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Abstract

We study the problem of resolving a perhaps misspelled address of a location into geographic coor-
dinates of latitude and longitude. Our data structure solves this problem within a few milliseconds even
for misspelled and fragmentary queries. Compared to major geographic search engines such as Google
or Bing we achieve results of significantly better quality.

1 Introduction

Geocoding of a location description is the process of transforming an address into a geographical coordinate.
This process has been available in geographic information systems for quite some time [9] with applications
for example for route planning, validating customer addresses [1], or surveillance and management of disease
outbreaks like the yearly wave of influenza [19]. However, with its ubiquitous use in modern web services
(e.g., [13, 5]), requirements have become more severe: Since most of these services are free, geocoding servers
must handle huge streams of queries at very low cost. At the same time, users expect instantaneous answers.
Finally, inputs will frequently be fragmentary, contain misspelled names or specify combinations of town
and street that are inconsistent with the database. A service is likely to be more popular and useful if it
tolerates such imprecisions.

While companies offering such services have naturally worked on this problem intensively, we are not
aware of academic work that offers the required combination of low latency, high throughput, and error-
correction for large address files. Our original aim was to make reasonable methods available to a cooperating
company and to the academic community. However, to our own surprise it turned out that our approach
achieves better solution quality than the market leaders at low costs so that it might also help the industry
to improve their services.

In this paper we focus on the algorithmic aspects of the problem to map information about town and
street to a database entry for the intended street. We do not consider the problem of resolving house numbers
or producing highly accurate output coordinates. Although this has been a major focus of previous literature,
e.g., [12], we view it as orthogonal to our problem since once town and street have been correctly identified,
we are dealing with much more local data and hence much smaller data volumes. For example, searching
an odd house number not present in the database can often be done by a binary search in a sequence of the
known odd house numbers followed by an interpolation [11, 12]. On todays servers with many gigabytes of
RAM, it might even be possible to precompute all estimated positions of house numbers.

The paper is structured as follows. Section 2 outlines the basic index data structure. Section 3 explains
the query algorithm, while 4 develops on a rating function to rank the matches from the query. A variant
of the algorithm for the case that the address is typed into a single field is explained in Section 5. Section
6 gives a data structure that resolves ambiguous town names both as a downstream computation step and
in an online setting as real-time suggestions. Section 7 reports on an experimental evaluation. Last but not
least Section 8 gives conclusions.
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1



More Related Work

Geocoded data used to cost several dollars per 1 000 records in the mid-eighties [18] and didn’t nearly provide
the spatial accuracy of todays free services. At that time the use of geographic information systems was
limited to professionals only that were aware of the difficulties and limitations of the geocoding process [24].
In [16], eight geocoders are compared. However, the evaluated Californian addresses are all given with high
precision including city name, ZIP code, state and street name.

Improving the quality of geocoding using approximate string matching is considered desirable in [27] but
then dismissed as too expensive.

Approximate string matching itself has been studied intensively, e.g. [23, 22] but most actually imple-
mented methods match only a specific pair of strings which is infeasible for large databases. Although there
is considerable theoretical work on text indices allowing approximate matching [22, 23], there are few imple-
mentations because these methods are complicated and require superlinear space. Moreover, most previous
work is on finding all matches in a single large text. We will only require matching against full entries of a
dictionary which is a slightly simpler problem and thus might also allow more efficient solutions. We build
on one of the few available implementations [17], but still have to overcome the problem of superlinear space
consumption.

Sengar et al. [25, 26] describe a system that is able to handle ill-formed queries to a certain extent. Their
system does not require any country-specific rule set, but exploits the underlying geometric map data to
produce a language independent representation of the data. This kind of abstraction is especially useful in
areas of the world where formal address formats are non-existing, e.g., in India. However, it remains unclear
how such systems scale to large databases.

2 Index Data Structure

Our basic input data are a set T of towns and a set S of streets that are fully defined by a name and a
reference to a town. In this paper we use the term “town” both for a district of another place and for an
independent place. To avoid confusion we will therefore use the term city for independent places even if
they are small. Streets belonging to multiple towns are cut into pieces belonging to a single town. Districts
additionally contain a reference to the city they belong to.

2.1 Inverted Indices and Town Lists

We view place and street names as (very short) documents containing a sequence of tokens separated by
white space, commas or hyphens. Thus we can use methods known from full text search to support fast
geocoding. In particular, we build two inverted indices, i.e. the town index maps tokens appearing in town
names to the towns using that token in their name and the street index maps tokens appearing in street
names to all streets containing this token.

