m
mnQ ,3  

ee
e mT

n 1
2/3

2
0,

βξ
βξ ξνν ⋅=   (II.1.11)  

 

Where the coefficients and forces are: 

 

y
T

Z
ZnR e

eff

a
ae

T
ea

e

∂
∂=

2

, α                          
( )

( )( )effeff

eff
effe ZZ

Z
Z
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52.01

2.2
++

+
≈α  (II.1.12) 

 

y
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2α                       iα ( ) ( )

( ) ( )00

00
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ZZ

ZZ
+⋅+

+⋅+⋅=  (II.1.13) 

 

 ( ) ( )//,//,,
1
,, babaaaba

F
ba VVnmcR e −⋅⋅−= ν        ( ) ( )

( ) ( )00

00)1(
, 285.0165.21

93.0124.01
ZZ
ZZc ba +⋅+

+⋅+=  (II.1.14) 
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( )∑ −=
α

α
α

ν TT
m
mnQ eea

e
eea ,, 3              effe

e

e
ea Zn

m
m

T α

νν 2/3
0

, =  (II.1.16) 

 

The external momentum source due to e.g. plasma rotation in poloidal direction: 
 

0
0
, /ταααα y

mv VnmS =    (II.1.17) 
 

In these equations  

x                    - is the radial axis, 

y                    - is the poloidal axis, 

yyx hrhhg ,=  - metric coefficients, (the coordinate system is orthogonal curvilinear) 

BB ,θ           -  poloidal and total magnetic fields, 

aa mZ ,          -  charge number and mass of an ion of species a , 

mvana SS ,, ,      -  volume sources of ions and momentum for species a , 

ie SS ,, , εε        -  volume sources of electrons and ion energy, 

xaya ,, , ηη      -  poloidal and radial viscosity coefficients for species a , 

ba
FR ,            -  friction force on ion species a  due to species b , 

ie T
ia

T
ea RR ,, ,      -  thermal forces for electrons and ions, 

a
p

a
n DD e ,      -  diffusion coefficients for species a , 

ie
y

ie
x

e ,, , χχ     -  heat conduction coefficients, 

yaV ,              - velocity in poloidal direction   

//,, yaV           -  velocity along B,   //,,, yaya V
B
BV θ=  
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The other definitions are summarized here: 
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• Correspondence to original TOKES equations and definitions is shown below.  

Here x  - is the radial axis, y - is the poloidal axis, 

Ψ=w -is the poloidal flux  ( )∫ ⋅∇=Ψ − rdBr rrr
θπ 1)2()(  

G = yy Bh /  

ghrh yx =              

yxhhS =   = rg / ,     ςhr =       ),,0( ξBBB y=
r

         ( ) xry rhrB /Ψ′−=  

yy BVu /=  

θ∂
∂=

∂
∂

yh
y

 , therefore the continuity Eq. in TOKES can be written as     
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this coincides with the equation: 
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a VnNVn
h

g
xg

Vn
h

g
ygt

n σ  

 

II.2 Impurity simulation in the SOL plasma: the Grad 21 moment approach 

 The transport equations and corresponding kinetic coefficients for multi-component plasma in 

1-D can be written in the moment approximation directly related to the 21-moment Grad method 

which can be naturally generalized to the plasma with many impurity species in different charge 

states [7-9]. Here we will derive the 21-moment equations, which being equivalent to Braginskii 

ones [10], but having an advantage to be the first order differential equations. Moreover, this system 

is inherently can be generalized to account for the kinetic effects in the SOL region. To derive the 

system of equations for the moments of distribution function and to determine the diffusion 

velocities and heat flows in multi-component plasma we use the distribution function in the form of 

an expansion in irreducible Hermit polynomials [6]  
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where  

( ) )uV
2

exp(
2

2
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zz T
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mnf
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α

α

α
αα π

  is the local Maxwell distribution function, V is the 

current velocity and u is the mean-mass velocity of the mixture, αm  is the mass of the particles, and 
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znα  and zTα are the density and temperature of the particles of sort α  and charge z . In this 

expansion m represents the rank of the tensor, while n represents the degree of the polynomial. 

In general case substitution of the expansion (II.1.1) into the kinetic equation leads, after integration 

over the velocity with weight mnH , to a system of non-linear differential equations for the 

coefficients mn
zaα  [10]. The latter can be simplified by assuming that the macroscopic parameters of 

the plasma vary only slightly at the distances of the order of the effective mean free pass and in the 

time of the order of the time between collisions between the plasma particles. When these 

conditions are satisfied one can neglect the derivatives of the coefficients mn
zaα  and the nonlinear 

terms in equations. Finally, one arrives to a linear system of algebraic equations for mn
zaα  [6]. For a 

fairly accurate calculation of the transfer coefficients it is necessary to use not less than three terms 

with 1=m  in expansion (II.2.1). These coefficients ,a10
zα  11

zaα , 12
zaα  are related to the moments of 

density  
 

zz nm αααρ = ,  (II.2.2) 

 

relative (diffusive) velocity, 
 

uuw αz −=α  (II.2.3) 

 

conductive heat flux 
 

2/w5pqh αzαzαzαz −=   (II.2.4) 

 

in addition, additional moment of higher order zαr  and rszασ  as given by the relations: 

( ) cc/35/14
4

r 224 dfccm
zzzz ααα

α
α γγ∫ +−=  (II.2.5) 
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α
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⎜
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⎛ −=  (II.2.6) 

zzzz p ααααα γρ /wa10
z = ,   (II.2.7) 

 

zzz p αααα γh2a11
z =  (II.2.8) 

zzz pαααα γ /r4a 312
z =  (II.2.9) 
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where αzu  and αzq  are the velocity and heat flux of particles of sort α and 

charge z , zzz Tnp ααα = , zz Tm αααγ /= . The distribution function in terms these moments then reds as: 
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The general number of independent moments is equal twelve; therefore, the distribution function 

above corresponds to 12-moment approximation. Seven equations are required for the 21-moment 

approximation. These constitute equations of change for twenty-one moments of the distribution 

function zfα  for particles type α of mass αm  and charge αeZ . The particle velocities αc  have 

chosen in a centre of mass frame reference  
 

ααα uVc −= ,  (II.2.11) 

 

Where  αV  is the velocity of speciesα , and 
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zαc  is the particle velocity. The rest quantities of interest are defined as (dropping particle 

subscripts for ease of notation): 

αααρ nm= ,                                                       for mass density species α  

2

3
1 wnTp ρ== ,                                           for thermal pressure 

wu =  ,                                                           for drift velocity 

 

Then, the equations read: 
 

( ) ααα
α ρρ Suw
t

=+∇+
∂

∂  (II.2.13) 

 

The equations for αzw , αzh  and zαr  can then be written in the form: 
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where  
 

[ ] αα X)/uB(EF ++= ceZz ,  (II.2.17) 

 

αX are forces of non-electromagnetic origin, cmezBz ααω /= ,    

 

)/( βαβααβμ mmmm += , B/Bb =   (II.2.18) 

 

The coefficients ( )n
zG βξα ,  taking into account the relationship between the irreducible Hermit 

polynomials ikH and the Sonin polynomials kS 2/3 : 

u)
2

(!)2()(H
2

2/3
ik uSku kk−=  (II.2.19) 

can be expressed in terms of the integral brackets of the Sonin polynomials. In the case of 

completely ionized plasma the later calculations leads to the following results: 

 
( )

βξαβξα zz WG −=1
,  (II.2.20) 

 

( )
βξαβξα zz WG

5
32

, =  (II.2.21) 

 

( )
βξαβξα zz WG

14
33

, −=  (II.2.22) 



 

21 

( )
βξααβ

β

α

α

β
βξα χ zz W

m
m

m
m

G ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−= 3

5
8

10
134

,  (II.2.23) 

 

( )
βξααββξα χ zz WG

10
275

, −=  (II.2.24) 

 

( )
βξααβ

β

α

α

β
βξα χ zz W

m
m

m
m

G ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= 3

7
8

28
23

5
36

,   (II.2.25) 

 

( )
βξααββξα χ zz WG

28
457

, −=  (II.2.26) 

 

( )
βξααβ

β

α

β

α

α

β

α

β
βξα χ zz W

m
m

m
m

m
m

m
m

G 2

22
8

, 5
5

32
35

459
35

139
280
433

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  (II.2.27) 

 

( )
βξααββξα χ zz WG 29

, 8
75−=  (II.2.28) 

where ( )2
βα

βα
αβχ

mm
mm

+
=     and           βξαααβξαβξα ν zzzz mnWW ==  

α

αβ

αβ

βξ
βξα

μξ
λπν

mT
Zn

ez 2/3

22
4

3
24=  

 (II.2.29) 

and λ is the Coulomb logarithm, which due to weak dependence on the parameters, is used to be 

approximately the same for all sorts of species. 

The system of linear algebraic equations (II.1.13-16) with coefficients ( )n
zG βξα , enables one to 

determine the velocity of diffusion and the heat fluxes in multi-component plasma for arbitrary 

values ofωτ . In the case of electron-ion plasma the solution of this system in the limit, when 

1/ <<ie mm  leads to the Braginskii result obtained by using the Chapmen-Enscog method [11, 12].  

 Now we can derive the parallel (along B) friction forces and heat fluxes. The friction forces and 

heat fluxes along the B-field can be derived from equation (II.1.16) by taking 0=cω . In this case, 

only the last two equations will in fact remain, while the first serves merely to determine the forces 

of friction in terms of the velocity and temperature gradient of the components. This quite complex 

system describes diffusion and heat transfer in plasma with species of arbitrary mass, which can 
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fortunately differ sensationally. This, in particular, helps to separate particles, whose masses are 

considerable less than the masses of the remaining particles. First of all, it concerns electrons. In 

addition, the masses of ions of one species but in different charge states are equal. The later fact 

enables one to calculate the longitudinal components in two stages: first to determine the mean 

values of the quantities for the particles of one sort, and then to obtain the difference between the 

partial and average values.  Using this approach, the general expressions for the force of friction, 

thermal force and heat flux can be written in the following way: 
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where ∑ −− =
β

αβα ττ 11 . The numerical coefficients ( )ncαβ are found from the solution of the set of equations 

for the mean values, while ( )ncα is found from the equations for the difference between the partial and 

mean values. In this case the relation between them reads: 
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the summation here is carried out only over the different sorts of species.  

Hence, the problem now is reduced to finding the coefficients ( )ncαβ  and ( )ncα  for components with 

different particle masses. The general expressions for these quantities are quite cumbersome, 

however for light particles (at list one sort of such particles (electrons) always present in plasma) an 

explicit form of the coefficients can be obtained using an expansions with respect to small 

parameter αmmk / ( the index k  relates to the light particles). In the zero approximation to that 

parameter the set of equations for these coefficients splits into two independent equations for the 

light component and for the heavy one with kmm >>α . For the light component one has: 
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where ( )( )∗∗ ++=Δ kkk zz 285.0165.21  and 22 / kkk znznz ∑=∗

α
αα .  

The summation here is carried out over all the sorts of particles α  for which kmm >>α . Here was 

also assumed that in majority of cases the light particles are those particles with only one possible 

charge state, so that ( )n
kkc  and ( )n

kc occur in (II.2.30) and (II.2.31) in only certain combinations. Note, 

that if the condition αα mTmT kk // >> is satisfied, the separation of the equation for the light 

particles is also possible, if their temperature differs from the temperature of remaining 

components. In this case it is necessary to use their own temperatures in the coefficients of the 

expressions for the friction force and the heat flux for the light particles. Obviously, this procedure 

of separation of lightest particles can be further extended, because in plasma remains again a 

component for which αmmi << , where ki,≠α (e.g. hydrogen isotopes in a plasma with heavy 

impurities). The coefficients ( )ncαβ  and ( )ncα  for the heavy particles and masses that are not too 

different, remaining in the result of the last separation all the light components. These coefficients 

for two heavy impurities were calculated and the result can be presented as: 

 

( )321 / PZPPc iI ++=  (II.2.37)  

 

where 22 / iiIIiI ZnZnZ = . The index I corresponds to the heaviest component of the plasma. The 

values of the constant nP    (for any pair from the set carbon, oxygen, iron and tungsten) are given in 

Table 1. 

The viscosity tensor for parallel moment transfer reads as: 
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The parallel viscosity coefficient can be presented as: 
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Now the calculation of parallel viscosity coefficients for each charge state of ion is reduced to 

calculation of αβc and αc  for different sorts of ions. For the light particles  
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For definition of these coefficients in the case of several heavy ions with arbitrary masses the 

numerical calculations are needed. However, for the heaviest component these coefficients can be 

found analytically: 
 

167.0=ααc              793.0=αc  (II.2.42) 

 

in the case of two heavy components these coefficients can be estimated numerically  

(See Tab. I) 

 

• Transport coefficients and forces for light particles (e.g. electrons and protons) in multi-

component plasma can be easily obtained from (II.2.30-31). The light components are those 

whose masses are satisfied the following chain of inequalities: 

...321 <<<<<< mmm  and so on. Let’s define them by index k , and then the particle, heat and 

viscous fluxes can be written as: 
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and values without indexes are the electron coefficients for pure hydrogen plasma: 
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For electron coefficients in plasma with impurities in the above given formulas ∗
kz must be replaced 

by effz , and for light ions - 22 / iiI
I

Ii znznz ∑=∗ , where the index I  corresponds to ions 

with iI mm >> . In the case of hydrogen ions all indexes e in formulas must be replicated by i (at 

that iω changes the sign) and epτ must be replaced by 2/iiτ . 

For electron thermal and friction force along B one has: 
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Therefore at high effZ  conductivity increases almost twice (1.72 times) compare with pure plasma. 

The thermal force coefficient increases from 0.71 to 1.51 (~2.1 times) 

 

II.3 The Reduce Charge State approach for impurity transport along B. 

The presence of several different multiply charged ions in the divertor plasma increases 

immensely the number of equation to be solved. The fluid equations for separate charge states of a 

given isotope can be replaced by a set of averaged equations representing an effective single 

reduced charge state [8, 9]. These equations are fewer in number than the original equations for the 

individual ions by a factor of maxZ  for each speciesα . This Reduce Charge State approach was 

incorporated into B2 Code allowing one to simulate divertor and the SOL plasmas with multiple ion 

species plasma without excessive time consumption. Based on the fact, that charge number enters in 

collision term symmetrically for each pair of multiply ionised ions, one can find the following 

property of coefficients, entering in Esq. (II.I.14-17): 
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Summing up equations (II.1.14-17) in the case of 0=zαω  over the charge state ξ and using above 

shown properties of the coefficients, one can come to reduced number of equation (equal to the 

number of nucleus) for some average values: 
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where ∑=
z

zzI ααα ww ,    ∑=
z

zzz pIp ααααα /hh ,   ∑=
z

zzz pIp ααααα /rr   are the mean value of the 

quantities zαw ,  zαh  and zαr  for α species. Summing now the above equations over z , we arrive at 

the following set of equations: 
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The number of obtained equations after summation over charge states is considerable reduced to the 

number of nucleus, equal α and .β The formal solution of these equations enables one to express  

αr and αh in terms of αw  and αT//∇ . Substituting these quantities into the right side of equation  

 

[ ]

( ) ( ) ( )∑
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

=−∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ξβ βξ

βξ

α

α
βξα

αβ

αβ

βξ

βξ

α

α
βξα

αβ

αβ
βξβξα

ααα
α

α
α

ρρ
μ

ρρ
μ

ωρρ

,

3
,2

2
2

,αz
1

,

αz

rrhh)ww(

bwFu

z

z

z
z

z

z

z
zz

zzz
z

z

G
T

G
T

G

p
mdt

d

 (II.3.63) 

(which must be beforehand sum up over charge states ξ,z ), one can determine  αw  values. 

