

 Karlsruhe Reports in Informatics 2011,5
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Parallel SQL Query Auto-Tuning on Multicore

Victor Pankratius, Martin Heneka

 2011

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Parallel SQL Query Auto-Tuning on Multicore

Victor Pankratius
Karlsruhe Institute of Technology

76128 Karlsruhe, Germany
victor.pankratius@kit.edu
www.victorpankratius.com

Martin Heneka
Karlsruhe Institute of Technology

76128 Karlsruhe, Germany
martin.heneka@student.kit.edu

ABSTRACT
Multicore processors with several processors on a chip are
standard, so applications need to be parallel in order to ex-
ploit the performance potential. Relational database sys-
tems are important applications that can exploit new op-
portunities for parallelism within queries. Intra-query par-
allelism offers additional performance potential that could
not be exploited easily on earlier hardware. Addressing this
important issue, this paper focuses on a difficult scenario for
performance improvement: the parallelization of joins in I/O
intensive multi-join queries. Our approach has the signifi-
cant advantage that is does not require a rewrite of existing
query optimizers from scratch. We boost query speed on
multicore systems using query execution plans that are gen-
erated by sequential optimizers. This is the first paper to (1)
auto-tune parallel query performance by adjusting the struc-
ture of multi-threaded pipelines that are superimposed over
sequential query plans; (2) employ double-pipelined hash
joins that are multithreaded to boost performance; (3) let
an auto-tuner decide how to adapt parallelism to the hard-
ware environment by exchanging hash join algorithms in the
query plan; (4) present a demonstration and working strate-
gies for multithreaded query auto-tuning on shared-memory
multicore systems. Our evaluations show that queries can
execute up to a factor of 3 faster on a quad-core machine,
and that queries from the industry TPC-H benchmark can
execute up to 47% faster compared to sequential execution.
The results are remarkable considering the I/O bound con-
text. Using PostgreSQL’s code as an example, we also dis-
cuss the software engineering issues for the adaptation of
real-world database systems.

1. INTRODUCTION
Stagnating processor clock rates pushed multicore proces-

sors with several cores on the same chip into the mainstream.
Consequently, desktop and server applications that need to
increase performance now have to be parallel. Database
Management Systems (DBMS) are important and widely

Technical Report 2011-5
Karlsruhe Institute of Technology, Germany
Multicore Software Engineering Young Investigator Group
February 8, 2011

used applications – almost any Web application or business
application is built on top of a database. For DBMS, mul-
ticore processors open the door for additional paralleliza-
tion potential within queries (so-called intra-query paral-
lelism). This type of parallelism could not be exploited easily
in the past due to limited capabilities of earlier hardware.
Most parallel query optimizations in clusters and multipro-
cessors machines thus concentrated on coarse-grain paral-
lelism (inter-query parallelism). However, modern multicore
systems have distinguishing characteristics, such as multiple
processors, shared caches, shared busses – all on the same
chip. These subtle differences move the break-even point of
overhead to a more favorable location. Query optimization
strategies thus need to be reconsidered.

Unfortunately, database systems are complex applications
that are not trivial to modify in order to exploit multicore
parallelism. The algorithms implemented in query optimiz-
ers typically require years or even decades of research and ex-
perimentation. Rewriting everything from scratch requires a
large investment and long-term commitment in research and
product development. But what can we do in the short-run
to improve query performance on multicore platforms?

This paper presents a novel query parallelization approach
focusing on a difficult scenario for performance improve-
ment: the parallelization of joins and relational multi-join
queries. Joins belong to the most important and – in terms
of performance – most expensive operations in relational
query processing, due to I/O [5, 17]. We are motivated to
tackle this problem because even small performance gains in
this area will affect a large number of queries and become
immediately visible in a multitude of applications for many
users. Moreover, our approach uses execution plans that are
generated by sequential optimizers, thus saving substantial
investments in building optimizers from scratch. As shown
later, our approach can be implemented right away in most
of the existing relational DBMS and scales on various mul-
ticore platforms. We do not exclude that it can be used
together with other optimization techniques.

In particular, the paper makes the following contributions.
To our knowledge, we are the first to tackle the following
issues on multicore systems and present data from exper-
iments with a real implementation. We introduce inter-
operator parallelism with non-linear multi-threaded pipelines
superimposed over a sequential query plan. We employ
an auto-tuner to empirically tune query performance on a
target platform by adjusting the pipeline structure. The
auto-tuner has a feedback-directed mechanism to iteratively
adapt its query plan transformations to the hardware envi-

ronment that executes a query. We introduce intra-operator
parallelism by implementing multithreaded hash join algo-
rithms; where appropriate, our auto-tuner can automati-
cally exchange join algorithms in the query plan to im-
prove performance in subsequent query executions. The pa-
per demonstrates on several multicore platforms that auto-
tuning heuristics work; they improve query performance of
all benchmarked queries on all benchmarked platforms.

The paper presents to the parallel computing community
that query processing is an important real-world application
scenario for pipeline parallelism, patterns, and auto-tuning.
Even though auto-tuning has been done in the past in other
ways and mostly for numerical applications [7, 29, 13, 20],
we want to exemplify that database query optimization is
a fruitful new ground to expand the core concepts of auto-
tuning. The way we employ auto-tuning is similar to offline
tuning. We present the database community with a new
opportunity of applying multithreading in query optimiza-
tion, which on multicore systems represents an additional
degree of freedom in the spectrum of query parallelization
approaches. This is beyond earlier approaches [27, 28, 6, 22,
3, 2] that largely neglected intra-query parallelism due to
lack of capable hardware.

The paper is organized as follows. Section 2 presents a
background on join algorithms and discusses variants that
are suitable for multithreading and pipelined processing.
Section 3 introduces the key concepts of our multithreaded
pipeline parallelization of relational queries. Section 4 de-
scribes our automatic query performance tuning approach.
Section 5 discusses the evaluation environment and the per-
formance results on four multicore platforms. Section 6 elab-
orates on directions for future extensions. Section 7 details
the software engineering issues encountered in PostgreSQL.
Section 8 contrasts our concept with related work. Section
9 provides a conclusion.