In addition to the above inverted index, we precompute the set towns(s) of town IDs containing a street
with name s and also a set towns(t) of town IDs with name t. This translation to town IDs will enable us
to quickly determine which combinations of town and street name correspond to actual addresses.

2.2 Ignoring Light Tokens

While indexing by token makes the index more convenient to use, it introduces a serious problem. A street
query of the form “New Hollywood Street” will return every street that matches any of the tokens “New”,
“Hollywood”, or “Street”. In fact, about 25% of all street names match the token “Street”, therefore
we would get a really big candidate set. To avoid this problem, we adapt a concept which is often used in
information retrieval and text mining [4, 28, 8]: The inverse document frequency of a token c with respect
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to a set M of strings (town or street names in our case) is defined as

IDF(c):= log2

∑
x∈M | tokens(x)|

| {x ∈M : c ∈ tokens(x)} |

where tokens(x) is defined as the set of tokens making up string x. Tokens that occur very often in the
document (such as “Street”) receive a lower IDF weight than those that appear only infrequently. Tokens
that receive a high weight are more helpful in identifying the correct string, because they match fewer strings
in the index.

We will use these observations to our advantage: When a user enters an address that they want to have
geographically referenced, they may leave out parts of the address that they deem irrelevant, but they will
probably enter those parts of the query that will non-ambiguously define what they are looking for. In our
example, the user may leave out either “New” or “Street”, but they most definitely won’t leave out the token
“Hollywood”, which is also the token with the highest IDF weight among those three. If we expect the user
to enter the most important part of an address, it is not necessary to have said address be referenced also by
the remaining, unimportant tokens, i.e. we don’t want to find the street “New Hollywood Street” by the
token “Street”, because we expect that the more descriptive token “Hollywood” will be entered anyway.
Let

wst :=
IDF(t)∑

t′∈tokens(s) IDF(t′)

be the relative weight of the token t in the string s. In our example the relative weights might be 0.31 for
“New”, 0.6 for “ Hollywood”, and 0.09 for “Street”, respectively. If we decide that the query must contain
tokens that make up a fraction µ of the total weight, then we can ignore the lightest k tokens, if the sum of
their weights is not greater than µ. E.g., for µ > 0.4, we can ignore the tokens “New” and “ Street”. Note
that this local definition of importance is very different from the stop words that are completely ignored in
some inverted index data structures to save space. For example, suppose our database contains streets named
“Rhododendron Alley” and “Alley Street” then it is likely that the index for “Alley” will contain “Alley
Street” but not “Rhododendron Alley”. This both save space, query time, and useless candidates.

2.3 Approximate Token Indices

We also build indices supporting approximate search on the sets of tokens appearing in town names and
street names respectively. This design decision has two crucial advantages over the more obvious choice
to have an index on the town and street names themselves. First, since the dictionaries are much smaller
than the full data base, we can afford superlinear space to some extent. For example, our German input
set contains 1.35 million streets but only 219 thousand distinct tokens for street names. Furthermore, token
based indices can easily handle queries that drop part of the town or street name. For example, most users
just type “Frankfurt” when they are looking for “Frankfurt am Main”. The approximate index [17] for
token set M with maximum error di can be queried with a string q and returns a set Mq ⊆ M of tokens
that have edit distance (Levenshtein distance) at most di.

3 Multi-Field Search

We first concentrate on the case where a query consists of two strings typed into separate fields for town
name and street name. Note that in this case it is easy and largely orthogonal to allow additional fields for
house number or ZIP code. After normalization and tokenization (Section 3.1), we try three increasingly
sophisticated ways to obtain sets CT and CS of town and street candidates respectively that allow an
increasing number of errors (Section 3.2–3.4). After each of these attempts, we combine these candidate sets
into consistent candidate addresses from CT × CS . We stop as soon as we have found satisfying solutions.
When at the end no reasonable solutions have been found, an empty result is returned.
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3.1 Initialization Phase

The input strings are first scanned and transformed into a set Q of tokens and normalized to lower-case. This
is also the place where some culture-specific preprocessing can be done. In our German implementation,
there is only one such specialty: The German words for “Street”, “Lane”, . . . are sometimes used as a
separate word and sometimes as a suffix and nobody really knows which version is correct in every case.
Hence, compounds with these suffixes are broken into a normal form with separate tokens. This even works
when the suffixes are misspelled or abbreviated.

