

Thomas Goldschmidt

View-Based Textual Modelling

The Karlsruhe Series on Software Design and Quality

Volume 6

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

View-Based Textual Modelling

by
Thomas Goldschmidt

Dissertation, Karlsruher Institut für Technologie
Fakultät für Informatik,
Tag der mündlichen Prüfung: 24.11.2010

KIT Scientific Publishing 2011
Print on Demand

ISSN 1867-0067
ISBN 978-3-86644-642-7

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

View-Based Textual Modelling

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Thomas Goldschmidt
aus Emmendingen

Tag der mündlichen Prüfung: 24. November 2010

Erster Gutachter: Prof. Dr. Ralf Reussner
Karlsruher Institut für Technologie (KIT)

Zweiter Gutachter: Prof. Dr. Colin Atkinson
Universität Mannheim

Abstract

The main goal of model-driven software development (MDSD) is to make software de-

velopment more efficient. By raising the level of abstraction and employing model trans-

formations and generators, the productivity of developers should by improved. The use

of multiple views on a central model shall enable the different roles involved in a soft-

ware development process to focus on their specific tasks. For example, separating the

dynamic and static parts of a system into different views allows to work more focussed

on the respective areas. Such as separation is, in graphical modelling languages, such

as the Unified Modelling Language (UML), a well established and central concept since

many years. An additional aspect that is in the focus of MDSD is the development and

use of Domain Specific Languages (DSLs). Within DSLs also different aspects of the

software under development and the different involved roles are involved in the devel-

opment process. While graphical DSLs are in use for a certain time now, also more and

more textual DSLs emerge.

However, the area of view-based modelling in conjunction with domain specific

metamodels and languages has not been investigated to a large extent. Especially the

synchronisation of overlapping or partial views on central model in combination with

textual modelling languages is a challenge that is yet to be solved. Model transforma-

tions are means for synchronising view models with their underlying models. However,

problems occur if such transformations are to be used with partially incomplete or

inconsistent views but where those part that are consistent should be synchronised

anyway.

In the area of textual modelling, the concept of view-based modelling is, in contrast

to graphical modelling, currently only weakly supported. It is, for example, not yet pos-

sible to explicitly define partial view types or multiple views on common model elements

which might even show different parts of the model element while hiding other parts.

Furthermore, specific problems occur whenever such views are modified and a compiler

analyses the textual views to translate them into their corresponding model representa-

tion. Partial views may only show a certain part of the attributes and associations. With

the use of traditional textual modelling approaches, the compiler will, depending on the

i

changes made, possibly create a new model element instance for the changed textual

representation. This will then result in the loss of all information that is currently not

inside this textual view.

This thesis presents an approach which allows for the easy and rapid creation of tex-

tual, view-based modelling languages as well as the synchronisation between multiple

views on a central model. To achieve this goal, this thesis comprises a comprehensive

analysis and classification of existing approaches for view-based as well as textual mod-

elling. Based on this analysis an existing textual modelling approach is extended with

the capabilities to define textual view types. In addition, this thesis contributes an ap-

proach for representing textual views that may be partial, selective or overlapping. Con-

cerning the problem of (partial) synchronisation of inconsistent or incomplete textual

views an approach is introduced that allows for the specification of model transforma-

tions in a way that they are able to retain specific modifications to their target models.

Based in these, so called retainment policies, algorithms have been developed which re-

tain temporary inconsistent parts as well as manual formatting within the textual views.

The approach developed in this thesis has been validated against formal properties of

view-based modelling as well as in the context of several industrial case studies.

ii

Zusammenfassung

Modellgetriebene Software-Entwicklung (MDSD) hat es zum Ziel, die Software-

Entwicklung effizienter zu gestalten. Durch die Erhöhung des Abstraktionsniveaus so

wie den Einsatz von Transformationen und Generatoren soll die Produktivität gesteigert

werden. Durch Benutzung multipler Sichten auf ein zentrales Modell soll es ermöglicht

werden, die verschiedenen Aspekte der Software wie zum Beispiel die statischen und

dynamischen Teile sowie die am Entwicklungsprozess beteiligten Rollen spezifisch zu

unterstützen. Eine solche Aufteilung ist in Standardmodellierungssprachen wie z.B. der

Unified Modelling Language (UML) bereits seit Langem ein zentrales Konzept. Ein

weiterer Aspekt der im Fokus der MDSD steht ist die Entwicklung sowie der Einsatz

Domänen-spezifischer Sprachen (DSL). Auch hier sind verschiedenste Aspekte der

zu entwickelnden Software und diverse verschiedene Rollen am Entwicklungsprozess

beteiligt. Verstärkt wird hier auch der Einsatz von textuellen Modellierungssprachen,

neben traditionellen graphischen Modellierungssprachen gewünscht.

Der Bereich der sichtenbasierten Modellierung gerade im Zusammenhang mit

domänenspezifischen Metamodellen und Sprachen ist jedoch noch wenig untersucht.

Es ist beispielsweise nicht möglich, explizite Teilsichttypen zu erzeugen oder mehrere

textuelle Sichten auf gemeinsame Modellelemente zu erzeugen, welche evtl. sogar

unterschiedliche Teile der Elemente zeigen während sie bestimmte andere verbergen.

Gerade die Synchronisierung von überlappenden oder Teilsichten auf ein zentrales

Modell stellt eine große Herausforderung dar. Modelltransformationen bieten hier die

Möglichkeit, verschiedene Sichten mit deren darunterliegenden Modellen abzugleichen

und zu aktualisieren. Probleme entstehen jedoch, wenn diese Transformationen während

der Entwicklungsphase auf noch unfertigen oder teils inkonsistenten Sichten arbeiten

und trotzdem Teile des Modells aktualisiert werden sollen. Im Bereich der textuellen

Modellierung ist das Sichtenkonzept im Vergleich zur graphischen Modellierung noch

kaum unterstützt. Spezielle Probleme entstehen hier zudem, wenn textuelle Sichten

durch einen Übersetzer analysiert und in die entsprechende Modellrepräsentation

übersetzt werden sollen. Partielle Sichten zeigen jedoch nur einen Teil der Attribute

und Assoziationen eines Modellelements. Wird nun eine textuelle Sicht geändert und

iii

vom Übersetzer neu eingelesen, führt dies im Standardfall dazu, dass auch die ents-

prechenden Modellelemente neu instanziiert werden und somit alle Teile des Elements

verloren gehen, welche nicht in der aktuellen Sicht enthalten sind.

In dieser Arbeit wird ein Verfahren vorgestellt, welches es erlaubt, textuelle, sichten-

basierte Modellierungsprachen einfach und schnell zu entwickeln sowie die Synchron-

isierung von multiplen Sichten auf ein zentrales Modell durchzuführen. Um dies zu

erreichen, wird zunächst eine Analyse und Klassifikation der verschiedenen Arten und

Möglichkeiten in der sichtenbasierten Modellierung gegeben. Basierend auf dieser Ana-

lyse wird ein bereits existierender Ansatz zur Erstellung von textuellen Modellierungss-

prachen um die Möglichkeit der Definition von Sichten erweitert. Bezüglich des Prob-

lems der (Teil-)Synchronisierung von inkonsistenten Sichten und Modellen wird ein

Ansatz eingeführt, welcher es erlaubt, Modelltransformationen derart zu spezifizieren

und auszuführen, dass bestimmte Bereiche im Zielmodell der Transformation erhalten

bleiben. Auf Basis dieser Erhaltungsregeln sind Algorithmen entwickelt worden, welche

beim Einsatz textueller Sichten Formatierungen sowie temporär inkonsistente Bereiche

über Änderungen hinweg erhalten. Der in dieser Arbeit entwickelte Ansatz wurde mit

Hilfe mehrerer industrieller Fallstudien validiert.

iv

Acknowledgment

First of all, I would like to thank my advisers Reussner and Colin Atkinson for their

support. Ralf laid the foundation for my PhD work and provided me a very pleasant

and productive working atmosphere. Colin supported my work with his expertise in

view-based modelling. A special thank goes to Axel Uhl from SAP AG. He was the

one initiating the collaboration with SAP AG and my work on this thesis. He also was

one of the major discussion partners giving knowledgeable feedback and always asking

one question further and deeper into the details and problems of the topic. Furthermore,

I would like to thank Steffen Becker for the supervision and support. He provided me

very constructive feedback and innovative ideas.

The members of the Software Engineering (SE) group at FZI as well as the members of

the Chair Software Design & Quality (SDQ) from KIT helped me due to their feedback

in many “doctoral rounds”. Especially Martin Küster who also wrote his diploma thesis

within the context of my work and then joined the SE group had a major influence

on my work. Klaus Krogmann and Michael Kuperberg helped me in the finalisation

phase of my thesis by reviewing the thesis and giving detailed and constructive feedback.

Furthermore, Mircea Trifu who gave me the necessary freedom during the final phase of

the creation of this thesis despite the many projects he required people working in.

The implementation of FURCAS would not have been possible without many students

and external collaborators helping me to create a running version of FURCAS. Therefore,

I thank Philipp Meier, Christian Siani, Thibault Kruse, Stephan Erb and Armagan Kilic

for their collaboration in the FURCAS project.

Finally, I would like to thank my girlfriend Petra Ackermann, as without her I wouldn’t

have achieved all of this. Especially during the many weekends I spent writing this

thesis, she always supported me in this task.

v

Contents

Acknowledgment v

List of Figures xiii

List of Tables xvii

List of Listings xix

1 Introduction 1
1.1 Motivation . 2

1.2 Application Scenario . 6

1.3 Scientific Contributions . 7

1.3.1 Model Transformations . 7

1.3.2 View-Based Modelling . 8

1.3.3 Textual Modelling . 9

1.3.4 UUID Retainment . 10

1.4 Structure . 10

2 Foundations and Related Work 15
2.1 Foundations . 15

2.1.1 Model-Driven Engineering . 15

2.1.2 Domain Specific Languages . 26

2.1.3 Concrete Textual Syntaxes . 28

2.2 Existing Approaches for View-Based Modelling 39

2.3 Existing Approaches for the Synchronisation of Views 40

2.4 Existing Approaches for Language Engineering 43

2.5 Existing Concrete Textual Syntax Modelling Approaches 44

2.5.1 Classification Schema . 44

2.5.2 Classification of Existing Concrete Textual Syntax Approaches . 50

2.5.3 Discussion . 56

vii

Contents

3 Retainment Policies for Model Transformations 59
3.1 Scientific Challenges . 60

3.2 Contributions . 61

3.3 Running Example . 62

3.4 Assumptions for the Application of the Retainment Policy Approach . . 64

3.5 Classification of Changes to Target Models 65

3.5.1 Images of Transformations . 65

3.5.2 Consistent Changes . 67

3.6 Detection of Relevant Changes . 68

3.6.1 Trace of a Transformation . 68

3.6.2 Detecting Model Changes Based on the Trace of a Transformation 73

3.7 Retainment Policies . 80

3.8 Retainment Kinds . 83

3.9 Formal Semantics of Retainment Policies 87

3.9.1 Determination of Change Sets . 91

3.9.2 Application of Change Sets for each RetainmentKind 102

3.9.3 Completeness of RetainmentKinds 110

3.9.4 Formal Semantics of the retainAll Property 110

3.10 Type Specific Retainment Policies . 112

3.10.1 Formal Semantics of Type Specific Retainment Policies 113

3.10.2 Completeness of Type Specific Retainment Policies 115

3.10.3 Conflicts Between Retainment Policies 115

3.11 Realisation of Retainment Policies Using QVT Relations 117

3.11.1 Applying RetainmentPolicies to a QVT-R Transformation 117

3.11.2 Weaving Retainment Policies into QVT-R Transformations 120

3.11.3 Examples . 125

3.12 Limitations . 128

4 Views on Models 131
4.1 Scientific Challenges . 131

4.2 Contributions . 132

4.3 Determination of View-Points, View-Types and Views 133

4.3.1 Advantages and Disadvantages of Multiple Models as Views . . . 134

4.3.2 Advantages and Disadvantages of a Central Model with Trans-

formations for Synchronisation . 136

viii

Contents

4.4 View Type . 136

4.4.1 Composite Metamodel . 140

4.4.2 Partial View Type Scope . 141

4.4.3 Complete View Type Scopes . 141

4.4.4 Extending View Type Scope . 144

4.4.5 Overlapping View Type Scope . 147

4.5 Views . 148

4.5.1 View Scope . 149

4.5.2 Editability . 152

4.5.3 Storage and Synchronization of Views 157

4.6 Classification of View-Types in Practice 162

4.6.1 Master / Detail . 162

4.6.2 Inclusion of Annotations . 162

4.6.3 Overview . 163

4.6.4 Navigation . 163

5 Textual Views 165
5.1 Scientific Challenges . 166

5.2 Contributions . 167

5.3 Definition of Textual View Types . 169

5.3.1 Mapping Definition . 169

5.3.2 Extending TCS to Handle Textual View Types 171

5.3.3 Inversion of OCL queries . 192

5.3.4 Advanced Model Construction Rules 208

5.4 Representing Textual Views . 220

5.4.1 Views in Graphical Modelling . 221

5.4.2 Limitations for Textual Views . 221

5.4.3 The TextBlocks Model Decorator Approach 222

5.4.4 Support for Temporary Inconsistency 234

5.4.5 Representing Selective Views with a TextBlocks Model 235

6 Synchronisation of Textual Views 239
6.1 Scientific Challenges . 240

6.2 Contributions . 241

6.3 Synchronisation from Textual View to Model 243

ix

Contents

6.3.1 Classification of Changes to the Textual Representation of a Model 243

6.3.2 Incremental Updates of the Textual Model after Type (A) Changes 245

6.3.3 Incremental Updates of the Textual Model After Type (B) Changes 280

6.4 Efficient Attribute Evaluation for OCL Based Attribute Grammars 280

6.5 UUIDs and Views . 283

6.6 Synchronisation from Model to Textual Views 284

6.6.1 Running Example . 285

6.6.2 Incremental Pretty Printing . 286

6.6.3 Detecting and Retaining Layout Modifications 288

6.6.4 Supporting Selective Views . 290

6.6.5 Handling Inconsistent Regions in an TextBlocks model 293

6.6.6 Exclusion of Model Elements that Leave the Scope of a View . . 294

7 Validation 297
7.1 Validating the View Type and View Properties of FURCAS 297

7.1.1 Validation of the Generic View Type Properties of FURCAS . . . 298

7.1.2 Validation of the Generic View Properties of FURCAS 301

7.2 Classification of Change Events . 312

7.2.1 Token Reuse . 312

7.2.2 TextBlock and Model Element Mergeability 313

7.2.3 Interaction Guidelines for Textual Modelling with FURCAS . . . 314

7.3 Case Studies . 316

7.3.1 Metrics . 316

7.3.2 The Runlet Language at SAP . 320

7.3.3 The Coghead Language at SAP . 333

7.3.4 Additional Case Studies . 339

7.3.5 Metrics Gathered for the Case Studies 340

7.3.6 Conclusions Drawn from the Case Studies 342

8 Conclusion 343
8.1 Summary . 343

8.1.1 Retainment Policies . 343

8.1.2 Definition of Textual View Types using FURCAS 344

8.1.3 Non-Intrusive Textual Views using FURCAS TextBlocks-Models 345

8.1.4 View Synchronisation for Textual Views 346

x

Contents

8.2 Limitations . 346

8.2.1 Determination of Domain Completeness for OCL Queries not

Supported . 346

8.2.2 Mergeability not Guaranteed . 347

8.2.3 Respect to Access Control . 347

8.2.4 Deletion of Partially Viewed Elements 348

8.2.5 Trade-Off Between Evolution of Concrete And Abstract Syntax . 348

8.3 Open Questions and Future Work . 348

8.3.1 Hybrid Model Merge . 349

8.3.2 Recovering of Deleted Model Elements 349

8.3.3 Modular Development of View Types 349

A Cheat Sheet 351

B Complex Ocl Inversion Example 357

xi

List of Figures

1.1 Foundations and contributions of this thesis. 8

2.1 The main components of the Meta Object Facility meta-metamodel. . . . 18

2.2 Metamodel of an Example Modelling Language 19

2.3 General structure of a CTS framework . 30

2.4 The basic structure of a TCS Mapping. 31

2.5 Feature Diagram of all considered features 45

3.1 Motivation for Retainment Policies. 60

3.2 Example: Metamodels of business objects and relational databases. . . . 62

3.3 Example: Source and target model of the running example. 63

3.4 Image of a transformation. 66

3.5 Retainment Policies Metamodel . 81

3.6 Application of a transformation with specified RetainmentPolicies. . . . 83

3.7 Application of a transformation with specified RetainmentPolicies: Ele-

ments in the target model changed. 84

3.8 Application of a transformation with specified RetainmentPolicies: De-

riving temporary transformations. 84

3.9 Example scenario for a model change and a transformation reexecution. . 85

3.10 The RetainmentKind class in detail. 87

3.11 The RetainmentKinds applied in a minimal example showing all possible

combinations. 88

3.12 Example: Source and target model after external changes. 91

3.13 Deletion in target model resulting from a source model change. 93

3.14 External deletion in target model. 95

3.15 Addition in target model resulting from a source model change. 97

3.16 External addition in target model. 98

3.17 Ordering change due to changes in source model. 101

3.18 External ordering change in target model. 102

xiii

List of Figures

3.19 Example: target model after re-applying the transformation using the tar-

get changed exclusively retainment policy. 105

3.20 Type specific retainment policy. 113

3.21 Generation of the RetainmentPolicy transformation using a higher order

transformation. 120

3.22 Trace modification during runtime of a RetainmentPolicy-modified trans-

formation. 124

3.23 Detailed process for the generation of the RetainmentPolicy transforma-

tion using higher order transformation. 124

4.1 Overview on the different view concepts. 134

4.2 Examples for view points, view types and views in UML. 135

4.3 Properties of view types. 137

4.4 Example view instance. 140

4.5 Excerpt of the containment hierarchy of the BusinessObjects metamodel

showing the different notions of containment completeness. 142

4.6 External annotations metamodel connected via a query. 145

4.7 Example view instance of the view type specified in Figure 4.6. 146

4.8 Non-intrusive persistence annotations attached to the example metamodel. 146

4.9 Two different view types, showing the two different flavours of overlaps. 147

4.10 Properties of view types. 149

4.11 Effect conformity of transformations. 154

5.1 Example: Metamodel used to explain template pattern. 172

5.2 ScopeArg extension . 173

5.3 An example for the computation of the domain completeness of a tem-

plate resulting in true. 181

5.4 An example for the computation of the domain completeness of a tem-

plate resulting in false. 182

5.5 Excerpt of the MOF Metamodel showing the relevant parts for the refer-
enceOnly example. 183

5.6 OCL PropertyInit extension to the TCS metamodel. 186

5.7 OCL Query Mechanism Metamodel. 188

5.8 The expressions part of the OCL metamodel. 192

5.9 Model representation for a parameterised query. 195

5.10 Application of the concat transformation rule. 203

xiv

List of Figures

5.11 Excerpt of the BusinessObjects metamodel showing the relevant

elements for the creation of a getter method. 210

5.12 The foreach-rule extensions in the FURCAS metamodel. 213

5.13 The semantic disambiguation extensions in the FURCAS metamodel. . . 214

5.14 Overview on the TextBlocks-decorator approach. 224

5.15 Simplified version of the TextBlocks-Metamodel. 225

5.16 Example TextBlocks model including references to its view type. 227

5.17 Activity Chart for the different TextBlock States. 230

5.18 Example for a TextBlock in minimal State. 233

5.19 Example for a TextBlock in complete State. 234

5.20 Example for a TextBlock in editable State. 234

5.21 Metamodel excerpt responsible for the selective feature. 236

5.22 Example: Selective textual views in the FURCAS editor. 237

6.1 Incremental Process - Overview . 244

6.2 Overview on the phases of the incremental textual view to domain model

update process. 246

6.3 TextBlock-Model for the running example. 249

6.4 Versioning represented in the TextBlocks metamodel. 250

6.5 TextBlock-Model for the running example showing the self versioning

after an editing event Event(0, 0,valueType). 251

6.6 Relation between character lookahead and token lookback counts. 253

6.7 The architecture of the lexing mechanism. 254

6.8 TextBlock-Model for the running example after the self versioning phase. 256

6.9 TextBlock-Model for the running example after the incremental lexing

phase. 258

6.10 Weak assignment constructs for representing the parsed version in the

TextBlocks metamodel. 262

6.11 Decision on token reuse made for the parsed version of the running ex-

ample. 268

6.12 Assignment of lexed and rerference tokens to the parsed version of Text-

Blocks. 273

6.13 Transformation Ttb2dom updates the corresponding part of the domain

model based on the changes represented in the two different TextBlock-

models. 275

xv

List of Figures

6.14 The higher-order transformation Tmap2qvt genererates the synchronisation

transformation Tt2m. 275

6.15 Comparison of performance for reevaluating a given set of OCL queries

with and without impact analysis. 282

6.16 Artificial extension of meta-classes by UUIDBasedClass. 284

6.17 Example model showing source and target model of a model to view

transformation. 286

6.18 Example: Element leaving the view scope is shown as change bar in the

FURCAS editor. 295

7.1 GQM structure as defined by Basili. 318

7.2 Excerpt from the classes package of the Runlet metamodel 322

7.3 Excerpt from the behavioral package of the Runlet metamodel 324

7.4 Excerpt from the expressions package of the Runlet metamodel 326

7.5 Excerpt from the classes package of the Runlet metamodel showing the

type adapter concept . 327

7.6 Excerpt from the binding package of the Runlet metamodel 330

7.7 Sceenshot of the user interface built for the “Opportunity Management”

application that was built using the Runlet language. 332

7.8 Excerpt from the structure package of the Coghead metamodel 335

7.9 Excerpt from the permissions package of the Coghead metamodel 337

xvi

List of Tables

2.1 Comparison of related approaches. 51

2.2 Editor capabilities . 55

3.1 Different combinations of changes to source or target models. 85

3.2 Transformation reactions to model changes. 86

3.3 Mapping of RetainmentPolicies in the retainAll retainment scope. 111

3.4 Pattern usage in realisation of RetainmentPolicies. 121

6.1 Token reuse creteria. 267

7.1 Results for metrics defined for question 1.1. 341

7.2 Results for metrics defined for question 1.2. 341

xvii

List of Listings

2.1 Example TCS mapping. 31

2.2 Example TCS mapping translated to an ANTLR grammar. 32

3.1 Example Transformation: BusinessObjects to Relational Database Model. 64

3.3 Example 1: Annotated never RetainmentPolicy. 126

3.4 Example 1: After transformation. 127

3.5 Example 2: Annotated RetainRemoved=TARGET RetainmentPolicy. . 128

3.6 Example 2: After transformation. 129

3.7 Example 3: Transformed with annotated RetainAdded=TARGET Re-

tainmentPolicy. 130

5.1 An example mapping definition defining three different templates. . . . 173

5.2 OCL expression defining consistency of templates for the scope = in-

stanceComplete option. 174

5.3 OCL body definition of the isPropertyInitComplete operation. 174

5.4 OCL invariant definition for the downwards containment complete con-

straint. 175

5.5 OCL invariant definition for the upwards containment complete constraint.176

5.6 OCL invariant definition of the containment complete constraint. 176

5.7 Example templates with partial declarations. 177

5.8 OCL body of the propertySet() operation. 178

5.9 OCL body of the propertySetsTree() operation. 179

5.10 OCL body of the isDomainComplete() operation. 180

5.11 Example templates which declare referenceOnly templates. 184

5.12 Example for the use of OCL within a ProperyInit 185

5.13 Example view type definition illustrating a query overlap. 186

5.14 Syntax specification of the Query Property Argument. 189

5.15 Example mapping using an OCL query. 190

5.16 Example inversion rule in QVT for the concat rule. 204

xix

List of Listings

5.17 Example mapping using an OCL query with invert. 208

5.18 Example mapping using an OCL query with prefix/postfix. 208

5.19 Example view type definition defining model creation rules with tem-

plates without syntax contribution. In this case the template creates a

getter method for each association end of the business object. 210

5.20 Example for the foreach rule creating method signatures. 212

5.21 Constraint on ContextTemplate, specifying that syntactically equal tem-

plates need to be disambiguated. 215

5.22 The semantics of the syntaxContributions() operation. 215

5.23 The semantics of the helper operation alternativeSyntaxContributions()

operation. 216

5.24 Example for the application of the alternativeSyntaxContributions() op-

eration. 217

5.25 Example for the semantic disambiguation. 218

5.26 Example mapping using an selective feature. In this case the method

signatures shown within a business object should be added selectively. . 236

6.1 Example view type “BusinessEntityWithRefs” for BusinessEntities . . . 247

6.2 Example views for a BusinessEntities using the “BusinessEntityWith-

Refs” view type . 248

6.3 Example view type definition defining two alternatives which use the

same literals. 261

6.4 Running example: reusing tokens after alternatives changed. 265

7.1 Excerpt from the class view type showing the template for SapClass 323

7.2 Excerpt from the actions view type showing the templates for the defin-

ition of OQL queries. 325

7.3 Declaration of the type adapter syntax in the class view type 327

7.4 Declaration of the type adapter syntax in the adapter view type 328

7.5 Declaration and use of a type adapter in the class view type. 328

7.6 Declaration and use of a type adapter in the class view type. 329

7.7 Excerpt from the binding view type . 329

7.8 Excerpt from the Reports of the opportunity management application

class displayed in the class view type . 332

7.9 Excerpt from the collection view type . 336

7.10 Example for a view using the collection view type 337

xx

List of Listings

7.11 Excerpt from the permissions view type 338

7.12 Example for a view using the permissions view type 339

xxi

Chapter 1.

Introduction

Engineers and experts of a certain domain think and express themselves mostly and

most efficiently using terms of their, often very specific domain. To allow for better

communication of programmers and experts as well as for giving experts the possibility

to create applications using their common terms and vocabulary specifically tailored

languages need to be provided. The multitude of languages that such an approach

implies was the motivation to find means of rapid and efficient language engineering

approaches. To find solutions for this problem, the research field of Domain Specific

Languages (DSLs) emerged. DSLs are languages in computer science, that serve as

means of formulating solutions for strictly defined, technical problems in a predefined

domain. Due to their focus on a specific domain, these languages allow experts in such

as specific domain to be more productive than with the use of a traditional programming

languages [vDK98]. The higher level of abstraction of the language allows developers

to perform optimisations and maintainability tasks on the abstraction level of the domain

[MP99]. DSLs are also often tightly coupled to the concepts of model-driven engineer-

ing [Kle09]. The use of model-driven engineering with its generative techniques and

commonly defined metamodels allows for building tool-chains and efficient develop-

ment environments based on a common basis. In this area a common practice is the use

of views to allow for the tackling of a problem from different view points and different

roles each with a specific focus. On the other hand, there are more and more textual

DSLs emerging. However, textual DSLs in combination with view-based modelling has

not been tackled in research to a satisfying extent. This thesis introduces an approach,

called FURCAS, that allows for the specification of view-based textual modelling lan-

guages including the representation of textual views and means for the synchronisation

of textual views with their underlying models.

1

Chapter 1. Introduction

1.1. Motivation

Domain specific languages (DSLs) and more specific DSL workbenches, have been per-

ceived as a major step towards creating software in strictly defined domains in more

efficient way [vDK98, vDKV00, Fow05]. This is due to the raised level of abstraction

on which the software is developed, which allows domain experts to communicate with

developers on the same level. Due to the focus on aspects that are specific for each

domain the efficiency of software development can be increased. However, this advant-

age can only be exploited if the language keeps a strong focus and avoids to include

too generic aspects [Hud98]. An additional advantage of DSLs is that they make do-

main knowledge more explicit and thus more reusable and long-living. Through the use

of transformations domain specific models, representing that knowledge can transform

these models into further models for different purposes.

Martin Fowler [Fow05] envisioned a DSL approach that allows users to freely define

new languages which are fully integrated with each other. He argued that the primary

source of information should be a persistent abstract representation on which the three

main parts of a language workbench, the data schema, the editors as well as generators

or interpreters are based. More specific, he envisioned as a consequence of this central

abstract representation that language users will manipulate the DSL through a projec-

tional editor. Finally, as Fowler perceives the creation of applications a creative task he

argues that a language workbench should persist incomplete or contradictory informa-

tion in its abstract representation. This would improve the way developers achieve their

tasks. Fowler also motivated the use of views within DSLs. A key aspect that he men-

tioned is that there is no need to show all information all the time. The projection and

selection of elements that are shown in an editor should be reduced to what is necessary

for the current task a developer works on.

Tackling a problem from different sides or views allows for a well structured develop-

ment process. However, switching between views may also leave them in inconsistent

states. Still, this inconsistency is not considered to hinder the productivity of developers

working with views. From the area of view-based modelling the existence of inconsist-

ency between views is accepted and even exploited by developers [FKN+92]. With the

use of multiple views developers tend to really use the different views for very distinct

purposes and are able to move rapidly between them. Consistency is only required at

certain stages and should therefore not be enforced by a view-based approach.

2

1.1. Motivation

This also may explain the failure of early approaches for projectional, language ori-

ented editors. These approaches did not allow the developer to write and persist syn-

tactically or semantically incorrect programs. This reduced the freedom of developers

and therefore also their creativity.

However, with the multi-view paradigm for modelling which was already present in

graphical modelling since some time ago the resurrection of projectional textual editors

seemed to take place. Language workbenches such as the JetBrains Meta Programming

System [Jet] gain more and more attention not only from academic but also from indus-

trial users. However, despite MPS is a projectional editor approach it does not account

for partiality or overlapping of the models that are created.

Especially the combination of allowing a certain degree of freedom in the process of

working with a DLSs with the aspects of partiality and overlapping views poses chal-

lenges that are yet unsolved. This includes the specification of textual view types that

only expose certain parts of an underlying model to the developer in a respective view.

This implies that precautions need to be arranged for the way such textual views are

edited synchronised with the underlying model. For example, the view synchronisation

process cannot simply re-create an element from the current textual representation as the

information given there may only resemble a part of that element. Thus, an intelligent

incremental update approach is required that ensures the retainment of partially viewed

elements throughout the editing process.

Having a Universally Unique Identifiers (UUIDs) based model repository poses some

additional requirements to the implementation of a CTS approach. UUIDs for model

elements and therefore also links between model elements that are based on these UUIDs

links unfold several advantages in a large-scale setup [Uhl08]. Especially for distributed

and parallel model development this identification mechanism is important. Imagine

in a key attribute based repository one user changes the key attribute of an element

that is referenced from several other elements that he does not necessarily have under

control or perhaps does not even know about. All references to this element will break.

This problem does not occur with UUID based identification. However, UUID based

identification comes at a price that currently not all repository and tool implementations

are willing to pay. Caution is therefore required in selecting the right infrastructure

components for an enterprise modelling setup. There are several issues that have to be

tackled when handling UUID based elements, though especially when a CTS should be

developed that does not store these IDs explicitly in the textual representation as well.

3

Chapter 1. Introduction

While its UUID remains stable across the life time of a model element, some re-

positories allow the key attributes to change their values. For example, the Web Tools

Platform (WTP) built in Eclipse with EMF uses names for identifying model elements.

Element references can break if elements change their name and referring elements are

not covered by the refactoring. UUID-based references are not affected by such changes

and from this perspective work better in a large-scale environment where owners of an

artefact do not always know all of the artefact’s users or referrers. Beyond that, UUIDs

can get “lost” if elements are accidentally deleted. It then depends on the tools and the

capabilities of the repository how this case gets handled and what this means to refer-

ences pointing to the UUID which now has disappeared.

In textual syntaxes identification through UUIDs becomes problematic for several

reasons:

• Storage mechanism: If a model artefact is stored using the concrete syntax only,

there needs to be the possibility to store these IDs somewhere in the text. However,

during development a developer should not see these IDs as they contradict the

crisp textual view and make it confusing. On the other hand, if the artefact is

solely stored as model, other problems concerning the update from text to model

arise (see below).

• Model updates: Updating existing models is an inherent problem of textual nota-

tions. In graphical or forms-based modelling only a comparably small set of

changes may occur that can easily be wrapped into command structures that are

executed in a transactional way, transforming the model from one consistent state

to another. In a textual editor this is very difficult, especially when IDs are not

present in the textual representation. A small change, e.g., adding an opening

bracket in the text may alter the whole structure of the text, making it difficult to

identify which elements in the model are meant to be kept and which are not.

• Creation and deletion of model elements: In a graphical editor there are expli-

cit commands to create and delete model elements. Within a textual editor this is

difficult mostly because the creation or deletion of model elements is done impli-

citly. For example, if the name of an element is changed in the textual syntax it

may either mean that the old element should be deleted and a new one should be

created, or a simple rename of the existing model element may have been intended.

4

1.1. Motivation

A solution that lets transformations produce stable UUIDs for new model elements was

proposed in [Uhl08]. For example, such an approach may use the ID of the source

element and some transformation ID to compute the ID of the target element. However,

if text is used as source there is no stable ID for a source element, just properties derived

directly from the textual representation, such as a name attribute. Hence, no stable ID

for a target element can be computed and the only way to keep the identity is to rely on

incremental updates of the model.

A survey on existing concrete textual modelling approaches by Goldschmidt et al.

[GBU08] revealed that current approaches for textual modelling are not suitable for

view-based modelling nor do they account for UUID based identifiers as they do not al-

low for explicitly defining concrete textual syntaxes that are partial w.r.t. to the employed

metamodel. Furthermore, they do not incorporate incremental update techniques which

are a basic requirement for the synchronisation of multiple views with their underlying

model.

A solution approach to this problem, which is called FURCAS, is presented in this

thesis. FURCAS is based on an existing template, based approach for specifying textual

concrete syntaxes, introduced by Jouault et al. in 2006 [JB06b, JBK06] which is called

Textual Concrete Syntax (TCS). As TCS is already template based it serves as good

starting point for view-based textual modelling approach. This thesis presents concepts

and realisations on the extension of that template based approach which allow for the

definition of textual views. This includes the possibility to explicitly define the scope of

a template as partial or complete w.r.t. the metamodel element it represents as well as

extensive support defining lookup rules and model construction rules with the use of the

Object Constraint Language (OCL). To account for the bidirectionality of the view type

definitions FURCAS includes an approach for automatically inverting parametrised OCL

queries.

This thesis furthermore introduces a textual decorator model which allows for the rep-

resentation of partial views on a single underlying model. This approach non-intrusively

attaches the textual representation to the model elements and thus enables the use of

multiple, overlapping views on common model elements. This decorator model is cap-

able of representing and storing temporary inconsistent textual representations which

enable developers to creatively and iteratively work with the provided editors.

Based on these two foundations for textual view-based modelling, this thesis further-

more, contributes an incremental update approach for the synchronisation of views with

their model and vice-versa. This approach makes use of incremental lexing and parsing

5

Chapter 1. Introduction

techniques with the combination of novel algorithms that handle the reuse and merging

of the textual representation and the model. Additionally, this synchronisation process

accounts for the retainment of temporary inconsistent textual representations as well as

manual changes made to the layout of the textual view. To achieve this FURCAS relies on

a novel approach for specifying so called RetainmentPolicies for model transformations,

which are also a contribution of this thesis. With these rules it is possible to explicitly

define which rules or which areas in a target model should allow for external changes

in their respective target models. These areas are then protected from changes that are

propagated from subsequent executions of the transformation.

With the use of this synchronisation approach, this thesis also solves the problem of

UUID retainment of model elements within textual syntaxes. For this, this thesis will

show that the UUID retainment problem can be reduced to the partial view problem and

therefore be solved with the very same means.

Finally, this thesis contains a validation of the presented concepts on different levels.

First, FURCAS is validated formally against predefined properties of view types and

views in view-based modelling. Second, industrial case studies have been performed to

validate the applicability and usability of FURCAS in practice.

1.2. Application Scenario

The application scenario targeted in this thesis is the engineering of complex DSLs

with multiple aspects and/or roles involved. Complex DSLs with a large, expressive

metamodels require the focus on different aspects or roles to exploit the main advantage

of DSLs, which is their focus on a specific domain and the ability to be as concise as

possible in creating domain constructs. FURCAS allows to tailor specific textual view

types for certain aspects of a DSL or for different roles.

FURCAS supports this by helping language engineers to create explicit partial and/or

overlapping textual view types using specific concepts of view-based modelling. This

process is supported by guiding language engineers in the process of defining partial

and/or combined view types for a DSL. Explicit design decisions, making specific parts

of a view type partial or complete avoid errors in language specifications that would

hinder the rapid development of the DSL. For example, view types may be explicitly

defined as complete w.r.t. an element of the DSL, which means that all possible instances

of this element can be viewed and created with the view type. During the development of

6

1.3. Scientific Contributions

this view type FURCAS checks whether this constraint is fulfilled and if not the language

engineer will receive direct feedback concerning an error in this specification.

Especially Through its powerful OCL model construction rules FURCAS makes it

possible to define concise view types while keeping constructing complex models in the

background. By reusing OCL for several parts of the view type specification language

FURCAS reduces the learning effort as large and complex metamodels will most prob-

ably already use a multitude of OCL constructs, either for constraint or operation body

implementations [Uhl07, Uhl08].

As it is likely that, in complex and large scale DSLs and projects developed with the

DSL more than one tool will interact with a central model, the concrete textual syntaxes

for views developed with FURCAS are non-intrusive w.r.t. the underlying domain model.

This feature also allows for a clear separation and storage of concrete and abstract syn-

tax.

Traditionally, language engineers were only able to create view-based languages for

graphical view-based modelling. With FURCAS this limitation is removed and view-
based textual modelling becomes possible.

1.3. Scientific Contributions

The main contributions of this thesis reside on different levels within the whole area of

model-driven and domain specific language engineering. Figure 1.1 gives an overview

on the the different areas this thesis contributes to. These different layers are given by

the generality of the contribution made by a specific part of this thesis:

1.3.1. Model Transformations

In the area of round-trip and incremental transformations this thesis contributes the

RetainmentPolicies approach [GBU08]. This approach can be applied wherever in-

cremental transformations take place. Given a transformation that transforms a given

source model to a target model. In some scenarios these target models are also target

to modifications from external sources. For example other transformations may modify

the same target model in a different way. Furthermore, a modeller may want to refine

the results of the transformation by adding additional elements or by modifying certain

default properties the transformation has set. With the use of traditional transforma-

tion approaches this would not be possible, a transformation that is run a second time

would probably remove elements that were added manually and recreate those elements

7

Chapter 1. Introduction

C
la

ss
ifi

ca
tio

n
of

 R
el

at
ed

 W
or

k

Ext
en

de
d

To
ol

 S
up

po
rt

Transformations

Views on Models

Textual Views

UUID Problem

Validation

Roundtrip
Transformations

Incremental
Transformations

Retainment
Policies

Decorator Models

View Based Modelling

Classification of
View Properties

Inversion of
OCL Queries

TCS
TCS Extensions
for Partial
Views

Textual
Decorator
Model

Incremental
View Model
 Sync

Reduction to
Partial View
Problem

Incremental
UUID Retain-
mening Text
to Model Trafo

In
d.

 C
as

e

Im
pl

em
et

at
io

n

Pr
oo

fs

Legend:
 � Existing Work
 � Own Contribution

�
�

�

�

�

�

�
�

���

��

���S
tu

di
es

Figure 1.1.: Foundations and contributions of this thesis.

that were deleted. With the use of RetainmentPolicies transformation developers may

specify that in certain cases modifications to the target model should be retained even

though the transformation would normally overwrite them. The approach introduced in

this thesis is based on the identification of target model changes that can be found by the

use of the transformation trace that a transformation engine created during the execution

of a transformation.

1.3.2. View-Based Modelling

This thesis contributes to the generic area of view-based modelling by defining a tax-

onomy of concepts and properties of view points, view types and views. This taxonomy

defines properties, such as partiality or completeness of views types or the synchron-

isation properties for views. This taxonomy is encompasses formal definitions of the

respective properties based on a formalisation of the artefacts of model-driven engineer-

ing provided by Amelunxen and Schürr [AS07] and Hettel et al. [HLR08].

8

1.3. Scientific Contributions

Additionally an approach for automatically inverting parametrised OCL queries is in-

troduced in this thesis. One of the main purposes of OCL is the use as model query

language. For this purpose it is sometimes necessary to define queries that can be para-

metrised by certain values. FURCAS makes use of such queries for the resolving of

model elements that are linked from textual views. However, if we want to consider

such a specification not only as query but also, bidirectionally, as computation directive

for the valued which where used in the query these queries need to be inverted. This

thesis provides an approach that, if certain assumptions are fulfilled, allows for the auto-

matic inversion of such queries.

1.3.3. Textual Modelling

This thesis introduces the notion of textual view-based modelling [GBU09b]. This novel

approach combines the aspects of textual modelling with those of view-based modelling.

The FURCAS approach [GBU09a] contributes to the area of textual modelling on several

levels. First, by extending the template based textual modelling approach TCS [JBK06,

JB06b] this thesis contributes an approach for defining partial and overlapping textual

view types. This part of FURCAS furthermore, includes an approach that automatically

determines whether a template is capable of representing all possible model instances or

not. This is important as view types in FURCAS can be defined to explicitly be partial

or complete w.r.t. their corresponding class in the metamodel. FURCAS also makes

intensive use of OCL expressions for different purposes, such as: resolving of model

elements based on parametrised queries or for formulating advanced model construction

rules directly within the templates.

The second major contribution to the area of textual modelling is the textual decor-

ator model of FURCAS. This decorator model is capable of representing textual views

on models that may be partial or selective. Furthermore, temporary inconsistent views

can also be represented and stored with this, so called TextBlocks model approach

[GBU09b].

Finally, FURCAS provides an incremental synchronisation approach for its textual

views [Gol08, GBU10]. This approach serves as mediator between the textual views

and their underlying models. This process also accounts for the retainment of partially

viewed model elements and translates textual modifications made to the TextBlocks

model in a way that elements that this kind of elements are kept so that the informa-

tion which is currently not available in the partial view is not lost.

9

Chapter 1. Introduction

1.3.4. UUID Retainment

The incremental update process of FURCAS also contributions to the solution of the

UUID retainment problem [Gol08]. This thesis shows that the UUID retainment prob-

lem can be reduced to the partial view problem and therefore be solved by the means

of FURCAS. This reduction is done based on the idea that a UUID is nothing else than

an attribute that every model element implicitly owns. By making this attribute explicit

and declaring each view type partial w.r.t. this attribute allows to use the same solution

as FURCAS provides for partial views.

1.4. Structure

This thesis is structured in eight chapters:

Chapter 2 introduces foundations and work related to the concepts presented in this

thesis. Work in this area stems from three different areas: First model-driven en-

gineering, where a trend towards textual modelling languages emerged during re-

cent years. Second, view based modelling approaches which deal with the general

idea of tackling a problem that is modelled from different angles with different

foci. And third, grammar based language engineering with a strong focus on in-

cremental transformation techniques. Section 2.1.1 gives a brief overview on the

concepts of model-driven engineering. More specific, concepts such as metamod-

els, models and transformations are introduced here. Additionally some formal

foundations for these concepts are laid on which later-on introduced formalisa-

tions base. Section 2.1.2 focuses on domain specific languages (DSLs) and gives a

brief overview on the history as well as the different areas of application of DSLs.

Section 2.1.3 introduces the area of concrete textual syntaxes for models. It gives

an overview on the basic structure of components (such as parsers and editors) such

approaches have in common. A specific approach, called Textual Concrete Syntax

(TCS) is presented in greater detail in this Section, as it will serve as foundation of

the FURCAS approach presented in later chapters of this thesis. The rest of Chapter

2 deals with related work in the three different areas, starting from approaches of

view-based modelling in Section 2.2, over approaches for view synchronisation in

Section 2.3 and grammar based language engineering approaches in Section 2.4,

and finally in Section 2.5 concrete textual language approaches for models. In this

last area of related work a detailled classification scheme is introduced defining

10

1.4. Structure

the features along which the CTS approaches were examined. This scheme serves

as basis for a detailled analysis of the multitude of approaches existing in this area

of research.

Chapter 3 introduces an approach for the retainment of external modifications in mod-

els which are at the same time targets for model transformations. Section 3.5 starts

by classifying the changes that may occur in models that are worth to be retained.

Based on this classification, Section 3.6 presents a formally backed approach for

identifying changes to target models based on the trace of a transformation. The

remainder of Chapter 3 deals with the introduction (Section 3.7), definition of

the formal semantics (Section 3.9) and realisation (Section 3.11) of the so called

RetainmentPolicies approach. This approach serves as basis for several transform-

ations presented in later chapters.

Chapter 4 analyses the area of view-based modelling in general. It introduces the three-

fold taxonomy of viewpoints, view types and views in Section 4.3 which defines the

different levels of view-based modelling. Additionally it discusses the advantages

and disadvantages of view-based modelling with a single underlying model versus

the synchronisaiton of specific view models with each other. Section 4.4 defines

the different properties of view types, such as partiality and completness and ex-

presses formally what a view-based approach needs to support for the different

properties to be fulfilled. Section 4.5 enters the next level of the taxonomy and ex-

plains the properties of views in greater detail. Special focus is also laid on the the

synchronisation properties for views with their underlying model. Finally, Section

4.6 gives a short overview on different patterns of view types as their appear in

practice.

Chapter 5 starts to introduce the FURCAS approach, which is a central contribution of

this thesis. This chapter consists of two major Sections, Section 5.3 which deals

with the definition of an approach to specify textual view types and Section 5.4

which handles the problem of how to represent textual views. Within the former

Section, Subsection 5.3.2 deals with the features which FURCAS introduces to

extend the TCS approach, which serves as basis for the view type definitions of

FURCAS, with capabilities that allow for the definition of textual view types. Sub-

section 5.3.3, deals with the specific problems of how OCL queries, which are used

in the FURCAS view type definitions, can be automatically inverted to resolve them

11

Chapter 1. Introduction

to unknown parameters. As last part of the FURCAS view type definition approach,

Subsection 5.3.4 introduces advanced model construction rules which allow for

the definition of complex textual modelling languages without the additional use

of model transformations. The second part of this Chapter first introduces a decor-

ator approach for textual models in Subsection 5.4.3. This approach serves as basis

for the representation of temporary inconsistent textual views as well as the pos-

sibility to make use of the selectiveness property which are presented in Sections

5.4.4 and 5.4.5 respectively.

Chapter 6 deals with the problem of view synchronisation within the textual view ap-

proach of FURCAS. Section 6.3 handles the incremental synchronisations form the

textual representation to the underlying model. It presents a multi-phased, incre-

mental update approach which utilises incremental lexing and parsing techniques

in combination with special reuse and merging rules. This approach allows for the

retainment of model elements which are only partially viewed in a textual repres-

entation and avoids the loss of information when such model elements are edited

from different views simultaneously. Section 6.4 gives a brief overview on a so

called, OCL impact analysis approach which allows for the efficient re-evaluation

of the OCL based constructs of the FURCAS view type specification. Section 6.5

shows how the special problem of retaining UUIDs of model elements in textual

modelling approaches can be reduced to the partial view problem that is dealt with

by FURCAS anyways. The last Section 6.6, completes the presented view syn-

chronisation approach by providing a solution for the model to textual represent-

ation direction. It pays special attention to the problem of how manually adapted

layout and the manual selection of elements within a view can be solved.

Chapter 7 shows in proofs and case studies the validity of the contributions of this

thesis. Section 7.1 presents proofs that FURCAS fulfils certain properties of view

based modelling as they were introduced in Chapter 4. This includes the properties

for view types as well as views. Section 7.2 deals with critical modifications to the

textual representations which are hard to handle by FURCAS and gives guidelines

on how interaction with textual views in FURCAS is done in the best way. Finally,

Section 7.3 presents the results of several industrial case studies performed to val-

idate the FURCAS approach. To evaluate the use of certain view specific features

of FURCAS, a metrics suite, defined using the Goal, Question, Metric approach is

introduced. The metrics are gathered and analysed for the different case studies.

12

1.4. Structure

Chapter 8 concludes this thesis. It gives a summary of the results of this thesis in

Section 7.1 and discusses the limitations of the FURCAS approach in Section 8.2.

Section 8.3 finally poses some questions that are still to be solved, w.r.t. view-

based textual modelling.

13

Chapter 2.

Foundations and Related Work

Related work relevant to this thesis mainly stems from two different areas. First, view-

based modelling, which relates mainly to the graphical modelling as well as the syn-

chronisation of views in general. And second, textual modelling languages, which is

currently a field of research that is tackled by many different groups. Foundations for

both of these areas are model-driven engineering and domain specific modelling lan-

guages. Foundations (Section 2.1) as well as competing approaches (Sections 2.2 to

2.5) will be introduced and discussed in this chapter.

2.1. Foundations

Model-driven engineering, domain specific languages and concrete textual syntaxes are

the main areas on whichs foundations this thesis relies on. Model-driven engineering

and domain specific languages are often closely related resulting in domain specific

modelling languages. Both areas require an interface with which developers can interact,

this is, in both cases, called the concrete syntax. As this thesis more specifically makes

contributions in the area of concrete textual syntaxes, the third main area, for which

foundations are laid in this chapter, is the area of concrete textual syntaxes.

2.1.1. Model-Driven Engineering

Model-driven engineering (MDE) or more specific model-driven software development

aims at raising the abstraction level within software development and with that the pro-

ductivity of software engineers that create the software. Models are central to this ap-

proach and are not only used for design and documentation purposes. Model transform-

ations and generators translate models into other models and code. By this, for example,

error prone tasks like writing boiler plate code can be automated, leveraging the pro-

ductivity of software engineers.

15

Chapter 2. Foundations and Related Work

2.1.1.1. Models and Metamodels

The main artifacts in MDE are called models. A common definition of the term model
is, according to [Mod07]:

“A formal representation of entities and relationships in the real world (abstraction)

with a certain correspondence (isomorphism) for a certain purpose (pragmatics).”

A classical definition of a model stems from a more generic source, the “common

model theory” by Stachowiak [Sta73]. He defines a model by three main characteristics:

abstraction, isomorphism and pragmatism. Abstraction means that a model hides certain

parts of its real world correspondent. Which of the attributes of a real world object are

acutally removed depends on the pragmatic goal for which a model is used. The relation

between the real world object and its model can be seen as a projection from the object

to the model in which the unconsidered attributes are excluded. Still, this projection has

to be isomorphic as the model should still allow to draw conclusions from the model

that can be translated to the real world object. Again, these conclusions are considered

w.r.t. the goal for which the model is created. Finally, the pragmatism of the model is

given by its purpose, the actual goal for which a model is created. Thus, models are not

models for their own sake but always need to serve a certain purpose.

A metamodel characterises the set of models that is called the metamodel’s instances.

A metamodel defines the constructs that are allowed to build models conforming to that

metamodel with.

Ernst [Ern99] defines a metamodel as follows:

“A metamodel is a precise definition of the constructs and rules needed for creating

semantic models.”

A similar definition is given by Kleppe [Kle09]:

“A metamodel is a model used to specify a language”

However, as Kleppe also writes about software language engineering, a metamodel in

this specific case is better to be called an abstract syntax model, as in software language

engineering further models of models, and therefore also metamodels are present. These

other metamodels are those that define the concrete syntax as well as the semantics

definition of a language. Thus, in the remainder of this thesis, the unqualified use of

the term metamodel will always refer to the metamodel as the definition of the abstract

syntax of a language.

A central task in MDE is the process of creating such metamodels for a modelling

language, which is also called metamodelling. Kleppe [Kle09] even calls the role of the

16

2.1. Foundations

abstract syntax or the metamodel as “of critical importance” as it is the “pivot between

various concrete syntaxes of the same language, as well as between the syntactical struc-

ture of a [..][program] and its meaning”. For creating new modelling languages, first

their central concepts should be defined on an abstract level. Kleppe and also other au-

thors therefore propagate that the metamodel should be developed as first artefact when

creating a new language. As it resembles the conepts of its target domain, it supposed

to undergo more infrequent changes than the languages user interfaces, i.e., the concrete

syntaxes.

The Meta Object Facility (MOF) – a Standard for Metamodelling The Meta

Object Facility (MOF) [Obj02, Obj06] is a meta-metamodel, defined as a standard by

the Object Management Group (OMG), which is used for the definition of metamodels.

Initially stemming from the UML [Obj10b], the MOF inherits several concepts from

UML. Mainly, MOF uses class diagrams with its main constructs classes, attributes and

associations as basis. However, MOF resides one meta-level above UML. UML being a

metamodel can therefore be expressed using means of its meta-metamodel MOF.

With version 2.0 of the MOF specification [Obj06] two different flavours of the MOF

exist: the Essential MOF (EMOF) and the Complete (CMOF). The most important dif-

ference between EMOF and CMOF is that CMOF contains associations as first level

entities wheras EMOF only knows the concepts of a class’ properties which may refer to

other classes. The remainder of this thesis will use the concept of first level associations,

as it allows to define more expressive and better extensible metamodels. However, in

general, the concepts presented in this thesis are also applicable to EMOF. Then, all

features explicitly referring to first level associations will not be available. Especially

non-intrusive extensions to existing metamodels are not then not possible anymore in

the desired way. To have a navigable reference to an element EMOF requires to add a

property to the source class.

To omit technical but irrelevant details, the meta-metamodel used for the definition

of metamodels used in this thesis is an that of the MOF version 1.4 [Obj02]. Being the

ancestor of the newer MOF it is somehow a unification of the basic concepts of both

EMOF and CMOF whith a more practical focus. The parts of this meta-metamodel,

which are relevant for the remainder of this thesis are depicted in Figure 2.1.

The Object Constraint Language (OCL) The Object Constraint Language (OCL)

[Obj10a] constitutes the means for the definition of constraints and several other expres-

17

Chapter 2. Foundations and Related Work

NamedElement

TypedElement

Type

Class Attribute AssociationEnd

elementsOfType

type
1

0..*

Element

StructuralFeature

0..*

0..1
container

contents

Namespace

Package

EDataType

Association

ends

association1

2

Figure 2.1.: The main components of the Meta Object Facility meta-metamodel.

sions in MOF based metamodels. The expressive power of OCL is equal to a three-level

Kleene logic with equality [BW02]. OCL can not only be used to define constraints in

metamodels but also to define queries over a model. Nearly every modern metamodel-

ling environment nowadays has support for defining and evaluating OCL expressions.

Running Example The following running example will serve to explain the con-

cepts of MDE. A company wants to design their own modelling language to describe

their business. The metamodel for this example is depicted in Figure 2.2. The mod-

elling language provides concepts such as BusinessEntity which can be used to

express things like customer, sales order or stock. Relations between these entities are

expressed using Associations. For example, a customer may be related to one

or more adresses using an association between both. To be able to employ a loosely

coupled type system the company decides to use the concept of TypeDefinitions

to the metamodel (cf. Section 7.3.2.1 for a detailed description on this concept).

Furthermore it is possible to define MethodSignatures for entities that can

be used to compute values (by using a Block as MethodImplementations)

or access associated entities (by using AssociationEndNavigations as

MethodImplementations).

18

2.1. Foundations

name : String

NamedElement

valueType : Boolean

BusinessObject
Association

TypedElement

typedElement

type1

0..*

AssociationEnd

ends

association1

2

MethodSignature

signatures

owner1

0..*

TypeDefinition

Lower : Integer
Upper : Integer
Ordered : Boolean
Unique : Boolean

Multiplicity

elementsOfTypeentity
1 0..*

MethodImplementation AssociationEnd
NavigationBlockStatement

statements
{ordered}

block10..*

1
0..* navigations

end

implementation

methodSignature1

0..*

output
0..1

Figure 2.2.: Metamodel of an Example Modelling Language

2.1.1.2. Formal Definitions of Modelling Concepts

The remainder of this thesis will use several formal definitions that give a clear under-

standing of views and view types as well as novel features introduced for the devel-

opment of retainment policies for model transformations. To base these definitions on

a solid, formal ground, first a few basic definitions need to be introduced. As there are

several formalisations of model driven constructs [AS07, Gar09, Het10] this section will

clearly define the structure and semantics of models, meta-models and transformations

on which the concepts introduced in this thesis are based.

Formalisation Basis For the formalisation of properties of the modelling concepts

such as model, meta-model and transformation, the following Definition 2.1 introduces

a basic set of notational conventions used throughout the remainder of this thesis. A

19

Chapter 2. Foundations and Related Work

quick reference for the used formal representations used throughout this thesis is given

in Appendix A for quick lookup.

Definition 2.1 (Basic Definitions). ⊥ denotes the undefined state
N+ denotes the set of positive natural numbers including � and excluding 0.
N+0 denotes the set of positive natural numbers including � and 0.
N� ∶= N+0 ∪ � denotes the set of positive natural numbers including 0 ,� and an
undefined state.
B ∶= {true, false} denotes the set of logical values.
D ∶= {first , second} denotes a set of values for the distinction between the first and the
second end of an association.
projn(x1, ..., xn, ..., xm) = xn denotes the n-th element in a given tuple.
P(X) denotes the powerset of a given set X
B(X) denotes set of all multi-sets over a given set X
#(X) denotes the cardinality of a given set or tuple X

#y(X) denotes the cardinality of element y in a given multi-set X
r∗ denotes the reflexive transitive closure of a binary relation r and a set-valued function
(which is another representation of a binary relation)
r+ denotes the transitive closure of a binary relation r

e ∈ T where T is a tuple means

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e ∈ ⋃
n=1..#(T)

projn(T), if projn(T) is a set

∅, else

∃e1 ∈ E1, ..., en ∈ En∣... is shorthand for ∃e1 ∈ E1∣(...∣∃en ∈ En∣(...)...) (Same applies for
∀e1 ∈ E1, ..., en ∈ En∣...).

Metamodels and Models To define make formal statements on the relation

between models and views, a formal understanding of models, metamodels and trans-

formations is required. The following definitions are based on the formalisation of

models, metamodels and transformations given by Amelunxen and Schürr in [AS07]

plus minor enhancements to include the definition of attributes.

Definition 2.2 (Metamodel). A metamodel MM is a tuple

MM ∶= (C,A,P,Ξ, f irst, second, attributes, isOrdered, isComposite, constraints)

where

20

2.1. Foundations

C is the finite set of classes,

A is the finite set of associations (for sake of brevity, I consider all associations as
navigable in both directions),

P is the finite set of attributes,

Ξ denotes a set of metamodel constraints,

first ∶ A→ C is the mapping of associations to their first end,

second ∶ A→ C is the mapping of associations to their second end,

attributes ∶ C → P is the mapping of classes to their attributes,

isComposite ∶ A ×D→ B returns the information whether an end of a given association
is a composite end or not,

constraints ∶ C → P(Ξ) returns the set of constraints that are defined for given class.

Using the running example from Page 18, the corresponding formal metamodel MM e

would consist of the following sets:

Ce = {NamedElement, BusinessEntity, Multiplicity, TypeDefinition, Association,
MethodSignature, TypedElement, AssociationEnd, MethodImplementation,
AssociationEndNavigation, Block, BlockStatement }

Ae = { Entity_ElementsOfType, Type_TypedElement, Association_Ends, Owner_Signatures,
MethodSignature_Implementation, End_Navigations, Block_Statements }

Pe = { Name, ValueType, Upper, Lower, Ordered, Unique }

Definition 2.3 (Model). Let MM be a metamodel and let the alphabets

OMM denote the infinite set of possible object IDs for all classes c ∈ C, where C ∶=
proj1(MM),

LMM denote the infinite set of possible link IDs for all associations a ∈ A, where A ∶=
proj2(MM),

VMM denote the infinite set of possible values for all attributes p ∈ P , where P ∶=
proj3(MM).

Then a model is defined as follows

M = (O,L, V, class, association, attribute, firstObject, secondObject, compositeLinks

, childObjects, compositeParent, value, orderL, orderV)

where

21

Chapter 2. Foundations and Related Work

O ⊂ OMM denotes the finite set of the model’s object IDs,

L ⊂ LMM denotes the finite set of the model’s link IDs,

V ⊂ VMM denotes the finite set of the model’s attribute values ,

class ∶ O → C returns the class c ∈ C of a given object o ∈ O,

association ∶ L→ A returns the association a ∈ A of a given link l ∈ L,

attribute ∶ V → P returns the attribute p ∈ P of a given attribute value v ∈ V ,

firstObject ∶ L→ O returns the first object o ∈ O for a given link l ∈ L,

secondObject ∶ L→ O returns the second object o ∈ O for a given link l ∈ L,

compositeLinks ∶ O → P(L) returns the links in which a given object acts as composite
object,

childObjects ∶ O → P(O) returns all child objects for a given composite object,

compositeParent ∶ O → P(O) returns the composite parent object for a given child ob-
ject,

value ∶ O ×A→ P(O) returns the attribute value for a given object and attribute,

orderL ⊆ L × L is a strict partial order on L where (l1, l2) ∈ orderL ⇐⇒ l1 occurs
directly before l2.

orderV ⊆ V × V is a strict partial order on V where (v1, v2) ∈ orderV ⇐⇒ v1 occurs
directly before v2.

Furthermore, ModelsMM denotes the set of all (consistent) models for a given metamodel
MM as defined above.

An example model for metamodel MM e is given in Figure 2.1.1.2 and the following

sets.

Oe = { Customer : BusinessEntity, Address : BusinessEntity, CustomerHasAdresses :
Association, customer : AssociationEnd, addresses : AssociationEnd, customer-
Type : TypeDefinition, addressesType : TypeDefinition }

Le = { Customer - customerType, customerType - customer, customer - Customer-
HasAdresses, CustomerHasAdresses - addresses, addresses - addressesType,
addressesType - Address}

Ve = { “Customer”, “Address”, “CustomerHasAdresses”, “addresses”, 0, -1, false,
true, “customer”, 1, 1, false, false, true }

22

2.1. Foundations

Model Changes Hettel et al. [HLR08] give a complete definition of types of changes

that may be applied to a model. They distinguish between Atomic Changes which

refer to exactly one atomic modification and Complex Changes which are composites

of atomic changes. Definition 2.4 is a slight modification to the original definition given

by Hettel et al., as it also includes changes to the ordering of association links.

Definition 2.4 (Atomic Change). An atomic change δ is defined the minimal set of
changes to a tuple element of a model M . The application of a change δ to a model
M resulting in a model M ′ is denoted as: M ′ = δM .

There are six different atomic changes:

δ+o creating an instance o,

δ−o deleting an instance o,

δ+l,o1,o2 creating a link l between instances o1 and o2,

δ−l,o1,o2 deleting a link l between instances o1 and o2,

δol1,l2 change of ordering of a link l1 which is swapped with l2 if association(l) is ordered
at its first or second end,

δso,a,v setting attribute a of instance o to value v,

δuo,a,v unsetting attribute a of instance o for value v,

δoo,a,v1,v2 change of order of value v1 of attribute a of instance o which is swapped with
v2 if isOrdered(a) = true,

Furthermore, ChangesMM denotes the set of all possible changes for a given metamodel
MM .

The element that is the actual change is retrieved from a change δ by applying the
function element ∶ ChangesMM → ModelsMM to the change. For the creation or deletion
of model elements element yields o. For creation or deletions of links it yields l and for
changes of attribute values the value v will be returned. For changes in the order of links
or attribute values the corresponding tuple (l1, l2) or (v1, v2) from orderL or orderV will
be returned respectively.

For unsetting an attribute by a change δuo,a,v the value v needs to be given, as for a

multi valued attribute it needs to be distinguished which of its value should be unset.

Definition 2.5 (Complex Change). A complex change Δ is defined as set of atomic
changes where each change Δ is composed of a sequence of atomic changes δ1, ..., δn

such that
ΔM = δ1 ○ ⋅ ⋅ ⋅ ○ δnM =M ′

23

Chapter 2. Foundations and Related Work

where ○ is a sequencing operator and δ1 to δb are atomic changes applied to M; M ′ is
the resulting model after change Δ was applied.

All possible changes that can be applied to models of metamodel MM denoted as
ChangesMM can be partitioned into the disjoint sets of changes by their atomic change
type as defined in Definition 2.4:

ChangesMM = Δ+o ∪Δ−o ∪Δ+l,o1,o2 ∪Δ−l,o1,o2 ∪Δo
l1,l2

∪Δs
o,a,v ∪Δu

o,a ∪Δo
o,a,v1,v2

2.1.1.3. Transformations

Model transformations are another central artefact within MDE. There purpose is to

translate model instances of one metamodel into model instances of other (or the same)

metamodel. Alternatively, a model transformation can also be an inplace transformation

making all modifications directly in the source model. Mens [MG06] defines a model
transformation as an automatic generation of one or more target models from one or

more source models according to a transformation definition. The definition of a trans-
formation consists of set of transformation rules which describe the way a transformation

is executed. A transformation rule describes, in detail, how or which elements of the

target models are transformed.

A model transformation may either be specified in an imperative or in a declarative

manner [CH06]. Imperative model transformations contain rules that have a well defined

sequential call hierarchy and describe the way how a target model is created. In contrast

to that, a declarative model transformation only defines what should be the result of

the transformation. Rules in declarative model transformations define pre- and post-

conditions, i.e., which rules need to be fulfilled before certain other rules will hold.

Query/View/Transformation (QVT) – a Standard for Model Transformation
The OMG defines a standard for model transformations called Query/View/Transform-

ation (QVT) [Obj11]. This standard relates to the MOF as basis for metamodelling

and models. The QVT specification defines three languages, the Operational Mappings
language which is an imperative transformtion language, the Relations language which

is declarative and the Core language, which is also declarative but resides on a lower

level. The Core language is targeted as a base language which should be executable by

a virtual machine for model transformations. The specification furthermore contributes

a mapping from the Relations language to the Core language.

24

2.1. Foundations

Formal Definitions of Model Transformations Amelunxen and Schürr [AS07]

base their formal definition of model transformations on the concept of morphism

between models. Definition 2.6 given by these authors states the meaning of a morph-

ism between models. They state that “a model can be considered being homomorphic to

a second model if all objects and all links of the first model can be mapped onto objects

and links of the second model, in such a way, that the classes and associations of the

mapped objects and links remain unchanged in the second model”.

Definition 2.6 (Model Morphism). Let MM 1,MM 2 be metamodels and let M1 ∈
ModelsMM 1 ,M2 ∈ ModelsMM 2 . Then a model morphism h ∶ M1 → M2 is a triple of
functions h = (hO, hL, hV) that maps M1 onto M2 where,

hO ∶ O1 → O2

hL ∶ L1 → L2

hV ∶ V1 → V2

∀o ∈ O1 ∣ class2(hO(o)) = class1(o)
∀l ∈ L1 ∣ association2(hL(l)) = associationL(l)
∀l ∈ L1 ∣ ho(firstObject1(l)) = firstObject2(hL(l))
∀l ∈ L1 ∣ ho(secondObject1(l)) = secondObject2(hL(l))
∀v ∈ V1 ∣ value2(hL(v)) = valueL(v)

Furthermore, MorphismsMM 1,MM 2(M1,M2) denotes the set of all possible model
morphisms between two given models M1 ∈ ModelsMM 1 ,M2 ∈ ModelsMM 2 for the given
metamodels MM 1 and MM 2.

Definition 2.7 (Transformation). Let MM 1,MM 2 be metamodels and let M1 ∈
ModelsMM 1 ,M2 ∈ ModelsMM 2 . Then a exogenous transformation T is a pair
of model(s) (patterns) T ∶= (Ml,Mr). Furthermore, TransformationsMM ∶=
(ModelsMM 1 × ModelsMM 2) denotes the set of all transformations for a pair of
given metamodels MM 1,MM 2. Additionally, we define

25

Chapter 2. Foundations and Related Work

leftModelPatternT ∶= proj1(T) with T ∈ TransformationsMM 1,MM 2

rightModelPatternT ∶= proj2(T) with T ∈ TransformationsMM 1,MM 2

Short hand for left- and rightModelPattern is lmp and rmp respectively.
For an endogenous transformation the same definition applies with MM 1 =MM 2.

Based on this morphism and a basic definition of model patterns within transform-

ations, as given in Definition 2.7, Amelunxen and Schürr define the application of a

transformation to a source and target model as presented in Definition 2.8. The exact

conditions under which (M1,M2) ∈↝T holds are not listed here, as this exact relation-

ship is not important in the scope of this thesis. However, basically two models are

element of this relation if there is a model morphism between them according to Defini-

tion 2.6.

Definition 2.8 (Application of a Transformation). Let MM l,MM 2 be a metamod-
els and let M1 ∈ ModelsMM l

,M2 ∈ ModelsMM 2 , T ∈ TransformationsMM and
Ml = leftModelPatternT ,Mr = rightModelPatternT whereas M2 is one possible result
of the application of T to M1. Then a transformation T defines a binary relation
↝T⊆ModelsMM 1 ×ModelsMM 2 .

The short-hand writing ↝T (e1) will be used to yield the element e2 from (e1, e2) ∈↝T

and vice-versa ↝T (e2) = e1.
The function ↝Δ

T ∶ ModelsMM 1 ×ModelsMM 2 → ChangesMM 2
yields the set of changes

that the transformation applies to a target model during its application.

For further details on the above definitions refer to [AS07].

2.1.2. Domain Specific Languages

In literature, there is no common understanding of what exactly a domain specific lan-

guage is adn what their main purpose is. Kleppe [Kle09] values domain specific lan-

guages as useful by saying that “Developers are applying DSLs to improve productivity

and quality in a wide range of areas, such as finance, combat simulation, macro script-

ing, image generation, and more.” On the other hand she criticises the there is too less

practical experience in this area: “But until now, there have been few practical resources

that explain how DSLs work and how to construct them for optimal use.”.

Other authors provide similar but slightly different definitions of DSLs. Kolovos et al.

[KPKP06] state that “DSLs show an increased correspondence of language constructs

to domain concepts when contrasted with general purpose languages [...] [and are] often

26

2.1. Foundations

computationally incomplete.”. This statement points out that DSLs are mostly only a

part of a system, i.e., that part on which domain experts and developers might work

jointly to produce results in an efficient way, without having to worry about a common

vocabulary.

According to Krahn [Kra10], the main aspects of a DSL can be condensed into the

following characteristics:

• The language focusses on specific application domain. The main purpose of the

language is based on the semantic aspects of this domain as opposed to the tech-

nical realisation of a problem.

• If a DSL is executable, its expressive power is constrained as much as the domain

allows. This is mostly less than the ability for universal computation.

• A DSL allows to solve the problems of a domain in a compact way.

However, the mentioned criteria do not allow a sharp distinction between General

Purpose Languages (GPLs) and DSLs. In some scenarios, a DSL can even evolve to

become a GPL [JB06a]. Much more important than this distinction is that with the

constraint of its expressive power a language may increase the productivity of its users.

Therefore, the most important aspect when building a DSL is its strict focus on the

application domain [Hud98].

The main components of a DSL comprises the following four elements [HR04]:

• The abstract syntax, which defines the basic structure as well as the conceptual ele-

ments of a language. This is often done using means of metamodelling. It serves as

the central data structure in which the programs written in the language are intern-

ally represented, analysed or transformed. It also serves as starting point for code

generation or as basis for an interpreter for that language. In some approaches also

programs are stored in their abstract syntax. Examples are the Meta Programming

System approach [Jet] or the IPSEN approach [Nag96]. The abstract syntax also

referred to as the machine representation of a program.

• One or more concrete syntaxes, which define the way for humans interact with

the language. Concrete syntaxes may have different forms, such as: graphical,

textual, forms- or tree-based. Additionally, the concrete syntax often constrains

the set of possible language instances developers may create. In a view-based

27

Chapter 2. Foundations and Related Work

DSL approach, concrete syntaxes may also be partial w.r.t. to the metamodel or

overlapping w.r.t. to other syntaxes. In this case they are also called view types.

• The context conditions of a language are checkable conditions that constrain the

set of licit instances of a language. These rules complete the abstract and concrete

syntax with additional constraints which cannot be directly expressed using means

of the abstract and concrete syntax formalisms. For a metamodel based approach,

these are called metamodel constraints, which are, in the case of MOF [Obj06]

based metamodels expressed using the Object Constraint Language [Obj10a].

These context conditions shall impede the creation of language instances for

which no well-defined semantics exist.

• Finally, each language needs to define its semantics which defines its meaning.

Different techniques may be employed to define the semantics. For example, de-

notational semantics [SS71] which defines the semantics using means of math-

ematics. Alternatively, the semantics may be defined using operational semantics

[Plo04], which is based on the step-wise change of the states of an abstract state

machine. Especially in the use of DLSs, also transformational semantics [Pep79]

are often used which defines the semantics based on a transformation to a differ-

ent language for which the semantics are already defined. Especially DSLs are

often translated into GPLs such as Java. These semantics are also based on the ab-

stract syntax of the language and are thus independent from employed the concrete

syntax.

2.1.3. Concrete Textual Syntaxes

Software languages consist of different notions of syntaxes. First, there is the abstract

syntax which defines the concepts and abstract entities that are expressed by the lan-

guage. The abstract syntax is not intended to be edited directly by a user working with

the language. It is merely an internal representation that is used by the software that

deals with the language. The abstract syntax in modelling languages is mostly defined

by the metamodel of the language.

Editing and viewing of models is done using a concrete syntax. The concrete syntax

is intended to be used by developers to interact with model instances. There are different

types of concrete syntaxes. A concrete syntax may be graphical, textual, forms-based,

tree-based, or any other form that is suited for user interactivity. Furthermore, there

28

2.1. Foundations

may be more than one concrete syntax for an abstract syntax. For example, some parts

of a metamodel may be best to be edited in a graphical syntax whereas others are best

presented in a forms-based way.

Several basic components are needed to provide a comprehensive tooling for a CTS

approach. To be able to relate constructs from a metamodel to elements of a CTS,

a mapping between the metamodel and the definition of this syntax is needed. The

definition of a textual syntax is provided by a grammar. To translate the textual syntax to

its model representation, a lexer, a parser as well as a component that is responsible for

the semantic analysis (type checking, resolving of references, etc.) are needed. Even for

an approach that directly edits the model without having an explicit parser component

for the grammar, a similar component is needed that decides how the text is translated

into model elements. For reasons of convenience we will call all kinds and combinations

of components that implement the translation form text to model a parser. The backward

transformation, from model to text, is provided by an emitter. Both components can be

generated using the above-mentioned mapping definition.

2.1.3.1. General Components of a CTS Approach

An overview of these components is depicted in Fig. 2.3. This figure shows that the CTS

framework uses the information that is provided in the mapping definition to generate

the parser, emitter and editor components. For example, the mapping could define that a

UML class c is represented in the concrete syntax using the following template: class

<c.name> { <call to templates for contents of c> }.

The framework could then generate a parser that recognises this structure and instanti-

ates a UML class when parsing this pattern and setting the name property accordingly.

Furthermore, an emitter can use this template to translate an existing UML class into its

textual representation.

The grammar⇔metamodel mapping can also be used to generate an editor for the

language represented by the metamodel. This editor can then use the generated parser

and emitter to modify the text and the model. This editor is then also responsible for

keeping the text and the model in sync, e.g., by calling the parser every time the text has

changed. Based on the mapping definition several features of the editor can be generated,

such as syntax highlighting, auto-completion or error reporting. Refactoring actions can

also be provided with this editor. Having the model as well as the text in its direct access

such an editor could, e.g, provide a rename action which updates the name property of

29

Chapter 2. Foundations and Related Work

Emitter

Text Artefact Model

emits

parses creates / updates

reads

Generated CTS Tools

Mapping Definition

Grammar MetamodelCTS Framework

reads
referencesreferences

generates

Editor

instance ofinstance of

Reads/
manipulates

artefact

r/w access
dependency

Legend

active comp.

“instance of“ rel.

communication

Reads/
manipulates

Lexer Parser Sem. Anal.

Figure 2.3.: General structure of a CTS framework

an element on the model and then uses the emitter to update all occurrences of this name

in the text.

2.1.3.2. TCS

For the FURCAS approach TCS was chosen as a basis because it fitted best the posed

requirements. A more detailed explanation will be conducted in Chapter 5. Being the

foundation for FURCAS the concepts and elements of TCS are described here in greater

detail.

TCS defines a metamodel for textual concrete syntax mappings for metamodels. It

is based on templates that define how a specific textual structure is mapped to the

metamodel. Figure 2.4 shows the basic strucure of the TCS metamodel. For example a

ClassTemplate directly references the Class from its corresponding metamodel.

Each ClassTemplate may then contain several SequenceElements that may

themselves refer to properties of the respective Class. Furthermore, it is possible to

define several alternatives within a ClassTemplate that give additional possibilities

to represent the corresponding class in multiple ways.

A TCS concrete syntax mapping can be translated into a grammar for a parser gen-

erator, i.e., ANTLR [PQ95] which comes with TCS. In fact, each ClassTemplate

of the mapping corresponds to a generated production rule in the grammar.

SequenceElements of the templates that refer to properties from the metamodel

30

2.1. Foundations

Template ClassTemplate Class
(from M3)

PrimitiveTemplate

ViewType AlternativeSequence

Alternative SequenceElement

LiteralRef Property

StructuralFeature
(from M3)

metaReference

1

structuralFeatures

class
1

*
sequenceElementsparentTemplate0..1

*

templates

viewType
1

*

alternatives

alternativeSequence 1

2..* sequenceElements
0..1 *

strucfeature

Figure 2.4.: The basic structure of a TCS Mapping.

1 syntax BOsAndMethods {
2 primitiveTemplate identifier for PrimitiveTypes::String
3 default using NAME:
4 value = "unescapeString(%token%)";
5 template BusinessObject
6 : "bo" name methodSignatures {separator = ";"}
7 ;
8

9 template MethodSignature
10 : name "(" ")"
11 ;
12 }

Listing 2.1: Example TCS mapping.

for which’s type also a template is defined are translated into calls to the corresponding

production rules.

An example for the mapping to grammar transformation, based on a simple “classes

and method signatures” syntax, based on the running example metamodel given in Fig-

ure 2.1.1.2, is given below in Listings 2.1 and 2.2. In this case, ANLTR is used as

target grammar language. The transformation creates an ANTLR grammar rule for each

template in the TCS mapping. Additionally for abstract templates the transformation

generates a production rule including all subclasses as alternatives.

ClassTemplate For each class in a metamodel, a language engineer may define one

ClassTemplate (more than one if using modes, see paragraph References in Tem-
plate Sequences below). This ClassTemplate defines how the class will be rep-

resented as text. The classifier is referenced using the classifier name, which may be

qualified using a ’::’ notation such as RootPackage::SubPackage::MyClass.

31

Chapter 2. Foundations and Related Work

1 grammar BOsAndMethods;
2

3 identifier returns[Object ret2] @init{java.lang.Object ret=null;}
4 :
5 (ast=NAME {ret = unescapeString(ast.getText());})
6 {
7 ret2=ret;
8 }
9 ;

10

11 businessobjects_businessobject returns[Object ret2]
12 @init{
13 List<String> metaType=list("businessObjects","BusinessObject");
14 ret = onEnterTemplateRule(metaType); }
15 :
16 ’class’ temp=identifier {setProperty(ret, "name", temp);}
17 ((temp=businessobjects_methodsignature
18 {setProperty(ret, "methodSignatures", temp);}
19 (’;’ temp=businessobjects_methodsignature
20 {setProperty(ret, "methodSignatures", temp);})*
21 { ret2 = commitCreation(ret); }
22 ;
23

24 businessobjects_methodsignature returns[Object ret2]
25 @init{
26 List<String> metaType=list("businessObjects","MethodSignature");
27 ret = onEnterTemplateRule(metaType); }
28 :
29 temp=identifier {setProperty(ret, "name", temp);}
30 ’(’ ’)’
31 { ret2 = commitCreation(ret); }
32 ;

Listing 2.2: Example TCS mapping translated to an ANTLR grammar.

32

2.1. Foundations

However, if the unqualified name is unique in the Metamodel, it is possible to omit the

packages.

Properties of metamodel elements that should appear in the textual syntax can

by referred to by their name. If their type is a primitive type, then a suitable

PrimitiveTemplate as above will has to exist in the syntax. If the property has

another class as its type, the ClassTemplate for the model elements type will

be used to represent that property’s value (and must be defined as well). See the

properties paragraph for more details and options.

The following are examples for primitive properties:

1 template Person

2 : "Person" "=" firstname lastname "."

3 ;

4

5 template Year

6 : "year" "=" value

7 ;

Not all templates of a syntax definition refer to concrete classes with a syntax con-

tribution. Abstract ClassTemplates are usually used with abstract classes, or with

operators (see operators paragraph). The templates in the syntax for abstract classes

need to be stated explicitly so that it can be distinguished which parts of the inheritance

hierarchy are to be included in the syntax. If all levels of hierarchy need to be specified

the keyword deep can be defined in addition.

1 template Person abstract;

2

3 -- if MalePerson does extend Person in metamodel

4 template MalePerson

5 : "Mr." lastname

6 ;

7 </pre>

PrimitiveTemplate This kind of template is used to define how primitive values are

mapped from and to the textual concrete syntax. This for example includes the conver-

sion of values to their primitive value, e.g., from the string representing a number “42”

to the integer 42.

Some examples for PrimitiveTemplates are:

33

Chapter 2. Foundations and Related Work

1 primitiveTemplate identifier for String default using NAME:

2 value = "%token%";

3

4 primitiveTemplate boolean for Boolean default using INT:

5 value = "Boolean.valueOf(%token%)";

6

7 primitiveTemplate integerSymbol for Integer default using INT:

8 value = "Integer.valueOf(%token%)";

9

10 primitiveTemplate floatSymbol for Double default using FLOAT:

11 value = "Double.valueOf(%token%)";

For each datatype in the metamodel that is used in a syntax definition, there must be

one default primitive template, denoted by the default keyword. In some cases,

it is necessary to have more than one primitiveTemplate for a datatype, for example

if the language uses different representations of a primitive type. To use alternative

primitiveTemplates one can specify to use them using the "as" property argument:

1 primitiveTemplate identifier for String default using NAME:

2 value = "%token%";

3

4 primitiveTemplate specialIdentifier for String using SPECIAL_NAME:

5 value = "%token%";

6

7 template SomeType

8 : someField{as=specialIdentifier}

9 ;

OperatorTemplate An extended feature of TCS is the possibility to explicitly define

operators and their precedences. This allows for an easy creation of expression con-

structs in the TCS mappings. As starting point serves a super class for which the op-

erator hierarchy should apply. This class is annotated with the definition of a so called

operator list. The operator list defines what operators, such as +, -, * or / the

expression allows. Furthermore, it defines the precedence levels using explicit priorities

for the different operators.

For each combination of operator and class from the metamodel an operator template

can be defined. This is then the template that will be called when a certain operator is

matched in the textual representation. Depending on the text on the right hand side the

34

2.1. Foundations

parser will then choose the corresponding operator template for that part of the text and

the operator.

In addition to the handling of operators and their priorities, operator templates can also

be used to resolve the left recursion problem. As the current generators for TCS rely on

LL-based parser generator frameworks, such as ANTLR, templates that recur on their

left hand side cannot be directly expressed in the grammar. To resolve this problem,

TCS’ operator templates also suit this purpose. By simply declaring the token on the

right of the recursion as an operator, the generator will create grammar production rules

to that no left recursion occurs anymore.

Keywords and Symbols Literals such as keywords and symbols may occur in two

different ways within a TCS mapping. First, directly as a string in a template or second

as explicitly named symbol where the symbolic name is then used in the templates. For

the latter case TCS uses so called LiterRef elements in the templates which refer to

the corresponding symbols. Internally, however, TCS will also create symbols for the

directly declared strings in the templates and create the corresponding LiteralRefs

for them.