2. BACKGROUND ON JOIN ALGORITHMS
The join operation R ⊲⊳C S defined by Codd [5] in the re-

lational data model combines tuples from separate relations
R,S on a specified join condition C. So for example if R is a
relation containing tuples representing social security num-
bers and person names, S a relation with tuples represent-
ing social security numbers and salaries, and C a condition
matching social security numbers in both relations, the re-
sult would be a relation containing tuples of social security
numbers, names, and salaries.

The näıve nested loop join implementation uses two nested
loops over a designated “inner” and “outer” relation; a new
relation is iteratively produced containing each tuple of the
inner relation matching the join condition with a tuple of the
outer relation. This algorithm can be inefficient, so other
join algorithms have been developed [17].

Hash join algorithms (e.g., simple hash join [10], hybrid
[16], GRACE [15]) work for so-called equijoins in which C
contains just equality comparisons. These algorithms are
used in commercial and open-source DBMS – as for exam-
ple, in PostgreSQL [19]. Earlier work [8, 9] has pointed
to these algorithms to potentially better exploit intra-query
parallelism, but did not shed enough light on multicore per-
formance with more than two cores and industry benchmark
queries so far.

Hash join algorithms work in two phases: (1) build a table
with hash values of all join attributes for one relation (i.e.,
the “inner” relation, usually the smaller one); (2) read tu-
ples from the “outer” relation and compare the hash values
of join attributes with the hash table of the inner relation;
if hash values match, two tuples are joined if their join at-
tributes also match. Joined tuples are passed on to the next
operator in the query plan (see Figure 1), so in addition to
one input stream of tuples from each join relation, there is
an output stream of joined tuples. Obviously, the working
principle is asymmetric since one of the two relations is han-
dled in a different way. This has not been a problem so far
on sequential processors, as tuples were passed one by one
from one operator to another. However, asymmetry is a dis-
advantage for pipelined processing. The blocking behavior
of the build phase could make the entire operator pipeline
stall until some hash join operation reaches its second phase;
only then will it feed joined tuples into the following pipeline
stages.

As an improvement, the double pipelined hash join [12, 30]
is symmetric and does not distinguish between a build phase
and a probe phase. Both input relations have an own hash
table (see Figure 1). Our approach to speedup up query
processing uses one thread for each table as a means for
fine-grain parallelization, so each double-pipelined hash join
needs 2 threads. Tuples from one relation are hashed into
a local table and probed with the other relation’s hash ta-
ble. Thus, a continuous stream of joined tuples is produced,
and query optimizers don’t need to designate an “inner” and
“outer” relation.

Figure 1: Dataflow comparison between asymmetric and symmetric hash joins [30].

3. PARALLELIZING QUERIES WITH NON-
LINEAR MULTITHREADED PIPELINES

A DBMS transforms an SQL query into a sequential query
execution plan, which is the initial data structure we use for
parallelization. Figure 2 (a) shows a real query from the
TPC-H benchmark and Figure 2 (b) depicts an excerpt of
the sequential query plan, as generated by PostgreSQL.

The query plan can be represented as a tree with rela-
tional operators as nodes and relations as leaves. Opera-
tors are typically implemented as iterators [10] that establish
producer–consumer relationships between nodes. Operators
take tuples from child nodes, process them, and pass the
result on to their parent node. The mainstream approach
is to pass tuples sequentially, one by one, to reduce tempo-
rary storage of large intermediate results. PostgreSQL and
most other systems use a demand-pull approach where the
root node starts demanding tuples from its children. Look-
ing at the whole tree, this technique establishes a non-linear
pipeline structure over the whole query plan in which tu-
ples flow up to the root, using buffers between operators
[4]. The root node may perform additional transformations
o the received tuples. Pipelined query execution can thus be
treated as a dataflow problem [30]. However, the pipeline
is processed sequentially. Our approach introduces multi-
threading at exactly this point, processing several operators
in parallel on multicore systems. As will be shown later,
the division of parallel work among threads is not trivial,
because is cannot be done statically; a dynamic approach is
needed that is aware of the target hardware characteristics.

The query operator pipeline can be parallelized as shown
in Figure 2 (c). One or more connected nodes (i.e., query
operators) can be assigned to a pipeline stage that can be

processed by an own thread; thus, several stages can poten-
tially be processed in parallel on several cores. To achieve
speedups, it is imperative to avoid pipeline blocking – this
may be done by ensuring that and adequate pipeline struc-
ture and suitable join algorithms are used. Potentially, there
exist many pipeline structure configurations for a given query
plan. We employ an auto-tuner to find one that leads to the
best performance on a given multicore platform.

In general, query optimization is a difficult area because
optimizations often work just for certain types of queries;
this is because queries can differ in many respects. Our
proposed parallelization technique is suitable for longer and
more complex queries rather than short queries with short
pipelines. We assume a transactional environment where a
query can be executed more than one time (e.g., due to re-
quests from different users) and where materialization would
not pay off. In addition, queries with a more balanced or
“bushier”query plan (produced by the sequential DBMS op-
timizer) tend to exhibit more parallelization potential. An
important problem is that some join operation might be-
come a bottleneck and slow down the entire pipeline, but
our experiments show that it is possible to use stage aggre-
gation to compensate such negative effects. Our experiments
have also shown that the best configurations may depend on
the specific query and multicore platform, and that a static
prediction how to employ join algorithms and associate op-
erators to pipeline stages is not promising. We therefore
developed an iterative auto-tuning approach, as described
next.