3.2 Partially Exact Town Match

Following the successful principle of “make the common case fast”, we use a simplified special treatment for
the case of a partially exact town match where at least one sufficiently rare token of a town candidate is
exactly matched. If this already yields a plausible result, we stop. For example, in the query “Franfrt am

Main, Römerberg”, “Frankfurt” was misspelled. But the token “Main” is an exact match and therefore
we consider the set of towns that contain this token somewhere in their name before we look at all possible
approximate matches. If we find a street similar to “Römerberg” in one of the candidates, we can stop.

3.3 Periphery Search

If we successfully identified partially exact town matches during the first phase, but could not match a street
in these towns with a sufficient rating, we extend the scope of exact search to the periphery : If the input
specifies a city, we try all its districts, if it specifies a district, we try the city it belongs to and all its districts.

Figure 1: Two Cases of Periphery Search

If the town provided by the user is matched against a candidate x which is subsequently corrected to a
town y in the periphery of x, we still calculate the rating for x, because the name of y generally does not
match anything in the query string and would lead to a low rating.

3.4 Approximate Search

When there are no or no good partially exact matches or when even periphery search does not find a good
candidate, additional candidates are computed using the approximate indices for towns and streets. If a town
candidate found specifies a district x of a city y, we also add y to the candidates. However, we do not do a
full scale approximate periphery search because this could easily yield results that are hard to understand.

3.5 Finding Compatible Candidates

After partially exact matching, periphery search, or approximate search, that all treat towns and streets
separately, we generate address candidates where town and street are compatible with each other. A pair
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(t, s) ∈ CT × CS is compatible if a street with name s is present in some town with name t, i.e., we have to
compute the set

CT ×S := {(t, s) ∈ CT × CS : towns(t) ∩ towns(s) 6= ∅} .

There are various ways to do this more efficiently than the naive way of computing |CT | × |CS | set intersec-
tions. Appendix A gives one particularly efficient implementation.

4 Rating Candidates

After we have dismissed most of the search space, we are left with a hopefully small set of compatible address
candidates (t, s) ∈ T ×S. These are then rated. The result is interpreted using two threshold values ρ and ρ.
Ratings below ρ are considered unsatisfactory. If all results are unsatisfactory, more extensive search is done
(after partially exact matching or periphery search) or, when everything failed, an empty result is returned.
In contrast, if a candidate with rating ≥ ρ is found, the search returns successfully without further attempts
at refined searching. Depending on the application we can then return the top ranked candidate or a list of
good candidates.

To develop a rating heuristic, let us recall the different kinds of errors that we want to compensate for:

• Typing errors

• Missing or redundant tokens

• Inconsistent pairing of a street and a town.

Since periphery search and candidate filtering have already dealt with inconsistent candidates, we are left
with the first two issues.

The first step on the way to a robust rating heuristic is to align the query to a candidate, i.e. find a
good mapping from the tokens in the query to the tokens in the candidate (see Section 4.1). Based on this
mapping, we then compute the actual rating.

The rating is computed separately for town and street by the same method and combined by the arith-
metic mean afterwards. Hence, the following explanation details the town rating only. There is one small
asymmetry however that we call filter by edit distance: Since there are usually less candidate towns than can-
didate streets, we first filter out candidates that are already unsatisfactory because they do not sufficiently
well fit the town description in the query.

4.1 Matching the Query to a Candidate

To match the town tokens q ∈ Q given by the users to the tokens of a candidate town name c ∈ C, we solve a
minimum weight perfect matching problem on a bipartite graph. If |Q| ≤ |C| we add |C|− |Q| dummy nodes
to Q and obtain the matching graph G = (Q∪C,Q×C) where the weight of edge (q, c) is the edit distance
between q and c if c is not a dummy node and 0 if c is a dummy node. Edit distances take misspellings into
account and dummy query nodes go a long way to model missing tokens in the query. Similarly, but perhaps
less importantly, if |Q| > |C| we add |Q| − |C| dummy nodes to C. This matching problem can be solved
in polynomial time (e.g. [2, 20]). Moreover, the considered graphs are very small so that solutions can be
computed quickly. See Figure 2 for an illustration.