LiteralRef By writing the name of a symbol or keyword in the template, a language

engineer will create a subclass of the SequenceElement class called LiteralRef.

This element refers to the corresponding symbol in the TCS mapping. In the generated

parser these LiteralRef will refer to lexer rules matching for example the keyword

“class” or an opening or closing parenthesis “(” or “)”.

Alternative A template may define more than one possible representation at once.

The use of Alternatives enables this possibility. If the alternative is postfixed with

a “*”, e.g., [[elem1 | elem2]]* the contents of the alternative may occur more

than once and in an arbitrary order. For example a template would then also match text

such as elem1 elem1 elem2 elem1.

The following example illustrates the use of an Alternative element within a

template:

1 template Author

2 : "author" "="

3 [["{" name "}" | "\"" name "\""]]

4 ;

35

Chapter 2. Foundations and Related Work

Functions and FunctionCalls Common parts of templates are a typical case

where a reuse concept is useful. TCS provides the concept of Functions and

FunctionCalls for this case. Functions may be declared on a given base class. All

template for classes inheriting from this base class can then use this function to include

common parts of the syntax definition.

The following example illustrates the use of Functions and FunctionCalls:

1 template Book

2 : publisher $hasAuthorAndTitle

3 ;

4 template Article

5 : journal $hasAuthorAndTitle

6 ;

7 function hasAuthorAndTitle(BibItemWithAuthorAndTitle) :

8 : [[author | title]]*
9 ;

Property Properties in TCS are used to define which properties of a class should be

represented in a syntax. By writing their name within the template body this inclusion

is performed. There is a number of options available for properties, all of which go into

curly brackets after the property. These are called PropertyArguments. The most

important argument types are the following:

As and Mode: For primitive datatypes it is possible to define more than one Pri-

mitiveTemplate defining different formats in which the same datatype

may be represented in the textual syntax in different places. To use a

specific non-default PrimitiveTemplate for a primitive property, the

as-PropertyArgument, e.g., as=primitiveTemplateName, may be

used. Furthermore, there may be cases where specialized ClassTemplates ex-

ist, these are called moded ClassTemplates. To ensure a Property of a non-

primitive type is textually represented using a special moded ClassTemplate,

the mode can be specified using mode=modeName. If a specialized template

(e.g., template for a subclass) should be called it is also possible to directly specify

this in the as-clause.

RefersTo: TCS supports the creation of cross-references between elements by their

identifiers. In this case a language engineer would add the feature name of the

36

2.1. Foundations

reference in the template’s body for the referring class, but add different argu-

ments in curly brackets: The key for the reference is a property that will represent

the reference target in the text. This must be a primitive property, as its value needs

to be directly representable in the textual representation.

The following example illustrates the use of refersTo:

1 template Article

2 : "article" "{" author{refersTo=name} "}"

3 ;

4 template Author

5 : "author" "=" name "."

6 ;

In the case above, an author would have to be defined somewhere else in the model,

else the reference could not be resolved. An example textual representation using

these templates would be:

1 article { "John"}

2 author = "John".

Conditionals In some situations parts of the textual representation depend on certain

values of a model elements properties. To achieve this, a language engineer may use so

called Conditionals in a template’s body.

For example, for boolean types attributes of a class, the following is possible:

1 template Person

2 : (isProfessor ? "Prof") firstname lastname

3 ;

For making a comparison, an additional "else" part can be specified:

1 template Person

2 : (gender="male" ? "Mr" : "Ms") firstname lastname

3 ;

Or for optional attributes the predifined isDefined() function can be used:

1 template Person

2 : (isDefined(title) ? title) firstname lastname

3 ;

37

Chapter 2. Foundations and Related Work

Alternatives In some situations it might be necessary that more than one syntax is al-

lowed to represent the very same class. This is where Alternatives come into play.

A language developer may define that certain areas within a template can be expressed in

different ways. To achieve this, the alternative sequence elements are enclosed within a

list of alternatives: [[alternative1 | alternative2]]. It is furthermore

possible to nest these alternatives into each other.

The following listing is an example for the use of the Alternative construct:

1 template AlternatingProperties :

2 "Alternating elements:"

3 [[altA | altB]]* ;

4

5 template AltA : "a" ;

6 template AltB : "b" ;

PropertyInit PropertyInits are declarations to initialize features of model ele-

ments which have no representation in the textual syntax, similar to default values. TCS

supports two kinds of PropertyInits, initialization of property values using using

primitive literals, and initialization using lookups. Primitive literals assign values to

properties that have a corresponding primitive type.

1 template Wife

2 : "Mrs." name {{gender="female", isAdult=true, isMarried=true}}

3 ;

It is also possible to use lookups to assign values that already exist somewhere in the

model to a property. The path navigation expression used within the lookIn traverses

the model by subsequently navigating over the dot separated properties.

1 template Something

2 : {{property = lookIn(’#context.property’)}}

3 ;

Mode If a Class should be treated differently within a certain context an additional

mode designator may be specified. This allows to define multiple templates for one

class of the metamodel. Thus, it is possible to define alternative syntaxes for the same

class. A mode is entered when a Property denotes its name. The templates that are

called from this property needs to be present in the given mode and is used at this place.

38

2.2. Existing Approaches for View-Based Modelling

2.2. Existing Approaches for View-Based Modelling

Building views on underlying data has been researched in the context of relational and

object-oriented databases thoroughly. An introduction to views in relational databases

is given in [Cod91] . Therein, a view is defined as a virtual database deduced from

an actual persistent database. A view is actually a subset of this database and cannot

contain more data than the underlying database. The definition of a view consists of an

algorithm or a query specifying which data belongs to the view and a schema definition.

A classification of views within object-oriented databases can be found in [SLT91].

Views in object-oriented databases are classes using an additional query. Updatable

views in object-oriented databases have to be object preserving. This means that views

are working with the base objects and updates to objects in a view are equivalent to

a direct update of the base objects. Regarding the kind of query used for the view

definition, there are different kinds of views: selection views, difference views, union

views, intersection views, join views, projection views and extend views. These kinds

of views are formally defined by mathematical set operations.

The concepts and solutions that where developed within the databases area can serve

as a basis and source for the analysis of views in MDE. However, having a strong focus

on interaction with humans views in MDE need to be tackled from a different angle.

A classification of views in software architectures in general is given by Clements et

al. in [Cle03]. A complex software architecture is conveyed by a set of views with every

view representing a subset of the architecture. Which view type is chosen depends on

the goal of the documentation. E.g. if one needs information about the portability of a

system, one will use a view showing the applicability/deployability of an architecture to

different platforms. However, Clements does neither tackle the different properties of

views and view types nor does he give any hints on how a view type is constructed based

on a general metamodelling approach. The definitions of views and view types are given

on an architectural level which cannot be mapped to general view-based modelling.

A general approach for so called “viewpoint-oriented systems engineering” (VOSE)

was introduced by Finkelstein et al. in [FKN+92]. They describe a framework which

allows for the use of multiple perspectives in system development. They introduce the

term of “viewpoints” to partition the system specification which they encompass with a

development method as well as formal representations. Furthermore, they introduce an

approach for mapping the views to a common underlying data model. However, textual

views are not considered this approach.

39

Chapter 2. Foundations and Related Work

A relation between different viewpoints which is particularly interesting for MDA is

shown in [DQPvS03]. Therein an approach helping designers to relate different view-

points of different stakeholder to avoid inconsistent models is presented. A view is

therefore defined as a mental image of a stakeholder focusing on specific concerns of a

system. To relate the different view points, they introduce the Interaction System Design

Language (ISDL).

However, these approaches fail to thoroughly investigate and identify the properties

of views in the context of MDE. Even though the IEEE 1471-200 standard defines what

the terms view and viewpoint in the context of software architectures mean, the term

view is often used ambiguously and with different flavours in different domains. At last,

there is neither a precise definition of the properties of views in the context of modelling

nor a comprehensive description of the relation between a view and its model.

Work on formalisation of MDE has been introduced by Amelunxen and Schürr in

[AS07]. They present a formalisation of (meta-)models and transformations. Hettel

[HLR08], furthermore, introduces formalisations of model changes and partial trans-

formations. However, a both papers do not include a formal representation of views in

MDE.

In practice, several approaches have been developed that allow to define explicitly

holistic, partial or combined graphical views for models. A prominent example for

graphical modelling is the Graphical Modelling Framework (GMF)[Ecl10b]. GMF, as

part of the Eclipse Modelling Framework (EMF), provides means to define and generate

partial as well as complete view types for EMF-based [Ecl10c] metamodels. However,

GMF and other approaches were mostly driven in a pragmatic manner, lacking a sound

and distinct basis concerning the construction of the view aspects. Thus, building views

with these approaches requires a lot of additional manual effort and understanding to

implement explicitly view-based models.

Garcia [Gar08] presented an approach that allows to define bidirectional transforma-

tions to employ a view synchronisation process. However, properties if views, such as

partial, selective etc., are not considered by Garcia.

2.3. Existing Approaches for the Synchronisation of Views

Synchronisation of views with their underlying model is problem that has been tackled

within different existing approaches. The approaches stem from different non-model

driven areas, namely program inversion, data synchronisation as well as virtual view

40

2.3. Existing Approaches for the Synchronisation of Views

update. Additionally there are approaches that are based on model transformation (such

as graph-grammar based transformation or QVT-Relations). These approaches will be

evaluated here, with respect to the synchronisation properties defined in Section 4.5.3.1.

If a view is complete w.r.t. the underlying model, i.e., both can be completely recon-

structed from each other, it is possible to employ approaches that do function inversion.

An approach that presents a solution for this problem is given for so called dual syntaxes
[BMS08]. The approach defines a visual language which pretty prints Abstract Syntax

Trees (ASTs) accompanied by an XML-based syntax that is used for storing data and

interchange with other tools. Both are complete views on the underlying data which are

kept in sync automatically.

From the area of functional programming an approach for program inversion was in-

troduced by Matsuda et al. [MHN+07] that for a given function f(x1, ..., xn), determines

its reverse so that x1, ..., xn are given as output parameters. This approach implements

the principles of bidirectional view transformations as presented in Section 4.5.3.1. Fur-

ther usage of this approach for bidirectional transformations of XML documents as well

as an approach for a mainstream language for view definition have been published in

[LHT+07b] and [LHT07a] respectively. However, even though supporting textual views,

problems that occur around partial and overlapping views as well as retainable, non dis-

played parts of the model(e.g., UUIDs) are not tackled by the approach.

Data synchronisation tries to solve problems when intermittently connected data

sources (file-systems or address books on mobile and stationary devices) should be kept

in sync. One representative of this area is the Focal language which was contributed

by the Harmony project [FGM+07] introducing the concept of lenses as bidirectional

transformations. Focal operates on tree-structured data such as XML and provides

strong support for robustness and statically analysable synchronisations. However, on

the other hand neither support for intermediately inconsistent states, nor means for

retainment of certain elements (i.e., UUIDs) and protection of externally changed areas

is provided.

A combined reference model- and view-based approach was introduced by Ehrig et al.

in [EHTE97]. In this work the authors introduce the formal notions of views and view-

relations based on graphs and graph-transformations. However, they do not consider

overlapping and/or partial views explicitly, nor do they give an overview on possible

formal properties of view based approaches. In addition, no textual views are considered.

Triple-graph grammars (TGG) as well as QVT-Relations with their support for bi-

directional transformations also serve as foundation for several approaches that try to

41

Chapter 2. Foundations and Related Work

solve the view-update problem. Erche et al. [EWH07] identify that language specifica-

tions created based on metamodels do not include the connection between the concrete

and abstract syntax. For this purpose they propose to employ QVT-Relations in order

to bridge this gap. However, Erche et al. do not give hints to whether their approach

can cope with partial view definitions or fulfils the requirements for bidirectional view

transformations as proposed by Matsuda et al. [MHN+07]. Furthermore, the presented

approach is not generic enough to be employed for textual view as well.

Sabetzadeh et al. [SE06] published an approach for view synchronisation that is able

to cope with incomplete and inconsistent views on a single underlying model. They

introduce a formalism, called annotated graphs, with a built-in annotation scheme for

expressing incompleteness and inconsistency in views. Furthermore, they show provide

a general algorithm for merging views with arbitrary interconnections. Sabetzadeh et

al. provide a systematic way to represent the traceability information that is required

for tracing the merged elements of a view back to their sources in the common model.

However, the approach presented in their work only allows for the use of graph-based

graphical views and does not include a notion of textual views.

Garcia [Gar08, Gar09] introduced an approach called Declarative Model View Con-

troller (DMVC) which allows to define and statically analyse synchronisation transform-

ation for view models.

In other, more specific domains such as the modelling of component-based software

systems the concept of the idea of having a central model with different views on it has

become popular [AS08]. The goal of this approach is to provide support for on-the-fly

view generation for graphical as well as textual views. However, the actual approach

is not elaborated within the paper. Atkinson et al. only handle very specific views

that are implemented manually. Their approach supports different kinds of views (static

component view, dynamic and allocation view as well as a textual view for the Java

language) but has no capabilities for defining new views. Furthermore, it is not planned

in [AS08] to provide support for persistent views (retaining all format information).

Andres et al. [PALG08], extended their multi-view DSL approach called AToM with

textual DSLs. The approach is based on TGGs and allows for the generation of parsers

and transformations from a grammar like specification. Even though, the approach uses

TGGs, Andres et al. do not claim that their approach works bidirectionally for textual

DSLs. Furthermore, problems that arise due to partial and overlapping textual views are

also not tackled by AToM.

42

2.4. Existing Approaches for Language Engineering

2.4. Existing Approaches for Language Engineering

In the area of compiler construction many approaches were developed that deal with

incremental transformation of concrete and abstract syntax trees in general.

Attribute grammars can be used to specify context-dependant language features in

a modular, declarative way. Traditional language-based editors use the derived attrib-

uted abstract syntax trees to internally represent programs. Many different algorithms

have been developed that allow the incremental evaluation of these attributes upon local

changes to this tree. The main goal of these algorithms was to make this evaluation

optimal concerning time.

The following sections will shortly explain some of these approaches. However, as

they operate on a different technical level, they are not analysed according to the classi-

fication scheme presented in Secion 2.5.1.

Mentor [DGHKL84] allows for the specification of a programming language using

different means of specifications. With Centaur [BCD+89] the same authors present a

next iteration of the approach with enhanced features. Using Centaur it becomes possible

to define the natural semantics [Kah87] of a language with the use of Typol [Des84].

Centaur translates both, the specification as well as the programs, to Prolog which allows

for type checking but on the down side results in a quite bad runtime behaviour.

The Cornell Program Synthesizer approach to incremental attribute evaluation presen-

ted by Reps et al. in [RTD83] is based on a certain model of input. In this model all

actions that are performed in a language-based editor are mapped to the atomic functions

replace subtree and move cursor. Using these basic operations the Reps et al. present

algorithms that allow to identify the optimal set as well as order of attributes that need to

be re-evaluated based upon the given changes. The Synthesizer Generator [RT84, RT89]

is based on this approach and allows to automatically generate such a language-based

editor for new languages. The approach uses attribute grammars to formulate the rules

of a language.

The Programming System Generator [SH86] uses so called context-relations [Sne91]

to define type inference rules for a language. In comparison to natural semantics, the

context-relations approach is less flexible, does not allow to create forward references

but enables for the evaluation of incomplete programs.

IPSEN [Nag96] is an approach that can be used to create tightly coupled development

environments for languages. A special feature of this approach is the use of the graph

43

Chapter 2. Foundations and Related Work

replacement system PROGRES [Sch90] which allows for complex transformations. Fur-

thermore, IPSEN allowed to define textual as well as graphical languages.

ASF+SDF [vdBHvD+01] is a grammar based framework that allows for the the defin-

ition of a vast range of different languages. Is uses the formalism called Abstract Spe-

cification Formalism (ASF) for the specification of the abstract syntax. Additionally, the

Syntax Definition Formalism allows for the specification of the concrete syntax includ-

ing the mapping to the ASF-data structures. The use of scannerless parsing makes this

approach capable of creating modular and reusable languages.

2.5. Existing Concrete Textual Syntax Modelling Approaches

The closest area of related work of this thesis stems from the area of textual modelling.

This area defines metamodels as basis for their abstract syntax and provide different

techniques on how to define a concrete textual syntax. As most of these approaches

have a different focus and different capabilities, in order to classify them, this section

first introduces a classification schema for this kind of approach. Based on this compre-

hensive schema, existing CTS approaches were analysed [GBU08].

2.5.1. Classification Schema

To be able to compare and classify different approaches that exist for the creation of a

concrete textual syntax for a metamodel a systematic list of possible features of such an

approach is needed. Feature diagrams [SHT06] were chosen to provide an overview on

the available features. Figure 2.5 depicts a feature diagram of the features considered

in this survey. The features shown in this figure are discussed in detail in the following

subsections. How and if these features are provided by the actual approaches is shown

in Tab. 2.1.

2.5.1.1. Supported Meta-metamodels (M3)

Current approaches are based on different meta-metamodels: Ecore [Ecl10c], different

versions of MOF 1.4 [Obj02] or 2.0 [Obj06] or the Kermeta meta-metamodel [MFJ05]

used by Sintaks [JBK06]. Based on the capabilities of the meta-metamodels also the

supported features of the textual syntax approaches vary. For example, MOF 1.4 uses

UUIDs (in this case called MOFID) to identify model elements where Ecore uses des-

ignated key attributes. Because of these different approaches also the implementation

44

2.5. Existing Concrete Textual Syntax Modelling Approaches

CTS Framework

MetamodelGrammar

Input

exclusive OR

mandatory feature
optional feature

ParserEmitter

Update
Mechanism

Metamodel

Legend

Output
Mapping
Definition

EBNF
Grammar

Own/Extended
Syntax

MVC DeferredIncremental Directionality

Grammar
Class

LL LALR

Storage

ModelText

inclusive OR

Editor
Autocompl.

Quick Fixes

Format
Retainment

Non-
context free

Unidirectional Bidirectional

Semantical
Analysis

Model element
identification

UUIDs Key Attributes

Template-
based

Implicit

Meta-
metamodel

Ecore

MOF 1.4

MOF 2.0

Kermeta

Operators Symbol
Table Handling

Existing PG
Framework

Figure 2.5.: Feature Diagram of all considered features

based on one of these meta-metamodels needs to support the respective identification

mechanism (see Sect. 2.5.3 for a detailed discussion on this problem).

2.5.1.2. Input and Output

Depending on the use case for a textual language and its editor, different artifacts may

already exist or need to be created. Possible combinations are:

1. Existing language specification, e.g. with a formal grammar, no metamodel exists.

This is a typical use case when existing languages, i.e. Domain Specific Languages

(DSL), should be integrated into a model driven development environment.

2. Existing metamodel, no specification for concrete syntax. For the development of

a new concrete syntax based on an existing metamodel this is an important use

case.

3. Both, concrete syntax definition and metamodel exist. For this use case the map-

ping definition needs to be flexible enough to bridge larger gaps between concrete

and abstract syntax (e.g., OCL).

For frameworks which use a grammar as input it should also be distinguished if it is

possible to use standard (E)BNF grammars or if a proprietary definition for the CTS

constructs is needed. For approaches that specify the concrete syntax based on an ex-

isting metamodel a template-based approach that defines how each metamodel element

45

Chapter 2. Foundations and Related Work

is represented as text may be used. The components needed to translate back and forth

between text and model—namely parser and emitter—are considered an output of the

CTS framework. This is closely connected to the bidirectionality support of an approach

because it is clear that if it only supports one direction, one of these components is not

needed. For example, an approach only supporting the translation from the textual syn-

tax to the model representation would not generate an emitter.

In Tab. 2.1 the following abbreviations denote the input and output parts of the CTS

frameworks: E=Emitter, G=EBNF grammar, Gpg=Reuse of an existing parser generator

grammar definition, Gs=Proprietary grammar definition, M2=Metamodel, P=Parser,

T=Templates for the concrete syntax.

2.5.1.3. Update Mechanism

There are two main possibilities how changes of the text can be reflected in the model.

First, a Model View Controller (MVC) like approach may be used. Using an MVC-

based editor, all changes to the textual representation are directly reflected in the model

and vice versa. This means that there are only atomic commands that transform the

model from one consistent state to another. Hence, it is at every point in time consistent.

Second, a deferred update approach may be used. The parser is called from time to time

or when the text is saved. However, intermediate states of the text may then be out of

sync with the model because it may not always be possible to parse the text without

syntactical errors. Such an approach is for instance used in the background parsing

implementation of the Eclipse JDT project.

These approaches are identified in Tab. 2.1 by: mvc=Model View Controller,

bg=Background parsing.

2.5.1.4. Incrementality

If the translation between text and model is done incrementally, only the necessary ele-

ments are changed rather than the whole text or model. For example, model elements

are kept, if possible, when the text is re-parsed. Vice versa, changes to the model would

only cause the necessary parts of the text to be updated. Especially when dealing with

models in which model elements are identified by a UUID an incremental update ap-

proach becomes more desirable. Here, incrementality is important to keep the UUIDs

of the model elements stable so that references from other models outside the current

scope do not break. Therefore it is important not to re-create model elements every time

46

2.5. Existing Concrete Textual Syntax Modelling Approaches

a model is updated from its CTS. A detailed discussion on the issues that arise when

using a CTS approach on top of a UUID-based repository is performed in Sect. 2.5.3.

Even in a non UUID-based environment incrementality becomes important as soon as

the textual representation reaches a certain size. Lexing, parsing, semantical analysis

and instantiating model elements for the whole text causes a significant performance

overhead.

In Tab. 2.1 the following abbreviations are used to distinguish these possibilities:

y=Full support for incremental parsing/updating, n=No support for incremental updates,

y([p∣e])=Support only for incremental parsing(p) or emitting(e).

2.5.1.5. Format Retainment

If an emitter is used to translate models to their textual representation, users would ex-

pect that the format information of the text, such as whitespaces, is preserved. Further-

more, elements that are only present in the concrete syntax and not in the metamodel, as

for example comments, also need to be retained. Especially when the textual representa-

tion is not explicitly stored but rather derived from the actual model (c.f., Sect. 2.5.1.12)

format information has to be stored in addition to the model.

Possible values for this feature in Tab. 2.1 are the following: y=Format is retained

upon re-emitting, n=No format retainment support.

2.5.1.6. Directionality

Bidirectional transformations between the abstract model representation and its CTS

means that it is also possible to update existing textual representations if the model has

changed. An initial emitter that produces a default text for a model can easily be pro-

duced using the information from the grammar or mapping definition. For a more soph-

isticated emitter, knowledge about formatting rules and format retainment is needed.

For updating existing representations, it would be expected that the user-defined

format is retained. Imagine a textual editor that is used to create queries on business

objects. Now an attribute in the business object model is renamed. This means that all

references in the queries need to be updated. Hence, the queries need to be re-emitted

from the model. For this case it would be desirable that the queries’ format looks

exactly the same as before that change rather than having the default format.

There are some difficult cases that should be considered: Imagine a series of inline

"//" comments that the user aligned nicely. When the length of the identifier changes, it

47

Chapter 2. Foundations and Related Work

will be tricky to know what the user wanted with the formatting: aligned comments or

a specific number of spaces/tabs between the last character of the statement and the "//"

marker. Hence, perhaps there needs to be the possibility to specify the behaviour of such

formatting rules within the mapping definition.

The following values are possible for this feature in Tab. 2.1: y=Completely bidirec-

tional transformation, n=No bidirectionality supported, i=Creation of textual represent-

ation only initially.

2.5.1.7. Grammars Class

The parser component of an approach needs to have a grammar defined to be able to

handle the textual input of the concrete syntax. Possible grammar classes are those of

general-purpose programming languages such as LL or LALR [Muc97]. However, it

might be possible that even non context-free grammars may be used as input. Another

possibility where no grammar in a usual form is needed would be a pseudo text editing

approach. In such an approach no text file is edited but all modifications are directly

applied to the model using an MVC approach (c.f., Sect. 2.5.1.3).

The following grammar classes are considered for Tab. 2.1: LL(1/k/*), SLR, LR,

LALR, ncf=Non-context free, dir.=Direct editing.

2.5.1.8. Semantical Analysis

After the parser has analysed the structure of the text document links between the res-

ulting elements need to be created. For example, a method call expression in an OCL

constraint that was just parsed needs to be linked to the corresponding operation model

element. To represent these links, two different concepts may be used by the model re-

pository, either by their UUID or by designated key attributes (c.f., Sect. 2.5.3). As the

choice of one of these mechanisms has a great impact on the implementation of the CTS

approach (also see Sect. 2.5.3) this feature is also listed in this classification schema.

The following abbreviations are used in Tab. 2.1: UUID=Identification via UUID,

KeyAttr.=Identification by designated key attributes.

2.5.1.9. Operators

Especially in mathematical expressions the use infix operators is widely spread. Dur-

ing the semantical analysis the priorities, arities and associativities of such expressions

48

2.5. Existing Concrete Textual Syntax Modelling Approaches

habe to be resolved. To be able to automatically translate a textual representation of

such an expression into its abstract model this information needs to be present in the

mapping definition. If such an automated support is present this allows the gap between

the metamodel and the grammar to be much bigger. For approaches that generate a

metamodel from the mapping definition this feature is mostly implicitly supported since

the operator precedence is then directly encoded in the generated metamodel.

In Tab. 2.1 a y means that explicit support for operators is built into the framework, p

means partial support exists and n means that a manual translation is needed.

2.5.1.10. Symbol Table

A symbol table is needed to handle the resolving of references within the textual syntax.

As there is, mostly, only the containment hierarchy explicitely present within a CTS a

symbol table is needed during the parsing process to resolve other references that are

stated using e.g., named references. The support for custom namespace contexts (such

as blocks in Java) can also be an important feature of the employed symbol table.

Possible values for this feature in Tab. 2.1 are the following: y=full support including

custom contexts, p=partial support without additional contexts, n=no built-in symbol

table.

2.5.1.11. Features of the Generated Editor

Most approaches also generate a comfortable editor for the concrete syntax. Function-

ality that is based on the abstract syntax (such as auto-completion or error reporting)

can be provided based on the model. If the tool also supports bidirectional transforma-

tion, refactoring support (such as renaming, etc.) may be easily implemented using the

model. Other possible features are syntax highlighting or quick fixes.

Table 2.2 shows an overview on the features of the generated editors of each frame-

work. The following features are considered: auto-completion, syntax highlighting,

refactoring, error markers and quick fixes.

2.5.1.12. Storage mechanism

Having two kinds of representation, i.e. concrete textual syntax or abstract model, there

are several possibilities to store the model. First, the model may be stored just using the

concrete syntax. Second, only the abstract model is stored and the textual representation

49

Chapter 2. Foundations and Related Work

is derived on the fly whenever the textual editor opens the model. Then formatting in-

formation needs to be stored additionally to the model (c.f., Sect. 2.5.1.5). Third, both

representations could be stored independent from each other. However, this means in

most cases that they are not kept in sync with each other. Fourth, a hybrid approach

may be implemented that stores the format information and merges them with the model

when it is loaded into the editor. This additional format storage may then again be rep-

resented as an annotation model to the actual model or as some kind of textual template.

These different possibilities are identified in Tab. 2.1 using the following abbrevi-

ations: text=The textual representation is stored, mod.=The model is stored, both=Both

representations are stored, hyb.=Hybrid storage approach.

2.5.2. Classification of Existing Concrete Textual Syntax Approaches

According to the classification schema presented in Sect. 2.5.1, several approaches were

evaluated that present a possibility to create a model based CTS. Table 2.1 lists the sup-

ported features of each approach. Table 2.2 shows the features of a potentially generated

editor. All evaluations were based on the cited works and prototypes that were available

at the time of writing. Future work proposals of these sources were not considered.

2.5.2.1. Bridging Grammarware and Modelware

Grammar-based approaches are used to automatically generate a metamodel for the

CTS. Those metamodels are closely related to the grammar elements for which they

were created. This inherently causes the metamodel to be relatively large. Reduction

rules can be used to reduce the amount of metamodel elements that are produced for

elements in the grammar.

For example, a trivial mapping would generate a class cntk for each non-terminal ntk

in the grammar as well as one class calti for each alternative alti of ntk. Furthermore,

an association refalti would be generated that connects the calti to their cntk . The calti

then reference the corresponding cntj for the referenced non-terminals ntj of alti. One

reasonable reduction rule for this scenario is: if ntk references only alti with only one

referenced non-terminal each, the refalti as well as calti could be omitted, reducing the

whole structure to a direct generalisation between the cntj and cntk .

Some of these reduction rules can be applied automatically during the metamodel gen-

eration, while others need additional information given as annotations to the grammars.

50

2.5. Existing Concrete Textual Syntax Modelling Approaches

T
ab

le
2
.1

.:
C

o
m

p
ar

is
o
n

o
f

re
la

te
d

ap
p
ro

ac
h
es

.

N
am

e(
s)

R
ef

.
In

p
u

t
O

u
tp

u
t

B
id

.
U

p
d

at
es

In
c.

G
ra

m
m

ar
s

F
o

rm
at

M
3

Id
en

t.
O

p
er

.
S

y
m

b.
S

to
ra

g
e

T
ab

.

B
ri

d
g

in
g

G
W

[W
K

0
5

]
G

M
2
,P

,E
y

b
g

n
L

L
(k

)
n

E
co

re
K

ey
A

tt
r.

n/
a

p
b

o
th

an
d

M
W

F
ro

d
o

[K
ar

0
7

]
G

o
r
G

P
G
,

P,
E

y
b

g
n

L
L

(*
)

n
E

co
re

K
ey

A
tt

r.
n

p
b

o
th

M
2
,T

a

G
r.

B
sd

.
C

o
d

e
[G

o
l0

6
]

G
P
G

b
M

2
,P

,E
y

b
g

n
L

A
L

R
(1

)
y

M
O

F
1

.4
K

ey
A

tt
r.

n/
a

p
b

o
th

T
ra

n
sf

.

G
y

m
n

as
t

[G
S

0
7

]
G

M
2
,P

,E
y

c
b

g
n

L
L

(k
/*

)
y

E
co

re
K

ey
A

tt
r.

n/
a

n
b

o
th

H
U

T
N

[O
b

j0
4

]
M

2
G
,P

,E
y

b
g

/m
v

cd
n

n/
ad

n
M

O
F

1
.4

K
ey

A
tt

r.
n

p
n/

ad

M
P

S
[J

et
]

G
s

M
2
,P

,E
y

m
v

c
y

?e
n/

a
y

p
ro

p
.

U
U

ID
y

y
m

o
d

.

M
o

n
ti

C
o

re
[K

R
V

0
7

a]
I
(M

2
,G
)f

P
,E

y
b

g
n

L
L

(k
)

n
E

co
re

K
ey

A
tt

r.
n

y
te

x
t

T
C

S
[J

B
K

0
6

]
M

2
,T

G
,P

,E
y

b
g

n
L

L
(*

)
n

E
co

re
K

ey
A

tt
r.

y
y

b
o

th

S
in

ta
k

s
[F

o
n

0
7

]
M

2
,T

G
,P

,E
y

b
g

n
L

L
(*

)
n

K
er

m
et

a
K

ey
A

tt
r.

p
p

b
o

th

T
E

F
[S

ch
0

7
]

M
2
,T

G
,P

n
b

g
n

*
L

R
n

E
co

re
K

ey
A

tt
r.

y
y

te
x

tg

x
T

ex
t

[F
o

u
1

0
]

G
s

M
2
,P

n
b

g
n

L
L

(*
)

n
E

co
re

K
ey

A
tt

r.
y

p
te

x
t

L
eg

en
d:

In
pu

t/O
ut

pu
t:

E
=

E
m

it
te

r,
G

=
G

ra
m

m
ar

,
G

s
=

O
w

n
G

ra
m

m
ar

D
efi

n
it

io
n

,
G

p
g
=

R
eu

se
o

f
p

ar
se

r
g

en
er

at
o

r
fr

am
ew

o
rk

g
ra

m
m

ar
d

efi
n

it
io

n
,

M
2
=

M
et

am
o

d
el

,
P

=
P

ar
se

r,
T

=
T

em
p

la
te

s
fo

r
th

e
C

S

U
pd

at
es

:b
g

=
B

ac
k

g
ro

u
n

d
p

ar
si

n
g

,
m

v
c.

=
M

o
d

el
V

ie
w

C
o

n
tr

o
ll

er
b

as
ed

St
or

ag
e:

m
o

d
.=

M
o

d
el

a F
ro

d
o

al
lo

w
s

th
e

im
p

o
rt

o
f

st
an

d
ar

d
E

B
N

F
o

r
A

N
T

L
R

g
ra

m
m

ar
s

th
at

ca
n

th
en

b
e

an
n

o
ta

te
d

w
it

h
m

ap
p

in
g

ru
le

s.
b C

u
rr

en
tl

y
th

er
e

ar
e

im
p

le
m

en
ta

ti
o

n
s

fo
r

S
ab

le
C

C
an

d
A

N
T

L
R

c N
av

ig
at

io
n

o
n
ly

,
n

o
tr

an
sf

o
rm

at
io

n
fr

o
m

m
o
d
el

to
te

x
t.

d T
h

is
d

ep
en

d
s

o
n

th
e

ac
tu

al
im

p
le

m
en

ta
ti

o
n

o
f

th
e

H
U

T
N

st
an

d
ar

d
.

e S
u

p
p

o
rt

ed
so

m
eh

o
w

d
u

e
to

M
V

C
ap

p
ro

ac
h

.
f T

h
e

m
et

am
o

d
el

as
w

el
l

as
th

e
co

n
cr

et
e

sy
n

ta
x

ar
e

d
efi

n
ed

w
it

h
in

th
e

sa
m

e
fi

le
.

g It
is

p
o

ss
ib

le
to

d
ir

ec
tl

y
ac

ce
ss

th
e

u
n

d
er

ly
in

g
m

o
d

el
v

ia
a

sp
ec

ia
l

im
p

le
m

en
ta

ti
o

n
o

f
th

e
E

cl
ip

se
D

o
cu

m
en

tP
ro

v
id

er
in

te
rf

ac
e.

51

Chapter 2. Foundations and Related Work

Wimmer and Kramler [WK05] present such an approach. A multi-phase automatic

generation that facilitates reduction rules as well as manual annotations reduces this

amount to make the resulting metamodel more usable. The reduction steps that are ap-

plied during these phases then also implicitly define the mapping between the mapping

definition. The main area where such an approach is useful is the Architecture Driven

Modernisation (ADM)[Obj] where existing legacy code is analysed for migration, doc-

umentation or gathering of metrics.

2.5.2.2. Frodo

Frodo [Kar07] was developed with the goal to provide a unified solution for the creation

of a DSL. This approach presents an end-to-end solution for textual DSLs, providing

support for the creation of a CTS as well as back-end support for the target DSL. It

also makes initial attempts to derive a debugging support from the mapping specifica-

tion. Frodo supports several sources for the definition of the CTS. Either a grammar

metamodel may be specified or a specific grammar for a supported parser generator

(currently ANTLR) could be used. An implicit mapping from the grammar to the DSL

metamodel is automatically created. This is done by matching the names of classes and

attributes to elements in the grammar rules. Additional mapping rules, such as those

needed for the resolving of references between model elements can be specified on the

grammar metamodel.

2.5.2.3. Grammar Based Code Transformation for MDA

The approach elaborated in [Gol06], similar to Bridging Grammarware and Model-
ware, also relies on reduction and annotations to the grammar. However, this approach

additionally facilitates the storage of format information as a decorator model attached

to the actual model.

2.5.2.4. Sintaks (TCSSL)

Fondement [Fon07] presents an bidirectional approach that generates a parser (based

on the ANTLR parser generator) and an emitter (using the JET template engine). The

mapping definition is created using the MOF concrete syntax. For complex mappings

which need several passes, e.g., for resolving references or performing type checking,

a multiple pass analysis can be integrated into the mapping. The main idea of this

52

2.5. Existing Concrete Textual Syntax Modelling Approaches

approach is to have an n-pass architecture for the transformation from code to model.

Intermediate models are hereby treated as models decorated with refinements. Model

transformations are then used to subsequently transform these models and finally create

the abstract model that then conforms to the target metamodel.

2.5.2.5. MontiCore

Another approach to integrate a textual concrete syntax with a corresponding metamodel

is presented by Krahn et al. in [KRV07a]. This approach facilitates an integrated defin-

ition where the abstract syntax (the metamodel) is also defined within a grammar like

definition of the concrete syntax. For simple languages and especially for languages

where only one form of presentation, i.e. the textual syntax, is used, this approach seems

to be promising. However, if a metamodel may have several presentation forms, or if

only parts of the metamodel are represented as text, the tight integration of concrete and

abstract syntax this approach promotes does not seem to be applicable. MontiCore al-

lows the composition and inheritance of different languages and provides a comfortable

support for generating editors from these composite specifications [KRV07b].

2.5.2.6. HUTN

The Human-Usable Text Notation (HUTN) approach [Obj04], now specified as a stand-

ard by the Object Management Group (OMG) can be used to generate a standard textual

language for a given metamodel. It focuses on an easy-to-understand syntax as well

as the completeness of the language (it is able to represent all possible metamodel in-

stances). Furthermore all languages, though each language is different, conform to a

single style and structure and it is not possible to define an own syntax for a metamodel.

In HUTN a grammar for a metamodel, including parser and emitter is generated.

There were currently only two implementations for HUTN. An early implementa-

tion was developed by the DSTC, named TokTok. However, this implementation is not

available anymore. Another implementation was developed by Muller and Hassenforder

[MH05], who examined the applicability of HUTN as a bridge between models and con-

crete syntaxes. They identified several flaws in the specification that make it difficult to

use.

53

Chapter 2. Foundations and Related Work

2.5.2.7. TEF

The first version of the Textual Editing Framework (TEF) presented in [Sch07] was

based on an MVC updating approach. Inherent problems with this concept (see Sect.

2.5.3) led to the choice of background parsing as the final method for updating the model.

An interesting feature of TEF that is not directly mentioned in the classification schema

is the possibility to define multiple syntactic constructs for the same metamodel element.

Vice-versa, it is also possible to use the same notation for different elements by providing

a semantic function that selects the correct function based on the context.

2.5.2.8. JetBrains MPS

JetBrains developed a framework called Meta Programming System (MPS) [Jet, Dim05]

that allows to define languages that consist of syntactical elements that look like

dynamically-arranged tables or forms. This means, that the elements of the language

are predefined boxes which can be filled with a value. MPS follows the MVC updating

approach that allows for direct editing of the underlying model. This allows the editor

to easily provide features such as syntax highlighting or code completion. However,

it is not possible to write code that does not conform to the language. Hence, a copy,

paste, adapt process is not possible in this approach.

2.5.2.9. xText

Developed as part of the openArchitectureWare (oAW) framework, xText [Fou10] al-

lows the definition of a CTS within the oAW context. xText generates an intermediate

metamodel for the concrete syntax from the mapping specification. For this reason the

framework provides an EBNF-like definition language which facilitates features like the

possibility to specify identity properties or abstract classes. A translation into an in-

stance of the intended target metamodel needs to be done by developing a model to

model transformation from this intermediate language into the target abstract syntax.

Having such an intermediate metamodel complicates the bidirectional mapping as an

additional transformation for the backward transformation is needed.

2.5.2.10. Gymnast

Garcia and Sentossa present an approach called Gymnast in [GS07], which similar to

xText generates an intermediate language on which the editor is based. Refactorings,

54

2.5. Existing Concrete Textual Syntax Modelling Approaches

Table 2.2.: Editor capabilities

Name Reference(s) Autocomp. Err. mark. Refact. supp. Quick fixes

Frodo [Kar07] n ?a n n

Gymnast [GS07] y y y n

MPS [Jet] y yb y y

MontiCore [KRV07b] y y y n

TCS [JBK06] n y n n

TEF [Sch07] y y y n

xText [Fou10] y y y n

aThis feature could not be evaluated.
bNo syntactic errors possible because of resolute MVC concept.

occurrence markings, etc., are provided by the generated editor based. As this work’s

main focus is on the generation of the editor and its functionality, a mapping to an

existing target metamodel has to be developed in addition to the generated tools.

2.5.2.11. TCS

A similar technique is presented in [JBK06]. This approach also provides a generic

editor for the syntaxes handled by TCS. For each syntax that is defined using TCS,

there is also a definition that can be registered in the editor. Within this definition, it

can, for example, be specified how the syntax highlighting should be done. This editor

uses text-to-model trace-links that are created during parsing to allow hyperlinks and

hovers for references within the text. However, currently these links are implemented

as attributes (column and line number of the corresponding text) on a mandatory base

class (LocatedElement) for all metamodel elements handled by a TCS editor. If the

metamodel classes do not extend these class, the trace functionality is disabled. In later

versions of TCS, this issue might be resolved. The mapping definition of a TCS syntax is

tightly coupled to the metamodel, which means that for each element in the metamodel

there is one rule describing its textual notation. This tight coupling makes the definition

of a syntax relatively easy. With the use of so called operator templates TCS furthermore

allows to resolve left recursions [Muc97] as they occur in LL grammars.

2.5.2.12. Other Approaches

A recently emerged project on eclipse.org that also aims to tackle the development of

CTSs is the Eclipse IMP [FCS+10]. However, the current focus of the project lies on the

55

Chapter 2. Foundations and Related Work

easy development of an editor and not on the integration with a model repository. Still,

it was stated in the project’s declaration of intent that an integration with EMF is pro-

jected. Furthermore, there is an eclipse.org project called Textual Modelling Frame-
work (TMF)[Fou] that currently regroups TCS and xText under a common architecture.

A different approach is followed by Intentional Software’s Intentional Programming
[Sim07]. Here, it seems to be possible to directly edit the model using a text editor.

Multiple syntaxes, also textual ones, can be defined and handled even in the same editor.

However, being a proprietary approach, the integration with existing standards-based

repositories may be problematic.

2.5.3. Discussion

Current CTS implementations span a continuum between text and model affine-frame-

works. On the text-end-side there are tools that stem from conventional programming

languages. The idea to create development tools that are based on a model rather than on

plain text was already developed before model-driven development became prominent.

The IDE of Smalltalk systems follows a similar paradigm. Code artifacts are also Small-

talk objects that are edited using a specialised editor. Especially considering refactoring,

this is a great advantage. Another example where boundaries between a textual and a

model view on code are starting to blur is the Eclipse Java Development Tools (JDT)

project. Even though the Java source files are still stored as plain text files, JDT uses in-

dexes and meta-data in the background to be able to provide comprehensive refactoring,

navigation and error reporting capabilities. Many tools that were considered here (such

as Gymnast or xText) focus on this end of the spectrum. On the other end of this spec-

trum, there are tools such as the MPS framework treating text as a sequence of frames

or compartments containing text blocks. While text-based issues such as diff or merge

are solved on text artifacts, solutions for these problems are still immature concerning

models. Vice versa, issues that can easily be or are already solved on models, such as the

usage of UUIDs for references or partial and combined views on models are challenges

that none of the currently available CTS approaches is able to handle.

As it can be seen in Tab. 2.1 support for incremental model updates is currently not

widely available. Only MPS provides some support for this. Furthermore, none of

the approaches under evaluation support the UUID identification mechanism for model

elements. Even HUTN, which is an OMG standard explicitly specifies that key attributes

need to be specified in order to realise model element identification. That lack of these

56

2.5. Existing Concrete Textual Syntax Modelling Approaches

features complicates the application of these approaches in certain environments. The

next sections discuss some of the yet untreated issues.

2.5.3.1. Universally Unique Identifiers

The UUID retainment problem, as discussed in the introduction of this thesis (cf. Sec-

tion 1.1), is also not tackled by any of the presented CTS approaches. Some kind of

incremental update mechanism is required to solve this problem, which none of the ex-

isting approaches includes. Otherwise, UUIDs of model elements will get lost upon the

re-transformation of the textual representation to the model. MPS, not relying on parser

techniques, avoids this problem by employing a MVC-like approach for model updates.

However, also MPS does not guarantee that UUIDs will be retained.

2.5.3.2. Update Mechanism

Many of the aforementioned problems may be solved by employing an MVC-based up-

date mechanism. However, there are still other problematic constructs in this concept.

Consider for example an expressions such as “(a+b)*c”: At the time of typing the ex-

pression in the parentheses, it can not be known that the model that actually should be

created would have the “*” expression as root node and the parenthesised expression

only as a subnode. A discussion of the advantages and disadvantages of the MVC and

the background parsing approach can be found in [Sch07].

Closely related to the update issue is the general problem of incremental updates. In

compiler construction literature this problem was already discussed. For example, Wag-

ner [Wag98] developed a methodology that allows incremental lexing as well as parsing.

Furthermore, Reps et. al. [RTD83] present an incremental process that allows incre-

mental updates to the attributed trees that result from the semantical analysis. However,

such techniques were not adopted by any of the CTS frameworks under evaluation.

2.5.3.3. Partial and Combined Views

One advantage of graphical modelling is that it is easily possible to define partial views

on models. This means that it is possible to create diagrams that highlight only a specific

aspect of the model while hiding other parts. for example, in UML one diagram may be

used to display an inheritance hierarchy of classes only while another diagram is used

to show the associations between these classes. Defining models with a CTS should

57

Chapter 2. Foundations and Related Work

also include the possibility to do this. However, this imposes that there are two different

modes for deleting elements. One, which deletes only the text and another which de-

letes the model element from the text and the model. Using only standard text editing

techniques (typing characters and using backspace or delete to remove them) there is no

possibility to distinguish between both commands.

None of the approaches analysed above deals with the possibility to explicitly define

partial or overlapping view types on the underlying metamodel. Therefore, also no

support for custom selections of elements within the textual representation (cf. Section

4.5.1) is given.

58

Chapter 3.

Retainment Policies for
Model Transformations

Models that are used in a model-driven environment are at the same time subject to

modification by users as well as automated transformations. As the transformations in

such an environment should aim to support the modellers in their work, it should be

possible to configure them in a way that best fits the requirements of a modeller with

respect to the changes that they perform to the model.

One such requirement is, as depicted in Figure 3.1, the retainment of changes that a

modeller applies to the target model of a transformation (or a part thereof). In some

scenarios it becomes necessary that those changes to target models should be preserved

rather than overwritten by a re-execution of the transformation. One of the most prom-

inent cases for such a requirement is the creation of an initial or default model using a

model transformation that is then refined by the modeller. Of course, those refinements

should not be overwritten if the transformation is re-executed. However, simply omitting

the re-execution is also not practicable as maybe a lot of additional default model ele-

ments should be created by the transformation due to additional elements in the source

model of the transformation.

This issue becomes even more important when multiple transformations have the same

model as their target model. In this case model elements that are considered to be cre-

ated/modified by more than one transformation can cause conflicts as well as inconsist-

encies. If for example, one transformation is responsible for creating a certain element

in the target model, whereas another transformation contains rules that would delete the

same model element, executing both transformations leads to different results depending

on the order in which the transformations are executed.

59

Chapter 3. Retainment Policies for Model Transformations

Modeller

Target Model Mt

Initial Execution of
Transformation T1

Source Model Ms

External Changes

(Incremental)
Reexecution of T1

Target Model MtSource Model Ms

Changes are overwritten

Step 1: Step 2:

Figure 3.1.: Step 1: Initial execution of T1 produces Mt from Ms. A modeller applies changes to

both Ms and Mt. Step 2: Changes in Mt will be overwritten by the reexecution of

T .

3.1. Scientific Challenges

From these findings the following scientific challenges can be derived:

• In order to support retainment of external changes to target models, first an ap-

proach needs to be defined that allows for the identification of these changes.

• How can external changes in target models be preserved when the target model is

also subject to modification by a transformation? A generic solution ought to be

found that supports the specification of how the transformation should deal with

these changes as soon at it is re-executed.

• How can the solution be defined in a generic way so that it is applicable to the

multitude of model transformation approaches that currently exists. The solution

shall be agnostic w.r.t. the employed model transformation technique and shall be

defined on an abstract level.

• Assuming, the retainment is controlled by some kind of rules, i.e., so called re-

tainment rules, how can these retainment rules be attached and declared in an easy

to use and intuitive way? The way of specifying these rules should be possible

without needing to extend the transformation language.

• How to define a framework that supports the execution of model transformations

including the defined semantics of the attached retainment policies.

60

3.2. Contributions

3.2. Contributions

This thesis contributes an approach that allows to define generic rules for model trans-

formations that define how to deal with external changes to the transformation’s target

model.

• The first contribution of this chapter is an approach that deals with the problem of

identifying arbitrary external changes to models that are, at the same time, source

or target models of automated model transformations. In this thesis, a change iden-

tification approach is introduced that is based on the record of the transformation

that is created during its execution, which is called trace of the transformation.

The approach is defined on an abstract level, based on the formal semantics of a

transformation’s definition and execution.

• Second, the approach presented in this thesis introduces means for the specification

of so-called Retainment Policies that can be declared to describe how changes to a

target model shall be treated upon re-execution of a transformation.

• The semantics of these retainment policies are defined in an abstract and formal

way which allows to transfer them to arbitrary model transformation approaches.

• Included in the presented approach is also a way to attach the retainment policies

to either transformation rules or directly to certain areas of the involved models.

Based on these defined scopes, an approach is presented that dynamically reconfig-

ures the employed transformation according to the rules and their defined scopes.

• A new higher-order transformation is presented that automatically modifies the

existing transformation in a way that includes the semantics of the attached retain-

ment policies. Concretely, a realisation of the retainment policies approach for the

OMG’s standard for model transformations, called Query, View, Transformation

(QVT) [Obj11] is given.

In this chapter, first a classification of model changes is introduced. This thesis

provides an approach that allows for detection of target model changes based on the exe-

cution trace of a transformation which is presented afterwards. For each kind of change

special retainment policies are introduced that may be attached to either elements in the

target model or transformations themselves. These policies allow for a distinctive treat-

ment of changes to a transformation’s target model. Additionally, this thesis presents

61

Chapter 3. Retainment Policies for Model Transformations

BusinessObjects

name : String

NamedElement

BusinessObject Association

TypedElement

typedElement

type1

0..*

AssociationEnd

association

ends2

1

MethodSignature

signatures

owner1

0..*

TypeDefinition

Lower : Integer
Upper : Integer
Ordered : Boolean
Unique : Boolean

Multiplicity

elementsOfType

entity
1

0..*

RDBMS

name : String

Table

isKey : boolean
columnName : String
type : String

Column

columns

table1

0..*

value : String

Constraint

constraints0..*

constraints0..*

Figure 3.2.: Metamodels of business objects and relational databases showing the elements rel-

evant for the running example.

the formal semantics of these policies and uses them to reason about completeness and

conflict resolution.

3.3. Running Example

The running example that will be used to explain all kinds of retainment scenarios em-

ploys a domain model representing business entities as well as associations between

them as presented in Chapter 2 on Page 18 as source model. This model is transformed

to a relational database target model used to store the data represented by the business

entity model. The relevant parts of both metamodels are shown in Figure 3.2.

The example model, as depicted in Figure 3.3 consists of a simple business entity

“Customer” having two associations, one to the business entity “PurchaseOrder” and

one from “PurchaseOrder” to “Invoice”. The relational database model is generated

using the transformation Tbo2db shown in Listing 3.1.

62

3.3. Running Example

name = „Customer“

Customer :
BusinessEntity

upper = 1

: TypeDefinition

name = „customer“

customer :
AssociationEnd

Name = „CustomerMakesPurchaseOrders“

CustomerMakesPurchaseOrders :
Association

upper = -1

poTD : TypeDefinition

name = „purchaseOrder
“

purchaseOrder :
AssociationEnd

name = „PurchaseOrder“

PurchaseOrder :
BusinessEntity

lower = 1
upper = 1

: TypeDefinition

name = „billFor“

billFor : AssociationEnd

Name = „InvoiceForPurchaseOrder“

InvoiceForPurchaseOrder : Association

upper = 1

: TypeDefinition

name = „invoice“

invoice: AssociationEnd

name = „Invoice“

Invoice : BusinessEntity

name = „CustomerTable“

CustomerTable : Table

name = „PurchaseOrderTable“

PurchaseOrderTable : Table

name = „InvoiceTable“

InvoiceTable : Table

name = „FKPurchaseOrder“
isKey = true
Type = String

FKPurchaseOrder : Column

name = „FKCustomer“
isKey = true
Type = String

FKCustomer : Column

name = „FKInvoice“
isKey = true
Type = String

FKInvoice : Column

name = „FKBillFor“
isKey = true
Type = String

FKBillFor : Column

S
ou

rc
e

M
od

el
Ta

rg
et

 M
od

el

Figure 3.3.: Example model showing source and target model of a business entity model to rela-

tional database transformation.

A formal representation of the target model given in Figure 3.3 using Definition 2.3 is

then the tuple as follows:

Mt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

O = {CustomerTable, PurchaseOrderTable, InvoiceTable, FKCustomer,

FKPurchaseOrder, FKInvoice, FKBillFor},
L = {CustomerTable ↔ FKPurchaseOrder,

PurchaseOrderTable ↔ FKCustomer,

PurchaseOrderTable ↔ FKInvoice, InvoiceTable ↔ FKBillFor},
V = {“CustomerTable”, “PurchaseOrderTable”, “InvoiceTable”, . . . },

orderL = {(PurchaseOrderTable ↔ FKCustomer,

PurchaseOrderTable ↔ FKInvoice)}
orderV = ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

63

Chapter 3. Retainment Policies for Model Transformations

1 transformation BO2DB (bo : businessObjects, db : rdbms) {
2 top relation BusinessOject2Table {
3 checkonly domain bo myBo : businessObjects::BusinessObject{
4 elementsOfType = td : businessObjects::TypeDefinition { }
5 };
6 enforce domain db table : rdbms::Table {
7 tableName = myBo.name
8 };
9 };

10

11 top relation Association2ForeignKeyColumn {
12 checkonly domain bo assoc : businessObjects::Association{
13 ends = end : businessObjects::AssociationEnd {
14 type = td : businessObjects::TypeDefinition {
15 entity = bo : businessObjects::BusinessObject{}
16 }
17 }
18 };
19 enforce domain db keyColumn : rdbms::Column {
20 table = tab; isKey = true;
21 name = ’FK’ + end.name; type = ’String’
22 }
23 when {
24 BusinessOject2Table(myBo, tab);
25 }
26 }
27 }

Listing 3.1: Example Transformation: BusinessObjects to Relational Database Model.

A transformation that realises the mapping within the given example is sketched in

Listing 3.1. The transformation is written in the QVT Relations language and con-

sists of two top level relations BusinessOject2Table and Association2Fo-

reignKeyColumn. While BusinessObject2Table creates a Table for each

BusinessObject, Association2ForeignKeyColumn is responsible for the

creation of one foreign key Column per Association within the corresponding tar-

get Table.

3.4. Assumptions for the Application of the Retainment Policy Approach

As there exists a multitude of model transformation approaches it is impossible to de-

velop an approach that fits all of them equally. The Retainment Policies approach is

based on some basic assumptions with respect to the employed model transformation

64

3.5. Classification of Changes to Target Models

approach. However, if these assumptions are fulfilled it can be applied to arbitrary model

transformation approaches.

• Unique Object Identities: All elements involved in the model transformation

have a UUID which is immutable and cannot be reconstructed in any case. This

means, a newly created element will always have a new UUID. In distributed de-

velopment this is an important requirement as links between elements that are

currently not in the scope of the modelling environment might break upon changes

to these elements.

• No time component: The time between subsequent executions of the transform-

ation is not defined. Arbitrary changes might have been applied to the source as

well as the target model between two subsequent transformation executions.

• Unidirectional transformations: The retainment policy approach presented in

this chapter is based on having a distinct source and target model. For bidirectional

transformations both “sides” can be considered source or target model. However,

during the execution of a bidirectional transformation there are distinct source and

target sides. Therefore, the presented approach – though being only active for one

side at a time – is in general also applicable to bidirectional transformations.

3.5. Classification of Changes to Target Models

To be able to decide if a target model change should be retained or not, changes that can

be applied to the target model need to be classified into different types of changes. For

the formal description of the changes, the definitions of atomic and complex changes

given in Chapter 2 on page 2.4 are used here.

3.5.1. Images of Transformations

A transformation is considered to be responsible for creating, deleting and updating

elements that are in their image, meaning that they potentially could have been pro-

duced by the transformation. Elements that lie outside the image of the transformation

are invisible to the transformation and will therefore be ignored during the execution

of the transformation. Changes that lie inside the image of the transformation need

to be detected in order to be handled by the transformation. Additionally, a target

65

Chapter 3. Retainment Policies for Model Transformations

Target Model

Source
Model S1

Source
Model S2

Transformation T2

Transformation T1

Manual
Changes

Relevant Changes for T2

I1

I2

Figure 3.4.: Transformations may have different images within a target model. Transformation

T1 only “sees” the elements of the target model that lie in its image I1 wheres T2

only “sees” I2. Therefore, the mannual changes to the target model are only relevant

for T2.

model may be handled and updated by more than one transformation. Figure 3.4 il-

lustrates how different transformations have different images in the target model. Due

to this determination the change detection distinguishes between two different types of

changes, relevant changes and non-relevant changes. Non-relevant changes are changes

that are not matched by the right model pattern of a transformation – e.g., δ+o where

o /∈ rightModelPattern(T) – are not relevant for a transformation. Second, relevant
changes are those changes that are matched by the right model pattern of a transforma-

tion, e.g., δ+o where o ∈ rightModelPattern(T).
An approach on how to compute the set of relevant changes from a set of changes to

the target model is presented by Hettel in [Het10]. However, Hettel does not consider

that manual changes should be retained in target models. He is rather concerned with

the synchronisation of these changes back to the source model. Furthermore, note that

images of transformations may overlap and it is therefore possible that changes to the

same element within a target model is considered relevant for several transformations at

the same time.

Considering the running example from Figure 3.2 on page 62 and Listing 3.1 on page

64 it can easily be recognised that transformation TBO2DB could never produce an in-

stance of the class Constraint. Therefore, every change in the target model concern-

ing an instance of Constraint would be automatically classified as a non-relevant
change with respect to the BO2DB transformation because it is always outside the image

of the transformation.

66

3.5. Classification of Changes to Target Models

3.5.2. Consistent Changes

Atomic changes are by definition the minimal set of changes that can be applied to a

model. However, it might still be possible that the application of an atomic change leads

to consistency violations in a model. For example, the deletion of an element will cause

all links that included this element to become inconsistent (cf. model consistency rules

in [AS07]). In order to make the model consistent again, additional changes, in this

case the deletion of all links that included the deleted element need to be performed. In

order to reflect this set of changes the definition of a complex change is introduced. A

complex change consists of the original atomic change plus all additional changes that

are required to yield a consistent model.

Another example for an atomic change that is extended to be a consistent change is

the creation of a model element a in the target model. This is followed by the creation of

a link l that compositely attaches the created object a to another existing model element

b. If l is not created a is considered a free floating element within the target model which

might violate model constraints such as the requirement that there is only one “root”

element per model1.

Definition 3.1 (Consistent Change). A consistent change ∇δ is defined as a set of
changes that need to be perfomed in addition to δ to keep the model to which δ is applied
in a consistent state. This set is then defined as ∇ = δ ∪Δf where

δ is the original change and,

Δf is a complex change which is a set of subsequent changes

⎧⎪⎪⎨⎪⎪⎩
δi ∈ Δf ∣

⎛
⎝
δi is required to hold the model in a consistent state, ∨
δi is relevant for the context of δ,

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

Δf may also be the empty set ∅.

Furthermore, the set of all possible consistent changes of metamodel MM is denoted as
ConsistentChangesMM .

For example, considering again the running example model from Figure 3.3. The

deletion of Column “FKInvoice” yields the deletion change δ−FKInvoice. As there was also

1This is for example a constraint that applies to models in the Eclipse Modelling Environment (EMF)

[Ecl10c]

67

Chapter 3. Retainment Policies for Model Transformations

a link Invoice ↔ FKInvoice attached connecting FKInvoice to Invoice, the consistent

change for δ−FKInvoice would be

∇δ−FKInvoice
= {δ−FKInvoice, δ

−
Invoice↔2FKInvoice,Invoice,FKInvoice}

The creation a Column ColAmount and adding it to the column property of the ex-

isting object Invoice by creating a link δ+Invoice↔ColAmount,Invoice,ColAmount will result in a

consistent change

∇δ+ColAmount
= {δ+ColAmount, δ

+
Invoice2ColAmount,Invoice,ColAmount}

The function consistentChanges that yields the set of consistent changes for a given

set of changes is defined as consistentChanges ∶ P(ChangesMM) → P(ChangesMM).

3.6. Detection of Relevant Changes

In order to retain changes to the target model of a model transformation, the first thing

that needs to be done is to identify those changes. Transformations should be enabled to

individually react upon different kinds of small-grained external changes. Thus, it is a

requirement to identify these modifications and make them available to the transforma-

tion.

3.6.1. Trace of a Transformation

To ensure traceability and to be able to compute actions that decide on the retainment

of changes in the target model, the transformation runtime has to create a transforma-
tion trace. A trace can be seen as a record of the execution of the transformation run,

it stores which rule was triggered by which element from the source model and which

target model elements were produced by its execution. Many transformation approaches

use implicit trace models that are automatically created during the execution of the trans-

formation. For example, the Query/View/Transformation (QVT) [Obj11] specification

states that for the relations as well as the operational language implicit trace classes are

derived from the transformation rules. Other approaches such as triple graph grammars

[HG09] use a so-called correspondence graph that resembles the trace between a source

and a target model. These traces are then used to incrementally execute a transformation,

68

3.6. Detection of Relevant Changes

updating only those elements in the target model where the corresponding elements in

the source model have changed.

The granularity of these links is mostly defined on a per transformation rule basis. For

example, in QVT Relations each relation implicitly defines a trace class that is instan-

tiated each time the relation matches a source model / target model pattern. Hence, if

multiple transformation act on the same models, each of them has its own trace model

that refers to the elements that lie inside the image of the respective transformations.

Alternatively, trace models can be created by explicitly adding additional transforma-

tion rules to the transformation that create, read and update trace model. However, this

technique is less common as it implies a large overhead when writing a transformation.

Based on the transformation trace, changes to the corresponding models can be detec-

ted. As the change detection mechanism used in the approach presented in this thesis

also relies on trace models, and trace models mostly rely on some rule structure in the

transformation, a formal description of the change detection also requires a formal rep-

resentation of rules in transformations. The original formal definition of a transform-

ation (cf. Definition 2.7 on page 25), as presented by Amelunxen et al. [AS07], does

only introduce the notion of a transformation having a left and a right model pattern

that define the transformation. To apply rule based trace models in this formalisation,

a formal definition of a rule based transformation as well as the trace for a rule based

transformation is given below. Based on these definitions the change detection approach

will be defined in later sections.

Definition 3.2 (Rule-Based Transformation). A rule-based transformation is defined
as a transformation where the left and right model patterns are grouped into rules
that are atomic with respect to their usage in the application of the transforma-
tion. For a rule based transformation the function rules ∶ TransformationsMM →
P(TransformationsMM) partitions the left and right model patterns of a transforma-
tion into a sequence of rules, which are pairs of smaller model patterns which represent
the rules of a transformation. Therefore the definition of a rule-based transformation is
given in the following way: T ∶= (Ml,Mr, rules).

69

Chapter 3. Retainment Policies for Model Transformations

For example, the formal representation of the Tbo2db transformation applied to the

business objects Customer and PurchaseOrder from the running example model, given

in Section 3.3, consists of the following left and right model patterns:

lmp(Tbo2db) = {Customer, PurchaseOrder, purchaseOrder, customer}
rmp(Tbo2db) = {CustomerTable, PurchaseOrderTable, FKPurchaseOrder,

FKCustomer}

A partitioning into rules would result in a partitioning of the left model pattern into

the two rules (the relations as they are present in the QVT-R representation of Tbo2db)

rBO2Table and rAssociation2FKColumn where

rules(Tbo2db) = {rBO2Table, rAssociation2FKColumn}
lmp(rBO2Table) = {Customer, PurchaseOrder, Invoice}
rmp(rBO2Table) = {CustomerTable, PurchaseOrderTable}
lmp(rAssociation2FKColumn) = {customer, purchaseOrder}
rmp(rAssociation2FKColumn) = {FKCustomer, FKPurchaseOrder}

The partitioning left and right model patterns given by rules partitions the transform-

ation patterns in a ways such that the right model pattern of each rule is disjoint with the

respective other rules. This is required to keep the semantics of the transformation. If

there would be more than one rule having the right model pattern those element would

be produced multiple times, once for each occurrence in a rule. This would change the

semantics of a transformation producing exactly the model that is represented by its right

model pattern.

In the running example from Listing 3.1, the partitioning of the left and right model

patterns would be done according to the two relations. Each relation then represents

a rule. For example relation BusinessObject2Table, the left model pattern is

defined as

Definition 3.3 (Trace of a Transformation Application). Let MM be a metamodel
and let Ms,Mt ∈ ModelsMM be the source respectively target model of the transform-
ation’s application. Furthermore, let ↝T be the application of the transformation
T ∈ TransformationsMM . Then a trace of a transformation application is a tuple:

Trace = (T,Ml,Mr,Θ, source, target, rule)

70

3.6. Detection of Relevant Changes

where

T denotes the transformation of which the trace is a record,

Ml,Mr denote the source and target models of the transformation application,

Θ denotes a finite set of trace links,

source ∶ Θ→ P(Ml) yields the set of source elements of a trace link,

target ∶ Θ→ P(Mr) yields the set of target elements of a trace link.

rule ∶ Θ→ rules(T) yields the rule from the transformation that was responsible for the
creation of the trace link.

Furthermore, TracesT,MM denotes the set of all possible traces for a given transform-
ation T and metamodel MM .

3.6.1.1. Consistency Rules for the Trace of a Transformation

The information that is stored within a trace model needs to be kept up-to-date when

the transformation performs changes to a target model. The following consistency rules

have to be fulfilled in order to have a consistent trace model that can be used for change

detection. For the trace to be consistent after a transformation run, the following con-

sistency rules need to hold. These rules are given for each change type that is performed

by the transformation during its run.

δ+o ∶ If an element o is added by the transformation, there also needs to be a trace link θ

that refers to the element:

∀r ∈ rules(T) ∶ ∃θ ∈ Θ ∶ rule(θ) = r ∧ o ∈ rightModelPattern(r) → o ∈ target(θ)

The same applies analogously for link additions δ+l,o1,o2 and setting of attribute val-

ues δso,a,v.

δ−o ∶ If an element o is deleted by the transformation also the trace link that referred to

the target element needs to be deleted:

∀r ∈ rules(T) ∶/∃ θ ∈ Θ ∶ rule(θ) = r ∧ o ∈ rightModelPattern(r) → o ∈ target(θ)

The same applies analogously for link removals δ+l,o1,o2 as well as δso,a,v.

71

Chapter 3. Retainment Policies for Model Transformations

δol1,l2 For a change in ordering of links l1, l2 the corresponding order of tracelinks needs

to be adapted accordingly.

∀r ∈ rules(T) ∶ ∀θ1θ2 ∈ Θ ∶ (rule(θ1) = r ∧ rule(θ2) = r

∧ l1 ∈ target(θ1) ∧ l2 ∈ target(θ2)) → (θ1, θ2) ∈ projectOrderL(orderT)

Analogously for δoo,a,v1,v2 using projectOrderV instead of projectOrderL.

• The same rules apply analogously using source(θ) for the source models of a trans-

formation. With the difference that not the transformation applies the changes but

the transformation reacts to the changes that are applied to its source model.

On the other hand, after external changes - either performed by a modeller or by

a different transformation - are applied to a model involved, certain other consistency

rules need to hold. For each type of change the consistency rules for the trace model are

given below where Θ is the set of trace links before the change occurred and Θ′ is the

set of trace links after the change occurred. To realise these rules, first the equivalence

between trace links have to be defined. Definition 3.4 denotes when this is the case.

Definition 3.4 (Equivalence of Trace Links). A trace link θ is equivalent to a tracelink θ′

if both refer to the same rule and either refer to the same source or target model element.

θ ≡ θ′ ⇐⇒
rule(θ) = rule(θ′)
source(θ) = source(θ′) ∨ target(θ) = target(θ′)

Using the definition of trace link equivalence the consistency rules on trace links that

have to hold after the external changes have been performed to a model that is linked in

a trace model can be defined as follows:

δ−oMt ∶ Deleting an element o from the target model results in the removal of o from all

trace links:

∀(θ ∈ Θ, θ′ ∈ Θ′) ∶ θ ≡ θ ∧ o ∈ target(θ) → o /∈ target(θ′)

δ−l,o1,o2Mt ∶ Deletion of a link l from the target model leads to the removal of that link

from all tracelinks that referred to l:

∀(θ ∈ Θ, θ′ ∈ Θ′) ∶ θ ≡ θ ∧ l ∈ target(θ) → l /∈ target(θ′)

72

3.6. Detection of Relevant Changes

δuo,a,vMt ∶ Unsetting of an attribute value v leads to the removal of v from the trace values

of each tracelink that contained that value:

∀(θ ∈ Θ, θ′ ∈ Θ′) ∶ θ ≡ θ ∧ v ∈ traceV alue(θ) → v /∈ traceV alue(θ′)

all other changes: No additional consistency rules are defined for the other changes as

those are either additional changes which are not represented in the trace anyway

(e.g., δ+o) or do not affect the trace (e.g., δol1,l2).

3.6.2. Detecting Model Changes Based on the Trace of a Transformation

External changes to a model can be made at an arbitrary point of time during the mod-

elling process. From the view of a transformation engine changes to the target model

can only be identified as soon as the transformation is re-executed with the given target

model. Thus, in general a change detection can at the earliest be performed at the point

where the transformation is executed a second (n-th, n > 1) time. During this transforma-

tion execution it can be decided whether a certain change in the target occurred. Whether

a change can be detected or not, depends on how fine-grained the trace is created.

The goal of the following change detection definitions is to implement a function

revealing all manual changes to a target model given a target model and a trace model.

Therefore, for the identification of the set of changes that were applied to a target model

we define the function identifyTargetChanges ∶ ModelsMM × TracesT,MM → ChangesMM

which yields the set of manual changes to the target model since the last execution of

the transformation.

In the following a definition of identifyTargetChanges is given based on the changes

that result from the application of identifyTargetChanges to a target model Mt and a trace

Trace↝T .

3.6.2.1. Addition of Objects, Links and Values:

For the detection of additions of objects, links and values in the target model minimum

trace capabilities are required. The storage of trace links, pointing to the source and

target model elements as defined in Definition 3.3, is required. So that after a transform-

ation T was executed the following holds: For each pair of elements es, et where es is

73

Chapter 3. Retainment Policies for Model Transformations

from the source model and et was produced by the transformation in the target model,

there has to exist a tracelink θ that refers to es as source and to et as target.

∀es ∈Ms, et ∈Mt ∣ ((es, et) ∈↝T→ ∃θ ∈ Θ ∣ (source(θ) = es ∧ target(θ) = et))

An addition of an object o to a target model Mt, can be identified in the following way:

Let Ms be the source model of the transformation T resulting in model Mt and Trace↝T

be the trace of the application of T to Ms. Then identifyTargetChanges will return a

change δ+o (addition of element o to Mt) which has occurred iff

identifyTargetChanges(MT ,Trace) = δ+o ⇐⇒
∃es ∈Ms, r ∈ rules(T) ∣
(es ∈ leftModelPattern(r) ∧ o ∈ rightModelPattern(r) → ∀θ ∈ Trace ∣

rule(θ) = r → (es ∈ source(θ) → o /∈ target(θ)))

Change detection for δ+l,o1,o2 (addition of a link l which goes from o1 and o2) is defined

analogously.

A change of an attribute value v can be identified analogously if the value of the attrib-

ute was not set initially. This kind of change is denoted as δ̄so,a,v. identifyTargetChanges

identifies a change δso,a,v (setting of attribute a of element o to value v) as shown below.

identifyTargetChanges(M ′t ,Trace↝T) = δ̄so,a,v ⇐⇒

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

δso,a,v, if value(a, o) = ∅
∅, else

where o ∈ Oi ∧ a ∈ attributes(class(o)) ∧ v ∈ V ′i .

3.6.2.2. Changed Primitive Values

For the identification of changes to primitive valued attributes the value of the property

as it was set by the transformation needs to be stored in the trace as well. Thus we need

to extend the Definition 3.3 of Trace by replacing Equation 3.3 with the following:

Definition 3.5 (Trace with Attribute Values).

Trace = (T,Ml,Mr,Θ,TV , source, target , traceValue)

74

3.6. Detection of Relevant Changes

where

TV ⊆ Vr is a finite set of attribute values that where set during the application of the
transformation,

traceValue ∶ {θ ∈ Θ ∣ target(θ) ∈ Vr} → TV yields the attribute value that is linked by a
given trace link θ.

Now it is possible to also detect attribute value changes where the value of the attribute

was set before. This kind of change is then defined as Δs
o,a,v = Δs

o,a,v ∖ δ̄so,a,v. The

detection then works as follows: A change δso,a,v has occurred iff

identifyTargetChanges(MT ,Trace) = δso,a,v ⇐⇒
∃es ∈Ms ∣ (es ∈ leftModelPattern(T) ∧ v ∈ rightModelPattern(T)∧

∀θ ∈ Trace ∣ es ∈ source(θ) → (v ∈ target(θ) ∧ v ≠ traceValue(θ)))

Changes δuo,a,v (unsetting of an attribute a of element o which had value v) can be

identified analogously.

3.6.2.3. Deletion of Elements from the Model

Robustness to dangling links is needed to detect deleted elements. If a trace holds a direct

link to the target element and this elements gets deleted, the trace might be inconsistent.

However, to be able to detect the deletion the trace must be kept in that way, having

either a dangling reference or a NULL value for the target element. Thus it must be

possible that ∃θ ∈ Θ ∣ (target(θ) = ∅). If this is possible depends to a large extent on

the model repository where the trace links are stored. In some implementations it might

be the case that inconsistent links are not kept but immediately deleted after they are

detected.

A change δ−o can be detected in the following way: A change occurred iff

identifyTargetChanges(M ′t ,Trace↝T) = δ−o ⇐⇒
where

o ∈ O′t ∣ ∃es ∈Ms, r ∈ rules(T) ∣ (es ∈ leftModelPattern(r) ∧ o ∈ rightModelPattern(r)∧
∃θ ∈ Trace ∣ es ∈ source(θ) → target(θ) = ∅ ∧ rule(θ) = r)

Changes δ−l,o1,o2 (removal of a link l from element o1 to element o2) can be identified

analogously.

75

Chapter 3. Retainment Policies for Model Transformations

Furthermore, those inconsistent traces should not be deleted upon re-execution of the

transformation as long as the deletion should be retained. Otherwise, if the trace is de-

leted during a subsequent transformation run because it was inconsistent the information

that once an element existed will be lost and it will probably re-created if the transform-

ation is re-executed the next time.

3.6.2.4. Ordering

To be able to compare the ordering of elements against a previous version this ordering

needs also to be reflected within the trace. Thus Definition 3.5 has to be extended in the

following way:

Definition 3.6 (Trace with Attribute Values and Ordering).

Trace = (T,Ml,Mr,Θ,TV , source, target , traceValue, orderT , projectOrderL,

projectOrderV)

where

orderT ⊆ Θ ×Θ is a strict partial order defined on Θ where (θ1, θ2) ∈ orderT ⇐⇒ θ1

occurs directly before θ2. This defines the order in which the model objects, links
or values where set in the target model according to the transformation.

projectOrderL ∶ Θ ×Θ→ L × L projects the order as given in the tracelink to a strict
partial order of links.

projectOrderV ∶ Θ ×Θ→ V × V projects the order as given in the tracelink to a strict
partial order of attribute values.

Thus, it is now possible to detected changes in ordering, i.e. δol1,l2 and δoo,a,v1,v2 . A

change δol1,l2 can be detected in the following way:

identifyTargetChanges(MT ,Trace) = δol,i ⇐⇒
∃l1, l2 ∈ Lt ∣ (∀θ1, θ2 ∈ Trace ∣ (

l1 ∈ target(θ1) ∧ l2 ∈ target(θ2) ∧ (l1, l2) ∈ orderL→ (θ1, θ2) /∈ orderT))

Changes δoo,a,v1,v2 can be identified analogously.

76

3.6. Detection of Relevant Changes

3.6.2.5. Identification of All Changes to a Target Model

Lemma 3.1. Given the above change detection for all types of changes δ, it can be
inferred that a detection of all types of atomic changes can be performed if the trace
model is a rich enough.

Proof. The proof of correctness of Lemma 3.1 relies on the change classifcation given

by Hettel in [HLR09] which is also given in Section 2.1.1.2 on page 23. Per definition

identifyTargetChanges is given for each kind of atomic change δ and its target domain

is the set of all possible changes made to such models ChangesMM . As given by the

definition of Model given in Definition 2.3 a model is a tuple of the sets O,L and V ,

the strict partial orders orderL, orderV , as well as the definition of several functions.

Assuming the functions do not change at all, changes can only occur within the sets

for elements O, links L and attribute values V and the orders orderL, orderV . Further

assuming an atomic change consists at most of the addition or removal of an element

of one of the sets or the change of order of two elements in one of the orders we can

conclude by the following that all changes are mapped by the different types of δ given

by Definition 2.4 as shown below.

δ+oO =O ∪ o

δ−oO =O ∖ o

δ+l,o1,o2L =L ∪ l

δ−l,o1,o2L =L ∖ l

δso,a,vV =V ∪ v

δuo,a,vV =V ∖ v

δol1,l2orderL =orderL ∖ (l2, l1) ∖ ⋃
(la,lb)∈orderL

(lb = l2 ∨ la = l1) ∪ (l1, l2)∪

⋃
{(lb,l1),(l2,la)}

((la, lb) ∈ orderL)

δov1,v2orderV =orderV ∖ (v2, v1) ∖ ⋃
(va,vb)∈orderV

(vb = v2 ∨ va = v1) ∪ (v1, v2)∪

⋃
{(vb,v1),(v2,va)}

((va, vb) ∈ orderV)

77

Chapter 3. Retainment Policies for Model Transformations

As ChangesMM can be parted into disjoint sets of changes by their types

ChangesMM = Δ+o ∪Δ−o ∪Δ+l,o1,o2 ∪Δ−l,o1,o2 ∪Δo
l1,l2

∪Δs
o,a,v ∪Δu

o,a ∪Δo
o,a,v1,v2

and identifyTargetChanges is surjective w.r.t. these sets, it is possible to conclude that

identifyTargetChanges is surjective concerning ChangesMM .

Lemma 3.2. The change detection for a given tuple of source model Ms, target model
M ′t and a trace model with attribute values and ordering Trace (as defined in Definition
3.6). The given change detection approach finds a deterministic set of atomic changes
that were applied to get from Mt to M ′t . Given that the change lies in the image of the
transformation T . Formally this is expressed by:

identifyTargetChanges(M ′t ,TraceT) = δ ⇐⇒ M ′t = δMt

Proof. The proof for correctness of Lemma 3.2 can be partitioned into each subtype

of the change to identify δ. Because of Lemma 3.1 a change may only be one of the

given types. Thus we identify the effect of each change event specific for each change

detection definition given for identifyTargetChanges .

Generally, each partial definition of identifyTargetChanges operates only on one of

the disjoint sets O,L, V as well as the Trace model. Therefore, we can show that as a

distinct atomic change δ also only modifies one of these sets at the same time (cf. proof

for Lemma 3.1) identifyTargetChanges will also only result in exactly one identified

change. In the following it will be shown that this is true for each kind of change δ.

Furthermore, it will be shown that the identified change is always the correct one. Each

partial definition of identifyTargetChanges will be applied to Mt to show that.

Given a change δ+o that adds the model element o to the target model Mt resulting in

M ′t the result of the identifyTargetChanges function is as follows.

Per definition the application of δ = δ+o to Mt will result in M ′t =Mt ∪ {o}. The partial

definition if identifyTargetChanges given for this type of change will therefore evaluate

as follows:

identifyTargetChanges(MT ,Trace) = δ+o ⇐⇒
∃r ∈ rules(T) ∣ (∃es ∈Ms ∣ es ∈ leftModelPattern(r) ∧ o ∈ rightModelPattern(r)) →

(∀θ ∈ Trace ∣ (rule(θ) = r ∧ es ∈ source(θ)) → o /∈ target(θ))

78

3.6. Detection of Relevant Changes

Through the trace consistency rules for changes of type δ+o defined in Section 3.6.1.1 it

can be followed that the trace model is not affected by this type of change. Therefore,

no trace link can refer to o: ∀θ ∈ Θ ∣ o /∈ target(θ). Combined with the previous formula

it can be followed:

identifyTargetChanges(MT ,Trace) = δ+o ⇐⇒
∃r ∈ rules(T) ∣ (∃es ∈Ms ∣ es ∈ leftModelPattern(r) ∧ o ∈ rightModelPattern(r)) →

(∀θ ∈ Trace ∣ (rule(θ) = r ∧ es ∈ source(θ)) → true) ⇐⇒
∃r ∈ rules(T) ∣ (∃es ∈Ms ∣ es ∈ leftModelPattern(r) ∧ o ∈ rightModelPattern(r)) → true

The change detection only has to work for changes that lie in the image of the trans-

formation T . Therefore, it can be assumed that the element under change (e.g., o for a

change δ+o) needs to be in the rightModelPattern of T . From this assumption it can be

followed that ∃r ∈ rules(T) ∣ e ∈ rightModelPattern(r). This leads to:

∃r ∈ rules(T) ∣ (∃es ∈Ms ∣ es ∈ leftModelPattern(r) ∧ o ∈ rightModelPattern(r)) → true

Due to the implication to true it can be deduced that the expression is always true, which

means that identifyTargetChanges(MT ,Trace) = δ+o holds for a change δ+o .

The proofs for the change identification of the other types of change work analogously.

Thus it can be argued, that if a tracing mechanism that is employed by a model trans-

formation engine supports the traces as defined in Definition 3.6 all kinds of atomic

changes can be detected.

3.6.2.6. Source Model Changes

A source change can be identified in the following through the comparison of the original

target model and the target model as it would be produced by the re-application. After

identifying all target changes it is possible to get the original target model Mt by the

inverse application of the changes to the changed target model M ′t . This is denoted as:

79

Chapter 3. Retainment Policies for Model Transformations

Mt = M ′tΔt where Δt = identifyTargetChanges(M ′t). A source model change δ+os, with

os ∈Ms occurred iff

↝T (Ms) ∖M ′tΔt ∪M ′t∖ ↝T (Ms)Δt ≠ ∅

For the identification of the set of changes that were applied to a source model we

define the function sourceChanges ∶ModelsMM ×TracesT,MM → ChangesMM which yields

the set of source changes since the last execution of the transformation.

3.7. Retainment Policies

To be able to provide means for specifying rules for target model retainment, a

metamodel for so called Retainment Policies was derived. This metamodel, which

is depicted in Figure 3.5, provides the class RetainmentPolicy. A Retainment-
Policy can be seen as a rule on how a transformation should handle elements in

the target model. A RetainmentPolicy defines which kind of retainment should be

applied during the execution of the transformation. The different available kinds

are enumerated by RetainmentKind as depicted in Figure 3.5. The usage of

a specific RetainmentKind within a RetainmentPolicy can be set by using the

retainChanged attribute of RetainmentPolicy. Note that RetainmentPolicy defines

the transformation behaviour on a coarse-grained level. This is for example sufficient

if all kinds of changes should be treated equally or if only a single valued property

should be annotated with the policy. For the definition of more fine grained rules, the

sub-class TypeSpecificRetainmentPolicy is used. This class allows to define

RetainmentKinds for several types of changes such as addition, removal or changes

in ordering. Especially for the use with multi-valued properties in the target model that

should be controlled using the policy a TypeSpecificRetainmentPolicy needs

to be used.