Hash Join (cost=62531.65..305624.06 rows=93 width=78)
Hash Cond: ((lineitem.l_suppkey = supplier.s_suppkey) AND (n1.n_nationkey
= supplier.s_nationkey))
-> Hash Join (cost=62056.65..303760.10 rows=46252 width=86)
Hash Cond: (lineitem.l_orderkey = orders.o_orderkey)
-> Seq Scan on lineitem (cost=0.00..208567.06 rows=1850101 width=28)
Filter: ((l_shipdate >= '1995-01-01'::date) AND (l_shipdate <= '1996-12-31'::date))

(a) SQL of Q7 (b) PostgreSQL‘s Query Plan (Excerpt)

(c) Examples for pipeline structure permutations over the join tree of (b)

Pipeline stage processed by a thread

...

select

from

where

supp_nation, cust_nation, l_year, sum(volume) as revenue
from (select n1.n_name as supp_nation, n2.n_name as cust_nation,
extract(year from l_shipdate) as l_year, l_extendedprice * (1 - l_discount)
as volume

supplier, lineitem, orders, customer, nation n1, nation n2
s_suppkey = l_suppkey and o_orderkey = l_orderkey and

c_custkey = o_custkey and s_nationkey = n1.n_nationkey and
c_nationkey = n2.n_nationkey and ((n1.n_name = '[NATION1]' and
n2.n_name = '[NATION2]') or (n1.n_name = '[NATION2]' and n2.n_name
= '[NATION1]')) and l_shipdate between date '1995-01-01' and date
'1996-12-31') as shipping group by supp_nation, cust_nation, l_year
order by supp_nation, cust_nation, l_year;

Figure 2: Example for TPC-H query 7: (a) SQL code; sequential query plan generated by PostgreSQL; (c)
example stage configurations for a multithreaded pipeline.

4. AUTO-TUNING QUERY PARALLELISM
Our auto-tuning approach consists of several parts. We

start with a discussion of findings from pilot studies that in-
fluenced the decisions on key aspects of the tuning process.
We present patterns and transformations on query plans and
use a microbenchmark approach to quantify performance
impacts. We then describe how to detect performance-relevant
query plan patterns and detail the principles of the auto-
mated performance optimization process.

4.1 Pilot Studies
Before developing automation strategies, we first conducted

several pilot studies to assess the feasibility and performance
potential of our approach. In particular, we analyzed speedup
potential of superimposing non-linear multithreaded pipelines
over sequential query plans, as well as the applicability of
multithreading within symmetric hash joins. The studies
were conducted using queries from the industry TPC-H bench-
mark as well as a multitude of other queries.

The results indicated that our approach is feasible and
worthwhile to implement in a full-fledged environment. The
results have also shown that the structure of the pipeline had
the most significant impact on parallel query performance,
and that increasing the number of threads per stage had a
negligible performance effect (so this parameter would not
require auto-tuning). Further results from the pilot studies
implied that if certain patterns are detected in the sequen-
tial query plan, they can be exploited to introduce asso-
ciated transformations. This technique reduces the search
space for the definition of the multithreaded pipeline struc-
ture. We identified six important patterns that lead to the
most significant speedup gains; other patterns showed little
improvements.

4.2 Patterns in the Query Execution Plan
We now describe performance-relevant patterns in the se-

quential query execution plan. Each pattern is associated
with a query plan transformation that introduces parallelism.
The query execution plan is assumed to be represented by
a tree data structure in which the size of relations on the
right side of a node is smaller than the size of relation on
the left side of that node; this is a usual property of plans
[10] generated by many existing sequential optimizers (e.g.,
PostgreSQL).

In total, we employ six patterns as sketched in Figure 3.
The patterns identify locations where to insert a boundary
for pipeline stage or where to replace an asymmetric hash
join algorithm by our multithreaded symmetric hash join.
We assume that for each node that has two leaves, there is

a starting boundary for a pipeline stage that includes that
node (but not the leaves).

• Pattern 1: Identify one asymmetric hash join node
that has a right child that is also an asymmetric hash
join node. Insert a boundary for a pipeline stage be-
tween the two joins. This transformation introduces
parallelism by overlapping tuple computations in time.

• Pattern 2: Identify one asymmetric hash join A in a
left subtree, so that following the path up to the root,
there exists one other asymmetric hash join node B
(select the first one encountered). Introduce a bound-
ary for a pipeline stage between A and its direct parent.
This transformation can speed up the creation of hash
tables in the join further up in the tree.

• Pattern 3: Identify an asymmetric hash join A in a
right subtree that has a direct parent B that is also
an asymmetric hash join. In addition, B has a left
child with a large input relation. Starting from B and
following the path up to the root, there exists one addi-
tional asymmetric hash join C. Introduce a boundary
for a pipeline stage between joins A and B. This trans-
formation avoids creating a pipeline stage in a wrong
place and thus avoids creating a bottleneck through
which many tuples have to pass.

• Pattern 4: Identify an equi-join node in which both
children are sub-trees (i.e., no leaves → no table scans,
no index scans). Replace the join algorithm by a mul-
tithreaded symmetric hash join algorithm.

• Pattern 5: Identify an equi-join node whose left child
is a sub-tree (i.e., no leaf) and whose right child is a
leaf. Replace the join algorithm by a multithreaded
symmetric hash join algorithm.

• Pattern 6: Identify an equi-join node with arbitrary
left and right children (i.e., either sub-trees or leaves)
for which the following condition holds:
relationsizeright/relationsizeleft > 0.9 (the value was
determined in our exploratory experiments). Replace
the join algorithm by a multithreaded symmetric hash
join algorithm.

All patterns assume that the size of input relations to the
entire query is not too small, so the additional overhead
that comes with the proposed transformations can be com-
pensated. This estimation can be deduced by the optimizer
by static query analysis, but we also employ dynamic data
to improve estimates.

Figure 3: Patterns identified in the query execution plan.

4.3 Microbenchmarks and Pattern Ranks
We run an initial microbenchmark on every new hard-

ware platform to estimate the performance impact of each
pattern. This is done exactly once for each unknown plat-
form.

The microbenchmark consists of synthetic queries that
lead to query plans with the aforementioned patterns. For
each query in which one of the six patterns is detected, the
auto-tuner applies the defined transformations and measures
the average speedup gained after running the parallel query
several times. Our auto-tuner also performs warm-up mea-
surements to avoid distortions.