Apart the average mean values, the partial values for each charge state can be calculate in the next 

step. In order to determine these properties we will divide Esq. (II.3.59) into zIα and subtract from 

equation (II.3.62). As a result, we have 
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Solution of equation (II.3.64) for 
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This solution together with solution for αh brings to expressions for //z,Rα and //z,hα : 

 

( )
( ) ( ) ( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ∇+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∇
−−−= ∑

β α

α
α

α

β

β

αβ

β
αββα

αβ

αβ

α

αα
α τ

τ
τ m

Tc
z
z

m
T

cww
c

z
zmn z

z
z //5

2

2
//2

//,//,

1

2

2

//z,R   

 

( )
( ) ( ) ( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ∇−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ∇
−−= ∑

β α

α
α

α

β

β

αβ

β
αββα

αβ

βα
ααα τ

τ
τ

τ
m

Tc
z
z

m
T

cww
c

p z
zzz

//6
2

2
//3

//,//,

2

//z,h   

II.4 Analysis of impurity transport parallel to the magnetic field lines  

The force acting on impurity ions of charge Z parallel to the magnetic field B is 
 

T
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where the thermal and friction forces  //,z
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j

D
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Assuming that impurity ion ,~ jα  in average charge state denote as Z , then: 
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Three cases can be distinguished: low concentration level, intermediate and strong. 

• In trace approximation, when eiz nnn ≈<< , in steady state: 0 =T
jF  

,////// eeee TnpEen ∇−−∇= β  ie TTTconstp ≈≈≈   .,  

 

and impurity ions follow the electron temperature profile: 
 

j
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In multi-component plasma, effect of impurities on plasma behaviour depends on impurity content 

in the mixture and is determined by three parameters, electron density, effZ  and 0Z : 
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 Fig. II.1 Impurity distribution at strong friction )0( <k   



 

32 

• Almost "pure" plasma (trace concentration): 1≅effZ  
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z

z nnZn ≅<<∑ 2
α  (II.4.75) 

 

Impurities affect only the energy balance, not the main plasma. 

 nZ j∑ = nZ ≅ T k

  (II.4.76)  
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• Special distribution of the various impurity ions is strongly dependent on their charge state. 
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• High impurity concentration level: 

   νi ,Z / νi ,i  ≅ Z0 ≡
Z j

2nj∑
ni

>>1
   

(II.4.77)

  

 ne ≈ Z j nj∑    ⇒  ni / nZ → 0
 

• In this case the electric field effect is cancelled by the electron thermal force: 
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• the ion thermal force becomes: 

weakly dependent on charge state Z, and becomes small compared with drag force 
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Fj
D ~ mZnjZ j

2  Vi  
• The distribution of impurity ions along B becomes weakly dependent on their charge state. 

• Ion heat conduction in the case of high Zeff:          
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                                           ∇/ /Ti ~ qTZ0                               

 

• the dependence of the ion thermal force on Z2 can recover if ion heat flux remains the same at 

high impurity concentration. 
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• at low (or moderate) concentration of impurities the spatial impurity distribution depends on 

their charge states, whereas at high Zeff the impurity distribution becomes weakly dependent on 

Z 

• in the extreme case of high impurity concentration, the unfavourable thermal forces become less 

important, thus improving the retention. Both the impurity transport and the background plasma 

parameters are strongly coupled in this case and must be considered simultaneously.  

• in the 2D case impurities can re-circulate in the SOL because the temperature gradient along the 

magnetic field lines in the inner part of the SOL is higher than in the outer part (cold). The 

impurity ions move upstream in the inner part of the SOL (by thermal force) and diffuse across 

the cold outer part where they are swept back by friction with background ions. 

• the flow reversal of the background plasma can strongly deteriorate the impurity retention 

(upstream of the cushion in detached regimes) and helium exhaust 

 

II.5 Classical transport in multi-species plasma in radial direction. 

 The necessity to use an additional equations for higher moments αr and ασ is required due to 

not sufficient accuracy in calculation of the parallel transport coefficients. In practical case of 

highly magnetized plasma the necessity in taking into account the higher moments for calculation of 

radial transport coefficients is unnecessary. Therefore, for estimation of radial transport coefficients 

it is sufficient a 13 moment approximation. In this case we employing the low order 

variables αρ , αu , αT  and the higher order variables rsαπ and αq . As long as the tensor rsαπ is 

symmetric and its spur equals zero, it is defined by five independent components. The general 

number of variables in this case is equal N13 (where N is the number of plasma components). The 

corresponding system of closed equations can be presented as: 
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Here we use for shortening the following notations: 
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where slmε is the permutation tensor. Note, that equations (II.5.3) and (II.5.4) are the conservation 
equations of energy and momentum for the α  component of plasma. For all that 
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where αX are forces of non-electromagnetic origin, e.g. gravitational force gαm , 
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For these values the following conditions are obviously satisfied: 
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α
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The coefficients ( )nGαβ  are the linear combination of the Chapman-Cowling’s integrals generalized 

for different temperatures of plasma species (see expressions above). 

The equations (II.5.1-6) can be considerably simplified in the case of small gradients and proximity 

to the local equilibrium [13]. In that case all second order terms in equations can be omitted and the 

coefficients in the right hand side of equations ( ) 1−−≈ αβαβααβ τμnG n .  
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III. Boundary conditions in the multi-component plasma.   
 
 

III.1 Sheath potential in the presence of impurity ions 
 

In this paragraph, the sheath potential formation at the divertor plates in the presence 

impurity ions (sputtered from the plates or injected into plasma) and of secondary electron, 

emission is self-consistently considered. This is important for simulation of boundary plasma in the 

case of multi-component species at the vicinity to the divertor plate. It is shown that the sputtering 

at the plate or limiter (hereafter named in general as a target) can increase the potential drop, when 

impurities cause strong increases of electron upstream density. Impurity flux to the target as far as 

the secondary electron emission (SEE) from the target can only reduce the potential drop. The SEE 

yield saturates due to space charge limitations and cannot reduce completely the unfavourable effect 

on sputtering yield due to the acceleration by the potential drop even when a dilution effect of 

positive impurity ions is taken into account. The comparison of two types of carbon (with different 

SEE) shows considerably different values of potential drop and eventually results in different 

sputtering yields. For materials such as tungsten with a high electron emissivity the effect of SEE 

prevails over the effect of sputtering and leads to a substantial decrease of the potential drop. The 

sputtering (and self-sputtering) of tungsten starts to be significant at some critical electron 

temperature (which depends on the level of impurity recycling at the target). At a temperature 

higher than this critical temperature, self-sputtering above one can occur. The exact value will 

depend also on details of the impurity orbits in the sheath electric field. Further, the energy 

transmission coefficients for the different species (electrons, plasma ions, impurity ions) have been 

calculated. 

 

III.2 Model and assumptions 

A schematic of the plasma flow to the target is shown in Fig. III.1. we consider a steady 

state1-D model with only four species. The background electrons are assumed a truncated 

Maxwellian, so for primary electron density one has: 
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Fig. III.1: Chart of plasma flow near the target 

 

where eTe /ϕφ = . For background ions we assume a monoenergetic distribution, which  

Implies: 

ni(φ ) = ji  vTi α ε + (φ∞ − −φ ) ,         ε ≡ mv2

2Ti
,      α ≡

Te

Ti

  
                         

(III.2) 

Here Tiv ; notes the ion thermal speed and £ -the kinetic energy of incident ions upstream to 

the target. The secondary electrons emitted from the target are assumed with zero thermal 

energy, e.g.: 

 

        , )( φφ Teemem vjn =                                                                                     (III.3) 

 

while ∞→emn at the surface, this singularity is removable (see below). For impurities, 

sputtered from the target (ions of the target materials) we use a statistically average ion 

model [25]. This approach gives an average impurity ion density and charge number as 

function of plasma temperature. Additionally, a monoenergetic distribution of impurity ions 

incident to the target is assumed: 

 

εεμφφεμαφ ZmmZvjn ziZiZZiZTiZZ ==−+= ∞            ,)( )( ,,             (III.4) 

 

We are interesting in floating potential, so the total current at the target must vanish: 

 

J ≡ ji + jem + jimp − je = 0                                                                                            (III.5) 



 

39 

 

Here we take into account the plasma ion current, ij , the plasma electron current, ej the 

current of SE from the target, emj , and the current of the impurity ions of the target materials which 

(according to our model) are returning from the plasma to the target in one "average" charge state. 

We also postulate the quasineutrality conditions in upstream region ( ∞= ϕϕ ) in interface between 

the plasma and the charge layer at the target: 

 

ne + nem − ZnZ − ni = 0             (III.6) 

 

To get a monotonic transition of the potential from the presheath area to the sheath region the Bohm 

condition must be fulfilled at the entrance to the sheath, which implies the existence of the positive 

charged sheath layer: 
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          (III.7) 

 

Further, we consider the case when all the SE enters the plasma. This implies a monotonic 

potential between plasma and target with zero value of electric field at the target. In this case, the 

governing equation for potential – the Poisson equation can be easily integrated from upstream 

region, where we also assume that ion saturation current is a maximum available positive current 

extracted from the plasma region, and the region at the target: 
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     (III. 8)  

 

We assume below only the SEE and introducing the SEE yield, (see [26]) as 

 

,)( eeem jj T ⋅= γ   (III.9) 

 

The impurity ions flowing back to the target can cause the self-sputtering of the material 

surface, SelfS , additional to the sputtering caused by background plasma ions, iS  . The 

effective sputtering yield can be introduced simply as: 
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where η  is fraction of impurities returning to the surface. The potential dependence of sputtering 

and self sputtering yields is taken into account. Corresponding values was used from [27]. 

These nine equations contain nine unknown variables, ∞∞∞
emieZei nnnjjj ,, , , , , , , max εγφ  

They solved as function of electron temperature Te at given input parameters or functions 

1,,),( =αεγ Selfie SST  
 

 

III.3 The generalised transmission coefficient and sheath potential drop. 

The previous equations can be reduced to three main equations, which can be simply 

analysed. The relationship between currents and potential drop (current-voltage characteristic) 
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shows how impurities and secondary electrons chang the current balance within the sheath and 

impact the sheath floating potential. Thus, the electron current to the target can increase both due to 

SEE and impurity ions: 

 

je =
1 + ZSeff

1 − γ
ji   (III.12)  

The second term in numerator corresponds to contribution of impurities and zero total current 

requirements at the target. On the other side, there is an increase of electron density upstream to the 

target due to the existence of impurities and quasi neutrality requirements. As it follows from the 

second equation that governs the sheath potential drop in the presence of SEE and impurities: 
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the excess of electrons, coming to the surface (see the second term in numerator (III.11)) 

increases the floating potential. The competition between two these processes defines the 

real changes of the potential drop. Cold electron emission has been found to affect the 

potential drop in many previous papers [28]. Here we examine this effect in the presence 

of impurities, sputtered from the target.  

 

III.4 Bohm stability condition at the sheath entrance 

 The third equation here describes the stability condition at the sheath entrance: 
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  (III.14) 

 

This condition is generalization of the Bohm criteria for multi-component plasma. It is clear, that 

the kinetic energy at the entrance to the sheath is also affected by impurities and SEE. The 

generalised transmission coefficient ijet TQ /=δ  (for energy Q  carried by all particles to the target) 

can be written as δ t = δe + δ i + δ Z  where 
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( ),,γφεδ ei T+=  (III.15b) 

 

( )φεδ += effz ZS  (III.15c) 

 

Calculations are performed for typical tokamak ranges of plasma parameters [27].  

Two types of graphite with different SEE and tungsten with a high electron emissivity have chosen 

as a surface material. Fig. III.2 shows the potential drop and the SEE yield with and without 
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Fig. III.2: Potential drop and secondary 

 

electron emission vs. eT for POCO graphite impurities for POCO graphite (with low SEE) as a 

function of electron temperature. The case 5.0,1 == ηε is chosen. Saturation limit of SEE and the 

upper limit for the potential drop caused by Bohm limit ( )5.0=ε are also shown in the plot. The 

same plot for carbon is shown in Fig III.3.  

 

 
Fig. III.3: Potential drop and secondary electron emission vs. eT for carbon 

 

The difference in SEE yields causes a strong change in variation of the potential drop and other 

parameters. The same parameters for tungsten case are shown in Fig III.4. The temperature 

transmission coefficients as a function of electron temperature are plotted in Figs III.5 and III.6. It's 
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clear that the most of energy coming from plasma to the target carried by electrons because of both 

decrease of potential drop caused by SEE and enhancement of electron current to plate by 

sputtering. 

 

 
Fig. III.4: Potential drop and secondary electron emission vs. eT  for tungsten. 

 

 
 

Fig. III. 5: Energy transmission coefficient. vs. eT  for carbon (sputtering is included). 
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Fig. III.6: Energy transmission coefficient vs. eT  for POCO graphite. 
 

In the case of tungsten the enhancement of the energy, exhaust due to the strong surface erosion, 

(see Fig. III.7) starts to be significant at some critical electron temperature (which depends on the 

level of impurity recycling at 

 
 

Fig. III.7  Energy transmission coefficient vs. eT  for tungsten; η  is equal to the function of 
impurities returning to the surface the target). At a temperature higher than this critical 
temperature, self-sputtering yield above unity can occur. 
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Variation of potential drop by the secondary electron emission decreases potential drop, 

whereas the impurity sputtering of the target can increases or decrease drop, depending on variation 

of upstream electron density and impurity ion current at the target. The SEE yield saturates (space 

charge limitations) and does not offset acceleration due to the potential drop, and at the same time 

the dilution of negative charged layer by positive charged impurities seems to be not effective [29].  

Two types of graphite (with different SEE) have different potential drop and therefore 

sputtering yields. For high electron emissivity (e.g. tungsten) impurity effect not pronounced since 

there is strong reduction of potential drop due to SEE. Most of energy coming from plasma to target 

carried by electrons because of both decrease of potential drop caused by SEE and enhancement of 

electron current to plate by sputtering. For conditions considered (perpendicular incidence, high 

impurity recycling) the total sheath transmission coefficient rises with Te and can reach 25  

(without sputtering) or 28 (with sputtering) for graphite at eVTe 50> , which means a little effect at 

divertor typical temperatures ( eVTe 10< ). These effects must be accounted for divertor plate 

erosion due to sputtering and the arcs formation. 
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IV. Simulation of drifts in transport equations 
 
 

Classical particle drifts across the magnetic field can play an important role in tokamak edge-

plasma transport. The relative influence of these terms is important for self-consistent simulations 

by including them, together with anomalous diffusion transport, in a 2-D fluid model of edge-

plasma transport for the tokamak geometry. The drifts cause asymmetries in the plasma 

equilibrium, which depend on the direction of the magnetic field, B. The basic results can be 

understood by dividing the drifts into three categories: diamagnetic, E x B, and B∇ . The dominant 

effect near the divertor plates is from the E x B drifts, while the weaker B∇  drifts cause an increase 

in the magnitude of the radial electric field inside the magnetic separatrix. The diamagnetic terms, 

defined as divergence free, do not contribute to transport.  