A RetainmentPolicy can be applied in different ways to either the transformation

or specific elements in the target model. Thus, a retainment policy is considered a

loosely coupled rule that in conjunction with a target and a transformation is used

to decide whether manual changes to target models are overwritten once the trans-

formation is re-executed. In practice, the policy may either be attached to elements

from the target model or the transformation itself. Figure 3.6 illustrates the usage of

RetainmentPolicies that are defined on the transformation as well as on the tar-

80

3.7. Retainment Policies

sourceAndTarget : Boolean
sourceOnly : Boolean
targetOnly : Boolean

RetainmentKind

id : String
retainChanged : RetainmentKind
synchronizeChildren : Boolean
reorderingStrategy : ReorderingStrategyKind

RetainmentPolicy

retainAdded : RetainmentKind
retainDeleted : RetainmentKind
retainOrdering : RetainmentKind

TypeSpecificRetainmentPolicy

retainAll : Boolean

RetainmentScope

1 1
scopepolicy

RuleRetainmentScope ModelRetainmentScope

Rule
(from M2M Metamodel)

Element
(from MOF Metamodel)

*rules *elements

STRICT
NON_STRICT

<<Enumeration>>
ReorderingStrategyKind

Figure 3.5.: Retainment Policies Metamodel

get model. Policies that are defined on the transformation implicitly map their scope

to the respective elements which are matched or created by the transformation rule to

which the policy is attached. In the running example, a retainment policy attached to the

BusinessOject2Table relation would imply that all instances of Table are in the

scope of this retainment policy. Policies that are defined directly on the target model are

more specific as they are attached to specific elements for which they are then respons-

ible. Again, taken from the running example, a policy attached to the InvoiceTable

would only be valid for exactly this element. All other instances of Table would not

be in the scope of the retainment policy. Thus, a reasonable default behaviour is that

policies defined on target model elements overrule those defined in the transformation.

Using this rule it is, for example possible to define a generic retainment policy for the

BusinessOject2Table handling all instances of Table and then specifying a spe-

cifically different retainment policy for the InvoiceTable. Then this specific policy

would overrule the generic one from the transformation for this specific Table.

As depicted in Figure 3.5 an additional attribute synchronizeChildren

can be specified for a retainment policy. This option is a shortcut to specify that

composite children of the annotated element or rules that get called to set sub-

properties within the containment hierarchy of the corresponding elements should

be handled by the same retainment policy as the annotated element. If, in the

running example, synchronizeChildren is set for a policy attached to the

BusinessOject2Table relation this policy would also be used for all columns

(because of the composite association between Table and Column) of the Tables.

If an ordering change should be retained or reapplied in the target model different

strategies can be used. First, a strict reordering where elements, that where added in

addition to those that were already ordered, are moved to the end of the order. And

81

Chapter 3. Retainment Policies for Model Transformations

second, a non-strict ordering which denotes that additional elements are kept at their

relative position and only the order of preexisting elements is retained in relation to each

other. A reordering strategy is defined by the reorderingStrategy attribute of a

RetainmentPolicy which is set to a literal of the ReorderingStrategyKind

enumeration. A more detailed description on the reordering strategies is given in Section

3.9 where the formal semantics of the reordering are given.

A RetainmentPolicy can have two different types of scopes. Either its scope is defined

using a RuleRetainmentScope which specifies for which rules of a transformation

the RetainmentPolicy should be applied or it is directly attached to specific areas of the

target model which should be retained in the specified way. The latter is specified by

using a ModelRetainmentScope which references the elements that should be pro-

tected by the RetainmentPolicy. A RetainmentScope can additionally be configured

in two different modes: (I) Having set retainAll to false, which specifies that each

element in the scope is treated separately by the policy. (II) Having set retainAll to

false, which denotes that as soon as a single element within the scope is considered to

be retained, all elements within same scope are also retained in the same way. The lat-

ter is useful, for example, assuming a transformation that generates an initial behaviour

model such as an activity model in UML. As soon as a modeller manually modifies this

model and overwrites parts of the automatically generated activities the whole activity

model should be considered to be retained in subsequent transformation runs. Other-

wise, the transformation might destroy the modelled semantics even if it only overwrites

changes that are not directly modified by the modeller.

For cases where a policy is specified on multiple elements and they contradict each

other, a (semi-)automatic disambiguation has to be performed. This may either be

done by configuring the transformation execution to use precedence rules, for example,

“use target model policies only” or “prefer source model policies over transformation

policies”. A comprehensive analysis of conflicts and precedence rules is presented in

Section 3.10.3.

During the the re-execution of the transformation, the RetainmentPolicies that

are in the scope of the current execution are combined with the actual transformation.

The transformation rules are modified according to the current policies and yield a new,

temporary transformation. The actual semantics of the combination of a transformation

with a retainment policy are described in Section 3.9. To be able to detect and react to

target model changes the trace model of the previous transformation execution needs to

82

3.8. Retainment Kinds

Source
Model S1 Transformation T1

Image
of T1

RP1
ALWAYS

RP2
ALWAYS

Areas handled by
RetainmentPolicies

RP1
ALWAYS

RetainmentPolicy
provided by T1

RP2
ALWAYS

RetainmentPolicy
provided by modeller

Modeller

Target Model

Figure 3.6.: Application of a transformation with specified RetainmentPolicies. Retainment-

Policy RP1 is provided by T1 whereas RP2 is explicitly defined by the modeller.

Both policies cover a certain part of the target model. RP1 as well as RP2 are con-

figured to retain any kind of change applied to the target model.

be consulted as an additional input for the modified transformation. Figures 3.7 and 3.8

illustrate this process.

Based on the given metamodel it is furthermore possible to define the formal semantics

of each the retainment policies. First, the semantics of each RetainmentKind will be

defined in Section 3.8. Then the formal semantics of each kind will in conjunction with

the different attributes of TypeSpecificRetainmentPolicy will be elaborated.

These formal definitions are then used to reason about completeness as well as conflict

resolution of the policies.

3.8. Retainment Kinds

Before a transformation is re-executed there may exist several states of the source and

the target model: the source model, the target model, or both models have changed. To

be able to specify in which of the cases an element in the target model should be retained

rather than overwritten by the transformation, the combination of each of the cases needs

to be analysed. For each of these cases one Retainment Kind will be presented that allows

the retainment of the target model for the corresponding cases.

For example, as illustrated in Figure 3.9, starting from a source model Ms and applying

the transformation T will result in target model Mt. Then external modifications Δ are

applied to Mt yielding a modified target model M ′t . Then the T is re-executed based on

83

Chapter 3. Retainment Policies for Model Transformations

Source
Model S1

Image
of T1

External Changes

RR1

RR2 Modeller

Target Model

Trace links created
by execution of T1

Figure 3.7.: Elements in the target model changed. RetainmentPolicy RP1 is combined with

T1 to yield a modified transformation that is then used to update the model elements

of the target model in this scope. The same applies for RP2 and T1. The Trace Model
that was created during the previous transformation execution is used as additional

input for the transformation when creating the temp transformation in the next step.

Source
Model S1

Image
of T1

Target Model

T1

T1
RR1

T1
RR2

RP1

RP2

External changes inside RPs
retained according to RPs

External changes outside
RPs removed

Trace links of T1
serve as additional input

Figure 3.8.: Deriving temporary transformations. The result of the re-execution of T1 is that

external changes to the target model that were not protected by retainment policies

were overwritten by the transformation (T1) whereas those parts with a Retainment-
Policy applied where retained (using the temporary transformations TRP1

1 and TRP2
1).

84

3.8. Retainment Kinds

Ms

T
� Mt

M ′t

Δ
�T �

M̄t

�

Figure 3.9.: Example scenario: the target model Mt is the result of the application of T to Ms.

A change Δ is applied to Mt resulting in M ′

t and the transformation is reexecuted

using Ms as source and M ′

t as target model. The final result is M̄t.

target changed target unchanged

source changed
Ms

T
� Mt

M ′s

� T
� M ′t

�
Ms

T
� Mt

M ′s

�
T
�

source unchanged
Ms

T
� Mt

M ′t

�T
�

Ms

T
� Mt

T
�

� �
Table 3.1.: Different combinations of changes to source or target models.

the unchanged source model Ms now having M ′t as result. The application of T to M ′t

will then result in the final target model M̄t.

Table 3.1 gives an overview on the possible combinations of source and target model

changes. The final resulting model M̄t is omitted in this table. As this table shows, there

are four different scenarios in which a transformation can be re-applied. For each of

these scenarios the transformation should be able to react by either applying the result of

T or by retaining the current target model according to the retainment policies. However,

the scenario of source unchanged / target unchanged can be omitted in this analysis as

if both models are unchanged. The transformation would result exactly in Mt again and

the result would be Mt = M̄t. Therefore, the RetainmentKinds will be characterised by

the way how these three different scenarios are handed.

Having three different types of scenarios (source changed, target changed, source/tar-

get changed) and two types of reactions to these scenarios (retain target, apply trans-

formation) results in 23 different combinations and thus in 8 different RetainmentKinds.

85

Chapter 3. Retainment Policies for Model Transformations

Retain target n
ev

er

if
ta

rg
et

ch
an

g
ed

ex
cl

u
si

v
el

y

if
so

u
rc

e
ch

an
g
ed

ex
cl

u
si

v
el

y

if
so

u
rc

e
an

d
ta

rg
et

ch
an

g
ed

if
so

u
rc

e
xo

r
ta

rg
et

ch
an

g
ed

if
ta

rg
et

ch
an

g
ed

if
so

u
rc

e
ch

an
g
ed

al
w

ay
s

Short Symbol ∅ � � ∎ �� ∎� �∎ �∎�

C
h
an

g
e

S
ce

n
ar

io
s

Ms

T
� Mt

M ′s

� T
� M ′t

� T T T −T T −T −T −T

Ms

T
� Mt

M ′s

�
T
� T T −T T −T T −T −T

Ms

T
� Mt

M ′t

�T
� T −T T T −T −T T −T

Table 3.2.: Possible reactions when re-executing a transformation depending on different com-

binations of changes to source or target models. T means the transformation will

overwrite a target change. −T denotes that the current target model element will be

retained.

These possible reactions when re-applying T are shown in Table 3.2 for each of the

scenarios. A reaction is either the application of T which is denoted by a cell having T

as value or, if the target model is retained, the reaction is denoted by −T . The retention of

changes in the target model can be understood intuitively, since these elements will be

retained as they are. However, for those cases where the target model should be retained

and there are no changes in the target model (row 2 in Table 3.2), the understanding is

a bit more complicated. In this case a retention of the target model means that although

changes to the source model have been made, they are not synchronised with the tar-

get model; the target model will be in the state as it was after the last execution of the

transformation even though no external changes have been applied to it.

A RetainmentKind represents exactly one of the combinations given in Table 3.2.

As illustrated in Figure 3.10, each RetainmentKind has three attributes defining in

86

3.9. Formal Semantics of Retainment Policies

sourceAndTarget : Boolean
sourceOnly : Boolean
targetOnly : Boolean

<<Enumeration>>
RetainmentKind

Figure 3.10.: The RetainmentKind class in detail.

which scenario which transformation reaction should be applied. This is comparable

to QVT-R enforce, checkonly advices but more flexible since models changes of

both models (source and target) are supported. The attribute sourceAndTarget is

used to specify the reaction to changes where the source and the target model have

changed at the same time. The attributes sourceOnly and targetOnly specify the

reaction when only the source or the target model changed respectively. For example

a targetChangedExclusively(�) RetainmentKind would be represented

as an instance of RetainmentKind having set sourceAndTarget = false,

sourceOnly = false and targetOnly = true.

An overview on the application of each of the presented RetainmentKinds is illustrated

in Figure 3.11.

3.9. Formal Semantics of Retainment Policies

The formal semantics of the different RetainmentKinds when used in a Retain-

mentPolicy are specified below. As introduced in Figure 3.1, Ms denotes the source

model, M ′s denotes the modified source model respectively and M ′t denotes the manu-

ally changed target model. The final target model, being the result of the re-executed

transformation with applied retainment policies, is denoted as M̄t. TraceT denotes the

trace of the transformation execution that was recorded for the previous transformation

execution. As a prerequisite for the definitions of the formal semantics of a Retainment-
Policy, Definitions 3.7 and 3.8 introduces the formal representation of a RetainmentKind
and a RetainmentPolicy.

Definition 3.7 (Retainment Kinds). The set of retainment kinds K is defined as

K = {⊥,∅,�,�,∎,��,∎�,�∎,�∎�}
87

Chapter 3. Retainment Policies for Model Transformations

Legend

Ms

E1

E2

E3

E4
Mt

E’1
E’2

E’3
E’4

M

M

Never

M

Ms

E1

E2

E3

E4
Mt

E’1
E’2

E’3
E’4

M

M

M

TargetEx

E’’2

E’’4
M

E’’4
M

E’’2

Ms

E1

E2

E3

E4
Mt

E’1
E’2

E’3
E’4

M

M

M

SourceEx

E’’4
M

M

Ms

E1

E2

E3

E4
Mt

E’1
E’2

E’3
E’4

M

M

M

SourceAndTarget

M

M
E’’2

Ms

E1

E2

E3

E4
Mt

E’1
E’2

E’3
E’4

M

M

SourceXorTarget

Ms

E1

E2

E3

E4
Mt

E’1
E’2

E’3
E’4

M

M

M

TargetChanged

E’’4
M

M

E’’2

Ms

E1

E2

E3

E4
Mt

E’1
E’2

E’3
E’4

M

M

M

SourceChanged

M

M

Ms

E1

E2

E3

E4
Mt

E’1
E’2

E’3
E’4

M

M

M

M modified

E’’ overwritten
from source

reverted

Always

M

M

M

M

M

E element

tracelink

M model

Figure 3.11.: The RetainmentKinds applied in a minimal example showing all possible

combinations.

88

3.9. Formal Semantics of Retainment Policies

where

⊥ is the NotSet RetainmentKind,

∅ is the never RetainmentKind,

� is the targetChangedExclusively RetainmentKind,

� is the sourceChangedExclusively RetainmentKind,

∎ is the sourceAndTargetChanges RetainmentKind,

�� is the sourceXorTargetChanged RetainmentKind,

∎� is the targetChanged RetainmentKind,

�∎ is the sourceChanged RetainmentKind,

�∎� is the always RetainmentKind.

The application of a retainment kind in a transformation or a single transformation
rule is denoted as ↝k

T or ↝k
r respectively. So for example, ↝∎�T means that for the

application of transformation T the targetChanged RetainmentKind is applied,
which means that all external changes to the target model will be retained.

Definition 3.8 (Retainment Policy). A RetainmentPolicy R is a tuple

R = (k, s,Scope, reorderingStrategy, retainAll)

where

k ∈ K is the RetainmentKind that defines the reactions to the different change scenarios.

Scope ⊆Ms ∪Mt = Scopem ∪ Scoper is the scope of model elements in the source and tar-
get model Scopem and the rules of a transformation to which the policy is applied
Scoper. For the case of a ModelRetainmentScope these are exactly the elements
that are defined using the elements property resulting in. For a RuleRetainment-

Scope the scope Scope is produced by a projection using the image of the rules
defined by the RuleRetainmentScope. In this case the scope Scoper of a rule r is
derived as follows:

Scoper = ⋃{e ∈ ∪Mt ∣ e ∈ rightModelPattern(r)}

Scoper is produced by building the unification of the elements that are in the image
of the corresponding rule.

reorderingStrategy ∈ reorderingStrategies defines the reordering strategy to be used
by the policy. The set reorderingStrategies is defined as {strict, non − strict}.

89

Chapter 3. Retainment Policies for Model Transformations

retainAll ∈ B defines whether a single change in the scope will cause the whole scope
to be treated as changed.

Eventually, a decision on the retainment of target model elements is always based on:

• changes in the source model Δs,

• changes in the target model Δt,

• the transformation that is executed T as well as

• the retainment policy R which is responsible for the combination of Δs,Δt and T .

If more than one RetainmentPolicy matches an element in its scope conflicts may occur.

Section 3.10.3 gives a detailed description on how these conflicts are handled and solved.

In the following sections it is assumed that no conflicts are present or that they have

already been resolved.

Running Example: For purposes of illustration, a set of changes is applied to the

sample source and target models given in Section 3.3. These changes will be used in the

explanations of the policies semantics. The source model is changed in the following

way:

• δsPurchaseOrder,name,“PurchOrd” ∶ Setting of the name attribute of PurchaseOrder to

“PurchOrd”.

• δ+Address ∶ The creation of a new BusinessEntity Address.

• δ−purchaseOrder, δ
−
∶TypeDefinition, δ

−
C2POpo,CustomerMakesPurchaseOrders,purchaseOrder,

δ−poTD,purchaseOrder,poTd, δ
−
TDPO,poTD,PurchaseOrder, ∶ Deletion of the purchaseOrder

AssociationEnd including its TypeDefinition and the its links.

The changes applied to the target model are the following:

• δsPurchaseOrderTable,name,“POTable” ∶ Setting of the name attribute of PurchaseOrderT-

able to “POTable”.

• δ−FKBillFor ∶ Deletion of the Column FKBillFor from the Table InvoiceTable. The

corresponding consistent change is

∇δ−FKBillFor
= {δ−FKBillFor , δ

−
InvoiceTable2FKBillFor,InvoiceTable,FKBillFor}

90

3.9. Formal Semantics of Retainment Policies

name = „Customer“

Customer :
BusinessEntity

upper = 1

: TypeDefinition

name = „customer“

customer :
AssociationEnd

Name = „CustomerMakesPurchaseOrders“

CustomerMakesPurchaseOrders :
Association

name = „PurchaseOrd“

PurchaseOrd :
BusinessEntity

lower = 1
upper = 1

: TypeDefinition

name = „billFor“

billFor : AssociationEnd

Name = „InvoiceForPurchaseOrder“

InvoiceForPurchaseOrder : Association

upper = 1

: TypeDefinition

name = „invoice“

invoice: AssociationEnd

name = „Invoice“

Invoice : BusinessEntity

name = „CustomerTable“

CustomerTable : Table

name = „POTable“

POTable : Table

name = „InvoiceTable“

InvoiceTable : Table

name =
„FKPurchaseOrder“
isKey = true
Type = String

FKPurchaseOrder :
Column

name =
„FKCustomer“
isKey = true
Type = String

FKCustomer :
Column

name = „FKInvoice“
isKey = true
Type = String

FKInvoice : Column

name = „FKBillFor“
isKey = true
Type = String

FKBillFor : Column

S
ou

rc
e

M
od

el
Ta

rg
et

 M
od

el
name = „Address“

Address :
BusinessEntity

upper = -1

poTD : TypeDefinition

name = „purchaseOrder
“

purchaseOrder :
AssociationEnd

name =
„FKContactPerson“
isKey = true
Type = String

FKContactPerson :
Column

Figure 3.12.: Example model showing source and target model of a business entity model to

relational database transformation after they were changed externally. Light grey

elements with crosses were deleted. Elements in dark grey were changed or added.

which includes the removal of the link between the InvoiceTable and

FKBillFor.

• δ+FKContactPerson ∶ Creation of a new Column FKContactPerson.

• δ+cToCp,CustomerTable,FKContactPerson ∶ Linking of FKContactPerson to the columns

of CustomerTable.

These changes are illustrated in Figure 3.12, where light grey elements with crosses

were deleted. Elements in dark grey were changed or added.

3.9.1. Determination of Change Sets

Derived from the three basic scenarios, shown in Table 3.2, for source and/or target

model changes, it is possible to define certain types of change sets. These change sets
are given as complex changes of the form Δ

addition/deletion,source/target
type that can be applied

91

Chapter 3. Retainment Policies for Model Transformations

to the modified target model M ′t to apply or revert a certain type of change. Ms and

M ′s denote the source model, modified source model respectively and M ′t denotes the

manually changed target model.

Changes can either be applied to the source model, then the transformation translates

them into the target model. alternatively, the target model can be changed directly by

external manipulations. For the determination of the change sets, it needs to be iden-

tified which elements in the target model would result from changed elements in the

source model, after the transformation would have been re-executed, and which ele-

ments were externally changed. If an element e is identified to be in the set of changes

sourceChanges(M ′s,TraceT) or identifyTargetChanges(M ′t ,TraceT) it is either an addi-

tion of e to, a removal of e from a model M or a re-ordering of links or values within the

model. Considering each of the cases separately results in the building blocks described

below. The change sets defined here will then serve as basis for the definition of the

different RetainmentKinds.

To account for the consistency of the model to which the changes are applied the

consistentChanges function is applied to each of the different change sets. This will

include changes such as the deletion of links when one if its linked elements is deleted

in the set of changes.

The following change sets can be distinguished:

1) Deletion of model elements or links or unsetting of attribute values (δ−o , δ−l,o1,o2 , δ
u
o,a,v):

According to the trace model consistency rules defined in Section 3.6.1.1 on page 71

a deletion of an element from a model will also result in the deletion from every trace

link that referenced that element. Thus, for any deletion type of change δ−o or δ−l,o1,o2 ,

the source or target of the trace link will be empty; source(θ) = ∅ or target(θ) = ∅
respectively. Assuming that there are no external modifications to the trace links,

every trace link having an empty source or target can be considered an indicator

of a change on the source respectively target side. From these detected changes,

depending on whether the change occurred on the source or target model, it is now

possible to determine the effect such a change has on the target model:

a) Target deletion due to source change: A model element o that should be deleted

from the target model due to a change on the source model can be identified by

analysing the transformation trace. This type of change is depicted in Figure 3.13.

If o is in target(θ) of a trace link θ it was once created by a certain rule r = rule(θ)
of the transformation T . During the application of the transformation, firstly, the

92

3.9. Formal Semantics of Retainment Policies

(Incremental)
Reexecution of T1

Changes Leads to deletion
changes in

target model

MtMs

Figure 3.13.: Deletion in target model resulting from a source model change.

model element o will be deleted if the source of the trace link is empty due to a

change on the source model side. Secondly, the element o will also be deleted if

source(θ) is modified in a way that it is not anymore in the source model pattern2

of r. In conclusion, the changes that are a deletion of a model element in the target

Δ
−,sourceChanges
o due to changes in the source model are given as follows:

Δ−,sourceChanges
o =consistentChanges({δ−o ∈ Δ−o∩ ↝T (M ′s,M ′t) ∣ ∃θ ∈ Θ ∣ (target(θ) = o

∧ (source(θ) = ∅ ∨ source(θ) /∈ leftModelPattern(rule(θ))})

The set of deletion changes that are caused by changes to the source model

Δ
−,sourceChanges
o is determined by building the intersection between the set of all

possible model element deletion changes Δ−o and the set of changes resulting

from the reapplication of the transformation ↝T (M ′s,M ′t). From this set, those

changes are taken for which exists a tracelink that points to the corresponding

model element in the target model (target(θ) = o) but the source element is either

the empty set (source(θ) = ∅) or has left the source image of the transformation

rule (/∈ leftModelPattern(rule(θ)).
The same applies analogously for links and results in Δ

−,sourceChanges
l,o1,o2

and attribute

values Δ
u,sourceChanges
o,a,v .

Running Example: Applied to the changes performed in the running example

this would result in

Δ−,sourceChanges
o = {δ−FKPurchaseOrder, δ

−
cToPO,CustomerTable,FKPurchaseOrder}

as a source change occurred δ−purchaseOrder which led to the nullification of the ex-

isting tracelink θpo from purchaseOrder to FKPurchaseOrder, in turn, resulting in

source(θpo) = ∅. Therefore, the corresponding target element FKPurchaseOrder

2See for example the execution semantics of TGGs [AS07] or QVT [Obj11]

93

Chapter 3. Retainment Policies for Model Transformations

would be considered to be deleted by the transformation. To ensure consistency

consistentChanges applied to this change will also include the deletion of the

attached link δ−cToPO,CustomerTable,FKPurchaseOrder into the change set.

b) External target deletion: A model element o that was deleted in the target model

can be detected using identifyTargetChanges defined in the change detection ap-

proach in Section 3.6.2. Figure 3.14 illustrates this type of change. Thus, these

changes Δ
−,targetChanges
o are given as:

Δ−,targetChanges
o = consistentChanges(Δ−o ∩ identifyTargetChanges(M ′t ,TraceT))

The set of deletion target changes is determined by computing the consistent-

Changes of the intersection of the set of all possible model element addition

changes Δ+o with the set of external changes that have been identified in the tar-

get model using identifyTargetChanges . However, as these changes are already

applied to the target model, additionally the possibility to let the application of

the transformation undo these changes needs to be provided by the Retainment-
Policy approach. Due to the trace consistency semantics (cf. Section 3.6.1.1)

and the unique object identity (cf. assumptions in Section 3.4) it is not possible

to reconstruct a deleted object completely only using existing traces. However,

it is possible to re-apply the transformation (↝r (M ′s,M ′t)) to the corresponding

source element for which the deleted target model element was once created. The

inversion of these changes is then given as:

Δ−,targetChanges,−1
o = consistentChanges(⋃

r∈rules(T)

δ ∈ Δ+o∩ ↝r (M ′s,M ′t) ∣

∃θ ∈ Θ ∣ target(θ) = ∅ ∧ rule(θ) = r)

The intersection of all possible model element addition changes (Δ+o) and the

changes resulting from the reapplication of the transformation ↝r (M ′s,M ′t) is

the starting point to build the the inverse change set Δ
−,targetChanges,−1
o . From

this intersection the union of those changes over all rules of the transformation

rules(T) is build for which a tracelink exists but the target of that link is the

empty set (target(θ) = ∅).

94

3.9. Formal Semantics of Retainment Policies

(Incremental)
Reexecution of T1

External deletion
changes in

target model

MtMs

Figure 3.14.: External deletion in target model.

Running Example: For the changes applied in the running example,

Δ
−,targetChanges
o would be:

{δ−FKBillFor , δ
−
iToPO,Invoice,FKBillFor}

According to the transformation FKBillFor would be created resulting in a change

δ+FKBillFor , therefore the inversion of the changes, including the determination of

the inverted consistent changes, would be

Δ−,targetChanges,−1
o = {δ+FKBillFor , δ

−
iToPO,Invoice,FKBillFor}

.

As links and attribute value do not have a unique identity, the set of inversion

changes can be determined by simply using the complementary change type. The

function invert ∶ ChangesMM → ChangesMM gives the inverse change of these

change types. For a given detected target change δ−l,o1,o2 the inverted change is

δ+l,o1,o2 . Analogously the inversion of an attribute value change δuo,a,v is δso,a,v. This

approach then yields the inversion change sets that can then be used to revert the

external changes in the target model:

Δ
−,targetChanges,−1
l,o1,o2

= consistentChanges(⋃
δ∈Δ−,targetChanges

l,o1,o2

invert(δ))

and

Δu,targetChanges,−1
o,a,v = consistentChanges(⋃

δ∈Δu,targetChanges
o,a,v

invert(δ))

95

Chapter 3. Retainment Policies for Model Transformations

c) Parallel source and target deletion changes: If changes that result in a deletion of

the element o in the target model (Δ
−,targetChanges
o) are done in the source model

and the target model in parallel, no inversion of the deletion in the target model

is possible. The problem in this case is that both ends of the tracelink that was

created between the source and target model elements are nullified. Therefore it

is not possible anymore to identify what the original situation in the model was.

This is an important limitation for of the retainment policy approach as it will

not be possible to specify a policy that undoes this kind of changes to the target

model. A retention of the change due to changes on either of both sides, on the

other hand, is no problem as both will result in the same change δ−o.

2) Creation of model elements or links or attribute values (δ+o , δ+l,o1,o2 , δ
s,sourceChanges
o,a,v):

Externally added model elements and links in the target model are handled differ-

ently – (I) they may be left untouched as long as they do not interfere with updates

from source the source model or (II) the may be reverted in any case – depending on

their semantics of the employed transformation approach. Most popular approaches

such as QVT [Obj11] or Triple Graph Grammars [HG09] enforce the deletion of ele-

ments that do not have a corresponding match in the source model (see Section 7.10.2

Enforcement Semantics, in the QVT specification [Obj11]). However, to be able to

handle both cases (I) and (II) independent from the underlying model transformation

engine, the retainment policy approach needs the capability of reverting or retaining

these additions.

a) Target addition due to source change: A model element o that should be created

in the target model due to changes in the source model can be identified by ana-

lysing the trace model. This is actually the standard case for the application of

an incremental model transformation based on traces, which is also depicted in

Figure 3.15. If there is no pre-existing trace link that refers to the source element

for which the target change should be applied, the target element will be newly

created. In conclusion, the changes that cause a creation of a model element in

the target Δ
+,sourceChanges
o due to changes in the source model are given as follows

(analogously for links and the resulting changes Δ
+,sourceChanges
l,o1,o2

and attribute val-

ues Δ
s,sourceChanges
o,a,v):

Δ+,sourceChanges
o =consistentChanges({δ ∈ Δ+o∩ ↝T (M ′s,M ′t) ∣ /∃ θ ∈ Θ ∣ (

source(θ) ∈ ⋃
δ∈sourceChanges(M ′

t ,TraceT)

element(δ))})

96

3.9. Formal Semantics of Retainment Policies

(Incremental)
Reexecution of T1

Changes Leads to addition
changes in

target model

MtMs

Figure 3.15.: Addition in target model resulting from a source model change.

The set of additional source changes is retrieved by intersecting the set of all

additional model element changes Δ+o with the set of changes that results from

the reapplication of the transformation ↝T (M ′s,M ′t). From this intersection only

those elements that do not have an existing tracelink to an element in the set of

source changes are considered to be part of the resulting change set. Finally, the

consistent changes are computed from those changes.

Running Example: Within the changes of the running example this selection will

result in the following change set:

Δ+,sourceChanges
o = {δ+AddressTable}

The corresponding source change δ+Address is the source for the BO2Table trans-

formation rule and will therefore result in the creation of another Table element

by the δ+AddressTable change.

b) External target addition: A model element o that was added to the target model

can be detected using identifyTargetChanges defined in the change detection ap-

proach in Section 3.6.2. For illustration, Figure 3.16 depicts this change set. Thus,

these changes Δ
+,targetChanges
o are given as:

Δ+,targetChanges
o = consistentChanges({Δ+o∩

identifyTargetChanges(M ′t ,TraceT)})

The set of additional target changes is gained by building the consistent change set

of the intersection between the identified target changes (identifyTargetChanges(
M ′t , TraceT)) and the set of all possible model element addition changes Δ+o . How-

ever, as these changes are already applied to a modified target model, additionally

the possibility to undo these changes needs to be provided by the retainment policy

approach. The default behaviour of the transformation application would be to de-

97

Chapter 3. Retainment Policies for Model Transformations

(Incremental)
Reexecution of T1

External addition
changes in

target model

MtMs

Figure 3.16.: External addition in target model.

lete the externally added element as there exists no corresponding element in the

source model. Thus, it is possible to apply the needed inversion changes by ap-

plying the corresponding parts of T . The inversion of these changes is then given

as:

Δ+,targetChanges,−1
o = consistentChanges({δ−o ∈↝T (M ′s,M ′t) ∣

∃δ+o′ ∈ Δ+,targetChanges
o ∣ o = o′})

The corresponding set of changes for the addition of links δ
+,targetChanges,−1
l,o1,o2

is

determined analogously. From the given sets of changes in the running example,

the set of changes Δ
+,targetChanges
o is determined as:

Δ+,targetChanges
o = {δ+FKContactPerson}

The corresponding set of inverted changes is then, including the determined con-

sistent changes given as

Δ−,targetChanges
o = {δ−FKContactPerson, δ

−
cToCP,CustomerTable,FKContactPerson}

.

c) Parallel source and target changes: Applying changes that add model elements

due to changes on the source model as well as having externally added model

elements target model in parallel does not lead to any conflicts as long there is no

restriction on the existence of elements. Such a restriction may be applied by a

constraint on the target metamodel specifying that e.g., there may be only a certain

amount of instances of a certain metamodel class at the same time. However,

adding a link l through the transformation as well as directly in the target model

may lead to conflicts:

98

3.9. Formal Semantics of Retainment Policies

• upper(secondEnd(association(l))) = 1: If the upper multiplicity of an asso-

ciation end is one, a conflict occurs if there is a change δ+l′,o1,o2 and another

change with δ+l′,o3,o4 if o3 = o1∧o4 ≠ o2. Then it needs to be decided which link

(existing via target / existing via source) should be used as there can only be

one link at a time. This conflict does not occur if o4 = o2 as then both links

would be the same.

• isUnique(association(l)) ∧ isOrdered(association(l)) ∧ l ≡ l′: If the associ-

ation of the added link is unique as well as ordered, the addition of links may

conflict with a parallel change δ+l′,o1,o2 if the order is not the same order(l) ≠
order(l′). Due to the uniqueness, only one of the links may be in the link

list and they have a different position, it needs be decided which position

within the link list should be used. Thus, this conflict does not occur if

order(l) = order(l′).

3) Change in order of links or values: For multi-valued, ordered associations or at-

tributes, a reordering of the elements is also a change that needs to be retainable.

Especially if a target model is created from an more abstract source model where

ordering is not yet specified but the target model is then modified and a certain order

is given, this order needs to be retained upon subsequent transformation runs. Inser-

tions at specific positions to a property’s collection can also be easily mapped to two

atomic changes. First an addition of the new link and then a reordering to the desired

position is performed. Thus, it is e.g. possible to allow for the addition of links but

prevent them from reordering so that it is only possible to insert elements at the end

of the link collection. In this thesis this strategy is called strict reordering. Note that

this is only one possible strategy; it might also be enough to retain the ordering of

existing elements so that insertions at arbitrary positions will not be harmful. In the

context of this thesis, this strategy is called non-strict reordering. Formally the set

of possible ordering strategies is given as orderingStrategy = {strict ,non − strict}.

The actual strategy which is to be used is given by the RetainmentPolicy in its

reorderingStrategy tuple element. Assuming the ordering, that was applied in a

previous transformation run, is represented within the trace as given by Definition

3.3, the function determineOrder ∶ P(orderL) × orderingStrategy → P(Δo
l1,l2

) can

be used to apply the ordering stored in the trace to the ordering in the model by us-

ing determineOrder(projectOrderL(Θ)). This function also includes both ordering

strategies defined in orderingStrategy.

99

Chapter 3. Retainment Policies for Model Transformations

a) Order changes in target model due to source model changes: The order in which

the new elements are added to a target model does not imply that their corres-

ponding source model patterns identified any changes. The order of elements in

the target model may be determined by different factors:

(I) The ordering in the source model is copied. If corresponding elements in

the source model are ordered, this order may be directly transferred by the

transformation to the corresponding elements in the target model.

(II) If the source model elements are unordered the target model order may

be random just depending on the (arbitrary) order of the execution of the

transformation rules for the respective elements. Furthermore, it might be

the case that the rules for creating and adding elements are not re-executed

themselves, but the order in which they would have been called by the trans-

formation did change. If the order of elements is not made explicit within

these transformation rules, this change in execution order would then have

led to a different order in which these elements were added to the target

model.

(III) The order is specified in the transformation rules. Transformation rules

may have been provided that order elements in the target model according

to some criterion, such as e.g., the alphabetical order of their names.

To support each of these scenarios the reordering of elements the determineOr-

dering function is used to explicitly apply an ordering to the target model in-

stead of depending on the ordering semantics of the underlying transformation

approach. The set of order changes that are applied due to changes in the source

model Δ
o,sourceChanges
l1,l2 , as depicted in Figure 3.17, can then be determined as fol-

lows.

Δ
o,sourceChanges
l1,l2 = consistentChanges(determineOrdering(

{δol1,l2 ∈↝T (M ′s,M ′t) ∣ (l1, l2) /∈ projectOrderL(Θ)}, strict))

Each pair of links that is in the result of the application of the transformation

(↝T (M ′s,M ′t)) is filtered by checking if it is already part of the order that is

projected from the order of the tracelinks using projectOrderL. From this set

the corresponding reordering changes are determined using determineOrdering.

100

3.9. Formal Semantics of Retainment Policies

(Incremental)
Reexecution of T1

1

Changes Leads to ordering
changes in

target model
2

swap

MtMs

Figure 3.17.: Ordering change due to changes in source model.

Alternatively to the strict reordering strategy, also the non − strict strategy can be

used.

b) Target ordering change: Changes in the order of links and attribute values in

the target model are also identified by using the identifyTargetChanges function,

which leads to the set of ordering changes Δ
o,targetChanges
l1,l2 (illustrated in Figure

3.18) which is determined by filtering the identified target model changes by their

type (by intersecting the set of all possible link order changes Δo
l1,l1 with the set

of changes identified in the target model using identifyTargetChanges):

Δ
o,targetChanges
l1,l2 =consistentChanges({Δo

l1,l2∩
identifyTargetChanges(M ′t ,TraceT)})

Using determineOrder the inversion change set for externally modified ordering

in the target model Δ
o,targetChanges,−1
l1,l2 can be defined as:

Δ
o,targetChanges,−1
l1,l2 =consistentChanges(determineOrder(

projectOrderL(Θ), strict))

Alternatively to the strict reordering strategy, also the non − strict strategy can be

used.

If the ordering change is not the only change to the target model but there where

external deletions or additions the order that was represented in the traces might

not be fully re-applicable. For link deletions the ordering pairs that contain deleted

links will not be part of the projection anyway as this would cause pairs having

empty elements, such as (l1,∅). For additions, if the strict reordering strategy

is applied, the consistentChanges function ensures that externally added links

101

Chapter 3. Retainment Policies for Model Transformations

(Incremental)
Reexecution of T1 3

External ordering
changes in

target model
4

swap

MtMs

Figure 3.18.: External ordering change in target model.

are moved to the end of the order. In case of the non − strict externally added

elements will be kept are there relative position in the order.

c) Parallel source and target changes: A conflict between a source resulting ordering

change δol1,l2 and a target ordering change δol3,l4 may occur if l1 = l4 and l2 = l3 which

would invert each other.

Lemma 3.3. For all types of changes to a source and a target model a corresponding
set of changes can be given that either applies or reverts the change to or from the target
model.

Proof. Per Definition 2.3 a model consists of the sets O,L, V as well as the orders orderL

and orderV . Thus, an atomic change can only modify one of these sets at once. The

sets ΔsourceChanges and ΔtargetChanges defined above are defined for each such change

on the source and target model respectively. Given the additional set of inverse changes

Δ−1,targetChanges for the changes applied through the re-application of the transformation

it is possible to apply or revert any type of change to or from the target model.

3.9.2. Application of Change Sets for each RetainmentKind

The union of all change sets for the respective types is then built as follows. The set of

changes that applies all changes that result from a change in the source model is defined

by ΔsourceChanges (ΔtargetChanges is defined analogously).

ΔsourceChanges = Δ−,sourceChanges
o ∪Δ+,sourceChanges

o ∪Δ
−,sourceChanges
l,o1,o2

∪Δ+,sourceChanges
l,o1,o2

∪Δs,sourceChanges
o,a,v ∪Δu,sourceChanges

o,a,v

∪Δo,sourceChanges
l1,l2

∪Δo,sourceChanges
v1,v2

102

3.9. Formal Semantics of Retainment Policies

The set of changes that reverts all modifications to the target model is given as

ΔtargetChanges,−1.

ΔtargetChanges,−1 = Δ−,targetChanges,−1
o ∪Δ+,targetChanges,−1

o ∪Δ
−,targetChanges,−1
l,o1,o2

∪Δ
+,targetChanges,−1
l,o1,o2

∪Δs,targetChanges,−1
o,a,v ∪Δu,targetChanges,−1

o,a,v

∪Δ
o,targetChanges,−1
l1,l2

∪Δo,targetChanges,−1
v1,v2

Based on the unified change sets, the following formal semantics of the different Re-
tainmentKinds are defined based on a transformation T . For the sake of simplicity ex-

actly one retainment policy R defining a retainment kind k will be used for the whole

transformation. The scope of R is defined to be a rule retainment scope including all

rules of T . The basic building blocks presented above will be used to define these se-

mantics. The set of changes that is given by the application of a certain retainment kind

is denoted as
k
Δ. For example, the set of changes that is applied by the application of the

Never retainment policy is denoted as
∅
Δ. In the following, these sets will be defined

for each retainment kind so that the final resulting model M̄t is given by:

M̄t =↝k
T (M ′s,M ′t) ⇐⇒ M̄t =

k
ΔM ′t

3.9.2.1. Never (∅)

All manual changes are overwritten when the transformation is re-executed. The result

is the same – with respect to the image of the transformation – as if the initial trans-

formation would have been re-applied. For the application within a transformation this

policy is defined as the subsequent application of the following two change sets:

∅
Δ = ΔtargetChanges,−1 ○ΔsourceChanges

Application Scenario: This type of retainment kind can be used for areas where

changes to the target model would harm the consistency of the whole system. Therefore,

any external change to the target model needs to be reverted. Furthermore, this retain-

ment kind is useful for what can be called master transformations, that are responsible

for the existence of certain parts of the target model where external changes migh occur

in between, but as soon as the master transformation is re-executed all changes w.r.t. to

the image of this transformation are reverted.

103

Chapter 3. Retainment Policies for Model Transformations

Running Example: For the running example, the result of the reapplication of the

transformation using a globally applied Never RetainmentPolicy would result in all

the changes to the target model being reverted plus the application of all changes that

resulted from changes in the source model. Thus, the applied set of changes is given by:

∅
Δ ={δ+FKBillFor , δ

+
Invoice2FKBillFor,InvoiceTable,FKBillFor, δ

−
FKContactPerson,

δ−cpToC,CustomerTable,FKContactPerson, δ
u
PurchaseOrderTable,name,“POTable”}

○{δsPurchaseOrderTable,name,“PurchOrdTable”, δ
+
AddressTable, δ

−
FKPurchaseOrder,

δ−cToPO,CustomerTable,FKPurchaseOrder}

The resulting target model is the same as depicted in Figure 3.3 except for the deletion

of FKPurchaseOrder, the new Table called AddressTable and the renaming

of PurchaseOrderTable to “PurchOrdTable”. Note that for the inversion of the

deletion of FKBillFor also the dependent changes of the consistent change, namely

the deletion of the link from InvoiceTable to FKBillFor has to be reverted by

re-establishing this link.

3.9.2.2. Target changed exclusively (�)

All manual changes that where applied to the target model are retained when the trans-

formation is re-executed as long as there is no change in the source model that would

overwrite this change. For the application within a transformation this policy is defined

as:

�
Δ = ΔsourceChanges

Application Scenario: This retainment kind is quite useful for scenarios where no

round-trip from the target back to the source model is performed but it should be pos-

sible to refine the target model to a certain extent. As Changes resulting from modified

source models are still synchronised to the target model possibly overwriting external

changes there the retainment kind is well fitted for forward engineering scenarios.

Running Example: For the running example, the result of the reapplication of the

transformation using a globally applied Target changed exclusively Retain-
mentPolicy would result in all the changes to the target model being retained except those

where a change from the source model overwrites it, plus the application of all changes

104

3.9. Formal Semantics of Retainment Policies

name = „CustomerTable“

CustomerTable : Table

Ta
rg

et
 M

od
el

name = „AddressTable“

AddressTable : Table

name = „FKContactPerson“
isKey = true
Type = String

FKContactPerson : Column

name = „PurchOrdTable“

PurchOrdTable : Table

name = „InvoiceTable“

InvoiceTable : Table

name =
„FKCustomer“
isKey = true
Type = String

FKCustomer :
Column

name = „FKInvoice“
isKey = true
Type = String

FKInvoice : Column

name = „FKBillFor“
isKey = true
Type = String

FKBillFor : Column

Figure 3.19.: Example: target model after re-applying the transformation using the target
changed exclusively (�) retainment policy.

that resulted from changes in the source model. Thus, the applied set of changes is given

by:

�
Δ = {δsPurchaseOrderTable,name,“PurchOrdTable”, δ

+
AddressTable, δ

−
FKPurchaseOrder,

δ−cToPO,CustomerTable,FKPurchaseOrder}

The resulting target model is depicted in Figure 3.19. The changed regions are high-

lighted in dark grey. The Figure shows that the FKPurchaseOrder column has been

deleted and an externally created new column FKContactPerson was retained. The

name attribute of PurchaseOrderTable was changed in the target model but in

parallel the corresponding source model changed. According to the semantics of the re-

tainment policy, the synchronisation from the source model was preferred over the target

model change. Additionally, the deletion of FKBillFor was also retained and a new

table AddressTable was created as a result from the corresponding change in the

source model.

3.9.2.3. Source changed exclusively (�)

All changes to the target model will be reverted. The resulting target model will only

have those elements synchronised from the source where a change was made in the

target. Elements in the target model, that did not change and the corresponding source

model element did change, will not be synchronised from the source. An untouched

105

Chapter 3. Retainment Policies for Model Transformations

image of the transformation in the target model will not be synchronised from the source

model. For the application within a transformation this policy is defined as:

�
Δ = ΔtargetChanges,−1 ○ {δ ∈ ΔsourceChanges ∣ ∃δt ∈ identifyTargetChanges(M ′t ,TraceT) ∣

element(δ) = element(δt)}

Application Scenario: Considering a model transformation that generates a view

layout model from a domain model, this retainment kind is useful for re-applying the

original layout if it is for example corrupted by external changes to the layout model.

However, because only changed target elements are resynchronised from the source it

is still possible to, for example, keep the initially generated layout that is uncorrupted

intact.

Running Example: For the changes of the running example, the application of the

Source changed exclusively retainment policy would result in the following

changes being applied to M ′t ∶

�
Δ ={δ+FKBillFor , δ

+
Invoice2FKBillFor,InvoiceTable,FKBillFor, δ

−
FKContactPerson,

δ−cToCP,CustomerTable,FKContactPerson, δ
u
PurchaseOrderTable,name,“POTable”}

○{δsPurchaseOrderTable,name,“PurchOrdTable”}

According to these changes, the difference to the application of the Never retainment

policy can be seen in the second set of changes. There, only the change that synchron-

ises the name of the PurchaseOrderTable from the source model, by setting it to

“PurchOrdTable”, is present because this is the only change where the corresponding

target model element did change in parallel.

3.9.2.4. Source and Target changed (∎)

Only those external changes to the target model are retained for which there is a corres-

ponding change in the source model that would overwrite this change. In other words,

changes to the source model are synchronised to the target model except for elements

where the target model changed. This is achieved by applying the ⊖ operator, which de-

notes the creation of the symmetric differences set, to the change sets ΔtargetChanges,−1

and ΔsourceChanges. In conjunction with element(δ) this set is built using the affected

106

3.9. Formal Semantics of Retainment Policies

elements of the change sets. For the application within a transformation this retainment

kind is defined as follows.

∎
Δ = ΔtargetChanges,−1 ⊖

element(δ)
ΔsourceChanges

Application Scenario: This retainment kind is useful when parallel changes to source

and target models should be resolved manually whereas non-conflicting changes can be

synchronised automatically. Keeping those elements untouched which are in a possible

conflict state due to parallel source and target changes solves this problem.

Running Example: For the changes of the running example the application of the

Source and Target changed retainment policy would result in the following

changes being applied to M ′t ∶

∎
Δ ={δ+FKBillFor , δ

+
Invoice2FKBillFor,InvoiceTable,FKBillFor, δ

−
FKContactPerson,

δ−cToCP,CustomerTable,FKContactPerson, δ
u
PurchaseOrderTable,name,“POTable”}

⊖
element(δ)

{δ+AddressTable, δ
−
FKPurchaseOrder , δ

−
cToPO,CustomerTable,FKPurchaseOrder ,

δsPurchaseOrderTable,name,“PurchOrdTable”}

⇐⇒
∎
Δ ={δ+FKBillFor , δ

+
Invoice2FKBillFor,InvoiceTable,FKBillFor , δ

−
FKContactPerson ,

δ−cToCP,CustomerTable,FKContactPerson , δ
+
AddressTable, δ

−
FKPurchaseOrder ,

δ−cToPO,CustomerTable,FKPurchaseOrder}

This example shows that the changes to the target model are reverted exclud-

ing the change that renamed PurchaseOrderTable to “POTable” as for

this change the corresponding model element in the source model also changed

(δsPurchaseOrder,name,“PurchOrd”). Therefore, elements(δ) returned the same element

which, in turn, led to the removal of the changes from the resulting change set according

to the ⊖-operator. Furthermore, all the changes from the source model are propagated

to the target model.

3.9.2.5. Source xor Target changed(��)

This option is the opposite of the Source and Target changed retainment kind.

Elements in the target model are only retained if either the corresponding source model

or the target model changed. Elements where both sides changed will be re-synchronised

107

Chapter 3. Retainment Policies for Model Transformations

from the source model. Formally expressed, the semantics of this retainment kind are

defined as:

��
Δ = ΔsourceChanges ∩

element(δ)
identifyTargetChanges(M ′t ,TraceT)

Application Scenario: This retainment kind finds application in resolving conflicts

where source and target model changed in parallel, i.e. overwriting these changes by

re-applying the transformation to those elements.

Running Example: Applied to the changes in the running example, this retainment

kind yields the following set of changes:

��
Δ ={δsPurchaseOrderTable,name,“POTable”}

The name of PurchaseOrderTable is the only element that changed on both sides.

Therefore, this change is re-synchronised from the source model.

3.9.2.6. Target changed(∎�)

If this retainment kind is applied, all changes to the target model will be retained; even

if the corresponding source model did also change. Formally, this set of changes is

determined as:

∎�
Δ = ΔsourceChanges ∖

element(δ)
ΔtargetChanges

Application Scenario: In scenarios where it is allowed to do manual refinements

to target models this retainment is most useful. This way, it is possible to refine the

target model in an arbitrary without having to worry that these changes will get lost

upon subsequent transformation calls. Areas of the model where no external changes

have been performed, however, will still be updated from the source model allowing to

reuse the initial transformation to extend the manually refined target model in unchanged

areas.

Running Example: Applied to the changes in the running example this retainment

kind yields the following set of changes:

∎�
Δ ={δ+AddressTable, δ

−
FKPurchaseOrder, δ

−
cToPO,CustomerTable,FKPurchaseOrder}

108

3.9. Formal Semantics of Retainment Policies

This change set shows that even though the name of PurchaseOrderTable would

change also according to a source change all target model changes including this one are

retained.

3.9.2.7. Source changed(�∎)

All kinds of changes that result from changes in the source model are not applied to

the target model and external changes will be retained where the corresponding source

element changed at the same time. However, all other external changes will be reverted.

Formally, this set of changes is determined as:

�∎
Δ = ΔtargetChanges,−1 ∖

element(δ)
ΔsourceChanges

Application Scenario: Using a transformation to only revert some changes in the

target model and doing no transformation from source to target at all is, in practice,

a very rare case. However, having the possibility to specify this case completes the

RetainmentPolicy approach to be able to handle all scenarios.

Running Example: Applied to the changes in the running example this retainment

kind yields the following set of changes:

�∎
Δ ={δ+FKBillFor , δ

+
Invoice2FKBillFor,InvoiceTable,FKBillFor, δ

−
FKContactPerson,

δ−cpToC,CustomerTable,FKContactPerson}

This change set shows that because the name of PurchaseOrderTable did change

according to a change in the source model, only this renaming is retained and all other

external changes are reverted.

3.9.2.8. Always(�∎�)

The semantics of this retainment kind is that the transformation will only produce the

target model initially and will leave it untouched in any case. External changes to the

target model will be allowed and no re-synchronisation from the source model will be

performed in any case.

�∎�
Δ = ∅

109

Chapter 3. Retainment Policies for Model Transformations

Application Scenario: This retainment kind can be used to let a transformation create

initial default models that are afterwards completely ignored by the transformation.

3.9.3. Completeness of RetainmentKinds

Having presented the formal semantics of all RetainmentKinds allows to reason about

the completeness of the RetainmentPolicy-approach. Completeness can be ensured if all

possible change combinations are mapped by the approach so that fine-grained decisions

can be specified using RetainmentPolicies. Lemma 3.4 formulates the completeness of

RetainmentPolicies.

Lemma 3.4. All combinations of source and target model changes can be mapped using
the RetainmentPolicy approach.

Proof. By lemma 3.3 it is possible to give change sets for all types of changes that may

be applied to the target model. As there are 8 possible combinations of source and target

model changes and it is possible, and we defined for each of them a corresponding re-

tainment kind we can argue that each type is mapped by the RetainmentPolicy approach.

Furthermore, by comparing the change set definitions of the different retainment kinds

to the possible intersections and unifications of the change the complete change sets

given in lemma 3.3 can be produced.

3.9.4. Formal Semantics of the retainAll Property

If the retainAll property of a RetainmentPolicy is set to true, all elements in the

scope of a RetainmentPolicy are considered to be handled by the RetainmentPolicy. If,

for example, a Target changed RetainmentPolicy is applied to a scope of three

elements {a, b, c} and one of it is changed, e.g., from a to a′ this setting will cause also b

and c to be retained, even if they did not change themselves. Semantically, the retainment

of b and c can not be represented by the same RetainmentPolicy Target changed,

as they did not change at all. Applying Target changed to the elements would not

prevent them from being overwritten by changes resulting from the source model as they

simply did not change.

Furthermore, in contrast to Target changed, imagine the same scenario but with

the Source changed exclusively RetainmentPolicy applied. If a would to be

retained because of source model changes but b and c do not have a corresponding

source model change they cannot be retained by using the same Source changed

110

3.9. Formal Semantics of Retainment Policies

Trigger Change Mapped RetainmentPolicy
∅ never never ∅
� target changed excl. always �∎�
� source changed excl. source changed excl. �
∎ source and target changed source changed �
�� source xor target changed source changed excl. �
∎� target changed Always �∎�
�∎ source changed source changed �∎
�∎� always Always �∎�

Table 3.3.: RetainmentPolicy mapping for elements included in a retainAll retainment scope.

exclusively RetainmentPolicy. However, as the RetainmentPolicy only resembles

retainment actions for source model changes, changes to the target model would still

need to be reverted. Due to the semantics of retaining elements in the target model,

the semantics of the retainAll property only are only extended w.r.t. ,Retainment-
Policies that deal with target model changes. The following Table 3.3 presents mapping

rules that translate a so called trigger change RetainmentPolicy into a RetainmentPolicy
that can be applied to retain all other elements within the retainment scope.

For cases that retain default elements in the target model upon source changes the

retainAll semantics is quite difficult to grasp. For example, assuming elements {a, b, c}
in the source model and the corresponding elements {a′, b′, c′} in the target model. For

simplicity, considering the transformation to be a simple one-to-one copy transform-

ation. Deleting element a in the source model would then cause the deletion of its

corresponding element a′. Applying, e.g., a source changed exclusively Re-
tainmentPolicy to this scenario would prevent a′ from also being deleted upon the dele-

tion of a. However, as b and c did not change there is no retainment action to be done

for these elements anyway. Thus, in this case the mapping from the trigger change
to the mapped RetainmentPolicy is identical: source changed exclusively.

Target changes to this area would then still be reverted as defined in the source

changed exclusively RetainmentPolicy. The mapping applies analogously for

source xor target changed. For cases where also a target change would be re-

tained (source and target changed, source changed, the mapping leads

to

Using this mapping, it is possible to specify how elements in a retainAll-scope

are handled. For example, if a target changed exclusively RetainmentPolicy

111

Chapter 3. Retainment Policies for Model Transformations

is specified to a changed target model element a, also having elements b and c in its scope

these elements are treated as if an always RetainmentPolicy would have been applied

to them.

Formally this mapping is defined as follows:

k

ΔtriggerChange = changeSetk(ScopeR ∩
elements(δ)

k
Δ)

k
Δ =

k

ΔtriggerChange ∪ (changeSetmapped(k)(ScopeR ∖
elements(δ)

k

ΔtriggerChange)

where mapped(k) gives the retainment kind mapped using Table 3.3.

3.10. Type Specific Retainment Policies

Specifying a retainment policy using one of the retainment kinds given above allows

to define rules for change retainment on a coarse-grained level for all types of changes.

However, it cannot yet be distinguished between the actual type of the change that should

be retained or not. All types of changes, i.e., addition, deletion and change in ordering

of elements are handled the same way according to the specified RetainmentPolicy. In

many cases, changes to the target model should not be handled equally. For example,

it should be possible to specify that deletions of elements in the target model should be

allowed (i.e., retained), whereas external additions are not.

In the running example (cf. page 62), it could be required that deletions of generated

columns within a table are allowed. Therefore, a RetainmentPolicy using a target

changed RetainmentKind is attached to the transformation rule which is responsible

for creating columns from association ends. However, this would also imply that all

columns added to the target table would be retained. However, this might not be the

intended behaviour. Therefore, to enable the RetainmentPolicies to distinguish between

change types a more fine-grained type of RetainmentPolicy is introduced.

To be able to specify retainment in a more fine-grained way, a TypeSpecificRetain-
mentPolicy (cf. Figure 3.20) can to be used. The semantics of the inherited (from Re-
tainmentPolicy) retainChange attribute changes slightly in the context of this class.

If retainChange set to a specific RetainmentKind, this setting includes the handling

of all types of changes, namely adding, removing of elements as well as changes in or-

dering. As long as the other retain*-attributes are set to NOT_SET, this value is used

112

3.10. Type Specific Retainment Policies

id : String
retainChanged : RetainmentKind
synchronizeChildren : Boolean
reorderingStrategy : ReorderingStrategyKind

RetainmentPolicy

retainAdded : RetainmentKind
retainDeleted : RetainmentKind
retainOrdering : RetainmentKind

TypeSpecificRetainmentPolicy

Figure 3.20.: Type specific retainment policy.

for all kinds of changes. If any of the other attributes is set to a value different than

NOT_SET, this will overrule the setting in retainChange.

To achieve the intended behaviour of the example given above, a TypeSpecificRetain-
mentPolicy can be specified defining for retainChange the never RetainmentKind.

To account for the retainment of deletions from the respective part of the target model,

the retainRemoved attribute of the TypeSpecificRetainmentPolicy is set to target

change. This allows to only retain deletions of columns in the target table whereas all

other types of changes, i.e., the addition of columns and ordering changes therein are

reverted.

3.10.1. Formal Semantics of Type Specific Retainment Policies

The combination of the attribute values for retainAdded, rertainDeleted,

retain- Ordering given in a TypeSpecificRetainmentPolicy with a

RetainmentKind results in a new formal entity called Type Specific Retainment Kind,

which is defined as:

Definition 3.9 (Type Specific Retainment Kind). A collection retainment kind is a tuple
TK = (k,CT) where

k ∈ K is a retainment kind,

CT ⊆ {+,−, o} is a specific type of change operation, where

113

Chapter 3. Retainment Policies for Model Transformations

+ denotes the addition of an object, link or attribute value and is specified by
retainAdded,

− denotes the deletion of an object, link or attribute value and is specified by
retainRemoved and

o denotes the change of ordering of a link or an attribute value in a collection and
is specified by retainOrderingChanged.

A type specific retainment kind is written in shorthand in the following way: kCT . So

that for example, �∎�{+} denotes the type specific retainment kind TK = (�∎�,{+}),
which defines that the RetainAdded property of a TypeSpecificRetainmentPolicy has

been set to always.

In combination with a rule to which a retainment policy is attached, a specific type

of change can be derived. For example, a type specific retainment policy �∎�{+,o} is

attached to a rule that is responsible for creating links of an association a between model

elements of the classes c1 and c2. Then the actual change types, to which the policy is

specific, are Δ+l,o1,o2 ∪Δo
l1,l2

.

These actual change sets are given by a function

changeSetsByType ∶ P({+,−, o}) → P(ChangesMM)

.

Recall that the specification of type specific retainment settings may be used in com-

bination with a specific complementary setting of RetainChange. Thus, the se-

mantics of the type specific retainment kinds will be described based on the setting of

RetainChange = k1 ∈ RetainmentKinds. The semantics of a type specific retainment

kind are defined as follows, where k2 represents a type specific retainment kind.

k1,k
CT
2

Δ =changeSetsk2((ΔsourceChange ∪ΔtargetChange) ∩ changeSetsByType(CT))
∪ changeSetsk1((ΔsourceChange ∪ΔtargetChange)
∩ (ChangesMM ∖ changeSetsByType(CT)))

The change set determined for k2 is filtered by the included element’s type, i.e., by

intersecting this change set with the set of all changes of the specific types CT defined in

r2. From this intersection, the actual change set, according to the given RetainmentKind
k2 is determined using changeSetsk2(). The resulting change set is unified with the

114

3.10. Type Specific Retainment Policies

analogously determined change set for the rest of the changes that are not of the types

given in CT .

In the running example, an application of a type specific retainment policy with

retainChanged = Never(∅) in combination with a type specific retainment kind

retainAdded = Target Changed(∎�+) would then result in the following

change set:

∅,∎�+
Δ ={δ+FKBillFor , δ

+
Invoice2FKBillFor,InvoiceTable,FKBillFor,

δ−cpToC,CustomerTable,FKContactPerson, δ
u
PurchaseOrderTable,name,“POTable”}

○{δsPurchaseOrderTable,name,“PurchOrdTable”, δ
+
AddressTable, δ

−
FKPurchaseOrder,

δ−cToPO,CustomerTable,FKPurchaseOrder}

This example shows that the externally added Column FKContactPerson was

retained by the additional type specific retainment policy whereas all other external

changes were reverted.

3.10.2. Completeness of Type Specific Retainment Policies

Lemma 3.5. Using TypeSpecificRetainmentPolicies each type of change in each com-
bination of source target model change can be retained or reverted from the target model.

Proof. Due to lemma 3.4 all changes to either a source or target model can be separately

applied to a target model. By intersecting the sets that make up a model defined in

Definition 2.3 with the change sets of the different retainment kinds it is thus possible

to restrict these change sets to a specific type of change as only changes of the given set

will be left over.

3.10.3. Conflicts Between Retainment Policies

Conflicts between several RetainmentPolicies may occur if they are specified on the

same scope but declaring different kinds. For example, if two RetainmentPolicies R1 and

R2 are defined over the same element in the target model a, but R1 declares an always

RetainmentKind whereas R2 declares a never RetainmentKind it is not possible to fulfil

both policies at the same time.

115

Chapter 3. Retainment Policies for Model Transformations

3.10.3.1. Conflict Detection

A conflict can be detected by intersecting the change sets of the respective policy over

the elements in their scopes thus a set of potential conflicts Δconflicts is produced:

Deltaconflicts,R1,R2 = ⋃
e∈ScopeR1

∩ScopeR2

changeSetR1(e) ∩
element(δ)

changeSetR2(e)

If Δconflicts contains changes that are inverse w.r.t. each other they are considered to

be in conflict. For example, if Δconflicts contains a change δ+o as well as a change δ−o a

conflict is present. This detection can be expressed as follows:

R1, R2 are in conflict w.r.t. an element e ⇐⇒
∃δ1, δ2 inΔconflicts,R1,R2 ∶ δ1 = invert(δ2)

3.10.3.2. Conflict Resolution

Resolution of RetainmentPolicy-conflicts can be performed on multiple levels.

1. An RetainmentPolicy that is attached via a model retainment scope always over-

rules a RetainmentPolicy defined via a rules retainment scope.

2. More specific RetainmentPolicies overrule less specific ones. This resolution

mostly accounts for rules RetainmentPolicies that are (I) applied to a certain scope

using the synchroniseChildren properties having child elements that have

additional RetainmentPolicies on their own and (II) RetainmentPolicies that are

attached to rules which are transitively called by other rules. In the latter case

the RetainmentPolicies attached to the called rules overrule those of specified

at the callees side. For example, consider a never RetainmentPolicy attached

to the BusinessObject2Table rule given in the running example from page 62

and a always policy attached to the Association2ForeignKeyColumn rule. The

synchroniseChildren property being set, would imply that all children of

the first rule would also have the never policy applied. This would, however,

conflict with the specified always RetainmentPolicy. Hence, this conflict can be

resolved by only using the most specific policy for the elements under conflict.

3. As a final point to resolve conflicts manual precedences amongst Retainment-
Policies can be specified by explicitly configuring them to overrule each other.

116

3.11. Realisation of Retainment Policies Using QVT Relations

These overruling is represented in the RetainmentPolicy-metamodel by the Over-
rules association.

3.11. Realisation of Retainment Policies Using QVT Relations

A realisation of the retainment policies approaches for QVT Relations (QVT-R), the

OMG’s declarative model transformation approach is presented here. QVT-R includes

some features on which the semantics of the retainment policies can be based. For ex-

ample, QVT-R already includes the concept of checkonly/enforce domains. According

to the specification, checkonly defines for a rule’s domain that the pattern represented

in the checkonly domain is only checked for and the model is not enforced to hold the

pattern. This semantics are irrespective of the direction in which the transformation is

executed. Thus, also if the transformation is executed in the checkonly domain’s direc-

tion the pattern within this domain will not be applied to the current target model. This

fits the semantics of the always retainment policy. However, this check is always per-

formed based on the current target model and no distinction is made between an original

and a modified target model.

Furthermore, QVT-R supports the default values specification within enforce do-

mains. These patterns are only used when the transformation is executed in enforcement

mode and do not play a role when the transformation is checking the model. This is

useful if the transformation is used bidirectionally. However, these default values do

not have the semantics of default values w.r.t. external changes to the target model.

Each time the transformation is executed in the enforced domain’s direction, the default

values will be re-applied to the corresponding elements in the target model. Thus it

is not possible to realise the, for example the source changed exclusively

RetainmentPolicy using this standard construct.

The most important feature which allows for the realisation of the retainment policy

approach for QVT-R, is the trace model that is created during the transformation’s exe-

cution. This allows to write transformation rules that directly operate on the trace model

to check which elements were created by the transformation by which other elements.

3.11.1. Applying RetainmentPolicies to a QVT-R Transformation

As RetainmentPolicies reference to transformation rules to determine their retainment

semantics using a rule retainment scope, an approach to attach them to these rules needs

to be provided. Furthermore, RetainmentPolicies have to be taken into account during

117

Chapter 3. Retainment Policies for Model Transformations

execution of the transformation. This requires to interpret them during the runtime of

the transformation. Thus, a solution for applying their semantics needs to be provided

in addition.

One can think of different possibilities on how RetainmentPolicies can be represented

in transformation rules.

• Extension of the QVT-R grammar: The existing concrete and abstract syntax is

extended by RetainmentPolicies. Rules can be directly written in the concrete syn-

tax having their own constructs in the concrete as well as abstract syntax. The ad-

vantage of this approach is that editors can directly support the new constructs and

they are directly represented in the abstract syntax of the transformation. However,

the resulting transformation language would not be standard compliant anymore;

requiring special support in editors as well as runtime.

• Annotation as decorator model on the abstract syntax: A less invasive ap-

proach can be realised using a decorator model. This model can be attached to

the unmodified abstract syntax of the transformation, annotating its rules with Re-
tainmentPolicies. Thus, there is no need to extend the QVT grammar and editors.

However, the QVT transformation needs to be available and accessible from within

the editing environment in order to let a developer attach the RetainmentPolicies.

• Using annotations within the concrete syntax of QVT: Allowing to write an-

notations within comments of the original transformation that are then later-on

processed by an additional parser and attached to the abstract syntax of the trans-

formation is an extension of the previous approach. This extension allows to define

RetainmentPolicies directly at the places where they are going to be used later, i.e.,

the comments that can be written at arbitrary places within the transformation.

The last approach was taken in the realisation of this thesis as it seems to be the

most easy to use as well as less invasive one. An additional parser is provided to parse

annotations that are written in the comments of the transformation. The grammar used

for this parser is shown in Listing 3.2. The syntax allows to define RetainmentPolicies as

well as TypeSpecificRetainmentPolicies. The scope of a RetainmentPolicy can be defined

in two different ways:

1. A scope can be defined by enclosing transformation rules within within a two

annotations, starting with a the definition of the RetainmentPolicy followed by a

118

3.11. Realisation of Retainment Policies Using QVT Relations

28 single_line_annotation ::= ’--’ rp_scope
29 multi_line_annotation ::= ’/*’ rp_scope ’*/’
30 rp_scope ::= rp_scope_start | rp_scope_end | rp
31 rp_scope_start ::= rp ’{’
32 rp_scope_end ::= ’@rp’ ’}’
33 rp ::= rp_simple | rp_type_specific | rp_ref
34 rp_ref ::= ’@RetainmentPolicy’ ref IDENTIFIER
35 rp_simple ::= ’@RetainmentPolicy’ IDENTIFIER ’:’ retainment_kind
36 ’synchronizeChildren’? reordering_strategy?
37 rp_type_specific ::=
38 ’@TSRetainmentPolicy’ IDENTIFIER ’:’ retainment_kind
39 (type_specific_retainment ’:’ retainment_kind)* {separator = ’,’}
40 ’synchronizeChildren’? reordering_strategy?
41 type_specific_retainment ::= ’retainAdded’ | ’retainDeleted’ |
42 ’retainOrdering’
43 retainment_kind ::= ’NEVER’ | ’TARGET_EX’ | ’SOURCE_EX’ |
44 ’SOURCE_AND_TARGET’ | ’SOURCE_XOR_TARGET’ | ’SOURCE’ |
45 ’TARGET’ | ’ALWAYS’
46 reordering_strategy ::= ’STRICT’ | ’NON_STRICT’

Listing 3.2: EBNF grammar for parsing the RetainmentPolicy annotation syntax.

opening curly brace “{” (ro_scope_start). Starting from such a definition all

rules up to a scope end definition using “@rp }” are included in a rule retainment

scope of the given RetainmentPolicy.

2. If the order of the transformation rules is not fitted, so that a positional retainment

scope can be declared by surrounding scope definitions, an alternative approach

can be used. Instead of defining a new RetainmentPolicy, it is also possible to refer

to an existing one via its identifier (rp_ref). All areas that refer to a Retainment-
Policy are also included in its rule retainment scope.

Furthermore, different possibilities exist how the RetainmentPolicies are applied in

the final transformation.

• One possibility is to hold the RetainmentPolicies in a separate model that decor-

ates the actual transformation. Then, a special interpreter that knows of QVT-R as

well as RetainmentPolicies can be used to execute the transformation while paying

respect to the retainment policies. However, this would require a special imple-

mentation of a QVT-R engine that includes extensions for RetainmentPolicies.

• A different approach includes the application of a higher order transformation

(HOT). This hot is used to transform the given transformations plus the attached

119

Chapter 3. Retainment Policies for Model Transformations

Transformation TRPTransformation T Higher Order
Transformation

RetainmentPolicies
Annotations

generates

annotates

model of transform. r/w access
dependency

Legend

active transform.

Figure 3.21.: Generation of the RetainmentPolicy transformation using a higher order

transformation.

RetainmentPolicy-model to a second transformation as it is depicted in Figure 3.21.

Ideally this transformation is again standard QVT-R and can be executed using an

existing QVT-engine. This approach has the advantage over the previous one,

that it independent from the used QVT-engine. The QVT engine can be easily

exchanged.

The latter approach seems to be the more flexible one. Assuming a complete mapping

of the RetainmentPolicy approach to standard QVT-R is possible it yields its full poten-

tial of not needing to extend the QVT-R engine. Therefore, in the approach presented

in this thesis, the HOT approach is used. Roughly speaking, the presented approach

takes a transformation that is annotated with retainment policies as input and creates an

equivalent transformation that can be executed by the transformation engine. Therefore

the engine needs no knowledge about the original transformation rules with the retain-

ment annotations. All retainment policies have been translated into standard QVT-R

constructs.

3.11.2. Weaving Retainment Policies into QVT-R Transformations

Based on the augmented abstract syntax representation of the transformation it is now

possible to generate a new transformation that realises the retainment policies. This is

done using a higher-order transformation. The target of this transformation is standard

QVT-R code which allows for the execution of the generated transformation using any

standard compliant QVT-R engine.

There are different patterns how a specific retainment policy is mapped to the gener-

ated transformation TRP . Some policies can be mapped to the transformation by only

changing the annotated rule or adding queries to the transformation that are then used in

those rules. However, for some policies it might be necessary to use the information of

120

3.11. Realisation of Retainment Policies Using QVT Relations

Attribute Model Element Link

Retain !Retain Retain !Retain Retain !Retain

RetainChanged 1, 2 0 2, 3, 5 0 1 1

RetainAdded 1 0 3, 5 0 1 2

RetainRemoved 2 0 2, 5 0 2 1

RetainOrderingChanged 0 4 0 4 0 4

Table 3.4.: Pattern usage in realisation of RetainmentPolicies.

how the transformation was executed in the previous transformation run, which is stored

as the trace model.

Table 3.4 shows which combination of change type – attribute change (δ
s,u
o,a,v, δoo,a,v1,v2),

model element change (δ
+,−
o) and link change (δ

+,−
l,o1,o2

, δol1,l2) – and attribute of (TypeSpe-
cific)RetainmentPolicy maps to which type of pattern. The possible pattern types are:

Pattern 0 - Default Behaviour: If the semantics of a RetainmentPolicy match the de-

fault behaviour of the QVT engine, there is no need to add any additional con-

structs. The transformation rule to the corresponding rule in TRP is an identity

transformation.

Pattern 1 - Property by Query: The value that should be assigned to a property that is

protected by a RetainmentPolicy is determined by checking the currently set value

in the target model. This check can be expressed by formulating a query on the

target model and comparing that value with the one determined from the current

source model. This pattern can be expressed by using only information from the

source and target model. No trace links are needed. This can, for instance, be

used whenever the applied RetainmentPolicy can be expressed without requiring

the information from the trace model. It then can be checked if the target value has

been set and if so it can be retained. For primitive valued properties this pattern can

be produced by modifying the assignment of a feature with a query method that

handles this check. See example 1 (Listings 3.3 and 3.4 for an example application

of this pattern.

Pattern 2 - When-based Trace Check Rule: As the application of a rule in QVT-R can

be controlled using its when-pattern it is possible to add additional logic to the

when pattern that checks for a certain combination in the trace model and, based

on this, decides whether the rule is executed at all. This pattern is implemented by

an additional rule that gets called in the when clause of the annotated rule. This

121

Chapter 3. Retainment Policies for Model Transformations

additional rule is then used to check whether a trace link existed before for the

given elements or not. Depending on the involved RetainmentKind a decision can

then be made on whether the annotated rule is executed or not. Listings 3.5 and

3.6 show an example application of this pattern.

Pattern 3 - Virtual Rule: According to the QVT specification all elements within an en-

force domain for which no transformation rule holds will get deleted upon execu-

tion of the transformation (see enforcement semantics in [Obj11] Section 7.10.2).

However, it is not necessary that the same rule that once created the element holds.

It just needs to be any rule due QVT’s “avoid delete followed by an immediate

create” semantics ([Obj11] Section 7.10.2 Enforcement Semantics). To be able to

retain manually created elements a “virtual” transformation rule will be created

for each rule to which this pattern is applied. This virtual rule contains an empty

original source domain and the same target domain and pattern as the original rule.

Additionally it checks if there exists a trace for the target element and the original

rule. Furthermore all when conditions from the original rule have to be satisfied to

ensure that the element might indeed have been created by the original rule. Dur-

ing execution this rule will match any manually created target model elements as

they could have been produced by the original rule. This avoids deletion of these

elements. Listing 3.7 shows an example application of this pattern.

Pattern 4 - Handling of Ordering: Ordering in QVT-R is handled by so called Collec-
tionTemplates. Using these constructs it is possible to handle ordering within the

transformation rules explicitly. However, if no explicit ordering is defined, order-

ing of elements in the target model, especially if elements are created by different

rules, one can not even rely on that the ordering as it was in the corresponding

source model elements is kept. One solution to ensure a certain order is to call the

rules, that are responsible for putting the elements in the target model, within an

iterate expression in the where clause of the parent element’s rule. Another

possibility to do this is to check in the when clause whether the current relation

already holds for the predecessor of the current element in the collection. How-

ever, this only ensures that the ordering is kept the first time of the execution. If a

reordering has to be made because elements in the source domain swapped places

or a manual ordering in the target model should be undone due to a Retainment-
Policy an in-place transformation has to be executed that does this re-ordering.

122

3.11. Realisation of Retainment Policies Using QVT Relations

Pattern 5 - Explicit Modification of Trace Model: To realise some kinds of retain-

ment, it is necessary to explicitly modify the otherwise implicitly created trace

model created by the transformation. For example, if the deletion of elements

should be retained, also the, partly inconsistent trace link (because of the reference

to the deleted element), needs to be retained. This is realised by an additional

trace conservation relation, that explicitly creates a trace of the respective type is

created and triggered by the relation for which the respective RetainmentPolicy
is specified. An overview on the execution that results from this pattern is given

in Figure 3.22. In addition to the creation of explicit trace model elements,

these elements also needs to be added to the actual trace model that was created

implicitly during runtime of the transformation. Furthermore, traces that were

created due to the trace handling rules should not be part of the final trace model

as they would interfere with the trace handling. A deletion of these traces is

therefore required. Figure 3.22 also shows that, this merging and deletion is done

by an additional transformation that takes the explicit as well as the implicit trace

model as input and merges them to a final trace model. This final trace model will

then serve as input trace model for the next transformation execution.

Pattern 6 - Including ModelElementRetainmentScopes: Patterns 1 to 5 operate on the

whole scope that is defined by a transformation rule. Therefore, also they can only

be used for RetainmentPolicies that define a rule retainment scope. To incorporate

the definition of model retainment scopes these patterns can be extended by an ad-

ditional pattern that filters the set of matched elements of a transformation rule with

the set of elements defined in a model element retainment scope. To achieve this,

the application of the RetainmentPolicy code is combined with a check whether

the elements under consideration are in this scope. Listing 3.4 shows an example

application of this pattern.

Figure 3.23 depicts the detailed process on how an annotated transformation T is

transformed into an executable transformation that implements the annotated retainment

rules TRP .

1. First (1) a higher order transformation (HOT) is used to create a copy of the original

transformation. In this step all retainment rules are incorporated which do not rely

on information from the trace model (patterns 1, 3 and 4) as extensions to the actual

transformation rules called TRP .

123

Chapter 3. Retainment Policies for Model Transformations

Output ModelInput Model TRP

Trace Model
of previous execution

model of transform.

input/output
dependency

Legend

active transform.

Trace Model
implicitly created
during execution

Additional Trace Model
explicitly created by TRP

Trace Model
final for next execution

Modify Traces
for TRP

Figure 3.22.: Trace modification during runtime of a RetainmentPolicy-modified transformation.

Transformation T’RP

Transformation T

Retainment Policies
Annotations

annotates
Copy + Trace
Independent

HOT

Transformation TRP

SourceMM TargetMM

SourceMM TargetMM

TraceMM TraceMM

model of transform. r/w access
dependency

Legend

active transform.

Trace
Metamodel

Creation

Retainment Policies
Annotations’

annotates

SourceMM TargetMM

TraceMM
For TRP

Inplace HOT
Incorporating Traces

Trace Metamodel
Creation

TraceMM’
For T’RP

1

2

3

4

Update Trace
Metamodel HOT

Transformation T’’RP

SourceMM TargetMM

TraceMM’ TraceMM’

5

Figure 3.23.: Detailed process for the generation of the RetainmentPolicy transformation using

higher order transformation.

124

3.11. Realisation of Retainment Policies Using QVT Relations

2. In the case of QVT-R, traces are instances of a strongly typed metamodel that is

created before a transformation can be executed. This metamodel consists of one

class per transformation rule that has properties for each element that is matched

or enforces in one of the rules’ domains. However, this implies that after a change

to the transformation this metamodel needs to be updated as well. The trace

metamodel is generated from the TRP in step (2).

3. As we want to use the trace information directly within the actual transformation,

for example to check which elements in the target model were externally modified,

we need to use the generated trace metamodel as an additional domain of the newly

generated transformation. Therefore, in the next step (3), an in-place HOT from

TRP to T ′RP is performed to add this additional domain and transformation code

that incorporates the semantics of the corresponding retainment policies according

to pattern 2. All remaining retainment policies are now translated into rules that

use such trace domains.

4. Due to these changes all affected transformation rules now have additional para-

meters. The additional domain needs to be reflected in the trace classes so that

the traces creation during the runtime of the transformation can be performed cor-

rectly. This, in turn, requires an update of the trace metamodel (4).

5. Finally (5), the new trace metamodel is used as third domain replacing the old

trace metamodel, resulting in the final version of the transformation T ′′RP . As no

more modifications to the actual transformation have been performed a further re-

generation of the trace metamodel is unnecessary.

3.11.3. Examples

Listing 3.3 shows an example in which pattern 1 is applied. The property that should

be retained is a single, optional, primitive valued attribute which gets annotated with

a TypeSpecificRetainmentPolicy specifying a never RetainmentKind in combination

with an always RetainmentKind for retainAdded.

The retainment policy annotation in Listing 3.3 is transformed into an additional query

that decides that an already existing “name” from the target model or the “name” com-

ing from the source model should be used. If the name in the target is undefined, which

would be the case if the transformation is executed initially where the element in the tar-

get model does not yet exist, it is set according to the transformation. Unsetting the value

125

Chapter 3. Retainment Policies for Model Transformations

1 transformation Bo2Db (bo : BO, rdms : RDBMS) {
2 top relation BO2Table {
3 varName : String;
4 checkonly domain bo myBo : BO::BusinessObject {
5 umlName = varName };
6 enforce domain rdbms table : RDBMS::Table {
7 tableName = varName
8 --@TSRetainmentPolicy MyTSRP: NEVER retainAdded: ALWAYS
9 };

10 }
11 ...
12 }

Listing 3.3: Example 1: Example transformation rule with a TypeSpecificRetainmentPolicy spe-

cifying a never RetainmentKind in combination with an always RetainmentKind
for retainAdded - annotated

externally will not be retained (as this would have required setting retainDeleted

to a target retaining RetainmentKind), it will be then again set according to the trans-

formation. The generated transformation that incorporates this RetainmentPolicy can be

seen in 3.4. Furthermore, this example uses a model element retainment scope which is

indicated by the additional domain providing the set of elements within this scope.

Listing 3.5 depicts an example where a TypeSpecificRetainmentPolicy with Retain-

Removed = TARGET is used. Again the BOToDB example is used. In this case

there are two transformation rules. The first rule creates a table for each business object

in the BO model, whereas the second adds a column for each association end of the

business object. In this example we want to specify that all manually deleted columns

should not be re-created by the transformation. Therefore an annotation is added to the

ClassToTable rule specifying RetainRemoved=TARGET.

The rules from Listing 3.5 are then translated into the rules depicted in Listing 3.6. As

it can be seen an additional rule IdentifyTracesForAssociation2Foreign-

KeyColumn has been added which is used for the conservation of the traces for the

deleted element. This relation ensures that the trace for the deleted element is not de-

leted during re-execution of the transformation. This is achieved by matching the trace

element itself which Furthermore, a helper query was added that is used to resolve the

traces belonging to the ClassToTable transformation.