A normalized rank metric −1 ≤ r ≤ 1 is calculated for
each pattern based on the measured performance improve-
ment in relation to sequential execution. This rank describes
the relative performance impact of a pattern in compari-
son to all patterns; higher values of r indicate that higher
speedups can be expected. Our experiments have also shown
that the rank measure can be used to compare the impact
of a pattern on different multicore architectures.

Pattern ranks define the order in which patterns are cho-
sen and applied by the auto-tuner. After executing the mi-
crobenchmark, the resulting ranks remain constant through-
out the auto-tuning process.

4.4 Pattern Detection
Patterns 1–5 are detected after one traversal of the query

plan, using static information such as node type (e.g. hash
join, table scan), node position (e.g., left sub-tree, relative to
another node), the estimated total size of relations per sub-
tree (to estimate if a node is well-balanced). In addition,
statistics of the sizes of relations of sub-trees are collected
from previous query executions and made available during
pattern detection (e.g., to improve detection of pattern 6).
These statistics also help to correct misestimations of the
initial static analysis.

The efficiency and performance impact of each pattern
varies from system to system. In addition, a combination
of several patterns on a query plan can improve the results.
We develop an automated approach to successively select
and apply the most promising patterns, as described next.

4.5 The Performance Optimization Process
Automated performance optimization occurs in an iter-

ated and feedback-directed fashion. The auto-tuner assumes
that a query with the same structure can be executed more
than once; this is a scenario that often occurs in Web server
or business information systems that handle many similar
requests from different users. The tuning process has two
phases: Phase I performs coarse-grain tuning by iteratively
detecting patterns and applying transformations; phase II
starts with fine-tuning when no more transformations can
be applied.

Phase I. In each iteration, the auto-tuner tries to find
and apply a new pattern to the query plan. In the first iter-
ation, the auto-tuner starts with the sequential query plan,
and every iteration works on the query plan resulting from
the preceding iteration. Patterns are successively applied in
each iteration as long as there are applicable patterns that
were not selected so far. The selection of the next pattern
is determined by its rank. In cases where two or more pat-
terns have the same rank, the auto-tuner randomly selects
one of them with equal probability. A pattern is skipped

if its transformation has already been applied in an earlier
iteration. The auto-tuner logs in each iteration the speedup
after the application of a new pattern transformation. If a
pattern leads to a better speedup compared to the previous
iteration, the query plan transformation is kept for the next
iteration, otherwise the transformation is undone.

Phase II. If no other patterns can be applied, the auto-
tuner tries using random transformations to further improve
performance. A fine-tuning transformation can be either an
insertion of a pipeline stage boundary at a random loca-
tion or a buffer size change between two stages. Buffer-
ing tuples between stages can save synchronization over-
head, but the optimum buffer size depends on the con-
crete situation. Thus, the auto-tuner randomly selects sizes
∈ {64, 128, 256, 512, 1024} tuples per buffer (each one can be
picked with equal probability).

The tuning process terminates when the speedup improve-
ment is less than a pre-defined constant ǫ. In principle, the
tuning process can be stopped after any iteration; it will
then use the configuration that was considered best until
that particular point. This property provides a high flexi-
bility for many real-world applications.

We remark that an advantage of our approach being de-
signed to work on query plans is that slight modifications of
a query’s SQL code (e.g., in selections, projections, or other
filters) between two executions would still make it possible
to apply performance-improving transformations based on
information from previous executions, as long as the struc-
ture of the query plan remains similar.

5. EVALUATION ON MULTICORE
This Section presents the experimental setup, benchmark

databases and queries, and the empirical performance re-
sults on several multicore platforms.

5.1 Environment
Our query auto-tuner is fully implemented in C++ in an

environment oriented at PostgreSQL. We evaluated the par-
allelization of real-world SQL queries in a controlled envi-
ronment using the sequential query plans as generated by
PostgreSQL. We chose PostgreSQL because it is a well-
documented open-source DBMS that is also employed in
productive environments.

Our auto-tuner creates independent threads for pipeline
stages using the Pthreads library. Threads are started dur-
ing the initialization phase of the iterators associated with a
tree node. Once threads are running, the associated pipeline
stages start producing tuples. We read all data from hard
disk, and all our measurements include I/O showing realistic
results in a productive scenario. For testing purposes, our
system also allows users to manually alter the initial query
plan input to assess the impact of modifications on multicore
performance.

Our experiments are carried out on following multicore
platforms:

1. 4-Core Intel Machine: Intel Core 2 Quad Q6600
processor, clocked at 2.4 GHz, equipped with 8 GB
RAM, running Linux 2.6.32. The system has 256 KB
L1 cache, and 8 MB L2 cache.

2. 4-Core AMD Machine: AMD Phenom II X4 810
processor, clocked at 2.6 GHz, equipped with 6 GB

RAM, running Linux 2.6.34. The system has 512 KB
L1 cache, 2 MB L2 cache and 4 MB L3 cache.

3. 8-Core Intel Machine: Intel with 2x Quadcore Xeon
E5320 processor, 1 thread per core, clocked at 1.86
GHz, equipped with 8 GB RAM, running Linux 2.6.32.
The system has 512 KB L1 cache, and 8 MB L2 cache.

4. 8-Core Sun Machine: SUN UltraSPARC T1 pro-
cessor (Niagara 1), 8 cores, 4 threads per core, clocked
at 1 GHz, equipped with 16 GB RAM, running Solaris
5.10. The processor has 192 KB L1 cache, and 3 MB
L2 cache.

We use databases generated by the TPC-H benchmark
revision 2.12.0 [24], with different sizes for the input data
(determined by so-called “scale factors”). Experiments with
scale factor SF1 have input relations with a total size of
about 1 GB; for SF2, total input relation size is about 2
GB.