 Classical particle drifts from E x B and B∇  (including curvature) drifts are believed important 

for understanding tokamak edge/scrape-off-layer (SOL) transport even in the presence of turbulent 

transport. For example, the asymmetry of the plasma density and temperature in front of the inner 

and outer divertor plates changes with the sign of the toroidal magnetic field, tB [14] and the power 

threshold for the L-H confinement transition often depends on the direction of tB  [15]. There have 

been various analyses of the basic equations which describe these drift terms in toroidal geometry, 

e.g. [16]. However, careful assessment of their effects in 2-D transport codes has been lacking. 

Furthermore, it is important to have a valid model that calculates the electrostatic potential (and thus 

radial electric field, rE ) that extends across the magnetic separatrix into the core region. In this 

vicinity, shear in magnetic field is believed to play an important role in suppressing edge 

turbulence. 

 In this chapter, we focus on assessments of the different classical drifts, which can be 

implemented into TOKES code, including the calculation of radial electric field, on both sides of 

the separatrix [17-19]. The relative importance of the different drift terms, although not the details, 

can be predicted by simple arguments:  

• First, the diamagnetic terms, defined here as being the divergence-free portion of the 

pressure-driven drift, give no transport as they cancel exactly in the transport equations; this 

is well-known result, which is sometimes overlooked.  

• Second, the E x B drifts are larger than the B∇  drifts since the former scales as the inverse 

of the edge-plasma scale length while B∇  scales as the inverse major radius, L/R.  

• Third, since the E x B drift is the same for ions and electrons, it generates no current; only 

the smaller B∇  drift enters the current continuity equation for the potential.  
 



 

47 

IV.1 Transport equations with drifts 

 In the TOKES code, all plasma equations can be written as: 
 

( ) kkkk
k FSD

t
+=∇⋅−⋅∇+

∂
∂ ψαψψ V  (IV. 1) 

 

where kψ represents variables of density, in ( 1=k , 1=α , 01 =F ), parallel momentum density, 

//Vnm ii ( 2=k , 1=α ), and electron and ion temperature densities, 2/3 eeTn  and 2/3 iiTn  

( 4,3=k , 3/5=α ). Here ),(V // driftVV  is the convection velocity //V  from the parallel and cross-field 

drifts, driftV  , kD  is the diffusion tensor, kF is a force term, and kS is the source term. 

Poloidal transport is a combination of the cross-field drifts described below and the geometrical 

projection of the parallel transport from Braginskii [10], except that thermal flux limits are used. 

Radial transport also includes the cross-field drift components together with anomalous diffusion 

coefficients for density ( aD⊥ ), momentum ( aη ), electron energy ( eχ ), ion energy ( iχ ). The 

electrostatic potential is obtained from the current continuity equation described in more detail 

below. If cross-field drifts are neglected, the convective velocity in Eq. (IV. 1) is written as 
 

 rr
n

n
DV ebV // ∂

∂−⋅= ⊥
θ  (IV. 2) 

 

where BBb /θθ = , θB is the poloidal magnetic field, and, θb , re are the unit vectors in the poloidal 

and radial directions, respectively. Note that in the continuity equation [ ik n=ψ  in 

Eq. (IV. l)], the diffusion term is actually represented through the diffusion term in V (IV. 2). 

Inclusion of the cross-field drifts can be accomplished by adding to V a second convective velocity 

such that ⊥+→ VVV . To improve numerical accuracy, it is best to omit divergence-free 

convective fluxes from the outset as they should give zero contribution to the conservation 

equations [21-22]. The separation of particle fluxes into divergence-free terms and those from 

guiding-centre motion can be clearly done [23], and one can use those results for modelling. The 

guiding-centre convection velocity for each species is 

 

           [ ] [ ] ( ) ( )[ ]bbbbEbVVV 2
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2 ∇++∇+=+= ∇⊥ ZeB
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ZeB
T

BBE ,   (IV. 3)  

where BB/b = the first term on the right-hand side represents electric drift and the remaining terms 

give the B∇ drift velocity. Here E  is the electric field, T is the electron or ion temperature, Ze is 

the particle charge, m is the mass, and //V is the parallel drift velocity. It should be emphasized that 



 

48 

including ⊥V (IV.3) incorporates all cross-field drift terms in the conservation equations properly; 

one should not include any additional diamagnetic terms, i.e., neither the gyro-viscosity term in the 

momentum equation nor the energy diamagnetic terms [10]. 

 

IV.2. Electrostatic potential in presence of drifts 

The potential is calculated from the current continuity equation obtained by subtracting the ion 

and electron continuity equations and assuming quasi-neutrality ( nnn ei == ), yielding  

( ) 0j =∇ ϕ  (IV.4) 

 Here we follow the description given in [17] with the generalization of including the currents from 

the B∇ terms in Eq. (IV.3). (Note that EV  yields zero current.) Thus, in addition to the classical 

parallel current, //j [10], which dominates in the SOL, we have a radial current driven by anomalous 

ion transport, which in the thin SOL region can be approximated as [17]:  
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where ϕ is the potential, iii TnP = , and ⊥= Dnm ii1η is an anomalous viscosity coefficient. In an the 

inhomogeneous magnetic field of a tokamak, currents from B∇V become  
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where we assume singly charge ions; this is easily generalized to impurities. The unit vectors re , φb  

correspond to the direction of the major radius, R , and toroidal B -field, respectively. Equation 

(IV.7) is typically accurate for tokamaks, yielding a vertical current. The current continuity equation 

thus becomes fourth order in the radial direction (from rj ) and second order in the poloidal 

direction (from //j ). The sheath boundary conditions or the poloidal direction, including the cross-

field drifts, is discussed in [23]. On the inner core boundary in the radial direction, we impose two 

boundary conditions: one is that the potential is constant on a flux surface, with the constant being 

supplied by requiring no radial current over the flux surface. The second condition is, that the shape 

of the potential on the second set of cells determined from parallel Ohm’s law [10]. The remaining 

constant can be found by setting the flux-surface averaged toroidal momentum to some input value 

(zero for our cases). At the radial wall, simple boundary conditions making the first and second 

numerical derivatives of ϕ  zero are used. 
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IV.3. Effect of E x B drift  

As mentioned earlier, the magnitude of the E x B velocity is much larger than of the 

B∇ terms owing to the shorter scale-length of the potential compared to the magnetic field. Turning 

on the E x B velocity could give the dominant effect on plasma transport as shown in Fig. IV.2 

from B2 calculation [16]. Here the standard direction of tB  is out of the plane, giving the ion 

BV∇ velocity downward. Note from this figure that the profiles shift outward or inward in response to 

the radial drift caused by the poloidal electric field (always pointing toward the divertor plates). The 

most dramatic effect of E x B in the divertor region is the strong drop in the density on the inner 

plate for reversed tB which results in loss of detachment on the inner divertor. The drop in ion 

density in can be understood by considering the vector plot of the ion flux shown in Fig. IV.3. Note 

the strong reversal of the flow under the X-point as tB  changes sign; here the flow is dominated by 

the E x B drift from the large radial electric field that arises from the drop ofT , in moving across 

the separatrix into the private flux region. Two diagnostics confirm that the particle flow under the 

X-point is very important here. First, consider three net ion-plus-neutral currents: that passing the 

X-point in the SOL toward the outer plate, outI , that likewise directed toward the inner plate, innI ;, 

and that passing under the X-point from inner plate to outer plate, pfI .  

  

 
Fig IV.2 Ion density at the (a), inner divertor plate and (b), outer divertor plate for four cases; no cross-field 

drifts (solid line); ExB only for the standard toroidal B-field direction (long dashed line); ExB only for 
reversed toroidal field (dotted line), and ExB and grad-B drifts for reversed toloidal field (dot-dashed 
line)[16]. 

 

For the standard tB , we find ( ,,, outpfinn III ) = (0.13,-0.81, 1.6) kA, whereas for the reversed tB , 

( ,,, outpfinn III ) = (1.6, 1.1, 0.05) kA. Clearly, pfI  is comparable to the particle currents in the SOL 

and changes the sign of tB . Second, one can insert a baffle vertically through the private flux region 

to the X-point for the reversed tB  case; Note from Fig. IV.3 that the E x B induces rather complex 
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flow patterns with flow reversal regions. Indeed, the self-consistent solution of the SOL plasma has 

many facets. It was shown that even in a 1-D model including only poloidal drifts, but with 

temperature asymmetries, that solutions arise where the density asymmetry is enhance in the 

direction opposite to that found in 1-D models for uniform temperatures 
 

IV.4. Effect of B∇ drift 

 The effect of the B∇  velocities on plasma transport has shown in Fig.IV.2 on the density at 

the plate where the dot-dashed line gives the result with the B∇V  velocity. The weak effect reflects 

the fact, that these velocities are small. However, B∇V  does have a significant effect on the potential 

though their contributions to the net current via B∇j , especially in the core-edge region. Note from 

Eq. (IV. 6) that B∇j does not explicitly depend onϕ , so it behaves like a source term in the equation 

used for the potential, ( ) 0j =∇ ϕ  although the variables are coupled nonlinearly. The profiles of the 

radial electric field, rE ,are shown in Fig. IV. 4 at the outer mid-plane without and with B∇j added. 

The electric field is substantial changed near the separatrix and in the core region with B∇j ; well 

outside the separatrix, the parallel currents dominate the potential equation. The large radial shear 

in rE  is believed important for suppressing edge turbulence, although quantitative evaluation of this 

process requires coupling this model with a turbulence simulation. In addition, these simulations 

assuming no toroidal rotation at the core-edge boundary and thus are representative without strong 

neutral beam injection, which can cause toroidal rotation. Allowing finite toroidal velocity at the 

core-edge boundary changes rE  inside the separatrix.  

 Finally, the inclusion of B∇j  changes the current structure on the divertor plates. The currents 

at the plate in both standard and reversed tB  cases are qualitatively similar to that measured on JET 

by Schaffer, et al. [24], who also gave an interpretation, which includes B∇j . Even though the overall 

density profile on the plates are not very sensitive to B∇  effects (see Fig. IV. 2) very near the 

separatrix, strong currents do flow, especially for the reversed B∇  case. These plate currents are 

still dominated by the parallel current, but the self-consistent adjustment to B∇j  have a strong effect 

on //j .  

 In conclusion, one can expect that the classical cross-field drifts can have a substantial effect 

on plasma spatial distribution in the edge/SOL region of a tokamak. The drifts can be separated into 

three categories: diamagnetic, E x B and B∇ . The diamagnetic drift is defined as the (large) 

divergence-free portion of the pressure-driven drift and thus does not contribute in the net transport. 

The E x B drift can be substantial in the edge region giving important contributions to particle 

transport. A large radial electric field exists in moving into the private flux region because of the 
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rapid drop in the electron temperature there. The associated poloidal drift of private-flux region 

plasma is away from the outer plate and toward the inner plate for the ion gradient-B drift toward 

the X-point. This particle transport further enhances the tendency from toroidal asymmetries for the 

inner plate to have higher plasma density and thus detach before the outer plate. Upon reversal of 

the toroidal field, tB , the drifts reverse, and the plasmas profiles at the inner and outer plates are 

much more similar. This behaviour is consistent with the experimental observations reported in 

[14]. Because the E x B drift is the same for ions and electrons, it generates no net current and does 

not contribute directly in the electrostatic potential. The B∇  drift is pressure-driven, but is typically 

smaller than the E x B drift by the ratio of R/Δ , where Δ  is the scrape-off layer width and R is the 

major radius, but here ions and electrons drifting in opposite directions; this drift therefore first 

becomes important in the current continuity equation for determining the electrostatic potential. In 

the core region, the current contribution from the B∇  drift increases the magnitude of rE  and its 

shear. In the SOL, the B∇  drift has a small effect on rE , because there the current is dominated by 

the parallel electron dynamics. 

 Classical particle drifts across the magnetic field can play an important role in tokamak edge-

plasma transport. The relative influence of these terms is important for self-consistent simulations 

by including them, together with anomalous diffusion transport, in a 2-D fluid model of edge-

plasma transport in TOKES code. The drifts cause asymmetries in the plasma equilibrium which 

depend on the direction of the magnetic field, B. The basic results can be understood by dividing 

the drifts into three categories: diamagnetic, E x B, and B∇ . The dominant effect near the divertor 

plates is from the E x B drifts, while the weaker B∇  drifts cause an increase in the magnitude of the 

radial electric field inside the magnetic separatrix. The diamagnetic terms, defined as divergence 

free, do not contribute to transport. 
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Fig IV.3 Vectors of ion particle flux for (a), the 
standard direction of the toroidal magnetic field 
corresponding to the ion grad-B drift toward the X-
point, and (b), the opposite direction for the toroidal 
field [16]. 
 

Fig. IV.4 Radial electric field at the outer 
midplane for (a), ExB drifts only, and (b), ExB and 
grad-B drifts together. The ion grad-B drifts are 
toward the X-point for the standard B case [16]. 
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V. The modelling of neutral atoms in tokamak boundary plasma 
 
 
 The effect of neutral atoms is not included in standard tokamak transport treatments [37]. 

However, recent experiments [38-45] have shown that neutral atoms in the tokamak edge can 

influence global confinement by affecting the transition from low L to high H confinement. The 

physical mechanism by which this occurs is not yet clearly identified, but it is well known that 

neutrals influence ion dynamics through charge-exchange interactions. Furthermore, the radial 

neutral flux of toroidal angular momentum can modify or even determine the edge radial electric 

field and plasma rotation. The radial localization of the neutrals also introduces a shear in the flow 

that may affect edge turbulence [46]. Neutral atoms play an essential role in momentum transfer 

from the plasma to the wall, thereby facilitating the transition from attached to detach operation 

regime with increasing input power [47]. They could also play an important role in mitigation of 

ELMs and runaway electrons [48].  

 In this chapter, we consider first simple models of neutral atoms behaviour in the tokamak 

boundary plasmas and then will describe the neutral transport in the SOL and divertor plasma.  