Example 3 is also based on the rules from Listing 3.5 where only the RetainmentKind
is not RetainRemoved=TARGET but RetainAdded=TARGET. The annotated rules

are then translated into the rules depicted in Listing 3.7. For the ClassToTable trans-

126

3.11. Realisation of Retainment Policies Using QVT Relations

1 transformation Bo2Db (bo : BO, scopes : RDBMS, rdbms : RDBMS) {
2 top relation BO2Table {
3 varName : String;
4 checkonly domain bo myBo : SimpleUML::UmlClass {
5 umlName = varName };
6 enforce domain rdbms table : RDBMS::Table {
7 rdbmsName = varName };
8 when { not IsInScopeOf_MyTSRP(table); }
9 }

10 top relation BO2Table {
11 varName : String;
12 checkonly domain bo myBo : SimpleUML::UmlClass {
13 umlName = varName };
14 enforce domain rdbms table : RDBMS::Table {
15 rdbmsName = getNameRetainAddedALWAYS(table.rdbmsName,varName)};
16 when { IsInScopeOf_MyTSRP(table); }
17 }
18 top relation IsInScopeOf_MyTSRP {
19 checkonly domain rdbms table : RDBMS::Table { }
20 when {
21 retainmentPolicies::RetainmentPolicy {
22 id = ’MyTSRP’,
23 scope = retainmentPolicies::ModelElementRetainmentScope {
24 modelElements = table
25 }
26 }
27 }
28 }
29 query getNameRetainAddedALWAYS(targetName : String,
30 default : String) : String {
31 if targetName.oclIsUndefined() then
32 default
33 else targetName endif
34 }
35 ...
36 }

Listing 3.4: Example 1: Example transformation rule with retainment policy using a target
changed RetainmentKind- transformed

127

Chapter 3. Retainment Policies for Model Transformations

1 top relation BusinessOject2Table {
2 checkonly domain bo myBo : businessObjects::BusinessObject{
3 elementsOfType = td : businessObjects::TypeDefinition {
4 }
5 };
6 enforce domain db table : rdbms::Table {
7 tableName = myBo.name
8 };
9 };

10 top relation Association2ForeignKeyColumn {
11 checkonly domain bo assoc : businessObjects::Association{
12 ends = end : businessObjects::AssociationEnd {
13 type = td : businessObjects::TypeDefinition {
14 entity = bo : businessObjects::BusinessObject{}
15 }
16 }
17 };
18 --@TSRetainmentPolicy RetainDeletedColumns:NEVER
19 -- RetainRemoved: TARGET
20 enforce domain db keyColumn : rdbms::Column {
21 table = tab;
22 ...
23 }
24 when { BusinessOject2Table(myBo, tab); }
25 }

Listing 3.5: Example 2: Example transformation rule with a TypeSpecificRetainmentPolicy with

RetainRemoved=TARGET - annotated

formation an additional transformation that only matches the target domain and also

checks for the existence of traces for this target element is generated.

3.12. Limitations

The RetainmentPolicies approach presented in this chapter works for a vast range of

model transformation approaches. Furthermore, the presented realisation allows to map

the retainment policies to standard QVT-R relations allowing to use standard compli-

ant engines to execute an RetainmentPolicy-enhanced transformation. However, the ap-

proach also has some limitations:

• Changes to the target model can only be retained if they lie inside the image of the

transformation (cf. Section 3.5.1). If modifications to the target model are applied,

that lie outside of the transformation’s image no RetainmentPolicies can be defined

for their retainment. However, in most transformation approaches it is possible to

128

3.12. Limitations

1 top relation BusinessOject2Table { [...] }
2 top relation Association2ForeignKeyColumn { [...]
3 when {
4 BusinessOject2Table(myBo, tab);
5 --RetainmentRule trace handling start
6 if getTraceForAssociation2ForeignKeyColumn(end).oclIsUndefined()
7 then
8 true
9 else

10 --Call relation that always matches
11 --to ensure trace is not deleted
12 ConserveTracesForAssociation2ForeignKeyColumn(end,
13 getTraceForAssociation2ForeignKeyColumn(end))
14 endif;
15 --RetainmentRule trace handling end
16 }
17 }
18 --RetainmentRule trace handling start
19 query getTraceForAssociation2ForeignKeyColumn(
20 e : BO::AssociationEnd)
21 : Traces::Association2ForeignKeyColumn {
22 Traces::Association2ForeignKeyColumn.allInstances()->select(
23 a2fk | a2fk.end = e)->asSequence()->first()
24 }
25 top relation ConserveTracesForAssociation2ForeignKeyColumn {
26 checkonly domain bo endInTrace : BO::AssociationEnd { };
27 checkonly domain traces trace :
28 Traces::Association2ForeignKeyColumn{
29 end = endInTrace };
30 }
31 --RetainmentRule trace handling end

Listing 3.6: Example 2: Example transformation rule with retainment policy RetainRe-

moved=ALWAYS - transformed

define that these kinds of elements should ignored anyway, by the transformation.

This possibility, at least allows to distinguish that either all outside changes should

be reverted or all of them should be ignored.

• Changing of the RetainmentPolicies that are attached to a transformation requires

the re-generation of the derived transformation. This implies that a full round-trip

concerning the generation of the final transformation has to be made whenever

a change is made to the retainment policies. However, as the HOTs are not that

complex concerning their execution time, this limitation can be alleviated.

129

Chapter 3. Retainment Policies for Model Transformations

1 top relation BusinessOject2Table { [...] }
2 top relation Association2ForeignKeyColumn { [...] }
3

4 top relation IdentifyTracesForAssociation2ForeignKeyColumn {
5 checkonly domain bo endInTrace : BO::AssociationEnd { };
6 checkonly domain traces trace :
7 Traces::Association2ForeignKeyColumn{
8 end = endInTrace };
9 }

10 top relation Association2ForeignKeyColumnRetainAdded{
11 cn : String;
12 enforce domain rdbms c : RDBMS::Column {
13 table = t : RDBMS::Table {},
14 columnName = cn
15 };
16 when {
17 not IdentifyTraces(t, getTraceForClassToTable(t));
18 BO2Table(
19 getTraceForBO2Table(end.otherEnd().type.businessObject).p,
20 c.table); }
21 where { cn = c.columnName; }
22 }
23 query getTraceForAssociation2ForeignKeyColumn(
24 e : BO::AssociationEnd)
25 : Traces::Association2ForeignKeyColumn {
26 Traces::Association2ForeignKeyColumn.allInstances()
27 ->select(a2fk | a2fk.end = e)->asSequence()->first() }
28 query getTraceForBO2Table(bo : BO::BusinessObject)
29 : Traces::BO2Table {
30 Traces::BO2Table.allInstances()->select(bo2tab | bo2tab.myBo = bo)
31 ->asSequence()->first() }

Listing 3.7: Example 3: Example transformation rule with RetainmentKind RetainAd-

ded=TARGET - transformed

• Some transformation approaches, such as QVT Relations allow to create trans-

formations that work bidirectional. As mentioned in Section 3.4, the approach

presented in this thesis can, in general, also be applied to bidirectional transform-

ations. As the annotations for the RetainmentPolicies can also be attached at do-

main, or even template expression (see QVT example 1 on page 126) level. There-

fore, it is also possible to define different RetainmentPolicies depending on the dir-

ection of the transformation. In turn, this enables the RetainmentPolicy approach

to be applicable to bidirectional transformations.

130

Chapter 4.

Views on Models

In order to identify challenges which view-based modelling poses on textual modelling

languages, this chapter presents an analysis of different classes and properties of view

points, view types and views.

4.1. Scientific Challenges

The notion of having different views on underlying data is wide spread in different areas

of software engineering. Starting from views in (object-oriented) data bases, over views

on models in MDE up to the different views that are used in software architectures.

However, especially in the area of MDE there are still challenges that have not been

solved yet:

• What are the exact relations between views-points, views and types of views?

MDE literature mentions a lot of work that has to do with views on models. How-

ever, apart from a very broad definition, given by the IEEE 1471-2000 standard

[IEE00], no common understanding of these terms has been given, yet.

• Defining the semantics of views does have a lot to do with understanding which

parts of the underlying models are part of the view and which are not. A further

property of importance is the type of synchronisation that is performed between

the views and the model. Also, the way a view deals with inconsistencies during

editing is an important aspect of view-based modelling Is it, for example, possible

to create incomplete modifications in one view, then switching to a second view

and completing the work there? Finkelstein et al. [FKN+92] found this support

for temporary inconsistency an important aspect of view-based modelling. A clear

determination of these properties is still lacking. However, in order to define a

view based modelling approach solid foundations have to be provided. This avoids

incompleteness and errors stemming from ad-hoc decisions.

131

Chapter 4. Views on Models

• To allow for reasoning over these defined properties, formal definitions should be

provided. These formal definitions can then later-on be used to check whether a

view-based approach conforms to certain properties or not. This, in turn, allows to

reason about the completeness or validity of the approach in general.

4.2. Contributions

In this chapter, the presented scientific contributions are tackled in the following way:

• This chapter first presents a clear distinction between the terms that are used in

the area of views in MDE. Three well defined layers, i.e., view point, view type

and view (instance), including their relations are introduced. This clear distinc-

tion helps to guide discussions on view based approaches and resolves ambiguous

usage of the different terms.

• For each of these layers properties, such as partiality, completeness or editability

are presented and discussed. The complete listing of these properties gives an

overview on which aspects need to be accounted for in the definition of a view-

based modelling approach.

• To give a solid basis for view-based modelling approaches, each of these properties

is enhanced with a formal definition. The definitions are based on set logic and

some basic definitions published by Amelunxen et al. [AS07]. These definitions

can be used to validate any view-based approach and identify areas that are weakly

supported and where no clear definition is made on how the views are defined or

used.

• Furthermore, this chapter discusses issues that need to be taken into account when

defining synchronisation transformations between views and models. Reasoning

on the requirements for these transformations is conducted in the course of this

chapter. For example, a theorem is introduced that says that partial views can only

be synchronised with partial, non-injective transformations. Approaches realising

these transformations are therefore required to fulfil these requirements.

• At last, an overview own patterns of view types is presented, as they appear in

practice. For example, the master / detail pattern is analysed concerning the pre-

viously defined view type properties. This classification helps to understand the

meaning of the defined properties as well as giving hints to when they are useful.

132

4.3. Determination of View-Points, View-Types and Views

4.3. Determination of View-Points, View-Types and Views

It can be distinguished between different flavours of the term view. The definition given

here is based on the IEEE 1471-2000 standard [IEE00]: A view is “a representation

of a whole system from the perspective of a related set of concerns”. Additionally,

the standard defines a view point as “a specification of the conventions for constructing

and using a view. A pattern or template from which to develop individual views by

establishing the purposes and audience for a view and the techniques for its creation and

analysis.” The standard does, not restrict the terms to more specific definitions, which

allows for the application of the standard in different areas of software engineering.

However, for a more specific view-based modelling approach it is not enough to rely

on the broad definition of the standard. A more detailed and well-defined basis needs

to be given. Thus, in order to give a formal basis a more precise definition is presented

here. An overview on the three different concepts related to views is given in Figure 4.1.

View Point: A view point represents a conceptual point of view that is used to define a

certain concern. Often this is also specific to a certain stakeholder. A view point

includes both, the concern, and also a certain methodology on how the concern is

treated. A viewpoint may include one or more view types. For example, the static

architecture of a system would be a view point whereas the dynamic aspects of a

system would form a different view point.

View Type: The definition of which types of elements are displayed in a certain type

of view is also called view type. This description takes place at the metamodel

level and provides rules that can comprise of a definition of a concrete syntax

and its mapping to the abstract syntax. It defines how elements from the concrete

syntax are mapped to the abstract syntax, which is in this case the meta-model.

For example, a view type could be defined to only show deployment nodes for a

deployment view type. In UML a view type would be called a diagram. UML,

for example, defines view types such as the class diagram view type, the sequence

diagram view type or the activity diagram view type.

View: Also called view instance. A view is defined as the actual set of elements and their

relations displayed using a certain representation and layout. The set of elements

that is represented within a view can either be automatically or manually selected.

The automatic selection can, for example, be defined using a query given in the

corresponding view type. A view resembles the application of a view type on a

133

Chapter 4. Views on Models

ViewPoint ViewType View
0..*

viewTypes InstanceOf

Figure 4.1.: Overview on the different view concepts.

specific set of model elements. A view can therefore be considered an instance of

a view type. For example, a developer could configure a view showing deployment

nodes that are used for a certain part of the system. In UML, a view is for example

a specific class diagram showing classes A, B and C.

A well known example for view-based modelling is the UML [Obj10b]. A view points

in UML are characterised by the aspect that is modelled using them. The UML provides,

for instance, a static and a dynamic view point. The static view point defines a view

types as well as a methodology of how static aspects are modelled and expressed using

this view point. Furthermore, several types of diagrams belong to a view point. For

example, class or component diagrams belong to the static view point. Figure 4.2 depicts

an example for the threefold view hierarchy in UML.

4.3.1. Advantages and Disadvantages of Multiple Models as Views

A general question, when it comes to the definition of a view-based modelling approach

is whether to use a single underlying model and define each view to be based on it or

to have multiple models, i.e., each view having its own model, and defining transforma-

tions between these models. The answer to this question, mostly depends on how many

different view types are going to be employed as well as how big their overlap between

each other is. In the following advantages and disadvantages of either approach is dis-

cussed.

One advantage of this approach is that the views types are more or less independent

from each other. Each view then posses its own underlying model and can operate

on it without having to interact (and thus possibly interfere) with other views. This

independence is an advantage if the models on which the views operate do not have too

much in common. Therefore, the transformations that synchronise the models with each

only need to consider these few common constructs only need to be extended whenever

a new common construct is introduced. Additionally, concerning metamodel evolution,

134

4.3. Determination of View-Points, View-Types and Views

Static : ViewPoint

ClassDiagramm :
ViewType

ComponentDiagramm
: ViewType

SequenceDiagramm :
ViewType

ActivityDiagramm :
ViewType

Dynamic : ViewPoint

O1
O2

O3

Figure 4.2.: Examples for view points, view types and views in UML.

135

Chapter 4. Views on Models

having multiple metamodels may be an advantage as they can evolve independent from

each other.

However, being an advantage in this scenario, the same arguments turn into counter-

arguments when such an approach is employed having many views types and/or a larger

overlap between the views. For each view, a transformation to each other view type with

which it overlaps needs to be provided. Thus, having a large number of overlapping

view types results in an even greater number of transformations that need to maintained.

Furthermore, not having to define all constructs in a single metamodel also increases the

probability of defining the same semantic entity multiple times.

4.3.2. Advantages and Disadvantages of a Central Model with
Transformations for Synchronisation

A single underlying model is useful when the number and/or the overlap between the

views exceed a certain threshold. Especially the synchronisation effort between the

views is affected to a large extend. For each view only one transformation needs to be

provided that synchronises the view with the central model. Furthermore, having a single

metamodel for the central model forces to think about conciseness and expressiveness of

that metamodel. This reduces the probability of defining the same things multiple times.

On the other hand, only having one central model can also cause problems concern-

ing flexibility of the modelling approach. Evolution tasks have to be considered more

centrally and cannot be handled in a more or less independent way. Additionally, having

a single metamodel may also lead to artificial links between elements of the metamodel

that would otherwise be defined in a more abstract and less interconnected way.

4.4. View Type

View types can have different properties in relation to the underlying metamodel as well

as other view types. Figure 4.3 gives an overview on the different properties of view

types expressed as a feature diagram. To be able to validate view-based approaches

w.r.t. their fulfilment of these properties, an explicit, formal definition is given for each

of the properties. Given a mapping of a certain view-based approach to the generic

constructs that this chapter uses, it is possible to formally validate the properties of

the given approach. For example, the FURCAS approach presented in this thesis will

be evaluated against these formal definitions in Chapter 7. The following sections and

subsections will deal with the explanation and definition of these properties.

136

4.4. View Type

ViewType

CompletePartial

Scope

Containment
Complete

Upwards
Containment

Complete

Downwards
Containment

Complete

Containment
Complete

Locally
Complete

Level

Fine-grained ViewType

exclusive OR

mandatory feature
optional feature

Legend

inclusive OR

Per Class Per
AssociationPer Attribute

Extending

Projectional
Complete

Selectional
Complete

Figure 4.3.: Properties of view types.

A view type defines rules according to which views of the respective type are created.

A view type always refers to one or more metamodels. The rules, that are defined by

a view type, can be considered as a combination of projectional as well as selectional

predicates. The main features of a view type include its scope, i.e., which general types

and which specific instances a view type includes as well as the rules on how these

elements are represented within a view type’s instance.

Note that, depending on whether a view type is editable or read-only, these rules have

to be considered in a bidirectional way: I) the direction which specifies how a view is

created for an underlying model. And II) defines how a model is created and/or updated

based on changes that are performed in a view.

Definition 4.1. A view type VT is a tuple

VT = (MM ,Φ) (4.1)

where

MM is the referenced metamodel for which the view type is defined and

137

Chapter 4. Views on Models

Φ is a finite set of predicates which denote the rules according to which the view is
constructed and the underlying model is updated.

Views creation in databases distinguishes between projections, i.e. columns of a table

are omitted in a view, and selections, i.e., rows of a table are omitted due to some criteria

that is based on the actual values of a row. This distinction can also be transferred to

views on models. Therefore, the application of a predicate p to an element e ∈ M of a

model M ∈ModelsMM is also defined on these two levels. First a function φp that decides

on metamodel level if the view type can represent a certain class, association or attribute.

The function φp is responsible for the projectional part of the view construction. This

function is defined as:

φp ∶ModelsMM → B where

φp(e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true if e lies within the projection of the view type

false else

The second function for each p called σp is responsible for the selectional part of the

view creation. It decides based upon actual attribute values and association links whether

a model element is included in the view or not. This function is defined as:

σp ∶ModelsMM → B where

σp(e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true if e is in the selection of the view type

false else

The combination of both functions is denoted as ∂p where ∂ is a function that is defined

as:
∂p ∶ModelsMM → B where

∂p(e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true if φp(e) = true ∧ σp(e) = true

false else

In its decision ∂ may not only include the type of e but also traverse links between objects

or values of attributes of objects.

Additionally, each predicate p includes rules that are responsible for defining the lay-

out of the element within a respective view. The application of the layout rules for p

to an element e ∈ M is denoted as Λe = λp(e) where λ is defined as λ ∶ ModelsMM →
P(ModelsΛ) and ModelsΛ is the infinite set of all possible layout information. This in-

138

4.4. View Type

formation includes the actual elements of the concrete syntax which represent an element

e as well as additional information that make up the format of the displayed view. For

a graphical view the latter is, for example, the exact position of the view’s elements or

their size. The former would be, for example, that a certain element e1 is represented by

a rectangular shape with its name attribute as label.

Considering the example metamodel presented in Section 2.1.1.1 on page 18, a graph-

ical view type Φbo could be defined that shows elements of type BusinessObject,

their name property as well as an indicator if the property valueType is set to true.

The set Φ for this view type would then include three predicates resulting in the follow-

ing functions (cbo is the BusinessObject class):

Φbo = {p1, p2, p3}

φp1(e ∈M) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true, if class(e) = cBusinessObject

false, else

φp2(v ∈ VM) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true, if attribute(v) = aname ∧ attribute(v) ∈ attributes(cbo)
false, else

φp3(v ∈ VM) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true, if attribute(v) = avalueType ∧ attribute(v) ∈ attributes(cbo)
false, else

The predicates may not only do projections on type level, but also provide selection

patterns on on instance level, referring to special attribute or link values. For example,

if only value types should be included in a new view type V TvalueTypes, p1 ∈ V Tbo could

be extended such that:

∂p1(e ∈M) = φp1(e) ∧ σp1(e) where

σp1(e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

true, if ∃v ∈M ∣ v = “true′′ ∧ attribute(v) = avalueType

false, else

139

Chapter 4. Views on Models

Customer Address
v

Figure 4.4.: Example view instance for the BusinessObject view type showing business objects

(Customer and Address) and their names. The “v” denotes that Address is a value-

type.

The layout information rules Λe = λp1(e) for an element e provided by a view type,

for this example, could look as follows:

λp1(e) = { create rectangular box , position = (0, 0)}
λp2(e) = { create label with value: value(e, aname), position = (5, 5)}
λp3(e) = { create small rectangular box , position = (0, 0),

create label with value: “v”, position = (1, 1)}

An example, instance of this view type for the example model given on page 22 would

look as depicted in Figure 4.4.

4.4.1. Composite Metamodel

Definition 4.1, which is given above, restricts a view type to be based on only one

metamodel. However, one could always define a metamodel being a composite of sev-

eral sub-metamodels using the following definition.

Definition 4.2. A composite metamodel CMM is defined as a sequence CMM =
MM 1...MM n where

CCMM = CMM 1 ∪ ... ∪CMM n and

ACMM = AMM 1 ∪ ... ∪AMM n ∪AcrossMM and

PCMM = PMM 1 ∪ ... ∪ PMM nand

AcrossMM is a finite set of links where

∀a ∈ AcrossMM ∣ (first(a) ∈MM i ↔ second(a) /∈MM i).
In the following, metamodel and composite metamodel will be used as synonyms.

Wherever a metamodel is referenced it may also be a composite metamodel. Only for

cases where the composition of metamodels actually makes a difference the formulas

will explicitly use the term composite metamodel or CMM .

140

4.4. View Type

4.4.2. Partial View Type Scope

The scope of a view type is considered partial concerning a metamodel, if it only covers

a certain part of the element types that are defined within the metamodel. This means

for example that certain properties or relations are not shown in this view. The example

view type V Tbo, given above, is partial concerning the BusinessObjects metamodel as

model elements such as associations or association ends are not included.

Definition 4.3 (Partial View Type Concerning Metamodel). A view type VT is partial

concerning a metamodel MM iff

∃M ∈ModelsMM , e ∈M ∣ (∀p ∈ Φ ∣ (∂p(e) = false))
On a more fine grained level the definition of partiality declares whether a view type

is partial concerning a specific class c of a metamodel. If a view type does not include

all possible instances of c it is considered partial concerning c. Analogously, a view

type may also be partial concerning associations or attributes. For example, view type

V TviewType is partial concerning class BusinessObject, as it does not include instances

which have set the valueType attribute to “false”.

Definition 4.4 (Partial View Type Concerning Classes). A view type VT is partial

concerning a specific class c ∈ C iff

∃M ∈ModelsMM , e ∈M ∣ (∀p ∈ Φ ∣ (class(e) = c ∧ ∂p(e) = false))
Partiality concerning associations or attributes is defined analogously.

4.4.3. Complete View Type Scopes

As opposite to partial a view type may be complete which means that it considers

all properties and relations of a metamodel that are reachable from the part of the

metamodel for which the view type is defined. Hence, this means that if an element

is not shown within a complete view (which accords to a complete type view) there can

be no direct or transitive reference from elements that are shown in the view to this

specific element.

Definition 4.5 (Complete View Type Concerning Metamodel). A view type VT is com-

plete concerning a metamodel MM iff

∀M ∈ModelsMM , e ∈M ∣ (∃p ∈ Φ ∣ (∂p(e) = true)).

141

Chapter 4. Views on Models

containment
complete

upwards
containment

complete

downwards
containment complete

valueType : Boolean

BusinessObject

MethodSignature

Block

Statement

signatures

owner1
0..*

statements
{ordered}

block1

0..*

implementation

methodSignature1
0..*

Figure 4.5.: Excerpt of the containment hierarchy of the BusinessObjects metamodel showing

the different notions of containment completeness.

Analogously to Definition 4.4, the complete property can be defined on a per class,

association or attribute level. For example, the V Tbo view type is complete concerning

the BusinessObject class as it shows every instance of it without restrictions.

Views creation databases distinguish between projections, i.e. columns of a table are

omitted in a view, and selections, i.e., rows of a table are omitted due to some selection

criterion. This distinction can also be transferred to views on models. Thus, it can be

distinguished between projectional completeness (which includes the containment and

local completenes) and selectional completeness (see the definition of instance com-
pleteness below).

4.4.3.1. Projectional Complete View Type Scope

Projectional completeness of views based on the MOF meta-metamodel can be defined

on several levels. Containment-complete concerning a specific element o means that all

elements that are related to it via containment associations are shown in the view. For ex-

ample imagine excerpt of the containment hierarchy of the BusinessObjects metamodel

as depicted in Figure 4.5. Three different notions of containment complete can be

defined.

142

4.4. View Type

• Downwards containment-complete means that all elements that are transitively

connected to o are part of the view if o is their transitive parent.

• Upwards containment-complete means that all elements that are transitively con-

nected to o are part of the view if they are a transitive parent of o.

• The third notion specifies that all transitive parents and children of o are part of the

view.

Definition 4.6 (Downwards Containment-complete View Type Concerning Metamodel).
A view type VT is downwards containment-complete concerning a metamodel MM and
a given class c ∈ C iff

∀Mi ∈ModelsMM , o ∈ OMi ∣ (
class(o) = c→ (∃p ∈ Φ ∣ (∀oi ∈ childObjects∗(o) ∪ {o} ∣

φp(oi) = true))) .

Definition 4.7 (Upwards Containment-complete View Type Concerning Metamodel).
A view type VT is upwards containment-complete concerning a metamodel MM and a
given class c ∈ C iff

∀Mi ∈ModelsMM , o ∈ OMi ∣ (
class(o) = c→ (∃p ∈ Φ ∣ (∀oi ∈ compositeParent∗(o) ∪ {o} ∣

φp(oi) = true))) .

Definition 4.8 (Containment-complete View Type Concerning Metamodel). A view type
VT is containment-complete concerning a metamodel MM and a given class c ∈ C

iff VT is downwards containment-complete concerning MM and c as well as upwards

containment-complete concerning MM and c.

Another dimension of view types completeness is the level of local completeness con-

cerning properties. Local completeness is fulfilled if a view type can display all pos-

sible combinations of attribute assignments. A view type is locally complete concerning

a class c if every possible combination of attribute values can be displayed for each

attribute of c and furthermore every class that is directly referenced by c can be dis-

played by the view. Considering the BusinessObject class from the running example

metamodel local completeness would include the following associations and attributes:

name, valueType, elementsOfType as well as signatures.

143

Chapter 4. Views on Models

Definition 4.9 (Local-complete View Type Concerning Metamodel). A view type VT is
locally complete concerning a metamodel MM and a given class c ∈ C iff

∀Mi ∈ModelsMM , o ∈OMi ∣ (∃p ∈ Φ ∣ (
class(o) = c∧

(∀ai ∈ attributes(class(o)) ∣ φp(ai) = true)∧
(∀li ∈ {l ∈ LMi ∣ fistObject(l) = o ∨ secondObject(l) = o} ∣

φp(li) = true)))

Analogously to Definition 4.4 the all projectional completeness properties can be

defined on a per class, association or attribute level.

4.4.3.2. Selectional or Instance Completeness

Selectional completeness, or instance completeness means that the selection of the view

type includes all model instances that appear in the underlying model as long as the

projection of the view type also includes them. However, the projection does not need to

be complete in order to fulfil the instance completeness property. For example, a view

type can have a projection of a class A which does not include a property propA. As

long as the view type includes all possible instances of A it is still instance complete.

In contrast to that, if a view type defines a selection criterion for A, such that only

As having a propA value of let’s say “selected”, are included the template for A is not

instance complete anymore.

Definition 4.10 (Instance-complete View Type). A view type VT is instance complete

concerning a metamodel MM iff

∀M ∈ModelsMM , e ∈M ∣ (∃p ∈ Φ ∣ (σp(e) = true)).

4.4.4. Extending View Type Scope

Partial views are used to hide details of an underlying model, whereas the various types

of complete views are used to provide more vast representations of this model. In con-

trast to these two options, there also exist views that combine elements from the un-

derlying model with additional information from outside, i.e., another model Mex. The

extended information is defined as such by the fact that it is not directly reachable by

model navigation from the extended view type. Often, the information that should be

144

4.4. View Type

BusinessObjectsPersistency

boName : String
tableName : String

Storage

name : String <<inherited>>
valueType : Boolean

BusinessObject

BO + Persistency View Type

template Storage :
„store“ boName „with“ „valueType“ „=“
external {query =

BusinessObject.allInstances()->
select(name = boName),

property = valueType}
„to“ tableName

;

MM View Type Def. MMext

Figure 4.6.: Using an external metamodel Annotations that is connected via a query in the view

type to an existing metamodel BusinessObjects.

added in such a view type is additionally defined using a different metamodel MM ex.

This external information is then merged with elements from the actual model. This

merging can, for example, be done by specifying a query that relates the elements to

each other.

A concrete example that shows how such an extension view type could be defined is

depicted in Figure 4.6, based on the example business object metamodel. The example

shows that there is an external persistency annotation metamodel that does not have any

connection with the business object metamodel. The storage annotation only contains a

hint to the name of the business object that should be persisted in its boName attribute.

However, it might be a requirement that a language engineer needs to define a view type

not only showing elements of the persistency metamodel but also presenting information

from the business object metamodel, i.e., if the mentioned business object is a value

type or not. Therefore, a query is given in the view type that retrieves the corresponding

business object with the specified name and from which the valueType property is then

shown in the view, as illustrated in Figure 4.7.

Formally, the extending view type property can be expressed based on whether the

view type refers to elements that are not directly reachable from the model elements

of the actual model that is viewed. The reachability of a target model element t from

a model element f is given by a function e = reachablen(t) where n is the number of

navigation steps required to get from f to t.

145

Chapter 4. Views on Models

store Company
with valueType = false
to CompanyTable

boName = „Company“
tableName = „CompanyTable“

: Storage

name = „Company“
valueType = false

Company : BusinessObject

Model View

Figure 4.7.: Example view instance of the view type specified in Figure 4.6.

BusinessObjects

name : String <<inherited>>
valueType : Boolean

BusinessObject

Persistency

tableName : String

Storage
entity

1

Figure 4.8.: Using an external metamodel Annotations to non-intrusively add persistency annota-

tions to an existing metamodel BusinessObjects.

Definition 4.11 (Extending View Type). A view type VT is extending with n the inform-
ation contained in a model M with n steps, where n ∈ N+ ∪{�} where � is the undefined
value, iff:

n =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i if ∃i ∈ N+; p1, p2 ∈ ΦVT ; e ∈ModelsMMVT ; eext ∈ModelsMM ext ∣
∂p1(e) = true ∧ ∂p2(eext) = true ∧ e = reachablei(eext)

� else

If i ≠ � the extending information is still directly connected to the used metamodel

MM for which the view type is responsible, for example via (non-intrusively, by expos-

ing the property only in the annotating metamodel leaving the annotated metamodel un-

touched) attached associations that reference elements of MM . However, in this scenario

the differentiation to a non-extending view type VT comp with considering a composite

metamodel MM comp = (MM ,MM ex) is quite blurry. Depending on how closely related

both metamodels are to each other, one or the other property fits best.

146

4.4. View Type

addresses : Address [0..*]

Customer
Address

vaddresses

0..*

Intra View Type Overlap:
Association end „addresses“

occurs more than once in
the same view but using
different representations

ValueTypes

Address

Position

Prize

VTAssocs VTValueTypes

Inter View Type Overlap:
BusinessObjects with

valueType = true are shown
in multiple view types

Figure 4.9.: Two different view types, showing the two different flavours of overlaps.

For example, the business objects view type VT bo considered as example in previous

sections, could be extended to display annotations that are added as shown in Figure 4.8

If i = � arbitrary information, not necessarily having any connection to the viewed

model can be blended into the view. This extending with i = � case is much more

difficult to realise in a view based approach, as additional query rules need to be allowed

in the view type definition that can find the corresponding blended information without

using direct model navigation.

4.4.5. Overlapping View Type Scope

View types may also cover scenarios where there is more than one view type that is able

to represent the same element. On the other hand it is also possible that the same view

type can handle one unique element in different places but e.g., from different view types

each having a different focus. This is not a property that is directly expressed within a

view type but is rather a derived properties from a set of view types or different parts

of the same view type. Both types are explained in detail as inter- and intra view type
overlaps. Figure 4.9 shows an examples for both types of overlaps.

4.4.5.1. Inter View Type Overlaps

An inter view type overlap occurs whenever one or more view type is able to represent

the same element. A prerequisite for this property is, of course, that the involved view

types are based on the same metamodel. A view type VT a is inter view type overlapping

147

Chapter 4. Views on Models

with respect to a view type VT b iff

MM a =MM b∧∃c ∈MM a ∣ (∃o ∈ModelsMM a ∣ (class(o) = e∧
∃pa ∈ proj2(V Ta), pb ∈ proj2(V Tb) ∣ (∂pa(o) = true ∧ ∂pb(o) = true)))

where MM a = proj1(VT a) and MM b = proj1(VT b).
To get those tuples (e, pa, pb) where e ∈ MM and pa ∈ VT a, pb ∈ VT b that are respons-

ible for the overlapping of the view types the following shorthand notation will be used

throughout the rest of this thesis: {(e1, pa,1, pb,1), ..., (en, pa,n, pb,n)} = VT a 2VT b.

4.4.5.2. Intra View Type Overlaps

If the same view type can represent the same element in different ways an intra view
type overlap is present. This means that there is more that one predicate in the view type

that includes the same element. Thus, a view type VT has intra view type overlaps iff

∃p1, p2 ∈ ΦVT ∣ (p1 ≠ p2 ∧ ∃e ∈ModelsMM ∣ (∂p1(e) = true ∧ ∂p2(e) = true))

4.5. Views

Views, as instances of view types can also have different properties which are depicted in

Figure 4.10 using a feature diagram. Using these properties, views can be classified and

related to each other concerning the extent of information they show of the underlying

model(s). Similar terms as those specifying the types and properties of view types could

have been used here to define these properties (such as partial or complete). However,

to avoid confusion between properties of views and those of view types different terms

are used here (e.g., selective or holistic).

If a view is able to fulfil these properties may also depend on the definition of its view

type. So, whether a view is selective can be specified by its corresponding view type.

Definition 4.12 (View). A view is defined as a tuple

V = (MV ,VT , S,Λ, layout) (4.2)

148

4.5. Views

View

Selective

PersistencyModel
Contents

Holistic Selection
Persistent

Layout
Persistent

Editability

Layout Model

Synchronisation

Immediate Deferred

Effect
Conformity

Consistency
Conservation

Temprorary
Constraint

Inconsistency

Temporary
Model

Inconsistency

Editable
Entities

Figure 4.10.: Properties of view types.

where

MV is a model that is represented in the view,

VT is the VTview type that defines the rules for the view construction,

S ⊆MV is a finite set of model elements (objects, links and attribute values)

that represent the current selection of elements from the model MV

that is shown in V .

Λ is the finite set of layout information used to display the view contents.

layout ⊆ S × Λ is a binary relation relating the model elements of the view with their

layout information

4.5.1. View Scope

A view shows a specific selection of elements from its underlying model. If the model

is changed, i.e. elements are added or deleted, the view needs to be updated according

to this change. Whether this is done automatically or only if a user explicitly requests

the update is a property of the employed view type.

To support further formalisations of view properties the definitions of atomic and com-

plex changes on models 2.4 and 2.5 given in 2 published by Hettel et al. [HLR08], form-

149

Chapter 4. Views on Models

alise atomic and complex changes to models. These definitions are now used in order to

define the impact of arbitrary modifications that occur in the model to it’s views.

4.5.1.1. Selective View Scope

A view is considered selective if it can show only a selected part of the model. Only

specific elements are shown in such a view. The selection may either be done automat-

ically or manually, by a user of the view. This type of view is mostly used to highlight

a special aspect of a model. It provides focused information, while restricting the set of

displayable elements to those that are necessary to understand this specific aspect.

A view can be selective concerning different types of changes:

Addition Selective Additions of elements to the model that fall into the scope of a view’s

view type are only added to the view’s selection, if added manually. Furthermore,

this property can be applied to the addition of links. Then it means: The addition

of links between two elements of the model that fall into the scope of a view’s view

type are only added to the view’s selection, if added manually. An example, where

selective views are used to a large extent is the modelling within UML diagrams.

For example, class diagrams for a certain package mostly do not show all classes

at once. The user can select whether a newly added class should appear in a certain

diagram or not.

Deletion Selective Deletions of elements from the model that fall into the scope of a

view’s view type are propagated to the view’s selection, if deleted manually. The

same property applies for links between two model elements. This results in ele-

ments or links that are displayed in a view that are not part of the model anymore.

Several tools for UML modelling also use this notion of deletion in selective views.

Elements that are deleted from the underlying model do not necessarily result in

deletions of their view representations. For example, in many graphical model-

ling tools (such as Rational Rose or GMF), view elements where the underlying

model partition is not available anymore, are not automatically removed from the

diagrams but are rather annotated indicating that the underlying model element is

missing.

The possibility to explicitly define that a view should be selective allows for a more

flexible model modelling experience. Practice shows that view-based modelling ap-

150

4.5. Views

proaches already make use of this distinction and even let modellers decide their prefer-

ences for selectiveness of certain parts of a view type.

Definition 4.13 (Addition Selective). A view V is called addition selective if after the
addition of objects, links or attribute values M ′ = δ+eM , where e is the added element the
following holds: S′ = S. Analogously, deletion selective is defined for changes δ−e .

4.5.1.2. Holistic

In contrast to addition selective views, a view may be addition holistic. This means that

it always presents the whole set of possible elements that can be displayed by the view.

If elements are added and/or removed this is immediately reflected view. This type of

view is mostly used to present the user an overview on the underlying model. Often an

important property of such a view is its actuality.

Definition 4.14 (Addition Holistic View Scope). A view V is called addition holistic if
after the addition of objects, links or attribute values M ′ = δ+eM , where e is the added
element, this change is immediately shown in the view and the following holds:

S′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S ∪ {e}, if ∃p ∈ Φ ∣ ∂p(e) = true

S, else

Analogously, deletion holistic is defined for deletion changes δ−e but with S ∪ {e} being
replaced by S ∖ {e}.

4.5.1.3. Partially Selective/Holistic

The properties selective and holistic must be applied both to a whole view but it is

also possible to limit them to certain predicates of the associated view type. Then, the

holistic/selective property only holds, i.e., for a adding elements to a certain association.

For example, a UML class diagram may be addition holistic concerning the attributes

of the displayed classes, showing them whenever they are added to the classes that are

displayed. At the same time it may be addition selective concerning classes that are

added to packages displayed by the view. This means that classes are not automatically

added to class diagrams for the respective package when they are added to that package.

Definition 4.15 (Predicate Selection). A predicate selection Sp0 ⊆ S of a predicate p0 ∈ Φ
is defined as: Sp0 = {s ∈ S ∣ ∂p0(s) = true}

151

Chapter 4. Views on Models

Definition 4.16 (Partially Selective). A view V is selective concerning a predicate p0 ∈ Φ
if after additions of objects or links changing a given M to M ′ where M ′ = δ+eM it holds
that S′p0 = Sp0 .

Definition 4.17 (Partially Holistic). A view V is holistic w.r.t. a predicate p0 ∈ Φ iff

S′p0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sp0 ∪ {e}, if ∂p0(e) = true

Sp0 , else

Definitions for partial addition and deletion selective/holistic are defined analogously.

4.5.1.4. Overlapping

A third property of views w.r.t. their scope is whether it is overlapping with another

view. In this case elements may occur in more than one view at once. This may be a

view of the same view type but also a different one.

Definition 4.18 (Overlapping). A view V1 is overlapping concerning another view V2 iff

SV1 ∩ SV2 ≠ ∅

In contrast to the other properties, which are defined on a single view, overlapping of
views is a “derived” property given for a set of views.

4.5.2. Editability

Views in which the user can not only view elements but also conduct changes to the

model is an editable view. In addition to displaying model elements in a defined way,

an editable view needs to provide means to interact with the model. Actions such as

create, update and delete need to be performable to make a view editable. Editability

of views can also be subdivided into two different degrees of editability. First, if only

the layout information can be changed but not the actual model content the view is only

layout editable. Second, if the model content is editable through the view it is considered

content editable.

Special attention needs to be taken if an editable view is also partial. In this case

editing actions may indirectly affect elements that are not represented in the current

view. If such changes are possible it might be important to make possible repercussions

on elements outside the current view. For example, if a link to an element that was

152

4.5. Views

outside of a view is added to an element within the view, the element might need to

be added to the current view as well. Within overlapping views editing becomes even

more challenging. In this case changes need to by synchronised between the views. If

it is possible to edit elements in parallel using different views it might furthermore be

necessary to provide means for conflict resolution.

Furthermore, editability may be allowed only on certain parts of the same view type.

This may either be a restriction directly specified in the definition of the view type or it

may be a result of the model partition being the container of displayed model elements

and that partition is read-only. This will result in a partial editability of the view.

From the area of relational and object databases there are, according to [Cod91], sev-

eral preconditions known that are required to make a view editable:

• Effect conformity: After a user made a change to the data through a view the

view needs to be updated according to the change. This requires a consistent bid-

irectional transformation, or two corresponding transformations that are inverse to

each other, between the view and the underlying data.

• Minimality: Views only perform minimal changes to the underlying data.

• Consistency conservation: Changes that are made through a view shall not lead

to the violation of integrity constraints.

• Respect to access control: Views that are created for reasons of access control

shall not allow changes that affect areas that lie outside of the view.

Those properties mostly apply to views in modelling as well. However, minimality is

a property that should be disregarded in the context of a view-based modelling approach.

Considering that a model, in such an approach, is always edited through a view, the min-

imality of changes would constrain the editability of the model in general. Furthermore,

we will omit a formal definition of the access control aspect as this would exceed the

scope of this work.

To be able to express what editability of view actually means, the definitions of morph-

isms between model (cf. Definition 2.6 on page 25) and transformations (cf. Definition

2.7) by Amelunxen and Schürr [AS07] are referenced. The relation between a view and

its underlying model can be considered a model morphism and based on this transform-

ations for synchronising them can be defined.

153

Chapter 4. Views on Models

M
Tv � V

M ′
Δ
�

�
Tm

V ′
Δ′
�

Figure 4.11.: Tv and Tm are effect conform with respect to M and V if the application of Δ to

M results in the same M ′ as if the chain of Tv, Δ′ and Tm is applied. Where Δ′ is

an equivalent change on view level to Δ.

Definition 4.19. The view type definition of a view type VT implies the existence of
transformations Tv and Tm. Both transformations are used to realise the functionality
of the φ, σ and λ functions in the original definition of view type. So definition 4.1 is
extended in the following way:

VT = (MMVT ,VMM , Tv, Tm) (4.3)

where
Tv is the transformation defined from MMVT to the view metamodel VMM so that ↝Tv⊆
ModelsMMVT ×ModelsVMM and
Tm is the transformation defined from VMM to MMVT so that ↝Tm⊆ ModelsVMM ×
ModelsMMVT and
Tv ∪ Tm ≡ Φ where

∂p(e) = true ⇐⇒ ∃Ve ∈ModelsVMM ∣ ({e},Ve) ∈↝Tv ∧(Ve,{e}) ∈↝Tm (4.4)

4.5.2.1. Effect Conformity

For an editable view, the morphism defined for the view type needs to be bidirectional

and comply with the effect conformity requirement. As depicted in Figure 4.11, to be

effect conform, changes made directly to the model should leave it in the same state

as an equal change on the view level and then propagated by the update transformation

back to the model would do. Furthermore, vice-versa, changes made through the view

to the model should leave the view in the same state as an equal change on the model

level which is propagated by the update transformation would do.

154

4.5. Views

Definition 4.20 (Effect Conformity). Effect conformity of a view type VT holds iff

∀V ∈ModelsVMM ∣ (proj 2(V) = VT ∧ (∀M ∈ModelsMM ∣
∀V ′ ∈ModelsVMM ∣ (proj 2(V ′) = VT ∧ (∀M ′ ∈ModelsMM ∣

((M,V) ∈↝Tv ∧(V ′,M ′) ∈↝Tm) →
((M ′, V ′) ∈↝Tv ∧(V,M) ∈↝Tm)))))

where M ′ = ΔMM , which means that M ′ is the same as model M but after an arbitrary
set of changes ΔM was performed and V ′ = ΔVV meaning that V ′ is the same as view
V but after an arbitrary set of changes ΔV was performed.

4.5.2.2. Consistency Conservation

Considering the rules of a view type a transformation, the creation of models through

this view should only produce valid models. As modelling is a creative process models

are mostly created step-by-step. In order to support this creative process by editable

views this this process should be supported to foster the usability and productivity of

a view. One possibility to allow this is if a view supports for the creation temporarily
inconsistent states [Fow05]. If this is the case, an editable view might contain valuable

information that was created during modelling but that is not yet transformable into a

valid model.

Imagine a UML model under development. There are two classes connected through

an association. Now the developer decides to delete one of these classes. An association

which refers to only one class would be inconsistent according to the UML metamodel.

Hence, making the model consistent again, the association would also need to be deleted.

However, a view might still allow to keep an intermediate state. This would allow the

developer to create a new class and attach the dangling association to it.

There are different classes of inconsistency: (I) violation of metamodel constraints

that lead to what is called constraint inconsistency and (II) model inconsistency if a

model that is not valid in itself without taking constraints into account. For example,

the latter would be the case of a link referring to only one element or an element which

has a different type than is specified in the link’s association exists. A more detailed

description of what a valid model is is given in [AS07].

Metamodel constraints constrain the validity of models that would theoretically be

constructible obeying only the rules defined in the metamodel without constraints. Mul-

tiplicity definitions for associations and attributes are also included here. For example,

155

Chapter 4. Views on Models

considering the business object example metamodel, an invariant may be defined so that

every business object needs to have its name attribute set (expressed as OCL invariant:

inv: not self.name.oclIsUndefined()). If there exists a business object

instance with no name set, this constraint is violated. Using the view type V Tbo, which

allows to model business objects and allows to edit their names constraint inconsistency

is supported if during any stage of the usage of this view, constraints such as the name

constraint can be violated.

If metamodel constraints are violated (including multiplicity constraints) a model is

in the state of constraint inconsistency.

Definition 4.21 (Constraint Inconsistency). A view type VT supports constraint incon-

sistency iff:

∃V ∈ModelsVMM ,M ∈ModelsMM ∣ ((V,M) ∈↝Tm)∧
∃ξ ∈ Ξ, o ∈ OM , ξ ∈ constraints(class(o)) ∧ ξ is violated for o

In case (II) a greater degree of freedom in modelling can be reached if a view even

supports to hold content that cannot be translated into a model at all. This allows a

developer to work with the view like a “scratch pad”. This type of inconsistency is

denoted model inconsistency.

For example, allowing in a view-based editor for the view type V TAssocs (cf. Figure

4.9) to draw the associations end by end could result in having an association that has

only one end connected to a class, leaving a dangling link on one end of the association.

However, especially if an element was deleted using another view, still conserving this

inconsistent state may improve the usability of the view type.

Definition 4.22 (View with Support for Model Inconsistency). A view V that supports
model inconsistency is defined as follows. Definition 4.12 remains unchanged except
for formula 4.2 which is replaced by:

V = (MV ,VT , S,Λ, I) (4.5)

where
I is a set of view elements I ⊆ModelsVMM so that ∀i ∈ I, e ∈MV ∣ (i, e) /∈↝Tm .

This means that in addition to the view elements that are a combination of the model

elements from MV in combination with the layout information given by Λ there is a place

for additional view elements I which are currently not translatable to valid elements in

156

4.5. Views

MV . These elements allow to represent and store view elements of nearly arbitrary shape

and allow to work with the view like a “scratch pad”.

4.5.3. Storage and Synchronization of Views

Apart from the static properties of view types and views another important aspect of

view-based modelling is the synchronisation between model and view as well as storage

of views.

4.5.3.1. Synchronisation

A synchronisation process between a model and its views is needed to keep both up-

to-date. Especially within partial views synchronisation between model and views can

become difficult. Transformations that are partial and non-injective are hard to keep

bidirectionaly valid. Hettel et al. (cf. [HLR08]) analyse this problem in the context

of model round-trip engineering and present two different approaches that alleviate this

problem. In order to apply these approaches also for transformations in the context of

view-based modelling we first need to see if the problems can be mapped. Therefore,

Lemma 4.1 formulates that transformations for the synchronisation of partial views are

always partial and non-injective.

Lemma 4.1. In a partial view type the synchronisation transformations are always par-
tial and non-injective:

A partial and non-injective transformation T is characterised as follows: There is at
least one model Ms with an element e1 for which the transformation T to Mt can never
produce an element e2. Formally, this can be expressed as:

∃Ms ∈ModelsMM 1 ,Mt ∈ModelsMM 2 , e1 ∈M1 ∣ (∀e2 ∈M2 ∣ ((e1, e2) /∈↝T))

Proof. Through Definition 4.19:

∃M ∈ModelsMM , e ∈M ∣ (∀p ∈ Φ ∣ (∂p(e) = false))
⇐⇒ ∃M ∈ModelsMM , e ∈M ∣ (∀p ∈ Φ ∣ ¬(∂p(e) = true))

Def. 4.19⇐⇒ ∃M ∈ModelsMM , e ∈M ∣ ¬(∃Ve ∈ModelsVMM ∣ ({e},Ve) ∈↝Tv ∧(Ve,{e}) ∈↝Tm)
⇐⇒ ∃M ∈ModelsMM , e ∈M ∣ (∀Ve ∈ModelsVMM ∣ ({e},Ve) /∈↝Tv ∨(Ve,{e}) /∈↝Tm)

157

Chapter 4. Views on Models

Which is stronger than what would be required by a partial, non-injective transformation,

which would be:

∃M ∈ModelsMM , e ∈M ∣ (∃Ve ∈ModelsVMM ∣ ({e},Ve) /∈↝Tv ∨(Ve,{e}) /∈↝Tm)

According to Hettel [Het10], a bidirectional transformation that is partial and non-

injective needs to fulfil certain properties in order to be considered a valid round-trip
transformation:

• Target model changes can be classified into two disjoint sets of changes: relevant

and irrelevant changes ΔR and ΔI . Relevant changes modify a part of the target

model which is in the image of the respective transformation whereas irrelevant

changes lie outside of this image.

• To be able to synchronise relevant target changes back to the source model a cor-

responding source change must exist for each of them. The resulting set of source

changes for a set of relevant target changes is denoted ΔS .

• Furthermore, each δ ∈ ΔS must exactly perform the original change in ΔR when

the transformation is applied again.

Bidirectionality To keep models and views on them in sync, the transformations

that do this synchronisation to be bidirectional (or there need to be two transformations

where one resembled the inversion of the other). Matsuda et al. [MHN+07] define

three bidirectional properties that need to be fulfilled in order to create consistent view

definitions:

• If a view is unmodified the result of the a backwards transformation to the model is

the same as the original source of the view (no additional information is introduced

by):

⎛
⎜⎜⎜⎜⎜⎜
⎝

V = TV (M)∧
V ′ = ΔV ∧
Δ = ∅∧
M ′ =↝TM (V ′)

⎞
⎟⎟⎟⎟⎟⎟
⎠

→ (M ′ =M)

158

4.5. Views

• A user needs to have the possibility to cancel updates to a view that are a result

from a modification to the view’s underlying model. The a view-based approach

requires means to restore a version of the underlying model (or a part of it accord-

ing to the views partiality) just through the interaction of the user with the view.

This is the case if there exists a transformation T−1M that restores a modified model

M ′ to the the version M which was the original source for the view V .

∃T−1M ∈ TransformationsMM ∣ (V =↝TV (M)) ∧ (M ′ = ΔM)∧
(V ′ =↝T�∎�

V
(M ′)) → (↝T−1M

(V,M ′) =M)

• The transformation that does the backward synchronisation to the model should be

agnostic to the order in which the changes to the view were made. Only the state in

which the view is just before the transformation is executed determines the result

of the transformation.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

V = TV (M)∧
V ′1 = (Δ1 ○Δ2)V ∧
V ′2 = (Δ2 ○Δ1)V ∧
M ′1 =↝TM (V ′1)∧
M ′2 =↝TM (V ′2)∧

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→ (M ′1 =M ′2)

Point in Time The actual transformation and updating process can be classified into

two different types.

• An update can be performed at the very moment a change is made to one of the

sides, either model or view. This kind of update is denoted an immediate update

strategy.

• An update may occur at a point in time decoupled from the actual change event.

This kind of update is denoted deferred update strategy.

This point in time implies the cardinality of changes that are performed between

two subsequent runs of the synchronisation transformations. In the immediate update

strategy the transformations are executed as soon as an atomic change was performed to

either the view or its model. This strategy allows a tighter coupling between view and

model and avoids conflicts that may occur if an arbitrary number of changes is performed

159

Chapter 4. Views on Models

before the next synchronisation. On the other hand, the deferred update strategy allows

to have an arbitrary number of changes in this time span. This allows to work with views

in a more flexible way, as they can be changed offline, i.e., if the underlying model is

currently not available. However, having an arbitrarily large number of changes, that

need to be synchronised, dramatically increases the probability of conflicts.

Definition 4.23 (Immediate Update). When an immediate update strategy is employed
the cardinality of changes that occur between a model in version i, Mi and a model in
version i + 1, Mi+1 has to be exactly 1:

Mi+1 = ΔMi → #(Δ) = 1

Definition 4.24 (Deferred Update). In an deferred update scenario the cardinality of a
set of changes Δ can be arbitrarily large.

Mi+1 = ΔMi → #(Δ) = n

Mergeability Synchronisation always gets a lot more difficult if concurrent updates

on both sides are made. Especially in a deferred update strategy, where a delay between

the actual change and the transformation to the respective other side may occur, concur-

rent, incompatible changes can happen. So for example, a developer changes something

in one view and no synchronisation with the model is done, yet. Then, he uses a second

view on the same model to apply some changes to the model which affect parts of the

model shown in the first view. If the changes are irreconcilable with each other they

have to be merged.

Merge problems may only occur if at least one of the involved views employs a de-

ferred update strategy. The transformation from model to view and from view to model

need to be aware of changes in their respective target model in order to support merge-
ability.

Definition 4.25 (Mergeable). A view and a model are considered mergeable iff the in-
tersection of the change sets ΔV and ΔM that result from the re-applying the synchron-
isation transformations TV and TM does not contain changes that were applied to the
same element but are inverse (cf. Section 3.9.1 on pages 91ff) to each other:

∀δ1, δ2 ∈ (ΔV ∩
element(δ)

ΔM) ∣ δ1 ≠ invert(δ2)

160

4.5. Views

In combination with the different types of consistency conservation the type of syn-

chronisation becomes even more important. A view may allow temporary inconsistency

and contain content that is not (yet) transformable to a valid model. Depending on the

synchronisation strategy either the view or the model have to support the corresponding

type of inconsistency. If synchronisation is done in an immediate fashion, to support

temporary inconsistency, the model itself needs to allow inconsistency. On the other

hand, if synchronisation is done in a deferred way, only the view needs means to repres-

ent inconsistent states.

4.5.3.2. Respect to Access Control

Respect to access control means that only those elements can be changed through a

view that are represented by it. Elements are not directly represented in a view, i.e., they

are only treated by the synchronisation transformation to retain consistency within the

model, they can be considered also part of a view.

Definition 4.26 (Respect to Access Control). A view respects aspect control if it only
allows to modify elements that are, directly or indirectly, part of the view:

∀V ∈ModelsVMM ,M ∈ModelsMM ∣ ((v ∈ V), (m ∈M)) ∈↝TV ∪ ↝TM→ m ∈ SV

4.5.3.3. Persistency

A view may be persistent. A persistent view is stored in addition to the rough model data

that is shown in the view. Having a stored view enables faster access, as it does not need

to be created newly every time it is accessed. Additionally, if a persistent view it is at the

same time editable enables for customisation of a view’s layout. A user may customize

the view by manually changing certain parts, such as explicit ordering of the elements

occurring in the view or adding additional information. This information may be simply

used to add additional layout information such as custom structuring, or, for textual

views, white-spaces or indentations. On the other hand, it may add additional content,

such as comments or annotations. This content may not directly have impact on the

viewed elements themselves, but may still be worth being persisted. A huge challenge is,

if views are being persisted, keeping them synchronized with the underlying model data.

Non-persistent views can be simply re-computed every time they are used. Persistent

views need to be synchronized when the underlying data changes.

161

Chapter 4. Views on Models

4.6. Classification of View-Types in Practice

There exist several special patterns where views are applied in practical model driven

engineering. In this section an overview on several view patterns is given, which are

characterised by the set of properties they support. The examples given below are only

considered to represent a typical setting of these properties. Still, depending on the

realisation of the actual view, other setting might also be possible.

4.6.1. Master / Detail

This view pattern [Tid05] actually consists of two different views – master and detail

– that are connected with each other. The master view is used for navigation over

a model. If a selection is made in the master, the second view – detail – presents

more detailed information of the selected elements. The master view therefore mostly

supports navigation over the containment hierarchy of the model, i.e., being at least

downwards containment-complete, sometimes even containment-complete. The master

then displays at most one property which is used for the identification of the element

which makes it partial. The master view is also mostly the same for all classes of the

metamodel. Thus, it can be considered as being defined on view-type level.

In contrast to the master view, the detail view completely omits the containment hier-

archy (at least after the first level), therefore, it is also mostly partial. Concerning the

element that is displayed by the detail view, mostly all directly accessibly elements as

well as attributes are shown (locally complete). Apart from generic implementations of

the detail view, as each detail view type is only responsible for a certain type of model

element it can be considered to be defined on a per-class level.

4.6.2. Inclusion of Annotations

This kind of view is used to show and edit annotations to a basic model, that is instance

of a certain metamodel MM . Annotations are mostly based on a separate metamodel

AMM that non-intrusively associates annotation elements to elements of MM . To view

all annotations of a certain model element m, the view needs to be locally complete w.r.t.

the associations that annotate this element.

162

4.6. Classification of View-Types in Practice

4.6.3. Overview

An overview is used to give an outline on the structure of a certain model element.

The structure is mostly represented by the elements that are directly contained by the

element. Therefore, the overview is often (downwards) containment complete for at

least one level of containment. As the intention of an overview is to hide details of the

viewed element, an overview can be considered to be partial.

4.6.4. Navigation

A navigation view is mostly the same as the master view in the master / detail view

pattern. Therefore it is (downwards) containment complete. As an extension to this

definition, it is also possible to have a navigation view that is furthermore locally com-
plete w.r.t. associations. Similar to overview details are hidden in this view, therefore it

is partial.

163

Chapter 5.

Textual Views

Textual views, as opposed to graphical or tabular views, present data in a purely textual

way. However, inherited from the view-based paradigm the displayed text can not al-

ways be considered as being the whole “universe”, a textual view may also be partial

hiding details or giving an outline of a larger underlying model. This implies a lot of

new effects on the way how to interact with a textual editor. Normally, developers are

used to, whenever they see text, the text is physically stored as it is shown in the editor.

When using text as means to provide a view on an underlying model, this fact is not

valid anymore. Especially selective views, or views resulting from partial view types

hide information resulting in the existence of a richer underlying model as it might be

displayed in a single view.

For example, there are two different notions of what happens if text is deleted from a

textual view. One meaning could be that the underlying elements should also be deleted

by this action. On the other hand, a different notion is the “remove from view” action.

This action does not delete the underlying model elements but only removes their textual

representation from the current view. The same applies for adding elements to a selective

view. In this case it is up to the user to decide which elements are represented in the view

an which are not. Thus, there are also two different ways of adding already existent

elements to a view. First, they can be added by the use textual editing means only

and once the text is finished, the reference to the existing model elements “snaps in”,

resulting in the element being part of the view. On the other hand, by enabling a textual

view to accept commands such as drag and drop, from an outside editor, reveals a second

possibility of adding existing elements to a selective view. An element can be dragged

into the textual view, and at positions where the view type allows the element to be

displayed, a drop is possible; showing, if performed, the adding the element in its textual

representation to the view.

The novelty of the type of interaction with text also requires support for specifying

view properties such as partiality or selectivity (as introduced in Chapter 4) in the defin-

165

Chapter 5. Textual Views

ition language/view type that allows language engineers create textual views. Further-

more, an approach is required that allows for the representation of elements from an

underlying domain model as a textual view that may be overlapping or partial. This

chapter deals with both of these areas, i.e., the specification of view types as well as the

actual representation of view for a model.

5.1. Scientific Challenges

While generating models from text or text from models has already been researched

from different communities, the view aspects have never been transferred to textual rep-

resentations of models. Therefore, the following challenges need to be tackled in order

to provide a textual, view-based modelling approach.

• View types are not meant to be explicitly encoded in the metamodel for which a

view type is created. Therefore, an approach needs to be introduced that allows to

describe view types independent from the structure of its underlying metamodel.

• As views are mostly projections or selections of an underlying model, a way to

represent textual views as such projectional or selectional representations, needs

to be found. This is an approach for creating, modifying and storing textual rep-

resentations of a domain model separately to the actual model.

• As presented in the previous chapter, several properties of views (selective, hol-

istic, etc.) and view types (partial, complete, etc.) can be defined that make up

the features of a view-based modelling approach. In order to be as general and as

flexible as possible, the developed approach needs to take these properties into ac-

count and present solutions for their implied challenges for the textual modelling

domain. This includes the following major features:

– Support for the definition of complete as well as partial view types, including

the possibility of selecting members of a view type’s instance not only on

metamodel but also on model level (i.e., by providing support for querying

specific elements).

– Support for handling inter- as well as intra-view type overlaps.

– The textual view approach, furthermore, needs support for providing selective

as well as holistic views. Support for different types of actions to add or

remove elements to and from the view need to be provided.

166

5.2. Contributions

Textual views in the context of this thesis always refer to textual views on models, not

on data in databases or anything different.

5.2. Contributions

In this chapter, a view-based textual modelling approach called FURCAS is introduced.

FURCAS stands for Framework for UUID-Retaining Concrete to Abstract Syntax map-

pings. The name stems from the a specific part of the motivation of the approach that

should allow to define textual concrete syntaxes with a projectional editor that allows

to hide the UUID of model elements while retaining this ID during subsequent trans-

formations from and to the textual representation of a model. However, the capabilities

of FURCAS are not limited to just hiding and retaining this special attribute, it is rather

possible to define projectional textual views on models in general.

The following contributions are part of the FURCAS approach:

• FURCAS allows to define arbitrary textual views, that are specified in a template

based language. As basis for this approach serves the Textual Concrete Syntax

(TCS) approach published by Jouault et al. [JBK06, JB06b]. This approach is

extended by FURCAS to allow for the definition of textual views.

• As part of this extension FURCAS contributes an approach that allows to define

class as well as instance scoped queries on the underlying models. This allows

to define partial as well as complete view types independently from the domain

metamodel.

• FURCAS explicitly takes into account the properties of views that where defined in

the previous chapter. Especially the notion of holistic and selective views is sup-

ported. The representation of a model in a textual view is achieved by employing

a decorator pattern based approach. A metamodel called TextBlocks metamodel is

introduced for this purpose. Instances of this metamodel allow to non-intrusively

build textual views on underlying models. The TextBlocks models are constructed

according to the rules and templates defined in the concrete to abstract syntax map-

pings that can be developed with FURCAS. With help of these decorator models

partial textual views can be represented.

• The synchronisation of textual views with its model in a bidirectional way is also

a central part of the FURCAS approach. This means that the view type definition

167

Chapter 5. Textual Views

approach employed in FURCAS also needs support bidirectionality. Solutions for

this challenge are presented in more detail in the next chapter (cf. Chapter 6, page

239), which explicitly deals with this topic.

• In order to provide a formal basis that allows to reason on the synchronisation

algorithms introduced in the next chapter, the TextBlocks decorator approach is

formalised in this chapter. The formalisation is closely connected to the generic

view definition given in Chapter 4. Thus, the properties given there can easily be

translated into specific ones for the TextBlocks models.

Excursion: Origin of the Name FURCAS

The name “Furcas” is not only an acronym for Framework for UUID-Retaining

Concrete to Abstract Syntax mappings but also has itself a meaning as a name.

Mathers describes Furcas, in his book “The Goetia: The Lesser Key of Solomon the

King” [MCnt] as:

“In demonology, Furcas or Forcas is a Knight of Hell, and rules 20 legions of

demons. He teaches Philosophy, Astronomy (Astrology to some authors), Rhetoric,

Logic, Chiromancy and Pyromancy. Furcas is depicted as a strong old man with

white hair and long white beard, who rides a horse while holding a sharp weapon

(pitch fork). He knows the virtues of all herbs and precious stones, can make a man

witty, eloquent, invisible [..], and live long, and can discover treasures and recover
lost things. ”.

This actually fits pretty well with the purpose of the approach, meaning the long

living model elements that are retained over modifications from different views and

the recovering. Also his ability to make things invisible fits the purpose of FURCAS

to support partial view exceedingly well.

The combination of the FURCAS rune [MCnt] and the Eclipse platform [Ecl10c] on

which the implementation of FURCAS is based, resembles the icon that is used for

the FURCAS framework and is depicted below.

168

5.3. Definition of Textual View Types

5.3. Definition of Textual View Types

To be able to define textual view types, a mechanism is required that allows to map ele-

ments from the model world – i.e., the abstract syntax – to elements from the grammar

world – i.e., the textual concrete syntax. The way this is usually done for textual model-

ling languages is by the definition of a, often template-based, mapping language. From

such a mapping definition, parser components as well as transformations that instantiate

the corresponding metamodel elements can be generated. In the following sections, an

approach will be introduced that allows to define textual view types based on a template

based mapping language.

5.3.1. Mapping Definition

A multitude of approaches for textual concrete syntaxes for models have been developed

in recent years. The focus of this work is not to invent a new CTS mapping approach but

rather concentrate on giving support for the definition of views for a textual modelling

language. Therefore, the existing approaches have been analysed w.r.t. to the properties

given in Chapter 4 as well as other challenges that are posed on a textual view-based

approach (cf. Section 5.1). Especially template-based approaches that can be defined

externally to the metamodel can serve as a good foundation that can be extended to

support textual views, since they define the textual syntax in a declarative and fine-

grained way.

5.3.1.1. TCS

After the thorough analysis of existing CTS approaches (cf. Section 2.5 on page 44),

that are able to define concrete textual syntaxes for existing metamodels, the Textual

Concrete Syntax (TCS) [JBK06, JB06b] approach was chosen as base language for the

definition of the mapping between text and model. The reasons for this choice and

remaining limitations of TCS which need to be solved for FURCAS are the following:

• TCS supports externally defined metamodels by default. This is important for

being able to provide the possibility to define views. The mapping definitions

need to be non-intrusive to the metamodel, thus, other approaches that define a

metamodel implicitly are not possible to be used as basis for FURCAS.

169

Chapter 5. Textual Views

• Templates in TCS are defined declaratively and are therefore easily modularisable.

This enables for language composition. Thus, multiple views types may reuse

common language constructs by importing them. Language composition is not

supported by default in TCS but the structure of the mapping definitions can serve

as a solid basis for this. Furthermore, the declarative nature of the templates en-

ables to reason about partiality of the templates: Each template, can be seen as a

model pattern that can be matched against the model. For example, a template that

defines that a certain property appears in the concrete syntax will also only match

elements which have this property set. Partiality can then be determined based on

these patterns (cf. Section 5.3.2.1).

• Through the mode property it is possible to define alternative syntaxes for the same

class of a metamodel. This allows for the definition of view types that have intra
view type overlaps (cf. Section 4.4.5.2 on page 148), i.e., representing the same

element differently within the same view type. This fits well with the view concept

of FURCAS even though it was not originally designed for that purpose.

• TCS templates are bidirectional. If only a unidirectional mapping from text to

model could be specified, an update of the textual views would not be possible.

Therefore, this property can be seen as a basic requirement for any view-based

textual modelling approach.

• The TCS mapping language already has some support for resolving references by

specifying queries for model elements by a certain property value. It is possible

to specify by-name references to existing model elements. However, the query

capabilities of TCS are still very limited. In order to enable the query capabilities

that are needed to support the creation of powerful textual views, this feature needs

to be extended significantly. Special attention needs to be paid in order to keep the

query approach bidirectionally.

• A concept of partiality is, however, not present within TCS and needs to be newly

defined and developed. Templates in TCS are, by definition, unaware of every ele-

ment that does not fit one of the mappings’s templates. Elements that are outside of

these definitions cannot be handled by TCS. Therefore, in order to support partial

view types, an extension needs to be provided that allows for the explicit definition

of the scope of a template. Additionally, this includes explicit support for defining

that a view that is instance of the specified view type can be selective or holistic.

170

5.3. Definition of Textual View Types

5.3.2. Extending TCS to Handle Textual View Types

To allow for the specification of textual view types FURCAS extends TCS in several as-

pects. The extensions add the view concepts to the TCS metamodel as well as provide

support for them in the TCS generator and framework. The following sections will there-

fore describe each extension in terms of the concepts that it adds to the TCS metamodel,

accompanied by the extensions for the concrete syntax of TCS. The concrete syntax is

described, again using TCS.

One part of these extensions deals with the partiality of view types. These extension

reside in two different areas, first the text to model partiality – i.e., which elements can

be included into a view that is instance of a certain view type and how is its scope

defined. Section 5.3.2.1 covers this area. Second, the model to text partiality – i.e., how

can partial textual information be used to construct model elements. This part of the

problem is dealt with in Section 5.3.2.2.

5.3.2.1. Support for Partial View Types in Model to Text Direction

There needs to be support for the selection of elements that are included within a partial
view. As defined in Chapter 4, a view type definition needs to define predicates Φ that

decide on the inclusion of a models elements within a view type’s instance. The structure

of a template as it can be defined by standard TCS means is one component of these

predicates. However, due to the “local” character of TCS templates, elements that are

part of the view and therefore reachable due to the transitive navigation over a sequence

of templates decide on the inclusion of an element into the view.

Given the example metamodel depicted in Figure 5.1 and given three templates for the

classes A,B, and C, where A refers to B via a property toB and B refers to C via a prop-

erty toC. If the properties toB and toC are mandatory features and no further template

restrictions (such as isDefined-clauses, as presented in the corresponding paragraph of

Section 2.5.2.11) apply, a view will only include such instances of A which refer to an

instance of B, which again refers to an instance of C (forming a chain: A→ B → C). For

standard TCS, an element A that does not fit this pattern would produce an error when

the model to text transformation tries to create its textual representation. Due to the ex-

plicit focus on partiality where such cases are rather the rule than an exception, this is

not acceptable for FURCAS. Thus, support for explicit template scopes is required.

171

Chapter 5. Textual Views

A

hiddenValue : String

B

cAttribute : String

C

containedCs*toB1

toC
*

containedCs

toB1

toC

a1 : A

hiddenProperty = „nothing“

b1 : B

c1 : C

cAttribute = „val“

c2 : C

Metamodel MM1 Model M1

Figure 5.1.: Metamodel MM 1 defines three classes A,B and C. Model M is an instance of

MM 1.

Extended Support for Partial Template Patterns As a first extension towards

a view based creation of textual concrete syntaxes, FURCAS weakens this rule by expli-

citly supporting elements that are not in the scope of a sequence of templates. FURCAS

allows to distinguish between the different types of completeness that need to be fulfilled

in order to let a model be valid according to a view type. These types will be explained

based on the example depicted in Figure 5.1. The example metamodel MM 1 consists

of three classes A,B, and C, where A has a containment association to C as well as

a non-containment association to B. B refers to C via another containment reference.

The corresponding view type definition given in Listing 5.1 defines how a view on an

instance of MM 1 is created. However, the example model instance depicted in Figure

5.1 would cause an error upon view building. According to the metamodel, each A has

to refer to exactly one B via its toB reference. For the referenced B-instance b1 of a1,

however, the value of its hiddenProperty attribute is set to “nothing”. The tem-

plate for B explicitly defines a PropertyInit (cf. the corresponding paragraph in Section

2.5.2.11) that defines the value of hiddenProperty as “hiddenValue”. Because the

values do not match b1, the view creation will fail with an error.

To aid a language developer in defining complete and partial view types, FURCAS

provides means to explicitly declare whether a a template or a property within a tem-

plate should fulfil a certain degree of completeness or be partial. To achieve this, the

TCS metamodel is extended by the so-called ScopeArg which allows to define a certain

element of ScopeTypeKind, as defined in Figure 5.2. The different possible settings for

the ScopeArg are the following: InstanceComplete, DownwardsContainmentComplete,

172

5.3. Definition of Textual View Types

1 template A {
2 "A" toB "containedCs:" containedCs
3 }
4 template B {
5 "B" toC {{hiddenProperty = "hiddenValue"}}
6 }
7 template C {
8 "C" {{cAttribute = "someValue"}}
9 }

Listing 5.1: An example mapping definition defining three different templates A,B and C which

form a pattern against the metamodel given in Figure 5.1.

TCS::Property

scope : ScopeKind

ScopeArg
TCS::PropertyArg

propertyArgs

property1

*

TCS::ContextTemplate

TCS::ClassTemplate

TCS::OperatorTemplate

0..1 scope

InstanceComplete
DownwardsContainmentComplete
UpwardsContainmentComplete
ContainmentComplete
Partial

<<Enumeration>>
ScopeKind

Figure 5.2.: FURCAS’s extension to the TCS metamodel providing the ScopeArg class.

UpwardsContainmentComplete, ContainmentComplete and Partial. The semantics of

each of these settings are:

• Instance Complete: This is the default behaviour, as TCS would react without

FURCAS’s extensions. In this setting, the template is considered to be able to

create a representation of all possible instances of its referred class. Note that this

only applies to selections and not projections, as projections do not limit the scope

of elements that are included. Any element that is of the respective type but that is

not matched by the (transitive) template(s) will raise an error. To help a language

developer in creating a complete template, warnings will be shown whenever, a

template construct is defined that makes it possible that a model element is not

173

Chapter 5. Textual Views

1 context Template inv(Warning):
2 self.scopeArg.scope = ScopeKind::InstanceComplete implies
3 self.isPropertyInitComplete()

Listing 5.2: OCL expression defining consistency of templates for the scope = instanceComplete
option.

1 context Template::isPropertyInitComplete() : Boolean body:
2 self.allSequenceElements()->forAll(
3 s | (s.oclIsTypeOf(TCS::InjectorActionsBlock) implies (
4 let iaBlock : TCS::InjectorActionsBlock =
5 s.oclAsType(TCS::InjectorActionsBlock) in
6 iaBlock.injectorActions->forAll(ia |
7 ia.oclIsTypeOf(TCS::PropertyInit) implies
8 ia.oclAsType(TCS::PropertyInit).isDefault or
9 ia.oclAsType(TCS::PropertyInit).isDomainComplete() or

10)
11))
12)

Listing 5.3: OCL body definition of the isPropertyInitComplete operation.

matched by it. Therefore, FURCAS provides an OCL invariant, presented in Listing

5.2, that checks if the instance complete property is fulfilled for a given template.

The isPropertyInitComplete operation, shown in Listing 5.3, will return

true if the template has either only PropertyInits that are used as default values

(line 6) or if the value range is completely covered using alternatives of the tem-

plate, which is covered by the isDomainComplete operation. For example,

considering a template that has one alternative a1 with a PropertyInit that sets a

boolean property boolProp to true. To be complete w.r.t. the domain of the prop-

erty, the template needs to have a different alternative where the value is set to

false. Otherwise, the template could not represent model elements that have set

boolProp to false, which would contradict the specified complete property.

If an alternative defines more than one PropertyInit, also the domain coverage of

the referenced properties needs to be checked. The algorithm that handles this

check is included in the definition of the isDomainComplete operation. The

subsequent paragraph, Determining Domain Completeness, will give more detail

on the algorithm.

174

5.3. Definition of Textual View Types

1 context Template inv(Warning):
2 self.scopeArg.scope = ScopeKind::DownwardsContainmentComplete
3 implies self.isDownwardsContainmentComplete()
4

5 context Template::isDownwardsContainmentComplete() : Boolean body:
6 self.alternativePropertySets->forAll(p : Property |
7 self.metaReference.allContent()->select(c |
8 if c.oclIsTypeOf(Reference) then
9 c.oclAsType(Reference).aggregationKind =

10 AggregationKind::Composite
11 else
12 false
13 endif
14)->includes(p.strucfeature)
15 or p.isPartial()
16)

Listing 5.4: OCL invariant definition for the downwards containment complete constraint.

• (Upwards/Downwards) Containment Complete: According to the previous

chapter (cf. page 142), another type of completeness is the containment com-

pleteness. FURCAS also allows to define a template to be containment complete.

This option requires that the template covers all containment references to other

elements. If a template does not include a containment reference, the containment
complete constraint, as defined in Listing 5.6 will raise an error. FURCAS

furthermore allows to define a more fine-grained specification of containment

completeness for templates. A Template can be downwards containment compete

(cf. Listing 5.4) or upwards containment complete (cf. Listing 5.5). Both check

the template w.r.t. the properties as they were defined in the previous chapter.

To be able to check whether a template fulfils the downwards or upwards con-

tainment complete property FURCAS defines two operations on the template

class: These operations isDownwardsContainmentComplete() and

isUpwardsContainmentComplete() determine the completeness prop-

erty by checking whether the containment references are included in the template

definition. An exception is made for properties which are explicitly marked as

partial (p.isPartial()). For the definition of explicit partial properties see

the below at paragraph Partial.

175

Chapter 5. Textual Views

1 context Template inv(Warning):
2 self.scopeArg.scope = ScopeKind::UpwardsContainmentComplete
3 implies self.isUpwardsContainmentComplete()
4

5 context Template::isUpwardsContainmentComplete() : Boolean body:
6 Template.allInstances()->exists(t |
7 self.metaReference.allContent()->select(c : ModelElement |
8 if c.oclIsTypeOf(Reference) then
9 c.oclAsType(Reference).otherEnd().aggregationKind =

10 AggregationKind::COMPOSITE
11 else
12 false
13 endif
14).namespace->includes(t.metaReference) or
15 t.alternativePropertySets()->forAll(p: Property | p.isPartial())
16)

Listing 5.5: OCL invariant definition for the upwards containment complete constraint.

1 context Template inv(Warning):
2 self.scopeArg.scope = ScopeKind::ContainmentComplete implies
3 self.isUpwardsContainmentComplete() and
4 self.isDownwardsContainmentComplete()

Listing 5.6: OCL invariant definition for the containment complete constraint.

176

5.3. Definition of Textual View Types

1 template A {
2 "A" b {partial} "containedCs:" c
3 }
4 template B {
5 "B" c {{hiddenProperty = "hiddenValue"}}
6 }
7 template C (partial) {
8 "C" {{cAttribute = "someValue"}}
9 }

Listing 5.7: Example templates from Listing 5.1 extended with explicit partial declarations.

For example, template A, defined in Listing 5.1, is containment complete

(i.e., downwards and upwards) as it includes its only containment reference

containedCs.

• Partial: Finally, specifying a template to be partial explicitly allows model ele-

ments to be excluded from the view without raising errors during the view creation.

For the example defined in Listing 5.1, a valid application of the partial property

would be as given in Listing 5.7 where an element with hiddenProperty ≠
"hiddenValue" would not be part of the view. Note, that it is possible to define

the partial property either for a whole template or for single properties where a lan-

guage developer wants to define that elements referenced by the template are not

all to be included in the view.

Determining Domain Completeness Whether a template completely covers

all possible instances of a metamodel class depends on how much the template

constrains the value of the class’s properties. For example, a template that defines

a PropertyInit for a boolean property, setting its value to true removes all

instances from its scope that have set this property to false. However, if the template

has two different alternatives where the first one defines a PropertyInit with true

and the second one defines false, the scope of the template is still complete w.r.t. the

domain of possible instances of the class. Therefore, the idea behind the algorithm that

determines wither a template is domain complete or not, is to combine the properties of

each possible alternatives path of a template an check whether there is a path for each

possible combination of values. Note that if an alternative completely omits a property

in one of its alternatives, the algorithm will complete the scope of this property for this

specific path.

177

Chapter 5. Textual Views

1 context Alternative::propertySet(initSet : Set(
2 Tuple(property : StructuralFeature, values : Bag(OclAny)))) :
3 --this is the property set structure, consisting of
4 --the property which is initialised and all values that
5 --are used initialise it in the current alternative
6 Set(Tuple(property : StructuralFeature, values : Bag(OclAny)))
7 body:
8 --iterate over all directly contained (not in sub alternatives)
9 --injector actions add them to the resulting set

10 self.sequenceElements->select(se |
11 se.oclIsTypeOf(InjectorActionsBlock)).injectorActions->iterate(
12 ia ; result : Set(Tuple(property : StructuralFeature,
13 values : Bag (OclAny))) = initSet |
14 if result.property->includes(ia.strucfeature) then
15 --property already in the set, just add the value
16 let currentProperty =
17 result->select(e | e.property = ia.strucfeature) in
18 result->excluding(property)->including(
19 Tuple (
20 property = currentProperty.property,
21 values = currentProperty.values->including(ia.value)
22)
23)
24 else
25 result->including(
26 Tuple (
27 property = ia.strucfeature
28 values = Bag { ia.value }
29)
30)
31 endif

Listing 5.8: OCL body of the propertySet() operation which is also defined analogously on

Template.

178

5.3. Definition of Textual View Types

1 context AlternativeSequence::propertySetsTree(initSet :
2 Set(Tuple(property : StructuralFeature, values : Bag(OclAny)))) :
3 Set(Set(Tuple(property: StructuralFeature, values: Bag(OclAny))))
4 body:
5 self.alternatives->iterate(alt;
6 result = Set(Set(Tuple(
7 property : StructuralFeature, values : Bag (OclAny)))) =
8 Set{} | let subAlts = alt.sequenceElements->select(se |
9 se.oclIsTypeOf(AlternativeSequence)) in

10 if subalts->size() = 0 then
11 result->including(Set { alt.propertySet(initSet) })
12 else
13 result->union(subalts->collect(subAlt |
14 subAlt..propertySet(initSet)))
15 endif
16)

Listing 5.9: OCL body of the propertySetsTree() operation.

The algorithm shown in Listing 5.10 consists of two phases, first, for each leaf in the

tree of alternatives a set of init values is determined. Figure 5.3 illustrates an example

for this tree. Second, the algorithm checks if there exists a value for any of the involved

properties that is not covered by any of the tree’s leafs. Finally, the algorithm clusters

the leafs per range of the property values. Within these clusters, all other property inits

need to cover the whole domain of their properties. For the example depicted in Figure

5.3, the first phase computes the three property sets at the leafs of the tree. The second

phase then clusters these sets according to the values of each property one after another.

Starting from valueType = false which results in a cluster set ClustervalueType=false =
{visibility = {public, private}}. As all possible values of the visibility property attribute

are contained in this set, domainComplete(ClustervalueType=false) will return true. The

cluster ClustervalueType=true = ∅ is the empty set and therefore also results in true. Thus,

the template for business object is domain complete.

Figure 5.4 depicts another example for the computation of the domain completeness.

In this case, however, the result is false as will be argued below. The property sets in this

example consist of three different attributes. The first cluster is Clusterlower=0, for which

the resulting clustered set is Clusterlower=0 = {upper = {1,�}, ordered = {true, false}},

where � denotes that there is an alternative specifying no explicit value for the prop-

erty. As ordered is a boolean property, the domain of ordered is completely covered

in this case. As the values for upper includes the undefined value �, all values are

also covered in this case. The next step is to proceed in this lower = 0 branch, which

179

Chapter 5. Textual Views

1 context Template::isDomainComplete() : Boolean
2 body:
3 let startPropertySet = self.propertySet() in
4 let propertyTree =
5 self->select(se | se.oclIsTypeOf(AlternativeSequence))
6 ->collectNested(alts | alts.propertySetsTree(startPropertySet)) in
7 propertyTree->forAll(leaf :
8 Set(Tuple(property : StructuralFeature,values : Bag(OclAny)))|
9 --build a cluster for each literal value of a property and check

10 --whether the other properties form their complete domain
11 leaf->values->forAll(v |
12 --first select those property sets that include
13 --this property/value combination
14 let cluster = propertyTree->select(propertySet |
15 propertySet->exists(
16 ps | ps.propery = leaf.property and ps.values->includes(v)))
17 --now ensure that every property occurs in its complete domain
18 in cluster->collect(pset | pset.property)->asSet()->forAll(p |
19 let clusterValues = cluster->collectNested(pset |
20 if pset->includes(ps | ps.property = p) then
21 --add the values to the collected set
22 p.values
23 else
24 --add the undefined value �
25 OclUndefined
26 endif
27) in
28 --domain completeness for this property is fulfilled
29 --if the � is contained or if the domain for the
30 --property’s type is covered
31 clusterValues->contains(OclUndefined) or
32 domain(p.type) = clusterValues
33)
34)
35)

Listing 5.10: OCL body of the isDomainComplete() operation.