5.2 Benchmarks on Join Queries
We first conduct experiments using the largest table

(lineitem has ∼750MB on scale factor 1). This type of query
has important practical applications, e.g., for bill of ma-
terials explosion, computing transitive closures, and truck
routes. We execute queries with n ∈ {1, 2, . . . , 6} self-joins
on this table. Resulting query plans have n hash joins.

For each of these queries, we take the sequential plan as
produced by PostgreSQL and create all possible rebalanced
versions by hand (this is the reason why n ≤ 6 in our set-
ting). Each version is then parallelized with our approach.
We measure the best and worst query run-time reduction
(along with the best and worst speedup), in comparison to
sequential execution. The results of these experiments are
summarized in Table 1, after 10 tuning iterations.

Results show that the difference between the best and
worst results for each experiment (shown in a table cell) is
low. In addition, speedups are remarkable. For example, a
speedup of three on a quad-core platform is good, given that
I/O processing and hard disk reading are fully included in
all measurements. Auto-tuning can exploit machine-specific
properties and improve performance on the eight-core ma-
chine up to a factor of 3.9. However, query-inherent prop-
erties and machine-dependent properties make it difficult to
improve performance even further.

5.3 Benchmark on TPC-H Queries
We analyze all TPC-H queries for which PostgreSQL pro-

duces a sequential query plan with more than one hash join.
This approach selects six queries; Figures 2 and 4 show the
SQL code of these queries.

Query Q2 has 3 hash joins. The query plan is an imbal-
anced, right-deep operator tree generated by PostgreSQL
sequential optimizer. The size of relations on the left can

differ significantly from the relation sizes on the right (e.g.,
on one join node, the left relation has 168 MB for SF1 and
337MB for SF2, while the results produced on the right have
about 10 times less size). Inappropriate stage configurations
may lead to pipeline stalls.

Query Q3 has 2 hash joins. The query plan is a right-
deep operator tree, similar to Q2, but Q3 has additional se-
lection operators on input relations that can be processed in
parallel. Relation sizes in Q3 are larger than in Q2. These
selections reduce the amount of data to be processed by
joins. This slight difference can significantly affect the over-
head and influence the sweet spot for parallelization.

Query Q7 has 4 hash joins. The query plan is a tree
that is more balanced than that of Q2 and Q3. This is a
case in which an addition of too many pipeline stages and
threads might introduce unnecessary overheads and thus
lead to slowdowns or just minor performance improvements.

Query Q8 has 7 hash joins. The query plan is a tree with
3 joins left-deep, 4 joins right-deep; the join operator at the
inflection point processes a 750 MB relation in SF1 and 1.52
GB relation in SF2, so it can easily become a bottleneck.
The large amount of data to be processed may quickly reach
the memory wall on some machines. Moreover, the join at
the inflection point of the operator tree may cause problems
if pipeline stages are chosen inappropriately. Introducing
a pipeline stage right before this join causes overhead that
does not pay off, because many tuples have to be streamed
through one buffer between stages. If this join is placed in a
stage with other joins, tuples get joined with other relations
in the same stage, thus reducing the number passed over to
other stages.

Query Q9 has 4 hash joins. The query plan is a tree
with 3 left-deep joins, but the remaining joins are balanced
down in the tree. Thus, several hash tables can potentially
be built up in parallel.

Query Q11 has 2 hash joins. The query plan is similar
to query Q2, except that the temporary results and the final
result are smaller.

5.4 Results
In summary, our auto-tuning parallelization works and

shows remarkable results. The run-time reductions on 4-core
platforms are shown in Figures 5(a) and 5(b) and for 8-core
platforms in Figures 6(a) and 6(b). Each graph illustrates a
particular query executed on a certain machine. The x-axis
shows the number of iterations that the auto-tuner needs
to achieve a certain performance improvement. As execu-
tion times vary from platform to platform, the y-axis shows
the performance improvement (i.e, run-time reduction) in
relation to the sequential execution time on that particular
machine. The solid line shows the results with our auto-
tuning approach. To ensure that the results are stable, the
entire measurement process was repeated 10 times.

The graphs illustrate that the auto-tuner is able to im-

Min/max run-time reduction in %, max speedup after 10 iters
#Joins 1 2 3 4 5 6

4-core AMD 43/43, 1.8 59/60, 2.5 63/67, 3.0 59/65, 2.8 61/66, 2.9 57/66, 2.9
4-core Intel 43/43, 1.8 58/58, 2.4 65/67, 3.0 63/65, 2.8 61/66, 2.9 60/66, 2.9
8-core Intel 42/42, 1.7 58/59, 2.4 65/66, 3.0 64/70, 3.4 63/73, 3.6 66/74, 3.9

Table 1: Join Query Performance on Largest TPC-H Table.

Q2

select

from

where

s_acctbal, s_name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_comment
part, supplier, partsupp, nation, region

p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = [SIZE] and p_type like '%[TYPE]' and s_nationkey = n_nationkey and
n_regionkey = r_regionkey and r_name = '[REGION]' and ps_supplycost = (select min(ps_supplycost) from partsupp, supplier, nation, region where
p_partkey = ps_partkey and s_suppkey = ps_suppkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = '[REGION]')
order by s_acctbal desc, n_name, s_name, p_partkey;

select

from

where

l_orderkey, sum(l_extendedprice*(1-l_discount)) as revenue, o_orderdate, o_shippriority
customer, orders, lineitem

c_mktsegment = '[SEGMENT]' and c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate < date '[DATE]' and l_shipdate >
date '[DATE]' group by l_orderkey, o_orderdate,
o_shippriority order by revenue desc, o_orderdate;

select

from

where

o_year, sum(case when nation = '[NATION]' then volume else 0 end) / sum(volume) as mkt_share
(select extract(year from o_orderdate) as o_year, l_extendedprice * (1-l_discount) as volume,n2.n_name as nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region
p_partkey = l_partkey and s_suppkey = l_suppkey and l_orderkey = o_orderkey and o_custkey = c_custkey and c_nationkey =