 
V.1 Kinetic description of neutral atoms near the first wall 

 The neutral atoms (e.g. of hydrogen isotopes) realised from the first wall of tokamak and 

penetrating in the boundary plasma undergo charge-exchange collisions and ionization. The neutral 

atoms before being ionised undergo many charge exchange collisions and experiencing a random 

motion. Therefore, the penetration length into plasma can be assessed as a diffusive length.  
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where the diffusion occurs due to multiple resonance charge exchange collusions. Here                 

ioniion vn ><= στ /1  is the ionization time and the mean free pass for atoms against 
ionisation and charge exchange, respectably: 
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Under reactor tokamak conditions at the edge neural atoms will normally penetrate rather shallow 

and neutral distribution can be considered in the slab geometry (see Fig. V.1)  

It is useful to  introduce the following definitions:  
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β (x) =< σv >cx / < σv >cx + < σv >
ion( )  (V.4) 

 
k(x) =

< σv >ion

< σv >ion + < σv >cx( );   
  (V.5) 

 
and the reflective property of plasma, so called Albedo:  
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Fig. V.1 
 

Here -f  and -
0j  are the distribution function and flux of atoms coming from the wall, +f  and +

0j  are 

the corresponding quantities for reflected back atoms. Assuming the complete absorption of atoms 

at the wall, the distribution functions for incident and reflected atoms can be taken as a one directed 

Maxwellian with the wall 0T and plasma 1T temperatures, respectably: 
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Here velocity V describes the plasma flow in vertical directionV Vz ,0,0( ). Using the definition      

given above and integrating over velocity space one can easily find the following moments for  
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• Particle flux of atoms: 
 
j0

+ ≈
1− k

1+ k
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 (V.8)

 

 
• Atoms density: 
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• Velocity of atoms: 
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• Pressure of atoms:  
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• and the friction force (or viscosity): 
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      where  T* : 
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V.2 Fluid description of neutral atoms in the SOL 

 In this chapter the fluid equation are derived for simulation of neutral atoms in the SOL and 

divertor region of tokamak. We will assume that in the toroidal direction the distribution of neutrals 

is homogeneous in that boundary region, therefore considering only the radial and poloidal 

directions. As far as radial direction concerns, we will integrate across the relatively thin layer in the 

SOL region. 

 
• Geometry chart & coordinate system 
 

 
 

whereδ is the thickness of the plasma column in the SOL and the divertor area, δ =
Δ
d  

 

and δd = d − Δ is the thickness of the private zone.  We will choose the curvilinear orthogonal 

coordinate system ( ) ϕθρψ ,,  and will use hereafter the following definitions:  
),,( ϕθψ UUUU  the fluid velocity of neutral atoms, 

N  is the neutral density, 

0m  is the mass of atom, 

ρ    is neutrals mass density, ρ≡0Nm  

Metric coefficients (with co- and contra-variant components)
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• 2-D Fluid equations for neutral atoms 

• Continuity equation: 
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• Momentum equations along toroidal direction: 
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• Energy equation: 
 

( )

( )

( )

)18.V( 
2
3

2

2
//   ,           ;02

3
2

2
0        ;  

2
3

2

2

)17.V( )()( )(         

3
2

3
4        

3
2

3
4 

,0

0000

0
0

000
0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=+≡+≡

++−+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−−−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−−−++

iT
Vim

nirecQNT
NVNm

NnT
nVim

i

QTknNTknNTkNn

U
UUU

U
UUU

U
UTUNT

U
U

U
UUU

U
UUUTUNT

t

irecionNcxNiion

εε

δεδεεδδε

∂ψ
∂

∂ψ
∂

∂θ
∂

∂θ
∂

∂ψ
∂

η
∂ψ
∂χε

∂ψ
∂

∂θ
∂

∂θ
∂

∂ψ
∂

∂ψ
∂

∂θ
∂η

∂θ
∂χε

∂θ
∂

∂
∂ε

ϕ
ϕ

θ
θ

ψ
θ

θ
ψ

ψ
ψψ

ϕ
ϕ

ψ
ψ

θ
ψ

ψ
θ

θ
θθ

      

New variables and ordering: 
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Uθ ∝  ε ;     Uϕ ∝  1;      Uψ ∝  ε 2;      

λ θ ∝  1;    λϕ ∝  ∞;      λψ ∝  1 / ε ;      
 (V.20)

 

 
Then, the equation can be written as: 
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• Since the SOL region is relative thin, Δ << 2πqR we averaged over the radial direction and  

simulate the radial distribution via a source of neural atoms coming through wall or separatrix 

Therefore, the radial term in continuity equation can be replaced as 
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For the parallel momentum //Π  we will take into account that due to the charge –exchange 

collisions with the plasma ions, neutrals surrounding the plasma flow will hamper the flow and 

therefore acquire the parallel momentum.   
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where Kn is the Knudsen number of neutrals, δ and Δ are shown on the sketch (see Fig.1), nn−σ is 

the neutral-neutral elastic collision cross-section. 
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Instead of ϕθ UU , we will introduce the velocity projections along and across B:  U/ /,   U⊥,    
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•  
 

  Uθ = U/ /hθ +U⊥hϕ ;        Uϕ = U/ /hϕ − U⊥hθ ;      hθ ≡ Bθ / B  ;    hϕ = 1 − hθ
2    

   `  
(V.28)

 

 

Projection of poloidal velocities along B 
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  Uθ = U/ /hθ +U⊥hϕ ;        Uϕ = U/ /hϕ − U⊥hθ ;      hθ ≡ Bθ / B    

   U/ / = Uϕhϕ +Uθ hθ ;         U⊥ = Uθ hϕ −Uϕhθ ;      hϕ = 1 − hθ
2
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• Dimensionless form of equations: 
 

We will introduce the following dimensional units  

Ng,   Tgg,   L,    τg =L/ vg,   vg=√Tgg /mg,  

and dimensionless variables 

t = t/τg,   U=U/vg,      τg = x/L,  N=N/Ng,  Tg=Tg/Tgg, 

then the equations read: 
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• Numerical procedure (discretesation of equations): 
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V.3  Boundary conditions for neutrals 

 
The distribution function of the incident atoms at the Plate 
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(see for details concerning function last function in [21])  
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• Heat and viscose fluxes 
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• Boundary conditions for neutrals in dimensionless form 
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The numerical program, solving these equations is presented in Appendix VIII 
 
 
VI. Sputtering of the first wall and divertor plates.  
 
 

 It is now recognized that the lifetime of a tokamak reactor is determined by damage of 

structural elements facing the plasma (e.g. the first wall and divertor plates).  For this reason, it is 

important to obtain the most accurate estimates of erosion rates for these elements. Available 

experimental data applied to steady state or long pulse operation indicate that the first wall erosion 

rate is due mainly to charge exchange neutral sputtering, and that the erosion rate of divertor plates 

is determined by fuel and impurity ion sputtering (particularly self-sputtering). 

 

VI.1 Objectives 
 Here the calculations are presented for the sputtering yields averaged over energy and angular 

distributions of incident deuterium and tritium ions on various materials proposed for the divertor 

plates and first wall of a tokamak reactor (C, Al, Ti, Fe, MO, W). Modifications to the particle 

distribution function due to acceleration in the sheath electric field are included and the calculations 

are performed over the energy range characteristic of the particles in the plasma boundary. The 

results are restricted to the case of magnetic field lines normal to the divertor plate surface. 

Calculations of the sputtering yield for first wall materials have been performed in several 

papers (see, e.g. ref. [30]), Assuming normal incidence, the different expressions are extrapolated to 

the low energy range characteristic of the plasma edge and used to calculate the divertor plate 

erosion rate. In general, the sputtering yields so obtained correspond to those which would be 

produced by particles whose are consistent with acceleration through the Debye sheath. It is easy to 

show that the thickness, A of structural elements sputtered during one year of continuous operation, 

by particle fluxes of different species j, can be expressed as  
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Here Δ  is in mm/year, A is the target atom mass (in amu), ρ  is the target material density 

(g/cm3), ),( θES j  is the sputtering yield of particle j with energy E and angle of incidence θ and jq , 

is the flux of particles j (particles cm-2 s-l ). The brackets  represent an average over the angular 

and energy distribution of incident particles. Thus, the precise determination of the erosion rate 

needs the correct form of the energy distribution function of the incident particles and the sputtering 

yield ),( θES j
. Although a Maxwellian distribution is commonly chosen, the distribution function of 

charged particles near the divertor plates may be strongly distorted. This paper presents the results 

of erosion rate calculations taking into account modifications of the distribution function and the 

angular dependence of the sputtering yield. 

 

VI. 2 Distribution functions 

Let us consider the distribution function for particles arriving at a material surface. It is clear 

that many effects can influence the energy distribution function near the divertor plates. In practise, 

it is impossible to take into account all of these effects by an exact method. For this reason we 

consider only the main effects which determine the difference between the near and far distribution 

functions in the edge plasma flow.  

Far from the divertor plates, the ion distribution function can be considered a Maxwellian 

shifted by some velocity 0V . The longitudinal gradients in the boundary plasma, particle sources and 

acceleration in the presheath field determine the value of 0V , [31]. For typical boundary plasma 

parameters the inequality piDe λρλρ <<≤ is satisfied ( ie,ρ is the electron (ion) Larmor radius, 

Dλ is the Debye length and pλ - the mean free path of a charged particle). If pλ , exceeds the 

characteristic length of the neutral atom distribution near the plate, then this neutral gas will not 

influence the charged particle distribution function. This condition is satisfied if the plasma density, 

which determines the width of the neutral atom spatial distribution exceeds or is comparable with 

the atom density. The effect on the distribution function of a magnetic field and of ionization of 

atoms may be neglected for the conditions considered here.  

The ion velocity distribution at the plasma sheath interface (i.e. at a distance Dλ , from the 

plate) can be expressed as 
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where imTnj π2/0 = is the ion flux to the plate, TVVu /0 ⊥⊥ = , TVVu ///0// = are the transverse and 

longitudinal components of the velocity along the magnetic field normalized to the thermal velocity 

iiT mTV /2=  and 0//0 / TVVM = . Expression (VI.2) represents the distribution function for 

collisionless ions accelerated by the presheath field so that at the entrance to the sheath their mean 

velocity satisfies the Bohm sheath criterion. According to this condition, the value of 0M at the 

plasma-sheath interface is given by 2//00 jij ZTeZM ≈= ϕ where jZ  is the charge of an ion 

accelerated in the presheath field, 2/~0 eTeϕ .  

In so far as that in this regime the distribution function is determined only by the constants of 

motion, near the plate the distribution function is 
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Here ϕ is the plasma potential far from the plate, and δ is the Dirac delta function. Taking the 

plate potential to be zero, the distribution function for the ions at the plate may be written as: 
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It should be noted that in obtaining eq. (VI. 4) the ions are assumed to completely recombine on the 

plate and the lines of force are assumed to be oriented normally to the divertor plates. Clearly, if the 

angle, θ , between the normal to the plate and the line of force increases, then the value of 0M , 

which is proportional to cosθ  tends to zero. In the limiting case of grazing incidence ( 2/πθ → ) 

the distribution function (4) transforms into an unshifted Maxwellian. The effect of the magnetic 

field can be neglected in this case since Di λρ > . The dependence of the shift in the distribution 

function on the inclination angle of the line of force is connected with the fact the sheath electric 
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field is oriented normal to the surface. The value of the component of this field along the direction 

of the lines of force decreases when the inclination angle increases. In reality, they are normal and 

tangential intersections of the lines of force with the surface because of surface roughness. The most 

unfavourable case, corresponding to normal incidence (θ  = 0), has been taken into account in the 

calculations of sputtering yields which follow. The usual expression for the potential drop in the 

sheath is used: eie mmTe πϕ 2/ln0 ≈ .This expression is valid in the absence of secondary electron 

emission and if the inequality ik kZ nZn
k

<<∑ is satisfied, ( in is the plasma ion density and zn , is the 

density of impurity ions in ionization state kZ ,). From eq. (VI. 4) we note that in general there is a 

large difference between the distribution of ions arriving at the plate and a simple Maxwellian. For 

the distribution function of neutrals near the plate, we assume the ion distribution function of eq. 

(VI. 2). This assumption is based on the fast relaxation (over a time of order the collision time) of 

the distribution function of cold atoms leaving the plate surface to the ion distribution function near 

the plate. We assume further that the distribution function of the atoms arriving at the first wall is 

also Maxwellian. 

 

VI.3 Energy dependence of the sputtering yield 

We now turn to the energy dependence of the sputtering yield for the case of normal 

incidence. The exact solution of the sputtering yield problem for the low energy range keVE 1< has 

not obtained yet. For this reason, we must use empirical relations that agree well with the available 

(scarce) experimental data. The following expression for the sputtering yield is proposed in [32-34]: 
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where 3102 ⋅=C for hydrogen atoms (ions) and 400=C for other projectiles. U , is the binding 

energy of the surface atoms (sublimation energy) in eV ,  2121 ,,, MMZZ are the atomic numbers and 

masses (in amu) of the target and projectile respectively, E is the projectile energy ( eV ) and THE , is 

the threshold energy given by the expression (VI. 7): 
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From equation (VI. 6) we see that 11 /1~ ES for large E  but the experimental data agree fairly well 

with the law EES /ln~ [33]. The expression proposed in [34], based on the results of both 

theoretical and experimental investigations, and predicts just such energy dependence. 
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According to [34] the sputtering yield is  
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where  
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Here, TFE , is the energy in the centre-of-mass system for a head-on collision with the screening 

radius for a Thomas-Fermi potential as the closest approach and THE , is the threshold energy. The 

parameters THTF EEQ ,,  are given in [34] for some representative cases. Calculations show that the 

predictions of equation (VI. 8) are somewhat closer to the experimental data than those from 

equation (VI. 6). We therefore choose the former for use in our estimation of the sputtering yields at 

low energy. 
 

VI. 4 Angular dependence of the sputtering yield 

 Several authors (see, e.g. [32]) have considered the sputtering yield dependence on the 

projectile angle of incidence. 
 

 
Fig. VI.1. The angular dependence of the sputtering yield )(θS for varying projectile energy. 

 

The most complete treatment is given in [34], according to which the following approximation may 

be used: 
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The parameters f and optθ , have been determined both from available experimental data and 

numerical calculations. f is independent of projectile energy for the case of sputtering by light ions, 

and optθ  (in degrees) is given by the expression 

 

4/13.5790
Eopt
ηθ −= o    (VI. 10) 

f and η   (for E = 1 keV) are given in ref. [35] for H, D, T, He and various target materials. Fig. 1 

shows the function ( )θS  for the combination (D +Fe). It should be noted that equation (VI. 9) and 

(VI. 10) predict the angular dependence of the sputtering yield well only for light ion sputtering. 

Their validity to the case of heavy ion sputtering is doubtful, especially if calculations of the 

sputtering yield averaged over an energy spectrum are required. In addition, it can be shown that the 

sputtering yield averaged over the energy and angular distributions of the incident particles is very 

sensitive to the behaviour of its components in the near threshold energy range and near o90=θ . 

There is evidence that equations (VI. 9) and (VI. 10) are not valid in this case. 

 

VI. 5. The average sputtering yield 

 The twice-averaged sputtering yield, which we define as the yield averaged over the 

distributions of energy and angle of incidence of the projectiles, is given by 
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This expression may be transformed to the following 
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where 
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In equation (VI. 12) )(tS represents, the angular dependence of the sputtering yield [see eq. (VI. 9)] 

and )(εS   the energy dependence [see eq. (VI. 9)]. We note that the dependence of S on δ  (i.e. on 

jZ and 0ϕ ) is rather complex. On the one hand S  evidently increases when δ  increases due to an 

increase in the population of fast particles, but on the other hand, S  must decrease if the minimum 

energy gained in the sheath exceeds the threshold energy so long as the integration region over 

ε decreases when δ  increases. 

 

VI. 6  Results and conclusions 

 In accordance with the above, we have calculated the twice-averaged sputtering yields for a 

number of target/projectile combinations. Table 1 shows the results for deuterium ion sputtering. 

Table 2 shows the results for the same target materials but for the case of incident tritium ions. It is 

interesting to note that in both cases the sputtering yield decreases as the target mass increases in 

this low energy range; this is valid even for mono-energetic ions. 