180

5.3. Definition of Textual View Types

Template
{{valueType = false}}

Alt1

{{valueType = true}}

Alt2

private
public

<<Enumeration>>
VisibilityKindEnum

{{visibility =
VisibilityKindEnum::public}}

Alt1,1

{{visibility =
VisibilityKindEnum::private}}

Alt1,2

Property Sets:
valueType = false,
visibility = VisibilityKindEnum::public

Property Sets:
valueType = false,
visibility = VisibilityKindEnum::private

Property Sets:
valueType = true

valueType : Boolean
visibility : VisibilityKindEnum

BusinessObject

metaReference

Figure 5.3.: An example for the computation of the domain completeness of a template resulting

in true.

is the clustering according to the upper property. Clustering for upper = 1 results in

Clusterlower=0,upper=1 = {ordered = {true, false}}. Being a complete domain, this

branch is marked as domain complete. The second branch lower = � results in the

cluster set Clusterlower=0,upper=� = {ordered = {true, false}} and is also marked as do-

main complete.

Then, according to the second phase of the algorithm, the second root branch is ana-

lysed: Clusterlower=1 = {ordered = {true,�}, upper = {1,�}}. As both sub branches

contain the undefined value �, they can be marked domain complete. Also, as their

clustered sets, Clusterlower=1,ordered=true and Clusterlower=1,upper=1 are the empty set, they

are domain complete.

However, as the values for lower are not domain complete – lower = {0, 1} – which

does not cover the domain of its type Integer (which would be complete N+0), the tem-

plate is not domain complete.

Extended Selection Support Using Reference Only Templates and OCL
Using the extended scope specifications for templates and properties, FURCAS allows to

define projections and selections in its templates. However, using the constructs defined

in paragraph Extended Support for Partial Template Patterns on page 173, the se-

lection criterion and the representation of elements are tightly coupled. If a language

181

Chapter 5. Textual Views

Template

{{lower = 0}}

Alt1

{{lower = 1}}

Alt2

lower : Integer
upper : integer
ordered : Boolean
unique : Boolean

Multiplicity

{{upper = 1}}

Alt1,1

{{orderd = true}}

Alt1,2

Property Sets:
lower = 0,
upper = 1,
ordered = true

TypeDefinition

metaReference

{{orderd = false}}

Alt1,3

{{orderd = true}}

Alt1,1,1

{{orderd = false}}

Alt1,1,2

{{upper = 1}}

Alt2,1

{{ordered = true}}

Alt2,1

Property Sets:
lower = 0,
upper = 1,
ordered = false

Property Sets:
lower = 0,
ordered = true

Property Sets:
lower = 0,
ordered = false

Property Sets:
lower = 1,
upper = 1

Property Sets:
lower = 1,
ordered = true

Figure 5.4.: An example for the computation of the domain completeness of a template resulting

in false.

developer wants to define for a template for a class A that should only be included in

the view if an attached class B has an attribute selectioncriterion set to a certain value

“selected”. The developer could specify this scenario by creating a template for B and

adding a PropertyInit to B declaring that selectionCriterion should always equal “selec-

ted” in the following way: {{ selectioncriterion = "selected"}}. However,

this would imply that whenever an element A is created according to the template, an

instance of B is created and its selectionCriterion value is set to “selected”. This might

not match the intention of the language developer, as he or she might not want to have

Bs created but rather have them looked up in an existing pool of instances of B.

FURCAS provides a solution to this problem by allowing to define a template as a so-

called referenceOnly template. If a template is defined as referenceOnly it can be used

in model to text direction to select only model elements that match the specified pattern.

For example, if B would be referenceOnly only As would be part of the view for which

the pattern A.b.selectionCriterion = ”selected” holds. For the text to model direction, a

referenceOnly template is used to find an existing model element of type B that matches

the sub-pattern B.selectionCriterion = ”selected”.

182

5.3. Definition of Textual View Types

GeneralizableEl
ement name : String

ModelElement
Class Namspace

container contents* superTypes

Figure 5.5.: Excerpt of the MOF Metamodel showing the relevant parts for the referenceOnly
example.

Listing 5.11 shows an example application of referenceOnly templates taken

from the MofClass case study (cf. Section 7.3.4.2). The metamodel structure

used in this scenario is recalled in Figure 5.5. An example text that would be a

representation of such a referenceOnly classifier template would then be: class

classA extends packB::subPackC::classD {}. The qualified name

packB::subPackC::classD would then resolve to a namespace packB con-

taining a namespace subPackC which itself contains a GeneralizableElement

classD.

Templates defined as referenceOnly allow to define a view type’s selection with tem-

plate means. For complex patterns, however, a language developer might need to define

a lot of different templates to map the selection pattern. Especially for long navigation

paths (e.g., self.container.type.name) or if more complex expressions, such

as if-then-else, need to be specified, using templates to represent these patterns becomes

infeasible. Therefore, FURCAS provides an additional concept for model element selec-

tion: OCL queries.

OCL queries can be used in PropertyInits to define a complex computation of the ini-

tialisation value of a property in text to model direction. For the model to text direction,

an OCL query specifies a selection criterion for the template. The extension FURCAS

provides to the TCS metamodel is depicted in Figure 5.6.

As these queries narrow the scope of a template, the computation if a template is

instance complete (cf. Section 5.3.2.1) also needs to take this query into account. How-

ever, determining the semantic equivalence of two OCL expressions is a complex prob-

lem. For example, the Higher-Order-Logic (HOL) - OCL approach [BW02], deals with

the problem of formalising the semantics of OCL expressions. However, there are still

unsolved problems in this area [BDW06], mainly due to the fact that the OCL specific-

ation [Obj10a] is “based on naive set theory and an informal notion of model” and “it

183

Chapter 5. Textual Views

1 template Class main context(class)
2 : $annotation
3 $visibility
4 (isAbstract?"abstract")
5 "class" name
6 (isDefined(supertypes) ? "extends"
7 supertypes{mode = supertypes, separator=","}
8 --refers to the GeneralizableElement template in mode #supertypes
9)

10 <space> "{" [
11 contents
12 (isDefined(invariants) ? "invariants" "{"
13 contents{mode=invariants} "}")
14] "}"
15 ;
16

17 -- A GeneralizableElement is either its container followed by ::
18 -- and a name, or just a name
19 template Model::GeneralizableElement #supertypes referenceOnly
20 : (isDefined(container) ? container -- is of type Namespace in MM
21 "::" name : name)
22 ;
23

24 -- Namespace gets operatored using the :: operator to resolve
25 -- left recursion
26 template Model::Namespace abstract operatored("::");
27

28 -- any following elements in a package path are resolved using this
29 -- this applies for Namespaces as well as its contained elements
30 operatorTemplate Model::ModelElement(operators = "::",
31 source = ’container’)
32 referenceOnly : name ;

Listing 5.11: Example templates which declare referenceOnly templates.

184

5.3. Definition of Textual View Types

1 template ocl::CollectionItem (partial)
2 : item {{ type=self.item.type }}
3 ;

Listing 5.12: Example for the use of OCL within a ProperyInit

assumes a universe for values and objects and algebras over it without any concern of

existence and consistency”. A stronger semantic definition for OCL is required for this.

As this definition is currently lacking, reasoning over the domain completeness of OCL

property inits is out of the scope of this thesis. This issue is also discussed in the the

concluding chapter in Section 8.2.1.

However, in many cases the OCL property inits are used to define computation rules

of default values that are assigned during the construction of a model element from its

concrete syntax. To cover this purpose, FURCAS introduces three different notions of

property inits – defaultValue, constraint and bidirectional. These notions are distin-

guished by a newly introduced attribute direction. In the view type definition value

of defaultValue for this property is represented by using the “< −” symbol (see for ex-

ample Listing 6.3 in the next chapter). A property init which is defined as defaultValue
will not prevent a template from creating the textual representation of a model elemenet

where the property’s value does not comply to the specified OCL expression. If the

direction attribute is set to constraint, which is represented in the view type

definition using the “==” symbol (see for example Listing 6.1 in the next chapter), the

scope computation of a template will compare the value of the property to the result of

the property init’s expression. As stated before, FURCAS will not analyse the expression

statically. Instead, FURCAS will do this comparison at runtime, during the creation or

update of the textual representation of the model. Still, in the constraint case, no value

will be assigned to the property upon the creation of the model element from the textual

representation. Finally, the bidirectional case involves both notions, checking upon view

creation and setting of a default value upon model creation. This case is represented us-

ing the standard notation for property inits using the = symbol.

An example for the application of OCL queries within PropertyInits is given in

Listing 5.12, which is also taken from the MofClass case study. Here, the type of a

CollectionItem is determined by an OCL query (line 2) that navigates to the item

property of the CollectionItem and retrieves the type value from there. During the

view creation this query will result in a selection so that only CollectionItems

which have their type set equal to the item’s type are represented by that template.

185

Chapter 5. Textual Views

direction : DirectionKind

TCS::PropertyInit TCS::
PropertyReference

propertyReference
1

MOF::
TypedElement

typedElement
1

value : PrimitiveValue

TCS::
PrimitivePropertyInit OclPropertyInit OCL::OclExpression

oclExpression

1 defaultValue
constraint
bidirectional

<<Enumeration>>
DirectionKind

Figure 5.6.: OCL PropertyInit extension to the TCS metamodel.

1 template A {
2 "A" b "containedCs:" c
3 }
4 template B (partial) {
5 "B" c {{hiddenProperty = self.c.cAttribute}}
6 }
7 template C {
8 "C" cAttribute
9 }

Listing 5.13: Example view type definition illustrating a query overlap.

Overlapping Queries Specifying queries and templates over the same elements of

a metamodel may lead to difficult scenarios: A change in the textual representation

given by one template might lead to the removal of a different element that specified

a selection criterion for the very same element. Such a scenario may occur whenever

there is an intra view type overlap, as defined in Section 4.5.1.4, where more than one

predicate is specified for the same element in a metamodel.

Given the example metamodel with classes A,B, and C as defined in Figure 5.1 and a

slightly different view type definition, given in Listing 5.13, the PropertyInit defined

in B overlaps with the Property defined in C over C’s cAttribute. An example in-

stance that is represented by this view type could then, assuming B’s instance to have its

hiddenProperty set to “cAttValue”, be:

A B C cAttValue containedCs: C cAttValue.

If now the latter occurence of C is changed so that its cAttribute is set to, for

example “anotherValue”, B will be removed from the view as the values of B’s

hiddenProperty and C’s cAttribute differ. The result would be:

A containedCs: C anotherValue.

186

5.3. Definition of Textual View Types

Such repercussion effects might be irritating for the user of the view type. In order

to reduce the possible irritation, FURCAS provides features within its editor to notify

the user about the reason of such changes. Furthermore, visual highlighting is used to

indicate areas where such removals (or additions, as the same effects apply for inclusions

into a view) occurred. Section 6.4 in the subsequent chapter describes an approach,

called OCL Impact Analysis [CT05, CT09, AHK06], that allows to identify whenever

the resulting value of an OCL expression changes. If the impact analysis detects that a

selection restricting OCL based PropertyInit changes its value, e.g., from true to false,

the textual representation of the underlying element will be removed from the view.

5.3.2.2. Support for Partial View Types in Text to Model Direction

Creating references to existing elements by constructs of a concrete syntax is a key fea-

ture for CTS approaches. TCS provides support for lookups by allowing to declare that

the value for a property within a template is looked up within a certain scope – called

context. Using this lookup, it is possible to resolve elements that are bound e.g., by using

their name. An example for this would be a method call expression a() that refers to

its corresponding method a by the name written in an expression, for example, return

someA.a(). However, to find the referred element, a rather complex resolution mech-

anism might be necessary. As, for example, the type of the source expression someA of

the method call a() has to be evaluated and from there on the corresponding method

needs to be found. This is comparable to static type analysis in compiler construction

techniques.

Though having some support for building contexts and defining lookups over these

contexts (cf. Section 2.5.2.11 on page 55), TCS alone does not provide support for this

kind of complex lookup. TCS, as many other CTS approaches, assumes that all refer-

able elements are known to it and therefore, the lookup mechanisms for elements can

be based on TCSs internal constructs (see the context mechanism in Section 2.5.2.11).

However, in view-based environments, this assumption does not hold anymore. A view

designer might need to include elements to a view that are reachable by navigating over

a domain model but that are not visible for the current concrete syntactical representa-

tion of the model. FURCAS, extends TCS’s capabilities by adding model query support

by the use of OCL expressions.

187

Chapter 5. Textual Views

TCS::Property

TCS::PropertyArg

propertyArgs

property1

*

OCL::
OclExpression

oclExpression

oclPArg

1

OCLPArg

QueryPArg InvertPArgFilterPArg QMark
LiteralExpression

Context
LiteralExpression

OCL::
LiteralExpression

Inv:
self.type =
self.rootExpression().oclPArg.

property.ParentTemplate.
determineContextType()

OCL::
IntegerLiteralExp

OCL::
StringLiteralExp

OCL::
EnumLiteralExp

PrefixPArg PostfixPArg

Figure 5.7.: OCL Query Mechanism Metamodel.

Model Element Lookup Support via OCL Queries FURCAS already incorpor-

ates support for OCL in its extension for PropertyInits. Looking up elements by their

textual representation, i.e., their names or other identifiers is also a task that can be

supported by the use of OCL queries. This allows for the definition of complex model

element lookups that are furthermore not limited to the scope of the current view type.

Moreover, such queries can be expressed using the whole expressiveness of the under-

lying metamodel.

For evaluating the OCL query, the element that is currently processed by the template

is set to self. Additionally, it is possible to specify that the current context is used

within the query. Figure 5.7 depicts how this integrates into the metamodel. The syntax

specification of the query element is presented in Listing 5.14.

To be able to use the currently parsed token in the scope of the OCL query, a special

expression subtype is used, called QMarkLiteralExpression. This expression is

represented within the concrete syntax of an OCL query by the “?” symbol as place-

holder. The “?” place-holder will be replaced by the value of a token written at the

location where the Property element is located within the template. The rule used to

parse the bit of textual representation that is substituted for the “?” is determined by the

place of the QMarkLiteralExpression within the OCL expression. For example,

for the OCL query self.elements->select(e | e.name = ?), the type of

“?” has to be equal to the type of the property name of the element e. If the name

188

5.3. Definition of Textual View Types

1 template FURCAS::QueryPArg
2 : "query" "=" oclExpression
3 ;
4

5 template FURCAS::FilterPArg
6 : "filter" "=" oclExpression
7 ;
8

9 template FURCAS::InvertPArg
10 : "invert" "=" oclExpression
11 ;
12

13 template FURCAS::PrefixPArg
14 : "prefix" "=" oclExpression
15 ;
16

17 template FURCAS::PostfixPArg
18 : "postfix" "=" oclExpression
19 ;
20

21 template FURCAS:QMarkLiteralExpression
22 : "?" {{type = inferTypeFromSurroundingExpressions(self)}}
23 ;
24

25 template FURCAS:ContextLiteralExpression
26 : "#context"
27 {{type = commonSuperType(
28 rootExpression(self).queryPArg.property.
29 parentTemplate.determineCommonContextType())
30 }}
31 ;

Listing 5.14: Syntax specification of the Query Property Argument.

property is of type String, then the primitive template for this type is used in the

generation of the parse rules.

Listing 5.15 shows how an OCL query can be specified in a FURCAS mapping

definition. Whenever an element of type ReferencingElement is created via this

view, it can get its reference set if the user writes its name after the constant token

“references:”. For example, in the textual representation RefEl references:

A, the query would be, after the substitution: self.elements->select(e |

e.name=’A’).

If more than one QMarkLiteralExpressions occurs within a query, they may

have different types, leading to ambiguities in the determination of the template used for

189

Chapter 5. Textual Views

1 viewtype OclQuery {
2 primitiveTemplate string for PrimitiveTypes:STRING;
3 template ReferencingElement :
4 "RefEl" "references:"
5 reference{query=self.elements->select(e | e.name=?)}
6 ;
7 template ReferenceableElement :
8 name
9 ;

10 }

Listing 5.15: Example mapping using an OCL query.

the parsing of the textual representation. For expressions of the form <Exp1>.prop1

= ? ...<Exp2>.prop2 = ?, where prop1 has not the same type as prop2,

the determination of a common type of all QMarkLiteralExpressions is not

possible. If the type determination is ambiguous, the language developer has to

provide either an additional argument directly referring to the correct template (e.g.,

as=StringLiteralTemplate), or a refers to-argument which specifies which

property in the referenced model element should be used to determine the type of the

parse rule (e.g., refersTo=name).

Occurences and Type of the “?”-Expression To be able to correctly parse the

OCL query that contains a QMarkLiteralExpression, such an expression needs

to have a defined type. If the parser cannot determine the type unambiguously, the query

cannot be evaluated. Depending on the place in the query where the QMarkLite-

ralExpression occurs, this context determines the type of the QMarkLiteral-

Expression.

As the QMarkLiteralExpression derives from all LiteralExp (cf. Figure

5.7), it may only occur in places within an OCL expression where a LiteralExp

can occur. As shown in the expressions part of the OCL metamodel in Figure 5.8, a

LiteralExp is an OclExpression that may occur as body of LoopExp, as init

expression for a Variable, or source of a CallExp. Additionally, such an expression

may be the parameter of an OperationCallExp. This limits the context in which a

QMarkLiteralExpression can occur in the following way:

LoopExp: A QMarkLiteralExpression may only occur directly within a

loop expression if its type is Boolean, thus the value of a QMarkLi-

teralExpression is limited to [true|false]. This holds for all

190

5.3. Definition of Textual View Types

predefined IterateExps such as select, reject, any and so on, except

for IteratorExp. For example, such an expression may look as follows:

elements->any(?) where the “?” is of type Boolean, i.e., its value is then

true or false. The only exception is the generic IteratorExp which can

have expressions of arbitrary type as its body.

Variable: If a QMarkLiteralExpression occurs as init expression for a

Variable, the variable’s type determines the type of the QMarkLite-

ralExpression. For example, in an expression let a : String = ?

the type of “?” would be String.

CallExp: As primitive types do not define any associations or attributes, their corres-

ponding literal expression may not be the source of a PropertyCallExp,

which is one of two subclasses of the CallExp. The second subclass is the

OperationCallExp, for this type the OCL specification defines a fixed set of

operations. Depending on the actual type of the QMarkLiteralExpression,

the respective set of operations may have the QMarkLiteralExpression as

their source. For example, assuming the following expression’: ? or self.a,

the or operation from the primitive type Boolean uses the “?” as its source

and thus implicitly defines its type to be Boolean. Furthermore, in contrast to

the QMarkLiteralExpression as source of an operation call, it may also be

used as parameter within an operation call. This implies the same type constraints

as for the former case. For example, the expression self.a or ? implies the

“?” to be of type Boolean.

Furthermore, a QMarkLiteralExpression may also occur in the condition,

then or else part of an IfExp as well as an item within a CollectionLiteral-

Exp:

IfExp: There are three different possible occurrences of a QMarkLiteralExpres-

sion within an IfExp. Used as condition, the QMarkLiteralExpression

has to be of type Boolean. If it is used as then or else part, is has to

have the same type as the respective other part. For example, the QMark-

LiteralExpression within the expression if true then ? else

’Something’ endif implies that the “?” is of type String. Having the

“?” occurring in both parts would not make any sense as the IfExp would then

always evaluate to the same value, that is “?”.

191

Chapter 5. Textual Views

TypedElement

Classifier

TypeExp

0..1

*

+referredType
0..1

*

FeatureCallExp

LiteralExp IfExp MessageExp

IteratorExp

CallExp VariableExp

Parameter

LoopExp

IterateExp

OclExpression
0..1

0..1

+source
0..1

+appliedElement

0..1

1

0..1

+body

1

+loopBodyOwner
0..1 Variable

0..1

*

+referredVariable

0..1

+referringExp

*

0..1
* +representedParameter

0..1

+variable
*

0..1

*

+loopExp

0..1
+iterator

*

0..1
0..1 +result

0..1

+baseExp

0..1

0..1

0..1

+initExpression

0..1

+initializedElement0..1

State

StateExp

0..1

*
+referredState

0..1

*

Figure 5.8.: The expressions part of the OCL metamodel, taken from [Obj10a].

CollectionLiteralExp: A QMarkLiteralExpression can occur within a Col-

lectionLiteralExp. The type of the QMarkLiteralExpression is

then determined by the type of the collection in which it occurs, which, in turn, is

given by the types of its elements. For example, the type of the “?” in expression

OrderedSet{1, 2, ?} the type of the “?” is Integer.

5.3.3. Inversion of OCL queries

Keeping the bidirectionality of the view type definitions, which is needed to support

editable views, requires to keep all kinds of mapping constructs bidirectional. To ensure

the bidirectionality of the OCL query concept, FURCAS allows the automatic inversion

of all OCL queries that are used in arguments of the Property construct. To achieve this

inversion, FURCAS needs to determine the inverse query of the defined one, to be able

to produce the value which was used as query parameter “?” in the original query.

192

5.3. Definition of Textual View Types

5.3.3.1. An Automatic Approach for OCL Query Inversion

An OCL query that contains at least one “?” place-holder can be considered as an

equation with one variable. To determine the value of this variable, the equation needs

to be solved. The “?” place-holder always represents the same value, i.e., there is only

one token that can be used for the query at a time. This reduces the complexity to an

equation having one variable with one or more occurrences.

Assuming an OCL query of the following form:

< Exp >→ select(var∣var.prop =<? −Exp >)

where <?−Exp > is an OCL expression where the “?” place-holder occurs at least once.

The goal is to solve the equation to get the following resulting equation:

< Exp′ >∶=<? −Exp′ >

where <? − Exp′ > only contains only one QMarkLiteralExpression. The OCL

solving approach employed in FURCAS tries to solve the expression by a fixed set of

rules starting from the root expression on the right-hand side. For each context in which a

QMarkLiteralExpression can occur (as defined previously) one of the following

rules defines a transformation that will finally lead to the solving of the given equation.

For an OCL query to be invertible, it needs to fulfil certain assumptions. First, the

value for the replacement of the “?”-expression needs to be completely covered by the

combination of data from the model, such as attribute values, and the literals contained

in the OCL query itself. For example, an expression

self.contents->select(e | e.name.concat(’_name’) = ?)

fulfils this assumption, as the value for the “?”-expression can be completely expressed

using the name attribute of an e in combination with the ’_name’ literal. In contrast

to this example, the expression

self.contents->select(e | e.magicNumber = ?.size())

is not invertible as the “?”’s value does neither appear in the model over which the

query is executed nor does it appear in the OCL expression itself. The following formula

determines whether an OCL query fulfils the invertibility assumption:

{(1, i), . . . , (j, j +m), . . . , (n, ?.size())}∧
∀1 < x <?.size() ∣ ∃(r1, r2) ∈ Coverage ∣ r1 ≤ x ≤ r2

193

Chapter 5. Textual Views

This formula expresses that for each sub-string of the “?”-expression an element in the

Coverage set needs to exist that covers the respective sub-string. The Coverage set is

determined by a combination of model and expression data:

Coverage = expdata(< exp >) ∪modeldata(< model >)

where the sets determined using the data function are:

expdata(< exp >): For each literal expression which is part of an operation call ex-

pression to the equals (“=”) operation where the other side of the expression

is a “?”-expression, the corresponding range is added to the resulting set. For

example, for the expression < exp >= self.contents->select(e |

e.name.concat(’Name’) = ?), the range (?.size() - 4, ?.size()) results

from expdata(< exp >).

modeldata(< model >): For each expression in which a property of the model is

compared to a sub-string of a “?”-expression the corresponding sub-string range

is added to the resulting set. For example, for the (sub-) expression < exp >=
self.contents->select(e | e.name = ?.substring(1, 3)),

the range (1, 3) results from data(< exp >). The modeldata(< model >) function

operates on every sub-expression that can be transformed into an expression of

the form < exp1 > .prop = {substring/concatops}(<? − exp >).

If the above assumption is fulfilled, the following rule set describes the transform-

ation rules that are responsible for inverting an OCL query to determine the value of

the “?”-expression. The decision which of the rules is applied depends on the root ex-

pression of the right hand side of the equation. For example, Figure 5.9 depicts the

model representation of an expression self->select(e | e.name = ?), show-

ing that the root expression is the select expression, thus the according rule will

be applied for transforming the expression in order to solve an equation of the form:

ModelElement(name = "M") = self->select(e | e.name = ?).

The following rules show how the remaining expression types of OCL can be inverted:

Collection-rules: Collections based expressions (such as select or reject) us-

ing a “?”-expression in their body also require rules how to solve the expression to find

out the value of the “?”-expression.

194

5.3. Definition of Textual View Types

: SelectExp

self : VariableExp OperationCallExp

AttributeCallExp QMarkLiteralExp

e : VariableExp name : Attribute

bodysource

argumentsource

= : Operation

referredOperation

source referredAttribute

root

Matched
„?“-Exp

Figure 5.9.: Model representation of self->select(e | e.name = ?) showing the root

node and the matched “?”-expression used for the decision of the rule application.

select() The select(<?-Exp>) operation is the most frequently used operation

when it comes to looking up an element within a model. As only elements for

which <? − Exp > is true result from this operation, the inverse operation is

the any() operation on the respective other side of the equation. The following

equation show the inversion of the select()-expression:

< Expr >∶= < Exp1 > .select(e∣e.prop1 = (<? −Exp1 >) . . . e.propn = (<? −Exp1 >))

⇐⇒
⎛
⎜⎜⎜
⎝

(1) < Expr > .prop1 =<? −Exp1 >
⋮
(n) < Expr > .propn =<? −Expn >

⎞
⎟⎟⎟
⎠

The results of the expressions 1..n are then concatenated based on the indices in

the <? −Expi >-expressions. For example:

Person(name = ‘A‘, surname = ‘B‘) ∶= {Person1, P erson2}− > select(p∣
p.name =?.substring(1, 1)andp.surname =?.substring(2, 2)) ⇐⇒

⎛
⎝
(1)p.name =?.substring(1, 1)
(2)p.surname =?.substring(2, 2)

⎞
⎠ ⇐⇒

? = ‘A‘.concat(‘B‘)

195

Chapter 5. Textual Views

reject() As the reject operation produces the difference set of the select operation,

building the difference set from the result is the inverse operation for it:

< Expr >∶=< Exp1 > .reject(<? −Exp >) ⇐⇒
< Exp1 > − > select(e∣ < Expr > − > excludes(e))− > any(true) ∶=<? −Exp >

For example:

{1, 2, 6} ∶= {1, 2, 5, 6}− > reject(e∣e =?) ⇐⇒
{1, 2, 5, 6}− > select(e∣{1, 2, 6}− > excludes(e))− > any(true) ∶= e =? ⇐⇒
5 ∶= e =?

The same applies for negated (using the not-operation) terms within a

select()-expression.

append()/prepend()/including() Each ordered collection type defines this operation.

The operation adds its argument at the last position of its collection (self).1 The

OCL specification defines that the last element of the collection is the argument of

the operation: post: result->at(result->size()) = object.

Due to this constraint, the following inversion will return this added element:

< Expr >∶=< Exp1 > .append(<? −Exp >) ⇐⇒
< Expr > − > last() ∶=<? −Exp >

The same applies, at least for Sequences also for the including() oper-

ation. This works because, as the OCL specification defines, the semantics of

Sequence::including() is the same as for append(). The following con-

straint ensures these semantics: post:result=self.append(object).

Furthermore, the same rule applies analogously for the prepend() operation.

iterate() The result of an iterate expression is an accumulator expression that

is specified in addition to the iterator. For example, using the expression

col->iterate(item : Type; acc : Set(Type) = Set |

1The OCL specification [Obj10a] seems to be incomplete as it defines the semantics of the append()

operation on OrderedSet without taken the set semantics into account. I.e., there is a contraint that

defines: post: result->size() = self->size() + 1. However, if the argmunt is already

contained in the set this will not hold!

196

5.3. Definition of Textual View Types

acc.including(item)), after each iteration step the body’s value is as-

signed to acc. The result of the whole iteration process is the accumulator.

Therefore, to be able to invert an iterate expression, the inversion rule for this

type of expression needs to go back from the resulting accumulator to the initial

set over which the iterate expression loops.

Depending on the position of the “?”-expression within the iterate, one of two

different rules defines the inversion of the iterate expression:

Case 1: ?-Exp in body In this case the body expression contains the “?”-

expression. The inversion will create a section-wise parted array or expressions

until the init expression of the accumulator is reached. By substituting the

determined values back in the array the values of the segments can be determined.

< Expr >∶=< Exp1 > − > iterate(i;< acc >=< init > ∣ <? −Exp >) ⇐⇒
⎛
⎜⎜⎜
⎝

<? −Exp >lasti= invert(< Expr >=<? −Expwithacc =<? −Exp >lasti−1>))
⋮
<? −Exp >1= invert(< Expr >=<? −Expwithacc =< init >>))

⎞
⎟⎟⎟
⎠

An example for this case is the following:

‘asdfasdf ‘ =Sequence{1, 2}− > iterate(i; acc ∶ String = “∣acc.concat(?)) ⇐⇒
(1) <? −Exp >2=‘asdfasdf ‘.substring(<? −Exp >1 .size(),<? −Exp > .size())

(2) <? −Exp >1=‘asdfasdf ‘.substring(1,<? −Exp > .size()) (2)in(1)⇐⇒
<? −Exp >2=‘asdfasdf ‘.substring(‘asdfasdf ‘.substring(1,<? −Exp > .size())

.size(),<? −Exp > .size()) ⇐⇒
<? −Exp >=‘asdf ‘

Case 2: ?-Exp in source If the “?”-expression occurs as source of an iterate ex-

pression, the inversion of the iterate as shown in case 1 is performed. The main

197

Chapter 5. Textual Views

difference is that there are only so many occurrences how often a “?” occurs in the

source collection:

< Expr >∶=<? −Exp > − > iterate(i;< acc >=< init > ∣ < Exp1 >) ⇐⇒
⎛
⎜⎜⎜
⎝

<? −Exp >lasti= invert(< Expr >=<? −Exp with acc =<? −Exp >lasti−1>))
⋮
<? −Exp >1= invert(< Expr >=<? −Exp with acc =< init >>))

⎞
⎟⎟⎟
⎠

An example for this case is the following:

‘12‘ =Sequence{?, ‘2‘}− > iterate(i; acc ∶ String = “∣acc.concat(i)) ⇐⇒
(1) <? −Exp >2=‘12‘.substring(‘12‘.size() − ‘2‘.size(), ‘2‘.size())
(2) <? −Exp >1= <? −Exp >2 .substring(‘2‘.size()− <? −Exp >1 .size(),

<? −Exp >1 .size()) ⇐⇒
(1) <? −Exp >2=‘1‘
(2) <? −Exp >1=‘1‘.substring(‘2‘.size()− <? −Exp >1 .size(),

<? −Exp >1 .size()) ⇐⇒
<? −Exp >=‘1‘

String rules

concat(): A concat operation on the right-hand side of the equation will be replaced

by a substring operation on the left-hand side. Depending on whether the

?-expression occurs as source or as argument of the concat operation different

inversion rules apply:

Case 1 (?-Expr. in source):

< Expr >∶=<? −Exp > .concat(< Exp1 >) ⇐⇒
< Expr > .substring(< Expr > .size()− < Exp1 > .size(),< Expr > .size()) ∶=
<? −Exp >

198

5.3. Definition of Textual View Types

Case 2 (?-Expr. as argument):

< Expr >∶=< Exp1 > .concat(<? −Exp >) ⇐⇒
< Expr > .substring(1,< Exp1 > .size()) ∶=<? −Exp >

If the ?-expression appears as source and as argument at the same time, the expres-

sion will result in two parallel expressions that can be inverted further. A special

rule applies for cases such as ’TT’ = ?.concat(?) where the resulting string

is ?.substring(1, ’TT’.size() / 2.

substring(): A substring operation on the right-hand side of the equation will

be replaced by a concat operation on the left-hand side. Note that this sub-

stitution is only possible if all parts of the original string are used somewhere

in the expression. For example, a.b = ?.substring(1,3) and a.c =

?.substring(3,?.size()) would be solvable, where the same expression

without the second part would not. Furthermore, no implicit knowledge about

the length of “?” shall be used. Therefore, somewhere in the expression the

term ?.substring(<Exp>, ?.size()) has to occur, otherwise this part is

irrecoverably lost and therefore not reconstructible by the inversion approach. We

define the following substitution rules for the substring operation:

⎛
⎜⎜⎜
⎝

< Exp1 > ∶= <? −Exp > .substring(< Exp1,1 >,< Exp1,2 >)
⋮

< Expn > ∶= <? −Exp > .substring(< Expn,1 >,< Expn,2 >)

⎞
⎟⎟⎟
⎠
⇐⇒

< Exp1 > .concat(< Exp2 >).concat(< Expn >) =<? −Exp >

Assuming the equations for < Expi > are independent from each other and sorted

ascendingly according to the value of < Expi,1 > a further requirement for the

application of this rule is that < Exp1,1 > evaluates to 1and < Expn,2 > has to

evaluate to <? − Exp > .size(). Additionally, note that this substitution rule only

works in the defined way if the sequence of pairs (< Exp1,1 >,< Exp1,2 >), . . . (<
Expn,1 >,<? − Exp > .size()) is formed so that < Expi,2 >=< Expi+1,1 > +1.

Intuitively speaking: the string chain must be entirely complete. If < Expi,2 > >=
< Expi+1,1 >, the overlapping parts of each pair (< Expi >,< Expi+1 >) need to

199

Chapter 5. Textual Views

be omitted in the concatenation (as they represent redundant information). This

refines the above defined rule to:

⎛
⎜⎜⎜
⎝

< Exp1 > ∶= <? −Exp > .substring(< Exp1,1 >,< Exp1,2 >)
⋮

< Expn > ∶= <? −Exp > .substring(< Expn,1 >,<? −Exp > .size())

⎞
⎟⎟⎟
⎠
⇐⇒

<? −Exp > ∶=
< Exp1 > .substring(< Exp1,1 >,< Exp1,2 > − < Exp2,1 >).concat(< Exp2 >)
.substring . . .

.substring(< Exp1,1 >,< Expn−1,2 > − < Expn,1 >).concat(< Expn >)

The following is an example for a case in which the string parts overlap:

resultElements = elements− > select(e∣e.firstName =
?.substring(1, ?.indexOf(′∶′))

and e.lastName =?.substring(?.indexOf(′∶′) + 1, ?.size()) selectrule,substringrule⇐⇒
resultElements− > any(true).f irstName.concat(

resultElements− > any(true).lastName) =?

toInteger(), toReal(), toBoolean(), toReal(): The replacement for this kind of opera-

tion on the right hand side is the toString() operation on the respective other

primitive type.

< Expr >∶=<? −Exp > .to < PrimitiveType > () ⇐⇒
< Expr > .toString() ∶=<? −Exp >

If the source of the toInteger() operation is a real, the expression is not in-

vertible as the decimals are lost and connot be reconstructed.

toLowerCase(), toUpperCase(): As both of these operations are not bijective they can-

not be inverted.

Number and Boolean-rules: Operations on numbers or boolean values that per-

form a bijective operation can be inverted as every mathematical expression. For ex-

200

5.3. Definition of Textual View Types

ample, the expression < Exp1 >=< Exp2 > / <? − Exp > has the inverse function

< Exp2 > / < Exp1 >=<? −Exp >.

< Expr >∶=<? −Exp >< op >< Exp1 > ⇐⇒
< Expr >< inverseopop >< Exp1 >∶=<? −Exp >

IfExp-rules: If the QMarkLiteralExpression occurs within the condition or

either the then or else part of an IfExp, the inversion rules to determine the value

of the “?” are the following:

condition: Occurrences of a QMarkLiteralExpression within the condition of

an IfExp can be solved by the following rule:

< Expr >∶= if(<? −Exp >)then < Expthen > else < Expelse > endif ⇐⇒
if(< Expr >=< Expthen >)then <? −Exp > elsenot <? −Exp > endif

This might lead to a partially defined equation depending on the domain of the

QMarkLiteralExpression’s type. For example, if the <?−Exp > is ? = 2 the

inversion of a corresponding IfExp would result in the unambiguous then part

where ? = 2 and a not completely solvable else part with ? <> 2.

then,else: An QMarkLiteralExpression can also occur in the then or else

part of an IfExp.

< Expr >∶= if(< Cond >)then <? −Exp > else < Expelse > endif ⇐⇒
⎛
⎜⎜⎜
⎝

if(< Expr >=< Expelse >)then
<? −Exp >∶=< dom(<? −Exp > −typew.o. < Expr >)

else <? −Exp >∶=< Expr > endif

⎞
⎟⎟⎟
⎠

An example for the solution of this expression type, for the expression 5 :=

if(a = 1) then ? else 2 endif is then the following expression:

if(5 = 2) then ? = Sequence{0..*}.excluding(5) else ?

= 5 endif.

LetExp: A let expression binds a variable to an expression and makes it available to

the expression in its scope (expression after in). To be able to invert an expression where

201

Chapter 5. Textual Views

the QMarkLiteralExpression occurs in the init expression of the let expression,

this expression needs to be inlined into the in part of the expression.

let < var >∶= (<? −Exp >)in < Expinwithvar > ⇐⇒
< Expinwithvarreplacedby <? −Exp >>

For example, given an expression let var=?.concat(’Var’) in ’My’.con-

cat(var) results in ’My’.concat(?.concat(’Var’)) after the application of

this inversion rule.

Combined Example Given the following expression, which is applied in a view

type definition for the metamodel of the running example (cf. page 18), queries for a

signature that where the value in the concrete syntax is prefixed by the ’+=’ string:

result ∶MethodSignature ∶= self.signatures− > select(s∣s.name =′ + =′ .concat(?))

First, we can easily determine the type of “?”-expression by using the name attribute’s

type: String. In the following the R will denote the root expression which is used to

determine which rule will be applied next:

result ∶

MethodSignature ∶= self.signatures− > Rselect(s∣s.name =′ + =′ .concat(?)) select rule⇐⇒

result.name ∶= ′+ =′ .Rconcat(?) concat rule⇐⇒
? ∶= result.name.substring(′+ =′ .size(), result.name.size())

A more complex example where the OCL inversion is applied to can be found in

Appendix B.

Realisation FURCAS realises the OCL inversion approach by applying QVT trans-

formations to the OCL expression tree which match the initial patterns described in the

rules presented in the previous section. If the rule matches, an in-place transformation is

performed on the left and the right hand side of the OCL expression model. As an OCL

expression may only have one root expression (cf. Section 12.2.1 “ExpressionInOcl” in

[Obj10a]), and for every possible type of expression one distinct rule exists, there cannot

be a case where more than one rule can be applied at once. If no rule can be applied

202

5.3. Definition of Textual View Types

result :
VariableExp

OperationCall
Exp

stringValue =
„Test“

:StringLiteralExp QMark
LiteralExp

argumentsource

concat :
Operation

referredOperation

LHS RHS

result :
VariableExp

OperationCall
Exp

argumentsource

substring :
Operation

referredOperation

stringValue =
„Test“

:StringLiteralExp

QMarkLiteralE
xp

OperationCall
Exp

source

size :
Operation

referredOperation

LHS RHS

Concat Rule= =

Figure 5.10.: Model representation of the equation var = "Test".concat(?) with ap-

plication of the concat transformation rule.

anymore and the right hand side of the equation is the “?”-expression (or if there is more

than one right hand side, as for example produced by the substring rule) the equation

is solved. If no rule can be applied anymore and (any of) the right hand side(s) is still

not the “?”-expression (or a sub part of it, due to the substring rule), the equation is

considered unsolvable.

Listing 5.16 shows an example QVT rule which realises the concat transformation

rule. Figure 5.10 depicts an example application of the concat transformation rule to an

OCL model equation.

5.3.3.2. Deriving Code-Completion Proposals for OCL Queries

So called “code-completion” or “auto-completion” proposals can help the developer by

presenting a choice of referencable elements from a pop-up dialogue. Those points

within a textual representation with lookups for elements by a certain query are the

places where a developer that uses the language would most probably want to be sup-

ported in creating a reference to one of the proposed elements. The queries in the view

type definition of FURCAS define how elements are resolved based on a textual repres-

entation of a reference to them. Based on these expressions also proposals based on

incomplete textual reference representations can be determined. This improves the pro-

ductivity of the developer, as he or she does not have to think about the correct reference

name but gets a complete list of possible identifiers to choose from. Furthermore, this

feature lowers the probability of errors, as only valid identifiers are proposed. Research

in this area has come up with a multitude of solutions for this problem [JP08]. How-

203

Chapter 5. Textual Views

1 transformation InvertOclQuery (sourceOcl : oclEquation,
2 targetOcl : oclEquation, stdLib : ecore) {
3 top relation ConcatRule {
4 checkonly domain stdLib string_class : EClass {
5 eOperations = concatOp : ecore::EOperation {
6 name = ’concat’ },
7 eOperations = substringOp : ecore::EOperation {
8 name = ’substring’ },
9 eOperations = sizeOp : ecore::EOperation {

10 name = ’size’ }
11 };
12 checkonly domain sourceOcl source: oclEquation::Equation {
13 left = leftSource : ocl::ecore::OCLExpression {},
14 right = rightSource : ocl::ecore::OperationCallExp {
15 referredOperation = concatOp.oclAsType(ecore::EObject),
16 source = rightSource_opCallSrc:ocl::ecore::OCLExpression{},
17 argument = rightTarget: furcas::QMarkLiteralExp { }
18 }
19 };
20 enforce domain targetOcl target: oclEquation::Equation {
21 left = leftTarget: ocl::ecore::OperationCallExp {
22 source = leftSource,
23 referredOperation = substringOp.oclAsType(ecore::EObject),
24 argument = from : ocl::ecore::IntegerLiteralExp {
25 integerSymbol = 1
26 },
27 argument = to : ocl::ecore::OperationCallExp {
28 referredOperation = sizeOp.oclAsType(ecore::EObject),
29 source = rightSource_opCallSrc
30 }
31 },
32 right = rightTarget: furcas::QMarkLiteralExp { }
33 };
34 [...]
35 }
36 }

Listing 5.16: Example inversion rule in QVT for the concat rule.

204

5.3. Definition of Textual View Types

ever, for the specific problem of deriving auto-completion proposals from templates in

combination with OCL queries, no generic solution is available, yet.

FURCAS tackles this problem by applying a similar approach as for the computation

of QMarkLiteralExpressions in OCL queries. The solution uses the same rules

as for the inversion of “?”-expressions but the result is different. The goal of the auto-

completion feature is to reduce a set of candidate elements, which are initially defined

by their type by filtering them according to a certain query and a certain prefix, which

the user might already have typed.

Assuming an OCL query of the following form:

E =< Exp >→ select(var∣var.prop =<? −Exp >)

where <? −Exp > is an OCL expression where the “?” place-holder occurs at least once

and is of type String and a given prefix that has been typed by a developer using the

language, < prefix >. The goal is to get a set of elements E for which the following

holds:

∀e ∈ E ∣ e ∈ result(< Exp >) ∧ e.prop.startsWith(< prefix >)

In fact, we want to reduce a set of candidate elements C resulting from the evaluation

of < Exp > for a specific self to a subset E ⊆ C. We will call the set C the set of

candidate model elements.

The process of computing E works also similar to the previously defined solving of

the QMarkLiteralExpressions equations. However, the auto-completion case

always operates on a concrete set of model elements and therefore consists of two major

steps that are uses some additional rules for this:

Step 1 Evaluate < Exp > with a specific value for self to obtain the candidate set C.

Step 2 For each element e ∈ C, try to solve the equation: e.prop ∶=< prefix ><?−Exp >.

If the equation is solvable so that it results in ? =< resultstring >, add e to the

result set E.

205

Chapter 5. Textual Views

Prefix rule: This rule operates on a string based equation and checks whether the left-

hand side is actually prefixed by the < prefix > that is specified on the right-hand

side.

< String >∶=< prefix ><? −Exp ><prefix> is prefix of <String−Exp>⇐⇒
< String >∶=<? −Exp >

If the rule cannot be applied when this initial situation occurs the equation is con-

sidered unsolvable.

Concat rule: The concat rule as defined in the OCL inversion rule-set is slightly mod-

ified to only be applicable if the left-hand side actually contains the given prefix/-

postfix. This modification is due to the fact that in the auto-completion case one

cannot guarantee that the concat rule is always solvable:

Case 1:

< Expr >∶=<? −Exp > .concat(< Exp1 >)
<Expr> has <Exp1> as postfix⇐⇒

< Expr > .substring(< Expr > .size()− < Exp1 > .size(),< Expr > .size()) ∶=
<? −Exp >

Case 2:

< Expr >∶=< Exp1 > .concat(<? −Exp >) <Expr> has <Exp1> as postfix⇐⇒
< Expr > .substring(r,< Exp1 > .size()) ∶=<? −Exp >

In the following example, the presented process determines the elements that are valid

identifiers for completing a token that started with a given prefix. Given the example

query-pattern:

self.object.getType().getAllSignatures()− > select(s∣s.name =?.concat(′+ =′))

and a prefix that was already typed by a developer: prefix= “b+” the following rules

apply:

{self.object.getType().getAllSignatures()} =
{MethodSignature(name ∶ ”b+ = ”),MethodSignature(name ∶ ”b + +”)}

206

5.3. Definition of Textual View Types

First the object MethodSignature(name ∶ ”b+ = ”) will be checked:

MethodSignature(name ∶ ”b+ = ”).name ∶= ”b + ”?.concat(‘+ = ‘) property⇐⇒

‘b+ = ‘ ∶= ”b + ”?.concat(‘+ = ‘) prefix⇐⇒

‘b+ = ‘ ∶=?.concat(‘+ = ‘) concat 1⇐⇒
? ∶= ‘b+ = ‘.substring(1, ‘b+ = ‘.size() − ‘+ = ‘.size()) ⇐⇒
? ∶= ‘b+ = ‘.substring(1, 3 − 2) ⇐⇒
? ∶= ‘b+ = ‘.substring(1, 1) ⇐⇒
? ∶= ‘b‘

Thus, we add the MethodSignature(name ∶ ”b+ = ”) to the result E. Now we try to

apply the rules to the second object MethodSignature(name ∶ ”b + +”):

MethodSignature(name ∶ ”b + +”).name ∶= ”b + ”?.concat(‘+ = ‘) property⇐⇒

‘b + +‘ ∶= ”b + ”?.concat(‘+ = ‘) prefix⇐⇒
‘b + +‘ ∶=?.concat(‘+ = ‘)

This time, since we can not apply the concat rule, the equation is unsolvable. The

result set is therefore E = {MethodSignature(name ∶ ”b+ = ”)}

5.3.3.3. An Alternative to the Automatic Inversion: The Invert Argument

For cases that are not automatically invertible, FURCAS provides the additional Invert
argument for the Property construct. The Invert argument again uses an OCL expression

to determine the value which was originally used to lookup the element that is held in

the annotated property. Listing 5.17 shows an example usage for the Invert argument. In

combination with the invert argument, FURCAS also allows to define the optional filter

argument which is combined with the Query argument to build a complete selection

expression. In this case this combined expression is the one to be inverted.

5.3.3.4. A Pragmatic Simplification of the Invert Argument: Usage of
prefix/postfix

With the use of the Invert argument for OCL queries, FURCAS is able to express ar-

bitrarily complex inversion rules for these queries. However, in practice, many queries

207

Chapter 5. Textual Views

1 viewtype OclQueryWithInvert {
2 primitiveTemplate string for PrimitiveTypes:STRING;
3 template ReferencingElement :
4 "RefEl" "references:"
5 reference{query = self.elements,
6 filter = e | e.name = ’reference’.concat(?),
7 invert = self.name.substring(
8 ’reference’.size(),self.name.length)} ;
9 template ReferenceableElement :

10 name ;
11 }

Listing 5.17: Example mapping using an OCL query with invert.

1 viewtype BusinessObjectsMethodImpl {
2 ...
3 primitiveTemplate string for PrimitiveTypes:STRING;
4 ...
5 template MethodCallExpression :
6 source "."
7 referredMethodSignature{query = self.source.methodSignatures,
8 prefix = ’method_’, postfix = ’_in_’ + self.name}
9 ;

10 ...
11 }

Listing 5.18: Example mapping using an OCL query with prefix/postfix.

do only additions to the beginning or the end of the “?”-argument and use it as predic-

ate within a select operation. Thus, to further improve the usability of the FURCAS

mapping language, a third possibility for the definition of inversions exists. Instead of

defining an Invert argument, a view developer may also specify the base selection string

and two optional arguments, prefix and postfix that are attached to the “?”-expression

and used to filter elements from the basic selection. Figures 5.7 and Listing 5.14 show

the integration of these arguments into the FURCAS metamodel as well as the mapping

syntax. Listing 5.18 shows an example application of the prefix/postfix notation.

5.3.4. Advanced Model Construction Rules

With the extensions that FURCAS provides with respect to the computation and lookup

of model elements, a view type definition in FURCAS forms a special kind of attribute

grammar [DJL88]. The nodes in this case are the model elements of the model and the

208

5.3. Definition of Textual View Types

attributes are the properties of these model elements, i.e., model attributes and associ-

ation links.

Attribute grammars consist of two different types of rules for determining the value of

attributes, inherited attributes, and synthesised attributes. Inherited attributes are values

that are propagated through the syntax tree. Synthesised attribute rules compute and

create new values. The attribute rules in FURCAS are defined using the property inits as

well as the OCL queries that a view type definition provides. However, using this kind

of rule, only inherited attributes can be expressed as no new model elements are created.

Which, per definition of the side effect freeness of OCL, would not be possible by only

using OCL expressions. Synthesised, on the other hand, can therefore not be expressed

by this means.

However, for the same reasons as traditional attribute grammars include synthesised

attribute rules, also textual view type definitions require means to provide this kind of

rule. FURCAS therefore, provides two different flavours of model construction rules.

First, by defining templates without syntax contribution (or syntax-contribution-less

(SCL) templates), it is possible to define element creation rules that a template can trig-

ger explicitly. Second, a view type developer may specify a so called foreach rule that

is used to create multiple elements based on the result of an OCL expression. Both

possibilities will be explained in the subsequent Sections 5.3.4.1 and 5.3.4.2.

5.3.4.1. SCL Templates: Templates without Syntax Contribution

The first possibility to define model construction rules uses standard TCS constructs with

special constraints. Listing 5.19 shows an example for this kind of template which is

responsible for creating a method signature for each exposed association end (cf. excerpt

of the relevant metamodel elements in Figure 5.11). The template for an association

end explicitly call template MethodSignature in mode #propertyGetter. This

template does not contain any element which has a syntax contribution it only consists of

property inits. Therefore, no parse rules are created that have to match elements in the

textual representation. Hence, the template is always “executed” whenever its calling

template is. This leads to the creation of a method signature for each association end

including the setting of its properties according to the defined property inits.

If not only a single element but a certain statically defined number of elements should

be produced the Property may define additional arguments. More specifically, to control

how often the SCL template is invoked, a view type developer may specify additional

209

Chapter 5. Textual Views

valueType : Boolean

BusinessObject

TypedElement

typedElement

type1

0..*

AssociationEnd
sideEffectFree : Boolean

MethodSignature

signatures

owner1

0..*

TypeDefinition

exposedBy0..1

elementsOfType

entity
1

0..*

output

0..1

Figure 5.11.: Excerpt of the BusinessObjects metamodel showing the relevant elements for the

creation of a getter method.

1 syntax GetterForAssiciationEnd {
2 ...
3 template AssociationEnd context
4 : ... exposedBy{mode = propertyGetter} ...
5 ;
6 template MethodSignature #propertyGetter
7 : {{ name = ’get’.concat(#context.name)),
8 output = #context.type),
9 sideEffectFree =’true’,

10 owner = #context.otherEnd().type.entity }}
11 ;
12 ...
13 }

Listing 5.19: Example view type definition defining model creation rules with templates without

syntax contribution. In this case the template creates a getter method for each

association end of the business object.

210

5.3. Definition of Textual View Types

forcedLower and forcedUpper arguments. Note, however, that the values for these argu-

ments have to be exactly the same, i.e., forcedLower = 2 and forcedUpper = 2, as there

is no syntax contribution part in which a parser could decide based on the occurrences

in the textual representation how often it should exactly trigger the template.

5.3.4.2. The Foreach-Rule: Creating Additional Model Elements Based on
Existing Ones

The foreach rule is an extension to the TCS language, which allows to define more

flexible model construction rules. One disadvantage of the previously mentioned fla-

vour of constructing model elements using SCL templates is that the multiplicity of the

called template has to be known in advance, i.e., during template definition time using

the forcedLower and forcedUpper arguments. Templates can only be called from other

templates at places where the result of the called templates is added to a property of the

template’s referred class. Thus, the decision of when to create an element and where to

store it in the parent element is strongly coupled.

The foreach rule aims at providing support for the definition of which and how often

a SCL template is executed. The basic idea behind the foreach rule is to first, determine

a set of context elements for which new elements should be instantiated and then give

rules that describe which SCL template should be called for which resulting element.

For example (again using the business object running example), a foreach rule can define

that it triggers sub-SCL templates for each association end that is connected to a business

object. Furthermore, for an association end with an upper multiplicity of > 1, template

MethodSignature #multi should be called, whereas for an upper multiplicity of

1 the MethodSignature #single should be called.

To implement this functionality, the foreach rule again makes extensive use of OCL

queries to determine the set of context elements for the execution of the SCL templates.

For the above example, one would define the foreach rule as shown in Listing 5.20.

Figure 5.12 shows the extensions of the TCS metamodel for the foreach rule.

The foreach rule itself defines the context expression, which is an OCL expression

used for determining the context objects Ctx. In the above example, this is the

self.elementsOfType expression. Furthermore, the foreach rule itself also has

a reference to an as template. This template is used whenever no detailed WhenAs

elements are given. The defaultMode, which can be specified for each foreach, is

also used in this case. To be able to specify conditional SCL template calls, a foreach

211

Chapter 5. Textual Views

1 syntax SetterForAssiciationEnd {
2 [...]
3 template BusinessObject
4 : [...] methodSignatures {
5 foreach(self.elementsOfType,
6 when = self.upperMultplicity > 1 or self.upperMultplicity = -1,
7 as = MethodSignature, mode = setterMulti),
8 when = self.upperMultplicity = 1,
9 as = MethodSignature, mode = setterSingle),

10 } [...]
11 ;
12 template MethodSignature #setterMulti
13 : {{ name = ’set’.concat(#foreach.name)),
14 output = #foreach.type) }}
15 ;
16 template MethodSignature #setterSingle
17 : {{ name = ’addTo’.concat(#foreach.name)),
18 output = #foreach.type) }}
19 ;
20 ...
21 }

Listing 5.20: Example for the foreach rule creating method signatures.

may contain several WhenAs elements. These elements consist of a combination of

an OCL expression as condition when and a template reference as. Additionally a

(non-default) mode can be specified. If the OCL expression evaluates to true for an

element c ∈ Ctx, the template that is referenced as as is called. If no mode is specified

the defaultMode of the foreach rule is used.

There are several constraints on the foreach metamodel elements. First, the OCL

expressions that are used in the WhenAs elements need to return a boolean, as this is

the decision on whether to use a certain WhenAs for a certain element. Second, the

templates that are called from a foreach rule shall not have a syntax contribution, they

shall be SCL templates. Finally, the templates that are called from a foreach rule have to

refer to classes that are assignable to the property to which the foreach rule assigns the

created elements.

5.3.4.3. Semantic Predicates

Comparable to traditional compiler construction, during the construction of models from

textual views, a developer may want to specify a textual view for a given metamodel

where the concrete syntax is ambiguous w.r.t. to its abstract syntax. For example,

212

5.3. Definition of Textual View Types

TCS::PropertyInit TCS::
PropertyReference

propertyReference
1

MOF::
TypedElement

typedElement 1

defaultMode : String

ForeachPropertyInit
OCL::OclExpression

contextExpression

1

mode : String

WhenAs

whenAs*
when
1

TCS::Template
0..1
as

0..1 as
Inv:
self.when.type = Boolean

Inv:
self.whenAs->forAll(wa |

self.propertyReference.
typedElement.type.
allSupertypes()->includes(

wa.as.metaReference)
)

Inv:
self.as.
isSyntaxContributionLess()

Inv:
self.as.
isSyntaxContributionLess()

Figure 5.12.: The foreach-rule extensions in the FURCAS metamodel.

in a view that provides textual support for the Object Constraint Language (OCL),

two constructs from the abstract synax, namely the AttributeCallExp and the

AssociationEndCallExp have the same textual representation. Given two expres-

sion self.name and self.reference, the parser cannot distinguish which of the

expressions is a AttributeCallExp and which is a AssociationEndCallExp,

both are represented by a dot followed by an identifier. However, taking the class of the

model element into account on which these expressions are called, i.e., the self expres-

sion, one would find that name is an attributes, whereas reference is an association

end.

To solve this kind of problem, FURCAS provides the possibility to define semantic

disambiguation expressions for templates. FURCAS evaluates these expressions during

parse time and decides upon their results which template of those that have to be dis-

ambiguated is used to instantiate the appropriate model elements. Consequently, as for

all other model-based expressions, FURCAS uses OCL to express them. Figure 5.13

shows the integration of these expressions into the FURCAS metamodel. The expression

used for disambiguation has to be of type Boolean as only true, which means “use

213

Chapter 5. Textual Views

TCS::ContextTemplate

TCS::ClassTemplateTCS::OperatorTemplate

OCL::OclExpression
semDisambiguate

0..1

Inv:
self.semDisambiguate.oclIsUndefined()
implies self.semDisambiguate.type =
Boolean

Figure 5.13.: The semantic disambiguation extensions in the FURCAS metamodel.

this template”, or false, meaning “don’t use this template” may be returned by these

expressions.

Another important constraint for the application of a semantic predicate is that, the

templates that are disambiguated need to have the exactly same syntax contribution.

Otherwise a disambiguation would not make sense, as the parser could already decide

which template to use. On the other hand, this also implies that whenever, two templates

for an element in the same inheritance hierarchy, i.e., being subclasses of the same su-

perclass, have the same syntax contribution, they need to be disambiguated. Listing

5.21 shows this constraint, which uses the same basic functionality as the computation

of property init trees as introduced in Section 5.3.2.1. Just instead of gathering all kinds

of SCL sequence elements, in this case all elements that have a syntax contribution are

gathered. Based on the resulting tree, FURCAS checks if all subtemplates of an abstract

template have the same syntax contribution. If they do, and the developer did not specify

a semantic disambiguation, the constraint is violated.

The syntaxContributions() operation works as follows. First, it collects all

sequence elements that are either a literal or a property. Then, it iterates over the altern-

atives of the template and creates a new entry in the result collection for each alternative

that it finds and populates it with the previous contents of the result collection including

the literals and properties found in the current alternative. An additional helper opera-

tion alternativeSyntaxContributions() (cf. Listing 5.23) is responsible for

the collection of the alternatives’ syntax contribution. This operation calls itself recurs-

ively to gather all sub-alternatives. Finally, the resulting sets are sorted according to the

occurence of the sequence elements in the list of all sequence elements of the template.

The syntax contribution algorithm would work for the example templates shown

in Listing 5.24 as follows. First, the algorithm determines a set of directly con-

214

5.3. Definition of Textual View Types

1 context ContextTemplate inv:
2 let allSubTemplates = self.concreteSyntax.templates->select(t |
3 t.metaReference.allSuperTypes()->includes(self.metaReference) and
4 t.mode = self.mode) in
5 allSubTemplates->forAll(t |
6 if t.syntaxContribution()->forAll(
7 sc | allSubTemplates->one(st |
8 st.syntaxContribution()->includes(sc))) then
9 not t.semDisambiguate.oclIsUndefined()

10 else
11 t.semDisambiguate.oclIsUndefined()
12 endif
13)

Listing 5.21: Constraint on ContextTemplate, specifying that syntactically equal templates need

to be disambiguated.

1 context ContextTemplate::syntaxContributions()
2 : Sequence(OrderedSet(TCS::SequenceElement))
3 body:
4 let seqs = self.templateSequence.elements->select(e |
5 e.oclIsTypeOf(TCS::LiteralRef)
6 or e.oclIsTypeOf(TCS::Property)) in
7 let alts : Sequence(TCS::Alternative) =
8 self.templateSequence.elements->select(
9 e | e.oclIsTypeOf(TCS::Alternative))

10 if alts->isEmpty() then
11 Sequence{seqs}
12 else
13 self->alternativesSyntaxContributions(alts, Sequence{seqs})
14 endif
15 ->collect(seq | seq->sortedBy(se |
16 self.allSequenceElements()->indexOf(se)))

Listing 5.22: The semantics of the syntaxContributions() operation.

215

Chapter 5. Textual Views

1 context ContextTemplate::alternativeSyntaxContributions(
2 alts : Sequence(TCS::Alternative), result :
3 Sequence(OrderedSet(TCS::SequenceElement)))
4 : Sequence(OrderedSet(TCS::SequenceElement))
5 body:
6 let altSeqs = alts.sequences->asSequence() in
7 let localResult = altSeqs->iterate(
8 seq; result:Sequence(OrderedSet(TCS::SequenceElement)) =
9 Sequence{startSequence} |

10 Sequence{1..result->size() - altSeqs->indexOf(seq)+1}->iterate(
11 i; subResult : Sequence(OrderedSet(TCS::SequenceElement)) =
12 result | subResult->append(
13 seq.elements->select(e | e.oclIsTypeOf(TCS::LiteralRef) or
14 e.oclIsTypeOf(TCS::Property))->iterate(
15 sss; subsubResult : OrderedSet(TCS::SequenceElement) =
16 subResult->at(i) |
17 subsubResult ->append(seq)
18)
19)
20)
21) ->excluding(startSequence)
22 let localAlts = alts.elements->select(
23 e | e.oclIsTypeOf(TCS::Alternative)) in
24 if localResult.isEmpty() then
25 self.alternativeSyntaxContributions(startSequence, localAlts)
26 else
27 self.alternativeSyntaxContributions(localResult, localAlts)
28 endif

Listing 5.23: The semantics of the helper operation alternativeSyntaxContribu-
tions() operation.

216

5.3. Definition of Textual View Types

1 template AssociationEnd context:
2 [[--variant 1 with named local end
3 name "<-" {{ navigable = true, isStorage = true }}
4 |
5 --variant 2 with unnamed/non-navigable local end
6 "unnamed" {{ navigable = false, isStorage = false }}]]
7

8 association
9 ;

Listing 5.24: Example for the application of the alternativeSyntaxContributions()
operation.

tained sequence elements resulting in the orderd set Seqs = {Property(association)}.

Next, it analyses the alternatives and creates a set of sequence elements for each

alternative and joins each of them with the initial set Seqs. This joining results in

the nested ordered sets syntaxContributions = {{Property(name), LiteralRef(” <
−”), P roperty(association)},{LiteralRef(”unnamed”), P roperty(association)}}. If

one of the subsets of this result occurs within another sibling template of the current

template it will require a semantic disambiguation.

Listing 5.25 shows an example usage of the semantic disambiguation. The subtem-

plates for AttributeCallExp and AssociationEndCallExp both have the

same syntax contribution, i.e., both are operator templates with the dot-operator and

define a string identifier as their right-hand side. The disambiguation expressions look

up the given identifier and decide if the found model element is an attribute or an asso-

ciation.

Formal Representation of a FURCAS view type definition To validate the tex-

tual view type approach of FURCAS against the generic view type properties presented

in Chapter 4, a formal representation of the FURCAS view type definition approach is

required.

Definition 5.1 (Containment-Property). The containment-property is a formal definition
of the composite association concept in MOF [Obj06]. For our special case we fur-
ther define that the multiplicity of the containment end should be 1..1. Formally, the
containment-property is fulfilled for a tuple (A,B, rel) where A and B are disjoint sets
of model elements of a different type and rel is a bijective relation rel ⊆ A × B. That
means rel is fulfilled when (a ∈ A, b ∈ B) ∈ rel ⇐⇒ b is contained in a.

217

Chapter 5. Textual Views

1 template PropertyCallExp abstract operatored(dotOps);
2 operatorTemplate AssociationEndCallExp (
3 operators = dotOp, source = source,
4 semDisambiguate = not AssociationEnd.allInstances()->select(e |
5 self.source.type.allSupertypes()->includes(e.type))
6 .otherEnd()->select(e |
7 e.name = ${referredAssociationEnd})->isEmpty())
8 : referredAssociationEnd (
9 query = AssociationEnd.allInstances()->select(e |

10 self.source.type.allSupertypes()->includes(e.type))
11 .otherEnd()->select(e | e.name = ?))
12 ;
13 operatorTemplate AttributeCallExp (operators = dotOp,
14 source = source, semDisambiguate =
15 not self.lookUpElementExtended(${refferedAttribute}).oclIsInvalid())
16 : referredAssociationEnd (query = self.lookUpElementExtended(?))
17 ;

Listing 5.25: Example for the semantic disambiguation.

For the sake of readability, we define Ba = rel(a) ⇐⇒ ∀b ∈ Ba ∣ (a, b) ∈ rel ∧ a ∈
A ∧Ba ⊆ B.

Definition 5.2 (FURCAS View Type Definition). Formally, the mapping definition is a
tuple

VT = (T,Alts ,Seq ,MMVT , tempalts , tempseqels , altseqels , orderS) (5.1)

where

T is a finite set of templates and

Alts is a finite set of alternatives and

Seq is a finite set of sequence elements and

MMVT ⊆ MM is defined as a set of model elements within the metamodel MM for
which VT is responsible.

orderS is a strict partial order orderS ⊆ Seq × Seq where (s1, s2) ∈ orderS ⇐⇒ s1

occurs before s2 within its composite parent. “Occurs before” holds if the elements
occur in sequence within their parent alternatives and templates.

218

5.3. Definition of Textual View Types

tempalts , tempseqels and altseqels are relations that are defined so that tuples
(T,Alts , tempalts), (T,Seq , tempseqels) and (Alts ,Seq , altseqels) fulfil the containment-

property.

The set of alternatives Altst that belong to a template t are given by Altst = {a ∈
Alts ∣ (t, a) ∈ tempalts}. 2

The set of Sequence elements Seq t that belong to a template t are given by the following
relation: Seq t = {s ∈ Seq ∣ (t, s) ∈ tempseqels}.

The set of Sequence elements Seqa that belong to an alternative a are given by the
following relation: Seq t = {s ∈ Seq ∣ (a, s) ∈ altseqels}.

Definition 5.3. The complete-containment-property of a tuple (A,B, func) where A

and B are disjoint sets and rel is a relation, is fulfilled iff rel partitions B so that each
element of B is contained in a partition Bi:

(1)A ∩B = ∅
(2)(A,B, func) fulfills the containment-property (cf. Definition 5.1) ∧
(3)∀b ∈ B ∣ ∃!Bi ⊆ B ∣ b ∈ Bi

The corresponding meta-model element mc ∈ MM for a given t ∈ T can be queried

through the function mmelem ∶ T → C.

Definition 5.4 (Types of Sequence Elements). Different types of sequence elements of a
template t that are of relevance in the later-on presented definitions and algorithms are:

Property Sequence Elements: Property referring elements are denoted as set Seqprop ⊆
Seq . The corresponding property ps has to be an element that is either an attribute
or an association end navigable from the corresponding metamodel element of t
which is defined as the set

Pt =attributes(mmelem(t)) ∪ {a ∈ associations(mmelem(t))
∣ first(a) = mmelem(t) ∨ second(a) = mmelem(t)}

for a given s ∈ Seq can be queried through the function mmprop ∶ Seqprop → Pt.
Those sequence elements are responsible for defining where and how a specific
property of a model element is rendered as text.

2According to the metamodel each ai ∈ Altst might actually be nested within another alternative

aj ∈ Altst where ai ≠ aj . However, this relation is not important in this context and therefore omitted in

this formalization.

219

Chapter 5. Textual Views

Literal elements: Seq lit ⊆ Seq , where a s ∈ Seq lit is responsible for representing a static
literal within the text. The literal value is yield through:

literal ∶ Seq lit → [String]

5.4. Representing Textual Views

Having the possibility to define textual view types using the FURCAS mapping language,

enables for the construction of textual representations of a model. The representation

of textual views in the context of model driven engineering requires to bridge an ab-

stract model and its textual representation, which is ultimately a stream of characters.

However, having two different types of representations would also require to separately

manage models and their textual representations, i.e., a model repository and a store for

text files. To bridge this gap, FURCAS raises the textual representation to the model

level. This enables to transform, store, version and merge the textual representation as a

model.

However, this decision raises new challenges. For example, how can a developer

interact with a textual view model using traditional ways of interacting with text? Cut,

copy, paste and straight on typing as well as deletion of arbitrary characters at arbitrary

positions are some of the key factors of textual editing. How can a textual model editor

“feel” like editing a conventional text editor whilst providing enhanced view features

such as removing and adding elements from and to the view without modifying the

underlying model. To be able to deal with these challenges as well as being applicable

in practice, several factors have to be taken into account:

1. The solution shall support all different kinds of views, as defined in Chapter 4,

which are for example, partial, extending or selective views.

2. In order to blend with the interaction with standard text editors within Integrated

Development Environments (IDEs), the user should be able to interact with the

solution as if he or she would interact with a standard text editor.

3. The solution should be integrateable with the underlying modelling infrastruc-

ture. This especially concerns the way views are made persistent. Persistent views

should be versioned and stored in the same way as the models themselves are.

220

5.4. Representing Textual Views

5.4.1. Views in Graphical Modelling

Within graphical modelling several approaches have been developed that allow to define

explicitly holistic, partial or combined graphical views for models. The Graphical Mod-

elling Framework (GMF)[Ecl10b], as part of the Eclipse Modelling Framework (EMF)

provides means to define view types and create views for nearly arbitrary metamodels.

Furthermore, these views are not view-only but rather provide functionality to edit the

underlying models through its views. The information on how a specific model element

is displayed in the graphical representation is given using a decorator pattern [GHJV95]

based approach. The original decorator pattern is used to non-intrusively, dynamically

add functionality to a class that is wrapped by the decorator while still fulfilling the same

interface. In the context of views on models, the functionality consists of information

that is added to a model element that describes how it is represented in a certain view.

Many graphical approaches handle their diagrams as models, too. This means

that there is a generic meta-model for diagrams which could be called a “diagram

metamodel”. Instances of this metamodel are then graphical elements such as rect-

angles or arrows. The decorator pattern comes into play as these instances decorate

(non-intrusively reference) elements from the domain model. Hence, what a diagram

model actually does is to describe how a specific domain model is represented as a

diagram.

The usage of the decorator approach means that the graphical information is clearly

separated from the actual model content, allowing to define different views on the same

model elements. Many graphical UML modelling tools even show this separation to the

user. If a diagram element referred to a model element that is not accessible anymore,

due to whatever reason, the diagram element may still be shown. The absence of the

underlying model element will be indicated by an annotation that is attached to the

diagram element. This way, the graphical view model is relatively independent from the

underlying domain model.

5.4.2. Limitations for Textual Views

In contrast to graphical views, which can display nearly arbitrary information, textual

views incur some limitations, mostly due to their sequential nature – a stream of charac-

ters.

• Not everything that could appear in a model can be represented by a textual view.

For example, identifiers with white spaces can appear in models but are hard to

221

Chapter 5. Textual Views

implement using parser technologies. As textual views need means for lexing and

parsing character streams, this constrains the expressiveness of textual views.

• As opposed to graphical view models, which may be any type of graph, a textual

concrete syntax that is represented as a textual view model is more likely a tree

structure. Therefore, interdependencies between elements are limited to a parent

- child relationship. This relationship can mapped to a textual representation by

using structural elements such as parenthesis or indentations with whitespaces.

Additional links have to be mapped to references by some kind of identifier.

• The way of interacting with text is much different than the way of interacting with

graphical views. In graphical views, a developer interacts with the editor using

discrete, predefined, atomic actions. For example, an action for creating a graph-

ical representation of a UML class would be such an action. In contrast to such

actions, the way of naturally interacting with text is by typing and deleting charac-

ters. Typing of a single character can not necessarily be seen as an atomic editing

action. Mostly such an atomic editing event consists of a series of character inser-

tions and/or deletions. Thus, intermediate states with incomplete editing actions

may occur. This difference in the way of interactions needs to be accounted for in

a view-based textual modelling approach.

5.4.3. The TextBlocks Model Decorator Approach

The basic idea of FURCAS is to use decorator models to specify how a certain domain

model element should be presented as text. This decorator model is called TextBlocks
model. A textual view is then represented by the specific structure of a TextBlocks model

that references the model to be viewed. View types defined in a mapping definition then

tell how a TextBlocks model is constructed to represent a certain domain model.

However, just having the TextBlocks decorator model is not enough to be able to edit

a model in a textual way. Thus, the FURCAS approach includes a textual editor that is

able to directly work with a TextBlocks model as if it was a real text document. This

editor knows how to interpret, on the one hand, a TextBlocks model in combination

with the underlying domain model and represent it as text and, and on the other hand,

how commands that are executed by a developer are mapped to changes within the Text-

Blocks model. The FURCAS editor looks and feels like a full-featured (cf. [Fow05])

code editor including all usability enhancing features such as auto-completion, syntax

222

5.4. Representing Textual Views

highlighting, etc. Since the TextBlock model is a pure decorator model the overhead

concerning redundant information concerning the domain model is kept to a minimum.

To keep the textual view model and the underlying model in sync FURCAS employs a

model-view-controller (MVC) ([KP88]) approach. Some existing approaches for textual

modelling, such as TEF [Sch07] already proposed to employ MVC for textual model-

ling but came away from doing it because of the many unsolved challenges that are

present in this area. A discussion of advantages and challenges of the MVC approach in

combination with textual modelling can be found in [Sch07].

Also in the compiler construction literature there are similar approaches that are called

Syntax Directed Programming Environments[TR81, RT84]. In these approaches, com-

mands are derived from the (attributed) grammar of a programming language that can

be used to interact with the code document. Thus, ensuring the document is always

syntactically correct. However, in these environments, the editing process is limited to

executing only these predefined commands. Freely typing code in direct combination

with MVC based updates of the underlying model is not possible. Additionally, the

challenges posed by allowing partial, selective and overlapping textual views are not

tackled by the work in this area.

FURCAS now picks up the idea of MVC based textual modelling and employs an ap-

proach for this three-way-factored architecture. The three components of MVC, mapped

to FURCAS, are:

The model: This is, the underlying domain model that should be represented in the

view.

The view: A view in FURCAS is the textual representation that is produced by the com-

bination of the information from the domain model and the decorating TextBlock

model. The metamodel for such views is presented in Section 5.4.3.1.

The controller: The controller in the context of the FURCAS approach consists of sev-

eral equally important components. First, there is the FURCAS editor which is

responsible for the interaction between the textual view and the modeller. The ed-

itor captures the commands (such as Insert(“New Text”, 25 /* offset */, 10 /* length
to overwrite*/)) that are produced by a modeller modifying the textual represent-

ation and translating it into events that modify the underlying TextBlock model.

During this editing process, a TextBlock model may be in several states. These

states as well as the transitions between them will be presented in Section 5.4.3.3.

223

Chapter 5. Textual Views

Domain Model

A

B C

TextBlocks Decorator Model

Text-
block 1

Text-
block 2

Text-
block 3

Textual View

ModelElement A {

contains: ModelElement B;

importantReference B C;

}

View On Decorates

Figure 5.14.: Overview on the TextBlocks-decorator approach.

Second, FURCAS employs a stack of incremental parsing tools (lexer, parser, etc.)

that allow to incrementally analyse a TextBlock model and bring it to a consist-

ent state after its textual representation was modified. Based on a consistent state,

an incremental model transformation approach updates the domain model from the

changed TextBlock model. Third, for updating a TextBlock model upon changes to

the underlying domain model, this transformation is bidirectional. For each view

type, a bidirectional transformation, that is responsible for these updates, is gen-

erated from the view type definition. The actual synchronisation process between

textual view model and domain model is presented in Chapter 6.

5.4.3.1. The TextBlocks Meta-Model

The basic idea of this TextBlocks metamodel is based on the decorator pattern[GHJV95].

The elements that the TextBlocks model decorates are the model elements of the domain

model. To be able to decorate an arbitrary model as a textual view, FURCAS incorporates

a metamodel that can represent generic text structures. As shown in figure 5.14, the

textual view is then in fact a view on the decorated domain model. The developer still

types text as in any other development environment but what actually happens within the

FURCAS editor is that this text is mapped to changes in the TextBlocks and transitively

the domain model.

Figure 5.15 depicts an overview on the TextBlocks metamodel. As the structure of

text is rather simple, the metamodel only contains a few different constructs. The

main class of this metamodel is, as the metamodel’s name, the TextBlock class.

A TextBlock represents one or more domain model elements having a defined tex-

tual representation. For example, this could, for a Java like language, be a declara-

tion of a member variable within a class. These TextBlocks can then have nested

TextBlocks as their children (cf. subNodes and getSubBlocks() in the Text-

224

5.4. Representing Textual Views

LexedToken

DocumentNode

getSubblocks() : TextBlock
getTokens() : Token

isComplete : Boolean

TextBlock

value : String

AbstractToken

MOF::Element

UnlexedTokenOmittedToken
TextBlockDefinition

TCS::Alternative

TCS::Template

*
correspondingModelElements*

documentNode

responsibleModelElement
0..1

referencedByreferencedModelElements* *

TCS::
SequenceElement

sequenceElement
*

type
1

template 1

chosenAlternatives

*

{ordered}
subNodes

parent
0..1

*

Figure 5.15.: Simplified version of the TextBlocks-Metamodel.

Blocks metamodel). In the Java example, this could be, for example, the initialisation

expression of the member variable.

As it can be seen in the metamodel each TextBlock element may reference cor-

responding model elements (cf. correspondingModelElements) for which it is

used as decorator for the textual view. However, only one of them, the one also refer-

enced as responsibleModelElement is the model element for which the TextB-

lock actually provides a syntax contribution. Further elements are included in the cor-

responding elements if they where created together with the leading model element but

do not have an own syntax contribution. For example, elements that are created by sub-

sequent calls to SCL templates (see Section 5.3.4.1) are included here. The semantics

of this set is, that elements that are corresponding elements will get deleted when their

corresponding TextBlock is deleted.

Elements that are represented by document nodes but are not coupled to the life-cycle

of the node, such as elements that were resolved using an OCL query for a property are

referenced by the referencedModelElements association. These elements will

not be deleted once the node is deleted.

The TextBlockDefinition is responsible for defining the correspondence

between the TextBlock and a template from the view type definition. A Text-

BlockDefinition refers to a Template element from the TCS metamodel.

This correspondence defines the type of a TextBlock . Thus, it is possible to

see which rule from the view type was used to create a particular TextBlock .

Furthermore, there might have been a series of alternative choices within the template

during the instantiation of the TextBlock . To be able to completely reconstruct the

225

Chapter 5. Textual Views

exact textual representation from the TextBlock these choices are also stored by

referencing the Alternative elements from the TCS metamodel.

A similar concept is used for the tokens that a TextBlock contains. To be able

to identify what the meaning of a certain token is, it needs a reference to its

corresponding SequenceElement from the template of its parent TextBlock.

However, it is not necessary to store the actual value of the token redundantly.

This is either done by the referred attribute from the domain model (when the

SequenceElement is a Property) or by a literal that the mapping model defines

(when the SequenceElement is a LiteralRef). However, if a more loosely

coupled view representation is required, FURCAS also supports to keep token values

stored in the TextBlock model. This option is useful if it is known that certain elements

that a TextBlock model decorates are not always available during usage of the view.

Then the values stored in the tokens can still be presented to the developer. However,

then the FURCAS editor will indicate by applying a certain highlighting function to it,

that these elements are currently not available and only the last existing synced version

is shown. A developer then has three different options:

1. Leave these parts as they are. The developer may decide that FURCAS should

keep these areas as they are, perhaps knowing that the referenced elements will be

available again at some later time.

2. If a developer knows that the referenced elements were deleted somewhere, but he

or she requires them to exist again in the current model, he or she can tell FURCAS

to re-create the elements from their textual representation.

3. The last option is to remove also the textual representation of the missing elements

from the TextBlock model.

Format information such as indentation or additional decorating information that is

not part of the domain model is represented by the use of OmittedTokens. These

tokens are included in a TextBlock tree but do not contribute to the domain model once

the incremental update transformation updates the domain model.

Thus, a TextBlock model only contains elements that are responsible for the structure

and the layout of the textual representation of a model. No redundant information is

stored. This allows to quickly update a view once its underlying model changes. The

values from the model that are part of a certain view are directly taken from the un-

derlying model. Not only the updateability w.r.t. to the underlying model and views

226

5.4. Representing Textual Views

name : String = "Organisation"
Org : BusinessObjectt1 : TextBlock

SimpleBusinessObjectVT : ViewType

BusinessObjectTemplate : ClassTemplate

value : String = "businessObject"
BOKeywordSEQ : LiteralSeqEl

+name : String
BusinessObject

instance of

NamePropertySEQ : PropertySeqEl

value : String
l1 : LexedToken

value : String = "<space>"
l2 : OmittedToken

value : String
l3 : LexedToken

V
iew

 type definition V
iew

 instance

Textual representation
in the FURCAS editor:

businessObject Organisation

Textual representation
in the FURCAS View type language:

viewtype SimpleBusinessObjectVT {
template BusinessObject :

„businessObject“ name ;
}

Figure 5.16.: Example for a TextBlock including the references to the mapping model of the view

type. The TextBlockDefinition is omitted in this example.

on it is realised in this way, This redundancy also allows to change e.g., the name of

a keyword in the mapping and automatically changing all representations of it within

textual models.

Figure 5.16 depicts an example for a TextBlock instance including its references to the

view type definition model and the domain metamodel. The textual representation in the

lower right corner shows how the FURCAS editor would render this TextBlock model

as text. The TextBlock t1 represents the business object Organisation in the textual

view; t1 references the Organisation using its correspondingModelElements

association. As it can be seen in the Figure, the two LexedToken do not hold any

value but directly reference the attribute within the metamodel that they represent. The

FURCAS editor will interpret this construct and show the value at the appropriate place

within the textual view.

For tokens that are neither valid tokens according to the lexical rules of textual view

type definition nor OmittedTokens used for formatting purposes, they will be rep-

resented as UnlexedTokens. For example, given a lexical rule for an identifier token

defining a regular expression [a − zA − Z]([a − zA − Z0 − 9])∗ which means that an

identifier may not start with a digit. Assuming, in the example given in Figure 5.16, this

227

Chapter 5. Textual Views

rule is used for the name property of the business object, changing the name the busi-

ness object from “Organisation” to “0815Organisation” would result in a change from

the lexed token representing the name property to an unlexed token that holds the new

value. How the incremental update approach deals with this kind of inconsistencies is

presented in Chapter 6.