4.2 The Rating Function

Based on the matching, we calculate a rating for each candidate. The rating should take into account the
following considerations:

• Each token that matches with at most d errors should be awarded some points. It makes sense to
choose d larger than the error bound di for the approximate index since space or index access time is
no issue for the pairwise distance computations used for the rating function.
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Jersey City, New York

central New York Jersy cty

1 0

0 1

Figure 2: Candidate (top) is matched against query (bottom). Edge labels symbolize edit distances.

• Tokens that could not be matched with at most d errors should not be awarded points and may even
be punished.

• The user is more likely to omit information (either because they forget it or because they deem it
unnecessary) than to over-specify the query. Therefore, tokens in the query that don’t match anything
in the candidate should be punished higher than candidate tokens that don’t match anything in the
query.

• The rating should be a real number in the interval [0, 1], with one denoting a perfect match.

• The heuristic should be able to distinguish between tokens that are important and tokens that do not
provide much information.

Rather than directly using the edit distance, we also want to take into account the lengths of compared
words, since the rate of error that can be introduced into a word with a constant number of changes depends
on its length. We therefore define token similarity between two tokens q and c as

sim(q, c) :=

{
1− editDistance(q,c)

|c| , if editDistance(q, c) ≤d

0, else
.

We normalize the error rate by the length of c since candidates are entries that are actually present in our
database.

In order to take the importance of a candidate token into account, we use its inverse document frequency
(see Section 2).

Let M denote the set of edges (d, c) between query tokens and candidate tokens that were matched with
edit distance ≤ d. Let U denote the set of unmatched query tokens, i.e., those tokens that could not be
matched to any candidate token with at most d errors. We can now define our rating function

rating(Q,C):= γ ratingQ(Q,C) + (1− γ) ratingC(Q,C)

where

ratingQ(Q,C):=

∑
(q,c)∈M

(sim(q, c))α IDF(c)

∑
(q,c)∈M

IDF(c) + |U | IDFavg
and

ratingC(Q,C):=
∑

(q,c)∈M

IDF(c)/
∑
c∈C

IDF(c)

Where IDFavg is the average over the IDF-values of all town tokens. The term |Mc| IDFavg expresses that
the unmatched queries should have matched somewhere but we have no idea where – so we use an average
IDF-value. The parameter α is used to adjust how important it is to have similar matches. Notice that
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ratingQ is not influenced by the number of unmatched candidate tokens. This is why we compute a convex
combination of ratingQ with ratingC which penalizes unmatched candidate tokens. The parameter γ ∈ [0, 1]
specifies the relative weight. Usually we want to give more weight to the matched parts of a query, therefore
we choose γ > 1/2.

5 Single-Field Search

In the previous sections we focused on separate fields for town and street because this interface is more
important for our cooperation partner, because multi-field search is easier to program, and one should
expect that it reduces errors. From the users points of view, however, it is more convenient to enter a query
into a single text field, with street and town in arbitrary order. Online services like Google Maps or Bing
Maps have therefore adopted single-field search.

However, in order to compare multi-field search and single-field search and in order to compare our
approach with internet services, we have also implemented a simple version of single-field search with an
emphasis on quality.

Our solution is based on the plausible hypothesis that the token sequence resulting from a single-field
query has the format streetToken∗townToken+ or townToken+streetToken∗, i.e., street and town tokens are
contiguous and there is at least one token designating a town. We exhaustively try all 2m− 1 possible ways
to split a token sequence of length m and call a multi-field search for each of them. Refer to Section 8 for a
discussion of possible optimizations.

For example, the query “Oxford Street, London” can be split as

Town Street
Oxford Street London

Oxford Street London

Oxford Street London

Street London Oxford

London Oxford Street

Only the last line would return a perfect rating as we might have hoped. This query is a bit lucky though
since there is no “London Street” in “Oxford” which, if it existed, would also receive a perfect rating.

6 Neighborhood Graph

In most countries, city names are not unique. For example, Wikipedia knows 41 Springfields, 5 of them in
Wisconsin. We present an efficient data structure here that can be used to find plausible nearby cities for
disambiguation. Applications could either use the data structure to propose disambiguating places or they
could match them to inputs of the user such as “Springfield near Kansas City”.

What makes a city plausible? It should be large, and it should be close to the city it is supposed to
disambiguate. Hence, we are facing a bicriteria optimization problem. A safe way to handle such a situation
is to consider all cities that are not dominated by any other city. (x dominates y wrt city t if it is both closer
to t than y and larger than y.) This problem is known under several names: finding Pareto optima, vector
maxima [21], or a skyline [7]. If the cities are sorted by size, it is easy to solve the problem with a full scan
of all cities – outputting a city if it is closer than all previously inspected ones. However, looking at all cities
may still be too slow.