Table VI. I 

Variation of the twice averaged sputtering yield, S  for various target materials as a function of the 

temperature of incident deuterium ions 

 
 

Table VI. 2 

Variation of the twice averaged sputtering yield, 9, for various target materials as a function of the 

temperature of incident tritium ions T (ev)  
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These calculations enable us to estimate the relative importance of the effects of acceleration in the 

sheath potential, modifications of the distribution function and the angular dependence of the 

sputtering yield. Analysis of the results shows that variations in the sputtering yield are mainly due 

to the accelerating potential. So, if for example, we take into account only the angular dependence 

for deuterium atoms at eVT 100= incident on tungsten, then the sputtering yield is increased by 

about a factor 3 over that for the case of normal incidence. Taking into account the sheath 

acceleration the yield is enhanced by a factor 35. Fig. VI. 2 show the effect of the angular 

dependence on the sputtering yield. One can see that the ratio of the twice averaged yield to the 

energy averaged yield (for the case δ = 0, 0M = 0) increases as the temperature increases. This 

result is expected so long as the fast particle population increases as the temperature increases since, 

from equation (VI. 9) the yield is enhanced as grazing incidence is approached. The above leads us 

to the following conclusion: despite the weak dependence of the sputtering yield on the angle of 

incidence in the energy range below 200 eV, it is essential to account for the angular dependence in 

this range if the energy averaged sputtering yield is to be accurately predicted. For example, even at 

eVT 10= , the enhancement factor is 2.5 for D-W sputtering. The calculated data also show that the 

distribution function distortion introduced by the sheath acceleration effect leads to sputtering yield 

increases of 1.5-2. This enhancement is comparable with that due to the angular effect. As an 

illustration, it is interesting to compare the calculated values of the yield with those obtained from 

equation (VI. 8) for ejTZE 5.5=  the energy gain because of acceleration in the sheath and pre-

sheath electric fields. It is easy to show that for all projectile/target combinations the values of s 

given in tables 1 and 2 exceed those of )5.3(2 ZTS the actual enhancement factor depends on the 

type of projectiles’ result also valid if we use expression (VI. 8) to estimate the sputtering yield for 

ejTZE .5.5= . 
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Fig. VI. 2. Ratio of the sputtering yield averaged over energy and angle of incidence to the yield 

averaged over energy only (i.e. for θ  = 0). 

 

The sputtering yields averaged over the distribution function and over the projectile incident angle 

have been obtained for some candidate target materials (C, Al, Ti, Fe, MO, W) and incident 

deuterium and tritium ions. 

We have shown that the sputtering yield increases if the sheath potential is taken into account and 

that the usual estimation of the sputtering yield at energy ejTZE 5.3= is too low 

It is found that it is essential to account for the angular distribution of incident light ions at low and 

high temperatures in order to calculate correctly the sputtering yield averaged over the distribution 

function of the incident particles [36]. 
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Conclusive remarks  
 The main objectives of the project have been fulfield. The review of transport models, suitable 

for simulation of stationary and transient processes in multi-species plasma (ELMs, Massive Gas 

Injection etc.) are presented and the following tasks are completed: 

• An analytical model of impurity distribution in the SOL region, based on the force balance 

equations along the magnetic field lines.  

• The fluid transport equations for impurity ions of arbitrary concentration and in arbitrary charge 

states in the SOL and divertor plasma (the 21-Gread moment equations) are derived. 

• The Braginskii version of the 2-D equations for mulri-component plasma (in the frame of the 

Chapmen-Enscog procedure) is prepared for implementation. 

• The fluid and kinetic models of neutrals (atoms of the hydrogen isotopes and impurity atoms) 

are prepared for implementation. The proper boundary conditions are derived.  

These preparations are foreseen for simulation of the following main tasks: 

a) to evaluate ITER core plasma pollution with tungsten impurities sputtered from the divertor 

plates by small (mitigated ) ELMs during the discharge time. This gives the answer to which extent 

ELMs have to be suppressed to be tolerable for ITER operation in the sense of PSC life-time and 

dilution. The model will include a sputtering of divertor plates by incident ELMy hot particles as a 

source of impurity ions, dynamics of impurity ions in the SOL region and “entraining” effect of 

ELMs in the pedestal area.  

b) to simulate the radiation energy distribution on the first wall during TQ and CQ stage in ITER 

caused by Massive Gas Injection (MGI). Impurities of Ne and Ar will be introduced in H-mode 

ITER discharge by MGI and their poloidal and radial distribution will be calculated by 2D TOKES 

Code. To estimate the injected particles stopping radius and required amount of injected gas for 

ITER by taking into account results and arguments from JET experiments. Such calculations are 2D 

and address the poloidal asymmetry in the first instance.  

It is worth wile to make some remarks, concerning the issues, which are not mentioned above, 

however remain very important for tokamak-reactor plasmas. In this report the analytical and 

numerical transport models are presented for multi-component complex plasma, when impurity ions 

are in arbitrary concentration and in various charge states dominate in plasma and mainly 

determined transport properties. Description of impurity transport, presented here is done in 

classical terms. However, in many experimental situations, neoclassical (i.e. collisional) effects 

alone cannot explain impurity transport [50] Turbulence should be taken into account to explain the 

observed anomalous transport. Theoretical models predict that turbulence is highly sensitive to the 

electron temperature gradient [51]. The turbulent transport theoretical predictions show that 
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decreasing the temperature gradient leads to reduced transport coefficient down to neoclassical level 

[52]  

Also, the effect of neutral atoms is not included in standard tokamak transport treatments. 

However, it is well known, that neutral atoms in the tokamak edge can influence global 

confinement by affecting the transition to H-mode. The physical mechanism by which this occurs is 

not yet clearly identified, but it is well known that neutrals influence ion dynamics through charge-

exchange interactions. Furthermore, the radial neutral flux of toroidal angular momentum can 

modify or even determine the edge radial electric field and plasma rotation. The radial localization 

of the neutrals also introduces a shear in the flow that may affect edge turbulence [53]. Earlier 

theoretical work [54] explored the effect of neutrals on collisional ion flow and radial electric field 

within the framework of neoclassical theory. The neutrals provide a drag on the ions that leads to an 

effective no slip boundary condition for the toroidal ion rotation within an ion temperature gradient 

modification. The effect of the neutrals is typically significant if the fraction of atoms in the plasma 

exceeds about 10-4, which is usually the case in the tokamak edge region just inside the separatrix. 

The effect of the poloidal variation of the neutral source is imoportent and will be reported next 

time. Particularly is important to investigate the effect of a poloidally varying source of atoms on 

the electric field and flow velocity of collisional edge plasma. This effect can be substatianal in the 

case of massive gas injection or strong repetitive pellet injection. An asymmetry in impurity 

radiation can be strongly dependent on electric field, therefore dpendent on neutral distribution in 

edge plasma. All these issues will be addressed in the next contract. 
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Appendix I  The friction and thermal force in complex plasma 
 

• For impurity ions. The general expression for drag (friction) force acting on the impurity ionα  

in z  charge state due to collisions with other impurity species β in ξ charge state , including the 

mutual collisions with α species in different charge states, ( αβ = ) reads as: 
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Neglecting the mutual collisions of impurities and assuming that they collide 

mainly with background ions (protons), the drag force reads as: 
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)1(
,βξαzc  in the case of arbitrary mass of species, can be evaluate numerically. 
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 For arbitrary heavy masses (not too different) coefficients can be found by  

 using the following expression: 
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. Index h corresponds to the heaviest impurity in  

the charge state z  and i - to the lighter species in the charge state ξ .  
The nP  values in equation (AI.6) in plasma with two different species are listed  

in the Table I. for different pares from the set of impurities. Here  
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The drag force for light impurities (hydrogen isotopes). 
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• The drag force for electrons in multi-component plasma: 
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• The general expression for thermal force acting on specie α  in z charge state consist of three 

terms, associated with temperature gradients of electron, ion and impurity ions: 
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In equation (AI.15) , since 
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The last term corresponds to the mutual impurity interaction. It is clear that 
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• Electron thermal force in multi-component plasma 
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Appendix II  Coulomb collision frequencies & equipartition time  
 

• Coulomb collision frequencies between two species α  and β : ),(sec, 3−cmeV  
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• The equipartition  time 
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• The equipartition between protons and impurity ions          
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Thermal equilibrium time for Ar and Ne in different Z and protons. 
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• Equipartition between impurity ions of neighbouring charge states 
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Resume: 

• The energy exchange time between protons and impurity ions in the first charge state 

strongly depends on proton temperature. At high temperatures 

eVTp 100≥ equipartition for the first state of ionization is week. However, for the 

higher states of ionizations (starting from 2≥Z ) the energy exchange time is short 

enough to assume that pAr
TT ≈+  .  
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• At low temperatures, eVTp 5≤   the assumption that pAr
TT ≈+   is correct (with the 

accuracy of about 1% )  in time duration ms1.0≥ . For Ne pNe
TT ≈+ it is correct even 

for shorter times. 

• The energy exchange time between protons and next charge states is short enough to 

assume that their temperatures become equal in time duration ms1≤ . 

• The energy exchange time between impurity ions of neighbouring charge states 

2≥Z is short enough to assume their temperature equal to proton temperature. 

 

 

The justification for a common ion temperature is that the ion-impurity energy exchange 

time is assumed to significantly shorter than the ion-electron energy exchange time. The 

ratio of the relaxation times for zi TT α− and ei TT − is: 
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•  for  a hydrogen/Ar  plasma:          
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• for  a hydrogen/Ne  plasma:          
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Whence, even for low charge state Z  of impurity ions, the proton-impurity temperature 

relaxation time is shorter than the energy exchange time of protons with electrons. 

Therefore, one can assume that iTT ≈β  
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Appendix III The origin of 5/2 term in the energy balance equation. 

 We will show here that 5/2 term in the energy flux appears without taking into account the joule 

dissipation term. It arise due to contribution to heat flux the work done by pressure gradient  in the 

convective plasma and occurs also in non-dissipative plasmas without current.  

 Lets start with kinetic equation without collision term, 0=St  and the external force, ,0=βF  thus 

excluding any dissipation 
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Multiplying last Eq. (AIII.1) by 
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2vmr
 and integrating over velocity v , we have: 
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Then, one can introduce as usual the moments of distribution functions and the mean and random 

velocities: 
 

∫≡ vfdn r
,  ∫≡ nvfdvV /rr

,   vvV rrr
′−≡ ,  ( )222

333
Vvmvmfdvv

n
mT

rr −=′=′= ∫  (AIII.3) 
 
The integration of the first term in (AIII.2) gives: 
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because ( ) ( ) 22222 2 VvVVvvVv
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Integration of the second terms gives: 
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Using definition of energy 
22

3 2VmT
r

+≡ε  and momentum tensor αβαββααβ πδ +=′′= pvvmnP  

the energy equation reads can be written for non-dissipative case as usual: 
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Therefore, the total energy flax βQ consist of  

1) macroscopic (kinetic+ internal) flux of energy ( ) βVVm ⋅2/2
r

 
2) the energy flux done by the total pressure forces ααββ π VpV +  
3) and the thermo-conductivity flux  βq  
 
Therefore even in the case of non-collision current-less plasma the energy flux contains the 5/2 term   
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In some cases it is convenient to eliminate the kinetic energy from Eq. (AIII.13) by means of the 

equation of continuity and the equation of motion. One can then obtain an equation for the transport 

of internal energy or the heat- balance equation. It is easy to show that  
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Coming now back to collisional plasma ( 0≠St  and the external force, EeF ββ = ) for the electron 
and one hydrogen ion ie Znnn =≡ the transport equations can be writer as: 

 
The hydrogen ion energy:   
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The electron energy: 
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The total energy: 
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One can denote the mass average velocity V

r
and introduce a relative velocity :ur  
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The total energy conservation including plasma and energy stored in magnetic field reads: 
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Finally, we will note another form of energy equation. Since  
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then the energy equation  
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can be presented as  
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where ie ppp +=  
 
It is easy to prove, that  
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Appendix IV.  Plasma rotation in poloidal direction  
 
Based on drift approximation the plasma rotation in poloidal direction can be written as  
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where the firs term is due to the radial electric field, BB/b ≡  
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The second term is a diamagnetic velocity: 
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 The third one is the magnetic drift  
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In the case of tokamak geometry 
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and the poloidal velocity can be written as  
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Appendix V Atomic data of Ar and Ne atoms 
 

• Electron Ionization cross-section of Ar and Ne: ),(sec, 3−cmeV  
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• Ionization cross-section due to electron collisions (D. Post,1996) 

     ),(sec, 3−cmkeV  

 

                             Argon                                Neon 

 

 

 

• Ionization time of Ar and Ne atoms , electron mean-free pass before ionization  
 
 
 ioneion SnITn 00 /1),,( ≡τ  (AV.2) 
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1 10 3−× 0.01 0.1 1 10
1 10 10−×

1 10 9−×

1 10 8−×

1 10 7−×

Sk Te II, ( )

Te



 

97 

1 10 100 1 103×
1 10 4−×

1 10 3−×

0.01

0.1
Ionization time of Ne for different ne

τ 1 1013⋅ Te, 21.5645, ( )
τ 3 1013⋅ Te, 21.5645, ( )
τ 5 1013⋅ Te, 21.5645, ( )
τ 8 1013⋅ Te, 21.5645, ( )
τ 1 1014⋅ Te, 21.5645, ( )

Te

1 10 100 1 103×
1 10 4−×

1 10 3−×

0.01

0.1
Ionization time of Ar for different ne

τ 1 1013⋅ Te, 15.75, ( )
τ 3 1013⋅ Te, 15.75, ( )
τ 5 1013⋅ Te, 15.75, ( )
τ 8 1013⋅ Te, 15.75, ( )
τ 1 1014⋅ Te, 15.75, ( )

Te

),sec,( 3−cmeVm  
 
 
 

 
 
 
 
 
 
 

),sec,( 3−cmeVm  
 
 
 

 
 
 
 
 

Neon Ionization Potentials  

Ionization Stage Charge Isoelectronic State Ionization Potential (eV) 
I 0 Ne 21.564 
II 1 F 40.962 
III 2 O 63.45 
IV 3 Ne 97.11 
V 4 C 126.21 
VI 5 B 157.93 
VII 6 Be 207.26 
VIII 7 Li 239.09 
IX 8 He 1195.8 
X 9 H 1362.2 
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• Electron mean-free pass before ionization, cm 
 
 

                                                  λe n0 Te, I, ( ) 4.19 107⋅ Te⋅ τ n0 Te, I, ( )⋅:=  (AV.3) 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

K-Shell Neon Ionization Potentials  

Ionization Stage Charge Isoelectronic 
State Ionization Potential (eV) 

I 0 Ne 871.34 
II 1 F 895.75 
III 2 O 926.86 
IV 3 Ne 961.21 
V 4 C 1002.79 
VI 5 B 1048.79 
VII 6 Be 1095.27 
VIII 7 Li 1144.17 
IX 8 He 1195.8 
X 9 H 1362.2 
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Te
A

⋅
1

ne S Te I, ( )⋅
⋅:=

0 20 40 60 80 100
0

1

2

3
Mfp of Ar atom befor ionization, cm

Δ 5 1013⋅ Te, I, A, ( )
Δ 1 1014⋅ Te, I, A, ( )
Δ 5 1014⋅ Te, I, A, ( )

Te

0 20 40 60 80 100
0

5

10

15
Mfp of Ne atom befor ionization, cm

Δ 5 1013⋅ Te, I, A, ( )
Δ 1 1014⋅ Te, I, A, ( )
Δ 5 1014⋅ Te, I, A, ( )

Te

  

• Mean free pass of Ar and Ne atoms before ionization (cm, eV) 
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• Recombination rates for Ar and Ne 
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• Comparison of Ar ionization, radiation and recombination frequencies,  
 

  (1/sec,Te in KeV) 
 
 

 

 

 

 

 

 

 

 
 
 
 

• Comparison of Ne ionization, radiation and recombination frequencies 
                                 (1/sec,Te in KeV) 
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Appendix VI The quasi-dynamic transport across B 
 

The drifts and magnetically induced current provide a mechanism for the pressure transfer 

across the B field even in rarefied plasma. This is so called quasi-hydrodynamic description, which 

is justified in drift approximation. The transport equation across the magnetic field can be written 

by using the Ampere’s law where the current is substituted by all drift currents including the 

magnetically induced current and the inertial drift: 
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This equation can be written as: 
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Above we used the expression: 
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and also that: 
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Substituting current (AVI.2) in Ampere’s law, one gets  
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is an average velocity and summation goes over all species, R is the major radius.  