5.4.3.2. Formal Definition of a Decorating Textual View

In order to check the TextBlock decorator approach against the generic definitions of

views from Section 4.5 a a formal representation if the TextBlock approach is required.

In this section we provide a formal definition of the relations between domain mod-

els and their views. Furthermore, the formalisation is basis for the description of the

transitions between the different states of a TextBlock model throughout the process of

displaying and editing a textual view.

A Textual View Vt is defined as a transient representation of a Domain Model M .

Vt is therefore an ordered set of characters that can be displayed in a textual editor.

Additionally Vt can be augmented with visual enhancements such as syntax highlighting,

annotations, error markers and so on.

Definition 5.5 (TextBlocks Model). A persistent model that describes the exact present-
ation of M as text, according to the view type definition VT , is defined as a TextBlocks
model

B = (N,VT ,M , IDsec, subblocks , toks , orderNodes) (5.2)

where

• N is the set of document nodes within a TextBlocks model,

• IDsec is a set of secondary identifiers that are used to resolve “refers to” relation-
ships from within the text,

• subblocks , toks and orderNodes are relations (see exact definitions below).

• The set of document nodes N , can be split into 2 disjoint subsets N = Π ∪Ω where

– Π is a set of TextBlocks b ∈ Π and Ω is a set of tokens.

– Ω can be split into 3 disjoint sets Ω = L∪O∪U where L is a set of lexed tokens
l ∈ L, O is a set of omitted tokens o ∈ O and U is a set of unlexed tokens u ∈ U .

228

5.4. Representing Textual Views

Such TextBlocks models can non-intrusively annotate (or decorate) a given M .

IDsec = L ∩M defined as secondary IDs are the only elements that are redundantly

stored in the TextBlocks model. Those secondary IDs are fallback identifiers which can

be used to re-resolve a reference that was based on a identifier stored as token value to

resolve another model element. However, due to FURCAS being a fully incremental ap-

proach this information would only be necessary of coarse grained changes from outside

are made to either B or M .

The subblocks within a TextBlock Bb ∈ Π for a given TextBlock b are identified

through the subblocks relation. The relation subblocks ∶ Π × Π is a strict partial order
and subblocks+ is the transitive closure of subblocks . For the sake of readability we define

Bb = subblocks+(b) ⇐⇒ {bi ∈ Bb ∣ (b, bi) ∈ subblocks+}.

Relation toks yields the tokens within a TextBlock b: Ωb ∈ Ω where (Π,Ω, toks) fulfils

the complete-containment-property.

Relation orderNodes) ∶ N × N is a total order that defines the ordering in which the

document nodes occur when traversing the TextBlock tree in a left-root-right manner:

(n1, n2) ∈ orderNodes ⇐⇒ n1 occurs before n2

The concatenation of relations subblocks+ and toks yields all tokens of a TextBlock

including those of its transitive sub-blocks. This concatenation is denoted as

toks+ ⊆ Π ×Ω = {ω ∈ Ω, π ∈ Π ∣ (π, ω) ∈ subblocks+ ○ toks}

where there is a transitive relation over the sub-blocks and tokens from a given π:

subblocks+ ○ toks =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(π, ω) ∣ ∃π′∈Π
⎛
⎜⎜⎜
⎝

⎛
⎝
(π, π′) ∈ subblocks+∧
(π′, ω) ∈ toks

⎞
⎠

∨ (π = π′)

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

The referred template tb ∈ T for a given TextBlock b is defined as: reftempl ∶ Π → T .

refalts ∶ Π → P(A) yields the referred alternatives Ab ⊆ A for a given TextBlock b.

corelem ∶ N → P(M) retrieves the corresponding model element en ∈ M for a given

document node n whereas refelem ∶ N → P(M) retrieves the referenced model elements

Referredn ⊆M for a given document node n. refseq ∶ L→ S yields the referred sequence

element sb ∈ S for a given lexed token l. The value contained in a token ω can be retrieved

by a function v ∶ Ω→ Vt.

229

Chapter 5. Textual Views

A action

state

decision

transition

Legend

PrettyPrintfull

state = Complete
consistent = true

TextBlocks
Model

Empty Model Exising Domain Model

Structural
Model Change

Textual Editing
Action PrettyPrintshort

state = Editable
consistent = true

TextBlocks
Model

Incremental
Lexing

parseable

unlexable

Structural
Model Change

PrettyPrintfull

state = Editable
consistent = false

TextBlocks
Model

Save/Close

S

Open Editor

Incremental
Parsing

lexable

state = minimal
consistent =true

TextBlocks
Model

Minimise

state = Complete
consistent = false

TextBlocks
Model

unparseable

Figure 5.17.: Activity Chart for the different TextBlock States.

5.4.3.3. States of a TextBlock-Model

During its lifetime a TextBlock-Model may be in different states. There are different

states for different purposes. For example, there is one state that allows to represent

a textual representation that a developer edited but that is not yet in consistent state.

Still FURCAS allows to represent and also persist such a TextBlock model. To illustrate

the different states of the TextBlock model Figure 5.17 depicts the states including the

actions that trigger state transitions and bring a TextBlock model into a different state.

As Figure 5.17 shows, there are five different states a TextBlock can have:

1. A TextBlock may be complete (cf. Definition 5.7) and consistent. In this state

a TextBlock model purely decorates a domain model and does not contain re-

230

5.4. Representing Textual Views

dundant information in its token values. Furthermore, no UnlexedTokens ex-

ist in the model. Being consistent, in addition, means that the structure of the

TextBlock model is in a shape so that the rules defined in the view type defini-

tion can transform it into a valid domain model. Initially, either after opening a

new empty FURCAS editor or opening it with a different view type on an existing

model, the TextBlock model will be in this state. If opened on an existing model

the PrettyPrint long transformation creates a new TextBlock model according to the

mapping rules of the current view type. Structural changes to the underlying do-

main model lead to a re-application of the PrettyPrint long transformation and an

updated TextBlock model, which is still in the same state.

2. To be able to receive textual change events a TextBlock model needs to undergo

a transition to the editable state. The PrettyPrint short transformation is responsible

for doing this. The values from the domain model are then synced into the Text-

Block model so that textual editing events can modify it the TextBlock model is

in editable state (cf. Definition 5.8). Initially, for example after a transition from

complete and consistent, the TextBlock model is also still consistent. For example,

if a developer wants to modify the name attribute in the above example, turning the

respective part of the TextBlock model in editable state would allow to perform a

change to for example businessObject NewOrganisation. In this state

the value from the domain model and those that are present in the TextBlock model

may be out of sync. Upon structural changes to the underlying domain model, the

PrettyPrint long followed by the PrettyPrint short transformations keep the TextBlock

model in the same state with updated content.

3. After a textual change event updated the TextBlock model, FURCAS tries to ap-

ply this change through the incremental update transformations to the underlying

domain model, however, a prerequisite for this transformation is that the TextB-

lock model is in complete and consistent state. Thus, the incremental lexing and

parsing steps follow from the current state. If the lexing process results in errors,

UnlexedTokens result from the process leading to a transition into the editable
and inconsistent state. From this state it is still possible to minimise the TextBlock

model to come to a redundancy free view representation in minimal but inconsist-
ent state (5.).

On the other hand, if lexing succeeds FURCAS runs the parser to update the struc-

ture of the TextBlock model. If the parsing process fails, this leaves the TextBlock

231

Chapter 5. Textual Views

model in the complete and inconsistent state (see 4.). If this process succeeds the

resulting state is again complete and consistent (1.).

4. A TextBlock may be complete (cf. Definition 5.7) and inconsistent. In this state a

TextBlock model is still synchronised with the values of the domain model but its

structure contains elements that restrain it from being transformable into a valid

domain model. For example, adding into the following textual representation:

businessObject Organisation an additional token so that it looks this

way: businessObject businessObject Organisation. This change

will still keep the TextBlock models values (e.g., the name property of the business

object) in complete state. However, the this representation is not valid anymore

w.r.t. the view type definition and is therefore marked as inconsistent. From this

state the TextBlock model can be saved even though it is inconsistent.

5. The minimal (cf. Definition 5.6) but inconsistent state also allows to save the Text-

Block model. In this state all redundant values are removed from the TextBlock

model except for those that stored in the UnlexedTokens.

Based on the formal representation of a TextBlock model, the states in which a TextB-

lock model can occur the following definitions give a formal description of these states.

Definition 5.6 (Minimal State). A TextBlock model B is in minimal state ⇐⇒

(1)∀b ∈ Π ∣ ⎛⎝
(toks(b) ≠ ∅ ∨ subblocks(b) ≠ ∅) ∧
(tempref (b) ≠ ∅)

⎞
⎠ ∧

(2)∀l ∈ L ∣ ⎛⎝
(v(l) ≠ ∅ ↔ v(l) ∈ IDsec) ∧
(refseq(l) ≠ ∅)

⎞
⎠ ∧

(3)∀b ∈ Π ∣
⎛
⎜⎜
⎝

tempalts(reftempl(b)) ≠ ∅ ↔
⋁

a∈tempalts(reftempl(b))

(a ∈ refalts(b))
⎞
⎟⎟
⎠

Which informally means that (1) each TextBlock contains at least one token or Text-

Block and refers to a template, (2) each lexed token in the TextBlock contains only then

a value iff it is used as a secondary id and each lexed token refers to a valid sequence

element. Additionally, (3) if there are alternatives within the template, one of it (or a

232

5.4. Representing Textual Views

value : String = ERROR!
u1 : UnlexedToken

name : String = "Organisation"
Org : BusinessObjectt1 : TextBlock

value : String
BOKeywordSEQ : LiteralSeqEl

instance of

NamePropertySEQ : PropertySeqEl

value : String
l1 : LexedToken

value : String = "<space>"
l2 : OmittedToken

value : String
l3 : LexedToken

efinition V
iew

 instance

Textual representation
in the FURCAS Editor:

businessObject ERROR!Organisation

Figure 5.18.: Example for a TextBlock in minimal State.

sequence in case of nested alternatives) has to be chosen.3 An example for a TextBlock

model in minimal state is depicted in Figure 5.18.

Definition 5.7 (Complete State). A TextBlock model B is in complete state ⇔

(1)B is in minimal state ∧
(2)U = ∅

Which informally means that it has to be minimal but in addition there are no erro-

neous (unlexed) tokens contained anymore. An example for a TextBlock in complete

state is depicted in Figure 5.19. Note that the TextBlock metamodel (cf. Figure 5.15

on page 225) explicitly supports the marking of complete and incomplete TextBlocks

through the isComplete attribute which is defined on the TextBlock metaclass. For

TextBlocks that are not complete, this attribute will be false. This allows the FURCAS

editor to annotate incomplete TextBlocks and thus indicate to the developer that this part

of the textual representation may be out of sync with the underlying domain model.

Definition 5.8 (Editable State). A TextBlock broot ∈ B is considered a TextBlock (sub-
)model B∗ in editable state ⇐⇒

∀l ∈ L ∩ toks(broot) ∣
⎛
⎜⎜⎜
⎝

refseq(l) ≠ ∅ ∧

v(l) = PrettyPrint short
⎛
⎝

corelem(broot),
mmprop(refseq(l))

⎞
⎠

⎞
⎟⎟⎟
⎠

3Furthermore, this minimising could be extended: if there are no omitted or unlexed tokens and there

is no collection of elements that need to be rendered even the lexed tokens themselves could be omitted

and produced upon transition to the editable state

233

Chapter 5. Textual Views

name : String = "Organisation"
Org : BusinessObjectt1 : TextBlock

value : String = "businessObject"
BOKeywordSEQ : LiteralSeqEl

instance of

NamePropertySEQ : PropertySeqEl

value : String
l1 : LexedToken

value : String = "<space>"
l2 : OmittedToken

value : String
l3 : LexedToken

Textual representation
in the FURCAS Editor:

businessObject Organisation

Figure 5.19.: Example for a TextBlock in complete State.

name : String = "Organisation"
Org : BusinessObjectt1 : TextBlock

value : String
BOKeywordSEQ : LiteralSeqEl

instance of

NamePropertySEQ : PropertySeqEl

value : String = "businessObject"
l1 : LexedToken

value : String = "<space>"
l2 : OmittedToken

value : String = "Organisation"
l3 : LexedToken

Textually editable representation
in the FURCAS Editor:

businessObject Organisation

Figure 5.20.: Example for a TextBlock in editable State.

where PrettyPrint short ∶ M × P → ([String]) is called Pretty Print shorthand and pro-
duces the textually representative value of a property p ∈ P for a given domain model
element e ∈M according to the view type definition VT .

Which means that all lexed tokens need to have a referenced sequence element defined

and their values are equal to those that would have been computed from the domain

model and therefore given by function PrettyPrint short . Figure 5.20 shows an example

for a TextBlock model in editable state.

5.4.4. Support for Temporary Inconsistency

As mentioned in the scientific challenges section (5.1), supporting temporarily incon-

sistent views, improves the flexibility of a textual modelling approach. FURCAS tackles

234

5.4. Representing Textual Views

this problem by supporting the different states of the TextBlock model. Thus, being in

a editable and inconsistent state allows to store arbitrary text within a TextBlock model.

This flexibility gives developers the feeling that they are really editing just text hiding

the model nature of the textual view. Section 4.5.2.2, introduced a generic notion of

view consistency having two different levels, constraint inconsistency and model incon-
sistency. Constraint inconsistency is supported by FURCAS on two different levels. Due

to the flexibility of the TextBlock model, views displaying models which violate their

metamodel constraint can still be represented. On the other hand, the violation itself is

recognised and presented to the developer using annotations in the displayed text. How-

ever, if the constraint inconsistency leads to the exclusion of a model element due to

mismatched view construction rules (cf. Section 5.3.2.1), the element will be removed

from the view. This is due to the fact that it is indistinguishable if a certain model ele-

ment is not intended for the inclusion into a view or if the view construction rules do not

match due to an inconsistent model.

Model inconsistency means that a model itself is inconsistent. For example, there may

be links where the only one end is connected to a model element, or, the current repres-

entation within a view cannot be translated to a model as it contains erroneous content.

FURCAS recognises the former case and displays error markers at the corresponding

elements within the textual representation. The latter case is also not problematic as

FURCAS can represent arbitrary text even if it is not translatable to a model.

5.4.5. Representing Selective Views with a TextBlocks Model

As presented in Section 4.5.1 whether a view includes a certain element or not may not

only be dependent on the element itself but also on whether the employed view is holistic
or selective w.r.t. the set of elements in which this element resides. For example, there

may be a view that shows method signatures of a certain business object. However, the

decision which of the method signatures are actually shown in a concrete view should

be decided by the developer using the view.

The TextBlock model is not only responsible for controlling the format in

which FURCAS presents elements of the domain model but also which of the ele-

ments are included in a textual view. I.e., a view only displays an element if

a TextBlock is available for it that references the domain model element in its

correspondingModelElements. Thus, by controlling the creation of TextBlocks

for domain model elements, it becomes possible to realise also a selective behaviour.

235

Chapter 5. Textual Views

TCS::Property

selectiveKind : SelectiveKind

SelectivePArg

TCS::PropertyArg
propertyArgsproperty

1 *

Deletion
Addition
AdditionAndDeletion

<<Enumeration>>
SelectiveKind

Inv:
self.property.multiplicity.upper > 1 or
self.property.multiplicity.upper = -1

Figure 5.21.: Metamodel excerpt responsible for the selective feature.

1 viewtype Selective { ...
2 template BusinessObject
3 : ... methodSignatures { selective = Addition } ... ;
4 template MethodSignature
5 : output name implementation ;
6 }

Listing 5.26: Example mapping using an selective feature. In this case the method signatures

shown within a business object should be added selectively.

For specifying which behaviour – selective or holistic – FURCAS should use for a

given part of a view type the FURCAS view type definition language provides dedicated

support for this feature. A selection of elements is only possible if there is a collection

of elements to choose from. Therefore, FURCAS allows to specify the selective

keyword for optional or multi-valued references at the corresponding property definition

in a template. Figure 5.21 depicts the extensions for the selective feature within the

FURCAS metamodel. Listing 5.26 shows an example which utilises the selective

keyword. In this example, it specifies that the inclusion of a method signature into the

textual view has to be triggered explicitly by a developer.

The selective feature supports three different modes:

Addition: The setting constitutes the addition selective property as specified in Section

4.5.1. TextBlocks for elements in this property will only be created upon explicit

commands by a developer. Still, if the element is deleted from the model, the

textual representation will be removed automatically. As showing only a selection

of elements within the textual representation is rather uncommon for a textual

language, FURCAS will indicate the presence of more elements than those that

236

5.4. Representing Textual Views

Figure 5.22.: The plus symbol in the left image indicates that there are more elements that could

be displayed at this position. Using drag-and-drop the second method is added to

the view resulting in the the view being updated as shown in the right image.

are displayed using a special icon. Figure 5.22 shows how this can be done using

simple drag-and-drop comamnds.

Deletion: Using this setting, FURCAS will only delete the textual representation of do-

main model elements upon explicit request by the developer. However, an indicator

is presented showing that the referenced element is not present in the underlying

model anymore. Still, additions to the model will be instantly reflected in the view.

AdditionAndDeletion: Both, additions and deletions are only performed upon explicit

commands given by a developer.

237

Chapter 6.

Synchronisation of Textual Views

Modelling software is a creative and long enduring task. Throughout this process a

modeller needs to tackle a certain problem from different angles. Thus, having different

views on a model helps to analytically work on a problem and model its solution using

different views [FKN+92]. During this process these different views need to be kept in

sync with the underlying model and, in the case of overlapping views, with the other

views on the same model.

Special attention needs to be taken when partially viewed elements are modified in

a textual view. If larger, structural modifications are made in such a view, a traditional

update process may need to completely re-create model elements from their current

representation as text. For partially viewed elements this, however, is a problem. A

re-creation of a model element can only use the information that is currently present in

the view. However, in the case of a partial view there is more information in the model

element. This information that is outside the view’s scope will then be lost. Therefore,

a synchronisation process for views needs to avoid this step.

Also, depending on the degree of freedom that is allowed in a certain modelling en-

vironment, view synchronisation becomes a tough problem. For example, in a textual

modelling view, a modeller wants to be able to write not necessarily consistent (with

respect to the parser grammar) text in order to scratch some initial ideas. The usage

of a textual model editor or any kind of model editor as a kind of “scratch book” may

support the creativity of a modeller [LS93, DC01] as he or she can make his or her ideas

tangible, even if they are not yet as structured as it would be required by a parser to be

able to create real model elements from it. This temporary inconsistency exacerbates

the synchronisation as, upon external changes the view itself may require an update that

will overwrite the “scratched” parts. In order to conserve this work, the synchronisation

transformation needs to be aware of areas that should be treated specially during the

update process.

239

Chapter 6. Synchronisation of Textual Views

The UUIDs of model elements as well as the retainment of format information pose

additional challenges to the view synchronisation transformations. These scientific chal-

lenges as well as solutions for them are tackled within this chapter.

6.1. Scientific Challenges

The degree of freedom of editing actions that are allowed during the creation and modi-

fication of a model poses a challenge to the modelling environment when it comes to

synchronisations between a model and its views. Especially if the underlying model

elements are only partially represented by a view, this challenge becomes even more

difficult. A trade-off has to be found allowing to freely edit the view whereas still keep-

ing the viewed model elements as consistent as possible and not loosing the information

that is outside of the scope of the view.

Especially in textual modelling these challenges are hard to tackle, as the synchron-

isation has to be made through several levels, i.e., lexing, parsing, model update. Thus,

FURCAS, the textual modelling approach presented in this thesis needs to cope with the

following challenges:

• A model that is subject to modification from multiple but partial views needs to be

treated warily than a model that is completely covered by a textual representations.

This is due to the fact that not all parts of a model element may be represented in

a view. Therefore, it is not possible to reconstruct a model element completely

from its partial representations. For example, if a view type omits an attribute a,

it is not possible to reconstruct a’s value from an instance of that view type. This

problem implies that a naive approach for parsing the textual representation and

deriving the model from a parse tree of that representation is not sufficient. In fact,

an approach is required that updates a partially viewed model incrementally and

fine grained while not re-instantiating model elements that are in fact only meant

to be updated. Current approaches for textual modelling (cf. Section 2.5.2), do not

support this retainment.

• Having a model changed through different partial views may also lead to unwanted

effects, if a model is changed through one view such that it leaves the scope of an-

other view. For example, imagine two different views from the running example of

the previous chapters, one showing business objects in general and a different one

only those that are marked as value type. Changing an element a that was a value

240

6.2. Contributions

type and therefore shown in the latter view, to a non-value type trough the first

view, will result in the exclusion of a from the value type view. This kind of reper-

cussions may be irritating for a modeller. Thus, a solution is required to attenuate

these effects and therefore help the modellers to identify such occurrences.

• Support for creating temporarily inconsistent states of a view. Furthermore, stor-

age of intermediate inconsistency is also required if “scratched” work shall be

preserved over a longer period of time.

• Partial synchronisation is especially important if a view covers larger or distributed

parts of a model. Areas which are in an inconsistent state or covered by probably

inconsistent modifications should be excluded from updates to the view. Areas that

view other parts of the model should be synchronised with it. Another area where

partial synchronisation is required is the support for selective views. Elements in

these views may or may not be automatically added to an existing view once they

fulfil the constraints of its view type. Therefore, the synchronisation transforma-

tion needs to be aware of which elements to add or delete automatically and which

should be handled by the manual selection of the user.

• If retainment of model element identifiers (UUIDs) is required, this requirement

further exacerbates the synchronisation. Allowing for inconsistent states and at the

same time retaining the elements’ IDs is a grave challenge.

6.2. Contributions

In general the challenges mentioned above can be applied to all kinds of view types.

However, most of them require specialised solutions when textual view types are em-

ployed. The contributions presented in this chapter present solutions for the synchron-

isation of textual views based on an underlying UUID-based model.

• To support the synchronisation transformations from and to the textual view model,

i.e., the TextBlocks model, an incremental parsing approach [Wag98] is utilized

and adapted so it can be employed in this special scenario. This approach allows

to represent a textual representation in the form of a self-versioning document.

Having these multiple versions, including a fine-grained change history, allows to

base incremental synchronisation transformations on them and support the trans-

formation with the necessary versioned information.

241

Chapter 6. Synchronisation of Textual Views

• The synchronisation transformations are specific to the underlying view types.

This thesis shows a schema which defines a way how view to model as well as

model to view transformations can be generated from the view type definitions

that were introduced in Chapter 5. These synchronisation transformations handle

modifications made by editing the TextBlock-Model and update the underlying do-

main model incrementally and fine grained. This is realised by a set of algorithms

that are based on self-versioned TextBlocks and allows to retain the so called um-
bilical cord that represents the connection of a TextBlock with its corresponding

model element.

• Furthermore, FURCAS contributes an approach that allows for the incremental

update of a TextBlock-Model upon changes made to the underlying model. For

this approach, the retainment policies approach introduced in Chapter 3 is utilised

in the definition of transformation rules that incrementally update a TextBlock-

Model. Special attention is paid in the validation of views when elements are

co-modified in overlapping views in a way that they leave the scope of the current

view. This direction of the incremental update process is described in Section 6.6.

• Support for selective views is a further contribution of this thesis. The selective-

ness of a view depends on the definition of this property in its corresponding view

type. From this view type definition the synchronisation transformation is gen-

erated. This is the point where special rules are inserted into the transformation

that deal with this selectiveness. Therefore, the synchronisation transformation is

augmented with retainment policies that define which elements should be added or

deleted automatically and which are handled manually by a developer.

• In order to solve the UUID retainment problem, this thesis introduces an approach

to reduce the UUID retainment problem to a more generic partial view problem.

This is achieved by providing implicit extensions to the standard view type defini-

tions that declare every view type to be partial concerning a synthetic UUID attrib-

ute. Furthermore, the synchronisation transformations need to deal with retaining

the UUID attribute upon changes to the textual view. Special instances of Retain-
mentPolicies are introduced that serve this purpose.

242

6.3. Synchronisation from Textual View to Model

6.3. Synchronisation from Textual View to Model

FURCAS includes an approach for synchronising the textual view model (i.e., the Text-

Block model) with its underlying domain model. The main difference to existing syn-

chronisation approaches lies in the fact that the TextBlocks model is a decorator w.r.t.

its underling domain model, which is updated step-wise depending on a classification

that is done for the incoming change events.

The incremental update process, that allows for the synchronisation from textual views

to their model, including its driving components is depicted in Figure 6.1. The following

text will first provide an overview on the incremental update process. Later sections will

then detail on the exact conditions and sub-processes.

All textual editing that is done by the user is first captured as event by the event man-

ager of the IDE. A central component within the presented approach is the Event Classi-
fication component (bottom left). This component, which is described in more detail in

Section 6.3.1, decides what to do with a sequence of user events (in this case these events

are textual editing events, meaning inserting or deleting characters). The classification

component then triggers the incremental update components accordingly. For instance,

upon a modification of an identifier in the text the classification component triggers the

incremental lexer to check whether the change results only in a lexical value change of

the token itself or if the modification resulted in the creation or deletion of tokens. De-

pending on the outcome of the incremental lexing process the incremental parser may be

triggered to check if the structure of the TextBlock-Model has to be changed due to the

changed token types. Change in this case means the change of the token type, as those

are the relevant changes for the parser. Depending on these changes, as a next step, a

model-to-model (M2M) transformation is triggered that updates the model correspond-

ingly. Model elements which are deleted in the textual representation are for example

deleted in the domain model representation.

6.3.1. Classification of Changes to the Textual Representation of a Model

The decision on which component of the incremental parsing process is triggered after

which kind of change during editing of a textual view is based on the classification of

the events that occur during this process.

243

Chapter 6. Synchronisation of Textual Views

TextBlocks Model

IDE Event
Manager

User

Event
Classification

R

listens to
events

Domain Model
TextBlocks

Tokens

M2M Transform.

Te
xt

Bl
oc

k
U

pd
at

e
Tr

an
sf

o.

model

r/w access

Legend

active component

D
om

ai
n

M
od

el

U
pd

at
e

Tr
an

sf
o.

communication

R request direction

incremental
update

incremental
update

Incremental
Lexer/Parser

incremental
update

R

sends edit
commands

R

sends
text events

Other
Model Editors

Model
Repository

Event Manager

R
send

update events

R triggers

FURCAS
Editor

R

triggers

R
sends text events

edits

Figure 6.1.: Incremental Process - Overview

6.3.1.1. The Scope of Textual Changes

For a detailed analysis of the possible changes FURCAS distinguishes between tokens,

blocks and regions. Token refers to the concept of terminals as it is known from compiler

construction. A token is the smallest entity which can be affected by a change. For

example, given a token with the value “MyBusinessObject”, a change on token level may

affect the value to be changed to “YourBusinessObject”. Still, depending on the rules for

the lexical analysis such a change may also lead to the creation of a new token, resulting

in the tokens “Your” and “BusinessObject”. Mapped to the TextBlocks decorator model

for textual views, changes on token level map to changes of values of subclasses of

AbstractToken. Also the creation and deletion of AbstractTokens falls under

this category.

Changes on block level always include modifications of whole consistent blocks rep-

resenting a non-terminal, as known from compiler construction. A block may include

subblocks as well as tokens. However, a change on block level must always include

all subblocks and tokens of a given block. For example the deletion of the text “bool

hasDiscount { return false; }” which conforms to one complete block of our running

example would be considered a change on block level. Mapped to the TextBlocks dec-

orator model for textual views, changes on block level map to the creation/deletion/move

of TextBlocks.

244

6.3. Synchronisation from Textual View to Model

Changes that occur on region level can span over more than one block but do not

include the whole block. For example, the cutting of the last three of four tokens of one

block including the first token and the first subblock of the subsequent block would be a

modification on region level. Changes that occur on region level but are not at the same

time only on block level or only on token level are changes to an inconsistent region.

6.3.1.2. Types of Textual Changes

Basically, FURCAS distinguishes two different types of changes: (A) changes that are

either an insertion or deletion of a sequence of characters at a specific position or a

replacement of a sequence of characters on token or block level. The standard and

probably most often occurring case during textual editing is the insertion or deletion of

exactly one or more characters at a time. Type (B) describes copy & paste replacements

on the granularity of an inconsistent region.

The following changes are handled by the incremental update process presented in the

next Section 6.3.2.

1. Insertion of a sequence of characters or by pasting whole blocks or tokens at spe-

cific position which are changes on token or block level.

2. Deletion of a sequence of characters at a specific position on token level.

3. Deletion of whole blocks (on block level).

4. Replacement of a sequence of characters on token level.

6.3.2. Incremental Updates of the Textual Model after Type (A) Changes

The basis for all incremental update steps is the existence of a TextBlock including its

links to the domain model. In FURCAS these links represent umbilical cords as they are

vital for the survival of the domain model elements that are decorated by a corresponding

TextBlock. As presented in Section 5.4.3 on page 222ff, the function that is used to yield

this relation is called corelem. This link becomes essential during the incremental parsing

process.

An update approach that translates text into any kind of structure requires some kind

of compiler technique. As FURCAS is based on TCS which also internally uses compiler

technology to translate its mapping definitions into parser generator compatible gram-

mars, FURCAS also uses this technique. In general, the parser grammar that is generated

245

Chapter 6. Synchronisation of Textual Views

Modification
through editor

Self versioning
of TextBlocks

Incremental
lexing Batch parsing

Identify reusability
of tokens

Assignment of sequence elements to tokens

Creation of parsed TextBlocks

Assignment of tokens to TextBlocks

Merge TextBlocks

Update domain model

Figure 6.2.: Overview on the phases of the incremental textual view to domain model update

process.

by FURCAS is quite similar to the one generated by TCS. An overview on this generation

is given in Section 2.1.3.2. The biggest difference, in the generated artefact are the con-

structs for the OCL based features as presented in the previous chapter. However, when

it comes to the usage of the generated parser components FURCAS behaves completely

different.

The FURCAS parsing process is, after reacting to a modification event through the

editor (0), divided into the following phases: (I) self-versioning of TextBlocks , (II)

incremental lexing, (III) incremental parsing, (IV) textblock merging and (V) domain
model update. An overview on the phases of the incremental update process is given in

Figure 6.2. Phase (II) and (III) rely on techniques known from compiler construction,

namely lexing and parsing. The basic techniques are taken from literature, however,

this thesis introduces a novel approach on how the special links, called umbilical cords,

are maintained throughout these steps. Using this approach phases (0) to (III) prepare a

TextBlock-Model that makes the changes accessible to phases (IV) and (V) which update

the TextBlock-Model and the domain model respectively. In the final phase FURCAS

employs a model transformation that applies the changes in the prepared TextBlock-

Model to the previously existent model. To be able to retain the umbilical cords and

thus the information of partially viewed elements from the domain model a reuse and

merge approach is employed based on the different version of the TextBlock-Model.

Finally, FURCAS triggers a model transformation for updating the underlying domain

model with the modifications made to the view. The following section will explain the

subsequent phases step by step in detail.

246

6.3. Synchronisation from Textual View to Model

1 viewtype BusinessEntityWithRefs {
2 primitiveTemplate string for PrimitiveTypes:STRING;
3 template BusinessEntity :
4 (isValueType ? "valueType") "bo" name
5 (isDefined(elementyOfType) ? "{" elementyOfType "}")
6 ;
7 template TypeDefinition :
8 typedElement ";"
9 ;

10 template AssociationEnd context:
11 [[--variant 1 with named/navigable local end
12 name "<-" (isOrdered ? "ordered") (isStorage ? "store")
13 association {{ navigable = true }}
14 --isStored only set if the end is the end is also navigable
15 |
16 --variant 2 with unnamed/non-navigable local end
17 (isOrdered ? "ordered")
18 association {{ navigable = false, isStorage <- false }}]]
19 ;
20 template Association :
21 name "->" ends{forcedMult = 1..1, mode=otherEnd}
22

23 ;
24 template AssociationEnd #otherEnd :
25 (isStorage ? "store") name
26 {{ navigable = true,
27 type == association.ends->reject(#context.type) }}
28 --the constraint property init (==) is responsible for choosing
29 --the association end that is not the same as the one the
30 --Association template was called from
31 ;
32 }

Listing 6.1: Example view type “BusinessEntityWithRefs” for BusinessEntities

6.3.2.1. Running Example

The syntax definition given in Listing 6.1 will serve as running example to explain the

update approach. It defines a view type for the representation a part of the example

metamodel given in Section 2.1.1.1 on page 18 that represents business entities and their

relationships.

The given syntax allows to specify Associations between BusinessEntities. Re-

member from the definition of TCS language (Section 2.5.2.11) that the isDefined

clause specifies that the part of the syntax written in parentheses will only be re-

quired if there is at least one element in elementsOfType to be matched. These

247

Chapter 6. Synchronisation of Textual Views

1 --variant 1
2 bo Customer {
3 --vartiant 1
4 customer <- CustomerHasInvoices -> invoices;
5 }
6

7 --variant 2
8 bo Customer {
9 --vartiant 1

10 ordered CustomerHasAddress -> address;
11 }

Listing 6.2: Example views for a BusinessEntities using the “BusinessEntityWithRefs” view type

Associations may be navigable in both directions thus variant 1 is used where the

name of the local AssociationEnd, the name of the association and transitively

through the template for AssociationEnd with mode #otherEnd the name of the

other AssociationEnd is specified. This variant will set the navigable property

of the local AssociationEnd to true. Furthermore, it is possible to define whether

the a link is stored at the local and/or the other end by declaring it a “store”. Using

variant 2 the local AssociationEnd will be not navigable (navigable set to

false) and only the name of the Association and the other end will be specified.

If an end is not navigable it cannot be stored at this side. Therefore variant 2 does not

allow to define “store”. Listing 6.2 shows an example using both variants.

The TextBlock-Model representing the example given here looks as depicted in Fig-

ure 6.3. This example shows the relation of the TextBlock-Model to the underlying

domain model. As the TypeDefinition does not have a syntax contribution of its

own, the element is included in the corresponding model elements of the respective

AssociationEnd.

6.3.2.2. Modification Through Editor

The FURCAS text editor projects its underlying TextBlock-Model to a textual view using

the approach presented in Chapter 5. Thus, the editor can be used as every other text

editor. By typing or deleting characters, the editor produces events that are passed to

the appropriated places in the TextBlock-Model. A change event is formed using the

following schema: ChangeEvent(< position >,< length >,< value >) where position

is the offset in the document where to insert the value and length defines how many

characters will be overwritten by an event. Depending on the range of characters that

248

6.3. Synchronisation from Textual View to Model

CustomerModel : BusinessObjects

CustomerView :
BusinessEntityWithRefs

bo Customer {

TBCustomer

customer <-

TBcustomerEnd

CustomerHasInvoices ->

TBCustomer2Invoice

invoices

TBinvoiceEnd

Customer : BusinessObject

: TypeDefinition

Customer2Invoice : Association

invoicesEnd : AssociationEnd

customerEnd : AssociationEnd

elementyOfType

ends
association

ends
association

type
typedElement

correspndingModelElements

Figure 6.3.: TextBlock-Model for the running example.

are overwritten, FURCAS determines the scope of the change according to the classi-

fication presented in Section 6.3.1.1. For the elements in the determined scope, the

self-versioning process is triggered and subsequently all following processes.

6.3.2.3. Deletion of Elements versus Removal of Elements from a View

In the case of selective views, deleting elements from the textual representation needs to

come in two different flavours. One, for deleting elements from the view as well as from

the underlying domain model (deletion) and one where only the textual representation is

removed from the view while the underlying element is retained (removal). As deletion

is also an interaction with the editor that will be propagated to the corresponding Bthe

latter case also needs to be represented in the TextBlock-Model.

Standard deletion actions will delete the tokens representing the deleted text. From

these TextBlock deletions the incremental update algorithm will, as will be shown in

later sections, detect that a deletion action was performed and that the underlying model

elements have to be removed as well. Thus, to be able to distinguish the removal action

form the deletion action it is not sufficient to just delete the TextBlocks. The incremental

update algorithm will decide upon the deletion of an element based on the existence of

its corresponding TextBlock in a specific version (see Section 6.3.2.4 for details on the

versioning of TextBlocks). If a TextBlock of an element existed in a previous version

249

Chapter 6. Synchronisation of Textual Views

version : VersionEnum

DocumentNode subNodes

parent 0..1

*

DocumenNodeHasSubNodes

otherVersions

*

DocumenNodeHasVersions

TextBlockAbstractToken

Figure 6.4.: Versioning represented in the TextBlocks metamodel.

and is deleted in a later version, FURCAS will delete its corresponding model element.

In contrast to this deletion action, the removal action will therefore remove the complete

history of a TextBlock. In this case, FURCAS will detect that the element wasn’t even

represented in the view in a previous version and will not delete it.

6.3.2.4. Self Versioning of the TextBlock-Model

The identification of changes to the textual view model relies on the analysis of its

change history. To be able to represent a change history versioning of the view model is

required. The versioning needs to be fine grained enough to allow for the representation

of small changes including their exact ancestors. The incremental view synchronisation

transformation (cf. Section 6.3.2.10) later-on relies on this history.

To be able to incrementally analyse the modifications that occur during the editing of a

textual view FURCAS employs the concept of self-versioning documents as introduced

by Wagner in [Wag98]. A self-versioned document consists of a tree of nodes that

may exist in different versions. Every textual change operation that is applied to the

document is directly reflected in the document’s nodes. No text file or buffer is edited

in this approach but rather every modification is made on the contents of an underlying

node. Every such modification creates a new version of the modified node. Therefore,

a node may exist in several versions at the same time. At specific points in time (such

as save of the document, or the run of a parser) the document can be restructured by

transforming or merging of versions back into one consistent basis.

The FURCAS meta-model (Figure 6.4) also incorporates the capabilities of these self-

versioning documents. Here, DocumentNodeHasVersions association is used for

representing different versions of a TextBlock or a token. Each DocumentNode fur-

250

6.3. Synchronisation from Textual View to Model

CustomerView : BusinessEntityWithRefs

TBCustomer

bo

LT

�

OT

customer

LT

�

OT

{

LT

}

LT

[...]

Event(0, 0 “valueType�”)

CustomerView : BusinessEntityWithRefs

TBCustomer

customer

LT

{

LT

}

LT

[...]

self versioning

v1

v1

TBCustomer

ValueType�bo

LT

�

OT

customer

LT

�

OT

{

LT

}

LT

v2

otherVersions
otherVersions

�

OT

�

OT

v1
bo

LT v1

v2

Figure 6.5.: TextBlock-Model for the running example showing the self versioning after an edit-

ing event Event(0, 0,valueType).

thermore includes an attribute version that determines the version of the node. Other

versions of a node can be retrieved by traversing the DocumentNodeHasVersions

association transitively until the desired version of a node is reached.

Assuming the running example from Listing 6.2 and Figure 6.3 is represented using a

self-versioned document, every token or symbol represents a node within this document.

So for example, the first terminal token bo would be such a node. On the occurrence

of a change event, for example the insertion of the text “value ” in front of bo would

create a new version of this token. This change is illustrated in Figure 6.5. The original

token could be denoted as bov1 and after the change a new version value bov2 would

be present. After analysing the change, according to transformation rules (such as a

lexical analysis being performed) a third version bov3 would be created incorporating

the results of this step. As the example change introduces new lexical constructs , this

transformation would then also create new nodes representing the newly inserted values.

Thus two new nodes valuev3 and v3 would be created. Note that, the decision whether

the original version of the three nodes in version v3 would be connected as ancestor of

all of the three nodes or just bov3 depends on the transformation that is applied to the

document.

6.3.2.5. Incremental Lexing

The incremental lexing process is based on the algorithm presented by Wagner in

[Wag98]. Basically, this approach works as follows: In Wagner’s approach the self ver-

sioned documents support the incremental lexing and parsing process. The information

251

Chapter 6. Synchronisation of Textual Views

of the newer versions that where produced by a textual modification event are compared

to the already lexed and parsed reference version that is always kept. This comparison

is then used to decide how the incremental lexing needs to be done. Wagner proofs

that the lexing process is always optimal with respect to complexity. In FURCAS, this

approach is reused and extended for the purpose of synchronising models with their

textual views.

Wagner’s [Wag98] Approach to Incremental Lexing Based on the existence

of a self versioning document, Wagner introduced an incremental lexing algorithm that

preserves as much tokens from the previous version as possible after a change has been

performed. This section will shortly explain the lexing algorithm based on a running

example.

The lexing algorithm consists of three major phases: marking, lexing and lookback
update. To understand these phases, first the basic idea of the lexing approach needs

to be understood which is the storage of the dynamic lookahead used to decide upon

token types directly in the tokens. This way it becomes possible to compute which

other tokens are affected by a change in one of the token’s values. Figure 6.6 illus-

trates an example for the computation of the lookback counts. Assuming there are are

lexer rules which support integer as well as float numbers and furthermore a construct

like <number>..<number> that represents a range a lookahead of more than one is

needed to distinguish between a string “1.2” which is a float number and a range “1..2”

which is a range consisting of two integer numbers. Because the lexer needed to look

at both “.” characters to decide which token should be produced starting from the “1”

character. The amount of tokens that reached to a specific token’s position during their

creation determines the lookback count of the token. The second “.” token has a look-

back count of 2 as two characters reached it in their lookahead, thus both previous tokens

will be invalidated if its value changes.

Based on this idea the three phases work as follows:

1. In the marking phase all tokens that were target to modifications will be marked as

to be re-lexed. Furthermore, the incremental lexer takes the lookback counts stored

in the tokens into account to decide which other tokens are invalidated. All tokens

in the lookback of a changed token will also be marked. For example, assuming

the second “.” in the above example is replaced by the number “3”. The “1” token

as well as the first “.” tokens will also be marked.

252

6.3. Synchronisation from Textual View to Model

…
Customer

[
1

.
.

2
]
�
customers ...

1 1 0 1 2 1 0 0 1

lookahead sets
(in characters)

lookback counts
(in tokens)

Figure 6.6.: Relation between character lookahead and token lookback counts. The T-lines show

how many characters were needed to decide upon the token creation. The numbers at

the foot of the dashed lines indicate how many tokens backward will be invalidated

when the value of the current token changes.

2. The incremental lexer then triggers the lexing phase starting from the first inval-

idated area and produces new tokens from the values of the changed tokens. This

process proceeds until it reaches the first token that is not marked anymore. Then

the next area of marked tokens is processed. In the above example, the lexing

phase would produce one new token from the three changed ones: the float token

with the value “1.32”.

3. Finally, the lookback update phase is responsible for updating the lookback counts

of the newly created tokens. For example the new float token will get the lookback

count of 0 assigned as the previous token “[” does not require a lookahead.

Using this approach it is possible to determine those tokens that are affected by an

editing event. Wagner proves that his algorithm affect the minimal set of changed tokens

(cf. [Wag98] page 47ff.) and thus enables for optimal token reuse.

Applying Wagner’s Approach to FURCAS Another advantage of Wagners ap-

proach is that it can be applied to nearly arbitrary existing lexers and thus, even though

Wagner published his approach in 1998, enables for the use of contemporary parser gen-

erators. Figure 6.7 depicts the architecture of this approach and its application within

FURCAS. Note that the classes and interfaces marked by the external package could

be provided by an arbitrary lexing approach. The incremental lexer itself provides the

functionality described above, which is given by the three phases of the incremental

lexing.

253

Chapter 6. Synchronisation of Textual Views

+nextToken() : TokenImpl

external::BatchLexer

+moreTokens() : List<Token>

LexerAdaperImplbatchLexer

1

+lex()

IncrementalLexer
+la() : char
+mark() : int
+rewind(pos : int)

IncrementalLexerAdapterIImpl

+nextToken() : Token

external::TokenStream

+moreTokens() : List<Token>

«Interface»
LexerAdapter

batchLexer1

+la() : char
+mark() : int
+rewind(pos : int)

«Interface»
extrenal::CharStream

inputStream1

+nextToken() : TokenImpl

«Interface»
extrenal::TokenSource

tokenSource

1

Figure 6.7.: The architecture of the lexing mechanism.

For tokenisation of the values that exist in a previous version, the interface called

LexerAdapter provides the moreTokens() method. This method is implemented

by a class implementing the LexerAdapter interface for a specific lexer implementa-

tion (such as the one from ANTLR [PQ95] which is used in the current implementation

of FURCAS). This class acts as an adapter to the specific lexer implementation trans-

lating the moreTokens() method to the specific implementation. In the case of the

ANTLR lexer, this is the nextToken() method. This specific lexer implementation

can also be called batch lexer.

As the batch lexer normally would read from a character stream of a file this mechan-

ism also requires adaptation. In the incremental lexing environment the batch lexer will

not read from a file but rather from the previous version of the token model, which may

contain changes from the last editing events. Therefore, a subclass of the incremental

lexer is responsible for providing methods to that implement a character stream that can

be read by the batch lexer component. Such methods are for example in the case of the

ANTLR approach, la() : char which gives the next character in the lookahead,

mark() or rewind() for implementing the LL(*) dynamic lookahead functionality of

ANTLR (see [PQ95] for details on the LL(*) parsing approach of ANTLR). This lexer

specific subclass also provides the functionality that passes the newly lexed tokens to

subsequent components in the parsing process, such as token stream or parser compon-

ent.

254

6.3. Synchronisation from Textual View to Model

Versions Used During Incremental Lexing and Their Relation to a
TextBlock-Model According to Wagner, the input of the incremental lexing

algorithm consists of a three-versioned document model (the versions are named

reference, edited1 and lexed) where, applied to the FURCAS taxonomy, to a TextBlock

b:

Reference: breference is the version of the TextBlock in its last consistent state. This

means that all TextBlocks are complete and form a consistent view on the current

domain model. The exact conditions for a TextBlock to be complete are defined

in Section 5.4.3.3. There is always at least one consistent state. The minimal con-

sistent state that is always present for TextBlock-Model consists of one TextBlock

having two tokens which represent the start (the BOS token) and the end (the EOS
token) of a textual view model.

Edited: bedited is the version of the TextBlock in its last complete state but after one or

more editing actions (type (A) changes) have been performed. The FURCAS ed-

itor makes sure that an editing event of the form edit(offset , length, value) is direc-

ted to the corresponding elements within the TextBlocks model. These are always

the tokens over which the region of the edit event spans. Starting from the token

at the given offset to the token at offset + length all subsequent tokens are con-

sidered as affected. For these tokens an edited version is created and their values

are changed according to the value given in the edit event. For each affected token

the parent TextBlock of the token is turned into its edited version. Furthermore

each affected token is turned into editable state by applying the prettyprintshort

function to it (cf. Section 5.4.3.3.

Lexed: blexed is the version of b that is produced by the incremental lexer during the in-

cremental lexing process. This version includes potentially new or deleted tokens

that result from the edit event. To create this version the incremental lexing ap-

proach tries to make the TextBlock complete again. However, if the incremental

lexer recognises elements that are not lexable the lexed version will still be created

but it will be marked as incomplete. This marking will be used in later phases

(parsing and TextBlock merging) to indicate that the element that is represented by

this TextBlock has to be treated differently.

1Wagner called this “previous” and “current” but for the sake of better understandability we use “ed-

ited” and “lexed” here, respectively.

255

Chapter 6. Synchronisation of Textual Views

CustomerView : BusinessEntityWithRefs

TBcustomerEnd
reference

valueType�bo
reference

TBCustomer
reference

Event(0, 0,
“valueType�”)

Event(12, 7,
“customer�
<-�ordered”)

CustomerView : BusinessEntityWithRefs

TBCustomer

bo Customer { }

reference

reference

ordered

address

CustomerHasAddress ->

;

TBcustomerEnd

TBCustomer2Address

TBinvoiceEnd

TBCustomer

Customer { }

edited

TBcustomerEnd

TBCustomer2Address

reference

reference

edited

edited

reference ref.. ref..

reference reference

referencereference

reference

ref..

ref..

reference

valueType�bo
edited ref.. ref..

customer�<-�ordered
reference

customer�<-�ordered
edited

reference

[...]

Legend

TB TextBlock

Editing Event

Subnode Relationship

Weak Subnode Relationship

Figure 6.8.: TextBlock-Model for the running example after the self versioning phase.

Definition 6.1. The finite set V denotes the possible version definitions V = {reference,
edited , lexed}. The function version ∶ N × V → N yields the corresponding element
having a given version v from V of a DocumentNode n ∈ N .

version(n ∈ N, v ∈ V) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n in version v if n exists in version v

∅ else

So for example the lexed version of a given document node n
reference
1 would be re-

turned by nlexed1 = version(nreference1 , lexed).
Figure 6.8 shows the running example after editing events Event(0, 0, “valueType ”)

and Event(12, 7, “customer <- ordered”). The tokens at the positions to where the edit-

ing events point are self-versioned into their edited version. The self-versioning mech-

anism also creates edited versions for the TextBlocks that contain the modified tokens.

These TextBlock then contain the edited tokens. The remaining sub-nodes of the refer-
ence TextBlock are also referenced using the WeakSubNodes association (cf. Figure

6.10).

Extending Wagner’s Incremental Lexing Approach to Deal With View Syn-
chronisation The primary focus of incrementality in FURCAS is not to provide a

high performance parsing approach but rather to use incremental parsing techniques to

256

6.3. Synchronisation from Textual View to Model

ensure the correct update of an underlying domain model from a changed view. There-

fore, the incremental lexer approach is used in FURCAS with the goal to detect which

domain model elements should be changed due to changes in their textual representa-

tion. To achieve this task, FURCAS observes the incremental lexing process performed

by Wagner’s algorithms and plugs itself into the process where tokens of the lexed ver-

sion of the document are created from those of the reference and edited version.

During this phase first decisive actions take place that are later-on responsible for the

decision whether a (set of) token(s) is considered to represent a new domain model ele-

ment or adding further information to an existing one. Recall that the umbilical cord
of the model element (see association end correspondingModelElements in the

TextBlocks metamodel) is attached to a TextBlock of the reference version. As the exist-

ence or removal of this link may decide on the retainment or deletion of the underlying

domain model element the it is an important step to decide whether a TextBlock is con-

sidered to be reusable or not. A TextBlock itself is not directly represented within the

textual representation. The only part of a TextBlock that is represented and is therefore

modifiable by a developer, are its contained tokens. Therefore, the decision whether a

TextBlock is for example deleted depends primarily on the fact whether its contained

tokens where deleted. If token will be retained or in after the lexing process depends

on whether there exists a lexed version for it or not. Therefore, it needs to be decided

which tokens in the lexed version will be linked to the reference and edited version. A

preparation for this step is made during the incremental lexing phase.

Therefore, FURCAS includes all tokens in lexed version into the otherVersions

of the reference and edited versions from which they where created. This connection is

made based on the text that was lexed from the edited version. For example, in the run-

ning example (depicted in Figure 6.9) a token “ordered”reference (line 5) is modified to

“customer <- ordered”edited by the insertion of new text “customer <-”. The incremental

lexer then creates three tokens “customer”lexed, “<-”lexed and “ordered”lexed from that

token. All three lexed tokens will then refer to the “ordered”reference as their reference
and “customer <- ordered”edited as their edited version.

However, FURCAS now needs to decide which token, if at all, in lexed version will

eventually reuse the reference version. This is an important step, because, as mentioned

above, based on the reused tokens the umbilical cord of their parent TextBlocks will be

taken over by the lexed version of the TextBlock in the final phases (cf. Section 6.3.2.10

and 6.3.2.13).

257

Chapter 6. Synchronisation of Textual Views

CustomerView : BusinessEntityWithRefs

TBcustomerEnd

CustomerView : BusinessEntityWithRefs

TBcustomerEnd
reference

valueType�bo
reference

TBCustomer
reference

TBCustomer

Customer { }

edited

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType�bo
edited ref.. ref..

customer�<-�ordered
reference

customer�<-�ordered
edited

reference

reference

valueType�bo
reference

TBCustomer
reference

TBCustomer

Customer { }

lexed

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType�bo
edited ref.. ref..

customer�<-�ordered
reference

customer�<-�ordered
edited

reference

valueType
lexed

bo
lexed

TBCustomer
lexed

TBcustomerEnd
edited

customer
lexed

ordered
lexed

<-
lexed

[...][...]

lexing

Figure 6.9.: TextBlock-Model for the running example after the incremental lexing phase.

The resulting TextBlock-Model contains only tokens in their reference or lexed state,

otherwise TextBlocks that still contain tokens that were not lexable and are marked as

incomplete (by setting their complete property to false). Handling of incomplete Text-

Blocks during parsing and lexing is described in the respective Sections 6.3.2.9 and

6.3.2.12.

6.3.2.6. Incremental Parsing

The incremental parsing process is, opposed to conventional incremental parsing al-

gorithms like [Li95], [Shi93] or [CW01], not based on pruning and grafting subtrees

of the abstract syntax tree. Instead, a conventional LL parser is used to instantiate an

intermediate new version of changed subtrees of the TextBlocks model. Algorithm 1

outlines the main steps of the parsing phase.

Algorithm 1 creates a TextBlock in parsed version for each changed region of

the TextBlocks model. A changed region that is returned by findNextRegion

(findLeftBoundary ∶ Ω → Ω) was marked before, during the incremental lexing phase

(line 1). Each token that was turned into its edited and then lexed version can be the

start of such a region. Function findLeftBoundary therefore finds the next token,

starting from the given token that is present in lexed version (line 2). This loop is done

in a left-to-right manner until the end of the token stream (EOS) is reached. For each

of these regions the left and the right boundary are identified by traversing the leafs of

the TextBlock tree. Where findLeftBoundary() gets the left-most token tleft for

258

6.3. Synchronisation from Textual View to Model

which the parsers lookahead reached the current token t. The lookahead is computed

into a lookback from each TextBlock that denotes from how many preceding TextBlocks

the left boundary or further right tokens of the current TextBlock was reached within

the last parsing phase. The lookback is stored as a property in each TextBlocks model

element if it differs from the default of 1. The right boundary is found by function

findRightBoundary() (line 3).

Using the left to the right boundary the least common ancestor (LCA) of a region of

changed tokens is determined. The result of this computation is then used to re-trigger

the batch parsing process from that specific point on. Afterwards the corresponding

parser production prod for the template referenced by bca is called with bca as input

(line 5-6). The batch parsing process (as described in paragraph The Batch Parsing
Process) is performed, by calling invokeParser(prod , bca), based on the underlying

lexed version of the TextBlocks model.

Input: TextBlock b having passed the lex phase.

Output: A TextBlock in parsed version b
parsed
i for each changed subtree bi of b

1 for t = findNextRegion(b), i = 0; t == EOS ; t = findNextRegion(t), i = i + 1 do
2 tleft = findLeftBoundary(t)
3 tright = findRightBoundary(t)
4 bca = findCommonAncestorWithLookback(b, tleft, tright)
5 prod = getProduction(bca)
6 b

parsed
i = invokeParser(prod , bca)

7 mergeTextBlocks(bca, bparsedi)
8 end
9 return ⋃i(bparsedi)

Algorithm 1: Outline of the incremental parsing phase.

Definition 6.2 (findRightBoundary). Function findRightBoundary is defined as

findRightBoundary ∶ Ω→ Ω such that (t, tright) ∈ orderNodes∗

Starting from the given token t traverse the leafs of the TextBlock tree in a left-to-right
manner and return the token that is the last one in this sequence of tokens that is still
present in lexed version.

259

Chapter 6. Synchronisation of Textual Views

The Batch Parsing Process The batch parsing process uses the the tokens as they

result from the lexed version of the B. The batch parser (such as for example ANTLR

[PQ95] which is used in the current implementation of FURCAS) does not require know-

ledge about its embedding into the incremental parsing process. The only requirements

that need to be fulfilled are:

• The batch parser needs to be observable during or after its parsing. From the result

of the parse run it needs to be reconstructible which tokens were consumed while

a certain production rule of the parser matched. This information is required to

link the newly created TextBlock in parsed version to the tokens from its previous

version. ANTLR, for example, allows to define action code within its grammar

definitions that is executed during the parsing process. Additionally, due to the

modularity of parser, token stream and lexer, it is possible to recognise which

tokens were consumed during the matching of a production rule by sub-classing

the token stream class and combining it with the actions defined in the grammar

definition.

• As the incremental parsing approach of FURCAS calls production rules of the batch

parser explicitly for sub trees of the document tree public access to single produc-

tion rules is required. This reduces the set of usable parser approaches to top-down

parsers. ANTLR, for example, is an LL(*) top-down parser which exposes its gen-

erated production rule methods publicly.

• The type of language that can be built with FURCAS also depends on the type of

the employed parser. For example, it is obvious that employing a LL(1) parser

instead of a LL(k) or LL(*) parser reduces the set of mappable languages.

During the batch parsing phase FURCAS establishes the connection between the con-

sumed tokens (cf. Assignment of Sequence Elements to Tokens) and based on the rules

that matched during the parsing process creates the parsed versions of the TextBlocks

(cf. Creation of the Parsed Version of a TextBlock-Model).

Assignment of Sequence Elements to Tokens To be able to make detailed de-

cisions on the changes in the textual representation, FURCAS requires the information

which consumed token corresponds to which sequence element in the mapping declar-

ation. For example, assuming a template that has two different alternatives as shown

260

6.3. Synchronisation from Textual View to Model

1 template AssociationEnd context:
2 [[
3 name "<-" (isOrdered ? "ordered") (isStorage ? "store")
4 association {{ navigable = true }}
5 |
6 (isAssociationOrdered ? "ordered")
7 association {{ navigable = false, isStorage <- false }}
8]]
9 ;

Listing 6.3: Example view type definition defining two alternatives which use the same literals.

in Listing 6.3. Just from analysing the consumed token values it is e.g., not distin-

guishable which attribute should be update if a certain alternative matches. Assuming

a TextBlock which was created according to the first alternative using the textual rep-

resentation localEnd <- ordered TheAssociation According to the

template rule, due to the occurrence of the "ordered" token the isOrdered attribute

was set to true. However, for the same bit of text ("ordered") the second altern-

ative will be responsible for setting the isAssociationOrdered attribute. There-

fore, FURCAS needs to assign the corresponding sequence element to the tokens upon

consumption. This will lead to the assignment of the corresponding property sequence

elements to the consumed tokens. From this information FURCAS can then infer which

alternative was chosen and which properties need to be set in the underlying domain

model.

Creation of the Parsed Version of a TextBlock-Model During the parsing pro-

cess the parser instantiates TextBlock in their parsed version according to the rules in

the mapping definition. Basis for the creation of this blocks is the selection of produc-

tion rules the generated batch parser decides to take. Each generated parse rule contains

a parse action that identifies the template from which the rule was generated. This ac-

tion is responsible for attaching the corresponding TextBlockDefinition for that

template to the newly instantiated TextBlock. The same applies for the alternatives that

the parse rule chose during its execution. The chosen alternatives are stored using the

chosenAlternatives association of the TextBlock.

The set of textblock stubs Πparsed contains all TextBlocks in parsed version that were

the result of the incremental parsing phase. For each changed region the next major

phase (cf. Section 6.3.2.7 is invoked using the current bca and b
parsed
i (line 7).

261

Chapter 6. Synchronisation of Textual Views

version : VersionEnum

DocumentNode
subNodes

parent 0..1

*

DocumenNodeHasSubNodes

TextBlock

AbstractToken

weakSubNodes

weakParent
0..1

*

DocumenNodeHasSubNodes

self.weakSubNodes->size() > 0 implies
self.version = VersionEnum.Parsed

self.weakSubNodes->forall(n |
if n.oclIsTypeOf(TextBlock) then

n.version = VersionEnum.Parsed)
else
true

endif

Figure 6.10.: Weak assignment constructs for representing the parsed version in the TextBlocks

metamodel.

Assignment of Tokens to Parsed TextBlocks Just as the assignment of se-

quence elements to the consumed tokens, during the parsing the lexed token elements

are assigned to new intermediate TextBlocks in a new version called parsed. This as-

signment is only done weakly, therefore, these tokens still keep their original TextBlock

(lexed version) as composite parent. The combination of this assignment and the original

assignment of tokens to their parent TextBlocks then serves as basis for the TextBlock

merging phase.

The constructs in the TextBlock metamodel that are necessary to represent this weak,

temporary assignment are depicted in Figure 6.10. The first constraint shown in this

figure ensures that only TextBlocks in parsed version are allowed to reference other

nodes through the weakSubNodes association. The second constraint ensures that a

TextBlock in parsed version only contains either tokens or TextBlocks that are also in

parsed version.

A formal definition of the weak assignment relation that is created between the parsed
TextBlocks and the assigned tokens is given in the following Definition 6.3.

Definition 6.3 (tokenAssignment). Relation tokenAssignmentparsed , is defined as
toksparsed ⊆ Πparsed × Ω and a pair (bparsed, ω) ∈ tokenAssignmentparsed ⇐⇒ ω was
assigned to bparsed according to the parser in the incremental parsing phase.

Result of the Batch Parsing Phase After the batch parsing phase is finished

without error, such as parse errors in a changed region, for the changed region it holds

that all tokens that exist in lexed version are assigned to a TextBlock in parsed ver-

262

6.3. Synchronisation from Textual View to Model

sion. Furthermore, each of the LexedTokens refers to a sequence element from the

mapping. Formally it then holds, that:

∀l ∈ L ∣ version(l, lexed) ≠
refseq(version(l, lexed)) ≠ ∅

∅ → ∃b ∈ Π ∣ version(l, lexed) ∈ toks(b)

6.3.2.7. Postprocessing of the Resulting TextBlock-Model after the Batch
Parsing Phase

After the incremental lexing algorithm created new versions of tokens the next step does

a post-processing to decide which reference token will be reused for for which lexed
token. Now the process will decide if a token in reference version is suitable for being

reused for a newly lexed token. The first candidates for taking over the reuse of existing

reference versions of tokens are those lexed tokens that originated transitively through

the edited version from it.

Reusability of Tokens A precondition for the correct assignment of lexed tokens to

their reference version correspondents is that for each token the corresponding sequence

element was already assigned. As presented in Sections 2.5.2.11 and 5.4.3 the sequence

element represents the location of an element within the syntax. Therefore, these are

the smallest atomic parts on which it is possible to decide the actual meaning of an

element written in a TextBlock-Model. The assignment of the correct sequence element

was achieved in the batch parsing phase described in Section 9. Furthermore, recall that

all the newly created tokens in lexed version still reference their edited and reference
version from which their values were derived during during the incremental lexing phase

(cf. Section 6.3.2.5). In this phase FURCAS now needs to decide which (if at all) tokens

are actually represented by their lexed version. At most one lexed token may retain this

this link. This link is important for the decision if the token’s TextBlock represents a

newly created model element or if an existing one that should be modified.

Formally, this reusability decision is given by:

263

Chapter 6. Synchronisation of Textual Views

Definition 6.4. A token treference ∈ Ω where Sl = refseq(tlexed) and Sr = refseq(treference)
will be be considered reusable by view type definition for a token tlexed ∈ Ω iff

(1)Sl = Sr ∨

(2)∃a1, a2 ∈ A; t ∈ T ∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(2.1) Sl ∈ altseqels(a1)∧
(2.2) Sr ∈ altseqels(a2)∧
(2.3) a1 ≠ a2 ∧ a1 ∈ tempalts(t) ∧ a2 ∈ tempalts(t)∧

(2.4)

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

(2.4.1) ⎛
⎝
Sl ∈ Sprop → mmprop(Sl) =
mmprop(Sr)

⎞
⎠∧

(2.4.2) ⎛
⎝
Sl ∈ Slit → literal(Sl) =
literal(Sr)

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Informally (1) means that the sequence elements attached to both tokens are identical.

Having the same sequence element means that the token appears at the same position

with respect to the mapping definition. For most changes this check is sufficient for the

decision of a token being reusable for another one.

However, if the batch parser matched a different alternative when analysing the new

lexed version, a different sequence element may have been assigned to it. Still, the token

may represent the same conceptional element. For example, it may refer to the same

constant literal (such as “class”) or the same property of the corresponding model

element that is represented by the token’s parent TextBlock. To account for these cases

(2) is true iff the sequence elements that are contained in different alternatives a1 and a2

(2.1 and 2.2), which are not the same (a1 ≠ a2) and are both of the same parent template

(2.3) but either refer to the same property from the metamodel (2.4.1) or have the same

literal value (2.4.2).

This way the the incremental update approach ensures that all possibly reusable tokens

will be linked to a token in lexed version. Case (2) also accounts for the change of a

representation of the same domain model element as long as it is the same template that

is responsible for the representation. The change from one alternative to another will still

lead to the reuse of the tokens that represented the version that was represented by the

old alternative. In the running example (cf. Section 6.2) a change from variant 1 of the

local association template to variant 2 would be handled by case (2). Given this example

is modified in the following way by setting a name to the local association end of the

264

6.3. Synchronisation from Textual View to Model

1 bo Customer {
2 --variant 1
3 customer <- CustomerHasInvoices -> invoices;
4 --variant 2
5 customer <- ordered CustomerHasAddress -> address;
6 }

Listing 6.4: Running example: reusing tokens after alternatives changed.

CustomerHasAddress association by inserting “customer <-” at the beginning of

line 5. Listing 6.4 shows the result of this modification.

Suppose the modification is not done by simply inserting “customer <-” before

“ordered” but “ordered” is first overwritten completely by the newly entered text

“customer <- ordered”. Eventually, this modification leads to the a different choice

in the alternatives of the template that is responsible for the local association end

(see template AssociationEnd in Listing 6.1). The incremental update process

now needs to decide if “ordered”lexed will reuse “ordered”reference token. Case (1) of

Definition 6.4 will result in false as different sequence elements are used to match

the “ordered” token. The original one comes from the first alternative and the one

which is used now from the second alternative. However, case (2) will result in true,

as the same literal value “ordered” (which is defined as a constant in the view type

definition) is used. Furthermore, both sequence elements refer to the same property in

the metamodel, namely isOrdered. Note that one of both cases would have been

enough for the “ordered”reference being reused for “ordered”lexed.

If no token can be identified for reusing a token in reference version using the reusable
by view type definition definition there are still other criteria that possibly qualify for

token reuse.

One of these criteria is the value of the token. If the value of the lexed token does

occur within the edited token, the update process first checks whether the value changed

concerning the reference version at all. If that is the case the reusable by content criterion

is fulfilled.

Definition 6.5. A token treference ∈ Ω will be be considered reusable by content for a
token tlexed ∈ Ω iff

(1) value(treference) = value(tlexed)∨
(2) value(version(treference, edited))

265

Chapter 6. Synchronisation of Textual Views

Else, FURCAS will check whether the current value vlexed of tlexed is still contained in

the originating token tedited. If that is the case the current token will only be reused if it

is the one which has the value vlexed (lines 9-11). If the value does not occur any more

in the edited version the “contentEquals” criterion is also set to true, considering the

change as a complete rename of the tokens value (line 8).

The last check that is done is the check for multiple occurrences of the original value

within the edited version of the token (multipleReusePossibilityCheck, lines

17-21). To decide upon the token reuse in that case, it is checked at which position the

event that caused the change was performed. If there was a pre-existing token having

this value this one will be used instead of a newly inserted one. This is checked by

calling checkMultipleOccurences (line 20).

Finally all computed criteria are combined and compared for all possible candidate

tokens and the result tells whether treference can be reused for tlexed (line 22). If treference

is re-usable for tlexed both tokens will be linked together to finally be each others corres-

ponding tokens in the respective version.

Table 6.1 gives an overview on the different cases that qualify for token reuse. The

abbreviations used in the table stand for the corresponding criterion as follows: sse :

same sequence element, alt : corresponding sequence element in different alternative

but represents same property/literal, val : token value comparison and mult : multiple

token value occurrences. It indicates under which condition the given criteria evaluate

to true, given a single change in one of the column heads properties. For example, if the

template to which a sequence element belongs for two reuse candidate tokens differs, the

same sequence element property will evaluate to false. On the other hand, for the same

change, assuming it is the only (single) change in this token, the token value comparison
criterion would evaluate to true.

If there are multiple candidate tokens that match these criteria FURCAS takes the pri-

ority of the properties into account as they are shown in Table 6.1. The token which

matches the property with the highest priority wins. If there are multiple tokens match-

ing the same property, the overall amount of matching properties weighted by their pri-

orities is used. The token with the highest reuse factor is determined by:

reuseFactor(tok) = Σ
p ∈ReuseProperties

⎧⎪⎪⎪⎨⎪⎪⎪⎩

10priority(p) if matchesp(tok)
0 else

266

6.3. Synchronisation from Textual View to Model

True if single change

Criterion Priority Literal Property Template Property Value

Sequence Sequence

Element Element

sse 1 n n n n y

alt 2 y y n n n

val 3 n y y y y

mult 4 n y y y y

Table 6.1.: Overview on which token reuse criteria will return true due to which change. The

abbreviations of the criteria mean the folling: sse : same sequence element, alt :

corresponding sequence element in different alternative but represents same proper-

ty/literal, val : token value comparison and mult : multiple token value occurrences.

For example, a token matching the sse as well as the val property would have a reuse

factor of 10−1 + 0 + 10−3 + 0 = 0.101. A property matching the sse as well as the mult

property would, in turn, have a reuse factor of 10−1 + 0 + 0 + 10−4 = 0.1001 which would

lead to the reuse of the former token as it has the higher reuse factor.

6.3.2.8. Running Example

In the running example, the reusability of the tokens results in the assignment depicted

in Figure 6.11. For the first changed region two candidates for token reusability exist.

Both tokens valueType as well as bo stem from the same reference version which

originally was bo. For the latter token several criteria for token reuse are fulfilled where

for the former non is true:

The sequence element for boreference is the same as bolexed because during the batch

parsing phase, the sequence element for the literal bo was assigned to the lexed version

of the token. Additionally the value of the token is the same as before. Therefore the

reuse factor of bolexed w.r.t. boreference is 0.101. Whereas the reuse factor for the

valueType token is 0. Therefore, FURCAS will retain the versioning link for the

bolexed token while removing it from the valueType token.

In the second region there are three tokens that are candidates for token reuse

customer, < − and ordered. Obviously the last token is the one with the highest

reuse factor as it matches alt and val which results in a factor of 0.011 which is

higher than those of the other tokens, which is 0. Therefore, the versioning link of the

ordered token is retained whereas the links of the other two tokens are removed.

267

Chapter 6. Synchronisation of Textual Views

CustomerView : BusinessEntityWithRefs

TBcustomerEnd
reference

TBCustomer
reference

TBCustomer

Customer { }

batchParsed

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType�bo
edited ref.. ref..

customer�<-�ordered
edited

reference

valueType
lexed

bo
lexed

TBCustomer
lexed

TBcustomerEnd
edited

customer
lexed

ordered
lexed

<-
lexed

bo
reference

ordered
reference

[...]

CustomerView : BusinessEntityWithRefs

TBcustomerEnd
reference

TBCustomer
reference

TBCustomer

Customer { }

tokenReused

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType�bo
edited ref.. ref..

customer�<-�ordered
edited

reference

valueType
lexed

bo
lexed

TBCustomer
lexed

TBcustomerEnd
edited

customer
lexed

ordered
lexed

<-
lexed

bo
reference

ordered
reference

[...]

reuse

template BusinessEntity :
(isValueType ? "valueType") "bo" name
(isDefined(elementyOfType) ? "{" elementyOfType "}")

;

template AssociationEnd context:
[[

name "<-" (isOrdered ? "ordered") (isStorage ? "store") association {{ navigable = true }}
|

(isOrdered ? "ordered") association {{ navigable = false, isStorage <- false }}]]
;

Figure 6.11.: Decision on token reuse made for the parsed version of the running example.

6.3.2.9. Handling of Errors and Inconsistencies in the Parsing Phase

If during the batch parsing phase a parse error occurs, for example because no matching

template was found for a given modified stream of tokens, a TextBlock will be marked

as incomplete. Still, the state of the modified region will be persistable and if further

modifications are made, another attempt for the incremental update process is conducted.

To indicate that there is an inconsistent region, FURCAS will mark it with one or more

error markers depending on the amount of errors recognised.

The modifications are persisted even when the underlying domain model is changed.

This enables for later-on merging of conflicting regions. As soon as the textual repres-

entation of the inconsistent region is again in a parseable state a merge based on both

versions can be performed. This merge is based directly on the underlying model, as

there may be multiple representations overlapping on the model. And as these repres-

entations may be partial a text based merge is not possible. The actual model merging

process is beyond the scope of this thesis. However, there are multiple publications that

deal with that problem, such as [KPP06] or [Bar08].

268

6.3. Synchronisation from Textual View to Model

6.3.2.10. Textblocks Merging

In this phase the original textblocks model gets merged with the stub model produced

by the incremental parsing phase. Algorithm 2 shows how this process works. A lexed
TextBlock b is considered mergeable for a parsed TextBlock bparsed if both represent the

same element in the domain model and only differ in changes that would still retain the

identity of the element. There are several criteria upon which this is decided. Based

on a computed mergeability factor textblocks that are candidates for merging FURCAS

completes the final parsed version of a TextBlock.

Computation of the Mergeability Factor The following list represents also the

hierarchy in which the candidate TextBlocks are checked for their mergeability.

1. getTemplate(b) = getTemplate(bparsed), which means that b and bparsed were pro-

duced according to the same template within the mapping definition.

2. Chosen alternatives within the same template. A TextBlock may be constructed

using a different alternative than its previous version while still being merge-

able. However, if there is more than one reuse candidate which only differ in

the chosen alternative of the same template, FURCAS will choose the one where

the chosen alternatives still match best. A best match of alternatives is determined

starting from the top level alternatives going down the sub alternatives. In the fol-

lowing example template Alts : [[top1,a | top1,b]] [[top2,a |

top2,b]] ;, there are two top level alternative sequences top1 and top2. Note

that in this case it is possible that for a b with alternatives top1,a, top2,a there

is TextBlock b
parsed
1 that matches top1,a, top2,b and one TextBlock b

parsed
2 that

matches top1,b, top2,a. In this case the mergeability depends on the next lower

prioritised mergeability features.

3. It might by the case that through changes in the call hierarchy of the templates a

differently moded template for the same class was triggered. However, the element

might still be considered the same and therefore b mergeable with bparsed.

4. The number of tokens that where reused within the TextBlock. The more, tokens

are reused from a b to a bparsed the higher is the mergeability factor for this com-

bination. If up to this point in the decision hierarchy two bparsed are still considered

equally the one with the higher number of reusabel tokens will be preferred. Note

269

Chapter 6. Synchronisation of Textual Views

that at least one reusable token is required to keep a TextBlock “alive”. If there are

no tokens left that are considered to be reusable for tokens of the reference version

from within the TextBlock, it is not mergeable. Furthermore, FURCAS will later-

on detect that the TextBlock has no textual representation anymore which will lead

to the deletion of the TextBlock including its corresponding model element. The

reuse factor at this stage is multiplied with the amount of tokens that were reused.

5. An override rule may have been specified by the language developer that may

override one or more of these criteria. If a language developer identifies cases

where a specialised behaviour concerning reuse should be used it is possible to

define a special ReuseStrategy for a TextBlockDefinition.

The index in the list of mergeability properties also represents their priority when it

comes to the determination of the mergeability factor of TextBlocks. The computation

works the same way as the reusability factor for tokens. The TextBlock with the highest

mergeabilityFactor will be considered the mergeable one for a given b.

mergeabilityFactor(b, bparsed) = Σ
p ∈mergeabilityProperties

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

#(reusedTokens(b, bparsed)) ∗ 10priority(p) if matchesp(bparsed) and p = 4

10priority(p) if matchesp(bparsed)
0 else

Apart from the rules that indicate the factor of mergeability of a given TextBlock,

there are also changes that explicitly do not contribute to the reuse factor:

1. Comparison of tokens that correspond to optional elements within the mapping

definition can be removed/added without contributing to the mergeability of bparsed

and b.

2. Tokens that belong to a property with a to-n cardinality (such as separators) can be

removed/added without contributing to the mergeability of bparsed and b.

3. Furthermore, OmittedTokens meaning for example, whitespaces and com-

ments also can be added/removed without contributing to the mergeability of

bparsed and b.

270

6.3. Synchronisation from Textual View to Model

4. The actual editing action that was performed by the user. This is represented in

the history of the self-versioning TextBlocks model that was tracked since the last

completed editing action.

Algorithm for Merging TextBlocks Algorithm 2 iterates is called during the in-

cremental update process for each pair of TextBlocks (b, bparsed) where the reference
version of a token l is contained in the subnodes of b and the lexed version of l is as-

signed to bparsed. The algorithm decides whether b and b’s corresponding model element

is retained or not. The algorithm works based on the assignment of the reused tokens to

the TextBlocks in parsed version. Thus, it can be ensured that all potentially reusable

TextBlocks can be analysed using their previous versions and newly assigned/removed

tokens.

For each candidate TextBlock that is mergeable (line 2), all contained tokens of bparsed

are analysed. If they were not reused or their value changed the corresponding property

will be updated using this value. Furthermore, if the token was not originally contained

in b it is now assigned to it (lines 3-11).

In the next step each sub-TextBlock of bparsed is analysed and tried to be merged with

a reuse candidate which is computed from the original parent TextBlocks of the tokens

that are now assigned to bparsed. If b′merged was newly created or moved to a different

parent the corresponding properties within the model element connected to b need to be

updated (lines 12-23).

TextBlocks that now got all contained elements removed (because their tokens were

assigned to different TextBlocks) are deleted and therefore also their connected model

elements using deleteRemovedSubblocksInclCorrespElements(b) (line 24).

If a TextBlock bparsed is not mergeable, it will be completed by the algorithm (line 27).

During this process all tokens are finally assigned to bparsed and it is integrated into the

TextBlocks tree. Furthermore the transient model element referenced by it will be made

explicit and integrated into the domain model.

ReuseStrategies for TextBlocks The ability to specify ReuseStrategies

on a template based level enables further flexibility concerning the retainment of

model elements. We use OCL as language to specify this behaviour. The OCL

expression can access all versions of the current TextBlock as well as the attached

model elements. Furthermore, predefined operations that allow to navigate the relations

between the TextBlocks model and the domain model are available. A reuse strategy

271

Chapter 6. Synchronisation of Textual Views

Input: A pair of TextBlocks b, bparsed for which holds:

∃l ∈ L ∣ version(l, reference) ∈ toks(b) ∧ (version(l, lexed), bparsed)
∈ tokenAssignment

Output: An textblock b′ that represents the merge version of b with bparsed.

1 Procedure mergeTextBlocks(b, bparsed) :

2 if (b, bparsed) is mergeable then
3 foreach t ∈ getTokensFrom(bparsed) do
4 if not t was reused or t.value changed then
5 setPropertyValue(getCorrespElement(b), t)

6 bparent = getParentBlock(t)

7 if bparent ≠ b then
8 relocateToken(t, b)
9 end

10 end
11 end
12 foreach b′parsed ∈ getSubBlocks(bparsed) do
13 b′org = getReuseCandidate(b′parsed)
14 b′merged = mergeTextBlocks(b′org, b

′parsed)

15 if b′merged was newly created or moved then
16 addToBlock(b, b′merged)
17 if b′merged is considered to be removed then
18 deleteElement(getCorrespElement(b′org))

19 deleteBlock(b′org)
20 end
21 end
22 end
23 deleteRemovedSubblocksInclCorrespElements(b)

24 return b

25 else
26 completeTextBlock(bparsed)
27 consider b to be removed

28 return bparsed

29 end
Algorithm 2: TextBlock merge phase.

272

6.3. Synchronisation from Textual View to Model

CustomerView : BusinessEntityWithRefs

TBcustomerEnd
reference

TBCustomer
reference

TBCustomer

Customer { }

tokenReused

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType�bo
edited ref.. ref..

customer�<-�ordered
edited

reference

valueType
lexed

bo
lexed

TBCustomer
lexed

TBcustomerEnd
edited

customer
lexed

ordered
lexed

<-
lexed

bo
reference

ordered
reference

[...]

CustomerView : BusinessEntityWithRefs

TBcustomerEnd
reference

TBCustomer
reference

TBCustomer

Customer { }

merged

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType�bo
edited

ref.. ref..

customer�<-�ordered
edited

reference

valueType
lexed

bo
lexed

TBCustomer
lexed

customer
lexed

ordered
lexed

<-
lexed

bo
reference

[...]

TB1
parsed

TB2
parsed

TBcustomerEnd
edited

ordered
reference

Figure 6.12.: Assignment of lexed and rerference tokens to the parsed version of TextBlocks.

uses an OCL statement like this: tokenForProperty(reference.name).value

= tokenForProperty(edited.name).value which lets a TextBlock including its

corresponding model element only then be reused if the tokens representing the “name”

property of the element have still the same value.

6.3.2.11. Running Example

In the running example used throughout the previous Sections, the changes applied to

the TextBlock model through the different previous phases would lead to the merging

of two pairs of TextBlocks as illustrated in Figure 6.12. FURCAS creates TextBlock

TB1 and TB2 according to the batch parser production rules and assigns the consumed

tokens to as weak sub nodes to the newly created TextBlocks. Based on this information

FURCAS computes the mergeability factor for all candidate TextBlocks. Thus, TB1 will

have a mergeability factor of 10−1+10−2+0+(5∗10−4)+0 = 0.1104. As there is no other

merge candidate for this TextBlock, TB1 will be merged with TBCustomer. The same

applies for TB2 which has a mergeability factor of 10−1 + 0 + 0 + (2 ∗ 10−4) + 0 = 0.1002

and the only candidate for merging is TBcustomerEnd.

273

Chapter 6. Synchronisation of Textual Views

6.3.2.12. Handling of Errors and Inconsistencies in the Merging Phase

During merging of the different versions of a TextBlock-model errors may occur. For

example the decision of whether a parsed TextBlock is mergeable with a TextBlock in

reference version might be true for more than one TextBlock. According to the rules

given in the previous section, this might be the case if the tokens of an old TextBlock

are distributed over two new TextBlocks and all other merge factors are also true for

both TextBlocks. A concrete example would be as follows: Starting from a textual

representation void a() { doSth(); } of a business object declaring a method

a, a change to its textual representation is made such that the first part of the method’s

text is reused by text representing a method a′1: void a() { noOp(); }. However,

by inserting a closing brace within a, a′1 is finished and a second method a′2 can be

recognised: void b() { doSth(); }. As tokens of a are reused within a′1 as

well as a′2 it cannot be generically decided whether the TextBlocks of a′1 or a′2 should be

merged with a.

For such cases, there is a default behaviour which prefers the first mergeable TextB-

lock over latter ones. Additionally it is, again, possible to consult the ReuseStrategies,

in order to decide which of the tokens are responsible for making up the identity of an

element. For the previous example, it could be specified that the name of a method, i.e.,

a, always represents the identity of a method element. Then the decision above would

result in a′1 being reused for a, as this is the TextBlock which includes the name token.

6.3.2.13. Model Update Transformation

After the mergeable TextBlocks have been prepared in the TextBlock merging phase, it

is now possible to update the domain model according to the mergeable and new TextB-

locks. This is done by a model to model transformation Ttb2dom (see Figure 6.13) which

uses as input both the reference TextBlock-model as well as the parsed version of the

TextBlock-model. Based on the mergeability of the TextBlocks in the parsed TextBlock-

model, new elements are created or existing elements are updated in the domain model.