We will encode the required information into a graph. Assume the cities are numbered 1 to n by
decreasing size. There is no need to store all towns, only those cities big enough to serve as a reference
place. A convenient way to define the size of a city here is to just count the number of streets. Let
Di:= ({1, . . . , i} , Ei) denote the Delaunay triangulation1 [10] of the i largest cities.

1Note that for convenience we work with Euclidean geometry here. It is an interesting problem to consider what happens
when we do geometry on the surface of a sphere.
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Then we will consider the neighborhood graph D∗:= ({1, . . . , i} ,∪ni=1Ei). Depending on the application,
we may interpret D∗ as a directed acylic graph where all edges go from smaller to larger indices (downward)
or vice versa (upward). The intuition here is that the Delaunay triangulation encodes a natural concept of
proximity. Directing the edges upward, i.e., towards larger cities allows us to find such cities. Obviously, it
is not enough to just consider the Delaunay triangulation Dn of all n cities since we would usually end up
in a dead end of a medium sized cities whose neighbors are all smaller. The following theorem states that
the union D∗ of n Delaunay triangulation solves this problem very effectively:

Theorem 1 Consider any map position (x, y). The Pareto optima with respect to city size and closeness to
position (x, y) forms a downward path from node 1 to the city closest to (x, y). Moreover, this path can be
found with the simple greedy algorithm depicted in Figure 3.

Proof 1 By induction from 1 to n, analogous to the work of Birn et al. [6].

Of course it is important how long it takes to construct D∗ and how much space it takes. If the size of
a city is assumed to be independent on its position, the problem is the same as in randomized incremental
construction of a Delaunay triangulation [14] – we get a linear number of edges in time O(n log n).

7 Experimental Evaluation

Implementation We have implemented the system described above in C++ making extensive use of the
STL library. This probably leaves open significant further tuning opportunities. For example, we use a simple
merging based STL algorithm for computing set intersections rather than a tuned code as used in full text
indices. The tuning parameters have been chosen intuitively without an attempt at finding optimal values:
We ignore light tokens comprising up to 40 % of the cumulative IDF of a name. The correction limit of the
approximate dictionaries and pairwise edit distance computations is limited to d = di = 2 in order to keep
space consumption low. Candidate matching use the Hungarian method [2] using the implementation by [3].
In the rating function, similarities between matched words are taken to the power α = 2 and in the convex
combination ratingQ(Q,C) = γ ratingQ(Q,C) + (1− γ) ratingC(Q,C) we choose γ = 3/4. The threshold for
a satisfactory rating is ρ = 1/2 and a good rating starts at ρ = 4/5. Experiments were performed on an Intel
Core i7 920@2.67GHz with 12GB RAM on Linux 2.6.27 using a single core. The programs were compiled
with GCC 4.3.2.

Map Data We use commercial data (from 2009) comprising all German street and town names. There are
about 12 000 cities, 108 000 towns, 80 000 town names, 76 000 town name tokens, 1 350 000 streets, 560 000
of which contain the token “Strasse”, 444 000 street names, and 269 000 street name tokens. A street name
consists of 2.5 tokens on average, while town names consist of 1.1 tokens on average. The input data takes

Procedure PareteOptima(q)
u:= 1 // start at top of hierarchy.
repeat

output u
foreach neighbor v of u in D∗

with u < v in increasing order do
if ||q − position(v)||2 < ||q − position(u)||2 then

u:= v
break for loop

until no closer node found

Figure 3: Finding Pareto optimal cities in the neighborhood graph D∗.
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about 30 MB space while our index data structures take about 327 MB. A more frugal assignment of space
to various hash tables could reduce that to a bit more than 200 MB but we think that 327 MB is almost
negligible for a server setting – even very energy-efficient 32-bit servers based on Atom, or ARM could be
used.

7.1 Pseudorealistic Random Queries

For our experiments, we use a set of existing, relevant addresses R, and a set of non-existing, irrelevant
addresses I. A relevant address is sampled by first choosing a random street name s and then picking a
random town from towns(s). An irrelevant is composed of randomly chosen town and street names such that
combination which accidentally occur in the database are rejected. Ideally, we would like to return correct
results for relevant address queries and no result for irrelevant address queries. To generate a simple random
query, it would be easiest to just insert, delete or substitute random characters in an existing address. The
errors that are introduced this way, however, are unlikely to resemble the errors that a human would make
while entering a query through a keyboard. We identify several sources of errors to generate input sets with
more realistic errors.