From equations (AVI.4-5) it follows that, 
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This equation differs from the hydrodynamic equation in two last terms, describing the forces due to 

the variation of magnetic field. After averaging over the Maxwellian distribution,  

when nTVmnP == 2
//// , and nTVmnP 22 == ⊥⊥ : 
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If the magnetic field varies only in radial direction, then 0B)B( =∇         
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These are the transport equations for the entire plasma cloud.  
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Appendix VII Discretisation of transport equations: Belocerkovsky step  
 

• In the first discretization step we are considering the following equations: 

( ) 01 =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂+

∂
∂

aa
y

y
a Vn

h
gb

yg
n

t
    (AVII.1) 

( ) //
21 Enz

y
p

h
b

Vnm
h

gb
yg

Vnm
t aa

a

y

y
aaa

y

y
aaa ⋅+

∂
∂−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂+

∂
∂     (AVII.2) 

//
11 EVnzVp

h
bg

yg
V

h
bg

ygt aaaaa
y

y
aa

y

ya +
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂+

∂
∂ εε     (AVII.3) 

//
11 EVnVp

h
bg

yg
V

h
bg

ygt eeee
y

y
ee

y

ye −
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂+

∂
∂ εε     (AVII.4) 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
∂
∂−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
∂
∂+

∂
∂ ∑∑ aaee

y

y
aaee

y

yt VpVp
h

bg
yg

VV
h

bg
ygt

11 εεε      (AVII.5) 

where: yxhrhg =  

∑+= zet εεε ,     (AVII.6) 
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aV  and eV  are the a-species and electron velocities along B
r

, //E  the electric field 

along B
r

, and 
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• To discretizais equation we have to consider the integral operators in curvilinear  

            coordinate system. We use the definitions: 
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After interaction over a sell volume G for continuity equations: 
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For momentum equations 
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These are the equations, which we solve at the first Belocerkovsky's step. In the next (Euler) 

step, thermo-conductivity and diffusive terms are taken into account. 

. 
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Appendix VIII Program for neutral atoms 

c version: 31.02.2010 16:56 
 
c 
      parameter(nxi=67,nt=50) 
 
      implicit real*8(a-h),real*8(o-z) 
 
      real*8 nold(nxi),vold(0:nxi),told(nxi) 
 
      real*8 nnew(nxi),vnew(0:nxi),tnew(nxi),vtmp(nxi) 
 
      real*8 a(nxi),b(nxi),c(nxi),d(nxi),k(nxi) 
 
      real*8 xi(nxi),eta(nxi),pnl(nxi),qnl(nxi),nx 
 
      real*8 te(nt),rad(nt) 
 
      common/param/ dens,ts,denneu,aln,tau0,cz0 
 
      common/post/te,rad,hlg,tlg1,ifile 
 
c 
 
      f52(x) = x**2*dsqrt(x) 
 
      dmf(y) = dmax1(y,0.d0) 
 
c 
 
c constants & parameters: 
 
      ame = 9.1d-28 
 
      amu = dsqrt(2.5d0*1836./2.) 
 
      smime = dsqrt(2.5d0*1836.) 
 
      Ami = 2.5d0*1836.*AME 
 
      qe = 4.8d-10 
 
      pi = 3.141592653589d0 
 
      sp = dsqrt(pi) 
 
      poti=13.6d0 
 
      vold(0)=0.d0 
 
      vnew(0)=0.d0 
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c----------------------------------------------------- 
 
      open(1,file='input/input.hyd') 
 
      read(1,*)tau,nend 
 
      read(1,*)nout 
 
      read(1,*)isbou 
 
      read(1,*)al 
 
      read(1,*)slal 
 
      read(1,*)trl 
 
      read(1,*)dtr 
 
      read(1,*)denneu 
 
      read(1,*)delta 
 
      read(1,*)aln 
 
      read(1,*)qq 
 
      read(1,*)flux 
 
      read(1,*)sq 
 
      read(1,*)ifile 
 
      read(1,*)cz0 
 
      read(1,*)flf 
 
      close(1) 
 
c----------------------------------------------------- 
 
c atomic data from Post(in Wm**3 E40) 
 
          if( ifile .eq. 1 ) then 
 
          open(1,file='input/l.dat') 
 
          read(1,*) 
 
          do 555 i=1,nt 
 
           read(1,*)te(i),rad(i) 
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             rad(i) = rad(i)*6.25d-16 
 
c           (conversion to eV*cm**3/s) 
 
555    continue 
 
          close(1) 
 
          hlg = dabs( dlog(te(1)) - dlog(te(2)) ) 
 
          tlg1 = dlog(te(1)) 
 
          endif 
 
c----------------------------------------------------- 
 
c (source length = al*slal) 
 
      nxi1=nxi-1 
 
      nxi2=nxi-2 
 
      nxi3=nxi-3 
 
      na = int(nxi1*slal) 
 
      ts=6.25d24*qq/3/flux 
 
      dens=trl*flux/2./dtr/sq 
 
      poti = poti/ts 
 
      tserg = ts*1.6d-12 
 
      h = 1.d0/dfloat(nxi1) 
 
      vs =1.38d6*dsqrt(2.5*ts) 
 
      tau0 = al/vs 
 
      aa = 2.d12*ts**2/dens/al 
 
      aKn=aa 
 
      taus = trl**2/2./dtr/tau0 
 
      taue=taus 
 
      taup=taue 
 
      write(*,*)'aKn= ',sngl(aKn),'  taus=',sngl(taus), 
     ,          '  tau0=',sngl(tau0), '  ts=',sngl(ts), 
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     , '  dens=',sngl(dens) 
 
      a1 = 2.d0*0.96/3.*aa 
 
      a2 = a1 
 
      a3 = 0.8*smime*aa 
 
c===================================================== 
 
c  first step: 
 
      open(1,file = 'input/hydra0.dat') 
 
      do 1 i=1,nxi1       
 
      read(1,*)tmp,nold(i),vold(i),told(i) 
 
c     nnew(i)=nold(i) 
 
c     vnew(i)=vold(i) 
 
1     continue 
 
      close(1) 
 
c===================================================== 
 
c 
 
      icount = 0 
 
1000  continue 
 
      icount = icount + 1 
 
c 
 
      if (isbou .ne. 1) then 
 
                dddd = nold(nxi1)*dens 
 
                vvvv = vold(nxi1)*vs 
 
                tttt = told(nxi1)*tserg 
 
                call bound(dddd,vvvv,tttt 
 
     ,                     ,tttt,ame,ami,pixx,qex,qix) 
                qeiz = (qex + qix)/2.d0/(dens*vs*tserg) 
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                pixx = pixx/(dens*tserg) 
 
      else 
 
                qeiz = 8.*nold(nxi1)*told(nxi1) 
 
     ,                          *dsqrt(told(nxi1)/2.)/2.d0 
 
                vlast = dsqrt(told(nxi1)/2.d0) 
 
      endif 
 
c===================================================== 
 
c                            density block 
 
c     go to 115 
 
c   first volume: 
 
      nnew(1) = (tau/taup - tau/h* 
 
     ,           (nold(1)*dmf(vold(1))- nold(2)*dmf(-vold(1))) 
 
     ,           + nold(1)+pln(0.5*h)/tauion(nold(1),told(1))*tau) 
 
     ,           /(1.+tau/taus+tau/taurec(nold(1),told(1))) 
 
c 
 
c----------------------------------------------------- 
 
c   standard volume: 
 
c 
 
c with source 
 
      do 2 i=2,na 
 
      nnew(i) = (tau/taup - tau/h*(nold(i)*dmf(vold(i)) 
 
     ,          - nold(i+1)*dmf(-vold(i)) 
 
     ,          - (nold(i-1)*dmf(vold(i-1)) - nold(i)*dmf(-vold(i-1)))) 
 
     ,          + nold(i)+pln(h*(i-0.5))/tauion(nold(i),told(i))*tau) 
 
     ,          /(1.+tau/taus+tau/taurec(nold(i),told(i))) 
2     continue 
 
c without source 
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      do 3 i=na+1,nxi2 
 
      nnew(i) = (- tau/h*(nold(i)*dmf(vold(i)) 
 
     ,          - nold(i+1)*dmf(-vold(i)) 
 
     ,          -(nold(i-1)*dmf(vold(i-1)) - nold(i)*dmf(-vold(i-1)))) 
 
     ,          + nold(i)+pln(h*(i-0.5))/tauion(nold(i),told(i))*tau) 
 
     ,          /(1.+tau/taus+tau/taurec(nold(i),told(i))) 
 
3     continue 
 
c----------------------------------------------------- 
 
c   last volume: 
 
      nnew(nxi1) =(-tau/h*(nold(nxi1)*dmf(vold(nxi1)) 
 
     ,          - nold(nxi2)*dmf(vold(nxi2)) 
 
     ,          + nold(nxi1)*dmf(-vold(nxi2))) 
 
     ,          + nold(nxi1) 
 
     ,          +pln(h*(nxi1-0.5))/tauion(nold(nxi1),told(nxi1))*tau) 
 
     ,          /(1.+tau/taus+tau/taurec(nold(nxi1),told(nxi1))) 
 
c===================================================== 
 
c       go to 114 
 
c                            velocity block 
 
c                          coefficients for v 
 
c----------------------------------------------------- 
 
c  standard volume: 
 
      do 4 i=1,nxi2 
 
      tx = (told(i)+told(i+1))/2. 
 
      nx = (nnew(i)+nnew(i+1))/2. 
      coor=h*i 
 
      a(i) = - a1*f52(told(i))/h*tau 
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      b(i) =  -((nnew(i)+nnew(i+1))/2.*h + 
 
     ,       a1/h*tau*(f52(told(i+1)) + f52(told(i))) 
 
     ,       +nx*(1./taus+delta/taucx(coor,tx)+1./taurec(nx,tx))*h*tau) 
 
      c(i) = -a1*f52(told(i+1))/h*tau 
 
c 
 
              vv = (vold(i)+vold(i+1))/2. 
 
              v = vold(i) 
 
              if(vv.lt.0.d0) v=vold(i+1) 
 
              vv1 = (vold(i)+vold(i-1))/2. 
 
              v1 = vold(i-1) 
 
              if(vv1.lt.0.d0) v1=vold(i) 
 
c 
 
      d(i) = (nold(i) + nold(i+1))/2.*h*vold(i) 
 
     ,        -tau*(nnew(i+1)*vv*v-nnew(i)*vv1*v1 
 
     ,      -nnew(i)*told(i) + nnew(i+1)*told(i+1)) 
 
     ,      +(1-delta)*pln(coor)*vold(i)/tauion(nx,tx)*h*tau 
 
4     continue 
 
      a(1)=0.0 
 
c----------------------------------------------------- 
 
c  last volume: 
 
c 
 
      if (isbou .ne. 1) then 
 
 
 
Boundary conditions 
           tx = told(nxi1) 
 
           nx = nnew(nxi1) 
 
           coor=h*nxi1 
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           a(nxi1) = -2*a1*f52(told(nxi1))/h*tau 
 
           b(nxi1) = -(nnew(nxi1)*h + 
 
     ,                 2*a1/h*tau*f52(told(nxi1)) 
 
     ,                +    nnew(nxi1)* 
 
     ,            (1./taus+delta/taucx(coor,tx)+1./taurec(nx,tx))*h*tau) 
 
           c(nxi1) = 0. 
 
                   vv = vold(nxi1)+vold(nxi2) 
 
                   v = vold(nxi2) 
 
                   if(vv.lt.0.d0) v=vold(nxi1) 
 
c 
 
           d(nxi1) = nold(nxi1)*vold(nxi1)*h - 
 
     ,                 tau*(pixx - nnew(nxi1)*vv*v 
 
     ,                 - 2.*nnew(nxi1)*told(nxi1)) 
 
     ,           +(1-delta)*pln(coor)*vold(nxi1)/tauion(nx,tx)*h*tau 
 
c 
 
      else 
 
c Braams' version of the boundary conditions: 
 
            a(nxi1) = 0.d0 
 
            b(nxi1) = -1.d0 
 
            c(nxi1) = 0.d0 
 
            d(nxi1) = vlast 
 
      endif 
 
c----------------------------------------------------- 
c 
 
      call tdmad(nxi1,a,b,c,d,vtmp,xi,eta) 
 
      do 41 i=1,nxi1 
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  41   vnew(i)=vtmp(i) 
 
c 
 
c===================================================== 
 
115     continue 
 
c                   temperature block 
 
c 
 
c  heat conductivities (full-explicit variant): 
 
      do 5 i=1,nxi1 
 
      avt=(told(i)+told(i+1))/2. 
 
      avn=(nold(i)+nold(i+1))/2. 
 
      gradt=dabs(told(i)-told(i+1))/h 
 
      if(gradt.le.1.d-10) gradt=1.d-10 
 
      dgradt=avt/gradt 
 
c  flux-limit factor flf: 
 
      if (dgradt.gt.1.d0) dgradt=1.d0 
 
      gq=1.d0/(1.d0+3.2d0*sp/8.d0/flf*aKn*avt**2/avn/dgradt) 
 
c      gq=1.d0 
 
      k(i) = f52(avt)*gq 
 
5     continue 
 
c----------------------------------------------------- 
 
c               coefficients for temperature 
 
c 
 
c  first volume: 
      tx = told(1) 
 
      nx = nnew(1) 
 
      coor = h/2. 
 
      a(1) = 0. 
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      b(1) = -(1.5 *nnew(1)*h + tau*(2.5*nnew(1)*dmf(vnew(1)) 
 
     ,       + a3*k(1)/h 
 
     ,       + nnew(1)*h*(1.5/taus+0.5/taurad(coor,nx,tx) 
 
     ,       +1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx) 
 
     ,       +vnew(1)**2/8./told(1)*(1./taus + delta/taucx(coor,tx)) 
 
     ,       +0.5*pln(coor)*poti/told(1)/tauion(nx,tx)))) 
 
      c(1) = -tau*(2.5*nnew(2)*dmf(-vnew(1)) + a3*k(1)/h) 
 
      d(1) = (1.5*nold(1)*told(1)-nnew(1)*vnew(1)**2/8. 
 