Higher-Order Transformation for Generating the Update Transformation
The model update transformation is automatically derived from the mapping by a higher-

order transformation (HOT). This Tmap2qvt HOT uses as input the mapping for a specific

view type in combination with the referenced metamodel and produces the model update

274

6.3. Synchronisation from Textual View to Model

<<reference>>
TextBlocks

Model

<<parsed>>
TextBlocks

Model

Domain
Model

annotates

annotates

references

M2M
Transformation

changed part

modifies

input

input

Figure 6.13.: Transformation Ttb2dom updates the corresponding part of the domain model based

on the changes represented in the two different TextBlock-models.

Mapping Model

Tmap2qvt

Domain Metamodel

references
input Tt2m

TextBlocks
Metamodel

Domain
Metamodel

generates

TbaseT2M
Containg basic rules for

TextBlocks-merging

based on

Figure 6.14.: The higher-order transformation Tmap2qvt genererates the synchronisation trans-

formation Tt2m.

transformation Tt2m that then transforms from a TextBlock-model into a corresponding

instance of the domain metamodel. An overview on this process is given in Figure 6.14.

The generated Tt2m is based on a special transformation TbaseT2M that serves as lib-

rary for the complex decisions that are done when deciding how TextBlocks are merged.

These basic transformation rules are consulted by the generated transformation in or-

der to decide if new elements should be created or if existing ones should be reused.

Basically, TbaseT2M encodes the reusability and mergeability computations as presented

in the previous Sections. Thus, one part of TbaseT2M is the determination whether one

TextBlock is mergeable with a certain other one. Listing 6.5 gives an impression on this

specific part of the transformation.

275

Chapter 6. Synchronisation of Textual Views

47 top relation Mergeable {

48 checkonly domain referenceTB reference : textblocks::TextBlock {

49 version = Version::REFERENCE };

50 checkonly domain parsedTB parsed : textblocks::TextBlock {

51 version = Version::PARSED };

52 when {

53 let candidates = referenceTB.allTokens()->collect(tok |

54 tok.getOtherVersion(VersionEnum::PARSED).parentBlock) in

55 parsedTb = candidates->sortedBy(

56 candidate | mergeabilityFactor(candidate))->last() }

57 }

Listing 6.5: Excerpt of the base transformation TbaseT2M for text to model synchronisation show-

ing the Mergeable relation.

A generated transformation Tt2m then refers to TbaseT2M in its when clauses in order

to decide upon the reuse of an existing domain model element or the creation of a new

instance. Figure 6.6 gives an example for this usage. Notice that the transformation

has four domains. The first domain for the view type model (viewtype) matches the

template which is matched which defines the model construction rules. The structure

of this match pattern resembles the structure of the template. For example, conditional

elements, such as the declaration of the valueType property in the running example,

shown Listing 6.1, also the surrounding elements will be matched. The second and third

domain match the reference and parsed TextBlocks, respectively. For the parsed TextB-

lock the template should be the same as the one from the first domain. Futhermore, in

this domain, the tokens of the parsed TextBlock are matched. Tokens for mandatory ele-

ments will be directly matched using a collection template (cf. [Obj11]). In the running

example, this is the token for the name property. Finally, the fourth domain matches the

domain model element. Token values responsible for attributes of an element will be set

here. In the running example, the value of the name attribute is set to the value coming

from the corresponding token.

The when clause is responsible for selecting the correct pair of reference and parsed

TextBlocks. The Tb2Bo relation therefore calls the Mergeable relation in its when

clause. This will decide upon the actual combination of TextBlock pairs that the relation

matches.

Optional attributes will have their own relations which will be called in the

where clause of their main relations. Whether the relation holds or not depends on

whether the corresponding token is present. In the example given in Listing 6.6 the

276

6.3. Synchronisation from Textual View to Model

BusinessObject_ValueType is called to check for a token that corresponds to

the valueType property.

Properties of model elements that are not primitive valued attributes but refer to other

model elements are handled by separate relations. These relations are responsible for the

creation of the corresponding model element, just as the example in Listing 6.6 shows

but in addition they will establish the link to the corresponding model element of their

parent TextBlock.

In addition to the merging relation an additional relation without the matching of the

reference version will be generated by FURCAS. This relation has the exact inverse of

the when clause for the merging relation. This relation is responsible for instantiating a

new element if there is no existing element to merge with.

Mapping View Type Constructs to Transformation Constructs Depending

on the used constructs (cf. Section 2.1.3.2) in the view type definition, FURCAS maps

them to specific constructs in the generated transformation. As shown above, the basic

relation created for a template is responsible for matching the template, the mergeable

TextBlocks as well as the target model element. Mandatory features will be matched

directly in this relation by matching the tokens with the corresponding sequence ele-

ments in the parsed TextBlock. Other constructs such as alternatives or conditionals are

matched as follows:

Conditionals and Alternatives A conditional element, such as (isDefined(

valueType) ? "valueType") specified in a template will cause the

generation of an additional relation. This relation will be called from the

where clause of the template’s main relation. The call generated in the where

clause then has the form RelationName(TextBlock, ModelElement,

conditionalSequenceElement) or true. The or true part is

required because a where predicate in QVT may only return true. However, as in

this case the relation will only hold if the token is present, the false value needs

to be prevented. In this additional relation the source domain will check for the

existence of a token that refers to the enclosed sequence element. If such a token

could be found the transformation will update the property accordingly.

A conditional may be a ternary expression of the form condition?alt1 ∶ alt2.

This means depending on the condition different alternatives including dif-

ferent sequence elements may be chosen. For each alternative a separate

277

Chapter 6. Synchronisation of Textual Views

58 top relation Tb2Bo {
59 checkonly domain viewtype template : TCS::Template {
60 metaReference = mofClass : mof::Class {
61 name = ’BusinessObject’
62 }
63 sequence : TCS::Sequence {
64 elements = namePropSE : TCS::Property{
65 metaReference = nameMetaProp : mof::Attribute {
66 name = ’name’
67 }
68 }
69 [...]--match conditional containing the value type property
70 valueTypePropSE : TCS::Property{
71 metaReference = valueTypeMetaProp : mof::Attribute {
72 name = ’valueType’
73 }
74 [...]
75 }
76 };
77 checkonly domain TB tbReference : textblocks::TextBlock {
78 correspondingModelElements = boRef : BusinessObject {}
79 }
80 checkonly domain TB tbParsed : textblocks::TextBlock {
81 correspondingModelElements = bo : BusinessObject {}
82 textBlockDefinition = tbDefRef: textblocks::TextBlockDefinition{
83 template = template : TCS::Template {}
84 },
85 subNodes = sNodes : OrderedSet(DocumentNode) {
86 _ ++
87 --match all tokens for mandatory features
88 nameTok : textBlocks::LexedToken{
89 sequenceElement = namePropSE,
90 value = nameVal
91 }
92 ++ _
93 };
94 enforce domain BO bo : businessObjects::BusinessObject {
95 name = nameVal
96 }
97 when {
98 Mergeable(tbParsed, tbReference) implies boRef = bo
99 }

100 where {
101 --each optional feature will have its own relation e.g., the
102 --value type relation will check if there exists a corresponding
103 -- token for the property and set the value on bo accordingly.
104 -- As there also may be no such token, we need to add "or true".
105 BusinessObject_ValueType(tbParsed, bo, valueTypePropSE) or true;
106 }
107 }

Listing 6.6: Excerpt of the generated model synchronisation transformation Tt2m.

278

6.3. Synchronisation from Textual View to Model

relation will be generated containing the respective patterns for match-

ing the alternative’s tokens and the corresponding properties of the model

element. As only one of the alternatives may match the calling predic-

ate in the where clause of the template’s main relation will have the

following form: RelationAlt1(TextBlock, ModelElement,

conditionalSequenceElement) or RelationAlt2(TextBlock,

ModelElement, conditionalSequenceElement)

Alternatives are handled similar to conditionals. For each alternative as well as the

its sub-alternatives a separate relation will be generated which are then called from

the template’s main relation and parent alternative’s relation respectively.

Property Inits and Queries As propery inits in FURCAS are already present as

OCL expressions, they can simply be included into the generated transforma-

tion. The assignment of these expressions to the domain elements property is

performed in the where clause of the relation. For example, a property init

{{ name = parent.name.concat(’C’)}} defined in the view type

definition will result in the following predicate: where { elem.name =

parent.name.concat(’C’) }.

The same applies for queries that a view type includes. The “?”-expressions

defined in a query are replaced with the values of the corresponding tokens. For

example, a query ref {query = self.elements->select(name =

?)}will result in the following predicate: where { ref = self.elements

->select(name = tokForRef.value)}.

6.3.2.14. Running Example

According to the mergeability computation of the previous phase, all TextBlocks of the

running example could be reused by their parsed version correspondents. Thus, the up-

date transformations will match the mergeable rules for the modified elements. The main

relation for the business object Tb2Bo will match the existing business object customer.

As now also a valueType token is present, the BusinessObject_ValueType re-

lation, called from the top relations where clause, will set the valueType attribute

of customer to true. As the alternative of the T BcustomerEnd changed from variant 2

to variant 1(see the view type definition in Listing 6.1) where the name of the local as-

sociation end is explicitly stated the update transformation will also need to update this

279

Chapter 6. Synchronisation of Textual Views

name. The property init of variant 2 set the name of the association end to “unnamed”.

As this this value is now explicitly represented by the a token the transformation will set

the name to the token’s value, which is “customer”.

6.3.3. Incremental Updates of the Textual Model After Type (B) Changes

Whenever a cut/copy/paste is done within the FURCAS editor, not only the text is stored

in the clipboard but also the underlying TB-model. Depending on the part of the text

that is cut and the position where it is pasted again different updates are performed.

If the TextBlock-type of the pasted block is the same as the one over which it is pasted:

A deletion of the overwritten part and move of the pasted part to its (potentially) new

parent block is performed. Afterwards the incremental update transformation for the

domain model is triggered based upon the the (re-)moved TextBlocks. This also works

if more than one TextBlock is pasted and one or a tuple of them matches the original

TextBlock type, plus the surrounding newly pasted TextBlocks are allowed to appear at

this position according to the mapping definition.

If the TextBlock-types do not match the result of the paste would be inconsistent

according to the mapping. Therefore, the reference version of the overwritten will be

kept and the pasted TextBlock will be appended into the edited version of the parent

TextBlock. As soon as a consistent state is reached to further editing actions the class A

update transformation can be used again to update the domain model accordingly.

6.4. Efficient Attribute Evaluation for OCL Based Attribute Grammars

As presented in Chapter 5 the FURCAS approach for specifying textual views heavily

relies on the specification of OCL based attribute for the evaluation of non-syntactically

specified properties within the domain model. These OCL expressions are used for the

creation of views as well as the construction as well as updating of domain model ele-

ments upon changes through a view. However, especially due to the fact that a model

can be edited through multiple views, these expressions have to be reevaluated whenever

their result value may have changed. Thus, the same constructs of a model may have

been created using different views types, it needs to be determined which parts of a

model are under maintenance of which view type, and therefore needs to fulfil the con-

struction and property rules defined in that view.

For the decision when an OCL expression needs to be evaluated in general FURCAS

employs an approach called OCL Impact Analysis [AHK06]. OCL Impact Analysis

280

6.4. Efficient Attribute Evaluation for OCL Based Attribute Grammars

(IA) is used to solve the problem of, does an OCL expression o defined on a context

type c change its value given a change event e. Therefore, the IA first performs a step

called Class Scope Analysis which computes the set of event filters (such as “filter for

AttributeChangeEvent of a specific attribute a of a (meta-)class m”) which filter

all events that, by looking statically at them, could possibly invalidate the current value

of the expression. This step can be performed at design or build time of the repressions.

Later on, during the runtime of an expression a second phase called Instance Scope
Analysis can be performed. This step finds, for an expression o and a change event e

all context elements c for which the value of o may have changed. This is achieved by

navigating backwards over the OCL expression to all possible context elements.

The Class Scope Analysis has been thoroughly researched in different publications

such as [CT05, CT09, AHK06]. However, the Instance Scope Analysis has only been

described incompletely, omitting difficult structures such as operation calls and loops.

Furthermore, there is a multitude of additional optimisations that reduce the effort of

computing the possible contexts elements. An improved IA approach was developed in

the broader scope of the creation of the FURCAS approach. However, the presentation

of the details of this approach lies beyond the scope of this thesis.

Only to give an indication on the performance impact of the IA in comparison to a

naive approach that reevaluates all constraints upon a change the validation results for

this approach are summarised here. Figure 6.15 shows a comparison of OCL query

reevaluation times with and without impact analysis for a given set of OCL queries

taken from the Runlet case study (cf. Section 7.3.2). The delta propagation, also shown

in the diagram is a further optimisation of the IA approach. With all optimisations the

revevaluation time remains nearly constant with the size of the model on which the query

is performed. In contrast, the reevaluation time for a naive approach which requires the

reevaluation of all queries grows linearly.

In conclusion, the IA approach allows FURCAS to incrementally and efficiently re-

evaluate the OCL expressions that are used in the query (cf. Section 5.3.2.2) as well as

the OCL property init expressions (cf. Section 5.3.2.1) used in the FURCAS view type

definitions. As the IA works on a predefined scope, which may include the whole work-

space a developer works on and FURCAS registers all of these expressions in this scope,

it is possible to iteratively satisfy all these expressions by reevaluating them according

to the IA.

As there may be an arbitrary number of overlapping view types where each of them

defines such OCL rules that are reevalutated by the IA cycles may occur. For example,

281

Chapter 6. Synchronisation of Textual Views

−28 −26 −24 −22 −20 −18 −16 −14 −12 −10 −8 −6 −4 −20.
0e

+0
0

5.
0e

+0
9

1.
0e

+1
0

1.
5e

+1
0

2.
0e

+1
0

All instances w/o event filter
All instances with event filter
Impact Analysis w/o Delta Propagation
Impact Analysis with Delta Propagation

Total re−evaluation time meaned with a 90% CI

Scaled models from small to large

To
ta

l r
e−

ev
al

ua
tio

n
tim

e
in

 n
an

os
ec

on
ds

Figure 6.15.: Comparison of performance for reevaluating a given set of OCL queries with and

without impact analysis. The x-axis shows different model sizes where -28 is the

smallest model (meaning 28 metamodel packages where cropped out of the test

model) and -2 is the largest model. The y-axis shows the evaluation time of around

250 different OCL queries from within the view type definition, meaned with a

90% confidence interval (CI). The darkest and left-most bar is the reference time

with no impact analysis activated. The next bars show the re-evaluation times with

subsequently activated optimisations and impact analysis.

282

6.5. UUIDs and Views

an OCL property init may define the expression {{ x = self.aToB.y + 1 }}

which computes the value of the attribute x to equal the value of the attribute y of an ele-

ment b that is reachable through the association aToB. Whenever, y changes its value x

will be updated accordingly. Assuming a second view type that defines a different prop-

erty init on a template for b as {{ y = self.bToA.x + 1 }} the reevaluation of

both property inits will result in a cycle. To avoid this kind of problem a cycle detection

mechanism, such as [Niv04], is required. However, this problem is more in the focus of

the IA approach in general and is therefore beyond the scope of this thesis.

6.5. UUIDs and Views

The fact that an element has an internal ID or UUID that is not shown in any user view

and should never be changed needs to be tackled in order to be able to provide editor

support on top of UUID-based model repositories. However, taking a closer look on the

problem reveals that the problems occurring in this context are of a much more general

nature. Hiding information that is contained within a model but still allowing to edit

the non-hidden parts while keeping the hidden parts consistent is a significant problem

when talking about editable views.

Consequently, this means that is is possible to tackle the UUID problem from the angle

of partial view types. No view type definition should include this special property and

therefore every view type should be considered partial. Therefore, the UUID problem

can be reduced to the partial view type problem. Every view type on a UUID-based

model will mask the UUID. This makes all view type partial concerning the metamodel.

Partial view types need special synchronization actions to allow the specification of

how to handle hidden parts of the model when other parts are changed. It is not possible

to re-create an element only using the textual representation of one of its views as the

information might not be complete when it is a partial view type. The attribute values

and links that are not visible in the textual representation can not be recreated by using

the information from a single view as they are simply not present in the view. Therefore,

the UUID retainment problem is not different from the problem that view based textual

modelling faces anyway when it comes to partial views types. With some theoretical

extensions to the employed metamodels of a textual view based modelling environment

it becomes clear that FURCAS will retain the UUID of underlying model elements just

as it would retain any partially viewed element.

283

Chapter 6. Synchronisation of Textual Views

UUIDBasedClass
+uuid : String

AnyMetamodel::AnyClass

«Template»
UUIDRetainingTemplatetemplateFor

Figure 6.16.: Artificial extension of meta-classes by UUIDBasedClass.

In order to map the UUID-retainment problem to a partial view type problem we need

to apply some implicit extensions to each metamodel. What needs to be done is to

represent the UUID of a model element using standard meta-modelling means. Figure

6.16 shows that this can be done. A meta-class UUIDBasedClass is implicitly added

as base class for every manually modelled meta-class. UUIDBasedClass has exactly

one property uuid. The most flexible primitive type to represent the value of the UUID

is the String-type. Therefore the type of uuid is defined as String. By introducing

an artificial super-class to each meta class of a metamodel the fact that model elements

have UUIDs is made explicit. Furthermore, consider that the attribute is unchangeable

and all instances will get a unique value assigned upon instantiation.

With these preconditions, one can say that an elements UUID is retained exactly

when the element itself is not deleted and re-created. As this is the major purpose of

the FURCAS incremental update approach presented in this chapter one can say, that if

FURCAS is validated to serve the generic purpose of retaining partially viewed elements,

it also meets the requirement of UUID retainment. Chapter 7 will show that this is the

case.

6.6. Synchronisation from Model to Textual Views

As discussed in chapter 4 the synchronisation between a model and its views can be

considered as two transformations (or one bidirectional transformation) defined on the

metamodels of the (domain) model and the respective view model (thus called the View
Metamodel). Then one requirement to the transformation is to allow for certain areas

284

6.6. Synchronisation from Model to Textual Views

where manual modifications are retained even if the source model has eminent pending

changes and thus require the transformation to be re-executed. This requirement is, for

example, present for those parts of a view that do not directly represent parts of the

model but rather are defaults generated by an initial pretty printing transformation. Such

a transformation is mostly used to generate default layout information in a target view

model.

Now, to be able to retain changes to that kind of format information without loos-

ing them upon re-execution of the model-to-view transformation it is required to add

knowledge about how to identify changes that have been applied to the target model to

the transformations. Furthermore, based on the identification of target model changes it

needs to be possible to specify how these changes should be handled by the transforma-

tion. I.e., if they should be overwritten, or certain types of changes such as additions or

removals should be treated differently.

6.6.1. Running Example

The running example to explain all kinds of retainment scenarios employs as source

model a domain model representing business entities, associations between them as well

as methods declared on them as presented in Chapter 2 on Page 18. This model is

transformed to a target model being a textual view on the domain model and expressed

in the TextBlock decorator metamodel presented in Section 5.4.3 on Page 222.

The example model, as depicted in Figure 6.17 consists of a simple business entity

“Customer” having two methods “hasDiscount” and “hasDebits”. The textual view is

generated using the transformation Tbo2tb. Furthermore Tbo2tb also generates default lay-

out information (depicted as , → and ↵).

A transformation that realises the mapping within the given example is sketched in

Listing 6.8. The transformation consists of different types of relations. First relations

such as BusinessOject2TextBlock or MethodSignature2TextBlock are

responsible for creating TextBlocks from elements of the domain model. Furthermore,

relations like AddTokensForBusinessOject2TextBlock add tokens to the

TextBlocks representing keywords as well as values from the domain model that

should be visible in the view. Additionally, relations such as AddLayoutTokens

add additional layout information to the TextBlock. In this case this is achieved by

interleaving each pair of LexedTokens in a TextBlock with an additional OmittedToken

285

Chapter 6. Synchronisation of Textual Views

Customer :
BusinessObject

hasDiscount :
MethodSignature

hasDebts :
MethodSignature

Abstract Model Textual View Model

CustomerSignaturesView :
BosWithMethodSignatures

bo�Customer�{

}

TBCustomer

bool�hasDiscount()�{

...

}

TBhasDiscount

bool�hasDebts()�{

...

}

TBHasDebts

Figure 6.17.: Example model showing source and target model of a model to view

transformation.

(See the collection template expression in AddLayoutTokens). Addition of further

layout information such as → and ↵is omitted in here.

6.6.2. Incremental Pretty Printing

For a complete view based approach it is also necessary to update views upon changes

to the model. In our case what we need is a backwards transformation from the domain

model to the TextBlocks model that incrementally updates existing views, or if none

108 viewtype BosWithMethodSignatures {
109 template BusinessObject
110 : "bo" name "{"
111 methodSignatures
112 "}"
113 ;
114 template MethodSignature
115 : output name "(" implementation ")"
116 ;
117 ...
118 }

Listing 6.7: View type definition for business objects with method signatures.

286

6.6. Synchronisation from Model to Textual Views

119 top relation BusinessOject2TextBlock {
120 checkonly domain bo myBo : businessObjects::BusinessObject{ };
121 enforce domain tv textblock : furcas::textBlocks::TextBlock {
122 correspondingElement = myBo; };
123 where {
124 AddLayoutTokens(myBo, textblock);
125 AddTokensForBusinessObject2TextBlock(myBo, textblock);
126 }
127 }
128 relation AddTokensForBusinessObject2TextBlock {
129 checkonly domain bo myBo : businessObjects::BusinessObject{ };
130 enforce domain tv textblock : furcas::textBlocks::TextBlock {
131 tokens = classTok : furcas::textBlocks::LexedToken {
132 value = "bo"; };
133 tokens = nameTok : furcas::textBlocks::LexedToken {
134 value = myBo.name; };
135 [...]
136 };
137 }
138 relation AddLayoutTokens {
139 checkonly domain bo myBo : businessObjects::BusinessObject{ };
140 enforce domain tv textblock : furcas::textBlocks::TextBlock {
141 tokens = OrderedSet {
142 beforeTok : furcas::textBlocks::LexedToken,
143 formatTok : furcas::textBlocks::OmittedToken {
144 value = " "}
145 , afterTok : furcas::textBlocks::LexedToken }
146 };
147 [...]
148 };
149 }
150 top relation MethodSignature2TextBlock {
151 checkonly domain bo decl : businessObjects::MethodSignature{
152 businessObject = bo : businessObjects::BusinessObject {}
153 };
154 enforce domain tv textblock : furcas::textBlocks::TextBlock {
155 [...] };
156 where { [...] }
157 when { BusinessObject2TextBlock(bo, textblock);
158 }
159 }

Listing 6.8: Example Transformation: BusinessObjects to Textual View

287

Chapter 6. Synchronisation of Textual Views

exists creates an initial version of it. FURCAS provides a pretty printer that implements

this transformation. The pretty printer creates a minimal TextBlocks model from a given

domain model according to the, bidirectionally specified, mapping definition.

TCS in its original form also provides a pretty printer that interpreted the mapping

definition to create an initial textual representation of a given model. However, as

FURCAS furthermore provides support for textual views a trivial version of the pretty

printer that simply traverses a model and prints text is not enough. A view may also be

a partial view on a model representing only a specific part of the actual domain model.

Furthermore, a model might have been produced or modified by a different view (spe-

cified within a different mapping definition) and might therefore leave the producible

image of another view.

To cope with this problem we introduced two concepts from the view type definition

approach (cf. Chapter 5) are considered within the pretty printing approach:

1. FURCAS uses the pretty printing model transformation that tries to find a valid

combination of template appliances that best suite the current combination

of features of a given model element. Therefore, the two different kinds of

PropertyInit definitions (cf. Section 5.3.2.1) that can be used in the mapping

definition are considered . A standard PropertyInit has to be matched

mandatorily for the template to be used as a pretty printing rule. Whereas a default
PropertyInit is only used as additional hint for the pretty printer to favour

one template over another in case both would be a match.

2. A PropertyElement defined within a template may be defined as being par-
tial, which means that any subtree created down from this template is optional. If

no matching template for the current view is found the whole subtree is omitted.

6.6.3. Detecting and Retaining Layout Modifications

The transformation from model to view does not only contain rules that are responsible

for creating the textual representations of the model elements but also contains rules

for default layout of the representing elements. There rules add OmittedTokens to

a TextBlock. However, these rules should be handled differently to those creating the

actual textual contribution of an element. It should be possible for a user that interacts

with a view to freely adjust the layout of a view. This may result in addition, modification

or removal of these OmittedTokens. To achieve the retainment of these changes to

288

6.6. Synchronisation from Model to Textual Views

160 top relation BusinessOject2TextBlock {
161 checkonly domain bo myBo : businessObjects::BusinessObject{ };
162 enforce domain tv textblock : furcas::textBlocks::TextBlock {
163 correspondingElement = myBo; };
164 where {
165 AddLayoutTokens(myBo, textblock);
166 AddTokensForBusinessOject2TextBlock(myBo, textblock);
167 }
168 }
169

170 -- @RP RetainLayoutModification:TARGET
171 relation AddLayoutTokens {
172 checkonly domain bo myBo : businessObjects::BusinessObject{ };
173 enforce domain tv textblock : furcas::textBlocks::TextBlock {
174 tokens = OrderedSet {
175 beforeTok : furcas::textBlocks::LexedToken,
176 formatTok : furcas::textBlocks::OmittedToken {
177 value = " "}
178 , afterTok : furcas::textBlocks::LexedToken }
179 };
180 [...]
181 };
182 }
183

184 [...]

Listing 6.9: Example Transformation: BusinessObjects to Textual View with RetainmentPolicy
annotations

the view model, FURCAS employs a set of RetainmentPolicies (as introduced in Chapter

3).

Each rule that is considered a layout rule is annotated with a target changed ∎� Re-
tainmentPolicy. The RetainmentPolicy will make sure that the layout can be manually

changed and these changes are retained across changes to the underlying model that are

going to be propagated to the textual view.

The running example, including the RetainmentPolicy annotation is shown in Figure

6.9. An example change based on the running example given above would be the

addition of a format element (OmittedToken) in the view model. The detection of

this kind of change would work as follows. Suppose an addition of an additional

OmittedToken (“ ”) after the keyword bo. To be able to detect this addition, the

change detection would analyse the traces of the transformation run TraceTbo2tv

and then identify that there is no tracelink that references the new OmittedToken

(“ ”) even though it could have been produced by the transformation (i.e., the

289

Chapter 6. Synchronisation of Textual Views

AddLayoutTokens relation). Thus, the result of the change identification would

be identifyTargetChanges(Mt,TraceTbo2tv
) = {δ+

OmittedToken⟨” ”⟩
}. The added element is

part of the target addition change set: δ+
OmittedToken⟨” ”⟩

∈ Δ+,targetChanges
o . As the target

changed RetainmentPolicy retains elements that are in the target addition change set

the omitted token will not be overwritten or removed upon an update from the domain

model.

6.6.4. Supporting Selective Views

One of the key concepts of FURCAS is that it supports full featured selective or holistic

textual views. Section 5.4.5 gave an introduction in how FURCAS supports selective

textual views. As described in Section 4.5.1 on page 149, the selection scope of a view

may either be holistic, selective or a mixture of both distinguished on a per template

level. The sync transformation from domain model to textual view realises a holistic
approach per default. This means, that whenever elements are added to the domain

model, the views that cover that specific part of the model will update to include the

element. For example, a view that shows business objects and their method signatures

will show all added method signatures as soon as they are added to the domain model. In

a selective view, the decision of whether to include an element into a view or not depends

on the decision of the developer using the view. Thus, to realise selective views, the

update transformation needs to be made aware of the selection of elements a developer

made. FURCAS uses RetainmentPolicies (cf. Chapter 3) for this purpose.

6.6.4.1. RetainmentPolicy Annotations for the Model Update
Transformation

Given a generated update transformation (using the approach introduced in Section

6.3.2.13) for a given view type that has properties that are declared as selective (using

the SelectivePArg within the view type definition as presented in Section 5.4.5). In

the transformation all those annotated transformation rules receive an additional Retain-
mentPolicy annotation. Depending on the type of selectiveness, i.e., deletion, addition
or addition and deletion selective, different RetainmentPolicy are used:

Deletion Selective: Retaining a textual representation if if its underlying model element

was removed is achieved by the “retain deleted if source changed exclusively” (�−)
TypeSpecificRetainmentPolicy. This will retain textual representations for removed

290

6.6. Synchronisation from Model to Textual Views

185 viewtype SelectiveMethodSignatures {
186 ...
187 template BusinessObject
188 : ... methodSignatures { selective = Addition } ...
189 ;
190 template MethodSignature
191 : output name implementation
192 ;
193 }

Listing 6.10: View type definition for business objects view with selected method signatures.

elements but will also allow to delete them manually. The latter case is supported

due to the exclusiveness of the �− RetainmentPolicy to source model changes. If

the target model changed at the same time, this would indicate a manual deletion

and thus the deletion is allowed to take place. If the “source changed” (�∎) Re-
tainmentPolicy would have been used as basis also manual deletions, occurring as

simultaneous changes to the target model would also have been undone.

Addition Selective: To achieve the behaviour not adding new elements to the view (tar-

get) model if new source elements occur but removing existing ones if they are

removed from the (source) model FURCAS uses the type specific retainment policy

“retain added if source changed exclusively” �+. The exclusiveness to the source

model is required because if source at the same time a target model change oc-

curred, this means that the element was added to the view from outside the trans-

formation, i.e., by manually adding it to the view (cf. Section 6.6.4.2). In combin-

ation with with an additional policy “retain removed if target changed” ∎�− also

elements that were manually deleted from the view will not be added again.

Addition and Deletion Selective: If both types of selectiveness are defined, the higher

order transformation that generates the model update transformation will create an-

notations for the respective transformation rules using the �+,− RetainmentPolicy.

Listing 6.10 shows an example view type definition that is responsible for defining a

textual view on business objects including a selection of their method signatures. The

method signatures for a business object are defined to be handled selectively. Thus, the

generated model update transformation, shown in Listing 6.11 incorporates the Retain-
mentPolicies that handle this selectiveness accordingly.

291

Chapter 6. Synchronisation of Textual Views

194 top relation BusinessOject2TextBlock {
195 checkonly domain bo myBo : businessObjects::BusinessObject{ };
196 enforce domain tv textblock : furcas::textBlocks::TextBlock {
197 correspondingElement = myBo; };
198 where {
199 AddLayoutTokens(myBo, textblock);
200 AddTokensForBusinessOject2TextBlock(myBo, textblock);
201 }
202 }
203 relation AddTokensForBusinessOject2TextBlock {
204 [...]
205 }
206 relation AddLayoutTokens {
207 [...]
208 }
209

210 /*
211 @TSRetainmentPolicy Addition_Selective_MethodSignatures1:
212 NEVER retainAdded: SOURCE_EX
213 @TSRetainmentPolicy Addition_Selective_MethodSignatures2:
214 NEVER retainDeleted: TARGET
215 */
216 top relation MethodSignatures2TextBlock {
217 checkonly domain bo decl : businessObjects::MethodSignatures{
218 businessObject = bo : businessObjects::BusinessObject {}
219 };
220 enforce domain tv textblock : furcas::textBlocks::TextBlock {
221 [...] };
222 where { [...] }
223 when { BusinessOject2TextBlock(bo, textblock);
224 }
225 }

Listing 6.11: Transformation business objects to textual view annotated with the generated Re-
tainmentPolicy annotations.

292

6.6. Synchronisation from Model to Textual Views

6.6.4.2. Supporting Manual Additions to a Selective View

The dual operation for omitting the automatic addition of existing elements to a view

once they are created is the explicit manual addition to a view. As this operation is

an explicit command that is not part of the general model update transformation there

need to be separate transformations for these commands. Therefore, to complement

the selectiveness of templates in the view definition, FURCAS generates separate trans-

formations for each of these commands. These transformation contain the rules for the

creation of the textual representation of the selective element itself as well as all sub-

templates that can possibly create child elements within the textual representation of the

added element.

6.6.5. Handling Inconsistent Regions in an TextBlocks model

During the incremental parsing phase it is possible that a TextBlocks model is turned

into an inconsistent or incomplete state. This state temporarily decouples the textual

view from the underlying model and turns it out of sync. Until the errors in the textual

representations are resolved and the synchronisation is re-established changes to the

underlying model can not and should not be translated into the textual view. Otherwise,

the inconsistent but presumably updated information would be lost. To avoid this loss of

information FURCAS will protect this region from further updates from the underlying

domain model.

The retainment policy approach presented in Chapter 3 not only supports the definition

of RetainmentPolicies for transformation rules but also allows to define a scope within

the target model for which certain RetainmentPolicies should apply. FURCAS uses this

kind of RetainmentPolicy to protect the inconsistent region in the textual view model.

Each TextBlock that is inconsistent is, at the same time FURCAS sets the incomplete

flag to true, added to the model element scope of a always (�∎�) RetainmentPolicy.

In this case not only a target changed RetainmentPolicy is used because also TextBlock

that are themselves not directly modified but are not valid in their context anymore due

to changed therein should be protected from being overwritten. The employed always
RetainmentPolicy also includes protection for this kind of elements.

293

Chapter 6. Synchronisation of Textual Views

226 viewtype ConstMethodSignatures {
227 template BusinessObject
228 : "class" name "{" methodSignatures "}"
229 ;
230 template MethodSignature
231 : "const" output name "(" ")" implementation
232 {{ const = true }}
233 ;
234 ...
235 }

Listing 6.12: View type definition for business objects view with const method signatures.

6.6.6. Exclusion of Model Elements that Leave the Scope of a View

Having multiple partial view on the same underlying model also implies that there may

occur situations where a model element leaves the scope of one view after a modification

from another view. To always show the most recent version of the underlying model,

a view is updated either directly when a change is performed to the underlying model,

or upon re-opening it. When FURCAS performs this view update all elements that are

not in the scope of the view type anymore are removed from the textual representation.

However, in some situations this fact will be misleading or irritating for a developer that

looks onto the modified view. He or she might think that the element was completely

deleted and not just excluded from the view’s scope.

To deal with this situation, FURCAS indicates such removals by a so called change
bar, as it is also employed in pure text based IDEs such as the Eclipse Java Development

Tools (JDT) [Ecl10a]. Figure 6.18 shows an example where this change bar indicates

the removal of a method signature from a view where only method signatures that have

their const flag set to true, are shown. The view type definition for this example is

shown in Listing 6.12.

294

6.6. Synchronisation from Model to Textual Views

Figure 6.18.: Due to a change of the property value of const attribute of the method signa-

ture which decides upon its inclusion into the view the second method signature

is removed from the view. In the image on the right hand side the editor shows

the change bar which allows a developer to see what elements and why they were

removed from the view.

295

Chapter 7.

Validation

The validation of the FURCAS approach is done on several levels. First, the view based

properties of FURCAS are validated against the generic properties of view based mod-

elling presented in Chapter 4. This validation is presented on a formal level in Section

7.1. This part validates the adequacy of FURCAS w.r.t. view based modelling in general.

The view synchronisation process is a vital part of FURCAS. To validate the applicabil-
ity and usability of this part of FURCAS, a validation against certain bidirectional view

synchronisation properties, as presented by Matsuda et al. in [MHN+07] was conducted

and is presented in Section 7.1.2.6.

The correctness of the incremental update approach is evaluated by means of a clas-

sification of possible change events that may occur in the textual view based editor. The

argumentation for this part of the validation is presented in Section 7.2. Furthermore,

some critical cases are analysed and discussed.

Finally, to evaluate the applicability in practice, as well as the expressiveness of

FURCAS, several internal as well as industrial case studies were conducted. Having

different foci, a selection of these case studies is presented in Section 7.3. To find out

to which extent the view-based capabilities of FURCAS were exploited in these case

studies, a Goal Question Metric (GQM) based metrics suite is used to gather metrics on

different aspects of the view types that were defined in these case studies.

7.1. Validating the View Type and View Properties of FURCAS

Chapter 4 introduced formalisations of generic properties of views and view types in

view-based modelling. As FURCAS was designed to contribute to the yet unsettled area

of textual view-based modelling a validation against these properties will show to which

extent FURCAS matches these criteria. The properties of views as well as view types

are considered in the generic analysis in Chapter 4. Therefore, also both parts will be

validated for FURCAS, the FURCAS view type definition approach against the view type

297

Chapter 7. Validation

properties (Section 7.1.1) and the TextBlock view approach against the view properties

(Section 7.1.2).

7.1.1. Validation of the Generic View Type Properties of FURCAS

The generic components of a view type, according to Section 4.4, are defined by the

tuple VT = (MM ,Φ) where Φ defines the actual view construction rules. In the case

of FURCAS, a view type definition incorporates all rules that are required by Φ. Both

levels of a p ∈ Φ are included in this definition. The first level requires to define a

projection function φp, that decides upon the inclusion of a model element into a view.

This decision, in the case of FURCAS, is provided by the ability to define templates based

on the type of an element. The second is the definition of a σp which lets a language

engineer define certain selection patterns an element has to conform to. This selection

function is supported by FURCAS by the definition of property sequence elements as

well as property inits (cf. Section 5.3.2.1) within the templates of a view type.

Finally, for the construction of the layout of each p ∈ Φ FURCAS provides constructs

inherited from TCS such as literal sequence elements as well as additional format control

structures. The tighter definition of a view type given by Definition 4.3 which introduces

the notion of a view metamodel, including transformations from (Tm) and to (Tv) this

metamodel also fits the transformations employed in FURCAS. These transformations

are given by the multi-phased incremental parsing and update mechanism (Section 6.3)

as well as the pretty printing transformation (Section 6.6).

Based on these mappings, the view type properties of FURCAS are evaluated in the

following sections.

7.1.1.1. Partiality and Completeness of View Types

The following lemmas will propose that FURCAS allows to define partiality and com-

pleteness properties as they were defined in Sections 4.4.2 to 4.4.3.1.

Lemma 7.1. FURCAS allows to define partial view types.

Proof. Assuming the combined selection and projection function ∂p for each predicate

p is expressed in FURCAS by the combination of a template t’s meta-reference typet

and the pattern described by the set of t’s sequence elements Seqt, there are several

dimensions in which a view type definition can be partial:

298

7.1. Validating the View Type and View Properties of FURCAS

The partial concerning metamodel property requires a view type to fulfil what is

defined by Definition 4.3 on page 141. The projection based on the template type typet

performed by FURCAS for a view type VT is formulated as a function ∂type. ∂type re-

duces the set of elements of a model M , representable by the view type, by those for

which holds {e ∈ M ∣ class(e) ∈ ⋃
t∈TVT

mmelem(t)}. Therefore, it is always possible to

define a view type VT partial for which a certain class comitted is not part of this set. Thus,

we can conclude that for such a VT partial the partial requirement is fulfilled by:

∃M ∈ModelsMM , e ∈M ∣ (∀p ∈ Φpartial ∣ (∂p(e) = false)) class(e)=comitted⇐⇒
∃M ∈ModelsMM , e ∈M ∣ (∀p ∈ Φpartial ∣ (false = false))

The proof for the fulfilment of all further partial and completeness properties works

analogously.

7.1.1.2. Extending View Types

In an extending view type (cf. Section 4.4.4), information from more than one under-

lying model and/or metamodel can be jointly handled. This is, for example, useful for

scenarios where a model is non-intrusively annotated with external information. This

property can be fulfilled on different levels, depending on the elements which the view

type may include. This level depends on the reachability of these included elements.

The reachability of a target model element t from a model element f is given by a func-

tion reachablen(t) where n is the number of navigation steps required to get from f to

t.

Lemma 7.2. FURCAS supports view types which are extending with level n = 1.

Proof. The templates of TCS and therefore also FURCAS are based on the classes from

the metamodel referenced by the templates and their properties Pt, as given by Definition

5.4:

Pt = attributes(mmelem(t))∪{a ∈ A∣first(a) = mmelem(t)∨second(a) = mmelem(t)}

As both, attributes() as well as the elements reachable through an association a ∈ A

are reached with reachable1(e) for a given element e we can say that n = 1 is also the

maximum n for reachablen().

299

Chapter 7. Validation

7.1.1.3. Overlapping View Types

Chapter 4 defines two different notions of overlaps within view types. One is the inter
view type overlap which denotes that there is more than one view type for a certain type

of element. The other one is the intra view type overlap which denotes that an element

may have multiple occurrences within the same view type. Both types are intended to

be supported by FURCAS.

The former type, inter view type overlap, is not a problem w.r.t. to the mere definition

of more than one view type for a certain element. This property can easily be supported

as the definition of a view type in FURCAS is external to those of a metamodel. However,

additionally the view instances need to support this option by allowing multiple view

elements to refer to the same underlying model element. This property is validated in

Section 7.1.2.2. The latter type, intra view type overlap, requires to define multiple

templates for a single metamodel class within the same view type.

Lemma 7.3. FURCAS supports overlapping view types.

Proof. For the definition of view types, FURCAS uses template elements that refer to

their corresponding class from the metamodel via the metaReference association.

As there is no restriction on the multiplicity of the association end that points to a tem-

plate, arbitrarily many templates for the same class of a metamodel may exist. This

allows for inter view type overlaps.

A template t in FURCAS for a certain class of a metamodel may exist in different

modes. Depending on the context, i.e., the possible parent templates which call t, a

different mode for the template may exist (cf. Section 2.1.3.2 on modes for class tem-

plates). Therefore, the textual representation of an element e can be different and is

representable multiple times within the same view.

(1) Assuming there is a template t with two modes m1 and m2 both being able to

represent the same element e. (2) As each tm may define its own sequence elements

and therefore its own rules for the textual representation we can say that tm1 represents

a single pm1 ∈ Φ and tm2 defines a single pm2 ∈ Φ where pm1 ≠ pm2. As per (1) we can

conclude that ∂pm1(e) = true ∧ ∂pm2(e) = true. From this, we can finally proof that the

intra view type overlap property is supported. Using the formula for the intra view type
overlap from Section 4.4.5.2 this proof finalises as follows:

300

7.1. Validating the View Type and View Properties of FURCAS

∃p1, p2 ∈ Φ ∣ (p1 ≠ p2 ∧ ∃e ∈ModelsMM ∣ (∂p1(e) = true ∧ ∂p2(e) = true)) p1=pm1∧p2=pm2⇐⇒
∃pm1, pm2 ∈ Φ ∣ (pm1 ≠ pm2 ∧ ∃e ∈ModelsMM ∣ (∂pm1(e) = true ∧ ∂pm2(e) = true)) ⇐⇒
∃pm1, pm2 ∈ Φ ∣ (true ∧ ∃e ∈ModelsMM ∣ true) ⇐⇒
true

7.1.2. Validation of the Generic View Properties of FURCAS

A view, according to Definition 4.12, is a tuple V = (MV ,VT , S,Λ, layout). FURCAS’s

representation of a view is based on instances of the TextBlock metamodel (cf. Sec-

tion 5.4.3.1) which, according to its formalisation in Definition 5.5, is a tuple B =
(N,VT ,M , IDsec, subblocks , toks , orderNodes). The mappings between the tuples’ ele-

ments are given by:

1. MV which is the view’s underlying model is equal to the TextBlock model’s model:

MV ≡M .

2. Another direct equivalence is the reference of a view V and a TextBlock model B

to their defining view type VT .

3. The selection of elements within a view S is given by the unification of all elements

that are either referenced as correspondingModelElements by a TextBlock

or as referencedElements by a TextBlock or a token. Thus we say that

S ≡ ⋃
n∈N

corelem(n) ∪ refelem(n).

4. The layout Λ of a textual view is given by the structure of the B but primarily by

the set of OmittedTokens that are part of the B. Thus we can say that Λ ≡ O.

5. Due to 4. we can define that the layout relation layout which connects the elements

in a view with their layout information is given by:

(e ∈M , λ ∈ Λ) ∈ layout ⇐⇒ λ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

toks(e) ∩O if e ∈ Π
∅ else

301

Chapter 7. Validation

7.1.2.1. Selective and Holistic Views

The holisticness of a view that is a textual view in FURCAS is achieved by the update

transformation Tv which is part of the Φ of a view. In combination with Retainment-
Policies FURCAS also supports selective views.

Lemma 7.4. FURCAS supports addition holistic views. After an addition of an element
e to a view V ’s model M where ∃p ∈ Φ ∣ ∂p(e) = true, e appears in the selection S of V .

Proof. For each rule in the view type specification FURCAS generates a transformation

rule in Tv that maps a model element to its textual representation (cf. Section 6.6). This

rule creates a TextBlock b for each new element e that matches its source. Therefore, we

can say that ↝Tv (M ′, B) = B ∪ be where M ′ = δ+eM and B is the TextBlock model for

M . As every such transformation rule in Tv also adds the element e to the corresponding

model elements of b we can say that corelem(be) = e. Due to mapping 3. (as stated

above) the selection S of a textual view is defined as S ≡ ⋃
n∈N

corelem(n) ∪ refelem(n).
With be ∈ N and corelem(be) = e we conclude that the selection of the textual view is

extended to include e as required by the definition of the addition holistic property given

in Section 4.14.

The proofs the fulfilment of addition holisticness. The proofs for the other types of

holisticness and selectiveness work analogously.

7.1.2.2. Overlapping Views

Overlapping views allow to display the same model element from different view in-

stances at the same time. A requirement for this property is that the views are, to a certain

extent, independent from the underlying model. Section 4.5.1.4 defines this property to

be fulfilled if intersection of the S of two different views is other than the empty set:

SV1 ∩ SV2 ≠ ∅.

Lemma 7.5. FURCAS supports the existence of overlapping view instances.

Proof. (1) The S of a view in FURCAS is given, according to mapping 3., as the

union of all elements that are referred to by the corresponding or referenced model

elements association from the document nodes N of a textual view. As the TextBlocks

follow the decorator pattern, they non-intrusively reference their model elements.

This can be seen in the TextBlock metamodel presented in Section 5.4.3.1. The

302

7.1. Validating the View Type and View Properties of FURCAS

correspondingModelElement association has an upper multiplicity of many at

the end of TextBlock.

(2) Thus, we may assume that there may be two TextBlock models B1 and B2 having

the TextBlocks b1 and b2 respectively. Due two (1) we can say that both b1 as well as b2

may refer to the same model element e. Thus corelem(b1) = e and corelem(b2) = e. Due

to mapping 1. we can say that:

SB1 ∩ SB2 ≠ ∅
mapping 3.⇐⇒

⎛
⎝ ⋃
ni∈NB1

corelem(ni) ∪ refelem(ni)
⎞
⎠ ∩

⎛
⎝ ⋃
nj∈NB2

corelem(nj) ∪ refelem(nj)
⎞
⎠ ≠ ∅ ⇐⇒

{corelem(b1)} ∩ {corelem(b2)} ≠ ∅ ⇐⇒
{e} ∩ {e} ≠ ∅ ⇐⇒

{e} ≠ ∅

7.1.2.3. Partiality and Non-Injectiveness of Synchronisation
Transformations

A challenge for the synchronisation of partial views in a bidirectional way with their

underlying model, is that according to Lemma 4.1, also the employed synchronisation

transformation is considered partial and non-injective. According to Hettel [Het10] this

partiality poses additional requirements to the transformation, as presented in Section

4.5.3. The transformation needs to fulfil the following properties in order to correctly

handle partial bidirectionality [Het10]:

1. Target model changes can be classified into two disjoint sets of changes: relevant

and irrelevant changes ΔR and ΔI . Relevant changes modify a part of the target

model which is in the image of the respective transformation whereas irrelevant

changes lie outside of this image.

2. To be able to synchronise relevant target changes back to the source model a cor-

responding source change must exist for each of them. The resulting set of source

changes for a set of relevant target changes is denoted ΔS .

3. Furthermore, each δ ∈ ΔS must exactly perform the original change in ΔR when

the transformation is applied again.

303

Chapter 7. Validation

Lemma 7.6. FURCAS accounts for partiality and non-injectiveness of its view synchron-
isation transformations.

Proof. The synchronisation transformations within FURCAS are given by two transform-

ations TM , syncing view to model, and TV , syncing model to view. Both are generated

from the respective view type specification of the view. For these transformations the

properties given above are fulfilled as follows:

1. The set of relevant changes that can be handled by FURCAS’s transformations is

clearly defined by the scope of the view type as thoroughly explained in Section

5.3.2.1. In addition to simply leaving elements that leave this scope unattended,

FURCAS additionally makes these changes visible to a view’s user as described in

Section 6.6.6.

2. The exact inverse change for a target model change in FURCAS is ensured by the

bidirectional semantics of the constructs employed in the view type specification.

All constructs in FURCAS’s basis TCS [JBK06, JB06b] were initially designed

to be bidirectional. The constructs for handling views in FURCAS, such as OCL

property inits and OCL queries were also introduced in this thesis including an

inversion function. However, one limitation is that for OCL queries that are not

automatically invertible (see Section 5.3.3) an explicit invert statement has to be

provided. If this holds, the inverse change, as required by property 2 can always

uniquely be given.

3. Finally, the equality of the effect of the inverted change concerning the original

target change is actually the same as proposed by Lemma 7.7 which will be proven

in the next Section.

7.1.2.4. Effect Conformity

Effect conformity (cf. Section 4.5.2.1) for a view-based approach is fulfilled if all con-

structs of a view type specification language have a deterministic bidirectional definition.

Lemma 7.7. The textual views that are constructed using a FURCAS view type definition
behave effect conform.

304

7.1. Validating the View Type and View Properties of FURCAS

Proof. FURCAS’s view type specification language is based on TCS. All constructs of

TCS are defined bidirectional [JBK06, JB06b], i.e., from model to text as well as from

text to model. FURCAS adds several constructs to TCS to allow for the specification of

views types. However, all added constructs, such as OCL queries (cf. Section 5.3.2.2)

or OCL property inits are also defined bidirectionally. Especially, for the OCL query

approach, an automatic inversion mechanism is provided which is backed up by the

possibility to specify manual inversion expressions in the view type definition. Thus, we

can say that FURCAS maintains the bidirectional character of TCS and behaves therefore

effect conform.

7.1.2.5. Consistency Conservation

Consistency conservation (see Section 4.5.2.2) of a view has mostly to do with the level

of inconsistency that is allowed during the editing process. Two different types of incon-

sistency can be distinguished: constraint inconsistency and model inconsistency. While

constraint inconsistency relates to the metamodel constraints that may be violated, model
inconsistency deals with the aspect of really creating and storing temporarily inconsist-

ent models.

Lemma 7.8. FURCAS supports the modelling of views with constraint inconsistency.

Proof. The model construction of FURCAS is based on model transformation rules that

are formulated in QVT [Obj11]. As QVT is not restricted by the constraints of a

metamodel, and neither are the view type definitions from which the transformations

are generated, we can say that metamodel constraints are not considered when it comes

to the model construction1. This allows for the creation of models for which metamodel

constraints are unsatisfied.

Lemma 7.9. FURCAS supports the modelling of views with model inconsistency.

Proof. Definition 4.22 specifies a view with explicit support for model inconsistency as:

V = (MV ,VT , S,Λ, I) where I is the set of view elements that are not translatable to

elements in MV . For FURCAS these are the tokens and TextBlocks from the incomplete
or inconsistent as they may occur after certain editing events see Section 5.4.3.3.

In the simplest case, the whole textual representation of a model is contained in a

single TextBlock having a single token which contains the complete text in its value

1However, to indicate their invalid state to the user, FURCAS presents them as error markers in its

editors.

305

Chapter 7. Validation

attribute. This value may be an arbitrary string that is independent from the view type

definition (the TextBlocks metamodel is generic to all view type definitions). This al-

lows FURCAS to store arbitrary text as a TextBlock model and therefore also text that is

inconsistent according to the current view type definition of the TextBlock.

Assuming the universe of all possible textual representations is denoted as the set

CUniv. Furthermore, the set of textual representations that are translatable into a valid

model instance of a given view type VT is denoted as CVT . If we assume that the view

type does not allow to represent all possible textual representations, we can say that the

set of representations that are not translatable into a model according to VT is given by

C̄VT = CUniv∖CVT . Due to the genericness of the TextBlock metamodel, we can still say

that each c̄V T ∈ C̄VT is representable as a TextBlock model or that ModelsVMM = CUniv

with VMM equals the TextBlock metamodel.

According to Definition 4.22 of model inconsistency the set I is defined as: I ⊆
ModelsVMM so that (I, V) /∈↝Tm . If we set I = ¯CVT and VMM = TextBlocks metamodel
we can conclude that ∀c̄V T ∈ C̄VT , e ∈ MV ∣ (c̄V T , e) /∈↝Tm , which proofs that FURCAS

allows for the representation of arbitrary model inconsistency.

7.1.2.6. Ensuring Bidirectionality for View Synchronisation

Having presented an approach, that allows to bidirectionally synchronise textual views

with their underlying model, leaves the question if FURCAS also supports the require-

ments that are posed to bidirectional synchronisation transformations as they were intro-

duced by Matsuda et al. To validate FURCAS with respect to Matsuda et al.’s [MHN+07]

properties, this section presents proofs for the formalised properties as they have been

presented in Section 4.5.3.1.

Backwards-Transformation From Unchanged View Keeps Identity of Model
This property ensures that the the fact that a model is just viewed does not imply changes

to it once it is synchronised back without changes. The formal implication was defined

as follows:

⎛
⎜⎜⎜⎜⎜⎜
⎝

(1)V = TV (M)∧
(2)V ′ = ΔV ∧
(3)Δ = ∅∧
(4)M ′ =↝TM (V ′)

⎞
⎟⎟⎟⎟⎟⎟
⎠

→ (M ′ =M)

306

7.1. Validating the View Type and View Properties of FURCAS

Lemma 7.10. The FURCAS view synchronisation transformation ensures that the
backwards transformation from an unchanged view keeps the identity of the underlying
model.

Proof. Starting from a domain model M (1), a TextBlocks model V (representing the

view) is generated by the view synchronisation transformation in the direction of the

view (representing TV , cf. Section 6.6). In this scenario no changes are applied to the

transformation ((2) and (3): Δ = ∅). From this point on, the view synchronisation

transformation is triggered in the opposite direction (cf. Section 6.3).

Having no changes at all within the textual representation, will result, due to the in-

cremental character of the employed lexing and parsing approach (cf. Sections 6.3.2.5

and 6.3.2.6), in an empty set for the parsed version of the TextBlock model. Thus, the

TextBlock merging process will also not be triggered and the underlying model remains

unchanged as requested by this property: [...] →M ′ =M .

Model Updates do not Force Overwriting of Edited Views To achieve this

property, a transformation T−1M is required that restores a modified model M ′ to the ver-

sion M which was the original source for the view V .

∃T−1M ∈ TransformationsMM ∣ (V =↝TV (M)) ∧ (M ′ = ΔM) ∧ (V ′ =↝T�∎�

V
(M ′)) →

(↝T−1M
(V,M ′) =M)

Lemma 7.11. FURCAS allows to retain unsaved modifications to a view even though
the underlying model was updated and would require the view to update and loose these
changes.

Proof. Modifications to a textual view in FURCAS undergo a multi-phased, incremental

update process (cf. Section 6.3). During this process FURCAS creates different versions

of the textual view depending in which phase the update process currently is. Further-

more, if inconsistencies arise during the update process, the intermediate versions are

retained and even persistable. The range of time in which such an intermediate ver-

sion of the view exists is given by the point in time ts which is the point of the first

modification that triggered the first phase of the update process and te which denotes

the point in time when the information of the view is consistently synchronised back to

the underlying model. During the time Δt = te − ts the view is temporarily out of sync

with the underlying model. During Δt the view is vulnerable to changes that update the

307

Chapter 7. Validation

underlying model, as they cannot be synced to the view without loosing the temporarily

inconsistent parts.

FURCAS, therefore, employs retainment policies (cf. Chapter 3 and Section 6.6.5) to

alleviate this problem. During the time Δt the inconsistent parts of the textual view are

protected by an always RetainmentPolicy (�∎�). Thus, we can say that that w.r.t. the

protected region the RetainmentPolicy turns the view update transformation TV into a

modified transformation T�∎�
V . According to the definition of the always Retainment-

Policy the change set applied by a transformation that is combined with this Retainment-

Policy is reduced to :
�∎�
Δ = ∅.

Thus, we can say that V =↝T�∎�

V
(M) ⇐⇒ V =↝T�∎�

V
(M ′). In this case the

backwards transformation T−1M can be the standard transformation TM and we get:

∃T−1M ∈ TransformationsMM ∣ (V =↝T�∎�

V
(M)) ∧ (M ′ = ΔM) ∧ (V ′ =↝T�∎�

V
(M ′)) →

(↝T−1M
(V,M ′) =M) T−1M =TM⇐⇒

∃TM ∈ TransformationsMM ∣ (V =↝T�∎�

V
(M)) ∧ (M ′ = ΔM) ∧ (V ′ =↝T�∎�

V
(M ′)) →

(↝TM (V ′,M ′) =M)

As we identified that V =↝T�∎�

V
(M) ⇐⇒ V =↝T�∎�

V
(M ′) we can go on with:

∃TM ∈ TransformationsMM ∣ (V =↝T�∎�

V
(M)) ∧ (M ′ = ΔM) ∧ (V =↝T�∎�

V
(M ′)) →

(↝TM (V,M ′) =M) ⇐⇒

By this, we can conclude that: (↝TM (V,M ′) =M) ∧ (V =↝T�∎�

V
(M)) is always true.

However, as we assumed that during Δt, V is never modified by TV this restricts the

property that was proven here in a way that the user can not choose whether an update

from the underlying model should be propagated to the view or not. This is a limitation

of FURCAS.

Transformation is Agnostic to Order of Changes In order to provide a con-

sistent behaviour, the backward transformation is required to be independent from the

308

7.1. Validating the View Type and View Properties of FURCAS

order of the changes that have been applied to the view. Section 4.5.3.1 stated that the

following must hold in order to fulfil this property:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

V = TV (M)∧
V ′1 = (Δ1 ○Δ2)V ∧
V ′2 = (Δ2 ○Δ1)V ∧
M ′1 =↝TM (V ′1)∧
M ′2 =↝TM (V ′2)∧

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

→ (M ′1 =M ′2)

Proof. (0) First we need to assume that Δ1 and Δ2 are not overlapping w.r.t. the view

element they modify. Otherwise, if for example in Δ1 an element a is moved under the

containment hierarchy of an element b and in Δ2 b and all its composite children are

deleted an inverse application, i.e., Δ1 after Δ2 would not be possible anyway.

Two different cases need to be distinguished for this property. Depending on whether

the first change Δfirst, be it Δ1 or Δ2, left the textual view V in a (1) consistent or (2)

inconsistent state.

Case (1): If after the first change Δfirst the textual view V is in a consistent state (cf.

Section 5.4.3.3) that means that the change has been propagated to the underlying model

so that Mfirst =↝TM (ΔfirstV,M). For the application of the second change Δsecond we

will then get

Msecond =↝TM ((Δsecond ○Δfirst)V,Mfirst) ⇐⇒
Msecond =↝TM ((Δsecond ○Δfirst)V,↝TM (ΔfirstV,M))

To proof this we need to make sure that the effects of the changes Δfirst and Δsecond

propagated through the transformation do not overlap w.r.t. the elements in M . As

FURCAS allows intra view type overlaps (cf. Lemma 7.3), this, however, cannot always

be guaranteed. Thus, for case (1) it is required that the following restriction (3) holds:

the view type V TV does not have intra view type overlaps w.r.t. to the elements that may

lie within Δ1 ∩
element(δ)

Δ2.

Case(2): If after the first change Δfirst the textual view V is in an inconsistent state

(cf. Section 5.4.3.3) that means that the change has not yet been propagated to the

underlying model so that Mfirst = M . Thus, according to assumption (0) we can say

309

Chapter 7. Validation

that (Δ1 ○ Δ2)V = (Δ2 ○ Δ1)V = (Δ2 ∪ Δ1)V . With this and if Deltasecond made V

consistent again, we can say that:

M ′1 =↝TM ((Δ1 ○Δ2)V) ∧M ′2 =↝TM ((Δ2 ○Δ1)V) ⇐⇒
M ′1 =↝TM ((Δ1 ∪Δ2)V) ∧M ′2 =↝TM ((Δ2 ∪Δ1)V) ⇐⇒

M ′1 =M ′2 =↝TM ((Δ2 ∪Δ1)V)

If assumption (0) and restriction (3) holds FURCAS fulfils this property.

7.1.2.7. Immediate vs. Deferred Update of Views

The update strategy with which modifications to a view are propagated to the underlying

model can be distinguished by the amount of change events that may occur until the

synchronisation between view and model is re-established: Mi+1 = ΔMi → #(Δ) = n.

If n = 1 then the update process is immediate.

Lemma 7.12. The update mechanism of FURCAS is a deferred update mechanism.

Proof. Assuming a sequence of changes to a view Δv = (δ1, δ2, . . . , δn). Upon the first

change δ1 FURCAS will create a temporary version of the TextBlock model (cf. Section

6.3). This change may either lead to a full roundtrip bringing the model back to a

consistent and updated state, but it might also be the case that the inconsistent and edited

state is maintained as δ1 may have made a token unlexable or a TextBlock unparseable

(see Section 5.4.3.3). For the latter case, the underlying model Mi is still unmodified

while the sequence of applied changes to the view is now Δv = (δ1). As FURCAS allows

to make arbitrary textual modifications to its views this change may already include

a part δ
p
1 which would be translatable to an atomic change in Mi but is, for example,

concatenated with a second change part δ
q
1 which does not allow a translation to the

underlying model. Upon the application of the second change δ2, the same may apply,

either the view reached a consistent state because the untranslatable remainder δ
q
1 is

now completed by δ2 or δ2 is itself again a part which may complete δ
q
1 with a part

δ
q
2 but provide a further incomplete part δr1. The set of pending changes that would

be applicable to Mi is therefore enlarged each time another incomplete δi from Δv is

applied. Therefore, by induction, we can conclude that the set of changes Δ that makes

the difference between two subsequent versions of M may be as large as #(Δv) = n

where n ≥ 0.

310

7.1. Validating the View Type and View Properties of FURCAS

7.1.2.8. Mergeability of Views

A model and a view are considered mergeable according to Definition 4.25 iff the change

sets to the view ΔV and to the model ΔM do not intersect over the same elements with

an inverse action. As FURCAS cannot not ensure this mergeability at any time, Lemma

7.13 will formulate that mergeability is not always fulfilled.

Lemma 7.13. FURCAS does not ensure mergeability of views in arbitrary cases.

Proof. As FURCAS employs a deferred update mechanism (cf. Lemma 7.12), arbitrarily

many changes may occur between two synchronisation points between model and view.

Therefore, it is also possible that during the time Δt in which the view is out of sync

with the model arbitrarily many modifications can be made to the underlying model.

Thus, it is also absolutely possible that there is a pair of changes δM ∈ ΔM and δV ∈ ΔV

which are, mapped through the synchronisation transformations, inverse to each other.

Therefore, we can conclude that views in FURCAS are not mergeable at arbitrary points

in time. See also Section 8.2 for details in this limitation.

7.1.2.9. Respect to Access Control

According to Definition 4.26, a view fulfils respect to access control if it does not allow

to modify elements that are not part of the view.

Lemma 7.14. Views that are editable in FURCAS pay respect to access control.

Proof. (0) We assume, for this proof, that transitive deletion through the composition

hierarchy [Obj02, Obj06], which deletes all elements that are (transitive) composite chil-

dren of an element e does not take place.

(1) The set of element types that can be modified through a view in FURCAS is limited

to those that are part of the text to model update transformation TM . This transformation

is completely generated from the respective view type definition VT . All element types

that are contained within VT are considered to be part of a view in general. This reduces

the set of modifiable models to a subset ModelsVT ⊆ModelsMM .

(2) Furthermore, only those models that are explicitly referenced by one or more Text-

Blocks of a textual view of VT may serve as target model of TM . This is denoted as

ModelsTM ⊆ ModelsMM . In combination with (1) we get ModelsTM ∩ModelsVT as ele-

ments that are potentially modifiable through a given view.

311

Chapter 7. Validation

As a TextBlock may only reference elements that are typed according to the tem-

plate a TextBlock references, we can say that ModelsTM ∩ModelsVT = SV of a view V .

This proofs that no element outside of SV can be modified through a view which is the

requirement for respect to access control.
However, according to assumption (0), this is only valid if we omit the concept of

transitive deletion through the containment hierarchy of an element e. This is considered

a limitation of FURCAS (see Section 8.2).

7.2. Classification of Change Events

The incremental update process presented in this thesis (cf. Chapter 6) aims at retaining

and updating elements in a fine-grained way that are (partially) represented in a textual

syntax and edited with means of character insertion and deletion. In contrast to syntax

directed editing [LP88], FURCAS allows to type or delete arbitrary characters in the tex-

tual representation. Form this, it is obvious that not every atomic operation performed

on the view can directly be mapped to an atomic modification to the underlying model.

Support for temporary inconsistency is also a key factor of a modern language work-

bench [Fow05] and allows to creatively work with the created languages (or view types

in FURCAS). The combination of both poses challenges to the synchronisation mechan-

isms between view and model. It is not possible that after larger changes which require

a complete reconstruction of a model element from the textual view, those sub-elements

and properties of an element that are not part of the current view can be restored as they

were.

FURCAS employs a multi-phased, incremental update process including different

levels of reuse factors to alleviate this problem. This Section presents an analysis of

critical change events and their impact on the underlying model.

7.2.1. Token Reuse

The reuse of tokens is based on the different previous versions on which the changes

were performed. Table 6.1 on page 267 showed the criteria according to which a token

may be reused after the lexing phase was performed. Due to the self-versioning of the

tokens, this reuse is only possible if the modification was made near to the original

position of the reusable token. Of course, a reuse of old tokens only makes sense if they

are not still existent in the newer version. Then the existing ones will be kept and new

elements will be created for the newly created tokens.

312

7.2. Classification of Change Events

Thus, critical modifications are those where a token t is deleted from a position p1 and

the very same token is written at a different position p2. If p1 and p2 are directly adjacent

to each other the token reuse will still work as the change was still performed in the

same region (cf. Section 6.3.1.1). In this case the token reuse algorithm will check all

candidates within this region for their reuse capabilities. However, if the inserted token t′

which, semantically should represent t, is inserted within a different region, token reuse

is not possible.

For example, assume a textual representation of a business object with associations as

follows: bo Customer { Address a; PurchaseOrder* orders; }. De-

leting the tokens (Address a;) and typing the very same textual representation after

the orders association will not allow for reuse of the old tokens Address a;.

Such cases will, in turn, lead to the problem, that the TextBlock merging phase will not

recognise the two TextBlocks as being mergeable, as they have the same token content

but do not have tokens in their version history in common.

This limitation impacts the way developers can work with textual views provided by

FURCAS. Deletion of elements that are only partially viewed should be omitted if they

are intended to be placed elsewhere. Note, however, that copy & paste in such cases

is not problem for FURCAS, as in this case not only the textual representation, i.e., the

character sequence, but also the TextBlocks of the respective region is copied and pasted.

Furthermore, if the deleted and re-written region is complete according to its view type,

this limitation also does not apply. In this case all information of the element can be

re-constructed from the textual representation.

7.2.2. TextBlock and Model Element Mergeability

According to the TextBlock mergeability factor computation (cf. Section 6.3.2.10), sev-

eral factors, such as the template, the chosen alternatives and mode of a template, the

number of reusable tokens as well as the manually defined reuse strategies decide upon

the mergeability of TextBlocks. As discussed in the classification of type A and type B

changes in Section 6.3.1, changes that reach over more than one TextBlock while not

completely enclosing a complete subtree of the TextBlock model are classified as type

B. These changes cannot be directly treated by the default incremental update process

of FURCAS. Still, FURCAS will try to stepwise integrate them using the type B update

approach.

313

Chapter 7. Validation

The whole synchronisation process depends on the fact that there are possible syn-

chronisation points at which model and view are in sync again. FURCAS provides sev-

eral mechanisms (for example, see Section 6.6.5 for the handling of inconsistencies) that

try to alleviate the fact that, with the given high degree of freedom in interaction with

the textual representation, it becomes unavoidable that view and model get temporarily

out of sync. However, especially if multiple type B changes overlap with each other

in between two synchronisation points the probability of loosing information from the

partially viewed model increases.

7.2.3. Interaction Guidelines for Textual Modelling with FURCAS

The interaction with the textual editors in FURCAS is nearly as free as with using every

“standard” textual editor. However, due to the reasons stated above, some textual in-

teraction patterns may lead to unwanted effects w.r.t. the underlying model. Therefore,

developers doing textual modelling with FURCAS should respect the following interac-

tion guidelines to optimally work with FURCAS.

7.2.3.1. Awareness of Partiality

As view based modelling is in many ways different than interaction with, for example,

text files, the user also has to be aware of these differences. Deletions of elements that

are only partially viewed should only be made if explicitly intended. Developers deleting

elements in a partial view should be aware that the element might represent more than

what the view currently shows. A deletion of such elements will then not only delete

the bits that a current, partial view shows, but also bits that are not directly visible in

the current view. Especially undoing such a deletion is then problematic. Just re-typing

the representation of the element within the current view is not enough to completely

reconstruct it (see also Section 7.2.3.3). FURCAS provides several concepts, that allow

language engineers to extend the generated FURCAS editors with functionality that can

alleviate this problem.

• FURCAS easily allows to query all other views from which an element

can be viewed and/or edited. This query is possible as all views are

stored as (TextBlock-)models based on the same modelling infrastructure

as the models themselves. FURCAS formulates this query based on the

correspondingModelElements and referencedModelElements

association of the TextBlock metamodel.

314

7.2. Classification of Change Events

• Already during the creation of the view type, FURCAS gives hints on the partiality

or completeness of a view type. As introduced in Section 5.3.2.1, either a language

engineer has to explicitly state that a view type is partial w.r.t. a certain class of the

metamodel or FURCAS will raise a warning that this is the case and it might not be

intended.

• FURCAS editors explicitly mark regions where a view is selective (cf. Section

5.4.5). This informs the developer that there are more elements in a certain region

than those that are currently shown in the view. These indications will make the

developer even more aware of the partiality of a current view.

7.2.3.2. Deletion vs. Removal from View

As opposed to deleting characters from a text file, textual modelling incurs two different

flavours of deletion. First, removal from view which only removes the textual represent-

ation from the view and does not delete the underlying element. And second, deletion
from model which includes the fist case but furthermore also deletes the element from

the model. Depending on the type of the view, i.e., selective or holistic, different types

of deletion may be more intuitive than others. However, in contrast to traditional textual

editing the mere existence of two different types of delete operations may seem unusual.

FURCAS supports both types of deletions and also lets the language engineer decide

which one is the default behaviour for certain view types. In addition, each developer

may configure his or her own precedences w.r.t. to this option.

7.2.3.3. Retyping vs. Undo

After accidentally deleting an element from a view there are two different options on

how the element can be re-created. First, by using means of the editor to model the

exact same element that once existed and second by using the undo functionality to let

the editor rollback the deletion action. In traditional environments the former case is,

of course depending on the size of the deleted text, as likely to occur as the latter. The

larger the deleted text the more probable is that a developer would use the undo action

instead of retyping the whole text again. However, the latter case is mostly restricted by

the runtime of the editor as the undo stack is often cleared as soon as the editor is closed.

Then this option cannot be used anymore.

315

Chapter 7. Validation

However, with the use of partial views, retyping a deleted textual representation of a

model element in just one editor is not enough. All editors that show an exclusive part

of the deleted element need to be opened and the missing parts need to be completed.

Therefore, the undo option should be preferred. For a textual editor this might seem

uncommon but other editors, such as those for partial graphical modelling require the

same actions. Developers just need to be aware of the partiality (cf. Section 7.2.3.1).

7.3. Case Studies

To validate the applicability of FURCAS in practice as well as the automatability of

certain aspects, such as the automatic inversion of OCL query expressions, several aca-

demic as well as industrial case studies were conducted in cooperation with the SAP

AG. SAP has many years of experience in developing platforms as well as applications

for business information systems. In recent years also modelling became more and more

attractive [AHK06] for the company. With their vast diversity of business domains SAP

provides a large field of application for different domain specific languages. During the

cooperation three different case studies were performed with FURCAS, each of which in

a different domain and with a different focus.

The largest of the case studies aimed at creating a multi-purpose language for devel-

oping business applications called Runlet. Runlet covers many facets, such as, static

and dynamic aspects of a system, analytic expressions and object queries as well as an

integrated object persistence and versioning system. Furthermore, Runlet was designed

to provide an extensible basis to build further languages on top. The main aspect that

Runlet stresses w.r.t. to the capabilities of FURCAS is its expressiveness. Runlet provides

a large set of different language constructs that all need to be expressed with the means

of FURCAS’s view type definition language. Section 7.3.2 describes the main aspects of

Runlet as well as the results of the evaluation.

7.3.1. Metrics

To be able to measure certain properties of FURCAS in the course of the execution of

the case studies a Goal/Question/Metric (GQM) based metric suite was applied. Sec-

tion 7.3.1.1 gives an overview on the concepts of the GQM approach. The GQM ap-

proach has, for example, been applied successfully to evaluate the maintainability of

model-driven approaches versus traditional approaches for the development of object-

relational persistence adapters [GWR07, GRW08]. This thesis presents a set of metrics

316

7.3. Case Studies

for answering specific questions w.r.t. the use of view-based textual modelling. Section

7.3.5 then analyses the values gathered for the metrics in the different case studies.

7.3.1.1. The Goal Question Metric Approach

The GQM approach [BCR94] is a systematic method to find and define tailored metrics

for a particular environment. In contrast to the collection of metrics that are chosen

just because they can be measured, the GQM approach helps to identify the reasons

why particular metrics are chosen. It also helps to interpret the values resulting from the

collection of these metrics. The GQM approach is a top-down methodology that consists

of three steps:

1. Starting from the definition of goals that should be achieved by the conducted

measurements. A goal is defined using a template which consists of the following

parts:

Purpose What should be achieved by the measurement?

Issue Which characteristics should be measured?

Object Which artefact will be assessed (this may be a product, a process or a

resource)?

Viewpoint From which perspective is the goal defined (e.g. the end user or the

development team)?

2. The next step is to define questions that will, when answered, provide information

that will help to find a solution to the goal.

3. To answer these questions quantitatively every question is associated with a set of

metrics. It has to be considered that not only objective metrics can be collected

here. Also metrics that are subjective to the viewpoint of the goal can be listed

here.

Figure 7.1 depicts the three levels of the GQM approach. It can be seen that it is

possible to reuse the same metrics for different goals.

7.3.1.2. Defining Metrics for The Evaluation of The Usage of View Based
Textual Modelling

The main goal of the metrics that are defined in this Section is to give hints on the actual

usage of view-based textual modelling. The goal deals with the usage of view specific

317

Chapter 7. Validation

Goal 1 Goal 2

Question1.2Question1.1 Question2.2Question2.1 Question2.3

Metric1.2.1Metric1.1.1 Metric2.1.1Metric1.2.2 Metric2.3.1 Metric2.3.2

Figure 7.1.: GQM structure as defined by Basili [BCR94].

constructs in the view type definitions. The purpose of this goal is to evaluate to which

extent the features of view based modelling were applied by the language engineers that

executed the case study. The results for these metrics will give hints on the degree of

willingness of language developers to exploit the features of view-based modelling also

in textual languages.

Goal 1: Purpose: Evaluation of usage

Object: View type definitions

Issue: Usage of view specific constructs

Viewpoints: Language engineer

Question 1 is related to the willingness of language engineers to split aspects of mod-

elling into different view types:

Question 1.1: How big is the amount of view type overlaps in the developed view

type specifications?

To answer this question, this thesis defines the following metrics:

M1.1.1: The amount of classes in the metamodel for which the view types are defined.

This metric will serve as basis that defines the general size of the modelling lan-

guage under consideration. The larger the number the more complex is the lan-

guage and the more aspects have to be considered in the creation of the view types.

M1.1.2: The amount of view types that are defined for the given metamodel. This num-

ber gives a hint on how many different aspects and/or levels of detail the language

uses. The more view types a language constitutes, the higher the degree of special-

isation on a certain aspect.

M1.1.3: The amount of templates within a view type determines the expressiveness of

a view type. The computation of the average of this numbers gives an overview

318

7.3. Case Studies

on how expressive the view types are. The higher this average number is the more

can be expressed in the view types.

M1.1.4: The amount of properties and templates for which the selective attribute has a
value other than the default. This metric should give hints on whether the selectiv-

ity of textual view types actually finds application in practice.

M1.1.5: The percentage of attributes and references that are actually shown by a tem-
plate. This metric allows to see to which extent the projection feature of view-

based modelling is used to hide information that should not be accessible from

within a certain view.

M1.1.6: The amount of intra view type overlaps is given by how many templates (with

different modes) exist for a given metamodel class:

IntraV iewTypeOverlap = templatesForClass

classesOfV iewType

where classesOfV iewType is the amount of distinct classes for which templates

exist in a view type and templatesForClass is the total number of templates of a

view type. This number gives hints on how many different aspects of the same

element types are exploited from a certain view type. The computation of the

average of this number gives an overview on the overall usage of intra view type

overlap feature.

M1.1.7: The inter view type overlap of a view type gives the degree of overlap between

this view type and other view types and is computed as follows:

InterV iewTypeOverlap =
Σ

c ∈MVT

overlappingClassesOccurences

classes

where overlappingClassesOccurences is the amount of occurrences of a class of a

given view type VT in other view types and classes is total number of classes for

which a template exists in any of the view types.

The second question is concerned with the automatability of newly introduced view

constructs:

Question 1.2: How good is the OCL inversion approach with respect to real world

view type definitions?

To answer this question, this thesis defines the following metrics:

M1.2.1: The overall amount of OCL queries used in a language.

319

Chapter 7. Validation

M1.2.2: The amount of OCL queries that could be automatically inverted by FURCAS’
OCL inversion approach. This metric evaluates the applicability of the OCL in-

version approach in practice. The higher the percentage of automatically inverted

queries the more applicable is the approach in practice.

Based on this plan, the gathering of the respective metrics that help to answer the

posed questions were be evaluated for the case studies described below.

7.3.2. The Runlet Language at SAP

The Runlet language was created with the goal of defining a base language featuring

static and dynamic aspects of a multi-purpose language for the development of business

applications. The development approach was driven by iteratively creating new language

features and trying to realise them with the given means of FURCAS. Starting from a core

language that defines concepts such as classes, associations as well as method signatures

further aspects were added step by step. Finally, a total of 5 different view types were

defined where the metamodel has a total of 233 classes.

The programming model of Runlet defines a fundamental type system consisting of

(entity and value) classes as well as associations between them, an expression language

over this type system, an action language, language modules for analytics, durable

and time-dependent storage and retrieval, as well as binding functionality to REST-like

[Fie00] HTTP ports. Key aspects are the explicit support for side effect free functions

and methods that facilitate parallel execution, e.g., on multi-core systems, and the sup-

port for what is called multi-objects which is Runlet’s approach to collection-like types,

only tighter integrated with the programming model. For example, a method can be

invoked on a multi-object which results in the invocation of that method on each single

object of the multi-object, collecting the results again in a multi-object. This has proven

helpful in mass data operations such as those known from SQL or other data or set

manipulation languages.

The development approach of the Runlet language was driven by its metamodel. The

creation of the metamodel only relied on the business needs of the domain and was

not restricted by the capabilities of the concrete syntax. This is an important aspect of

domain engineering [Ara89] where a clear separation between abstract (the metamodel)

and the concrete syntax should be kept [Fow05].

For executing applications created using the Runlet language, a specific, extensible in-

terpreter framework was created. The Runlet interpreter directly works using the models

320

7.3. Case Studies

created using the FURCAS view types. This enables for good debuggability, fast turn-

arounds and zero downtime of running applications. For extension scenarios, which

were a declared goal of the Runlet approach from the beginning, the interpreter frame-

work is build to allow for easy extensions to the basic language. For each new model

construct that has a contribution to the behavioural semantics of the language, a separate

interpreter class can be defined. The new interpreter class can then simply be registered

based on the newly created metamodel element.

7.3.2.1. Description of the Different View Types

As one goal of the Runlet case study was to allow different levels of interaction with the

system for the different aspects the language incorporates, a multitude of view types was

introduced, each with a different purpose but based on a common core. The following

view types were all created using FURCAS. However, there are two additional non-

textual view types:

• First, a view type using the form of a tree that shows the containment hierarchy of

a model which is used for the basic navigation within the model. As this view type

is containment complete (cf. Section 4.4.3.1), it shows all composite parents and

children of a model. Using drag & drop it is possible to interact with the selective
view types of the textual view types.

• Second, a graphical view type that shows the class and association structure of a

model in a diagrammatic way, using boxes and arrows. This view type is quite

similar to UML class diagrams and is mostly used for overview purposes.

The main editing environment was supposed to be the textual view types of FURCAS.

The Class View Type The class view type is used to show and create the structural

as well as behavioural features of the basic building blocks of Runlet which are called

SapClasses. Figure 7.2 gives an overview on the classes that are involved in this view

type from the static part, called classes, of the Runlet metamodel. This includes the

definition of classes and associations between them as well as method signatures.

In this view type the selective argument is used to let the developer choose which

elementsOfType (refers to association ends) and which ownedSignatures

(refers to method signatures) a certain view should display. This resembles somehow

the partial class concept that is for example used in C#, where attributes, properties,

321

Chapter 7. Validation

LinkTraversal

LinkAdditionLinkRemoval

NamedElement

name : String
description : TranslatableText

(from modelmanagement)

TypeDefinition

Signature
sideEffectFree : Boolean

AssociationEndSignatureImplementation

AssociationEnd
navigable : Boolean
composite : Boolean
contributesToEquality : Boolean

otherEnd()

10..*

+end

1

+signatureImplementations

0..*

SapClass
valueType : Boolean

ClassTypeDefinition

objectParametersConformTo()
effectiveObjectParameters()

0..1

1

+associationEnd 0..1

+type 1

1

0..*+clazz

1 +elementsOfType

0..*

SignatureImplementation

getImplementedSignature()

LinkSetting

ExtentModifyingAssociationEndSignatureImplementation

LinkManipulationAtPosition
at : Integer

SignatureOwner

MethodSignature

isAbstract()

0..1
0..1

+implementation 0..1
+implements_ 0..1

0..*

0..1

+ownedSignatures

0..*

+owner

0..1
OwnedSignatures

Figure 7.2.: Excerpt from the classes package of the Runlet metamodel

and methods could be arbitrarily distributes over different concrete syntax units while

belonging to the same class. An excerpt of the view type definition of the class view is

shown in Listing 7.1.

The purpose of the class view type is mainly the wiring of SapClasses to each

other via the use of associations. Additionally method signatures can be declared. This

view type hides some properties that are not of relevance here. The projection rate of

this view type is therefore 31.1%, which means that only that percentage of available

properties is used in average per class template, the rest is projected away.

For typing the associations and methods, Runlet uses so called TypeDefinitions

(see Figure 7.2). They are intermediate elements between TypedElements and their

referred types, i.e., SapClass. The type definition concept allows for example the

322

7.3. Case Studies

1 template data::classes::SapClass main context(root)
2 : (valueType ? "value") "class" name parameterization
3 [[
4 |
5 "|" formalObjectParameters{ forcedLower=1, separator="," } "|"
6]]
7 (isDefined(adapters) ? "implements" adapters{ mode=implements,
8 forcedLower=1, separator="," })
9 <space> "{" [

10 ownedSignatures{ selective=addition }
11 elementsOfType{ mode=property, selective=addition }
12] "}"
13 ;

Listing 7.1: Excerpt from the class view type showing the template for SapClass

dynamic determination of method call results. For example, assuming a method m()
which has a return type with multiplicity [0..*]. Runlet allows to use method calls also

on multiple instances of an class at once. Thus, m() could be called on a set of objects

O. Then, however, the return type of the method call expression is not [0..*] anymore

but gets a second dimension, as for each element o ∈ O method m() will be called. A

variable receiving the result of such a method call expression would therefore have a

multiplicity of [0..*][0..*].