n1.n_nationkey and n1.n_regionkey = r_regionkey and r_name = '[REGION]'
and s_nationkey = n2.n_nationkey and o_orderdate between date '1995-01-01' and date '1996-12-31' and p_type = '[TYPE]') as all_nations
group by o_year order by o_year;

select

from

where

nation, o_year, sum(amount) as sum_profit from (select n_name as nation, extract(year from o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount

part, supplier, lineitem, partsupp, orders, nation
s_suppkey = l_suppkey and ps_suppkey = l_suppkey and ps_partkey = l_partkey and p_partkey = l_partkey and o_orderkey = l_orderkey

and s_nationkey = n_nationkey and p_name like '%[COLOR]%') as profit group by nation, o_year order by nation, o_year desc;

select from

where

select

from

where

ps_partkey, sum(ps_supplycost * ps_availqty) as value partsupp, supplier, nation
ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = '[NATION]' group by ps_partkey having sum(ps_supplycost *

ps_availqty) > (
sum(ps_supplycost * ps_availqty) * [FRACTION]

partsupp, supplier, nation
ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = '[NATION]‘

) order by value desc;

Q3

Q8

Q9

Q11

Figure 4: TPC-H Queries with multiple hash joins, benchmarked in addition to Q7 in Fig. 2

prove the performance of every query on every platform.
The exact quantities of performance improvements vary for
each query; this is because hardware differs and the auto-
tuner adapts its strategy on which patterns to apply to im-
prove performance. It is worth pointing out that the auto-
tuner requires just about 10 iterations for any query to con-
verge.

The charts also illustrate that some queries have more
potential for pipeline parallelization, due to their structure.
But even for short queries (such as Q2) with less paralleliza-
tion potential, the performance has been improved by sev-
eral percent. The approach works well especially for more
complex queries; for example Q9 executes on the AMD plat-
form 47% faster than sequential.

Compared to the Niagara platform, the performance gains
on the two Intel machines and the AMD machine are higher.
Several factors can provide an explanation. The Niagara
has a lower clock frequency than the other machines. More-
over, Niagara’s hardware is better optimized for I/O. Never-
theless, the auto-tuner is still able to improve performance,
though with lower deltas.

Queries Q7 and Q8 already show performance improve-
ments with the current approach, however, they can be
made faster with an additional technique (marked as “alt.
plan” in the graphs). Our manual experimentation revealed
that slightly re-balancing the plan generated by PostgreSQL
made more patterns applicable, so these queries performed
better. Future work will investigate approaches to extend
our technique accordingly.

We remark that we also compared for each query on each
platform if the best auto-tuned result is better than a com-
pletely random selection of pipeline stages and join algo-
rithms. Results confirmed that auto-tuning is better (i.e., it
leads to better performance in fewer iterations). So building
query auto-tuners is worth the effort.

In summary, optimizing I/O intensive queries differs from
computationally intensive applications – especially in what
speedups are realistic to expect. This insight is important for
the community to realize. Embarrassingly parallel numer-
ical applications can generate many compute threads and
typically achieve almost linear speedups. In our scenarios,
we a re I/O bound; threads are useful to hide latency. We

typically do not reach peak computation performance but
rather hit the memory wall.

6. OUTLOOK
This paper demonstrates that parallel query performance

can be improved on multicore with various multithreading
techniques. There are two opportunities for further exten-
sions that we consider most promising.

One direction to investigate is how to introduce an inter-
mediate step to re-balance the query plans to further im-
prove parallel performance. This is not a trivial task, as
tree balancing depends on several factors, such as relation
sizes and target hardware. Our first experiments with alter-
native plans (Q7 and Q8“alt plan” in Figures 5 and 6) imply
that additional performance can be exploited this way when
more pipeline threads run in parallel.

In this paper, we mainly investigated the potential of
pipeline parallelism in the context of join processing. Our
approach can be extended with other forms of intra-operator
parallelism, such as data parallelism.

7. SOFTWARE ENGINEERING ISSUES IN
DATABASE MANAGEMENT SYSTEMS.

Introducing multithreaded pipelined processing as pro-
posed in this paper requires relational operators to be im-
plemented in a thread-safe way. Unfortunately, this is not
the case in many DBMS implementations. Reengineering
fundamental code is required. Taking PostgreSQL as an ex-
ample, changes for inter-operator parallelization have to be
made in the so-called “backend”of PostgreSQL, which is not
multithreaded. The code has to be improved to get rid of
single-core assumptions (e.g., current stack overflow detec-
tion is not valid in a multithreaded context) and avoid possi-
ble race conditions in different layers (e.g., memory manage-
ment, storage management). Shared data structures (e.g.,
“contexts” and “states” during query execution) have to be
privatized or synchronized. The good news for PostgreSQL
is that it has good code quality. Most shortcomings that
stem from sequentiality assumptions are relatively easy to
detect by code inspection. Most problems can be resolved
using thread local storage, e.g., in the code for error log-
ging and reporting. PostgreSQL’s implementation of the se-
quential pipeline and the operator implementations are sep-
arated and well-documented. The pipeline parallelization
affects only a few files in the so-called “executor” module
implementing sequential pipeline code. Adding the double
pipelined hash join algorithms can be done incrementally,
reusing code from the existing implementation.

8. RELATED WORK
In the past, auto-tuning has mostly been applied to nu-

merical problems, such as in [7, 29, 13, 20]; these approaches
are domain-specific (e.g., for matrix multiply or FFT) and
not directly applicable to auto-tuning database queries as
done in this paper.

In the context of databases, self-tuning has been explored
by [27, 28, 6, 22, 3, 2], however, the proposed strategies have
different goals and are outside the context of modern mul-
ticore processors. To our knowledge, our approach is the
first to use auto-tuned structures of multithreaded pipelines
over query plans, use multithreaded symmetric hash joins,

and automated join algorithm exchange throughout the op-
timization of a query plan. In addition, a hypothesis of our
approach is to propose an incremental enhancement to exist-
ing sequential query optimizers that would not require a ma-
jor rewrite of large parts of database system code. This con-
trasts other proposals that require major changes to column-
oriented storage, such as [11, 18, 26]. Other approaches such
as [23] require more radical rewrites of current DBMS im-
plementations, which are still row-based. Of course, starting
from scratch offers more potential for improvements, how-
ever, such endeavors are costly, risky, and take a long time;
many evaluations need still to be done for multicore perfor-
mance.