     ,       +nold(1)*vold(1)**2/8.)*h 
 
     ,       +(1.5/taue+0.5*(1.-delta)*pln(coor)*(3*told(1) 
 
     ,       +vnew(1)**2/4.)/tauion(nx,tx))*h*tau 
 
     ,       -tau*(nnew(1)*vnew(1)**2/8.*dmf(vnew(1)) 
 
     ,            -nnew(2)*(vnew(2)+vnew(1))**2/8.*dmf(-vnew(1)) 
 
     ,            -a2/h*(f52(told(1))*vnew(1)*dmf(vnew(1)) 
 
     ,              -f52(told(2))*(vnew(2)-vnew(1))*dmf(-vnew(1)))) 
 
c----------------------------------------------------- 
 
c  standard volume: 
 
c  with source 
 
      do 6 i=2,na 
 
      tx = told(i) 
 
      nx = nnew(i) 
 
      vx = (vnew(i-1)+vnew(i))/2. 
      coor = h*(i-0.5) 
 
      a(i) = -tau*(2.5*nnew(i-1)*dmf(vnew(i-1)) + k(i-1)*a3/h) 
 
      b(i) = -(1.5*nnew(i)*h + tau*(2.5*nnew(i)*(dmf(vnew(i)) + 
 
     ,       dmf(-vnew(i-1))) + a3/h*(k(i)+k(i-1)) 
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     ,       + nnew(i)*h*(1.5/taus+0.5/taurad(coor,nx,tx) 
 
     ,       +1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx) 
 
     ,       +vx**2/told(i)*(1./taus + delta/taucx(coor,tx))/2. 
 
     ,       +0.5*pln(coor)*poti/told(i)/tauion(nx,tx)))) 
 
      c(i) = -tau*(2.5*nnew(i+1)*dmf(-vnew(i)) + k(i)*a3/h) 
 
      d(i) =  1.5*h*tau/taue - h*(nnew(i)*vx**2/2. 
 
     ,       -nold(i)*(vold(i)+vold(i-1))**2/8.- 1.5*nold(i)*told(i)) 
 
     ,       -tau*(nnew(i)*(vnew(i)+vnew(i-1))**2/8.*dmf(vnew(i)) 
 
     ,            -nnew(i+1)*(vnew(i)+vnew(i+1))**2/8.*dmf(-vnew(i)) 
 
     ,            -nnew(i-1)*(vnew(i-2)+vnew(i-1))**2/8.*dmf(vnew(i-1)) 
 
     ,            +nnew(i)*(vnew(i)+vnew(i-1))**2/8.*dmf(-vnew(i-1)) 
 
     ,       -a2*(f52(told(i))*(vnew(i)-vnew(i-1))/h*dmf(vnew(i)) 
 
     ,         -f52(told(i+1))*(vnew(i+1)-vnew(i))/h*dmf(-vnew(i)) 
 
     ,         -f52(told(i-1))*(vnew(i-1)-vnew(i-2))/h*dmf(vnew(i-1)) 
 
     ,         +f52(told(i))*(vnew(i)-vnew(i-1))/h*dmf(-vnew(i-1)))) 
 
     ,       +(0.5*(1.-delta)*pln(coor)*(3*told(i) 
 
     ,       +vx**2)/tauion(nx,tx))*h*tau 
 
6     continue 
 
c without source: 
 
      do 8 i=na+1,nxi2 
 
      tx = told(i) 
 
      nx = nnew(i) 
      vx = (vnew(i-1)+vnew(i))/2. 
 
      coor = h*(i-0.5) 
 
      a(i) = -tau*(2.5*nnew(i-1)*dmf(vnew(i-1)) + k(i-1)*a3/h) 
 
      b(i) = -(1.5*nnew(i)*h + tau*(2.5*nnew(i)*(dmf(vnew(i)) + 
 
     ,       dmf(-vnew(i-1))) + a3/h*(k(i)+k(i-1)) 
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     ,       + nnew(i)*h*(1.5/taus+0.5/taurad(coor,nx,tx) 
 
     ,       +1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx) 
 
     ,       +vx**2/told(i)*(1./taus + delta/taucx(coor,tx))/2. 
 
     ,       +0.5*pln(coor)*poti/told(i)/tauion(nx,tx)))) 
 
      c(i) = -tau*(2.5*nnew(i+1)*dmf(-vnew(i)) + a3*k(i)/h) 
 
      d(i) = - h*(nnew(i)*vx**2/2. 
 
     ,       -nold(i)*(vold(i)+vold(i-1))**2/8.- 1.5*nold(i)*told(i)) 
 
     ,       -tau*(nnew(i)*(vnew(i)+vnew(i-1))**2/8.*dmf(vnew(i)) 
 
     ,            -nnew(i+1)*(vnew(i)+vnew(i+1))**2/8.*dmf(-vnew(i)) 
 
     ,            -nnew(i-1)*(vnew(i-2)+vnew(i-1))**2/8.*dmf(vnew(i-1)) 
 
     ,            +nnew(i)*(vnew(i)+vnew(i-1))**2/8.*dmf(-vnew(i-1)) 
 
     ,       -a2*(f52(told(i))*(vnew(i)-vnew(i-1))/h*dmf(vnew(i)) 
 
     ,         -f52(told(i+1))*(vnew(i+1)-vnew(i))/h*dmf(-vnew(i)) 
 
     ,         -f52(told(i-1))*(vnew(i-1)-vnew(i-2))/h*dmf(vnew(i-1)) 
 
     ,         +f52(told(i))*(vnew(i)-vnew(i-1))/h*dmf(-vnew(i-1)))) 
 
     ,       +(0.5*(1.-delta)*pln(coor)*(3*told(i) 
 
     ,       +vx**2)/tauion(nx,tx))*h*tau 
 
8     continue 
 
c----------------------------------------------------- 
 
c  last  volume: 
 
      tx = told(nxi1) 
      nx = nnew(nxi1) 
 
      vx = (vnew(nxi2)+vnew(nxi1))/2. 
 
      coor = h*(nxi1-0.5) 
 
      c(nxi1) = 0. 
 
      b(nxi1) = -(1.5 *nnew(nxi1)*h + tau*(2.5*nnew(nxi1) 
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     ,         *dmf(-vnew(nxi2)) 
 
     ,       + a3*k(nxi2)/h 
 
     ,       + nnew(nxi1)*h*(1.5/taus+0.5/taurad(coor,nx,tx) 
 
     ,       +1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx) 
 
     ,       +vx**2/2./told(nxi1)*(1./taus+delta/taucx(coor,tx)) 
 
     ,       +0.5*pln(coor)*poti/told(nxi1)/tauion(nx,tx)))) 
 
      a(nxi1) = -tau*(2.5*nnew(nxi2)*dmf(vnew(nxi2)) + a3*k(nxi2)/h) 
 
      d(nxi1) = (1.5*nold(nxi1)*told(nxi1) 
 
     ,    -nnew(nxi1)*(vnew(nxi1)+vnew(nxi2))**2/8. 
 
     ,    +nold(nxi1)*(vold(nxi1)+vold(nxi2))**2/8.)*h 
 
     ,    +tau*(-qeiz 
 
     ,    +nnew(nxi2)*(vnew(nxi2)+vnew(nxi3))**2/8.*dmf(vnew(nxi2)) 
 
     ,    -nnew(nxi1)*(vnew(nxi1)+vnew(nxi2))**2/8.*dmf(-vnew(nxi2))) 
 
      d(nxi1)=d(nxi1)+tau*( 
 
     ,    -a2/h*(f52(told(nxi2))*(vnew(nxi2)-vnew(nxi3)) 
 
     ,    *dmf(vnew(nxi2)) 
 
     ,    -f52(told(nxi1))*(vnew(nxi1)-vnew(nxi2))*dmf(-vnew(nxi2)))) 
 
     ,    +(0.5*(1.-delta)*pln(coor)*(3*told(nxi1) 
 
     ,    +vx**2)/tauion(nx,tx))*h*tau 
 
c----------------------------------------------------- 
 
c 
 
      call tdmad(nxi1,a,b,c,d,tnew,xi,eta) 
 
c===================================================== 
 
114    continue 
 
      do 10 i=1,nxi1 
      nold(i)=nnew(i) 
      vold(i)=vnew(i) 
c 
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c     
c 
      told(i)=tnew(i) 
 
10    continue 
 
      if( (icount/nout)*nout - icount .eq. 0 ) 
 
     ,      write(*,*)icount,sngl(tnew(nxi1)),sngl(nnew(na)) 
 
c----------------------------------------------------- 
 
      if(icount .lt. nend)go to 1000 
 
      open(2,file = 'output/result.dat') 
 
      write(2,*)'      aKn=   ,','     nnew=   ,', '     vnew =   ,', 
     ,   '    tnew =' 
  
      do 9 i=1,nxi1 
 
      write(2,*)float(i-1)/float(nxi2),sngl(nnew(i)) 
 
     ,      ,sngl(vnew(i)),sngl(tnew(i)) 
 
9     continue 
 
      close(2) 
 
c===================================================== 
 
c integral balances: 
 
      open(3,file='output/balance.dat') 
 
c----------------------------------------------------- 
 
c particles flow through the separatrix 
 
      sepj =   h/taup*na 
 
c heat flow through the separatrix 
 
      sepq = h/taue*1.5*na 
 
c----------------------------------------------------- 
 
c particles flow to the wall 
 
      sumn = 0. 
 
      do 14 i=1,nxi1 
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14    sumn = sumn + nnew(i) 
 
      wallj =  h*sumn/taus 
 
c heat flow to the wall 
 
      sumq = 0. 
 
      do 15 i=1,nxi1 
 
15    sumq = sumq + nnew(i)*tnew(i)*1.5 + nnew(i) 
 
     ,*(vnew(i) + vnew(i-1))**2/8. 
 
      wallq = h/taus*sumq 
 
c momentum flow to the wall and separatrix 
 
      sump = 0. 
 
      do 16 i=1,nxi2 
 
16    sump = sump + vnew(i)*(nnew(i)+nnew(i+1))/2. 
 
      pws = h/taus*sump 
 
c----------------------------------------------------- 
 
c neutral source/sink: 
 
c particles 
 
      sumn = 0. 
 
      do 12 i=1,nxi1 
 
12    sumn = sumn + pln(h*(i-0.5))/tauion(nnew(i),tnew(i)) 
 
     ,  - nnew(i)/taurec(nnew(i),tnew(i)) 
 
      sneuj =  h*sumn 
 
c momentum 
 
      sumnlp = 0. 
 
      do 17 i=1,nxi2 
 
      tx = (tnew(i)+tnew(i+1))/2. 
 
      nx = (nnew(i)+nnew(i+1))/2. 
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      coor=h*i 
 
      pnl(i)= nx*vnew(i)* 
 
     ,         (delta/taucx(coor,tx)+1./taurec(nx,tx))*h 
 
     ,        - (1-delta)*pln(coor)*vnew(i)/tauion(nx,tx)*h 
 
      sumnlp = sumnlp + pnl(i) 
 
17    continue 
 
      if( isbou .ne. 1) then 
 
      tx = tnew(nxi1) 
 
      nx = nnew(nxi1) 
 
      coor=h*nxi1 
 
      sumnlp=sumnlp 
 
     ,      + 0.5*nnew(nxi1)*vnew(nxi1)* 
 
     ,         (delta/taucx(coor,tx)+1./taurec(nx,tx))*h 
 
     ,         -(1-delta)*pln(coor)*vnew(nxi1)/tauion(nx,tx)*h*0.5 
 
      endif 
 
c heat 
 
      sumnlq=0.0 
 
      do 18 i=1,nxi1 
 
      tx = told(i) 
 
      nx = nnew(i) 
 
      vx = (vnew(i-1)+vnew(i))/2. 
 
      coor = h*(i-0.5) 
 
      qnl(i)=  nnew(i)*tnew(i)*h*(0.5/taurad(coor,nx,tx) 
 
     ,       +1.5*delta/taucx(coor,tx)+0.5/tauexc(coor,tx) 
 
     ,       +vx**2/told(i)*delta/taucx(coor,tx)/2. 
 
     ,       +0.5*pln(coor)*poti/told(i)/tauion(nx,tx)) 
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     ,       -0.5*(1.-delta)*pln(coor)*(3*told(i) 
 
     ,       +vx**2)/tauion(nx,tx)*h 
 
      sumnlq = sumnlq + qnl(i) 
 
18    continue 
 
c----------------------------------------------------- 
 
      vv =  vnew(1)/2. 
 
       v = vnew(1) 
 
      if(vv .gt. 0.d0) v = 0.d0 
 
      pfirst = nnew(1)*tnew(1) - a1*f52(tnew(1))*vnew(1)/h 
 
     ,   + nnew(1)*vv*v 
 
      if( isbou .ne. 1) then 
 
          pws = pws + 0.5*h/taus*nnew(nxi1)*vnew(nxi1) 
 
         plast = pixx/2. 
 
      else 
 
         vv = (vnew(nxi1) + vnew(nxi2))/2. 
 
         v = vnew(nxi2) 
 
         if(vv .lt. 0.d0) v = vnew(nxi1) 
 
         plast = nnew(nxi1)*vv*v 
 
     ,           + nnew(nxi1)*tnew(nxi1) 
 
     ,           - a1*f52(tnew(nxi1))*(vnew(nxi1) - vnew(nxi2))/h 
 
      endif 
 
c----------------------------------------------------- 
 
c common balances: 
 
      baln = (sepj + sneuj - wallj - nnew(nxi1)*dmf(vnew(nxi1))) 
 
     ,       /sepj*100 
 
      balp = (pfirst - pws - sumnlp - plast) 



 

124 

 
     ,        /nnew(1)/tnew(1)*100 
 
      balq = (sepq - wallq - sumnlq - qeiz) 
 