As the TypeDefinition construct is used at many places in the class view type,

the intra view type overlap is quite high: 2.58. The view type consists, in total, of 199

class templates.

These numbers show that, without projection and without the possibility to define intra

view type overlaps, this view type would have been much more complex. Recall that

the development approach for the underlying metamodel was completely independent

from the definition of the concrete syntax. Thus, a different approach for specifying the

concrete syntax would find the same metamodel as basis.

The Actions View Type The behaviour of SapClasses can be specified using

the actions view type. Runlet therefore provides a complete set of statement (cf. Figure

7.3) and expression (cf. Figure 7.4) language constructs. With these elements Runlet is

Turing-complete and can be used to define arbitrary programs.

A special feature of Runlet is furthermore the possibility to define object queries dir-

ectly in the language. This feature is achieved by the use of the Object Query Language

(OQL) [Cat93] as defined by the ODMG. For the result sets of such queries explicitly

323

Chapter 7. Validation

Assignment

Foreach

Return

ObjectBasedExpression
(from expressions)

Conditional
(from expressions)

WithArgument
(from expressions)

Expression

isSideEffectFree()
evaluatesToEqualAs()
getUsedAliases()
getNamedValuesInScope()
getOwningExpression()
getOwningClass()

(from expressions)

0..1

1

+objectBasedExpression 0..1

+object1

10..1
+condition 1+conditional

0..1

0..1 +argumentOf0..1

ExpressionStatement
1

0..1 +expression
1+expressionStatement

0..1

IfElse

getIfBlock()
getElseBlock()

WhileLoop

getLoopBody()

SignatureImplementation

getImplementedSignature()

(from classes)

MethodCallExpression

asynchronous : Boolean
(from expressions)

Statement

getOutermostBlock()
isSideEffectFree()
isSideEffectFreeForBlock()
getNamedValuesInScope()
getOwningClass()

StatementWithNestedBlocks

Block

getOutermostBlock()
localIsSideEffectFree()
getNamedValuesInScope()
getOwningClass()

1 0..*

+block

1

+statements

0..*
{ordered}

0..1

1..2

+owningStatement 0..1

+nestedBlocks 1..2 {ordered}

SingleBlockStatement

StatementWithArgument

ConditionalStatement

Figure 7.3.: Excerpt from the behavioral package of the Runlet metamodel

typed classes are created in Runlet. The templates for this heavily rely on the advanced

model element construction rules as introduced in Section 5.3.4. With the use of these

constructs no additional model transformation on the resulting model is required to pro-

duce the desired elements. This reduced the effort of defining the language tremend-

ously, as neither additional languages such as QVT nor additional artefacts such as a

separate model transformation were required to build the language. An excerpt from the

definition of the OQL constructs in the actions view type is shown in Listing 7.2. The

template for Iterator, for example, makes use of the foreach construct of FURCAS

as introduced in Section 5.3.4.2 to create the type definitions and classes for the result

set of a query.

The action view type overlaps almost 100% with the class view type as method imple-

mentations can be edited either directly using the class view type or using the dedicated

324

7.3. Case Studies

1 template OqlQuery context(oqlQuery)
2 : [[-- explicit select
3 "select" selected { as=identifier,
4 query=self.fromClause.fromClauseOfOqlQuery
5 .fromClauses.alias->select(i|i.name=?),
6 separator=","}
7 | -- implicit select; constructs tuple from FROM aliases
8 {{ selected=OCL:self.fromClauses.alias }}
9]]

10 "from" fromClauses{separator=","}
11 "where" condition{forcedLower=1}
12 ownedTypeDefinition{mode=oqlQueryResult, forcedLower=1}
13 ;
14

15 template FromClause
16 : fromExpression "as" alias{mode=fromClause}
17 ;
18

19 template Iterator #fromClause context(iteratorFromClause)
20 : name
21 {{ ownedTypeDefinition = foreach(
22 if self.fromClause.fromExpression.getType()
23 .oclIsKindOf(NestedTypeDefinition) then
24 self.fromClause.fromExpression.getType()
25 .oclAsType(NestedTypeDefinition).type
26 else
27 self.fromClause.fromExpression.getType()
28 endif",
29 mode="iteratorFromClause") }}
30 ;

Listing 7.2: Excerpt from the actions view type showing the templates for the definition of OQL

queries.

325

Chapter 7. Validation

Literal

literal : String
(from literals)

This

TypedElement

conformsTo()
getType()

(from classes)

SapClass

valueType : Boolean
(from classes)

ClassTypeDefinition

objectParametersConformTo...
effectiveObjectParameters()

(from classes) 1

0..* +clazz

1+elementsOfType

0..*

Multiplicity

lowerMultiplicity : Integer
upperMultiplicity : Integer
ordered : Boolean
unique : Boolean

isMany()

(from classes)

VariableExpression

NamedValue

getNamedValuesInScope()

(from classes)

1+variable 1

ObjectCountHeadTailAsList Ternary

ObjectBasedExpression

Expression

isSideEffectFree()
evaluatesToEqualAs()
getUsedAliases()
getNamedValuesInScope()
getOwningExpression()
getOwningClass()

1

0..1

+object

1

+objectBasedExpression

0..1

Equals

1

0..1

+left1

+leftOfEquals

0..1

1

0..1

+right1

+rightOfEquals

0..1

ContentEquals

l

Figure 7.4.: Excerpt from the expressions package of the Runlet metamodel

actions view type. The total number of templates for this view type is 143. The intra

view type overlap is, also due to the extensive use of specific type definitions for the

types of the different expressions quite high: 2.1. Due to the similarity to the class view

type also the projection rate of the action view type is quite similar: 22.9%.

The Adapter View Type A strong type system is one of the key features of the

Runlet case study. However, for several reasons the type system is different than those

of the most, prominent programming languages.

Assuming a type A conforms to a type B, objects of type A may be used anywhere an

object of type B is expected. This concept is also known as assignment compatibility.

Different languages define different conformance rules. In Java, for example, conform-

ance is explicit and must be declared by the conforming class or interface by means of

an extends or implements clause. The compiler checks the validity of the conformance

specification. Other languages use what is called structural conformance, sometimes

sloppily referred to as duck typing. An advantage of duck typing is its non-intrusiveness,

which avoids the strong binding that intrusive conformance declaration styles such as

that of Java lead to.

326

7.3. Case Studies

SapClass
valueType : Boolean

TypeAdapter

conformsTo()
conformsToExcluding()
allSignatures()
allSignaturesExcluding()

10..*
+to

1

+adaptedBy

0..* AdaptedTo

10..*

+adapted

1

+adapters

0..*

NamedElement

name : String
description : TranslatableTe...

(from modelmanagement)

MethodSignature SignatureOwner

0..* 0..1

+ownedSignatures

0..*

+owner

0..1
OwnedSignatures

Figure 7.5.: Excerpt from the classes package of the Runlet metamodel showing the type adapter

concept

1 template data::classes::SapClass main context(root)
2 : (valueType ? "value") "class" name parameterization
3 [...]
4 (isDefined(adapters) ? "implements" adapters{
5 mode=implements, forcedLower=1, separator=","})
6 [...]
7 "}"
8 ;
9

10 template TypeAdapter #implements
11 : to{as=identifier,
12 query=SapClass.allInstances()->select(c | c.name = ?) }
13 {{ name = ’From_’.concat(self.adapted.name)
14 .concat(’_to_’).concat(self.to.name) }}
15 ;

Listing 7.3: Declaration of the type adapter syntax in the class view type

327

Chapter 7. Validation

1 template TypeAdapter main context(root)
2 : "adapter" name "from"
3 adapted {query=SapClass.allInstances()->select(c | c.name = ?)}
4 "to"
5 to { query=SapClass.allInstances()->select(c | c.name = ?) }
6 [[
7 ";" -- no signatures
8 |
9 "{"

10 ownedSignatures
11 "}"
12]]
13 ;

Listing 7.4: Declaration of the type adapter syntax in the adapter view type

1 class Customer implements Contact {
2 Address getAddress();
3 }
4

5 class Contact {
6 Address getContactAddress();
7 }

Listing 7.5: Declaration and use of a type adapter in the class view type.

However, duck typing can lead to accidental conformance and makes it harder for

development tools to understand the conformance relations that exist in a large software

application. The decision for Runlet was therefore to introduce the notion of explicit

type adapters that make conformance explicit (cf. metamodel excerpt shown in Figure

7.5 and view type definition in Listing 7.4). Type adapter are still non-intrusive with

respect to both, the conforming class and the class it conforms to. Type adapters have

their own life cycle and can live in separate model partitions. Introducing, modifying

and deleting a type adapter does not have to mean a modification of the conforming class

or its model partition.

Listings 7.5 and 7.6 show the use and the declaration of a type adapter respectively.

Note that both view types work on the same level of precedence. If a type adapter has

not been declared yet its declaration is also done by the use given in a certain class. This

is a good example for where overlapping view types can be used productively to define

different aspects on an element with a different focus.

The projection rate of the adapter view point is 23.5% whereas its intra view type

overlap is 2.1 while the view type consists of a total of 144 templates.

328

7.3. Case Studies

1 adapter From_Customer_To_Contact
2 from Customer to Contact {
3 Address getContactAddress() {
4 return this.getAddress();
5 }
6 }

Listing 7.6: Declaration and use of a type adapter in the class view type.

1 template HttpGetBinding main
2 : "binding" name urlPattern "-->" function
3 ;
4

5 template UrlPattern abstract;
6 template SimpleUrlPattern
7 : baseUrl{as = stringSymbol}
8 ;
9

10 template behavioral::actions::Block context(block)
11 : "{" [
12 (isDefined(statements) ? statements
13 {separator = ";", forcedLower=1} ";")]
14 "}"
15 ;
16

17 template StringTemplate
18 : "<$"
19 [(isDefined(expressions) ? expressions{separator = ";"} ";")]
20 "$>"
21 ;

Listing 7.7: Excerpt from the binding view type

The Binding View Type To provide easy integration of Runlet applications within

GUI frameworks, a template like view type was introduced, which is called binding.

This view type uses similar constructs to other template languages like JSP or ASP.Net

to include HTML constructs into functions or vice-versa. Figure 7.6 shows the corres-

ponding excerpt from the Runlet metamodel. The basic constructs of the view type are

shown in Listing 7.7.

For providing the behavioural aspects of the binding view type, the contents of func-

tions that are provided by a Binding using the statements and expressions parts also

used in the actions and class view points was reused. Therefore, the projection and intra

view type overlap metrics for the binding view type are quite similar to those of these

329

Chapter 7. Validation

SignatureImplementation

getImplementedSignatu...

(from classes)

FunctionSignature

isAbstract()
getImplementedAnonymousFunctionExpressi...

(from classes)
FunctionSignatureImplementation

isSideEffectFree()

(from classes) 0..1
0..1 +functionSignature

0..1+implementation
0..1

Expression

isSideEffectFree()
evaluatesToEqualAs()
getUsedAliases()
getNamedValuesInScop...
getOwningExpression()
getOwningClass()

(from expressions)

Binding

10..1

+function

10..1

FunctionSignatureTypeDefinition
(from classes)

Signature

sideEffectFree : Boolean

conformsTo()
conformsToExcluding()
getNamedValuesInScop...
getOwningClass()

(from classes)

0..*

1

+typeDefinition 0..*

+signature 1

0..1

0..1

0..1

+ownedSignature

0..1

HttpGetBinding HttpPutBinding

UrlPatternHttpBinding
10..1

+urlPattern

10..1

Figure 7.6.: Excerpt from the binding package of the Runlet metamodel

view types. The intra view type overlap metric has a value of 2.43 where the projection

rate is 24.2% and a total number of 146 templates reside within this view type.

The Package View Type The package view type is responsible for dealing with the

modularisation structure of Runlet. This structure is mainly resembled by the definition

of Packages and their containing sub packages, classes and associations. This structure

allows to define the modularisation of a business system and the associations between

classes.

The view type therefore mainly contains structural information, such as: which pack-

age contains which sub-packages, classes and associations, etc. Therefore, the view

type only contains 7 templates. As only the name and containment structure of pack-

ages, classes and associations is represented within this view type, the projection rate of

this view type is quite low concerning these elements. However, in contrast to most of

the other view types which make massive use of the type definition concept for which

mostly templates with only property inits and no textual representations are used, the

projection rate is still a lot higher than in those other view types: 62.6%. The only intra

330

7.3. Case Studies

view type overlap that occurs in the package view point is the existence of two templates

for the local and remote association end. Consequently, the metric for intra view type

overlaps is only: 1.16.

7.3.2.2. “Opportunity Management” an Application built with the Runlet
Language

To evaluate the Runlet language itself, some case study applications where built with

this language using the FURCAS generated editors. The most complex application is

the “Opportunity Management” application. Opportunity management is the process of

generating, managing, controlling and distributing sales opportunities with customers

and related information. Each sales lead is annotated with information such as source,

type, worth, status, likelihood of closure etc. An application for opportunity manage-

ment is furthermore responsible for giving an overview on the progress of several of

these opportunities during an amount of time. The opportunity management application

built with Runlet supports this purpose by allowing for so called “timetravelling”. This

feature allows to see how the sales opportunities were at a certain point in time and see

how they developed over time. Additionally, this application allows for creating reports

across several dimensions such as time, revenue, phase or customer. The interaction

with the application itself is done using a web interface which is directly connected to

the interpreter framework running in a OSGi container included in a web server.

Listing 7.8 shows an excerpt of the textual representation of a part of the application

showing mainly the analytics part of the application. Figure 7.7 depicts the user interface

of the applications showing a report on aggregated values of different sales opportunities.

With the creation of real-world applications using a language created using FURCAS also

the applicability of on this layer of modelling could be shown.

7.3.2.3. Conclusions Concerning the Runlet Case Study

Within the Runlet case study it was demonstrated how a comprehensive programming

model can be developed using FURCAS. The programming model was based on classes

(entity and value) and functions as the basic abstractions. Runlet incorporated ideas

like multi-objects, concurrency, persistence, analytics, declaration and check of side-

effect functions/methods. All these features made this case study quite complex. With

a metamodel of 233 classes, 5 different view types and hundreds of templates Runlet
proved that even a large, industrial scale domain specific modelling language can be

331

Chapter 7. Validation

1 value class Reports {
2 const Amount getExpectedRevenueByMonthAndPhase(Opportunity*
3 opportunities, MonthAndYear monthAndYear, String phase)
4 {
5 return this.getExpectedRevenueByMonthAndPhaseCube()
6 (opportunities, monthAndYear, phase);
7 }
8

9 const function const (Opportunity* opportunities,
10 MonthAndYear monthAndYear, String phase)
11 : Amount getExpectedRevenueByMonthAndPhaseCube() {
12 return aggregate Opportunity* by
13 month: MonthAndYear {
14 return value Calendar().getMonth(fact.expectedCloseDate);
15 },
16 phase: String { return fact.phase; }:
17 key Amount 1..1 {
18 return fact.expectedSalesVolume.times(fact.probability); }
19 Amount {
20 return value Amount(val: 0,
21 currency: value Currency(code: "USD")).plus(values); };
22 }
23 [...]
24 }

Listing 7.8: Excerpt from the Reports of the opportunity management application class displayed

in the class view type

Figure 7.7.: Sceenshot of the user interface built for the “Opportunity Management” application

that was built using the Runlet language.

332

7.3. Case Studies

developed using the view-based textual modelling approach propagated by this thesis.

At several points within this case study new challenges occurred also for FURCAS itself.

In the course of the project the experiences from applying FURCAS in such a large setting

was fed back and let to continuous improvement of the usability and applicability of

FURCAS.

Another dimension that was evaluated in the course of the Runlet case study was

the usability of the generated editors for the defined textual view types. Applications,

such as the “Opportunity Management” showed that it is feasible to work with this kind

of editor. The overall development turnaround time from defining or modifying the

different view types to working with the language itself can be considered relatively low.

As FURCAS not only allows to quickly modify and re-generate the employed view types

but also provides means that help to migrate the existing instances of the view types, an

average turnaround cycle was only about 30 to 60 minutes. This includes several steps:

1. Modification or extension of the metamodel.

2. Adoption or extension of the respective view types.

3. Extension of the interpreter framework.

4. Migration and testing the applications built with the language.

This allows for rapid development and modification of languages which gives lan-

guage engineers to possibility to work on new languages in an agile way. Especially in

the development of domain specific languages where a close collaboration with domain

experts is crucial, this short roundtrip is advantageous.

7.3.3. The Coghead Language at SAP

Coghead [wik] was a company that provided an easy to use and easy to develop Software
as a Service (SaaS) platform. Users could easily develop applications by modelling

their data schemas, in Coghead speak named Collection, using a web based platform.

The SAP AG acquired Coghead in 2008 to extend their Software as a Service (SaaS)

portfolio.

The development of these Collections was mainly done using a form based web in-

terface including some graphical editors for the structural parts of the applications. Us-

ing this approach, Coghead achieved a low entrance hurdle for new customers which

could easily create new and simple applications. However, once applications get larger

333

Chapter 7. Validation

and more complex, this way of development evolved to be more and more impractical.

Therefore, a textual representation including enhanced editors seemed to be a step to-

wards handling this problem. For prototyping a language for Coghead, supporting the

different views of the Coghead platform, FURCAS was used.

The insights gained during development of this case study were mainly to see how

steep the learning curve is for a developer who is inexperienced w.r.t. the FURCAS

approach. In contrast to the Runlet case study, which aimed in the direction of evaluating

the expressive power of the FURCAS approach, in the Coghead case study the focus was

more on the understandability and applicability of FURCAS. One important difference

to the Runlet case study was furthermore that people that were not involved in FURCAS

developed the language. They were given a short introductory workshop on how to

create FURCAS view types. Based on this initial training and and some further guidance,

they developed the view types described in the next section.

7.3.3.1. Description of the Different View Types

Two view types were created for the Coghead case study. One for creating the structure

and schema definitions for the Collections and one for defining permissions on different

levels for the applications. The former view type is therefore called Collection whereas

the latter is called Permissions. The total amount of classes in the metamodel is 108.

The Collection View Type The data schema of a Collection within Coghead is

defined with the Collection view type. Here, the structural aspects, such as fields and

groups of fields form the data structures. In addition, expressions for default values or

constraints can be attached to these fields. The expressions language is based on the

XPath [CD] language that was originally designed for querying elements within XML

documents. Actions, that can be defined for a Collection resemble the dynamic aspects

of the language. This part of the language contributes to the Turing-completeness of

Coghead programs.

An excerpt from the main metamodel constructs used in the Collection view type is

depicted in Figure 7.8. The corresponding view type definition is sketched in Listing

7.9. Listing 7.10 finally illustrates the usage of this view type with a simple example.

The metrics for this view type are quite different from those gathered for the Runlet
language. Coghead does include less implicitly created elements, in contrast to the

massive use of the type definition constructs within Runlet. This fact is mainly reflected

334

7.3. Case Studies

ElementaryTypeEnum
string
timepoint
duration
number
boolean

<<enumeration>>

Collection

getDefaultForm...

SchemaEntry
cardinality : Integer

Schema

1

1

+collection 1

+schema 1

0..*

1

+entries 0..*

+schema 1

SequenceField AggregationFunction
SUM
COUNT
MIN
MAX
AVG

<<enumeration>>
AttachmentField

displayName : String
uri : String

Aggregation
function : AggregationFunction

LinkFieldGroup

FieldGroup

Expression

getType()

LinkField
byValue : Boolean

Query1

+query

1 0..*

0..1

+query0..*

0..1

1

0..1

+query1

0..1

Field
unique : Boolean
type : ElementaryTypeEnum

0..*

+fields

0..*

0..11 +defaultValue 0..11

0..11 +constraint 0..11

0..11 +formula 0..11

1 +field1

0..1

+valueList

0..1

NamedElement

name : String
description : String

(from packages)

Figure 7.8.: Excerpt from the structure package of the Coghead metamodel

in the projection rate, which is 55.3 %. Also the intra view type overlap is quite low:

1.1. This view type contains a total of 29 templates.

The Permissions View Type Another important feature of the Coghead approach

is the ability to define fine grained permissions on the create applications. Figure 7.9

shows the metamodel constructs for this concept. Starting from application level, over

account level down to per Collection level, permissions can be defined. For this purpose,

the permissions view type was created. Listing 7.11 shows an excerpt form the view

type definitions for this view type. It shows the use of OCL queries for the resolving

of accounts for which certain permissions should hold. Finally, Listing 7.12 exemplifies

the use of this view type by providing some simple permissions for a given Collection.

335

Chapter 7. Validation

1 template Collection main context(env)
2 : "collection" name "{"
3 schema
4 actions
5 "}"
6 ;
7

8 template Schema
9 : entries{separator=";"} (isDefined(entries) ? ";")

10 ;
11

12 template SchemaEntry abstract;
13

14 template FieldGroup context(FieldGroup)
15 : "group" $cardinality name "{"
16 fields{mode=inFieldGroup, separator=";"}
17 "}"
18 ;
19

20 template Field
21 : (unique ? "unique") type $cardinality name
22 (isDefined(defaultValue) ? "default" defaultValue)
23 (isDefined(formula) ? "formula" formula)
24 (isDefined(constraint) ? "constraint" constraint)
25 ;

Listing 7.9: Excerpt from the collection view type

The intra view type overlap of the permissions view type is as low as possible: 1.0.

The projection rate 58,7% with a total of 14 templates in the view type.

7.3.3.2. Conclusions Concerning the Coghead Case Study

As the view types of the Coghead case study where created by developers that have no

experience with the FURCAS approach the usability and learnability of FURCAS could

be evaluated in this context. It turned out that in general inexperienced developers could

deal well with the template constructs, whereas special constructs such as context hand-

ling and operator templates were more difficult to handle. The view-specific constructs

turned out to be quite intuitively usable.

Furthermore, this case study showed that FURCAS also allows to define view-based

textual modelling languages for existing setups with a fixed metamodel and a predefined

context.

336

7.3. Case Studies

1 collection Drinks {
2 string name;
3 number quantity default 6;
4 group supplier {
5 string name;
6 string email;
7 string address
8 }
9 buyDrinks (Guests) : Drinks {

10 ...
11 }
12 }

Listing 7.10: Example for a view using the collection view type

CollectionTemplate
name : String

Collection

getDefaultFor...
1

+collection

1
Query0..1

1..*

0..1+collectionTemplates

1..*

CollectionLevelPermission

0..1

1

+theCollection0..1
+permissions1

TemplatedPermission
0..1

1

0..1

+query 1

0..n1

+templatedPermissions

0..n
{ordered}

1

AccountLevelPermission

Role

0..*+createRecord 0..*

0..*
+retrieve

0..*

0..*+retrieveAllRecords 0..*

0..*+updateAllRecords 0..*
0..*+deleteAllRecords 0..*

0..*
+delete

0..*0..*
+update

0..*

0..*

+runtimeCreate

0..* 0..*

+runtimeRetrieve

0..* 0..*
+runtimeUpdate

0..* 0..*

+runtimeDelete

0..*0..*

+designTimeCreate

0..* 0..*

+designTimeRetrieve

0..*0..*

+designTimeUpdate

0..*0..*+designTimeDelete 0..*

ApplicationLevelPermission

0..*

+runtimeCreate

0..*

0..*

+runtimeRetrieve

0..*0..*

+runtimeUpdate

0..* 0..*
+runtimeDelete

0..*

0..*

+designTimeRetrieve

0..*

0..*

+designTimeUpdate

0..*

0..*

+designTimeDelete

0..*

Figure 7.9.: Excerpt from the permissions package of the Coghead metamodel

337

Chapter 7. Validation

1 template coghead::CollectionLevelPermission main context(Perm)
2 :
3 "collection" "permissions" "{"
4 "default" "{"
5 (isDefined(createRecord) ?
6 "create" ":" "(" createRecord{ separator=",",
7 query=#context(Perm).theCollection.getApplication()
8 .myAccount.roles->select(r | r.name= ?)}
9 ")" ";"

10)
11 (isDefined(retrieveAllRecords) ?
12 "retrieve" ":" "(" retrieveAllRecords{ separator=",",
13 query=#context(Perm).theCollection.getApplication()
14 .myAccount.roles->select(r | r.name= ?)}
15 ")" ";"
16)
17 (isDefined(updateAllRecords) ?
18 "update" ":" "(" updateAllRecords{ separator=",",
19 query=#context(Perm).theCollection.getApplication()
20 .myAccount.roles->select(r | r.name= ?)}
21 ")" ";"
22)
23 (isDefined(deleteAllRecords) ?
24 "delete" ":" "(" deleteAllRecords{ separator=",",
25 query=#context(Perm).theCollection.getApplication()
26 .myAccount.roles->select(r | r.name= ?)}
27 ")" ";"
28)
29 "}"
30 (isDefined(templatedPermissions) ?
31 "data-driven" "{"
32 templatedPermissions{separator=";"}
33 "}"
34)
35 "}"
36 ;
37 [...]

Listing 7.11: Excerpt from the permissions view type

338

7.3. Case Studies

1 collection permissions {
2 default {
3 create : (Users,Support);
4 }
5 data-driven {
6 [from Drinks as d where quantity = 100]
7 update(Admins)
8 }
9 }

Listing 7.12: Example for a view using the permissions view type

7.3.4. Additional Case Studies

In addition to the two case studies presented in detail above, two more case studies were

performed using FURCAS. First, another language for business information systems,

this time with focus on the financial sector, called Finex and second a language to create

and modify metamodels themselves, including support for OCL expressions.

7.3.4.1. The FINEX Language at SAP

FINEX stands for FINancial EXpressions, which is a domain specific language de-

veloped using the FURCAS approach as a further real-world, industrial case study. The

Finex language was designed to create business objects responsible for financial busi-

ness information systems that are, for example, performing dunning runs or calculating

balances.

The insights that this case study brought for the FURCAS approach is to get a feel-

ing for the effort for developing a language using the FURCAS approach. These insights

were gathered by letting experts estimate the effort which they would initially predict for

developing the language using a traditional language engineering approach and compar-

ing it with the results that where gathered during the actual development of the language

with FURCAS.

It turned out that the experts estimated at least two person weeks for the initial pro-

totype. However, this initial version could already be delivered after three days. In

the course of refining the prototype and adding new functionality to the language very

short roundtrips from defining new requirements to presenting the prototype could be

achieved.

339

Chapter 7. Validation

7.3.4.2. The MofClass Case Study

Creating and modifying metamodels using a textual representation has been tackled with

different textual modelling approaches in the past. For example, KM3 created by Jouault

et al. [JB06a] included a textual notation for specifying metamodels using the TCS ap-

proach. Furthermore, the Emfatic tool [Dal05] allows to define metamodels for EMF in a

textual way using Gymnast [GS07]. However, all these approaches do not explicitly deal

with the different aspects of a metamodel, namely package hierarchy, classes and asso-

ciations as well as OCL constraint and other OCL based expressions. A metamodel in

the textual representations of these approaches is therefore mostly one huge text without

further structuring or view building. Furthermore, OCL is only weakly supported by

these approaches.

Therefore, also due to the fact that metamodelling is an essential precondition for

the application of FURCAS, three different textual view types were developed for the

creation of metamodels using FURCAS. The first view type is responsible for the static

structure using classes, attributes and associations of a metamodel. This is the one that

also the other textual metamodelling approaches support quite well. Additionally, a

view point for the outline of the package hierarchy was created. In this second view

type packages and classes as well as associations as first level entities can be edited on

a coarse grained level. Finally, a third view type was created for to be able to edit OCL

expression-based constructs such as constraints, attribute derivation rules and operation

body definitions.

Especially for large metamodels, such as the Runlet metamodel consisting of several

hundred classes the existence of an additional coarse grained view type turned out to

be useful. Furthermore, as large metamodels such as the Runlet metamodel also tend

to employ a decent set of more or less complex OCL constraints as well as other OCL-

based constructs, the explicitly supported OCL view-type was also widely used.

7.3.5. Metrics Gathered for the Case Studies

Table 7.1 combines the metrics gathered for the different case studies to average num-

bers. A closer look on these number reveals that the case studies vary in many aspects

such as the size of the mapped metamodel, the amount of view types and templates

therein. The derived metrics M1.1.5 to M1.1.7 indicate an overview on the use of the

special view based features of FURCAS. Especially the two different overlap rates show

that this property of view based modelling was extensively used. Also the ability to hide

340

7.3. Case Studies

Metrics Runlet Coghead Finex MOF

M1.1.1: classes 233 108 63 82

M1.1.2: view types 5 2 1 3

M1.1.3: avg. templates 127.8 21.5 63 19

M1.1.4: avg. selective temp. 1.3 0.5 1 0.33

M1.1.5: % projection 31.1% 57.0% 28.1% 29.0%

M1.1.6: intra VT overlap 2.1 1.1 1.8 1.5

M1.1.7: inter VT overlap 2.8 0.15 0 0.23

Table 7.1.: Results for metrics defined for question 1.1.

Metrics Runlet Coghead Finex MOF

M1.2.1: amount of queries 76 13 8 12

M1.2.2: invertible 76 13 8 10

Table 7.2.: Results for metrics defined for question 1.2.

certain properties of a model in one view type while showing them in other view types,

indicated by the projection rate, was used frequently. Only one case study lies above

50% of non-hidden properties, the three others lie around 30% which means that, in

average, 70% of the properties are hidden.

The inter view type overlap also varies to a great extent depending on the language

is structured. Especially in the Runlet language this value is rather high (2.8). This

is due to the fact that the actions and expressions part is re-used in several different

view types (actions, type adapter, class and binding). It also indicates that a language

modularisation technique such as, for example, propagated by the MontiCore approach

[KRV07b, Kra10] may be useful to extract the common parts into a common base lan-

guage. Language modularisation is currently not supported by FURCAS which leads to

an increased maintainability effort in the case of the Runlet language.

Table 7.2 shows the resulting values for question 1.2 which was to evaluate the ex-

tent to which the OCL queries used in the view type definitions could be automatically

inverted. Automation is perceived to have a positive impact on the maintainability of a

system. Therefore, we can say that, the higher the amount of automation, the better is

the maintainability of a system. As the values of Table 7.2 indicate, the automation rate

for the inversion of OCL queries was very high. Except for the MOF language were two

341

Chapter 7. Validation

very complex OCL queries, FURCAS could automatically invert all queries used in the

view types of the different languages.

7.3.6. Conclusions Drawn from the Case Studies

In general, the case studies themselves as well as the metrics gathered for the case studies

show that it is possible to create complex multi-view textual languages with FURCAS.

Even Turing-complete languages with extended features such as a complex type system,

integrated query languages and GUI bindings can be created using the approach. The

realised languages made use of the view-based concepts to a certain extent. The most

used feature was the ability to project properties away in one view and show them in

a different view. The selectiveness feature, on the other hand, was not used at many

places. Maybe selective modelling is only sensible in very specific places within a tex-

tual language. The models resulting from the modelling with FURCAS were used in

interpreters or translated to a different runtime environment, but by and large were used

in a productive environment without need for additional modifications by external tools.

342

Chapter 8.

Conclusion

This section gives a summary of the contributions presented in this thesis. Furthermore,

it discusses current limitations of the FURCAS approach in Section 8.2. Section 8.3

presents open questions that give hints to future possible extensions and improvements

of the approach.

8.1. Summary

This thesis presented several contributions to different areas of model-driven engin-

eering and language engineering. First, the RetainmentPolicy approach enables trans-

formation developers to define explicit rules on how to handle external target model

changes. Second, the FURCAS approach allows for the definition of textual view types

that may be partial and/or overlapping w.r.t. their underlying metamodel. Third, on view

level FURCAS contributes the TextBlock-decorator approach that can handle arbitrarily

scoped textual views which includes selective views and views that overlap w.r.t. their

underlying model. Finally, this thesis presents a view synchronisation approach that is

tailored for the FURCAS approach and features retainment of format and temporarily

inconsistent parts over round-trip transformations made during the modelling process.

8.1.1. Retainment Policies

The retainment policies approach is targeted at scenarios where a transformation’s target

models are at the same time subject to other external modifications. These modifications

might either come from manual changes made by a modeller, or by other model trans-

formations that do, e.g., refinements on these target models. With traditional model

transformations, such changes would either be overwritten by the transformation, once

it is re-executed, or, in the case of a bidirectional transformation synchronised back to

343

Chapter 8. Conclusion

the source model. This might not be the outcome the transformation developer wanted

to realise.

To enable transformation developers to easily specify retainment behaviour this thesis

provides the retainment policies approach. An extensive analysis and classification of

changes that might occur in a target model as well as the possible reactions of a trans-

formation to these changes was performed. Based on this analysis, for each possible

type of change a retainment kind was defined. With the combination of a retainment

kind and one or more transformation rules or a certain area in the target model to which

it is applied, this forms so-called retainment policies.

With the use of the retainment policies approach, transformation developers can eas-

ily configure their standard transformations to become target model change aware. As

the retainment policies are annotated within the comments of the original transforma-

tion definition, the transformation can also still be used without the retainment policies

extension.

The QVT based realisation of the retainment policy approach allows for a broad ad-

option of the approach in practice, as QVT is the OMG standard for model to model

transformations. Furthermore, this enables the approach to be used for already existent

transformations and, by annotating them, making them aware of target model changes.

Being formulated on a solid formal basis the retainment policies approach has well

defined formal semantics. Properties such as completeness were proven based on the

formal representations of transformations and the retainment policies.

8.1.2. Definition of Textual View Types using FURCAS

Defining textual view types on models that may be partial and/or overlapping w.r.t. the

used metamodel(s) was not supported by any textual modelling approach, yet. In con-

trast to textual view points, however, graphical view types already support this in many

ways. This results in a gap between the applicability of graphical and textual models

on the same level. With the use of a template based view type declaration language

FURCAS closes this gap. With explicit model constructs for defining the scope of a view

type as well as advanced model construction rules, which employ OCL as their main

language, FURCAS leverages textual views to the same level of abilities as graphical

modelling languages.

FURCAS bases on an existing template based approach called TCS and extends TCS’s

concepts with constructs for the view-based modelling paradigm as well as OCL based

344

8.1. Summary

lookup and creation rules. With the use of OCL, FURCAS reuses a language that lan-

guage engineers would use anyway in the construction of a metamodel’s constraint sys-

tem. Therefore, no new language needs to be learned which improves the willingness

of language engineers to use the approach as well as lowering the time needed for the

initial learning phase of the FURCAS view type definition language.

In order to keep the OCL expressions bidirectional, which is required to retain the

ability of TCS to specify mappings from text to model as well as from model to text in

one definition, an OCL inversion mechanism is introduced. This approach automatically

derives inverse expressions for the OCL queries of a FURCAS view type specification.

Only a small set of OCL expressions cannot be automatically inverted and require a

manual specification of the inversion expression.

A formal validation of the properties a view-based modelling approach may support

showed that FURCAS enables view-based modelling for textual languages to a nearly

feature complete extent. Additionally, the industry scale validations of FURCAS show

that it is possible to define complex, real-world view-based languages using FURCAS.

Furthermore, it showed that the special view building constructs where used to a reas-

onable extent.

8.1.3. Non-Intrusive Textual Views using FURCAS TextBlocks-Models

Keeping the representation and layout information of views decoupled from the actual

models was possible in graphical modelling languages, but they were tightly coupled in

textual modelling languages. The TextBlocks approach introduced in this thesis resolves

this coupling and allows to non-intrusively annotate models with their textual represent-

ation. This approach also features the storage of custom layout as well as temporary

inconsistency in the textual representation.

To achieve this kind of non-intrusive textual representation, FURCAS includes the

TextBlocks metamodel which can represent arbitrary textual structures. In combination

with the view type definition, the special FURCAS editor allows for the interaction with

the textual view representation featuring all kinds of productivity enhancing component.

Extensive editor support for the TextBlocks approach, including refactoring tools and

a generic auto-completion approach enables users of the view-based approach to effi-

ciently interact with textual views on their models. As incomplete work is retained, also

fast view switching for increased productivity [FKN+92] is possible.

345

Chapter 8. Conclusion

The case-studies performed as validation for the approach showed that it is possible

to use a feature rich and complex textual modelling language to create domain specific

applications.

8.1.4. View Synchronisation for Textual Views

Whenever multiple views simultaneously represent a model and are at the same time

editable, synchronisation challenges arise. In the special case of textual views research

could not present a satisfying solution, yet. Especially support for temporarily incon-

sistent textual representations and retainment of textual layout information was missing.

This thesis introduced an incremental, element retaining and bidirectional update

mechanism that is specifically tailored to the use of textual views. With the use of

the retainment policy approach, introduced early in this thesis, this update mechanism

is capable of retaining layout information as well as temporarily inconsistent states of a

model’s textual representation.

Due to the incrementality of the approach, the FURCAS editor can update the model

in the background, while the modeller is still working on the model. This raises the pro-

ductivity as no additional time is required for the view to model update transformation.

Formal validation of the synchronisation properties of the FURCAS approach ensures

that certain requirements for view-based modelling are met.

8.2. Limitations

The assumptions and limitations of the retainment policy approach have already been

discussed at the end of the corresponding chapter in Section 3.4 and 3.12 respectively.

Therefore, this Section will only discuss the limitations of the FURCAS approach itself.

8.2.1. Determination of Domain Completeness for OCL Queries not
Supported

As discussed in Section 5.3.2.1, currently the view types of FURCAS cannot be checked

for domain completeness on the level of their included OCL queries. Brucker et al.

[BDW06], identify that reasoning on the total scope of an OCL expression is still an un-

solved challenge. They say that this is mainly due to the fact that the OCL specification

[Obj10a] is “based on naive set theory and an informal notion of model” and “it assumes

346

8.2. Limitations

a universe for values and objects and algebras over it without any concern of existence

and consistency”.

Therefore, one limitation of the view type approach of FURCAS is that the scope of

the view type cannot always be completely determined. However, as queries can only

narrow the selection made in a template rather than widen it, the scope determined by

FURCAS may only be a superset of the actual scope. Thus, no elements will be con-

sidered out of scope, if they are actually within the scope if the OCL query is considered.

A solution to this problem could be the use of a stronger semantic definition of OCL,

as also proposed by Brucker et al. [BDW06]. Based on this definition, the domain com-

pleteness determination could be extended to the complete expressive power of OCL.

8.2.2. Mergeability not Guaranteed

In the course of editing a textual representation of a model it is inevitable that in some

cases view and model are out of sync. If during this time, modifications to the underly-

ing model, e.g., through other views, are performed FURCAS may need to merge these

changes, once the view is again in a consistent state. As these changes may also conflict

with each other, a completely automatic merge is not always possible. In these cases

FURCAS will provide an interactive merge, based on the textual representation of the

model. However, as actually more than just the textual information is present, i.e., there

is also the underlying model, this may not always be the best solution. An integrated

merge which uses both, information from the textual merge as well as from a merge on

model level could improve this process.

8.2.3. Respect to Access Control

Respect to access control is one of the properties that is requested by the view synchron-

isation properties presented in Section 4.5.3.2. However, the validation of FURCAS

against this property (cf. Section 7.1.2.9) showed that there is one case in which this

property does not hold. This is the case when an element that is deleted through a view

contains elements in its containment hierarchy and the current view type is not down-
wards containment complete. According to the semantics of containment, defined in

the MOF specification [Obj06], all transitively contained elements will be deleted once

their parent element is deleted. This contradicts with the requirement for access control

which says that only access to those elements should be granted that are shown in the

view. Modellers need to be aware of this limitation when they use FURCAS.

347

Chapter 8. Conclusion

8.2.4. Deletion of Partially Viewed Elements

One of the main challenges that the FURCAS approach had to face was the ability to

retain partially viewed elements during editing. As, at least in theory, using textual

interaction a modeller could first delete a whole textual view using textual deletion and

then re-type the very same constructs later-on. If these actions occur within a larger

period of time in between, the limitation of the undo action stack (cf. Section 7.2.3.3)

may avoid a revert of the deletion action using the undo action. Then the parts of the

element that were not viewed in the current, manually re-typed view will be lost.

8.2.5. Trade-Off Between Evolution of Concrete And Abstract Syntax

One of the main differences between FURCAS and other textual modelling environments

is that FURCAS stores primarily the abstract syntax, the underlying model. It keeps the

concrete syntax, the textual views, loosely coupled to the actual model. This gives ad-

vantages in evolution scenarios when the concrete syntax evolves faster than the abstract

syntax. While the underlying model may stay unchanged, for a new version of the con-

crete syntax only the corresponding templates in the view types need to be changed. As

the instances of a view type, which are represented as a TextBlocks model are directly

connected to their corresponding view type model, changes to that view type model can

directly be reflected in the TextBlocks model, too. For example, if a language engineer

changes the keyword ‘bo’ to ‘businessObject’, all connected LiteralRefs

will find the new value and update their textual representation accordingly.

On the other hand, the evolution problem is now shifted towards the metamodel evol-

ution and model co-evolution problem. Metamodel changes now require a migration of

all instance models as well as the view types. For the area of metamodel evolution and

model co-evolution, recently a set of promising approaches emerged [BGGK07, Wac07,

HBJ08, BG10]. With the use of such an approach also the language evolution approach

in FURCAS could be handled.

In the end the language engineer has to decide on this trade-off, which is influenced

by what is anticipated to change more frequently – the abstract or the concrete syntax.

8.3. Open Questions and Future Work

This section gives an overview on possible areas of future research based on the results

of this thesis.

348

8.3. Open Questions and Future Work

8.3.1. Hybrid Model Merge

As outlined in the limitations section, there are cases where it becomes inevitable to

merge changes from a view with those coming from external sources applied to the same

underlying model. The current merge approach that FURCAS employs is solely based

on the concrete textual syntax and uses standard techniques for that. However, as in

FURCAS not only the textual but also the abstract model representation as well as a ver-

sion history of the textual representation is available, this task could by improved. Merge

techniques that take the semantics of the merged text into account became available some

years ago [Men02]. The EMF framework on which FURCAS’ implementation is based,

also came up with an approach for merging models called EMF Compare [Bru10]. A hy-

brid approach for merging changed textual views with their modified underlying model

could alleviate the merge problem tremendously. As most of the time, due to the given

links between view and model, there are already existing correspondences, these could

be exploited to improve the merging process [PB03].

8.3.2. Recovering of Deleted Model Elements

Recovering of deleted, partially viewed elements is not always possible. The limitations

section already mentioned that there may be cases where having the possibility to undo

unintended changes by using an IDE’s undo stack may also not always be possible.

However, an idea to get rid of this problem would be to introduce an approach that

tries to revert unintended deletions of partially viewed elements. This could be achieved

by trying to get a complete image of the deleted element by its remains in different, still

existing view instances. Analysing the context of the remaining textual representations

and matching it according to the view type definitions might give enough information to

be able to reconstruct a deleted model element completely.

8.3.3. Modular Development of View Types

Having different view types for the different aspects of a model element enables for

better separation of concerns. However, there are still cases where multiple view types

share a common part of a syntax definition. Especially core constructs, such as an ex-

pression system, strive to be reused. The case studies performed with FURCAS also

showed that it is a valid use case to have a larger core language that is reused several

specific languages that extend the base language only slightly.

349

Chapter 8. Conclusion

To be able to maintain such core components in a better way, it is inevitable to extract

them into an external, reusable module that can then be imported by the using view

types. Krahn [Kra10] introduced a module concept for the MontiCore approach for

textual modelling. Also Kleppe [Kle09] mentioned the use of an interface language to

ease extensibility of software languages.

Still, FURCAS with its extensions to explicit view-based modelling, extensive use of

OCL expressions would need a more specialised approach for modularisation. For ex-

ample, in order to reuse OCL queries one could introduce the notion of generic type

system for OCL [Kya05] to these queries. This would allow to write generic base ex-

pressions that could then be specialised in the using view types and bound to a certain

type.

350

Appendix A.

Cheat Sheet

Symbol Description Pg.

Basic Definitions
⊥ denotes the undefined state 20

N+ denotes the set of positive natural numbers includ-

ing � and excluding 0.

N+0 denotes the set of positive natural numbers includ-

ing � and 0.

N� ∶= N+0 ∪ � denotes the set of positive natural numbers includ-

ing 0 ,� and an undefined state.

B ∶= {true, false} denotes the set of logical values.

D ∶= {first , second} denotes a set of values for the distinction between

the first and the second end of an association.

projn(x1, ..., xn, ..., xm) =
xn

denotes the n-th element in a given tuple.

P(X) denotes the powerset of a given set X

B(X) denotes set of all multi-sets over a given set X

#(X) denotes the cardinality of a given set or tuple X

#y(X) denotes the cardinality of element y in a given

multi-set X

r∗ denotes the reflexive transitive closure of a binary

relation r and a set-valued function (which is an-

other representation of a binary relation)

r+ denotes the transitive closure of a binary relation r

e ∈ T where T is a tuple means e ∈
⋃

n=1..#(T)
(projn(T), if projn(T) is a set;∅, else)

∃e1 ∈ E1, ..., en ∈ En∣... is shorthand for ∃e1 ∈ E1∣(...∣∃en ∈ En∣(...)...)

351

Appendix A. Cheat Sheet

Symbol Description Pg.

Models and Metamodels
MM Metamodel 20

C is the finite set of classes

A is the finite set of associations (for sake of brev-

ity, I consider all associations as navigable in both

directions)

P is the finite set of attributes

first ∶ A→ C is the mapping of associations to their first end

second ∶ A→ C is the mapping of associations to their second end

attributes ∶ C → P is the mapping of classes to their attributes

isComposite ∶ A ×D→ B returns the information whether an end of a given

association is a composite end or not

M Model 21

O ⊂ OMM denotes the finite set of the model’s object IDs

L ⊂ LMM denotes the finite set of the model’s link IDs

V ⊂ VMM denotes the finite set of the model’s attribute val-

ues

class ∶ O → C returns the class c ∈ C of a given object o ∈ O
association ∶ L→ A returns the association a ∈ A of a given link l ∈ L
attribute ∶ V → P returns the attribute p ∈ P of a given attribute value

v ∈ V
firstObject ∶ L→ O returns the first object o ∈ O for a given link l ∈ L
secondObject ∶ L→ O returns the second object o ∈ O for a given link

l ∈ L
compositeLinks ∶ O →
P(L)

returns the links in which a given object acts as

composite object

childObjects ∶ O → P(O) returns all child objects for a given composite ob-

ject

compositeParent ∶ O →
P(O)

returns the composite parent object for a given

child object

value ∶ O ×A→ P(O) returns the attribute value for a given object and

attribute

orderL ⊆ L × L is a strict partial order on L where (l1, l2) ∈
orderL ⇐⇒ l1 occurs directly before l2

orderV ⊆ V × V is a strict partial order on V where (v1, v2) ∈
orderV ⇐⇒ v1 occurs directly before v2.

ModelsMM denotes the set of all (consistent) models for a

given metamodel MM

352

Symbol Description Pg.

Changes
δ+o creating an instance o 23

δ−o deleting an instance o

δ+l,o1,o2 creating a link l between instances o1 and o2
δ−l,o1,o2 deleting a link l between instances o1 and o2
δol1,l2 change of ordering of a link l1 which is swapped

with l2 if association(l) is ordered at its first or

second end

δso,a,v setting attribute a of instance o to value v

δuo,a,v unsetting attribute a of instance o for value v

δoo,a,v1,v2 change of order of value v1 of attribute a

of instance o which is swapped with v2 if

isOrdered(a) = true

element ∶ ChangesMM →
ModelsMM

yields the element under change

Δ Complex change 23

∇δ Consistent change in order to keep a model con-

sistent after change δ occured

67

consistentChanges ∶
P(ChangesMM) →
P(ChangesMM)

yields the consistent changes of a given set of

changes

353

Appendix A. Cheat Sheet

Symbol Description Pg.

Transformations
leftModelPatternT ∶=
proj1(T)

yields the left model pattern of a transformation T 25

rightModelPatternT ∶=
proj2(T)

yields the left model pattern of a transformation T

lmpT ∶=
leftModelPattern(T)

shorthand for leftModelPattern

rmpT ∶=
rightModelPattern(T)

shorthand for rightModelPattern

↝T Application of transformation T 26

↝ (Ms,Mt) Yields the set of changes applied to Mt through the

transformation.

rules ∶
TransformationsMM →
P(TransformationsMM)

yields the rules contained in a rule based trans-

formation

69

Trace Trace model 70

Θ Set of tracelinks

source ∶ Θ→ P(Ml) yields the set of source elements of a trace link

target ∶ Θ→ P(Mr) yields the set of target elements of a trace link

rule ∶ Θ→ rules(T) yields the rule from the transformation that was

responsible for the creation of the trace link

orderT ⊆ Θ ×Θ is a strict partial order defined on Θ where

(θ1, θ2) ∈ orderT ⇐⇒ θ1 occurs directly before

θ2. This defines the order in which the model ob-

jects, links or values where set in the target model

according to the transformation.

projectOrderL ∶ Θ × Θ →
L × L

projects the order as given in the tracelink to a

strict partial order of links.

projectOrderV ∶ Θ × Θ →
V × V

projects the order as given in the tracelink to a

strict partial order of attribute values.

354

Symbol Description Pg.

Retainment Policies
⊥ is the NotSet RetainmentKind 87

∅ is the never RetainmentKind
� is the targetChangedExclusively

RetainmentKind
� is the sourceChangedExclusively

RetainmentKind
∎ is the sourceAndTargetChanges

RetainmentKind
�� is the sourceXorTargetChanged

RetainmentKind
∎� is the targetChanged RetainmentKind
�∎ is the sourceChanged RetainmentKind
�∎� is the always RetainmentKind.

355

Appendix B.

Complex Ocl Inversion Example

The following example will show that also rather complex OCL expressions can be

inverted by the approach presented in Section 5.3.3. Listing B.1 shows the expressions

that should be inverted. This purpose of this expression is to lookup MOF classes in their

namespaces by a given qualified name that is represented by a string separated by double

colons, such as e.g., A::Test. In this example, we want to invert this expression to get

from a given class with name “Test” that resides in a package “A” to the qualified name

A::Test.

236 MofClass(name=’Test’, container=MofPackage(name=’A’)) :=

237 let t=Sequence{1..?(3).size()}->select(j|?(3).subString(j,j+1)=’::’)

238 ->iterate(i; acc:Tuple(pos:Integer,ns:Set(Namespace),qn:String)=

239 Tuple{pos=1, ns=null, qn=’’} |

240 let namePart=?(2).subString(acc.pos, i-1) in

241 Tuple{pos=i+2,

242 ns=if acc.ns=null then

243 Namespace.allInstances()->select(

244 ns2 | ns2.container->isEmpty() and ns2.name=namePart)

245 else

246 acc.ns.contents->select(ns2 | ns2.name=namePart)->asSet()

247 endif,

248 qn=acc.qn.concat(’::’).concat(namePart)}) in

249 t.ns.contents->select(c | c.name=?(1).subString(t.pos, ?(1).size()))

Listing B.1: Building the inverse of a complex OCL expression: the source expression

The inversion will tackle the three different occurrences (1), (2) and (3) of the “?”-

expression. Listing B.2 inverts occurrence (1) while Listing B.3 handles occurrence (2)

in the iterator body. Occurrence (3), in the source of the iterator is inverted in Listing

B.5

357

Appendix B. Complex Ocl Inversion Example

250 (1) MofClass(name=’Test’, container=MofPackage(name=’A’))t.pos,?.size()
251 := t.ns.contents->^select(c | c.name=?) --source rule-->

252 (1) Set{MofClass(name = ’Test’,

253 container = MofPackage(name= ’A’))t.pos,?.size()}->any(true) :=

254 c.name=?

255 (1) MofClass(name = ’Test’,

256 container=MofPackage(name= ’A’))t.pos,?.size() :=

257 c.name=? --property rule-->

258 (1) ’Test’t.pos,?.size() := ?

259 (1) => ?t.pos,?.size() := ’Test’

260 => t.pos = ?.size() - 4

Listing B.2: Inverting occurrence (1) of the “?” literal.

261 (2) MofClass(name = ’Test’, container=MofPackage(name= ’A’))1,t.pos :=

262 let t=Sequence{1..?.size()}->select(j|?.subString(j, j+1) = ’::’)

263 ->iterate(i;

264 acc:Tuple(pos:Integer, ns:Set(Namespace), qn:String) =

265 Tuple{pos=1, ns=null, qn=’’} |

266 let namePart=?.subString(acc.pos, i-1) in

267 Tuple{pos=i+2,

268 ns=if acc.ns=null then

269 Namespace.allInstances()->select(

270 ns2 | ns2.container->isEmpty() and ns2.name=namePart)

271 else

272 acc.ns.contents->select(ns2 | ns2.name=namePart)->asSet()

273 endif,

274 qn=acc.qn.concat(’::’).concat(namePart)}).ns.contents

275 --replace namePart with init of let expression -->

276 (2) MofClass(name = ’Test’, container=MofPackage(name= ’A’))1,t.pos :=

277 let t=Sequence{1..?.size()}->select(j|?.subString(j, j+1) = ’::’)

278 ->iterate(i;

279 acc:Tuple(pos:Integer, ns:Set(Namespace), qn:String) =

280 Tuple{pos=1, ns=null, qn=’’} |

281 Tuple{pos=i+2,

282 ns=if acc.ns=null then

283 Namespace.allInstances()->select(

284 ns2 | ns2.container->isEmpty() and

285 ns2.name=?.subString(acc.pos, i-1))

286 else

287 acc.ns.contents->select(ns2 |

288 ns2.name=?.subString(acc.pos, i-1))->asSet()

358

289 endif,

290 qn=acc.qn.concat(’::’).concat(?.subString(acc.pos, i-1))})

291 .ns.contents

292 --navigating backwards form c to container-->property rule-->

293

294 (2) MofPackage(name= ’A’)1,t.pos =

295 let t=Sequence{1..?.size()}->select(j|?.subString(j, j+1) = ’::’)

296 ->iterate(i;

297 acc:Tuple(pos:Integer, ns:Set(Namespace), qn:String) =

298 Tuple{pos=1, ns=null, qn=’’} |

299 Tuple{pos=i+2,

300 ns=if acc.ns=null then

301 Namespace.allInstances()->select(

302 ns2 | ns2.container->isEmpty() and

303 ns2.name=?.subString(acc.pos, i-1))

304 else

305 acc.ns.contents->select(ns2 |

306 ns2.name=?.subString(acc.pos, i-1))->asSet()

307 endif,

308 qn=acc.qn.concat(’::’).concat(?.subString(acc.pos, i-1))})

309 .ns

310 --replace ns at last iteration index lasti and replace ns -->

311 (2.last) MofPackage(name= ’A’)1,lasti+2 =

312 let t=Sequence{1..?.size()}->select(j|?.subString(j, j+1) = ’::’)

313 ->at(lasti)

314 ->iterate(lasti; acc:Tuple(pos:Integer,ns:Set(Namespace),qn:String)=

315 Tuple{pos=1, ns=null, qn=’’} |

316 Tuple{pos_{lasti}=lasti+2,

317 MofPackage(name= ’A’)):=if acc.ns_{lasti}=null then

318 Namespace.allInstances()->select(

319 ns2 | ns2.container->isEmpty() and ns2.name=?.subString(

320 acc.poslasti, lasti-1))

321 else

322 acc.ns_{lasti}.contents->select(ns2 |

323 ns2.name=?.subString(acc.poslasti, lasti-1))->asSet()

324 endif,

325 qn=acc.qn_{lasti}.concat(’::’).concat(

326 ?.subString(acc.poslasti, lasti-1))}).ns

Listing B.3: Inverting occurrence (2) of the “?” literal.

359

Appendix B. Complex Ocl Inversion Example

Now we can investigate the ns property of the tuple as it contains the substituted model

element as well as an ?-expression.

327 (2.last.ns) MofPackage(name= ’A’):=

328 if acc.nslasti=null then --if then rule

329 Namespace.allInstances()->select(

330 ns2 | ns2.container->isEmpty() and

331 ns2.name=?.subString(acc.poslasti, lasti-1))

332 else

333 acc.ns.contents->select(ns2 |

334 ns2.name=?.subString(acc.poslasti, lasti-1))->asSet()

335 endif

336

337 (2.last.ns.then)

338 MofPackage(name= ’A’) :=

339 Namespace.allInstances()->select(ns2|ns2.container->isEmpty() and

340 ns2.name=?.subString(acc.poslasti, lasti-1)))

341 --property rule

342

343 (2.last.ns.then)

344 MofPackage(name= ’A’).container->isEmpty() = true and

345 --condition to be set to true!

346 ’A’ := ?.subString(acc.poslasti, lasti-1))

347 ?acc.poslasti
,lasti−1 = ’A’

Listing B.4: Determination of the ns property of occurrence (2) of the “?” literal.

We can omit else part as this evaluates to true, therefore we need to ensure that the

condition is set to true. This is achieved by setting acc.ns = null. Next we in-

sert this part into parent expression, as this is the initial value of acc. There we get

Tuple{pos=1, ns=null, qn=”} which is the intial state of the iterate expres-

sion and which lets us assume that the reverse iteration can be stopped at this point.

From that we can conclude that: acc.poslasti = 1 and therefore: ?1,lasti−1 = ’A’

and finally lasti = 2.

The value of first segment of ? is thus ?1,1 = ’A’.

360

The acc.pos for the lasti can then be determined as:

poslasti = 2 + 2

=> poslasti = 4

Then we can insert poslasti = 4 in the formula for occurence (1):

=> ?.poslasti ,?.size()
∶= ′Test′

=> ?4,?.size() ∶= ′Test′

from that we find that:

=> ?.size() = 7

For the last segment of ? we get ?4,7 ∶= ′Test′. Thus, the last missing segment of ? is

?2,3.

Furthermore, we can insert lasti = 1 and ?.size()= 7 into the source expression

of the iterate expression:

348 (3) Sequence{1..7}->select(j|?.subString(j, j+1) = ’::’) := {2}

349 --j = 2

350 (3) ?.subString(2, 2+1) := ’::’

351 Which leads to the last segment of ?:

352 ?2,3 = ’::’

Listing B.5: Determination of the ns property of occurrence (3) of the “?” literal.

Putting all segments together results in the final value for ?:

? = ′A′+′ ∶∶′ +′Test′

? = ′A ∶∶ Test′ q.e.d.

361

Bibliography

[AHK06] Michael Altenhofen, Thomas Hettel, and Stefan Kusterer. Ocl support

in an industrial environment. In MoDELS Workshops, pages 169–178,

2006.

[Ara89] G. Arango. Domain analysis: from art form to engineering discipline.

SIGSOFT Softw. Eng. Notes, 14(3):152–159, 1989.

[AS07] C. Amelunxen and A. Schürr. Formalizing Model Transformation Rules

for UML/MOF 2. IET Software Journal, 2(3):204–222, June 2007. Spe-

cial Issue: Language Engineering.

[AS08] Colin Atkinson and Dietmar Stoll. Orthographic modeling environment.

In José Luiz Fiadeiro and Paola Inverardi, editors, FASE, volume 4961

of Lecture Notes in Computer Science, pages 93–96. Springer, 2008.

[Bar08] Christian Bartelt. Consistence preserving model merge in collaborative

development processes. In CVSM ’08: Proceedings of the 2008 inter-
national workshop on Comparison and versioning of software models,

pages 13–18, New York, NY, USA, 2008. ACM.

[BCD+89] Patrick Borras, Dominique Clément, Thierry Despeyroux, Janet Incerpi,

Gilles Kahn, Bernard Lang, and Victor Pascual. Centaur: The system.

SIGPLAN Notices, pages 14–24, 1989.

[BCR94] V. Basili, G. Caldeira, and H. D. Rombach. Encyclopedia of Software
Engineering, chapter The Goal Question Metric Approach. Wiley, 1994.

[BDW06] Achim D Brucker, Jürgen Doser, and Burkhart Wolff. Semantic issues of

OCL: Past, present, and future. Electronic Communications of EASST,

5:213–228, 2006.

363

Bibliography

[BG10] Erik Burger and Boris Gruschko. A change metamodel for the evolution

of mof-based metamodels. In Modellierung, volume 161 of LNI, pages

285–300. GI, 2010.

[BGGK07] Steffen Becker, Thomas Goldschmidt, Boris Gruschko, and Heiko Kozi-

olek. A Process Model and Classification Scheme for Semi-Automatic

Meta-Model Evolution. In Proc. 1st Workshop MDD, SOA und IT-
Management (MSI’07), pages 35–46. GI, GiTO-Verlag, April 2007.

[BMS08] Claus Brabrand, Anders Möller, and Michek I. Schwartzbach. Dual syn-

taxes for XML languages. Information Systems, 33(4-5):385–406, 2008.

[Bru10] Cédric Brun. Diff, merge and patch your models with helios.

http://model-driven-blogging.blogspot.com/2010/

03/diff-merge-and-patch-your-models-with.html,

2010. Last retrieved 2010-08-21.

[BW02] Achim D. Brucker and Burkhart Wolff. HOL-OCL: Experiences, Con-

sequences and Design Choices. In UML 2002: Model Engineering, Con-
cepts And Tools, Number 2460 in Lecture Notes in Computer Science,

pages 196–211. Springer, 2002.

[Cat93] R Cattell. The object database standard: ODMG-93, 1993.

[CD] James Clark and Steve DeRose. XML Path Language (XPath). http:

//www.w3.org/TR/xpath/.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model

transformation approaches. IBM Systems Journal, 45(3):621–646, 2006.

[Cle03] Paul Clements. Documenting software architectures: Views and bey-
ond. SEI series in software engineering. Addison-Wesley, Boston, Mass.,

2003.

[Cod91] Edgar F. Codd. The relational model for database management: Version
2. Addison-Wesley, Reading, Mass., reprinted with corr. edition, 1991.

[CT05] Jordi Cabot and Ernest Teniente. Computing the relevant instances that

may violate an ocl constraint. In Oscar Pastor and João Falcão e Cunha,

364

Bibliography

editors, CAiSE, volume 3520 of Lecture Notes in Computer Science,

pages 48–62. Springer, 2005.

[CT09] Jordi Cabot and Ernest Teniente. Incremental integrity checking of um-

l/ocl conceptual schemas. J. Syst. Softw., 82(9):1459–1478, 2009.

[CW01] Phil Cook and Jim Welsh. Incremental parsing in language-based edit-

ors: user needs and how to meet them. Software: Practice and Experi-
ence, 31:1461–1486, 2001.

[Dal05] C. Daly. Emfatic language for EMF development. http://wiki.

eclipse.org/Emfatic, 2005. last visited: 13/08/2010.

[DC01] Kees Dorst and Nigel Cross. Creativity in the design process: co-

evolution of problem-solution. Design Studies, 22(5):425 – 437, 2001.

[Des84] Thierry Despeyroux. Executable specification of static semantics. In

International Symposium on Semantics of Data Types, volume 173 of

Lecture Notes in Computer Science. Springer, 1984.

[DGHKL84] Veronique Donzeau-Gouge, Gerard Huet, Gilles Kahn, and Bernard

Lang. Programming Environments Based on Structured Editors: The
MENTOR Experience. McGraw-Hill, 1984.

[Dim05] Sergey Dimitriev. Language oriented programming: The next program-

ming paradigm. onBoard Magazine, 2, 2005.

[DJL88] P. Deransart, M. Jourdan, and B. Lorho. Attribute Grammars: Defini-
tions, Systems, and Bibliography, volume 323 of LNCS. Springer-Verlag,

1988.

[DQPvS03] Remco M. Dijkman, Dick A. C. Quartel, Luis F. Pires, and Marten J. van

Sinderen. An approach to relate viewpoints and modeling languages. In

7th International Enterprise Distributed Object Computing Conference
(EDOC 2003), Proceedings, pages 14–27, Los Alamitos, Calif., 2003.

IEEE Computer Society.

[Ecl10a] Eclipse Foundation. Eclipse Java Development Tools (JDT) Subproject.

http://www.eclipse.org/jdt/, 2010. Last retrieved 2010-07-

06.

365

Bibliography

[Ecl10b] Eclipse Foundation. Graphical Modeling Framework Homepage.

http://www.eclipse.org/gmf/, 2010. Last retrieved 2010-07-

06.

[Ecl10c] Eclipse Foundation. The Eclipse Modelling Project. http://www.

eclipse.org/modeling/, 2010. Last retrieved 2010-07-06.

[EHTE97] Hartmut Ehrig, Reiko Heckel, Gabi Taentzer, and Gregor Engels. A

combined reference model- and view-based approach to system specific-

ation. Int. Journal of Software and Knowledge Engeneering, 7:457–477,

1997.

[Ern99] Johannes Ernst. What is metamodeling, and what is it good

for? http://infogrid.org/wiki/Reference/

WhatIsMetaModeling, 1999. Last retrieved 2010-08-18.

[EWH07] Matthias Erche, Michael Wagner, and Christian Hein. Mapping Visual

Notations to MOF Compliant Models with QVT-Relations. In SAC ’07:
Proc. of the 2007 ACM Symposium on Applied Computing, pages 1037–

1038, New York, NY, USA, 2007. ACM.

[FCS+10] Robert M. Fuhrer, Philippe Charles, Stanley Sutton, Jurgen Vinju, and

Oege de Moor. IMP: The IDE Meta-Tooling Platform. http://www.

eclipse.org/imp/, 2010. last retrieved: 2010-07-08.

[FGM+07] J. Nathan Foster, Michel B. Greenwald, Jonathan T. Moore, Benjamin C.

Pierce, and Alan Schmitt. Combinators for bidirectional tree transform-

ations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst., 3, 2007.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California,

Irvine, 2000.

[FKN+92] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke.

Viewpoints: A framework for integrating multiple perspectives in system

development. International Journal of Software Engineering and Know-
ledge Engineering, 2, 1992.

366

Bibliography

[Fon07] Frédéric Fondement. Concrete syntax definition for modeling languages.

PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2007.

[Fou] Eclipse Foundation. Eclipse textual modelling framework. http://

www.eclipse.org/modeling/tmf/. Last retrieved 2010-08-20.

[Fou10] Eclipse Foundation. Eclipse XText Website. http://www.

eclipse.org/Xtext/, 2010. Last retrieved 2010-07-06.

[Fow05] Martin Fowler. Language workbenches: The killer-app for do-

main specific languages? http://www.martinfowler.com/

articles/languageWorkbench.html, 2005.

[Gar08] Miguel Garcia. Bidirectional synchronization of multiple views of soft-

ware models. In Proceedings of the Workshop on Domain-Specific Mod-
eling Languages (DSML-2008), volume 324 of CEUR-WS, pages 7–19,

2008.

[Gar09] Miguel Garcia. On the Formalization of Model-Driven Software Engin-
eering. PhD thesis, Technische Universität Hamburg-Harburg, Hamburg,

Germany, 2009.

[GBU08] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Classification of

Concrete Textual Syntax Mapping Approaches. In Proceedings of the
4th European Conference on Model Driven Architecture - Foundations
and Applications, volume 5059 of Lecture Notes in Computer Science,

pages 169–184. Springer-Verlag Berlin Heidelberg, 2008.

[GBU09a] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. FURCAS: Frame-

work for UUID-Retaining Concrete to Abstract Syntax Mappings. In

Proceedings of the 5th European Conference on Model Driven Architec-
ture - Foundations and Applications (ECMDA 2009) - Tools and Con-
sultancy Track. CTIT, 2009.

[GBU09b] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Textual views

in model driven engineering. In Proceedings of the 35th EUR-
OMICRO Conference on Software Engineering and Advanced Applic-
ations (SEAA). IEEE, 2009.

367

Bibliography

[GBU10] Thomas Goldschmidt, Steffen Becker, and Axel Uhl. Incremental Up-

dates for Textual Modeling of Large Scale Models. In Proceedings of the
15th IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2010) - Poster Paper. IEEE, 2010.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.

[Gol06] Thomas Goldschmidt. Grammar based code transformation for the

model driven architecture. Master’s thesis, Hochschule Furtwangen Uni-

versity, Furtwangen, Germany, August 2006.

[Gol08] Thomas Goldschmidt. Towards an incremental update approach for con-

crete textual syntaxes for UUID-based model repositories. In Dragan

Gasevic, Ralf Lämmel, and Eric van Wyk, editors, Proceedings of the
1st International Conference on Software Language Engineering (SLE),
volume 5452 of Lecture Notes in Computer Science, pages 168–177.

Springer-Verlag Berlin Heidelberg, 2008.

[GRW08] Thomas Goldschmidt, Ralf Reussner, and Jochen Winzen. A Case Study

Evaluation of Maintainability and Performance of Persistency Tech-

niques. In ICSE ’08: Proceedings of the 30th international conference
on Software engineering, pages 401–410, New York, NY, USA, 2008.

ACM.

[GS07] Miguel Garcia and Paul Sentosa. Generation of Eclipse-based IDEs

for Custom DSLs. Technical report, Software Systems Institute (STS),

Technische Universität Hamburg-Harburg, Germany, 2007.

[GWR07] Thomas Goldschmidt, Jochen Winzen, and Ralf Reussner. Evaluation of

Maintainability of Model-driven Persistency Techniques. In IEEE CSMR
07 - Workshop on Model-Driven Software Evolution (MoDSE2007),
pages 17–24, 2007.

[HBJ08] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. Cope:

A language for the coupled evolution of metamodels and models. In

368

Bibliography

Proceedings of the 1st International Workshop on Model Co-Evolution
and Consistency Management, 2008.

[Het10] Thomas Hettel. Model Round-Trip Engineering. PhD thesis, Queensland

University of Technology, 2010.

[HG09] Robert Wagner Holger Giese. From model transformation to incremental

bidirectional model synchronization. Software and Systems Modeling,

8:21–43, 2009.

[HLR08] Thomas Hettel, Michael Lawley, and Kerry Raymond. Model synchron-

isation: Definitions for round-trip engineering. In 1st International Con-
ference on Model Transformation, ICMT 2008, pages 31–45, 2008.

[HLR09] Thomas Hettel, Michael Lawley, and Kerry Raymond. Towards model

round-trip engineering: An abductive approach. In ICMT ’09: Pro-
ceedings of the 2nd International Conference on Theory and Practice
of Model Transformations, pages 100–115, Berlin, Heidelberg, 2009.

Springer-Verlag.

[HR04] David Harel and Bernhard Rumpe. Meaningful modeling: What’s the

semantics of "semantics"? Computer, 37:64–72, 2004.

[Hud98] P Hudak. Modular domain specific languages and tools. In ICSR ’98:
Proceedings of the 5th International Conference on Software Reuse,

pages 134–142. IEEE Computer Society, 1998.

[IEE00] IEEE. IEEE Std 1471:2000 – Recommended practice for architectural
description of software intensive systems. Los Alamitos,CA: IEEE,

2000.

[JB06a] Frédéric Jouault and Jean Bézivin. KM3: A DSL for Metamodel Spe-

cification. In 8th IFIP WG 6.1 International Conference on Formal
Methods for Open Object-Based Distributed Systems, pages 171–185,

2006.

[JB06b] Frédéric Jouault and Jean Bézivin. On the specification of textual syn-

taxes for models. In Eclipse Summit Europe 2006, 2006.

369

Bibliography

[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the spe-

cification of textual concrete syntaxes in model engineering. In GPCE
’06, pages 249–254, New York, NY, USA, 2006. ACM Press.

[Jet] JetBrains. Meta Programming System. http://www.jetbrains.

com/mps/. last retrieved 2010-07-06.

[JP08] Jan Jancura and Daniel Prusa. Generic framework for integration of

programming languages into netbeans ide. In PEPM ’08: Proceed-
ings of the 2008 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 123–124, New York, NY,

USA, 2008. ACM.

[Kah87] G. Kahn. Natural semantics. In Symposium on Theoretical Aspects of
Computer Sciences (STACS), volume 247 of Lecture Notes in Computer
Science, pages 22–39. Springer, 1987.

[Kar07] Martin Karlsch. A model-driven framework for domain specific lan-

guages. Master’s thesis, University of Potsdam, Hasso Plattner Insitute,

2007.

[Kle09] Anneke Kleppe. Software Language Engineering: Creating Domain-
specific Languages Using Metamodels. Addison-Wesley, Upper Saddle

River, NJ, 2009.

[KP88] G E Krasner and S T Pope. A description of the model-view-controller

user interface paradigm in the smalltalk-80 system. In Journal of Object
Oriented Programming, pages 26–49, 1988.

[KPKP06] D S Kolovos, R F Paige, T P Kelly, and F A C Polack. Requirements

for domain-specific languages. In In Proceedings of the First ECOOP
Workshop on Domain-Specific Program Development, co-located with
ECOOP’06, 2006.

[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Merging

models with the epsilon merging language (EML). In Model Driven
Engineering Languages and Systems, pages 215 – 229, 2006.

370

Bibliography

[Kra10] H. Krahn. MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering. PhD thesis, RWTH Aachen, 2010.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated defini-

tion of abstract and concrete syntax for textual languages. In Gregor En-

gels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors, MoD-
ELS, volume 4735 of Lecture Notes in Computer Science, pages 286–

300. Springer, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient editor

generation for compositional dsls in eclipse. In Proc. of the 7th OOPSLA
Workshop on Domain-Specific Modeling (DSM’ 07), Montreal, Quebec,
Canada, 2007.

[Kya05] Marcel Kyas. An extended type-system for ocl supporting templates

and transformations. In In M. Steffen and Gianluigi Zavattaro (Eds),
Formal Methods for Open Object-Based Distributed Systems (FMOODS
2005), Lecture Notes in Computer Science, number 3535, pages 83–98.

Springer-Verlag, 2005.

[LHT07a] Dongxi Liu, Yhenjiang Hu, and Masato Takeichi. Bidirectional Inter-

pretation of XQuery. In Proc. of the 2007 ACM SIGPLAN symposium
on partial evaluation and semantics-based program manipulation, pages

21–30. ACM Press, 2007.

[LHT+07b] Dongxi Liu, Yhenjiang Hu, Masato Takeichi, Kazuhiko Kakehi, and Hao

Wang. A java Library for Bidirectional XML Transformation. JSSST
Computer Software, 2:164–177, May 2007.

[Li95] Warren X. Li. A simple and efficient incremental ll(1) parsing. In SOF-
SEM ’95: Theory and Practice of Informatics, pages 399–404, 1995.

[LP88] T.F. Lunney and R.H. Perrott. Syntax-directed editing. Software Engin-
eering Journal, 3(2):37–46, Mar 1988.

[LS93] B Logan and T Smithers. Creativity and design as exploration. Lawrence

Erlbaum Associates Inc, 1993.

371

Bibliography

[MCnt] S. L. MacGregor Mathers and A. Crowley. The Goetia: The Lesser Key
of Solomon the King. 1904; 1995 reprint.

[Men02] T. Mens. A state-of-the-art survey on software merging. IEEE Trans.
Softw. Eng., 28(5):449–462, 2002.

[MFJ05] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving

executability into object-oriented meta-languages. In Lionel C. Briand

and Clay Williams, editors, MoDELS, volume 3713 of Lecture Notes in
Computer Science, pages 264–278. Springer, 2005.

[MG06] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.

Electronic Notes in Theoretical Computer Science, 152:125–142, March

2006.

[MH05] Pierre-Alain Muller and Michel Hassenforder. HUTN as a bridge

between modelware and grammarware - an experience report. In WiSME
2005 4th Workshop in Software Model Engineering, 2005.

[MHN+07] Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana,

and Masato Takeichi. Bidirectional transformation based on automatic

derivation of view complement functions. In Proc. of the ICFP 2007,

pages 47–58. ACM Press, 2007.

[Mod07] ModelWare. Information Society Technologies (IST) Sixth Framework

Programme: Glossary. http://www.modelware-ist.org/

index.php?option=com_rd_glossary&Itemid=55, 2007.

last retrieved: 2010-08-18.

[MP99] V. Menon and K. Pingali. A case for source-level transformations in mat-

lab. In Proceedings of 2nd Conference on Domain-specific Languages,

pages 53–65, 1999.

[Muc97] Steven Muchnick. Advanced Compiler Design and Implementation.

Morgan Kaufmann, 1997.

[Nag96] Manfred Nagl, editor. Building tightly integrated software development
environments: the IPSEN approach. Springer-Verlag New York, Inc.,

New York, NY, USA, 1996.

372

Bibliography

[Niv04] Gabriel Nivasch. Cycle detection using a stack. Information Processing
Letters, 90(3):135 – 140, 2004.

[Obj] Object Management Group. Architecture Driven Modernization (ADM).

http://www.omg.org/adm/.

[Obj02] Object Management Group. Meta Object Facility (MOF) Specification

Version 1.4 (formal/02-04-03), 2002.

[Obj04] Object Management Group. Human-Usable Textual Notation (HUTN)

Specification (formal/04-08-01), 2004.

[Obj06] Object Management Group (OMG). MOF 2.0 Core Specification

(formal/2006-01-01), 2006.

[Obj10a] Object Management Group. Object Constraint Language (OCL) Spe-

cification Version 2.2 (formal/2010-02-01), 2010.

[Obj10b] Object Management Group (OMG). Unified Modeling Language Spe-

cification: Version 2.3, (formal/2010-05-03), 2010.

[Obj11] Object Management Group. Meta Object Facility (MOF) 2.0

Query/View/Transformation (QVT) (formal/2011-01-01), 2011.

[PALG08] Francisco Pérez Andrés, Juan Lara, and Esther Guerra. Domain specific

languages with graphical and textual views. In Applications of Graph
Transformations with Industrial Relevance: Third International Sym-
posium, AGTIVE 2007, Kassel, Germany, October 10-12, 2007, Revised
Selected and Invited Papers, pages 82–97, Berlin, Heidelberg, 2008.

Springer-Verlag.

[PB03] Rachel A. Pottinger and Philip A. Bernstein. Merging models based on

given correspondences. In VLDB ’2003: Proceedings of the 29th inter-
national conference on Very large data bases, pages 862–873. VLDB

Endowment, 2003.

[Pep79] P. Pepper. A study on transformational semantics. In Program Construc-
tion, volume 69 of Lecture Notes in Computer Science, pages 322–405.

Springer Berlin / Heidelberg, 1979.

373

Bibliography

[Plo04] Gordon D. Plotkin. The origins of structural operational semantics.

Journal of Logic and Algebraic Programming, 60-61:3–15, 2004.

[PQ95] Terence Parr and Russell Quong. Antlr: A predicated-ll(k) parser gener-

ator. Journal of Software Practice and Experience, 25(7), 1995.

[RT84] Thomas Reps and Tim Teitelbaum. The synthesizer generator. SIGSOFT
Softw. Eng. Notes, 9(3):42–48, 1984.

[RT89] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator Ref-
erence Manual. Springer, 2nd edition, 1989.

[RTD83] Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-

dependent analysis for language-based editors. ACM Transactions on
Programming Languages and Systems (TOPLAS), 5(3):449–477, 1983.

[Sch90] Andy Schürr. Progress: A vhl-language based on graph grammars. In

Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors,

Graph-Grammars and Their Application to Computer Science, volume

532 of Lecture Notes in Computer Science, pages 641–659. Springer,

1990.

[Sch07] Markus Scheidgen. Textual editing framework. http:

//www2.informatik.hu-berlin.de/sam/meta-tools/

tef/tool.html, 2007. Last retrieved 2010-07-06.

[SE06] Mehrdad Sabetzadeh and Steve Easterbrook. View merging in the pres-

ence of incompleteness and inconsistency. Requirements Engineering,

11:174–193, 2006.

[SH86] Gregor Snelting and Wolfgang Henhapl. Unification in many-sorted al-

gebras as a device for incremental semantic analysis. In POPL ’86: Pro-
ceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 229–235, New York, NY, USA, 1986.

ACM.

[Shi93] J.J. Shilling. Incremental ll(1) parsing in language-based editors. Soft-
ware Engineering, IEEE Transactions on, 19(9):935–940, Sep 1993.

374

Bibliography

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux.

Feature diagrams: A survey and a formal semantics. Requirements En-
gineering, 0:139–148, 2006.

[Sim07] Charles Simonyi. Intentional software. http://www.intentsoft.

com/, 2007.

[SLT91] Marc H. Scholl, Christian Laasch, and Markus Tresch. Updatable views

in object-oriented databases. In C Delobel, editor, Deductive and Object-
Oriented Databases, volume 566 of Lecture Notes in Computer Science,

pages 189–207, Berlin, Heidelberg, Springer„ 1991.

[Sne91] Gregor Snelting. The calculus of context relations. Acta Informatica,

5:441–445, 1991.

[SS71] Dana Scott and Christopher Strachey. Toward a mathematical semantics

for computer languages. In Jerome Fox, editor, Proceedings of the Sym-
posium on Computers and Automata, volume XXI, pages 19–46, Brook-

lyn, N.Y., April 1971. Polytechnic Press.

[Sta73] Herbert Stachowiak, editor. Allgemeine Modelltheorie. Springer, Wien

[u.a.], 1973.

[Tid05] Jenifer Tidwell. Designing Interfaces. O’Reilly Media, illustrated edi-

tion edition, November 2005.

[TR81] Tim Teitelbaum and Thomas Reps. The cornell program synthesizer: a

syntax-directed programming environment. Commun. ACM, 24(9):563–

573, 1981.

[Uhl07] Axel Uhl. Model-driven development in the enterprise.

https://www.sdn.sap.com/irj/sdn/weblogs?blog=

/pub/wlg/7237, 2007. Last retrieved 2010-07-06.

[Uhl08] Axel Uhl. Model-driven development in the enterprise. IEEE Software,

25(1):46–49, 2008.

[vdBHvD+01] Mark van den Brand, Jan Heering, Arie van Deursen, Hayco de Jong,

Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter

375

Bibliography

Olivier, Jeroen Scheerder, Jurgen Vinju, Eelco Visser, and Joost Visser.

The ASF+SDF Meta-Environment: a Component-Based Language De-

velopment Environment. In Proc. of Compiler Construction (CC) 2001,

volume 2102 of Lecture Notes in Computer Science, pages 365–370.

Springer, 2001.

[vDK98] Arie van Deursen and Paul Klint. Little languages: little maintenance.

Journal of Software Maintenance, 10(2):75–92, 1998.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-

guages: an annotated bibliography. ACM SIGPLAN Notices, 35(6):26–

36, 2000.

[Wac07] Guido Wachsmuth. Metamodel adaptation and model co-adaptation.

In Erik Ernst, editor, ECOOP 2007 - Object-Oriented Programming,

volume 4609 of Lecture Notes in Computer Science, pages 600–624.

Springer Berlin / Heidelberg, 2007.

[Wag98] Tim A. Wagner. Practical Algorithms for Incremental Software Devel-
opment Environments. PhD thesis, University of California at Berkeley,

1998.

[wik] wikipedia.org. Article on Coghead at wikipedia.org. http://en.

wikipedia.org/wiki/Coghead. Last retrieved 10/08/2010.

[WK05] Manuel Wimmer and Gerhard Kramler. Bridging grammarware and

modelware. In Satellite Events at the MoDELS 2005 Conference, pages

159–168, 2005.

376