A special operator is used in [1] to partition the query tree,
but the evaluation is mainly hypothetical and shows just a
few selective on a two-processor machine. Prior work on
hash join parallelization [9, 14, 11, 21] concentrates on the
asymmetric hash join. However, this two-phase algorithm
has disadvantages for parallel pipelines: the blocking be-
havior of the first phase introduces pipeline stalls and may
lead to bad performance. This paper makes a novel con-
tribution studying parallel query execution with symmetric
hash join algorithms, which overcome the blocking problem,
on current multicore hardware. Among sort-merge-based
and hash-based join algorithms, the latter were found to
be more suitable on multicore systems [14]. Parallel join
algorithms running on graphics cards were implemented in
CUDA in [11, 25], however, assuming column-oriented stor-
age and manipulating only columns of floating point values.
The work of [25] has shown that join processing on GPUs is
disadvantageous when queries operating on large data cause
heavy memory transfers.

Other approaches such as [23, 31] require more radical
rewrites of current DBMS implementations, which are still
row-based; of course, starting from scratch offers more po-
tential for improvements, but such endeavors are costly, risky,
and take a long time. Until we get there, our technique can
be used to achieve first scalability on standard multicore
hardware.

9. CONCLUSION
Database systems are key applications that can take ad-

vantage of the wide availability of multicore computers. Mul-
tithreading is now an additional degree of freedom that query
optimizers should consider in addition to other query opti-
mizations. This paper presents a new approach for query
performance improvement that does not require a major
rewrite of sequential query optimizers from scratch. Using
sequential query plans, auto-tuning shows great potential to
introduce adaptive parallelism and exploit specific potentials
on each hardware platform. In particular, our experimen-
tal evaluations on real hardware show that such adaptations
pay off: the performance of all benchmarked queries was
improved on all our platforms.

Acknowledgements. We thank the Excellence Initiative
and the Landesstiftung Baden-Wuerttemberg for their finan-
cial support. We also thank Peter Lockemann for the fruitful
discussions.

10. REFERENCES

[1] R. Acker et al. Parallel query processing in databases
on multicore architectures. In Proc. ICA3PP, pages
2–13. Springer, 2008.

[2] S. Chaudhuri and V. Narasayya. Self-tuning database
systems: a decade of progress. In VLDB ’07:

Proceedings of the 33rd international conference on

Very large data bases, pages 3–14. VLDB Endowment,
2007.

[3] S. Chaudhuri and G. Weikum. Foundations of
automated database tuning. In VLDB ’06:

Proceedings of the 32nd international conference on

Very large data bases, pages 1265–1265. VLDB
Endowment, 2006.

[4] J. Cieslewicz and K. A. Ross. Database optimizations
for modern hardware. Proc. IEEE, 96(5):863–878,
2008.

[5] E. F. Codd. A relational model of data for large
shared data banks. CACM, 13(6):377–387, 1970.

[6] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait,
and M. Ziauddin. Automatic sql tuning in oracle 10g.
In VLDB ’04: Proceedings of the Thirtieth

international conference on Very large data bases,
pages 1098–1109. VLDB Endowment, 2004.

[7] M. Frigo and S. Johnson. Fftw: an adaptive software
architecture for the fft. In Proc. IEEE ICASSP’98,
volume 3, pages 1381–1384, 1998.

[8] P. Garcia and H. F. Korth. Database hash-join
algorithms on multithreaded computer architectures.
In Proc. ACM CF, pages 241–252, 2006.

[9] P. Garcia and H. F. Korth. Pipelined hash-join on
multithreaded architectures. In DaMoN, 2007.

[10] H. Garcia-Molina et al. Database systems. Prentice
Hall, 2002.

[11] B. He et al. Relational joins on graphics processors. In
Proc. ACM SIGMOD, pages 511–524, 2008.

[12] Z. G. Ives et al. An adaptive query execution system
for data integration. ACM SIGMOD Rec.,
28(2):299–310, 1999.

[13] T. Katagiri, K. Kise, H. Honda, and T. Yuba. Fiber:
A generalized framework for auto-tuning software. In
Proc. ISHPC, 2003.

[14] C. Kim et al. Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs. Proc.
PVLDB, 2(2):1378–1389, 2009.

[15] M. Kitsuregawa et al. Application of hash to database
machine and its architecture. New Generation

Computing, 1(1), 1983.

[16] L. Liu et al. US patent 6263331 hybrid hash join
process, July 2001.

[17] P. Mishra and M. H. Eich. Join processing in relational
databases. ACM Comput. Surv., 24(1):63–113, 1992.

[18] H. Plattner. A common database approach for OLTP
and OLAP using an in-memory column database. In
Proc. ACM SIGMOD, pages 1–2, 2009.

[19] PostgreSQL Global Development Group. PostgreSQL

8.4.1 Documentation, 2009.

[20] M. Puschel, J. Moura, J. Johnson, D. Padua,
M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. Johnson, and
N. Rizzolo. Spiral: code generation for dsp transforms.

Proceedings of the IEEE, 93(2), 2005.

[21] L. Rashid et al. Exploiting multithreaded
architectures to improve the hash join operation. In
Proc. ACM MEDEA, pages 46–53, 2008.

[22] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis.
Colt: continuous on-line tuning. In SIGMOD ’06:

Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pages 793–795,
New York, NY, USA, 2006. ACM.

[23] M. Stonebraker et al. The end of an architectural era:
(it’s time for a complete rewrite). In VLDB, pages
1150–1160, 2007.

[24] Transaction Processing Performance Council (TPC).
TPC BENCHMARK H Standard Specification 2.12.0,
2010.

[25] K. Tsakalozos et al. Using the graphics processor unit
to realize data streaming operations. In Proc. MDS,
pages 1–6, 2009.