     ,       /sepq*100 
 
c----------------------------------------------------- 
 
      dmp =  sq*trl/al/slal*dens*vs 
 
      write(3,*)'j separatrix = ',sngl(sepj*dmp) 
 
      write(3,*)'j neutrals = ',sngl(sneuj*dmp) 
 
      write(3,*)'j wall = ',sngl(wallj*dmp) 
 
      write(3,*)'j plate= ',sngl(nnew(nxi1)*dmf(vnew(nxi1))*dmp) 
 
      write(3,*)' ' 
 
      write(3,*)'p separatrix & wall = ',sngl(pws) 
 
      write(3,*)'p neutrals = ',sngl(sumnlp) 
 
      write(3,*)'p plate = ',sngl(plast) 
 
      write(3,*)'p midplane = ',sngl(pfirst) 
 
      write(3,*)' ' 
 
      dm=2*sq*trl/al/slal*dens*ts*vs/6.25d24 
 
      write(3,*)'q separatrix = ',sngl(dm*sepq) 
 
      write(3,*)'q neutrals = ',sngl(sumnlq*dm) 
 
      write(3,*)'q wall = ',sngl(wallq*dm) 
 
      write(3,*)'q plate = ',sngl(qeiz*dm) 
 
      write(3,*)' ' 
 
      write(3,*)'common disbalances, %:' 
 
      write(3,*)baln,balp,balq 
 
c      write(3,*)'neutral losses, p & q:' 
 
c      do 19 i=1,nxi 
 
c      write(3,*)i,'   ',pnl(i),'   ',qnl(i) 
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c19    continue 
 
      close(3) 
 
c===================================================== 
 
      stop 
 
      end 
 
c===================================================== 
 
      real*8 function tauion(den,te) 
 
      implicit real*8(a-h),real*8(o-z) 
 
      common/param/ dens,ts,denneu,aln,tau0,cz0 
 
      t = te*ts 
 
      d = den*dens 
 
      x = dlog10(t) 
 
      if(t.le.20.)then 
 
          svl= -3.054*x - 15.72*dexp(-x) + 1.603*dexp(-x**2) 
 
      else 
 
          svl= -.5151*x -2.563/x - 5.231 
 
      endif 
 
      sv = (1.d1)**svl 
 
      tauion = 1.d0/(d*sv)/tau0 
 
c     tauion = 1.d40 
 
      return 
 
      end 
 
c===================================================== 
 
      real*8 function taucx(x,te) 
 
      implicit real*8(a-h),real*8(o-z) 
 
      common/param/ dens,ts,denneu,aln,tau0,cz0 
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      tt = te*ts 
 
      den0 = pln(x)*denneu*dens 
 
      if(tt.gt.0.d0 .and. den0.gt.0.d0) then 
 
          scx = 7.8d-9*dsqrt(tt)*(1.d0 - .16*dlog10(tt))**2 
 
          taucx = 1.d0/scx/den0/tau0 
 
      else 
 
          taucx = 1.d40 
 
      endif 
 
      return 
 
      end 
 
c===================================================== 
 
      real*8 function tauexc(x,te) 
 
      implicit real*8(a-h),real*8(o-z) 
 
      common/param/ dens,ts,denneu,aln,tau0,cz0 
 
      tt = te*ts 
 
      den0 = pln(x)*denneu*dens 
 
      if(tt.gt.0.d0 .and. den0.gt.0.d0) then 
 
          y = 10.2/tt 
 
          exc = 49.d-8/(.28 + y)*dexp(-y)*dsqrt(y*(1. + y)) 
 
          tauexc = 1.d0/exc/den0/tau0*tt 
 
      else 
 
          tauexc = 1.d40 
 
      endif 
 
      return 
 
      end 
 
c===================================================== 
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      real*8 function taurec(d,te) 
 
      implicit real*8(a-h),real*8(o-z) 
 
      common/param/ dens,ts,denneu,aln,tau0,cz0 
 
      den = d*dens 
 
      tt = te*ts 
 
c     recr = den*2.7d-13/dsqrt(tt) 
 
c     rec3 = den**2*8.75d-27/tt**4/dsqrt(tt) 
 
c     taurec = 1.d0/(recr + rec3)/tau0 
 
      taurec = 1.d80 
 
      return 
 
      end 
 
c===================================================== 
 
      real*8 function taurad(x,dd,tt) 
 
      implicit real*8(a-h),real*8(o-z) 
 
      common/param/ dens,ts,denneu,aln,tau0,cz0 
 
      if(tt .le. 0.d0 .or. cz(x). le.0.d0) then 
 
          taurad = 1.d40 
 
      else 
 
          t = tt*ts 
 
          taurad = 1.d0/(cz(x)*dd*flin(t)/tt*dens*tau0/ts) 
 
      endif 
 
      return 
 
      end 
 
C===================================================== 
 
      real*8 function cz(x) 
 
      parameter(nt=501) 
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      implicit real*8(a-h),real*8(o-z) 
 
      real*8 te(nt),rad(nt) 
       
      common/param/ dens,ts,denneu,aln,tau0,cz0 
 
      common/post/te,rad,hlg,tlg1,ifile 
 
      cz = cz0 
 
      return 
 
      end 
 
C===================================================== 
 
      real*8 function flin(x) 
 
      parameter(nt=501) 
 
      implicit real*8(a-h),real*8(o-z) 
 
      real*8 te(nt),rad(nt) 
       
      common/param/ dens,ts,denneu,aln,tau0,cz0 
 
      common/post/te,rad,hlg,tlg1,ifile 
 
      data af/7.54d-7/,bf/4.83d-1/,cf/5.65d-2/,ef/5.48d0/ 
 
C 
 
      if( ifile .eq.  1 ) then 
 
C----------------------------------------------------- 
 
c 
 
           if( x .le. 0.d0) then 
 
              flin = 0.d0 
 
              return 
 
           endif 
 
c 
 
           if( x .ge. te(nt) ) then 
 
              flin = rad(nt) 
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              return 
 
           endif 
 
c 
 
           if( x .le. te(1) ) then 
 
              a = rad(1)/te(1) 
 
              flin = a*x 
 
              return 
 
           else 
 
              i = int( (dlog(x) - tlg1)/hlg ) + 1 
 
              a = (rad(i+1) - rad(i))/(te(i+1) - te(i)) 
 
              b = rad(i) - a*te(i) 
 
              flin = a*x + b 
 
              return 
 
           endif 
 
C----------------------------------------------------- 
 
      else 
 
C----------------------------------------------------- 
 
           flin = af*dsqrt(x)*dexp( -ef/x )/ 
 
     ,            ( 1.d0 + bf*dsqrt(x) + cf*x ) 
 
           return 
 
C----------------------------------------------------- 
 
      endif 
 
      end 
 
C===================================================== 
 
      real*8 function pln(x) 
 
      implicit real*8(a-h),real*8(o-z) 
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      common/param/ dens,ts,denneu,aln,tau0,cz0 
 
         pln = dexp( (x-1.)/aln)*denneu 
 
c     pln=denneu 
 
c     pln = 0.d0 
 
      return 
 
      end 
 
c===================================================== 
 
      subroutine tdmad(n,a,b,c,d,y,xi,eta) 
 
      real*8 a(n+1),b(n+1),c(n+1),d(n+1),y(n+1),xi(n+1),eta(n+1),ccc 
 
      xi(1) = 0.0 
 
      eta(1) = 0.0 
 
      do 1 i=1,n 
 
         ccc =  b(i) - a(i)*xi(i) 
 
         xi(i+1) = c(i)/ccc 
 
         eta(i+1) = ( a(i)*eta(i) - d(i) )/ ccc 
 
1     continue 
 
      y(n) = eta(n+1) 
 
      do 2 i=n-1,1,-1 
 
         ip1 = i+1 
 
         y(i) = xi(ip1)*y(ip1) + eta(ip1) 
 
2     continue 
 
      return 
 
      end 
 
c===================================================== 
 
      function erfd(x) 
 
      implicit real*8(a-h),real*8(o-z) 
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c 
 
c  version : 18.11.88 
 
c 
 
c==================================================== 
 
      parameter  ( a1 = 0.07052 30784, a2 = 0.04228 20123, 
 
     ,             a3 = 0.00927 05272, a4 = 0.00015 10143, 
 
     ,             a5 = 0.00027 65672, a6 = 0.00004 30638 ) 
 
c==================================================== 
 
c 
 
      f(t) = 1./((1.+t*(a1+t*(a2+t*(a3+t*(a4+t*(a5+t*a6))))))**4)**4 
 
c 
 
      w = 1. - f(dabs(x)) 
 
      erfd = sign(w,x) 
 
      return 
 
c==================================================== 
 
      entry erfcd 
 
c==================================================== 
 
      w = 1.- f(dabs(x)) 
 
      erfd = 1. - sign(w,x) 
 
c==================================================== 
 
      end 
C  VERSION : 15.10.93 15:40 
 
C 
 
C Version for orthogonal mesh, 
 
C pure plasma, zero net current 
 
C----------------------------------------------------- 
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C  INPUT VALUES (all in the last mesh interval): 
 
C 
 
C  DEN - plasma density 
 
C  VEL - plasma velocity 
 
C  TE - electron temperature 
 
C  TI - ion temperature 
 
C  AME - electron mass 
 
C  AMI - ion mass 
 
C  ---------------- all in units used in the main program 
 
C----------------------------------------------------- 
 
C OUTPUT VALUES (fluxes trough the last mesh bound): 
 
C 
 
C PIXX - momentum flux (summarized electrons & ions) 
 
C QEX - total heat flux in the electron component 
 
C QIX - total heat flux in the ion component 
 
C  ---------------- all in units used in the main program 
 
C 
 
C===================================================== 
 
      SUBROUTINE BOUND(DEN,VEL,TE,TI,AME,AMI,PIXX,QEX,QIX) 
 
      IMPLICIT REAL*8(A-H),REAL*8(O-Z) 
 
      COMMON/FPS/CPSI 
 
      COMMON/FSH/CSVTI 
 
      EXTERNAL FPSID,FSHIFT 
 
      DATA SP,GAMMA,TOL/1.7724539D0,1.6666667D0,1.D-5/ 
 
C 
 
      CSVTI = DSQRT((GAMMA*TI + TE)/2./TI) 
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      IF(VEL.LE.0.) VEL = 0. 
 
      XMACH = VEL/DSQRT(2.*TI/AMI) 
 
C----------------------------------------------------- 
 
C Potential drop 
 
C 
 
C Presheath: 
 
      IF(XMACH.GE.CSVTI) THEN 
 
          PSIPS = 0. 
 
      ELSE 
 
          PSIPS = -TI/TE*(XMACH**2 - CSVTI**2) 
 
      ENDIF 
 
C Sheath: 
 
      A = 0. 
 
      B = 5. 
 
      CPSI = DLOG(DSQRT(TE*AMI/(TI*AME))/SP/CSVTI) 
 
      PSID = ZEROIN(A,B,FPSID,TOL) 
 
      IF(DABS(FPSID(PSID)).GT.1.E-4) 
 
     ,WRITE(*,*)'WARNING! IN PSI,  PSID =',PSID 
 
C 
 
      PSIT = PSID + PSIPS 
 
C Shift velocity: 
 
C 
 
      IF(XMACH.GE.CSVTI) THEN 
 
          VSHIFT = XMACH 
 
      ELSE 
 
          A = 0. 
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          B = 3. 
 
          VSHIFT = ZEROIN(A,B,FSHIFT,TOL) 
 
          IF(DABS(FSHIFT(VSHIFT)).GT.1.E-4) 
 
     ,   WRITE(*,*)'WARNING! IN VSHIFT, VSHIFT =',VSHIFT 
 
      ENDIF 
 
C----------------------------------------------------- 
 
C  Boundary fluxes: 
 
C 
 
      EVSH = ERFD(VSHIFT) 
 
      ESPSI = ERFD(DSQRT(PSIT)) 
 
      GVSH = G(VSHIFT) 
 
C 
 
      FE = 2.+ PSIT 
 
      FI = 2.+ XMACH*(XMACH + 0.5/CSVTI) - TE/TI*PSIPS 
 
      FPI = 2.*SP*XMACH/GVSH*( VSHIFT/SP*DEXP(-VSHIFT**2) 
 
     ,      + (VSHIFT**2 + 0.5)*(1.+ EVSH) ) 
 
      FPE = 2.*SP*XMACH/GVSH*(1.+ EVSH)/(1.+ ESPSI) 
 
     ,      *( (1.+ESPSI)/2.- DSQRT(PSIT)/SP*DEXP(-PSIT) ) 
 
c     write(*,*)'fpe= ',fpe,' fpi = ',fpi 
 
      QEX = FE*DEN*VEL*TE 
 
      QIX = FI*DEN*VEL*TI 
 
      PIXX = FPI*DEN*TI + FPE*DEN*TE 
 
C 
 
      RETURN 
 
      END 
 
C===================================================== 
      FUNCTION FPSID(X) 
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      IMPLICIT REAL*8(A-H),REAL*8(O-Z) 
 
      COMMON/FPS/CPSI 
 
      FPSID = X - CPSI - DLOG(1.+ ERFD(DSQRT(X))) 
 
      RETURN 
 
      END 
 
C===================================================== 
 
      FUNCTION FSHIFT(X) 
 
      IMPLICIT REAL*8(A-H),REAL*8(O-Z) 
 
      COMMON/FSH/CSVTI 
 
      DATA SP/1.7724539D0/ 
 
      FSHIFT = CSVTI - G(X)/SP/(1.+ ERFD(X)) 
 
      RETURN 
 
      END 
 
C===================================================== 
 
      FUNCTION G(X) 
 
      IMPLICIT REAL*8(A-H),REAL*8(O-Z) 
 
      DATA SP/1.7724539D0/ 
      G = DEXP(-X**2) + X*SP*(1.+ ERFD(X)) 
 
      RETURN 
 
      END 
 
C===================================================== 
 
        REAL*8 FUNCTION ZEROIN(AX,BX,F,TOL) 
 
        IMPLICIT REAL*8(A-H),REAL*8(O-Z) 
 
        REAL*8 AX,BX,TOL 
 
        REAL*8 A,B,C,D,E,EPS,FA,FB,FC,TOL1,XM,P,Q,R,S 
 
        EPS=1.0D0 
10    EPS=EPS/2.0 
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        TOL1=1.0+EPS 
 
        IF(TOL1.GT.1.0) GO TO 10 
 
        A=AX 
 
        B=BX 
 
        FA=F(A) 
 
        FB=F(B) 
 
20      C=A 
 
        FC=FA 
 
        D=B-A 
 
        E=D 
 
30      IF(DABS(FC).GE.DABS(FB)) GO TO 40 
 
        A=B 
 
        B=C 
 
        C=A 
 
        FA=FB 
 
        FB=FC 
 
        FC=FA 
 
40      TOL1=2.0*EPS*DABS(B)+0.5*TOL 
 
        XM=0.5*(C-B) 
 
        IF(DABS(XM).LE.TOL1) GO TO 90 
 
        IF(FB.EQ.0.0) GO TO 90 
 
        IF(DABS(E).LT.TOL1) GO TO 70 
 
        IF(DABS(FA).LE.DABS(FB)) GO TO 70 
 
        IF(A.NE.C) GO TO 50 
 
        S=FB/FA 
        P=2.0*XM*S 
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        Q=1.0-S 
 
        GO TO 60 
 
50      Q=FA/FC 
 
        R=FB/FC 
 
        S=FB/FA 
 
        P=S*(2.0*XM*Q*(Q-R)-(B-A)*(R-1.0)) 
 
        Q=(Q-1.0)*(R-1.0)*(S-1.0) 
 
60      IF(P.GT.0.0) Q=-Q 
 
        P=DABS(P) 
 
        IF((2.0*P).GE.(3.0*XM*Q-DABS(TOL1*Q))) GO TO 70 
 
        IF(P.GE.DABS(0.5*E*Q)) GO TO 70 
 
        E=D 
 
        D=P/Q 
 
        GO TO 80 
 
70      D=XM 
 
        E=D 
 
80      A=B 
 
        FA=FB 
 
        IF(DABS(D).GT.TOL1) B=B+D 
 
        IF(DABS(D).LE.TOL1) B=B+DSIGN(TOL1,XM) 
 
        FB=F(B) 
 
        IF((FB*(FC/DABS(FC))).GT.0.0) GO TO 20 
 
        GO TO 30 
 
90      ZEROIN=B 
 
        RETURN 
 
        END 
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