Typing errors are very common and we distinguish

• swapped characters

Example: “Frankfurt” → “Frankfrut”

• missing characters

Example: “Frankfurt” → “Franfurt”

• superfluous or wrong characters, mostly closely located to the correct character on the keyboard (here
in terms of the German QWERTZ-layout).

Example: “Frankfurt” → “Frankdfurt” or “Frankdurt”

Depending on the respective language there are several sources of error that are phonetic.

• doubled characters where there should be a single character

Example: “Dublin” → “Dubblin”

• single character where there should be two of the same

Example: “Cardiff” → “Cardif”

• The Soundex algorithm identifies classes of characters such that different characters from the same
class differ only slightly in their pronunciation.

Example: z ≡ s, “Zaragoza” → “Saragosa”

• Two consecutive vowels that occur in the same syllable are called a diphthong. In German, for example,
several different diphthongs sound the same or similar:

– ei ≡ ey ≡ ay ≡ ai

– eu ≡ äu ≡ oy ≡ oi

– . . .

Example: Hoyerswerda → Heuerswerda

In order to introduce k errors into an address, we introduce dk/2e errors into the street string and bk/2c
errors into the town string. To introduce an error, we first pick a random error class, then a random token,
and then a random position. All distributions are uniform.

Here we report experiments on 1 000 relevant and 100 irrelevant addresses. We classify the results returned
by the index as follows:
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Multi-field search
relevant irrelevant

Errors TP FN II TN FP Time [ms]
0 1 000 0 0 93 7 3.02
1 989 10 1 95 5 2.75
2 988 11 1 94 6 2.44
3 928 66 6 94 6 2.40
4 854 140 6 99 1 1.79
5 557 431 12 97 3 1.59

Single-field search
relevant irrelevant

Errors TP FN II TN FP Time [ms]
0 1 000 0 0 52 48 26.07
1 989 10 1 63 37 23.33
2 986 13 1 74 26 19.72
3 927 66 7 75 25 18.44
4 856 125 19 80 20 16.69
5 560 414 26 86 14 14.31

Table 1: Matching rates and query times for random addresses – 1 000 relevant ones and 100 irrelevant ones.

• True Positive (TP): A relevant address that is correctly identified.

• True Negative (TN): An irrelevant address that does not return a result or a correct partial result (i.e.
the correct town).

• False Positive (FP): An irrelevant address where the index does return a result.

• False Negative (FN): A relevant address where we don’t find a result.

• Incorrectly Identified (II): A relevant address that returns an incorrect result, i.e. another relevant
address.

The match rates, along with the query times, are shown in Table 1.
Multi-field search works extremely well, both with respect to result quality and query time. Only at

five errors, when three errors are introduced into the street name, we see a sharp increase of false negative
results. At this point, the approximate street index will often fail to find the right result because its error
limit is set to di = 2. Interestingly, query times decrease with the number of errors. The reason is that we
have to check a smaller number of candidates both in the approximate index and when rating candidates.

Single-field search for relevant addresses works almost as well as multi-field search. The only noticable
difference is that a small fraction of the false negative results mutates into incorrectly identified results. For
irrelevant addresses, our current implementation seems to be too aggressive though because it returns a
significant number of false positives. On the first glance it looks paradoxical that we get a larger number
of output errors when there are no spelling errors in the input. But the reason is simple: without spelling
errors we obtain higher ratings for the generated candidates and thus it becomes more likely that the result is
accepted. This indicates that the result quality could be improved by increasing the threshold for accepting
a result. Single-field query times are an order of magnitude larger than for multi-field search. This is
not surprising, since our current implementation naively factors a single-field search into several multi-field
searches.

Figure 4 shows the distribution of query times for the same set of 5× 1 100 queries. 90% of all multi-field
queries finish in less than 5 ms. The maximum query time observed is 106 ms. Note that for the server
scenario we are considering, we want very low average query time to achieve high throughput and low cost.
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Figure 4: Query times of single-field (left) and multi-field (right) search for several numbers of distortions.

d Bing Google Ours

0 87 97 100
1 78 54 98
2 71 3 98
3 59 3 94
4 55 2 86

Table 2: number of resolved queries

Occasional slower queries are no problem as long as they do not lead to noticable delays for the user. 100
ms is well below the delays users are accustomed to experience due to network latencies anyway. Although
single-field search is an order of magnitude slower on the average, this slow-down does not translate into
a proportional increase of the slowest query times – we still remain below 406 ms. This indicates that the
query times of the generated multi-field subqueries are not strongly correlated.