[26] P. Vaidya and J. J. Lee. Characterization of tpc-h
queries for a column-oriented database on a dual-core
amd athlon processor. In Proc. ACM CIKM, 2008.

[27] G. Weikum, C. Hasse, A. Mönkeberg, and P. Zabback.
The comfort automatic tuning project. Information

Systems, 19(5):381–432, 1994.

[28] G. Weikum, A. Moenkeberg, C. Hasse, and
P. Zabback. Self-tuning database technology and
information services: from wishful thinking to viable
engineering. In VLDB ’02: Proceedings of the 28th

international conference on Very Large Data Bases,
pages 20–31. VLDB Endowment, 2002.

[29] C. R. Whaley, A. Petitet, and J. J. Dongarra.
Automated empirical optimizations of software and
the atlas project. Parallel Computing, 27(1-2):3–35,
January 2001.

[30] A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment.
Distr. and Par. Databases, 1(1):103–128, 1993.

[31] M. Zukowski. Parallel query execution in Monet on
SMP machines. Master’s thesis, Vrije Universiteit
Amsterdam, Warsaw University, 2004.

1 2 3 4 5 6 7 8 9

15

25

35

45

55
Query 9 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

20

25

30

35

40

45

50
Query 9 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

3,0

3,2

3,4

3,6

3,8
Query 11 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,5

1,0

1,5

2,0
Query 11 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10
Query 8 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10
Query 8 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

4

8

12

16

20
Query 8 SF1 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

4

8

12

16

20
Query 8 SF2 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

6

8

10

12

14
Query 7 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

1,0

1,5

2,0

2,5
Query 2 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

8

9

10

11

12
Query 3 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

8

9

10

11

12
Query 3 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

6

8

10

12

14
Query 7 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

5

10

15

20
Query 7 SF1 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

5

10

15

20
Query 7 SF2 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

2,0

2,5

3,0

3,5

4,0
Query 2 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

max improvement with auto-tuning default strategy

9(a) Intel Core2 Quad

1 7 134 10 16 19 22 25 28 31 34 37

2,0

2,5

3,0

3,5

4,0

4,5
Query 2 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

5

7

9

11

13
Query 7 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

0

2

4

6

8

10

12
Query 8 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

0

2

4

6

8

10
Query 8 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

4,0

4,2

4,4

4,6

4,8
Query 2 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

8

9

10

11

12

13

14
Query 3 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

5

7

9

11

13

15
Query 7 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

5

10

15

20
Query 7 SF1 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

8

9

10

11

12

13
Query 3 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

5

10

15

20
Query 7 SF2 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

4

8

12

16

20
Query 8 SF1 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

4

8

12

16

20
Query 8 SF2 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

10

20

30

40

50
Query 9 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

10

20

30

40

50
Query 9 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

2

3

4

5

6

7
Query 11 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 7 134 10 16 19 22 25 28 31 34 37

1,0

2,0

3,0

4,0

5,0

6,0
Query 11 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

max improvement with auto-tuning default strategy

9(b) AMD Quadcore Phenom II

Figure 5: Auto-tuned multithreaded TPC-H on 4-core platforms.

1 2 3 4 5 6 7 8 9

2

3

3

4
Query 2 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

c

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10
Query 8 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

2,0

2,2

2,4

2,6

2,8

3,0

3,2
Query 2 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

6

7

8

9

10
Query 3 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

6

7

8

9

10
Query 3 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12
Query 7 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0

5

10

15
Query 7 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

4

6

8

10

12

14

16
Query 7 SF1 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

4

6

8

10

12

14

16
Query 7 SF2 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0

2

4

6

8
Query 8 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

6

10

14

18

22
Query 8 SF1 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

6

10

14

18

22
Query 8 SF2 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

15

20

25

30

35

40

45
Query 9 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

15

20

25

30

35

40

45
Query 9 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

2,0

2,2

2,4

2,6

2,8

3,0

3,2
Query 11 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,5

1,0

1,5

2,0
Query 11 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

max improvement with auto-tuning default strategy

9(a) Intel 8-core machine

1 2 3 4 5 6 7 8 9

0

1

2

3

4

5
Query 2 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,5

1,0

1,5

2,0
Query 7 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,2

0,4

0,6

0,8

1,0
Query 8 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14
Query 9 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14
Query 9 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,5

1,0

1,5

2,0
Query 11 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,5

1,0

1,5
Query 11 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,2

0,4

0,6

0,8
Query 8 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

5

6

7

8

9
Query 8 SF1 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

2

4

6

8

10
Query 8 SF2 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0

1

1

2

2
Query 7 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,5

1,0

1,5

2,0

2,5
Query 7 SF1 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,5

1,0

1,5

2,0

2,5
Query 7 SF2 alt. plan

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,0

0,5

1,0

1,5

2,0
Query 2 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,7

0,8

0,9

1,0

1,1
Query 3 SF1

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

1 2 3 4 5 6 7 8 9

0,7

0,8

0,9

1,0

1,1

1,2
Query 3 SF2

number of iterations

%
 i
m

p
ro

v
e

m
e
n

t

max improvement with auto-tuning default strategy

9(b) Sun Niagara 8-core machine

Figure 6: Auto-tuned multithreaded TPC-H on 8-core platforms.

	2011,5_Titelbl
	Parallel SQL Query Auto-Tuning on Multicore

	pankratius-2011-5-updated.pdf
	Introduction
	Background on Join Algorithms
	Parallelizing Queries with Non-Linear Multithreaded Pipelines
	Auto-Tuning Query Parallelism
	Pilot Studies
	Patterns in the Query Execution Plan
	Microbenchmarks and Pattern Ranks
	Pattern Detection
	The Performance Optimization Process

	Evaluation on Multicore
	Environment
	Benchmarks on Join Queries
	Benchmark on TPC-H Queries
	Results

	Outlook
	Software engineering issues in Database Management Systems.
	Related Work
	Conclusion
	References