We also compared against existing geocoders. To do so, we took the first 100 relevant queries from
the above query set and ran them against the publicly available APIs2 of Bing and Google Maps. Table 2
reports on the number of true positive results. Google works very well for undistorted inputs – the three
remaining errors could perhaps be attributed to differences in the input data. But already for a single error,
the recognition rate drops to 54 % and completely collapses for d ≥ 2. Bing already has significant deficits
at d = 2 but fails more gracefully for distorted inputs. Still, the number of failed answers is an order of
magnitude larger than for our system.

7.2 Real-world Queries

To get an impression of the quality of the results, we also did experiments with real-world input, i.e. actual
queries that have been provided by users of an existing geocoder3. The test data consists of multi-field 1 383
queries that were logged from the the users of a cooperating company. The results were pre-classified by the
company into five categories. We briefly describe the categories.

Exact: Queries where each token can be matched without errors to a token in the result. The differences
allowed between query and result are those that are handled by a normalization phase.

Example: “london tally road” → “London, Tally Road”
Partially Exact: Queries where each token occurs in the result, but not each token of the result string

occurs in the query.

2It should be noted that the subjective performance of Google with interactive use on Google-Maps is much better than
over the API. In particular, the auto-completion mechanism works very well but is obviously not applicable to the API.

3Complete references will be given in the final version of paper.
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Bing Google Ours
Class # s w n s w n s w n
Exact 100 81 5 24 100 0 0 100 0 0
Partial 99 77 20 2 96 2 1 99 0 0
High 81 60 16 5 65 10 6 77 2 2
Medium 34 7 1 26 16 11 7 27 6 1
Low 15 1 1 12 9 4 2 13 1 1

Table 3: The match rates of our geocoder on real-world queries.

Example: “london tally” → “London, Tally Road”
High/Medium/Low: Queries that contain errors. The labels High, Medium, and Low were assigned

depending on the “confidence” of the old geocoder to have a correct interpretation of the input.

Example: “Lodon; Tall Rd” → “London, Tally Road” (e.g. classified as Medium )
We tested our address search with these queries checking correctness of our result manually. We classify

the results into three categories:
Strong Match: A result that is unquestionably correct. In many cases the query was non-ambiguous

and easy to verify.
Weak Match: A result that is not correct, but has successfully identified parts of the query, e.g. the

town.
No Match: Either a result that is definitely incorrect, or no result at all.
In total, the test data consists of 1 383 queries, classified into 844 Exact, 357 Partially Exact, 125 High,

41 Medium, and 16 Low queries. Since they had to be verified by hand, we picked random samples of at
most 100 queries per class. Also, we removed those that were not resolvable (e.g. for shopping centers, water
parks etc. – our index does not contain points of interest). There remained 100 exact and 99 partially exact
queries, as well as 81, 34 and 15 queries classified as high, medium and low. The results are shown in Table
3.

Our system outperforms the Google and Bing API in all categories. As with the real world inputs,
Google is similarly good for (partially) exact queries but looses ground for errorneous inputs. For example,
for category High our system returns correct results for all but 4 of the inputs whereas Google fails for 16
inputs – a factor four in the failure rate. An interesting difference to the random inputs is that now Google
consistently outperforms Bing – also for the inputs with errors.

7.3 Parameters that affect the Query Time

We use several techniques to make sure that the number of candidates stays small and that we don’t have
to perform too many edit distance computations. To see if these techniques are necessary and how each of
them affects the query time, we have performed a number of of experiments. The techniques are:

Filter Incompatible Candidates (FIC): As described in Section 3.5, we keep only those town and
street candidates that are geographically compatible.

Filter by Edit Distance (FED): As described in Section 4 we have an additional filtering stage
before full rating evaluation the drops candidates that can already eliminated because the town names are
an unsatisfactory match.

Ignore Light Tokens (ILT): As described in Section 2, we can ignore some tokens during the construc-
tion of the index due to their weight in comparison to the other tokens. E.g. the candidate “New Hollywood

Street” will be represented only by “Hollywood”, because the other two tokens occur so frequently in the
dictionary that they would not be of much help to distinguish this candidate from others.

As we can see in Table 4, disabling ILT absolutely destroys the performance. To see why this is so,
consider the most frequent token in the street dictionary, “street”. If we randomly choose any street, the
probability that it contains the token “street” is about 1/3. Without ILT, any query that contains the
token “street” will return all candidates that contain this token. Hence, if we randomly choose a candidate
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ILT FIC FED Query Time [ms]

× × × 570.00
× × X 566.00
× X × 199.00
× X X 126.00
X × × 10.68
X × X 10.58
X X × 3.45
X X X 2.09

Table 4: The effect of the features ILT, FIC and FED on the lookup time.

and query the index with this candidate, we can expect a candidate set that contains at least 1/9 of all
streets, which is almost 50 000 candidates for our data. In our experiments the actual number of candidates
was even bigger, 67 000 candidates on average. The query time drops by a factor of almost 100 when we
enable ILT. FIC gives us another boost of factor 3 and FED makes a difference only when used in conjunction
with FIC. None of these features has a noteworthy effect on the memory requirements of the index, therefore
all of them should be enabled by default.

7.4 Neighborhood Graph

We have build a neighborhood graph for all 12 379 cities in our input, resulting in 71 896 edges, i.e., there
are less than 6 edges per node which is similar to what we would expect for random city sizes. About 290
nodes are reachable from a city on the average, saving a factor > 40 compared to a full scan of the city table,
even if we do not fully use Theorem 1.

We also performed a small user study to test our model. We randomly picked 48 towns from a map of
Germany and asked a non-expert in the field of geography or computer science to attribute a larger reference
town to the one we picked. In 46 of these cases, a Pareto-optimal reference town was chosen.

8 Conclusions and Future Work

We presented algorithms and data structures for error-correcting geocoding that yield instantaneous answers
at costs negligible compared to the overheads for displaying maps answers, etc. over the internet. Perhaps
most surprising is that we still have a high match rate with as much as four errors and this is much better
than current web geocoders. Another pleasant surprise was that our combination of powerful data structures
and general rating functions yields a considerably simpler solution than several rule based industrial solutions
we have heard about.

Although we are already quite fast, we still have significant tuning opportunities. In particular, it will be
relatively easy to further speed up single-field search. For example, we currently do not even cache accesses
to the approximate dictionary or results edit distance computations. More generally, faster algorithms for
edit distance computation could be tried [15].

Although our experiments have so far focused on commercial German road data, we believe that they are
easy to adapt to other Western industrial countries. In particular, these countries have similar address sys-
tems and language conventions. Points of interest (POI) like gas stations or restaurants can be incorporated
by treating them like a street, town or house number depending on the context. Finding street intersections
is relatively easy once we have geocoded the two intersecting streets.

The basic ingredients – fast approximate dictionary search, token matching and scoring functions might
also help in other settings like in countries with more complicated addresses or less structured reference data.
However in that case we should expect more errors, longer query times, and the need for further heuristics.

13



Our concept of neighborhood graph is a promising approach to disambiguate queries involving frequent
town names. One interesting aspect is that the set of nodes reachable through the neighborhood graph D∗

may contain further “interesting” nodes. In particular, we may want to restrict the set of reported cities to
those in the same “region” (e.g., county, state, or nation) as the query town. Since Delaunay triangulations
encode neighbors “in all directions”, we suspect that with appropriately defined “locally well behaved region
shapes” the desired output still consists of nodes reachable in D∗.
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A Fast Computation of CT ×S

We describe this algorithm in an appendix since it is an application of folklore tricks in maintaining sets of
small integers and thus not a really new result. On the other hand, the applications of these tricks may not
be obvious in this case so that a description is sensible. We first compute the union towns(CS) of all sets
towns(s) for s ∈ CS . towns(CS) is represented as an array A with one entry for each town ID.4 While doing
this, we annotate each entry of towns(CS) with a list ` of pointers to the street names that enter this town
into the union. Then, for each t ∈ CT and each x in towns(t) we remember {(t, s) : s ∈ A[x].`} as compatible
candidates. The algorithm is linear in the size of the inspected lists towns(t), towns(s), and the output size.

4A is initialized only once during program startup. Afterwards it suffices to clean entries that have actually been used. To
facilitate this, the used town IDs are stored in a stack.
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